
GWBASIC 2.0

lU

corona
clotQ systems, inc

n

n

Part No. 700712

GWBASIC 2.0

Copyright 1985 by OaeMoo Electronics Co., Ltd. All rights reserved.

Printed in Korea.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
written permission of Corona Data Systems, Inc.

Portions of this manual have been reprinted with the permission of
Microsoft Corporation. Copyright 1979, 1985, 1984 Microsoft Corporation.
All rights reserved.

MS-DOS and GW-BASIC are registered trademarks of Microsoft Corporation.

IBM and IBM PC are registered trademarks of International Business
Machines Corporation.

The use of trademarks or other designations is for reference purposes
only.

P^t No. 700655
Rev. A

CONTENTS

PREFACE xi

1. INTRODUCTION 1-1

2. GETTING GWBASIC STARTED 2-1
Beginning at DOS 2-1
Using BASIC or BASICA Packages 2-1
Writing Your Own Programs 2-3
Direct Mode 2-3
Indirect Mode 2-4
Line Format 2-4

Editing 2-5
Program Editor Keys 2-5
Printing Keys . 2-7
Ctrl Key 2-7
Adding New Lines 2-9
Replacing Existing Lines 2-9
Deleting Lines 2-9
Duplicating Lines 2-10
Altering Lines on the Screen 2-10
Deleting a Program 2-10

Format Errors 2-10
Saving Programs 2-11
Exiting GWBASIC 2-11

3. HANDLING FILES AND DEVICES 3-1
File Names 3_1
Program File Commands 3_1
Protected Files 3_3
File and Device Information 3_3
User-Installed Device Drivers 3-5
Redirection of Input and Output 3-6
Tree-Structured Directories 3-7

4. GRAPHICS 4-1
How to Specify Coordinates 4-3
Color/Graphics Monitor Adapter 4-3

5. PROGRAMMING CONCEPTS 5-1
Character Set 5-1
Constants 5_5
Numeric Precision 5-7

Contents

Variables 5-7

How to Name a Variable 5-8
How to Declare Variable Types 5-8
Array Variables 5-9

How GWBASIC Converts Numbers From One Precision

To Another 5-10
Expressions and Operators 5-12

Arithmetic Operators 5-12
Relational Operators 5-15
Logical Operators 5-17
Functional Operators 5-19
String Operators 5-20

6. COMMUNICATIONS 6-1

Opening a Communications Buffer 6-1
Communications I/O 6-1

Communications I/O Functions 6-2

INPUTS Function for COM Files 6-2
GET and PUT for COM Files 6-3

A Sample Program 6-3
Operation of Control Signals 6-8
Control of Output Signals with OPEN 6-8
Use of Input Control Signals 6-9
Direct Control of Output Control Signals 6-9

Communications Errors 6-11

Accessing the Registers 6-11

7. GWBASIC COMMANDS, STATEMENTS, FUNCTIONS,
AND VARIABLES 7-1

Introduction 7-1

ABS Function 7-3

ASC Function 7-4

ATN Function 7-5

AUTO Command 7-6

BEEP Statement 7-7

BLOAD Command 7-8

BSAVE Command 7-10

CALL Statement 7-12

CALLS Statement 7-13
CDBL Function 7-14

CHAIN Statement 7-15
CHDIR Command 7-18

CHR$ Function 7-19
CINT Function 7-20
CIRCLE Statement 7-21

CLEAR Command 7-24

Contents

CLOSE Statement 7-26
CLS Statement 7-27
COLOR Statement (Graphics) 7-28
COLOR Statement (Text) 7-31
COM(n) Statement 7-34
COMMON Statement 7-35
CONT Command 7-36
COS Function 7-37
CSNG Function 7-38
CSRLIN Function 7-39
CVI, CVS, CVD Functions 7-40
DATA Statement 7-41
DATES Statement 7-42
DATES Variable 7-43
DEE FN Statement 7-44
DEF SEG Statement 7-46
DEEtype Statements 7-47
DEF USR Statement 7-48
DELETE Command 7-49

DIM Statement 7-50
DRAW Statement 7-51
EDIT Command 7-54
END Statement . 7-55
ENVIRON Statement 7-56

ENVIRONS Function 7-58
EOF Function 7-60

ERASE Statement 7-61
ERDEV, ERDEVS Variables 7-62
ERR and ERL Variables 7-63

ERROR Statement 7-65
EXP Function 7-67
FIELD Statement 7-68
FILES Command 7-71
FIX Function 7-72
FOR and NEXT Statements 7-73
ERE Function 7-76
GET Statement (Files) 7-77
GET Statement (Graphics) 7-79
GO SUB and RETURN Statements 7-81
GOTO Statement 7-83
GWBASIC Command 7-84
HEXS Function 7-87

Contents

IF Statement 7-88
INKEYS Function 7-91
IN? Function 7-92
INPUT Statement 7-95
INPUTS Function 7-97
INPUTS Statement 7-99
INSTR Function 7-100
INT Function 7-101
lOCTL Statement 7-102
lOCTLS Function 7-103
KEY Statement 7-104
KEY(n) Statement 7-108
KILL Command 7-110
LCOPY Statement 7-111
LEFTS Function 7-112
LEN Function 7-113
LET Statement 7-114
LINE Statement 7-115
LINE INPUT Statement 7-118
LINE INPUT ff Statement 7-119
LIST Command 7-120
LLIST Command 7-122
LOAD Command 7-123
LOC Function 7-124
LOCATE Statement 7-125
LOF Function 7-127
LOG Function 7-128
LPOS Function 7-129
LPRINT and LPRINT USING Statements 7-130
LSET and RESET Statements 7-131
MERGE Command 7-132
MIDS Function 7-133
MIDS Statement 7-134
MKDIR Command 7-135
MKIS, MKSS, MKDS Functions 7-136
NAME Statement 7-137
NEW Command 7-138
OCTS Function 7-139
ON COM(n) Statement 7-140
ON ERROR GOTO Statement 7-141
ON...GOSUB and ON...GOTO Statements 7-142
ON KEY(n) Statement 7-143
ON PEN Statement 7-146
ON PLAY(n) Statement 7-147
ON STRIG(n) Statement 7-149
ON TIMER(n) Statement 7-150

VI

Contents

OPEN Statement 7-152
OPEN "COM..." Statement 7-155
OPTION BASE Statement 7-158
OUT Statement 7-159
PAINT Statement 7-160
PEEK Function 7-163

PEN Statement and Function 7-164
PLAY Statement 7-166
PLAY(n) Function 7-169
PLAY ON. OFF and STOP Statements 7-170
PMAP Function 7-171
POINT Function 7-173

POKE Statement 7-174

POS Function 7-175
PRESET Statement 7-176
PRINT Statement 7-178
PRINT USING Statement 7-181

PRINT # and PRINT # USING Statements 7-186
PSET Statement 7-189
PUT Statement (Files) 7-191
PUT Statement (Graphics) 7-192
RANDOMIZE Statement 7-195
READ Statement 7-1%

REM Statement 7-198
RENUM Command 7-199

RESET Command 7-201
RESTORE Statement 7-202

RESUME Statement 7-203
RETURN Statement 7-204

RIGHTS Function 7-205
RMDIR Command 7-206

RND Function 7-207
RUN Command 7-208
SAVE Command 7-209
SCREEN Function 7-210
SCREEN Statement 7-211
SGN Function 7-215
SHELL Statement 7-216
SIN Function 7-219
SOUND Statement 7-220
SPACES Function 7-222
SPC Function 7-223
SQRFunction 7-224
STICK Function 7-225
STOP Statement 7-226

STRS Function 7-227

Contents

STRIG Statement and Function 7-228
STRINGS Function 7-230
SWAP Statement 7-231
SYSTEM Command 7-232
TAB Function 7-233
TAN Function 7-234
TIMES Statement 7-235

TIMES Variable 7-236
TIMER Function 7-237
TIMER Statement 7-238
TRON and TROFF Commands 7-239
USR Function 7-240
VAL Function 7-241
VARPTR Function 7-242

VARPTRS Function 7-244
VIEW Statement 7-246
VIEW PRINT Statement 7-248
WAIT Statement 7-249
WHILE and WEND Statements 7-251
WIDTH Statement 7-253
WINDOW Statement 7-255
WRITE Statement 7-258
WRITE ft Statement 7-259

8. USING ASSEMBLY LANGUAGE SUBROUTINES 8-1
Memory Allocation 8-1
Loading an Assembly Language Program into Memory 8-1
Internal Representation of Numbers 8-2

Single Precision - 24 Bit Mantissa 8-2
Double Precision - 56 Bit Mantissa 8-3

CALL Statement 8-3

CALLS Statement 8-8
USR Function 8-8

APPENDICES

A. SEQUENTIAL AND RANDOM FILES A-1
Sequential Files A-1

Creating and Accessing a Sequential File A-1
Adding Data to a Sequential File A-3

Random Files A-3

Creating a Random File A-4
Accessing a Random File A-5
A Sample Program A-6

Contents

B. ADVANCED GRAPHICS INFORMATION B-1
Configuring Your Computer for GWBASIC and

Graphics: 325-Line Desktop Users . B-1
Advanced Information for Assembly Language
Programmers . B-1

Graphics Memory Map B-8

C. ASCII CHARACTER CODES C-1
Extended Codes C-6

D. LIST OF GWBASIC RESERVED WORDS D-1

E. TRIGONOMETRIC FUNCTIONS E-1

F. SCAN CODES P-l

G. TECHNICAL INFORMATION AND PROGRAMMING
HINTS G-1

Control Codes G-1
Memory Map G-2
How Variables Are Stored G-4
Keyboard Buffer G-5
Search Order for Ports G-b
Switching Displays G-6
Some Techniques with a Color/Graphics Adapter G-7

Sixteen Background Colors G-7
Character Color in Graphics Mode G-7

Programming Techniques G-7
General G-7
Logic Control G-9
Loops G-10

H. RECOMMENDED READING H-1

I. SUMMARY OF GWBASIC LANGUAGE I-l

J. ERROR MESSAGES J-1

INDEX IN-1

IX

Contents

FIGURES

8-1 Stack Layout When CALL Statement is Activated 8-4
8-2 Stack Layout During Execution of a CALL Statement 8-5
B-1 Graphics Display Configuration B-9
B-2 325-Line Graphics Memory Map B-10
B-3 400-Line Graphics Memory Map B-11
G-1 Memory Map for GWBASIC G-3

TABLES

2-1 Ctrl Key Functions 2-8
3-1 Device Information 3-4
5-1 Special Characters 5-2
5-2 Other Special Characters 5-3
5-3 Alt Keywords 5-5
5-4 Arithmetic Operators 5-13
5-5 Sample Algebraic Expressions and Their GWBASIC

Counterparts 5-14
5-6 Relational Operators 5-15
5-7 Results of Logical Operations in BASIC 5-18
7-1 Color Numbers 7-29
7-2 Palette Information 7-29
7-3 Color on a Standard Monochrome Monitor 7-32
7-4 Color in Text Mode With a Color/Graphics Adapter 7-33
7-5 Execution of IF-THEN-ELSE Statements 7-88
7-6 Port Address Map 7-93
7-7 Function Key Values 7-105
7-8 Effects of AND, OR, and XOR on Color in Medium

Resolution 7-193
7-9 Note Frequencies for Four Octaves 7-220
7-10 Tempo Calculations 7-221
C-1 ASCII Character Codes C-2
C-2 Extended Key Codes C-6
E-1 Trigonometric Functions E-1
F-1 Keyboard Scan Codes F-1
G-1 GWBASIC Control Functions G-1

PREFACE

The information below provides details of the hardware and software
requirements for running GWBASIC 2.0, together with a list of the features
that are new in this release.

Existing features of GWBASIC that have changed slightly for 2.0 are listed
in the README.DOC file on the GWBASIC 2.0 diskette (note that this is an
ASCII file, not a word processing file). To see the contents of this
file, use the DOS commands TYPE (to display the file on the screen) or
PRINT (to list the file on a printer).

HARDWARE AND SOFTWARE REQUIREMENTS

Version 2.0 of GWBASIC is designed to run on the following systems:

• 400-line Desktop and Portable Computers (PC-400 and PPC-400)

• 325-line Desktop and Portable Computers

• MEGA PC

The hardware configuration required for this version of GWBASIC is as
follows for all systems:

• At least 256 Kbytes of memory

• SYSTEM ROM version 3.10 or later

Operating system software required to run GWBASIC 2.0 is:

• DOS 2.0 or later releases

GWBASIC version 2.02 and later releases are compatible with BASIC 3.0
used on the IBM PC.

XI

New Features

NEW FEATURES IN THIS RELEASE

Several new features have been added to GWBASIC since the previous _
release (l.xx). These features are: ^

• Redirection of standard input (INPUT and LINE INPUT statements)
and output (PRINT statement)

• Support of character devices, allowing user-installed device drivers
to interface with GWBASIC (lOCTL statement and IOCTL$
function - see also Section 3)

• Improved disk I/O facilities for handling larger files (GET and PUT
statements (files))

• SHELL statement, allowing DOS commands or "child" (i.e., called)
processes to be executed without having to leave GWBASIC

• Tree-structured directory management, to take full advantage of DOS
2.0 disk file organization (MKDIR, CHDIR and RMDIR statements and
use of pathnames in file specifications)

New and improved graphics features:

• Definition of viewports within current screen (VIEW and VIEW
PRINT statements)

• Redefinition of screen or viewport coordinates (WINDOW statement)

• PMAP function, allowing "world coordinates" created by the
WINDOW statement to be mapped to physical screen coordinates and
vice versa

• Form of POINT function to return value of current graphics
coordinates (physical or logical)

• Line clipping instead of wraparound where a line continues outside
the screen or viewport boundary (all graphics statements)

• Line styling, allowing lines to be drawn in dotted and/or dashed
patterns (LINE statement)

• Paint tiling, allowing a figure to be painted with a pattern (PAINT
statement)

Xll

New Features

• Turn angle (TA) and paint (P) commands for use when drawing a
figure (DRAW statement)

Other features:

• Screen editor enhancements, including text window support

• TIMER function, returning number of seconds elapsed since midnight
or system reset

• Use of TIMER function to seed random number generator
(RANDOMIZE statement)

• Music and timer event trapping (ON PLAY(n)... and ON TIMER(n)...
statements)

• Easier octave changing for music (PLAY statement)

• User-defined key sequences (KEY statement) and trapping
(ON KEY(n)... statement)

• ERDEV and ERDEV$ functions, returning device error code and device
driver name when an error occurs

• Double-precision option for standard math functions (/D switch of
GWBASIC command)

• Improved control of memory allocation for assembly language routines
(/M switch of GWBASIC command)

• Deletion from specified line number to end of program (DELETE
statement)

• OPTION BASE allowed in chained programs (OPTION BASE
statement)

• DATA statements RESTOREd before chained program is run (CHAIN
statement)

Xlll

n

n

n

Section 1

INTRODUCTION

This is your reference manual for the GWBASIC 2.0 Interpreter. The
following sections present a comprehensive overview of this program and
how to use it. First you will learn how to bring up GWBASIC and to use it
to run existing programs or to write your own programs. Following that is
specific information on files, graphics, characters, numbers, and
communications. The main reference section contains an alphabetical
listing of the commands, statements, functions, and variables that can be
used in GWBASIC. In the appendices is additional, more technical,
information on files and graphics, as well as a list of ASCII codes,
keyboard scan codes, reserved words, trigonometric functions, and error
messages. Other appendices provide programming hints, a list of
recommended reading, and a summary of GWBASIC commands.

NOTE: This manual is not intended to be a tutorial on BASIC

programming. It assumes that you have a working knowledge
of BASIC. If you are new to BASIC and need to find out
more about it, read one of the BASIC tutorials listed in
Appendix G.

GWBASIC 2.0 runs under DOS version 2.0 or later. Some sections of this

manual have different instructions according to what type of system you
have. If you have a 325-line desktop or portable PC, you should follow
the instructions for 325-line users. If you have a 400-line desktop or
portable PC (PC-400 or PPC-400), or a MEGA PC, you should follow the
instructions for 400-line users.

Note that information on sound and on color monitors applies to 325-line,
PC-400 and PPC-400 systems only.

1-1

n

Section 2

GETTING GWBASIC STARTED

BEGINNING AT DOS

The procedural steps given throughout this section assume that you have
two floppy drives (A: and B:). If you have a single-drive system, you may
have to keep switching diskettes to perform some steps (for instructions
on how to invoke procedures with a single drive, read Appendix A in your
DOS manual). If you have a system with a hard drive, booting as well as
other procedures may be different (again, refer to the DOS manual for
detailed information).

Perform the following steps to start GWBASIC:

1. Insert the DOS disk in your boot drive.

2. Switch the computer on.

3. At the A> prompt type:

GWBASIC <Return>

You will see the version number, number of free bytes, and the GWBASIC
prompt "Ok".

For more information about the options that you can specify when invoking
GWBASIC, see the GWBASIC command specification in Section 7.

USING BASIC OR BASICA PACKAGES

The following instructions will explain how to use BASIC or BASICA
packages on your computer:

1. Read the installation information provided with the package to
determine whether it runs under BASIC or BASICA. If this
information cannot be found, check the directory of the product disk
and TYPE the batch file that loads the program. This will specify
whether BASIC or BASICA is used. For example, if the batch file is
AUTOEXEC.BAT, the following would be entered at the A> prompt

2-1

Using BASIC or BASICA Packages

after booting with DOS and inserting the product disk in the boot
drive:

A>TYPE A:AUTOEXEC.BAT <RETURN>

NOTE: If you have two diskette drives, put DOS in drive A and the product
in drive B. Then specify B: instead of A: to call up the batch
file on drive B.

The following should appear on the screen:

BASIC filename

or

BASICA filename

Other commands may also be listed in this batch file, and there may
be parameters listed after filename.

2. To create a self-booting backup product disk, make sure the disk is
not copy-protected (if it is, read the paragraph below). Then
format a disk with the system on it using the FORMAT /S command.
Finally, perform a COPY command to copy GWBASIC.EXE along with
either BASIC.COM or BASICA.COM onto the disk (whether you copy
BASIC.COM or BASICA.COM depends on your specific product disk).
For information on the FORMAT and COPY commands, see
"FORMAT" and "COPY" in the DOS manual.

If the product disk is copy-protected, copy GWBASIC.EXE onto it,
along with either BASIC.COM or BASICA.COM. This, disk can then
be used after booting with DOS.

3. The following steps show what to do if the product and GWBASIC do
not fit on the same disk.

It is assumed that you have a system with two diskette drives. If
you have a single drive, you must keep switching diskettes. Users
with single-drive systems should refer to the DOS manual for
insructions on how to invoke procedures with a single drive.

a. Boot the computer with the DOS disk in drive A.

b. Insert the product disk in drive B and TYPE the batch file
that loads it.

2-2

Writing Your Own Programs

c. At the A> prompt, run the files, if any, preceding the BASIC
or BASICA command.

d. Load GWBASIC from the DOS disk and insert the product disk in
drive A. Type the following:

RUN "filename*' <Return>

If the product does not have an AUTOEXEC.BAT file, only load GWBASIC
from the DOS disk, then insert the product disk and at the Ok prompt
type:

RUN "filename"

If you have a hard drive, you may copy the product disk to it as long as
the product disk is not copy-protected.

NOTE: If you have a 325-line system, you cannot boot from the hard
drive. You can boot from the hard drive if you have a
PC-400, PPC-400, or a MEGA PC. For more information on
booting from the hard drive, refer to the DOS manual.

WRITING YOUR OWN PROGRAMS

When GWBASIC is invoked, it displays the prompt:

Ok

This means that GWBASIC is at the command level ready to accept
commands. At this point, GWBASIC may be used in either of two modes:
the direct mode or the indirect mode.

Direct Mode

In this mode, statements and commands are not preceded by line numbers,
but are executed as they are entered, for example:

Ok

A » 5 + 6

Ok

PRINT A

11

Ok

2-3

Writing Your Own Programs

Arithmetic and logical operation results are displayed immediately and
stored for later use, but instructions are lost after execution. This
mode can be useful for debugging and for using BASIC as a calculator for
quick computations that do not require a complete program.

Indirect Mode

This mode is used for entering programs. Program lines are preceded by
line numbers and are stored in memory. The "RUN" command executes the
program stored in memory. Here is the above example in indirect mode:

10 A = 5 + 6

20 PRINT A

RUN

11

Ok

Line Format

Program lines in a BASIC program have the following format:

nnnnn BASIC-statement[:BASIC-statement...]

Square brackets indicate optional input.

More than one BASIC statement can be placed on a line, but each statement
on a line must be separated by a colon.

A program line always begins with a line number, ends with a Return, and
may contain a maximum of 255 characters.

Line numbers indicate the order which the program lines are stored in
memory and are also used as references when branching and editing. Line
numbers must be in the range 0 to 65529. A period may be used in EDIT,
LIST, AUTO, and DELETE commands to refer to the current line.

It is possible to extend a logical line over more than one physical line
by using the Ctrl-Enter keys. Ctrl-Enter lets you continue typing a
logical line on the next physical line without entering a Return.

2-4

Editing

EDITING

GWBASIC's editor can save you a sizable amount of time during the
development of your programs.

Any line of text typed while GWBASIC is in direct mode will be processed
by the editor. GWBASIC is in direct mode after the Ok prompt and until a
RUN command is invoked.

NOTE: GWBASIC's editor will convert lower-case entries to upper-case,
except for remarks, DATA statements, and strings enclosed in
quotation marks.

If there are more than 255 characters in one line, the extra ones will be
truncated when Return is pressed. They will appear on the screen but will
not be processed.

Program Editor Keys

Home

Ctrl Home

Moves the cursor to the upper left corner of the
screen.

Clears the screen and positions the cursor in the
upper left corner of the screen.

Moves the cursor up one line.

Moves the cursor down one line.

□
Moves the cursor one position left. When the
cursor is advanced beyond the left of the screen,
it will be moved to the right side of the screen
on the preceding line.

Moves the cursor one position right. When the
cursor is advanced beyond the right of the screen,
it will be moved to the left side of the screen on
the next line down.

2-5

Editing

End

Ctrl

Ins

Tab

End

Ctrl -►

Ctrl 4-

Moves the cursor one word to the right.

Moves the cursor one word to the left.

Moves the cursor to the end of the logical line.
Characters typed from this point are appended to
the line.

Erases the cursor position to the end of the
logical line.

Toggles Insert mode on or off. Insert mode is
indicated by the blinking cursor covering the
lower half of the character position. In graphics
modes, the normal cursor covers the whole
character position.

When in Insert mode, characters following the
cursor are moved to the right as characters are
inserted at the current cursor position. The
characters that advance off the right side of the
screen are inserted from the left on the following
lines.

When out of Insert mode, characters typed will
replace existing characters on the line.

When out of Insert mode, this key moves the cursor
over characters until the next tab stop is
reached. Tab stops occur every eight character
positions.

When in Insert mode, characters following the
cursor are moved to the right, causing blank
spaces to be inserted from the current cursor
position to the next tab stop. The characters
that advance off the right side of the screen are
inserted from the left on the following lines.

2-6

Editing

Del

Back

Space

Esc

Deletes the character at the cursor position. All
characters to the right of the one deleted are
moved one position left. If a logical line
extends beyond a physical line, the character in
the first column of each subsequent line is moved
up to the end of the preceding line.

Causes the last character typed to be deleted, or
deletes the character to the left of the cursor.

All characters to the right of the cursor are
moved one position left. Subsequent characters
and lines within the logical line are moved up as
with the Del key.

Causes the entire logical line to be erased. May
be typed anywhere on the line.

Scroll

Ctrl Lock

Break

Ctrl S

Returns to Direct mode without saving any changes
that were made to the current line being edited.

Freezes the screen; useful when listing a program
on the screen that is scrolling too fast for you
to read it. Pressing Ctrl-S a second time causes
the listing to continue.

Printing Keys

Shift
PrtSc

Ctrl
PrtSc

Causes the entire contents of the screen to

be printed out. Pressing Shift-PrtSc a
second time stops this printing.

Causes anything typed after these keys are
pressed to be printed out when Return is
pressed. If you press Ctrl-PrtSc a second
time, this screen echoing will stop.

Ctrl Key

The Ctrl key performs various additional functions if used in combination
with certain alphabetic keys. These functions are listed in Table 2-1,
together with other keys that produce the same effect.

2-7

Editing

Table 2-1

CTRL KEY FUNCTIONS

Ctrl + Equivalent Action

B Ctrl- ̂ Moves cursor back to

previous word

C Ctrl-Break Interrupts program
execution and returns to

direct mode

E Ctrl-End Erases from cursor to end

of current line

F Ctrl- Moves cursor forward to

next word

G - Sounds the speaker

H Back Space Deletes character to left

of cursor

I Tab Moves cursor eight
positions to the right

J Ctrl-Enter Inserts blank line after

current line

K Home Moves cursor to upper left
corner of screen

L Ctrl-Home Clears screen and homes

cursor

M Enter Enters text typed on
current line into memory

N End Moves cursor to end of

current line

R Ins Toggles insert mode on and
off

S Ctrl-Num

Lock

Toggles suspension of
program execution on and
off

2-8

Editing

Table 2-1 (Cont.)

Ctrl + Equivalent Action

T KEY ON/OFF Toggles display/hide of
function key values

U Esc Deletes current line

W - Deletes word at current
cursor position

Z Ctrl-Pg Dn Clears from cursor to end
of screen

Adding New Lines

Enter a valid line number followed by at least one character. When you
press Return this line will be saved in memory. Valid line numbers are 0
to 65529. If a line already exists with the same line number, the old
line will be replaced by the new one. If you run out of memory while
entering text,, the following error message will occur:

Out of memory

That line of text will not be added.

Replacing Existing Lines

Enter the number of the line to be replaced followed by the desired
replacement text. When Return is pressed, the new line will replace the
old.

Deleting Lines

Type the line number of the line to be erased, and then press Return,
line will be erased from the program. Esc will erase a line on the
screen, but that line will continue to exist in the program.

The

2-9

Editing

Duplicating Lines

Move the cursor to the number of the line you wish to duplicate, type over
the old number with a new number, and then press Return. Both old and
new lines will be included in the program.

Altering Lines on the Screen

Use the LIST and EDIT commands (described in Section 7) to display any
lines not on the screen.

The cursor movement keys can be used to position the cursor anywhere on
the screen. Use any method described previously to manipulate text, and
then press Return. The use of Return will enter all changes for that
logical line (i.e., up to 255 characters), no matter how many physical
lines on the screen are involved and no matter where the cursor is located
in the line.

NOTE: Any changes made are only made in memory. To save changes
permanently, see below tmder "Saving Programs".

Deleting a Program

To clear memory before entering a new program, use the NEW command.

To delete a program that has already been saved (see "Saving Programs"
below), use the KILL command.

Both of these commands are described in Section 7.

FORMAT ERRORS

When a format error is encountered during program execution, BASIC
automatically enters edit mode and displays the line that caused the
error. You then make your correction and press Return.

NOTE: Storing the line back in the program causes all variables to be
lost. To examine the contents of a variable before making
the change, type Ctrl-Break to return to direct mode. The
variables would be saved since no program line was changed.

2-10

Exiting GWBASIC

SAVING PROGRAMS

When you write a program under GWBASIC, the program will be lost when you
exit GWBASIC unless you save (store) the program first. You can only save
a program written in indirect mode. To save a program, execute the SAVE
command, which writes the program to a disk file, adding the extension
".BAS" to the filename that you choose, unless you specify a different
extension. You can then use the RUN statement to execute any program that
has been saved in this way.

EXITING GWBASIC

To exit GWBASIC and return to DOS, type the following at the Ok prompt:

SYSTEM <Return>

Typing Ctrl-Break or Ctrl-C will not return you to DOS.

2-11

o

■ V

n

n

Section 3

HANDLING FILES AND DEVICES

The commands and statements used in program files are described in brief
in this section, which also includes further information on files,
devices, user-installed device drivers, redirection of input and output,
and tree-structured directories. Refer to Appendix A for information on
random and sequential files.

For information on hardware options and installations, switch settings,
connecting system components, diskette and hard drive care and handling,
and general information for using the system, refer to the User's Guide.
The guide also contains a glossary of commonly used computer terms.

Refer to the DOS manual for information on system start-up, important
diskette and hard drive instructions, command format, wildcard characters,

device filenames, the system keyboard, instructions for users with
single-drive systems, copying and backing up files on entire disks, and
DOS commands. |

FILE NAMES

Whenever a filename is required in a disk command or statement, you must
use a filename that conforms to the naming conventions described in the
DOS manual. DOS will append a default extension .BAS to the filename
given in a SAVE, RUN, MERGE, or LOAD command.

PROGRAM FILE COMMANDS

Following is a review of the commands and statements used in program file
manipulation. For detailed information on GWBASIC commands, refer to
Section 7.

SAVE filespec[{.A | ,P>]

Writes the program currently in memory to disk in a compressed binary
format. If the A parameter is used, the program will be written as a

3-1

Program File Commands

series of ASCII characters. Compressed binary format takes up less disk
space, but some GWBASIC commands such as MERGE require a program file to
be in ASCII format. If F is used, the file is read-protected (see
"Protected Files" below).

LOAD file8pec[,S]

Loads the program from disk into memory. If the R parameter is used, the
program will be run immediately. LOAD will delete any current program
from memory and close all open files. If the R parameter is used, open
data files are kept open, and programs may be chained or loaded in
sections and may access the same data files. (LOAD f llename,R and
RUN f llename,R are the same.)

HUN filespecC^R]

Loads the program from disk into memory and runs it. RUN will delete the
current contents of memory and close all files. If the R parameter is
used, open data files are kept open. (RUN f ilespec,R and LOAD
f lle8pec,R are the same.)

BflEHGE file8pec

Loads the program from disk into memory without deleting the current
contents of memory. The program line numbers on disk merge with the line
numbers in memory. If two lines have the same number, the line from the
disk program replaces the one in memory.

CHAIN [BflER6E]file8pec[,[llne][,ALL][DELETE range]]

Passes control to the specified program, starting it at line number line
if given. Some or all of the current variables can be passed to the new
program, and an overlay can be brought in or deleted.

KILL flleepec

Deletes the file from the disk, filename may be a program file, or a
sequential or random access data file.

NABIE old fileapec AS new filespec

Changes the name of a disk file. May be used with program files, random
files, or sequential files.

NOTE: Wildcard characters, allowing you to reference more than one file
in a single command, can be used with the FILE, KILL, and

3-2

File and Device Information

NAME commands. Further details about wildcard characters are

given in the DOS manual. Use these characters with great
care - an incorrect use of them with KILL, for example, could
result in the deletion of many more files than you intended.

PROTECTED FILES

You can save a program in an encoded binary format with the Protect
parameter (P). This parameter is used with the SAVE command as follows:

SAVE fllespec,P

A program saved in this manner cannot be listed or edited.

FILE AND DEVICE INFORMATION

A file contains information such as a GWBASIC program or data used by a
program. In order to use the information, you must specify where it is to
be found, using a file specification (filespec). A filespec is a string
expression (and must therefore be enclosed in quotes whenever it is
specified to GWBASIC) and has the following form:

[device:][[\dlpectory][\dlrectory..•]]filename

Directories are explained below under "Tree-Structured Directories". A
filespec that includes directory names, telling the system which route to
take to find a disk file, is called a path.

The device name tells the system which device the file is on. The name
consists of up to four characters followed by a mandatory colon. (Note
that in DOS, however, the colon is not mandatory.) Table 3-1 shows a list
of device names with their references and indicates whether they can be
used for input or output. If you omit the device name from the filespec,
the default is the drive that was the DOS default before GWBASIC was
invoked.

The filename is the name of your file. It must conform to the naming
conventions described in the DOS manual. The only difference is the legal
characters that can be used in the name and extension. Only the following
characters are allowed:

A through Z 0 through 9 @ % & f -

3-3

File and Device Information

Table 3-1

DEVICE INFORMATION

Code Name Use

KYBD:

SCRN:

LPTl:

LPT2:

Keyboard
Screen

First printer
Second printer

Input only
Output only
Output or random
Output or random

COMl: First asynchronous
communications

adapter (on-board)

Input and output

COM2:

COM3:

COM4:

1 Add-on asynchronous
> communications

J adapters (if used)
1 Input and output

A: First diskette

drive

Input, output,
and random

B: Second diskette

drive

Input, output,
and random

C: Hard drive (see
note)

Input, output,
and random

NOTE: On the MEGA PC, the first partition on the hard disk is C:, and
the remainder are lettered from D: onwards. The tape backup
always has the letter after the last partition letter.

In addition, the MEGA PC supports LPT3:, and the COMn:
designations are different. See the MEGA PC Supervisor's
Guide for further details.

The filespec is different for communications devices. The filename is
replaced with a list of options which specify certain parameters. Refer
to OPEN "COM..." statement in Section 7 for more information.

Refer to the DOS manual for more detailed file specification and device
information.

3-4

File and Device Information

USER-INSTALLED DEVICE DRIVERS

GWBASIC allows you to use device drivers other than the standard ones
supplied with the system software. For example, if you want to use a
printer that has a different protocol from that recognized by the standard
GWBASIC printer driver LPTl:, you can tell GWBASIC to use a different
driver by specifying it in the OPEN statement. (Note that you will also
have to tell DOS that the driver is installed by modifying the DEVICE
command in the DOS configuration file CONFIG.SYS - see the DOS
manual.) The OPEN statement is specified as follows:

OPEN f llespec [FOR mode] AS [#]f ile number
[LEN=rec length]

A user-installed device driver can be user-written or supplied by a third
party. The following points should be borne in mind when a device driver
is written:

1. The name of the driver must not end in a colon, since GWBASIC uses
this to recognize predefined devices such as KYBD:, SCRN: etc. The
only exception is that you can use the name LPTl: or LPT2: for a
driver that replaces the standard printer driver.

2. The record length is set to 1 unless you change it by the LEN
parameter of the OPEN statement. GWBASIC will buffer rec
length characters before sending them to the driver.

3. GWBASIC only sends a carriage return (hex OD) at the end of a line.
If the device needs a line feed as well (hex OA), the driver must
provide it.

4. Device control information is passed from GWBASIC to the driver by
the lOCTL statement, and from the driver to GWBASIC by
the IOCTL$ function. The driver must be able to:

a. set a maximum record length as specified in the OPEN
statement

b. return the current maximum record length to GWBASIC

c. (for an input device) return an end-of-file condition to
GWBASIC, so that a sequential input file that is open to a
device driver can be closed if an INPUT statement tries to

read beyond the last record in the file. If this happens, the
device driver should return a Ctrl-Z, which is used by
GWBASIC to generate the message "Input past end"

3-5

Redirection of Input and Output

For more information about writing your own device drivers, see the DOS
2.0 or later version of the Microsoft MS-DOS Programmer's Reference
Manual, Document No. 8411-200-00.

REDIRECTION OF INPUT AND OUTPUT

Normally a GWBASIC program takes its input from the keyboard, and
outputs information to the screen so that you can see how the program
execution is going. You may want to change this so that, for example,
input is taken from data previously stored in a disk file, or output is
sent straight to the printer instead of appearing on the screen. To cause
this to happen, you have to redirect the input or output.

Redirection is specified when the GWBASIC command is used to invoke
BASIC:

GWBASIC [<8tdln] [[>] >st(lout] ...

The two parameters stdin and stdout cause redirection of input and
output respectively by specifying the name of a file or device from which
input is read or to which output is written (note that if stdout is
preceded by » instead of >, output will be appended to the specified
output file instead of overwriting it). The name can be any valid
filename or filespec, or it can be a device identifier such as "LPTl:".

When input is redirected, all INPUT, LINE INPUT, INPUT$, and INKEY$
statements will read input from the file specified by stdin instead of
from the keyboard. TWs will continue imtil an end-of-file marker
(Ctrl-Z) is read from the input file (you can test for this condition
using the BOP function). If the file has no such marker, or if a BASIC
statement tries to read past end-of-file, any open files are closed, the
message "Read past end" is displayed (or written to the output file if
output is redirected) and BASIC terminates, passing control back to DOS.

If the ON KEY(n) statement is used when input is redirected, BASIC will
continue to trap keys from the keyboard.

If you specify stdin as "KYBD:", input will continue to be read from the
keyboard.

When output is redirected, information that would normally be displayed on
the screen, such as the output of all PRINT statements, is sent to the
file identified or device by stdout.

3-6

Redirection of Input and Output

Using Ctrl-PrtSc will have no effect if output is redirected. Typing
Ctrl-C or Ctrl-Break causes BASIC to terminate, passing control back to
DOS.

If you specify stdout as "SCRN:", output will continue to be sent to the
screen.

Error messages are sent to both the screen and the output file or device
if only output is redirected; if both input and output are redirected,
error messages are just sent to the output file or device.

The following examples illustrate some of the uses of redirection. The
input statements referred to are INPUT, LINE INPUT, INPUTS and
INKEYS.

GVBASIC MYPROG>DATA.OUT

Data read by the input statements will continue to come from the
keyboard. Data output by PRINT will go into the file DATA.OUT.

GWBASIC MYPSOG<DATA.IN

Data read by the input statements will come from DATA.IN. Data output
by PRINT will continue to go to the screen.

GWBASIC MYPROG<MYINPUT.DAT >MYOUTPUT.DAT

Data read by the input statements will now come from the file
MYINPUT.DAT. Data output by PRINT will go into MYOUTPUT.DAT.

GWBASIC MYPROG<\SALES\JOHN\TRANS>>\SALES\SALES.DAT

Data read by the input statements will now come from the file
\SALES\JOHN\TRANS. Data output by PRINT will be appended to the
file \SALES\SALES.DAT.

TREE-STRUCTURED DIRECTORIES

GWBASIC includes commands to enable you to organize your disk files in
a tree-structured fashion, just as you can using DOS 2.0 and later
releases, but without having to leave GWBASIC. The commands are the
same as the DOS commands, namely:

3-7

T ree-Structured Directories

MKDIR creates a directory

CHDIR specifies a different directory as the current directory

RMDIR deletes a directory

Full details about tree-structured directories are given in the DOS
manual.

Several of the examples given throughout Section 7 relate to a tree-
structured disk file organization similar to this one:

root*

SALES

JOHN BIAST

ACCOUNTING

REPORT REPORT

other

files

STEVE

files

SUE

other

files

REPORT

other

files

*The root directory is designated hy the initial
"\" in a filespec*

To illustrate this use of tree-structuring, let us assume that the sales
and accounting departments of a business share a computer that has a hard
disk, and the individual employees use the system for preparing reports
and maintaining accounting information. The files could be organized on
the disk as in the example above. The disk contains a root directory
(always identified by the name "\") which itself contains two further
directories, called SALES and ACCOUNTING. Since these two are both
accessed from the root, they are identified to DOS and GWBASIC by the
names "\SALES"and "\ACCOUNTING".

3-8

Tree-Structured Directories

In the same way, the SALES and ACCOUNTING directories contain further
directories. For example, SALES contains two directories, called JOHN and
MARY. These are the directories of individual employees, and are identified
by the names "\SALES\JOHN" and "\SALES\MARY".

Going down to the lowest level of the structure, that of individual files,
you can see for example that JOHN, in his directory, has various files, one
of which is called REPORT. Assuming that the disk containing all these
files is on drive C:, then this REPORT file can be identified to DOS and
GWBASIC as:

"C:\SALES\JOHN\REPORT"

If the CHDIR command in DOS or GWBASIC has been used to access a

particular directory (thus making it the current directory), an
alternative way of identifying files and directories is possible. Let us
assume that you have specified "CHDIR C:\SALES\JOHN" to make JOHN
the current directory. Now you can identify the REPORT file in this
directory in one of three ways:

REPORT

\SALES\JOHR\REPORT
..\JOHN\REPORT

Notice the last example, where the characters replace "\SALES".
The two periods are a shorthand method of specifying the current
directory's parent directory (the directory at the next level up from
the current one).

In the same way, you could refer to the file REPORT in the directory
MARY in either of these ways (still assuming that JOHN is the current
directory):

\SALES\MARY\REPORT
. . \B1ARY\REP0RT

To refer instead to the file REPORT in the directory SUE, which is not
under SALES but under ACCOUNTING, you could specify one of the
following from JOHN:

..\ .\ACCOUNTING\SUE\REPORT
\ACCOUNTING\SUE\REPORT

3-9

Tree-Structured Directories

Notice the multiple use of in the first example. takes you one
level up the tree structure each time, so that in the example above,

takes you from JOHN first of all to SALES and then to the root,
from where you can access ACCOUNTING.

3-10

Section 4

GRAPHICS

When you use GWBASIC for graphics with this microcomputer you are
provided with an exclusive "super-resolution" capability. Super
resolution allows the definition of 640 (horizontal) by 325 (vertical)
positions on the 325-line system standard monochrome display, or 640
(horizontal) by 400 (vertical) positions on the 400-line system standard
monochrome display.

In addition, medium- (320 x 200) and high- (640 x 200) resolution graphics
are supported on the monochrome display. These lower resolution levels
are standards for color systems and operate normally when using a color
monitor with this computer. On the 325-line system standard monochrome
display, medium resolution will appear in the upper left portion of the
screen and high resolution will appear in the upper two-thirds of the
screen. On the 400-line standard monochrome display, medium- and
high-resolution graphics cover the entire screen (320 x 200 and 640 x 200
respectively). However, since high-resolution graphics supports only two
colors, black and white, the only benefit the color/graphics monitor
adapter adds is color capability to medium-resolution graphics and to text
mode. (See the "SCREEN" statement in Section 7 for more information on
screen modes.)

Points are always numbered from left to right and from top to bottom. If
you think of the screen as a matrix of dots each having a vertical and
horizontal location, you will imderstand the numbering system used. The
horizontal position of each dot is x, and the vertical position is y. The
upper left corner is therefore referred to as point 0,0, and the lower
right corner point is either 639,324 (for 325-line systems) or 639,399
(for 400-line systems). The numbers 0,0 and 639,324 (or 639,399) are the
coordinates of those particular points.

One of the features of GWBASIC is that you may have a number of
graphics pages. The advantage of having multiple pages is that you can
write to one page in memory while viewing a different page on the screen.
The page in memory is called the active page, and the page on the
screen is called the visual page. The maximum number of graphics
pages depends on the type of system you have, as explained below. The
default graphics page is the highest page number possible on your system.

4-1

Graphics

For 325-line systems the maximum number of graphics pages is 8 (numbered 0
to 7). A 400-line system can have up to 16 pages (numbered 0 to 15),
depending on the amount of memory available to DOS. Use the following
formula to find the maximum page number for a 400-line system:

INT(M/32) - 1

where M is the amount of memory available to DOS in Kbytes (this value is
displayed when the system is booted).

Pages 0 to 4 are reserved for system use, so you should use page 5 as the
lowest number when specifying graphics pages.

[CAUTION□
When writing graphics programs, you
should make sure that there will
be no conflicts in memory usage
between the program and the
graphics. A CLEAR statement should
be used at the beginning of the
program to control the amount of _
workspace available to the program.

You will probably want to turn off the function key display using KEY OFF.

With the SCREEN statement, besides setting the resolution and the visual
and active pages, you have options to set if you have an adapter for a
color monitor (see Color/Graphics Monitor Adapter section below for more
information). For advanced information about graphics, refer to Appendix
B, which provides details on how the computer is configured for graphics,
assembly language programming for graphics, and the graphics memory map.

The statements and functions that are used specifically for graphics are:
CIRCLE, COLOR, DRAW, GET, LINE, PAINT, PMAP, POINT, PRESET,
PSET, PUT, SCREEN, VIEW, VIEW PRINT and WINDOW.

Note that the COLOR statement if used with a monochrome monitor enables
you to vary the image so that it blinks, reverses out, becomes invisible, _
highlighted, and/or underscored - see the COLOR Statement (Text) in
Section 7.

4-2

Color/Graphics Monitor Adapter

For information on printing a graphics display screen, see the GRAPHICS
command in the DOS manual.

HOW TO SPECIFY COORDINATES

There are two ways to use coordinates. When you specify a point as (x,y)
you are using absolute form. Alternatively you can use the relative
form, which is specified as STEP (x-offset, y-offset). For example,
assume that the most recent point referenced was (x,y). The statement
LINE STEP (10,5) would specify a point at offset 10 from x and offset 5
from y.

If the STEP option is used for the second coordinate in the statement, it
is relative to the first coordinate. For example, the statement LINE
(10,15)-STEP(20,30) would draw a line from point (10,15) to point
(30,45).

COLOR/GRAPHICS MONITOR ADAPTER

This adapter is a card that fits in one of the expansion slots on the main
PCB. The adapter is used if you have a color monitor, allowing you to add
color to either text or graphic images.

In text mode you have the ability to use 16 colors (see COLOR Statement
(Text)). In addition, you have the opportunity for multiple pages of
text.

Medium resolution (320 by 200 points) gives you a combination of colors:
a palette of 3 colors associated with the color number you have chosen.
See COLOR Statement (Graphics) for details.

High resolution (640 by 200 points) has only two colors, black and white.

Super resolution is not supported by the color/graphics adapter.

4-3

n

Section 5

PROGRAMMING CONCEPTS

This section introduces the raw materials used to create a BASIC program,
namely:

• character set

• constants

• variables

• numeric precision
• arrays

• expressions

• operators

CHARACTER SET

The GWBASIC character set consists of alphabetic characters, numeric
characters, and special characters.

The alphabetic characters are the upper-case and lower-case
letters of the alphabet. The numeric characters are the digits 0
through 9.

All of the remaining characters on the keyboard are special
characters, some of which also have special meanings to GWBASIC.
For example, the character can be just a character as you might use it
on a typewriter. On the other hand, in a BASIC program statement, the
same character can be an instruction to perform a subtraction.

Table 5-1 lists the special characters, together with any special meaning
that they have to GWBASIC. Table 5-2 lists certain special characters
that can be generated in more than one way.

Another set of characters includes those generated in conjunction with the
Ctrl (control) key. The control characters generally do not cause
individual characters to be displayed, although they may have very
noticeable effects on the screen. For example, Ctrl and L will cause the
screen to be cleared. These characters are listed in Table 2-1.

5-1

Character Set

The Alt key can be used to generate certain GWBASIC keywords, for
example typing Alt-A causes the word AUTO to be displayed. This saves
the trouble of typing these keywords in full each time you want to use
them. The full list of keywords is given in Table 5-3.

A final set of special characters includes those which can be generated
directly on the screen by pressing the Alt key and entering a number in
the range from 128 through 255. When the Alt key is released, the
character will appear. A complete list of the character set can be found
in Ajppendix C, ASCII Character Codes.

Table 5-1

SPECIAL CHARACTERS

Character Explanation

Blank
= Equal sign or assignment symbol
+ Plus sign
- Minus sign
M Multiplication symbol
/ Division symbol

\ Integer division symbol
yv Exponentiation symbol
56 Declaration character for integer

variables

Declaration character for

double-precision variables
$ Declaration character for string
1 Declaration character for

single-precision variables
f (Apostrophe) remark delimiter
: Program statement separator
? Abbreviation for PRINT statement
II String delimiter
(Left parenthesis
) Right parenthesis
[Left bracket

] Right bracket
9 Comma

Period or decimal point
9 Semicolon

< Less-than sign
> Greater-than sign
Q At sign

-

Underscore

5-2

Character Set

Certain characters have a particular effect, and most of these can be
generated in more than one way, namely by:

• pressing the key itself
• pressing Ctrl and another key
• holding down Alt and typing a numerical sequence
• using CHR$ with the appropriate value in a GWBASIC program

Table 5-2 gives details of these alternatives.

Table 5-2

OTHER SPECIAL CHARACTERS

Key Ctrl Alt CHR$ Description

C or

Break

Stop program
execution and

return to BASIC

command level.

G 007 7 Generate a beep
sound.

Back

Space
H 008 8 Delete character

to the left of

cursor and move

cursor to that

position.

Tab I

S or

Num

Lock

009 9 Move cursor 8
spaces to the
right.

Suspend program
execution.

Resume program
execution after

after Ctrl-S or

Ctrl-Num Lock.

5-3

Character Set

Table 5-2 (Cont.)

Key Ctrl Alt CHR$ Description

Esc U or

[

♦

N

♦
or B

27 Erase entire

logical line.

Move cursor to

start of next

word.

Move cursor to

end of logical
line.

Move cursor to

start of previous
word.

Home Oil 11 Move cursor to

upper left corner
of screen.

L 012 12 Clear screen.

E or

End

Erase to end of

logical line.

Insert R Toggle insert
mode.

Return

or

Enter

M 013 13 Carriage return
(end a logical
line).

There is also a set of keywords generated by the Alt key. They offer a
shorthand way to refer to certain statements, commands, or functions in
GWBASIC. Table 5-3 lists these.

5-4

Constants

Table 5-3

ALT KEYWORDS

Alt Keyword Alt Keyword Alt Keyboard

A AUTO J (no word) S SCREEN

B BSAVE K KEY T THEN

C COLOR L LOCATE U USING

D DELETE M MID$ V VAL

E ELSE N NEXT W WIDTH

F FOR 0 OPEN X XOR

G GOTO P PRINT Y (no word)
H HEX$ Q (no word) Z (no word)
I INPUT R RUN

CONSTANTS

Constants are the actual values GWBASIC uses during execution. There are
two types of constants: string (character) and numeric.

A string constant is a sequence of up to 255 alphanumeric characters
enclosed in double quotation marks. Examples are:

"HELLO"

"$25,000.00"

"Number of Employees"

Numeric constants are positive or negative numbers. Note that a plus sign
is optional on a positive number. Numeric constants in GWBASIC may not
contain commas. There are five types of numeric constants:

1. Integer

Whole numbers between -32768 and 32767. These constants do not
contain decimal points.

5-5

Constants

2. Fixed-point

Positive or negative real numbers, i.e. numbers that contain decimal
points.

3. Floating-point

Positive or negative numbers represented in exponential form
(similar to scientific notation). A floating-point constant
consists of an optionally signed integer or fixed-point number (the
mantissa) followed by the letter E and an optionally signed integer
(the exponent). Double-precision floating point constants use the
letter D instead of E. For more information refer to "Numeric

Precision" below. (The E or D means "times ten to the power of.")

