
·E X P L O R I N G

Peter Norton

EXP L DR ING

TheIBMPC/Jr.
HOME COMPUTER

EXPLORING

TheIBMPC Jr.
HOME COMPUTER

Peter Norton

Illustrated by Mits Katayama

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation

10700 Northup Way, Bellevue, Washington 98004

Copyright © 1984 by Peter Norton
All rights reserved. No part of the contents of this book

may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data
Norton, Peter, 1943-

Exploring the IBM PCjr Home Computer
Includes Index.

1. IBM PCjr(Computer) I. Title.
II. Title: Exploring the lB.M. P.Cjr home computer
QA76.8./2593N67 1984 001.64 84-3828

ISBN 0-914845-02-0

Printed and bound in the United States of America

123456789 DODO 890987654

Distributed to the book trade in the United States and Canada
by Simon and Schuster, Inc.

CompuServe® is a registered trademark of CompuServe Information Services, Inc. Digital Research® is a
registered trademark of Digital Research. Epson® is a registered trademark of Epson America, Inc. IBM®,
PCjr'", and XT'" are trademarks of International Business Machines Corporation. Intel® is a registered
trademark oflntel Corporation. Microsoft®, Microsoft® Word, Microsoft® Flight Simulator, and Microsoft®
Multiplan'" are trademarks of Microsoft Corporation. Motorola® is a registered trademark of Motorola, Inc.
Texas Instruments® and TI® are registered trademarks of Texas Instruments, Inc. THE SOURCE5M is a
service mark of Source Telecomputing Corporation, a subsidiary of The Reader's Digest Association, Inc.
The Norton Utilities'", DiskLook'", UnErase'", SecMod'", FileHide'", FileFix'", SSAR'", Hard
Look'", and Hard UnErase '" are trademarks of Peter Norton. UCSD Pascal® is a registered trademark of
the Regents of the University of California.

CONTENTS

Acknowledgments vii
Introduction ix

1 8
The IBM PC Family 1 Connecting With the Cartridges 91

2 9
A Tour Through the Hardware Store 5 Higher Education: Fundamentals of DOS 105

3 10
Numbers, Numbers Everywhere 23 Exploring the Diskettes 121

4 11
The PCjrs Brain: The 8088 31 An Introduction to Video Displays 143

5 12
A Look at Memory and Registers 47 Fundamentals of Text Video 157

6 13
Elementary Education: the ROM-BIOS 65 Fundamentals of Graphics Video 177

7 14
Using What * Know to Go Exploring 74 Communications and the Modem 191

V

EXPLORING THE IBM PCJR

15 18
Super Sound 205 The Printer Adapter and Further Connections 241

16 19
Pounding on the Keyboard 217 Hidden Goodies in the ROM-BIOS 247

17 20
Other Connections 235 Getting Program Access 259

Appendices 275

A: Glossary 277
B: Further Reading 301

C: The Norton Utilities 303
D: The Character Set 307

E: The 8086/8088 Instruction Set 309
Index 311

VI

ACKNOWLEDGMENTS

A book like this is the result of many talents. To start with, we all can express
our thanks to IBM for creating the PCjr. Larry Goldstein started me writing books
about computers in the first place; since writing books has turned out to be lots of
fun and a nice way to make a living, I'm personally grateful to Larry for that.
Nahum Stiskin got the whole project for a series of books on the PCjr going. Tracy
Smith helped keep things on track. Salley Oberlin and her editorial staff wrestled
me to the ground in order to get this book into readable prose. Karen de Robinson
was responsible for the art direction of the wonderful book design. Larry Levitsky
made sure that this book reached its many readers.

Essential help with technical information came from IBM's Jeanette Maher
and Jill Liscom.

Eileen Harris provided aid and comfort. Hi, Mom.

INTRODUCTION

J_UNIOR MAGIC
AT HOME

There is nothing more magical than a
computer, and this book is about how

the IBM Personal Computer Junior
performs its magic.

0 ?~rrp~ ~\~!t

} ~
-~-----~

17 \=1 CJ l:J /:) ~- l
l] 1] (J (:J I_] CJ 17 ~

{J CJ 1.:J 1:1 ~:J CJCJ r:? \\{~
l:J L:=J (· J t7 f;f /"

------,,<.$

EXPLORING THE IBM PCJR

Ever since they were invented, computers have impressed even the
people who make them with the speed and power of what they can do. Never
before has mankind been able to create such a flexible tool-one we can inter
act with and that seems, almost, to take on a life of its own. Even to their
creators, computers have always seemed like magic. And how much more
magical they become now, when ordinary folks can have the power of com
puters in their homes.

The IBM® Personal Computer Junior-known as the PCjr™ or, simply,
Junior-isn't the first computer inexpensive enough to become a home
appliance, but it represents a major advance in home computing for two simple
and compelling reasons. First, the PCjr is significantly more powerful than
earlier home computers, with more speed, more memory, more and better
ways to display both pictures and information, and more general ability to
perform the magic that only computers can perform. Second, the PCjr is a very
close relative of the IBM Personal Computer.

The IBM Personal Computer-which most people just call the PC-had a
dramatic impact on the world of small computing when it appeared in 1981. In
the few years since then, the PC has become the center of the small-computing
world. Most of the important, powerful, and useful software programs that
have been developed since its introduction have either been created specifi
cally for the PC, or have been adapted so that the PC can use them. Now there
is a large library of wonderful software, all focused on IBM personal computers.
The vast majority of the programs written for the PC run perfectly on the more
affordable PCjr. In fact, the only PC programs we can't expect to use are the few
that require more memory, or more disk storage capacity, than Junior provides.

The inexpensive IBM Personal Computer Junior can handle practically
every important computing task that used to be within the abilities only of
much more expensive machines. Before the PCjr, the magic of computing had
already come into the home; but now, with Junior, the magic of IBM PC
software comes home as well.

A QUICK LOOK AT THIS BOOK

This book will take us exploring under the covers of the IBM Personal
Computer Junior, so that we can come to understand its inner workings. Why
would we want to explore the PCjr?

One reason is to satisfy our curiosity about how Junior works and to take up
the intellectual challenge of mastering the concepts buried inside. The PCjr is
probably the most powerful tool that we have at our command. To make the
most of this tool, we need some understanding of the principles behind it.

X

Introduction: Junior Magic at Home

Even if we have no immediate practical use for the inside scoop on how the
PCjr works, this knowledge is interesting in itself and potentially very useful.

The second reason for exploring the PCjr is to become able to move on to
more advanced uses of the machine. If we want to write programs for Junior,
the more we understand this computer, the better the programs we are going
to produce.

But whatever our reasons for wanting to know more, here is the place to
get into the real workings of this remarkable computer. Before we start,
though, let's settle on a little bit of groundwork. Every book has to make some
assumptions about its readers; otherwise, it could end up trying to please the
world, but satisfying no one.

I'll be assuming that you have had your PCjr long enough to have become
comfortable using it. Especially if you are fairly new to computers, I hope that
you have read the first book in this series, Discovering the IBM PCjr Home
Computer. This second book is complete in itself, but it does build on the
information presented in Discovering, so many of you will probably find it
helpful to read these books in order.

It will also be helpful, though again not necessary, for you to know a little
about the BASIC programming language. I'll be presenting a few programming
examples to illustrate certain features of the PCjr, but for those of you who
don't yet know BASIC, we'll move from simple programs to more complex
ones. Since BASIC uses very English-like language and I'll be explaining
what's going on, you should have very little difficulty following the logic of
these program examples.

Some authors of books about the inner workings of computers assume that
you already understand enough to know what does what and how everything
fits together. In this book, I'll try to provide that framework. Of course, I
present lots of information that will be of special interest to computer profes
sionals and hobbyists, but, as much as I can, I'll make it accessible co those of
you who are unfamiliar with the concepts and the terminology.

More than anything else, this book bridges the gap between beginner's
material, which helps you start out, and technician's material, which lays out
the facts coldly and with little or no explanation. You will probably find most, or
all, of what you want to know about Junior in this book, but in case you need to
know where to look for more information, I have included a list for further
reading as an appendix.

In this book, we will take a complete tour of the PCjr. First, in Chapter 1
we'll take a look at the IBM personal computer family; then, in Chapters 2
through 5, we'll look at the basic parts of the PCjr and see how the computer
does its thinking and its work. Then we will move on in Chapter 6 to the PCjr's
elementary education, which is embodied in its ROM-BIOS programs. We

XI

EXPLORING THE IBM PCJR

will take a look at a little assembly language in Chapter 7, and examine the
cartridges in Chapter 8.

For the PCjr's higher education, Chapter 9 will explain the disk operating
system, called DOS, which adds special layers of sophistication. The key to an
operating system is disk storage, so in Chapter 10 we'll delve into the mysteries
of disks.

When the computer shows us its stuff, it uses a display screen. So Chapters
11 through 13 will cover the many aspects of Junior's displays.

Lots of other pieces of magic are also incorporated into the PCjr. We'll
cover the telephone connection in Chapter 14, sounds in Chapter 15, the
keyboard in Chapter 16, and some odds and ends in Chapters 17 and 18. More
mysteries of the built-in ROM-BIOS will be covered in Chapter 19, and we'll
end in Chapter 20 with the secrets of programming access to the PCjr.

That's the magic we will find here, as we go exploring the IBM Personal
Computer Junior.

XII

CHAPTER

1
THE IBM PC

FAMILY
Part of what makes the IBM PCjr

so interesting, useful, and important
is that it is part of a family,

the family of IBM personal computers.

·~

OOOCJO
J l:JOOC:JOO
r.J c _ J 1:J IJ rJ

I

EXPLORING THE IBM PCJR

To help you understand the PCjr, we'll take a short look at the history of the
entire IBM PC family and at the strengths of each family member.

THE FAMILY TREE

The original member of the family is the IBM Personal Computer,
belovedly called the PC, a fairly complete and powerful computer for home
and office use. While it is perfectly adequate for many uses, the PC lacks high
capacity disk storage, meaning that its programs and data are not immediately
available for use. PC users have to insert the program and data diskettes
appropriate for the type of work they are doing (for example, a word-processing
program and a diskette containing files ofletters) and then change the diskettes
when they switch to another kind of work (for example, to a spreadsheet
program).

During periods of heavy use, a great deal of time can be saved if all the
programs and data normally used with the computer are always on tap, so the
second member of the family, the IBM Personal Computer XT™, was intro
duced. (XT is an abbreviation of the word "extended.") The XT contains a
built-in storage disk capable of holding 10 million characters, and another 10-
million-character disk can be added.

Original PCs can now be upgraded to be functionally equivalent to the XT,
by adding an expansion unit that contains the same high-capacity disk the XT
uses. This means that a wealth of programs can be on tap at one time, and a
large amount of information can be used at once. With 10 or 20 million bytes of
disk storage, many businesses and professional workers can now have all their
records and data ready to use. As a personal example, the PC that this book is
being written on contains, in its one 10-million-byte expansion disk, every
program I have bought, every program I have developed for sale, and the text of
every book and article I have written about the IBM personal computers. Even
with all that information, I still have about 20 percent of the PC's disk space left
over for growth. That means that everything I do with my computer I can do
with minimal fuss.

The original IBM Personal Computer represented IBM's entry into the
area of personal computing, with a very powerful computer. The XT and the
expansion unit for the PC model took care of the one shortcoming of the
original PC-complete disk storage. These developments set the stage for the
IBM Personal Computer Junior.

Many people wanted to take advantage of the marvelous software and
computing power of the IBM personal computers but could not afford the cost
of either the PC or XT. IBM's answer to that problem was to develop the
Personal Computer Junior, commonly called the PCjr.

2

1: The IBM PC Family

Naturally, to hold down the cost of the PCjr, something had to be given up.
A modest fraction of the speed-the computing power-was sacrificed to
make it possible to eliminate some costly parts. Also, much of the expansion
capability of the PC and the XT was lost, again to save the cost of the circuitry
that makes expansion possible. But on the whole, the main parts of the PC and
XT were left intact in Junior, so that this little system could have most of the
capabilities and be able to use most of the programs of the first two models.

Although some speed and much of the expansion capability were given up,
many wonderful features were added to the PCjr-features that aren't avail.,.
able on the original PC and XT. These are features that are particularly nice in
home computers but of much less use or interest in business and professional
computers. They include improved color graphics and much richer sound
making ability, both important for educational and entertainment programs.

As we explore the PCjr in this book, I will mention topic-by-topic how it
differs from its bigger brothers; I'll talk about where it has more, where it has
le:,s, and where it is just plain different. The main fact, though, and the most
important thing to remember, is that the PCjr really is a full-fledged IBM
personal computer. It may be the baby of the family, but it is a full-blooded
family member.

And now, on with the show, and into exploring the magic of the IBM
Personal Computer Junior.

3

CHAPTER

2
A TOUR THROUGH

THE HARDWARE STORE
In this chapter we'll take a brief

look at the main physical parts of the
IBM Personal Computer Junior:
the hardware, as opposed to the
software or programming parts.

©)o
0 ~-------"''''

\
\

\

6

\

\-1
I

i

·;., ._ ~ • .,\ If 1!J.
-· _,,

Figure 2-1. A complete PCjr system

7

EXPLORING THE IBM PCJR

A QUICK TOUR

The design of the PCjr is based on the same simple philosophy that guided
the design of its two bigger brothers, the PC and the XT. In essence, this
design puts all the key working components into one integrated cabinet called
the system unit. The system unit contains the working heart of the computer,
and also critical parts such as the diskette drive.

For the convenience and ease of the person using the computer, the
keyboard is provided as a separate detached unit, which can be freely moved
around. This is a real advantage over computer designs that have the keyboard
as an integral part of the system unit. In the case of the PCjr (but not the PC and
XT models), we have a choice of two ways of connecting the keyboard to the
system unit. One is by a cable-as for the PC-and the other is by infrared
light. The infrared connection makes the keyboard even more movable.

To allow the greatest flexibility, the display is not built into any of the three
IBM personal computers. Instead, the display is a separate unit, and this helps
us in two ways: It gives us a freer choice as to the kind of display we use, ranging
from an ordinary TV set to a high-quality color monitor; it also allows us to
move the screen and position it for comfortable viewing without having to
move or reorient the system unit. Figure 2-1 shows the three components that
make up a complete PCjr system.

ONCE AROUND THE OUTSIDE

Now let's take a tour around the outside of Junior's system unit, looking at
all the openings and connections.

The Front

On the front of the PCjr there are three openings, plus ventilation slots and
a light sensor for the infrared keyboard. As Figure 2-2 shows, the biggest
opening, on the top right, is for the optional diskette drive. Below it are two
openings to accommodate software cartridges.

The Diskette Drive

The diskette drive is a standard type used in the microcomputer industry
and is not anything specially developed or made for the PCjr or IBM. The type
of diskette drive that is used in the PCjr is known as a half-high, 5¼-inch,
double-sided, double-density, floppy diskette drive. Let's march through that
word by word.

8

2: A Tour Through the Hardware Store

Figure 2-2. The front of the PCjr system unit showing
the diskette drive, two cartridge slots,
and infrared light sensor

The drive is half-high because it only takes up half as much vertical space
as the diskette drives used on the PC and XT. Those older, standard-size
diskette drives are about 3Yz inches high and 6 inches wide (9 by 15 centime
ters). Through improvements in design and materials, it has now become
possible to make inexpensive and reliable diskette drives that are only half the
height of the old units, or about 1¾ inches (4.5 centimeters) high; the width
stays the same, though, since it fits the size of the diskette. These new drives
are made half the height of the older design so that two can be installed in the
space allotted to one full-height drive-a useful feature for upgrading older
computers. In the case of the PCjr, which was designed from scratch, either
height diskette drive could have been used. The half-high drive was chosen to
help make the system unit lighter and more compact.

The next part of the diskette drive description specifies that it uses 5Y4-
inch diskettes. Although some computers use a larger, 8-inch-diameter diskette,
most popular microcomputers, including all the IBM personal computers, use
the 5Y4-inch size. Using the same diskette size and the same way of storing
information on the diskette are key factors in the PCjr's ability to use nearly all
of the software developed for the PC and XT.

While we are on the subject, we ought to make note of one bit of terminol
ogy that might cause some confusion. Because the 8-inch size is called a
diskette, our 5Y4-inch size is sometimes called a mini-diskette. So, if you are
ordering supplies from a computer catalog and see a listing for mini-diskettes,
don't be confused-that's what you need for your PCjr. There are also several
kinds of micro-diskettes, which are about 3 or 4 inches in diameter; our PCjr
doesn't use them.

9

EXPLORING THE IBM PCJR

Our diskettes are also double sided. This means that our Junior's diskette
drive can use both sides of the diskette's recording surface. This gives us twice
the storage capacity of single-sided diskettes. Our double-sided drives can
work with diskettes that are single or double sided. Unlike a record player,
where you have to flip the record to use both sides, the disk drive has two
heads, one for each side of the diskette; so you never have to flip the diskette.

When we buy programs for our IBM personal computers, they usually
come on single-sided diskettes, simply so they can be used on those older PCs
that don't have double-sided drives. Our PCjrs can use either format, but we're
usually better off transferring our programs onto double-sided diskettes.

The term double density is the next part of the diskette drive specifica
tion. Density refers to how much information is packed into a given space on
the diskette, and particularly to how many tracks of data are written onto the
diskette. (A track on a diskette is roughly comparable to a track of music on a
phonograph record.) Double density is the standard format for IBM comput
ers, and it provides 40 tracks per diskette. Our PCjr uses these 40-track,
double-density drives.

The Cartridges

Besides the diskette-drive opening, there are two other slots on the front of
the PCjr. These accommodate software memory cartridges. A cartridge plugged
into either of these slots provides the computer with additional, prerecorded
read only memory (ROM) that can be used, but not changed, by the computer.
Normally, the cartridges contain such programs as the advanced BASIC pro
gram, or they contain game programs. When a program cartridge is plugged
into a PCjr, the program can then be executed and used directly.

The Back

Moving to the back of the PCjr, we find 13 different plugs and sockets that
are used to connect all sorts of equipment. They are labeled with letters,
molded into the cover, to help us identify them and use the right ones. We will
go through them from right to left, as seen from the back. Figure 2-3 shows you
the sockets and the letters that identify them.

The first socket, labeled A, is a low-voltage, audio output jack. This jack is
for connecting the PCjr to a hi-fi system to allow high-quality reproduction of
the many sounds that the PCjr can generate.

Like the other IBM personal computers, the PCjr has a built-in speaker to
create the sounds that it generates. Unfortunately, this speaker is about as low
quality as you can get, and so it does a very crude job of producing sounds.
Since sound generation is one of the special features of the PCjr, the quality of

10

2: A Tour Through the Hardware Store

Figure 2-3. The back of the PCjr system unit
showing the 13 sockets

these sounds is partly wasted if we use its built-in speaker.
All the sound signals that go to the speaker, though, also go to the audio

output jack, and some of the PCjr's sounds only go to the audio jack. When a hi
fi cable is plugged into this audio jack, the PCjr's built-in speaker is automati
cally shut off so that it will not interfere with the better-quality sounds coming
from the hi-fi. The electrical signals sent to this jack are adjusted to the level
needed for input into a hi-fi amplifier. They are not strong enough to be used
directly with a loudspeaker. Ordinarily, this jack will be connected to the AUX,
or auxiliary input of an amplifier. The better sound quality that can be pro
duced through a hi-fi system can be very valuable for entertainment programs,
and it is nice for any program that creates sounds.

The next connection on the system unit's back is the power input, labeled
P; this is where we plug in Junior's power transformer. The PCjr has a two-stage
power supply. The first stage is the transformer, which converts our high
voltage, AC household current down to a safer 17 volts, still AC. The 17-volt
power that comes out of Junior's transformer plugs into this P socket on the
back of the system unit. The step-down transformer is outside the PCjr's
system unit for two main reasons: First, it makes the PCjr safer, since there is
nothing but low voltages inside the system unit; and second, it separates the
heat-sensitive circuitry inside the system unit from the heat-generating trans
former. The second stage of the power supply is inside the system unit, and
we'll cover it shortly.

Next comes the cassette recorder outlet, labeled C. This socket is used to
connect an ordinary cassette tape player to the computer. Cassette tapes have
been used as a way for very low-priced home computers to store programs and
data. Cassette recording is similar to disk data storage, but it is cheaper and also

11

EXPLORING THE IBM PCJR

much slower and clumsier. The PCjr's BASIC programming language gives all
the commands necessary to store and retrieve cassette data. The original PC
model also came with a cassette connection, but it was hardly ever used; the
higher-powered XT model doesn't even have a cassette outlet. We probably
won't see much use of the cassette connection with our PCjrs, but it is nice to
know that it is there, if we have a use for it.

After the cassette plug comes the serial port, labeled S. The serial port is
designed to transmit signals following a widely used computer standard known
as RS-232C. You'll find this facility commonly called RS-232, or a serial port, or
a serial connection; all these terms refer to the same thing. The serial port can
be used for many things, but two are most common: to connect the computer to
a telephone (to talk to other computers), or to a printer.

To use the computer with a telephone, the computer's signals have to be
converted into telephone signals, which is done with a modem. To do this
converting, we can either plug a modem into the serial port and then connect
the modem to a telephone, or we can use an optional internal modem that fits
inside the PCjr's system unit and connect it to a telephone. When we use the
internal modem, the serial port socket is bypassed.

To connect the serial port to a printer, we must have a printer that is
designed to work with the RS-232 serial format, such as the IBM Compact
Printer. Some computer printers use this serial format, while others use another
format, known as parallel, or Centronics. Before you plan to connect a printer
to Junior's serial port, be sure that you have the right kind of printer.

The next socket is labeled D, for direct-drive RGB video. This is one of the
three outlets for connecting the PCjr to different types of display screens. To
get the highest-quality picture possible, this outlet provides separate signals
for each of the three colors that are used to make color video images: red,
green, and blue-the initials of these colors give RGB its name. The RGB
signal can be connected to an RGB monitor, which is the highest-quality
computer display screen. The IBM Color Display is an RGB monitor. Many of
the new component-type TV sets can also use the RGB signal, although
ordinary TVs can't.

Next along is the modem output, labeled M. As we mentioned, to use the
computer with a telephone, the computer's serial signal must be converted by a
modem. If we use a separate external modem, it connects to the PCjr's S, or
serial, plug. But if we install Junior's optional smart modem, then the serial
signal comes out of this M socket, already converted to telephone format. This
modem outlet takes a standard, modular-type telephone cord.

After the modem outlet comes the second of the three video outlets, the
composite video signal, labeled V. While the D connection is for use with
expensive RGB monitors, this V connection is for cheaper composite display
monitors. The composite signal combines the three color signals into one,

12

2: A Tour Through the Hardware Store

which is what gives it the name composite. There are two types of composite
display monitors that we can plug into this outlet. One is a composite color
monitor, which will show the PCjr's color capabilities; the other is a composite
monochrome display, which shows everything in one color (usually green or
amber), but which works with the same composite video signal. Composite
color displays produce the same kind of picture as RGB monitors, but with not
quite the same crisp quality; these displays are excellent for programs that use
color and graphics. Composite monochrome displays usually are fine for text
work (such as word processing) and poor with programs that use color or
graphics.

Next is the third and last of the video outputs, labeled T for television.
This is the plug that is used to connect the computer to an ordinary TV set. A
TV set needs a special form of video signal, which must include what is called
radio-frequency, or RF, modulation. This T outlet provides the basic signal,
and the PCjr's TV adapter cord has an RF modulator to finish getting the signal
ready for our TV sets. TVs, of course, produce both sound and picture, and this
outlet is designed to include the PCjr's audio signal (which also goes out the
audio socket, labeled A) along with the picture signal. That lets our TVs give us
the complete sound and picture output from the computer.

The next item is the plug for a light pen, labeled LP. A light pen is a special,
hand-held probe. When we touch it to the computer's display screen, our
programs can tell exactly where on the screen the pen is. With the right
programs, we can use the pen to draw on the screen, and do other things.

Next is the keyboard socket, labeled K. While we can have our PCjr's
keyboard talk to the system unit by infrared light, we might want a wired
connection instead. A wired connection makes it possible to have several
Juniors in the same room, or to have the keyboard out of sight of the system
unit's light sensor. When we use the keyboard cable, it plugs into this K socket.

The next socket is labeled L, and IBM says that it is for a use that will
come later.

The last two connections, both labeled J, are for plugging in joysticks, which
are used with games and graphics programs. There are two joystick connec
tions, so that two players can use a program at once.

And that finishes our tour across the back of the PCjr. There is only one
thing left, and that is the hidden connection on the system unit's right side.

The Side

Hidden behind a panel on the right side of the system unit is the PCjr's 1/0
channel connector. This connector is a general-purpose connection to the cir
cuitry of the computer. It is the equivalent of the expansion sockets that are inside

13

EXPLORING THE IBM PCJR

the PC and XT models. IBM's only use for this 1/0 channel connector is as the
place to connect the parallel printer adapter, but we can use it for many things.
Much of the non-IBM equipment that can be added to a PC or XT can also be
added to the PCjr through this connection. Our PCjr doesn't provide a physical
space for additions, which the PC and XT do with expansion slots. Any add-on
equipment for the PCjr either will have to be self-contained-like the IBM
Printer Adapter-or will have to fit into some kind of expansion component
specially designed to plug into the PCjr's 1/0 channel connector. IBM left the
physical accommodation of add-on equipment for others to create; but the
electronic accommodation of add-ons is taken care of with this 1/0 channel.

A LOOK INSIDE

Now we're ready to explore the insides of the PCjr. You might want to pry
off the top of the system unit so you can look at the parts as we discuss them. It's
simple and safe to do; just twist a screwdriver in the slots in the back. You'll find
official directions in the PCjr's Guide to Operations.

The System Board
Within the cabinet of the system unit is the main circuitry that makes

the computer go. All the key electronic parts are mounted on a single circuit
board called the system board. The system board is also sometimes called the
motherboard, and some of the IBM literature refers to the system board as the
planar. If you run across any of these terms, remember that they all mean
the same thing.

The system board is built up of several layers, so that the many intercon
necting wires can crisscross without touching each other. The system board
serves two purposes: It provides the physical framework to hold the electronic
components in place, and it makes nearly all the electrical connections needed
among the parts, doing so through the wires embedded in the board itself.

The system board contains virtually all the electronic parts that make the
PCjr go. These include the Intel® 8088 microprocessor (the brains of the
computer), the memory, and several other particularly sophisticated parts,
including a programmable interrupt controller, a programmable peripheral
interface, a special sound generator, and a timer. We'll take a look at these
components now.

The Memory
A computer needs memory to function, and the system board contains two

different kinds of memory. Ordinary computer memory, commonly called

14

Tl SN76469N
sound chip

Power
board
connector

2: A lour Through the Hardware Store

6845
video
controller

8255
programmable
peripheral

8259A
programmable
interropt
controller

8250
serial 1/0
controller

interface 8253

Infrared Diskette
recerver drive
connector adapter

64K
connector

memory Internal
expansion modem
connector connector

Figure 2-4. The PCjr system board

15

ROM

timer

8088
microprocessor

1/0
channel
connector

EXPLORING THE IBM PCJR

RAM or random access memory, can be read and modified, and the computer uses
it like a working notepad. The RAM used by the PCjr is provided in the form of
64K memory chips. The PCjrcontains 64K (65,536) bytes, or characters, of RAM
on its system board, and another 64K of working RAM can be added.

A little confusion in terminology creeps in here. When computer folks talk
about a computer's memory, they usually talk in terms of bytes. A byte is the
amount of memory needed to store one character, such as the letter A, and is
made up of eight bits, or binary digits. But when these same folks talk about
memory chips, they talk in terms of bits. So, to get 64K of working memory, in
8-bit bytes, we need to use eight separate 64K (bit) memory chips.

To guard against errors, most computers have one additional parity bit for
each byte; the parity bit is set based on the eight data bits on the byte. While
the PC and XT models have parity bits, our PCjr's memory doesn't. That
sounds serious, but it isn't, for two reasons. First, today's memory chips are
very reliable, so errors almost never occur. Second, the PC and XT don't make
very good use of parity checking anyway. Leaving out parity checking helped
IBM keep the cost of the PCjr low.

The second kind of memory installed on the PCjr's system board is ROM,
or read only memory. A computer cannot do anything without programs to tell it
what to do, and the most essential and fundamental programs for controlling
the PCjr are stored in the ROM. Since the information stored in ROM cannot
be changed, having the control programs in this type of memory eliminates the
danger of accidentally erasing them. Also, they are always there, ready and able
to perform the fundamental logic operations necessary to control the computer.

There are two separate kinds of programs stored in the PCjr's ROM. The
first is called the ROM-BIOS, or Basic Input/Output System. The ROM-BIOS
programs are truly the most fundamental to the operation of the computer, and
they are responsible for such things as responding to our touch on the com
puter's keyboard and keeping track of the time of day.

In addition to the ROM-BIOS, the PCjr's ROM also contains the programs
necessary to provide us with the BASIC programming language; this is called
the ROM-BASIC. (Let's pause to avoid some confusion; the letter B in ROM
BIOS stands for basic, meaning fundamental; when we say BASIC in capital
letters, we mean the programming language whose name is BASIC.)

Any programming language requires some supporting programs in order to
work. The core programs needed to operate BASIC are built into the PCjr's
ROM-BASIC. More sophisticated aspects of BASIC are provided by programs
that are kept either in the BASIC cartridge or on diskettes. For the full glory of
the BASIC programming language, we need these extra parts of BASIC; but for
ordinary BASIC use, the permanently built-in ROM-BASIC is enough. This
means that we can do BASIC programming on our Juniors without needing any
additional cartridges, disks, or equipment.

16

2: A Tour Through the Hardware Store

The PCjr's system board includes a lot of other circuitry, but we are going to
concentrate on the really interesting parts: the memory, which we've already
discussed, the smart chips, about which we'll learn more soon, and our next
topic, the plug-in sockets.

The System-Board Sockets

All sorts of things must plug into our PCjr's system board. Lots of these
plug-in connections are located around the edge of the system board-they are
the connections to the outside world, such as the video outputs and the
keyboard socket discussed in the last section. But in addition, there are four
special sockets, located in the middle of the PCjr's system board, for four
special connections.

The first of these four brings power, in various forms, to the system board.
The PCjr's power supply is responsible for providing specially groomed , DC
power. The complete power supply for the PCjr is in two stages. The first
stage, as we've mentioned, is an external transformer that lowers the AC
voltage to a safe 17 volts. The second stage is a power supply board that fits inside
the system unit cabinet and plugs into this special socket. It converts AC
current into DC current and adjusts and grooms the voltage. This power supply
is on a separate board, and not part of the system unit, for easier maintenance.
It provides 33 watts of power, compared to the 64 watts provided to the original
PC and the 130 watts to the XT. This smaller power supply is part of what
makes it possible for Junior to be smaller, lighter, and less expensive than its
big brothers.

The second of the special internal sockets accommodates a memory board
that can provide the PCjr with its second 64K of memory. Without this extra
memory, all PCjrs have 64K of RAM located on the system board; with the
memory expansion, the PCjr has 128K of usable memory. The most memory
that can normally be attached to a PCjr is 128K, while the PC and XT models
can take up to 640K, or five times as much. This memory limitation is one of
the main distinctions that sets the PCjr apart from its bigger relatives .

The third special socket is designed to accommodate a special intelligent
modem, or telephone adapter. This modem attachment provides all the com
puter hardware needed to connect the PCjr to a telephone line, so that we
can talk computer-talk with other computers. Using the modem attachment
and appropriate programs, we can communicate with other Juniors, with
mainframe computers, and with timesharing information services such as
THE SOURCEsM and CompuServe® which offer up-to-the-minute news and
business reports.

The fourth and last of the special sockets on the system board is used to

17

EXPLORING THE IBM PCJR

plug in the diskette-drive adapter. This adapter is needed when a diskette drive is
part of the system. The diskette-drive adapter is specially designed for the
PCjr, and it is not the same as that used on the PC and XT models. The adapter
for the PC and XT is much more complicated and expensive; it can control up
to four diskette drives and it operates independently of the rest of the com
puter. In contrast, the PCjr's inexpensive adapter is intended to control only
one diskette drive, and the features it lacks are balanced by a more complicated
ROM-BIOS program that provides special support for the PCjr's diskette. In
effect, expensive diskette circuitry is replaced by cheap ROM programs in the
PCjr. This reduces its performance compared to the PC and XT, but it is an
important factor in making it so affordable.

One of the most noticeable differences between the PCjr and the other
IBM personal computers is Junior's lack of the general-purpose expansion slots
found in the PC and the XT, which can accommodate add-on equipment: more
memory, display adapters, disk controllers, or whatever. In the PCjr, things are
quite different. Each of its four internal sockets has its own dedicated use. In
the place of expansion slots the PCjr has the single 1/0 channel connector on
the right side of the PCjr's cabinet. However, IBM has largely made up for
Junior's lack of expansion slots by anticipating the needs of most users and
building in those features people are most likely to want.

Another important difference between the PCjr and the PC and XT
models is that the latter two can use either or both of two different display
adapters: the monochrome (black-and-white) adapter and the color/graphics
adapter. This gives the PC and XT greater flexibility, but it means that a
display adapter must be bought for each computer. With our PCjr, the equiv
alent of the color/graphics adapter is built into the system unit. This design
feature reduces the cost of the PCjr and eliminates the need for expansion slots
to accommodate display adapters.

The Brain-the 8088
The brain of the PCjr is the Intel 8088 microprocessor. It is exactly the

same as the one used in the PC and XT models, meaning that Junior starts out
with exactly the same computing brainpower as its bigger relatives.

We'll learn about the logical inner workings of the 8088 microprocessor
later; this chapter is devoted to computer hardware, so let's look at the hardware
aspects of the 8088.

The 8088 is a member of a family of microprocessors designed and built by
the Intel Corporation. A close relative of the 8088 is the very similar 8086, and a
lot of discussion that concerns our microprocessor goes on under the name of
the 8086. For example, one of the reference sources mentioned in the appen
dix of further reading is The 8086 Book.

18

2: A Tour Through the Hardware Store

Computer microprocessors grow in capacity by expanding the amount of
data they can work with at one time-which is called the bus size. The larger
the bus, the larger the amount of information that the microprocessor can
sling around at one time. The size of the bus is also referred to as the
microprocessor's bit size.

The first microprocessor, a very primitive creature indeed, was the Intel
4004. It had only a 4-bit bus; it could only transfer four bits of data at a time.
The first microprocessor to see widespread use was an outgrowth of the 4004
called the 8080. It had an 8-bit bus, and it could do arithmetic eight bits at a
time. While the 8080 (and some of its competing offshoots, such as the Z80
microprocessor) was very successful, it suffered from the 8-bit limitation, which
held down both the amount of memory it could use, and its operating speed.

To break out of those limitations, Intel produced its 16-bit microprocessor,
the 8086. The 8086 could sling numbers around 16 bits at a time; it also talked
to the world around it (to its memory, for example) 16 bits at a time. The
internal capacity was a real advantage, but the 16-bit external bus did have one
drawback: It couldn't use the cheap and readily available 8-bit circuitry that
had become popular with 8-bit computers. The solution to that problem was
the 8088 microprocessor. The 8088 is internally exactly the same as the 8086: It
uses the same programs, handles the same data, and has the same computing
power. But when the 8088 talks to the outside world, it uses an 8-bit external
bus so that it can work with inexpensive 8-bit parts. (The 8086's 16-bit external
bus makes it slightly faster than our 8088.)

All of the first three IBM personal computers share the 8088 micro
processor, with its 8/16-bit split personality.

The 8088 and the 8086 are designed to work with other processors in three
different ways. First, they include features that make it possible to wire
together several 8088s (or several 8086s), so that they can act as one closely
cooperating team. The IBM personal computers do not use this feature of the
8088 design, but it is interesting to know about. The other two ways that our
microprocessor can get assistance are with either of two special co-processors.
Two different kinds of computing workload can be moved out of the main
microprocessor and into a specialized co-processor. One is the 8089 1/0 pro
cessor, which can take on the work of talking to peripheral devices; none of the
IBM personal computers use the 8089. The other is the 8087 arithmetic co
processor. The 8087 is designed to do complicated arithmetic at lightning
speed, and it has remarkably sophisticated features.

Both the PC and the XT models have the circuitry and a socket needed to

accommodate an 8087. When the 8087 is plugged in, and appropriate software
is used, the PC and XT can do arithmetic ten times faster or more. Our PCjr,
though, cannot take an 8087 chip. This is one of the several ways in which the
PCjr is a reduced-performance model of IBM personal computer. The simple

19

EXPLORING THE IBM PCJR

fact is, though, that very few PCs and XTs use the 8087; although the 8087 can
enhance almost any computing work, it is mostly good for high-intensity
engineering calculations-what is called "number-crunching." The PCjr is
not a number-cruncher's computer, and so we lost very little when the 8087 was
not included in the PCjr's design.

The Helpers-the Other Smart Chips
In a sense, everything that is connected to the computer's system board is

there as a helper to the microprocessor; but there are a few circuit elements that
are particularly strong helpers. These are the other smart chips that are
themselves key parts of the workings of the computer, including:

■ The Intel 8259A programmable interrupt controller (PIC). Interrupts can be
thought of as electronic "attention getters." A key part of the success of a
microprocessor like our 8088 is the use of interrupts to help manage the
processor's relationship with the world around it, including the devices to
which it is connected. The 8259A PIC is used to control when and how
interrupts from the computer's external devices are presented to the micro
processor. Although the 8259A is programmable, such programming is complex
and best left to experts. We have little need for details about how the PIC
works, but it is interesting to know who the main friends of the family are.

■ The Intel 8253 timer. Many of the most important functions of the PCjr
require the use of a timer that can be controlled. For example, the cassette
interface uses the timer for the cassette tape signals, and sounds on the PCjr's
speaker can be generated with the 8253 timer as well.

■ The Intel 8255 programmable peripheral interface (PPI) helps control the
various peripheral devices that work with Junior by supervising the ports
through which the peripherals talk.

■ The Motorola® 6845 video controller chip provides the signals and control
needed by a cathode ray tube (CRT) display screen.

■ The Intel 8250 chip takes care of supplying communications control
bits, modem control functions, and similar operations needed by the RS-232
serial port.

■ The Texas Instruments® SN76496N sound chip is used for the PCjr's more
sophisticated sound production. (For simple sound generation, all IBM per
sonal computers make use of the 8253 timer.) The sound chip is designed to

produce the kinds of sounds needed by the better game programs. It has three
voices that can produce three different notes or musical tones. Each voice has
its own separate attenuation, which is used to make sounds fade in and out. In

20

2: A Tour Through the Hardware Store

addition to the three voices, the sound chip also has a fourth noise channel that
can be used for nonmusical sounds, such as explosions.

Apart from the TI® sound chip, all of the helpers mentioned are common to
the PC and XT as well as our PCjr.

And that completes our basic tour through the PCjr's hardware.

21

CHAPTER

3
NUMBERS, NUMBERS

EVERYWHERE
The IBM Personal Computer Junior,
or more properly the processing unit

inside the computer, is a general
purpose, logical machine that can be
made to do just about any task that

can be described in complete detail.

EXPLORING THE IBM PCJR

The most important thing about a computer is that it has the ability to carry
out a set of instructions. These instructions are a computer program. If the
program is written in the correct form and describes a specific task, the
computer can perform that task and give us some useful or interesting result.
This ability to carry out instructions is the heart of what computers and
computing are all about.

BRIDGING THE GAP-PROGRAMMING LANGUAGES
The computer program must, in the end, be expressed in what is called

machine language. This is the most detailed form of program, and it is com
pletely unintelligible to most human beings because it is fuO of so many
niggling details, all expressed in numbers. To make computer programming
easier, all sorts of programming languages have been developed. The computer,
however, cannot work with these programming languages directly-one way
or another, they first have to be translated into machine language.

One form of programming language is called assembly language. Assembly
language is very close to machine language; it restates the computer's machine
language in terms programmers can understand. Its main advantage is that
it uses meaningful words, such as ADD, to represent incomprehensible
machine-language codes, such as hex 83C207. Assembly language is more or
less the exact equivalent of machine language, but translated into a more
readable form. In fact, whenever people write about machine language, they
usually express it in assembly language. That's what we'll do in this book.

Translating computer programs into a form that the computer can work
with is the job of an assembler (in the case of assembly language), an interpreter
(in the case of ordinary interpreted BASIC), or a compiler(in the case of Pascal,
COBOL, FORTRAN, or compiled BASIC). The terms-assemble, interpret,
and compile-are different; the mechanics of the process are different; but the
result is the same: a machine-language program in one form or another.

Computer programs work with data that have to be represented in a form
that the computer can accept. Data vary as to how appetizing they are to
computers. Computers like numbers very much, especially small whole num
bers such as 1, 2, and 3. Other kinds of data, such as people's names, addresses,
and telephone numbers, are a little harder for computers to swallow; but with a
little encouragement computers can handle anything.

COUNTING LIKE COMPUTERS
In the next chapters we are going to look at the details of computer

operations. We will often have to speak in the computer's terms, especially

24

3: Numbers, Numbers Everywhere

where numbers are concerned. To make sure that you are familiar with the
terms and notations that we'll be discussing, let's take a quick look at them here.

To a computer, everything is numbers; numbers are numbers, programs
are numbers, and even letters of the alphabet are numbers. There are many
ways to write numbers, some of them oriented to people and some oriented
to computers.

We all learned in school to work with numbers in decimal notation, which
means that our numbers are based on powers of ten. Some people think that
decimal is the most common notation because we have ten fingers. Decimal
numbers are written with ten different symbols, the digits 0, 1, 2, and so on, to
9; past 9, the digit symbols are used in combinations to express larger numbers,
so that the next number after 9 is written as 10. For example, if we write a
number like 123, we mean 100 (or one times ten squared) plus 20 (or two times
ten) plus 3; the total is the value 123. But there are other notations that would
write the same value in other ways.

Binary

Now let's base a number system on only two of our ten fingers, say our
index fingers. This number system would be binary-based on powers of two.
Binary numbers are written with only two symbols, 0 and 1.

Computers don't have fingers, of course, but in their heart of hearts they
like to be binary and the reason is very simple. In the electronic circuitry that
makes computers function, it is very easy to represent the two binary values
either by the presence or absence of electrical power or by two voltages, one
higher and one lower. It is much easier and more reliable to build electronic
circuits that have only two values (that are binary) than it is to build circuits that
represent more than two values.

While binary numbers inside the computer are represented as high and low
voltages, when they are written out for us to see, they appear as a string of zeros
and ones. Each zero or one is a binary digit, which we call a bit. Here is an
example of a binary number made up of eight bits:

01111011

This particular combination of bits, interpreted as a binary number, represents
the value written earlier in decimal: 123.

Binary notation, though, has some real disadvantages: It is lengthy, and it
hides some of the structure that often underlies numbers inside the computer.
To avoid those shortcomings, another notation is usually used with computer
numbers; this notation is called hexadecimal, or often just hex for short.

25

EXPLORING THE IBM PCJR

Hexadecimal
Hexadecimal uses 16 as a base, whereas decimal uses ten, and binary uses

two. Hex notation is widely used in the computer world. It was first popu
larized by IBM itself in the early 1960s, when the corporation introduced the
360-series of computers.

Why base a number system on 16? If you take four binary digits-four bits
and see how many numbers you can make with them, you get 16 combinations-
16 values. Since hexadecimal numbers are based on 16, each hex digit can
represent four binary digits. This means that numbers that are actually binary can
be written in one-fourth as many symbols in hexadecimal notation. The numbers
are the same, but the way of writing them is more compact.

Compactness isn't the only reason for using hex notation instead of binary,
though. As we'll see when we learn more about how computer numbers and
memory work, bits are usually used in multiples of four or eight. So hex
notation helps us see some of the structure that underlies binary numbers.

How are hex numbers written? With a base of 16, we need 16 symbols to

write in hex. The symbols start out with the same ten we use for decimal
numbers: 0 through 9. After 9, we need six more symbols to represent the
values 10 through 15. Forthis, hex uses the letters of the alphabet: A represents
the value 10, B represents 11, and so on through F, which represents 15. As with
decimal, binary, or any other notation, higher numbers are represented by
combinations of symbols. So the decimal value 16 is written in hex as 10.

Here are some examples. The sample number, 123, that we used earlier is
7B in hex (seven times 16, plus 11). The decimal number 1492 is 5D4 in hex,
while 1776 in hex is 6F0.

A moment's thought will show you that 10 represents the value of the base
in any number system. In decimal notation, ten is written as 10; in binary
notation, two is written as 10; and in hexadecimal notation, 16 is written as 10.
The numbers are written with the same characters, but the value they repre
sent depends upon the number system, or base, that is being used.

Figure 3-1 is a simple summary of the 16 different hexadecimal digits, with
their decimal equivalents and the four binary bits that they represent.
Remember that, for working with computers, hex numbers are really used as
shorthand for groups of four bits.

In this book we will be representing many numbers. We will use decimal
where practical and, when it's useful, we'll give the hex equivalent. Whenever
we use hex, we'll indicate very clearly that hex notation is being used.

Numbering Bits
Occasionally we'll have to refer to particular bits that are used in the

computer. We'll then !-1se the same notation that IBM uses, which is to number

26

3: Numbers, Numbers Everywhere

Hex Binary Decimal
Digit Bits Equivalent

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
s 0101 s
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Figure 3-1. Hexadecimal number system

the bits from right to left starting with 0. This may seem to be a confusing way
to refer to particular bits, but it is traditional and, more importantly, it is
consistent with the usage in IBM manuals.

There are two fundamental sizes of data our computers work with: the 8-bit
byte, and the 16-bit word (which is made up of two 8-bit bytes). When we refer
to the bits in an 8-bit byte, they will be numbered O through 7, with the 0-bit
being the rightmost, or low-order bit, and the 7-bit being the leftmost, or high
order bit. Similarly, the bits in a 16-bit word will be numbered O through 15.

To help make this bit notation clearer, Figure 3-2 shows a table of the bits in
an 8-bit byte. The table shows the bit number, its location in a byte, and its
numeric value.

If you are mathematically inclined, you'll see that the bit number is the
power of 2 represented by that bit position; so, for example, bit number 3 has
the value of 2 to the 3rd power, or 8.

Text as Numbers

Computers don't work just with numbers; they also work with letters of the
alphabet, punctuation, and so forth-the kind of symbols that you are reading
here. This kind of information in computers is called text, or ASCII text.

27

EXPLORING THE IBM PCJR

Bit Location Numeric Value
Number in a Byte of the Bit

7 1. 128
6 .1. 64
5 . . 1. 32
4 .. . 1. ... 16
3 1. .. 8
2 1.. 4
1 1. 2
0 1 1

Figure 3-2. Bit notation

(ASCII is the acronym for American Standard Code for Information Inter
change.) Since everything is a number to a computer, letters of the alphabet
and other text characters are represented by code numbers, and ASCII is the
standard code for representing text in computers. For example, the capital
letter A has the numeric value 65 in the ASCII codingscheme, while a comma
has the value 44.

We will refer to ASCII characters in one of two ways; When the character
symbol is familiar to us all, we will just show it by itself, like the letter A,
or in quotes, like the comma ", ". At other times, we will refer to the numeric
value of the symbol, either because we want to know the value of the ASCII
character, or because the character is special and doesn't have a familiar
appearance. For this purpose, we'll refer to ASCII characters using the same
notation as the BASIC programming language. Here are two examples: The
capital letter A is CHR$(65), while the lowercase letter a is CHR$(97). Note
that the difference between A and a is 32. All lowercase letters of the alphabet
have numeric values 32 higher than their uppercase equivalents. Want to prove
what we just claimed? Figure 3-3 shows a simple BASIC program that demon
strates the ASCII values of the letters of the alphabet. You can try it on your
own PCjr.

The Meaning of K
There is one more kind of notation we need to mention. In computer

jargon you frequently encounter the letter K. K-which is short for kilo, the
metric word for 1,000-is used with computers to represent a binary number
whose exact value is 2 to the 10th power, or 1,024. Since 1,024, or K, is a round

28

3: Numbers, Numbers Everywhere

10 'ASCII value of alphabetic character!!
20 I

30 FOR I • 65 TO 90
40 PRINT I; 11 i!S 11 ; CHR$(I>; 11 , 11 ;

50 PRINT I; 11 plu!S 32 is 11 ; CHRS<I + 32)
60 NEXT I
70 END

Figure 3-3. A program to demonstrate the ASCII values
of letters of the alphabet

number in binary and close to a round number in decimal, K has become a
convenient shorthand symbol for representing large computer numbers.

More than anything else, K is used in reference to memory capacity. For
example, the Junior comes with either 64K or 128K of memory, which means
that it has 64 times 1,024 bytes (65,536) or 128 times 1,024 bytes (131,072). Our
diskettes can each hold 320K (327,680). For simple mental figuring, you can
think of K as being 1,000 (and sometimes people use K when they really mean
thousands: "I sold my old car for 3K"). But when you need to be exact,
remember that each K is 1,024.

Now that we are all speaking the same language, let's get back to our IBM
Personal Computer Junior.

29

CHAPTER

4
THE PCJR's BRAIN:

THE 8088
The Intel 8088 microprocessor

is the "thinking," working, active part
of our computer, so in this chapter

we'll take a closer look at it.

EXPLORING THE IBM PCJR

THE BOBff s INSTRUCTIONS

Built into the 8088 is a very complicated set of instructions. This instruction
set was designed for power, for flexibility, and especially for compactness. The
size of each instruction varies from one byte to as many as six bytes. By design,
the most basic and often used instructions are among the shortest. In most
cases, each simple operation, such as adding or subtracting, has dozens of
different forms. These variations on the instructions depend upon the size of
the numbers being handled, on whether they are single bytes or 2-byte words,
on where the numbers are (in memory or in quickly accessed, temporary
storage areas called registers), and on how they are to be found (since there are
quite a few ways to find things in memory).

Like most microprocessors, the 8088 has instructions to add, subtract,
multiply, and divide. It also has special instructions to add or subtract the
number 1 to or from another number-a very common operation in computer
programs. It is tricks like these special instructions that help make the 8088's
programs so compact. On the first computer I ever programmed, the IBM 1620,
an instruction ten bytes long was needed to add 1 to a number; with the 8088, it
can be done with an instruction only one byte long.

Similar tricks common to most microprocessors allow for very compact
forms of instructions that transfer control of the computer from one part of a
program to another, such as the JMP (jump) and CALL instructions.

WORKING WITH DATA

The 8088 microprocessor works with very few, simple forms of data.
Everything that we do with the computer is founded on two simple building
blocks: the 8-bit byte and the 16-bit word. The byte is the more fundamental
unit, and when the 8088 addresses its memory, bytes are the basic unit
addressed. When the 8088 works with words, it is simply taking two adjacent
bytes and treating them as a single unit, which we call a word.

Bytes and words can be handled and interpreted in several different ways.
However we look at it, a byte is made up of eight separate bits, so that a byte
can hold a value that can be any of 2 to the 8th power, or 256, distinct
possibilities. A word, with 16 bits, can hold any of 2 to the 16th power values, or
65,536 in all.

We can interpret these values in various ways. If we are working with text
data, like the text of this book, each byte is used to store a single character of
the text represented by its ASCII numeric code. For example, the letter A is
stored as CHR$(65) (hex 41), while the blank-space character is stored as

32

4: The PCjr's Brain: The 8088

CHR$(32) (hex 20). For text data we always use bytes-16-bit words are of no
use when we're dealing with text data.

There is quite a bit more to know about text data, but much of it relates to
how text data are stored on diskettes, so we'll put off more discussion until
Chapter 10.

When we work with numbers, there is a host of ways to look at bytes and
words. First let's just consider whole numbers. These are what BASIC calls
integer values and identifies with the% symbol as, for example, in the variable
names A%, THIS%, and THAT%.

When the 8088 works with a byte, it can treat that byte as an unsigned,
positive number, which could have any value in the range O through 255 (hex
FF, the largest byte value). We can also tell the 8088 to treat the same bytes as
signed numbers, which can take on both positive and negative values. The
range for bytes interpreted as signed numbers is from -128 through + 127.
(When we work with signed numbers there is an unequal number of values
available for positive and negative numbers. For reasons too complex to go into
here, the extra value is given to the negative range, so there is one negative
number, -128, that doesn't have a corresponding positive number.)

When the 8088 works with 2-byte words, we have a wider range of values. A
word interpreted as an unsigned, positive number can have a value ranging
from O through 65,535. As a signed number, the value can range from - 32,768
through +32,767.

We can make up whole integer numbers with three, four, or more bytes
for a wider range of values. Unfortunately the 8088 doesn't work easily with
numbers this large-this is what makes it a 16-bit computer. We can do
arithmetic on these larger numbers, but it involves some special program
ming-the ability is not built into the 8088.

Of course, we don't do all of our work with whole numbers; we need
fractional numbers as well. Computers deal with fractions through the use of
what are called floating-point numbers. Floating-point numbers are made up of
some numeric digits, and a number that indicates where the decimal point
is for the number. The decimal point can "float" around, which allows the
number to be very large or very small and still be accurate for as many digits as
there are in the number. In BASIC, floating-point is called single or double
precision, depending upon how many bytes are devoted to storing the number.
A single-precision number is stored in four bytes and is accurate to about six
decimal digits; a double-precision number is stored in eight bytes and is accurate
to about 14 decimal digits.

Like_ integers that are three or four bytes long, floating-point numbers are
not handled automatically by the 8088; so everything we do with floating-point
numbers on the PCjr must be done with the help of lengthy subroutines.
Because of this, Junior can work with integers much faster than it can work with

33

EXPLORING THE IBM PCJR

100' testing integers and floating-point numbers
11 0 '
120 PRINT" Start with integers at", TIME$
130 FOR I%= 1 TO 5000
140 NEXT 1%
150 PRINT" End with integers at", TIMES
160 PRINT
170 I

180 PRINT "Start with single precision at", TIME$
190 FOR J = 1 TO 5000
200 NEXT J
210 PRINT II End with single precision at", TIME$
220 PRINT
230 END

Figure 4-1. A program to show handling speeds for
integers and floating-point numbers

floating-point numbers. If you are programming in BASIC, you will find that
your programs run faster when you use integer variables.

To see some of the difference in speed between using integers and using
floating-point numbers, try the program in Figure 4-1.

With interpreted BASIC (the ordinary BASIC that comes with the PCjr),
you'll see some time difference, but it won't be dramatic-that's because
BASIC's normal high overhead will mask a lot of the difference in speed. But
with compiled BASIC, or any compiled program, the difference will be consid
erable. For example, when I compiled this program, the difference in speed
between the two sections was about 20 to 1.

HOW FAST IS FAST?

The 8088 uses a clock signal to regulate and synchronize its operation. In the
PCjr, the clock runs at 4. 77 MHz, or slightly less than 5 million clock cycles
each second. This is the same basic rate as the clock in the PC and XT, so Junior
ticks along at the same speed they do. Each of the instructions that the 8088 can
carry out takes some number of clock cycles, and from that we can calculate
how much work the 8088 can do.

One of the fastest instructions in the 8088's repertoire is addition with the
numbers already on hand (loaded into registers). This ADD instruction takes

34

4: The PCjrs Brain: The 8088

only three clock cycles, so the PCjr can do l½ million additions of this type per
second-an incredible amount of work for a little computer.

At the other end of the spectrum, some of the slowest instructions for the
8088, such as multiplying and dividing 16-bit numbers, take about 120 to 150
clock cycles. That's a rate of about 30 to 40 thousand instructions per second
much less, but still impressive. (The time varies according to how hard the
numbers are to work with-remember, you and I can multiply a number by 100
much faster than we can multiply it by 37.6.) In between these extremes we'll
find other instructions, such as one that moves data around and takes 22 clock
cycles, or the equivalent of about a quarter of a million instructions per second.

How fast the 8088 runs on the average depends on the typical mixture of
instructions it is given. On the basis of our figures and the fact that short, fast
instructions are used much more than long, slow ones, we can say that our
PCjr's 8088 microprocessor hums along performing about half a million instruc
tions each second. Ifwe had to think up these instructions one by one, we'd be
hard-pressed to keep Junior busy. It is always possible to give any computer,
even the very fastest, more work than it can handle. But in practical terms, at
half a million instructions a second, the 8088 provides us with as much com
puting power as we're likely to need, or more.

While we are on the subject of speed, we ought to mention that there are
some speed differences among the PCjr, the PC, and the XT, even though they
all start out with the same basic brain and horsepower: an 8088 running at 4. 77
MHz. Two factors account for these speed differences: disk and memory. Disk
drives vary in speed, so heavy use of disk storage can make a significant
difference in the total performance of the computer. The XT uses a very fast,
Winchester-type, hard disk system, which operates five to ten times faster than
the diskette drives used in the PC and PCjr. With a program that uses the disks
a great deal, use of a hard disk can mean a significant difference in perfor
mance. While the diskette drive in the PCjr runs just as fast as the ones in the
PC, the way in which the PCjr controls its diskette drive ties up the computing
power of the 8088. Thus, Junior's disk drive slows down the overall perfor
mance of the computer (compared to a PC) somewhat, though not a great deal.

Memory is the other factor that sets the speed of the PCjr apart from its
brothers. In all three computers, it takes four clock cycles for the 8088 to use
the memory, but in the PCjr, the 8088 shares use of the memory with the
display screen (as we'll learn more about later). For all practical purposes, this
means that the PCjr needs six clock cycles for each use of the memory, instead
of only four, because it has to wait while the display circuitry gets its share of
memory use. The 8088 doesn't use its memory all the time, so these lost clock
cycles don't cost as much as you might think. On the average, Junior runs
perhaps 20 percent slower than the PC and XT- not much of a sacrifice in
speed for a considerable savings in price.

35

EXPLORING THE IBM PCJR

There is much more to know about the 8088 than this, of course, but we
have covered enough important and fundamental information to be able to
move on to a discussion of how the 8088 communicates with us and with the
other parts of the computer.

GETTING THE BOBHs ATTENTION

Computers are the most wonderful and powerful tools that mankind has
invented. Our Junior's 8088 microprocessor can do almost anything for us-but
first we have to get its attention. If the computer's microprocessor doesn't know
what needs to be done, it can't do anything useful.

A computer could just mind its own business, running some program in a
very introspective way, but chat wouldn't do us much good. To be able to
respond to our needs, the computer must be able to find out what we want it to
do. There are two general ways for the computer to do this: by polling, in which
it looks for something to do, or by interrupting, in which it is told there is
something to do. Interrupting will be our main concern in this section, but if
you want to understand computers, you need to understand polling as well.

Polling

Let's suppose that we have just pressed a key, such as the Enter key, on our
computer's keyboard. Naturally, we want the computer to respond to the
keystroke. How does the computer know we have pressed a key? One way is for
it to look at the keyboard electronically to see whether a key has been pressed.
This is called polling; the computer goes looking for work, to see if there is
anything to be done. Polling is a relatively simple and straightforward process,
and it used to be the way all computers interacted with the world. To under
stand polling better, let's look at a couple of simple examples in BASIC chat
mimic what the computer does when it polls.

For the first example, let's suppose the computer has no other work to do-
it is waiting for us to give it some information at the keyboard.

10 'in line 30, the computer
20 'will wait for keyboard input
30 INPUT A$
40 'we've passed line 30, so
50 ' there was a keyboard response

What the computer actually does in polling is both much more primitive
and much more detailed than chis, but line 30 of chis program shows the general

36

4: The PCjr's Brain: The 8088

idea: The computer looks to the keyboard for input and doesn't budge until the
request for input is satisfied. So no other work gets done.

The more common method of polling is for the computer to stop what it's
doing for a moment to test for input and then proceed. Our next BASIC
example does just that:

60' in line 90, the computer
70 'will read keyboard input
80 ' but not wait
90 XS = INKEYS

100 'next we'll see if
11 0 ' anything was there
120 IF LEN <XS>= 0 THEN 130 ELSE 160
130 'we come here if there wasn't
140 'any keyboard input
150 GOTO 180
160 ' we come here if there was
170' keyboard input
180 I

In line 90, we ask the computer to look at whatever key has been pressed
(which might be no key at all). Then in line 120, it inspects what it got and acts
on it, going to one part of the program-line 130-if there wasn't a keystroke,
and to another part-line 160-if there was.

In crude and simple terms that is how polling works. It is useful but has two
major drawbacks. First, the computer has to waste some of its working power
just checking to see if anything is there. In our last example, the computer has
to execute lines 90 and 120 as often as we want it to poll for input. If it polls
frequently, a lot of overhead will be added to the operation. The second
disadvantage of polling is that the computer can only respond to our input when
it polls us; if our program does not tell the computer to poll often enough-or
neglects to tell it to poll at all-then we are left waiting at the keyboard.
Interrupts solve both of these problems.

Interrupting

There is a wonderful, corny old joke about a man who had a mule that was
so stubborn the man hit it all the time. A friend told him, "Don't hit that
mule-you should treat it gently. Let me show you how." Then the friend took
a big stick and hit the mule over the head with it. The man said, "But you told
me to treat it gently." The friend replied, "Sure-but first you have to get its
attention."

The idea behind an interrupt is very simple: The computer goes merrily
about its business until something hits it over the head with a stick, at which

37

EXPLORING THE IBM PCJR

time it drops what it is doing, and devotes its attention to the interruption.
Here is how a BASIC program can respond to keyboard interrupts:

200 ' in the next two lines, we set up an
210 ' interrupt for function key#1
220 ON KEY C 1 > GOSUB 280
230 KEY C 1 > ON
240 'now the computer can go about its business
250 PR I NT "*";
260 GOTO 250
270 'our function key#1 subroutine
280 PRINT
290 PRINT "Function key#1 was just pressed."
300 RETURN

This sample program-which you might want to key in and run on your
Junior-sets up and activates an interrupt in lines 220 and 230 and then goes
about its normal business of printing asterisks endlessly (not a very important
program, to be sure). When we activate function key number 1 by pressing the
Fn key followed by the 1 key, our asterisk program is interrupted and the
computer proceeds to our interrupt handler (lines 280 through 300).

An interrupt handler can do anything it needs to do; ours just reports that the
key was pressed. Normally an interrupt handler does its work quickly and then
returns control of the computer to whatever task was being performed. This is
exactly what our program does with the RETURN statement in line 300. An
interrupt handler does not have to return control. It may, for one reason or
another, never go back to what was being done. Normally, though, the inter
rupt is serviced and then life carries on as usual.

While polling is an important and useful mechanism for certain kinds of
computer work, interrupting is the best general way for the computer to deal
with the demands of the outside world. When the computer's attention is
needed, it responds immediately. When there is no outside work to be done
which is just about all the time-the computer can go about its business,
without wasting a fraction of a second of its time.

The concept of the interrupt was an important milestone in the develop
ment of computers, and all computers now have interrupts worked into the
fundamentals of their design. Interrupts are one of the most important factors
in enabling a computer to operate successfully.

THE 8088 INTERRUPTS

Of course, the 8088 microprocessor doesn't work exactly like the BASIC
programming language, but the working principles of its interrupts are the
same as those demonstrated in the previous program.

38

4: The PC/ r's Brain: The 8088

Interrupts are built into our 8088 microprocessor in such a way as co allow a
good deal of flexibility. Each different sort of interrupt is given an interrupt
number. In the lowest part of the computer's memory there is a table of the
locations of the programs that handle each interrupt; the entries in the table are
equivalent to the GOSUB 280 part of our sample program. When an interrupt
occurs in the computer, the location of the corresponding interrupt-handler
program is found in this table and the computer passes control to the interrupt
handler. In technical jargon, the entries in this table are called interrupt vectors,
and the table its elf is called the interrupt vector table. If you run into those terms,
you'll now know what they mean.

There are times when the computer is doing something so critical that it
should not be interrupted. To prevent interruptions, there is one special
instruction that temporarily suspends interrupts and another that turns them
back on. These instructions are known as CLI, or clear interrupt flag, and ST!, or
set interrupt flag. Normally, only a handful of computer instructions, taking a
tiny fraction of a second, are executed between the time CLI turns off the
interrupts and STI turns them back on. If an interrupt appears while CLI is in
effect, the interrupt is intercepted and scored by the 8259A chip (the PIC,
programmable interrupt controller, discussed briefly in Chapter 2) until an STI
instruction turns the interrupts back on.

Occasionally, your PCjr may just die on you, suddenly becoming com
pletely unresponsive co any keyboard actions. One possible cause is a program
that has suspended interrupts with a CLI without providing a matching STI.
This sort of thing isn't supposed to happen, but then programs aren't supposed
to have bugs in them either.

There is one special interrupt that is not suspended even by CLI: the NM/,
or non-maskable interrupt. The NMI is a sort of fire alarm that can be used co
have the computer take some last-minute, desperate steps before trouble sets
in. The IBM personal computers are set up co get a non-maskable interrupt
when the power is failing, and our Junior also uses them for keyboard inter
rupts, as we'll see later.

While interrupts were invented to solve the problem of finding an efficient
way for the computer co respond co outside events, designers quickly realized
chat interrupts were powerful enough co be used in many other ways. As a
result, there are many categories of interrupts. To the computer, they are all
equal and are all handled the same way. But looking at the source and use of the
interrupts, we can see that they fall into distinct categories.

Intel's Interrupts

First, there are the interrupts chat Intel, the makers of the 8088, created
and defined. These interrupts apply to any 8088 microprocessor, no matter

39

EXPLORING THE IBM PCJR

what computer it is used in. There are five of these interrupts, numbered 0
through 4. Only one of these, the NMI (number 2), is activated by an external
signal coming to the 8088 microprocessor. The computer's designer, in our
case, IBM, can decide what will create this NMI signal, but IBM can't change
the way that the 8088 handles an NMI.

The other four interrupts built into the 8088 by Intel are all what I would
call logical interrupts. They are all created by special situations inside the
computer that relate to what is happening with the program being run. Two of
these four have to do with arithmetic:

■ Interrupt O is generated automatically when the computer is given a
command to do division arithmetic with a divisor that is zero (which is consid
ered mathematically impossible).

■ Interrupt 4 signals "overflow" when the result of an arithmetic operation
is too big to fit into the space allotted to it.

The other two built-in interrupts are used to help in tracing and debugging
programs:

■ Interrupt 1 is used to step through a program one instruction at a time.

■ Interrupt 3 is used to set breakpoints to stop execution at specific points
in the program.

Those of you who work with the DEBUG programming tool that is a part of
DOS can use interrupts 1 and 3 indirectly. The TRACE command of DEBUG
uses the single-step interrupt and the GO command uses the breakpoint
interrupt.

