
:0N GRAPHICS:

Inside the EGA
by
Michael Abrash

This is the first of a series of articles about graphics. Actually, it's about more
than just graphics—it's about algorithms and assembly-language program
ming and all manner of tricks for putting IBM PC-family microcomputers
through their paces. Still, the focus will be on graphics of the EGA/CGAIHer-
cules sort, all the while keeping an eye on higher-performance boards that have
the potential to become standards someday soon. If there's any particular area
you it like to see covered or Interesting findings you 'd like to share, let me know.

I'm going to start with a look at the Enhanced Graphics
Adapter (EGA). The CGA and Hercules boards are pretty sim
ple, and a great deal has been written about how to program
them. The EGA, on the other hand, is a difficult board to pro
gram efficiently (the more so because IBM's documentation
is hard to obtain and harder to understand), and little infor
mation about programming the EGA has seen print. The EGAs
tremendous potential—far greater than that of the CGA—
makes it well worth knowing about, and that's what the next
few articles will be about.

The EGA
Although the EGA is fast becoming the standard graphics
adapter in the IBM PC marketplace, it has not met with univer
sal approval. The knock against the EGA is that its performance
is inadequate. True, the EGA is not an ultra-high-resolution
board, but it offers a solid price/performance ratio. Sixteen col
ors at a resolution of 640 x 3 50, complete with a monitor and
decent compatibility with older software, for under $800 is
a pretty good deal—that's about what I paid for 320 x 200 in
4 colors just four years ago. (I'm talking about EGA clones, of
course—the IBM EGA and monitor are greatly overpriced.) In
my opinion, the EGA provides adequate resolution and color
for the majority of PC applications at a price most users can
afford.

There's another facet of graphics performance, though, and
that's the speed at which programs can update the screen. Bit
mapped graphics tend to be slow when handled by the main
processor: Witness Microsoft Windows, which really requires
an AT for decent speed, or, for that matter, the Macintosh,
which expends much of the power of an 8-MHz 68000 in sup
porting a bit-mapped interface. The time spent in bit-map
manipulation goes up rapidly as the size of the bit map and the
complexity of controlling it increase. The EGAs bit map is 16
times as large as the CGA's, and although the EGA has many
useful features built in, those features are controlled through
dozens of registers. The result: It's hard to produce fast graphics
on the EGA.

Hard, but not impossible—and that's why I like this odd
board. It's a throwback to an earlier generation of micros, when
inventive coding and a solid understanding of the hardware
were the best tools for improving performance. Increasingly,
faster processors and powerful coprocessors are seen as the
solution to the sluggish software produced by high-level
languages and layers of interfacing and driver code, and that's
surely a valid approach. However, there are hundreds of

thousands of EGAs installed right now, with no coprocessors
to help and hardly an 80386 in sight. What's more, because
the EGA is an 8-bit device, and because of display memory wait
states, an AT isn't as much a help as you'd expect. The upshot
is that only a good low-level coder who understands the EGA
can push the board to its potential.

I'll be exploring the EGA by selecting a specific algorithm
or feature and implementing code to support it on the EGA,
examining aspects of the EGA architecture as they become rele
vant. You'll get to see EGA features in context, where they arc-
more comprehensible than in IBM's somewhat arcane-
documentation, and you'll get working code to use or to
modify to meet your needs. If there's a particular aspect of the
EGA that you'd like to read about, send me a letter and I'll try
to work it in.

The prime directive of EGA programming is that there's rare
ly just one way to program the EGA for a given purpose. Once
you understand the tools the EGA provides, you'll be able to
combine them to generate the particular synergy your applica
tion needs. My EGA routines are not intended to be taken as
gospel, or to show "best" implementations, but rather to start
you down the road to understanding the EGA. Let's begin.

An Introduction to the EGA
Most discussions of the EGA start out with a traditional "Here's
a block diagram of the EGA" approach, with lists of registers
and statistics. I'll get to that eventually, but you can find it in
IBM's EGA documentation and several other magazines.
Besides, it's numbing to read specifications and explanations,
and the EGA is an exciting board. It's the sort of board that
makes you want to get your hands dirty under the hood, to
write some nifty code just to see what the board can do. What's
more, the best way to understand the EGA is to see it work, so
let's jump right into a sample of the EGA in action, getting a
feel for the EGAs architecture in the process.

Listing 1 is a sample EGA program that pans around an
animated 16-color high-resolution (640 x 350) playfield.
There's a lot packed into this code; I'm going to take advan
tage of the technically high level of PJ readership and assume
you can figure out the non-EGA aspects for yourself. I'm not
going to explain how the ball is animated, for example. (For
an introduction to animation, see "Animation Techniques for
the IBM PC," by Michael Abrash and Dan Illowsky, PC Tech

Journal, July 1986.) What I will do is cover each of the EGA
features used in this program—virtual screen, vertical and
horizontal panning, color plane manipulation, multi-plane

PJ January /February 1987
36 pcjs.org

block copying, and page flipping—at a conceptual level, let
ting the code itself demonstrate the implementation details.

Some Background
A little background is necessary before we can begin to ex
amine Listing 1. The EGA is built around four VLSI (Very Large
Sc l̂e Î egfated) chips, named the CRT Controller (CRTC), the
Timing Sequencer (TS), the Attribute Controller (ATC), and the
Graphics Data Controller (GDC). There are two GDCs per EGA
since each GDC controls two of the EGAs four planes of
memory. Some EGA compatible chip sets combine several of
these chips into a single chip or shuffle specific functions
among chips, but the programming interface always looks the
same since otherwise the chip set would not be
EGA-compatible.

Each of these chips has a sizeable complement of registers.
It is not particularly important that you understand why a given
chip has a given register; all the registers together make up the
programming interface, and it is the entire interface that is of
interest to the EGA programmer. However, the means by which
most EGA registers are addressed makes it necessary for you
to remember which registers are in which chips.

Most EGA registers are addressed as internally indexed
registers. The internal address of the register is written to a
given chip's index register, and then the data for that register
is written to the chip's data register. For example, GDC register
8, the Bit Mask register, is set to OFFh by writing 8 to port 3CEh,
the GDC Index register, and then writing OFFh to port 3CFh,
the GDC Data register. Internal indexing makes it possible to
address the 9 GDC registers through only two ports and allows
the entire EGA programming interface to be squeezed into less
than a dozen ports. The downside is that two I/O operations
are required to access most EGA registers.

The ports used to control the EGA are shown in the table
below. The CRTC, TS, and GDC Index registers are located at
the addresses of their respective Data registers plus one.
However, the ATC Index and Data registers are located at the
same address, 3C0h. The function of this port toggles on every
OUT to 3C0h and resets on every read from the Input Status
1 register (3DAh when the EGA is in color modes, 3BAh in
monochrome modes). Note that all CRTC registers are ad
dressed at either 3DXh or 3BXh, the former in color modes
and the latter in monochrome modes. This provides com
patibility with the register addressing of the Color/Graphics
and Monochrome Adapters.

The ports through which the EGA is controlled
These are the official addresses, but some EGA ports are incompletely decoded and can be addressed at several ports.
Most importantly, the ATC Index/Data register can be addressed at 3Clh as well as at 3C0h.

Register Address

ATC Index/Data register 3C0h (write only)
Input Status 0 register 3C2h (read only)
TS Index register 3C4h (write only)^C

3C5h (write only)'-^^TS Data register
Graphics 2 Position register 3CAh (write only)
Graphics 1 Position register 3CCh (write only)
GDC Index register 3CEh (write only)
GDC Data register 3CFh (write only)
CIITC Index register 3B4h/3D4h (write only)(^^
CRTC Data register 3B5h/3D5h (write only) v-^^
Input Status 1 register/

ATC Index/Data reset 3BAh/3DAh (read only)
Feature Control 3BAh/3DAh (write only)

PJ January /February 1987
37

pcjs.org

The method used in the EGA BIOS to set registers is to point
DX to the desired index register, load AL with the index, per
form a byte OUT, increment DX to point to the data register
(except in the case of the ATC, where DX remains the same),
load AL with the desired data, and perform a byte OUT. A han
dy shortcut is to point DX to the desired index register, load
AL with the index, load AH with the data, and perform a word
OUT. Since the high byte of the OUT value goes to port DX +1,
this is equivalent to the first method but is considerably faster.
This works for even the ATC since the ATC Index and Data
registers are decoded at both 3C0h and 3Clh; however, be sure
that the ATC Index/Data register is set to index mode before
programming the ATC with a word OUT (you can ensure this
by first reading the Input Status 1 register to reset ATC
addressing).

How safe is this method of addressing EGA registers? I have
run into accelerator boards that had trouble with word OUTs;
however, all such problems I am aware of have been fixed.
Moreover, Microsoft Windows uses word OUTs, even to the
ATC, so any clone computer or EGA that doesn't support word
OUTs could scarcely be considered a clone at all.

A speed tip: The setting of each chip's index register remains
the same until it is reprogrammed. This means that in cases
where you are setting the same internal register repeatedly, you
can set the index register to point to that internal register once,
then write to the data register multiple times. For example, the
Bit Mask register (GDC register 8) is set repeatedly inside a loop
when drawing lines. The standard code for this is

,-point to GDC Index register
; internal index of Bi t Mask register
;AH contains Bit Mask register setting

Alternatively, the GDC Index register could initially be set to
point to the Bit Mask register with

MOV DX,03CEH
MOV AL, 8
OUT DX.AX

MOV
MOV
OUT
INC

DX.03CEH
AL,S
DX,ALDX

,-point to GDC Index register
.■internal index of Bit Mask register
;set GDC Index register
,-point to GDC Data register

and then the Bit Mask register could be set repeatedly with the
byte-size OUT instruction:

DX,AL ;AL contains Bit Mask register sett ing

which is four cycles faster than a word-sized OUT, and which
does not require AH to be set, freeing up a register. Be aware
that this method works only if the GDC Index register remains
unchanged throughout the loop.

Linear Planes and True EGA Modes
The EGAs memory is organized as four 64K planes. (The base
model from IBM comes with only 16K per plane, but this con
figuration doesn't support the 16-color high-resolution mode.
So far as I can tell, this version of the EGA is about as widely
used as the PC's cassette port, so I will discuss only 256K EGA
operation.) Each of these planes is a linear bit map; that is, each
byte from a given plane controls eight adjacent pixels on the
screen, the next byte controls the next eight pixels, and so on
to the end of the scan line. The next byte then controls the first
eight pixels of the next scan line, and so on to the end of the
screen. This will no doubt come as a relief to programmers
weary of compensating for the CGA's two-bank architecture
and the Hercules Graphics Card's four-bank architecture.

The EGA adds a powerful twist to linear addressing; the
logical width of the screen in EGA memory need not be the
same as the physical width of the display. The programmer is
free to define all or part of the EGAs large memory map as a
logical screen of up to 4096 pixels in width and then use the
physical screen as a window onto any part of the logical screen.
What's more, a virtual screen can have any logical height up
to the capacity of EGA memory. Such a virtual screen could
be used to store a spreadsheet or a CAD/CAM drawing, for in
stance. As we will see shortly, the EGA provides excellent hard
ware for moving around the virtual screen; taken together, the
virtual screen and the EGAs smooth panning capabilities can
generate very impressive effects.

All four linear planes are addressed in the same 64K memory
space starting at A000:0000. Consequently, there are four bytes
at any given address in EGA memory. The EGA provides special
hardware to assist the CPU in manipulating all four planes, in
parallel, with a single memory access so that the programmer
doesn't have to spend a great deal of time switching between
planes. Astute use of this EGA hardware allows EGA software
to equal the performance of CGA software even though the
EGA bit map is much larger than the CGA bit map.

Each memory plane provides one bit of data for each pixel.
The bits for a given pixel from each of the four planes are com
bined into a nibble that serves as an address into the EGAs
palette RAM, which maps the one of sixteen colors selected
by display memory into any one of sixty-four colors, as shown
in Figure 1. All sixty-four mappings for all sixteen colors arc-
independently programmable.

BYTE FHOMPLANE 0

BYTE FROM
PLANE 1

BYTE FROMPLANE 2

BYTE FROMPLANE 3

a PIXELS FROM
PLANE 0 BYTE
SHIFTED OUT
ONE DOT CLOCK.
MSBIT TOLSBIT

a PIXELS
FROM PLANE
1 BYTE MSBIT
TOLSBIT

->-

a PIXELS
FROM PLANE
1 BYTE MSBIT
TOLSBIT

u
6 PIXELS
FROM PLANE
1 BYTE MSBIT
TOLSBIT

PALETTE RW
hoo-Brr-wiDE■ STORAGE

1 LOCATIONS
ADDRESSED
WITH FOUR BfTS

2 FROM MEMORY)

- > - S E C .
BLUE

ONE PIXEL
PER DOT
CLOCK TO
VIDEO
CONNECTf

Figure 1. Video data from EGA display memory
to video connector

The EGA BIOS supports several graphics modes (modes 4,
5, and 6) in which EGA memory appears not to be organized
as four linear planes. These modes exist for CGA compatibil
ity only and are not true EGA graphics modes. Use them when
you need CGA-type operation and ignore them the rest of the
time. The EGAs special features are most powerful in true EGA
modes, and it is on these modes (modes ODh, OEh, OFh, and
lOh) that I will concentrate. EGA text modes, which feature soft
fonts, are another matter entirely, to be explored separately at
a later date.

PJ January / February 1987
38 pcjs.org

Willi that background out of the way, we can get on to the
sample EGA program shown in Listing 1.1 suggest you run the
program before continuing since the explanations will mean
for more to yoa if you've seen the features in action.

The first thing youH notice upon running the sample program
is the remarkable smoothness with which the display pans
from side-to-side and up-and-down. That the display can pan
at all is made possible by two EGA features: the 256K bit map
and the virtual screen capability. Even the most memory-
hungry of the EGA modes, mode lOh, uses only 28K per plane,
for a total of 112K out of the total 256K of EGA memory. Con
sequently, there is room in EGA memory to store more than
two M screens of video data. In the sample program, memory
is organized as two virtual screens, each with a resolution of
672 x 384, as shown in Figure 2.

A000:0000

A000:7E00

PAGEO
672X384
VIRTUAL PAGE)

PAGE1
672X384
VIRTUAL PAGE

A000:FC00
BALL IMAGE AND BUNK IMAGE

Figure 2. Organization of EGA memory in
sample program. Space is reserved for
two 672 x 384 virtual pages and for
images of the ball and the blank.

The area of the virtual screen actually displayed at any given
time is selected by setting the display memory address at which
to begin fetching video data; this is set by way of the start
address registers (Start Address High, CRTC register OCh, and
Start Address Low, CRTC register ODh). Together these registers
make up a 16-bit display memory address at which the CRTC
begins fetching data at the beginning of each video frame.
Increasing the start address causes higher-memory areas of the
virtual screen to be displayed. For example, the Start Address
High register could be set to 80h and the Start Address Low
register could be set to OOh in order to cause the display screen
to reflect memory starting at offset 8000h in each plane, rather
than at the default offset of 0.

The logical height of the virtual screen is defined by the
amount of EGA memory available. As the EGA scans display
memory for video data, it progresses from the start address
toward higher memory one scan line at a time until the frame
is completed. Consequently, if the start address is increased,
lines farther towards the bottom of the virtual screen are

displayed; in effect, the virtual screen appears to scroll upon
the physical screen.

The logical width of the virtual screen is defined by the Off
set register (CRTC register 13h), which allows redefinition of
the number of words of display memory considered to make
up one scan line. Normally, 40 words of display memory con
stitute a scan line; after the CRTC scans these 40 words for 640
pixels* worth of data, it advances 40 words from the start of
that scan line to find the start of the next scan line in memory.
This means that displayed scan lines are contiguous in memory.
However, the Offset register can be set so that scan lines are
logically wider (or narrower, for that matter) than their
displayed width. The sample program sets the Offset register
to 2Ah, making the logical width of the virtual screen 42
words, or 42 * 2 * 8 = 672 pixels, as contrasted with the actual
width of the hi-res screen, 40 words or 640 pixels. The logical
height of the virtual screen in the sample program is 384; this
is accomplished simply by reserving 84 * 384 contiguous bytes
of EGA memory for the virtual screen, where 84 is the virtual
screen width in bytes and 384 is the virtual screen height in
scan lines.

The start address is the key to panning around the virtual
screen. The start-address registers select the row of the virtual
screen that maps to the top of the display; panning down a scan
line requires only that the start address be increased by the
logical scan line width in bytes, which is equal to the Offset
register times two. The start address registers select the col
umn that maps to the left edge of the display as well, allow
ing horizontal panning, although in this case only relatively
coarse byte-sized adjustments—panning by eight pixels at a
time—are supported. Smooth horizontal panning is provided
by the Horizontal Pel Panning register, ATC register 13h, work
ing in conjunction With the start address. Up to 7 pixels' worth
of single pixel panning of the displayed image to the left is per
formed by increasing the Horizontal Pel Panning register from
0 to 7. This exhausts the range of motion possible via the
Horizontal Pel Panning register; the next pixel's worth of
smooth panning is accomplished by incrementing the start ad
dress by one and resetting the Horizontal Pel Panning register
to 0. Smooth horizontal panning should be viewed as a series
of fine adjustments in the 8-pixel range between coarse byte-
sized adjustments.

A horizontal panning oddity: Alone among EGA modes,
monochrome EGA text mode has 9 dots per character clock.
Smooth panning in this mode requires cycling the Horizontal
Pel Panning register through the values 8,0, 1,2,3,4,5,6,
and 7. 8 is the "no panning" setting.

There is one annoying quirk about programming the ATC.
When the ATC Index register is set, only the lower five bits are
used as the internal index. The next most significant bit, bit
5, controls the source of the video data sent to the monitor by
the EGA. When bit 5 is set to 1, the output of the palette RAM,
derived from display memory, controls the displayed pixels;
this is normal operation. When bit 5 is 0, video data does not
come from the palette RAM, and the screen becomes a solid
color. The only time bit 5 of the ATC Index register should be
0 is during the setting of a palette RAM register since the CPU
is able to write to palette RAM only when bit 5 is low. Im
mediately after the palette RAM is set, however, 20h should be
written to the ATC Index register to restore normal video, and
at all other times bit 5 should be set to 1.

