

/mm^ AdLib
Personal Computer Music System

© 1987 Ad Libinc

Music

Synthesizer Card
ftDgrammer* s
Manual

Copyright

This manual is protected by the copyright laws and
therefore may not be reproduced in whole or in part,
whether for sale or not, without written consent from
Ad Lib Inc. Under the copyright laws, copying
includes translation into another language or format.

The Ad Lib Sound Driver is protected by the copyright
laws. It may not be reproduced for other than
personal use without prior written authorization from
Ad Lib Inc.

The purchaser may use the program on any computer
in his or her posession, but on only one computer at a
time. It is possible, however, to purchase a multi-user
licence authorizing the purchaser to use the program
on several computers in his or her posession,
including a shared disk system.

It is also possible to obtain, for a nominal fee, a
licence for the use of the Ad Lib Sound Driver in third

party software products. However, Ad Lib Inc.
reserves the right to accept or reject any application
with or without cause.

Ad Lib Personal Computer Music System, Ad Lib
Music Synthesizer Card, Ad Lib Instrument Maker and
Ad Lib Visual Composer are trademarks of Ad Lib Inc.

Technical Support

Limited Warranty

Ad Lib Inc. warrants the products that it manufactures
to be free of any defects in materials and
workmanship for a period of ninety (90) days from the
date of purchase. This warranty is limited to the
original purchaser of the product and is not
transferable.

Ad Lib inc. will refund, repair or replace, at its option,
any media or documentation at no additional charge, if
found defective. The purchaser is responsible for
returning the product, and must provide a dated proof-
of-purchase.

Each program is sold "as is", and Ad Lib Inc. will not
be held responsible in any way whatsoever for direct
or indirect damages of any nature resulting from the
use of the program.

The purchaser has, however, the right to the legal
warranty when and to the extent that it is applicable,
notwithstanding any limitation or exclusion.

Ad Lib Inc. is firmly committed to providing the highest
level of customer service and product support. If you
experience any difficulties when using our product, or
if it fails to operate as described, we suggest you first
consult the User Guide, and then, if you are still in
need of assistance, contact your de^er or call our
Technical Support Department: (418) 529-6252.

Notice

Ad Lib Inc. reserves the right to make changes or
improvements in the products described in this
manual at any time and without notice.

Table of Contents

Introduction 5

Description of the Synthesizer 7

A Fundamental Part of the Synthesizer: the Operator 7

The Methods of Synthesis 8

The Types of Sounds 9

The Parameters 10

Envelope Generator Parameters 11

Attack Rate 11

Decay Rate 11

Sustain Level 12

Release Rate 12

Sustaining Sound 12

Envelope Scaling 12

Oscillator Parameters 13

Frequency Multiplier 13

Pitch Vibrato 13

Modulation Feedback 13

Level Controller Parameters 13

Output Level 13

Level Scaling 14

imrn^ Amplitude Vibrato 14

Table of Contents

Programming the Sound Driver 15

Description of the Ad Lib Sound Driver 15

The Active Voice 16

Note Data 17

Timbre Data 19

Attack Rate (AR) 19

Decay Rate (DR) 19

Sustain Level (SL) 19

Release Rate (RR) 20

Sustaining Sound (SS) 20

Envelope Scaling (KSR) 20

Multiple (MULTI) 20

Frequency Vibrato (VIB) 21

FeedBack (FB) 21

Output Level (OL) 21

Key Scale Level (KSL) 22

Amplitude Vibrato (AM) 22

Frequency Modulation/Additive (FM) 22

Functions Reference 22

Function 0 : Initialize the Sound Driver and the ALMSC 24

Function 2 : Set relative time start 24

Function 3 : Set state of ALMSC 24

Function 4 : Get state of ALMSC 25

Function 5 : Flush all Sound Driver queues 25

(mms

Table of Contents

Function 6 : Set mode of ALMSC 25

imm. Function 7 : Get mode of ALMSC 26

Function 8 : Set relative volume 26
fwrn,

Function 9 : Set tempo 26

Function 10: Set keyboard transpose 27

Function 11: Get keyboard transpose 27

Function 12: Set active voice 27
irnrn^

Function 13: Get active voice 28

Function 14: Play note with delay 28

Function 15: Play note without delay 28

Function 16: Set voice timbre parameters 29

Function 17: Set pitch 29

Function 18: Set ticks per beat 29

Function 19: Direct note on 30

Function 20: Direct note off 30

Function 21: Direct set timbre parameters 31

r' Programming Guidelines 33

- General Strategy for Playing Short Melodies 33

General Strategy for Playing Long Melodies 34

Other Types of Programs 35

(mm,

Table of Contents

/mm,

/WPy

Programming the Synthesizer 37

The Ad Lib Music Synthesizer Card 37

Operators 38

Additive Synthesis 39

FM Synthesis 39

Composite Since Wave Synthesis 39

ALMSC Input / Output Map 40

Registers Reference 41

Test Register 41

Timers 42

CSM/Keyboard Split 42 ,*i^

AMA^IB/EG-TYP/KSR/Multiple 44

KSL/Total Level 46
(■ A

ADSR 47

BLOCK/F-Number 47

FeedBaok/Conneotion 48

Rhythm/AM DepA/IB Dep 49
r 1

Wave Select 49

Appendices 51

Appendix A: Basic Example and Interface 51

Appendix B: C Language Example and Interface 57

Appendix C: File Structures 63

irnrn^

Introduction

This guide describes and explains the programming of the Ad
Lib Music Synthesizer Card as (ALMSG) well as the Ad Lib
Sound Driver which is provided with the Personal Computer
Music System.

The first section, "Description of the Synthesizer", briefly
explains the theory behind the two synthesis methods used
with the ALMSC and the role of parameters in the creation of a
sound.

The second section, "Programming the Sound Driver",
describes the necessary information for programming with the
driver program.

The third section, "Programming the Synthesizer Card",
explains the information necessary to address the card directly.

Finally, in appendices A and B, you will find an example of
interfaces to the sound driver written for Basic and C
languages. Since many programmers may wish to use data
files from the Ad Lib software with their own programs,
appendix C contains the file structures for instrument (.INS)
and composition (.ROL) files.

Description of the Synthesizer

This section provides a brief description of the basic principles
of sound synthesis and the different parameters which make up
a sound.

A Fundamentai Part of the Synthesizer: the Operator

Like most synthesizers, the Ad Lib Synthesizer is made up of
oscillators and envelope generators. An oscillator and a
generator are linked with a level controller to form what we call
an "operator".

OscHlafor —>
Envelope

—►
Level

Generator Controller

Components of an Operator

Refer to Section 3 for a more technical explanation of the
operators of the ALMSC. The Ad Lib Music Synthesizer Card
contains 18 operators which are generally grouped into pairs
in order to produce instrumental sounds.

fmm\

^esci1gtion_oMhe_S^nt|^^
The Methods of Synthesis

The Methods of Synthesis

The Ad Lib Music Synthesizer Card generates sounds by
using one of the two following methods:

• Frequency Modulation Synthesis

Additive Synthesis

On the ALMSG, both methods use a pair of operators to
produce sounds. In frequency modulation synthesis mode, the
output of the "Modulator" operator is used to modify the
frequency of the "Carrier" operator.

