
IBM
permal .enputer

Programming Series

„syli o

LJX PC DOS version 2.10 ''''-'

Techical Referenc es

.-. 	
)i•)' ''.s. 	''..

f-sY*4-
q,

W '
WY'.;. WW sW

Program No.5601-SBS *W.W.Rh

First Edition (August 1985)

Changes are periodically made to the information herein; these changes
will be incorporated in new editions of the publication.

It is possible that this material may contain references to, or information
about, IBM products (machines and programs), programming, or services
that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM
products, programming, or Services in your country.

© Copyright International Business Machines Corp. 1983, 1985

Preface

Read This First

This technical reference manual covers topics for the
more experienced DOS users, system programmers,
and those who will be developing their own
applications.

Organization of This Manual

This manual has 9 chapters.

Chapter 1 contains general technical information.

Chapter 2 contains detailed information about using
extended screen and keyboard functions.

Chapter 3 contains detailed information about device
drivers.

Chapter 4 describes allocation of space on a disk.

Chapter 5 describes the system interrupts and function
calls.

Chapter 6 describes control blocks and work areas,
including a Memory Map, Program Segment, and File
Control Block.

iii

Chapter 7 explains how to execute commands from
within an application.

Chapter 8 contains technical information about DOS
support of fixed disks.

Chapter 9 contains detailed information about .EXE
file structure.

Chapter 10 contains information about DOS memory
management.

iv

Contents

Chapter 1. DOS Technical Information 	
DOS Structure 	
DOS Initialization 	
The Command Processor 	
Available DOS Functions 	

1-1
1 -3
1 -4
1 -5
1 -6

File Management Notes 	 1-6
The Disk Transfer Area (DTA) 	 1-7
Error Trapping 	 1-8

Chapter 2. Using Extended Screen and
Keyboard Control 	 2-1

Introduction 	 2-3
Cursor Control 	 2-4

Cursor Position 	 2-4
Cursor Up 	 2-4
Cursor Down 	 2-5
Cursor Forward 	 2-5
Cursor Backward 	 2-5
Horizontal and Vertical Position 	 2-6
Device Status Report 	 2-6
Cursor Position Report 	 2-6
Save Cursor Position 	 2-7
Restore Cursor Position 	 2-7

Erasing 	 2-8
Erase in Display 	 2-8
Erase in Line 	 2-8

Mode of Operation 	 2-9
Set Graphics Rendition 	 2-9
Set Mode 	 2-10
Reset Mode 	 2-10

Keyboard Key Reassignment 	 2-1 1

v

Chapter 3. Installable Device Drivers 	3-1

Introduction 	 3-3
Device Driver Format 	 3-4

Types of Devices 	 3-4
Device Header 	 3-6

Creating a Device Driver 	 3-9
Installation of Device Drivers 	 3-10
Request Header 	 3-11

Unit Code 	 3-11
Command Code 	 3-12
Status Word 	 3-13
Function Call Parameters 	 3-16
MEDIA Descriptor Byte 	 3-21

The Time of Day Device Driver 	 3-26
The Memory Device Driver 	 3-26

Chapter 4. DOS Disk Allocation 	 4-1
DOS Disk Directory 	 4-4
DOS File Allocation Table 	 4-8
How to Use the File Allocation Table 	4-10

Chapter 5. DOS Interrupts and Function
Calls 	 5-1

Interrupts 	5-3
Function Calls 	 5-13
Invoking DOS Functions 	 5-16

Chapter 6. DOS Control Blocks and
Work Areas 	

6-1

DOS Memory Map 	 6-3
DOS Program Segment

	
6-5

Program Segment Prefix 	 6-9
File Control Block 	 6-11

Chapter 7. Executing Commands
from Within an Application 	

 7-1

vi

Chapter 8. Fixed Disk Information 	 8-1
Fixed Disk Architecture 	 8-3
System Initialization 	 8-4
Boot Record/Partition Table 	 8-6
Technical Information 	 8-8

Chapter 9. EXE File Structure
and Loading 	 9-1

Chapter 10. DOS Memory Management 	 10-1

Index 	 X-1

vii

VIII

Chapter 1. DOS Technical Reference
Information

Contents

DOS Structure 	 1 -3
DOS Initialization 	 1-4
The Command Processor 	 1-5
Available DOS Functions 	 1-6
File Management Notes 	 1 -6
The Disk Transfer Area (DTA) 	 1 -7
Error Trapping 	 1-8

1-1

1-2

This book is intended to supply technically oriented
users with information about the structure, facilities,
and program interfaces of DOS. It is assumed that the
reader is familiar with the 8088 architecture, interrupt
mechanism, and instruction set.

DOS Structure

DOS consists of the following four components:

1. The boot record resides on track 0, sector 1, side 0
of every disk formatted by the FORMAT
command. It is put on all disks in order to produce
an error message if you try to start up the system
with a non-DOS diskette in drive A. For fixed
disks, it resides on the first sector (sector 1, head
0) of the first cylinder of the DOS partition.

2. The Read-Only Memory (ROM) BIOS interface
module (file IBMBIO.COM) provides a low-level
interface to the ROM BIOS device routines.

3. The DOS program itself (file IBMDOS.COM)
provides a high-level interface for user programs. It
consists of file management routines, data
blocking/deblocking for the disk routines, and a
variety of built-in functions easily accessible by
user programs. (Refer to Chapter 5.)

When these function routines are invoked by a
user program, they accept high-level information
via register and control block contents, then (for
device operations) translate the requirement into
one or more calls to IBMBIO to complete the
request.

4. The command processor, COMMAND.COM.

1-3

DOS Initialization

When the system is started (either System Reset or
power ON with the DOS diskette in drive A), the boot
record is read into memory and given control. It checks
the directory to assure that the first two files listed are
IBMBIO.COM and IBMDOS.COM, in that order. (An
error message is issued if not.) These two files are then
read into memory. (IBMBIO.COM must be the first file
in the directory, and its sectors must be contiguous.)

The initialization code in IBMBIO.COM determines
equipment status, resets the disk system, initializes the
attached devices, causes device drivers to be loaded,
and sets the low-numbered interrupt vectors. It then
relocates IBMDOS.COM downward and calls the first
byte of DOS.

As in IBMBIO.COM, offset 0 in DOS contains a jump
to its initialization code, which will later be overlaid by
a data area and the command processor. DOS
initializes its internal working tables, initializes interrupt
vectors for interrupts hex 20 through hex 27 and builds
a Program Segment Prefix (see Chapter 6) for
COMMAND.COM at the lowest available segment,
then returns to IBMBIO.COM.

The last remaining task of initialization is for
IBMBIO.COM to load COMMAND.COM at the
location set up by DOS initialization. IBMBIO.COM
then passes control to the first byte of COMMAND.

1-4

The Command Processor

The command processor supplied with DOS (file
COMMAND.COM) consists of four distinctly separate
parts:

• A resident portion resides in memory immediately
following IBMDOS.COM and its data area. This
portion contains routines to process interrupt types
hex 22 (terminate address), hex 23
(CTRL-BREAK handler), and hex 24 (critical
error handling), as well as a routine to reload the
transient portion if needed. (When a program
terminates, a checksum methodology determines if
the program had caused the transient portion to be
overlaid. If so, it is reloaded.) Note that all
standard DOS error handling is done within this
portion of COMMAND. This includes displaying
error messages and interpreting the reply of Abort,
Retry, or Ignore. (See message Disk error reading
drive x in Appendix A of the Disk Operating
System Reference manual.)

• An initialization portion follows the resident
portion and is given control during startup. This
section contains the AUTOEXEC file processor
setup routine. The initialization portion determines
the segment address at which programs can be
loaded. It is overlaid by the first program
COMMAND loads because it's no longer needed.

• A transient portion is loaded at the high end of
memory. This is (portion 3) the command
processor itself, containing all of the internal
command processors, the batch file processor, and
(portion 4) a routine to load and execute external
commands (files with filename extensions of
.COM or .EXE). This "loader" is at the highest
end of memory, and is invoked by the EXEC
function call to load programs.

1-5

Portion 3 of COMMAND produces the system
prompt (such as A>), reads the command from the
keyboard (or batch file) and causes it to be
executed. For external commands, it builds a
command line and issues an EXEC function call
to load and transfer control to the program.

Chapter 6 contains detailed information describing the
conditions in effect when a program is given control by
EXEC.

Available DOS Functions

DOS provides a significant number of functions to user
programs, all available through issuance of a set of
interrupt codes. There are routines for keyboard input
(with and without echo and Ctrl-Break detection),
console and printer output, constructing file control
blocks, memory management, date and time functions,
and a variety of disk, directory, and file handling
functions. See Chapter 5 "DOS Interrupts and
Function Calls" for detailed information.

File Management Notes

Through the INT 21 (function call) mechanism, DOS
provides methods to create, read, write, rename, and
erase files. Files are not necessarily written sequentially
on disk—space is allocated as it is needed, and the first
location available on the disk is allocated as the next
location for a file being written. Therefore, if
considerable file creation and erasure activity has taken
place, newly created files will probably not be written in
sequential sectors.

However, due to the mapping (chaining) of file space
via the File Allocation Table, and the function calls
available, any file can be used in either a sequential or
random manner.

1-6

There are two sets of function calls that support file
management. The new, extended set of calls are the
preferred method (functions 39 through 57). Through
these calls, sequential and random file accesses are
simpler than using the traditional (FCB oriented) set of
calls. The FCB calls continue to function as in the past:
By using the current block and current record fields of
the FCB, and the sequential disk read or write
functions, you can make the file appear sequential—
DOS will do the calculations necessary to locate the
proper sectors on the disk. On the other hand, by using
the random record field, and random disk functions, you
can cause any record in the file to be accessed directly—
again, DOS will locate the correct sectors on the disk
for you.

Space is allocated in increments called clusters. For
single sided diskettes, this unit of allocation is one
sector; for dual sided diskettes, each cluster is two
consecutive sectors in length. The cluster size of a fixed
disk is determined at FORMAT time, and is based on
the size of the DOS partition.

The Disk Transfer Area (DTA)

The Disk Transfer Area (also commonly called buffer)
is the memory area DOS will use to contain the data for
all file reads and writes that are performed with the
traditional (FCB) set of function calls. This area can be
at any location within memory, and should be set by
your program. (See function call hex 1A.)

Only one DTA can be in effect at a time, so it is the
program's responsibility to inform DOS what memory
location to use before using any disk read or write
functions. Once set, DOS continues to use that area for
all disk operations until another function call hex lA is
issued to define a new DTA. When a program is given
control by COMMAND, a default DTA has already
been established at hex 80 into the program's Program
Segment Prefix, large enough to hold 128 bytes.

1-7

When using the extended file management function
calls, you specify a buffer address when you issue the
read or write call. There is no need to set a DTA
address.

Error Trapping

DOS provides a method by which a program can
receive control whenever a disk or device read/write
error occurs, or when a bad memory image of the file
allocation table is detected. When these events occur,
DOS executes an INT hex 24 to pass control to the
error handler. The default error handler resides in
COMMAND.COM, but any program can establish its
own by setting the INT hex 24 vector to point to the
new error handler. DOS provides error information via
the registers and provides Abort, Retry, or Ignore
support via return codes. (Refer to Chapter 5, "DOS
Interrupts and Function Calls".)

1-8

Chapter 2. Using Extended
Screen and Keyboard
Control

Contents

Introduction 	 2-3

Cursor Control 	 2-4
Cursor Position 	 2-4
Cursor Up 	 2-4
Cursor Down 	 2-5
Cursor Forward 	 2-5
Cursor Backward 	 2-5
Horizontal and Vertical Position 	 2-6
Device Status Report 	 2-6
Cursor Position Report 	 2-6
Save Cursor Position 	 2-7
Restore Cursor Position 	 2-7

Erasing 	 2-8
Erase in Display 	 2-8
Erase in Line 	 2-8

Mode of Operation 	 2-9
Set Graphics Rendition 	 2-9
Set Mode 	 2-10
Reset Mode 	 2-10

Keyboard Key Reassignment 	 2-11

2-1

2-2

Introduction

With DOS Version 2.10 you can issue special character
sequences from within your program that can be used to
control screen cursor positioning. You can also reassign
the meaning of any key in the keyboard.

Notes:

1. The control sequences defined below are valid
when issued through any DOS function calls, that
can write to the standard output device. These
control sequences require the presence of the
extended screen and keyboard control device
driver. This can be accomplished by placing the
command:

DEVICE=ANSI.SYS

in your CONFIG.SYS (configuration) file.
Note that the size of DOS in memory will be
increased by the size of the ANSI.SYS
program.

2. The default value is used when no explicit
value, or a value of zero, is specified.

3. * — Numeric Parameter. A decimal number
specified with ASCII characters.

4. In the control sequences described below,
ESC is the 1 byte code for ESC (hex 1B),
not the three characters "ESC." For
example, ESC [2;10H could be created under
DEBUG as follows:

e200 10 "[2;10H"

2-3

Cursor Control

Cursor Position

CUP Function

ESC [#;#H Moves the cursor to the position specified by the
parameters. The first parameter specifies the
line number and the second parameter specifies
the column number. The default value is one. If
no parameter is given, the cursor is moved to the
home position.

Cursor Up

CUU
	

Function

ESC [#A Moves the cursor up one line without changing
columns. The value of # determines the number
of lines moved. The default value for # is one.
This sequence is ignored if the cursor is already
on the top line.

2-4

Cursor Down

CUD Function

ESC 1#B Moves the cursor down one line without
changing columns. The value of # determines
the number of lines moved. The default value
for # is one. The sequence is ignored if the
cursor is already on the bottom line.

Cursor Forward

CUF Function

ESC [#C Moves the cursor forward one column without
changing lines. The value of # determines the
number of columns moved. The default value
for # is one. This sequence is ignored if the
cursor is already in the rightmost column.

Cursor Backward

CUB Function

ESC [# D Moves the cursor back one column without
changing lines. The value of *t determines the
number of columns moved. The default value
for tt is one. This sequence is ignored if the
cursor is already in the leftmost column.

2-5

Horizontal and Vertical Position

HVP Function

ESC 1#;#f Moves the cursor to the position specified by the
parameters. The first parameter specifies the
line number and the second parameter specifies
the column number. The default value is one. If
no parameter is given, the cursor is moved to the
home position (same as CUP).

Device Status Report

DSR Function

ESC [6n The console driver will output a CPR sequence
on receipt of DSR (see below).

Cursor Position Report

CPR Function

ESC 1#;#R The CPR sequence reports the current cursor
position through the standard input device. The
first parameter specifies the current line and the
second parameter specifies the current column.

2-6

Save Cursor Position

SCP Function

ESC [s The current cursor position is saved. This cursor
position can be restored with the RCP sequence.

Restore Cursor Position

RCP Function

ESC [u Restores the cursor to the value it had when the
console driver received the SCP sequence.

2-7

Erasing

Erase in Display

ED
	

Function

ESC [2J
	

Erases all of the screen and the cursor goes to
the home position.

Erase in Line

EL Function

ESC 1k Erases from the cursor to the end of the line and
includes the cursor position.

2-8

Mode of Operation

Set Graphics Rendition

SGR Function

ESC [#;...;#m Sets the character attribute specified by the
parameter(s). All following characters will have
the attribute according to the parameter(s) until
the next occurrence of SGR.

Parameter 	Meaning
0 	All attributes Off (normal

white on black)
1 	Bold On (high intensity)
4 	Underscore On (IBM

Monochrome Display only)
5 	Blink On
7 	Reverse video On
8 	Cancelled On (invisible)
30 	Black foreground
31 	Red foreground
32 	Green foreground
33 	Yellow foreground
34 	Blue foreground
35 	Magenta foreground
36 	Cyan foreground
37 	White foreground
40 	Black background
41 	Red background
42 	Green background
43 	Yellow background
44 	Blue background
45 	Magenta background
46 	Cyan background
47 	White background

2-9

Set Mode

SM Function

ESC [-#h Invokes the screen width or type specified by
or ESC i=h
or ESC [=Oh
or ESC [?7h

the parameter.

Parameter 	Meaning
0 40x25 black and white
1 40x25 color
2 80x25 black and white
3 80x25 color
4 320x200 color
5 320x200 black and white
6 640x200 black and white
7 wrap at end of line

(typing past end-of-line results
in new line)

Reset Mode

RM Function

ESC [-#1
or ESC [=1
or ESC 1=01
or ESC [?71

Parameters are the same as SM (Set Mode)
except that parameter 7 will reset wrap at
end-of-line mode (characters past end-of-line are
thrown away).

2-10

Keyboard Key Reassignment

The control
sequence is Function

ESC [#;#;...#p The first ASCII code in the control
or ESC ["string";p sequence defines which code is being
or ESC mapped. The remaining numbers define

[#;"string";#; the sequence of ASCII codes generated
#;"string";#p when this key is intercepted. However, if

or any other the first code in the sequence is zero
combination of (NUL) then the first and second code
strings and make up an extended ASCII
decimal numbers re-definition. The IBM Personal

Computer JX BASIC manual has a list
of all the ASCII and extended ASCII
codes).