IBM's Interrupts

Aside from the five Intel interrupts, the designers of a computer can use
other interrupts for any purpose they wish. In the IBM personal computers,
including the PCjr, the additional interrupts fall into several groups.

Hardware Interrupts

Eight interrupts, 8 through 15 (hex 8 through F), are reserved for these
interrupts, all of which are under the supervision of the 8259A PIC chip. The
hardware interrupts are all designed and wired into either the 8088 micro
processor or into some of the circuitry on the PCjr's system board; the interrupt
numbers that they use are fixed when the computer is designed.

40

4: The PCjrs Brain: The 8088

■ Interrupt 8 is used to keep the computer informed about the time of
day. The computer's clock chip generates an interrupt 8 every time the clock
ticks, or about 18.2 times each second. The interrupt handler for this interrupt
keeps track of the number of times the clock ticks. Other programs, which are a
part of the DOS operating system, can then calculate the time of day from the
count of ticks.

■ Interrupt 9 is generated whenever we press or release a key on the
computer's keyboard. The interrupt handler for the keyboard interprets the
meaning of each press and release of each key by doing such things as keeping
track of whether a shift key is being held down as another key is pressed. When
we type away at our Junior, it is being interrupted twice for each key we hit.
That seems like a tremendous number of interruptions, but the 8088 is able to

handle them so quickly that responding to our typing takes very little of the
computer's time.

■ Interrupt JO (hex A) is left open.

■ Interrupts 11 and 12 (hex Band C) are reserved for communications use.

■ Interrupt 13 (hex D) is for the XT's fixed disk system and is not used by
the PCjr.

■ Interrupt 14 (hex E) handles interrupts from the diskette drives in the
PC and XT; the PCjr handles its diskette drive in a more direct way, and so does
not use interrupt 14.

■ Interrupt 15 (hex F) is reserved for the printer.

Software Interrupts

Now we come to a new kind of interrupt, which I call the software inter
rupts. With an interrupt mechanism handling external events from inside the
computer, clever programmers realized that the same mechanism could be a
real help in running programs more efficiently.

Programs frequently call on the services of other programs, usually known
as subroutines. To use a subroutine, a program must be able to pass control to it.
Before the use of interrupts, a program would have needed to know the
location of the subroutine. It is safer and more flexible, though, for a program to
be able to invoke a subroutine without specifying its location, since the
program doesn't have to worry about knowing the right location. Interrupts
make this possible. If a program needs a service performed, that service can be
invoked by an interrupt-handler subroutine. All the program needs to know is
the appropriate interrupt number.

41

EXPLORING THE IBM PCJR

Unlike the built-in hardware interrupts, software interrupts can be created
by any program at any time, and they can use any interrupt numbers, even
mimicking the fixed numbering of the hardware interrupts. To make all this
possible, the 8088 has an interrupt-generating instruction called INT (for
interrupt). Programmers can use this instruction followed by an interrupt
number of their choice, as in INT 10. Once the INT instruction takes effect,
this software interrupt works just like any other. Naturally there are conven
tions about which software interrupt numbers are used for which purpose, but
the conventions are not cast in bronze.

As part of their design, IBM personal computers have a number of software
interrupts reserved for some special purposes. The ROM-BIOS control pro
grams include a host of useful service subroutines, all invoked through inter
rupts. Most of these interrupts are located in the interrupt vector table in a
block from 16 (hex 10) through 26 (hex lA), though one of them, interrupt 5,
which performs the print-screen operation, is nestled right next to the first
five interrupts set by Intel. Interrupts 16 through 26 are known as the BIOS
entry points, since they are the means by which the ROM-BIOS programs
are activated.

After the BIOS entry points come two special and interesting interrupts:
the user-interface interrupts. They are based on the clever idea of providing
interrupts for two important events that our programs might need to know
about: the pressing of the Break key on the keyboard (Interrupt 27, hex 18),
and the ticking of the clock 18.2 times a second (Interrupt 28, hex lC).
(Interrupt 28 occurs in connection with the interrupt 8 that we have already
discussed.) When either of these things happens, the BIOS routines generate
one of these two interrupts. Normally, the interrupts then activate a dummy
interropthandler, which does nothing. It takes sophisticated programming skills
to make use of either of these events, but we can do it by replacing the
addresses of the dummies in the interrupt vector table with the addresses of our
own interrupt handlers.

The interrupt vector table contains the vector addresses of interrupt
handling programs; but since it already exists anyway, it can also be used as a
place to keep other important addresses, even if they are not the addresses of
interrupt-handling programs. Interrupts 29 through 31 (hex 1D through lF) are
used to hold three such addresses, meaning that numbers 29 through 31 cannot
be used as actual interrupts, since their corresponding places in the vector table
have been used for other purposes.

These three entries form another unusual and interesting category known
as the BIOS parameters. The BIOS parameters are the video initialization table,
which gives some technical parameters used to start up the PCjr's display
controller; the disk base, which gives various parameters controlling the dis
kette drive; and the table of video graphics characters, which don't exist, unless
we provide them. We'll look into the details of these tables later.

42

4: The PCirs Brain: The 8088

All the interrupts (0 through 31) that we've covered so far are quite
fundamental to the operation of the PCjr. Beyond them, there is a host of other
interrupts that service the special needs of DOS and BASIC. We'll cover some
of them later in the book. In general terms, DOS uses interrupts 32 through 63
(hex 20 through 3F), and BASIC uses interrupts 128 through 240 (hex 80
through FO). Other interrupts are also available for other uses, including use by
our own programs.

PORTS-WINDOWS TO
THE OUTSIDE WORLD

Once you get the attention of a mule by hitting it over the head, you then
have to talk to it-otherwise it won't know what you want it to do. So it is with
our 8088 microprocessor. The 8088 communicates with the world around it in
two ways: One way is by reading or writing information in its memory (more
about this later); the other is by using ports.

Ports provide a general way for the microprocessor to talk to the other parts
of the computer's circuitry. Each port has a port number that identifies it. The
8088 can listen and talk to its ports, and data can be passed through the circuitry
to and from the ports a byte or a word (two bytes) at a time. The 8088 itself
doesn't know anything about what is on the other side of the portholes-it just
talks to them by port number. There are 65,536 different port numbers, and
most of them are not in use. The designers of the computer decide what
purposes the various port numbers will serve and the programs that run on our
PCjrs know which ports to use for which purposes. Figure 4-2 shows the ports
used by Junior.

Component Port Numbers
(In Hex)

Modem attachment 3F8 - 3FF
Video controller chip (the 6845) 3D0-3DF
RS-232 serial adapter 2F8 - 2FF
Joysticks 200 - 207
Diskette drive adapter FO - FF
Tl sound generator C0-C7

Figure 4-2. Major ports used by the PCjr

43

EXPLORING THE IBM PCJR

100 ' here we' 11 take a quick look at the port
110 ' that controls the speaker on the PCj r
120 '
130 ' save the value stored in the speaker port
140 X = !NP C97 >
150 PRINT "The current value";
160 PRINT "of the speaker port is ", X
170 '
180 ' turn on the speaker by setting
190 ' two bi ts in the port value
200 OUT97,CX \ 4) * 4 + 3
210 PRINT "Press any key to stop the sound."
220 I

230' kill time, waiting for a keystroke
240 IF LEN C INKEY$) = 0 THEN 240
250 '
260 ' when we press a key,
270 ' the port is reset to its old value
280 OUT 97, X
290 PR INT "The test is done."
300 END

Figure 4-3. A program to turn on the speaker and
demonstrate the use of ports

The way the whole thing works is roughly like this: When the 8088 needs
some information, it simply shouts electronically over circuits to the appropri
ate port, "Port 97, give me some data." The various parts of the computer are
listening at their port holes, and if they hear their number called, they respond.
The 8088 can send data out to the port with the machine-language OUT
instruction, and it can request that the port send data with the IN instruction.

Ports are used for all sorts of things, generally falling into two categories.
One is for control information-such as turning the PCjr's speaker on and off
(we'll experiment with that in a second). The other is to pass data around; for
example, any data moving to or from a cassette recorder passes through port 98
(hex 62) on its way to or from the 8088.

We can experiment with ports very easily in BASIC, because BASIC gives
us commands that perform the IN and OUT machine-language instructions:
INP and OUT. For the example in Figure 4-3, we need to know that Junior's
built-in speaker is partly controlled by two of the bits assigned to port 97 (hex
61). We can find out the current setting of this port using the BASIC INP
function and the number for that port: INP (97). Likewise, we can turn on the

44

4: The PCjr's Brain: The 8088

speaker by setting the two low-order bits of the port on with the OUT
statement. The program in Figure 4-3 shows how it is done; you might want to

key it into your PCjr to see what happens.
Line 140 saves the current value of the speaker port as the variable X, and

line 160 reports the value (probably 12) to us. In line 200 we do some calculating
to make certain that the two low-order bits are turned on, and then we send
that value back OUT to the port. The speaker immediately begins to sound,
and it keeps sounding until we press a key at the keyboard, causing the
computer to reset the port, in line 280, with the original value that we saved in
the variable X.

Running this program will quickly demonstrate both how ports work and a
little of how the PCjr's speaker works.

Ordinarily, we don't have any practical use for the ports. They are almost
exclusively the territory of Junior's most intimate control programs, the ROM
BIOS. Even if we were doing some' very sophisticated programming, it is
unlikely that we would have any direct use for the ports. Although I am sure
that there are programmers who do use the ports directly, for us the use of ports
is mostly a matter of intellectual curiosity.

45

CHAPTER

5
A LOOK AT

MEMORY AND REGISTERS
The computer needs somewhere to

keep the programs and data that
it is working with; this "somewhere"

is the computer's memory.

EXPLORING THE IBM PCJR

To a computer's processor, like our PCjr's 8088, there is a profound difference
between programs and data. To the memory, there is no difference at all-they
are both something to keep track of, that's all.

THE COMPUTER's PLACE OF WORK

Memory is the computer's essential working place. The word "memory" is
very familiar to us, so we might be tempted to think of the computer's mem
ory as something like our own. But it is not. Our memory is where we keep
information in our brains, more or less permanently; the part of a computer
most analogous to our memory is its disk storage or program cartridges.

The computer's memory is quite different from ours. In a computer, the
memory is a work space where the computer keeps the information it needs at
the moment. Computer memory can be compared to a desk or workbench.
Suppose we bought a kit to make a model airplane. When we wanted to put the
kit together, we would open the box and spread the contents out on our
workbench . In our analogy, this would be equivalent to the computer loading
information into its memory.

What would we find in our model airplane kit? What would the computer
load into memory? We would find an instruction booklet; our Junior would load
program instructions. We would also find the airplane parts; our Junior would
load the program's data. To build the model airplane, we would follow the
instructions and put the parts together; our computer would follow the program
instructions, operating on the data. As we built the model, we would use some
of the free room on the workbench to hold our work in progress; the computer
would use some of its memory to store the intermediate results of its
calculations.

This workbench analogy is very close to the way a computer uses its
memory-the memory is a temporary working space, used to hold programs,
data, and any additional information that is needed while the work is being
done. The use of memory is not permanent; it is temporary. When we have
finished building our model airplane, we would clear our bench for some other
task; when our PCjr is finished with one program, the memory is free for use
with another program.

Not every bit of the memory is up for grabs, though. Just as some part of a
workbench might be permanently taken up by a vise or some other tool, so
some small parts of our computer's memory are dedicated to special uses, such
as the interrupt vector table discussed in the last chapter. Another part is used
by the stack, which we'll discuss later. Apart from these relatively small parts of
the computer's memory, though, the majority of the memory space is free for
general use.

48

5: A Look at Memory and Registers

THE COMPUTER1s VIEW OF MEMORY

The computer's memory consists of a large number of places where val
ues-numbers-can be stored. A value can be put into any of the places, and
later it can be read out of the place where it was put. Think, if you wish, of the
computer's memory as a big piece of paper, ruled off into small squares. We can
write a number in any of these squares, and later we can read the number that
has been written there. When we read the number in the square, it still stays
written there, so we can read it again as many times as we want. When we write
a new number in one of the squares, however, we first have to erase any old
number that was already there. The new number would completely replace the
old number, which would then be gone forever. This is exactly how a com
puter's memory works.

NAVIGATING AROUND THE MEMORY

How would we locate the little squares on our piece of paper? For the
computer's memory, each place, each location, is given a numeric address. The
memory locations are numbered, one right after another-location one, two,
three, and so forth-for as many memory locations as we can have.

When the computer needs to read or write values in these locations, it
specifies the numeric address that it wants to work with. Part of the task of
preparing a computer program is planning the use of these memory locations,
and keeping track of them.

In most computers, including our PCjr, each memory location is the size of
one byte; this means that each location can hold any of 256 different values.
When we need larger and more complex values, our PCjr's 8088 microprocessor
combines several bytes and uses them together; for example, for a 16-bit word,
two bytes are used together. Not all computers address each byte individually;
some computers, particularly old-fashioned ones, have large words as their
basic unit of memory. These words can be as large as 64 bits, and the words
have to be broken down to get at the bytes inside them. Our PCjr doesn't have
this clumsy problem, since it addresses each byte individually.

Since each byte in memory has its own numeric address, the 8088 can use
its arithmetic skills to calculate its way into the correct memory locations. This
ability to use arithmetic both to work with data and to calculate memory loca
tions is standard in computers.

You'll recall that our PCjr's 16-bit 8088 microprocessor can easily work with
numbers from O up to, but no larger than, 65,535. This means that it is easy for the
8088 to address 65,536, or 64K, bytes or memory locations, but that some trick

49

EXPLORING THE IBM PCJR

would have to be found to address more. Unfortunately, 65,536 bytes is not
enough memory to do the kinds of things the IBM personal computers need to do.
Some solution had to be found.

EXPANDING MEMORY
WITH SEGMENTED ADDRESSES

Intel, the designers of the 8088 microprocessor, found a trick solution in
something known as a segmented address. After a little head scratching, the
people at Intel realized that, while the computer needed access to more than
64K memory locations, programs were rarely working with more than 64K
bytes of data at any given time. Most programs could happily do their address
arithmetic within the confines of 16 bits, addressing only 64K of data, as long as
a way could be found to place those 64K data bytes inside a larger memory
space. This larger space would then be able to accommodate the necessary
systems programs, our own programs, the computer's workbench, and our 64K
bytes of data.

The size of the memory space is, in effect, determined by the highest
number that the computer's microprocessor can handle, so Intel needed to find
a way to enable the 8088 to work with numbers larger than 65,535. Here's how
the trick was done. First, Intel gave the 8088 an addressing scheme 20 bits
wide, which expanded the full range of memory locations that the 8088 can
work with from 2 to the 16th power, or 65,536, to 2 to the 20th power, or roughly
1 million bytes (1,048,576 to be exact). Then it had the 8088 use a 2-word
addressing technique to create 20-bit addresses using only 16-bit numbers.

How do you get a 20-bit number out of two 16-bit words, or numbers?
Simple. You take two 16-bit numbers and shift one of them over by four bits,
in effect multiplying that number by 2 to the 4th power, or 16. Then you add
the shifted number to the other, unshifted number, and you have a complete
20-bit number.

Let's write out an example, expressing our numbers in hexadecimal. You'll
remember that each hex digit is shorthand for four bits, so it takes four hex

· digits to write a 16-bit number. Let's arbitrarily take two hex numbers, say 1234
and 4321; each is a 16-bit number with which the 8088 has no trouble doing
arithmetic. Now, let's take the first number, 1234, and shift it over four bits (one
hex digit), or multiply it by 16. To do this, we just add a hex O on to the end to
get 12340. (What we have just done is similar to multiplying a decimal number
by the base number 10; for example, to multiply 42 by 10 we can just shift 42
over one decimal digit and add a decimal O on to its end, resulting in 420. In the

50

5: A Look at Memory and Registers

example above, instead of representing a power of 10, each digit represents a
power of 16.)

Now, 12340 is a 20-bit number, but one that has a zero on its end, so shifting
16-bit numbers over doesn't generate all possible 20-bit values. Our shifted, or
multiplied, number can only take on a value that is an exact multiple of 16. To
be able to address a byte in any 20-bit address space, we have to be able to
generate all possible 20-bit numbers. So we complete this process by taking our
second number, 4321, and adding it to the shifted first number:

12340
+ 4321

16661

Now we have a way to generate a 20-bit number that can take on any value. It
can be used to address a 20-bit address space, that is, to locate any byte out of
over a million bytes.

This is the technique that Junior's 8088 microprocessor uses to create its
addresses. Two 16-bit numbers are combined in this way to make up a
20-bit address.

The two parts of these 20-bit addresses are referred to as the segment part
(the number that is shifted over) and the offset part (the number that is added
in). The segment part refers to any location in the 1,024K byte memory space
that is a multiple of 16. (These locations are known as paragraph boundaries
and each unit of 16 memory locations is known as a paragraph.) The offset part
refers to any location that is up to 64K bytes away from the segment location.
The segment part thus addresses a base location for the offset part's 64K
working area. Together, the two parts make up a complete segmented address.

The offset part of an address is also sometimes called the relative part, or
the relative offset, since it indicates a memory location relative to the starting
point given by the segment part.

When we need to write the segmented addresses out on paper, there are
two ways we can do it. One way is to write out the finished 20-bit address with
five hex digits, such as the 16661 in our example. When you read about the
PCjr's addresses, you will sometimes see them written this way. The other way,
which is more common, is to write the address in its two separate parts,
separated by a colon, such as 1234:4321. When you read technical information
on the 8088, or when you deal with assembly-language programming, you will
often encounter addresses written in this form.

There is one disadvantage, or complication, that you should know about in
using the segmented notation (the two numbers with a colon). The exact same
address can be written several ways. For example, 0012:0034 and 0015:0004 are
the same address, even though they are written differently.

51

EXPLORING THE IBM PCJR

HOW A COMPUTER USES
SEGMENTED ADDRESSES

There is a customary way for programs to work with segmented addresses.
First you need to know that computer instructions can specify memory loca
tions either by providing the memory address directly in the instruction (called
immediate addressing), or by indicating that the address is located in one of the
computer's working registers. (We'll discuss registers shortly.) The offset part of
a segmented address can be given either immediately or through a register, but
the segment part is always taken from a special-purpose segment register, so a
program does not have to worry about providing the segment part itself.

There are separate segment registers for four distinct uses. First, there is a
program segment register, called CS (short for code segment), which is used to

locate the program that the computer is running. Then there is a data segment
register, called DS, used to locate data in memory. For the stack-which we'll
discuss shortly-there's a stack segment register, called SS. Finally, there's an
extra segment register, called ES, which can be used in a pinch as a spare segment
pointer. All four segment registers together provide the master supervision of
how memory is used.

The way this normally works is that the computer's supervisory programs
(the DOS operating system in the PCjr) decide where in memory a program
and its data should be located and set the segment registers to point to that part,
or segment, of memory. When a program is being run, it is not concerned with
where the segment registers have put it. Instead, the program only has to work
with the offset part of its addresses; combined with the part of the address in
the segment registers, tbe program's offset addresses will find their way to the
right locations in memory.

Since ordinary programs only have to worry about 16-bit offset addresses,
they can do all of their address work with the 8088's 16-bit arithmetic and never
run into difficulty. This does mean, though, that our programs are limited to
using only 64K of data. If a program needs to work with more data than this,
then the program must use more sophisticated programming techniques, so
that the segment registers are manipulated by the program itself, instead of
by DOS.

There are two interesting sidelights to this. When we are using BASIC on
the PCjr, the actual program that is running is the BASIC interpreter. What you
or I think of as our BASIC programs are actually data with which the BASIC
interpreter works. Because of this, we are limited to a total of 64K for our
program and data combined. Even if we have more memory, BASIC can't use
more than 64K for our programs and their data, because to BASIC they are both
data, and data are normally limited to 64K.

52

5: A Look at Memory and Registers

Except for the special case of interpreted BASIC (and other interpreted
languages such as LOGO), a program can have a full 64K of data, no matter
what the size of the program (provided that the computer has enough memory
for it all). The program's code uses the CS register for itself and the OS register
for its data. This means that a program can have up to 64K of data and also 64K
of program-if there is enough memory to accommodate them. On our PCjr,
we have only 64K or 128K total; after some overhead is used, there isn't enough
memory for both 64K of data and 64K of program in a PCjr, but the address
scheme does allow for it. On a PC or XT-our PCjr's bigger brothers-there
could be enough memory for all chat information.

For all practical purposes, data are limited to 64K. On the other hand, the
size of a program may or may not be limited to 64K, depending upon what rules
the program follows.

How can programs use more than 64K of memory? It depends on whether
or not the program allows itself to change the segment registers. If the code
segment register is left alone, the maximum size of a program is the 64K limit
of an offset address. If the code segment register can be changed while the
program is running, however, a program can break out of the 64K limit.
Whether or not the segment register can be changed depends upon which
programming language is being used (and can vary from one version of a
language to another). For example, IBM Pascal, provided by Microsoft®, can
break out of the 64K program limit; Microsoft BASIC Compiler cannot.

Very few programs are big enough to come even close to the 64K limit, and
it is unlikely that you or I would ever write a program that huge. In any event,
for the PCjr, running programs bigger than 64K is rarely practical (although it
can be done, on a 128K Junior).

MAPPING THE PCJR1s MEMORY

Now that we know something about the PCjr's memory and how to address
it, we ought to see how it is organized. Since the PCjr is part of the IBM
personal computer family, it uses the memory space of the 8088 pretty much
the same way as the rest of the family. Bue there are some interesting new twists
added for the PCjr.

The 8088 has an address space of 1,024K, or over 1 million bytes. This is the
number of addresses that the 8088 can use, but it isn't the amount of memory
chat any of our IBM personal computers actually has. The real working memory
can be located in any part of this space. In effect, the 8088 provides a plot of
bare land, 1 million bytes big, where the architects of any computer can build.
How they use this land, and how much space their computers take up, depends
upon the decisions that the architects make.

53

EXPLORING THE IBM PCJR

For the IBM personal computers, this 1,024K space is used in several parts,
and there are four distinctly different categories of memory, as we'll explain.

Figure 5-1 shows a general map of the memory used by the IBM personal
computers; you can refer to it to put all of the remarks in this section into the
context of the whole memory.

To talk about the memory used by the PCjr, we need to be able to refer to
specific parts. We'll use the segment part of a 20-bit address, expressed in
hexadecimal. Talking this way, the very beginning of memory starts at segment
paragraph address 0000; the end of memory is at FFFF. The first 64K of
memory goes from 0000 up to but not including 1000 and the second 64K goes
from 1000 to 2000, all expressed in hex.

RAM

Let's begin at the beginning. Each of the IBM personal computers, includ
ing the PCjr, puts its ordinary working memory (RAM) in the lowest memory
locations, starting with 0000. RAM, or random access memory, is the part of
memory people are talking about when they refer to how much memory a

RAM

Lowest memory location (0000) I)

Figure 5-1. General memory map

FOO O
E O O 0
DO O 0
Coo o
BOO 0
AO O O
9 0 0 0
8 0 0 0
7 0 0 0
6 0 0 0
5 0 0 0
4 0 0 0
3 0 0 0
2 0 0 0
1 0 0 0
0 0 0 0

54

ROM-BIOS, BASIC, diagnostics

Cartridges (PCjr)

Fixed disk, etc. (XT)

Display memory (PC/XT)
Mysterious

Memory up to 640K (PC/XT)

!) t28K max (enhanced PCjr)

I Ii] } 64K min (entry PCjr)

5: A look at Memory and Registers

computer has. While our IBM personal computers have lots of other memory,
this is the main working memory, the workbench where programs and data
reside. If you have a 128K Junior, it has RAM from 0000 to 2000.

More than 128K is set aside in the 1,024K address space for this working
RAM-in fact, a full 640K, from 0000 to AOOO, is dedicated to it. The PCjr
can't use more than 128K, but the other IBM models can accommodate the full
640K if it is needed.

For the next use of memory, let's skip to the end of the address space , and
see what is done with the highest memory locations.

ROM

One of the greatest virtues of the IBM personal computers is that they
come equipped with some very powerful built-in programs, stored in a form of
memory known as ROM, or read only memory. ROM cannot be erased or
lost-it is always there, faithfully, whenever the computer is running. The
highest memory space, the 64K block of memory from FOOO through FFFF, is
used for these ROM programs so that they wiB be out of the way, leaving as
much of the rest of the memory space as free as possible.

There are two types of ROM programs. The first is the ROM-BIOS, or
Basic Input/Output System. The ROM-BIOS is responsible for the most
intimate supervision and control of the computer. For example, the ROM
BIOS provides the actual controlling programs for the display screen, the
keyboard, and nearly every other part of the computer. The ROM-BIOS is
divided into three parts. There is 8K of BIOS located from paragraph FEOO
through to FFFF; all models of IBM personal computer have BIOS here
(although the actual programming may differ from model to model). The PCjr
also has two other BIOS areas; it needs more BIOS simply because it sub
stitutes hard-working BIOS programs for the more expensive smart hardware
of the PC and XT. The PCjr's second BIOS area is 8K of programs located at
FOOO. The third area is 16K located from F200 up to F600; this area contains
diagnostic programs, which we could consider a special kind of BIOS.

The second type of ROM program provides an application rather than a
control program. The PCjr comes with two of these applications: One major
one is the core of BASIC, the part that is called ROM-BASIC; the other minor
one is the Keyboard Adventure program. The ROM-BASIC program is common
to all the IBM personal computers; it can stand by itself, or it can be used with
disk and cartridge supplements, which add richer features to the BASIC
language.

The ROM-BASIC starts at memory location F600, and occupies 32K. The
Keyboard Adventure program is kept together with the diagnostic programs.

55

EXPLORING THE IBM PCJR

Actually, the entire memory from C000 to the top is reserved for various
kinds of ROM use. A small part of the 64K block from C000 to 0000 was used
when the Winchester-type, fixed hard-disk system was added to the PC to
make the XT. This new disk required its own small amount of ROM-BIOS
support, and these BIOS programs were placed right in the middle of the C000
block, from C800 to CC00. Future additions to the BIOS are very likely to
appear in the same area.

ROM Cartridges

There are two 64K blocks of memory between the ordinary ROM block at
F000, and the ROM additions block at C000: the 0000 block and the E000
block. Our PCjr uses these two blocks of memory for the plug-in ROM
cartridges. When any of these cartridges is used, the ROM that is physically
located in the cartridge is logically placed somewhere within these two memory
blocks; just where is controlled by the cartridge. The cartridges contain as
much or as little memory as they need for their purposes, up to a limit of 64K
each. Since the original PC and XT do not use cartridges, this part of the
memory address space remains empty for them.

So far, we have seen three of the four categories of memory use: permanent
ROM support programs at the top, removable ROM cartridges just below
ROM, and working RAM at the bottom. There is one more kind of memory
used in the PC and XT, but only indirectly used in our PCjr.

Memory-Mapped Display

The IBM personal computers use memory to control what is on the display
screen. This technique is called memory-mapped display, meaning that any
display-related change to the memory causes an immediate change to the dis
play screen. This is a very fast and very efficient way to operate a display screen.

All of the models of IBM personal computer use memory-mapped displays,
but the PCjr does it a bit differently from the PC and the XT. In the other
models, the display adapters contain their own memory locations, which are
specially built for fast operation. The memory in these display adapters has two
paths, which means that both the 8088 microprocessor and the display screen
can talk to the memory at the same time with a minimum of interference. Parts
of the B000 block of memory are set aside for the use of the display memory,
and the remainder is reserved, likely for future enhancements to the display
formats. The monochrome adapter (which has no equivalent in our PCjr) uses
4K of memory located at B000, and the original color/graphics adapter (which is
equivalent to the display adapter built into our PCjr) uses 16K located at B800.

56

5: A look at Memory and Registers

Our PCjr uses some memory for its display just like the color/graphics
adapter. But, instead of using a more elaborate, two-path memory, the PCjr
borrows some of the top part of its RAM to use for the display. It thus does not
use the B000 block of memory locations for its display. Since many programs for
the other IBM personal computers work with these memory locations, how
ever, the PCjr contains special hardware known as a video gate array, or VGA, to
divert any reference to the B000 display memory down to the actual RAM
locations it is using. This helps make it possible for programs developed on
either of the other models to be used on the PCjr, and vice versa.

There are two parts of the computer's memory map that we haven't yet
covered, and they are unknown areas at this time. We mentioned that two parts
of the B000 block are used in the PC and XT for display memory. The rest of
the B000 block is also reserved, presumably for further enhancements to the
display formats. Likewise, the entire 64K block at AOOO is reserved for some
future use. It might be intended for display use, like the B000 block, or for
another purpose.

THE ESSENTIAL REGISTERS

One of the keys to the efficient operation of our PCjr's 8088 microprocessor
is its use of some very fast temporary memory locations called registers, so we
will now take a look at these registers and what they are used for.

There are two main uses for the 8088's registers: One is for addressing and
the other is as a scratch pad. Let's look at the scratch pad first.

The Working Registers

When a computer works with data held in its memory, it takes a certain
amount of time to use that memory. The reason is simple. The memory is
located outside the microprocessor and isn't totally under its control. To use
memory, the 8088 must send a request out into the world of its external
circuitry and then wait for the result-the wait isn't long as you or I measure
time, but it's noticeable by the 8088's standards. To handle this delay, the 8088
is given some very private memory of its own, which it can access at lightning
speed. This private, scratch-pad memory is in the form of four registers.

While the computer's memory is accessed by numeric addresses, the four
16-bit, scratch-pad registers are referred to by letter names: AX, BX, CX, and
DX. Each of them can be used freely by the 8088's programs to hold any
temporary working numbers that are needed. If a number is to be used
repeatedly, it can be kept in a register as long as the program needs it, so that
the 8088 can get to it very quickly.

57

EXPLORING THE IBM PCJR

The AX, BX, CX, and DX registers each hold 16 bits, but sometimes we
only need enough space to hold an 8-bit byte. To make more efficient use of the
register space, each register can be split into two 8-bit registers. For example,
AX can be split into AH and AL, corresponding to the high- and low-order
bytes of the 16-bit word that can be stored in AX. Each of the other three
registers can be similarly split. The full X register is exactly made up of the H
and L parts; so if we change the AX register, we also change the AH and AL
values, and vice versa.

The four (or eight) registers can be used for any general purpose. Some
times, though, a computer instruction needs to use a dedicated register for one
reason or another. So, in addition to their general use, the registers each have
some special uses as well. For example, often programs need to count how
many times some operation is to be repeated. When this is done, the CX
register is used automatically. There are similar special uses for each of the
other registers.

In Chapter 7, when we have finished enough of our homework, we will
pore over some assembly-language programming; you will then have a chance
to see in detail the use of some of these registers, as well as the relationship
between the whole X registers and their halves.

The Address Registers

As we have already mentioned, the other main use for registers is address
ing. Nine registers are dedicated to this task. Like the scratch-pad registers,
they are referred to by letters.

First, there are the four segment address registers that are used to locate
the 20-bit segmented addresses. Three of the four are dedicated to addressing
three particular uses of memory.

■ The code segment (CS) register is used to locate the program that is being
executed.

■ The data segment (DS) register is used to locate the data the program is
working on. (The data segment is the area of memory where the data are
located.)

■ The stack segment (SS) register is used to locate the temporary workplace
called the stack that keeps track of tasks in progress.

■ The extra segment (ES) register is used to supplement the others, mostly
the OS register. It also has some dedicated uses, just as the general-purpose,
scratch-pad registers do. Whenever our programs need to get to some data that
aren't covered by the OS, CS, or SS registers, they can use the ES register.

58

5: A Look at Memory and Registers

The four segment registers are used to locate a general working portion of
memory, but you will recall that an offset address must be used with the
segment part to complete the address. There are five registers for this purpose.

■ The instruction pointer(IP), also called the program counter(PC), is used
with the CS register to track the exact current location in the program that is
being executed. Either name refers to the same thing: the offset part of the
current program address.

■ The stack pointer (SP) and the base pointer (BP) are two offset address
registers that work with the SS (stack) register. We'll learn about these registers
in the next section, and see how they are used.

■ The source index (SI) and the destination index (DI), the two remaining
offset address registers, are used when data have to be slung around in two
locations. A typical use for these registers would be when moving a large
number of bytes from one place to another within the data segment. When
these registers are used, they are usually incremented automatically, so we
don't have to add 1 to them each time we want to move on to the next byte.

The Flag Register

To complete our coverage of the registers, you should know about one
"sort-of" register. The 8088 has a variety of bits, called flags, that control
various things in the computer. For example, one flag bit controls whether
interrupts are suspended or are active. The.flag register enables the computer to
work with all the flag bits collectively. The flag register cannot be manipulated
like the other registers, but it is still referred to as a register. Later on, you'll
find us referring to the carry flag, the zero flag, and other flags. They are all
parts of the flag register.

KEEPING TRACK WITH THE STACK

One of the most important and useful elements in computer design is the
stack. To understand stacks, it helps to understand the problem that makes
stacks so essential.

When we discussed interrupts in Chapter 4, we mentioned that, when an
interrupt occurs, the computer sets aside the task it is doing and works on the
interrupt. How can the computer keep track of what it was doing, so that it can
return to it when the interrupt is over?

For example, when a program calls a subroutine, what does it do with the
work in progress while the subroutine is being executed? If the subroutine calls

59

EXPLORING THE IBM PCJR

another subroutine, which happens a lot, how does the computer keep track of
who called whom, so that it can find its way back to the very first program?

The solution to all these problems, and others that are closely related, lies
in the use of a stack.

A stack is a part of the computer's memory that is set aside for use in a
special way. Any part of memory can be used as a stack; what is special is not the
section of memory, but the way that it is used.

A stack gets its name from its (conceptual) resemblance to the spring
loaded plate holders that are often used in cafeterias. In a cafeteria, clean plates
are put on the top of the stack of plates, and the stack is pushed down. When
we need a plate, we take it off the stack, and the spring pops the rest of the
plates up. The special thing about this kind of stack is that the plates are used
in reverse order. The last plate to be put onto the stack is the first one to be
taken off-a stack doesn't work like a queue of people waiting in line, where
it's first come, first served. Instead, with this kind of stack, the last one in is the
first one out (technically called LIFO).

When work in a computer is put on hold, the computer must keep track of
what is happening so that it can return to the most recent task first. After all, ifl
am a subroutine, when I have finished my work, I need to return control of the
computer to the program that called me, and not to some previous program. For
this to happen, the computer's holding file needs to work on a LIFO basis, and
it must act like the plate holder in a cafeteria.

To accomplish this, a special mechanism was designed into micro
processors like our 8088 that makes it possible for them to have a working stack.
A section of memory is set aside to be used as a stack and a record is kept of
where the "top" of the stack is. Since the 8088 uses segmented addresses,
naturally there is a segment register set aside just to control the location of the
stack; this is the SS, or stack segment register. To keep track of the top of the
stack, there is an offset register called the SP, or stack pointer register.

In a stack of plates, all the plates physically move when plates are added or
taken off. In our computer's stack, the contents of the stack don't move when
other information is pushed onto the stack or popped off. Instead, the stack stays
put, and it is the location of the top of the stack that moves. The SP register
indicates where the top of the stack is, and its value changes when informa
tion is pushed onto or popped off the stack. In Figure 5-2, a, b, and c, show how
this works.

In Figure 5-Za, we see a stack before we start using it. If we need to save
some information, we use the PUSH instruction. The information is stored at
the top location, indicated by the SP register, and the SP value is changed to
show the new top of the stack. Figure 5-Zb shows how the stack looks after we
have pushed some information onto it. When we need the information back,
we use a POP instruction. The data are copied from the stack to wherever we

60

space

5: A look at Memory and Registers

w
X
Y • SP, top

of stack

w
X
Y Q Old top
Z • SP, new

w
X
Y • SP top

of stack
Stack I

top of stack

a. The stack
before a PUSH

b. The stack
after a PUSH

Figure 5-2. The status of the stack

c. The stack
after a POP

need them, and the SP register's value is changed to indicate that the top of the
stack has moved back, as Figure S-Zc shows.

There is one interesting trick that makes it easier to use stacks: Stacks run
backward. Backward? What does that mean? It means that the top of the stack
is at a lower memory location than the bottom of the stack. When more informa
tion is pushed onto the stack, it goes into locations with smaller addresses,
and the value of the SP register is decreased, not increased. Functionally,
this makes no difference to the stack itself, since a stack can run back
ward just as easily as it could run forward. But there is one big advantage in a
backward stack.

We never need to look past the top of a stack, since there isn't anything
there to look at. But sometimes we need to look lower down, at prior contents
of the stack. We'll see why we might want to do this shortly. If the stack ran
forward, so that old contents were at a lower location than the SP register
indicated, we would have to use a negative displacement to find locations
earlier in the stack. But with the stack running backward, we can use a positive
displacement to find our way to earlier points on the stack. Figure 5-3 shows
how this works.

Why would we want to look at earlier information on the stack? One of the
most important reasons has to do with programs calling subroutines.

When a program calls a subroutine, it usually has parameters to pass to the
routine; the parameters indicate part of what is to be done. For example, the
SIN function in BASIC calculates the trigonometric sine of a number-but we
have to give the SIN function a number to calculate from, and this number is a
parameter of the SIN subroutine. These parameters have to be stored some
where, and for many technical reasons the stack is a natural place to put them.

61

2 + SP .

EXPLORING THE IBM PCJR

rn SP, top
• of stack

Adding to SP
finds prior stack
contents

Figure 5-3. Finding prior contents of the stack

Once the parameters have been pushed onto the stack, the SP register will be
pointing beyond them to a lower address. Then, any subroutine that needs
these parameters can add a displacement value to the SP register and get to
these parameters easily.

There is one little hitch to this business of using a displacement from the
SP register to find your parameters: Programs routinely do lots of pushing and
popping with the stack. With each PUSH or POP instruction, the SP register
changes; this makes the displacement between the current value of the SP
register and any parameters a moving target.

There is, however, a very simple solution to this problem: The BP, or base
pointer register is used to freeze a location on the stack. This is the way it
works. Suppose we are a subroutine, and we are called to work with some
parameters. When we begin operation, the SP register is located near our
parameters, and we know exactly where they are. So one of the first things we
do is copy the value of the SP register into the BP register. From that point on,
we can push and pop the stack as much as we want, and we still have a secure
record of that fixed point on the stack that is near our parameters.

Altogether, then, three registers are used to support the stack. One is the
SS, or stack segment register, which is used to locate the stack in memory. The
other two are both offset registers used with the SS register: The SP, or stack
pointer register, controls and supervises the stack, and the BP, or base pointer
register, takes a "snapshot" of the current value of the top of the stack so that
later on we will know exactly where in the stack certain information is located.

Is there only one stack? Usually. However, there can be as many stacks in
use at one time as our programs might need. A new, separate stack can be
created simply by setting aside some memory and changing the SS register to
point to it. Having several stacks standing around, though, can become both
messy and wasteful, so the standard practice is that only one stack exists at a
time.

When DOS or ROM-BASIC is in charge of the computer, it will create and
use its own stack. When we tell DOS to run a program for us, DOS sets up the

62

5: A Look at Memory and Registers

program and creates a good-sized stack for it. From that point on, everything
uses the same stack. The program uses it, and when the program calls on the
services of DOS or the service routines built into the ROM-BIOS, the same
stack is used. DOS and the ROM-BIOS can share the program's stack with no
difficulty at all.

63

CHAPTER

6
ELEMENTARY EDUCATION:

THE ROM-BIOS
One of the many analogies between
computers and people is that both

require an education to realize their
potential and become productive

elements of society. In computers,
education takes the form of programs.

EXPLORING THE IBM PCJR

The computer's most elementary education is embodied in its ROM-BIOS
programs, its Basic Input/Output System.

In the IBM personal computers, including our Junior, the ROM-BIOS is
permanently installed in ROM (read only memory), which provides an enor
mous advantage in that it is always ready to be used and cannot be erased or
otherwise lost. If the BIOS were not built into ROM, it would have to be loaded
into memory from, say, a diskette. Not only would this be a nuisance, but there
is also some danger that the wrong BIOS program might be loaded, or that we
might forget to load it, or that we might lose our only copy of the program. Life
is made simpler, for us and our PCjr, by having the BIOS built into ROM.

There is a potential disadvantage, though. Computer programs are notori
ous for having bugs, or errors, in them. What if the ROM in our PCjr turned out
to have a major bug in it? We'd be up a creek, wouldn't we? Not quite.

First, the ROM-BIOS is physically embodied in removable, plug-in mem
ory chips. If there were an error in the ROM-BIOS important enough to require
changing it, then these chips could be replaced. The process would require
some handyman skills, but it would be relatively simple. In fact, when a fixed
disk system is added to a PC, the ROM-BIOS chip is replaced, not because
there is an error in the old chip, but because the programs must be changed to
accommodate the fixed disk.

Second, we have little reason to worry about errors in the ROM-BIOS.
Because these programs are so critical, and because it would be so expensive for
IBM to recall thousands of PCjrs to correct any problems, the programs are
checked and tested very carefully before release. Needless to say, the very first
release of these programs is the version that is most likely to contain errors.
However, as an indication of exactly how careful IBM is, when the PC was first
introduced, the errors in the first ROM-BIOS version were so insignificant that
no immediate change was needed. The ROM-BIOS in our PCjr is very close to
the ROM-BIOS used in the PC and XT -the only differences relate to Junior's
new features-so most of our ROM-BIOS has already been tested on hun
dreds of thousands of computers. We don't have much to worry about in this
regard.

There is a lot of programming in the ROM-BIOS-thousands and thou
sands of lines of assembly-language code. It contains a wealth of goodies
divided into four logical categories, which we will call diagnostics, start-up,
services, and support.

DIAGNOSTIC PROGRAMS

A full set of diagnostic routines can be time-consuming to run and involves
testing the keyboard, the diskette drive, and so forth. It would be unreasonable

66

6: Elementary Education: The ROM-BIOS

to do all the diagnostic routines every time we use the computer, so they are
divided into two groups: a complete, interactive set of diagnostics that is
incorporated into a separate part of the ROM, and the simple, quick, but
essential diagnostics that are performed by the ordinary ROM-BIOS.

There are actually two sets of ordinary diagnostics in the ROM-BIOS: one
set that is used for testing during the PCjr's manufacture, and another set that is
performed when we turn iton. It is this second set that is particularly important
to us. We don't want to discover right in the middle of a program that some part
of the computer is malfunctioning; we would prefer to learn about it before we
start work. So when we turn on our PCjr, a set of diagnostic programs called
power-on self test, or POST, is executed to check the computer out.

START-UP PROGRAMS

Start-up, or bootstrap, programs get Junior going. They are executed auto
matically after the POST diagnostics and they are also executed when we
restart our PCjr by pressing the Ctrl-Alt-Del key combination. The start-up
program has to figure out what program should be placed in charge of the
computer by following a hierarchy of things to check.

The highest priority is given to the diskette drive: If the PCjr has the
diskette-drive adapter installed, the start-up program tries to read a bootstrap,
or boot, record (which is a diskette start-up program) from a diskette (we'll
explain this later). If there is no diskette-drive adapter, or if no information can
be read because we have not put a diskette into the drive, the ROM-BIOS
start-up program executes a special interrupt, interrupt 24 (hex 18), to pass
control to the built-in ROM-BASIC.

So far, the PCjr operates exactly like the other members of the family; but
now, the PCjr goes one step further. A cartridge program plugged into the PCjr
can override interrupt 24, so that the start-up program passes control not to the
ROM-BASIC, but to part of the cartridge program. The BASIC language
cartridge uses this to override the ROM-BASIC. This is one of the ways that a
cartridge program can take control of the computer; we'll see about the other
way when we discuss cartridges.

SERVICE PROGRAMS

The greatest part of the ROM-BIOS is devoted to providing our programs
with a large set of services that are ready for use at their command. Each
peripheral-the screen, the keyboard, the diskette drive, the cassette drive,
the printer, the communications line, the light pen, and the joysticks-is

67

EXPLORING THE IBM PCJR

provided with whatever functions and operations it needs to make it easy to
use. For example, the display screen is provided with service routines that will
write information on it, change its mode from text to graphics, and so forth.

To organize these service routines, each peripheral is given its own inter
rupt code, and under each interrupt there are as many service codes as there are
separate services to be performed. In addition, the ROM-BIOS service rou
tines follow a consistent set of conventions and working rules.

Working Rules

The rules are designed to make the service routines easier and more
reliable to use and to reduce the amount of programming that is needed to use
them.

All of the ROM-BIOS services are invoked by their interrupts and must be
accessed through assembly language. We can't get to these services directly if
we are programming in BASIC or any of the other popular programming
languages, and this is as it should be. The ROM-BIOS services are intended,
first and foremost, to be used by the computer's main control programs, such as
the BASIC interpreter itself and DOS. Second, but still very important, the
ROM-BIOS services are to be used by sophisticated application programs,
including word processors, such as Microsoft® Word, and spreadsheet pro
grams, such as Multi plan"'.

The programs you and I write in BASIC usually get along very nicely with
the service routines provided by the BASIC interpreter program, or by what
ever other programming language we might be using. These service routines
build on those of the ROM-BIOS. If we need more flexibility than the
language services provide, we can use assembly-language interface routines to
use the ROM-BIOS services in ways that are beyond the scope of our high-level
language. Programmers often use this approach when they want the advantages
of high-level languages, but also need special tricks that these languages may
not provide. My own Norton Utility"' programs are an example of this. I have
been able to write 99. 9 percent of them in the Pascal and C languages; only to
make a quick connection to the ROM-BIOS do I use assembly language. If any
of your programs need the ROM-BIOS services, you will probably want to use
the same technique; we'll get into most of the necessary details in Chapter 20.

As we've said, each of the ROM-BIOS services is invoked through an
interrupt. There are two very important reasons for this. First, an interrupt
provides the surest way to get to a standard subroutine. Any subroutine could
be invoked by the machine-language CALL instruction, but a CALL needs to
know the location of the program it is calling. We could look up the location of
the ROM-BIOS services in the Technical Reference manual, but then our pro
grams would be dependent upon the PCjr version of the ROM-BIOS. On the

68

6: Elementary Education: The ROM-BIOS

PC or XT, or a revised PCjr, the same routines might be located in slightly
different places. It would be foolish to write programs that depended on
specific locations.

Using interrupts to invoke the ROM-BIOS services solves this problem by
making the calling program completely uninterested in where the interrupt
service routine is. As long as the meaning of each interrupt number is under
stood-for example, that interrupt 5 performs the print-screen operation
and as long as the interrupt vector table has been set up properly, then any
program can use any ROM-BIOS interrupt service freely and reliably.

The second important reason why interrupts are used to invoke the ROM
BIOS services is so that the interrupts can be overridden. It may become
important to change a service: Perhaps an improved way to do the same
operation is found, or perhaps we want to add something special. By using in
terrupts, we can always replace one interrupt-handling program with another.

How can this be done? Well, we can't actually replace the programs in the
ROM-BIOS; after all, ROM is read only memory, so we can't write changes
into it. But we can put an equivalent service program in another part of memory
(RAM), and then change the interrupt vector table to point to the new pro
gram. If an interrupt vector points to our new program rather than into the
ROM-BIOS, then that interrupt will automatically be rerouted to our program.

So, all the ROM-BIOS service routines begin with interrupts. As we
mentioned, each basic service area (diskette operations, display screen opera
tions, and so forth) has its own individual interrupt. Within each area, separate
subservices are given service numbers, starting with service number 0.

For all the services, the service number is placed in the AH register. If the
operation being invoked returns a status code indicating what happened, or
how things might have gone wrong, AH is usually, though not always, used.
(The services are not rigorously consistent in this regard-by nature they have
to vary from one to another.)

The 8088's status flags are also used as a quick and efficient way for the
ROM-BIOS services to return a success/failure signal. Most commonly the
carry flag, CF, is used; if carry is set (CF = 1) then an error has occurred. The
zero flag, ZF, is also used for some signals passed back to the calling routine.

Whenever the services need to pass values in or out, they use the AX, BX,
CX and DX registers. For example, when the computer reads from the key
board, it passes the results back to the AX register; when it writes to the printer,
it uses AX to indicate the character to be printed and DX to indicate which
printer (since there can be more than one).

It is customary for the printer service to use AX and DX, and leave BX and
CX alone as much as possible. The register most likely to be left unchanged is
BX, and the next most likely is CX. This is of no consequence if we are using
these services in connection with high-level language programming; but if we

69

EXPLORING THE IBM PCJR

are programming in assembly language, we can take advantage of it and use BX
and CX more freely.

For the most part, the ROM-BIOS services do not use or manipulate any of
the segment registers. But a few of them need a full 20-bit segmented address,
and the extra segment register, ES, is used to provide the segment part of the
20-bit address for them.

Programs generally need a stack to work with; the ROM-BIOS service
routines do as well. Part of the philosophy of the ROM-BIOS is to leave the
registers undisturbed, except for those that are being used to pass status codes
back and forth. However, ROM-BIOS programs need registers for working
storage just like most other programs. So, to preserve the values in registers
they want to work with, the ROM-BIOS services push the values onto the
stack, and later pop them off back into the registers. The result is that when the
service routine has finished its work, the registers look as though they have not
been disturbed.

The ROM-BIOS does not create its own stack for saving register values: It
relies on our existing stack. So how much stack do we need? I am not aware of
any official, published figure (this sort of thing is usually overlooked), but the
needs of the service routines are quite modest. After inspecting some of the
ROM-BIOS code, I judge that 32 bytes should be plenty, and 64 would provide
a very generous cushion. This is well within the amounts of stack that are
usually available.

This is about as much as can be said in general about the ROM-BIOS
service routines. We will be discussing them in more detail, case by case, in the
later chapters. When you need more thorough information, though, you should
turn to the ultimate source of information about the ROM-BIOS routines, the
Technical Reference manual.

SUPPORT PROGRAMS

The last of the four categories of ROM-BIOS programs is support routines.
These are the routines that help make the PCjr run, but which aren't service
routines like those we have just discussed. The clearest example of a support
routine is the keyboard interrupt program. Whenever we pound away on
Junior's keyboard, the computer has to pay attention to what we have typed,
whether or not any program is expecting to receive input from the keyboard.
The keyboard support routine is given the task of noticing which keys have
been pressed and released, and then translating key actions into meaningful
characters. Translation is necessary, since the meaning of many keys is depen
dent on whether a shift key is also pressed. Besides translating key actions into
their resulting characters, the keyboard support routine also buffers, or stores,

70

6: Elementary Education: The ROM-BIOS

a small number of keyboard characters, in case our programs can't read and use
each character befoi;e another is keyed in.

There are some interesting things to explore in the ROM-BIOS, as well as
in other parts of the ROM. In the next chapter, we are going to learn how to use
the DEBUG tool, which is a part of DOS, to snoop around. In the process, we
will also learn some assembly language.

71

CHAPTER

7
USING WHAT WE KNOW

TO GO EXPLORING
Want to see a little of what actual

machine language and assembly language
are like on the 8088? This will give
us a chance to dive in head-first and
see what the waters are really like.

)

r:J ,:1 lJ r=, i=-i ?J
r 7 1-=, 1:J ,:J I.=1 0 17 r:]

M I f" ..J

EXPLORING THE IBM PCJR

In this chapter, we are going to take a small section of the ROM-BIOS
programs that are built into Junior, and pore over it, instruction by instruction.
While we explore the ROM-BIOS, we'll get some practice using segmented
addresses and see interrupts and registers in action.

How can we do all this? First, we have access to a listing of the ROM-BIOS
programs, complete with the programmer's comments, in IBM's Technical
Reference manual for the PCjr. You can, and we could, use that listing to study
some ready-made assembly code. But there is another way to look at machine
language code that can be used even with programs for which we don't have
listings; we can use the DEBUG program. We'll use that method, since it will
show you how you can go exploring inside any program.

DEBUG

We are going to use one of the most powerful and complex parts of the DOS
operating system, the DEBUG utility program. DEBUG is intended as a
working tool for advanced programmers. It enables us to explore memory,
disks, programs, and data.

One of the many wonderful tricks that DEBUG can do is look at the
machine-language form of any program and translate it into assembly code.
This means that DEBUG can take an unintelligible hex code, such as B85000,
and tell us that it is an instruction to move the number 80 into the AX register.
This translation process is called disassembling, since it reverses the process
followed by an assembler when it translates assembly language into machine
language.

There is one disadvantage to studying a disassembly listing instead of an
original assembly listing: The assembly listing should have its author's helpful
comments; a disassembly listing can only reconstruct the executable program
lines. In other words, a disassembly listing shows us what is being done, but it
doesn't show us why; that remains a puzzle for us to solve.

The unique advantage of disassembling, though, is that you can disassem
ble anything and study it. So if you learn to decipher disassemblies, you
potentially have access to the inner workings of any program. Very few pro
grams come with annotated assembly listings (the ROM-BIOS is one of the rare
examples), so we have few opportunities to look over a programmer's shoulder
and read the original notes and comments in a program. The ROM-BIOS
routines that we will look at in this chapter do come with a listing, which
appears in the Technical Reference manual, and we'll actually make use of that
listing to help us understand what's going on. However, for this exercise, we'll
work mostly with the disassembly produced by DEBUG. That will give us an
education in how to snoop around inside programs.

74

7: Using What l# Know to Go Exploring

THE PRINT-SCREEN ROUTINE

Our object lesson will be the ROM-BIOS program that performs the print
screen service when we press the PrtSc key combination-the Fn key, fol
lowed by P. Before we dig into it, some background information would be
useful-in fact, this information will give you many clues to understanding
how Junior is organized and how its ROM-BIOS works.

Part of the ROM-BIOS has the job of looking after the keyboard. These
programs detect when we press and release keys, and they keep track of
anything special, such as combinations of shift keys and other keys. The
keyboard routines are also charged with the responsibility of detecting any
thing really special in keyboard actions. Two examples are the Ctrl-Alt-Del
combination, which "reboots" the computer, and the Fn-P combination, which
generates the PrtSc key-code. When the keyboard routines detect the Fn-P
key combination, they activate the print-screen service.

Wisely, the print-screen service was not made a part of the keyboard
routines. Instead, it is a completely separate routine activated by interrupt
number 5. This makes it possible for any program to request a print-screen
operation simply by generating interrupt 5.

What we'll be looking at in the print-screen routine has lots of goodies in it.
It is an interrupt handler, so we get to see something of how interrupt handlers
must work. It works with the display screen, since it must read the screen
contents. It works with the printer, since it must write the information there.
And it has to look for any trouble that comes up along the way. For a modestly
sized program, the print-screen routine gives us lots of examples to look at. It's
a good way for us to get our feet wet in machine language.

With that word of explanation out of the way, we're ready to begin. We'll
use the listing in the PCjr Technical Reference manual to give us some guidance,
but we'll actually be working with a disassembly listing produced by DEBUG.
Figure 7-1 shows the whole DEBUG process. We will be going over it line-by
line in the text, but you can use Figure 7-1 to see the complete picture. If you
want you can follow along in the Technical Reference manual.

PRINTING A COPY
OF THE DISASSEMBLY

If you are going to do this disassembly on your own PCjr, you should know
that DEBUG spits out all of its information to the display screen. You can get a
printed copy of the display by activating the echo feature, which you do by

75

EXPLORING THE IBM PCJR

DEBUG
-U FOOO: FF54 L 77
FOOO:FF54 FB
FOOO:FFSS 1E
FOOO: FFSG 50
FOOO:FF57 53
FOOO :FFSS 51
FOOO:FF59 52
FOOO: FFSA BSSOOO
FOOO: FFSD 8ED8
FOOO:FFSF 803E000001
FOOO:FFG4 745F
FOOO: FFGG CGOG000001
FOOO: FFGB B40F
FOOO: FFGD CD1 0
FOOO:FFGF SACC
FOOO: FF71 B519
FOOO:FF73 E8E9FA
FOOO: FF76 51
FOOO: FF77 B403
FOOO: FF79 CD1 0
FOOO: FF7B 59
FOOO:FF7C 52
FOOO:FF7D 33D2
FOOO :FF7F B402
FOOO: FF81 CD1 0
FOOO:FF83 B408
FOOO: FFSS CD10
FOOO: FF87 OACO
FOOO: FF89 7502
FOOO:FFSB B020
FOOO:FFSD 52
FOOO:FFSE 33D2
FOOO :FF90 32E4
FOOO:FF92 CD17
FOOO :FF94 SA
FOOO:FF95 FGC429
FOOO: FF98 7521
FOOO :FF9A FEC2
FOOO: FF9C 3ACA
FOOO: FF9E 75DF
FOOO :FFAO 32D2
FOOO: FFA2 8AE2
FOOO :FFA4 52

STI
PUSH
PUSH
PUSH
PUSH
PUSH
MOV
MOV
CMP
JZ
MOV
MOV
INT
MOV
MOV
CALL
PUSH
MOV
INT
POP
PUSH
XOR
MOV
INT
MOV
INT
OR
JNZ
MOV
PUSH
XOR
XOR
INT
POP
TEST
JNZ
INC
CMP
JNZ
XOR
MOV
PUSH

DS
AX
BX
ex
DX
AX,0050
DS,AX
BYTE PTR C 0000 l, 01
FFCS
BYTE PTR C 0000 l, 01
AH,OF
10
CL,AH
CH, 19
FASF
ex
AH,03
10
ex
DX
DX,DX
AH,02
10
AH,08
10
AL,AL
FFBD
AL,20
DX
DX,DX
AH,AH
17
DX
AH,29
FFBB
DL
CL,DL
FF7F
DL,DL
AH,DL
DX

(wntinued)

Figure 7-1 . The print-screen routine disassembly listing

76

7: Using What 1# Know to Go Exploring

F000: FFAS E8B7FA
F000: FFA8 SA
F000: FFA9 FEC6
F000: FFAB 3AEE
F000 :FFAD 7500
F000: FFAF SA
F000:FFB0 B402
F000:FFB2 CD10
F000: FFB4 C606000000
F000: FFB9 EB0A
F000:FFBB SA
F000: FFBC B402
F000:FFBE CD10
F000: FFC0 C6060000FF
F000:FFCS SA
F000:FFC6 59
F000:FFC7 SB
F000:FFC8 58
F000:FFC9 1F
F000 :FFCA CF
-Q

CALL
POP
IHC
CMP
JHZ
POP
MOV
INT
MOV
JMP
POP
MOV
INT
MOV
POP
POP
POP
POP
POP
IRET

FASF
DX
DH
CH,DH
FF7F
DX
AH,02
10
BYTE PTR [00001,00
FFCS
DX
AH,02
10
BYTE PTR [00001,FF
DX
ex
BX
AX
OS

Figure 7-1. The print-screen routine disassembly listing
(continued)

pressing the Fn-E key combination. You can also capture the results of
DEBUG by using DOS's redirection feature (see your DOS manual for details).
The listing you see in Figure 7-1 was captured this way.

WHAT TO EXPECT
FROM A DISASSEMBLY

Before we go any further, let's quickly outline what we'll see in the
disassembly that DEBUG will give us. Each line of the listing corresponds to

one machine-language instruction, and each line tells us several different
things. The part farthest to the left, which shows numbers like F000: FF54,
gives the actual address location of the instruction in segmented-address
format. The F000: part, remember, is the segment, and the FF54 part is the
offset. The next thing that appears is the actual machine-language coding in
hexadecimal-for example, FB. Since instructions vary in length, we'll see

77

EXPLORING THE IBM PCJR

varying amounts of hex data here. The first instruction that will appear, FB,
takes only one byte; eight lines down, another instruction, 803E000001, is five
bytes long.

After the hex form of the instruction, we see the disassembled, symbolic
form of the instruction; this is the part that can be read and understood by those
who are familiar with 8088 assembly language. Each instruction starts with its
name, which is the operation to be performed, such as STI (set interrupt flag),
PUSH, and MOV (short for move). These names represent the machine
language instructions, commonly called opcodes (for operation codes), that
actually perform the operations.

Some instructions, like STI, stand by themselves, but most need one or
more parameters, or operands. For example, in the instruction PUSH DS, the
DS register is the operand. Many instructions take two operands; MOV, which
moves (actually copies) data from one place to another, is one of these.
According to assembly-language convention, an action takes place from right to
left, so that MOV AX,BX moves, or rather copies, the contents of the BX
register into the AX register, and not the other way around. Likewise, ADD
AX,BX would add the contents of BX into AX, leaving the sum there, in AX,
rather than the other way around.

With this brief introduction to reading assembly listings, we can now dive
in and see what is going on. If you are new at this, don't be put off-just
following along, even if you don't understand a lot of the material, will teach
you a great deal about 8088 machine language and about how assembly
language is written.

We begin the process by loading Dos· into the PCjr. When DOS gives us its
A> prompt, we start up DEBUG by typing the command:

A>

DEBUG will tell us when it is ready for a command by giving us its very terse
prompt, a hyphen:

We then give it a disassemble command:

-U F000: FF54 L 77

Unless you are already familiar with DEBUG, this command will be quite
cryptic to you. Let's go over it piece by piece. The letter U is the command to
Unassemble (D for disassemble couldn't be used because DEBUG uses D for
something else). The F000:FF54 part tells DEBUG the segmented address in
memory where we want it to begin disassembling. We found out where this
address was by looking in the Technical Reference manual, but we could also have

78

7: Using What \# Know to Go Exploring

gotten it, with a little detective work, by looking at the interrupt vector table
for the address of interrupt 5. The last part of this command, L 77, tells
DEBUG how much we want disassembled. Again, the Technical Reference
manual provided us with this information, hut if we had not had its help, we
could have just disassembled an arbitrary amount and then snooped around
until we found all we needed.

Everything else in Figure 7-1, except for the very last line, is the output of
this disassemble command. When DEBUG is through disassembling, it gives
us its hyphen prompt:

and we respond with the Q command:

-Q

telling DEBUG to quit and pass control back to DOS.
With that out of the way, let's plunge into the assembly code for the print

screen routine. Don't worry if you don't understand everything-we're going
into the deep end of the pool here.

STEP-BY-STEP THROUGH
THE PRINT-SCREEN

The first disassembly instruction is:

F000:FF54 FB STI

which is the instruction to activate the interrupts. You'll recall that some
programs, especially interrupt handlers, sometimes have to suspend interrupts
temporarily. To make sure that interrupts don't interfere with each other, each
interrupt that takes place automatically disables any further interrupts, so that
the interrupt-handling routine can get to work without being harassed by
another interrupt. Since our program here is the interrupt handler for interrupt
number 5 (the print-screen interrupt), further interrupts have been suspended.
The print-screen routine doesn't need to do anything that can't be interrupted,
however, so the very first thing it does is turn the other interrupts back on.
Even if there were some work that needed to be done with interrupts disabled,
this STI would still be among the first few instructions.

The next thing to do is save any register values that ought to be preserved.
The stack is used for saving old register values, so we use the PUSH command
to put them onto the stack. The PUSH instruction takes whatever we specify
(in this case, the contents of a register), copies its value onto the stack, and then

79

EXPLORING THE IBM PCJR

moves the SP (stack pointer) register along, ready for the next item to be
pushed. Here are the contents of five registers being pushed onto the stack:

F000:FFSS 1E
F000: FF56 50
F000: FF57 53
F000: FF58 51
F000: FF59 52

PUSH
PUSH
PUSH
PUSH
PUSH

DS
AX
BX
ex
DX

All programs follow certain rules about which registers can be used freely
and which ones must be safeguarded, either by being left alone or by being
preserved on (and later restored from) the stack. We don't know the complete
rules used in the ROM-BIOS programs, but we shouldn't be surprised to see
this program saving the contents of a bunch of registers. In this case, the values
in the four general-purpose registers, AX through DX, and in the DS (data
segment) register are being saved. This is interesting and suggests that the
program will monkey around with the DS register; we'll watch for it.

Moving on, we find two instructions that set up a new DS register value:

F000:FFSA B85000
F000: FFSD BEDS

MDV
MDV

AX,0050
DS,AX

The hex number 50 (80 in decimal) is moved to the AX register and then passed
on to the DS register. A number must be put into the DS register in this indirect
way because there is no instruction to move a constant into the segment
registers. (It is not a common operation.) So these two instructions are used to
do what we really want, which would (if it were possible) be an instruction such
as MOV DS,0050.

Why is the program putting hex 50 into the DS register? Knowing how the
8088 works, we can partly answer that question right away: This program will
be working with some data located in the vicinity of segment paragraph hex 50
or absolute memory location hex 500 in low memory.

Studying the Technical Reference manual reveals that the ROM-BIOS uses
some space at segment paragraph hex 40 for most of its working storage. But,
for no reason that I know of, the print-screen routine happens to use one byte
located at segment paragraph hex 50 for its working storage. So, the basic
answer to why hex 50 is being loaded into the DS register is that this program
locates its data there. If you ask, "Why there?" the answer is that the designers
of the IBM personal computers chose that location.

What is the print-screen routine using this data area for? If we needed to,
we could study the program in detail and probably figure it out; that's the sort of
thing you do if you are disassembling a program without a listing to guide you.
But fortunately we aren't flying blind-we have the comments in the Technical
Reference manual to tell us that this print-screen program uses one byte located

80

7: Using What l¼- Know to Go Exploring

at segment paragraph hex 50 to signal the status of screen printing. If the byte is
0, nothing is going on; if it is set to 1, a print-screen routine is already in prog
ress; if the byte's value is 255 (hex FF), there has been an error of some kind.

So what has the program done so far? It has turned interrupts back on,
saved the values from five registers in the stack so that it can safely modify the
registers, and set up the DS register to point to where its data are.

Now the routine is ready to proceed to the next step, which is to check
whether it is in the middle of a previous print-screen routine. If so, the program
assumes that a nudgy person is sitting at the keyboard and has pressed Fn-P, or
PrtSc, twice. In that case, the program ignores the new request. How does it do
this? It compares (CMP) the hex 50 data byte value to 1:

F000:FFSF 803E000001 CMP BYTE PTR [00001, 01

(The part that reads BYTE PTR [0000] is just assembler technical talk that
says we are comparing one byte located at an offset of 0.)

After comparing that byte with the value 1, the computer jumps to another
part of the program if the comparison is equal (JZ means jump if equal or zero):

F000: FF64 745F JZ FFCS

All that this disassembly tells us is that the jump is to location FFC5. Later,
we'll learn that this is the location of the finishing steps of this program. So
these two instructions logically translate into, "If the control byte is 1 (meaning
that printing is already in progress) then jump to the exit steps."