8

Operator W® 1
—>

Operaior —►
(Moduiator) {Carrier)

Frequency Modulation Synthesis

In additive synthesis mode, the outputs of the two operators are
combined: one of these operators produces the fundamental of
the desired frequency, the other produces a "harmonic", which
is an exact multiple of the fundamental. Additive synthesis with
2 operators produces mostly "organ-like" sounds. Most
programs will use frequency modulation synthesis as this
produces a wider variety of sounds

Description of the Synthesizer

The Methods of Synthesis

Operator W /

Operator

Additive Synthesis

The ALMSC produces either 9 melodic sounds or 6 melodic
sounds plus 5 percussion Instruments. For the 9 melodic
sounds the operators are grouped In pairs. For the percussion
group, the operators are arranged as follows:

• 6 melodic Instruments (12 operators)

• 1 Bass Drum (2 operators)

1 Snare Drum (1 operator)

• 1 Tom-Tom (1 operator)

1 Cymbal (1 operator)

• 1 Hl-Hat (1 operator)

9

Description of the Synthesizef

The Parameters

The Parameters

Timbre is the quality of tone which is unique to an instrument
and it is the timbre which allows us to recognize a particular
instrument when heard. The timbre of a sound produced by
the ALMSC is determined by the parameters of the three
components of the operators:

Envelope generator parameters

Oscillator parameters

Level controller parameters

Because electronic sound is produced in a manner different
from that of an acoustic instrument, the relationship between
some of the following parameters and the final sound heard
is difficult to explain in words. Experimentation is the best
way to get a feeling for how a particular parameter will affect
the final sound. (The Ad Lib Instrument Maker (TM) is a
quick and easy way to test these relationships.)

Envelope Generator Parameters

The "envelope" of a sound (see chart below) describes the
behaviour of a sound for its entire duration. Together, the
following parameters comprise the envelope.

10

Description of the Synthesizer

The Parameters

Attack Rate

All envelopes start at level zero and work their way
towards a maximum level at a speed determined by the
Attack Rate. The envelope can reach the maximum
level instantaneously or after a short delay, depending
on the value given to this parameter.

Attack Decay

Sustain

Release

Maximum Level

Sustain Level

Zero Level

-Attack Rate

Decay Rate
Release Rate

An Envelope

Decay Rate
After having reached the maximum level, the envelope
moves towards the Sustain Level at a speed determined
by the Decay Rate.

11

Description of the Synthesizer

The Parameters

Sustain Level

Once the envelope has reached the maximum level, It
immediately begins diminishing towards the Sustain
Level. The Sustain level can be either equal to or lower
than the maximum level depending on the value that
you have chosen for this parameter.

The envelope will remain on the Sustain Level only if
the Sustaining Sound \s in effect; if it is not in effect, the
envelope will immediately start releasing and the sound
will be in that case a short one. (See the description of
the Sustaining Sound parameter below.)

Release Rate

After having reached the sustain level, the envelope
starts heading towards level zero at a speed determined
by the Release Rate.

Sustaining Sound
The Sustaining Sound parameter enables you to obtain
a sound which is kept at the Sustain Levelior as long as
the note is held.

Envelope Scaling
With several musical instruments, the sound envelope
differs according to the pitch of the note. For example, a
high note on a piano is noticeably shorter than a low
note. When the Envelope Scaling is in effect, this
phenomenon will be reproduced.

12

Description of the Synthesizer

The Parameters

^ Oscillator Parameters

/flinty <

♦ Frequency Vibrato

Frequency Multiplier
The Frequency Multiplier enables you to modify the
oscillator frequency so that the sound played becomes a
multiple of the note's frequency. These multiples, the
harmonics, make the sound more "intricate".

The Frequency Vibrato automatically brings about a
slight fluctuation to the oscillator frequency. This is
sometimes referred to as Pitch Vibrato.

Modulation Feedback

The oscillator used in the modulator can itself be

modulated by feeding back the output signal into the
input. The Moduiation Feedback enables you to adjust
the modulation of this oscillator.

^ Level Controller Parameters

^ The following parameters deal with the overall output levels of
^ each operator.

^ • Output LgvoI
^ The Output Level enables you to adjust an operator's

maximal output level. When the two operators are used
in frequency modulation, the modulator output level

^ determines the intensity of the modulation of the carrier;
^ the carrier's output level changes the overall volume of a
^ sound.

13

Description of the Synthesizer

imm\

The Parameters

Level Scaling ^
The sound level and timbre of acoustic instruments
varies according to the pitch of the note. For example,
the lower notes of a piano sound louder than the higher
notes. Level Scaling allows you to reproduce this
phenomenon; increasing the value given to this
parameter decreases the loudness of the higher notes.
(Also called Key Scale Level.)

Amplitude Vibrato ^
The Amplitude Vibrato automatically brings about a ^
slight fluctuation to an operator's output level. ^

fmm,

14 ^

Programming the Sound Driver

This section provides a description of the Ad Lib Sound Driver
included with the Ad Lib Personal Computer Music System as
well as the information necessary to program the driver.

Description of the Ad Lib Sound Driver

The Ad Lib Sound Driver is a memory resident program (size =
12K •«- buffer size) used to control sound generation by the Ad
Lib Music Synthesizer Card (ALMSC). Your application
program communicates with the Sound Driver by using a
software interrupt. The Sound Driver analyses the requested
operation and sends the appropriate commands to the
ALMSC.

The Sound Driver operates as a background task. The
requested operations are stored in a queue and are performed
when appropriate. In this way, a complete song can be loaded
at once and will be played at the requested tempo while the
application program is performing other tasks.

When directly programming the Sound Driver, it is necessary to
specify the following aspects using a series of functions
described below:

• active voice

note data

timbre data

15

Programming the Sound Driver

Description of the Ad Lib Sound Driver

The Active Voice

Voice refers to a pair of operators. Active voice refers to the
voice currentiy being worked with. When entering notes or
interpretative data, it is always necessary to specify the active
voice.(ref. Function 12) There are 2 voice modes possible with
the ALMSC: meiodic mode and percussive mode. When the
card is set up in the Melodic mode there are 9 melodic voices
(numbered 0 through 8). In the Percussive mode, there are 6
melodic voices and 5 percussive voices. The following table
gives a cross reference for voices and their corresponding
operators:

Voice Operator number Percussion name

Meio. Perc. Melodic Percussive

0 0 1.4 1.4 meio 0

1 1 2,5 2,5 meio 1

2 2 3,6 3,6 meio 2

3 3 7, 10 7,10 meio 3

4 4 8, 11 8,11 meio 4

5 5 9, 12 9, 12 meio 5

6 6 13, 16 13, 16 Base Drum (BD)
7 7 14, 17 17 Snare Drum (SD)
a 8 15, 18 15 Tom-Tom (IT)

9 — 18 Top-Cymbai(CY)
/mm,

10 — 14 Hi-Hat (HH) (mm,

16

/wm^

^ Note Data

^ProgramminjLjhe^So^^
Description of the Ad Lib Sound Driver

Percussive sounds are created using voices operators 13
through 18. Although some percussion voices use only one
operator they are not totally independent. The card will always
recognize a pair of operators for a voice regardless of its mode.
Therefore, this means that a change to a percussive voice may
cause another voice to change aiso.

A note is composed of three elements: pitch, duration and the
delay before playing the next note.

The pitch of a note is designated by an integer between -48
and 47. The value 0 corresponds to the pitch of middle C on
the piano keyboard.

c -48 -36 -24 -12 0 12 24 36
imm, c# -47 -35 -23 -11 1 13 25 37

D -46 -34 -22 -10 2 14 26 38

D# -45 -33 -21 -9 3 15 27 39

E -44 -32 -20 -8 4 16 28 40

F -43 -31 -19 -7 5 17 29 41

F# -42 -30 -18 -6 6 18 30 42
r"

G -41 -29 -17 -5 7 19 31 43

G# -40 -28 -16 -4 8 20 32 44

A -39 -27 -15 -3 9 21 33 45
A# -38 -26 -14 -2 10 22 34 46

B -37 -25 -13 -1 11 23 35 47

17

Programming the Sound Driver

Description of the Ad Lib Sound Driver

The duration of a note is defined as two integers representing
the numerator and the denominator of a fraction of a beat. The
fraction 1/1 represents one beat, thus a quarter note. The
following table illustrates the integers corresponding to the
duration of the note.

Name Num. Den.