Here are some examples:

1. Reassign the Q and q key to the A and a key (and
the other way as well):

ESC [65;81p A becomes Q
ESC [97;113p a becomes q
ESC [81P;65p Q becomes A
ESC [113;97p q becomes a

2. Reassign the F10 key to a DIR command followed
by a carriage return:

ESC [0;68;"dir";13p

The 0;68 is the extended ASCII code for the F10
key. 13 decimal is a carriage return.

2-11

3. 	The following assembly language program
reassigns the PF10 key to a DIR B: command
followed by a carriage return.

TITLE SETANSI.ASM - SET F1040 STRING FOR ANSI.SYS

CSEG 	SEGMENT PARA PUBLIC 'CODE'

ASSUME CS:CSEG,DS:CSEG

0116
DOS 	LABEL

OR6
ENTPT: JMP
STRAD DB

10H
FAR 	 ;INT 21H 	RET FAR

100H
SHORT START
27,q0;10;'SDIR B:';13p' ;REDEFINE F10 KEY

	

STRSIZ EQU 	1-STRING

	

HANDLE EQU 	1

DOSVECTOR LABEL DWORD

	

DOSOFF DW 	DOS
DOSSER DW

START PROC NEAR

	

MOV 	AX,CS

	

MOV 	DOSSEG,AX

;LENGTH OF ABOVE MESSAGE
;PRE-DEFINED FILE HANDLE FOR STANDARD OUTPUT

VECTOR TO DOS CALL ROUTINE

; OFFSET
; SEGMENT (TO BE FILLED)

;FIND WHERE THIS CODE IS
;SET VECTOR ACCORDINGLY

;(this is done so this code becomes self-relocatable, suitable for .cow file)

START

CSEG

NOV 	BX,HANDLE
MOV 	CX,STRSIZ
MOV 	DX,OFFSET STRING
MOV 	AH,40H
CALL 	DOSVECTOR
RET

ENDP

ENDS
END 	ENTPT

;STANDARD OUTPUT DEVICE
;GET SIZE OF TEXT TO BE SENT
;PASS OFFSET OF STRING TO BE SENT

;FUNCTION="WRITE TO DEVICE'
;CALL DOS
;RETURN TO DOS

2-12

Chapter 3. Installable Device Drivers

Contents

Introduction 	 3-3

Device Driver Format 	 3-4
Types of Devices 	 3-4

Character Devices 	 3-5
Block Devices 	 3-5

Device Header 	 3-6
Next Device Header Field 	 3-6
Attribute Field 	 3-7
Strategy and Interrupt Routines 	 3-8
Name Field 	 3-8

Creating a Device Driver 	 3-9

Installation of Device Drivers 	 3-10

Request Header 	 3-11
Unit Code 	 3-11
Command Code 	 3-12
Status Word 	 3-13
Function Call Parameters 	 3-16

INIT 	 3-17
MEDIA CHECK 	 3-18
BUILD BPB
(BIOS Parameter Block) 	 3-18

MEDIA Descriptor Byte 	 3-21
INPUT or OUTPUT 	 3-22
Non Destructive Input No Wait 	 3-24
STATUS 	 3-24
FLUSH 	 3-25

The Time of Day Device Driver 	 3-26

The Memory Device Driver 	 3-26

3-1

3-2

Introduction

The DOS Version 2.10 device interface links the
devices together in a chain. This allows new device
drivers for optional devices to be added to DOS.

C:,

co —t En

3-3

Device Driver Format

A device driver is a .COM file with all of the code in it
to implement the device. In addition it has a special
header at the front of it that identifies it as a device,
defines the strategy and interrupt entry points, and
defines various attributes of the device.

Note: For device drivers, the .COM file must
not use the ORG 100H. Because it does not use
the program segment prefix, the device driver is
simply loaded; therefore, the .COM file must have
an orgin of zero (ORG 0 or no ORG statement).

Types of Devices

There are two basic types of devices:

• Character devices

• Block devices

3-4

Character Devices

These are devices that are designed to do character I/O
in a serial manner like CON, AUX, and PRN. These
devices have names like CON, AUX, CLOCK$, and
you can open channels (handles or FCBs) to do input
and output to them.

Note: Because character devices have only one
name, they can support only one device.

Block Devices

These devices are the "fixed disk or diskette drives" on
the system, they can do random I/O in pieces called
blocks (usually the physical sector size of the disk).
These devices are not named as the character devices
are, and cannot be opened directly. Instead they are
mapped via the drive letters (A, B, C, etc.). Block
devices can have units within them. In this way, a single
block driver can be responsible for one or more disk or
diskette drives. For example, block device driver
ALPHA can be responsible for drives A, B, C and D.
This means that ALPHA has four units defined and
therefore takes up four drive letters. The way the drive
units and drive letters correspond is determined by the
position of the driver in the chain of all drivers. For
example, if device driver ALPHA is the first block
driver in the device chain, and it has defined four units,
then those units will be A. B, C and D. If BETA is the
second block driver, and it defines three units, then
those units will be E, F and G. DOS Version 2.10 is
not limited to 16 block device units as previous versions
were. The new limit is 63. but drives are assigned
alphabetically through the collating sequence, so after
drive Z, the drive "characters" get a little strange (like
<, \ , >).

Co

CI)

3-5

Device Header

A device header is required at the beginning of a device
driver. Here is what the Device Header looks like:

Description
	

Definition

Pointer to next device header DWORD

Attribute WORD

Pointer to device strategy WORD

Pointer to device interrupt WORD

Name/unit field 8 BYTES

Next Device Header Field

The pointer to the next device header field is a double
word field (offset followed by segment) that is set by
DOS at the time the device driver is loaded. However,
it is important that this field be set to —1 prior to load
time (when it is on the disk as a .COM file) unless there
is more than one device driver in the .COM file. If there
is more than one driver in the file, the first word of the
double word pointer should be the offset of the next
driver's Device Header.

Note: If there is more than one device driver in
the .COM file, the last driver in the file must have
the pointer to next Device Header field set to —1.

3-6

Attribute Field

The next field in the header describes to the system the
attributes of the device. They are as follows:

bit 15 = 1 if character device
0 if block device

bit 14 = 1 if IOCTL is supported
0 if it is not

bit 13 = 1 if non IBM format (block only)
0 if IBM format

bit 3 = 1 if current clock device
0 if it is not

bit 2 = 1 if current NUL device
0 if it is not

bit 1 = 1 if current standard output device
0 if it is not

bit 0 = 1 if current standard input device
0 if it is not

All other bits must be off.

The most important bit is bit 15, which tells the system
that it is a block or a character device. With the
exception of bits 13 and 14, the rest are for giving
character devices special treatment and mean nothing
on a block device. These special treatment bits allow
you to tell DOS that your new device driver is the new
standard input device and standard output device (the
CON device). This can be done by setting bits 0 and 1
to 1. Similarly, a new CLOCK$ device could be
installed by setting that attribute bit.

Although there is a NUL device attribute bit, the NUL
device cannot be reassigned. This is an attribute that
exists for DOS so it can tell if the NUL device is being
used. The non IBM format bit applies only to block
devices and affects the operation of the Get BPB (BIOS
Parameter Block) device call (covered later in this
chapter). The other bit of interest is the IOCTL bit.
This is used for both block and character devices, and
tells DOS whether the device is able to handle control
strings (through the IOCTL system call).

3-7

If a driver cannot process control strings, it should
initially set this bit to 0. This way DOS can return an
error if an attempt is made through the IOCTL system
call to send or receive control strings to the device. A
device that is able to process such control strings should
initialize this bit to 1. For devices of this type, DOS
will make the calls to the IOCTL input and the IOCTL
output device functions to send and receive IOCTL
strings.

The IOCTL functions allow data to be sent to and from
the device without actually doing a normal read or
write. In this way, the device can use the data for its
own use (like setting a baud rate, stop bits, changing
form lengths, etc.). It is up to the device to interpret the
information passed to it, but it must not be treated as a
normal I/O request.

Strategy and Interrupt Routines

These two fields are the pointers to the entry points of
the strategy and interrupt routines. They are word
values, so they must be in the same segment as the
Device Header.

Name Field

This is an 8-byte field that contains the name of a
character device, or the number of units of a block
device. If it is a block device, the number of units can
be put in the first byte. This is optional. because DOS
will fill in this location with the value returned by the
driver's INIT code. (Refer to "Installation of Device
Drivers" in this chapter.)

3-8

Creating a Device Driver

In order to create a device driver that DOS can install,
a .COM file must be created with the Device Header at
the start of the file. Remember that for device drivers,
the code should not be originated at 100H, but rather at
0. The link field (pointer to next Device Header) should
be —1 unless there is more than one device driver in the
.COM file. The attribute field and entry points must be
set correctly.

If it is a character device. the name field should be filled
in with the name of that character device. The name can
be any legal 8-character filename.

CD

DOS always processes installable device drivers before
handling the default devices, so to install a new CON
device, simply name the device CON (just be sure to set
the standard input device and standard output device
bits in the attribute word on a new CON device). The
scan of the device list stops on the first match, so the
installable device driver takes precedence.

Note: Because DOS can install the driver
anywhere in memory, care must be taken in any
far memory references. You should not expect that
your driver will always be loaded at the same
place every time.

3-9

Installation of Device Drivers

DOS Version 2.10 allows new device drivers to be
installed dynamically at boot time by reading and
processing the device options in the CONFIG.SYS file.

DOS calls a device driver at it's strategy entry point
first, passing in a Request Header the information
describing what DOS wants the device driver to do.

The strategy routine does not perform the request, but
rather it enqueues the request (saves a pointer to the
Request Header). The second entry point is the
interrupt routine, and is called by DOS immediately
after the strategy routine returns. The "interrupt"
routine is called with no parameters. Its function is to
perform the operation based on the queued request and
set up any return information.

DOS passes the pointer to the Request Header in
ES:BX. This structure consists of a fixed length header
(Request Header) followed by data pertinent to the
operation to be performed.

Note: It is the responsibility of the device driver
to preserve the machine state (for example, save
all registers on entry, and restore them on exit).

The stack used by DOS will have enough room on
it to save all of the registers. If more stack space is
needed, it is the device drivers responsibility to
allocate and maintain another stack.

All calls to device drivers are FAR calls, and
FAR returns should be executed to return to DOS.
(See "Sample Device Driver" listing at the end of
this chapter.)

3-10

Request Header

BYTE length in bytes of the
Request Header plus any data at
the end of the Request Header

BYTE unit code
The subunit the operation
is for (minor device).
Has no meaning for character
devices.

BYTE command code

WORD Status

8 BYTE area
reserved for DOS

Data appropriate to the
operation

Unit Code

The unit code field identifies which unit in your device
driver the request is for. For example, if your device
driver has 3 units defined, then the possible values of
the unit code field would be 0, 1, and 2.

3-1 1

Command Code

The command code field in the Request Header can
have the following values:

Code Function

0 	INIT

1 	MEDIA CHECK (Block only, NOP for
character)

2 	BUILD BPB (Block only, NOP for character)

3 	IOCTL input (only called if IOCTL bit is 1)

4 	INPUT (read)

5 	NON-DESTRUCTIVE INPUT NO WAIT
(Character devices only)

6 	INPUT STATUS (Character devices only)

7 	INPUT FLUSH (Character devices only)

8 	OUTPUT (write)

9 	OUTPUT (write) with verify

10 	OUTPUT STATUS (Character devices only)

11 	OUTPUT FLUSH (Character devices only)

12 	IOCTL output (only called if IOCTL bit is 1)

BUILD BPB and MEDIA CHECK

BUILD BPB and MEDIA CHECK, for block devices
only, are explained here.

3-12

DOS calls MEDIA CHECK first for a drive unit. DOS
passes it's current Media Descriptor byte (see "Media
Descriptor Byte" later in this chapter). MEDIA
CHECK returns one of the following four results:

• Media Not Changed

• Media Changed

• Not Sure

DOS will call BUILD BPB under the following two
conditions:

• If "Media Changed" is returned

• If "Not Sure" is returned and there are no dirty
buffers (buffers with changed data, not yet written
to disk).

Status Word

The status word in the Request Header.

E 	 B D
R 	RESERVED 	U 0 	ERROR CODE (bit 15 on)
R 	 S N

The status word is zero on entry and is set by he driver
interrupt routine on return. Remember that this word is
stored low byte first in memory.

Bit 8 is the done bit. When set it means the operation is
complete. For DOS 2.10 the Driver just sets it to one
when it exits.

3-13

Bit 15 is the error bit. If it is set, then the low 8 bits of
the status word indicate the error. The errors are:

00 Write Protect Violation
01 Unknown Unit
02 Device Not Ready
03 Unknown command
04 CRC Error
05 Bad Drive Request Structure Length
06 Seek Error
07 Unknown Media
08 Sector Not Found
09 Printer Out of Paper
OA Write Fault
OB Read Fault
OC General Failure

Bit 9 is the busy bit that is set by status calls.

For output on character devices: If it is 1 on return,
a write request (if made) would wait for completion of a
current request. If it is 0, there is no current request,
and a write request (if made) would start immediately.

For input on character devices with a buffer: If it is
1 on return, a read request (if made) would go to the
physical device. If it is 0 on return, then there are
characters in the device buffer and a read would return
quickly, it also indicates that the user has typed
something. DOS assumes all character devices have an
input type ahead buffer. Devices that do not have them
should always return busy = 0 so that DOS will not
continuously wait for something to get into a buffer that
does not exist.

3-14

One of the functions defined for each device is INIT.
This routine is called only once when the device is
installed and never again. There are several things
returned by the INIT routine. First, there is a location
of the first free byte of memory after the device driver
(like a terminate and stay resident) that is stored in the
ending address field. In this manner, initialization code
can be used once and thrown away in order to save
space.

After setting the ending address field, a character
device driver can set the status word and return. While
block devices are installed in the same way as character
devices, they must return additional information. The
number of units for the device driver is returned, and
this determines the logical names that the devices will
have. For example, if the current maximum logical
device letter is F at the time of the install call, and the
block device driver INIT routine returns 3 units, then
their logical names will be G, H, and I. This mapping is
determined by the position of the driver in the device
list, and the number of units on the device. The number
of units returned by INIT will override the value in the
name/unit field of the Device Header.

In addition, a pointer to a BPB (BIOS Parameter
Block) pointer array is also returned. This is a pointer
to an array of n word pointers, where n is the number of
units defined. These word pointers point to BPBs. In
this way, if all of the units are the same. the entire array
can point to the same BPB in order to save space.

Note: This array must be protected (below the
free pointer set by the return).

The BPB (BIOS Parameter Block) contains information
pertinent to the devices like sector size. sectors per
allocation unit, etc. The sector size in the BPB cannot
be greater than the maximum allowed (set at DOS
initialization time).

CD

3-15

The last thing that INIT of a block device must pass
back is the "media descriptor byte". This byte means
nothing to DOS, but is passed to devices so that they
know what parameters DOS is currently using for a
particular Drive-Unit.

Block devices may take several approaches; they may
be dumb or smart. A dumb device would define a unit
(and therefore a BPB) for each possible media drive
combination. Unit 0 = drive 0 single side, unit 1 =
drive 0 double side, etc. For this approach, media
descriptor bytes would mean nothing. A smart device
would allow multiple media per unit. In this case, the
BPB table returned at INIT must define space large
enough to accommodate the largest possible media
supported (sector size in BPB must be as large as
maximum sector size that DOS is currently using).
Smart drivers will use the "media byte" to pass
information about what media is currently in a unit.

Function Call Parameters

All strategy routines are called with ES:BX pointing to
the Request Header. The interrupt routines get the
pointers to the Request Header from the queue the
strategy routines store them in. The command code in
the Request Header tells the driver which function to
perform.

Note: All DWORD pointers are stored offset
first, then segment.

3-16

INIT

Command code=0

ES:BX

13-BYTE Request Header
, 	 — 	 -

BYTE number of units
(not set by character devices)

DWORD Ending Address

DWORD Pointer to BPB array
(not set by character devices)

The driver must do the following:

• Set the number of units (block devices only).

• Set up the pointer to the BPB array (block devices
only).

• Perform any initialization code (to modems,
printers, etc.).

• Set up the ending address for resident code.

• Set the status word in the Request Header.

Note: If there are multiple device drivers in a
single .COM file, the ending address returned by
the last INIT called will be the one DOS uses. For
the sake of simplicity, it is recommended that all of
the device drivers in a single .COM file return the
same ending address.

3-17

MEDIA CHECK

Command code=1

ES:BX

13—BYTE Request Header

BYTE Media Descriptor from DOS

BYTE return information
•
The driver must perform the following:

• Set the return byte:
—1 Media has been changed
0 Don't know if media has been changed
1 Media has not been changed

• Set the status word in the Request Header.

BUILD BPB (BIOS Parameter Block)

Command code=2

ES:BX

13-BYTE Request Header

BYTE Media Descriptor from DOS

DWORD Transfer Address (buffer address)

DWORD Pointer to BPB table

The driver must perform the following:

• Set the pointer to the BPB.

• Set the status word in the Request Header.
3-18

The driver must determine the correct media that is
currently in the unit to return the pointer to the BPB
table. The way the buffer is used (pointer passed by
DOS) is determined by the non-IBM format bit in the
attribute field of the device header. If the bit is zero
(device is IBM format compatible) then the buffer
contains the first sector of the FAT (most importantly
the FAT id byte). The driver must not alter this buffer
in this case. If the bit is a one, then the buffer is a one
sector scratch area that can be used for anything.