Examples:

235.988E-7 = .0000235988

2359E6 = 2359000000

The range for these is lOE-38 to lOE+38 (positive or negative).

4. Hexadecimal

Hexadecimal numbers with up to four digits and the prefix &H.
Hexadecimal digits are the numbers 0 through 9, A, B, C, D, E, and
F.

Examples:

&H76

&H32F

5. Octal

Octal numbers with up to 6 digits and the prefix &0 or &. Octal
digits are 0 through 7.

Examples:

&0347

&1234

5-6

Variables

Numeric Precision

Numbers may be stored as either integers, single precision, or double
precision. Constants entered in integer, hexadecimal or octal format are
stored in two bytes of memory and are interpreted as integers or whole
numbers. In single precision up to 7 digits may be stored and printed,
but only 6 will be accurate. In double precision, numbers may be stored
with 16 digits of precision, and 16 digits may be printed.

A single-precision constant is any numeric constant that is not an integer
and has one of the following characteristics:

1. Seven or fewer digits.

2. Exponential form using E.

3. A trailing exclamation point.

A double-precision constant is any numeric constant that has one of these
characteristics:

1. Eight or more digits.

2. Exponential form using D.

3. A trailing number sign.

Examples:

46.8 345692811

-1.09E-06 -1.09432D-06

3489.0 3A89M

22.5! 7654321.1234

VARIABLES

Variables are names used to represent values in a GWBASIC program.
There are two types: numeric and string. A numeric variable always has a
value that is a number. All other variables consist of strings of
characters. The variable type must match the type of data being assigned
to it.

The value of a variable may be set as a constant, or it may be assigned as
the result of calculations or various data input statements in the program.

5-7

Variables

If a variable is used before a value is assigned to it, its value is
assumed to be zero until a value is assigned.

How to Name a Variable

GWBASIC variable names may be any length within a meaningful program
line of up to 250 characters. Up to 40 characters of the name are
significant. Variable names can contain letters, numbers, and the decimal
point. However, the first character must be a letter. Special ending
characters are used to identify types of variables. See "How to Declare
Variable Types" below.

A variable name must not be a reserved word, although a reserved word can
be embedded as part of a variable name (for example, TAN cannot be used
but TANGENT is a valid name). The one exception is that no variable may
begin with the characters USR. Reserved words consist of all GWBASIC
commands, statements, function names, and operator names. A complete
list is provided in Appendix D.

If a variable begins with FN, it is assumed to be a call to a user-defined
fimction. (Refer to DBF FN statement in Section 7.)

How to Declare Variable Types

String variable names are written with a dollar sign as the last
character. For example:

A$ = "SALES REPORT"

The dollar sign announces that the variable will represent a string.
Storage requirements are 3 bytes plus the length of the string.

Numeric variable names may declare integer, single-, or double-precision
values. The type declaration characters for these as well as the number
of bytes required to store each type of value are as follows:

% Integer variable (2 bytes)

! Single-precision variable (4 bytes)

if Double-precision variable (8 bytes)

5-8

Variables

If the variable type is not declared, the default is single precision.

Note that double-precision variables require twice the storage space of
single-precision variables. They also require more time for arithmetic
operations. Integer variables produce the fastest and most compact object
code.

Examples of GWBASIC variable names:

PI^ double precision

MINIMUM! single precision
LIMIT% integer
N$ string
ABC single precision

Another way to declare variable types is through the following statements:
DEFINT, DEFSTR, DEFSNG, and DEFDBL. Refer to DEFtype statements
in Section 7 for further information.

Array Variables

An array is a list or matrix table of numeric or string values.

An array is created by establishing dimensions for a variable (refer to
DIM statement in Section 7). Each value in an array is called an
element and is identified by means of a subscript attached to the
variable name.

DIM V$(4,4,2)

The preceding statement creates a three-dimensional array of string
values. The dimensions might be thought of as rows, columns, and pages.
The sequence is for the user to define. The statement has established the
maximum value for subscripts for the array. The subscripts must be
positive integer expressions.

A$=V$(2.1.1)

The preceding assigns the value of an element of the array to A$.

If an array element is created without a DIM statement, a single-dimension
array is implicitly created with a maximum subscript of 10.

5-9

Variables

The minimum value for a subscript is 0 unless it is set to 1. If you do
not intend to use the 0 element in an array, you can save data storage
space by using the OPTION BASE statement (refer to Section 7). Setting
the minimum to 1 would save 8008 bytes in the following array. ^

AB#(1000,2)

The maximum number of dimensions for an array is 255. Up to 32,767
elements can be specified per dimension. The maximum amount of memory
that can be occupied by an array is 64K.

HOW GWBASIC CONVERTS NUMBERS FROM

ONE PRECISION TO ANOTHER

The following rules apply when GWBASIC converts a number from one
precision to another.

1. If a numeric constant of one type is assigned to a numeric variable
of a different type, the number will be stored as the type declared
in the target variable name.

Example:

10 A5(»23.42

20 PRINT A^

RUN

23

Note that if a string variable is set equal to a numeric value or
vice versa, a "Type mismatch" error occurs.

2. When an expression is evaluated, all of the operands in an arithmetic
or relational operation are converted to the same degree of
precision, i.e. that of the most precise operand. Also, the result
of an arithmetic operation is returned to this degree of precision.

Examples:

10 D# = 6#/7
20 PRINT D#

RUN

.8571428571428571

5-10

Ck)nverting Precision

The arithmetic was performed in double precision, and the result
was returned in D# as a double-precision value.

10 D = 6#/7
20 PRINT D

RUN

.8571429

The arithmetic was performed in double precision, and the result was
returned to D (single-precision variable), rounded, and printed as a
single-precision value.

3. Logical operators (see below) convert their operands to integers and
return an integer result. Operands must be in the range -32768 to
32767 or an "Overflow" error occurs.

4. When a floating-point value is converted to an integer, the
fractional portion is rounded.

Example:

10 C%=bb.SS

20 PRINT C%

RUN

56

5. Precision is not increased when converting from a lower- to a
higher-precision number. For example if a single-precision value
(A) is assigned to a double-precision variable (B^), only the first
six digits of Bff will be valid because only six digits of accuracy
were supplied with A.

The absolute value of the difference between the printed
double-precision number and the original single-precision value is
less than 6.3E-8 times the original single-precision value.

Example:

10 A = 2.04

20 B# = A

30 PRINT A;B#

RUN

2.04 2.039999961853027

5-11

Converting Precision

6. When converting from a higher-precision value to a lower-precision
variable, the result is rounded.

Example:

10 C = 55.8834567#

20 PRINT C

RUN

55.88346

This affects assignment statements as well as function and statement
evaluations.

EXPRESSIONS AND OPERATORS

An expression may be a string or numeric constant or variable. An
expression may also combine constants and variables with operators to
produce a single value.

Operators perform mathematical or logical operations on numeric as well
as string values. They may be divided into the following categories:
arithmetic, relational, logical, and functional. Each is described below.

Arithmetic Operators

The arithmetic operators are listed in Table 5-4 in order of precedence,
i.e., when several arithmetic operations take place in the same statement,
the operation highest in the table will be performed first. If two or
more operations have the same level of precedence, the leftmost operation
will be performed first. Note that you can change the order of evaluation
by using parentheses. Operations within parentheses are performed first.
Within parentheses the normal order of operations is maintained.

5-12

Expressions and Operators

Table 5-4

ARITHMETIC OPERATORS

Operator Operation Sample
Expression

yv Exponent1at1on X'^Y

- Negation -X

Multiplication, floating
point division

X*Y

X/Y

\ Integer division X\Y

MOD Modulo arithmetic X MOD Y

+»- Addition, subtraction X+Y

X-Y

Integer division is denoted by the backslash (\). The operands are
rounded to integers (in the range -32768 to 32767) before the division is
performed, and the quotient is truncated to an integer.

Example:

10 A = 10\4
20 B ̂ 25.68\6.99
30 PRINT A;B

RUN

2 3

Modulo arithmetic is denoted by the operator MOD. It yields the integer
remainder of an integer division.

Example:
10 A = 10 MOD 4

20 PRINT A

RUN

2

Remainder 2 results when 10 is divided by 4.

5-13

Expressions and Operators

PRINT 25.68 MOD 6.99

5

Remainder 5 results when 26 is divided by 7.

To change the order in which operations are performed, use parentheses.
Operations within parentheses are performed first. Inside parentheses,
the usual order of operations is maintained.

Some sample algebraic expressions and their GWBASIC counterparts are
given in Table 5-5.

Table 5-5

SAMPLE ALGEBRAIC EXPRESSIONS AND THEIR

GWBASIC COUNTERPARTS

Algebraic Expression GWBASIC Expression

x+2y X+Y*2

x-y
z

X-Y/Z

X£
Z

X*Y/Z

x+y

z

(X+Y)/Z

(x2)y (X'^2)'"Y

X^(Y'^Z)

xC-y) X"(-Y)

Note in the last example that two consecutive operators must be separated
by parentheses.

5-14

Expressions and Operators

If, during the evaluation of an expression, division by zero occurs, a
"Division by zero" error message is displayed. Machine infinity (a number
recognizable by the fact that it ends with "E+38") with the sign of the
numerator is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation operator results in
zero being raised to a negative power, the "Division by zero" error
message is displayed, positive machine infinity is supplied as the result
of the exponentiation, and execution continues.

If there is an overflow during computation, an "Overflow" error occurs,
machine infinity with the algebraically correct sign is supplied as the
result, and execution continues.

Relational Operators

Relational operators are used to compare two values, which may be either
both numeric or both string. The result of the comparison is either
"true" (-1) or "false" (0). This result is usually used to make a
decision regarding program flow. (See IF statement in Section 7.)
Relational operators are listed in Table 5-6.

Table 5-6

RELATIONAL OPERATORS

Operator Relation Tested Example

= Equality X=Y

<> or X Inequality XOY

< Less than X<Y

> Greater than X>Y

<= or =< Less than or equal X<=Y
to X=<Y

>= or => Greater than or equal X>=Y
to X=>Y

5-15

Expressions and Operators

The equal sign is used to assign a value to a variable. Refer to LET
statement in Section 7.

When arithmetic and relational operators are combined in one expression, ^
the arithmetic is always performed first. For example, the expression

X+Y < (T-l)/Z

is true if the value of X plus Y is less than the value of T-1 divided by
Z.

Example:

IF SIN(X)<0 GOTO 1000

GWBASIC must evaluate SIN(X) first to determine if it is less than zero.

Strings are compared by taking one character at a time from each and
comparing their ASCII codes. (Refer to Appendix C, ASCII Character
Codes, for a complete list of these codes.)

As long as the ASCII codes are the same, the strings are equal. When the
codes differ, the string with the lower number precedes (i.e., is regarded
as less than) the one with the higher number. If during the comparison
the end of one string is reached, the shorter string precedes the longer
one.

Leading and trailing blanks are significant.

The following examples of relational expressions are all true, i.e., the
result of the relational operation is -1.

"AA" < "AB"
"FILENAME" = "FILENAME"

"X&" > "X/5^"

"CL " > "CL"

"kg" > "KG"
"SMYTH" < "SMYTHE"

B$ < "9/12/84" (where B$ = "8/12/84")

Note that all string constants used in comparison expressions must be
enclosed in quotation marks. ^

5-16

Expressions and Operators

Logical Operators

Logical operators perform tests on numeric values. These Boolean
operations are usually used to make decisions by connecting two or more
relations and returning a true or false value. (Refer to IF statement in
Section 7 for more information.)

The result of a logical operation is a number that is "true" if it is not
zero, or "false" if it is equal to zero. Table 5-7 lists the results of
these operations ("1" indicates a true value, and "0" indicates a false
value). The values are shown in order of precedence. Thus if several
operations take place in the same statement, NOT will be performed
before AND, etc. If two or more operations have the same level of
precedence, the leftmost one will be performed first.

In an expression, logical operations are performed after arithmetic and
relational operations.

Examples:

IF D<200 AND F<4 THEN 80

The result will be true if the value of D is less than 200 and the value

of F is less than 4; if both these conditions are satisfied the program
will jump to line 80.

IF I>10 OR K<a THEN 50

The result will be true if I is greater than 10, or K is less than 0, or
both. Thus if either or both of these conditions are satisfied the

program will jump to line 50.

Logical operators work by converting their operands to 16-bit, signed,
two's complement integers in the range -32768 to 32767. (If the operands
are not in this range, an "Overflow" error results.) The given operation
is performed on these integers bit by bit, and the result is determined by
the corresponding bits in the two operands.

5-17

Expressions and Operators

Table 5-7

RESULTS OF LOGICAL OPERATIONS IN BASIC

Operation Value Value Result Terminology

NOT X NOT X Logical
1 0 Complement
0 1

AND X Y X AND Y Conjimction
1 1 1

1 0 0

0 1 0

0 0 0

OR X Y X OR Y Disjunction
1 1 1

1 0 1

0 1 1

0 0 0

XOR X Y X XOR Y Exclusive

1 1 0 OR

1 0 1

0 1 1

0 0 0

EQV X Y X EQV Y Equivalence
1 1 1

1 0 0

0 1 0

0 0 1

IMP X Y X IMP Y Implication
1 1 1

1 0 0

0 1 1

0 0 1

5-18

Expressions and Operators

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator may be used to

~ "mask" all but one of the bits of a status byte at a machine I/O port, and
the OR operator may be used to "merge" two bytes to create a particular
binary value.

The following examples will help demonstrate how the logical operators
work.

63 AND 16 results in 16

Since 63 is binary 111111 and 16 is binary 10000, 63 AND 16 equals 010000
in binary, which is equal to 16.

-1 AND 8 results in 8

Since -1 is binary 11111111 11111111 and 8 is binary 1000, -1 AND 8 equals
binary 00000000 00001000, or 8.

4 OR 2 results in 6

Since 4 is binary 100 and 2 is binary 10, 4 OR 2 is binary 110, which is
^ equal to 6.

N0TX = -(X+1)

The two's complement of any integer is the bit complement plus one.

If both operands are equal to either 0 or -1, a logical operator will
return either 0 or -1.

Functional Operators

A function is used in an expression to call a predetermined operation that
is to be performed on an operand. Certain functions, such as SQR (square
root) or SIN (sine), reside in GWBASIC. Details of these functions are
given in Section 7.

GWBASIC also allows you to define your own functions with the DBF FN
statement. (Refer to this statement in Section 7.)

5-19

Expressions and Operators

String Operators

String operators include concatenation and string functions.
Strings may be concatenated, or joined together, by using +. For example:

10 A$="FILE" : B$="NAME"

20 PRINT A$ + B$

30 PRINT "NEW " + A$ + B$

RUN

FILENAME

NEW FILENAME

String functions return results which are strings. All the functions
listed in Section 7 which end in are string functions. In addition,
the DBF FN statement can be used to define string as well as numeric
functions.

5-20

Section 6

COMMUNICATIONS

This section describes the GWBASIC statements required to support RS232
asynchronous communication with other computers and peripherals.

OPENING A COMMUNICATIONS BUFFER

OPEN "COM..." allocates a buffer for communications I/O. Opening a
communications buffer in this way is the equivalent of using OPEN to open
a data file on disk.

COMMUNICATIONS I/O

Since the communications buffer is opened as a file, all input/output
statements valid for disk files are valid for COM.

Sequential input statements for communications are the same as those for
disk files. They are:

INPUT ̂ file number

LINE INPUT ̂file number

INPUTS

Communications sequential output statements are also the same as those for
disk files, and are:

PRINT if

PRINT if USING

WRITE if

Refer to these statements in Section 7 for details of coding format and
usage.

6-1

Communication I/O

Communications I/O Functions

The most difficult aspect of asynchronous communication is being able to
process characters as fast as they are received. At rates above 2400 bps,
it is necessary to suspend character transmission from the host long enough
to "catch up". This can be done by sending XOFF (Ctrl-S) to the host and
XON (Ctrl-Q) when ready to resume.

I Three functions are provided to help in determining when an "over-run"
condition is imminent. These are:

LOC(x)

Returns the number of characters in the input buffer waiting to be
read. If that number is greater than 255, LOG returns 255.

LOF(x)

Returns the number of free bytes in the input buffer. This is the same
as n-LOC(x), where n is the size of the communications buffer as
set by the /C: option of the GWBASIC command. The default for n is
256.I ̂

EOF(x)

Returns true (-1) if the input buffer is empty and false (0) if any
characters are waiting to be read.

A "Communications buffer overflow" error can occur if a read is attempted
after the input buffer is full (i.e., LOC(x) returns 0).

1NPUT$ Function for COM Files

The INPUTS function is preferred over the INPUT and LINE INPUT
statements when reading COM files, since all ASCII characters may be
significant in communications. INPUT is least desirable because input
stops when a comma or carriage return is seen. LINE INPUT
terminates when a carriage return is seen.

INPUTS allows all characters read to be assigned to a string. INPUTS
(n,y) will return n characters from file y. The following statements
are efficient for reading a COM file:

6-2

A Sample Program

10 WHILE NOT EOF(l)
20 A$=INPUT$(L0C(1).#1)

(program processes data returned in A$)

60 WEND

The statements above return the number of characters in the buffer and

store them in A$. If there are more than 255 characters, only 255 will be
returned at a time to prevent "String overflow". Furthermore, if this is
the case, EOF(l) is false, and input continues until the buffer is empty.
This code enables fast processing.

GET and PUT for COM Files

GET and PUT for COM files are slightly different from disk files and are|
used for fixed-length I/O from or to the COM file. Instead of specifying

^ the record number, you specify the number of bytes to be transferred into
or out of the file buffer. This number cannot exceed the value set by the
LEN option on the OPEN "COM..." statement. Refer to GET and PUT in
Section 7.

A SAMPLE PROGRAM

The following program enables the computer to be used as a conventional
terminal. Besides full duplex communication with a host, the program
allows data to be "down-loaded" to a file. Conversely, a file may be
"up-loaded" (transmitted) to another terminal.

In addition to demonstrating the elements of asynchronous communication,
this program should be useful in transferring GWBASIC programs and data
to and from the PC.

Note that this program is set up to communicate with a DEC-20 using XON
and XOFF. You may want to modify it for your environment.

6-3

A Sample Program

The TTY Program

10 SCREEN 0.0-.WIDTH 80

15 KEY OFF :CLS: CLOSE

20 DEFINT A-Z

25 LOCATE 25.1

30 PRINT STRINGS(SO." ")
40 FALSE=0:TRUE= NOT FALSE

50 B«ENU=5 • Value of MENU Key (Ctrl-E)
60 X0FF$=CHR$(19):X0N$=CHR$(17)

100 LOCATE 25.1:PRINT "Async TTY Program"
110 LOCATE 1.1:LINE INPUT "Speed? ";SPEEDS
120 C0MFILS="C0M1:"+SPEEDS+".E.7.1.cs,ds.cd.If"
130 OPEN COMFILS AS #1

140 OPEN "SCRN:" FOR OUTPUT AS #2

200 LOCATE 25.1: PRINT "ASYNC TTY PROGRAM";SPC(5);
:COLOR 0.7:PRINT"TERMINAL EMULATION MODE";

:COLOR 7.0:PRINT SPC(5);"TYPE CTRL-E FOR MENU"
:LOCATE 2.1

205 PAUSE^FALSE

210 A$-INKEr$: IF A$«"" THEN 230

220 IF ASC(A$)='M£NU THEN 300 ELSE PRINT #1,A$;
230 IF EOF(l) THEN 210
240 IF L0C(1)>128 THEN PAUSE=TRUE; PRINT #1,X0FF$;
250 A$=INPUT$(L0C(1),#1)
260 PRINT #2.A$;:IF LOC(1)>0 THEN 240
270 IF PAUSE THEN PAUSE=FALSE:PRINT #1,X0N$;

280 GOTO 210

300 LOCATE 25,1: PRINT "ASYNC TTY PROGRAM";SPC(5);
:COLOR 0,7:PRINT"FILE TRANSFER MODE";:COLOR

7,0:PRINT STRINGS (30," "):LOCATE 2,1
305 LOCATE 1,1:PRINT STRING$(30," "):LOCATE 1,1

310 LINE INPUT"File? ";DSKFIL$

400 LOCATE 1,1:PRINT STRING$(30," "):LOCATE 1,1
410 LINE INPUT"(T)ransmit or (R)eceive? ";TXRX$
420 IF TXRX$="T" THEN OPEN DSKFILS FOR INPUT AS

#3:G0T0 1000

430 OPEN DSKFILS FOR OUTPUT AS #3

440 PRINT #1,CHRS(13);

6-4

A Sample Program

500 IF EOF(l) THEN GOSUB 600
510 IF L0C(1)>128 THEN PAUSE=TRUE: PRINT #1,X0FF$;
520 A$=INPUT$(L0C(1).#1)
530 PRINT #3,A$;:IF L0C(1)>0 THEN 510
540 IF PAUSE THEN PAUSE=FALSE:PRINT #1,X0N$;

550 GOTO 500

600 FOR 1=1 TO 5000

610 IF NOT EOF(l) THEN 1=9999
620 NEXT I

630 IF I>9999 THEN RETURN

640 CLOSE #3:CLS:LOCATE 1.1:PRINT "* Download

complete

650 GOTO 200

1000 WHILE NOT E0F(3)
1010 A$=INPUTS(1,#3)
1020 PRINT #1,A$;
1030 WEND

1040 PRINT #1.CHR$(26); 'CTRL-Z to make close file.
1050 CLOSE #3:CLS:L0CATE l.liPRINT Upload

complete

1060 GOTO 200

9999 CLOSE:KEY OFF

Notes on the TTY program:

Line No. Comments

10 Sets the screen to monochrome text mode and sets the width

to 80.

15 Turns off the function key display, clears the screen, and
makes sure that all files are closed.

20

Asynchronous implies character I/O as opposed to line or
block I/O. Therefore, all PRINT statements (either to the
communications file or to the screen) are terminated with
a semicolon. This suppresses the carriage return and line
feed normally issued at the end of a PRINT statement.

Defines all numeric variables as integers. This primarily
benefits the subroutine at lines 600-620. To optimize
speed always use integer counters in loops where possible.

6-5

A Sample Program

Line No. Comments

25-30 Clears the 25th line starting at column 1.

40 Defines Boolean TRUE and FALSE.

50 Defines the ASCII (ASC) value of the menu key.

60 Defines the ASCII XON, XOFF characters.

100-200 Prints program name, asks for Baud rate (speed). Opens
communication to file number 1, even parity, 7 data bits.

Programmer exercise: Modify this section to check for
valid baud rates before continuing.

205-280 This section performs full duplex I/O between the screen and
the device connected to the RS232 connector as follows:

1. Reads a character from the keyboard into A$. Note
that INKEY$ returns a null string if no character is
waiting.

2. If no character is waiting, checks whether any
characters are being received.

3. If the character at the keyboard is the menu key, a
file can be downloaded. Gets file name.

4. If character (A$) is not the menu key, then sends it
by writing to the communications file (PRINT ̂ 1,A$).

5. At 230 checks whether characters are waiting in
buffer. If not, goes back and checks keyboard.

6. At 240, if more than 128 characters are waiting, sets
pause flag to suspend input. Sends XOFF to stop
further transmission.

7. At 250-260, reads and displays contents of buffer on
screen until empty. Continues to monitor size of
buffer (in 240). Suspends transmission if falling
behind.

6-6

A Sample Program

Line No. Comments

8. Resumes transmission by sending XON only if suspended
by previous XOFF. Repeats process until menu key is
struck.

300-310 Gets disk file name to download to. Opens file to tie number
2.

400-430 Asks if file named is to be transmitted (uploaded) or
received (downloaded).

440 Sends a carriage return to the host to begin downloading.
This program assumes that the last command sent to the
host was to begin such a transfer and was missing only the
terminating carriage return. If a DEC system is the
host, then such a command might be:

COPY TTY:=MANUAL.MEM<MENU Key>

where the menu key was struck instead of RETURN.

500 When no more characters are being received (LOC(x) returns
0), performs a time-out routine (explained in line 600).

510 Again, if more than 128 characters are waiting, signals a
pause and sends XOFF to the host.

520-530 Reads all characters in the buffer (LOC(x)) and writes them
to disk (PRINT ̂ 3..) until caught up.

540-550 If a pause was issued, restarts host by sending XON and
clears the pause flag. Continues process until no
characters are received for a pre-determined time.

600-650 Time-out subroutine. The FOR loop count is determined by
experimentation. That is, if no character is received
from the host for 17-20 seconds, transmission is assumed

to be complete. If any character is received during this
time (line 610), sets I well above FOR loop range to exit
loop and return to caller. If host transmission is
complete, closes the diskette file and returns to being a
terminal.

6-7

A Sample Program

Line No. Comments

1000- Transmit routine. Reads one character into A$ with INPUTS

1060 statement. Sends character to device in line 1020. Sends

Ctrl-Z in line 1040 in case receiving device needs one to
close its file. Finally, in lines 1050 and 1060, closes
disk file, prints completion message, and returns to
conversation mode in line 200.

9999 Not executed in version of program as shown above. This line
closes the communications file left open and restores the
function key display.

Programmer exercise: Add some lines to the routine in
lines 400-420 to exit the program via line 9999.

OPERATION OF CONTROL SIGNALS

The following sections give more detailed technical information about
communicating with another computer or peripheral from BASIC. This
information may only be of interest to advanced programmers.

Output from the asynchronous communications (serial) port conforms to the
ElA RS-232C standard. Therefore control signals transmitted or received
are DC voltages that are either ON (greater than +3 volts) or OFF (less
than -3 volts).

Control of Output Signals with OPEN

When GWBASIC is invoked the RTS (Request To Send) and DTR (Data
Terminal Ready) transmission lines are both turned off. With an OPEN
"COM..." statement both these lines are turned on. However you may
suppress the RTS signal by using the RS option on the OPEN "COM..."
statement. Lines stay on until the communications file is closed (with
CLOSE, END, NEW, RESET, SYSTEM, or RUN without the R option).

The DTR line is on and stays on even if the OPEN "COM..." statement fails
with an error. This allows you to retry the OPEN without having to
execute a CLOSE.

6-8

Operation of Control Signals

Use of Input Control Signals

If either the CTS (Clear To Send) or DSR (Data Set Ready) lines are
OFF, an OPEN "COM..." statement will not execute and after one second,
BASIC will return a "Device Timeout" error.

The Carrier Detect (also called Receive Line Signal Detect or RLSD) line
can be either on or off. It will have no effect on the operation of the
program.

Use the RS, CS, DS, and CD options on the OPEN "COM..." statement to
specify how these lines should be tested. This information is given in
the OPEN "COM..." statement in Section 7.

If signals being tested are turned off while a program is executing, I/O
statements associated with the communications file will not work. For

example, if you turn the CTS or DSR line off and subsequently execute a
PRINT ft statement, you will get a "Device Fault" or "Device Timeout"
error. However, the RTS and DTR stay on even if such an error occurs.

Test for a line disconnect by using INP to read the bits in the Modem
Status Register on the asynchronous communications adapter (for
information on using INP and OUT to read from and write to the 8250
UART registers, see "Accessing the Registers" below). With the
built-in communications adapter use INP(&H3FE) to read the register,
and with an add-on adapter use INP(&H2FE). Use the delta bits in the
status register to determine if transient signals have appeared on any of
the control lines. Remember that for a control signal to have meaning,
the pin corresponding to that signal must be connected in the cable to
your modem or to another computer.

Another way to test for bits is with the Line Status Register. Use
INP(&H3FD) with the built-in communications adapter and INP(&H2FD)
with an add-on communications adapter to access ̂ s register. The bits
can be used to determine what types of errors have occurred on receipt
of characters from the communications line or whether a break signal has
been detected.

Direct Control of Output Control Signals

Use the OUT statement to control RTS or DTR control signals directly.
Whether these signals are on or off is controlled by bits in the Modem
Control Register, which is at address 3FC (in BASIC, &H3FC, to indicate a
hexadecimal number).

6-9

Operation of Control Signals

[CAUTION

Take great care when modifying
hardware registers directly as
incorrect programming can cause
system degradation or failure.

The Line Control Register may also be used to modify bits. Use care with
this method since most of the bits in this register have been set by BASIC
at the time an OPEN statement is executed and changing any of them could
cause communications failure. This register is at address 3FB (in BASIC,
&H3FB).

First read the register with INP, and then rewrite it by changing only the
pertinent bit or bits.

Bit 3, the Parity Enable bit, in the Line Control Register indicates whether
parity checking is enabled or not. To check the status of this bit while a
program is running, use the following code in the program:

10 DEFINT S

20 S=INP (&H3FB) 'read the line control
30 IF (S AND 8) THEN GOTO 60
40 PRINT "Parity currently disabled"
50 GOTO 70

60 PRINT "Parity currently enabled"
70

register

For further information, consult the Technical Reference Manual for your
system.

6-10

Accessing the Registers

COMMUNICATIONS ERRORS

Communications errors can occur at several different stages: on opening
the communications file, when reading data or when writing data.

An error message that may occur when opening the communications file
with OPEN "COM..." is:

"Device Timeout"

Occurs if a signal to be tested (CTS, DSR, or CD) is missing.

Messages that can be displayed in the event of an error when reading data
are:

"Com buffer overflow"

Output if overrun occurs.

"Device I/O error"

Indicates overrun, break, parity, or framing errors.

"Device Fault"

Indicates loss of DSR or CD signal.

Possible errors when writing data are:

"Device Fault"

Caused by loss of CTS, DSR, or CD on a Modem Status Interrupt while
BASIC was performing other processing.

"Device Timeout"

Indicates loss of CTS, DSR, or CD while waiting to write data to the
output buffer.

ACCESSING THE REGISTERS

You may read from or write to any of the 8250 UART registers via the CPU.
These registers are used to control 8250 operations and to transmit and
receive data. The registers are the Modem Status Register (MSR), Modem

6-11

Accessing the Registers

Control Register (MGR), Interrupt Enable Register (lER), Interrupt
Identification Register (IIR), Line Status Register (LSR), Receiver Buffer
Register (RBR), Transmitter Holding Register (THR) and Line Control
Register (LCR). Full details are given in the Tec.hnical Reference Manual
for your system.

To read the contents of one of these registers, use the INP function. For
example, INP(&H3FB) returns the contents of the Line Control Register.

To write to one of these registers, use the OUT statement. For example,
OUT &H3FB,&H40 writes the hexadecimal value 40 (binary 0100 0000) to
the Line Control Register, causing bit 6 (Set Break) to be set.

6-12

Section 7

GWBASIC COMMANDS, STATEMENTS,
FUNCTIONS, AND VARIABLES

INTRODUCTION

Following is an alphabetical listing of the commands, statements,
functions, and variables in GWBASIC. Commands are ways to tell
GWBASIC to perform an action immediately. Statements are used to
define parameters you wish to set. Executable statements tell GWBASIC
what to do next, and nonexecutable statements cause no action. An example
of a nonexecutable statement is REM, which allows you to insert a remark
in the program you are writing. Functions return a numeric or string
result. Variables represent values used in a GWBASIC program.

In the specifications that make up this section, the format line shows you
how to enter the command, statement, function, or variable. Remember the
following rules:

• Words in capital letters must be entered as shown. Note that
GWBASIC will convert words to upper case unless they are part of a
quoted string, remark, or DATA statement.

• You supply the information in lowercase bold letters.

• Square brackets [] enclose information that is optional.

• Ellipses (...) mean that the preceding item may be repeated as often
as necessary.

• Braces { } indicate a choice between two or more items, which are
separated by vertical bars |

• All punctuation except that in square brackets must be included
and must be in the position indicated by the format.

The following is an example of a format line:

INPUT[;]["prompt";] variable[.variable]...

7-1

Introduction

In this statement the keyword INPUT may be followed by a semicolon.
Then a prompt may be included in quotation marks followed by a semicolon.
At least one variable is required for the statement, but others may be added
if they are separated by commas.

Note the following definitions of parameters that appear throughout this
section.

f llespec = a string expression conforming to the rules for file
specification given in Section 3 of this manual

numvar = the name of a numeric variable

variable = the name of any variable, numeric or string

Note also that while the format for functions is:

V = function

You may also use the following direct command:

PRINT function

The purpose of the command, statement, function, or variable is provided
next, after which there is amplifying material telling more about each.
Examples are also given and explained.

A complete summary of the GWBASIC commands, statements, functions
and variables is given in Appendix I.

NOTE: For the MEGA PC, any code that references the speaker or the
music queue will have no effect. This includes the PLAY
function and the BEEP, ON PLAY(n), PLAY [ON/OFF/STOP]
and SOUND statements.

7-2

ABS

ABS Function

FORMAT V = ABS(x)

PURPOSE Returns the absolute value of x.

il H il

X may be any numeric expression.

PRINT ABS(8*(-3))
24

Ok

Since the absolute value of a number is always positive or zero, in this
example it is positive 24.

7-3

ASC

ASC Function

FORMAT v = ASC(a$)

PURPOSE Returns the ASCII code for the first character of a string.

isgs mis ass
iSsf «S9 isSs

a$ may be any string expression.

See Appendix C for ASCII codes.

If a$ is null, an "Illegal function call" error is returned.

10 A$="TEST"

20 PRINT ASC(A$)
RUN

84

Ok

The above shows the ASCII code for "T" is 84. PRINT ASC("TEST")
would show the same result.

7-4

ATN

ATN Function

FORMAT V = ATN(x)

PURPOSE Returns the arctangent of x in radians.

m m m

The expression x may be any numeric type, but the default evaluation of
ATN is performed in single precision. The evaluation will be in double
precision if the /D switch is specified in the GWBASIC command.

The result is a value in the range -pi/2 to pi/2, where pi=3.141593.

10 INPUT X

20 PRINT ATN(X)
RUN

? 3

1.249046

Ok

The above shows how the arctangent of 3 is calculated.

7-5

AUTO

AUTO Command

FORMAT AUTO [line number[,increment]]

PURPOSE Generates a line number automatically every time <Return> is
pressed.

line number is the number of the beginning line.

Increment is the value that will be added to each line number to get the
next one.

AUTO is especially useful when you are entering programs because it
spares you the trouble of having to type each line number.

AUTO begins at line number and increments each subsequent line
number by increment. The default for both values is 10. If line
number is followed by a comma but increment is not specified, the last
increment specified in an AUTO command is assumed. If line number is
omitted but increment is included, then the first line number is 0.

If AUTO generates a line number that is already being used, an asterisk is
printed after the number to warn you that any input will replace the
existing line. However, pressing <Return> immediately after the asterisk
will save the existing line, and AUTO will generate the next line number.

AUTO ends when you press Ctrl-Break or Ctrl-C. The line in which
Ctrl-Break or Ctrl-C is typed is not saved, and you are returned to
command level.

NOTE: When in AUTO mode, you may change only the current line. If
you want to change another line, you must exit AUTO.

AUTO 100,50

Generates line numbers 100, 150, 200 ...

AUTO

Generates line numbers 10, 20, 30, 40 ...

7-6

BEEP

BEEP Statement

FORMAT BEEP

PURPOSE Sounds the speaker.

BEEP sounds the speaker at 800 Hz for 1/4 second.

Both BEEP and PRINT CHR$(7) have the same effect.

2430 IF X < 20 THEN BEEP

If X is less than 20, the speaker will sound.

7-7

BLOAD

BLOAD Command

FORMAT BLOAD filespec[.offset]

PURPOSE Loads a file in binary format into memory.

f llespec identifies the file to be loaded, and has the form shown under
"File and Device Information" in Section 3.

offset is a numeric expression in the range 0 to 65535. Loading starts
at this address and is specified as an offset into the segment declared by
the last DBF SEG statement.

If offset is omitted, the offset and segment address are assumed to be
those specified by a previous BSAVE command. In this case the file is
loaded into the same location from which it was saved.

If the device is omitted, the DOS default drive is assumed.

WABNING

BLOAD does not perform an address
range check. It is therefore
possible to load a file anywhere in
memory. Make sure that the file
does not load over GWBASIC's stack,
GWBASIC's variable area, or your
GWBASIC program (see the memory
map in Appendix G). Careful use
of the /M switch in the GWBASIC
command will help in avoiding this
problem.

BLOAD and BSAVE are often used for loading and saving assembly
language programs. (See the CALL statement for how to execute assembly
language programs from within a GWBASIC program.) However, any
segment may be specified as the source or target for these statements by
means of the DBF SEG statement. This allows you to save and display
screen images by saving from or loading to the screen buffer. The memory
address for any given super-resolution graphics page is:

7-8

BLOAD

(page * 800H):0000

You will need to input this address in a DBF SEG statement prior to using
BLOAD with screen images.

10 *Load subroutine at 6000:FOOD

20 DEF SEG=&H6000 'Set segment to 6000 Hex
30 BLOAD"PROG1".&HFOOO 'Load PROGl

The segment address is set at 6(X)0 hex and loads PROGl at FOGG.

7-9

BSAVE

BSAVE Command

FORMAT BSAVE fllespec, off set, length

PURPOSE Transfers the contents of the specified area of memory
to an output device, saving the data in binary format.

M M Msm 999$ 999$

fllespec identifies the file to be loaded, and has the form shown under
"File and Device Information" in Section 3.

offset is an integer in the range 0 to 65535. This is the location at
which saving is to start, and is the offset into the segment declared by
the last DBF SEG statement.

length is an integer in the range 1 to 65535. It designates the length
in bytes of the memory image to be saved.

fllespec, offset, and length are required for this command to be
executed. If offset and/or length are omitted, a "Bad file name"
error message appears, and the save is terminated.

If the device name is omitted from fllespec, the DOS default drive is
assumed.

A DBF SEG statement should be executed before the BSAVE statement,
since the address given in the last known DBF SEG statement is used for
the save.

BLOAD and BSAVE are often used for loading and saving assembly
language programs. (See CALL statement for how to execute assembly
language programs from within a GWBASIC program.) However, any
segment may be specified as the source or target for these statements with
the DBF SEG statement. This allows you to save and display screen images
by saving from or loading to the screen buffer.

7-10

BSAVE

10 'Save the graphic screen buffer
20 SCREEN 105 'set screen attributes

for text and graphics

30 SCREEN ,,3,3 'set active and visual

pages to page 3.

(program generates a screen image)

100 DEF SEG = &H1800 'set segment pointer
to screen buffer

110 BSAVE "PICTURE",0,27000 'save screen buffer

to file "PICTURE"

DEF SEG is used to set up the segment address of the screen buffer as hex
1800, which corresponds to the statement SCREEN ,,3,3. The offset of 0
and length 27000 specifies that the entire screen is to be saved.

NOTE: For 400-line systems, line 110 of this example should read:

110 BSAVE "PICTURE",0,33000

7-11

CALL

CALL Statement

FORMAT CALL nximvar[(variable[.variable] ...)]

PURPOSE Calls an assembly language subroutine.

^ ̂ ̂

niimvar is the name of a numeric variable containing the starting point
in memory of the subroutine being called. This starting point is
specified as an offset into the current segment, which must have been
previously defined in a DBF SEG statement.

variable is the name of a variable, or variables separated by commas,
that is to be passed to the subroutine. Constants cannot be used.

100 DEF SEG=&H8000

110 F00=0

120 CALL FOO(A.B$.C)

Line 100 sets the segment address to 8000 hex. FOO is set to zero,
which causes the call to FOO to execute the subroutine at location hex

80000. Variables A, B$, and C are passed as arguments to the assembly
language subroutine.

7-12

CALLS

CALLS Statement

FORMAT CALLS numvar[(variable[.variable] . . .)]

PURPOSE Calls an assembly language subroutine, passing segmented
addresses of all arguments.

m M m

numvar is the name of a numeric variable containing the starting point
in memory of the subroutine being called. This starting point is
specified as an offset into the current segment, which must have been
previously defined in a DBF SEG statement.

variable is the name of a variable, or variables separated by commas,
that is to be passed to the subroutine. Constants cannot be used.

This statement is just like CALL except that the segmented addresses of
all arguments are passed, while CALL passes imsegmented addresses.
CALLS should be used when accessing routines written with the
FORTRAN calling convention; all FORTRAN parameters are call-by-
reference segmented addresses.

See the example given in the CALL statement.

7-13

CDBL

CDBL Function

FORMAT V = CDBL(x)

PURPOSE Converts x to a double-precision number.

X may be any numeric expression.

See "How GWBASIC Converts Numbers from One Precision to Another"
in Section 5 for rules on how to convert from one precision to another.
See CINT and CSNG to convert numbers to integer and single precision.

10 A»454.67

20 PRINT A;CDBL(A)
RUN

454.67 454.6700134277344

Ok

The value of CDBL(A) is accurate only to the second decimal place after
rounding because the original value of A has only two decimal places.

7-14

CHAIN

CHAIN Statement

FORMAT CHAIN [MERGE]filespec[,[llne][,ALL][,DELETE
range]]

PURPOSE Calls a program and passes variables to it.

aggt aggf
w m ̂

f ilespec identifies the program that is called, and has the form shown
under "File and Device Information" in Section 3. For example:

CHAIN "AiPROGl"

1 Ine is either a line number, or an expression that evaluates to a line
number, in the called program. It specifies the line at which the called
program is to begin running. If it is omitted, execution begins at the
first line in the called program.

CHAIN "ArPROGl'MOOO

Here line 1000 is not affected by a RENUM command. If a called program
is renumbered, the CHAIN statement must be changed to point to the new
line number.

ALL specifies that every variable in the current program is to be passed
to the called program. If the ALL option is omitted, the current program
must contain a COMMON statement to list the variables to be passed (see
COMMON statement). For example:

CHAIN "A:PR0G1",1000,ALL

MERGE brings a section of code into the GWBASIC program as an overlay.
That is, a MERGE operation is performed with the current program and
the called program. The called program must be an ASCII file (i.e., it
must have been stored using the SAVE command with the A option) if it is
to be merged.

CHAIN BIERGE "A:OVRLAY" , 1000

DELETE allows you to delete an overlay when it has been used, so that a
new overlay may be brought in. range has the format:

[line number][-line number]

7-15

CHAIN

and the line numbers specified must exist, or an "Illegal function call"
error occurs. An example of this option is:

CHAIN BfflERGE "A:0VRLAY2",1000.DELETE 1000-5000

This example deletes lines 1000 through 5000 of the current program
before loading in the overlay (the called program).

The line numbers in range are affected by the RENUM command, unlike
the value of line above.

NOTES:

1. The CHAIN statement leaves files open.

2. The CHAIN statement with MERGE option preserves the current
OPTION BASE setting.

3. Omitting the MERGE option causes (1) the loss of the OPTION BASE
setting in the called program, and (2) the loss of variable types or
user-defined functions for use by the called program. Thus, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEF FN statements
containing shared variables must be restated in the called program.

4. When using the MERGE option, userdefined functions should be placed
before any CHAIN MERGE statements in the program. Otherwise,
these functions will be undefined after the merge is complete.

5. CHAIN performs a RESTORE before running the chained program.
Thus DATA statements in the chained program will be read from the
beginning.

Example 1

10 KEM THIS PKOGSAM DEMONSTRATES CHAINING USING

COMMON TO PASS VARIABLES.

20 REM SATE THIS MODULE ON DISK AS "PROGl"

USING THE A OPTION.

30 DIM A$(2).B$(2)
40 COMMON A$(),B$()
SO A$(1)="TARIABLES IN COBIMON MUST BE ASSIGNED"
60 A$(2)="VALUES BEFORE CHAINING."
70 B$(l)="": B$(2) »""
SO CHAIN "PR0G2"

90 PRINT: PRINT B$(l): PRINT: PRINT B$(2):PRINT
100 END

7-16

CHAIN

10 REM THE STATEMENT "DIM A$(2),B$(2)" MAY
ONLY BE EXECUTED ONCE.

20 REM HENCE, IT DOES NOT APPEAR IN THIS MODULE.

30 REM SAVE THIS MODULE ON THE DISK AS "PR0G2"

USING THE 'A' OPTION.

40 COMMON A$(),B$()
50 PRINT: PRINT A$(1);A$(2)
60 B$(1)="N0TE HOW THE OPTION OF SPECIFYING A

STARTING LINE NUMBER"

70 B$(2)="WHEN CHAINING AVOIDS THE DIMENSION
STATEMENT IN 'PROGl'."

80 CHAIN "PROG1",90

90 END

In the above, "PROGl" shows how to chain to another program named
"PR0G2". "PR0G2" shows how to chain back to line 90 in "PROGl".

Example 2

10 REM THIS PROGRAM DEMONSTRATES CHAINING USING

THE MERGE AND ALL OPTIONS.

20 REM SAVE THIS MODULE ON THE DISK AS "MAINPRG".

30 A$="MAINPRG"

40 CHAIN MERGE "OVRLAYl",1010.ALL

50 END

1000 REM SAVE THIS MODULE ON THE DISK AS

"OVRLAYl" USING THE A OPTION.

1010 PRINT A$; " HAS CHAINED TO OVRLAYl."

1020 A$="0VRLAY1"

1030 B$="0VRLAY2"

1040 CHAIN MERGE "0VRLAY2",1010.ALL.

DELETE 10001050

1050 END

1000 REM SAVE THIS MODULE ON THE DISK AS

"0VRLAY2" USING THE A OPTION.

1010 PRINT A$; " HAS CHAINED TO ";B$;"."

1020 END

The above shows how to use the MERGE option while chaining.

7-17

CHDIR

CHDIR Command

FORMAT CHDIR pathname

PURPOSE Changes the current directory.

wi na fsn
jm w w

pathname specifies the name of the directory which is to be the current
directory and is a string of up to 63 characters, which must be enclosed
in quotes. CHDIR works exactly like the DOS command CHDIR - see the
DOS manual.

CHDIR "SALES"

makes SALES the current directory.

CHDIR "B:USERS"

This changes the current directory to USERS on drive B. It does not,
however, change the default drive to B:.

See also the MKDIR and RMDIR commands.

7-18

CHR$

CHR$ Function

FORMAT V = CHR$(a)

PURPOSE Returns the character for a given ASCII code.

M M M

a must be in the range 0 to 255.

ASCII codes are listed in Appendix C.

CHR$ is commonly used to send a special character to the screen or
printer. For instance, the BEL character, which beeps the speaker,
might be included as CHR$(7) as a preface to an error message (instead
of using BEEP). CHR$(12) might be a form feed to clear the screen and
return the cursor to the home position.

Refer to the ASC function to see how to return the ASCII code for a
character.

PRINT CHR$(66)
B

Ok

The character for ASCII code 66 is B.

10 IF INKEY$ <> CHR$(3) THEN 10

The program will loop at statement 10 until the character '^C (Ctrl-C)
is entered from the keyboard.

7-19

CINT

CINT Function

FORMAT V = CINT(x)

PURPOSE Converts x to an integer.

SHIf ssss ssst
m m m

X may be any numeric expression in the range -32768 to 32767.

X is converted to an integer by rounding the fractional portion. If x
is not in the required range, an "Overflow" error occurs.

See FIX and INT, which also return integers. See also CSNG and CDBL
for converting numbers to single or double precision.

PRINT CINT(45.67)
46

Ok

Observe how rounding occurs.

7-20 /
/
/

, /

CIRCLE

CIRCLE Statement

FORMAT CIRCLE [STEP] (x.y),radius [.color
[,start,end[,aspect]]]

PURPOSE Draws a circle, arc or ellipse with the specified center and
radius.

m M m

This statement can only be used in graphics mode (SCREEN 1, 2, 104 or
105).

X is the x-coordinate for the center of the circle,

y is the y-coordinate for the center of the circle,

radius is the radius of the circle in pixels.

color is the number of the color in which the figure is to be drawn. In
medium resolution (SCREEN 1), color ranges from 0 to 3, where 0
indicates the background color and 1 to 3 denote colors from the current
palette (see Table 7-2). In high resolution (SCREEN 2) and super
resolution (SCREEN 104 and 105), color can be either 0 (background
color) or 1 (foreground color). Default is 3 for medium resolution and 1
for high- and super resolution. Default for monochrome screens is the
foreground color.

start and end are angles, allowing you to specify where drawing of the
figure will begin and end. The range is -2*pi through 2*pi; see the
diagram below. If the start and end angles are negative, the figure will
be connected to the center point with a line, and the angles will be
treated as if they were positive. Note that this is different from adding
2*pi. start may be less than end.

7-21

CIRCLE

0.5*PI

0.75*PI ^ \ 0.25*PI

PI

1.25*PI

0 or 2*PI

1.75*PI

1.5*PI

NOTE: The CIRCLE statement always draws counterclockwise from
start to end.

If you specify coordinates outside the screen or current
viewport, this is not regarded by GWBASIC as an error. The
overlapping portion of the figure will simply not be drawn.

aspect is the aspect ratio, i.e., the ratio of the x radius to the y
radius. The default ratio produces a round circle on the screen.

If the aspect ratio is less than one, the radius given is the x radius.
If it is greater tiian one, the y radius is given.

The last point referenced after a circle is drawn is the center of the
circle.

Coordinates can be shown as absolutes, as in the syntax shown above, or
the STEP option can be used to reference a point relative to the most
recent point used. The format of the STEP option is:

STEP (x,y)

For example, if the most recent point referenced were (x,y), STEP (10,5)
would reference the point (x+10,y+5).

7-22

CIRCLE

Assume that the last point plotted was 100,50. Then

CIRCLE (200,200),50

and

CIRCLE STEP (100,150),50

will both draw a circle at 200,200 with radius 50. The first example uses
absolute notation; the second uses relative notation.

10 CLS:SCREEN 105:PI » 3.1415926#

20 CIRCLE (320,160),30,,-l.l*PI,-0.9*PI
30 CIRCLE (310,150),3

The above example illustrates how specifying a negative start and end
value causes the figure to be connected to the center point with a line.
The program draws the face of a well-known arcade game character.