Whole note 4 1

Dotted half note 3 1

Half note 2 1

Dotted quarter note 3 2

Quarter note 1 1

Dotted eighth note 3 4

Eighth note 1 2

Dotted sixteenth 3 8

Sixteenth 1 4

The effective duration of a note depends on the duration of a
beat. The tempo is defined as the number of beats per minute
(ref. Function 9).

The third element of a note is the delay. This element is used to
schedule notes. When the Sound Driver begins playing a note,
it schedules the ending of the note after the specified duration.
The Sound Driver also schedules the beginning of the next note.
The delay element is used to determine how long after the start
of the current note will the next note start playing. This delay is
defined in the same format as the duration. Usually, the delay is
the same as the duration. If it is longer than the duration, there
will be a rest.

Rests can be expressed as notes of duration 0 with the desired
delay.

18

Programming the Sound Driver

Description of the Ad Lib Sound Driver

Since durations and delays are defined as fractions of a beat, it
is possible to speed up or slow down a song by simply
changing the tempo. The relative durations of the notes will be
preserved.

Timbre Data

In order to define how an instrument will sound we have to
send to the ALMSC an array of various parameters as
described below. (Refer to illustration on p. 11.)

^ • Attack Rate (AR) (array index = 3)
The Attack Rate determines the speed which the
envelope rises from level zero to its maximum level.
This value is from 0 to 15. A value of 1 generates a slow
rising envelope while 15 would be a fast rising
envelope.

• Decay Rate (DR) (array index = 6)
^ After having reached the maximum level, the envelope

moves towards the Sustain Level at a speed determined
by the Decay Rate (value = 0 to 15).

Sustain Level (SL) (array index = 4)
The Sustain Level can take values from 0 to 15 (from
maximum to zero level). Once the envelope has
reached the maximum level, it immediately begins
diminishing towards the Sustain Level. The Sustain
Level can be either equal to or lower than the maximum
level depending on the value that you have chosen for
this parameter.

19

Programming the Sound Driver

Description of the Ad Lib Sound Driver

The envelope will remain on the Sustain Level only if
the Sustaining Sound is in effect; if it not in effect, the
envelope will immediately start releasing and the sound
will be in that case a short one. (See the description of
the Sustaining Sound parameter below.)

Release Rate (RR) (array index = 7)
After having reached the sustain level, the envelope
starts heading towards level zero at a speed determined
by the Release Rate (RR = 0 to 15).

Sustaining Sound (SS) (array index = 5)
The SS parameter (1 = on, 0 = off) enables you to obtain
a sound which is kept at the sustain level for as long as
the note is held. With this parameter on, the sound
release occurs the moment the note is released (the
Key-Off event) whereupon the sound diminishes
according to the Release Rate.

Envelope Scaling (KSR) (array index = 11)
Sound envelopes of musical instruments differ
according to the pitch of the note. For example, a high
note on a piano is noticeably shorter than a low note.
When the KSR parameter is 1 (1 = on, 0 = off) this
phenomenon will automatically be reproduced.

Multiple (MULTI) (array index =1)
Multiplies the frequencies of the carrier and modulator
by the given factor in the following table.

20

Programming the Sound Driver

Description of the Ad Lib Sound Driver

MULTI Factor MULTI Factor

0 0.5 8 8

1 1 9 9

2 2 10 10

3 3 11 10

4 4 12 12

5 5 13 12

6 6 14 15

Frequency Vibrato (VIB) (array index = 10)
When this parameter is on (VIB = 1) the depth of the
oscillator's frequency fluctuation is set to 7 cents.
("Cents" is a measure of pitch difference. There are
1200 cents in an octave).

Feed Back (FB) (array index = 2)
Defines the multiplication factor used by the modulator
to feedback its output into its input. This parameter is not

^ used by the carrier operator.

^ FB 0 1 2 3 4 5 6 7
Modulation 0 tc/IB jc/8 7c/4 jc/2 n 2k 4k

• Output Level (OL) (array index = 8)
The Output Level enables you to adjust an operator's

m maximal output level. When the two operators are used
^ in frequency modulation, the modulator's output level
^ determines the intensity of the modulation of the carrier;
^ the carrier's output level changes the overall volume of a
^ sound.

Programming the Sound Driver

Description of the Ad Lib Sound Driver

The range varies from 0 to 63, with 0 being the maximum
and 63 the minimum. These values can be converted to
dB by multiplying them by 0.75dB.

Key Scale Level (KSL) (array index = 0)
The KSL, also called Level Scaling parameter, which
can take a value from 0 to 3, will reduce the output level
as the pitch of the sound rises. The corresponding rate
for the values 0 through 3 are OdB, 3dB, 1.5dB, and 6dB
per octave respectively.

Amplitude Vibrato (AM) (array index = 9)
The AM parameter, frequently called tremolo,
automatically brings about a slight fluctuation to an
operator's output level. The depth = 1dB when AM = 1
and 0 when AM = 0.

Frequency Modulation/Additive (FM) (array
index = 12)
This flag changes the synthesis method used by the
spcified voice, it is only valid for the modulator operator.
If FM=1 the method used will be Additive and Frequency
Modulation when 0.

Functions Reference

This section describes each ALMSC driver function in detail.
Refer to Appendices A and B for an example and the interface
written in Basic and C languages. Here is a list of functions by
function number:

22

(fm,

Programming the Sound Driver

Functions Reference

Number Function

0 Initialize Sound Driver and ALMSC.
2 Set relative time start.
3 Set state of ALMSC.
4 Get state of ALMSC.
5 Flush all Sound Driver queues.
6 Set mode of ALMSC.
7 Get mode of ALMSC.
8 Set relative volume.

9 Set tempo.
10 Set keyboard transpose.
11 Get keyboard transpose.
12 Set active voice.

13 Get active voice.

/MR^
14 Play note with delay.
15 Play note without delay.
16 Set voice timbre parameters.
17 Set pitch.
18 Set ticks per beat.

« 19 Direct note on.
1^ 20 Direct note off.
/PP\ 21 Direct set timbre parameters.

Each function description specifies the following data:

Input
If relevant, the parameters are listed in the order that
they must appear and their data type.

Output
If relevant, the type of parameter returned by the function

flm call is indicated.

1^
23

_Pro2raj2min2,Jhe_Soi^^
Functions Reference

Function 0: initialize the Sound Driver and the ALMSC

Input:
Output: ---

This function initializes the Sound driver and the ALMSC. The
relative volume is set to 100% for all voices and the pitch is reset
to 0. All voices are set in melodic mode with the appropriate
parameters to generate an electric piano. All software queues
are emptied and the tempo is set to 90 beats per minute.

Function 2: Set relative time start

Input: TimeNum, TimeDen: unsigned integer
Output: ™

All timing references use the variables TimeNum and TimeDen.
This function sets the time origin equal to the value of
TimeNum/TimeDen where TimeDen is not equal to zero. Future
uses of TimeNum and TimeDen will then act relative to this origin.

Function 3: Set state of ALMSC

State: integerInput:
Output:

This function is used to set up parameters in the queues before
starting to play the notes. When State = 1 the Sound Driver will
start its internal clock and begin to play the notes that are in
queue. A value of 0 will stop the clock and will suspend play.

NOTE: When sending parameters or actions to the Sound Driver make
sure you don't overflow the buffer before all events that will occur
at the start have been sent.

24

Programming the Sound Driver

- Functions Reference

^ Function 4: Get state of ALMSC

^ Input:
Output: State: boolean

^ Function 4 returns the state of the Sound Driver. If the value
^ returned is true (1) the Sound Driver Is still playing. However,
^ when the State Is false (0) either the song Is over or the Sound

Driver was stopped by Function 3.

Function 5: Fiush aii Sound Driver queues

Input:
Output: —

This command flushes all event queues In the Sound Driver
^ but stays active. The Sound Driver will silence all voices.

^ Function 6: Set mode of ALMSC

Input: PercusslonMode: Integer
Output: —

When PercusslonMode Is equal to 0, Function 6 will set the
ALMSC to melodic mode. A value of 1 will set the percussion
mode. (Refer to table on p. 18.)