By the way, palette RAM can be set via the BIOS video in
terrupt (interrupt lOh), function lOh. Whenever an EGA func-

PJ January / February 1987
39

pcjs.org

tion can be performed reasonably well through a BIOS func
tion, as it can in the case of setting palette RAM, it should be,
both because there is no point in reinventing the wheel and
because the BIOS may well mask incompatibilities between the
IBM EGA and EGA clones. For instance, it is not easy to set all
the palette RAM registers without causing momentary flicker,
and the exact parameters for doing this vary somewhat among
EGA clones. However, it's a safe bet that the palette RAM-setting
routines in every BIOS are flicker-free.

Color Plane Manipulation
The EGA provides a powerful array of hardware assistance for
manipulating the four display memory planes. Two features
illustrated by the sample program are the ability to control
which planes are written to by a CPU write and the ability to
copy four bytes—one from each plane—with a single CPU read
and a single CPU write.

The Map Mask register (TS register 2) selects which planes
are written to by CPU writes. If bit 0 of the Map Mask register
is 1, each byte written by the CPU will be written to EGA
memory plane 0, the plane that provides the video data for the
least significant bit of the palette RAM address. If bit 0 of the
Map Mask register is 0, CPU writes will not affect plane 0. Bits
1,2, and 3 of the Map Mask register similarly control CPU ac
cess to planes 1, 2, and3, respectively. Any of the sixteen possi
ble combinations of enabled and disabled planes can be
selected. Beware, however, of writing to an area of memory
that is not zeroed. Planes that are disabled by the Map Mask
register are not altered by CPU writes, so old and new images
can mix on the screen, producing unwanted color effects as,
say, three planes from the old image mix with one plane from
the new image. The sample program solves this by ensuring
that the memory written to is zeroed. A better way to clear
memory is provided by the set/reset capabilities of the EGA,
which I'll cover another time.

The sample program writes the image of the colored ball to
EGA memory by enabling one plane at a time and writing the
image of the ball for that plane. Each image is written to the
same EGA addresses; only the destination plane, selected by
the Map Mask register, is different. You might think of the ball's
image as consisting of four colored overlays, which together
make up a multicolored image. The sample program writes a
blank image to EGA memory by enabling all planes and writing
a block of zero bytes; the zero bytes are written to all four EGA
planes simultaneously.

The images are written to a nondisplayed portion of EGA
memory in order to take advantage of a useful EGA hardware
feature, the ability to copy all four planes at once. As shown
above, four times as many reads and writes—and several OUTs
as well—are required to copy a multicolored image into EGA
memory as would be needed to draw the same image in the
CGA's high-resolution mode. This causes unacceptably slow
performance, all the more so because the wait states that occur
on accesses to EGA memory make it very desirable to minimize
display memory accesses.

The solution is to take advantage of the EGAs write mode
1, which is selected via bits 0 and 1 of the GDC Mode register
(GDC register 5). (Be careful to set bits 2-7 properly for the cur
rent display mode when setting bits 0 and 1.) In write mode
1, a single CPU read loads the addressed byte from all four
planes into the EGAs four internal latches, and a single CPU
write writes the contents of the latches to the four planes. Dur
ing the write, the byte written by the CPU is irrelevant.

The sample program uses write mode 1 to copy the images
that were previously drawn to the high end of EGA memory
into a desired area of display memory, all in a single block copy
operation. This is an excellent way to keep the number of reads,
writes, and OUTs required to manipulate the EGAs display
memory low enough to allow real-time drawing.

The Map Mask register can still mask out planes in write
mode 1. All four planes are copied in the sample program
because the Map Mask register is still OFh from when the blank
image was created.

The animated images appear to move somewhat jerkily
because they are byte-aligned and so must move a minimum
of 8 pixels horizontally. This is easily solved by storing rotated
versions of all images in EGA memory and then in each instance
drawing the correct rotation for the pixel alignment at which
the image is to be drawn.

Page Flipping
CGA graphics typically flicker and/or ripple, an unavoidable
result of modifying display memory at the same time that it
is being scanned for video data. The extra display memory of
the EGA makes it possible to perform page flipping, which
eliminates such problems. The basic premise of page flipping
is that one area of display memory is displayed while another
is being modified. The modifications never affect an area of
memory as it is providing video data, so no undesirable side
effects occur. Once the modification is complete, the modified
buffer is selected for display, causing the screen to change in
a single frame. The other buffer is then available for
modification.

Graphics mode page flipping is not possible with the CGA
because the CGA's display memory is barely large enough to
hold a single screen's bit map (a single page). However, the EGA
has 64K per plane, enough to hold two pages and more even
in hi-res mode. (A hi-res page is 80 times 350, or 28,000 bytes.)
For page flipping, two non-overlapping areas of display
memory are needed. The sample program uses two 672 x 384
virtual pages, each 32,256 bytes long, one starting at
A000:0000 and the other starting at A000:7E00. Flipping be
tween the pages is as simple as setting the start address registers
to point to one display area or the other.

The timing of the switch between pages is critical to achiev
ing flicker-free animation. It is critical that the program never
be modifying an area of display memory as that memory is pro
viding video data. This means that the start address should be
changed at some time during the frame after which the page
flip is to occur since the start address for a given frame is
latched from the start address registers at the end of the
previous frame. The most readily available vertical display
status on the EGA is the vertical sync pulse status, available at
bit 3 of the Input Status 1 register (addressed at 3BAh/3DAh).
A logical approach to page flipping would seem to be to wait
for the leading edge of the vertical sync pulse, then set the start
address registers.

Unfortunately, the vertical sync bit is not the ideal status to
monitor for the end of the frame since it doesn't begin until
part way through the vertical retrace period, after the start
address has been latched into the linear address counting cir
cuitry. If the sample program were to draw to the supposedly
undisplayed page during the frame after the start address is
changed to the other page, flicker would occur; at this time,
the new start address has not yet taken effect, so that page is
actually still being displayed. To avoid this, the sample program

PJ January / February 1987
40 pcjs.org

waits twice for the leading edge of the vertical sync pulse, once
to be sure about when the starting address registers are being
set and once to allow the page flip to become effective.

Waiting for the sync pulse has the side effect of causing pro
gram execution to synchronize to the EGAs frame rate of 60
per second. In a program where all drawing can be done dur
ing a single frame time, this synchronization has the useful con
sequence of causing the program to execute at the same speed
on an AT as on a PC.

As mentioned above, the vertical sync bit is not a perfect
status to monitor for the end of a frame. There is a way to detect
the true beginning of the EGAs vertical retrace period, via the
vertical interrupt; for a sample implementation, see "Software
Sprites for the IBM EGA and CGA" by Michael Abrash and Dan
Illowsky, PC Tech Journal, August 1986.

An important point illustrated by the sample program is that
while the EGAs bit map is far larger and more versatile than
is the case with other adapters, it is nonetheless a limited
resource and must be used judiciously. The sample program
uses EGA memory to store two 672 x 384 virtual pages, leav
ing only 1024 bytes free to store images. In this case, the only
images needed are a colored ball and a blank block with which
to erase it, so there is no problem, but many applications re
quire dozens or hundreds of images. The tradeoffs between
virtual page size, page flipping, and image storage must always
be kept in mind when designing programs for the EGA.
Just an Introduction
That pretty well covers the important points of the sample EGA
program in Listing 1. To see the program run in 640 x 200
16-color mode, comment out the HIRES_VIDEO_MODE
equate; in this mode, the display screen is much smaller relative
to the virtual screen, so the smooth panning is far more pro
nounced. There are.many EGA features we haven't even
touched on, but the object is to give you a feel for the variety
of features available on the EGA, to convey the flexibility and
complexity of the EGAs resources, and to point out how dif
ferent from the CGA the EGA is. Starting with the next article,
I'll begin to systematically explore the EGA on a more detailed
basis.
EGA Clones
There are an amazing number of EGA clones on the market
now. Most are built around the Chips and Technologies chip
set, but several other chip sets are in use as well. The EGA
clones sell for so much less than the IBM version that it's hard
to imagine that anyone but the most conservative corporate
purchaser would buy the real thing, particularly since all the
clones seem to be more than adequately compatible with the
IBM EGA.

The clones are not exactly like the IBM EGA, however. Some
have bugs in the chip set implementation, others have slight
ly different board layouts, and all have BIOS ROMs that differ
to some extent from IBM's. Some manufacturers have also
made a conscious decision to deviate slightly from the IBM
standard in order to build a better board; for example, several
manufacturers have provided modes with higher resolution
than the EGA can muster.

What this means to the programmer is that EGA code should
be tested on several EGA clones before being released. Given
the tremendous popularity of the Chips and Technology EGA-
clone chip set, it is not enough to design for the IBM EGA; I
suspect that there are more C & T-based EGAs out there than
IBM EGAs. In truth, the EGA standard is less standard than, say,

<P REAL - TIME
GRAPHICS

ANIMATION
For the IBM PC, XT, AT or compatible, with
Color Graphics Adapter and color monitor.

With this plug-In accessory, your PC can produce graphics as fast as expensive
dedicated graphics work stations. The card acts as a graphics coprocessor to
the CPU. Graphics primitives are drawn by an HD63484 chip. No need to
compute the adresses of Individual pixels In a line, the card takes the ends ofthe line as Input then draw3 the line at high speed. The line appears on the
screen at a million color pixels per second.

Keep your color graphics adapter and standard ROBI monitor, this card usesboth. Since your old adapter remains a part of the system, you are sure that
your machine remains completely IBM compatible. Gives you all 16 colors onthe screen at the same time, even with 640x200 dots.

Are you tired of having to program graphics applications In assembler and C?
This card comes with an Include file for Turbo Pascal. Nearly 70 procedures
and functions allow yDU to use a high level language to write fast graphics
programs. In addition to the usual lines, circles, ellipses, rectangles, ?.-colorarea fills, etc., this package Includes support for real-time animation. You can
swap In a hidden screen during vertical retrace. Your animation will be cleanand synchronized - no hash the easy way. Automatic checkerboard dithering
Is supported, giving 256 psuelo colors on a standard IBM color monitor.

Envious of your friends with Amlgas and STs? This card can redraw a 21x21
3-D net graph In 1/60 sec. That Is 50400 vectors per second. And the card
Includes support for 3-D figure drawing and rotation.

It even works with your speed up cards and fast mother-boards. No
memory addresses are used, and only four bytes of I/O ports are needed, sothe board won't conflict with your other graphics adapters or peripherals.

This card Is avallahle only directly from the factory. Two cards are available,
one with a resolution of 640x200, the other one goes to 640x400 but requires
a long persistence phosphor monitor. Both cards come with a 30 day money-
back trial period. Try the card, if It doesn't perform as claimed, or if you are
unsatisfied with It for any reason send It back for a full refund. The cards also
come with a 180 day warranty, and include free software updates.

E H G C p 2 6 4 0 x 2 0 0 o n l y S 3 7 4 . 0 0

E H G C p 4 6 4 0 x 4 0 0 I n t e r l a c e 5 7 8 . 0 0

Sh ipp ing and Hand l ing 4 .00
E-Heart Engineering / 18103 Sky Park South *D / Irvine, CA 92714

Check or Money Order
30 day trial

180 day warranty
(714)261-1725

Number 67 on the Reader Service Card

the PC standard, because the PC is built out of off-the-shelf
hardware, not custom VLSI chips, and because the EGA video
BIOS is twice as large as the entire PC BIOS. There's no solu
tion to this, but broad testing is a reasonable substitute.

The Macro Assembler
The code I'll be presenting will generally be written in
Assembler. I think C is a good development environment, but
I'm in general agreement with Hal Hardenbergh's assertion that
the best code (although not necessarily the easiest to write or
the most reliable) is written in Assembler. This is especially true
of graphics code for the 8086 family, given segments and the
string instructions, and for real-time programming of a com
plex board like the EGA, there's really no other choice.

Before I'm deluged with protests from C devotees, let me add
that the majority of my productive work is done in C; no pro
grammer is immune to the laws of time, and C is simply a faster
environment in which to develop, particularly when working
in a programming team. I'd like to emphasize that there are
many excellent C compilers available for the PC, some of which
produce remarkably good code, and all of which are a damn
sight more reliable and easier to develop with than the
Microsoft Macro Assembler. In fact, I think MASM is a serious
impediment to assembly-language programming on a com
puter that is inherently hard to program in Assembler. My ex
perience with MASM began with version 1.0 compiling a DB
that had a DUP factor of 0 into a block of 64 apparently ran
dom bytes, and matters have continued in pretty much the
same vein ever since. Version 4.0 is much faster and has fewer
bugs, but it's far from perfect. For one thing, macros don't

PJ January / February 1987~ ~ ' " 4 1
pcjs.org

always work the way they should, and it can be very difficult
just to pin down the source of an error in a nested macro, let
alone devise a workaround. For another, the whole structure
of the assembly language is, to put it charitably, odd. I've never
seen another strongly-typed assembler before, and I hope I
never do. I've also never seen another assembler capable of
generating a phase error, surely one of the most maddening
and least useful error messages ever. I use STRUC and GROUP
and OFFSET, and I know a slew of tricks like using LEA or
DGROUP:OFFSET to get an accurate offset in a group, but is
all of this really necessary? In my opinion, MASM is somewhere
between a true assembler and a high-level language, with most
of the disadvantages of both.

One example, and then I'll get to the point. When a struc
ture element is used in C, the compiler knows which structure
definition that element is associated with and consequently
has no trouble with elements of different structures that have
the same names. For instance, LinkedListBlock.Status and
DescriptorBlock.Status can coexist happily in the same
module. Not so in Assembler—structure element names seem
to simply translate into symbols, just as if an EQU had been per
formed, and the second structure element with a given name
produces a redefinition error. As a result, I find myself nam
ing elements like LLBStatus and DBStatus, a far cry from the
power of C structures.

So what's the point? Well, I'm willing to bet that someone
out there knows a way around the STRUC problem I've just
described. Perhaps it's not a problem at all, and I've simply
misunderstood the Macro Assembler manual, or perhaps
there's a good workaround. Whether this particular problem
is solvable or not, there are many tricks being used in similar
situations to wring utility out of MASM. Like it or not, MASM
is pretty much it for assembly-language development for the
PC family. True, there are other assemblers, but all my existing
code and most of the tools and high-level languages I use are
designed to work with MASM, and every time I try to leave
MASM I run into incompatibilities that send me running back
to the old standard. Since MASM is so important, I'll be writing
about the MASM tricks I know, and I'd appreciate it if you'd
write in and share your MASM experiences with Pfs readers
as well.

Two unsolved MASM puzzles to start things off:

(1) I've never figured out how to use STRUC to define negative
offsets from BP in a stack frame. C routinely addresses passed
parameters at positive offsets from BP and dynamic storage at
negative offsets, but since STRUC seems to generate only
positive offsets, I've had to put dynamic storage at positive off
sets and set BP only after dynamic storage has been allocated.
Although this works, it effectively halves the number of bytes
that can be addressed with single-byte offsets from BP, poten
tially increasing code size and execution time.

(2) While developing ROMable code, I needed to force certain
code to be at a certain offset (say offset 2000h) in the final COM
file. My thought was to use something like

D B (2 0 0 0 h - S) D U P 0

to force the code to assemble at the desired location. Alas, the
assembler can handle only a constant in this context, and "$"
is not a constant. I tried a variety of other approaches, such

as ORGing to the offset, but couldn't get the assembler to pro
duce the desired result. I ended up disassembling the file,
calculating the needed offset, and hardwiring it into a DB,
which was fine until the next time I changed the code and
forgot to adjust the DUP value in the DB. Does anyone know
how to force code to assemble at an absolute location?

So. If you know the answers, let us know. If you've got bugs
and workarounds of your own, let us know. We MASM
developers can use all the help we can get.

Coming Up
Next time I'll look into the hardware assistance the EGA pro
vides the CPU during display memory access. There are four
latches and four ALUs in those chips, along with some useful
masks and comparators; it should be interesting. See you then.
□

Michael Abrash is a Senior Software Engineer for Orion
Industries of Redwood City, CA, a manufacturer of PC-based
instrumentation and microprocessor development systems.

Code follows.

c&K THE- KIGlHcT ^>Tc^>K£—

PJ January / February 1987
42 pcjs.org

ON GRAPHICS:

Parallel Processing
with the EGA

by
Michael Abrash

This issue's title refers to the ability of the powerful EGA chip
set to manipulate up to four bytes of display memory at once.
The EGA provides four ALUs (Arithmetic Logic Units) to assist
the CPU during display memory writes, and this hardware is
a tremendous resource in the task of manipulating the EGAs
massive bit map. The ALUs are actually only one part of the
surprisingly complex data flow architecture of the EGA, but
since they're involved in almost all memory access operations,
they're a good place to begin.

There's more to cover, too-starting with this article, I'm
going to briefly discuss interesting graphics hardware and soft
ware I've come across recently. Since most PJ readers art-
developers, I'm not going to be doing traditional reviews, but
rather discussing products' strengths and weaknesses from the
perspective of a developer who's deciding what products to
support and/or develop for. This issue, rather than examine
specific products, I'm going to report on the state of PC
graphics, as observed at Fall Comdex.

Comdex
The overriding graphics-related impression from Comdex was
that the EGA is the standard for PC graphics. Virtually no one
showed a CGA-level product, and just about all demos were
run on EGAs or more powerful boards. One AT-compatible por
table was shown: It had an EGA built into the motherboard.
Many more built-in EGAs will surely follow, especially given
the one- and two-chip EGA chip sets hitting the market. In
short, imperfect as it may be, the EGA is the current standard
for mass-market PC graphics. (On a related note, inexpensive
ATs abounded at Comdex. The widespread use of ATs will help
greatly in overcoming the relatively sluggish performance of
the EGA.)

Given that the EGA is today's standard, the big question is
clearly, "What's next?" One answer seems to be what many
people are calling the EEGA, which is an EGA with higher-
resolution modes than the IBM board's, typically 640 x 480
but ranging in some cases as high as 800 pixels in width and
500 pixels in height. Several EEGA boards were shown at Com
dex, and others have already been announced. There's nothing
revolutionary about the EEGA; it's a natural outgrowth of the
development of EGA chip sets that can run faster than IBM's.
EEGA hi-res modes are identical to the normal EGA 640 x 350
mode, with 16 of 64 colors available, except that the dot clock
speed is higher and the portion of display memory used for
video data at any given time is larger. (In 640 x 480 mode, for
example, the active bit map size is over 37K; by contrast, 640
x 350 mode requires less than 28K.)

