GWBASIC 2.0

o
<l :F
'llll
()
b

coronqc
data systems, inc.

Part No. 788712

GWBASIC 2.0

Copyright 1985 by Daewoo Electronics Co., Ltd. All rights reserved.
Printed in Korea.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
written permission of Corona Data Systems, Inc.

Portions of this manual have been reprinted with the permission of
Microsoft Corporation. Copyright 1979, 1983, 1984 Microsoft Corporation.
All rights reserved.

MS-DOS and GW-BASIC are registered trademarks of Microsoft Corporation.

IBM and IBM PC are registered trademarks of International Business
Machines Corporation.

The use of trademarks or other designations is for reference purposes
only.

Part No. 788653
Rev. A

ii

CONTENTS

.............................. xi
INTRODUCTION i .. 1-1
GETTING GWBASICSTARTED 2-1
BeginningatDOS 2-1
Using BASIC or BASICA Packages 2-1
Writing Your Own Programs 2-3

DirectMode 2-3
IndirectMode 2-4
LineFormat. 2-4
Editing 2-5
Program Editor Keys 2-5
PrintingKeys 2-7
CtrlKey 2-7
AddingNew Lines 2-9
Replacing ExistingLines 2-9
DeletingLines 2-9
DuplicatingLines 2-10
Altering Linesonthe Screen 2-10
Deletinga Program 2-10
FormatErrors 2-10
Saving Programs 2-11
ExitingGWBASIC. 2-11
HANDLING FILESANDDEVICES 3-1
FileNames 3-1
Program File Commands 3-1
ProtectedFiles 3-3
File and Device Information 3-3
User-Installed Device Drivers 3-5
Redirection of Inputand Qutput 3-6
Tree-Structured Directories 3-7
GRAPHICS i .. 4-1
How to Specify Coordinates 4-3
Color/Graphics Monitor Adapter 4-3
PROGRAMMING CONCEPTS 5-1
Character Seto, .. 5-1
Constants i it 5-5
Numeric Precision 5-7

iii

iv

Contents

VariableS . . v v v i e e e e e e e e e e e e e e e e 5-7
How toNamea Variable 5-8
How to Declare Variable Types 5-8
Array Variables i v v i i et 5-9

How GWBASIC Converts Numbers From One Precision
ToAnother i i i i it it ettt ee e e 5-10

Expressions and Operators v v v v v v v v v v v 5-12
Arithmetic Operators ¢ ¢ v v v v v v v v v v 5-12
Relational Operators« o v v v v v v v v v v 5-15
Logical Operators oo v vt v v v v eeenn 5-17
Functional Operators v ¢ v v v v v v v v v v v 5-19
String OPerators v v v v v v v v v v e e e 5-20

COMMUNICATIONS it i et e e e e e e e e e 6-1

Opening a Communications Buffer 6-1

Communications I/0 6-1
Communications I/O Functions 6-2
INPUTS Function for COMFiles 6-2
GET and PUT for COMFiles 6-3

A Sample Program 6-3

Operation of Control Signals 6-8
Control of Output Signals with OPEN 6-8
Use of Input Control Signals 6-9
Direct Control of Output Control Signals 6-9

Communications Errors 6-11

Accessing the Registers 6-11

GWBASIC COMMANDS, STATEMENTS, FUNCTIONS,
ANDVARIABLES i, 7-1

Introduction i i it e e 7-1

ABSFunction¢ci i, 7-3

ASCFunctiont i it i ittt nneenn 7-4

ATNFunction v v i v vt i e e ettt e e e 7-5

AUTOCommandot euueneenenen. 7-6

BEEP Statement ot vt ittt e e 7-7

BLOADCommandot vt vttt et e, 7-8

BSAVECommandt o vt vt ieuneeen.. 7-10

CALL Statement v v v v vt vttt v v v 7-12

CALLS Statement v v v v v vt v vt v v v v un 7-13

CDBLFUNCtION . . v v v v v v e e e e e e e e e e e e e e e e e 7-14

CHAIN Statement v v v v v v e e et et e e e e e e 7-15

CHDIRCommand ¢t v v v v vt v oo v o unenn 7-18

CHRSFunction v v v v v v ittt et et e e e 7-19

CINTFunction.« v i v ittt e ettt e e e e e n 7-20

CIRCLE Statement v v v v v v v v v ot e e e e ann 7-21

CLEARCommand« v v v v v o o v ot e e e e e e e un 7-24

Contents

CLOSE Statement . . . v v v v v v v v v e e e e e e e e e e 7-26
CLS Statement v v v v v v e et e e e e e e 7-27
COLOR Statement (Graphics) 7-28
COLOR Statement (Text), .. 7-31
COM(n) Statement o v v v v v v v v v e e e e e e 7-34
COMMON Statement . . . v v v v v v v v e e e e e e e e 7-35
CONT Command v v v v v et e e et e et e e e a 7-36
COSFUNCtion . . . v v v v v vttt e e e e e e e e e 7-37
CSNG Function v v v v v i it i e et e e e e e e e v 7-38
CSRLINFunction ¢ v v v i it i it et e e e e e 7-39
CVI,CVS,CVDFunctions« v v v v v v v v v oo o 7-40
DATA Statement v v v i v e e e e e e e 7-41
DATES Statement v v v v v vt e e e e e e e e 7-42
DATE$ Variable« ¢ i i i i ittt et e e oo 7-43
DEF FN Statement v v v v v v vt e e e e e e v 7-44
DEF SEG Statement v v v v v v v v v v v e e e .. T7-46
DEFtype Statementst v et 7-47
DEF USRStatement ¢ v v v v v vt v v oo 7-48
DELETECommand v v v v v v v et e e ene 7-49
DIM Statement v v v v v v it et e e 7-50
DRAW Statementttt vt vttt onn 7-51
EDIT Command v v v v v it vttt oo eee e 7-54
END Statement v v v i it e et e 7-55
ENVIRON Statement v v v v v v v e v vt e e e e 7-56
ENVIRON$ Function v v v v v i i ittt e e e e 7-58
EOF Function ¢ . i i i i i ittt et e e 7-60
ERASE Statement v v v v v vt et et 7-61
ERDEV, ERDEV$ Variables ¢ v v v v v v v v 7-62
ERRand ERL Variables v v v v vt v v v 7-63
ERROR Statement v v v v v v v vt e et v e e e e n 7-65
EXPFunction i it i i it eeneneeenan 7-67
FIELD Statement« v v v v v v e e e e e e e oo s 7-68
FILESCommandt v v veuneenaneno. 7-71
FIXFUnction v v v v v v it e e e e e e et e e e e e 7-72
FOR and NEXT Statements ¢ oo v v v ... 7-73
FREFunction v v vt i vttt o eenneeens 7-76
GET Statement (Files) ¢ v it v v vt v v v e 7-71
GET Statement (Graphics)« 7-19
GOSUB and RETURN Statements« v v v v v v oo 7-81
GOTO Statement v v v v v v v et et e e e e e e e 7-83
GWBASICCommand« v v v v v e vt oo e e e e e 7-84

HEXSFUnction v v v v vt i et et e et ae e an 7-87

Contents

vi

IF Statemento u'ueunene... 7-88

INKEY$ Functiono vuuunn... 7-91

INPFunction00 uuuuunen... 7-92

INPUT Statementuvuuuuuo.. 7-95

INPUT$ Function 7-97

INPUT# Statement uuuuue.... 7-9

INSTRFunctionuu.o.... 7-100
INT Function00 uuuunenen... 7-101
IOCTL Statemento vuuununn... 7-102
IOCTLS Function oo v v v ennn.. 7-103
KEY Statemento v v v v e e e s e .. 7-104
KEY(n) Statement u...... 7-108
KILLCommand uuiuuununu... 7-110
LCOPY Statemento v v v v v e ennn.. 7-111
LEFT$Function uuuuuu... 7-112
LENFunction. uuuuuneno... 7-113
LET Statement v v v i e .. 7-114
LINE Statement v v e, 7-115
LINE INPUT Statementuuuuu.... 7-118
LINE INPUT # Statement 7-119
LISTCommand00 vuuuneneu... 7-120
LLISTCommand vuuuunn... 7-122
LOADCommanduvvuuuununen... 7-123
LOCFunction00 uuuununen... 7-124
LOCATE Statement vuuvuuunon.. 7-125
LOFFunction00 uuuununen... 7-127
LOGFunction0uuvuuuuuunen... 7-128
LPOSFunction. v vuuunenn... 7-129
LPRINT and LPRINT USING Statements 7-130
LSET and RESET Statements 7-131
MERGE Commando vvuuunnu... 7-132
MID$ Function vv v uuunununn... 7-133
MID$ Statementt 7-134
MKDIR Commando v vvuununun... 7-135
MKI$, MKS$, MKD$ Functions . . . « « v v v v v v v v v v .. 7-136
NAME Statemento v vt v e 7-137
NEWCommanduuuuuuuuu.. 7-138
OCTS$Function.o v v v e m e e e, 7-139
ON COM(n) Statement v v v v v v v v v e e nn. 7-140
ON ERROR GOTO Statement 7-141
ON...GOSUB and ON...GOTO Statements 7-142
ONKEY(n) Statement v v v v v v e v e e .. 7-143
ONPEN Statement v v v v vt e e e e e n 7-146
ON PLAY(n) Statement vvvuu.. 7-147
ON STRIG(n) Statementvvvuu.. 7-149
ON TIMER(n) Statemento v vvuu.. 7-150

Contents

OPENStatement v v v v v v v e et e e e e e e e 7-152
OPEN "COM..." Statement v v v v v v v .. 7-155
OPTION BASE Statement v, 7-158
OUT Statement v v v v vttt e et e et e e e e n 7-159
PAINT Statement ¢ ¢t v v i it it ettt e e 7-160
PEEKFunction. v i i i i it it e et et e e 7-163
PEN Statement and Function 7-164
PLAY Statement ittt e 7-166
PLAY(n) Function o v i i ittt i e i i e e 7-169
PLAY ON, OFF and STOP Statements 7-170
PMAPFunction ¢ v i i i i i i ittt in e 7-171
POINT Function« i v i i i i it et et e e n 7-173
POKE Statement ¢ v v v v v ittt et e e e e 7-174
POSFunction v v v i i it ittt ienee.n 7-175
PRESET Statement« ¢ v v v v v v v v v e e e e u 7-176
PRINT Statement v v v v v v v e e e et e e e e et 7-178
PRINT USING Statement v v v v v v v v v v v 7-181
PRINT # and PRINT # USING Statements 7-186
PSET Statement ¢ o v v v v v et e e e e e e 7-189
PUT Statement (Files) 7-191
PUT Statement (Graphics) 7-192
RANDOMIZE Statement« ¢ v v v v v v v v oo 7-195
READ Statement ¢ o v i v v i ittt et e e 7-196
REM Statement v v v v v i e e e et e e e 7-198
RENUMCommand v v v v v vt e et e e e e e e us 7-199
RESET Command v v v v v vt i oo e e 7-201
RESTORE Statement v v v v v v vt vt e 7-202
RESUME Statement v v v v v vt e et e e e 7-203
RETURN Statement ¢ o v v v v vt v et e e e 7-204
RIGHT$ Functiont enenn.. 7-205
RMDIRCommand o v v v v v v vt et e e 7-206
RNDFunction v v v v v v v ittt et e e e e e e 7-207
RUNCommand v v v v e vt et e et e et e e e 7-208
SAVECommand v i ittt ittt 7-209
SCREENFunctiono viuenenennnn 7-210
SCREEN Statement v v v v v v v vt it e e e 7-211
SGNFunction v i i i ittt ittt et 7-215
SHELL Statement v « « v v v v e e e et e e e e e 7-216
SINFunction ¢ . v i i i i it i e e e e et e e e e 7-219
SOUND Statement v v v v v v e et et e e e e 7-220
SPACESFunction ¢ v v vt vt i it et enenn 7-222
SPCFunction v v v v i ittt ittt 7-223
SQRFunction00, 7-224
STICKFunction v i v i i ittt it et e e oo 7-225
STOP Statement v v v v v v ot e et e et e e e e 7-226
STRSFunction. v v v v i i it et e e e e e e e 7-227