If the device is IBM format compatible, then it must be
true that the first sector of the first FAT is located at
the same sector for all possible media. This is because
the FAT sector is read before the media is actually
determined.

The information relating to the BPB for a particular
media is kept in the boot sector for the media. In
particular, the format of the boot sector is:

3 BYTE near JUMP to boot code

8 BYTE OEM name and version

WORD bytes per sector

BYTE sectors per allocation unit
(must be a power of 2)

WORD reserved sectors
(starting at logical sector 0)

BYTE number of FATs

WORD number of root dir entries
(maximum allowed)

3-19

C
.—.1.

co
.—t
Con

WORD number of sectors in logical image
(total sectors in media, including boot sector,
directories, etc.)

BYTE media descriptor

WORD number of sectors occupied by a single FAT

WORD sectors per track

WORD number of heads

WORD number of hidden sectors

The three words at the end are optional. DOS does not
care about them because they are not part of the BPB.
They are intended to help the device driver understand
the media. Sectors per track may be redundant because
it can be calculated from the total size of the disk. The
number of heads is useful for supporting different
multi-head drives that have the same storage capacity
but a different number of surfaces. The number of
hidden sectors is useful for supporting drive partitioning
schemes.

3-20

MEDIA Descriptor Byte

Currently the media descriptor byte has been defined
for a few media types:

Media descriptor
byte —> 1 1111 xxx

7 6 5 4 3 2 	1 	0

Bit Meaning

0 1=2 sided 0=not 2 sided
1 1=8 sector 0=not 8 sector (Z)

2
3-7

1=removable
must be set to 1

0=not removable
co
cn
—I

of current DOS media descriptor bytes:

• 3 1/2" or 5 1/4" Diskettes:

hex FC 1 sided 9 sector
hex FD 2 sided 9 sector
hex FE 1 sided 8 sector
hex FF 2 sided 8 sector

• Fixed Disks:

hex F8 (Fixed disk)

• 8" Diskettes:

Hex FE (IBM 3740 Format). Single sided,
single density, 128 bytes per sector, soft sectored,
4 sectors per allocation unit, 1 reserved sector,
2 FATs, 68 directory entries, 77*26 sectors.

3-21

Examples

Hex FD (IBM 3740 Format). Dual sided, single
density, 128 bytes per sector, soft sectored,
4 sectors per allocation unit, 4 reserved sectors,
2 FATs, 68 directory entries, 77*26 sectors.

Hex FE. Single sided, double density,
1024 bytes per sector, soft sectored, 1 sector per
allocation unit, 1 reserved sector, 2 FATs,
192 directory entries, 77*8*2 sectors.

Note: The two MEDIA descriptor bytes that are
the same for 8" diskettes (hex FE) is not a
misprint. To establish whether a diskette is single
density or double density, a read of a single
density address mark should be made. If an error
occurs, the media is double density.

INPUT or OUTPUT

Command codes=3,4,8,9, and 12

ES:BX

13—BYTE Request Header

BYTE Media descriptor byte

DWORD transfer address (buffer address)

WORD byte/sector Count

WORD starting sector number
(no meaning on character devices)

3-22

The driver must perform the following:

• Do the requested function.

• Set the actual number of sectors (bytes)
transferred.

• Set the status word in the Request Header.

Note: No error checking is performed on an
IOCTL call. However, the driver must set the
return sector (byte) count to the correct number
transferred.

The following applies to block device drivers:

Under certain circumstances the device driver may be
asked to do a write operation of 64K bytes that seems
to be a wrap around of the transfer address in the
device driver request packet. This arises due to an
optimization added to the write code in DOS. It will
only happen on WRITEs that are within a sector size of
64K bytes on files that are being extended past the
current end of file. It is allowable for the device driver
to ignore the balance of the WRITE that wraps around,
if it so chooses. For example, a WRITE of 10000H
bytes worth of sectors with a transfer address of xxxx:1
could ignore the last two bytes.

Remember: A program that uses DOS function calls
can never request an input or output operation of more
than FFFFH bytes: therefore, a wrap around in the
transfer (buffer) segment cannot occur. It is for this
reason that you can ignore bytes that would have
wrapped around in the transfer segment.

0
.—I .
..•—•
CD
—t
cn

3-23

Non Destructive Input No Wait

Command code=5

ES:BX

13-BYTE Request Header
-•••••.-

BYTE read from device

The driver must perform the following:

• Return a byte from the device.

• Set the status word in the Request Header.

This call is analagous to the console input status call on
previous versions of DOS. If the character device
returns busy bit = 0 (characters in buffer), then the next
character that would be read is returned. This character
is not removed from the input buffer (hence the term
Non Destructive Input). This call allows DOS to look
ahead one input character.

STATUS

Command codes=6 and 10

ES:BX

13-BYTE Request Header

All the driver must do is perform the operation and set
the status word in the Request Header accordingly.

3-24

FLUSH

Command codes=7 and 11

ES:BX

13-BYTE Request Header

This call tells the driver to flush (terminate) all
pending requests that it has knowledge of. Its primary
use is to flush the input queue on character devices.
The driver must set status word in the Request
Header upon return.

0
—I.

co —I
cn

3-25

The Time of Day Device Driver

The JX PC DOS 2.10 diskette contains two files which
support the Time of Day (TOD) device drive. This
device driver can be used when the 384KB/TOD or the
256KB/TOD RAM card is installed. See Appendix C of
the DOS Reference Manual for more information.

The Memory Device Driver

The JX PC DOS 2.10 diskette contains four files which
support the Memory Device Driver. This device driver
can be used when the JX has 256KB or more RAM.
See Appendix E of the DOS Reference Manual for
more information.

3-26

Chapter 4. DOS Disk Allocation

Contents
DOS Disk Directory 	 4-4
DOS File Allocation Table 	 4-8
How to Use the File Allocation Table 	 4-10

4-1

4-2

All disks and diskettes formatted by DOS are created
with a sector size of 512 bytes. The DOS area (entire
diskette for diskettes, DOS partition for fixed disks) is
formatted as follows:

Boot record — variable size

First copy of file allocation
table — variable size

Second copy of file allocation
table — variable size

Root directory — variable size

Data area

Allocation of space for a file (in the data area) is done
only when needed (it is not pre-allocated). The space is
allocated one cluster (unit of allocation) at a time. A
cluster is always one or more consecutive sector
numbers, and all of the clusters for a file are "chained"
together in the File Allocation Table.

The clusters are arranged on disk to minimize head
movement for multi-sided media. All of the space on a
track (or cylinder) is allocated before moving on to the
next track. This is accomplished by using the sequential
sector numbers on the lowest-numbered head, then all
the sector numbers on the next head, and so on until all
sectors on all heads of the track are used. Then, the
next sector to be used will be sector 1 on head 0 of the
next track.

For fixed disk, the size of the file allocation table and
directory are determined when FORMAT initializes it,
and are based on the size of the DOS partition.

01
1
'0

0
 IV

 	
1
11

4-3

For diskettes, the following table can be used:

Sides

Sectors/
Track

FAT size
Sectors

Dir
Sectors

Dir
Entries

Sectors/
Cluster

1
2
1
2

8
8
9
9

1
1
2
2

4
7
4
7

64
112
64
112

1
2
1
2

Files in the data area are not necessarily written
sequentially on the disk. The data area space is
allocated one cluster at a time, skipping over clusters
already allocated. The first free cluster found will be the
next cluster allocated, regardless of its physical location
on the disk. This permits the most efficient utilization of
disk space because clusters made available by erasing
files can be allocated for new files. (Refer to the
description of the "DOS File Allocation Table".)

DOS Disk Directory

FORMAT initially builds the root directory for all
disks. Its location (logical sector number) and the
maximum number of entries are available through the
device driver interfaces.

Since directories other than the root directory are
actually files, there is no limit to the number of entries
they may contain. Subdirectories can be read as data
files, using an extended FCB with the appropriate
attribute byte.

4-4

All directory entries are 32 bytes in length, and are in
the following format (byte offsets are in decimal):

0-7 	Filename. The first byte of this field indicates
its status.

hex 00 Never been used. This is used to
limit the length of directory
searches, for performance reasons.

hex E5 Was used, but the file has been
erased.

hex 2E The entry is for a directory. If the
second byte is also hex 2E, then
the cluster field contains the cluster
number of this directory's parent
directory (hex 0000 if the parent
directory is the root directory).

Any other character is the first character of a
filename.

8-10 	Filename extension.

11 	File attribute. The attribute byte is mapped as
follows (values are in hexadecimal):

01 	File is marked read-only. An attempt to
open the file for output using function
call hex 3D results in an error code
being returned. This value can be used
along with other values below.

02 	Hidden file. The file is excluded from
normal directory searches.

04 	System file. The file is excluded from
normal directory searches.

4-5

$
I 	

.1
1 1

08 The entry contains the volume label in
the first 11 bytes. The entry contains no
other usable information, and may exist
only in the root directory.

10 The entry defines a subdirectory, and is
excluded from normal directory
searches.

20 Archive bit. The bit is set on whenever
the file has been written to and closed. It
is used by the BACKUP and
RESTORE commands for determining
whether or not the file was changed
since it was last backed up. This bit can
be used along with other attribute bits.

Note: The system files (IBMBIO.COM
and IBMDOS.COM) are marked as read
only, hidden, and system files. Files can be
marked hidden when they are created. Also,
the read-only, hidden, system, and archive
attributes may be changed through the
CHMOD function call.

12-21 	Reserved.

22-23 	Time the file was created or last updated. The
time is mapped in the bits as follows:

< 	hh > < mm > < xx >
15 14 13 12 11 109 8 7 6 5 4 3 2 1 0

where:

hh 	is the binary number of hours (0-23)
mm is the binary number of minutes (0-59)
xx 	is the binary number of two-second

increments

Note: The time is stored with the least
significant byte first.

4-6

24-25 	Date the file was created or last updated. The
mm/dd/yy are mapped in the bits as follows:

25 	> < 	24
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y y y y y y ymmmmddddd

where:

mm is 1-12
dd is 1-31
yy 	is 0-119 (1980-2099)

Note: The date is stored with the least
significant byte first.

26-27 	Starting cluster; the cluster number of the first
cluster in the file.

Note that the first cluster for data space on all
fixed disks and diskettes is always cluster
002.

The cluster number is stored with the least
significant byte first.

Note: System programmers, see
"DOS File Allocation Table" for details
about converting cluster numbers to
logical sector numbers.

28-31 	File size in bytes. The first word contains the
low-order part of the size. Both words are
stored with the least significant byte first.

0
1)

 '
 3
0

 V
 ?

I S
I

4-7

DOS File Allocation Table

This information is presented for the benefit of system
programmers who wish to develop device drivers. It
explains how DOS uses the File Allocation Table to
convert the clusters of a file to logical sector numbers.
The driver is then responsible for locating the logical
sector on disk. We wish to emphasize that this
information should not be used for any other purpose.
We recommend that system utilities use the DOS file
management function calls rather than interpreting the
FAT.

The File Allocation Table (FAT) is used by DOS to
allocate disk space for a file, one cluster at a time.

The FAT consists of a 12-bit entry (1.5 bytes) for each
cluster on the disk.

Note that the first two FAT entries map a portion of the
directory; these FAT entries contain indicators of the
size and format of the disk.

The second and third bytes always contain hex FFFF.
The first byte is used as follows:

Hex Value 	Meaning

FF 	Dual sided, 8 sector-per-track diskette.

FE 	Single sided, 8 sector-per-track diskette.

FD 	Dual sided, 9 sector-per-track diskette.

FC 	Single sided, 9 sector-per-track diskette.

F8 	Fixed disk

The third FAT entry begins the mapping of the data
area (cluster 002).

4-8

Each entry contains three hexadecimal characters,
either:

000 	if the cluster is unused and available, or

FF8-FFF 	to indicate the last cluster of a file, or

XXX 	any other hexadecimal characters that
are the cluster number of the next
cluster in the file. The cluster number of
the first cluster in the file is kept in the
file's directory entry.

Note: The values FFO-FF7 are
used to indicate reserved clusters
(FF7 indicates a bad cluster if it is
not part of an allocation chain),
and FF8-FFF are used as
end-of-file marks.

The File Allocation Table always occupies the sector or
sectors immediately following the boot record. If larger
than 1 sector, the sectors occupy consecutive numbers.
Two copies of the FAT are written, one following the
other, for integrity. The FAT is read into one of the
DOS buffers whenever needed (open, allocate more
space, etc.), and that buffer is given a high priority to
keep it in memory as long as possible, for performance
reasons.

s
! '

sI
I V

 Is
ii
l

4-9

How to Use the File Allocation Table

Obtain the starting cluster of the file from the directory
entry.

Now, to locate each subsequent cluster of the file:

1. Multiply the cluster number just used by 1.5 (each
FAT entry is 1.5 bytes long).

2. The whole part of the product is an offset into the
FAT, pointing to the entry that maps the cluster
just used. That entry contains the cluster number
of the next cluster of the file.

3. Use a MOV instruction to move the word at the
calculated FAT offset into a register.

4. If the last cluster used was an even number, keep
the low-order 12 bits of the register; otherwise,
keep the high-order 12 bits.

5. If the resultant 12 bits are hex FF8-FFF, there are
no more clusters in the file. Otherwise, the 12 bits
contain the cluster number of the next cluster in
the file.

To convert the cluster to a logical sector number
(relative sector, such as that used by INT 25 and 26
and by DEBUG):

1. Subtract 2 from the cluster number.

2. Multiply the result by the number of sectors per
cluster.

3. Add the logical sector number of the beginning of
the data area.

4-10

Chapter 5. DOS Interrupts and
Function Calls

Contents

Interrupts 	 5-3
Function Calls 	 5-13

Error Return Table 	 5-14
Invoking DOS Functions 	 5-16

5-1

5-2

Interrupts

Note: We recommend that a program wishing to
examine or set the contents of any interrupt vector
use the DOS function calls (hex 35 and hex 25)
provided for those purposes, and avoid referencing
the interrupt vector locations directly.

DOS reserves interrupt types hex 20 to hex 3F for its
use. This means absolute memory locations hex 80 to
hex FF are reserved by DOS. The defined interrupts
are as follows with all values in hexadecimal.

20 	Program terminate. Issuing Interrupt hex 20
is the traditional way to exit from a program.
This vector transfers to the logic in DOS for
restoration of the terminate, Ctrl-Break, and
critical error exit addreses to the values they
had on entry to the program. All file buffers
are flushed. All files changed in length should
be closed (see function call hex 10 and
hex 3E) prior to issuing this interrupt. If the
changed file is not closed, its length, date, and
time are not recorded correctly in the
directory.

In order for a program to pass a completion
(or error) code when terminating, it must use
either function call hex 4C (exit) or hex 31
(terminate and stay resident). These two new
methods are preferred over using interrupt
hex 20, and the codes returned by them can
be interrogated in batch processing (see
ERRORLEVEL subcommand of batch
processing).

Important: Every program must ensure that
the CS register contains the segment address
of its Program Segment Prefix control block
prior to issuing interrupt hex 20.

5-3

21 	Function request. Refer to "Function Calls"
in this chapter.

22 	Terminate address. The address found at this
interrupt location is the address to which
control transfers when the program
terminates. This address is copied into the
program's Program Segment Prefix at the
time the segment is created. If a program
wishes to execute a second program it must
set the terminate address prior to executing
the new program (unless EXEC is used).
Otherwise, when the second program
executes, its termination would cause transfer
to its host's termination address. This
address, as well as the Ctrl-Break address
below, may be set via DOS function call hex
25. Do not issue this interrupt directly.

23 	Ctrl-Break exit address. If the user enters
Ctrl-Break during standard input, standard
output, standard printer or RS-232C card
operations, an interrupt type hex 23 is
executed. (If BREAK is on, the interrupt hex
23 is issued on any function call.) If the
Ctrl-Break routine saves all registers, it may
end with a return-from-interrupt instruction
(IRET) to continue program execution. If
the program returns with a long return, the
carry flag is used to determine whether the
program will be aborted or not; if the carry
flag is set, it will be aborted, otherwise
execution will continue (as with a return by
IRET). If the Ctrl-Break interrupts functions

5-4

9 or 10, buffered I/O, then A C,
carriage-return, and linefeed are output. If
execution is then continued with an IRET,
I/O continues from the start of the line.
When the interrupt occurs, all registers are
set to the value they had when the original
function call to DOS was made. There are no
restrictions on what the Ctrl-Break handler is
allowed to do, including DOS function
calls,as long as the registers are unchanged if
IRET is used.

If the program creates a new segment and
loads in a second program which itself
changes the Ctrl-Break address, the
termination of the second program and return
to the first causes the Ctrl-Break address to
be restored to the value it had before
execution of the second program. (It is
restored from the second program's Program
Segment Prefix.)

24 	Critical error handler vector. When a critical
error occurs within DOS, control is
transferred with an interrupt 24H. On entry
to the error handler, AH will have its bit 7=0
(high-order bit) if the error was a disk error
(probably the most common occurrence),
bit 7=1 if not.

BP:SI contains the address of a Device
Header Control Block from which additional
information can be retrieved (see below).