If printing was not already in progress, the program needs to indicate that it
is now. So the next instruction is to move a 1 into the hex 50 data byte:

F000:FF66 C606000001 MDV BYTE PTR [00001,01

Now the program is going to read everything off the screen and copy it to
the printer. To read the screen, it needs to know what the size of the screen is,
since our PCjr could show either 40 or 80 columns of information, depending
on its screen format. So the next step is to call one of the screen services to get
the screen mode. Video service 15 (hex F) requests the screen mode and
interrupt 16 (hex 10) activates the video services, so service number hex F is
requested like this:

F000: FFGB B40F MDV AH,0F

and interrupt hex 10 is generated like this:

F000: FFGD CD1 0 INT 1 0

81

EXPLORING THE IBM PCJR

This puts the number of screen columns (40 or 80) into the AH register. (H
and L, remember are the high and low halves of each full X register.) The value
in AH is then moved to the CL register:

F000: FF6F 8ACC MDV CL,AH

and the number of rows on the screen, which is always 25 (hex 19) rows, is
moved into the CH register:

F000: FF71 B519 MDV CH, 19

There is still some more preparation to do. This program has a subroutine
that is used at the end of each line to give the printer the proper end-of-line
signals, which are a carriage-return signal followed by a line-feed signal.
(Those two together are the standard end-of-line signals.) I happened to learn
what that subroutine does by looking it up in the Technical Reference manual;
but, if we had to, we could discover what it does by using the U command to
disassemble it. The next instruction in our print-screen disassembly calls that
subroutine:

F000:FF73 E8E9FA CALL FA5F

Next, there is still more preparation. While the computer is reading the
information off the screen, it is moving the cursor around. It needs to save the
current cursor position, so that it can be restored when the program is done.
This is the sort of attention to detail that separates good programs from bad.
The program does it this way: First, it saves the row and column numbers that
were stored in the CL and CH halves of the CX register, because even though
you do not see it yet, CX will be disturbed by the service that reports the
cursor's position:

F000: FF76 51 PUSH ex

After saving CX on the stack, it prepares to request video service number 3,
which reports the cursor position:

F000: FF77 B403 MDV AH,03

and generates a video interrupt hex 10:

F000: FF79 CD10 INT 1 0

It then recovers the CX value from the stack:

F000:FF7B 59 PDP ex

and pushes the cursor position, which was placed into the DX register by the

82

7: Using What ~ Know to Go Exploring

video service, onto the stack to save it:

F000: FF7C 52 PUSH DX

Now there is only one more small bit of preparation left. The computer is
going to loop through the entire screen, every column in every row, reading all
the information written there. Naturally, it has to start at the top, so the
program moves the cursor there. The top of the screen is row 0, column O; so
the DX register is set to 0, using the old programmer's trick for zeroing a register
by exclusive-ORing it to itself:

F000: FF7D 33D2 XOR DX,DX

This instruction is the same as moving O into DX, but is a more compact way of
doing it.

Now, at last, everything is ready for the main part of the work. The
computer will be looping through the entire screen, moving the cursor to the
next position, reading what is stored at that position, sending it to the printer,
and then moving the cursor on to the next position, until it has covered the
entire screen.

So, the program begins its main working loop. How do we know that the
next step is the start of a loop? We would not know from what we have seen so
far, although we would discover it later when the program jumps back to this
, point. Again, looking at the remarks in the PCjr Technical Reference manual helps
us realize that this is the beginning of the loop.

The first working action is to move the cursor to its next location. The first
time the computer comes to this instruction, that location would be row O and
column 0, which has already been set; later, when the loop is repeated, the
cursor position will be the next position on the screen. To move the cursor, the
program prepares to request video service number 2:

F000:FF7F 8402 MDV AH,02

and generates the video interrupt hex 10:

F000:FF81 CD10 INT 1 0

Next, another video service is called upon. This one, service number 8,
asks that a character be read off the screen. Service number 8 is moved into the
AH register:

F000: FF83 8408 MDV AH, 08

and another video interrupt is generated:

F000:FF85 CD10 INT 1 0

83

EXPLORING THE IBM PCJR

Again, even though you do not see it happen, this service loads the character
from the screen into register AL, which is where the program will look for it.

Now, the screen might have any kind of information on it. If nothing is in
the present cursor position, the fact will be reported as a hex 0 character. In that
case, we want the printer to print a blank space corresponding to the space on
the screen. But the printer won't print a hex 0 character as a space, so the next
thing our program does is check for a hex 0, and changes it to a blank space
(which is coded in ASCII as hex 20). First it tests the character loaded into the
AL register with an OR (which amounts to a kind of true/false test to see if the
character equals 0):

F000: FF87 0AC0 OR AL,AL

Then, if the character is not hex 0, the program jumps over the next instruction
(JNZ means jump if not zero):

F000: FF89 7502 JNZ FF8D

If the character is hex 0, the next instruction moves a hex 20, a blank space, into
register AL:

F000: FFBB B020 MDV AL,20

Next, the computer needs to send the screen character out to the printer.
This involves a little setup work. As before, the cursor row and column position
in the DX register is saved on the stack, since the DX register will be used
while printing:

F000: FF8D 52 PUSH DX

Then, the program indicates that we want the regular printer by setting the DX
register to 0:

F000: FFBE 33D2 XOR DX,DX

Next, printer service number 0, the service to print one character, is requested
by setting the AH register to 0:

F000: FF90 32E4 XOR AH,AH

and the printer service is activated with an interrupt 23 (hex 17), which is
similar to the video interrupt, but another interrupt number:

F000:FF92 CD17 INT 17

After the character is printed, the cursor row and column position, which

84

7: Using What HT Know to Go Exploring

was saved on the stack, is moved back into register DX:

FOOO:FF94 SA PDP DX

At this point, though, the program doesn't really know whether all went
well with the printer. Since the printer services return an error code to the AH
register, the returned code is tested against a mask, which blanks out every
thing except the bits of the return code that the program is interested in. The
right mask for this test-although you and I don't have any way of knowing it at
this point-happens to be hex 29.

FOOD: FF95 F6C429 TEST AH,29

If all the bits the program can see are zero, then all has gone well and the
character has been printed. If they are not all zero, the computer jumps (JNZ or
jump if not zero) to another part of the program, which turns out to be an error
handling routine:

FOOD: FF98 7521 JNZ FFBB

However, if there is no error, the program proceeds to the next position on the
screen. The screen column number in the DL register is incremented by one:

FOO O: FF9A FEC2 INC DL

and the incremented value is compared to the maximum number of columns in
the row (the value we are holding in the CL register):

FOOO:FF9C 3ACA CMP CL,DL

If we haven't come to the end of this row, the program jumps back to the
beginning of its working loop:

FOOD: FF9E 75DF JNZ FF7F

This jump-if-not-zero jumps to location FF7F. You will see, if you look back,
that this is the location of the top of the loop.

On the other hand, if we have come to the last column of a row, the
computer needs to skip down to the beginning of the next row. First, the
column number in the DL register is reset to 0:

FOOD: FFAO 32D2 XOR DL,DL

and AH is also set to O (I'm not sure why, but we'll ignore it for now):

FOOD: FFA2 8AE2 MDV AH,DL

In addition, since we've come to the end of a line, the computer needs to

85

EXPLORING THE IBM PCJR

send an end-of-line signal to the printer. The cursor position in the DX register
is temporarily saved on the stack:

F000:FFA4 52 PUSH DX

and the program calls the subroutine that, as we already mentioned, is used for
end-of-line:

F000: FFAS E887FA CALL FASF

It finishes by restoring the DX value from the stack:

F000:FFA8 SA PDP DX

Since it is starting a new line, the program has to increment the screen row
number stored in the DH register (just as we did before with the column):

F000: FFA9 FEC6 INC DH

and it then tests the incremented row against the value stored in the CH
register to see if it has come to the end of the screen (again, just as we did for the
column):

F000: FFAB 3AEE CMP CH,DH

If it ~snot at the end, it jumps back to the top of the loop:

F000: FFAD 75D0 JNZ FF7F

And on it goes, around and around, until it has covered the entire screen. At
the point when the program doesn't jump back, it is at the end of its duties. ltis
time to clean up after itself. Recall that the original cursor location was saved on
the stack. This location is now recovered into the DX register so that the cursor
can be repositioned at its place on the screen at the start of the program:

F000: FFAF SA PDP DX

We prepare to ask for video service number 2, which moves the cursor:

F000: FFB0 8402 MDV AH,02

and we then invoke the video interrupt, hex 10:

F000: FFB2 CD10 INT 1 0

For the next piece of housekeeping, the program needs to set the control
byte at segment paragraph hex SO to indicate that the print-screen routine is
finished. Recall that at the beginning of the program, this byte was set to 1.
Now, it is reset to 0:

86

7: Using What Ut Know to Go Exploring

FOOO:FFB4 C606000000 MDV BYTE PTR [00001,00

Next, the program jumps over some instructions that will turn out to be the
error handler for printer errors:

FOOO :FFB9 EBOA JMP FFCS

Remember that while going through its loop, the program tested for a
printer-error code and if there was one, jumped to location FFBB. This is the
location of the next instruction. First the cursor position is recovered from the
stack just as before:

FOOO: FFBB SA
FOOO: FFBC B402
FOOO: FFBE CD1 0

PDP
MDV
INT

DX
AH,02
1 0

and then the control byte is set to the error code, hex FF:

FOOO:FFCO C6060000FF MDV BYTE PTR [00001,FF

Next comes the program's exit routine. This is the routine that the program
jumped to at the very beginning if it found that a print-screen was already in
progress. It is also the place it jumped to when skipping over the error handler.
This exit routine has the job of restoring the registers that were saved at the
very beginning of the program. When the contents of the five registers were
pushed onto the stack, it didn't matter what order they were pushed in; any
order would have saved them equally well. Now that it is time to restore the
registers, they have to be popped back in exactly the reverse order, since the
stack works on a last-in, first-out basis. So the program does five pops, like the
five pushes:

FOOO: FFCS SA
FOOO: FFC6 59
FOOO: FFC7 SB
FOOO: FFCB 58
FOOO:FFC9 1F

POP
POP
POP
POP
POP

DX
ex
BX
AX
OS

Finally, as the very last step of the routine, the program returns the
computer to whatever it was doing before the print-screen interrupt was
requested. This is done with a special interrupt-return instruction:

FOOO: FFCA CF IRET

and that completes the work of the print-screen program.
Going over this program has taken some time, but it should give you quite a

bit of insight into what assembly-language coding is like and how registers
work. As you have seen, the details can be very tedious, and this is why
assembly language is usually avoided unless really necessary. You have also had

87

EXPLORING THE IBM PCJR

a chance to see how all sorts of instructions are used, how a subroutine is called,
how other interrupt services are invoked, and how logical tests and branches
are performed, as well as how a loop can be used. That's quite a lot, for such a
quick tour through assembly language.

SOME OTHER THINGS TO LOOK AT

There are other interesting things in ROM that you can explore when you
have a little time. For example, one interesting thing to check is the ROM
BIOS release marker. IBM wisely marks each version of the ROM-BIOS for its
personal computers with a date indicator that will tell us which version is
installed in any IBM personal computer. Here are the commands to get
DEBUG to show us the release marker and DEBUG's response:

A>DEBUG
-0 F000: FFFS L 8
F000:FFFS 30 36 2F-30 31 2F 38 33
-Q

06/01/83

This display shows the date, 06/01/83, of the very first IBM PCjr ROM
BIOS. If you perform this operation on your own PCjr, you'll find which BIOS
date you have; it might be a later revision. The release markers are always put
at segmented address F000:FFFS, which is the location we asked DEBUG to
display. If it mattered, we could have our programs routinely inspect this area
for a particular date. For example, if a program only worked properly with a
particular version of ROM-BIOS, we would want the program to check the
BIOS date indicator to make sure it was working with the right one.

For your own information, the original PC's ROM-BIOS was dated 04/24/81
and a revision was released on 10/19/81. The XT was released with a marker of
11/08/82, and the replacement ROM-BIOS that is used when an IBM fixed disk
is added to a PC is marked 10/27 /82. There is not a whole lot of significance to

these revisions and revision dates, but they are interesting to know about. And
if IBM ever goofs up and gives us an error-ridden ROM-BIOS (which is very
unlikely, indeed), we now know how to find out if we have the original ROM, or
a later replacement.

We can use DEBUG to do all sorts of looking around in the ROM. For
example, we can hunt through the ROM-BASIC and display its messages, or
we can disassemble its code to figure out how parts of it work. If we start
DEBUG like this:

A>DEBUG

88

7: Using What ~ Know to Go Exploring

and then ask it to display data from the beginning of the ROM-BASIC, like
this:

-D FG00: 0000

it will show us the contents of the first location where ROM-BASIC is stored. If
we repeatedly key in the D command, DEBUG will show us succeeding
chunks of memory, without our having to specify the addresses we want to see.
If we keep at it for a while, we'll run across the error messages that are
incorporated into BASIC. While knowing about these messages isn't particu
larly useful, it still is interesting to poke around and explore them. The skills
that we acquire this way come in handy later if we have to do some patching or
advanced debugging of programs.

89

CHAPTER

8
CONNECTING WITH
THE CARTRIDGES
The cartridges for the PCjr work in a

very simple way: If they're there,
they're there; if they're not, they're

not. It is simple, quick, and efficient
for programs to check for, test and

use cartridges.

a~
~

----~~--- ~ \\,~

EXPLORING THE IBM PCJR

Unlike the diskette drive, which reports an error when you try to use it
without having first inserted a diskette, the cartridge slots simply accept read
only memory on cartridges that plug into one or another of the four predefined
memory locations.

The job of seeing whether a cartridge is present and of checking it out falls
to the software that looks at the cartridges. While it can take a while for a
diskette drive to signal that no diskette is inserted, checking for cartridges
takes place at the speed of a few 8088 instructions.

When a cartridge is plugged in, the data that are stored in the cartridge's
ROM are directly present in its part of the PCjr's memory map. All Junior needs
to do to check for a cartridge is to read from those memory locations. If there is a
program to be run on a cartridge, our PCjr can pass control to the program, just
as it would to any other program.

Programs on cartridges are stored in ROM and must use part of Junior's
memory for their stack and other working storage-but this is quite normal
business. After all, the segmented-address architecture of the 8088 is set up to
have programs, data, and stack all independently located, each under the
control of its own segment register. The ROM-BIOS and ROM-BASIC each
operate in ROM, so there is nothing difficult about making games and other
programs work this way as well.

For cartridges to be used successfully, there have to be some conventions
about how they are marked and their contents indicated. In the next section
we'll take a look at how this is done.

CARTRIDGE LAYOUT

There is a standard coding called a header at the beginning of each car
tridge, so that it can be recognized and its features made known. The header
starts with a 2-byte signature, hex 55AA; if it's found at a cartridge memory
location, that tells the computer that a cartridge is present. Hex 55AA seems to
be used by IBM for many similar purposes. For example, the special ROM
BIOS used by the IBM fixed disk system contains the same signature, and the
boot record on disks ends with this signature.

After the 2-byte signature comes a 1-byte size indicator that tells the
computer in units of 512 bytes, or ½K, how much memory there is in the
cartridge. While the maximum memory size of a PCjr cartridge is 64K, this
coding scheme allows for sizes up to 256 times 512 bytes (½K), or 128K. In
practice, you'll find that the cartridges have a multiple of 2K bytes, so this size
code will be some multiple of four (four times ½K equals 2K bytes).

The fourth through sixth bytes of the header are set aside for a 3-byte jump
instruction. This jump instruction is used to allow the cartridge to participate in

92

8: Connecting With the Cartridges

the computer's start-up process. Here is how it works. When the computer is
started up, or ''booted," the bootstrap program in the ROM-BIOS checks the
cartridge address locations for the cartridge signature. If a cartridge is found,
then the ROM-BIOS uses the CALL instruction to pass control to the car
tridge, so that the cartridge can do any initialization it wants to do.

The cartridge could do any of several things. One is that it could ignore the
opportunity, and immediately return control, using the RET instruction, to the
ROM-BIOS. Another possibility is that the cartridge could immediately take
charge of the computer, and never return control to the ROM-BIOS; this
approach can be used by game cartridges that control the computer directly,
without the help of DOS. The third thing a cartridge might do is perform some
initialization and then return control to the ROM-BIOS, which would then
carry on with the bootstrap operation. The BASIC cartridge works this way for a
very simple reason. When we boot our computers, if there is nothing to take
charge of the computer, such as a DOS diskette or a game cartridge, the
bootstrap program activates the ROM-BASIC program by using interrupt 24
(hex 18). This is all fine, except that when we have the BASIC cartridge
plugged in, we'd rather use the cartridge BASIC, with all its features, instead of
the ROM-BASIC, which has fewer features. To make this possible, the BASIC
cartridge does one simple bit of initialization when it is given the opportunity:
It replaces the interrupt hex 18 vector (which normally points to the ROM
BASIC), to point to the address of the BASIC inside the cartridge. This makes
it possible for the BASIC cartridge to put itself in the place of the ROM
BASIC, and yet not interfere with the bootstrap process.

So, the reason why each cartridge has a 3-byte jump instruction at its
beginning is to make these tricks possible. The jump instruction just passes
control to whatever location inside the cartridge is the actual initialization
program. Putting the jump at the beginning of the cartridge gives the bootstrap
program a standard place to pass control, no matter where the actual working
initialization program is.

By the way, recall that the PCjr is automatically restarted, or booted,
whenever we insert or remove a cartridge. This makes sure that the computer
has a chance to respond to any change in the cartridges, and that every cartridge
gets a chance to do its initialization.

After these six beginning bytes comes a table of the DOS command programs
on the cartridge. The table is very simple: There are as many entries as are
needed, and there is no fixed limit to its size. The end of the table is marked by
a zero byte after the last entry. Each entry in the table consists of one byte
indicating the length of the name of the program, followed by the name of the
program, which contains as many bytes as the length byte specified. The last
part of the table entry is a 2-byte word that shows the offset of the command

93

Code

Header:
SSAA
40
E9 1D 00

Table:
OS BASIC E9 82 01
06 BASICA E9 78 01
00

EXPLORING THE IBM PCJR

Meaning

Signature
Length 64 • 512 = 32K bytes
Jump instruction to which the interrupt hex 18
vector points; in this case a jump to initialize
BASIC

BASIC command program
BASICA command program
End of table

Figure8-1. Header and command-program table from
the BASIC language cartridge

within the cartridge, which can be used to pass control to that particular
command program.

A sample of the header and command-program table is shown in Figure 8-1.
One use of cartridges for the PCjr is to provide DOS commands right on

tap. As you know, DOS comes with a large number of commands. Some are
internal, meaning that they are kept in memory with the command interpreter,
COMMAND.COM. All other commands are external; they must be found
elsewhere, and customarily that means looking for them on the disk. But with
the PCjr, DOS will quickly check any cartridge that is plugged in, and if the
name of the requested command is in the cartridge's command-program table,
DOS will use it immediately. The BASIC language cartridge contains two
entries in its DOS command table, BASIC and BAS/CA, which are the names of
the two original versions of BASIC on the IBM PC.

BASIC is set up to work with cartridge programs, so that games and other
programs can be delivered in cartridge format. These are BASIC program
cartridges, which are used with the BASIC language cartridge; be sure not to
mix them up.

To keep from confusing DOS, BASIC program cartridges have the standard
header for cartridges, with nothing in the table of DOS commands. There is
one thing that is special about the header on BASIC program cartridges, so that
BASIC can recognize them, but this special coding is incorporated into the
standard format. Here is how it's done:

Three bytes are set aside in the cartridge header for a jump instruction to
any initialization program that the cartridge has. BASIC program cartridges,

94

8: Connecting With the Cartridges

and some other cartridges, don't have any initialization program, so instead of a
jump instruction in these three bytes, the cartridges have a RET (return)
instruction, as we mentioned before. This RET only takes up one byte,
leaving the other two bytes unused. On a BASIC program cartridge, these two
bytes are set to the signature code hex AASS; if BASIC finds that signature in
these two bytes, it knows that the cartridge contains a BASIC program.

Following the cartridge header is the cartridge's program. On a BASIC
program cartridge, that's a BASIC program in the same format as a BASIC
program stored on a diskette. The program itself is stored in BASIC's com
pressed, or "tokenized," format, and the first byte indicates whether or not the
program is protected, which keeps us from listing the program code. A pro
tected program begins with hex FE, and an unprotected program begins with
hex FF.

CARTRIDGE MEMORY LOCATIONS

We've just covered how the contents of a cartridge are coded. How about
where they are located in memory? We'll discuss that in this section, and show
you how the answer takes on a different look when we consider it from different
perspectives.

As we've mentioned, it is the cartridge itself, and not the cartridge slot, that
determines where in memory the cartridge's data appear. It doesn't matter

Header:
SSAA
xx
CB
AASS
00

Program:
FE or FF
XXYYXX

Meaning

Signature
Length of this cartridge
Return instruction
2nd signature, indicating BASIC program
End-of-cable marker, indicating

no DOS commands

Is program protected or not?
BASIC program in tokenized format

Figure8-2. Header and program from a
BASIC program cartridge

95

EXPLORING THE IBM PCJR

which slot we plug a cartridge into; the information inside the cartridge will
appear in the same place in the computer's memory.

The coding of the cartridge's contents, which we just looked at, has
nothing to do with specifying the cartridge's memory location. That is done
with the hardware circuitry inside the cartridge. The PCjr's cartridges are
designed to plug into any one of six different memory locations.

We mentioned when we covered Junior's memory that 128K of memory has
been set aside for use by the cartridges, the combination of the two 64K blocks
that are located at segment addresses D000 and EOOO. Just above that area is
the 64K block, at segment address FOOO, where the PCjr's ROM-BIOS is
located. The circuitry in Junior's cartridges is designed so that it can plug into
memory at either the beginning or the middle of any of these three blocks. In
the area that is set aside for ordinary cartridge use, the addresses would be any
of these four:

0000 (beginning of O-block)

0800 (2nd half of O-block)

EOO0 (beginning of E-block)

E800 (2nd half of E-block)

As an example, the PCjr's BASIC language cartridge plugs into the E800
memory address, the highest of these four addresses.

Those four locations are where cartridges are normally supposed to appear.
But a cartridge can also be addressed into the ROM-BIOS area, at either FOOO
or F800. When a cartridge is addressed into this ROM-BIOS area, it overrides
the ROM-BIOS that is built into the computer. This makes it possible for a
cartridge to change the computer's most fundamental programming, tem
porarily. The ordinary software cartridges that we buy for our PCjrs don't do
this-they use the D and E memory addresses that are intended for software
cartridges. But it is possible for a cartridge to use the ROM-BIOS's F-block of
memory as well.

In the overall design of the IBM personal computers, the 128K of memory
in the D and E address areas is set aside for cartridges, to be used in any way
that is desired. While our Junior's specific circuit design only allows ordinary
cartridges to appear at the four memory locations listed above, the general
design for all the IBM personal computers is more flexible. The software that
searches through memory to see if a cartridge is actually plugged in looks at
other locations besides these four. In the next section, we'll show you a
program that searches for cartridges; we will have it check more memory
locations, to illustrate the idea.

96

8: Connecting With the Cartridges

MORE SNOOPING

In this section, we are going to show you how to do some exploring,
snooping, poking around in the PCjr's cartridges. We'll create the BASIC
program shown in its entirety in Figure 8-3. This program will enable us to

explore any cartridge and find out what is in it. I could just give this to you as a
program listing that you could key in and use. However, instead, I'm going to
talk you through its development to help you understand what is going on, and
to demonstrate good, structured BASIC programming.

1000 'cartridge exploration program
1010 'from Exploring the IBM PCjr Home Computer
1020 'authored by Peter Norton, 1983
11 00 '
1110 ' main program outline
1120 '
1130 GOSUB 2000
1140 FOR CARTRIDGE = 1 TO 2
1150 GOSUB 3000
1160 NEXT CARTRIDGE
1170 GOSUB 4000

2000 I

2010 'initialization subroutine
2020 '
2030 KEY OFF
2040 CLS

'initialize
' loop thru both
' check cartridge

' finish up

2050 PRINT "Cartridge exploration program"
2060 PRINT
2070 TRUE = 1
2080 FALSE = 0
2090 RETURN

3000 I

3010 'check out one cartridge
3020 I

3030 PRINT

' a handy name
' a handy name

3040 PRINT "Checking cartridge number ";CARTRIDGE
3050 BASE.SEG = &HEOOO - &H1000 * <CARTRIDGE - 1)
3060 ' loop thru every 1K boundary in the area
3070 FOR K = 0 TO 63
3080 DEF SEG = BASE. SEG + K * 64

Figure8-3. A program to check the contents of
a PCjr cartridge

97

(continued)

EXPLORING T HE IBM PCJR

3090 GOSUB 5000 • check for signature
3100 IF SIGNATURE GOTO 3140 'if found, good
3110NEXTK
3120 PRINT "No cartridge signature was found."
3130 RETURN
3140 PRINT "A cartridge is in this slot with";
3150 PRINT PEEK C2> / 2;"K bytes of memory."
3160 OFFSET = 6
3170 LI ST. COUNT = 0
3180 PRINT "These commands are on this cartridge:"
3190 WHILE PEEK (OFFSET)> 0
3200 NAME.LENGTH = PEEK COFFSET>
321 0 OFFSET = OFFSET + 1
3220 LI ST. COUNT = LI ST. COUNT + 1
3230 ' if ok, skip over error handling
3240 IF NAME. LENGTH < 20 THEN 3270
3250 PRINT "Cartridge not coded as expected."
3260 RETURN
3270 PRINT 11 ";

3280 WHILE NAME. LENGTH > 0
3290 PRINT CHR$ CPEEK (OFFSET>>;
3300 OFFSET = OFFSET + 1
3310 NAME. LENGTH = NAME. LENGTH - 1
3320 WEND
3330 PRINT
3340 OFFSET = OFFSET + 3 ' skip past jump
3350 WEND
3360 PR I NT LI ST. COUNT;" commands were found."
3370 RETURN

4000 I

4010 'finish up subroutine
4020 I

4030 PRINT
4040 PRINT "End of the exploration program."
4050 PRINT
4060 PRINT "Press 'B' to return to BASIC,"
4070 PRINT "or any other key to return to DOS."
4080 ' wait for keystroke
4090 IKEY$= INKEYS
4100 IF I KEY$ = 1111 GOTO 4090

Figure 8-3. A program to check the contents of
a PCjr cartridge (continued)

98

(((Jfltinu«I)

8: Connecting With the Cartridges

4110 IF CIKEYS = 11B11 > OR CIKEYS = "b") GOTO 4150
4120 PRINT
4130 PRINT "Returning to DOS ••• "
4140 SYSTEM
4150 PRINT
4160 PRINT "Returning to BASIC ••• "

4170 END
5000 I

5010 ' check for 55AA signature
5020 I

5030 SIGNATURE = FALSE
5040 IF CCPEEK CO> = &H55) AND CPEEK C1 > = &HAA»

OR CCPEEK CO) = &HAA> AND CPEEK C1 > = &H55))
THEN SIGNATURE = TRUE

5050 RETURN

Figure 8-3. A program to check the contents of
a PCjr cartridge (continued)

First, let's look at the main outline of the program. One of the basic
principles of structured programming is to write programs with simple, logical
outlines, breaking the program down into modules. This approach takes a little
extra time, but it makes programs more understandable and easier to write,
debug, and improve. Here is our outline:

1110 'main program outline
1120 '
1130 GOSUB 2000
1140 FDR CARTRIDGE = 1 TD 2
1150 GDSUB 3000
1160 NEXT CARTRIDGE
1170 GOSUB 4000

'initialize
' loop thru both
'check cartridge

'finish up

To get the housekeeping out of the way, we'll take care of initialization (the
subroutine at line 2000) and clean-up (the subroutine at line 4000) first. These
routines can be anything we want.

Initializing

A natural thing to do is to start by clearing the screen, announcing what we
are going to do, and setting up true and false variables, to help make the
program clearer.

99

EXPLORING THE IBM PCJR

2000 I

2010' initialization subroutine
2020 I

2030 KEY OFF
2040 CLS
2050 PRINT "Cartridge exploration program"
2060 PR I NT
2070 TRUE = 1
2080 FALSE = 0
2090 RETURN

Cleaning Up

' a handy name
' a handy name

A good way to finish up is to give the program's user a choice of going to
command-level BASIC or to DOS, so we end like this:

4000 I

4010 'finish up subroutine
4020 I

4030 PR INT
4040 PRINT "End of the exploration program."
4050 PRINT
4060 PR I NT "Press 'B' to return to BASIC,"
4070 PRINT "or any other key to return to DOS."
4080 ' wait for keystroke
4090 IKEY$ = INKEY$
4100 IF IKEY$ = 1111 GOTO 4090
4110 IF C IKEY$ = "B") DR C IKEY$ = "b") GOTO 4150
4120PRINT
4130 PRINT "Returning to DOS ... "
4140 SYSTEM
4150 PRINT
4160 PRINT "Returning to BASIC ... "
4170 END

Checking for a Cartridge

Our next task is to build the 3000 subroutine, which will explore one of the
cartridges. We begin by reporting what we are doing and by calculating the
segment address of the memory block where a cartridge should be located.

3000 I

3010 'check out one cartridge
3020 I

3030 PR I NT
3040 PRINT "Checking cartridge number ";CARTRIDGE
3050 BASE.SEG = &HE000 - &H1000 * (CARTRIDGE - 1)

100

8: Connecting With the Cartridges

We use the formula in line 3050 because we want to be able to use this
subroutine to check for both cartridges. Had we only wanted to check for the
one located at segment address E000, we could simply have said BASE.SEG =
&HE000.

Next we check for the signature, hex 55AA. We'll need to do this several
times so we might as well make it a subroutine. We'll make the subroutine
tolerant, that is, have it accept either a signature of 55AA or of AA55. (Signa
tures have been known to get mixed up, partly because the 8088 stores words in
memory "backward," so that what we would write as 1122, it stores as 2211.)
Also, we need to search within the 64K block set aside for the cartridge, to see
exactly where it is. Here is how we do it:

3060 ' loop thru every 1 K boundary in the area
3070 FOR K = 0 TD 63
3080 DEF SEG = BASE. SEG + K * 64
3090 GO SUB 5 0 0 0
3100 IF SIGNATURE GOTO 3140
3110 NEXT K

'check for signature
' if found, good

3120 PRINT "No cartridge signature was found."
3130 RETURN
3140 PRINT "A cartridge is in this slot with 11 ;

3150 PRINT PEEK C2) / 2;"K bytes of memory."

This PEEK command tells the computer to look at the size-code byte
located at the offset address 2 and, since the size code represents how many
units of 512 bytes (½K) of memory there are, to divide the size code by two to
get the number of K in the cartridge.

Here is the subroutine called in line 3090 to test for the signature. If the
right signature is found, the presence of a cartridge in the first slot and its size is
announced; if it is not found, the program will return to line 1150 and test for a
signature in the next cartridge slot.

5000 I

5010 ' check for 55AA signature
5020 I

5030 SIGNATURE = FALSE
5040 IF CCPEEK CO> = &H55) AND CPEEK C1 > &HAA»

DR «PEEK CO) = &HAA> AND CPEEK C1 > &H55))
THEN SIGNATURE = TRUE

5050 RETURN

Checking the Contents of the Cartridge

If we find a cartridge, we search for the two possible things that might
follow the cartridge header: the table of any command programs and the

101

EXPLORING THE IBM PCJR

identifying signatures of any BASIC programs. We set the offset we are going to
use for our next PEEK instruction past the signature and other header bytes to
the seventh byte (which, since we address the bytes starting with offset 0, is
offset 6), where the length of the command name is stored. We then set a
counter, LIST.COUNT, to O so that we can use it to count the number of
commands in this particular cartridge's command table.

3160 OFFSET = 6
3170 LI ST. COUNT = 0
3180 PRINT "These commands are on this cartridge:"

and then we start searching. The table (even if there is nothing in it) ends with
a zero byte, so our search will be a WHILE loop checking for that end mark:

3190 WHILE PEEK COFFSET> > 0

Then we take a look at the byte at offset 6 to get the length of the name of
the command and set the variable NAME. LENGTH equal to the value of that
byte. We also increment LIST.COUNT.

3200 NAME. LENGTH = PEEK COFFSET>
321 0 OFFSET = OFFSET + 1
3220 LI ST. COUNT = LI ST. COUNT + 1

For safety, we test for a reasonable length. In this case, a command name 20
bytes or longer would be considered unreasonable and would cause the pro
gram to return to line 1150 and start looking for another cartridge.

3230 'if ok, skip over error handling
3240 IF NAME. LENGTH < 20 THEN 3270
3250 PRINT "Cartridge not coded as expected."
3260 RETURN

If the name length is reasonable, the name of the command is printed one
character at a time and the jump instruction then moves the program to the next
entry in the table.

3270 PRINT"";
3280 WHILE NAME. LENGTH > 0
3290 PR I NT CHRS C PEEK CO FF SET>>;
330 0 OFFSET = OFFSET + 1
331 0 NAME. LENGTH = NAME. LENGTH - 1
3320 WEND
3330 PRINT
3340 OFFSET= OFFSET+ 3 'skip past jump

When the end-of-table zero byte is encountered, the program exits the

102

8: Connecting With the Cartridges

loop through the command names and prints out the number of commands in
the table.

3350 WEND
3360 PRINT LIST.COUNT;" commands were found."
3370 RETURN

THE BASIC COMMAND CARTRIDGE

When we use this program to check out the PCjr's BASIC command
cartridge, it reports two programs: BASIC and BASICA. Actually, there is only
one program in the cartridge. Since the disk BASIC used on the IBM PC came
in two versions, BASIC and BASICA (meaning Advanced BASIC), the PCjr
cartridge needs to have both versions to maintain compatibility with the PC. In
actual fact, though, the PCjr has only one BASIC program, which can be used
under either name.

Oddly enough, this has undermined compatibility with the PC model in a
very small way. In the original PC version, BASICA had a few features not
found in BASIC. It is possible for programs to check to see if these features are
working. (They do this by setting an ON ERROR trap and then trying .to use
any BASICA feature; if an error occurs, then BASIC, rather than BASICA, is
in use.)

There is one extra program on the BASIC cartridge, the TERM program,
which isn't visible in the cartridge's table of DOS commands. Large mainframe
computers usually talk to many terminals of various types. One standard and
relatively unsophisticated type is called an ASCII terminal, or "dumb" termi
nal (dumb because it has no sophisticated features). The TERM program in
the BASIC cartridge makes the PCjr act like (emulate) an ASCII terminal, and
many PCjr users who also work with mainframe computers will find TERM
very useful. For some people, the features of TERM are almost worth the
entire price of the PCjr itself.

The TERM program is activated by first getting to BASIC, and then
entering the BASIC command TERM. What happens then is fascinating. The
ASCII terminal emulation program, which is written in BASIC, is transferred
from the cartridge to BASIC's working memory and then run, just as if we had
LOADed it from diskette, or typed it in. The TERM program is written in
BASIC so that it can make use of BASIC's abilities, and also so that we can use it
even on an entry-model PCjr, without needing a diskette drive, or DOS.
TERM is a little marvel, which we've been given as a bonus with the BASIC
cartridge.

103

CHAPTER

9
HIGHER EDUCATION:

FUNDAMENTALS OF DOS
We pointed out earlier in this book

that the computer's programs represent
its education. Programs fall into

two categories-application programs,
such as an accounting program, and

system programs, such as DOS.

EXPLORING THE IBM PCJR

Application programs are the computer's practical education, while system
programs are the fundamental education a computer needs to be able to go into
the world and do a job. These system programs come in various types and work
at various levels.

As we have already pointed out, the ROM-BIOS programs that are built
into the PCjr are the computer's elementary education-the foundation that
the computer needs to be able to continue on to more sophisticated things.
In the same vein, we can say, without stretching the analogy too far, that
the cartridge programs we just covered are elective courses. Cartridges, par
ticularly the BASIC cartridge, can supplement the elementary education,
enriching Junior's capabilities-but they don't take the computer's education
much further.

For the computer's higher education, we turn to DOS, the Microsoft® Disk
Operating System, which provides the facilities needed to make the PCjr a
complete working computer. With DOS to help it, Junior can use a spreadsheet
program to become a skilled accountant, a word-processing program to become
a writer, or a host of other application programs to acquire many different
professional skills.

WHAT DOES DOS DO?

From the simplest point of view, the disk operating system is what we need
to run our programs on the computer. Programs need an environment, an
operating framework, to work in. The task of the disk operating system is to
provide the framework, the working environment that programs need to get
their work done.

Each individual program could, if necessary, take care of its environment
by itself. But there are two major things wrong with that. First, the environ
mental needs of programs are pretty uniform and it would be a foolish duplica
tion of effort for each program to include these facilities within itself. Second,
we need to maintain some standards for the way programs operate, so that
they can work together. This kind of continuity is especially important in
disk formats; if each program were to use diskettes in its own unique way,
then we wouldn't be able to pass data easily from one program to another. For
example, a word-processing program might not be able to pass its information
on to a spelling-checker program. Incompatibility is enough of a problem
as it is; without a standard disk operating system like DOS, things would
be a lot worse.

So what does a disk operating system, such as the PCjr's DOS, do to
provide a standard environment for programs? Although we may not realize it
when we are using DOS on our Juniors, the operating system does three main

106

9: Higher Education: Fundamentals of DOS

things for our programs: task management, memory management, and storage
management.

Task Management
Task management is the job of controlling the actual execution, or use, of

programs. For our DOS, this means loading our programs into memory and
getting them started properly. In more sophisticated computers, task manage
ment also involves the complex job of keeping track of many programs that are
running simultaneously. In the largest computers, the number of independent
programs, or "tasks," can be in the hundreds or even thousands and in this case
the job can become hair-raising indeed. For our DOS, however, only one
program is running at a time, so the job of task management is much simpler.

Memory Management
The second main job of an operating system is memory management. The

computer's memory is one of its most important resources, and it needs to be
carefully husbanded and controlled. DOS takes care of this for us by choosing
which parts of memory will hold our programs and by telling the programs how
much memory they can use. As part of this memory management, DOS has the
ability to give extra memory to programs that are running and to take it back, as
needed. It can also reserve sections of memory for a program to use, even after
the program seems to be finished, through a trick called "terminate but stay
resident." We will talk more about programs that terminate but stay resident
later in this chapter.

Storage Management
The third and most visible job for the disk operating system is storage

management, the control of the data and storage space on our disks. Storage
management itself breaks down into two main parts: file management and
space management.

File management involves locating and using the data that we have in our
disk files. When our programs open files, as with the OPEN statement in
BASIC, it is the job of file management to find the files and keep track of
them. When we read or write data to the files, file management takes care of
that as well.

Closely related to file management is space management. Each diskette has a
certain amount of usable storage space on it where the data in files can be kept.
The job of space management is to make sure that nothing goes wrong with the
space-that each file is kept separate, that none of the data in the files gets

107

EXPLORING THE IBM PCJR

lost, and, as much as possible, that we do not run out of space when we are
using a disk.

All of these jobs come together in the disk operating system, DOS. Some
things happen actively, with DOS taking the initiative on what is to be done,
and some things occur passively, with DOS simply providing a service that one
of our programs has requested. Either way, DOS is responsible for managing
the tasks, the memory, and the storage in our PCjr.

Let's now take a look at how the various system programs fit together. In
the next two sections, we'll see these programs from two perspectives: how
they are brought into the computer and set to work, and how they work
together when they are in operation. We'll begin with how the parts work
together.

BUILDING A PYRAMID

Like an acrobatic team building a human pyramid, DOS puts on its show
by supporting one part on top of another. The very lowest part of the pyramid,
the ROM-BIOS, is not really part of DOS at all, but is, as we have seen, a
fundamental part of the design of the PCjr. DOS, or any other operating
system, must start with the very basic services that the ROM-BIOS provides
the foundation that the operating system builds on.

First Level-the ROM-BIOS

The ROM-BIOS is a set of programs; literally, it is software. But in effect,
the ROM-BIOS represents a transition between hardware and software; it
bridges the gap between the computer's circuitry-the hardware-and its more
conventional programs-the software. The ROM-BIOS may literally be soft
ware, but we will understand it best if we think of it as half software and half
hardware, because it works so closely, so intimately, with the hardware. This is
where the entire fabric of software for the PCjr begins. As the first and lowest
layer of system software, the ROM-BIOS becomes the foundation and the first
level of DOS's pyramid.

Second Level-the DOS-BIOS

The ROM-BIOS serves everyone, and therefore is tailored to no one. Any
disk operating system can use the ROM-BIOS services as the starting point for
its connection with the computer. Providing DOS with BIOS-type services
tailored to its particular needs is the job of the next level of the operating
system pyramid, the DOS-BIOS. While the ROM-BIOS is built into the

108

9: Higher Education: Fundamentals of DOS

computer, DOS-BIOS is stored on diskette, like the rest of DOS. The DOS
BIOS program adds extra features and control to the ROM-BIOS. It adapts the
universal ROM-BIOS to provide what DOS needs in the way of BIOS services.

To give you an idea of what the DOS-BIOS does, let's look at one particular
service: reading a chunk of data from a diskette. The disk routines in the
ROM-BIOS give our programs simple services to read data (or write data, or
perform other disk operations). If we ask the ROM-BIOS to read from a
diskette, it makes a single attempt at reading and then tells us if it succeeded or
failed. There are many reasons why reading the diskette might fail; in fact,
there are about ten main errors that could occur. Some are very simple. For
example, if the diskette is not already spinning when our program asks the
ROM-BIOS to read from it, it has to start spinning; if it is not turning fast
enough by the time the ROM-BIOS attempts to read from it, the ROM-BIOS
will report a failure to read.

Since the ROM-BIOS provides very basic and primitive services, it only
reports errors; it does not try to recover from an error. The DOS-BIOS, though,
has more smarts. It inspects the error codes that the ROM-BIOS passes back
and tries to take appropriate action. For example, if ROM-BIOS fails to read
data from a diskette, DOS-BIOS tries to read it three times before reporting a
read error. This increased capability takes care of the problem of the diskette
that starts to rotate and is not yet up to speed at the time of the first read
attempt. It also solves other problems as well.

The DOS-BIOS routines do much .nore than we've discussed here, but
you now have an idea of their main function: They take the ROM-BIOS
services as a starting point, and add whatever sophistication and window
dressing is needed to take them to the next level of reliability and service.

Third Level-the DOS Services

So far we have the low-level BIOS (the ROM-BIOS) and the high-level
BIOS (the DOS-BIOS) in our pyramid. The next level is the DOS services, which
provide all the main operations that programs need from the operating system.

Following the principle that each level of the pyramid builds more sophisti
cated and complicated services onto the levels below, the DOS services add an
enormous amount to the DOS-BIOS. For example, the DOS-BIOS is only able
to read data from a diskette, but the DOS services are able to decode that
information so that they can see the names of the files and find where each file
is on the diskette.

Although we still have two more levels to go in completing the DOS
pyramid, the level we are at here, the DOS services, is the one single part that
can best be called DOS itself-the heart of DOS. If a technical distinction
were ever made between the disk operating system per se and its minor parts,

109

EXPLORING THE IBM PCJR

then this part, the DOS service routines, would be considered DOS proper.

Fourth Level-the Command Interpreter

The next level of the pyramid, the command interpreter, is what you and I
work with; it is the part we tend to think of as DOS when we use our computers.

The job of the command interpreter is both to ask for our commands and to
act on them. The command interpreter asks for commands by giving us its
command prompt, like this:

A>

It then accepts as our response the name of a program we want to use. The main
job of the command interpreter is to find the program we have asked for, get it
ready to run, and then run it.

There are three places the command interpreter can look to find the
programs to be executed. Two are common to all IBM personal computers, and
one is new to Junior. The first place the command interpreter looks is inside
itself. Some of the simplest and most important command programs, such as
DEL, COPY, and TYPE, are actually incorporated into the command inter
preter and, naturally, are called internal commands. As part of the command
interpreter, they are always ready to be used.

All other commands are external and the command interpreter has to find
them somewhere else. Functionally, then, there is a big difference between
internal and external commands: The internal ones can always be used; the
external ones, maybe yes and maybe no-depending upon whether they are
available at this moment.

On the PCjr, the command interpreter can look in two places for external
commands. The first place, which is new to Junior, is in the table of command
programs on any cartridge inserted in the cartridge slots. The second place is
on the diskette. On the larger IBM personal computers, which can hold several
diskettes at the same time, the command interpreter can be told to look in all
sorts of places-different disks, and even different parts of different disks. On
our PCjr, however, there is only one diskette drive, and normally all the
commands on any diskette are kept in one place.

When the command interpreter finds the requested command program, it
executes the program. In other words, the command interpreter temporarily
turns over control of the computer to the program. Before it can do that,
though, the program must be in memory, ready to be executed. In the case of
internal commands, which are part of the command interpreter, or cartridge
commands, which are in ROM, the program is already there and the command
interpreter has nothing special to do. But command programs that are located

110

9: Higher Education: Fundamentals of DOS

on a diskette must first be loaded-read from the diskette into memory and
generally prepared for use. Once this preparation is done, the program is run,
or executed. Finally, when the program is finished, the command interpreter
takes back control of the computer and asks for another command.

Fifth Level-the Command Programs

The final level of the DOS pyramid is made up of the command programs.
There are more than a dozen commands that come with DOS and that we
rightly think of as a basic part of DOS. A good example is the FORMAT
command, which prepares blank diskettes for use. Although FORMAT is an
external command program, it would be very hard for us to use DOS without
being able to format diskettes; so FORMAT is, for all practical purposes, a key
part of DOS.

In fact, any program that can be executed with DOS is a command
program-including the BASIC interpreter and all sorts of application pro
grams, such as word processors, games, and spreadsheets. These application
programs are not part of DOS but are built on top of DOS to give us a fully
functional computer pyramid.

So, we have seen that there are five levels to the DOS pyramid: First, the
ROM-BIOS, which is built into the PCjr and is actually part of the computer, to
provide the most basic control. Second, the DOS-BIOS to customize the
ROM-BIOS to DOS's needs. Third, the DOS services to make up the heart of
DOS. Fourth, the command interpreter to make the connection between DOS
and us, the users of the computer. And fifth, the DOS command programs, to
enable us to perform computer magic.

GETTING DOWN TO WORK

Now that we have seen how the DOS pyramid is built, let's see how DOS gets
down to work. Starting up a computer always presents special problems. It is sort
of like the explorer's problem of where do you live while you build yourself a grass
hut to live in? For disk operating systems, the business of starting up is called
bootstrapping, or booting, and it involves some intricate tricks.

When the computer is first turned on, it performs its power-on self test
(POST) and then tries to boot, or start up, a disk operating system. Booting
involves reading the very first sector, or block, of data from a diskette. As we will
see in the next chapter, there is a boot record at the very beginning of every
diskette. If the ROM-BIOS start-up programs succeed in reading this boot
record, then that sector is used as the first part of the disk operating system's
own start-up routine. The job of the boot record is to begin loading the real

111

EXPLORING THE IBM PCJR

working parts of DOS; the boot record itself is not used in DOS, and it is
discarded after DOS gets going.

Each sector on a DOS diskette is 512 bytes in size-roughly enough room
for 150 instructions. Within that amount of programming space, the boot record
manages to check the diskette's format and determine if it is a system diskette;
that is, if the diskette has a copy of DOS on it. If so, it reads into memory the
two files that contain the DOS-BIOS and the DOS services programs, which
are stored under the file names of IBMBIO.COM and IBMDOS.COM. With
this done, the boot record has finished its work and it passes control over to an
initialization program in IBMBIO.COM.

The IBM BIO initialization program checks out the computer's equipment,
sets up whatever information it needs, and then passes control to IBMDOS.
IBMDOS then does its own initialization, which includes figuring out where in
memory the command interpreter should be placed. Control is then passed
back to IBMBIO. IBMBIO reads the command interpreter, which it finds in a
diskette file named COMMAND.COM, and the command interpreter is then
allowed to do its initialization.

Finally, the command interpreter looks to see if we have set up an AUTO
EXEC. BAT file, a file of special instructions that we want the computer to

carry out when it is first turned on. This file of DOS commands is known as a
batch command file. If it finds this file, the command interpreter carries out our
commands; if we have not set up an AUTO EXEC file, the command inter
preter executes its own default commands, which are to ask us for the date and
time and then to display the DOS starting messages, which look like this:

The IBM Personal Computer DDS
Version 2.10 (C)Copyright IBM Corp 1981, 1982, 1983

At this point, DOS is at work, ready for our commands. In the next section,
we'll see more about how this work is performed.

DOS AT WORK

To help you understand what goes on when DOS is in operation, we'll go
through a short outline of DOS at work. Obviously we'll be skipping over
literally hundreds of technical details, but you will see the essence of how
DOS works.

We begin at the point where the command interpreter writes the command
prompt A> to the display screen and asks the DOS services to fetch our
complete line of input from the keyboard. This request is similar to the

112

9: Higher Education: Fundamentals of DOS

10 ' a program to act l He the comma nd interpreter,
20 ' that rejects all comma nd s
30 CLS
40 ' turn off function key explana ti on line
50 KEY OFF
60 INPUT "A>", COMMANDS
70 PRINT "Bad command o r file name"
80 PRINT
90 GOTO 60

Figure 9-1. A program to imitate a command interpreter
that rejects all commands

following line in a BASIC program:

1 0 INPUT "A > ", COMMAND$

which writes the prompt A> on the screen and then waits for an input line.
As an aside, Figure 9-1 is a little bit of devilry to confuse your friends. Try

keying it in. It creates a convincing imitation of the command interpreter,
except that no matter what command is entered, this program acts as though
the command is improper.

When the command interpreter receives our command line from the DOS
services, it separates the command program's name from any parameters.
Next, it goes looking for the command program, first in the internal list, then in
the cartridges, and finally on the diskette. If the command is on diskette, the
command interpreter loads the program, does any preparatory work needed
(such as setting up the segment registers, storing the command parameters,
setting aside a section of memory for a stack, and so forth), and then passes
control to the program.

While a program is running, the command interpreter is not active. How
ever, the DOS services, the heart of DOS, are usually busy beavers, doing all
sorts of work for the program.

When the program is complete, it passes control back to the command
interpreter, at which point something very interesting happens. Before I can
explain it, we need to look at a fundamental problem.

DOS is in a special bind. On the one hand, the command interpreter needs
to be full of rich facilities in order to perform all sorts of magic for us-the more
of the DOS commands that are internal to the command interpreter, the
handier the interpreter is for us. On the other hand , a big command interpreter

113

EXPLORING THE IBM PCJR

uses up a lot of memory that we might need for our programs and their data. If
we happen to have loads and loads of memory in our personal computers, there
is no problem. But what if we have only a limited amount? After all, our Junior
is essentially limited to a maximum of 128K of memory, and after the amounts
needed for the display screen and for DOS are subtracted, there are only about
88K left. If the command interpreter is very big, it just cuts into the amount of
memory left for us to use.

To resolve this conflict, the command interpreter works in a very clever
way: It breaks itself up into essential and nonessential parts. The essential
part, which absolutely must be in memory, is kept in low memory locations,
right next to the DOS services program (IBMDOS.COM). But the nonessen
tial part of the command interpreter, which is not needed when a program is
executing, is placed in the highest available memory locations and is consid
ered disposable. This part of the command interpreter includes all the internal
command programs, since we aren't using them when we are running another
program, anyway.

If it turns out that there is plenty of memory for everyone, any program that
we run will leave the disposable part of the command interpreter undisturbed.
When the program ends, the disposable part can then be used again. However,
if there is a shortage of memory space, the program that is being run can use
the part of memory occupied by the disposable command-interpreter pro
grams. This overwriting occurs automatically and, in fact, no one knows when
it is happening.

When the program ends and the nondisposable part of the command
interpreter takes back control, it checks the contents of the high memory
locations to see whether all of its other half is still there. Because Junior has
only 128K of memory, the other half will be wiped out a lot of the time. If the
disposable part of the interpreter has been disturbed, the nondisposable
section goes to the system diskette, searches for the COMMAND.COM file,
and loads it in. If it can't find COMMAND.COM, then it displays a message
telling us to load a system diskette. (This is why it is a good idea to have a copy
of COMMAND.COM on all our diskettes, even when the diskettes don't have
the rest of DOS on them.)

Once the disposable part of the command interpreter has either been
found intact in memory or been reloaded from a system diskette, the cycle of
command execution has been completed and the DOS once again gives us the
command prompt A>.

QUICKLY THROUGH THE SERVICES

As we've mentioned several times, DOS provides all sorts of services to
programs. In this section, we'll take a quick tour through them. We won't cover

114

9: Higher Education: Fundamentals of DOS

them in great detail, since this book is about the IBM PCjr itself, rather than a
technical book on the inner workings of DOS. What we will do here is give you
a good idea of the nature of the services that DOS provides, partly to give you a
better understanding of how the PCjr works with DOS, and partly to show you
what services are available to your programs if you should need them. To learn
more about the DOS services in detail look to the IBM Disk Operating System
(DOS 2.10) Technical Reference manual.

Before we tantalize you with some of the power of the DOS services, you
should be aware that most programming languages don't give you direct access
to these services. Just as you need an assembly-language interface routine to
make the connection between a programming language, such as BASIC or
Pascal, and the ROM-BIOS, you need assembly-language connections to the
DOS services. In addition, such interface routines usually have to be custom
written for the exact needs of both the particular DOS service and the program
ming language that is being used. However, most programming languages
provide us with features that are equivalent to many of the DOS services
after all, the programming languages build their features out of the services
that DOS provides. In broad general terms, then, direct use of these DOS
services is only for sophisticated, assembly-language programmers who under
stand quite a bit about the inner workings of DOS.

The DOS services are divided, somewhat arbitrarily, into three groups.
The first group includes the DOS interrupts, each of which is invoked by its own
interrupt number. The second and third groups both include the DOS functions,
which are all invoked by a common interrupt number, 33 (hex 21). This
interrupt number is combined with a distinct service code to indicate which
DOS function is desired. (The mechanism is very much like that used by the
ROM-BIOS, where an interrupt is used to invoke a range of services and a
service code indicates which one is wanted.)

We ought to pause for a second to get our terminology straight. In the IBM
DOS manual, and in other DOS literature, you will find the terms DOS inter
rupt and DOS function or function call used. For our convenience, in this book
we use the general term DOS services to refer to both interrupts and functions.

The two groups of DOS functions are the traditional and the extended.
When DOS was first created, it was designed and organized in a certain way.
With experience, a better way was found to make DOS work and to organize
the DOS functions. All versions of DOS include the traditional services. The
level-2 versions, such as DOS 2.00 and DOS 2.10, also have the extended
functions which, among other things, look forward to the needs of faster
versions of IBM personal computers and more sophisticated operating systems.
The importance of the extended services is that they help guarantee a solid
future for the IBM personal computer family, for DOS, and for the programs we

115

EXPLORING THE IBM PCJR

use with both of them. The design of the extended services ensures that, as
computing progresses, we won't be stuck in a blind alley.

With that introduction out of the way, let's look at the services themselves.

■ Two services, one an interrupt and one a function, are used to terminate
a program and return control to DOS. Programmers can decide which service is
most appropriate for their programs.

■ A related and very important service, called "terminate but stay resi
dent," ends the operation of a program but reserves the part of memory where
the program is stored so that it will not be overwritten by other programs. This
service is used mostly by special interrupt handlers, which are loaded as
command programs. Having set themselves up with an interrupt vector point
ing to them, they then return control to DOS. ProKey, a keyboard-enhancing
program, uses this technique.

■ Three interrupt services are used to tell DOS the location of a sub
routine to be used under special circumstances: One is invoked if the Fn-B, or
Break, key combination is pressed; another is invoked when DOS detects an
error with a hardware device, such as the printer or diskette drive; and the third
directs DOS when the program ends.

■ Two interrupt services, known as absolute disk read and write, are used
to read or write sectors of data directly from or to the diskette. All the other
diskette services work on files and the data in the files, but these services allow
any part of the diskette to be read or written to directly.

■ Several function services support the use of the keyboard and display
screen. A variety of features is provided: Some keyboard services report
whether or not anything has been keyed in; others wait for a keystroke; and still
others wait for the Enter key to indicate that a complete line has been entered.
Keyboard input may be automatically echoed on the display screen or it may
not, depending upon which function is used. Single characters or complete
messages can be written to the display screen. One of the choices provided by
these services is whether or not DOS is to check for the Fn-B, or Break, key
combination, which breaks into the execution of a program.

■ A large variety of service functions is provided for the diskette drive.
One service allows the diskette to be reset, cleaning up any operations in prog
ress. Another service selects the diskette drive to be used. (Our Junior has only
one diskette drive, but the other IBM personal computers can have more than
one.) One service indicates which diskette drive is the current DOS default,
and another gives information about the format of the diskette being used.

116

9: Higher Education: Fundamentals of DOS

■ Various file services are used to find, create, or delete diskette files.
There are services to open a file (ready it for reading or writing), close a file, or
search the file directory for an entry that matches a generic file name. Another
service deletes a file from a diskette.

■ For working with the data in files, there are function services to read and
write data sequentially, or to skip to a specified location in a file and read or
write the data there. Other services allow files to be created or renamed.

■ To allow fancy footwork with programs, there is one function service
that will set any interrupt vector, and another that will create a program
segment, which is needed for one program to load another from disk.

■ For the date and time records kept by DOS, there are services to find
out what they are and to change them.

All of the function services mentioned so far are part of the traditional DOS
services provided by DOS-1 as well as DOS-2 versions. Next come the new,
extended DOS functions, which can only be used with DOS-2 versions, such
as DOS 2.00 and 2.10.

■ There are services to do all the basic directory operations, such as
creating a subdirectory, removing one, or changing the current directory.
These services allow ordinary programs to perform the functions of the DOS
commands CHOIR, RMDIR, and MKDIR.

■ Following a new DOS-2 scheme for managing files, there is a full range
of file services (opening, closing, reading, writing, renaming, and so forth),
similar to the traditional services, but all using the DOS-2 methods.

■ To manage memory, there are extended services to request the use of
memory from DOS, or to hand some memory back to DOS.

■ For dynamic subprogramming, there is an execute function, which will
load a program from diskette and run it under a main program.

This has necessarily been only a brief outline of what the DOS services
interrupts, traditional functions, and extended functions-can do for our
programs, but it should give you some idea of the tremendous operational
power that DOS provides to the programs that it executes.

117

CHAPTER

10
EXPLORING

THE DISKETTES
Disk storage is at the heart of the
effective operation of a computer.

Our Junior can operate without using
diskettes, thanks to its cartridges, its
built-in ROM-BASIC, and its ability

to use a cassette recorder for data.

EXPLORING THE IBM PCJR

But to make full use of it, we need a disk operating system, like DOS, and we
need disk storage. For the PCjr, the disk storage comes in the form of a single
diskette drive. In this chapter, we'll look at the most important aspects of our
PCjr's diskettes.

ANATOMY OF A DISKETTE

Diskettes themselves are circles of thin, flexible, mylar plastic covered
with the same sort of magnetic coating used on recording tape. The type of
diskette used by the PCjr is 5¼ inches, or about 13 centimeters, in diameter.

As you can see in Figure 10-1, the diskette is held in a square, protective
jacket, inside which is a felt liner that protects the diskette, acts as a dust
catcher, and contains a lubricant to help the diskette turn easily.

There are four openings in the diskette jacket. The hub opening in the
center allows the diskette drive to grab and spin the diskette inside the jacket.
The oval opening in the front of the jacket lets the recording heads get close
enough to the diskette to read or write data on it by magnetizing its surface.
Just to one side of the hub opening is a small index hole that is used by the
diskette drive to find a matching hole on the diskette itself. This index hole
indicates the beginning and end of a track, or circle, of data on the diskette.
The final opening is the write-protection notch on the side of the jacket, which
controls whether or not the diskette drive has permission to write on the
diskette. On the sort of diskettes used with our PCjr, when we cover the notch

I

I

(7·
'J

-\\

(1\\

Figure 10-1. Anatomy of a diskette

120

JO: Exploring the Diskettes

the diskette may not be written on, and when we leave the notch open the
diskette can be written on.

There are myriad ways to store data on diskettes. Diskettes can be hard
sectored, meaning that their format is fixed. Hard-sectored diskettes are not
used by the IBM personal computer family. Instead, our PCjr uses diskettes
that are soft sectored, which means that they can be formatted in various ways.
Soft-sectored diskettes offer flexibility but require that we run the FORMAT
program each time we use a new, blank diskette. Our soft-sectored diskettes
have just one index hole. In contrast, a hard-sectored diskette has a separate
index hole for each sector around the circumference of the diskette.

The term sector refers to the actual space occupied by data records stored
on the diskette. The number of sectors on a track and the size of the sectors can
vary, depending on the standards established by an operating system. Our
DOS uses only one sector size, 512 bytes, or ½K, in each sector. The number of
sectors on each track can be eight or nine. Eight sectors per track-which gives
us 4K bytes of data on each track-was the standard with DOS-1 versions, and
nine sectors-or 4½K bytes per track-is the standard with DOS-2 versions.
On any particular diskette, all the tracks will be either eight- or nine-sector
format, and our DOS 2.10 can work with either format.

Our diskettes are double density, which means that they are recorded with
the tracks spaced at 48 to the inch. There are 40 tracks to a diskette, so all our
data are stored within a band less than an inch wide, just under 21 millimeters.

The magnetic, read-write heads of the diskette drive move in and out to go
from track to track. The rate at which they move is under software control, so it
varies with the performance of the drive. Our PCjr's heads take 6 milliseconds
per track, so the longest they would take to move from one part of the diskette
to lJnother is about a quarter of a second. The diskette itself spins at 300 rpm, so
it takes one-fifth of a second for a complete revolution. In practice, the
computer has to wait an average of one-tenth of a second for the desired part of
the diskette to rotate into place.

A diskette drive can have recording heads on one or both sides; that is, it
can be single or double sided. Our PCjr's drive is double sided, so it can use either
single- or double-sided diskettes. Since the original PC came with only single
sided drives, most programs are distributed on single-sided diskettes to ensure
that any IBM personal computer can use them. (A single-sided drive cannot
work with a double-sided diskette, since it can't see half of what is recorded on
the disk.) In fact, though, most IBM personal computers, including our Junior,
now come with double-sided drives.

Incidentally, there is a reversible, or /lippy, variety of diskette that is
recorded on both sides, but it is not recorded like a double-sided diskette.
Instead, a flippy diskette is used as if it were two separate, single-sided
diskettes. To use the second side, you turn the diskette over. To make this kind

121

EXPLORING THE IBM PCJR

of use possible, flippy diskettes have two secs of index holes and two write
protect notches.

DISKETTE FORMATS

There are four different diskette formats chat can be used by DOS on the
PCjr. They differ only in detail, not in the main way they operate. We will
concentrate on the common ground of the four formats, but you need to know
what the four are, so that we can refer to them.

The four diskette formats come from the combinations of the two different
choices we have already covered. First, diskettes can be single- or double
sided, depending upon whether or not they are recorded on one or both sides.
Recall chat single-sided drives naturally can work only with single-sided dis
kettes; but double-sided drives, like the one used in our PCjr, can work with
either diskette format. Second, diskettes can have either eight or nine sectors
of data on each track. Any diskette drive can work with both eight- and nine
sector diskettes; however, DOS-1 versions cannot work with nine-sector dis
kettes, while DOS-2 versions can.

The very first version of DOS, 1.00, used only single-sided, eight-sector
diskettes. The next release, 1.10, added the double-sided format, but still used
only eight sectors per track. With DOS 2.00, the single- and double-sided,
eight- and nine-sector formats appeared, so that there are now the full four
formats . The PCjr can work with any of the formats. Our main version of DOS,
2.10, uses the same four formats as 2. 00.

The basic layout of a diskette is the same in all four formats. There are 40
tracks, or concentric circles, of data on the diskette. When they are referred to
individually, the tracks are numbered from track 0 on the outside to track 39 on
the inside. Normally the track numbers and all other details of the diskette
format are more or less hidden from us by DOS; we only discover these details
when we do some technical poking around.

On a double-sided diskette, there are two sides of data numbered 0 and 1.
On a single-sided diskette, the one side is referred to as number 0. The sectors,
either eight or nine of them, are on each track on each side. The sectors are
numbered from 1 through 8 or 9 (and not numbered beginning with 0, the way
tracks and sides are).

The storage spaces on a double-sided diskette are used in sequence from
outside to inside, starting with sector 1 of side 0 of track 0, and moving to sector
1 of side 1 of track 0, and so on. After side 0 is used for one track, then side 1 is
used next. The very last space on a double-sided, nine-sector diskette is sector
9 of side 1 of track 39. Thus, on double-sided diskettes, both sides of track Oare

122

JO: Exploring the Diskettes

8-sector
9-sector

Single Sided

160K
180K

Figure 10-2. Storage capacity of the
four diskette formats

Double Sided

320K
360K

used before the computer moves on to track 1, to reduce the amount of
recording-head movement from track to track.

Space on the diskette is used in full sectors. On single-sided diskettes, the
512-byte sectors are allocated to files one at a time, while on double-sided
diskettes the sectors are allocated in pairs, two at a time. As many sectors, or
pairs of sectors, as are needed are allocated to a file. At the end of a file there
will usually be some space left unused in its last sector.

Figure 10-2 shows, in terms of raw storage capacity, how much data storage
space is on each of the four diskette formats. Not all of that space can be used to
store our data, though. A certain amount is taken up by system control
information. We'll look at that now.

SYSTEM CONTROL INFORMATION

Each diskette begins with a boot record in its first sector. The boot record,
as we have seen, is the first part of the program that loads DOS from a diskette.
Even if a diskette does not have DOS on it, its first sector holds the boot record.

Following the boot record is an item called the file allocation table, or FAT,
which is used by DOS to manage and control the storage space on the diskette.
The FAT keeps track of what part of the space is being used by files and what
part is available. DOS always uses the first available space for storing data, so
that our files are stored as close to the FAT as possible.

The very first byte of the FAT contains a code used to indicate which of the
four diskette formats is being used. When DOS is working with a diskette, it
checks this format code first to learn how to interpret the rest of the diskette.
The four format codes are shown, in hexadecimal, in Figure 10-3.

The size of the FAT varies: For the 8-sector formats it occupies less than
one sector; for the 9-sector formats it needs slightly more than one sector and
therefore occupies two, since space can only be allocated in complete sectors.
Because the FAT is used to control the entire usable data-storage portion of the

123

EXPLORING THE IBM PCJR

8-sector
9-sector

Single Sided

FE
FC

Figure 10-3. Diskette format codes

Double Sided

FF
FD

diskette, two identical copies of it are scored in the hope chat, if one is dam
aged, the ocher might still be usable. So alcogecher, the FAT occupies either two
or four of the sectors immediately following the boot record on the diskette.