vii

Contents

STRIG Statement and Function 7-228
STRING$ Function00 uuuu... 7-230
SWAP Statement v .. 7-231
SYSTEMCommand00iv'uvuueo.. 7-232
TABFunction00 iiininne... 7-233
TANFunction iiiunnenn.. 7-234
TIMES Statement oo vt ittt e e e, 7-235
TIME$ Variable oo i ittt i e e 7-236
TIMERFunction.o v i ittt ee e 7-237
TIMER Statementt uuuneno.. 7-238
TRON and TROFF Commands 7-239
USRFunction iienunenen.. 7-240
VALFunction 7-241
VARPTRFunction. uunn.. 7-242
VARPTR$Functiono u... 7-244
VIEW Statement enenenn.. 7-246
VIEW PRINT Statement 7-248
WAIT Statement uunene.. 7-249
WHILE and WEND Statements 7-251
WIDTH Statement00ouuovun... 7-253
WINDOW Statementc0uuu... 7-255
WRITE Statementc0ooo.... 7-258
WRITE # Statementvu... 7-259
8. USING ASSEMBLY LANGUAGE SUBROUTINES 8-1
Memory Allocation v v v v v i it e . 8-1
Loading an Assembly Language Program into Memory . 81
Internal Representation of Numbers 8-2
Single Precision - 24 Bit Mantissa 8-2
Double Precision - 56 Bit Mantissa 8-3
CALL Statement v v v ittt ettt e e e un 8-3
CALLS Statement v v v v v v v e e e e e e e e v 8-8
USRFunction iunnunue.. 8-8
APPENDICES
A. SEQUENTIAL AND RANDOMFILES A-1
Sequential Files o v i it it it A-1
Creating and Accessing a Sequential File A-1
Adding Data to a Sequential File A-3
Random Files00, A-3
CreatingaRandom File A-4
AccessingaRandom File A-5
A Sample Program A-6

viii

Contents

B. ADVANCED GRAPHICS INFORMATION
Configuring Your Computer for GWBASIC and
Graphics: 325-Line DesktopUsers
Advanced Information for Assembly Language
Programmers

C. ASCIICHARACTERCODES vuu...
ExtendedCodes0ouuueuun.

..........................

Q@ T m ©
wn
>
(@]
S
(o)
wn

. TECHNICAL INFORMATION AND PROGRAMMING
HINTS
Control Codes¢'uiviumunmnennn..
MemoryMap.00 ''uuuuuoo..
How Variables Are Stored
Keyboard Buffer0.uu.....
Search Order forPorts
Switching Displaysc0.......
Some Techniques with a Color/Graphics Adapter
Sixteen Background Colors
Character Color in GraphicsMode
Programming Techniques
General

............................

Loops i e e e

ix

Contents

FIGURES

1 Stack Layout When CALL Statement is Activated
2 Stack Layout During Execution of a CALL Statement
B-1 Graphics Display Configuration
2 325-Line Graphics MemoryMap
3 400-Line Graphics MemoryMap
G-1 MemoryMap for GWBASIC

TABLES

CtrlKey Functions
Device Information ¢ ottt
Special Characters« v i vt
Other Special Characters
AltKeywords v v i v i ittt
ArithmeticOperators« v v v v v v v v v v v ot
Sample Algebraic Expressions and Their GWBASIC
CounterpartS . . o o v v v o o o v v v o v b e e e e
Relational Operators ¢« v v v v v v v v v v v
Results of Logical Operations in BASIC.
Color NUmMbers o v v v v v v v ittt et et e e
Palette Information« o oo
Color on a Standard Monochrome Monitor
Color in Text Mode With a Color/Graphics Adapter
Execution of IF-THEN-ELSE Statements
Port AddressMap« v
FunctionKey Values
Effects of AND, OR, and XOR on Color in Medium
Resolution . . . v v v v v v o e e e e e e e e e e e
Note Frequencies for Four Octaves
Tempo Calculations« « v v v v v v v v v v v e e e e
ASCII Character Codes « « v v v v v v v v v v v v
ExtendedKeyCodes
Trigonometric Functions
Keyboard ScanCodes o v v v v v v v vttt
GWBASIC Control Functions

A AN
SPWN~RNO NHEWN ==

NN
i 1 1 U 1

NNNNN

DN i
= \O O~NO DN
o

'-nmcl')o
e O N

@
—

PREFACE

The information below provides details of the hardware and software
requirements for running GWBASIC 2.0, together with a list of the features
that are new in this release.

Existing features of GWBASIC that have changed slightly for 2.0 are listed
in the README.DOC file on the GWBASIC 2.0 diskette (note that this is an
ASCII file, not a word processing file). To see the contents of this

file, use the DOS commands TYPE (to display the file on the screen) or
PRINT (to list the file on a printer).

HARDWARE AND SOFTWARE REQUIREMENTS
Version 2.0 of GWBASIC is designed to run on the following systems:
® 400-line Desktop and Portable Computers (PC-400 and PPC-400)
® 325-line Desktop and Portable Computers
e MEGA PC

The hardware configuration required for this version of GWBASIC is as
follows for all systems:

® At least 256 Kbytes of memory
e SYSTEM ROM version 3.10 or later

Operating system software required to run GWBASIC 2.0 is:
® DOS 2.0 or later releases

GWBASIC version 2.02 and later releases are compatible with BASIC 3.0
used on the IBM PC.

xi

New Features

NEW FEATURES IN THIS RELEASE

Several new features have been added to GWBASIC since the previous
release (1.xx). These features are:

Redirection of standard input (INPUT and LINE INPUT statements)
and output (PRINT statement)

Support of character devices, allowing user-installed device drivers
to interface with GWBASIC (IOCTL statement and IOCTL$
function - see also Section 3)

Improved disk I/O facilities for handling larger files (GET and PUT
statements (files))

SHELL statement, allowing DOS commands or "child" (i.e., called)
processes to be executed without having to leave GWBASIC

Tree-structured directory management, to take full advantage of DOS
2.0 disk file organization (MKDIR, CHDIR and RMDIR statements and
use of pathnames in file specifications)

New and improved graphics features:

xii

Definition of viewports within current screen (VIEW and VIEW
PRINT statements)

Redefinition of screen or viewport coordinates (WINDOW statement)
PMAP function, allowing "world coordinates" created by the
WINDOW statement to be mapped to physical screen coordinates and

vice versa

Form of POINT function to return value of current graphics
coordinates (physical or logical)

Line clipping instead of wraparound where a line continues outside
the screen or viewport boundary (all graphics statements)

Line styling, allowing lines to be drawn in dotted and/or dashed
patterns (LINE statement)

Paint tiling, allowing a figure to be painted with a pattern (PAINT
statement)

New Features

Turn angle (TA) and paint (P) commands for use when drawing a
figure (DRAW statement)

N Other features:

Screen editor enhancements, including text window support

TIMER function, returning number of seconds elapsed since midnight
or system reset

Use of TIMER function to seed random number generator
(RANDOMIZE statement)

Music and timer event trapping (ON PLAY(n)... and ON TIMER(n)...
statements)

Easier octave changing for music (PLAY statement)

User-defined key sequences (KEY statement) and trapping
(ON KEY(n)... statement)

ERDEV and ERDEVS$ functions, returning device error code and device
driver name when an error occurs

Double-precision option for standard math functions (/D switch of
GWBASIC command)

Improved control of memory allocation for assembly language routines
(/M switch of GWBASIC command)

Deletion from specified line number to end of program (DELETE
statement)

OPTION BASE allowed in chained programs (OPTION BASE
statement)

DATA statements RESTOREd before chained program is run (CHAIN
statement)

xiii

Section 1
INTRODUCTION

Z
o
=
o
=2
o
o
o
[
=

This is your reference manual for the GWBASIC 2.0 Interpreter. The
following sections present a comprehensive overview of this program and
how to use it. First you will learn how to bring up GWBASIC and to use it
to run existing programs or to write your own programs. Following that is
specific information on files, graphics, characters, numbers, and
communications. The main reference section contains an alphabetical
listing of the commands, statements, functions, and variables that can be
used in GWBASIC. In the appendices is additional, more technical,
information on files and graphics, as well as a list of ASCII codes,
keyboard secan codes, reserved words, trigonometric functions, and error
messages. Other appendices provide programming hints, a list of
recommended reading, and a summary of GWBASIC commands.

NOTE: This manual is not intended to be a tutorial on BASIC
programming. It assumes that you have a working knowledge
of BASIC. If you are new to BASIC and need to find out
more about it, read one of the BASIC tutorials listed in
Appendix G. ‘

GWBASIC 2.0 runs under DOS version 2.0 or later. Some sections of this
manual have different instructions.according to what type of system you
have. If you have a 325-line desktop or portable PC, you should follow

the instructions for 325-line users. If you have a 400-line desktop or
portable PC (PC-400 or PPC-400), or a MEGA PC, you should follow the
instructions for 400-line users.

Note that information on sound and on color monitors applies to 325-line,
PC-400 and PPC-400 systems only.

1-1

Section 2
GETTING GWBASIC STARTED

BEGINNING AT DOS

The procedural steps given throughout this section assume that you have
two floppy drives (A: and B:). If you have a single-drive system, you may
have to keep switching diskettes to perform some steps (for instructions
on how to invoke procedures with a single drive, read Appendix A in your
DOS manual). If you have a system with a hard drive, booting as well as
other procedures may be different (again, refer to the DOS manual for
detailed information).

Perform the following steps to start GWBASIC:

o
=
-
c
<
[
n

1. Insert the DOS disk in your boot drive.

2. Switch the computer on.
3. At the A> prompt type:
GWBASIC <Return>

You will see the version number, number of free bytes, and the GWBASIC
prompt "Ok".

For more information about the options that you can specify when invoking
GWBASIC, see the GWBASIC command specification in Section 7.

USING BASIC OR BASICA PACKAGES

The following instructions will explain how to use BASIC or BASICA
packages on your computer:

1. Read the installation information provided with the package to
determine whether it runs under BASIC or BASICA. If this
information cannot be found, check the directory of the product disk
and TYPE the batch file that loads the program. This will specify
whether BASIC or BASICA is used. For example, if the batch file is
AUTOEXEC.BAT, the following would be entered at the A> prompt

2-1

Using BASIC or BASICA Packages

after booting with DOS and inserting the product disk in the boot
drive:

A>TYPE A:AUTOEXEC.BAT <RETURN>
NOTE: If you have two diskette drives, put DOS in drive A and the product
in drive B. Then specify B: instead of A: to call up the batch
file on drive B.
The following should appear on the screen:
BASIC filename
or

BASICA filename

Other commands may also be listed in this batch file, and there may
be parameters listed after filename.

Y]
=
s
19
<
-
2]

2. To create a self-booting backup product disk, make sure the disk is
not copy-protected (if it is, read the paragraph below). Then
format a disk with the system on it using the FORMAT /S command.
Finally, perform a COPY command to copy GWBASIC.EXE along with
either BASIC.COM or BASICA.COM onto the disk (whether you copy
BASIC.COM or BASICA.COM depends on your specific product disk).
For information on the FORMAT and COPY commands, see
"FORMAT™" and "COPY" in the DOS manual.

If the product disk is copy-protected, copy GWBASIC.EXE onto it,
along with either BASIC.COM or BASICA.COM. This, disk can then
be used after booting with DOS.

3. The following steps show what to do if the product and GWBASIC do
not fit on the same disk.

It is assumed that you have a system with two diskette drives. If
you have a single drive, you must keep switching diskettes. Users
with single-drive systems should refer to the DOS manual for
insructions on how to invoke procedures with a single drive.

a. Boot the computer with the DOS disk in drive A.

b. Insert the product disk in drive B and TYPE the batch file
that loads it.

Writing Your Own Programs

c. At the A> prompt, run the files, if any, preceding the BASIC
or BASICA command.

d. Load GWBASIC from the DOS disk and insert the product disk in
drive A. Type the following:

RUN "filename" <Return>

If the product does not have an AUTOEXEC.BAT file, only load GWBASIC
from the DOS disk, then insert the product disk and at the Ok prompt
type:

RUN "filename"

If you have a hard drive, you may copy the product disk to it as long as
the product disk is not copy-protected.

NOTE: If you have a 325-line system, you cannot boot from the hard
drive. You can boot from the hard drive if you have a
PC-400, PPC-400, or a MEGA PC. For more information on
booting from the hard drive, refer to the DOS manual.

