
No. 1920

$22.95

AT&T 6300
A COMPREHENSIVE USERS MANUAL

FREDERICK HOLTZ

TAB BOOKS Inc.
Blue Ridge Summit, PA 17214

AT&T PC-6300 is a trademark of AT&T Technologies, Inc.
IBM Personal Computer and IBM PC are registered trademarks of International Business Machines Corporation.

UNIX is a trademark of Bell Laboratories.
MS-DOS is a trademark of Microsoft Consumer Products.

To my good friend Topsy Breeden,

FIRST EDITION

FIRST PRINTING

Copyright © 1985 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to

the use of the information herein.

Library of Congress Cataloging in Publication Data

Holtz, Frederick.
AT&T 6300—A Comprehensive

User's Manual

Includes index.

1. AT&T PC 6300 (Computer)—Programming.
2. Computer programs. I. Title.

QA76.8.A76H65 1985 001.64'2 84-26754
ISBN 0-8306-0920-2

ISBN 0-8306-1920-8 (pbk.)

Front cover photograph courtesy of AT&T.

0C\

1(^
.r

m5

Contents

Acknowledgment v

List of Programs vl

Introduction vili

The AT&T Personal Computer 1
Components of the AT&T PC-6300 3
Compatibility 6

GWBASIC Programming 7
A First Program 8
Clearing the Screen 9
Creating a Loop 10
More about Loops 11
FOR-NEXT Loops 13
Going Further with FOR-NEXT Loops 15
More on the PRINT Statement 16

Variables 17

INPUT Statement 19

Using Variabies 22
Assignments 23
READ/DATA Statements 24

Functions 25

The LEN Function—The INT Function—The RND Function—The CINT Function
Understanding the Screen 31

Another Branch Statement 32

Multiple Statement Lines 33
Logical Operators 33
Relational Operators 34
Arrays 35
Summary 37

3 Graphics Programming 38
The Graphics Screen 38
Screen Coordinates 39
CIRCLE 40

LINE 41

COLOR 42

PAINT 47

PSET/PRESET 49

DRAW 50

Animation with PUT and GET 52

POINT 56

Summary 57

4 Generai Programs for the AT&T PC-6300 58

5 Graphics Programs for the AT&T PC 76
General Graphics Programs 76
Graphics Utility Programs 90
Graphics Text Programs 95
Programs That Draw 100
Cursor Control Programs 116

6 AT&T PC Game Programs 123

7 AT&T PC Filekeeping 151

8 AT&T PC Music Programs 160
Musical FOR-NEXT Loops 165
Back to Bach (J.S.) 166
Additional Notes 170
A More Complex Music Program 171
Summary 194

index 195

Acknowledgment

I would like to acknowledge and thank AT&T for supplying the PC-6300
and for providing a wealth of technical information about their product.

List of Programs

1 Feet to Inches Conversion 59 24 Animated Cigarette 90
2 Inches to Feet 60 25 Mirror Image 92
3 Fahrenheit to Celcius 60 26 Graphics Screen Shrink 94
4 Celsius to Fahrenheit 61 27 Enlarged Lettering Program 96
5 Mortgage Payment 61 28 Improved Lettering Program 97
6 Maximum Loan Affordable 63 29 Improved Improved Lettering Program 98
7 Annuity Calculation 64 30 Snowball Print Program 99
8 Leap Year Calculation 65 31 Interlace Program 101
9 Coimtdown Timer 67 32 Electronic Graph 102
10 Backward Screen Program 68 33 Schematic Diagram 104
11 Printer/Tjrpewriter 69 34 Diode Array 105
12 Trip Calculator 70 35 Bridge Rectifier Schematic 106
13 Alphabetizing 74 36 Block Diagram 107
14 Random Boxes 77 37 Three-Dimensional House 111

15 Expanding Globe 78 38 Keyboard Cursor Control 117
16 Traveling Box 79 39 Another Cursor Movement Program 118
17 Pinwheel 80 40 Graphics Drawing Board 120
18 Funnel 81 41 Automatic RANDOMIZE Seed Number

19 Cornucopia 83 Generator 124

20 Saturn 84 42 Random Word Maze Generator 124

21 Solar System 86 43 Math Drill 126

22 Text Animation Demo 88 44 Numbers Guess Game 127

23 Graphics Animation Demo 89 45 Random Partner Matcher 130

VI

46 Computerized Bingo Caller 131 73 "tempo di minuetto" 170
47 Spin the Bottle 134 74 "The Twelve Days of Christmas" 171
48 Scrambled Word Game 137 75 "Joy to the World" 173
49 Word Guess 139 76 "Whatever Will Be, Will Be" 173
50 Numbers Draw Poker 143 77 "Vaya con Dios" 174
51 Card Shuffler 146 78 "Windy" 175
52 Draw Poker 148 79 "Everything Is Beautiful" 177
53 File Reading Program 152 80 "Snowbird" 178

54 Advanced File Reading Program 152 81 "Wipeout" 179
55 File Writing Program 152 82 "Blues in F" 180

56 Another File Writing Program 153 83 "Somethin' Stupid" 181
57 File Append Program 153 84 "King of the Road" 182
58 Complete Filing Program 154 85 "Jean" 183

59 File Item Search Program 157 86 "Five Hundred Miles" 184

60 Item Portion File Search 158 87 "Supercalifragilisticexpialidocious" 185
61 "Mary Had a Little Lamb" 162 88 "Theme from Love Story" 186
62 "Blue Skies" 163 89 "Tijuana Taxi" 187
63 "Jingle Bells" 163 90 "Spanish Flea" 187
64 "Go Tell Aunt Rhodie" 164 91 "Cotton Candy" 188
65 Multisong Program 164 92 "Alley Cat" 189
66 Musical Progression 165 93 "It Was a Very Good Year" 190
67 Musical Progression, Reverse Order 165 94 "I Left My Heart in San Francisco" 191
68 Musical Steps 166 95 "America the Beautiful" 191

69 "How Gentle Is the Rain" 167 96 "Me and Bobby McGee" 192
70 "Polonaise" 168 97 "Night Train" 193
71 "Intrata" 169 98 "Cast Your Fate to the Wind" 193

72 "Minuet" 169 99 "Ave Maria" 194

VII

Introduction

In June of 1984, another giant corporation entered
the microcomputer field. AT&T annoimced their
new PC-6300 microcomputer, which had been
rumored for about a year. The AT&T PC-6300 is
a fine machine that is already making its mark
through enhanced operating speed. It is the
culmination of many of the finest microcomputers
that have gone before it.

This book is entended for the person who
already has or is contemplating purchasing the
AT&T PC-6300. It is written on a fairly
nontechnical level, although there is a description
of the machine and its general attributes. Beginners
will especially appreciate the several chapters
devoted to programming in GWBASIC, the stan
dard language of the AT&T PC-6300. All readers
should enjoy the wealth of programs that are
presented in other chapters. In these pages, you will

find programs that address filekeeping, color
graphics, games, text mode, and even sound effects
and music programs. All of these programs are
ready to run on the PC-6300, and many can even
be combined to arrive at highly specialized
programs.

All programs are educational in that they ex
plain more and more about the capabilities of the
PC-6300. If you're just getting started in the per
sonal computing field, or if you've been at it a while
and want to move up to the PC-6300, this book will
explain the computer in fully understandable
language.

The PC-6300 is here to stay. I hope this book
will provide you with the opportunity to get started
on this excellent machine and progress as far as
your imagination will allow.

VIII

Chapter 1

The AT&T Personal Computer
On June 26,1984, AT&T announced several new
data processing products for large and small
businesses. Stuck between several ''super-
microcomputers" was the AT&T PC-6300, whose
existence had been rumored for more than a year.
Until shortly before this announcement, very few
people knew exactly what the new personal com
puter from AT&T would be like. Probably taking
a lead from IBM, its competitor, AT&T leaked
rumors about the AT&T PC to the microcomputer

buying public a full year before its announcement.
Such leaks generally lead to several millions dollars
worth of word-of-mouth advertising. This was cer
tainly the case with the PC-6300.

Nearly everyone assumed that a company with
AT&T's background would certainly come out with
a very high-level product and give the front run
ner, IBM, a run for its money. Many rumors cir
culated. Some addressed a new type of operating
system that would run on the AT&T PC. Others
averred that the AT&T PC would be the first
microcomputer to be offered with UNIX as its stan

dard operating system. Some even ventured to
guess that the AT&T PC might not even be pro
grammed in BASIC, but would come with a C-
language interpreter.

These speculations addressing UNIX and C are
only natural, because AT&T (through Bell Labs)
is the owner of the UNIX operating system and the
developer of the C-language. As is usually the case,
however, most of the rumors surrounding the in
troduction of the AT&T PC were wrong. The
AT&T PC-6300 is here, and it is an excellent
machine, one that is sure to make its mark in the
microcomputer industry.

Charles Marshall, chairman of AT&T Informa
tion Systems, announced the new line of computers
from AT&T. He said, "We're here today to take
another step forward in fulfilling our commitment
to provide integrated commimications-based office
automation systems for American business."

"The products we are announcing today are
part of a logical evolution from our own
communications-based Information Systems Ar-

1

chitecture," explained Frank Vigilante, division
president. He also explained that the products
establish the foundation of the automated office.

"Each works with the other. Because they can grow
and function with newer, larger systems, tomorrow
these systems will still be performing and protec
ting our customers' investment."

Turning to the AT&T Personal Computer, he
explained that it runs the same MS-DOS operating
system and business software as other leading per
sonal computers and accepts the same plug-in ac
cessory circuit boards. It offers greater speed, more
features, and a higher level of standard equipment
than its competition, at a competitive price. It has
been certified "operationally compatible" by
Future Computing, of Richardson, Texas. Mead
Data Central, of Dayton, Ohio, has also certified
that its LEXIS and NEXIS database software is

compatible with the AT&T PC.

"We've brought the 16-bit computer up to date
and added communications capabilities to enhance
its performance and sjmergy with our 3B line,"
Vigilante said. "And unlike its leading competition,
it provides high-resolution graphics and supports
multiple printer outputs in a basic configuration."

The AT&T PC is available in two models, one
with two half-height 360K floppy disk drives and
128K of RAM, or a second with one floppy drive,
a lO-megabjrte hard disk and 256K of RAM. Both
models can be upgraded to 640K of RAM.

The AT&T PC can operate in an integrated
computing environment with AT&T UNIX system-
based 3B computers through the AT&T PC Inter
face, which was announced in March. This allows
the AT&T PC to act as one of up to 18 worksta
tions in a network with the more powerful 32-bit
3B super-minicomputer.

Marshall explained that AT&T will utilize all
distribution channels that are appropriate to the
marketplace, including direct sales to large
customers, complementary channels such as
OEM/VAR markets, and selected computer
specialty retailers for the AT&T PC.

As it turns out, the AT&T PC-6300 is not the
exotic offering everyone thought it would be. By
exotic I mean completely different from all that have

gone before. For instance, when Apple came out
with their Lisa (and later, the Macintosh), these
could be classified as exotic offerings because they
used brand-new operating systems and operated in
a manner that was significantly different from most
computers that had gone before.

The AT&T PC-6300 has taken the best of what

the microcomputer world has to offer today and
used this as the base from which to build. Instead

of the UNIX operating system, the PC-6300 uses
MS-DOS, an operating system that has been with
us since the introduction of the IBM PC in the ear

ly 1980's. The standard language of the PC-6300
is Microsoft BASIC, which is identical to Advanc
ed BASIC on the IBM PC. AT&T's version is nam

ed GWBASIC, which stands for "Gee Whiz
BASIC." BASICA by any other name is still
BASICA, and this dialect of BASIC can be
classified as today's microcomputer industry
standard.

AT&T chose to go the route of standard 5
1/4-inch diskette drives with a 10-megabyte hard
disk drive option. The point here is that everything
about the AT&T PC fits well with industry support
of previous computers. For the owners, this means
compatibility with existing products on the market.

While IBM is the major competitor of AT&T
in the microcomputer industry, AT&T makes no
bones about the fact that compatibility of their
AT&T PC-6300 with the IBM PC was a primary
goal. In general, you will find that any software that
runs on the IBM PC will also run on the AT&T PC.

Additionally, most option boards designed for the
IBM PC will work with the AT&T PC. The excep
tion to this are boards that fall into the memory ex
pansion category.

It was stated earlier that AT&T has taken the

best the market had to offer and used that as the
base from which to build. The AT&T PC is an im

provement over that which was offered prior to its
announcement. The microprocessor, which is the
heart of any microcomputer, is different from the
microprocessor used in the IBM PC.

The AT&T PC uses the Intel 8086

microprocessor, which is a full 16-bit chip—as op
posed to an 8/16-bit unit like the Intel 8088 used

in the IBM PC. To avoid an in depth technical
discussion, I'll just say that the 8086
microprocessor in the AT&T PC operates at near
ly twice the speed of the one used in the IBM PC.

For this reason, the AT&T PC should process
information approximately two times faster than
the IBM PC. It is this speed increase which renders
most memory expansion boards designed for the
IBM PC incompatible with the AT&T PC. Other
1-han this exception, most expansion and software
options available for the IBM machine are compati
ble with the AT&T PC. The buyer of the AT&T
PC-6300, then, may select from literally thousands
of products that have been on the market for years.
This includes both software and hardware.

Generally, an exotic new computer is limited
in the initial stages by the lack of compatible prod
ucts from other manufacturers and suppliers. This
is not true of the PC-6300 because of the com
patibility that has been built in by AT&T. In fact,
the AT&T PC-6300 is no more than an Olivetti Per
sonal Computer with a few cosmetic changes. The
PC-6300 is made by Olivetti for AT&T. Anyone

can tell this by examining the circuit boards, each
of which is stamped with the Olivetti name.

COMPONENTS OF THE AT&T PC-6300

The AT&T PC-6300 consists of three discrete

components that are linked together to form the
microcomputer system. These are the keyboard,
(Fig. 1-1), the system unit (Fig. 1-2), and the ad
justable monitor (Fig. 1-3). Standard memory con
figuration is 128K for the floppy disk unit and 256K
for the unit with the hard disk option. The latter
also contains its own hard disk controller card. The

floppy disk controller card is resident on the
motherboard, which is mounted at the bottom of
the system imit. The 128K unit may be expanded
to 256K by adding memory chips to the
motherboard.

The AT&T PC-6300 contains seven expansion

slots, two of which may be used with 16-bit plug-
in boards. The display controller is located at the
far left of the system unit and does not occupy one
of the seven slots. This is technically a color display
adapter, although the standard monitor supplied

Fig. 1-1. The PC-6300 keyboard.

m

m

„ -'''i-

B

'S-'j

mmm

Fig. 1-3. The AT&T Personal Computer monochrome monitor is adjustabie for ease of viewing.

with the AT&T PC is monochrome. To obtain col
or capability, it is necessary to purchase the optional
AT&T RGB color monitor, which connects to the
same receptacle as the monochrome display. This
is a real advantage over the IBM PC, which re
quires one card for its monochrome monitor and
another for a color monitor. Those units equipped
with a monochrome monitor still have full graphics
capability, although the color commands will simply
yield a display output in different shades of gray.
There are several display modes designed for text,
medium resolution, high resolution, and super-high
resolution operations. The latter mode offers twice
the display resolution of most standard microcom
puters today. With the standard display board, the
AT&T PC-6300 has 16-color capability. All 16 col
ors may be displayed on the text screen, while on
ly 4 colors may be displayed at any one time on the
medium-resolution graphics screen. The remaining
two graphics modes are monochrome only.

The floppy disk drives format disks that offer
360K byte storage. These drives use double-sided,
double-density, 5 1/4-inch floppies. The hard disk
drive unit offers lOM byte storage capability, and
is bootable.

There are many nice features offered by the
AT&T PC. These are not monumental offerings,
but little niceties that add a lot to operator conve
nience. Among these is a reset switch on the front
panel, which allows you to activate a system reboot
without switching the computer off and then back
on again. The monitor is another nicety. Instead of
being fixed in place, you can swivel it left and right
and up and down for personal viewing comfort.
Also, the system unit is cooled by a very large fan
mounted at the rear of the chassis. The large blades
allow a larger volume of air to be moved at a lower
fan speed. Therefore, the unit is very quiet and runs
at only a lukewarm temperature.

Probably the nicest feature of the AT&T from
the stand point of convenience is overall system
size. No, the AT&T PC-6300 is not a portable when
you define a portable as a self-contained, single-unit
computer that can be carted around like a briefcase
or small piece of luggage. By the same token, it's
not a tremendous hulk either. The system unit is

compact, and the screen and keyboard are
lightweight. This means that it's a fairly simple task
to move the AT&T PC from one location to

another. The system unit is about three-quarters
the size of most IBM PC compatibles, although its
weight is about the same. In testing this machine,
it was necessary for me to move it several times
to locations separated by over 100 miles. In every
instance, takedown and setup required less than 5
minutes, and the system travels well on the back
seat of a subcompact automobile. Many other com
ponent, desk-top computers do not offer this same
ease of portability.

For those potential buyers who already own
MS-DOS compatible machines, I think you will find
the transition to the PC-6300 automatic. As a mat
ter of fact, it takes less than an hour in most in
stances to feel right at home with the PC-6300.
Keyboard layout is identical to that of the IBM PC,
and the key action is about the same. The keyboard*
may be situated in one of three positions, as there
are adjustable feet at the rear of the keyboard that
can assume three different heights.

If you're buying a microcomputer for the first
time, the AT&T PC-6300 is an ideal choice. This
is true because myriad expansion products and soft
ware are already available for it through its MS-
DOS compatibility. Also, documentation such as
this book and many others can be applied directly
to the PC-6300. Most books that explain program
ming in Microsoft BASIC can be used just as if they
were written for the owner of an AT&T PC.

For the person who already owns an MS-DOS
compatible computer, the AT&T PC is the natural
way to move up, especially if you're searching for
faster execution speed. Chances are, all of your
previous programming applications will run perfect
ly on the PC-6300, except at a speed that may be
two or more times faster than that of machines that

use the Intel 8088 microprocessor.
Overall workmanship seems to be better than

average, and AT&T has already announced options
that are or will soon be available to enhance com-

mimications with other microcomputers and even
mainframes. Also, there is a new display board in
the works that will allow for 16 simultaneous col-

ors in the various graphics modes. In checks I have
made, it would seem that the outside suppliers of
products for microcomputers—such as modems,
display boards, memory boards, etc.—are gearing
up to include the AT&T PC-6300. It would seem
that the ''fast machines'' and the fast memory
which they require are becoming standard in the
microcomputer industry, and this will benefit all
microcomputer users.

COMPATIBILITY

Of course, when anyone buys a microcomputer,
support has to be the main consideration. Follow
ing the IBM PC boom that occurred in 1981, many
smaller companies came out with "compatibles"
that were offered at a much-reduced cost compared
to the IBM PC. Many of these compatibles were
bought up, but apparently not enough to prevent
financial disaster for many of these companies.
Some of them went imder, leaving the owners of
these companies holding the bag. Also, some of the
compatibles were not quite as compatible as adver
tising led their buyers to believe.

None of these situations apply to the AT&T
PC-6300. One can be certain that the corporate
giant, AT&T, will be with us until icicles form in
Hades. Their customer support in the field of
telephone communications is already established,
and this will be carried over to the microcom

puter division. The compatibility of the AT&T
PC-6300 is well documented. As a matter of fact,
AT&T has prepared an approved list of nearly 1000
MS-DOS programs that have been tested and found
to be fully compatible with the PC-6300. Therefore,
the AT&T PC-6300 can be considered to be a very
safe buy. It can also be considered a very high level
machine that will take the microcomputer user
about as far as he/she desires. To go to a higher
level machine would probably mean a supermicro
or minicomputer costing several times more than
the $3000 to $5000 price tag of the AT&T PC.

In a free enterprise system, competition is the
name of the game. I think we will see one-

upmanship tactics used to a very high degree
among the major manufacturers of high-level per
sonal computers, of which group AT&T is now
part. This means that AT&T cannot rest on its

laurels, but will have to continuously improve their
existing products. Shortly after the announcement
of the AT&T PC-6300, IBM announced their new
IBM PC-AT. According to IBM, the "AT" stands
for Advanced Technology, and is in no way a play
on the AT&T name . . . again according to IBM.
As these and other corporate giants battle it out for
a big chunk of the microcomputer marketplace,
microcomputer users will be offered higher-level
options and products that will be of tremendous
benefit.

In summary, the AT&T PC-6300 has taken
everything that has gone before and made it bet
ter, while maintaining a very high degree of com
patibility. The main advantage of the AT&T PC
over the IBM-like machines is its operating speed,
which is generally superior in all applications. The
PC-6300 has become an established product, even
though it has been out for a relatively short period
of time. Much of this is due to the support that
already existed for this type of machine. With its
capability of accepting full 16-bit option boards, one
can expect the AT&T PC to be the target of many
outside option suppliers who have been limited in
the past by the 8-bit-only buses of previous MS-
DOS machines. This may open the door for a whole
new line of extremely fast and versatile options that
will address established operations in a new way
and offer a large range of brand-new capabilities
never before thought of for microcomputers.

Networking, communications, mainframe con
nections, and much more are all in the future of the

AT&T PC-6300. It is my opinion that this machine
will be with us for quite some time and will not
quickly fade into obsolesence. The buyer of the
AT&T PC-6300 can be certain that his/her pur
chase is a timely one and will provide a microcom
puter system that will receive widespread industry
support and therefore provide many years of high-
level service.

Chapter 2

GWBASIC Programming
The AT&T PC-6300 is programmed in GWBASIC.
BASIC, developed at Dartmouth College, is an
acronym for Beginner's All Purpose Symbolic In
struction Code. While all programs written in
BASIC are very similar, there are some differences
in GWBASIC and Apple BASIC, for instance. In
other words, the PC-6300 uses one dialect while the
Apple uses another. When you switch from com
puter to computer, it is necessary to know
something about the exact nature of the BASIC
dialect for which it is programmed.

If you've had some experience programming
in BASIC and are simply making a transition from
another machine to the PC-6300, you may wish to
skip over this chapter. However, much of the
material discussed here will serve as an excellent

refresher course for those of you who already know
how to program in BASIC. This chapter is really
aimed at those persons who have never used BASIC
before and are relatively new to the field of com
puters in general. The following discussion will take
you on a step-by-step tour through portions of the

GWBASIC language. If you study the materials in
this chapter and input each program to the com
puter while you are learning, by chapter's end you
will know a great deal about computer program
ming and will be better prepared to understand some
of the programs presented in later chapters. While
this chapter will not discuss every statement, func
tion, and command in GWBASIC, it does discuss
those used most often. A later chapter will serve
as a reference to the language the PC-6300
understands, and will thoroughly explain each state
ment, command and function in detail.

BASIC language is quite powerful and uses
easy-to-imderstand words that produce various
computer operations. Each of these words is known
as a command, statement, or function. Unlike
foreign languages, such as French or German, the
BASIC language is a small, finite language which
is quite easy to master within a short period of time.
Each command, statement, or function in BASIC
usually has an English equivalent that describes the
operation the computer will perform. Take the

PRINT statement, for instance. This is a statement
(common to all dialects of BASIC) which causes the
computer to print something on the display screen.
An INPUT statement tells the computer that the
operator needs to supply some information at a cer
tain point in the program: the computer waits for
this input from the keyboard. There are many other
direct equivalents between BASIC and English.
These will be discussed in this chapter.

A FIRST PROGRAM

A computer program written in BASIC must
consist of a minimum of one program line. Some
programs will have himdreds or even thousands of

lines, but these programs are developed a line at
a time. In BASIC, each line must have a number.
Normally, lines are numbered in increments of 10,
as in 10,20,30,40, etc., or even 100,110,120,130,
etc. You can just as easily start numbering in in
crements of 1, as in 1, 2, 3, 4, 5. This is not nor
mally done because few programs are written in
finished form the first time. Usually, you will want
to go back through the program and insert addi
tional lines in various locations. If you number in
increments of 10, there is plenty of space to insert
additional lines. If your program contains two lines
numbered 10 and 20, and you find it necessary to
insert another line between them, you could
number it 11, or 12, or 13. Usually you would
number it 15 so that you could, if necessary, add
other lines before and after it.

The first program you will write will consist of
only one program line and will be used to display
the word HELLO on the computer screen.
Throughout this chapter, we will add to this one-
line program to demonstrate other parts of BASIC
programming.

Begin with the simple programs. Tjrpe in the
number 10. Then hit the space bar and type PRINT
''HELLO". That's all there is to it. You have writ

ten your first BASIC program. Your screen should
look like this:

10 PRINT "HELLO"

There may be other printing on the screen left over

from when you first activated the computer. Don't
worry about this. Just make sure that the line

discussed above is on the screen. Now, press the
Enter key. Your program has been committed to
computer memory. Examine the line on the screen
carefully. Make sure it looks like the example given
here. Now that the program has been input, it's
time to execute it. In GWBASIC (and nearly every
other dialect as well), this is done by typing RUN
and then pressing Enter. You should see the word
HELLO appear just below your program line.

If for some reason the computer cannot run
your program, it will display what is known as an
error message on the screen. This is a message that

indicates that a program cannot be run and gives
a clue as to why the computer found it unaccep
table. One of the most common messages is Syn
tax Error. This means that you have input a state
ment that is unknown to the computer, or is in a
form the computer cannot imderstand. If you
misspelled the statement PRINT, for example, the
syntax error message would appear.

I should point out that some of my instructions
deal with custom more so than with what the com

puter requires. For example, if you had typed any
of the following lines, the PC-6300 would still print
HELLO on the screen.

lOPRINT "HELLO"

10 PRINT"HELLO

10PRINT"HELLO

Some other dialects of BASIC might not accept the
absence of a space between the line number and
the first statement or function. Still others require
quotation marks on both sides of the word you wish
to display on the screen. The absence of the clos
ing quotation mark in this simple program would
have made no difference to the PC-6300, but in
more complex programs you could get into serious
trouble by not sticking to the proper format.
However, you will always be safe if you include a
space after the line number, and enclose in quotes
all words to be printed on the screen.

As an exercise in machine operation, let's
assume that you misspelled the word PRINT in our

8

original program. When you tried to run the pro
gram, you would have gotten the syntax error
message. It would now be necessary for you to cor
rect this program line. Type in the following pro
gram line:

10 PRNT "HELLO"

Notice here that the word PRINT has been pur
posely misspelled. Now, type RUN and press Enter.
You should see this on the display screen:

Syntax error in 10
ok

10 PRNT "HELLO"

You will also see the flashing cursor below the
number 10. This whole scenario means that there

is an error in line 10 which the computer has
thoughtfully displayed for you to correct. On the
PC-6300, a correction of this nature is quite sim

ple. On the right side of your keyboard are keys
marked with arrows pointing up, down, left, and
right. Press the right arrow key once and the
flashing cursor will move one position to the right.
The other keys will move the cursor in the direc
tion they point. In this particular case, we need to
insert the letter I immediately before the N in the
misspelled statement PRNT. To do this, keep hit
ting the right arrow cursor key on the keyboard im-
til the blinking cursor is positioned beneath the let
ter N in PRNT. Now, locate the INS key at the bot
tom right of your keyboard. This stands for insert.
With the flashing cursor beneath the letter N, press
the INS key once. The computer now knows that
you will be inserting something ahead of the N.
Now, type in the letter 1. Eureka! The misspelled
statement now reads PRINT. As is always the case,
it is now necessary to press the Enter key to com
mit this line to computer memory. Now type RUN.
You should now see the word HELLO displayed
on the screen followed by the BASIC prompt "Ok."

We can also easily set up another error condi
tion by typing in

10 PRINTT "HELLO"

This will set up the same error message on the
screen when you attempt to run the program. In
this case, it is necessary to delete the extra T in

the word PRINTT. Again press the right arrow cur
sor key until the flashing cursor lies beneath the
second T. Now, locate the DEL key just to the right
of the INS key. Press the DEL key once and the
extra T will disappear. You can now press Enter

and run the program again for a successful
execution.

What have you learned to this point? First, any
program in BASIC consists of BASIC keywords
such as PRINT contained in program lines. Each
line must have a number. You have also learned

that whenever a program line is input, the Enter
key must be pressed to commit it to current com
puter memory. You now know how to use the cur
sor positioning keys and the INSert and DELete
functions to quickly edit mistakes in program lines
without having to retype the entire line. In this par
ticular program, retyping the line might have been
almost as quick as going through the editing func
tions outlined, but imagine a program line that may
be 50 or 60 characters in length. It might take you
several minutes to input such a line, but only a few
seconds to edit it.

CLEARING THE SCREEN

When you ran the previous program, you un

doubtedly noticed that, while the word HELLO was
printed in accordance with the program, all of the
previous information that was displayed on the
screen before the program was run remained there
as well. In most situations, you will want to clear
all information from the screen before your pro

gram is actually run. Most programs contain a
BASIC statement at the beginning to clear the
screen before any additional materials are printed.
To accomplish this, we use the CLS statement in
GWBASIC. CLS is an acronym for "clear the
screen." When this statement is encountered, all

information currently on the screen is erased com
pletely. This gives us a clean slate for any other
information that will be printed by succeeding pro
gram lines.

a

The previous program you typed in is still con
tained in computer memory. To see the program
that the computer is currently ready to execute,
simply type LIST. This means list the program cur
rently in memory. Do this now and then hit Enter.
You should immediately see your original program
appear on the screen. We will now expand this
original program to do the following:

1) Clear the screen

2) Print HELLO on the screen

Since we again wish to print the word HELLO, we
will simply use the program line already in memory
that accomplishes this. All we have to do is include
another line to clear the screen. This line must go
before the original program line, because we wish
to clear the screen and then print HELLO. To ex
pand the previous program, type in the following
line:

5 CLS

Now, press Enter, then type LIST and press Enter
again. You should see the following:

5 CLS

10 PRINT "HELLO"

Your program is now twice its original size because
it contains two lines instead of one. When this pro
gram is executed, the computer will clear the screen
and then display the word HELLO. Again, type
RUN and press Enter. All you should see on the
screen following this program run is:

HELLO

Ok

The screen was cleared, HELLO was printed, and
the computer prompted you that the program is
finished by displaying Ok on the screen. For the
moment, pay no attention to the blocks at the bot

tom of the screen. This is called your key and will
be discussed later. The CLS statement has no ef

fect on the key display.

You probably haven't realized it yet, but by
following the previous instructions, you have been
using two modes of inputting information to the
computer. These modes are direct mode and pro
gram mode. Whenever a line number is typed in
followed by a BASIC statement line, this is the stan
dard program mode. In other words, we are input
ting a set of instructions that are not to be executed
until we run the program. However, when the word
RUN has been typed in, it has not been preceded
by a line number. This is the direct mode of input.
When the direct mode is used, we are telling the
computer to do something right now (as soon as

Enter is pressed). RUN is known as a command.lt
is an immediate call to the computer to execute the
program currently in memory. LIST is also a com

mand which was entered in direct mode, to tell the
computer to recite the program in memory. Either
of these commands can also be used in program
mode when preceded by a line number. This is not
true in many other dialects of BASIC, but is a useful
function which is good to have when writing com
plex programs. The use of commands in program
mode will be discussed later.

CREATING A LOOP

A loop is a common occurrence in BASIC pro
grams. It is an expression you will hear again and
again. The dictionary defipes a loop as a circle or
a continuous repetition. This is what a loop is in

BASIC as well. Let's take our previous program
and make a loop out of it so that it prints HELLO
again and again and again on the screen. Type the
following:

5 CLS

10 PRINT "HELLO"

20 GOTO 10

Hey! There's a new word in there that we haven't
discussed before. This is one of the most useful

statements in BASIC, common to all dialects.

GOTO tells the computer to do just what the
English equivalent would indicate. It tells the com
puter to go to another portion of the program and

10

execute that line and all successive lines. Before run

ning the program, let's discuss it further. Line 5
clears the screen. Line 10 prints the word HELLO
on the cleared screen. The GOTO statement in line

20 tells the computer to go to line 10 and execute
the program from that point on. Here's what will
happen, at least from the computer's point of view:

1) Clear the screen (line 5)

2) Print HELLO on the screen (line 10)

3) Go back to line 10 (line 20)

4) Print HELLO on the screen (Line 10)

5) Go back to line 10 (line 20)

6) Print HELLO on the screen (line 10)

7) Go back to line 10 (line 20)

This process will go on forever, or until the pro
gram is manually halted. This loop is known as a
continmus or infinite loop. The program can never
end on its own because the last line in the program
always tells the computer to go back and execute
a previous line. Now run the program. You will
see the word HELLO displayed at the left side of
the screen from top to bottom. You can let this pro
gram run for a minute, an hour, or a year, and it
will keep going. The only way you can stop pro
gram execution is to press the CTRL key at the left
of the keyboard and then the BREAK key at the
right of the keyboard to bring about a manual halt.
This simply means that the programmer stopped
the program run.

This program only clears the screen once
because line 5 is only executed once. The program
loops, then, is between lines 10 and 20. These lines
will be executed over and over again. We could also
include line 5 in the loop simply by changing line
20 to the following:

20 GOTO 5

This change can be made using the editing func
tions, or you can simply type in the line all over
again. When this program is run, the word HELLO
will be displayed in the upper left-hand comer, but
it will be constantly flickering because the screen

is being cleared each time before the word is

printed. When the computer writes on a clear
screen, it always begins printing at the upper left-
hand corner unless it is told through programming
to begin elsewhere. When the screen is not cleared,
each succeeding printed character will be displayed
at the left side of the screen one row below the

previously printed characters.
Admittedly, none of the programs so far have

been useful for anything other than instruction. The

computer has not been used to display useful in
formation on the screen. Please be patient. It is ab
solutely mandatory that you understand the basics
behind computer programming before you can
begin to make your programs ''intelligent." Be
assured that if you can understand the concepts
behind the programs already discussed, you're get
ting closer to being able to write some good pro

grams on your own. So far, you've learned a little
about the PRINT statement, CLS, and GOTO.
Hopefully, you're also becoming a bit more com

fortable in writing programs. Do not proceed fur
ther unless you imderstand the previous program
examples completely. To do so would only bring
about confusion. You must understand what has

gone before to be able to understand what is to
follow.

MORE ABOUT LOOPS

The previous program caused the word
HELLO to be printed over and over again on the
screen. The GOTO statement is also referred to as

a branch or a GOTO branch. There are other types
of branch statements that we will be learning about

later, but GOTO is the one seen most often.
Endless loops such as the one encountered in

the previous program are useful in some programs,
but most of the time it is necessary to exit the loop
after a certain number of passes have occurred.
Think of a pass as one cycle of the loop. By modi
fying the previous program, we can cause the loop
to terminate after a specified number of passes. The
following program is simply the previous program
with two extra lines.

5 CLS

10 PRINT "HELLO"

11

15 C = C + 1

16 IFC = 10THENEND

20 GOTO 10

Line 15 would not seem to contain a statement, but

it does—or at least the computer assumes that it
does. Line 16 contains a new statement, called the
IF-THEN statement. This is a test statement. It

checks to see if a certain condition is true and, if

it is, then it may bring about a branch or execute
another statement. Let's start with line 15. The let

ter C represents what is known as a variable, a sym
bol which can be equal to anything we assign to it.
The method of assignment shown in line 15 is
sometimes referred to as a coimting assignment.
Each time line 15 is executed, variable C will be
incremented, i.e., increased by 1.

Let's go through a partial sample run. Line 5
clears the screen. Line 10 prints HELLO on the
blank screen. Line 15 is then encountered. At this

point in execution, C is automatically equal to 0
because no previous assignment to C has been
made. Line 15 is really the first assignment to
variable C. The new assigned value will occur at
the left of the equal sign, while the old value of C
is seen at the right. The old value of C is 0.
Therefore, the new value of C will be equal to 0
+ 1, or 1.

Now, line 16 says if C is equal to 10 then END
the program. When line 16 is executed for the first
time, C will be equal to 1, so line 16 technically does
nothing. It will only execute when C is equal to 10.
Now, the GOTO statement in line 16 technically
does nothing. It will only execute when C is equal
to 10. Now, the GOTO statement in line 20 is en
countered, and the loop begins. Line 10 prints
HELLO again, and line 15 is encountered for the
second time. Remember, the new value of C (the
one to be assigned) is located at the left of the equal
sign, while the old value of C is to the right. Since
line 15 has already been executed once at this point,
the old value of C is now equal to 1. Since line 15
states that C becomes equal to C + 1, the new value
of C is equal to 1 + 1, or 2. Again, line 16 detects
that the new value of C is not equal to 10, so the
END statement is not executed. On the next pass

of the loop, C is incremented to 3 (2 -i- 1). The loop
will continue to cycle until C is finally incremented
to a value of 10. At this point, line 16 detects the
value of 10 and ends the program. The END state
ment is common to nearly every dialect of BASIC
and is a signal to the computer to end the program.

Here is another way this program could be
written.

5 CLS

10 PRINT "HELLO"

15 C = C+1

16 IFC = 10THEN30

20 GOTO 10

30 END

This program does exactly the same thing as the
previous one. You can now run either program and
you will see that HELLO is printed 10 times on the
screen. The program then terminates. What was
previously an endless loop has now been trans
formed into a loop with 10 passes. In the second
program, line 16 has been altered to bring about
a branch to line 30. Line 16 could also have been

written.

IFC=10 THEN GOTO 30

In GWBASIC, the GOTO does not have to be
used in an IF-THEN statement branch. The first

example was the most efficient, but this second ex
ample will do exactly the same thing, although it
requires an additional program line.

You will notice in this latter example that when
C is incremented to 10 in line 15, line 16 detects

this condition and brcmches directly to line 30. In
this case, line 20 was not executed at all on the last
pass of the loop. In BASIC, program lines are nor
mally executed in ascending order. In other words,
line 5 is executed, followed by the execution of line
10, and then 15, etc. If we inserted a line 7 between
5 and 10, then line 7 would be executed after line
5. The only way to change the order of execution
is by using branch statements, which were introduc
ed in this last example. These statements will be
discussed in more detail later in this chapter.

12

There is one other element of these examples
that needs further discussion. There is a statement

that is common to every dialect of BASIC. This is
the LET statement. Most computers today will han
dle this statement, but do not require its use. Line
15 in the preceding examples could have been
written.

15 LETC = C + 1

However, the way it was handled in the examples

is the most efficient method of programming,
because it requires less typing. In GWBASIC, the
LET statement is optional, and the line C = C+1

is exactly equivalent to LET C = C + 1. This ex
plains my previous remark that line 15 did not ap
pear to contain a statement. The PC-6300 assumes
the LET statement automatically.

FOR-NEXT LOOPS

Probably the most useful loop foimd in BASIC
is the FOR-NEXT loop. Just like IF-THEN, FOR-
NEXT may be thought of as one complex state
ment. In order to demonstrate the FOR-NEXT

loop, let's start from scratch again and erase the
program currently in memory. To do this, a com
mand called NEW is used. (You will remember that

a command is entered in direct mode without a line

number, and is executed immediately.) To erase a
program from current computer memory, simply
type in the NEW command and then press Enter.
Your program is now erased. You can confirm this
by using the LIST command. When LIST is
entered, you will see that nothing is displayed. The
program is gone.

The following program demonstrates the FOR-
NEXT loop. It is exactly the same as the previous
program which was used to print HELLO on the
screen 10 times.

10 CLS

20 FORX=lTO10

30 PRINT "HELLO"

40 NEXTX

As before, line 10 clears the screen. Line 20 begins
the FOR-NEXT loop. Only the FOR portion of the

statement is contained on this line. You should

think of FOR as starting the loop and NEXT as
ending it. Any lines between FOR and NEXT are
a part of the loop; in this case, there is only one.
Line 30 will cause HELLO to be displayed on the
screen.

In this example, X is a variable, and is as

signed a value of from 1 to 10. Here's how it works.
When line 20 is executed for the first time, X is

assigned a value of 1. Line 30 is then executed and
HELLO is displayed on the screen. When the
NEXT X is encoimtered in line 40, this brings about
an automatic branch back to the line containing

FOR. The loop now begins its second pass, and
variable X is assigned a value of 2. Unless told
otherwise, the FOR-NEXT statement will
automatically increment its value by 1 during each
pass. Line 30 is executed again. Line 40 causes the
automatic branch back to line 20, and the loop con
tinues cycling. When 9 passes have been com
pleted, the last branch to line 20 occurs. The
variable X is now equal to 10. Line 30 is executed,
but when to is encountered, the loop has "timed
out," i.e., X has reached its maximum assigned
value of 10 and the loop is automatically exited. At
this point, the program will END because there are
no other lines following line 40, the end of the loop.
The program could include an additional line follow
ing the loop sequence, such as

50 END.

Since END is automatically assumed when there
are no more program lines to execute, this line is
technically superfluous. If it helps you understand
the program better, however, it should certainly be
included.

This example has shown how a loop may be
used to execute a program line or lines contained
within the loop a specific number of times. We can
demonstrate another useful purpose of loops by
changing line 30 to:

30 PRINT X

This is the first usage of the PRINT statement to

13

print out the value assigned to a variable. (Note that
quotation marks are not used.) When the PRINT
statement is used with a variable, the current value

of that variable will be displayed on the screen. Rim
the program in its present form and you will see
a counting sequence composed of the numbers 1
through 10. These are the sequential values of X.
Remember, do not use the quotation marks when
you wish to display the value assigned a variable
on the screen. To see what happens when you do,
change line 30 to 30 PRINT ''X''. When this pro
gram is run, the letter X will be displayed 10 times
on the screen. The quotation marks tell the com
puter not to print the value of variable X, but in
stead to print whatever is inside the quotes.

It was mentioned earlier that a FOR-NEXT

loop will automatically increment its variable by 1
unless told to do otherwise. The FOR-NEXT loop
is also known as the FOR-NEXT-STEP loop, with
the STEP portion indicating the value by which the
variable is to be incremented. In the previous pro
gram, while you typed line 20 as

20 FORX=lTO10

the computer saw it as:

20 F0RX=1T0 lOSTEP 1

It automatically incremented X by 1 on each pass
of the loop.

Let's change the program at this point to bring
about a different STEP value. To do this, we can
use another command designed to make editing of
programs extremely easy. In direct mode, type
EDIT 20 and then press Enter. When this com
mand is entered, line 20 will appear on the screen
and the flashing cursor will be seen beneath the 2

in 20. Use the right arrow cuisor control as de

scribed previously to move to the point one
character past the 10 in line 20. Now, press the
space bar and then type STEP 2. Your program line
should look like this:

20 FOR X=1 TO 10 STEP 2

This line now tells the computer to increment X by
two during each pass of the loop. Here's how it will
work. When line 20 is first executed the value of

X will be 1, and when the loop cycles for the sec
ond time, X will be incremented by two. Using a
previous program example, the line will be
equivaleint to X=X + 2 on the second and all suc
ceeding loops. Now, run the program. Since line 30
displays the value of X on the screen, you will now
see the numbers 1, 3, 5,7, and 9 displayed vertical
ly. This is the result of creating a FOR-NEXT loop
which is stepped by 2.

You may be surprised that the final value of the
loop (10) was not displayed. This number does not

come up when X is stepped by 2 because the next
two-step jump after 9 would be 11. Since X can only
be equal to a maximum value of 10, the loop ter
minates. This example provided an odd number
count, which will always be the case when a step
of two or any even number is used, provided that
the loop starts on an odd number. However, if the
loop had started with2 (i.e., X = 2 TO 10 STEP 2)
the value of X would always be even.

FOR-NEXT loops may also start with a zero.
If we change line 20 to read:

20 FOR X = 0 TO 10 STEP 2

the count sequence will be 0, 2, 4, 6, 8,10. Notice
here that another number has appeared. Let's go
further with this. Change line 20 to

20 FORX = 0TO10

and then run the program. You will see that the

numbers 0,1, 2, 3, 4, 5, 6, 7, 8, 9,10 are displayed

on the screen. How many passes has the loop made?
The answer is 11.

When programming computers, it is always
necessary to remember that 0 is a number. It is
treated by the computer just like any other number,
so if you want a loop to start at 0 and end at 10,
it is the same count (cycle-wise) as creating a loop

that coimts from 1 to 11. Not thinking of 0 as a
viable number creates many headaches for new pro-

14

grammers. Remember this, and debugging pro
grams may become a bit simpler.

At this point, it will probably be necessary for
you to review the entire section on loops, and
especially the section on FOR-NEXT loops. In any
programming language you will rely heavily on
loops, so if you do not understand how a FOR-
NEXT loop works, reread the previous materials
until you do.

GOING FURTHER WITH FOR-NEXT LOOPS

Now that you're sure you understand loops and
FOR-NEXT loops, let's delve further into this sub
ject. All of the previous examples used positive
numbers and coimted upward (incremented). FOR-
NEXT loops are neither restricted to positive
numbers nor to incrementing these numbers. Us
ing the previous program, change line 20 to:

20 FORX=-10tol

Now RUN this program. You will see the value of
X displayed on the screen starting with -10 and
moving up to +1. In this case, the loop makes 12
passes. When X is equal to -10 during one pass,
it will be equal to -10 + 1, or - 9 during the next;
when the pass is completed where X is equal to -1,
the next pass will assign X the value of -1 +1, or
0. This is still a positive step pass, in that X is
always incremented by +1.

We can also make the FOR-NEXT loop count
backward. If you've skipped ahead of me, you may
have tried changing line 20 to:

20 FOR X= 10 TGI

This is often a first-time attempt to get a loop to
decrement or decrease the value of X, in this case
to coimt backward from 10 to 1. This won't work—

at least not in this form. To decrement a loop it is
necessary to insert a negative STEP value. Try
this:

20 FOR X= 10 TO 1 STEP -1

Now RUN the program. It should work perfectly
and you will receive a count on the screen starting
with 10 and ending at 1. This loop is identical to
20 FOR X = 1 TO 10 in that a total of 10 passes will
be made. However, if you're going to use the value
of X within the loop, the situation is completely dif
ferent. In the first example, X will be equal to 10
on the first pass, 9 on the second, etc. In the se
cond example, X will be equal to 1 on the first pass,
2 on the second, etc. If you wish to experiment,
change the negative step value to - 2 or - 3, and
see what happens to the value of X.

In all of the FOR-NEXT loops examples so far,
whole numbers have been used as step values for
demonstration purposes. FOR-NEXT loops are cer
tainly not limited to them. Let's change line 20
again to:

20 FOR X = 1 TO 10 STEP .5

Now RUN the program. You will see that this step
value is reflected in the loop. The variable X will
now be equal to 1, 1.5, 2, 2.5, etc., and this par
ticular loop will make 19 passes. You could also use
- .5 and loop values from 10 to 1, to produce the
same figures in descending order.

Variables may be inserted for any numeric
value in the loop. Let's erase the program current
ly in memory (by typing NEW) and start over again.
Input the following program:

10 CLS

20 A = 1

30 B = 10

40 C=.5

50 FORX = ATOBSTEPC

60 PRINT X

70 NEXTX

This program will do exactly what the previous one
did—count from 1 to 10 in increments of .5. Here,
however, variables have been used to assign values
to the loop. In line 50, X will have a low value of
A, a high value of B, and a step value of C. In this
case, the letters A, B, and C have been used to

15

represent numbers, just as X has been so used in
all of these examples. The FOR-NEXT statement
assigned values to X, while lines 20-40 assign values
to A, B, and C. Remember, these can be classified
as LET statement lines and, imless the values of
A, B, and C are changed by other LET statement
lines, they will always be equal to the values
originally assigned.

At this point, you should review all of the
materials presented thus far on loops, and begin ex
perimenting on your own. Try any values in the
FOR-NEXT loops you desire, and see if you can
get your loops working properly. If you use a wide
value range such as:

F0RX=1T0 20000

it will take your computer some time to count
through all these numbers. It will also take it far
longer to print all of these values on the screen. The
more program lines contained in a FOR-NEXT
loop, the longer the execution time. For this reason,
it is absolutely essential that any lines that do not
absolutely have to be in the loop are placed outside
it.

MORE ON THE PRINT STATEMENT

As you will recall, the PRINT statement was
the first one introduced in this chapter. We know
that any characters enclosed in quotation marks
following the PRINT statement will be displayed
on the screen exactly as typed. If the quotation
marks are omitted and a variable is substituted for

the character string, the valm of the variable will
be displayed on the screen.

Erase the program currently in memory and
type in the following lines:

10 CLS

20 F0RX=1T0 5

30 PRINT "HELLO"

40 NEXTX

This is almost identical to a previous program, but
this one will delve more deeply into the PRINT

statement. When you run this program you will see
HELLO displayed 5 times on the screen in a ver
tical format, each word written directly beneath the
previous one. Now, let's edit program line 30.
(Simply type in EDIT 30 and press Enter.) Use the
proper cursor control key to move to a point one
character past the closing quotation marks, type in
a semicolon, and press Enter. Program line 30
should now look like this:

30 PRINT "HELLO";

Run the program. Look what happened! HELLO
was again printed 5 times on the screen, but the
words were printed horizontally. The semicolon,
then, instructs the computer to display the
characters in a horizontal format, with the second
HELLO written immediately to the right of the
first. The result is:

HELLOHELLOHELLOHELLOHELLO

All of the words are run together, but this can be
easily corrected. Edit line 30 again, moving your
cursor to the point just beneath the closing quota
tion marks. Hit the INS key and the space bar once.

Line 30 should now look like this:

30 PRINT "HELLO ";

Rim the program again. This look much neater.
The computer is doing the same thing it did before,
except there is an extra character within the quota
tion marks. This character—a space—is not seen
on the screen, but serves to separate the words. I
stated earlier that a zero is treated like any other
number by the computer. The same applies to the
space character. While you can't actually see the
character produced by the space bar, the computer
can, and it treats a space just like it does any other
letter, numeral, or symbol.

Now, let's combine a quoted word and a
numeric variable in one PRINT statement line.

Change line 30 to:

30 PRINT X "HELLO"

16

Now run the program. Here, you will see that the
value of X is displayed followed by a space and then
the word HELLO. (The space is automatically in
serted by the computer and has nothing to do with
the spacing between the variable in the program
line and quoted phrase.) We can reverse this by first
printing the quoted phrase and then the value of
X. Change line 30 to read

30 PRINT "HELLO" X.

When this program is run, HELLO will be
displayed followed by the value of X.

Many dialects of BASIC require the use of a
semicolon to separate quoted phrases, or quoted
phrases and variables, to be printed in horizontal
format with one PRINT statement. This "horizon

tal format" applies to a single line only. Change line
30 to:

30 PRINT "HELLO" X;

This produces a "true" horizontal format, with all
of the displays created by line 30 printed horizon
tally on the screen. The semicolon will disable the

computer's automatic "line feed" function
wherever it is used—in this case, at the end of a

PRINT statement line. The use of a semicolon bet

ween HELLO and X is not necessary in GWBASIC,
but to get a complete horizontal format, however,
you must have an end-of-line semicolon or comma.

When a comma is used to separate two
elements within a PRINT statement line, the
results are quite different. Change line 30 to read:

30 PRINT "HELLO",X

Now run the program. Here, the word HELLO is
printed and then followed by 10 spaces before the
value of X is printed. This creates an effect similar
to TAB on the typewriter. In this mode, the com
puter is displaying information in two print zones,

each 165 characters wide. The word HELLO is in

one zone, and the value of X is at the beginning of
the other. You won't see this used very often, but
it is handy for displajring menus, charts, and other

screens common to computers.

VARIABLES

We have already dealt with one type of variable
in the preceding discussions. However, in BASIC
programming, there are several types. A variable
is something that is used to represent a real value
or quantity. The variables we have been dealing
with are called numeric variables, because the let
ters are used to represent numbers. In discussing
FOR-NEXT loops, the variable X was used to
represent the loop value or coimt. Any other letter
would have sufficed as well, or even a combination
of letters, such as XYZ or a letter/number combin
ation, such as XI. In BASIC, variables are com

prised of letters or combinations of letters and

numbers, but never numbers alone.
In addition to numeric variables, there is

another type of variable used to handle what are
known as string values. String values are often
words, letters, or combinations of letters and
numerals. Just as we used numeric variables to

represent numbers, we can use string variables to
represent letters or combinations of numerals and

letters. The name of a string variable always ter
minates with a dollar sign ($). Where the letter A
may be used as a numeric variable to represent a
number, A$ can be used to represent a word, let
ter, or letter/numeral combination. Note also that

A and A$ are different variables, and could both be
present in a program. String variables may also be
used to represent numbers alone, although this is
rarely done except in special programming
situations.

The following program demonstrates the use
of a string variable to represent the word HELLO.

10 CLS

20 A$ = "HELLO"

30 FORX=lTO10

40 PRINT A$

50 NEXT X

Here, the word HELLO is assigned to the string
variable A$. Whenever a string variable is as-

17

signed, its valued must be contained in quotation
marks, regardless of whether it consists of letters,
numerals, or combinations thereof. If the line were

typed as A$ = HELLO, you would get a syntax er
ror message. When this program is run, the word
HELLO will be displayed as before 10 times. To
the computer, A$ means HELLO because this is
its assigned value. By inserting a semicolon follow
ing A$ in line 40, the word HELLO will be printed
in a horizontal format, just as before.

That semicolon is important in more ways than
one. To illustrate, change line 40 to

40 PRINT A$X

and run the program. Remember, in PC-6300, it's
not always necessary to separate the elements in
a PRINT statement by a semicolon to have them
printed next to each other on the same line. We
could also have written this line as 40 PRINT

A$;X and achieved the same results.
However, let's reverse this sequence and print

X first, followed by A$. Change line 40 to:

40 PRINT XA$

Again, we have not used the semicolon for separa

tion. Run the program. Horrors!! Nothing hap
pens! In this case, it is absolutely essential to use
a semicolon between the numeric variable X and

the string variable A$. You fooled the computer!
Remember that the dollar sign always marks the
end of the string variable. In the first example,
where A$ was followed by X, the computer
recognized the dollar sign as terminating one type
of variable and then recognized X as the numeric
variable. However, in the second example the com
puter interpreted XA$ not as the numeric variable
X followed by the string variable A$, but simply
as one string variable named XA$. Since there was
no assignment to a string variable named XA$ in
a previous program line, the computer assumes that
XA$ is equal to nothing—not zero, but nothing. The
actual assignment the computer made might have
looked like XA$ = "". Notice that there is not even

a space character here. (This is sometimes called

the "null string," and occasionally it can be useful.)
When the computer interpreted line 40, it read it
as, "Don't print anything, 10 times." And that's ex
actly what it did.

To get the program to work properly, change
line 40 to:

40 PRINT X;A$

Now run the program. You should see the value

of X displayed on the screen and on the same line
separated by a space, the word HELLO. This com
bination is printed 10 times in vertical format on
the screen. Now change line 40 to

40 PRINT X;A$;

to display the horizontal combination of X and A$
in horizontal format across the screen. A portion
is printed on the next lower row simply because it
was impossible to squeeze 10 printings of the
numeric variable and the word on one program line.
When a computer display exceeds the length of one
line, the remainder is automatically displayed on
the next.

Remember, in BASIC there are two principal
types of variables. The numeric variable represents
a number or numeric quantity, while the string
variable is terminated with a dollar sign and
represents a string quantity. When assigning a

value to a string variable, the value must be en
closed in quotation marks.

Numeric variables can be manipulated or pro

cessed in more ways than string variables. For in
stance, if numeric variable A is assigned a value
of 10 and numeric variable B is assigned a value

of 5, a computer line such as:

40 C = A/B

is permissible. The slash indicates that A is to be
divided by B. The computer will automatically
substitute the assigned values of A and B, complete
the mathematical operation, and assign to variable
C the value of 2 (10/5 = 2). The following shows

18

other symbols which represent mathematical
operations:

C=A + B

C=A - B

C=A *B

C=A-B

C=SQR(A)

(add A and B)

(subtract B from A)
(multiply A by B)
(raise A to the power of B)
(take the square root of A)

20 B$ = "4"

30 C$ = A$ +
40 PRINT C$

B$

On the other hand, string variables, even
though they may be used to represent numeric
quantities, cannot be used to perform mathematical
operations. Take the following program for
instance:

10 A$ = "4"
20 B$ = "8"
30 c:$ = B$/A$
40 PRINT C$

It's not necessary to input this program, since it will
result in an error message. Lines 10 and 20 are
perfectly legal (as is line 40, for that matter), but
line 30 creates the problem. These are string
variables and standard mathematical operations
cannot be performed on string variables. If you
change line 30 to

30 C$ = B$ » A$

or

30 C$ = B$ - A$

you will still get the same error message, which is
"type mismatch." This simply indicates that you
tried to perform a mathematical operation on a
string variable. It simply won't work. (There is a
way that string variables can be converted to
muneric variables, but this is saved for a later
discussion.)

One "mathematical" operation can be perform
ed with string variables. Input the following
program:

10 A$ = "3"

When the program is run, the screen will display
the number 34, which is not the sum of the numbers

3 and 4. The value of (3$, 234, is the result of print
ing A$ and B$ side by side. We can demonstrate
this further by changing lines 10 and 20 as follows:

10 A$ = "HELLO"
20 B$ = "GOODBYE"

After these changes are made, run the program
again and the computer will display
"HELLOGOODBYE". The "-h" operator alone
can do double duty: in mathematics it means "add,"
but with strings it simply connects them end-to-
end—a nonmathematical operation called "con
catenation."

INPUT STATEMENT

In many tjrpes of computer programs the user
is expected to supply information from the
keyboard while the program is running, which the
computer uses in the context of the program.
Sometimes it will output the answer to a
mathematical problem based upon the munbers in
put at the keyboard. At other times the keyboard
input is used to help the computer decide which pro
gram lines to execute. The INPUT statement is tied

very closely to the variables just discussed, and also
resembles the PRINT statement in many ways.

When the computer encounters the INPUT
statement it temporarily halts program execution,
and will not resume until something has been in
put at the keyboard and the Enter key depressed.
The information typed in is then assigned to a
variable which may be a string or muneric variable,
depending on the information the computer is look
ing for. The following program illustrates the use
of INPUT to assign the user input from the
keyboard to a muneric variable. It will then process
a mathematical function using the input as one of
its variables.

19

10 CLS

20 INPUT A

30 X = A * 2

40 PRINT X

50 END

You should see some very familiar statements and
operations in this program, the only thing different
being the INPUT statement in line 20. This pro
gram allows the user to supply any number, which
is then multiplied by 2 and assigned to variable X.
The value of X is then printed on the screen. After
line 10 clears the screen, the statement INPUT A
causes the computer to halt and display a question
mark. The computer is saying to you, "Give me a
value for variable A." And it will not continue un

til you type in a number and press Enter. Line 30
assigns, to a new variable X, the value of A times
2. Line 40 tells the computer to display the value
of variable X on the screen, and line 50 uses the
END statement to terminate program execution. (In
GWBASIC, the statement is unnecessary unless
there are other lines in your program.) Run the
program. When the question mark prompt appears,
type in the number 10 and press Enter. Immediate
ly, the computer will display the number 20 on the
screen (10 * 2 = 20), and the program terminates.
You can use this program over and over again to
automatically double any value you input at the
keyboard.

Since the variable used with the INPUT state

ment in line 20 is not terminated with a dollar sign,
the computer expects a numeric input rather than
a string input. Therefore, anything typed in via the
keyboard must be a purely numeric quantity. The
computer will accept nothing else. Rim the pro
gram again and when the question mark appears,
type in a few letters. As soon as you hit Enter, you
will get the error message "Redo from start." The
computer has said, "No way!" It knows that it must
have a numeric input via the keyboard to continue
execution. You can simply press the Enter key
without typing in anything else and execution will
continue. You have, in effect, input a value of 0 to
the computer; its output answer will be 0, since 2
times 0 is still 0.

This program can be expanded upon endless
ly to perform many different types of mathematical
operations. It also needs to be cleaned up a bit
because when you type in the number, it remains
on the screen along with the computer's answer.
The following program clears the screen, allows
you to input a number, clears the screen again, and
then prints only the answer. It is the same program
as before, with one additional line.

10

20

25

30

40

50

CLS

INPUT A

CLS

X = A *2

PRINT X

END

Line 25 includes the extra CLS statement, which
removes your input from the screen but not from
the computer's memory. As soon as you type yom
number, it will be displayed on the screen, but when
you press the Enter key, execution begins again and
line 25 clears the screen once more, leaving a clean
surface for the computer to output the value of X.

One problem with this program lies in the fact
that it can only output one answer before it ter
minates execution, so you have to run the program
again to allow for a different input and another
answer. This is where an endless loop might be han
dy. To set up an endless loop, let's get rid of line
50, which contains the END statement, and replace
it with:

50 GOTO 20

The program now makes an endless loop. Run the
program now. As before, you will see the question
mark, so type in a number. When you press Enter,
the screen will clear again and the answer will be
displayed. However, just beneath this answer you
will see another question mark. This means that the
program has done its job and branched back to line
20. You can now input another number. You can
keep on doing this as long as you want. When you
wish to terminate the program, simply press the
CTRL key and the BREAK key. This brings aliout
a manual halt.

20

This simple program is easy to imderstand, but
it still lacks some of the refinements that a high-
level computer like the PC-6300 is capable of pro
viding. Wouldn't it be nice if the computer could
tell us what it was looking for when it reached an
INPUT statement? Fortunately, the INPUT state
ment can be used much like a PRINT statement.

