
Professional Software and
Hardware-Assisted Debuggers

Periscope Model IV Manual

Periscope Model IV Manual Version M54
License Agreement

Should you have questions concerning the Program or this License Agreement, please contact:

The Periscope (Computing) Co., Inc., 1475 Peachtree St., Suite 100, Atlanta, GA 30309 USA

Phone: 404/888-5335 FAX: 404/888-5520 Sales: 800n22-7006 (US & Canada)
Support: 404/888-5550 BBS: 404/888-5522 Email: 72662.3542 @Compuserve.com

LICENSE. The Periscope Computing Company, Inc. ("TPC") grants you a limited, non-exclusive li­
cense ("License") in the specified version of TPC's software product identified in this manual
("Program") to (i) install and operate the copy of the Program in machine-executable fonn on one
computer at a time and (ii) make one archival copy of the Program. TPC and its third party suppliel1l
retain all rights to the Program not expressly granted in this Agreement.

OWNERSHIP OF PROGRAM AND COPIES. This license is not a sale of the original Program or
any copies. TPC and its third party suppliel1l retain the ownel1lhip of the Program and all subsequent
copies of the Program made by you, regardless of the fonn in which the copies may exist. The Program
and accompanying manual(s) ("Documentation") are copyrighted works of authol1!hip and contain
valuable trade secrets and confidential infonnation proprietary to TPC and its third party suppliers.
You agree to exercise reasonable efforts to protect the proprietary interest of TPC and its third party
suppliel1l in the Program and Documentation and maintain them in strict confidence.

USER RESTRICTIONS. You may physically transfer the Program from one computer to another
provided that the Program is operated only on one computer at a time. You may not electronically
transfer the program or operate it in a time-sharing or service bureau operation. You agree not to
translate, modify, adapt, disassemble, decompile, or reverse engineer the Program, or create derivative
works based on the Program or Documentation or any portion thereof. You may not reproduce or dis­
tribute the Documentation or any part thereof without the prior written consent of TPC.

TRANSFER. You may not rent, lease, sublicense, sell, assign, pledge, or transfer or otherwise dispose �.
of the Program or Documentation, on a temporary or permanent basis, without the prior written con-
sent ofTPC, except you may transfer the Program and Documentation to another party so long as that
party agrees to this License Agreement and you retain no copies of the Program or Documentation.

Lll\flTATION OF WARRANTY AND LIABILITY. TPC warrants that the Program media and the
Documentation provided herein are free of defects in materials or workmanship, assuming normal use,
for a period of ninety (90) days from the date of purchase by you as evidenced by a copy of your re­
ceipt In the event a defect occurs in materials or workmanship within the warranty period, TPC will
replace the defective item(s). TPC AND ITS TillRD PARTY SUPPLIERS MAKE NO OTHER
WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING THE
PROGRAM, MEDIA OR DOCUMENTATION AND HEREBY EXPRESSLY DISCLAIM THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICill.AR PURPOSE. TPC
and its third party supp!iel1! do not warrant the Program will meet your requirements or that its opera­
tion will be uninterrupted or error-free. TPC, its third party suppliers, or anyone involved in the crea­
tion or delivery of the Program or Documentation to you shall have no liability to you or any third
party for special, incidental, or consequential damages (including, but not limited to, loss of profits or
savings, downtime, damage to or replacement of equipment and property, or recovery or replacement
of programs or data) arising from claims based in warranty, contract, tort (including negligence), strict
tort, or otherwise even if TPC or its third party suppliers have been advised of the possibility of such
claim of damage. The liability ofTPC and its third party suppliers for direct damages shall not exceed
the actual amount paid for this copy of the program. Some states do not allow the exclusion or limita­
tion of implied warranties or liability for incidental or consequential damages, so the above limitations
or exclusions may not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS. The Program and Documentation are provided �
with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restric-
tions as set forth in subdivision (c)(l)(ii) of the Rights in Technical Data and Computer Software
clause at DF ARS 252.227-7013 or subdivision 9(c X1) and (2) of the Commercial Computer Software-
-Restricted Rights 48 CFR 52.227-19, as applicable. Contractor/manufacturer is The Periscope Com-
puting Company, Inc., 147 5 Peachtree Street, Suite 1 00, Atlanta, Georgia 30309.

GENERAL. This License shall be governed and construed in accordance with the laws of the State of
Georgia.

Table of Contents

1 Introduction· .. 1
1.1 Using this Manual .. 2
1.2 What's in the Model IV package ... 3
1.3 Model IV Requirements and Compatibility 4
1.4 Warranties, Guarantees, Upgrades and Support 5

2 Periscope Model IV Overview 7
2.1 Capabilities ... 8

2.1.1 Hardware Breakpoints 8
2.1.2 Hardware Trace Buffer ... 10
2.1.3 Break-out switch .. 11
2.1.4 Write-protected Memory .. 11

2.2 Software Options: Periscope/EM, Periscope/32 and PopUp
Periscope .. 12
2.3 Remote Options: Passive and Active Remote Modes 12

2.3 .1 Passive Remote Mode ... 13
2.3 .2 Active Remote Mode ... : 14
2.3.3 Protect Mode Support ... 14
2.3.4 Micro Channel Support .. 15

3 Installing Model IV Hardware 17
3.1 System Requirements ... 18
3. 2 Installation Overview ... 18
3 .3 Installing the Hardware .. 19

3. 3 .1 Checking for conflicts .. 20
3.3.2 Setting the DIP switch .. 22
3.3.3 Tools you'll need .. 23
3.3.4 Before you begin 23
3.3 .5 Get access to your target CPU .. 24
3.3.6 Install the pod in your target system 25
3. 3. 7 Install the Model IV board in your host system 30
3.3.8 (Optional) Install the break-out switch 31

r� 3.3.9 (Optional) Install the Plus board 31
3.3.10 Make sure it works ; 3 1
3.3.11 Complete the installation34

4 Model IV Command Tutorial 35

5 Model IV Reference .. 43
5.1 Periscope Hardware Commands 44
5.2 Hardware Commands 44

5.2.1 Command: Go using Hardware (GH)46
5.2.2 Command: Go using Monitor (GM) 47
5.2.3 Command: Hardware breakpoints All (HA)49
5.2.4 Command: Hardware Bit breakpoint (HB) 50
5.2.5 Command: Hardware Controls (HC) 51
5.2.6 Command: Hardware Data breakpoint (HD) 56
5.2.7 Command: Hardware Memory breakpoint (HM) 61
5.2.8 Command: Hardware Port breakpoint (HP) 65
5.2.9 Command: display Hardware trace buffer (Hx) 66
5.2.10 Command: Hardware Write (HW) 80
5.2.11 Command: toggle intemal 486 cache (/4) 82

6 Tips on Using Model IV 83
6.1 Tracking Program Flow ... 84
6.2 Examining the Trace Buffer after a Crash 84
6.3 Debugging the Power-On Startup Tests (POST) 85
6.4 Capturing Specific Code .. 85
6. 5 Detecting Hardware Interrupts ... 86
6.6 General Tips .. 87
6.7 Hardware Breakpoint Examples ... 88

Appendix A: Model IV Messages 91
Appendix B: Glossary .. 95

Appendix C: Hardware Reference 109
C. I Jumpers on the Pods 110
C.2 Jumpers on the Model IV (Rev 2) Board 112
C.3 386SX Adapter 113

Index .. 115

ii

List of Tables and
Figures

Table ... Page
3-1. Common Port Usage . 21
3-2. Setting switch SW1 .. 22

5-1. Data Access Types . 57
5-2. CPU Events for Various Access Widths 58
5-3. Cycle Time by CPU Speed 72
5-4. Trace Buffer Sequence Ranges . 72
5-5. Summary of Model IV Trace Buffer Commands . 75
5-6. Trace Buffer File Size and Track Usage 80

Figure.; .. Page
3-1. Crowbar Tool (general purpose) .. .27
3-2. Forked Crowbar Tool.. 27

5-1. Periscope/EM's Model IV Hardware Menu 44
5-2. Hardware Trace Buffer in Raw Format 67
5-3. Hardware Trace Buffer in Trace Format 68
5-4. Hardware Trace Buffer in Unassembly Format... 69

C-1. Layout of the 486 pods . 110
C-2. J5 Pin Assignment on 386 and 486 pods 111
C-3. Layout of the 386 pod 111
C-4. Layout of the Model IV, Rev 2 board . 112
C-5. 386SX Adapter, Top and Side Views 113

i i i

iv

c H A p T E R 0 N E

Introduction

• Using this Manual
• What's in the Model IV Package
• Model IV Requirements and Compatibility
• Warranties, Guarantees, Upgrades, and

Support

Thank you for choosing Periscope Model IV. This man­
ual will help you install the Model IV hardware and
guide you in accessing Model IV' s unique hardware

capabilities.

Page 1

1.1 USING THIS MANUAL

Page 2

Purpose. The purpose of this manual is two-fold:

{1) to explain. in detail to all Model IV users how to install
and test all the Model IV hardware, including boards, pods,
cables, adapters, clips, etc. ; and

(2) to explain in detail to Model IV users who are using the
Periscope/EM or Periscope/32 software how to use the Model
IV hardware commands .

The hardware commands documented in this manual
are built into the PopUp Periscope software as well as
the Periscope/EM and Periscope/32 software. How­
ever, you may find it easier to use the PopUp Periscope
menus and dialog boxes (documented in the PopUp
Periscope manual) i f you're using PopUp Periscope.
The hardware commands are available via the Hard­
ware menu on both the Periscope/EM and Periscope/32
menu bar.

If you're using the Periscope/EM or Periscope/32 software,
you'll need the Periscope manual as well as this manual for
complete information on using your Periscope Model IV. This
manual covers all of the Model IV -specific capabilities of the
Periscope/EM and Periscope/32 software. The Periscope
manual covers all Periscope/EM and Periscope/32 software
capabilities.

If you're using the PopUp Periscope software (with a host
debugger, such as Code View or Turbo Debugger) to access
Periscope Model IV's hardware capabilities, you'll need the
PopUp Periscope manual as well as this manual for complete
information on using your Periscope Model IV.

Typography. We use a proportional font {proportionally­
spaced characters) for most of the body text of this manual.
To make it easier for you to determine the spacing of items

you might enter into the computer, however, we use a fixed­
space font whenever we specify syntax, commands, options,
messages, etc.

Chapter 1 - Introduction

This sentence is formatted in the normal proportional font we
use for most body text.

This sentence is formatted in the fixed­
space font we use for•entry• items,
screen displays, mes sages, etc.

We point out warnings, exceptions , and special instructions
with a note l ike this .

Glossary. If you run into any terms that you do not under­
stand, please check the glossary in Appendix B .

Readme Files and Addenda. Please be sure to read the re­
adme files on your disks as well as any printed addenda to
this manual. They will contain the latest updates to the infor­
mation in this manual.

1 .2 WHAT'S IN THE MODEL IV PACKAGE
At a minimum, you should have these items for a complete
Periscope Model IV system:

• 3.5" Diskettes (Periscope/EM, Periscope/32, or PopUp
Periscope)

• This manual and the Periscope and/or PopUp Periscope
manual

• Registration cards
• Break -out switch
• Model IV board
• Model IV pod

You may also need other cables, adapters, clips, software,
etc . , depending on your particular environment.

One board is currently available: the 33MHz Model IV Rev 2
board with a 16K CPU-event trace buffer. We no longer pro­
duce the 16MHz, 20MHz, or 25 MHz Rev 1 boards with a
2K trace buffer, or the 33MHz Rev 2 board with a 4K trace
buffer, but we do support them.

Chapter 1 - Introduction Page3

Two pods are currently available. The 386 pod works in
386DX machines running up to 33MHz. It works (with an
adapter) in 3 86SX machines running up to 25MHz. The 486
pod works in 486DX machines running up to 33MHz, includ­
ing machines with Intel 's 486DX2 and 486DX4 chips, and
machines using Intel' s 486SX and 486SX2 pin grid array
chips .

The Embedded Periscope products support the 386EX
and 186/188 embedded processors as well as those
l isted above. Please call for details .

If you think you are missing any item or have an incorrect
item, please contact your dealer or call us for assistance.

1.3 MODEL IV REQUIREMENTS AND
COMPATIBILITY

Page 4

Single System Requirements. To run Model IV hardware in
a single system, you'll need a machine with an 80386SX
CPU running up to 25MHz, or an 80386DX, 80486DX,
80486DX2, 80486DX4, 80486SX (PGA style), or
80486SX2 CPU running up to 33MHz externally. Your ma­
chine must have an ISA (or EISA) bus . You'll need one full­
length slot for the Model IV board and an additional full­
length slot if you're using the Plus board.

Remote Requirements. To run Model IV in remote mode
(see Section 2.3 for details), you'll need two 80286 or later
computers (80386 or later if you're using the Periscope/32
software) . The "host" computer (your "debugging station")
must have an ISA or EISA bus . The "target" computer
(where the software you want to debug runs) must have one
of the CPUs listed above under "Single System Require­
ments . " If you want to run Model IV in active remote mode
(vs . passive remote mode), your target system must also have
an ISA, EISA, or Micro Channel bus and you must connect
the host and target with a null modem cable.

Software Requirements. Please see the Periscope manual or
the PopUp Periscope manual for requirements on running the

Chapter 1 - I ntroduction

Model IV software you're using in a single system. If you're
running in active remote mode, see the Periscope manual and
the appropriate addendum for your target environment (DOS,
Windows, OS/2, etc.) Ifyou're running in passive remote
mode, install the Periscope/EM or Periscope/32 software on
the host system. No debugger software runs on the target in
passive remote mode.

Power Requirements. The Model IV Rev 2 board requires
16 watts of power; the 386 pod requires 3 watts of power;
and the 486 pod requires 3.5 watts of power.

Compatibility. Model IV will work on most any machine
with one of the specified processors so long as it can be
physically installed in the machine. Most incompatible ma­
chines we've encountered have a physically inaccessible CPU
chip.

The pod must be installed in a system with a 5V CPU board.

Please call Technical Support if you have compatibility ques­
tions or problems.

1.4 WARRANTIES, GUARANTEES, UPGRADES,
AND SUPPORT

Warranties. We provide a one-year warranty on all new or
factory-refurbished Model IV hardware to registered users.
Please see the Periscope manual for details.

Guarantees. Please see the Periscope manual for details.

Upgrades. You may upgrade your registered Model IV board
and Periscope software at any time. (Sorry, we do not up­
grade pods, adapters, cables, or other hardware accessories.)
Please call Sales for current prices and details.

Support. Registering your Model IV entitles you to Technical
Support via our support line, our CompuServe forum (Go
Periscope), our BBS, and/or fax. See the back of the title
page of this manual for a listing of the numbers.

Chapter 1 - Introduction PageS

Page 6

For additional details, please see the PopUp Periscope man­
ual, the Periscope manual, or call us.

Chapter 1 - Introduction

c H A p T E R T w 0

Periscope
Model·IV
Overview

• Capabilities
Hardware Breakpoints
Hardware Trace Buffer
Break-out switch
Write-protected Memory

• Software Options: Periscope/EM, Periscope/32
and PopUp Periscope

• Remote Options: Passive and Active Remote
Modes

Passive Remote Mode
Active Remote Mode
Protect Mode Support
Micro Channel Support

·p eriscope Model N is a powerful hardware-assisted debug­
ger for use in 80386-, and 80486-based personal comput­
ers. This chapter summarizes Model N's hardware capa­

bilities and describes the options you have for utilizing those ca­
pabilities in various environments.

Page 7

2.1 CAPABILITIES
When you use the Model IV hardware, you have several im­
portant capabilities that you do not have when you use a
software-only debugger. These capabilities include: �

• The ability to universally or selectively watch for reads
and writes to ranges of memory and 1/0 ports in real­
time (hardware breakpoints)

• The ability to record a system history in real-time
(hardware trace buffer)

• The ability to break into the system when it hangs (break­
out switch)

• The ability to run the debugger software from private,
write-protected memory (optional Plus board)

The first two capabilities are the most important and powerful
ones, both because they are unique to Model IV and because
they are real-time . This means that when you use them, your
system will not run any slower than normal, so you can, for
instance, capture the real-time execution of a hardware inter­
rupt or watch a COM port without slowing down the system.

You can set software breakpoints to watch memory and 110
ports and capture a trace history with software debuggers, but
when you do, your system will run slower than normal. This
makes it impossible to fully debug problems in time-sensitive
or real-time software with a software-only debugger.

Some software debuggers, such as Periscope/EM, enable you
to set hardware breakpoints by giving you access to the real­
time debug registers built into 386 and 486 chips. This ca­
pability is, however, much more limited than the hardware
breakpoint capabilities of Periscope Model IV hardware.

2.1.1 Hardware Breakpoints

PageS

These are the key hardware breakpoints you can set with
Model IV:
• Memory access
• 110 port access
• Data values and/or data bit mask
• Pass counter

Chapter 2 - Periscope Model IV Overview

• Sequential triggers
• Selective capture

You can set memory breakpoints on up to eight ranges in
the first 16 megabytes ofsystem memory. Your options in­
clude memory read, memory write, code prefetch, interrupt
acknowledge, and processor halt. You cannot, however, trap
DMA because Model IV views the world from the perspec­
tive of the CPU, and has no access to DMA (direct memory
access) signals.

You can set port breakpoints on up to eight ranges from
zero to FFFFH. Your options include both 1/0 read and 1/0
write.

You can set data breakpoints on byte, word, three-byte, and
doubleword values. You can use them alone or to qualify a
memory or port breakpoint. You can set up to eight data
breakpoints on byte ranges; specific word values; specific
three-byte values, or specific doubleword values. You may
also set a bit breakpoint to specify data values with a bit
mask. Model IV supports bit values of zero, one, and 'don't
tare'.

You can use the pass counter to interrupt an executing pro­
gram after a specified number of breakpoints has occurred.
The default pass count is one, which interrupts execution on
the first breakpoint. The value of the pass counter may be
from one to FFEH (1022).

You can use sequential triggers to watch for a specific se­
quence of events in real-time. For example, you can use trig­
gers to break on the writing of a variable from a specific sub­
routine only after another variable has been written. Periscope
Model IV has an eight-state state machine that lets you con­
struct up to seven levels of sequential triggers of arbitrary
complexity.

You can use selective capture to control the type of informa­
tion placed in the hardware trace buffer. Selective capturing
can increase the effective depth of the hardware trace buffer
significantly.

Chapter 2 - Periscope Model IV Overview Page 9

2.1.2 Hardware Trace Buffer

The hardware trace buffer is a circular buffer that captures
up to 16,384 CPU events. Each CPU event 'record' is 80 bits
wide. It includes the 32-bit address; 32-bit data; 4-bit byte �

enable signal; 8-bit CPU cycle count; 3-bit status (interrupt
acknowledge, 110 read, 110 write, code prefetch, CPU halt,
memory read, or memory write); and a probe bit. You can tie
the probe bit to an external probe input, the CPU IRQ signal
(default), or the CPU Hold Acknowledge signal by changing
the jumper settings on the pod.