This function will reset all relative volumes to 100%; change all
voices to a piano; and reset the pitch to normal (pitch = 0).
Note that the mode will affect the subsequent use of Function
12 (Set Active Voice).

25

Programming the Sound Driver

Functions Reference

Function 7: Get mode of ALMSC
ftm,

Input:
Output: PercussionMode: integer

Function 7 returns a value corresponding to the currnet mode
in which the ALMSC is set. A value of 0 indicates Melodic
mode or 1 for percussion mode.

Function 8: Set relative volume

Input: VolNum, VolDen, TimeNum, TimeDen: unsigned
integer

Output: Ok: boolean

Function 8 enables you to change the relative volume
(VolNumA/olDen) of the active voice at the specified time
(TimeNum/TimeDen). The relative volume must be a fraction
smaller than or equal to 1. Both denominators, VolNum and
TimeNum, must be different from 0. This function returns a
boolean value that indicates if the queue is full (Result = 0) or if
the operation was done successfully (Result = 1).
(VolDen = 1 to 255, VolNum = 0 to 255).

Function 9: Set tempo

Input: Tempo, TimeNum, TimeDen: unsigned integer
Output: Ok: boolean

Function 9 sets the specified Tempo at TimeNum/TimeDen. It
returns a boolean value of 1 if the operation was successful, if
not it returns a 0 to indicate that the queue is full.

imm,

immy

26

1^^

Programming the Sound Driver

Functions Reference

Function 10: Set keyboard transpose

Input: KeyTranspose: integer
Output: --

Function 10 wiii offset all notes by KeyTranspose which is
expressed as semitones. You can transpose your keyboard up
or down depending on the sign of KeyTranspose (negative =
down, positive = up). This Function is executed immediately, it
is a global parameter affecting all voices.

EffectiveNote = KeyTranspose + Note

Function 11: Get keyboard transpose

Input:
Output: KeyTranspose: integer

This function returns the value stored by the last Set Keyboard
Transpose call (Function 10).

Function 12: Set active voice

Input: ActVoice: unsigned integer
Output: —

Function 12 changes the active voice to ActVoice. The
ActVoice parameter can take values 0 through 8 for melodic
mode and 0 through 10 in percussion mode. This function
must be called before you start sending parameters to the
Sound Driver with functions that refer to ActVoice.

27

Programming the Sound Driver

Functions Reference

Function 13: Get active voice

Input:
Output: ActVoice: unsigned Integer

Function 13 returns the present active voice. This function
returns the value stored by the last Set Active Voice call
(Function 12).

Function 14: Piay note with delay

Input: Pitch: integer,
LengthNum, LengthDen: unsigned integer,
DelayNum, DelayDen: unsigned integer

Output: Ok: boolean

Function 14 will play the note Pitch of length
LengthNum/LengthDen and will set the delay until the next
note starts to DelayNum/DelayDen. The note will be played
when the previous note's delay has expired. This function
returns a 1 when the operation was done successfully and a 0
when the queue is full. (Pitch = -48 to +47, LengthDen = 1 to
255, DelayDen = 1 to 255.)

Function 15: Piay note without delay

Input: Pitch: integer,
LengthNum, LengthDen: unsigned integer

Output: Ok: boolean

This function is identical to Function 14 but with the delay being
equal to the length (LengthNum/LengthDen) of the note.
Function 15 returns 1 if successful; 0 if not. (Pitch = -48 to +47,
LengthDen = 1 to 255.)

28

Programming the Sound Driver

Functions Reference

^ Function 16: Set voice timbre parameters

Input: Timbre[26]: far pointer to an integer,
TImeNum, TimeDen: unsigned integer

Output; Ok: boolean

« Function 16 changes the timbre of the active voice at the
specified Time (TimeNum/TimeDen). Parameters for the timbre

^ are sent via a pointer to a 26 element array that must remain
^ valid until the actual data is sent (until Time has gone by).

^ Function 17: Set pitch

Input: DeltaOctave: integer must always be 0,
DeltaNum, DeltaDen: integer,
TimeNum, TimeDen: unsigned

Output: Ok: boolean

Function 17 will change the pitch in the range of -1 to +1
semitone. This change will occur at TimeNum/TimeDen.
Function 17 returns a 1 for a successful operation. Note that
DeltaOctave should always be 0, DeltaDen = 1 to 100, and
DeltaNum = -100 to 100.

^ Function 18: Set ticks per beat

Input: TickBeat: unsigned integer
Output: —

This is a low level function call which affects the computer's timer
interrupt. TickBeat specifies the smallest division allowed within

/mm, a beat.

29

Programming the Sound Driver_

Functions Reference

All notes should fall on multiples of 1/TickBeat and every voice
should obey this rule. The value should also obey the
following formula:

18.2 < (TickBeat * Tempo / 60)

The number of interrupt per seconds will be equal to:

FInt = max(60, TickBeat) * Tempo / 60

Function 19: Direct note on

Input: Voice: unsigned integer,
Pitch: integer

Output: —

Function 19 is a low level call which bypasses all queues and
outputs directly to the ALMSC. The note will played until
Function 20 is called. (Pitch = -48 to +47, Voice = 0 to 8 or 10
depending on the mode.)

Function 20: Direct note off

Input: Voice: unsigned integer
Output: —

This turns off the note which was turned on by Function 19.

30

Programming the Sound Driver

Functions Reference

Function 21: Direct set timbre parameters

Input: Voice: unsigned integer,
Timbre[26]: far pointer to integer

^ Output: —

This function is identical to Function 16, but it sets the specified
voice immediately and your program has to support all timings.

^ You do not have to keep the array valid after the call because
^ the parameters are sent directly to the ALMSC.

31

/9AS ■ ■ ■ ■

Programming Guidelines

^ Programs which use the Sound Driver to play melodies will all
^ be similarly structured, although they may vary in details.

Programs which play one short melody on one voice are the
^ easiest to deal with.

^ General Strategy for Playing Short Melodies

1. Initialize

« 2. Load note queues
3. Start playing notes
4. Wait until all notes have been played

The example programs (actually one program in two different
languages) in Appendices A and B use this type of strategy.
Note that in these programs the notes are not played the
instant the ALMSC receives them because its clock Is turned
off in the initialization phase. Instead it will store the notes in a
queue and begin playing them later when the clock is turned

^ on. Sending notes to the ALMSC is referred to as "playing
notes" regardless of wether or not the ALMSC is making the
notes sound at that time. Once the clock has been turned on,
which causes the ALMSC to start playing the notes in its
queue, the application program must wait for the ALMSC to
finish. The sound driver will be using the array of parameters it
received earlier and exiting before the melody is finished may
destroy these parameters.

33

Programming Guidelines

General Strategy for Playing Long Melodies

General Strategy for Playing Long Melodies

1. Initialize

2. Load events until the queues are full
3. Start the ALMSC playing
4. Wait until there is a space in a queue
5. Load another event in the queue
6. Repeat Steps 4 and 5 until there are no more notes
7. Wait until all notes have been played

Playing a iong melody is more compiicated than a short
melody in that it must take care of the case where the number
of notes to play exceeds the space available to store them
("buffer overflow"). There is one queue for every voice, the size
of which varies dynamically. However, there is a limit on the
total space available for all of the queues. In order to avoid
filling up this space, commands should be sent in the order in
which they will occur (event driven). For example, if we are
using four voices at one time, we should send only a small
number of notes to one voice, then send the equivalent number
of notes (same number of beats worth) to the next voice and so
on. We wish to avoid the case where we send so many notes
to one voice that it ieaves no room for the others. (See
Appendix B of the installation guide for more information on the
buffer.)

Note that we usually shut off the clock when first loading up the
queues. We could have left the clock turned on and started
sending the notes immediately. In this case, the ALMSC will
be playing notes while they are being sent and this will work as
long as the CPU is dedicated to this one task.