Just before execution is halted, a prompt or
message may be printed on the screen to tell the
user what the computer is looking for. The follow
ing program demonstrates:

10 CLS

20 INPUT "TYPE IN ANY NUMBER";A

30 CLS

40 X = A ♦ 2
50 PRINT X
60 GOTO 20

This is the same program as before, except that an
instruction or prompt has been included in quota
tion marks following the INPUT statement line but
preceding the variable designator. When line 20 is
executed, the message in quotation marks is
displayed before execution is halted during the wait
for keyboard input. A semicolon is used here to
separate the variable from the quoted phrase. The
semicolon at this point has a similar effect as that
when used with the PRINT statement. In this case,

it means that the value you type in for A will be
displayed to the right of the prompt message.

You may also use a comma in place of the
semicolon. If this is done, your keyboard input will
be displayed on the line below the one which the
prompt message occupies. Any time a quoted
phrase is used with an INPUT statement, it is
always necessary to separate it from its variable
with a semicolon or comma. Also, you must use a
variable following the prompt or a syntax error
message will occur.

Using the INPUT statement in this manner
speeds up the time it takes to input a BASIC pro
gram. Line 20 could also be replaced with two lines,
such as:

20 PRINT "TYPE IN ANY NUMBER"

25 INPUT A

This is the equivalent of line 20 in the above pro
gram, but here, two lines have been used. The
PRINT statement is used to display the prompt,
whereas the standard INPUT statement is used in

line 25 to read your keyboard input. This is

somewhat wasteful, since the more program lines
you have the more memory is required for storage,
and it often takes longer for the program to execute.

Let's expand this program one more time to
take care of one little problem that crops up when
an endless loop is programmed. You always have
to halt execution manually. The following program
includes what might be called an exitable endless
loop.

10 CLS

20 INPUT "TYPE IN ANY NUMBER";A
25 IF A = 333 THEN END

30 CLS

40 X = A * 2

50 PRINT X

60 GOTO 20

This is the same program as before, except for line
25. Here, an IF-THEN statement has been used to

end the program if variable A is equal to 333. You
will remember that this variable represents the
keyboard input. This program will continue to allow
you to input numeric values until you type in the
exit sequence. Run the program through as many
cycles as you wish, and when you wish to exit,
simply type in 333 and the program is terminated.
A prearranged signal value such as this is often
called a "flag." (It would not be convenient to use
a FOR-NEXT loop in this situation, since the pro
grammer has no way of knowing how many
numbers the user might wish to pass through this
program.) Using a flag is not a great deal simpler
than using the manual halt, but it reflects good pro
gramming practices. In such a situation, you might
wish to alter the prompt in line 20 to:

20 INPUT "TYPE IN ANY NUMBER

TYPE 333 TO EXIT";A

21

This lets the user know exactly what is expected
and what to do if an exit is desired.

Since we already know that variables may be
of two types, muneric and string, we might assume
that the INPUT statement may be used to accept
either type of variable from the keyboard, and this
is certainly the case.

10 CLS

20 INPUT "TYPE IN ANY WORD";A$
30 CLS

40 FOR X = 1 TO 5

50 PRINT A$
60 NEXTX

This program is used to reprint any string input five
times on the screen. Though the prompt tells you
to type in any word, you may also type in numbers
or combinations of letters and numbers.

Remember, a string variable will accept almost
anything. (The lone exception is the comma. A
string variable can contain commas only in special
circumstances, so it is usually best to avoid them.)
Here's how the program works. Line 10 clears the
screen. Line 20 halts execution (after the prompt
is printed) until something is input from the
keyboard. When you press Enter the screen is
cleared again, and a FOR-NEXT loop is entered at
line 40. This loop coimts from 1 to 5, and will print

the value of A$ five times. Rim this program and
type in anjdhing you wish, as long as it doesn't con
tain a comma. If you simply press Enter, nothing
is displayed, because A$ will be equal to or
nothing at all.

The INPUT statement requesting a string
variable is often used simply to halt program ex
ecution in order to allow on-screen information to

be displayed for as long as the user desires. Take
the following program, for example:

10 CLS

20 A$ = "HELLO"

30 B$ = "GOODBYE"

40 PRINT A$

50 CLS

60 PRINT B$

Tjq)e it in as shown and then RUN it. A$ and B$
are equal to HELLO and (iOODBYE respectively.
Line 40 prints HELLO on the screen. We then want
to clear this message from the screen (line 50) and-
then print GOODBYE. To a beginning program
mer, it may look good in principle, and indeed, the
program works just like I've described it. However,
when you run it, you will see an immediate pro
blem. The computer processes so rapidly that you
don't really see HELLO. As soon as it's printed,
the CLS statement in line 50 clears the screen, so

all you really see is (jOODBYE. In such a situation
an INPUT statement becomes very handy. We're
not looking for any specific information from the
keyboard, but it's necessary to halt execution so the
user can determine when to start again. The END
statement won't work here, because that would
stop execution altogether and force us to re-run the
entire program—only to end up with the same
problem.

This situation can be solved very easily by ad
ding a line to the program. Add:

45 INPUT A$

Now run the program again. You will now see the
word HELLO clearly displayed on the screen.
There will also be a question mark below it in
dicating that the computer is looking for input. In
stead of typing in any characters, simply hit the
Enter key when you're ready to re-start execution.
Now, line 50 clears the screen and GOODBYE is
printed. You might also include a prompt with the
INPUT statement, such as "PRESS ENTER TO
CONTINUE," which is often the case in many
types of programs that include user instructions.

USING VARIABLES

Since our discussion is dealing more and more
with variables, we should discuss their structure in
a little more detail. First, you cannot use all of the
characters on the keyboard as part of a string
variable name. You may use any number and any
letter (upper- or lowercase), and you may also use
the at sign (@) and the underline character (̂). You

22

could use a variable name such as:

@437KP$ = "HELLO"

You could not use:

„73%W$ = "HELLO"

because commas are not allowed. CAR$ =

"HELLO" is fine. CART = "HELLO" is not.
The dollar sign correctly appears at the end of the
name, but another dollar sign is included in the
name.

When naming numeric variables, you cannot
use any of the statements, functions, and com
mands (called keywords) found in GWBASIC. For
example, LISST = 1 is fine, because LISST is not
a statement, function, or command. LIST = 1 is

unacceptable and will result in an error message,
because this word is used in GWBASIC. With

string variables, however, LET LIST$ =
"HELLO" is fine, because LIST$ is not a keyword.
However, there are a few statements in GWBASIC
that do end with a dollar sign (CHR$, TIME$,

MID$, RIGHT$, LEFT$, and DATE$) and cannot
be used as string variable names.

ASSIGNMENTS

Computers are mathematical beasts, and
writing computer programs often involves coming
up with a mathematical formula that will cause the
computer to do the desired job. (This is what we Ve
been doing throughout this chapter.) In one exam
ple, the keyboard input number was doubled. The
formula for doubling any number is: X = A * 2,
where A is the number to be doubled and X is

assigned the value of 2 times A. This is a simple
formula and one which most of us can do in our

heads, provided the value of A is not terribly high
or complex.

Many applications that involve calculating your
grocery bill, complex trigonometry, or even figur
ing the size of a sail for a sloop have been developed
to the point where printed formulas are already
available. Electronics is another field where this is

apparent. Committing such applications to the com
puter is a fairly simple task, and even highly com
plex formulas can be quickly input to the computer
simply by typing them in as they appear in
reference books.

As an example, let's take the formula P = FR,
which is used in electronics to figure power in
watts. Here, I stands for current in amperes and
R stands for resistance in ohms. To write a program
that would calculate power (?) based upon current
(I) and resistance (R), all we have to do is make the
proper assignments to variables and we're home
free. Here is the previous formula written as a com
puter program:

10 CLS

20 INPUT "CURRENT";I
30 CLS

40 INPUT "RESISTANCE";?
50 P = (I-2)*R

60 PRINT?

The formula in line 50 is the same one presented
in the discussion. Parentheses are used to indicate

that I is to be raised to the second power before
it is multiplied by R. This differentiates it from I
raised to the power of the product of 2 times R.

This is a simple formula, but even those that
are half a page long can be typed in almost exactly
as they appear in the reference books. If you have
to work these formulas on paper, it can take some
time. But once the computer has the formula in a
properly written program, the answer is available
almost instantly. Once the computer has the for
mula, all it needs is values for the variables.

The program could also have been written
without the user input capability, by omitting the
INPUT statements and substituting actual values
for I and R. Line 50 might then read:

50 P = (4-2) ♦ 5

where current is equal to 4 amperes and resistance
to 5 ohms.

Surely you must be thinking that anyone who
would be working with such a formula would

23

already know that 4 squared is 16 and that 5 times
16 is 80. This is true, but let I be equal to 4.22896
and R equal 5.14398. Do that one in your head! This
is the beautiful thing about computers. They don't
think in terms of "hard" numbers and "easy"
numbers. All numbers are separate entities to them
and a long one is really no harder than a short one.

READ/DATA STATEMENTS

A very useful pair of statements in BASIC are
READ and DATA. DATA statements contain what

are often called data elements. This is the DATA

statement's sole purpose, simply to hold elements.
The READ statement pulls items from the DATA
statement lines on a sequential basis. This means
that the first item is read first, the second is read
second, and so on. The following program
demonstrates the use of these statements.

10 CLS

20 INPUT "PRESS ENTER TO READ A

DATA ELEMENTS";A$

30 CLS

40 READX

50 PRINT X

60 GOTO 20

70 DATA 14,28,32,64,100

Run the program. Each time you press Enter in
response to the prompt, a DATA element will be
displayed on the screen. The data element is always
displayed in the upper left-hand comer because of
the CLS statement in line 30. Notice that each time

you press Enter, the next data element is read in
line 40 and displayed in line 50. The numbers

themselves are contained in the DATA statement

lines. After one item is read, it is not read again.
If you've gotten a bit ahead of me, you've

probably already discovered an error message. This
occurred on the pass immediately after the last data
element, the number 100, was read. The "out of
DATA in 40" error message indicates that all of
the data items have been read, but the READ state

ment in line 40 is still looking for more. Often,
READ statements are placed in FOR-NEXT loops.

This means you must make certain the number of
data elements equal the passes in the loop.

We can correct this error message situation by
using a new statement. Add the following line:

55 IF X = 100 THEN RESTORE

The RESTORE statement tells the READ state

ment to go back to the first element in the DATA
statement line. If you'll think of the READ state
ment as counting through the DATA elements, you
can think of RESTORE as resetting this count to

1. Rim the program again. You can press Enter
as often as you wish, and you will get no error
message. When the last number in the DATA state
ment line has been read, on the next pass the first
number will come up again. If you want the pro
gram to end as soon as the last DATA element is
read, change line 55 to

55 IF X = 100 THEN END

All we're doing is setting up an IF-THEN statement
to see if the last element in the DATA statement

line is being displayed. Since there are no more
DATA elements, the program terminates.

You will notice here that the variable follow

ing the READ statement is a numeric type—an in
dication that the DATA statement line contains on

ly numeric values or numbers. However, DATA-
READ statements can also be used to store and ac

cess string information, as in the following
program:

10 CLS

20 INPUT "PRESS ENTER TO READ A

DATA ELEMENT";A$
30 CLS

40 READX$

50 PRINT X$
60 IF X$ = "GOODBYE" THEN END
70 GOTO 20

80 DATA HELLO,HOW,ARE,YOU,
GOODBYE

Run this program and you will see the words

24

displayed on the screen in exactly the same way
the numbers were.

FUNCTIONS

In BASIC, a function may be thought of as a
statement that is really a mathematical formula
preprogrammed into the computer, and used to ef
fect mathematical operations on numeric and/or
string variables. This definition will not hold true
for every function found in GWBASIC, but it will
for most. Functions are very powerful tools. Some
will allow you to manipulate string variables, while
others will be used with numeric variables to return

geometric, trigonometric, and other types of
mathematical numbers based upon the value of the
variable.

The LEN Function

The LEN function in GWBASIC stands for

length, and will return the length of a string
variable. When I say return the length, I mean that
it will assign to a numeric variable the number of

characters in the string. The following program will
demonstrate the LEN function and may be input
to your computer:

10 A$ = ̂ ^HELLO"

20 A = LEN(A$)
30 PRINT X

The string variable whose length is being measured
in line 20 is enclosed in parentheses. In this exam
ple, A$ is equal to the word HELLO, which we can
easily see contains five characters. In line 20, the
numeric variable X will assume the value 5, the
length of A$, and the number 5 will appear on the
screen. One must always remember that to the com
puter, a space is just as much a character as any
other letter, number, or symbol on the keyboard.
Therefore, if A$ were equal to "HELLO BOB", the
space between the 0 and the B would also be
coimted as a character, and X would be equal to 9.

The program following shows another way to
write a program using the LEN function. This one
uses the INPUT statement to read from the

keyboard, and assign this input to the string
variable A$. CLS statements have been added to

make for a clean screen display. This program will
tell you the length of any words, numbers, or
characters you input via the keyboard.

10 CLS

20 INPUT A$

30 CLS

40 X = LEN(A$)

50 PRINT X

When this program is run, the screen will be cleared
and you will see a question mark (?) prompt telling
you that the computer is expecting some user in
put. You can type in anything at this point. When
you press Enter, the screen will be cleared again
and the value of X, which is the number of

characters supplied, will be printed on the screen.
The program below is set up on an exitable

endless loop. It does the same thing as the program
above, but allows you to continue to input data from
the keyboard. When you wish to exit the program,
all you have to do is press the Enter key.

10 CLS

20 INPUTTYPEINANYPHRASETOBE

MEASURED";A$
30 CLS

40 X = LEN(A$)

50 IF X = 0 THEN END

60 PRINT X

70 GOTO 20

Line 20 allows you to input the characters to be
represented by A$. A prompt is included with the
INPUT statement to instruct the user as to what

is expected. Line 40 uses the LEN function to
assign X the value of the number of characters in
A$. Line 50 contains our exit routine. It simply says
if the value of X is zero (no characters in the string)
then END the program. When you wish to exit a
program, simply supply a null string by pressing
Enter, in response to the INPUT statement prompt.

It may be difficult now for you to imagine any
useful purpose for the LEN function, but as your

25

programming experience increases, you will find
yourself using it more and more. One possible use
is a typing test program. Here, the LEN function
would indicate the number of characters typed. By
knowing the number of characters input and the
time it took to input them, typing speed can be
quickly ascertained. The LEN function is also
useful in some types of programs as to check for
the proper user input. For example, a game pro
gram might require the user to input a word that
is no longer than 5 characters. The LEN function
can be used to test the length of the user's input
and generate an error message if the input exceeds
the specified length.

The INT Function

The INT function stands for integer. It is used
only with numeric variables and returns the integer
equivalent of this variable. An integer is simply a
whole number (positive or negative). The numbers
3, 5, 6, 9, and 10 are integers, whereas 3.5, 9.3,
10.1, etc., are not. The INT function simply trun
cates or lops off the decimal portion of a number.

(The number 0 is also an integer, so the integer
equivalent of the number 0.003 is 0.) The follow
ing program demonstrates the use of the INT
function.

10

20

30

A = 10.5

X = INT(A)

PRINT X

one stops to think that - 3 is a larger number than
-3.6. In this example, the INT function has still
rounded down.

The RND Function

The RND function stands for random. You can

think of RND as a variable that can be equal to any
value between 0 and 1, not including these two
numbers themselves. The RND function works in

close conjimction with the RANDOMIZE state
ment. RANDOMIZE simply "shuffles" the random
number generator, and RND is the random number
output. The RND function is extremely useful in
programming games of chance on the PC-6300
because one never really knows what number it's
going to represent. Whenever you use RND in a
program, you should also use the RANDOMIZE
statement (at the beginning of the program). If you
don't, the output from RND will be the same dur
ing a given program run.

Between RANDOMIZE and RND, you can
generate what can be classified as truly random
numbers, at least to us. From a technical stand

point, these numbers are not really chosen at ran
dom (like drawing a number out of a hat). The com
puter actually has a mathematical formula to guide
it in making its selection, but it is one that is too
complex for most of us to anticipate. (This is
technically known as pseudo-random number
generation.) The program below will demonstrate
the RANDOMIZE statement and RND function.

When this program is run, the computer screen will
display the number 10, which is the integer
equivalent of the real number 10.5. That was sim
ple enough!

One must always remember that the INT func
tion technically does not round numbers, though
you could say that the INT function always rounds
down. It will always return the largest integer that
is less than or equal to A in the above program. This
seems fairly simple until one starts dealing with
negative numbers. If A were equal to - 3.6, the
INT function would return - 4. One might expect

that - 3.6 as an integer would end up as - 3, until

10 RANDOMIZE

20 FOR X = 1 TO 10

30 PRINT RND

40 NEXTX

When this program is run, the computer will
generate an automatic prompt, due to the RAN
DOMIZE statement in line 10, which will read
"Random number seed (-32768 to 32767)?" The

computer is telling you that it wants you to type
in any number between -32768 and -1-32767 for

it to use in the randomizing formula. After you've
typed in this number, simply press Enter and the

26

screen will then display 10 random numbers. RUN
the program again and type in a different number,
and the random numbers will be completely dif
ferent because of the new seed number.

The RND function is rarely used by itself, as
shown in line 30. Most often, we use RND as a

multiplier. This can be demonstrated by writing a
simple game that might be thought of as a com
puterized version of flipping a coin.

First, let's think of the possibilities which oc
cur when a coin is flipped. From a practical stand
point, only one of two can occur: the coin can either
land with heads up or tails up. Since we have two
possibilities, we need the computer to output one
of two possible numbers at random. One number
would represent heads, while the other would repre
sent tails. In other words, we want to make sure

that only two numbers are possible. Let's start wdth
the program below.

10 CLS

20 RANDOMIZE

30 CLS

40 X = RND ♦ 2
50 INPUT "PRESS ENTER TO FLIP
COIN";A$
60 PRINT X

70 GOTO 40

This program is a good start for a coin flip
game, but it wrill not do the whole job yet. The
RANDOMIZE statement is used in line 20 to allow

you to input a random seed number. In line 40, the
numeric variable X is equal to RND times 2. The
number 2 was chosen because we're looking for two
possibilities, heads or tails. We'll let the number
1 represent heads and 2 tails. The INPUT state
ment in line 50 is used to give us some control over
when the coin is flipped. Each time Enter is press
ed, the value of X, which represents the flip, wall
be printed on the screen. The GOTO statement in
line 70 branches back to line 40, where X is assign

ed another random number. Each time the RND

function is executed, a different random number

wall occur.

Run this program and press Enter five or six

times. You wall note immediately that at no time
do the numbers 1 or 2 appear on the screen. What
you have is a series of numbers wdth long decimals.
However, if you look closely you will see that all
of these numbers fall into two categories; one group
is equal to more than 1, while the other group is
less than 1. The computer is on the right track.

Our goal is to wadte a program that will output
either a 1 or a 2. Think back to the previous func
tion that we discussed. The INT function will

always return a number that is a whole number.
Since the numbers 1 and 2 are indeed integers, we
might well be able to use INT in our coin flip pro
gram. Change line 40 to:

40 X = INT(RND*2)

Now, the program will always output an integer.
RUN it again and press Enter several times to flip
the computerized coin. We're getting close now,
because only two numbers are being output,
although they are 0 and 1 rather than 1 and 2. This

would probably suffice if we let 0 equal heads and
1 equal tails, but this was not the original intent of
the program. We want the numbers 1 and 2. The
purpose of this will become apparent shortly. What
do we do?

The answer is simple. By adding 1 to each of
the numbers already output, we will always arrive
at one of two possible numbers, 1 and 2. That's our
goal! Change line 40 to:

40 X = INT(RND*2) + 1

Make sure the +1 appears outside of the paren

theses. Now run the program again. Eureka! The
computer is now outputting Is and 2s as originally
planned. Let's go one step further and make the
game more lifelike, using IF-THEN statements.
Let's change line 60 completely and add another
line to be numbered 65:

60 IF X = 1 THEN PRINT "HEADS"

65 IF X = 2 THEN PRINT "TAILS"

Rim the program again and you will see that our

27

coin flip game has been completed. Congratula
tions! You have just written your first game pro
gram! It wasn't all that difficult, was it?

Now, to explain emphasis on tailoring this pro
gram to output the numbers 1 and 2 to represent
heads and tails let's see why this may be important
for future programs. Some games of chance use
devices that normally output numbers. The first
thing that comes to mind is any dice game. Each
die contains numbers from 1 to 6 on its sides. In

the coin flip game, we could have stayed with the
starter program, which simply output decimal
numbers that were either less than or more than

1. We could have used IF-THEN statements to tell

the computer to print heads if X was less than 1
or tails of X was more than 1. We can't do this with

dice. We must have whole numbers that range from
1 to 6.

We will now write a simple dice program us
ing a computer version of one die. You will
remember that we used the number 2 in the coin

flip program to be multiplied by RND. This number
was chosen because we were looking for 2 possi
ble conditions. In a dice program, we are looking
for 6 possible conditions. Therefore, we will replace
2 with a 6. The finished program is shown below.

10 CLS

20 RANDOMIZE

30 X = INT(RND*6) +1

40 INPUT "PRESS ENTER TO ROLL THE

DIE";A$

50 PRINT X

60 GOTO 30

Hey! This program is even less complex than
the finished coin flip program, because we don't
have to convert the computer's numbers into on
screen words. Rim the program. After you've in
put the seed number you will be greeted with a
prompt, and each time you press Enter a number
ranging from 1 to 6 will appear on the screen. You
never know which number is going to come up,
because the computer is outputting it based upon
the random number generator. This is a true com
puter representation of a dice game.

Certainly, you might complain that only one die
is incorporated. Most of the work has already been
done, and to add another die it's only necessary to
modify one line in the original program and add one
more. Change line 60 to:

60 PRINT X;Y

and add line 45:

45 Y = INT(RND*6) + 1

By adding another line (45), we have inserted
another RND function and assigned to Y the out
put of this line. It is possible for both X and Y to
be equal, representing a double. It is even more
possible for the two to be unequal. Run the program
and you will see that sometimes you get a double,
and sometimes you don't. Let's add another line to
make the program even more interesting.

65 IF X = Y THEN PRINT "DOUBLE"

The IF-THEN statement checks for a condition of

X being equal to Y. If this is true this same line will
print the word "DOUBLE" on the screen. Add
another line.

66 IF X = 1 AND Y = 1 THEN

PRINT"SNAKE EYES"

This IF-THEN statement checks for a condition of

both X and Y being equal to 1. This is the familiar
condition known as "snake eyes" in some dice
games. This message is displayed along with the
previous message of "DOUBLES," since both con
ditions are true. Variables X and Y are equal to each
other and both are equal to 1.

Line 66 is quite a bit different than the previous
examples of IF-THEN statements. In this exam
ple, the word AND is called a logical operator,
(Sometimes you will also see an OR in its stead.)
This is very simple to understand and the line is
almost self-explanatory. A condition is true only if
the values on both sides of the AND are true. In

this case, if X is equal to 1 and if Y is equal to 1,

28

then do whatever follows the THEN statement.

With this in mind, you should be able to insert your
own program line (67) which will test for the con

dition of ''boxcars'' (both dies being equal to 6).
To review, remember that the RANDOMIZE

statement simply shuffles the riandom number
generator based on the number you input when the
program is first nm. It is necessary to do this only
once during the program run and not each time the
RND function is used. RND may be thought of as
a number lying somewhere between 0 and 1. It will
never be equal to 0 nor to 1. It may be used like
any other variable. In most cases, it is used as a

multiplier, but it can also be added to a real number,
subtracted from a real number, or as a divisor or
dividend. The INT function may be successfully
used to cause all random numbers output to the
screen to be whole numbers.

The CINT Function

The CINT function is very much like the INT
function in that it will always return an integer.
However, CINT performs this conversion process
by rounding. CINT will round up or down depen
ding on the fractional portion. Any fractional value
of 0.5 or higher will cause CINT to round up, and
any value lower than 0.5 will be rounded down. The

following program demonstrates the CINT
function.

10

20

30

40

50

60

X = 24.3

Y = 24.6

A = CINT(X)

B = CINT(Y)

PRINT A

PRINT B

When this program is nm, the numbers 24 and 25
will appear on the screen. The variable A
represents the CINT value of 24.3. Since .3 is less
than .5, CINT roimds down. Variable B represents
the CINT value of 24.6. Since .6 is more than .5,
CINT rounds up. CINT is often used in place of
INT when performing calculations with monetary
values.

Other String Functions

In GWBASIC, there are several powerful func
tions that are dedicated to the handling of string
variables. These are used heavily in word process
ing programs, and also crop up often in many other
types of programs. We have already met LEN$,
and these new ones are not terribly difficult to
understand if you take them a step at a time.

LEFT$. The LEFT$ function is used to pull
a sequence of characters from a string, starting with
the left-hand side of that string. The following pro
gram explains it best.

10 A$ = "HELLO"

20 X$ = LEFT$(A$,2)
30 PRINT X$

This program assigns the word HELLO to the
string variable A$. Line 20 assigns a portion of A$
dictated by the LEFT$ function to the string
variable X$. Line 30 prints the value of X$ on the
screen. RUN this program, and you will see that
the screen displays HE. Look at line 20. The
number 2 inside the parentheses tells the computer
to assign to the string variable X$ the two LEFT-
most characters in A$. If you change the 2 to 1,
then only an H will be printed because this is the
first character from the left in A$. Change this
number to 4 and see what happens. The LEFT$
function is very useful if you wish to retrieve only
a portion of a string.

RIGHT$, The RIGHT$ function works just
like the LEFT$, except it starts searching at the
right of the string. The following program
demonstrates.

10 A$ = "HELLO"

20 X$ = RIGHT$(A$,3)
30 PRINT X$

When this program is run, the computer will display
LLC, since these are the rightmost three characters
in A$. It's hard to generate an error message with
either of these two functions. If you specify more
letters than are contained in the string, the com
puter simply returns the entire string.

29

MID$. While LEFT$ and RIGHT$ are very
useful functions, they always force us to accept all
the characters in a sequence from the left, or to the
right. We cannot go into a string and pull out a mid
dle section, for instance. However, GWBASIC also
gives us MID$, which will allow us to do just that.
It works very much like LEFT$ or RIGHT$, ex
cept we have to give it two numbers, one to indicate
the position within the string to start its search and
one to indicate the end of search. All numbers are

given in relation to the left of the string. The follow
ing program demonstrates the use of MID$.

10 A$= "HELLO"

20 X$= MID$(A$,2,3)
30 PRINT X$

When this program is run, the computer will display
the value of X$, which is ELL. We told the com
puter to search the string starting with the second
character to end three characters later. The first

character, then, is the E, the second is L, as is the
third. Do not be confused. MID$ does not count

three characters after the second character, but

three characters including the second character in
this example. With the MID$ function, we can easi
ly pull out any portion of a string desired.

TIIVIE$. The TIME$ function returns the cur
rent time, which is maintained by the computer's
internal clock. It is necessary to assign a value to
TIME$ at the beginning of the program. Once this
time has been inserted, the PC-6300 will
automatically update it on a second-by-second basis.
Let's start with the following program.

10 X$ = "09:36:22"

20 TIME$ = X$
30 PRINT TIME$

Line 20 could also have been written as TIME$ =

"09:36:22", which would have allowed us to delete

line 10. Either method will work. When you run this
program, nothing spectacular happens. The value
of X$ will be printed on the screen. Now, wait a
few seconds and in direct mode (remember—no line

number), type PRINT TIME$. When you press

Enter, the value of TIME$ will be displayed on the
screen, but you will notice that TIME$ is no longer
equal to the value you assigned it in the previous
program. It is now equal to a value that reflects the
seconds that have passed since the original program
was run. The clock is now keeping time based upon
the value that was inserted by the program above.

The following program will allow you to input
the current time and then see it constantly
displayed.

10 CLS

20 INPUT "CURRENT TIME IN HOURS,

MINUTES, ANDSECONDS";X$
30 TIME$ = X$
40 CLS

50 PRINT TIME$
60 GOTO 40

The INPUT statement in line 20 allows you to
supply your current clock time. Your input is
assigned to the string variable X$, and in line 30
the TIME$ function is initially assigned the value
of X$. The screen is then cleared, and the value

of TIME$ is displayed on the screen. The GOTO
statement in line 60 branches back to line 40, where

the screen is cleared and TIME$ is printed again.
This new TIME$ value will be the updated version,
which has been controlled by the PC-6300's clock.
I hope you have not run the program yet, since in
a few instances I have set up programs which are
incorrect, or do not operate in the proper manner

to illustrate a point. This is one such example. RUN
the program at this time. You will notice a flicker
ing and flashing and the time is displayed in the up
per lefthand comer, but it's difficult to see. This
is because the screen is being written and cleared
so fast (by the loop set up between lines 40 and 60)
that viewing is almost impossible.

Suppose we don't clear the screen each time
the correct time is printed. What happens then?
Test this by changing line 60 to:

60 GOTO 50

Now, the CLS statement is taken out of the loop.

30

so the screen will not be cleared before each prin
ting. Run the program again. Goodness! The time
is being displayed, but the numbers span the screen
from top to bottom. Would a semicolon help us at
this point? Try inserting one at the end of line 50.
When you nm this program, you will see that this
is no help whatsoever. So how do you display time
at one spot on the screen?

The answer is simple, and it involves a new
statement that is extremely useful in outputting in
formation to the screen in a pleasing format. In
GWBASIC, this is the LOCATE statement. With
LOCATE, we can specify exactly where we want
the computer to print information on the screen. If
there's something already at that position, the com
puter simply writes over it. Remove the semicolon
at the end of line 50, then change line 60 and in
sert the following line as shown.

45 LOCATE 14,38

60 GOTO 45

Now nm the program. That did it! After you in
put the correct time and press Enter, that time is
displayed at the center of the screen and you can
actually see the seconds ticking away on the elec
tronic clock. This is due to the fact that the

LOCATE statement is causing the PRINT TIME$
statement which follows it to always display infor
mation at location 14,38 on the screen. There's your
electronic clock, and it will be far more accurate

than most clocks you've ever had.

UNDERSTANDING THE SCREEN

The LOCATE statement in GWBASIC ac

cesses a certain screen location, which can be
used in conjimction with any statement that writes
information to the screen. When a LOCATE state

ment is used, it will determine the exact position
for the next write—the very next, but not all others
that follow. In the previous program, the LOCATE
statement in line 45 was used by the PRINT state
ment in line 50 to position the value of TIME$ near
the center of the screen. Since the LOCATE state

ment was made a part of the loop between lines 45

and 60, before line 50 was executed, the LOCATE
statement had already determined the position
where TIME$ would be written. Since this posi
tion never changed, the new value of TIME$ was
written over the old value.

The numbers immediately to the right of the
LOCATE statement determine the position on the
screen it accesses. The PC-6300 divides your screen
into 2,000 different points. Figure 2-1 shows the
screen layout in text mode, which is what we're
dealing with right now. The screen consists of 80
character positions from left to right, called col
umns. There are also 25 rows or lines on the screen.

Thus, 25 rows times 80 columns gives you 2,000
positions. While the AT&T PC-6300 has 25 rows,
normally BASIC will not print on line 25. (It can
be done, but it's a pain and can cause confusion.)
Think of the machine as having a practical display
of 80 colunms by 24 rows—which will be assumed
for the remainder of this discussion.

The LOCATE statement uses row and column

numbers to indicate the point at which text is to
be written on the screen. LOCATE 1, 1 tells the
computer to start writing text at row 1, column 1.

Figure 2-2 shows this position. LOCATE 2, 1 in
dicates a write to be performed starting at the first
column in the second row. We can generalize this
as LOCATE row, column, where the row number

Fig. 2-1. The PC-6300 text screen consists of 25 rows and
40 columns.

31

Fig. 2-2. Coordinates 1, 1 identify the upper left hand cor
ner of the text screen, or row 1, column 1.

indicates the vertical positioning, and the column
number represents the horizontal. In the clock pro
gram, I chose 14 as the row number since it lies

just below the middle of the screen, while column
38 is just to the left of center. Why? Because it is
often better to choose an optical center (from the
viewer's standpoint) rather than exact center
(based upon screen coordinates alone.) You can ex

periment with the coordinates a bit to suit yourself.

ANOTHER BRANCH STATEMENT

Early in this chapter we discussed the GOTO
statement, a branch statement that tells the com

puter where to go within the program, or, more
specifically, which lines to execute and which to
skip over. Branch statements allow us to use

previously written program segments to perform
job points in the program past their original
location.

There is another, extremely useful branch
statement in GWBASIC that may be thought of as
a GOTO statement with a user-programmed return.
It's called GOSUB and it is more often referred to

as GOSUB and RETURN. GOSUB stands for go
to subroutine. A subroutine is like a miniature pro
gram unto itself, within the larger structure. Like
GOTO, GOSUB refers to a line number which tells
the computer where to branch. However, a
subroutine accessed by a (jOSUB always ends with

RETURN. This tells the computer to go back to
a point one line past the line which sent it to the
subroutine. The following program demonstrates
the use of these statements.

10 CLS

20 INPUT "TYPE IN ANY NUMBER TO

BE DOUBLED";X

30 CLS

40 GOSUB 70

50 PRINT Y

60 END

70 Y = X * 2

80 RETURN

While this program makes somewhat trivial use of
GOSUB and RETURN, it does effectively
demonstrate their use. Line 10 clears the screen.

Line 20 instructs the user to type in any number
to be doubled, which input is assigned to the
numeric variable X. The GOSUB statement found

in line 40 tells the computer to go to a subroutine
that begins at program line 70. It assigns to Y the
value of X times 2. Line 80 terminates the

subroutine with a RETURN statement.

The RETURN statement tells the computer to
go back to the line which follows the one contain
ing the GOSUB statement. Since the (X)SUB state
ment is found on line 40, RETURN causes line 50

to be executed next. Line 50 displays the value of
Y (2 times X) on the screen. Note the END state

ment in line 60. You will recall that this statement

was not needed in our other programs, since BASIC
will automatically stop execution when there are
no other lines to read. In this program, however,
if you omit the END statement BASIC would
automatically go on and execute the remaining
lines, which are our subroutine lines 70 and 80. But

remember, a subroutine is a small program unto
itself, which is not to be executed unless specifically
told to do so by a GOSUB statement.

As a test, let's remove the END statement in
line 60 altogether. In direct mode, simply type 60
and hit Enter. (If you can list your program at this
point, you will see that line 60 no longer exists.)
Run the program again. You can still input a value

32

and the GOSUB will still access the subroutine. The

RETURN statement in line 80 causes the computer
to go back to line 50, where the value of Y is
printed.

However, you are now faced with an error

message: the computer is telling you that it en-
coimtered a RETURN without GOSUB. Since the

END statement was omitted, after line 50 was ex

ecuted the computer executed lines 70 and 80,
where the computer became distressed. It read a
RETURN statement and said, "Return where? Fm

not supposed to be here because a GOSUB hasn't
instructed me to do so." It worked fine during the

first entry to the subroutine, because the GOSUB
in line 40 sent it there. But when it got there the

second time, it had no GOSUB instruction and told
you so through the error message. In this case the
END statement is crucial to proper execution of the

program.

MULTIPLE-STATEMENT LINES

This portion of the text will tell you about some
ways you can make your programs more
economical. All previous programs have used only
one statement, function, or assignment per program

line; with the PC-6300 it is quite easy to include
several statements, functions, or assignments on a
single program line. Take the following program,
for example:

10 CLS

20 C=10

30 Y = 20

40 Z = X*Y

50 PRINT Z

This is just like our previous examples. However,

it can be rewritten as follows:

that a colon is used to separate each of the

assignments. The PC-6300 sees this program in ex
actly the same way as the previous one. We could
even go one step further and write the program as:

10 CLS:X=10:Y = :Z = X*Y:PRINTZ

Here, the entire program is contained in a single
program line. Notice that colons separate each in

dividual statement on the line. If you omit a colon,
you will get an error message. You can use as many
as 255 characters per line, but if you go past this
point the computer automatically knocks off the ad
ditional characters.

For the sake of clear programming, you will not
often see a tremendously large number of
statements committed to any one line. From a
memory savings standpoint there is an advantage

in using as few lines as possible, because each new
line number takes up additional memory. The last
example requires slightly less memory storage than
the first. Sometimes, however, clear programming
can be better effected by committing only a group
of similar statements or assignments to a single pro
gram line. The second example shown is getting
close to this; line 20 made all assignments to X, Y,
and Z. However, CLS is put on a separate line, as
was PRINT Z. From the standpoint of program
clarity it is sometimes worth sacrificing a few bytes
of memory space.

LOGICAL OPERATORS

Logical operators perform special operations
using numeric values. The ones we will be concern

ed with here are OR and AND. In text mode pro
gramming, we often use logical operators in IF-
THEN statements to bring about special branches.
The following program is a good example:

10 CLS

20 X=10:Y = 20:Z = X*Y

30 PRINT Z

Here, line 20 includes all the assignments made in

lines 20 through 40 in the previous program. Notice

10 CLS

20 INPUT "TYPE ANY NUMBER FROM

0 TO 10";X

30 INPUT "TYPE ANY NUMBER FROM

11 TO 20";Y

40 IF X = 5 AND Y = 18 THEN PRINT

33

"THOSE WERE THE NUMBERS I WAS

LOOKING FOR"

50 END

Line 40 tells the computer to print the quoted
phrase only when X is equal to 5 and Y is equal to
18. If X is equal to 5 and Y is equal to a number
other than 18, the phrase will not be printed. Con
versely, if X is not equal to 5, the phrase will not
be printed even if Y is equal to 18. When the AND
operator is used, both conditions must be true. In

this case, X must be equal to 5 and Y must be equal
to 18 before the phrase will be printed. You can go
further if you want. After adding a few more IN
PUT statement lines, line 40 might read:

40 IF X = 5 AND Y=18 AND Z = 40 AND

ZZ = 55 THEN PRINT "THOSE WERE

THE NUMBERS I WAS LOOKING FOR"

Now let's discuss the OR operator. Change line
40 in the original program to:

40 IF X = 5 OR Y=18 THEN PRINT

"BINGO!"

Here, line 40 tells the computer to print BINGO if
X is equal to 5 or Y is equal to 18. If X is not equal
to 5, but Y is equal to 18, the word will be printed.
As long as X is equal to 5 or Y is equal to 18, the
word will be displayed. Only one of the tests within
a logical OR operation must be true to bring about
the proper result. If both are true, that's fine too.

You can also use OR and AND together. The
following program demonstrates:

10 CLS

20 INPUT "TYPE ANY NUMBER FROM

0 TO 10";X

30 INPUT "TYPE ANY NUMBER FROM

11 TO 20";Y

40 IF X = 5 AND Y=15 OR X = 3 THEN

PRINT "BINGO!"

Here is the condition set up in line 40. If X is equal
to 5 and Y is equal to 15 the computer will print

BINGO. However, if X is not equal to 5 and Y is
not equal to 15, but X is equal to 3, the word will
also be printed. You can think of this as two IF-
THEN tests on the same line. The first tells the

computer to print the word if X is equal to 5 and
Y is equal to 15. The second tells the computer to
print the word if X is equal to 3.

RELATIONAL OPERATORS

A relational operator is a sjrmbol that causes
the computer to compare two values. We are
already familiar with one of these relational
operators. This is the equality sign (=). There are
other relational signs as well. The inequality sign
is used to state that two values are not equal and
looks like this:

< > not equal to

While this is treated like a single symbol by the
computer, typing it into the program requires two
keystrokes, the comma and period keys in upper
case. The inequality sign is used just like the equal
sign, as in:

AOB

There are two other relational operators that we
use quite often in BASIC, the "more than" and
"less than" symbols shown below.

< less than

> more than

Here is the format in which they are used:

A<B A is less than B

A>B A is more than B

Just think of the wide side as being the larger side,
and the pointed side as pointing to the variable that
is the smaller.

Now, we can combine the less than/more than

symbols and the equal sign, as follows.

A<= B A is less than or equal to B
A>= B A is more than or equal to B

34

We often use the relational operators to make pro
grams foolproof for the user. The program below
needs an input number of from 0 to 10. Line 30
makes sure that the number input is not less than 0.

10 CLS

20 INPUT "TYPE A NUMBER FROM

0-10";X

30 IF X<0 THEN PRINT "INVALID

NUMBER"

10. We could also have handled this by specifying
that the phrase is to be printed if X is less than 1.

Some of the following chapters will present pro
gram listings that make heavy use of relational and
logical operators, so be sure to reread any materials
you're not quite clear on. The logical and relational
operators allow us to make the most efficient use
of programming space, and make the programs
easier to imderstand once these operators are

understood.

Line 30 says if X is less than 0 then print the phrase
"INVALID NUMBER." We might also wish to
make sure that the number input is not larger then
10. The program below shows how this is handled.

10 CLS

20 INPUT "TYPE A NUMBER FROM

0-10";X

30 IF X>10 THEN PRINT "INVALID

NUMBER"

Line 30 tells the computer to print the phrase if X
is more than 10.

We don't need two programs to do this if we
remember the previous discussion on logical
operators. This program demonstrates the use of
logical and relational operators:

10 CLS

20 INPUT "TYPE A NUMBER FROM

0-10";X

30 IF X<0 OR X>10 THEN PRINT "IN
VALID NUMBER"

Line 30 tells the computer to print the phrase if X
is less than 0 or if X is more than 10.

The following program also allows us to ex
clude zero, using the less than or equal to operator:

10 CLS

20 INPUT "TYPE A NUMBER FROM

1-10":X

30 IF X =0 THEN PRINT "INVALID

NUMBER"

Note that in line 20 we desire a munber from 1 to

ARRAYS

An array is a group of values referenced by the
same name. It may be thought of as a table. Most
beginning programmers shy away from arrays
because they feel they are extremely difficult to
xmderstand, but this is totally imtrue. You will find
that arrays are a tremendous help in all types of
BASIC programming. For now, simply think of an
array as a "tank" with a certain name which holds
a large number of values. AH of the values are con
tained within this tank in sequential numeric order.
If the array is named A, then A(0) contains one
value, A(l) contains another, A(2) yet another, and
so on.

To set up an array, we use the DIM statement,
which stands for dimension. This determines the

size of the array, or more appropriately, the number
of values it can contain. This is the format for DIM:

10 DIMAdO

The DIM statement sets up an array named A
which can hold 11 values. Why 11? Because the first
element in the array will be automatically specified
as A(0) by the computer. (Remember that 0 is a
valid number.) You can simply remember that cm
array can hold one more element than its numeric
designator would seem to indicate, for those of us
who start coxmting with 1 rather than 0.

The following program demonstrates some of
the workings of an array:

10 CLS

20 SCREEN 0

35

30 DIMA(5)

40 A(0) = 10
50 A(l) = 20

60 A(2) = 30

70 A(3) = 40

80 A(4) = 50
90 A(5) = 60

100 PRINT A(2)

Here, the array was dimensioned to contain 6
elements. Lines 40 through 90 assign numbers to
the various array positions. You will notice that we
treat A(0) or any other element in A simply as
another variable. Line 100 tells the computer to
print the value of the element contained at A(2).

This may seem very awkward, so why not use
standard variables here instead of an array? For
small numbers of variables this is a good point, but
suppose you need a hundred—or a thousand? You
would soon nm out of discrete names for your
variables. There are also other reasons. The next

program puts the array to more effective use.

10 CLS

20 SCREEN 0

30 DIMA(5)

40 FORX = 0TO5

50 A(X) = (X*10) + 10
60 NEXT X

70 PRINT A(2)

This program fills the array with the same values
as before, only it does it much faster. When you
run the program, the screen will still display the
value of 30, which has been assigned to A(2). Line
50 is the key here. The value of X is substituted
for the array element number and, indeed, the value
assigned the element is a function of the element
number itself. In line 40, the FOR-NEXT loop
assigns the variable X a value of from 0 to 5. On
the first pass of the loop, A(X) in line 50 is really
equal to A(0). On the second pass of the loop, it's
equal to A(l). When the loop times out, it's equal
to A(5). Line 50 assigns A(X) a value which is equal
to ten times X plus the number 10. On the first pass,
X is equal to 0, and ten times 0 is stOl 0. But 0 plus

10 is equal to 10. Therefore, A(X), or A(0) on this
pass, is equal to 10. On the next pass A(X), or A(l)
is equal to one times ten plus 10, or 20. It is not
possible to easily assign a standard muneric
variable in this manner. We can only do this with
an array, where we can substitute a variable for the
array element number.

The arrays discussed thus far are called
numeric arrays. We can also have string arrays that

work the same way. To designate a string array,
we would use the format:

30 DIMA$(5)

This establishes a string array named A$ which will
hold 6 elements. Assignments are made just as they
would be with any string variable; i.e.,

31 A$(0) = "HELLO"
32 A$(l) = "GOODBYE"
33 A$(2) = "HI"

and so on. The following program uses a FOR-
NEXT loop and an INPUT statement contained
within the loop to assign words or phrases to an ar
ray. The second part of the program reprints these
words and phrases:

10 CLS

20 SCREEN 1

30 DIMA$(5)
40 FORX=0TO5

50 INPUT "TYPE IN ANY WORD";W$
60 A$(X) = W$

70 NEXTX

80 CLS

90 FORX=0TO5

100 PRINT A$(X)

110 NEXTX

When this program is nm, you will be asked to
"TYPE IN ANY WORD." The first word is as

signed to W$. Line 60 assigns to A$(X), which is
also A$(0), the value contained in W$. The loop
recycles, and you are again prompted to tjrpe in any
word. Your new word is committed to W$, and it.

36

in turn, is committed to A$(l) in line 60. This oc
curs during each of the six cycles of the loop.

After line 80 clears the screen, lines 90 through

110 display the contents of the array A$. The loop
in line 90 counts X from 0 to 5 and line 100 prints
the contents of A$(X) on the screen as X assumes
each new value. Remember, the element number
represented here by X is always a whole number
(integer), and may be represented by a numeric
variable—even though the array elements
themselves might contain string values.

All of the arrays, numeric and string, dis
cussed thus far are known as single dimensional ar
rays. You may think of them as a vertical table of
values. The A(o) position is at the very top of this
table, with A(l) below it, then A(2) below it, etc.
We can also make arrays multi-dimensionals using
the following format.

DIM A(5,2)

This tells the computer to set up an array that con
sists basically of rows and columns. These will be
6 rows, each containing 3 columns or elements on
each row. Figure 2-3 shows how the element posi
tions are numbered and how they might appear.
With a multi-dimensional array, we can think in
terms of how the text screen is set up. For instance,
1,1 represents the upper-lefthand comer, while 1,2
represents the second position on the top row. With
a multi-dimensional array, the first element in the

0.0 0.1 0.2

1.0 1.1 1.2

2.0 2.1 2.2

3.0 3.1 3.2

4.0 4.1 4.2

5.0 5.1 5,2

Fig. 2-3. The configuration or alignment of data elements
in a multidimensional array.

first line would be at position 0,0. The second ele
ment in the first line or row would be 0,1, followed

by 0,2, etc. The first element in the second row
would be 1,0 and then 1,1, 1,2, etc.

We will not delve further into multi

dimensional arrays at this time since they can be
confusing—especially after youVe just been in
troduced to a single-dimensional array. Try ex
perimenting with the single-dimensional arrays
more fully. Once you understand their operation,
it's easier to move on. The two have very much in

common, and the GWBASIC manual fully explains
the use of the multi-dimensional arrays.

SUMMARY

This chapter has dealt with many often-used
statements and functions in GWBASIC. It by no
means has explored the full extent of this very
powerful language. For the most part, the topics
discussed have involved or are used with text mode

operations, i.e., the display of information such as
words and numbers on the screen. The next chapter
deals with the high-powered graphics capabilities
of this computer. Many of the functions and
statements discussed in this chapter will also be us
ed heavily in graphics mode. Please don't be imder
the impression that all of the uses of these functions
and statements have been discussed. They certainly
have not. As your knowledge and capability in
creases, you will find more and more ways to make
the BASIC language work for you.

If at this point you are partially or completely
confused, this is an indication that you may not have
studied the contents of this chapter thoroughly
enough. Each of the exercise programs is intend
ed to show you exactly how functions, statements,
or combinations of both operate within a simple pro
gram. If you're not clear on the use of these func
tions and statements, reread those portions which
explain them. It is mandatory that you understand

those portions of the BASIC language already
outlined before moving further. Rewrite each of the
working programs presented in this chapter, but
use your own imagination to alter them. Try a few
weird ideas and see how the computer responds.
This can be the best tutorial of all.

37

Chapter 3

■I IHiaiB ■■ HMH nil ZlHlilHHl■I 111 ■ ■ i Hi ■ S SI
■I lil W i'

Graphics Programming
The AT&T PC-6300 is exceptional in graphics, an
area where many personal computers fail. This is
not to say that sophisticated graphics cannot be pro
grammed on them—only that the process is often
an ordeal. Drawing simple shapes such as circles,
rectangles, and triangles can involve many, many
complex program lines. This does not apply to the
PC-6300.

In order to take full advantage of the PC-6300's
graphics capabilities, it will be desirable (but cer
tainly not mandatory) to purchase the optional RGB
color monitor. The RGB monitor will allow you to
see the various colors that can be produced, but if
you don't have one, the color graphics programs
will still operate. When using the monochrome
monitor, all color commands simply cause the
screen to display points of light in various shades
of gray.

This chapter assumes the use of the color
monitor, but again, your monochrome monitor will
suffice. If you obtain a color monitor at a later date,
the programs that now display various geometric
patterns in monochrome will do the same in color.

THE GRAPHICS SCREEN

There are three types of screen formats used
in programming graphics on the PC-6300. The one
most commonly used is called medium-resolution
graphics. This screen is composed of 320 horizon
tal points and 200 vertical points. The second
graphics mode, high-resolution graphics, is
monochrome-only and displays 640 horizontal
points by 200 vertical points. These points of light
are referred to as pixels. In medium-resolution
graphics mode, each pixel may be one of four dif
ferent screen colors at any one time. In high resolu
tion graphics mode, only two colors are available.
These are usually referrred to as ''black and
white," although different monitor screens may
display them in green and black or even in amber
and black.

The last standard screen mode is called pro
prietary graphics mode and consists of 640 horizon
tal pixels and 400 vertical pixels. Table 3-1 provides
a breakdown of the various screen modes available
with the PC-6300 and the SCREEN statement

38

numbers that access them.

The SCREEN statement is used to set the

mode of operation. This statement may be used
with a number of designators, but for this discus
sion, I will only include the always-mandatory first
one. The SCREEN statement is always followed
by a number that indicates the mode to which the
screen format is set. This statement may also be
used to set the active page, the visual page, the
range of colors displayed, and so on. Once you get
the hang of graphics programming, these latter
designations will be used more and more. For now,
we will stick to the absolute basics to avoid confu

sion. For most discussions in this chapter,the
medium-resolution graphics mode (SCREEN 1) is
used. This is the standard graphics mode. For
tunately, all three graphics modes work pretty
much alike, with the only differences being their
rearranged or expanded coordinates.

SCREEN COORDINATES

When programming graphics on the PC-6300,
it is usually necessary to locate the point on the
screen at which a graphic drawing is to begin. You
will recall from Chapter 2 that the LOCATE state
ment is used to define a point on the screen where
a text character is to be written. This statement is

not valid in locating a position for a graphics write,
but we still use a two-part coordinate system similar
to the one used with the LOCATE.

The AT&T graphics screen consists of a coor
dinate system that first specifies the horizontal posi
tion and then the vertical position. This is the
reverse of the LOCATE statement, which first

specifies vertical position (row), and then the
horizontal position (column). Figure 3-1 shows the

Table 3-1. Screen Modes.

SCREEN 0 Text Mode

SCREEN 1 Medium-Resolution Graphics Mode
(Four Color)

SCREEN 2 High-Resolution Graphics Mode
(Monochrome)

SCREEN100 Proprietary Graphics Mode
(Monochrome)

Fig. 3-1. The PC-6300 medium-resolution graphics screen
consists of 320 points horizontally (0-319) and 200 points
vertically (0-199).

medium-resolution graphics screen. You will recall
that this consists of 320 horizontal points and 200
vertical points. The coordinate numbering system
begins with 0 instead of 1, so the horizontal points
are numbered from 0 to 319. The same applies in
the vertical axis, where the points are numbered
from 0 to 199 for a total of 200 points. It is stan
dard practice in graphics programming to think of
the horizontal points as falling along the X-axis,
with the vertical points making up the Y-axis. By
specifjdng coordinates in terms of X and Y, we can
easily arrive at an exact position on the screen
where a graphics write is to begin.

The upper left-hand comer of the screen is
specified by X-, Y-coordinates of 0,0. This cor
responds to the text mode coordinates (used with
the LOCATE statement) of 1,1. You must

remember, however, that text coordinates are given
in terms of row and colunm, whereas graphics coor
dinates are the equivalent of colunm and row. If it's
easier for you, think of graphics screen as being
composed of 320 columns by 200 rows. The pixel
position immediately to the right of the upper left-
hand comer is specified as 1,0. This indicates
horizontal pixel 1 and vertical pixel 0. The 0 in the
coordinates indicates the vertical position that is at
the very top of the screen, while the 1 represents

39

the horizontal or column position position that is
one position to the right of 0. (Remember, 0 is the
first number in any row or column.) Thus, the up
per right-hand corner of the graphics screen in
medium-resolution mode would be specified in X-
Y-coordinates as 319,0.

Since the screen consists of 320 horizontal
points by 200 vertical points, the exact center of
the screen would be specified by the X, Y
coordinates 160,100. The number 160 is exactly
half of 320 (the number of horizontal points), and
100 is half the total vertical points. By specifying
these coordinates, the starting position for a
^aphics write is at the exact center of the screen.
The remainder of the discussion will use statements
and the POINT function in a medium-resolution
screen format, SCREEN 1. These functions will
work identically in either low- or high-resolution
graphics mode, provided you take into account the
increased or decreased horizontal point count. For
instance, while 160,100 specifies the center of the
medium-resolution screen, the coordinates 320,100
specify the exact center of the high-resolution
screen; likewise, the coordinates 80,100 specify the
exact center of the low-resolution screen. In each
case, the total points horizontally and vertically on
the screen are each divided by 2. The vertical
resolution remains the same (200) in any of the
three graphics mode.

CIRCLE

The CIRCLE statement in GWBASIC allows

us to draw circles on the screen using a single pro
gram line. For now, the format for using this state
ment may be thought of as:

CIRCLE(X,Y),R

Here, X and Y are horizontal and vertical coor

dinates, respectively of the center of the circle, and
R is the radius in screen points. The following pro
gram will effectively demonstrate the use of the
CIRCLE statement.

10 CLS

20 SCREEN 1

30 CIRCLE(160,100),60

This program will draw a circle with a radius of 60
pixels (diameter 120 pixels) at the center of the
medium-resolution graphics screen. Here's how it
works. Line 10 uses the CLS statement to clear the

screen. The SCREEN statement in line 20 puts the
screen into medium-resolution graphics mode.
Following the CIRCLE statement in parentheses
are the coordinates which, in this case, specify the
center of the circle at the center of the screen. This

is where the graphic write will begin. Now, no point
is actually written at the center; this just specifies
a starting point for the plotting. The radius designa
tion of 60 assures a perfect circle on the screen 60

points in all directions from the X, Y coordinates.
When you RUN the program, you will immediate
ly see a large circle at the center of the screen. Now,
change line 30 to:

30 CIRCLE(100,100),60

When you run the program again the same cir
cle appears, but shifted to the left because the X-,
Y coordinate values were changed in line 30. The
horizontal position is now at Xcoordinate 100,
which is 60 points less than, or to the left of, the
previous horizontal coordinate. To move the circle
to the right of center, you can change the coor
dinates in line 30 to:

30 CIRCLE(220,100),60

This will shift the circle 60 points to the right of
screen center. To move the circle up and down, it
is necessary to alter the Y coordinate specification.
Change line 30 to:

30 CIRCLE(160,80),60

The Y coordinate of 80 is 20 points higher (i.e., less
than) the previous Y coordinate. The circle will now
appear in the upper half of the medium-resolution
screen. The center of the circle will be at the

horizontal center of the screen,'but somewhere

40

above the vertical center.

To see what the radius value does, change line
30 to:

30 CIRCLE(160,100),30

The X-Y coordinates again specify a point at the
exact center of the medium-resolution screen.

However, the circle radius has been halved, so the
circle will be half the size of the previous one.

At this point, try fooling around with the values
contained in line 30. You will find that you can
change the size of the circle by changing the value
of the radius. You can move the circle left and right

by altering the value of the X coordinate, and up
and down by altering the Y coordinate. You may
even specify a value that causes part of the circle
to exceed the screen width. This can be done by
changing line 30 to:

30 CIRCLE(280,100),60

This places the circle at the extreme right of the
screen. The computer will attempt to display a
imiform circle, but there is not enough screen space

to do it. If you add 60 points to the horizontal coor
dinate of 280, you arrive at a total of 340 points
horizontal, but the screen can only display points
to 319, maximum. No error message occurs here;
that portion of the circle beyond the coordinates of
the screen is simply not shown.

The CIRCLE statement is a good one to begin
with when discussing graphics programming,
because it demonstrates how screen coordinates

and graphics statements are used. Those readers
who have had experience with other types of com
puters that do not offer the CIRCLE statement will
immediately realize its value. Drawing a circle by
plotting points one at a time is an extremely dif
ficult program operation. You can do it, but it's
definitely not fun.

LINE

The LINE statement does just what its name

implies. It draws a line on the screen. (It can also

do much more, but this will be saved for later.) The

LINE statement can be used in many ways, but for
now, let's assume that the format is:

LINE(X,Y) - (X2,Y2)

Hey! What's that X2,Y2? Don't panic! The explana
tion is quite simple. Obviously, a line must have a
starting point and an ending point. Therefore, the

LINE statement uses two sets of X-Y coordinates,
the first indicating the starting point and the second
set indicating the ending point. The following pro
gram demonstrates the use of the LINE statement

in GWBASIC:

10

20

30

CLS

SCREEN 1

LINE(10,100) (160,100)

Lines 10 and 20 do the same thing they did in the
previous CIRCLE demonstration program. In line
30, the LINE statement simply tells the computer
to draw a line from screen coordinate 10,100 to
screen coordinate 160,100. Since the Y coordinate

values (Y = 100) are the same in both sets, this will
be a horizontal line, drawn across the center of the
screen. The line will be 150 pixels in length
(160- 10 = 150).

Now, let's draw a vertical line on the screen by
changing line 30 to:

30 LINE(160,50) - (160,150)

Here, the first coordinate designation (X=160)
stays the same in both sets, so the horizontal posi
tion is fixed. Only the Y or vertical coordinate
values change from set to set. When this program

is run, a line will be drawn at the horizontal center
of the screen from vertical coordinate 50 to vertical

coordinate 150. We can also draw diagonal lines
simply by changing both sets of coordinates. To
demonstrate this, change line 30 to:

30 LINE(50,80) - (90,150)

This will draw a diagonal line slanting downward

41

from left to right. You can now experiment a bit
with the LINE statement to see what happens when
coordinate values are switched around. You must

be certain that X coordinate values range from 0
to 319 and Y coordinate values range from 0 to 199.
If a coordinate is out of this range, an error message
will result.

This method of forming lines by specifying
coordinates is known as the absolute method, in that

the LINE statement examples thus far have all
specified exact starting and ending points of the
lines to be drawn. However, there's also another
way to draw lines, which the following program
demonstrates.

10 CLS

20 SCREEN 1

30 LINE(50,10) - (50,100)

40 LINE - (150,100)

When this program is run, you will see a crude
letter "L" drawn on the screen. You have no doubt

noticed that line 40 contains another LINE state

ment, this one with only one set of coordinates,
preceded by a h5q)hen (-). Where the LINE state
ment in line 30 uses the absolute method of speci
fying coordinates discussed previously, the LINE
statement in line 40 uses the relative coordinate

method. Here's what happens. The computer first
draws the line programmed in line 30. When this
first line has been drawn, the graphic coordinate
position stops at 50,100. Line 40 tells the computer
to draw another line from this present graphic posi
tion 50,100 to coordinate (150,100). To visualize

this, one must imagine an invisible ''graphic cur
sor" much like the text cursor discussed in the

previous chapter. When line 30 is executed, the
graphics cursor is first positioned at coordinate
50,10 and then travels to coordinate 50,100, where

the line ends. When line 40 is executed, the
graphics cursor position of 50,100 is already

locked into the computer; so it assumes the line
start point to be 50,100. Using the relative method
of drawing a line, all that is necessary is to specify
the line end point. You can run this program
another way by removing line 30 altogether. When

this revised program is run, a line will be seen star
ting at the center of the screen (coordinates
160,100) and ending at the specified coordinates of
150,100. The computer always positions the
graphic cursor at center when graphics mode is first
entered.

We humans are often accustomed to thinking
of everything as beginning at the left and ending

at the right, but the computer is not at all handi
capped by this false assumption. In this case, a line
was drawn from right to left rather than from the
standard left to right. Since we were using the
relative form of coordinate specification, and the
graphics cursor was automatically set to coordinate
160,100 when the graphics screen was first initaliz-
ed, the computer drew a line starting at coordinate
160,100 and moving left to coordinate 150,100. The
same line could be drawn on the screen from left

to right by specifying:

Line(150,100) - (160,100)

This line would begin at horizontal coordinate 150
and end at coordinate 160. Either way, the line
looks the same even though the computer looks at
it in a completely different manner. For the pur
poses of our discussion, the lines

LINE(150,100) - (160,100)

LINE(160,100) - (150,100)

produce identical results on the screen. Either way,
a line 10 pixels long is displayed between coordinates
150,100 and 160,100.