)
<
-
c
<
[
w

WRITING YOUR OWN PROGRAMS
When GWBASIC is invoked, it displays the prompt:
Ok

This means that GWBASIC is at the command level ready to accept
commands. At this point, GWBASIC may be used in either of two modes:
the direct mode or the indirect mode.

Direct Mode

In this mode, statements and commands are not preceded by line numbers,
but are executed as they are entered, for example:

Ok

A=54+6

Ok

PRINT A
11

Ok

o
=
-
c
<
-
]

Writing Your Own Programs

Arithmetic and logical operation results are displayed immediately and
stored for later use, but instructions are lost after execution. This

mode can be useful for debugging and for using BASIC as a calculator for
quick computations that do not require a complete program.

Indirect Mode

This mode is used for entering programs. Program lines are preceded by
line numbers and are stored in memory. The "RUN" command executes the
program stored in memory. Here is the above example in indirect mode:

10 A =5 + 6
20 PRINT A
RUN

11

Ok

Line Format

Program lines in a BASIC program have the following format:
nnnnn BASIC-statement[:BASIC-statement...]

Square brackets indicate optional input.

More than one BASIC statement can be placed on a line, but each statement
on a line must be separated by a colon.

A program line always begins with a line number, ends with a Return, and
may contain a maximum of 255 characters.

Line numbers indicate the order which the program lines are stored in
memory and are also used as references when branching and editing. Line
numbers must be in the range 0 to 65529. A period may be used in EDIT,
LIST, AUTO, and DELETE commands to refer to the current line.

It is possible to extend a logical line over more than one physical line
by using the Ctrl-Enter keys. Ctrl-Enter lets you continue typing a
logical line on the next physical line without entering a Return.

Editing

EDITING

GWBASIC’s editor can save you a sizable amount of time during the
development of your programs.

Any line of text typed while GWBASIC is in direct mode will be processed
by the editor. GWBASIC is in direct mode after the Ok prompt and until a
RUN command is invoked.

NOTE: GWBASIC’s editor will convert lower-case entries to upper-case,
except for remarks, DATA statements, and strings enclosed in
quotation marks.

If there are more than 255 characters in one line, the extra ones will be

truncated when Return is pressed. They will appear on the screen but will
not be processed.

Program Editor Keys

Moves the cursor to the upper left corner of the
Home screen.

Clears the screen and positions the cursor in the
ctrl Home upper left corner of the screen.
T Moves the cursor up one line.
l Moves the cursor down one line.

Moves the cursor one position left. When the

- cursor is advanced beyond the left of the screen,
it will be moved to the right side of the screen
on the preceding line.

Moves the cursor one position right. When the

- cursor is advanced beyond the right of the screen,
it will be moved to the left side of the screen on
the next line down.

2-5

O}
=
-
0
<
-
%))

o
=
-
o
<
-
()]

Editing

2-6

ctrl -
Ctrl -
End
Ctrl End
Ins
Tab

Moves the cursor one word to the right.

Moves the cursor one word to the left.

Moves the cursor to the end of the logical line.
Characters typed from this point are appended to
the line.

Erases the cursor position to the end of the
logical line.

Toggles Insert mode on or off. Insert mode is
indicated by the blinking cursor covering the
lower half of the character position. In graphics
modes, the normal cursor covers the whole
character position.

When in Insert mode, characters following the
cursor are moved to the right as characters are
inserted at the current cursor position. The
characters that advance off the right side of the
screen are inserted from the left on the following
lines.

When out of Insert mode, characters typed will
replace existing characters on the line.

When out of Insert mode, this key moves the cursor
over characters until the next tab stop is

reached. Tab stops occur every eight character
positions.

When in Insert mode, characters following the
cursor are moved to the right, causing blank
spaces to be inserted from the current cursor
position to the next tab stop. The characters
that advance off the right side of the screen are
inserted from the left on the following lines.

Editing

Deletes the character at the cursor position. All
Del characters to the right of the one deleted are
moved one position left. If a logical line

extends beyond a physical line, the character in
the first column of each subsequent line is moved
up to the end of the preceding line.

Back Causes the last character typed to be deleted, or
Space deletes the character to the left of the cursor.
All characters to the right of the cursor are

moved one position left. Subsequent characters
and lines within the logical line are moved up as

with the Del key. (O]
r4
Causes the entire logical line to be erased. May [
Esc be typed anywhere on the line. c
<
»
scroll Returns to Direct mode without saving any changes
ctrl légg:;k that were made to the current line being edited.

Freezes the screen; useful when listing a program
ctrl S on the screen that is scrolling too fast for you
to read it. Pressing Ctrl-S a second time causes

the listing to continue.

Printing Keys

Prtsc Causes the entire contents of the screen to
Shift | |, be printed out. Pressing Shift-PrtSc a
second time stops this printing.

Causes anything typed after these keys are

ctrl Rrtse pressed to be printed out when Return is
pressed. If you press Ctrl-PrtSc a second
time, this screen echoing will stop.

Ctrl Key

The Ctrl key performs various additional functions if used in combination
with certain alphabetic keys. These functions are listed in Table 2-1,
together with other keys that produce the same effect.

)
<
-
oc
<
-
(%))

Editing

Table 2-1
CTRL KEY FUNCTIONS
Ctrl + Equivalent Action
B Ctrl- « Moves cursor back to
previous word
C Ctrl-Break Interrupts program
execution and returns to
direct mode
E Ctrl-End Erases from cursor to end
of current line
F Ctrl- - Moves cursor forward to
next word
G - Sounds the speaker
Back Space Deletes character to left
of cursor
I Tab Moves cursor eight
positions to the right
J Ctrl-Enter Inserts blank line after
current line
K Home Moves cursor to upper left
corner of screen
L Ctrl-Home Clears screen and homes
cursor
M Enter Enters text typed on
current line into memory
N End Moves cursor to end of
current line
R Ins Toggles insert mode on and
off
S Ctrl-Num Toggles suspension of
Lock program execution on and
off

2-8

Editing

Table 2-1 (Cont.)

Ctrl + Equivalent Action

T KEY ON/OFF Toggles display/hide of
function key values

U Esc Deletes current line

w - Deletes word at current
cursor position

Z Ctrl-Pg Dn Clears from cursor to end
of screen

Adding New L.ines

Enter a valid line number followed by at least one character. When you
press Return this line will be saved in memory. Valid line numbers are 0
to 65529. If a line already exists with the same line number, the old

line will be replaced by the new one. If you run out of memory while
entering text, the following error message will occur:

Out of memory

That line of text will not be added.

Replacing Existing Lines

Enter the number of the line to be replaced followed by the desired
replacement text. When Return is pressed, the new line will replace the
old.

Deleting Lines
Type the line number of the line to be erased, and then press Return. The

line will be erased from the program. Esc will erase a line on the
screen, but that line will continue to exist in the program.

o
=
-
=
-
w

Editing

Duplicating Lines

Move the cursor to the number of the line you wish to duplicate, type over / \
the old number with a new number, and then press Return. Both old and
new lines will be included in the program.

Altering Lines on the Screen

Use the LIST and EDIT commands (described in Section 7) to display any
lines not on the screen.

The cursor movement keys can be used to position the cursor anywhere on
the screen. Use any method described previously to manipulate text, and
then press Return. The use of Return will enter all changes for that
logical line (i.e., up to 255 characters), no matter how many physical

lines on the screen are involved and no matter where the cursor is located
in the line.

)
<
-
1 a
<
-
(7))

NOTE: Any changes made are only made in memory. To save changes
permanently, see below under "Saving Programs".

Deleting a Program
To clear memory before entering a new program, use the NEW command.

To delete a program that has already been saved (see "Saving Programs"
below), use the KILL command.

Both of these commands are described in Section 7.

FORMAT ERRORS

When a format error is encountered during program execution, BASIC
automatically enters edit mode and displays the line that caused the
error. You then make your correction and press Return.

NOTE: Storing the line back in the program causes all variables to be N
lost. To examine the contents of a variable before making
the change, type Ctrl-Break to return to direct mode. The
variables would be saved since no program line was changed.

2-10

Exiting GWBASIC

SAVING PROGRAMS

When you write a program under GWBASIC, the program will be lost when you
exit GWBASIC unless you save (store) the program first. You can only save

a program written in indirect mode. To save a program, execute the SAVE
command, which writes the program to a disk file, adding the extension
".BAS" to the filename that you choose, unless you specify a different
extension. You can then use the RUN statement to execute any program that
has been saved in this way.

EXITING GWBASIC
To exit GWBASIC and return to DOS, type the following at the Ok prompt:

SYSTEM <Return>

o
=
-
o
<
-
7))

Typing Ctrl-Break or Ctrl-C will not return you to DOS.

2-11

A

)

Section 3
HANDLING FILES AND DEVICES

The commands and statements used in program files are described in brief
in this section, which also includes further information on files,

devices, user-installed device drivers, redirection of input and output,

and tree-structured directories. Refer to Appendix A for information on
random and sequential files.

For information on hardware options and installations, switch settings,
connecting system components, diskette and hard drive care and handling,
and general information for using the system, refer to the User’s Guide.
The guide also contains a glossary of commonly used computer terms.

Refer to the DOS manual for information on system start-up, important
diskette and hard drive instructions, command format, wildcard characters,
device filenames, the system keyboard, instructions for users with
single-drive systems, copying and backing up files on entire disks, and
DOS commands.

FILE NAMES

Whenever a filename is required in a disk command or statement, you must
use a filename that conforms to the naming conventions described in the
DOS manual. DOS will append a default extension .BAS to the filename
given in a SAVE, RUN, MERGE, or LOAD command.

PROGRAM FILE COMMANDS

Following is a review of the commands and statements used in program file
manipulation. For detailed information on GWBASIC commands, refer to
Section 7.

SAVE filespec[{,A | ,P)}]

Writes the program currently in memory to disk in a compressed binary
format. If the A parameter is used, the program will be written as a

Program File Commands

series of ASCII characters. Compressed binary format takes up less disk

space, but some GWBASIC commands such as MERGE require a program file to
be in ASCII format. If P is used, the file is read-protected (see

"Protected Files" below). N

LOAD filespec[,R]

Loads the program from disk into memory. If the R parameter is used, the
program will be run immediately. LOAD will delete any current program
from memory and close all open files. If the R parameter is used, open
data files are kept open, and programs may be chained or loaded in

sections and may access the same data files. (LOAD filename,R and
RUN filename,R are the same.)

RUN filespec[,R]

Loads the program from disk into memory and runs it. RUN will delete the
current contents of memory and close all files. If the R parameter is
used, open data files are kept open. (RUN filespec,R and LOAD
filespec,R are the same.)

MERGE filespec
A~
Loads the program from disk into memory without deleting the current
contents of memory. The program line numbers on disk merge with the line
numbers in memory. If two lines have the same number, the line from the
disk program replaces the one in memory.

CHAIN [MERGE]filespec[,[1line][,ALL][DELETE range]]
Passes control to the specified program, starting it at line number 1ine
if given. Some or all of the current variables can be passed to the new

program, and an overlay can be brought in or deleted.

KILL filespec

Deletes the file from the disk. filename may be a program file, or a
sequential or random access data file.

NAME old filespec AS new fillespec

Changes the name of a disk file. May be used with program files, random ~~
files, or sequential files.

NOTE: Wildcard characters, allowing you to reference more than one file
in a single command, can be used with the FILE, KILL, and

3-2

File and Device Information

NAME commands. Further details about wildcard characters are
given in the DOS manual. Use these characters with great

care - an incorrect use of them with KILL, for example, could
result in the deletion of many more files than you intended.

PROTECTED FILES

You can save a program in an encoded binary format with the Protect
parameter (P). This parameter is used with the SAVE command as follows:

SAVE filespec,P

A program saved in this manner cannot be listed or edited.

FILE AND DEVICE INFORMATION

A file contains information such as a GWBASIC program or data used by a
program. In order to use the information, you must specify where it is to
be found, using a file specification (filespec). A filespec is a string
expression (and must therefore be enclosed in quotes whenever it is
specified to GWBASIC) and has the following form:

[device:][[\directory]l[\directory...]]filename

Directories are explained below under "Tree-Structured Directories". A
filespec that includes directory names, telling the system which route to
take to find a disk file, is called a path.

The device name tells the system which device the file is on. The name
consists of up to four characters followed by a mandatory colon. (Note
that in DOS, however, the colon is not mandatory.) Table 3-1 shows a list
of device names with their references and indicates whether they can be
used for input or output. If you omit the device name from the filespec,
the default is the drive that was the DOS default before GWBASIC was
invoked.