For the moment, we'll skip over the details of how the FAT works, until we
come back co it lacer in chis chapter, where we cover how data are scored.

The next item scored on the diskette is the file directory. A record is kept in
the file directory for each file on the diskette, giving the file's name, size,
location, and so forth. Each diskette has a root, or main, directory, and with
DOS 2.00 and lacer versions, each diskette can have subdirectories chat expand
the size and structure of the directory. Alchough subdirectories can be used
with any IBM personal computer, they are best used with a fast, high-capacity
disk system like the one on the XT.

The diskette's root directory occupies a fixed number of sectors and there is
thus a limit co the number of entries, and therefore the number of files, chat can
be stored on each diskette. However, the number is usually more than enough.
Each directory entry occupies 32 bytes, so there are 16 entries in each 512-byce
directory sector. A single-sided diskette has four directory sectors, for a max
imum of 64 entries or files; a double-sided diskette has seven directory sectors,
for a maximum of 112 entries or files.

You will notice that, while the size of the directory varies with single- or
double-sided format, the size of the FAT varies with eight- or nine-sector
format. If you are working with the directory and the FAT, cake care not co gee
their sizes confused.

Following the directory comes the data portion, which cakes up the rest of
the diskette. The overhead portions chat we have mentioned (the boot record,
the FAT, and the directory) cake up only about 2 percent of the diskette-not
very much at all.

If a diskette contains a copy of DOS-chat is, if it is a system diskette
then the first three files in the data storage space of the diskette will be
IBMBIO.COM, the special BIOS for DOS; IBMDOS.COM, the DOS service
routines; and finally, COMMAND.COM, the command interpreter. The two
"IBM" files are hidden system files chat will not appear in the diskecce's file

124

JO: Exploring the Diskettes.

directory listing. The command interpreter, COMMAND.COM, is an ordi
nary file that can be copied or erased, and it will appear in the directory listing.

Before we go into more details about diskette data storage space, let's take a
closer look at the file directory.

THE DIRECTORY IN DETAIL

The file directory is used to keep basic information about each file. It is a
simple table of 32-byte entries, one for each file. There are eight parts, or
fields, to each directory entry.

First Field-the File Name

The first eight bytes are the file name. If a file name is less than eight
characters long, it is filled out with blanks (CHR$(32)). Letters must be
uppercase (capitals); if they aren't, DOS won't be able to handle the directory
entry properly. (When we enter file names at the keyboard, DOS always
converts any lowercase letters to uppercase.) There shouldn't be any spaces
embedded in the file name, though there is a trick in BASIC that makes it
possible for you to use spaces. In a DOS command, such as COPY, there is no
way to use a file name with blanks inside it; but since BASIC puts quotation
marks around file names, like this:

OPEN "A B11 AS# 1

you can work with files that other programs won't normally touch. Using tricks
like this isn't a good idea, but if you have a need for it, BASIC lets you do it.

There are three special codes that may appear in the first byte of the file
name field. They are used to indicate special situations. If the byte is 0, the
directory entry has never been used before. This special code was introduced
with DOS 2.00 to provide a way to speed up DOS's operation by indicating
when the last entry in a directory had been found. Before DOS 2.00, unused
directory entries were marked just like erased files.

If the first byte of the file-name field is hex ES, the directory entry is
marked as not. in current use. With DOS-2 versions, this code always has the
same meaning: A file has been erased. With DOS-1 versions, it can mean either
that a file has been erased or that the directory entry has never been used.

When a file is erased, the space that was allocated to it is released to the
pool of available space in the FAT, and the directory entry is marked with this
hex ES byte. When a file is erased, though, its data are not immediately
overwritten, nor is any of the information in the directory lost, except for the

125

EXPLORING THE IBM PCJR

first character of the file's name. This makes it possible, under favorable cir
cumstances, to recover an erased file.

The third and last of the special codes for the file-name field is the period
character, hex ZE. One or two periods are used to mark two special file entries
in subdirectories; we'll discuss the significance of this period character in our
discussion of subdirectories later in this chapter.

Second Field-the File-Name Extension

After the file name, the next field in the directory entry is the file-name
extension. It is three bytes long and, like the file name, it is padded with blanks
if it is less than the full length. While a file name must have at least one ordinary
character in it, the extension can be all blanks.

Third Field-the File Attribute

The third field of the directory entry is one byte, each bit of which is used
to indicate whether or not a file has a certain attribute. When the bit is 1, or set,
the file has that feature and when the bit is 0, or not set, it does not.

■ Bit 0, the lowest-order bit, is used to mark a file as read only. This
protects it from being changed or erased. The read-only bit is new to DOS-2
versions and is not handled properly by DOS-1 versions.

■ Bit 1, the next bit, marks a file as hidden. We could use bit 1 to hide
our secret files from others who might have access to our diskettes, since
hidden files cannot be seen by ordinary directory searches, including the
DIR command.

■ Bit 2 marks a file as a system file, such as the IBMBIO and IBMDOS
files we've already talked about. System files are invisible in the same way that
hidden files are. However, our programs can gain access to hidden and system
files by using programming tricks, which include special manipulation of some
information known as a file control block.

■ Bit 3 marks a directory entry as the diskette label, which identifies the
diskette internally the same way the paper labels we stick on the diskette
jacket identify it externally. This type of directory entry is also new to DOS-2
vers10ns.

■ Bit 4 is used to identify subdirectories-another new item for DOS-2
versions, which we'll discuss shortly.

126

JO: Exploring the Diskettes

■ Bit 5 is used to mark files as to-be-archived. This feature is intended for
use with the XT's fixed hard disk to indicate files that have been changed since
the last archive copy was made. It really doesn't apply to the diskettes used by
our PCjr.

■ Bits 6 and 7 are not presently used; they are available in case future
versions of DOS might need them.

Even though each bit of the attribute byte has its own independent
meaning, the bits can't be used arbitrarily. A file can have any combination of
the read-only, hidden, system, and archive bits set, but if the label or subdirec
tory bits are set, none of the other bits should be. Subdirectories could possibly
be read only or hidden, but my experiments show that DOS doesn't intend for
us to use these exotic combinations of attribute bits. If you know how to modify
diskettes with tools such as DEBUG, you can experiment with different
attribute combinations-the results are interesting.

Fourth Field-Ten Empty Bytes

Moving on, the next field in a directory entry is an unused string of ten
bytes that have been set aside for future needs.

Fifth and Sixth Fields-Time and Date

The next two fields are each unsigned, 2-byte values that indicate the time
and date the file was last written to. This is the information that is displayed
when we do a DIR directory listing.

The time is stored as hours (in a 24-hour clock, ranging from O through 23),
minutes, and seconds; but because the 2-byce word used to store the time is
one bit too short to store all the seconds, they are divided by two and indicated
in 2-second increments. The DIR command doesn't show us the seconds, but
they are actually recorded. The date is stored as year, month, and day, with the
year compressed by subtracting 1980 from it. The year code can range from 0
through 119, indicating 1980 through 2099.

We don't have any ordinary, practical reason to know how the date and time
are coded, but it's interesting to see. Their parts are combined, following these
formulas, to produce two 16-bit words:

TIME = HOUR x 2048 + MINUTE x 32 + SECOND x 2
DATE = (YEAR - 1980) x 512 + MONTH x 32 + DAY

The way these formulas are worked out and the order in which they are stored
makes it possible to treat them as a single, 4-byte, unsigned number that can be

127

EXPLORING THE IBM PCJR

compared directly with similar numbers from other files; a larger number
indicates a later date and time.

Seventh Field-
the Starting Cluster Number

The next field in the directory entry is the starting duster number, which
indicates the beginning of the file's storage allocation in the FAT. This starting
cluster number is the entry point to the FAT for this file. We'll learn more about
clusters in a minute.

Eighth Field-the File Size

The last field of a directory entry is a 4-byte integer indicating the file's size
in bytes. Normally, this field indicates the file's exact size but the size is
sometimes fudged a little. For example, text files are often stored in 128-byte
increments and so the true end of the text data could be anywhere within
the last 128-byte storage block. Although the files on Junior's diskettes can't
be larger than 354K, the size field is made large enough to hold the size of
files created with large storage devices, such as the XT's 10-million-byte, fixed
hard disk.

DISK SffiRAGE STRATEGY
AND THE FAT

DOS uses a simple and efficient storage strategy for its disk space based on
two main rules: First, no space is reserved for files other than the space that is
actually in use. Second, all space is used on a first-come, first-served basis.

As a file is created, DOS allocates space piece-by-piece, as it is needed for
the growing file. The space is allocated in units known as clusters. For single
sided diskettes, a cluster consists of a single sector; for double-sided diskettes,
there are two sectors in a cluster. (On the fixed disk used by the XT, clusters are
normally eight sectors.) However big a cluster is, it is the unit of storage that is
allocated to a file. As a file grows and needs more space, it is assigned the first
available cluster.

When things are quite simple, each file is stored on one contiguous part of
the diskette; this is ideal for fast and efficient access. However, when files are
created and then erased or added to, the storage space can become fragmented
and files can be scattered over several parts of the diskette. There is no real
harm in this, but accessing the data can be slightly slower.

128

JO: Exploring the Diskettes

If you are curious, there are two ways you can learn whether a file is broken
into more than one piece: First, you can use the CHKDSK command to have
DOS check a specific file and report whether it is fragmented. Second, you can
use a program such as DiskLook TM (see Appendix C) to see a graphic map of the
location of each file on your diskette.

In order for DOS to manage the space on the diskette, each cluster of
sectors is given a reference number. Since the reference numbers are main
tained in the FAT and the first two entries (0 and 1) of the FAT table are set
aside for the format-descriptor byte, the cluster numbers run from 2 to one
higher than the number of clusters. Figure 10-4 shows the total number of
clusters for each diskette format.

The cluster reference numbers are stored in the FAT as a simple table, with
one entry for each cluster. The table entries are each three hex digits in size, or
1½ bytes each. The FAT entries are scrambled in pairs, so that each pair of
entries takes up three bytes altogether. While it was interesting and informa
tive to pore over the details of the directory, trying to understand the FAT
format could be described as complicated and annoying-so we'll leave that
for the most technical book in this series, Mastering the IBM PCjr Home Computer.

Since the FAT entries are three hex digits (or l½ bytes), they can range
from 000 through FFF, allowing the table to have over 4,000 unique entries.

If a cluster is free for use, the FAT entry for that cluster is zero. All DOS has
to do to find the first available cluster is scan the table for the first zero entry.

When clusters are in use for a file, their FAT entries act as a chain, with each
entry giving the cluster number of the next cluster belonging to the file. The
end of this chain of allocated space is indicated by a high value, usually 4095,
hex FFF. To trace through a file, then, all DOS has to do is follow the chain of
space allocation for the file in the FAT-very quick, efficient, and simple.

The FAT values hex FF0 through FF7 are reserved for special uses.
Currently, they have only one special use. When a diskette is formatted, some
of the surface of the diskette may not be usable. So that the entire diskette is
not wasted, the unusable portion is marked as a bad cluster with the FAT value
hex FF7. In the first version of DOS, version 1.00, another trick was used: A

8-sector
9-sector

Single Sided

313
351

Figure 10-4. Number of clusters for each diskette format

129

Double Sided

315
354

EXPLORING THE IBM PCJR

special, hidden file was created under the name BADTRACK and the unus
able clusters were allocated to it.

The way that the FAT is organized-with each file's space allocated in a
chain of FAT entries-makes the FAT vulnerable to several kinds of mishaps.
Although it doesn't happen often, a disk's FAT can become scrambled. For
tunately for us, there is a DOS command called CHKDSK that will test for any
errors, and repair them (as much as possible).

What could go wrong with a FAT? Mainly three things: First, a space
allocation chain could double back on itself, and repeat forever, without end.
Second, two different files could have their allocation chains point to the
same FAT entry-this is called cross-linking. And third, a cluster, or chain of
clusters, might not be marked as available space (FAT value 0), and yet also
might not belong to any file-becoming, in effect, orphans.

While these exotic FAT errors are rare, they can occur. You can use
CHKDSK to test for them, and you can use DiskLook (described in Appendix
C) to give you a diagram of what is wrong.

When a file is erased, its space is deallocated. The FAT entries are reset to
zero to indicate that they are available for use, and the directory entry for the
file is marked as erased by replacing the first byte of the file name with hex ES.
All the data in the file are still stored where they were on the diskette sectors
and all the information about the file is still in the directory, including the
starting cluster number, which points to the beginning of what was the file's
space allocation chain in the FAT.

Eventually, when other data are written to the diskette, the erased file's
data will be overwritten and the directory entry will be reused, wiping out the
remaining traces of the erased file. However, before that happens it is possible
to recover an erased file completely. All that is needed is first, to restore the first
byte of the file's name (the easy part) and second, to discover which sectors
used to belong to the file and to reallocate them (the tricky part). A clever
program can make this possible; for example, U nErase ™ (see Appendix C).

There are two reasons why we have covered what happens when a file is
erased: The first is to provide a better understanding of how Junior's diskettes
work; the other is more practical. One of the common horrors in personal
computing is accidentally erasing some important files; it happens too easily
and much too often. If you have not yet inadvertently erased a file, consider
yourself blessed. Of all the handy programs you should probably buy for your
PCjr, some sort of unerase program ought to be one of the first on your list.

I have delayed talking about two interesting special features of diskettes:
diskette volume labels (volume as in book, not volume as in capacity), and
subdirectories. Labels are a very useful item on diskettes, and all PCjr owners
ought to know about them and use them. Subdirectories, on the other hand,
are mostly used with large, high-capacity, hard-disk systems like the one on the

130

JO: Exploring the Diskettes

XT. We can use subdirectories on our Juniors if we want to, though, and
besides, we should all understand subdirectories, whether we use them or not.
We'll start with labels.

VOLUME LABELS

A volume label is a special directory entry used to give an identifying name
to a diskette. While we can't see these labels, DOS can, and will tell us what
they say when we use commands like DIR and CHKDSK.

By themselves, volume labels are nice to have to help us keep track of
which diskette is loaded in our PCjr's diskette drive. After all, we can't see the
paper label we attached to the outside of the diskette once the diskette is in the
drive. But the greatest benefit of volume labels comes when they are used with
a diskette librarian .

A librarian is a program that keeps a record of which files are stored on
which diskettes. This record is particularly useful when we keep several copies
of our data files, both current and older versions. And it is particularly impor
tant with business data, so that if a major mistake is made, we know where to go
to find the next most recent version. Having volume labels on our diskettes is
essential to effective use of a diskette librarian, and labels can be quite useful
even if we don't have a librarian program.

I recommend putting labels on all diskettes. Some people will want to use
the label as a diskette serial number, such as DISK-0034, but I feel it is best
to give diskettes functional names, such as GAMES, PROG-TOOLS, and
PHONE-LIST.

As we saw when we went over the details of directory entries, a directory
entry is marked as a label when it has an attribute byte of hex 08; that is, by
having only bit 3 of the attribute byte set. The entry's file-name and extension
fields are then used as a single, 11-byte field where the label is stored. Thus,
while the names of files and subdirectories are broken into two parts, the name
and the extension, a label is treated as a single, unified name. As with file
names and extensions, a diskette label is padded with blanks if the label name
we choose is shorter than the length allotted.

Normally, if a diskette has a label, the label is the first directory entry. But
when DOS goes looking for a label, it will look through all the active part of the
diskette's directory. Unfortunately, though, for those of us who want to make
use of labels, DOS is very limited in the way it lets us control them. DOS lets us
set a volume label only when we format a diskette, and then only if we format
the diskette with nine sectors per track. (This is the automatic default for our
DOS 2.10 version; we have to ask to use eight-sector format.) DOS gives us no

131

EXPLORING THE IBM PCJR

way to change or remove a label, or to add one to an existing diskette. However,
there is a way to add, change or remove labels, as you'll see in Appendix C.

SUBDIRECTORIES

Now we come to subdirectories, one of the most interesting aspects of
diskettes. A subdirectory is an addition to a diskette's root directory. While the
root directory is kept in a fixed, standard location at the beginning of each
diskette, a subdirectory is stored just like any other file. Space for each
subdirectory is allocated from the diskette's data storage space, exactly as for
any ordinary file. Files can grow in size, and so can subdirectories-as more
and more file entries are added to a subdirectory, it expands to accommodate
them. While a diskette's root directory is fixed in size and limits the number of
files it will keep track of, subdirectories have no size limit other than the
diskette's storage capacity.

Subdirectories are always attached to a parent directory, which can be
either the root directory or another subdirectory. There can be directories
branching off directories branching off still other directories, forming a tree
structure.

A parent directory has one entry for each of its subdirectories that is like the
entry for any other file, with two exceptions. First, of course, the attribute byte
marks the entry as a subdirectory. Second, the file-length field is set to zero; the
actual size of the subdirectory is found by tracing its allocation chain through
the FAT. In principle, a program can read a subdirectory like any other file, and
there is some mention of how to do this in the DOS manual. In practice, the file
length of zero presents an obstacle to reading the directory. When it reads a file,
DOS uses the file length to know when it has come to the end. Since a
subdirectory has a file length of zero, DOS thinks it has come to the end before
it's even begun, and refuses to try to read any data from the file.

Each subdirectory is created with two special entries, named " . " and
" .. "(one or two periods). These two entries help DOS manage directories by
providing the starting cluster number of a related directory. The " .. " entry
has a starting cluster number that is the beginning of this subdirectory's parent
directory. This gives DOS a way to trace its way back up the directory tree. If
the starting cluster number field contains a zero, that indicates that the parent
of this directory is the root directory.

The other special entry, the " . " entry, points to the subdirectory itself;
that is, the starting cluster number of the " . " entry indicates where this
directory is stored. Curious. I am certainly puzzled about why an entry like this
is needed, but there it is. DOS must have a need for it that I haven't really
figured out.

132

JO: Exploring the Diskettes

I have mentioned before that subdirectories aren't particularly useful on
the diskettes that our PCjr uses, and this calls for some explanation. There are
two reasons not to use subdirectories with Junior. First, the main point of
having subdirectories is to separate and isolate groups of files from one another;
this kind of organization is important when you have a lot of disk storage
capacity and many, many files-like on the XT's hard-disk system. For exam
ple, my XT has, as I write this, 651 files on its 10-megabyte, fixed disk; I can't
keep track of them all in one group, so I have them organized into 27 sub
directories, mostly by subject matter.

Diskettes, on the other hand, do not have enough space for so many files
that it is really necessary to divide them into subdirectories, though you may
want to for your own reasons. With the PCjr's diskettes, the same purpose is
best served by putting files on different diskettes, rather than into different
directories.

The second reason for avoiding subdirectories on the PCjr concerns per
formance and is probably the strongest reason for not using them. To work with
files that are in subdirectories and to trace its way through subdirectories, DOS
has to read much more from the diskette and generally hunt around on many
more tracks. On a fast, hard-disk system, all this reading causes only a slight
delay, but with diskettes, which are much slower anyway, you are likely to find
that using subdirectories causes more loss of speed and more annoyance than
you are willing to put up with.

We've talked about how diskettes and directories are organized. What
about the files themselves? That's the topic of the next section.

FILE FORMATS

Each of us could organize the data we put into diskette files for our own use
any way we wanted. But for all of us to be able to use common programs, we
have to use some standard file formats that make it possible for our computers
to work cooperatively. With standard file formats, different programs can safely
and reliably share information through diskette files.

In this section we'll look at the most common file formats. One word of
warning, though: As far as I know, there aren't any published definitions of
these "standard" file formats, so they are rather informal. Since there are no
published rules, the players have to play the game cooperatively and that
means that when we get into the interpretation of the finer points, things can
get a little uncertain. If you want to understand the basics of diskette files, what
we cover here should serve you well.

We are going to cover four basic file formats, with some interesting varia
tions. The four are: two ways of storing programs (known as COM files and

133

EXPLORING THE IBM PCJR

EXE files); the most common way of storing text (known as ASCII text files);
and a catch-all, general file format (which I'll call data files). In addition, we'll
cover some special formats that BASIC uses for its programs.

Program File Formats

When executable programs are stored on diskette, they are kept in one of
two formats known by their file-name extensions as COM and EXE. COM and
EXE files are programs that are ready to be used by the computer and basically
just need to be loaded into memory and run.

Programs as you or I think of them can have many forms . If we are writing in
an interpreted language, such as BASIC, then in a strict, technical sense our
programs are never actually executed. Instead, the BASIC interpreter-which
truly is a program-is executed and it carries out line by line the steps that our
BASIC programs call for. If we are writing in a compiled language, such as
Pascal, C, COBOL, or FORTRAN, or in assembly language, then what we
write is called source code. This code must pass through several translation
stages before it appears in one of the two executable formats, COM and EXE.

With the compiled languages, here is what happens: First, a compiler or
assembler translates our source code into an intermediate form known as object
code. Object code consists of the machine-language instructions that will carry
out our program, but the format of object code requires further preparation
before it can be executed directly. Object code is stored in diskette files with a
file-name extension of OBJ. To translate object code into the EXE executable
format, we use the LINK program that is part of DOS. When appropriate, we
can then translate EXE format into COM format, with the DOS program
EXE2BIN. Only when we have a program in COM or EXE format do we have
what DOS considers a finished , executable program.

COM

Let's look at the COM format first. COM is an abbreviation of the word
"command"-COM files are command files , meaning that they contain the
programs needed to carry out the commands, such as FORMAT and LINK,
that we give DOS. A COM file is an exact image of the program as it will appear
in Junior's memory when the program is run. In terms of the program itself and
the data that it carries with it, a COM file is not changed or prepared in any way
when it is loaded into memory by the loader program (which is a part of DOS's
command interpreter, COMMAND.COM).

When a COM file is loaded , the loader selects where in memory the
program is to be located. In the first 256 (hex 100) bytes of that part of memory,
the loader constructs a program segment prefix, or PSP. The PSP contains

134

JO: Exploring the Diskettes

information that the program may need, including any parameters that were
given when we asked DOS to execute the program. The loader then places the
program itself in memory immediately after the PSP, exactly as it appears in its
diskette file. Just before the program begins execution, the segment registers
are set to point to the location of the PSP. The machine-language instructions
in the program can include offsets to various program and data locations, all
based on the fact that the segment registers point to 256 bytes before the
program, where the PSP is located. When a program begins operation, it can
tell where it is, thanks to the segment registers, and it can find its command
parameters stored in the PSP.

There are some inherent limitations to COM programs. For one thing,
since all the segment addressing registers point to the same location, the
program, its data, and its stack must all fit within the 64K that can be addressed
from one segment location. Of course, a program can do some fancy footwork
to break out of that limitation, including resetting the segment registers. But
barring that kind of tricky programming, a COM program is limited in size to a
total of 64K.

EXE
To break out of the 64K limitation, we use the EXE file. While COM

programs are loaded unchanged into memory, EXE programs are processed
somewhat by the loader program. At the beginning of an EXE file there is a
table of information indicating what needs to be done to the program to prepare
it for execution. This information includes the size of the stack that the
program wants, the data segment needed, and also what is called a relocation
table. When the loader places the program in memory, the program can contain
specific references to memory locations within itself or within its data. Since
the actual memory locations aren't known until the program is loaded into
memory, the loader uses the relocation table to set the proper addresses in the
program.

All this is special setup work that can be performed for a program in EXE
format. If a program needs these extra services, it is kept in EXE format. If it
doesn't, the program can be converted to COM format, which takes up less
space on diskette and loads into memory faster.

Only these two formats, COM and EXE, can be used to store executable
programs. They are the only formats that DOS's loader program can recognize
and use. As a result, you can easily see which executable programs are stored on
any diskette by asking for two DIR listings: DIR *.COM and DIR *.EXE.

Text File Formats
The next file format we'll look at is the ASCII text file, or just text file. Text

files are used to store written information, such as the words you are now

135

EXPLORING THE IBM PCJR

reading. (They happen to be stored on my computer's disk in a text file named
CHAPTER 10.)

Text files are the most universal file format for personal computers. They
are used for many, many purposes. Text-editor programs, including the
EDLIN program that comes with DOS, use the text file format; so do many
word processors. When we write programs that will be compiled or assembled,
the program source code has to be stored in text file format. When we create
batch-processing files with the extension name BAT to be carried out by DOS,
they are also in text file format.

Text file format starts out very simply. First, the data consist of letters of the
alphabet, digits, and punctuation just like the text you are reading. The data
are coded by the computer using the ASCII coding scheme. Each character of
the text occupies one byte and is coded numerically; for example, the capital
letter A has the byte value 65, or CHR$(65). To mark the end of the text file, a
special code, CHR$(26), is used. (This code is also called Ctrl-Z, since that is
one way it can be typed in on the keyboard.)

Text file format divides the text into lines. At the end of each line are two
characters known as carriage return, which is CHR$(13), and line feed, which is
CHR$(10). If there were a special end-of-line character, like the end-of-file
character, then a single character would do the job. But since there really is no
end-of-line character per se, these two print-formatting characters are used. On
a printer or typewriter, a carriage return and a line feed end one line and begin
another, so they are used in text files as the standard end-of-line marking.

Since the end of a line is marked by these two special characters, a line
could, in theory, be very, very long. However, many programs that work with
text files set limits on how long lines can be: Most set a limit of 255 bytes; a
few limit lines to the width that can be shown on the display screen-40 or
80 characters.

There are actually quite a few formatting characters in the ASCII coding
scheme, including one, CHR$(12), to mark the end of a page. A text file may
include these page markings and other formatting codes as well. Word pro
cessors usually need special codes to indicate such things as where a word can
be hyphenated, which words are to be underlined, and which lines can be
changed when a paragraph is reformatted. There are no universal standards for
how these things are done.

Lack of uniformity can cause quite a bit of trouble if we try to transfer
files between a word processor that uses lots of special markings and programs
that expect very ordinary data, such as a compiler. To avoid puttin'g yourself
through some real grief, test for compatibility before you invest lots of effort.
It would be awful to spend the time needed to write a large program, only to
discover that your compiler won't accept the format used by your text editor
or word processor.

136

JO: Exploring the Diskettes

There is one oddity that should interest you about the length of text files.
DOS keeps track of the length of a file and stores the information in the file's
entry in the diskette directory. If a program passes data into a file byte-by-byte,
DOS has an exact record of the length of the file. But many editors and word
processors pass data in blocks of 128 bytes in the interests of efficiency
passing data this way reduces the number of calls to DOS over a hundredfold.
When we come to the end of a text file, these programs mark the true end of the
file with CHR$(26); DOS, on the other hand, thinks that the file continues to
the next multiple of 128 bytes. So there can be a discrepancy between the
actual file size and the record in 128-byte units that DOS keeps of the file's size.

Since so many programs and all programming languages work with data
files in text format, there is a major advantage to keeping all our data in this
format: We will be able to use our data with more programs than we could if we
kept them in another format. When deciding which format to use for storing
your own data, you should consider using text files if at all possible to make
your use of the data more flexible.

Data File Formats

The next file format is the ordinary data file format. The data file format
can be used with any data that we wish to store on diskette. It is really a general
purpose, open-ended format. With this kind of file, a program reads and writes
data in records of a fixed size, determined by the program according to its
needs. DOS takes care of the job of fitting records into the 512-byte storage
sectors with no wasted space, no matter what the record size.

By writing fixed-length records, we can read and write our data in two ways:
We can either work sequentially from beginning to end, or we can jump to any
location in the file, using the file randomly. Since the records in the file are all
the same size, DOS can calculate the location of each record by multiplying its
relative record number by the record size.

If we are working with a file sequentially, all the records don't actually have
to be the same size; they can vary, as long as our programs have some way of
determining how long each record is. Usually, though, sequential-file records
are also kept uniform in size, since we then have the added advantage of being
able to work with the file randomly, jumping, if we want, to any record that we
need without having to work our way to it from the beginning. With fixed-size
records, the location of any record can be easily calculated, without having to
search through the records that precede it.

We mentioned before that many editor programs store text files in blocks of
128 bytes. In effect, these programs translate the format of the data. When
talking to DOS and the diskettes, they use 128-byte, fixed-length data records.
The difference between these records and data files is simply that, when they

137

EXPLORING THE IBM PCJR

talk to us, the editor programs present the data as text, formatted into lines,
just as we expect text files to be.

Special File Formats Used by BASIC

To finish this discussion of file formats, we'll look at some special formats
that BASIC uses. When BASIC stores its programs on diskette, it uses three
different formats. One of the three is our standard text file format. If we save a
BASIC program with the A option, like this:

SAVE "FILENAME", A

the program will be stored as a standard text file. (The A in the SAVE command
stands for ASCII format).

Normally, though, BASIC stores its programs in what is called a tokenized
format. A large part of any BASIC program consists of standard BASIC key
words, such as REM, INPUT, and PLAY. To save space, the tokenized format
replaces each key word with a token that takes only one or two bytes to store.
This one trick alone can save about one-fifth in the size of the file.

BASIC can also store programs in a protected format coded to prevent them
from being listed. The protected format is roughly the same as the tokenized
format, but in addition it is scrambled, so that it is not easy to decipher.

When BASIC writes a program to diskette, we must specify which format
we want; if we don't ask for text or protected format, tokenized is used. When
BASIC reads a program, it checks the first byte for a format code. Tokenized
files begin with hex FF and protected files begin with hex FE. If a file begins
with any other byte, BASIC assumes that it is in text format.

There is one more disk file format used by BASIC that we ought to know
about-the BLOAD format. BASIC can copy data between memory and dis
kette files with the commands BLOAD and BSAVE. These statements are
used mostly for two purposes: to load assembly-language programs into mem
ory, where they can be called with the CALL statement; and to store a picture
of our screen on diske.tte. The data in a BLOAD-format file are the exact image
of what is in memory, but BASIC adds a header and a trailer to the file to
indicate what is what. In case you want to work with these files, we will go over
the format here.

The file begins with a 7-byte header. The first byte is a signature, hex FD.
The next four bytes indicate where in memory the data are to be loaded. With
the BLOAD statement, you can specify where a file is to be loaded; if you don't
specify an address , the address stored in the file when it was created with the
BSAVE statement is used. (When a file is created with the BSAVE statement,
the location is stored in the file as a complete segmented address with segment

138

Code

FD
ssss
0000
LLLL
Data
lA

JO: Exploring the Diskettes

Meaning

1-byte signature
2-byte segment address
2-byte offset address
2-byte length of data
As many data bytes as needed
1-byte signature

Figure 10-5. Summary of a BLOADjormat file

and offset locations.) The last two bytes of the header indicate the length of the
data. The data themselves follow this 7-byte header, and the file ends with a 1-
byte trailer, a signature of hex lA. A summary of the file format is given in
Figure 10-5.

ROM-BIOS DISKETTE SERVICES

As we mentioned in Chapter 6, the ROM-BIOS contains a wealth of
services for our programs to use. Six of these services are for diskettes. These
ROM-BIOS services are low-level, very basic, and primitive. They don't
involve anything like finding files; that sort of thing is a high-level service that
belongs to DOS.

In this section we'll go through the ROM-BIOS services for diskettes, both
to give you an idea of what they do, and also to cover the interesting subject of
copy protection.

Our PCjr provides the same ROM-BIOS diskette services as the other IBM
personal computer models, but there is much more programming in the ROM
BIOS to accomplish them. One reason for Junior's lower price is its use of
ROM-BIOS software to do the work of more expensive hardware. The PCjr's
diskette-controller circuitry is not nearly as smart as that of the PC and XT, but
its ROM-BIOS makes up for the missing intelligence in the controller.

There are six diskette services, numbered with service codes O through 5.

■ Service O is used to reset the diskette system and might be used when
the diskette drive has reported an error-resetting the system will sometimes
cause problems to go away.

139

EXPLORING THE IBM PCJR

■ Service 1 reports the status code from whatever operation was last
performed. Each time a diskette is used, a code is returned to indicate what
happened. This code is one of many possible values, each of which indicates a
different event, such as "read successful" or "disk is write protected." We can
use service 1 to repeat the last status code so that an error-recovery routine can
find out exactly what happened.

■ Service 2 reads sectors into memory. The locations of the sectors must
be specified by track, head (meaning diskette side), and sector number. More
than one sector can be read at a time, which is good for bulk operations; for
example, DISKCOPY uses this service when it's reading the source diskette.
Although I have not found anything that says so, I suspect that if you are
going to read more than one sector, they would all have to be on the same track
and side.

■ Service 3 writes sectors, just as service 2 reads them.

■ Service 4 verifies sectors. The verify operation checks that the disk data
are recorded correctly; that is, that all the disk codes are good. Verify doesn't
compare the data on disk with the data in memory to check that they match.

■ Service 5 formats a diskette track. When we use the FORMAT com
mand to format a new, blank diskette, DOS relies on this ROM-BIOS service to
do the job. Once a track has been formatted, it can be read or written to.

MORE ABOUT FORMATTING

With the soft-sectored diskettes our PCjr uses, there is more information
written on the diskette than just our data. There is also reference information
that identifies each sector. Formatting is really the writing of this reference, or
framework, information. The process is the equivalent of ruling guidelines
onto a blank piece of paper so it will be easier for us to write.

When we use the FORMAT command to format our diskettes, DOS
supplies the information the ROM-BIOS format service needs to do its job.
When we use the ROM-BIOS service directly, we have to specify reference
information for each sector, and it uses four bytes for each. The first byte gives
the track number (0 through 39) for confirmation of the right track. The second
gives the head, or diskette side number (0 or 1), also for confirmation. The third
gives the sector number (1 through 8 or 9). The fourth specifies the length of
the sector (128 to 1,024 bytes); for DOS, sectors are always 512 bytes.

140

JO: Exploring the Diskettes

Formatting for Copy Protection
On an ordinary DOS diskette, tracks are formatted in the conventional way.

To copy protect a diskette, though, some unconventional formatting may be
used. Copy protection is a complex technical issue-as well as a delicate
ethical and commercial issue-and I am far from being an expert in how copy
protection is accomplished. But from looking at the ROM-BIOS format ser
vice, we can see some of the ways that diskettes can be copy protected.

One way to copy protect a diskette is to format at least one of the sectors on
the diskette a different length than the DOS standard; then special methods
must be used to read or write data to that part of the diskette.

Another way to copy protect is to change the order of the sectors. When a
diskette is being formatted, the diskette drive uses the diskette's index hole to
find the start of the track. After that, the index hole is never used-the
diskette drive finds each sector not by counting its location from the beginning
of the track, but simply by looking for the sector number ID in the reference
data. DOS places the sectors in consecutive order, bu.t they could be written in
a shuffled order and still work just fine. Sectors formatted in that way would
work the same, but there would be a timing difference between reading
ordinary sectors and these special sectors, since the diskette would be rotating
for a longer or shorter time between sectors. A clever program could use this
timing difference to detect an unauthorized copy. This method is tricky as a
copy-protection scheme. For one thing it depends partly on the performance of
the specific diskette drive. But then, all copy-protection schemes are tricky.

There are many more copy-protection schemes than the two we have
mentioned here. But now, at least you have some idea of how it can be done.

141

CHAPTER

11
AN INTRODUCTION TO

VIDEO DISPLAYS
Nothing is more important to our use
of the computer than video display

screens. Display screens are
fundamental to the interaction

between people and computers .

......__

~

~
.,,.-,

~
~JU __,,

~
~ / .__._.

'--" /

I rl I ---- /L_
~

~~I
..,.. ------ '\..,../' ---- ... -,.___

J
1

EXPLORING THE IBM PCJR

Many people refer to the display screen as the computer itself-and in a sense
they are right, for the display screen is our window to the computer.

The subject of video displays is so interesting and so important chat we'll
devote the next three chapters to it. This chapter will cover most of the basics
of how the PCjr's display screen works, while the next two chapters will focus
on the specifics of the two different modes it uses: text and graphics.

To sec the stage, lee's scare by considering the basic concepts of video
display, so chat we understand how the PCjr's screen works and how it differs
from some other screens.

There are several different ways, mechanically and electrically, to make a
display screen show an image. Among the newest and fanciest are liquid crystal
displays and plasma displays. But the mainstay of computer displays is the
same technology used in television sets: the cathode ray tube, or CRT. All the
display screens that our Junior can use, including ordinary TV sets, are CRTs.

CRTs AND HOW THEY WORK

A CRT display screen always draws its pictures by directing a beam of
electrons over a sensitive coating on the inside of the screen. Wherever the
beam lands, the screen glows. The flying spot of the electron beam moves over
the surface of the screen, drawing the entire display picture in a fraction of a
second. As soon as the picture is complete, before it can fade away, the elec
tron beam draws it again and then again, thus making sure that the picture
stays bright.

No matter what a CRT is used for, it draws its picture with the spot of its
electron beam. There are two basic ways it can draw. One is to move the beam
around co just the pares of the screen that should be lit. This method is called
vector scan, since the beam draws short, straight lines, or vectors. Vector scan is
not used much, and it is not used for either our TVs or the other display screens
used with Junior. But, if you visit a video-game arcade, you will probably find
some games that have the distinctive appearance of vector-scan graphics.

The other basic way co draw a picture on a CRT is called raster scan, and it is
used by TVs and by almost all computer display screens, including our PCjr's.
With raster scan, the flying spot of the electron beam moves in a fixed trace over
the entire screen. It usually moves in scan lines that go from left to right and
from top co bottom, and usually the picture is painted in two halves: First every
other line is drawn, from top co bottom, and then the lines in between are
drawn, top to bottom. This double path gives us a more stable and flicker-free
image than we would see if each line were drawn in turn. Our PCjr draws its
picture with 200 lines, so the flying spot first draws the 100 even-numbered
lines and then the 100 odd-numbered lines.

144

11: An Introduction to Video Displays

As the flying spot is tracing over the entire screen, it is given the signal to
light up, or not light up, each part of the screen. While the spot on a vector-scan
screen moves only to the places where the image is to appear, the spot on a
raster-scan screen moves everywhere, turning on and off for each tiny dot on
the screen.

HOW THE COMPUTER
CONTROLS THE DISPLAY

So far, we have talked about how the screen itself draws the picture. How a
computer display screen works also depends on how the computer controls the
screen image. Again, there are two basic ways. One way, which is particularly
good when the display screen is located far away from the computer, is for the
computer to issue commands to the screen, such as clear-the-screen, or write
one-character-at-such-and-such-a-location. Working that way, the screen is
responsible for keeping a record of what is being displayed, and the computer
has to send only those commands that make changes to the screen. The talk
between the computer and the screen is minimal, a real advantage if the display
screen is really far away and talks with the computer through a telephone line.
This command method is used by most large, mainframe computers to talk to
their display terminals, but our PCjr uses another, more intimate method.

The more intimate method for a computer and a display screen to work
together is for them to share some memory. With this method, called a
memory-mapped display, the display screen does not keep track on its own of
what is being displayed. Instead, the record of what is to be displayed is stored
in some memory shared with the computer. Each time an image is drawn, the
display screen reads the memory to see what it should show. When the
computer needs to change all or part of the display information, it simply writes
changes into the shared memory locations, the display screen reads the
changes, and a new image appears on the screen.

There are many advantages to using a memory-mapped display. It offers
tremendous speed and flexibility. Mainframe computers have not been able to
take advantage of memory mapping because they cannot count on having their
display terminals close enough for the intensive interaction that memory
mapping requires. But for personal computers like our PCjr, the display is
never very far away from the computer, and we can get all the advantages of
memory mapping. It is ironic that our inexpensive Junior can use memory
mapping to generate snappier displays than those produced by multimillion
dollar mainframe computers.

145

EXPLORING THE IBM PCJR

THE PCJR's SPECIAL VIDEO DISPLAY

One of the most important things about our Junior is that it is fully
compatible with the other IBM personal computers and can share their soft
ware. For the video displays, this compatibility is quite special-the PCjr is
both completely compatible with the other IBM personal computers, and it is
also uniquely different.

For the IBM personal computers, the display is an optional add-on. You
have to have one, of course, but one is not built into the computer. For the PC
and XT, there are two different display adapters, known as the monochrome
adapter and the color/graphics adapter. A PC or XT can have either one, or both,
installed. Part of the way in which the PCjr differs is that it comes with the
equivalent of a color/graphics adapter built into it (and it doesn't have any way
to accommodate the IBM Monochrome Display). To understand the PCjr's
display better, and to see how it can make Junior both different and exactly the
same as the PC and XT, we need to take a quick look at the two conventional
display adapters.

(Before we get you confused, let's pause to note that we are talking about
display adapter cards here; these are the interfaces, or translators, between the
computer and the display screen itself. All sorts of display screens, including
ordinary home TVs, can be plugged into a display adapter, but it is the adapter
that defines what can be displayed.)

The original PC came with the choice of two display adapters for a simple,
practical reason. Color/graphics are essential for games and other such uses on a
personal computer, but there is one major problem with color displays: When
you are using them for business applications such as word processing, the
display quality just is not clear enough to stare at all day. To solve that problem,
IBM created the monochrome adapter and a special monochrome display
screen to produce extremely crisp, sharp, readable images. There are, as we'll
discuss later, good monochrome display screens that can be connected to the
PCjr, or to a color/graphics adapter; they are good, but not as superbly good as
the IBM Monochrome Display.

The monochrome display adapter works with a screen made up of 25 rows
of 80 characters, a common format for a computer terminal display screen. The
color/graphics adapter-and our PCjr-can also display 25 rows of 80 charac
ters, so the monochrome display does not add anything that the color/graphics
display does not have; it just does it clearer and crisper. There is, however, one
minor thing the monochrome display can do that the color system cannot: The
monochrome display can show characters underlined. While the color display
cannot ordinarily underline any text, it automatically uses the color blue when
it displays anything that the monochrome system would show as underlined.

146

11: An Introduction to Video Displays

While the monochrome adapter can show only text, the color/graphics
adapter has many operating modes. Two of these modes work exactly like the
monochrome display, except that color replaces underlining. The color/graph
ics modes also provide several different ways to display text information, as
well as several ways to display graphic drawings (which can be combined with
written text, as we'll see later).

With the minor exception of underlining, the monochrome adapter gives
PC and XT users just a subset of what the color/graphics adapter gives them.
Thus, systems with only the color/graphics adapter can still use the same
software, and do the same things that monochrome systems do. So, while many
business and professional computer users are willing to forgo the dramatic
capabilities of color systems for the clearer, easier-to-read monochrome display,
anyone who wants the full, rich range of possible uses for the IBM personal
computers should seriously consider getting a color/graphics adapter, or using
our nice little PCjr.

As I have said, IBM designed the PCjr with a color/graphics adapter built
right into it. From the point of view of an old PC and XT user, our Junior's color
capabilities are right at home with those our programs are accustomed to using.
But actually, our PCjr's video system is quite special and gives us some very
interesting features that the others do not.

Obviously, the first thing that's special about the PCjr's adapter is that it is
built-in; with the PC and XT you have to pay extra to buy a video adapter.

The next special thing about Junior is the fact that it has three video
outputs. With the PC's color/graphics adapter, there are two outputs providing
two kinds of connections to display screens. One is the RGB output, with
separate signals for the red, green, and blue parts of the color picture, and the
other is the composite video signal in which these colors are combined. A
special RGB monitor can be connected to the RGB output; an ordinary color
monitor, or an inexpensive monochrome monitor, can be connected to the
composite video output. Our PCjr has these two outputs, plus one more.

With the PC, if you want to connect a home TV to the color/graphics
adapter, it has to be connected to a special RF (radio-frequency) modulator that
is plugged into the composite video output. So, to use your TV with the color/
graphics adapter, you have to buy an RF modulator as a converter. The PCjr's
adapter cable for TV sets includes an RF modulator. With the PCjr, then, we
can also use a TV as a monitor, without any special adapter. As an extra benefit,
the sounds that Junior generates are fed right into our TVs as well.

In addition, the PCjr's video system adds some extra features that the color/
graphics adapter for the PC and XT doesn't have. As I've mentioned, there are
both text and graphics modes of operation for these displays. The PCjrenriches
the modes available on the PC and XT by adding three new, enhanced,
graphics drawing modes.

147

EXPLORING THE IBM PCJR

The final thing that is special about Junior's video is that its memory
mapping works quite differently from the memory mapping in the other IBM
personal computers (although, by a trick, it appears to be just the same). A few
pages further on, we will cover how the memory mapping works and explain
the special trick.

MORE ABOUT MODES

There are 11 different modes of operation for the PCjr's displays, and in this
section we will take a look at what they are, how they work, and how they are
controlled one way in the ROM-BIOS and another way in BASIC.

The various video modes, which are numbered O through 10, are controlled
by the ROM-BIOS programs. To avoid confusion, remember that the ROM
BIOS mode numbers are not the same numbers used by BASIC in the
SCREEN statement; although BASIC gives us full control over the video
modes, BASIC refers to them in its own way.

Of the 11 modes, numbers O through 7 are part of the original design of the
PC and XT; modes 8, 9, and 10 are new to our PCjr.

Mode 7 is the code for the monochrome adapter. Since our PCjr has a built
in color/graphics adapter, mode 7 does not apply here. If a program asks the
PCjr's ROM-BIOS to change the mode to 7, the request will be rejected, just as
it would be on a PC that had the color/graphics adapter and not the mono
chrome adapter. All the other modes, 0 through 6 and 8 through 10, apply to our
PCjr; the last three, as we've said, are Junior's alone.

Text Modes
Modes O through 3 (and, on a PC or XT with monochrome adapter, mode 7)

put the display in text mode, where characters can be shown on the screen but
graphics cannot. As Figure 11-1 shows, these five modes represent different
combinations of two factors: either with or without color, and with either 40 or
80 characters on each screen line. Mode O is 40-column, black and white; 1 is
40-column, color; 2 is 80-column, black and white; and 3 is 80-column, color.
(Mode 7 is 80-column, black and white, for the PC and XT.)

The 40-column modes were originally created for use with TV sets, which
do not have enough resolution to show 80 columns of characters well. There is
an additional benefit for our PCjr in using the 40-column modes: Since the
display memory is taken out of our main working memory space, 40-column
mode reduces the memory needs of the display by half.

The black-and-white modes are intended to be used when a display screen
does not show color well. This is true of many of the inexpensive monochrome

148

11: An Introduction to Video Displays

Columns

Model Mode 80 40 Rows Colors Black and White

All 0 X 25 X

All 1 X 25 16
All 2 X 2.'i X

All 3 X 25 16
PC/XT 7 X 25 X

Figure II-I. Five text modes

monitors that are used with IBM personal computers. (Don't confuse these
monitors with the IBM Monochrome Display, which is connected to the
monochrome adapter and which cannot be used with our PCjr. The mono
chrome monitors we are talking about here are plugged into the composite
color output of a PCjr or the color/graphics adapter of a PC or XT. Using this
kind of monitor is one of the cheapest ways to get a good display screen for an
IBM personal computer, but it is done at the sacrifice of color.)

Modes 0 through 3 and mode 7 are all text modes; that means the display
screen is divided into character positions. There are 40 or 80 character positions
(columns) across the screen and 25 character positions (rows) down, for a total
of 1,000 or 2,000 character positions per screen. Since the PCjr's display screen
has 200 horizontal scan lines, each character position is the equivalent of eight
scan lines high.

Into each character position we can place a character, such as A. When we
place characters with a programming language, as with the BASIC statement:

PR I NT "A"

the ASCII code for the letter A, which happens to be the number 65, is placed
into the part of the memory that the display uses for its information. The
display sees the ASCII code for A, and shows an A on the screen.

In the text modes, we can only show characters on the screen. Although
there are some special characters (lines of various sorts) that allow us to make
simple drawings, we can only make crude drawings with characters.

Graphics Modes

Modes 4, 5, and 6, plus the PCjr's own, unique 8, 9, and 10, are all graphics
modes. In text mode, the screen is made up of character positions, but in

149

EXPLORING THE IBM PCJR

the graphics modes, the screen is reinterpreted as a grid of closely spaced
dots, called picture elements, pixels, or pels. Each pixel, or dot on the screen,
can be controlled individually. In graphics mode, drawings are made by light
ing up the appropriate pixels. If we use some of the BASIC drawing com
mands, such as:

CIRCLE < 160, 1 0 0 >, 60
or:

LI NE < 0, 0 > - < 1 0 0, 1 0 0 >

BASIC will figure out which pixels are on the circle or line and will turn them
on. Even though BASIC appears to let us draw quick circles, lines, and boxes,
what actually goes on behind the scenes is that a series of dots is lit up to make
the picture we want.

When we are in graphics mode, it is still possible to write characters on the
screen. Not only does BASIC give us this ability, but the ROM-BIOS itself can
write characters on the screen. What is unusual about writing characters on
the screen in graphics mode is that the display can't just be told to display a
character-as far as the display is concerned, the only thing appearing on the
screen is a drawing made up of pixel dots. The interesting trick here is that
when the display is in graphics mode, the ROM-BIOS routines actually draw
the characters we want displayed. Just as BASIC draws a line by turning on the
appropriate pixels, so the ROM-BIOS writes a character by turning on the
pixels that make up the character.

How does the ROM-BIOS know what to draw? A table of character
drawings is stored in ROM. We can't change these drawings, but we can, ifwe
wish, override half of them. The design of the PCjr doesn't let us override the
first half of the character table, which contains the alphabet and other ordinary
text characters, but it does let us change the drawings for the second half,
CHR$(128) through CHR$(255). To override half the table in ROM, we set up
another table of our own drawings and place its address in the interrupt vector
table so that the ROM-BIOS knows where to find it.

All told, there are six graphics modes, three old and three new, detailed in
Figure 11-2.

We have not yet gone into how the color possibilities work with either text
or graphics modes; we'll get into that and other interesting details in the next
two chapters.

VIDEO AND BASIC

Before we finish up here, we need to see how BASIC gives us control over
the video modes. Through a combination of statements, BASIC allows us to
select any of the modes, as shown in Figure 11-3. In the text modes, the

150

11: An /11troductio11 to Video Displays

Pixels -
Model Mode Columns Rows Colors Black and White

All 4 320 200 4
All 5 320 200 (suppressed) X

All 6 640 200 2 or X

PCjr 8 160 200 16
PCjr 9 320 200 16
PCjr 10 640 200 4

Figure 11-2. Six graphics modes

WIDTH statement sets 40 or 80 columns. The SCREEN statement selects
between the various· text and graphics modes, while the second, or burst,
parameter of this statement allows us to choose whether the mode will operate
in color or not. Matching all these elements to the list of ROM-BIOS screen
modes can be a bit complicated, so Figure 11-3 is a summary of BASIC
statements to help out.

MEMORY TRICKS FOR VIDEO DISPLAYS

With a memory-mapped display, the IBM personal computers have to have
some part of memory set aside for the use of the displays. The PC and XT have

Mode BASIC Statements to Get There
SCREEN (mode), (burst): WIDTH (columns)

0 SCREEN 0, 0 :WIDTH 40
1 SCREEN 0, 1 :WIDTH 40
2 SCREEN 0, 0 :WIDTH 80
3 SCREEN o, 1 :WIDTH 80
4 SCREEN 1, 1
5 SCREEN 1, 0
6 SCREEN 2
7 (Doesn't apply to the PCjr)
8 SCREEN 3
9 SCREEN 5

10 SCREEN 6

Figure 11-3. BASIC statements to select ROM-BIOS video modes

151

EXPLORING THE IBM PCJR

blocks of memory dedicated solely for this purpose. The PCjr adds an extra
trick; it works differently, but at the same time closely mimics the way the
others operate. In order to understand the difference, let's look at both types of
memory mapping-the original (PC and XT) and the unique (PCjr).

In the original PC design, two separate areas of memory are used-one for
the monochrome adapter and another for the color/graphics adapter-to make
it possible for the computer to have both types of display at the same time.
Each of these reserved areas of memory is 32K in size, although not that much
is needed. The monochrome adapter needs only 4,000 bytes, or a little less
than 4K, and the color/graphics adapter needs just 16K. Each of thes~ memory
spaces is located in the B000 memory block; the monochrome adapter uses the
first half, from segment address B000, and the color/graphics adapter uses the
second half, from B800.

Each of the display adapters used by the PC and XT comes with the
memory needed by the display. While logically this memory is a part of the
computer's total 1,024K memory space, physically the display memory is
located on the display adapter board, separate from all the other memory.
Electronically, there is one thing special about this memory-there are two
electronic doorways into it so that both the computer and the display screen can
be working with the memory simultaneously, without getting in each other's
way as they pass information through the doorways.

When the PC or the XT needs to write something on the display screen, it
simply stores the information in the appropriate memory locations for the
display. If a program finds that it needs to read information from the display
screen, it can simply look at what is stored in the shared display memory.

Now, so far we have described the memory-mapping magic of the PC and
the XT, which is closely related to the PCjr's own magic. How is its display
different?

First, Junior has no dedicated memory for its display screen; this is one of
the many ways that its cost has been held down to make it so inexpensive
compared with its bigger brothers. Instead of using special dedicated memory,
the PCjr uses part of its 64K or 128K of main working memory.

Second, there is no fixed amount of memory used, nor even a fixed location
for the memory given to the display. While the monochrome adapter places its
display memory at the fixed location of paragraph hex B000, and the color/
graphics adapter puts its memory at paragraph B800, our Junior varies in the
memory location it uses. The display memory is always at the highest end of
the RAM storage, but the address varies depending upon how much memory
there is, 64K or 128K, and how much is set aside for the display. The amount of
display memory needed varies with the video mode, as shown in Figure 11-4.

One thing that we lose on our PCjrs is the dual-path memory of the PC and
XT. In the PCjr, both the computer and the display are competing for the use

152

11: An Introduction to Video Displays

Video Corresponding Minimum
Mode BASIC SCREEN Memory Used

Number Mode Number (in K)

0 0 2
1 0 2
2 0 4
3 0 4
4 1 or 4 16
5 1 or 4 16
6 2 16
7 n/a n/a
8 3 16
9 5 32

10 6 32

Figure II- 4. Amount of memory needed by each video mode

of the same resource, the path into the memory. This slows the performance of
our PCjrs down a little-they do not run at the full speed of a PC or XT. On the
average, the loss should be about 15 percent.

In the original PC, the ROM-BIOS knows which display adapter is being
used, and so it knows where to store information in memory in order to have it
appear on the display screen. Our PCjr's ROM-BIOS also knows which part of
memory is set aside for the use of the display and where to store information.
However, there are loads and loads of programs written for the PC and XT that
think they know where the display memory is. These programs were built
around the design of the PC and XT and place information on the display
screen by writing directly to the computer's dedicated memory locations.
Unfortunately, the PCjr doesn't use those locations; instead, it uses lower,
ordinary memory locations for its display.

This difference would have made all those PC and XT programs unusable
on our PCjr if IBM had not come up with a very special trick. They have
installed a special bit of circuitry called a video gate array, or VGA, in Junior's
memory. The VGA is kept aware of the part of memory that is being used for
the display. Whenever any program running on the PCjr uses any part of
memory, the VGA checks to see if the program is referring to the PC/XT
display memory locations at segment addresses B000 and B800. If it is, the
VGA translates the segment-address reference to the part of memory where the
PCjr's display is located. The program is completely unaware that its attempts
to use the old display locations are being rerouted to new locations. All the
magic goes on behind the scenes, without the program being any the wiser.

153

EXPLORING THE IBM PCJR

So, if we want our programs to display information by placing it directly into
memory, we have two choices: We can calculate the actual location of Junior's
display memory; or we can use the VGA to pretend that Junior has a color/
graphics adapter, and we can place our information into the color/graphics
memory addresses that begin at paragraph B800. I would strongly recommend
using paragraph B800 for two reasons: One is that we don't have to bother
trying to figure out just where the movable location of the PCjr's display
memory is. The other is that if we write programs that use the PCjr's unique
memory locations, we can't use them on a PC or XT.

SOME HORSING AROUND
For fun, let's horse around in BASIC with the video modes. We can do a

little experimenting with the various video modes, seeing what they look like
and how they display characters, and we can also get a rough idea of what they
do with the bits in the memory map with a little program we'll evolve here.

What we want to do is try all the video modes, write something out in them,
and then POKE a value into memory to see what it looks like. Here's the
program outline:

1000 'Horsing around with video modes
1010 'from Exploring the IBM PCj r Home Computer
1020 I

1 030 CLEAR , , , 32768
1040 GOSUB 2000
1 050 FOR MODE = 0 TD 1 0
1060 GOSUB 3000
1 070 NEXT MODE
1 080 END
1 090 I

'needed for modes 9-10
'other initialization
'loop through modes
' try each mode
'finish the loop
'finish the program

To initialize the program, we clear the screen and set a working color (let's
set a rather glaring red on blue). We also set the segment register to B800, the
location in memory used by the PC/XT color/graphics adapter.

2000' initialization subroutine
2010 ON ERROR GOTO 2110 'prepare for color errors
2020 DEF SEG = &HB800 'color segment location
2030 KEY OFF
2040 COLOR 14,1,1
2050 CLS
2060 PR I NT
2070 PRINT II Exploring the PCj r's video modes 11

2080 PR I NT
2090 INPUT II Press enter, to explore ... 11 , A$
21 0 0 RETURN
211 0 RESUME NEXT 'handle color errors

154

11: An Introduction to Video Displays

Then for each mode, we set the mode with the BASIC SCREEN state
ment and print out what mode we are in. We POKE a value into the memory
and show how the value is treated by each mode (the value appears at the top
right of the screen). The program then waits for a keystroke telling it to

continue, giving us time to inspect each mode carefully. The value we'll poke
is 119-a sneaky choice, since it is the ASCII code for lowercase w, and has lots
of bits set: Six of the eight bits in the byte are on.

3000 ' subroutine to act on each mode
301 0 '
3020 IF MODE = 0 THEN SCREEN O, 0 : WIDTH 40
3030 IF MODE= 1 THEN SCREEN 0, 1 : WIDTH 40
3040 IF MODE = 2 THEN SCREEN O, 0 : WIDTH 80
3050 IF MODE = 3 THEN SCREEN 0, 1 : WIDTH 80
3060 IF MODE = 4 THEN SCREEN 1 , 1
3070 IF MODE= 5 THEN SCREEN 1, 0
3080 IF MODE = 6 THEN SCREEN 2
3090 IF MODE = 7 THEN SCREEN 0, 1 : WIDTH 80
310 0 IF MODE = 8 THEN SCREEN 3
311 0 IF MODE = 9 THEN SCREEN 5
3120 IF MODE = 1 0 THEN SCREEN 6
3130 COLOR MODE+1, MODE+2: CLS
3140 PRINT" -- Look here for POKE results"
3150 POKE 0, 119' here we put a 'w' into memory
3160 PRINT
3170 PRINT" This is mode number"; MODE
3180PRINT
3190 PRINT "Press any key to continue ••. "
3200 IF INKEYS = ""GOTO 3200 'wait for keystroke
321 0 RETURN

The complete program is shown in Figure 11-5.

1000 'Horsing around with video modes
1010 'from Exploring the IBM PCj r Home Computer
1 020 '
1 030 CLEAR , , , 32768
1 040 GDSUB 2000
1 050 FDR MODE = 0 TD 1 0

' needed for modes 9-1 0
'other initialization
' loop through modes

1 060 GOSUB 3000
1 070 NEXT MODE
1 080 EHD
1090 '

' try each mode
'finish the loop
'finish the program

(rontimlNi)

Figure 11-5. A program to demonstrate video modes O through IO

155

EXPLORING T HE IBM PCJR

2000' initialization 5ubroutine
2010 Ot-1 ERROR GOTO 211 0 'prepare for color error5
2020 DEF SEG = &HB800 'color 5egment location
2030 KEY OFF
2040 COLOR 14,1,1
2050 CLS
2060 PR It-IT
2070 PRit-lT" Exploring the PCjr'5 video mode5"
2080 PR It-IT
2090 It-lPUT" Pre55 enter, to explore ••• ", AS
210 0 RETURN
2110 RESUME t-lEXT 'handle color error5

3000 ' 5Ubrou tine to act on each mode
3010 '
3020 IF MODE= 0 THEt-1 SCREEN O, 0: WIDTH 40
3030 IF MODE = 1 THEt-1 SCREEN O, 1 : WIDTH 40
3040 IF MODE= 2 THEt-1 SCREEN O, 0: WIDTH 80
3050 IF MODE = 3 THEt-1 SCREEN O, 1 : WIDTH 80
3060 IF MODE = 4 THEt-1 SCREEt-11 , 1
3070 IF MODE = 5 THEt-1 SCREEt-11, 0
3080 IF MODE = 6 THEt-1 SCREEN 2
3090 IF MODE = 7 THEt-1 SCREEN O, 1 : WIDTH 80
310 0 IF MODE = 8 THEt-1 SCREEN 3
311 0 IF MODE = 9 THEt-1 SCREEt-1 5
3120 IF MODE = 1 0 THEt-1 SC REEH 6
3130COLORMODE+1, MODE+2: CLS
3140 PRit-lT" -- Look here for POKE re5ul t5"
3150POKEO, 119' hereweputa 'w' into memory
3160 PR It-IT
3170 PRINT" Thi5 i5 mode number"; MODE
3180 PRit-lT
3190 PR I HT "Pre 5 5 any key to continue .•• "
3200 IF It-lKEYS = ""GOTO 3200 'wait for key5troke
3210 RETURN

Figure 11-5. A program to demonstrate video modes O through 10 (continued)

156

CHAPTER

12
FUNDAMENTALS OF

TEXT VIDEO
In this chapter, we will look at how
our Junior works with the display

screen in text mode. Just to avoid con
fusion, let's remind ourselves that text

mode can only display characters; it
can't do any drawing, except for the

drawings that we can make with characters.

EXPLORING THE IBM PCJR

To Get SCREEN Burst WIDTH BASIC
to Mode Statement Parameter (columns) Command

0 SCREEN 0 0 WIDTH 40 SCREEN 0,0 : WIDTH 40
1 SCREEN 0 1 WIDTH 40 SCREEN 0, 1 : WIDTH 40
2 SCREEN 0 0 WIDTH 80 SCREEN 0,0 : WIDTH 80
3 SCREEN 0 1 WIDTH 80 SCREEN 0, 1 : WIDTH 80

Figure 12-1. BASIC commands to move to four text modes

Our PCjr normally operates in text mode. When we turn it on, it is in
text mode. If we are programming in BASIC and have put the computer
into graphics mode to play games or draw pictures, when we leave BASIC with
the SYSTEM command, the computer will go back to text mode before DOS
takes charge.

As we have seen, there are four different text modes: with or without color,
and with a 40- or SO-column screen width. If we are programming in BASIC,
the SCREEN command will switch us between text and graphics modes, as
shown in Figure 12-1.

To get to text mode, we ask for mode 0, with the command:

SCREEN 0

We can control which of the four text modes we are in by using the WIDTH
command, specifying:

WIDTH 40

or:

WIDTH 80

and combining it with the burst parameter of the SCREEN command to control
color, specifying:

SCREEN, 0

or:

SCREEN , 1

With these BASIC commands, we have quick, easy control over the video
modes. With other programming languages, we would probably have to set the
video mode through an assembly-language interface routine that would

158

12: Fundamentals of Text Video

request the mode change from the ROM-BIOS services. Whether we use
BASIC or any other language, in the end it is the ROM-BIOS that actually
switches the mode.

What is special about the text mode for our video display is that the data in
the memory-mapped storage consist of the actual ASCII codes for each charac
ter that we want displayed. The display circuitry in our PCjr does the work of
making the characters that the codes represent appear on the screen. This is
another way of saying that the display circuitry has a built-in character generator.
The character generator has the job of determining what each character should
look like.

When we are in text mode, the character generator is active, building our
display characters. If we want to display characters when we are in graphics
mode, there has to be a drawing of the character in memory in order to have the
character appear on the screen. In graphics mode, the character generator
can take a break while the display shows a direct image of the picture stored
in memory.

No matter what mode our video display is in, the information on the display
screen is controlled by the data stored in the memory map. The data stored
in memory specify two things: what is to be displayed, and how it is to be
displayed. In text mode, the what is the codes of the characters that are to be
displayed; the how is the colors that are to be used and whether the characters
are to blink.

For each character position on the screen, there are two bytes in the
memory map. The first, the character byte, gives the ASCII code for the
character to be displayed; the second, the color attribute byte, gives the color
attributes for the character. Thus, every single position has an independently
controlled color and if we need to, we can give each of our program's messages
(or even each character of each message) its own distinctive color. This can be
very useful for making error messages stand out, or for adding emphasis in the
same way books use italics or typewriters use underlining.

Later in this chapter, we will learn how these two bytes work, but for a little
fun right now, you might want to try the short program shown in Figure 12-2. It
will quickly run through all the color possibilities, at the top corner of your
PCjr's display screen. For such a simple program, the appearance of so many
colors is quite dramatic.

This program runs through all the color attributes. If you would like to see
the same action, but with all the possible characters that can be displayed, just
change one line of the program. In line 200, set OFFSET = 0, instead of 1.
Don't worry if the logic of this change is a little unclear to you right now; I'll
explain it later on. For now, just watch the program change the characters
displayed, instead of the color attributes of the characters. The result will look
a bit like a dancing chorus line.

159

EXPLORING THE IBM PCJR

Most programming languages do not give us any direct control over the
color of what we display, for the simple reason that the kind of color our Junior
uses is not a common, universal feature of computers. But our PCjr's ROM
BASIC has special commands to support most of these special features. (One of
the most important characteristics of our PCjr's BASIC is that it is closely in
tune with the PCjr's features. This isn't true of other programming languages.)
So in BASIC, we can use the COLOR statement to control how each message
we write on the screen appears. To see it in action, try keying in the program in
Figure 12-3.

Now it's time to look at the color attributes more closely.

100 1 show the attributes in action
11 0 ' frorn Exploring the IBM PCj r Home Computer
120 ' authored by Peter Norton, 1983
1 30 I

140 KEY OFF
150 SCREEN 0,
160 WIDTH 40
170 CLS
180 ' use PC/XT color/graphics segment location
190 DEF SEG = &HB800
20 0 OFFSET = 1
210 PRINT "ABC-watch this space."
220 PR INT
230 PRINT "Press any key to stop."
240 PRINT
250 WHILE 1
260 FOR I = 0 TO 255
270 POKE OFFSET + 0, I
280 POKE OFFSET + 2, I
290 POKE OFFSET + 4, I
300 1 check for a keystroke

1 continue for ever

' change 1st character
' change 2nd character
' change 3rd character

310 IF LEN C INKEYS > 0 THEN GOTO 350
320 FOR J = 1 TO 50: NEXT J I kill some time
330 NEXT I
340 WEND
350 PR INT

1 end of for ever 1 oop

360 PR I NT "End of demonstration program."
370 END

Figure 12-2. A program to demonstrate all the
color attributes

160

12: Fundamentals of Text Video

100 KEY OFF
11 0 SCREEN O , 1
120 WIDTH 40
130 CLS
140 COLOR 1
150 PRINT II Color5 11 ;

160 COLOR 2
170 PRINT II can be 11 ;

180 COLOR 4
190 PRINT II dramatic 11

200 END

Figure 12-3. A program to demonstrate color combinations

COVERING THE COLORS

In text mode, each character on the screen has its own, individual attribute
byte that controls how the character will be displayed. A byte, of course, has
eight bits, and each bit in the attribute byte acts independently to control a
different aspect of how the character is displayed. Before we look at each bit,
let's start by breaking the color attributes into their main parts.