COLOR

The COLOR statement in GWBASIC is aptly
named, because it determines the color or colors

in which each point on the screen is to be plotted.
As was noted previously, four colors may be
displayed simultaneously on the medium-resolution
screen, and only black-and-white on the high-
resolution screens.

The COLOR statement is of the format:

COLOR BACKGROUND,PALETTE

42

Table 3-2. Color Background and Palette Designators.

0 BLACK 8 GRAY

1 BLUE 9 LIGHT BLUE

2 GREEN 10 LIGHT GREEN

3 CYAN 11 LIGHT CYAN

4 RED 12 LIGHT RED

5 MAGENTA 13 LIGHT MAGENTA

6 BROWN 14 YELLOW

7 WHITE 15 HIGH INTENSITY WHITE

COLOR PALETTE 0 PALETTE 1

1 GREEN CYAN
2 RED MAGENTA

3 BROWN WHITE

where the BACKGROUND color is a numeric ex

pression in the range of 0 to 15, and the PALETTE
specification is either 0 or 1. These represent two
sets of palette colors, both of which are fixed.
However, you have complete control over the
backgroxmd colors. Table 3-2 shows the numeric
specifications for background color, as well as the
palette colors available and their color designators.
When you follow the COLOR statement with one
of these numbers, this sets the backgroimd color
for your display. When medium-resolution graphics
mode (SCREEN 1) is first entered, the background
color is automatically set to 0, but you can change
this using the COLOR statement. At this point,
you're probably totally confused about the use of
palette. Don't worry. We will be returning to the
LINE and CIRCLE statements shortly to show just
how this unusual combination works. It's quite ef
fective and very easy to use once you get the hang
of it—and this doesn't take very long.

First, let's fool aroimd with the COLOR state

ment by itself. Rim the following program:

10 CLS

20 SCREEN 1

30 COLOR 1,0

When this program is run the screen will im

mediately change to a blue background, replacing
the default black that would normally be seen,
because the background color code specified in the
COLOR statement is 1. (See the previous

background color chart.) For now, don't worry
about the second number used with the COLOR

statement. This is the PALETTE—which has no

effect on background—but is used by other graphics
statements to plot points in a specific color.

You can change this program by inserting any
other number from 0 to 15 as the first number in

the COLOR statement in line 30. This will allow

you to see the background colors available on the
PC-6300. The following program, however, does
this more simply.

10 CLS

20 SCREEN 1

30 FOR = 0TO15

40 COLOR X,0
50 FOR Y=1 TO 1000

60 NEXTY

70 NEXTX

This program helps demonstrate that most of the
commands, statements, and functions used in text

mode programming are used just as heavily in
graphics mode. You can see the familiar FOR-
NEXT loops, discussed in Chapter 2, used here in
a graphics program that displays all of the possi
ble screen backgroimd colors. Line 10 clears the
screen, and line 20 puts us in medium-resolution
graphics mode. The FOR-NEXT loop that begins
in line 30 counts from 0 to 15, the values that repre
sent background colors in the COLOR statement.
The value of X is used with the COLOR statement

in line 40.

Within this loop is yet another FOR-NEXT
loop. This one, which assigns the variable Y, is
known as a ''nested" loop, since it resides wholly
within the outer loop. Each time line 50 is en
countered, it counts from 1 to 1000, and is then ter

minated by the NEXT statement in line 60. The
NEXT statement in line 70 causes the (outer) X

loop to recycle.
You may be surprised to see that the value of

Y is not used anywhere in the program. The loop
assigns to Y a value of from 1 to 1000, but because
there are no other statements in this inner loop,
you might assume that it does nothing, this is in-

43

correct. The loop does something to computer ex
ecution: it slows it down, because it takes the com
puter a few seconds to coimt from 1 to 1000. This
is called a time delay loop. One might now ask why
you would want slower execution, since a main con
cern today is with execution speed.

Time delay loops are extremely useful in
graphics programs because they give us humans a
chance to see what's on the screen before that

screen changes to something else. Here's what hap
pens. The COLOR statement in line 40 is assigned
a value which changes the backgroimd color of the
screen. There is then a slight delay while the loop
in lines 50 and 60 times out. When the loop times
out, the outer loop recycles and the COLOR state
ment is assigned another background value. To
demonstrate the value of the time delay loop,
remove lines 50 and 60 from this program and RUN
it again. Hey! The screen simply went from black
to white and didn't show all the colors in between.

Wrong! It showed all of the colors as before, but
it showed them so rapidly that yoiur eye couldn't
follow the sequence. The time delay loop allowed
each background color to be fully established before
being changed to another.

Now back to the original program. When it is
run, every color from black to high-intensity white
is displayed as the background.If you're tired of
looking at a black background, the COLOR state
ment can be used to change it to any of the fifteen
other colors.

Now that you understand this, let's discuss the
palette colors. These are the colors that can be writ
ten over the background you establish. If you opt
for palette 0 (as in COLOR 1,0, for instance) then
any other graphics statements such as LINE or
CIRCLE will draw objects in any one of the three
colors assigned to palette 0. Both the CIRCLE and
the LINE statement may be used with an additional
numeric designator to assign a color from the
preselected palette to that line or circle. When you
don't supply this designator the computer assumes
a default palette color of 3, but we can change all
this by using the COLOR statement and palette
assignment numbers with our graphics commands.

In palette 0, the number 1 will give us a green

screen write, the number 2 will bring about a red
write, and the number 3, brown. In palette 1, the
same numbers give us cyan, magenta, and white,
respectively. Now, let's go back to the CIRCLE
statement and see what can be done when this is

combined with the COLOR statement. You will

remember that the format for the CIRCLE state

ment is:

CIRCLE(X,Y),R

However, to use color with the CIRCLE statement,
the format is:

CIRCLE(X,Y),R,C

In this case, C represents a palette color number
from 1 to 3. We cannot assign a palette here; this
must be done using the COLOR statement. What
we do specify is which color within the preassign-
ed palette the circle is to be drawn. The following
program will demonstrate this:

10 CLS

20 SCREEN 1

30 COLOR 0,0
40 CIRCLE(160,100),60,2

Here, line 30 assigns a background color of black,
represented by the first zero, and a palette of 0,
represented by the second zero. WTien this program
is run, a red circle is drawn against a black
background because the number 2 has been used
as the color designator in the CIRCLE statement
in line 40. Referring to the chart, you will find that
the number 2 represents the color red in palette 0.
If you change the color designator in line 40 to 1,
the circle will be drawn in green; changing the col
or designator to 3 produces a brown circle. (This
will appear on most monitors more as a
greenish-yellow.)

Now, change line 30 to:

30 COLOR 0,1

You will now be able to display your circle in any

44

of the three colors available in palette 1. This means
that a 1 will produce a circle in cyan, which appears
as a light blue against a black backgroimd. Colors
2 and 3 will bring about magenta and white, respec
tively. Magenta appears as a medium purple
against a black backgroimd. By changing the screen
background color, the foreground colors will look

a bit different because they are highlighted in a dif
ferent manner.

The program in Fig. 3-2 will show how a cir
cle looks in each of the six available palette colors

(two palettes with three colors each) on each of the
sixteen different backgroimd colors. This program
may be a little complex for the beginning computer
hobbyist, so don't worry too much about its con
tents. Its purpose is simply demonstrate colors. As
the program runs, the BACKGROUND,

10 CLS

20 SCREEN 1

30 FOR X=0 TO 15

40 COLOR X,0
50 LOCATE 1,1
60 PRINT"BACKGROUND =";X

70 LOCATE 2,1
SO PR I NT "PALETTE =--= 0"

90 FOR Y=1 TO 3

100 LOCATE 3,1
110 PRINT"COLOR ="5Y

120 CIRCLE (160, 100) , 60Y
130 FOR Z=1 TO 1000

140 NEXT Z

150 NEXT Y

160 COLOR X,1

170 LOCATE 2,1
ISO PR I NT "PALETTE 1"

190 FOR YY==1 TO 3

200 LOCATE 3,1
210 PR I NT "COLOR YY

220 CIRCLE(160,100),60,YY
230 FOR ZZ:=^1 TO 1000

240 NEXT ZZ

250 NEXT YY

260 NEXT X

Fig. 3-2. Program to display PC-6300 background colors.

PALETTE, and COLOR numbers are displayed on
the screen, you will note that in some instances the
circle seems to disappear altogether, due to the fact
that it is written in color which is a lighter shade
of the background color. In other words, the circle
is there but it cannot be seen, because the
background color overpowers it.

This points to another designation that can be
used with the CIRCLE and LINE statements and

with most other graphics statements as well. While
there are three palette colors numbered 1 through
3 in each palette, you can also specify a color
designation of 0 with either CIRCLE or LINE. This
means that the object will be written on the screen
in the same color as the screen background, and
therefore will be invisible. This is demonstrated by
the following program:

10 CLS

20 SCREEN 1

30 COLOR 0,1
40 CIRCLE(160,100),60,2
50 FORY=1T0 1000

60 NEXTY

70 CIRCLE(160,100),60,0

When this program is run, you will see a circle at
the center of the screen drawn in magenta. After
a few seconds, the circle will suddenly disappear,
because the same circle is drawn again with a col
or 0 specification, which is the screen background
color. As far as the computer is concerned the cir
cle is still there, but we can't see it because it has
blended with the background.

The 0 designator is handy for erasing previous
ly drawn images from the screen. We could use a
CLS statement to clear the screen with a lot less

input time—but suppose we wanted to draw two
circles on the screen in different locations, and then
erase one of them. Using CLS, the entire screen
would be cleared, but using a color designator of
0 for the circle to be erased, along with the same
screen coordinates and radius value used when it

was originally drawn, we could easily erase one cir
cle while preserving the other. The following pro
gram demonstrates just this:

45

10 CLS

20 SCREEN 1

30 COLOR 0,1

40 CIRCLE(160,100),60,2
50 CIRCLE(20,100),20,3

60 FOR X=1 TO 1000

70 NEXTX

80 CIRCLE(160,100),60,0

This is the same program as before, except an ad
ditional CIRCLE statement has been added to draw

a smaller circle at the left side of the screen. The

CIRCLE statement in line 80 effectively erases the
larger circle while preserving everything else on the
screen.

More than anything else in graphics program
ming, the combinations of colors are the subject of
a great deal of experimentation. You should play
with the various combinations for several hours in

order to obtain a full grasp of all that is available
to you. The discussion to this point should have
given you the ability to know hcruo to experiment,
but this cannot replace the actual experiment itself.
You must put in these hours of time.

From a color standpoint the LINE statement
works just like the CIRCLE statement. The format
is:

LINE (X,Y) - (X2,Y2),C

Here, C is the palette color (1-3) in which the line
is to be written. You can also use 0 for the color

number, and the line will be written invisibly in the
background.

At this point, we can go a bit further with the
LINE statement and use it to draw boxes. To do

this, the format is simply:

LINE (X,Y) - (X2,Y2),C,B

or:

LINE (X,Y) - (X2,Y2),C,BF

Again, the C represents the color number.
However, the new designators B and BE stand for
box, or box fille, respectively. The B forms a box

ed with the screen background color. Assuming
that you have a black background and the lines are
being drawn in white, the box will have a black fill.
However, if you use the BF designator, the box is
filled with the same color used to draw the outline

of the box. When using the LINE statement to draw
boxes, the first set of coordinates as represents the
upper left-hand comer of the box while the second
set of coordinates represents the lower right-hand
corner of the box. The following program
demonstrates this:

10 CLS

20 SCREEN 1

30 COLOR 0,1

40 LINE(120,50) - (200,150),3,B

Here, the background color is designated as 0
(black) by the COLOR statement in line 30, and the
palette is 1. (This is the default color mode when

medium-resolution graphics is first entered, so line
30 is really unnecessary. It is included here to

demonstrate that a COLOR statement is always in
effect, whether specified or not.) The LINE state
ment in line 40 uses the B designator, so you know
a box is going to be drawn, the upper left-hand cor
ner of the box will be at screen coordinates 120,50.

The lower right-hand comer of the box will be at
screen coordinates 200,150. The 3 designates the
color white while operating in palette 1. When the
program is run you will see a rectangle drawn at
the center of the screen, and, if you could lay a grid
over the screen, you would find that the upper left-
hand corner of the box is indeed at coordinates

120,50 and the lower-right hand comer is at coor
dinates 200, 150.

As an experiment, edit line 40 to remove the
B designator and the comma that precedes it. When
the revised program is run, a diagonal line will be
drawn from coordinate 120,50 to coordinate

200,150. The B designator, however, tells the com

puter that this is not to be a line. Certainly, we can

make boxes using the LINE statement alone.
Without the B designator, the same box could be
drawn on the screen by altering the program as
follows:

46

40 LINE(120,50) - (200,50),3
50 LINE(120,50) - (120,150),3
60 LINE(120,150) - (200,150),3

70 LINE(200,50) - (200,150),3

You can see that it took four program lines instead
of one to draw the box when not using the B
designator. For this reason, any time you wish to
draw a square or rectangle of any dimensions, you
should always use the B designator for the most ef
ficient program in the shortest amoimt of program
ming time.

Let's go back to our original program now and
change line 40 to:

40 LINE(120,50) - (200,150),3,BF

The BF designator is used in this case to indicate
that the box is to be filled with the current palette
color (white, in this case). When this program is
run, you will see a solid rectangle at the center of
your screen, of the same dimensions as the previous
rectangle. Alter the color numeral in line 40 any
way you want, so long as it includes a number from
1 to 3, and you will see how the box fill is affected.

PAINT

The PAINT statement is used to fill in an

enclosed area on the screen. Put simply,the PAINT
statement fills in an enclosed object such as a cir
cle, square, etc., with one of the three colors
available in the current palette. Recall here that
when LINE is used with the BF designator, a box

is formed and filled with the current color

designated by the color numeral included in LINE.
In every case, the box is filled with the same color

used to draw the box. The PAINT statement,
however, allows us to choose any of the palette col
ors to be used as a fill, keying on the color of the
lines which make up the object it is filling. For ex
ample, if a box we wish to PAINT is drawn with
white lines, we locate a point within the box, and
then tell the computer the color in which to start
painting, as well as the color representing the boun
daries of the object it is to fill. The PAINT state

ment wildly fills in the area that is completely sur-
roimded by the object lines. It stops painting only
when it reaches a line of the color designated to be
the edge of the object.

Confused? The PAINT statement is easier to

demonstrate within a program than it is to explain
in words. The following program will draw a cir
cle on the screen, and then fill it with another col

or using the PAINT statement.

10 CLS

20 SCREEN 1

30 COLOR 0,1

40 CIRCLE(160,100),60,3
50 PAINT(160,100),2,3

After the screen is initialized, the background col
or is set to black (0) and the palette to 1 by the COL
OR statement in line 30. Line 40 draws a circle with

a radius of 60 pixels at the center of the screen. The
circumference is drawn in palette 3, which is white.
Line 50 uses the PAINT statement; coordinates are

specified here, but they are really unimportant as
long as they specify any point within the circle.
Since the circle spans from coordinates 100,40 to
200,160—the coordinates plus the radius value-
any coordinate specifications will work if they lie
within these sets of coordinates but do not include

them. Immedately following the coordinates is the
color numeral which specifies the color to be used
for fill. (In palette 1, the number 2 specifies magen
ta.) The next numeral is the same as the numeral

used to draw the circumference of the circle in the

previous line. This tells the computer to paint un
til it hits a white pixel, at which point it stops in
that direction.

If you watch closely when the program is first
run, you will see that the circle is drawn first and
then filled in. You can still see that the cir

cumference of the circle is white, while the interior

is filled with magenta. Now, change line 40 to read:

40 CIRCLE(160,100),60,1

Here we are specifying that the circumference be
written in palette color 1, which is cyan. Rim the
program again.

47

Hey! What happened? I tricked you on this one
to demonstrate what happens if you don't give the
PAINT statement a correct boundary color at
which to stop. By changing line 40 to draw the cir
cle in cyan, it was also necessary to change the
boimdary numeral in the PAINT statement to
reflect this. If you followed my instructions, you
made no changes to the PAINT statement. The
computer started painting—and kept on painting
because it encountered no white dots (color number

3) on the screen. It stopped when the entire screen
was filled with magenta. Let's correct this situa
tion by changing line 50 to:

50 PAINT(160,100),2,1

Here, the paint color is still magenta (color number
2), but the boundary color numerical has been

changed to the one used to draw the circumference.
When you nm the program now, the cyan circle is
drawn on the screen and then filled in with

magenta.

You can change the PAINT color number in
line 50 to either 1 or 3 to bring about a different
color of fill. The critical factors are the boimdary

number, which miist reflect the object line color,
and the coordinates. Change line 50 to:

boundary number designator in the PAINT state
ment agrees with the color of the object being
painted.

Remember, the PAINT statement can be
used to fill any enclosed object, including boxes or
rectangles, as is demonstrated by the following
program:

10 CLS

20 SCREEN 1

30 COLOR 0,1

40 LINE(100,50) - (220,150),3,B
50 PAINT(160,100),2,3

When this program is run, a box will appear at the
center of the screen, drawn in white and then
filled by magenta. Note again that coordinates us
ed in the PAINT statement are inside the box, and

that the boundary designation is the same as the
line color used to draw it.

A PAINT statement can be used to fill only
enclosed objects. Painting an enclosed object is not
unlike blowing air into a balloon: if the balloon is
not completely enclosed, the air is going to leak out.
The following program demonstrates what happens
when you try to use a PAINT statement with an
object what is not fully enclosed.

50 PAINT(130,60),3,1

Now run the program. It still works fine, because
the point on the screen represented by coordinates
130,60 still lies within the circle's boundaries. Now,
change line 50 to:

50 PAINT(110,60),3,1,

When this program is run the entire screen is fill
ed, except for the area encompassed by the circle.
The point represented by coordinates 110,60 lies
outside of the circle. Since the circle is composed
of points of color numeral 1, which the PAINT
statement cannot paint over, the computer keeps
painting the screen until it is filled from border to
border by the erroneous PAINT statement. You
must specify a coordinate value that lies within the
object to be painted, and also make certain the

10 CLS

20 SCREEN 1

30 COLOR 0,1

40 LINE(50,50) - (150,50),3

50 LINE(50,150) - (150,150),3
60 LINE(150,50) - (150,150),3

70 LINE(50,50) - (50,148),3

80 PAINT(140,100),2,3

This program will draw an almost-enclosed box on
the screen. Line 70 specifies an ending point that
does not quite reach the bottom horizontal line of
the box; a two-pixel gap is left. Now, RUN the pro
gram. The box is indeed drawn and the filled, but
the paint "leaks out" through the hole in the bot
tom left comer, and the remainder of the screen
is filled in as well.

The following program uses two LINE

48

statements with B designators to draw two rect

angles on the screen, one inside the other. Both

are drawn in a palette color of white, represented
by the color numeral 3. Two PAINT statements are
used to fill in these boxes with different colors, and

the effect is quite pleasing.

10 CLS

20 SCREEN 1

30 COLOR 0,1

40 LINE(110,60) - (210,140),3,B

50 LINE(130,90) - (190,110),3,B
60 PAINT(111,70),2,3

70 PAINT(160,100),1,3

The first PAINT statement (line 60) specifies a
point within the larger box but outside the smaller
one, which fills this area with magenta, (color
numeral 2). The second PAINT statement names

a point within the inner box and paints it with cyan.
The result is a cyan box within a magenta box, but
both boxes have white borders. At this point, you
have learned enough to draw three boxes on the
screen. Draw the second within the first, and the

third within the second. By using three separate
PAINT statements, you can fill each box with a dif
ferent color. Try writing and running this program
now.

PSET/PRESET

The PSET statement is used to write a point
or pixel at a certain screen location specified by
X-, Y-coordinates. PRESET is almost identical to
PSET but is not often used in standard graphics
programming; the differences will be discussed
later. PSET is used in this format:

PSET(X,Y),C

Here, X and Y form the horizontal and vertical coor

dinates, respectively; C is a color numeral from 1
to 3, used in the same way as in the CIRCLE and
LINE statements. The following program
demonstrates the use of PSET:

10 CLS

20 SCREEN 1

30 COLOR 0,1

40 PSET(160,100),3

This program will draw a single point of light at
the exact center of the medium-resolution graphics
screen, displayed in white because of the color
numeral 3. (In palette 0, it would have been brown.)
Using PSET, we can put a single point of light at
this or any other valid coordinate set on the
graphics screen.

Remember that the LINE statement simply
connects individual points of light to form vertical,
horizontal, or diagonal lines. The CIRCLE state
ment uses the same individual points of light to
form circles. Using PSET, however, we can
theoretically draw any type of object, regardless of
its complexity, by simply knowing where to posi
tion the dots. Of course, there's no simple way to
know where to position dots when drawing a com
plex object, but PSET does give us some very good
possibilities for drawing imusual arcs, sine waves,
etc. If a circle is drawn with points of light using
a mathematical formula, then, other objects may
be drawn by substituting different formulas. If
you're into geometry and have access to the for
mulas used to draw parabolas, hyperbolas,
tetrehedrons, etc., you can program these images
on the computer, using the screen as you would a
piece of graph paper.

The program that follows shows how the PSET
statement may be used within a FOR-NEXT loop
to draw a horizontal line from left to right on the
screen.

10

20

30

40

50

60

CLS

SCREEN 1

COLOR 0,1
FOR X = 0 TO 319

PSET(X,100),2
NEXTX

When this program is run, a line will be drawn from
coordinate 0,100 to coordinate 319,100, composed
of 320 dots placed side by side. This is the
equivalent of:

49

LINE(0,100) - (319,100),2

The following program will draw a diagonal line
from coordinate 0,0 to 199,199:

10 CLS

20 SCREEN 1

30 COLOR 0,1

40 FORX=0TO199

50 PSET(X,X),3
60 NEXTX

In both programs, the value of X assigned by the
cycling of the loop was used for one or both of the
X-Y coordinates. The usage makes PSET terribly
handy. You will almost never see large numbers of
PSET statements used outside of a loop, as this
would be very inefficient programming. However
by placing PSET within the loop and changing its
coordinates based upon the loop value, the
equivalent of hundreds of thousands of PSET
statements are executed by a single program line.

Another definite asset of PSET is that it can

be used to draw multicolored lines. The following
program shows such an example:

10 CLS

20 SCREEN 1

30 COLOR 0,1

40 FORX = 0TO319

50 C = C + 1

60 IFC = 4THENC=1

70 PSET(X,100),C

80 NEXTX

This program will display a horizontal line on the

screen in cyan, magenta, and white. (The white
will not be too obvious, since it is somewhat af
fected by the two colors that border it, but the col
or is definitely there.) This program uses a count

ing routine of the type discussed in Chapter 2. Line
50 increments variable C (for Color) by 1 each time
the loop cycles; line 70 then uses it to set the point
color. Since the palette colors run from 1 to 3, the
IF-THEN statement in line 60 resets C back to a

value of 1 when it has counted past 3. The sequence

then begins again. Using PSET in a FOR-NEXT
loop as shown here can result in some very color
ful displays.

As was the case with CIRCLE and LINE,
PSET may also be used with a color numeral of 0,
which simply plots a point in the background col
or, making it invisible. If no color numeral is used
with PSET, the default is color numeral 3. Now,
the difference between PRESET and PSET is that,
when used without a color numeral, PRESET's
default value is 0—the background color. Used with
a color numeral, it is exactly like PSET. PRESET
can be used to erase a dot, after it has been writ

ten using PSET, by simply writing over it in the
screen background color. This can be used to ef
fect some simple animation, as represented by the
following program:

10 CLS

20 SCREEN 1

30 COLOR 0,1
40 FORX=0TO319

50 PSET(X,100),3
60 PRESET (X,100)
70 NEXTX

Here's what happens when this program is nm.
Line 50 writes a point of light on the screen at the
specified coordinate. The PRESET statement in

line 60 immediately erases that point of light. The
loop cycles, the PSET statement writes a dot at the
next location, and line 60 just as quickly erases it.
This process continues until program execution is
terminated. The effect is that of a fast-moving dot
traveling from left to right across the center of the
medium-resolution graphics screen. (The same ef
fect could be had by changing line 60 to 60
PSET(X,100),0.)

DRAW

The DRAW statement is used to quickly draw
objects on the screen. The object must consist of
straight lines, although they can be drawn at 45
degree diagonals. The DRAW statement format is
much the same as PRINT, in that quotation marks
normally follow DRAW. Within quotations are the

50

commands that tell the computer which direction
the write is to be made, and for what length. The

movement commands used with the DRAW state

ment are shown in Fig. 3-3. There are eight of
them, all easy to use. The DRAW statement uses

the relative form of specifying screen coordinates,
although an absolute specification is usually given
to set up the starting point. Each command is
followed by a numeric expression given in screen
points relative to the previous point. The follow
ing program shows how the DRAW statement may
be used to create a box on the screen.

10 CLS

20 SCREEN 1

30 COLOR 0,1
40 DRAW "U30R30D30L30"

This program will draw a box slightly to the right
of center on the screen. You will notice that no

screen coordinates were specified. The reason the
box is drawn right-of-center is that the graphics cur
sor is automatically positioned at coordinates
160,100 when medium-resolution graphics mode is
first entered. The DRAW statement in line 40 tells

the computer to move up 30 pixels (U30), then
move right 30 pixels (R30), then down 30 pixels
(D30), and finally, left 30 pixels (L30).

To specify a particular starting point on the
screen, we use the BM designator. This tells the
computer to move the cursor to a specific coor
dinate pair, but not to plot points. This command
is separated from the other designators by a

D n Move down

E n Move diagonally up and right
F n Move diagonally down and right
G n Move diagonally down and left
H n Move diagonally up and left
L n Move left

R n Move right
U n Move up

Fig. 3-3. The commands used with the DRAW statement in
GWBASIC.

semicolon. Change line 40 to:

40 DRAW"BM100,60;U30R30D30L30"

When this program is run, you will see that the box
has moved to the upper left of the screen. The lower
left-hand comer of the box is at absolute coor

dinates 100,60, which was where the screen write
began.

The box is drawn in white (the default color),
but we can also insert a color designator, which is
the letter C plus a number in the DRAW statement.
Change line 40 to:

40 DRAW"BM100,60;C2U30R30D30L30"

When this program is run, the box will now be
displayed in magenta.

Drawing objects in the relative mode using the
DRAW statement allows us to change the size of
our box by inserting a single additional designator.
The S designator stands for scale, with a default
value of 4. Since we did not specify an S designator,
the computer assumed it to be 4. However, change
line 40 to read:

40 DRAW"BM100,60;S8C8C2U30R30D3

0L30"

When the program is run, you'll find that the box
is twice its previous size, simply because we've
doubled the scale factor. Now, each line in the

square is 60 pixels on a side.
To go further, let's move the box more toward

the center of the screen. Do this by altering the BM
designator in line 40 to BM160,100. The bottom
left comer of the box will now be at the center of

the screen. Now we can expand upon our DRAW
statement line by adding another designator. This
one is represented by the letter A and stands for
angle. The number that follows may range from 0
to 3. Zero represents 0 degrees,while 1 is 90
degrees, 2 is 180 degrees, and 3 is 270 degrees.
Change line 4 to:

40 DRAW"BM160,100;A2S8C2U30R30D
30L30"

51

When this program is nm, it looks like the
square has changed positions, and indeed it has.
Now the upper right-hand corner of the box
represents the point at which the box was original
ly written; the box has simply been rotated 180
degrees—counterclockwise—about the starting
point.

The DRAW statement is so versatile that an

entire book could be written about its uses alone.

To go further would be to simply repeat the infor
mation about it in the GWBASIC manual. The ex

planation of the DRAW statement to this point
should be adequate to help you over the humps in
getting started. From this point on, it's simply a
matter of playing with it until you feel comfortable
with its use. A program included in a later chapter
uses the DRAW statement and especially the angle
designator (A) to arrive a very interesting computer
game.

ANIMATION WITH PUT AND GET

Computer animation is really quite simple,
although when many objects are animated on the
same screen, the program to do this can look quite
complex. As is the case with any complex program,
however, on closer examination you will find that
it is a combination of simple routines. Animation
involves writing an object to one location on the
screen, erasing it, and then writing it again at a dif
ferent location. This gives the impression of mo
tion. The following program provides a simple ex
ample of animation, making it appear as if the let
ter R is moving across the screen from left to right.
This is not a true graphics program, but it does
demonstrate the principle of animation using
statements that are already familiar.

10 CLS

20 SCREEN 1

30 FORX=lTO40

40 LOCATE 10,X
50 PRINTER"

60 CLS

70 NEXTX

Here, a LOCATE statement is contained within a

FOR-NEXT loop. (We are back to text again when
using the LOCATE statement. Therefore, the first
argument or number represents the vertical or row
position, whereas the variable X represents the
horizontal or column position.) On the first cycle
of the loop, the letter R is printed on the screen by
the PRINT statement at position 10,1. As soon as
it is printed, the R is erased by the CLS statement
in line 60. When the loop cycles again, the R is
printed at position 10,2, erased, and then printed
at 10,3, and so on. By quickly writing this character
to the screen, erasing it, and then printing it again
at an advanced position, we simulate movement.
(It's not a smooth movement, because we can see
the flicker of the image being erased.) The graphics
language of the PC-6300 improves upon this prin
ciple tremendously, but it is still the same principle.

The PUT and GET statements in GWBASIC

can be used in either text or graphics mode. Unlike
most statements, PUT and GET mean one thing
in text mode, and a very different thing in graphics
mode. In text mode, PUT and GET are used to
store and retrieve information from random files.

In graphics mode, however, PUT and GET are
used to rapidly move graphics objects around the
screen.

The GET statement is used to retrieve an im

age from the screen. The PUT statement is used
to place this same image at different locations.
There are many different actions that PUT can
bring about, but only one will be discussed here.
This is the default action. In computerese, this is
known as EXCLUSIVE-OR, or XOR. At this stage
it's not necessary to know all the ins and outs of
EXCLUSIVE-OR, only that it is a highly useful tool
in graphics animation. In this mode, an image may
be put on the screen over a background, and then
moved without having permanently disturbed the
backgroimd. Also, when a image is put on top of
itself, the image is erased from the screen. No doubt
I'm beginning to confuse you again, so let's discuss
the sequence of events that lead up to an anima
tion program. This is the process:

1) Create the image on the screen using CIR
CLE, LINE, PSET, DRAW, etc.

52

2) Retrieve the image from the screen using
the GET statement.

3) Erase the original image from the screen
using the PUT statement.

4) PUT the image elsewhere on the screen.
5) Erase the image form its new location, by

putting it on itself, using PUT.
6) PUT the image at yet another location on

the screen.

Still confused? Let's image that a circle is
drawn on the screen. Before we can start the anima

tion sequence, it is necessary to GET the circle us
ing the GET statement. (How this is done will be
described later.) Once the circle has been GOT, the

computer retains the image in memory, whether it's
on the screen or not. To erase the original image,
we PUT the computer recollection of the image on
top of the actual screen image. This causes it to
disappear. We then use PUT again to place the im
age on the screen at a new location. We now have
to erase this newly located image to place it
elsewhere, so we put the computer recollection of
that image onto the actual screen image again. Once
the initial image has been GOT and then PUT to
erase it, we always have to PUT it twice—the first
time to place the image back on the screen and the
second to erase it. To do so the second PUT must

specify the same coordinates at the first PUT which
originally displayed the image.

When we GET an image, the computer

remembers exactly what it looks like by placing its
contents in an array. (The principle of arrays were
discussed in Chapter 2.) Fortunately, we don't have

to worry about the intricacies of making
assignments to an array when using PUT and GET,
because they do it for us automatically. The follow

ing program will demonstrate graphics animation
in a very simple way.

10 CLS

20 SCREEN 1

30 COLOR 0,1
40 DIM (500)

50 PRINTER"

60 GET(0,0) - (8,8),A

70 PUT(0,0),A

Lines 10 through 30 simply initialize the screen. We
set up our array in line 40, with its size deter

mined by the size of the image we wish to GET.
There is a fairly complex formula for calculating
the minimum needed size, but most programmers
simply make a stab at it—which is what we're do
ing with this one. (An array size of 500 elements
is far more than adequate to hold the image pro
duced in line 50. If you're short on memory, you
may want to gradually shrink the size of the array,
but if it gets too small, you'll have an ''illegal func
tion call" error. Then you can simply increase it
a bit.) For demonstration purposes, the graphic im
age will be the letter R, produced in the upper left-
hand comer of the screen by the PRINT statement
in line 50.

The GET statement in line 60 must retrieve a

section of the screen that contains the image we
wish to animate. Since the R is displayed in the up
per left-hand comer, we can retrieve it by specify
ing coordinates 0,0, which is the point at the ex
treme top left of the graphics screen. (Think of the
retrieval method as pulling from the screen a box
containing the object to be retrieved.) In this case,
0,0, represents the upper left-hand comer of the
box, while the second parameter specified in GET
(8,8) represents the coordinates of the lower right-
hand comer. Figure 3-4 shows the box retrieval
method.

The letter A following the GET statement in
line 60 simply names the array to which this im
age is to be committed. The PUT statement in line
70 references only the upper left-hand comer of the
box; the other coordinate specifications (the lower

right-hand comer) are not used. You will notice that
the array designation is also included at the end of

the PUT statement in line 70.

In this example, the PUT statement is used to
put the retrieved image onto itself. This is done by
specifying the starting coordinates of 0,0, the same
ones used in GET. When a visible image on the
screen is PUT on top of itself, the image is erased.
Run the program and you will see that the R is
printed in the upper left-hand comer, and then im
mediately erased.

Admittedly this does not demonstrate anima-

53

Fig. 3-4. GET captures a block from the screen containing
the character to be animated. PUT places the block
elsewhere on the screen.

tion very effectively, but let's go further. Add the
following line to your program:

80 PUT (160,ICQ),A

This PUT statement specifies coordinates at the
exact center of the graphics screen. RUN the pro
gram. You will again see the letter R displayed at
the upper left-hand comer. Then it will be erased,
only to reappear near the center of the screen. We
have effectively moved the letter R by animation
to the center of the screen. Now, let's move it
somewhere else. You might think we could do this
simply by using another PUT statement with a dif
ferent set of coordinates, and you would be
correct—few/ we must first get rid of the R that is
already at center screen. Therefore, the sequence
is:

PUT an image on the screen for display.
PUT the image onto itself to erase it.
PUT the image somewhere else.

Knowing this, we know that it is necessary to PUT
the R that was placed at coordinates 160,100 in line
80 to itself before moving it elsewhere. Add the

following lines:

90 PUT(160,100),A

100 PUT(10,50),A

When this program is run, the image is initially
printed in the upper left-hand comer. It is then
erased and PUT at the center of the screen. It is

erased again and then PUT at coordinates 10,50.

There is one little problem here, in that PUT
and GET work so rapidly that you really have to
watch closely to see the image appear at the center
of the screen. It is written and erased so quickly
that it's hard to see. Once again it is necessary to
slow up execution in order for the on-screen display
to be recognized by humans. Add the following
liners to your program:

85 FORX=1T0 400

86 NEXTX

Now when you nm the program, the image that is
moved to the center of the screen is held there for

a second or so while the computer coimts from 1
to 400. The FOR-NEXT loop in lines 85 to 86 is
our old friend, the time delay loop. It serves no
other purpose than to slow the computer down at
a certain point in the program. In animation pro
gramming, you will use these delay loops often.

The following program demonstrates anima
tion much more effectively:

10 CLS

20 SCREEN 1

30 COLOR 0,1

40 DIMA(500)
50 PRINTER"

60 GET(0,0) - (8,8),A

70 PUT(0,0),A
80 FORX = 30TO259

90 PUT(X,100),A

100 FORDLAY=1T0 200

110 NEXTDLAY

120 PUT(X,100),A

130 NEXTX

When you run this program, you will see the letter

54

R move from left to right across the center of the
graphics screen. Okay! This looks more like anima
tion. Here's how the program works. Lines 10
through 70 are identical to our first sample pro
gram. In line 80, a FOR-NEXT loop is used to coimt

the value of X from 30 to 259; the value is then
used as the X coordinate for placing our graphic
image (the letter R). The PUT statement in line 90
places the letter R at the location of 30,100, since
the first pass of the loop made X equal to 30. A
delay loop is then entered in lines 100 and 110. The
variable name DLAY is used here to be descrip
tive of the function of the loop.

The delay loop allows the image to establish
itself at location 30,100 for a short time. When line

120 is executed, the image is erased from this loca
tion because the image has been PUT onto itself.
Line 130 recycles the outer (X) loop by branching
back to line 80, where X now becomes equal to 31.
The image is placed at location 31,100 and the
previous sequence repeats itself.

This program was purposely set up to display
a slow-moving graphic image. To speed it up, simp
ly remove our delay loop in lines 100 and 110. Rim
the program again, and you will see that the letter
R travels much more rapidly from left to right. With
this rapid movement you will also notice some
flickering of the image, but this is one of the things
we have to live with when programming in BASIC.
The larger the image is and the faster it moves, the
more it will flicker.

Is the motion still too slow for you? We can
speed it up considerably by changing line 80 to:

80 FORX = 30TO 259 STEP5

You will remember the discussion of STEP in

Chapter 2. When STEP is coupled with a FOR-
NEXT loop, it causes the loop variable (X in this

case) to be incremented by the numeric designator
included after STEP. Therefore, this loop will no
longer count 30, 31, 32, 33, etc. The increments

will be in steps of 5, so the loop will coimt 30, 35,
40,45, etc. When this value is used as a screen coor

dinate, the first writing of R will be at location

30,100. The next write will be at 35,100 (as oppos

ed to 31,100), so the screen write will jump 5 posi
tions during each cycle. The letter R will now
literally fly across the screen. While these examples
have used the letter R rather than what we usually
consider to be graphics objects, they have clearly
explained the methods by which animation is ef
fected on the PC-6300. Additionally, we have
discussed methods of slowing down and speeding
up a moving object.

Just so you don't feel cheated, let's make a
slight alteration to our program so that we do
animate a true graphics object. Change line 50 to:

50 CIRCLE(4,4),4,2

Here we are specifying that a circle be drawn in
the upper left-hand comer. Its center will be at coor
dinates 4,4, it will have a radius of 4 pixels, and it
will be drawn in magenta. Run the program again,
and you will see that the R has been replaced by
a small magenta circle, the circle moves in exactly
the same manner as the R, but the flicker is not as
noticeable because fewer points make up the un
filled circle than were used to display the solid R.
If you'd like to fill in the circle, add this line:

55 PAINT(4,4),1,2

The PAINT statement fills in the tiny circle with
the color cyan, making it much more noticeable dur
ing the animation process. Flicker will also be much
more noticeable.

When teaching graphics animation, I'm often
asked about why we PUT an image to itself to erase
it, rather than simply using the CLS statement to
clear the screen. It's a good question, and in the
examples discussed thus far all PUT statements
used to erase images could have been replaced with
CLS—but at quite an expense. First, CLS does not
work as quickly as PUTting an object to itself; this
is especially tme of smaller objects. The main
reason for not using CLS, however, is that you may
often wish to animate an object against a graphic
background that must remain intact. Remember,
when we PUT an image to itself it is erased from
the screen, but the screen backgroimd that lies

55

under that often remains imaffected. Therefore, by

using PUT we preserve the background at all
times, even though we are erasing the animated im
age. CLS would erase the entire screen, so it would
be necessary to redraw the backgroimd after each
erasure.

To demonstrate the advantages of PUTting an
image to itself for erasure while preserving the
screen background, restore line 80 and add another

line.

80 FORX = 30TO259

75 LINE(0,104) - (319,104),3

Now run the program. Here, the traveling ball
moves along the line, but notice that the line seg
ment which is covered by the ball at any one time
is not erased with the ball, but remains intact. Our
background is preserved at all times. This is why
we use PUT rather than CLS. PUT can be confus

ing. Just remember that PUT is used always to
place an image on the screen, and if we PUT the
same image on top of itself exactly, then that im
age is erased. Therefore, PUT is always used two
times at any one location on the screen if you wish
to erase the image before moving on.

POINT

There is only one function specifically devoted
to graphics in GWBASIC. This is the POINT func
tion, and it is used to return the color number for
a specific coordinate set on the graphics screen.
Fimctions are special subprograms called by name.
They accept one or more values (''arguments")
enclosed in parentheses, and send back ("return")
to the main program a single value. Here, the word
"return" simply means that the function name
POINT will obtain the color number of a point on

the screen, which can then be assigned to a
variable. The format is:

C = POINT(X,Y)

In this case, C is the variable to which the POINT
function will assign (return) the color number of the
screen point which lies at coordinates X,Y. The

value of C will thus be equal to the color number,
which will range from 0 to 3. You will recall that
in each palette there are three possible colors,
represented by the numbers 1, 2, and 3. If 0 is
returned to variable C, then this indicates the screen

background color, which is always coded as 0,
regardless of what color it may actually be.

The following program demonstrates the
POINT function:

10 CLS

20 SCREEN 1

30 COLOR 0,1
40 PSET(160,100),1

50 C = POINT(160,100)
60 PRINT C

When this program is run you will see a cyan
point at the center of your screen, and, in the up
per left-hand comer, the number 1 will be

displayed. The PSET statement placed a point of
light at coordinates 160,100 in the color cyan,
represented by the color numeral 1. Line 50 then
uses the POINT function to read the value of the

point of light at location 160,100 and assign its value
to C. Line 60 then prints the value of C on the
screen. Now, try changing line 40 to:

40 PSET(160,100),2

When you run the program now, the dot at the
center of the screen will be magenta and C will be
equal to 2. Therefore, 2 will be printed in the up
per left-hand comer when the value of C is

displayed.

The POINT function is extremely valuable to
the graphics programmer. For instance, if you have
drawn a picture on the screen and decide that you
would like to change all the magenta dots to white,
a simple program can be written to scan the screen.
Using the POINT function, you could include a pro
gram segment such as

250 C = POINT(X,Y)

260 IFC = 2THENPSET(X,Y),3

56

This is just a program segment, so don't try to run
it on your computer. You must assume that the X
and Y values are part of a FOR-NEXT loop and
represent a valid screen point. These values are
stepped through every possible combination of
screen coordinates. Each time a coordinate is

presented, line 250 reads the color value of that
point. Line 260 tells the computer to set a white
point (color numeral 3) if C is equal to a magenta
point (color numeral 2). A program in another
chapter even uses the POINT function to read the
points of light that make up a standard character
(such as A, B, C, etc.), and then to reproduce that
chapter in much larger form on the screen. As you
delve deeper into graphics programming, and into
the modification of on-screen images, you will find
more ways to use POINT.

SUMMARY

Just as Chapter 2 addressed text mode pro
gramming in GWBASIC, this chapter has over-
viewed graphics programming using each of the
graphics statements (and the single function)
available in GWBASIC. I stress the word overview

here, because his handful of graphics functions can
be put to millions of uses. The discussion in this
chapter has only touched upon them. However, if
you have absorbed the information here, you should
be able to advance quickly to PC-6300 graphics
without a great deal of difficulty.

It has been my experience, and the experience
of many beginners in computer programming, that
the major difficulties arise in first learning the ab
solute basics of programming statements and func
tions. Even the clearest text can sometimes breed

damaging misconceptions. This is why each of the
discussions in the chapter has been followed by at
least one example of how a particular statement or
function is used in a program. Inputting these pro
grams to the computer, seeing how they nm, and
making your own alterations to see what happens
is the most valuable learning experience of all.

If you have absorbed the content of this chapter
and the previous chapter on text programming,
then the GWBASIC manual will undoubtedly have
more meaning to you. You should now be in a bet
ter position to leam what all of those reference

manuals have to offer.

57

Chapter 4

General Programs
for the AT&T PC-6300

This chapter will present programs of a general
nature. These are text mode programs that will do
such things as make measurement conversions,
convert from one type of temperature to another,
and even let you figure mortgage payments on a
home. Admittedly, many of these kinds of programs
have been presented himdreds of times for other
computers; they will not take a terribly different
form for the AT&T PC-6300. All programs are run
in text mode and are simple enough to serve as good
tutorial examples. Each one can be put to direct use
aroimd the home or office.

Program 1: Feet to Inches Conversion

How many inches are there in a foot? You don't
need a computer to tell you that the answer is 12.
How many inches are there in 5 feet? Youstill prob
ably don't need a computer to tell you that the
answer is 60. How many inches are there in 2.36
feet? (Aha! I got you with that one!) While the
answer could easily be figured on a calculator, it

is simple to write a computer program that will

allow you to quickly input many values of feet—
and then just as quickly print out the answer in
inches.

Lines 10 and 20 contain REM statements sim

ply telling you what the program is and who wrote
it. REM statement was not discussed in the first

part of this book. REM stands for remark, and a
line beginning with REM may be considered a
nonexecutable line in the program. REM
statements are just little notes to people who will
be seeing the program listings, but are simply skip
ped over by the computer during execution. REM
statements may appear an3rwhere in the program.

Line 30 sets the screen to text mode, while line

40 sets the horizontal width to 40 characters. Since

this program doesn't use the function keys, the
KEY OFF statement in line 50 simply switches off
the line of information at the bottom of your screen
(the key) that tells you what they do. The CLS state
ment in line 60 clears any screen writes that may
have been left over from a previous program.

We get into the meat of the program at line 70.

58

10 REM FEET TO INCHES CONVERSION

20 REM COPYRIGHT FREDERICK HOLTZ
30 SCREEN 0

40 WIDTH 40

50 KEY OFF

60 CLS

70 INPUT"NUMBER OF FEET"5F

80 I=F*12

90 CLS

100 LOCATE 13,8
110 PRINT F5"FEET ="51;"INCHES"

120 LOCATE 23,1

130 INPUT"PRESS <ENTER> TO CONTINUE"5EN$

140 GOTO 60

Program 1. Feet to Inches Conversion.

The INPUT statement prints a prompt "NUMBER
OF FEET" on the screen, telling the nser that it's
time for a keyboard input. The number tjrped in is
conunitted to numeric variable F. Line 80 contains

the mathematical formula for converting feet to

inches. You simply multiply the nvunber of feet by
12 (12 inches to 1 foot) to arrive at the inch value.
Line 90 uses CLS to clear the screen again, eras
ing our original prompt and the entered value. The
LOCATE statement in line 100 positions the text
cursor at a point midway down the screen and eight
characters to the right. Line 110 uses the PRINT
statement to first display the value of feet (F) on
the screen, followed by the quoted phrase "FEET
EQUAL". This is followed by the value of the
numeric variable I, which gives us the number of
inches. This is followed by another quoted word
"INCHES". If you input a value of 2 for feet in line
70, line 110 will display:

2 FEET EQUAL 24 INCHES

This makes for a neat display. Line 120 places the
text cursor at the bottom left of the screen, a good
spot to print the quoted phrase contained in the IN
PUT statement in line 130. This tells the user to

"PRESS ENTER TO CONTINUE". The input

value of line 130 is committed to string variable
EN$. This value is not used anywhere else in the
program; line 130 simply halts execution and allows
the value printed in line 110 to remain on the screen
until you're ready to input another value. When you
press Enter following the prompt in line 130, the
GOTO statement in line 140 is executed and there

is a branch to line 60. Here, the CLS statement
clears the screen again, and the program begins
anew. To exit the program, you must perform a
manual halt using the BREAK key.

Program 2: Inches to Feet

It is only natural after having presented a pro
gram that converts feet to inches to also include one
that converts inches to feet. This program is almost
identical to the first, except that the prompt is
changed in line 70 and a few switches were made
in line 110. Line 80 is the biggest change; we have
inserted the formula for converting inches to feet.
In this example, numeric variable I contains the
number of inches you input at the keyboard. The
formula for converting inches to feet simply in
volves dividing inches by 12. Therefore, line 80
assigns to numeric variable F the value of I (inches)
divided by 12. Line 110 prints out this value.

You can modify this program further by get-

59

10 REM INCHES TO FEET CONVERSION

20 REM COPYRIGHT FREDERICK HOLTZ

30 SCREEN 0

40 WIDTH 40

50 KEY OFF

60 CLS

70 INPUT"NUMBER OF INCHES"5 I

80 F=I/12

90 CLS

100 LOCATE 13,8
110 PRINT I;"INCHES =";F;"FEET"

120 LOCATE 23,1

130 INPUT"PRESS <ENTER> TO CONTINUE";EN«

140 GOTO 60

Program 2. Inches to Feet.

ting it to convert feet to yards, yards to feet, inches You are asked to input a temperature in degrees
to yards, or yards to inches. If you want to go fur- Fahrenheit. The computer will then display the
ther, you can even convert miles to feet, inches, or same temperature in degrees Celsius. Line 70
yards, or vice versa. Of course, pints to gallons, prompts you to input the temperature in
liters to quarts, centimeters to inches, and any Fahrenheit, while line 80 contains the formula for
number of other conversions are also easily per- the conversion. To convert Fahrenheit to Celsius,
formed using this simple program. All that's real- subtract 32 degrees from the Fahrenheit
ly necessary is to change your prompt and print temperature and multiply the result by 5/9. The
lines and, of course, the formula contained in line muneric variable X is assigned the Celsius value.
80. The screen is cleared in line 90 and the LOCATE

_ _ statement in line 100 moves the graphic cursor toProgram 3: Fahrenheit to Celsius a point just left of the center of the text screen. Line
This program performs another conversion. 110 prints the Celsius value followed by the iden-

10 REM FAHRENHEIT TO CELSIUS CONVERSION

20 REM COPYRIGHT FREDERICK HOLTZ

30 CLS

40 SCREEN 0

50 WIDTH 40

60 KEY OFF

70 INPUT"FAHRENHEIT TEMPERATURE";F

80 X=5/9*(F-32)

90 CLS

100 LOCATE 14,10
110 PRINT X"DEGREES CELSIUS"

Program 3. Fahrenheit to Celsius.

60

10 REM CELSIUS TO FAHRENHEIT CONVERSION

20 REM C0PYRI(3HT FREDERICK H0LT2
30 CLS

40 SCREEN 0

50 WIDTH 40

60 KEY OFF

70 INPUT"CELSIUS TEMPERATURE" ; C

SO X=(C/(5/9)+32)

90 CLS

100 LOCATE 14,10
110 PRINT X"DEGREES FAHRENHEIT"

Program 4. Celsius to Fahrenheit.

tifier "DEGREES CELSIUS". The program then and print designator. The formula in line 80 con-
terminates. You can take a clue from the previous verts Celsius (C) to Fahrenheit. Numeric variable
two programs and branch back to an earlier line X then contains the Fahrenheit value,
with an appropriate GOTO statement. The four previous programs used very simple

formulas to convert from one form of measurement

Program 4: Celsius to Fahrenheit to another. However, the computer is also capable
. of pushing values through even highly complex for-

This program does t e opposi e o e preAuous j-jjg ̂g^t few programs will demonstrate,
program. Here, you input a temperature m Celsius
and the computer outputs it in degrees Fahrenheit.
The program is almost exactly the same as the Program 5: Mortgage Payment
previous one, except for the modified input prompt This program will allow you to input a sum of

10 REM MORTGAGE PAYMENT

2.0 REM COPYRIGHT FREDERICK HOLTZ
30 CLS

40 KEY OFF

50 SCREEN O

60 WIDTH 40

70 INPUT"ENTER THE AMOUNT TO BE FINANCED

"5 A

SO CLS

90 I NPUT "ENTER THE INTEREST RATE." 5 I

100 CLS

110 INPUT"HOW MANY YEARS";Y

120 Y=--Y*12

130 CLS

140 1=1/100

150 1=1/12

160 MA= (I / ((H-1) •■••• (Y) -1) +1) *A
170 PRINT"MONTHLY PAYMENT =";MA .

Program 5. Mortgage Payment.

61

money to be financed, the interest rate, and the
number of years over which payment is to be made.
It will then tell you what your monthly mortgage
payment will be. This is a highly useful program,
because it can be used for any mortgage value, any
interest rate, and any number of years. Chances are
youVe had to sort through mortgage payment
books to figure out how much you would have to
pay to buy a house, car, boat, computer, or some
other expensive thing. This program takes all the
trouble out of such calculations.

Here's how it works. Line 70 prompts you to
enter the amount to be financed. (Remember, you
cannot use commas—as in 3,123,20—to delineate

thousands when inputting an amount. Decimals, of
course, are OK.) When this value has been input and
Enter is pressed, the value is committed to numeric
variable A. Line 80 then clears the screen, and line
90 prints another prompt telling you to enter the
interest rate. Do not enter the interest rate as a

decimal value. In other words, enter an interest rate
of 13% as 13, or an interest rate of 131/2% as 13.5.
(More on this in a bit.)

Again, the screen is cleared upon pressing
Enter, and the interest rate is committed to numeric

variable 1. Line 10 uses another INPUT statement,
prompting the user to input the number of years
over which the loan is to be amortized. This value

is committed to numeric variable Y. Remember, A
represents the amoimt of mortgage, I represents
the interest, and Y represents the number of years.

Now it's time for some conversions. Line 120

reassigns, to Y, the value of Y times 12, which
simply converts your original input from years to
months. The reason interest was input as a whole
number is foimd in line 140. Here, I is reassigned
the value of I divided by 100, which automatically
converts your interest rate input to a decimal for
the computer to use. Line 150 makes a further con
version of I, dividing it by 12 to give the interest
rate for each month. The value of I that the com

puter eventually uses in the formula (line 160) is
no longer in the same form it was when you first
entered it in line 90.

There is a fairly complex formula in line 160
which takes the value of A, I, and Y and converts

them to the amount of your monthly payment. This

is assigned to the numeric variable MA (for
monthly amoimt). Then line 170 prints "MON
THLY PAYMENTS EQUAL" followed by MA,
which contains the monthly payment.

If you had to perform all of these calculations
on a pocket calculator, there would be a good
chance of error, and to do it on paper would be quite
cumbersome. However, once you have this pro
gram input to the computer you can simply enter
the values, and almost instantly come up with the
monthly amount of money you've got to fork over.

Program 6: Maximum Loan Affordable

This program is similar in some ways to the
previous one, except that it will tell you how much
money you can afford to borrow, based on the
number of monthly pa3rments and the monthly
amount you wish to pay. It is necessary to know
the interest rate at which the money is to be bor
rowed, but the program does the rest.

The number of monthly payments is put in via
the prompt in line 70. This value is assigned to
variable A. The screen is cleared by the CLS state
ment in line 80 and a new prompt appears asking
for the interest rate. This value is assigned to
variable 1. Once again, the interest rate is not in

put as a decimal, because Une 100 makes a conver
sion automatically. For instance, it converts 13%
annual interest by dividing it by 1200 (100 times
12), effectively yielding the monthly interest in
decimal form in one operation. Notice that line 100
simply reassigns the value of numeric variable 1.

In line 120, the user is asked to input the max
imum affordable monthly payment, which value is
assigned to numeric variable M. Line 140 contains

a formula that converts these values into a number

that represents the amount of money that can be
borrowed according to the previously specified user
inputs, assigning it to variable X. Since this value
will usually come out to a decimal, line 150 is used
to convert X to an integer which will simply be the
whole number minus any fractional values. For
practicality's sake, a maximum affordable amoimt
of 2,001.4388 is best expressed as 2,001.

Line 160 prints the value that can be borrow-

62

10 REM PROGRAM TO CALCULATE THE MAXIMUM

LOAN AF-FORDABLE

20 REM BASED UPON CURRENT INTEREST AND A

BILITY TO PAY

30 REM COPYRIGHT FREDERICK HOLTZ

40 CLS

50 KEY OFF

60 SCREEN O

70 INPUT"HOW MANY MONTHLY PAYMENTS CAN Y

OU MAKE";A

80 CL.S

90 INPUT"WHAT IS THE CURRENT

TE" ; I

100 I-I/1200

110 CLS

120 INPUT"WHAT IS THE MAXIMUM MONT

YMENT YOU CAN AFFORD "liM

130 CLS

140 x=M* (1 - n. +1) •• -A) / I

150 X=--=INT(X)

160 PRINT"YOU CAN AFFORD TO BORROW UP TO

$ " ; X

170 END

INTEREST RA

rILY PA

Program 6. Maximum Loan Affordable.

ed on the screen, after which the program ter
minates. This program is short, sweet, and to the
point. Total input time should be about five
minutes.

Program 7: Annuity Calculation

An annuity may be thought of as an income
(retirement or otherwise) yielded from a principal
drawing annually compoimded interest. This pro
gram will calculate the annuity, based upon the
principal, interest rate, and munber of years over
which the aimuity is to be drawn. This program is
longer than the previous two which dealt with finan
cial calculations, but only because a few additional
user conveniences have been included. In line 80,

there is a (jOSUB to line 410. Lines 420 through
500 explain the program by printing the instructions
on the screen; line 510 contains the mandatory
RETURN statement which sends the computer

back to line 90. Lines 90 through 110 contain
PRINT statements that simply separate the prompt
in line 120 from the previously printed instructions.
Incidentally, the COLOR statement in line 50
causes the screen backgroimd to switch to a blue
with black lettering—a colorful effect that is quite
pleasing to the eye.

Line 120 tells the user to "press any key" to
continue. Previous programs used the INPUT
statement with a prompt of "DO YOU WISH TO
CONTINUE(Y/N)". This would require the input

of either a Y or N, followed by the Enter key. This
is fine, but the input letters must be capitals as
specified in the program. (If you specified lower
case letters in the program, the program would re

spond only when a lowercase input occurred.) Alter
nately, we could input the needed lines to branch
to the correct points based upon either an upper
case or lowercase letter, as in:

63

10 REM ANNUITY CALCULATION PROGRAM 300 ANNU=PR*ZZ

20 REM COPYRIGHT FREDERICK HOLTZ 310 LOCATE 14,10
30 REM CLS 320 PRINT "ANNUITY=^";ANNU

40 SCREEN 0 330 LOCATE 22,5
50 COLOR 0,1 340 COLOR 31

60 WIDTH 40 350 PRINT "DO YOU WANT TO ENTER AGAIN?<Y

70 KEY OFF /N>

80 GOSUB 410 360 COLOR 0, 1
90 PRINT 370 F*=I.NKEY$

100 PRINT 380 IF F$="Y" THEN COLOR 0,1:G0T0 150

110 PRINT 390 IF F^="N" THEN COLOR 7,0:CLS:END
120 PRINT "PRESS ANY KEY TO CONTINUE" 400 GOTO 370

130 F$=INKEY$ 410 CLS

140 IF F$="" THEN 130 420 PRINT"THIS PROGRAM WILL CALCULATE TH

150 CLS E ANNUITY"

160 LOCATE 14,8 430 PRINT"YIELDED BY A PRINCIPLE DRAWING

170 INPUT "ENTER THE INTEREST RATE";I ANNUALLY"

180 1=1/100 440 PRINT"COMPOUNDED INTEREST. YOU MUST

190 CLS INPUT THE"

200 LOCATE 14,8 460 PRINT"INTEREST RATE, AMOUNT OF PRINC
210 INPUT "HOW MANY YEARS ";YR IPLE, AND"
220 CLS 470 PRINT"THE NUMBER OF YEARS OVER WHICH

230 LOCATE 14,8 THE IN-"

240 INPUT "WHAT IS THE PRINCIPLE "5 PR 480 PRINT"TEREST WILL BE COMPOUNDED. THE

250 CLS COMPUTER"

260 X=(H-I) - YR 500 PRINT"WILL PROVIDE YOU WITH THE ANNU

270 Y=I*X ITY. "

280 Z=X-1 510 RETURN

290 ZZ=Y/Z

Program 7. Annuity Calculation.

IF A$ = "Y" OR A$ = 'y' THEN 1000

However, for many purposes this is not necessary.
As an aid to foolproofing the program, line 130 uses
the INKEY$ variable in GWBASIC to allow any
key to be pressed to continue execution, as in
dicated by the prompt in line 120. Line 130 assigns
to F$ the value of the keyboard input. Line 140
simply tells the computer to go back to line 130 if
the keyboard input equals The double quotes
with nothing in between indicate the null string, a
value of nothing at all. Lines 130 and 140 will con
tinue to be executed in a loop imtil there is some
type of keyboard input. It makes no difference
which key is pressed, since any one will make F$
imequal to A later sequence in this same pro
gram shows how INKEY$ can be used just like the
INPUT statement, but without having to press
Enter after each input.

Line 150 clears the screen, and the LOCATE
statement is then used to place the text cursor at

row 14, column 8. Line 170 uses the INPUT state

ment to prompt the user to enter the interest rate.

This message is printed at the center of the screen
due to the previous LOCATE statement. The IN
PUT statement is necessary here, as opposed to the
INKEY$ variable, since the latter is restricted in
practical use to a single character input from the
keyboard. In most cases the interest rate today will
consist of a two-digit number!

Line 180 converts the interest to decimal form,
lines 200 and 210 print another prompt at the center
of the screen asking for the number of years over
which the interest is to be drawn, and this value
is then assigned to YR. Lines 230 and 240 do the
same thing for the principal prompt. Lines 260
through 300 contain the formulas that convert the
user-supplied information to the annuity payment.
This final value is assigned to the numeric variable
ANNU in line 300.