You can display the buffer in three formats: a raw dump that
shows the address, data, status, and cycle count information
for each trace buffer record; a disassembly mode that uses the
prefetch cycles found in the buffer to show only instructions;
and a combination of the above two formats, which shows a
mix of instructions and the data accesses performed by the
instruction stream. Additionally, there's a powerful set of
commands to search for items in the trace buffer and to con-
trol the amount and type of information displayed. �'

Once your debugger software is activated, the buffer is con-
tinuously updated while your program is running, even if
you're not debugging. This means that you can press the
break-out switch any time to see what's been happening.
Also, if you should ever get an exception interrupt or trap,
you can look in the trace buffer to see what led up to the ex-
ception.

You can stop program execution when the trace buffer is
filled, allowing you to examine the execution flow of a pro-
gram starting at a known point and stopping after 16K CPU
events have occurred.

You can selectively capture just trigger events in the trace
buffer. This is useful when you need to capture multiple

'�
widely-spaced events in real-time.

With each trace buffer entry it writes, Model IV saves the
number of CPU cycles since the last trace buffer entry in the
8-bit cycle count field. Under normal conditions, this cycle

Page 10 Chapter 2 - Periscope Model IV Overview

count information rarely overflows. If the cycle count does
overflow, however, such as when you're using selective cap­
ture, you can force Model IV to generate cycle count over­
flow records in the trace buffer. This allows you to count
CPU cycles between widely-spaced events. You can easily
convert the CPU cycle count to time using the CPU speeds
listed in Table 5-3 .

You can set the trace buffer to show the events surrounding a
breakpoint in three different ways:
• up 16K events before the breakpoint;
• up or 8K events before the breakpoint and 8K events

after the breakpoint; or
• up to 16K events after the breakpoint.

For debugging real-time applications, you'll find these ca­
pabilities extremely valuable, since you can see how your
program got where it did plus where it went afterwards, with
no system slowdown!

�,, 2.1.3 Break-out switch

The break-out switch gives you the ability to break into the
system anytime, even if the system has crashed and the key­
board is locked up. It generates an NMI.(INT 2) signal,
which activates Periscope/EM, Periscope/32, or your host
debugger.

2.1.4 Write-protected Memory

The Periscope Model IV boards·do not contain write­
protected memory. This memory is available, however, when
you use the optional Plus board with the Model IV hardware.
The Plus board (which is the Model I board packaged without
the software, manual or break-out switch) keeps all debug­
ging information out of the lower 640K of DOS memory. It
can run with 5 12K or 1MB of memory and has just a 32K
footprint in the first megabyte of system memory, above the
lower 640K.

A software alternative to using the Plus board to keep
Periscope out of the lower 640K is to use a supporting

Chapter 2 - Periscope Model IV Overview Page 1 1

memory manager and run the Periscope/EM software
from extended memory. See the Periscope manual or
details .

2.2 SOFTWARE OPTIONS: PERISCOPE/EM,
PERISCOPE/32, AND POPUP PERISCOPE

Periscope/EM and its 32-bit aware derivative, Periscope/32,
are full-function standalone software debuggers that also
support the Model IV hardware. PopUp Periscope adds
Model IV hardware support to DOS versions ofCodeView
and Turbo Debugger. Periscope/EM, Periscope/32, and
PopUp Periscope give you full access to the Model IV hard­
ware capabilities.

2.3 REMOTE OPTIONS: PASSIVE AND ACTIVE

REMOTE MODES

Page 12

In many situations where you're using an 80386, or 80486
target system and need to debug :

(1) software running in an operating environment other than
real-mode DOS, such as Windows, OS/2, or an embedded
target;
(2) software running in a system with no available !SA/EISA
slots;
(3) the power-on startup tests (POST),

you can use Periscope Model IV in remote mode.

Active remote mode gives you virtually all the same debug­
ging capabilities you get when you install and use Model IV
in a single system. Passive remote mode gives you the real­
time hardware trace and trigger capabilities of Model IV with
no intrusion in your target system. However, you cannot in­
teractively debug your target system in. passive remote mode
nor can you stop the target system.

Chapter 2 - Periscope Model IV Overview

2.3.1 Passive Remote Mode

Using passive remote mode, you can collect and examine at
will a real-time execution history of the target system with no
intrusion in the target system. To use Model IV in passive
remote mode, you install the Periscope/EM or Periscope/32
software and a Model IV board in your host system and a pod
in your target system. You connect the board and pod with
the 48" shielded ribbon cable.

You can use Model IV' s hardware trigger capabilities to de­
fine what you want to capture in the trace buffer and to stop
the host system so you can examine the trace buffer. For in­
stance, you can trigger on writes to a specific 110 port, and
capture only those writes in the trace buffer using selective
capture. Or you can use sequential triggering to capture only
the execution of a specific routine. Or you can set a trigger
and specify that Model IV position the trigger event at the top
of the trace buffer and stop collecting information when the
buffer is full, so that you see only what occurred after the
trigger. However, you cannot actually stop the target system.

In effect, passive remote mode gives you all the powerful and
unique capabilities of the Periscope Model IV hardware, ex­
cept the ability to stop the target system. You will not, how­
ever, have the normal software capability of single stepping
or using any commands other than the hardware (H series)
and Trace Buffer commands described in Chapter 5 of this
manual. Most of these commands are available on the Peri­
scope/EM and Periscope/32 Hardware menu.

If you have software running on the target that properly
handles NMI, you can install an NMI clip so that you can
stop the target system with the break- out switch or on a
hardware breakpoint.

If you can create a standard symbol file on the host for
the software you're debugging on the target, Periscope
will display symbols and source code for the events
captured in the trace buffer.

Chapter 2 - Periscope Model IV Overview Page 13

2.3.2 Active Remote Mode

When you run Model IV in active remote mode, you have full
Model IV capabilities, just as you have when you install
Model IV in a single system. So, unlike passive remote mode,
you can stop the target system with breakpoints and the
break-out switch, and you have full, source-level interactive
debugging capabilities. (You can use the commands described
in the Periscope manual as well as the hardware commands
described in this manual.)

To use Model IV in active remote mode, you install the main
Periscope software and a Model IV board in your host system
and a pod in your target system, just as you do for passive
remote mode. Unlike passive remote mode, you also install
debugger software (Periscope/Remote for DOS, Peri­
scope/Remote for Windows, Periscope/Remote for OS/2, or
other appropriate remote software) and an NMI clip in your
target system, and you connect the two systems with a null­
modem cable.

The Periscope software running in the host system communi­
cates with the remote software running in the target system,
providing the full interactive, source-level debugging support.
The NMI clip enables Periscope to stop the target system
when a hardware breakpoint occurs or when you press the
break-out switch. And the Model IV hardware provides full
hardware breakpoint and trace buffer facilities.

2.3.3 Protect Mode Support

Page 1 4

Use Model IV in passive remote mode if you need real-time
debugging capabilities in a protect mode environment we do
not currently support.

If you're developing your own 32-bit kernel, the Peri­
scope 32-bit Protect Mode Toolkit enables you to cre­
ate a Periscope kernel debugger for your environment.
It can also provide the basis for developing a low-level
debugger {ala Periscope/32 for Windows) for extensible
target environments .

Chapter 2 - Periscope Model IV Overview

If you're debugging a target system with a non-DOS
real mode operating system, you can license the source
code for Periscope/Remote for DOS, then modify it to
run in your target environment.

2.3.4 Micro Channel Support
You must run Model IV in remote mode to debug software
running in a system with a Micro Channel (IBM PS/2) bus.
Since the Model IV board is designed for an AT -compatible
bus, you cannot install it in a machine with a PS/2-compatible·
bus. Your target operating environment determines whether
you can run in active remote mode or must use passive re­
mote mode.

Chapter 2 - Periscope Model IV Overview Page 15

Page 16 Chapter 2 - Periscope Model IV Overview

C H A P T E R T H R E E

Installing
Model IV

Hardware

• System Requirements
• Installation Overview
• Installing the Hardware

Checking for conflicts
Setting the DIP switch
Tools you'll need
Before you begin
Get access to your target CPU
Install the pod in your target system
Install the Model IV board in your host system
(Optional) Install the break-out switch
(Optional) Install the Plus board
Make sure it works
Complete the installation

You'll find the information you need to install the Peri­
scope Model IV hardware in this chapter.

Page 17

3.1 SYSTEM REQUIREMENTS

Depending on your operating environment, your host and tar­
get may or may not be one and the same system. If you are
running in a single system, both the host and the target re- , �

quirements described below apply to that system.

Your host system can have any 386 or higher processor. It
must have an !SA/EISA slot available.

Your target must have a 386DX, 486DX, 486DX2, 486DX4,
486SX, or 486SX2 Pin Grid Array (PGA) CPU or a 386SX
Plastic Quad Flat Pack (PQFP) CPU.

The Embedded Periscope products , which include
Model IV hardware, support other embedded X86 proc­
essors as well as those listed above. Please call for
details.

Periscope supports 386DX and 486DX/DX2/DX4/SX/SX2
target processors running at external CPU speeds (at the
pins) up to 33MHz and internal speeds up to lOOMHz, and
386SX processors running at speeds up to 25MHz.

The Periscope Model IV hardware requires a 5-volt target
system. If your target CPU is a 3.3-volt 486DX4 installed on
a 5-volt system board, Periscope will work . (The CPU will be
plugged into an adapter rather than directly into the CPU
socket ifthis is the case. If it is plugged directly into the CPU
socket, it is a strong indication that the system board is 3.3
volts .)

Your target must have a location where the 110 Channel
Check signal (NMI) or its equivalent is available. This chan­
nel is available at pin 1 of EISA and ISA busses .

3.2 INSTALLATION OVERVIEW

Page 18

To get started, the first thing you'll do is install the Model IV
hardware. This involves:

• making sure you have the Periscope hardware you need

Chapter 3- Installing Model IV Hardware

• checking for conflict s between the Periscope board and
your host system

• resetting the switch on the Periscope board if you have
conflicts

• getting access to your target CPU and locating pin 1
• installing the Periscope pod in your t arget syst em
• installing the Periscope board in your host syst em
• installing the Periscope break-out swit ch (optional)
• inst alling t he Periscope Plus board (opt ional)
• making sure it all works

You'll find det ailed hardware installation inst ructions imme­
diately following this overview.

Once you've installed the hardware, you'll inst all t he debug­
ger software, following the inst ructions in the appropriat e
manual.

3.3 INSTALLING THE HARDWARE
To install the Periscope hardware, you should have these
it ems:

• A full-length board, usually referred t o as the Model IV
board, that you'll install in your host syst em

• A small board, referred t o as the 386 pod or 486 pod, that
you'll install in your target syst em

• A 3 86SX adapt er that you'll install in your target if it has
a 386SX CPU

• A ribbon cable that connects the Model IV board t o the
pod

• An NMI clip that connect s the pod to the bus in the t arget
(if you're u sing act ive remote mode)

• Tools and other items packaged with the Periscope Model
IV hardware, such as the Periscope mini-Maglit e, crow­
bar t ools, and CPU spacer sockets

Socket extenders, rot at or socket s, extra CPU spacer sockets,
and/or chip pullers may be needed in some installations due to
physical-fit issues. These it ems are available, so if you have
problems physically inst alling the hardware in your system,
please call Periscope Technical Support for advice.

Chapter 3 - Installing Model IV Ha rdware Page 1 9

Please refer to the Hardware Reference in Appendix C for
labeled diagrams of and other information on the Model
IV board, pods, and adapters.

Mak e sure you h ave th e Peri scope h ar dw are you need for
your debugging envir onm ent. Then, before yo u begin the ac­
tual hardw are in st al lati on, ch eck for any confli ct s th at mig ht
exi st between y our syst em and the M od el IV board.

3.3.1 Checking for conflicts

Page 20

Th e M od el IV bo ard uses no m emory an d ei ght consecutiv e
I/0 port s. F or prop er oper ati on , the p ort s used b y the b oard
must not be used by any othe r devi ce.

W hen you receiv e y our Model IV board, th e DIP (Du al I n­
line P ackag e) swi t ch i s set t o use eight I/0 p orts starting at
300 h. Th e se port s ar e in the blo ck (300h t o 3 1 Fh) reserved by
IBM for a p rot oty pe card. If you h av e a pr ot otyp e card in
your syste m, yo u'll n eed t o check t o see whi ch port s, i f any, i t
uses .

Th es e port s confli ct with some netw ork card s and som e t ape
backup cards, which use ports 300h through 30Fh. Other
boa rds may also u se P erisc op e's default I/0 port s. C hec k the
doc ume nt atio n for an y n on- stand ard b oards to see if thi s i s
the case. N ot e th at the true rang e of l/0 p ort s av ai lab le is
fr om z ero t o 3FF h, sin ce th e PC support s th e t en lo w-o rde r
bi t s of a port addr ess.

I f y ou find confli ct s with the I/0 p ort s used by your Model IV
b oar d, y ou'll need to reset th e DIP swi tch as explained below.
If yo u fin d no confli ct s, you can ski p the next secti on.

Chapter 3 - Installing Model IV Hardware

I/O ADDRESS

0000h-001 9h
0020h-003Fh
0040h-005Fh
0060h
0061 h
0064h
0065h-006Fh
0070h
0071 h
0080h
0081 h-009Fh
OOAOh
OOA1 h
OOCOh-OODEh
OODFh-OOEFh
OOFOh-OOFFh
01 00h-01 6Fh
01 70h-01 77h
01 FOh-01 F7h
01 F9h-01 FFh
0200h-020Fh
0278h-027 Ah
02BOh-02D Fh
02E 1 h
02E2h-02E3h
02E4h-02F7h
02F8h-02FFh
0300h-031 Fh
0320h-0324h
0325h-0347h
0348h-0357h
0372h-0377h
0378h-037 Ah
0380h-038Fh
0390h-0393h
03AOh-03AFh
03BOh-03DFh
03FOh-03F7h
03F8h-03FFh

DESCRIPTION

DMA
8259 Programmable interrupt controller (PIC)
Programmable interval timer
Keyboard data input/output buffer
8042 control register
8042 keyboard input buffer
Reserved by 8042
CMOS RAM address register
CMOS RAM data register
Manufacturing test port
DMA
Programmable interrupt controller 2
Programmable interrupt controller 2 mask
DMA
Reserved
Math coprocessor
Reserved
Fixed disk 1
Fixed disk 0
Reserved
Game control port
Parallel 3
Reserved
GPIB (adapter 0)
Data acquisition (adapter 0)
Reserved
Serial 2
Prototype card
Fixed disk adapter
Reserved
DCA 3278
Diskette controller
Parallel 2
SDLC and BSC communications
Cluster (adapter 0)
BSC communications (primary)
Video - MDA, CGA, EGA, and VGA
Diskette controller
Serial 1

Table 3- 1 . Common Port Usage

Chapter 3 - Installing Model IV Hardware Page 2 1

3.3.2 Setting the DIP switch

The eight-position DIP switch on the Model IV board, labeled SWI ,
controls the 110 ports used by the board. SWI is preset to use 1/0
ports starting at 300h. You may set it to any 110 ports on an eight-
byte boundary. Set the switch so that it does not conflict with other

U NITS TENS H U N DREDS

PORT S 1 S 2 S3 S4 S5 S6 S7 S8

300 ON ON ON ON OFF OFF

308 ON ON ON ON OFF OFF

300 N/A O N O F F OFF

3 1 0 N/A ON OFF OFF

320 N/A ON OFF OFF

330 N/A ON OFF OFF

340 N/A ON OFF OFF

350 N/A ON OFF OFF

360 N/A ON OFF OFF

370 N/A ON OFF OFF

380 N/A ON OFF OFF

390 N/A ON OFF OFF

3AO N/A ON OFF OFF

380 N/A ON OFF OFF

3CO N/A ON OFF OFF

3DO N/A ON OFF OFF

3EO N/A ON OFF OFF

3FO N/A ON OFF OFF

000 N/A ON ON ON ON ON

1 00 N/A O N O N ON ON ON

200 N/A ON ON O N ON O N

300 N/A ON ON ON ON ON

Table 3-2. Setting Switch SW1

Page 22 Chapter 3 - Installing Model IV Hardware

ports in the system. Certain ports are off-limits, such as zero
to 1 OOh and ports alrea.dy in use by another board. If port
300h is not available, try 3 1 Oh. Consult the technical refer­
ence manual for your system and documentation for your
non-standard expansion cards to avoid conflicts . Also see the
common port usage list in Table 3- 1 .You can read the 110
port address using Table 3-2 . The first section of the table il­
lustrates the use of switch positions S 1 and S2 to set the
"units" part of the address; the second section of the table il­
lustrates the use of switch positions S3, S4, S5, and S6 to set
the "tens" part of the address; and the third section of the ta­
ble illustrates the use of switch positions S7 and S8 to set the
"hundreds" part of the address . Note that this is not a defini­
tive list of addresses; you can theoretically use any value
from 0 to 3F8 . Since the board uses eight consecutive 110
ports, the 110 port address indicated by SW1 on the board
must be evenly divisible by eight.

If you change the default port address, be sure to write
down the new address for future reference.

3.3.3 Tools you'll need

To install the Periscope hardware, you'll need a small screw­
driver as well as the tools included in your Periscope package.
You may also need needle-nose pliers to straighten any bent
pins you find.

3.3.4 Before you begin

Please follow the steps below in order. The installation of the
hardware is fairly complex; if you skip a step or skim the in­
structions, you could damage the Periscope hardware or your
computer system!

If possible, have a co-worker read the instructions to you
while you perform the installation. This technique helps you
avoid losing your place and reduces the chances of making an
expensive mistake.

Chapter 3 - Installing Model IV Hardware Page 23

See Appendix C for labeled diagrams of the Model IV
board , pods, and adapters that you may need to refer to
during the instal lat ion.

Remember that if you're running in a single system, the
"host" and the "target" are one and the same.

3.3.5 Get access to your target CPU

Page 24

Step 1-Turn the power off and remove the power
cord from your target. If applicable, open the chassis
to get to your CPU board.

Be sure to frequently ground yourself (touch the chassis or
other ground) to avoid the build up of static electricity. Any
time you move your feet, be sure to ground yourself again.

Step 2-Locate your target's CPU chip.

If your target has an 803 86DX CPU, it is usually a PGA
package, so you can install a 386 pod directly, with no
adapter.

If your target has an 803 86SX CPU, it is most likely a sur­
face-mounted PQFP package, which requires an adapter.
You'll need to install the adapter before you install the 386
pod. If you do not have the adapter, please call us .

If your target has an 80486DX, 80486DX 2 . or 80486DX4 ,
the CP U is usually a PGA package, meaning you can install
a 486 pod directly, with no adapter.

If your target has an 80486SX or 80486SX2 in a PGA pack­
age, you can install a 486 pod directly, with no adapter.

Step 3-Find pin 1 .

During the installation, you'll need to know which corner of
your CPU is pin 1 . Some CPU boards are marked, but if
yours isn't, find the notched (or dotted or dimpled) comer of
the CPU chip and mark the board with a felt-tip pen or use
one of the adhesive "dots" in the pod package . It's not neces-

Chapter 3 - Installing Model IV Hardware

sary to mark you r board if you r CPU is a 386SX , since you
w ill not be removing the CPU.

3.3.6 Install the pod in your target system

The fo llowing instructions will have you insta ll the po d in
you r sy stem (St ep 4 o r 5), then connect the ribbon cab le and
NMI clip to the pod (St eps 6 and 7). If you r target is tig ht ly
packed, o r if you r CPU is a 386SX , it may be easier to con­
nect the ribbon cab le an d NMI clip to the po d before you in­
stall the po d in you r sy stem.

