
--

IBM PCjr®:
Introduction,

BASIC Programming and
Applications

Larry Joel Goldstein

published by

Robert J. Brady Co. • Bowie , Maryland .
A Prentice-Hall Publishing and Communications Company

IBM PCjr: Introduction, BASIC Programming and Applications

Copyright © 1984 by Robert J. Brady Co.
All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical , including photocopying and
recording, or by any information storage and retrieval system, without permission in
writing from the publisher. For information, address Robert J. Brady Co., Bowie ,
Maryland 20715.

Library of Congress Cataloging in Publication Data
Goldstein , Larry Joel.

IBM PCjr.

Includes index.
1. IBM PCjr (Computer) 2. IBM PCjr (Computer}-Programming. 3 Basic

(Computer program language) I. Title . II. Title: I.B.M. PCjr. III. Title: IBM PC jr.
QA76.8.12593G653 1984 001.64 84-3081
ISBN D-89303-539-4

Prentice-Hall International , Inc., London
Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty. , Ltd. , Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice -Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd .. Singapore
Whitehall Books, Limited , Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA. , Rio de Janeiro

Printed in the United States of America

84 85 86 87 88 89 90 91 92 93 94 10 9 8 7 6 5 4 3 2 1

Publishing Director: David Culverwell
Acquisitions Editor: Leslie Ehrin
Production Editor/ Text Designer: Karen A. Zack
Art Director/ Cover Design : Don Sellers
Assistant Art Director: Bernard Vervin
Manufacturing Director: John A. Komsa
Cover Photo: George Dodson

Copy Editor: Elyse Finger
Typesetter: Alexander Typesetting, Inc. , Indianapolis , IN
Typefaces: Souvenir (text), OCR-B (programs)
Printer: Fairfield Graphics, Fairfield , PA

Contents

PARTI-
GETTING STARTED WITH YOUR PCjr

1. A First Look at Computers

1.1 Introduction
1.2 What is a Computer?
1.3 A Grand Tour of Your PCjr
1.4 The Keyboard
1.5 System Unit
1.6 Cassette and Diskette Storage
1. 7 Displays
1.8 Printers
1.9 Communications
1. 10 The Serial Port

2. Using Your PCjr For the First Time

2.1 Starting Your PCjr (Without DOS)
2.2 Diskettes and Diskette Drive·s
2.3 Starting Your PCjr (With DOS)
2.4 More About Diskette Drives
2.5 Backing Up Your DOS Diskette
2.6 The Keyboard

3. An Introduction to DOS
3.1 Files and File Names
3.2 File Specifications
3.3 Executing Commands and Programs
3.4 The COPY Command
3.5 COPYing and FORMATing Diskettes
3.6 Other DOS Internal Commands
3. 7 Other DOS External Commands
3.8 Creating Your Own DOS Commands-Batch Files

PARTII-
AN INTRODUCTION TO PCjr BASIC

4. Getting Started in BASIC
4.1 Beginning BASIC
4.2 BASIC Statements in Immediate Mode

1

1
3
5
7
8

15
16
17
18
19

21
21
22
24
28
28
31

37

37
39
42
44
46
50
52
53

59
59
59

iv Contents

4.3 BASIC Constants and Arithmetic
4.4 Running BASIC Programs
4.5 Writing BASIC Programs
4.6 Giving Names to Numbers and Words
4. 7 Some BASIC Commands
4.8 Some Programming Tips
4.9 Using the BASIC Editor

5. Controlling the Flow of Your Program

5.1 Doing Repetitive Operations
5.2 Letting Your Computer Make Decisions
5.3 Structuring Solutions to Problems
5.4 Subroutines

6. Working With Data

6.1 Working With Tabular Data
6.2 Inputting Data
6.3 Formatting Your Output
6.4 Gambling With Your Computer

7 . Easing Programming Frustrations

7.1 Flow Charting
7.2 Errors and Debugging
7.3 Some Common Error Messages
7.4 Further Debugging Hints

8. Your Computer as a File Cabinet

8.1 What Are Files?
8.2 Sequential Files
8.3 More About Sequential Files
8.4 Random Access Files
8.5 An Application of Random Access Files
8.6 Sorting Techniques
8. 7 BASIC File Commands

9. String Manipulation

9.1 ASCII Character Codes
9.2 Operations on Strings

62
70
71
77
86
94
95

99

99
llO
125
127

135

135
143
149
158

167

167
170
174
175

179

179
180
188
191
199
204
209

215
215
219

Contents v

9.3 Control Characters 225

10. An Introduction to Computer Graphics 229

10.1 Line Graphics 229
10.2 Colors and Graphics Modes 237
10.3 Lines, Rectangles, and Circles 243
10.4 Computer Art 254
10.5 Drawing Bar Charts 257
10.6 Drawing Pie Charts 261
10. 7 Painting Regions of the Screen 264
10.8 The Graphics Macro Language * 267
10.9 Saving and Recalling Graphics Images 274
10.10 VIEW and WINDOW 278
10.11 Sound and Music on the PCjr 282