-t

5-5

The registers will be set up for a retry
operation, and an error code will be in the
lower half of the DI register with the upper
half undefined. These are the error codes:

Error Code Description

0 	Attempt to write on
write-protected diskette

1 	Unknown unit
2 	Drive not ready
3 	Unknown command
4 	Data error (CRC)
5 	Bad request structure length
6 	Seek error
7 	Unknown media type
8 	Sector not found
9 	Printer out of paper
A 	Write fault
B 	Read fault
C 	General failure

The user stack will be in effect (the first item
described below is at the top of the stack),
and will contain the following from top to
bottom:

IP 	DOS registers from issuing
CS 	INT hex 24
FLAGS

AX 	User registers at time of original
BX 	INT hex 21 request
CX
DX
SI
DI
BP
DS
ES

5-6

IP
	

From the original interrupt
CS
	

hex 21 from the user to DOS
FLAGS

The registers are set such that if an IRET is
executed, DOS will respond according to
(AL) as follows:

(AL)=0 ignore the error.

=1 	retry the operation.

=2 terminate the program through
interrupt hex 23.

Disk Errors

If it is a hard error on disk (AH bit 7=0), register AL
contains the failing drive number (0 = drive A, etc.);
AH bits 0-2 indicate the affected disk area and whether
it was a read or write operation, as follows:

Bit 0=0 if read operation,
1 if write operation.

Bits 2-1 (affected disk area)

0 0 DOS area (system files)
0 1 file allocation table
1 0 directory
1 1 data area

5-7

Other Errors

If AH bit 7=1, then the error occurred on a character
device, or was the result of a bad memory image of the
FAT. The device header passed in BP: SI can be
examined to determine which case exists. If the
attribute byte high order bit indicates a block device,
then the error was a bad FAT. Otherwise, the error is
on a character device.

If a character device, the contents of AL are
unpredictable, the error code is in DI as above.

Notes:

1. Before giving this routine control for disk
errors, DOS performs five retries.

2. For disk errors, this exit is taken only for
errors occurring during an interrupt hex 21
function call. It is not used for errors during
an interrupt hex 25 or hex 26.

3. This routine is entered in a disabled state.

4. The SS, SP, DS, ES, BX, CX, and DX
registers must be preserved.

5. This interrupt handler should refrain from
using DOS function calls. If necessary, it
may use calls 1 through 12. Use of any other
call will destroy the DOS stack and will leave
DOS in an unpredictable state.

6. The interrupt handler must not change the
contents of the device header.

5-8

7. 	If the interrupt handler will handle errors
itself rather than returning to DOS, it should
restore the application program's registers
from the stack, remove all but the last 3
words on the stack, then issue an IRET. This
will return to the program immediately after
the INT 21 that experienced the error. Note
that if this is done, DOS will be in an
unstable state until a function call higher than
12 is issued.

The device header pointed to by BP:SI is
formatted as follows:

DWORD Pointer to next device
(FFFF if last device)

WORD Attributes
Bit 15 = 1 if character device, 0 if block
if bit 15 is 1

Bit 0 = 1 if Current standard input
Bit 1 = 1 if Current standard output
Bit 2 = 1 if Current NUL device
Bit 3 = 1 if Current CLOCK device

Bit 14 is the IOCTL bit

WORD Pointer to Device driver strategy
entry point

WORD Pointer to Device driver interrupt
entry point

8-BYTE character device named field
for block devices the first byte is
the number of units

= r.
CD
.-1
=

T3
co)

5-9

To tell if the error occurred on a block or
character device you must look at bit 15 in
the attribute field (WORD at BP:SI+4).

If the name of the character device is desired,
look at the eight bytes starting at BP:SI+ 10.

25 	Absolute disk read. This transfers control
directly to the DOS BIOS. Upon return, the
original flags are still on the stack (put there
by the INT instruction). This is necessary
because return information is passed back in
the current flags. Be sure to pop the stack to
prevent uncontrolled growth. The request is
as follows:

(AL) 	Drive number (for example,
0=A or 1=B)

(CX) 	Number of sectors to read
(DX) 	Beginning logical sector number
(DS:BX) Transfer address

The number of sectors specified are
transferred between the given drive and the
transfer address. Logical sector numbers are
obtained by numbering each sector
sequentially starting from track 0, head 0,
sector 1 (logical sector 0) and continuing
along the same head, then to the next head
until the last sector on the last head of the
track is counted. Thus, logical sector 1 is
track 0, head 0, sector 2; logical sector 2 is
track 0, head 0, sector 3; and so on.
Numbering then continues with sector 1 on
head 0 of the next track. Note that although
the sectors are sequentially numbered (for
example, sectors 2 and 3 on track 0 in the
example above), they may not be physically
adjacent on disk, due to interleaving.

5-10

All registers except the segment registers are
destroyed by this call. If the transfer was
successful the carry flag (CF) will be zero. If
the transfer was not successful CF=1 and
(AX) will indicate the error as follows. (AL)
is the DOS error code that is the same as the
error code returned in the low byte of DI
when an INT hex 24 is issued, and (AH) will
contain:

hex 80
hex 40
hex 20
hex 10
hex 04
hex 03

hex 02

Attachment failed to respond
SEEK operation failed
Controller failure
Bad CRC on diskette read
Requested sector not found
Write attempt on
write-protected diskette
Address mark not found

26 	Absolute disk write. This vector is the
counterpart of interrupt 25 above. Except for
the fact that this is a write, the description
above applies.

27 	Terminate but stay resident. This vector is
used by programs that are to remain resident
when COMMAND regains control. This is
the traditional method for DOS programs to
remain resident upon termination.

5-11

After initializing itself, the program must set
DX to its last address plus one in the segment
in which it is executing (the offset at which
other programs can be loaded), then execute
an INT 27H. DOS then considers the
program as an extension of DOS, so the
program is not overlaid when other programs
are executed. This concept is very useful for
loading programs such as user-written
interrupt handlers that must remain resident.

Notes:

1. This interrupt must not be used by
.EXE programs which are loaded
into the high end of memory.

2. This interrupt restores the interrupt
22, 23, and 24 vectors in the same
manner as INT 20. Therefore, it
cannot be used to install
permanently resident Ctrl-Break or
Critical Error Handler routines.

3. The maximum size of memory that
can be made resident by this
method is 64K.

4. A new DOS function call has been
established that allows the
terminating program to pass a
completion (or error) code to DOS,
that can be interpreted within batch
processing (see function call
hex 31). This is the preferred
method.

5-12

28 	Used internally by DOS.

29-2E Reserved for DOS.

2F 	Used internally by DOS.

30-3F Reserved for DOS.

Function Calls

DOS provides a wide variety of function calls for
character device I/O, file management, memory
management, date and time functions, execution of
other programs, and others. They are grouped as
follows (call numbers are in hexadecimal):

0-12 	Traditional character device I/O

12-24 	Traditional file management

25-26 	Traditional non-device functions

27-29 	Traditional file management

2A-2E Traditional non-device functions

2F-38 	Extended function group

39-3B 	Directory group

3C-46 Extended file management group

47 	Directory group

48-4B Extended memory management group

4C-4F Extended function group

54-57 	Extended function group

r. rD
-t

'ZS

5-13

Functions 2F through 57 are new for DOS Versions
2.00 and 2.10. Where similar functions exist in both
this group and the group of traditional calls, we
recommend using the new calls. They have been defined
with simpler interfaces and provide more powerful
functions than their traditional counterparts.

When DOS takes control, it switches to an internal
stack. User registers are preserved unless information is
passed back to the requester as indicated in the specific
requests. The user stack needs to be sufficient to
accommodate the interrupt system. It is recommended
that it be hex 80 in addition to the user needs.

Error Return Table

Many of the new function calls return the carry flag
clear if the operation was successful. If an error
condition was encountered, the carry flag is set, and
AX contains one of the following binary error return
codes:

Code Condition

	

1 	Invalid function number

	

2 	File not found

	

3 	Path not found

	

4 	Too many open files (no handles left)

	

5 	Access denied

	

6 	Invalid handle

	

7 	Memory control blocks destroyed

	

8 	Insufficient memory

	

9 	Invalid memory block address

	

10 	Invalid environment

	

1 I 	Invalid format

	

12 	Invalid access code

	

13 	Invalid data

	

15 	Invalid drive was specified

	

16 	Attempted to remove the current directory

	

17 	Not same device

	

18 	No more files

5-14

Several of the calls accept an ASCIIZ string as input.
This consists of an ASCII string containing an optional
drive specifier, followed by a directory path, and in
some cases a filename. The string is terminated by a
byte of binary zeros. For example:

B:\LEVELl\LEVEL2\FILE1

followed by a byte of zeros.

Note: All calls that accept path names will accept
a forward slash or a backslash as a path separator
character.

The new calls supporting files or devices use an
identifier known as a "handle." When you create or
open a file or device with the new calls, a 16-bit binary
value is returned in AX. This is the "handle"
(sometimes known as a token) that you will use in
referring to the file after it's been opened.

The following handles are pre-defined by DOS and can
be used by your program. You do not need to open
them before using them:

0000

0001

Standard input device. Input can be
redirected.

Standard output device. Output can be
redirected.

I..1

a

C1)
...t
.3
a

0002 Standard error output device. Output cannot
be redirected.

1:3

0003 Standard auxiliary device.

0004 Standard printer device.

5-15

Invoking DOS Functions

Most of the function calls require input to be passed to
them in registers. After setting the proper register
values, the function may be invoked in one of these
ways:

1. Place the function number in AH and execute a
long call to offset hex 50 in your Program Segment
Prefix.

2. Place the function number in AH and issue
interrupt type hex 21.

3. There is an additional mechanism provided for
pre-existing programs that were written with
different calling conventions. This method should
be avoided for all new programs. The function
number is placed in the CL register and other
registers are set according to the function
specification. Then an intrasegment call is made to
location 5 in the current code segment. That
location contains a long call to the DOS function
dispatcher. Register AX is always destroyed if this
mechanism is used; otherwise, it is the same as
normal function calls. This method is valid only
for function calls 0-24 (hexadecimal).

5-16

The functions are as follows with all values in
hexadecimal.

0 	Program terminate. The terminate, Ctrl-Break, and
critical error exit addresses are restored to the
values they had on entry to the terminating
program, from the values saved in the Program
Segment Prefix. All file buffers are flushed, but
any files which have been changed in length but
not closed will not be recorded properly in the
directory. Control transfers to the terminate
address. This call performs exactly the same
function as INT 20H. It is the program's
responsibility to ensure that the CS register
contains the segment address of its Program
Segment Prefix control block prior to calling this
function.

Note: Calls hex 1 through hex C use the
standard devices listed at the end of the
"Error Return Table" in this chapter.

1 	Keyboard input. Waits for a character to be read
at the standard input device (unless one is ready),
then echoes the character to the standard output
device and returns it in AL. The character is
checked for a Ctrl-Break. If Ctrl-Break is detected,
an interrupt hex 23 is executed.

Note: For functions 1, 6, 7, and 8, extended
ASCII codes will require two function calls.
(See the IBM Personal Computer JX BASIC
manual for a description of the extended
ASCII codes.) The first call returns 00 as an
indicator that the next call will return an
extended code.

5-17

2 	Display output. The character in DL is output to
the standard output device. The backspace
character results in moving the cursor left one
position, writing a space at this position and
remaining there. If a Ctrl-Break is detected after
the output, an interrupt hex 23 is executed.

3 	Auxiliary (RS-232C card) input. Waits for a
character from the standard auxiliary device,
then returns that character in AL.

Notes:

1. Auxiliary (AUX, COM1 , COM2)
support is unbuffered and non-interrupt
driven.

2. At startup, DOS initializes the first
auxiliary port to 2400 baud, no parity,
one stop bit, and 8-bit word.

3. The auxiliary function calls (3 and 4) do
not return status or error codes. For
greater control, it is recommended that
the ROM BIOS routine (INT hex 14)
be used.

4 	Auxiliary (RS-232C card) output. The
character in DL is output to the standard
auxiliary device.

5 	Printer output. The character in DL is output to
the standard printer device.

5-18

6 	Direct console I/O. If DL is hex FF, AL returns
with the zero flag clear and an input character
from the standard input device if one is ready. If a
character is not ready, the zero flag will be set. If
DL is not hex FF, then DL is assumed to have a
valid character that is output to the standard
output device. This function does not check for
Ctrl-Break, or Ctrl-PrtSc.

7 	Direct console input without echo. Waits for a
character to be read at the standard input device
(unless one is ready), then returns the character in
AL. As with function 6, no checks are made on the
character.

8 	Console input without echo. This function is
identical to function 1, except the key is not
echoed.

9 	Print string. On entry, DS:DX must point to a
character string in memory terminated by a $
(hex 24). Each character in the string will be
output to the standard output device in the same
form as function 2.

A 	Buffered keyboard input. On entry, DS:DX point
to an input buffer. The first byte must not be zero
and specifies the number of characters the buffer
can hold. Characters are read from the standard
input device and placed in the buffer beginning at
the third byte. Reading the standard input device
and filling the buffer continues until Enter is read.
If the buffer fills to one less than the maximum
number of characters it can hold, then each
additional character read is ignored and causes the
bell to ring, until Enter is read. The second byte of
the buffer is set to the number of characters
received, excluding the carriage return (hex OD),
which is always the last character.

5-19

B Check standard input status. If a character is
available from the standard input device, AL will
be hex FF. Otherwise, AL will be 00. If a
Ctrl-Break is detected, an interrupt type hex 23 is
executed,

C 	Clear keyboard buffer and invoke a keyboard
function. Clear the keyboard buffer of any
pre-typed characters, then execute the function
number in AL (only 1, 6, 7, 8, and A are allowed).
This forces the system to wait until a character is
typed.

D Disk reset. Flushes all file buffers. Files changed
in size but not closed are not properly recorded in
the disk directory. This function need not be called
before a diskette change if all files written have
been closed.

E Select disk. The drive specified in DL (0=A,
1:=-B, etc.) is selected (if valid) as the default drive.
The number of drives (total of diskette and fixed
disk drives) is returned in AL. If the system has
only one diskette drive, it will be counted as two to
be consistent with the philosophy of thinking of the
system as having logical drives A and B. BIOS
equipment determination (INT 1 1H) can be used
as an alternative method, returning the actual
number of physical diskette drives.

5-20

F 	Open file. On entry, DS:DX point to an unopened
file control block (FCB). The current directory is
searched for the named file and AL returns
hex FF if it is not found. If it is found, AL returns
00 and the FCB is filled as follows:

If the drive code was 0 (default drive), it is
changed to the actual drive used (1=A, 2=B,
etc.). This allows changing the default drive
without interfering with subsequent operations on
this file. The current block field (FCB bytes C-D)
is set to zero. The size of the record to be worked
with (FCB bytes E-F) is set to the system default
of hex 80. The size of the file and the date are set
in the FCB from information obtained from the
directory.

It is your responsibility to set the record size (FCB
bytes E-F) to the size you wish to think of the file
in terms of, if the default hex 80 is insufficient. It
is also your responsibility to set the random record
field and/or current record field. These actions
should be done after open but before any disk
operations are requested.

10 	Close file. This function must be called after file
writes to ensure all directory information is
updated. On entry, DS:DX point to an opened
FCB. The current disk directory is searched and if
the file is found, its position is compared with that
kept in the FCB. If the file is not found in its
correct position in the current directory, it is
assumed the diskette was changed and AL returns
hex FF. Otherwise, the directory is updated to
reflect the status in the FCB and AL returns 00.

5-21

11 	Search for the first entry. On entry, DS:DX point
to an unopened FCB. The current disk directory is
searched for the first matching filename (name
could have "?"s indicating any letter matches) and
if none are found, AL returns hex FR Otherwise.
AL returns 00 and the locations at the disk
transfer address are set as follows:

If the FCB provided for searching was an
extended FCB, then the first byte at the disk
transfer address is set to hex FF, followed by
five bytes of zeros, then the attribute byte
from the search FCB, then the drive number
used (1=-A, 2=B, etc.), then the 32 bytes of
the directory entry. Thus, the disk transfer
address contains a valid unopened extended
FCB with the same search attributes as the
search FCB.

If the FCB provided for searching was a normal
FCB, then the first byte is set to the drive number
used (1=A, 2=-. B), and the next 32 bytes contain
the matching directory entry. Thus, the disk
transfer address contains a valid unopened normal
FCB.

Notes:

If an extended FCB is used, the following
search pattern is used:

1. 	If the FCB attribute byte is zero, only
normal file entries are found. Entries for
volume label, sub-directories, hidden
and system files, will not be returned.

5-22

2. If the attribute field is set for hidden or
system files, or directory entries, it is to
be considered as an inclusive search. All
normal file entries plus all entries
matching the specified attributes are
returned. To look at all directory entries
except the volume label, the attribute
byte may be set to hidden + system +
directory (all 3 bits on).

3. If the attribute field is set for the volume
label, it is considered an exclusive
search, and only the volume label entry
is returned.

The attribute bits are defined in the "DOS Disk
Directory" section of Chapter 4 of this manual.

12 	Search for the next entry. After function 11 has
been called and found a match, function 12 may be
called to find the next match to an ambiguous
request (?s in the search filename). Both inputs and
outputs are the same as function 11. The reserved
area of the FCB keeps information necessary for
continuing the search, so no disk operations may
be performed with this FCB between a previous
function 11 or 12 call and this one.