If you 're ins t alling a po d in a target with a 386DX CPU or a
486D X, DX 2 , DX4 , SX, or SX2 CP U , go to S t ep 5 a now.

If you 're installing a 386 pod and adapt er in a t arget with a
386SX CPU, continue at Step 4 a.

Step 4a-Install the adapter onto your CPU chip.

As you install the 386SX adapter and pod, watch out
for two things:

(1) There are two different pin 1 corners on the adapter.
If you do not align them correctly, you may damage the
adapter, your pod, and/or your CPU.
(2) If you do not apply pressure evenly on the adapter
when you're pressing it down over your CPU, you may
damage the {expensive) part of the adapter that clips
over the CPU.

Be sure to see the labeled diagrams of the adapters in
Appendix D for reference.

!locate the round in dent at io n or " dimp le" that indicat es pin 1
Jn you r CPU chip . Line up the notched 'CPU pin 1 ' comer
on the outer edge of the adapt er with pi n 1 of your CPU chip .
Press the adapt er down eve nly over the chip unt il it sits flush
with the CPU board on all sides .

B e su re to k eep the adapt er leve l while instal ling or r emovin g
it to a void b en ding p ins . Once you have alig ned th e adapt er

Chapter 3 - Installing Model IV Hardware Page 25

Page 26

correctly over the CPU, place your thumbs and forefingers on
the four comers of the adapter and press down. This method
helps you apply even pressure.

If you run into difficulty, do not force the adapter onto the
CPU. Call Periscope Technical Support for assistance.

Step 4b-If you' re using a rotator socket, install it
now.

Align the rotator socket's motherboard pin 1 comer with the
adapter's 386 PGA socket pin 1 comer.

Step 4c-Insert the 386 pod into the adapter or ro- .
tator socket.

If you're not using a rotator socket, line up the 'PGA socket
pin 1 ' comer of the adapter (diagonally across from the
notched ' CPU pin 1 ' comer referenced in Step 4a) with pin 1
on the 386 pod.

If you're using a rotator socket, line up the 'upgrade pin 1 '
comer of the rotator socket with the pin 1 comer of the 3 86
pod.

Press the pod into the adapter or rotator socket until it snaps
into place. Double check the pin 1 alignment. Be sure that
you have aligned the notched 'CPU pin 1 ' comer of the
adapter with your CPU's pin 1 comer. And be sure that you
have aligned the PGA socket pin 1 comer of the adapter, or
the upgrade pin 1 comer of the rotator socket, with the 3 86
pod's pin 1 comer.

If there's any doubt in your mind about the alignment,
please call Periscope Technical Support before you con­
tinue.

Once you have installed the adapter and 386 pod, go to Step
6.

Chapter 3 - Installing Model I V Hardware

Step 5a-Use the crowbar tools to remove your tar­
get CPU.

Figures 3- 1 and 3-2 show the crowbar tools included with the
pods .

Ground yourself, then remove your PGA CPU from its
socket. Start by prying the ship up with the small end of the
general-purpose crowbar tool. Work your way around the
CPU, gradually loosening it. Use the forked crowbar tool for
final removal . Once you have removed the CPU, check it for
any bent pins . Use needle-nose pliers to carefully straighten
any bent pins you find.

Figure 3- 1 . Crowbar Tool (general purpose)

Figure 3-2. Forked Crowbar Tool

Chapter 3 - Installing Model IV Hardware Page 27

Page 28

Step 5b---Insert your CPU into the 386 or 486 pod.

Ground yourself, then insert your CPU into the pod after
confirming that pin 1 on your CPU is aligned with pin I on
the pod's silk-screen. Before pushing the CPU fully into po­
sition, look on the underside of the chip for any bent or mis­
aligned pins . Do not remove the protective foam from the
bottom of the pod. Place the palm of one hand over the CPU
and the palm of your other hand over the protective foam,
then firmly and evenly press your CPU into the socket. When
your CPU is fully inserted, the exposed CPU pin length be­
tween the bottom of the CPU and the top of the pod should be
about one millimeter (1/20 inch) .

Step 5c-Insert the pod into your target CPU
socket.

Each pod is shipped with one PGA spacer socket already in­
stalled on the bottom of the pod and one spare socket in the
package. In most cases, you won't need the spare socket.

If your CPU is in a ZIF (zero insertion force) socket,
drop the spare spacer socket into the ZIF socket and fl ip
the lever to close it before you install the pod.

If you're using a rotator socket, install it next, aligning the
rotator socket's 'motherboard pin 1 ' comer with your CPU
board's pin 1 comer.

Remove the protective foam from the bottom of the pod.
Check the pins in the socket. If any are bent, carefully
straighten them with needle-nose pliers . Align pin 1 of the
CPU in the pod with pin 1 of the CPU socket or with the rota­
tor socket's 'upgrade pin 1 .' Using the (way cool) Periscope
Mini-Maglite as needed, insert the pod into the CPU or rota­
tor socket. Firmly press the pod into the socket. If the pod
runs into any obstructions on the CPU board, remove it and
add the spare spacer socket. If you need additional spacer
sockets, please call Periscope Sales .

Be very careful to correctly align pin 1 on the CPU, pin
1 on the pod, and pin 1 on the CPU board (or 'upgrade

Chapter 3 - Installing Model IV Hardware

pin 1' on the rotator socket) . Failure to do so can dam­
age the CPU chip or the CPU board.

Step 6-Plug the ribbon cable into the pod at the
connector.

Use the shorter cable if you're installing both the board and
the pod in the same system. Use the 48" shielded cable if
you're installing the board in one system and the pod in an­
other. Note that the cable is keyed, so that you can install it in
only one position. When you remove the ribbon cable, use the
crowbar tool and be careful not to bend the pins .

Step 7-lf you're using active remote mode, connect
the NMI clip to the pod.

Connect the pod-end of the NMI clip to the pod at pin J 6.
(See the pod diagrams in Appendix C.)

Step 8-lf you're using active remote mode, connect
the NMI clip to your target' s bus.

Connect the gold-plated probe-end of the NMI clip to the I/0
Channel Check signal in your target. If the target has an
EISA or ISA you'll use pin Al . Pin A l is the pin on the com­
ponent (chip) side of any board, closest to its mounting
bracket.

To install the probe, hold the probe so that it is pointing
downward and the cable is angled away from the board. Push
the probe down firmly into pin Al between the gold fingers
on the board and the connector in the socket. (Not all boards
have a gold finger at pin A l . Look for the first socket connec­
tor to positively identify the pin.) Push the probe in as far as
possible to ensure a good connection and to keep the non­
insulated part of the probe from contacting anything other
than the desired pin.

The probe must be between the board and the connector pin
in the socket. It must not be between the connector pin and
the outer edge of the socket. Some sockets have a dummy
hole at the end of the socket. Do not insert the probe in this

Chapter 3 - Installing Model IV Hardware Page 29

hole. If you cannot get the probe into the socket, try removing
the board and sliding the board and the probe in together. On
systems without enough room to get your hands near the
socket, you may need to use needle-nose pliers.

3.3. 7 Install the Model IV board in your host system

Step 9-Piug the ribbon cable into the Model IV
board at the connector.

Page 30

Note that the cable is keyed, so that you can install it in only
one position. When you remove the ribbon cable, use the
crowbar tool and be careful not to bend the pins .

Step 10-Install the Model IV board.

Tum the power off and open your host computer. You can
install the Model IV board in any one of the available 8-bit or
1 6-bit full-length ISA or EISA slots .

Select an available slot and remove the metal bracket from the
back panel for that slot, using a small screwdriver. The metal
bracket may be discarded, but be sure to save the retaining
screw.

Align the board with the slot and lower it until the edge con­
nector is resting on the slot receptacle. Press the board
straight down until it seats in the slot. Check the fit of the
mounting bracket. If it is not correctly aligned with the back
panel, adjust it by loosening the two screws that attach the
bracket to the board. Install the retaining screw through the
board's bracket into the PC' s back panel and tighten it.

Be sure the board is fully inserted in the slot. On some sys­
tems, the bottom edge of the board may run into chips
mounted on the system board. Make sure there's no chance of
a short-circuit between the board and any other components .
If you do have enough clearance under the Model IV board,
we have socket extenders available . Call Periscope Sales for
details .

Chapter 3 - Installing Model IV Hardware

3.3.8 (Optional) Install the break-out switch

Step 1 1-Install the break-out switch.

If you plan to use the break-out switch, plug it into the phono
jack on the Periscope board's mounting bracket.

3.3.9 (Optional) Install the Plus board

Step 12-Install the Plus board.

Be sure the Plus board uses the same starting port as the
Model IV board.

If you are going to run in remote mode, install your Plus
board in your host system. If you are going to run in active
remote mode using the Periscope/Remote for DOS software,
you may install the board in either your host or target.
Refer to the installation instructions included in the Plus
board package as needed to install the board.

3.3.10 Make sure it works

Step 13-Power up your host system.

Re-connect all peripherals in your host system and tum on the
power. Watch the fan in the power supply when you tum the
power on. If the fan does not run normally, tum the power off
immediately. Check the alignment of the CPU and pod, since
a short circuit of some sort may have occurred.

Step 14-Put your host system back together and
boot it.

If you're going to run in active remote mode, refer to the in­
structions in the remote addendum to complete the installation
after you boot your host system.

If you're running in a single system or in passive remote
mode, continue with Step 1 5 .

Chapter 3 - Installing Model IV Hardware Page 31

Page 32

Step 15-Configure the Periscope software to sup­
port the Model IV hardware.

Place your distribution disk in drive A of your host system
and enter a:setup. Follow the on-screen instructions to load
the Periscope software onto your hard disk. You need to do
this now so that you can run the diagnostics in the next step .
You can re-run the configuration program later if you want to
change any of the options .

Refer to the Periscope manual or the PopUp Periscope man­
ual for detailed instructions .

If you're running in passive remote mode, continue at Step
1 7 .

Step 16-Run the Model IV diagnostics.

Run the utility program PS4TEST with the appropriate op­
tions to test the breakpoints and trace buffer on the Model IV
board.
PS4TEST requires that both the Model IV board and pod be
installed in the same system, so if you're running in passive
remote mode, go to the next step.

To run the diagnostics, enter ps4test followed by the appro­
priate options :

IB Test the break-out switch
IC:nnnn Run tests multiple times, where nnnn is a hex

number
IE Set error exit mode, activating Periscope if
an

error is found
IF Run full trigger tests
IN Set noisy mode, beeping after each error
IP:nnn Use base 1/0 port other than 300h (must be

evenly divisible by eight
IR Handle RAM refresh cycles that are shown

as memory reads at the CPU
IS Set silent mode, showing only error messages
ISX An 803 86SX is in use (all memory is BS- 1 6)

Chapter 3 - Installing Model IV Hardware

.,...;;:--..._,

IV

IW

/WA

Set verbose mode, placing each message on a
separate line
Write the contents of the hardware trace
buffer to PSBUF .DAT
Copy the saved trace buffer from the disk in
drive A to PSBUF.DAT

/WB Copy the saved trace buffer from the disk in
drive B to PSBUF.DAT

IX Perform full extended memory tests

PS4TEST performs many different tests to validate the cor­
rect operation ofthe Model IV hardware. If no errors occur, it
displays the message "No errors detected." If an error occurs,
it displays a message and begins the next test.

If you get errors, please check the following items before you
call Periscope Technical Support:

Is the CPU a 386DX, 3 86SX, 486DX, 486DX2, 486DX4,
486SX, or 486SX2? These are the processors that Model IV
currently supports . (Embedded Periscope products support
other X86 CPU's .)

Is the (external) CPU speed greater than 33MHz? As of this
writing, Model IV does not support external speeds greater
than 33MHz. (33MHz is the "official" maximum speed.
Model IV, however, consistently passed the tests in our lab
using 40MHz processors .)

Did you change the DIP switch on the Model IV board? If
you changed it from the default setting, did you specify the IP
option when you started PS4TEST?

Is there any conflict between the base 110 port used by the
Model IV board and the address of any other board in your
system?

Are all connections fully seated, especially the connection
between the pod and the CPU socket, and the ribbon cable
connection?

Chapter 3 - Installing Model IV Hardware Page 33

Step 17-Run the Plus board diagnostics.

If you installed a Plus board, follow the instructions included
in your Plus board package to run the utility program
PSTEST now, to test the memory on the Plus board.

3.3.11 Complete the installation

Page 34

The hardware installation is now complete. Refer to the Peri­
scope manual or Pop Up Periscope manual for instructions on
loading and running the debugger software.

Chapter 3 - Installing Model IV Hardware

c H A p T E R F 0 u R

Model IV
Command

Tutorial

This chapter gives you practice using the Model IV hard­
ware commands to access Model IV's hardware capabili­
ties . If you're using the PopUp Periscope software, please

see the tutorial in the PopUp Periscope manual.

Page 35

This tutorial introduces you to the Model IV hardware com­
mands that enable you to set hardware breakpoints and to
control, analyze, and examine the hardware trace buffer.

Step !-Configure Periscope for your system.

Place the Periscope distribution disk in drive A and enter:

A : SETUP

Configure Periscope as Model IV. See the instructions in the
Periscope manual for details .

Step 2-. Install the Periscope Software.

Enter:

CD\ PERI
PS

See the Periscope manual for details .

Step 3-Display Periscope' s screen.

Enter:

RUN

Step 4-Set a hardware memory breakpoint.

Page 36

To set a hardware memory breakpoint on writes to the ad­
dress 0:46C for a length of two bytes, enter:

HM 0 : 4 6C L2 W

Then, to execute the program with hardware breakpoints en­
abled, enter:

GH

You'll see the message Sett ing breakpoint s . .

while Periscope programs the Model IV board. The DOS

Chapter 4 - Model IV Command Tutorial

screen is displayed briefly. Then Periscope's screen is dis­
played, along with the message EOI i s sued for IRQ
0 since our breakpoint occurred during a hardware inter­
rupt.

We're using the low word of the system timer for setting the
hardware breakpoint. This memory location is updated by the
system on each clock tick (every 55 milliseconds), so it is a
convenient place to set breakpoints .

Step 5-View the hardware breakpoint event.

To see the event that caused the hardware breakpoint, enter:

HS
You'll see one line of the trace buffer showing the address
(0 0 4 6C) , the word value written (varies), the operation
(Write) , the CPU cycle count in braces, the sequence

number (0 0 0 0) , and the string Bottom, indicating that
this is the last entry in the trace buffer.

Step 6-Center the breakpoint in the trace buffer.

Enter:

HC TC ; GH

This sets the hardware controls (HC) to center the trace
(TC) and executes with hardware breakpoints enabled
(GH) .

In many situations, it is helpful to have the breakpoint in the
middle of the trace buffer, so that you can see what lead up to
the breakpoint plus what happened afterward, all in real-time.

Step 7-View the trace buffer in raw mode.

You'll quickly return to Periscope's screen, but you won't see
the EOI i s sued for IRQ 0 message this time, since
the hardware interrupt is no longer active due to the centering
of the trigger.

Chapter 4 - Model IV Command Tutorial Page 37

To tum off Periscope's windows and thus provide maximum
space for the trace display, enter:

/W

You can restore the windows later using Ctrl-Fl 0.

To display the trace buffer in raw mode, enter:

HR

This shows the same sort of information as the HS display,
which is the raw, undecoded trace history. Note the sequence
numbers go from negative numbers to zero to positive num­
bers . The write to 0:46C is at sequence number zero.

Step 8--View the trace buffer in trace mode.

To switch to trace mode, press T.

Periscope performs an analysis of the trace buffer the first
time you use this mode, to determine which prefetch instruc­
tions were actually executed. When the analysis is complete,
Periscope displays Working 1 0 0 t in the lower left-hand
comer of the screen.

Periscope disassembles fetch cycles and shows other CPU
events, such as memory and I/0 reads and writes, inter­
spersed in the trace mode display. If you are debugging at the
source level, Periscope displays your source code when the
instruction matches the beginning of a source line. From the
Periscope prompt, you can get directly to trace mode by enter­
ing the HT command.

Step 9-View the trace buffer in unassembly mode.

Page 38

To switch to unassembly mode, press U.

In this mode, Periscope disassembles and displays only Fetch
cycles . No other CPU events are shown. From the Periscope
prompt, you can get directly to this mode by entering the HU
command.

Chapter 4 - Model IV Command Tutorial

Now press the Esc key to exit the trace buffer and return to
the Periscope prompt.

Step 1 0-U se selective capture.

The Model IV trace buffer can be set up to capture just se­
lected information.

To capture just the next 1 Oh writes to 0 :46C in the buffer,
enter:

HC * # 1 0 S + ; GH

This clears the hardware controls, sets the pass count to 1 Oh,
enables selective capture, and arms the board.

After approximately one second, Periscope's screen is dis­
played.

To display the trace buffer, enter:

HR

You'll see sixteen writes to 0:46C, with the value written in­
creasing by one each time. Since there are no Fetch cycles in
the buffer, the trace and unassembly modes are not useful.

Press Esc to return to the Periscope prompt.

Step 1 1-Qualify a memory breakpoint with a data break­
point.

You can use data (HD) and bit (HB) breakpoints to
qualify a memory or port breakpoint so that you can stop
when a memory or port access occurs and the specified data
value also occurs .

To set a breakpoint on the next time the letter P scrolls into
the upper left-hand corner of the color display, enter the fol­
lowing commands :

Chapter 4 - Model IV Command Tutorial Page 39

HA *
HM B S O O : O L2 W
HD LW 0 7 5 0
GH

This command sequence clears all hardware breakpoints (HA
*), sets a memory breakpoint on writes to B800:0, sets a data
breakpoint on the low word containing 0 7 5 0, where 0 7
is the color attribute for gray (low intensity white) on black
and 5 0 is the character P, and then arms the board.

If you 're using a monochrome display, substitute B O 0 0 : 0
for the address in the memory breakpoint. If you're using a
286 system, substitute W for LW in the data breakpoint.

The command sequence above assumes that the
screen's memory is accessed a word at a time. If you
have problems with this example, press the break-out
switch to activate Periscope's screen, then enter HD
* ; GH to clear the data breakpoints and arm the board .
After the hardware breakpoint occurs, look in the trace
buffer to see how the memory was accessed and mod­
ify the HD command accordingly. See Section 5.2.6 for
details .

Step 12-Set a port breakpoint.

Page 40

To watch for the next write to port 20h, enter:

HA *
HP 2 0 0
GH

This command sequence clears all hardware breakpoints
(HA *) , sets a breakpoint on the next out to port 20h (HP
2 0 0) , and arms the board { GH) . When control is re­
turned to Periscope, enter the HS command to display the
port write.

Chapter 4 - Model IV Command Tutorial

Step 13-Use sequential triggers.

Periscope Model IV has a built-in state machine that lets you
put together complex trigger conditions that it evaluates in
real-time.

To stop on the first write to the timer word after the color
display has been scrolled, enter the following commands:

HA *
HM B8 0 0 : 0 L2 W (0 , 1)
HM 0 : 4 6C L2 W (1 , !)
GH

This command sequence first clears all hardware settings
(HA *) . It then sets a memory breakpoint on writes to the

upper left-hand comer of the color display. When the break­
point occurs the board moves from its starting state 0 to state
1 instead of immediately triggering. The third command sets a
breakpoint on writes to 0:46C only when the board is in state
1 . The exclamation point indicates a trigger condition.