10 'These examples demonstrate use of the

CIRCLE statement

20 SCREEN 105: CLS: PI=3.1415926#

30 CIRCLE (50,100),40.,0,2*PI
40 CIRCLE (150,100),40,,,,1.5
50 CIRCLE (250,100),40,,0.25*PI,1.5*PI
60 CIRCLE (350,100),40,,-0.25*PI,1.5*PI
70 CIRCLE (450,100),40,.0.25*PI,-1.5*PI
80 CIRCLE (550,100),40,,1.25*PI,-0.75*PI

Examining these examples individually will help you further understand
operation of the CIRCLE statement.

7-23

CLEAR

CLEAR Command

FORMAT CLEAR [,[expressionl][,expresslon2]]

PURPOSE Sets all numeric variables to zero, all string variables
to null, and closes all open files. Options set the
end of memory and the amount of stack space available
to GWBASIC.

m m m

expresslonl is a memory location which, if specified, is the highest
location available for the GWBASIC work space (where your program and
data are stored, along with the interpreter work area). This expression
is useful, for example, in reserving space for assembly language
programs. Note that the maximum value of expressionl is 65534.

expresslon2 sets aside stack space for GWBASIC. The default is 768
bytes or one-eighth of the available memory, whichever is smaller. This
expression is useful, for example, if there are nested GO SUB statements
or FOR...NEXT loops in your program, or if you use PAINT to do complex
scenes.

Using CLEAR

• closes all files

• clears all COMMON variables

• resets numeric variables and arrays to zero
• resets the stack and string space
• resets string variables and arrays to null
• releases all disk buffers

• resets all DEF FN and other DEF statements

CLEAR resets SOUND to music foreground and PEN and STRIG to OFF.

To free memory without erasing all your data, use the ERASE statement.

CLEAR

The above clears all data from memory without erasing the program.

CLEAR ,32768

The above clears the data and sets the maximum workspace size to 32K.

7-24

CLEAR

CLEAR ,,2000

The above clears the data and sets the size of the stack to 2000 bytes.

CLEAR ,32768,2000

The above clears data, sets the maximum work space for GWBASIC to
32K, and sets the stack size to 2000 bytes.

7-25

CLOSE

CLOSE Statement

FORMAT CLOSE [[#]f ilenum[, [#]f ilenum...]]

PURPOSE Concludes I/O to a disk file or device.

m m m

f Ilenum is the number used to OPEN the file.

CLOSE with no file numbers closes all open devices and files.

CLOSE ends the association between a particular file or device and its
file number that was created by an OPEN statement. The file or device
may be opened again using the same or a different number, or the number
may be reused to open any device or file.

If a file or device has been opened for sequential output, CLOSE causes
the final buffer to be written to it.

Executing SYSTEM, CLEAR, RESET, END, NEW, and RUN automatically
closes all open files and devices. STOP does not close any files or
devices.

10 CLOSE 2,5

or

10 CLOSE #2,#5

Either statement closes files 2 and 5.

7-26

CLS

CLS Statement

FORMAT CLS

PURPOSE Erases contents of entire current screen and homes the
cursor

In text mode CLS clears the active page (see the SCREEN statement) to the
background color (see the COLOR statement) and homes the cursor to the
upper left corner.

In graphics mode (whether super-, medium-, or high resolution) CLS
clears the screen buffer to the background color and homes the cursor to
the upper left corner of the screen.

Entering Ctrl-Home from the keyboard is equivalent to executing a CLS
statement.

If a viewport has been made active by means of the VIEW statement, a
subsequent CLS statement only clears the viewport. If you want to clear
the whole screen, use VIEW with no parameters to make the entire screen
the current viewport, and then execute CLS.

10 CLS

20 PRINT "Hi there!!!"

The above example clears the screen, and types out the message *'Hi
there!!!" in the upper left corner of the screen.

7-27

COLOR (Graphics)

COLOR Statement (Graphics)

FORMAT COLOR [background][.palette]

PURPOSE Sets background color and selects a color palette for the ^
foreground.

MOe vyw

H If

This form of the COLOR statement may be used with most compatible
color/graphics monitor adapters in medium resolution (SCREEN 1).
Attempts to use COLOR in high-resolution mode (SCREEN 2) will result
in an "Illegal function call" error. In super-resolution mode, the COLOR
statement gives an "Illegal function call" error for SCREEN 104 and is
ignored for SCREEN 105.

Each character displayed on the screen is made up of a background and a
foreground color. The foreground is the color of the character itself,
and the background is the color of the space around the character. If you
are using color graphics, you use this form of the COLOR statement to set
the foreground and background colors, then you display the characters by
means of statements such as PRINT, LINE, PAINT etc.

If you are using color in graphics mode (see the SCREEN statement), each
COLOR statement with the format shown below allows you to choose one
of 16 colors for the background and one of two "palettes" of three colors
each for the foreground. A palette allows you to select colors in
subsequent LINE, PAINT etc. statements without having to specify a new
color statement each time.

background is a number in the range 0 to 15 that specifies a background
color as shown in Table 7-1 below.

palette can be any unsigned integer or numeric expression. If its value
is odd, palette 1 is selected, otherwise palette 0 is selected. Table 7-2
specifies the effective colors with each palette. A value outside the
range 0-255 will cause an "Illegal function call" error.

7-28

COLOR (Graphics)

Table 7-1

COLOR NUMBERS

No. Color No. Color

0 Black 8 Gray

1 Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 High-Intensity
White

Table 7-2

PALETTE INFORMATION

Color Palette 0 Palette 1

1 Green Cyan

2 Red Magenta

3 Brown White

Foreground color may be the same as the background color, thus making
displayed characters invisible.

Any parameter may be omitted. If a parameter is omitted, the previous
value is retained.

Colors selected by the COLOR statement will be used by the PSET,
PRESET, LINE, CIRCLE, PAINT, and DRAW statements.

Values entered outside the ranges will result in an "Illegal function
call" error, and previous values will be retained.

7-29

COLOR (Graphics)

The following examples assume that you have a color/ graphics monitor
adapter present.

10 SCREEN 1

20 COLOR 9,0

Sets background to light blue, selects palette 0.

30 COLOR ,3

Background stays light blue, selects palette 1 because palette is an odd
number.

10 CLS

20 SCREEN 1,0 'Select medium resolution -

color ON

30 COLOR 10,1 'Select light green
background - palette 1

40 PRINT "Characters are white (color 3)"
50 LINE (100,100)-(200,150) ,2,B 'Draw a box with

magenta lines
60 PAINT (150,125),1,2 'Fill the box with cyan

With a standard monochrome system this program will print in reverse
video, and draw and fill the box in white.

After running this program, pressing the FIO key returns the screen to
the normal mode.

7-30

COLOR (Text)

COLOR Statement (Text)

FORMAT COLOR [foreground][,[background][.border]]

PURPOSE Sets the foreground (i.e., character) color, background color,
and border color respectively.

m m m

This form of the COLOR statement can only be used in text mode
(SCREEN 0 or 100). See the COLOR Statement (Graphics) for an explanation
of foreground and background colors.

foreground is a number in the range 0 to 31 that specifies a color as in
Table 7-1, which is repeated below. Values 16 to 31 are the same colors as
for 0 to 15 but the characters are set blinking.

background and border are numbers in the range 0 to IS and also
specify colors according to Table 7-1. They set the color of the text
background and the border round the edge of the screen. Note that
border has no effect with a monochrome screen.

Table 7-1

COLOR NUMBERS

No. Color No. Color

0 (16)
1 (17)
2 (18)
3 (19)
4 (20)
5 (21)
6 (22)
7 (23)

Black

Blue

Green

Cyan
Red

Magenta
Brown

White

8 (24)
9 (25)
10 (26)
11 (27)
12 (28)
13 (29)
14 (30)
15 (31)

Gray
Light Blue
Light Green
Light Cyan
Light Red
Light Magenta
Yellow

High-Intens i ty
White

For foreground colors, values in parentheses cause the character to blink.

7-31

COLOR (Text)

The effect of each of these parameters varies depending on the monitor and
monitor adapter used (see Tables 7-3 and 7-4). Values outside the ranges
shown will cause an "IllegeJ function call" error.

Table 7-3

COLOR ON A STANDARD MONOCHROME MONITOR

Foreground
Background (0-15)

(0-31)
Even Odd

0 Black on black Black on white

1 White on black ,
underlined

Black on white
underlined

2-7 White on black Black on white

8-15 Same as 0-7 except high intensity.

16-23 Same as 0-7 except blinking.

24-31 Same as 0-7 except blinking and
high intensity.

NOTE: Border has no effect with a monochrome screen and may be
omitted. If it is supplied, it must be in the range 0-15 or
an "Illegal function call" error will result.

The following example demonstrates use of the COLOR statement in text
mode on a standard monochrome system.

10 CLS

20 SCREEN 100

30 COLOR 7,0:

40 COLOR 1,0:

50 COLOR 15,0:

60 COLOR 23,0:

70 COLOR 0,7:

80 COLOR 24,7;

& blinking'

90 COLOR 7,0

'SCREEN 0,0 could also be used

PRINT "Normal Mode - white on black"
PRINT "Normal Mode - underlined"

PRINT "Normal Mode - high intensity"
PRINT "Normal Mode - blinking"

PRINT "Reverse Video - black on white"
PRINT "Reverse Video ~ high intensity

'Back to normal mode

7-32

■ COLOR (Text)

T able 7-4

COLOR IN TEXT MODE WITH A COLOR/GRAPHICS ADAPTER

Range
Foreground
(0-31)

Background
(0-15)

Border

(0-15)

0-7

8-15

16-31

colors 0-7

colors 8-15

colors 0-15

blinking

colors 0-7

colors 0-7

error

colors 0-7

colors 8-15

error

The following example demonstrates the use of COLOR in text mode with
a color/graphics adapter.

10 CLS

20 SCREEN 101 'SCREEN 0,1 could also be

used

30 COLOR 7,0: PRINT "Normal - white on black"

40 COLOR 28,1: PRINT "Blinking - light red on

blue"

50 COLOR 0,7: PRINT "Reverse Video - black on

white"

60 COLOR 7,0 'Return to normal

7-33

COM(n)

COM(n) Statement

FORMAT COM(n) ON

COM(n) OFF

COM(n) STOP

PURPOSE Enables or disables event trapping of communications activity
on the specified channel.

y ̂ ̂

n is the number of the communications channel: 1, 2, 3 or 4.

The COM(n) ON statement enables communications event trapping by an ON
COM statement. While trapping is enabled, and if a nonzero line number is
specified in the ON COM statement, GWBASIC checks between every statement
to see if any characters have been received on the specified channel. If
so, the ON COM statement is executed to pass control to a subroutine that

I can perform any desired processing.

COM(n) OFF disables communications event trapping. If characters are
received, this event is not remembered by GWBASIC.

COM(n) STOP disables communications event trapping, but if an event
occurs, it is remembered and ON COM will be executed as soon as trapping
is enabled.

10 COM(l) ON

Enables error trapping of communications activity on channel 1 (COMl:).

7-34

COMMON

COMMON Statement

FORMAT COMMON list of variables

PURPOSE Passes variables to a chained program.

M M M

The COMMON statement is used in conjunction with the CHAIN statement.
COMMON statements may appear anywhere in a program, though it is
recommended that they appear at the beginning. The same variable cannot
appear in more than one COMMON statement. Array variables are specified
by appending "()" to the variable name. If all variables are to be
passed, use CHAIN with the ALL option and omit the COMMON statement.

Some software products allow the number of dimensions in the array to be
included in the COMMON statement. GWBASIC will accept that syntax, but
will ignore the numeric expression itself. For example, the following
statements are both valid and are considered equivalent:

COMMON A(l)

COMMON A(3) I

The number in parentheses is the number of dimensions, not the dimensions
themselves. For example, the variable A(3) in this example might
correspond to a DIM statement of DIM A(5,8,4).

100 COMMON A,B,C,D(),G$

110 CHAIN "PR0G3",10

The above chains the program to PR0G3. Variables A,B,C and G$ as well
as the array D are passed.

7-35

CONT

CONT Command

FORMAT CONT

PURPOSE Continues program execution after a break.

iSSi iSS iSS
fUt

This command restarts a program after Ctrl-Break or Ctrl-C has been
pressed, a STOP or END statement has been executed, or an error has
occurred. Execution resumes at the point where the break occurred. The
prompt symbol is redisplayed if the break occurred while the program was
waiting for input from the keyboard.

CONT is usually used in conjunction with STOP for debugging. When
execution is stopped, you can examine or change the values of variables
using direct mode statements. Use CONT to resume program execution, or
use the direct mode GOTO, which requires a specific line number to
resume.

CONT is invalid if the program has been edited during the break.

7-36

COS

COS Function

FORMAT V = COS(x)

PURPOSE Returns the cosine function of an angle.

jwytf

m m m

X must be in radians. To convert from degrees to radians, multiply the
degrees by PI/180, where PI=3.141593.

The calculation of COS(x) is performed in single precision, unless the
the /D switch was specified in the GWBASIC command. In this case the
calculation will be performed in double precision, provided that either
the variable receiving the cosine value is of double-precision type, or
X is specified as double-precision using the ff sign.

10 X=2*C0S(0.4)
20 PRINT X

RUN

1.842122

Ok

The above shows the result of two times the cosine of 0.4.

7-37

CSNG

CSNG Function

FORMAT v = CSNG(x)

PURPOSE Converts x to a single-precision number.

X may be any numeric expression. CINT and CDBL functions convert
numbers to integers and double-precision numbers.

10 A# = 975.3421115#

20 PRINT A#; CSNG(A#)
RUN

975.3421115 975.3421

Ok

The value of the double-precision number A# is returned as CSNG(A#).

7-38

CSRLIN

CSRLIN Function

FORMAT V = CSRLIN

PURPOSE Returns the current line position of the cursor.

^ ̂ ̂

The value returned will be in the range 1 to 24.

For the column position of the cursor, see PCS function.

LOCATE moves the cursor to a specified position.

10 Y = CSRLIN

20 X == POS(O)
30 LOCATE 20,1 :PRINT "HELLO"

40 LOCATE X,Y

Line 10 records the current line, line 20 the current column. Line 30
causes HELLO to be printed on line 20. Last, in line 40 the cursor is
returned to its original position.

7-39

CVI, CVS, CVD

CVI, CVS, CVD Functions

FORMAT V = CVI(2-ljyte string)
V = CVS(4-liyte string)
V = CVD(8-byte string)

PURPOSE Converts string variables to numeric variables.

jyytf AMC

H li in

Numeric values read from a random file on disk must be converted from

strings back into numbers. CVI converts a two-byte string to an integer.
CVS converts a four-byte string to a single-precision number. CVD
converts an eight-byte string to a double-precision number.

To convert numeric values to string values, see MKI$, MKS$, MKD$
functions.

70 FIELD #1,4 AS N$, 12 AS B$, ...
80 GET #1

90 Y=CVS(N$)

Line 70 has random file (#1) with certain fields. Line 80 reads a record
from the file, and line 90 uses CVS function to interpret (N$) as a
single-precision number.

7-40

DATA

DATA Statement

FORMAT DATA list of constants

PURPOSE Stores the numeric and string constants that are accessed by
the program's READ statement(s).

DATA statements are nonexecutable and may be placed anywhere in the
program. A DATA statement may contain as many constants as will fit
on a line. These must be separated by commas. Any number of DATA
statements may be used in a program. READ statements access DATA
statements in line number order. The information given in these
statements may be thought of as one continuous list of items, regardless
of how many items are on a line or where the lines are placed in the
program.

list of constants may contain numeric constants in any format
whether fixed-point, floating-point, or integer. (No numeric expressions
are allowed in the list.) String constants in DAT A statements must be
surrounded by double quotation marks only if they contain commas, colons,
or significant leading or trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given in the READ statement must
agree with the corresponding constant in the DAT A statement.

Use RESTORE to reread DATA statements from the beginning.

See the READ statement for an example.

7-41

DATES Statement

DATE$ Statement

FORMAT DATES = string expression

PURPOSE Sets the date.

fooe SSSS

fSS

string expression has one of the following forms:

mm-dd-yy

mm/dd/yy
mm-dd-yyyy

mm/dd/yyyy

10 DATE$="02/11/85"

The current date is set to February 11, 1985.

7-42

DATES Variable

DATE$ Variable

FORMAT v$ = DATES

PURPOSE Returns the system date.

m m m

This variable returns a ten-character string in the form mm-dd-yyyy,
where mm is the month (01 through 12), dd is the day (01 through 31), and
yyyy is the year (1980 through 2099).

10 PRINT DATES

The date will be printed as set with the DATES statement.

7-43

DEFFN

DEF FN Statement

FORMAT DEF FNnanie[(parameter
definition

list)]=function

PURPOSE Defines and names a function written by the user.

M M MSSS9 SS^ Sm

name must be a legal variable name. This name, preceded by FN, becomes
the name of the function.

parameter list is optional and is used if variable names in the function
definition are to be replaced with values when the function is called.
The list consists of the appropriate variable names, separated by commas.

function definition is an expression that performs the operation of
the function. It is limited to one logical line. Variable names that
appear in this expression serve only to define the function; they do not
affect program variables that have the same name. A variable name used in
a function definition may or may not appear in the parameter list. If it
does, the value of the parameter is supplied when the function is called.
Otherwise, the current value of the variable is used.

The variables in the parameter list represent, on a one-to-one basis, the
argument variables or values that will be given in the function call.

This statement may define either numeric or string functions. If a type
is specified in the function name, the value of the expression is forced
to that type before it is returned to the calling statement. If a type is
specified in the function name and the argument type does not match, a
"Type mismatch" error occurs.

A DEF FN statement must be encountered before the function it defines may
be called. If a function is called before it has been defined, an

"Undefined user function" error occurs. DEF FN is illegal in direct mode.

7-44

DEFFN

10 DEF FNTUN (X) - N'^2
20 INPUT "Number";N

30 PRINT "Square is" FNFUN(N)
RUN

Number? 5

Square is 25

Line 10 defines the function FUN. The function is called in line 30.

7-45

DEF SEG

DEF SEG Statement

FORMAT DEF SEG [=address]

PURPOSE Assigns the current segment address to be referenced by a
subsequent BLOAD, BSAVE, CALL, CALLS, or POKE
statement or by a USR or PEEK function.

address is an integer in the range 0 to 65535.

The address specified is saved for use as the segment required by BLOAD,
BSAVE, CALL, CALLS, POKE, USR, and PEEK.

Entering values outside the address range will result in an "Illegal
function call" error, and the previous value will be retained.

If address is omitted, the segment to be used is set to the GWBASIC data
segment (DS). This is the initial default value.

If address is given, it should be based on a 16-byte boundary. GWBASIC
does not check the validity of the specified address.

NOTE: DEF and SEG must be separated by a space. Otherwise,
GWBASIC will interpret the statement DEFSEG=100 to mean
"assign the value 100 to the variable DEFSEG".

10 DEF S£G::>&HB800

20 DEF SEG

'Set segment to B800 Hex

'Restore segment to
GWBASIC data segment

The above lines set and restore data segments.

7-46

DEFtype

DEFtype Statements

FORMAT DEFtype range(8) of letters

PURPOSE Declares variable types as integer, single precision, double
precision, or string.

m m m

type is INT, SNG, DEL, or STR.

Any variable names beginning with the letter(s) specified in range of
letters will be considered the type of variable specified in the type
portion of the statement. However, a type declaration character (%, !, ff
or $) always takes precedence over a DEFtype statement.

If no type declaration statements are encountered, GWBASIC assumes that
all variables without declaration characters are single-precision
variables.

10 DEFDBL L-P

All variables beginning with the letters L, M, N, O, and P will be
double-precision variables.

10 DEFSTR A

All variables beginning with the letter A will be string variables.

10 DEFINT I-N,W-Z

All variables beginning with the letters I, J, K, L, M, N, W, X, Y, Z will
be integer variables.

7-47

DBF USR

DEF USR Statement

FORMAT DEF USR[diglt]=liiteger expression

PURPOSE Specifies the starting address of an assembly language
subroutine.

m m m

digit may be any digit from 0 to 9. The digit corresponds to the number
of the USR routine whose address is being specified. If digit is
omitted, DEF USRO is assumed.

integer expression is the starting address of the USR routine.

Any number of DEF USR statements may appear in a program to redefine
subroutine starting addresses, thus allowing access to as many subroutines
as necessary.

200 DEF USR0=:24000

210 X=USR0(Y'^2/2.89)

This example shows a call to a subroutine at absolute location 24000.

7-48

DELETE

DELETE Command

FORMAT DELETE [line number][-][line number]

PURPOSE Deletes program lines.

GWBASIC always returns to command level after a DELETE is executed.

If line number does not exist, an "Illegal function call" error occurs.

DELETE 40

Deletes line 40.

DELETE 40-100

Deletes lines 40 through 100, inclusive.

DELETE -40

Deletes all lines up to and including line 40.

DELETE 40-

Deletes lines 40 to the end, inclusive.

7-49

DIM

DIM Statement

FORMAT DIM list of subscripted variables

PURPOSE Specifies the maximum values for array variable subscripts
and allocates storage accordingly.

m M M

If an array variable name is used without a DIM statement, the maximum
value of the array's subscript(s) is assumed to be 10. If a subscript is
used that is greater than the maximum specified, a "Subscript out of
range" error occurs. The minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE statement.

The DIM statement sets all the elements of the specified numeric arrays to
an initial value of zero, and the elements of string arrays to null.

Theoretically, the maximum number of dimensions allowed in a DIM
statement is 255. In reality, however, that number would be impossible,
since the name and punctuation are also counted as spaces on the line, and
the line itself has a limit of 255 characters. The number of dimensions

is further limited by the amount of available memory.

If the default dimension (10) has already been established for an array
variable and that variable is later encountered in a DIM statement, the
message "Array already dimensioned" is displayed. Thus it is good
programming practice to put the required DIM statements at the beginning
of a program, outside any processing loops.

10 DIM A(20)
20 FOR 1=0 TO 20

30 READ A(I)
40 NEXT I

Reads twenty numbers from DATA statements into array A.

7-50

DRAW

DRAW Statement

FORMAT DRAW string expression

PURPOSE Draws a line as indicated by string expression.

This statement can only be used in graphics mode (SCREEN 1,2, 104 or
105).

string expression is one or more subcommands that call for motion
(up, down, left, right), color, angle, and scale factor. Subcommands in
the string can be separated by optional spaces or semicolons.

Each of the following subcommands begins movement from the "current
graphics position". This is usually the coordinate of the last graphics
point plotted with LINE or PSET. The default is the center of the screen.

If no argument is supplied, the commands listed below move one unit.
The size of a unit can be modified by the S subcommand, which sets the
scale factor (the default unit size is one point). In all the following
commands, n is a numeric argument which can be a constant like "123", or
"=variable", in which the name of a variable is specified.

U n Move up (scale factor *n) points
D n Move down

L n Move left

R n Move right
E n Move diagonally up and right
F n Move diagonally up and left
G n Move diagonally down and left
H n Move diagonally down and right
M X ,y Move absolute or relative. If x is preceded by a plus

(+) or minus (-), x and y are added to the current
graphics position and connected with the current
position by a line. Otherwise, a line is drawn to
point x,y from the current cursor position.

7-51

DRAW

The following prefix commands may precede any of the above movement
commands:

B Move but do not plot any points.

N Move but return to original position when done.

A n Set angle of rotation n. n may range from 0 to 3, where 0
is 0 degrees, 1 is 90, 2 is 180, and 3 is 270. Figures
rotated 90 or 270 degrees are scaled so they will appear the
same size as 0 or 180 degrees on a monitor screen with the
standard aspect ratio of 4/3.

C n Set color n in which line is to be drawn. In medium

resolution (SCREEN 1), n ranges from 0 to 3, where 0
indicates the background color and 1 to 3 denote colors from
the current palette (see Table 7-2). In high resolution
(SCREEN 2) and super resolution (SCREEN 104 and 105), n can
be either 0 (background color) or 1 (foregroimd color).
Default is 3 for medium resolution and 1 for high- and super
resolution. Default for monochrome screens is the foreground
color.

S n Set scale factor, n may range from 1 to 255. The scale
factor multiplied by the distances given with U, D, L, R, or
relative M commands gives the actual distance traveled.

X string expression;
Execute substring. This command allows you to execute a
substring from a string. You can have one string execute
another, which executes a third, and so on. A semicolon (;)
is mandatory at the end of an X command.

TA n Rotate figure n degrees, n must be in the range -360 to
360 degrees. If n is positive, rotation is counter
clockwise; if negative, rotation is clockwise.

P X ,y Paint the object drawn using the specified colors: x is an
integer defining the paint color, and y is an integer
defining the border color.

7-52

DRAW

10 SCKEEN 105

20 CLS

30 PSET (160,100),1
40 DRAW "U20 R30 D20 L30"

The above will draw a box on the screen.

10 SCREEN 105:CLS

20 FOR D=0 TO 360

30 DRAW "TA-D; NUlOO"

40 NEXT D

This example draws spokes radiating from a central point, and illustrates
the use of TA for angle rotation.

7-53

EDIT

EDIT Command

FORMAT EDIT line number

PURPOSE Enters edit mode at the specified line.

ii H il

After you enter the line number to be edited, GWBASIC displays the entire
line ready for editing, placing the cursor on the first character of the
line.

To edit the current line, use a period (.) instead of line number.
This is useful if you have just edited a line and pressed <Return> but
decide you want to edit the line again, or if you want to edit the last
line of a program that has just executed.

7-54

END

END Statement

FORMAT END

PURPOSE Terminates program execution, closes all files, and returns
to command level.

END statements may be placed anywhere in the program to terminate
execution. Unlike STOP, END does not cause a "Break" message to be
printed, and END closes all files.

An END statement at the end of a program is optional. GWBASIC always
returns to command level after an END is executed.

520 IF K>1000 THEN END ELSE GOTO 20

The program ends if K is greater than 1000. If it is less than or equal
to 1000, it branches to line 20.

7-55

ENVIRON

ENVIRON Statement

FORMAT ENVIRON par am [=] string

PURPOSE Adds or modifies a parameter in the BASIC environment
table, allowing you to change the table's PATH
parameter for a child process, or to pass new
parameters to a child process.

M M M

param is the name of the parameter to be added or modified,

string is the new parameter value.

param and string must be separated by either an equal sign (=) or a
space. Everything to the left of the equal sign or space will be assumed
to be a parameter, and everything to the right, text.

If param does not already exist, it will be appended to the end of the
table. If it does already exist, the old parameter is deleted and the new
one appended to the end of the table.

If string is a null string (""), or consists only of a semicolon
the existing parameter is removed from the table, and the remainder of the
table compressed.

An error message will be displayed if you specify parameters that are not
strings, and "Out of memory" will occur when no more space can be
allocated to the environment table. The amount of free space in the table
is usually quite small.

The following example creates a default path to the root directory on
drive A:

ENVIRON "PATH=A:\"

At this point, if GWBASIC executes a SHELL command with no parameters,
the system displays the A> prompt (if A: is the current drive), allowing
you to execute one or more DOS commands from the COMMAND.COM file.
You could now, for example, execute the DOS command CHDIR to access a _
different directory and run a program from that directory under DEBUG,
using the path specified in the ENVIRON statement to access DEBUG from
the root directory. When the program ended, you would type EXIT to
return to the original BASIC program.

7-56

ENVIRON

You can add a new parameter to the environment table as follows:

ENVIRON "SESAME=PLAN"

Assuming the path specified earlier, the environment table will now
contain this string (note that you can read the contents of the table by
using the ENVIRONS function):

PATH=A:\;SESAME=PLAN

If you then give a new value for the PATH parameter, like this:

ENVIRON "PATH=A:\SALES;A:\ACCOUNTING"

the environment table will now contain:

SESAME=PLAN;PATH=A:\SALES;A:\ACCOUNTING

If you want to add data to the end of the PATH parameter, you can use the
ENVIRONS function with this statement to avoid entering the entire PATH
parameter over again:

ENVIRON "PATH="+ENVIRON$("PATH") + "B: \PLAN"

At this point the table will contain:

SESAME=PLAN;PATH=A:\SALES;A:\ACCOUNTING;B:\PLAN

Finally, you can delete the parameter SESAME:

ENVIRON "SESAME=;"

leaving the following in the table:

PATH=A:\SALES;A:\ACCOUNTING;B:\PLAN

See also the ENVIRONS function and the SHELL command.

7-57

ENVIRONS

ENVIRON$ Function

FORMAT v$ = ENVIRONS (param)
vS = ENVIRONS (n) ^

PURPOSE Returns a parameter value from the BASIC environment
table.

M M M79» 700$ 700$

param is a string containing the name of the parameter for which the
value is to be returned.

n is an integer expression returning a value in the range 1 to 255.

If you use param, ENVIRONS returns a string containing the text
following "param = " in the environment table. This string must not
exceed 255 characters, otherwise a "String too long" message is
displayed. If the parameter cannot be found, or if it has no text
following it, a null string is returned.

If you use n, the nth parameter in the table is returned, together with
its value. If the nth parameter does not exist, a null string is
returned.

As an example, if the environment table contains:

PATH=A:\SALES;A:\ACCOUNTING;B:\PLAN

the statement:

PRINT ENVIRONS("PATH")

will print the string:

A:\SALES;A:\ACCOUNTING;B:\PLAN

The first two entries in the environment table when the system is
booted are the PATH parameter (which initially has a null value) and a
parameter named COMSPEC, which tells the system where to find the
COMMAND.COM file.

7-58

ENVIRONS

Assuming the PATH parameter has been modified according to the example
above, the statement:

PRINT ENVIR0N$(1)

will print the string:

PATH=A:\SALES;A:\ACCOUNTING;B:\PLAN

Notice how this form of ENVIRONS causes the parameter name to be
printed as well.

The following program saves the BASIC environment table in an array so
that you can modify it for a child process. After the child process
finishes, the environment is restored.

10 DIM TBL$(1Q) 'assume no more than 10 params
20 PARMS = 1 'Initial no. of params

30 WHILE LEN(ENVIRONS(PARMS)) > 0
40 TBL$(PARMS) = ENVIRONS(PARMS)
50 PARMS = PARMS + 1

60 WEND

70 PARMS = PARMS - 1 'adjust to correct number

80 'now store new environment

90 ENVIRON "MYCHILD.PARMl = SORT BY NAME"

100 ENVIRON "MYCHILD.PARM2 = LIST BY NAME"

1000 SHELL "MYCHILD" 'runs MYCHILD.EXE

1010 FOR X = 1 TO PARMS

1020 ENVIRON TBLS(X) 'restore params
1030 NEXT X

See also the ENVIRON and SHELL statements.

7-59

EOF

EOF Function

FORMAT v = EOF(file number)

PURPOSE Tests for the end-of-file condition.

m m m

This function returns -1 (true) if the end of a sequential file has been
reached. Use it while inputting to avoid "Input past end" errors.

When EOF is used with random access files, it returns -1 (true) if the
last executed GET statement was unable to read an entire record because

of an attempt to read beyond the end.

When EOF is used with a communications device, the definition of the
end-of-file condition is dependent on the mode (ASCII or binary) in which
the device was opened. In binary mode, EOF is true when the input queue
is empty (LOC(n)=0). It becomes false when the input queue is not
empty. In ASCII mode, EOF is false until a Ctrl-Z is received, and from
then on it will remain true until the device is closed.

10 OPEN "I'M, "DATA"

20 C=0

30 IF EOF(l) THEN 100
40 INPUT #1,M(C)
50 C=:C+1:G0T0 30

Reads information from a file named "DATA" into the array M, and when the
end of file is reached the program moves to line 100.

7-60

ERASE

ERASE Statement

FORMAT ERASE arraynameC .arrayname]...

PURPOSE Deletes arrays from memory.

M M MSS9f 309» 999$

arrayname is the name of an array you want to erase.

After the arrays are erased, they may be redimensioned, or the free space
may be used for other purposes. If you try to redimension an array
without first erasing it, a "Duplicate definition" error occurs.

450 ERASE A,B

460 DIM B(99)

The above shows how to redimension array "B".

7-61

ERDEV, ERDEV$

ERDEV and ERDEV$ Variables

FORMAT V = ERDEV

v$ = ERDEVS

PURPOSE These two read-only variables return the last device error
code issued (ERDEV) and the name of the device causing
the error (ERDEVS).

ERDEV is an integer which, in its lower 8 bits contains the interrupt 24
error code returned by the last device to declare an error, and in its
upper 8 bits contains the word attribute bits (13, 14 and 15) of the
device header block.

If the error was on a character device, ERDEVS contains the 8-byte name
of the device driver. If the error was not on a character device, ERDEVS
contains the two-character block device name (A:, B:, C: etc.)

If a user-installed device driver, "MYLPT2", ran out of paper, and the
driver's error number for that problem was "9":

will yield:

PRINT ERDEV, ERDEVS

MYLPT2

7-62

ERR. ERL

ERR and ERL Variables

FORMAT ERR

ERL

PURPOSE Returns the error code and line number where the error
occurred.

m m m

When an error-handling routine is entered, the variable ERR contains the
error code for the error, and the variable ERL contains the line number of
the line in which the error was detected. The ERR and ERL variables are
usually used in IF...THEN statements to direct program flow in the error
handling routine. Refer to ON ERROR statement in this section.

If the statement that caused the error was a direct mode statement, ERL
will contain 65535. To test whether an error occurred in a direct
statement use the form:

IF 65535 = ERL THEN ...

Otherwise, use

IF ERR = error code THEN ...

IF ERL = line number THEN ...

Be sure to put the line number on the right side of the relational oper
ator so it can be renumbered by RENUM.

Because ERL and ERR are reserved variables, neither may appear to the
left of the equal sign in a LET (assignment) statement.

GWBASIC error codes are listed in Appendix J. See also ERROR
statement.

7-63

ERR.ERL

10 ON EKSOS GOTO 60

20 OPEN "I",#1,"JUNK.DAT"
30 CLOSE #1

40 PRINT "The file exists"

50 END

60 IF ERR=53 AND ERL=20 THEN PRINT "File does
not exist"

70 PRINT "Error";ERR;"at llne";ERL

80 STOP

The above shows a way to check for the existence of a file.

7-64

ERROR

ERROR Statement

FORMAT ERROR n

PURPOSE Simulates the occurrence of a GWBASIC error; or allows
you to define your own error codes.

^ M M
3888 SW8

n must be an integer expression between 1 and 255.

If the value of n is the same as an error code already in use (see
Appendix F), the ERROR statement will simulate the occurrence of that
error and display the corresponding error message. (See Example 1.)

To define your own error code, use a value different from those used by
GWBASIC. (We suggest you use the highest available values to allow for
additional error codes being added to GWBASIC.) Your new error code may
then be tested in an error-handling routine. (See Example 2.)

If you have defined an error-handling routine with ON ERROR, the program
will enter this routine when it encounters the error.

If an ERROR statement specifies a code for which no error message has
been defined, the message "Unprintable error" is displayed, and execution
halts.

Example 1

10 S=10

20 T=5

30 ERROR S+T

40 END

Ok

RUN

String too long in 30

Or, in direct mode:

Ok

ERROR 15

String too long

Ok

(you type this line)
(GWBASIC displays this line)

The above shows how to simulate a "String too long" error.

7-65

ERROR

Example 2

110 ON ERROR GOTO 400

120 INPUT "WHAT IS YOUR BET";B

130 IF B>5000 THEN ERROR 210

400 IF ERR=210 THEN PRINT "HOUSE LIMIT IS $5000"

410 IF ERL=130 THEN RESUME 120

The above traps an error with code 210.

7-66

EXP

EXP Function

FORMAT v = EXP(x)

PURPOSE Returns the exponential function of the mathematical
expression e (base of natural logarithms).

Wt W

X may be any numeric expression but no greater than 88.02969.

If X is greater than 88.02%9, an "Overflow" error message is displayed,
machine infinity with the appropriate sign is supplied as the result, and
execution continues.

EXP returns a single-precision value unless the /D switch was used with
the GWBASIC command. In this case the calculation will be in double

precision, provided that either the variable that receives the exponential
function is of double-precision type, or x.is specified as
double-precision using the it sign.

10 X=5

20 PRINT EXP(X-l)
RUN

54.59815

Ok

This example calculates e raised to the power of 4.

7-67

FIELD

FIELD Statement

FORMAT FIELD number,field width AS string
variable...

PURPOSE Allocates space for variables in a random file buffer.

Before a GET statement or PUT statement can be executed, you must use
FIELD to format the random file buffer.

file number is the number under which the file was opened.

field width is the number of characters to be allocated to string
variable.

The total number of bytes allocated in a FIELD statement must not exceed
the record length that was specified when the file was opened. Otherwise,
a "FIELD overflow" error occurs. (The default record length is 128
bytes.)

Any number of FIELD statements may be executed for the same file. All
FIELD statements that have been executed will remain in effect at the

same time.

NOTE: Do not use a FIELDed variable name in an INPUT or LET

statement. Once a variable name is defined in a FIELD

statement, it points to the correct place in the random
file buffer. If a subsequent INPUT or LET statement with
that variable name is executed, the variable's pointer is
moved to the variables stored in string space.

FIELD #1,20 AS N$,10 AS 1D$,4G AS ADD$

Allocates the first 20 positions (bytes) in the random file buffer to the
string variable N$, the next 10 positions to ID$, and the next 40
positions to ADD$. FIELD does not place any data in the random file
buffer.

7-68

FIELD

10 OPEN "R,"#1,"A;PH0NELST",35

15 FIELD #1.2 AS KECNBS$,33 AS DUHMT$
20 FIELD #1,25 AS NAMES,10 AS PHONENBSS
25 GET #1

30 TOTAL=CVI(EECNBR$)
35 FOR 1=2 TO TOTAL

40 GET #1, I

45 PRINT NAMES, PHONENBRS
50 NEXT I

The above illustrates a multiply-defined FIELD statement. In statement
15, the 35-byte field is defined for the first record to keep track of the
number of records in the file. In the next loop of statements (35-50),
statement 20 defines the field for individual names and phone numbers.

The following example:

10 FOR L00P56=0 TO 7

20 FIELD #l,(LOOP$6»16) AS OFFSETS, 16 AS
ASCLOOP^e)

30 NEXT LOOP56

shows the construction of a FIELD statement using an array of elements of
equal size. The result is equivalent to the single declaration:

FIELD #1,16 AS AS(0),16 AS AS(1) 16 AS
AS(6),16 AS AS(7)

The next example:

10 DIM SIZESe (4$e): REM ARRAT OF FIELD SIZES
20 FOR L00P?6=0 TO 4

30 READ SIZE^ (LOOP^)
40 NEXT L00PS6

50 DATA 9,10,12,21,41

120 DIM AS(4«); REM ARRAY OF FIELDED VARIABLES
130 OFFSET?6=0

140 FOR L00P56=0 TO 4*

150 FIELD #1,0FFSET?6 AS OFFSETS,SIZE?6(LOOP?6)
AS AS(L00P5e)

160 0FFSET56=0FFSET56+SIZE?6(L00P?6)
170 NEXT LOOP56

7-69

FIELD

creates a field in the same manner as the previous example. However, the
element size varies with each element. The equivalent declaration is:

FIELD #l,SIZE5e(0) AS A$(0) ,SIZE?6(1) AS A$(l),
. . .SIZE^(45e) AS A$(4^)

7-70

FILES

FILES Statement

FORMAT FILES ["fllespec"]

PURPOSE Displays the names of files on the specified disk.

f ilespec is the file specification (see Section 3, "File and Device
Information") and includes a filename or pathname and optional device
designation.

If fllespec is omitted, all the files in the current directory on the
current drive will be listed, fllespec may contain question marks (?)
or asterisks (*) used as wild cards. A question mark will match any
single character in the filename or extension.

An asterisk will match one or more characters starting at that position.
The asterisk is a shorthand notation for a series of question marks.

FILES

Shows all files in the current directory on the current drive.

FILES "*.BAS"

Shows all files with extension ".BAS".

FILES "B:*.*"

Shows all files on drive B.

FILES "B:"

This is equivalent to "B:*.*".

FILES "TEST?.BAS"

Shows all five-letter files whose names start with "TEST" and end with
the .BAS extension.

FILES "\SALES"
FILES "\SALES\MARY"

Shows a subdirectory or file in the current directory.

7-71

FIX

FIX Function

FORMAT V = FIX(x)

PURPOSE Truncates x to an integer.

^ ̂ ̂

X may be a numeric expression.

FIX returns the value of the digits to the left of the decimal point. It
does not change the value of numbers to the left of the decimal.

The difference between FIX and INT is that FIX does not return the next

lower number when x is negative. (See also CINT.)

PRINT FIX(58.75)
58

Ok

PRINT FIX(-28.87)
28

Ok

7-72

FOR ... NEXT

FOR and NEXT Statements

FORMAT FOR variable=x TO y [STEP z]

NEXT [varialile][.variable]...

PURPOSE Defines parameters for a loop.

variable is used as a counter. It must be an integer or in single
precision.

X is the initial value of the counter,

y is the final value of the counter.

z is an integer or single-precision constant to be used as an increment.

The program lines following the FOR statement are executed until the
NEXT statement is encountered. Then the counter is incremented with the

step value, z. If STEP is not specified, the increment is assumed to be
1. A check is performed to see if the value of the counter is now greater
than the final value y. If it is not greater, GWBASIC branches back to
the statement after the FOR statement, and the process is repeated. If it
is greater, execution continues with the statement following the NEXT
statement. This is a FOR...NEXT loop.

If z is negative, the test is reversed. The counter is decremented each
time through the loop, and the loop is executed until the counter is less
than the final value.

The body of the loop is skipped if x is already greater than y when
z is positive, or if x is less than y when z is negative.

Nested Loops

FOR...NEXT loops may be nested; that is, a FOR...NEXT loop may be
placed inside another FOR...NEXT loop. When loops are nested, each loop
must have a unique variable name as its counter. The NEXT statement for

7-73

FOR...NEXT

the inside loop must appear before that for the outside loop. If nested
loops have the same end point, a single NEXT statement may be used for all
of them.

The variable(s) in the NEXT statement may be omitted, in which case the
NEXT statement will match the most recent FOR statement. Using variable
names on the NEXT statements causes programs to execute more slowly.

If a NEXT statement is encountered before its corresponding FOR
statement, a "NEXT without FOR" error message is displayed, and
execution is terminated.

Example 1

10 K=10

20 FOR 1=1 TO K STEP

30 PRINT I;

40 K=K+10

50 PRINT K

60 NEXT

RUN

1

3

5

7

9

Ok

20

30

40

50

60

The above shows a FOR...NEXT loop with a STEP value of 2.

Example 2

10 J=0

20 FOR 1=1 TO J

30 PRINT I

40 NEXT I

In this example, the loop does not execute because the initial value of
the loop exceeds the final value.

7-74

FOR ... NEXT

Example 3

10 1=5

20 FOR 1=1 TO 1+5

30 PRINT I;

40 NEXT

RUN

12 3 4

Ok

5 6 7 8 9 10

The loop executes ten times. The final value for the loop variable is
always set before the initial value set.

7-75

FRE

FRE Function

FORMAT V = FRE(x)
v=FRE(x$)

PURPOSE Returns the number of bytes in memory not being used by
GWBASIC, optionally tidying up the memory.

X and x$ are dummy arguments and can be any value.

When all free memory has been used GWBASIC automatically performs a
"garbage collection" to tidy up the data and free areas of memory that are
no longer used. Since this may take some time, FRE(x$) can be used to
force the collection process before returning the number of free bytes.
Using FRE(x$) periodically will result in shorter delays for each
garbage collection.

PRINT FRE(O)
14542

Ok

Your computer may give a different value depending on what options you
have installed.

7-76

GET (Files)

GET Statement (Files)

FORMAT GET [^]flle number [.record number]

PURPOSE Reads a record from a random file into a random buffer.

^ ̂ ̂

file number is the number under which the file was opened.

record number must be in the range 1 to 16,777,215. If record
number is omitted, the next record (after the last GET) is read into the
buffer.

The LOF function can be used before a GET to see if that GET would go
beyond the end-of-file marker. After a GET statement has been executed,
you may use INPUT # and LINE INPUT ff to read characters from the
random file buffer. For additional information see Appendix A, Sequential
and Random Files.

The GET and PUT statements allow fixed-length input and output for COM
files. However, because of the low performance associated with telephone
line communications, it is not advisable to use GET and PUT with COM
files transmitted via telephone line.

50 CLS

60 INPUT "Name of the file to copy: ".IN.FILE$
70 INPUT "Name of the output file: ",OUT.FILE$
80 OPEN "R",#l,IN.FILES,128
90 FIELD #1, 128 AS IN.DATA$
100 'Check to see if the file exists - If it

does then stop all action

110 OPEN "I",#2,OUT.FILES
120 CLOSE #2

130 PRINT "File exists. Cannot copy"

140 GOTO 330

150 'Print a message for the user
160 PRINT "Copying file"
170 OPEN "R",#2,OUT.FILES,128
180 FIELD #2, 128 AS OUT.DATAS
190 'Read from file #1 and copy the information

to file #2

200 GET #1

210 'Check to see if we are at end of file

220 'The error handler

7-77

GET (Files)

230 IF EOF(l) = -1 THEN GOTO 280
240 LSET OUT.DATA$ = IN.DATA$

250 PUT #2

260 'and do it again!
270 GOTO 200

280 CLOSE

290 PRINT "Copy complete"
300 END

310 IF ERR = 53 AND ERL = 110 THEN CLOSE #2 :

RESUME 160

320 PRINT : PRINT "Error";ERR;"at line";ERL
330 END

The above copies a file through the use of GET and PUT statements.

7-78

GET (Graphics)

GET Statement (Graphics)

FORMAT GET (xl »yl)-(x2,y2) ,arrayiiame

PURPOSE Transfers a graphic image from the screen to an array.

(xl, yl) - (x2, y2) is a rectangle on the display screen. The rectangle
is defined the same way as the rectangle drawn by the LINE statement using
the ,B option: (xl ,yl) is the upper left and (x2 ,y2) the lower right
vertex.

arrayname is the name of the array that will hold the image. The array
can be any type except string, and must be dimensioned large enough to
hold the entire image (see below). Unless the array is type integer, the
contents of the array after a GET will be meaningless when interpreted
directly.

The GET statement transfers into the array the screen image bounded by
the rectangle and described by the specified points.

The PUT statement transfers the image stored in the array onto the
screen. Repeated PUTs to slightly different locations on the screen give
the effect of animation. For more details on the use of GET and PUT for

animation, see the PUT Statement (Graphics) later in this section.

To dimension an array, use the following formula to find the number of
bytes required:

4+INT((x*bits+7)/8)*y

where:

X is the size of the x-dimension in pixels

y is the size of the y-dimension in pixels

bits is the number of bits used per pixel

The value of bits is 2 for medium resolution and 1 for high- and super
resolution.

7-79

GET (Graphics)

Assume you want to GET a 5 by 6 image into an integer array using medium
resolution. The number of bytes required would be:

4+INT((5*2+7)/8)*6

or 16 bytes. Since the bytes per element of an array are:

2 for integer
4 for single precision
8 for double precision

you would need an integer array with at least 16/2, or 8 elements, a
single precision array with at least 4 elements, or a double precision
array with at least 2 elements.

It is possible to examine the x- and y-dimensions and even the data itself
if an integer array is used. The x-dimension is in element 0 of the
array, and the y-dimension is found in element 1. Remember that integers
are stored low byte first, then high byte, but the data is transferred
high byte first (leftmost) and then low byte.

7-80

GOSUB... RETURN

GOSUB and RETURN Statements

FORMAT GOSUB line

RETURN [line]

PURPOSE Branches to and returns from a subroutine.

line in the GOSUB statement is the number of the first line of the

subroutine.

A subroutine may be called any number of times in a program, and a
subroutine may be called from within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement causes GWBASIC to branch back to the statement

following the most recent GOSUB statement. A subroutine may contain
more than one RETURN statement, should logic dictate a return at different
points in the subroutine.

1 ine may be included in the RETURN statement to return to a specific
line number from the subroutine. Use this type of return with care,
however, because any other GOSUBs, WHILEs, or FORs that were active
at the time of the GOSUB will remain active, and errors such as "FOR
without NEXT" may result.

Subroutines may appear anywhere in the program, but it is recommended
that the subroutine be readily distinguishable from the main program. To
prevent inadvertent entry into the subroutine, precede it with a STOP,
END, or GOTO statement that directs program control around the
subroutine.

7-81

GOSUB...RETURN

"SUBROUTINE";

" IN";

PROGRESS"

10 GOSUB 40

20 PRINT "BACK FROM SUBROUTINE"

30 END

40 PRINT

50 PRINT

60 PRINT

70 RETURN

RUN

SUBROUTINE IN PROGRESS

BACK FROM SUBROUTINE

Ok

The statements in the above example are executed in the following
sequence:

10 Calls a subroutine

40 Prints a string
50 Prints a string
60 Prints a string
70 Ends the subroutine

20 Prints a string
30 Ends the program

7-82

GOTO

GOTO Statement

FORMAT GOTO line

PURPOSE Branches imconditionally out of the normal program sequence
to a specified line number.

line is the number of a line in the program.

If line is the number of an executable statement, that statement and
those following are executed. If line refers to a nonexecutable
statement (such as REM or DATA), the program continues at the first
executable statement encountered after line.

GOTO can be useful in debugging to re-enter a program at a desired point
in direct mode.

Use ON...GOTO to branch to different lines based on the result of an
expression.

5 DATA 5,7,12

10 READ R

20 PRINT "R ="»-K #

30 A=3.14*R'^2

40 PRINT "AREA

II

3

50 GOTO 5

RUN

R » 5 AREA » 78.5

R = 7 AREA » 153.86

R = 12 AREA = 452.16

Out of DATA in 10

Ok

Line 50 passes control to line 5, which is a nonexecutable statement. The
READ is then invoked, and the program continues in a loop until the data
is exhausted and a read error is flagged in line 10.

7-83

GWBASIC

GWBASIC Command

FORMAT GWBASIC [<stdln] [>[>stdout]] [filespec]
[/C:combuffer] [/D] [/F:files] [/I] [/M:[max
workspace][,max block size]] [/Sibslze]

NOTE: If you type BASIC or BASICA,the program
looks for and loads GWBASIC.EXE. If

GWBASIC.EXE is not found, an error
message is displayed.