13 	Delete file. On entry, DS:DX point to an
unopened FCB. All matching current directory
entries are deleted. If no directory entries match,
AL returns hex FF, otherwise AL returns 00.

5-23

14 Sequential read. On entry, DS:DX point to an
opened FCB. The record addressed by the current
block (FCB bytes C-D) and the current record
(FCB byte 1F) is loaded at the disk transfer
address, then the record address is incremented.
(The length of the record is determined by the
FCB record size field.) If end-of-file is
encountered, AL returns either 01 or 03. A return
of 01 indicates no data in the record; 03 indicates
a partial record is read and filled out with zeros. A
return of 02 means there was not enough space in
the disk transfer segment to read one record, so the
transfer was ended. AL returns 00 if the transfer
was completed successfully.

15 	Sequential write. On entry, DS:DX point to an
opened FCB. The record addressed by the current
block and current record fields (size determined by
the FCB record size field) is written from the disk
transfer address (or, in the case of records less
than sector sizes, is buffered up for an eventual
write when a sector's worth of data is
accumulated). The record address is then
incremented. If the diskette is full, AL returns 01.
A return of 02 means there was not enough space
in the disk transfer segment to write one record, so
the transfer was ended. AL returns 00 if the
transfer was completed successfully.

16 Create file. On entry, DS:DX point to an
unopened FCB. The current disk directory is
searched for a matching entry, and if found, it is
re-used. If no match was found, the directory is
searched for an empty entry, and AL returns FF if
none is found. Otherwise, the entry is initialized to
a zero-length file, the file is opened (see function
F), and AL returns 00.

The file may be marked hidden during its creation
by using an extended FCB containing the
appropriate attribute byte.

5-24

17 Rename file. On entry, DS:DX point to a modified
FCB which has a drive code and a file name in the
usual position, and a second file name starting
6 bytes after the first (DS:DX-hex 11) in what is
normally a reserved area. Every matching
occurrence of the first name in the current
directory is changed to the second (with the
restriction that two files cannot have the same
name and extension). If "?"s appear in the second
name, then the corresponding positions in the
original name will be unchanged. AL returns FF if
no match was found or if an attempt was made to
rename to a filename that already existed,
otherwise 00.

18 Used internally by DOS.

19 	Current disk. AL returns with the code of the
current default drive (0=A, 1=B, etc.).

lA Set disk transfer address. The disk transfer address
is set to DS:DX. DOS does not allow disk
transfers to wrap around within the segment, or
overflow into the next segment.

1B Allocation table information. On return, DS:BX
point to a byte containing the FAT identification
byte for the default drive, DX has the number of
allocation units, AL has the number of sectors per
allocation unit, and CX has the size of the
physical sector.

5-25

1C Allocation table information for specific drive.
This call is identical to call hex 1B except that on
entry, DL contains the number of the drive from
which the information should be gotten
(0 = default, 1= A, etc.).

1D Used internally by DOS.

1E Used internally by DOS.

1F Used internally by DOS.

20 Used internally by DOS.

21 	Random read. On entry, DS:DX point to an
opened FCB. The current block and current record
fields are set to agree with the random record field,
then the record addressed by these fields is read
into memory at the current disk transfer address. If
end-of-file is encountered, AL returns either 01 or
03. If 01 is returned, no more data is available. If
03 is returned, a partial record is available filled
out with zeros. A return of 02 means there was not
enough space in the disk transfer segment to read
one record, so the transfer was ended. AL returns
00 if the transfer was completed successfully.

22 .Random write. On entry, DS:DX point to an
opened FCB. The current block and current record
fields are set to agree with the random record field,
then the record addressed by these fields is written
(or in the case of records not the same as sector
sizes — buffered) from the disk transfer address. If
the disk is full AL returns 01. A return of 02
means there was not enough space in the disk
transfer segment to write one record; so, the
transfer was ended. AL returns 00 if the transfer
was completed successfully.

5-26

23 File size. On entry, DS:DX point to an unopened
FCB. The current directory is searched for the first
matching entry and if none is found. AL returns
FF. Otherwise, the random record field is set to
the number of records in the file (in terms of the
record size field rounded up) and AL returns 00.

Note: Be sure to set the FCB record size
field before using this function call; otherwise,
erroneous information will be returned.

24 Set random record field. On entry. DS:DX point
to an opened FCB. This function sets the random
record field to the same file address as the current
block and record fields.

25 	Set interrupt vector. The interrupt vector table for
the interrupt type specified in AL is set to the
4-byte address contained in DS:DX. Note that the
original contents of the interrupt vector can be
obtained through call hex 35.

26 	Create a new program segment. On entry, DX has
a segment number at which to set up a new
program segment. The entire hex 100 area at
location zero in the current program segment is
copied into location zero in the new program
segment. The memory size information at location
6 in the new segment is updated and the current
termination, Ctrl-Break exit and critical error
addresses from interrupt vector table entries for
interrupt types 22, 23, and 24 are saved in the new
program segment starting at hex OA. They are
restored from this area when the program
terminates.

Note: Use of this call should be avoided,
now that DOS contains the EXEC function
call (hex 4B).

5-27

27 Random block read. On entry, DS:DX point to an
opened FCB, and CX contains a record count that
must not be zero. The specified number of records
(in terms of the record size field) are read from the
file address specified by the random record field
into the disk transfer address. If end-of-file is
reached before all records have been read, AL
returns either 01 or 03. A return of 01 indicates
end-of-file and the last record is complete. A
return of 03 indicates the last record is a partial
record. If wrap-around above address hex FFFF
in the disk transfer segment would have occurred,
as many records as possible are read and AL
returns 02. If all records are read successfully, AL
returns 00. In any case, CX returns with the actual
number of records read, and the random record
field and the current block/record fields are set to
address the next record (the first record not read).

28 	Random block write. Essentially the same as
function 27 above, except for writing and a
write-protect check. If there is insufficient space on
the disk, AL returns 01 and no records are written.
If CX is zero upon entry, no records are written,
but the file is set to the length specified by the
random record field, whether longer or shorter than
the current file size. (Allocation units are released
or allocated as appropriate.)

29 Parse filename. On entry, DS:SI point to a
command line to parse, and ES:DI point to a
portion of memory to be filled with an unopened
FCB. The contents of AL are used to determine
the action to take, as shown below:

< ignored>
bit: 7 6 5 4 3 2 1 0

If bit 0 = 1, then leading separators are scanned
off the command line at DS:SI. Otherwise, no
scan-off of leading separators takes place.

5-28

If bit 1 = 1, then the drive ID byte in the result
FCB will be set (changed) only if a drive was
specified in the command line being parsed.

If bit 2 = 1, then the filename in the FCB will be
changed only if the command line contains a
filename.

If bit 3 = 1, then the filename extension in the
FCB will be changed only if the command line
contains a filename extension.

Filename separators include the following
characters : . ; , = + plus TAB and SPACE.
Filename terminators include all of these
characters plus \, <, >, I , /, ", [,], and any
control characters.

The command line is parsed for a filename of the
form d:filename.ext, and if found, a corresponding
unopened FCB is created at ES:DI. If no drive
specifier is present, the default drive is assumed. If
no extension is present, it is assumed to be all
blanks. If the character * appears in the filename
or extension, then it and all remaining characters
in the name or extension are set to ?.

If either ? or * appears in the filename or
extension, AL returns 01; if the drive specifier is
invalid AL returns FF; otherwise 00.

DS:SI will return pointing to the first character
after the filename and ES:DI will point to the first
byte of the formatted FCB. If no valid filename is
present, ES:DI+1 will contain a blank.

Note: This call is not useful for command
lines containing path names.

5-29

2A Get date. Returns date in CX:DX. CX has the
year (1980-2099 in binary), DH has the month
(1-Jan. 2-Feb, etc.) and DL has the day. If the
time-of-day clock rolls over to the next day, the
date is adjusted accordingly, taking into account
the number of days in each month and leap years.

2B Set date. On entry, CX:DX must have a valid date
in the same format as returned by function 2A,
above. If the date is indeed valid and the set
operation is successful, AL returns 00. If the date
is not valid, AL returns FF.

2C Get time. Returns with time-of-day in CX:DX,
and the binary day of the week (0=Sunday) in
AL. Time is actually represented as four 8-bit
binary quantities as follows. CH has the hours
(0-23), CL has minutes (0-59), DH has seconds
(0-59), DL has 1/100 seconds (0-99). This format
is readily converted to a printable form yet can
also be used for calculations, such as subtracting
one time value from another.

2D Set time. On entry, CX:DX has time in the same
format as returned by function 2C, above. If any
component of the time is not valid, the set
operation is aborted and AL returns FF. If the
time is valid, AL returns 00.

2E Set/reset verify switch. On entry, DL must contain
0, and AL must contain 1 to turn verify on, or 0 to
turn verify off. When on, DOS will perform a
verify operation each time it performs a diskette
write to assure proper data recording. Although
disk recording errors are very rare, this function
has been provided for those user applications in
which you may wish to verify the proper recording
of critical data. Note that the current setting of the
verify switch can be obtained through call hex 54.

5-30

2F Get DTA. On return, ES:BX contains the current
DTA transfer address.

30 Get DOS version number. On return, AL contains
the major version number. AH contains the minor
version number. On return, BX and CX are set to
zero.

31 Terminate process and remain resident (KEEP
process). On entry. AL contains a binary exit
code. DX contains the memory size value in
paragraphs. This function call terminates the
current process and attempts to set the initial
allocation block to the number of paragraphs in
DX. It will not free up any other allocation blocks
belonging to that process. The exit code passed in
AL is retrievable by the parent through Wait
(function call hex 4D) and can be tested through
the ERRORLEVEL batch subcommands.

32 Used internally by DOS.

33 Ctrl-Break check. On entry, AL contains 00 to
request the current state of Control-Break
checking, 01 to set the state. If setting the state,
DL must contain 00 for OFF or 01 for ON. DL
returns the current state (00 = OFF, 01 = ON).

34 Used internally by DOS.

35 	Get vector. On entry, AL contains a hexadecimal
interrupt number. The CS:IP interrupt vector for
the specified interrupt is returned in ES:BX. Note
that interrupt vectors can be set through call hex
25.

5-31

36 	Get disk free space. On entry, DL contains a
drive: 0 = default, 1 = A, etc. On return, AX
returns FFFF if the drive number was invalid.
Otherwise, BX contains the number of available
allocation units (clusters), DX contains the total
number of clusters on the drive, CX contains the
number of bytes per sector, and AX contains the
number of sectors per cluster.

Note: This call returns the same
information in the same registers (except for
the FAT pointer) as the get FAT pointer call
(hex 1B) did in previous versions of DOS.

37 Used internally by DOS.

38 	Return country dependent information
(international). On entry, DS:DX points to a
32-byte block of memory in which returned
information is passed and AL contains a
function code. This function code must be zero.
The following information is pertinent to
international applications:

I WORD Date/time format

I BYTE ASCIIZ string
currency symbol

I followed by byte of zeros 	I

I 	BYTE ASCIIZ string
I thousands separator
I followed by byte of zeros 	I

BYTE ASCIIZ string decimal

I separator
I followed by byte of zeros 	I

I 24 bytes

L Reserved

5-32

The date and time format has the following values
and meaning:

0 = USA standard 	h:m:s m/d/y

1= Europe standard h:m:s dimly

2 = Japan standard 	h:m:s d:m:y

39 	Create a subdirectory (MKDIR). On entry,
DS:DX contains the address of an ASCIIZ string
with drive and directory path names. If any
member of the directory path does not exist, then
the directory path is not changed. On return, a new
directory is created at the end of the specified path.
Error returns are 3 and 5 (refer to error return
table).

3A Remove a directory entry (RMDIR). On entry,
DS:DX contains the address of an ASCIIZ string
with the drive and directory path names. The
specified directory is removed from the structure.
The current directory cannot be removed. Error
returns are 3 and 5 (refer to error return table).
Note that code 5 is returned if the specified
directory is not empty.

3B Change the current directory (CHDIR). On entry,
DS:DX contains the address of an ASCIIZ string
with drive and directory path names. If any
member of the directory path does not exist, then
the directory path is not changed. Otherwise, the
current directory is set to the ASCIIZ string. Error
return is 3 (refer to the error return table).

CD
^-t

5-33

3C Create a file (CREAT). On entry, DS:DX
contains the address of an ASCIIZ string with the
drive, path, and filename. CX contains the
attribute of the file. This function call creates a
new file or truncates an old file to zero length in
preparation for writing. If the file did not exist,
then the file is created in the appropriate directory
and the file is given the read/write access code.
The file is opened for read/write, and the handle is
returned in AX. Error returns are 3, 4, and 5
(refer to the error return table). If an error code of
5 is returned, either the directory was full or a file
by the same name exists and is marked read-only.
Note that the change mode function call (hex 43)
can later be used to change the file's attribute.

3D Open a file. On entry, DS:DX contains the
address of an ASCIIZ string with the drive, path,
and filenames. AL contains the access code. On
return, AX contains an error code or a 16-bit file
handle associated with the file. The following
access codes are allowed in AL:

AL = 0 — file is opened for reading.

AL = 1 — file is opened for writing.

AL = 2 — file is opened for both reading
and writing.

5-34

The read/write pointer is set at the first byte of the
file and the record size of the file is 1 byte (the
read/write pointer can be changed through function
call hex 42). The returned file handle must be used
for subsequent input and output to the file. The
file's date and time can be obtained or set through
call hex 57, and its attribute can be obtained
through call hex 43. Error returns are 2, 4, 5, and
12 (refer to the error return table).

Note: This call will open any normal or
hidden file whose name matches the name
specified.

3E Close a file handle. On entry, BX contains the file
handle that was returned by "open." On return,
the file will be closed and all internal buffers are
flushed. Error return is 6 (refer to the error return
table).

3F Read from a file or device. On entry, BX contains
the file handle. CX contains the number of bytes
to read. DS:DX contains the buffer address. On
return, AX contains the number of bytes read. If
the value is zero, then the program has tried to
read from the end of file. This function call
transfers (CX) bytes from a file into a buffer
location. It is not guaranteed that all bytes will be
read. For example, reading from the keyboard will
read at most one line of text. If this read is
performed from the standard input device, the
input can be redirected (see "Redirection of
Standard Input and Output" in Chapter 1 of Disk
Operating System Reference manual). Error
returns are 5 and 6 (refer to the error return table).

5-35

40 Write to a file or device. On entry, BX contains
the file handle. CX contains the number of bytes
to write. DS:DX contains the address of the data
to write. Write transfers (CX) bytes from a buffer
into a file. AX returns the number of bytes
actually written. If this value is not the same as the
number requested, it should be considered an error
(no error code is returned, but your program can
compare these values). The usual reason for this is
a full disk. If this write is performed to the
standard output device, the output can be
redirected (see "Redirection of Standard Input and
Output" in Chapter 1 of the Disk Operating
System Reference manual). Error returns are 5
and 6 (refer to the error return table).

41 	Delete a file from a specified directory (Unlink).
On entry, DS:DX contains the address of an
ASCIIZ string with a drive, path, and filename.
Global filename characters are not allowed in any
part of the string. This function call removes a
directory entry associated with a filename. Read-
only files cannot be deleted by this call. To delete
one of these files, you can first use call hex 43 to
change the file's attribute to 0, then delete the file.
Error returns are 2 and 5 (refer to the error return
table).

5-36

42 Move file read/write pointer (Lseek). On entry,
AL contains a method value. BX contains the file
handle. CX:DX contains the desired offset in
bytes (CX contains the most significant part). On
return, DX:AX contains the new location of the
pointer (DX contains the most significant part).

It moves the read/write pointer according to the
following methods:

AL = 0 — The pointer is moved to offset
(CX:DX) bytes from the
beginning of the file.

AL =- 1 — The pointer is moved to the
current location plus offset.

AL = 2 — The pointer is moved to the
end-of-file plus offset. This
method can be used to determine
file's size.

Error returns are 1 and 6 (refer to the error return
table).

43 Change file mode (CHMOD). On entry, AL
contains a function code, and DS:DX contains the
address of an ASCIIZ string with the drive, path,
and filename. If AL contains 01 then the file will
be set to the attribute in CX. (See the "DOS Disk
Directory" section of Chapter 4 for the attribute
byte description.) If AL is 0 then the file's current
attribute will be returned in CX. Error returns are
2, 3, and 5 (refer to the error return table).

5-37

44 I/O control for devices (IOCTL). On entry, AL
contains the function value. BX contains the file
handle. On return, AX contains the number of
bytes transferred for functions 2, 3, 4, and 5 or
status (00 = not ready, FF = ready) for functions
6 and 7, or an error code. Use IOCTL to Set or
Get device information associated with open
device handle, or send/receive control strings to
the device handle. The following function values
are allowed in AL:

AL = 0 — Get device information (returned
in DX).

AL = 1 — Set device information (determined
by DX). Currently, DH must be
zero for this call.

AL = 2 — Read CX number of bytes into
DS:DX from device control
channel.

AL = 3 — Write CX number of bytes from
DS:DX to device control channel.

AL = 4 — Same as 2, but use drive number in
BL (0 = default, 1 = A, etc.).