Step 14-End the tutorial.

To clear all breakpoints and exit the debugger, enter:

HA *
QC (or G)
These commands will end the tutorial and take you back to
the DOS prompt. You're now ready to start using your Peri­
scope Model IV!

Chapter 4 - Model IV Command Tutorial Page 41

Page 42 Chapter 4 - Model IV Command Tutorial

c H A p T E R F v E

Model IV
Reference

• Periscope Hardware Menus
• Hardware Commands

Go Using Hardware (GH)
Go using Monitor (GM)
Hardware breakpoints All (HA)
Hardware · Bit breakpoint (HB)
Hardware Controls (HC)
Hardware Data breakpoint (HD)
Hardware Memory breakpoint (HM)
Hardware Port breakpoint (HP)
display Hardware trace buffer (Hx)

Display Formats R, S, T, and U
Layout of the Trace Buffer Display

Analyzing and Examining the Trace Buffer

Hardware Write (HW)
toggle internal 486 cache (/4)

This chapter describes the Periscope/EM menus and
commands specific to Model IV. See the Periscope
manual for a summary of and details on all other Peri­

scope/EM menus and commands. See the PopUp Periscope
manual for details on the PopUp Periscope menus . The com­
mands listed in this chapter are available in PopUp Periscope.
However, you may prefer to use the menus documented in the
PopUp Periscope manual.

Page 43

5. 1 PERISCOPE HARDWARE MENUS

When you use Model IV, both the Periscope/EM and the
Periscope/32 software display a hardware menu option at the
right end of the menu bar. (See Figure 5-1.) This hardware "---
menu and its sub-menus will guide you through the syntax of
using the Model IV hardware commands . (Note that PopUp
Periscope provides a different set of menus .)

publ ic SUiplc , toto.l , tN:f!Dry, O.llili
publ ic geU!cnl , conucrt , conloop ,

toto. I db ' Toto. I JICIIIOry : '
tJICIIIOry db ' ElEJfJ KB '
o.llili l db ' Mcmry O.llil i lo.blc : '
o.JICIIIOry db ' ElEJfJ KB' ;• $'

11Z5 : cuen
In C : \PERNU1 . COH CSAHI'LEJ ===========!

Figure 5- 1 . Periscope/EM's Model IV Hardware Menu

You'll see a special trace buffer commands menu when you
display the hardware trace buffer.

To issue commands, you can use the menus or you can enter
the commands at the Periscope command line prompt (>).

5.2 HARDWARE COMMANDS

Page 44

The Model IV hardware commands (Hx) enable you to set
hardware breakpoints and controls and to display and analyze
the hardware trace buffer.

You set hardware breakpoints and controls with the HB
(Hardware Bit), HC (Hardware Controls), HD (Hardware

Chapter 5 - Model IV Reference

Data), HM (Hardware Memory), and HP (Hardware Port)
commands. You activate them with the GH (Go Hardware)
and GM (Go Monitor) commands only. They run at full
speed when you activate them with the GH command.

Because you can use the GM command with just the
Periscope/EM software installed, you'l l find it under the
Periscope/EM 'Breakpoints' menu option instead of the
'Hardware' menu option. We have documented it in this
manual as well as in the main Periscope manual , how­
ever, because you can use it to activate Model IV
hardware breakpoints.

All hardware breakpoints are ' sticky' (remembered) until you
explicitly clear them. To clear a previously-set breakpoint,
just re-enter it . Periscope will display the message Break­
point c l eared. It's a good idea to display all break­
points with HA ? before you enter the GH or GM com­
mand.

You display, analyze, save, and print the hardware trace
buffer with the HR (display Hardware buffer in Raw mode),
HS
(. . . in Single event mode), HT (. . . in Trace mode), HU (. . .
in Unassembly mode), and HW (Hardware Write) com­
mands. Using special commands that are available when you
view the trace buffer, you can change the buffer display and
search through the buffer while you view it.

You toggle the state of the internal 486 cache with the I 4
command. You should tum this cache off when you use
Model IV.

See the Periscope manual for an overview of the Peri­
scope/EM menu system, for details on all Periscope/EM
commands that are not specific to Model IV, and also
for information on keyboard usage, command parame­
ters , and aliases.

See the PopUp Periscope manual for information on
PopUp Periscope's menus, commands, command pa­
rameters , and keyboard usage.

Chapter 5 - Model IV Reference Page 45

5.2.1 Command: Go using Hardware (GH)
Syntax:

Page 46

GH [<address>] [• • •]

Description:

Use this command to activate code breakpoints, debug regis­
ter breakpoints, and hardware breakpoints (but not monitor
breakpoints), and to execute the program you're debugging. It
is the same as Periscope/EM's G command, except that it
also activates any hardware breakpoints that are enabled.
(Remember that RUN disables hardware breakpoints .) Be
sure to check the status of the hardware breakpoints using the
HA command before you enter this command.

I n PopUp Periscope, this command is G with no suffix or
arguments .

Examples:

GH PRINTLINE sets a temporary code breakpoint at the
address equal to the PRINTLINE, invokes all code and
hardware breakpoints that are set and enabled, and starts exe­
cution of the program.

GH invokes all code and hardware breakpoints that are set
and enabled and begins execution of the program.

Chapter 5 - Model IV Reference

5.2.2 Command: Go using Monitor (GM)

Syntax:

GM [<address>] [• • •]

Description:

Use this command to execute your program at full speed to a
certain point and then evaluate monitor breakpoints . If any
monitor breakpoint condition is true, Periscope di�plays its
screen. Otherwise full speed execution of your program re­
sumes .

� This command is not available in PopUp Periscope.

This command activates code breakpoints, debug register
breakpoints, and hardware breakpoints . It evaluates monitor
breakpoints only after a code, debug register, or hardware
breakpoint occurs . The monitor breakpoints you'll find most
useful are BB (Byte Breakpoint), BF (Flag Breakpoint),
BR (Register Breakpoint), BW (Word Breakpoint}, and BU
(User exit Breakpoint) .

The register breakpoint is particularly powerful, since register
information is not available at the hardware level . For more
complex events, use the user breakpoint tests . See the Peri­
scope manual for more information on monitor breakpoints,
register breakpoints, and user breakpoints .

Be sure to check the status of the hardware breakpoints using
the HA command before you enter this command.

This command can run slowly if the hardware breakpoint oc­
curs frequently. Try to qualify the hardware breakpoint as
tightly as possible for best performance. Also, see the de­
scription of the program SKIP2 1 in the Periscope manual for
another method of trapping writes to low memory.

Chapter 5 - Model IV Reference Page 47

Page 48

You'l l see a discontinuity in the hardware trace buffer
each time a hardware breakpoint occurs . This happens
because nothing is added to the buffer from the time the
hardware breakpoint occurs until just before Periscope
returns control to the interrupted program.

Since Periscope evaluates monitor breakpoints one or more
instructions after the instruction that caused the hardware
breakpoint (due to breakpoint overrun), it is possible for the
hardware breakpoint and the monitor (software) breakpoint to
be out of sync. This can cause an occasional false or missed
breakpoint. In the example above where you're watching for
writes to memory when CS points to your program, code that
changes CS during the breakpoint overrun interval can cause
problems.

Example:

When you're using Model IV, this command acts like a com­
bination of the GH and GT commands . Suppose you need
to find where your program is writing to low memory. Since
DOS and other programs can legitimately write to low mem­
ory, you need to watch for writes to low memory where the
offending Code Segment points to your program. To do this,

. set a hardware breakpoint to watch for writes to the desired
range, enter the monitor breakpoint to determine the program
writing to the range, and then enter the GM command:

HM <range>
BR CS EQ CS
GM

Each time the write occurs in the specified range, Periscope
checks to see if your program is the culprit. If so, it interrupts
the program and displays its screen. If not, it resumes full
speed execution.

Chapter 5 - Model IV Reference

5.2.3 . Command: Hardware breakpoints All (HA)

Syntax:

HA [?] [*] [+] �]

Description:

Use this command to display (?), clear (*), enable (+), or
disable (-) hardware breakpoints .

If you do not set the hardware controls, HC, to other than de­
fault values, nothing is displayed for them when you enter
HA ?.

Since RUN disables breakpoints , use this command to
re-enable previously-set breakpoints .

Examples:

HA ? or HA displays all hardware breakpoints .

HA + enables all currently-set hardware breakpoints .

Chapter 5 - Model IV Reference Page 49

5.2.4 Command: Hardware Bit breakpoint (HB)

Page 50

Syntax:

HB [?] [*] [+] [-]; or
HB xB XXXX XXXX for bytes where x IS L , M , N, or
H; or
HB xW XXXX XXXX XXXX XXXX for words where x
is L, M, H, or blank; or
HB x3 XXXX XXXX XXXX XXXX XXXX XXXX
where x is L or H; or
HB DW XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX for doublewords

Description

Use this command to display (?), clear (*), enable (+), dis­
able (-), or set the hardware data bit breakpoint.

Enter the bit breakpoint as a binary number of exactly eight,
1 6, 24, or 32 characters for byte, word, three-byte, and dou­
bleword values respectively. The allowable bit values are 0,
1, and X which correspond to a zero, one, and 'don't care ' .
You can specify only one breakpoint, but you can it use alone
or combined with a hardware memory (HM) or port (HP)
breakpoint. When you combine it, the bit breakpoint is logi­
cally ANDed with the memory or port breakpoint.

See Table 5-1 on page 57 for the possible type codes.

Examples :

HB LB 1XXX XXXX sets the bit breakpoint for low byte
accesses of any value containing a binary one in bit 7 and any
value in bits 6 through zero. .�

HB HW 1 0 1 0 O lXO 0 0 0 0 0 0 0 0 sets the bit break­
point for the value A400h or A600h in the high word.

Chapter 5 - Model IV Reference

5.2.5 Command: Hardware .Controls (HC)

Syntax:

HC [?] [*] [#<number>]
[B- I B+ I B !] [C- I C+ I C !] [0- I 0+ I 0 !]
[P- I P+ I P !] [S- 1 S+ I S !] [TB I TC I TT]
[X<byte>]

Description:

Use this command to display (?), clear (*), or set the
hardware controls . The controls include the pass count (#),
buffer capture (B), cycle count capture (C), trace overflow
stop (0), probe triggering (P), selective capture (S), trigger
location (Tx), and exclude state(s) (X) .

Enter the pass count as a # followed by a <number>
from 1 to FFE h. When the specified number of break­
points have occurred, Periscope interrupts the executing pro­
gram. If you specify 1 as the pass count, the first break­
point will interrupt the program. If you specify 4 as the
pass count, the fourth breakpoint will interrupt the program,
etc. Use this pass count in conjunction with hardware break­
points (HB, HD, HM, or HP). See the Periscope manual for
information on setting pass counts on code breakpoints .

Enable buffer capture with HC B+ (default), disable it
with HC B-, or toggle it with HC B ! . This control is a
master switch for buffer capture. When you disable it, no in­
formation is added.to the trace buffer regardless of other set­
tings .

Here's a situation in which you'd want to disable buffer cap­
ture. Suppose you've captured some information in the buffer
but cannot save it to a disk file because DOS is busy.
(Periscope/EM normally uses DOS for reading and writing
disk files .) Enter HA - ; HC B- ; GH { 0 : 2 8 * 4 to dis­
able all hardware breakpoints, tum buffer capture off, and go

Chapter 5 - Model IV Reference Page 51

Page 52

with hardware enabled to the next invocation of iNT 28h,
where you can write the trace buffer to a file. When you later
view the trace buffer, enter HC 0+ to force the overflow
stop on. (You can also write the trace buffer directly to a
floppy disk without using DOS by entering HW A : or HW
B : .)

Enable cycle count capture with HC C+, disable it with
HC C - (default), or toggle it with HC C !. Use this control
to force Periscope to generate CPU cycle count records in the
trace buffer when the cycle count overflows. You should use
this control to count CPU cycles when you've enabled selec­
tive capture with S+. Otherwise, leave this control in its de­
fault setting.

Enable trace overflow stop with HC 0+, disable it with
HC 0- (default), or toggle it with HC 0 ! . When you enable
it, the overflow stop generates a breakpoint each time the
hardware trace buffer fills up. This breakpoint allows you to
see the CPU events in 2K, 4K, or 1 6K groups (depending on
which Model IV board you have}, so you can examine pro- �

gram flow starting at a particular point.

To force the entire trace buffer to be viewable with the
HR, HT, or HU commands even when the buffer is
empty, use HC O+ or Hx +, where x is R, T, or u.

Enable probe triggering with HC P+ (default}, disable it
with HC P-, or toggle it with HC P ! . Use this control to
keep probe cycles from causing hardware breakpoints, and to
suppress display of the probe cycles except in raw (HR)
mode. When you use HC P-, any trace buffer cycle that
shows Probe will not cause a hardware breakpoint, even if
the address and/or data values associated with the CPU cycle
would have otherwise generated a breakpoint.

You need this control for systems such as the IBM PS/2
Model 50, where RAM refresh cycles show up in the trace
buffer. These 'garbage ' cycles can be very confusing. To fil­
ter them out, set jumper J 5 on the pod so that it connects pills
1 and 2 . (See Appendix C for more information.) You'll see
Probe in the trace buffer for each CPU Hold Acknowledge

Chapter 5 - Model IV Reference

signal. Then enter HC P- to suppress display of these
Probe records when you view the trace buffer except in
raw (HR} mode.

Enable selective capture with HC S +, disable it with HC
S - (default), or toggle it with HC S ! . When you enable it,
only hardware breakpoint events are saved in the trace buffer.

Use this control with a pass count that indicates the number
of events you want to occur before Periscope displays its
screen. For example, if you want to capture the next 1 6 Outs
to port 3B4h, enter HP 3 B4 0. Then enter HC * # 1 0
S + to clear the controls and set them to capture only the
next 1 Oh trigger (breakpoint) events . Finally, enter GH to
arm the board and begin execution.

The selective capture of an event normally stops after n ·

events have been collected, where n is the pass count set­
ting. You can, however, use selective capture with continuous
tracing. To do this, set the pass count to FFF .h and tum
selective trace on. You'll have to stop the system using the
break-out switch or some other method, but only the selected
events will be in the trace buffer.

When you use selective capture, not all CPU events are
saved in the trace buffer, so it is not usually meaningful
to view the trace buffer in any mode other than raw
mode {HR} .

When you enable selective capture (HC S+) , the trigger lo­
cation is set to the bottom of the buffer. The cycle count field
is usually valid only if the cycle count capture is on (HC
C+) .

You can set the trigger location to the Top, Center, or Bot­
tom of the trace buffer using HC TT, HC TC , or HC
TB (default) respectively.

When you set the trigger location to the Top, the trace buffer
shows 1 6K events after the trigger event. When you set it to
the Center, the trace buffer shows up to 8K events before the
trigger event and 8K events after the trigger event. When you

Chapter 5 - Model IV Reference Page 53

Page 54

set it to the Bottom, the trace buffer shows up to 1 6K events
before the trigger event. HC TC and HC TT are meaning­
ful only when you've set a hardware breakpoint, not when
you press the break-out switch.

The trigger location that is in effect when a hardware
breakpoint occurs controls the contents of the trace
buffer. Although you can change the trigger location
after a breakpoint, the contents of the trace buffer re­
main the same.

Use the exclude state to exclude data from any or all sequen­
tial trigger states from being captured in the trace buffer. En­
ter HC X <byte>, where the <byte> may be any
state from 0 to 7 .

For example, if you enter HC XO, only system activity that
occurs while the Model IV board is in states other than 0 is
saved in the trace buffer. You'll exclude all state 0 activity.

When you set the trigger location at the top (He TT)
or in the center (HC TC) of the trace buffer, Periscope
does not display its screen until the trace buffer is ful l . If
you're also setting exclude states, you may have to set
code breakpoints or use the break-out switch to activate
Periscope.

To clear excluded states, enter HC X *.

See Section 5 .2 .7 on page 6 1 for more details on sequential
triggering.

Examples:

HC * # 5 TT clears the hardware controls, sets the pass
count to 5, and sets the trigger location to the top of the
buffer.

HC 0+ ; GH sets the trace overflow stop on and begins exe­
cution with hardware breakpoints enabled. After 1 6K CPU
events have been added to the hardware trace buffer, Peri­
scope displays its screen.

Chapter 5 - Model IV Reference

HC S+ #2 0 TC sets selective capture on with a pass
count of 20h. Since selective trace is on, Periscope ignores the
TC command and assumes TB instead.

HC # 1 0 C+ S+ sets the pass count to l Oh and turns cycle
counting and selective capture on.

HC B- turns the buffer capture off.

Chapter 5 - Model IV Reference Page 55

5.2.6 Command: Hardware Data breakpoint (HD)

Page 56

Syntax:

HD [?] [*] [+] [-] ; or
HD xB <byte> <byte> for a byte range where x IS
L, M, N, H, or blank; or
HD xw <number> for a word breakpoint where x is L,
M, H, or blank; or
HD x3 <byte> <byte> <byte>for a 3-byte break­
point, where x is L or H; or
HD DW <addres s > for a doubleword breakpoint

Description:

Use this command to display (?), clear (*), enable (+), dis­
able (-), or set hardware data breakpoints .

To set data breakpoints, enter a range of byte values for the
byte breakpoints; a single specific value for the word break­
points; three bytes for the three-byte breakpoints; or an ad­
dress for the doubleword breakpoints . You can specify up to
eight data breakpoints, and you can use this breakpoint with
or without a memory (HM) or port {HP) breakpoint. If you use
it with an HM or HP breakpoint, the data breakpoints are
ORed together as a group and then ANDed with the memory
or port breakpoints as a group.

See Table 5-1 below for the possible type codes .

Periscope handles the address you enter for a double­
word breakpoint in a special fashion. It uses the seg­
ment portion of the address as the high part of the
doubleword and the offset portion of the address as the
low part of the doubleword. For example, entering HD
nw 1 2 3 4 : 5 6 7 8 sets a breakpoint on the value
1 2345678h as a doubleword value.

Chapter 5 - Model IV Reference

�'

�\

DATA ACC E S S TY PE TYPE CODES BYTES USED

(HIGH TO LOW)

8 0 3 8 6 SX :

WORD w XX

HIGH BYTE HB X .

LOW BYTE LB . x

8 0 3 8 6 DX AND 8 0 4 8 6 DX :

DOUBLEWORD DW xxxx
HIGH 3 BYTE S H3 XXX .

LOW 3 BYTES L3 . XXX

HIGH WORD HW XX . .

MID WORD MW . xx .
LOW WORD LW . . XX

HIGH BYTE HB X . . .

NEXT BYTE NB . x . .
M I D BYTE MB . . X .

LOW BYTE LB . . . X

Table 5- 1 . Data Access Types

Setting data breakpoints can be tricky. Since Model IV
watches the system from the vantage point of the CPU, it sees
memory accesses as seen by the CPU, which is not necessar­
ily the way the system bus sees them. For example, the CPU
sees a read of a word of 8-bit memory at BOOO:O as one word
read, but the bus sees it as two byte reads . If the instruction is
a byte read rather than a word read, the CPU and the bus
both see it as one byte read. For 1 6-bit memory, the CPU and
the bus see a word read at an even address as one word read.