EEGAs are significant for several reasons. First, they provide
enough resolution for emulation of many popular graphics ter
minals. Second, the market is being flooded with monitors that
support the higher resolutions of these boards, such as the NEC
MultiSync and Sony MultiScan. Third, 640 x 480 provides
about a 1-to-l aspect ratio; a 1-to-l aspect ratio is one reason
why Macintosh graphics look so good. Finally, support of
EEGAs requires very little new programming since all the
registers and memory addresses that are used in standard EGA
programming are used by EEGAs as well, so software should
become available for them quickly.

EEGAs are hardly a giant step forward, but they are a very
practical move toward high-resolution graphics. The bad news
is this: With a 30% larger bit map to manipulate, software run
ning on the EEGA will be slower than EGA software. Among
other implications, this makes it imperative that EGA software-
developers write the highest-performance code possible.

Not all the graphics at Comdex were EGA-related, though,
by a long shot. There were a number of IBM Professional
Graphics Controller (PGC) compatible systems (in fact, Zenith
was demonstrating its 80386-based system with a Turbo PGC,
which was interesting since virtually none of the speed of the
graphics was attributable to the 386). There were systems built
around both the Intel 82786 and the TI34010 (which I'm plan
ning to look at soon), and there were proprietary systems with
resolutions up to lK-by-lK. Unfortunately, there were no signs
of standardization for graphics above the EEGA level. I suppose
standardization will have to wait for either the TI or the Intel
chip to become a mass-market success. (Or some other chip—it
will happen eventually). Another possibility is that either or
both chips may prove to be powerful enough to support good
performance through device drivers, in which case we may
(finally!) be near the era of true device independence.

IBM could, of course, set the next graphics standard with
its rumored Turbo EGA, or with another graphics adapter.
However, it doesn't seem to be as easy as it used to be for IBM
to set standards; the PGC was hardly an unqualified success,
and the EGA became a standard only because third party
manufacturers imitated the technology and brought the price
way down. It's not at all clear that if IBM were to come out with
a new adapter tomorrow it would have much impact, par
ticularly if the technology were sufficiently proprietary that
other manufacturers couldn't clone it. For the near future, at
least, fragmentation seems to be the nature of the high end of
the PC graphics market.

On the bright side, many of the high-end display adapters
featured EGA compatibility. Whatever direction the graphics

1987 Programmer's Journal 5.2

40 pcjs.org

market takes in the next few years, it's safe to say that EGA soft
ware will retain its value, particularly if that software can sup
port 640 x 480 graphics.

EGA Programming: ALUs and Latches
I'm going to begin our detailed tour of the EGA at the heart
of the flow of data through the EGA: the four ALUs built into
the EGAs Graphics Data Controller (GDC) chips. The ALUs
(one for each display memory plane) are capable of ORing,
ANDing, and XORing CPU data and display memory data
together, as well as masking off some or all of the bits in the
data from affecting the final result. All the ALUs perform the
same logical operation at any given time, but each ALU operates
on a different display memory byte. (Recall that the EGA has
four display memory planes, with one byte in each plane at
any given display memory address. All four display memory
bytes operated on are read from the same address, but each ALU
operates on a byte that was read from a different plane and
writes the result to that plane.) This arrangement allows four
display memory bytes to be modified by a single CPU write
(which must normally be preceded by a single CPU read, as
wc will see). The benefits are clear: If the CPU had to select
each of the four planes in turn via OUTs and perform the four
logical operations itself, EGA performance would be slowed
to a crawl.

Figure 1 is a simplified depiction of data flow around the
ALUs. Each ALU has a matching latch that holds the byte read
from the corresponding plane during the last CPU read from
display memory—even if that particular plane wasn't the plane
the CPU actually read on the last read access. (Only one byte
can be read by the CPU with a single display memory read; the
plane supplying the byte is selected by the Read Map register.
However, the same address from all four planes is always read
when the CPU reads display memory, and those four bytes are
held in their respective latches.)

Bytelien _Writl
ByCPU

^ Latch
ALU

-oLatch
ALU

HJLatch
ALU

■ ^Latch
ALU

Display Memory
Plane 3

Display Memory
Plane 2

Display Memory
Plane 1

Display Memory
Plane 0

Figure 1: Simplified Data Flow Around the
Arithmetic Logic Units (ALUs) in the
Graphics Data Controller

Each ALU logically combines the byte written by the CPU
and the byte stored in the matching latch, according to the set
ting of bits 3 and 4 of the Data Rotate register (and the Bit Mask
register as well, which I'll cover next time), and then writes
the result to display memory. It is most important to under
stand that neither ALU operand comes directly from display
memory. The temptation is to think of the ALUs as combin
ing CPU data and the contents of the display memory address
being written to; but they actually combine CPU data and the
contents of the last display memory location read, which need
not be the same location being modified. The most common
application of the ALUs is indeed to modify a given display
memory location, but doing so requires a read from that loca
tion to load the latches before the write that modifies it. Omis
sion of the read results in a write operation that logically com
bines CPU data with whatever data happens to be in the latch
from the last read, which is normally undesirable.

Occasionally, however, the independence of the latches from
the display memory location being written to can be used to
great advantage. The latches can be used to perform 4-byte-at-
a-time (one byte from each plane) block copying; in this
application, the latches are loaded with a read from the source
area and written unmodified to the destination area. The latch
es can be written unmodified in one of two ways: by selecting
write mode 1 (for an example of this, see the "On Graphics"
article in the last issue of PJ) or via the Bit Mask register.

The latches can also be used to draw a fairly complex area
fill pattern, with a different bit pattern used to fill each plane.
The mechanism for this is: Generate the desired pattern across
all planes at any display memory address. Generating the pat
tern requires a separate write operation for each plane so that
each plane's byte will be unique. Read that memory address
to store the pattern in the latches. The contents of the latches
can now be written to memory any number of times by using
either write mode 1 or the bit mask since they will not change
until a read is performed. If the fill pattern does not require
a different bit pattern for each plane, filling can be performed
more easily by using the Map Mask register (and, if display
memory isn't zeroed, the Set/Reset registers, of which, more
next time).

The sample program in Listing 1 fills the screen with
horizontal bars, then illustrates the operation of each of the
four ALU logical functions by writing a vertical 80-pixel-wide
box filled with solid, empty, and vertical and horizontal bar
patterns over that background using each of the functions in
turn. When observing the output of the sample program,
remember that all four vertical boxes are being drawn with ex
actly the same code—only the logical function that is in effect
differs from box to box.

You will observe that all graphics in the sample program are
done in black-and-white by writing to all planes since this
shows the operation of the ALUs most clearly. Selective enabl
ing of planes would produce color effects; in this case, the
operation of the logical functions must be evaluated on a plane-
by-plane basis because only the planes enabled by the Map
Mask register will be affected.

1987 Programmer's Journal 5.2

41

pcjs.org

Logical function 0, data unmodified, is the standard mode
of operation of the ALUs. In this mode, the CPU data is com
bined with the latched data by ignoring the latched data
entirely. Expressed as a logical function, this could be con
sidered CPU data ANDed with 1 (or ORed with 0). This is the
mode to use whenever you want to place CPU data into display
memory, replacing the previous contents entirely. It may occur
to you that there is no need to latch display memory at all when
the data unmodified function is selected. In the sample pro
gram, that is true, but if the bit mask is being used, the latches
must be loaded even for the data unmodified function, as I'll
discuss in the next article.

Logical functions 1 through 3 cause the CPU data to be AND
ed, ORed, and XORed with latch data, respectively. Of these,
XOR is the most useful because exclusive-ORing is a traditional
way to perform animation. The uses of the AND and OR logical
functions are less obvious. AND can be used to mask a blank
area into display memory or to mask off those portions of a
form that don't overlap an existing display memory image. OR
could conceivably be used to force an image into display
memory over an existing image. To be honest, though, I have
yet to come up with a truly valuable application for the OR
logical function; if you've got one, write and let me know what
it is.

Notes on the ALU/LATCH Sample Program
EGA settings such as the logical function select should be
restored to their default conditions before the BIOS is called
to output text or draw pixels. The EGA BIOS does not guarantee
that it will set most EGA registers except on mode sets, and
there are so many compatible BlOSes around that the code of
the IBM BIOS is not a reliable guide. For instance, when the
BIOS is called to draw text, it's likely that the result will be il
legible if the Bit Mask register is not in its default state. Similarly,
a mode set should generally be performed before exiting a pro
gram that tinkers with EGA settings.

Along the same lines, the sample program does not explicitly
set the Map Mask register to ensure that all planes are enabled
for writing. The mode set for mode 10 hex leaves all planes
enabled, so I did not bother to program the Map Mask register,
or any other register besides the Data Rotate register, for that
matter. However, the profusion of compatible BlOSes means
there is some small risk in relying on the BIOS to leave registers
set properly. There are only a few clone chip sets, and they all
seem to be compatible, so for the highly safety-conscious, the
best course would seem to be to program data control registers
such as the Map Mask and Read Mask explicitly before relying
on their contents.

(On the other hand, any function the BIOS provides
explicitly—as part of the interface specification—such as set
ting the palette RAM, should be used in preference to program
ming the hardware directly.)

The code that draws each vertical box in the sample program
reads from display memory immediately before writing to
display memory. The read operation loads the EGA latches. The
value read is irrelevant as far as the sample program is con
cerned; it is necessary to perform a read to load the latches,
and there is no way to read without placing a value in a register.
This is a bit of a nuisance since it means that the value of some
8-bit register must be destroyed. Under certain circumstances,
a single logical instruction such as XOR can be used to perform
both the read to load the latches and the write to modify
display memory without affecting any register, but since this

requires the bit mask, it'll have to wait until next time.
All text in the sample program is drawn by EGA BIOS func

tion 13 hex, write string. This function is also present in the
AT's BIOS, but not in the XT's or PC's, and as a result is rarely
used; the function is always available if an EGA is installed,
however. Text drawn with this function is relatively slow. If
speed is important, a program can draw text directly into
display memory much faster in any given display mode. The
great virtue of the BIOS write string function in the case of the
EGA is that it provides an uncomplicated way to get text on
the screen reliably in any mode and color, over any
background.

The expression used to load DX in the TEXT UP macro in
the sample program may seem strange, but it's a convenient
way to save a byte of program code and a few cycles of execu
tion time. DX is being loaded with a word value that's com
posed of two independent immediate byte values. The obvious
way to implement this would be with

MOV DL,VALUE1
MOV DH,VALUE2

which requires four bytes and eight cycles on the 8088. If you
shift the value destined for the high byte into the high byte with
MASM's shift-left operator SHL (*100h would also work) and
then logically combine the values with MASM's OR operator
(or the ADD operator), both halves of DX can be loaded with
a single instruction, as in

MOV DX,(VALUE2 SHL 8) OR VALUE1

which takes only three bytes and four cycles. As shown, a
macro is an ideal place to use this technique; the macro invoca
tion can refer to two separate byte values, making matters easier
for the programmer, while the macro itself can combine the
values into a single word-sized constant.

A minor speed tip illustrated in the listing is the use of INC
AX and DEC AX in the DrawVerticalBox subroutine when only
AL actually needs to be modified. Word-sized register incre
ment and decrement instructions are only one byte long and
execute in 2 cycles on an 8088, while byte-sized register in
crement and decrement instructions are two bytes long and
execute in 3 cycles. Consequently, when speed counts it is
worth using a whole 16-bit register instead of the low 8 bits
of that register for INC and DEC—if you don't need the upper
8 bits of the register for any other purpose.

Another speed tip is the use of registers to temporarily store
all constants in the background-drawing loop. Moving a con
stant to a 16-bit register takes a 3-byte instruction and adding
a constant to a 16-bit register takes a 4-byte instruction, while
moving and adding 16-bit registers to 16-bit registers require-
only 2-byte instructions. The register-register operations are
also at least 1 cycle faster; they are probably a good deal faster
than that relative to the constant operations because of the
prefetch queue, a topic I will return to later.

The latches and ALUs are central to high-performance EGA
code because they allow programs to process across all four
memory planes without a series of OUTs and read/write opera
tions. It is not always easy to arrange a program to exploit this
power, however, since the ALUs are far more limited than a
CPU. In many instances, however, additional hardware in the
EGA, including the bit mask, the set/reset features, and the bar
rel shifter, can assist the ALUs in controlling data. I will begin
to examine these features next time.

1987 Programmer's Journal 5.2

42 pcjs.org

Pimfes
I've got a couple of unsolved (in one case, partially solved)
puzzles this month.

First, another MASM problem. When I use macros with
several arguments, the text often runs past column 80. The
code still assembles properly, but printouts are a mess. Does
anyone know how to continue a macro invocation (or a STRUC
initialization, for that matter) on the next line?

The second puzzle pops up regularly in coding high-
performance graphics drivers—how the heck do you deter
mine just what's the fastest 8088 code for a given purpose?
Hand-optimization of Assembler code is always an art, but the
prefetch queue makes 8088 optimization black magic. (See my
article "More Optimizing For Speed," PJ, July/August 1986, for
an introduction to prefetch queue effects.) Optimizing 80286
code is somewhat less critical, both because the 8088 is far
more common right now and because Aft are faster than PCs
no matter how fast 8088-oriented code is, but 80286 optimiza
tion is becoming more important, so that's an issue too. And,
of course, 80386 optimization looms on the horizon.

I ran across a particular optimization puzzle while im
plementing Bresenham's line-drawing algorithm: how best to
totate a pixel mask (one bit set and the others reset) to the right
(moving one pixel to the right), incrementing the screen ad
dress by one when the set bit in the pixel mask wraps around
from bit 0 to bit 7? The standard code for this instance would be

ROR AL,1
JNC NO_INC
INC DI

NO_INC:

where AL is the pixel mask (with only one bit set to 1), and DI
is the screen address of the byte containing the next pixel to
be drawn. However, JNC is executed 7 of 8 times the above
code is executed, requiring 16 cycles each time, for an average
code execution time for the conditional increment portion of
this code of ((16 * 7) + (4 + 2)) / 8 = 14.75 cycles on the
8088. (The conditional increment code is JNC NO__INC / INC
DI; the ROR AL,1 instruction is not counted because I'm in
terested only in the relative conditional increment timings of
the approaches I'll examine.) On the other hand, the less
elegant looking code:

ROR AL,1
JC DO_INC

CONTINUE AFTER INC:

DO__INC:
INC DI
JMP CONTINUE AFTER INC

where DO_INC is outside the loop the rotate is performed
in but within range of a short jump, requires only ((7*4) +
(16 + 2 + 15)) / 8 = 7.6 cycles to perform the conditional
increment on average. (Thanks to Dan Illowsky for this unor
thodox but effective approach.) The speed of this code is a
result of the vast difference on the 8088 between a conditional
jump taken and one not taken.

The fastest code, however, is that which eliminates branch
ing entirely. To wit:

ROR AL,1
ADC DI,0

Continued.

TURBO SOURCE SEARCH (TSS)
TSS is a RBBS-by-mail for TURBO Pascal.
Stop paying AT&T, MCI, SPRINl7 et al. 10 timeswhat it will cost you if you get it by mail from
TSS.
Join TSS for $25. Then buy our library disks, $2
per disk. (45 disks and growing!!) Archived files= 700 + Kb of code per TSS disk. TSS gives
more bytes/buck! Why pay more to get less?

For your $25 you get• 2 FREE library disks (utilities & catalog)
• 2 FREE TSS disks with your first order
• a validated password for the online TSS-BBS

TSS-BBS will be an "e-mail" drop-off for members
to place orders then log off. It will also serve more
traditional RBBS needs. Members will be able
to DL the TSS disks (at 10 times the cost of
mails!) if they really MUST have it now!
Join the TSS BBS-ttiru-the-maH for the best in
public domain and shareware TURBO code.

TURBO SOURCE SEARCH
P.O. Box 876, Scituate, MA 02066, (617) 545-6677

payment: VISA/MC/COO If validated, otherwise check/money orders

Number 35 on the Reader Service Card

$99 BUSINESS BOARD
24 hou r bus iness i n fo rma t i on cen te r us i ng
modems at 300/1200/2400 baud. Has a multi
level menu system that is easi ly customized
wi th no programming req 'd. Inc ludes remote
P C o p e r a t i o n s a n d i n t e g r a t e d d a t a b a s e
management. Source code addit ional charge.

$99 PC COMMX $119 CP/M

Emulates VT100,Wyse,HP,ADM,TV,IBM,ADDS,file
transfers: KERMIT, XMODEM, COMMX mainframe,
Te lex /TWX. Ins tan t DOS/ fo reground sw i t ch !
U n a t t e n d e d m a c r o c o n t r o l s a n d 7 0 0 e n t r y
d i a l d i r ec to r y. E l ec t r on i c ma i l sub -sys tem!

$59 C DATA ENCRYPTION
Data Encryp t ion Standard (U.S. government
s t a n d a r d F I P S P U B 4 6) i n M i c r o s o f t " C " .
Includes compression & telecomm formatting,
a l l o w i n g f o r f a s t e r t r a n s m i s s i o n & s t o r a g e
on any compute r o r se rv i ce . Comp le te "C"
source code provided for addi t ional $249.

HAWKEYE
GRAFIX Inc

Box 1400, Oldsmar
F l o r i d a 3 3 5 5 7
Call 813-786-8161

1987 Programmer's Journal 5.2 Number 57 on the Reader Service Card

43

pcjs.org

requires exactly 4 cycles to perform each conditional
increment—more than 3 times faster than the original code.
This is an excellent example of the way in which the quirks
of the 8088 make it possible to hand-optimize small portions
of Assembler code to a far greater extent than is true of most
processors.