AL = 5 — Same as 3, but use drive number in
BL (0 = default, 1 = A, etc.).

AL = 6 —Get input status.

AL = 7 — Get output status.

IOCTL can be used to get information about
device channels. You can make calls on regular
files, but only function values 0, 6, and 7 are
defined in that case. All other calls return an
"invalid function" error.

5-38

15 14 13 12 11 ,10 ,9 8 7 I 6 I5 I4 (3 6 5 4 3 2 1 0

I

	
I I

S 111E3 'FA 	 I
I

	IS
D IF IN IS IC IN C IC

hEl 	I I I II IL(I" 11 :1

R I C
E T
S IR

I L
Reserved

ISDEV = 1 if this channel is a device.
0 if this channel is a disk file

(bits 8-15 = 0 in this case).

If ISDEV = 1
EOF = 0 if end-of-file on input.
BIN = 1 if operating in binary mode

(no checks for Ctrl-Z).
= 0 if operating in ASCII mode

(checking for Ctrl-Z as
end-of-file).

ISCLK = 1 if this device is the clock
device.

ISNUL = 1 if this device is the null
device.

ISCOT = 1 if this device is the console
output.

ISCIN = 1 if this device is the console
input.

CTRL = 0 if this device cannot process
control strings via calls AL=2
and AL=3.

CTRL = 1 if this device can process
control strings via calls AL= 2
and AL,--3. Note that this bit
cannot be set by function call
hex 44.

BIT

5-39

If ISDEV = 0
EOF = 0 if channel has been written.

Bits 0-5 are the block device
number for the channel
(0 = A, 1 = B, ...).

Bits 15, 8-13, 4 are reserved and should not be
altered.

Note: DH must be zero for call AL=1.

Calls AL=2, AL=3, AL=4, AL=5. These four
calls allow arbitrary control strings to be sent or
received from a character device. The Call syntax
is the same as the Read and Write calls, except for
calls 4 and 5 which accept a drive number in BL
instead of a handle in BX. An "invalid function"
error is returned if the CTRL bit is zero. An
"access-denied" code is returned by calls 4 and 5
if the drive is invalid. Error returns are 1, 6, and
13 (refer to the error return table).

Calls 6 and 7. These calls allow you to check if a
file handle is ready for input or output. If used for
a file, AL always returns FF until end-of-file is
reached, then always returns 00 unless the current
file position is changed through call hex 42. When
used for a device, AL returns FF for ready or zero
for not ready.

45 Duplicate a file handle (DUP). On entry, BX
contains the file handle. On return, AX contains
the returned file handle. This function call takes an
opened file handle and returns a new file handle
that refers to the same file at the same position.
Error returns are 4 and 6 (refer to the error return
table).

Note: If you move the read/write pointer of
either handle, the pointer for the other handle
will also be changed.

5-40

46 	Force a duplicate of a handle (DUP). On entry,
BX contains the file handle. CX contains a second
file handle. On return, the CX file handle will refer
to the same stream as the BX file handle. If the
CX file handle was an open file, then it is closed
first. Error return is 6 (refer to the error return
table).

Note: If you move the read/write pointer of
either handle, the pointer for the other handle
will also be changed.

47 Get Current directory. On entry, DL contains a
drive number (0 = default, 1 = A, etc.) and DS:SI
point to a 64-byte area of user memory. The full
path name (starting from the root directory) of the
current directory for the specified drive is placed in
the area pointed to by DS:SI. Note that the drive
letter will not be part of the returned string. The
string will not begin with a backslash and will be
terminated by a byte containing hex 00. The error
returned is 15.

48 Allocate memory. On entry, BX contains the
number of paragraphs requested. On return, AX:0
points to the allocated memory block. If the
allocation fails, BX will return the size of the
largest block of memory available in paragraphs.
Error returns are 7 and 8 (refer to the error return
table).

49 Free allocated memory. On entry, ES contains the
segment of the block being returned. On return, a
block of memory is returned to the system pool
that was allocated by call hex 48. Error returns are
7 and 9 (refer to the error return table).

r.
-t

5-41

4A SETBLOCK-Modify allocated memory blocks.
On entry. ES contains the segment of the block.
BX contains the new requested block size in
paragraphs. DOS will attempt to "grow" or
"shrink" the specified block. If the call fails on a
grow request, then on return, BX contains the
maximum block size possible. Error returns are 7,
8, and 9 (refer to the error return table).

4B Load or execute a program (EXEC). This function
call allows a program to load another program into
memory and (default) begin execution of it.
DS:DX points to the ASCIIZ string with drive,
path, and filename of the file to be loaded. ES:BX
points to a parameter block for the load and AL
contains a function value. The following function
values are allowed:

0 = Load and execute the program. A
program segment prefix is established for
the program and the terminate and
control-break addresses are set to the
instruction after the EXEC system call.

Note: When control is returned, all
registers are changed including the stack.
You must restore SS, SP and any other
required registers before proceeding.

3 = Load, do not create the program
segment prefix, and do not begin
execution. This is useful in loading
program overlays.

5-42

For each of these values, the block pointed to by
ES:BX has the following format:

AL = 0 Load/execute program

WORD segment address of environment string
to be passed

DWORD pointer to command line to be placed
at PSP+ 80h

DWORD points to default FCB to be passed at
PSP+ 5Ch

DWORD pointer to default FCB to be passed
at PSP+ 6Ch

AL = 3 Load overlay

WORD segment address where file will be
loaded

WORD relocation factor to be applied to the
image

Note that all open files of a process are duplicated
in the newly created process after an EXEC. This
is extremely powerful; the parent process has
control over the meanings of standard input,
output, auxiliary, and printer devices. The parent
could, for example, write a series of records to a
file, open the file as standard input, open a listing
file as standard output, and then execute a sort
program that takes its input from standard input
and writes to standard output.

5-43

Also inherited (or copied from the parent) is an
"environment." This is a block of text strings (less
than 32K bytes total) that convey various
configuration parameters. The following is the
format of the environment (always on a paragraph
boundary):

Byte ASCIIZ string 1

Byte ASCIIZ string 2

Byte ASCIIZ string n

Byte of zero

Typically the environment strings have the form:

parameter—value

For example, the string VERIFY=ON could be
passed. A zero value of the environment address
will cause the newly created process to inherit the
parent's environment unchanged. The segment
address of the environment is placed at offset hex
2C of the Program Segment Prefix for the program
being invoked. Error returns are 1, 2, 5, 8, 10, and
11 (refer to the error return table).

Notes:

1. 	When your program received control, all of
available memory was allocated to it. You
must free some memory (see call hex 4A)
before EXEC can load the program you are
invoking. Normally, you would shrink down
to the minimum amount of memory you need,
and free the rest.

5-44

2. 	The EXEC call uses the loader portion of
COMMAND.COM to perform the loading.
If your program has overlaid the loader, this
call will attempt to re-load the loader. If you
have used the "Allocate Memory" call to
allocate all of memory and the loader has
been overlaid, the EXEC call will return an
error due to insufficient memory to load the
loader.

4C Terminate a process (Exit). On entry, AL contains
a binary return code. This function call will
terminate the current process, transferring control
to the invoking process. In addition, a return code
can be sent. The return code can be interrogated
by the batch subcommands IF and
ERRORLEVEL and by the wait function call
(4D). All files opened by the call 3D are closed.

4D Retrieve the return code of a sub-process (Wait).
This function call returns the Exit code specified
by another process (via call hex 4C or call hex 31)
in AX. It returns the Exit code only once. The low
byte of this code is that sent by the exiting routine.
The high byte is zero for normal termination, 01 if
terminated by Crtl-Break, 02 if terminated as the
result of a critical device error, or 03 if terminated
by function call hex 31.

r.

is

5-45

4E Find first matching file (FIND FIRST). On input,
DS:DX points to an ASCIIZ string containing the
drive, path, and filename of the file to be found.
The filename portion can contain global filename
characters. CX contains the attribute to be used in
searching for the file. See function call hex 11 for a
description of how the attribute bits are used for
searches. If a file is found that matches the
specified drive, path, and filename and attribute,
the current DTA will be filled in as follows:

21 bytes — reserved for DOS use on
subsequent find next calls

1 byte — attribute found

2 bytes — file's time

2 bytes — file's date

2 bytes — low word of file size

2 bytes — high word of file size

13 bytes — name and extension of file found,
followed by a byte of zeros. All blanks are
removed from the name and extension, and if
an extension is present, it is preceded by a
period. Thus, the name returned appears just
as you would enter it as a command
parameter. Such as, TREE.COM followed
by a byte of zeros. Error returns are 2 and 18
(refer to the error return table).

5-46

4F Find next matching file. On input, the current
DTA must contain the information that was filled
in by a previous Find First call (hex 4E). No other
input is required. This call will find the next
directory entry matching the name that was
specified on the previous Find First call. If a
matching file is found, the current DTA will be set
as described in call hex 4E. If no more matching
files are found, error code 18 is returned (refer to
the error return table).

50 Used internally by DOS.

51 Used internally by DOS.

52 	Used internally by DOS.

53 	Used internally by DOS.

54 	Get verify state. On return, AL returns 00 if
verify is OFF, 01 if verify is ON. Note that the
verify switch can be set through call hex 2E.

55 Used internally by DOS.

56 	Rename a file. On input, DS:DX points to an
ASCIIZ string containing the drive, path, and
filename of the file to be renamed. ES:DI points to
an ASCIIZ string containing the path and filename
to which the file is to be renamed. If a drive is used
in this string, it must be the same as the drive
specified or implied in the first string. The
directory paths need not be the same, allowing a
file to be moved to another directory and renamed
in the process. Error returns are 3, 5, and 17 (refer
to the error return table).

5-47

57 Get/Set a file's date and time. On input, AL
contains 00 or 01. BX contains a file handle. If
AL=00 on entry, DX and CX will return the date
and time from the handle's internal table,
respectively. If AL=01 on entry, the handle's date
and time will be set to the date and time in DX
and CX, respectively. The date and time formats
are the same as those for the directory entry
described in Chapter 4 of this manual, except that
when passed in registers, the bytes are reversed
(that is, DH contains the low order portion of the
date, etc.). Error returns are 1 and 6 (refer to the
error return table).

5-48

Chapter 6. DOS Control Blocks
and Work Areas

Contents

DOS Memory Map 	 6-3
DOS Program Segment 	 6-5
Program Segment Prefix 	 6-9
File Control Block 	 6-11

Standard File Control Block 	 6-12
Extended File Control Block 	 6-15

6-1

6-2

DOS Memory Map

0000:0000 Interrupt vector table

0040:0000 ROM communication area

0050:0000 DOS communication area

XXXX:0000 IBMBIO.COM — DOS interface to ROM
I/O routines

XXXX:0000 IBMDOS.COM — DOS interrupt handlers,
service routines (INT 21 functions)

DOS buffers, control areas, and installed
device drivers

XXXX:0000 Resident portion of COMMAND.COM —
Interrupt handlers for interrupts
hex 22 (terminate), hex 23 (Ctrl-Break),
hex 24 (critical error), and code to reload
the transient portion.

XXXX:0000 External command or utility — (.COM or
.EXE file)

XXXX:0000 User stack for .COM files (256 bytes)

XXXX:0000 Transient portion of COMMAND.COM —
Command interpreter, internal commands,
batch processor, external command loader.

3 0
 :

0.
11

1.1
.

6-3

Notes:

1. Memory map addresses are in segment:offset
format. For example, 0070:0000 is absolute
address hex 0700.

2. The DOS Communication Area is used as
follows:

0050:0000 Print screen status flag store

0 	Print screen not active or
successful print screen
operation

1 	Print screen in progress

255 Error encountered during
print screen operation

0050:0001 Used by BASIC

0050:0004 Single-drive mode status byte

0 	Diskette for drive A was
last used

1 	Diskette for drive B was
last used

0050:0010 — 0021 Used by BASIC

0050:0022 — 002F Used by DOS for
diskette initialization

0050:0030 — 0033 Used by MODE
command

All other locations within the 256 bytes
beginning at 0050:0000 are reserved for
DOS use.

6-4

3. 	User memory is allocated from the lowest
end of available memory that will satisfy the
request for memory.

DOS Program Segment

When you enter an external command, or invoke a
program through the EXEC function call, DOS
determines the lowest available address to use as the
start of available memory for the program being
invoked. This area is called the Program Segment.

At offset 0 within the Program Segment, DOS builds
the Program Segment Prefix control block. (See below.)
EXEC loads the program at offset hex 100 and gives it
control.

The program returns from EXEC by a jump to offset 0
in the Program Segment Prefix, by issuing an INT 20,
by issuing an INT 21 with register AH=0 or hex 4C, or
by calling location hex 50 in the Program Segment
Prefix with AH=0 or hex 4C.

Note: It is the responsibility of all programs to
ensure that the CS register contains the segment
address of the Program Segment Prefix when
terminating via any of these methods except call
hex 4C.

6-5

.
D
O

J
 1

0
.1

1U
0

All of these methods result in returning to the program
that issued the EXEC. During this returning process
interrupt vectors hex 22. hex 23, and hex 24 (terminate,
Ctrl-Break, and critical error exit addresses) are
restored from the values saved in the Program Segment
Prefix of the terminating program. Control is then given
to the terminate address. If this is a program returning
to COMMAND, control transfers to its transient
portion. If a batch file was in process, it is continued:
otherwise, COMMAND issues the system prompt and
waits for the next command to be entered from the
standard input device.

When a program receives control, the following
conditions are in effect:

For all programs:

• The segment address of the passed environment is
contained at offset hex 2C in the Program Segment
Prefix.

The environment is a series of ASCII strings
(totaling less than 32K) in the form:

NAME=parameter

Each string is terminated by a byte of zeros, and
the entire set of strings is terminated by another
byte of zeros. The environment built by the
command processor (and passed to all programs it
invokes) will contain a COMSPEC= string at a
minimum (the parameter on COMSPEC is the
path used by DOS to locate the command
processor on disk). The last PATH and PROMPT
commands issued will also be in the environment,
along with any environment strings entered
through the SET command (see Chapter 2 of the
DOS Reference manual).

6-6

The environment that you are passed is actually a
copy of the invoking process environment. If your
application uses a "terminate and stay resident"
concept, you should be aware that the copy of the
environment passed to you is static. That is, your
copy of the environment will not change even if
subsequent SET, PATH, or PROMPT commands
are issued.

• Offset hex 50 in the Program Segment Prefix
contains code to invoke the DOS function
dispatcher. Thus, by placing the desired function
number in AH, a program can issue a long call to
PSP+ 50 to invoke a DOS function, rather than
issuing an interrupt type hex 21.

• Disk transfer address (DTA) is set to hex 80
(default DTA in the Program Segment Prefix).

• File control blocks at hex 5C and hex 6C are
formatted from the first two parameters entered
when the command was invoked. Note that if
either parameter contained a path name, then the
corresponding FCB will contain only a valid drive
number. The filename field will not be valid.

• An Unformatted parameter area at hex 81
contains all the characters entered after the
command name (including leading and imbedded
delimiters), with hex 80 set to the number of
characters. If the 	or :parameters were
entered on the command line, they (and the
filenames associated with them) will not appear in
this area, because redirection of standard input and
output is transparent to applications.

• Offset 6 (one word) contains the number of bytes
available in the segment.

3
o
ig

 j
0

.1
)U

0

6-7

• Register AX reflects the validity of drive specifiers
entered with the first two parameters as follows:

- AL=FF if the first parameter contained an
invalid drive specifier (otherwise AL=00)

AH=FF if the second parameter contained
an invalid drive specifier (otherwise AH=00)

For .EXE programs:

• DS and ES registers are set to point to the
Program Segment Prefix.

• CS, IP. SS, and SP registers are set to the values
passed by the linker.

For .COM programs:

• All four segment registers contain the segment
address of the initial allocation block, that starts
with the Program Segment Prefix control block.

• All of user memory is allocated to the program. If
the program wishes to invoke another program
through the EXEC function call, it must first free
some memory through the Setblock (hex 4A)
function call to provide space for the program
being invoked.

• The Instruction Pointer (IP) is set to hex 100.

• SP register is set to the end of the program's
segment. The segment size at offset 6 is reduced
by hex 100 to allow for a stack of that size.

• A word of zeros is placed on the top of the stack.

The Program Segment Prefix (with offsets in
hexadecimal) is formatted as follows.

6-8

Program Segment Prefix
(offsets in hex)

INT hex 20
Top of
memory

1
Reserved

Long caii to
DOS function dis-
patcher (5 bytes)2

Terminate address
(IP,CS)

CARL-BREAK

exit address
(IP)

GIRL-1111tAlt
exit address
(CS)

CIIIIIIAL It111111M

exit address
(IP, CS)

Used by

2C

5C

DOS

Note 3

Area 1
unopened FCB

Formatted Parameter
formatted as standard

SC

Area 2
unopened FCB

hex 5C is opened)

Formatted Parameter
formatted as standard
(overlaid If FCB at

Unformatted parameter area
-' 	 ,i.-..