There are four main parts to the color attributes. First, there is the
foreground color, the color of the character itself. Then there is the background
color, the color of the area surrounding the character-on a printed page like
this, the background is the white space around the black ink. There are also
two special properties that the foreground (the character itself) can take on: It
can be intense or not, so that the character's color is bright or dim; and it can be
blinking or steady.

Not all color display screens can show the difference between intense and
dim colors, but for those that can, there are 16 possible colors; without the
distinction between bright and dim, there are only eight possible colors.

The colors themselves, foreground and background, break down into three
parts each. A color display, whether it's a TV set or a special color monitor for a
computer, builds its colors out of three components: red, green, and blue-the
three colors that give RGB color monitors their initials. On our PCjr, each of
these three color components works independently; so when the attribute byte
specifies the foreground and background colors, there are three bits-one for
red, one for green, and one for blue-dedicated to each. Bit numbers 0
through 2 control the foreground color and bit numbers 4 through 6 control the
background color.

161

EXPLORING THE IBM PCJR

R G B Color

0 0 0 Black
0 0 1 Blue
0 1 0 Green
0 1 1 Cyan
1 0 0 Red
1 0 1 Magenta
1 1 0 Yellow
1 1 1 White

Figure 12-4. Eight colors created from combinations of
red, green, and blue

With three bits controlling three colors, there are eight possible combina
tions (16 counting both intense and dim ones). With all bits/colors off, we have
black; with all on, we have white. With one of the three bits on, we get an
intense, pure red, green, or blue. With any two of the bits on, we get a
composite color: cyan (blue and green), magenta (red and blue), or yellow (red
and green). A quick summary of the eight basic colors used by the PCjr is given
in Figure 12-4.

As you may recall from science classes, the pigment in ink or paint makes
colors by subtracting color. In contrast, the light from a CRT screen makes
colors by adding color. So the combined colors, such as cyan, are brighter than
the pure colors, such as blue. Brightness is one of the things we have to take
into account in choosing the colors that our programs will use.

The layout of the eight bits of the attribute byte is shown in Figure 12-5.

Bit Attribute
Controlled

0 Foreground
1 Foreground
2 Foreground
3 Intensity
4 Background
5 Background
6 Background
7 Blinking

Figure 12-5. Layout of eight bits of the attribute byte

162

Color

Blue
Green
Red

Blue
Green
Red

12: Fundamentals of Text Video

Color Dim Bright Dim/Blinking

Black 0 8 16
Blue 1 9 17
Green 2 10 18
Cyan 3 11 19
Red 4 12 20
Magenta 5 13 21
Yellow 6 14 22
White 7 15 23

Figure 12-6. Parameter numbers for the BASIC
COLOR statement

Bright/Blinking

24
25
26
27
28
29
30
31

When we use the COLOR statement in BASIC, the foreground parameter,
which is a number from O through 31, sets the foreground color bits, the
intensity bit, and the blinking bit. The background parameter, which is a
number from O through 7, sets just the background color. For example,
COLOR 26, 7 gives us a bright, blinking green foreground on a white back
ground, which is remarkably difficult to read. If you play around with color,
you'll find some combinations that are lovely (COLOR 7,1,1) and some that are
diabolical (COLOR 17,4,4). Figure 12-6 shows the parameter numbers for the
COLOR statement.

Figure 12-7 gives a program that will demonstrate the full range of possible
color attribute combinations for the PCjr. Other than satisfying curiosity, there
are two good uses for this program. First, it lets you check whether your display
screen makes use of the intensity bit. If the bright colors differ from the
ordinary colors, you will know that the intensity bit works with your display.
Second, this program gives you a chance to see all the color possibilities and
thus helps you choose the ones you might want to use in your own programs.

While our Junior has a full range of colors to use, the PC and XT may or may
not have the same range. If they have the color/graphics adapter, they can use
color just like our PCjr. If they use the monochrome adapter, there is no color,
although the monochrome adapter still makes use of the attribute byte to

display characters in different ways. These special characteristics of the mono
chrome adapter don't apply to Junior, but we need to understand them for two
reasons: first, to better understand all the IBM personal computers; second
(and more to the point of this book), so that if we are writing programs, we can
select our color choices so that they work well on a monochrome PC or XT, as
well as on a color computer like our PCjr. For these reasons, let's look briefly at
the "color" attributes of a monochrome display.

163

EXPLORING T HE IBM PCJR

1000 1 demonstrating all the color combinations
1010 'from Exploring the IBM PCjr Home Computer
1020 ' authored by Peter Norton, 1983
1 030 '
1 040 ' main program outline
1 050 I

1060GOSUB2000 'initialize
1 070 ' loop through bl i nlci ng/not blinking
1 080 FOR BLINK I NG = 0 TO 1
1090 ' loop through background colors
11 00 FOR BACKGROUND = 0 TO 7
1110 ' loop through high/low intensity
1120 FOR INTENSITY = 0 TO 1
1130 ' loop through foreground colors
1140 FOR FOREGROUND = 0 TO 7
1150 'display information about the color
1160 GOSUB 3000
1170 NEXT FOREGROUND
1180 NEXT INTENSITY
1190 NEXT BACKGROUND
1200 NEXT BLINKING
1210 GOSUB 6000 1 finish-up

2000 I

2010 1 initialization subroutine
2020 I

2030 KEY OFF
2040 SCREEN O,
2050 WIDTH 80
2060 COLOR 2, 0 , 0
2070 CLS
2080 PRINT "Color demonstration program"
2090 PRINT
2100 PRINT "from Exploring the IBM PCj r"
2110 PRINT "authored by Peter Norton, 1983"
2120PRINT
2999 RETURN

3000 I

3010 ' report on one color combination
3020 I

3030 COLOR FOREGROUND+ INTENSITY * 8
+BL I NKING* 16, BACKGROUND

3040 PRINT

Figure 12- 7. A richer program to demonstrate
all the color attributes

164

(continued)

12: Fundamentals of Text Video

3050 PRINT"";
3060 IF FOREGROUND = BACKGROUND THEN COLOR 7, 0:

PRINT "(This would be";
3070 IF BLINKING THEN PRINT "blinking";
3080 IF INTENSITY THEN PRINT "bright ";
3090 COLOR. NUMBER = FOREGROUND
3100 • get the number translated into a name
3110 GOSUB 4000
3120 PRINT "on";
31 30 COLOR. NUMBER = BACKGROUND
3140 • get the number translated into a name
31~0 GOSUB 4000
3160 IF FOREGROUND = BACKGROUND THEN PR INT ")";
3170 PR I NT " ";
3180 GOSUB 5000 • check if time to pause
3999 RETURN

4000 I

4010 • translate a color number into its name
4020 I

4030 IF COLOR. NUMBER = 0 AND INTENSITY = 0
THEN PRINT "black";

4040 IF COLOR. NUMBER = 0 AND INTENSITY = 1
THEN PR I NT "gray ";

4050 IF COLOR.NUMBER= 1 THEN PRINT "blue";
4060 IF COLOR. NUMBER = 2 THEN PR I NT "green ";
40 70 IF COLOR. NUMBER = 3 THEN PR I NT "cyan ";
4080 IF COLOR. NUMBER = 4 THEN PR I NT "red ";
4090 IF COLOR.NUMBER= 5 THEN PRINT "magenta";
4100 IF COLOR. NUMBER = 6 AND INTENS ITV = 0

THEN PR I NT "brown ";
411 0 IF COLOR • NUMBER = 6 AND INTENSITY = 1

THEN PR I NT "yellow ";
4120 IF COLOR.NUMBER= 7 THEN PRINT "white";
4999 RETURN

5000 I

5010 • check if time to pause
5020 I

5030 IF FOREGROUND < 7 THEN RETURN
5040 COLOR 2, 0
5050 PRINT
5060 PRINT
5070 PRINT "Press any key to continue."

Figure 12-7. A richer program to demonstrate
all the color attributes (continued)

165

(continued)

EXPLORING THE IBM PCJR

5080 IF LEN CI NKEYS > = 0 THEN GOTO 5080
5999 RETURN

6000 '
6010 'finish up subroutine
6020 '
6030 PRINT
6040 PRINT "End of demonstration program."
6050 PRINT
6060 PRINT "Press 'B' to return to BASIC,"
6070 PRINT "or any other lcey to return to DOS."
6080 IKEY$ = INKEYS
6090 IF LEN CI KEYS> = 0 GOTO 6080
6100 IF CIKEYS = "B"> DR CIKEYS = "b") GOTO 6140
611 0 PR I NT
6210 PRINT "Returning to DOS."
6130 SYSTEM
6140 PRINT
6150 PRINT "Returning to BASIC."
6160 END

Figure 12- 7. A richer program to demonstrate
all the color attributes (continued)

Color on a Monochrome Display

The monochrome adapter provides some limited equivalents of colors. For
one thing, both the intensity and blinking bits work with the monochrome
adapter, so we can make monochrome characters bright and/or blinking. There
are also two special "colors" for monochrome characters: underlined and
reverse video. If we sec the attribute colors co blue foreground and black
background, the monochrome adapter will show characters as underlined.
This is done by setting the attribute byte co hex 01, or using the BASIC
statement COLOR 1,0. If we sec the colors co black foreground and white
background, the monochrome adapter will use reverse video, or black (unlit)
characters on a white (lie) background (which is a green phosphor in IBM's
Monochrome Display). This is done by setting the attribute byre co hex 70, or
using the BASIC statement COLOR 0, 7. All ocher foreground and background
color combinations are created by the monochrome adapter as if they were the
default combination of white on black, which is an attribute value of hex 07,
equivalent co the BASIC statement COLOR 7,0.

166

12: Fundamentals of Text Video

Although we can use the BASIC COLOR statement to control the color
attributes, any program can manipulate the attribute byte directly in the
memory-mapped storage. That's what the attribute program in the first section
of this chapter does. In the next section, we'll see how the memory-mapped
storage works, so that we'll understand how our programs can work with
it directly.

USING THE MEMORY MAP

To understand the memory mapping in the PCjr, we have to understand
three separate elements, each of them rather complicated: the mapping of a
single screen image, or page, as it is called; the use of multiple pages; and the
PCjr's special mapping of video in RAM. Let's start with the mapping of a
single page-a single image of the display screen.

Mapping a Single Screen Image
As we've mentioned, each position on the display screen has two corre

sponding bytes in memory where the character code and the color attributes are
stored. These bytes are next to one another, with all the character bytes in
even-numbered memory locations and each corresponding attribute byte in
the adjacent odd-numbered memory location. Let's suppose we have ABC
displayed in blue-on-black. The six bytes that display these characters are
shown in Figure 12-8.

Byte Hex ASCII Binary Meaning
Number Code Code Code

1 41 65

o&odoi Character A
2 01 Foreground = 1 = blue;

background = 0 = black
3 42 66 Character B

4 01 o&odo1 Foreground = 1 = blue;
background = 0 = black

s 43 67 Character C

6 01 o&odoi Foreground = 1 = blue;
background = 0 = black

-
Figure 12-8. Bytes/or ABC displayed

in blue on black

167

EXPLORING THE IBM PCJR

The "attributes in action" program in Figure 12-2 raced through all the
possible color attributes by poking the attribute values at an OFFSET = 1
(that is, one byte) from where the character codes were located. When we
changed the address to OFFSET = 0, the POKE statements changed the
character codes themselves. Thus, with OFFSET = 1 we saw the colors
change; with OFFSET = 0 we saw the characters change. So that simple pro
gram really demonstrated what we have just learned about the memory map.

Wherever the map of the display begins in memory, the first byte, at offset
0, is the first character of the top line of the screen; the third byte, at offset 2, is
the second character in that line, and so forth until we reach the end of the first
line on the screen (which could be 40 or 80 characters long and would take up
either 80 or 160 bytes in memory). The very next even-numbered byte of
memory is then the first character of the second line on the display screen. This
sequence continues until we reach the bottom right corner, at the end of the
memory map for the display screen.

There are always two bytes for each character, and there are always 25 lines
on the screen. The width of each line can vary, as we know. If the width is 40,
the display page will take:

2 x 25 x 40 = 2,000 bytes

and if the width is 80, the display page will take:

2 X 25 X 80 = 4,000 bytes

We can calculate the offset address, within the memory page, of each
character by using the following formula, counting the rows from 1 to 25 and the
columns from 1 to 40 or 80:

CHARACTER.OFFSET = ((COLUMN-1) + ((ROW-1) x WIDTH)) x 2

The offset address of the attribute byte would be just one higher.
Notice that since the memory is mapped continuously from one row to

another, the memory location that would be the first character of the second
line in 40-column mode would be the 41st character in the first line in 80-
column mode.

Mapping Multiple Screen Images

So far, what we have seen applies to one display page-one image of the
screen. Junior can keep more than one screen image in memory; so can the
ocher IBM personal computers, when they use the color/graphics adapter. (The
monochrome adapter, though , has only enough display memory for a single
screen image.) The basic color/graphics adapter has 16K of memory, and our
PCjr secs aside 16K of memory for the display. In 40-column text mode, our

168

12: Fundamentals of Text Video

display screen needs only 2,000 bytes (or roughly 2K), and in 80-column text
mode it needs only 4,000. So there is much more memory available than the
display needs at any one time. To make good use of this memory, it is divided
into display pages, each of which is an image of the display screen with which
our programs can work. Only one of the pages actually appears on the screen at
any one time, but our programs can be building information in one page while
another is being shown.

We can figure the number of display pages by dividing the size of a page
into the amount of memory that is set aside for the display screen. In our PCjr,
unlike the other IBM personal computers, we can vary the amount of display
memory from as little as 2K to as much as 32K; the standard amount, though, is
16K, and so we'll use that to figure with. If we are using our screen in 40-column
text mode, each page takes 2,000 bytes, which the system rounds up to 2K
(2,048) bytes; in 80-column text mode, a page takes 4,000 bytes, or 4K (4,096)
bytes. So, with 16K of display memory, 40-column mode gives us eight display
pages, and 80-column gives us four pages.

The pages are referred to by number, and they are always numbered from 0
through 3, or 7, or however many pages there are. The pages are stored in
memory with page O first, at the beginning or lowest address in the display
memory. Since memory is set aside for each page in even increments of K,
there is an unused slack of 48 or 96 bytes following the end of each page.

The ability to have more than one screen image in memory can be a
tremendous advantage. Sometimes it takes a program an annoyingly long time
to put together all the information that needs to appear on the display screen.
Instead of having us watch the process in action (and wonder when it will be
finished), our programs can do all their work offstage, so to speak, and then
present us with the finished display, by simply changing the display page that is
being actively shown.

BASIC gives us a way to control these display pages with the SCREEN
command. Two of the parameters of the SCREEN statement control the
pages. The vpage, or visual page, parameter controls which page is shown, and
the apage, or active page, parameter controls which page receives any output
from the program. We can write into the different pages either by changing the
a page parameter, or, if we are sophisticated in our knowledge of memory, by
putting our data directly into the various memory locations with the POKE
statement. Other programming languages can use similar methods.

Mapping Screen Images in RAM

Our PCjr operates its display in a unique way, as we've already seen.
Instead of having a dedicated display memory, it borrows part of its main

169

EXPLORING THE IBM PCJR

memory for display use. One of the goals of the PCjr is to pretend successfully
to be a color/graphics adapter. To be as compatible as possible with the PC and
XT, our PCjr must provide a very convincing imitation of the color/graphics
adapter, and this must extend to its 16K of display memory. Thus, by default,
Junior sets aside exactly 16K of its working memory to simulate the color/
graphics adapter's 16K of dedicated memory.

However, since our PCjr is using its main memory for the display, it can be
much more flexible about how much memory is used. Ifwe want to have more
display pages, we can increase the amount of memory set aside for the display.
On the other hand, if we don't need so many pages (and few programs use the
display pages to their full advantage), we can reduce the amount of display
memory and gain back more usable, general-purpose memory. This flexibility
can be very valuable, since one of the main limitations of the PCjr, in com
parison to its bigger brothers, is a lack of memory. In BASIC we can use
the CLEAR command to set the amount of memory used for the display,
for example:

CLEAR,,, 2048

sets it to the minimum amount of 2K.
That wraps up the memory map for us. Now it is time to move on and look

at all the characters the PCjr lets us display on its screen.

ALL THOSE CHARACTERS

Junior has a wealth of characters it can display, 256 in all. There are lots and
lots of wonderful things in this character set, and we'll take a look at them in
this section.

Before we go any further, you might like to know that you can find pictures
of all the PCjr's characters in Appendix D. The program in Figure 12-9 will also
display all these characters on your PCjr's screen, so that you can see exactly
what they look like on your display.

The PCjr's character set is based on the ASCII characters. ASCII was
designed using only a 7-bit code, so there are only 128 troe ASCII characters.
Our PCjr, like most computers, stores characters in an 8-bit byte. IBM,
therefore, had an additional 128 characters that it could design for its personal
computers.

The complete set of 256 characters is sometimes called extended ASCII, and
it's often just called ASCII, as well. But, properly speaking, only the first 128
characters are true ASCII.

We'll look at the true ASCII characters first.

170

12: Fundamentals of Text Video

True ASCII Characters

The first 128 characters, with byte codes CHR$(0) through CHR$(127) are
the ASCII character set, including the characters we are most familiar with:
digits O through 9, CHR$(48) through CHR$(57); capital letters A through Z,
CHR$(65) through CHR$(90); lowercase letters a through z, CHR$(97)
through CHR$(122); and ordinary punctuation characters, scattered about with
various code values. You will find a chart of these ASCII character codes in
Appendix D.

The first 32 ASCII codes, CHR$(0) through CHR$(31), are special format
ting codes (such as the carriage return, the line feed, and the form feed) and
special communications control codes (such as the codes known as start-of-text
and acknowledge). When the PCjr is working with a printer or with a commu
nications line, these special codes are used as they were originally intended.
But IBM also gave these character codes special display shapes, such as the four
card suits (spades, hearts, diamonds, and clubs) and certain musical notes.
These character codes can be used to produce some fancy effects on our display
screens. But, be forewarned: They can't be used indiscriminately, since they
also have their special meanings in the ASCII coding scheme. Generally
speaking, our programs can't write these characters on the screen with ordinary
output statements. The program in Figure 12-9, however, shows how we can
display these characters by putting them directly into the display memory.

Additional Characters

The second half of the 256-character set is both more complex and more
interesting. It is designed to take care of several needs. First, it provides the
most commonly used scientific and mathematical symbols; for example,
CHR$(236) is the infinity knot. Second, it provides the accented letters used in
languages other than English. Currency symbols are provided as well: the cent,
the pound, the franc, the yen, and the Spanish peseta. (The dollar sign is
included with the true ASCII characters.) The part of greatest interest to most
of us, though, is the graphics character symbols.

Graphics Characters

To make it possible to produce simple drawings in text mode, the PCjr has
48 graphics characters. These characters fall into three groups. The first group
of 40 characters makes it possible to draw boxes of single and double lines. This
is one of the nicest features of the IBM personal computers' character set and
one that many, many programs have used to good advantage. The other two
groups are oriented toward drawing bar charts: One consists of four characters

171

EXPLORING THE IBM PCJR

that occupy the entire character space, but fill it in such a way that either one
quarter, one-half, three-quarters, or all of it is solid. The other set consists of
four characters that are each half solid and half blank, divided horizontally or
vertically, with the top, bottom, left, or right half of the character space
showing. To see the full glory of all these characters, run the program in Figure
12-9, and see Appendix D as well.

1000 ' display all the characters
1010 'from Exploring the IBM PCjr Home Computer
1 020 ' au tho red by Peter Hor ton, 1983
1030 '
1040G□SUB2000 'initialize
1050 FOR CHARACTER • 0 TO 255
1060 GOSUB 3000 'display character
1070 NEXT CHARACTER
1080 G□SUB 4000 'finish up

2000 '
2010' initialization
2020 '
2030 KEY OFF
2040 SCREEN O, 1
2050 WIDTH 80
2060 CLS
2070 DEF SEG = &HB800
2080 PRil'IT
2090 PRil'IT II Displaying all characters
2100 LOCATE , ,0
2110 RETURN

3000 I

3010 ' subroutine to display each character
3020 '
3030 ROW. HUMBER = CHARACTER MOD 16
3040 COL. HUMBER = CHARACTER \ 16
3050 OFFSET = CROW. HUMBER + 3) * 160 +

COL. HUMBER * 6 + 26
3060 POKE OFFSET, CHARACTER
3070 LOCATE 2,38
3080 PR It-IT 11 charac t er number 11 ; CHARACTER;
3090 PRil'IT II hex code 11 ;HEX$CCHARACTER>
3100 RETURN

Figure 12-9. A program to print the complete
text-mode character set

172

II

(continued)

12: Fundamentals of Text Video

4000 I

4010 'finish up subroutine
4020 I

4050 LOCATE 21 , 1 , 1
4060 PRINT "Press '8' to return to BASIC,";
4070 PRINT "or any other key to return to DDS.";
4080 IKEY$= INKEY$
4090 IF LEN <IKEY$)= 0 GOTO 4080
4100 IF <IKEY$= 118 11) DR <IKEY$= "b") GOTO 4120
4110 SYSTEM
4120 END

Figure 12-9. A program to print the complete
text-mode character set (continued)

Next let's look at the ROM-BIOS services used to support the text display.

ROM-BIOS TEXT DISPLAY SERVICES

The ROM-BIOS programs provide services to support all the operations of
the PCjr's display screens. In this section, we'll take a look at all the service
routines, except those that are special to the graphics modes; those we'll put off
until the next chapter. If your programs need to be in complete control of the
display screen, they can use these services through an assembly-language
interface routine.

The ROM-BIOS display services are all invoked with interrupt 16 (hex 10)
and are numbered, like the other services, with service codes beginning with 0.

■ Service O is used to set the video mode, using the mode codes O through
6 and 8 through 10, as we outlined in the last chapter. Mode 7, remember, is for
the PC/XT monochrome adapter and can't be set on the PCjr.

■ Service 1 is used to set which scan lines the cursor will appear on. Since a
character position is eight scan lines high on the PCjr, the cursor could be
placed on any one of the eight, or could encompass a block of several lines.
This service underlies the cursor-setting part of the BASIC LOCATE state
ment. When the LOCATE statement is used with start and stop parameters to
indicate which scan lines the cursor is to appear on, BASIC uses this ROM
BIOS service to do the work. (When program compatibility with the PC
matters to you, keep in mind that a monochrome adapter PC has 14 scan lines
for the cursor.)

173

EXPLORING THE IBM PCJR

■ Service 2 sets the position of the cursor-both in its row and column,
and also in a particular display page. Putting the cursor onto a display page
other than the one that is being shown on the screen prepares the way for
writing information to a page that we cannot currently see. Using the page part
of this service is equivalent to setting the apage, or active page, in the BASIC
SCREEN statement, while the row and column part of this service is equiv
alent to the BASIC LOCATE statement.

■ Service] is used to find out the current cursor position (row and column),
and also which scan lines it appears on. In effect, service 3 is the opposite of
services 1 and 2 combined.

■ Service 4 is used with the light pen, which we will discuss later.

■ Service 5 is used to change the page being displayed on the screen. To
avoid confusion, we should give you one word of warning here: If you look
these services up in the Technical Reference manual, you will find references to
the active page; what the ROM-BIOS listings call the active page is the same
thing BASIC calls the visual page. What BASIC calls the active page is the page
where the cursor is located, which is set by service 2. If you followed that, give
yourself two points.

■ Services 6 and 7 are used to scroll a window-a rectangular part of the
whole display screen-up or down. Service 6 scrolls up and 7 scrolls down. In
scrolling, the rectangular window is defined by its four corners, and we can
make it any part of the screen we want. All the information in that window is
moved up or down one line, and a blank line is inserted at the bottom or top of
the window. This is a marvelous pair of services that can be used for all sorts of
wonderful effects, but few programs take advantage of them.

■ Service 8 is used to read a character out of a display image. The BASIC
equivalent of this service is the SCREEN function (not the SCREEN state
ment). We specify a location on the screen, and Service 8 tells us what character
is written there.

■ Service 9 writes a character into a display page, with the color attribute
specified. This service also allows us to specify the number of times the same
character is to be repeated. The replication feature can be useful for writing
blanks in the display or for any other character that we might want to repeat,
such as the horizontal lines of a box that our programs are drawing.

■ Service JO writes a character, like service 9, but uses the existing color
attributes at that screen location. (With Service 9 we have to specify the
attribute.)

174

12: Fundamentals of Text Video

■ Service 11 applies mostly to the graphics modes, but it has one feature
that also applies to the text modes. This is the service that is used to set the
border color on the screen, as in the border parameter of the COLOR statement
in BASIC; for example:

COLOR ,,7

■ Service 14 provides another way of writing characters to the display
memory. Service 14 is mostly used when the screen is being treated like a
printer or typewriter.

■ Service 15 gives information about the current state of the display,
including the current mode number, column width (either 40 or 80), and active
page number.

The remaining ROM-BIOS video services (12 and 13) apply to the graphics
modes; we will cover them in the next chapter.

175

CHAPTER

13
FUNDAMENTALS OF

GRAPHICS VIDEO
In this chapter, we'll cover how the PCjr

works in graphics mode. The fundamental
difference between text mode and graphics
mode is that text mode is set up solely to
display characters, while graphics mode is

organized to display a screenful of dots that
can be used to draw pictures.

EXPLORING THE IBM PCJR

In text mode, our programs display characters by placing ASCII character
codes into memory and using the display circuitry's character generator to
produce the shapes of the characters on the screen. But in graphics mode, our
programs produce drawings by setting bits in memory that correspond to dots
on the screen. Each individual dot is controlled by manipulating data stored in
the memory that are mapped to the display screen. As we've mentioned be
fore, graphics mode can easily display characters on the screen, but it does so by
producing drawings of the characters.

The color/graphics adapter for the original PC has exactly 16K of display
memory on it, so the number of display-image pages is fixed. Each of the
graphics modes for the PC and XT uses 16K, so these models have only one
graphics display page. Our PCjr is more flexible, since we can choose how
much memory to dedicate to display support. So, for our PCjr, there can be
more than one graphics page, just as there can be more than one text page.
That's something new that the PC didn't have. On the other hand, memory is
in somewhat short supply in the PCjr, so we aren't likely to use multiple
graphics pages much.

While the text screen is made up of 25 rows of either 40 or 80 character
positions, the graphics screen is made up of dot positions, called picture
elements, pixels, or pels, arranged in 200 rows of 160, 320, or 640 dots. There
are six distinct graphics modes: Three are common to the PCjr, the PC, and the
XT, and three are newly introduced with the PCjr.

In text mode, each screen position holds a character with two parts: the
character itself, called the foreground, and the space around the character,
called the background. The foreground is one color and the background
another. In graphics mode, though, each pixel is complete in and of itself. It is
fully shown in one color or another, so there is no foreground or background
specification for graphics modes. You may be perplexed by that last statement,
because the BASIC manual clearly states that there is a foreground and a
background in the graphics modes. The confusion stems from two different
approaches to the screen.

As the screen actually works, each pixel is set to display a particular color,
and it is fully that color-no foreground, no background. This is the true
nature of graphics mode. But when we work with graphics mode, we don't
normally set the color of each dot on the screen separately-that would not
only be extremely tedious, it would also obscure what we are really doing.
When we work with graphics mode, we usually treat the screen like a piece of
paper on which we are drawing things; and from this point of view, there is a
background (the paper) and a foreground (our drawing). To work this way, our
programs simply set all the pixel dots to the "background" color first, and then
draw in the desired "foreground" dots.

BASIC talks in terms of foreground and background in graphics mode to

178

13: Fundamentals of Graphics Video

make life easier for us. By creating a working foreground and background,
BASIC is saying to us, "For your convenience, I'll make all the pixels one color
(the background), except where you tell me to make them some other color
(the foreground)." This is simply a handy working convention, and not some
thing fundamental to the way graphics mode works. If we want to understand
what really underlies graphics on the PCjr, we have to realize that each pixel
has its own individual color setting, and this setting might be what we think of
as the foreground, or as the background.

If each pixel could only be either on or off, lit or not, we could control each
one with a single bit set to O or 1. Instead, each pixel is set to some particular
color that is selected from a palette of colors. If the palette has only two choices,
then only one bit is needed to select from it. But with four choices in the
palette, two bits are needed, and with a 16-color palette, we need four bits to
indicate our choice.

THE GRAPHICS MODES

Figure 13-1 is a quick overview of the six graphic modes we will discuss in
this section.

Original Graphics Modes

Mode Pixels Colors Notes

4 320 X 200 4 One color chosen freely,
others from palette

s 320 X 200 4 Black-and-white version of mode 4

6 640 X 200 2 Black-and-white

New Graphics Modes

Mode Pixels Colors Notes

8 160 X 200 16 Full colors

9 320 X 200 16 Full colors

10 640 X 200 4 From a changeable palette

Figure 13-1. Six graphics modes

179

EXPLORING THE IBM PCJR

Why do we need six distinct graphics modes? One reason is to give us a
choice of how detailed the picture is. The level of detail of a picture is called its
resolution. Depending upon our purpose, we may want lots of detail-high
resolution-or not much. If we have less resolution than we need, our display
picture may be too crudely drawn; if we have too much resolution, our
programs will just have more pixel dots to worry about. So there are graphics
modes to give us three choices of resolution. Another reason is how much color
we want. Some jobs may need lots of color; others may do best in black and
white. So there are graphics modes to give us a choice of how much color is
available (as well as which colors). Further, different kinds of display screens
vary in how well they show colors in different resolutions. An ordinary TV set,
for example, does a poor job of showing high-resolution color, while most RGB
monitors do it splendidly. Finally, different combinations of color and resolu
tion require different amounts of display memory-and it's good for us to have
a choice of how much memory is dedicated to our display. All these factors add
up to the reasons why there are six different graphics modes in the PCjr.

Let's take a tour through the six modes, and see what they can do.

The Original Graphics Modes

Mode 4 (which corresponds to BASIC's SCREEN statement modes 1 and
4) provides 320 pixels across and 200 down, which is known as medium
resolution. (All the modes give a uniform 200 rows, or lines, of pixels.) Two
bits, giving four color choices, control each pixel. With two bits per pixel, 320
by 200 (64,000) pixels, and eight bits per byte, it takes 16,000 bytes (rounded
up to 16K) for a mode 4 screen image.

As we know, the IBM personal computers can show 16 distinct colors
eight basic colors each with bright or dim variations. When we have a mode that
can select only four colors, we have to decide which four colors can be used.
IBM has taken two approaches to the problem. The actual controlling circuitry
for the display screens is capable of letting us freely choose which four of the 16
colors will be used. However, for the original PC's color/graphics adapter, IBM
decided to predefine three of the four colors. To give us more flexibility, two
predefined sets were created, called palettes O and 1. Palette O gives us the colors
green, red, and brown (dim yellow), and palette 1 gives us cyan, magenta, and
white. We can freely choose the fourth color in each palette from any of the 16
possible colors.

For the four color choices in the PCjr's mode 4, IBM has broken away from
the fixed palettes of the original PC color/graphics adapter. Junior's color
adapter and its supporting ROM-BIOS programs have been developed in a way
that makes it possible for us to create our own palettes, freely chosen from any
of the 16 possible colors. Since graphics mode 4 has only two bits for each pixel,

180

13: Fundamentals of Graphics Video

there can still only be four colors on the screen when mode 4 is being used. But
on the PCjr, these four colors can be any we choose, while on the original PC,
we had to make do with one free color choice and the use of IBM's pre-defined
palettes 0 or 1 for the other three colors.

The original graphics mode 4 is mode 1 in the BASIC's SCREEN state
ment. Since the PCjr has added new capabilities to graphics mode 4 (the ability
to select all four colors in the palette), BASIC has adopted two SCREEN mode
numbers to refer to this one graphics mode. SCREEN mode 1 invokes the
original graphics mode 4 with its fixed palettes; SCREEN mode 4 unleashes
the new capabilities of the PCjr's graphics mode. It is not really necessary for
BASIC to make this distinction, but doing so helps maintain compatibility
among BASIC programs, new and old. For example, suppose we are working in
graphics mode 4 (SCREEN mode 4) on our PCjrs and have set the palette to
something unusual; if we load an old BASIC program that expects to use IBM's
predefined palettes, it will automatically get them when its SCREEN state
ment sets the mode to 1.

Next is graphics mode 5. You will recall that the text modes have versions
with and without color, mostly to make it practical to use non-color monitors
with the color/graphics adapter. Mode 5 was created with the same idea in
mind. Mode 5 is mode 4 with color suppressed. When mode 5 is used, four
"colors" will still be displayed, but they will be shades oflight and dark, instead
of distinct colors. BASIC turns color on or off with the burst parameter of the
SCREEN statement, so there isn't any special BASIC SCREEN mode num
ber for this graphics mode.

Mode 6, the last of the original graphics modes, doubles the number of
pixels in each line of the screen from 320 to 640; this is called high resolution.
The number of bits that control each pixel is cut in half, from two to one, so that
this mode uses the same amount of memory (16K) as is used for modes 4 and 5.
However, there are only two color choices, black or white. While mode 4 was
changed on the PCjr to allow a free choice of colors in the palette, the same
change was not made with mode 6; so graphics mode 6 only uses black and
white for its colors. Mode 6 is known to BASIC as SCREEN mode 2.

The New Graphics Modes

The first of the new graphics modes for Junior is mode 8, which is known to
BASIC as SCREEN mode 3. This is a low-resolution mode, with only 160
pixels across the screen. This new mode is particularly important for the PCjr,
since many owners will use TV sets for their display screens, and 160 pixels is
the most that can be successfully shown with full color on an ordinary TV.
There is a full 16-color palette for mode 8, so the screen can show all the
possible colors at once.

181

EXPLORING THE IBM PCJR

Mode 8 seems to be the most important graphics mode for games on the
PCjr. With 16 colors, there are four bits for each pixel, and so 16K of memory is
used for each display page. Since 16K is the normal amount of memory used for
Junior's display, programs can take advantage of this mode without giving up
some extra memory, which the next two modes require.

Mode 9, known to BASIC as SCREEN mode 5, is a combination of the
medium resolution of mode 4 and the 16 colors of mode 8. Mode 9 offers 320 by
200 pixels, with a full 16-color palette. The memory requirement is higher-
32K. This mode will not work with full success on many TV sets, but it will
perform superbly on RGB monitors.

Mode 10, the last of the new modes, is known to BASIC as SCREEN mode
6. Like mode 9, it is a mixture of the capabilities of two other modes. It offers
the high resolution of 640 by 200 pixels, like mode 6, combined with the four
color choice of mode 4. Mode 10 uses two bits for each pixel, for a total of 32K of
memory for the one screen page. As with the PCjr's mode 4, we can freely
choose the four colors. This mode calls for a very good quality monitor, so many
PCjr owners will not make use of mode 10. On the other hand, the new
component-type TV sets can usually work as high-quality RGB monitors, so
owners of this kind of home TV will be able to see the spectacular results of
graphics mode 10.

Resolution
In this discussion of the graphics modes, I have used the terms low,

medium, and high resolution. When talking about the IBM personal comput
ers, the 640-pixels-per-line modes are high resolution; the 320-pixel modes are
medium resolution; and the 160-pixel modes are low resolution.

There is another 160-pixel mode that is sometimes mentioned; it has 160
pixels across, but only 100 lines from top to bottom. None of IBM's personal
computers uses this mode, but some of the IBM technical literature refers to it
as a possibility. In any event, if you run across any of the terms low, medium, or
high resolution, you should know that they refer to 160, 320, and 640 pixels per
line. I prefer to avoid using these terms, though, since they are vague and mean
different things in contexts other than the IBM personal computers.

With that basic information about the PCjr's graphics modes taken care of,
we can move on to how the memory-mapped display and the control of color is
handled.

THE GRAPHICS MEMORY MAP

Like text mode, graphics mode on the PCjr uses part of the main, general
purpose memory for support of the display. Also as with text mode, the display

182

13: Fundamentals of Graphics Video

uses the highest locations at the end of the 64K or 128K installed memory. The
amount of memory set aside for the display can be varied, but the usual, default
amount is 16K, the same amount as in the PC's original color/graphics adapter.
The actual display memory can be reached either by calculating its true address
location or by referring to the paragraph location hex B800 used by the color/
graphics adapter. In every way, Junior's graphics mode, like the text mode,
produces a convincing simulation of the color/graphics adapter used by the PC
and XT.

The various text modes use the same memory locations but the locations
are interpreted according to the different needs of each mode. The same holds
true for the various graphics modes. The use of the display memory in graphics
mode resembles its use in text mode, but many of the details are quite
different. Let's look at these differences now.

The memory used for the very first scan line of the screen begins with the
first byte of the display memory and proceeds through memory for however
many bytes are needed-so far, the procedure is no different from text mode.
However, the next memory locations are not for the second scan line, but for
the third or the fifth line, depending on which graphics mode is being used. For
graphics modes 4, 5, 6, and the new PCjr mode 8, every other line is stored
first; for the other two new modes, 9 and 10, every fourth line is stored first. So
it goes like this: For modes 4, 5, 6, and 8, it begins with line number O (the first
line), followed by 2, 4, and so on through line 198. Then come lines 1, 3, 5, and
on to the very last line, 199. The same idea applies for modes 9 and 10, except
that the lines are divided into four groups, like this:

First we have 0, 4, 8, .. 196
then 1, 5, 9, .. 197
then 2, 6, 10, ... 198
finally 3, 7, 11, .. 199

Why is mapping done this way? You will recall that display screens are
scanned every other line at a time; so this memory-map format matches the
actual order in which the display screen uses the data. As a moment's thought
will show, mapping the graphics memory in this order, rather than with the
lines in numeric order, is a trade-off between convenience for the programs and
convenience for the hardware. It would be tedious for you or me to calculate
the right memory location for the beginning of any line, but in assembly
language it is very quick and easy-in fact, it takes only three instructions (two
shifts and an add or a test, a jump, and an add). It is therefore more practical to
make the programs do the work than to make the display circuitry smart
enough to skip every other line in memory when it is scanning.

From line to line, the memory locations are used one byte after the other,
just as in text mode. However, there is a gap between the two or four blocks of

183

EXPLORING THE IBM PCJR

Byte
Bit

Four bits per pixel
Pixel I O I 1

Two bits per pixel

2 3 4 5

Pixel I O I 1 I 2 I 3 4 5 6 7 8 9 10 11

Figure 13-2. Graphics video modes pixel bits

scan lines to ensure that each block will start on an even lK boundary. (This is
just like the gap left between display pages that we mentioned earlier.)

With the exception of mode 10, which is quite special, the bits needed for
each pixel follow each other in an orderly fashion. Whether one, two, or four
bits are needed to specify the pixel's color, the bits in each byte are divided up
in order so that the first pixel uses the highest-order bits in the first byte,
followed by the bits for the next pixel, as shown in Figure 13-2.

Mode 10 is mapped out in a very odd way, though. Since mode 10 uses four
colors, two bits are needed for each pixel. But the two bits are not adjacent
within one byte. Instead, a pair of bytes at adjacent, even-odd locations
provides separately the two bits needed for eight pixels. In the other modes,
the eight bits of one byte would provide all the bits needed for two, four, or
eight pixels, depending upon the number of color bits needed. But in mode 10,
one byte provides one color bit for each pixel and the adjacent byte provides
the other. The byte with the even address provides the higher order bit, and

Even Bytes
Bits

Pixels

Bits
Odd Bytes

Figure 13-3. Video mode 10: interleaved bits

184

13: Fundamentals of Graphics Video

the odd byte provides the lower order bit needed for the pixel's color specifica
tion, as shown in Figure 13-3.

The reason for this unusual setup has to do with electronic hardware. Since
the focus of this book is on understanding how the PCjr works, from the point
of view of computer users like you and me, what we really want to discuss is
functions-the things that make it possible for the software to go. While the
details of how the hardware works are very interesting, those details are not
functional in the sense of using and writing software. Here, though, since
we've bumped our heads on the hardware, let's pause to understand what is
gomg on.

Computer memory takes a certain amount of time to work and the speed of
the memory is one of two main factors limiting the overall speed of the
computer. (The other is the speed of the microprocessor.) There is, though, an
interesting trick that can make computer memory work faster than it sup
posedly can: Many computer operations work with data located in adjacent
memory locations; for example, the operation of reading out the bits that
control the graphics display screen.

The computer's memory does not all have to be controlled by the same
circuitry; there can be multiple sets of circuits operating in parallel (that is, at
the same time). These multiple circuits don't control widely separated blocks
of memory. Instead, they separate out and control adjacent memory locations
by a technique known as interleaving. In the case of a PCjr with 128K of
memory, the odd bytes are controlled by one circuit and the even bytes by the
other. This allows the computer to use two adjacent bytes (each controlled by
different circuits) much faster. Expensive mainframe computers use this inter
leaving idea, sometimes with many parallel circuits, not just the two that our
PCjr has.

Even though interleaved memory is a fancy feature for top-of-the-line
computers, our little Junior has interleaved memory when 128K is installed.
With 64K, the PCjr has one memory circuit that is used in the ordinary way.
But with 128K, it has two memory circuits that are used as two-way, inter
leaved memory.

This is remarkable for a home computer-not even the PC and XT use
interleaved memory. The PCjr, though, has two special demands placed on its

· memory that the PC and XT don't. One is simply that the same memory is
used for both program operation and display support, so the memory is
exercised much more and needs to work faster. The other has to do with
graphics mode 10. (See? We've come full circle, back to graphics.) To make it
more practical to pull out all the data needed for mode 10, the bits are
interleaved into even- and odd-byte pairs. The circuitry has to work very hard
to produce the high-resolution colors that mode 10 gives us, and splitting each
pixel's two bits onto separate bytes helps out.

185

EXPLORING THE IBM PCJR

COLORS FOR GRAPHICS

The colors used in graphics mode are selected from a palette of colors, and
the colors are specified by the bits that belong to each pixel. In the six graphics
modes, each pixel can have any one of two, four, or sixteen colors, which are
specified by combinations of one, two, or four bits. The bit combinations are
interpreted as binary numbers, starting at O and ranging up to 1, 3, or 15
(depending on the number of colors). This number selects from the colors
available.

In the original PC and XT models, the colors available could not be varied,
except to the limited degree that, in a four-color mode, we could select from
two palettes of three colors each and then choose a fourth color. This capability
was not just a function of BASIC; it was built into the computer itself. However,
in the PCjr, we have much more control.

In the two-color mode, mode 6, we cannot vary the color choices-they
must be either black or white. Although it might be interesting to use some
other two colors, there is no compelling need for having a choice here. (And
besides, if we really want to have 640-pixel, high resolution with two freely
chosen colors, we can always use mode 10 and simply use only two of the
four colors.)

In the four-color modes, we can set the four colors of our palette to any
colors we choose from the full range of 16 colors. We make the choices in BASIC
using the PALETTE USING statements, which are based on the palette
ROM-BIOS services we will cover in the next section.

In the 16-color modes, we also are given a choice of colors by the PAL
ETTE USING statement. This might at first seem silly. With 16 colors to start
with, we have no need for a palette the way we do in the four-color modes,
where we are selecting the four colors out of 16. In 16-color, we always have the
full use of 16 colors. What, then, does the PALETTE USING statement add to
our use of color? It allows us to rearrange the way we are using our colors. By
changing the palette, we can automatically change the colors of parts of our
screen just by changing the palette colors. For example, if the same actual color
is assigned to two seemingly different palette numbers, parts of a screen
drawing can be made to disappear. A change in the palette can give a drawing
the same color as its background, or a different color-making it disappear and
reappear instantly, without being redrawn.

There is one final difference between text and graphics modes worth
mentioning here. In the text modes, with the way the display attributes are set
up, there is a difference between foreground and background. The foreground
is chosen from the full 16 bright and dim colors, but the background is chosen
from only the eight dim colors. In graphics mode, on the other hand, any pixel
can be chosen from any color (except in the two-color, black-and-white mode),

186

13: Fundamentals of Graphics Video

so we can if we choose work with bright-colored pixels in what we consider the
background as well as bright-colored pixels in our foreground . We can, if we
want, switch to a graphics mode even when we are doing all our work with
characters, just to take advantage of this feature. (If we do that, though, we
have to give up blinking characters and the cursor as well.) So, we don't have to

be making drawings to have a good reason to use a graphics mode.
Now, with all that information about colors out of the way, let's look at the

graphics services that are provided by the ROM-BIOS.

ROM-BIOS GRAPHICS DISPLAY SERVICES

The ROM-BIOS services for the graphics modes are similar to those for the
text modes , and in fact services number O through 11 and 14 and 15, which we
covered in the last chapter, are really common to both text and graphics. There
are three services specifically for graphics that are common to the PC, the XT,
and our PCjr.

■ Service 11 is used to select the color being used in graphics. This same
service is used to select between the two fixed palettes, or to set the one freely
chosen color in the four-color palettes. Setting the one free color in the palette
also sets the color of the border of the display screen -the area that is outside
the working part of the screen. This border-setting operation works for both
text modes and the graphics modes.

■ Service 12 is used to write a pixel dot on the screen, specifying the row
and column numbers and the color selection number. A variation on this
service, used when the color number is over 128, does not replace the pixel's
existing color-instead it ORs the new color number into the old color
number. This can be useful in combining parts of a picture that is being drawn.

■ Service 13 reads a pixel's color number from the screen, similar to the way
that service 8, discussed in the last chapter, reads a character from the display.

CHARACTERS IN GRAPHICS MODE

There are always more tricks in the world than we imagine, and that
certainly is true for the PCjr's graphics modes.

We've mentioned several times that Junior can write characters on the
screen while it is in graphics mode, and that the characters are written by the
simple expedient of creating a drawing of the characters. Let's go into the
details of how this is done.

187

EXPLORING THE IBM PCJR

First, these drawings have to exist somewhere. The PCjr handles this in an
interesting way. The complete 256-character set makes up a table of drawings
divided into two parts: The first half is the 128 ordinary ASCII characters, and
the second half is the 128 extra characters created by IBM. For the ASCII
characters, the table of drawings is stored in the ROM in our PCjr and in the
other IBM personal computer models. We can't change this table, and we can't
change the pointer to the table, so these characters are fixed and protected from
tampering.

The second half of the table of character drawings is more complicated and
interesting. You'll recall from the last chapter, that the second half of our
character set, from CHR$(128) through CHR$(255), is intended to add all sorts
of special characters to the ordinary ASCII characters. In the original design of
the IBM personal computers, these other characters were intended for use by
the monochrome display, which doesn't have the graphics drawing abilities of
our PCjr.

As originally set up, the PC's color/graphics adapter (on which our PCjr
models itself) did not provide a character drawing table for these special
characters. In text mode all the characters worked, but in graphics mode, only
the ASCII half of the set of characters was provided. In our PCjr, though, IBM
has added a table of drawings for the upper half of the characters set. This
means that programs on our PCjr can freely use all the 256 characters, in
graphics mode as well as in text mode; but it also means that if we write
programs that use the special characters in graphics mode, they won't work on
an ordinary PC.

In the original design, IBM provided a way for us to create a drawing table
for these special characters. When our programs write characters in graphics
mode, the ROM-BIOS service programs test whether these characters are
ordinary (CHR$(127) and below) or special (CHR$(128) and above). For the
ordinary characters, the computer's built-in and unchangeable drawing table is
used. For the special characters, the ROM-BIOS looks to the interrupt vector
table, takes the address for interrupt 31 (hex lF), and uses it to provide the
location of the drawing table for these characters. (You'll recall from our
discussion of interrupts that three entries in the interrupt vector table were set
aside for special uses that really had nothing to do with interrupts; this is one of
those uses.)

Our PCjr has a character drawing table built into it, and the address in the
interrupt vector table normally points to it. The original PC does not have this
drawing table, and so the address for the interrupt vector is just set to zero, as a
way of indicating that there is no drawing table.

The most interesting thing about the drawing table for these special
characters is that we can create our own, if we want to. All we have to do is set
up a drawing table somewhere in memory and then plug its address into the

188

13: Fundamentals of Graphics Video

interrupt vector table. Once we set this up, we'll get our own character
drawings whenever we use graphics mode to write a character of CHR$(128)
or higher. As long as our drawing table and the interrupt vector are left
undisturbed, our own drawings will be used.

Remember, this only works in graphics mode, since text mode uses a
hardware character generator to produce its character shapes. And, of course, it
only works if we perform the special magic needed to create a table of character
drawings.

The characters in the table are stored as sets of eight bytes. With 128
characters, the whole table occupies lK bytes. Each character is drawn within a
box of dots, eight columns in eight rows. Each bit of the drawing bytes controls
one dot in the box; the first byte controls the dots in the top row, and so forth. If
a bit is set to 1, then the corresponding dot in the character box is set to the
foreground color. Figure 13-4 shows how a character is coded, using IBM's own
drawing for the question mark.

There are some interesting uses for these 128 characters. If we are writing a
program that produces reasonably simple drawings, we may be able to reduce
the drawings to modules of 128 shapes or less. If so, we could produce drawings
by creating a table of shapes and having the ROM-BIOS perform the relatively
messy job of moving those shapes into place on the screen. It may be laborious
to define and create the table that we need, but once we have one, it can
simplify the programming necessary to create a drawing.

There are two other potential benefits as well. First, the drawing may
appear faster on the screen, since much of the work of setting the pixels is done
by the fast, assembly-language routines in the ROM-BIOS. And second,
storage of a drawing may be much more compact, since a character code can be
used as shorthand to represent the eight bytes of drawing bits. To find out what
the code means, the ROM-BIOS would simply look it up in the table and
would then set the eight bytes of drawing bits accordingly. In the extreme, this
method of storing drawings could reduce storage space thirty-fold, when you
consider that a single graphics character fills a space that can take up to 32 bytes
of pixel information. If we're using a 16-color graphics mode, each pixel dot
uses four bits, or half a byte, and each graphics character fills 8 by 8, or 64, pixel
dots, adding up to 32 bytes of display memory-all defined by one, single
character byte.

■ Figure 13-4. Character drawing/or
the question mark

189

CHAPTER

14
COMMUNICATIONS AND

THE MODEM
Everyone knows that there is a
revolution going on in personal

computing. The fast, even explosive,
growth in sales and use of personal

computers is visible to us all.

EXPLORING THE IBM PCJR

I believe, though, that most people don't understand the real significance of
the personal computer revolution.

Many people think that the significance of this revolution comes from
people having their own computers, computers dedicated to serving the needs
of one person at a time. Isolated, unconnected, private computing is what most
people consider personal computing to be. When you or I buy a personal
computer, such as the IBM PCjr, we get computing power on tap, for our
exclusive use. There is a great benefit to having our own source of computing
power; by itself, though, it can only enhance the things that we might be doing
ourselves-it does not enhance our connection with the rest of the world.

This part of the impact of personal computers is very important, but it is
only the first half of the real revolution. The other half of the personal computer
revolution is the connection of our own computing power to other computers.
When we can talk to other systems with our PCjr, then we are plugged into both
halves of the personal computer revolution-the revolution of private comput
ing, and the revolution of computer connections.

In this chapter, we will cover the communications skills of the PCjr.
Whether or not you plan to make use of Junior's ability to communicate over
telephone lines, it is important to know about this half of the computer
revolution.

The connection of our computer with others can take many forms; here are
what I think are the three most important. First, there is talking "socially" to
other personal computers. This is usually done on a basis of friend-to-friend,
hobbyist-to-hobbyist, and it might, for example, involve sharing programs and
data or using an electronic bulletin board for messages and the spreading of
information.

Second, there is talking to other computers for work purposes. This might
involve working at home and communicating with your employer's computers
in what is called telecommuting-commuting to work by computer connection.
Or using the computer connection for work can involve tapping into remote
computer services; for example, an independent insurance agent might con
nect with a service that can quote insurance rates.

The third very important form of computer connection involves the use of
information services, such as THE SOURCE and CompuServe, which let us
connect into vast libraries that provide information ranging from ball scores and
stock quotations to airline schedules.

Whatever form your use of communications on the PCjr might take, it is
communications that fulfills and rounds out your computer's enormous
potential.

Communications is a very complicated specialty subject all by itself. Since
this book is about the workings of the IBM PCjr, we can't go into the details of
communications, other than very superficially. There are places you can turn to

192

14: Communications and the Modem

for more information when you need it. For technical and practical information
about communications, look to a technical book covering this subject, such as
Communications and Networking/or the IBM/PC by Jordan & Churchill (Brady).

A COMMUNICATIONS PRIMER

There are two main ways that computers can communicate, known as
asynchronous and synchronous. Asynchronous communications is much less
complicated and less expensive; naturally, it is also slower and less powerful.
Although synchronous communications can be used as an expensive addition
to the PC and XT, home computers normally use asynchronous communica
tions, and that is all that is available on our PCjr.

One of the main problems to be solved in communications is that no one
has very tight control over what is going on. Many pieces of equipment and
considerable distances can be involved in communications, and the chance that
something will go wrong or that data will be lost is considerable. For commu
nications to work, common rules and conventions have to be used.

The convention for asynchronous communications is known as RS-232 or,
more precisely, RS-232C. This is what our PCjr uses, whether we are working
through the built-in serial port or using the smart modem attachment. In
RS-232 communications, data are passed serially, which means bit-by-bit, one
bit at a time. (In contrast, the standard printer connection for the PCjr passes
eight bits in parallel, so that data move one byte at a time.) The transmission of
the data is asynchronous, meaning that the sender and receiver of data don't
expect bits to appear at certain precise times. Asynchronous transmission of
data allows for reasonable delays and also lets the communications circuitry be
sloppier about timing, which helps keep the cost of the equipment down.

The world of computer communications has a wealth of confusing terms
that are all used to refer to basically the same thing, and we ought to straighten
them out here . The sort of communications used by our PCjr and nearly all
other personal computers is variously called asynchronous, RS-232, and serial.
The computer's communications connection is usually called a port, so you
will frequently hear the terms serial port and RS-232 port. All these terms
refer, more or less, to the same thing. In this book, we'll mostly use the term
serial port.

There is one more potential source of confusion that we ought to clear up.
Although the main use of the serial port is for communication with other
computers, this port can be used for many purposes. Any piece of equipment
that follows the RS-232 conventions can be connected to the serial port. For
example, the serial port offers an inexpensive way to connect a printer to a
home computer, and many inexpensive computer printers are equipped to

193

EXPLORING THE IBM PCJR

make this connection. The IBM personal computers, however, usually use a
parallel interface to send data to a printer, because it is more efficient and better
suited to printing.

In this chapter we'll be talking mostly about the use of the serial port in
communications, but you should keep in mind that it can be used for many
other purposes. The ROM-BIOS services we'll cover in the last section of this
chapter apply to any use of the serial port. On the other hand, the smart modem
attachment, which we will cover in the next section, is used only for true
communications.

Although we can use communications on our PCjr very successfully with
out knowing anything technical about how it works, it is always better to know
more than it is to know less. And in this particular area, as you have already
seen, you are especially likely to run across perplexing technical terms. So, let's
go through a simple outline of some of the main ideas and terms used in
communications.

Communications Parameters

The RS-232 conventions allow for considerable variety in how data are
transmitted. The first parameter, or variable, is speed. The speed of a commu
nications line is expressed in baud, which is equivalent to one bit transmitted
each second.

Numerous baud rates are used, from 110, which is the speed of an old
teletype, to 9600, which is about the maximum that can be transmitted over a
telephone line. The most common rate for personal computers is 300 baud,
although 1200 baud is also used quite a bit on the more sophisticated models.
The PCjr's modem attachment normally works at 300 baud; it can also work at
110 baud. To help you determine how much data this represents, here is a
simple, practical rule of thumb: It takes about ten bits to transmit one charac
ter, including overhead (for example, the parity and start/stop bits we will
discuss shortly). So it is easy to translate baud rates roughly into characters per
second-300 baud, for example, is about 30 characters per second.

The amount of working data squeezed through any baud rate depends
upon other communications parameters. One parameter is the character or
byte size. Computers normally work with a size of eight bits per byte, though
the ASCII code used to represent text in computers actually uses only seven
bits per character. This is why we have 256 8-bit characters, even though there
are only 128 true ASCII codes. With RS-232, we can transmit and receive either
7-bit (ASCII) or 8-bit (extended ASCII) characters.

The next communications parameter that varies is parity. Parity checking is
not unique to communications-the memory used in the PC and XT (but not
our PCjr) includes a ninth parity bit for each 8-bit byte. To guard against lost or

194

14: Communications and the Modem

Start Bit Character Bit Parity Bit

1 7 0
1 7 0
1 7 1
1 7 1
1 8 0
1 8 0

Figure 14-1. Number of bits transmitted per character
including variable overhead

Stop Bit

1
2
1
2
1
2

Total

9
10
10
11
10
11

scrambled data in communications, our transmitted data can be checked with a
formula that produces parity bits. The bits are calculated when the data are
transmitted and checked when the data are received. This procedure allows
the computer to detect most errors. With RS-232, there are three parity
options: either no parity check or checking by one of two formulas known as
even and odd parity .

. The final communications parameter that we need to know about is stop
bits. As part of the asynchronous scheme of transmitting data, distinguishing
signals known as start and stop bits are needed to separate one character from
another and to allow the receiver to get ready for each character. Each character
has a single start bit before it and either one or two stop bits after it. The
number of stop bits, one or two, is one of the communications parameters.

Including all the parameter bits, then, there are 9, 10, or 11 bits transmitted
for each character (so 10 is a handy conversion factor when we want to translate
between baud and characters per second). The minimum is nine: a start bit,
seven character bits, and one stop bit. We get 10 or 11 bits, depending on the
various combinations of stop bits, parity, and character length shown in Figure
14-1. The size never reaches 12 bits, because we aren't allowed to use a parity
bit with 8-bit characters in communications.

When two pieces of computer equipment are communicating with one
another, they have to agree on the setting for all these parame,ters: baud rate,
character size, parity, and stop bits. On a few occasions -we· may have some
choice in the matter, but usually the parameters are set by what we are doing,
and we must conform to those standards. As an example of a common combina
tion, THE SOURCE, one of the major communications services, uses 300 or
1200 baud, 8-bit characters, no parity, and one stop bit. The most common
combination probably is 300 baud, 7-bit characters, even parity, and one stop
bit, but if you look far enough, you'll find every combination in use.

As I've warned you, communications is a very complex subject, and for a

195

EXPLORING THE IBM PCJR

deeper understanding you must now go elsewhere. With this very rudimentary
knowledge, we are not experts on communications, but we're at least prepared
to press on and look at the PCjr's smart modem.

THE SMART MODEM

One of the most interesting parts of the PCjr is the smart modem attach
ment. In order to communicate over a telephone line, a computer needs both a
communications port, like the PCjr's RS-232 serial port, and a modem. A
modem does the job of translating between the computer's signals and the
telephone's signals. This translation is known as modulation (from computer to
telephone) and demodulation (from telephone to computer). The basic work of
a modem then, is to modulate and demodulate.

Originally, chat was all a modem did-direct translation from one signal
format to another. But people using their computers for communications
quickly discovered that much more help was needed. To communicate effec
tively, a computer needed to be able to answer the telephone, dial other
numbers, and so forth. In several evolutionary steps, modems gained more and
more capabilities, until there appeared the sort of smart modem chat is avail
able for our PCjr.

Our Junior's modem is an integrated, smart, 103 modem attachment. le is
integrated because it contains all the components it needs and because it fits right
into the PCjr's cabinet. In the past, most modems for personal computers have
been external components chat added to the clutter of equipment and wiring. Our
integrated, internal modem is much more convenient. In addition, our modem is
smart, because it accepts and acts on commands from the computer and because it
can do everything chat is needed for the computer to use the telephone. Finally,
our modem is a 103, because it follows the specifications and features of Bell
Laboratories' Model 103 modem, an early modem chat set the standard for many of
the conventions used in computer communications.

The PCjr's smart modem has a number of very important features and
characteristics. le can work in full duplex, meaning data can pass in both
directions at once, or it can work in half duplex, meaning data can pass either
way, but only one way at a time. The smart modem can generate the multiple
tones needed for touch-tone dialing, and it can also produce the pulses needed
co mimic rotary-dialed telephones. To accommodate commercial long-distance
telephone services, such as Sprint and MCI, and to accommodate informa
tion services, such as THE SOURCE and CompuServe, the smart modem
can dial numbers many digits long, waiting for dial tones and providing service
code numbers as necessary. Another useful feature is its ability to place calls or
answer incoming calls, and do it either automatically or under manual control.

196

14: Communications and the Modem

This smart modem is not fast. While data traffic on telephone lines can
move at speeds of 1200, 4800, or 9600 baud, our modem's native speed is a
modest 300 baud-modest, but no slower than that used most commonly for
personal computers.

We talk to the smart modem in ordinary ASCII character codes, so it is
relatively easy for us to issue commands, and it is also easy for us to understand
any messages that the modem has for us. Normally we use a special commu
nications program to supervise the modem. One such program is included in
the BASIC cartridge as the TERM command; another is the popular PC-Talk
program. We can enter modem commands directly from the keyboard or we can
use our communications programs to send commands to the modem.

When we want to send a command to the modem, we begin with a special
character, CHR$(14), which can be keyed in simply as Ctrl-N. From the
keyboard, Ctrl-N is the easiest way to begin the command; from a BASIC
program, CHR$(14) is the easiest way to generate the special character. When
ever the modem is receiving data from us, it continually looks for this special
code. When it finds it, the modem expects commands to follow, and it inter
prets any data that follow this character as modem commands.

Modem commands are given in a line beginning with CHR$(14) and
ending with a carriage return, CHR$(13). Anything between those two charac
ters is taken by the modem as a set of commands. The command data are not
acted on immediately as they come in. Instead, the modem stores the data until
the command line is complete. After the carriage-return character, CHR$(13),
is encountered, the modem carries out the commands it has been given.

Several different commands, separated by commas, can be given in a single
command line; Ctrl-N is not needed for each command, since this character
really marks the beginning of a line of commands, and not the beginning of
individual commands.

Each modem command begins with a single letter of the alphabet. Al
though the commands have full, descriptive names, such as Answer, to help us
keep track of them, only the first letter of the command matters to the smart
modem, and Answer and Abracadabra would both be interpreted as the same
command. So each command begins with a letter that identifies it; if it needs
any parameters, they follow, separated by spaces. For example, to get the
modem to dial a number, we would give it a command line like:

<Ctrl-N> DI AL 213-399-3948 <Carriage Return>

The modem would dial that number, reaching my office in Venice, California.
The hyphens in the telephone number are for our convenience; the smart
modem is smart enough to ignore them.

As another example of how we might use modem commands, let's suppose
that we have our telephone line connected both to our PCjr's smart modem and

197

EXPLORING THE IBM PCJR

also to a speakerphone. If we're working at the computer and the telephone
rings, we can tell the modem to answer the phone and then switch to voice
mode (so the modem doesn't generate its screeching carrier tone). This com
mand would do the trick:

<Ctrl-N> PICKUP < Carriage Return>

After the modem answers the telephone and switches to voice mode, we
can use the speakerphone to talk to the caller. Using the modem like this to
answer the telephone is no big deal, but it does show what can be done. Using
the modem to dial, and redial, our calls is another handy way to use a modem
with our PCjr.

Let's now go over the main points of the various modem commands, giving
a brief description of what each can do. We won't go into full detail about how
these commands work, because communications is a very rich and complicated
subject and will be covered more fully in Mastering the I BM PCjr Home Computer.

Modem Commands
There are 20 different commands for the smart modem; they are listed

below in alphabetic order:

■ ANSWER-Answers the telephone when it rings.

■ BREAK-Sets the communications break time. It takes one numeric
parameter, which specifies the time in tenths of a second.

■ COUNT-Controls the number of times the telephone rings before
the modem will answer when it is in automatic answering mode. The reason for
not having the modem answer on the first ring is to give you a chance to answer
the telephone yourself if you want to.

■ DIAL-Dials telephone numbers. Dialing is the most complex of all
the smart modem's commands because of all the things that it must handle,
including two kinds of dialing (touch-tone and pulse), waiting for dial tones,
and so forth. All in all, the dialing features of this modem are quite impressive.

■ FORMAT-Controls the communications mode, or format, which will
vary with the computer at the other end of your connection. The format
command sets the parity, character size, and stop bits. The default mode is
number 3, which is even parity, 7-bit characters, and one stop bit. Figure 14-1 is
a table of the complete format options.

■ INITIALIZE-Resets the modem to its normal operating modes.

■ HANGUP-Disconnects the telephone.

198

14: Communications and the Modem

■ LONG-Sets the messages that the modem generates to long or short.
Long, or verbose, messages, such as CONNECT, are easily understandable by
people, while short, or terse, commands are single-digit codes, such as 1, which
are easier for programs to recognize.

■ MODEM-Forces the modem into active mode, ready to use.

■ NEW-Changes the code that marks the beginning of a command line.
The numeric parameter is the ASCII character code for the new code. The
default code, Ctrl-N, is ASCII 14.

■ ORIGINATE-Places the modem in originate mode, as opposed to
answer mode. These modes are the two fundamental ways that two computers
can operate when they are talking through a telephone line. Usually, one
expects to originate calls, and the other expects to answer calls.

■ PICKUP-Takes the telephone off the hook electronically and places it
in voice mode.

■ RETRY-Tells the modem to redial the last phone number without
having to repeat the details of the dialing.

■ SPEED-Sets the modem's operating speed. There are two speed
rates: 0 sets the modem to operate at 110 baud, which is terribly slow and not
used much for computers any more; 1 sets the speed to 300 baud, which is
much better, although experience will teach you that 300 baud is only barely
adequate for most computer use.

■ TRANSPARENT-Tells the modem that the next several bytes are to

be sent in transparent mode, which means that they are to be sent exactly as
they are. Transparent transmission is essential for sending binary data; that is,
any computer data that aren't coded into ASCII characters. If you want to send
a copy of a program in its COM or EXE format, you will need to use transparent
mode to do it, so that the bytes being sent aren't interpreted or modified in any
way. This command takes one numeric parameter, which specifies the number
of transparent bytes that follow.