In an 80386SX system, memory can be accessed as a byte or
a word. How it is shown in the trace buffer depends on the
access width and whether the starting address is even or odd
(the address modulo 2). All memory accesses except word ac­
cesses starting at an odd address are completed in one CPU
event. One CPU event may require multiple bus cycles .

Chapter 5 - Model IV Reference Page 57

ADDRESS DATA AC C E S S TYPE & START ADDRESS
(BINARY)

8 0 3 8 6 DX AND 8 0 4 8 6 DX :

BYTE

BYTE

BYTE

BYTE

WORD

WORD

WORD

WORD

DWORD

DWORD

DWORD

DWORD

8 0 3 8 6 SX :

BYTE

BYTE

BYTE

BYTE

WORD

WORD

WORD

WORD

DWORD

DWORD

DWORD

DWORD

xxx o o
XXX 0 1

XXX1 0

XXX l l

xxxo o
XXX 0 1

XXX1 0

XXX 1 1

xxxo o
XXX 0 1

XXX1 0

XXX1 1

xxxo o
XXX 0 1

XXX1 0

XXX 1 1

xxx o o
XXX 0 1

XXX1 0

XXX 1 1

xxxo o
XXX 0 1

XXX1 0

XXX1 1

LOW BYTE AT 0

MID BYTE AT 1
NEXT BYTE AT 2
HIGH BYTE AT 3

LOW WORD AT 0

MID WORD AT 1

HIGH WORD AT 2
LOW BYTE AT 4 , THEN HIGH BYTE AT 3

DOUBLEWORD AT 0
L OW BYTE AT 4 , THEN HIGH 3 BYTES AT 1

LOW WORD AT 4 , THEN HIGH WORD AT 2
LOW 3 BYTES AT 4 , THEN HIGH BYTE AT 3

LOW BYTE AT 0

HIGH BYTE AT 1

LOW BYTE AT 2
HIGH BYTE AT 3

WORD AT 0

HIGH BYTE AT 1 , THEN LOW BYTE AT 2
WORD AT 2
LOW BYTE AT 4 , THEN HIGH BYTE AT 3

WORD AT 0 , THEN WORD AT 2
LOW BYTE AT 4 , HIGH BYTE AT 1 , WORD AT 2
WORD AT 4 , THEN WORD AT 2
WORD AT 4 , LOW BYTE AT 6 , HIGH BYTE AT 3

Table 5-2. CPU Events for Various Access Widths

Page 58

In an 80386DX or 80486DX system, memory can be ac­
cessed as a byte, word, three-byte, or doubleword. How Peri­
scope shows the memory access in the trace buffer depends
on the access width and the starting address modulo 4 . All
memory accesses except the four cases shown in Table 5-2

Chapter 5 - Model IV Reference

--

are completed in one CPU event. Again, one CPU event may
require multiple bus cycles .

Tables 5 - l and 5-2 show the data access types and the CPU
events required for various access widths and addresses on
the 80386DX, 80386SX, and 80486DX (DX2, DX4) CPUs .

Note these important points about Table 5-2 :
• The physical width of the memory is invisible to the

CPU. From the CPU, 8-bit, 1 6-bit, and 32-bit memory all
respond in the same manner, if not at the same speed.

• Data breakpoints are complicated if you have BS- 1 6
memory in your system. See the file NOTES .TXT on the
Periscope disk for more information.

• On an 80386SX system, you can set data breakpoints on
bytes and words when the address ends with OOb or 0 1 b,
but not when it ends with l Ob or l lb . You cannot set
data breakpoints on doublewords, since they will be bro­
ken into a minimum of two word accesses . The possible
data breakpoints are on low byte, high byte, and word. In
short, the 80386SX acts like an 803 86DX with all of its
memory configured as BS-1 6 (see above) .

• For even-word access to 8-bit memory, you won't see
separate CPU events for the low and high bytes, just one
word access .

• On an 80386 or 80486 system, OUTs to ports 320h
through 323h show on the low, mid, next, and high bytes
respectively. On an 80386SX system, the above OUTs
show on the low, high, low, and high bytes respectively.

• Since Model IV sees everything from the perspective of
the CPU, the code, not the physical width (8, 1 6, or 32
bits) of the memory device, dictates memory moves .

• Since some memory accesses may be split into multiple
CPU events, it is important to take the address into ac­
count when you set data breakpoints.

• When you use H3 and L3 data breakpoints, specify
three bytes of data from high to low addresses (to match
the trace buffer display) .

• To watch for writes of a character to the display, set the
memory breakpoint plus the data breakpoints . Depending
on the access method, you may need a byte (in any posi­
tion), word (low or high), and/or doubleword breakpoint.

Chapter 5 - Model IV Reference Page 59

Page 60

The more you know about the conditions, the fewer data
breakpoints you'll need.

If you're not sure where to set a data breakpoint, try
setting just the memory or port breakpoint and then run
your program. After the breakpoint happens, look in the
trace buffer to see how the memory or port was ac­
cessed. Then add the data breakpoint using the appro­
priate access type.

Examples:

HD LB 1 0 1F allows breakpoints when the low byte is
accessed and the value is from 10h to 1Fh. A low word ac­
cess ofxx1F will not cause a breakpoint.

HD * MW 1 2 3 4 clears the data breakpoints and sets a
breakpoint on the mid word with a value of 1234h.

HD DW { 0 : 10 * 4 sets a doubleword breakpoint equal to
the doubleword at INT 1 Oh. This is a useful technique for
setting a breakpoint on the next invocation of an interrupt in
an 80386 or 80486 system. This technique does not work on
an 80386SX system.

HM B 8 0 0 : 0 0 0 0 L2 W
HD LW 0 7 5 0
HD LW 0 7 5 1
GH

The above commands activate Periscope when a low word
write of 0750 or 075 1 occurs at B800:0000 .

Chapter 5 - Model IV Reference

5.2. 7 Command: Hardware Memory breakpoint (HM)

Syntax:
HM [<addres s > <addres s > A I H I R I W I X
[B] [(s , t)]] [?] [*] [+] [-] [• • •]

Description:

Use this command to set, display (?), clear (*), enable (+), or
disable (-) memory breakpoints .

You can enter the breakpoints as two addresses or a range,
and you can specify up to eight breakpoints . Indicate the type
of operation you want to break on with A, H, R, w or X,
for interrupt Acknowledge, CPU Halt, memory Read, mem­
ory Write, and code prefetch (instruction eXecution) respec­
tively.

You can substitute Lx (a length in bytes) for the sec­
ond address in the syntax.

Use the optional qualifier B to cause Periscope to capture
breakpoint (trigger) events in the trace buffer but NOT to
stop your program's execution. Periscope automatically en­
ables selective capture when you use this parameter. Be sure
to set another breakpoint to stop your program's execution.

Use the optional argument (s , t) to set sequential triggers .
s is the start state, from 0 to 6, and t is the state moved
to when the breakpoint condition is true, from 0 to 6, or !
to cause a trigger. See the section on sequential triggers below
for more details .

Do not attempt to set memory access breakpoints inside Peri­
scope's code/data area. Also, watch out for breakpoint
boundaries . A memory access breakpoint set at B800: 1 won't
be triggered by a word or doubleword access at B800:0 .

Chapter 5 - Model I V Reference Page 61

Page 62

Code Prefetch. The code prefetch breakpoint occurs when
memory is read into the prefetch queue. Since the length of
the prefetch queue varies from six bytes to 32 bytes, depend­
ing on the CPU, instructions are read before they're actually
executed. However, due to the 'breakpoint overrun' phe­
nomenon, a breakpoint does not occur immediately. So the
instruction causing a breakpoint may or may not have been
executed by the time you see Periscope's screen. If the in­
struction has not been executed, try setting the execution
breakpoint after an instruction that flushes the prefetch queue
(JMP, CALL, RET, IRET, INT, etc.) .

In an 80386 or 80486 system, a breakpoint on code prefetch
that is not on a doubleword boundary is rounded down to the
nearest doubleword boundary, since all prefetch occurs on a
doubleword boundary.

The 80486 chip uses burst mode to fetch instructions and
read memory quickly in 1 6-byte (paragraph) chunks. Nor­
mally, when the CPU reads a memory location, both the ad­
dress and the data appear at the pins of the CPU. In burst
mode, the address and four double words of data appear at
the pins of the CPU, but the addresses corresponding to the
last three dwords of data do not appear. Periscope deduces
these missing 'burst' addresses from the defined rule set for
the address sequence (see the Intel manuals for more infor­
mation), so it can display and disassemble them in the trace
buffer. But Periscope cannot support hardware breakpoints
on the missing 'burst' addresses since they never appear at
the pins of the CPU.

Use the standard segmented address format to set breakpoints
in the first megabyte. To set breakpoints beyond 1MB, up to
1 6MB, use absolute physical addresses of four digits, an am­
persand (&), and the remaining four digits .

Sequential Triggers. The sequential trigger capability is �,

quite powerful and best explained with the following example.

To watch for the writing of the variable BAR only when the
routine FOO is executing, enter these commands:

Chapter 5 - Model IV Reference

HM FOO_START L1 X (0 1 1)
HM FOO_END Ll X (11 0)
HM BAR L2 w (1 I !)
GH

When you arm the Model IV board with a GH or GM
command, it always starts in state 0. The first breakpoint ad­
vances from state 0 to state 1 on entry to FOO at
FOO_START. The second breakpoint reverts from state 1 to
state 0 on exit from FOO at FOO _END. The third breakpoint
generates a trigger if BAR is written while state 1 is active,
i .e . , while FOO is executing. If BAR is written while any
other state is active, i .e . , while FOO is NOT executing, no
trigger occurs .

Some restrictions apply:
• The pass count and data breakpoints always apply to

state 0.
• Periscope reserves the use of state 7.
• If you specify a true state but do not use it somewhere

else as a current state, Periscope displays an error. For
example, if you set (1 I 5) as a state setting, you must use
the true state 5 as the current state somewhere else, i .e . ,
(5 1 x).

• Be careful when you use fetches to switch states . CPU
pipelining (use of the prefetch queue) can cause fetches to
occur earlier than the memory activity performed by the
instructions .

• You cannot use the same trigger in two different states .
• If you set HC TT, Periscope reserves the use of states 6

and 7.

Examples:

HM B O O O : 0 L1 W sets a breakpoint on writes to memory
at BOOO:O (the upper left-hand comer of the monochrome
screen) for a length of one byte.

HM B 0 0 0 : 1 L 1 W sets a breakpoint on writes to memory
at BOOO: 1 . This breakpoint is not likely to occur, since most
access to display memory is done on word boundaries . If in

Chapter 5 - Model IV Reference Page 63

Page 64

doubt, extend the breakpoint to the next lower word or dou­
bleword boundary. You may get some false hits, but at least
you won't miss any.

HM 0 : 0 0 : 3 FF R sets a breakpoint on reads of the inter­
rupt vector table.

HM * B 8 0 0 : 0 L2 W (0 , 1) ; HM 0 : 4 6C L2 W
(1 , !) clears breakpoints and then sets a breakpoint on

writes to memory at B800:0 for a length of 2 . When this write
occurs, the state advances to 1 , which enables the memory
breakpoint on writes to 0:46C for a length of 2. When this
breakpoint occurs, Periscope displays its screen.

HM 0 : 0 CS : 0 W sets a breakpoint on writes to memory
from the beginning of memory to the current code segment.

HM 1 0 & 0 0 0 0 FF&FFFF X sets a breakpoint on execu­
tion in extended memory from the one megabyte point up to
the 16 megabyte point.

Chapter 5 - Model IV Reference

5.2.8 Command: Hardware Port breakpoint (HP)

Syntax:

HP [<port > [<port >] I I O [B] [(s , t)]] [?]
[*] [+] [-] [• • •]

Description:

Use this command to set, display {?), clear {*), enable (+), or
disable (-) port breakpoints .

You can enter the breakpoints as a single port or as a range of
two ports, where each value must be from 0 to FFFF h,
and you may specify up to eight breakpoints . Indicate the type
of operation you want to break on with an I for In (port .
read) or an 0 for Out (port write) . Do not attempt to set port
breakpoints inside Periscope's port range.

Use the optional qualifier B to cause Periscope to capture
breakpoint events in the trace buffer and NOT stop execution.
Periscope automatically enables selective capture when you
use this parameter. Be sure to set another breakpoint to stop
your program's execution.

Use the optional argument (s , t) to set sequential triggers . s
is the start state, from 0 to 6, and t is the state moved to
when the breakpoint condition is true, from 0 to 6 or !
to cause a trigger. See Section 5 .2 .7 above for more details .

Examples:

HP 3 0 8 I sets a breakpoint on reads of port 308h.

HP 3 1 0 3 1F 0 sets a breakpoint on writes of ports from
3 1 0h to 3 1FH.

Chapter 5 - Model IV Reference Page 65

5.2.9 Command: display Hardware trace buffer (Hx)

Syntax:

Hx [*] [$] [!] [+] [#<number>] [< f i le>,]
where x is R, S, T, or U

Description:

Use this command to clear the hardware trace buffer (*); to
display the entire buffer from top to bottom (!) ; to force the
display of the full buffer, even when it's 'empty'(+); to dis­
play the buffer starting at a specific sequence number
(#<number>); to view the buffer starting where you were
the last time you viewed it ($); and to display a trace buffer
file (<f i le>) you previously created with the HW com­
mand.

When you use this command without an * or ! , you'll enter
an interactive, full-screen display mode, unless the buffer is
empty. To exit this mode, press the Esc key.

When you use the < f i 1 e> parameter, you must position it
as the last parameter on the command line.

Display Formats R, S, T, and U

Page 66

You can display the hardware trace buffer in four formats :
• Raw Mode, which shows all CPU events "as is"
• Single-entry Mode, which shows only the breakpoint

(trigger) event in Raw Mode format
• Trace Mode, which shows all CPU events, but disas­

sembles fetch operations into their instructions
• Unassembly Mode, which shows just disassembled in­

structions

Details on each of the formats follows.

Chapter 5 - Model IV Reference

Raw Mode. Use HR to display the real-time trace buffer in
a 'raw dump' format .

Each line of the display corresponds to one CPU event and
contains an address, data, an operation type, a symbol corre­
sponding to the address if available, the CPU cycle count
from the previous trace buffer record (in brackets), a se­
quence number, and possible other information.

See Figure 5-2 for a sample display. See also the section be­
low titled "Layout of the Trace Buffer Display" for a detailed
description of this format.

1 5 C 4 : 0 1 3 8 A1 0 0 1 7 E 8 Fetch START [0 8] - 0 7 8

1 5 C 4 : 0 1 3 C 1 08F 0 1 3 4 Fetch [0 2] - 0 7A

1 5 C 4 : 0 1 4 0 0 0 2 4 E 8 0 1 Fetch [0 2] - 0 7 9

1 5 C 4 : FFFC 0 1 3 8 Write [0 2] - 0 7 8

1 5 C 4 : 0 1 5 0 0 681 2 0CD Fetch DOSRET [0 2] - 0 7 7

1 5 C 4 : 0 1 5 4 8 8 0 0 0 2 8E Fetch SAMPLEi 4 5 [0 2] - 0 7 6

1 5 C 4 : 0 1 5 8 A3 E8 D3 0 4 Fetch [0 2] - 0 7 5

1 5C 4 : 0 1 5 C C8BC 0 1 3 4 Fetch [0 2] - 0 7 4

1 5 C 4 : 0 1 6 0 C3 2 B EBD3 Fetch SAMPLEi 5 2 [0 2] - 0 73

1 5 C 4 : 0 0 0 2 AO O O Read [03] - 0 7 2

1 5 C 4 : 0 1 6 4 C 3 0 1 3 6A3 Fetch SAMPLE i 5 4 [0 4] - 0 7 1

1 5 C 4 : 0 1 3 4 0 2 8 0 Writ e TOTMEM [0 3] - 0 7 0

1 5 C 4 : 0 1 6 8 89 2 0 8 0 5 0 Fetch CONVERT [0 2] - 0 6 F

1 5 C 4 : 0 1 6 C AAF3 0 0 0 3 Fetch [0 2] - 0 6E

1 5 C 4 : 0 13 6 0 2 2 9 Write FREMEM [0 5] - 0 6 0

1 5 C 4 : FFFC 0 1 3 8 Read [0 2] - 0 6C

Figure 5-2. Hardware Trace Buffer in Raw Format

Single-entry Mode. Use HS (with no parameters) to dis­
play the single CPU event that caused a hardware breakpoint.

The display output is identical to the raw mode format de­
scribed above.

Trace Mode. Use HT to display the hardware trace buffer
in a disassembly-and-data format .

Periscope disassembles code prefetches into one or more
lines . The disassembled lines show an address, the opcodes

Chapter 5 - Model IV Reference Page 67

making up the instruction, and the instruction itself, and/or
the source code line. Periscope decodes the address by the
rules described below under "Layout of the Trace Buffer
Display" . If an instruction matches a source line and DOS is
available, Periscope displays the source line. See the section
below titled "Analyzing and Examining the Trace Buffer" for
a discussion of Periscope's trace buffer analysis .

Periscope displays other CPU operations (read, write, in, out,
etc .) in the raw mode format described above.

See Figure 5-3 for a sample display.

2 9 : s t a rt : c a l l getmem get memory s i z e
1 5 C 4 : FFFC

4 4 :
4 5 :
4 6 :
4 8 :
4 9 :
5 1 :
5 2 :
5 3 '

1 5 C 4 : 0 0 0 2 AO O O
5 4 :
5 5 :

1 5 C 4 : 0 1 3 4
1 5 C 4 : 0 1 3 6 0 2 2 9
1 5 C 4 : FFFC

0 1 3 B Wri t e ,
mov c l , 6
mov s i , 2
mov ax , [s i]
shr ax , c l
mov t o tmem , ax
mov bx , cs
shr bx , cl
sub ax , bx

Read
mov f remem, ax
ret

0 2 8 0 Write TOTMEM
Wri t e FREMEM

0 1 3 B Read

[13] - 0 7 8
shi ft count
point t o top of memory in pap
get to t op of memory
conve rt t o KB
and save t o t a l memory
get current segment
convert to KB
subt ract f rom t o t a l memory to get

[OE] - 0 7 2
; f ree memory

[0 7] - 0 7 0
[0 9] - 0 60
[0 2] - 0 6 C

Figure 5-3. Hardware Trace Buffer in Trace Format

Page 68

Unassembly Mode. Use HU to display the hardware trace
buffer in a disassembly-only format .

Periscope disassembles code prefetches in the trace mode
format described above. It does not display any other CPU
operations (read, write, in, out, etc.) .

See Figure 5-4 for a sample display.

Chapter 5 - Model IV Reference

2 9 start c a l l getmem
4 4 mov c l , 6

get memory s i z e
shi ft count

4 5 mov s i , 2
4 6 mov ax , [s i]

point t o top o f memory i n psp
get top o f memory

4 8 shr a x , c l
4 9 mov totmem , ax
5 1 mov bx , c s
5 2 shr bx , cl

convert to KB
and save t o t a l memory
get current segment
convert t o KB

5 3 sub ax , bx
5 4 mov f remem, ax

subt ract f rom t o t a l memory to get
free memory

5 5 ret

Figure 5-4. Hardware Trace Buffer in Unassembly Format

Layout of the Trace Buffer Display

For the trace and unassembly mode formats (see Figures 5-3
and 5-4), Periscope disassembles prefetch operations and
displays an address, opcodes, and an instruction on each line.
You'll see symbols and/or source whenever possible. In trace
mode it displays CPU operations other than prefetches in the
raw mode format described below.