34

Programming Guidelines

General Strategy for Playing Long Melodies

If the CPU has other tasks running concurrently, they might
interfere with the task sending notes to the ALMSC. For this
reason, it is best to load up the ALMSC's queues while the
clock is stopped so that, when the clock is enabled, the ALMSC
has a buffer full of notes to work with if the CPU goes off to work
on another task.

With short melodies, it is feasible to code the note and timbre
data within the program. This quickly becomes tedious with
ionger programs. Longer and more compiex appiications wili
need to read data from externai files. These files can be
structured as the programmer wishes or the file structures (and
the actual files) of Ad Lib's Visual Composer (TM) and
Instrument Maker (TM) software can be used. How to use
these structures and interface with ready made files is
explained in Appendix C.

^ Other Types of Programs

Some programs may not play melodies, but instead act on
^ input from a user interface: the computer keyboard or a midi
m keyboard. Such a program could be even simpler than playing
^ a melody because as little as three functions could be used
^ (Functions 0,19 and 20). Other programs will vary in the
^ number and variety of functions they use according to their

degree of complexity. Note that all programs must begin by
initializing the ALMSC (Function 0).

35

Programming the Synthesizer

^ This section provides information about the Ad Lib Music
^ Synthesizer Card for advanced programmers who wish to

program the ALMSG directly. There is information on the
components of the card, a technical description of the
operators, the input / output map and a registers reference.

The Ad Lib Music Synthesizer Card

The card is equipped with a vibrato oscillator, an amplitude
oscillator (tremolo), a noise generator which allows for the
combination of a number of frequencies, two programmable
timers, composite sine wave synthesis and 18 operators.

A white noise generator is used to create rhythm sounds. This
white noise generator uses voices 7 and 8 (melodic voices),
frequency information (Block, F-Number, Multi), and the proper
phase output. Various rhythm sounds are produced by

« combining this output signal with white noise. The resulting
signal is then sent to the operators. Experience has shown that

^ the best ratio for the 2 frequencies is 3:1 (melodic voice 7
frequency = 3 times melodic voice 8 frequency). Finally,
envelope information is multiplied with the wave table output.
As the envelope is set for one operator which corresponds to a
single rhythm instrument, the values which express that
instrument's characteristics are set in the parameter registers in
the same manner as for melody instruments.

37

Programming the Synthesizer

Operators

Operators

The ALMSC uses pure sine waves that interact together to
produce the full harmonic spectrum for any voice. Each digital
sine wave oscillator is combined with its own envelope
generator to form an "operator".

An operator has 2 inputs and 1 output. One input is used for
pitch oscillator frequency and the other for modulation data.
These data (phases) are added together and converted to a
sine wave signal. The phase generator (PG) converts the
frequency (w) into a phase by multiplying it by time (t). An
envelope generator (EG) produces a time variant amplitude
signal (ADSR). The EG's output is then multiplied by the sine
wave and output to the outside world.
The operator can be expressed as a mathematical expression:

F(t) = E(t) sin(wt + Cl)

E(t) is the output from the EG, w is the frequency, t is time and Q
is the phase modulation.

(ims

Q

w PG

SIN

wt

EG

cm

38

Programming the Synthesizer

Operators

The operators can be connected in three different ways:
additive, frequency modulation and composite sine wave.

Additive synthesis
Additive synthesis connects two operators in parallel,
adding both outputs together. This method of synthesis
is not very interesting because you can only generate
organ type sounds.

The simplified formula for the additive synthesis is:

F(t) = Ei(t) sin(wt + Qi) + E2(t) sin(wt + Q2)

• FM synthesis
FM synthesis uses two operators in series. The first
operator, the modulator, modulates the second
operation via its modulation input the name given to the
second operator is the carrier. The modulator can even
feed back its output into its modulation data input;

Fm(t) = Em(t) sin(Wmt + BFm(t)) Modulator and feedback
Fc(t) = Ec(t) sin(wct + Fm(t)) Carrier and Modulator

Composite sine wave synthesis
Composite sine wave synthesis (CSW) may be used to
generate speech or other related sounds by playing all
voices simultaneously: when using this mode the card
can't generate any other sounds. As no experiments
have yet been done in this direction, this feature remains
a theoretical possibility.

39

Programming the Synthesizer

ALMSC input/output map

ALMSC Input / Output Map

The ALMSC is located at address 388H in the i/o space. The
card decodes two addresses 388H and 389H. The first
address is used for selecting the register address and the
second is used for writing data to the selected register.
Because of the nature of the card, you must wait 3.3msec after
a register select write and 23msec for a data write. Only the
status register located at address 388H can be read. Here is a
register map of the ALMSC:

FEG D7 D6 D5 D4 D3 D2 D1 DO

01 1 1 test
02 TIMER-1

03 TIMER-2

04 RST
ma

T1
isK 1 Start/Stop
T2 1 T1 1

08 CSM SEL

20-35 AM VIB EG KSR MULTI

40-55 KSL TL

60-75 AR DR

80-95 SL RR

A0-A8 F-NUMBER (L)

B0-B8 KON BLOCK
F-NUM
(H)

BD R BD SD Itom TO HH

C0-C8 FB 0

E0-F5 WS

40

Programming the Synthesizer

ALMSC Input/output map

When addressing a operator's register care shouid be taken
because of hoies in the addressing MAP so the correct offset to
add to the register is as foliows:

Operator Address Offset

Opr. 1 2 3 4 5 6 7 8 9

Off.

(hex)
00 01 02 03 04 05 08 09 OA

Opr. 10 11 12 13 14 15 16 17 18

Off.

(hex)
OB OC OD 10 11 12 13 14 15

Registers Reference

Test Register

This register must be initialized to zero before taking any action
whatsoever.

41

Programming the Synthesizer

Registers Reference

Timers

Timer-1 is an upward 8 bit counter, It has a resolution of
BOusec. If an overflow occurs, the status register flag FT1 is
set, and the preset value (address = 02) is loaded into Timer-1.
Timer-1 is also used for control of composite speech synthesis.
When an overflow occurs in this mode, all voices are set to
KEY-ON and then immediately back to KEY-OFF. Timer-2
(address = 03) is an upward 8 bit counter just like timer-1
except that the resolution is 320usec.

"'"overflow('T^S) = (256-N) K

N is the preset value and K is the timer constant equal to 0.08
for timer-1 and 0.32 for timer-2. Register address 04 controls
the operation of both timers, ST1 and ST2 (start/stop T1 or T2)
bits start or stop the timers. When the corresponding bit is "1"
the counter is loaded and counting starts, but when "0" the
counter is held.

The Mask bits are used to gate the status's timer flags. If a
mask bit is "1" then the corresponding timer flag bit is kept low
("0") and is active when the mask bit is cleared ("0"). The most
significant bit (MSb) is called IRQ-RESET. It resets timer flags
to "0" as well as the IRQ flag in the status register (all other bits
in the control register are ignored when the IRQ-RESET bit is
"1").

CSM/Keyboard Split

This register (address = 08) will determine if the card is to
function in music mode (CSM = 0) or speech synthesis mode
(CSM = 1) as well as the keyboard split point.

42

Programming the Synthesizer

Registers Reference

When using composite sine wave speech synthesis mode all
voices should be in the KEY-OFF state. The bit NOTE-SEL
(D6) is used to control the split point of the keyboard. When
"0", the keyboard split is the second bit from the MSb (bit 8) of
the F-Number. The MSb of the F-number is used when NOTE-
SEL = 1. This is illustrated in the table below:

NOTE-SEL = 0

BLOCK/OCT 0 1 2 3 4 5 6 7

FNUM(MSb) 1 1 1 1 1 1 1 1

FNUM(8) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Split Num. 0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

NOTE-SEL = 1

BLOCK/OCT 0 1 2 3 4 5 6 7

FNUM(MSb) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

FNUM(8) X X X X X X X X X X X X X X X X

Split Num. 0 1 2 3 4 5 6 7 8 9 1011 12131415

X = Don't care

43

_Pro2raniniIng_Jhe_S^n^^
Registers Reference

AM/VIB/EG-TYP/KSR/Multiple

This group of registers (address = 20H to 35H), one per
operator, control the frequency conversion factor and
moduiating wave frequencies corresponding to the frequency
components of music.