Lines 310 and 320 print the answer at the
center of the screen. Now comes another in-

64

teresting part user appeal feature. The LOCATE
statement in line 330 positions the text cursor at
row 22, column 5, printing the message (line 350)
at the bottom of the screen. Note, however, that

line 340 contains the COLOR statement followed

by the number 31. In text mode this value will cause
any other printed matter to be displayed in white,
flashing. That's right. Anything that's printed after
COLOR 31 is used will flash on the screen, but all

previously printed lines will be unaffected. Thus,
the message contained in line 350 will flash on the
screen for increased user attention. Line 370 uses

INKEY$ again, but lines 380 and 390 perform a
test, since we are now looking for an input of either
an upper case Y or upper case N. If it gets neither
of these letters, a continuous loop is formed. Line
360 resets the color to the one used at the start of

the program, but this will have no effect on the
flashing line printed by program line 350. The pro
gram will lock up at this point imtil a Y or N is in
put. If the value is Y, there is a branch to line 150,
where the program effectively starts all over again.
However, if the value is N, color is reset to the
original value before the program was run, the

screen is cleared, and the program ends. It is
necessary to reset the color to white-on-black before
ending the program, or the screen will still be in

black-on-blue mode and will have to be manually
reset.

There you have it—a very interesting and in
formative program (from a programmer's stand
point) that builds in a lot of quality display features.

The previous three programs have dealt with
financing, interest, etc. As your experience in
creases in programming the PC-6300, you may wish
to combine all three programs into a single one. You
can build in a menu that will allow the user to select

which program portion is to be used.

Program 8: Leap Year Calculation

Why a program to calculate Leap Year? Well,
one reason is that most books that include simple
programs for any computer usually have one, but
my main reason is that it allows me to explain that
Leap Year does not occur every four years-
contrary to what most of us might suspect. It usual
ly does, but not always. For instance, the year 1896
was a Leap Year and so was 1892, four years

10 f:em program to calculate leap year

20 REM COPYRIGHT FREDERICK HOLTZ

30 CLS

40 SCREEN O

50 WIDTH 40

60 KEY OFF

70 INPUT"YEAR"5Y

SO CLS

90 IF Y/4==INT <Y/4) AMD Y/lOOOINT (Y/100)

OR Y/400=INT(Y/400) THEN 100 ELSE 140

100 CLS

110 LOCATE 14,10

120 PRINT Y5"IS A LEAP YEAR"

130 END

140 CLS

150 LOCATE 14,10
160 PRINT Y;"IS not A LEAP YEAR"

170 END

Program 8. Leap Year Calculation.

65

earlier. However, the year 1900 was not a Leap
Year but 1904 was, so there was an eight-year span
(from 1896 to 1904) in which no Leap Year
occurred.

A Leap Year is one which is evenly divisible
by four and not evenly divisible by 100, or is any
year evenly divisible by 400. (Most people think it's
any year evenly divisible by four, but this is not

true.) Leap Year is used to make our calendars
match the Earth's orbit around the sun, which takes

a little more than 365 days. Usually we make an
adjustment to correct this every four years, but to
avoid over-correcting we skip a Leap Year once in
a while. The year 1896 is a Leap Year because it

is evenly divisible by four and not evenly divisible
by 100. However, the year 1900 is evenly divisible
by four, but it is also evenly divisible by 100.
Therefore, 1900 would not be a Leap Year unless
it were also evenly divisible by 400—-and simple
math will tell you that it is not. One might also think
that this occurs every century, but it doesn't. For
instance, 1996 will be a Leap Year, and so will the
year 2000. (Here we go again.) The year 2000 is
evenly divisible by four and is also evenly divisible
by IQQ—but the year 2000 is also evenly divisible
by 400, and any year that is evenly divisible by 400
is always a Leap Year regardless of any previous
criteria. The next time a Leap Year skip will oc
cur, then, will be between 2096 and 2104.

If you're totally confused by now, that's all
right, because this program will do all the work for
you. Line 90 contains the formula, using the IF-
THEN statement plus the logical operators AND
and OR. Line 90 says that IF the year Y divided
by 4 is equal to the integer of the year Y divided
by 4 (i.e., the division comes out even) AND IF the
year divided by 100 is not equal to the integer of
the year divided by 100 is not equal to the integer
of the year divided by 100—OR the year divided by
400 is equal to the integer of the year divided by
400—THEN GOTO line 100, which sets up the
''LEAP YEAR" screen print. The ELSE portion
of the statement in line 90 simply tells the computer
to branch to line 140 if this set of conditions is not

true. Line 140 sets up the routine to identify the
year as one that is not a Leap Year.

Let's discuss line 90 further. The AND logical
operator means that the statement preceding it and
the one following it must both be true. The OR
operator means that, regardless of the previous two
tests, if the statement following it is true, then the
branch takes place. In other words, for a branch
to line 100 to print LEAP YEAR on the screen, the
first two tests must be true OR the last test must

be true. This is an excellent example of the use of
logical operators in GWBASIC. As your experience
develops, you will find that you will be using the
logical operators for many purposes.

Program 9: Countdown Timer

We now know that the PC-6300 contains an in

ternal clock that can be used to display the time of
day and also the date. This program, however uses
the clock as a countdown timer that can come in

handy for games and other similar activities that
require the user to perform some function within
a set period of time. This program will display a
preset minutes value on the screen, and then coimt
second-by-second to this preset value. When time
runs out, a siren-like audio effect will be emitted

from the computer.
Here's how the program works. Line 70

prompts you to input the number of minutes you
wish to use for your count. If you prefer to use
seconds, simply input minutes as a decimal frac
tion (i.e., 0.5 minutes equals 30 seconds). When this
value has been input, the screen is cleared and line
90 assigns X$ the value of "00:00:00." Line 100

resets the computer's clock to X$, or zero. Line 110
begins a FOR-NEXT loop that counts from 1 to
3450 times 1. (By experimentation I found that this
value for the loop would cause line 130 to be
reprinted approximately every second. I'll explain
this further a little later.)

Line 120 positions the text cursor near the
center of the screen, and line 130 prints the value
of TIME$. Remember, it was initially set to zero,
but every second it will count upward. Line 140
causes the loop to recycle. Now, with a top value
of 3450 times I (the number of minutes), lines 120

and 130 will be executed about every second. This
causes the clock display at the center of the screen

66

10 REM TIMER PROGRAM

20 REM COPYRIGHT FREDERICK HOLTZ

30 SCREEN 0

40 CLS

50 KEY OFF

60 WIDTH 40

70 INPUT"HOW MANY MINUTES";I
80 CLS

90

b
o

 ■■

o
o

 ■■

o
o

ll

X

100 TlME*="li:11:11":TIME*=X*

110 FOR X=1 TO 3450*1

120 LOCATE 14,17
130 PRINT TIME*

140 NEXT

150 FOR XX=1 TO 15

160 FOR X=1200 TO 1500 STEP 40

170 SOUND X,1
180 NEXT X

190 NEXT XX

200 CLS

210 GOTO 70

Program 9. Countdown Timer.

to be updated once each second; the numerals,
therefore, count upward in increments of one. You

may find that it's necessary to make some slight
adjustments to the 3450 value for your computer,
but this value should be close. The loop times out

at the time specified in line 70.

When this occurs, lines 150 onward are ex

ecuted. Line 150 sets up a FOR-NEXT loop that
counts from 1 to 15. Line 160 contains a nested loop
that counts from 1200 to 1500 in steps of 40. The

GWBASIC SOUND statement outputs the frequen
cies set by the loop in line 160. As the loop is cy
cled, the frequency steps up. Each time the nested
loop is completely executed, a "whoop" is produc
ed. Since the outer loop coimts 1 to 15,15 whoops
are heard.

When the siren times out, line 200 clears the

screen and the program starts all over again, due
to the branch contained in line 210. You can now

input another time value.

This program is an interesting study in itself,
but it will rarely be used alone. It will most often

be incorporated as a part of a larger program.

Program 10: Backward Screen Program

This program has no practical value (that I
know of), but it does contain some entertainment

possibilities and is interesting from the standpoint
of methodology. On the PC-6300, like any other
computer, any information typed in via the
keyboard is displayed from left to right starting at
the top of the screen. This program, however, will
cause any keyboard input to be displayed from right
to left; Fig. 4-1 shows an example.

Here's how the program works. The screen is
first initialized, and then line 60 assigns the variable
Y the initial value of 1. Lines 70 and 80 set up an
"ANY KEY" routine as described in the annuity
program, forming a continuous loop until any key
is pressed. When this is done, line 90 first sets the
text cursor at Y,40-X. For the first letter of input,
Y is equal to 1, since Y was initially assigned this
value in line 60. Since no X value has been as

signed X is automatically equal to 0. The first in
put character will therefore be displayed in row 1,

67

ao

20

30

40

50

60

70

80

90

1 o<:

1IC

i2f:

13(:

i4<:

15

10 REM BACKWARD SCREEN PROGRAM

REM COPYRIGHT FREDERICK HOLTZ

CLS

KEY OFF-

WIDTH 40

Y=1

A$=INKEY$

IF A$="" THEN

LOCATE Y,40-X

70

PRINT

IF A$

X = X + 1

IF X=40

IF Y=24

GOTO 70

A$

CHR$<13) THEN Y=Y+l:X=

THEN

THEN

x=o: Y=

END

^Y+1

Program 10. Backward Screen Program.

colunm (40 minus 0), which is the upper right-hand
comer of the screen. Line 100 prints the value of
A$, which is the letter you input. Line 110 checks
to see if A$ was a carriage return (Enter), which
in the character set is ASCII code 13. The CHR$
function converts ASCII code 13 to what the com

puter recognizes as a carraige return. If you input

a carriage return via the keyboard, A$ is equal to
CHR$(13). Line 110 tells the computer to increase
Y by 1 if A$ is a carriage return, and to assign X
a value of -1. Line 120 then increments X by -i-1.

When this value is subtracted from 40 (line 90), the

text ciu-sor is positioned one step toward the left
anytime a key is pressed—unless the key is the car
riage return. In that case, the -1 assignment to X
(line 110) combined with the -i-1 assignment to X
(line 120) causes the value of X to revert to 0. In
other words, whenever you hit enter, the text cur
sor goes down one line and returns to the right hand
side of the screen—just the reverse of normal
operation.

Lines 130 and 140 perform other tests to keep

48/4/1

MARGNI DRAHCIR „RM
„TS MLE 21
NOTGNIMOOLBANAIDMI

HCIR RAED

/02/21 FO OMEM YM DEVIECER LJOY EPOH I
LIMAF RUDY OT SDRAGER YM DNES EBAELP ,38
VNOC OGACIHC EHT TA LJOY EES OT EPOH I .Y

.NOITNE

,YLERECNIS

ZTLOH KCIREDERF

Fig. 4-1. Screen display of the Backward Screen Program.

68

the cursor from running off the screen. (Actually
it can't; an error message is generated when an il
legal cursor value is used, causing the program to
end.) When the cursor has counted all the way to

the far left hand side of the screen, the value of X

will now be equal to 40. Line 130 tells the computer
to reassign X to 0 when it is equal to 40. At the
same time, Y is incremented by 1. Line 140 checks
for an end-of-page condition. When Y is equal to
24 (near the bottom of the screen), the program
ends.

With this program, you can display any
member of the standard character set on the screen.

Don't try to use the numeric keypad to the right
of the keyboard or the backspace key, however, or
unusual characters will be printed. In other words,
if you make a typing mistake you're out of luck.

Experiment with this program a bit to see what
you can come up with. Here's an interesting switch.
Change lines 60, 110, 130, and 140 as follows:

60 Y = 22

110 IF A$ = CHRS(13)THEN
Y = Y -1:X=-1

130 IF X = 40 THEN X = 0:Y = Y-1

140 IF Y = 0 THEN END

When you run the revised program, the text will
begin appearing at the bottom right of the screen,
still advancing from left to right. Each time you

reach the end of a line at the far left of the screen

or press a carriage return, the text cursor will ad

vance upward by one line and reset to the right side
of the screen. By making a few simple changes, you
can also create a program that prints letters from
top to bottom, or vertically instead of horizontally.
The key is the LOCATE statement found in line
90 and the proper assignment of X,Y values.

Program 11: Printer/Typewriter

If you have a printer, this program should be
interesting. It will display text in normal fashion
(left to right) on the screen and on your printer. Line
60 sets the printer width to 40 characters to match
the screen width. Lines 70 and 80 contain the

familiar ''ANY KEY" routine. When any key is
pressed, it is printed on the screen in line 90. Line
100 checks for a carriage return. Then, line 110
uses the LPRINT statement to cause the printer
to type A$. Line 120 branches back to line 70 so
that another character may be input. The LPRINT
statement is used just like PRINT, except the out
put goes to the printer instead of to the screen. Here
line 90 outputs A$ to the printer. If you have the
extra memory option and the display enhancement
that comes with it, you can change line 50 to
WIDTH 80 and also change the value 40 (in line
60) to 80 for a full 80-column display on both screen
and printer.

10 REh PRINTER/TYPEWRITER

20 REM COPYRIGHT FREDERICK HOLTZ

30 CLS

40 KEY OFF

50 WIDTH 40

hO WIDTH"L.PTl: ",40

70 A^-^INKEY^

80 IF A^="" THEN 70

90 PRINT A$5

100 IF A^-=CHR$(13) THEN PRINT

110 LPRINT A^;

120 GOTO 70

Program 11. Printer/Typewriter.

69

Program 12: Trip Calculator
This is a program designed to supply you with

trip planning information—specifically trip time,
fuel consumption, total mileage traveled, and the
number of times it will be necessary to refill your
tank. (It assumes you are starting out with a full
tank.)

Lines 70 through 130 tell you about the pro
gram by printing instructions. As the program
moves on, lines 200-210 ask for your average fuel
consumption for in-town driving, in miles per
gallon. At line 220 the INPUT statement assigns
this figure to variable A. Lines 250 through 270
allow you to input your MPG figure for highway
driving, assigning it to variable B.

After line 280 clears the screen, lines 290

through 310 allow you to input your fuel tank

capacity in gallons. This is committed to numeric

variable C. In line 320 the BEEP statement causes

a short 1000 Hz tone to be produced, telling the user
to examine the information printed by lines 340
through 370 for correctness; lines 400-430 prompt
the user to verify. If it is not (Enter N), there is a
branch to line 190, where you are asked for the in
formation again. If it is correct there is a branch
to line 490, and the program continues. Line 140
checks for either an uppercase N or Y. If youVe
input something else, lines 440 through 480 indicate
an incorrect input. Line 480 branches to line 310,

where the previously input information is displayed
again.

Assuming the information is correct, lines 490
through 550 clear the screen and explain the infor
mation the user will be asked for next. Line 570

10 REM PROGRAM TO DETERMINE TRIP TIME^FU
EL CONSUMPTION,TOTAL MILEAGE TRAVELED.
20 REM COPYRIGHT F ttEDERICK HOLTZ
30 CLS

40 KEY OFF

50 SCREEN O

60 WIDTH 40

70 PRINT"THIS PROGRAM WILL ACT UPON INPU

T INFOR-"

80 PRINT"ION TO ALLOW YOU TO PLAN A TRIP
II

90 PRINT"IT WILL BE NECESSARY FOR YOU TO

KNOW"

100 PRINT"YOUR PLANNED ROUTE, THE MILEAG
E OF EACH TRIP LEG, YOUR AUTOMOBILE^' IN
-TOWN"

110 PRINT"AND HIGHWAY FUEL CONSUMPTION F

IGURES"

120 PRINT"AND A FEW OTHER FACTS. THE FIN

AL SCREEN PRINT OUT WILL SERVE AS A USEF

UL GUIDE"

130 PRINT"FOR TRIP PLANNING."

140 PRINT

150 PRINT

160 PRINT"PRESS ANY KEY TO CONTINUE"

170 A^=INKEYi|i

180 IF A^-=""THEN 170

190 CLS

200 PRINT"WHAT IS YOUR AVERAGE MPG FIGUR

E FOR"

Program 12. Trip Calcuiator. (Continued to page 73.)

70

'YOUR IN-TOWN GAS CGNSU

'YOUR HIGHWAY CONSUMPTI

"YOUR AUTOMOBILE WILL

INFORMATION CORRECT (Y

210 PRINT"IN-TOWN DRIVING"

220 INPUT A

230 PRINT

240 PRINT

250 PRINT"WHAT IS YOUR AVERAGE MPG FIGUR

E FOR"

260 PRINT"HIGHWAY DRIVING"

270 INPUT B

280 CLS

290 PRINT"HOW MANY GALLONS OF FUEL WILL

YOUR TANK HOLD ON FILL-UP "

300 INPUT C

310 CLS

320 BEEP

330 LOCATE 11,25

340 PRINT TAB(25)

MPTION IS"A"MPG"

350 PRINT TAB(25)

ON I3"B"MPG"
360 PRINT TAB(25)

HOLD A"

370 PRINT"MAXIMUM OF"C"GALLONS."

380 PRINT

390 PRINT

400 INPUT"IS THIS

/N) ",Bit

410 IF Bi^="N" THEN 190

420 IF B^-"Y" THEN 490

430 IF Bi^<>"N" AND Bili<>"Y" THEN 440

440 CLS

450 PRINT"YOU HAVE NOT ENTERED CORRECTLY
I I I II

460 PRINT

470 PRINT

480 GOTO 310

490 CLS

500 PRINT"YOU WILL NOW BE ASKED TO SUPPL

Y INFORM-"

510 PRINT"ATION ABOUT YOUR TRIP. YOU WIL

L NEED"

520 PRINT"TO EXAMINE YOUR INTENDED ROUTE

ON AN"

530 PRINT"APPROPRIATE ROAD MAP."

540 PRINT

550 INPUT"PRESS ENTER WHEN READY TO CONT

INUE",Q$
560 CLS

570 PRINT"FROM WHICH TOWN OR CITY WILL Y

OUR TRIP"

580 PRINT"BEGIN"

590 INPUT D^

600 PRINT

71

WHICH TOWN OR CITY WILL YOU

670

680

690

700

ATE

710

'NUMBER

M

OF TRIP MILES-

610 PRINT

620 PRINT"AT

R TRIP END "

630 INPUT Eifi

640 CLS

650 PRINT"FROM YOUR ROAD MAP, TYPE IN TH
E TOTAL"

660 PRINT'

INPUT

PRINT

PRINT

PRINT"HOW MANY MILES INVOLVE INTERST

HIGH-"

PRINT"WAYS OR LIMITED ACCESS PRIMARY

ROADS"

720 INPUT I

PRINT

PRINT

PRINT"HOW MANY TRIP MILES WILL BE SP

ON"

PRINT"SECONDARY ROADS "

INPUT S

PRINT

PRINT

PRINT"HOW MANY TRIP MILES WILL INVOL

DRIVING"

730

740

750

ENT

760

770

780

790

800

VE

810 PRINT"THROUGH TOWNS AND CITIES"

820 INPUT R

830 IF (I+S+RXM THEN 860

840 IF (H-S+R)>M THEN 920

850 IF (I+S+R)=M THEN 950

860 CLS

870 PRINT"YOU HAVE ENTERED LESS THAN THE

TOTAL"

880 PRINT"TRIP MILEAGE!!I"

PRINT

INPUT"PRESS <ENTER> TO TRY AGAIN-"3 A

890

900

910

920

930

GOTO 640

CLS

INPUT"YOU HAVE ENTERED MORE THAN THE

TOTAL TRIP MILEAGE!!! PRESS ENTER TO TR

Y AGAIN",A$

940 GOTO 640

950 Y= (I /55) + (R/ 18) h- (S/45)

960 W==(I/B)-+-(S/B*1. D -XR/A)

970 Z=W/Y

980 X=-W/C

990 IF X<1 THEN X:==0

1000 CLS

1010 BEEP

72

TRIP FROM "D^i"

TAKE"Y"HOURS."

TO "Eli

1020 LOCATE 8,1
1030 PRINT"YOUR

1040 PRINT"WILL

1050 PRINT

1060 PRINT

1070 PRINT"TOTAL FUEL CONSUMPTION WILL B

E"W"GALLONS."

1080 PRINT

PR I NT-

PR I NT "YOU WILL HAVE TO REFILL"X"TIM

1090

1100

ES. "

1110

1120

1130

WILL

PRINT

PRINT

PRINT"YOUR AVERAGE

BE"

FUEL CONSUMPTION

1140 PRINT Z"GALLONS PER HOUR.

asks for the town or city of departure, which is com
mitted to variable D$. Line 620 then asks for the

name of the town or city of destination, and com
mits to variable E$.

From this point on, the user is asked to input
the total number of trip miles, as well as a
breakdown of how many are highway, secondary
road, and in-town driving. These values are com
mitted to numeric variables M, I, S, and R, respec
tively; lines 830 through 850 then make certain the
number of miles in the breakdown equals the total
number of trip miles represented by variable M. If
the figures don't agree there is a branch back to
line 640, where you are prompted to input the in
formation again. Since this is a practical program
producing important information, it is necessary to
program adequate check functions to assure ac
curate input. (Providing check functions for your
programs is a useful habit to acquire.)

Assuming all information is correct, there is a
branch to line 950, where the formulas come into

play. Line 950 assigns Y a value equivalent to the
total time for the entire trip. Here I have assumed
that the average speed will be 55 mph for highway
driving, 18 mph intown, and 45 mph for secondary
roads. You can adjust this line to match your own
personal driving experience, but these figures
should suffice. Line 960 assigns to W the total fuel

consumption. Line 970 divides W by Y, which
yields fuel consumption in gallons per hour. Line
980 assigns to X the total gallons divided by the
number of gallons your tank will hold. This means
X will represent the number of times you will have
to refill your tank. Line 990 simply assigns X the
value 0 if X is less than 1. (You can't refill your tank
a fractional number of times.) Finally, line 1000
clears the screen. The user hears another beep, and
the information is neatly displayed. Figure 4-2
shows a sample printout on the AT&T PC-6300
screen.

This program is certainly not meant to be
used as an exact indicator of the trip values

YOUR TRIP FROM ELM CITY TO CHICAGO

WILL TAKE 11.49192 HOURS.

TOTAL FUEL CONSUMPTION WILL BE

22.57429 GALLONS-

YOU WILL HAVE TO REFILL 2 TIMES.

YOUR AVERAGE FUEL CONSUMPTION WILL

BE 1.964362 GALLONS PER HOUR.

Fig. 4-2. Data printout of the trip calculator.

73

displayed. No computer can do this because there
are too many variables involved. If it rains, for in
stance, or if you run into construction or get lost,
then all factors will change. This program is useful,
however, because it can indicate reasonable expec
tations for a trip starting at point A and ending at
point B. By aiding you in your planning, it may
make any trip more enjoyable.

Program 13: Alphabetizing

The last program in this chapter, lucky 13, is
extremely useful. As a matter of fact, I use it to
complete almost every book I write because it
handles the alphabetizing necessary for indexes and
glossaries. Using this program, you can enter up

to 1000 words or phrases in any order. The com
puter will then sort them and print them on the
screen in alphabetical order. Now, from a practical
standpoint, it would take even the PC-6300 several
hours to alphabetize several thousand items; fur
thermore, your screen cannot display this many
items at one time. This program is more useful for
alphabetizing short lists, although you could modify
it to dump its output on the printer.

After the screen is initialized, lines 70 through
90 tell the user what to do. Two string arrays are

established in lines 120 and 130, each able to con
tain up to 1000 items. The user is then prompted
to input the words to be alphabetized. Line 150 con
tains a simple count routine that increments I by
1 each time a word is input; line 160 contains the
INPUT statement that assigns the word to the A$
array. Line 180 then branches back to line 150,
allowing another word to be input. Program line
170 contains the endless loop exit routine. To com
plete your list, tjrpe and enter the word END. This
must be in capital letters, although all other words
may be input in either upper, lower, or mixed case.
When the exit word is input, there is a branch to
line 190, which assigns to variable N the value the
count variable I, minus 1. This minus 1 is necessary
because the word END caused I to be stepped by
1, but it is not a word to be alphabetized.

Line 200 starts a FOR-NEXT loop which sim
ply counts from 1 to the value of N, which is

10

20

30

40

50

60

70

80

D- .

90

10(

lie

12e

13(

14e

REM ALPHABETIZING PROGRAM

REM COPYRIGHT F REDERICK HOLTZ

CLS

SCREEN O

WIDTH 80

k:ey off

PRINT"ENTER EACH WORD AS

REQUESTED."

PRINT"WHEN LIST IS COMPLETE,
TYPE ='EN

PRINT"ENTER UP TO 1000 WORDS'

:> PRINT

) PRINT

) DIM A$(1000)

!) DIM J$(1000)

:> PR I NT " TYPE WORDS TO BE

ALPHABETIZED:

150 1 = 14-1

160 INPUT A$(I)

170 IF A$(I)="END" GOTO 190

180 GOTO 150

190 N=I-1

200 FOR 1=1 TO N

210 J$(I)=Aili(I)

220 NEXT I

230 CLS

240 FOR 1=1 TO N

250 PRINT Aifc(I)",";

260 NEXT I

270 PRINT

280 PRINT

290 PRINT"PRESS*=ENTER *TG CONTIhjlJE'

300 INPUT Z1»

310 CLS

320 LOCATE 12,9
330 PRINT"COMPUTING PLEASE

STAND BY"

340 FOR P=1 TO N-1

350 FOR 1=1 TO N-P

360 IF J^(r)<= J1i(I + l) GOTO 400

370 X$=Jit(I)

380 a^(I)=J$(l4-l)

390 J^(I + 1)==X^

400 NEXT I

410 NEXT P

420 CLS

430 FOR 1=1 TO N

440 PRINT J«(I)

450 NEXT I

460 END

Program 13. Alphabetizing.

74

equivalent to the number of words input. Line 210
simply reads all of the words in A$ into J$, so that
when the loop is exited in line 220, the items in J$
are identical to those in A$. The screen is then

cleared and another loop is entered, with lines 240
through 260 simply displaying the contents of the
array on the screen. When you press Enter, the
screen is again cleared and a prompt appears at the
center of the screen, telling you that the computer
is processing the list. For short lists this prompt is
not really necessary, but for longer lists it lets the
user know that the computer is doing its job and

hasn't locked up.
Lines 340 through 410 contain the sorting

routine. While the number of program lines is short,
the operation is complex. Here's what happens.
The computer reads each item in the array, assign
ing the first item the lowest value. If the next item
is of higher value, it's left in place, but if it is of
lower value than the first item, the two values are

interchanged in the array. The computer considers
an A to be smaller than a B, a B smaller than a C,

and so on. The computer continues to pull out
words and compares them with those read
previously—swapping the list around, two items at
a time, until the order is complete.

Line 420 then clears the screen and the entire

contents of the J$ array are displayed on the screen.

This is accomplished by lines 430 through 450,
which count I from 1 to the number of elements

contained in the array. The PRINT statement in
line 440 prints the array element and the loop then
recycles. Program execution then terminates. If you
wish to output the information to the printer, simply
change the PRINT statement in line 440 to
LPRINT and the job is done. Especially for long
lists, this program is far more useful when the out
put is directed to the printer.

Summary

The 13 programs included in this chapter were
written on and for the PC-6300. For the most part,
they are simple programs, although the last two
may not fall into this category. Each program can
be put to some practical use (with the possible ex
ception of the backward letter program), and each
provides a wealth of tutorial information to the
beginning programmer. You are encouraged to
modify and combine these programs to build soft
ware that will do a specific job for you. If you don't
understand how these programs work, please
reread the information accompanying them. These
simple programs encompass a road spectrum of
text-mode operations on the PC-6300, and routines
similar to these will be used in nearly every pro
gram you write.

75

Chapter 5

Graphics Programs
for the AT&T PC

This chapter will discuss some fairly simple
graphics programs. Each is presented in a similar
manner to the programs discussed in the previous
chapter. We will start with fairly low levels of com
plexity before building up to higher-level programs.

To make this chapter as useful and educational
as possible, it is divided into several sections to ad
dress different areas of graphics programming.
Each of these areas will be explained as fully as
possible using actual programs as examples. Each
program and discussion assumes use of a color
monitor. However, if you are using the AT&T
monochrome monitor, the graphics displays will
still be attractive, although they will appear in
monochrome rather than in the colors described.

Again, it is not necessary for you to purchase a color
monitor in order to program graphics on the AT&T
PC-6300. The optional RGB color monitor is
desirable, however, for sophisticated graphics ap
plications and mandatory if you want to actually see
the various colors rather than seeing them displayed
in shades of gray.

GENERAL GRAPHICS PROGRAMS

This section will discuss some fairly simple
graphics programs of a general nature. Most of the
programs will concentrate on using the LINE, CIR
CLE, PAINT, and COLOR statements. These are
good programs for the beginning graphics
programmer.

Program 14: Random Boxes

This simple program does just what its name
implies. It draws boxes at random on the screen.
The screen is not cleared after each box is drawn,

so the images accumulate, as shown in Fig. 5-1. If
the program is run for a long enough period of time,
these boxes will eventually fill the entire screen.

This program initially clears the screen and
turns off the key at the bottom of the screen. The
screen is then set to mode 1, the medium resolu

tion graphics mode, by line 40. You will notice that
line 40 is a multiple statement program line that
contains both a SCREEN and a COLOR

76

1.0 REM RANDOM BOXES

20 CLS

30 KEY OFF

40 SCFiEEN l.,0: COLOR 0,0
50 LIIME - (RND*319, RND* 199) ,
RND*4,B
60 GOTO 50

Program 14. Random Boxes.

statement—separated by a colon, which is a must
in GWBASIC. The COLOR statement sets the

BACKGROUND color to 0 (black) and the

PALETTE to 0, allowing the colors green, red, and
brown to be used.

The boxes are drawn on the screen using the
LINE statement in program line 50. Here, the
ending coordinates for the line are set in the relative
mode, as explained in Chapter 3. The line will be
drawn from the current position of the graphic ciu*-
sor to the coordinates specified in parentheses. This
means that, after the first box is drawn, each suc
ceeding box will be drawn from a point that mark
ed the end of the one preceding it. (Remember, the
LINE statement, when used with the B designator,
creates imfilled boxes on the screen.) As soon as

the first box has been drawn in line 50, line 60 bran
ches back to it and this process continues ad
infinitum.

The RND function is used as a multiplier to
establish the X and Y coordinate values, and also

Fig. 5-1. Black-and-white representation of the screen display created by the Random Boxes program.

77

the color in which the box will be drawn. The X-

coordinate will always be equal to a value of from
0 to 318. The Y coordinate may be any number
from 0 to 198. (Remember, RND will always be less
than 1.) It is not necessary to use the INT function
here to specify coordinates; the computer will sim
ply take the nearest integer value for a coordinate
and plot from that point.

Any of the three colors in which the box may
be drawn using PALETTE 0 are established by the
RND *4 designator. This value will always be equal
to a number from 0 to 3. If the number is 0, the

box is drawn in the screen background and is not
seen; if it is 1, the color is green, while values 2
and 3 produce red and brown, respectively.

This program is set up on a continuous loop and
will continue to run imtil a manual halt is brought
about at the keyboard. If you want this program
to produce filled boxes at random, simply change

the B designator in line 50 to BP. If you want it to
draw random lines, simply drop the B designator
and the comma preceding it. This is an interesting
program to watch, but it can become boring after
a while. If you want to mix up the pattern a bit, in
sert the following line:

15 RANDOMIZE

Now, each time the program is run, the RAN
DOMIZE statement will cause a prompt to be
printed on the screen, telling you to input a random
seed number. Type in any number in the specified
range and then press Enter. Line 20 will still clear
the screen and a whole new pattern of boxes will
appear. If you type in a different number each time
the program is run, a different box sequence will
be generated.

Program 15: Expanding Globe

This program begins with a tiny circle at the
center of the medium resolution screen. The circle

then expands outward until it fills most of the
screen. The circle is painted during each expansion,
so there is an unusual pattern formed in the com
pleted image. Figure 5-2 shows the completed
circle.

10 REM EXPAhJDING GLOBE

20 CLS

30 SCREEN 1

40 KEY OFF

50 COLOR 0,0
60 FOR X=1 TO 100

70 CIRCLE(160,100),X,3
80 NEXT

Program 15. Expanding Globe.

Here's how the program works. Line 20 clears
the graphic screen, while line 30 actually puts us
in medium-resolution mode. Line 40 again erases

the key from the screen, and line 50 establishes a
black BACKGROUND and a PALETTE of 0. Line

60 is the start of a FOR-NEXT loop that increments
X from 1 to 100. Each time the loop cycles, a cir

cle is drawn about a center at coordinates 160,100.

The radius of the circle, however, is determined by

the value of X. Therefore, the first circle will have
a radius of 1 pixel and the second a radius of 2 pix
els. This process continues until the loop times out
and the circle has a final radius of 100 pixels. Notice
in line 70 that the color designator of 3 is used to
draw the circle. This will produce a brown or tan
color on the monitor screen, although on some it
will appear somewhat yellow. As the loop cycles,
the circle grows larger and larger. When the value
of X reaches 100, the loop cycles for the last time
and the program terminates. If you want to set this
program up on a continuous loop add the follow
ing line:

90 GOTO 20

This one-line addition causes the program to nm
over and over again.

Program 16: Traveling Box

This program uses the DRAW statement
(which will be discussed in more detail later) to

draw a box-like pattern on the medium-resolution
screen. The pattern, drawn at random, is shown in
Fig. 5-3.

78

Fig. 5-2. Expanding Globe.

:1.0 REM TRAVEL I N(3 BOX DESIGN

20 REM COPYRIGHT FREDERICK HOLTZ

30 CLS

40 ICEY OFF

50 SCREEN 1

60 COLOR 3,0

70 FOR A= -100*(RND) TO 100 (RMD >

30 DRAW "Li:::^A; R^^=A; D:==A; L=A; "

90 NEXT

100 GOTO 30

EP RN Dt«-4H-1

Fig. 5-3. Traveling Box design.

After the screen is initialized, the color is set
to a dark gray background and 0 palette in line 60.
Line 70 starts a FOR-NEXT loop that counts from
a negative number to a positive number, with both
the start and end points randomly selected. The
STEP value is also selected at random, and will be
equal to a value from 1 to 4. Line 80 contains the

DRAW statement, which uses the designators U,
R, D, L for Up, Right, Down, and Left, respective
ly. In every case, the box drawn will be sym
metrical. As the program runs, the box starts at the
bottom of the screen, passes through the center,
and then begins making its way to the top right of
the screen. This program is set up on a continuous
loop, so different patterns will continue to form imtil
the program is halted manually.

Program 17: Pinwheel

The pinwheel program draws a colorful circle
at the center of the screen. The black-and-white

version, shown in Fig. 5-4, does not do the screen
image justice, since it is displayed in a multitude
of colors. The program is similar to the expanding

10 REM PINWHEEL

20 CLS

30 KEY OFF

40 SCREEN 1

50 CLS

60 CCILIDR RND*15,RND*4

70 FOR yj==lTO 70 STEP RND-k-Sh-I

SO CIRCLE(160,100),X,1

90 NEXT

100 FOR X=100 TO 155

110 PAINT(161,X),RND*4,1

120 NEXT

130 GOTO 50

Program 17. Pinwheel.

globe program, but here the PAINT statement is

used (line 110) to fill in the spaces between circles.
You will notice that, in line 60, the COLOR state

ment designates random values. The screen

backgroimd may be any number from 0 to 14, while
the palette may be any number from 0 to 3. In
SCREEN 1 mode there are actually only two pal
ettes open to us, usually numbered 0 to 1. However,

any even number value inserted for the pallette
number simply sets the computer to PALETTE 0,

Fig. 5-4. Pinwheel.

while a 3 or any other odd number sets it to 1. In
my opinion, using the higher numbers in a random
program allows for a better mix of palettes.

Line 70 begins the first FOR-NEXT loop,
which counts from 1 to 70 in random steps rang

ing from 1 to 6, depending on the output of the ran
dom number generator. A circle is then written at
the center of the screen, with its radius deter
mined by the value of X. Since X is stepped in ran
dom increments, the separations between circles
will be variably spaced rather than uniformly
spaced.

When the first FOR-NEXT loop times out,

another steps X from 100 to 155. The value of X
is used in the PAINT statement (line 110) to ac
cess a screen point that will lie in the bands be
tween circles. If fills in these areas with a palette
color from 0 to 3. When this loop cycles out, the
entire pinwheel has been drawn and colored. The
(jOTO statement in line 130 branches back to line
150, where the screen is cleared. The program then
begins to draw another pinwheel with newly
established, randomly determined background and
palette values. This is a very pretty program to
view for long periods, because the screen
background color is constantly changing and bring
ing about different palette effects. It's one of those
displays you never grow tired of watching.

Program 18: Funnel
Again the CIRCLE statement is used in

stepped radius sizes, but this time to produce a fun

nel effect shown in Fig. 6-5. After the screen is
cleared and set up for medium-resolution graphics,
line 60 sets the background to a dark gray; a palette
value from 1 to 3 is established using the RND func
tion. Here I've elected to include the INTeger func
tion as well, although it's not necessary.
Remember, the only two palettes available in
SCREEN 1 mode are respectively. Since the
numbers possible range from 1 to 3, there is a greater
likelihood of achieving an odd palette number (1 to
3) than an even number (2). This was done for visual
effect.

Line 70 begins a FOR-NEXT loop which steps
X from 51 to 140, in random steps ranging from
1 to 10. The CIRCLE statement in line 80 uses the
value of X to establish its coordinates. Notice that
the Y coordinate is established by subtracting X
from 240, while the circle radius is determined by
subtracting 40 from the value of X. The palette col
or in which the circle is drawn is determined by a
random number routine that outputs either 1,2, or
3. As the loop recycles, various size circles are
drawn on the screen, getting wider as they move
toward the left. This produces an image that looks
much like a funnel. The GOTO statement in line
100 simply locks up the computer in an endless
loop, preventing the BASIC end-of-execution
prompt (OK) from appearing. To exit this program,
you have to bring about a manual halt via the
keyboard. Figure 5-5 is shown in black and white,
hut the funnel will appear on a color monitor in
multiple colors.

10 REM F-UNNEL

20 REh COPYRIGHT FREDERICK HOLTZ 12/20/8:
30 CLS

40 SCREEN 1

50 KEY OFF

60 COLOR 8,INT<RND*3)+1

70 FOR X=51 TO 140 STEP INT<RND*10)+1

80 CIRCLE(X,240-X),X-40,INT(RND*3)+1
90 NEXT X

100 GOTO 100

Program 18. Funnel.

81

y
y I I

Fig. 5-5. Funnel.

Program 19: Cornucopia

Figure 5-6 shows the unusual display created
by the Cornucopia program. This one is very similar
to the funnel program, except the SIN function is
used to plot the centers of the circles along a curve
that starts at a point, travels upward to a maximum
value, and then travels slowly downward past the
point of origin to a maximum negative value.

After the screen is set up, line 60 begins a FOR-
NEXT loop that counts from 1 to 240. Line 80
assigns to Y the value of 50 times the sine of the

quantity X divided by 50. The circles created by
this program are drawn either in white or black.
If drawn in black, they are invisible; this is what
produces the rough effect of a cornucopia shell.
Line 70 alternates the color palette value between
0 and 3. Notice that A has not been assigned a value
prior to the loop which began in line 60. Line 70
says that if A is equal to 0 then reassign A the value
3, but if A is not equal to 0, then reassign A the
value 0. A is used with the CIRCLE statement in

line 90 to determine the color. On the first cycle
of the loop, since A has not been assigned it is

82

10 REM CORNUCOF-'IA

20 REM COPYRIGHT EREDERICK HOLTZ

30 CLS

40 KEY OFF

50 SCREEN 1

60 FOR X=1 TO 240

70 IF A=0 THEN A=3 ELSE A=0

80 Y=--=50*SIN<X/50)

90 CIRCLE<25+X,Y+100), H-X/5,A
100 NEXT X

110 GOTO 110

Program 19. Cornucopia.

automatically 0. Line 70 changes the value of A to to 0. On each pass, A will alternate between 0 and 3.
3, and this is then used as the color designator in The X and Y coordinates of the circle are deter-
line 90. On the next cycle of the loop, however, A mined by adding 25 to the value of X and 100 to
is still equal to 3, line 70 changes the value back the value of Y. The diameter of the circle increas-

S

Fig. 5-6. Cornucopia.

83

es on each pass of the loop, its radius equaling 1
plus the value of X divided by 5. This program will
take about 20 seconds to complete its run. When
the loop times out, another endless loop lockup is
formed in line 110, which keeps branching to itself.
It will again be necessary to execute a manual halt
at the keyboard to terminate execution. You may
wish to alter this program by changing the values

in line 70. Doing this can create a multi-colored
cornucopia.

Program 20: Saturn

This program depicts a deep-space scene on the
computer screen. The black-and-white version in

Fig. 5-7 shows Saturn, along with four of its many
moons. (What is the count now? Thirteen?) As

REM (3RAPHIC DISPLAY OF SATURN AND

REN COPYRIGHT FREDERICK HOLTZ

CLS

SCREEN 1

KEY OFF-

CIRCLE <1, 100) , 100,, 2

PAINT(1,100),1,2

LINE (0, 9-7) - < 160, 110) , 3
LI NE (0, 100) •- (160, 110) , 2

10

20

30

40

50

60

70

80 LINE(O,112)~(160,110),3
90

100

110 LINE(0,104)-(160,11O),2

120

130

140

150 LINE(0,99)~ <160,110)
160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310 PAINT(21O,150),1,2
320 CIRCLE <190,170)
330 PAINT

340 GOTO 340

L. I NE < 0, 103) - (160, 110)
LI NE (0, 102) •- (160, 110)
LI NE (0,101) -• (160, 110)

LINE(0,105)-(160,110)
LINE < 0,106)-(160,110)
LINE(0,107)-<1SO,110)
LINE < 0,108)~(160, 110)
LINE(O,110)-(160,110)
CIRCLE < 280,70),10,2
PAINT(280,70),3,2
CIRCLE (260,100) ,5,2

PAINT(260,100) ,2,2
LINE (0,40)-(70,40)
LINE (O,30)~(55,30)
LINE (0,70)-(95,70)
LINE(O,120)-(99,120)
LINE(O,150)-(80,150)
CIRCLE(210,150),3,2

,3,

(190,170),1,2

ITS NOONS

Program 20. Saturn.

84

iiliilliil
Ipl i^l ii IPPiiiil!i«iI |i| p| ji jllijl
ill ill i liliiilp

ipilliif
ji liiiyF"
lliii'

Fig. 5-7. Saturn.

you've probably already guessed, a number of CIR
CLE statements are used to produce this display-
five CIRCLE statements to be exact, one to dratv

the planet and four to draw the moons. Here's the
way the program works.

The CIRCLE statement in line 60 produces a

circle with a radius of 100. However, the center of
this circle lies at screen coordinates 1,100. An X-

axis value of 1 puts it at the far left-hand side of
the screen, so only half of the circle actually ap
pears. Line 70 paints this circle with palette color
1. Lines 80 through 100 draw the lines that make
up the ring. Their coordinates were laboriously plot
ted by trial and error. The CIRCLE statement in
line 210 draws the large moon on the far right,
which is then filled in with palette color 3. The CIR
CLE statement and its accompanying PAINT state
ment (lines 230-240) draw the moon just beneath

the large one. The five LINE statements in lines
250 through 290 draw the lines on the surface of
Saturn. The following CIRCLE and PAINT
statements draw the remaining two moons. Pro
gram execution is again tied up with the GOTO
statement in line 340.

While this program was written in four-color
mode, some readers will probably want to create
this display in sixteen-color mode, since the colors
of Saturn number far more than four.

Program 21: Solar System

Staying in deep space, this program will pro
duce a chart of the solar system. The display is
shown in Fig. 5-8, and will probably look similar
to many astronomical charts you have seen. This
program consists almost entirely of CIRCLE and

1.0 REM SOLAR SYSTEM

20 REM COPYRIGHT FREDERICK HOLTZ
30 SCREEN 1

40 CLS

50 KEY OFF

60 COLOR 8,0
70 CIRCLE(45,100),10,2
SO PAINT (45, i.00) , 3, 2
90 FOR X=150 TO 360 STEP 50

100 CIRCLE(45,100 >,X,3,,,5/18
11.0 NEXT X

120 FOR X~30 TO 100 STEP 20

130 CIRCLE(45,100),X,3,,,5/18
140 NEXT X

150 CIRCLE(15,100),3,1
160 PAINT(15,100),2,1
170 CIRCLE(90,105),4,2
180 PAINT(90,105),2,2
190 CIRCLE(100,87),5,3
200 PAINT(99,89),1,3'
210 PAINT(100,87),1,3
220 CIRCLE(135,98),4,1
230 PAINT(135,98),3,1
240 CI RCLE (150., 130) , 7, 2
250 PA I NT (150, 1.30) ,2,2
260 CIRCLE(249,100),6,3
270 PAINT(250,98),2,3'
280 CIRCLE(245,58),5,1
290 PAINT(245,58),3,1
300 CIRCLE(200,29),5,2
310 PAINT(200,29),2,2
320 CIRCLE(160,6),4^3
330 PAINT(162,6),1,3
340 GOTO 340

Program 21. Solar System.

PAINT statements. Line 70 draws the sun at the line 100 uses the center of the solar system, where
center of the solar system, although in this display the sim is displayed, to form the center of most of
it appears toward the left of center. The PAINT the orbital path circles. The radius value is deter-
statement in line 80 fills in the circle with palette mined by the value of X. The 5/18 designation at
color 3. Lines 90 through 110 form all of the orbit the end of the CIRCLE statement is the aspect ratio^
paths on the display screen. X is coimted from 150 the ratio of vertical screen dimension to horizon-
to 360 in steps of 50. The CIRCLE statement in tal. If the (default) aspect ratio of a true circle is

86

Fig. 5-8. The Solar System.

1/1, i.e., its vertical and horizontal radii are equal,
specifying a different ratio (such as 5/18) will flat
ten the circle into an ellipse whose major and minor
axes follow that ratio.

The FOR-NEXT loop begun in line 90 draws
the outer orbit path, while another FOR-NEXT loop
in lines 120 through 140 draws the inner orbital
paths closer to the sim. Once the orbital paths have
been created, it is necessary to draw the planets
and fill them in, using CIRCLE and PAINT
statements. The values contained in lines 150

though 330 were arrived at by trial and error. This
is a pretty display to watch, and I have plans to use
some animation routines to cause the planets to
move along their orbits. Such a program, however,
is saved for a later book.

Program 22: Text Animation Demo

Since animation was mentioned in the previous
paragraph, it's appropriate to present this program,
which provides a simple animation routine for mov
ing text characters about the screen. This program

sets up the screen for medium-resolution graphics
mode, but it will work just as well with a SCREEN
0 statement in line 30. Line 50 clears the screen

and line 60 prompts the user to input an animation
speed between 1 and 100; the lower the speed
number, the faster the animation. This input value
is assigned to numeric variable SP, which is
reassigned in line 70 to a value of 4 times SP. Line
80 clears the prompt from the screen. A loop is
entered in line 90, which coimts X from 1 to 40.
The value of X is used in line 100 to determine the

column position on the screen. The LOCATE state
ment places the cursor at row 14, column X. (We
already know that X can range from 1 to 40, which
happen to be the column values for the medium-
resolution screen.) Line 110 prints the letter A at
the screen position designated by the LOCATE
statement.

Here's where the animation begins. Line 120
counts numeric variable DEL from 0 to SP. The
FOR-NEXT statement in line 120 forms a time

delay while the computer coimts from 0 to the cur-

87

10 REM ANIMATION DEM CLS/LOCATE

20 REM COPYRIGHT FREDERICK HOLTZ

30 SCREEN 1

40 KEY OFF

50 CLS

60 INPUT"ANIMATION SPEED(1-100) "H S
70 SP==SP*4

80 CLS

90 FOR X=1 TO 40

100 LOCATE 14, X

110 PRINT "A"

120 FOR DEL-^0 TO SP:NEXT DEL

130 CLS

140 NEXT X

Program 22. Text Animation Demo.

rent value of SP; the higher the value of SP, the
longer the computer takes to coimt up to it. As soon
as the loop in line 120 times out, the CLS statement
in line 130 clears the screen and the outer (X) loop
recycles. The LOCATE statement advances the
cursor to the right one column, and again, the let
ter A is printed, one character position to the right
of where the previous print occurred. The delay
loop is again entered; when it times out the screen
is cleared, and the letter A is printed in the next
column position. This process continues until A has
traveled the entire width of the screen. Each time

the letter A is printed, it is erased and reprinted
in an advanced position. That is what it's all about.
The speed of animation is determined by the
amount of time between when a character is writ

ten and when it is erased.

Program 23: Graphics Animation Demo

This program accomplishes the exact same
screen display as the previous program, but this
time the graphic PUT and GET statements are
used to effect the animation. The program is
the same down to line 90, where an array is
established to hold the character to be animated.
Line 100 places the cursor in the upper left-hand
comer of the screen, and line 100 again prints an A.

The GET statement in line 120 places an ar

ray A the screen contents of a box whose upper left-
hand comer is at coordinates 0,0 and whose lower
right-hand comer lies at coordinates 7,7. This will
encompass the entire letter A printed at location
1,1. Line 130 erases the A from the screen by put
ting the image to itself. Note that the coordinates
used with the first PUT statement are the same as

those used with the GET statement that identified

the upper left-hand comer.
Line 140 starts the animation loop, which steps

X from 0 to 309. Note that we are using graphic
(not text) coordinates for the X-axis here. Line 150

uses the PUT statement to place the image of the
letter A at location 0,100 on the first pass of the
loop. Line 160 is the time delay loop, which works
just as it did in the previous program. When the
loop times out, the PUT statement in line 170 puts
the image to itself again, erasing it. The loop then
recycles, and again, the letter A travels from left
to right across the screen. This program will cause
the letter A to move more slowly, since we're deal
ing here with 309 different coordinates instead of
the 40 in the previous program. You can speed the
animation up by changing line 140 to:

140 FOR X = 0 TO 309 STEP 10

This increments the X coordinate positions in steps
in 10, as opposed to steps of 1.

88

1 o

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

1 SO

REh AMIhATIGN DEH USING PUT/GET

REM COPYRIGHT FRFZDERICK HOLTZ

SCREEN 1

KEY OFF

CLS

INPUT " AN I NAT I ON SPEED (1 -• 100) " li SP

SP=::^SP*4

CLS

DIN A(100)

LGCATE 1,1

PRINT "A"

GET(0,O) • - (7,7) ,A

PUT(0,0),A

PGR X:::::0 TG

PUT(X,100).

FOR Y=:^l TG SP^NEXT Y

PUT(X,100)

NEXT X

309

A

SP^NEXT

A

Program 23. Graphics Animation Demo.

Program 24: Animated Cigarette
This program shows how animation can be

used effectively to produce unusual effects on the
screen. When run, the program will show a graphic
cigarette that will be "smoked'' by the computer.
As the cigarette bums, smoke rolls up from the tip
and ashes begin to form. Figure 5-9 shows how the
display looks when the program is first run.

The smoke is formed by combining sets of
parentheses at different screen locations. The
parentheses are printed in lines 80 and 90; line 100
establishes an array named A to hold them. The
GET statement in line 110 commits the parentheses

image to the array, and line 120 erases it from the
screen by putting it to itself. The B designator in
line 130 draws an elongated rectangle on the screen
to represent the cigarette. A vertical line is drawn
by line 140 to mark the segment where the filter
is located, and lines 150 and 160 color in the various

portions. Line 170 starts the animation loop, which
counts X from 120 to 0 in negative steps of 6.

(Remember, the cigarette body itself is not
animated, only the parentheses that make up the
smoke.) Line 180 puts the first set at position 80,X
(80,120 on the first pass of the loop), a point just
above the end of the cigarette. The time delay loop
in line 190 slows the computer down a bit, and a
simple coimt routine is set up using the variable R
in line 200. The value of R is tested in line 210. If

it's not equal to 40, there is a branch that causes
the loop to recycle and produce more puffs of
smoke.

Notice that the image is not put to itself after
the loop times out; we want to produce an entire
column of smoke when the entire loop cycles. Line
260 will cause it to cycle again starting in line 170.
In other words, when the loop counts from 120 to
0, the column of smoke is formed. After the branch
in line 260, the cycling of the loop will cause the
column to be erased. Whenever the value of R is

equal to 40, R is reset to 0 and the count sequence
in line 220 is established. Line 230 then draws a

89

10

20

30

40

50

60

70

80

90

100

1.10

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

REM SMOKING CIGARETTE

f;em copyright Frederick holtz

CLS

key off

screen 1

COLOR 0,1
LOCATE 1,1
PRINT"<)"

PRINT" ()"

DIM A(200)

GET(0,0)-(20,18),A
PUT(O,0),A

LINE(80,140)-(280,160),3,B
LINE(230,140)-(230,160),3

PAINT(85,144),3,3
PAINT(232,150),2,3
FOR X=120 TO O STEP -6

PUT(80,X),A

FOR Y=1 TO 25:NEXT Y

R=R+1

IF RO40 THEN 250 ELSE R=0

C=C+5

LINE(76+C,140)-(78+0,230),0,BF
IF C=50 THEN 270

NEXT X

GOTO 170

END

Program 24. Animated Cigarette.

line near the end of the cigarette to represent the
ashes. When C counts up to 50, the cigarette has
burnt down far enough for the program to end.

contained in this first section before moving on to
the next.

Section Summary

In this section, I have tried to slide gently into
graphics programming with some simple routines
that have, finally, been built up into some fairly
complex programs. Some of them are not terribly
easy to understand from explanation alone. At this
point, it would be a good idea to go back to any pro
grams you don't fully understand and dissect them
a line at a time. Try inputting different values to
see what happens. You should understand what is

GRAPHICS UTILITY PROGRAMS

This section contains only two programs, both
of which are of modest length. Both rely heavily
on the POINT function in GWBASIC, and also on
the PSET statement. Neither of these programs can
produce an image on the screen unless one already
exists. Instead, they modify images produced by
other programs, such as those discussed in Section
I of this chapter. This is why I call them graphics
utility programs.

90

Program 25: Mirror Image

This program reads all of the points of light that

make up an on-screen image, and then reverse them

in mirror-image style. For example, the previous

chapter showed a screen print from a program that

produced a deep-space scene on the screen. The
mirror-image program would simply reverse the im

age of the deep-space scene so that the moons were
on the left and the half-body of Saturn on the right.

It can also be used to produce letters from the nor
mal text font that can only he read when held up

to a mirror.

Here's how the program works. Line 30 sets
up an array (A) to hold 320 elements, the number
of points per horizontal line of the medium-

resolution graphics screen. Notice that no CLS
statement is used here, because it's assumed that

an image already exists on the screen. Line 40

assigns Y an initial value of 0, and line 50 then

begins the horizontal scanning loop which sequen

tially places the graphic cursor at every point on

the medium-resolution screen. In the first cycle of

the loop X is equal to 0, and we know that Y has

been assigned to 0. The POINT function in line 60

assigns to numeric variable V the color numeral

from 0 to 3 of the point on the screen at coordinates
0,0. (The POINT function, you will recall, returns

the color numeral of the point on the screen at

which the graphics cursor is placed.) The point

value at the X-Y coordinate is assigned to V, and

f ̂
C if ^
J J
J ^ >
J J
{ I
J 3
C ^ j
(i
{ ̂ j
C d? j
C)
J ^ J

\tl
i f J

J J
(.)

10

20

30

40

50

60

70

BO

90

100

110

120

130

140

150

ave:

REM MIRROR IMAGE SCREEN GRAPHICS
REM COPYRIGHT FREDERICK HOLTZ

DIM A(320)

¥=,=0

FOR X=0 TO 319

V=POIIMT(X, Y)

A (X)

NEXT X

FOR X==319 TO 0 STEP -1

PSET(X, Y) , A(319-)<)
NEXT X

¥:.=¥+1

IF Y~200 THEN 150

GOTO 50

GOTO 150 •'THIS LINE MAY BE USED TO S
YOUR MIRRORED SCREEN DISPLAY THROUGH

BSAVE

Program 25. Mirror Image.

this value is in turn assigned to the array in the first
array position, A(0). On the second pass of the loop
X is equal to 1, so V gets the point value of the pix
el located at coordinates 1,0; array position A(l)
then gets the value of V. This process continues
luitil the loop times out.

At this point, the 320 points on the top line of
the graphics screen are contained in array A. Now,
line 90 begins a FOR-NEXT loop that counts X
backward from 319 to 0. The PSET statement Qine
100) is used to place the cursor at coordinates X,
Y. On the first pass of the loop X will be equal to
319 at the far right-hand comer of the screen, and
Y is still equal to 0. The color value that PSET
places on the screen is determined by the value con
tained in array position A(319-X); 319 minus 319
is 0, so the first value read by the pass of the
previous loop (at the left-hand comer of the screen)
is set at the far right-hand comer of the screen. On
the next pass of this negative counting loop, the
second value in the array that corresponds to screen
point 1,0 is set at screen point 318,0. This continues
imtil the loop times out. The result is a reprint of

the top line on the graphics screen in mirror-image
form.

Now, line 120 steps Y by a value of 1. At this
point, Y is now equal to 1, since its previous value
was 0. Line 130 contains a test statement to see

when we've reached the bottom of the screen; if
Y is equal to 200, there is a branch to line 150. For
now, 150 just forms an endless loop that ties up the
computer, but you may wish to branch to another
program portion from here, such as one to save the
screen image to cassette tape or wherever. Assum
ing Y is not equal to 200, line 140 branches to line
50 and the program begins again. Remember that
Y is now equal to one more than its previous value,
so the second line from the top of the screen is read
on this pass. It is then displayed in mirror-image
form. Y is stepped again, and the process continues
until the entire screen is read. The end result is a

full screen image that is a mirror of what was
previously there.

Be wamed that this program must read 64,000
different points on the screen, so it's going to take
about 3 or 4 minutes to mirror-image a full screen.

92

If, however, you wish to read just a portion of the

screen, change the X and Y assignment lines to
reflect the range of coordinates you wish to access.

Figure 5-10 shows an example of the effect of this
program.

Program 26: Graphics Screen Shrink

This program performs a function upon the
screen image that already exists, just as the
previous one did. Instead of creating a mirror im

age however, it creates an image that is smaller,
the reduced image retaining the same symmetry as

the original.

Line 40 sets up an array to contain 161 values.
Lines 50 through 70 initialize numeric variables Y,
R, and G to values of 0. Line 80 begins to read loop,
which counts X from 0 to 319 in steps of 2. This
means that X will be equal to 0, 2, 4, 6, etc. Every
oih&c point is thus sampled. As before, the POINT
function is used in line 90 to assign the color

numeral of the point to numeric variable V which
line 100 then assigns to the first position in the ar

ray. Since G is equal to 0, A(0) will be equal to coor

dinate 0,0 on the screen. Line 110 uses PSET twice

in a multi-statement line to blot out the screen

points that have already been read. First, it blocks

out the dot at coordinates X, Y by overwriting it
with the background (0) color; the second PSET
statement on this line then blocks out the point at
coordinate X-i-l,Y. On the first pass of the loop,
this would correspond with coordinate 1,0.
Remember, the loop in line 80 increments X in
steps of 2, so the point at coordinates X-i-1,0 was
skipped over. Line 120 increments G by 1 and the
loop then recycles. On the second pass of the loop,
V is assigned a value equal to the color of the dot
at coordinates 2,0, which value is committed to the

array. On the next pass, the point at coordinates
4,0 is fed to the array, and this process continues
until the entire line has been read.

We will later increment Y in a similar manner

to that discussed in the previous program.
However, Y will be incremented in steps of 2 rather

than 1, so line 140 blots out every other line on the

screen each time the loop cycles. This again gives
us a clear slate on which to lay out our reduced im

age. Let's put the reduced image dots back on the

screen. This is done with the loop beginning in line
150. Here X is counted from 0 to 159, and line 160

contains the PSET statement that begins writing

the dots to the screen again. When this loop times

out, the screen will display a line at the top that is

equal to half of the original line. Line 180 in-

Fig. 5-10. Results of the Mirror Image Screen program.

10 REM PROGRAM TO SHRINK THE GRAPHICS SC

REEN

20 REM COPYRIGHT FREDERICK HOLTZ

SCREEN 1

DIM A(161)

Y==0

R-0

(:)==U

FOR X===0 TO 319 STEP 2

V-==POINT (X, Y)

A (G) V

PSET (X , Y) ., 0:: PSET (X +1, Y) , O

rf}-G+1

NEXT X

I.... INE (O, Y +-1) - (319, Y +1) , O

FOR X=^0 TO 159

PSET(X,Y-R),A(X).
NEXT X

Y=Y-i-2

R.-=::R+-1

IF Y >::::: 199 THEN 220

GOTO 70

GOTO 220 ='THIS LINE MAY BE USED TO S

THE SCREEN IMAGE USING BSAVE

30

40

50

60

70

80

90

100

1 10

•J. 20

130

140

150

160

170

180

190

200

210

220

AVE

Program 26. Graphics Screen Shrink.

crements Y by 2 while line 190 increments R by
1. The value of R is subtracted from Y in line 160,
since every other line in the Y-axis is read. (If this
were not done, there would be spaces between the
lines that are written to the screen.) Since only half
of the dots in the X-axis are sampled and only half
of those in the Y-axis are sampled, the image is
reduced to one-fourth its original size.