So what's the puzzle? The puzzle is that I still don't know
what's really the fastest way to perform the above rotate and
conditional increment. The performance estimates above were
arrived at by adding the execution times Intel publishes, but
the published times assume that the prefetch queue isn't empty.
For example, since ROR AL, 1 / ADC DI,0 constitutes 6 bytes,
since the 8088 prefetch queue is only 4 bytes long, and since
4 cycles are required to fetch each instruction byte, there's no
way that particular code fragment could ever execute in only
the specified 6 cycles, even if the prefetch queue were full when
ROR began executing. If the prefetch queue is empty, the ADC
DI,0 instruction alone will require 16 cycles (4 cycles times 4
bytes), a far cry from the 4 cycles assumed above, and, in fact,
exactly as long as the nominal time required to make a condi
tional jump. The time required to jump is unclear as well
because the prefetch queue is emptied by each jump and may
take additional time beyond the 16 cycles specified to refill
before the instruction branched to can start execution. All the
code fragments above are likely to take somewhat longer than
specified; just how much longer is the question.

So. Here's what I'd like to know (and share with P/s readers).
First, what is the precise overhead of branching and flushing
the queue? Are additional cycles beyond the published timings
required to get enough bytes to begin executing the next
instruction?

Second, how long does a conditional jump not taken take
to execute; is the second byte of the instruction even read? If
so, is it read while the jump condition is evaluated?

Third, how important, in general, is the prefetch queue in
determining performance of 80286/80386 code? The 80286
can fetch twice as many instruction bytes per memory access
as the 8088, but it also executes most instructions in many
fewer clock cycles and so uses up instruction bytes at a faster
rate.

Fourth (and most important), what techniques have PJ
readers come up with for evaluating the performance of time-
critical code? Ideally, Intel would make available all the infor
mation about the 8088's microcode required to accurately
determine execution times, but I know of no such publication.
There are a number of code profilers out there, but most of
them measure gross effects by reporting overall time spent in
a given routine. To truly optimize, it's necessary to understand
where every cycle goes, and to do that, each instruction in the
innermost time-critical loops has to be examined in the con
text of normal operation. There's hardware out there that can
do this; sadly, such equipment is outside the price range of
many developers, especially individuals. On behalf of the
under-funded developers of the world, I'd love to hear about
a way to do cycle-by-cycle in-context performance analysis in
software.

Who cares about a few cycles here and there? In a time-
critical code path, any programmer who cares about turning
out a superior product should, and on the PC, virtually all real
time graphics are time-critical. Let us know how you do it.
Make the world of 8088 programming a little better.

Next Time
I'm going to explore a couple of interesting EGA topics in the
next article. I'll continue examining the data flow around the
ALUs, including the bit mask, data rotate, and set/reset
capabilities, which are crucial to pixel-aligned graphics and
fast color control. I'll also talk about color versus monochrome
operation and downward compatibility with the CGA, MDA,
and Hercules Graphics Card, plus the usual discussion of in
teresting hardware and/or software I've come across. See you
then. □

Michael Abrash is a Senior Software Engineer for Orion In
dustries of Redwood City, CA, a manufacturer of PC-based
instrumentation and microprocessor development systems.

Code follows.

Here's why you should choose Periscope as your debugger...
You'll get your programs running fast. "It works
great! A problem we had for three weeks was
solved in three hours," writes Wade Clark of
MPPi, Ltd.

You'll make your programs solid. David Nanian
says, "I can't live without it!! BRIEF, a text
editor my company wrote, would not be as stable
as it is today without Periscope."

You'll protect your investment. We won't forget
you after the sale. You'll get regular software
updates, including a FREE first update and
notice of later updates. You'll get technical help
from Periscope's author. And you'll be able to
upgrade to more powerful models of Periscope if
you need to. One Periscope user writes, ". . .

your support has won over even the heart of this
hardened programmer!"

You deserve the best. Thousands of programmers
rely on the only debugger that PC Tech Journal
has ever selected as Product of the Month
(1/86). You owe it to yourself to find out why,
first hand.

You can try it at no risk. You get an uncondi
tional 30-Day, Money-Back Guarantee, so you
can't lose.
Start saving time and money now — order toll-
free, 800/722-7006. Use MasterCard, Visa,
COD, or a qualified company purchase order. As
one user puts it, Periscope is "one of the rare
products, worth every penny!"

New Version 3 is better than ever!

Periscope I, software, manual,
protected memory board and
b r e a k o u t s w i t c h $ 3 4 5

Periscope II, software, manual, and
b r e a k o u t s w i t c h $ 1 7 5

Periscope II-X,
s o f t w a r e a n d m a n u a l $ 1 4 5

Add shipping - $3 US; $8 Canada; $24 elsewhere.
The

PERISG$PECompany, Inc.

14 Bonnie Lane • Atlanta, CA 30328 • 404/256-3860

1987 Programmer's Journal 5.2
Number 6 on the Reader Service Card

44 pcjs.org

: ON GRAPHICS

EGA Data Control
by
Michael Abrash

This month I'm going to cover a lot of ground. First, I'll discuss
the monitors the EGA can support and look into issues of EGA
compatibility with other adapters. Next, I'll continue our
detailed exploration of the data management capabilities of
the GDC chip. Finally, I'll look at three EEGAs.

Color, Monochrome, and Compatibility
I've become aware that few people understand exactly what
displays EGAs can drive and what adapters EGAs are compati
ble with. I'm going to do my best to remedy that here.

A standard EGA can drive a monochrome display, a color
display, or an enhanced color display. Monochrome operation
is simpler, so I'll start with that.

When driving a monochrome display, the EGA supports a
text mode identical in appearance to that of the Monochrome
Display Adapter (MDA), with characters in 9 x 14 boxes. The
bit map is at B000:0000, just as with the MDA, and attributes
can be (and are set up by the BIOS to be) interpreted in the same
way as with the MDA. The EGA is BIOS-compatible with the
MDA, but the registers of the EGA are only partially compati
ble. Most importantly, the cursor location register is MDA-
compatible. The cursor start and stop scan line registers are not
fully compatible, but they can be set reliably through the BIOS,
which is compatible across the MDA, CGA, and EGA. Given
the way in which the MDA is normally programmed, the EGA
can be considered to be highly MDA-compatible. In particular,
if registers other than the cursor location aren't set directly, the
EGA is a fine MDA replacement. Since the MDA supports only
one mode, mode 7, there is little reason to directly program
MDA registers other than the cursor location, so the EGA can
generally be substituted for the MDA.

When configured for monochrome operation, the EGA pro
vides a graphics mode with a resolution of 640 x 350, with
attributes of black, white, high-intensity, and blink. This mode
is similar to the 640 x 350 color graphics mode except that two
planes, rather than four, are used. Unfortunately, the EGA's
monochrome graphics mode is not even remotely compatible
with the graphics mode of the Hercules Graphics Card (HGC).
It is possible to program an EGA to support the same bit map
as the HGC does (someday I'll show how in this space). Since,
however, the HGC has no BIOS support for mode switches,
all software that supports the HGC programs the hardware
directly; because the EGA is not fully register-compatible with
the HGC, this will not work with the EGA. So, practically
speaking, the standard EGA is compatible with the MDA but
not the HGC.

Color EGA operation is more complex. The EGA can be con
figured to support only 200-scan-line display modes, or it can

be configured to support both 200- and 350-scan-line modes.
(In the configuration switch table for the EGA there appear to
be more choices, but the only important choice is between 200
and 350 scan lines. There is no reason to power up an EGA in
40-column mode since it has no composite or RF output and
the high-resolution emulation mode is identical to the
200-scan-line 80-column setting.) In 200-scan-line operation,
the EGA has two new graphics modes (unsupported by the
CGA), 320 x 200 in 16 colors and 640 x 200 in 16 colors. In
350-scan-line operation, the EGA has a 640 x 350 16-color
graphics mode; additionally, in 350-scan-line operation text
in 80 x 25 text mode is in an 8 x 14 box, rather than in the
coarse 8x8 box of the CGA. High-resolution text is far superior
to CGA text, but there is one important limitation—border col
ors other than black aren't supported in 350-scan-line modes
(due to tight retrace timings). With that background out of the
way, let's look at EGA emulation of the CGA.

In general, the EGA is only a fair Color/Graphics Adapter
(CGA) replacement. The EGA supports all the display modes
of the CGA, as well as all CGA bit maps at B800:0000. The EGA
is also BIOS-compatible with the CGA, but, unlike the MDA's,
the CGA's hardware is often programmed directly, and the EGA
is not fully register-compatible. Most notably, the Color Select
register, which is used to select among the CGA's palettes and
background colors, is not present in the EGA. A BIOS function
is provided to set these registers, but it supports only one of
the two palette intensities provided by the CGA; Affb, border
colors in high-resolution modes aren't supported. In order to
write a program that would run on both the CGA and EGA, you
must avoid all accesses to registers other than the ctirsor loca
tion and start address registers, again including the cursor start
and stop registers. This is possible, but the differences in col
or capabilities and color setting techniques between the two
adapters mean that a program that would run on both adapters
would be limited to two three-color palettes in graphics modes,
with a black border only. In short, the EGA can be used to run
BIOS-compatible CGA software, but the two boards are really
quite different.

A summary of the standard EGA's compatibility with existing
display adapters: CGA and MDA programs that do not access
registers other than the cursor location and start address
registers directly should run on the EGA. Bit-map compatibility
is maintained by the EGA. HGC programs will not run on a stan
dard EGA although it is possible to program an EGA to support
an HGC-format bit map.

Many EGAs have extended CGA mitoz HGC «sppî iWty
built in. These boards can create headaches for developers, for
many of them are not really hardware-compatible with ihe

1987 Programmer'sjournal 5.3

30 pcjs.org

CGA or HGC. A common method of implementing compati
bility is to generate an NMI (non-maskable interrupt) on
attempted access to the CGA's (or HGCs) registers, with the
NMI-handling routine forcing the CRT registers to settings that
match the setting of the CGA mode register. This approach
'means that software that reprograms the 6845 CRT of the CGA
(to get extra rows and columns, for example, or to smooth
scroll) will not work on EGAs with NMI-based compatibility.

There are, incidentally, other problems with boards that pro
vide downward compatibility—in particular that it can be dif
ficult to determine what type of adapter a program should be
trying to drive; for example, a program that looks for the string
"IBM" in the EGA BIOS to see whether an EGA is installed (a
common, although crude, method) will attempt to drive an
EGA even if emulation is active and the program should be try
ing to drive an emulated CGA. One approach to this problem
is letting the user select the display type at installation time.

As a result, the recommendation that developers leave
registers other than the cursor location and start address
registers alone and go through the BIOS holds even on CGA-
and HGC-compatible EGAs. Bit maps are the same, so it's all
right to go directly to display memory (fortunately, since the
BIOS write and read dot functions are so slow as to be virtual
ly useless). It's too bad that the BIOS doesn't provide full sup
port for CGA palettes, though, and that border colors aren't
supported in 350-scan-line modes.

Of course, if you're not interested in having your applica
tions run on anything but an EGA (or anything but a CGA), or
if you're willing to write your programs to specifically support
a number of display adapters, you can go right to the hardware.
I don't mean to say that you shouldn't use fast, nonstandard
techniques when you have to—just be aware that as the world
of display adapters expands, with CGAs, MDAs, HGCs, EGAs,
EEGAs, and new display technologies that provide downward
compatibility to varying degrees, it's going to be harder to sup
port them all directly. So.. .where you can afford to, go
through the BIOS; go directly to the hardware when you can't
live without it.

There's one other compatibility issue concerning the EGA,
and that's what displays the EGA can coexist with. The answer
is that an EGA configured for color can be in the same system
with an MDA (or HGC with up to 32K available), and an EGA
configured for monochrome can be in the same system with
a CGA. This is possible because a color EGA uses registers in
the range 3CO-3DC and a monochrome EGA uses registers in
the range 3BO-3CF, complementing the address ranges of the
MDA and CGA, respectively. Two EGAs, one color and one
monochrome, cannot coexist because both would use registers

in the 3CX range. It is possible to jumper an EGA to set its ad
dress range to 2XX rather than 3XX, allowing two EGAs to be
installed toother without conflict; however, no current BIOS
supports this alternate address range, so a good deal of work
would be required in order to use two EGAs together in this
fashion.

A Closer look at the GDC
Last time, we looked at a simplified model of data flow within
the GDC chips of the EGA, featuring the latches and ALUs. This
month I'll expand that model to include the barrel shifter and
bit mask, leaving only the set/reset capabilities to be explored.

EGA Data Rotation
Figure 1 shows the expanded model of GDC data flow. First,
I'd like to look at the barrel shifter. (A barrel shifter is circuitry
capable of shifting—or in the EGA's case, rotating—data an ar
bitrary number of bits in a single cycle.) The barrel shifter can
rotate incoming CPU data up to seven bits to the right (toward
the least significant bit), with bit 0 wrapping back to bit 7.
Thanks to the nature of barrel shifters, this rotation requires
no extra processing time over normal, unrotated EGA opera
tion. The number of bits by which CPU data is shifted is con
trolled by bits 2-0 of GDC register 3, the Data Rotate register,
which also contains the ALU function select bits.

BR Masks (4)

Barrel
Shifter

ByteWritten
ByCPU

J Latch
ALU

I Latch
ALU

HILatch
ALU

J Latch
ALU

Display MemoryJ Plane 3

Display Memory
Plane 2

Display MemoryPlane 1

Display MemoryPlane 0

Figure 1: Data flow through the GDC
(Set/Reset circuitry not shown)

1987 Programmer's Journal 5.3

31

pcjs.org

The barrel shifter is powerful, but it sounds more useful than
it really is. This is because the GDCs can rotate only CPU data,
a task which the CPU itself is perfectly capable of performing.
Two OUTs (one to set the GDC index register and one to set
the Data Rotate register) are needed to select a given rotation,
and often it's easier and/or faster to simply have the CPU rotate
the data of interest CL times than it is to set the Data Rotate
register. If only the EGA could rotate latched data, there would
be all sorts of useful applications for rotation, but, sadly, only
CPU data can be rotated.

The drawing of bit-mapped text is one good use of the bar
rel shifter, and I'll demonstrate that application below. In
general, though, don't knock yourself out trying to figure out
how to work data rotation into your programs—it just isn't all
that useful.

The Bit Mask
The EGA has a bit mask for each of the four memory planes.
Figure 2 illustrates the operation of one bit of a bit mask. This
circuitry occurs eight times in the bit mask for a given plane,
once for each bit of the byte written to display memory. Briefly,
the bit mask determines on a bit-by-bit basis whether the source
for each byte written to display memory is the ALU for that
plane or the latch for that plane. The bit mask is controlled by
GDC register 8, the Bit Mask register. If a given bit of the Bit
Mask register is 1, the corresponding bit of data from the ALUs
is written to display memory, while if that bit is 0, the cor
responding bit of data from the latches is written to display
memory unchanged.

ALU Bit Latch bit

Bit Mask
Register Bit Selei t e d b y 1 S e l e c t e d byoj

^ 1 / S i
Multiplexer1 Select v

1
Display Memory

Figure 2: Operation of one bit of the Bit Mask register

The most common use of the bit mask is to allow updating
of selected bits within a display memory byte. This works as
follows: The byte of interest is latched; the bit mask is set to
preserve all but the bit or bits to be changed; the CPU writes
to display memory with the bit mask preserving the indicated
latch bits and allowing ALU data through to change the other
bits. Remember, though, that it is not possible to alter selected
bits in a display memory byte directly; the byte must first be
latched by a CPU read, and then the bit mask can keep selected
bits of the latched byte unchanged.

Listing 1 shows a program that uses the bit mask and data
rotation capabilities of the GDC to draw bit-mapped text at any
screen location. (The BIOS draws only characters on character
boundaries; in 640 x 350 graphics mode the default font is
drawn on byte boundaries horizontally and every 14 scan lines
vertically.) Note that the 8 x 8 BIOS font is used; a pointer to
this font is obtained through function llh of INT lOh.

The bit mask can be used for much more than bit-aligned
fonts. For example, the bit mask is useful for fast pixel draw
ing, such as that performed when drawing lines. At some point
in the future, I'll demonstrate such applications. The example
in Listing 1 is designed to illustrate the use of the Data Rotate
and Bit Mask registers and is not as fast or as complete as it
might be. The case where text is byte-aligned could be detected
and performed much faster, without the use of the Bit Mask
or Data Rotate registers and with only one display memory
access per font byte, rather than four. Also, it would be faster
to use a table lookup to calculate the bit masks for the two
halves of each character than the shifts used in the example.

For another (and more complex) example of drawing bit
mapped text on the EGA, see John Cockerham's article, "Pix
el Alignment of EGA Fonts," PC Tech Journal, January 1987.
Parenthetically, I'd like to pass alongjohn's comment about the
EGA: "When programming the EGA, everything is complex."
He's got a point.

Of Interest
I've gotten the opportunity to try out several EEGAs, with im
pressive results. If you've got a monitor capable of going up
to 640 x 480 or higher, you should consider an EEGA, and if
you're developing an application that needs higher resolution
(what application doesn't?), you should certainly take a long
look at supporting one or more EEGAs. As we'll see, all EEGAs
are not alike; each of the three I'll look at has unique features.

Before I begin, I'd like to make it clear that the following is
not a review in any conventional sense. I'm not trying to cover
the boards in every detail because I'm not trying to help you
decide which to buy. By the same token, I'm not trying to
blanket the field—you won't find comparison charts of 32
EGAs here. What I am trying to do is help you decide whether
you should support the special features of these boards, or
whether one of them might help you solve special hardware
needs. You might think of topics discussed under the "Of In
terest" heading as overviews of advanced display technology
that I think developers should know about.

The VEGA Deluxe from Video-7 (550 Sycamore Drive,
Milpitas, CA 94035, (408) 943-0101) is the follow-up to the ex
tremely popular VEGA, one of the boards that fueled the first
great boom in the EGA market. The VEGA Deluxe is built
around the Chips & Technology EGA chip set, which has
proved to be highly IBM EGA-compatible. The VEGA Deluxe
supports resolutions of 640 x 480 and 752 x 410 although the
only means of accessing these resolutions in the base package
is via Windows drivers. (Late note: Video-7 indicates that other
drivers are on the way and that developer's information is
available.) The VEGA Deluxe also features full CGA and HGC
compatibility. Given Video-7's stature in the EGA market, it
would make sense for any developer who is going to support
EEGAs to include the VEGA Deluxe.