The MULT! 4 bit field determines the multipiication factor
applied to the input pitch frequency in the PG section. The
multipiication factor is given in the next table:

MULT! Factor

0 1/2

1 1

2 2

3 3

4 4

5 5

6 6

7 7

MULT! Factor

8 8

9 9

10 10

11 10

12 12

13 12

14 15

15 15

44

Programming the Synthesizer

Registers Reference

The operator formula, with the multiplication factor included;
where "3" is the multiplication factor.

F{t) = Ec(t) sin(acWct + Em sin(amWmt))

The KSR bit (position = D4) changes the rates for the envelope
generator (EG). This parameter makes it possible to gradually
shorten envelope length (increase EG rates) as higher notes
on the keyboard are played. This is particularly useful for
simulating the sound of stringed instruments such as piano and
guitar, in which the envelope of the higher notes is noticeably
shorter than the lower notes. The actual rate is then equal to
the ADSR value plus an offset:

Actual rate = 4*Rate + KSR offset

The KSR offset is specified in the following table:

Rate KSR=0 KSR=1

0 0 0

1 0 1

2 0 2

3 0 3

4 1 4

5 1 5

6 1 6

7 1 7

Rate KSR=0 KSR=1

8 2 8

9 2 9

10 2 10

11 2 11

12 3 12

13 3 13

14 3 14

15 3 15

45

Programming the Synthesizer

Registers Reference

The EG-Type activates the sustaining part of the envelope
when the EG-Type is set ("1"). For more information on this
feature, check documentation of the Instrument Maker software;
most items discussed here are included.

The VIB parameter switches the frequency vibrato (1 = on, 0 =
off). The frequency of the vibrato is 6.4 Hz and the depth is
determined by the DEP VIB bit in register OBDH.

The AM parameter is equivalent to the VIB parameter except
that it is an amplitude vibrato (tremolo) of frequency 3.7Hz and
like the vibrato, the depth is determined by a bit (DEP AM) in
register OBDH.

KSL/Total Level

These registers (address = 40H to 55H, 1 per operator) control
the attenuation of the operator's output signal. The KSL
parameter produces a gradual decrease in note output level
towards higher pitch notes. Many acoustic instruments exhibit
this gradual decrease in output level. The KSL is expressed
on 2 bits (value 0 through 3). The corresponding attenuation is
given below:

D7 D6 Attenuation

0 0 0

1 0 1.5dB/oct

0 1 3.0dB/oct

1 1 6.0dB/oct

46

Programming the Synthesizer

Registers Reference

The Total Level (TL) attenuates the operator's output. Varying
the output level of an operator functioning as a carrier results in
a change in the overall level of the sound contributed to the
voice by that operator. Attenuating the output from a modulator
will change the frequency spectrum produced by the carrier.
The TL value has a range of 0 through 63 (6 bits). To convert
this value into an attenuation, apply the following formula:

^ Attenuation = (63 - TL) * 0.75dB

ADSR

^ These values change the envelope shape of the specified
« operator by changing the rates or the levels. The attack (AR)
^ and the decay (DR) rates are at addresses 60H to 75H (1 per
^ operator). The Sustain Level (SL) and Release Rate (RR) are

^ r \ f

located at addresses BOH to 95H. All these values are 4 bits in
^ length (range 0 to 15). These parameters are well explained in

the Instrument Maker's documentation.

^ BLOCK/F-Number

^ These parameters determine the pitch of the note played. The
^ Block parameter determines the octave in which the note will
^ be played. The F-Number (10 bits) will specify the scale. The
^ following formula will help to determine the value to put into
^ F-Number and Block:
^ F-Num = Fmus * 2(20-b) / 50kHz

Programming the Synthesizer

Registers Reference

In this formula, Fmus is the desired frequency (Hz) and "b" is the
block value (0 to 7). The D5 bit in the register that contains the
BLOCK information is called KEY-ON (KON) and determines if
the specified voice (0 to 8) is enable ("1") or disable ("0"). The
lower bits of F-Number are at location AOH through ASH (1 per
voice) and the 2 MSb are at position DO and D1 of the
addresses BOH to B8H.

REG 07 06 05 04 03 02 01 oo

AOH-

ASH 2^ 2 ® 2®

F-Number

24 2^ 2^ 2 ̂ 2°

BOH-

B8H

KEY

ON 2^

Block

2 ̂ 2°

F-Number

2 9 2 ̂

Feed Back/Connection

These two parameters influence the way the operators are
connected together and the B factor in the feedback loop of the
modulator. Those parameters are assigned 1 per voice at
locations COH through C8H. The Connection bit (C)
determines if the voice will be functioning in Additive synthesis
mode (C = 1) of in Frequency modulation mode (C = 0). The
other parameter, Feedback (FB), gives the modulation factor for
the feedback loop:

48

Programming the Synthesizer

Registers Reference

0 1 2 3 4 5 6 7

3 0 jc/16 jc/8 jc/4 n/2 n 2n 4n

Rhythm/AM Dep/VIB Dep

This register allows for control over AM and VIB depth,
selection of rhythm mode and ON/OFF control for various
rhythm Instruments. Bit D5 Is used to change mode from
melodic ("0") to percussive ("1") as explained at the beginning
of this document (voices). Bits DO through D4 allow for
ON/OFF control of the various rhythm Instruments. This means
that registers B6H, B7H and B8H KON bit must always be "0".

The AM Depth Is 4.8dB when D7 Is set ("1") and 1dB when "0".
The VIB Depth Is 14 cents when D6 ="1", and 7 cents when
zero.

fwrns

Wave Select

The WS parameter enables the card to generate other kinds of
wave shapes. This Is done by changing the sine function of the
specified operator. The addresses of this feature are at ECH to
F5H. The following figure gives the corresponding wave form:

49

Programming the Synthesizer

Registers Reference

D1 DO Waveform

0 0

0 1

1 0 rv^

1 1 r\ n

50

1
Appendix A

Basic Example and Interface
- —

10REM

20 REM SOUND DRIVER BASIG INTERFAGE EXAMPLE

30 REM

40 DEFINTA-Z
50 REM

60 FSDINIT = 0
■ - 70 FSDRELTIMESTART = 2

80 FSDSETSTATE = 3

90 FSDGETSTATE = 4

100 FSDFLUSH = 5

110FSDSETMODE = 6

120 FSDGETMODE = 7

130 FSDSETRELVOLUME = 8
" 140 FSDStI IbMPO = 9
^ 150 FSDSETTRANPOSE = 10

160 FSDGETTRANSPOSE = 11

170 FSDSETACTVOICE = 12

180 FSDGETAGTVOICE = 13

190 FSDPLAYNOTEDEL = 14
|fW^ 200 FSDPLAYNOTE = 15

210 FSDSETTIMBRE = 16
- 220 FSDSETPITCH = 17

/mm^

230 FSDSETTICKBEAT = 18

240 FSDNOTEON = 19

250 FSDNOTEOFF = 20

260 FSDTIMBRE = 21

270 REM
0m\ 280 FIN = 100

imms
290 SO = 0: 81 = 0: 82 = 0:83 = 0: 84 = 0:85 = 0: REM RESET ARGUMENTS
300 1 = 0: MEM = 0: BYTE =0
310 FUNG8IZE = 66: REM GODE SIZE
320 DIM FUNG%(FUNG8IZE /2 +1): REM GODE ARRAY