PURPOSE Causes GWBASIC to run under the specified conditions from
the DOS command level.

m m m

St din and stdout are used for redirecting input and output - see
Section 3, imder "Redirection of Input and Output". They specify files
for a BASIC program to respectively read input from and write output to.
If used, these parameters must be given before any of the switches (/C,
/D, etc.)

filespec identifies a program to be loaded and executed, and has the
form shown under "File and Device Information" in Section 3. If no
extension is supplied and the length of the file name is eight characters
or less, . BAS is used as the default extension. This option causes the
same action as RUN "filespec". You can use this format of the
GWBASIC statement to run BASIC programs in batch mode by putting these
GWBASIC statements in an AUTOEXEC.BAT file. Programs run in this
way must exit via the SYSTEM command each time.

/Crcombuffer is for use with the asynchronous communications adapter
and sets the size of the communications buffer that is used for receiving
data. (The buffer for transmitting data is always set for 128 bytes.)
The maximum value that may be entered for this option is 32767. If the
option is omitted, the receive buffer is set for 256 bytes. For a high
speed line the suggested value is /C:1024. If you have more than one
asynchronous communications adapter, this option sets the size for all
receive buffers. Entering /C:0 disables RS232 support.

/D causes the double-precision math package to stay resident in memory.
If you omit /D, double-precision functions are ignored and the memory
space (about 3K) is freed for program use.

7-84

GWBASIC

/F:f lies sets the number of files that may be open at any one time
during the execution of a GWBASIC program, and is only meaningful if the
/I switch is also set. Each file requires 62 bytes of memory for its
control block, plus 128 bytes for the data buffer, unless this value is
changed with the /S: option. If the /F: option is omitted, files is set
to 3. The maximum recommended value is 10.

/1 causes GWBASIC to statically allocate space for file operations based
on the /S and /F switches, which have no effect unless /I is specified.

/M is used as follows, max workspace sets the maximum number of
bytes that may be used as GWBASIC work space. Since GWBASIC uses
only a maximum of 64 Kbytes of memory, that is the highest value that
may be set (hex FFFF). This option can be used to reserve space for
assembly language subroutines or for special data storage. If this option
is omitted, all available memory is used (up to 64K). max block size
specifies the maximum number of 16-byte blocks of memory to be reserved
for BASIC and any assembly language routines you want to run. This is
necessary when using the SHELL statement, otherwise COMMAND.COM
will be loaded on top of the assembly language routines when SHELL is
executed. Thus to reserve 64 Kbytes for BASIC and 512 bytes for assembly
language routines, specify: /M:,4128 giving 40% blocks for BASIC and 32
blocks for the routines.

files, bsize, combuffer, and max workspace may be decimal,
octal (preceded by &0), or hexadecimal (preceded by &H) numbers.

/Sibsize sets buffer size for use with random files, and is only
meaningful if the /I switch is also set. The parameter for record length
on the OPEN statement may not exceed this value. Default buffer size is
128 bytes. The maximum value that may be entered is 32767. Using/S:512
is suggested for improved performance with random files since this matches
the physical sector size on the diskette.

Below are some examples of the GWBASIC command:

GWBASIC PAYROLL.ABC

GWBASIC will use all memory, up to three files at any one time, and the
program PAYROLL.ABC will be loaded and executed.

GWBASIC INVENT/F:6

GWBASIC will use all memory, up to 6 files, and the program INVENT.BAS
will be loaded and executed.

7-85

GWBASIC

GWBASIC /M:32768

The maximum size of the work space is set to be 32768, or 32 Kbytes of
memory, and no more than three files will be used at a time. No program
is run, and the "Ok" prompt will appear.

GWBASIC /M:32000,2048

Allocates 32 Kbytes maximum (a total of 32,768 bytes) but BASIC will only
use the lower 32,000, allowing 768 bytes for assembly language routines.

GWBASIC TTY/C:512

GWBASIC uses all of memory and three files. The RS232 receive buffer
is allocated 512 bytes and the transmit buffer 128 bytes. The program
TTY.BAS is loaded and executed.

7-86

HEX$

HEX$ Function

FORMAT V = HEX$(x)

PURPOSE Returns a string that represents the hexadecimal value of the
decimal argument.

X is an integer.

See the OCT$ function for information on octal conversion.

10 INPUT X

20 A$=HEX$(X)
30 PRINT X "DECIMAL IS " A$ " HEXADECIB4AL"

40 END

RUN

? 32

32 DECIMAL IS 20 HEXADECIMAL

7-87

IF

IF Statement

FORMAT IF

PURPOSE

expression [,] THEN clause [ELSE clause]
[rstatement...]

IF expression [,] GOTO line [[,] ELSE clause]

Performs a branch or executes one or more statements if a

specified condition is satisfied.

expression is a numeric expression.

clause is a GWBASIC statement, a sequence of statements (separated
by colons), or the number of a line to branch to.

line is the number of a line existing in the program.

Execution of the first of the two forms above is performed according to
the table below.

Table 7-5

EXECUTION OF IF-THEN-ELSE STATEMENTS

Expression
ELSE

Clause

Present

Clause

to be

Executed

Continue

Execution

on Same LineLogical Value

TEUE <>0 YES THEN NO

TRUE <>0 NO THEN YES

FALSE YES ELSE YES

FALSE =0 NO Next NO

Statement

7-8

IF

If the result of expression is true (not zero), the THEN or GOTO
clause is executed. THEN is followed by a clause that can be either a
line number to branch to, or one or more statements to be executed.
GOTO is always followed by a line number.

If the result of expression is false (zero), the THEN or GOTO clause
is ignored and the ELSE clause, if present, is executed (the ELSE clause
follows the same rules as the THEN clause).

Execution then continues with the next executable statement after IF.

NOTE: When using IF to test equality for a value that is the result of a
single or double-precision computation, remember that the
internal representation of the value may not be exact. This
is because single- and double-precision values are stored
internally in floating point binary format. Therefore, the
test should be against the range over which the accuracy of
the value may vary. For example, to test a computed variable
A against the value 1.0, use

IF ABS (A-1.0) < l.OE-6 THEN ...

This test returns a true result if the value of A is 1.0 with

a relative error of less than l.OE-6.

IF...THEN...ELSE statements may be nested. Nesting is limited only by the
length of the line. For example:

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X THEN

PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a valid statement. If the statement does not contain the same number

of ELSE and THEN clauses, each ELSE is matched with the closest
unmatched THEN. For example:

IF A=B THEN IF B=C THEN PRINT "A=C"

ELSE PRINT "AOC"

will not print "AOC" when AOB.

If you enter an IF...THEN statement in direct mode and it directs control
to a line number, then an "Undefined line number" error results unless you
already entered the line with the specified number in indirect mode.

200 IF I THEN GET #1.1

7-89

IF

This statement gets record lif lis not zero.

100 IF (I>10) and (I<20) THEN DB=1985-1: GOTO
300 ELSE PRINT "OUT OF RANGE"

If I is between 10 and 20, DB is calculated and execution branches to line
300. If I is not in this range, the message "OUT OF RANGE" is printed.
Note the use of two statements in the THEN clause.

210 IF lOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go to either the screen or
printer, depending on the value of the variable lOFLAG. If lOFLAG is
zero, output goes to the printer; otherwise, output goes to the screen.

7-90

INKEY$

INKEY$ Function

FORMAT v$ = INKEY$

PURPOSE Reads a character from the standard input device (normally
the keyboard unless input is redirected).

^ M

INKEY$ returns either the actual character received from the keyboard, or
a null string if no character has been typed. In some cases the character
is returned as a two-character string that indicates an extended character
code. Information on the characters that return these codes is given in
Table C-2.

The value returned by INKEY$ must be assigned to a string variable before
it can be processed by GWBASIC.

50 CLS

60 LOCATE 10,10

70 PRINT "Press RETURN to continue

80 LOCATE 10,30

90 RET$ = INKEY$

100 IF RETS = "" THEN GOTO 80

110 IF ASC(RET$) <>13 THEN GOTO 80
120 END

The above uses the INKEYS function to poll the keyboard until the RETURN
key, which has an ASCII value of 13, is pressed.

7-91

INP

INP Function

FORMAT V = INP(n)

PURPOSE Returns the byte read from port address n.

m m m

n is an integer in the range 0 to 1023 (&H3FF).

For examples of using the INP function with a communications program,
see Section 6 under "Accessing the Registers".

A port address map is given in Table 7-6.

INP is the complementary function to the OUT statement (see OUT
statement).

100 A=INP(&H3DA)

A byte is read from port address &H3DA and assigned to variable A.

7-92

Table 7-6

PORT ADDRESS MAP

INP

TTav

Address Bit

DeviceJtlCX

Kange
9 8 7 6 5 4 3 2 1 0

OO-OF 0 0 0 0 0 M A3 A2 A1 AO DMA Chip
8237-2

20-21 0 0 0 0 1 it M M M AO Interrupt
8259A

40-43 0 0 0 1 0 M W It Ai AO Timer

8253-5

60-63 0 0 0 1 1 M W It A1 AO PPI

8255-5

80-83 0 0 1 0 0 M M It Al AO DMA Page
Registers

AX** 0 0 1 0 1 NMI Mask
Registers

CX 0 0 1 1 0 Reserved

EX 0 0 1 1 1 Reserved

200- 1 0 0 0 0 0 A3 A2 Al AO Game I/O
20F Adapter
278- 1 0 0 1 1 1 1 M Al AO Reserved

27F

2F8- 1 0 1 1 1 1 1 A2 Al AO Reserved

2FF

300- 1 1 0 0 0 0 0 A2 Al AO Hard

307 Disk I/O
Ports

378- 1 1 0 1 1 1 1 M Al AO Auxiliary

37F Parallel
Printer

Port

3B0- 1 1 1 0 1 1 A3 A2 Al AO Built-in

3BF Parallel

Printer

Port and
Mono

chrome

Display
3D0- 1 1 1 1 0 1 A3 A2 Al AO Color/
3DF Graphics

Adapter

7-93

INP

Table 7-6 (Cont.)

Hex

Range

Address Bit

9 8 7 6 5 4 3 2 1 0

Device

3F0-

3F7

1 1 1 1 1 1 0 A2 A1 AO 5 1/4"
Drive

3F8-

3FF

1 1 1 1 1 1 1 A2 A1 AO RS-232C

(Serial
Port)

*Not in decode.

**At power-on, the nonmaskable interrupt, NMI, to
the 8088 is disabled by external hardware. This
can be set and reset as follows:

To set mask: Write 8QH to I/O Address OAOH

To clear mask: Write OOH to I/O Address OAOH

7-94

INPUT

INPUT Statement

FORMAT INPUT[;]["prompt";]variable[,variable]...

PURPOSE Receives input from the standard input device (normally the
keyboard unless input has been redirected) during
program execution.

^ ̂ ̂

"prompt" is a string constant that can be used to prompt for the desired
input.

variable is the name of the numeric or string variable or array element
that will receive the input.

When an INPUT statement occurs, the program will pause and display a
question mark on the screen to indicate it is waiting for data. If
prompt is included, it is displayed before the question mark. You may
then type in the required data. The string that you input must not
contain delimiters such as a comma (,). If you want to include delimiters
in the input string, use the LINE INPUT statement.

Use a comma instead of a semicolon after the prompt string td suppress the
question mark. For example, the statement:

INPUT "ENTER BIRTHDATE",B$

will print the prompt with no question mark.

If INPUT is immediately followed by a semicolon, the cursor will remain
on the same line as your response, and subsequent output from the program
will begin at this point. If you omit the semicolon, subsequent output
will begin on the next line, as in the example below.

The data you enter is assigned to the variable(s) given in the variable
list. The number of data items must be the same as the number of

variables in the list. Data items must be separated by commas.

The type of each data item entered must agree with the type specified by
the variable name, otherwise the message "Type mismatch" will be
displayed. (Strings entered in response to an INPUT statement need not be
surrounded by quotation marks.)

7-95

INPUT

If you respond to INPUT with too many or too few items or with the wrong
type of value (letters instead of numbers, etc.)f GWBASIC displays the
message "?Redo from start", and does not assign any of the input values to
variables imtil you give an acceptable response.

Press Ctrl-Break or Ctrl-C to stop INPUT. GWBASIC returns to command
level, displaying the "Ok" prompt. Typing CONT resumes program execu
tion at the INPUT statement.

10 INPUT A$

20 PRINT "STRING = "A$

30 END

RUN

7 HELLO

STRING HELLO

Ok

The question mark in the above example shows that the program is waiting
for input to be typed on the keyboard.

7-%

INPUTS

INPUT$ Function

FORMAT V = INPUT$(n[, [#]filenuiii])

PURPOSE Reads a specified number of characters from the standard
input device (normally the keyboard unless input has been
redirected) or from file number f llenum.

iSSt ssst ssst
m m m

n is the number of characters to be read from the file.

f llenum is the file number used on the OPEN statement. The ff sign is
optional. If f llenum is omitted, input is read from the standard input
device.

If the keyboard is used for input, no characters will be displayed on the
screen. All characters (including control characters) are passed through
except Ctrl-Break, which is used to interrupt the execution of the INPUTS
function. When using the keyboard for input in response to INPUTS, there
is no need to press <Return>.

When working with communication files, INPUTS is preferred over other
input statements because it will pass all characters except Ctrl-Break.
LINE INPUT terminates when a carriage return is read, and INPUT
terminates on encountering a comma or carriage return.

The following program uses INPUTS to print a hexadecimal dump of a file.

40 CLS

50 INPUT "File to dump: ".F$
60 HX$ = SPACE$(2)

70 OPEN "1",#1.F$
80 IF EOF(l) THEN GOTO 130
90 CHARS = INPUT$(1.#1)
100 LSET HX$ = RIGHT$("0"+HEX$(ASC(CHAR$)),2)
110 PRINT HX$;"

120 GOTO 80

130 CLOSE

140 END

7-97

INPUTS

The following routine uses INPUTS to prompt for a response from the
keyboard:

210 PRINT "Continue (Y/N)7"
220 A$ - INPUTS!1)
230 IF AS - "Y" THEN 250

240 IF AS = "N" THEN 330

7-98

INPUT#

INPUT# Statement

FORMAT INPUT#filen\im,variable[.variable]...

PURPOSE Reads data items from a sequential device or file (as well
as a random file) and assigns them to program variables.

M M M

f ilenxim is the number used when the file was OPENed for input.

variable is the name of a variable that will have an item in the file
assigned to it. It may be a string or numeric variable, or an array
element.

The type of data in the file must match that specified by the variable
name. Unlike INPUT, no question mark is displayed with INPUTS.

The data items in the file should appear just as they would if data were
being typed in response to an INPUT statement. With numeric values,
leading spaces, carriage returns, and line feeds are ignored. The first
character encountered that is not a space, carriage return, or line feed
is assumed to be the start of a number. The number ends with a space,
carriage return, line feed, or comma.

To read a string that contains delimiters (such as ",") from the file, use
the LINE INPUT # statement instead.

If GWBASIC is scanning the data for a string item, it will also ignore
leading spaces, carriage returns, and line feeds. The first character
encountered that is not a space, carriage return, or line feed is assumed
to be the start of a string item. If this first character is a quotation
mark (")♦ string item will consist of all characters read between the
first quotation mark and the second. Thus, a quoted string may not contain
a quotation mark as a character. If the first character of the string is
not a quotation mark, the string is an unquoted string. It will end with
a comma, carriage return, or line feed, or after 255 characters have been
read. If end-of-file is reached while a numeric or string item is being
input, the item is cancelled.

For an example, see Appendix A.

7-99

INSTR

INSTR Function

FORMAT V = INSTR([n,] a$. b$)

PURPOSE Searches for the first occurrence of string l)$ within string
a$, and returns the position at which the match is found.
The start position within a$ for the search can optionally
be specified by n.

M M MSSSf 1m sW

n must be in the range 1 to 255, otherwise an "Illegal function call"
message will be displayed.

a$,b$ may be string variables, string expressions, or string constants.

If n is greater than the number of characters in a$ (i.e., if n >
LEN(a$)), or if a$ is null, or if b$ cannot be found, INSTR returns
0. If b$ is null, INSTR returns n (or 1 if n is not specified).

10 A$ = "ABCDEB"

20 B$ = "B"

30 PRINT INSTR(A$,B$);INSTR(4,A$,B$)
RUN

2 6

Ok

This program looks for B$ within A$, or in this example, for "B" within
"ABCDEB". "B" will be found in position 2 if the search starts at the
beginning of A$. If the search starts in the fourth position, "B" is
discovered in the sixth position.

7-100

INT

INT Function

FORMAT V = INT(x)

PURPOSE Returns the largest integer less than or equal to x.

ii li H

X is any numeric expression.

See the FIX and CINT functions, which also return integer values.

PRINT INT(99.89)
99

Ok

PRINT INT(-12.11)
-13

Ok

The above examples show how INT always returns a whole number smaller
than the decimal number.

7-101

lOCTL

lOCTL Statement

FORMAT lOCTL [#]fllenum, string

PURPOSE Transmits a command string to a device driver.

AMf MM MM

m m m

[^]f ilenum is the file number of the device driver, as specified when
the driver was OPENed. Note that the driver must be open before lOCTL
is used, otherwise the statement will have no effect.

string is a string expression containing control characters or commands
for the device driver. The string can be up to 255 characters long, and
commands within the string must be separated by semicolons.

Most standard DOS device drivers cannot process lOCTL strings, so the
statement is used mainly for user-installed device drivers (see under that
heading in Section 3). You have to ensure that the installed driver is
written so that it will recognize any lOCTL commands sent to it. Typical
commands consist of 2 or 3 characters, optionally followed by an
alphanumeric argument, e.g. PL66 to set the page length to 66 lines.

If you had a user-installed device driver replacing the standard DOS
printer driver LPTl and you wanted to set the page length to 66 lines per
page on LPTl, then assuming that the new driver was able to set page
lengths, the procedure would be:

10 OPEN "\DEV\LPT1" FOR OUTPUT AS #1
20 IOCTL$ #1. "PL66"

See also the IOCTL$ Function.

7-102

IOCTL$

IOCTL$ Function

FORMAT v$ = I0CTL$([;5']fllenum)

PURPOSE Returns a command string from a device driver.

M M

[#]f ilenum is the file number of the device driver, as specified when
the driver was OPENed. Note that the driver must be open, otherwise
IOCTL$ will have no effect.

The IOCTL$ function is most frequently used to receive acknowledgement
that an lOCTL statement succeeded or failed.

IOCTL$ could also be used to obtain device status information, such as
asking a communications device to return the current baud rate,
information on the last error, logical line width, etc.

As an example, you could use the lOCTL statement to set the page length to
66 lines for printer LPTl: and retrieve the length so that IOCTL$ can test
for it (remember that the device driver must be able to recognize the
commands in the lOCTL string):

10 OPEN "\DEV\LPT1" AS #1
20 lOCTL #1, "PL66;GP"

Continuing this example, you can use the IOCTL$ function to check
whether the page length command was successful, and close the
printer driver file if the command failed:

30 IF I0CTL$(1) <> "66" THEN CLOSE 1

See also the lOCTL statement.

7-103

KEY

KEY Statement

FORMAT KEYn,x$

KEY n, CHR$(ma8k) + CHR$(scan)

KEY LIST

KEY ON

KEY OFF

PURPOSE Sets or displays the values of the function keys, or sets
values for a user-defined key or key sequence.

m m m

n is a numeric expression in the range either 1 to 10 to identify a
function key, or 15 to 20 to identify a user-defined key or key sequence.

x$ is a variable containing text to be assigned to a function key, or a
string containing this text, which may be up to 15 characters long (if
the text is longer than this, only the first 15 characters will be
displayed). Note that string constants must be enclosed in quotes.
Assigning a null string to a function key disables that key.

mask is a numeric expression and indicates that one or more of the
following keys is to form part of a user-defined key sequence: Caps
Lock, Num Lock, Alt, Ctrl, and the two Shift keys. The possible values
for mask in hexadecimal are:

&H40 - Caps Lock
&H20 - Num Lock
&H08 - Alt

&H04 - Ctrl

&H02 - left-hand Shift key
&H01 - right-hand Shift key

scan is a numeric expression identifying a key on the keyboard that is
to form the remainder of the user-defined key sequence, scan is
specified in the form of a "scan code"; the code for each key is given in
Table F-1. ■

The initial values of the function keys are given in Table 7-7.

7-104

KEY

Table 7-7

FUNCTION KEY VALUES

Key Value Key Value

F1 LIST F2 RUN + CHR$(13)

F3 LOAD" F4 SAVE"

F5 CONT + CHR$(13) F6 ,"LPT"

F7 TRON + CHR$(13) F8 TROFF + CHR$(13)

F9 KEY FIG SCREEN 0,0,0

KEY n ,x$ causes the text referenced by x$ to be assigned to function
key n. The text is input to GWBASIC whenever that key is pressed.

KEY n, CHR$(mask) + CHR(scan) causes the key sequence identified by
mask and scan to be assigned as user-defined key n. See below,
under "Trapping User-Defined Keys".

KEY LIST lists the values of each key on screen. All 15 characters of
each value are given.

KEY ON causes the function key values to be displayed on the 25th line.
When the width is 40, five of the ten keys are displayed, and when the
width is 80, all ten are displayed. However, only the first six
characters of each value are displayed. ON is the default state for the
function key display.

Note that entering a width of 40 causes five keys to be displayed instead
of ten during medium-resolution graphics emulation (see SCREEN state
ment for information on emulation modes). It has the same effect on
displays with color/graphics monitor adapters in both 40-column text mode
and medium-resolution graphics mode.

Also note that you must press Ctrl-T to display the remainder of the keys
when the width is 40.

7-105

KEY

KEY OFF erases the key display from the 25th line. The function keys
are not disabled.

When a function key is assigned, INKEY$ will return one character of the
function key each time it is called. If the function key is disabled,
INKEYS returns a two-character string, the first of which is binary zero
and the second the key code. Appendix C, ASCII Character Codes, lists
this code.

Information on line 25 of the screen is not scrolled. If you have used
KEY OFF, you may display information on line 25 by using LOCATE 25,1
followed by PRINT.

Trapping User-Defined Keys

Use the format KEY n, CHR$(mask) + CHR$(scan) to identify a key
sequence that can be trapped by means of subsequent ON KEY (n)... and
KEY (n) ON statements. Once a key sequence is trapped, the program can
branch to a subroutine and perform any desired processing (see the last
example below).

You can also trap "super-shifted" keys, e.g. Ctrl-Shift-D or Ctrl-Alt-D.
The statement:

KEY n,CHR$(&H04 + &H08) + CHR$(&H20)

will trap the sequence Ctrl(&H04)-Alt(&H08)-D(&H20). You could use
this form, for example, to trap a Ctrl-Break or Ctrl-Alt-Del sequence to
prevent an inexperienced user from accidentally interrupting a program, or
rebooting the system while the program was running. Note, however, that
the trap routine would have to include a test for this key sequence.

The following applies when keys are trapped:

1. Ctrl-PrtSc is processed first. Characters will still be sent to the
printer even if Ctrl-PrtSc is trapped.

2. Function keys and cursor direction keys are processed next.
Designating these keys as user-defined keys has no effect, however,
since they are considered to be predefined.

3. The user-defined key(s) are then processed.

4. If a key is trapped, it is not passed on as character input to the
BASIC program itself.

7-106

KEY

10 KEY 1,"MENU"+CHR$(13)

Assigns the string "MENU" + Enter to function key 1.

40 KEY 1,""

Disables function key 1.

10 KEY OFF 'Turns off display during initialization
20 DATA "EDIT", "LET", "SYSTEM", "PRINT", "LPRINT"

30 FOR A = 1 TO 5

4 0 READ FUNKEY$(A)
50 KEY A, FUNKEY$(A)
60 NEXT A

70 KEY ON 'Displays new key values

Assigns new values to the first five function keys.

10 KEY 20, CHR$(&H04) + CHR$(&H20)
20 ON KEY(20) GOSUB 100
30 KEY(20) ON

90 END

100 PRINT "You pressed Ctrl-D":RETURN

Traps the key sequence Ctrl-D and performs the processing at line 100
when that sequence is recognized.

7-107

KEY(n)

KEY(n) Statement

FORMAT KEY(n) ON

KEY(n) OFF

KEY(n) STOP

PURPOSE Enables and disables trapping a specified key.

n is the number of the key to be trapped:

1-10 Function keys Fl-FlO
11 Cursor up
12 Cursor left

13 Cursor right
14 Cursor down

15-20 User-defined keys

KEY(n) ON activates trapping of the specified key. The action to be
taken by the program when the specified key is pressed is determined by a
subsequent ON KEY(n)... statement, which branches to a subroutine.

KEY(n) STOP stops trapping, but if the key is subsequently pressed, this
statement will cause an immediate trap if trapping is turned back on.

KEY(n) OFF not only stops trapping, but if a key is subsequently
pressed, does not remember it.

This statement has no effect with the INPUT or INKEY$ statements. A
different trap routine for each key must be created for use with these
statements.

NOTE: KEY(n) ON and KEY ON are two different statements with very
different meanings. See the KEY statement for details of KEY
ON.

7-108

KEY(n)

40 CLS

50 'Enable function keys 1 to 4

60 FOR A = 1 TO 4

70 KEY(A) ON
80 NEXT A

90 'Disable function keys 5 to 10 and the
arrow keys (up, left, right, down)

100 FOR A = 5 TO 14

110 KEY(A) OFF
120 NEXT A

130 'Determine which subroutine to use if
a function key is pressed

140 ON KEY(l) GOSUB 240
150 ON KEY(2) GOSUB 250
160 ON KEY(3) GOSUB 260
170 ON KEY(4) GOSUB 270

180 'Print a message

190 LOCATE 10,10

200 PRINT "Press F1, F2, F3, or F4";

210 LOCATE 20,20 : PRINT "

220 GOTO 210

230 'Subroutines

240 PRINT "You pressed Fl";
250 PRINT "You pressed F2";
260 PRINT "You pressed F3";
270 PRINT "You pressed F4";

RETURN

RETURN

RETURN

RETURN

This program demonstrates use of the KEY ON, KEY OFF, and ON
KEY(n) statements.

7-109

KILL

KILL Command

FORMAT KILL filespec

PURPOSE Deletes a file from a disk.

filespec is a file specification (see Section 3, under "File and Device
Information") in the form of a string constant, and consists of a filename
or pathname with an optional device name. If used, the device name must
be that of a diskette or hard drive. If the device name is omitted, the
DOS default drive is used.

KILL is similar to the ERASE command in DOS. It requires using the
extension, if one exists.

If a file is open when a KILL command is executed, a "File already open"
error will result. The same error will occur if you try to delete a file
that has the same name as an open file in another directory, even though
they are two completely different files.

10 KILL "A:TEST.BAS"

This example will delete the file TEST.BAS from drive A:.

10 KILL "..\SALES\MARY\PR0G1.EXE"

The above accesses the subdirectory MARY in the directory SALES and
deletes the file PR0G1.EXE.

7-110

LCOPY

LCOPY Statement

FORMAT LCOPY n

PURPOSE Prints the current screen contents.

m m m

n is an integer expression from 0 to 2 as follows:

0 - both text and graphics are printed
1 - graphics only are printed
2 - text only is printed

Using LCOPY within a program has the same effect as pressing Shift-
PrtSc, causing the contents of the screen at that point to be sent to the
printer.

7-111

LEFT$

LEFT$ Function

FORMAT v$ = LEFT$(x$,n)

PURPOSE Returns a string comprising the leftmost n characters of
x$.

^ ̂ ̂iSif ssa ^

n must be in the range 0 to 255. If n is greater than the number of
characters in x$ (i.e., if n > LEN(x$)), the entire string (x$)
will be returned. If n = 0, a null string (length zero) is returned.

See also the MID$ and RIGHTS functions.

10 A$="BASIC"

20 B$=LEFT$(A$,3)
30 PRINT B$

RUN

BAS

The first three characters of "BASIC" are printed.

7-112

LEN

LEN Function

FORMAT v = LEN(x$)

PURPOSE Returns the number of characters in x$.

li H Hi

Nonprinting characters and blanks are included in the number of characters
counted.

10 X$ = "WESTLAKE VILLAGE, CA"
20 PRINT LEN(X$)
RUN

20

Ok

There are 20 characters in the string "WESTLAKE VILLAGE, CA"
because the comma and the blanks are counted.

7-113

LET

LET Statement

FORMAT [LET] variable=expression

PURPOSE Assigns the value of an expression to a variable.

The word LET is optional. The equal sign is sufficient when assigning an
expression to a variable name.

110 LET D=12

120 LET E=12'"2

130 LET F=12^4

140 LET SUM=D+E+F

110 D=12

120 E=12'^2

130 F=12'^4

140 SUM=D+E+F

The two programs above are equivalent.

7-114

LINE

LINE Statement

FORMAT LINE [[STEP](xl ,yl)] - [STEP](x2,y2) [.[color]
[.B[F]]][.style]

PURPOSE Draws a line or a box on the screen.

M M M

This statement can only be used in graphics mode (SCREEN 1,2, 104 or
105).

(xl ,yl) is the coordinate for the starting point of the line.

(x2 ,y2) is the ending point for the line.

color is the number of the color in which the line is to be drawn. If

the ,B or ,BF option is used, the box is drawn in this color. In medium
resolution (SCREEN 1), color ranges from 0 to 3, where 0 indicates the
background color and 1 to 3 denote colors from the current palette (see
Table 7-2). In high resolution (SCREEN 2) and super resolution (SCREEN
104 and 105), color can be either 0 (background color) or 1 (foreground
color). Default is 3 for medium resolution and 1 for high- and super
resolution. Default for monochrome screens is the foreground color.

B draws a box in the foreground, with the points (xl ,yl) and (x2 ,y2)
as opposite corners.

BP draws a filled box in the foreground.

style is an integer that specifies a pattern to be used for the line,
allowing you to draw lines made up of dots, dashes or a combination of
both. The pattern appears on the screen as a 16-bit binary representation
of the integer, using the binary Is to set a pixel on. Values should be
given in hexadecimal; thus for example a value of &HFFOO for style
would cause a dashed line to be drawn, since the binary representation of
&HFFOO (decimal 65280) in 16 bits is 11111111 00000000. Note that
style has no effect on filled boxes.

When out-of-range coordinates are given, the coordinate that is out of
range is given the closest legal value.

The coordinates form STEP (xoffset ,yoffset) can be used in place
of an absolute coordinate. For example, assume that the most recent point

7-115

LINE

referenced was (0,0). The statement LINE STEP (10,5) would specify a
point at offset 10 from x and offset 5 from y.

If the STEP option is used for the second coordinate on a LINE statement,
it is relative to the first coordinate in the statement. Other ways to
establish a new "most recent point" are to initialize the screen with the
CLS and SCREEN statements, or to use PSET, PRESET, CIRCLE or
DRAW.

5 SCREEN 105

10 LINE -(200,200)

Draws a line from the last point referenced to 200,200 in the foreground
color. This is the simplest form of the LINE statement.

20 LINE (0,0)-(639,300)

Draws a diagonal line across the screen (downward).

30 LINE (0.100)-(639,100)

Draws a line horizontally across the screen.

40 LINE (10,10)-(200,200).2

Draws a line in color 2.

10 ON ERROR GOTO 50

20 CLS

30 LINE -(RND*639,RND*300),RND*4
40 GO TO 20

50 IF ERR=5 THEN RESUME 30

Draws lines forever using random attributes. The following statements:

10 FOR X=0 to 639

20 LINE (X,0)-(X,300),X AND 1
30 NEXT

draw an alternating line on - line off pattern.

10 LINE (0,0)-(100,100),,B

Draws a box in the foreground. (Note that color is not included.)

7-116

LINE

20 LINE STEP (a.O)-STEP (200,200),2,BF

Draws a filled box in the foreground in color 2. Coordinates are given as
offsets.

10 LINE (0,0) - (319,160),,,&HAAAA

Draws a dotted line from the top left towards the center of the screen.

7-117

LINE INPUT

LINE INPUT Statement

FORMAT LINE INPUT[;]["prompt";]stringvar

PURPOSE Inputs an entire line (up to 254 characters), ignoring
delimiters, to a string variable.

H ill li

LINE INPUT and LINE INPUT ft allow you to input strings containing
delimiters (such as "," or ".") to a program; the INPUT and INPUT#
statements do not permit delimiters in the input string.

"prompt" is a string constant displayed on the screen before input is
accepted. A question mark is not printed unless it is part of the prompt
string.

stringvar is the name of the string variable or array element to which
the line will be assigned. All input from the end of "prompt" to the
carriage return is assigned to stringvar. However, if a linefeed/
carriage return sequence (this order only) is encountered, both characters
are echoed, but the carriage return is ignored, the linefeed is put into
stringvar, and input continues.

If LINE INPUT is immediately followed by a semicolon, then if you press
<Return> to terminate the input line when the program is running, the
cursor will not move to the start of the next line but will stay where it
is.

Press Ctrl-Break or Ctrl-C to stop LINE INPUT. GWBASIC returns to
command level, displaying the "Ok" prompt. Typing CONT resumes
execution at the LINE INPUT statement.

When GWBASIC is invoked with redirected input, all LINE INPUT
statements will read data from the specified input file instead of from
the keyboard (see "Redirection of Input and Output" in Section 3).

When input is redirected, GWBASIC continues to read from the new source
until a Ctrl-Z is encountered (this condition can be tested by the EOF
function). If the file is not terminated by a Ctrl-Z, or if a program
tries to read past the end-of-file, then any open files are closed, the
message "Read past end" is output, and the system exits to DOS.

For an example, see the LINE INPUT# statement.

7-118

LINE INPUT ft

LINE INPUT ff Statement

FORMAT LINE INPUT ilenum,stringvar

PURPOSE Reads an entire line (up to 254 characters) from a
sequential file, ignoring delimiters,
to a string variable. It may also be used
for random files.

^ na w.ySS> m sUt

f ilenum is the number under which the file was OPENed.

stringvar is the name of a string variable to which the line will be
assigned.

LINE INPUT# reads all characters in the sequential file until it reaches a
carriage return/line feed sequence, which it omits. Note that, if
encountered, a line feed/carriage return sequence is returned as part of
the string.

LINE INPUT ft is especially useful if each line of a file has been broken
into fields, or if a GWBASIC program saved in ASCII mode is being read as
data by another program. (See SAVE command.)

See Appendix A, Sequential and Random Files.

10 OPEN "0",1,"LIST"

20 LINE INPUT ''CUSTOMER INFORMATION? "; C$
30 PRINT #1, C$

40 CLOSE 1

50 OPEN "I",1,"LIST"

60 LINE INPUT #1, C$

70 PRINT C$

80 CLOSE 1

RUN

CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS

In this example, the program writes the customer information to a
sequential file. After closing and reopening the file, it reads the
information back using the LINE INPUT ft statement.

7-119

LIST

LIST Command

FORMAT 1 LIST [llnel]

FORMAT 2 LIST [llnel][-[llne2]][, "device"]

PURPOSE Lists all or part of the program currently in memory.

^ ̂ ̂

1 ine is in the range 0 to 65529.

device is a string expression such as SCRN: or LPTl: and indicates the
device to which the listing is to be sent. Note that the string
expression must be enclosed in quotes.

Format 1

If 1 ine is omitted, the program is listed beginning at the lowest line
number. If line is included, only the specified line will be listed.

Format 2

This format allows the following options:

1. If only the first line is specified and followed by a hyphen, that
line and all higher-numbered lines are listed.

2. If only the second line is specified with a hyphen preceding line,
all lines from the beginning of the program through that line are
listed.

3. If both lines are specified, the entire range is listed.

4. If device is omitted, the listing is shown on the screen.

Use Ctrl-Break to interrupt LIST.

GWBASIC always returns to command level after LIST.

LIST

Lists the program currently in memory.

7-120

LIST

LIST 500

Lists line 500.

LIST 150-

Lists all lines from 150 to the end.

LIST -1000

Lists all lines from the lowest number through 1000.

LIST 150-1000

Lists lines 150 through 1000, inclusive.

LIST 150-1000,"LPTl:"

Lists lines 150 through 1000 on the line printer.

7-121

LUST

LLIST Command

FORMAT LLIST [linel][-[line2]]

PURPOSE Lists all or part of the program currently in memory on the
printer (LPTl:).

m m m

LLIST assumes a 132-character-wide printer.

LLIST follows the options of LIST, Format 2.

GWBASIC returns to command level after LLIST.

For an example, see the LIST command.

7-122

LOAD

LOAD Command

FORMAT LOAD filespec[.R]

PURPOSE Loads a program from a specified device into memory and,
optionally, runs it.

f ilespec is a file specification (see Section 3, under "File and Device
Information") in the form of a string constant, and identifies the program
to be loaded. It consists of a filename or pathname with an optional
device name. If used, the device name must be that of a diskette or hard
drive. If the device name is omitted, the DOS default drive is used.

If no extension is supplied and the filename is eight characters or less,
the extension .BAS is added to the filename.

The R option automatically runs the program after it has been loaded.

LOAD closes all open files and deletes all variables and program lines
currently residing in memory before it loads the designated program.

If the R option is used, the program is run after it is loaded, and all
open data files are kept open. Thus, LOAD with the R option may be used
to chain several programs (or segments of the same program), and
information may be passed between the programs using data files.

LOAD "BiMYPROG"

The program named "MYPROG" located on drive B: is loaded into memory.

LOAD "STRTRK",R

The program named "STRTRK" is loaded and run.

7-123

LOG

LOC Function

FORMAT V = LOC(f llenum)

PURPOSE Returns the current position in the file.

f llenum is the number used when the file was opened.

With random files, LOC returns the record number just read or written.

With sequential files, LOC returns the number of records (128-byte
blocks) read from or written to the file since it was opened. This
number will be 1 when the file is opened since GWBASIC reads the first
sector of the file.

If the file was opened in append (A) or output (O) mode, LOC returns the
size of the file in (bytes/128).

With a communications file, LOC displays the number of characters in the
input buffer waiting to be read. If there are more than 255 characters,
LOC returns 255. (The default size is 256 characters, but this can be
changed with the /C: option of the GWBASIC command.) This eliminates
the need for testing for string size before reading data into the buffer
since a string is limited to 255 characters.

If there are fewer than 255 characters in the input buffer waiting to be
read, LOC returns the number of characters that can be read from the
communications device. Note that if the device was opened in ASCII mode
(see the OPEN "COM..." statement), character queueing stops as soon as
end-of"fiIe is received. The end-of-file marker itself is not queued and
cannot be read. Any attempt to read past the end-of-file will result in
an "Input past end" error.

200 IF L0C(1)>50 THEN STOP

The program is stopped after the 50th record in the file.

7-124

LOCATE

LOCATE Statement

FORMAT LOCATE [y][,[x][,[cursor][.[start]
[.stop]]]]

PURPOSE Moves the cursor to a specified position on the screen.
Optional parameters turn the blinking cursor
on and off and define its size.

y is a numeric expression with a value in the range 1 to 25 indicating
the number of the screen line where the cursor should be placed.

X is a numeric expression with a value ranging either from 1 to 40 or 1
to 80 (depending on the number of display columns) to indicate the number
of the screen column where the cursor should be placed.

cursor is 0 to indicate the cursor is off (invisible) or 1 to indicate
it is on (visible). Note that the cursor is initially off when a program
runs.

start is a numeric expression to indicate the cursor starting scan line
(for more information on start and stop, see Section 4).

stop is a numeric expression to indicate the cursor stop scan line.

If you have both text and graphic pages, remember that LOCATE moves
the cursor in the active page of the mode currently being used.

The last three parameters (cursor, start, and stop) may only be
used if the system is in text mode (see the SCREEN statement).

If values are entered outside the ranges given, an "Illegal function call"
error results, and previous values are retained.

start and stop enable you to make the cursor any size within its
character position by indicating the beginning and ending scan lines.
These lines are numbered from 0 at the top of the character position to 12
or 15 at the bottom, depending on your system (see Section 4). Note that
the bottom position is 7 on most compatible color/graphics monitor
adapters. No range checking is performed for the value of stop.

If start is given without stop, stop assumes the value of start. If
start is greater than stop, there will be a two-part cursor, in which

7-125

LOCATE

the cursor wraps from the bottom line back to the top. If the two values
are equal, the cursor will be a thin line at whatever position is
specified. A wider range between the start and stop lines will produce a
taller block as the cursor, e.g. the values 1, 15 cause the cursor to ^
occupy the entire character block.

Any parameter may be omitted. Omitted parameters assume the current
value.

Values outside the permitted ranges result in an "Illegal function call"
error; previous values are retained.

Line 25 of the screen is initially used by the function key display. If
you want to write to this line ftom a program, use KEY OFF to clear line
25, then use LOCATE 25,1:PRINT... to write to line 25.

Cursor blink is not selectable; the cursor always blinks 4 times per
second.

10 LOCATE,,1

The above turns the cursor on.

/^,
10 LOCATE 1,1

20 LOCATE 5,5:PRINT "HELLO"

30 LOCATE ,,1

40 LOCATE ,,,12

Line 10 moves the cursor to the home position in the upper left corner.
Line 20 prints "HELLO" at row 5, column 5. Line 30 makes the cursor
visible with its position unchanged. In Line 40 the cursor's position and
visibility are unchanged. The cursor will display at the bottom of the
character, starting and ending on scan line 12.

7-126

LOF

LOF Function

FORMAT V = LOF (filenum)

PURPOSE Returns the length of a file in bytes.

m m m

f ilenum is the number used when the file was OPENed.

For random and sequential files, LOF returns the file size in bytes. For
communications files, LOF returns the number of free bytes in the input
buffer.

110 IF REC * RECSIZ > LOF(l)
THEN PRINT "INVALID ENTRY"

In this example, the variables REC and RECSIZ contain the record number
and record length, respectively. The calculation determines whether the
specified record is beyond the end-of-file.

7-127

LOG

LOG Function

FORMAT V = LOG(x)

PURPOSE Returns the natural logarithm of x.

M M MJCW

X must be greater than zero.

A natural logarithm is the logarithm to the base e.

PRINT L0G(45/7)
1.860752

Ok

The logarithm of 45/7 is 1.860752.

7-128

LPOS

LPOS Function

FORMAT V = LPOS(n)

PURPOSE Returns the current position of the print head in the
printer's buffer.

M M M

n is the number assigned to the line printer (as in LPTn:).

This function does not necessarily give the physical position of the print
head.

10 IF LP0S(0)>50 THEN LPRINT CHR$(13)

The above sends a carriage return character to the printer if the line
length is more than 50 characters.

7-129

LPRINT/LPRINT USING

LPRINT and LPRINT USING Statements

FORMAT LPRINT [list of expressions][;]

LPRINT USING string exp;list of
expressions!;]

PURPOSE Prints data on the printer (LPTl:).

M M M

list of expressions contains the string or numeric expressions that
are to be printed. These expressions must be separated by semicolons (or
commas if using the GWBASIC print zones).

string exp is the string constant or variable that identifies the format
to be used for printing.

These statements are similar to PRINT and PRINT USING, except output
goes to the printer.

See PRINT statement and PRINT USING statement for further explanation.

10 A=123

20 LPRINT "THIS IS OUTPUT ON THE PRINTER"

30 LPRINT USING "####"; A

RUN

The above prints the following on the printer:

THIS IS OUTPUT ON THE PRINTER

123

7-130

LSET, RSET

LSET and RSET Statements

FORMAT LSET stringvar = x$
RSET stringvar = x$

PURPOSE Moves data from memory to a random file buffer in prepara
tion for a PUT statement, or left- or right-justifies a
string in a given field.

m m m

stringvar is a variable defined in a FIELD statement.

x$ is a string expression.

If x$ requires fewer bytes than specified in the FIELD statement for
stringvar, LSET left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to pad the extra
positions.) If x$ is too long for the field, characters are dropped
from the right.

Numeric values must be converted to strings before they are LSET or
RSET. See MKI$, MKS$, MKD$ functions.

See also Appendix A, Sequential and Random Files.

NOTE: These functions may also be used with a string variable not
defined in a FIELD statement to justify the string in a given
field. This is helpful when formatting printed output.

110 A$=SPACE$(20)
120 RSET A$=N$

The above right-justifies the string N$ in a 20-character field.

150 LSET A$=MKS$(AMT)

This example changes AMT into character string A$ and left-justifies it so
that there are no leading blanks.

7-131

MERGE

MERGE Command

FORMAT MERGE f llespec

PURPOSE Merges a program from a specified ASCII file into the
program currently in memory.

lii ii ii

f ilespec is a file specification (see Section 3, under "File and Device
Information") in the form of a string constant, and identifies the file
containing the program to be merged. The filespec consists of a filename
or pathname with an optional device name. If used, the device name must
be that of a diskette or hard drive. If the device name is omitted, the
DOS default drive is used.

The program being merged must be in ASCII format or a "Bad file mode"
error occurs. A program is in ASCII format if the A option was specified
when the file was SAVEd.

If any lines in the disk file have the same numbers as in the program in
memory, the lines from the file on disk will replace those in memory.
(Merging may be thought of as "inserting" the program lines on disk into
the program in memory.)

GWBASIC returns to command level after a MERGE command.

MERGE "AiNUMBRS"

In this example, the file "NUMBRS" on drive A: is merged with the
program in memory.

7-132

MIPS Function

MID$ Function

FORMAT v$=MID$(x$,n[,m])

PURPOSE Returns a string of length m characters from x$, beginning
with the nth character.

^ ̂ ̂

n and m must be in the range 1 to 255. If m is omitted or if there
are fewer than m characters to the right of the nth character, all
rightmost characters beginning with the nth character are returned. If
n is greater than the number of characters in x$ (i.e., if n >
LEN(x$)), MIPS returns a null string.

See also the LEFTS and RIGHTS functions.

LIST

10 A$="GOOD "

20 B$="MORNING EVENING AFTERNOON"

30 PRINT A$;MID$(B$,9,7)
Ok

RUN

GOOD EVENING

Ok

MIPS is used to select part of the string BS.

7-133

MID$

MID$ Statement

FORMAT MID$(string-expl ,ii[,m])=string-exp2

PURPOSE Replaces a portion of one string with another string.

n and m are integer expressions, and string-expl and strlng-exp2
are string expressions.

The characters in string-expl, beginning at position n, are replaced
by the characters in string-exp2. The optional m refers to the number
of characters from string-exp2 that will be used in the replacement.
If m is omitted, all of string-exp2 is used. However, regardless of
whether m is omitted or included, the replacement of characters never
goes beyond the original length of string-expl.

See also MID$ function.

10 A$=»'KANSAS CITY. MO"

20 MID$(A$.14) = "KS"
30 PRINT A$ ^
RUN

KANSAS CITY. KS

The above shows two characters in string A$ being replaced by "KS".

7-134

MKDIR

MKDIR Command

FORMAT MKDIR pathname

PURPOSE Creates a new directory

pathname is a string expression of up to 63 characters and identifies
the directory to be created. MKDIR works exactly like the DOS command
MKDIR (see "Tree-Structured Directories" in Section 3).

Assuming that the current directory is the root, the statement:

MKDIR "SALES"

creates a directory named SALES under the root directory of the current
drive (the format MKDIR "\SALES" would have the same effect since the
root is the current directory).

MKDIR "\SALES\JOHN"

creates a subdirectory named JOHN under the SALES directory.

MKDIR "B:USERS

creates a sub-directory named USERS in the current directory on drive B.

See also the CHDIR and RMDIR commands.

7-135

MKI$, MKS$, MKD$

MKI$, MKS$, MKD$ Functions

FORMAT v$ = MKI$ (integer expression)
v$ = MKS$(single-precision expression)
v$ = MKD$(double-precision expression)

PURPOSE Converts numeric values to string values.

^ ̂ ̂

Any numeric value placed in a random file buffer with an LSET or RSET
statement must be converted to a string. MKI$ converts an integer to a
2-byte string. MKS$ converts a single-precision number to a 4-byte
string. MKD$ converts a double-precision number to an 8-byte string.

Refer to CVI, CVS, CVD functions and to Appendix A, Sequential and
Random Files.

90 AMT=(K+T)
100 FIELD #1,8 AS D$,20 AS N$

110 LSET D$=MKS$(AMT)
120 LSET N$=A$

130 PUT #1

Line 100 defines the fields in file 1. In line 110 AMT is converted to a

string and put into the random file buffer. Line 120 puts a string in the
buffer, and the following PUT statement writes data from the buffer to
the file.

7-136

NAME

NAME Statement

FORMAT NAME old-f ilespec AS new-f ilespec

PURPOSE Renames a disk file.

old-f ilespec is the name of a file that already exists, new-
f ilespec is what you now wish the file to be called, f ilespec is a
file specification (see Section 3, under "File and Device Information") in
the form of a string constant, and identifies the file. The filespec
consists of a filename or pathname with an optional device name. If used,
the device name must be that of a diskette or hard drive. If the device

name is omitted, the DOS default drive is used.

After a NAME statement, the file exists on the same disk, in the same area

of disk space, with the new name.

NAME cannot be used to rename directories. However, it can be used to
move a file from the current directory to another on the same drive.

NAME "A:DRAFT" AS "PROPOSAL"

Ok

This renames "DRAFT" to "PROPOSAL" on drive A.

NAME "C:\X\CLIENTS" AS "\XYZ\P\CLIENTS"

This moves the file named CLIENTS from directory X on drive C to
directory XYZ, subdirectory P on drive C.

7-137

NEW

NEW Command

FORMAT NEW

PURPOSE Deletes the program currently in memory and clears all
variables.

^ jggf <88t
iSSf sS»

This command clears memory before entering a new program, and also closes
all files and turns tracing off. You can only use NEW in direct mode.
GWBASIC returns to command level after NEW is executed.

See also TRON and TROPE.

NEW

The program in memory will be deleted.

7-138

OCT$

OCT$ Function

FORMAT v$ = OCT$(n)

PURPOSE Returns the octal value of a decimal.

M M M

n is a decimal value in the range -32768 to 65535.

See also HEX$ function for hexadecimal conversion.

PRINT OCT$(100)

144

Ok

Decimal 100 is octal 144.