The EGA 2001/PLUS, from Ahead Systems (1977 O'Toole
Ave., Suite B105, San Jose, CA 94131, (408) 435-0707) is also
built around the C & T chip set. The 2001/PLUS offers full CGA
and HGC compatibility and adds a nice touch—HGC com
patibility on color monitors. A 640 x 480 mode is supported
(I propose this as a minimum requirement for a board to be con
sidered an EEGA), as well as 720 x 396, which provides IBM
S3G graphics compatibility. 80 x 66/45/43/34/25 and 132 x
44/28/25 text modes are provided; these modes provide IBM
3278/79 MOD 2-5 compatibility, as well as compatibility with
many popular PC extended spreadsheet and text editing
modes. The board is a compact, clean half-card. In short, the

1987 Programmer'sjournal 5.3

32 pcjs.org

2001/PLUS is a well-conceived and executed board that covers
a lot of ground, and it's worth looking at if your requirements
exceed the standard EGA.

The EVA 480, from Tseng Laboratories (205 Pheasant Run,
Newtown, PA 18940, (215) 968-0502) sports a number of ex
tras. Like the other EEGAs, the EVA 480 offers 640 x 480
graphics and complete downward compatibility with the CGA
and HGC, as well as 132 x 44/28/25 and 80 x 60/43/25 text and
Windows, Autocad, and Halo drivers. Because it is built around
Tseng Labs' proprietary ET2000-series chip set (which, in
cidentally, I participated in the design of), the EVA 480 sports
two unique extras: a zoomable hardware window and faster
memory access.

The EVA 480 features a built-in hardware window (in addi
tion to the standard EGA split screen), which can start and stop
on any scan line vertically and on any byte boundary horizon
tally. This window can display the contents of any area of EGA
memory, allowing instant popups, for example. The window
area can be zoomed by pixel replication in both directions in
graphics modes and horizontally in text mode, by a factor of
up to 8 times horizontally and 16 times vertically. This could
be very handy for a developer who needs to blow up part or
all of the screen quickly.

The EVA 480 also allows the CPU much greater access to
display memory than does the standard EGA. The standard
EGA allows one CPU access to display memory every four
character clocks while the EVA 480 allows one access every
character clock. During highly display-memory-intensive
operations, the EVA 480 is noticeably quicker than other EGAs.
For example, I ran ATPERF, PC Tech Journal's 286 Performance
and Compatibility Suite ("Out from the Shadow of IBM..."
by Steven Armbrust, Ted Forgeron, and Paul Pierce, PC Tech
Journal, August 1986), on a 10-MHz AT clone in order to deter
mine how many wait states were being inserted by each of the
three EEGAs I've discussed. Both the VEGA Deluxe and the
EGA 2001/PLUS performed at the same speed, inserting 18 wait
states on average—not surprising given that they're built
around the same chip set. The EVA 480 inserted only 9 wait
states, the minimum number of wait states an 8-bit device can
cause during a 16-bit access in an AT. For programs that access
display memory less frequently, the gain will be less, but the
EVA 480 is clearly the faster EGA.

Tseng Labs is the first but not the only company to make a
higher performance EGA chip set. Chips and Technologies is
coming out with a chip set with all sorts of extensions to the
EGA, including more frequent CPU access to display memory.
I'll discuss this chip set in more detail next time.

Don't expect the relatively sluggish performance of the EGA
to improve much beyond the EVA 480, though, no matter what
chip sets appear. Improving CPU memory access is about all
that can be done without losing EGA compatibility, and right
now compatibility is essential. Moreover, the higher perfor
mance from improved CPU memory access barely balances the
greater size of the bit maps in the EEGAs highest-resolution
modes.

On Performance
I'm running short on space, so all I'm going to say about per
formance is to suggest that you read "High-Performance Soft
ware Analysis on the IBM PC" by Byron Sheppard {BYTE,
January 1987). It looks to me like Sheppard's routines provide
very good software-based performance analysis. To the extent
that I've tried them out, they've worked well and given pret
ty much the results I'd expect (although I will say that figur-

IQuaid Analyzer
the tool

that created
CopyWrite

Now you can debug your own programs
with a professional quality debugger -
the one that unraveled every form of
copy-protection used on the PC.
With the Quaid Analyzer, you can:
□ See occurences of any interupt, with its

meaning shown on the screen.
□ View memory as text or instructions,

scrolling as easily as you do with an editor.
D Run until a memory location or I/O port is

changed.
□ Protect your hard disk from accidental

destruction.
□ Analyze software without the source, even

when it uses countermeasures to thwart
tracing.

D See all stages of the boot load.

We kept the Quaid Analyzer off the
market to avoid helping publishers with
copy-protection. Now that copy
protection is gone, we can sell it to
you.
The Quaid Analyzer is a software tool occupying 100K bytes. It
runs on any IBM PC and most MS-DOS systems without hard
ware modification.

H$£caii (416) 961-8243
Quaid Analyzer $99 U.S.

All orders shipped at
our expense within a
day. All major credit
cards accepted.

or return coupon to:
45 Charles St. East
Third Floor, Dept. 603
Toronto, Ontario. M4Y 1S2

Payment method MC-Visa-Amex-Diners-Check
Card No.

Expiry Date
Name
Address
City/State
Phone No.
Signature

_yj Quaid Software Limited
Ask about Disk Explorer the program that takes over

where Quaid Analyzer leaves off. pcjs.org

TOTALCONTROL
with LMIFORTH"

FORTH

For Programming Professionals:
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 Interpreter/Compilers
• 16-bit and 32-bit implementations
• Full screen editor and assembler
• Uses standard operating system files
• 400 page manual written in plain English
• Options include software floating point, arithmetic

coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
• Unique table-driven multi-pass Forth compiler
• Compiles compact ROMable or disk-based applications
• Excellent error handling
• Produces headerless code, compiles from intermediate

states, and performs conditional compilation• Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303• No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
• Translates "high-level" Forth into in-line, optimized

machine code
• Can generate ROMable code

Support Services for registered users:
• Technical Assistance Hotline
• Periodic newsletters and low-cost updates
• Bulletin Board System

Call or write tor detailed product Information
and prices. Consulting and Educational Services
available by special arrangement.

M imum M mp<
Laboratory Microsystems Incorporated

Post Office Box 10430, Marina del Ftey, CA 90295
Phone credit card orders to: (213) 306-7412

Overseas Distributors.
Germany: Forth-Systeme Angellka Flesch, Titisee-Neustadt, 7651-1665
UK: System Science Ltd., London, 01-248 0962
France: Micro-Sigma S.A.R.L., Paris, (1) 42.65.95.16
Japan: Southern Pacific Ltd., Yokohama, 045-314-9514
Australia: Wave-onic Associates, Wilson, W.A., (09) 451-2946

ing actual jump times on the 286 appears at first cut to be black
magic). Thanks to changes induced in the prefetch queue by
the timing routines, results aren't necessarily accurate to a
cycle, but then there's no way around that with a software solu
tion. On quick examination, it looks to me as if Sheppard's
done an excellent job.

Reader Feedback
Tom Heavey provided a solution to my problem of how to
generate code that assembles at a specific address (for ROM,
in my case). Tom's solution bypasses the Macro Assembler en
tirely; he suggests using a program called Link and Locate, from
Systems and Software, Inc. ((714) 241-8650), in place of the
standard MS DOS linker, with which it is compatible. Accord
ing to Tom, Link and Locate adds a locate phase after the link
phase, during which you can specify exactly where segments
are to go.

Charles Quinton also provided a solution, but one that I can
get to work only under certain circumstances. Charles points
out that it's acceptable to have two relocatable values in an ex
pression, so long as they combine to generate an absolute, so
he suggests using

DB 2 000h - ($ - ProgramStart) dup (0)

where ProgramStart is the offset of the first byte of the pro
gram. The assembler does indeed accept this syntax, and so
long as ProgramStart is in the same module as the above DB
statement, everything's fine. If, however, ProgramStart is in
another module, too many bytes are inserted because "$" is
relative to the start of the module, not to the start of the final
linked program. Perhaps Charles meant this technique to be
used only in single-module programs, or perhaps I 'm missing
something. Charles, can you write and let us know?

John Navas II provided a similar solution. Instead of the start
of the program, however, he subtracts the segment name from
the location counter. So far as I can tell, this operates exactly
as Charles Quinton's approach does. John also sent in answers
to two other MASM problems I've discussed here; they arrived
too late to make it into this article, but I'll run them next time.

Thanks to all of you.

Next Time
We've almost completed our tour of GDC data flow—only the
set/reset features remain. I'll cover these odd but useful features
next time. If there's room, I'll begin to strike out into the more
specialized read and write modes of the EGA.

See you then. D

Michael Abrash is a Senior Software Engineer for Orion
Instruments of Redwood City, CA, a manufacturer of PC-
based instrumentation and microprocessor development
systems.

Code follows.

Number 63 on the Reader Service Card pcjs.org

:0N GRAPHICS:

EGA Set/Reset
Capabilities by

Michael Abrash

This month I'll examine a powerful but confusing aspect of the
EGA: the set/reset circuitry. I'll also discuss a few odds and ends
and print reader responses to some of the questions I've posed
in previous articles.

The Set/Reset Circuitry
At last we come to the final aspect of data flow through the
Graphics Controller (GC) on write mode 0 writes, the set/reset
circuitry. Figure 1 shows data flow on a write mode 0 write.
The only difference between this figure and the similar figure
in the last article is that on its way to each plane the rotated
CPU data passes through the set/reset circuitry, which may or
may not replace the CPU data with set/reset data. Briefly put,
the set/reset circuitry enables the programmer to elect to in
dependently replace the CPU data for any or all planes with
either 00 or OFFH.

means that the approach above works only if the memory be
ing written to is zeroed; if, however, the memory already con
tains non-zero data, that data will remain in the planes disabled
by the Map Mask, and the end result will be that some planes
contain the data just written and other planes contain old data.
In short, color control using the Map Mask does not force all
planes to contain the desired color; in particular, it is not possi
ble to force some planes to zero and other planes to one in a
single write with the Map Mask register.

The program in Listing 1 illustrates this problem. A green
pattern (plane 1 set to 1, planes 0, 2 and 3 set to 0) is first writ
ten to display memory. Display memory is then filled with blue
(only plane 0 set to 1), with a Map Mask setting of 01H. Where
the blue crosses the green, cyan is produced, rather than blue,
because the Map Mask register setting of 01H that produces blue
leaves the green plane (plane 1) unchanged. In order to generate

3it Masks (4)

Display Memory
Plane 3

SET/
RESET ALU

Barrel
Shifter

nrA I>
'

Display Memory
Plane 2

>

SET/
RESET ALU .

ByteWritten
By

CPU

' U Latch
' » j

Display Memory
Plane 1SET/

RESET ALU >
U Latch

- V

1 1 \
Display Memory
Plane 0SET/

Al IIRESET

'U Latch
- X

'

Figure 1: Data flow through the Graphics Controller chips on write mode

What is the use of such a feature? Well, the standard way to
control color is to set the Map Mask register to enable writes
to only those planes that need to be set to produce the desired
color. For example, the Map Mask register would be set to 09H
to draw in high-intensity blue; here, bits 0 and 3 are set to 1,
so only the blue plane (plane 0) and the intensity plane (plane
3) are written to.

Remember, though, that planes that are disabled by the Map
Mask register are not written to or modified in any way. This

blue unconditionally, it would be necessary to set the Map
Mask register to 0FH, clear memory, and then set the Map Mask
register to 01H and fill with blue,

The set/reset circuitry can be used to force some planes to
zero and others to one during a single write and so provides
an efficient way to set all planes to a desired color. The set/reset
circuitry works as follows:

For each of the bits 0 - 3 in the Enable Set/Reset register
(Graphics Controller register 1) that is 1, the corresponding bit

1987 Programmer's Journal 5.4
30 pcjs.org

in the Set/Reset register (GC register 0) is extended to a byte
(0 or OFFH) and replaces the CPU data for the corresponding
plane. For each qf the bits in the Enable Set/Reset register that
is 0, the CPU data is used unchanged for that plane (normal
operation). For example, if the Enable Set/Reset register is set
to 01H and the Set/Reset register is set to 05H, the CPU data
is replaced for plane 0 only (the blue plane), and the value it
is replaced wi|fi is OFFH (bit 0 of the Set/Reset register extended
to a byte). ̂ p|e that in this case, bits 1 - 3 of the Set/Reset register
have q<6 .effpet.

It isi jmgprtant to understand that the set/reset circuitry
directly replaces CPU data in Graphics Controller data flow.
Refer again to Figure 1 to see that the output of the set/reset
circuitry passes through (and may be transformed by) the ALU
and the bit mask before being written to memory, and even
(hen the Map Mask register must enable the write. When us-
i ng set/reset, it is generally desirable to set the Map Mask register
to enable all planes the set/reset circuitry is controlling since
(hose memory planes that are disabled by the Map Mask register
cannot be modified, and the purpose of enabling set/reset for
a plane is to force that plane to be set by the set/reset circuitry.

Listing 2 illustrates the use of set/reset to force a specific color
to be written. This program is the same as that of Listing 1
except that set/reset rather than the Map Mask register is used
to control color. The preexisting pattern is completely over
written this time because the set/reset circuitry writes zeroes
to planes that must be off as well as ones to planes that must
be on.

Listing 3 illustrates the use of set/reset to control only some,
rather than all, planes. Here, the set/reset circuitry forces plane
2 to 1 and planes 0 and 3 to 0. Because bit 1 of the Enable
Set/Reset register is 0, however, set/reset does not affect plane
1; the CPU data goes unchanged to the plane 1 ALU. Conse
quently, the CPU data can be used to control the value writ
ten to plane 1. Given the settings of the other three planes, this
means that each bit of CPU data that is 1 generates a brown
pixel and each bit that is 0 generates a red pixel. Writing alter
nating bytes of 07H and 0E0H, then, creates a vertically striped
pattern of brown and red.

In Listing 3, note that the vertical bars are 10 and 6 bytes wide
a nd do not start on byte boundaries. Although set/reset replaces
an entire byte of CPU data for a plane, the combination of
set/reset for some planes and CPU data for other planes, as in
the example above, can be used to control individual pixels.

There is no clearly defined role for the set/reset circuitry as
i here is for, say, the bit mask. In many cases, set/reset is large-
I y interchangeable with CPU data, particularly with CPU data
written in write mode 2 (write mode 2 operates similarly to
the set/reset circuitry). The most powerful use of set/reset, in
my experience, i§ ip applications such as the example of Listing
3, where it is used to force the value written to certain planes
while the CPU data is written to other planes.

Notes on Set/Reset
The set/reset circuitry is not active in write modes 1 or 2. An
explanation of those two write modes is a topic for another
article.

Be aware that because set/reset directly replaces CPU data,
it does not necessarily have to force an entire display memory

byte to 0 or OFFH, even when set/reset is replacing CPU data
for all planes. For example, if the Bit Mask register is set to 80H,
the set/reset circuitry can modify only bit 7 of the destination
byte in each plane since the other seven bits will come from
the latches for each plane. Similarly, the set/reset value for each
plane can be modified by that plane's ALU.

An Update
In an earlier article, I suggested the use of word OlTVs (OUT
DX,AX) to set indexed EGA registers. I have since been in
formed that this does not work in some early models of AT&T
personal computers. If your software is likely to run in such
a computer, I suggest you not use word OUTs. One good habit
to get into is the use of macros or subroutine calls to set indexed
registers; this practice makes it easy to convert from byte OUTs
to word OUTs, or vice versa, if needed.

Reference Material
Several readers have asked where they can get information
about programming the Color Graphics Adapter and Hercules
Graphics Card. The IBM Technical Reference, Options and
Adapters manual is a reference for the CGA and Monochrome
Display Adapter, as well as the primary reference for the EGA.
The best reference for the CGA, however, is "The IBM Color/
Graphics Adapter" by Thomas V. Hoffmann, PC Tech Journal,
Vol. 1, No. 1, July, 1983.

The primary reference for programming the HGC is the
manual Hercules supplies with the board. Most companies that
supply Hercules-compatible boards also provide programming
information.

Reader Feedback
In my last article, I included responses from several readers ex
plaining how to generate ROMable code at a specific address.
This month's reader responses include answers to all three
MASM questions I've posed and what surely is the definitive
word on the problems of generating code at a specific address.

John Navas II answered all three MASM questions, as follows.
The sample program to which he refers is shown in Listing 4.

My solutions to your three puzzles range from crude to elegant
to simple. I've enclosed a sample program that demonstrates all
of them.

(0) You are correct that MASM has only a single symbol space
so that you cannot normally reuse symbols in different STRUC-
tures. However, if, for example, you are defining local STRUC-
tures for small procedures, there is a crude way to reuse symbols.
Simply enclose an entire procedure including any local STRUC-
tures in a MACRO and declare all of the symbols LOCAL. When
the macro is expanded, the assembler will generate unique sym
bols automatically, and there is no danger of referencing the
wrong STRUCture. If you reuse the same MACRO name over and
over, MASM shouldn't run out of memory. The downside is that
the assembly takes longer, the listing is harder to read, and
brackets must be used with LOCAL symbols instead of the more
logical (.) STRUCture field-name operator (at least under MASM
Version 4.0).

(1) Using STRUCtures to define negative offsets from the BP
register in a stack frame (typically for local dynamic storage
allocation) requires the SIZE of the STRUCture to be subtracted
from BP (for example, [bp-SIZE locs].fie!dl).

1987 Programmers Journal 5.4
3i~

pcjs.org

The EQU directive can make it all quite elegant. First EQUate
a symbol to the SIZE of the STRUCture, adjusted if necessary to
an even number. Then EQUate a second symbol to BP minus the
first symbol, all enclosed in brackets. Subtract the first symbol
from SP to allocate storage. Use the second symbol, followed by
the STRUCture field name either separated by the (.) STRUCture
field-name operator or enclosed in brackets, to access individual
fields (for example, Ioc.wl or locffieldl])).

(2) As you noted, the count for a DUP operator must be a con
stant expression. Since the location-counter is relocatable, it must
be converted to a constant value before it can be used in a DUP
count. The simplest way to convert it is to subtract the SEGMENT
name. Your example might become:

DB (2000h-($-segname)) DUP(0)
Note that the inner parentheses are necessary to force MASM to
first perform the necessary conversion and that parentheses must
of course enclose the DUP value.
Thank you, John. I must repeat a comment from the last ar

ticle: The last-mentioned solution works only within the first
module linked, which makes sense since the whole point of
your solution is to generate an absolute value at assembly time
and relocation takes place at link time.