The filename is the name of your file. It must conform to the naming
conventions described in the DOS manual. The only difference is the legal
characters that can be used in the name and extension. Only the following
characters are allowed:

A through Z Othrough9 @ #$%&!-

3-3

File and Device Information

Table 3-1
DEVICE INFORMATION
Code Name Use
KYBD: Keyboard Input only
SCRN: Screen Output only
LPT1: First printer Output or random
LPT2: Second printer Output or random
COM1: First asynchronous Input and output
communications
adapter (on-board)
CoM2: Add-on asynchronous
COM3: communications Input and output
COM4: adapters (if used)
A: First diskette Input, output,
drive and random
B: Second diskette Input, output,
drive and random
C: Hard drive (see Input, output,
note) and random

NOTE: On the MEGA PC, the first partition on the hard disk is C:, and
the remainder are lettered from D: onwards. The tape backup
always has the letter after the last partition letter.

In addition, the MEGA PC supports LPT3:, and the COMn:
designations are different. See the MEGA PC Supervisor’s
Guide for further details.

The filespec is different for communications devices. The filename is
replaced with a list of options which specify certain parameters. Refer
to OPEN "COM..." statement in Section 7 for more information.

Refer to the DOS manual for more detailed file specification and device

information.

File and Device Information

USER-INSTALLED DEVICE DRIVERS

GWBASIC allows you to use device drivers other than the standard ones
supplied with the system software. For example, if you want to use a
printer that has a different protocol from that recognized by the standard
GWBASIC printer driver LPT1:, you can tell GWBASIC to use a different
driver by specifying it in the OPEN statement. (Note that you will also
have to tell DOS that the driver is installed by modifying the DEVICE
command in the DOS configuration file CONFIG.SYS - see the DOS
manual.) The OPEN statement is specified as follows:

OPEN filespec [FOR mode] AS [#lfile number
[LEN=rec length]

A user-installed device driver can be user-written or supplied by a third
party. The following points should be borne in mind when a device driver
is written:

1. The name of the driver must not end in a colon, since GWBASIC uses
this to recognize predefined devices such as KYBD:, SCRN: etc. The
only exception is that you can use the name LPT1: or LPT2: for a
driver that replaces the standard printer driver.

2. The record length is set to 1 unless you change it by the LEN
parameter of the OPEN statement. GWBASIC will buffer rec
length characters before sending them to the driver.

3. GWBASIC only sends a carriage return (hex 0D) at the end of a line.
If the device needs a line feed as well (hex 0A), the driver must
provide it.

4. Device control information is passed from GWBASIC to the driver by
the IOCTL statement, and from the driver to GWBASIC by
the IOCTLS$ function. The driver must be able to:

a. set a maximum record length as specified in the OPEN
statement

b. return the current maximum record length to GWBASIC

c. (for an input device) return an end-of-file condition to
GWBASIC, so that a sequential input file that is open to a
device driver can be closed if an INPUT statement tries to
read beyond the last record in the file. If this happens, the
device driver should return a Ctrl-Z, which is used by
GWBASIC to generate the message "Input past end"

FILES

Redirection of Input and Output

For more information about writing your own device drivers, see the DOS
2.0 or later version of the Microsoft MS-DOS Programmer’s Reference
Manual, Document No. 8411-200-00.

REDIRECTION OF INPUT AND OUTPUT

Normally a GWBASIC program takes its input from the keyboard, and
outputs information to the screen so that you can see how the program
execution is going. You may want to change this so that, for example,
input is taken from data previously stored in a disk file, or output is
sent straight to the printer instead of appearing on the screen. To cause
this to happen, you have to redirect the input or output.

Redirection is specified when the GWBASIC command is used to invoke
BASIC:

GWBASIC [<stdin] [[>]>stdout] ...

The two parameters stdin and stdout cause redirection of input and
output respectively by specifying the name of a file or device from which
input is read or to which output is written (note that if stdout is
preceded by >> instead of >, output will be appended to the specified
output file instead of overwriting it). The name can be any valid
filename or filespec, or it can be a device identifier such as "LPT1:".

When input is redirected, all INPUT, LINE INPUT, INPUTS$, and INKEY$
statements will read input from the file specified by stdin instead of
from the keyboard. This will continue until an end-of-file marker
(Ctrl-Z) is read from the input file (you can test for this condition

using the EOF function). If the file has no such marker, or if a BASIC
statement tries to read past end-of-file, any open files are closed, the
message "Read past end" is displayed (or written to the output file if
output is redirected) and BASIC terminates, passing control back to DOS.

If the ON KEY(n) statement is used when input is redirected, BASIC will
continue to trap keys from the keyboard.

If you specify stdin as "KYBD:", input will continue to be read from the
keyboard.

When output is redirected, information that would normally be displayed on
the screen, such as the output of all PRINT statements, is sent to the
file identified or device by stdout.

Redirection of Input and Output

Using Ctrl-PrtSc will have no effect if output is redirected. Typing
Ctrl-C or Ctrl-Break causes BASIC to terminate, passing control back to
DOS.

If you specify stdout as "SCRN:", output will continue to be sent to the
screen.

Error messages are sent to both the screen and the output file or device
if only output is redirected; if both input and output are redirected,
error messages are just sent to the output file or device.
The following examples illustrate some of the uses of redirection. The
input statements referred to are INPUT, LINE INPUT, INPUT$ and
INKEYS$.

GWBASIC MYPROG>DATA.OUT

Data read by the input statements will continue to come from the
keyboard. Data output by PRINT will go into the file DATA.OUT.

GWBASIC MYPROG<DATA.IN

Data read by the input statements will come from DATA.IN. Data output
by PRINT will continue to go to the screen.

GWBASIC MYPROG<MYINPUT.DAT>MYOUTPUT.DAT

Data read by the input statements will now come from the file
MYINPUT.DAT. Data output by PRINT will go into MYOUTPUT.DAT.

GWBASIC MYPROG<\SALES\JOHN\TRANS)>>\SALES\SALES.DAT
Data read by the input statements will now come from the file

\SALES\JOHN\TRANS. Data output by PRINT will be appended to the
file \SALES\SALES.DAT.

TREE-STRUCTURED DIRECTORIES

GWBASIC includes commands to enable you to organize your disk files in
a tree-structured fashion, just as you can using DOS 2.0 and later
releases, but without having to leave GWBASIC. The commands are the
same as the DOS commands, namely:

3-7

FILES

Tree-Structured Directories

MKDIR creates a directory
CHDIR specifies a different directory as the current directory
RMDIR deletes a directory

Full details about tree-structured directories are given in the DOS
manual.

Several of the examples given throughout Section 7 relate to a tree-
structured disk file organization similar to this one:

root*

SALES ACCOUNTING

/

JOHN MARY STEVE SUE

REPORT REPORT files REPORT
other other other
files files files

*The root directory is designated by the initial
"\" in a filespec.

To illustrate this use of tree-structuring, let us assume that the sales

and accounting departments of a business share a computer that has a hard
disk, and the individual employees use the system for preparing reports
and maintaining accounting information. The files could be organized on
the disk as in the example above. The disk contains a root directory
(always identified by the name "\") which itself contains two further
directories, called SALES and ACCOUNTING. Since these two are both
accessed from the root, they are identified to DOS and GWBASIC by the
names "\SALES"and "\ACCOUNTING".

3-8

Tree-Structured Directories

In the same way, the SALES and ACCOUNTING directories contain further
directories. For example, SALES contains two directories, called JOHN and

MARY. These are the directories of individual employees, and are identified
by the names "\SALES\JOHN" and "\SALES\MARY".

Going down to the lowest level of the structure, that of individual files,
you can see for example that JOHN, in his directory, has various files, one
of which is called REPORT. Assuming that the disk containing all these
files is on drive C:, then this REPORT file can be identified to DOS and
GWBASIC as:

"C: \SALES\JOHN\REPORT"

If the CHDIR command in DOS or GWBASIC has been used to access a
particular directory (thus making it the current directory), an
alternative way of identifying files and directories is possible. Let us
assume that you have specified "CHDIR C:\SALES\JOHN" to make JOHN
the current directory. Now you can identify the REPORT file in this
directory in one of three ways:

REPORT
\SALES\ JOHN\REPORT
. . \JOHN\REPORT

Notice the last example, where the characters ".." replace "\ SALES".
The two periods are a shorthand method of specifying the current
directory’s parent directory (the directory at the next level up from
the current one).

In the same way, you could refer to the file REPORT in the directory
MARY in either of these ways (still assuming that JOHN is the current
directory):

\SALES\MARY \REPORT
. « \MARY \REPORT

To refer instead to the file REPORT in the directory SUE, which is not
under SALES but under ACCOUNTING, you could specify one of the
following from JOHN:

«+\..\ACCOUNTING\SUE\REPORT
\ACCOUNTING\SUE\REPORT

FILES

Tree-Structured Directories

Notice the multiple use of ".." in the first example. ".." takes you one

level up the tree structure each time, so that in the example above,

"..\.." takes you from JOHN first of all to SALES and then to the root, —_
from where you can access ACCOUNTING.

3-10

Section 4
GRAPHICS

When you use GWBASIC tor graphics with this microcomputer you are
provided with an exclusive "super-resolution" capability. Super
resolution allows the definition of 640 (horizontal) by 325 (vertical)
positions on the 325-line system standard monochrome display, or 640
(horizontal) by 400 (vertical) positions on the 400-line system standard
monochrome display.

In addition, medium- (320 x 200) and high- (640 x 200) resolution graphics
are supported on the monochrome display. These lower resolution levels
are standards for color systems and operate normally when using a color
monitor with this computer. On the 325-line system standard monochrome
display, medium resolution will appear in the upper left portion of the
screen and high resolution will appear in the upper two-thirds of the
screen. On the 400-line standard monochrome display, medium- and
high-resolution graphics cover the entire screen (320 x 200 and 640 x 200
respectively). However, since high-resolution graphics supports only two
colors, black and white, the only benefit the color/graphics monitor
adapter adds is color capability to medium-resolution graphics and to text
mode. (See the "SCREEN" statement in Section 7 for more information on
screen modes.)

Points are always numbered from left to right and from top to bottom. If
you think of the screen as a matrix of dots each having a vertical and
horizontal location, you will understand the numbering system used. The
horizontal position of each dot is x, and the vertical position is y. The
upper left corner is therefore referred to as point 0,0, and the lower

right corner point is either 639,324 (for 325-line systems) or 639,399

(for 400-line systems). The numbers 0,0 and 639,324 (or 639,399) are the
coordinates of those particular points.

One of the features of GWBASIC is that you may have a number of
graphics pages. The advantage of having multiple pages is that you can
write to one page in memory while viewing a different page on the screen.
The page in memory is called the active page, and the page on the
screen is called the visual page. The maximum number of graphics
pages depends on the type of system you have, as explained below. The
default graphics page is the highest page number possible on your system.

4-1

0N
Q
T
o
<
o
)

Graphics

For 325-line systems the maximum number of graphics pages is 8 (numbered 0

to 7). A 400-line system can have up to 16 pages (numbered 0 to 15),

depending on the amount of memory available to DOS. Use the following ~
formula to find the maximum page number for a 400-line system:

INT(M/32) - 1

where M is the amount of memory available to DOS in Kbytes (this value is
displayed when the system is booted).

Pages 0 to 4 are reserved for system use, so you should use page 5 as the
lowest number when specifying graphics pages.

When writing graphics programs, you

should make sure that there will

be no conflicts in memory usage

between the program and the

graphics. A CLEAR statement should

be used at the beginning of the f \
program to control the amount of
workspace available to the program.

You will probably want to turn off the function key display using KEY OFF.

With the SCREEN statement, besides setting the resolution and the visual

and active pages, you have options to set if you have an adapter for a

color monitor (see Color/Graphics Monitor Adapter section below for more
information). For advanced information about graphics, refer to Appendix
B, which provides details on how the computer is configured for graphics,
assembly language programming for graphics, and the graphics memory map.

The statements and functions that are used specifically for graphics are:
CIRCLE, COLOR, DRAW, GET, LINE, PAINT, PMAP, POINT, PRESET,
PSET, PUT, SCREEN, VIEW, VIEW PRINT and WINDOW.