7-139

ON COM(n)

ON COM(n) Statement

FORMAT ON COM(n) GOSUB line-number

PURPOSE Specifies the first line number of a subroutine to be
performed when activity occurs on a communications
channel.

^ ̂
sS» 1s» ^

line-number is the number of the first line of a subroutine.

n is the number of the communications channel, a number in the range 1
to 4.

ON COM will only be executed if a COM(n) ON statement has been
executed. If event trapping is enabled, and if line number in the ON
COM statement is not zero, GWBASIC checks between statements to see if
communications activity has occurred on the specified channel. If
communications activity has occurred, a GOSUB will be performed to the
specified line.

I
If a COM OFF statement has been executed for the communications channel,
the GOSUB is not performed and is not remembered.

If a COM STOP statement has been executed for the communications channel,
the GOSUB is not performed, but will be performed as soon as a COM ON
statement is executed.

A line-number of zero disables the communications trap.

When an event trap occurs (i.e., the GOSUB is performed), an automatic COM
STOP is executed so that recursive traps cannot take place. The RETURN
from the trapping subroutine will automatically perform a COM ON statement
unless an explicit COM OFF was performed inside the subroutine.

RETURN line-number may be used to return to a specific line number from
the trapping subroutine. Use this type of return with care, however,
because any other GOSUBs, WHILEs, or FORs that were active at the time of
the trap will remain active, and errors such as "FOR without NEXT" may
result.

Event trapping does not take place when GWBASIC is not executing a
program, and event trapping is automatically disabled when an error trap
occurs.

7-140

ON ERROR GOTO

ON ERROR GOTO Statement

FORMAT ON ERROR GOTO 1 ine

PURPOSE Enables errors to be trapped and specifies the first line of
the error-handling subroutine.

m m m

1 ine is the number of the first line of the error-handling subroutine.
If n does not exist, an "Undefined line number" error occurs.

Once error handling has been enabled, all errors detected, including
direct mode errors (e.g., syntax errors), will cause a jump to the
specified error-handling routine.

To disable error handling, execute an ON ERROR GOTO 0. Subsequent
errors will print an error message and halt execution.

An ON ERROR GOTO 0 statement that appears in an error-trapping
subroutine causes GWBASIC to stop and print the error message for the
error that caused the trap. It is recommended that all error-handling
routines execute an ON ERROR GOTO 0 if an error is encoimtered for
which there is no recovery action.

NOTE: If an error occurs during execution of an error-handling routine,
that error message is printed and execution terminates.
Error trapping does not occur within the error-handling
routine.

Use RESUME to exit from an error-trapping routine.

10 ON ERROR GOTO 1000

1000 PRINT "Error";ERR;"at line";ERL

These are sample statements that would be used in error handling.

7-141

ON...GOSUB. ON...GOTO

ON...GOSUB and ON...GOTO Statements

FORMAT ON n GOTO line[,line]...

ON n GOSUB line[.line]...

PURPOSE Branches to one of several specified line numbers, depending
on a specified value.

iSX SSSS iSSi
m m M

n is a number in the range 0 to 255. If n is negative or greater than
255, an "Illegal function call" error occurs. If n is zero or greater
than the number of items in the list (but less than or equal to 255),
GWBASIC continues with the next executable statement.

The value of n determines which line number in the list will be used for
branching. For example, if n is three, the third line number in the
list will be the destination of the branch.

In the ON... GO SUB statement, each line number in the list must be the
first line number of a subroutine.

100 ON L-1 GOTO 150.300.320.390

In the above, if L-1 equals 0 or is greater than 4, the program will
continue with the next statement.

If L-1 equals 1, the program branches to line 150.
If L-1 equals 2, the program branches to line 300.
If L-1 equals 3, the program branches to line 320.
If L-1 equals 4, the program branches to line 390.

7-142

ON KEY(n)

ON KEY(n) Statement

FORMAT ONKEY(n) GOSUB line number

PURPOSE Specifies the first line number of a subroutine to be
performed when a specified function key, cursor
direction key or user-defined key is pressed.

n is the number of the key to be trapped:

1-10 Function keys PI to FIG
11 Cursor up
12 Cursor left

13 Cursor right
14 Cursor down

15-20 User-defined keys (see the KEY statement)

line number is the number of the first line of a subroutine that is to be

performed when the specified function or cursor direction key is pressed.

A line number of zero disables the event trap.

The ON KEY statement will only be executed if a KEY(n) ON statement
has been executed to enable event trapping. If event trapping is enabled,
and if the line number in the ON KEY statement is not zero, GWBASIC
checks between statements to see if the specified function key, cursor
direction key or user-defined key has been pressed. If so, a GOSUB will
be performed to the specified line.

If a KEY(n) OFF statement has been executed for the specified key, the
GOSUB is not performed and is not remembered.

If a KEY STOP statement has been executed for the specified key, the
GOSUB is not performed, but will be performed as soon as a KEY(n)
ON statement is executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
KEY(n) STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a
KEY(n) ON statement unless an explicit KEY(n) OFF was performed
inside the subroutine.

7-143

ON KEY(n)

RETURN line number may be used to return to a specific line number
from the trapping subroutine. Use this type of return with care, however,
because any other GOSUBs, WHILEs, or FORs that were active at the
time of the trap will remain active, and errors such as "FOR without
NEXT" may result.

Event trapping does not take place when GWBASIC is not executing a
program, and event trapping is automatically disabled when an error trap
occurs.

NOTE: When a key is trapped, that occurrence of the key is destroyed.
Therefore, you cannot subsequently use the INPUT or INKEY$
statement to find out which key caused the trap. So if you
want to assign different functions to particular keys, you
must set up a different subroutine for each key, rather than
assigning the various functions within a single subroutine.

10 KEY 4,TR0N

20 KEY(4) ON

'assigns function key 4

'enables event trapping

70 ON KEY(4) GOSUB 200

(Function key 4 pressed)

200 'Subroutine for TRON

The above is a subroutine for function key 4.

100 KEY 15, CHR$(&H04) + CHR$(83)
105 REM ** Key 15 is now Control-S **
110 KEY(15) ON

1000 PRINT "If you want to stop processing"
1010 PRINT "for a break press the Ctrl key"

1020 PRINT "and the S at the same time".

7-144

ON KEY(n)

1030 ON KEY(15) GOSUB 3000

(operator presses Ctrl-S)

3000 REM ** Suspend processing loop

3010 CLOSE #1

3020 RESET

3030 CLS

3035 PRINT "Enter CONT to continue"

3040 STOP

3050 OPEN "A", #1, "ACCOUNTS.DAT"

3060 RETURN

In the above example, Ctrl-S has been enabled to enter a subroutine which
closes the files and stops program execution until the operator is ready
to continue.

7-145

ON PEN

ON PEN Statement

FORMAT ONPEN GOSUB line number

PURPOSE Specifies the first line number of a subroutine to be
performed when the light pen is activated.

^ ̂ ̂Jw?

line number is the first line of a subroutine.

If line number is zero, the trap is disabled.

The ON PEN statement will only be executed if a PEN ON statement has
been executed. If event trapping is enabled, and if line number is not
zero, GWBASIC checks between statements to see if the pen has been
activated. If it has, a GOSUB will be performed to the specified line.

If a PEN OFF statement has been executed, the GOSUB is not performed
and is not remembered.

If a PEN STOP statement has been executed, the GOSUB is not performed,
but will be performed as soon as a PEN ON statement is executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
PEN STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a
PEN ON statement unless an explicit PEN OFF was performed inside the
subroutine.

RETURN line number may be used to return to a specific line number
from the trapping subroutine. Use with care, however, because any other
GOSUBs, WHILES, or FORs active at the time of the trap will remain
active, and errors such as "FOR without NEXT" may result.

Event trapping does not take place when GWBASIC is not executing a
program, and trapping is automatically disabled when an error trap occurs.

See PEN statement and function in this section for an example of the use
of the light pen.

7-146

ON PLAY(n)

ON PLAY(n) Statement

FORMAT ON PLAY(n) GOSUB line number

PURPOSE Branches to a specified subroutine when the music queue
contains fewer than n notes. This permits continuous
music during program execution.

^ ̂S$» 9w» Sfff

n is an integer expression in the range 1 through 32.

line number is the starting line number of a subroutine to which control
is passed when the event occurs (i.e. when the queue contains fewer than
n notes).

The ON PLAY statement will only be executed if a PLAY ON statement has
been executed to enable event trapping. If trapping is enabled, and line
number is not 0, GWBASIC checks between statements to see if the music
queue contains fewer than n notes. If so, a GOSUB is performed to the
specified line.

If a PLAY OFF statement has been executed the GOSUB is not performed
and is not remembered.

If a PLAY STOP statement has been executed the GOSUB is not
performed, but will be performed as soon as a PLAY ON statement is
executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
PLAY STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a PLAY
ON statement unless an explicit PLAY OFF was performed inside the
subroutine.

RETURN line number returns to a specific line number from the trap
ping subroutine. Use this type of return with care, however, because any
other GOSUBs, WHILEs, or FORs that were active at the time of the trap
will remain active, and errors such as "FOR without NEXT" may result.

A play event trap is issued only when playing background music (i.e., PLAY
"MB..." is active). Play event traps are not issued when PLAY is execut
ing in music foreground mode (i.e., PLAY "MF...", the default value).

A play event trap is not issued if the background music queue is already
empty when PLAY ON is executed.

7-147

ON PLAY(n)

Choose low values for n. An ON PLAY(32) statement will cause event
traps so often that there will be little time to execute the rest of the

program.

See also the PLAY ON, PLAY OFF and PLAY STOP statements.

In this example control branches to a subroutine when the background
music buffer decreases to 7 notes.

100 PLAY ON

540 PLAY "MB LI XZITHER$"

550 ON PLAY(8) GOSUB 6000

6000 REM ""BACKGROUND MUSIC""

6010 LET COUNTS = COUNTS + 1

6999 RETURN

7-148

ON STRIG(n)

ON STRIG(n) Statement

FORMAT ON STRIG(n) GOSUB line number

PURPOSE Specifies the first line number of a subroutine to be
performed when the joystick trigger is pressed.

n is the number of the joystick trigger.

line number is the first line of a subroutine. If a line number is

zero, the trap is disabled.

The ON STRIG statement will only be executed if a STRIG ON statement
has been executed. If event trapping is enabled, and if line number is
not zero, GWBASIC checks between statements to see if the joystick
trigger has been pressed. If it has, a GOSUB will be performed to the
specified line.

If a STRIG OFF statement has been executed, the GOSUB is not per
formed and is not remembered.

If a STRIG STOP statement has been executed, the GOSUB is not
performed, but will be performed as soon as a STRIG ON statement is
executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
STRIG STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a
STRIG ON statement unless an explicit STRIG OFF was performed
inside the subroutine.

RETURN line number may be used to return to a specific line number
from the trapping subroutine. Use with care, however, because any other
GOSUBs, WHILES, or FORs active at the time of the trap will remain
active, and errors such as "FOR without NEXT" may result.

Event trapping does not occur when GWBASIC is not executing a program,
and trapping is disabled automatically when an error trap occurs.

See the STRIG statement and function in this section for a joystick
example.

7-149

ON TIMER(n)

ON TIMER(n) Statement

FORMAT ON TIMER(n) GOSUB line number

PURPOSE Branches to a subroutine when a specified time interval has
elapsed.

SSSS SSSi «ss

n is a numeric expression in the range 1 to 86400 (1 second to 24
hours). Values outside this range generate an "Illegal function call"
error.

line number is the starting line number of a subroutine to which control
is passed when the event occurs (i.e., when the specified number of
seconds has elapsed).

ON TIMER causes an event trap every n seconds. The ON TIMER
statement will only be executed if a TIMER ON statement has been
executed to enable event trapping. If event trapping is enabled, and if
the line number in the ON TIMER statement is not zero, GWBASIC
checks between statements to see if the time has been reached. If it has,
a GOSUB will be performed to the specified line.

If a TIMER OFF statement has been executed the GOSUB is not per
formed and is not remembered.

If a TIMER STOP statement has been executed the GOSUB is not
performed, but will be performed as soon as a TIMER ON statement is
executed.

When an event trap occurs (i.e., the GOSUB is performed), an automatic
TIMER STOP is executed so that recursive traps cannot take place. The
RETURN from the trapping subroutine will automatically perform a
TIMER ON statement unless an explicit TIMER OFF was performed
inside the subroutine.

RETURN line number may be used to return to a specific line number
from the trapping subroutine. Use this type of return with care, however,
because any other GOSUBs, WHILEs, or FORs that were active at the
time of the trap will remain active, and errors such as "FOR without
NEXT" may result.

7-150

ON TIMER(n)

The following example displays the time of day on line 1 every minute.

10 ON TIMER(6Q) GOSUB 10000
20 TIMER ON

10000 LET OLDROW=CSRLIN 'Save current row

10010 LET OLDCOL=POS(0) 'Save current column
10020 LOCATE 1,1:PRINT TIME$;
10030 LOCATE OLDROW,OLDCOL 'Restore row & col

10040 RETURN

See also the TIMER ON, TIMER OFF and TIMER STOP statements.

7-151

OPEN

OPEN Statement

FORMAT OPEN "model",[#]file number ,filespec[,
record length]

OPEN f ilespec[FOR mode2] AS [^]file number
[LEN=record length]

PURPOSE Allows input or output (I/O) to a data file (sequential or
random) or device. Files and devices must be opened
before any I/O operation is performed on them.

ini US

A file is opened for output in order to write data to it, and opened for
input if data is to be read from it.

model is a string expression whose first character is one of the
following:

0 specifies sequential output mode

1 specifies sequential input mode

R specifies random input/output mode

A specifies sequential output mode and sets the file pointer at the
end of the file and the record number as the last record of the

file. A PRINT# or WRITE# statement will then extend (append)
the file.

Note that the value of model must be enclosed in quotes.

mode2 is one of the following:

OUTPUT specifies sequential output mode

specifies sequential input modeINPUT

APPEND specifies sequential output mode and sets the file pointer
at the end of the file and the record number as the

last record of the file. A PRINT# or WRITE#

statement will then extend (append) the file.

7-152

OPEN

If mode2 is omitted, random access mode is assumed. Note that this
mode cannot be expressed explicitly for mode2.

file number is an integer between 1 and 15. The number is associated
with the file for as long as it is OPEN. The number is a shorthand
notation for the file. It is also used to refer other disk 1/0 statements
to the file.

filespec is a file specification (see Section 3, under "File and Device
Information") in the form of a string constant, and identifies the file or
device to be opened. The filespec consists of a filename or pathname with
an optional device name (which must be that of a diskette or hard drive),
or the name of a user-installed device driver. Valid device names are

KYBD:, SCRN:, COMn:, LPTn: and CON:. If the device name is omitted,
the DOS default drive is used.

record length is an integer that, if included, sets the record length
for random files. This option will be ignored if used with sequential
files.

record length cannot exceed the maximum set with the /S: option of
the GWBASIC command. If the record length option is not used, the
default length is 128 bytes, unless the /I and /R options of the GWBASIC
command have been used.

A disk file must be opened before any disk 1/0 operation can be
performed on that file. OPEN allocates a buffer for 1/0 to the file
or device and determines the mode of access that will be used with the
buffer.

Opening a file in 0 or OUTPUT mode causes data in the file to be
overwritten. Opening a file in A or APPEND mode preserves the original
file contents and adds new data at the end.

NOTE: A file can be opened for sequential input or random access on
more than one file number at a time. A file may be opened
for output, however, on only one file number at a time.

If you are using tree-structured directories (see Section 3),
you cannot open a file for sequential output or append if a
file with the same name is already open in any mode on the
same disk, even if the two are completely different files.

10 OPEN "I",2,"INVEN"

Opens the file "INVEN" for sequential input.

7-153

OPEN

10 OPEN "MAILING.DAT" FOR APPEND AS 1

Opens the file "MAILING.DAT" for extension.

10 OPEN "\DEV\PRT" FOR OUTPUT AS #1

If a user-installed device driver named PRT is used for the printer, this
statement will open the printer for sequential output.

10 OPEN "LPT:" FOR OUTPUT AS #1

Opens the printer for output using the GWBASIC device driver.

10 OPEN "\DEV\LPT1" FOR OUTPUT AS #1

Opens the printer for output using the DOS device driver.

7-154

OPEN "COM..."

OPEN "COM..." Statement

FORMAT OPEN "COMn:[speed][, [parity][,[data]
[.[stop][,RS][,CS[n]][,DS[n]][,CD[n]]
[,BIN] [,ASC] [,LF]]]] "[FOR mode] AS
[^]filenum [LEN=record length]

PURPOSE Opens and initializes a communications channel for
input/output.

M M M

OPEN "COM..." must be specified before a device connected to the
specified channel is used for RS-232 communications. The channel is
treated as a file with a file number, and is referenced as such in
subsequent I/O statements.

NOTE: Although default values can be used for the parameters, you
are strongly recommended to define the parameter values
explicitly in each case.

n is the number of the channel to be opened, an integer in the range 1
to 4. The number 1 refers to the built-in asynchronous communications
adapter (serial port), while 2 through 4 can be used for add-on adapters.

speed is the baud rate, in bits per second, of the device connected to
the channel to be opened. Valid speeds are 75, 110, 150, 300, 600, 1200,
2400, 4800 and 9600. Default is 300 bps.

parity indicates the type of parity for transmission and the type of
parity checking to be performed on data received. Valid entries are:

N - none

E - even parity (default)

0 - odd parity

S - space (parity bit transmitted and received as a 0 bit)

M - mark (parity bit transmitted and received as a 1 bit)

data indicates the number of bits per byte. Valid entries are 7
(default) or 8.

7-155

OPEN "COM..."

stop indicates the number of stop bits. Valid entries are 1 (default)
or 2.

RS suppresses the RTS (Request To Send) signal. The RTS line is
activated when OPEN "COM..." is executed unless this parameter is
included.

CS[n] controls the CTS (Clear To Send) signal.

DS[n] controls the DSR (Data Set Ready) signal.

CD[n] controls the CD (Carrier Detect) signal, also known as the RLSD
(Received Line Signal Detect) signal.

n for the CS, DS and CD parameters specifies the wait time for the
corresponding signal in milliseconds, in the range 0 to 65535. If the
specified signal is not received after n milliseconds, the message
"Device timeout" is displayed. If n is 0, no line checking is
performed. Default for CS and DS is 1000. If CD is omitted, that line
status is not checked.

A "Device timeout" error will normally occur if GWBASIC attempts to
execute I/O statements to a communications file and the CTS or DSR lines
are not active. With CS and DS you can either bypass the normal checking
of those signals by giving a value of 0, or you can specify a different
wait time for the test.

BIN opens the device in binary mode. BIN is selected by default unless
ASC is specified. In the BIN mode, tabs are not expanded to spaces, a
carriage return is not forced at the end-of-line, and Ctrl-Z is not
treated as end-of-file. When the channel is closed, Ctrl-Z is not sent
over the RS-232 line. BIN supersedes the LF option.

ASC opens the device in ASCII mode. In this mode, tabs are expanded,
carriage returns are forced at the end-of-line, Ctrl-Z is treated as
end-of-file, and XON/XOFF is enabled. When the channel is closed,
Ctrl-Z is sent over the RS-232 line.

LF specifies that a line feed is to be sent after a carriage return,
allowing communications files to be printed on a serial printer. When LF
is specified, a line-feed character (hex OA) is automatically sent after
each carriage return character (hex CD), including the carriage return
sent as a result of the width setting. Note that INPUT# and LINE INPUT#,
when used to read from a COM file that was opened with the LF option,
stop when they see a carriage return, ignoring the line feed.

7-156

OPEN "COM..."

mode is the mode in which the file referenced by f ilenum is opened and
is one of the following:

OUTPUT specifies sequential output mode

INPUT specifies sequential input mode

If mode is omitted, random access mode is assumed. Note that this mode
cannot be explicitly expressed for this parameter.

filenum is a file number; the communications channel is treated as a
file with the name COMn, and the file is referred to by f ilenum in
other communications I/O statements.

record length is the maximum number of bytes that can be read from
the communications buffer when using a GET or PUT statement. Default
value is 128.

Any format errors in this statement will result in a "Bad file name"
error. The incorrect parameter will not be shown.

The speed, parity, data, and stop options must be listed in the
order shown (for the last three of these options, include the preceding
commas even if you omit the values). The remaining options may be listed
in any order after the first four options.

10 OPEN "C0M1:9600,N,8,1,BIN" AS #2

Opens communications channel 1 at a speed of 9600 baud with no parity bit,
8 data bits, and 1 stop bit. Input/output will be in the binary mode.
Other lines in the program may now access channel 1 as device number 2.

7-157

OPTION BASE

OPTION BASE Statement

FORMAT OPTION BASE n

PURPOSE Declares the minimum value for array subscripts.

n is 1 or 0.

The default base is 0. If the statement:

OPTION BASE 1

is executed, the lowest value an array subscript may have is 1.

If used, OPTION BASE must be coded before you define or use any
arrays.

Chained programs may have an OPTION BASE statement if no arrays are
passed between them or the specified base is identical in the chained
programs. A chained program will inherit the OPTION BASE value of
the chaining program.

7-158

OUT

OUT Statement

FORMAT OUTl.d

PURPOSE Sends a byte to a machine output port.

m M m

i is the port number, an integer in the range 0 to 1023 (&H3FF).

i is the data to be transmitted, an integer in the range 0 to 255.

For examples of using the OUT statement with a communications program,
see Section 6 under "Accessing the Registers".

A port address map is provided in Table 7-6.

100 OUT 12345,255

The value 255 is sent to output port 12345.

7-159

PAINT

PAINT Statement

FORMAT PAINT (x,y)[,palnt[.border][.background]]

PURPOSE Fills a graphics area with the color or pattern specified.

ISS SSSf ISi7q99 S9»

This statement can only be used in graphics mode (SCREEN 1, 2, 104 or
105).

X and y are the coordinates where painting is to begin. Painting
should always start on a non-border point. If painting starts inside a
bordered figure, the figure is painted up to the border. If painting
starts outside a bordered figure, the background is painted. You can use
the STEP option to specify these coordinates relative to the last point
referenced - see the CIRCLE or LINE statements for details.

If paint is a numeric expression, the figure will be painted with the
color corresponding to that number (see the COLOR statement). In
medium resolution (SCREEN 1), paint ranges from 0 to 3, where 0
indicates the background color and 1 to 3 denote colors from the current
palette (see Table 7-2). In high resolution (SCREEN 2) and super
resolution (SCREEN 104 and 105), paint can be either 0 (background
color) or 1 (foreground color). Default is 3 for medium resolution and
1 for high- and super resolution.

If paint is a string expression, PAINT will execute "tiling" (see below)
to paint the figure with a pattern instead of a single color.

border identifies the border color of the figure to be filled. When the
border color is encountered, painting of the current line will stop. If
border is not specified, the value of paint will be used.

background is a string expression used in tiling (see below). The
default is CHR$(0).

PAINT can be used to fill any figure, but painting complex figures may
result in an "Out of Memory" error. If this happens, use the CLEAR
statement to increase the amount of stack space available.

PAINT permits coordinates outside the screen or viewport. No error
message is issued if this occurs.

7-160

PAINT

Tiling

Tiling allows you to design a pattern with which to paint a figure. You
specify the pattern by the value of the paint parameter, which in this
case must be a string expression. The pattern design, or "tile", is 8
bits wide (corresponding to the width of one character on the screen)
and can be up to 64 bytes long (each byte corresponding to one screen
line).

To specify a design, use the syntax:

PAINT (x,y), CHR$(n). . .CHR$(n)

where n is a number between 0 and 255 which will be represented in
binary across the x-axis of the "tile". Each CHR$(n) up to 64 will
generate an image of the bit arrangement of n. For example, the decimal
number 85 is binary "01010101"; the graphic image line on a monochrome
screen generated by CHR$(85) is an eight-point line, with even-numbered
points turned white, and odd ones black.

A monochrome screen can be painted with a pattern of Xs with the
following statements:

10 CLS : SCREEN 105

20 PAINT (320,100),CHR$(129)+CHR$(66)
+CHR$(36)+CHR$(24)+ CHR$(24)+CHR$(36)+
CHR$(66)+CHR$(129)

This appears on the screen as:

x.y

X Increases 4

bit of tile byte
7 6 5 4 3 2 1 0

Tile

0,0 X X CHR$(129) 1

0,1 X X CHR$(66) 2

0,2 X X CHR$(36) 3

0,3 X X CHR$(24) 4

0,4 X X CHR$(24) 5

0,5 X X CHR$(36) 6

0,6 X X CHR$(66) 7

0,7 X X CHR$(129) 8

The pattern is repeated uniformly over the area to be painted. Each byte
of the string is rotated as required to align the pattern along the
y-axis.

7-161

PAINT

Occasionally you may want to tile paint over an already-painted area that
is the same color or pattern as two consecutive lines in the tile
pattern. Normally, PAINT terminates when it encounters two consecutive
lines of the same color or pattern as the point being set (i.e. the point
is surrounded).

Use the background parameter to avoid this condition. For example, if
you want to draw alternating blue and red lines on a red background,
painting would normally stop at the first attempt to draw a red line over
the background. However, if you give background the value
CHR$(&HAA), which corresponds to red if the current palette is 0 (see list
below), this tells the program that the background is red and allows the
red line to be drawn over it. The values that can be given for
background and the colors they correspond to are:

Value Palet'te 0 Pallet 1

CHR$(&H55) green cyan
CHR$(&HAA) red magenta
CHR$(&HFF) brown white

You cannot specify more than two consecutive bytes in the tile pattern
that match background. Specifying more than two will result in an
"Illegal function call" error.

Some examples follow of the use of the PAINT statement:

5 SCREEN 1:CLS

10 PAINT (5.15),2.0

begins painting at coordinates 5,15 with color 2 and border color 0, and
fills to a border.

10 CLSiCIRCLE (160,100),100
20 PAINT (160,100),CHR$(129) + CHR$(66) +

CHR$(36) + CHR$(24) + CHR$(24) + CHR$(36) +
CHR$(66) + CHR$(129)

draws a circle and fills it with the pattern of Xs described above.

7-162

PEEK

PEEK Function

FORMAT V = FEEK(n)

PURPOSE Returns the byte read from memory location n.

^ fSBl iSSiSH m ssH

The returned value is an integer in the range 0 to 255. n is a numeric
expression and is the offset from the current segment, which was defined
by the last DEF SEG statement, n must be in the range -32768 to 65535.

See POKE, the complementary function of this statement.

X > PEEK (1327)
PRINT X

199

The above displays the value at memory location 1327.

A = PEEK(&H5A00)

In this example, the value at the location with hexadecimal address 5A(K)
is loaded into the variable A.

7-163

PEN

PEN Statement and Function

FORMAT PEN ON

PEN OFF

PEN STOP

X = PEN(n)

PURPOSE Reads the light pen and enables, disables, or stops trapping
the pen.

M M MJOOfr 90W JQW

X is the numeric variable receiving the PEN value.

n is a number from 0 to 9. This function traps downstrokes of the light
pen by reading the following parameters of n:

0 Indicates whether pen was down since last poll. Returns -1 if
down, 0 if not.

1 Returns the x-coordinate of the point where the pen was last
pressed.

2 Returns the y-coordinate of the point where the pen was last
pressed.

3 Returns the current pen switch value, -1 if down, 0 if up.

4 Returns the last known valid x-coordinate.

5 Returns the last known valid y-coordinate.

6 Returns the character row position where pen was last pressed.

7 Returns the character column position where pen was last
pressed.

8 Returns the last known character row where the pen was
positioned.

9 Returns the last known character column where the pen was
positioned.

PEN ON enables both the read function and event trapping.

7-164

PEN

PEN STOP disables both the light pen read function and event trapping but
remembers a PEN event so that it can be trapped as soon as there is a PEN
ON.

PEN OFF not only disables both the read function and event trapping, it
also does not remember subsequent activity.

The initial setting is OFF. A PEN ON statement must be executed before
any pen read function calls can be made. If the function is called when
the setting is OFF, an "Illegal function call" error will result.

PEN ON also enables event trapping by an ON PEN statement (see ON PEN
statement in this section). While trapping is enabled, and if a nonzero
line number is specified in the ON PEN statement, GWBASIC checks
between every statement to see if the light pen has been activated. If it
has, the program transfers to the ON PEN statement.

The pen should not be used in the border area of the screen. Values
returned from that area will be inaccurate.

To speed program execution, use PEN OFF for programs not using the
light pen.

5 CLS

10 PEN ON

20 P=PEN(3)

30 LOCATE 1,1 : PRINT "STATUS IS";

40 IF P THEN PRINT "DOWN" ELSE PRINT "UP"

50 GOTO 20

The above produces an endless loop to print the current pen switch status
(UP/DOWN).

7-165

PLAY

PLAY Statement

FORMAT PLAY string

PURPOSE Plays music.

string is an expression consisting of single character commands as
follows:

On Sets the current octave. There are 7 octaves, numbered 0
(lowest) to 6, each beginning with C and ending with B. Middle
C begins octave 3. The default octave is 4.

> Increments the octave by one if placed before a note or series of
notes. » increments by two octaves, etc. The octave will not
go higher than 6.

< Decrements the octave by one if placed before a note or series of
notes. « decrements by two octaves, etc. The octave will not
go lower than 0.

A to G with optional ̂ , +, or -
Plays the indicated note in the current octave. The note
followed by a number or plus sign indicates a sharp. Followed
by a minus, it indicates a flat. The tf, +, or - must
correspond to a black key on a piano (for example, E+ is
invalid).

Nn A note numbered 0 to 84 (in the seven possible octaves there are
84 notes). Zero indicates a rest. This is an alternative form
to On and A-G.

Ln Sets the length of the notes to follow; n is in the range 1 to
64. LI is a whole note (semibreve), L4 is a quarter note
(crotchet), etc. Intermediate values can be used, for example
L3 can be used for a triplet (three notes in the time of two)
of half notes, L6 for a triplet of quarter notes, and so on.

The length may also follow the note when, for example, you want
to change it only for that note. Thus A16 is equivalent to
L16A.

7-166

PLAY

Pn Rest (pause). The range of n may be from 1 to 64, indicating
the length of the rest in the same way as for L.

A dot or period after a note causes it to be played as a dotted
note (its length is multiplied by 3/2). More than one dot is
allowed, which causes the length of the note to be increased by
the appropriate 3/2 multiple. Thus "C.." plays 9/4 as long as
its length indicates, and "C..." plays 27/8 as long. Periods
may also appear after a rest (P) to lengthen it in the same
way.

Tn The tempo sets the number of quarter notes in a minute in the
range 32 to 255. The SOUND statement lists common tempos and
equivalent beats per minute. The default is 120.

MF Music foreground. Each sound begins only after the previous sound
is finished. This is the default. It is also valid for SOUND.

MB Music background. Each sound is written to a buffer, which allows
a program to continue executing while music plays in the
background. The maximum number of notes (or rests) that can be
played in background at a time is 32. This option is also
valid for SOUND. i

MN Music normal (nonlegato). This is the default setting when neither
ML nor MS is specified. Each note is played at 7/8L, creating
the nonlegato sound.

ML Music legato. Each note plays the full length set with L, which
creates "connected" notes.

MS Music staccato. Each note plays at 3/4L to create a strong
disconnected sound.

X a$; Executes the specified string. You can use this feature to
store a frequently-repeated subtune in a string variable and
call it from the PLAY statement.

Note that because of the slow clock interrupt rate, some notes will not
play at high tempos, e.g., L64 at T255. You may discover other
combinations as you experiment with the possibilities of this statement.

7-167

PLAY

10 PLAY "ms o3 116 g 18 e. 116 e 112 ee-e o4
18 c. o3 16 g 18 g. 116 e 18 f. 116 f 18
f. 116 g 14 a"

The above plays part of a march tune well-known on both sides of the
Atlantic.

7-168

PLAY(n)

PLAY(n) Function

FORMAT V = PLAY(n)

PURPOSE Returns the number of notes currently in the background
music queue.

m m m

(n) is a dummy argument and may be any value.

PLAY(n) only returns a value if PLAY is currently executing in music
background (MB) mode. It returns 0 if PLAY is currently in music
foreground (MF) mode, which is the default.

7-169

PLAY

PLAY ON, PLAY OFF, PLAY STOP Statements

FORMAT PLAY ON

PLAY OFF

PLAY STOP

PURPOSE Enables (ON), disables (OFF) or suspends (STOP) music
event trapping (i.e. testing whether the music queue
has the number of notes specified in an ON PLAY(n)
statement).

^ ̂ ̂
WWf JWW

ON PLAY(n) must first be set with a line number before BASIC checks
whether a music event has occurred. If so, the program will perform a
GOSUB to the trap routine at the line number specified in ON PLAY(n).

PLAY STOP suspends trapping, but if a subsequent PLAY ON statement is
executed the GOSUB is performed immediately.

PLAY OFF stops trapping altogether. If a subsequent PLAY ON statement
is executed the GOSUB is not performed.

7-170

PMAP

PMAP Function

FORMAT V = PMAP (coord, function)

PURPOSE Maps world coordinates created by the WINDOW statement to
to physical locations, or maps physical locations to world
coordinates.

^ ̂

This statement can only be used in graphics mode (SCREEN 1, 2, 104 or
105).

coord is the coordinate of the point to be mapped,

function is one of the following:

0 Maps world coordinate to physical x-coordinate.

1 Maps world coordinate to physical y-coordinate.

2 Maps physical coordinate to world x-coordinate.

3 Maps physical coordinate to world y-coordinate.

The four PMAP functions allow you to find equivalent point locations
between the world coordinates created with the WINDOW statement and the

physical coordinate system of the screen or viewport as defined by the
VIEW statement.

If you define a WINDOW SCREEN (80,100) - (200,200) then the upper left
coordinate of the window is (80,100) and the lower right coordinate is
(200,200). The screen coordinates are (0,0) in the upper left-hand corner
and (639,399) in the lower right for 400-line systems, and 639,324 for
325-line systems. Then:

X = PMAP(8a,0)

would return the screen x-coordinate of the window x-coordinate 80:

0

The PMAP function in the statement:

Y = PMAP(200,1)

7-171

PMAP

would return the screen y-coordinate of the window y-coordinate 200:

399 (or 324)

The PMAP function in the statement:

X = PMAP(619,2)

would return the "world" x-coordinate that corresponds to the screen or
viewport x-coordinate 619:

199

The PMAP function in the statement:

Y = PMAP(100,3)

would return the "world" y-coordinate that corresponds to the screen or
viewport y-coordinate 100:

140

7-172

POINT

POINT Function

FORMAT V = POINT (x-coordlnate,y-coordlnate)
V = POINT (n)

PURPOSE Reads the color value of a point on the screen, or returns
the current graphics cursor coordinates.

m li H

This function can only be used in graphics mode (SCREEN 1, 2, 104 or
105).

x-coordinate and y-coordinate are the coordinates of the screen
point for which the color is to be read.

If the specified point is out of range, the value -1 is returned.

n is a number from 0 to 3, as follows:

0 returns the current physical x-coordinate (the coordinate on the
screen or current viewport)

1 returns the current physical y-coordinate

2 returns the current logical x-coordinate. If the WINDOW statement
is not active, this will be the same as for 0 above.

3 returns the current logical y-coordinate. If the WINDOW statement
is not active, this will be the same as for I above.

5 SCREEN 105

10 IF P0INT(I,I)<>0 THEN PRESET (1,1)
ELSE PSET (1,1)

The above is one way to invert the color of point (I, I) on a monochrome
screen.

10 PSET (I,I),1-P0INT(I,I)

This version of line 10 has exactly the same effect.

7-173

POKE

POKE Statement

FORMAT POKEi.j

PURPOSE Writes a byte into a memory location.

ii

i and J are integer expressions.

i is the memory address, which must be in the range -32768 to 65535.
i is the offset from the current segment, which was set by the last DEF
SEG statement. (See DEF SEG statement.) Note that, if you specify a
negative value for 1, GWBASIC will interpret it as described in the
specification of the VARPTR function.

3 is the data byte, and must be in the range 0 to 255.

CAUTION I
mmmmmmM

Use this statement carefully. It
will cause severe problems if used

incorrectly.

The complementary function to POKE is PEEK. (See PEEK function.)

10 POKE &H5A00,&HFF

The above puts the FF hex into 5A00 hex in the current segment.

7-174

POS

POS Function

FORMAT V = POS(n)

PURPOSE Returns the current column position of the cursor.

m M M

n is a dummy argument, and can be any value.

CSRLIN finds the row position of the cursor.

See also LPOS function.

IF P0S(0)>50 THEN BEEP

A beep is emitted if the cursor is beyond position 50 on the screen.

7-175

PRESET

PRESET Statement

FORMAT PRESET [STEP](x-coordlnate,y-coordinate)
[.color]

PURPOSE Draws a specified point on the screen (default color is the
background color).

ssst sssd sssi
fS» ^ fSi

This statement can only be used in graphics mode (SCREEN 1, 2, 104 or
105).

x-coordlnate and y-coordinate specify the point that is to be set.

color is the number of the color to be used for the specified point. In
medium resolution (SCREEN 1), color ranges from 0 to 3, where 0
indicates the background color and 1 to 3 denote colors from the current
palette (see Table 7-2). In high resolution (SCREEN 2) and super
resolution (SCREEN 104 and 105), color can be either 0 (background
color) or 1 (foreground color). Default for all modes is the background
color.

The STEP option, if used, means that x-coordinate and y-coord-
Inate are relative to the most recent cursor location. For example,
if the most recent location was (10,10), then STEP (10,5) would reference
the point at (20,15).

PRESET works exactly like PSET except that if color is not specified,
the background color is selected (default color for PSET is the foreground
color).

If an out-of-range coordinate is given, no action is taken, nor is an
error message given.

7-176

PRESET

1 SCREEN 105

5 REM DRAW A LINE FROM (0,0) TO (100,100)
10 FOR 1=0 TO 100

20 PRESET (I,I),1
30 NEXT

35 REM NOW ERASE THAT LINE

40 FOR 1=0 TO 100

50 PRESET STEP (-1,-1)
60 NEXT

The above draws a line from (0,0) to (100,100) and then erases it by
overwriting it with the background color.

7-177

PRINT

PRINT Statement

FORMAT PRINT [list of expresslons[{, | ;}]]

PURPOSE Outputs data on the screen.

If list of expressions is omitted, a blank line is printed. If list
of expressions is included, the values of the expressions are
displayed on the screen. The expressions in the list may be numeric
and/or string expressions. (Strings must be enclosed in quotation
marks.)

You can use a question mark (?) instead of the word PRINT as a form of
shorthand. It will be interpreted as PRINT, and will appear as PRINT in
subsequent listings.

Print Positions

The position of each printed item is determined by the punctuation used to
separate the items in the list. GWBASIC divides the line into print zones
of 14 spaces each. Within the list of expressions, punctuation has the
following effect:

, causes next value to be printed at start of next zone

; causes next value to be printed immediately after last value

spaces have the same effect as semicolons (;)

If a comma or semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line, spacing in the same
way as above. If the list of expressions terminates without a comma or a
semicolon, a carriage return is performed at the end of the line. If the
printed line is longer than the screen width, GWBASIC goes to the next
physical line and continues printing.

Printed numbers are always followed by a space. Positive numbers are
preceded by a space. Negative numbers are preceded by a minus sign.
Single-precision numbers that can be represented with six or fewer
digits in the unsealed format no less accurately than they can be
represented in the scaled format are output using the unsealed format.
For example, lE-7 is output as .0000001, and lE-8 is output as lE-08.

7-178

PRINT

Double-precision numbers that can be represented with 16 or fewer digits
in the unsealed format no less accurately than they can be represented in
the scaled format are output using the unsealed format. For example,
lD-15 is output as .0000000000000001, and lD-16 is output as lD-16.

See also LPRINT and LPRINT USING statements.

10 X=5

20 PRINT X+5, X-5, X*(-5),X'"5
30 END

RUN

10 0 -25

Ok

3125

The commas in the PRINT statement cause each value to be printed at the
beginning of the next print zone.

10 INPUT X

20 PRINT X "SQUARED IS" X'^2 "AND";

30 PRINT X "CUBED IS"

40 PRINT

50 GOTO 10

Ok

RUN

? 9

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21

21 SQUARED IS 441 AND 21 CUBED IS 9261

The semicolon at the end of line 20 causes both PRINT statements to be
printed on the same line. Line 40 causes a blank line to be printed
before the next prompt.

10 FOR X = 1 TO 5

20 J=J+5

30 K=K+10

40 ?J;K;

50 NEXT X

Ok

RUN

5 10 10 20 15 30 20 40 25 50

Ok

7-179

PRINT

The semicolons in the PRINT statement cause each value to be printed
immediately after the preceding value. (Remember that a number is
always followed by a space, and positive numbers are preceded by a
space.) In line 40, a question mark is used instead of the word PRINT.

7-180

PRINT USING

PRINT USING Statement

FORMAT PRINT USING v$;list of expressions [;]

PURPOSE Prints strings or numbers using a specified format.

M M W

v$ is a string constant or variable consisting of special formatting
characters that determine the field and the format of the printed strings
or numbers. See String and Numeric fields below.

list of expressions contains the string or numeric expressions that
are to be printed, separated by semicolons.

String Fields

When printing strings with PRINT USING, one of three characters may be
used to format the string field:

! specifies that only the first character in the given string is
to be printed.

"\n spaces\"
specifies that 2+n characters from the string are to be
printed (i.e., 2 plus the number of spaces). If the back
slashes are typed with no spaces, two characters will be
printed; with one space, three characters will be printed, and
so on.

If the string is longer than the field, the extra characters
are ignored. If the field is longer than the string, the
string will be left-justified in the field and padded with
spaces on the right.

7-181

PRINT USING

Example:

10 A$="LOOK": B$="OUT"

30 PRINT USING "!";A$;B$

40 PRINT USING "\
50 PRINT USING "\
RUN

LO

LOOKOUT

LOOK OUT !!

\";A$;B$
\";A$;B$;»'! !"

specifies a variable-length string field. When the field is
specified with &, the string is printed without
modification.

Example:

10 A$="LOOK": B$="OUT"

20 PRINT USING "!";A$;

30 PRINT USING "&»';B$

RUN

LOUT

Numeric Fields

When printing numbers with PRINT USING, the following special char-
acters may be used to format the numeric field:

represents each digit position. Digit positions are always
filled. If the number to be printed has fewer digits than
positions specified, the number will be right-justified
(preceded by spaces) in the field.

(decimal point) may be inserted at any position in the field.
If the format string specifies that a digit is to precede the
decimal point, the digit will always be printed (as 0 if
necessary). Numbers are rounded as necessary.

Examples:

PRINT USING 78

0.78

7-182

PRINT USING

PRINT USING 987.654

987.65

PRINT USING "##.## ";10.2,5.3.66.789,.234

10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at the end of
the format string to separate the printed values on the line.

+ at the beginning or end of the format string will cause the sign
of the number (plus or minus) to be printed before or after
the number.

at the end of the format field will cause negative numbers to be
printed with a trailing minus sign.

Examples:

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9

-68.95 +2.40 +55.60 -0.90

PRINT USING "##.##- ";-68.95,22.449,-7.01

68.95- 22.45 7.01-

* * at the beginning of the format string causes leading
spaces in the numeric field to be filled with asterisks.
** also specifies positions for two more digits.

Example:

PRINT USING "**#.# ";12.39,-0.9,765.1

*12.4 *-0.9 765.1

$$ causes a dollar sign to be printed to the immediate left
of the formatted number. $$ specifies two more digit
positions, one of which is the dollar sign. The exponential
format cannot be used with $$. Negative numbers cannot be
used unless the minus sign trails to the right.

Example:

PRINT USING "$$###.##";456.78

$456.78

7-183

PRINT USING

at the beginning of a format string combines the
effects of the above two symbols. Leading spaces will be
asterisk-filled and a dollar sign will be printed before the
number. **$ specifies three more digit positions, one of
which is the dollar sign. The exponential format cannot be
used with **$. When negative numbers are printed, the minus
sign will appear immediately to the left of the $ sign.

Example:

PRINT USING "**$##.##";2.34
***$2.34

(comma) to the left of the decimal point in a formatting
string causes a comma to be printed to the left of every third
digit to the left of the decimal point. A comma at the end of
the format string is printed as part of the string. A comma
specifies another digit position. It has no effect if used
with the exponential format.

Examples:

PRINT USING 1234.5

1,234.50

PRINT USING "####.##,";1234.5

1234.50,

(carets) may be placed after the digit position characters
to specify exponential format. The four carets allow space
for E±xx or D±xx to be printed. Any decimal point
position may be specified. The significant digits are
left-justified, and the exponent is adjusted. Unless a
leading + or trailing + or - is specified, one digit position
will be used to the left of the decimal point to print a space
or a minus sign.

Examples:

PRINT USING 234. 56

2.35E+02

PRINT USING -888888

.8889E+06-

7-184

PRINT USING

PRINT USING

+.12E+03

_ (underscore) in the format string causes the next character to
be output as a literal character.

Example:

PRINT USING 12.34

!12.34!

The literal character itself may be an underscore by placing
" " (two underscores) in the format string.

% is printed in front of the number if the number to be printed is
larger than the specified numeric field. If rounding causes
the number to exceed the field, a percent sign will be printed
in front of the rounded number.

Examples:

PRINT USING 111.22

^6111.22

PRINT USING 999

561.00

If the number of digits specified exceeds 24, an "Illegal function call"
error results.

7-185

PRINT #, PRINT it USING

PRINT # and PRINT if USING Statements

FORMAT PRINT mienum, [USING v$:]llst of
expressions

PURPOSE Writes data sequentially to a file.

ii li H

f ilenum is the number used when the file was opened.

v$ consists of formatting characters as described in PRINT USING
statement.

list of expressions consists of the numeric and/or string
expressions that will be written to the file.

PRINT ft does not compress data on the file. An image of the data is
written to the file just as it would be displayed on the screen with a
PRINT statement. For this reason, care should be taken to delimit the
data on the file as noted below so that it will be input correctly from
the file. (Note that using WRITE it avoids the difficulties referred to
below since WRITE ff inserts its own delimiters.)

In the list of expressions, numeric expressions should be delimited by
semicolons. For example:

PRINT #1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks inserted between
print fields will also be written to the file.)

String expressions must be separated by semicolons in the list. To
format the string expressions correctly on the disk, use explicit
delimiters in the list of expressions.

For example, let A$="CAMERA" and B$="93604-l". The statement

PRINT#!,A$;B$

would write

CAMESA93604-1 ~

7-186

PRINT ft, PRINT # USING

to the file. Because there are no delimiters, this could not be input as
two separate strings. To correct the problem, insert explicit delimiters
into the PRINTS statement as follows:

PRINT#1.A$;",";B$

This is written to the file as

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas, semicolons, significant leading
blanks, carriage returns, or line feeds, use CHR$(34) to write them to the
file with explicit quotation marks.

For example, let A$="CAMERA, AUTOMATIC" and let B$=" 93604-1".

The statement

PRINT #1,A$;B$

would write the following to the file:

CAMERA. AUTOMATIC 93604-1

and the statement

INPUT #1,A$,B$

would input "CAMERA" to A$ and "AUTOMATIC 93604-1" to B$. To
separate these strings properly in the file, use CHR$(34) to write double
quotes to the file. The statement

PRINT #1,CHR$(34);A$;CHR$(34);CHR$(34);B$;CHR$(34)

writes the following image:

"CAMERA, AUTOMATIC"" 93604-1"

and the statement

INPUT #1,A$,B$

would input "CAMERA, AUTOMATIC" to A$ and " 93604-1" to B$.

7-187

PRINT it, PRINT # USING

The PRINT ff statement may also be used with the USING option to control
the format of the file. For example:

PRINT #1,USING"$$###.##,»';J;K;L

See also Appendix A, Sequential and Random Files.

7-188

PSET

PSET Statement

FORMAT PSET [STEP](x-coordinate,y-coordinate)
[,color]

PURPOSE Draws a specified point on the screen (default color is the
foreground color).

^ ̂ ̂

This statement can only be used in graphics mode (SCREEN 1, 2, 104 or
105).

x-coordinate and y-coordinate specify the point on the screen.

color is the number of the color to be used. In medium resolution

(SCREEN 1), color ranges from 0 to 3, where 0 indicates the background
color and 1 to 3 denote colors from the current palette (see Table 7-2).
In high resolution (SCREEN 2) and super resolution (SCREEN 104 and 105),
color can be either 0 (background color) or 1 (foreground color).
Default is 3 for medium resolution and 1 for high- and super resolution.
Default for monochrome screens is the foreground color.

The STEP option, if used, means that x-coordinate and y-coord
inate are relative to the most recent cursor location. For example, if
the most recent location was (10,10), then STEP (10,5) would reference the
point at (20,15).

When GWBASIC scans coordinate values, it will allow them to be beyond
the edge of the screen. (The size of the screen can be adjusted with the
WIDTH statement.) However, values outside the integer range -32768 to
32767 will cause an "Overflow" error.

PSET allows the color to be omitted from the command line. If it is
omitted, the default is the foreground color.

7-189

PSET

1 SCREEN 105

5 REM DRAW A LINE FROM (0,0) TO (100,100)
10 FOR 1=0 TO 100

20 PSET (1,1)
30 NEXT

35 REM NOW ERASE THAT LINE

40 FOR 1=0 TO 100

50 PSET STEP (-1,-1),0
60 NEXT

This example draws a line from (0,0) to (100,100) and then erases that
line by overwriting it with the background color.

7-190

PUT (Files)

PUT Statement (Files)

FORMAT PUT [^]fllenum[.number]

PURPOSE Writes a record from a random buffer to a random file.

isa na iUi

f ilenum is the number under which the file was opened.

number is the number for the record to be written, in the range 1 to
16,777,215. If it is omitted, the record will be written in the next
available record number (after the last PUT).

PRINT #, PRINT ft USING, WRITE tf, LSET, and RSET may be used to
put characters in the random file buffer before executing a PUT
statement. With WRITE #, GWBASIC adds spaces in the buffer up to the
carriage return.