■ VOICE-Switches to voice mode on the telephone line. This is the
opposite of the MODEM command.

■ WAIT-Makes the modem wait for a period of time.

■ XMIT-Makes the modem transmit data while in the voice mode.

■ ZTEST-Tells the modem to test the communications operation.

Bear in mind that all these commands are passed to the modem through the
RS-232 communications line, in the same way that other information is sent

199

EXPLORING THE IBM PCJR

through this data path. As we'll see in the next section, the ROM-BIOS ser
vices that support communications have nothing to do with the smart modem
-it needs no special support, and that is part of what makes it smart. Instead,
it is controlled by the high-level commands we, or our programs, give it.

ROM-BIOS COMMUNICATIONS SERVICES

As it does for every active part of the PCjr, the ROM-BIOS programs
provide supporting services for the RS-232 serial port. These services were
originally designed for the PC and were intended to support the many uses of a
serial port, including communications at rates beyond the capabilities of the
PCjr's special smart modem.

There are four ROM-BIOS services for the serial port, all invoked with
interrupt 20 (hex 14). As usual, the services are numbered from 0. Because the
other IBM personal computers can have several communications ports attached
to them (even though our PCjr can't), each of these services needs a number to
indicate which port is being used; for us, it's always port 0, known to DOS and
BASIC as COM(l), COMl, or AUX.

■ Service O is used to set the communications parameters of baud rate,
parity, stop bits, and character size. Take care not to confuse these communica
tions parameters with the modem's parameters, which are set by the FORMAT
and SPEED commands. We're talking about the same communications param
eters, but this service controls how the ROM-BIOS will send data out the serial
port, while the modem commands will set how the modem works. We're
talking about the same items, but controlled in two different places.

When this service is used to set the communications parameters, all four
parameters are combined into a single byte. The three high-order bits, bits 5
through 7, contain the code giving the baud rate; bits 3 and 4 specify the parity;
bit 2 indicates the number of stop bits; and finally, bits O and 1 indicate the
character size. These four parts can be combined into one byte, by this
formula :

COMM.PARMS = BAUD.CODE x 32 + PARITY x 8 +
STOP.BITS x 4 + CHAR.SIZE

Each of the four parameters is coded in its own way, as you can see in the
following figures. The baud rate is specified as shown in Figure 14-2; Code 111
is 4800 for the PCjr and not 9600 as it is for the PC. Parity is specified as shown
in Figure 14-3; stop bits are specified as shown in Figure 14-4; and character
size is specified as shown in Figure 14-5. Thus a byte with a value of hex 4E
(01001110) would indicate a baud rate of 300, odd parity, two stop bits, and
7-bit characters.

200

14: Communications and the Modem

Bits Numeric Baud Notes
(7,6,5) Value Rate

000 0 110 The slow rate for the PCjr's modem
001 1 150
010 2 300 The default faster rate for our modem
011 3 600
100 4 1200 Often used for computers; maximum PCjr rate if

asynchronous input is going on at the same time as
keyboard input

101 5 2400
110 6
111 7 4800 9600 for the PC/XT

Figure 14-2. Baud rate codes for bits 5 through 7

Bits Numeric
(4,3) Value

00 0
01 1
10 2
11 3

Figure 14-3. Parity codes/orbits 3 and4

Bit
2

0
1

Numeric
Value

0
1

Figure 14-4. Stop-bit codes for bit 2

Parity

None
Odd parity
None
Even parity

Stop Bits

1
2

■ Services 1 and 2 are used to receive and send a single character along the
communications line. A status code is returned in the AH register, indicating
the success or failure of the operation. If AH is 0, the operation was successful;

201

EXPLORING THE IBM PCJR

Bits Numeric
(1,0) Value

10 2
11 3

Character
Size

7 bits
8 bits

Figure 14-5. Character-size codes for bits O and 1

Register Bit Meaning Norton Comments

AH 7 Time out No result within allowed time
AH 6 Shift register empty
AH 5 Holding register empty
AH 4 Break detected
AH 3 Framing error That's sorting out characters
AH 2 Parity error
AH 1 Overrun error Data lost due to speed
AH 0 Data ready
AL 7 Line signal detected
AL 6 Ringing
AL 5 Data set (modem ready)
AL 4 Clear-to-send signal We may transmit data
AL 3 Delta receive line signal detect Got that?
AL 2 Trailing edge ring detector We're in deep water
AL 1 Delta data set ready Clearly this is technical
AL 0 Delta clear to send Communications is

complicated

Figure 14-6. Communications status codes

if AH is not 0, bits 1 through 4 and 7 will indicate the problem, as explained in
service 3.

■ Service 3 provides a communications status report, including the infor
mation provided by services 1 and 2, plus quite a bit of other information.
Register AX (or registers AH and AL, to look at it another way) is used to return
the status codes. Although you have to be something of a communications
expert to make use of these codes, they can be interesting to study. The status
of the communications line is given in the AH register, while the status of the
modem is given in the AL register. Figure 14-6 shows how each bit of the status
code is used.

202

14: Communications and the Modem

If anything was needed to convince you that communications is a compli
cated, specialty subject, these status codes should do the job. One main reason
why communications is so messy is because it is vulnerable and exposed.
Within the guts of a computer, the designers are fully in charge, and any
operating errors can usually be hidden from civilians like you and me. With
communications, it's a different game. Communications goes on in the outside
world, over cables and telephone lines that aren't under the control of our
computer's designers. Worse than that, telephone lines are more vulnerable to
all sorts of problems, from electrical surges to bird droppings, than the inside of
a computer. You'll rarely have a thunderstorm or bird droppings inside your
PCjr, but the same can't be said for the telephone system.

All this adds up to the fact that the messy details of communications can't
be swept under the covers as easily as details of computer design and operation,
and that explains why the communications status codes are so complicated.

203

CHAPTER

15
SUPER SOUND
Sound is an integral part of the

connection between our computers
and us, but it is one that is often

neglected. In this chapter, we'll look
at Junior's ability to make sounds:

EXPLORING THE IBM PCJR

old sounds-using the same techniques as the PC and XT -and new sounds
-using the Texas Instruments sound chip.

OLD SOUNDS

When the IBM PC was first announced, many observers noted that it did
not break much new ground in personal computing. The PC did, however,
combine the finest elements of microcomputers to achieve a breakthrough in
overall quality. That breakthrough is as true for sound as for anything else.

Since all the IBM personal computers can make sounds on a built-in
speaker in the same way, we'll first cover this shared skill. This common means
of making sounds is important to our understanding of the PCjr, both because it
is one of Junior's abilities and because it represents the only kind of sound that
our programs can use that will work on all IBM personal computer models.

Each of the IBM personal computers has a small speaker about two inches,
or five centimeters, in diameter. It isn't intended for accurate sound reproduc
tion, like the speakers in a hi-fi system; rather, this little speaker is meant to be
a simple, inexpensive way to produce simple sounds.

Sounds are waves of pressure in the air, and sound-recording equipment
imitates these waves by using varying electrical signals to represent the varying
pressure in the air. The task of a speaker is to translate these electrical signals
into sound waves-air-pressure waves. In a hi-fi the electrical signal, like the
sound itself, is made up of very complex variations in amplitude (strength or
loudness) and frequency (tone or pitch). Although this is the way sound is
produced by our hi-fi, it is not the way it is produced by our computer. Our
computer sends a simple and pure voltage to its speaker. When the voltage is
on, the speaker pulses in; when the voltage is off, the speaker pulses out. If we
turn the voltage on and off once, we get a single cycle of sound. If we repeat the
process of pulsing the speaker in and out 440 times a second, we get a pure
sound at the frequency of 440, which is the musical note A.

Unlike a hi-fi, our computer's speaker has no volume control; a constant
voltage level is fed to the speaker, so there is no intended variation in loudness;
it varies only because of the speaker's limitations. l'..ven high-quality speakers
are slightly inaccurate in their response to the electrical signals sent to them, so
it is understandable that the inexpensive speaker used in our PCjr varies quite a
bit in how loudly it sounds at different frequencies. This is a by-product of the
speaker design, and is not something we can control. In terms of the signal
given to the speaker, there is no variation in volume.

The simple program in Figure 15-1 demonstrates the speaker's volume at
different frequencies. To see the effect of this program on your PCjr, you must
be sure the speaker is active.

206

15: Su erSound

10 PRINT "Demonstrating the speaker's volume";
20 PRINT "at various frequencies"
30 PLAY "MF"
40 1 start with 37, the lowest frequency al lowed
50 FREQUENCY = 37
60 PR l HT l HT C FREQUENCY>
70 SOUND FREQUENCY, 5
80 FREQUENCY == FREQUENCY * 1 . 1
90 1 end with 32767, the highest frequency allowed

100 IF FREQUENCY < 32767 GOTO 60

Figure 15-1. A program to demonstrate the
speaker's volume at various frequencies

We can generate sounds on the speaker in two ways. First, we can write a
program to generate the on/off signals that pulse the speaker in and out. When
this method is used, the program controls the exact timing of each pulse and
can potentially produce complex sounds. Second, we can use the PCjr's
programmable timer to generate the on/off signals at a precise frequency. When
this method is used, a pure tone is generated and the computing power of the
PCjr isn't tied up in generating speaker pulses. We'll see how to use each of
these methods and how they can be combined, but first we need to pause for
some technical background.

How the Computer Produces Sound

The speaker is supervised by the programmable peripheral interface, or
PPI, chip that we mentioned in Chapter 2. As with most other parts of the PCjr,
the speaker is manipulated by controlling values sent to a specific port. The
port used for the speaker is port number 97 (hex 61). Whenever data are sent to,
or read from, this port, the PPI acts on the information by sending the
appropriate signals to the appropriate device. Only two of port 97's eight bits
are used by the speaker, the low-order bits numbered O and 1. The other bits for
this port are used for other purposes, including the cassette interface and the
keyboard, so it is important that we don't disturb them when we are working
with the speaker.

The lowest bit, bit 0, controls whether the timer signal is used to drive the
speaker. If we set this bit to 0, the speaker can be controlled fully by a program.
The second bit, bit 1, controls the pulsing of the speaker. If we successively set
this bit on and off, the speaker will be pulsed in and out and will produce a

207

EXPLORING THE IBM PCJR

100 ' demon5trate producing 5ound5
11 0 '
120 OLD.PORT= It-IP (97)
130 I

140 PULSE. IH • COLD.PORT\ 4) * 4
150 PULSE. OUT • PULSE. 1H + 2
160 OUT 97, PULSE. 1H
170 OUT 97, PULSE. OUT
180 GOTO 160

Figure 15-2. A program to demonstrate sound production

sound. When sounds are made like this, it is done in assembly language, so it
can be done as fast as necessary to produce the desired frequency. To illustrate,
we can do the same thing in BASIC, although our program won't be quick
enough to make a high-pitched sound. The program is shown in Figure 15-2.

If you run this program, you will find that it produces a low sound. Notice
that in line 120 we get the existing value of port 97. So that we can leave the
non-speaker bits undisturbed, in line 140, we calculate a value that is the same
as the existing port 97, but with the two speaker bits off. In line 150, we
calculate the same thing with bit 1 on. (Bit 1 has a binary value of 2, so we add
2.) Then in lines 160 and 170, we alternately send the two calculated values to
the speaker port to produce the sound.

A real assembly-language program to produce sounds would work like this,
with two things added: There would be a deliberate delay between each pulse
in and out, and there would be a count or something similar to end the program
when it had run long enough. If the program wanted to produce a varying
sound, it could vary the delay between pulses. With clever programming,
varying the delay could even produce chords.

A second method of producing sounds uses the programmable timer to

generate the desired frequency. This frequency can then be fed continuously
into the speaker, so that the computing power of the 8088 is free to go on with
other work while the sound continues. A program that uses the timer to

generate sounds is given in Figure 15-3.
As shown in Figure 15-3, before we can use the timer, we have to program it

to produce the right frequency. The timer starts with a base frequency of
1,193,180 cycles per second. To get the frequency we want, we give the timer a
count value called a divisor. The timer counts the cycles of its base frequency
until the count matches our divisor, then it produces a signal, and it starts

208

15: Super Sound

100 ' demonstrate use of timer to make sounds
110 'from Exploring the IBM PCjr Home Computer
120 'authored by Peter Norton, 1983
130 '
200 ' load the programmable timer
21 0 '
220 ' calculate our divisor
230 I

240 ' calculate the full divisor
250 DIVISOR= 1193180! / 440
260 ' calculate the low-order byte
270 LO.DIVISOR = DIVISOR MOD 256
280 ' calculate the high-order byte
290 HI .DIVISOR = DIVISOR / 256
300 I

310 ' send the values out
320 I

330 OUT 67, 182 'preparatory signal
340 OUT 66, LO.DIVISOR ' low-order byte
350 OUT 66, HI .DIVISOR ' high-order byte
360 OUT 97 , C I NP C 97 > \ 4 > * 4 + 3
370 I

400 ' switch the timer frequency on and off
410 I

420 OLD.PORT = INP C97)
430 I

440 FREQUENCY. ON = COLD. PORT \ 4 > * 4
450 FREQUENCY. OFF = FREQUENCY. ON + 3
460 OUT 97, FREQUENCY. ON
470 FOR I= 1 TO 128: NEXT I 'kill some time
480 OUT 97, FREQUENCY. OFF
490 FOR I • 1 TO 128 : NEXT I ' kill some time
500 GOTO 460

Figure 15-3. A program to produce sound using
the programmable timer

counting over again. So, to get the frequency of 440 cycles per second, the
program first calculates our divisor like this:

250 DIVISOR = 1 193180! / 440

Sending a divisor "program" to the programmable timer is oddly compli
cated. It's done in three steps. F irst, we prepare the timer to receive a divisor by
sending the value 182 (hex B6) out to port 67. (This value is not arbitrary: Each

209

EXPLORING THE IBM PCJR

of the bits in this byte has a special meaning to the timer and when the
combination of bits necessary to prepare it is set, the value of the byte is 182.)
Then we send the divisor itself to port 66, but we send it in two parts: the low
order byte of the divisor (calculated in line 270), then the high-order byte
(calculated in line 290). Sending these two parts of the divisor completes the
three steps ofloading the timer, and the timer begins generating the frequency
we asked for. Here is how we would do this in BASIC:

240 'calculate the full divi5or
250 DIVISOR= 1193180! / 440
260 ' calculate the low-order byte
270 LO.DIVISOR= DIVISOR MOD 256
280 ' calculate the high-order byte
290 HI .DIVISOR = DIVISOR / 256
300 '
310 ' 5end the value5 out
320 '
330 OUT 67, 182
340 OUT 66, LO.DIVISOR
350 OUT 66, HI .DIVISOR

' preparatory 5ignal
' low-order byte
' high-order byte

Once the timer is loaded and a frequency is generated, we can turn the
sound on and off by setting the speaker bits. To make use of the timer
frequency, we have to set both of the speaker bits on. While line 150 in our
earlier program (Figure 15-2) adds 2 to set just bit 1 on, we now need to add 3
to set both bits on (because the binary values of bit O and bit 1 are 1 and 2,
respectively).

360 OUT 97, CINP C97) \ 4> * 4 + 3

For a trick example, we mimic lines 100 through 180 of Figure 15-2, but this
time, instead of pulsing the speaker with each OUT statement, we'll be
activating and deactivating the use of the timer frequency. These new program
lines, combined with lines 240 through 350 above, will do the trick:

400 ' 5Wi tch the timer frequency on and off
41 0 '
420 OLD.PORT= INP C97)
430 '
44 0 FREQUENCY. ON = COLD PORT \ 4 > * 4
450 FREQUENCY. OFF = FREQUENCY. ON + 3
460 OUT 97, FREQUENCY. ON
470 FDR I = 1 TO 128 : NEXT I ' kill 5ome time
480 OUT 97 , FREQUENCY. OFF
490 FDR I = 1 TO 128 : NEXT I ' k i 11 5ome time
500 GOTO 460

210

15: Super Sound

That pretty much covers the sound capabilities that are common to all the
IBM personal computers. Now we'll move on to the PCjr's very special, new
sound abilities.

NEW SOUNDS

Junior is much more oriented toward games and entertainment than the
other IBM personal computer models. This shift of focus led to the develop
ment of the PCjr's two most dramatic new features-its extended graphics
modes, which we covered in Chapter 13, and its new sound capabilities.

For business, financial, and word-processing use, a computer doesn't need
a lot in the way of sound, and the PC's original sound abilities have provided
much more than most programs have tried to use. For arcade-style games,
though, a lot more sound is needed. Enter the Texas Instruments SN76496A
sound generator chip, our PCjr's sound superstar.

The TI sound chip adds three main new capabilities to the PCjr's ability to
produce sound. First, it has attenuation, or volume control, so it can produce
sounds at 15 distinct levels. Second, it has three voices, meaning that it can
produce three different tones, each with its own, distinct attenuation. And
third, it has an additional noise voice that can be used to produce sounds like
jets and bombs. Let's start with the attenuation, or volume control.

Attenuation

Each voice on the TI sound chip has its own attenuation, controlled by four
bits referred to as AO through A3. Each bit controls a separate attenuation level,
which is measured in decibels, or dB. When each bit is set on, the sound is
attenuated (that is, reduced) by the specific amounts shown in Figure 15-4.

Bit
Attenuation

(in dB)

AO 2
Al 4
AZ 7
A3 15.5

Figure 15- 4. Reduction of volume produced by setting on
bits AO through A3

211

EXPLORING THE IBM PCJR

The four separate levels can be combined in any way to produce 15 distinct
volumes. When all four bits are set on, the sound is turned completely off,
rather than being attenuated a total of 28.5 dB, as you might think from Figure
15-4. When all four bits are off, the sound is at its full volume. You will notice
that the attenuation is roughly doubled with each successive bit, giving us a
fairly smooth spectrum of volume levels.

Understanding completely the arithmetic of the sound chip's attenuation
involves some messy mathematics, more than we can explain here. For those
technically inclined, we'll just briefly note that sound energy is measured in a
logarithmic scale, and each decibel is one-tenth of a unit in the logarithmic
measure. Since we're referring to attenuation on our TI sound chip, a higher
dB number means a softer sound. But, when BASIC refers to volume levels,
it reverses the scale to something more natural for us: A higher volume num
ber means a louder sound (but a lower attenuation number inside the TI
sound chip).

Because of the complications in how the attenuation levels are set, it is
simpler for us to choose the sound levels that our programs will use by
experimentation than by trying to calculate what they ought to be.

Tone

The tone of each voice, sometimes called its pitch or frequency, is con
trolled by a 10-bit binary number, which our programs provide to the sound
chip. The sound chip uses this number, just as the programmable timer we
discussed does, as a counting base, in effect dividing our controlling number
into the clock frequency. In detail what the TI chip does is this: It starts with
the clock frequency of 1,193,180 cycles per second, and reduces it by a factor of
16, to get a frequency of about 74,576; this frequency is counted against our 10-
bit controlling count, and each time it matches, the TI chip generates an on or
off signal, alternately. Each pair of on and off signals gives us one sound cycle,
one count in the sound frequency. That's the mechanics of it, but we can
simplify the arithmetic for our own use. If we divide 37,287 by the 10-bit
controlling number, we get the frequency that it generates, and vice versa.
These formulas show the relationship:

FREQUENCY = 37287 / CONTROLLING NUMBER
CONTROLLING NUMBER = 37287 / FREQUENCY

As a 10-bit number, the controlling number can range from 1, which gives a
frequency of 37,287, well above ordinary hearing, to 1,023, which gives a
frequency of 36.4. This range (36.4 to 37,287) is almost the same as the range
allowed in BASIC (38 to 32,767) before the sound chip was added to the PCjr.

212

15: Su er Sound

NFO NFl Noise Frequency

0 0 1,193,180 / 512 = 2330
0 1 1,193,180 / 1024 = 1165
1 0 1,193,180/ 2048 = 583
1 1 Borrowed from voice 3

Figure 15-5. Noise-generator frequencies produced by
NFO and NFJ bit combinations

Besides the three pure voices, the TI chip also has a noise-generating
voice. The noise voice can work two ways and is controlled by a bit known as
the FB bit. When FB is 0, a periodic, or cyclic, noise is generated; when FB is
1, a continuous "white noise" is produced.

Two bits, known as NFO and NFl, control the frequency at which the noise
generator works; this frequency is equivalent to its pitch. Three of the four
possible combinations of NFO and NFl set an independent noise frequency
based on the timer; the fourth combination borrows the frequency from the
third of the three pure voices. The NFO and NFl bit settings are shown in
Figure 15-5.

When control information is loaded into the sound chip, it is preceded by three
bits, known as RO through R2, which identify the parameter being set. The code
values used are shown in Figure 15-6. As with almost everything else, programs
control these parameters through ports.

I RO RI R2 Parameter

0 0 0 Voice 1 frequency control number (10 bits)
0 0 1 Voice 1 attenuation (4 bits)
0 1 0 Voice 2 frequency control number (10 bits)
0 1 1 Voice 2 attenuation (4 bits)
1 0 0 Voice 3 frequency control number (10 bits)
1 0 1 Voice 3 attenuation (4 bits)
1 1 0 Noise voice control (4 bits, 3 used)
1 1 1 Noise voice attenuation (4 bits)

Figure 15-6. Parameter identification bits

213

EXPLORING THE IBM PCJR

One of the unusual things about the use of sound on the IBM personal
computers is that there is no support for it in the ROM-BIOS. For all the other
basic operations that our programs might request, there are service routines in
the BIOS to help with the work and provide conventional ways of getting
things done. But for sound, there is no special ROM-BIOS support. Although
there is no great need for supporting routines, since it is relatively easy for
programs to control sounds directly, it is still surprising that this one area is left
completely alone by the ROM-BIOS.

SOUND TRICKS USED IN BASIC

Before we finish up on sound, there is one interesting trick that BASIC
performs, which you might want to know about.

In the fundamental setup of the IBM personal computers, the same timer
that can be programmed to produce a sound frequency is also programmed to

produce a clock interrupt once for each 65,536 main clock cycles, or roughly
18. 2 times each second. This clock interrupt is called a clock tick in the PCjr
manuals. The ROM-BIOS keeps track of clock ticks so it can calculate the
current time and date; DOS and BASIC also make use of the clock tick for
timekeeping.

On each clock tick, the ROM-BIOS increments its clock count and also
generates a special clock-tick interrupt for use by programs that need to keep
track of the passage of time. One natural use for this clock-tick interrupt is
BASIC's music-in-the-background. With music-in-the-background, BASIC is
doing two things at once: It is carrying out our program, and it is also playing
whatever tune is required. The trick to doing this can be used by any assembly
language program.

So that you can understand how the trick works, we'll describe the most
straightforward way for BASIC to use the clock-tick interrupt for music-in-the
background.

When we give BASIC some music to play in the background, BASIC
translates our music string into a form in which it can be used. This form is
probably a simple table of frequencies, with the duration of each note recorded
as a number of clock ticks. The first note is started, and then BASIC sets up an
interrupt handler to be activated by the clock-tick interrupt. As each clock-tick
interrupt occurs, the interrupt handler subtracts one from the count of the
current note. If the count has reached zero, the interrupt handler starts the
next note going. Then, whether a new note has been started or an old note
continued, the interrupt handler returns control of the computer to the BASIC
interpreter, which is carrying out the rest of our BASIC program.

The scheme just described is the normal way to do such things, but BASIC

214

JS: Super Sound

adds a special twist to the process. In order to be able to play music more pre
cisely, BASIC needs to receive clock-tick interrupts faster than 18.2 times a
second. So BASIC changes the clock programming to produce ticks four times
as fast as normal. But, since the ROM-BIOS expects to keep track of time with
the ordinary clock rate, BASIC filters out three out of four ticks, so that the
ROM-BIOS experiences clock interrupts at the normal rate.

In the usual mode of operation, the original clock interrupt is handled by
the ROM-BIOS which, in turn, hands clock-tick interrupts to any program that
wants them. BASIC turns the process around. Since the clock interrupt is
occurring four times as often as usual, BASIC sets the interrupt vectors so that
the clock interrupt comes to BASIC first. Then, on one of every four clock
interrupts, BASIC passes control to the ROM-BIOS, just as if the BIOS had
received the interrupt in the first place. The ROM-BIOS does its job of adding
one to the count of clock ticks, and then generates the clock-tick interrupt.
Programs like BASIC are supposed to work in response to the clock-tick in
terrupt, but BASIC is clever enough to reverse the process, with no harm done.

In case you are confused by any of this, let's diagram it for more clarity.
First, here is the normal way things happen:

1. The clock runs at 1,193,180 cycles each second.

2. Based on a controlling count, the clock generates a clock interrupt,
interrupt number 8, 18.2 times a second.

3. The ROM-BIOS receives the clock interrupt (number 8), increments
its tick count, and then generates a clock-tick interrupt, interrupt number 28,
hex lC.

4a. If no program has asked to use the clock-tick interrupt (by setting an
interrupt vector), control returns to the ROM-BIOS, which returns control to
whatever was happening before the original interrupt 8.

4b. If a program has set the clock-tick interrupt vector, then control passes
to that part of the program, which will do whatever needs to be done. If BASIC
operated this way (as described. above), BASIC would check to see if a note had
played long enough. When the program's tick subroutine is done, control is
returned just as described in item 4a.

Now, that is what normally happens. But when BASIC is running music-in
the-background, here is how it goes:

1. The clock still runs at 1,193,180 cycles each second. No change.

2. Based on a controlling count that is four times as fast, the clock
generates a clock interrupt, interrupt number 8, 72.8 times a second.

215

EXPLORING THE IBM PCJR

3a. BASIC receives control of the clock interrupt, simply because BASIC
has reset the interrupt vector for interrupt 8. BASIC now does its own work
(checking if a note is finished, etc.) and then, for every fourth clock cycle,
passes control to the ROM-BIOS just as if the interrupt number 8 had led
directly there.

3b. The ROM-BIOS receives control as if from interrupt 8, increments its
tick count, and then generates a clock-tick interrupt, interrupt number 28 (hex
lC). The ROM-BIOS has no way of knowing chat BASIC is running, and chat
there is no need for a clock-tick interrupt 28.

4. There is no special interrupt vector set for the clock-tick interrupt, so
control immediately returns to the ROM-BIOS, which returns control to
whatever was happening before the original interrupt 8-which is the regular
part of the BASIC program.

All this fancy footwork allows BASIC to operate with a faster clock so that it
can play music for more accurate lengths of time. This is a trick that we are very
unlikely to use ourselves, but learning about it gives us more insight into what

· can be done with sophisticated programming for the IBM personal computers.

216

CHAPTER

16
POUNDING ON THE

KEYBOARD
One of the most interesting and

ingenious parts of the IBM personal
computers is the keyboard. The key
board of our PCjr is more ingenious
still, so for this chapter we have an

especially fascinating subject.

JJ I:} [___ =11]

EXPLORING THE IBM PCJR

There is a certain amount of irony to the fascination of the keyboard,
though. For all the other parts of the PCjr there are two strong reasons for
learning how they work. First, sheer curiosity-the desire to understand these
little marvels. Second, to gain practical understanding that can be put to use in
our programs. The first reason is just as true for the keyboard as it is for the
other parts of the PCjr. However, the second reason isn't. It turns out that it is
very unwise for our programs to snuggle up to the keyboard, which effectively
puts a damper on the uses to which we might put our knowledge.

To understand what I am talking about, we need to make a short digression
into a realm that is very interesting all by itself-the subject of the intimacy of
software and hardware, and where our own programs can decently fit.

INTIMACY, GOOD AND BAD

Our PCjr, like most computers, requires very smart, very intimate software
in order to work well. In a sense, the hardware is only half the design of a
computer; the intimate software is the other half of the design. Ordinary pro
grams, like the BASIC programs that you or I might write, aren't based on the
detailed inner workings of the computer; these programs aren't intimate with
the computer.

The ROM-BIOS programs are intimate. They reflect a very deep under
standing of the inner workings of the computer-and the computer depends
upon them. Some things in the workings of a computer are best handled by
physical circuitry; others are best handled by programs. The role of ROM
BIOS programs is twofold: partly to handle the work that is best done with
programming, and partly to act as a translator and go-between, uniting our own
programs and the computer's hardware.

Thanks to IBM's policy of an open system design, we know most of the
details of how the PCjr's circuitry works, and we have nearly complete listings
of the ROM-BIOS programs, as well. So if we want or need to, we can make
our own programs work as closely with the hardware as the ROM-BIOS does.
Whether or not we program this way depends on a number of things.

First, do we really need to penetrate through the ROM-BIOS and get right
down to the hardware? For some tasks, we might need to, and for others we
might not. For example, many successful IBM personal computer program
mers-myself included-have found that it really is necessary to bypass the
ROM-BIOS and get directly to the hardware in order to manipulate the display
screen efficiently. For other parts of the equipment, there is less practical
reason to bypass the ROM-BIOS. The diskette BIOS programs, for example,
do not need to be bypassed, except when we are working with copy-protected
diskettes. Likewise, few programmers have found any real need to bypass the

218

16: Pounding on the Keyboard

ROM-BIOS programs for the keyboard, since they usually provide everything
we need.

The other factor that decides whether many programs will need to work
intimately with the hardware is safety. It can be very risky for programs to
bypass the ROM-BIOS since, in effect, going around the BIOS is subverting
half of the design of the computer. Two main factors decide how unsafe it might
be to bypass the ROM-BIOS and work directly with the hardware. First, if
our programs work intimately with the hardware, will they interfere with the
BIOS's work with the hardware? Second, how likely is it that the hardware will
be changed, and thus make our programs obsolete?

As it turns out, working directly with the display hardware is relatively safe
in both regards. For the keyboard, however, it was evident from the first
introduction of the IBM PC that having our programs work directly with the
keyboard could severely interfere with the workings of the ROM-BIOS.
Moreover, when the PCjr was announced with a keyboard that operated in a
thoroughly different way than the PC's keyboard, it became clear that any
program that was tied to the PC's keyboard hardware was likely not to work on
the PCjr and vice versa.

The PCjr keyboard differs significantly from the keyboard common to the
PC and XT, yet both keyboards share a great deal of the same design philoso
phy; they also appear functionally the same to our programs. In the next
section, we'll look at what is common to both IBM personal computer key
boards, before we look at the differences.

COMMON GROUND

The common philosophy and the common operation of the IBM personal
computer keyboards divide neatly into three parts: What the keyboard knows;
what the ROM-BIOS acts on; and what our programs experience.

What the Keyboard Knows

The IBM personal computer keyboards do not, repeat not, have any sense
of the meaning of the keys we press. From the point of view of the keyboard,
each key has an identifying number, known as its scan code. The PC and XT
keyboards have 83 keys, with scan codes numbered from 1 to 83; our PCjr has
only 62 keys, with scan codes from 1 to 62. The keyboard knows when we press
each key and also when we release each key. To the keyboard, the pressing and
releasing of each key are separate events, each experienced and acted on inde
pendently of any other keyboard action.

When a key is pressed, the scan code uses the key's ordinary code-for

219

EXPLORING THE IBM PCJR

example, 30 for the A key. When the key is released, the same scan-code byte
also has bit 7 set on, which is equivalent to adding 128 (hex 80) to the scan code
of the key that was pressed.

Let's suppose that we type a lowercase a. The keyboard experiences a press
of scan code 30, then a release of scan code 158. Suppose we want an uppercase
A. We press the shift key and then the A key; then we release them. The
keyboard experiences a press of scan code 42 (one of the shift keys) and then a
press of scan code 30 (a), followed by the release of scan codes 170 and 158.

As we type, the keyboard has no knowledge of the meaning of each key; it
certainly does not keep track of the shift key to change the meaning of the A
key. When a key is pressed or released, the keyboard signals the event to the
rest of the computer by generating an interrupt and then transfers the scan code
of the key that has been pressed or released.

What the ROM-BIOS Acts On

The ROM-BIOS is alerted to each key action by the interrupt that the
keyboard generates. Acting on the interrupt, the ROM-BIOS gets the scan
code from the keyboard, and then figures out what the key action means.

The ROM-BIOS keeps track of everything that is needed to understand
each key action. For example, if a shift key has been pressed, but not yet
released, then the ROM-BIOS notes that we are in the shift state-the state
that distinguishes A from a.

This business of keeping track of the shift state is more complicated than
you might at first think. For example, the Caps-Lock key reverses the meaning
of the shift key for the alphabet part of the keyboard, but not for the rest of
the keys. Then there are the special shift states: Ctr! and Alt (meaning control
and alternative).

By taking everything into account-the current key and the effect of prior
keys, such as the shift keys-the ROM-BIOS programs translate each key
action into its meaning. If a key action means a keyboard character, such as the
letter A, the ROM-BIOS generates that character code and stores it in a buffer,
ready for a program to read. According to the ground rules for IBM personal
computers, programs are supposed to ask for keyboard characters when they
want them, rather than the ROM-BIOS interrupting them when the characters
are ready. Since the computer does not control when we can pound on the
keyboard and when we can't, a place is needed to store the keyboard characters
that the ROM-BIOS generates as a result of our pounding. For this purpose,
the ROM-BIOS maintains a buffer with room for 15 characters. If, as often
happens, the program that is running stops what it's doing to wait for us to type
something in, the keyboard buffer will be kept empty-the program will read
information out of the buffer as quickly as we type it in. But if the program isn't

220

16: Pounding on the Keyboard

reading keyboard information, or if it is acting too slowly on the information,
the buffer can start to fill up. When the buffer is full, the ROM-BIOS has no
choice but to discard any new, incoming data. To alert us to this problem, the
ROM-BIOS beeps the speaker in complaint.

In addition to generating keyboard characters from scan codes, the ROM
BIOS must also look for three special key combinations. One is the Ctrl-Alt
Del combination, which is used to request that the computer reboot, or reload
its control program. Another is the pause combination, which is accomplished
by Alt-Num Lock on the PC keyboard and Fn-Q on the PCjr keyboard. When
the ROM-BIOS comes across the pause combination, it holds control of the
computer, except for interrupt handling, until another key is pressed. In
effect, the keyboard service routines make the computer pause or halt. In
actuality, the computer keeps running at full speed, but it just executes the
ROM-BIOS control program, waiting for a keystroke, instead of executing any
of our own programs.

The third of the special keys that the ROM-BIOS looks out for is the print
screen combination, Fn-P on the PCjr, shift-PrtSc on the PC and XT. When
these keys are encountered, the ROM-BIOS keyboard routines act on them,
running the print-screen interrupt handler (which we went over in detail in
Chapter 7).

Everything that we have said so far about what the ROM-BIOS acts on is
equally true for the PCjr and the PC and XT models, even though they have
different keyboards. Junior's different keyboard adds some extra twists to the
ROM-BIOS, which we'll come to shortly.

What Our Programs Experience

As a result of our pounding on the keyboard, our programs experience a
series of characters, each coded into two bytes. Two bytes are needed because
there are more keyboard-character possibilities than will fit into one byte. First,
there are the ordinary ASCII characters, coded CHR$(0) through CHR$(127),
and the extended ASCII characters, coded CHR$(128) through CHR$(255).
Then there are the characters needed to indicate all the special keyboard keys,
such as the cursor arrow keys and the function keys.

The keys we press are reported to our programs in an interesting way. As we
mentioned, two bytes are used to report each character; we will call these two
the main byte and the auxiliary byte.

When the main byte is not 0, then the BIOS is reporting an ASCII
character, CHR$(1) through CHR$(255), and not a special key, like the cursor
keys. The ASCII character code is in the main byte, while the auxiliary byte
contains the scan-code for the key that was pressed.

A few ASCII characters can be keyed in more than one way, and a program

221

Auxiliary Byte

3
15
16 through 25
30 through 38
44 through 50
59 through 68
71
72
73
75
77
79
80
81
82
83
84 through 93
94 through 103

104 through 113
114
115
116
117
118
119
120 through 131
132

EXPLORING THE IBM PCJR

Null character
Enter

Key Combinations

Alt-Q, W, E, R, T, Y, U, I, 0, P
Alt-A, S, D, F, G, H, J, K, L
Alt-Z, X, C, V, B, N, M
Fn-1, 2, 3, 4, 5, 6, 7, 8, 9, 0 (functions 1 through 10)
Home
Up arrow
PgUp
Left arrow
Right arrow
End
Down arrow
PgDn
Ins (insert)
Del (delete)
Fll through F20 (shift-Fl through Fl0)
Ctrl-Fl through FlO
Alt-Fl through FlO
Fn-E or Ctrl-Fn-P
Ctrl-Left arrow
Ctrl-Right arrow
Ctrl-End
Ctrl-PgDn
Ctrl-Home
Alt-1, 2, 3, 4, 5, 6, 7, 8, 9, 0 - , = (keys 2 through 13)
Ctrl-PgUp

Figure 16-1. Auxiliary-byte value of special key combinations

can look at the auxiliary byte to distinguish which way was used. Normally, this
isn't a good thing for a program to do, but if any of our programs need to know
exactly how a character was keyed in, this is the way they can find out. One of
the 256 ASCII codes, CHR$(0) can't be keyed in, for the simple reason that 0
in the main byte is used to signal a special key, rather than an ASCII character.
You might think that it could be a problem that we can key in every character
but one; however, in practice, that's no problem at all.

So the main byte can also contain CHR$(0) to report that a special key was
used. In this case, the auxiliary byte contains a value that indicates which
special key was pressed. The special keys include the function keys, the
various shifts of the function keys, the cursor arrows, the keys such as Home
and End, the use of Ctr! with some keys like Home, and the use of Alt with the

222

16: Pounding on the Keyboard

alphabet keys. Figure 16-1 gives the auxiliary-byte value that represents each of
these special keys.

There are some things worth noting about all these keyboard characters.
One is that each key potentially has four meanings (even more on the PCjr
keyboard, as we'll see in the next section). The four meanings come from the
key itself, and then from the key used with the ordinary shift or with the special
Ctrl and Alt shifts as shown in Figure 16-2. Not all combinations of keys and
shifts have a meaning, though, and the ROM-BIOS just ignores meaningless
combinations, treating them as if we hadn't pressed any keys at all.

Ordinary Uppercase Ctrl Alt
Key Shift Shift Shift

a A CHR$(1)
b B CHR$(2)
C C CHR$(3)
d D CHR$(4)
e E CHR$(5)
f F CHR$(6)
g G CHR$(7)
h H CHR$(8)

I CHR$(9)
J J CHR$(10)
k K CHR$(11)
I L CHR$(12)

m M CHR$(13)
n N CHR$(14)
0 0 CHR$(15)
p p CHR$(16)
q Q CHR$(17)
r R CHR$(18)
s s CHR$(19)
t T CHR$(20)
u u CHR$(21)
V V CHR$(22)
w w CHR$(23)
X X CHR$(24)
y y CHR$(25)
z z CHR$(26)
1
2 @

(conrinued)

Figure 16-2. The shift states of each key

223

EXPLORING THE IBM PCJR

Ordinary Uppercase Ctrl Alt
Key Shift Shift Shift

3 #
4 $
5 %
6
7 & CHR$(30)
8 •
9 (
0)

Enter Enter CHR$(10)
Space Space Space Space
Esc Esc Esc
Tab Reverse tab

CHR$(31)
= +

Backspace Backspace CHR$(127)
[{ CHR$(27) Vertical bar
] } CHR$(29) Tilde

Reverse quote
<
> * (2nd asterisk)

I ? Reverse slash
Ins 0
Del
Up arrow 8
Left arrow 4
Right arrow 6
Downarrow 2

Figure 16-2. The shift states of each key (continued)

For the alphabet keys, all four shift combinations work. Upper- and
lowercase shifts work, of course, producing characters in the ordinary ASCII
character set. The Alt-letter combinations all produce some of the special char
acters that are reported in the auxiliary byte. The Ctrl-letter combinations are
particularly interesting. They all produce ASCII characters, in alphabetical order
from CHR$(1), produced by Ctrl-A, through CHR$(26), produced by Ctrl-Z.

The codes for the complete set of characters and special keys are generated
by the ROM-BIOS, but different programming languages vary in the way they
handle the codes. BASIC, for example, takes a mixed approach to the special
keys. When we use ordinary BASIC input statements, BASIC hands over the

224

16: Pounding on the Keyboard

regular ASCII characters and filters out any special keys. Some of the special
keys can be acted on specially, with the ON KEY statement. However, we can
use the BASIC INKEY$ function to get directly to the ROM-BIOS coding for
keyboard characters. If the INKEY$ function returns a string one byte long, it
is reporting an ordinary or extended ASCII keyboard character. If INKEY$
returns a 2-byte string, the first byte in the string is the ROM-BI OS's main byte
and will always by CHR$(0), and the second byte is the auxiliary byte and will
indicate which special key was pressed.

So far, we have seen the philosophy and operating details that are common
to all the IBM personal computer keyboards. Now, it is time to look at their
differences.

OLD AND NEW KEYBOARDS

To start with, two dramatic differences set the PCjr keyboard apart from
the keyboard used by the PC and XT. First, there is a different number of
keys-62, instead of 83. Second, the keyboard can "talk" to the computer by
infrared light as well as by a wired connection. Let's start with the infrared
connection.

New and Old Connections

The infrared connection works on the same principle used by remote
controls for television sets. The keyboard contains a pair of transmitters, which
generate infrared light with a coded message in it. The computer contains an
infrared receiver, which can detect the light and decode the message. The
message buried in the infrared light contains the interrupt signalling a key
action and the scan code of the key.

Infrared light is used both for the PCjr's keyboard and TV remote control
lers because it has just the right combination of properties. It is invisible to our
eyes; its transmitters and receivers can be built relatively cheaply; and finally, it
bounces very well. One of the problems with remote controls, including our
keyboard, is getting a reliable signal from the sender to the receiver. Infrared
light is relatively good at bouncing off walls, ceilings, and furniture, so there
doesn't necessarily have to be a direct line-of-sight between sender and
receiver. Of course, it is still quite easy to disrupt the signal passing through the
air, but infrared signals are more reliable than other methods.

To deal with the possibility of interference in the infrared signal, the PCjr's
ROM-BIOS contains some special programming that isn't needed by the PC's
wired keyboard. This special programming checks, as much as possible, for

225

EXPLORING THE IBM PCJR

lost or scrambled data-and if it detects any problem, it lets out a special beep
to alert us.

Because of the potential problems with an infrared signal, the PCjr's
keyboard can also be connected to Junior's system unit with a cable. When the
cable is attached, the keyboard's infrared transmitter is disconnected, and the
electrical signals in the wires replace the infrared light. The wired connection
has several advantages: It can't be disrupted by passers-by or by another PCjr's
keyboard.

Old and New Keys

In the effort to hold down the cost of the PCjr, the number of keys on the
keyboard was reduced. While the original PC keyboard has 83 keys, the PCjr's
keyboard has only 62 keys. Figures 16-3 and 16-4 show the two keyboard
layouts, with the keys that exactly match highlighted.

One of the most important design requirements for the PCjr was functional
compatibility with the PC, so that most PC programs could be used on our
PCjr. This means that every usable key and key combination on the PC has to
exist on the PCjr, or the PCjr has to have a key combination that will produce an
equivalent function. To make this possible, a new key has been added to
Junior, the Fn (function) key.

Figure 16-3. The PCjr keyboard: one unique key

226

16: Pounding on the Keyboard

The PCjr's keyboard has 21 fewer keys than the PC's, but 22 PC keys are
actually missing. The new Fn key adds one to the PCjr's key count:

(83 PC keys) - (22 missing) + (1 added) = (62 PCjr keys)

The 22 extra keys on the PC keyboard are: 10 dedicated function keys, labeled
Fl through FlO; ~nother 10 keys on a numeric keypad (also containing a few
special keys, like Home and End); and finally, two keys with special, rarely
used characters (vertical bar and backslash on one, reverse quote and tilde on
the other).

The PCjr's Alt shift key and special Fn key are used in combination with
other keys to serve the same purpose as most of the missing keys. For the Fl to
FlO function keys, Fn is pressed, followed by one of the digit keys. (The zero
key, naturally, serves for FlO.) Twelve other Fn combinations, used to replace
parts of missing keys, are shown in Figure 16-5.

Five special Alt combinations give us the four rarely used, special charac
ters from the two rarely used character keys, plus the second asterisk that
appears with PrtSc on the PC keyboard. These combinations are shown in
Figure 16-6.

Three of these special key combinations are strange, because they mimic
duplicate keys on the PC keyboard. The PC keyboard has two asterisks, two

Figure 16-4. The PC keyboard: 22 unique keys

227

EXPLORING THE IBM PCJR

Fn Plus

B
Q
E
p
s
N
Up
Down
Left
Right

=

Figure 16-5. Fn key COf!lbinations

Replaces ---
Break (Ctrl-Break on PCs)
Pause (Ctrl-Num Lock on PCs)
Echo (Ctrl-PrtSc on PCs)
Shift-PrtSc
Scroll Lock
Num Lock
Home
End
Page Up
Page Down
- on the numeric keypad of the PC
+ on the numeric keypad of the PC

that replace missing PC keys

Alt Plus

I

[
]

Figure 16-6. Alt key combinations

Replaces

\ (Reverse slash)
' (Reverse quote)

(Vertical bar)
"' (Tilde)
• (The other asterisk)

that replace missing PC keys

minus signs, and two plus signs, all of which are produced on the PCjr with the
combinations you have just seen. This duplication would not seem strange,
since the PCjr is intended co mimic the PC exactly, but for the fact that 11 other
duplicates aren't mimicked. The PC keyboard has 10 duplicate digits and a
duplicate period that the PCjr keyboard doesn't reproduce. This is one area in
which PCjr has a very minor functional difference from its bigger brothers.

In the last section, we mentioned three special keys or key combinations
that the BIOS looks for: print-screen, pause, and reboot. The PCjr has these
and several more special combinations.

228

16: Pounding on the Keyboard

■ A/t-Ctr/-Caps Lock is used to tell the ROM-BIOS to click when a key is
pressed. While the PC keyboard makes a nice, mechanical click when the keys
are pressed, the PCjr's keyboard does not click. If a silent keyboard bothers
you, you should know that the ROM-BIOS for the PCjr is capable of making a
clicking sound through the speaker when a key is pressed and that this is the
key combination that toggles .the clicking on or off.

■ Alt-Ctr/-Ins asks the ROM-BIOS to carry out the diagnostic programs
that are built into the PCjr.

■ A/t-Ctr/-right arrow and A/t-Ctr/-/eft arrow are two other special key
combinations used with the PCjr to adjust the display screen. Alt-Ctrl-right
arrow shifts the display screen right; Alt-Ctrl-left arrow shifts it left. These keys
are used to adjust the PCjr's display generation to the TV set or monitor that
you are using. The DOS command MODE also provides this function, but these
two key combinations allow us to shift the screen even if we aren't using DOS.

Besides the physical layout of the keyboards and the way keys are mim
icked, there is also a difference in the way the ROM-BIOS and the keyboards
work together.

The ROM-B10S 's Additional Workload

In the PC keyboard there is a small microprocessor, the Intel 8048, that
gives the keyboard some smarts. This microprocessor enables the PC keyboard
to test itself when power is turned on, to check continually for stuck keys, to
generate automatic repeat-key action (called typematic by IBM), and also to
buffer up to 20 key actions. If the computer has temporarily masked the
interrupts, the PC keyboard can buffer 20 key actions-the equivalent of 10
keys being pressed and released-and can then report key actions to the
computer by means of regular interrupts when the computer is once again able
to process them. The computer reads data out of the keyboard's buffer by using
the keyboard ports, 96 and 97 (hex 60 and 61). Although the keyboard's buffer
is usually empty, its presence ensures that nothing is lost if the computer is
delayed in handling the interrupts.

Our PCjr's inexpensive keyboard is not smart like that at all. Following the
design philosophy of the PCjr, programming in the ROM-BIOS takes the
functional place of more expensive hardware, at the price of a slight loss in
speed. In the PCjr, the keyboard can't wait for the computer to decide that it is
free, so Junior's keyboard generates a non-maskable interrupt, which the
ROM-BIOS always acts on immediately.

One of the biggest differences between the PCjr and its more powerful
relatives is that, for both the keyboard and the diskette, the ROM-BIOS

229

EXPLORING THE IBM PCJR

programs do the work of decoding signals into bits and bytes. Sharing the
ROM-BIOS is an area of potential conflict inside the PCjr, because both the
keyboard and the diskette expect the ROM-BIOS to give them special and
undivided attention. The ROM-BIOS favors the diskette; if the disk drive is in
operation, the entire system is masked and keyboard input can't take place
(asynchronous communications through the serial port can't take place, either).

The scan codes that the PCjr receives from its keyboard are not the same
ones used by the PC keyboard, since the number and use of the keys is dif
ferent. So another of the additional tasks of the PCjr's busy ROM-BIOS is trans
lating PCjr scan codes into the equivalent PC scan codes, to maintain as much
compatibility as possible between Junior and the other IBM personal
computers.

There is one more PC-keyboard function that the PCjr's ROM-BIOS must
take care of-the automatic repeat-key action. In the PC keyboard, the 8048
microprocessor checks to see if any key is being held down and then generates
any necessary repeat-key action. It waits a certain amount of time before
generating the first repeat action in case the person at the keyboard has slow
fingers, but after that, it waits a shorter time between each automatic repeat
action. In the PC keyboard, every key repeats automatically, and the PC's
ROM-BIOS takes responsibility for filtering out the keys that aren't meant to
repeat, such as the shift keys.

In the PCjr the ROM-BIOS keeps track of how long each key has been
pressed and generates the repeat-key action as needed. Interestingly enough,
the delay before repeat-key action starts is a variable, which our programs can
modify, as we'll see in the next section.

ROM-BIOS KEYBOARD SERVICES

In this section, we'll take a look at the services that the ROM-BIOS
provides for our programs, and then we'll see some tricks that we can play with
keyboard control.

The keyboard services are all invoked with interrupt 22 (hex 16); there are
just three simple services.

■ Service O reads the next available keyboard character and stores it in the
AX register. The main byte is stored in the AL part of the register, and the
auxiliary byte is stored in AH. If the ROM-BIOS is holding a character in its
buffer, this service will read that character immediately. If not, the service will
wait until a keyboard character is generated, do its work, and then return
control to the program that asked for the service.

230

16: Pounding on the Keyboard

■ Service 1 allows a program to see if keyboard input is ready without being
suspended if there is none. This service is very important for programs that
want to respond to the keyboard, but continue running when there is no
keyboard input. The BASIC function INKEY$ is using this service when it
reports no key is ready. Service 1 sets the zero flag on to indicate that a character
is available. The interrupt handler then copies the character into AX so that a
program can inspect it. The character is also still in the ROM-BIOS buffer, so
the next service O or service 1 will see the same character.

■ Service 2 is used to report the shift-key status. The ROM-BIOS keeps
track of the current status, and programs can use this service to find out what it
is. Using the information returned by the service, they might reinterpret the
meaning of some characters (sometimes effectively ignoring the shift keys).

This brings us to the record of what information the ROM-BIOS keeps
about the keyboard, and how our programs might make use of it.

KEEPING TABS ON THE KEYBOARD

Certain locations in low memory are used by the ROM-BIOS for data that it
needs. This low-memory area begins at segment paragraph hex 40. Among the
data kept here are two bytes used for the shift flags, kept at offset memory
locations hex 17 and 18. We can read these bytes in a BASIC program with these
statements:

100 DEF SEG = &H40
110 KB.FLAG.0 = PEEK C&H17)
120 KB.FLAG.1 = PEEK C&H18)

The first byte records the current shift state (reported by service 2), while the
second byte records which shift keys are actually pressed and still held down.

The coding of these bytes is shown in Figure 16-7. Except for the two bits
noted, these control bytes apply to all models of IBM personal computers.

One of the things that can be done with these bytes is to change the
controlling bits. Since the ROM-BIOS takes the coding of these bits as gospel,
ifwe change the coding, we change the workings of the keyboard. One popular
use for this idea is to have a program put the keyboard into Caps-Lock state;
surprisingly, many BASIC programs do this. As an example, the following
program will set the Caps-Lock bit, whether it was on or off.

130 KB.FLAG.0 = PEEK C&H17> 'get existing flag
140 KB. FLAG.= KB. FLAG. 0 OR&H0040' turn on Caps-Lock
150 POKE &H17, KB.FLAG.0 'put value back

The PCjr also has a third control byte, byte 2, located at offset hex SC. We

231

EXPLORING THE IBM PCJR

can inspect this byte with the BASIC statement:

160 KB.FLAG.2 = PEEK C&H8C>

Figure 16-8 shows this byte's coding.
The ROM-BI OS's keyboard-character buffer is located at offset hex 1E and

contains 15 pairs of bytes of currently buffered keyboard data. It would be
unwise for our programs to mess around with these data, but it is interesting to
know where they are.

Rather than the next character being shifted up as the character before it is
taken out of the ROM-BIOS buffer, the buffer is used in a continuous circle, so
pointers are needed to indicate both the current head and the current tail of the
buffer contents. These pointers are two 2-byte words stored just before the
buffered characters. When the pointers are equal, the buffer is empty.

Here is one final note about where the ROM-BIOS keeps keyboard in
formation. While the PC keyboard generates its own repeat-key action, in the
PCjr the BIOS is responsible for repeating keys, so the last key pressed has to
be kept in memory. You'll find it at offset hex 89.

There are a lot more tidbits like this in the memory locations used by the
ROM-BIOS, but we won't pore over them all, partly so you will have some

Byte

0

Bit

0
1
2
3
4
5
6
7
0
1

2
3
4
5
6
7

Use

Right shift pressed
Left shift pressed
Ctrl pressed
Alt pressed
Scroll Lock active
Num Lock active
Caps Lock active
Ins (insert) active
Not used
Clicking combination (Alt-Ctrl-Caps Lock) pressed
(PCjr only)
Keyboard click on (PCjr only)
Hold state active (No program allowed to run)
Scroll Lock pressed
Num Lock pressed
Caps Lock pressed
Ins (insert) pressed

Figure 16-7. Coding of the two shift-flag bytes

232

Byte

2

Bit

0
1
2
3
4
5
6
7

16: Pounding on the Keyboard

Use

Put char operation
Initial delay in repeat-key
Half-rate delay in repeat-key (After first)
Typematic repeating off
Fn function lock
Fn function pending (Function key was pressed)
Fn function break
Fn function flag

Figure 16-8. Coding of the third control byte

more to explore on your own, if you are so inclined. (If you are, the information
is laid out in the ROM-BIOS listing in the Technical Reference manual.)

And that completes our tour through the keyboard.

233

CHAPTER

17
OTHER

CONNECTIONS
When the PC was first released, it had
the ability to use cassette tapes for data
storage, joysticks for game control, and

light pens for interactive graphics.
Sadly, little was done with any of these
three and, in fact, the cassette interface
was even dropped from the XT model.

EXPLORING THE IBM PCJR

Now our PCjr has revived interest in all three of these neglected connec
tions. In this chapter we'll look at each of them and see how they are used.

CONNECTING WITH THE CASSETTE

The most inexpensive home computers have usually relied on audio
cassette recorders for data and program storage. When IBM designed the PC,
they wanted it to be as universal and complete a small computer as possible. A
computer cannot be used very effectively without a way to read and write data,
and the cassette inteiface provides a cheap and reasonably efficient way to store
data without the expense of a diskette system.

The virtue of the cassette interface is that it can be used with a very ordi
nary, inexpensive, cassette recorder-no special, fancy, or expensive equipment
is needed, just a modest connecting cable. The disadvantage of the cassette,
though, is that it is slow and clumsy. It takes a long time to read and write
data; there is no random access-to find data, the computer has to read a tape
sequentially, looking for the right information; and even manual intervention
(pushing the rewind button) is required to rewind the tapes.

IBM's original support for the cassette interface was half-hearted at best,
and given the disadvantages of cassettes, I don't suppose we can blame them.
Their eyes were on the computer user who could afford a diskette-based system.
Our PCjr model, though, has an entirely different focus from its predeces
sors. It makes more sense to use a cassette recorder with an inexpensive home
machine, and so the cassette interface has been revived.

What were originally provided for the PC's cassette interface were four
simple ROM-BIOS services and the ability, in BASIC, to SAVE and LOAD
programs or read or write data with the cassette. In the PCjr, the cassette
interface has the same support it had on the PC.

If any of our programs use the cassette interface directly, they will make use
of these ROM-BIOS cassette services. The ROM-BIOS services for the cassette
interface are invoked with interrupt number 21 (hex 15). There are four
simple services.

■ Service O turns the cassette motor on, just as the BASIC statement
MOTOR 1 does. Service 1 turns it off, like the BASIC statement MOTOR 0.

■ Services 2 and 3 read or write data on cassette. Data are always stored in
blocks of 256 bytes, and these services can read or write any number of blocks
with one service call.

As a minor point of interest, the ROM-BIOS routines for both the PCjr and
the PC do the work of decoding signals into bits, and then into bytes, and
finally into 256-byte blocks of data. The process of having a program, instead of

236

17: Other Connections

hardware, decode bit signals is called bit nibbling. All cassette data are handled
by the ROM-BIOS in this way, even on the PC model. Our PCjr's ROM-BIOS
also decodes signals for the diskette drive and the keyboard, while the other
models of IBM personal computer use special circuitry to perform this tedious
task for those components.

PLUGGING IN THE JOYSTICK

The next of the connections we want to look at is the joystick. Joysticks are
used almost exclusively with games and educational software and have not
been used much on the PC and XT. For both these models, we have to buy a
games adapter card and also the joysticks themselves. Since our PCjr features
games, it is natural for the supporting circuitry, the equivalent of the PC's
games adapter card, to be built right in. All we need to use joysticks on the PCjr
are the joysticks themselves and programs that take advantage of them.

Oddly enough, there is no support programming for the joysticks in the
ROM-BIOS. Instead, any program that needs joystick information reads this
information from port 513 (hex 201) and decodes it. The BASIC programming
language includes two functions, STICK and STRIG to decode joystick data.
To understand how BASIC decodes the joystick data, we need some back
ground information.

Joysticks are made up of two elements: the lever or stick itself, which is
used to move a playing piece around the screen, and the triggers, which are used
as firing buttons. The triggers are purely on/off switches, while the sticks
indicate a position, showing how far they have been moved.

Joysticks, like the IBM joysticks sold for the PCjr, usually have two trigger
buttons and a stick that can move freely in all directions. The position of the
stick, at any moment, is like a point on a two-dimensional graph. We need two
numbers to describe the stick's position, like the two graph coordinates. So
each IBM-style joystick has two trigger switches and two position values. With
a pair of joysticks, there is a total of four triggers and four position values, which
is the most that the PCjr, or a PC's game adapter, can handle.

There is another way to use four buttons and four positions, with what are
called game paddles. A paddle is essentially half a joystick; it has one button and
its lever moves in only one dimension. A one-dimensional control can't be used
to move a playing piece freely in two dimensions, but it can be used to steer left
and right, or as a throttle control. The one main advantage that paddles have for
us is that four people could be playing at once with paddles, where only two at a
time could use joysticks. I don't know many uses for paddles with the PCjr, but
you'll find them mentioned occasionally, so you ought to know about them.

Programs read information about the joystick in an interesting way. To
begin the process, a program sends any value out through the joystick port, 513.

237

EXPLORING THE IBM PCJR

Bit Information Source

0 Relative position 0
1 Relative position 1
2 Relative position 2
3 Relative position 3
4 Trigger 0
5 Trigger 1
6 Trigger 2
7 Trigger 3

Figure 17-1. Coding of bits in the value read
from the joystick port

Paddle Joystick

A A, x-coordinate
B A, y-coordinate
C B, x-coordinate
D B, y-coordinate
A Button A-1
B Button A-2
C Button B-1
D Button B-2

This value has the sole purpose of nudging the computer so that it will send
information about the joystick back. The program then immediately reads the
data byte sent back through that port. Each of the eight bits in this byte is
dedicated to one of the eight information sources, the four triggers and the four
position indicators. The bits are used as shown in Figure 17-1.

The way joystick information is transmitted is curious and interesting. For
the triggers, a single bit, indicating whether or not the button is pressed, is all
that is needed. One reading of the data byte at port 513 is enough to give the
program this information; the trigger bits will be set to 1 if the trigger is re
leased, and O if the trigger is pressed-just the opposite of what you might expect.

However, for the position indicators, we need a range of values to indicate
the range of possible positions. The program finds out the relative position by
the unusual means of successively reading the port. When the program starts
the process by sending a value out through port 513, all the relative position bits
are set to 1. Over a period of time (about one millisecond), each of these bits is
independently reset to 0, with the amount of time to reset being in proportion
to the relative position of the joystick lever. Our program keeps reading port 513
until each of the four relative position indicator bits has been reset to 0. The
program can calculate the position of the joystick or paddle either from the ex
act time that it took each bit to be reset, or from a relative value obtained from
the number of times it had to read the port until the value of each bit changed.

There is no absolute range of values for the joystick positions; if we move
two different joysticks all the way in some direction, they are likely to report
different position values just because of minor electrical variations. Programs
that use joysticks normally adjust, or scale, the position values to match their
needs. It's common, for example, for a program to adjust the working scale of

238

17: Other Connections

the joystick so that the limits of the joystick movement correspond to the edges
of the display screen.

The programming necessary to read the joystick port and calculate these
positions is slightly tricky, but it can be done in assembly language by a
knowledgeable programmer. If we are writing in BASIC, however, it is easier,
since the work of sampling and interpreting the joystick information is done for
us by the STICK and STRIG functions.

LIGHTING THE LIGHT PEN

The light pen is the last of the three neglected connections that has gained
importance on the PCjr. Light pens are mostly used in sophisticated graphics
applications, where a combination of the light pen and the right software allows
us to draw interactively on the display screen.

Actually, the light pen is not an instrument for writing, but for reading. We
do not draw directly with the pen, we simply point with it. A light pen provides
a way for the computer to find the exact location we are pointing to on the
display screen.

A light pen has a light-sensing tip and some sort of trigger that is used to
indicate when we want to use the pen. The trigger might be pressed by our
fingers, or it might be at the tip of the pen and be pressed automatically when
we push the pen against the display screen. When the pen is activated, the
ROM-BIOS support programs for the display screen can tell exactly where on
the screen the pen is pointing, down to the exact pixel location-which of the
200 scan lines the pen is on vertically, and which of the 160, 320, or 640 column
locations it is on horizontally. All that the ROM-BIOS support programs do is to

report when the light pen is active, and where it is.
A program can use a light pen to have items selected from a menu of

choices, or it could change a drawing on the screen to reproduce the move
ments of the light pen. With this last application, the light pen seems to draw
on the screen, though actually a graphics program does the drawing. The pro
gram takes its cues from the light pen, and as a result it seems to us as if the pen
is writing directly on the screen.

A light pen works by sensing when the display screen's scanning electron
beam hits it. It immediately sends a signal that tells the computer its location
on the screen. For the pen to be successful, the phosphor on the screen has to
respond very quickly to the electron beam. Many display screens have high
persistence phosphors, which hold their image and reduce the amount of
flicker on the screen, but a light pen can only work with quick-acting, low
persistence phosphors. If you expect to make any use oflight pens, you need to
make sure that they will work with the sort of display screen you will be using.

239

EXPLORING THE IBM PCJR

To support the light pen, there is a single ROM-BIOS service, one of the
group of video services invoked with interrupt 16 (hex 10). For the light pen,
service 4 indicates if the pen is triggered and, if it is, returns the row and
column position of the pen.

As for everything else in the PCjr, the BASIC language provides the means
to use the lighrpen, with the PEN function and statement. If we are program
ming in BASIC we can use these features of the language; otherwise, we must
use an assembly-language connection to get access to the ROM-BIOS service
for the pen.

240

CHAPTER

18
THE PRINTER ADAPTER

AND FURTHER
CONNECTIONS

As we've seen, the PCjr is full of sockets
where all sorts of interesting equipment
can be connected. Each of these sockets
has a single, dedicated purpose, except
for one on the side of the system unit,

the 1/0 channel connector.

EXPLORING THE IBM PCJR

The 1/0 channel connector is the one open-ended connection to the PCjr. To
understand the 1/0 channel connector, we need to learn about what is called
bus architecture.

TAKING THE BUS

There are two main ways to wire the parts of a computer together. One is to
make specific, special-purpose connections: If part A needs to talk to part B,
we can run a wire, or several wires, between the two parts. There are some real
disadvantages to using this kind of special-purpose connection. For one, if there
are lots of parts, we can end up with a complicated rat's nest of wiring; for another,
adding a new part, or allowing for an optional part, can be very complicated.

The solution to these problems is provided by the other main way of
connecting computer parts: a bus. A bus is not a dedicated connection between
two parts; instead, it is like a telephone party line. It is a shared set of wires,
with a set of rules for using it. The wires in the bus include power connections,
data transmission lines, and ways of determining whether the party line is busy
or free to use.

When one part of the computer needs to talk to another through a bus, it
does roughly the following: First, the initiating part checks to see if the bus is in
use; if the bus is free, the part sends out a signal indicating what it wants, or
which part of the computer it wanes to talk to. Then it waits for a reply. If a reply
comes, fine; but if there is no reply, it may mean that an optional part has not
been installed.

Bus architecture is complicated, and it takes more work and time to use
a bus than it does co use a dedicated, wired connection, where you know who
is on the other end of the line. Still, in spite of this complexity, if more than a
few parts use the bus, the end result is much simpler than all the dedicated
wires would be.

The greatest advantage of a bus, though, is that it is open-ended and
flexible. With a well-designed bus, all sorts of equipment can be plugged into
the computer, including equipment chat did not even exist when the computer
was originally designed.

The IBM PC uses a bus for virtually all its optional parts. Each PC and XT
has a number of expansion slots that are simply connections to the bus. Any
suitable equipment can be plugged into an expansion slot, including all the
basic options, such as memory expansion, the diskette drive adapter, the
printer adapter, and much more.

Our PCjr is a little different because it has dedicated, plug-in connections
for all the main options: memory expansion to 128K, the smart modem, the
diskette drive adapter, the joysticks, the light pen, and the cassette. The PCjr

242

18: The Printer Adapter and Further Connections

does, however, have the PC's bus in the form of its 1/0 channel connector.
While the main parts of the PCjr do not connect to the bus, as they do on the PC
and XT, our Junior still has a bus that can be used for many purposes.

The first use of the 1/0 channel connector is for attaching the PCjr's printer
adapter. However, the printer adapter or any other part that connects to the 1/0
channel can carry the connection through to its far side, so that more parts can
be connected, one plugging into the other.