(default disk transfer area)

6-9

0

8

10

1. First segment of available memory is in segment
(paragraph) form (for example. hex 1000 would
represent 64K).

2. The word at offset 6 contains the number of bytes
available in the segment.

3. Offset hex 2C contains the segment address of the
environment.

4. Programs must not alter any part of the PSP below
offset hex 5C.

6-10

r

I 	
he

x
FF

I 	

I

Fi
le

na
m

e
(8

 b
yt

es
) o

r R
es

er
ve

d
de

vi
ce

 n
am

e

C
ur

re
nt

 b
lo

ck

T
-
1
 FC
B

I
 	

At
tri

bu
te

ex

te
ns

io
n

St
an

da
rd

FC

B

R
ec

or
d

si
ze

8 16

24

32

Dr
ive

1301a 10.131.10D alla

Fi
le

na
m

e
ex

te
ns

io
n

71
 —

Ze
ro

s

Ra
nd

om
 re

co
rd

nu

m
be

r (
lo

w
 p

ar
t)

Ra
nd

om
 re

co
rd

nu

m
be

r (
hi

gh
 p

ar
t)

Cu
rre

nt

re
co

rd

(O
ffs

et
s

ar
e

in
 d

ec
im

al
)

U
ns

ha
de

d
ar

ea
s

m
us

t b
e

fil
le

d
in

 b
y

th
e

us
in

g
pr

og
ra

m
.

Sh
ad

ed
 a

re
as

 a
re

 fi
lle

d
in

 b
y

D
O

S
an

d
m

us
t n

ot
 b

e
m

od
ifi

ed
.

.r
0

1
9

 1
0.

11
11

03

Standard File Control Block

The standard file control block (FCB) is defined as
follows, with the offsets in decimal:

Byte 	Function

0 	Drive number. For example,

Before open:

After open:

0 — default drive
1 — drive A
2 — drive B
etc.

1 — drive A
2 — drive B
etc.

A 0 is replaced by the actual drive number
during open.

1-8 	Filename, left-justified with trailing blanks. If
a reserved device name is placed here (such
as LPT1), do not include the optional colon.

9-11 	Filename extension, left-justified with trailing
blanks (can be all blanks).

12-13 	Current block number relative to the
beginning of the file, starting with zero (set to
zero by the open function call). A block
consists of 128 records, each of the size
specified in the logical record size field. The
current block number is used with the current
record field (below) for sequential reads and
writes.

6-12

14-15 	Logical record size in bytes. Set to hex 80 by
the open function call. If this is not correct,
you must set the value because DOS uses it
to determine the proper locations in the file
for all disk reads and writes.

16-19 	File size in bytes. In this 2-word field, the
first word is the low-order part of the size.

20-21 	Date the file was created or last updated. The
mm/dd/yy are mapped in the bits as follows:

< 	21 	> < 	20 	>
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y y y y y y ymmmmddddd

where:

mm is 1-12
dd is 1-31
yy 	is 0-119 (1980-2099)

22-31 	Reserved for system use.

32 	Current relative record number (0-127)
within the current block. (See above.) You
must set this field before doing sequential
read/write operations to the diskette. (This
field is not initialized by the open function
call.)

33-36 	Relative record number relative to the
beginning of the file, starting with zero. You
must set this field before doing random read/
write operations to the diskette. (This field is
not initialized by the open function call.)

J
O

 a
10

.1
1U
0

 1

6-13

If the record size is less than 64 bytes, both
words are used. Otherwise, only the first
three bytes are used. Note that if you use the
File Control Block at hex 5C in the program
segment, the last byte of the FCB overlaps
the first byte of the unformatted parameter
area.

Notes:

1. An unopened FCB consists of the FCB
prefix (if used), drive number, and
filename/extensions properly filled in.
An open FCB is one in which the
remaining fields have been filled in by
the Create or Open function calls.

2. Bytes 0-15 and 32-36 must be set by the
user program. Bytes 16-31 are set by
DOS and must not be changed by user
programs.

3. All word fields are stored with the least
significant byte first. For example, a
record length of 128 is stored as hex 80
at offset 14, and hex 00 at offset 15.

6-14

Extended File Control Block

The extended File Control Block is used to create or
search for files in the disk directory that have special
attributes.

It adds a 7-byte prefix to the FCB, formatted as
follows:

Byte 	 Function

FCB-7 	 Flag byte containing hex FF to
indicate an extended FCB.

FCB-6 to FCB-2 Reserved.

FCB-1 Attribute byte. See "DOS Disk
Directory" in Chapter 4 of this
manual for attribute bit definitions.
Also refer to function call hex 11
(search first) for details on using
the attribute bits during directory
searches. This function is present
to allow applications to define their
own files as hidden (and thereby
exclude them from directory
searches), and to allow selective
directory searches.

Any references in the DOS Function Calls (refer to
Chapter 5 of this manual) to an FCB, whether opened
or unopened, may use either a normal or extended
FCB. If using an extended FCB, the appropriate
register should be set to the first byte of the prefix,
rather than the drive-number field.

6-15

,..
 0

01
8

 1
0

.1
)U

1

6-16

Chapter 7. Executing Commands
from Within an
Application

7-1

7-2

With DOS Version 2.10, application programs may
invoke a secondary copy of the command processor.
Your program may pass a DOS command as a
parameter and the secondary command processor will
execute as though it had been entered from the standard
input device. The procedure is:

1. Assure that adequate free memory (17K) exists to
contain the second copy of the command processor
and the command it is to execute.

2. Build a parameter string for the secondary
command processor in the form:

1 byte = length of parameter string
xx byte = parameter string
1 byte = hex OD (carriage return)

For example, the assembly statement below would
build the string to cause execution of a
DISKCOPY command:

DB 14,"DISKCOPY A: B:",13

3. Use the EXEC function call (hex 4B, function
value 0) to cause execution of the secondary copy
of the command processor (the drive, directory and
name of the command processor can be obtained
from the COMSPEC=parameter in the
environment passed to you at PSPH-hex 2C).
Remember to set offset 2 of the EXEC control
block to point to the parameter string built above.

7-3

7-4

Chapter 8. Fixed Disk Information

Contents

Fixed Disk Architecture 	 8-3
System Initialization 	 8-4
Boot Record/Partition Table 	 8-6
Technical Information 	 8-8

8-1

8-2

The IBM Personal Computer Fixed Disk Support
Architecture has been designed to meet the following
objectives:

• Allow multiple operating systems to utilize the
fixed disk without the need to dump/restore when
changing operating systems.

• Allow a user-selected operating system to be
started from the fixed disk.

Fixed Disk Architecture

The architecture is defined as follows:

• In order to share the fixed disk among operating
systems, the disk may be logically divided into 1 to
4 "partitions." The space within a given partition
is contiguous, and can be dedicated to a specific
operating system. Each operating system may
"own" only one partition. The number and sizes of
the partitions are user-selectable through a fixed
disk utility program (HDMGR). The partition
information is kept in a partition table that is
imbedded in the master fixed disk boot record
on the first sector of the disk.

• Any operating system must consider its partition to
be an entire disk, and must ensure that its
functions and utilities do not access other
partitions on the disk.

8-3

• Each partition can contain a boot record on its first
sector, and any other programs or data that you
choose—including a copy of an operating system.
For example, the DOS FORMAT command may
be used to.format (and place a copy of DOS in)
the DOS partition in the same manner that a
diskette is formatted. You may designate a
partition as "bootable" (active) —the master
fixed disk boot record will cause that partition's
boot record to receive control when the system
is started or restarted.

System Initialization

The System initialization (or system boot) sequence is
as follows:

I. 	System initialization first attempts to load an
operating system from diskette drive A. If the drive
is not ready or a read error occurs, it then attempts
to read a master fixed disk boot record from the
first sector of the first fixed disk on the system. If
unsuccessful, or if no fixed disk is present, it
invokes ROM BASIC.

2. If successful, the master fixed disk boot record is
given control and it examines the partition table
imbedded within it. If one of the entries indicates a
"bootable" (active) partition, its boot record is
read (from the partition's first sector) and given
control.

3. If none of the partitions is bootable, ROM BASIC
is invoked.

8-4

4. If any of the boot indicators are invalid, or if more
than one indicator is marked as bootable, the
message Invalid partition table is displayed and
the system enters an enabled loop. You may then
insert a system diskette in drive A and use system
reset to restart from diskette.

5. If the partition's boot record can't be
successfully read due to read errors, the message
Error loading operating system appears and the
system enters an enabled loop.

6. If the partition's boot record does not contain a
valid "signature" (see "Boot Record/Partition
Table"), the message Missing operating system
appears, and the system enters an enabled loop.

Note: When changing the size or location of any
partition, you must ensure that all existing data on
the disk has been backed up (the partitioning
process will "lose track" of the previous partition
boundaries).

rD 0_

8-5

Boot Record/Partition Table

A fixed disk boot record must be written on the first
sector of all fixed disks, and contain:

1. Code to load (and give control to) the boot record
for 1 of 4 possible operating systems.

2. A partition table at the end of the boot record.
Each table entry is 16 bytes long, and contains the
starting and ending cylinder, sector and head for
each of 4 possible partitions, as well as the number
of sectors preceding the partition and the number
of sectors occupied by the partition. The "boot
indicator" byte is used by the boot record to
determine if one of the partitions contains a
loadable operating system. Initialization
utilities mark a user-selected partition as
"bootable" by placing a value of hex 80 in the
corresponding partition's boot indicator (setting all
other partitions' indicators to zero at the same
time.) The presence of the hex 80 tells the
standard boot routine to load the sector whose
location is contained in the following 3 bytes. That
sector will be the actual boot record for the
selected operating system, and it will be
responsible for the remainder of the system's
loading process (as it is from diskette). All boot
records are loaded at absolute address 0:7C00.

8-6

The partition table (with its offsets into the boot
record) is as follows:

Offs Purpose

13E Reserved
146 Reserved
14E Reserved
156 Reserved

15E Partition 1 name

166 Partition 2 name
16E Partition 3 name

176 Partition 4 name
17E Reserved

186 Reserved
18E Reserved

196 Reserved

19E Reserved

1A6 Reserved

1A E Reserved

1B6 Reserved

1B E Partition 1 begin
1C2 Partition 1 end
106 Partition 1 rel sect
1CA Partition 1 #sects
10E Partition 2 begin
1D2 Partition 2 end
1D6 Partition 2 rel sect
1DA Partition 2 # sects
'IDE Partition 3 begin
1E2 Partition 3 end
1E6 Partition 3 rel sect
1 EA Partition 3 # sects
1EE Partition 4 begin
1F 2 Partition 4 end
1F6 Partition 4 rel sects
1FA Partition 4 # sect
1FE Signature

Head
	

Sector
	

Cylinder

boot ind H S CYL

syst ind H S CYL
Low word High word
Low word High word
boot ind H S CYL
syst ind H S CYL
Low word High word
Low word High word

boot ind H S CYL
syst ind H S CYL
Low word High word
Low word High word
boot ind H S CYL
syst ind H S CYL
Low word High word
Low word High word
hex 55 hex AA

8-7

Technical Information

When shipped by IBM, the 10-megabyte fixed disks are
formatted with 512-byte sectors at an interleave factor
of 8 (17 sectors per track, 4 heads per cylinder). They
contain no data or boot records.

The boot indicator byte must contain 0 for a
non-bootable partition, or hex 80 for a bootable
partition. Only one partition can be marked bootable.

The "syst ind" field contains an indicator of the
operating system that "owns" the partition. Each
operating system can "own" only one partition.

The system indicators are:

hex 00 — unknown (unspecified)
hex 01 — DOS

Note: When you install another partition, bit 4 of
"syst ind" must be 0.

The 1-byte fields labelled "CYL" contain the low-order
8 bits of the cylinder number—the high order 2 bits are
in the high order 2 bits of the "S" (sector) field. This
corresponds with ROM BIOS Interrupt hex 13 (disk
I/O) requirements, to allow for a 10-bit cylinder
number.

The fields are ordered in such a manner that only
2 MOV instructions are required to properly set up the
DX and CX registers for a ROM BIOS call to load the
appropriate boot record (fixed disk booting is only
possible from the first fixed disk on a system, whose
BIOS drive number (hex 80) corresponds to the boot
indicator byte.)

All partitions are allocated in cylinder multiples and
begin on sector 1, head 0. EXCEPTION: the partition
which is allocated at the beginning of the disk starts at
sector 2, to account for the disk's master boot record.

8-8

The number of sectors preceding each partition on the
disk is kept in the 4-byte field labelled "rel sect." This
value is obtained by counting the sectors beginning with
cylinder 0, sector 1, head 0 of the disk, and
incrementing the sector, head and then track values up
to the beginning of the partition. Thus, if the disk has
17 sectors per track and 4 heads, and the second
partition begins at cylinder 1, sector 1, head 0, the
partition's starting relative sector is 68 (decimal)—there
were 17 sectors on each of 4 heads on 1 track allocated
ahead of it. The field is stored with the least significant
word first.

The number of sectors allocated to the partition is kept
in the"# of sects" field. This is a 4-byte field stored
least significant word first.

The last 2 bytes of the boot record (hex 55AA) are
used as a signature to identify a valid boot record. Both
this record and the partition boot records are required to
contain the signature at offset hex 1FE.

The Master disk boot record will invoke ROM BASIC
if no indicator byte reflects a "bootable" system.

When a partition's boot record is given control, it is
passed its partition table entry address in the DS:SI
registers.

8-9

System programmers designing a utility to
initialize/manage a fixed disk must provide the
following functions at a minimum:

1. Write the master disk boot record/partition table
to the disk's first sector to initialize it.

2. Perform partitioning of the disk—that is, create or
update partition table information (all fields for
the partition including the name field. Note that
the name field for some partitions is related to
that partition table. See the table on page 8-7.)
when the user wishes to create a partition. This
may be limited to creating a partition for only one
type of operating system, but must allow
repartitioning the entire disk, or adding a partition
without interfering with existing partitions (user's
choice).

3. Provide a means for marking a user-specified
partition as bootable, and resetting the bootable
indicator bytes for all other partitions at the same
time.

8-10

Chapter 9. EXE File Structure
and Loading

9-1

9-2

The .EXE files produced by the Linker program consist
of two parts:

• Control and relocation information

• The load module itself

The control and relocation information, which is
described below, is at the beginning of the file in an area
known as the header. The load module immediately
follows the header. The load module is the memory
image of the module constructed by the linker.

The header is formatted as follows:

Hex Offset Contents

00-01 Hex 4D, hex 5A—This is the LINK program's
signature to mark the file as a valid .EXE file.

02-03 Length of image mod 512 (remainder after
dividing the load module image size by 512).

04-05 Size of the file in 512-byte increments (pages),
including the header.

06-07 Number of relocation table items that follow the
formatted portion of the header.

08-09 Size of the header in 16-byte increments
(paragraphs). This is used to locate the
beginning of the load module in the file.

0A-OB Minimum number of 16-byte paragraphs
required above the end of the loaded program.

_

9-3

Hex Offset Contents

0C-OD Maximum number of 16-byte paragraphs
required above the end of the loaded
program.

0E-OF Offset of stack segment in load module (in
segment form).

10-11 Value to be in the SP register when the
module is given control.

12-13 Word checksum — negative sum of all the
words in the file, ignoring overflow.

14-15 Value to be in the IP register when the
module is given control.

16-17 Offset of code segment within load module
(in segment form).

18-19 Offset of the first relocation item within the
file.

1A-1B Overlay number (0 for resident part of the
program).

9-4

The relocation table follows the formatted area just
described. The relocation table is made up of a variable
number of relocation items. The number of items is
contained at offset 06-07. The relocation item contains
two fields—a 2-byte offset value, followed by a 2-byte
segment value. These two fields contain the offset into
the load module of a word which requires modification
before the module is given control. This process is
called relocation and is accomplished as follows:

1. A Program Segment Prefix is built following the
resident portion of the program that is performing
the load operation.

2. The formatted part of the header is read into
memory (it's size is at offset 08-09).

3. The load module size is determined by subtracting
the header size from the file size. Offsets 04-05
and 08-09 can be used for this calculation. The
actual size is downward adjusted based on the
contents of offsets 02-03. Note that all files
created by pre-release 1.10 LINK programs
always placed a value of 4 at that location,
regardless of actual program size. Therefore, we
recommend that this field be ignored if it contains
a value of 4. Based on the setting of the high/low
loader switch, an appropriate segment is
determined at which to load the load module. This
segment is called the start segment.

4. The load module is read into memory beginning at
the start segment.

5. The relocation table items are read into a work
area (one or more at a time).

9-5

rn
X
rn

6. Each relocation table item segment value is added
to the start segment value. This calculated
segment, in conjunction with the relocation item
offset value, points to a word in the load module to
which is added the start segment value. The result
is placed back into the word in the load module.

7. Once all relocation items have been processed, the
SS and SP registers are set from the values in the
header and the start segment value is added to SS.
The ES and DS registers are set to the segment
address of the Program Segment Prefix. The start
segment value is added to the header CS register
value. The result, along with the header IP value,
is used to give the module control.

9-6

Chapter 10. DOS Memory
Management

DOS keeps track of allocated and available memory
blocks, and provides 3 function calls for application
programs to communicate their memory needs to
DOS. These calls are x`48' to allocate a memory block,
x`49' to free a previously allocated memory block, and
x'4A' (SETBLOCK) to change the size of an allocated
memory block.