After the values of Y and R have been reas

signed, line 210 branches back to line 70, where
the coimt variable G is reset to 0 and the program
begins again. On the first pass, it began reading at
coordinates 0,0; on the second pass, however, it will
begin reading at coordinates 0,2. Subsequent bran
ches from line 210 will cause the reading to begin
at 0,4, 0,6, etc. Line 200 tests for the value of Y

being equal to or more than 199, the bottom of the

screen. If so, there is a branch to line 220, where
you can branch to another portion of the program
that you have added to make use of the reduced
screen image. Figure 5-11 shows an example of a
screen shrink. The image on the left is the original,
while the one on the right is the shrunken version.

Section Summary

Both of these programs demonstrate the
usefulness of graphics utilities in processing
graphics screen information. Using routines such
as these, it is possible to produce an image by
means of a simple graphics program and then
modify it to a high level of complexity. As you ex
plore graphics further, you will undoubtedly come
up with useful graphics utilities on your own.
Remember, each of the programs outlined in this

94

section take their input from the graphics screen,
so there must be an image here already for any
subsequent action to occur.

amazed at what can be accomplished by coupling
some graphic utility programs that read and
redisplay text with the standard character set.

GRAPHICS TEXT PROGRAMS

While the name of this section may seem to

contradict itself, text plays a great part in graphics
programming. Text, in this context, only slightly
resembles the text produced by the PC-6300
keyboard. Graphics text involves displaying stan
dard text characters, often in an enlarged format.
This process often involves screen utilities that read
the dots forming a standard text character, and then
make modifications to the display. You will be

Program 27: Enlarged Lettering Program

This program allows you to type in a short
phrase via the keyboard, and then have it displayed
at the center of the screen in an enlarged format.
Figure 5-12 shows how the computer would display
the phrase "WELCOME TO OUR HOME." The
information the computer used to print this comes
directly from the screen. Any phrase you type in
(up to about 19 characters in length) can be
displayed in enlarged format on the screen. Due to

Normal Image

Shrunken Image

Fig. 5-11. Results of the Screen Shrink program.

95

1 'D

20

30

40

50

60

70

80

90

100

1 10

:l. 20

1 ;:!;o

:l.40

150

160

170

180

REM LETTERING PROGRAM

REM COPYRIGHT FREDERICI

h::ey off

CL8

SCREEN 1

COLOR :l. , 1
INPUT x$: CLSr. print x$

holt;

FOR X:=:0 TO 150

FOR Y:=:0 TO 7

V::-4""*0INT(X, Y)

GOSUB 150

NEXT

NEXT

GOTO 140

A.=2*X: B=^2*Y

PSET(A,B+100),
PSETCX,Y),0
RETURN

V

Program 27. Enlarged Lettering Program.

the powerful graphics statements in GWBASIC,
programs to accomplish this seemingly monumen
tal task are not monumentally long.

Line 40 clears the screen and line 50 puts us
in medium-resolution, four-color graphics. The
COLOR statement establishes a deep blue
backgroimd and sets the palette to 1. Line 70 con
tains an INPUT statement with no prompt. When
you see the question mark on the screen, this is a
sign to t3rpe in the phrase you want enlarged. As
soon as the phrase is input, the screen is cleared
and your phrase is reprinted at the top of the screen.

A FOR-NEXT loop in line 80 begins to read the
points at the X coordinates on the screen. It will

scan from X coordinate 0 to X coordinate 150.

Another nested loop in line 90 reads Y coordinates
from 0 to 7. This will encompass a full character
line 19 characters in length. Line 100 uses the

POINT function to read the value of the dot at

screen coordinates X,Y. In this mode the dot will
be equal either to 0 or 3; 0 represents the blue
background, while any white dots (3) are part of the
screen write.

Line 110 uses GOSUB to branch to line 150.

Here, variables A and B are assigned values of 2
times X and 2 times Y. Line 160 uses PSET to write

points in color V at coordinates A, B +100. Line 170
then blots out the point in the original character that
has just been transferred to the center of the screen.
Since a multiplier of 2 was used in line 150, the en
larged letter will be twice the height and width of
the original characters. Line 180 returns to line 120,
where the Y loop is recycled.

It would have been just as easy to include lines
150 through 170 as part of the loop in place of the
GOSUB statement. This was done for demonstra-

ii.ii llT If T-LrTiyriiT T :F:: :r:: li 11 !□:
i:' i: .11.!.: .1:. .ii 'i:

Fig. 5-12. Enlarged lettering routine from the lettering program.

96

tion purposes, and also to keep the enlarging
routine separate from the reading routine. Many
programmers frown on premature or multiple ex
its from loops, saying that this can be confusing.
In this case GOSUB is not really an exit, since it
RETURNS to the loop structure; it merely isolates
the routine and makes it accessible to other parts
of the program. I will agree that loop exits and reen
tries should be used conservatively—only when
there is no other way, and only when you're cer
tain of all of the ramifications thereof.

As the Y loop recycles, other points along the
Y-axis are read, and just as quickly the enlarged
letters appear. When both loops have timed out,
line 140 sets up and endless loop to prevent the OK
prompt from appearing, but you might use line 140
to branch to another program portion or to save the

screen to disk using BLOAD. The letters pro
duced by this program are attractive, although
some might object to the spaces that occur between

the dots. We can improve on this program, and the
next program in this section will demonstrate such

a modification.

Program 28: Improved Lettering Program

This program is identical to the previous one,
except for a slightly more complex enlarging
routine. The enlarged letters produced by this pro
gram do not contain spaces like those of the
previous program. Here each letter is filled in com
pletely, as shown in Fig. 5-13. To accomplish this,
the enlarging routine that begins in line 150 uses
four PSET statements instead of one. The values

of X and Y are again multiplied by 2, and the PSET
statement in line 160 is identical to the one in line

160 of the previous program. However, the three
additional PSET statements (lines 170-190) fill in

the holes below and to the right of the original A,B
coordinates. Again, line 200 blots out the original

10 REh IMPRGVED LETTERING PROGRAM

20

30

REN COPYRIGHT FREDERICK

KEY OFF

HOLTZ

40 CLS

50 SdCREEN 1

60 COLOR 1,1
"70 INPUT X1>:CLB: PRINT

80 FOR X=:^0 TO 150

90 FOR Y-=-.0 TO 7

100 V==PGINT(X, Y)
;l. 10 GOSUB 150

:l. 20 NEXT

130 NEXT-

:l. 40 GO TO 140

150

160 PSET (A, B-i-100) , V

170 PSET (A, B^-101) , V
180 PSET (AH-l „ B+lOO) , V
190 PSET (A^-l, B+101) , 0
200 PSET(X,Y),0

210 RETURN

Program 28. Improved Lettering Program.

97

Fig. 5-13. The improved lettering routine results in enlarged letters that are filled.

dot in the character set which was read in line 100.

The RETURN statement in line 210 gets us back
onto the Y loop and the process is repeated until
all of the input letters have been read.

Program 29: Improved
Improved Lettering Program

The enlarged letters this program displays are
the same as those shown in Fig. 5-13. Here,
however, the four PSET statements foimd in

the previous program have been replaced with two
LINE statements in lines 160 and 170. Instead of

setting the points separately, the LINE statements
simply draw the lines in color V from the two sets
of coordinates of two other sets that advance A and

B appropriately. This program demonstrates the

fact that there are several ways to do the same thing
with the PBM PC-6300.

Program 30: Snowball Print Program

Here's another program that will modify the on
screen display from the standard character set. It

enlarges these letters, but does so in an unusual
manner that uses filled circles instead of dots. On

the screen, it appears as if the letters are drawn
with little snowballs. Figure 5-14 shows the black-
and-white version, but the screen display is much
more colorful.

This program was really the accidental by
product of a complex lettering program. In many
ways it's very similar to the three previous pro
grams, except that graphic PUT and GET

10 RE\A LINE STATEMENT LETTERING PROGRAM

20 REM COPYRIGHT FREIDERICK HOLTZ

30 KEY OFF

40 CLS

30 SCREEN 1

60 CD LOR 1,1

7O INF-*UT" C1...S: I-'!"< I!M T X$

80 FOR X=^::0 TO 150

90 FOR Y:==^0 TO 7

100 V=:=POINT (X, Y)

110 008LIB 150

120 NEXT-

ISO NEXT

140 GOTO 140

150 A:^=2 K-X: B==^2 ?<-Y

160 I.... INE < A, B-+-100) ■- (A , B-i-101) , V
1 '70 I... I NE (A-I-1 B-f-100) - (A"}" 1 , B-i-101) , V
180 PSET<X,Y) ,0
190 RETURN

Program 29. Improved Improved Lettering Program.

98

10

20

30

40

50

60

70

£10

90

100

110

120

130

140

150

160

170

i&O

190

200

210

220

230

240

250

REM SNOWBALL PRINT PR0(3RAM

REM COPYRIGHT FREDERICK HOLTZ

KEY OFE

CLS

Dili F<30)

SCREEN 1

CIRCLE(8,8),6,2
PAINT(8,8),3,2

GET(0,0)-(17,17),F
PUT(0,0),F

CLS

COLOR 1,1

INPLIT Xiti: CLS: PR I NT Xt

FOR X=0 TO 150

FOR Y=:0 TO 7

V=POIMT(X,Y)

GOSUB 210

NEXT-

NEXT

GOTO 200

A=7-K-X: B:==7-s-Y

IF V=0 THEN 240

PLn-(A,B+50) ,F
PSET(X,Y),O
RETURN

Program 30. Snowball Print Program.

statements are used to place the little snowballs on
the screen. Line 50 establishes array F; line 60 puts
us in medium-resolution , four-color graphics; and
the little snowball is made by the CIRCLE and

PAINT statements in lines 70 and 80. Line 90

removes the initial snowball from the screen by put

ting it to itself. The screen is then cleared. Line 130
allows for the characters to be input, here limited

1

Rg. 5-14. The Snowball Print Program Screen Write.

99

to about five characters maximum. If you run over,
the machine won't lock up; you'll just have to try
again. Lines 140 and 150 set up loops to read the
various points on the screen that contain the let
ters, and again the POINT function is used to assign
the color number to V. There is a branch out of the

loop to line 210, which starts the enlarging routine.
Here, a multiplier of 7 is used to assign the values
of A and B, so each letter is 7 times the width and
height of the original. Line 230 uses the PUT state
ment to place the snowball at the correct point on
the screen. If you need to print more than five let
ters on the screen, simply reduce the multiplier (7)
in line 210. This will shrink the letters a bit.

cursor is located at coordinates 160,100, we can
draw a vertical line from this point that is 60 pix
els in height by using the LINE statement:

LINE - (160,40)

This method uses the LINE statement in relative

mode to draw a line from coordinates 160,100 to

coordinates 160,40. However, using the DRAW
statement (and assuming that the graphic cursor is
at coordinates 160,100) the program line would look
like this:

DRAW "U60"

Section Summary

The programs presented in this section have
all acted upon the standard character set. Using
these programs, almost any member of the
character set displayable on the screen can be
modified in many different ways. Though the
PC-6300 is a very rapid processor, most of these
routines are fairly slow to run in BASIC, because
there are so many individual points of light (pixels)
to read and write. Therefore, it's always best to
write programs that only need to read a small por
tion of the screen. For improved speed, any of these
pro^ams can be used with a BASIC compiler soft
ware package. Compiled programs will t3rpically
run from three to six times faster than programs
processed by the GWBASIC interpreter.

PROGRAMS THAT DRAW

This section deals with programs that use the
DRAW statement in GWBASIC. The DRAW state

ment, discussed in Chapter 3 is used to draw lines
up, down, left, right, and at various angles from one

. point to another. The DRAW statement requires
a lot of arguments or numeric designators, and is
therefore not especially easy to use—but it is often
necessary for producing line drawings that cannot
be made with other statements. The DRAW state

ment is very similar to the LINE statement, but it
is not necessary to specify X-Y coordinates, only
relative coordinates. For example, if the graphic

This will cause a line to be drawn from the current

graphic cursor position (160,100) to a point that is
60 pixels above the original position. To draw a
box on the screen, the program line would be:

DRAW "U40R40D40L40"

this example, similar to one discussed in an earlier
chapter, tells the computer to draw a line up 40 pix
els, right 40 pixels, down 40 pixels, and left 40
pixels.

In this particular example it might be just as
easy to use the LINE statement with the B

designator, but one aspect of the DRAW statement
has it and all the others beat. The DRAW state

ment may be used with a scale factor—di
designator that can magnify or shrink any lines
produced with the DRAW statement. For example,
if we change the previous DRAW statement exam
ple to:

DRAW "S8U40R40D40L40"

the box would be drawn at 80 pixels on a side in
stead of 40. The scale factor is derived by dividing
by 4 the numeral used with S. In this case, 8 divid
ed by 4 is 2, so the magnification is two times every
other command value on the DRAW statement line.

Using this scale factor, for example, the U40 com
mand is automatically converted to U80. If we
used a scale factor of S2, 2 divided by 4 is .5—so

100

the square would be 20 pixels per side. If we
DRAW an object and it turns out to be of an un
suitable size, all we need to do is insert a scale
designator in the DRAW statement line, and then
run the program again. This is the only statement
in GWBASIC that allows for quickly enlarging or
shrinking graphic images. Remember, however,
that DRAW cannot be used to alter the size of a

graphic image produced by statements such as CIR
CLE and LINE.

Program 31: Interlace

The Interlace program produces a fairly in
tricate bit of lacework on the screen. DRAW
statements are used to produce the lines required
to form what appears to be an interlaced rope pat
tern. This pattern consists of four loops which cross

over or imder other image segments.
After the outline is produced by the DRAW

statement, PAINT statements are used to fill in the
various sections. A randomized COLOR statement

changes the screen background and the foreground
palette each time the design is drawn. A time delay
loop in line 190 allows the filled image to establish
itself for a short time before the screen is cleared

and the next image is drawn. If you want to
lengthen the time and image remains on the screen,
simply increase the maximum value of this loop.

If you have a color monitor, you will notice that
sometimes the lacework produced by this program
will seem to be perfectly flat, while at other times
it will appear to be three-dimensional. This effect
is dependent upon the random color indexes that
are output. In some cases, the foreground and
backgrovmd color may be identical. When this hap-

10 REM INTERLACE

20 SCREEN 1

30 A=RND*10+1

40 B=RND*3-i-l

50 COLOR A,B
60 X=RND*3+1

70 R=20

80 DRAW"S=R;C3 BMIOO,150U12BU4U12R12BR4R12D12BD4D12L12BL4L

90 DRAW"S=R;C3 BMl00,1SOU12R8BR4R16D4BL4L12BL4L4D4R4BR12R4
U4"

100 DRAW"S=R;C3 BM100,150R12U16BU4U9L8BD4D4BD12D4R4U12BU4U
4L4"

110 DRAW"S=R;C3 BM100,1SOU12BU8BR4R12BR4R4U4L4D12BD4D4R4"
120 DRAW"S=R;C3 BMIOO,1S0BR16U8BU4U16"

DRAW"S=R;C3 BM100,1SOBU16R16BR4R8"130

140

ISO

160

170

X=RND*3+1

PAINT(101,38),X,3
PAINT(18S,48),X,3
PAINT(18S,14S) ,X, 3

180 PAINTdOl, 14S) , X,3
190 FOR TS=1 TO 600:NEXT TS
200 CLS

210 GOTO 30

Program 31. Interlace program.

101

Fig. 5-15. Screen display from the interlace program.

pens, the screen will appear blank as the foreground

image is being drawn in the same color as the
background. Figure 5-15 shows an example of the
pattern generated by this program.

Program 32: Electronic Graph

An oscilloscope is an electronic test instrument

that will display visually various electronic opera
tions and parameters. These devices are often
used to display the waveform of an ac signal. We
can simulate the same effect on the AT&T PC

through appropriate programming. The computer

does not actually read or measure the output from
an electronic device, but we can build in certain

parameters by means of software.

This program will generate a sine wave on the
monitor screen. A sine wave is constantly chang-

10 REM SINE WAVE

20 CLS

30 P=60

40 SCREEN 1

50 LINE(0,100)-(3 i 9,100)
60 PI=3.14159

70 A=-11*PI

80 B=7*PI

90 C=638/(B-A)

100 FOR D=A TO B STEP .1

110 X=D*C

120 Y=SIN(D)*P

130 PSET(X+60,100+Y)
140 NEXT D

150 END

Program 32. Electronic Graph.

Fig. 5-16. Graphic display of a sine wave produced by the Electronic Graph program.

ing polarity, with equal portions of the curve on the
positive and negative sides of the graph. Figure
5-16 shows the graphic display. When this program
is run, the solid horizontal line represents the value
0, while the upper portion of the scale is positive
and the lower portion is negative. The graph shows
a perfect sine wave, in that those wave portions
which lie in the upper portion of the scale are mir
ror images of those which lie below.

The reference line is driawn in program line 50.
This line spans the entire horizontal width of the
screen and is situated at its center. Line 60

establishes the value for tt, while lines 70 and

80 determine the starting and ending points of the
sine wave display. Line 90 divides the difference
between B and A into 638, which is exactly twice
the maximum screen width (319). Line 100

establishes the spacing between each point plotted
on the graph. Here Fm using a step of 0.1. Line
120 uses the SIN function to cause the plotted
points to be displayed as a true sine wave. The sine
of the value of D is multiplied by P. The latter
variable determines the maximum value of each

wave section, or the distance of each peak from the
horizontal line. Line 130 performs the actual plot
ting function.

Due to the small step in line 100, it will take
30 seconds or so for the entire graph to be com
pleted. You can use larger step factors, although
each waveform will not be displayed as finely. We
could say that this is a sine wave that represents

a value of 60 volts ac, since we chose a value of 60
for P. This assumes that the value of P is to repre
sent potential difference directly. Any other value
could be assigned to P, as long as it does not ex
ceed 100. For the display actually shown, the value
of P is imimportant, at least in regard to it repre
senting some true electronic value. However, if
such a graph were to be used for the comparison
of sine waves of different voltage values, P's value
would be all-important.

Program 33: Schematic Diagram

This simple program will draw the schematic
diagram shown in Fig. 5-17, which electronics en
thusiasts will recognize this as a resistor array. The
commands contained in lines 70 and 80 each rep
resent a line in this drawing. In line 60, numeric

variable X is assigned a value of 8. In line 70, you
will see the scale factor used in the format

S = X

which sets the scale factor to 8, representing a
magnification of 2. Therefore, every number used
in any DRAW statement line following the S
designator will represent twice that number of pix
els on the screen. At this point in the discussion,
I will begin with the DRAW statement in line 70
and work through to the end of line 80, describing
the on-screen action of each command.

First, the BM80,90 designation tells the com-

103

:l.O REM SCHEMATIC DIAGRAM

20 REM CGPYRIGHT FREDERICK HOLTZ

30 SdCREEN 1

40 CLS

50 KEY OFF

60

70 DRAW " BMBO „ 903:^=:= X !5 RB UIO R10

F:::; E3 F3 E1 R24 EI F3 E3 F3 E3

DIG NRB DIG LIO G1 H3 G3"

80 DRAW"H3 G3 H3 GI L24 GI

3 GI LIO UIO"

90 END

H3 G

EI

F3

jr;;:;;

EI

E3

R 10

3 H3 G3 H

Program 33. Schematic Diagram.

puter to move invisibly to screen position 80,90.
The scale factor is next, and then the command R8.
Refer now to the schematic drawing in Fig. 6-17
to follow the lines that the commands represent,
beginning at the extreme left side of the diagram.
R8 means move right 8 pixels (16 pixels because
of the scale factor); this produces the horizontal line.
Following the next series of commands in line 70,
we move up 10 and then right 10. This draws the
left top comer of the schematic. The next seven
commands draw the jagged lines that make up the
first symbol for a resistor. El means move diagonal
ly up and right one pixel. F3 tells the computer to
move diagonally down and right three pixels. These
commands are repeated until the resistor symbol
is complete.

With the first resistor completed, we hit the
R24 command, which draws the top horizontal line
between the two resistors. The same E-F sequence
is repeated to draw the second resistor, and we now
move right 10 and down 10 to draw the right top
comer of the schematic. The NR8 command draws

the right horizontal line emerging from the
schematic box. R3 still means ''draw eight pixels
to the right," but the N prefix tells the computer
to then return to the point where it started. We
move down 10 and left 10 to draw the lower right-
hand comer of the schematic. The last three com

mands in this line and the first four commands in

line 80 draw the bottom right resistor symbol.
These commands are reciprocal to those which
drew the top set of resistors, using G to move

\/\/N

Rg. 5-17. Screen display from Schematic Diagram program.

104

10 REh DIODE ARRAY

20 RFM COPYRIGHT FREDERICK HOLTZ

30 CLS

40 SCREEN 1

50 KEY OFF

60 X==20

70 FOR Y::==0 TO 3

80 DRAW"A=:=Y;BM1603 1005S=X;U3 BUI U3 BD3
NRl NLl G1 R2 HI"

90 FOR DLAY=

lOO NEXT Y

'1 TO 400: NEXT DLAY

Program 34. Diode Array.

diagonally down and left, and H to move diagonal
ly up and left. When this is complete, a line is drawn
left 24 pixels to another resistor drawing. The last
two commands in 80 draw a line left 10 and up 10
to complete the lower left-hand comer of the
schematic; the diagram is now complete.

It takes a bit of memorization to keep track of
the meaning of each command, and, of course, you
keep very close track of where you are. The
DRAW statement is best used to reproduce a draw
ing on the screen from a textbook or other hard
copy reference source, for reasons you will see in
subsequent programs.

Program 34: Diode Array

Here's another drawing, a diode array con
sisting of four diode symbols connected back-to-
back, as shown in Fig. 5-18. In this program a scale
factor of 20 is used, which means that each numeric
designator will be multiplied by 5. Notice, however,

that the commands contained in the only DRAW
statement line (program line 80) would seem suffi
cient only to draw one of the four identical diode
symbols. Here's where another DRAW statement
command comes in handy. The A designator stands
for angky and is assigned any value from 0 to 3, with
a default value of 0. If A is 1, any commands given
automatically produce lines rotated 90 degrees to
the left. In other words, a U20 command after an

A = 1 command would really be converted to L20;

instead of the line being drawn up 20 pixels, it
would be drawn left 20 pixels. A designation for
A of 2 rotates the line 180 degrees to the left, and
3 provides a 270 degree rotation.

This program uses the FOR-NEXT loop begun
in line 70 to rotate the display through all four
angles. Here's how it works. When line 80 is first
executed, the A designator is set to 0, since Y is
equal to 0. The cursor is set to the center of the
screen, and the scale factor is set to X, which is 20.

\

N
N

\

Fig. 5-18. A computer-generated diode array.

105

The remaining commands draw a single diode,
which will appear vertically on the screen because

the angle factor is 0 on the first cycle of the loop.
Line 90 is a simple time delay built into the loop

for demonstration purposes. The outer loop is
recycled in line 100, and Y will now be equal to 1.
The angle is now equal to 1, or 90 degrees away
from the original. The same DRAW statement line
is now used to draw a diode horizontally and to the
left of the screen center. When the loop cycles again
the angle is 2 (180 degrees left) so a vertical diode
symbol is drawn from the center toward the bot
tom of the screen. On the last cycle of the loop the
angle is 3 (270 degrees left of the original), so a
horizontal diode is drawn to the right of center. Our
diode array is complete. If you now remove line 90,
it will appear as through the entire diode array is
drawn instantaneously.

Both this and the previous program assigned
X a value to be used with the S designator. It is
not necessary to assign this value to a variable. A
command of S20 would be perfectly adequate, but
the assignment method makes it easy to go back
and simply change the value of X. For example,
change line 60 to:

60 X = 40

Your diode array will now be twice its previous size.
If you change the value to 60, the array is even big
ger, but portions of it run off the screen. Now
change the value of X to 10. The array is quite small
and somewhat out of proportion. You can even
shrink it down to X= 1, but all you will get is a
single dot at the center of the screen.

Program 35: Bridge Rectifier Schematic

This program produces a schematic of a bridge
rectifier circuit, as shown in Fig. 5-19. Here, I have
used the DRAW statement in a program that also
prints information to the screen. Lines 50 and 60
create the schematic itself, and lines 70 through 130
print the designations in various screen locations.
See if you can figure out this DRAWing yourself,
based on what youVe learned in the previous
program.

Program 36: Block Diagram

Figure 5-20 shows a line drawing known as a
block diagram. In this case, each of the blocks

10 REM FULL BRIDGE SCHEMATIC

20 REM COPYRIGHT FREDERICK H0LT2

30 CLB

40 SCREEN 1

50 DRAN"S25 BM 150,100 E7 NL15 F7 NRS 07

NL15 H7 L2 D5 G1 D3 F1 D3 R24"

60 DRAW"BM150,100 BE4 NHl NFl LI FUJI BE

R1 BF3

IMGl U1

3 BF4 NEl MGl U1 G1

1 HI R1 BG4 BH3 NEl

70 LOCATE 14,5

SO PRINT "AC INPUT"

90 LOCATE 13,40

100 PR I NT " -i""

110 LOCATE 22,40:PRINT" "

120 LOCATE 10,30

130 PRINT "D«C.. OUTPUT"

BG3

01

NFH1

R1 "

NFl D

Program 35. Bridge Rectifier Schematic.

106

/ w
/

AC INPUT

K
DC OUTPUT

Fig. 5-19. Computer-generatecl full-wave bridge rectifier circuit.

represents a different portion of an electronic cir
cuit. We have no alphabetic designators in each sec
tion because all we're interested in for this exer

cise is the line drawing itself. This is a simple one-
dimensional drawing, but it will take a bit of time
to write into a program using the DRAW statement.
Admittedly, we could use LINE statements to draw
the same picture more quickly. However, when do
ing more complex artwork, this isn't possible.

First, it is necessary to establish a relationship

for each line in the drawing. This is done quite
simply by using a finely graduated straightedge to
measure the length of each line and line segment
between intersections. Figure 5-21 shows my
mockup of the drawing in Fig. 5-20; this is just a
freehand sketch that serves as a chart for later pro
gramming, in much larger form to allow for the in
sertion of the relative values of each line. These

values were obtained by measiuing each line in the
original drawing. You will want to choose a

10 CLS:SCREEN 1

20 DRAWSIO; BL30 RIO U4 RIO BLIO U13 L

U18 BD18 L8 017 BRIO BIJ4 BRIO"

30 DRAW"U3 RIO 06 LIO L)3 BRIO RIO"

R8 06 L8 U3 B03 BR4 08"

06 LI2 U6 R6 BUS BR4 BU3"

U20 LI2"

L21 08 R21 U4"

40

50

60

70

0RAW"U3

0RAW"R6

0RAW"R8

0RAW"U4

80 ENO

Program 36. Block Diagram.

107

Fig. 5-20. A schematic block diagram such as the one shown here may be accurately reproduced on the computer screen.

straightedge that is graduated in very small values.
In this particular case the values given are in
millimeters, but since these are relative values,
small fractions of an inch will work as well. It is

only necessary for each line to be given a value pro
portional to every other line in the drawing. I chose
the starting point for this drawing to be at the left-
hand side, as indicated by Fig. 5-21. You could have
just as easily chosen the right-hand side, but we are
more accustomed to working from left to right.

While it would be possible to include all the

commands to reproduce this drawing in a single
DRAW statement, I will divide the task up into
several DRAW statement lines for clarification.

You may wish to proceed in a way that requires
fewer program lines—once you understand the
process.

Since the first command in the DRAW state

ment generally starts at the center of the screen,
we first insert a BLIOO to move the graphic cursor
to a point near the left-hand side of the screen. Now,
beginning at the point marked START, we use an

108

RIO command to draw a line 10 relative points to
the right. The next command is U4, which moves
up 4 relative points to an intersection. My inten
tion here is to draw the intersecting line first, and
then proceed. The next command is RIO, but I am
now out of the first rectangle, which must still be
drawn. Therefore, I retrace my steps with a BLIO
conunand, which moves 10 blank places back left
to the original point of intersection. This side of the
rectangle is 17 relative points in length, the first
four of which have already been drawn by a
previous command; I used U13 (17-4) to complete

the long side. It is now necessary to move 10 points
to the left, but first there is another intersection 2
points in; the next command is L2. This is fol
lowed by U18, which draws the solitary vertical
line. I now arrive back at the intersecting point with
a DB18, and complete the remainder of the top

horizontal portion with L8. The remaining vertical
side is drawn with D17. At this point the graphic
ciusor is back at the beginning, and we can now
draw the second rectangle at the end of the horizon
tal line drawn earlier. Perhaps the least confusing
way to get there is with this combination;

10-^2

Fig. 5-21. Laying out the block diagram to get coordinates for DRAW Statement Commands.

109

BRIO BU4 BRIO

The graphic cursor is now at the point on the
second block intersected by the connecting line
from the first. This side of the new block is 6

relative units in height, with the intersection point
at the center. The next combination draws the

second block and the outgoing horizontal line
that connects it to the third block:

U3 RIO D6 LIO U3 BRIO RIO

What Tve done here is draw up 3, then right 10,
down 6, left 10, and up 3. This takes me back to
the beginning point for this block, but Fm on the
wrong side to continue. The BRIO moves the
graphic cursor from the center of the leading block
edge to the center of the trailing edge, without plot
ting points. The final command, RIO, draws the
horizontal line that intersects the next block.

This is a very simple process once you imder-
stand the use of the DRAW statement and have

mapped out a rough sketch. Let's look at the pro
gram itself. Line 20 draws the first rectangle and
its connecting line. Line 30 draws the next block
and connects it to the third. Line 40 draws the third

and connects it to the one on the bottom, which is
drawn in line 50. Line 60 draws the line that exits

block 3 and extends upward to the overhead block.
This last block is drawn in line 70. The entire pro
gram in only eight lines long, including the optional
END statement.

Admittedly, the original drawing was quite sim
ple, but it would probably take you much longer to
draw neatly with pencil and paper. It took me about
five minutes to prepare the freehand sketch used
to write this program, including measurement time.
Once the sketch was completed, it only took a few
more minutes to input the program. In a drawing
this simple it's usually not necessary to check each
DRAW statement line before continuing to input
the program. The method is so simple that the pro
gram should work the first time, and it often does.
Of course, if you make an error or two, the debug
ging process usually involves shifting a few
commands.

You may be thinking that a drawing such as
this one is simple, but that it is much more difficult
to draw a complex piece of art. This is not really
true. As long as the artwork is limited to straight
lines and angles of 0, 90,180, and 270 degrees, the
process is handled in exactly the same manner as
that shown here. It may take you more time to
sketch the drawing, obtain relative lengths, and in
put the program, but the procedure is the same.

Program 37: Three-Dimensional House

It is impossible to draw a true three-dimen
sional figure on a flat piece of paper—imless you
want to include the microscopic height of the
graphite. Three-dimensional drawings, then, are
really simulations of three-dimensional objects us
ing a mediiun limited to only two dimensions. This
applies to drawings on paper as well as graphic
representations on a computer screen.

Figure 5-22 shows a drawing of a house, with
extra rectangles to represent solar collectors. These

provide us with more objects to reproduce on the
computer screen. At first glance, this may seem like
a simple object to draw. To draw the bottom front
of the house, you would simply place a graduated
straightedge between the beginning and ending of
the line, and arrive at a relative figure of about 50
imits. Assuming that you start at the left front cor
ner of the house, you would then specify a com
mand of R50 to produce the line. But how about
drawing the bottom of the left side of the house?
This line is about 35 units long, but it travels away
from the front bottom edge at an obtuse angle. If
you return to the starting point and input an L35
command, you would simply add length to the first

Fig. 5-22. Three-dimensional drawing of a house.

110

10 REM 3-D HOUSE

20 INPUT"TYPE IN THE SCALE FACTOR<1-10) jX
30 IF X>10 THEN 20

40 CLS

50 SCREEN 1,0

60 A=140

70 B=130

SO Y=X/4

90 COLOR 8,1
100 DRAW"S=X;BM140,130 R51 U12 L50 BL2 D12 NU13"
110 LINE(A+2*Y,B-12*Y)-(A-8*Y,B-24*Y)
120 DRAW"S=X;R50"

130 LINE(A+42*Y,B-24*Y)-(A+52*Y,B-12*Y)
140 DRAW"S=X;BM140,130 BL21 BU4 U12 LI"
150 LINE(A-24*Y,B-16*Y)-(A-8*Y,B-24*Y)
160 LINE(A-22*Y,B-4*Y)-(A,B)
170 LINE(A+8*Y,B-1*Y)-(A+20*Y,B-11*Y),,B
180 LINE(A+23*Y,B-6*Y)-(A+28*Y,B-11*Y),,B
190 LINE<A+32*Y,B-1*Y)-(A+44*Y,B-11*Y),,B
200 DRAW"BM140,130 S=X;BR36 BUI NUlO BR4 NUlO"
210 DRAW "S=X;BM140,130 BR12 BUi NUlO BR4 NUlO"
220 DRAW"S=X;BM140,130 BL8 BU7 U5 BL4 BUI D5"
230 LINE(A-8*Y,B-7*Y)-(A-13*Y,B-8*Y)
240 LINE(A-8*Y,B-12*Y)-(A-12*Y,B-13*Y)
250 DRAW"S=X;BM140,130 BUI4 BR7 NRIO BU6 BL4 RIO"
260 LINE(A+7*Y,B-14*Y)-(A+3*Y,B-20*Y)
270 LINE(A+17*Y,B-14*Y)-(A+12*Y,B-20*Y)

Program 37. Three-Dimensional House.

line drawn. You can't easily use any form of the don't have to worry about angles here.
DRAW statement here, because the angle needed For the sake of discussion, assume that point
isn't one that can be specified. How is this over- B is located at coordinates 140,130 on the screen,
come? The answer is that you don't, at least within Asstune also that the height from the reference line
the framework of the DRAW statement. However, drawn from border to border through point B is 4
in GWBASIC we have other statements available, relative imits. This means that the vertical coor-

Let's take another look at what we're faced dinate of A will be equal to the vertical coordinate
with by referring to Fig. 5-23. This is the same of B minus 4 xmits. In this example, the vertical
house, but horizontal lines have been drawn coordinate of A would be 126 (130-4). The
through it parallel to the bottom of the screen. The horizontal coordinate is obtained by measuring the
far end of the left side of the house (A) is elevated distance from point B to the dotted line starting at
a short distance compared to the left comer of the A, a line drawn parallel to the edges of the frame,
front of the house (B). Once the front is drawn, a In the example, the distance between point B and
LINE statement could be used to draw a line from the dotted line is about 23 relative units. Therefore,
the coordinates of A to the coordinates of B. We the horizontal coordinate of A is equal to the

111

HEIGHT

, \
1

I D
1

1 D|
i

' 1
1
1

Fig. 5-23. Mapping out the angles and lengths for reproducing the house.

horizontal coordinate of B minus 23. (If we were
trying to determine a coordinate to the right of B,
the unit figure would be added instead of sub
tracted.) By using simple math, we can easily ar
rive at the coordinates of point A, which are
140-23,130-4 or 117,126.

To draw the bottom line of the left side of the

house, then, we would first draw the reference line
(the front bottom portion of the house) and then in
clude this statement:

LINE (117,126) - (140,130)

This produces exactly the desired results. This
same method will be used to generate any lines that
approach any other lines (which may be produced
using DRAW statements) at an angle. Note that it
is only necessary to measure physical line lengths
with a graduated straightedge when the DRAW
statement is used. The length of the lines generated
in LINE statements is determined by the distance
between the sets of coordinates, and may be
calculated with the extrapolation process using the
borders as guides.

Of course, there are many objects in this scene
that are formed by horizontal and vertical lines.
These can be detected by laying a straightedge
horizontally or vertically across the drawing and
noting which lines fall along it. Each time you find
a line that conforms to the straightedge, pencil in

a line across the entire picture. This will be used
to draw lines using the DRAW statement.

Figure 5-24 shows what the drawing will look
like once the search has been completed. You can
see that the top of the roof, the lower roof edge,
the bottom front of the house, the tops and bottoms
of the windows, and the solar collectors conform

to horizontal lines. The vertical window sections

and the three visible vertical edges of the house con
form to vertical lines. All of these may also be
drawn using the DRAW statement. Anything ex
cluded from this graph-like pattern must be pro

duced using other graphic statements.
The way I normally proceed at this point is to

produce everjrthing I can using DRAW statements.
This involves measuring the physical lines of the
original drawing. If possible, it is best to make a
copy of the original drawing (several, in fact) and
then draw the borders. Naturally, you measure the
distance from the last point drawn to the start of
the next portion to be drawn, using B commands
to move the graphic cursor without drawing lines.
When all DRAW statements have been completed,
you can then run the incomplete program and com
pare the graphic representation with the original
drawing. You should see all the lines that have been
marked with horizontal and verticcd lines.

Now the hard part begins. To draw the diagonal
lines, you must treat each one as a separate entity.
Refer back to Fig. 5-23. In order to draw the bot-

112

torn left-hand edge of the house, it is necessary to
position the graphic cursor at point B in this draw
ing. The statement to accomplish this is:

DRAW "BM140,130"

which are the original coordinates of point B. The
process used to determine the coordinates of A
when the coordinates of B are known has already

been discussed, but reread these directions if you
don't have a clear understanding of the process.

The new DRAW statement has returned the

graphic cursor to the coordinates specified, so all
that's necessary now is to input the following line:

LINE (117,26) - (140,130)

Actually, the new DRAW statement just dis
cussed is not mandatory, nor even desirable from
a programming standpoint. It is not necessary to
return the cursor, since both coordinate sets (A and
B) are specified in the new LINE statement; it was
used because it better explains what we're trying

to do. Assuming you have input the new DRAW
statement, you can shorten the new LINE state
ment to:

LINE -(117,26)

This will draw a line from the last position reference
to the coordinates specified in parentheses. The
new DRAW statement returns the cursor to B, and
the abbreviated LINE statement then draws a line

from B to A.

Let's move on to another portion of the draw
ing. Assume you want to connect the left ends of
the horizontal solar panel lines. How do we deter
mine the coordinates of the left end of each line?
Technically, the information is contained in the
DRAW statements used to generate these lines, but
you will have to go back through the program and
begin adding and subtracting to get the numbers.
Another method is shown in Fig. 5-25. We already
know the coordinates of B, so let's figure the coor
dinates at the left end of the top solar panel line,
labeled C in Fig. 5-25. Again, key horizontal and

■■■■■■■ml
■■■■■■■■III

Rg. 5-24. Nearly finished house worksheet showing intersecting lines.

113

a

H

1' ^1 1 1
"B"

* w

Fig. 5-25. Another method of determining coordinates.

vertical lines are first drawn. Next, we measure the
distance from B to the vertical line labeled W,
which is about 4 relative units. Now measure the

height (H) from the bottom line to C. This will be
about 20 relative units. These are then subtracted

from the coordinates of B, because the new coor
dinates lie to the left of and above B. This will give
us the coordinates of point C, which are 140 - 4 and
130-20, or 136,110.

It is now necessary to determine the coor
dinates of the left end of the bottom line, which is
done by drawing a vertical line through it. In this
case, the end point lies to the right of the horizon
tal coordinate of B, which means the horizontal
distance (about 3 units) must be added to coordinate
140. This point also lies above B, so the vertical
distance (about 14 units) is subtracted from 130.
The new coordinates, then, are 143,116. Since our
purpose is to connect the left ends of both lines, the
following statement is used:

LINE(136,110) - (143,116)

To connect the right ends of the two horizontal
lines, the process is much simpler. Since the coor
dinates of the left ends are known, all you have to
do is locate the R commands in the DRAW state

ment that were originally used to produce these
horizontal lines. These should be R12 or

thereabouts. The right ends will still be at the same
vertical coordinates as the left ends. All you do is
add 12 relative units to the horizontal coordinates

of the left ends. The following command will con
nect the two lines:

LINE(148,110) - (155,116)

Drawing every other diagonal line in this pic
ture is handled in the same manner. There is one

other problem that occurs when DRAW statements
are used in conjunction with LINE statements or,
for that matter, with any other graphic commands.
In previous programs, the scale command was
used to vary the relative size of the object being
drawn. However, varying the scale of the DRAW

114

statement will affect the size of only those lines pro
duced by the DRAW statement. The LINE state
ment coordinates will remain the same. For this
reason, the two must be coordinated. Within each
DRAW statement there should be an S = X com
mand, with a previous program line specifying the
value of X as 4. When 4 is used, the DRAW state
ment command numerals (and thus the line lengths)
correspond exactly with screen points. If you wish
to enlarge the object, try doubling or tripling the
values used in the DRAW statements. Appropriate
changes must then be made to the LINE statements
as well—not double the coordinate numbers each
time you double the numbers in the DRAW
statements, but merely add or subtract the new
DRAW command niunerals within the LINE
statements. For example, it has already been
established that the horizontal distance between B
and C is 4 relative units. If you want to double the
size of the drawing, this distance would be 8;
therefore 8 must be subtracted from the horizon
tal coordinate of B. You can figure the coordinates
in a slightly simpler manner by making all LINE
statement coordinates relative. For instsmce, in
stead of using coordinates 136,110 to draw a line
starting at point C, you would use the original coor
dinates of B, as follows:

LINE(140-4,130-20)

This line assumes that you used the actual line
lengths in the original drawing. Now assume you
want to double the size of the drawing. To ac
complish this within the DRAW statements, you
would include S = X, preceded by a program line
establishing the value of X as 8. This would dou
ble the values of the numeric designators used in
the DRAW statement. You would then go back to
the LINE statement and EDIT as follows:

LINE(140-(4*2),130-(20*2))

The following lines will modify your program
so that all coordinates in LINE statements would
automatically correspond to the coordinates at the
end points of lines created by the DRAW state

ments, regardless of the scale factor used in the
latter.

10 SCREEN 1

20 INPUT X

30 Y = X/4

40 DRAW"BM140,130S = X;U4R4D8R16
. . . etc.

50 LINE(140-(4»Y),130-(20*Y))

Line 20 allows you to input a different value for X
each time the program is run. This value is then
inserted into the DRAW statement in line 40. Ob
viously, many DRAW and LINE statements will be
required to produce the picture imder discussion,
but the methodology shown here for illustration
purposes applies regardless. The program line
shown here multiplies the differences between each
of the coordinates for the point of origin (B) and the
coordinates for C by the value of Y. If S is equal
to 4(X=4), this amoimt will be divided by 4 in line
30. The value of Y will then be 1, and the line coor
dinates designated will not change. However, if the
value of X changes to 8 (in effect, doubling the com
mand numeral in each DRAW statement), the value
of Y will be 2, so the line coordinates will be
modified accordingly. Using this system, it is
necessary to reference all LINE statements coor
dinates to the starting point B. This means that in
some instances it will be necessary to add to or sub
tract from the horizontal coordinates only, from ver
tical coordinates only, or from both. It is quite dif
ficult, or at least time-consuming, to draw a line on
the right side of the screen based on the coordinates
of point B on the left. You can, however, use par
tial LINE statements to start a line at the last point
drawn on the screen. This is a case of mix and
match, where no two computerists will arrive at the
same picture in exactly the same way. There are
just too many different ways of accomplishing the
same objective. After a bit of experimentation, you
will find that you are leaning toward one particular
method or set of methods; if you feel comfortable
with this method, fine. If not, you may wish to con
tinue experimenting until you arrive at a system
that is better suited to your own thought processes.

115

Fig. 5-26. The finished screen write of the three-dimensional
house.

Figure 5-26 shows the house as it appears when this
program is run.

Section Summary

This section has dealt with the methods used

to draw complex pictures on the screen. DRAW is
a very simple or basic statement as far as power
is concerned. By comparison, the CIRCLE state
ment is far more powerful because it requires less
information to do its job. The simplicity of DRAW,
however, can be a plus, because the statement
assumes nothing and does exactly what we tell it
to do. The DRAW statement is quite often used to
perform screen writes that can't be done using any
of the other graphics statements, and you will fre
quently see it used with other graphics statements
to write the most efficient program for the on
screen task.

CURSOR CONTROL PROGRAMS

By now, you have probably guessed that a fair
amoimt of estimating is involved in initially draw
ing an object on the screen. The screen is com
posed of so many different coordinates that it's hard
to visualize exactly where on the screen a certain
point lies, judged by its coordinates alone. We do
know that coordinates 160,100 identify a point at
the exact center of the medium-resolution graphics
screen. Therefore, we know that if the X coordinate
is less than 160, it falls to the left of the screen
center, or if it's more than 160, to the right.
Likewise, if the Y coordinate is more than 100, it
lies above screen center; if more than 100, it is
below screen center. Beyond that it's still hard to
know exactly the location of a point.

In text mode there is a text cursor that can be

moved across the screen, using the keys designed
for this purpose. This lets us know exactly where
text will be written as we're typing it in via the
keyboard. Through programming, we accomplish
much the same thing, here in the form of a graphics
cursor. The programs outlined in this section will
generate a graphics cursor that can be moved via
the keyboard. It will allow you to move a cursor
to any point on the medium-resolution graphics
screen.

Program 38: Keyboard Cursor Control

This program generates a graphic cursor that
is a single white dot, and allows it to be moved over
the screen using four of the standard keys on the
keyboard. The four keys chosen are U, L, R, D,
standing for up, left, right, and down, respective
ly. PUT and GET statements are used to move the

cursor.

Here's how the program works. Line 60 uses
PSET to generate a single white dot at screen loca
tion 0,0. Line 70 establishes a small array (A) to
hold the dot. The GET statement is used in line 80

to retrieve the image of the dot. It's then erased
from the screen when it is PUT to itself in line 90.

Multiple statement program line 100 assigns X
the value of 160 and Y the value of 100. You will

recall that these coordinates represent the center
of the medium-resolution screen. Line 110 uses

PUT again to display the dot at these center point
coordinates. When this program is first nm, you
will almost immediately see a dot at the center of
the screen.

In order to move the dot, line 120 uses the
INKEY$ variable to read the keyboard. Line 130
tests for a condition of no keyboard input, simply
looping back to line 120 imtil a keyboard input is
received. Lines 140 through 170 test for the
keyboard keys mentioned earlier, which will be
used to control the on-screen dot. Line 180 bran

ches back to the INKEY$ variable in line 120 when
a key other than U, L, R and D is pressed on the
keyboard. Notice in lines 140 through 170 that the
logical OR operator is used. This means that the

116

10 REM KEYBOARD CURSOR CONTROL
20 REM COPYRIGHT FREDERICK HOLTZ
30 CLS

40 SCREEN 1

50 KEY OF-F

60 PSET(0,0),3
70 DIM A(10)

SO GET(0,0)-(0,0),A
90 PUT(0,0),A
100 X=160:Y=100

110 PUT(X,Y),A

120 A$=INKEYiti

130 IF A$~~"" THEN 120

140 IF QF; THe'.N 190

150 IF A$=="L" OR Aiii="l" THEN 240

160 IF A1i="R" OR Ai{i:="r" THEN 290

170 IF A$="D" OF"; Af>:="d" THEN 340

1 SO GOTO 120

190 PUT(X,Y),A

200 Y=Y-1

210 IF YCO THEN Y^==199

220 PUT(X,Y),A

230 GOTO 120

240 PUT(X,Y),A

250 X = X-1

260 IF X<0 THEN X=:319

270 PUT(X,Y),A

2 SO GOTO 120

290 PUT(X,Y),A

300 X = X-t-l

310 IF X>319 THEN X==0

320 PUT(X,Y),A

330 GOTO 120

340 PUT(X,Y),A

350 Y=Y-i-l

360 IF Y>199 THEN Y=0

370 PUT(X,Y),A

380 GOTO 120

Program 38. Keyboard Cursor Control.

various branches will occur based upon a lowercase
or uppercase version of the four control keys.

For discussion purposes, let's assume the first
key pressed is U. Line 140 detects the U and
branches to line 190. This line uses the PUT state

ment to erase the dot from the center of the screen.
Line 200 then reassigns Y to its former value, less
1. Y is now equal to 99. (Skip line 210 for now.)
Line 220 then uses PUT to place the dot at new
position 160,99. This hes one pixel above the center

117

of the screen. The U key has indeed caused the cur
sor to move up. Line 230 branches back the

INKEY$ variable in line 120, and the computer
waits for another key to be pressed. If you simply
hold the U key down, Y is decremented by 1 each
time the routine is accessed; the cursor will move
rapidly up the screen, erased from its former posi
tion by PUT and then placed in a new position, also
by PUT.

Now for line 210. Line 210 tests for a position
of Y being decremented past the top of the screen
to a value of -1, for instance. This would result
in an "illegal function calP' error, so line 210
reassigns Y a value of 199 (the bottom of the screen)
if it passes through 0 into a negative number. In
other words, if you continue holding down the U
key the cursor will go to the top of the screen, and
then reappear at the bottom and keep moving up.

If you press the L key, there is a branch to line
240. Again, the dot is PUT to itself, erasing it from
the screen. X is then decreased by 1. Line 260 is
a safety line, just like line 210. Line 270 PUTs the
cursor at the new coordinates. Assuming a starting
point of 160,100, the first press of the L key will
cause a dot to be placed at 159,100, just to the left
of center. There is then a branch back to line 120
so that another key may be read. In this case, if the
cursor is advanced to the far left of the screen at

coordinates 0,100, for instance, the next press will
cause the cursor to appear at the far right of the
screen at coordinates 319,100. The routines start
ing in lines 290 and 340 move the cursor right and
down, respectively. These routines are just like the
two previously discussed, except that X and Y are
incremented rather than decremented by 1 each
time the appropriate key is pressed.

The program is not very practical, but it does
effectively demonstrate the principles behind cur
sor movement. To add a bit of practicality, change
line 120 to:

120 LOCATE 1,1:PRINT X","Y

Then add line 121:

121 A$ = INKEY$

10 REM MOVING THE CURSOR

20 REM COPYRIGHT

FREDERICK HOLTZ

30 CLS

40 SCREEN 1

50 KEY OFF

60 PSET(0,0),3
70 DIM A<10)'
SO GET <0;, 0) - (0,0) , A
90 PUT(0,0),A
100 X=160:Y=100

110 PUT(X,Y),A
120 KEY(11) ON

130 KEY(12) ON

140 KEY(13) ON

150 KEY(14) ON

160 ON KEY(ll) GOSUB 210

170 ON KEY(12) GOSUB 260

ISO ON KEY(13) GOSUB 310

190 ON KEY(14) GOSUB 360

200 GOTO 160

210 PUT(X,Y),A
220 Y=Y--1

230 IF Y<0 THEN Y=199

240 PUT(X,Y) , A
250 RETURN

260 PUT(X,Y),A
270 X = X-1

2S0 IF X<0 THEN X=319

290 PUT(X,Y),A
300 RETURN

310 PUT(X,Y),A
320 X=X + 1

330 IF X>319 THEN X=0

340 PUT(X,Y),A
350 RETURN

360 PUT(X,Y),A
370 Y=Y+1

3S0 IF Y>199 THEN Y==0

390 PUT(X,Y),A
400 F(ETURN

Now when you run the program, the X-Y Program 39. Another Cursor Movement Program.

118

coordinates of the cursor will be displayed in the
upper left-hand comer of the screen. This will at
least give you some idea of where the cursor lies
in the terms of X and Y.

Program 39: Another
Cursor Movement Program

This program is identical to the previous one,
except that it uses the standard cursor control keys
to manipulate the cursor instead of the four letter
keys. Everything is as it was before down to line
120. Lines 120 through 150 activate keys 11
through 14 by using the KEY statement in
GWBASIC. Keys 11 through 14 represent the cur
sor control keys that control up, left, right, and
down cursor movement. The KEY ON lines
simply turn these keys on. Lines 160 through 190
replace the previous INKEY$ variable. The ON
KEY statement causes the computer to branch to
another program line as soon as one of the specified
keys is pressed. From this point on, the movement
routines are exactly as they were in the previous
program, although in this case, we have set them
up as subroutines using GOSUB statements in lines
160 through 190. The previous GOTO branches in
the movement routines have been replaced with
RETURN statements.

Program 40: Graphics Drawing Board

This program makes full use of the previous
cursor movement program principles. This is a
practical program that will allow you to draw sim
ple objects on the screen simply by moving the cur
sor to a desired point, and then pressing another
key or two.

Lines 110 through 190 turn on nine keys that
will be used for cursor movement and drawing

circles, lines, dots, and boxes on the screen. Keys
11 through 14 are our standard cursor movement
keys. Keys 1 through 4 correspond to keys F1
through F4, which are accessed by means of the
Fn key on the keyboard. F1 is used to draw squares
or rectangles, F2 is used to draw circles, F3 is
used to paint these objects, and F4 is used to draw
lines or dots. Key FIO is used to move the cursor

more rapidly. (The previous cursor movement pro
grams moved the cursor by incrementing X or Y
by 1. In this program, when FIO is pressed the cur
sor is moved in steps of 5. To get back to one-step
control, simply press FIG again.)

Now, to draw a box on the screen, advance the
cursor to the position on the screen where you want
the edge of the box to begin. Press Fl. This will
produce a blue dot marking one comer of the box.
Assuming this is the left upper comer, move the
cursor down and to the right to a point where you
want the lower right comer to be. Press Fl again
and your box appears on the screen. With this
routine you can draw different-sized boxes all over
the screen, and even draw boxes within boxes with
extreme ease. Here's how it works.

When Fl is pressed, line 220 branches to line
320. Here, variable C is incremented by 1.
Previously, C was 0. Line 330 tests for the value
of C and, since it is equal to 1, there is a branch
to line 340. Here, variables A and B are assigned
the values of X and Y (the screen location of the
cursor) and line 350 sets a dot on the screen. This
marks the comer of the box. Line 360 branches
back to one line past the GOSUB statement, and
the computer again waits to read another key. You
can now move the cursor to another position mark
ing the opposite comer of the box. When you press
Fl again there is another branch to line 320, and
here C is incremented by 1. The former value of
C was already 1, so C is now equal to 2. Line 330
branches to line 370, since C is no longer equal to
1. This line assigns AA and BB the values of X and
Y. Remember, X and Y have now changed from
the previous coordinates because the cursor was
moved. Line 370 also retums C to a value of 0.

Lines 380 through 450 compare the value of AA
to A and, depending on the condition detected,
assign the proper coordinates to X and Y to erase
the first dot from the screen. Line 450 uses the

graphics LINE statement with the B designator to
draw the box between the coordinates specified.
Line 460 contains a RETURN statement that bran

ches back to the key detection routine.
To draw a circle, you simply press the F2 key

and then move the cursor up or down. The first

119

10 F£M BRAPHIC DRAWING BOARD

20 REM COPYRIGHT FREDERICK HOLTZ
30 CLS

40 SCREEN 1

50 KEY OFF

60 ST=1

70 DIM A(100)

80 PSET(0,O),3
90 GET(O,O) — (0, 0) , A
100 PUT(6,0),A
110 KEY(l') ON
120 KEY(2) ON

130 KEY(3) ON

140 KEY(4) ON

150 KEY(10) ON

160 KEY(11) ON

170 KEY(12) ON

ISO KEY(13) ON

190 KEY(14) ON

200 X=160:Y=100

210 PUT(X,Y),A
220 ON KEY(l) GOSUB 320

230 ON KEY(2) GOSUB 470

240 ON KEY(3) GOSUB 710

250 ON KEY(4) GOSUB 800

260 ON KEY(10) GOSUB 780

270 ON KEY(ll) GOSUB 550

280 ON KEY(12) GOSUB 590

290 ON KEY(13) GOSUB 630

300 ON KEY(14) GOSUB 670

310 GOTO 220

320 C=C+1

330 IF C=1 THEN 340 ELSE 370

340 A=X:B=Y

350 PSET(X,Y),2
360 RETURN

370 aa=x:bb=y:c=o

380 IF AA>A and X<319 THEN X=:X + 1: PUT (X , Y) , A
390 IF AA<A AND X>0 THEN X-X-1:PUT(X,Y), a
400 IF AA>A AND X=319 THEN X=0:PUT(X,Y), A
410 IF AA<A AND X=0 THEN X=319:PUT(X,Y), a
420 IF AA=A AND Y>0 AND Y<199 THEN Y=Y-1 :PUT(X,Y),A
430 IF AA=A AND Y=0 THEN Y=199:PUT(X,Y), a
440 IF AA=A AND Y=199 THEN Y=0:PUT(X,Y), A
450 LINE(A,B)-(AA,BB),3,B
460 RETURN

470 D=D+1

120

430 IF D=1 THEN AAA=X:BBB-Y:PSET(X,Y)

RETURN

490 CCC=(BBB-Y) -1: D==0

500

510

520

530

540

550

560

570

530

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

310

320

330

840

850

860

870

880

890

900

910

920

THEN Y=:=199

IF Y>BBB THEN CCC^CCC^-l

IF Y=BBB THEN PSET•X,Y),0:RETURN
CIRCLE(AAA,BBB),(6/5)kCCG,3
PSET(AAA,BBB),
RETURN

PUT < X,Y) ,A

Y==Y-BT:IF Y<0

PUT<X,Y),A
RETURN

PUT(X,Y),A

X=X~ST:IF X<0 then X-319

PUT(X,Y),A

RETURN

PUT(X,Y),A

X = X+ST:IF X>319 THEN X:=0

PUT < X,Y) ,A
RETURN

PUT(X,Y),A

Y=Y+ST:IF Y>199 THEN Y-O

PUT(X,Y),A

RETURN

PAINT(X,Y+3),CGL,3
A^=INKEY^

IF A^="" THEN 720

IF A$<>CHR^(13) THEN C0L==C0L+1 ELSE 770

IF COL>3 THEN GGL-O

GOTO 710

RETURN

IF ST=5 THEN ST:=1 ELSE ST=:5

RETURN

CT=CT+1

IF CT=:1

AA=X:BB=Y

IF AA>A AND

AACA

AA>A

AACA

AA=A

AA=A

AA=A

LINE(A,B)

CT=0

RETURN

THEN A=X : B=^Y: PSET (A, B) , 2: RET URN

IF

IF

IF

IF

IF

IF

AND

AND

AND

AND

AND

AND

X<319 THEN

X>0 THEN X:

X=319 THEN

X=0 THEN X =

X = X + l:PUT<X,Y)

= X"l:PUT(X, y") , A
x=0:PUT(X,Y)

=319:PUT(X,Y)

,

Y>0 AND Y<199 THEN Y==Y-1

Y=0 THEN Y=199:PUT<X,Y)

Y=199 THEN Y=0:PUT(X,Y)

A

A

:P

(AA,BB),3

 A

UT(X,Y)

A

A

A

Program 40. Graphics Drawing Board.

121

time you press F2, a dot will be placed on the screen
that marks the center of the circle. When you press
F2 a second time, you mark a point one pixel past
the circle perimeter. The circle is drawn based upon
these coordinates. To paint the circle, simply press
F3 immediately after the circle is produced and
then press any key on the keyboard other than the
function or cursor control keys. The first press of
the key will produce one color. Pressing it again
causes a different color, and pressing it a third time
produces the screen background color. When
you're satisfied with the color, simply move on.

Pressing F2 brings about a branch to line 470,
which increments D by 1. Line 480 tests for the
value of D. The first time this routine is accessed

D is equal to 1, so AAA and BBB are assigned the
values of X and Y. Line 480 also contains the PSET

statement, which sets the dot marking the center
of the circle on the screen. When F2 is pressed
again, D is incremented to 2. Therefore line 490
is executed, which assigns CCC a value that is equal
to BBB-Y-1. D is then reset to 0. CCC now

represents the perimeter of the circle minus 1 pix
el. The CIRCLE statement in line 520 uses AAA

and BBB as the center of the circle, and CCC times
6/5 as the diameter. The 6/5 fraction is used to

make the circle perfectly round. (Trust me.) Line
530 then erases the dot at the center of the circle.

The RETURN statement puts the computer back
in the key detection mode.

Pressing F3 sets up the routine to fill in the cir
cle or other object. To do this you could place the
cursor dot in the center of the object to be painted,
but this will leave a black spot where the dot was.
It is best to fill an object by placing the cursor dot
1 pixel above the object. Upon pressing F3 there
is a branch to line 710, which uses the PAINT state
ment to fill in the object. The variable COL
represents the color numeral. Line 720 uses the

INKEY$ variable to increment COL by 1 each time
a standard key is pressed. When you are satisfied
with the color, simply move on to drawing another
object.

Key F4 is used to draw vertical, horizontal, or
diagonal lines. Simply press F4 and the beginning
line position dot is fixed. Move the cursor to any
other spot on the screen, press F4 again and a line
is drawn between the two points. To draw a single
dot, press F4 twice. When F4 is pressed there is
a branch to line 800, which increments CT by 1,
and line 810 then tests for the value of CT. When

CT is equal to 1, it assigns A and B the values of
X and Y respectively. The PSET statement on this
same line produces a dot on the screen that marks
the starting point for the line. The second time this
routine is accessed, CT is stepped to 2 and line 820
assigns AA and BB the new values of X and Y.
Lines 830 through 890 compare the value of AA
to A to calculate the position of the original dot,
which is then erased. The LINE statement in line

900 then draws a line between the two sets of coor

dinates. CT is then reset to 0, and the RETURN
statement puts the computer back in the key-detect
mode.

This program was a bit difficult to write. It took
several hours, but most of this involved debugging
some simple mistakes and adding some built-in user
features. It can be used effectively to draw some
very simple objects on the screen, but as these sim
ple objects multiply, so does the complexity of the
screen image. You can even use this program to
add features to graphics images that have been pro
duced with other programs. To do this, simply
remove the CLS statement from line 30. Run your
other graphics program and then load this one. You
can then draw on the surface which was produced
by the first program.