Charles Clinton wrote at considerable length about the prob
lem of putting code or data at an absolute offset, shedding light
on the somewhat bewildering operation of MASM and prov
ing both that there's a great deal for a patient and persistent
reader to learn from the MASM manual and that there are
mysteries that elude even the most patient and persistent
reader.

Charles' letter follows. The letter was in the form of a letter
to the editor; hence, the reference to the author in the third
person. Please note that apart from correcting typos, I present
the letter exactly as Charles wrote it; all editorial comments
are his.

The difficulty that Michael Abrash is encountering in attemp
ting to convince MASM to assemble code up to a certain location
(PJ 5.1, p. 42) is that MASM has no idea where the code that it
is currently assembling is going to end up. The code is assembled
into the current program segment, by which MASM means "a col
lection of instructions and/or data whose address are all relative
to the same segment register" (MASM 4.0 Ref. Man., Sect. 3.4,
p. 27) and not relative to an absolute memory address or offset.

The solution to the problem involves making the assumption
that since we know where the code is going to go, we can talk
about absolute memory locations by describing them relative to
the code.

The section on arithmetic operators (Sect. 5.3.1, p. 78) says that
all arithmetic expressions must either be integers or, in some
special cases, "relocatable memory operands." The section on
relocatable [memory] operands (Sect. 5.2.3, p. 69) defines them
as "any symbol that represents the memory address.. .of an in
struction or of data... and [has] no explicit value until the pro
gram has been linked." Examining the definition of the current
location counter (Sect. 5.2.4, p. 69), we see that it has "the same
attributes" as a "near label." Flipping around some more, we find
the section on symbol declarations (Sect. 4.4, p. 54) that implies
that a label generates a symbol. This means that the $ is a
relocatable memory operand (if our assumptions have not gone
awry).

Going back to the section on arithmetic operators, we find that
we can add or subtract a constant from a relocatable memory
operand or we can find the absolute difference between two
memory operands in the same [assembler] segment. We can ex
ploit the difference operation to find our location in memory.
If we know that a particular label is going to be at a particular
location in memory and we know how to calculate the distance

between two labels, we can calculate the location of a second
label.

For example, with the problem that Mr. Abrash is presenting
we need to determine the location of the end of the assembled
code so that we can zero fill to the end of the ROM chip. If we
define a label at the start of the ROM chip, like this:

segment ■ROM'
assume os: code
org 0

i _ s t a r t :
. . . code . .

we can then calculate how many bytes have been assembled,
thusly:

number_assbld = $ - offset rom_start

The number of bytes that need to be filled is the length of the
ROM chip (2000H) less the number of bytes assembled:

to_fill = 2000H - number_assbld

The statement that does the filling is then:

db t o _ fi l l d u p (0)

c o d e s e g m e n t 'ROM1
assume cs: code
org

rom_start:
0

... code ...
db

code ends 2000H -
end

Putting it all together, and simplifying the expressions, yields:

£$ - offset rom_start) dup (o

The key to this solution is remembering that MASM will main
tain that it does not know in what manner the linker will
manipulate the segment being assembled. In fact, in most cases
the linker will concatenate many code and data segments and then
concatenate the segments into groups (which are not necessari
ly contiguous) and classes. This flexibility and power is what gives
one the ability to mix multiple languages and memory models
in a single program and allow exact specification of the order
ing and arrangement of memory. Unfortunately, it has the side
effect of making some of the simplest tasks complicated.

The seemingly obvious solution to this problem of using the
"at address" combine clause in the segment declaration will not
work as Microsoft's intended use of this was to allow the user
to describe existing data areas, and not define them. So they did
not make the expression evaluator smart enough to recognize that
the current location counter ("$") can sometimes represent a fixed
address.

A subtler problem seems to exist in the offset operator. At first
glance, it would seem that

d b 2000h - offset $ dup (0)

should produce the desired effect. Although the MASM manual
claims that the offset operator returns the number of bytes be
tween the symbol and the beginning of its segment (Sect. 5.3.13,
p. 88), a little experimenting shows that this is not entirely true.
The TYPE operand (Sect. 5.3.15, p. 89) reveals some curious
things about the way MASM represents numbers. Assembling the
following code reveals the problem:

code

a
atype
b
btype
code

segment •ROM1
assume cs: code
o r g 10= 10= .type a= o f f se t $= .type b
ends
end

1987 Programmer's Journal 5.4
32 pcjs.org

1 '!.'■. '

Software Tools
For Programmers &J Non.Progfammers

Get 'State of the Art' performance
and save valuable time with these

high quality utilities!
Opt-Tech Sort™

Opt-Tech Sort is a high performance Sort/Merge/Select
utility. It can read, sort and write a file faster than most
programs can even read the data. Example: 1,000
records of 80 bytes can be read, sorted and a new file
written in less than 10 seconds (IBM XT). Opt-Tech Sort
can be used as a stand-alone program or called as a
subroutine to over 25 different programming languages.
All the sorting, record selection and reformatting facilities
you need are included. A partial list of features includes:
The ability to process files of any size. Numerous
filetypes are supported including Sequential, Random,
Delimited, Btrieve, dBASE II & III and many others. Up
to 10 key fields can be specified (ascending or descend
ing order). Over 16 different types of data supported.
Powerful record selection capability allows you to specify
which records are to be included on your output. Record
reformatting allows you to change the structure of your
output record and to output special fields such as record
numbers for use as indexes.
M S - D O S $ 1 4 9 . • N E W • X e n i x $ 2 4 9 .

* NEW *
VERSION On-Line Help™ vVS

On-Line Help allows you to easily add "Help Windows"
to all your programs. On-Line Help is actually two help
packages in one. You get BOTH Resident (pop-up) and
Callable Help Systems.
The resident version allows you to add help to any
system. Your Help System is activated when the "Hot
Keys" that you specify are pressed. You can then chain
between help windows in any manner you desire.
The callable version allows you to easily display help
windows from your programs. A simple call to the help
system makes the window appear. The original screen
is automatically restored when the help window is
cleared. On-Line Help is callable from over 20 different
languages.
You have full control over the help window content, size,
color and location.
MS-DOS $149. DemO $10. (apply toward purchase).

Scroll & Recall™
Scroll & Recall is a resident screen and keyboard
enhancement. It allows you to conveniently scroll back
through data that has gone off the top of your display
screen. Up to 27 screens of data can be recalled or writ
ten to a disk file (great for documenting systems opera
tions). Also allows you to easily recall and edit your
previously entered DOS commands without retyping.
Scroll & Recall is very easy to use. It's a resident utility
that's always there when you need it. MS-DOS $69.

Visa, M/C, AMEX, Check, Money Order, COD
or Purchase Orders accepted.

To order or to receive additional information just call
and receive immediate highly qualified attention!

Opt-Tech Data Processing
P.O. Box 678 — Zephyr Cove, NV 89448

\ ^ (7 0 2) 5 8 8 - 3 7 3 7 y
Number 16 on the Reader Service Card

Upon examining the listing,

N a m e

A
A T Y P E ' . . ' .

B
B T Y P E

Type
Number
Number

Number
Number

000A
0020

000A
0022

By the MASM definition of OFFSET, we would expect A and B
to have identical values and both be plain numbers. Rather, what
we see is that OFFSET is failing to strip off the attribute of 'CODE'
from the expression "OFFSET $." Attributes are a little tricky in
MASM as they are not defined in the MASM manual. They are not
in the index, and the only mention of attributes that I can find
are in the sections "Location-Counter Operand" (Sect. 5.2.4, p
69) and "TYPE Operator" (Sect. 5.3.15, p. 89), both of which I
consider cryptic descriptions at best. There does not seem to be
an operator for changing the attribute of an expression, which
is what is called for here.

Thank you, Mr. Clinton, for guiding us deep into the murk)
depths of MASM as it pertains to the problem of generating
code or data at an absolute offset. As has been my experience
with MASM, there is indeed an explanation and a workaround,
but it sure seems harder than need be to perform what should
be a straightforward task. □

Code follows.

EVERLOCK COPY
PROTECTION

Designed for user-transparency, clone
compatibility & strength. It features:
- no I/O plugs or special media
- FULL hard disk & cartridge support
- file-server network support
- variable number of installs (0-99)
- demo diskette option with unlock
- protected upgrades by modem/BBS
All this for $495 with no meter counts.
Free info & demo disk.
(Duplication services also available).

AZ-Tech Software, Inc.
305 E. Franklin, #A4A
Richmond, MO 64085
(816) 776-8153

Number 51 on the Reader Service Cardpcjs.org

ON GRAPHICS

Write Mode 3 of the VGA
by
Michael Abrash

Well, the VGA is here, and it's a dandy, with 256 color
capability (from 256K, no less), higher resolution, square
pixels, readable registers (finally!), lots of new BIOS func
tions, better text, relatively good performance, and more. The
VGA represents a whole new level of video capability,
providing all the basics needed for decent business graphics
for the first time in standard IBM graphics. The VGA provides
reasonable backward compatibility with the CGA, MDA,
and, most importantly, EGA. In short, the first video circuitry
IBM has ever built into a motherboard is good, about as good
as it could be given the lack of a built-in graphics processor
and the constraints of backward compatibility.

For PJ readers, of course, the concern is how the VGA will
affect their software development efforts. The answer: a great
deal. All Micro Channel computers have the VGA built in;
the PC/XT/AT version of the VGA, the Display Adapter, is
priced at a fairly inexpensive $595; and third-party video
companies are scrambling to be the first to clone the VGA.
Between the benefits of the VGA and IBM's commitment to
the new standard, the VGA should take off faster than even
the EGA did.

So, readers, support the VGA in your development ef
forts—it's the hottest thing around right now. Besides, if you
want your software to run in the Model 50 and up PS/2 com
puters, it has to run on the VGA, although the BIOS does a
good job of masking the differences between the VGA and
earlier adapters for older applications.

I'm not going to do a review/evaluation of the VGA; you'll
have plenty of opportunities to read such articles in other
magazines, and my theory is that PJ readers want practical
tips and working code. With that in mind, I'm going to note
a few points about identifying and programming the VGA and
then revisit an old application in order to illuminate an un
usual VGA programming feature, write mode 3.

Notes on Programming the VGA
The first point about the VGA is that while it's certainly dif
ferent from earlier adapters, most old software should run on
it. CGA and MDA software should run on the VGA to about
the extent to which they run on the EGA, which is to say the
VGA is BIOS-level compatible with the CGA and MDA.
Most EGA software should run on the VGA so long as the
BIOS is used whenever possible. While changing the
hardware itself considerably, IBM managed to retain in the
VGA the combination BIOS/register interface through which
well-behaved application programs access the EGA. This
doesn't mean that programs that load all the registers direct
ly, or, indeed, touch any more registers than they absolutely
must, will run; most VGA registers are, in fact, not EGA com

patible. The EGA programming techniques I've discussed in
PJ will work on the VGA. The rule of thumb: When in doubt,
refer to the EGA and VGA technical reference material and
make sure that the registers you're accessing are functional
ly the same.

VGA Reference Material
Which brings me to my next point: The VGA technical
reference material is included in the Technical Reference
manuals for the Micro Channel computers, including the
Model 50 and 60 Technical Reference and the Model 80 Tech
nical Reference. The Display Adapter technical reference
material is available as a separately purchased supplement,
the Display Adapter Technical Reference (part number S68X-
2251-0). Oddly enough, the register descriptions in the Dis
play Adapter Technical Reference and in the technical
references for the Micro Channel computers are not identical
although they seem to describe the same registers. It may be
worth your while to buy both the Display Adapter Technical
Reference and one of the Micro Channel computer technical
references in order to have two descriptions of some registers.

The Display Adapter Technical Reference includes a
specification of the interface to the Display Adapter BIOS
(which seems to be functionally pretty much the same as the
VGA BIOS) as well as a register-level description of the Dis
play Adapter. The technical references for Micro Channel
computers do not contain any BIOS interface information; if
you don't have the Display Adapter Technical Reference, you
can get a specification of the entire IBM BIOS interface (in
cluding all IBM video BIOS functions) by purchasing IBM's
BIOS Interface Technical Reference manual (part number
S68X-2260-00).

Differences between the VGA and the Display Adapter
IBM notes a few significant differences between the Display
Adapter and the VGA. (Incidentally, VGA stands for Video
Graphics Array, which describes the chip on the Micro Chan
nel motherboard. So far as I can determine, the same chip is
on the Display Adapter—at least it has the same part number
and does the same things—but it's easiest to refer to the
motherboard video circuitry as the VGAand to the PC/XT/AT
plug-in board as the Display Adapter.) I'll discuss these dif
ferences, which include vertical interrupt capability and
monochrome text attributes, next.

Although the VGA can generate vertical interrupts of the
same sort as the EGA does, the Display Adapter has no ver
tical interrupt capability. The reasoning behind this difference
isn't clear, but I tested the Display Adapter and the vertical
interrupt is indeed not available.

1988 Programmer's Journal 6.1
16 pcjs.org

On page 4-5 of the Display Adapter Technical Reference,
there is a note to the effect that "the Personal System/2 Dis
play Adapter displays a reverse video intensified character as
white on white." From that, it's not clear exactly what the
problem is, so I did some experimentation. So far as I can tell,
when the Display Adapter is in mode 7, characters for which
either the foreground or background attribute is 8 are dis
played as white-on-white and are consequently not readable.
The VGA, on the other hand, does display such text correct
ly. I'm not sure why this problem occurs or what a work
around might be; anyone out there have any suggestions?

By the way, the VGA is capable of driving either a color
or a monochrome monitor automatically. (The monitors must
be analog monitors compatible with IBM's PS/2 monitors, the
8503,8512,8513, and 8514.) There are no switches; the VGA
IDs the monitor through the video connector. Color summing
to gray scales is performed when driving a monochrome
monitor. What's more, in Micro Channel computers, pro
grams can select any mode directly through INT lOh, func
tion 0; for example, a program can go from mode 3 (color
text) to mode 7 (monochrome text) simply by performing

MOV AX,7
INT 10H

It is no longer necessary to fiddle with the equipment flag in
order to switch between color and monochrome modes (in
fact, the VGA BIOS changes the equipment flag as needed on
mode sets), and the VGA by itself can act like any of the CGA,
MDA, or EGA adapters at any time (although it can do this
only serially; it can't emulate both at once since it is in truth
only a single adapter).

The Display Adapter can drive either a monochrome or a
color monitor and also features switchless installation.
Switching between color and monochrome operation, how
ever, still requires changing the equipment flag; unlike the
VGA, the Display Adapter is constrained by the possible
presence of other adapters in the system. Overall, IBM seems
to have designed the BIOS and the VGA in such a way that
application programs will run just as they would on earlier
adapters in most cases.

One more note about programming the VGA: Don't use
word OUTs to the Attribute Controller at port 3C0h. The EGA
addresses the Attribute Controller at both 3C0h and 3Clh, so
word OUTs to the Attribute Controller work despite its
strange toggling nature. (See my article "Inside the EGA,"
PJ, Volume 5.1, Jan/Feb 1987, for a description of program
ming the Attribute Controller.) The VGA addresses the At

tribute Controller at 3C0h only, meaning that the high
byte of a value written to the VGA's Attribute Con
troller by a word OUT goes into the bit bucket. Word
OUTs to the Sequencer, the CRT Controller, and the
Graphics Controller seem to work fine on the VGA.

All VGA registers are readable, which makes it possible
to save the video context (for example, in a TSR program that
takes over the screen). While the VGA maintains the EGA's
toggling Attribute Controller port operation on writes, it im
plements Attribute Controller reads in a sensible fashion. The
Attribute Controller Index register is always readable at
3C0h, and the Attribute Controller Data register is always
readable at 3Clh. Sadly, the need for EGA compatibility
prevented IBM from making Attribute Controller writes
operate equally sensibly.

There is one aspect of the VGA state that can't be read out
and which consequently can't be saved on a context switch,
and that's the state of the Attribute Controller index/data tog
gle. As a result, it seems advisable to disable interrupts while
programming Attribute Controller registers, lest an interrupt
come along and trigger a TSR that accesses the Attribute Con
troller. Better yet, use BIOS function to program Attribute
Controller registers whenever possible. The palette RAM
registers (Attribute Controller registers 0 through OFh) can be
written (and read) through the BIOS, and these are usually the
only Attribute Controller registers that application programs
change.

Identifying the VGA
IBM has added a couple of functions to the VGA BIOS (and
to the Model 30 BIOS as well) that make it much easier to
identify installed adapters and their capabilities. Both are ac
cessed through the standard INT lOh video interrupt.

Function 1 Ah returns a display combination code indicat
ing the type of the currently active display adapter and the al
ternate display adapter, if any. Function 1 Ah isn't supported
by earlier adapters, so the first test is whether function 1 Ah is
supported by the installed adapter. If, on return from a func
tion 1 Ah call, register AL is set to 1 Ah, then function 1 Ah is
supported. If the function is supported, BL returns the active
display code and BH returns the alternate display code. Func
tion 1 Ah can also be used to change the active and alternate
display adapters.

Function lBh returns a buffer containing functionality/
state information. This information includes the current dis
play mode, the width of the screen, the display buffer size,
other BIOS variables, the display combination code, the num
ber of colors supported by the current mode, and font infor
mation. Best of all, it includes information about the video
modes supported by the active adapter. I haven't had a chance
to dig into the functionality/state information yet, but it looks
like a gold mine. If this function had been available since the
MDA and CGA, the world of IBM graphics would be a lot
less confusing.

Write Mode 3
The MDA offered only text mode, so it was easy to program.
The CGA had a couple of graphics modes, and while the bit

1988 Programmer's Journal 6.1
I T

pcjs.org

map organization in these modes was somewhat complex, at
least the bit map was directly addressed as one linear block
of memory. The EGA added the complications of three write
modes and two read modes, all across four planes. The VGA
supports all the modes of the earlier adapters and adds one
new write mode to the list, write mode 3.

Write mode 3 is strange indeed, and its use is not im
mediately obvious. In write mode 3, set /reset is automatical
ly enabled for all four planes (the Enable Set/Reset register is
ignored). The CPU data byte is rotated and then ANDed with
the contents of the Bit Mask register, and the result of this
operation is used as the contents of the Bit Mask register alone
would normally be used. (If this is Greek to you, I suggest you
read my earlier four articles on graphics in PJ, Volumes 5.1
through 5.4. There's no way to understand write mode 3
without understanding write mode 0 first.)