Mechanically, the PCjr's bus is quite different from that of the PC. The
PCjr's bus has only one plug where one part can be connected (though, as I've
said, another part can be connected to that, and so on); the PC's bus, on the
other hand, has several connections and normally only one part is plugged into
each. Electronically, though, the PCjr's bus and the PC's bus work in exactly
the same way. With each bus, one or more optional parts can be connected, and
as soon as a part is plugged in, it becomes an active component of the computer.

THE PRINTER ADAPTER

IBM's main use for our Junior's 1/0 channel connector is as a plug for a
printer adapter.

As we mentioned in our discussion of the serial port in Chapter 14, there are
two ways to connect a printer to a personal computer. One way is to use the
RS-232 serial port, and the other is to use a special parallel printer adapter
plugged into the 1/0 channel connector. Either outlet can be used successfully
to drive a printer, but there are some advantages to using a parallel connection.
For one thing, connecting a printer to our RS-232 port ties up the port and
prevents us from using it for other things, particularly communications. The
main reason, though, for connecting a printer to a parallel printer adapter is
because the parallel connection is specially designed for efficient printer use.
With a parallel printer adapter, we can drive a printer faster and use less com
puting power while we are doing it.

The main thing that distinguishes a parallel printer connection from the
serial port is the amount of data being transmitted. The parallel connection
transmits data a full byte at a time-there is a separate line for each of the eight
bits in a byte, so the bits are sent out at the same time, in parallel. A serial port
sends the bits out one at a time, and they have to be assembled into bytes at the
receiving end.

Having said that, I have to acknowledge that, for a personal computer and
particularly for a small home computer like our Junior, there is little practical
difference between using the RS-232 port and using a parallel printer adapter
plugged into the 1/0 channel connector. While it is true that a parallel connec
tion can transmit data much faster than a serial port, either one is fast enough to

243

EXPLORING THE IBM PCJR

run the sort of printers that we usually use with personal computers. For most
people, the factors that decide which to use are based on two very simple
questions: Is the printer set up for a serial connection or a parallel connection?
(The inexpensive IBM Compact Printer uses the serial interface, while the
popular Epson® and IBM matrix printers use the parallel interface.) Do you
want to keep your RS-232 serial port free for another use? Usually, but not
always, the less expensive choice is to use the serial port, and the higher
performance choice is to use the parallel connection.

The parallel printer adapter connects to the PCjr's 1/0 channel connector
and has a parallel printer plug to accommodate the cable to the printer. This
parallel connection is often called a Centronics inte,face, after the name of the
company that developed and popularized it. The Centronics interface is very
much the standard printer connection for small computers, both microcomput
ers, like our PCjr, and much larger minicomputers.

ROM-BIOS PRINTER SERVICES

The ROM-BIOS in our PCjr provides all the primitive services needed to
operate a printer. A printer is a very simple device (from the point of view of the
computer that uses it, if not the mechanic who has to repair it!), so there are
only three BIOS services. Since the PC and XT can have more than one printer
attached to them, these services call for specification of a printer number:
printer 0, 1, or 2. Our PCjr normally can have only one printer (it is rare for any
personal computer to have more than one printer, anyway), so our programs
always have to specify printer number 0. Interrupt number 23 (hex 17) is used
to invoke all three of these ROM-BIOS services.

■ Service O is used to print a single character. This is the main working
service for the printer.

■ Service 1 is used to initialize the printer adapter, to ensure that it is set
and ready to use. This service also returns a single-byte status code, with each
bit dedicated to reporting on one particular aspect of the printer. The bit codes
are shown in Figure 18-1.

■ Service 2, the last of the printer services, reports the status of the printer.
It returns the same 1-byte status code as service 1.

All these services are the same for the PCjr as for the other IBM personal
computer models, but the PCjr adds one particularly useful twist for those ofus
who connect our printers to the serial port rather than the 1/0 channel connector.

244

Bit

0

1
2
3
4
s
6
7

18: The Printer Adapter and Further Connections

Meaning

Time out-the printer did not complete an operation
in a reasonable amount of time

This bit is unused
This bit is unused
The printer reports an 1/0 error-something went wrong
This printer is selected
The printer reports it is out of paper
Acknowledge
The printer is busy (0 = busy, 1 = not busy)

Figure 18-1. Coding of the printer status byte

The PC and XT have to be told that the printer is actually connected to the
serial port. Each time we turn one of them on, we have to specify that the
printer is connected to the serial port. Even worse, sometimes just switching
from one program to another can mean we have to tell the computer, yet again,
that the printer really is connected to the serial port. Our PCjr makes life easier.

The ROM-BIOS printer service routines for the PCjr go to the trouble of
checking to see if a parallel printer adapter is plugged into the 1/0 channel
connector. If it is not, the ROM- BIOS automatically reroutes printer output to
the serial port. This behind-the-scenes service is an enormous convenience
and it makes the use of the serial port for a printer much more practical. (It is
particularly tailored to the needs of PCjr owners who use the inexpensive IBM
Compact Printer.)

This extra routine is just one indication of the care and thought that went
into Junior's design. Scrutiny of the PC has paid off in improvements to our
PCjr, and this automatic use of the serial port for the printer is just one example
of how good our Junior is.

FURTHER CONNECTIONS

When IBM released the original PC, it was accompanied by a handful of
options, all designed to fit into the PC's expansion slots (which are the equiv
alent of our PCjr's 1/0 channel). While IBM's PC options were fine, they didn't
suit everyone's needs. A host of very nimble companies began creating add-on
boards in a much wider variety than IBM had provided. After a while, it began
to appear that, while IBM was doing a terrific job of designing and making

245

EXPLORING THE IBM PCJR

computers, these after-market manufacturers were responding even better
than IBM to the changing needs for options and add-on boards.

Possibly because of this, IBM initially created only one use for the PCjr's
1/0 connector bus, the parallel printer adapter. In effect, IBM has left the uses
and extensions of Junior's 1/0 channel connector to the ingenuity of all the
suppliers of IBM personal computer equipment.

So, IBM hasn't defined what the further connections for the PCjr will be.
Instead it has left the way open for outside suppliers to define the shape Junior
will take. The possibilities are as unlimited for the PCjr as they are for the PC
and XT-it all depends upon the needs of PCjr owners.

What we do know is that the PCj r's open bus, in the form of the 1/0 channel
connector, makes it possible to add any number of new parts and options.
These can take the same form as Junior's parallel printer adapter, which plugs
into the 1/0 channel connector and passes access to the connector on to the
next piece of equipment. Or, they can also take the form, used by the PC and
XT, of an expansion cabinet that would plug into the 1/0 channel connector
and would contain slots for expansion boards. Each of these expansion slots
would be electronically connected to the PCjr's 1/0 channel. Both of these
approaches to adding new options to the PCjr are functionally the same-they
are just two ways of wrapping the operation up. Options that work like the
parallel printer adapter have to have their own cabinet parts to contain them,
while an expansion cabinet provides a single enclosure that can be used by
several naked option boards.

Whatever form additions to the PCjr take, they will use the 1/0 channel
connector as a bus connection to Junior's main circuitry. And the PCjr's bus
places no limits on the wonders that we can add to our computers.

246

CHAPTER

19
HIDDEN GOODIES IN

THE ROM-BIOS
Much of the wonder of the IBM

personal computers is embodied in
their ROM-BIOS programs. This is

even more the case with Junior than it
is with its more expensive relatives,

since in the PCjr quite a lot of expen
sive hardware has been replaced by

ROM-BIOS software.

EXPLORING THE IBM PCJR

So far in this book, we have covered the programming in the ROM-BIOS topic
by-topic, as we have covered each of the features and subject areas of the
computer. That approach is actually best, since the ROM-BIOS lives to serve
the working parts of the computer.

Now, though, the time has come to look at the glories of the ROM-BIOS
and the miscellaneous goodies that are tucked away inside. As we have done
throughout the book, we'll begin with the interesting stuff that the PCjr shares
with its relatives, the parts of the ROM-BIOS that are common to all members
of the IBM personal computer family. After that, we'll look at what is new and
special about the ROM-BIOS in the PCjr.

THE BENEFITS OF BROWSING

Almost everything that can be learned about the ROM-BIOS can be found
in Appendix A of the PCjr's Technical Reference manual, which gives a complete
assembly-language listing of the ROM-BIOS. This listing is useful to study for
quite a few reasons. First, it includes the comments of IBM's programmers,
and these provide the best clues to what is going on inside the ROM-BIOS.
Second, comparing the hexadecimal machine-language code and the assembly
language instructions gives us a feel for the instruction set of the 8088 micro
processor that our PCjr uses. Browsing through the hexadecimal coding quickly
teaches you which instructions are long and which are short, how numbers are
stored, and so forth.

A third reason for studying the ROM-BIOS assembly listing is to learn more
about assembly language. No matter what your level of interest and expertise
in assembly language, the ROM-BIOS in IBM's Technical Reference manual can
help you a lot. If you are contemplating trying your hand at assembly language,
this listing should give you some idea of what is involved and help you discover
quickly if assembly language is within your present ability as a programmer. If
you are starting out in 8088 assembly language, you will learn quite a bit from
this listing; but be forewarned: While the body of the ROM-BIOS program
ming is similar to programs you might write, the overhead parts-the begin
ning and end of a program and the parts that tell the assembler what to do-are
rather different. Finally, if you are experienced in assembly language and want
to learn some advanced methods, the ROM-BIOS provides you with a wealth
of tricks and examples.

A fourth benefit of studying the ROM-BIOS listing is to learn about the
data areas used by the BIOS. All programs need a place to keep the data they
work with, and the ROM-BIOS is no different. Since ROM is, by definition,
read only memory, the storage area for the data used by the ROM-BIOS has to
be located in ordinary RAM.

248

19: Hidden Goodies in the ROM-BIOS

A small area of 256 bytes, located at segment paragraph hex 40, or absolute
addresses hex 400 through hex 4FF, is reserved for use by the ROM-BIOS. If
you want your programs to inspect (PEEK) or change (POKE) system informa
tion, these ROM-BIOS storage locations will be of real interest to you. We have
discussed some of the ROM-BIOS data to be found here, such as the keyboard
control bytes, but I am not going to pore over the rest of the data in this ROM
BIOS storage area in detail, since it is not really of general interest. If you want
to learn more, you can find the data at the beginning of the ROM-BIOS listing.

There is, finally, a fifth reason to study the ROM-BIOS listing: to discover
the odds and ends of interesting programming, tables of information, and
routines that are buried in the BIOS. That is what this chapter is about, so let's
begin looking at these goodies.

OLD GOODIES

The first ROM-BIOS programs used are the power-on self test, or POST
routines. The POST tests various parts of the computer when the power is first
turned on. As I have said, it is not a thorough set of diagnostics, because a
complete diagnosis would take much too long to run. The tests carried out by
the POST are a compromise between the desire to check out the computer and
the desire to get down to work with no delay. Because the POST routines are
tied very closely to the hardware, they differ considerably in detail from one
model of IBM personal computer to another. In concept, though, they are the
same for all the machines. You have to have a very deep interest in the PCjr's
hardware to go over these routines in detail, and some of them are difficult to
figure out. We'll cover the highlights, and leave the rest for you to explore, if
you are interested.

One of the POST routines, called PODSTG, tests a block of storage.
While all the IBM personal computers need to have this test performed, oddly
enough the test is quite different for each model. In our PCjr, the routine can
check up to 32K bytes at a time and it can be called several times to check more
memory. It also has the special virtue of testing for a "warm start." If the
routine is being used during a power-up, it will do its full read/write test; on a
warm start, as when we press the Ctrl-Alt-Del keys, this routine cuts the test
short and just sets memory to zero, ensuring that no data that could confuse our
programs are left in memory.

Other parts of the POST check the working of the 8088 by testing flags,
registers, and jump instructions. The POST routines are also responsible for
initializing many of the programmable parts of the electronic circuitry; they
take care of the starting settings for such things as the TI sound generator chip,
the video control, and the disk control.

249

EXPLORING THE IBM PCJR

Boot and Reboot

Another interesting part of the ROM-BIOS is the bootstrap loader, which
reads in a self-loading program, such as the DOS operating system. This
bootstrap routine does one thing, yet serves several purposes. It is used when
we power up the computer; it is also used when we do a Ctrl-Alt-Del warm
start; and finally, it can be used by any program that wants to restart the
computer. So that the bootstrap loader can be available for all these purposes, it
has been set up as an interrupt handler. To cause a reboot of the system, all a
program has to do is invoke interrupt 25 (hex 19).

Now, why would a program want to reboot the system? Rebooting certainly
isn't an ordinary operation, but there are some special occasions when it might
be needed. For example, some copy-protected programs reboot when they
have detected tampering, as a sort of punishment. Other copy-protected
programs, such as Microsoft Flight Simulator, don't operate with DOS; instead
they have, in effect, their own individual operating systems. When such
programs finish running, it is reasonable for them to automatically reboot the
computer, so that we can work with DOS or something else.

While the principles of the bootstrap loader are the same, the details vary
from model to model of IBM personal computer. As we have already seen, the
PC tries to read a control program from its first diskette drive; if that doesn't
work, it fires up the built-in ROM-BASIC. The XT (or a PC upgraded to XT
specifications with a hard disk) tries to boot first from a diskette, then from the
hard disk, and then it finally goes to the ROM-BASIC.

Our PCjr enriches this process considerably. First, it checks the universal
starting point, the diskette. Next, it allows a cartridge to take control. Finally,
it goes to ROM-BASIC (or any cartridge that replaces the ROM-BASIC, such
as the BASIC cartridge).

The Disk Base Table

The next interesting part of the ROM-BIOS is the disk base table. The
disk base is a short table of controlling parameters for the diskette drives. The
interrupt vector for interrupt 30 (hex lE) normally points to this table in ROM,
but it can be changed, if necessary, to point to another table in ordinary
memory, effectively replacing the original table.

After the original release of the PC, IBM changed its mind about what the

250

19: Hidden Goodies in the ROM-BIOS

controlling parameters for the diskette drives should be, and so all releases of
the operating system after DOS 1.00 have replaced this table with an updated
version. However, to help maintain strict compatibility, the disk base table
built into the ROM has stayed the same. This continues to be true for our PCjr,
except for one minor change. In the other models, the diskette drive circuitry
works directly with the computer's memory in what is called direct memory
access, or DMA. As we saw in Chapter 10, instead of data being transferred
directly, our PCjr uses ROM programming to transfer data between memory
and diskette, and so OMA is not used. As a consequence, there is one minor
difference in the disk base table in the PCjr's ROM-BIOS: The second byte is
03, rather than 02, indicating that OMA is not used.

Equipment and Memory

The next two items in the ROM-BIOS are even more interesting. There
are two special interrupt service routines that can tell our programs about the
equipment and memory attached to our computers. These routines are
invoked with interrupt 17 (hex 11), which gives the list of equipment on the
computer, and interrupt 18 (hex 12), which gives the amount of RAM in the
computer. In both instances, the information is gathered by the POST routines
when the computer is powered up, and the record is kept in the ROM-BIOS
storage locations. Later, when either of these interrupt routines is activated,
they refer to the record in memory.

This may seem like a curious way to do things, but there is an important
reason for collecting this information in this particular way. If these two
routines checked on the equipment and memory directly, they could only
report on the equipment and memory that were actually present. By using a
record left by the POST routines in memory, these two service routines gain an
extra element of flexibility, since a program could, if necessary, change the
record of the equipment or amount of memory available and thus override the
hardware. Obviously, we could not make equipment or memory magically
appear or disappear simply by changing the record, but we could, if we wanted,
manipulate the record of equipment and memory. For example, we could set
aside some memory for a special use or deactivate a defective piece of equip
ment. In general, software should always be as much in charge of the computer
as possible, and this indirect way of manipulating the equipment and memory
helps accomplish that goal. Now, let's look more closely at interrupts 17 and 18.

Interrupt 17 (hex 11) reports on the equipment attached to the computer.
This equipment report is general and only takes into account the main equip
ment designed into the original PC model. The report is given in one 2-byte
word, with the equipment coded as shown in Figures 19-1, 19-2, and 19-3.

251

Bits

0

1
2-3

4-5
6-7

8

9-11
12
13

14-15

EXPLORING THE IBM PCJR

Meaning

Diskette-drive indicator-0 if no diskette drives, 1 if
there is a diskette drive.

Not used.
Memory on the system board, in 16K increments, minus one. For

technical reasons, these bits are always 11 on the PCjr, with or
without the memory expansion.

Initial video mode, coded as shown in Figure 19-3.
Number of diskette drives, minus one; if we have a disk, these bits
are 00.
OMA chip present in system (new co PCjr, unused in other

models); this apparently relates to some PCjr features yet to come.
Number of RS-232 ports, from O through 7; for the PCjr this is 1.
Game adapter attached (optional on a PC or XT; built into the PCjr).
Serial printer attached (not used for PC and XT models).
Number of printers attached (handled differently for the PCjr).

Figure 19-1. Coding of the equipment bytes returned by interrupt 17

Bit Bit Amount of Memory on
2 3 System Board (in K)

0 0 16
0 1 32 (Used on early PCs; now obsolete)
1 0 48
1 1 64 (The minimum for the PCjr)

-
Figure 19-2. Coding of bits 2 and 3 of the equipment bytes

Bit
4

0
0
1
1

Bit
5

0
1
0
1

Initial Video Mode

Unused
40 x 25, black-and-white, using color adapter
80 x 25, black-and-white, using color adapter
80 x 25, black-and-white, using monochrome adapter

Figure 19-3. Coding of bits4 ands of the equipment bytes

252

19: Hidden Goodies in the ROM-BIOS

Interrupt 18 (hex 12) reports the amount of memory in the system in lK
units, so that the answer can be given in one 2-byte word. For our PCjr, this
report subtracts the amount of memory set aside for the display screen; so, for
example, if we had 64K and, as usual, 16K were in use by the display screen,
this interrupt service would report 48K of memory. On an ordinary PC, the
total amount of memory would be reported, since memory is not normally set
aside for any purpose on a PC.

Various parts of the system programs, the DOS operating system, BASIC,
and some other clever programs make use of these equipment and memory
size reporting routines to gather information about the environment in which
they are working.

Graphics Characters

The next interesting part of the ROM-BIOS we can look at is the graphics
character table, which we mentioned in Chapter 13. When the computer's
display is in text mode, the characters are generated by the display circuitry.
But in graphics mode, characters have to be drawn. The drawings that repre
sent the first 128 characters, from CHR$(0) through CHR$(127), are in a table
in ROM. The video services refer to this table whenever they are asked to draw
characters (or read characters off the screen) in graphics mode. This table is in a
fixed location in ROM, at address F000: FA6E. The location of the table was
incidental in the PC, but it is now carefully maintained at that address in case
any programs refer to it. (Programs aren't supposed to do that sort of thing-it
is most unwise; but since some do, IBM maintained compatibility by keeping
the table in the exact same location.)

Time of Day

Next, let's look at the time-of-day routine. As we have mentioned, the
timer circuitry for the computer produces a clock-tick interrupt every 18.2
seconds. The ROM-BIOS keeps a count of the ticks, and other programs can
calculate the actual time of day from this count. To do so, of course, they need a
point of reference, and so a count of zero is considered to be midnight. Any
routine that reports the time of day, such as the BASIC TIME$ function,
translates the tick count into the appropriate time. Likewise, anything that sets
the time, such as the DOS TIME command or BASIC TIME$ statement,
translates the time into the corresponding tick count.

The ROM-BIOS doesn't keep track of the date, but it assists date-keeping
by resetting the tick count to zero at midnight and keeping a record of the fact
that it did so. When any program requests a time-of-day count, a special signal
is also given if midnight has been passed since the last time-of-day request.

253

EXPLORING THE IBM PCJR

Routines that read the time are supposed to check this and change the date
when it happens. However, the ROM-BIOS does not keep track of more than
one passing of midnight, so, if you leave your PCjr running unused through two
midnights and then ask for the date, the date you are given will be incorrect.
Though not exactly major, this defect was an oversight in the design of the
ROM-BIOS.

The time-of-day services are invoked with interrupt number 26 (hex lA).
Service 0 is used to get both the tick count and the midnight-was-passed signal,
and service 1 is used to set the tick count.

As part of the timer support, the ROM-BIOS contains the interrupt han
dler for interrupt 8, the clock interrupt. As we've mentioned before, the timer
interrupt handler, in turn, generates a clock-tick interrupt, interrupt 28 (hex
lC), to alert our programs to each tick of the clock. However, unless our pro
grams have set an interrupt vector for this service, nothing happens.

Besides maintaining the tick count and generating the clock-tick interrupt,
the clock-interrupt service has one additional task. The motor of the diskette
drive is deliberately left running for 37 ticks (about two seconds) after the
diskette is used, in case it is needed again right away. The clock-interrupt
routine has the job of counting down from 37 to Oto measure the time the drive
has been left running; when the count expires, a diskette-drive routine is called
to turn the motor off. Each time the diskette is used, this count is again reset to
37, to keep the motor running for another two seconds.

Miscellany

Now, let's look quickly at a collection of unrelated, but interesting, ROM
BIOS routines. As odd as it may at first sound, there is a need in several places
for an interrupt-handling routine that does nothing. Here is an example: When
our programs aren't using the clock-tick interrupt, the vector for interrupt 28
has to point to a do-nothing routine. To provide this facility, the ROM-BIOS
contains a dummy return service, which consists of nothing more than an
IRET, or interrupt return, instruction. This IRET dummy return can be used
whenever it is needed.

Another part of the ROM-BIOS, which we already took a close look at in
Chapter 7, is the print-screen routine. This is the routine that is activated
whenever we press the PrtSc key. In order to make the service available to any
program, it is set up as an interrupt handler, invoked with interrupt 5. Using an
interrupt number this low is rather unusual, but there it is.

The interrupt vector table at the beginning of RAM memory has to be set
up when the computer is turned on, so that the 8088 will know where to go
when an interrupt occurs. This table doesn't automatically appear by itself.
One of the jobs of the POST start-up routines is to set the initial interrupt

254

19: Hidden Goodies in the ROM-BIOS

vectors, from values kept on ROM. Later, of course, programs can change the
vectors, but their initial values are set at start-up time, from the ROM.

There is one more miscellaneous part of the ROM-BIOS that we have
already looked at: the release marker, which indicates which version of the
ROM-BIOS is being used. The release marker is kept at the very top of
memory, in location F000:FFF5. The dates vary with revisions to the ROM.
You can check yours using the method in Chapter 7.

The only remaining byte in the ROM-BIOS is a data check-sum at the very
highest byte of memory. This byte is used to test for damage to the ROM
BIOS, and it is set to whatever value is needed to confirm that the ROM-BIOS
is intact. With each change to the ROM-BIOS, no matter how minor, this byte
is reset to the appropriate value.

What we have seen so far is all the odds and ends in the ROM-BIOS that are
common to all of the IBM personal computers. Next, we'll look at what is
completely new for the PCjr.

NEW GOODIES

There are just a few things that are completely new and special in the
ROM-BIOS for the PCjr.

More Characters

The first item we'll discuss has to do with characters in graphics mode.
You'll recall that the standard ASCII character set uses only 128 of the 256 byte
codes, and that the family of IBM personal computers uses the remaining 128
codes for some special characters, including the wonderful box-drawing char
acters. When the computer is in text mode, all these characters can be used. In
the original PC design, the first 128 ASCII characters were incorporated into a
table of drawings that allowed the computer to produce them in graphics mode.
However, the extra 128 characters could only be used in graphics mode if we
ourselves created a special table of drawings for them.

What is quite new and special to the newest member of the IBM family is
that Junior's ROM-BIOS gives us a default table of the other 128 characters.
This new table is still accessed through the interrupt vector for interrupt 31
(hex lF), so we can also build our own table of drawings and access it by
resetting the interrupt vector. This makes it practical to combine graphics
effects with the full range of 256 character shapes. Given this possibility, it
would be silly for any PCjr program not to take advantage of the graphics
modes.

255

EXPLORING THE IBM PCJR

Pretty Colors

The second new and special item in the PCjr's ROM-BIOS is an interesting
display routine, which shows the IBM logo and generates color bars that show
each of the display attributes. This routine is rather pretty, but it is also
practical, since it gives us a way to check the colors on our display screen.
Unfortunately, this routine isn't designed for external use like the print-screen
routine-it is not accessed by an interrupt, so our programs can't take advan
tage of it-but still, it is nice to know about it.

256

CHAPTER

20
GETTING

PROGRAM ACCESS
As I said way back in the Introduction,

this book is about understanding
the principles and inner workings of

the PCjr. This knowledge is worthwhile
in itself, because it is interesting and

it enhances our ability to use this
wonder computer effectively.

EXPLORING THE IBM PCJR

But there are practical reasons for knowing about the inner workings of the
PCjr, and the most important of them is putting this knowledge to use in our own
programs.

MAKING CONNECTIONS

BASIC stands out as a language for programming the PCjr because it
includes facilities for most of what is special about all the IBM personal
computers, and what is uniquely special about the PCjr. BASIC has many
virtues, and its supreme virtue in relation to the IBM PCjr is that so much of
Junior can be directly controlled by BASIC programs.

BASIC, though, isn't for everyone. In fact, few of the best-selling,
"serious" programs for the PCjr-spreadsheets, word processors, and the
snappiest games-are written in BASIC. So, if you want to write a best-seller,
or you just need to use the PCjr's special features in your own way, you need to
know about program connections.

A program connection is the way one program talks to another. This
connection can be as simple as using a subroutine in the same language you are
using, or it can be as complex as an interconnection, an interface, between one
programming language and another. Or, and this is of special interest to us, it
can be a connection to the ROM-BIOS services.

There is no end to the exotic things you might want to do in programming
your PCjr, but the main reason most of us need to break out of the facilities
offered by our programming language is to get more direct control of the
computer-either to manipulate its memory (one of the best ways to manipu
late the memory-mapped display screen) or to use one of the built-in ROM
BIOS services. Our goal in this chapter is to see how this is done. You will then
be able to write programs in the programming language of your choice and
break out of that language when you need to connect with the BIOS or other
programs. If you are doing major program development, this ability will be one
of your most important resources.

If you are not yet comfortable as a programmer, don't despair. Push on,
even if the going does get tough. At the very least, you will get an idea of what
can be done with the magic of your PCjr. And in the best of all possible worlds,
this chapter will spur you on to learn more, so that you, too, can fiddle around,
exploring the IBM PCjr.

There is an endless number of ways to combine programming-language
connections. We won't try to cover them all here. Instead, we'll lay out the
main principles and cover the one thing you are most likely to need: a quick
connection to the ROM-BIOS through an assembly-language connection.
We'll see the specifics for three programming languages: BASIC, Pascal, and

258

20: Getting Program Access

C. We'll cover these three languages because they are probably the most
important languages for the PCjr and because their differences highlight most
of the variations in assembly-language connections that languages require.

Since there are different versions of programming languages, let's get specific
here. The BASIC we'll be using is the official IBM BASIC, created by Microsoft;
either interpreted or compiled BASIC can be used. The Pascal is the IBM
compiled Pascal, also written by Microsoft. Don't confuse this with UCSD
Pascal®, or Digital Research® Pascal/MT+. The C-and there are many C
compilers available-we'll be discussing is Lattice-Microsoft C, created by Lat
tice, adopted and sold by Microsoft.

The programs produced by all three of these compilers work beautifully on
the PCjr, but only two of the three compilers can be used to develop programs
on the PCjr itself; the Pascal compiler requires more memory to compile than
Junior provides; but many programs compiled on a PC could then be run on a
PCjr. We'll cover the rules for this Pascal compiler anyway, for two reasons: It's
the only Pascal supported by IBM to produce PCjr programs; and it is a good
illustration of a standard variation on how to connect with assembly language.

The tools you will need for this task are your own programming language
C, Pascal, the BASIC compiler, or the BASIC interpreter-the DOS operating
system with its LINK program, and the IBM Macro Assembler program. In
addition, you will need to know how to operate your programming language,
the Macro Assembler, and LINK; and you'll need some sophistication in
programming techniques, since this is advanced material. With that in hand,
let's proceed.

THE GENERAL RULES

Programs cannot work with one another unless they follow some rules, or
conventions, for making connections and passing information back and forth.
An understanding of these rules is essential for anyone working with the
mechanics of making the connections. Once the connections are established,
they can be used freely without much technical know-how.

Although these connections are among the most important technical pro
gramming issues, the designers of computers and programming languages
usually allow a great deal of latitude in how things are done. These program
ming-interface connections ought to be universally designed, but oddly
enough, this rarely happens. So, there is no one simple way we can make
programming connections-we have to handle them case-by-case for each
programming language, and sometimes for each purpose, as well. Luckily for
us, while there is this kind of chaos, it doesn't reign supreme. Beneath all the
variations in how programming connections can be made, there are some

259

EXPLORING THE IBM PCJR

common, underlying principles that are handled very consistently in the IBM
personal computers. That's what we'll discuss in this section.

A Typical Connection

When program A makes use of subroutine B, there are some things that
have to be taken care of. Let's list what they are, and then go over the list item
by item, to see what the general principles are and how they can vary. So, what
has to be looked after, when programs connect?

■ Program A has to be able to find its way to subroutine B.

■ Subroutine B must be able to find its way back to program A.

■ Program A may need to pass parameters to subroutine B.

■ Everyone has to know how many parameters there are.

■ Parameters have to be put somewhere.

■ Program A may want to protect the parameters from being changed.

■ On the other hand, program A may need to have the parameters changed
by B.

■ Subroutine B may need to pass information back.

■ The information may be simple or complex.

■ There may be more than one piece of information.

■ Subroutine B needs to know what supporting framework it is getting
from A.

■ Subroutine B may need workspace.

■ Everyone needs to know how to behave; B must know what it is allowed
to do and what must be preserved.

■ And, who cleans up when subroutine B has finished?

Let's now go over these things item by item and see how they are handled
by the IBM personal computers, and also see when there is more than one way
to do things.

■ Program A has to be able to find its way to subroutine B. Finding the way to a
subroutine can be done two ways in the PCjr's Intel 8088 microprocessor: via a
CALL instruction, or via an interrupt. Interrupts, however, are reserved for

260

20: Getting Program Acce:,s

privileged, system-type operations. Ordinary programs use the CALL instruc
tion; that is what all our programming languages use, so this is universal
for program connections. However, there are two varieties of CALL-FAR
and NEAR.

You'll recall from our discussion of the 8088's memory addressing that there
is a code segment register, CS, that locates programs in memory. If all the parts
of a program are known to be contained within 64K of memory, the CS register
need not be reset when passing from subroutine to subroutine; chis is done
with the NEAR CALL instruction. But if a subroutine is, or might be, outside
the current 64K block addressed by the CS register, the CALL instruction
must have a fully segmented address for the subroutine that is being called; this
is done with a FAR CALL instruction.

C uses only NEAR CALLs; this is more efficient, but it restricts the
total program size. BASIC uses only FAR CALLs. Pascal uses both NEAR
and FAR.

■ Subroutine B must be able to find its way back to program A. Finding the way
back to a program is always done with the return instruction, RET, but there are
both NEAR and FAR returns, so it matters to the called subroutine whether it
was called NEAR or FAR. Normally, an assembly-language subroutine is set up
to handle the return one way or the other, but it is possible for the subroutine to
have both kinds of return and to choose between them on the basis of a signal
passed by the calling program. (The last item, cleaning up, also influences the
exact nature of the subroutine's RET instruction.)

■ Program A may need to pass parameters to subroutine B; everyone has to know
how many parameters there are. Mose commonly, a subroutine has a fixed number
of parameters, and these must always be given, even if some of them are not
used. There are ways to handle a variable number of parameters, but the
cleanest and most common working rules call for a rigidly fixed number of
parameters, agreed upon between caller and callee. C provides a way to handle
a variable number of parameters; BASIC and Pascal don't.

■ Parameters have to be put somewhere. Parameters are always passed
through the stack, either directly or indirectly. There are two main ways to do
this. Eicher the value of the parameter itself is placed on the stack or the
address of a memory location holding the value is placed on the stack. Several
things influence which way is used. Generally, if the value is a single byte, or a
word, or a pair of words (such as a segmented address), it may be placed on the
stack. If it is larger than two words (four bytes), it is never placed on the stack;
instead its address is. The called program absolutely must know which method
is being used, so this arrangement is made when the subroutine is designed.

261

EXPLORING THE IBM PCJR

BASIC never places values on the stack; Pascal and C can place either the
value or its address on the stack, and they let us control which. BASIC and C
always use relative offset addresses when putting parameter addresses on the
stack. Pascal lets us choose between offset and fully segmented addresses.

■ Program A may want to protect the parameters from being changed. If the
calling program wants to ensure that its original copy of the parameter is not
changed, it protects the location of the original. If the parameter value is passed
on the stack, this protection is automatic; if an address is passed on the stack,
the caller must copy the original value and pass the address of the copy-a
clumsy and expensive operation.

BASIC, which only puts addresses on the stack, provides no protection for
the original value; Pascal very explicitly allows us to protect values; C gives us
control but, to protect values, we have to know some C tricks.

■ Program A may need to have the parameters changed by B. When A needs to
have B change a parameter, the parameter passed on the stack must be an
address of the original value. This is the flip side of the last item. The called
subroutine changes the value by modifying what is stored at the specified
memory address.

BASIC always lees us change a value; Pascal gives us control; C tricks allow
control, too.

■ Subroutine B may need to pass information back; the information may be
simple or complex. Because of the complex and seemingly screwy rules that
BASIC follows, there is a complicated set of special rules for returning values co
a BASIC program. For all other languages, a simple, general principle applies:
If the value being returned is a single byte, it is returned in the AL register; if it
is two bytes, the full AX register is used. For more complex values, which are
less common, other rules are used. When this is the case, often the simplest
thing to do is return the value not as a function (which could use AX for the
value), but return the value in one of the parameters. This method is safe and
reliable for all languages. And, frankly, since there is a method chat works for all
languages, you would be wise to use it to avoid having to change your tech
niques when you change languages.

■ There may be more than one piece of information. If there is more than one
piece of information to be returned back co program A, pass it back through
several parameters. This is a standard technique common to all programming
languages.

■ Subroutine B needs to know what supporting framework it is getting from A.
This supporting framework involves such fundamental things as how the
segment registers are sec and whether there is a stack that can be used. In

262

20: Getting Program Access

general, the segment registers are just as they should be: CS has the right code
segment; OS points to the location of the calling program's data; SS and SP are
set up with the caller's own stack, and the called program can usually continue
to use the caller's stack. Unfortunately, there is no practical way to know how
much working space is available on the stack, but there is usually enough for
ordinary purposes.

This segment register and stack setup is standard among programming
languages. BASIC warns, however, that only 16 bytes of available space are
guaranteed on the stack, so a nervous subroutine can set up its own stack if it
wants. The ES register might have anything in it, though BASIC sets it to the
same location as the OS; the SS register is usually independently set, but,
again, BASIC sets it to the OS location.

■ Subroutine B may need workspace. A subroutine usually uses the stack for
its working storage, if the needs are reasonable-say, less than 64 bytes. If
more storage is needed, the subroutine should set up its own data space in
memory. The kind of assembly-language interface routine we are working
toward needs very little storage, so the stack should be just dandy for current
purposes.

■ Everyone needs to know how to behave; B must know what it is allowed to do
and what must be preserved. There are simple ground rules for what can and can't
be done.

The segment registers should be preserved. Some languages do not mind
having the extra segment register, ES, changed, but it is better to play it safe. If
any segment register is modified, the original should be preserved (by being
passed on the stack with a PUSH and later restored with a POP). One other
very important register to preserve, under most circumstances, is the BP (base
pointer) register; most programs use BP to keep track of a location on the stack
(usually the location of their parameters). So our interface routines ought to
preserve BP. BASIC, however, does not require this.

All the working registers, AX, BX, CX, DX, DI, and SI can be changed
freely, as can all the flags. The convention is that a calling program does not
expect its working register values to be preserved.

Interrupts can be suspended (though it is usually not a good idea, except
briefly when segment registers are changed), but must be turned back on
before returning.

The caller's stack also has to be preserved, although just how that is done is
part of the clean-up rules we are coming to.

■ Who cleans up when subroutine B has finished? This is one of the most
interesting topics of all. Cleaning up the mess mostly means removing bits and
pieces from the stack. There are four things that might be cluttering up the

263

EXPLORING THE IBM PCJR

stack when a subroutine is finished. First, there are parameters. Second, there
is the return address from the CALL instruction. Third, there might be
register values saved with PUSH instructions. And finally, there might be some
working storage for the subroutine.

All subroutines are expected to remove their working storage from the
stack. Saved register values are removed automatically when the values are
restored into their registers by POP instructions. Likewise, the return address
of the caller is restored automatically by the RET instruction. The matter for
debate is the set of parameters. Most programming languages expect the called
subroutine to remove the parameters from the stack-the caller puts them on,
the callee takes them off. This is done as part of the RET instruction. For
example, if 10 bytes of parameters were put on the stack, a subroutine would
end with the instruction RET 10.

This rule applies to BASIC and Pascal, but it does not apply to C. The rules
used by C have the caller eliminate the parameters after a subroutine has
returned. C is set up to make it easy to pass a variable number of parameters to a
subroutine, instead of a fixed number. Although the called subroutine has a
way of finding out how many parameters were passed (after all, it has to know)
and so could clean up the stack itself, C considers it simpler and safer to have
the calling program do it.

These are the main rules and programming conventions for connecting one
program to another. Of course, if we are programming strictly within one
language, such as Pascal, these details are handled for us, though it is interest
ing for us to know about them. But if we have to write assembly-language
programs that can be called by other languages, we need to know and work with
these rules in our assembly code.

Our main objective here is to see how to build assembly-language interface
routines so that our high-level language programs can get to the ROM-BIOS or
to the DOS services. The next section will show outlines of the assembly code
needed and also illustrate a typical connection to the ROM-BIOS.

A TYPICAL ROM-BIOS CONNECTION

What we'll be building here is an assembly-language interface routine to
connect to the ROM-BIOS. We'll build it up, piece by piece. At various points,
we'll have to assume that we're doing one thing or another-so what we put
together will not be a finished tool that you can use. It will be a collection of all
the elements you need to create your own interface routines. If you plan to go
on and do this yourself, you should have some ability to do assembly-language
programming for the 8088. The elements of our interface routine are so simple,
though, you do not have to be proficient in assembly language to make it work.

264

20: Getting Program Access

In fact, with some intelligence and pluck, you can build your own interface
routines successfully, even if you don't know any 8088 assembly language.

I know that this is true from my own experience. When I first started using
the IBM Macro Assembler, I knew nothing about 8088 assembly language and
had not learned half as much as this chapter is teaching you. Yet, my first
assembly-language interface routine (which was intended to let Pascal pro
grams read specific parts of a diskette) worked on my third try, and the whole
process took no more than 45 minutes. That is how easy it can be, even for a
beginner at assembly language.

Now, to work. Let's start with the overhead outline of the assembler source
code, with no working program parts. Here it is, with the assembler code in
CAPITALS and comments in lowercase:

IHTERFACE SEGMENT 'CODE'

PUBLIC MEMS I ZE

MEMS I ZE PROC FAR

; this defines an assembler
; SEGMENT, and marks it as CODE,

so it will be linked with other
programs. The name INTERFACE
is arbitrary.

this makes the subroutine
CMEMSIZE> that follows

; visible, or public, to the
; world. Without it, LIHK could

not.connect the subroutine to
its users. Our name, MEMSIZE
is arbitrary

this begins a procedure, a
subroutine itself. FAR or HEAR
should be specif ied-reca 11
that your programming language
may require you to use one or
the other. MEMSIZE is the name
of the subroutine; it could be
any name your language can use

; the body of the program would fit in here

MEMS I ZE EHDP

I HTERFACE EHDS

this tells the assembler we're
at the end of the MEMSIZE
subroutine

this tells the assembler we're
at the end of the IHTERFACE
segment

265

END

EXPLORING THE IBM PCJR

this tells the assembler we're
done, entirely

That is the assembler overhead, for the most part. The segment can
contain as many subroutines as we want, each enclosed in PROC-ENDP
statements.

Be sure to make each PROC either NEAR or FAR according to your lan
guage requirements. The exact coding on the SEGMENT statement depends
on the conventions used by the programming language. We can usually
find this out by studying how the language categorizes object modules (which
are the form programs take after they have been compiled or assembled,
but before they have been linked). We can usually learn what we need to
know either from the language's documentation, or by poring over the map
that is produced when we link a program. The SEGMENT statement we
showed here applies to Pascal. For C, you need to include a GROUP state
ment, something like this:

PGR0UP GROUP PR0G
INTERFACE SEGMENT BYTE PUBLIC 'PR0G'

All of that is needed, but the noticeable difference from Pascal is that the
named type is PROG, instead of CODE. Check the examples in your own
programming-language manual to get this sort of thing straight; that's where
I've always found out about these details, and that's where you should look,
too.

There is one more bit of overhead we ought to mention. Although our
example here will not involve any logic and branching, others might. Many of
the ROM-BIOS services indicate success or failure with a flag, such as the CF
flag, and our assembly-language routines will need to test that flag and branch
on it. Even though these branches don't need or use the CS segment register,
the assembler insists on knowing about the CS value. So to solve this problem,
we insert an innocuous statement, following the SEGMENT statement, like this:

ASSUME CS: INTERFACE

So far, what we have seen is the assembler overhead, which generates no
machine code at all. Next we'll look at the program overhead-the part of the
program that takes care of beginning and ending, but not the part that does our
specific work. Here is the standard code for that:

PUSH BP ; we save the caller's BP-this is important to
; the caller; we're about to create our own BP

266

20: Getting Program Acars

MDV BP,SP; we move the current stack pointer, SP, into
the base pointer, BP, so that we can look at
our parameters on the stack

our working instructions would be here

POP BP

RET 0

now we restore our caller's BP

now we return to our caller; the assembler
automatically makes this a HEAR or FAR
return. If we are to take parameters off
the stack, we replace the "0" with the
number of bytes-usually two for each
parameter (check in your case). For no
parameters, or for the C language, we use
zero

The setting of BP is what enables us to get at the part of the stack holding
our parameters. We'll come to that shortly. First, let's complete one.subroutine
by asking it to perform the simplest kind of ROM-BIOS interface-a straight
forward interrupt service with no parameters. Interrupt 18 (hex 12), which gives
us the size of memory, will serve nicely. To get this service, we just do this:

IHT 12H ; request interrupt hex 12-memory size

This one short instruction is the working body of our subroutine. As it turns
out, this ROM-BIOS service returns its value, the size of memory, in the AX
register. This is the standard place to return it to our caller, so we don't need
any _more code at all.

In case you've lost track of any of the pieces, look at Figure 20-1 to put it all
together.

One of the most complicated things we have to consider in our interface
routine is how to get our hands on parameters. The BP is set to the current
location in the stack, above which will be our parameters. But we need a little
help to know what is there. The stack will have our parameters on it, probably
with two bytes for each. (Even 1-byte parameters take up two bytes on the
stack. Usually, only a segmented address from Pascal takes up more than two
bytes.) The stack will also have the return address of the caller, which will be
two bytes foraNEARPROCand four fora FAR PROC. Finally, it will have the
BP value we originally pushed. Figure 20-2 is a diagram of the stack contents,
in the case of a FAR subroutine with 2-byte parameters. For a NEAR sub
routine, each parameter would be two bytes closer to BP.

267

EXPLORING THE IBM PCJR

INTERFACE SEGMEHT 'CODE'
ASSUME CS:IHTERFACE
PUBLIC MEMSIZE

MEMSIZE PROC FAR
PUSH BP
MOV BP,SP
IHT 12H
POP BP
RET 0

MEMSIZE EHDP

INTERFACE EHDS
EHD

Figure 20-1. An assembly-language interface routine to access
ROM-BIOS interrupt 18 (hex 12)

Now, what order are the parameters in? The Microsoft convention is to
push the parameters in the order they are written, and this means that the
receiving subroutine finds them in the reverse order: BP + 6 would be the last
parameter, BP + 8 would be next to last, and so forth. C, which you'll recall
was written not by Microsoft, but by the folks at Lattice, goes the other way. It
pushes the parameters in the reverse order, so that the receiving subroutine
finds them on the stack from first to last.

For an example of how this is done, let's use our assembler interface to set

Location

BP
BP+ 2

BP+ 6
BP+ 8
BP+ 10

Contents

Caller's saved BP
Return address (offset and segment offset

only for NEAR)
One parameter (B + 4, if NEAR)
Another parameter
Yet another parameter

Figure 20-2. Stack contents fora FAR PROC
with 2-byte parameters

268

20: Getting Program Acce.s

the time-of-day tick count. Before invoking this service, which is service code
1, interrupt 26 (hex lA), we would have to hand it the parameters-the tick
count. This ROM-BIOS service expects to get the parameters in registers CX
and DX. We can move them there from the stack, like this:

MDV
MDV

DX,[BP + 81
ex, rnP + 1 o 1

; move the second parameter into DX
; move the first parameter into ex

The expression [BP + 8] means this: Take the value in BP, add 8 to it, and
then, as indicated by the brackets, take the resulting value as a relative offset
address to find and grab a value from memory. And that value is the one that the
instruction moves into the DX register. Next, we would invoke the ROM
BIOS service, like this:

MDV
INT

AH, 1
1 AH

service code 1: set the clock
invoke interrupt hex 1A

Now, the way we grabbed the parameters assumed that the values them
selves were on the stack. Suppose that their addresses were on the stack
instead, as they are in BASIC and can be with Pascal and C. Here is what we
would do to get them:

MDV
MDV

DX,[BP+8l
DX, [DX l

; move the address into DX
; move the value that DX points to

The same maneuver would load the CX register.

MDV e X , [BP + 1 0 l
MDV ex, [eX]

If we are modifying a parameter, the process is reversed. Suppose that,
instead of using the ROM-BIOS service that sets the tick count, we used the
service (interrupt hex lA, service code 0) that tells us the tick count. After we
got it, we would want to pass it back to our parameters. We would do that in a
way similar to the way we set the tick count, but with the movement reversed:

MDV
INT
MDV
MDV
MDV

AH,O
1 AH
AX, [BP + 81
[AX] ,DX
AX, [Bp + 1 0 l

; service code 0: read the clock
; invoke interrupt hex 1A
; move the address into AX
; move the value from DX to memory
; move the address into AX

269

EXPLORING THE IBM PCJR

MOV CAXl,CX ; move the value from CX to memory

Before, we performed the trick of using CX and DX to hold first an address
and then a value; here, we need some other place to hold the address, and so we
use AX, which is conveniently available.

We've now covered all the main points of writing a working, assembly
language interface to the BIOS, but there are still two more small items to
cover: saving more registers and branching on the flags.

Some of the ROM-BIOS services that we might use call for setting segment
registers, which should be preserved. lfwe have to save any registers, we do it
on the stack, with some PUSH instructions. Just for illustration, here is what
we would do to save both OS and ES:

PUSH DS
PUSH ES

This would be done just after the two start-up instructions:

PUSH BP
MOV BP,SP

When we are through, we need to restore the registers. This has to be done
in the reverse order, so we would finish with instructions like this:

POP ES
POP DS
POP BP

with the ,return instruction, RET, immediately following.
Also, as we have mentioned, some of the ROM-BIOS services use flags to

signal success or failure. Our high-level languages can't see these flags, so we
need to translate them into visible values-for example, a 1 in AX for success,
and a O in AX for failure.

For a specific example, let's use the diskette services: the carry flag (CF) is
0 on success, and 1 on failure. We cannot just move the CF flag into AX, but we
can branch on it, like this:

MOV AX,O

JC RETURH

MOV AX, 1
RETURH:

RET

; set to failure code,
; for the moment

if carry flag is set, skip over
success code
set to success code
label for jump-if-carry
instruction
return to caller

With all that, you now have all the parts and examples that you need to
build your own, custom interface routines. To finish up, we will look at the

270

20: Gettin!{ Program Acces-s

specific rules used by the programming languages BASIC, Pascal, and C.

THE RULES FOR BASIC

BASIC has its own, rather complicated rules for many of the things that are
particular to BASIC, such as the way string and floating-point values are passed
back from functions. We will not cover them here, for they belong in a book of
tricks for BASIC, such as Mastering the IBM PCjr Home Computer. Our goal here
is simply to connect BASIC to assembly-language routines so it can interface
with the ROM-BIOS, so we can hold to the simple stuff.

Here are the variations that apply for BASIC. First, all calls are FAR, so the
interface routine must be declared FAR. The parameters are all passed as the
relative offset addresses of the actual parameter values. The parameters are
pushed onto the stack in the order they are written, so the interface routine will
find them in reverse order, as mentioned above.

Most parameters that you might want to pass are simple integers, which
you can declare in BASIC with the% suffix. Using either string parameters or
floating-point (single- and double-precision) numbers is just asking for extra
grief in your assembly-language coding.

Recall that BASIC sets ES, DS, and SS to the address of its data space.
With interpreted BASIC, everything is kept in this space. If your assembler
program needs to know the current DEF SEG value, it is in the CS register,
controlling the code location of our assembler subroutine.

The subroutine is responsible for clearing the parameters off the stack; if
there are X number of parameters (each of which, remember, takes two bytes),
use a RET 2 * X instruction.

If you are using the BASIC compiler, be aware of the special differences in
calling external routines. While interpreted BASIC uses the CALL statement
to use assembler routines that are poked or loaded (with a BLOAD instruction)
into memory, compiled BASIC does this with CALL ABSOLUTE. Compiled
BASIC uses the CALL statement the same way most languages do, calling the
program by name and using the linker to combine programs and subroutines.

And, finally, if you find any of this confusing, don't forge blindly ahead.
This is a tricky technical area; study it carefully until you understand what's
going on, and then go ahead-again, carefully.

THE RULES FOR PASCAL

Of all the languages available for the PCjr, Pascal is probably the richest and
best organized. Certainly it gives us the most control over the way a connection

271

EXPLORING THE IBM PCJR

is made to assembly-language interface routines. Here are the particulars on
how to connect Pascal to an assembler interface.

Pascal is set up to use both NEAR and FAR calls, but all external rou
tines-including assembly interfaces-are treated as FAR. As with BASIC,
parameters are pushed in the order written, so an interface routine should look
for them in reverse order. Again as with BASIC, the subroutine must clear
parameters off the stack with its RET instruction.

Either parameter values or their addresses may be placed on the stack. We
can also choose whether the addresses are relative to the OS register or are
complete segmented addresses. When a subroutine is declared in Pascal, its
parameters are declared, either with or without the VAR option. With VAR, the
subroutine is given the address of the parameter, so that it can be changed. In
this case, VAR places the address of a variable on the stack. If an S is added,
making the option VARS, Pascal passes a segmented address, instead of just a
relative offset address. For each VARS parameter, four bytes are placed on the
stack: the segment paragraph first, then the relative offset.

When VAR is not specified in Pascal, we are telling Pascal to protect our
data from change. This means that Pascal must make a copy of the data and let
the subroutine have access to the copy. When the parameter value is a byte or a
word-normal for routines interfacing with the ROM-BOS-the value itselfis
placed on the stack. With a longer or more complex parameter, Pascal copies
the value to somewhere in memory, and then passes the address of the copy as a
parameter on the stack. This is obviously inefficient and adds unnecessary
overhead to the program.

Pascal expects the results of word or byte functions to come back in the AX
or AL registers, so our subroutines can freely use them to return values. For
more than one value, or longer values, pass the information back to your Pascal
program through a VAR parameter.

For an example of the Pascal side of the connection with assembly lan
guage, here is how we would declare and use the MEMSIZE routine we
developed above:

FUNCTION MEMS I ZE WORD;
EXTERNAL;

X : = MEMS I ZE ;
WRITELN ('The size of memory is ' X, 'K-bytes');

A routine named READ_ TICKS, which reads the tick count, might be
declared like this:

PROCEDURE READ_TICKS CVAR LOW_COUNT, HIGH_COUNT WORD>;

272

20: Getting Program Access

EXTERNAL;

READ_ TICKS C X , Y>;

Similar methods can be used to interface to any ROM-BIOS or DOS
service routine.

THE RULES FOR C

The same basic operations can be performed with C, but there are dif
ferences in the rules-partly because of the nature of C, and partly because
the C compiler was written by a company other than Microsoft, and so some
different approaches were taken to technical issues.

All calls are made as NEAR in C, and the caller, not the called subroutine,
is responsible for clearing parameters off the stack. So, while there is enough
similarity to the way BASIC and Pascal operate to allow the use of identical
interface routines, C requires coding that matches its own calling conventions.

As mentioned before, C pushes parameters onto the stack in reverse order,
so that the receiving routine finds them in the order they were written. Like
Pascal, C can pass either the address or the value of a parameter; and, again like
Pascal, it can pass only 1- or 2-byte values directly on the stack. However, like
BASIC and unlike Pascal, C passes only relative offset addresses, not seg
mented addresses.

In Pascal, the distinction between passing an address and passing a value is
made in the declaration. Since C does not have subroutine declarations, we
specify whether the address or the value is to be passed when the parameter is
given. This is how it is done. If a variable, constant, or expression appears as
the parameter, like this:

READ_TICKS CLO_COUNT ,HI_COUNT>

then the value is passed on the stack. But, if a variable name is given with &
before it, the address is passed on the stack:

READ_ TICKS C &LO_COUNT, &HI _COUNT>

By the rules of C, you could call a parameter both ways-but, of course, the
subroutine would be expecting to find either a value or an address on the
parameter stack, so we would have to make sure we did it whichever way the
subroutine expected.

And that finishes our short tour through assembly-language connections to
the ROM-BIOS. It also ends our exploration of the IBM PCjr.

273

APPENDICES
This group of five appendices includes

a glossary, suggestions for further
reading, a description of the

Norton Utilities, a table of the
extended ASCII characters, and

the 8086/8088 instruction set.

APPENDIX

A
GLOSSARY

Address
A number that locates and identifies each 1-byte memory location. Our

computer's addresses are 20 bits, too big for 16-bit calculations; so addresses are
divided into a segment and a relative part, two 16-bit words that are combined
to produce a 20-bit address.

Address register
Any of nine special registers used in specifying memory addresses. Four

registers are used to specify the segment part of an address: the CS register for
the code segment; OS for the data segment; SS for the stack segment; and ES
for an extra data segment. Five registers are used to specify the relative or offset
part of an address: IP (also called PC) for the instruction pointer, used with CS;
SP for the stack pointer and BP for the base pointer, used with SS; DI and SI for
the source and destination indexes, used with OS. These registers are dedi
cated to addressing; the general registers (AX, BX, CX, and DX) can also be
used for relative addresses.

Amplitude
The strength or loudness of a sound.

Apage, or artive page
A parameter of the BASIC SCREEN command that controls which display

page receives any output from the program.

Appliration program
An informal term used to distinguish programs, such as a word-processing

program or an accounting program, that help us do things other than run the
computer. Programs that help with running the computer, such as DOS and
BASIC, are called systems programs.

ASCII, ASCII text
ASCII, the American Standard Code for Information Interchange, sets a

standard way to store characters-letters of the alphabet, punctuation and

277

EXPLORING THE IBM PCJR

such-in computers. ASCII text, or just text, is information, like the words
you're reading here, stored in a computer following the ASCII coding scheme.
Standard ASCII consists of the most common, standard characters. Extended
ASCII adds additional characters to standard ASCII, to enrich its possibilities.

Assembler
A systems program that translates assembly-language source code pro

grams into machine-language code. A compiler does the same for languages
other than assembly, such as Pascal or BASIC. We use the term assembler
exclusively for assembly language, and compiler for other languages; otherwise,
the terms mean the same. Assemblers and compilers are one kind of lan
guage translator; interpreters are another.

Assemb~v language
A form of programming language very close to machine language. It uses

words, such as ADD, to represent machine-language codes, such as hex
83C207. When we speak informally, assembly language and machine language
are sometimes used to mean the same thing-the computer's own detailed
instructions. Assembly language is in a form that people can read; machine
language is in a form the computer can execute.

Asynrhronous
One of two main ways that computers can communicate. The convention

for asynchronous communications is known as RS-232C. Data are passed
serially, which means bit-by-bit, and the transmission of the data is asynchro
nous-the sender and receiver don't expect bits to appear at certain precise
times. Compare synchronous.

Both asynchronous and synchronous are called serial communications and
can be used to talk over telephone lines, to other computers, or to a printer.
There is another, more efficient way to talk to a printer from our PCjr called
parallel communications.

Attenuation
Volume control; measured in decibels (dB).

AX
One of several general-purpose, or scratch-pad, registers. The others are

BX, CX, and DX, and their halves AH and AL, BH and BL, etc. See scratch
pad register.

BASIC
A programming language that is very widely used with small computers.

Our PCjr, like the other IBM personal computers, has a simple version, called
Cassette BASIC built into it; the BASIC language cartridge has a richer version

278

A: Glossary

of BASIC. These versions of BASIC are interpreted; there is also a compiled
version of BASIC.

BAS/CA
Advanced BASIC. The BASIC cartridge contains both ordinary BASIC and

advanced BASICA. In the original IBM personal computers, BASIC and
BASICA were two distinct diskette programs; the distinction is less significant
in the PCjr's cartridge BASIC. There is no difference between BASIC and
BASICA in the PCjr.

Batrh rommand file
A diskette file that contains several DOS commands, which can be per

formed in a combined operation. Batch files are identified by the file-name
extension BAT. AUTOEXEC.BAT is a batch command file.

Baud
The speed of a communications line, equivalent to one bit transmitted

each second.

Binary
A number system based on powers of two. Binary numbers are written with

only two symbols, 1 and 0. Binary numbers are used to represent high and low
voltage inside the computer.

BIOS
The Basic Input/Output System, a set of programs that intimately control

the computer's operation, especially input and output. There is a ROM-BIOS,
built into our computers, that is an integral part of the machine. Another BIOS,
which builds on the services provided by the ROM-BIOS, is a part of DOS.

Bit
A binary digit.

Bit nibbling
The process of having a program, instead of hardware, decode bit signals.

BLOAD fonnat
A disk file format used by BASIC. The data in a BLOAD-format file are the

exact image of what is in memory, but BASIC adds a header and a trailer to the
file to indicate what is what. The BASIC commands BLOAD and BSAVE read
and write data in this format.

Boot, boot record
To start up the computer, particularly to load in the programs that supervise

the computer's operation. Turning the computer on, or pressing the Ctrl-Alt-

279

EXPLORING THE IBM PCJR

Del key combination will boot up the computer. Diskettes contain a boot
record, a short program used to start up the disk operating system, DOS.

Bootstrap loader
A program that starts up the computer, particularly from a diskette. This

program looks to the diskette for a boot record. If there is no disk drive, it
transfers control to Cassette BASIC.

Bootstrap program
The program that starts up the computer's operation. When referring to

diskettes, the bootstrap program is the boot record. When referring to the
computer's built-in ROM programs, this program is the one that initializes the
computer, and then tries to activate a boot record from diskette.

BP
The base pointer register, used to locate parts of the stack (as is the SP).

Buffer
A section of memory set aside to assist in 1/0 operations. Typically, a buffer

is used to cushion the difference between the amount of data that a program
wants to work with, and the amount of data that the 1/0 device, such as a dis
kette, works with.

Bus
The collection of wires that makes up a common signal channel for the

computer's information. The bus is a "party line" that allows many parts of the
computer to share a general-purpose communication channel. On our PCjr,
the 1/0 channel connector on the right side (where the printer adapter attaches)
is a bus connection. On the PC and XT, the expansion slots are each connections
to the bus.

Bus ordnterture
The computer design philosophy that uses a general-purpose bus instead

of many special-purpose connections for the parts of the computer to talk to
each other.

BX
One of several general-purpose, or scratch-pad, registers. The others are

AX, CX, and DX, and their halves AH and AL, BH and BL, etc. See scratch
pad register.

Byte
Eight bits, treated as a single unit. A byte is the common unit of computer

memory, and each byte in memory has its unique address. A byte can hold a

280

A: Glossa

single character, coded in ASCII, so the terms byte and character are some
times used interchangeably.

C011ridge
A plug-in unit which contains a program permanently recorded in read only

memory (ROM). Also called a software cartridge.

Cassette BASIC
The version of BASIC that is built into the PCjr. IBM calls it Cassette

BASIC (although it has little to do with cassettes). I sometimes call it ROM
BASIC, since it's built into the ROM, just like the ROM-BIOS.

Cassette :nte,fare
A connection for use with a cassette recorder; it provides a cheap and

reasonably efficient way to store data.

Cathode ray ti:be
See CRT.

Ce:ztronirs inte,fare
One of two standard schemes for passing signals from a computer to a

printer; also called a parallel interface, or parallel connection. The other is the
serial, or RS-232, connection. The PCjr's printer adapter, which attaches to the
right side of the system unit, provides a Centronics parallel interface. The IBM
graphics printer and the Epson printers use the parallel interface; the IBM
Compact Printer uses the serial interface.

Chararter genemtor
A device built into the display circuitry that does the work of making the

characters that ASCII codes represent appear on the screen.

Clork signal
A signal used by the 8088 to regulate and synchronize its operation. In the

PCjr, the clock runs at 4. 77 MHz, or slightly less than 5 million clock cycles
each second.

Cluster
The unit of storage allocated to a file by DOS. As a file grows and needs

more space, DOS allocates the space piece-by-piece, in clusters. For single
sided diskettes, a cluster consists of a single sector; for double-sided diskettes,
there are two sectors in a cluster.

Code segment
The area of memory where the current program is located. The CS register

is used to indicate the location of the code segment.

281

EXPLORING THE IBM PCJR

Color/graphics adapter
One of two display adapters used by the PC and XT; the other is the

monochrome adapter. Our PCjr has the equivalent of a color/graphics adapter
built into it. The monochrome adapter displays only characters and not pic
tures (graphics), and cannot produce colors. Our PCjr does not use the mono
chrome adapter.

COJ!, C01'1. file
One of two diskette formats for executable programs; the other is EXE.

This format is identified by the file-name extension COM. The COM format is
more compact than the EXE, and provides less program support. A COM file is
essentially an exact image of a program, as it appears in memory. Note that
BASIC programs are neither COM nor EXE, since they are not executable
(they must be interpreted by the BASIC language program). Compare EXE.

Command interpreter
A key part of DOS, which accepts our commands and acts on them. The

command interpreter is stored in the diskette file named COMMAND.COM.
Occasionally the command interpreter is overwritten by an application program
and must be reloaded into memory when that program ends; this is why we may
wish to copy COMMAND.COM onto many of our diskettes.

Compiler
A systems program that translates high-level languages, such as Pascal, into

machine-language code. An assembler does the same for assembly language,
so assembler and compiler mean much the same. Compilers and assemblers are
one kind of language translator; interpreters are another.

Composite video
A display signal that combines the three color signals (red, green, and blue)

into one.

Copy protection
A scheme to prevent diskettes from being copied.

CRT
Cathode ray tube; the type of display screen ordinarily used for television

sets and computer display screens. The term CRT is usually used just to mean
the computer's display screen.

cs
The code segment register, used to indicate the general section of memory

where a program is currently located.

282

A: Glossary

ex
One of several general-purpose, or scratch-pad, registers. The others are

AX, BX, and DX, and their halves AH and AL, BH and BL, etc. See scratch
pad register.

Data segment
The area of memory currently being used for a program's miscellaneous

data. The OS register is used to indicate the location of the data segment.

DEBl'G
A powerful, complex program included as part of the DOS operating

system, intended as a working tool for advanced programmers. It enables us to
explore memory, disks, programs, and data.

Deribr/ (dB)
A scientific measure of how loud sound is, or of how strong sound-related

signals are. The term is also used in the opposite sense, to indicate how much a
sound signal has been reduced, or attenuated. Decibels are of interest to us
when we consider the technical details of the PCjr's TI sound generation chip.

Demodulation
The translation of telephone signals into computer signals; the opposite of

modulation, which translates the other way. A modem does both translations,
so that a computer can be connected to the telephone system.

Diagnostir routines
Programs that test the keyboard, the diskette drive, and so forth for mal

functioning. They are divided into two groups: a complete, interactive set of
diagnostics incorporated into a separate part of the ROM and used during man
ufacturing, and the simple, quick, but essential diagnostics performed by the
ordinary ROM-BIOS when the machine is turned on.

Dirrrt mrmo,y arress (DJ1A)
The process by which diskette drive circuitry works directly with the

computer's memory. Our PCjr works with its diskettes by bit nibbling, rather
than by OMA. This is one reason why Junior is slower than its bigger brothers.

Direrto,y
An item stored on the diskette containing a record for each file on the

diskette, giving the file's name, size, location, and so forth. Each diskette has a
root, or main directory; with DOS 2.00 and later versions, each diskette can
also have subdirectories. The root directory is kept in a fixed, standard location
at the beginning of each diskette; a subdirectory is stored like any other file.
The root directory is fixed in size and limits the number of files it will keep

283

EXPLORING THE IBM PCJR

track of; subdirectories have no size limit. Subdirectories are always attached to
a parent directory, which can be either the root directory or another subdirectory.

Disassembling
The process of translating the machine-language form of a pmgram into

assembly code; so named because disassembling reverses the process followed
by an assembler when it translates assembly language into machine language.
The DEBUG program can disassemble (or unassemble) other programs, with
the U-unassemble command.

Disk operating system
See DOS.

Diskette
A disk of magnetic recording material, which can be used to record com

puter information. Diskettes are the most common way of storing information
for personal computers. Diskettes and cartridges are the two main ways to bring
programs to our computers. To use diskettes with our PCjr, we must have the
diskette drive, and usually DOS as well.

Diskette drive
The recording and playback machinery needed to use diskettes. The

enhanced model of PCjr comes with a diskette drive.

Diskette drive adapter
The circuitry that controls a diskette drive. When a computer has several

diskette drives, they are usually controlled by a single adapter. The PCjr's
adapter will only allow one diskette drive.

Display
One of many terms for the visual screen on which the computer shows its

results. A computer's display screen is very similar to the screen of a TV set,
and a TV can be used as a computer display screen. Display screens are also some
times informally called terminals.

DOS
The Disk Operating System, which provides the facilities needed to make

the PCjr a complete working computer. Programs need an environment, an
operating framework, in which to work. The task of the disk operating system
is to provide the framework, the working environment that programs need to
get their work done. The operating system does three main things: task
management, memory management, and storage management. The DOS that
we use on the PCjr is also called PC-DOS, to distinguish it from the closely
related version, MS-DOS. PC-DOS is specifically adapted to the IBM personal

284

A: Glossa

computers; MS-DOS is used on many different computers. Both are
by Microsoft.

DOS jzmaions, interrupts, and snr.:ires
These are tasks carried out by DOS to assist the operation of programs.