The raw mode format of the trace buffer display (see Figure
5-2) contains six fields :
• Address
• Data
• Operation
• Cycle count
• Sequence number
• Periscope ID (when applicable)

Address Field. Periscope displays the address in one of four
formats :
• a segmented address (the segment, a colon, and the off-

set), or
• a four-digit port number, or
• a five-digit non-segmented address, or
• an eight-digit absolute physical address (four digits, an

ampersand, and four digits)

Periscope displays the segmented address for code and data
references when it can decode the address into one of the fol­
lowing segments :
• User-specified segment (use the S <segment > com­

mand while viewing the trace buffer)

Chapter 5 - Model IV Reference Page 69

Page 70

• AOOO, BOOO, COOO, DOOO, EOOO, or FOOO (BIOS seg­
ments)

• RUN's last PSP segment
• Current derived segment calculated from RETF and

IRET instructions
• Periscope's segment
• DOS ' s segment

Periscope displays the jive-digit non-segmented address
when it is unable to decode the segment for memory in the
first megabyte into one of the above values . It uses the four­
digit port number for I/0 port access . It displays an eight­
digit absolute address for addresses above one megabyte.

Data Field. Depending on the CPU you 're using and its
method of memory access, the data field may be a byte, word,
three-byte, or doubleword. See Tables 5- l and 5-2 for more
information on the possible data types. The data is up to four
bytes, from high to low, in fixed columns . The address is for
the lowest (rightmost) byte of the data.

Operation Field. The possible operations are :
• Fetch (code prefetch)
• Halt (CPU halt)
• In (I/0 port read)
• Int Ack (interrupt acknowledge)
• Out (I/0 port write)
• Probe (the probe line is high)
• Read (memory read, not including code prefetch)
• Cycle (cycle count overflow record generated by HC

C+)
• Write (memory write)
• Void (invalid trace buffer record)

All operations except Probe are mutually exclusive . A
symbol name may follow the operation if the address indi­
cates a symbol. If the operation uses an interrupt vector as its
address, INT XX will follow the operation. If the operation
is a read, write, in or out of a byte value in the ASCII range,
the ASCII character appears in quotes after the operation . On
80486 systems, the word Burst follows the Fetch or
Read operation for burst reads .

Chapter 5 - Model IV Reference

Cycle Count Field . The cycle count is the total number of
CPU cycles that have occurred since the previous trace buffer
operation. Periscope shows the cycle count as two, four, or
five hex digits in brackets . If it finds an illegal value, it dis­
plays ? after the value. (If you see an illegal value, please
call Technical Support.) You may see a plus sign following
the cycle count on overflow records . This legitimately hap­
pens when too many CPU cycles occur between trace buffer
records and the cycle count capture control is disabled (HC
c-) .
The 8-bit cycle count field holds up to 127 cycles per trace
buffer record, enough for most continuously captured in­
structions . If you're using selective capture and want to count
the CPU cycles between events, tum cycle capture on with
HC C+ to force the capturing of cycle records . The resulting
records have an operation type of Cycle apd are displayed
only in HR mode. i

To count the cycles from one point in the trac1e buffer to an­
other, position the first item at the top of the 4isplay and then
enter # and a sequence number or a search command to
move to the second item. (See the section below titled Trace
Buffer Commands .) You'll see the accumulat¢d cycle count
in the cycle count field in hex. i

In HT mode, Periscope does not display cycJe records . It ac­
cumulates cycle counts and displays them on 1:he next non-
cycle record.

·

To convert CPU cycle counts to time, use Ta�le 5-3 .

Chapter 5 - Model IV Reference Page 71

Page 72

C PU S PEED TIME PER CYCLE

(MHZ) (ns l

8 1 2 5
1 0 1 0 0

1 2 . 5 8 0

1 6 6 2 . 5
2 0 s o
2 5 4 0

3 3 3 0

4 0 2 5
5 0 2 0
6 6 1 5

Table 5-3. Cycle Time by CPU Speed

Sequence Number Field. The sequence number (in hex) may
be from -3FFE to +3FFE, depending on the trigger location.
(See Table 5-4 for specific sequence number ranges for the
various trigger locations .) Notice that the center trigger cap­
tures half the buffer length after the trigger event before
stopping.

BOTTOM TRI GGER CENTER TRI GGER TOP TRI GGER

- 3 FFE TO 0 - 1 FFF TO 0 TO + 1 FFF 0 TO 3 FFE

Table 5-4. Trace Buffer Sequence Ranges

Top displays after the sequence number of the first entry in
the buffer. End or Bot tom displays after the sequence
number of the last entry in the buffer. A sequence number of
zero indicates the trigger (breakpoint) event.

Periscope ID Field. If the address is within Periscope's
code/data area, Periscope displays PS to identify the
code/data as its own. You may see these PS entries at the
beginning and end of the trace buffer. They show where Peri­
scope turned control over to the application and regained
control from the application.

Chapter 5 - Model IV Reference

Analyzing and Examining the Trace Buffer

Key Usage. When you display the trace buffer in the full­
screen, interactive mode (not using * or !), you can use
the Home, End, Up, Dn, PgUp, PgDn, Left Arrow, Shift­
Up and Shift-Down keys to move around in the buffer.

Press the Home key to get to the top of the buffer. Press the
End key to get to the bottom of the buffer.

Use the Up and Dn keys to move up or down by one line. Use
the PgUp key to move up one screen and the PgDn key to
move down one screen.

Press the Left Arrow key to get to the center of the buffer
(actually, 8K from the end of the buffer) . Use Shift-Up and
Shift-Down to move up and down in the buffer by 80h (1 28)
records .

Press Esc to exit.

Flushing unexecuted instructions. The first time you view
the trace buffer in trace (HT) or unassembly (HU) mode for­
mat, Periscope analyses the entire trace buffer to determine
what code was actually executed. This analysis can take up to
a minute or more for a complex 1 6K trace buffer. You can
view the buffer while the analysis is taking place, but move­
ment in the buffer may be slower than normal and the display
may change once the analysis is complete. Periscope does not
accumulate CPU cycle counts while the analysis is running.

Even though code has been fetched by the processor, there is
no absolute method oftelling whether the code was actually
executed. Periscope attempts to infer the execution of code in
the buffer during the analysis described above. When it finds
an unconditional JMP, CALL, RET, RETF, INT, or IRET
instruction, it "flushes" the buffer since it knows the instruc­
tions in the buffer after the unconditional instruction were not
executed. To improve readability, Periscope displays a blank
line after any instruction that causes a change in program
flow. ·

Chapter 5 - Model IV Reference Page 73

Page 74

Periscope cannot always correctly detennine whether a con­
ditional jump was taken, nor can it always detennine the cor­
rect execution at the top and bottom of the buffer since it may
need information outside the buffer to make the determina­
tion. When you see the message Skip=x on the right side
of the screen, · you know that Periscope is not sure it has made
the correct determination. It displays the message to remind
you that you can force the desired start byte with the trace
buffer commands 0, 1, 2 , 3 , and X described below un­
der Trace Buffer Commands . You can use the Skip command
to correctly display any instructions that Periscope flushed
because it incorrectly detennined that they were not executed.

You'll see memory and port accesses (read, write, in, or out)
one or more lines after the instruction that performed them.
These memory and port accesses may be the only way you
can detennine for sure that an instruction was executed.

Use HA * to clear the trace buffer analysis information and
force Periscope to perform the analysis again the next time
you use HT or HU.

Each time you display a saved trace buffer file (using the
< f i l e> parameter), Periscope analyzes it. Use the $ pa­
rameter to keep Periscope from re-analyzing a file it has pre­
viously analyzed. This works only if you have not used a G,
J, or T command since Periscope analyzed the file.

486 Burst Mode. The word Burst may follow Fetch
and Read operations on an 80486 system when Periscope
can deduce the burst addresses . When Periscope cannot de­
tennine burst addresses because the base record it needs is
not present in the trace buffer, it instead displays Vo id ,

Burst in HR mode. It does not display these entries in
HT and HU modes . See Section 5 .2 .7 on page 6 1 for more
information.

Register contents. Register information is not explicitly
available in the hardware trace buffer, but you can deduce
register values . Look at the results of MOV instructions and
implicit or explicit PUSHes and POPs, such as when an INT
or IRET instruction is executed. You can often deduce the DS

Chapter 5 - Model IV Reference

and ES registers from instructions that manipulate memory,
etc .

COMMAND DESCRIPTION

/A <address > l < range > Search for Addre s s

/ D <by t e > <by t e > <by t e > <by t e > Search for Dat a

I F < type > Fi l t e r Type

I T < type > Search for Type

0 Skip 0 byt e s for f i r s t
ins t ru c t i on

1 Skip 1 byt e for f i rs t
inst ruc t i on

2 Skip 2 byt e s for f i r s t
inst ruc t i on

3 Skip 3 byt e s for f i r s t
inst ruc t i on

X Restore skip s t a t e to ini t i a l
val u e

u Toggl e dupl i cat e di spl ay
(sour c e & ass embly)

* Toggl e flushed pre f e t ch
di splay

c Togg l e cyc l e count display

E Toggl e ext ended memory display

F <addr e s s > <addr e s s > Fixup addr e s s

s < s e gment > Add S e gment t o l i s t

s - < s egment > Remove Segment from l i s t

S.+ Enabl e Segment de coding

s- Di sabl e S e gment de coding

II <number> Move t o r ecord

J <number> Jump t o bookmark

P <number> Place a bookmark

A

B

R
T

u

u s e A s m mode

use Both mode

use HR d i splay

use HT display

use H U display

Table 5-5. Summary of Model IV Trace Buffer Commands

Trace Buffer Commands. While you are using the HR, HT,
or HU commands, you can enter ? to display help on the
functions available, or press Alt-M or FlO to activate the
menu system. Use the trace buffer commands shown in Table
5-5 and described below to control the display of and to
search through the trace buffer.

Chapter 5 - Model IV Reference Page 75

• To switch from one buffer display mode to another,
press R (Raw), T (Trace), or U (Unassembly) . To
switch to Assembly-only mode (like the UA command),
press A. To switch to Both mode (like the UB com-
mand), press B. To toggle between source-only and

�

mixed (source and assembly) modes, press the double
quote (") . The default is mixed mode.

• To move to a specific location in the buffer, enter #
followed by the sequence number. The sequence number
must be from - 3 FFE to +3 FFE. Any value outside
this range is ANDed with 3FFFh.

• To move to a previously marked location, enter J fol-
lowed by a 'bookmark' number. The bookmark number
can be from 0 to 9 . You assign bookmarks (place
markers) on locations you may want to return to, then use
the P command to return to them.

• To toggle the CPU cycle count display on and off
(default) for disassembled lines, press the letter C.
When you use this mode, the cycle count allocation is not
exact since the cycle count is for the fetch of memory,
which occurs before the instruction is executed. Also, �

since a source line may overlap the cycle count field, you
may need to use the assembly-only mode to avoid con-
flicts .

• To toggle the display of extended memory on (default)
and off, press the letter E. When the toggle is off, Peri-
scope does not display memory beyond one megabyte (an
address of 00 1 0&0000 or higher) . You may want to tog-
gle E off if you're using your Model IV with a memory
manager such as 386MAX or QEMM. This will suppress
CPU events for the memory manager's access to extended
memory, which occurs frequently.

• To toggle the display of flushed instructions on and off
(default in HT or HU mode), enter an asterisk (*) .
When you enter an asterisk, Periscope displays flushed
instructions preceded by an asterisk, and it displays an
asterisk instead of the usual colon after the line number. -'�

• When it ·analyzes the trace buffer, Periscope deduces the
segments used by the instruction stream both for code and
data. It saves those segments in a list that it uses for de-
coding when you display the buffer. To add a segment to
Periscope's segment list, enter S < s egment >. To

Page 76 Chapter 5 - Model IV Reference

I

remove a segment from the list, enter S ­
<segment >. To disable segment decoding so that no
segments are displayed, enter S - . To enable segment
decoding, enter S+ .

• When the prefetch queue is flushed on 80386 systems,
the next prefetch always starts at a doubleword boundary,
regardless of where the instruction actually starts . This
feature of the 80386 can confuse things, since Periscope
tries to disassemble memory starting at the first byte, and
the instruction may actually start at the first, second,
third, or fourth bytes . To manually control the start byte
for the first instruction shown in the trace buffer dis­
play, enter a number from 0 to 3 to tell Periscope to
skip that number of bytes for the first instruction only.
(Only 0 and 1 are valid on an 80386SX CPU.) After
the first instruction, Periscope tracks instructions such as
CALL, JMP, RET, RETF, INT, and IRET, and auto­
matically skips the correct number of bytes each time the
prefetch queue is flushed. It may not correctly track
JMPs to registers (e.g. JMP AX), LOOPs or conditional
JMPs. To return to the starting state or to mark an in­
struction as executed when Periscope thinks it was not
executed, enter X.

• To ''fzxup " an address, enter F <addres s >
<addres s >, where the first address is the address that
is to be replaced and the second address is the address
that the first address is to be replaced by. The second ad­
dress must be less than the first address . For example, F
DO 0 0 : 0 3 0 0 0 : 0 fixes up the address DOOO:O to be
displayed as 3000:0 and also makes the same relative
fixup for any address greater than or equal to 0000:0 .
You can use this command to fixup addresses beyond one
megabyte, which Periscope displays as 8-digit absolute
addresses, too. For example, entering F 12 &3 4 5 6
FOO fixes up 12&3456 to the address of the symbol
FOO.

• To searchfor an address, enter /A <addres s >.
To search for a range of addresses, enter /A
<range>. If you're searching for references to
BOOO: 1 , remember that a word access to BOOO:O would
have accessed BOOO: 1 , but would show in the trace buffer
as BOOO:O . If you get an unexpected hit when searching in

Chapter 5 - Model IV Reference Page 77

Page 78

HT or HU mode, switch to HR mode to see the record
that the match occurred on. To search for addresses be­
yond one megabyte, enter the absolute form of the ad­
dress, xxxx&xx.xx.

• To search for data values on an 80386 or 80486 sys­
tem, enter /D <byte> <byte> <byte> <byte>
. For wildcard bytes enter a question mark. On an
80386SX system, enter just the first two byte fields .

• To filter for (display only) records of a single operation
type, enter / F x , where x is A (int Ack), H (CPU
Halt), I (In), 0 (Out), P (Probe bit on), R
(memory Read), W (memory Write), or X (code pre­
fetch) . This command forces HR mode. You cannot fil­
ter on cycle count or void records . Using the type search
(below) cancels any filtering.

• To search for an operation type, enter /T x, where
x is A (int Ack), H (CPU Halt), I (In), 0 (Out),
P (Probe bit on}, R (memory Read), W (memory
Write), or X (code prefetch) . The buffer search starts at
the second line from the top ofthe screen. You cannot
search for cycle count or void records .

Examples:

HR displays the last page of the trace buffer in raw mode.

HR * clears the hardware trace buffer.

HR PSBUF . DAT reads the file PSBUF.DAT for the trace
buffer information.

GH ; HS enables hardware breakpoints and displays the
breakpoint event from the hardware trace buffer after a hard­
ware breakpoint occurs.

HT displays the last page of the hardware trace buffer in
mixed mode.

HT * clears the hardware trace buffer.

Chapter 5 - Model IV Reference

CtrJ.-P then HT
printer.

dumps the entire trace buffer to the

HT $ displays the trace buffer starting at the same point
you were the last time you used HT.

Ctrl-P and HU ! # - 2 0 0 dumps the trace buffer starting
at sequence number -200 to the printer.

Chapter 5 - Model IV Reference Page 79

5.2.10 Command: Hardware Write (HW)

Page 80

Syntax:

HW < f i le> or HW A : or HW B

Description

Use this command to save the contents of the hardware trace
buffer to a disk file or to a floppy disk. You can then view the
saved trace buffer with the HR., HT, and HU commands.

When you enter HW < f i l e>, Periscope uses DOS to
write the < f i l e>. Table 5-6 shows the file size and track
usage for the 1 6K trace buffer.

TRACE BUFFER S I ZE F I LE S I Z E TRACKS USED

1 6K 1 6 3 , 8 5 0 2 7 - 3 7 on head 0 and

8 - 3 7 on head 1

Table 5-6. Trace Buffer File Size and Track Usage

HW A : and HW B : use BIOS calls only (INT 1 3h) and
therefore do not require DOS to be available. Before you en­
ter this command, place a blank formatted floppy disk in the
specified drive (A : or B :) . Periscope uses the tracks shown
in Table 5-6. This method does not use the DOS directory, so
it may partially or totally overwrite any existing files ! To
create a DOS-readable buffer file (PSBUF.DAT) from the
floppy disk file, run PS4TEST with /WA or /WB options
after you return to the DOS prompt.

Examples :

HW PSBUF . DAT saves the current contents of the hard­
ware trace buffer to the file PSBUF.DA T. To view the saved
trace buffer, enter HT PSBUF . DAT

If DOS is busy, place a formatted disk in drive A and enter
HW A : . Then get to the DOS prompt and enter PS4TEST

Chapter 5 - Model IV Reference

�

/WA Get back into Periscope and enter HT PSBUF . DAT
to display the trace buffer.

Chapter 5 - Model IV Reference Page 81

5.2.1 1 Command: toggle internal 486 cache (/4)

Page 82

Syntax:

/ 4

Description:

Use this command to enable or disable the cache that is an
integral part of the 80486 chip . When the internal 486 cache
is enabled, the hardware trace buffer display is generally un­
intelligible because there may not be any corresponding mem­
ory reads or fetches at the pins of the CPU where Periscope
can see them. This is not a problem on 80386 systems since
all cache on these systems is external to the CPU.

Examples :

I 4 changes the state ofthe interna1 486 cache, i .e . , if it was
enabled, it will be disabled and vice versa.

Chapter 5 - Model IV Reference

c H A p T E R s X

Tips on

Using Model
IV

• Tracking Program Flow
• Examining the Trace Buffer After a Crash
• Debugging the Power-on Startup Tests (POST)
• Capturing Specific Code
• Detecting Hardware Interrupts
• General Tips
• Hardware Breakpoint Exam pies

This chapter gives you some practical information on using
Model IV to debug in various situations .

Page 83

6. 1 TRACKING PROGRAM FLOW
If you're debugging a complex program and need to get a
high-level overview of the program's flow, embed writes of
unique values that indicate where you are in the program to a
dummy memory location or 1/0 port. Then set the Model IV
board to selectively capture writes to the memory or 1/0 port
that you've used.

Using this technique, you can more readily track the flow of
the program. Also, if you want to set a breakpoint on the exe­
cution of a particular location, you can set a hardware break­
point on the write of the memory or port, qualified by the
unique data value written at that location.