Section Summary

Cursor movement programs make excellent
''tools" for the graphics programmer. With them,
you can visually pinpoint the screen locations where
objects are to be drawn. Such programs can be
used almost like a human-controlled stylus to ac
tually draw on the screen, much as you would draw
on a piece of paper.

122

Chapter 6

h

AT&T PC Game Programs
While game programs are more often associated
with home computers than personal computers, it
is a fact that many of the best games designed for
microcomputers are meant to run on personal com

puters. The home computer is usually thought of
as a low-level microcomputer with limited screen
capabilities, while the personal computer is rank
ed as a machine that might be most comfortable in
an office or small business environment. In any

event, most people will not pay the price of a per
sonal computer simply to run game programs. For
this reason, the PC-6300 will be supported more by
business software than game software. From a
tutorial point of view, however, game programs of
fer excellent examples of using various routines and
computer functions to accomplish a goal. This
chapter includes a number of text and graphics
mode programs that fall into the game category.
Many are quite fun for programmers of all ages,
but more importantly, each will tell you more about
programming a microcomputer. This chapter will
introduce some new functions and statements that

have not been used previously. These should give
you ideas as to how they may be used in program
ming more sophisticated applications.

Program 41: Automatic RANDOMIZE Seed
Number Generator

Many computer games depend on random
numbers to offer the element of chance. We set this

up on the PC-6300 by first using the RANDOMIZE
statement followed by RND functions throughout
the program. The RANDOMIZE statement, when
executed, creates an automatic screen prompt tell
ing you to type in a positive or negative number
within a certain range. This one number is used by
the computer to *'shuffle the deck,'' so to speak-
to mix up the random nximbers available to us.
However, this can be a real pain. It would be bet
ter if the computer could pick a number on its own.
This program allows the computer to choose from
a range of numbers between 0 and 60, which should
be sufficient for most purposes.

We do this using a portion of the TIME$ func-

123

10 F;EM AUTOMATIC RANDOMIZE

SEED NUMBER

20 CLS

30 SCREEN O

40 WIDTH 40

50 KEY OFF

60 X== VAL < MIDifi (TI MEifc ,7,2))

70 RANDOMIZE X

SO FOR A=i TO 10

90 PRINT INT(RND*20)+1

100 NEXT A

Program 41. Automatic RANDOMIZE Seed Number
Generator.

tion, specifically the portion that displays seconds.
The internal clock of the computer is constantly up
dating TIME$ second by second, so all we need to
do is use the seconds digit(s) as the random nmnber
seed. Here's how the program works.

Line 60 uses the MID$ fimction to pull the
seconds digit(s) from TIME$. The VAL function
is also used to convert the string value returned into
a numeric value that is assigned to X. Line 60 could
be replaced with:

60 X$ = MID$(TIME$,7,2,)
61 X = VAL(X$)

Line 60 does all this in a single program line. The
MID$ function returns two characters, starting at
the seventh position in TIME$. These characters
make up the seconds portion of TIME$. Line 70
uses the RANDOMIZE statement with X as its

seed niunber. Variable X will be equal to whatever
the clock seconds were when line 60 was executed.

After line 70 is executed, the random number
generator has been reshuffled and is ready to go.

Lines 80 through 100 simply use the RND func
tion to print random values to the screen. Each time
the program is run, a different set of random
numbers will appear. Lines 80 through 100 are for
demonstration purposes only. The preceding lines
are the ones that should be used in any program
that uses the automatic seed generator.

Program 42: Random Word Maze Generator

Chances are you've played a game where a
massive jumble of letters were arranged on a piece
of paper. The object of the game is to find the hid
den words that may be printed horizontally, ver
tically, or diagonally within the maze. The words
may be printed from bottom to top, top to bottom,
left to right, or right to left. This computer program
generates such word mazes, but I've cheated a lit
tle bit, because no specific words have been pro
grammed. All of the letters generated by the pro
gram are chosen purely at random. However, you
might be surprised at the number of words that crop
up randomly throughout such a display. The object
of this game is to see how many words you can find
within the maze. Your opponent has the same
assignment, and whoever finds the most words is
the winner. Figure 6-1 shows the sample maze that
was printed at random. If you look closely, you will

10 REM RANDOM WORD MAZE
GENERATOR

20 REM COPYRIGHT FREDERICK

HOLTZ

30 CLS

40 INPUT"TYPE ANY NUMBER

FROM 1 TO 30000 " ;NUM

50 RANDOMIZE NUM

60 CLS

70 SCREEN O

80 WIDTH 40

90 DIM Af(26)

100 FOR X=65 TO 90

110 A«(X-64)=CHR$(X)

120 NEXT X

130 FQR Y=1 TO 20

140 FOR X=5 TO 35

150 Z=INT(RND*26)-i-l

160 LOCATE Y,X

170 PRINT A«(Z)

180 NEXT X

190 NEXT Y

Program 42. Random Word Maze Generator.

124

UILXNKNHXUZJSROZBHAVSYRHMQVIDSV

ZITDZVWTJGEUVLHMTWPFBQDYXFIXTZN

IS J X XEBWTMRK J HIQMPRBCMHOV YD WVG

GHJ XRYPTUGHHJ Z Z XDIFNQYGDODYFZ XQ

NIMOBAQMKAAMDZ X ZSDVELFANSPQRNUL

JHDRZUVFYOZXQEDJMHDRFNSQMPBCSCB

SECDRHEZYDTBRMMUTQELSXSABFGJITX

UZFLRFCFKDFNRBQCUGPXOTZCAPYGWBK

BUNDXEDCYZBJKFWTBBENZUNCRRMTDBD

KGBRPZAEYKRZRXCXMINVOYQUWMVAXKH

11KLQGFREHPIGKGUXNABLWILKYPLNLP

ZJXRWTTDNVUPWBPYPRNCPJPRQBAZKFQ

GNBTJGHHHYZCKFSNNZZCRAVYNQQTSPL

NYJFMNLNZEJJWBGNFXIQYRGCAJVVTUZ

KJCVGVELSZJEVUPXTYNBKSGFNATQMSH

KMGJKYKJCDMJUCMABSUAPCAIUIBGLIH

FUWJEMCXCHDPSQZPLRQYVHLGZWVHIRE

CPBWVDLVXLZYNXDGUUPUGNPFAGKHXGT

UWLCUWSSWEKBWJNPRTETNTQYGZEGZBL

AZEVVXGMRBGALDICGBCOACTSQHDTIEX

Fig. 6-1. Screen display from the Word Maze Generator
program.

find many English words that have been randomly
generated by this program.

The INPUT statement in line 40 allows you to
type in any number to be used as a random seed.
I purposely did not use the automatic random seed
program, since it will be a good exercise for you
to combine the two programs. Line 50 uses the
RANDOMIZE statement with the number you in

put to reseed the random number generator. Line
90 establishes a string array (A$) which contains
26 characters, corresponding to the 26 letters in the
English alphabet. Line 100 starts a FOR-NEXT
loop that counts X from 65 to 90. ASCII character
65 is the letter A, 66 is B, and so on, until you reach
90, which is Z. These numbers will be used to
generate all 26 letters of the alphabet. Line 110 puts
the string value of the ASCII number into the ar
ray. The CHR$ function is used here. Array posi
tions 1 through 26 are obtained by subtracting 64
from X in the same line. The CHR$ function con

verts X to a letter of the alphabet. When this loop
times out, array positions 1 through 26 correspond
with the 26 letters of the alphabet.

Lines 130 and 140 start two more loops. Here,
Y represents the row position on the text screen,
whereas X represents the column position. Line 150
uses the RND function to return a number at ran

dom. This number will range from 1 to 26. The
LOCATE statement is used in line 160 to position
the text cursor on the screen at the point determin
ed by the values of X and Y. Line 170 then prints
the letter foimd in the array position determined
by random number Z. This program serves to print
20 rows of 31 characters on the screen. Each time

you run this program, a different word maze will
appear, as long as you use a different random seed
number.

Program 43: Math Drill

Math Drill is an educational game that gives
the user simple math problems to solve. If the
answer is correct, the computer tells you so. If not,
you are given the opportunity to try again.

Again it is necessary to input a random seed
number. Lines 100 through 120 assign random
numbers to numeric variables X, Y, and Z. X and

Y may be equal to any number between 1 and 100,
while Z may be equal to any number between 1 and
4. All numbers will be whole numbers (integers)

because the INT function in these lines. The value

of Z is used to determine whether the problem will
involve addition, subtraction, division, or multiplica
tion. Lines 130 through 160 read the value of Z and
then assign A$ the proper symbol. Numeric
variable CNS is assigned the value of the
mathematical operation to be performed on X and
Y.

Line 170 uses the LOCATE statement to posi
tion the text cursor at a point near the center of the
screen. Line 180 then prints the value of random
number X, followed by the mathematical fimction
symbol (+, - ,/,*), followed by the value of Y. The

equal symbol is then printed. At this point, the user
is expected to input the correct answer. Line 190
assigns this input to ANS. If ANS (the user's
answer) is equal to CNS (the correct answer), line
200 causes the monitor speaker to beep. The screen
is cleared in line 210, and then the problem and cor-

125

10

20

30

40

50

60

70

BO

90

100

110

120

130

140

150

160

170

1 SO

190

200

210

220

230

240

250

260

270

280

0

290

300

310

320

330

340

350

360

370

MATH DRILL

COPYRIGHT FREDERICK HOLTZ

REM

REM

REM

CLS

SCREEN 0

WIDTH 40

KEY OFF

INPUT"TYPE IN ANY NUMBER"5SN

RANDOMIZE SN

X=INT(RND*100)+-1

Y=INT(RND*100)H-i

Z-INT(RND*4)+1

THEN

THEN

THEN

THEN

A1i:=" + ";

A1»:--="/" ;

Ai^:=^"X":

CNS==X+Y

CNS:==X~-Y

CNS=X/Y

CNS:=X*Y

IF Z==:l

IF Z=::2

IF Z:=3

IF Z=::4

LOCATE 14,15
PRINT X A$ Y

INPUT ANS

IF ANS:==CNS THEN BEEP ELSE 300

CLS

LOCATE 14,15

PRINT X YCNS

LOCATE IB,, 1

PRINT"CORRECT ANSWER!I f"

LOCATE 23,1
INPUT"DG YOU WISH TO CONTINUE (Y/N) " li

IF Ci|i-"Y" OR jhEN CLS: GOTO 10

OR (;7li==="n" THEN 430

TO 200:NEXT DLAY

TO TRY AGAIN OR 2 FOR A

IF

CL_S

BEEP

FOR DLAY===1

BEEP

LOCATE 14,10

PRINT ANSU"IS AN INCORRECT ANSWER I

LOCATE 23,1

PR INT" TYPE 1

NSWER.

3B0 S$-INKEY$

390 IF THEN 330

400 IF Sili^=^=^"l" THEN CLS: GOTO 170

410 IF Si|i=-"2" THEN 210

420 GOTO 3B0

430 CLS

440 LOCATE 14,10

450 PR INT"THE MATH DRILL IS OVER.

460 END

Program 43. Math Drill.

126

rect answer are reprinted with a prompt telling you
that the answer was indeed correct. If the user's

answer is not equal to CNS there is a branch to line
300, where two beeps are heard; the two beeps are
set up in lines 310 through 330. The computer
beeps once in line 310. A slight time delay is set
up in line 320 so that the two beeps do not simply
run together and sound like one long beep. The
computer then displays your answer on the screen,
telling you that it is incorrect. You are then given
the option of pressing 1 to try again or 2 to ask for
the correct answer.

Other prompt lines throughout this program
allow you the option of quitting at any time. It's a
friendly program that is fun to play as a game, and
if you're not careful you might learn something at
the same time.

Program 44: Numbers Guessing Game

The Numbers Guessing Game is one that is quite
common to computer game programming. It's quite
simple but still quite popular, because it's a lot of
fun for persons of all ages. At random, the com
puter chooses a number between 1 and 100. It is

the player's duty to guess that number. With each
wrong guess, the computer will display prompts
telling the player whether the guess is too high or
too low. When the number is finally guessed, the
computer will prompt with the fact that the correct
answer has been guessed, and will also tell the
number of guesses it took. In a two-player version,
the player with the lowest number of guesses is the
winner. When a single player plays this game, the
idea is to guess the number with as few guesses as
possible.

Here's how the program works. The first five
lines initialize the screen, and line 60 prompts you
to input any number. (This is to reseed the random
number generator.) The screen is again cleared, and
the RANDOMIZE statement is used with numeric

variable NS, the number you input. Line ICQ
establishes a value for numeric variable COUNT

of 1. This variable will be used to keep track of the
number of guesses you take. Line 110 assigns to
A a random number from 1 to 100. Lines 120

through 170 print a few simple instructions and
then allow you to make a first guess. Your guess
is assigned to B in line 170. Lines 190 and 200 check

10 REM NUMBERS BUESS GAME

20 REM COPYRIGHT FREDERICK HOLTZ

30 'CLS
WIDTH 40

KEY OFF

INPUT"TYPE IN ANY NUMBER."5NS

CLS

RANDOMIZE NS

CLS

COUNT:::== 1

A^==INT (RND-^^-100)

PRINT"THE COMPUTER HAS CHOSEN A NUMB

40

50

60

70

80

90

100

110

120

ER"

1 30

140

PR I NT-

PR I NT "BETWEEN

THI NIC "

150 PRINT

160 PRINT"THIS NUMBER

I'ZO INPUT B

ISO CLS

1 AND 100. WHAT DO YOU

IS"

127

J.90 IF B=A THEN 280 ELSE COlJNT-COlJNH-1

200 IF B<A THEN 260

210 PRINT"THAT'S TOO HIGH!! TRY AGAIN!!

220 FOR T==l TO 1000

230 NEXT

240 CLS

250 GOTO 120

260 PRINT"THAT'3 TOO LOW!! TRY AGAIN!!

270 GOTO 220

280 PRINT"THAT IS THE CORRECT NUMBER !!!
II

290 PRINT

300 BEEP

310 PRINT"IT TOOK YOU ";COUNT?" GUESSES!
i >t

320 FOR T=1 TO 2000

330 NEXT T

340 CLS

350 INPUT"WOULD YOU LIKE TO PLAY AGAIN <

YES/NO) "?A$

360 IF Aifc="YES" THEN 90

370 IF A^="NO" THEN 390

380 IF Ait<>"YES" OR A$<>"NO" THEN 450

390 CLS

400 LOCATE 14,25
410 PRINT"THE GAME IS OFFICIALLY OVER."

420 LOCATE 16,28
430 PRINT"THANK YOU FOR PLAYING"

440 END

450 CLS

460 PRINT"YOU HAVE NOT RESPONDED WITH A

YES OR NO ANSWER!!!!

470 FOR T=1 TO 1000

480 NEXT T

490 CLS

500 GOTO 350

Program 44. Numbers Guess Game.

for the relationship of your guess to the actual
number the computer has chosen. In line 190, there
is a branch to line 380 if your guess (B) is equal to
the secret munber (A). Lines 280 onward tell you
that the correct answer has been given, print the
munber of guesses to the screen, and then ask if

you want to keep pla3ring. However, if B is not equal
to A in line 190, COUNT is incremented by one.
Line 200 checks to see if your guess (B) is smaller
than A. If this is true there is a branch to line 260,
which prints the prompt "THAT'S TOO LOW!!
TRY AGAIN!!" Lines 220 and 230 form a time

128

delay loop. When this loop times out, the screen
is cleared and there is a branch to line 120, where

you are prompted to guess again.
Going back to line 200, if B is not less than A

by process of elimination it must be more than A,
because line 190 has already tested to see if B is
equal to A. Assuming your guess is larger than the
actual number (B), lines 210 through 250 are ex
ecuted, telling you that your guess is too high.
There is then a branch back to line 120, where you

are prompted to guess again.
When the correct answer is finally guessed,

there is a branch to line 280, where the correct
number prompt is printed. A beep is also heard.
Line 310 prints the number of guesses it took.
Notice that the COUNT variable is included in line

310. Line 350 prints the prompt on the screen ask
ing you if you'd like to play again. You must re
spond with a yes or no, which is assigned to A$.
Line 360 checks for "yes," which then brings about
a branch to line 90, and the program begins again.

Line 370 checks for a "no" input and then
branches in line 390, where the screen is cleared
and the computer tells you the game is over and
thanks you for playing. The program then ends.
Line 380 checks for an erroneous input of a value
other than yes or no. When this happens, the com
puter admonishes you for not inputting a yes or no
answer and then asks you again if you would like
to continue playing.

Program 45: Random Partner Matcher

This program is more of a game aid than a
game itself. It will allow you to input the names of
up to 20 boys and the same number of girls in any
order. The computer wiU then rearrange the names
randomly and display them on the the screen side
by side. The idea here is that the girl whose name
is listed on the left is matched with the boy on the
right. This program was originally written to aid
teachers in setting up dance partners for grade
school "mixers." However, this program can also
be used to match any two groups of people, items,
or numbers in a random fashion.

In line 70, the random seed number is input.

and in line 100 you are prompted to input the
number of couples you wish to mix and match. Line
110 checks to make certain that there are no more

than 20 couples. If so, there is a branch back to line
100, where you are asked to input this number
again. The number of couples is assigned to 1. Line
130 establishes two arrays, each of which will hold
a maximum of 20 elements.

The name input loop for girls begins in line 140.
Here, X is coimted from 1 to the value of I (number
of couples). Line 150 within the loop prompts you
to input the name of a girl. This name is assigned
to A$. If you input 20 couples when prompted
earlier in the program, this loop will cycle 20 times.
After each name is input, the screen is cleared
before you are prompted to input the next name.

When the first loop times out a second loop is
entered in line 180, which allows you to input the
names of the boys in the same fashion as the
previous loop. The boys' names are assigned to B$.

When this loop times out, the random shuffl
ing routine is entered. Line 220 again counts X from
1 to the value of I, and line 230 assigns to Z a ran
dom number that will range from 1 to I. We'll skip
line 240 for now.

As soon as the value of Z has been arrived at,

line 250 places'the text cursor at the left side of the
screen, and line 260 prints the name of the girl held
in array position A$(Z). Once the name has been
printed on the screen, line 270 blots out the name
of that girl from the array, replacing it with zero.
(Notice that the zero is assigned to the string array
surrounded by quotation marks. Numbers can be
inserted into a string array only if enclosed in
quotes. This makes them string values.) Line 280
recycles the loop.

We can now discuss line 240. It checks for an

array position whose contents have already been
read and printed to the screen. For instance,
assume on the first pass of the loop that the ran
dom number 6 was chosen. The girl whose name
was input to array position 6, or A$(6), has already
been printed to the screen, and line 270 has
reassigned the value of A$(6) to "0." Line 240 is
there to prevent a name from being displayed twice,
(or, more accurately, to branch back to the random

129

10 REM RANDOM PARTNER MATCHER

20 REM COPYRIGHT FREDERICK HOLTZ

30 CLS

40 SCREEN O

50 WIDTH 40

AO KEY OFF

70 INPUT"ENTER ANY NUMBER FROM 1 TO 3000

0";NUM

80 RANDOMIZE NIJM

90 CLS

100 INPUT"HOW MANY COUPLES"!I

110 IF I>20 THEN 100

120 CLS

130 DIM A$ •: 20) : DIM < 20)

140 FOR X==l TO I

150 INPUT "NAME OF GIRL" ; AHi (X)
160 CLS

170 NEXT X

180 FOR X=1 TO I

190 INPUT"NAME OF B0Y"5B«(X)
200 CLS

210 NEXT X

220 FOR X=1 TO I

230 Z=INT (RND*-I)+1

240 IF A$(Z)=="0" THEN 230

250 LOCATE X,1
260 PRINT A$(Z)

270 A«(Z)="0"

280 NEXT X

290 FOR X==l TO I

300 Z=INT(RND*I)+1

310 IF BUi<Z)="0" THEN 300

320 LOCATE X, 15
330 PRINT B«i(Z)

340 B«(Z)="0"

350 NEXT X

360 LOCATE 23,1
370 END

Program 45. Random Partner Matcher.

rnunber routine and assign Z another random 240 detects a value of "0" for A$(Z), there is a
number if it returns one already used). branch to line 230, where Z is assigned another ran-

Therefore, the reassignment in line 270 works dom number. This loop will continue vmtil A$(Z)
in conjtmction with the test line in line 240. If line equals something other than "0." When all of the

130

names have been read from A$ the loop times out,
and lines 290 throiagh 350 set up the same sequence
for reading the names of the boys. The boys' names
are printed to the right of the girls' names, begin
ning near the center of the screen.

When the program terminates, the names of
the girls you input will be seen at the left in a ran
dom order. The names of the boys to which they
are matched will be seen to the right, and will also
be in a random order. (Warning: This game should
not be used for the selection of spouses.)

Program 46: Computerized Bingo Caiier

This program also serves as a game aid, as op
posed to a complete game. It is probably one of the
most practical and useful programs in this chapter
when used by fire departments, civic clubs, and
other organizations which have regular bingo
games. The computer, using this program, fully
takes the place of those mechanical bingo machines
with the floating ping pong balls bearing designa
tions of bingo card positions. When this program
is run, the computer will randomly select any of 75
possible bingo calls and display it on the screen. All
numbers are arrived at randomly, so the game will
be absolutely fair.

The RANDOMIZE statement is seeded with

numeric variable NUM, which is input via the
keyboard. Two arrays are established in lines 100
and 110, each containing 75 elements. Lines 120

through 150 assign the first 75 positions in each ar
ray to the number that corresponds to that position.
In other words, the first 75 elements of each array
are assigned the numbers 1 through 75 sequential
ly. Line 160 assigns Y a random number between
1 and 75. Line 170 is identical to the operation of
lines 240 and 310 in the previous program. It tests
for a reassigned value of 0 in array A. This would
be an indication that the value contained in this ar

ray position had already been called.
Now, while bingo numbers range from 1 to 75,

they are also coupled with the letters B, I, N, G,
or O. Lines 180 through 220 make the letter
assignments based upon the value of the random
munber. The letter assignment will be fovmd in Q$.
For instance, in line 180 a test is made to see if the
number at A(Y) is less than 16. Remember, the ar

ray has been assigned numbers sequentially from
1 to 75, so A(15) will have a value of 15. In Bingo,
numbers from 1 to 15 are preceded by a B. In line
180, if A(Y) is less than 16, then Q$ is assigned a
string value of B. Lines 190 through 210 test for
a numeric value to assign the letters I, N, or G. In
line 220, Q$ is assigned the value of the letter 0.
If none of the other test conditions find values to

which letter can be assigned; the number returned
by the random number generator must then be 61
to 75. If one of the previous test lines finds a match,
line 220 is branched over.

When line 230 is executed, the letter has

10 REM COMPUTERIZED

20 REM COPYRIGHT FR;

30 CLS

40 SCREEN O

50 WIDTH 40

60 KEY OFF

70 INPUT"TYPE IN ANY

000";NUM

SO CLS

90 RANDOMIZE NUM

100 DIM A(75)

BINGO

DERICK

CALLER

HOLTZ

NUMBER FROM 1 TO 30

110

120

DIM

FOR

B(75>

X=1 TO 75

131

130

140

150

160

170

180

190

A(X)=X

B<X)=X

NEXT X

Y=INT(RND*75)+1

IF A(Y)=0 THEN 160

IF A(Y)<16 THEN Q$="B":BOTO 230

IF A(Y)>=16

GOTO 230

200 IF A(Y)>=32

GOTO 230

210 IF A(Y)>=46

GOTO 230

220 Q*="0"

230 LOCATE 1,1
PRINT"PRESS

INPUT-ENTER

240

250

AND A(Y)<31 THEN Q$=="I'

AND A(Y)<46 THEM QT.=="N'

AND A(Y)<61 THEN Q$=="G":

;eih

260

270

280

290

300

310

320

330

340

350

360

370

380

ENTER

'END'

FOR BINGO

WHEN GAME

CALL."

IS OVER"

IF E«="END" THEN 340

LOCATE 12,20
BEEP

PRINT Q$5A<Y)

A(Y)=0

C0UNT=C0UNT+1

IF C0UNT=75 THEN END

GOTO 160

CLS

Q$="B":GOTO 4.20

B(X)<31 THEN Qifi=:"I";

32 AND B(X)<46 THEN Qi{i="N'

46 AND B<X)<61 THEN Qili=--"G":

T=1

FOR X=1 TO 75

IF B(X)<16 THEN

IF B(X)>=16 AND

GOTO 420

390 IF B(X)

GOTO 420

400 IF B(X)

GOTO 420

410 Q«=="0"

420 IF A(X)<>0 THEN 470

430 S=S+1

440 IF S=20 THEN S==l:T=T+9

450 LOCATE S,T
460 PRINT Q«5B(X)

470 NEXT X

480 LOCATE 23,1
490 END

Program 46. Computerized Bingo Caller.

132

already been assigned to Q$. You are prompted to
press Enter for a bingo call, or to type ''END" if
the game is over. Line 260 tests for an input of END
and then branches to the closing routine. If you
simply press Enter, line 270 positions the text cur
sor near the center of the screen, a beep is heard,

and line 290 prints Q$ (the letter) followed by the
value in A(Y). Line 300 reassigns the value of A(Y)
to zero, since this number has already been read.
Notice that the zero is not enclosed in quotation
marks here, because we are dealing with a numeric

array instead of the string array in the previous pro
gram. Lines 310 increments numeric variable
COUNT by one. Line 320 tests for a condition of
this variable being equal to 75. This would mark
the end of the game, since all numbers have been
called, and the program terminates. Since this will
theoretically never happen, line 330 branches to line
160, where a new random number is assigned to
Y and you are again prompted to press Enter for
the bingo call.

Now, when a player scores bingo (using the

standard bingo cards which you must supply), sim
ply type END and there is a branch to line 340.
Here the screen is cleared, T is assigned to 1, and
a FOR-NEXT loop begins in line 360. This counts
from 1 to 75, which happens to be the number of
different calls in bingo. Lines 370 through 410 per
form the same text function as lines 180 through
220. However, these lines use the values contain

ed in the second array named B, which we haven't
really used yet. Line 420 is the key here; it tests
to see if the value at position A(X) is 0. If it isn't,
line 430 increments S by 1. Line 450 locates screen
position S,T and prints the value of Q$ (the letter),
followed by B(X), the number. What does all this
do? It simply prints out on the screen all the calls
that have been made from the A array, by referenc
ing them to the B array. This allows you to check

the legitimacy of the bingo. Let me digress a bit.
Earlier in the program, any time a call was

made the position in array A containing that call
was set to zero. (Originally, arrays A and B were
assigned the same values.) Array B is there just to
serve as a reference; array B has not been chang
ed by any previous program lines, but the values

in array A have; the values that have been used are
changed to zero. The display routine at the end of
the program first checks a position in array A. If
it's equal to zero this call has been used. The same
position in array B is used to retrieve the number
in that position, which corresponds to the original
value in array before being reassigned to zero. Any
value in array A that is not equal to zero represents
a value not used before bingo was reached. Line
420 will then branch to line 470, causing the loop
to cycle again without printing anything. Variables
S and T are used with the LOCATE statement to

neatly display all of the called values.

Program 47: Spin the Bottle

Spin the Bottle is a game that incorporates text
characters and animated graphics programming. It
will allow you to input the names of two girls and
two boys, and then spins a graphic bottle to see who
kisses whom. Figure 6-2 shows the screen display.
Notice that, in place of the standard bottle, a two-
position pointer has been used to indicate the kiss

ing couple. This is a nice game because you can
always be certain that a girl will be matched with
a boy. This is not true in the mechanical version

of this game.
Line 70 prompts you to input a random number

seed that is used with the RA^OMIZE statement
in line 90. An array is established in line 100, which
will be used to hold the screen image that will be
used later as part of the animation routine. Lines
120 through 180 prompt you to input the names of
the players. Notice that the girls' names are input
first, followed by the names of the boys. This pat
tern must be followed to achieve an appropriate
run. Lines 200 through 270 print these names in
a box-like pattern on the screen. The names will
surroimd the arrow pointers.

Lines 280 through 340 contain the animation
routine. The use of PUT and GET in this program
is not standard as far as animation goes. Line 110
uses GET to assign to array A the screen content
of a box formed at coordinate 0,0 and 60,60.
However, when this happens the screen has already
been cleared, and this box will contain nothing but
the screen backgroimd color. Why GET an image

133

10 REM SPIN THE BOTTLE

20 REM COPYRIGHT FREDERICK HOLTZ

30 SCREEN 1

40 KEY OFF

50 COLOR 1,O

60 CLS

70 INPUT"TYPE IN ANY NUMBER FROM 1 TO 20

000"5NUM

SO CLS

90 RANDOMIZE NUM

100 DIM A<500)

110 GET(0,0)-(60,60),A
120 INPUT"NAME OF FIRST GIRL";A«

130 CLS

140 INPUT"NAME OF SECOND GIRL";B«

150 CLS

160 INPUT"NAME OF FIRST B0Y"5C$

170 CLS

180 INPUT"NAME OF SECOND BOY";D«

190 CLS

200 LOCATE 13,8
210 PRINT A*

220 LOCATE 13,30

230 PRINT B«

240 LOCATE 7,18
250 PRINT C%

260 LOCATE 18,18
270 PRINT D*

280 FOR X=1 TO 101

290 SOUND 1200,.l
300 R=INT(RND*4)

310 DRAW"A=R;BM160,100U20G5BE5F5BM160,10
0R20H5BF5G5"

320 IF X=100 THEN 350

330 PUT(130,60),A,AND

340 NEXT

350 LOCATE 23,1
360 PRINT"PRESS ANY KEY TO SPIN AGAIN"

370 T*=INKEY*

380 IF T«=="" THEN 370

390 LOCATE 23,1
400 PRINT"

410 GOTO 280

Program 47. Spin the Bottle.

134

HAR!RV

LISA SUE

BILLV

PRESS ANV KEV TO SPIN AGAIN

Fig. 6-2. Screen display from Spin the Bottle.

that really isn't there? There is really something
there—screen background—and here's how it's
used.

Lines 310 draws the arrow figure. This image
will consist of one arrow pointing toward the top
of the screen and another pointing toward the right.
However, notice that the angle command is used
in the DRAW statement, assigning it to the angle
specified by variable R. In line 300, R is assigned
a random number from 0 to 3. You will recall from

an earlier discussion that 0 represents no shift of
the image produced by the DRAW statement. The
numbers 1 through 3 bring about left shifts of 90,
180, and 270 degrees respectively. This is what
causes the pointers to rotate. However, line 330
contains a PUT statement, which PUTs the screen

background color to the image produced by the
DRAW statement, effectively erasing it from the
screen. If this were not done, each time the DRAW
statement rotated the figure the previous figure
would remain on the screen; after a few cycles of
the loop, the two pointers would quickly look like

several. Every name would have an arrow pointing
to it. The way this program is written, the sequence
is:

1) Draw the pointers.
2) Erase the pointers.
3) Rotate the pointers.
4) Erase the pointers.

5) Rotate the pointers.
6) Etc.

This action occurs rapidly, but not so fast that you
can't see the pointers displayed before they are
erased. The result is the appearance of a spinning
set of pointers. The pointers spin 100 times. The
SOUND statement in line 290 produces some in
teresting soimd effects that sound similar to a glass
bottle being spun on the sidewalk.

The loop cycles 100 times, even though it is set
up to cycle 101 times by the FOR statement in line
280. However, line 320 exits the loop when X is
equal to 100, before the PUT statement in line 330

135

is executed. Actually, line 280 could assign a top
value of 100, since 101 will never be reached

because of the exit. The count to 101 and the exit

at 100 in line 320 make the exit a little easier to

understand. When the loop has been exited, the last
position of the pointers remain on the screen. The
players are then prompted to press Enter to spin
again.

This is a very interesting game from a visual
standpoint. The COLOR statement in line 50 sets
the background to a dark blue. The spinning
pointers, along with the soxmd effects, are boimd
to hold attention. Try it. You'll like it.

Program 48: Scrambled Word Game

Here is a game you can modify endlessly by
adding different DATA statement lines. The com
puter will display a word on the screen. It is a

legitimate word, but the letters have been mixed
up. It is your job to unscramble the letters and type
in the correct word. If you guess the word correct
ly, the computer will prompt you to this fact; if you
make an incorrect guess, the computer will tell you
about this as well, and will also print the correct
answer. At the end of the game, your score is
printed. The score gives you the number of wrong
answers and the number of guesses.

Line 50 sets up a string array (A$) which holds
a maximum of 10 elements. Lines 80 and 90 use

a version of a program discussed earlier in this
chapter that utilizes the TIME$ function to arrive
at a random seed value. Here, E is the random seed
number, used with RANDOMIZE in line 100, that
is derived from the seconds portion of TIME$. Line
110 contains the READ statement, which retrieves
the value from the DATA statement lines begin
ning at line 490 in the program. Line 120 contains
an IF-THEN statement to test for the end of the

program. (More on this later.) Line 130 is a count
routine using NUM as its variable.

To explain the workings of this program, one
must remember that the DATA statements in lines

490 through 510 contain the words to be scram

bled. When the program is first run, the READ
statement in line 110 will access the first DATA

statement element, which is the word

''DISKETTE." Line 140 uses the LEN statement

to set the maximum value of X in the loop begun
in this line. LEN(Q$) is equal to the number of
characters in Q$, which is eight. Line 140 is really
saying:

140 F0RX=1T0 8

However, the top value for X will change with the
number of letters in each word accessed.

Line 150 assigns the first eight elements in ar
ray A$ to the letters that make up the word
DISKETTE. A$(l) equals D, A$(2) equals I, A$(3)
equals S, etc. The assignments are made to the ar
ray using the MID$ function to read the letters in
Q$ one at a time.

Line 170 begins another loop that counts from
1 to LEN(A$), or 8 in this example. Line 180 assigns
a random number to Z, in this case a number from

1 to 8, or in other examples from 1 to the length
of the mystery word. Line 190 is a test line to see
if the value of A$(Z) has been reassigned as "0."
The LOCATE statement in line 200 steps the text
cursor across the screen near center as each letter

is printed. The actual print is made in line 210. Line
220 assigns that position in the array to "0" and
the loop goes around for another letter.

Assuming the mystery word is DISKETTE, if
the first number assigned to Z is 3, then the letter
S is printed to the screen, since this is the letter
found at position A$(3). If the next value of Z is 8,
the next letter printed will be E, which is found in
the eighth element of A$. When the loop times out
line 250 prompts you for an answer, which is assign
ed to ANS$. Line 260 checks to see if your answer
is equal to the DATA statement word. If so, there
is a branch to line 330, which clears the screen, pro
duces a beep, and tells you that the answer is cor
rect. You are then prompted to press Enter for
another word, whereupon the next DATA state

ment word is accessed via a branch to line 110. The

sequence begins again. If, however, your answer
is not equal to Q$, line 270 increments C by one.
Line 280 clears the screen, and a low-frequency
rasp is heard because of the SOUND statement in

line 290. You are then told the correct answer. In

136

10 REM SCRAMBLED WORD GAME

20 REM COPYRIGHT FREDERICK HOLTZ

30 SCREEN O

40 WIDTH 40

50 DIM A$(10)

60 CLS

70 KEY OFF

80 E$=MID$(TIME$,8,2)
90 E=VAL(E«)

100 RANDOMIZE E

110 READ

120 IF Q$="END" THEN 410

130 NUM=NUM+1

140 FOR X=1 TO LEN(Q$)

150 Af<X)=MID$(Q*,X,1)

160 NEXT X

170 FOR X=1 TO LEN(Q4i)

180 Z=INT(RND*LEN(Q«))+l

190 IF A1i(Z)="0" THEN 180

200 LOCATE 14,16+X
210 PRINT A$(Z)

220 A$<Z)="0"

230 NEXT

240 LOCATE 23,1
250 INPUT-'WHAT IS THE WORD";ANS$

260 IF ANS^=Q$ THEN 330

270 C=C+1

280 CLS

290 SOUND 200,5

300 LOCATE 14,5
310 PRINT"THE CORRECT ANSWER IS:"5Q$

320 GOTO 370

330 CLS

340 BEEP

350 LOCATE 14,15
360 PRINT"CORRECT ANSWER!!!"

370 LOCATE 23,1
380 INPUT"PRESS <ENTER> FOR A NEW WORD."

5RTf

390 CLS

400 GOTO 110

410 CLS

420 PRINT"THE GAME IS OVER. YOU HAD"C"WR

ONG"

430 PRINT"ANSWERS OUT OF"NUM"GUESSES."

137

440 LOCATE 23, 1
450 END

460 REM USER MAY PUT ANY WORDS IMAGINABL

E IN THE FOLLOWING DATA STATEMENT LINES.

470 REM REMEMBER TO TERMINATE YOU DATA S

TATEMENT ELEMENTS WITH 'END'.

480 REM KEEP ALL WORDS TO 10 OR LESS LET

TERS

490 DATA DISKETTE,MONITOR,MEMORY,SOFTWAR
E,GRAPHICS,PROGRAM
500 DATA TERMINAL,PROCESSOR,DATA,FLOPPY,
INPUT,CIRCUIT
510 DATA PRINTER,ASCI I,END

Program 48. Scrambled Word Game.

line 320, there is a branch to line 370, where you

are again prompted to press Enter for a new word.

Notice in line 510 that the last DATA element

word is END. Line 120 detects this word and

branches to line 410, where the screen is cleared.
You are then prompted that the game is over; the
number of wrong answers and the total number of
guesses is displayed before the program is
terminated.

To insert your own words into this program to
be scrambled and displayed, simply add more
DATA statements after line 510 (making sure you
remove the END from line 510), or change the
words contained in lines 490 through 510 to dif
ferent words. Maximum word length is 10
characters, although you can use more if you
change the size of your array in line 50. Always ter
minate your last DATA statement line with the
word END. This is a game that will never be ob
solete, simply because it can be easily updated to
include any words you want.

Program 49: Word Guess

Word Guess is another vocabulary game. This
one asks you to guess a word based upon another
word that looks or soimds like the correct answer,
and with the aid of a definition of the correct

answer. For instance, one clue might be:

CURABLE = LASTING

The correct answer here is DURABLE, which is
a word that sounds like CURABLE and means

LASTING. Line 80 through 100 print the welcome
to the program and ask if you need instructions.
Lines 110 through 130 check for your input. If in
structions are needed, there is a branch to line 950,
which displays the instructions on the screen. If not,
there is a branch to line 140, where the screen is
cleared. Line 150 begins a FOR-NEXT loop design
ed to read the 53 DATA elements which begin at
line 430. Line 160 is the exit routine. Line 170 simp
ly assigns variable C the value of zero. C is a coimt
routine that will keep track of the number of
guesses made. You are allowed three guesses to
come up with the right answer for each clue. If you
miss the third time, the correct answer is printed,
and the computer chalks up a miss in another coimt
routine, found in line 240. All wrong answers are
represented by W. Line 180 reads two values from
each DATA statement line. In line 430, the first

DATA statement element is

CURABLE = LASTING

This is assigned to string variable L$. The second
DATA element in line 430 is DURABLE. This is

138

10 REM WORDGtlESS

20 REM COPYRIGHT FREDERICK HOLTZ

30 CLS

40 KEY OFF

50 SCREEN 0

60 WIDTH 40

70 LOCATE 14,11
80 PRINT"WELCOME TO WORDGUESS"

90 LOCATE 23,1
100 INPUT"DO YOU NEED INSTRUCTIONS (Y/N)

";F$

110 IF Fi6="Y" THEN 950

120 IF F*="N" THEM 140

130 IF F$<;>"Y" AND F$<>"N" THEN 100

140 CLS

150 FOR J=1 TO 53

160 IF J=53 THEN CLS:LOCATE 14,5:GOTO 39
O

170 C=0

ISO READ L$,M$
190 LOCATE 14, 15: PRINT LiK
200 INPUT AS

210 IF AS=MS THEN 370

220 C=C+1

230 IF C<=3 THEN SOUND 100,15:LOCATE 23,
l:PRINT"SORRY, TRY AGAIN":FOR TD=1 TO 15

00:NEXT td:cls

240 W==W+1

250 IF C>3 THEN 260 ELSE 190

260 SOUND 100,10
270 FOR TD=1 TO 500

280 NEXT TD

290 SOUND 100,10
300 CLS

310 LOCATE 23,1
320 PRINT"TOO MANY GUESSES, THE WORD WAS

: "MS

330 PRINT"TRY THE NEXT WORD"

340 FOR TD=1 TO 2500:NEXT TD

350 CLS

360 GOTO 380

370 BEEP:LOCATE 23,1:PRINT "CORRECT! TRY
THE NEXT ONE":FOR TD=1 TO 1500:NEXT TD:

CLS

Program 49. Word Guess. (Continued to page 142.)

139

380 NEXT J

390 PRINT"NUMBER OF WRONG ANSWERS IS"W:L

OCATE 15,8
400 AV=INT(((208-W)/208)*100)

410 PR I NT "YOUR SCORE IS"AV""/."

420 END

430 DATA CURABLE=LASTING,DURABLE

440 DATA WILLOW=A LARGE WAVE,BILLOW
450 DATA SACK==TO CHOP WITH HEAVEY BLOWS,

HACK

460 DATA SLEET=A UNIT OF NAVAL SHIPS,FLE
ET

470 DATA SLICK=TO MAKE A SNAPPING SOUND,
CLICK

480 DATA SLASH=TO COLLIDE NOSILY,CLASH
490 DATA GOWN=THE SOFT FEATHERS OF A GOO

SE,DOWN

500 DATA BOWL=A HOOD OR HOUSING,COWL
510 DATA RABBLE=TO TALK AIMLESSLY,BABBLE

520 DATA BUBBLE=BROKEN PIECES OF STONE,R
UBBLE

530 DATA SILK=TO SWINDLE OR CHEAT,BILK

540 DATA COLDER=TO FOR A JOINT WITH MOLT

EN METAL,SOLDER
550 DATA DOCK=A GATED PORTION OF A CANAL

OR RIVER,LOCK

560 DATA BUMP=A SMALL MASS OR WAD,LUMP

570 DATA SITE= A SMALL ARACHNID,MITE
580 DATA SIGH=NEAR IN TIME,NIGH
590 DATA ROMP=SPLENDOR,POMP

600 DATA GROW=THE RIDGE OVER THE EYES,BR
OW

610 DATA JOIN=TO INVENT,COIN
620 DATA PIVOT=A PIECE OF SOD,DIVOT
630 DATA BLINK=RINGIN6 SOUND,CLINK
640 DATA CLIP=PERT,FLIP
650 DATA SOUNDER=CAD,BOUNDER
660 DATA DECISIONIAN INVALIDATION,RECISI
ON

670 DATA SORRY=A GARMENT OF INDIA,SARI
680 DATA TURN=AN AQUATIC BIRD,TERN
690 DATA TARPON=A TURTLE,TERRAPIN
700 DATA IDOL=A POEM,IDYL
710 DATA CHECKS=TO PUT A CURSE ON,HEX

140

720 DATA DIXIE=AN ELF OR SPRIIE,PI X IE
730 DATA LAGGARD=WILD LOOKING,HAGGARD
740 DATA FIRST=FORMERLY,ERST
750 DATA SYNICAL=CONCERNING HOSPITALS,CL
INICAL

760 DATA DINNER=AN ORIENTAL -COIN,DINAR

770 DATA SCENT=FORCE OR POWER,DINT
730 DATA PHYSICAL=PERTAINING TO PUBLIC R

EVENUES,FISCAL

790 DATA FOOL==DIRVEL,DROOL
800 DATA BIRD=A MAIDEN LADY,BURD
810 DATA OVERLAP=A COARSE FABRIC,BURLAP

820 DATA SENDER=A PIECE OF BURNED COAL,C
INDER

830 DATA SHRAPNEL=A HOOK,GRAPNEL

840 DATA INCITE=TO HEAT INTENSELY,IGNITE

850 DATA LOOP=A CLOTH MASK,LOOP
860 DATA SLUM=A DELICIOUS FRUIT,PLUM
870 DATA SNIFFLE=NONSENSE,PIFFLE

880 DATA PALE=MOLLUSK,SNAIL
890 DATA NOGOODNIK=AN ARTIFICIAL SATELLI

TE,SPUTNIK

900 DATA LUNAR=ROMANTIC MALE SINGER,CROO
NER

910 DATA CACKLE=MANGLE,HACKLE
920 DATA FURROW=A HOLE OR PASSAGE,BURROW

930 DATA CURFEW=A SHORE BIRD,CURLEW
940 DATA CURL=TO ROLL A SAIL,FURL
950 CLS

960 PRINT"WORDGUESS IS A VOCABULARY GAME

WHICH"

970 PRINT"TESTS YOUR KNOWLEDGE OF WORDS.

TWO "

980 PRINT"WORDS WILL BE SEEN ON THE SCRE

EN. THE"

990 PRINT"FIRST IS YOUR CLUE WORD. THE S

ECOND IS"

1000 PRINT"DEFINES THE MEANING OF THE WO

RD THE"

1010 PRINT"COMPUTER IS LOOKING FOR. THE

FIRST WORD"

1020 PRINT"MAY RHYME WITH THE WORD WHICH

CONSTI-

141

:l.030 PRINT"TUTES A CORRECT ANSWER OR IT

MAY"

1040 PRINT"INCLUDE MANY OF THE LETTERS 0

F THE"

1050 PRINT"CORRECT ANSWER- YOU WILL BEGI

VEN FOUR"

1060 PRINT"CHANCES TO COME UP WITH A COR

RECT"

1070 PRINT"ANSWER- IF YOU DOhF T SUCCEED,
THE ANSWER"

1080 PRINT"WILL BE DISPLAYED- THE COMPUT

ER WILL"

1090 PRINT"KEEP TRACK OF YOUR SCORE- GOO

D LUCK!"

1100 LOCATE 23,1
1110 INPUT"PRESS <ENTER> TO BEGIN"5S$

1120 CLS

1130 GOTO 150

assigned to M$ in line 180. Line 190 locates a posi
tion near the center of the screen and prints L$. You
are then allowed to input your guess in line 200.
Your guess is assigned to A$. Line 210 compares
the correct answer (M$) with your guess (A$). If
the two are equal, there is a branch to line 370,
which causes the computer to beep and print a
prompt indicating that your answer is correct. This
is a multiple statement line that actually contains
six different statements. After the prompt, there
is a time delay loop. When this times out the screen
is cleared, and the loop is recycled in line 380. The
next clue/answer is read from the next DATA state

ment line.

If your answer is incorrect (A$ not equal to
M$), line 220 increments C by one. Line 230 checks
for C being less than or equal to 3. When this is
true, the computer tells you the answer is wrong
and also tells you to try again. The loop is recycled
in the multi-statement line 230. During any of these
three guesses, if you get the right answer, line 210
detects this and again branches to line 370. When
youVe gone past your third guess and still haven't
gotten a correct answer, the wrong answer count

routine in line 240 is incremented by one, and a
wrong answer is chalked up to your score. Line 320
prints the correct answer and you are then
prompted to try the next word.

This program is very simple. It is long simply
because of the number of DATA statement lines

contained in the program. When you have finished
guessing all 53 words, line 390 prints the number
of wrong answers and then gives you a score
based upon percentage of wrong answers to total
answers. The formula for this is contained in line

400. Line 410 prints your score on the screen.

Program 50: Numbers Draw Poker

This is a draw poker program which uses
numbers to represent cards. One must use imagina
tion here to determine who the winner is, since the

computer does not do this for you. In this game,
the numbers 2 through 10 are used to represent
card values of 2 through 10. The number 11 is us
ed to represent an Ace or any face card. You play
this just like you would standard poker, trying for
full houses, straights, etc. Line 70 establishes an

142

10 REM NUMBERS DRAW POKER

20 REM COPYRIGHT i'RE:DERICI< HOLTZ
30 CLS

40 SCREEN O

50 WIDTH 40

60 KEY OFF

70 RN=OAL(MID$(TIME$,7,2))

80 RANDOMIZE RN

90 DIM A(5),B(5)
100 INPUT"NAME OF FIRST PLAYER"5A^

110 CLS

120 INPUT"NAME OF SECOND PLAYER"5B«

130 IF PN=0 THEN PN=1:Cf=A$:GOTO 150

140 IF PN-1 THEN PN==0: Ci6=Biti: GOTO 150

150 CLS

160 PR I NT "OK "3 016 5" IT'S YOUR TURN. "

170 INPUT"PRESS <ENTER> TO RECEIVE YOUR

HAND."5ERf

180 CLS

190 CLS

200 LOCATE 12,12
210 FOR X=1 TO 5

220 Z~INT(RND*10)+2

230 IF A<X)=0 THEN A(X)=Z

240 PRINT A<X)5

250 NEXT X

260 C=C+1

270 IF C=2 THEN C=0:G0T0 460

280 LOCATE 20,1

290 PRINT"HOW MANY CARDS DO YOU WANT "5!

$

300 INPUT N

310 IF N>3 THEN 290

320 CLS

330 LOCATE 12,12
340 FOR X=1 TO 5

350 PRINT A(X)3

360 NEXT X

370 FOR T=1 TO N

380 LOCATE 20,1

390 INPUT"WHICH CARD"3B

400 LOCATE 20,1
410 PRINT"

420 A(B)=0

430 NEXT T

143

440 CLS

450 GOTO 190

460 LOCATE 23,1
470 PRINT"YOUR TURN IS OVER ";Ct

480 LST=LST+1

490 IF LST=2 THEN LST=0:G0T0 570

500 FOR X=1 TO 5

510 B<X)=A(X)

520 A(X)=0

530 NEXT X

540 FOR DLAY=1 TO 1500:NEXT DLAY

550 CLS

560 GOTO 130

570 FOR DLAY=1 TO 1500:NEXT DLAY

580 CLS

590 LOCATE 8,1
600 PRINT A«;"'S HAND ="5

610 FOR X=1 TO 5

620 PRINT B(X);

630 NEXT X

640 LOCATE 17,1
650 PRINT B«;"'S HAND =";

660 FOR X=1 TO 5

670 PRINT A(X);

680 NEXT X

690 LOCATE 23,1
700 INPUT"PRESS <ENTER> TO PLAY AGAIN,"i

ER*

710 CLS

720 FOR X=1 TO 5

730 A(X)=0

740 NEXT X

750 GOTO 130

Program 50. Numbers Draw Poker.

automatic random number seed by pulling it from
the seconds portions of TIME$. The RANDOMIZE
statement in line 80 uses RN as it random nmnber

seed. Line 90 sets up two arrays to contain five
elements, the number of cards assigned to each
player's hand in this version of draw poker. Line
100 then prompts you to input the name of the first
player, which is assigned to A$. Line 120 allows
for the input of the second player's name, which

is assigned to B$. Lines 130 and 140 detect whose
turn it is to play. The name of the cxurent player
is assigned to C$.

Line 160 prints the prompt for the player
named in C$ to begin. When Enter is pressed,the
screen is cleared, the text cursor assumes a posi
tion near the middle. A random number routine is

set up in lines 210 through 250. In line 220, Z
receives a value from 2 to 11. Array position A(X)

144

is assigned the value of Z, and this value is printed
to the screen. The player is then asked how many
cards he/she wants. This number is assigned to N
in line 300. You are allowed to draw a maximum

of three cards, and line 310 makes sure that you

don't ask for more than this. If you don't want any
cards, simply press Enter, since an automatic value
for N of 0 will then be assigned.

Again the screen is cleared, and the same posi
tion is accessed by the text cursor. The same card
numbers as before are displayed on the screen and
you are then prompted to pick the first card you
want replaced with the draw. Here, you must type
in a number from 1 to 5 indicating the position of

the card to be replaced. When you press Enter, you
are again prompted for another card to be replac
ed, assuming you wish to draw more than one card.
When all of your cards have been replaced, the new
arrangement is shown on the screen. This is your
final hand. It is now time for the second player to
receive a hand and make the same selection. In the

end, both sets of cards will be displayed and the
two players determine who has won.

Program 51: Card Shuffler

This is not a game in itself, nor is it really a
tool with which to play a game. It is a card shuffler
routine that can be used to build a true card game

4^
KING4
QUEEN4
KINGV

JACK4
64
104

JACK#
KING#

It
KING4
74
QUEEN4
84
84
24
94

104
54
5
7
5
4i
8

4L
QUEEN4

JACK4
74
104
QUEEN4
ACE4
ACE4

It
64

JACK4
ACE4

:¥

Fig. 6-3. Printout of Card Shuffier program.

145

10 REM CARD SHUFFLER

20 REM COPYRIGHT FREDERICK HOLTZ

30 CLS

40 SCREEN O

50 WIDTH 40

60 KEY OFF

70 RN=VAL(MID$(TIME$,7,2))
80 RANDOMIZE RIM

90 C=1

100 S=3

110 G=1

120 AC$="ACE"

130 KI«="KIN6"

140 QU$="QUEEN"

150 JAit="JACK"

160 DIM A$<52) ,B1i(52)
170 S$=CHRit<S)

180 FOR X=C TO C+8

190 B=G+1

200 A$ < X)=STR$(G)+Sf

210 NEXT X

220 Af(X)=AC$+S$

230 A$(X+l)=KIit+S«

240 A$ (X+2.) ••=QU$+S«

250 A$<X+3)=JA«+S«

260 C=X+4

270 S==S+1

280 G=1

290 IF S=7 THEN 310

300 GOTO 170

310 Z=INT(RND*52)+1

320 IF A$(Z)=--"0" THEN 310

330 CT=CT+1

340 B^(CT)=A$(Z)

350 A$(Z)="0"

360 IF CT=52 THEN 380

370 GOTO 310

380 REM THE FOLLOWING PORTION
390 REM OF THE PROGRAM SIMPLY DISPLAYS
400 REM THE SHUFFLED DECK

410 REM THIS PORTION WILL BE REPLACED
420 REM BY YOUR CARD GAME PROGRAM

430 FOR X=1 TO 20

440 LOCATE X,1
450 PRINT B$(X)

146

460 NEXT

470 FOR X=21 TO 41

480 LOCATE X-20,10

490 PRINT B*(X)

500 NEXT

510 FOR X=42 TO 52

520 LOCATE X-41,30
530 PRINT Bi|i(X)

540 NEXT

550 LOCATE 23,1
560 END

Program 51. Card Shuffler.

played like any standard card game.
With this program, you can randomly shuffle

a deck of 52 cards. In this example, the shuffled
deck will be displayed card by card on the screen,
as shown in Fig. 6-3. As you can see, the card
values are given by name and suit. Fortunately, the
character set contains the suit markings for hearts,
clubs, diamonds, and spades.

An automatic random number seed routine is

set up in line 70. Lines 120 through 150 assign face
card names to string variables used to represent
them. Line 160 dimensions two string arrays to hold
52 elements each. S$ in line 170 will hold the suit
value, which is an ASCII number representing that
character in the character set. Line 180 begins a
FOR-NEXT loop that steps from a value of C
(initially, 1) to a maximum value of C -h 8. This is
a total of 9 cards, which represent the 9 number
cards in any suit. Line 190 is a simple count routine
that steps variable G by one during each pass of
the loop. Line 200 assigns the elements to A$ us
ing the STR$ function, which converts G (a
munber) to a string value. Coupled with this number
is S$, which is the suit symbol. When the loop times
out, the value of X will be one more than C -i- 8.
Therefore, lines 220 through 250 add the face card
in that suit to A$. In line 260 C is reassigned a value
of X + 4, which represents the next imfilled ele
ment in the array. The value of S is stepped by one,
which represents the next suit character. You will
recall that originally S was equal to 3, because it

was assigned that value in line 100. ASCII
character 3 is the hearts symbol. In line 270 8 is
incremented by one, and is therefore equal to 4.
ASCII character 4 is the diamonds sjnmbol. Line
280 resets G to a value of one (its original value in
line 110). Line 290 checks to see if S is equal to 7,
which indicates that the full deck has been loaded
into A$. If this is not true there is a branch back
to line 170, where all of the same cards are added
to the array, but this time with the new suit. When
all of the cards in each suit have been added, line
270 branches to line 310. Here, a random munber
from 1 to 52 is assigned to Z. Line 320 tests for a
reassigned value of "0" to A$(Z). Line 330 is a
count routine that increments CT by one each time
this line is executed. Now, line 340 assigns to the
first position of B$ the value of the card foimd at
A$(Z). Line 350 then reassigns A$(Z) to a value of
"0," so the card found here can never be accessed
again during this run. Line 360 checks to see if all
52 cards have been loaded into array B$. If not, Une
370 branches to line 310 for another card. When

all 52 cards have been loaded, there is a branch to
line 380, which woidd normally be a card program
you have written yourself. In this example, lines
430 through 540 print the contents of the shuffled
deck on the screen.

To simplify this, remember that A$ is assign
ed the value of each card in the deck. This is done
sequentially and by suit. Array B$ is assigned the
contents of the first array on a random basis. This

147

is where the actual shuffling takes place. grams combined into one long one and you will
n ̂ . notice many similarities to them. This game worksPragnm 52; Onn. Polnr

This program is simply the previous two pro- that, instead of displaying numbers that represent

10 REM DRAW POKER CARD GAME

20 REM COPYRIGHT FREDERICK H0LT2
30 CLS

40 SCREEN 0

50 WIDTH 40

60 KEY OFF

70 INPUT "NAME OF FIRST PLAYER" 5 AAit;

80 CLS

90 INPUT"NAME OF SECOND PLAYER"5BB«

100 CLS

110 DIM A«(52) ,B«(52) ,Xiti<5) ,Y$(5)
120 RN=VAL(MIDili(TIMEit,7,2)) '
130 RANDOMIZE RN

140 LOCATE 14,13

150 PRINT"SHUFFLING DECK"

160 C==l

170 S=3

180 G=1

190 AC$="ACE"

200 KT*="KING"

210 QU«="QUEEN"

220 JA$="JACK"

230 S$=CHR$<S)

240 FOR X=C TO C+8

250 G=G-H

260 A«(X)=STR$(G)+S$

270 NEXT X

280 A*(X)=AC$+S$

290 A«(X + 1)=KI$-HS$

300 A$(X+2)=QU$+S$

310 A«(X+3)=JA«+S«

320 C=X+4

330 S=S+1

340 G=1

350 IF S=7 THEN 370

360 GOTO 230

370 Z=INT(RND*52)-t-l

380 IF A$(Z>="0" THEN 370

390 CT=CT-H

400 B«(CT)=A«(Z)

Program 52. Draw Poker. (Continued to page 150.)

148

410 A«<Z)="0"

420 IF CT=52 THEN CT=0:GDTa 440
430 GOTO 370

440 IF PN=0 THEN PN=1SC«=AA$:GOTO 460

450 IF PN==1 THEN PN=0: : GOTO 460
460 CLS

470 PRINT"OK "SC$;" IT'S YOUR TURN."
480 INPUT"PRESS <ENTER> TO RECEIVE YOUR
HAND.";ER«

490 CLS

500 CLS

510 LOCATE 12,12
520 FOR X=1 TO 5

530 Z=INT(RND*51)+2
540 IF X$(X)="" THEN X$(X)=B*(Z)
550 PRINT X*(X)5" "5
560 NEXT X

570 CC=CC+1

580 IF CC=2 THEN CC=0:G0T0 770
590 LOCATE 20,1
600 PRINT"HOW MANY CARDS DO YOU WANT ";C
*
610 INPUT N

620 IF N>3 THEN 600
630 CLS

640 LOCATE 12,12
650 FOR X=1 TO 5

660 PRINT X$(X)§"

670 NEXT X

680 FOR T=1 TO N

690 LOCATE 20,1

700 INPUT"WHICH CARD"3B
710 LOCATE 20,1

720 PRINT"

730 X$(B)=""

740 NEXT T

750 CLS

760 GOTO 500

770 LOCATE 23,1

780 PRINT"YOUR TURN IS OVER ";C*
790 LST=LST+1

800 IF LST=2 THEN LST-0:G0T0 880
810 FOR X=1 TO 5

820 Yi6<X)=X$<X)

830 X«(X)=""

840 NEXT X

149

850 FOR DLAY=1 TO 1500:NEXT DLAY
860 CLS

870 GOTO 440

880 FOR DLAY=i TO 1500:NEXT DLAY

890 CLS

900 LOCATE 8,1
910 PRINT AA$5"'S HAND ="§
920 FOR X=1 TO 5

930 PRINT Y$<X)5"
940 NEXT X

950 LOCATE 17, 1
960 PRINT HAND ="5

970 FOR X=1 TO 5

980 PRINT X«(X)5" "5
990 NEXT X

1000 LOCATE 23, 1
1010 INPUT "PRESS < enter:;- to play again,
;er«

1020 CLS

1030 FOR X=1 TO 5

1040 X«(X)=""

1050 NEXT X

1060 FOR X=1 TO 52

1070 A$<X)="0"

1080 B«(X)=""

1090 NEXT X

1100 GOTO 120

cards, it displays the card values themselves, which
have been taken from B$. I will provide no further
explanation of this game, since the explanations
provided with the previous two programs do the
job.

Summary

The AT&T PC-6300 is quite capable of
simulating many common card and parlor games
in a very realistic manner. The most interesting
games are often the ones which combine graphics
and text-mode programming, and even a sound ef

fect or two. To write your own game programs, first
pick out a game that you know well, then concen
trate on the ways each aspect of the game can be
committed to a computer program section. By
handling the program assignment on a step-by-step
basis, each problem is worked out individually.
When the task is complete, all that's necessary to
arrive at a working game is to tie all the simple task
lines into one overall program. An excellent exam
ple of this was illustrated by the Ninnbers Draw
Poker/Card Shuffler combination, which yielded a
realistic Draw Poker Game.