Reading or writing past the end of the buffer will cause a "Field
overflow" error.

GWBASIC may buffer the data written to a file, and defer the disk access
until it has buffered 512 characters.

For communications files, number is the number of bytes to write to the
file, which cannot exceed the value set by the /S: switch on the GWBASIC
command.

The GET and PUT statements allow fixed-length input and output for COM
files. However, because of the low performance associated with telephone

line communications, it is not advisable to use GET and PUT with COM
files transmitted over telephone lines.

For an example, see GET Statement (Files).

7-191

PUT (Graphics)

PUT Statement (Graphics)

FORMAT PUT (x,y) ,array[.action]

PURPOSE Writes a graphic image from an array onto a specified area
of the screen.

^ ̂ m
^ ̂ M

This form of the PUT statement is used in graphics mode only (SCREEN
1,2, 104 and 105).

PUT transfers back to the screen a graphics image that was written to an
array by the GET statement (graphics).

(X,y) specifies the point where a stored image is to be displayed on the
screen. The specified point is the coordinate of the top left corner of
the image. If the image to be transferred is too large to fit on the
screen, an "Illegal function call" error will result.

array is the name of a numeric array that contains the information to be
transferred. Specific information about array is given in GET statement
(graphics).

action is PSET, PRESET, AND, OR, or XOR. The default is XOR.

PSET transfers data point by point onto the screen. Each point has the
color attribute that it had when written to the array by GET.

PRESET is the same as PSET, except that PRESET causes the image to
appear in its complementary colors. In super- and high-resolution modes,
the black and white are simply reversed. For medium-resolution color
graphics, where points have color attributes in the range 0 to 3, points
are plotted as follows:

Attribute Plotted with

in array attribute

0 3

1 2

2 1

3 0

7-192

PUT (Graphics)

AND is used when the image is to be transferred over an existing image
on the screen.

OR superimposes the image onto the existing image.

XOR is a special mode often used for animation. It causes the points on
the screen to be inverted where a point exists in the array image. This
behavior is exactly like that of the cursor. When an image is PUT
against a complex background twice, the background is restored
unchanged. This allows you to move an object around the screen without
obliterating the background.

The default action is XOR.

Table 7-8 contains the effects of the PUT statement when used in

medium-resolution graphics mode (SCREEN 1).

Table 7-8

EFFECTS OF AND, OR, AND XOR ON COLOR
IN MEDIUM RESOLUTION

Action
Array
Value

Screen Color

0 1 2 3

AND 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

OR 0 0 1 2 3

1 1 1 3 3

2 2 3 2 3

3 3 3 3 3

XOR 0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

7-193

PUT (Graphics)

Thus for example with XOR, an array element with a color attribute of 1
("Array Value" column) will be PUT on the screen with a color as
follows: if the screen color at that point was 0, the color will change to
1, color 1 will change to 0, 2 to 3 and 3 to 2.

Use the following steps to animate an object:

1. PUT the object(s) on the screen.

2. Recalculate the new position of the object(s).

3. PUT the object(s) on the screen a second time at the old location(s)
to remove the old image(s).

4. Go to step 1, but this time PUT the object(s) at the new location.

Movement done this way will leave the background unchanged. Flicker can
be cut down by minimizing the time between steps 4 and 1 and by making
sure that there is enough time delay between 1 and 3. If more than one
object is being animated, every object should be processed at once, one
step at a time.

If it is not important to preserve the background, animation can be
performed using PSET. The idea is to leave a border around the image
that is as large or larger than the maximum distance the object will —
move. Thus, when an object is moved, this border will effectively erase
any points. This method may be somewhat faster than the method using
XOR described above, since only one PUT is required to move an object
(although you must PUT a larger image).

The following example shows how you can use the PUT statement for
animation. It uses PSET to move the figure across the screen.
Substitute the other values of action to see what effect they have.

10 CLS: SCREEN 105

20 DIM A(200)
30 PI = 3.14159

40 CIRCLE (320,160).30,,-0.1*PI,-1.9*PI
50 CIRCLE (330,150),3
60 GET (280,120) - (360,190),A: CLS
70 X = 280: Y = 120

80 FOR N = 1 TO 20

90 PUT (X,Y),A,PSET
100 X = X + 8 -

110 NEXT N

7-194

RANDOMIZE

RANDOMIZE Statement

FORMAT RANDOMIZE [expression]
RANDOMIZE TIMER

PURPOSE Reseeds the random number generator.

expression is the random number seed, with a value in the range
-32768 to 32767.

If expression is omitted, GWBASIC suspends program execution and
prompts

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If expression is an integer or numeric variable, the value of the
integer or variable is used to seed the random numbers.

The TIMER option allows you to use the TIMER function to pass a random
number seed.

If the random number generator is not reseeded, the RND function returns
the same sequence of random numbers each time the program is run. To
change the sequence of random numbers every time the program is run,
place a RANDOMIZE statement at the beginning of the program and change
the seed with each run.

10 RANDOMIZE

20 INPUT "NUMBER OF RANDOM NUMBERS ";N

30 FOR I = 1 TO N

40 PRINT RND;

50 NEXT I

Ok

RUN

Random number seed (-32768 to 32767)? 6
NUMBER OF RANDOM NUMBERS ? 3

.4417627 .1085309 .182628

Ok

7-195

READ

READ Statement

FORMAT READ variable[, variable] . . .

PURPOSE Reads values from a DATA statement and assigns them to
variables. (See DATA statement.)

^ ̂
^ m ̂

variable is a numeric or string variable or array element that will
receive the value read.

A READ statement must always be used in conjunction with a DAT A
statement. READ statements assign variables to DAT A statement values on
a one-to-one basis. READ statement variables may be numeric or string,
and the values read must agree with the variable types specified. If they
do not agree, a "Syntax error" will result.

A single READ statement may access one or more DATA statements (they
will be accessed in order), or several READ statements may access the
same DATA statement. If the number of variables in the list exceeds the

number of elements in the DATA statement(s), an "Out of data" error
message is printed. If the number of variables specified is fewer than
the number of elements in the DATA statement(s), subsequent READ
statements will begin reading data at the first unread element. If there
are no subsequent READ statements, the extra data is ignored.

To reread data from a DATA statement, use RESTORE (see RESTORE
statement).

Example 1

80 FOR 1=1 TO 10

90 READ A(I)
100 NEXT I

110 DATA 3.08,5.19.3.12,3.98,4.24

120 DATA 5.08,5.55,4.00,3.16,3.37

7-1%

READ

This program segment reads the values from the DATA statements into the
array A. After execution, the value of A(l) will be 3.08, and so on.

Example 2

10 PRINT "CITY". "STATE", " ZIP"

20 READ C$.S$.Z
30 DATA "PASADENA,", CALIFORNIA, 91127

40 PRINT C$,S$,Z
Ok

RUN

CITY STATE ZIP

PASADENA, CALIFORNIA 91127

Ok

This program reads string and numeric data from the DATA statement
in line 30. Note that PASADENA requires quotes because of the comma
following it, whereas no quotation marks around CALIFORNIA are
necessary.

7-197

REM

REM Statement

FORMAT REM remark

PURPOSE Allows explanatory remarks to be inserted in a program.

^ ̂
^ ̂ ̂

remark may be any sequence of characters.

REM statements are not executed but are output exactly as entered when the
program is listed.

REM statements may be branched into from a GOTO or GOSUB
statement. Execution will continue with the first executable statement

after the REM statement.

Remarks may be added to the end of a line by preceding the remark with a
single quotation mark instead of :REM. Do not use the single quotation
form of REM in a DATA statement, as it would be considered valid data.

NOTE: When using remarks in GWBASIC, they stay resident in memory,
reducing the memory available for program and data.

120 REM CALCULATE AVERAGE VELOCITY

130 FOR 1=1 TO 20

140 SUM=SUM + V(I)

120 FOR 1=1 TO 20 'calculate average velocity
130 SUM=SUM+V(1)

140 NEXT 1

The above are examples of the use of REM.

7-198

RENUM

RENUM Command

FORMAT RENUM [newnum][»[oldnum][,increment]]

PURPOSE Renumbers program lines.

M m m

newnum is the first line number to be used in the new sequence. The
default is 10.

oldnum is the line in the current program where renumbering is to
begin. The default is the first line of the program.

increment is the increment to be used in the new sequence. The default
is 10.

RENUM also changes all line number references following GOTO,
GOSUB, THEN, ELSE, ON...GOTO, ON...GOSUB, RESTORE,
RESUME, and ERL statements to reflect the new line numbers. If a
nonexistent line number appears after one of these statements, the
error message "Undefined line number yyyyy in xxxxx" is printed. The
incorrect line number reference yyyyy is not changed by RENUM, but line
number xxxxx may be changed.

NOTE: RENUM cannot be used to change the order of program lines (for
example, RENUM 15,30 when the program has three lines
numbered 10, 20 and 30) or to create line numbers greater
than 65529. An "Illegal function call" error will result.

RENUM

The preceding command will renumber the entire program. The first line
number will be 10, and succeeding lines will be numbered in increments of
10.

RENUM 300,,50

The entire program will be renumbered, the first line number will be 300,
and succeeding lines will be numbered in increments of 50.

7-199

RENUM

RENUM 1000,900,20

The program will be renumbered from line 900, the first new line
number will be 1000, and each succeeding line will be incremented by 20.

7-200

RESET

RESET Command

FORMAT RESET

PURPOSE Closes all files on all drives.

US isxmt isst fss

This command closes all open files on all drives and writes the directory
track to every disk with open files.

All files must be closed before a disk is removed from its drive.

998 RESET

999 END

Closes all open files before ending the program.

7-201

RESTORE

RESTORE Statement

FORMAT RESTORE [line number]

PURPOSE Allows DATA statements to be reread from a specified line.

M M M

After a RESTORE statement is executed, the next READ statement
accesses the first item in the first DATA statement in the program. If
line number is specified, the next READ statement accesses the first
item in the specified DATA statement.

See GOTO statement.

10 DATA 1,2,3

20 DATA 4,5,6

30 READ A,B,C

40 PRINT A,B,C

50 READ A,B,C

60 PRINT A,B,C

70 RESTORE 20

80 READ A,B,C

90 PRINT A,B,C

Ok

RUN

1 2 3

4 5 6

4 5 6

Ok

7-202

RESUME

RESUME Statement

FORMAT RESUME

RESUMED

RESUME NEXT

RESUME line number

PURPOSE Continues program execution after an error recovery
procedure has been performed.

^ ̂ ̂

Use one of the four formats shown above according to where execution is
to resume.

RESUME or RESUME 0 causes execution to resume at the statement that
caused the error.

RESUME NEXT causes execution to resume at the statement immediately
following the one causing the error.

RESUME line number causes execution to resume at the line number
specified.

If RESUME statement is not in an error-handling subroutine, a "RESUME
without error" message is printed.

See GOTO statement.

10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY
AGAIN": RESUME 80

In the above, when error 230 occurs in line 90, RESUME causes the program
to return to line 80.

7-203

RETURN

RETURN Statement

FORMAT RETURN [line number]

PURPOSE Causes GWBASIC to return to the statement following the
most recent GO SUB statement.

M M M

If line number is specified, execution will return to the specified line
number in the program. This option should be used with extreme caution.

7-204

RIGHT$

RIGHT$ Function

FORMAT v$ = RIGHT$(a$,x)

PURPOSE Returns the rightmost x characters of string a$.

m m m

a$ is any string expression.

X is an integer that specifies how many characters will be in the
result.

If ,x is greater than or equal to the number of characters in a$, then
RIGHTS returns a$. If x=0, the null string (length zero) is returned.

See also the MID$ and LEFTS functions.

10 TEST$= "ABCDEFGHIJKLBJNOPQRSTUVWXYZ "

20 FOR 1=1 TO 5

30 PRINT RIGHTS(TESTS,I)
40 NEXT I

RUN

Z

YZ

XYZ

WXYZ

VWXYZ

Ok

The RUN command causes five lines to be printed, each returning an
additional character from the right end of die string.

7-205

RMDIR

RMDIR Command

FORMAT RMDIR pathname

PURPOSE Removes (deletes) an existing directory.

m m anSS 3885

pathname specifies the name of the directory to be removed, and is a
string of up to 63 characters, which must be enclosed in quotes. RMDIR
works exactly like the DOS command RMDIR - see the DOS manual.

The directory to be removed must be empty of any files except the working
directory and the parent directory otherwise a "Path not
found" or "Path/file access error" message will be displayed.

RMDIR "\SALES"

This statement causes the SALES directory on the current drive to be
deleted.

7-206

RND

RND Function

FORMAT v = RND[(x)]

PURPOSE Returns a random number between 0 and 1.

mmm

The same sequence of random numbers is generated each time the
program is run unless the random number generator is reseeded. (See
RANDOMIZE statement.)

If X < 0, RND restarts the same sequence for any given x.

If X > 0 or if X is omitted, RND generates the next random number in
the sequence.

If X = 0, the last number generated is repeated.

10 RANDOMIZE 531

20 PRINT RND*100

RUN

79.51105

Ok

Thi above shows how the RND call can produce a value between 0 and 100.

7-207

RUN

RUN Command

FORMAT RUN [line]

RUN filespec[,R]

PURPOSE Executes the program currently in memory, or loads a
program into memory and runs it.

^ ̂

line is the number of the line in the program where execution is to
begin.

fllespec is a file specification (see Section 3, under "File and Device
Information") in the form of a string constant, and identifies the file
containing the program to be run. The filespec consists of a filename or
pathname with an optional device name (which must be that of a diskette
or hard drive). The filename is the name used when the file was saved
(remember that GWBASIC supplies the extension .BAS if none is given).
If the device name is omitted, the DOS default drive is used.

If line is omitted, program execution begins at the lowest line number.

RUN filespec loads a file from disk into memory and runs it. Before
loading the designated program, RUN closes all open files and deletes the
current contents of memory.

With the "R" option, all data files remain open.

GWBASIC always returns to command level after a RUN command.

RUN "B:NEWFIL".R

The program NEWFIL is loaded from drive B: and run, with the files kept
open.

7-208

SAVE

SAVE Command

FORMAT SAVE fllespec[,A]

SAVE fllespec[,P]

PURPOSE Saves a program file on disk.

^ ̂^ ̂ ̂

f ilespec is a file specification (see Section 3, under "File and Device
Information") in the form of a string constant, and identifies the file
containing the program to be saved. The filespec consists of a filename
or pathname with an optional device name (which must be that of a diskette
or hard drive). If the file name is eight characters or less and no
extension is supplied, the extension .BAS is added to the name. If the
device name is omitted, the DOS default drive is used.

If filespec already exists, the file will be written over.

Use the A option to save the file in ASCII format. Otherwise, GWBASIC
saves the file in a compressed binary format. ASCII format takes more
space on the disk, but some disk access requires that files be in ASCII
format. For instance, the MERGE command requires an ASCII format
file, and some operating system commands such as LIST may require an
ASCII format file.

Use the P option to protect the file by saving it in an encoded binary
format. When a protected file is later run (or loaded), any attempt to
list or edit it will fail.

See also Appendix A, Sequential and Random Files.

SAVE "A:COM2",A

This example saves C0M2.BAS on drive A: in ASCII.

SAVE "B:PROG",P

The above saves PROG on drive B: and protects it so it may not be altered.

7-209

SCREEN Function

SCREEN Function

FORMAT v = SCREEN(row,col[,z])

PURPOSE Returns the color or the ASCII code of the character at the
specified row (line) and column of the active screen.

^ ̂ ̂

row is a number in the range 1 to 25.

col is a number in the range 1 to 40 or 1 to 80 depending on WIDTH.

z is a numeric expression that evaluates to a true or false value. It
is valid only in text mode. If z evaluates to 0 (false), the ASCII code
for the character is returned. Appendix C lists the possible codes.

If z is included and is non-zero, the color attribute is returned
instead of the ASCII code. This attribute will be a number n in the
range 0 to 255, and is interpreted in the following way:

(n MOD 16) = f, where f is the attribute of the foreground color

(((n - f)/16) MOD 128) is the attribute of the background color

The expression (n > 127) returns the value -1 (true) if the character is
blinking, or 0 (false) if it is steady.

See Table 7-1 under the COLOR Statement (Text) to interpret the color
attributes.

See also SCREEN statement.

10 A = SCREEN (20,21)

If the character at point 20,21 is X, then A is 88.

110 A = SCREEN (10,10,1)

A will be the color attribute of the character at location (10,10).

7-210

SCREEN Statement

SCREEN Statement

FORMAT SCREEN [mode][, [burst][, [apage]
[.vpage]]]

PURPOSE Sets screen attributes for use in subsequent statements.

fSt

mode may be any of the following:

0 text mode at current width (40 or 80). It displays on the
"current" monitor, as previously selected. This is the
default value. (Note that in text mode WIDTH 40 only applies
to monitors with color/graphics adapters present.)

1 medium-resolution graphics mode (320x200). For 325-line
systems, the display is on the upper left side of the
monochrome screen unless there is a color/graphics monitor
adapter. Default screen width for this mode is 40 characters.

2 V high-resolution graphics mode (640x200). For 325-line
systems, the display is on the upper two-thirds of the
monochrome screen unless there is a color/graphics monitor
adapter. (Note that in high-resolution graphics only two
colors, black and white, are possible, even on monitors with
color/graphics adapters present.)

NOTES: For 400-line systems, medium- and high-resolution graphics
modes are emulated to cover the entire screen. If a
color/graphics monitor adapter is present, emulation ceases
and the modes automatically switch the display to a color
monitor.

Programs written for medium-resolution color graphics
emulation may not be displayed as expected, because the
monochrome screen has only two colors (black and white).

7-211

SCREEN Statement

100 forces text mode onto the monochrome screen (that is, there is a
switch from color to monochrome). If the screen is already
monochrome, the statement is ignored.

101 switches from monochrome display to color/graphics adapter. On
325-line systems only, if no color/graphics monitor adapter is
available, an "Illegal function call" error message is
displayed.

104 sets monochrome screen for super-resolution graphics (640 x 400
or 640 X 325 lines) and text. In this mode, text written to
the screen over an existing graphics image will overwrite that
part of the image (to avoid this, write the text to the screen
first). Text characters in this mode are actually graphics
characters and have a different appearance from text in other
modes.

105 sets monochrome screen for super-resolution graphics (640 x 400
or 640 X 325 lines) and text. In this mode, text written to
the screen over an existing graphics image will merely be
superimposed on that image.

NOTE: Modes 104 and 105 produce true super-resolution graphics, and
are not emulation modes.

bursl: is either set to zero, which disables color, or to any non-zero
value, which enables color. Note that burst: defaults to non-zero with
an RGB monitor, mode and burst have the following effect on color
when a color/graphics monitor adapter is present:

Mode Burst Effect on Color

0 0 Disabled

1 Enabled

1 0 Enabled

1 Disabled

2 No effect -

100 No effect _

101 0 None

104 No effect -

105 No effect _

7-212

SCREEN Statement

apage (active page) specifies the current active graphics page, the one
being written to memory, and is a number between 0 and 15 - see Section 4
for the formula to calculate the maximum number of graphic pages. With
a color/graphics adapter, however, apage refers to a text page and is a
number between 0 lo 7 for width 40 or between 0 to 3 for width 80. It is
only used with mode 0.

vpage (visual page) specifies the current visual page, the one being
written on the screen, and is a number between 0 and 15; as for apage.
With a color/graphics adapter, vpage is valid only in text mode, and if
omitted, defaults to apage.

Note that while vpage and apage will often be the same, you may
display one page on the screen while writing to another, and therefore
vpage may be different from apage.

If mode is set to 0, 104, or 105 with only apage and vpage
specified, display pages can be changed for screen viewing. By
manipulating these parameters you can display one page while building
another and then switch visual pages instantly.

The default graphics page (for SCREEN 104 and 105) is determined by
GWBASIC at load time - see Section 4 for more details. With a
color/graphics adapter, the default text page is 0.

If the new screen mode is the same as the previous mode, only the new
parameters are updated.

The memory address for any given super-resolution graphics page is
[page*800H]:0000. You will need to input this address in a DEE SEG
statement prior to using a BLOAD statement.

If you wish to interchange active pages, the cursor position on the
current page should be stored using POS(O) and CSRLIN, because the
cursor is shared among all pages. Cursor position can then be restored
with LOCATE.

Any parameter may be omitted. Except for vpage, omitted parameters
assume the old value.

For both the standard monochrome display and the color/graphics monitor
adapter it is suggested that SCREEN 0,0,0 and WIDTH 80 statements be
used at the beginning of a program.

Out-of-range values cause an "Illegal function call" error, and previous
values are retained.

7-213

SCREEN Statement

10 SCREEN 105,,5,5

20 CLS

Line 10 enables both text and super-resolution graphics to be displayed
and written to page 5. Line 20 clears both alphanumeric and graphic
screens in memory.

10 SCREEN 0,1.0.0

The above is for a color/graphics monitor adapter. It selects text mode
with color and sets the active and visual page to 0.

7-214

SGN

SGN Function

FORMAT V = SGN(x)

PURPOSE Returns the sign of x.

m m m

X is any numeric expression.

If X > 0, SGN(x) returns 1.
If X = 0, SGN(x) returns 0.
If X < 0, SGN(x) returns -1.

ON SGN(X)+2 GOTO 100,200,300

The program branches to 100 if X is negative, 200 if X is 0, and 300 if X
is positive.

7-215

SHELL

SHELL Statement

FORMAT SHELL [command-string]

PURPOSE Used to exit the BASIC program, execute a DOS command
or run a program such as a .EXE or .BAT program, and
return to the BASIC program at the line after the SHELL
statement.

HSl ISS UK
JWft

command-string is a string expression containing the name of the
command or program to be executed, optionally followed by parameters.
Any text separated from the name by at least one blank is regarded as
parameters.

If you omit command-string, the DOS prompt is displayed and you can
execute one or more COMMAND.COM commands before typing EXIT to
return to the BASIC program.

A program name in command-string may have any extension you wish.
If no extension is supplied, the system looks for a .COM file, then a
.EXE file, and finally, a .BAT file. If none is found, SHELL will issue a
"File not found" error.

A program or command executed in this way under the SHELL statement
is called a "child process". Child processes are executed by SHELL
loading and running a copy of COMMAND.COM with the "/C" switch. By
using COMMAND.COM in this way, any parameters you may have are
passed to the default file control blocks. Standard input and output may
be redirected, and built-in commands such as DIR, PATH, and SORT may
be executed.

BASIC remains in memory while the child process is running. When the
child finishes, BASIC continues.

You cannot use SHELL to call BASIC. If you try to do this the system will
issue the message: "You cannot Shell to BASIC" and return you to the
parent BASIC.

7-216

SHELL

When you execute a child process using SHELL, you have to be careful to
ensure that the child process does not change anything that the BASIC
program was using, such as closing files that were open when SHELL
was executed. The following set of guidelines will help you to avoid
potential disasters.

1. Hardware

The child process may change the screen mode. The simplest way to
guard against this is to use a SCREEN statement followed by CLS
directly after the SHELL statement in the BASIC program, ensuring
that SCREEN specifies the correct screen mode for the remainder of
the BASIC program.

Save and restore any interrupt vectors that the child process uses.
The child process itself can perform this task.

Some of the internal devices on the main PCB are set to a specific
state by GWBASIC, and must not be changed by the child process.
These are the 8259 interrupt controller, the 8253 interval timer,
the 8237 DMA controller, the 8255 peripheral interface and the 8250
UART. For further information about these devices, see the
Technical Reference manual for your system.

2. The File System

A child process which alters any file that was OPENed by the parent
BASIC program may cause unpredictable effects. If you need to
update such files, close them in the BASIC program before using
SHELL, then reopen them on returning to the BASIC program.

3. Memory Management

Before BASIC executes a SHELL statement, it will try to free any
memory it is not then using, unless the original BASIC command was
given with the /M: switch. If the /M: switch is set, BASIC assumes
that you intended to load something just above BASIC'S work space.
This prevents BASIC from compressing its work space before doing
the SHELL. For this reason SHELL may fail with an "Out of
memory" error when using the /M: switch.

A better method is to load assembly language subroutines before
BASIC is run. You can achieve this by placing code at the end of
the subroutines that uses interrupt 27H to allow them to exit to DOS
and stay resident. For example:

7-217

SHELL

CSEG SEGMENT CODE

;(assembly language
subroutine)

RET ;last Instruction

START::

INT 27H ;terminate, stay resident

CSEG ENDS

END START

Be sure to "load" these subroutines by running them before invoking
BASIC. The AUTOEXEC.BAT file is very useful for this purpose.

A child process should never terminate and stay resident. Doing so
may not leave BASIC enough room to restore its work space to the
original size. If BASIC cannot restore the work space, all files
are closed, the error message "SHELL can't continue" is displayed,
and BASIC exits to DOS.

The following example shows how you can exit to DOS from a BASIC
program, use some DOS commands and then resume the program.

(BASIC program)

SHELL (exits to DOS, displaying the A> prompt)

A>DIR (user types DIR to see files)

A>EXIT (user types EXIT to return to BASIC)

The next example creates a file to contain data to be sorted, exits to DOS
to run the SORT utility and returns to BASIC.

10 OPEN "SORTIN.DAT" FOR OUTPUT AS #1

(program writes data to be sorted into SORTIN.DAT)

1000 CLOSE 1

1010 SHELL "SORT <SORTIN.DAT >SORTOUT.DAT"

1020 OPEN "S0RT0UT.DAT" FOR INPUT AS #1

(program processes the sorted data)

7-218

SIN

SIN Function

FORMAT V = SIN(x)

PURPOSE Returns the sine of x.

issi isss sas
Im im sm

X must be in radians.

SIN(x) is calculated in single precision. See also COS function.

PRINT SIN(1.5)
.9974951

Ok

7-219

SOUND

SOUND Statement

FORMAT SOUND freq, duration

PURPOSE Generates sound through the speaker.

iSSi «St HSi
^ m im

freq is the frequency in Hertz (cycles per second) and in the range 37
to 32767.

duration is a numeric expression in the range 0 to 65535 indicating the
desired length in clock ticks, which occur 18.2 times per second, or 1092
times per minute.

See Table 7-9 for information on the frequencies generated by this
statement. Refer to the PLAY statement for information on producing
continuous notes with no pauses between statements.

Table 7-9

NOTE FREQUENCIES FOR FOUR OCTAVES

Note Frequency Note Frequency

C 130.8 C 523.3
D 146.8 D 587.3
E 164.8 E 659.3
F 174.6 F 698.5
6 196.0 G 784.0
A 220.0 A 880.0

B 246.9 B 987.8
C* 261.6 C 1046.5
D 293.7 D 1174.7

E 329.6 E 1318.5
F 349.2 F 1396.9
G 392.0 G 1568.0
A 440.0 A 1760.0
B 493.9 B 1975.5

"Middle C

7-220

SOUND

Doubling the frequency of a note gives the same note an octave higher;
halving the frequency gives the same note an octave lower.

If a rest is desired, use 32767, duration.

If duration is zero, any SOUND statement that is currently executing
will be terminated.

Table 7-10 lists some typical tempos.

Table 7-10

TEMPO CALCULATIONS

Beats/
Minute

Tempo
Ticks/
Beat

Larghissimo (very slow)
27-1840-60 Largo

60-66 Larghetto 18-17

Grave

Lento

66-76 Adagio 17-14

Adagietto (slow)
14-1076-108 Andante

Andantino (medium)
10-9108-120 Moderate

Allegretto (fast)
120-168 Allegro 9-7

Vivace

Veloce
7-5168-208 Presto

Prestissimo (very fast)

The following example creates an endless loop of random sounds.

30 SOUND RND*1000 + 37, 2

40 GOTO 30

7-221

SPACE

SPACE$ Function

FORMAT v$ = SPACE$(x)

PURPOSE Returns a string of x spaces.

ssss ma ssgs
sS» ma

X must be an integer in the range 0 to 255.

See also SPC function.

10 FOR I = 1 TO 5

20 X$ = SPACE$(I)
30 PRINT X$;I

40 NEXT I

RUN

1

2

3

4

5

Ok

Each number I follows I spaces on a line. GWBASIC puts a space in front
of positive numbers, which results in I+l leading spaces.

7-222

SPC

SPC Function

FORMAT PRINT SPC(x)

PURPOSE Skips x spaces in a PRINT statement.

M M MSS» 9W

n must be in the range 0 to 255.

SPC may only be used with PRINT, LPRINT, and PRINT tf statements.

GWBASIC acts as if SPC has an implied semicolon after it. Therefore, if
SPC occurs at the end of a list of data items, GWBASIC does not add a
carriage return.

See also SPACES function.

PRINT "LEFT" SPC(15) "RIGHT"
LEFT RIGHT

Ok

There are 15 spaces between LEFT and RIGHT.

7-223

SQR

SQR Function

FORMAT V = SQR(x)

PURPOSE Returns the square rcx)t of x.

■ ■ ■

X must be greater than or equal to zero.

10 FOR X = 10 TO 25 STEP 5

20 PRINT X, SQR(X)
30 NEXT

RUN

10 3.162278

15 3.872984

20 4.472136

25 5

Ok

The above is a way to calculate the square roots of 10, 15, 20, and 25.

7-224

STICK

STICK Function

FORMAT V = STICK(n)

PURPOSE Accepts input from the joystick in the form of x- and
y-coordinates.

n is an integer from 0 to 3 as follows:

0 = the X-coordinate of joystick A

1 = the y-coordinate of joystick A

2 = the x-coordinate of joystick B

3 = the y-coordinate of joystick B

All four parameters will be assigned by first calling STICK(O). The calls
to functions STICK(l) through STICK(3) will then return the values
collected by the STICK(O) function. This is required to allow all input
parameters to reflect the position of the STICK at a particular instant.

10 FOR I = 1 TO 3

20 FOR J = 0 TO 3

30 PRINT STICK(J);
40 NEXT J

50 PRINT

60 NEXT I

Ok

7-225

STOP

STOP Statement

FORMAT STOP

PURPOSE Terminates program execution and returns to command level.

M 1st M
7909 7999 7999

STOP statements may be used anywhere in a program. A STOP causes the
following message to be printed:

Break in line nnnnn

Unlike the END statement, the STOP statement does not close files.

GWBASIC returns to command level after a STOP is executed. Resume

program execution with CONT (see CONT command).

10 INPUT A.B,C

20 K=A'^2*5.3:L=B'"3/.26
30 STOP

40 M=C*K+100:PRINT M

RUN

? 1,2,3

BREAK IN 30

Ok

PRINT L

30.76923

Ok

CONT

115.9

Ok

The above shows how STOP can be used to allow you to examine variables
in the GWBASIC program.

7-226

STR$

STR$ Function

FORMAT v$ = STR$(x)

PURPOSE Returns a string representation of the value of x.

X is any numeric expression.

If X is positive, the string returned will contain a leading blank,
which is the space reserved for the minus sign when the number is
negative.

See also the VAL function.

5 REM arithmetic for kids

10 INPUT "TYPE A NUMBER";N

20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500

The program branches to different subroutines depending on the number
entered. STR$ converts the number to a string, and branching is based on
the length of the string.

7-227

STRIG

STRIG Statement and Function

FORMAT STRIG ON

STRIG OFF

STRIG STOP

V = STRIG (n)

PURPOSE Returns the status of the specified joystick trigger or
enables, disables, or stops trapping of the joystick.

V is a numeric variable for storing the result of the function.

n is a number from 0 to 3, designating which trigger is to be checked,
as follows:

0 Returns -1 if trigger A was pressed since the last STRIG(O)
statement; returns 0 if not.

1 Returns -1 if trigger A is currently down; returns 0 if not.

2 Returns -1 if trigger B was pressed since the last STRIG(2)
statement; returns 0 if not.

3 Returns -1 if trigger B is currently down; returns 0 if not.

STRIG ON enables trapping of joystick activity.

STRIG STOP disables trapping, but if the joystick trigger is pressed, that
event will be remembered and trapped as soon as there is a STRIG ON.

STRIG OFF not only disables trapping, it also does not remember a
subsequent event (i.e., if the trigger is pressed).

STRIG ON requires an ON STRIG statement (see ON STRIG statement).
While trapping is enabled, and if a nonzero line number is specified in
the ON STRIG statement, GWBASIC checks between every statement to
see if the joystick trigger has been pressed.

7-228

STRIG

When a trap occurs, that occurrence of the event is destroyed. Therefore
the x=STRIG(ii) function will always return false inside a subroutine,
unless the event has been repeated since the trap. So if you wish to
perform different procedures for various joysticks, you must set up a
different subroutine for each joystick, rather than including all the
procedures in a single subroutine.

10 IF STRIG(O) THEN BEEP
20 GOTO 10

An endless loop is created to beep whenever the trigger button on joystick
0 is pressed.

7-229

STRINGS

STRING$ Function

FORMAT v$ = STRING$(n,m)

v$ = STRING$(ii,a$)

PURPOSE Returns a string of length n whose characters all have ASCII
code m or the first character of a$.

m m m

n, m are in the range 0 to 255.

a$ is any string expression.

10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN

MONTHLY REPORT

Before and after the character string "MONTHLY REPORT", this
program prints 10 hyphens (as stored in string variable X$).

7-230

SWAP

SWAP Statement

FORMAT SWAP variablel, varlable2

PURPOSE Exchanges the values of two variables.

variablel, variable2 are the names of two variables or array
elements.

Any type of variable may be swapped (integer, single-precision,
double-precision, string), but the two variables must be of the same type
or a "Type mismatch" error results.

If the second variable is not already defined when SWAP is executed, an
"Illegal function call" error will result.

10 A$=" ONE " : B$=" ALL " : C$="FOR"

20 PRINT A$ C$ B$

30 SWAP A$, B$

40 PRINT A$ C$ B$

RUN

ONE FOR ALL

ALL FOR ONE

Ok

Line 30 causes A$ to have the value ALL and B$ to have the value ONE.

7-231

SYSTEM

SYSTEM Command

FORMAT SYSTEM

PURPOSE Returns control to DOS.

^ US^ SS M

This command performs a "warm" boot, i.e., all open files are closed, and
control is returned to DOS.

7-232

TAB

TAB Function

FORMAT [PRINT] TAB(x)

PURPOSE Moves cursor or print head to position x.

X must be in the range 1 to 255.

If the current print position is already beyond space x, TAB goes to
that position on the next line. Space 1 is the leftmost position, and the
rightmost position is the defined width.

TAB may only be used in PRINT, LPRINT, and PRINT # statements.

10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ A$,B$

30 PRINT A$ TAB(25) B$
40 DATA "G. T. JONES","$25.00"
RUN

NAME AMOUNT

G. T. JONES

Ok

$25.00

TAB causes the NAME and AMOUNT columns to line up.

7-233

TAN

TAN Function

FORMAT V = TAN(x)

PURPOSE Returns the tangent of x.

^ ̂ ̂^ m ̂

X is an angle, which must be given in radians. To convert from degrees
to radians, multiply by PI/180, where PI = 3.141593.

TAN(x) is calculated in single precision.

If TAN overflows, the "Overflow" error message is displayed, machine
infinity with the appropriate sign is supplied as the result, and
execution continues.

10 Y=Q*TAN(X)/2

Y is equal to Q times the tangent of X divided by 2.

7-234

TIMES Statement

TIME$ Statement

FORMAT TIME$ = x$

PURPOSE Sets the time.

x$ returns one of the following strings:

hh sets the hour (in the range 0 to 23); minutes and seconds default to
00.

hh:mm sets the hour and minute; seconds default to 00.

hh:mm:ss sets the hour, minute, and second.

This statement complements the TIMES variable, which retrieves the time.

10 TIME$="17:00:00"

The current time is set at 5:00 p.m.

7-235

TIMES Variable

TIME$ Variable

FORMAT v$ = TIMES

PURPOSE Retrieves the current time.

This variable returns an eight-character string in the form hh:mm: ss,
where hh is the hour (00 through 23), mm is the'minute (00 through
59), and ss is the second (00 through 59). A 24-hour clock is used.
Therefore 8:00 p.m. would be shown as 20:00:00.

To set the time from a BASIC program, use TIMES statement. Note that
the TIMES variable also returns the time if set by the DOS command
TIME.

10 PRINT TIMES

Prints the time set with the TIMES statement.

7-236

TIMER Function

TIMER Function

FORMAT V = TIMER

PURPOSE Returns the number of seconds elapsed since midnight or the
last system reset.

TIMER is a read-only function returning a single-precision floating-point
number which includes fractional seconds as precisely as possible.

If the system clock has been set, either via the TIMES statement or via
the DOS command TIME, the TIMER function returns the number of
seconds since midnight, otherwise it returns the number of seconds since
the last system reset.

7-237

TIMER Statement

TIMER Statement

FORMAT TIMER ON

TIMER OFF

TIMER STOP

PURPOSE Enables (ON), disables (OFF) or suspends (STOP) timer
event trapping (i.e., testing whether the timer has
reached the value specified in an ON TIMER(n)
statement).

ON TIMER(n) must first be set with a line number and TIMER ON must
be executed before GWBASIC checks whether a timer event has occurred.

If so, the program will perform a GO SUB to the trap routine at the line
number specified in ON TIMER(n).

TIMER STOP suspends trapping, but if a subsequent TIMER ON statement
is executed the GOSUB is performed when the event next occurs.

TIMER OFF stops trapping altogether. If a subsequent TIMER ON state
ment is executed the GOSUB is not performed.

7-238

TRON. TROFF

TRON and TROFF Commands

FORMAT TRON

TROFF

PURPOSE Traces the execution of program statements.

^
^ m ̂

As an aid in debugging, the TRON command enables a trace flag that
displays each line number of the program as it is executed. The numbers
appear enclosed in square brackets. The trace flag is disabled with the
TROFF or NEW commands.

TRON

Ok

LIST

10 K=10

20 FOR J=1 TO 2

30 L=K + 10

40 PRINT J;K;L

50 K=K+10

60 NEXT

70 END

Ok

RUN

[10][20][30][40] 1 10 20
[50][60][30][4G] 2 20 30
[50][60][70]
Ok

TROFF

Ok

TRON and TROFF are used to trace execution of a loop. Line numbers are
in brackets. The other numbers are the values of J, K, and L as printed
by the program in line 40.

7-239

USR

USR Function

FORMAT v = USR[n](arg)

PURPOSE Calls an assembly language subroutine.

iH Hi H

n is in the range 0 to 9 and corresponds to the digit supplied with the
DBF USR statement for that routine. (See DBF USR statement.) If n is
omitted, USRO is assumed.

arg is any numeric expression or string variable that will be the
argument to the assembly language subroutine.

For each USR function, a corresponding DBF USR statement must be
executed to define the USR call offset. This offset and the currently
active DBF SBG segment address determine the starting address of the
subroutine.

If a segment other than the default segment is to be used, a DBF SBG
statement must be executed prior to a USR function call. The address
given in the DBF SBG statement determines the segment address of the
subroutine.

NOTE: While the USR function is provided for compatibility with existing
programs, it is recommended that new programs that call
assembly language subroutines should do so by means of the
CALL or CALLS statements, which can pass multiple arguments.
In addition, the CALL statement is compatible with more
languages than the USR function.

100 DEF SEG = &H8000

110 DEF USRO = 0

120 X = 5

130 Y = USRO(X)
140 PRINT Y

An assembly language routine at segment 8000 hex, offset 0, is called with
the argument set to 5.

7-240

VAL

VAL Function

FORMAT v = VAL(x$)

PURPOSE Returns the numerical value of string x$.

m m m

x$ is a string expression.

The VAL function also strips leading blanks, tabs, and line feeds from the
argument string. For example,

VAL(" -3")

returns -3.

VAL(x$) returns 0 if the first character of x$ is not numeric.

For numeric to string conversion, see STR$ function.

10 READ NAMES,CITT$,STATES.ZIPS
20 IF VAL(ZIPS)<90000 OR VAL(ZIPS)>96699

THEN PRINT NABffiS TAB(25) "OUT OF STATE"
30 IF yAL(ZIPS)>»90801 AND VAL(ZIPS)<»90815

THEN PRINT NABffiS TAB(25) "LONG BEACH"

In this example VAL is used to identify names of individuals living out of
California (line 20). In line 30 VAL is used to identify names of
individuals living in Long Beach, C^ifomia.

7-241

VARPTR

VARPTR Function

FORMAT 1 V = VARPTR(variable)

FORMAT 2 v = VARPTR(mienum)

PURPOSE

Format 1

Returns the starting address in memory of the variable or
BASIC file control block.

m M m

variable is a numeric, string, or array variable in the program,
variable must have previously been assigned a value, or an "Illegal
function call" error results.

VARPTR returns the address of the first byte in the data portion of the
variable identified by variable. For string variables, the address of
the first byte of the string descriptor is returned. Details of how
variables are stored are given in Appendix G, Technical Hints.

VARPTR is usually used to obtain the address of a variable or array so it
may be passed to an assembly language subroutine. A function call of the
form VARPTR(A(0)) is usually specified when passing an array, so that
the lowest-addressed element of the array is returned.

NOTE: All simple variables should be assigned before calling VARPTR
for an array, because the addresses of the arrays change
whenever a new simple variable is assigned.

For both formats the address will be an integer in the range -32768 to
32767. If a negative address is returned, add it to 65536 to obtain the
actual address.

Format 2

f llenum is the number under which the file was opened.

7-242

VARPTR

For sequential files, the starting address of the disk I/O buffer assigned
to f ilenum is returned. For random files, the address of the field
buffer assigned to f ilenum is returned.

100 A=USR(VARPTR(B))

The above returns the offset address of the variable "B".

7-243

VARPTR$

VARPTR$ Function

FORMAT v$ = VARFTR$(variable)

PURPOSE Returns a string that defines the type of variable and its
address in memory.

IgU H H

variable is the name of a numeric, string, or array variable existing in
the program.

This function is primarily used to execute substrings with PLAY and
DRAW in programs that will later be compiled. For programs that will not
later be compiled, the standard syntax of the PLAY and DRAW statements is
sufficient to produce the desired results.

A value must be assigned to variable before attempting this function, or
an "Illegal function call" error results.

VARPTRS returns a three-byte string in the form:

Byte 0 type

Byte 1 low byte of variable address

Byte 2 high byte of variable address

type indicates the variable type as follows:

2 integer
3 string
4 single-precision
8 double-precision

The returned value will be the same as CHR$ (type)+MKI$(VARPTR
(variable)).

Since addresses of arrays change whenever a new simple variable is
assigned, all simple variables should be assigned before calling VARPTR$
for an array element.

7-244

VARPTR$

100 A$ - "ABCDEFG"

200 PLAT "X" + VARPTR$(A$)

In this example, VARPTR$ has been used to indicate the string
"ABCDEFG". Thus the subcommand X (execute) plus the contents of.
are used as the string expression in the PLAY statement.

7-245

VIEW

VIEW Statement

FORMAT VIEW[[SCREEN][(xl,yl)-(x2,y2)[,[color]
[.[border]]]]]

PURPOSE Defines a screen viewport (a subset of the screen area) for
subsequent graphics display.

181 Hi H

This statement can only be used in graphics mode (SCREEN 1, 2, 104 or
105).

xl,yl - x2,y2 are the upper left and lower right coordinates
respectively of the section of the screen that is to be used as the
viewport. The coordinates must be within the physical screen area.

color allows you to fill the viewport with the specified color. In
medium resolution (SCREEN 1), color ranges from 0 to 3, where 0
indicates the background color and 1 to 3 denote colors from the current
palette (see Table 7-2). In high resolution (SCREEN 2) and super
resolution (SCREEN 104 and 105), color can be either 0 (background
color) or 1 (foreground color). If you omit this parameter, the viewport
is not filled.

border is an integer expression identifying a color as above, and draws
a border in the specified color around the viewport if space for a border
is available. If you omit this parameter, no border is drawn.

The SCREEN option causes coordinates in subsequent graphics statements
to be regarded as absolute to the physical screen area. If you omit the
SCREEN option, such coordinates are taken as being relative to the
specified viewport.

VIEW with no parameters defines the entire screen as the viewport.

7-246

VIEW

If:

VIEW (10,10)-(200.100)

were executed, then the point plotted by the statement PSET (0,0),3 would
be at the physical screen location 10,10 since the PSET coordinates are
interpreted relative to the viewport.

If:

VIEW SCREEN (10.10)-(200,100)

were executed, then the point plotted by the statement PSET (0,0),3
would actually not appear because the PSET coordinates are interpreted as
absolute to the physical screen area and 0,0 is outside the viewport.
PSET (10,10),3 is within the viewport, and places the point in its
upper-left hand corner.

A number of VIEW statements may be executed. If the newly-defined
viewport is not wholly within the previous one, the screen can be
re-initialized with the VIEW statement and the new viewport defined. If
the new viewport is entirely within the previous one, as in the following
example, the intermediate VIEW statement is not necessary. This example
opens three viewports, each smaller than the previous one. In each case,
a line that is defined to go beyond the borders is programmed, but only
appears within the viewport boundaries.

260 CLS

280 VIEW: REM ** Make the viewport the entire

screen.

300 VIEW (10,10) - (300,180),,1
320 CLS

340 LINE (0,0) - (310,190),1
360 LOCATE 1,11: PRINT "A big viewport"
380 VIEW SCREEN (50,50)-(250,150) ,,1
400 CLS:REM"* Note, CLS clears only viewport
420 LINE (300,0)-(0,199),l
440 LOCATE 9,9: PRINT "A medium viewport"

460 VIEW SCREEN (80,80)-(200,125),,1
480 CLS

500 CIRCLE (150,100),20,1
520 LOCATE 11,9: PRINT "A small viewport"

7-247

VIEW PRINT

VIEW PRINT Statement

FORMAT VIEW PRINT [top-line TO bottom-line]

PURPOSE Defines a screen viewport (a subset of the screen area)
for text display.

mum

VIEW PRINT without top and bottom line parameters defines the whole
screen area as the text window.

Use VIEW PRINT to define a text display area to coincide with a graphics
viewport defined by the VIEW statement. Statements and functions which
operate within the defined text area include CLS, LOCATE, PRINT and
SCREEN. Note that changing screen mode (e.g., SCREEN 1, SCREEN 104)
cancels the effect of VIEW PRINT.

The screen editor will limit functions such as scroll and cursor movement

to the display area.

top-line can be equal to, but not more than, bottom-line.

10 CLS:VIEW PRINT 10 TO 15

20 FOR A = 1 TO 500

30 PRINT A;

40 NEXT

This example displays the numbers 1 to 500, scrolling them through a
six-line text window in the center of the screen.

7-248

WAIT

WAIT Statement

FORMAT WAIT port,i[,J]

PURPOSE Suspends program execution while monitoring the status of a
machine input port.

9Si US
fSS >ss^

port is the port number, an address from 0 to 1023 (&H3FF). Table 7-6
gives a list of port addresses.

i , j are integer expressions in the range 0 to 255.

The WAIT statement causes execution to be suspended until a specified
machine input port develops a specified bit pattern.

The data read at the port is XORed with J and then ANDed with 1. If
the result is zero, GWBASIC loops back and reads the data at the port
again. If the result is non-zero, execution continues with the next
statement. If j is omitted, it is assumed to be zero.

In other words, WAIT allows you to test for either a 1 or a 0 at one or
more bit positions at the specified input port. The positions tested are
those having a 1 as indicated by the binary value of 1. If you omit
i, the indicated positions are tested for Is. If you include j, a 1
in any bit position in j for which there is a 1 at the same position in
i will cause WAIT to test for a 0 at that position.

Program execution is suspended while WAIT tests the specified bits. If
any single one of the specified bits becomes 1 (or 0 if J is used), the
program resumes execution.

CAUTION

It is possible to enter an infinite
loop with WAIT, in which case it
will be necessary to reboot with

Ctrl-Alt-Del or a system reset. To
avoid this situation, WAIT must have
the specified value at port during
some point in the program execution.

7-249

WAIT

10 WAIT 40,8

WAIT suspends program execution until there is a 1 in the fourth bit
position (i.e., 1000, the binary value of 8) in port 40.

7-250

WHILE ... WEND

WHILE and WEND Statements

FORMAT WHILE expression

(loop statements)

WEND

PURPOSE Executes a series of statements in a loop as long as a given
condition is true.

H n m

expression is any numeric expression.

If expression is not zero (i.e., true), loop statements are executed until
the WEND statement is encountered. GWBASIC then returns to the

WHILE statement and checks expression. If it is still true,
the process is repeated. If it is not true, execution resumes with the
statement following the WEND statement.

WHILE...WEND loops may be nested to any level. Each WEND will match
the most recent WHILE. An unmatched WHILE statement causes a

"WHILE without WEND" error, and an unmatched WEND statement causes
a "WEND without WHILE" error.

NOTE: Be careful not to direct program flow into a WHILE/WEND loop
without entering through the WHILE statement.

7-251

WHILE ... WEND

90 'BUBBLE SORT ARRAY A$

100 FLIPS=1 'FORCE ONE PASS THRU LOOP

110 WHILE FLIPS

115 FLIPS=0

120 FOR 1=1 TO J-1

130 IF A$(I)>A$(I+1) THEN
SWAP A$(I),A$(I+1):FLIPS=1

140 NEXT I

150 WEND

There are J elements in character string .
into alphabetical order.

5, and this program sorts them

7-252

WIDTH

WIDTH Statement

FORMAT 1 WIDTH [LPRINT]slze

FORMAT 2 WIDTH mienum,size

FORMAT 3 WIDTH device .size

PURPOSE Sets the line width for the screen or printer in number of
characters.

size is a number from 0 to 255. After size characters have been

output, GWBASIC will insert a carriage return/line feed sequence before
the next character is processed.

^filenum is a number from 1 to 15, the number of the file that is
opened.

device is SCRN:, LPTn:, or COMn:.

Format 1

This format without LPRINT sets the screen width (as does WIDTH
"SCRN:",size). For 325-line systems size is 80, the default. For
400-line systems during emulation modes 1 and 2 (see SCREEN statement)
and for systems with color/graphics monitor adapters, size may be
either 40 or 80 columns.