They are used, for example, to read or write information on diskettes. They are
divided into two groups, technically known as functions and interrupts; in this
book, the two together are informally referred to as DOS services.

DOS-BIOS
The BIOS programs that are specially written to support DOS. The DOS

BIOS builds on the PCjr's built in ROM-BIOS.

Double densi(\'
The recording density used by our PCjr's diskettes. Other densities, such

as single and quad, are not used on Junior.

Double prerision
One of several formats of numbers used by BASIC. Double-precision

numbers are accurate to about 14 decimal places.

DS
The data segment register, used to indicate the general section of memory

where a program's data are located.

Dummy intnTupt handler
An interrupt-handler program that does nothing, in effect causing an in

terrupt to be ignored.

DX
One of several general-purpose, or scratch-pad, registers. The others are

AX, BX, and CX, and their halves AH and AL, BH and BL, etc. See scratch
pad register.

ES
The extra segment register, used mostly to supplement the OS register.

EXE, KYE file
One of two diskette formats for executable programs; the other is COM.

This format is identified by the file-name extension EXE. The EXE format is
less compact than the COM, and it includes features that allow for extra
program support. Note that BASIC programs are neither COM nor EXE, since
they are not executable (they must be interpreted by the BASIC language
program). Compare COM.

285

EXPLORING THE IBM PCJR

Expansion slot
A general circuit connection that allows additions to be plugged into a

computer. The PC and XT each contain expansion slots, but our PCjr does
not. However, the PCjr's 1/0 channel connector makes it possible to attach
expansion slots.

Extended ASCJ I
The full character set used by the PCjr. It consists of standard ASCII plus

many additional characters.

External commands
Commands to DOS that are not incorporated into the command inter

preter. Several commands, such as DIR and TIME, are internal, or part of the
command interpreter. DOS tries to find the programs to carry out external
commands by looking to cartridges, and to the files on a diskette.

File allocation table (FAT)
A table, recorded on each diskette, used to indicate where each diskette

file is located and which part of the diskette is free for new information.

Fixed disk
One of several terms for a high-capacity storage disk, such as the one built

into the XT model of IBM personal computer. Our PCjr does not normally use
this kind of disk.

Flag, flag ref!,ister
One of several bits in the PCjr's 8088 microprocessor used to control key

operations, such as whether interrupts are acted on or suspended. The 8088's
flags act independently, but can be treated as a group by accessing the flag
register. The term flag is also used in a general way to mean any bit or other
signal used as control information.

Flippy diskette
A variety of diskette that can be recorded on both sides, but is used as if it

were two separate, single-sided diskettes. To use the second side, you turn the
diskette over.

Floatini-point numbers
A format of numbers that allows a very wide range of numbers. Most

programming languages use floating-point numbers; BASIC uses them under
the two names single precision and double precision (both are types of floating
point). Floating-point numbers may not be precise. Fixed-point numbers,
such as integers (or whole numbers), are precise, but cannot take on the wide
range of values of floating-point numbers.

286

A: Glossary

Fonnatting
The preparation of a new diskette for use with the computer. Formatting is

the writing of reference, or framework, information on the diskette that
identifies each diskette sector.

Frequency
The tone or pitch of a sound.

Game paddle
Essentially, half a joystick; a paddle has one button and its lever moves in

only one dimension.

Game adapter card
The supporting circuitry for joysticks, games, and educational software.

Our PCjr includes a built-in game adapter; it is an extra feature for the PC
and XT.

General registers
The registers that programs can use for any needed purpose, as opposed to

the address registers, which are dedicated to addressing memory. There are
four 16-bit general registers, AX, BX, CX, and DX. Each of these is also
divided into two 8-bit half registers, AH and AL, BH and BL, CH and CL, and
DH and DL.

Hard disk
One of several terms for a high-capacity storage disk, such as the one built

into the XT model of IBM personal computer. Our PCjr does not normally use
this kind of disk.

Hardw1are
The physical parts of a computer. Compare software.

Head
The magnetic, read-write part of the diskette drive. Heads move in and out

to go from track to track of the diskette.

Header
Information recorded at the beginning of a file or section of memory, used

to identify information that follows. For example, each software cartridge has a
header that identifies the cartridge's contents. Likewise, the BLOAD format
has a header that gives key information about what follows.

Hex
Short for hexadecimal.

287

EXPLORING THE IBM PCJR

Hexaderimal
A number system based on powers of 16. Each hex digit represents four

binary digits. We need 16 symbols to write in hex: the same ten we use for
decimal numbers (0 through 9) and the symbols A through F to represent the
values 10 through 15.

Immediate addressing
A form of machine-language instruction in which the address of some data

is included in the instruction itself. An instruction can use immediate address
ing, or it can refer to an address register, which holds the data's address.

Index hole
A small opening on a diskette jacket that is used by the diskeJte drive to

find a matching hole on the diskette itself. This index hole indicates the
beginning and end of a track of data on the diskette.

I nstrurtion set
The machine-language instructions that are particular to a microprocessor,

such as our PCjr's 8088; the repertoire of detailed commands that the computer
can carry out. Aficionados of computers can debate endlessly the merits of one
instruction set over another.

Integer
A whole number, as opposed to a floating-point number.

I nterleaz;ing
A technique in which multiple circuits separate out and control adjacent

memory locations. Interleaving allows computer memory to act as if it worked
much faster than it really does.

Internal rommands
Commands to DOS that are incorporated into the command interpreter.

Several commands, such as DIR and TIME, are internal, or part of the com
mand interpreter. When we give DOS a command, it checks first to see if it is
internal, before searching for an external command.

Interpreter
A program that carries out, or executes, another program by looking at the

program as we've written it, and then performing each step in turn; as opposed
to a compiler or an assembler, which translates a program into machine lan
guage (that can later be used, or executed). An interpreter figures out what
needs to be done as the program is being used, which makes it slower than a
compiled program, where the figuring out is done in advance. The BASIC car
tridge contains an interpreter for the BASIC language. When we use BASIC,

288

A: Glossary

we're normally using the BASIC interpreter to carry out, or interpret, a BASIC
program. (There is also a compiled form of BASIC, which can be much faster.)
The most popular interpreted languages are BASIC, Logo, and Forth. Lan
guages such as Pascal are usually compiled, rather than interpreted.

Interrupt
A signal to the computer to drop what it is doing, and pay attention to some

important event. When we press a key on the computer's keyboard, an inter
rupt is generated, telling the computer that a key has been pressed (and it
should then find out which one, and act on it). The idea of interrupts allows our
computers to go about their business efficiently, and still respond instantly to
something that needs attention.

Interrupt handler
A program that responds to an interrupt, and figures out what needs to be

done about it. Each basic type of interrupt has its own interrupt handler,
custom-tailored. For example, there is one that responds to keyboard inter
rupts; another oversees the diskette drive. Some interrupt handlers deal with
external events (as in the keyboard and diskette drive); others respond to
internal interrupts, which are generated by programs. The DOS interrupts, for
example, are used to provide services to programs; the handlers for these inter
rupts are a part of DOS. When an interrupt vector has done its work, it returns
control of the computer to what was being done when the interrupt occurred.

Interrupt 'Vertor
The address of an interrupt-handler program. When an interrupt occurs, it

has a number that identifies what type it is; this number is used to look up an
interrupt vector in a table of these addresses. Control of the computer is then
given to the interrupt handler.

110 channel connector
A bus-type connection on the right side of the PCjr's system unit. The

parallel printer adapter plugs into this connector. This connector can also be
used to add new options to Junior. It is the equivalent of the expansion slots in
the PC and XT.

IP
The instruction pointer register, also called the PC, program counter. The

IP gives the offset, within the code segment (pointed to by the CS register),
that indicates just which part of a program is being executed. IP and CS
together control the flow through a program.

Joystick
A plug-in device used almost exclusively with games and educational

289

EXPLORING THE IBM PCJR

software. Joysticks are made up of two elements: the lever or stick itself, which
is used to move a playing piece around the screen, and the triggers, which are
used as firing buttons.

K
Short for kilo, the metric word for 1,000. When used with computers, K

represents a binary number whose exact value is 2 to the 10th power, or 1,024.
When we use the term K, we are usually referring to how many bytes of storage
there are in memory or on disk; so K usually means 1,024 bytes, and not just the
number 1,024 itself.

Keyboard Adventure
A program built into each PCjr, which makes a game of learning how to use

Junior's keyboard.

Label, on diskettes
A directory entry that identifies the diskette internally the same way paper

labels identify it externally.

Light pen
A hand-held probe that, when touched to the computer's display screen

and used with the right programs, can be used to draw on the screen and do
other things.

LINK
A program that is part of DOS and translates object code into the EXE

executable format. Compilers tran'slate our source code into machine lan
guage; for technical reasons, though, they put it into a form called object code,
which is not completely ready to use. LINK can combine several pieces of
object code and put it into the ready-to-use format of an EXE file.

Loader program
A part of DOS's command interpreter, COMMAND.COM, that loads a

program into memory.

Marhine language
The detailed form of computer programs, in the format that the computer

can actually carry out. Sometimes machine language and assembly language
are informally spoken of as if they were the same thing. Actually, machine
language is what the computer carries out, and assembly language is its near
equivalent, in a format that we can understand .

Memory
Where computer information is stored. The term memory is used in many

290

A: G/ossa

informal ways, but it usually refers to the general-purpose storage inside a
computer, where programs and data are kept while they are being used. This
memory is properly called random access memory, or RAM, which shouldn't
be confused with read only memory, or ROM, which is permanently recorded.
Memory is organized into 8-bit bytes, and each byte of memory has its own
address. Large amounts of memory are usually spoken of in terms of K, or
multiples of 1,024 bytes.

, Uemory-mapped display
The use of memory to control what is on the display screen. Any display

related change to the memory causes an immediate change to the display
screen; a very fast and very efficient way to operate a display screen.

M itroproressor
The active, working part of a computer that carries out programs is called

the processor. When a processor is miniaturized into a single computer chip,
like our PCjr's 8088, it is called a microprocessor.

Jfodnn
A translator between computer signals and telephone signals. A modem

modulates computer signals into telephone signals, and demodulates them in
return; it gets its name from these terms.

Modulation
Translation from computer signals to telephone signals; part of the basic

work of a modem. Compare demodulation.

Jfodule
A general term for a functional part of a computer. It's used most often to

refer to a part of a program. Usually a program module is designed to perform
some distinct task in a general-purpose way, so that it can be used by many
different programs that need that particular work done. Program modules may
be written as building blocks that can be used again and again, but any separate
part of a program can be called a module, and sometimes hardware parts are
called modules.

Monorhrome adapter
One of two display adapters used by the PC and XT; the other is the color/

graphics adapter. Our PCjr has the equivalent of a color/graphics adapter built
into it, and it can do essentially everything the monochrome adapter can do.
The monochrome adapter displays only characters and not pictures (graphics),
and cannot produce colors. Our PCjr does not use the monochrome adapter.

291

EXPLORING THE IBM PCJR

Motherboard
A folksy term for the system board, the part that contains most of the

computer's main circuitry and computer chips .

.Von-maskable interrupt (NM I)
A sort of fire alarm that can be used to have the computer take some last

minute, desperate steps before trouble sets in, as when the power is failing.

Objert rode
A particular format of machine-language code. Compilers and assemblers

produce object code, which must then be prepared for use by the LINK pro
gram. The object code format is designed to make it practical to prepare parts
of programs separately, and then later combine them into complete programs.

Offset
The part of a 20-bit, segmented address that refers to any location that is up

to 64K bytes away from the segment location. See also segment.

Op rode
Short for operation code. Machine-language instructions.

Operand
A parameter or specification that completes the details needed to carry out

a command or operation. For example, if we give the computer an instruction
to ADD, we have to tell it what numbers to add together and where to put the
result-these are the operands of the ADD instruction.

Page
A single image of the display screen; part of memory mapping.

Palette
A selection of colors that can be used together on the display screen.

Paragraph
A memory address that is an even multiple of 16. The segment part of a

memory address can point to any paragraph; the offset part can then point to
any specific byte within 64K of that paragraph.

Parallel intetface
One of two standard schemes for passing signals from a computer to a

printer; also called a Centronics interface. The other is the serial, or RS-232,
connection. The PCjr's printer adapter, which attaches to the right side of the
system unit, provides a Centronics parallel interface. The IBM Graphics
Printer and the Epson printers use the parallel interface; the IBM Compact
Printer uses the serial interface.

292

A: Glossary

Parallel printer adapter
An optional addition to the computer, to provide a parallel printer inter

face. On the PCjr, the parallel printer interface connects to the 1/0 channel
adapter, on the right side of the system unit.

Parameter
An operand or specification that completes the details needed to carry out a

command or operation. For example, if we give the computer a command to
FORMAT a diskette, "/S" would be a parameter that tells it to include a copy
of the DOS system on the diskette.

Parity bit
An extra bit used to test that other bits haven't been recorded incorrectly.

The PC has a parity bit for each byte of memory, but our PCjr doesn't, since
memory errors are rare. Parity bits are also used in computer communications,
since there is more danger that data will be scrambled when sent over tele
phone lines.

PC
When we're referring to registers, this is another name for the instruction

pointer or IP. Otherwise, PC means the big brother of the PCjr, the IBM
Personal Computer.

Pel
One of several terms for a picture element.

Picture element
A single dot on the computer's display screen. Also called a pixel, or a pel.

When our computer is in graphics mode, each picture element can be indi
vidually colored, lit up, or darkened.

Pixel
Another term for a picture element.

Planar
A technical term for the system board, where most of the computer's

circuitry is.

POP
One of the two key operations used to save information on the computer's

stack. PUSH places data onto the top of the stack; POP removes information
from the top of the stack.

Port
The term port is used in several ways. When referring to the detailed

293

EXPLORING THE IBM PCJR

operations of the microprocessor, a port is a general way for the microprocessor
to talk to other parts of the computer; each part can have a port number, and the
processor can pass data to and from them by signaling the port number on the
computer's bus. The INP and OUT commands in BASIC refer to these ports.
The term port is also used to refer to some of the computer's connections,
particularly the RS-232 asynchronous port.

POST
Short for the Power-On Self Test, a test program that is automatically run

whenever we turn the PCjr on.

Power transformer
In the PCjr, a separate part that converts high-voltage household current

into safer 17-volt current. Power comes to the PCjr's system unit from the
external power transformer.

Programming languages
The format used for us to express computer programs. Since the com

puter's own machine language is so difficult for us to work with, programming
languages were created for us to write programs in. There is a distinction
between the language itself (BASIC, Pascal, etc.), and the language-translator
program that makes the language work on a computer. But people often don't
make that distinction. For example, there is BASIC, a particular way to tell a
computer what to do; then there is the BASIC language cartridge, which is an
interpreter that can carry out programs written in BASIC; finally, there is the
BASIC compiler, which can translate programs into object code. When we want
to be precise in what we say, we can be careful about indicating just which of
these we mean; when we're talking casually, we could refer to any of those
three things as BASIC, or the BASIC programming language.

Prorated format
A BASIC storage format in which programs are coded to prevent them from

being listed. The protected format is roughly the same as the tokenized format
but in addition it is scrambled, so that it is not easy to decipher.

PUSH
One of the two key operations used to save information on the computer's

stack. PUSH places data onto the top of the stack; POP removes information
from the top of the stack.

RAM
See random access memory.

294

A: Glossary

Random affess memory
RAM; the computer's general-purpose memory, which can be read and also

modified. This is what we usually call just plain memory, as opposed to read
only memory (ROM).

Raster scan
A way to draw a picture on a CRT, used by TVs and by almost all computer

display screens. The flying spot of the electron beam moves in a fixed trace
over the entire screen. As the spot is tracing over the screen, it is given the
signal to light up, or not light up, each part of the screen. Compare vector scan.

Read only memory
Permanently recorded computer memory. Read only memory, or ROM,

works much like ordinary memory, but it can't be changed; its contents are safe
even when the computer's power is turned off. Our PCjr uses two kinds of
ROM: a built-in ROM, permanently installed, which holds the ROM-BIOS
and other programs; and the software cartridges, which can be plugged in and
removed at will.

Relative offset
See offset.

Resolution
The level of detail of a picture; lots of detail is high resolution, not much

detail is low resolution. Our PCjr uses three different resolutions. Each has 200
lines of dots, or pixels, from the top to the bottom of the screen. In low
resolution, each line has 160 pixel dots across; in medium resolution, 320
pixels; and in high resolution, 640 pixels.

Reverse video
Black (unlit) characters on a white (lit) background. A special "color" used

by the monochrome adapter for monochrome characters.

RF (Radio-Frequency) modulator
A device for adapting a video signal for use with a TV set.

RGB
A display signal for the highest-quality picture possible; provides separate

signals for each of the three colors that are used: Red, Green, and Blue.

ROM
See read only memory.

ROM-BASIC
The version of BASIC that is built into the PCjr. IBM calls it Cassette

295

EXPLORING THE IBM PCJR

BASIC (although it has little to do with cassettes). I sometimes call it ROM
BASIC, since it's built into the ROM, just like the ROM-BIOS.

ROM-BIOS
The BIOS, or control programs, that are built into the PCjr's read only

memory. See BIOS for more discussion.

RS-232
A standard scheme, used in many computers, for talking between different

computer devices. RS-232 is essentially the same thing as a serial or asyn
chronous port. The RS-232 scheme is used to work with modems, and also
with serial printers, such as the IBM Compact Printer.

Scan code
An identifying number for each key on the keyboard.

Scan lines
The lines traced by the electron beam on our display screens. The lines we

mentioned when discussing the graphics modes and the three different resolu
tions are scan lines.

Scratch-pad register
Another term for the general-purpose registers, AX, BX, CX, and DX.

Sector
A block of data on a diskette. The actual space occupied by data records.

The number and size of sectors can vary, depending on the operating system.
DOS 2.10 uses only one sector size, 512 bytes, and either eight or nine sectors
per track.

Segment
The part of a 20-bit, segmented address that refers to any location in a

1,024K byte memory space that is a multiple of 16. See also offset.

Segment register
See address register.

Segmented address
A memory-addressing scheme used to address a 20-bit address space; that

is, to locate any byte out of over a million bytes. Two 16-bit numbers are
combined to make up a 20-bit, segmented address. The complete address
consists of two parts, the segment and the offset.

Serial p011
Another term for the RS-232 port, used to connect to the IBM Compact

296

A: Glossary

Printer to modems, and to other serial devices. The S connection on the back of
the PCjr's system unit is a serial port.

Signature
A special code used to help identify a set of data, and to distinguish invalid

information. For example, each software cartridge for the PCjr has a signature
in its header, which helps verify that the cartridge is properly recorded and is
the cartridge we need.

Single sided
Of a diskette drive: with a recording head on one side; of a diskette:

capable of storing information on one side only.

Single precision
One of several formats of numbers used by BASIC. Single-precision num

bers are accurate to about 6 decimal places.

Software
Computer programs; compare hardware, the physical parts of computers.

Sound chip
A chip used for sophisticated sound production. The PCjr's sound chip

(SN76469N, made by Texas Instruments) has three voices, each with its
own separate attenuation, and a fourth voice for nonmusical sounds, such as
explosions.

Source code
Computer programs, in the form that we write them. When we write

programs, we write source code; our source code, one way or another, is
converted into a running program. For a compiled language such as Pascal, a
compiler reads our source code and translates it into object code (machine
language, in a special format); the LINK program then converts the object
code into a ready-to-use program, in EXE format. For an interpreted language,
like our cartridge BASIC, the interpreter reads our source code and then carries
it out, step by step.

SP
The stack pointer register, used to locate parts of the stack (as is the BP).

ss
The stack segment register, used to indicate the general section of memory

where a program's stack is located.

297

EXPLORING THE IBM PCJR

Start bit
An asynchronous communications parameter needed to separate one char

acter from another and to allow the receiver to get ready for each character.

Stop bit
An asynchronous communications parameter needed to separate one char

acter from another and to allow the receiver to get ready for each character.

Subroutine
A section of a program that is used by other parts of the program to perform

some services. Subroutines are usually written so that the same work can be
done in different parts of a program, without duplicating the actual working
code. But even if a subroutine is only used once, it can be convenient to
separate it from the rest of the program. Dividing a program into subroutines
can make writing it easier, on the theory of "divide and conquer."

Synrhronous
A more sophisticated scheme of serial communications than the asynchro

nous. With synchronous, ·both sender and receiver expect bits to appear at
precise, predefined times. Our PCjr does not use synchronous communica
tions. Compare asynchronous.

Both asynchronous and synchronous are called serial communications and
can be used to talk over telephone lines, to other computers, or to a printer.
There is another, more efficient way to talk to a printer from our PCjr called
parallel communications.

System boa rd
The single circuit board that contains most or all of the key parts that make the

computer work. Motherboard is a more informal term for the system board, and
planar is a more technical one.

System diskette
A diskette that has a complete copy of DOS on it, so that DOS can be

booted, or started up, from the diskette. Also called a system-formatted
diskette, or a DOS diskette. When a blank diskette is prepared for use by being
formatted, it can be system formatted or not. Generally DOS can't be added to
a diskette that is already in use, unless we reformat it, erasing everything that
was recorded on it.

Systems pro1;ram
An informal term used to distinguish those programs, like DOS and

BASIC, that help us use our computers; as opposed to application programs,
which serve a purpose beyond the computer.

298

A: Glossary

System unit
The main physical part of the computer, which includes the system board.

The PCjr itself consists of the keyboard, the power transformer, and the system
unit. Additional parts, such as a display screen, connect to the system unit.

Telecommuting
Working at home and communicating with your employer's computers;

commuting to work by computer connection.

TERN
A program in the BASIC cartridge that makes the PCjr act like (emulate) an

ASCII terminal, or "dumb" terminal (dumb because it has no sophisticated
features).

1erminal
Usually this means a combination of a keyboard and a display screen that

are connected to a large computer that might be miles away. In casual talk, any
computer display screen could be called a terminal-even the one we use with
our PCjr.

Text
Computer data made up of alphabetic characters and such, like the words

you are reading here. If our text, like these words, is stored in a computer
following the ASCII coding scheme, then we have ASCII text. Informally, the
terms text and ASCII are used to mean any written words like these.

Tokenized format
A data format, used by the BASIC interpreter, to store BASIC programs

compactly. In the tokenized format, the key words of BASIC, such as LOAD,
SAVE, and SCREEN, are replaced with abbreviations, called tokens. When
we store a BASIC program on diskette, it is kept in tokenized format unless we
ask that it be expanded into its full ASCII-text equivalent, using the'½." option
of the SAVE command.

Trark
Part of the way data are recorded on a diskette. Each track is a full circle

around one side of the diskette; there are 40 tracks on each side of our
diskettes. Within each track, data are recorded in eight or nine sectors.

1rue ASCII
The official, standard ASCII characters, exclusive of the added characters

in our PCjr's extended ASCII. There are 128 true ASCII characters, and
another 128 in our extended ASCII.

299

EXPLORING THE IBM PCJR

l'GA
See video gate array.

Video gate array
A special part of the PCjr's circuitry, which helps it mimic the color graphics

adapter of the more expensive PC and XT models.

Video graphics character table
A table of data used to produce characters on our computer's display screen.

When our PCjr's display is in text mode, the character-generator circuitry does
the work of drawing characters on the screen. In graphics mode, software must
build drawings of characters out of pixel dots. This table is used by the soft
ware, in graphics mode.

Vpage or visual page
Part of the SCREEN command in BASIC, used to control which display

page is actually shown.

Winchester disk
One of several terms for a high-capacity storage disk, such as the one built

into the XT model of IBM personal computer. Our PCjr does not normally use
this kind of disk.

Window
A rectangular part of the whole display screen.

Word
As a computer term, two bytes taken together as a 16-bit unit.

Write-protection notch
An opening on the side of the diskette jacket, which controls whether or

not the diskette drive has permission to write on the diskette.

300

APPENDIX

B
FURTHER READING

The most important and useful source
of more detailed information about

the IBM PCjr is IBM's own PCjr
Technical Reference manual.

The Technical Reference manual covers a world of information, from circuit
diagrams, through controlling commands, to a listing of the ROM-BIOS, the
controlling program that makes the PCjr tick.

The PCjr's Technical Reference manual isn't the only one of its kind. For each
personal computer IBM has introduced, there is a corresponding Technical
Reference manual. If you want to compare the details of the PCjr with those of
the other IBM personal computers, you can check the corresponding sections
of the other Technical Reference manuals. The information is there, but since
differences between models are not well-emphasized, you have to do a little
research to discover what those differences are. If you are interested in both the
original IBM PC and the XT, you'll find that the XT's version of the Technical
Reference manual will serve for both machines unless you have to be absolutely
certain of differences between the two.

A computer is primarily a collection of smart "chip" components; the
smartest of the lot is the Intel 8088 microprocessor, the brains of the PCjr.
The most complete technical information about the 8088 is available from its
designer, Intel Corporation, Santa Clara, California. In addition, there are
two books I can recommend to help you understand this microprocessor. For
the best explanation of the philosophy and inner workings of the 8088, turn· to
The 8086/8088 Primer by Stephen P. Morse (Hayden, 1980). Microprocessors
usually have a very complicated and convoluted inner structure, and Morse's
Primer is very good at clarifying the 8088; it certainly did the job for me. For
more detailed information about the 8088, but with less explanation, look to
The 8086 Book by Russell Rector and George Alexy (Osborne/McGraw
Hill, 1980).

If you want to program Junior on an assembly-language level, giving direct
commands to the 8088 microprocessor, there are several books that explain
assembly-language programming for the IBM personal computers. One such is

301

EXPLORING THE IBM PCJR

IBM PC Assembly Language by Leo Scanlan (Brady, 1983). To learn 8088 assem
bly language, though, do not look to the manual that comes with the IBM
Macro Assembler. The assembler manual is a reference book, not an explana
tory tutorial.

To understand the inner workings of the other smart chips in the IBM PCjr,
scout a technical book store for any of the electronics "cookbooks" that cover
the chips you are interested in. It is here you will find information on such chips
as the Texas Instruments SN76489A sound generator, which provides Junior's
rich sound-making capabilities.

To understand more of the workings of the DOS operating system, turn to
the appendices in the IBM DOS manual.

Finally, for a treatment similar to this book, but covering information
specific to the original IBM Personal Computer, see my book Inside the IBM PC
(Brady, 1983).

302

APPENDIX

C
THE

NORTON UTILITIES
Several times in this book, we've

mentioned parts of my software programs
called The Norton Utilities. So that

you'll have a clearer idea of what they
are, here I'll give you a short summary

of the Utilities, and what they do.

Before explaining what these programs are, though, I ought to tell you how
they came into being. It may provide some inspiration to anyone dreaming of
creating another software success story. Heaven knows, there are still plenty of
wonderful opportunities for hit programs for the PCjr.

When I first began playing with my IBM PC, I quickly discovered that
there were lots of things I wanted to explore, but none of the programs that
were available then helped very much. To satisfy my own curiosity about the
computer and especially about the mysteries of the diskettes, I started writing
DiskLook, a program designed to make it easy to browse around on a diskette
and see what was there.

In the middle of writing DiskLook, I managed to erase the latest version of
the program. That left me in quite a pickle-my program was lost. Even though
I knew that the data were still recorded on my diskette, I couldn't get to them
because DOS considered them erased. This was the inspiration for writing
UnErase, the first of a series of programs to help people recover lost data.

After I completed DiskLook, UnErase, and a few more programs like
them, I started peddling them in a casual way, hoping to make a few friends
and a few dollars as well. I quickly discovered that the educational value of
DiskLook-in teaching people about their computers by showing them what
was on their diskettes-and the rescue value of UnErase-in recovering lost
data files-were making them very popular. There was nothing else that did
what they did, and many, many IBM personal computer owners really needed
programs like them.

303

EXPLORING THE IBM PCJR

To take advantage of the spreading reputation of these programs, I ex
panded the original core of four programs into a series of twenty, packaged
them, and began promoting them. I didn't want to create a stuffy corporate
image for what I was doing, so I put my name and picture on the programs. I
wanted to prove that it was still possible for a little guy to win out in the battle
for the software marketplace. Eventually, the combination of a good set of pro
grams and some skillful promotion turned these programs into a best-selling
senes.

Although the heyday of the kitchen-table programmer may be over, it is
still possible to create a software success story by yourself. Although microcom
puter software has definitely become a big time operation, there is still room for
wily individuals, and the appearance of the PCjr has only created more chances
for us all. This is the moral of my own tale.

There are twenty programs in the complete Norton Utilities set. Here is a
short tour through them:

■ Disklook is the most interesting program in the set. It is designed to
show you just about everything there is to know about a diskette; by exploring
with DiskLook, you should learn a great deal about how diskettes work.
Specifically, DiskLook will give you:

• A graphic map of the complete diskette, showing how various parts of
the diskette are used.

• A list of all the files on the diskette (including hidden files), in order by
name, size, date, or file attribute.

• The data stored on any part of the diskette; the part can be selected by
location on the diskette, or by file; the data are displayed in text format
or in hexadecimal.

• For each file, a map of where the file is located, and all the directory
information about the file.

■ UnErase, on the other hand, is probably the most valuable program in
the sec. Un Erase will reconstruct files that have been erased, or deleted, from a
diskette. It is possible to completely recover any erased file, provided no other
information has been written on the diskette since the file was erased. If you
are careful and conscientious, you'll always have back-up copies of your data,
and also never accidentally erase them. But when files do get erased uninten
tionally, UnErase should be able to get them back.

■ SecMod"' is a patching, or "zapping," program, designed to make it
easy to make changes to the data stor~d on a diskette. SecMod allows diskette
data to be read, either by the file they belong to, or by their location on the

304

C: The Norton Utilities

diskette. Changes can then be made to the data in either character or hexadeci
mal format, and then written back to the diskette.

■ Hardlook™, HardUnerase™, and HardMod are special hard-disk ver
sions of these first three programs, designed to meet the special needs of the
IBM fixed disk, which is a part of the XT model of IBM PC. These three
programs aren't used with the PCjr, but they are part of the full Utilities set.

■ Fi/eHide™ is designed to allow us to easily change the hidden-file
attribute, and the system and read-only attributes as well. Like DiskLook,
UnErase and SecMod, FileHide works interactively, with a full menu screen.

■ BatHide performs the same functions as FileHide, but it operates as a
batch program, rather than as an interactive program, so that files can be made
read-only, or hidden, as an automatic process, using the facilities of batch files.

■ Beep is a very simple program that acts like the BEEP statement in
BASIC, but it operates as a DOS program. The main use of Beep is to signal
when other lengthy programs have ended, so that we know when to return to
the computer.

■ B/oad is to help in the development of assembly-language subroutines
for use with BASIC programs. Ordinarily it is difficult to convert assembly
programs into the format needed by the BLOAD statement in BASIC. This
Bload program performs the conversion automatically.

■ Clear clears the computer's display screen, and is similar to the BASIC
and DOS commands CLS. Clear is mainly for earlier versions of DOS that did
not have the CLS function.

■ Fi/eSort is used to sort the file directory of a diskette. FileSort allows us
to keep our diskette directories in order by name, extension, size, or date,
which can help us keep track of our diskette files.

■ DiskOpt is used as part of a process to speed access to diskette files. Like
FileSort, DiskOpt rearranges the order of a diskette's directory entries, but
DiskOpt's goal is to make diskette use faster, while FileSort's goal is to make
the list of files easier to understand.

■ Fi/eFix™ is one of the specialized file-recovery tools among the Norton
Utilities. FileFix will read each part of each file on a diskette, and report any
difficulties. If part of any file is damaged, FileFix will allow us to bypass the
damaged parts, so that the rest of a file can be recovered. You can use FileFix
routinely to check diskettes for damage, and also to test for some forms of copy
protection.

305

EXPLORING THE IBM PCJR

■ Label gives us control over the diskette labels that DOS uses. Although
DOS allows us to place labels on .diskettes when we format them, DOS does
not allow us to add them to existing diskettes, or to change or delete labels.
This Label program gives you full control over diskette labels.

■ Lprint is a simple print-formatting program, which lists ASCII text files
with a heading giving the file name, date, and page numbers. Lprint also gives
the line number of each line of text in the file (unless we ask it not to), which
can be very useful with some editing programs, such as EDLIN.

■ ScrAtr allows us to control the screen attributes, such as the colors of
characters that appear on the screen. Any foreground and background colors
can be set, and they will remain in effect until they are reset by another
program, or by DOS. ScrAtr allows us to choose our own color combinations;
for example, my favorites are yellow characters on a blue background and green
on black.

■ Reverse works like ScrAtr, but it produces one special color combina
tion, black characters on a white background (which is also called reverse video).
Some people find reverse video much easier to work with.

■ SSAR™ (which is short for Special Search and Recovery) is another file
recovery program. SSAR is designed specifically to recover text data from a
diskette that has been damaged beyond ordinary repair. SSAR will read an
entire diskette, and transfer all ASCII text data to a file on another diskette.

■ TimeMark is used to display the date and time on the screen, and to
calculate the elapsed time of an operation. TimeMark is particularly useful for
timing lengthy operations; for example, to keep track of how long you work at
something.

306

APPENDIX

D
THE CHARACTER SET

,§'""

~ [:;'{:; ~ ~ {:;~~: ~
~(f~

<-; Q. • 000
~~ ~ff:~~

200 0
~~ -+--+--{ -+-+-, -~~:fl~

AO a 00
001 01 Q

002 02 I
003 03 ¥
004 04 ♦
005 05 ...
006 06 ♦
007 07 • 0
008 08 a 0
009 09 0 0
010 OA Iii ©
011 OB &

012 oc ~ CD
013 OD r ©
014 oc n
015 OF 'f.

016 10 ..
017 11 ◄

018 12 t
019 13 !!
020 14 'I
021 15 §

022 16 •
023 17 t
024 18 I
025 19 t
026 IA •
027 IB •
028 IC L

029 ID ..

030 IE .t.

031 IF Y

032
033 21 ! !
034 22 " "
035 23 # *
036 24 $ $

037 25 % %
038 26 & &
039 27 ' '
040 28 I I
041 29 I)

042 2A o o

043 2B + +
044 2C
045 2D - -
046 2E
047 2F I I
048 30 0 0
049 31 I I
050 32 2 2
051 33 3 3
052 34 4 4
053 35 5 5
054 36 6 6
055 37 7 7
056 38 8 8
057 39 9 9
058 3A : :

059 3B ; ;

060 3C < <
061 3D . .
062 3E > >
063 3F ? ?

064 4 o a
065 4
066 4
067 4

I A A
2 B B
3 C C

068 44 D D
5 E 069 4

070 4 6 F F
7 G G
8 H H
9 I I
A J

071 4
072 4
073 4
074 4
075 4
076 4
077 4

B K K
C L L
D M M
E N N
F O 0
0 p p

I Q Q
2 R R

078 4
079 4
080 5
081 5
082 5
083 5
084 5
085 5

S S

4 T T
5 U U
6 V V
7 WW

8 X X
9 y y

A Z Z

086 5
087 5
088 5
089 5
090 5
091 5 B I I
092 5 C \ \
093 5 D I
094 5 E ' '
095 5 F

NOTES

(D BEEP
0 BACKSPACE
0 TAB
© LINE FEED

CD FORM FEED
(D CARRIAGE RETURN
(D SPACE

096 60 128 8--+-"-<;t--t 160
097 61 a a 129 8+--'-ut--1 161
09862 b b 13082 e
099 63 C C 131 83-+-at--1

162
163

100 64 d d 132 84 +-+-----< 164
101 65 e e 133 85 165

+-+-----<
102 66 f f 134 86

-t-t--1
103 67 g g 135 8 +-+-----<

166
167

104 68 h h 136 88-+-t--1 168
105 69 i i m 89 e 169 +-+-----<
106 6A j j 138 8A e
107 6B k k 139 8B-+-i t--t

170
171

108 6C I I 140 8C 1 172
109 6D m m 141 8D+-, t--t 173

110 6E n n 142 8E+-'-ii t--1
11l 6F o o 143 8F+-=-A t-1

112 10 p p 144 90+-E t--t

174
175
176

113 71 q q 145 91+-.--£ t--1
114 72 r r 146 92-+--'--~ .._.
m 73 s s 141 93-+-a t-1

177
178
179

116 74 t t 148 94 o 180 +-t--t
117 75 u u 149 95-+-0 t-1

118 76 V V 150 96 U
181
182

119 11 w w 151 91+-u t--t 183
120 78 X X 152 98 .. 184
121 79 y y 153 99"+7.-0 t--t 185
122 7 A z z 154 9A+=-0 t--1
123 7 B I I 155 9 B+-' +--<

124 7C : : 156 9C+~--=-t--l
125 7D I I 15 7 9D+-=-l +--<

126 7E - - 158 9E+-'-P. t--1
127 7F o 159 9F f

~~

186
187
188
189
190
191

Al f •
A2 ii .
A3 u •
A4 ii •
A5 fl I

A6 ~
.,

A7 Q P

A8 i, ■

A9 r ._

AA 7 I
AB Y, •
AC !I •

AD i •
AE « .I
AF » ■

BO .
Bl -, :
B2 I •■
B3 I -.
B4 i I
B5 1 I
B6 1 f
B7 11 r
B8 ~ .,.
B9 ~ >
BA II '
BB ,i

,
BC .I • BO J ..
BE .J I
BF 1 •

192 C -+-+-="-I• 224 EO a
•• 225 El j3 193 C

194 C
195 C
196 C

2-+-T +-=<: 226 E2 r
3 f ■: 227 E3 ~

228 E4 I: 4 - ..

5 + \
6 F <
7 • -:
8 l I
9 r ■•
A ,lb I
B rr 1
C "I
D = ..
H~ ,t
F ,!, •

197 C
198 C
199 C
200 C
201 C
202 C
203 C
204 C
205 C
206 C
207 C
208 D D .II. •

209 D I - :,
210 D 2 T .:

3 l :

4 •
5 L
6 r ,

211 D
212 D
213 D
214 D
215 D
216 D
217 D

7 • I:
8 f •
9 j l

218 D
219 D
220 D
221 D
222 D

A r .I
BI :I
C ■ ■
DI •
E I •
F. I 223 D

229 E5 a-

230 E6 µ

231 E7 ,-
232 E8 ~
233 E9 8

234 EA n
235 EB 6
236 EC oo

237 ED ~
238 EE •
239 EF n

240 FO "
241 Fl •
242 F2 ?

243 F3 ~

244 F4
245 F5 J
246 F6 +

247 F7 ~

248 F8
249 F9 ·
250 FA
251 FB /
252 FC "
253 FD 2

254 FE ■

255 FF

Reprinted from Personal Computer Age
by permission ofCRC Publishing, Copyright © 1982.

307

Mnemonic

AAA
MD
MM
AAS
ADC
ADD
AND
CALL
CBW
CLC
CLO
CLI
CMC
CMP
CMPS

CMPSB
CMPSW
CWD
OM
DAS
DEC
DIV
ESC
HLT
IDIV
IMUL
IN
INC

A PP EN DIX

E
THE 8086/8088

INSTRUCTION SET
Full Name Mnemonic Full Name

ASCII adjust for addition INT Interrupt
ASCII adjust for division INTO Interrupt on overflow
ASCII adjust for multiplication IRET Interrupt return
ASCII adjust for subtraction JA Jump on above
Add with carry JAE Jump on above or equal
Add JB Jump on below
AND JBE Jump on below or equal
CALL JC Jump on carry
Convert byte to word JCXZ Jump on ex zero
Clear carry flag JE Jump on equal
Clear direction flag JG Jump on greater
Clear interrupt flag JGE Jump on greater or equal
Complement carry flag JL Jump on less than
Compare JLE Jump on less than or equal
Compare byte or word JMP Jump
(of string) JNA Jump on not above
Compare byte string JNAE Jump on not above or equal
Compare word string JNB Jump on not below
Convert word to double word JNBE Jump on not below or equal
Decimal adjust for addition JNC Jump on no carry
Decimal adjust for subtraction JNE Jump on not equal
Decrement JNG Jump on not greater
Divide JNGE Jump on not greater or equal
Escape JNL Jump on not less than
Halt JNLE Jump on not less than or equal
Integer divide JNO Jump on not overflow
Integer multiply JNP Jump on not parity
Input byte or word JNS Jump on not sign
Increment JNZ Jump on not zero

309

EXPLORING THE IBM PCJR

Mnemonic Full Name Mnemonic Full Name

JO Jump on overflow POPF POP flags
JP Jump on parity PUSH PUSH
JPE Jump on parity even PUSHF PUSH flags
JPO Jump on parity odd RCL Rotate through carry left
JS Jump on sign RCR Rotate through carry right
JZ Jump on zero REP Repeat
LAHF Load AH with flags RET Return
LOS Load pointer into OS - ROL Rotate left
LEA Load effective address ROR Rotate right
LES Load pointer into ES SAHF Store AH into flags
LOCK LOCK bus SAL Shift arithmetic left
LOOS Load byte or word (of string) SAR Shift arithmetic right
LODSB Load byte (string) SBB Subtract with borrow
LODSW Load word (string) SCAS Scan byte or word (of string)
LOOP LOOP SCASB Scan byte (string)
LOOPE LOOP while equal SCASW Scan word (string)
LOOPNE LOOP while not equal SHL Shift left
LOOPNZ LOOP while not zero SHR Shift right
LOOPZ LOOP while zero STC Set carry flag
MOV Move STD Set direction flag
MOVS Move byte or word (of string) STI Set interrupt flag
MOVSB Move byte (string) STOS Store byte or word (of string)
MOVSW Move word (string) STOSB Store byte (string)
MUL Multiply STOSW Store word (string)
NEG Negate SUB Subtract
NOP No operation TEST TEST
NOT NOT WAIT WAIT
OR OR XCHG Exchange
OUT Output byte or word XLAT Translate
POP POP XOR Exclusive OR

310

A
A socket, 10, 13
Absolute disk services, 116
Active page, 169, 277
Address, 49, 277

offset, 51
segmented, 50-53

Address arithmetic, 50
Address registers, 58-59, 277

offset, 59
segment, 58-59

Address space, 52
Addressing, immediate, 52
Advanced BASIC, 103
AH register, 69, 82
Allocation chain, 129, 132
Alt-NumLock, 221
Amplitude, 206
Apage, 169, 277
Apage parameter, 169
Application program, 105, lll, 277
Archive attribute, 127
ASCII, 32-33, 136, 170, 277

character set, 28, 29, 307
extended, 170, 171
formatting codes, 171
terminal, 103
text, 28, 134-137, 277
true, 170-171

Assembler, 24, 278
Assembly language, 24, 66,

248, 278
disassembly, 74
interface routines, 68

Asynchronous, 278
Attenuation, 211, 278
Audio socket, 10, 13
AUTOEXEC.BAT, 112
Auxiliary byte, 221-222
AX register, 57-58, 80
AX-DX registers, 57, 69

Index

INDEX

311

8
Base pointer, 59, 62
BASIC, 16, 24

BLOAD format, 138
command cartridge, 103
compiled, 24, 34
control of video modes, 151
file formats, 138-139
IBM, 259
interpreted, 34
interpreter, 52, 134
language cartridge, 93, 94
program cartridges, 94, 95
programming rules, 271
protected format, 138
tokenized format, 95, 138

Basic Input/Output System, 16
BASICA, 94, 103
Batch command file, 112
Baud, 194
Binary numbers, 25-26
BIOS parameters, 42
Bits, 16, 25

data, 16
numbering, 26-27
parity, 16, 194-195
start, 195
stop, 195

BLOAD command, 138
Boot, 93, lll, 250

record, 123
Bootstrap loader, 250
Bootstrap programs, 67, 93
BP register, 59, 62
Break, 116
Breakpoints, setting, 40
BSAVE command, 138
Burst parameter, 151, 158
Bus, 19, 242-243

8-bit, 19
16-bit, 19

EXPLORING THE IBM PCJR

BX register, 57-58, 80
Bytes, 16, 27, 32

size-code, 101

C
C language, 259

programming rules, 273
CALL instruction, 68, 82, 93,
260-261, 264

Carry flag, 69
Cartridge

BASIC, 93, 103
checking contents of, 97-100, 101-103
checking for, 92, 100-101
header, 92-93
layout, 92-95
memory locations, 95-96
number of commands in, 102
overriding ROM-BIOS, 96
program, 10
ROM, 10
signature, 92
storage, 92

Cassette recorder, 11, 236-237
socket on system unit, 11

Cathode ray tube (CRT), 144
Centronics interface, 12, 244
Character generator, 159
Character set, 307
Characters

ASCII, 28, 29, 170
creating custom, 188-189
drawing table, 188
in graphics mode, 150, 171, 178, 187-188
number of, 170
positions per screen, 149
text, 148-149

CHOIR command, 117
Chips, 16

Intel 8250, 20
Intel 8253 timer, 20
Intel 8255 PPI, 20
Intel 8259A PIC, 20
Motorola 6845, 20
64K memory, 16
Texas Instruments SN76496N, 20

CHKDSK command, 129, 130
CLEAR command, 170
Clear interrupt flag, 39
CLI instruction, 39
Clock chip interrupt, 41
Clock fYcles, 34-35
Clock signal, 34
Clock tick, 214-216, 253-254

312

Clusters, diskette, 128-129
CMP instruction, 81
Co-processors, 19

8087 arithmetic, 19-20
80891/0, 19

Code segment register, 52, 58, 59
Color, 159-167, 178-179

attributes, 160, 161
background, 161
border, 175
brightness, 161, 162
character, 159, 161
composite, 162
foreground, 161
four-color modes, 186
high-resolution, 180
reverse video, 166
sixteen-color modes, 186
two-color modes, 186

COLOR statement, 160, 163
COM files, 133, 134-135

Command interpreter, 94, 110-111, 113-114,
124-125
program to imitate, 113

Command programs, 110, 111
Command prompt, DOS, 78, 110, 112
COMMAND.COM, 94, 112, 124-125

loading, 114
Communications, 192-203

asynchronous, 193
baud rates, 195
electronic bulletin board, 192
information services, 192
parameters, 194-196
parity, 194-195
ports, 193
ROM-BIOS services, 200-203
RS-232C, 193
serial, 193
synchronous, 193

Compiler, 24
Composite video socket, 12
Compressed BASIC format, 95, 138
CompuServe, 17, 192
Control-N, 197
Control-Z, 136
Copy protection, 141, 282
Corny mule joke, 37
Counting register, 58
CRT, 144, 282
CS register, 52, 53, 58, 263, 266, 277, 282
Ctrl-Alt combinations, 229
Ctrl-Alt-Del, 67, 75, 249
Current directory, 117
Cursor, setting position of, 174

Cursor, 173
ex register, 58, 82, 283

D
D socket, 12
D-display command, 88, 89
Data

bits, 16, 27
bytes, 16, 27, 32
files, 137-138
word, 27, 32

Data limit of 64K, 52
Data segment, 52, 58, 80, 283
Data segment register, 52, 58
Date, 253
Data and time records, 117, 127-128
Date of file, 127
Date of ROM, 255
dB, 211, 283
DEBUG, 40, 71, 74, 88, 127, 283

prompt, 78
quitting, 79
viewing ROM-BASIC using, 88-89

Decibel, 211, 283
Decimal numbers, 25
DEF SEG, 271
Demodulation, 192, 283
Density of diskette recording, 10
Destination index, 59
DI register, 59
Diagnostic routines, 55, 66-67, 283
Direct memory access, 251, 283
Direct-drive video socket, 12
Directory, 124, 125, 283
Disassembly, 74, 284

command, 78-79
printing copy of, 75-77

Disk base, 42, 250
Disk base parameter, 42
Disk base table, 250-251
Disk Operating System, 105-117, 284
DISKCOPY, 140
Diskette, 9, 284

blocks, 111
boot record, 111-112
copy-protection, 141
density, 121
double sided, 121, 122
file allocation table, 123-124
file directory, 124, 125-128
file management, 107
flippy, 121-122
formats, 122-123
hard sectored, 121

Index

313

Diskette (continued)
index hole, 120, 121
labeling, 126, 131-132
read-write heads, 121
reversible, 121
ROM-BIOS services, 139-140
sectors, 111, 112, 121, 122, 123
single sided, 121, 122
size, 120
space management, 107-108
storage capacity, 123
structure, 120-121
subdirectories, 130, 132-133
system, 112
tracks, 120, 122
write-protection notch, 120

Diskette drive, 8-10
diskette size, 9
double-sided, 121
height, 9
services, 116
single-sided, 121
speed, 35

Diskette-drive adapter, 18, 284
Diskette formats, 122
Diskette interrupt, 41
Diskette label, 130, 131
Diskette librarian, 131
DiskLook, 129, 130, 304
DiskOpt, 305
Display, 284
Display adapter, 18, 56
Display page, 167, 178
Display screen, 8, 144-156

characters per line, 146
color, 13
communication with computer, 145
composite, 13
graphics modes, 149-150, 151
memory mapping, 56, 145, 151-152
modes, 148-150
monochrome, 13
pages, 167, 169
print-screen routine, 75-88
raster scan, 144
resolution, 146, 180
RGB monitor, 12
scan lines, 144
scrolling, 174
service routines, 68, 116
shifting left or right, 229
text modes, 148-149
TV as, 12, 13, 147
video outputs, 147

Division by zero, 40

EXPLORING THE IBM PCJR

OMA, 251, 283
DOS

batch commands, 112
BIOS, 108-109, 124
command interpreter, 110
error handling, 109
file setvices, 117
functions, 115
interface routines, 115
internal commands, 94
interrupts, 115
memory management, 107
organization, 108-111
prompt, 78, 110, 112
ROM-BIOS, 108
setvices, 109-110, 112, 114-117
storage mar:1,1gement, 107-108
task management, 107

Dots, display screen, 150, 178
Double-precision number, 33
OS register, 52, 58
DX register, 57-58

E
Echo, 75-77
EDLIN program, 136
End-of-file marker, 136
End-of-line marker, 136
End-of-page marker, 136
Error handler, printer, 87
ES register, 52, 58, 70
EXE files, 134, 135

relocation table, 135
EXE2BIN program, 134
Extra segment register, 52, 58, 70

F
FAT, 123-124

disk storage strategy, 128-131
errors, 130

File allocation table, 123-124
disk storage strategy, 128-131
errors, 130

File attribute, 126-127
File directory, diskette, 124

fields of, 125-128
File management, 107
File name, 125-126

extension, 126
Files

ASCII, 134
batch-processing, 136

Files (continued
COM, 133, 134-135
data, 137-138
erasing, 125-126
EXE, 134, 135
formats, 133-139
hidden, 126
recovering erased, 126, 130
system, 126
text, 135-13 7

Flag register, 59
Flippy diskette, 121-122
Floating-point numbers, 33-34

handling speeds for, 34
FORMAT command, 111, 121
Fractions, 33
Functions, DOS, 115

G
Game paddles, 237
GO command, 40
Graphics, 253

characters, 150, 171, 178, 187-189, 253
colors, 186-187
high-resolution, 181
low-resolution, 181
memory map, 182-185
modes, 149-150, 151, 178-189
pakttes, 180

GROUP statement, 266

314

H
Hardware

cartridges, 10
diskette drive, 8-9
display, 8, 12-13
interrupts, 40-41
joysticks, 13
keyboard, 8, 13
light pen, 13
modem, 12
power transformer, 11
speaker, 10
system unit, 8-16

Header, cartridge, 92-93
Header and command-program table, 94
Hexadecimal numbers, 26-27
Hyphen prompt, 78

IBM Color Display monitor, 12
IBM Compact Printer, 12

IBM Macro Assembler program, 259
IBMBIO.COM, 112, 124
IBMDOS.COM, 112, 124
Immediate addressing, 52
IN instruction, 44
INP instruction, 44
INKEY$ function, 225, 231
Instruction pointer, 59
Instruction set, 8088, 32
INT instruction, 42, 81
Integers, 33

handling speeds for, 34
Intel 8088 microprocessor, 14, 18-19

clock cycles, 34
co-processors, 20
data handling, 32
instruction set, 32, 309-310
interrupts, 38-40
registers, 5 7-59
speed of operation, 34, 35
status flags , 69

Interpreter, 24
Interrupt handler, 38, 79, 289

dummy, 42
Interrupt vector table, 39, 42
Interrupts, 20, 36, 37-43

clear interrupt flag, 39
clock, 214-216
DOS, 115
8088, 38-40
hardware, 40-41
IBM, 4D-43
keyboard, 41
logical, 40
non-maskable, 39
overriding, 69
printer, 41
ROM-BIOS services, 68-69
software, 41-43
user-interface, 42

1/0 channel connector, 13, 18, 244
IP register, 59, 289
IRET instruction, 87, 254

J
JNZ instruction, 84
Joysticks, 13, 237-239
JZ instruction, 81

K
K, 29
Keyboard, 8

Alt key, 227-229

Index

315

Keyboard (continued)
ASCII character codes, 221
auxiliary byte, 221-222
click, 229
connecting to system unit, 8, 13
Fn key, 226, 228
infrared connection, 225-226
interrupt, 41
light sensor, 8
number of keys, 219, 226-227
ROM-BIOS services, 230-231
scan codes, 219-220
services, 116
shifted keys, 223-224
support routine, 70

Keyboard Adventure, 55

L
Librarian program, 131
LIFO, 60
Light pen, 13, 239-240

socket, 13
LINK program, 134, 259
Loader program, 134, 135
LOCATE statement, 173

Machine language, 24
opcodes, 78

Mask, 85
Memory, 14-17, 47, 48-57

addresses, 49
expansion, 17, 50-51
locations, 49, 95-96
management, 107
mapping, 53-54
organization, 53-54
RAM, 16, 54-55
registers, 32
ROM, 10, 16, 55-56
size, 16
stack, 60

Memory board, 17
Memory-mapped display, 56-57, 145, 167-170

multiple screens, 168-169
page, 167

Microprocessor
4004, 20
8080, 20
8086, 20
8088, 18, 19, 31
280, 19

MKDIR command, 117

Modem, 12, 196-200
answer mode, 198
Bell Laboratories model 103, 196
commands, 198-200
dialing calls with, 198
full duplex, 196
half duplex, 196
originate mode, 199
sending commands to, 197
smart, 12, 196
socket, 17
speed, 197, 199
transparent mode, 199
voice mode, 198

Motherboard, 14-16
MOV instruction, 78
Music, 214-216

N
NMI, 39
Non-maskable interrupt, 39
Numbers, 25-29, 33-35

0

adding, 34-35
binary, 25
double-precision, 33
floating-point, 33-34
fractions, 33
hexadecimal, 26-27
integers, 33
negative, 33
positive, 33
single-precision, 33
text as, 28
whole, 33

Object code, 134
Offset, 51
ON KEY statement, 225
Opcode, 78
Operand, 78
OR instruction, 84
OUT instruction, 44
Overflow interrupt, 40

p

Pages, 167
figuring number of, 169

PALETTE USING statement, 186
Paragraph of memory, 51

Index

316

Parameter
accessing, 267-271
changing, 262
passing to subroutines, 261
placing on stack, 261-262
protecting, 262
removing from stack, 264
subroutine, 61

Parity, 194-195
bit, 16

Pascal, 259

PC
programming rules, 271-273

diskette drive speed, 35
display adapters, 18
display screen, 146-147, 152
expansion unit, 2
keyboard, 219, 226-228
memory expansion, 18
ROM-BIOS, 66

PC register, 59
PEEK command, 101
Percent symbol, 33
PIC, 20
Pixel, 150, 178, 187
Planar, 14
Pointers, 59
Polling, 36-37
POP instruction, 60, 62
Port, 43-45

communications, 193
demonstration program, 44
numbering, 43

POST, 67, 111, 249
Power supply, 17
Power transformer, 11
Power-on self test, 67, 111, 249
PPI, 20
Print-screen routine, 75-88

disabling interrupts, 79
disassembly of, 75-88
end-of-line signal, 82, 86
exit routine, 87
looping through screen, 83
mask, 85
saving register values, 79-80

Printer, 243-245
connecting to PCjr, 12
error handler, 87
interrupt, 41
service, 69

Printer adapter, 243-244
Program counter, 59
Program segment prefix, 134-135
Program segment register, 52

Programmable interrupt controller, 20
Programmable peripheral interface, 20
Programming languages, 24

BASIC, 16, 24
C, 259
Pascal, 259

Programs
application, 111
bootstrap, 67
command, 111
connecting, 259-273
diagnostic, 55, 66-67
initializing, 99-100
librarian, 131
modules, 99
protected, 95
service, 67-68
start-up, 67
structured, 99
subroutines, 41
support, 70-71
terminating, 116
unprotected, 95

Prompts
DEBUG, 78
DOS, 78, 110, 112

PSP, 134-135
PUSH instruction, 60, 62

Q

Q command, 79

R
RAM, 16, 54-55, 295

mapping screen images in, 169-170
memory location, 54-55

Random access memory, 16, 54-55, 295
Raster scan, 144
Read only memory, 10, 16, 55
Read-write heads, diskette, 121
Reboot, 250
Registers, 32, 52, 57-59

address, 58-59
scratch-pad, 58-59
splitting, 58

Relative offset, 51
Relocation table, 135
Resolution, 180, 182
RET instruction, 93, 95

FAR and NEAR, 261
Reverse video, 166
RF modulator, 13, 147
RGB monitor, 12, 147

Index

RMDIR command, 117
ROM, 10, 16, 55-56, 295

cartridges, 56
memory location, 55

ROM-BASIC, 16, 55
error messages, 89
memory location, 55
passing control to, 67
stack creation, 62

ROM-BIOS, 16, 55, 66-71
activating programs, 42
assembly-language interface, 264-271
assembly-language listing, 248
bootstrap program, 93
cassette services, 236
communications services, 200-203
connecting to other programs, 258
control programs, 42
data check-sum byte, 255
diagnostics, 67
disk base table, 250
diskette services, 139-140
entry points, 42
graphics character table, 253
graphics services, 187
keyboard buffer, 220-221, 232
keyboard interrupts, 220-221
keyboard routines, 75
keyboard services, 230-231
light pen service, 240
memory location, 96
memory report, 251-252
overriding, 96
passing control to ROM-BASIC, 67
power-on self test, 67
print-screen routine, 75-88
printer services, 244-245
program listing, 76
release marker, 88, 255
service programs, 67-68
text display services, 173-175
time-of-day routine, 253-254
video mode control, 148

ROM-BIOS services, 139-140
Root directory, 124
RS-232C standard, 12, 193

s
Scratch-pad registers, 57-58
SCREEN statement, 155, 158, 181

controlling pages using, 169
Scrolling, 174
Sectors, diskette, 111-112, 121, 123

numbering, 122

317

EXPLORING THE IBM PCJR

Segment registers, 52, 58-59, 263
SEGMENT statement, 266
Segmented addresses, 50-53
Serial port, 12
Service programs, 67-68
Services, DOS, 109-110, 112, 114-117

extended, 115-117
file, 117
memory management, 117

Set interrupt flag, 39
Shift flags, keyboard, 231
SI register, 59
Signature, cartridge, 92

checking for, 101
SIN function, 61
Single-precision number, 33
Size-code byte, 101
Size of cartridge, 92
Size of file, 128
Size of memory, 16, 253
Size of sectors, 141
Smart modem, 196-198
SN76496N sound chip, 20, 211
Soft-sectored diskettes, 121
Software interrupts, 41
Sound, 10-11, 206-216

attenuation, 211
chip, 21, 43, 206, 211-212, 249, 297
frequency, 206, 212-213
generating, 207
music-in-the-background, 214-216
pitch, 212
programmable timer, 208-210
speaker, 206
tones, 211-213
tricks, 214-216
voices, 211
volume, 206-207

THE SOURCE, 18, 192, 195
Source code, 134, 297
Source index, 59
SP register, 59, 60, 61, 62, 80, 263, 297

displacement value, 62
effect of PUSH and POP on, 62

Space allocation, 129
Space management, 107
Speaker, 11

built-in, 10-11, 44
port, 45 ;
turning off, 11, 45
turning on, 44

Speed differences
among PC models, 35
in BASIC, 34

Speed of disks, 133

SS register, 52, 58, 59, 60, 62, 263, 271, 297
SSAR, 306
Stack, 59-63, 70, 79, 87, 261, 263, 268

DOS, 62-63
more than one, 62
popping information, 60
prior contents of, 62
pushing information, 60
ROM-BASIC, 62
status, 61

Stack pointer, 59, 60, 62, 80
displacement value, 62
effect of PUSH and POP on, 62

Stack segment, 52, 58, 60
Stack segment register, 52, 58, 62
Start bit, 195, 298
Start-up programs, 67
Status flags, 69
Status of diskette, 140
STI instruction, 39, 79
STICK statement, 237
Stop bit, 195, 201, 298
Storage management, 107
STRIG statement, 237
Structured programming, 99
Subdirectory, 124, 130, 133

attribute, 126
Subroutines, 41, 298

interrupt handler, 41
locating, 260-261
parameters, 61
tolerant, 101

Support programs, 70-71
Synchronous, 189, 298
System attribute, 126
System board, 14-16, 298
System diskette, 112, 298
System files , 124
SYSTEM statement, 158
System unit, 8-16, 299

audio output jack, 10, 13
back of, 10-13
cartridge slots, 8, 10
cassette recorder outlet, 12
composite video outlet, 13
1/0 channel connector, 14
serial port, 12
side of, 13-14
sockets, 10-14
TV outlet, 13

Systems program, 105, 298

T
T socket, 13
T-trace command of DEBUG, 40

318

Table of video graphics characters, 42
Task management, 107
Technical Referroce manual, 68, 70, 74, 75, 78,

80, 82, 115, 174, 233, 248, 301
Telecommuting, 192, 299
Television socket, 13
TERM, 103, 196, 299
Terminal emulation, 103
Terminate but stay resident, 107, 116
TEST instruction, 85
Text

ASCII, 28
BASIC commands, 158
data format, 33
files, 135-137
mode, 148-149

Text editors, 136
Text mode, 149, 157, 175
TI sound chip, 20-21, 43, 206, 211-213, 249
Tick, 210, 249, 253
Tick interrupt, 41
Time and date records, 117, 127-128
TIME command, 253
TIME$ function, 253
Time of day, 253-254
Time of file, 127
Time out of printer, 245
TimeMark, 306
Timer chip, 20
Timesharing information services, 17
Tokenized BASIC format, 95, 138, 299
TRACE command, 40
Tracks, diskette, 10, 120, 299

numbering, 122
Traditional DOS services, 115
Transformer, power, 11
Trigger, 23 7
True ASCII, 170, 299
TV set

u

audio socket, 13
connecting to PCjr, 147
resolution, 181-182
RF modulator, 13, 147

U command, 78, 82
Unassemble command, 78, 82
UnErase program, 130, 303-304
Unprotected BASIC programs, 95

Index

Unsigned and signed integers, 33
User-interface interrupts, 42

V
V socket, 12-13
VAR, 272
VARS, 272
Vector, 39, 69, 254
Vector scan, 144
Vector table, 39, 42
Verify, of diskette, 140
Versions of DOS, 115, 117, 121
VGA, 57, 153, 300
Video composite socket, 12-13
Video controller chip, 20
Video gate array, 57, 153, 300
Video graphics character table, 42, 300
Video initialization table, 42
Video modes, 148

demonstration program, 154-156
Video services, 81, 83
Visual page, 169, 300
Voices, 213
Volume label, 130, 131, 290, 306
Vpage, 169, 300

w
Warm start, 249
White noise, 213
Whole numbers, 33
WIDTH statement, 151, 158
Winchester disk, 300
Window, 174, 300
Wired keyboard connection, 13
Word, 27, 32, 300
Write-protection notch, 120, 300

X
XOR instruction, 83
XT, 2, 8, 56, 124, 128, 133, 246

disk drive speed, 35

319

disk storage, 2
display adapters, 18
display screen, 146-147, 152
expansion sockets, 14
keyboard, 219, 226-228
memory expansion, 18
ROM-BIOS, 66

z
280 microprocessor, 19
Zero divide, 40
Zero flag, 69, 231
ZF flag, 69

EXPLORING THE IBM PCJR

320

PETER NORTON

Peter Norton was raised in Seattle, Washington
and educated at Reed College in Portland, Oregon. Before

discovering microcomputers, Peter spent a dozen years working on
mainframes and minicomputers for companies including Boeing and the Jet

Propulsion Laboratories. After the debut of the IBM PC, Peter was among the
first to buy one. It was then that his exceptional talents for explaining this new

machine came to the fore. Now recognized as the principal authority on the
IBM PC, Peter is the .author of the best-selling Inside the IBM PC and

creator of the popular Norton Utilities programs which allow the
user to manipulate the "insides" of the IBM PC. Peter is

currently a featured columnist for both
PC and PCjr. magazines.

The manuscript for this book was prepared on an
IBM Personal Computer. Submitted to Microsoft Press in

electronic form, text files were processed and formatted using Microsoft Word.

Cover and text design by Ted Mader and Associates; illustrations by Mits Katayama;
figures by Dale Anderson.

Text composition in Caslon 540, with display in Eurostile condensed, by Paul 0. Giesey
'/ypographers, Portland, Oregon, using CCI Book and the Mergenthaler

Linotron 202 digital phototypesetter.

Cover art separated by Color Masters, Phoenix, Arizona. Text stock, 60 lb.
Glatfelter Offset, supplied by Carpenter/Offutt; cover 12 pt. Carolina.

Printed and bound by R.R. Donnelley and Sons,
Crawfordsville, Indiana.

Peter Norton

Explore the fascinating inner workings of the 8088 microprocessor, the RAM memory, the
IBM® PCjrni with computer expert Peter Nor- ROM-BIOS, the MS"'-DOS operating sys-
ton! Creator of the popular Norton Utilities for tern, and all the PCjr's graphic and sound capa-

the IBM PC, Peter Norton is a featured col um- bilities. All this and more-including how the
nist for PCjr Magazine and author of the best- PCjr fits in the entire IBM PC family. Be sure
selling Inside the I BM PC. In Exploring the IBM to look for the other books in the Microsoft

PCjr Home Computer Peter guides you on a l ~ Press/Peter Norton IBM PCjr Library.
tour of the advanced features of IBM's \'v.;----;::,Y~
first home computer. Together you ~ (,(~

~ IBM® 1s a registered trademark and PCjr"' 1s a
will track the hardware, the Intel® -o · } tr,1demark of International Busmess Machmes

'L'} Corporation. Intel® 1s a registered trade-

$18.25
0384-1750
S&S Order No. 0-6 71-30829-7

1 mark of Intel Corporation. Microsoft® is a
registered trademark and MS T·" is a

'L! 1 C trademark of Microsoft Corporation.
(31~ 0 _ -

ISBN 0-914845-02-0