That's what write mode 3 does—but what is it for? I'm not
certain what IBM had in mind, but the best applications for
write mode 3 I've been able to think of to date have to do with
bit-mapped text applications. Write mode 3 seems reasonably
well-suited to drawing large quantities of graphics-mode text
quickly without wiping out the background in the process.

Listing 1 is a modification of the code presented in my ar
ticle "EGA Data Control" (PJ, Volume 5.3, May/June 1987).
That code used the data rotate and bit mask features of" the
EGA to draw bit-mapped text in write mode 0. Listing 1 uses
write mode 3 to draw bit-mapped text, and in the process gains
the important benefit of preserving the background into which
the text is being drawn. Where the original text-drawing code
drew the entire character box for each character, with 0 bits
in the font pattern causing a black box to appear around each
character, the code in Listing 1 affects display memory only

when 1 bits in the font pattern are drawn. As a result, the
characters appear to be painted into the background, rather
than over it. Another advantage of the code in Listing 1 is that
the characters can be drawn in any of the 16 available colors.

The key to understanding Listing 1 is understanding the
effect of ANDing the rotated CPU data with the contents of
the Bit Mask register. The CPU data is the pattern for the
character to be drawn, with bits equal to 1 indicating where
character pixels are to appear. The Data Rotate register is set
to rotate the CPU data to pixel-align it since without rotation
characters could be drawn only on byte boundaries. At the
same time, the Bit Mask register is set to allow the CPU to
modify only that portion of the display memory byte accessed
that the pixel-aligned character falls in so that other charac
ters and/or graphics data won't be wiped out. The result of
ANDing the rotated CPU data byte and the contents of the Bit
Mask register is a bit mask that allows only the bits equal to
1 in the original character pattern (rotated and masked to
provide pixel alignment) to be modified by the CPU; all other
bits come straight from the latches. The latches should have
previously been loaded from the target address, so the effect
of the ultimate bit mask value is to allow the CPU to modify
only those pixels in display memory that correspond to the
bits equal to 1 in that part of the pixel-aligned character that
falls in the currently addressed byte. The color of the pixels
set by the CPU is determined by the contents of the Set/Reset
register.

Whew. It sounds complex, but given an understanding of
what the data rotator, set /reset, and the bit mask do, it's not
that bad. One good way to make sense of it is to refer to the
original text-drawing program in PJ 5.3, and then see how
Listing 1 differs from that program.

LEARN about. ..
Neural Nets

A major upheaval in thinking about
art ific ia l inte l l igence is underway.
Interest is accelerating in the "neural net"
approach, which is loosely based onhuman bra in research . A tu to r ia l
i n t roduc t ion to th i s exc i t i ng new
technology is now available in a model
called Netwurkz (tm).

Netwurkz eliminates the complicated
math found in "unsupervised learning" so
that underly ing pr inciples may be
grasped quickly. The network "learns"when you add new DATA statements
(interconnects), or modify existing ones.
A trace on/off feature prints the neural
net computation in progress. List based
internal representation yields speed.

Netwurkz is intended for people not
familiar with neural modeling who want to
maintain or broaden their technical skills
and background. Source for all neural
net software and an object-only copy of
the PL/D compiler are included

Compilers
PL/D (tm) is a new system language that
contains documentation so definitive that
your understanding of all languages is
enhanced. Like other languages, PL/D is
d e s c r i b e d i n n a r r a t i v e f o r m ,
alphabetically by token and via flow
diagrams. However, PUD also comes
with self-compiling sourcel If you have a
question after reading the manual, you
can look at the source. If you do not
accept the answer, you can change it by
modifying the code.
What you learn from PL/D also applies to
all compilers: symbol table organization,
macro hand l ing , nes ted s t ruc ture
implementation, cross reference listing,
code generation, etc. You will study an
unusually efficient implementation: PL/D
is 2-3 times faster than the recent "fast" C
compilers.

If you are a bright sell-sufficient type who
wants to master your development tools,
PL/D is for you.

PC or compatible with 256K and DOS 2.0 or above and 5.25 inch diskette required.

Computer
Systems

3440 Kenneth Drive, Palo Alto CA 94303
(415) 494-7081

Company:
Address:
City, State, Zip:.
Phone:
VISA, M/C:
Netwurkz: neural net demo
PL/D: fast self-compiles
Both ol above
Sales Tax, CA only
Ship overseas
TOTAL

Expire:.
$79.95

$124.95
$154.95.

$10.001

Want to know more?
(415) 494-7081

Available Now

Number 5 on the Reader Service Card

Software Developers
We need your program!
Do you have a program that's good enough to
sell, but don't want the problems or financial risk
of producing, typesetting, printing, packaging,
warehousing, marketing, distributing and sup
porting a product?
Why start your own software house?
We've done it for you!
Merlin Publishing Group
is now accepting submissions of micro-computer
software for publication.
You get:

• initial cash payments
• generous royalties
• to spend your time programming

But we can't help you if you don't submit. Call
or write today for our submission guideline kit.

PUBLISHING GROUP
1240 Johnsons Ferry Place, Suite A10

Marietta, GA 30068
(404) 977-6034

P. S. See us in Atlanta at COMDEX-Spring '88
Number 141 on the Reader Service Card

1988 Programmer's Journal 6.1
18 pcjs.org

It's worth noting that the same effect generated by Listing
1 could have been accomplished without write mode 3, and
at relatively little performance cost. Write mode 0 could have
been used instead. Rather than let write mode 3 rotate the CPU
data and AND it with the contents of the Bit Mask register,
the CPU could simply have rotated the CPU data directly and
ANDed it with the value destined for the Bit Mask register
and then set the Bit Mask register to the resulting value. Ad
ditionally, set/reset could simply be enabled for all planes,
emulating what write mode 3 does to provide pixel colors.
While this arrangement would have required a bit more bit
manipulation by the CPU and would have required CPU rota
tion, which is slower than the VGA's rotator, it would have
saved setting the Data Rotate register and actually might even
have been a faster routine overall.

Write mode 3 could be considerably more useful for draw
ing large blocks of text. For example, suppose that we were
to draw a line of 8-dot-wide, bit-mapped text 40 characters
long. It would be very possible to set up the bit mask and data
rotation as appropriate for the left portion of each bit-aligned
character (the portion of each character to the left of the byte
boundary) and then draw the left portions only of all 40
characters in write mode 3. Then the bit mask could be set up
for the right portion of each character, and the right portions
of all 40 characters could be drawn. The VGA's fast rotator
would be used to do all rotation, and the only OUTs required
would be those required to set the bit mask and data rotation.
This technique could well outperform single-character bit
mapped text drivers such as the one in Listing 1 by a sig
nificant margin. Listing 2 illustrates one implementation of
such an approach. Incidentally, note the use of the 8 x 14 ROM
font in Listing 2, rather than the 8 x 8 ROM font used in List-

NEW!
FASTER THAN EVER!

DeSmet C v3.o
FASTER C DEVELOPMENT

Invoke ihe DeSmet C compiler from the SEEtm full screen editor and
the first error will return you Immediately to SEE at the error line with
the error message displayed.

FASTER COMPILATION
When you don't use inline assembly code or don't want to see the
ASM88 output, the V3.0 compiler produces object code directly -
making DeSmet C up to twice as fast as before.

PLUS EXPANDED STANDARD LIBRARY

Networking, path, file, time, enhanced string functions, environment
support now included.

FULL FEATURES WITH EVERY PACKAGE
— ONLY $109

C Compiler, Assembler, Binder, Librarian, Execution Profiler, Overlays,
8087 and S/W Floating Point, Full STDIO Library and Full Screen Editor
(SEE). Debugger and Large Case options available at $50 each.

C Ware Corporation
P.O. Box 428, Paso Robtes, CA 93447

Phone:(805)239-4620 Telex: 358185 BBS: (805)239-4834
We accept VISA, MC & AMEX. Call now and we'll ship today.

Street Address: 945 Spring #14, Paso Robles, CA 93446

ing 1. There is also an 8 x 16 font stored hrRQM, along with
the tables used to alter the 8 x 14 and 8x16 ROM fonts into
9x 14 and 9 x 16 fonts.

It's likely that there's a better application fdr write mode
3 than the sort of bit-mapped text handling I've discussed. If
you think of such an application, please write and let PJ's
readers know about it.

Preserving Reserved Bits
Note that the code in Listing 1 uses the readable register fea
ture of the VGA to preserve reserved bits and bits other than
those being modified. The EGA has no readable registers, and
so it was necessary to set all bits in a register whenever that
register was modified. The VG% fliakes it possible to change
only those bits of immediate interest, and this procedure is
highly recommended since IBM (or clone manufacturers)
may well use some of those reserved bits in the future.

In Conclusion
The VGA is a complex, powerful, fascinating video standard.
There's a heck of a lot to learn, and knowledge is the key to
high-performance VGA programs. One area I'll make it a
point to cover soon is 256 color mode, another is the ability
to select colors from a set of 256K, and yet another is text
mode font handling. And then there's the new two-color high-
resolution mode, the pel panning compatibility feature, the
high-bandwidth blanking bit, the Yes indeed, there's a
lot to cover next time. See you then. ♦

Michael Abrash is an Engineering Fellow working on advanced
graphics projects for Video Seven, Inc., in Fremont, CA.

Codefollows.

&dfc

®

+ The only
code-intensive
publication

on C for MS-DOS
systems.

• Code-intensive: pages of clear, fully-commented and portable
C. Extensive textual support for the code.

• In-depth coverage of algorithms: detailed explanations
presented from different perspectives by several authors.
Call or write today for your subscription.

1 year (4 issues) $21. 2 years (8 issues) $38.

The C Gazette
1341 Ocean Ave. #257 Santa Monica, CA 90401

(213)473-7414
Number 38 on the Reader Service Card Number 144 on the Reader Service Card

1988 Programmer's Journal 6.1
19

pcjs.org

ON GRAPHICS

Yet Another VGA Write Mode
by
Michael Abrash

Installment 6: In which we venture ever
deeper into unknown waters, encountering yet
another of those damnable write modes.

In the last installment of On Graphics,
we learned about the markedly peculiar
write mode 3 of the VGA—after having
spent four installments learning the ins
and outs of the EGA's write mode 0,
touching on write mode 1 as well. Hap
pily, it turns out that the VGA supports
all the write modes (write modes 0, 1,
and 2) of the EGA and also supports the
same read modes as the EGA. Which
leaves two burning questions: What is
write mode 2, and how the heck do you
read VGA (and EGA) memory?

Write mode 2 is a bit unusual but not
really hard to understand, particularly
for those of you who followed my
description of set/reset in PJ, Volume
5.4. Reading VGA memory, on the other
hand, can be stranger than you would
ever imagine. Let's start with the easy
stuff, write mode 2. If there's room, I'll
start in on reading VGA memory, but I
suspect that will have to wait until next
time.

Write Mode 2
Remember how set/reset worked?
Good, because that's pretty much how
write mode 2 works. (You don't remem
ber? Well, I'll provide a brief refresher,
but I suggest that you get PJ back issues
5.1 through 5.4 and 6.1 and come up to
speed on the EGA and VGA.)

Recall that the set/reset circuitry for
each of the four planes affects the byte
written by the CPU in one of three ways:
by replacing the CPU byte with 0, by
replacing it with OFFh, or by leaving it
unchanged. The nature of the transfor
mation for each plane is controlled by
two bits. The enable set/reset bit for a
given plane selects whether the CPU
byte is replaced or not, and the set/reset
bit for that plane selects the value with
which the CPU byte is replaced if the
enable set/reset bit is 1. The net effect of
set/reset is to independently force any,
none, or all planes to either all ones or
all zeros on CPU writes. As we dis

cussed a few articles back, this is a con
venient way to force a specific color to
appear no matter what color the pixels
being overwritten are. Set/reset also al
lows the CPU to control the contents of
some planes while the set/reset circuitry
controls the contents of other planes.

Write mode 2 is basically a set/reset-
type mode with enable set/reset always
on for all planes and the set/reset data
coming directly from the byte written by
the CPU. Put another way, the lower
four bits written by the CPU are written
across the four planes, thereby becom
ing a color value. Put yet another way,
bit 0 of the CPU byte is expanded to a
byte and sent to the
plane 0 ALU (if bit
0 is 0, a 0 byte is the
CPU-side input to
the plane 0 ALU,
while if bit 0 is 1, a
OFFh byte is the
CPU-side input);
likewise, bit 1 of the
CPU byte is ex
panded to a byte for
plane 1, bit 2 is ex
panded for plane 2,
and bit 3 is ex-

indicated that IBM would someday
come out with an 8-plane EGA that sup
ported 256 colors. When IBM did final
ly come out with a 256-color mode
(mode 13h of the VGA), it turned out
not to be planar at all, and the upper nib
ble of the CPU byte remains unused in
write mode 2 to this day.

The bit of the CPU byte sent to each
plane is expanded to a 0 or OFFh byte,
depending on whether the bit is 0 or 1,
respectively. The byte for each plane
then becomes the CPU-side input to the
respective plane's ALU. From this poini
on, the write mode 2 data path is identi
cal to the write mode 0 data path. As dis-

Bit Mask

_L"
Display
Memory
Plane 0

panded for plane 3.
Those of you

who have been fol
lowing this series
probably under
stand write mode 2
at this point; I
suspect that the rest
of you could use
some additional ex
planation of an ad
mittedly non-ob
vious mode. Let's follow the CPU byte
through write mode 2, step by step.

Figure 1 shows the write mode 2 data
path. The CPU byte comes into the VGA
(or EGA) and is split into four separate
bits, one for each plane. Bits 7-4 of the
CPU byte vanish into the bit bucket,
never to be heard from again. Specula
tion long held that those 4 unused bits

BYTE WRITTEN BY CPU

BIT

0 - > OOOh
1 - > OFFh

Latch
I 1

0-> OOOh
1 - > OFFh

ALU

Latch

0-> OOOh
1 -> OFFh

ALU

Bit Mask

Latch

0-> OOOh
1 - > OFFh

ALU

Bit Mask

Latch

ALU

Bit Mask

Display
Memory
Plane 1

Display
Memory
Plane 2

Display
Memory
Plane 3

Figure 1: Data flow through the VGA in write mode 2.

cussed in earlier articles, the latch byte
for each plane is the other ALU input,
and the ALU either ANDs, ORs, or
XORs the two bytes together or simply
passes the CPU-side byte through. The
byte generated by each plane's ALU
then goes through the bit mask circuitry,
which selects on a bit-by-bit basis be
tween the ALU byte and the latch byte.

1988 Programmer's Journal 6.2
26

fi
pcjs.org

Finally, the byte from the bit mask cir
cuitry for each plane is written to that
plane if the corresponding bit in the Map
Mask register is set to 1.

It's worth noting the two differences
between write mode 2 and write mode
0, the standard write mode of the VGA.
First, rotation of the CPU data byte does
not take place in write mode 2. Second,
the Set/Reset and Enable Set/Reset

BYTE WRITTEN
BY CPU

DISPLAY MEMORY

Figure 2: In write mode 2, the lower 4 bits of the byte written by the
CPU Is written as a color across the four planes, with each bit
expanded to a byte.

registers have no effect in write mode 2.
Now that we understand the me

chanics of write mode 2, we can step
back and get a feel for what it might be
useful for. View bits 3-0 of the CPU
byte as a single pixel in one of sixteen
colors. Next, imagine that nibble turned
sideways and written across the four
planes, one bit to a plane. Finally, ex
pand each of the bits to a byte, as shown
in Figure 2, so that 8 pixels are drawn in
the color selected by bits 3-0 of the CPU
byte. Within the constraints of the
VGA's data paths, that's exacitly what
write mode 2 does.

By "the constraints of the VGA's
data paths," I mean the ALUs, the bit
mask, and the map mask. As Figure 1 in
dicates, the ALUs can modify the color
written by the CPU, the map mask can
prevent the CPU from altering selected
planes, and the bit mask can prevent the
CPU from altering selected bits of the
byte written to. (Actually, the bit mask
imply substitutes latch bits for ALU

bils, but since the latches are normally

loaded from the destination display
memory byte, the net effect of the bit
mask is usually to preserve bits of the
destination byte.) These are not really
constraints at all, of course, but rather
features of the VGA; I simply want to
make it clear that the use of write mode
2 to set 8 pixels to a given color is a
rather simple special case among the
many possible ways in which write

mode 2 can be used.
Write mode 2 is

selected by setting
bits 1 and 0 of the
Graphics Mode
register (indexed
Graphics Controller
register 5) to 1 and
0, respectively.
Since VGA reg
isters are readable,
the correct way to
select write mode 2
on the VGA is to
read the Graphics
Mode register,
mask off bits 1 and
0, OR in 00000010b
(03h), and write the

result back to the Graphics Mode
register, thereby leaving the other bits in
the register undisturbed. Unfortunately,
EGA registers are emphatically not
readable, making it difficult to take ad
vantage of the VGA's readable registers
without separate EGA and VGA drivers.

Copying Chunky Bit-maps to
VGA Memory Using Write Mode 2
Let's take a look at two examples of
write mode 2 in action. Listing 1 shows
a program that uses write mode 2 to
copy a graphics image in chunky format
to the VGA. In chunky format, adjacent
bits in a single byte make up each pixel:
Mode 4 of the CGA, EGA, and VGA is
a 2 bit per pixel chunky mode, and mode
13h of the VGA is an 8 bit per pixel
chunky mode. Chunky format is con
venient since all the information about
each pixel is contained in a single byte;
consequently, chunky format is often
used to store bit-maps in system
memory.

Unfortunately, VGA memory is or
ganized as a planar rather than chunky
bit-map in modes ODh through 12h,
with the bits that make up each pixel
spread across four planes. The conver
sion from chunky to planar format in
write mode 0 is quite a nuisance, requir
ing a good deal of bit manipulation. In
write mode 2, however, the conversion
becomes a snap, as shown in Listing 1.
Once the VGA is placed in write mode
2, the lower four bits (the lower nibble)
of the CPU byte (a single 4-bit chunky
pixel) become eight planar pixels, all
the same color. As discussed in PJ, 5.3,
the bit mask makes it possible to narrow
the effect of the CPU write down to a
single pixel.