Note that the COLOR statement if used with a monochrome monitor enables

you to vary the image so that it blinks, reverses out, becomes invisible,
highlighted, and/or underscored - see the COLOR Statement (Text) in N
Section 7.

o
Q
T
o
<
o
)

Color/Graphics Monitor Adapter

For information on printing a graphics display screen, see the GRAPHICS
command in the DOS manual.

HOW TO SPECIFY COORDINATES

There are two ways to use coordinates. When you specify a point as (x,y)
you are using absolute form. Alternatively you can use the relative
form, which is specified as STEP (x-offset, y-offset). For example,
assume that the most recent point referenced was (x,y). The statement
LINE STEP (10,5) would specify a point at offset 10 from x and of fset 5
fromy.

If the STEP option is used for the second coordinate in the statement, it
is relative to the first coordinate. For example, the statement LINE
(10,15)-STEP(20,30) would draw a line from point (10,15) to point
(30,45).

COLOR/GRAPHICS MONITOR ADAPTER

This adapter is a card that fits in one of the expansion slots on the main
PCB. The adapter is used if you have a color monitor, allowing you to add
color to either text or graphic images.

In text mode you have the ability to use 16 colors (see COLOR Statement
(Text)). In addition, you have the opportunity for multiple pages of

text.

Medium resolution (320 by 200 points) gives you a combination of colors:
a palette of 3 colors associated with the color number you have chosen.
See COLOR Statement (Graphics) for details.

High resolution (640 by 200 points) has only two colors, black and white.

Super resolution is not supported by the color/graphics adapter.

4-3

0
Q
T
o
<
o
oG

Section 5
PROGRAMMING CONCEPTS

O
=
=
=
<
o
o
o
o
Q.

This section introduces the raw materials used to create a BASIC program,
namely:

® character set

® constants

® variables

® numeric precision
® arrays

® expressions

® operators

CHARACTER SET

The GWBASIC character set consists of alphabetic characters, numeric
characters, and special characters.

The alphabetic characters are the upper-case and lower-case
letters of the alphabet. The numeric characters are the digits 0
through 9.

All of the remaining characters on the keyboard are special
characters, some of which also have special meanings to GWBASIC.
For example, the "-" character can be just a character as you might use it
on a typewriter. On the other hand, in a BASIC program statement, the
same character can be an instruction to perform a subtraction.

Table 5-1 lists the special characters, together with any special meaning
that they have to GWBASIC. Table 5-2 lists certain special characters
that can be generated in more than one way.

Another set of characters includes those generated in conjunction with the
Ctrl (control) key. The control characters generally do not cause
individual characters to be displayed, although they may have very
noticeable effects on the screen. For example, Ctrl and L will cause the
screen to be cleared. These characters are listed in Table 2-1.

5-1

PROGRAMMING

Character Set

The Alt key can be used to generate certain GWBASIC keywords, for
example typing Alt-A causes the word AUTO to be displayed. This saves
the trouble of typing these keywords in full each time you want to use
them. The full list of keywords is given‘in Table 5-3.

A final set of special characters includes those which can be generated
directly on the screen by pressing the Alt key and entering a number in
the range from 128 through 255. When the Alt key is released, the
character will appear. A complete list of the character set can be found
in Appendix C, ASCII Character Codes.

Table 5-1

SPECIAL CHARACTERS

Character Explanation

Blank

Equal sign or assignment symbol

Plus sign

Minus sign

Multiplication symbol

Division symbol

Integer division symbol

Exponentiation symbol

Declaration character for integer
variables

Declaration character for
double-precision variables

Declaration character for string

Declaration character for
single-precision variables

(Apostrophe) remark delimiter

Program statement separator

Abbreviation for PRINT statement

String delimiter

Left parenthesis

Right parenthesis

Left bracket

Right bracket

Comma

Period or decimal point

Semicolon

Less-than sign

Greater-than sign

At sign

Underscore

-4 W W)~z + 1

OV A v LM)0

5-2

Character Set

Certain characters have a particular effect, and most of these can be
generated in more than one way, namely by:

® pressing the key itself

o pressing Ctrl and another key

® holding down Alt and typing a numerical sequence

e using CHR$ with the appropriate value in a GWBASIC program

G
=
=
=
<
o
G
o
o
a

Table 5-2 gives details of these alternatives.

Table 5-2
OTHER SPECIAL CHARACTERS

Key ctrl Alt CHR$ Description
C or Stop program
Break execution and

return to BASIC
command level.

G 007 7 Generate a beep
sound.
Back H 008 8 Delete character
Space to the left of

cursor and move
cursor to that

position.

Tab I 009 9 Move cursor 8
spaces to the
right.

S or Suspend program
Num execution.

Lock
Resume program
execution after
after Ctrl-S or
Ctrl-Num Lock.

5-3

Character Set

O

<

=

s Table 5-2 (Cont.)

<

c

O

8 Key ctrl Alt CHR$ Description
o

Esc U or 27 Erase entire

[logical line.

> Move cursor to
start of next
word.

N Move cursor to
end of logical
line.

L Move cursor to

or B start of previous
word.

Home 011 11 Move cursor to

upper left corner
of screen.

L 012 12 Clear screen.

E or Erase to end of

End logical line.
Insert R Toggle insert

mode.

Return M 013 13 Carriage return
or (end a logical
Enter line).

There is also a set of keywords generated by the Alt key. They offer a
shorthand way to refer to certain statements, commands, or functions in
GWBASIC. Table 5-3 lists these.

Constants

Table 5-3
ALT KEYWORDS
Alt Keyword Alt Keyword Alt Keyboard
A AUTO J (no word) S SCREEN
B BSAVE K KEY T THEN
C COLOR L LOCATE U USING
D DELETE M MID$ v VAL
E ELSE N NEXT w WIDTH
F FOR 0 OPEN X XOR
G GOTO P PRINT Y (no word)
H HEX$ Q (no word) Z (no word)
I INPUT R RUN
CONSTANTS
Constants are the actual values GWBASIC uses during execution. There are
7N two types of constants: string (character) and numeric.
A string constant is a sequence of up to 255 alphanumeric characters
enclosed in double quotation marks. Examples are:
"HELLO"
"$25,000.00"
"Number of Employees"
Numeric constants are positive or negative numbers. Note that a plus sign
is optional on a positive number. Numeric constants in GWBASIC may not
contain commas. There are five types of numeric constants:
1. Integer
Whole numbers between -32768 and 32767. These constants do not
contain decimal points.
o~

5-5

O
=
=
=
<
o
O
Q
oc
Q.

Constants

2. Fixed-point

Positive or negative real numbers, i.e. numbers that contain decimal
points.

0]
=
=
=
<
c
O
Qo
o
o 8

3. Floating-point

Positive or negative numbers represented in exponential form
(similar to scientific notation). A floating-point constant .
consists of an optionally signed integer or fixed-point number (the
mantissa) followed by the letter E and an optionally signed integer
(the exponent). Double-precision floating point constants use the
letter D instead of E. For more information refer to "Numeric
Precision" below. (The E or D means "times ten to the power of.")

Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

The range for these is 10E-38 to 10E+38 (positive or negative).
4. Hexadecimal
Hexadecimal numbers with up to four digits and the prefix &H.
Hexadecimal digits are the numbers 0 through 9, A, B, C, D, E, and
F.
Examples:
&H76
&H32F
5. Octal

Octal numbers with up to 6 digits and the prefix &0 or &. Octal
digits are 0 through 7.

Examples:

&0347
&1234

Variables

Numeric Precision

Numbers may be stored as either integers, single precision, or double
precision. Constants entered in integer, hexadecimal or octal format are
stored in two bytes of memory and are interpreted as integers or whole
numbers. In single precision up to 7 digits may be stored and printed,
but only 6 will be accurate. In double precision, numbers may be stored
with 16 digits of precision, and 16 digits may be printed.

A single-precision constant is any numeric constant that is not an integer
and has one of the following characteristics:

1. Seven or fewer digits.
2. Exponential form using E.
3. A trailing exclamation point.

A double-precision constant is any numeric constant that has one of these
characteristics:

1. Eight or more digits.
2. Exponential form using D.

3. A trailing number sign.

Examples:
46.8 345692811
-1.09E-06 -1.09432D-06
3489.0 3489.0#
22.5! 7654321.1234
VARIABLES

Variables are names used to represent values in a GWBASIC program.
There are two types: numeric and string. A numeric variable always has a
value that is a number. All other variables consist of strings of
characters. The variable type must match the type of data being assigned
to it.

The value of a variable may be set as a constant, or it may be assigned as
the result of calculations or various data input statements in the program.

9]
<
=
=
<
o
O
o
o
Q

PROGRAMMING

Variables

N

If a variable is used before a value is assigned to it, its value is
assumed to be zero until a value is assigned.

How to Name a Variable

GWBASIC variable names may be any length within a meaningful program
line of up to 250 characters. Up to 40 characters of the name are
significant. Variable names can contain letters, numbers, and the decimal
point. However, the first character must be a letter. Special ending
characters are used to identify types of variables. See "How to Declare
Variable Types" below.

A variable name must not be a reserved word, although a reserved word can
be embedded as part of a variable name (for example, TAN cannot be used
but TANGENT is a valid name). The one exception is that no variable may
begin with the characters USR. Reserved words consist of all GWBASIC
commands, statements, function names, and operator names. A complete
list is provided in Appendix D.

If a variable begins with FN, it is assumed to be a call to a user-defined
function. (Refer to DEF FN statement in Section 7.)

How to Declare Variable Types

String variable names are written with a dollar sign as the last
character. For example:

A$ = "SALES REPORT"

The dollar sign announces that the variable will represent a string.
Storage requirements are 3 bytes plus the length of the string.

Numeric variable names may declare integer, single-, or double-precision

. values. The type declaration characters for these as well as the number

of bytes required to store each type of value are as follows:
% Integer variable (2 bytes)
! Single-precision variable (4 bytes)

Double-precision variable (8 bytes)

Variables

O
<
. . o . =
If the variable type is not declared, the default is single precision. s
<
Note that double-precision variables require twice the storage space of o
single-precision variables. They also require more time for arithmetic (O]
operations. Integer variables produce the fastest and most compact object o)
code. o
o
Examples of GWBASIC variable names:
PI# double precision
MINIMUM! single precision
LIMIT% integer
N$ string
ABC single precision

Another way to declare variable types is through the following statements:
DEFINT, DEFSTR, DEFSNG, and DEFDBL. Refer to DEFtype statements
in Section 7 for further information.

Array Variables
An array is a list or matrix table of numeric or string values.

An array is created by establishing dimensions for a variable (refer to
DIM statement in Section 7). Each value in an array is called an
element and is identified by means of a subscript attached to the
variable name.

DIM V$(4,4,2)
The preceding statement creates a three-dimensional array of string
values. The dimensions might be thought of as rows, columns, and pages.
The sequence is for the user to define. The statement has established the
maximum value for subscripts for the array. The subscripts must be
positive integer expressions.

A$=V$(2,1,1)
The preceding assigns the value of an element of the array to AS3.

If an array element is created without a DIM statement, a single-dimension
array is implicitly created with a maximum subscript of 10.

5-9

PROGRAMMING

Variables

The minimum value for a subscript is 0 unless it is set to 1. If you do

not intend to use the 0 element in an array, you can save data storage

space by using the OPTION BASE statement (refer to Section 7). Setting
the minimum to 1 would save 8008 bytes in the following array.

AB#(1000,2)

The maximum number of dimensions for an array is 255. Up to 32,767
elements can be specified per dimension. The maximum amount of memory
that can be occupied by an array is 64K.

HOW GWBASIC CONVERTS NUMBERS FROM
ONE PRECISION TO ANOTHER

The following rules apply when GWBASIC converts a number from one
precision to another.

1. If a numeric constant of one type is assigned to a numeric variable
of a different type, the number will be stored as the type declared
in the target variable name.

Example:

10 A%=23.42
20 PRINT A%
RUN

23

Note that if a string variable is set equal to a numeric value or
vice versa, a "Type mismatch" error occurs.

2. When an expression is evaluated, all of the operands in an arithmetic

or relational operation are converted to the same degree of
precision, i.e. that of the most precise operand. Also, the result
of an arithmetic operation is returned to this degree of precision.

Examples:
10 D# = 6#/7
20 PRINT D#

RUN
.8571428571428571

5-10

Converting Precision

The arithmetic was performed in double precision, and the result
was returned in D# as a double-precision value.