150

Chapter 7

I !■«

AT&T PC Filekeeping
This chapter will discuss only sequential files,
which are accessed starting with the first element
and ending at the last.

Program 53: File Reading Program
For this discussion, let's assume that a data file

has been written to disk. We will leam later how
to set up such a file and to write items to it, but
for now, we assume it's already there. In order to
access a file, you must first open it. In BASIC this
is done using the OPEN statement, the use of which
is shown in line 70. Here, the OPEN statement is
followed by the name of a file. This name is en
closed in quotation marks, and in this example is
called 'TILE.FIL." The .FIL designation is not
necessary, but is often used to distinguish that file
from other files that contain programs written in
BASIC. With the OPEN statement, a file may be
opened for reading, writing, or adding. INPUT, us
ed with OPEN, opens a file for reading. We must
also specify a file number, which in this case is
represented by If you open several different

files at the same time, you will use other numbers.
Line 70 in this program tells the computer to open
'TILE.FIL" as file #1, and that file is to be open
ed for reading.

Line 80 uses the INPUT# statement to read
data from the file. This statement is different from
INPUT. The number sign identifies it as the state
ment to access file information. This statement is
followed by a comma and A$. A$ will be used to
hold the first data item from the file. Line 90 then
prints the value of A$ to the screen; line 100 uses
the CLOSE statement to close the file previously
opened. This must be done before moving on to
other program lines that will be included in a stan-
dcird filekeeping routine. Therefore, the sequence
is:

1) Open the file for input.
2) Get an item from the file using INPUT#.
3) Print the item to the screen.
4) Close the file.

If you assume that FILE.FIL exists and contains

151

10 REM FILE READING PROGRAM
20 REM COPYRIGHT

FREDERICK HOLTZ

30 SCREEN 0

40 WIDTH 40

50 KEY OFF

60 CLS

70 OPEN "FILE.FIL" FOR INPUT
AS #1

80 INPUT#l,Ai^
90 PRINT A$

100 CLOSE #1

Program 53. File Reading Program.

one item—the word let's say—"COMPUTER,"
when this program is run FILE.FIL file will be
opened for input (reading), and the word "COM
PUTER" will be assigned to A$ in line 80. Line
90 will then print A$ to the screen, and line 100
will close the file.

Program 54: Advanced File Reading Program

This is the same program discussed previous
ly, but extra lines have been added. Line 110 brings
about a branch to line 80 after the value of A$ has
been printed to the screen. Line 80 contains the

10 REM FILE READING PROGRAM
20 REM COPYRIGHT

FREDERICK HOLTZ
30 SCREEN 0

40 WIDTH 40

50 KEY OFF

60 CLS

70 OPEN "FILE.FIL" FOR I NPl JT
AS #1

80 IF EOFd) THEN 120
90 INPUT#1,A$
100 PRINT A$

110 GOTO SO

120 CLOSE #1

EOF function, which stands for End Of File. The
number 1 is used in parentheses to indicate that
EOF is to test for an end-of-file condition in the file
opened as #1. The EOF function causes a branch

to line 120 when there are no more items to be read
in the file, i.e., the end-of-file position has been
reached. Since line 110 continues branching back
to a portion of the program prior to the use of the
INPUT# statement, the file is continuously read in
sequential order. This continues until line 80
detects the end of the file. The subsequent branch
then closes the file. When run, this program will
read every item contained in FILE.FIL and print
it to the screen. When the last item has been read,
the program will terminate. Without the EOF func
tion in line 80, an error message would occur when
there were no more items to read.

Program 55: File Writing Program

This simple program will allow you to open a
file and write an item to it. Line 60 assigns A$ the
value of "FILE ITEM." For now, this is just a sim
ple phrase to demonstrate file writing, but later you
will be able to assign any value you want to A$.
Line 70 clears the screen. Line 80 again uses the
OPEN statement to open a file called FILE.FIL.
However, this time the file is opened for output—
from the computer to the file. The word OUTPUT
means that you are going to write. Again, the file
number 1 (#1) is used.

10 REM FILE WRITING PROGRAM
20 REM COPYRIGHT

FREDERICK HOLTZ
30 SCREEN 0

40 WIDTH 40

50 KEY OFF

60 A«="FILE ITEM"

70 CLS

00 OPEN "FILE.FIL" FOR
OUTPUT AS #1

90 PRINT#l,Ai{i
100 CLOSE #1

Program 54. Advanced File Reading Program. Program 55. File Writing Program.

152

At this point, the computer has opened the file
and is ready to write information, in this case the
information contained in A$. To accomplish the ac
tual write we use the PRINT# statement, which
should not be confused with PRINT. Line 90 tells
the computer to write the value contained in A$ to
the file "FILE.FIL.'' Line 100 then closes the file.
Congratulations! You have just written to a sequen
tial file. If you run either of the two previous pro
grams at this point, the phrase 'TILE ITEM'' will
be displayed on the screen, since this was the in
formation written to FILE.FIL.

Program 56: Another File Writing Program

This is a slightly advanced version of the
previous program. It allows you to insert the name
of the file you wish to open for writing, and also
to continuously input the items you wish to write
to the file. Here you're not limited to a specific file
name, nor to a single file item. You can open as
many files as you want to (by running the program
over and over again), and you can input as many
items as you wish.

Line 70 prompts you to enter the name of the

10 REM FILING PROGRAM-WRITE
20 REM COPYRIGHT
F-REDERICK HOLTZ

30 SCREEN O

40 WIDTH 40

SO KEY OFF

60 CLS

70 INPUT"NAME OF FILE"3FI1i
80 CLS

90 OPEN FOR OUTPUT AS #1
100 INPUT"FILE ITEM"!iAf>

110 IF A1»-"END" THEN 150

120 PRINT#1,A^

130 CLS

140 GOTO 100

150 CLOSE #1

160 CLS

170 END

:l.0 F;EM FILE AF'PEND PROGRAM

20 REM COPYRIGHT

FREDERICK HOLTZ

30 S3CREEIM 0

40 WIDTH 40

50 KEY OFF

60 A$="SECOND FILE ITEM"

70 CLS

80 OPEN "FILE.FIL" FOR

APPEND AS #1

90 PRINT#1,A$
100 CLOSE #1

Program 56. Another File Writing Program.

Program 57. File Append Program.

file you wish to open. This name is assigned to
string variable FI$. The screen is then cleared, and
line 90 uses the OPEN statement to open the file
named in FI$ for OUTPUT (writing) as #1. Line
ICQ then prompts you to input the file item. The
keyboard input is assigned to A$. Line 110 is an
exit line. When you type END, there is a branch
to line 150, which closes the file.

Try running this program and insert 10 or more
items. Then run Program No. 2 and read them all
out to the screen again. At this point, you have
learned the methods by which sequential files are
read and written.

Whenever you open a file to be read that
doesn't exist, an error message will be displayed
on the screen, telling you that the file was not foimd.
There is no real way you can get into trouble here.
However, when you open a file for OUTPUT
(writing), the computer will create that file on
cassette or disk. You must, therefore, be careful,
because if you open a file for OUTPUT that already
exists, the computer erases all information from
that file in the process of recreating it. You can open
a file that doesn't exist for writing. This creates the
file and allows you to input items. However, if you
open it one more time for OUTPUT, all those items
are erased.

Program 57: File Append Program

Suppose you open a file for OUTPUT and

153

write several items to it. Suppose then that you
wish to go back to the same file and add more items.
Obviously, you can't open it for output again, as this
will erase the items it cmrently contains. You sim
ply open the file for APPEND. This is an indica
tion that you wish to open a file that already exists
in order to add items to the end of the list. This pro
gram will allow you to add one item to the end of
a file named FILE.FIL, which already contains
items. Line 60 contains the item to be written,
which for this example is named "SECOND FILE
ITEM." Line 80 opens the file in the APPEND
mode, and line 90 uses the PRINT# statement to
write the value to the end of the file. If you wish
to be able to name your file and add many items
to the end of the current list, simply go back to the
previous program and change the word OUTPUT
in line 90 to APPEND.

To summarize the information discussed to this

point, opening a file for input allows it to be read.
Opening a file for output creates the file and allows
you to write information to it. Opening it for out
put again erases the contents of the file. Opening
a previously written file for append allows you to
add information to the end of the current item list

contained in that file. Incidentally, if you open a file
that doesn't exist for APPEND, the file is created
just as if it were opened for output (writing).

Program 58: Complete Filing Program

This is a complete filing program that will allow
you to read, write, or append items in a cassette
or disk file. Lines 90 through 170 display a program
menu on the screen. A menu is a selection of things
you can ask this program to do. The four menu
selections are:

1) Open file for write
2) Open file for read
3) Open file for append
4) End file program

Line 180 uses the INKEY$ variable to test your in
put from the keyboard. In lines 200 through 230,
you can see the various branches that are

designated for the different keyboard inputs.
If you select 1 from the menu, line 200

branches to line 250. Here the screen is cleared,
and line 260 prompts you to input the name of the
file you wish to open or create for writing. Line 280
prints a warning message stating that if the file you
named already exists, it will be erased. You are
then given the option to continue or return to the
menu and make another selection. Assuming you
wish to continue, the screen is cleared in line 330.

Line 340 contains an ON ERROR GOTO state

ment. This is called an error trapping routine. The

10 REM COMPLETE FILING PROGRAM

20 REM COPYRIGHT FREDERICK HOLTZ
30 SCREEN 0

40 WIDTH 40

50 COLOR 15,1
60 KEY OFF

70 CLS

SO LOCATE 1,15
90 PRINT"FILE MENU"

100 LOCATE 10,10
110 PRINT"1. OPEN FILE FOR WRITE"

120 LOCATE 12,10
130 PRINT"2. OPEN FILE FOR READ"

140 LOCATE 14,10
150 PRINT"3. OPEN FILE FOR APPEND'

Program 58. Complete Filing Program (continued to page 156).

154

160 LOCATE 16,10

170 PRINT"4. END FILE PROGRAM"

180 K«=INKEY$

190 IF K$="" THEN 180

200 IF KS="1" THEN 250

210 IF K*="2" THEN 410

220 IF K$="3" THEN 500

230 IF K«="4" THEN 640

240 GOTO 180

250 CLS

260 INPUT"NAME OF FILE";FI$

CL.S

280 PRINT"WARNING! IF ";FIit5" ALREADY EX

ISTS"

290 PRINT"IT WILL BE ERASED."

300 PRINT

310 INPUT"DO YOU WISH TO OPEN THIS FILE

(Y/N)"5W«

320 IF W$="Y" OR W«="y" THEN 330 ELSE 70

330 CLS

340 ON ERROR GOTO 690

350 OPEN FI« FOR OUTPUT AS #1

360 INPUT"FILE ITEM";A$

370 IF A$="END" THEN 600

380 CLS

390 PRINT#l,A1i

400 GOTO 360

410 CLS

420 INPUT "NAME OF FILE TO BE READ"; Flit
430 CLS

440 ON ERROR GOTO 690

450 OPEN FI* FOR INPUT AS #1

460 IF EOF(l) THEN 600

470 INPUT#1,A*
480 PRINT A«

490 GOTO 460

500 CLS

510 INPUT"NAME OF FILE TO BE APPENDED";F
1%

520 CLS

530 ON ERROR GOTO 690

540 OPEN FI« FOR APPEND AS #1

550 INPUT"FILE ITEM" 5 At.

560 IF At="END" THEN 600

570 CLS

155

580 PRINT#1, A$
590 (30T0 550

600 CLOSE #1

610 LOCATE 23,1
620 INPUT"PRESS

"; ER$

630 GOTO 70

640 CLS'

650 LOCATE 14,13
660 PRINT"PROGRAM

670 LOCATE 23,1
680 END

690 CLS

700 LOCATE 14,8
710 PRINT"ERROR

720 FOR DLAY=1

730 CLEAR

740 GOTO 70

<

F

ENTER> TO FOR MAIN MENU

TERMINATED'

ILE CANNOT

TO 1500:NEXT

BE OPENED"

DLAY

ON ERROR GOTO statement detects a condition

whereby the file could not be written. This might
occur when a disk is full, or when there's no
cassette file system. If there is an error, there is
a branch to line 690, which prints an error message
in line 710. Once the message has been printed,
there is a slight delay. Line 740 then branches back
to the start of the menu print routine. If there is
no error, lines 350 through 400 are executed. These
lines are nearly identical to those contained in Pro
gram No. 4 in this chapter. This is the routine to
write information to a file.

If you selected menu option 2, there is a branch
to line 410, where you input the name of the file
to be read. This name is assigned to FI$. Lines 450
through 490 contain a close copy of the file reading
program discussed previously. Selecting menu item
3 brings about a branch to line 500, which accesses
the program to add items to a file. When you select
menu option 4, the branch is to line 640, where the
"PROGRAM TERMINATED" prompt appears
and the program ends.

There you have it—a complete file-handling
program that can be input to your PC-6300 in about
20 minutes, and can be used over and over again

to convert yoxu" massive file cabinet to a diskette
tape or two.

Program 59: File Item Search Program

Assume that you have set up a file that contains
several himdred items and you want to pull one of
those items from the file for examination. It's very
inefficient to print the entire contents of the file to
the screen. It would be better if you have the com
puter sort through all the items and pull out only
the one you're looking for. This program will do
just that. It's not terribly useful in its present form,
since you have to type in the name of the item
you're looking for exactly as it appears in the file.
However, this program will be modified later to be
much more useful. For now, consider it a practicum
in file searching.

Line 70 asks you to input the name of the file
to be searched. This is the file name as it appears
on the cassette or disk listing. The screen is then
cleared, and line 90 asks you to input the item you
are searching for. This must be typed exactly as
it appeared when first entering it into the file. Again
the screen is cleared, and line 110 opens the file

156

you named for input (reading). Line 130 assigns the
first item in the file to A$. Line 140 does the ac
tual search. It compares the item you just read from
the file with the item you are looking for. If the two
match, the item is printed to the screen. Numeric
variable COUNT is incremented by 1, and line 150
branches back to line 120 for the next item in the

file to be read. Each time the item you are looking
for is detected in the file, it is printed to the screen.
If the item you are looking for is contained in the
file, it is printed to the screen. If the item you are
looking for is contained in the file in five different
locations, it will be printed to the screen five times.

On the other hand, if the item is never foimd
COUNT will never be incremented, and since it was
not assigned previously it will be equal to 0. When
line 120 detects the end-of-file condition, the branch
is to line 160, which tests the value of COUNT. If
COUNT is equal to 0, line 170 is executed. It prints
the item you are looking for and tells you that it
wasn't found in the file you named. Line 180 is then

executed, which closes the file. If the item was
fovmd, COUNT will be equal to a number larger
than 0, so line 170 is branched over and the file is
closed in line 180.

Program 60: Item Portion File Search

This program is an enhanced version of the
previous one, but it is far more valuable because
it will allow you to search for and display an item
contained in a file—without having to input that
item in its entirety. For example, let's assume that
a file contains (somewhere) the item:

CHARLIE JONES OWES ME $50.00

Wouldn't it be nice to be able to search that file by

simply inputting the name Charlie Jones in order
to see his record displayed? This program will allow
you to do just that. When the program is run, all
that is necessary is to type in the name CHARLIE
JONES, and the above phrase would be displayed

SFiARCH PROGRAM

FREDERICK HOLTZ

OF FILE TO BE SEARCH

10 REM FILE ITEM

20 REM COPYRIGHT
30 SCREEN 0

40 WIDTH 40

50 KEY OFF

60 CLS

70 INPUT"INPUT NAME

ED"§FI$

80 CLS

90 INPUT" INPUT THE SEARCH ITEM"5SI^Ii

100 CLS

OPEN Fin FOR INPUT AS #1

IF EOF(l) THEN 160

INPUT #l,An

IF An=Sin THEN PRINT An: COUNT=COUNT-i-

110

120

130

140

1

150

160

170

180

GOTO 120

IF C0UNT=0

PRINT Sin;'

CLOSE #1

THEN

WAS

170

NOT

ELSE 180

FOUND IN iFin

Program 59. File Item Search Program.

157

10

20

30

40

50

6>0

70

REM ITEM PORTION SEARCH PROBRAM

REM COPYRIGHT FREDERICK HOLTZ

SCREEN O

WIDTH 40

KEY OFF

CLS

INPUT"INPUT NAME OF FILE TO BE SEARCH
ED";FI$

SO CLS

90 INPUT" INPUT THE SEARCH ITEM"; Slit
100 SI=LEN(SI$)

CLS

OPEN FI$ FOR INPUT AS #1

IF EOF(l) THEN 210

INPUT #l,A<4i
L=LEN(A*)

FOR X=1 TO L

Tf=MID$(A$,X,SI)
IF T«=SIit THEN PRINT A$: COUNT=COUNT+

110

120

130

140

150

160

170

180

1

190

200

210

220

230

NEXT X

GOTO 130

IF C0UNT=0

PRINT si«;•

CLOSE #1

THEN

WAS

220

NOT

ELSE 230

FOUND IN FI*

Program 60. Item Portion File Search.

on the screen. You could also type in CHARLIE,
JONES, or even CHA, and the file item would still
be displayed.

What this program does is take the search item
you input and overlay it with items it reads from
the file. If you input CHA, the computer will
overlay these characters with each part of every file
item. WTien it obtains a match, this file is printed.
If you simply input a search item of C, any file that
contains a C will be displayed on the screen.
Therefore, you will want to put as much informa
tion as possible in your search, to prevent other file
items having some similarity to the item you're
looking for from being displayed.

Line 90 prompts you to input the search item.
This is assigned to SI$. SI is assigned the value of
the length or the character count in 81$ by the LEN
function. Line 120 opens the file you named for

reading, and line 140 grabs the first file item. Line
150 assigns to L the length of the file item just read.
Line 160 begins a FOR-NEXT loop that coimts
from 1 to the length of A$ (the value of L). Line
170 assigns to T$ the value of what is foimd in A$
at position X and for length of SI. (You will
remember that SI is the character count of the item

you are searching for.) As the loop cycles, T$ sim
ply grabs the required number of letters, starting
at the first letter in the item, then starting at the
second letter, the third, and so on, until a match
is found or the characters in the item are exhausted.

Perhaps this can be explained a bit more simply by
using the previous example.

CHARLIE JONES OWES ME $50.00

Assume that for a search item you simply typed in

158

JONES. The number of characters in JONES is
five. Therefore, SI equals 5. When the computer
comes to the file item that you are looking for,
here's how the sequence will go.

1) The word JONES is compared with the
first five characters in A$.

2) There is no match here, since the first five
characters in our example are CHARL.

3) When the loop recycles, X is equal to 2.
Therefore, T$ in line 170 is assigned the
value of the five characters in A$, starting
with the second character.

4) There is still no match, because the search
item is JONES and the five characters that
are compared with this starting at position
2 are HARLI.

5) The loop continues to advance until it final
ly gets to the eighth character position of
A$. Here, the five characters are JONES.
This matches with the input search item
of JONES.

When a match occurs, line 180 determines that

T$ is equal to SI$ and the entire contents of A$ (the
file item itself) are printed to the screen. The MID$
function is an extremely powerful one in GWBASIC

for text manipulation and testing. With it, we have
been able to overlay imknown contents with a test
pattern of characters to detect the contents of a file
item, without having to type in the contents exact
ly as they appear in the file.

Summary

I think you will find sequential files to be quite
useful in nearly any application. Such files are much
easier to manipulate than random access files.
However, the latter have the advantage of much
faster access when disk storage is used. Again, ran
dom access files are purposely not discussed, since
filekeeping in this mode is far more intricate than
it is with sequential files. Random access filekeep
ing is a subject that is best left to the more ex
perienced computer hobbjdst who has already done
a fair amount of work with sequential files.

Remember, to read, write, or append a file, it
is first necessary to OPEN it. Opening a file for IN
PUT allows you to access for reading each item it
contains. Opening a file for OUTPUT creates a file
on cassette or disk and allows you to write infor
mation to it. Opening a file for APPEND allows you
to write information to the end of a file which

already contains items.

159

Chapter 8

AT&T PC

Music programming is generally quite simple in
that it usually requires only a statement or two-
followed by numeric or alphabetic designators to
specify each note.

Although the SOUND statement does have
some application in music programming, time and
efficiency can be greatly enhanced by using the
PLAY statement, which allows you to use fewer
commands and statements. Therefore a music pro
gram based upon PLAY statements will generally
be far shorter than an equivalent program using
SOUND statements.

The SOUND statement requires a frequency
command and a duration command. The latter is

given in clock cycles. This requires a great deal of
interpolation when using this statement solely for
the purpose of programming music. For example,
if you wanted to use the SOUND statement to pro
duce a middle C, the frequency command would be
523.250. This would be followed by the duration
commands, which would be the most difficult to

calculate, because you would have to convert clock

cycles to the various note hold durations based upon
tempo.

The PLAY statement avoids most of these

problems. Several command options allow you to
program music in different manners. A middle C

would be programmed as a quarter note by simply
typing 'TLAY 03C4.'' The 03 command sets the
octave in which middle C is located. The alphabetic
designator C specifies the note C, and the 4 means
the note is to be played as a quarter note. Subse
quent notes can be added to this statement by typ
ing their alphabetic designators (the note name)
followed by their numeric designators, which
specify hold times. As long as you stay in the mid
dle octave range, no further 0 designators are re
quired. Once a specific octave is named, all notes
will be played in that octave until another 0 com
mand causes a shift to occur.

Using the SOUND statement, duration is
specified in clock ticks. All duration commands are
referenced to the clock cycle time. However, us
ing the PLAY statement, note duration is refer-

160

enced to every other note. For example, a C8 (an
eighth note) will be played for half the time of a C4
(a quarter note). Duration may be as short as 1/64
of a whole note.

Although it is possible to program a complete
tune using the SOUND statement and separate fre
quency and duration commands for each note
specified, increasing or decreasing the tempo would
necessitate changing every duration command to
reflect the new tempo. That would be a great deal
of work. With the PLAY statement, however, all

notes are entered in standard musical equivalents
(whole, half, quarter, eighth, sixteenth and so forth).

The tempo conunand (T) is separate from these
and ranges from 32 to 255. If no tempo command
is given the default tempo is 120, moderato in
musical terms.

Thus, once the note has been entered the tem
po may be changed in any way; each note will still
be held for the proper duration in relationship to
all other notes in the tune.

For example, let's assume a four-note piece
consisting of C8, D4, F16, and Bl. This is a string
consisting of an eighth note, a quarter note, six
teenth note, and a whole note, respectively. If the
whole note is held at one tempo for a total of one
second, then the quarter note will be held for one-
quarter second; the eighth note, for an eighth se
cond; and the sixteenth note, for one-sixteenth se
cond. Let's assume that the tempo is doubled by
changing the tempo command. Assume also that
the whole note is held for one-half second at this

tempo. The eighth note will then be held for one-
eight of a half second (one-sixteenth second), and
all other notes in this string will have equivalent
shortened durations.

Using the SOUND statement to produce the
same time would require four different statements
followed by four different sets of frequency and
duration commands. To increase tempo, it would
be necessary to halve each of the four duration com
mands (for double time). Using the PLAY state
ment, however, it is only necessary to change the
tempo command. Furthermore, less memory is re
quired for storage, since in the former example this
simple four-note song may be easily entered on one

program line using a single PLAY statement,
whereas a minimum of four program lines would
be required using the SOUND statement in the
latter.

Pauses or rests are specified in approximately
the same manner as musical notes, but the letter

P is used followed by a numeric designator to
specify the pause length. A P4 is equivalent to a
pause for the same duration as the hold time of the
quarter note produced under the play tempo. You
can see that this makes musical programming
easier, since notes are named and their durations

specified in exactly the same manner as in musical
manuscripts. To play sharps and flats, the note is
simply followed by the standard sharp symbol (#).
Alternately, you may use a plus sign (+) after the
note to specify a sharp and a minus sign (-) to
specify a flat.

GWBASIC goes a step further to help you write
programs directly from musical manuscripts. In
manuscripts one often sees a note followed by a dot
or period. Musically, this means that the note is to
be held for 11/2 times the duration of an identical

note without the dot. A half note followed by a dot
is held for the equivalent of 1.5 times one half, or
3/4 of a whole note. Using the PLAY statement,
the same note (let's call it a C) would be specified
as ''C2." Many of the programs in this chapter in
clude this type of designation. You should be ab
solutely certain you do not skip a dot while input
ting a program.

Another method of specifying notes involves
numeric designators only. These are used in con-
jimction with the N command. The numeric
designators range from 0 to 84. A 0 is a rest; each
succeeding number specifies individual notes over
a seven-octave range. I don't use this style of pro
gramming very often, as I find the direct mode
much easier. However, this can be put to good ad
vantage when a PLAY statement using the N com
mand is placed within a FOR-NEXT loop. The loop
output (numerically) will then determine the note
to be played.

Each of the musical pieces presented in pro
gram form was written directly from musical
manuscript. It takes about an hour to become ac-

161

customed to this form of programming. Some songs
are quite simple; others are complex. There are a
number of musical programs reproducing the com
positions of Johann Sebastian Bach, one of my
favorite composers. His complex melody lines are
especially suited to the microcomputer, in my
opinion. You will also see popular songs, children's
songs,and a program or two that combine the best
of different types of music. I think you will find all
of them pleasing and the programming exercise to
be quite educational.

Program 61: Mary Had A Little Lamb

Program 61 will play the basic strain of ''Mary
Had a Little Lamb." It effectively uses only a single
program line, in that the REM and END statements

are certainly not necessary for proper execution.
This program uses the PLAY statement (in line 20)
in conjimction with note commands, a tempo com
mand, and the MF command, which places the
music in the foreground mode. I chose a tempo of
170, which is fairly rapid, but you can adjust the
tempo by changing the number sequence following
the letter T. The alphabetic designators following
the command are the actual notes that make up the
song. There are three rest commands (P4) that
create a quarter-note rest. Actually, the numeric
designator is unnecessary, since the other notes are
not followed by similar designators. Therefore,
each is automatically played as the equivalent of
a quarter note. You will note several minus signs
occurring within the music command string. These
identify flats.

If the program is inserted to complement an
already existing program, only line 20 will be need
ed. This allows you to add music at the expense
of a minimum amount of memory. This program
is written from a child's music book; each note was

read from the staff line and input as the same
equivalent note in the PLAY statement commands.
If you can read music, musical programming will
be easier. If you can't read music you can learn to
do so in a few days.

The microcomputer makes an excellent study
tool. It may be difficult to decipher a complex
musical passage in the mind, but the notes, input
in a computer program, allow students to hear how
the particular passage should sound. This can then
be emulated using a musical instrument. The com
puter never makes a musical error. It will always
play the specified note for the specified duration.
The only possibility for error lies with the human
being. The computer is totally dependent on him
for input.

Program 62: Blue Skies

Program 62 shows another method of musical
programming, which will produce the strains of the
old standard "Blue Skies." This song has been
around for a number of years, having been sung by
Danny Kaye in the movie White Christmas, More
recently, coimtry music star Willie Nelson again
made the song popular.

Instead of inserting the musical note
designators directly in a PLAY statement, this pro
gram commits them to a DATA statement. A

subsequent READ statement pulls each note in
dividually from the DATA line. The PLAY state
ment in line 40 uses the X command to play a string
statement. The GOTO command in line 50

branches back to line 20, where the next element
is read. In other words each note is pulled from the
DATA statement by a machine operation which is
constantly repeated imtil the data runs out.

The variable A$ is composed of only one note,
but the string is constantly refreshed by the GOTO

10 REM "MARY HAD A LITTLE LAMB"

20 PLAY"MFT170GFE-~FGGGP4FFFP4GB~B -P4GFE- FGGGGFFGFE- "

30 END

Program 61. "Mary Had a Little Lamb.'

162

10 REM "BLUE SKIES"

20 READ AS

30 IF AS="END" THEN 70

40 PLAY "XAS;"

50 GOTO 20

60 DATA C,Q2,FS,E-16,F16,P8,G2,F8,E-16,F
16, P8,G3,04,P6,C8,E-16,P8,04,END
70 END

Program 62. "Blue Skies."

statement in line 50. Line 30 tests for the ap

pearance of the last item in the DATA statement.
I used the word "END", but anything will work

as long as it is not one of the musical notes already
read. Without building this feature into the pro
gram, the READ statement would still be trying to
pull data elements from the DATA statement after
the line has been exhausted. That would result in
an error message on the screen: "OUT OF DATA
IN 20". This has no effect on the musical run of
the program; however I always try to avoid error
messages as these can confuse the begiiming
programmer.

Using this program all of the notes are pulled
from the DATA statement line. When the word
"END" is encoimtered, line 30 branches to line 70,
which ends the program. To replay the song, run
the program again.

One might ask why such a method was chosen
to play this simple song rather than the simpler
method used previously. It is true that the latter
method is more complex. It requires more program
lines, and each note must be separated by a com
ma within the DATA statement. It also requires

several different branches. The reason this method

is used is to demonstrate a different way of ac
complishing the same result using the AT&T Per
sonal computer. In certain situations, this method
is to be preferred over the former.

Program 63: Jingle Bells

Program 63 is identical to the "Blue Skies" pro
gram, except the data elements have been
changed to produce the song "Jingle Bells." The
same lines have been added as before to detect the

end of the data string in order to stop the program
run. One of the advantages of a program using
READ/DATA statements is that an original song
can be expanded or more times added by simply
adding further DATA lines. Of course one must
remove the word "END" from the first data line

to prevent execution from being halted before the
new lines can be read.

Program 64: Go Tell Aunt Rhodle

Program 64 is another example of this form of

10 REM "JINGLE BELLS"

20 READ A*

30 IF A«="END" THEN 70

40 PLAVXA*;"

50 GOTO 20

60 DATA E,E,E,P8,E,E,E,P8,E,G,C,D,E2,F,F
,F3,F8,F,E,E,E8,E8,G,G,F,D,C2,END
70 END

Program 63. "Jingle Bells."

163

10 REM "GO TELL AUNT RHODIE"

20 READ A$

30 IF A*="END" THEN 70

40 PLAY "XA«;"

50 GOTO 20

60 DATA A2,A4,G4,F2,F2,G2,G4,B-4,A2,F2,A
2,A4,G4,F2,F2,G4,F4,G4,A4,F3,END
70 END

Program 64. "Go Tell Aunt Rhodie."

musical programming. The song has been Each song would be committed to a separate
changed to "Go Tell Aimt Rhodie" by substituting DATA line. Therefore, a thirty-song program
different data elements. Program 65 is the first pro- would include thirty DATA statements. The re-
gram with the data lines from the next two added, mainder of the program could remain the same,
This program will play all three songs, one after regardless of the munber of DATA statements us-
the other, before execution is halted. While a pro- ed. The last data line would end with the word
gram that uses READ/DATA statements to play "END", which would bring about a branch to line
one song may be more complex than one using the 1000, where the program halts. You can add more
direct mode, if one program is used to play several selections by merging other musical program with
songs, READ/DATA statements often speed pro- the notes specified in DATA statements,
gramming and certainly lessen program complexi- Notice that the information in some of these
ty. Using this method, you could write a single pro- programs includes individual letters and also let-
gram to produce thirty or more different songs, ters followed by muneric designators. Without the

10 REM "MULTISONG PROGRAM"

20 READ A$

30 IF A$="END" THEN 1000

40 ?IAY "XA$;"

50 GOTO 20

60 DATA C,G2,F8,E-16,F16,P8,G2,F8,E-16,F16,P8.G3,C4,P6,C8,E-16,P8,C4

70 DATA E,E,E,P8,E,E,E,P8,E,G,C,D,E2,F,F,F3,F8,F,E,E,E8,E8,G,G,F,D,C2

80 DATA A2.A4,G4,F2,F2,G2,G4.B-4,A2,F2,A2,A4,G4,F2.F2,G4,F4,G4,A4,F3,END

1000 END

Program 65. Multisong program.

164

10 REM "MUSICAL PROSRESSION"

20 FOR X=1 TO 84

30 PLAY"N=X;"

40 NEXT

50 END

Program 66. Musical Progression.

designator the note is played as a quarter note.
Therefore to speed programming time, I have often
omitted the "4" (quarter note designation), since
this is the default state. In other words an E4 within

a Play statement will be output the same if the 4
is omitted.

MUSICAL FOR-NEXT LOOPS

Program 66 shows a musical progression us
ing the End command with the PLAY statement.
Each note in a seven-octave scale is represented by
a niunber. Line 20 begins the FOR-NEXT loop,
which begins with 1 and ends with 84. This means
that the entire range of notes will be played
automatically. The END conunand is inserted in the
PLAY statement in line 30, which specifies that N
is equal to the value of X. I elected not to start with
a 0 (FOR X = TO 84) because this value is always
a pause or rest. The NEXT statement in line 40
allows the loop to recycle and step up by one place
each time. The first note that is played is one, the
next is two, then three and so on.

This program will allow for an output
equivalent to starting at the bottom of the piano
keyboard and playing every note in order to the
very top... and then some. The last few notes will

be so high as to be practically inaudible.
This type of designation and the use of FOR-

NEXT loops are not very conducive to accurate
musical programming, for creating certain types of
musical sound effects, however, this mode may be
ideal. Because of the recycling of the loop, an en
tire range of notes may be played with a minimum
of programming time.

Program 67 may be thought of as the previous
program in reverse. The only change is in line 20,
where the loop counts from 84 to 1 in steps of -1.
The first program starts at the bottom of the com
puter's musical range and proceeds to the top. The
latter program starts at the top and counts to the
bottom, playing one note during each loop cycle.
If you combine these two programs, the entire
chromatic scale will be reproduced by the com
puter. This will start at the bottom of the range,
go to the top, and then proceed to the starting point.

The fact that loop counts may be stepped in dif
ferent increments allows for a specific series of
notes to be selected. This can be put to advantage
musically in some instances by committing a cer
tain portion of a musical piece to a FOR-NEXT
loop.

Program 68 is identical to the first one, except
the loop is not stepped in increments of 1. The
STEP command here causes the count to skip
every other number; thus every other note is
played. The first note will be a one, the second a
three, the third a five and so on. With the proper
step increments, many standardized musical scales
can be produced using the same basic program
under discussion in this section. You can randomize

the STEP command to produce some unusual
musical sound effects, none of which may be

10 REM "MUSICAL PROGRESSION

DER"

20 FOR X=84 TO 1 STEP -1

30 PLAY"N=X;"

40 NEXT

50 END

REVERSE OR

Program 67. Musical Progression, Reverse Order.

165

10 REM "MUSICAL STEPS"

20 FOR X=1 TO 84 STEP 2

30 PLAY"N=X; "

40 NEXT

50 END

Program 68. Musical Steps.

predicted in advance. The beginning and ending
loop numbers may also be randomized for further
effects.

The numeric designation system outlined here
may also be used in a similar manner in programs
discussed previously. READ/DATA statements
could be incorporated in a program and the numeric
information included in the data lines. That would

be identical to a previous programming method, but
numeric designators would replace alphabetic ones.

Although most of us are accustomed to work
ing with numbers on a microcomputer rather than
letters, one must also remember that musical
manuscript contains alphabetic and numeric
designators. Therefore the ability to input various
notes using an alphabetic and numeric format is
much more convenient, especially for those who are
more familiar with music than computers. Far less
human interpolation and extrapolation are required
in making the transition from manuscript to com
puter form, so this mode is to be preferred in most
instances. However, a programmer who is more ac
customed to working with computers than music
may find that numeric-only designators are more
to his or her liking.

Both can be used to accomplish the same thing,
so choose the method you think most appropriate.
The numeric method is limited in that it is inconve

nient to specify different note lengths, something
which is greatly simplified when alphabetic and
numeric designators are combined. The numeric-
only system is a shortcut for producing very sim
ple songs in which each note is held for the same
length as all others. It is possible to combine
alphanumeric and numeric-only designations, but
for the beginning programmer, this may become
a bit confusing. Alphabetic-numeric designation will

be used most of the time, but if one runs into a long
series of quarter notes, one can immediately revert
to the numeric-only style. The purpose of this
discussion is to point out the available options. I
think most programmers will choose the alphabetic-
numeric mode of programming, as I have done
throughout most of this chapter.

BACK TO BACH (J.S.)

Johann Sebastian Bach, a German composer of
great renown, had the inborn ability to take sim
ple melodies and combine them in such a manner
as to produce a pleasingly complex interweaving
of sounds. His pieces are often performed today on
a single piano with little or no musical accompani
ment. The harpsichord is often the instrument
which commimicates his delicate phrasings. Being
a fan of Bach, it is only natural that I include some
of his musical pieces in this chapter. I think of the
audio output of the AT&T PC as being a delicate
and quite precise musical form. I feel similarly
about most of Bach's music. Therefore, the mating

of Bach with the AT&T PC is only natural. If you're
not a fan of the classics, please bear with me and
try some of the programs presented in this chapter.
You may not like them as much as some of the more
popular pieces, but you may find them eminently
more interesting from a technical point of view.

Program 69: How Gentle Is the Rain

You may think you've missed something or the
publisher has omitted 40 pages from this chapter,
but this popular hit song from the sixties is based
upon a piece that Johann Sebastian Bach wrote
before the word "Beatles" meant anything more

than a misspelling of the hard-shelled insect. I
specifically chose this song to gently acquaint some
of you to Bach, although I had to work out the song
on a piano, since I didn't have the musical
manuscript.

The song (Program 69) is produced by two
PLAY statements in lines 20 and 30. I chose the

music foreground mode (MF) because this song
contains more than 32 notes, the buffer limit for the
backgroimd mode. When songs are played in

166

10 REM "HOW GENTLE IS THE RAIN"

20 PLAY "MF T130;G2;G2;L4;C8;D8;E8;F8;L2

;G;c;P16;L2;A;L4;F8;G8;A8;B8;03;L2;c;02;
c;pi6;f;l4;G8;F8;E8;D8;E2;L4;F8;e8;D8;C8

;L2;0l;B;02;L4;C8;D8;E8;C8;D2;02;A;G;"

30 PLAY "02;G2;l4;C8;D8;E8;F8;L2;G;C;p16

;L2;a;L4;F8;G8;A8;B8;03;L2;c;02;C;p16;F;

L4;G8;F8;E8;D8;E2;L4;F8;E8;D8;C8;L2;d;02

;L4;E8;D8;CS;oi;B8;02;C2;"

40 END

Program 69. "How Gentle Is the Rain."

background all of the musical information is held
in the buffer, which outputs it to the speaker on a
programmed time basis. This effectively removes
the processing from the main part of the computer,
permitting it to tackle other problems. The buffer
receives the musical information on a real-time

basis (occurring in a fraction of a second) and then
outputs it in a time which is based upon the tempo
and the individual note durations, all of which are

specified in the program information. This allows
the computer to continue program execution past
the music point; there is thus the capability of play
ing limited music while, for instance, information
is being printed on the screen.

The notes in this program are too numerous to
be fully committed to the backgroimd mode, so the
foreground mode was chosen. The computer will
continue processing after the song has been entered
or imtil it has finished. The second command in line

20 specifies the tempo for the rest of the musical
piece. Tempo may be changed by adding other T
commands, but this is not necessary for this par
ticular number. The rest of the commands specify
notes, durations, and octaves. I will not discuss each

command, but we will examine the first few.
Following the tempo command is an 02, mean

ing that all subsequent notes are to be played in oc
tave 2, which begins with the note C (one octave
below middle C) and ends with B. The next com

mand specifies the note G as a half note. Then we
come to C, D, and F, all of which are eighth-notes.
Throughout the PLAY line you will see several oc

tave changes. These are used to access higher or
lower notes which fall outside of the second octave.

In some pieces octave changes will be quite
numerous, which confused me when I first began
programming. If you remember that each octave
begins with a C and ends with a B, you should have
little difficulty.

Let's assume that you're in octave 2 and have
just programmed a B. The next note is a C (above
the B). This indicates that it will be necessary to

go to octave 3 in order to accurately reproduce the
C which begins a new octave. However, the reverse
is true. If you've just input a C in one octave and
then want to program the B which lies just below
it (on the musical staff), it will be necessary to
switch to the next lower octave (in this case, 01).

After a bit of practice, the insertion of octave com
mands becomes almost automatic and will give you
little trouble, especially if you're familiar with
reading musical manuscripts.

Program 70: Polonaise

Program 70 is treated in approximately the
same manner as the previous one, and for that man
ner, many of the programs that follow. "Polonaise"
is a gentle piece composed by J.S. Bach.

This program commits the musical information
to six program lines, all containing PLAY

statements. The computer limits you to 64
characters per line, which may be one reason
several PLAY statements are needed for a single

167

10 REM "POLONAISE" BY J.S. BACH

20 PLAY"MF03Ga.A16B~404C403A8A16B-1604C2

03B-8B~1604C1608880888038-8A16B-1682"

30 PLAY"B-8.04C16D4F4DeC1603B-16A16B-160

4C1603A16F4"

40 PLAY"04FaD803B804F8816F16E-16016E-8C8

03A804C8F16E-16016C160BC16016E-8"

50 PLAY"08C803B-8A16B-1604C1603A16B-402B

-40404E-40384"

60 PLAY"F#8F#16816A808F8A8"

70 PLAY"0404E-4D384F#8F#16816A808F8A8040

8016E-1608016E-1608880388A16B-16840184"

80 80T0 20

Program 70. "Polonaise."

song. However, many musical pieces are written
in different connective segments, and I will often
use a separate PLAY statement when a new sec
tion in a piece takes effect.

Looking at line 20, you can see that this number
is also played in the foreground mode, and the first
note is in octave 3(0 3). The first note is a G, a dot
ted eighth note. This means it will be held for IV2
times its normal duration. You can see that the com

mand designation is "08." This mathematically
simplifies things, in that an5rtime you see a dotted
note on a musical staff, you simply input the dot
next to the commands that play that note. You will
notice several octave changes in each program line.
Part of Bach's magic is his use of closely spaced
notes in different octaves. This gives the impres
sion of constant and rapid movement, a trait with
which Bach's music has long been associated.

I enjoy this piece so much that I built the pro
gram as an endless loop. As soon as the first play
ing has finished, the GOTO statement in line 80

returns the program to its beginning and the song
is heard again.

This program was written directly from the
musical manuscript for piano and is completely ac
curate. Admittedly the score I used was a revised
interpretation of Bach's piece, but it closely
simulates the original work. The program took a
total input time of about 15 minutes, including

debugging. If you do much music programming,
you will from time to time leave out a sharp or a
flat, or even program an incorrect note. The same
is true if you play a musical instrument. Sooner or
later you're going to hit a "clam." If you are not
familiar with Bach's music, you should not have
much difficulty identifying a wrong note just by
listening to the computer output. There is nothing
especially dissonant about any of his pieces; a
wrong note should stand out like a sore thumb. For

those of you who are not very familiar with music
and its many terms, dissonant means discordant.
Some of the modem musical pieces may include a
fair amotmt of dissonance, which is intentional (or
so the composers say), and identification of im
proper notes is more difficult. Bach's pieces,
however, are quite logical. They are somewhat
easier to debug and are more interesting than sim
ple children's songs, which are also logical but are
often quite boring.

Program 71: Intrata

Program 71 is another composition by J.S.
Bach, "Intrata." Each of the commands is

separated by a semicolon, for note-by-note clarifica
tion. The semicolon has no effect on the program
run. This is another intricate piece beautifully out
put by the AT&T Personal computer. Placing

168

10 REM "INTRATA" BY J.S. BACH

20 PLAY"MF 03 D4 B8;F#8;G8;D8;EB;F#8"
30 PLAY"e8;F#8;68;D8;E8;F#a;"
40 PLAY"68;F#8;68;A8;B8;04;C8;D2"
50 PLAY"01;D4;68;F#8;68;D8;E8;F#8;68;F#8
;68;D8;E8;f#8;"

60 PLAY"68;F#8;68;A8;B8;02;C8;D2;"
70 PLAY"04;C8;D8;D8;C8;C8;03;B8;04;C8;03
; B8; 04; C2; 04; D8; C8; C8; 03; B8; B8; A8; B8; A8;
B2;"

80 PLAY"03;D4;68;F#8;68;D8;E8;F#8;68;F#8
; 68; 1D8; E8; F#8; 68; F#8; 68; A8; B8; 04; C8; D2; 0
3; 68; B8; A4; 64; 04; 68; B8; A4; 64; 68; F#8; E8; D
8; C8; 03; B8; A8; 04; D8; 03; B2; oi; 68; F#8; E8; D

8; C8; 00; B8; A8; 01; D8; 00; B2; 04; D8; C8; C8; 03
; B8; A8;68;F#8;A8;61;"

90 END

Program 71. "Intrata."

semicolons between each note designation con
sumes more programming time, but makes debug
ging easier.

Debugging is best accomplished by inserting
a very slow tempo command (T20). You can then
follow each note on the musical score until the

wrong one is identified, and then replay the piece
while reading the PLAY command for each note.
When all the glitches are foimd and corrected, the

tempo can be increased to its original speed.
No tempo command is used in this program

because the default tempo is 120, which is about

right for this piece. If you want to have some real
fun add "T255", the maximiun tempo, and Bach
is spewed forth at almost real-time speeds.

Program 72: Minuet

By definition a minuet is a slow, graceful dance
in three-quarter time. In purely musical terms a
minuet is the music by which the dance is enacted.
Bach's minuets cannot be classified as slow, but
they do follow the three-quarter time format and
are graceful, if a bit fast.

10 REM "MINUET" BY J.S. BACH

20 PLAY"MS 04C4C4D4E-4E-4F46464A-4616F#1

6616F#16616F#16E16F#166468A-8F8E8F4FS68E

-8D8E-4C803B804C4D40362."

30 PLAY"036464A-4B-8A-868A-8B-4C4E4612A-

12B-12A-868F2F4F464A-868F868A-402B~403D4

F12612A-12"

40 PLAY"68F8E-264A-4A4B-4B404C403B404C4D

4E-4E4F4D4E-4E4F4F#464036404F8E-8D8E-8C2

Program 72. "Minuet.'

169

Program 72 plays the Bach piece, "Minuet'' at
a tempo of T120 (the default tempo). You will see
a number of sharps and flats and a profusion of oc
tave changes, as there is a great deal of switching
back and forth between octaves 3 and 4. This is one

of Bach's more pleasing features, and is highly en
joyable when produced by the computer.

Program 73 produces Bach's ''tempo di minuet-
to,'' This is a more complex piece, characterized
by sudden octave changes. You will see a number
of sharps and flats specified in the PLAY statement
lines.

ADDITIONAL NOTES

Many classical pieces include a number of what
are commonly called grace notes. The best way to
describe grace notes is to say that they are more
or less dispersed into a number with little or no
specified mathematical patterns. The human per
former is expected to play them very rapidly and
make adjustments (in time) to the rest of the
measure. For example, a whole note may be
specified in one bar immediately preceded by a
miniature series of grace notes. The whole note will
normally consume the entire measure, but in this

case the grace notes will consume a small amoimt

of time. The performer will normally play the grace
notes as quickly as possible, then hold the whole

note for whatever time remains in that measure.

Two different performers will probably play the
grace notes a bit differently.

When programming grace notes on the AT&T
PC, I usually specify them as 64th notes or 32nd
notes. Many musical manuscripts will provide a hint
for playing these notes; however, it is still necessary
to instruct the machine as to the duration the main

note or notes in that measure are to be held. When

you start the musical programming on the AT&T
PC, you may wish to eliminate the grace notes at
first, then add them later when your musical pro
gramming proficiency has improved. You will have
to calculate the total amoimt of time consumed by
the grace note passage and then subtract that from
the remaining note or notes in the single measure.
If you are working with a fast tempo, you can
probably drop a 32nd note or two and not be able
to tell the difference in timing; but if you are a
perfectionist, you will want all measures to be
mathematically equivalent.

Some musical pieces require trills, which are
usually two notes played together very rapidly to
produce a birdlike warble. These are often played
as individual 64th notes and occasionally as 32nd
notes. At rapid machine tempos, trills and complex
grace note passages often seem to run together. For
trills, this is desirable; but for grace notes, this may
not be so. You may try slowing the tempo for bet-

10 REM "TEMPO DI MINUETTO" BY J.S. BACH

20 PLAY"MFG3A4G4F8E8D8C#8D403A4B-4C#8E8G

8B~8A8G8F4E8F8D4F4B-8A8G4D8C8F4E8D8C8G3B

-8A8B-16G4C16G3F4E4F2-A4G4F8E8D8C#8D4G3A

4B-4C#8E8G8B-8A8G8F4E8F8D4F4B~8A8G4D8C8F

4E8D8C8G3B-8A8B~16G4C16G3F4E4F2.04A4G3F8

04A8G8F8E16F16G8C2F4G3F8G4F8E8D8C#16D16E

8G3A2A8B804C#8

30 PLAY"D8E8F8G8E8C#8B~8A8G8F16E16D8E4C#

402- "

40 PLAY"A4G3F8G4A8G8F8E16F16G8C2F4G3F8G4

F8E8D8C#16016E8G3A2A8B8G4C#808E8F8G8E8C#

8B-8A8G8F16E1608E4C#402."

Program 73. "tempo di minuetto."

170

10 REM "THE TWELVE DAYS OF CHRISTMAS"

20 PLAY"MF T125 Q2C8C8C4F8F8F4EaF8G8A8B-

8G8A4.

30 PLAY"MF B-803C4D802B-8A8F8G4F2."

40 FOR X=i TO 4

50 PLAY"MF T125 02C8C8C4F8F8F4E8F8G8A8B-

8G8A4.

60 GOSUB 80

70 NEXT X

80 FOR A=1 TO X

90 IF X=4 THEN 140

100 PLAY"MF 03C402G8A8B-4"

110 NEXT A

120 PLAY"MF A8B-803C4D802B-8A8F8G4F2. "

130 RETURN

140 PLAY"MF 03C2D202B..03C1"

150 PLAY"MF C802B-8A8G8F4B-4D4F4G8F8E8D8

C4A8B-803C4D802B-8A8F8G4F2."

160 FOR X=1 TO 7

170 PLAY"MF02C8C8C8C8F8F8F4E8F8G8A8B-8G8

A2"

180 FOR A=1 TO X

190 PLAY"MF 03C8C802G8A8B-8G8"

200 NEXT A

210 PLAY"MF 03C2D202B..03C1"

220 PLAY"MF C802B-8A8G8F4B-4D4F4G8F8E8D8

C4A8B-803C4D802B-8A8F8G4F2."

230 NEXT X

240 PLAY"MF T75P402A8B-803C4D802B-8A8F8G

4F2. "

250 END

Program 74. "The Twelve Days of Christmas."

ter definition of each grace note. Alternately, you
can specify each grace note with a slightly longer
duration designator and make appropriate time ad
justments later in the musical measure. Grace notes
and the way they are played is pretty much left up
to the musician, who will develop a feel for their
presentation. The same applies to the musician who
uses the computer as his instrument. The com
puter, however, cannot "feel" the phrasing of a cer
tain passage. The programmer will have to perform
this function for the computer mathematically.

A MORE COMPLEX MUSIC PROGRAM

Program 74 will produce all the versus of "The
Twelve Days of Christmas." This is a song nearly
everyone is familiar with. Although there is much
repetition, there are subtle differences in certain
sections of verses. It is possible to use straight pro
gramming to produce this song, meaning that each
verse will be given its own program line. It is not
necessary to establish FOR-NEXT loops to repeat
those bars that are constantly repeated in the song.
Straight-line programming will take less

171

forethought and planning, but will result in a very
long program.

The program takes advantage of FOR-NEXT
loops and results in a relatively short program.
Those verses which are repeated are committed to

FOR-NEXT loops, and proper branches are in
serted to pick up those verses which do not con
form to the loop material.

Line 20 and line 30 play the first verse. A FOR-
NEXT loop is then entered (line 40), and the first
portion of that same verse is repeated. There is a
GOSUB in line 60 which causes the program to
enter a nested loop. Line 100 plays the 'Two Call
ing Birds, Three French Hens, and Four Turtle
Doves" song lines. Line 90 tests for the condition
X = 4. When this occurs, there is a branch to line
140, which plays the "Five Golden Rings" portion
of the song. Line 150 is the coimtdown verse to "A
Partridge in a Pear Tree."

We are now at "Five Golden Rings." The next
seven verses begin with the FOR-NEXT loop in line
160, which cycles seven times. Line 170 enters the
"On The Sixth Day ..." portion of the song, and
another nested loop is then encoimtered in line 180
which plays the song line associated with "Six
Geese A Laying" and the remaining verses. Notice
that the loop starting in line 180 counts from 1 to
X. When the loop times out, "Five Golden Rings"
is played again in line 210. Line 220 is a repeat of
line 150 and plays the verses which count down to
the partridge again. The NEXT statement in line
230 branches back to line 160 for the next cycle of
the loop. During this next cycle, X is equal to 2.
Therefore, the nested loop will play the stanza in
line 190 two times before reaching the "Five
Golden Rings" sequence again in line 210. When
this last loop has timed out completely, the finale
is played in line 240. Notice that the tempo here
has been slowed from 125 to 75. This gives us the
needed ritard for the final strains. This last portion
is a repeat of the last few bars of the song, produc
ing "And a Partridge in a Pear Tree."

The FOR-NEXT loops allow you to repeat
repetitive stanzas without having to put in a
separate PLAY statement for each one. The loops
step the number of times corresponding to the

number of times the verse is repeated in the song.
There are two major internal verse repeats. One
begins with the second day of Christmas and ends
at the fourth day of Christmas; the other begins at
the sixth day of Christmas and ends at the twelfth.
The "Five Golden Rings" portion is a separate en
tity, but it must be inserted at the proper time,
which is different as each day is encountered.

Admittedly, it took me longer to write this pro
gram in the form shown than it would have, had

I used straight-line programming throughout. The
program shows a more efficient method of produc
ing this song and requires much less input time.
There is less room for note errors as well, since

there are fewer note commands and Play
statements. If you do enter an incorrect note
somewhere, it will probably crop up several times
as it is accessed by the loops. Once you have iden
tified and corrected this note, however, the correct

version will also be repeated. I think this program
will be much easier to debug than a straight-line
version, and much less memory is required.

Program 75; Sing-Along Christmas Song

Program 75 combines music and text, similar
to the boimcing ball sing-alongs you have probably
seen on television. While it would be possible to

duplicate the bouncing ball on the screen using
graphics, this program does not go quite so far. It
simply prints the words at the center of the screen
as a particular musical verse is played. LOCATE
statements are used to place the words at the center
of the screen. As a new verse appears, it writes over
the old one. Line 40 prints the first phrase line, "Joy
to the World," and line 50 plays the music. Im
mediately after this PLAY line is completed, lines

60 and 70 print the next few words, followed by
the music in line 80. This continues throughout the
remainder of the program. You will notice in line
160 that the final word (sing) is followed by a
number of spaces. This is because the phrase in line
160 is shorter than the one in line 130, so the spaces
simply write over the previous line with screen
blanks. In other words, the spaces cover up for the
lack of length in the new line. The same method
is used in line 250, which prints "Merry Christmas"

172

10 REM "JOY TO THE WORLD" SINBALONG

20 CLS

30 LOCATE 14,30
40 PRINT "JOY TO THE WORLD"

50 PLAY "MF 03D4C#8.02B16A4.

60 LOCATE 14,30
70 PRINT"THE LORD IS COME"

80 PLAY "G8F#4E4D4.

90 LOCATE 14,30
100 PRINT"LET EARTH RECEIVE HER KING

110 PLAY "A8B4.B803C#4.C#8D4.

120 LOCATE 14,30
130 PRINT"LET EV'RY HEART PREPARE HIM ROOM"

140 PLAY "D8D8C#802B8A8A8.G16F#803D8D8C#802B8A8A8.G16F#8
150 LOCATE 14,30
160 PRINT"AND HEAVEN AND NATURE SING

170 PLAY " F#8F#8F#8F#8F#16G16A4.
180 LOCATE 14,30
190 PRINT"AND HEAVEN AND NATURE SING"

200 PLAY"G16F#16E8E8E8E16F#16G4. "
210 LOCATE 14,30
220 PRINT "AND HEAVEN AND HEAVEN AND NATURE SING"
230 PLAY" F#16E16D803D402B8A8.G16F#8G8F#4E4D2"
240 LOCATE 14,35
250 PRINT"MERRY CHRISTMAS

Program 75. "Joy to the World."

10 REM "WHATEVER WILL BE, WILL BE" (QUE
SERA SERA)

20 PLAY "MF ML T150 02C4D4E4G2E4G2E4G2.
It

30 PLAY "E4G4E4A4G2A4G4E4F2.F2.B4a3C4D4
C402B2"

40 PLAY "02A4B403C402B2.F4G4A4G2F4E2."

50 PLAY "P403C4.02B-8A2F4A2.A2B403D4C40
2A4"

60 PLAY "02G2C4E2.E2F#4A4G4E4G2D4G2.G4D

4E4F201B402C2.C2.C4"

70 PLAY "a2D4E4F201B402C2.C2.C2"

30 END

Program 76. "Whatever Will Be, Will Be."

173

at the end of the song.
This is a very simple program to write, since

you first program the music line and then return
to add the text. You will input this program as
shown on a line-by-line basis.

I had originally intended to add an MB with the
PLAY statements instead of an MF. The former

places the music information in a buffer and will
play it while other machine operations are taking
place. My intentions were to have the text displayed
while the music was being played. However, the
write was so fast that the program was no more ef
fective than the one shown here using PRINT

statements ahead of the PLAY statements, the lat
ter being in the foregroimd mode.

Problem 76: Whatever Will Be Will Be

Bridging the gap from Christmas carols that
are hundreds of years old to the semi-modem Pro
gram 76 is known by two names, "Whatever Will
Be, Will Be" and "Que Sera Sera." Rosemary
Clooney had a hit with this song in the middle 1950s.

The program is nm in legato mode at a
moderate tempo of T150. This was an ideal tune
to input in the legato mode, since it was not
necessary to insert a string of P64 separation rests
because of the note sequence. I prefer the mode of

10 REM "VAYA CON DIOS"

20 FOR X = 1 TO 2

30 PLAY "MF ML TlOO 02C8D8EaD#8EaD#8E4E

8D#8E4.F8E4D2"

40 PLAY "D2P<b4D8EaF8E8F8E8F4F8E8F4.D8D#
4E2E2."

50 PLAY "03C4P64C4.P64C8P64C402B4.A8P64
A4G2B2."

60 PLAY "02P64G4P64G4.P64G8P64"

70 IF X = 2 THEN 100

80 PLAY "G4F4G4E2.E2"

90 NEXT X

100 PLAY "02G4F401B402C2.C2P64C4"

110 PLAY "02B-803C802B-8A8B-4B-8A8B-4.0

3C8"

120 PLAY "02B-4A2A2C4G8A8G8F#8G8A8G2A4F

2.F2D4"

130 PLAY "03C8D8C802B803C4C802B803C4.D8

C402B2B2"

140 PLAY "02D4A8B8A8B#8A8G#8A2B4G4.F#8F

8E8D2"

150 PLAY "02C8D8EaD#8E8D#8E4E8D#8E4.F8E

4D2"

160 PLAY "D2P64D8E8F8E8F8E8F4F8E8F4,D8D

#4E2E2."

170 PLAY "03C4P64C4.P64C8P64C402B4.A8P6

4A4G2G2."

180 PLAY "02P64G4P64G4.P64G8P64"

190 PLAY "02G4F401B402C2.C2"

200 END

Program 77. "Vaya con Dios."

174

10 REM "WINDY"

20 FOR X = 1 TO 2

30 PLAY "MF MS T170 02A403C802A864F403D

8D8C4a2A403C4a2A4"

40 PLAY "□3C802A8G4F403D8D8C402G2A403C8
G2A8G4F4"
50 PLAY "G3D8D8C4G2A4G3C4a2A4G3C802A8G4
F4G4F2.G1F4F4F2"
60 PLAY "ML G2P4F4A8G3C8F4D2G2B-4G3C4C4
G2F4A8G3C8F4"
70 PLAY "G3D2G2B-4G4G4E4FSA8G3F4D2G2B-4
G3C4C4G2A4"
80 PLAY "G2P64ASP64A4."
90 IF X = 2 THEN 130
100 PLAY "G2G4.G3F8P64F8P64F4.C4.D8P64D
8P64D4.C4.P64C8"
110 PLAY "D8F4.G1"
120 NEXT X
130 PLAY "G2G4.03D8P64D8P64D4.P64D4.P64
D8P64D8P64D4."
140 PLAY "C4.D8P64D8P64D4.F2."
150 END

Program 78. "Windy."

legato programming for most songs because of the
smooth output. The music normal mode often
brings about an unwanted choppiness and does not
differ in highly noticeable form from staccato mode
programming.

This song has been performed at extremely fast
and extremely slow tempos, so I chose a point
somewhat in between. The PLAY statement infor
mation is included in lines 20 through 70. It is possi
ble to arrange all of this information in two lines;
my method was used for easy debugging purposes.
The total range of notes spans only two octaves,
so 02 and 03 statements are used throughout. The
manuscript from which this program was written
came from a student piano book. I incorporated a
few subtle changes to make the piece sound bet
ter. Those persons who are heavily involved in com
position and arranging may spend hours on a sim
ple song to custom-tailer it. Admittedly, I did not
take a lot of time, but I think you will find this pro
gram quite enjoyable and capable of bringing back
memories associated with this song when it was
popular in the 1950s.