NOTE: For 400-line systems during emulation modes 1 and 2 (see
SCREEN statement) and for systems with a color/graphics
adapter, WIDTH 80 following SCREEN 1 forces the screen into
high resolution, and WIDTH 40 following SCREEN 2 forces the
screen into medium resolution.

This format with LPRINT sets the line width for the printer.

7-253

WIDTH

Format 2

WIDTH ̂ fllenum, size allows you to change the width of the device
associated with ̂ fllenum any time the file is open. Note that the file
must first be opened.

Format 3

WIDTH device,size stores a width assignment without changing the
current setting. It can be used for LPTl:, LPT2:, COMl:, COM2:,
COM3: and COM4:. A subsequent OPEN statement will use the new value.
If the device is already open, the width will not change immediately.

LPRINT, LLIST, and LIST,"LPTn:" are all affected by this statement.

Out-of-range and illegal values result in an "Illegal function call"
error, and the previous value is retained.

NOTE: For communications files, changing the width does not alter
either the receive or transmit buffer, size or contents.

10 LPRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

RUN

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Ok

10 WIDTH "LPTl:",18

20 LPRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

RUN

ABCDEFGHIJKLMNOPQR

STUVWXYZ

Ok

In the preceding example, output is directed to the printer with the
LPRINT statement. Changing the width causes all output lines to be
truncated to eighteen characters.

7-254

WINDOW

WINDOW Statement

FORMAT WINDOW [[SCREEN] (xl,yl)-(x2,y2)]

PURPOSE Redefines the dimensions of the current viewport for
subsequent graphics statements.

m m m

This statement can only be used in graphics mode (SCREEN 1,2, 104 or
105).

(xl ,yl)-(x2 ,y2) are the "world coordinates", used to define the new
dimensions of the viewport.

WINDOW allows you to draw lines, graphs, or objects in space not
bounded by the physical dimensions of the screen. This is done by using
programmer-defined coordinates called "world coordinates". A world
coordinate is any valid pair of single-precision floating-point numbers.
When you have redefined the viewport in this way, subsequent graphics
statements will scale their output to the world coordinates.

BASIC converts world coordinates into physical coordinates for subsequent
display within the current viewport. To make this transformation from
world space to the physical space of the screen, BASIC has to know what
portion of the world coordinate space contains the information to be
displayed. This rectangular region in world coordinate space is called a
"window".

RUN, or WINDOW with no parameters, disables this window
transformation.

WINDOW inverts the y-axis of the world coordinates so that screen
coordinates coincide with the traditional Cartesian arrangement: x
increases left to right, and y decreases top to bottom.

The SCREEN option does not invert the y-coordinate.

7-255

WINDOW

To illustrate the use of this statement, assume that a program has
executed:

NEW

SCREEN 105:CLS

The screen appears as:

o o320
.0

1

0,9
36

 1y
 sesaercnI

r

320,
200

0.3
99320.
399993.
936

NOTE: The above figure relates to 400-line screens. For 325-line
screens, substitute 324 for 399 and 320,160 for 320,200.

If you now execute:

WINDOW (-1,-1)(1,1)

the screen appears as:

-1.1 0,1

increases

1,1

0

H
1

1
1

o

o

1,0

5

-1,-1
i ̂ decreases

0,-1 1,-1

The y-coordinate has been inverted, so (xl ,yl) refers to the bottom left
of the viewport and (x2 ,y2) to the top right. This allows the screen to
be viewed in true Cartesian coordinates. Thus in the above example, the
statement:

7-256

WINDOW

LINE (-1,1) - (1,-1),1

would draw a line from the top left to the bottom right of the screen.

If you use the SCREEN option and execute:

WINDOW SCREEN (-1,-1)(1,1)

the screen appears as:

-1,-1 0,-1

y decreases

0,0

y Increases

-1,1 0.1

t
I

l.-l

JLO.

Here the y-coordinate is not inverted, so (xl ,yl) refers to the top left
and (x2 ,y2) to the bottom right. Thus, following the WINDOW SCREEN
statement above, the statement:

LINE (0,0) - (1,1),1

would draw a line from the center to the bottom right of the screen.

The following example illustrates two lines with the same endpoint
coordinates. The first is drawn on the default screen, and the second is
on a redefined window.

200 LINE (100,100) - (150,150), 1
220 LOCATE 2,20:PRINT "The line on the

default screen"

240 WINDOW SCREEN (100,100) - (200,200)
260 LINE (100,100) - (150,150), 1
280 LOCATE 8,18:PRINT"& the same line on a

redefined window"

7-257

WRITE

WRITE Statement

FORMAT WRITE [list of expressions]

PURPOSE Outputs data on the screen.

ii SI ii9999 9999 9999

list of expressions consists of numeric and/or string expressions,
separated by commas or semicolons.

If list of expressions is omitted, a blank line is output.

When the items are output, each is separated from the last by a comma.
Strings are delimited by quotation marks. After the last item in the list
is printed, GWBASIC inserts a carriage return/line feed.

WRITE outputs numeric values using the same format as the PRINT
statement. The only differences between the two are that WRITE inserts
commas between the items, delimits strings with quotation marks, and
does not precede positive numbers by blanks.

iO A=80: B=90: C$="THAT'S ALL"

20 WRITE A.B,C$

RUN

80,90,"THAT'S ALL"

Ok

Here A and B are numeric values, while C$ is a string.

7-258

WRITE#

WRITE it Statement

FORMAT WRITE ̂filenum,list of expressions

PURPOSE Writes data to a sequential file.

iSSt im ists
^

f ileniim is the number under which the file was opened in output (O)
mode.

list of expressions contains string or numeric expressions
separated by commas.

WRITE ft and PRINT ft are similar except that WRITE ff places commas
between the items as they are written, encloses strings with quotation
marks, and does not put a blank in front of a positive number.

A carriage return/line feed sequence is inserted after the last item in
the list is written.

For an example Let A$="HELLO" and B$="FOLKS". The statement:

WRITE #1,A$,B$

writes the following image to the file:

"HELLO","FOLKS"

A subsequent INPUT if statement, such as

INPUT #1,A$,B$

would input "HELLO" to A$ and "FOLKS" to B$.

7-259

n

r-)

Section 8

USING ASSEMBLY LANGUAGE

SUBROUTINES

You can call assembly language subroutines from your GWBASIC program
with the CALL or CALLS statement, or the USR function.

We recommend that you use the CALL or CALLS statement for interfacing
assembly language programs with GWBASIC. These statements are more
readable and can pass multiple arguments. In addition, the CALL statement
is compatible with more languages than its alternative, the USR function.

MEMORY ALLOCATION

Memory space must be set aside for an assembly language subroutine
before it can be loaded. To do so, use the /M: switch of the GWBASIC
command during startup. The /M: switch sets the highest memory location
to be used by GWBASIC.

In addition to the GWBASIC code area, GWBASIC uses up to 64K of
memory beginning at its data segment (DS) - see the memory map in
Appendix G.

If more stack space is needed when an assembly language subroutine is
called, you can save the GWBASIC stack and set up a new stack for use by
the assembly language subroutine. The GWBASIC stack must be restored,
however, before you return from the subroutine.

LOADING AN ASSEMBLY LANGUAGE PROGRAM

INTO MEMORY

You can load the assembly language subroutine into memory in several
ways, the most simple being to use the BLOAD command (see Section 7).
Alternatively, you could SHELL a program that exits, but stays resident,
leaving the linked, relocated image in memory (see the SHELL statement).
As a third choice, you could execute a program that exits but stays
resident, and then run BASIC.

8-1

Loading Assembly Language

The following guidelines must be observed if you choose to BLOAD, or
read and poke, an EXE file into memory:

1. Make sure the subroutines do not contain any long references, or
address offsets that exceed 64K or that take the user out of the
code segment. These long references require handling by the EXE
loader.

2. Skip over the first 512 bytes (the header) of the linker's output
file (EXE), then read in the rest of the file.

INTERNAL REPRESENTATION OF NUMBERS

The following section describes the internal representation of numbers in
GWBASIC. Knowledge of these arrangements is critical for many
assembly language programming routines.

Single Precision - 24 bit mantissa

Single precision numbers are represented as follows:

0 1 1 1 2 1 3
loman I | s I hlman I exp

where

loman = the low mantissa

s = the sign
hlman = the high mantissa
exp = the exponent

If exp = 0, then (the single-precision value) number = 0.

If exp <> 0, then the mantissa is normalized and:

number = sgn * O.lman * 2 ** (expSOh)

where

man = hlman (without the s bit) through to loman

8-2

CALL Statement

That is, in single precision (hex notation - bytes low to high):

05000080 = 0.5

05008080 = -0.5

Double Precision - 56 bit mantissa

Double precision numbers are represented as follows:

0 I 1 I 2 I 3 14 I 5 I 6
s I hlman I exp

where

loman = the low mantissa

s = the sign
hlman = the high mantissa
exp = the exponent

CALL STATEMENT

The CALL statement is the recommended way of interfacing assembly
language subroutines with GWBASIC. Do not use the USR function unless
you are running previously-written subroutines that already contain USR
functions.

The syntax of the CALL statement is:

CALL variable name [(argument list)]

where variable name is the name of a numeric variable which

contains an offset into the current segment. This address is the starting
point in memory of the subroutine being called. The current segment
is either the default, or that which has been defined by a DBF SEG
statement.

argument list contains the variables or constants, separated by
commas, that are to be passed to the subroutine.

Invoking the CALL statement causes the following to occur:

8-3

CALL Statement

1. For each argument in the argument list, the two-byte offset of the
argument's location within the BASIC segment is pushed onto the
stack.

2. Control is transferred to the subroutine with an 8086 long call to
the segment address given in the last DBF SEG statement and the
offset given in variable name.

Figures 8-1 and 8-2 illustrate the state of the stack at the time the CALL
statement is executed, and the condition of the stack during execution of
the called subroutine.

high
addresses

c

s o

t u

a n

c t

k e

r

low

addresses

argument 0

argument n-1

argument n

return segment address

return offset

SP+4+(2*n)

Each argument 1s
a 2-byte pointer
into memory

SP+6

SP+4

SP+2

SP ̂ stack

pointer (SP
register
contents)

Figure 8-1. Stack Layout When CALL Statement is Activated

After the CALL statement has been activated, the subroutine has control.
Arguments may be referenced by moving the stack pointer (SP) to the base
pointer (BP) and adding a positive offset to BP.

Observe the following rules when coding a subroutine:

1. The called routine must preserve segment registers DS, ES, SS, and
the base pointer (BP). If interrupts are disabled in the routine,
they must be enabled before exiting. The stack must be cleaned up
on exit.

8-4

CALL Statement

2. The called program must know the number and length of the arguments
passed. The following routine shows an easy way to reference
arguments:

PUSH BP

MOV BP,SP
ADD BP, (2*number of arguments)+4

high
addresses

s

t

a

c

k

▼

low

addresses

argument 0
argument 1

argument n

return segment
address

return offset

local variables

(data pushed on
stack)

This space may be
used during pro
cedure execution

Absent if any
argument is
referenced

within a

nested

procedure

Absent in

local procedure

♦Stack pointer
(SP register
contents)

Stack pointer
may change
during
procedure
execution

Figure 8-2. Stack Layout During Execution of a CALL Statement

8-5

CALL Statement

Then:

argument 0 is at BP
argument 1 is at BP-2
argument n is at BP-2*n

(number of arguments = n+1)

3. Variables may be allocated either in the code segment or on the
stack. Be careful not to modify the return segment and offset
stored on the stack.

4. The called subroutine must clean up the stack. A preferred way to do
this is to perform a RET n statement (where n is two times the
number of arguments in the argument list) to adjust the stack to the
start of the calling sequence.

5. Values are returned to GWBASIC by including in the argument list the
name of the variable that will receive the result. Details of the

internal representation of numbers in GWBASIC are given above.

If the argument is a string, the argument's offset points to 3 bytes
which, as a unit, are called the string descriptor. Byte 0 of the
string descriptor contains the length of the string (0 to 255).
Bytes 1 and 2, respectively, are the lower and upper 8 bits of the
string starting address in string space.

If the argument is a string literal
in the program, the string
descriptor will point to program
text. Be careful not to alter or

destroy your program this way. To
avoid unpredictable results, add
to the string literal in the
program. For example, use:

20 A$ = "BASIC"+""

This will force the string literal
to be copied into string space.
Then the string may be modified
without affecting the program.

8-6

CALL Statement

7. The contents of a string may be altered by user routines, but the
descriptor must not be changed.

Do not write past the end-of-string. GWBASIC cannot correctly
manipulate strings if their lengths are modified by external
routines.

8. Data areas needed by the routine must be allocated either in the CODE
segment of the user routine or on the stack. It is not possible to
declare a separate data area in the user assembler routine.

Example of CALL statement:

100 DEF SEG=&H8000

110 F00=&H7FA

120 CALL F00(A,B$,C)

Line 100 sets the segment to 8000 hex. The value of variable FOG is added
into the address as the low word after the DEF SEG value is left-shifted 4
bits. Here, the long call to FOG will execute the subroutine at location
8000:7FA hex (absolute address 807FA hex).

The following sequence in assembly language demonstrates access to the
arguments passed. The returned result is stored in the variable C.

PUSH BP ;Set up pointer to arguments

MOV BP,SP

ADD BP,(4+2*3)
MOV BX,[BP-2] ;Get address of B$ descriptor

MOV CL,[BX] ;Get length of B$ in CL
MOV DX,1[BX] ;Get addr of B$ text in DX

MOV SI.[BP] ;Get address of 'A' in SI

MOV DI[BP-4] ;Get pointer to *C' in D1

MOVS WORD ;Store variable 'A' in *C'

POP BP ;Restore pointer

RET 6 ;Restore stack, return

8-7

CALLS Statement

IMPORTANT: The called program must know the variable type for the
numeric arguments passed. In the previous example, the instruction

MOVS WORD

will copy only two bytes. This is fine if variables A and C are integer.
You would have to copy four bytes if the variables were single precision
format and copy 8 bytes if they were double precision.

CALLS STATEMENT

The CALLS statement should be used to access subroutines that were
written using FORTRAN calling conventions., CALLS works just like
CALL, except that with CALLS the arguments are passed as segmented
addresses, rather than as unsegmented addresses.

Because FORTRAN routines need to know the segment value for each
argument passed, the segment is pushed and then the offset is also
pushed. For each argument, four bytes are pushed rather than 2, as
in the CALL statement. Therefore, if your assembler routine uses the
CALLS statement, n in the RET n statement is four times the number
of arguments.

USR FUNCTION

Although using the CALL statement is the recommended way of calling
assembly language subroutines, the USR function is also available for this
purpose. This ensures compatibility with older programs that contain USR
functions.

USR[digl t][(argument)]

where digit is from 0 to 9. digit specifies which USR routine is
being called. If digit is omitted, USRO is assumed.

argument is any numeric or string expression. Arguments are discussed
in detail in the following paragraphs.

A DBF SEG statement must be executed prior to a USR function call to
assure that the code segment points to the subroutine being called. The

8-8

USR Function

segment address given in the DBF SEG statement determines the starting
segment of the subroutine.

For each USR function, a corresponding DBF USR statement must be
executed to define the USR function call offset. This offset and the
currently active DBF SBG address determine the starting address of the
subroutine.

When the USR function call is made, register AL contains a value that
specifies the type of argument that was given. The value in AL may be
one of the following:

Value in AL Type of argument

2 Two-byte integer (two's complement)
3 String
4 Single precision floating-point number
8 Double precision floating-point number

If the argument is a number, the BX register points to the floating-point
accumulator (FAC) where the argument is stored.

If the argument is an integer:

FAC-2 contains the upper 8 bits of the integer.
FAC-3 contains the lower 8 bits of the integer.

For versions of GWBASIC that use binary floating-point:

FAC is the exponent minus 128, and the binary point is to the left of
the most significant bit of the mantissa.

FAC-1 contains the highest 7 bits of mantissa with leading 1
suppressed (implied). Bit 7 is the sign of the number (0 = positive,
1 = negative).

If the argument is a single precision floating-point number:

FAC-2 contains the middle 8 bits of mantissa.
FAC-3 contains the lowest 8 bits of mantissa.

If the argument is a double precision floating-point number:

FAC-7 through FAC-4 contain four more bytes of mantissa (FAC-7
contains the lowest 8 bits).

8-9

USR Function

If the argument is a string, the DX register points to 3 bytes which, as a
unit, are called the string descriptor. Byte 0 of the string
descriptor contains the length of the string (0 to 255 characters). Bytes
1 and 2, respectively, are the lower and upper 8 bits of the string
starting address in the GWBASIC data segment.

CAUTION

If the argument is a string literal
in the program, the string
descriptor will point to program
text. Be careful not to alter or

destroy the program this way.

Usually, the value returned by a USR function is the same type (integer,
string, single precision, or double precision) as the argument that was
passed to it.

GWBASIC has extended the USR function interface to allow calls to
MAKINT and FRCINT. This allows access to these routines without
giving their absolute addresses. The address ES:BP is used as an indirect
far pointer to the routines FRCINT and MAKINT.

To call FRCINT from a USR routine use CALL DWORD ES:[BP].

To call MAKINT from a USR routine use CALL DWORD ES:[BP44].

Example:

110 DEF USR0=&H8000 'A&aumes decimal

argument /M:32767
120 X=5

130 Y = USRO(X)
140 PRINT Y

The type (numeric or string) of the variable receiving the function call
must be consistent with that of the argument used.

8-10

Appendix A

SEQUENTIAL AND RANDOM FILES

There are two types of data files that may be created and accessed by a
GWBASIC program: sequential and random.

SEQUENTIAL FILES

Sequential files are easier to create than random files, but they are
limited in flexibility and speed when it comes to accessing data. The
data (ASCII characters) written to a sequential file is stored one item
after another in the order sent. The data is read back in the same way.

Statements and functions used with sequential files are:

CLOSE LOF

EOF OPEN

INPUT PRINT ft
INPUTS PRINT ft USING
LINE INPUTiS^ WIDTH

LOG WRITE ft

Creating and Accessing a Sequential File

The following program steps are required to create a file and access the
data in it.

1. Use OPEN to open the file for output or append.

2. Write data to the file using the WRITE ft, PRINT ft, or PRINT ft
USING statements.

3. To access the data in the file, first close the file (using CLOSE)
and then reopen it for input (using OPEN).

4. Read data from the file into the program by using the INPUT ft or
LINE INPUT ft statements.

A-1

Sequential Files

Following is a short program that creates a sequential file, "DATA", on
the default directory from information you input at the terminal.

10 OPEN "0",#1,"DATA"
20 INPUT "NABIE";N$

25 IF N$="D0NE" THEN END

30 INPUT "DEPARTMENT";D$
40 INPUT "DATE HIRED":H$
50 PRINT#1,N$;",";D$;",";H$
60 PRINT:GOTO 20

RUN

NAME? MICKET MOUSE

DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES

DEPARTBIENT? RESEARCH

DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE

DEPARTMENT? ACCOUNTING

DATE HIRED? 04/27/78

NA1I9E? SUPER MANN

DEPARTBSENT? BIAINTENANCE

DATE HIRED? 08/16/78

NAB!E? etc.

The next program accesses the file created above and displays the name of
everyone hired in 1978.

10 OPEN "I",#1,"DATA"

20 INPUT#1,N$,D$,H$
30 IF RIGHT$(H$,2)="78" THEN PRINT N$
40 GOTO 20

RUN

Ok

EBENEEZER SCROOGE

SUPER BIANN

Input past end In 20
Ok

The program above reads, sequentially, every item in the file. When all
the data has been read, line 20 causes an "Input past end" error. To

A-2

Random Files

avoid getting this error, insert line 15 below, which uses the EOF
function to test for end-of-file.

15 IF EOF(l) THEN END

Then change line 40 to GOTO 15. Since the end of file is indicated by a
special character in the file with ASCII code 26 (hex lA), you should not
put a CHR$(26) in a sequential file.

A program that creates a sequential file can also write formatted data to
disk with the PRINT ft USING statement. For example, the statement

PRINT #1,USING "####.##,";A,B,C,D

could be used to write numeric data to disk without explicit delimiters.

The comma at the end of the format string serves to separate the items in
the disk file.

Note that the LOG function, when used with a sequential file, returns the
number of records that have been written to or read from the file since it

was opened. (A record is a 128-byte block of data.) The LOF function
returns the number of bytes allocated to the file. For example,

100 IF LOC(1)>50 THEN STOP

would end program execution if more than 50 sectors had been written to or
read from file since it was opened.

Adding Data to a Sequential File

If you have a sequential file on disk and want to add more data to the end
of it, you cannot simply open the file for output mode and start writing
data because as soon as you do this, you destroy the file's content.
Instead, open the file for APPEND. See OPEN statement for further
information.

RANDOM FILES

Creating and accessing random files requires more program steps than
sequential files, but there are advantages to using random files. They
require less room on the disk because GWBASIC stores them in a packed
binary format. (Recall that a sequential file is stored as a series of
ASCII characters.)

A-3

Random Files

The biggest advantage to random files, though, is that data can be
accessed randomly, i.e., anywhere on the disk. It is not necessary to
read through all the information, as with sequential files. This is
possible because the information is stored and accessed in distinct units
called records, and each record is numbered. The maximum length a record
may have is 32767 bytes.

Statements and functions used with random files are:

CLOSE LOF

CVD MKD$
CVI MKI$

CVS MKS$
FIELD OPEN

GET PUT

LSET/RSET WIDTH
LOG

Creating a Random File

Use the following program steps to create a random file.

1. Open the file for random access. '

2. Use the FIELD statement to allocate space in the random buffer for
the variables that will be written to the random file.

3. Use LSET or RSET to move the data into the random buffer.

Numeric values must be converted into string values when placed in
the buffer. To do this, use the following functions: MKIS for
integers, MKS$ for single-precision values, and MKD$ for
double-precision values.

4. Use PUT to write the data from the buffer to the disk.

The following program writes information entered at the keyboard to a
random file. Each time the PUT statement is executed, a record is written
to the file. The two-digit code that is input in line 30 becomes the
record number.

10 OPEN

20 FIELD

30 INPUT

40 INPUT

50 INPUT

A-4

Random Files

60 INPUT "PHONE";TEL$:PRINT

70 LSET N$=X$

80 LSET A$=WIKS$(AB®T)
90 LSET P$=TEL$

100 PUT #1,C0DE56
110 GOTO 30

Do not use a string variable defined in a FIELD statement in an input
statement or on the left side of an assignment (LET) statement. This
causes the pointer for that variable to point into string space instead of
the random file buffer.

Accessing a Random File

Use the following steps to access a random file.

1. Open the file for random access.

2. Use the FIELD statement to allocate space in the random buffer for
the variables that will be read from the file.

Note that in a program that performs both input and output on the
same random file you can often use just one OPEN statement and one
FIELD statement.

3. Use the GET statement to move the desired record into the random

buffer.

Note that when you close the file, the variable assigned to the GET
statement is no longer accessible.

The data in the buffer may now be accessed by the program. Numeric
values must be converted back to numbers. This is done with the "convert"

functions: CVI for integers, CVS for single-precision values, and CVD for
double-precision values.

The following program accesses the random file named "FILE" that was
created above. When the two-digit code is entered at the keyboard the
information associated with that code is read from the file and displayed.

10 OPEN "R",#1,"FILE",32

20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2DIGIT CODE";CODE%

40 GET #1, CODE56

A-5

Random Files

50 PRINT N$

60 PRINT USING "$$###.##";CVS(A$)
70 PRINT P$:PRINT

80 GOTO 30

The LOC function, with random files, returns the "current record
number." The current record number is the last number used in a GET or
PUT statement. For example, the statement:

IF LOC(1)>50 THEN END

ends program execution if the current record number in file #1 is higher
than W.

A Sample Program

Following is an inventory program that illustrates random file access. In
this program the record number is used as the part number, and it is
assumed the inventory will contain no more than 100 different part
numbers. Lines 900 through 960 initialize the data file by writing
CHR$(255) as the first character of each record. This is used later (line
270 and line 500) to determine whether an entry already exists for that
part number.

Lines 140 through 210 display the different inventory functions that the
program performs. When you type in the desired function number, line 230
branches to the appropriate subroutine.

120 0PEN"R",#1,"INVEN.DAT",39
130 FIELD #1,1 AS F$,30 AS D$,2 AS Q$,2 AS R$,4 A

P$
140 PRINT:PRINT "FUNCTIONS:":PRINT
150 PRINT "1,INITIALIZE FILE"
160 PRINT "2,CREATE A NEW ENTRY"
170 PRINT "3,DISPLAY INVENTORY FOR ONE PART"
180 PRINT "4,ADD TO STOCK"
190 PRINT "5,SUBTRACT FROM STOCK"
200 PRINT "6,DISPLAY ALL ITEMS BELOW REORDER

LEVEL"

210 PRINT:PRINT:INPUT"FUNCTION";FUNCTION
220 IF (FUNCTI0N<1)0R(FUNCTI0N>6) THEN PRINT

"BAD FUNCTION NUJIBER" :GOTO 140

A-6

Random Files

230 ON FUNCTION GOSUB 900,250,390.480.560,680

240 GOTO 210

250 KEN BUILD NEW ENTRY

260 GOSUB 840

270 IF ASC(F$)<>255 THEN INPUT"OVERWEITE";A$:
IF A$<>"Y" THEN RETURN

280 LSET F$=CHR$(0)
290 INPUT "DESCRIPTION";DESC$

300 LSET D$<:>DESC$

310 INPUT "QUANTITY IN STOCK" ;Q?6
320 LSET Q$::°HKI$(Q^)
330 INPUT "REORDER LEVEL" ;R?«
340 LSET R$=MKI$(R^)
350 INPUT "UNIT PRICE";P

360 LSET P$=BIKS$(P)
370 PUT#1,PART?6
380 RETURN

390 REM DISPLAY ENTRY

400 GOSUB 840

410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ###";PART?6

430 PRINT D$

440 PRINT USING "QUANTITY ON HAND #####";CVI(Q$)
450 PRINT USING "REORDER LEVEL #####";CVI(R$)
460 PRINT USING "UNIT PRICE $$##.##";CVS(P$)
470 RETURN

480 REM ADD TO STOCK

490 GOSUB 840

500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY"tRETURN
510 PRINT D$: INPUT "QUANTITY TO ADD ";A?t
520 Q5(>°CVI(Q$)+Aje
530 LSET Q$=MKI$(Q5e)
540 PUT#1,PART?6
550 RETURN

560 REM REMOVE FROM STOCK

570 GOSUB 840

580 IF ASC(F$)=255 THEN PRINT "NULL ENTRY"iRETURN
590 PRINT D$

600 INPUT "QUANTITY TO SUBTRACT" ;S?J

610 Q^»CVI(Q$)
620 IF (QS6-S56)<0 THEN PRINT"ONLY" ;Q?6; "INSTOCK" :

GOTO 600

630 Q5e=Q5e-s;i

A-7

Random Files

640 IF Q5e=<CVI(S$) THEN PRINT "QUANTITY N0W";Q?6;
" REORDER LEVEL";CVI(R$)

650 LSET Q$=11KI$(Q^)
660 PUT#1,PART«

670 RETURN

680 REN DISPLAY ITEMS BELOW REORDER LEVEL

690 FOR 1=1 TO 100

710 GET#1.I

720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;" QUANTITY";
CVI(Q$) TAB(50) "REORDER LEVEL";CVI(R$)

730 NEXT I

740 RETURN

840 INPUT "PART NUMBER" ;PART;e

850 IF(PARTS6<1)0R(PARTS6>100) THEN PRINT "BAD PART
NUMBER": GOTO 840 ELSE GET#1,PART^:RETlUiN

890 END

900 REM INITIALIZE FILE

910 INPUT "ARE YOU SURE";B$:IF B$<>"Y" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR 1=1 TO 100

940 PUT#1,I
950 NEXT I

960 RETURN

A-8

Appendix B

ADVANCED GRAPHICS INFORMATION

CONFIGURING YOUR COMPUTER FOR GWBASIC
AND GRAPHICS: 325-LINE DESKTOP USERS

Inside your computer along the front edge is a jumper area labeled "B".
For GWBASIC to use high-resolution graphics properly, this area must be
jumpered pin 2 to pin 4. Jumpering these pins selects a graphics area in
the first 256K of memory. Note that this is the normal configuration.
Jumpering pins 1 and 3 selects graphics in the second 256K. GWBASIC will
use graphics properly only with graphics available in the first 256K.

NOTE: Users with portable 325-line PCs or any 400-line system do not
need to perform this procedure.

ADVANCED INFORMATION FOR ASSEMBLY

LANGUAGE PROGRAMMERS

It is recommended that you use caution when programming in assembly
language. In addition, because the information included in this document
does not address the topic of hardware, you should refer to the
appropriate Technical Reference manual for detailed hardware information.

The formula for calculating an address and mask for the monochrome
graphics screen is as follows. Note that the calculation for 400-line
screen emulation modes 1 and 2 is given separately (see "SCREEN"
statement for further information on screen modes).

ADDRESS = 2048*MOD(Y,SCAN)+[80»INT(Y/SCAN)]+
[INT(X/8)]

where

SCAN= 13 for 325-line systems
16 for 400-line systems

B-1

Advanced Information

Z = M0D(X,8)
MASK = 2^n

where

n = Z for 325-line systems
(7-Z) for 400-line systems

For 400-line graphics emulation modes:

ADDRESS = Y*40+8192*MOD(Y/2)+INT(X/RES)

BIASK = 2'^[(RES-1)-M0D(X,RES)]

where

RES= 4 for medium-resolution graphics
emulation mode

8 for high-resolution graphics
emulation mode

In the following algorithms ES is the memory segment where the graphics
screen resides, BX is the address of the pixel, and AL is the pixel mask.
Use these to:

Set a point:

OR ES:[BX],AL

Erase a point:

NOT AL

AND ES:[BX].AL

Toggle a point:

XOR ES:[BX].AL

Test a point:

AND AL,ES:[BX]
JNZ Pixel Set

;Set bit in graphics screen

;Reverse bit mask

;Mask off pixel

;Toggle pixel

;Point is on

;Point is off

The following assembly language routines calculate an address and mask for
setting or resetting a point. The X position should be passed in the CX

B-2

Advanced Information

register and the Y position in the DX register. The address is returned
in the BX register and the mask in the AL register. The first routine
may be used with 325-line systems; the second routine may be used with
400-line machines, except during emulation (modes 1 and 2); and the third
routine may be used with 400-line systems during emulation.

Assembly language routine for 325-line :

MAPXYC PROC

PUSH cx

PUSH BP

PUSH ES

MOV AX,DRAVING_
MOV ES,AX

MOV AX,DX

MOV BL,13

DIV BL

MOV BH,AL

AND BX,OFFOOH

ROR BX,1

ROR BX,1

MOV BP,BX

ROR BP,1

ROR BP,1

ADD BX,BP

AND AX,OFOOH

ROL AX,1

ROL AX,1

ROL AX.l

ADD BX,AX

MOV AX.CX

SHR AX,1

SHR AX,1

SHR AX,1

ADD BX,AX

MOV AL,128

AND CL,7

INC CL

ROL AL,CL

POP ES

POP BP

POP CX

RET

MAPXYC ENDP

;where the graphics

;screen is located)

B-3

Advanced Information

Assembly language routine for 400-line systems (nonemulation modes):

BIAPXYC PROC

BIIQV AX,DX

AND DX.15

SUB AX.DX

ROR DX,1

ROR DX,1

ROR DX,1

ROR DX,1

ROR DX,1

ADD DX^AX

SHL AX,1

SHL AX,1

ADD AX^DX

MOV BX,AX

MOV AX,CX

SHR CX,1

SHR CX,1

SHR CX.l

ADD BX^CX

XCHG AX,CX

B80V AL,128

AND CL,7

ROR AL^CL

RET

HAPXYC ENDP

Assembly language routine for 400-line systems (emulation modes):

BIAPXYC PROC

C1 BlAP:

PUSH BP

XOR BX,BX

SHR DX.l

JNC C1__MAP
BfOV BX,8192

XCHG DH^DL

SHR DX,1

SHR DX,1

BSOV AX,DX

SHR AX,1

SHR AX,1

ADD AX,DX

ADD AX^BX

MOV BP, AX

B-4

Advanced Information

MOV BX,CX

SHR CX,1

SHR CX, 1

CMP "mode","medium res"

(see note)
JE Cl__ftIED

HIGHRES CALCULATION (640x200)

SHR CX, 1

XCHG BX,CX

AND CL,7

MOV XL,12S

JMP C1_RET

MEDIUMRES CALCULATION (320x200)

C1 MED:

XCHG BX,CX

MOV AL,192

AND CL,3

ADD CL,CL

ROR AL.CL

ADD BX,BP

POP BP

RET

C1 RET:

MAPXYC ENDP

NOTE: You must define a method of indicating which graphics mode is
currently operative. For example, the mode number may be
stored so that 1 indicates medium-resolution graphics and 2
indicates high resolution (see the appropriate routine line
under C1 MAP"). Alternatively, a unique mapping routine can
be defined for each mode.

The following routines set the 6845 video controller chip to point to the
graphics display segment addressed by DRAWING SEG, and are for 325- and
400-line machines respectively. Note that if you want the cursor to
remain on the screen, you will have to write your own cursor position
routine. The Cursor High register (hex OE) in this chip needs to point to
the same segment of memory as the Start High register (hex OC), which
always points to the graphics screen. Refer to a 6845 data sheet for more
information on programming this chip.

B-5

Advanced Information

CAUTION I

Programming of the video chip is
not recommended practice. If it is
necessary, take great care as
incorrect programming can cause
unpredictable results throughout
the system.

The routine for 325-line systems is:

GRDISP PROG

MOV

MOV

DX,3B4H ;DX=:Address of 6845

CX,DRAWING_SEG ;CX=Graphics
segment

MOV AH^GH ;Graphics segment
high

MOV AL^OGH ;6845 register OGh
OUT DX^AL ;Select register

OGh

MOV AL,AH

INC DX

OUT DX,AL ;Set Reg.OGh =

GrSe^igh
RET

GRDISP ENDP

The routine for 400-line systems is:

GPDISP PROG

MOV BX, DRAWING.SEG
MOV AH, BH

AND AH, 60H ;Extract

128K block

MOV

n

CO

B-6

Advanced Information

SHR AH, CL ;Mark 128K block to

;position for system
;control port 3BF,
;bits MO and Ml

MOV DX, 3BFH ;System control port

IN AL, DX

AND AL. llllOOllB ;Zero out current

:128K block

OR AL, AH ;0R initiates new

;block

OUT DX, AL

AND BX, IFFFH ;BX:-offset of

;drawing segment

;within 128K block

MOV DX, 3B4H

MOV AL, OCH

OUT DX, AL ;Select register 12
INC DX

MOV AL, BH

OUT DX, AL ;Send high byte
;of segment to
;register 12

DEC DX

MOV AH, ODH

OUT DX, AL ;Select register 13
INC DX

MOV AL, BL

OUT DX, AL ;Send low byte
;of segment to
;register 13

RET

GPDISP ENDP

You will also need to enable the type of display you want to use:
graphics only, text only, or mixed text and graphics.

To enable graphics display only:

MOV

MOV

OUT

DX,3B8H

AL,OAOH

DX,AL

B-7

Graphics Memory

To enable text display only:

MOV DX,3B8H

MOV AL,28H

OUT DX,AL

To enable both graphics and text:

MOV DX,3B8H

MOV AL,0A8H

OUT DX.AL

GRAPHICS MEMORY MAP

Graphics memory resides in a 32K boundary that you set aside when you
specify the active page (see the SCREEN statement). On 325-line systems,
it consists of 325 lines of 80 bytes per line. On 400-line systems, it
consists of 400 lines of 80 bytes per line. Each byte contains 8 pixels.
This gives a resolution of 640 x 325 pixels for 325-line systems and 640 x
400 pixels for 400-line systems.

On both 325-line and 400-line systems, one line on the screen is created
by scan lines from individual 2K blocks of memory (except for the 400-line
emulation modes 1 and 2 as referenced in the note below). For 325-line
systems, 13 scan lines make up each line on the screen (1 scan line from
each of the 13 blocks of memory). For 400-line systems, 16 scan lines
make up each line on the screen (1 scan line from each of the 16 blocks of
memory). See Figure B-1.

The offset within each 2K memory block can be calculated by the following
formula:

(screen line number - 1) * width (80 bytes)

For example, the offset for screen line 2 is 80:

(2-1) 80 » 80

B-8

Graphics Memory

NOTE: The process is completely different during 400-line graphics
emulation (modes 1 and 2). For information on the internal
handling of the graphics emulation modes, see the 400-line
Technical Reference manual.

Figures B-2 and B-3 illustrate graphics memory layouts for the 325-line
system and the 400-line system (except for emulation modes), respectively.

325-LINE SYSTEM ^►00-LINE SYSTEM

80 BYTES WIDE

OKI

BLOCK 1

BLOCK 2

13
TOTAL
SCAN
LINES

26K

FIRST LINE.

80 BYTES WIDE

2K

TOTAL
SCAN
LINES

32K32K

BLOCK 16

BLOCK 2

BLOCK 1

Figure B-1. Graphics Display Configuration

B-9

Graphics Memory

OK + 0

2K + 0

4K + 0

6K + 0

22K + 0

24K + 0

OK +80

2K +80

4K +80

24K + 80

OK +160

2K

4K

160

160

OK + 1920

2K +1920

24K + 1920

80 BYTES WIDE

FIRST

SCREEN

LINE

SECOND

SCREEN

LINE

THIRD

» SCREEN

LINE

LAST

SCREEN

LINE

OFFSET WITHIN 2K MEMORY BLOCK

2K MEMORY BLOCK BASE ADDRESS

Figure B-2. 325-Line Graphics Memory Map

B-10

Graphics Memory

80 BYTES WIDE

OK + 0

2K + 0

4K + 0

6K + 0

28K-I-0

30K + 0

OK +80

2K + 80

4K +80

30K + 80

OK +160

2K +160

4K + 160

30K + 160

OK + 1920

2K + 1920

30K + 1920

FIRST

SCREEN

LINE

SECOND

SCREEN

LINE

THIRD

SCREEN

LINE

LAST

SCREEN

LINE

OFFSET WITHIN 2K MEMORY BLOCK

2K MEMORY BLOCK BASE ADDRESS

Figure B-3. 400-Line Graphics Memory Map

B-11

o

n

n

Appendix C

ASCII CHARACTER CODES

Table C-1 provides for ASCII codes 000-255 the associated hexadecimal
value (Hex) and character (CHR).

Use Alt and the numeric keypad to enter these characters.

Refer to Section 2 and "Characters" in Section 5 for information on

additional key combinations.

C-1

ASCII Character Codes

Table C-1

ASCII CHARACTER CODES

Decimal Hex CHR Decimal Hex CHR

000 00 NUL 036 24 $
001 01 SDH 037 25 %
002 02 STX 038 26 &
003 03 ETX 039 27 »

004 04 EOT 040 28 (
005 05 ENQ 041 29)
006 06 ACK 042 2A
007 07 BEL 043 2B +

008 08 BS 044 2C 9

009 09 HT 045 2D

010 OA LF 046 2E •

Oil OB VT 047 2F /
012 OC FF 048 30 0
013 OD CR 049 31 1
014 OE SO 050 32 2
015 OF SI 051 33 3
016 10 DLE 052 34 4
017 11 DCl 053 35 5
018 12 DC2 054 36 6
019 13 DC3 055 37 7
020 14 DC4 056 38 8
021 15 NAK 057 39 9
022 16 SYN 058 3A :

023 17 ETB 059 3B •

024 18 CAN 060 3C <

025 19 EM 061 3D =

026 lA SUB 062 3E >

027 IB ESC 063 3F ?
028 IC FS 064 40 @
029 ID GS 065 41 A
030 IE RS 066 42 B
031 IF US 067 43 C
032 20 SPG 068 44 D
033 21 1 069 45 E
034 22 ft 070 46 F
035 23 # 071 47 G

C-2

ASCII Character Codes

Table C-1 (Cent.)

ASCII CHARACTER CODES

Decimal Hex CHR Decimal Hex CHR

072 48 H 100 64 d

073 49 I 101 65 e

074 4A J 102 66 f

075 4B K 103 67 S
076 4C L 104 68 h

077 4D M 105 69 i

078 4E N 106 6A d
079 4F 0 107 6B k

080 50 P 108 6C 1

081 51 Q 109 6D m

082 52 R 110 6E n

083 53 S 111 6F o

084 54 T 112 70 P
085 55 U 113 71 q
086 56 V 114 72 r

087 57 W 115 73 s

088 58 X 116 74 t

089 59 Y 117 75 u

090 5A Z 118 76 V

091 5B [119 77 w

092 5C \ 120 78 X

093 5D] 121 79 y
094 5E

yv
122 7A z

095 5F
T

123 7B <
096 60 124 7C 1
097 61 a 125 7D >
098 62 b 126 7E

099 63 c 127 7F DEL

C-3

ASCII Character Codes

Table C-1 (Cent.)

ASCII CHARACTER CODES

Decimal Hex Character

128 80 c
129 81

130 82

131 83

132 84

133 85

134 86 a

135 87 Q

136 88 e

137 89 e

138 8A e

139 8B V

140 8C ;

141 8D 1

142 8E A

143 8F A

144 90 E

145 91 ae

146 92 /E

147 93 o

148 94 6

149 95 o

150 96 u

151 97 u

152 98
V

153 99 6
154 9A u

155 9B

156 9C £

157 9D

158 9E Pt

159 9F /

Decimal Hex Character

160 AO a

161 A1 1

162 A2 6

163 A3 u

164 A4 n

165 A5 N

166 A6 a

167 A7 0

168 A8 c

169 A9 '—

170 AA

171 AB V2

172 AC

173 AD i

174 AE «

175 AF »

176 BO

177 B1

178 B2 M
179 B3

180 B4 H

181 B5 H

182 B6 HI

183 B7 -n

184 B8

185 B9 HI

186 BA II

187 BB =ii

188 BC

189 BD -U

190 BE

191 BF —t

C-4

ASCII Character Codes

Table C-1 (Cent.)

ASCII CHARACTER CODES

decimal Hex Character Decimal Hex Character

192 CO L 224 EO a

193 01 225 El

194 02 -r 226 E2 r

195 03 h 227 E3 TT

196 04 — 228 E4 1

197 05 -1- 229 E5 (T

198 06 1= 230 E6 {J

199 07 Ih 231 E7 T

200 08 ti: 232 E8

201 09 F 233 E9

202 OA 234 EA

203 OB 235 EB 6

204 00 IH 236 EO oo

205 OD = 237 ED 0

206 OE
JL
-ir 238 EE

207 OF =!= 239 EF n

208 DO
jU_ 240 FO =

209 D1 241 F1 +

210 □2 -n- 242 F2 >

211 D3 U_ 243 F3 <

212 D4 244 F4 r

213 D5 F 245 F5 j

214 06 rr 246 F6

215 07 + 247 F7

216 D8 =1= 248 F8
o

217 09 -1 249 F9 •

218 DA r 250 FA

nA219 DB ■ 251 FB

220 DO a 252 FO 1?

221 DD 1 253 FD 2

222 DE 1 254 FE ■

223 DF —
255 FF (BLANK)

C-5

Extended Codes

EXTENDED CODES

Certain key combinations return a two-character value for the INKEY$
function. The first character is a null (CHR$(0)), and the second is as
shown in the table below.

Table C-2

EXTENDED KEY CODES

A. FUNCTION KEYS (when disabled)

Key Normal Shift Ctrl Alt

F1 59 84 94 104
F2 60 85 95 105
F3 61 86 96 106
F4 62 87 97 107
F5 63 88 98 108
F6 64 89 99 109
F7 65 90 100 110
F8 66 9i 101 111
F9 67 92 102 112
FIO 68 93 103 113

B. OTHER KEYS

Key Normal Shift Ctrl

@ 3
Tab 15

Home 71 119
Up 72

Pg Up 73 132
Left 75 115
Right 77 116
End 79 117
Down 80

Pg Dn 81 118
Ins 82

Del 83

PrtSo 114

C-6

Extended Codes

Table C-2 (Cent.)

C. ALPHANUMERIC KEYS

Key Alt Key Alt Key Alt

A 30 N 49 1 120

B 48 0 24 2 121

C 46 P 25 3 122

D 32 Q 16 4 123

£ 18 R 19 5 124

F 33 S 31 6 125
G 34 T 20 7 126

H 35 U 22 8 127

I 23 V 47 9 128

J 36 w 17 0 129
K 37 X 45 - 130

L 38 Y 21 s 131

M 50 z 44

C-7

n

n

n

Appendix D

LIST OF GWBASIC RESERVED WORDS

ABS

AND

ASC

ATN

AUTO

BEEP

BLOAD

BSAVE

CALL

CDBL

CHAIN

CHDIR

CHR$

CINT

CIRCLE

CLEAR

CLOSE

CLS

COLOR

COM

COMMON

CONT

COS

CSNG

CSRLIN

CVD

CVI

CVS

DATA

DATES

DEF

DEFDBL

DEFINT

DEFSNG

DEFSTR

DEF FN

DEF USR

DELETE

DIM

DRAW

EDIT

ELSE

END

ENVIRON

EOF

ERASE

ERDEV

ERL

ERR

ERROR

END

EXP

FIELD

FILES

FIX

FOR

FRE

GET

GOSUB

GOTO

HEX$

IF

IMP

INKEYS

INP

INPUT

INPUT#

INPUTS

INSTR

INT

lOCTL

KEY

KILL

LCOPY

LEFTS
LEN

LET

LINE

LIST

LLIST

LOAD

LOC

LOCATE

LOF

LOG

LPOS

LPRINT

LSET

BSERGE

MIDS
Mim$

BIKIS

BIKSS
BIKDIR

MOD

NAME

NEW

NEXT

NOT

OCTS
OFF

ON

OPEN

OPEN COM

OPTION

OR

OUT

PAINT

PEEK

PEN

PLAY

PMAP

POINT

POKE

POS

PRESET

PRINT

PRINT#

PSET

PUT

RANDOMIZE

READ

REM

RENUM

RESET

RESTORE

RESUME

RETURN

RIGHTS
RMDIR

RND

RSET

RUN

SAVE

SCREEN

SGN

D-1

Appendix D

SHELL

SIN

SOUND

SPACE

SPG

SQR

STEP

STICK

STOP

STR$

STRIG

STRINGS

SWAP

SYSTEM

TAB

TAN

THEN

TIMES

TIBIER

TO

TROFF

TRON

USING

USR

VAL

VARPTR

VARPTRS

VIEW

WAIT

WEND

WHILE

WIDTH

WINDOW

WRITE

WRITE#

XOR

D-2

Appendix E

TRIGONOMETRIC FUNCTIONS

Trigonometric functions can be calucated in GWBASIC using the following
formulae.

Table E-1

T rigonometric Functions

Function Equivalent

Secant

Cosecant

Cotangent

Inverse Sine

Inverse Cosine

Inverse Secant

Inverse Cosecant

Inverse Cotangent

Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent

Hyperbolic Secant
Hyperbolic

Cosecant

Hyperbolic
Cotangent

Inverse Hyperbolic
Sine

SEC(X)=1/C0S(X)
CSC(X)=1/SIN(X)
C0T(X)=1/TAN(X)

ARCSIN(X)=ATN(X/SQR(-X»X+1))
ARCC0S(X)=-ATN(X/SQR(-X*X+1))

+1.5708
ARCSEC(X)=ATN(X/SQR(X"X-1))
+SGN(SGN(X)-1)»1.570S

ARCCSC(X)=AT1I(X/SQR(X*X-1))
+(SGN(X)-1)«1.5708

ARCCOT(X)=ATN(X)+l.5708

SINH(X)-{EXP(X)-EXP(-X))/2
C0SH(X)=(EXP(X)+EXP(-X))/2
TA1IH(X)=(EXP(X)-EXP(-X))/

(EXP(X)+EXP(-X))

SECH(X)=2/(EXP(X)+EXP(-X))

CSCH(X)=2/(EXP(X)-EXP{-X))

COTH(X)=(EXP(X)
+EXP{-X))/(EXP(X)-EXP(-X))

ARCSINH(X)=LOG{X+SQR(X"X+i))

E-1

T rigonometric Functions

Table E-1 (Cont.)

Function

Inverse Hyperbolic
Secant

Inverse Hyperbolic
Cosecant

Inverse Hyperbolic
Cotangent

Inverse Hyperbolic
Cosine

Inverse Hyperbolic
Tangent

Equivalent

ARCSECH(X)=LOG((SQR(-X»*X+1)
+1)/X)

ABCCSCH(X)=LOG((SGN(X)"SQR
(X"X+1)+1)/X)

ARCCOTH(X)=LOG((X+1)/
(X-l))/2

ARCC0SH(X)=L0G(X+SQR{X*X-1))

ARCTANH(X)=LOG((1+X)/
(l-X))/2

See DEF FN statement for further coding information.

E-2

Appendix F

SCAN CODES

The table below gives the keyboard scan codes. Each key on the keyboard
is assigned a scan code, and it is this hexadecimal code which is used as
the value of scan in the KEY statement when trapping user-defined keys.

Table F-1

KEYBOARD SCAN CODES

Key Scan Key Scan Key Scan
code code code

Bsc 01 Ctrl ID Space 39

! 1 02 A IE CapsLk 3A
@ 2 03 S IF F1 3B

3 04 D 20 F2 30

$ 4 05 F 21 F3 3D
% 5 06 G 22 F4 3E
6 07 H 23 F5 3F

& 7 08 J 24 F6 40
* 8 09 K 25 F7 41

(9 OA L 26 F8 42

) 0 OB • 9 27 F9 43
- OC »» 9 28 FIO 44

+ = OD ~ S 29 NumLk 45
BSp 0£ Shf(L) 2A ScrLk 46
Tab OF 1 \ 2B 7 Home 47

Q 10 Z 20 8 T 48
W 11 X 2D 9 PgUp 49
E 12 c 2E - 4A
R 13 V 2F 4 > 4B
T 14 B 30 5 40
Y 15 N 31 6 ̂ 4D

U 16 M 32 + 4E
I 17 < • 33 1 End 4F

0 18 > . 34 2 i 50

P 19 ? / 35 3 PgDn 51

{ [lA Shf(R) 36 0 Ins 52

>] IB PrtSc 37 Del 53

Rtn IC Alt 38

F-1

n

Appendix G

TECHNICAL INFORMATION AND

PROGRAMMING HINTS

CONTROL CODES

The table below lists the hexadecimal and decimal codes for the GWBASIC

control characters and summarizes their functions.