10 D = 6#/7

20 PRINT D

RUN
.8571429

The arithmetic was performed in double precision, and the result was
returned to D (single-precision variable), rounded, and printed as a
single-precision value.

Logical operators (see below) convert their operands to integers and
return an integer result. Operands must be in the range -32768 to
32767 or an "Overflow" error occurs.

When a floating-point value is converted to an integer, the
fractional portion is rounded.

Example:

10 C%=55.88
20 PRINT C%
RUN
56

Precision is not increased when converting from a lower- to a
higher-precision number. For example if a single-precision value
(A) is assigned to a double-precision variable (B#), only the first
six digits of B# will be valid because only six digits of accuracy
were supplied with A.

The absolute value of the difference between the printed
double-precision number and the original single-precision value is
less than 6.3E-8 times the original single-precision value.

Example:

10 A = 2.04
20 B# = A
30 PRINT A;B#
RUN
2.04 2.039999961853027

5-11

o
=
=
=
<
o
O
Q
o
Q

O
=
=
=
<
oc
O
Q
o
o

Converting Precision

6. When converting from a higher-precision value to a lower-precision
variable, the result is rounded.

Example:

10 C = 55.8834567#
20 PRINT C

RUN

55.88346

This affects assignment statements as well as function and statement
evaluations.

EXPRESSIONS AND OPERATORS

An expression may be a string or numeric constant or variable. An
expression may also combine constants and variables with operators to
produce a single value.

Operators perform mathematical or logical operations on numeric as well
as string values. They may be divided into the following categories:
arithmetic, relational, logical, and functional. Each is described below.

Arithmetic Operators

The arithmetic operators are listed in Table 5-4 in order of precedence,
i.e., when several arithmetic operations take place in the same statement,
the operation highest in the table will be performed first. If two or

more operations have the same level of precedence, the leftmost operation
will be performed first. Note that you can change the order of evaluation
by using parentheses. Operations within parentheses are performed first.
Within parentheses the normal order of operations is maintained.

5-12

Expressions and Operators

Table 5-4
ARITHMETIC OPERATORS
Operator Operation Sample
Expression
~ Exponentiation X~Y
- Negation =X
L) Multiplication, floating- X»Y
point division X/Y
\ Integer division X\Y
MOD Modulo arithmetic X MOD Y
+,- Addition, subtraction X+Y
X-Y

Integer division is denoted by the backslash (\). The operands are
rounded to integers (in the range -32768 to 32767) before the division is
performed, and the quotient is truncated to an integer.

Example:

10 A = 10\4

20 B = 25.68\6.99
30 PRINT A;B

RUN

2 3

Modulo arithmetic is denoted by the operator MOD. It yields the integer
remainder of an integer division.

Example:
10 A = 10 MOD 4
20 PRINT A
RUN
2

Remainder 2 results when 10 is divided by 4.

5-13

o
=
=
=
<
o
S
o
o
a

Expressions and Operators

PROGRAMMING

PRINT 25.68 MOD 6.99

Remainder 5 results when 26 is divided by 7.

To change the order in which operations are performed, use parentheses.
Operations within parentheses are performed first. Inside parentheses,
the usual order of operations is maintained.

Some sample algebraic expressions and their GWBASIC counterparts are

given in Table 5-5.

Table 5-5

SAMPLE ALGEBRAIC EXPRESSIONS AND THEIR
GWBASIC COUNTERPARTS

Algebraic Expression

GWBASIC Expression

x+2y

x-y
z

Xy
z

x+y

(x2)¥
A

x(-y)

X+Y*2
X-Y/Z

X*Y/Z

(X+Y)/Z

(Xx~2)~Y

X~(Y"Z)
X*(-Y)

Note in the last example that two consecutive operators must be separated

by parentheses.

Expressions and Operators

If, during the evaluation of an expression, division by zero occurs, a
"Division by zero" error message is displayed. Machine infinity (a number
recognizable by the fact that it ends with "E+38") with the sign of the
numerator is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation operator results in

zero being raised to a negative power, the "Division by zero" error
message is displayed, positive machine infinity is supplied as the result

of the exponentiation, and execution continues.

If there is an overflow during computation, an "Overflow" error occurs,
machine infinity with the algebraically correct sign is supplied as the
result, and execution continues.

Relational Operators

Relational operators are used to compare two values, which may be either
both numeric or both string. The result of the comparison is either
"true" (-1) or "false" (0). This result is usually used to make a
decision regarding program flow. (See IF statement in Section 7.)
Relational operators are listed in Table 5-6.

Table 5-6
RELATIONAL OPERATORS
Operator Relation Tested Example
= Equality X=Y
<> or X< Inequality XY
< Less than X<Y
> Greater than X>Y
<= or =< Less than or equal X<=Y
to X=<Y
>= or => Greater than or equal X>=Y
to X=>Y

O
=
=
=
<
o
O
o
oc
(s

91-9

*syJew uofyejonb ur paso[oud
5q)SnuI SUOISSaIdxd UOSLIedwod Ul Pasn SIULISUOD SULIS [[e Yey) 0N

(qu/ZI/gu =¢d 219ym) W8/21/64 > $d
wIH.LAWS. > wH.LANS.

) MREn>

WwTOu < u TOu

w#Xu < uBXa

WANVNA T, = WwHINVNA TIw

wlVa > WVVa

*I- s1 uonjesado Teuonelal 3y} JO JNSal
a1 “*2°1 ‘anuy [[e aJe Suoissa1dxa Jeuone[dl Jo sa[durexa SUIMOI[O] Y],

“Jued1yTuSis aJe syue[q Surfrel) pue Surpesr]

*3uo

128u0] oY) sopadaad Surrys 19)I0ys Y} ‘payoeal ST SULNS SUO JO pud 3y
uostiedwoo oYy Suwnp J] “Joquinu JSYSIY Y} YiIM 3UO Y (UeY SSI[Sse
popJesal st “*a°1) s9padald JaquInu JOMO] Y} PIM 8urns ay) ‘I9JJIp SOPOd
ay) uaypy °Tenbd aJe sSuLIS 9y} ‘dures Yy dJe SIP0 [[DSV A se 8uoy sy
(*s9p0oo 3s3Y} JO ISI[3)R[dWOO e I0J ‘SIPO)

Ja)oRey) JIDSV ‘O Xipuaddy 0) 1933y) °sepoo [[QSY J1ey Sutredwod
pue yoes WOJJ SWN} € Je Jajoeteyd 9uo Suryey Aq paredwoo sre s8uing

*0J9Z Uey) SSI[SI)T J1 SUTWIANAP 0} 1sIF (X)NIS 9enfeAd isnwt JISYGM D
000T 0LOD® O0>(X)NIS dI
:ordurexy

'z
£q papIAIp T~ JO an[eA oY) ueyy ssI st X sn[d ¥ JO anfea 3y J1 onay 1

Z/(T-1) > X+X

uorsso1dxs ay) ‘a[dwexa Jo,J °)SIIJ powsojiad sKem[e ST onPWYLIE oY)
‘uorssaddxa JUO UI PIUIqUIOD dJe $I10}etado Teuone[as pue dRIWYILIe USYM

*/ UONI9G U JUSUISIE)S
LA 0) J9J3Y ‘3[qelieA e 0) anfeA e UIsse 0} pasn ST udts [enbs 3y,

sJoyelad() pue suogssa.ldxg

")
)
o
)
=y
>
=
=
Z
o)

Expressions and Operators

Logical Operators

Logical operators perform tests on numeric values. These Boolean
operations are usually used to make decisions by connecting two or more
relations and returning a true or false value. (Refer to IF statement in
Section 7 for more information.)

The result of a logical operation is a number that is "true" if it is not
zero, or "false" if it is equal to zero. Table 5-7 lists the results of
these operations ("1" indicates a true value, and "0" indicates a false
value). The values are shown in order of precedence. Thus if several
operations take place in the same statement, NOT will be performed
before AND, etc. If two or more operations have the same level of
precedence, the leftmost one will be performed first.

In an expression, logical operations are performed after arithmetic and
relational operations.

Examples:

IF D<200 AND F<4 THEN 80

The result will be true if the value of D is less than 200 and the value
of F is less than 4; if both these conditions are satisfied the program
will jump to line 80.

IF I>10 OR K<O0 THEN 50

The result will be true if I is greater than 10, or K is less than 0, or
both. Thus if either or both of these conditions are satisfied the
program will jump to line 50.

Logical operators work by converting their operands to 16-bit, signed,
two’s complement integers in the range -32768 to 32767. (If the operands
are not in this range, an "Overflow" error results.) The given operation
is performed on these integers bit by bit, and the result is determined by
the corresponding bits in the two operands.

5-17

o
=
=
=
<
oc
O
Q
o
(s B

PROGRAMMING

Expressions and Operators

Table 5-7

RESULTS OF LOGICAL OPERATIONS IN BASIC

Operation | Value | Value Result Terminology
NOT X NOT X Logical
1 0 Complement
0 1
AND X Y X AND Y Conjunction
1 1 1
1 0 0
0 1 0
0 0 0
OR X Y XO0RY Disjunction
1 1 1
1 0 1
0 1 1
0 0 0
XOR X Y X XOR Y Exclusive
1 1 0 OR
1 0 1
0 1 1
0 0 0
EQV X Y X EQV Y Equivalence
1 1 1
1 0 0
0 1 0
0 0 1
IMP X Y X IMP Y Implication
1 1 1
1 0 0
0 1 1
0 0 1

Expressions and Operators

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator may be used to
"mask" all but one of the bits of a status byte at a machine I/O port, and
the OR operator may be used to "merge" two bytes to create a particular
binary value.

The following examples will help demonstrate how the logical operators
work.

63 AND 16 results in 16

Since 63 is binary 111111 and 16 is binary 10000, 63 AND 16 equals 010000
in binary, which is equal to 16.

-1 AND 8 results in 8

Since -1 is binary 11111111 11111111 and 8 is binary 1000, -1 AND 8 equals
binary 00000000 00001000, or 8.

4 OR 2 results in 6

Since 4 is binary 100 and 2 is binary 10, 4 OR 2 is binary 110, which is
equal to 6.

NOT X = -(X+1)
The two’s complement of any integer is the bit complement plus one.
If both operands are equal to either 0 or -1, a logical operator will
return either 0 or -1.
Functional Operators
A function is used in an expression to call a predetermined operation that
is to be performed on an operand. Certain functions, such as SQR (square
root) or SIN (sine), reside in GWBASIC. Details of these functions are

given in Section 7.

GWBASIC also allows you to define your own functions with the DEF FN
statement. (Refer to this statement in Section 7.)

5-19

G
=
=
=
<
o
O
o
oc
o

Expressions and Operators

String Operators

String operators include concatenation and string functions.
Strings may be concatenated, or joined together, by using +. For example: !

0
=
=
=
<
c
S
Q
o
o

10 A$="FILE" : B$="NAME"
20 PRINT A$ + B$

30 PRINT "NEW " + A$ + B$
RUN

FILENAME

NEW FILENAME

String functions return results which are strings. All the functions
listed in Section 7 which end in "$" are string functions. In addition,
the DEF FN statement can be used to define string as well as numeric
functions.

5-20

Section 6
COMMUNICATIONS

This section describes the GWBASIC statements required to support RS232
asynchronous communication with other computers and peripherals.

OPENING A COMMUNICATIONS BUFFER

OPEN "COM..." allocates a buffer for communications I/O. Opening a
communications buffer in this way is the equivalent of using OPEN to open
a data file on disk.

2
P
o
-
<
o
Z
=
=
=
o
(&

COMMUNICATIONS 170

Since the communications buffer is opened as a file, all input/output
statements valid for disk files are valid for COM.

Sequential input statements for communications are the same as those for
disk files. They are:

INPUT #file number
LINE INPUT #file number
INPUTS$

Communications sequential output statements are also the same as those for
disk files, and are:

PRINT #
PRINT # USING
WRITE #

Refer to these statements in Section 7 for details of coding format and
usage.

Communication I/O

Communications I/0 Functions

The most difficult aspect of asynchronous communication is being able to
process characters as fast as they are received. At rates above 2400 bps,
it is necessary to suspend character transmission from the host long enough
to "catch up". This can be done by sending XOFF (Ctrl-S) to the host and
XON (Ctr1-Q) when ready to resume.