For example, assume we're using a dummy 110 port of F3 1 0
and outputting values ranging from 0 to 3 F at various points
in the program. To capture the next l OOh outs to that port and
nothing else, use the following commands:

HA *
HC # 1 0 0 S+
HP F3 1 0 0
GH

To capture the location where the value 30h is being written
to the port in the center of the trace buffer, use the following
commands :

HA *
HC TC
HP F3 1 0 0
HD LB 3 0 3 0
GH

6.2 EXAMINING THE TRACE BUFFER AFTER A
CRASH

Page 84

If you're debugging a program that crashes the system, you'll
find that in many cases an exception interrupt will activate
Periscope. From there, you can look in the real-time trace
buffer to see what lead up to the exception.

Chapter 6 - Tips on Using Model IV

In some cases, the system may have executed meaningless,
but legal instructions for the full depth of the buffer, leaving
you with nothing to indicate where tipngs went awry. If this
happens, try filling unused memory with FF' s which will
cause an exception when executed. Or try setting a hardware
breakpoint on an event you see near the top of the trace
buffer.

If the system is so far gone that Periscope can't come up, all
is not lost. Install the Model IV on a system that has a reset
switch. Then after the crash, do the following:
• Press the break-out switch to stop the trace buffer (it will

also stop if it reaches a hardware breakpoint) .
• Press the reset switch to reboot the system without turn­

ing the power off.
• While the system is booting, press the Alt and Ctrl keys

to keep Periscope from reloading and destroying the state
of the trace buffer.

• Run PS4TEST /W to save the trace buffer to the file
PSBUF.DAT.

• Load Periscope normally and use the HT PSBUF . DAT
command to view the saved trace buffer.

6.3 DEBUGGING THE POWER-ON STARTUP
TESTS (POST)

To debug the POST sequence, set Model IV up for passive
remote mode and then do the following:
• Boot both host and target systems, then load Periscope on

the host.
• Enter HC TT to force the trigger (breakpoint) event to

the top of the trace buffer.
• Enter HM FFFF : 0 Ll X ; GH to set a breakpoint on

a fetch of the last paragraph in the first megabyte, then to
go with breakpoints set.

• When the breakpoint occurs, do a long boot on the target
system using Periscope' s QL command or equivalent.

6.4 CAPTURING SPECIFIC CODE
In many situations, you may want to capture everything that
occurs from one point in your program to another, but not

Chapter 6 -Tips on Using Model IV Page 85

capture anything that occurs as a result of any other code
execution. The easiest way to do this is to embed a unique
event at the beginning and end of the code stream that you
want to monitor. Use of a dummy 110 port read event is both
easily added to the code and guaranteed (assuming you
choose a good 110 port) to be unique. Note that use ofa code .
fetch event may not be an ideal choice because of the prefetch
queue.

You can set up hardware breakpoints to change from state 0
to state 1 at the beginning of the code stream and change from
state 1 to state 0 at the end of the code stream. Then set the
hardware controls so that nothing is captured in the hardware
trace buffer while in state 0 and issue the GH command to
start execution. You'll have to manually stop Periscope, using
the break-out switch or hotkeys, but nothing except the de­
sired code stream (and its 110 and memory activity) will be
captured in the trace buffer.

For example, assume you want to capture execution from
point A to point B in your code and that you have an In from
port 1234h at point A and an In from port 1235h at point B.
You'd enter the following commands to capture just the exe­
cution of code from point A to point B:

HP 12 3 4 I (0 , 1)
HP 12 3 5 I (1 , 0)
HC XO
GH

6.5 DETECTING HARDWARE I NTERRUPTS

Page 86

When a hardware interrupt occurs, it is preceded by two in­
terrupt acknowledge cycles . On 803 86 and higher systems,
the second cycle indicates the hardware interrupt number in
the low byte. You can use it to selectively capture hardware
interrupts, which will give you a high-level overview of the
interrupt sequence in your system. To set a breakpoint on this
interrupt acknowledge cycle use the following command:

HM 0 : 0 L1 A

Chapter 6 - Tips on Using Model IV

Note that the address of the first Int Ack cycle is 0:4 and the
second, useful one is 0:0 .

6.6 GENERAL TIPS

Bus Compatibility. Since Model IV gets all of its operational
signals from the CPU, it is not sensitive to bus compatibility
issues However, Model IV has no access to DMA (direct
memory access) signals so you cannot set breakpoints on
DMA events or capture them in the trace buffer. This means
that Model IV cannot detect memory modified by DMA.

Data Breakpoints. Setting data breakpoints can be tricky,
since Model IV sees everything from the perspective of the
CPU. See Section 5 .2 .6 on page 56 for more information.

Breakpoint Overrun. A phenomenon called breakpoint over­
run occurs with all hardware breakpoint devices . Between the
time a breakpoint occurs and the time NMI stops the proces­
sor, the processor executes one or more instructions . When
you view the trace buffer with the HR or HS command,
the CPU event shown with a sequence number of zero is the
one that caused the breakpoint to occur. The HT and HU
commands show the instructions being executed or about to
be executed when the breakpoint occurred. In any event, ex­
pect that several instructions (which do not show up in the
trace buffer) will be executed after the breakpoint occurred.
For this reason, it is pointless to set a hardware breakpoint
watching for an instruction that overwrites the NMI vector.
(Use Periscope/EM's BM command for this job.)

On 80386 and 80486 systems, the breakpoint overrun may be
up to six instructions, although it is usually two to four in­
structions .

Rebooting. Don't reboot the system using Ctrl-Ait-Del when
the board is armed (i .e . , when you've entered a GH or a GM
command). If a breakpoint occurs during the boot, your sys­
tem may hang. Press the break-out switch to go into Peri­
scope and use any exit other than GH or GM to disarm the
board.

Chapter 6 -Tips on Using Model IV Page 87

386 and 486 Prefetch. On 80386 and 80486 systems, code
prefetch cycles always start at a doubleword boundary (an
address evenly divisible by four) . If you set a fetch breakpoint
at an address that is not on a doubleword boundary, Model IV
adjusts the address to the next lower doubleword boundary.

Different CPUs have different prefetch queue lengths. In our
testing, we've seen 8 -, 12-, 1 6-, and 32-byte prefetch queues.
To determine the length of the prefetch queue on your system,
enter RUN with no arguments, then use the in-line assembler
to assemble a JMP 1 0 0 instruction. Let this infinite loop
execute for a second, then press the break-out switch to get
into Periscope. Now enter HR to see the trace buffer in raw
mode format. Count the number of bytes that are fetched
starting at CS : 1 00 to get the minimum size of the prefetch
queue. Instructions that do more work, such as multiply, can
create a longer prefetch queue.

6.7 HARDWARE BREAKPOINT EXAMPLES

Page 88

• To break in BIOS, enter HM * FO 0 0 : xxxx L1 ; GH
where xxxx is the desired IP in ROM. This traps on a
prefetch of the specified location, usually stopping when
the instruction is about to be executed. On an 80386 or
higher system, you can also use Periscope's BD com­
mand to take advantage of the 80386 debug registers .

• To trap set cursor calls, enter HM 0 : 1 0 * 4 L4 R ; BR
AH EQ 1 ; GM. This traps access to the video interrupt
(INT l Oh) and then tests register AH. If the register
equals one, Periscope displays its screen, otherwise it re­
sumes full-speed execution.

• To trap writes to interrupt vectors by your program, enter
HM 0 : 0 0 : 3 FF W; BR C S EQ CS ; GM.

• If you suspect your program is underflowing its stack,
enter HM S S : 0 L3 W; GH to trap writes to the bot­
tom of the stack, assuming that the lower boundary of the
stack is at SS:O .

• To monitor interrupt vector reads, enter HM * 0 : 0
3 FF R and then GH ; HS .

• To set a hardware breakpoint on 803 86 shutdown, enter
HM 0 : 0 L1 H . To set a breakpoint on a halt, enter
HM 0 : 2 L1 H .

Chapter 6 _, Tips o n Using Model IV

• To trap an overrun error on COM1, watch for a read of
port 3FDh with bit 1 on. The Model IV commands to do
this are: HP 3 FD I ; HB MB xxxx xxlx ; GH
This sets a breakpoint on a read of port 3FD and a bit
breakpoint on the mid byte when bit 1 is on.

Chapter 6 --'Tips on Using Model IV Page 89

.
Page 90 Chapter 6 - Tips on Using Model IV

A p p E N D X A

Model IV
Messages

You'll find details on the error messages specific to Model
IV in this chapter. (Most are generated by the diagnostics
program, PS4TEST.) See the Periscope manual for all

other messages displayed by Periscope/EM and Periscope/32 . See ,

the Pop Up Periscope manual for all messages displayed by
PopUp Periscope.

Page 91

39-lnvalid HM/HP settings
An invalid sequential trigger state was used with the HM or
HP command. Valid state numbers are from 0 to 6 (when
you use HC TT, the upper limit is 5) . Also, any true state
must be used as a current state.

67-Unable to read trace buffer -- run PS4TEST
Periscope was unable to read the hardware trace buffer.
Check the items listed under the description of PS4TEST in
Section 3 .3 . 1 0 on page 3 1 and try again.

This error may also show a message of the form Error
segment : xxxx , Error code y, where y may
be one of the following:

0 - start state for confidence test
1 - more than 32 entries found in confidence test
2 - zero entries found in confidence test
3 - matching record is not a word or dword
4 - no matching records found in confidence test

76--Periscope Model IV board not found
Check the installation of the Model IV board. It is likely that
the base 110 port is not set to the default of 300h or that the
port specified with the I P : nnn installation option does not
match the port used by the board.

400 through 408
These errors indicate a potentially serious diagnostic failure.
Check the items listed under the description of PS4TEST in
Section 3 . 3 . 1 0 on page 3 1 and try again. If errors persist, call
Technical Support.

409-Invalid option
An invalid command-line option was used. Enter PS4TEST
? to display the valid options .

410--Unable to write PSBUF.DAT

Page 92

An error occurred writing the hardware trace buffer to disk.
Check the disk and command-line options used, and try again.

Appendix A - Model IV Messages

41 1-Unable to read diskette
PS4TEST was unable to read the saved trace buffer from a
floppy disk. Check the disk and try again.

413-Break-out switch failed
The break-out switch test failed. Check the items listed under
the description of PS4TEST in Section 3 .3 . 1 0 on page 3 1 and
try again. If errors persist, call Technical Support.

414-Periscope Model IV board not found
Check the installation of the Model IV board. It is likely that
the base 1/0 port is not set to the default of 300h or that the
port specified with the I P : nnn installation option does not
match the port used by the board.

Appendix A - Model IV Messages Page 93

Page 94 Appendix A - Model IV Messages

A p p E N 0 X 8

Glossary

The terms in this glossary apply to hardware-assisted debugging
in general and the Periscope Model IV hardware in particular.
If you encounter terms in this manual or in the PopUp Peri­

scope manual that are not defined here and that you do not under­
stand, please call Technical Support for assistance.

Page 95

386 or 80386DX

The Intel x86 CPU introduced after the 286. This CPU runs
at speeds from 1 6MHz to 33MHz.

386EX or 80386EX

The 386EX is a highly-integrated version of the 386SX, with
many features that previously required external circuitry built
into the chip . Although it can operate at voltages other than
5V, Model IV's support (in the Embedded Periscope prod­
ucts) is currently limited to 5V.

386SX or 80386SX

This CPU is similar to the 3 86, but has a 1 6-bit (instead of a
32-bit) data path. It is popular in lower-cost 386 systems .
Model IV supports this chip at speeds up to 25MHz.

386EX Adapter or 80386EX Adapter

This Model IV adapter converts the 1 32-pin Plastic Quad
Flat Pack (PQFP) 80386EX chip, which is typically surface­
mounted, into an 80386DX Pin Grid Array (PGA) connector
so that you can use a 386 pod. This adapter is part of the
Embedded Periscope product line.

386SX Adapter or 80386SX Adapter

This Model IV adapter converts the I 00-pin Plastic Quad
Flat Pack (PQFP) 80386SX chip, which is typically surface­
mounted, into an 80386DX Pin Grid Array (PGA) connector
so that you can use a 386 pod.

486 or 80486DX

Page 96

The Intel x86 CPU introduced after the 386 . This CPU runs
at speeds of 25, 33 and 50MHz. Model IV supports the chip
at 25MHz and 33MHz, but does not support it at 50MHz.

Appendix B - Glossary

486DX2 or 80486DX2

This CPU runs at speeds of 25MHz or 33MHz externally,
and at speeds of 50MHz or 66MHz internally. Model IV
supports this chip, since the external speed (at the pins of the
CPU) is the speed that matters with Model IV.

486DX4 or 80486DX4

This CPU runs at speeds of 25MHz or 33MHz externally,
and at speeds of 75MHz or l OOMHz internally. Model IV
supports this chip, since the external speed (at the pins of the
CPU) is the speed that matters with Model IV.

486SX or 80486SX

This CPU is like a 486DX with a numeric coprocessor built
in. The Model IV hardware supports the PGA version of this
chip at external speeds up to 33MHz.

486SX2 or 80486SX2

This CPU is a 486SX which runs at clock-doubled speeds
internally. The Model IV hardware supports the PGA version
of this chip at external speeds up to 33MHz.

Active Remote Mode

To run in active remote mode, install the Periscope Model IV
board and Periscope/EM or Periscope/32 debugger software
on the host system, install a Periscope Model IV pod and
Periscope remote software (for DOS, Windows, OS/2, etc.)
on the target system (where the program you want to debug
runs), then connect the host and target systems with a null
modem cable.

Break-out switch

The push-button switch that is included with all Periscope
debuggers . It generates the non-maskable interrupt (NMI, aka
INT 2) signal, which activates the debugger software. Use the
break-out switch to recover from system crashes or to simply

Appendix B - Glossary Page 97

stop your program and enter the debugger.

Breakpoint

The point in a program where you wish to stop and examine
the state of the system. Think of it as "take a Break when you
get to this Point". There are various types of breakpoints,
some implemented in software, others in hardware. See also
Hardware Breakpoints and Software Breakpoints .

Breakpoint Overrun

This term refers to the instructions that are executed during
the time it takes the CPU to stop after a hardware breakpoint
occurs . On 386 and later systems, the breakpoint overrun is
usually two to four instructions .

BS-16 Memory

The 386 and later CPUs can be connected to both 1 6-bit and
32-bit data busses . For performance reasons, most systems
use 32-bit memory for all address ranges . However, some
systems use 1 6-bit memory in the ROM region (AOOO:O to
FOOO:FFFF), which is referred to as BS-1 6 memory. 386SX
systems contain only BS- 16 memory. On these systems, set­
ting data breakpoints with Model IV can be difficult, due to
the remapping of data values .

Burst Mode

Cache

Page 98

The 486 CPU uses burst mode to fetch instructions and read
memory quickly in 16-byte (paragraph) chunks. In burst
mode, not all addresses actually appear at the pins of the
CPU; the missing addresses must be deduced by following an
Intel-defined set of rules . Instead of the normal address then
data sequence four times, burst mode returns an address and
then four data values. The addresses of the last three data
values must be deduced from the starting address .

The 486 CPU has an internal cache that you can enable or

Appendix B - Glossary

CPU

disable. When you enable the internal cache, the Model IV
hardware trace buffer display is not generally meaningful be­
cause not all information is available to Model IV. This
problem is solved when you disable the internal 486 cache.

Caches external to the pins of the CPU are never a problem,
since Model IV watches the systcrm from the pins of the CPU.
Since 386-based systems have n6 internal cache, there is
never a cache-related problem on these systems.

An acronym for Central Processing Unit. In the PC family,
this refers to the 8088, 80286, 80386, 80486, Pentium, etc . ,
chips .

CPU Event

The most basic CPU activity, such as a memory read, write,
or instruction fetch, or a port read or write. By default, each
CPU event is captured in the Model IV trace buffer as an 80-
bit wide "record" that includes a 32-bit address; 32-bit data;
4-bit byte enable signal; 8-bit CPU cycle count; 3-bit status
(interrupt acknowledge, I/0 read, I/0 write, code prefetch,
CPU halt, memory read, or memory write) ; and a probe bit.
Periscope Model IV collects these events in real-time (i .e . ,
with no system slowdown) in its hardware trace buffer, which
can hold up to 16,384 events .

Cycle Count

The count of CPU clock cycles since the previous trace buffer
event. Use this information to calculate the time it took a se­
ries of events to execute. For example, on a 33MHz system,
each clock cycle is 30 nanoseconds, so you can multiply the
total number of cycles shown in the trace buffer for a series
of events times 30 nanoseconds to determine the execution
time for those events .

See Table 5-3 on page 72 for more information.

Appendix B - Glossary Page 99

Debug Registers

Starting with the Intel 386 processors, the CPU supports four
debug registers that allow software debuggers to provide real­
time breakpoints on reads, writes, and execution of memory
from one to four bytes in length.

Direct Memory Access (DMA)

EISA

DMA is memory reads and writes that are performed by a
processor other than the CPU. Since Model IV watches the
system from the perspective of the pins of the CPU, you can­
not use it to set breakpoints on DMA events . Generally,
you'll need to use a bus-based device to debug DMA prob­
lems .

This acronym stands for Extended Industry Standard Archi­
tecture. It is a 32-bit extension of the original ISA bus .

EM Memory

Halt

The write-protected, extended memory above one megabyte
that Periscope/EM can run in when you are running it with a
supporting memory manager. Periscope/EM uses no low­
DOS memory and only 32-36K in high-DOS memory when
the EM feature is used.

This is one of the states of the CPU. It is invoked with a halt
(HL T) instruction. Once the Halt state is invoked, program
execution stops until a hardware interrupt, NMI, or reset oc­
curs .

Hardware Breakpoints

Page 1 00

Breakpoints (see Breakpoint) implemented in hardware that
operate in real-time, i .e . , without slowing the system down.
They include breakpoints on memory ranges and I/0 port
ranges that can be qualified by data or bit values as well as a

Appendix B - Glossary

pass counter. These are the kind of breakpoints provided by
debugger hardware such as in-circuit emulators, logic analyz­
ers, and hardware-assisted debuggers like Periscope Model
IV.

Hardware Trace Buffer

A circular buffer that captures the execution history of the
system in real-time. Using the hardware trace buffer, you can
see events leading up to (and following) a breakpoint without
slowing your system down. This is the real-time buffer pro­
vided by debugger hardware such as in-circuit emulators,
logic analyzers, and Periscope Model IV. Model IV's hard­
ware trace buffer can hold up to 1 6,3 84 CPU events .

See also CPU Event.

Host Debugger

The software debugger that runs in the host system in a re­
mote or embedded environment. For example, Periscope/EM
and Periscope/32 can be host debuggers when you run Model
IV in active remote mode.

Host System

The development machine or "debugging station" where the
host �ebugger runs .

See also Target.

Interrupt Acknowledge

This is one of the CPU events that occurs when a hardware
interrupt begins . For example, when a timer tick begins, two
interrupt acknowledge cycles occur. The first one has an ad­
dress of 0:4 and a byte data value of OFFh and the second one
has an address of 0:0 and a byte data value of 08h (indicating
interrupt 8, the timer tick) .

Appendix B - Glossary Page 1 01

ISA

MCA

This acronym stands for Industry Standard Architecture. It is
the original bus used in the IBM AT that supports 8-bit and
1 6-bit access, but not the 32-bit access supported by EISA
systems.

An acronym for Micro Channel Architecture. This is the bus
in most IBM PS/2 computers . You can use Periscope Model
IV in remote mode to debug software running on PS/2 ma­
chines .