Table G-1

GWBASIC CONTROL FUNCTIONS

Ctrl Key Hex Decimal Function

Ctrl-A 01 001 Enter edit mode

Ctrl-B 02 002 Cursor to start of

previous word
Ctrl-C 03 003 Break

Ctrl-E 05 005 Clear to end of line
Ctrl-F 06 006 Cursor to start of next

word

Ctrl-G 07 007 Sound speaker
Ctrl-H 08 008 Destructive backspace
Ctrl-I 09 009 Tab (8 spaces)
Ctrl-J OA 010 Line feed

Ctrl-K OB Oil Cursor home

Ctrl-L OC 012 Clear screen or

viewport
Ctrl-M OD 013 Carriage return
Ctrl-N OE 014 Cursor to end of line
Ctrl-0 OF 015 Suspend/restart program

output
Ctrl-Q 11 017 Restart suspended

program

Ctrl-R 12 018 Toggle Insert mode
Ctrl-S 13 019 Suspend program
Ctrl-T 14 020 Toggle function key

display
Ctrl-U 15 021 Clear logical line
Ctrl-W 17 023 Delete word

Ctrl-X 18 024 Display previous
program line

G-1

Control Codes

Table G-1 (Cont.)

Ctrl Key Hex Decimal Function

Ctrl-Y 19 025 Display following
program line

Ctrl-Z lA 026 Clear to end of screen

or window

Ctrl-\ IC 028 Cursor right
Ctrl-] ID 029 Cursor left
Ctrl-'^ IE 030 Cursor up
Ctrl-_ IF 031 Cursor down
None FF 255 Mark line for deletion

The hex code FF (decimal 255) is a special code used by the screen
editor. When a carriage return moves the cursor to a line that contains
this code, the line is cleared. GWBASIC includes this code in the system
messages it displays. Such messages may then be removed from the
screen when they interfere with other material being displayed.

MEMORY MAP

Figure G-1 is a memory map for GWBASIC, showing whereabouts in
memory the various sections of code reside. Addresses are in hexadecimal
in the form segmentioffset.

G-2

Memory Map

0:0000

40:0000

50:0000

60:0000

PS:0000

PS:0100

DS:0000

DS:FFFF

(top of
memory)

B000:0000

B800:0000

F000:0000

System interrupt vectors

ROM communications area

Data area

DOS + any resident
programs

DOS work area

GWBASIC

User program,
GWBASIC work area,

GWBASIC program variables

GWBASIC stack area

From here up to 8000:0000
can be used for graphics

♦start of
GWBASIC's
code
segment

Monochrome screen buffer

Color/graphics adapter
screen buffer

SYSTEM ROM area

PS - DOS program segment
DS - GWBASIC data segment (work area)

/*^GWBASIC stack size is 512 bytes or one-eighth of the available memory,
whichever is smaller, unless given a different value by the CLEAR
statement.

Figure G-1. Memory map for GWBASIC

G-3

Variables

HOW VARIABLES ARE STORED

Scalar variables are stored in GWBASIC's data area as follows:

type

IT

T \ I r

name

J I L

-IJ-

-IJ-

data

type identifies the variable's type. The contents of byte 0 have the
following meanings:

2 integer
3 string
4 single-precision
8 double-precision

name is the name of the variable. Bytes 1 and 2 hold the first two
characters of the name. Byte 3 indicates the remaining
number of characters in the variable name. They are stored
starting at byte 4.

Since variable names take up at least three bytes, a one- or
two-character name will occupy exactly three bytes. An
x-character name will occupy x+1 bytes.

data follows the variable name. This parameter may be two, three,
four, or eight bytes long according to its type. The
VARPTR function returns the offset into the GWBASIC data
segment of the first byte of this data.

G-4

Variables

For string variables, data is the string descriptor. The first byte of
this descriptor contains the string length, in the range 0 to 255. The
last two bytes contain the address of the string in GWBASIC's data space,
which is the offset into the default segment.

Addresses are stored with the low byte first and the high byte second.
This means that the second byte of the string descriptor contains the low
byte of the offset, and the third byte contains the high byte of the
offset.

For numeric variables data contains the actual value of the variable.

Integer values occupy two bytes, with the low byte first and the high byte
second. Single-precision values occupy four bytes in GWBASIC's internal
floating-point binary format, while double-precision values occupy eight
bytes in this format.

KEYBOARD BUFFER

Characters entered at the keyboard are stored in the keyboard buffer,
which can hold up to 15 characters. Typing more than 15 characters will
cause the speaker to beep.

INKEYS reads one character from the keyboard buffer, while INPUTS
will read multiple characters. With INPUTS, if there are not the
requested number of characters present, GWBASIC will wait until enough
are typed.

You can clear the keyboard buffer with the following lines of code:

DBF S£G=0

POKE 1050,P£EK(1052)

This may be useful to do before calling for a user to "press any key".

GWBASIC's line buffer, where the program editor acts on characters
received from keyboard buffer, is cleared with the following code:

DEF SEG: POKE 106,0

G-5

Search Order for Parts

SEARCH ORDER FOR PORTS

Printers associated with LPTl: and LPT2: are assigned when the computer is
switched on. Printer ports are sought in a particular sequence. The
first port found becomes LPTl: and the second LPT2:. The search order is ^
as follows:

1. Built in parallel printer port
2. A parallel printer adapter modified to change its base address.

If the MODE command from DOS was used to reroute a printer, the change is
effective in GWBASIC as well.

The communications devices COMl: to COM4: are assigned in the following
order:

1. Built-in asynchronous communications adapter (COMl:)
2. Add-on asynchronous communications adapters (COM2: to COM4:)

SWITCHING DISPLAYS

GWBASIC will normally write to the color/graphics monitor adapter if
present. Switch from one display to the other with the following code:

10 'switch to monochrome adapter
20 SCREEN 100

30 SCREEN 0

40 WIDTH 80

10 'switch to color adapter
20 SCREEN 101

30 SCREEN 0

40 WIDTH 40

Note that with this code the screen you are switching to is cfeared. You
may also need to keep track of the cursor location for each display.

G-6

Color Graphics Adapters

SOME TECHNIQUES WITH A COLOR/GRAPHICS
ADAPTER

Sixteen Background Colors

If you do not need blink, you can get all 16 colors for the background by
including the following code in your GWBASIC program:

OUT &H3D8,8 in 40-column width

OUT &H3D8,9 in 80-column width

Character Color In Graphics Mode

When you display text characters while in graphics mode in medium
resolution, the color of the characters is 3 and the background color is
0. To change the foreground color to 2 or 1 use:

DEF SEG: POKE &H4E, color

where color is the desired foreground color (note that color 0 is not
allowed). Subsequent PRINT statements will use the specified color.

PROGRAMMING TECHNIQUES

General

1. Combine statements to take advantage of the 255-character line
length. For example:

ICQ FOR 1=1 TO 10

110 PRINT I,I'^2

120 NEXT I

can better be written

100 FOR 1=1 TO 10: PRINT 1,1^2: NEXT I

G-7

Programming T echniques

2. Avoid repetitive evaluation of expressions. When the identical
calculation is necessary in several statements, evaluate the
expression once and save the result in a variable. For example:

310 A=C4+XY

320 B=C4+X+Z

can more profitably be written

3.

300 Q=C4+X

310 A=QY

320 B=Q+Z

Remember that assigning a constant to a variable will be faster than
assigning the value of another variable to a variable.

Use simple arithmetic. Since addition is performed faster than
multiplication, and multiplication is faster than division or
exponentiation:

Instead of Use

B=A/2

B=A*2

B=A-3

B%=INT(A%/4)

B=A*.5

B=A+A

B=A*A*A

B%=A%\4

4. Use built-in functions. These execute faster than when written in

BASIC.

5. Use remarks sparingly. It takes some time for GWBASIC to
identify a remark. If you use the single quote to place remarks at
the end of the line rather than using a separate statement, not only
will performance be improved but you will also be saving storage.
For example:

10 FOR 1=1 TO 10

15 'initialize A

20 A(I)=I*I
30 NEXT I

may also be written

10 FOR 1=1 TO 10

20 A(I)=I»I 'initialize A
30 NEXT I

G-8

Programming Techniques

6. Since GWBASIC searches only once in a branching situation
(after which the branch is direct), placing frequently used
subroutines at the beginning of the program will not make a program
run faster.

Logic Control

1. Use the capabilities of the IF statement. Do this by using the AND,
OR, and ELSE clauses and save yourself additional coding.

For example

200 IF A=B THEN GOTO

205 GOTO 215

210 IF C=D THEN 225

215 Z=B

220 GOTO 230

225 Z=12

230 • • •

is more efficiently written

200 IF A=B AND C=D THEN Z=12 ELSE Z=B

Order IF statements to test the most frequently occurring condition
first. In this way you will avoid having to make extra tests. If,
for example, you have a data entry file for customer orders
consisting of different record types and many individual
transactions, record types might be coded as follows:

Code Record Type

A Header

B Customer name and address

C Transaction

C Transaction

C Transaction

D Trailer

G-9

Programming Techniques

Instead of coding this information

100 IF TYPE$»"A" THEN 1000

110 IF TYPE$="B'» THEN 2000

120 IF TYPE$="C" THEN 3000

130 IF TYPE$="D" THEN 4000

use

100 IF TYPE$="C" THEN 3000

110 IF TYPE$="A" THEN 1000

120 IF TYPE$="B" THEN 2000

130 IF TYPE$="D" THEN 4000

In this way with ICQ groups and 10 transactions per group 1800 fewer IF
statements will be executed.

Loops

1. Use integer counters on FOR...NEXT loops when possible.
Performance will be faster than when single- and double-precision
arithmetic is used.

2. Omit the variable on the NEXT statement where possible. If
the variable is included, GWBASIC requires some time to check
whether it is correct. Note that it may be necessary to include the
variable on the NEXT statement if you are branching out of nested
loops. See FOR and NEXT Statements in Chapter 4.

3. Use FOR...NEXT loops instead of IF, GOTO combinations. For
example

200 1=1

210 ...

290 1=1+1

300 IF I<=10 THEN 210

G-IO

Programming Techniques

is more easily written

200 FOR 1=1 TO 10

300 NEXT I

Remove unnecessary code from loops. Statements that do not affect
the loop and nonexecutable statements such as REM and DATA
should be pruned. In the following example

10 FOR X=1 TO 100

20 A=B+1

30 IF D(X)>A THEN D(X)=A
40 NEXT X

since the loop never changes the value of A, it is not necessary to
calculate this value each time. The code may be rewritten

10 A=B+1

20 FOR X=1 TO 100

30 IF D(X)>A THEN D(X)=A
40 NEXT X

G-11

n

n

n

Appendix H

RECOMMENDED READING

This appendix lists books that are useful introductions to BASIC, as well
as other relevant documentation for your system.

INTRODUCTIONS TO BASIC

If you are new to BASIC, or to programming in general, the following
books may be helpful.

BASIC and the Personal Computer, by Thomas A. Dwyer and
Margot Critchfield. Reading, Mass.: Addison-Wesley Publishing Co., 1978.

BASIC, by Robert L. Albrecht, LeRoy Fink el and Jerry Brown.
New York: Wiley Interscience, 2nd ed., 1978.

Are You Computer Literate?, by Karen Billings and David
Moursund. Beaverton, Oregon: Dilithium Press, 1979.

Basic BASIC, by James Coan. Rochelle Park, N.J.: Hayden Book Co.,
1978.

OTHER MANUALS

Other documentation referred to in the text is listed below.

DOS 2.0

PC-400/PPC-4Q0 Technical Reference Manual.

Technical Reference Manual, 325-line systems.

MEGA PC Technical Reference Manual.

H-1

n

n

Appendix I

SUMMARY OF GWBASIC LANGUAGE

This is a summary of GWBASIC commands, statements, functions and
variables.

v=ABS(x)

Returns the absolute value of x.

v = ASC(a$)

Returns the ASCII code for the first character of a string.

v=ATN(x)

Returns the arctangent of x in radians.

AUTO[line number[,increment]]

Generates a line number automatically every time <Return> is pressed.

BEEP

Sounds the speaker.

BLOAD filespec[.offset]

Loads a file in binary format into memory.

BSAVE filespec ,offset, length

Transfers the contents of the specified area of memory to an output
device, saving the data in binary format.

I-l

CALL

CALL numvar[(varlable[.variable]...)]

Calls an assembly language program.

CALLS numvar[(variable[.variable]...)]

Calls an assembly language program, passing segmented addresses of all
arguments.

V = CDBL(x)

Converts x to a double-precision number.

CHAIN [MERGE]filespec[.[line][,ALL][,DELETE
range]]

Calls a program and passes variables to it.

CHOIR pathname

Changes the current directory.

V = CHR$(a)

Returns the character for a given ASCII code.

v = CINT(x)

Converts x to an integer.

CIRCLE [STEP] (x.y).radius[.color[.start.end[.aspect]]]

Draws a circle, arc or ellipse with the specified center and radius.

CLEAR [.[expressionl][.expression2]]

Sets numeric variables to zero, string variables to null, and closes
all open files. Options set end of memory and GWBASIC stack space.

1-2

CONT

CLOSE [[#]filen\im[, [#]fllenum...]]

Closes a disk file or device.

CLS

Erases contents of entire current screen and homes the cursor.

COLOR [background] [,palette]

Sets background color for graphics mode and selects a color palette
for the foreground.

COLOR [foreground][,[background][,border]]

Sets the foreground (i.e. character) color, background color, and
border color respectively for text mode.

COM(n) ON
COM(n) OFF
COM(n) STOP

Enables or disables event trapping of communications activity on the
specified channel.

COMMON list of variables

Passes variables to a chained program.

CONT

Continues program execution after a break.

1-3

COS

v = COS(x)

Returns the cosine function of an angle.

v = CSNG(x)

Converts x to a single-precision number.

V = CSRLIN

Returns the current line position of the cursor.

V = CVI(2-byte string)
V = CVS(4-ljyte string)
V = CVD(8-byte string)

Converts string variables to numeric variables.

DATA list of constants

Stores the numeric and string constants that are accessed by the
program's READ statement(s).

DATE$=string expression

Sets the date.

v$ = DATES

Returns the system date.

DEE FNname[(parameter list)]=fimction definition

Defines and names a function written by the user.

DBF SEG [=address]

Defines address of current segment of memory.

1-4

ENVIRON

DEFtype range(s) of letters

Declares variable types as integer, single precision, double
precision, or string.

DEE USR[digit]=integer expression

Specifies the starting address of an assembly language subroutine.

DELETE [line number][-][line number]

Deletes program lines.

DIM list of subscripted variables

Specifies the maximum values for array variable subscripts and
allocates storage accordingly.

DRAW string expression

Draws a line.

EDIT line number

Enters edit mode at the specified line.

END

Terminates program execution, closes all files, and returns to
GWBASIC command level.

ENVIRON par am [=] string

Adds or modifies parmeter in BASIC environment table.

1-5

ENVIRONS

v$ = ENVIRONS (param)
v$ = ENVIRONS (n)

Returns a parameter value from the BASIC environment table.

v=EOF(flle number)

Tests for the end-of-file condition.

ERASE arrayname[»arrayname].

Deletes arrays from memory.

V = ERDEV

vS = ERDEVS

Return the last device error code issued (ERDEV) and the name of
the device causing the error (ERDEVS).

ERR

ERL

Return error code (ERR) and line number (ERL) where error occurred.

ERRORn

Simulates occurrence of a GWBASIC error, or allows user definition of
error codes.

v = EXP(x)

Returns the exponential function of e (base of natural logarithms).

FIELD[#]flle number .field width AS string variable..

Allocates space for variables in a random file buffer.

1-6

GOTO

FILES ["filespec"]

Displays names of files on the specified disk.

v=FlX(x)

Truncates x to an integer.

FOR varia'ble=x TO y [STEP z]

NEXT [variable][.variable]...

Defines parameters for a loop.

v=FRE(x)
v=FRE(x$)

Returns number of bytes in memory not being used by GWBASIC,
optionally tidying up the memory.

GET [^]file number [.record number]

Reads a record from a random file.

GET (xl.yl)-(x2.y2).arrayname

Transfers a graphic image from the screen to an array.

GOSUB line

RETURN [line]

Branches to and returns from a subroutine.

GOTO line

Branches imconditionally to specified line number.

1-7

GWBASIC

GWBASIC [<stdin] [>[>stdout]] [fllespec] [/C:combuffer] [/D]
[/Fifiles] [/I][/M:[max workspace] max block size]]
[/S:bsize]

Runs GWBASIC from DOS.

V = HEX$(x)
Returns a string that represents the hexadecimal value of the decimal
argument.

IF expression [,]THEN clause [ELSE clause] [rstatement. . .]

IF expression [,]GOTO line [[,] ELSE clause]

Performs a branch or executes one or more statements if a specified
condition is satisfied.

INKEYS

Reads an input character.

V = INP(n)

Returns the byte read from port address n.

INPUT[;]["prompt";]variable[.variable]...

Reads input during program execution.

V = INPUT$(n[, [#]filenum])

Reads specified number of characters from input device or file.

INPUT^filenum,variable[.variable]...

Reads data items from device or file and assigns them to program
variables.

1-8

LCOPY

v = INSTR([n,]a$,b$)

Returns position of character string within another string.

v = INT(x)

Returns the largest integer less than or equal to x.

lOCTL [^Jfilenum, string

Transmits command string to a device driver.

v$ = IOCTL$ ([^]f ilenum)

Returns command string from a device driver.

KEYn,x$
KEY n, CHR$(mask) + CHR$(scan)
KEY LIST

KEY ON

KEY OFF

Sets or displays values of function keys, or sets values for a
user-defined key or key sequence.

KEY(n) ON
KEY(n) OFF
KEY(n) STOP

Enables and disables trapping a specified key.

KILL filespec

Deletes a file from a disk.

LCOPY n

Prints the current screen contents.

1-9

LEFTS

v$ = LEFT$(x$,n)

Returns a string comprising the leftmost n characters of x$.

v = LEN(x$)

Returns the number of characters in x$.

[LET] varlable=expresslon

Assigns the value of an expression to a variable.

LINE[[STEP](xl,yl)]-[STEP](x2.y2)[,[color][,B[F]]]
[,style]

Draws a line or a box on the screen.

LINE INPUT[;]["prompt";]stringvar

Inputs an entire line, ignoring delimiters, to a string variable.

LINE INPUT /^fllenum,stringvar

Reads an entire line, ignoring delimiters, to a string variable.

LIST[linel]
LIST [linel][-[llne2]][, "device"]

Lists all or part of the program currently in memory.

LLIST [linel][-[llne2]]

Lists all or part of the program currently in memory on the printer.

LOAD filespec[,R]

Loads a program from a specified device into memory, and optionally
runs it.

I-IO

MERGE

V = LOC(f ilenum)

Returns the current position in a file.

LOCATE [y][,[x][,[cursor][,[start][,stop]]]]

Moves cursor to specified position on the screen, optionally turning
the cursor on or off and defining its size.

V = LOP (filenum)

Returns the length of a file in bytes.

v = LOG(x)

Returns the natural logarithm of x.

v = LPOS(n)

Returns the current position of the print head in the printer's
buffer.

LPRINT [list of expressions][;]
LPRINT USING string exp;list of expressions[;]

Prints data on the printer.

LSET stringvar = x$
RSET stringvar = x$

Moves data from memory to a random file buffer ready for a PUT
statement, or left- or right-justifies a string in a given field.

MERGE filespec

Merges a program fr»m a specified ASCII file into the program
currently in memory.

I-ll

MID$

v$ = MID$(x$,n[,m])

Returns a string of length m characters from x$, beginning with
the nth character.

MID$(string-expl,n[,m])=string-exp2

Replaces a portion of one string with another string.

MKDIR pathname

Creates a new directory

v$ = MKI$ (integer expression)
v$ = MKS$(single-precision expression)
v$ = MKD$(double-precision expression)

Converts numeric values to string values.

NAME old-f ilespec AS new-f ilespec

Renames a disk file.

NEW

Deletes the program currently in memory and clears all variables.

v$ = OCT$(n)

Returns the octal value of a decimal.

ON COM(n) GOSUB line-number

Specifies the first line number of a subroutine to be performed when
activity occurs on a communications channel. —

1-12

ON TIMER

ON ERROR GOTO line

Enables errors to be trapped and specifies the first line of the
error-handling subroutine.

ON n GOTO line[,line]...
ON n GOSUB llne[,line]...

Branches to one of several specified line numbers, depending on a
specified value.

ONKEY(n) GOSUB line number

Specifies first line number of a subroutine to be performed when
specified function key, cursor direction key or user-defined key is
pressed.

ON PEN GOSUB line number

Specifies first line number of subroutine to be performed when light
pen is activated.

ON PLAY(n) GOSUB line number

Branches to a specified subroutine when the music queue contains fewer
than n notes.

ON STRIG(n) GOSUB line number

Specifies the first line number of a subroutine to be performed when
the joystick trigger is pressed.

ON TIMER(n) GOSUB line number

Branches to a subroutine when a specified time interval has elapsed.

1-13

OPEN

OPEN model, file number ,fllespec[,record length]

OPEN f ilespec[FOR mode2] AS[^]file number[LEN=record
length]

Opens a data file or a device for input/output.

OPEN"COMn:[speed][, [parity] [, [data][. [stop] [,RS] [,CS
Cn]][,DS[n]][,CD[n]] [,BIN][,ASC][,LF]]]]"[FORmode]
AS[^]filenum[LEN=record length]

Opens a communications channel for input/output.

OPTION BASE n

Declares the minimum value for array subscripts.

OUTi.d

Sends a byte to a machine output port.

PAINT (x,y)[,paint [,border][,background]]

Fills a graphics area with the color or pattern specified.

V = PEEK(n)

Returns the byte read from memory location n.

X = PEN(n)
PEN ON

PEN OFF

PEN STOP

Reads the light pen and enables, disables, or stops trapping the pen.

PLAY string

Plays music from the specified string.

1-14

PRINT

V = PLAY(n)

Returns the number of notes currently in the background music queue.

PLAY ON

PLAY OFF

PLAY STOP

Enables, disables or suspends music event trapping.

V = PMAP (coord, function)

Maps world coordinates created by the WINDOW statement to physical
locations, or maps physical locations to world coordinates.

v = POINT (n)
V = POINT (x-coordinate ,y-coordinate)

Reads the color value of a point on the screen, or returns the current
graphics cursor coordinates.

POKE

Writes a byte into a memory location.

v = POS(n)

Returns the current column position of the cursor.

PRESET [STEP](x-coordinate,y-coordinate)[,color]

Draws a specified point on the screen (default color is background
color).

PRINT [list of expressions[{,| ;}]]

Outputs data on the screen.

1-15

PRINT USING

PRINT USING v$;list of expressionsC;]

Prints strings or numbers using a specified format.

PRINT ̂ f 11 enum,[USING v$;]list of expressions

Writes data sequentially to a file.

PSET[STEP](x-coordlnate,y-coordlnate)[,color]

Draws a specified point on the screen (default color is foreground
color).

PUT [#]fllenum[,number]

Writes a record to a random access file.

PUT (x,y),array[,action]

Writes a graphics image from an array to a specified area of the
screen.

RANDOMIZE [expression]
RANDOMIZE TIMER

Reseeds the random number generator.

READ varlable[.variable] . ..

Reads values from a DATA statement and assigns them to variables.

REM remark

Allows explanatory remarks to be inserted in a program.

RENUM [newnum][.[oldnum][.Increment]

Renumbers program lines.

1-16

RUN

RESET

Closes all files on all drives.

RESTORE [line number]

Allows DATA statements to be reread from a specified line.

RESUME

RESUME 0

RESUME NEXT

RESUME line number

Continues program execution after an error recovery procedure has been
performed.

RETURN [line number]

Causes GWBASIC to return to the statement following the most recent
GO SUB statement.

v$ = RIGHT$(a$,x)

Returns the rightmost x characters of string a$.

RMDIR pathname

Removes an existing directory.

v=RND[(x)]

Returns a random number between 0 and 1.

RUN [line]
RUN filespec[,R]

Executes the program currently in memory, or loads a program into
memory and runs it.

1-17

SAVE

SAVE fllespec[,{AI P}]

Stores a program file on disk.

V = SCREEN(row,col[,z])

Returns the color or the ASCII code of the character at the specified

row (line) and column of the screen.

SCREEN [mode][, [l)urst][, [apage][,vpage]]]

Sets screen attributes for use in subsequent statements.

V = SGN(x)

Returns the sign of x.

SHELL [command-string]

Executes a DOS command or runs a program and returns to GWBASIC.

V = SIN(x)

Returns the sine of x.

SOUND freq,duration

Generates sound through the speaker.

v$ = SPACE$(x)

Returns a string of x spaces.

PRINT SPC(x) _

Skips X spaces in a PRINT statement.

1-18

SYSTEM

V = SQR(x)

Returns the square root of x.

V = STICK(n)

Accepts input from the joystick in the form of x- and y-coordinates.

STOP

Terminates program execution and returns to command level.

v$ = STR$(x)

Returns a string representation of the value of x.

V = STRIG (n)
STRIG ON

STRIG OFF

STRIG STOP

Returns the status of the specified joystick trigger or enables,
disables, or stops trapping of the joystick.

v$ = STRING$(n,m)
v$ = STRING$(n,a$)

Returns a string of length n whose characters all have ASCII code
m or the first character of a$.

SWAP varlablel,varlable2

Exchanges the values of two variables.

SYSTEM

Terminates GWBASIC and returns control to DOS.

1-19

TAB

[PRINT] TAB(x)

Moves cursor or print head to position x.

V = TAN(x)

Returns the tangent of x.

TIMES = x$

Sets the time.

v$ = TIMES

Retrieves the current time.

V = TIMER

Returns the number of seconds elapsed since midnight or the last system
reset.

TIMER ON

TIMER OFF

TIMER STOP

Enables, disables or suspends timer event trapping.

TRON

TROPE

Traces the execution of program statements.

V = USR[n](arg)

Calls an assembly language subroutine.

1-20

WEND

v = VAL(x$)

Returns the numerical value of string x$.

V = VARPTR(variable)
v = VARPTR(mienum)

Returns the starting address in memory of the variable or BASIC file
control block.

v$ = VARPTR$(variable)

Returns a string that defines the type of variable and its address in
memory.

VIEW[[SCREEN]C(xl,yl)-(x2,y2)[,[color][.[border]]]]]

Defines a screen viewport for graphics display.

VIEW PRINT [top-line TO bottom-line]

Defines a screen area for text display.

WAIT port,i[,J]

Suspends program execution while monitoring the status of a machine
input port.

WHILE expression

(loop statements)

WEND

Executes a series of statements in a loop as long as a given condition
is true.

1-21

WIDTH

WIDTH [LPRINT]slze
WIDTH #flleniim,slze
WIDTH device,size

Sets the line width for the screen or printer in number of characters.

WINDOW [[SCREEN] (xl ,ylHx2,y2)]

Redefines the dimensions of the current viewport for subsequent
graphics statements.

WRITE [list of expressions]

Outputs data on the screen.

WRITE ̂fllenxim,list of expressions

Writes data to a sequential file.

1-22

Appendix J

ERROR MESSAGES

Number Message

NEXT without FOR

A variable in a NEXT statement does not correspond to any
previously executed, unmatched FOR statement variable.

Syntax error

A line is encountered that contains an incorrect sequence
of characters (such as an unmatched parenthesis, .
misspelled command or statement, incorrect punctuation,
etc.). GWBASIC automatically enters edit mode at the line
that caused the error.

RETURN without GOSUB

A RETURN statement is encountered for which there is no

previous unmatched GOSUB statement.

Out of data

A READ statement is executed when there are no DAT A

statements with unread data remaining in the program.

Illegal function call

An out-of-range parameter is passed to a math or string
function. A function call error may also occur as the
result of:

1. A negative or unreasonably large subscript.

2. A negative or zero argument with LOG.

3. A negative argument to SQR.

J-1

Error Messages

Number Message

10

11

4. A negative mantissa with a non-integer exponent.

5. A call to a USR function for which the starting
address has not yet been given.

6. An improper argument to MID$, LEFTS, RIGHTS,
INP, OUT, WAIT, PEEK, POKE, TAB, SPC, STRINGS,
SPACES, INSTR, or ON...GOTO.

Overflow

The result of a calculation is too large to be represented
in GWBASIC number format. If underflow occurs, the result
is zero, and execution continues without an error.

Out of memory

A program is either too large, has too many FOR loops or
GOSUBs, too many variables, or expressions that are too
complicated.

Undefined line

A nonexistent line is referenced in a GOTO, GOSUB,
IF...THEN...ELSE, or DELETE statement.

Subscript out of range

An array element is referenced either with a subscript
that is outside the dimensions of the array or with the
wrong number of subscripts.

Duplicate definition

Two DIM statements are given for the same array; or a
DIM statement is given for an array after the default
dimension of 10 has been established for that array.

Division by zero

A division by zero is encountered in an expression; or,
the operation of involution results in zero being raised
to a negative power. Machine infinity with the sign of

J-2

Error Messages

Number Message

the numerator is supplied as the result of the division,or
positive machine infinity is supplied as the result of the
involution, and execution continues.

12 Illegal direct

A statement that is illegal in direct mode is entered as a
direct mode command.

13 Type mismatch

A string variable name is assigned a numeric value or vice
versa; a function that expects a numeric argument is given
a string argument or vice versa.

14 Out of string space

String variables have caused GWBASIC to exceed the amount
of free memory remaining. GWBASIC allocates string space
dynamically until it runs out of memory.

15 String too long

An attempt is made to create a string more than 255
characters long.

16 String formula too complex

A string expression is too long or too complex. The
expression should be broken into smaller expressions.

17 Can't continue

An attempt is made to continue a program that:

1. Has halted due to an error.

2. Has been modified during a break in execution.

3. Does not exist.

J-3

Error Messages

Number Message

18 Undefined user function

A USR function is called before the function definition

(DBF statement) is given.

19 No RESUME

An error-handling routine is entered but contains no
RESUME statement.

20 RESUME without error

A RESUME statement is encountered before an error-handling
routine is entered.

21 Unprintable error

An error message is not available for the existing error
condition.

22 Missing operand

An expression contains an operator with no operand
following it.

23 Line buffer overflow

An attempt has been made to input a line that has too many
characters.

24 Device time-out

GWBASIC did not receive information from an I/O device
within a predetermined amount of time.

25 Device fault

An incorrect device designation has been entered.

26 FOR without NEXT

A FOR statement was encountered without a matching NEXT.

J-4

Error Messages

Number Message

27 Out of paper

The printer is either out of paper or not switched on.

29 WHILE without WEND

A WHILE statement does not have a matching WEND.

30 WEND without WHILE

A WEND statement was encountered without a matching
WHILE.

50 FIELD overflow

A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random
file.

51 Internal error

An internal malfunction has occurred in GWBASIC.

Report to manufacturer the conditions under which the
message appeared.

52 Bad file number

A statement or command references a file with a number not

yet open or out of the range of file numbers specified at
initialization.

53 File not found

A LOAD, KILL, or OPEN statement references a file
that does not exist on the current diskette.

54 Bad file mode

An attempt is made to use PUT, GET, or LOF with a
sequential file, to load a random file, or to execute an
OPEN statement with a file mode other than 1, O, or R.

J-5

Error Messages

Number Message

55 File already open.

An OPEN statement for sequential output is issued for a
file that is already open; or a KILL statement is given
for a file that is open.

57 Device I/O error

An I/O error occurred on a device. This is a fatal error,
i.e. the operating system cannot recover from it.

58 File already exists

The file name specified in a NAME statement is identical
to one already in use on the disk.

61 Disk full

All disk storage space is in use.

62 Input past end

An INPUT statement is executed after all the data in

the file has been input, or for a null (empty) file. To
avoid this error, use the EOF function to detect the
end-of-file.

63 Bad record number

In a PUT or GET statement, the record number is either
greater than the maximum allowed (16,777,215) or equal to
zero.

64 Bad file name

An illegal form has been used for the file name with a
LOAD, SAVE, KILL, or OPEN statement (e.g., a file
name with too many characters).

J-6

Error Messages

Number Message

66 Direct statement in file

A direct statement is encountered while loading an ASCII
file. The LOAD is terminated.

67 Too many files

An attempt is made to create a new file (using SAVE or
OPEN) when all available directory entries are full.

68 Device unavailable

An attempt was made to open a file to a nonexistent
device. It may be that hardware does not exist to support
the device, such as LPT3:, or that it was disabled. This
occurs if an OPEN "COMl:... statement is executed but the
user disabled RS232 support via the /C:0 switch directive
on the command line.

69 Communications buffer overflow

Occurs when a communications input statement is executed
but the input queue was already full. Use an ON ERROR
GOTO statement to retry the input when this condition
occurs. Subsequent inputs will attempt to clear this
fault unless characters continue to be received faster
than the program can process them. In this case several
options are available:

1. Increase the size of the COM receive buffer via the
/C: switch.

2. Implement a "handshaking" protocol, such as XON/XOFF,
with the host/satellite to turn transmit off long
enough to catch up. (The TTY programming example in
Section 6 demonstrates this option.)

3. Use a lower baud rate for transmit and receive.

70 Disk write protect

An attempt has been made to write to a diskette that is
write-protected or that cannot be written to. Use an ON

J-7

Error Messages

Number Message

ON ERROR GOTO statement to detect this situation and

request user action.

71 Disk not ready

Occurs when the diskette drive door is open, or a diskette
is not in the drive or has not been properly inserted. Use
an ON ERROR GOTO statement to recover.

72 Disk media error

74

A hardware or disk problem occurred while the disk was
being written to or read from. For example, the disk
drive may be damaged or the disk drive may not be working
properly.

Rename across disks

75

An attempt was made to rename a file with a new drive
designation. This is not allowed.

Path/file access error

76

During an OPEN, MKDIR, CHDIR or RMDIR operation,
DOS was unable to make a correct path-to-filename
connection. The operation is not completed.

Path not found

During an OPEN, MKDIR, CHDIR or RMDIR operation,
DOS was unable to find the path specified. The operation
is not completed.

You cannot run BASIC as a child of BASIC

You have attempted to SHELL from BASIC to BASIC.
This is not allowed, and control returns to the parent
BASIC.

J-8

Error Messages

Can't continue after SHELL

Upon returning from a child process, BASIC discovers that
there is not enough memory to continue. BASIC closes any
open files and exits to DOS.

J-9

n

INDEX

ABS function 7-3

Absolute form (coordinates) 4-3
Accessing
random files A-5

sequential files A-1
Active page 4-1, 7-213
Adapter
asynchronous communications 3-4, 7-155, G-6
color/graphics 4-1 to 4-3, 7-28 to 7-33, 7-212, G-7

Adding
data to a sequential file A-3
new program lines 2-9

Algebraic expressions 5-14
Alphabetic characters 5-1
Alt keywords 5-4, 5-5
Altering lines on the screen 2-10
AND operator 5-18
effect on color 7-193

Animation 7-194

Arctangent 7-5
Arithmetic operators 5-12
Array 5-1, 5-9
deleting 7-61
dimensioning 7-50, 7-79
element 5-9

subscript 5-9, 7-158
variable 5-9

ASC function 7-4

ASCII character codes 7-4, 7-19, 7-210, App C
ASCII format 3-1, 7-132, 7-209
Aspect ratio 7-22
Assembly language subroutines 7-12, 7-13, 7-48, 7-240, Sec 8
reserving space for, 7-85, 8-1
with graphics B-1 to B-7 ^

Asynchronous communications Sec 6
adapter 3-4, 7-155, G-6
ATN function 7-5

AUTO command 7-6

Automatic line numbering 7-6

IN-1

Index

BASIC and BASICA packages 2-1
Batch file 2-1

Baud rate 7-155

BEEP statement 7-7 v

Binary format 7-8, 7-10
compressed 3-1, 7-209
encoded 3-3, 7-209

Bit pattern, testing for 5-19
Blinking characters 7-32
BLOAD command 7-8

Boolean operations 5-17
Border

figure, 7-160
screen, 7-31, 7-32
viewport, 7-246

BSAVE command 7-10

Buffer, keyboard G-5
Burst, color 7-212

CALL statement 7-12, 8-3 to 8-8
CALLS statement 7-13, 8-8
Carriap return 7-99, 7-118, 7-119, 7-156
Cartesian coordinates 7-255, 7-256
CDBL function 7-14

CHAIN statement 7-15, 7-35
Changing current directory 3-8, 7-18
Character set, GWBASIC 5-1
CHDIR command 3-8, 7-18
Child process 7-56, 7-59, 7-216
CHR$ function 7-19
CINT function 7-20

CIRCLE statement 7-21
CLEAR command 7-24

CLOSE statement 7-26

CLS statement 7-27
Color, effects of AND, OR, and XOR on 7-193
Color monitor 4-1

COLOR statement (graphics) 7-28
COLOR statement (text) 7-31
Color/graphics adapter 4-1 to 4-3, 7-28 to 7-33, 7-212, G-7
COM(n) statement 7-34
COMMON statement 7-35

Communications Sec 6

adapter, asynchronous 3-4, 7-155, G-6
buffer 6-1, 7-84

lN-2

Index

channel 7-155

errors 6-11

event trapping 7-34
files 6-1

program, sample 6-4
Communications I/O

functions 6-2

statements 6-1

Comparing strings 5-16
Compressed binary format 3-1, 7-209
Concatenating strings 5-20
CONFIG.SYS configuration file (DOS) 3-5
Conjunction 5-18
Constants 5-5

fixed-point, 5-6
floating-point, 5-6
hexadecimal, 5-6
integer, 5-5
numeric, 5-5
octal, 5-6
string, 5-5
CONT command 7-36

Control characters G-1

Control (Ctrl) key 2-7
Control signals (communications) 6-8
CTS (Clear To Send) 6-9
DSR (Data Set Ready) 6-9
DTR (Data Terminal Ready) 6-8
RLSD (Receive Line Signal Detect) 6-9
RTS (Request To Send) 6-8

Converting numbers from one precision to another 5-10
Coordinates 4-3

Cartesian, 7-255, 7-256
world, 7-171, 7-255
COS function 7-37

Creating data files
random files A-4

sequential files A-1 to A-3
Creating directories 7-135
CSNG function 7-38
CSRLIN function 7-39
Current

directory 3-9
segment address, defining 7-46

Cursor

column position 7-175

IN-3

Index

line position 7-39
size 7-125

CVI, CVS, CVD functions 7-40

DATA statement 7-41, 7-196
Date, system 7-42, 7-43
DATES statement 7-42
DATES variable 7-43
DEBUG program 7-56
Debugging 7-36, 7-239
DEFDBL statement 7-47
DEF FN statement 7-44

DEFINT statement 7-47

DEF SEG statement 7-46

DEFSNG statement 7-47

DEFSTR statement 7-47

DEFtype statements 7-47
DEF USR statement 7-48

Degrees, converting to radians 7-37
DELETE command 7-49

Deleting
arrays 7-61
directories 7-206
files 7-110
programs 2-10, 7-138
program lines 2-9, 7-49

Device

drivers, user-installed 3-5, 7-102, 7-103
errors 7-62

information 3-3, 3-4
DIM statement 7-50

Dimensioning
arrays 7-50
graphics arrays 7-79

Direct mode 2-3

Directories, tree-structured 3-7
creating, 7-135
current, 3-9
deleting, 7-206
parent, 3-9
root, 3-8

Disjunction 5-18
Displays, switching G-6
Division by zero error 5-15
DOS 2-1

lN-4

Index

Double precision
constant 5-7

math package 7-84
DRAW statement 7-51
Duplicating program lines 2-10

EDIT command 7-54
Editing a GWBASIC program 2-5, 7-54
Element, array 5-9
Encoded binary format 3-3, 7-209
END statement 7-55
End-of-file

condition 7-60

marker 3-6, 7-77
ENVIRON statement 7-56
ENVIRONS function 7-58
Environment table 7-56 to 7-59
EOF function 6-2, 7-60
Equivalence 5-18
EQV operator 5-18
ERASE statement 7-61
ERDEV variable 7-62
ERDEVS variable 7-62
ERL and ERR variables 7-63
ERROR statement 7-65
Error codes 7-63, App J
device, 7-62
user-defined 7-65

Error messages App J
Error trapping 7-141
Evaluation of operators
arithmetic, 5-12
logical, 5-17

Exclusive OR 5-18

EXP function 7-67
Exponential function 7-67
Exponentiation 5-13
Expression 5-12
Exiting GWBASIC 2-11
Extended key codes C-6

FIELD statement 7-68

IN-5

Index

File

and device information 3-3

extension 3-1

length 7-127
specification (filespec) 3-3

Filenames 3-1, 3-3
Files

ASCII 7-132
binary format 7-8, 7-10
protected 3-3
random, A-3 to A-8
renaming, 3-2, 7-137
sequential, A-1 to A-3

FILES statement 7-71

FIX function 7-72
Fixed-point constants 5-6
Floating-point constants 5-6
FOR and NEXT statements 7-73
Format errors 2-10
Format line 7-1

FRE function 7-76

Function keys 7-104, 7-105, 7-108, 7-143
Functional operators 5-19
Functions ^
system 5-19
user-defined 7-44

Garbage collection 7-76
GET statement (files) 7-77
GET statement (graphics) 7-79
GOSUB and RETURN statements 7-81
GOTO statement 7-83

Graphics Sec 4
and text, enabling 7-212
arrays, dimensioning 7-79
assembly language programming, B-1 to B-7
burst 7-212
display only, enabling 7-211
emulation modes 4-1, 7-211
high-resolution 4-1, 7-211
image, transferring 7-79, 7-192
medium-resolution 4-1, 7-211
memory map B-8 to B-11
pages 4-1, 7-213

IN-6

Index

printing 4-2, 7-111
super-resolution 4-1, 7-212
GWBASIC

command 7-84

stack 7-24

work space 7-24, 7-85

HEX$ function 7-87
Hexadecimal

constants 5-6

values 7-87

High-intensity characters 7-32
High-resolution graphics 4-1,7-211

IF statement 7-88

IMP operator 5-18
Implication 5-18
Indirect mode 2-4

INKEY$ variable 7-91

INP function 6-9, 7-92
Input redirection 3-6, 7-84
INPUT statement 7-95

INPUTS function 7-97
INPUT/S' statement 7-99
INSTR function 7-100

INT function 7-101

Integer 7-101
constants 5-5

division 5-13

truncating to 7-72
lOCTL statement 7-102

lOCTLS function 7-103

Joystick 7-149,7-225,7-228
Jumper, graphics area B-1
Justifying a string 7-131

Key sequence, user-defined 7-104
trapping, 7-106, 7-108
KEY statement 7-104
KEY(n) statement 7-108
Key trapping 7-144

IN-7

Index

Keyboard buffer G-5
Keywords (Alt) 5-4, 5-5
KILL command 3-2, 7-110

LCOPY statement 7-111

LEFTS function 7-112
LBN fimction 7-113

LET statement 7-114

Light pen 7-146, 7-164
Line

feed 7-99, 7-118, 7-119, 7-156
format 2-4

numbers, automatic 7-6
styling 7-115

LINE statement 7-115

LINE INPUT statement 7-118

LINE INPUT# statement 7-119
LIST command 7-120
Listing programs 7-120, 7-122
LLIST command 7-122
LOAD command 3-2, 7-123
Loading programs 3-2, 7-123
LOG function 6-2, 7-124
LOCATE statement 7-125
LOP function 6-2, 7-127
LOG function 7-128
Logic control G-9
Logical
complement 5-18
operators 5-17

Loops 7-73, 7-251, G-10
LPOS function 7-129
LPRINT and LPRINT USING statements 7-130
LSET statement 7-131, 7-136

Machine infinity 5-15
Mantissa

24-bit 8-2

56-bit 8-3

Medium- resolution
colors 7-28

graphics 4-1, 7-211

IN-8

Index

Memory map
graphics B-8 to B-11
GWBASIC G-2, G-3
MERGE command 3-2, 7-132
MERGE option (CHAIN statement) 3-2, 7-15
MID$ function 7-133
MID$ statement 7-134
MKD$, MKI$, MKS$ functions 7-136
MKDIR command 3-8, 7-135
Modes of operation
direct 2-3

indirect 2-4

Modulo arithmetic 5-13

Music

programming 7-166
queue 7-147, 7-169, 7-170

NAME statement 3-2, 7-137
Nested loops 7-73
NEW command 7-138

NOT operator 5-18
Numeric

characters 5-1

constants 5-5

precision 5-7
variables 5-7, 7-40

OCT$ ftmction 7-139
Octal constants 5-6

ON COM(n) statement 7-140
ON ERROR GOTO statement 7-141

ON KEY(n) statement 7-143
ON PEN statement 7-146

ON FLAY(n) statement 7-147
ON STRIG(n) statement 7-149
ON TIMER(n) statement 7-150
ON...GOSIJB and ON...GOTO statements 7-142

OPEN "COM..." statement 6-1, 6-8, 7-155
OPEN statement 7-152

Opening a communications channel 7-155
Operators
arithmetic 5-12
functional 5-19

logical 5-17

IN-9

Index

relational 5-15

string 5-20
OPTION BASE statement 5-10, 7-158
OR operator 5-18
effect on color 7-193

Order of evaluation

arithmetic operators 5-12
logical operators 5-17
OUT statement 6-9, 7-159
Output redirection 3-6, 7-84
Overlay, program 3-2, 7-15

PAINT statement 7-160

Palette 7-28

Parent directory 3-9
Parity checking 7-155
Path 3-3

PEEK function 7-163

PEN statement and function 7-164

PLAY statement 7-166

PLAY ON/OFF/STOP statements 7-170

PLAY(n) function 7-169
PMAP function 7-171

POINT function 7-173

POKE statement 7-174

Ports, search order for G-6
POS function 7-175

Precision, numeric 5-7
PRESET statement 7-176

PRINT statement 6-1, 7-178
PRINT USING statement 7-181

Print zones 7-178

Fmmff and FRmTff USING statements 6-1, 7-186
Printing keys 2-7
Program editor keys 2-5
Program file commands 3-1
Protected files 3-3

PSET statement 7-189

PUT statement (files) 7-191
PUT statement (graphics) 7-192

Radians, converting to from degrees 7-37

lN-10

Index

Random

files A-3 to A-8

numbers 7-195

RANDOMIZE statement 7-195

READ statement 7-1%

Redirection of input and output 3-6, 7-84
Registers, 8250 UART 6-11
Line Control 6-10

Line Status 6-9

Modem Control 6-9

Modem Status 6-9

Relational operators 5-15
Relative form (coordinates) 4-3
REM statement 7-198

Renaming a file 3-2, 7-137
RENUM command 7-199

Replacing
existing program lines 2-9
part of a string 7-134

Reserved words App D
RESET command 7-201

RESTORE statement 7-202

RESUME statement 7-203

RETURN statement 7-204

RIGHTS function 7-205
RMDIR command 3-8, 7-206
RND function 7-207

Root directory 3-8
Rotation, angle of 7-52
RSET statement 7-131, 7-136
RS-232 communications 7-155, 7-156
RUN command 3-2, 7-208

SAVE command 3-1, 3-3, 7-209
Scale factor 7-52

Scan codes, keyboard 7-104, App F
SCREEN function 7-210

Screen mode 7-211

SCREEN statement 7-211

Sequential files A-1 to A-3
Serial port 6-8, 7-155
SGN function 7-215

SHELL statement 7-216

SIN function 7-219

lN-11

Index

Single-precision
constants 5-7

converting to 7-38
SOUND statement 7-220

SPACES function 7-222
SPG function 7-223
Special characters 5-1 to 5-4
SQR function 7-224
Stack

GWBASIC, 7-24
layout 8-4, 8-5
STICK function 7-225

Stop bits 7-156
STOP statement 7-226
STRS function 7-227

STRIG statement and function 7-228
String
constants 5-5

descriptor 8-10, G-5
operators 5-20
variables 5-7, 7-40

STRINGS function 7-230
Strings
comparing 5-16
concatenating 5-20

Subroutines 7-81

Subscript, array 5-9, 7-158
Super-resolution graphics 4-1,7-212
SWAP statement 7-231

SYSTEM command 2-11, 7-232

TAB function 7-233
TAN function 7-234

Techniques, programming G-7 to G-11
T empo calculations 7-221
Text mode 7-211,7-212
Tidying up memory 7-76
Tiling 7-161
Time

retrieving, 7-236
setting, 7-235
TIMES statement 7-235
TIMES variable 7-236
TIMER function 7-195, 7-237
TIMER statement 7-2313

lN-12

Index

T rigonometric functions App E
T race flag 7-239
TROFF command 7-239

TRON command 7-239

TTY program (sample) 6-4

Underlined characters 7-32

User-defined

functions 7-44

key sequences 7-104
User-installed device drivers 3-5
USR function 7-240, 8-8

VAL function 7-241

Variables 5-7, G-4
array, 5-9
converting string to numeric 7-40
naming, 5-8
numeric, 5-7
string, 5-7
type declaration 5-8, 7-47
VARPTR function 7-242

VARPTRS function 7-244
VIEW statement 7-246

VIEW PRINT statement 7-248

Viewport 7-27, 7-246 to 7-248, 7-255
Visual page 4-1, 7-213

WAIT statement 7-249

WEND statement 7-251

WHILE statement 7-251

WIDTH statement 7-253
Wildcard characters 3-2

WINDOW statement 7-171,7-255
Work space, GWBASIC 7-24, G-3
World coordinates 7-171, 7-255
WRITE statement 7-258

maTEff statement 7-259

XON/XOFF characters 6-2
XOR operator 5-18
effect on color 7-193

lN-13