Three functions are provided to help in determining when an "over-run"
condition is imminent. These are:

LOC(x)

Returns the number of characters in the input buffer waiting to be
read. If that number is greater than 255, LOC returns 255.

LOF(x)

Returns the number of free bytes in the input buffer. This is the same
as n-LOC(x), where n is the size of the communications buffer as
set by the /C: option of the GWBASIC command. The default for n is
256.

n
<
o
[
<
Q
<
o
=
=
o
o

EOF(x)

Returns true (-1) if the input buffer is empty and false (0) if any
characters are waiting to be read.

A "Communications buffer overflow" error can occur if a read is attempted
after the input buffer is full (i.e., LOC(x) returns 0).

INPUT$ Function for COM Files

The INPUTS$ function is preferred over the INPUT and LINE INPUT
statements when reading COM files, since all ASCII characters may be
significant in communications. INPUT is least desirable because input
stops when a comma or carriage return is seen. LINE INPUT
terminates when a carriage return is seen.

INPUTS allows all characters read to be assigned to a string. INPUT$
(n,y) will return n characters from file y. The following statements
are efficient for reading a COM file:

A Sample Program

10 WHILE NOT EOF(1)
20 A$=INPUT$(LOC(1),#1)

(program processes data returned in A$)

60 WEND

The statements above return the number of characters in the buffer and
store them in A$. If there are more than 255 characters, only 255 will be
returned at a time to prevent "String overflow". Furthermore, if this is
the case, EOF(1) is false, and input continues until the buffer is empty.
This code enables fast processing.

GET and PUT for COM Files

GET and PUT for COM files are slightly different from disk files and are
used for fixed-length I/O from or to the COM file. Instead of specifying
the record number, you specify the number of bytes to be transferred into
or out of the file buffer. This number cannot exceed the value set by the
LEN option on the OPEN "COM..." statement. Refer to GET and PUT in
Section 7.

0
=z
Q
-
<
O
=
=)
=
=
O
o

A SAMPLE PROGRAM

The following program enables the computer to be used as a conventional
terminal. Besides full duplex communication with a host, the program
allows data to be "down-loaded" to a file. Conversely, a file may be
"up-loaded" (transmitted) to another terminal.

In addition to demonstrating the elements of asynchronous communication,
this program should be useful in transferring GWBASIC programs and data
to and from the PC.

Note that this program is set up to communicate with a DEC-20 using XON
and XOFF. You may want to modify it for your environment.

0
z
Q
-
<
O
=
=)
=
=
O
o

A Sample Program

The TTY Program
10 SCREEN 0,0:WIDTH 80
15 KEY OFF:CLS:CLOSE
20 DEFINT A-Z
25 LOCATE 25,1
30 PRINT STRING$(80," ")
40 FALSE=0:TRUE= NOT FALSE
50 MENU=5 °* Value of MENU Key (Ctrl-E)
60 XOFF$=CHR$(19):XON$=CHR$(17)
100 LOCATE 25,1:PRINT "Async TTY Program"
110 LOCATE 1,1:LINE INPUT "Speed? ";SPEED$
120 COMFIL$="COM1:"+SPEED$+",E,7,1,cs,ds,cd,1f"
130 OPEN COMFIL$ AS #1
140 OPEN "SCRN:" FOR OUTPUT AS #2

200

205
210
220
230
240
250
260
270
280

300
305
310
400
410
420

430
440

LOCATE 25,1: PRINT "ASYNC TTY PROGRAM";SPC(5);
:COLOR 0,7:PRINT"TERMINAL EMULATION MODE";
:COLOR 7,0:PRINT SPC(5);"TYPE CTRL-E FOR MENU"
:LOCATE 2,1

PAUSE=FALSE

A$=INKEY$: IF A$="" THEN 230

IF ASC(A$)=MENU THEN 300 ELSE PRINT #1,A$;

IF EOF(1) THEN 210

IF LOC(1)>128 THEN PAUSE=TRUE: PRINT #1,XOFFS$;
AS$=INPUT$(LOC(1),#1)

PRINT #2,A$;:IF LOC(1)>0 THEN 240

IF PAUSE THEN PAUSE=FALSE:PRINT #1,XON$;

GOTO 210

LOCATE 25,1: PRINT "ASYNC TTY PROGRAM";SPC(5);
:COLOR 0,7:PRINT"FILE TRANSFER MODE"; :COLOR
7,0:PRINT STRING$ (30," "):LOCATE 2,1

LOCATE 1,1:PRINT STRING$(30," "):LOCATE 1,1
LINE INPUT"File? ";DSKFILS$

LOCATE 1,1:PRINT STRING$(30," "):LOCATE 1,1
LINE INPUT"(T)ransmit or (R)eceive? " ;TXRX$
IF TXRX$="T" THEN OPEN DSKFIL$ FOR INPUT AS
#3:GO0TO 1000

OPEN DSKFIL$ FOR OUTPUT AS #3

PRINT #1,CHR$(13);

A Sample Program

500
510
520
530
540
550

600
610
620
630
640

650

1000
1010
1020
1030
1040
1050

1060

9999

IF EOF(1) THEN GOSUB 600

IF LOC(1)>128 THEN PAUSE=TRUE: PRINT #1 ,XO0FF$;
A$=INPUT$(LOC(1),#1)

PRINT #3,A$;:IF LOC(1)>0 THEN 510

IF PAUSE THEN PAUSE=FALSE:PRINT #1,XON$;

GOTO 500

FOR I=1 TO 5000

IF NOT EOF(1) THEN I=9999

NEXT I

IF I>9999 THEN RETURN

CLOSE #3:CLS:LOCATE 1,1:PRINT "* Download
complete *"

GOTO 200

WHILE NOT EOF(3)

A$=INPUTS$(1,#3)

PRINT #1,A$;

WEND

PRINT #1,CHR$(26); °CTRL-Z to make close file.
CLOSE #3:CLS:LOCATE 1,1:PRINT "*» Upload
complete ¥#»"

GOTO 200

CLOSE:KEY OFF

Notes on the TTY program:

Line No. Comments

10

15

Sets the screen to monochrome text mode and sets the width
to 80.

Turns off the function key display, clears the screen, and
makes sure that all files are closed.

Asynchronous implies character I/0 as opposed to line or
block I/0. Therefore, all PRINT statements (either to the
communications file or to the screen) are terminated with
a semicolon. This suppresses the carriage return and line
feed normally issued at the end of a PRINT statement.

Defines all numeric variables as integers. This primarily

benefits the subroutine at lines 600-620. To optimize
speed always use integer counters in loops where possible.

6-5

n
<
o
-
<
o
<
)
=
=
O
o

A Sample Program

Line No. Comments

25-30 Clears the 25th line starting at column 1.
40 Defines Boolean TRUE and FALSE.
50 Defines the ASCII (ASC) value of the menu key.
60 Defines the ASCII XON, XOFF characters.

100-200 Prints program name, asks for Baud rate (speed). Opens
communication to file number 1, even parity, 7 data bits.

Programmer exercise: Modify this section to check for
valid baud rates before continuing.

205-280 This section performs full duplex I/O between the screen and
the device connected to the RS232 connector as follows:

1. Reads a character from the keyboard into A$. Note
that INKEY$ returns a null string if no character is
waiting.

®
Z
Q
-
<
S)
=
=)
=
=
O
o

2. If no character is waiting, checks whether any
characters are being received.

3. If the character at the keyboard is the menu key, a
file can be downloaded. Gets file name.

4. If character (A$) is not the menu Kkey, then sends it
by writing to the communications file (PRINT #1,A$).

5. At 230 checks whether characters are waiting in
buffer. If not, goes back and checks keyboard.

6. At 240, if more than 128 characters are waiting, sets
pause flag to suspend input. Sends XOFF to stop
further transmission.

7. At 250-260, reads and displays contents of buffer on
screen until empty. Continues to monitor size of
buffer (in 240). Suspends transmission if falling
behind.

6-6

A Sample Program

Line No. Comments

8. Resumes transmission by sending XON only if suspended
by previous XOFF. Repeats process until menu key is
struck.

300-310 Gets disk file name to download to. Opens file to tie number
2.

400-430 Asks if file named is to be transmitted (uploaded) or
received (downloaded).

440 Sends a carriage return to the host to begin downloading.
This program assumes that the last command sent to the
host was to begin such a transfer and was missing only the
terminating carriage return. If a DEC system is the
host, then such a command might be:

COPY TTY:=MANUAL.MEM<MENU Key>

n
Z
=
-
<
o
<
=2
=
=
O
o

where the menu key was struck instead of RETURN.

500 When no more characters are being received (LOC(x) returns
0), performs a time-out routine (explained in line 600).

510 Again, if more than 128 characters are waiting, signals a
pause and sends XOFF to the host.

520-530 Reads all characters in the buffer (LOC(x)) and writes them
to disk (PRINT #3..) until caught up.

540-550 If a pause was issued, restarts host by sending XON and
clears the pause flag. Continues process until no
characters are received for a pre-determined time.

600-650 Time-out subroutine. The FOR loop count is determined by
experimentation. That is, if no character is received
from the host for 17-20 seconds, transmission is assumed
to be complete. If any character is received during this
time (line 610), sets I well above FOR loop range to exit
loop and return to caller. If host transmission is
complete, closes the diskette file and returns to being a
terminal.

6-7

o
Z
o
-
<
O
=
=)
=
=
O
&)

A Sample Program

Line No. Comments

1000- Transmit routine. Reads one character into A$ with INPUT$

1060 statement. Sends character to device in line 1020. Sends /
Ctrl-Z in line 1040 in case receiving device needs one to
close its file. Finally, in lines 1050 and 1060, closes
disk file, prints completion message, and returns to
conversation mode in line 200.

9999 Not executed in version of program as shown above. This line
closes the communications file left open and restores the
function key display.

Programmer exercise: Add some lines to the routine in
lines 400-420 to exit the program via line 9999.

OPERATION OF CONTROL SIGNALS

The following sections give more detailed technical information about
communicating with another computer or peripheral from BASIC. This
information may only be of interest to advanced programmers. 2

Output from the asynchronous communications (serial) port conforms to the
EIA RS-232C standard. Therefore control signals transmitted or received
are DC voltages that are either ON (greater than +3 volts) or OFF (less
than -3 volts).

Control of Output Signals with OPEN

When GWBASIC is invoked the RTS (Request To Send) and DTR (Data
Terminal Ready) transmission lines are both turned off. With an OPEN
"COM..." statement both these lines are turned on. However you may
suppress the RTS signal by using the RS option on the OPEN "COM..."
statement. Lines stay on until the communications file is closed (with
CLOSE, END, NEW, RESET, SYSTEM, or RUN without the R option).

The DTR line is on and stays on even if the OPEN "COM..." statement fails

with an error. This allows you to retry the OPEN without having to
execute a CLOSE. N

6-8

Operation of Control Signa{ls :

Use of Input Control Signals

If either the CTS (Clear To Send) or DSR (Data Set Ready) lines are
OFF, an OPEN "COM..." statement will not execute and after one second,
BASIC will return a "Device Timeout" error.

The Carrier Detect (also called Receive Line Signal Detect or RLSD) line
can be either on or off. It will have no effect on the operation of the
program.

Use the RS, CS, DS, and CD options on the OPEN "COM..." statement to
specify how these lines should be tested. This information is given in
the OPEN "COM..." statement in Section 7.

If signals being tested are turned off while a program is executing, I/O
statements associated with the communications file will not work. For
example, if you turn the CTS or DSR line off and subsequently execute a
PRINT # statement, you will get a "Device Fault" or "Device Timeout"
error. However, the RTS and DTR stay on even if such an error occurs.

%)
Z
o
[
<
o
P
>
=
=
O
o

Test for a line disconnect by using INP to read the bits in the Modem
Status Register on the asynchronous communications adapter (for
information on using INP and OUT to read from and write to the 8250
UART registers, see "Accessing the Registers" below). With the
built-in communications adapter use INP(&H3FE) to read the register,
and with an add-on adapter use INP(&H2FE). Use the delta bits in the
status register to determine if transient signals have appeared on any of
the control lines. Remember that for a control signal to have meaning,
the pin corresponding to that signal must be connected in the cable to
your modem or to another computer.

Another way to test for bits is with the Line Status Register. Use
INP(&H3FD) with the built-in communications adapter and INP(&H2FD)
with an add-on communications adapter to access this register. The bits
can be used to determine what types of errors have occurred on receipt

of characters from the communications line or whether a break signal has
been detected.