Memory is managed as follows:

DOS builds a control block for each block of memory,
whether free or allocated. For example, if a program
issues an 'allocate' call, DOS locates a block of free
memory that satisfies the request, and will 'carve' the
requested memory out of that block. The requesting
program is passed the location of the first byte of the
block that was allocated for it - a memory management
control block, describing the allocated block, has been
built for the allocated block (and a second memory
management control block describes the amount of
space left in the original free block of memory). When
a SETBLOCK is done to shrink an allocated block,
DOS builds a memory management control block for
the area being freed, and adds it to the chain of control
blocks. Thus, any program that changes memory that is
not allocated to it, stands a good chance of destroying a
DOS memory management control block. This causes
unpredictable results that don't show up until an
activity is performed where DOS uses its chain of
control blocks (the normal result is a memory
allocation error, for which the only cure is to restart the
system).

2

ao
3

10-1

When a program (command, application program) is to
be loaded, DOS uses the EXEC function call (x`48') to
perform the loading. This is the same function call that
is available to application programs for loading other
programs. This function call has 2 options - function 0,
to load and execute a program (this is what the
command processor uses to load and execute external
commands), and function 3, to load an overlay
(program) without executing it. Although both
functions perform their loading in the same way
(relocation is performed for EXE files), their handling
of memory management is different.

For function 0 to load and execute a program, EXEC
first allocates the largest available block of memory (the
new program's PSP will be at offset 0 in that memory
block). Then EXEC loads the program. Thus, in most
cases, the new program 'owns' all of the memory from
its PSP to the highest end of memory, including the
memory occupied by the transient part of
COMMAND.COM, which contains the loader. If the
program were to issue its own EXEC function call to
load and execute another program, the request would
fail because no available memory exists to load the new
program into. To further complicate things, if the calling
program has overlaid the loader in COMMAND.COM,
available memory has to be found to load the loader
into, before the loader can load the required program.

Note: for .EXE programs, the amount of memory
allocated is the size of the program's memory
image plus the value in the MAX ALLOC field of
the file's header (offset x'OC'), if that much
memory is available. If not, EXEC will allocate
the size of the program's memory image plus the
value in the MIN ALLOC field in the header
(offset x'OA'). These fields are set by the LINKer.
They are set to default values that cause the
largest available memory block to be allocated.

10-2

A well-behaved program uses the SETBLOCK function
call when it receives control, to shrink its allocated
memory block down to the size it really needs (a .COM
program should remember to set up its own stack before
doing the SETBLOCK, since it is likely that the default
stack supplied by DOS lies in the area of memory being
freed). This frees unneeded memory, which can then be
used for loading subsequent programs (and the loader, if
necessary). This also benefits a multi-tasking
environment, if that should become a reality in the
future.

If the program requires additional memory during
processing, it can obtain the memory via the allocate
function call and later free it via the free memory call.

When a program loaded via function 0 exits, its initial
allocation block (the block beginning with its PSP) is
automatically freed before the calling program regains
control. However, any other blocks allocated by the
exiting program are not automatically freed - it is the
responsibility of all programs to free any memory they
allocate, prior to exiting to the calling program.

For function 3, to load an overlay, no PSP is built, and
EXEC assumes the calling program has already
allocated memory to load the new program into - it will
not allocate memory for it. Thus, the calling program
should either allow for the loading of overlays when it
determines the amount of memory to keep when issuing
the SETBLOCK call, or should initially free as much
memory as possible. The calling program should then
allocate a block (based on the size of the program to be
loaded) to hold the program which will be loaded via
the 'load overlay' call. Note that 'load overlay' does not
check to see if the calling program actually own is the
memory block it has been instructed to load into - it
assumes the calling program has followed the rules. If
the calling program does not own the memory into
which the overlay is being loaded, there is a better-than-
even chance that the program being loaded will overlay
one of the control blocks that DOS uses to keep track of
memory blocks.

10-3

1W
 .
 A

JO

W
1

Programs loaded via function 3 should not issue any
SETBLOCK calls, since they don't own the memory
they are operating in (the memory is own by the calling
program).

Because programs loaded via function 3 are given
control directly by (and return control directly to) the
calling program with no DOS intervention, no memory
is automatically freed when the called program exits - it
is up to the calling program to determine the disposition
of the memory that had been occupied by the exiting
program. Note that if the exiting program had itself
allocated any memory, it is responsible for freeing that
memory before exiting.

10-4

Index

Special Characters

application, executing
commands within your 7-3

/S option 4-7

A
absolute disk read 5-10
absolute disk write 5-11
access, random 1-6
address terminate
interrupt 5-4

AH register 5-11
allocating disk space 1-6

allocating space 1-6
allocating diskette
space 4-8

allocation table
information 5-25

allocation, diskette 4-3
allocation 4-3, 4-4
disk allocation 4-3

architecture, 8088 1-3
structure 1-3

ASCII codes, extended 5-17
ASCIIZ string 5-15
Asynchronous
Communications
Adapter 5-18

attribute byte 6-15
attribute field 3-6
attribute, file 4-5
AUTOEXEC file 1-5

Auxiliary Asynchronous
Communications
Adapter 5-18

auxiliary input 5-18
auxiliary output 5-18
available functions, DOS 1-6
AX register 5-6, 5-16

B
batch file processor 1-5
BIOS 5-10
BIOS interface module 1-3
BIOS Parameter Block 3-15
block devices 3-5
block number, current 6-12
block read, random 5-26, 5-28
block write. random 5-26,
5-28
size 5-25

blocking/deblocking, data 1-3
BP register 5-6
BPB. what is 3-16
buffered standard input 5-19
buffers. file 5-3
built-in functions 1-3
BX register 5-6
byte, attribute 6-15
byte, flag 6-15

X-1

C

calls, function 5-13
chaining file sectors 1-6
character devices 3-5
check keyboard status 5-20
checksum methodology 1-5
CL register 5-16
close file 5-21
cluster number, relative 4-7
cluster, calculate 4-10
cluster, locate next 4-9, 4-10
cluster, starting 4-7
clusters 1-6, 4-3

directory 4-5
diskette directory 4-4

codes, error 5-6
COM filename extension 1-5

.COM 1-5

.EXE 1-5
COM programs 6-8
command processor 1-4
command processor, resident
portion of 1-4

COMMAND.COM 1-4, 4-7,
6-3

Communications Adapter,
Auxiliary Asynchronous
5-18

console I/O, direct 5-19
control blocks 6-15
control screen cursor 2-3
create file 5-24
creating a device driver 3-8
critical error handler
vector 5-5

CS register 5-3, 5-7,.6-8
CTRL-BREAK exit
address 1-5, 5-4

CTRL-BREAK handler 1-5
current block number 6-12

current disk 5-25
current relative record
number 6-13

cursor control 2-3
CX register 5-6

D
data blocking/deblocking 1-3
date file created or
updated 6-12

deblocking/blocking, data 1-3
Initialization 1-4

delete file 5-23
device driver, creating 3-9
device drivers 3-3
device drivers,
installation 3-10

device field, next 3-6
device header 3-6
devices, types of 3-4
DI register 5-6
direct console I/O 5-19
disk

current 5-25
reset 5-20
select 5-20

disk error handling 1-5
disk errors 5-7
disk read, absolute 5-10
disk transfer address 6-7
disk transfer address, set 5-25
Disk Transfer Area (DIA) 1-7
disk write, absolute 5-11
display output 5-18
DOS environment 6-6
DS register 5-6, 6-8
DTA (Disk Transfer
Area) 1-7

DX register 5-6

X-2

E
end-of-file mark 4-9
entries, search for 5-22
environment, DOS 6-6
error codes 5-6
error handling

critical 1-5
disk 1-5

error return table 5-14
error trapping 1-8
ES register 5-6, 6-8
EXE file structure 9-2
EXE filename extension 1-5,
6-3

high 1-5
EXE files, load 9-2
EXE programs 6-8
executing commands within an
application 7-2

extended ASCII codes 5-17
extended file control
block 6-15

external commands 1-6

F
FAT (see File Allocation
Table)

allocating space 4-8
FCB 6-12
FCB (see File Control Block)
field name 3-8
field, attribute 3-7
File Allocation Table
(FAT) 1-4, 1-6, 4-8

file allocation table, how to use
4-10

file buffers 5-3
File Control Block (FCB) 1-7,
6-11

extended 6-15
standard 6-11

File Management 1-6
file sectors

chaining 1-6
mapping 1-6

file size 6-13
file structure, .EXE 9-3
filename, parse 5-28
Fixed Disk Information 8-1
flag byte 6-15
FORMAT command 4-4

hidden 4-4
format, device drivers 3-4
function call parameters 3-16
function calls 5-13
functions, available DOS 1-5
functions, built-in 1-3

G
get

date 5-30
time 5-30

H
header 9-3
hidden files 4-5, 5-24, 6-13

attribute 4-6
high memory 1-5

available functions 1-6
high/low loader switch 9-5

X-3

I

IBMBIO.COM 1-3, 1-4, 4-7
IBMDOS.COM 1-3, 4-7
initialization, DOS 1-3
input, auxiliary 5-18
installation of device
drivers 3-10

instruction set, 8088 1-2
INT hex 24 1-8
INT 21 1-6

random 1-6
sectors 1-6
sequential 1-6

interface module, BIOS 1-3
internal command
processors 1-5

interrupt hex 20 5-3
interrupt hex 22 1-5, 5-4
interrupt hex 23 1-5, 5-4
interrupt hex 24 5-5
interrupt hex 25 5-10
interrupt hex 26 5-11
interrupt hex 27 5-11
interrupt mechanism,
8088 1-2

interrupt routines 3-8
interrupt vectors 1-4
interrupt, set 5-27
interrupts 5-3
IP register 5-7, 6-8
IRET 5-5

K
keyboard input 5-17

buffered 5-19
keyboard status, check 5-20
keys, reassigning 2-3

L
linefeed 5-5
loading .EXE files 9-2
locate next cluster 4-9, 4-10
logical record size 6-12
logical sector numbers 5-10

M
mapping file sectors 1-6
memory management 10-1
memory map 6-3
MOV instruction 4-10

N
name field 3-8
next device field 3-6

O
open file 5-21
output, auxiliary 5-18
output, display 5-18

X-4

P
parameters, function call 3-16
parse filename 5-28
pointer to next device 3-9
print string 5-19
printer output 5-18
program segment

create new 5-27
DOS 6-5

Program Segment Prefix 1-4,
1-7, 6-8, 6-9

program terminate 5-17

R
random access 1-6
random block read 1-6, 5-28
random block write 1-6, 5-28
random read 5-26
random record field, set 5-24
random write 5-26
Read-Only Memory
(ROM) 1-3

read, random 5-26
read, random block 5-28
read, sequential 5-24
reassign keys 2-2
record number, relative 6-13
record size, logical 6-11
relative record number 6-13
relocation 9-5
rename file 5-25
reset, disk 5-20
reset, system 1-4
resident portion of command
processor 1-5

ROM (Read-Only
Memory) 1-3

ROM BIOS routine 5-20

routines
memory management 1-6
ROM BIOS 5-19

routines, strategy/interrupt 3-8

S

screen cursor control 2-3
search for entries 5-22
sector numbers, logical 5-10
sectors, file 1-6
segment address 6-6
segment, create new
program 5-27

segment, start 9-5
select disk 5-20
separators, filename 5-28
sequential read 5-24
sequential write 5-24
set

date 5-30
interrupt 5-27
random record field 5-27
time 5-30
verify switch 5-30

set disk transfer address 5-25
SI register 5-6
single-drive system 5-20
size, file 6-13
SP register 6-8
space allocation 1-6, 4-3
SS register 6-8
stack, user 5-6
start segment 9-5
starting cluster 4-7
strategy routines 3-8
structure, DOS 1-3
switch, high/low loader 9-5
System Initialization 8-4
system prompt 1-5

X-5

T
technical information,
DOS 1-3

terminate address
interrupt 5-4

terminate program 5-17
terminate program
interrupt 5-4

terminators, filename 5-28
transfer address, disk 6-7
transient portion of command
processor 1-5

U
user stack 5-6

V
verify switch 5-30

w
work areas 6-3•
wrap around 3-23
write, random 5-25
write, random block 5-28
write, sequential 5-24

X-6

P
ro

g
ra

m
m

in
g
 S

e
rie

s 1
1
0
1
2
3
-0

 	
P

J
X

 P
C

 D
O

S

V

e
rs

io
n
 2

.1
0
 T

e
c
h

n
ic

a
l R

e
fe

re
n

c
e

4---/-A
----e-1 -- 	

r-, 	
:

rintern Jap a n

`-:-4-- 	
A- 	

4
.-4

i- '
-
'
/
-
-
1

.-:4
--/-1

,- -
/
-

--
-

-
-
V

-,/ ---,- ' ----/A
1-1;--

-
0

-
-
0

~
.

--
12c- 	

'-'1-'c--
-
- -
-
'
`
, 1

-
-
-
-
9
?
-
',- ,b-4-:-/-1%

--1J%
-•--

- '
-
-
- -kr--ri .-

W
-
i
t
-
-
- '4

 - -It-i-3
- ---1-,- -

4
-
-
-

-0
-4

--4
--0

-4
--4 .

-
-
-
/
-

'•-'.- -li-'-' 4
:1

-

-b
--

--
-- `
1
0
-
-
0
'
-
-
-
/
-
-

,-i-r----

--
- -

- -
-
-

-/-‘,2- .-
-
1
-
-
-
=

/ ,-'1
A

--li-7
--6

--it ,--0
--7

/-----4
-

4--1-',
:
•
.
-

'1
-
'-

'1
-
-
-
-
-
1
,-

/-
-
/0

-
-
-
-
b
-
z
0
-
3
-
2
1
/- .;--

-1
-1

-"
- '
-
4

-

.---4
,---/-- ,:

-
., -

 1
-
-
/-

;b
-
- ------/- ,,-- -1?-74- -1- ,----k,";-4A

- 	
-1-',--

'
	 1

1
13

	

-0 -- l' : - z
 , , -1,- - W

- - - ---.1-----.P c-- -b - -- -

.--,---1- ,
-
-
-
7

-
-
-
- --0

- .-
-
0
-

-1-,
-- - , -1----4-----

-4

'
-
 	

-
-
"

A 	
k 11

-
-
-
-
-
---1

-n .
;
'
b

-
^

'-
'-

'-

'"
-
-
 	

- l
-
-
-
.7

1
-
-
 '4

1
-
1

-
f
i

	

-
t
-
-
 	

I 	
-

-

-

' '
-
- 4

-'----
/
-
- '7

4
---1

--"
-

-
-
1

- ';---.

-1
t- '
.
- - 1 - ' 2

b
-
-
'.- • 	

P

	

!P
 	

‘-41-.- -
1
-
*
H

- -
*

W

I

-
,
-
-
-
-
"

'-
'.-

-
-

---7
/

-
-
-
 L

 - - . 	
-11-,-

-
-

- 	
'---b

-'-,
	

-1
1

4
-

'
-
-
-
'
'
 	

- 	
-'
-
 .
-
-
'
4
-
 -4

-- - 4 - . - 4 - • - - 1
 	 4,j---

-
-
- - -z-4

4
-4

--b
 	

':It •
-
- - - -

--• 	
'
'
-
'
'
'
'

-
-
'
'
'

-
 -' - 2

"

-
 	
'
- ' ' I 	

-' ' - • . •
4

 - -
4

-
I
-

-
=

-
'-

- -
-
-
'
'
-
-
'3

-
-
4
-
 .-

-
-
 .4

-
-
 	

.:-, 7
1
.t

- "--1
---- --

4
-
•
- -1

- ,---1.-- -
-
-
-
-
-
4
-
-
 -

I-
 -

, 4
l'•

	

-
-
f
i
'
-
- -
-
-
- -
-
 4

:
- '
-
- -
- -
-
-
-
-
1

,
t
,
'''

- -
,
1

-
:
.
-
'
- '
-
-
 	

-b
- 	

S

. -
-
-
-
 -

'-
- - - - --

-
-
-
b

 -
-
 -

 - - - - -
-
b

-
'
- - - 	

- - 	
- - 	 -
/
-
"
-
-
i
-
 	

.?t.--
-
-
.
'

.
 c--,3

- - - -4
----b

 -- 	
- 	 -4

- -
-
4
-
4
-
- -
 -

 -
-
' b

 -
-
 -- '-'-' 	

- - - -• -/s
- 	

--.-1
-'- 	

g -

-b
---4

- -b
- .-- -

-
4

-
- -
 	

b
----- -

-
4
-
-
-
-

-
- -
-
:
-
'4

-
:
 -

- '---'---
7
t- 	

'--- 	
0
 ct

-
'-

-
-
-
-
4
- -
-
-
-
-

- - 	
- -
-
-
'
-
'
 	

-
'
1
-
-
-
-

.
- -
4

-
-
-
4

-
-
-
 -

-
-
-
, 	

w

-- -
 4

- - 	 -
'

-
 	

-
-
-
-
-
'
j
-
-
-
-
- -
 	

-

-
-

;7

 - -i- 	
j-

-
-
-
/-

' -
 LL

-
-
'-

-
"
-
.

:
1
-
 	

-1•?- ‘-
:
-
"
4

-
-
 	 '
' '/ '
.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160