Program 77: Vaya con Dios
Program 77 causes the AT&T personal com

puter to output what can certainly be classified as
an old standard, ''Vaya con Dios." This song
precedes my birth, so I can't way when it reached
its height of popularity. You can still hear this song
occasionally on records and radio stations.

The song plays through the main theme twice
and then enters the musical bridge to its conclusion.
Therefore the main melody lines are committed to
a FOR-NEXT loop in lines 20 and 90, respective
ly. The intro to the bridge is a modification of the
last few bars of the initial verse, so it was necessary
to include the detection line foimd in line 70 of the
program. During the second cycle of the loop, ex
ecution will branch to line 100 after line 60 is com
pleted. Line 100 contains the musical intro to the
bridge, while lines 110 through 190 include the
bridge notes themselves.

This program is run in legato mode. Therefore,
you will notice an occasional P64 rest in several por
tions of the program. The outro is actually a repeat
of the opening verse, so lines 30 through 60 are
repeated in lines 130 through 180, imtil the final
outro in line 190. It would have been possible to
re-enter the loop at the desired point, but for the
sake of understanding (both from the reader's and
the author's standpoint), straight-line pro
gramming was used for the final portions of the
song. This piece is normally performed at a
medium-slow tempo, and the TlOO tempo com
mand produced the desired speed.

Program 78: Windy
Program 78 brings us up to the sixties and a

big hit for the musical group known as The Associa
tion. The song is called "Windy" and is output by
the computer in staccato mode programming, which
closely simulates the original song.

The first portion of the song, the main verses,
is committed to a FOR-NEXT loop which begins
in line 20. The detection line at 90 exits the loop
at the proper point to access the outro lines at 130
and 140. Since the staccato mode of programming
was used, it is unnecessary to use P64 dividers in
the first few lines. However, beginning at line 60

175

there is a switch to legato mode. This occurs dur
ing the middle of the first two verses. During the
first verse play, line 120 recycles the loop and the
staccato mode is again entered in line 30. When the
final loop exit is made from line 90 to 130, the legato
mode is maintained until the end of the piece.
Therefore you will see several P64 dividers begin
ning below line 60.

The switch from staccato to legato program
ming mode was not mandatory, but allowed me to
reproduce more accurately the song in its original
style. If you are familiar with the tune, you already
know what I am talking about. If not, you will find
out as soon as you nm the program. Musical
switches from staccato to legato and back are quite
common in many modem pieces, though not with
older songs. The duration mode capabilities of the
AT&T computer will greatly aid you in accurately
reproducing many of these modem pieces. To real
ly be able to hear the difference, input the program
and run it as shown. When you have finished debug
ging, display line 60 and temporarily change the
ML command to MS. When the modified program
is nm, you will be able to see the difference made
by the mode change. You certainly will want to
switch back to the ML command in line 60 after

completing the test mn.

Program 79: Everything Is Beautiful

A popular entertainer of the sixties and seven
ties, Ray Stevens, wrote and sang ''Everything Is
Beautiful,'' which was a big hit aroimd 1970. This
song reminds me of a small town in Virginia, and
of an even smaller AM radio station where I was

employed when this song was popular.
This is an unusual song in that it begins with

children singing "Jesus Loves the Little Children."
When that has been completed, the main melody
line of Steven's composition begins. The melody
line is then repeated twice before entering the
musical bridge. Line 20 begins the intro part and
contains the tempo and mode designations for the
remainder of the song. The intro is completed in
line 50. At this point the main melody line begins.
Since this is to be played twice, a FOR-NEXT loop

is established in line 60, with the main melody note
information found in lines 80 through 120. During
the second cycle of the loop, line 110 creates a
branch to line 140 where the second melody strain
begins. When this portion is exited at the conclu
sion of line 210, the original melody line is repeated
in lines 220 through 260. It would have been pos
sible to re-enter the original loop, but it was much
easier to renumber original lines 70 through 100
with 220 through 250. Line 260 plays the final outro
to this number.

This program is longer than most of those
presented thus far, because it includes three
separate melody sections. By efficiently utilizing an
additional FOR-NEXT loop the program could be
shortened to about twenty lines; this would result
in little savings of time for programming and for
input and would probably add to the debugging.

The basic program is executed in legato mode.
However, I have often switched to music normal
mode rather than include a larger number of P64
separation rests between identical notes. The first

switch occurs toward the end of line 20, where a
series of G notes must be produced. The switch
back to legato mode occurs near the center of line
30. You will see instances where I elected to use

P64 separators rather than switch modes. In these
cases the identical note strings were short, and I
felt this form of separation was more advantageous
than switching to the music normal mode. You may
elect to do otherwise, but the program will run quite
satisfactorily as shown here.

Program 80: Snowbird

Program 80 outputs another song which was
popular aroimd 1970. As I recall, Anne Murray had
a big hit with "Snowbird." As with most popular
songs, a main verse repeats at least twice, with an
exit near the end of the second repetition playing
to an appropriate outro. The FOR-NEXT loop
established at lines 20 and 100 contains the main

verse data. The detection portion in line 80 exits
the loop at a specific point in the second run by
branching to lines 110 and 120, where the outro
data is located.

176

10 REM "EVERYTHING IS BEAUTIFUL" (BY RA
Y STEVENS)

20 PLAY "MF ML T120 G2A4P64A4P64Ae.G16F
8.D16C2F2MNGa.G16GB.G16"
30 PLAY "02A8.G16F8.A16MLG2.C8.01B-16A8
.02C16F8.G16F4P64"

40 PLAY "02F8.E16D8.E16F8.D16C4A8.G16F8
.E16F8.D16E8.C16E8.G16"

50 PLAY "FlF4P4T160A803C8P64Ca02A803"
60 FOR X = 1 TO 2
70 PLAY "03D4.C8P64C2C2"
80 PLAY "02A8B-8A4P64A8G8G2.G2"
90 PLAY "02D8ESF8GSA4.G8P64G403C4D4C8P6
4C8"

100 PLAY "02A8G8F8G8"
110 IF X = 2 THEN 140
120 PLAY "02AlP2A803C8P64Ca02A8"
130 NEXT X

140 PLAY "02D8C8DaF2.F2P2P4A8P64A8B-4A4
II

150 PLAY "02P64A4G2C4D4F4G8A4.G8F8F2.P4
H

160 PLAY "03C8P64C8P64C4P64C8P64CaP64Ca
02A8G2C8P64C8D4F4G4.A8G8F8F2."
170 PLAY "03P8C8F8P64F8P64F2P8C8EaP64E8
D4C4"

180 PLAY "02P8F803D8C8D8C802A8MNCaC8C8"

190 PLAY "ML02A8G8F2.P8F803C802A803C8P6
4C8D4"

200 PLAY "02P8A803C802A8P64A4MNC8CaMLD8
F4.P8F8G8A8"

210 PLAY "02GaF4.P2P2A803C8P64C802Aa"
220 PLAY "03D4.C8P64C2C2"
230 PLAY "02A8B-8A4P64A8GSG2.G2"
240 PLAY "02D8E8F8G8A4.G8P64G403C4D4C8P
64C8 "

250 PLAY "02AaG8F8G8"

260 PLAY "02D8C8D8F2.F2"
270 END

Program 79. "Everything Is Beautiful."

177

10 REM "SNOWBIRD"

20 FOR X = 1 TO 2

30 PLAY "MF ML T150 03F4P64F4E4P64E4D4P

64D4C4P64C402F4G1"
40 PLAY "0262.03C8P64C8P64C402B-4P64B-4

A4P64A4G4P64G4A4B-4"

50 PLAY "03C402A4G4C1C2.P8"

60 PLAY "03F8P64F4E4P64E4D4P64D4C4P64C4
02F4G1G2."

70 PLAY "03C8P64C8P64C402B-4P64B-4A4P64

A4G4P64G4A4B-4P64B-4A4G4"
SO IF X = 2 THEN 110

90 PLAY "02F1F2."

100 NEXT X

110 PLAY "02F1F203E8D8C4MNE8E4.E4D4C4C4
02B-403C4MLD1D1"

120

130

PLAY

END

"P4MNF4F4F4MLF1F1F2,

Program 80. "Snowbird."

The original version of this song was treated
very delicately by Ms. Murray and included smooth
transitions from note to note at a fairly rapid tem
po. A T150 command was an appropriate tempo;
it was necessary to use the kga/o play mode to bring
about smooth transitions. As before, I used a com
bination of P64 rest separators between identical
notes and switched to music normal mode for the
longer, identical note lines. The last notes of the
outro are all run in legafo mode. In this program I
relied heavily on P64 separators and not much on
mode transitions.

Program 81: Wipeout

In the middle sixties I surprised my family and
especially my band director by becoming very in
volved in the rock and roll scene, which was given
new life by the Beatles. Their popularity generated
himdreds of other rock groups, who enjoyed vary
ing degrees of success. Most groups relied heavily
on vocal ability and not much on instrumental
backup. An exception was the Surfaris, who were
famous for their guitar instrumentals rather than
their vocals. Their most popular hit was called

''Wipeout" and is still performed by bands today.
"Wipeout" was built mostly from staccato

eighth notes at a very fast tempo. Program 81
presents the AT&T PC computer version per
formed mainly in staccato mode at a rapid tempo
of T200. In musical terms this tempo would be
described as presto or prestissimo.

This program is straight line; lines 90 through
150 mostly repeat lines 20 through 80. Program
ming time was not greatly lengthened by using this
method, because after I completed line 801 return
ed to line 20 and renumbered it 90. Line 30 became
line 100, and so on. I did this after the first eight
lines had been debugged. Therefore, I was certain
that the "copy lines" would be accurate. Line 150
is the outro and differs greatly from line 80, which
would be its match if the copied line sequence were
maintained throughout.

I have made a few transitions from staccato
mode to legato^ as shown in lines 80 and 150. It was
only at these two points that sustained legato mode
was necessary. The switch from staccato to legato
in line 80 is reversed at the beginning of line 90,
which repeats line 20. The ending note in line 150
is sustained in legato mode.

178

10 REM "WIPEOUT" BY THE SURFARIS
20 PLAVliF MS T200 02G8B-8B803C8C8C802B-
BGBGBB-BBB"

30 PLAY"03 C8C8C802B-8G8G8B-8B803C8C8C80
2B-8G8G8B-8B8"

40 PLAY"03C8C8C802B-8G803CaE-aE8F8F8F8E-
8C8C8E-8E8"

50 PLAY"03F8FaF8E-8C802G8B-8B803C8C8C802
B-8G8G8B-8B8"

60 PLAY"03C8C8C802B-8G803C8E8F8G8G8G8F8D
3D3G0GS"

70 PLAY"03F8F8F8E-aC802G8B-aB803C8C8C802
B-8G8G803C802B-8"

80 PLAY"03CaC8C8MLC8C8"
90 PLAY"MF MS T200 02G8B-8B803C8C8C802B-
8G8G8B-8B8"

100 PLAY"03 C8C8C802B-8G8G8B-8B803C8C8C8
02B-8G8G8B-8B8"

110 PLAY"03C8C8C802B-8G803C8E-8E8F8F8F8E
-8C8C8E-8E8"

120 PLAY"03F8F8F8E-8C802G8B-8B803C8C8C80
2B-8G8G8B-8B8"

130 PLAY"03C8Caca02B-8G803C8E8F8G8G8G8F8
D8D8G8G8"

140 PLAY"03F8F8F8E-8C802G8B-8B803C8C8C80
2B-8G8G803C802B-8"

150 PLAY"03C16P1602B-8G8ML03C1"
160 END

Program 81. "Wipeout."

This type of program is ideally suited for the designed to be played at a slower tempo than that
AT&T PC. Each note is distinct, although the tem- keyed by the TlOO command in line 20.1 original-
po is quite rapid. This is the type of program ideal ly tried T50, but it was too slow to be enjoyable
to run during a programming pause, after long on the computer.
hours behind the computer have made you sleepy. The program is run entirely in kgato mode and
The output from this program should pep you up is input without the need for P64 dividers because
and allow a few more hours of programming. of the note transitions. In some cases I lengthened

or shortened a note and made up for the difference
with a longer duration rest, but each of the bars

Program 82: Blues in F should come out mathematically correct. In some
Program 82 is entitled "Blues in F" and will instances I had difficulty with the math, so you wiU

slow things down after the panic strains of the see a P64 or two, but these are used very rarely
previous program. This piece is fairly old and was in this program.

179

10 REM "BLUES IN F"

20 PLAY"MF ML TlOO 03 C1C802F8A8B-803C40

2B-8G3C802A2."

30 PLAY"02F8E8E-2.F803F8P64F1F802B-803D8

E8F4D4C2.D8C8"

40 PLAY"02A2P8F8A803C8E8C4.C8a2E86803C8D

802B-4.B-8"

50 PLAY"02D8F8B-803C802F4.F2P1"

60 PLAY"02A203C2C2.02B-803C802A2.F8E8E-2

Fa03F8"

70 PLAY " 03D2F2F2. D402A203C:2C2P802F8A803C
8E8C4.C8"

80 PLAY " 02E8Ga03C8D802B--4. B-8D8F8B- 803C8
02F4."

90 PLAY"03C802F8GaF8A2"

100 END

Program 82. "Blues In F."

For programming this blues number the legato
mode was mandatory to cause the "lazy" sliding
effect common to these types of pieces. Because
of the single melody line and the note transition,
there was no point within this piece where a FOR-
NEXT loop would have been practical. Therefore
straight-line programming was used throughout.
Since the program plays through only once, this
might be an ideal situation to introduce an endless
loop by replacing the END statement in line 100
with a GOTO 20 statement.

Program 83: Somethin' Stupid

During the last half of the sixties, Frank
Sinatra's daughter Nancy became an exceedingly
popular entertainer in her own right. Many of her
songs did not receive favorable reviews, but a few
are still heard in smooth instrumental form today.
One of these, "Somethin' Stupid," is presented in
Program 83. I never liked this song, but I'm
probably in the minority.

You will see many transitions from music nor
mal to music legato mode. The note structure is ex
ceedingly simple (from musical standpoint) and in
volves the sequential playing of a series of identical
quarter and/or eighth notes. I switched to music

legato whenever possible, but many sections re
quired the normal mode to avoid destroying
measure timing. A good example of this is shown
in line 50, where four Fs played as eighth notes are
followed by four Gs played as eighth notes and four
eighth note As. If I had inserted P64 between each
one, I would eventually have an extra measure at
the end. Running this sequence in music normal
mode causes the same effect at the audio output
end, greatly shortens programming time, and keeps
me mathematically correct with the original
manuscript. The music legato mode was used main
ly to play certain identical notes over several sus
tained measures.

For Nancy Sinatra fans, please don't become
angry over my remarks about this particular song.
I liked her version of "You Only Live Twice," the
theme song for the James Bond movie of the same
name. Unfortunately I couldn't find a manuscript
for this song, so it's not included here.

Program 84: King of the Road

The biggest hit for a coimtry music entertainer
named Roger Miller, who made the transition to
the pop charts, was "King of the Road." Program
84 offers an especially nice run on the AT&T PC.

180

This program combines straight-line programming allows the song to be reproduced in much the same
with a FOR-NEXT loop at the beginning. Some of manner as the original, which included some chop-
the main melody lines are repeated in the latter por- py note sections, along with those which offered
tion of the program. smoother transitions. I had originally pro-

Line 110 allows the FOR-NEXT loop to be ex- grammed for a faster tempo, but later decided to
ited at the proper point. The bridge lines are con- slow it to a moderate speed with a T150 command,
tained in program lines 140 through 180. The main I also tried varying the tempo at different sections,
melody appears in straight-line programming form but the final version shown here produces the best
again beginning at line 190 and executing through effect (in my opinion).
line 270, which contains the outro. Whenever possible I have tried to program the

You will see a lot of transitions from music nor- various songs presented in this chapter close to
mal to music legato modes and then back. This their original style. There is much to be said for

10 REM "SOMETHIN' STUPID"

20 PLAY"MF MN 1160 01 A802C8C8C8C8D8D8D8
D8E8E8E8E8"

30 PLAY"G2F8F8E8C8D8D8F4MLE2E2.MNP8C8C8C
8C8C8D8D8D8D8"

40 PLAY"02 E8E8E8E8FaF8ESC8D8DaE4MLD2D2.
MNP8C8"

50 PLAY"02 FaF8F8FaGaG8G8G8A8A8A8A803C80
2B-8A8B-8"

60 PLAY"02A4G8MLG8G2G2.MNP8D8F8F8F8D8E8E
8E8Da"

70 PLAY"02F8FaFaD8E8E8ESA8G2MLF2MNF2,F8F
8"

80 PLAY"02F8F8F8F8G8G8G8G8AaA8AaA803C802
B-8A8B-8"

90 PLAY"02A8G8MLG2.G2MNP8F8G8G8G8G8A8A8A
8A8B8B8B8B8"

100 PLAY"03D8D8D8E8D8C8MLC2.C2.MN"

110 PLAY"MF MN T160 01 A802C8C8C8C8D8D8D
8D8E8E8E8E8"

120 PLAY"02F8F8E8C8D8D8F4MLE2E2.MNP8C8C8
C8C8C8D8D8D8D8"

130 PLAY"02 E8E8E8E8F8F8EaC8D8D8E4MLD2D2
.MNP8C8"

140 PLAY"02 F8F8F8F8GaGaGaGaAaAaAaA803C8
02B-8A8B-8"

150 PLAY"02A4G8MLG8G2G2.MNP8DaF8F8F8DaEa
E8E8D8"

160 PLAY"02FaFaFaDaEaEaEaA8G2MLF2MNF2."
170 END

Program 83. "Somethin' Stupid.'

181

10REM "KING OF THE ROAD"

20FOR X= 1 TO 2

30PLAY"MF MN T150 03P4C402G4E4D4E8MLF
aF2P4B4MNB8G8AaG8C4"
40PLAY"02C8MLC8C2MNP403C402G4E4"
50PLAY"02D4E8MLF8F2MNP8G8G4B403C4"
60PLAY"03D4C8ML02B8BaMNG8A4P403C402G4
E4"

70PLAY"02D4E8MLFSMNF4F8D8P4MLB4B8MN"
80PLAY"02G8A8G8C4C8MLC8C8MNE8G4"
90PLAY"03P4E2D4MNC4C4C802A4.P2"
100PLAY"03D8C802B4"

110IF X= 2 THEN 140

120PLAY"03C1"

130NEXTX

140PLAY"03C2MNPSCBC4C8C8C4C8C8C802B8"

150PLAY"02A803C802A4F4P4B8B8B4A8G4G8"

160

4"

PLAY"02A803C802A4G4PSGe03G8G8E4D8C

170PLAY"02A803Ca02A803C402A4P8ASGGGGG
8G8"

180PLAY" 02B8B4B803DaD8D8MLF8liNF8E8D4 "

190PLAY"03P4C402G4E4D4E8MLF8F2P4B4MNB
8G8A8G8C4'

II

200PLAY"02C8MLCSC2MNP403C402G4E4"
210PLAY"02D4E8MLF8F2MNP8G8G4B403C4"
220PLAY" 03D4CariL02BaB8riNG8A4P403C402G
4E4"

230PLAY"D2D4EaMLF8MNF4F8D8P4MLB4B8MN"

240PLAY" 0208AaGac:4caMLcacaMNEaG4"
250PLAY"03P4E2D4MNC4C4C802A4.P2"
260PLAY"03D8C802B4"

270PLAY"03C2."

230END

Program 84. "King of the Road."

taking a popular song and creating a special ar
rangement designed to take advantage of all the
computer has to offer. The computer offers much
less than a full orchestra, so certain changes are

warranted to create the best run possible using the
limited musical abilities of the microcomputer. It
may sound like I am contradicting a previous state
ment alluding to the excellent musical capabilities

182

of the AT&T PC. However, the statement was in
relation to the musical capabilities of other com
puters, which are sometimes nonexistent. The
musical output of the AT&T PC is produced by a
flexible, single-tone generator. The single tone out
put is a major disadvantage. The computer may be
interfaced with an electronic organ or a synthesizer
to control hundreds of different tone generators (of
fering simultaneous output), to form a highly ver
satile and efficient musical instrument. This book
concentrates on the abilities of the computer alone
and does not take into account the unlimited
possibilities of the musical peripherals that are
available.

Program 85: Jean

"Jean," written by Rod McKuen, was another

bit hit at the beginning of the seventies and is shown
as Program 85. This piece was performed very
delicately and at a moderate tempo; hence, the
legato programming mode and the T120 tempo.
The T120 command is unnecessary, since this is
the default tempo. If the tempo command is not in
cluded, the speed will still be the same. The main
melody lines are committed to a FOR-NEXT loop
in lines 20 and 80, respectively. By now you have
probably noticed a "rhythm" (pardon the pun) to
my musical programs, in that there is an exit from
the loop during the second cycle, which enters the
bridge lines found in program lines 90 through 120.
The outro is a repeat of the main melody lines and
begins at line 130. Lines 130 through 150 are copies
of lines 30 through 50 at the beginning of the pro
gram. Line 160 gives the final outro notes.

10 REM "JEAN" (BY ROD MCKUEN)
20 FDR X = 1 TO 2
30 PLAY "MF ML T120 02F2.03C2.D4.C802B-
403C2.P2MN02F8F8"
40 PLAY "ML02F4.D8F4D4C2C2A803C8D2Ca02A
803C202AaF8"

50 PLAY "02G4F4.D8F2.P4P868A8F8P64F8P64
11

60 IF X = 2 THEN 90
70 PLAY "MLF4P64F2P64F2.PI"
80 NEXT X

90 PLAY "ML02e2F8G8F2.F4P403MNF8FaML"
100 PLAY "ML03D2PA4D8E8F4E4.D8E2C4P64C2
MNF8F8MLD2P64D8E8F4E4D8"

110 PLAY "ML03E2C802A803C2E8F8D2P64D8E8
II

120 PLAY "ML03F4E2P4P8C8D8C802A-4G2F4P6
4"

130 PLAY "02F2.03C2.D4.C802B-403C2.P2MN
02F8F8"

140 PLAY "ML02F4.D8F4D4C2C2A803C8D2CB02
A803C202A8F8"

150 PLAY "02G4F4.D8F2.P4P8G8A8F8P64F8P6
4"

160 PLAY "ML02G2F8G8F2.F2"
170 END

Program 85. "Jean."

183

You will also notice that I have switched be
tween legato and normal modes of programming,
and have combined these transitions with P64
separation commands when it was not convenient
to exit the legato programming mode. The P64
separators are used only at program positions
where the short, extra bar duration cannot be prac
tically detected.

Program 86: Five Hundred Miles

"Five Himdred Miles" was a big hit for the folk
group, Peter, Paul and Mary, in the late sixties.
Construction-wise, this program is very similar to
many others which repeat the opening verse and
then move into a bridge and an outro. The same
pattern is used here as with similar programs and
includes an opening FOR-NEXT loop. You will
notice a separate PLAY line in program line 15.
This is the intro to the opening melody line and is
not repeated during the second repetition of the
loop. The opening is placed outside of the loop and

plays the two quarter notes that form the intro
before entering the loop. There is an intro to the
main melody line which is different from the first;
it begins the second playing, which is composed of
two quarter note Gs, foimd at the end of line 70.
When the loop repeats, line 60 branches to line 90,
which enters the bridge strains. In modem songs
you will often find a one-time intro to the main
melody. In these cases it is desirable to keep these
few notes outside of your major melody loop.

Program 87: Supercalifragiiisticexpialidocious

One of the major musical hits of the sbcties was
the movie Mary Poppins. One of the many musical
numbers performed in this movie was "Super-
califragilisticexpialidocious." This was termed a
comical, nonsense song and was quite popular
among children as well as adults.

Program 87 reproduces this song using staccato
mode programming throughout. The major verse

10 REM "FIVE HUNDRED MILES"
15 PLAY "MF ML TlOO 02D4G4"
20 FOR X = 1 TO 2
30 PLAY "02B4.P64B8A8G4.B2A4G4"
40 PLAY "02A4.B8A4G4E2.P64E8G8A4.B8A8G4

II

50 PLAY "E8D4.D8P64D8E8G8P64"
60 IF X = 2 THEN 90

70 PLAY "G1MNG4.G8G4G4ML"
80 NEXT X

90 PLAY "ML02G1MNG2G4G4.ML"
100 PLAY "ML02B2A8G4.B2A4G4A4.B8A4G4E2.
P64E8G8A8B4.A8G4."
110 PLAY "02E8D4.D8P64D8E8G8P64G1MNG4.G
86464"

120 PLAY "ML02B4.P64BaA4G4B4.P64B8A4G4A
4.B8A8G4."

130 PLAY "02E2-P64E868A8B4.A8G4.E8D4.D8
P64D8E8G8P64G162"
140 PLAY "P64MN02G4G403MLE4.D8C402B4A4.
G8E4Q4G1G2."

150 END

Program 86. "Five Hundred Miles."

184

10 REM "SUPERCALIFRAGILISTICEXPIALIDOCI

OUS"

20 FOR X = 1 TO 4

30 PLAY "MF MS T255 02L4EGGGAGGEGGAGG2F

2"

40 PLAY "02L4GGGGAGGDGGAGG2E2L4GGGGAGGG
11

50 PLAY "03L4CCDCC202A2L4A03C02BAL4Q3C0

2GGE"

60 IF X = 4 THEN 150

70 PLAY "02L4GG#AB03C2C4P4C]2G4L8GGGGGGG

4G8G8G4P4"

80 PLAY "G1G4L8GGGGG6G4G8G8G4"

90 PLAY "G2L4GEGGGAGGEGGAGF2.G4"

100 PLAY "G2L4GGGGAGGDGGAGE2-L4GGGGG"

110 PLAY "G2L4AGGGG2CCDCA2.A4"

120 PLAY "02L4AAAABAAAG3DCG2BA"

130 PLAY "G2G4P4F2"

140 NEXT X

150 PLAY "G2L4GG#ABG3C2C4":END

Program 87. "Supercalifragilisticexpialidocious."

is repeated four times before entering the outro sec
tion. Therefore the FOR-NEXT loop established
aroimd the melody line segment cycles four times
before an exit occurs in line 60, branching to line
150.

The staccato programming mode was ideal for
this song, as each note was to be short and chop
py. You will also notice that maximum machine
tempo (T255) is used to play the notes at the fastest
possible pace. Because of the staccato mode pro
gramming, each note is clearly defined. Legato
mode programming would be very difficult here,
since there are many sequences which repeat the
same note up to seven times. At these speeds a P64
separator would throw off the timing to a very
noticeable degree.

You may wish to slow the tempo; this will
probably be mandatory during the debugging pro
cedure. This piece should be executed very rapid
ly, so don't slow the final version too much. The
notes in this song span three octaves. You will see
designations in octave commands of 01 to 03. The

broad range of note frequencies makes this song
especially interesting when played at a rapid tem
po on the AT&T PC.

Program 88: Theme from Love Story

Americans fell in love with tragedy, based par
tially upon the hit movie Love Story, starring Ryan
O'Neil and Ali McGraw. The haunting theme from
this movie still endures and is still performed by
many orchestras.

Program 88 reproduces this song using fairly
slow tempo and a legato format. P64 separators are
used in conjunction with mode changes in music
normal for long sequences of identical notes. At the
slower tempo, the P64 separators and the measure
imbalance they cause are not only audibly
detectable.

After the main melody line is played through
twice, there is a branch to the bridge lines be
ginning at line 100. When the bridge is complete
(line 160), the main melody line is again entered,
and this carries through to the outro. Lines 170

185

10 REM "THEME FROM LOVE STORY"

20 FOR X = 1 TO 2

30 PLAY "MF ML TlOO 03C802E8P64E803C8P6

4C2C802E8"

40 PLAY "02P64E803C8P64C802E8F8E8MND8D8

D8B8MLB2B8"

50 PLAY "02D8P64D8B8P64B8D8E8D8MNC8C8C8

A8A2P8C8C8A8"

60 PLAY "MLA8C8D8C8MN01B8B8B802G#8MLG#2

G#4"

70 IF X = 2 THEN 100

80 PLAY "02A4B4F4E1E2.P4"

90 NEXT X

100 PLAY "02A4B4G#403C#1P4D4E402A4"

110 PLAY "ML03F2F802A803F802A8P64"

120 PLAY "02A8B8P64B4B8O3D8F8D8E2E802G8

03E802G8P64G8A8"

130 PLAY "02P64A4A803C8E8C8D2D802B803D8

02B803C4.D8"

140 PLAY "03E802A803C8E8F2F802G8A803C8"

150 PLAY "03P64C402B4B803C8D802F8E2E8P6

4E8F8G8"

160 PLAY "02B4A4A8P64A8G12F12E12D#2D#8F

#8A8F#8G#1G#1"

170 PLAY "MF ML TlOO 03C802E8P64E803C8P

64C2C802E8"

180 PLAY "02P64E803C8P64C802E8F8E8MND8D

8D8B8MLB2B8"

190 PLAY "02D8P64D8B8P64B8D8E8D8MNC8C8C

8A8A2P8C8C8A8"

200 PLAY "MLA8C8D8C8MN01B8B8B802G#8MLG#

2G#4"

210 PLAY "02A4B4G#4A1A1"

220 END

Program 88. "Theme from Love Story."

through 200 are repeats of lines 30 through 60. Line sounds of a mariachi band with the style of jazz
210 plays the notes which form the final outro. ensembles. They had many hit songs, one of which

was "Tijuana Taxi," produced by Program 89.
This is a very fast number and is played at T225

Program 89: Tijuana Taxi tempo. Most notes are played in staccato mode.
Herb Alpert and the Tijuana Brass were although there is an occasional change to legato

another hit instrumental group in the sixties and mode to create the needed slurs indicated in the
early seventies when vocal groups were usually musical manuscript. This is straight-line program-
considered king. Alpert's group combined the ming all the way. The music runs so rapidly that

186

10 REM "TIJUANA TAXI"

20 PLAY "MF MS T225 a2A803C4F4E4D8C4.02

B-2P8G8B-403E4D4C8G2B-4.A2"

30 PLAY "G2P8F8A403D4C402B-8A4.G2P8G8A4

G3C8C8C4P2"

40 PLAY "G2P4B-4A4G4MLF1F4MSP4P8A8G3C4"

50 PLAY "G3F4E4D8C4.G2B-2P8G8B-4G3E4D4C

8G2B-4."

AO PLAY "G2A2P8F8A4G3D4C4G2B-8A4.G2P8G8

A4G3C8C8C4P2"

70 PLAY "G2B-8B-8B-4P2A8A8A4P2G8G8G4P2F

8P8G1C8MLD8D8MSC8G0A4F4P4G3F8"

80 END

Program 89. "Tijuana Taxi."

you may wish to insert a FOR-NEXT loop begin- Program 90: Spanish Flea
ning at line 15, with the NEXT statement at line Another of Alpert's big hits (possibly his big-
75. If the loop counts from 1 to 2, then the entire gest) was "Spanish Flea," and is run on the AT&T
song will be played twice, but you can increase the PC using Program 90. This runs in music normal
upper end of the loop to play it through any number mode; there is an intro Une (line 20) which is
of times. Alternately, you can leave the program placed before the begiiming of the FOR-NEXT
as is, but replace the END statement in line 80 with loop, which contains the main melody information,
a "GOTO 20." This will form an endless loop, and The intro notes are played and the FOR-NEXT loop
the song will play continuously until manually is then entered. During the second go-round there
halted at the keyboard. is an exit at line 80, which branches to line 1000.

10 REM "SPANISH FLEA"

20 PLAY "MF MN T150 G2D8E-8E8F4G3D4D8C

4. "

30 FOR X = 1 TO 2

40 PLAY "G2B2P8G8G-8F8E4G3C4C8G2B-4."

50 PLAY "G2A2P8F8E8E-8D8F8B-8MLG8MNG8B-

8G3C4"

AO PLAY "G2F8A-803D-8G2MLB-8MNB-8G3D-8E

-4MLF1MNF4"

70 PLAY "G3MNF8F8G8F8D-8C8"

80 IF X = 2 THEN 1000

90 PLAY "G2MNB-4G3D4D8C4."

100 NEXT X

1000 PLAY "G2MNB-4F8F8P4F8F8P4F4P4F4P4F

8F8P4F8F8P4F4B-8"

1010 END

Program 90. "Spanish Fl^a."

187

This line contains the final outre information,

line contains the final outro information.

I slowed this piece quite a bit. The T150 tem
po should accurately reflect the playing of the
original version of the song. Other versions done
by different orchestras have been played at dif
ferent tempos, and depending on which version you
like, you may or may not wish to modify the tem
po command found in line 20.

Program 91: Cotton Candy

Another trumpet player who enjoyed popularity
to the mid-sixties was "Mr. Mardi Gras," A1 Hirt.
Whereas Herb Alpert brought a mariachi/jazz blend
to the American public, A1 Hirt gave us modified
Basin Street sounds. One of his hits was "Cotton

Candy," produced by Program 91. The song is run
in staccato mode at maximum machine tempo
(T255).

Musically the tempo may be classified as
prestissimo. This arrangement involves a number
of sharps; be careful you make note of each when

inputting the program to your machine. I have
used the standard musical sharp sjmibol throughout
these programs (#); you may also use a plus sign
(-I-) to indicate a sharp.

When debugging this program it might be best
to use a test tempo of 155, since there are so many
notes. Once you have debugged each line, you can
revert to the faster speed.

Program 92: Alley Cat

Most readers will remember the popular song
"Alley Cat," which was originally played as a solo
piano instrumental. The version in Program 92 is
a solo computer instrumental. This song moves
rapidly with a T220 tempo command. Music nor
mal mode is used throughout; the intro line (line 20)
lies outside of the main melody line. The latter is
contained in the FOR-NEXT loop between lines 30
and 80. Lines 100 and 110 form the musical bridge
between the intro melody and the outro melody,
which begins in line 120. Lines 120 and 130 are
identical to lines 40 and 50. Line 140 is the final

10 REM "COTTON CANDY"

20 FOR X = i TO 2

30 PLAY "MF MS T255 02G4PaG8G8E8G4A4P8F

8A403C4"

40 PLAY "02G4P8G8G8E8G4A4P8F8A8ASQ3C4"

50 PLAY "02G4G8E8G8E8G4A4P8A8B8A8B4A4P8

A8B8A8B4"

60 PLAY "0202A4G2.

70 NEXT X

80 PLAY "a2A4P8A8L8G#G#G#G#A4P8A8G#2A4P
8A8L8G#G#G#G#F#1"

90 PLAY "02A4P8A8L8G#G#G#G#A4P8A8G#2"

100 PLAY "02A4P8A8L8G#G#G#G#F#2.F#4G#1"

110 PLAY "02B4G#4G#4G#4"

120 PLAY "03C1C402F8F8A8A803C402B4E8E8G

8GSB4"

130 PLAY "02A4D8E8F8G8A8BS03C2."

140 END

Program 91. "Cotton Candy."

188

10 REM "ALLEY CAT"

20 PLAY "MF MN T220 02D#8E12G12A12"

30 FOR X = 1 TO 2

40 PLAY "03L4C02BAA-GG#AP4G8GaG#4A4A#4B

2.P4"

50 PLAY "03C402B4A4A-4G4G#4A4P4G868G#4A

4B4"

60 IF X = 2 THEN 90

70 PLAY "03C2P802D#8E12G12A12"

80 NEXT X

90 PLAY "03C2P4C4D4D202C#4D2.03C4"

100 PLAY "03D4D202C#4D2.03C4D4D202C#4D2
II

110 PLAY "03C4D4C402B4A4G4G-4F8D#8E12G1

2A12"

120 PLAY "03L4C02BAA-GG#AP4G8G8G#4A4A#4

B2.P4"

130 PLAY "03C402B4A4A-4G4G#4A4P4G8G8G#4

A4B4"

140 PLAY "03C2P402E8C8D8D8P4D#8D#aP4E4G

4B4.A803E4C802A803E-4D4C2"

150 END

Program 92. "Alley Cat."

outro. You may also wish to run this program in
staccato mode. It will be completely different from
the original version, but at this speed it becomes
a very novel arrangement. You can also convert to
legato mode programming, but it will be necessary
to insert some P64 separators or switch to the music
normal mode for identical note progressions.

I originally used a much lower speed with this
program. The original song was played moderato;
this was not too pleasing to the ear in the computer
version, so I increased the speed by 50 percent.

Program 93: It Was a Very Good Year

Frank Sinatra fans, take heart! Program 93 will
play "It Was A Very Good Year," a big hit in the
late sixties. This song followed Frank Sinatra's hit,
"That's Life," by one year.

The program runs in legato mode, although
there are numerous changes to music normal mode

to accommodate the note spacing. The tempo
chosen is faster than the version Sinatra sang, but

this produces the most pleasing output from the
computer.

The main melody line is in two nearly identical
parts. The second portion is nearly a repeat of the
first, but there are subtle differences. I originally
thought I could use a FOR-NEXT loop that would
coimt from 1 to 4; because of the differences in the
second portion of the first melody line, I had to
straight-line program the entire sequence. When
these two similar melodies are coupled together,
they are contained within a FOR-NEXT loop which
coimts from 1 to 2. This takes you from age 17 to
the "Autumn of My Life." The exit line (IF-THEN
statements) is at 190. This causes a branch to the
final outro line in 220. Some readers may wish to
slow the tempo marginally to 90 or 100.1 feel the
default tempo of T120 produces the best musical
effect.

189

10 REM "IT WAS A VERY GOOD YEAR"

20 PLAY "MF ML 1120 01Ba02C#8D#8"

30 FOR X = 1 TO 2

40 PLAY "02E4B4P64B2B2P8G8A8B8"

50 PLAY "02MNASA8F4MLF2F2PaF8G8F8"

60 PLAY "02MNE8E8B4MLB4.03C#8D402B4"

70 PLAY "02P64B4.03D802B4MNA8A8MLA2A2"

80 PLAY "03P4C402B4MNG#8G#8MLG#2G#2.MNB

8B8"

90 PLAY "02MLA4F#4P64F#2F#2P8F#8G#aA8G#

4E4P64E2E2"

100 PLAY "02MLF#4E8F#801B4P402F#4E8F#8G

8F#8E4F#4"

110 PLAY "02MLE8F#8D4P64D4D#2PS01B802C#

8048"

120 PLAY "02E4B4P64B2B2P8G8A8Ba"

130 PLAY "02MNA8A8F4MLF2F2P8F8G8F8"

140 PLAY "02MNEaEaB4MLB4.03C#8D402B4"

150 PLAY "02P64B4.03D802B4MNA8AaMLA2A2"

160 PLAY "03P4C402B4MNG#aG#aMLG#2G#2.MN

B8B8"

170 PLAY "02MLA4F#4P64F#2F#2PaF#aG#aA8G

#4E4P64E2E2"

180 PLAY "02MLF#4EaF#a01B4P402F#4EBF#8G

8F#aE4F#4"

190 IF X = 2 THEN 220

200 PLAY "02MLE8F#aD4P64D4D#2Pa01Ba02C#

aD#a"

210 NEXT X

220 PLAY "02MLE8F#aD4P64D4D#l"

230 END

Program 93. "It Was A Very Good Year."

Program 94: 1 Left My Heart in San Francisco

While Frank Sinatra may rate first as the most
popular male vocalist of all time, Tony Bennett has
to rate a close second—and to many might even end
up tied for first.

Program 94 produces one of his biggest hits,
"I Left My Heart in San Francisco."

The program is a shortened version of the song,
since it only plays through one complete chorus.
This is an unusually simple program and uses
straight-line techniques throughout, with no FOR-

NEXT loops. I was able to slow the tempo to TlOO,
which closely matches the tempo in the original
song. I was not delighted with the musical
manuscript used to program this song, so the bet
ter musicians among my readers may want to "dot
a few eighths" to match the original version more
closely.

You may perhaps use music normal mode, but
the legato programming mode used is the most
pleasing. At no point was it necessary to switch to
music normal mode, as P64 statements were used

190

10 REM "I LEFT MY HEART IN SAN FRANCISC

0"

20 PLAY "MF ML TlOO Q2D4E-4G4F1F4G4A4B-

4"

30 PLAY "02G4C2.C4P64C401B402C4G1G4B-4A

4.F8D1D8P8D4E-4E4"

40 PLAY "02F8E-8D8E-8F2F2.G4"

50 PLAY "02A8G8FaG8A2A4P64A4G#4.A8B-1B-

4"

60 PLAY "03C402A4.CaF2.G8F8E-4D4E-4G4Fl

F4G4A4B-~4"

70 PLAY "02G4C2.C4P64C401B402C4A1A4P64A

4B-403C4"

80 PLAY "03D1D8P64D4C#4D4E-2.D402B203C4

D4C402G2,G8"

90 PLAY "02P8G4F#4G403E-2.02G403D2P64D2

02B-1B-2."

100 END

Program 94. "I Left My Heart in San Pranclsco."

only sparingly as identical note separators. Legato programming is used throughout to ac
curately reproduce the solemn strains. I elected to

Program 95: America the Beautiful go ^ith the default tempo (T120), which is
I came across a pleasing arrangement of automatically activated because there is no tempo

"America the Beautiful" in a music manuscript command included in any of the eight program
book written in 1937. lines. The moderate tempo allows me to use the

Program 95 reflects the most pleasing parts of P64 commands without any noticeable effects
this manuscript. detrimental to the timing of this piece.

10 REM "AMERICA THE BEAUTIFUL"

20 PLAY "ML 02G4P64G4.E8P64E4G4P64G4.D8

P64D4E4"

30 PLAY "F4G4A4B4G2.P64G4P64G4.E8P64E4G

4P64G4."

40 PLAY "D8P64D403D4C#4D4E402A403D2.02G

4Q3E4.PA4"

50 PLAY "E8D4C4P64C4.02B8P64B403C4D402B

4A4G4G3C2."

AO PLAY "PA4C4PA4C4.02A8PA4A403C4PA4C4.

Q2G8PA4G4"

70 PLAY "PA4G4A403C402G403D4C2."

80 END

Program 95. "America the Beautiful."

191

Like the previous program, this is a one-verse Janis Joplin. She sang it blues rock-style, but the
version. You can play all the verses by using FOR- version shown here is more like the original as sung
NEXT statements in new lines 15 and 75, if desired, by Kris Kristofferson. Unfortunately, songs by this
This song is often performed at a faster tempo; writer do not play very well on the AT&T PC,
however the default tempo in this program closely mainly because they entail many sequentially-run
matches the speed of the 1937 arrangement. This identical notes. His songs depend on the phrasing
was a very basic manuscript, and you may wish to of the artist rather than the manuscript notes
use this program as a starting point for a more themselves. To overcome some of the difficulties
modem version. This gives much leeway to the in programming this song, I speeded the tempo con-
musicians among you who might like to add grace siderably using a T200 command. Because there
notes and other refinements. are long series of identical quarter notes, I was able

to use large numbers of P64 rest separators, even
ly spaced, which has the effect of stretching the en-

Program 96: Me and Bobby McGee ^jj-g song fairly evenly. In most instances these
Modem composer and singer Kris Kristoffer- separators would completely destroy a song at this

son enjoyed one of his biggest hits with "Me and tempo. It would probably be simpler to use the
Bobby McGee," shown in Program 96. The most music normal mode and switch to legato during dif-
popular version was probably performed by the late ferent portions of the song that required this mode.

10 REM "ME AND BOBBY MCGEE"

20 PLAY "MFLT20002G4P64G4P64G4P64G4P64G

4F4E2G4P64G4P64"

30 PLAY "G4F4E2.P4E4G4PA4G4E4F4E4D4C4D1

D1P4F8E8F4E4F4E4D4D4"

40 PLAY "P4F8E8F4E4D1P4F8E8F4P64F4E4D4C

4D4E1E2.P4G4P64G4"

50 PLAY "P64G4P64G4P64G4F4E4F4G4P64G4P6

4G4P64G4F4E4P64E4"

60 PLAY "F4G4P64G4P64G4A4B-4P64B~4G4E4F

1 F4P4A4B403C:4P64 "

70 PLAY "C4P64C4P64C4P64C4G2B4A4F4G4F4E

4F4G4E4F4E4D4P64"

80 PLAY "D4P64D4E4F4D4C401B402C1P2.03CS

P64C8P64C4P64C4P64"

90 PLAY "C402B4A4P64A4G4F4E4F4GlP4FaP64

F8P64F4P64F4E4D4C4D4E1E4"

100 PLAY "P2.03CaP64C8P64C4P64C4P64C402

B4A4F4P4G8F8E4F4G1"

110 PLAY "P8D8P64D8P64D8P64D4E4F4D4P64D

4P64D4Q1B1B2P2P4"

120 PLAY "02F8P64FaP64F4E4D4,P64DSP64D8

C401B802C1C4"

130 END

Program 96. "Me and Bobby McGee."

192

10 REM "NIGHT TRAIN"

20 PLAY"MF ML T170 03E1P64E2L32E-FEDCQ2B

B-AP803CaE8D8C802B-aG8F8E-8DaD1"

30 PLAY"03E-1P64E-2L32FEDCO2BB~AG0-P8O3C

8E8D8C8G2B--SG8F8E-8D8D1"

40 PLAY"03E-1P64E-2L32FEDC02BB~AGG-P803C
8E8D8C802B-8G8F8E-8D8D1"

50 PLAY"P802G803MNC8.C16E-8.E-16C8.C1602

A8.G16"

60 PLAY"G3CS.C16E-8.E16C8.C16G2A8.G16"

70 PLAY"G3C8MLC4.C2P64C4.P64C8C4P8"

80 PLAY"G2G8G3MN CB.C16E-8.E-16C8.C16G2A

8.G16"

90 PLAY"03C8.C16E-8.E-16r8.C16G2A8.G16G3

C8MLC4.C2P64C4."

100 PLAY"P64C8C4P8G2G8G3MNCa.C16E-B.E-16

C8.C16G2AB.G16"

110 PLAY"G3CB.C16E~8.E-16CB.C16G2A8.G160

3MNCBMLC4.C2"

120 PLAY"G3E1P64E2L32E-FEDCG2BB-APBG3CBE
BDBC8G2B~8G8FBE-BD8D1"

130 PLAY"G3E-lP64E-2L32FEDCG2BB-AGG-PaG3
C8E8D8C8G2B-BG8FBE-8D8D1"

140 PLAY"G3E-1P64E-2L32FEDCG2BB-AGG-P8G3

CBE8D8C802B-8G8B-BB803MLCBC1."

Program 97. "Night Train."

10 REM "CAST YOUR FATE TO THE WIND"

20 PLAY"ML 02 EB03E4C802GBG4PB01A802A4F8

C8C4PBEB"

30 PLAY"03E4CB02GBP64G4B-BFBD2."

40 PLAY"P8E803E4CB0268G401A8P64A802A4F8C

8"

50 PLAY"C801A802C8F8D4F8D8D4E8G8F2D8P64D

4. "

60 PLAY"G2D8P64D4.F2D8P64D4.G2D8P64D4E80

3E4C802G8G4P801A802A4"

70 PLAY"F8C8C4P8E803E4C802G8P64G4B-8F8D2

.P8E803E4C802G8G4P801A802A4F8C8C8"

80 PLAY"01A802C8F8D4F8D8E8P64E8G8E8F2,"

90 END

Program 98. "Cast Your Fate To The Wind."

193

10 REM "AVE MARIA" BY FRANZ SCHUBERT

20 PLAY"MF ML T70 02 F2,F4.E4F8A2.A4.G4.

F2.F2.04.G8AaG8F4E8"

30 PLAY"02D4E8F2.F4.A4.P64A4.A8G8F8E4D8A

4B8"

40 PLAY"A2.G#4.E4.G4.G4F8E8G8A8B-8G8E8F2
.F4. "

50 PLAY"A4G8G4.G4E8DSF#aA803C802A8F#8"
60 PLAY"02G2.P8D8E8F8A32F32E8D8C2.C4.P64

C4.G4,G4P64G8P64G4F#8"

70 PLAY"G4A8G4A8F4.F4.P64F4.G4.G4P64G8P6

4G8F#8G8B-8A8G8F2."

80 PLAY"F4.P64F4.G4.G4P64G8A4P64A8P64A8G

SA803C4.02B-4.B-4.D4.A4.G4.F8E8"

90 PLAY"02F8A-8G8F8G2.G2.F2.F4.E4F8A2.A4

.G4.F2.F2.P64F4.P64F8A8G3C8F2."

100 END

Program 99. "Ave Maria."

Music programs are probably among the
easiest to write in GWBASIC after you get the hang
of it. So far in this chapter, I have presented many
different music programs, some of which use FOR-
NEXT loops to repeat musical phrases and others
which are just straight note-by-note programming.
For those readers who are interested in music pro
grams simply because of how they sound, I have
included three music program listings (Programs
97,98, and 99) to complete this chapter. These are
just rehashes of the previous programs, although

each represents a new computer tune.

SUMMARY

While the music programs presented in this
chapter are discrete programs, these examples will
often be incorporated into other programs to add
a bit of flair. Just as graphics can enhance almost
all text mode programs, sound can do likewise.
When a program incorporates text, graphics, and
soimd, perhaps this is an example of using all of
the potential of the PC-6300 to best advantage.

194

Index

Index

Advanced File Reading program,
152

"Alley" Cat program, 188
Alpert, Herb, 186
Alphabetizing program, 74
"America the Beautiful" program,

191

AND operator, 33
Animated Cigarette program, 89
Animation, 52, 87
Annuity Calculation program, 63
Another Cursor Movement Program,
119

Another File Writing Program, 153
Apple computers

Lisa, 2
Macintosh, 2

Array, 35
Multi-dimensional, 37
Numeric, 36
Single-dimensional, 37
String, 36

Aspect ratio (CIRCLE statement), 86
Assignment, 23
Association, The, 175
AT&T 38 computers, 2
AT&T PC Interface, 2
Automatic RANDOMIZE Seed
Number program, 123

"Ave Maria" program, 194

B

Bach, Johann Sebastian, 162, 166
BACKGROUND designator (COL
OR statement), 43

Backward Screen program, 67
BASIC

Commands, 10
Compiled, ICQ
Development of, 7
Dialects, 7
Direct mode, 10
Line numbering, 8
Microsoft, 2
Multiple-statement lines, 33
Program mode, 10

BEEP statement, 70
Bennett, Tony, 190
BLOAD command, 97
Block Diagram program, 106
"Blue Skies" program, 162
"Blues in F" program 179
BREAK key, 11
Bridge Rectifier Schematic program,
106

Card Shuffler program, 145

"Cast Your Fate to the Wind" pro
gram, 193

Celsius to Fahrenheit program, 61
CHR$ function, 68, 125
CINT function, 29
CIRCLE statement, 40
Aspect ratio, 86

Clooney, Rosemary, 172
CLOSE statement, 151
CLS statement, 9
Coin flip, simulated, 27
COLOR statement, 42
BACKGROUND designator, 43
PALETTE designator, 43

Compiler, 100
Complete Filing Program, 154
Computerized Bingo Caller pro
gram, 131

Concatenation (string operation), 19
Coordinates

Absolute, 42
Relative, 42
Screen, 39

Cornucopia program, 82
"Cotton Candy" program, 188
Countdown Timer program, 66
CTRL key, 11

Dartmouth College, 7

197

DATA statement, 24
Dice roll, simulated, 28
DIM statement, 35
Diode Array program, 105
Draw Poker program, 148
DRAW statement, 50
Angle (A) designator, 51, 105
Blank move (BM) designator, 51
Scale (8) designator, 51
Scale factor, 100

EDIT command, 14
Electronic Graph program, 102
END statement, 12
Enlarged Lettering program, 95
EOF function, 152
Error message, 8
"Everything Is Beautiful" program,
176

Expanding Globe program, 78

Fahrenheit to Celsius program, 60
Feet to Inches Conversion program,
58

File Append program, 153
File Item Search program, 156
File Reading program, 151
File Writing program, 152
"Five Hundred Miles" program, 184
Flag, 21
FOR-NEXT statement, 13
Decrementing, 15
Negative Index, 15
Non-Integer Index, 15

Function, 25
Arguments of, 56

Funnel program, 81
Future Computing, 2

GET statement, 52
"Go Tell Aunt Rhodle" program,
163

GOSUB statement, 32
GOTO statement, 10, 11
Grace note, 170
Graphics

High-resolution, 38
Medium-resolution, 38
Proprietary, 38
Utilify programs, 90

Graphics Animation Demo program,
87

Graphics Drawing Board program,
119

GWBASIC, 2

HIrt, Al, 188

"How Gentle Is the Rain" program,
166

I

"I Left My Heart In San Francisco"
program, 190

IF-THEN statement, 12
Improved Improved Lettering pro
gram, 98

Improved Lettering program, 97
Inches to Feet program, 59
Information Systems Architecture
(AT&T), 1

INKEY$ variable, 64
INPUT statement, 64
Embedded prompt, 21
With comma, 21
With semicolon, 21

INPUT# statement, 151
INT function, 26
Intel 8086, 2
Interlace program, 101
"Intrata" program, 168
"It Was a Very Good Year" pro
gram, 189

Item Portion File Search program,
157

"Jean" program, 183
"Jingle Bells" program, 163
Joplln, Janis, 192

Kaye, Danny, 162
KEY display, 10
KEY OFF statement, 58
Keyboard
BREAK key, 11
CTRL key, 11
Cursor control keys, 9
DEL key, 9
INS key, 9

Keyboard Cursor Control program,
116

Keyword, 23
"King of the Road" program, 180
Kristofferson, Kris, 192

Leap Year Calculation program, 65
LEFT$ function, 29
LEN function, 25
LET statement. Implied, 13
LEXIS, 2
Line number, 8
LINE statement, 41
Box (B) designator, 46
Box fill (BF) designator, 46

LIST command, 10

LOCATE statement, 31
Screen coordinates, 31

Logical operator, 28
Loop, 10, 11
FOR-NEXT, 13
Infinite, 11
Musical FOR-NEXT, 11
Nested, 165
Time delay, 43
Use of flat, 21

Love Story, 185
LPRINT statement, 69

M

Marshall, Charles, 1
"Mary Had A Little Lamb" program,
162

Mary Poppins, 184
Math Drill program, 125
Maximum Loan Affordable program,
62

McGraw, All, 185
McKuen, Rod, 183
"Me and Bobby McGee" program,
192

Mead Data Central, 2
MID$ function, 30
Miller, Roger, 180
"Minuet" program, 169
Minuet, definition of, 169
Mirror Image program, 91
Monitor

Monochrome, 38
RGB, 38

Mortgage Payment program, 61
MS-DOS, 2
Murray, Anne, 176

N

Nelson, Willie, 162
NEW command, 13
NEXIS, 2
"Night Train" program, 193
Null string, 18
Numbers Draw Poker program, 142
Numbers Guessing Game program,
127

O'Nell, Ryan, 185
Olivetti Personal Computer, 3
ON ERROR GOTO statement, 154
OPEN statement, 151
FOR APPEND modifier, 154
FOR INPUT modifier, 151
FOR OUTPUT modifier, 152

Operator
Logical, 28, 33
Relational, 34

OR operator, 33
Oscilloscope, 102

198

PAINT statement, 47
PALETTE designator (COLOR state

ment), 43
PC-6300

Announcement of, 1
Color capability, 5
Compared to other PCs, 2
Compatibility, 6

with AT&T 3B, 2
with IBM PC, 2

Components of, 3
Distribution of, 2
Features, 5
Graphics capability, 5
Graphics modes, 38
Microprocessor, 2
Models, 2
Portability, 5
Speed, 3, 5

Peter, Paul, and Mary, 184
PInwheel program, 80
PLAY statement, 160
Legato mode, 172
Octave (O) command, 160
Pause (P) designator, 161
Staccato mode, 172
Tempo (T) command, 161

POINT function, 40, 56
"Polonaise" program, 167
PRESET statement, 49
PRINT statement, 8, 16

With semicolon, 16
With variable, 13

Printer/Typewriter program, 69
PSET statement, 49
PUT statement, 52

Random Boxes program, 76
Random Partner Matcher program,
129

Random Word Maze Generator pro
gram, 124

RANDOMIZE statement, 26
READ statement, 24
REM statement, 58
RESTORE statement, 24
RETURN statement, 32
RIGHTS function, 29
RND function, 26
RUN command, 8

Saturn program, 84
Schematic Diagram program, 103
Scrambled Word Game program,
136

Screen Shrink program, 93
SIN function, 82
Sinatra, Frank, 189
Sinatra, Nancy, 180
Sing Along Christmas Song pro

gram, 172
Snowball Print program, 98
"Snowbird" program, 176
Solar System program, 85
"Somethin' Stupid" program, 180
SOUND statement, 67, 160
"Spanish Flea" program, 187
Spin the Bottle program, 133
STEP modifier (FOR-NEXT state

ment), 14
Stevens, Ray, 176
String, null, 18

"Supercallfraglllstlcexplalldoclous"
program, 184

Surfarls, 178

T

"Tempo dl minuetto" program 170
Text Animation Demo program, 87
"The Twelve Days of Christmas"

program, 171
"Theme from Love Star/' program,
185

Three-Dlmenslonal House program,
110

"Tijuana Taxi" program, 186
Time delay loop, 44
TIME$ function, 30
Traveling Box program, 78
Trill, 170
Trip Calculator program, 70

V

Variable, 12
Legal names for, 22
Numeric, 17
String, 17

"Vaya con DIos" program, 174
Vigilante, Frank, 2

W

White Christmas, 162
WIDTH statement, 69
"Windy" program, 175
"WIpeout" program, 178

X

XOR logical operator, 52

Zero, as number, 14

199

OTHER POPULAR TAB BOOKS OF INTEREST

The Computer Era—1985 Calendar Robotics and Artifi
cial Intelligence (No. 8031—$6.95)

Using and Programming the IBM PCjr®, including 77
Ready-to-Run Programs (No. 1830—$11-50 paper;
$16.95 hard)

Word Processing with Your ADAM^" (No. 1766—$9.25
paper; $15.95 hard)

The First Book of the IBM PCjr® (No. 1760—$9.95 paper;
$14.95 hard)

Going On-Line with Your Micro (No. 1746—$12.50 paper;
$17.95 hard)

Mastering Multiplan™ (No. 1743—$11.50 paper; $16.95
hard)

The Master Handbook of High-Levei Microcomputer Lan
guages (No. 1733—$15.50 paper; $21.95 hard)

Appie Logo for Kids (No. 1728—$11.50 paper; $16.95
hard)

Fundamentais of TI-99/4A Assembly Language (No.
1722—$11.50 paper; $16.95 hard)

The First Book of ADAM™ the Computer (No. 1720—$9.25
paper; $14.95 hard)

BASIC Basic Programs for the ADAM™ (No. 1716—$8.25
paper; $12.95 hard)

101 Programming Surprises & Tricks for Your Appie
ll®///®e Computer (No. 1711—$11.50 paper)

Personal Money Management with Your Micro (No.
1709—$13.50 paper; $18.95 hard)

Computer Programs for the Kitchen (No. 1707—$13.50
paper; $18.95 hard)

Using and Programming the VIC-20® including Ready-
to-Run Programs (No. 1702—$10.25 paper; $15.95
hard)

25 Games for Your TRS-8Q™ Modei 100 (No. 1698—
$10.25 paper; $15.95 hard)

Apple® Lisa™: A User-Friendly Handbook (No. 1691—
$16.95 paper; $24.95 hard)

TRS-80 Model 100—A User's Guide (No. 1651—$15.50
paper; $21.95 hard)

How To Create Your Own Computer Builetin Board (No.
1633—$12.95 paper; $19.95 hard)

Using and Programming the Macintesh™, with 32
Ready-to-Run Programs (No. 1840—$12.50 paper;
$16.95 hard)

Programming with dBASE II® (No. 1776—$16.50 paper
$26.95 hard)

Making CP/M-80® Work for You (No. 1764—$9.25 paper
$16.95 hard)

Lotus 1-2-3™ Simplified (No. 1748—$10.25 paper
$15.95 hard)

The Last Word on the TI-99/4A (No. 1745—$11.50 paper
$16.95 hard)

101 Programming Surprises & Tricks for Your TRS-80™
Computer (No. 1741—$11.50 paper)

101 Programming Surprises & Tricks for Your ATARI®
Computer (No. 1731—$11.50 paper)

How to Document Your Software (No. 1724—$13.50
paper; $19.95 hard)

101 Programming Surprises & Tricks for Your Appie
ll®///®e Computer (No. 1721—$11.50 paper)

Scuttie the Computer Pirates: Software Pretection
Schemes (No. 1718—$15.50 paper; $21.95 hard)

Using t Programming the Commodore 84, including
Ready-to-Run Programs (No. 1712—$9.25 paper;
$13.95 hard)

Fundamentais of IBM PC® Assembly Language (No.
1710—$15.50 paper; $19.95 hard)

A Kid's First Book to the Timex/Sinclair 2088 (No.
1708—$9.95 paper; $15.95 hard)

Using and Programming the ADAM™, inciuding Ready-
to-Run Programs (No. 1706—$7.95 paper; $14.95
hard)

MicroProgrammer's Market 1984 (No. 1700—$13.50
paper; $18.95 hard)

Beginner's Guide to Microprocessors—^2nd Edition (No.
1695—$9.95 paper; $14.95 hard)

The Complete Guide to Satellite TV (No. 1685—$11.50
paper; $17.95 hard)

Commodore 84 Graphics and Sound Programming (No.
1640—$15.50 paper; $21.95 hard)

TAB TAB BOOKS Inc.
Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