Direct Control of Output Control Signals

Use the OUT statement to control RTS or DTR control signals directly.
Whether these signals are on or off is controlled by bits in the Modem
Control Register, which is at address 3FC (in BASIC, &H3FC, to indicate a
hexadecimal number).

COMMUNICATIONS

Operation of Control Signals

CAUTION

Take great care when modifying
hardware registers directly as
incorrect programming can cause
system degradation or failure.

The Line Control Register may also be used to modify bits. Use care with
this method since most of the bits in this register have been set by BASIC
at the time an OPEN statement is executed and changing any of them could
cause communications failure. This register is at address 3FB (in BASIC,
&H3FB).

First read the register with INP, and then rewrite it by changing only the
pertinent bit or bits.

Bit 3, the Parity Enable bit, in the Line Control Register indicates whether
parity checking is enabled or not. To check the status of this bit while a
program is running, use the following code in the program:

10 DEFINT S

20 S=INP (&H3FB) ’read the line control register
30 IF (S AND 8) THEN GOTO 60

40 PRINT "Parity currently disabled"

50 GOTO 70
60 PRINT "Parity currently enabled"
70 .

For further information, consult the Technical Reference Manual for your
system.

Accessing the Registers

COMMUNICATIONS ERRORS

Communications errors can occur at several different stages: on opening
the communications file, when reading data or when writing data.

An error message that may occur when opening the communications file
with OPEN "COM..." is:

"Device Timeout"
Occurs if a signal to be tested (CTS, DSR, or CD) is missing.

Messages that can be displayed in the event of an error when reading data
are:

"Com buffer overflow"
Output if overrun occurs.

"Device I/0 error"

%
z
Q
-
<
o
=
=)
=
=
O
&

Indicates overrun, break, parity, or framing errors.

"Device Fault"

Indicates loss of DSR or CD signal.
Possible errors when writing data are:
"Device Fault"

Caused by loss of CTS, DSR, or CD on a Modem Status Interrupt while
BASIC was performing other processing.

"Device Timeout"

Indicates loss of CTS, DSR, or CD while waiting to write data to the
output buffer.

ACCESSING THE REGISTERS

You may read from or write to any of the 8250 UART registers via the CPU.
These registers are used to control 8250 operations and to transmit and
receive data. The registers are the Modem Status Register (MSR), Modem

Accessing the Registers

Control Register (MCR), Interrupt Enable Register (IER), Interrupt
Identification Register (IIR), Line Status Register (LSR), Receiver Buffer
Register (RBR), Transmitter Holding Register (THR) and Line Control
Register (LCR). Full details are given in the Technical Reference Manual
for your system.

To read the contents of one of these registers, use the INP function. For
example, INP(&H3FB) returns the contents of the Line Control Register.

To write to one of these registers, use the OUT statement. For example,
OUT &H3FB,&HA40 writes the hexadecimal value 40 (binary 0100 0000) to
the Line Control Register, causing bit 6 (Set Break) to be set.

2
e
o
s
<
Q
p
2
=
=
O
(&)

6-12

Section 7

GWBASIC COMMANDS, STATEMENTS,
FUNCTIONS, AND VARIABLES

INTRODUCTION

Following is an alphabetical listing of the commands, statements,
functions, and variables in GWBASIC. Commands are ways to tell
GWBASIC to perform an action immediately. Statements are used to
define parameters you wish to set. Executable statements tell GWBASIC
what to do next, and nonexecutable statements cause no action. An example
of a nonexecutable statement is REM, which allows you to insert a remark
in the program you are writing. Functions return a numeric or string
result. Variables represent values used in a GWBASIC program.

In the specifications that make up this section, the format line shows you
how to enter the command, statement, function, or variable. Remember the
AN following rules:
® Words in capital letters must be entered as shown. Note that
GWBASIC will convert words to upper case unless they are part of a
quoted string, remark, or DATA statement.
® You supply the information in lowercase bold letters.

e Square brackets [] enclose information that is optional.

()
[
4
w
=
w
-
<
-
w

e Ellipses (...) mean that the preceding item may be repeated as often
as necessary.

e Braces { } indicate a choice between two or more items, which are
separated by vertical bars |

e All punctuation except that in square brackets must be included
and must be in the position indicated by the format.

/™ The following is an example of a format line:

INPUT[; J["prompt";] variable[,variable]...

Introduction

In this statement the keyword INPUT may be followed by a semicolon.
Then a prompt may be included in quotation marks followed by a semicolon.
At least one variable is required for the statement, but others may be added
if they are separated by commas.

Note the following definitions of parameters that appear throughout this
section.

filespec = a string expression conforming to the rules for file
specification given in Section 3 of this manual

numvar = the name of a numeric variable

variable = the name of any variable, numeric or string
Note also that while the format for functions is:

v = function
You may also use the following direct command:
PRINT function

The purpose of the command, statement, function, or variable is provided
next, after which there is amplifying material telling more about each.

Examples are also given and explained.

A complete summary of the GWBASIC commands, statements, functions
and variables is given in Appendix I.

NOTE: For the MEGA PC, any code that references the speaker or the
music queue will have no effect. This includes the PLAY
function and the BEEP, ON PLAY(n), PLAY [ON/OFF/STOP]
and SOUND statements.

n
-
P4
w
=
w
-
<
-
)]

ABS

ABS Function

FORMAT v = ABS(x)
PURPOSE Returns the absolute value of x.
g a8
X may be any numeric expression.
PRINT ABS(8%*(-3))
24
Ok

Since the absolute value of a number is always positive or zero, in this
example it is positive 24.

n
-
2
w
=
w
[
<
-
7))

7-3

n
-
4
w
=
w
[
<
-
n

ASC

ASC Function

FORMAT v =ASC(a$)
PURPOSE Returns the ASCII code for the first character of a string.
gwa
a$ may be any string expression.
See Appendix C for ASCII codes.
If a$ is null, an "Illegal function call" error is returned.
10 A$="TEST"
20 PRINT ASC(AS$)
RUN
84
Ok

The above shows the ASCII code for "T" is 84. PRINT ASC("TEST")
would show the same result.

7-4

ATN

ATN Function

FORMAT v = ATN(x)
PURPOSE Returns the arctangent of x in radians.
B B

The expression X may be any numeric type, but the default evaluation of
ATN is performed in single precision. The evaluation will be in double
precision if the /D switch is specified in the GWBASIC command.

The result is a value in the range -pi/2 to pi/2, where pi=3.141593.

10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.249046
Ok

The above shows how the arctangent of 3 is calculated.

(9]
-
<
w
=
w
-
<
-
)

n
-
Z
w
=
Ll
-
<
-
(7]

AUTO

AUTO Command

FORMAT AUTO [1ine number[,increment]]

PURPOSE Generates a line number automatically every time <Return) is
pressed.

g R B
line number is thé number of the beginning line.

increment is the value that will be added to each line number to get the
next one.

AUTO is especially useful when you are entering programs because it
spares you the trouble of having to type each line number.

AUTO begins at 1ine number and increments each subsequent line
number by increment. The default for both values is 10. If 1ine
number is followed by a comma but increment is not specified, the last
increment specified in an AUTO command is assumed. If 1ine number is
omitted but increment is included, then the first line number is 0.

If AUTO generates a line number that is already being used, an asterisk is
printed after the number to warn you that any input will replace the
existing line. However, pressing <Return> immediately after the asterisk
will save the existing line, and AUT O will generate the next line number.
AUTO ends when you press Ctrl-Break or Ctrl-C. The line in which
Ctrl-Break or Ctrl-C is typed is not saved, and you are returned to
command level.

NOTE: When in AUTO mode, you may change only the current line. If
you want to change another line, you must exit AUTO.

AUTO 100,50
Generates line numbers 100, 150, 200 ...
AUTO

Generates line numbers 10, 20, 30, 40 ...

7-6

BEEP

BEEP Statement

FORMAT BEEP
PURPOSE Sounds the speaker.
E 2 I
BEEP sounds the speaker at 800 Hz for 1/4 second.
Both BEEP and PRINT CHR$(7) have the same effect.
2430 IF X < 20 THEN BEEP

If X is less than 20, the speaker will sound.

]
e
Z
w
=
w
-
<
-
w

7-7

STATEMENTS

BLOAD

BLOAD Command

FORMAT BLOAD filespec[,offset]
PURPOSE Loads a file in binary format into memory.
B aw

filespec identifies the file to be loaded, and has the form shown under
"File and Device Information" in Section 3.

offset is a numeric expression in the range 0 to 65535. Loading starts
at this address and is specified as an offset into the segment declared by
the last DEF SEG statement.

If offset is omitted, the offset and segment address are assumed to be
those specified by a previous BSAVE command. In this case the file is
loaded into the same location from which it was saved.

If the device is omitted, the DOS default drive is assumed.

BLOAD does not perform an address
range check. It is therefore
possible to load a file anywhere in
memory. Make sure that the file
does not load over GWBASIC’s stack,
GWBASIC's variable area, or your
GWBASIC program (see the memory
map in Appendix G). Careful use

of the /M switch in the GWBASIC
command will help in avoiding this
problem.

BLOAD and BSAVE are often used for loading and saving assembly
language programs. (See the CALL statement for how to execute assembly
language programs from within a GWBASIC program.) However, any
segment may be specified as the source or target for these statements by
means of the DEF SEG statement. This allows you to save and display
screen images by saving from or loading to the screen buffer. The memory
address for any given super-resolution graphics page is:

BLOAD

(page * 800H):0000

— You will need to input this address in a DEF SEG statement prior to using
' BLOAD with screen images.

10 ’Load subroutine at 6000:F000
20 DEF SEG=&H6000 ’Set segment to 6000 Hex
30 BLOAD"PROG1" ,&HF000 ’Load PROG1

The segment address is set at 6000 hex and loads PROG1 at F000.

w
-
P
L
=
w
-
<
-
(7]

STATEMENTS

BSAVE

BSAVE Command

FORMAT BSAVE filespec,offset,length

PURPOSE Transfers the contents of the specified area of memory
to an output device, saving the data in binary format.

filespec identifies the file to be loaded, and has the form shown under
"File and Device Information" in Section 3.

offset is an integer in the range 0 to 65535. This is the location at
which saving is to start, and is the offset into the segment declared by
the last DEF SEG statement.

length is an integer in the range 1 to 65535. It designates the length
in bytes of the memory image to be saved.

filespec, offset, and length are required for this command to be
executed. If offset and/or 1ength are omitted, a "Bad file name"
error message appears, and the save is terminated.

If the device name is omitted from filespec, the DOS default drive is
assumed.

A DEF SEG statement should be executed before the BSAVE statement,
since the address given in the last known DEF SEG statement is used for
the save.

BLOAD and BSAVE are often used for loading and saving assembly
language programs. (See CALL statement for how to execute assembly
language programs from within a GWBASIC program.) However, any
segment may be specified as the source or target for these statements with
the DEF SEG statement. This allows you to save and display screen images
by saving from or loading to the screen buffer.

BSAVE

10 ’Save the graphic screen buffer

20 SCREEN 105 ’set screen attributes
for text and graphics
30 SCREEN ,,3,3 ’set active and visual

pages to page 3.
(program generates a screen image)
100 DEF SEG = &H1800 *set segment pointer
to screen buffer
110 BSAVE "PICTURE",0,27000 ’save screen buffer
to file "PICTURE"
DEF SEG is used to set up the segment address of the screen buffer as hex
1800, which corresponds to the statement SCREEN ,,3,3. The offset of 0
and length 27000 specifies that the entire screen is to be saved.
NOTE: For 400-line systems, line 110 of this example should read:

110 BSAVE "PICTURE",0,33000

()
-
Z
w
p=
w
-
<
[
w

STATEMENTS

CALL

CALL Statement

FORMAT CALL numvar[(variable[,variable]...)]
PURPOSE Calls an assembly language subroutine.
g 8w

numvar is the name of a numeric variable containing the starting point
in memory of the subroutine being called. This starting point is
specified as an offset into the current segment, which must have been
previously defined in a DEF SEG statement.

variable is the name of a variable, or variables separated by commas,
that is to be passed to the subroutine. Constants cannot be used.

100 DEF SEG=&H8000
110 F00=0
120 CALL FOO(A,B$,C)

Line 100 sets the segment address to 8000 hex. FOO is set to z<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>