Given the above, conversion of a
chunky 4-bit per pixel bit-map to the
VGA's planar format in write mode 2 is
trivial. First, the Bit Mask register is set
to allow only the VGA display memory
bits corresponding to the leftmost

1988 Programmer's Journal 6.2
27

pcjs.org

chunky pixel of the two stored in the
first chunky bit-map byte to be modi
fied. Next, the destination byte in dis
play memory is read in order to load the
latches. Then a byte containing two
chunky pixels is read from the chunky
bit-map in system memory, and the byte
is rotated four bits to the right to get the
leftmost chunky pixel in position. This
rotated byte is written to the destination
byte; since write mode 2 is active, each
bit of the chunky pixel goes to its
respective plane, and since the Bit Mask
register is set up to allow only one bit in
each plane to be modified, a single pixel
in the color of the chunky pixel is writ
ten to VGA memory.

The above process is then repeated
for the right-most chunky pixel, if nec
essary, and repeated again for as many
pixels as there are in the image.

"That's an interesting application of
write mode 2," you may well say, "but
is it really useful?" While the ability to
convert chunky bit-maps into VGA bit
maps does have its uses, Listing 1 is
primarily intended to illustrate the me
chanics of write mode 2. In point of fact,
I've heard of a considerably faster (and
truly ingenious) way to write chunky
pixel bit-maps to EGA memory using

write mode 2, read mode 1, and the
graphics position registers; sadly, since
the VGA lacks graphics position reg
isters, the faster conversion technique
works only on the EGA, so it is no
longer really useful.

Drawing Color-patterned
Lines Using Write Mode 2
A more serviceable use of write mode 2
is shown in Listing 2. The program
shown in Listing 2 draws multicolored
horizontal, vertical, and diagonal lines,
basing the color patterns on passed col
or tables. Write mode 2 is ideal because
in this application color can vary from
one pixel to the next, and in write mode
2 all that's required to set pixel color is
a change of the lower nibble of the byte
written by the CPU. Set/reset could be
used to achieve the same result, but an
index/data pair of OUTs would be re
quired to set the Set/Reset register to
each new color. Similarly, the Map
Mask register could be used in write
mode 0 to set pixel color, but in this case
not only would an index/data pair of
OUTs be required, but there would also
be no guarantee that data already in dis
play memory wouldn't interfere with
the color of the pixel being drawn since

Programmers and Information Specialists,

Simplify Your Life.

I n o u r i n t e n s i v e y o u w i l l l e a r n t o d e v e l o p
intelligent micro-mainframe links using the and the
IBM* industry standard High Level Language Application Program
Interface (HLLAPI). Instruction includes both fundamentals and
specific programming techniques.
Seminar
■ Introduction to Application Program Interface (API)
■ Application Ideas and Development
■ Learning the Major HLLAPI Services

Participants receive Attachmate's
normally $195, featuring full documentation and
examples of Attachmate's IBM-compatible HLLAPI.

Seminar fee is $295 per person

programming

Quality Micro-Mainframe Solutions

REGISTER NOW! CALL 1-800-426-6283
Anachrnate Corp., 3241 118th S.E. Bellevue, WA 98005,206-644-4010

IBM is a registered trademark and PS/2 is a trademark of International Business Machine Corporation.

the Map Mask register allows only se
lected planes to be drawn to.

Listing 2 is hardly a comprehensive
line drawing program since it draws
only a few special line cases, and al
though it is reasonably fast, it is far from
the fastest possible code to handle those
cases since it goes through a dot-ploi
routine and since it draws horizontal
lines a pixel rather than a byte at a time.
Write mode 2 would, however, serve
just as well in a full-blown line drawing
routine. For any type of patterned line
drawing on the VGA, or indeed for any
type of patterned drawing at all, the
basic principles remain the same: Use
the Bit Mask to select the pixel (or pix
els) to be altered, and use the CPU byte
in write mode 2 to select the color in
which the pixel is to be drawn.

When to Use Write Mode 2
and When to Use Set/reset
As indicated above, write mode 2 and
set/reset are functionally interchange
able. Write mode 2 lends itself to more
efficient implementations when the
drawing color changes frequently, as in
Listing 2.

Set/reset tends to be superior when
many pixels in succession are drawn in
the same color since with set/reset en
abled for all planes, the Set/Reset reg
ister provides the color data and as a
result, the CPU is free to draw whatever
byte value it wishes. For example, the
CPU can execute an OR instruction to
display memory when set/reset is
enabled for all planes, thus both loading
the latches and writing the color value
with a single instruction, secure in the
knowledge that the value it writes is ig
nored in favor of the set/reset color.

Set/reset is also the mode of choice
whenever it is necessary to force the
value written to some planes to a fixed
value while allowing the CPU byte to
modify other planes. This is the mode of
operation when set/reset is enabled for
some but not all planes.

Mode 13h—320 x 200
with 256 Colors
I've been asked several times recently
about the programming model for mode
13h, the VGA's 320 x 200 256-color
mode. Frankly, there's just not much to
it. Mode 13h offers the simplest pro
gramming model in the history of PC
graphics: a linear bit-map at A000:0000
consisting of 64,000 bytes, each con
trolling one pixel. The byte at offset 0

Number 178 on the Reader Service Card

1988 Programmer's Journal 6.2
28 pcjs.org

'Hi
controls the upper left pixel on the
screen, the byte at offset 13Fh controls
the upper right pixel on the screen, the
byte at offset 140h controls the second
pixel down at the left of the screen, and
the byte at offset 63,999 controls the
lower right pixel on the screen. That's
all there is to it; it's so simple that I'm
not going to waste your time with a
demo program. If you do desire a demo
program for mode 13h (and modes 1 lh
and 12h as well), a forthcoming issue of
the Borland magazine Turbo Technix
(possibly Volume 1, Number 4, but
that's currently up in the air) will pro
vide just that in the form of "The VGA
Standard" by Yours Truly.

Flipping Pages from Text
to Graphics and Back
In the past week or so I've gotten both
a phone call and a letter on an interest
ing EG A/VGA topic; Ididn't remember
the name of the caller, but the question
is unusual enough that both probably
came from the same person. At any rate,
the letter came from Phil Coleman, of
La Jolla, who writes,

Suppose I have the EGA in mode $ 10
(color 640 x 350 graphics). I would
like to preserve some or all of the
image while I temporarily switch to
text mode 3 to give my user a "Help"
screen. Naturally, memory is scarce,
so I'd rather not make a copy of the
video buffer at $A000 to "remem-
ber"the image while I digress to the
Help text. The EGA BIOS says that
the screen memory will not be cleared
on a mode set if bit 7 of AL is set. Yet
if I try that, it is clear that writing text
into the $B800 buffer trashes much
more than the 4 Kbytes of a text page;
when I switch back to mode $10,
"ghosts" appear in the form of bands
of colored dots. (When in text mode,
I do make a copy of the 4K buffer at
SB800 before showing the help; and
I restore the 4K before switching back
to mode $10.) Is there a way to
preserve the graphics image (or at
least >24K of it) while I switch to text
mode?

A corollary to this question:
Where does the 64/128/256K of EGA
memory "hide" when the EGA is in
text mode? Some, I guess, is used to
store character sets, but what happens
to the rest? Or rather, how can I pro
tect it?

Those are good questions. Alas, an
swering them in full would require con
siderable explanation, and while I in

tend to do that some day, now is not the
time. However, the issue of how to go
to text mode and back without losing the
graphics image is worth discussing
briefly.

Phil is indeed correct in his observa
tion that setting bit 7 of AL instructs the
BIOS not to clear display memory on
mode sets, and he is also correct in sur
mising that a font is loaded when going
to text mode. The normal mode lOh bit
map occupies the first 28,000 bytes of
each of the VGA's four planes. The nor
mal mode 3 character/attribute memory
map resides in the first 4000 bytes of
planes 0 and 1 (the blue and green
planes in mode lOh). The standard font
in mode 3 is stored in the first 8K of
plane 2 (the red plane in mode lOh).
Neither mode 3 nor any other text mode
makes use of plane 3; if necessary, plane
3 could be used as scratch memory in
text mode.

Consequently, you can certainly get
away with saving a total of just under 16
Kbytes—the first 4000 bytes of planes
0 and 1 and the first 8 Kbytes of plane
2—when going from mode lOh to mode
3, to be restored on returning to mode
lOh.

That's hardly all there is to the mat

ter of going from text to graphics and
back without bit-map corruption,
though. One interesting point is that the
mode lOh bit-map can be relocated to
A000:8000 simply by doing a mode set
to mode 1 Oh and setting the start address
(programmed at CRT Controller reg
isters OCh and ODh) to 8000h. You can
then access display memory starting at
A800:0000 instead of the normal
A000:0000, with the resultant display
exactly like that of normal mode lOh.
(There are BIOS issues since the BIOS
doesn't automatically access display
memory at the new start address, but if
your program does all its drawing di
rectly without the help of the BIOS,
that's no problem.)

At any rate, once the mode lOh bit
map is relocated to A800-.0000, flipping
to text mode and back becomes pain
less. The memory used by mode 3
doesn't overlap the relocated mode lOh
bit-map at all, so all you need do is set
bit 7 of AL on mode sets.

Another interesting point about flip
ping from graphics to text and back is
that the standard mode 3 character/at
tribute map doesn't actually take up ev
ery byte of the first 4000 bytes of planes
0 and 1. The standard mode 3 charac-

NEW PRODUCTS! NEW PRODUCTS! NEW PRODUCTS!

ANNOUNCING THE MOST POWERFUL
DATABASE GRAPHICS DEVELOPMENT AND

ANALYSIS SYSTEM AVAILABLE

G-WIZ®

G-RUN
TM

dPROBE®

Full featured interactive presentation graphics
development system.Works with all popular printers, plotters, cameras and slidemakers.
Smart scaling routines for ten datatypes provide the fastest route to
perfect graphs.
Fully supports all popular screen devices including: CGA, EGA, VGA,
DGtS, and Hercules monochrome.
Uses maximum output device resolution.
Introductory Price, $395.00
Mas all the output features of G-WIZ above plus:
Eliminates the need for end-users to learn a graphics package.
Produces full-featured presentation graphics from within dBASE,
R:base, and many other programming languages.
Thanks to the incredibly robust x-axis and y-axis scaling/labeling
routines, this is the ONLY integrated database graphics system
available that can produce perfect graphs from live data without
operator intervention.
Introductory Price, $195.00
dBASE II, III, and III+, Foxbase, and Clipper source code
documentation and analysis.
More than 13 different reports on program/variable structure available.
Time-saving table of contents organized in two different ways!
An invaluable aid to consultants and application developers!
Completely automates program documentation and structure.
Introductory Price, $89.00

Offered to you by MIGHTYSOFT™lnc.,P.O, Box 51048, Seattle, Washington 98115. To
order call: (206) 526-3766. leier:s? > \ (Mosterch :omi

Number 179 on the Reader Service Card

1988 Programmer's Journal 6.2
29

pcjs.org

ter/attribute map actually takes up only,
every even byte of the first 4000 in each
plane; the odd bytes are left untouched.
This means that only about 12 Kbytes
actually have to be saved when going to
text mode. The code in Listing 3 Hips
from graphics mode to text mode and
back, saving only those 12 Kbytes that
actually have to be saved. This code
saves and restores the first 8K of plane
2 (the font area) while in graphics mode,
but saves and restores the 4000 bytes
used for the character/attribute map in
text mode since the characters and at
tributes, which are actually every other
byte of planes 0 and 1, respectively, ap
pear to be contiguous bytes in memory

in text mode and so are easily saved as
a single block.

Explaining why only every other
byte of planes 0 and 1 is used in text
mode and why characters and attributes
appear to be contiguous bytes when they
are actually in different planes is a large
part of the explanation I haven't room
to go into now. One bit of fallout from
this, however, is that if you flip to text
mode and preserve the graphics bit-map
using the mechanism illustrated in List
ing 3, you shouldn't write to any text
page other than page 0 (that is, don't
write to any offset in display memory
above 3999 in text mode) or alter the
Page Select bit in the Miscellaneous

If you see something here you like, by
all means, compare it with what our

competition has to offer.
SeidI Version Manager (SVM) Version 2.0 is a comprehen
sive source code configuration system designed for professional software
developers. SVM tracks changes made to individual modules (revisions) andstores "version" information that tells which revisions go into making which
versions of a product. SVM supports multiple developers in both networking
and non-networking environments. Some of its features include: revision
branching, revision merging, user ids and optional passwords, seven differentfile access levels, a menu driven shell, formatted reports with user definable
layouts, central journal logging, on-line help, optional data compression, aremote site update utility, and more. $299.95, LAN version $1000.00

SeidI Make Utility (SMK) Version 2.1 is the most sophisticated
product generation utility available. SMK is not just another copy of the of theUNIX make. SMK uses a structured, high-level, dependency definition
language (DDL) that is a programming language in itself. It supports
symbolic constants, parameterized macros, for loops, if-then-else style con
ditionals, interactive statements, ambiguous path name expressions, and much
more. In addition, SMK is lightening fast and won't bog down, even on your
largest projects. $99.95, LAN version $500.00 (includes SMKgen).
New! SMKgen Version 1.0 is an automatic dependency generation
utility. By examining the files that make up a product, SMKgen determineshow those files depend on each other and amazingly writes a dependency file
that can be processed by SMK. SMKgen oan also construct link files and
filelist files that integrate with SVM. With SMKgen, the task of placing a soft-
ware project under SMK is reduced to executing a single command. $49,95

"SVM is a full-featured system that has all the essential capabilities you
are likely to need, and is further distinguished by several important
features that none of its competitors yet have." - The C Users Journal™,
February, 1988.

When you know the facts,
you'll know we're the best.

For more information call: 1-313-662-8086
For a free copy of our competitive comparison report, write to

us on your company letterhead. MC/VISA/COD accepted.
SEIDL COMPUTER ENGINEERING

Output register (3C2h) while in text
mode. In order to allow unfettered ac
cess to text pages, it would be necessary
to save the first 32K of each of planes 0
and 1. (On the other hand, this would
allow up to 16 text screens to be stored
simultaneously, with any one display-able instantly—a topic for yet another
installment.) Moreover, if any fonts
other than the default font are loaded,
the portion of plane 2 those particular
fonts are loaded into would have to be
saved, up to a maximum of all 64K of
plane 2. In the worst case, a full 128K
would have to be saved in order to pre
serve all the memory potentially used by
text mode.

As I said, Phil Coleman's question is
a complex one, and I've only touched
on the intriguing possibilities arising
from the various configurations of dis
play memory in VGA graphics and text
modes. Someday I'll return to it, but for
now we've still got the basics of the
remarkably complex VGA to cover.

Until Next Time
As I suspected, we didn't get around to
learning how to read VGA memory.
That's probably just as well since that
leaves the whole next installment in
which to cover that fairly esoteric sub
ject. If there are any other EGA or VGA
topics you'd like to see covered, write
to me in care of PJ or at the post office
box listed below, or drop me a line on
MCIMail (user name: MABRASH),
and I'll try to get to it soon. See you next
time. ♦

Michael Abrash is an Engineering Fellow
currently working on advanced graphics
projects for Video Seven, Inc., in Fremont,
California. Readers may write to Michael at

P.O. Box 390351
Mountain View, CA 94039

Code follows.

=^S^
3106 Hilltop Dr., Ann Arbor, MI 48103 - BOOT—

Number 174 on the Reader Service Card pcjs.org

LETTERS

Diagram for the EGA
After reading Michael Abrash's articles on
the EGA (PJ, Volumes 5.1-5.4) and careful
ly rereading the IBM Tech Ref for the EGA
Adapter, 1 came up with the enclosed
diagram. It shows functionally what happens
when you read or write to the EGA display
in graphics mode for plane 0—the other
planes are identical. This helps me immense
ly when I'm programming at the hardware
level.

Please review it. You are free to publish
it if you think it would help your readers.

Bob Montgomery
Orlando, FL

Michael Abrash Replies
I'm no hardware engineer, but Bob
Montgomery's diagram looks great to me. It
should help a lot of people understand the
EGA.

Michael Abrash
Mountain View, CA

Jon Greenblatt Goes Too Far
(Even for Jon Greenblatt)
I'd like to respond to some comments in the
Letters column in Volume 5.6.1 would argue
that "ludicrous" and "appalling" optimiza
tions (readers'descriptions of those I demon

strated in "A Note on Optimizing Turbo
Pascal," Volume 5.5) have to be measured
against what you' re trying to achieve. If your
goal, as was ours at ELFSOFT, is to write a
ully-programmable, self-customizing,

transformational natural language parser,
with a back-end that generates efficient
dBASE code, there are some serious con
straints. To be co-resident with dBASE (on
512K systems) required limiting ourselves
to 250K. Furthermore, according to Wino-
grad, Sciiank, Sager, et. al., this program is
impossible on its face—a futuristic dream.
We weren't content merely to demonstrate it
theoretically, but wanted to make it practical,
which meant turbo-charging it until a com
plex query that generates two screens of .PRG
code would translate in (average) 15 seconds.

This was necessary because however
ludicrous or appalling it is, a manager who
asks an employee to find out "how many of
the Programmer's Journal prospects come

Shift
Reg

Function
GR3. b3. 4

CPUWrils
Data DO>,h f-

I
o—f—c^lof-

Data
GR3.

Rotate
bO-2

•Set/Reset 0
GRO. bO-3

Enable Set / Reset 0
G R 1 . b O - 3

Start Address
CRTC reg CD

Write Mode
GR5. bO. 1

PLANE 0
Other planes indentlcal

* Color Compare 0
GR2. bO-3

■ Color Don't Care 0
GR7. bO-3 Oata from Plane 1

Data from Plane 2
Data from Plane 3

Bit Mask passes latch data where bits are 0 and switch data where bits are t.
GR -> Graphics Register (3CEh - 3CFh).* «> extend bit n for plane n to a byte.
CPU write data is rotated before any other operation is performed.
Color Don't Care bit n = 0 makes color compare ignore plane n.
Read Map register = n selects plane n for reading.

1988 Programmer's Journal 6.2 pcjs.org