- 330 DIM IN8TRUM(26); REM TIMBRE DATA
340 REM

fmt^

51

Appendix A

Basic Example and Interface

350 REM LOAD TIMBRE INTO ARRAY, FROM DATA
360 REM

370 MEM = VARPTR(INSTRUM(O))
380 FOR I = 1 TO 52: READ BYTE: POKE MEM, BYTE: MEM = MEM +1: NEXT I
390 REM

400 REM LOAD CODE (SOUNDBAS.ASM) INTO FUNG% ARRAY
410 REM

420 MEM = VARPTR(FUNG%(0))
430 FOR I = 1 TO FUNGSiZE
440 READ BYTE
450 POKE MEM, BYTE
460 MEM = MEM -i-l
470 NEXT I
480 REM
490 REM SET UP SOUND DRIVER
500 REM
510 SO = FSDINIT: GOSUB 730: REM INITIALIZE SD
520 SO = FSDRELTIMESTART: SI = 0: S2 = 1: GOSUB 730: REM START TIME
530 SO = FSDSETTEMPO: SI =100: S2=0: S3=1: GOSUB 730: REM TEMPO = 100
540 SO = FSDSETAGTVOIGE: Si = 0: GOSUB 730: REM SET ACTIVE VOICE
550 SO = FSDSETTIMBRE: MEM = VARPTR(FUNG(O)): REM SET INSTRUMENT
560 GALL MEM{ SO, INSTRUM(O), S2, S3, S4, S5)
570 GOSUB 630: REM LOAD SONG INTO SD
580 SO = FSDSETSTATE: SI = 1: GOSUB 730: REM START PLAYING SONG
590 SO = FSDGETSTATE: GOSUB 730: REM TEST IF FINISH
600 IF SO <> 0 GOTO 590
610 STOP
620 REM PLAY SONGS
630 SO = FSDPLAYNOTE
640 READ SI: READ S2: READ S3
650 IF SI = FIN THEN RETURN
660 GOSUB 730
670 GOTO 630
680 REM
690 STOP
700 REM
710 REM SOUND DRIVER GALL

52

Appendix A

Basic Example and Interface

720 REM

730 MEM = VARPTR(FUNC%(0))
740 CALL MEM(SO, 81, 82, 83, 84, 85)
750 RETURN
760 REM
770 REM intrument marimba3
780 DATA &H01, &H00, &H05, &H00, &H05, &H00, &HOD, &H00, &H01
790 DATA &H00, &H00, &H00, &HOA. &H00, &H05, &H00, &HOE, &H00, &H01, &H00
800 DATA &H00, &H00, &H00, &H00, &H01, &H00, &H02, &H00, &H01, &H00, &H00
810 DATA &H00, &HOF, &H00, &H01, &H00, &H00, &H00. &H09, &H00, &H03, &H00
820 DATA &H00, &H00, &H01, &H00, &H00. &H00, &H00, &H00, &H01, &H00
830 REM

840 REM MACHINE CODE (80UNDBA8.A8M)
850 DATA &H06, &H56, &H57, &H8B, &HEC, &H8B, &H5E, &H14, &H8B, &H37, &H8B
860 DATA &H5E. &HOA, &HFF, &H37, &H8B, &H5E, &HOC, &HFF, &H37, &H8B, &H5E
870 DATA &HOE, &HFF, &H37, &H8B, &H5E, &H10, &HFF, &H37, &H83, &HFE, &H10
880 DATA &H75, &H07, &H1E, &HFF, &H76, &H12, &HEB, &H06, &H90, &H8B, &H5E
890 DATA &H12, &HFF, &H37, &H16, &H07, &H8B, &HDC, &HCD, &H65, &H8B, &HE5
900 DATA &H8B, &H5E, &H14, &H89, &H07, &H5F, &H5E, &H07, &HCA, &HOC, &H00
910 REM

920 REM SONG #1
930 DATA 0,1,2
940 DATA 2,1, 2
950 DATA 4, 3, 4
960 DATA 7,1,4
970 DATA 7,1,1
980 DATA 4,3, 4
990 DATA 0,1,4
1000 DATA 4, 3,2
1010DATA2,1,2
1020 DATAO, 2,1
1030 REM
1040 REM SONG #2
1050 DATA 0, 1,2, 4,1, 2,7, 1,2, 12,3,2, 2,3, 4, 5, 1,4, 9,1, 2, 12,3, 2
1060 DATA 11,3,4,9,1,4,7,1,2, 5,1,1,2,1,2,4,1,1,9,1,2, 7,3,2
1070DATA100, 100, 100

53

^£gendix_A^^____
Basic Example and Interface

fmms

(imm^

SOUNDBAS.ASM

Marc Savary, Editions Ad Lib., 3-06-87

assembler Interface to the Sound Driver for Basic programs

This code should be Included In a Basic array and used with the CALL
command : func = VARPTR (array(O)): CALL func(sO,s1 ,s2)

sound_drlver_lnt equ 101 :SD interrrupt number 1^

fSDInit equ 0

fSDRelTimeStart equ 2

fSDSetState equ 3

fSDGetState equ 4

fSDFIush equ 5

fSDSetMode equ 6

fSDGetMode equ 7

fSDSetRelVolume equ 8

fSDSetTempo equ 9

fSDSetT ranspose equ 10

fSDGetTranspose equ 11

fSDSetActVolce equ 12

fSDGetActVoice equ 13

fSDPIayNoteOel equ 14

fSDPIayNote equ 15

fSDSetTlmbre equ 16

fSDSetPitch equ 17

fSDSetTlckBeat equ 18

fSDNoteOn equ 19

fSDNoteOff equ 20

fSDTimbre equ 21

Code SEGMENT BYTE
assume cs:code

54

Appendix A

Basic Example and Interface

SoundBasic(sO, s1, s2, s3, $4, s5)
Int * sO, * s1, * s2, * s3, * s4, * 35;

sO: function number
s1 - s5: arguments

return result In sO.

SoundBasic PROC FAR
PUBLIC SoundBasic

frames STRUG
dw

dw

old_es dw
dd

s5

S4

S3

S2

s1

SO

dw
dw
dw
dw

dw
dw

?

7

?
?

?

7

7

7

7

7

Old di
old si

old ES
return addr

ptrs to s5 argument
... s4

:... ptr to function number

frames ENDS

push
push
push
mov

mov

mov

mov

push
mov

push
mov

push

es

si

dl
bp, sp
bx, [bp].sO
si, [bx]

bx, [bp].s5
bx]
bx, [bp].s4
[bx]
3X, [bp].s3
[bx]

; get function number

55

Basic Example and Interface

(mm,

mov

push
cmp

jne
push
push
jmp

suite: mov
push

ok: push
pop
mov

Int
mov

mov

mov

pop

pop
pop
ret

bx, [bp].s2
[bx]
si, fSDSetTimbre
suite
ds
[bp].s1
ok

bx, [bp].s1
[bx]
ss

es

bx, sp
sound_driverJnt
sp,bp

bx, [bp].sO
[bx], ax
di

si
es

12

: si is a pointer ??

; we need a Far prt...

; set ES:BX to point to list of arg.

(^m\

SoundBasic ENDP

; store retum value in SO

; 6 words arguments

(imm^

Code ENDS
END

(fm^

(mm,

56

Appendix B
C Language Example and Interface

V

V

16/06/87

Sound-driver demonstration program.