Memory Manager
A 386 control program, such as 386MAX, QEMM, or
NETROOM, that provides high DOS memory, EMS mem­
ory, VCPI, and DPMI services . These memory managers also
enable Periscope/EM to run from extended memory.

See EM Memory.

Model IV board

The full-length board that provides the hardware trace buffer
and hardware breakpoint logic. The board does not function
without a separately-purchased processor-specific pod. Use in
80386DX, 80386SX, 80386EX, 80486DX, 80486DX2,
80486DX4, 80486SX (PGA only), and 80486SX2 (PGA
only) systems running at external speeds up to 33MHz and
internal speeds up to l OOMHz.

NMI Clip

A cable assembly that connects the pod to the 110 channel
check (NMI) signal on the bus of the target system to stop the
CPU when an NMI occurs . You use this clip if you're run­
ning Model IV in active remote mode.

Non-Maskable Interrupt (NMI)

This interrupt has the highest priority in the system, and is

Page 1 02 Appendix B - Glossary

thus well-suited for use by debuggers . When you press the
Periscope break-out switch, it generates an NMI signal that a
software debugger can intercept.

Null-modem Cable

The cable that connects the host system with the target when
you run in active remote mode.

Passive Remote Mode

This is a method of debugging with the Periscope Model IV
board and Periscope/EM or Periscope/32 software installed in
one system (the host) and the Model IV pod installed in an­
other system (the target) . No debugger software runs in the
target system.
When you run in passive remote mode, your only access to
the target system is via the Model IV hardware. This enables
you to capture an execution history of the target CPU in the
Periscope hardware trace buffer, but you cannot stop the tar­
get system, nor can you interactively debug the target. Source
level support is generally not available. However, because no
software monitor is running in the target, there is no intrusion.

PC-104 Bus

Pin 1

A bus commonly used in embedded systems. It is pin-for-pin
compatible with the 16-bit ISA bus . Embedded Periscope
products support the PC-1 04 bus .

Pin 1 is used to indicate the correct orientation of the CPU
chip. It is indicated by a notched comer and/or by a dimple
near one comer of the CPU chip . The silk-screened outline of
the CPU on the motherboard may also indicate Pin 1 .

Pin Grid Array (PGA)

This is the package used for the lntel 80386DX and
80486DX, DX2, DX4, and some 486SX, and SX2 chips. If
you have a PGA chip, no adapter is required to use a Model

Appendix B - Glossary Page 103

IV pod.

Pipelining

See Prefetch Queue.

Plastic Quad Flat Pack (PQFP)

This is the package used for 803 86SX and 803 86EX chips . If
you have a system with one of these CPUs, you will need an
adapter in order to use Model IV.

Plus board

Pod

This is what the Periscope Model I board is called when you
use it as an optional add-on to a Model IV. It provides write­
protected memory for the Periscope/EM software, and en­
ables you debug at ROM-scan time. It is generally useful only
when you're debugging in a single system DOS environment.

This is the Model IV CPU interface board. It connects to the
CPU and prepares the CPU signals for the Model IV board.

Prefetch Queue

Probe

Page 1 04

The Intel CPU family reads instructions in clumps. For ex­
ample, after a call to a function, the processor needs to read
the new instructions starting at the function. Depending on the
CPU type, it will read up to 32 bytes of instructions before
doing anything else. This reading of memory to get instruc­
tions is called a "fetch" event. The processor adds the bytes
read to its internal prefetch queue so that it can start cracking
the instructions for execution.

This is a status bit shown in the Model IV trace buffer. By
default, the probe indicator is shown when a hardware inter­
rupt is pending. By changing a jumper on your pod, you can
also have this status bit indicate the state of an external signal

Appendix B - Glossary

or the Hold Acknowledge signal .

Protected Memory

The memory on the Periscope Model I!Plus board. It is write­
protected so that the Periscope/EM software cannot be over­
written.

Real-Time Debugging

The ability, only available with debugger hardware, to run a
program at full speed while debugging. This ability is critical
in the development and debugging of time-critical applica­
tions, such as communications software, control programs,
and many embedded systems .

Remote Debugging

This is debugging software running on one system (the target)
from another system (the host) .

See Active Remote Mode, Passive Remote Mode, and Single­
System Mode.

Ribbon Cable

The 50-pin cable used to connect the Model IV board and a
pod. This cable comes in two lengths : 1 8 inches for use in a
single system, and 48 inches for use in remote mode. The 48-
inch cable is shielded to prevent signal degradation at high
speeds .

Sequential Breakpoints (Triggers)

This refers to Model IV's state machine capability. Sequential
breakpoints allow you to switch breakpoint settings in real­
time. For example, if you want to watch for a write to the
variable FOO, but only while the function BAR is active,
you ' d use sequential breakpoi,nts to switch from state 0 to
state 1 on entry to BAR and switch from state 1 to state 0 on
exit from BAR. Then you'd set a breakpoint on writes to
FOO that is activated only when the state is 1 .

Appendix 8 - Glossary Page 1 05

Single-System Mode

When you run Periscope Model IV with all its hardware and
software installed in one system, it is called single-system
mode. This is the normal method for using Model IV to debug
a real-mode DOS environment.

See Remote Debugging, Active Remote Mode, and Passive
Remote Mode.

Software Breakpoints

Breakpoints (see Breakpoint) that are implemented by soft­
ware-only debuggers. These include temporary or sticky
(remembered) code breakpoints, which work by replacing an
instruction with a single-byte interrupt 3 (OCCh), and monitor
breakpoints that can have a significant impact on system per­
formance. Debug registers available on 386 and later CPUs
enable software-only debuggers to provide real-time monitor
breakpoints on small ranges of memory.

Software Trace Buffer

The trace buffer software-only debuggers provide, which
usually includes a trace of instructions and machine registers .
It does not operate in "real-time", because logging a software
trace buffer will significantly slow the system down.

See also Hardware Trace Buffer.

State Machine

Target

Page 1 06

See Sequential Breakpoints .

The CPU board or system where the program you're debug­
ging runs and where the Periscope pod is installed at the
CPU. A debugger "monitor" may also run in the target.

See also Host System.

Appendix B - Glossary

Trigger Event

The event that caused a hardware breakpoint. For example, if
you set a breakpoint on a write to port 20h and started execu­
tion of your program, a breakpoint would be generated at the
end of the next hardware interrupt. When examining the trace
buffer, you'd see the out to port 20h as the last item in the
trace buffer, with a sequence number of zero, identifying it as
a breakpoint, or trigger, event.

Appendix B - Glossary Page 1 07

Page 1 08 Appendix B - Glossary

A p p E N D X c

Hardware
Reference

• Jumpers on the pods
• Jumpers on the Model IV (Rev 2) board
• 386SX Adapter

This appendix documents the layouts of and jumpers on the
386 and 486 pods, the Model IV board, and the 3 86SX
adapter.

Page 1 09

C. 1 JUM.PERS ON THE PODS

Page 1 1 0

J 1 Pin 1 , Rev 1 L
I I

I I I!: I I_., ... 1
r:::3- !-- J 3

EJ �
I L I

-Ribbon cable �in 1, Rev 1 R
Connector

J7

J6 JS J4 Pin 1 , Rev 1

Figure C- 1. Layout of the 486 pods

All 486 pods (Rev 1 , Rev 1 L, and Rev 1 R) are identical
except for the location of Pin 1 .

The jumper definitions below apply to both the 386 and the
486 pods . See Figure C-1 and Figure C-2 .

Jl and J3- These pins are always shunted.

J4-EXTERNAL PROBE INPUT. When you hold the pod
so that the ribbon cable connector (17) is on the bottom, pin 1
is the bottom pin. Pin 2 is ground and pin 1 is an external
probe input, which must be driven by a TTL-compatible sig­
nal. When you set J5 to select the external probe and the ex­
ternal signal is high, the word Probe appears in the hardware
trace buffer display.

J5-PROBE SELECT. When you hold the pod so that the �
ribbon cable connector (J7) is on the bottom, pin 1 is in the
bottom right comer. The six J5 pins select the source of the
probe bit in the hardware trace buffer. The three valid posi-
tions are:

Appendix C - Hardware Reference

(1) When you connect pins 1 and 2, the CPU Hold Acknowl­
edge signal is the probe bit.

J5 Pins

• • •

• • •

Figure C-2. J5 Pin Assignment on 386 and 486 pods

(2) When you connect pins 3 and 4, the CPU IRQ line is the
probe bit (default) .
(3) When you connect pins 5 and 6, the external probe input
is the probe bit .

J1 J3 J4 JS
P£RISCO

Rev 1 R (270 deg.)

r+-----::::L.JL Rev 1 8
.-----,1 �"'"! --...,! �"'"! --..., (180 deg.)

�--�' ' ' �'--� I �� I �--�' ' ' �'----�

J7
Ribbon Cable Connector Rev 1 L (90 deg.)

Figure C-3. Layout of the 386 pod

Rotator sockets rotate Pin 1 to the three corners not cov­
ered by the 386 Rev 1 pod. Call Periscope Sales for de­
tai ls.

Appendix C - Hardware Reference Page 1 1 1

J6--NMI CLIP . Connect this pin to the motherboard to
generate an NMI via the Model IV board.

C.2 JUMPERS ON THE MODEL IV (REV 2) BOARD

PERISCOPE MODEL IV, REV 2
�r==:::J r==:::J c:::J r==:::J c:::J c:::J
�c:::J c:::=::J r==:::J r==:::J r==:::J r==:::J c::=:J JS
c:::J c:::::::I c:::=::J c:::J c:::J c=:::J c:::::::I c::=:J c:::J = =
c:::J c:::J c:::=::J c:::J c:::J c:::=::J c:::=::J c:::::::I
�c:::J c:::=::J c:::J c:::::::I � J7
= = =
c:::J c:::::::I c:::=::J c=::=J c:::=::J
= =

r==:::J c=:::::J c:::=::J c:::::::J c:::=::J c:::J c:::J
= =

J2
J1 -Ribbon Cable Connector JS Switch SW1

· Page 1 1 2

Figure C-4. Layout of the Model IV, Rev 2 board

J2-TERMINATION LINE. These pins are never shunted.

J5--ENABLE LOCAL NMI. These pins are always
shunted.

J7-EXTERNAL SIGNAL SELECT. Use this jurnper to
control the signal source for J6 (pod). When the jumper
shunts pins 2 and 3 (the two pins nearest to the gold fingers),
the NMI signal is selected (default) .

JS (near R15}-TERMINATION LINE. These pins are
always shunted.

SWl-DIP Switch 1 . See Setting the DIP Switch in Chapter
3 .

Appendix C - Hardware Reference

C.3 386SX ADAPTER

TOP VIEW _386SX Pin 1 -line
up with Pin 1 of
the 386SX CPU

SIDE VIEW

: o • • • I •

I I
Clips over 386SX
PQFP-style CPU

Figure C-5. 386SX Adapter, Top and Side Views

The 3 86SX adapter shown above is required when the target
CPU is a 386SX in a Plastic Quad Flat Pack package. The
adapter clips over the CPU, converting it to a Pin Grid Array
package that the 386 pod plugs into. The 3 86SX adapter's
dimensions are 2.25" inches square by one inch high (not in­
cluding the part that clips over the CPU).

WARNING! The 386SX Adapter is an expensive, spe­
cial-purpose device. I mproper instal lation can damage it
beyond repair. PLEASE read the installation instruc­
tions very carefully before installation , and call Peri­
scope Technical Support for help if you need it!

Appendix C - Hardware Reference

·
Page 1 1 4 Appendix C - Hardware Reference

/4 command, 82
386 Pod Layout, I l l
486 Pod Layout, I I 0
80386, 7, 24, 58, 59, 62, 88, 96
80386EX, 96
80386EX adapter, 96
80386SX, 24, 57, 59, 96
80386SX adapter, 96
80386SX, installation on, 24
80486, 7, 24, 58, 59, 62, 88, 96
80486DX2, 4, 24, 97
80486DX4, 24, 97
80486SX, 97
80486SX2, 97

-A-
Active remote mode, 12, 1 3 , 97
Adapter, 1 9
Address, 62, 69

-B-

BB command, 47
BBS, 5
BF command, 47
BIOS, 80, 88
Bit breakpoint, 9
Bit mask, 9
Boards, 3, 20, 29, 102
BR command, 47
Break-out Switch, 3, 8, 11 , 3 1 , 97
Breakpoint, 98

Code, 46, 47
Debug register, 46, 47

Index
Event, 37
Hardware, 46, 47
Monitor, 46
Ovenun, 48, 62, 87, 98

BS-16 Memory, 98
BU command, 47
Buffer capture, 5 1
Burst mode, 62, 74, 98
Bus compatibility, 87
BW command, 47

-C-

Cache, 82, 98
Capabilities, 8
Capturing specific code execution,

85
Chip puller, 1 9
Code prefetch, 62
CodeView, 2
Commands

/4 (toggle interna1 486 cache),
45, 82

GH (Go using Hardware), 46
GM (Go using Monitor), 47
HA (Hardware breakpoints All),

49
HB (Hardware Bit breakpoint),

50
HC (Hardware Controls), 5 1
HD (Hardware Data breakpoint),

56
HM (Hardware Memory break­

point), 61

HP (Hardware Port breakpoint),
65 ('

HW (Hardware Write), .80 •
·�Bx {display Hardware trace··

buffer), 66
Compatibility, 5
Confiicts, 20 .. : , i
Controls, 5 1 . : 1 : :
CPU, 24, 57, 99 :
CPU cycle count, 10; I I
CPU event, 1 0, 57, 99
Crowbar tools, 27
Cycle count, 10, 5 1 , 52, 71, 76, . 99

Data breakpoints, 9, 87

Data field, 69
Debug registers, 46, 100
Diagnostics; 32 . ·

DIP switchi20, 22;.33
Disabling buffer capture, 51
DMA (Direct memory 'access), 9,

87, 1 00� " · " ,:) ' "
DOS usage, 80

:�· ·. '·' .
- -·

; - - ,..__ ,_ ..

EISA, 100 , ,• :
EMMemory, 1 00
Error messages, 9 1
Exception interrupts, 10, 84

Exclude state(s), 5 1 , 54
Extended memory, 76

-F-· ·
Fixup addresses, 77
Flushed instructions, 76
Flushing the trace'biiffer; 73
Full trace bUffer; 10 · · ·

-�·
GH command, 46

GM command, 45, 47

Guarantees, 5

-H-
HA command, 49
Halt, 1 00
Hardware breakpoint, 8, 46, 1 00

Data bit mask, 8
Data values, 8

Examples, 88

I/0 port access, 8
Memory access, 8

Pass counter, 8

Selective capture, 9
Sequential triggers, 9

Hardware Commands. See Com-
mands

Hardware interrupts, 86
Hardware requirements, 4
Hardware trace bUffer, 10 , 48, 66,

1 0 1 c :
Hardware-assisted·debugger, 7
HB command, 50
HC command, 5-l
HD cdlnmand, 56 ·

HM command, 6 1
Host debugg�,.·HlL
Host system, 101
HP command, 65
HR. command, 66
HS command,' 66
HT command, 66
HU command, 66
HW command, 80

-I-
I/0 ports, 20
IBM PS/2, 15 , 52
Installation overview, 1 8

Installation tools, 23
Interrupt ackt1owledge, 101
Interrupt vector reads, 88

Interrupt vector writes, 88

ISA, 102

Index

Jumpers, 386/486 pods, 1 1 0
Jumpers, Rev2 board, 1 12

-K- :r : .

Key usage, 73

MCA, 1 02 . ;u;·,,"f'
Memory breakpoints, 9, 6 1

Code prefetch, 61 .. , . ; ·. • ·
CPU halt, 6 1 · · ·-· . · : .� , ·
Interrupt Acknowledge;16l
Read, 6 1 , .
Write, 61 : · ·""''' : :

Memory Manager,J02 : 11 '· '
Menus, 44
Micro Channel bus, 4, 1 5

Missed breal.q>Qint, 4&· :.::;;;:;·;lfY ' . . 1 :
Mixed mode, 76 1 umr ,o:)
Model IV package, 3 :t<:':iW. , :; t
Monitor breakpqint$;;;'il6m4!1J�, _,d

.....J.���i.fi .�_;.u 1 -('.J I
'J{'· ·_) ',. }.

Network card, 20 ';;; •· r·r :T "-
NMI, 13, 87, 102 · , ;,;:n: ''

NMl clip, 14, 102, l l2c : , ·

NOTES. TXT, 59
Null-modem Cable, 1 03· , ' · . ' :

-0-
Operation, 69
Operation field, 70
OS/2 (IBM), 12
Overrun error, 8.9· ·. : .

Pass count, 5 1 , 53 . . • ·

Pass counter, 8, 9 · l 1.,
Passive remote mode, 12, 103

Index

: P6)+l04 Bus, 103
Periscope ID field, 72
Periscope Modtd IV, 7 '
Periscope softwa1re mstallatton, 32
Periscope/32, 2

·

Periscope/EM, 2, 8

PGA (Pin Grid Array}, 24; 10f3
Pin I , 24, 25, 103

Pipelining, 63, 104
Plus board, 8, U; ::n, 104' ' p ··
Pods, 3, 25, 104
PopUp Periscope, 2, 3
Port breakpoints, . 9
Port read, 65
Port write, 65
POST, 12, 85
Post-mortem debugging, 84' '

Power requirements, 5 '
Power-on startup tests, 12, 85:
PQFP (Plastic Quad Flat Pack), I 04
Prefetch queue, 62, .63; '7'il,i88,' 104
Probe, 70, 1 04
Probe bit, JO, Hk ·

Probe triggering, 5 1 , 52 ·
Protect mode, 14
Protected Memory, 1 05
Prototype Card,,20
PS4TEST, 32, "8\C 9 1

PSBUF.DAT, 33, 80
PSTEST, 34

Raw mode, 67
Readme. txt file, 3
Real-time applications, I I
Real-time debugging, 1 05
Rebooting, 87
Register content�;, 1 74
Remote<iebugg�g, 4, lOS
Rev 2 Board Layout, 1 12
Ribbon Cable, 1 3 , 1 9, 25, 29, 105
RUN, 46, 49

\ ' ' _, _,. -_'; '

-S-
Save trace buffer, 80
Search trace buffer, 77
Segment decoding, 77.
Selective capture, 9, 5 1
Sequence number field, 72
Sequential triggers, 9, 6 1 , 62, 65,

105
Set cursor calls, 88

SETIJP, 32, 36
Single-entry mode, 66, 67
Single-System Mode, I 06
SKIP2 1 , 47
Software breakpoints, 8, 1 06
Software requirements, 4

Software Trace Buffer, 106
Source only mode, 76
State machine, 9, 106
System bus, 57
System requirements, 4

-T-
Target system, 106
Teclurical support, 5
Trace buffer

Page 1 1 8

Analysis, 73, 76
Commands, 75
Discontinuity, 48

Display fonnats, I 0
Display layout, 69
Menu, 75

Trace mode, 67
Trace overflow stop, 5 1
Tracking program flow, 84

Trigger event, I 07
Trigger location, 5 1
Turbo Debugger, 2
Tutorial, 36
Typography, 2

-U-

Unassembly mode, 68
Underflowing stack, 88
Upgrades, 5

-W-
Warranties, 5
WindoWs (Microsoft), 1 2
Write-protected memory, 8, I I
Writing to low memory, 48

Index