/* Define function numbers
#defne fSDInit 0

#defne fSDRelTimeStart 2

#def ne fSDSetState 3

#def ne fSDGetState 4

#defne fSDFiush 5

#defne fSDSetMode 6

#defne fSDGetMode 7

#defne fSDSetRelVolume 8

#defne fSDSetTempo 9

#defne fSDSetTranspose 10

#defne fSDGetJranspose 11

#def ne fSDSetActVoice 12

#defne fSDGetActVoice 13

#defne fSDPIayNoteDel 14

#defne fSDPIayNote 15

#defne fSDSetlimbre 16

#def ne fSDSetPitch 17

#def ne fSDSetlickBeat 18

#def ne fSDNoteOn 19

#defne fSDNoteOff 20

#def ne fSDTimbre 21

#define END

/* Timbre data array */

100 /* indicate the end of 'melodie' array 7

57

Appendix B

C Language Example and Interface

58

int marimbaSQ =
0x0001, 0x0005, 0x0005, OxOOOd, 0x0001, 0x0000, OxOOOa, 0x0005, OxOOOe, ^
0x0001, 0x0000, 0x0000, 0x0001, 0x0002, 0x0001, 0x0000, OxOOOf, 0x0001,
0x0000, 0x0009, 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0001
}:

/* Array of notes to be played *1 0^
char melodyQ = {
0,1,2, ^
2,1,2,
4, 3, 4,

■'■4. ^
7 1 1'1 ' f ' >

4, 3,4,
0,1, 4, ^

2,1,2, ^
0,2,1, ^

0,1,2,
4,1,2,
7,1,2,
12.3,2, ^
2,3,4, ^
5,1,4,
9,1,2,
12.3.2, ^
11,3,4.
9,1,4,
7,1 ,2,
5.1.1,
2.1.2,
4.1.1, ^
9.1.2. ^
7 3 2
106,100,100
};

Appendix B

C Language Example and Interface

extern char SoundCallQ; /* interface to sound-driver

main()

r reset sound-driver
* make sure driver is off

/* set to meiodic mode
r 4 ticks per beat
I* start of music piece

r

V

inti;

if(IGetSoundDrvVersionO) { /*ls sound-driver installed? 7
printf{ "\n Sound-driver not installed!");
exit(1):
}

SoundCall(fSDInit);
SoundCall(fSDSetState, 0);
SoundCall(fSDSetMode, 0);
SoundCall(fSDSetTickBeat, 4);
SoundCall(fSDRelTimeStart, 0,1);
SoundCall(fSDSetTempo, 100, 0,1); /* set tempo to 100
SoundCall(fSDSetActVoice, 0); /* use voice 0
SoundCall(fSDSetTimbre, &marimba310], 0,1); /* set timbre voice

Piay aii notes of 'meiody* array....

i = 0;
whiie(END 1= meiody[i])

{
SoundCaii (fSDPiayNote, (unsigned)meiody[i], (unsigned)meiody[i+1]

(unsigned)meiody[i+2]);
i += 3;

SoundCaii(fSDSetState, 1);
whiie(SoundCail(fSDGetState))

printf("\nDone!");
exit(0);

/* turn on the sound-driver 7

r wait until the last note 7

59

Appendix B

C Language Example and Interface

CSOUND.ASM
l^\

interface to resident sound-driver for LATTICE 0 compiler, LARGE modei. ^

87/03/18 Ad Lib.
/mm,

INCLUDE DOS.MAC ; memory models ...
INCLUDE DEFS.MAC : equates & sound-driver version proc.

PSEG ^

INCLUDE VERSION.MAC ; sound-driver signature ^

public GetSoundDrvVersion ^

unsigned GetSoundDrvVersion()
if tfie sound-driver is cfiarged in memory, retum fiis ^
version number, else 0. „

DrvVersionProc GetSoundDrvVersion

int SoundCaii(functionNumber, argjist)
int functionNumer;
any... argjist

Generate interrupt to sound-driver with parameter's address ^
in ES;BX and function number in 81

BEGIN SoundCall m

(mm,

(mm,

60

Appendix B

G Lanquaqe Example and Interface
(wm.

IF LDATA EQ 0
sframe STRUG

dw ? ; old ES
dw ? ; old BP
db CPSiZE DUP (?) ; return addr

args dw ?
sframe ENDS

(mm,
ELSE

(mm, sframe STRUG
dw ? ; old BP
db GPSIZE DUP (?) ; return addr

args dw ?
(mm, sframe ENDS

ENDIF
(mm,

push bp
IF LDATA EQ 0
push es
ENDIF

mov bp, sp
(mm, mov si, [bp].args ; get function number

lea bx, [bp].args+2 ; get pointers to others args...
push ss

/mms pop es

(9m,
int sound_driverJnt : call sound-driver...

IF LDATA EQ 0

(mm, pop es
ENDIF

pop bp
(Mm, ret

(mm, SoundCall ENDP

(mm. ENDPS

mm. end

mm,

fmm^

mm

mm,

mm,
61

mm,

mm.

imm,

Appendix C
File Structures

Files containing instrument timbre information are suffixed with
•MNS".

Structure of .INS files:

field# size (bytes) type description

1 1 char mode: 0 => melodic
imrn^ 1 => percussive

2 1 char if percussive, voice
number (6-10)

Modulator (operator 0):

ism,
3 2 int KSL

imm, 4 2 int frequency multiplier
imm. 5 2 int feed back

6 2 int attack rate

7 2 int sustain level

8 2 boolean sustaining sound
9 2 int decay rate
10 2 int release rate

11 2 int output level
12 2 boolean AM

13 2 boolean VIB

14 2 int KSR

15 2 boolean FM

63

/P^

Appendix C

File Structures

Carrier: (operator 1), significant for melodic voices and
percussive voice 6 (Bass Drum) only:

16 2 int KSL (fm^

17 2 int frequency multiplier
18 2 int unused

19 2 int attack rate

20 2 int sustain level

21 2 boolean sustaining sound
/mm

22 2 int decay rate
23 2 int release rate

/mm,

24 2 int output level
25 2 boolean AM

ipm,

26 2 boolean VIB

27 2 int KSR

28 2 int unused

(mm,

/mm,

64

Appendix C

File Structures

Files containing note information (i.e. songs) are suffixed with
".ROL". ("File version" and "editing scale" are non-musical
information used by Visual Composer (TM).)

Structure of .ROL files:

field# size (bytes) type description

1 2 int file version, major
2 2 int file version, minor
3 40 char unused

4 2 int ticks per beat
5 2 int beats per measure
6 2 int editing scale (Y axis)
7 2 int editing scale (X axis)
8 1 char unused

9 1 char mode: 0 => melodic

1 => percussive
10 90 char unused

11 38 char filler

12 15 char filler

13 4 float basic tempo

Field 14 indicates the number of times to repeat fields 15 and
16:

/mrn^

14 2 int number of tempo
events

15 2 int time of event, in ticks
16 4 float tempo multiplier (0.01,

10.0)

65

Appendix C

File Structures

The remaining fields (17 to 34) are to be repeated for each of
11 voices:

17 15 char filler

18 2 int time (in ticks) of last
note +1

Repeat the next two fields (19 and 20) while the summation of
field 20 is less than the value of field 18:

19 2 int note number:

0 =:> silence

from 12 to 107 =>

normal note

(you must subtract 60
to obtain the correct

value for the sound-

driver)
20 2 int note duration, in ticks

21 15 char filler

Field 22 indicates the number of times to repeat fields 23 to 26:

22 2 int number of instrument

events

23 2 int time of event, in ticks
24 9 char instrument name

25 1 char filler

26 2 int unused

27 15 char filler

66

Appendix C

File Structures

Field 28 Indicates the number of times to repeat fields 29 and
30:

28 2 int number of volume

events

29 2 int time of event, in ticks
30 4 float volume multiplier (0.0,

1.0)

31 15 char filler

Field 32 indicates the number of times to repeat fields 33 and
34:

32 2 int number of pitch events

33 2 int time of event, in ticks
34 4 float pitch variation (0.0, 2.0,

nominal is 1.0)

67

ISBN 2-920858-10-6

AdLib
Personal Computer Music System

1987, Ad Lib Inc. All rights reserved.

Ad Lib Inc.

220 Grande-Aliee East, Suite 960

Quebec, QC, Canada G1R 2J1

50 Staniford Street, Suite 800
Boston, MA 02114

ISBN 2-920858-10-6 Printed in Canada