11. Word Processing 289

11.1 What is Word Processing? 289
11.2 Using Your Computer as a Word Processor 289
11.3 A Do-It-Yourself Word Processor 291

12. Some Additional Programming Tools 295

12.1 The INKEY$ Function
12.2 The Function Keys and Event Trapping
12.3 Error Trapping
12.4 Chaining Programs

13. Computer Games

13.1 Telling Time With Your Computer
13.2 Blind Target Shoot
13.3 Shooting Gallery
13.4 TIC TAC TOE

295
296
301
303

307
307
312
316
319

14. Different Kinds of Numbers in PC BASIC 325

14.1 Single- and Double-Precision Numbers
14.2 Variable Types
14.3 Mathematical Functions in BASIC
14.4 Defining Your Own Functions

• Registered trademark of Microsoft Corporation.

325
330
333
338

vi Contents

15. Computer Generated Simulations
15.1 Simulation
15.2 Simulation of Traffic Through a Computer Store

Answers to Selected Exercises

Index

Documentation for Optional Program Diskette

341
341
343

349

377

385

Preface vii

Preface

IBM's PCjr is a computer designed to bring the computer revolution
to the home. Able to run many of the same programs as its big brothers,
the PC and PC/ XT, the PCjr will be used for many purposes, including
computer literacy, word processing, accounting, graphics, education, and
entertainment. This book is an introduction to the PCjr for persons inter
ested in any of these applications.

I begin the book with a detai led description of the PCjr to show
what the various components and connectors are, and how they may be
used. Next, we give a fairly detailed description of the disk operating
system DOS 2 .1. It is necessary to learn this material in order to use
many of the disk-based programs that you purchase. Beginning in Chap
ter 4, we give a fairly comprehensive course on programming in BASIC
on the PCjr.

The emphasis in this book is on applications. We have included doz
ens of programs for you to try. In fact, all the major programs have been
collected and are available on the optional diskette. Using this diskette will
save you the trouble of keying in the programs.

I have structured this book as a tutorial. The style is relaxed and con
versational. My goal has been to construct an introductory course on the
PC which would be similar to a course I would present to a small group of
students. Accordingly, I have included TEST YOUR UNDERSTANDING
questions, which are designed to immediately test your comprehension of
the concepts presented. The answers to these questions are located at the
end of the section. Most sections end with a detailed exercise set. The
answers to many of the exercise questions are located at the back of the
book.

My sincere thanks go to all of my readers who have taken the time to
communicate with me and to share their ideas, their enthusiasm and their
frustration. Many of their ideas and suggestions have found their way into
the book.

I owe a debt of gratitude to Martin Goldstein for researching much of
the data which ultimately found its way into the book.

I would also like to thank Parker Foley, Richard Freeland, and Beth
Merrill of Computerland of Rockville , Maryland, and Bob Zimmerman and
Rush Simonson of Computerland of West Palm Beach, Florida, for supply
ing much useful information about the PCjr and for graciously allowing
me to use their facilities to test the programs.

I wish to express my deepest appreciation to all my friends at the
Robert J. Brady Co. for their efforts which go well beyond the call. Our
special thanks to Karen Zack and Paula Huber for their guidance of the
production process, to Jessie Katz for assistance in arranging for reviewers
and for handling the flow of correspondence with our readers, to Don
Sellers for his imaginative cover design, to Bernard Vervin for his excellent
renditions of my sloppy drawings, to George Dodson for his beautiful pho
tography, and to Joan Caldwell, John Allison and Sue Drosdzal for their
sales and promotion efforts. Last but not least, I would like to thank my

viii Preface

close friends and associates, David Culverwell, Publishing Director and
Harry Gaines, former president, for their support and enthusiastic
encouragement.

Dr. Larry Joel Goldstein
Silver Spring, Maryland
March 4, 1984

Disclaimer ix

Limits of Liability and Disclaimer of Warranty
The author and publisher of this book have used their best efforts in preparing
this book and the programs contained in it. These efforts include the develop
ment, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising out
of, the furnishing , performance, or use of these programs.

Trademarks of material in this text
PCjr, IBM PC, and IBM PC/ XT are registered trademarks of International

Business Machines Corporation.
Graphics Marco Language and Music Macro Language are registered trade

marks of Microsoft Corporation.

Note to Authors

Do you have a manuscript or a software program related to personal
computers? Do you have an idea for developing such a project? If so , we
would like to hear from you. The Brady Co. produces a complete range
of books and applications software for the personal computer market. We
invite you to write to David Culverwell, Publishing Director, Robert J.
Brady Co. , Bowie, Maryland 20715.

x Dedication

Dedication

To Sandy
who fills my life with happiness

D

CCDCEUUD~CCD ~U~OOLJ[E[Q)
~DU[}{] WQ)(lJOO ~]I?

1

A FIRST LOOK AT

COMPUTERS

1.1 Introduction

The computer age is barely 30 years old, but it has already had a profound
effect on all our lives. Indeed, computers are now prevalent in the office, the
factory, and even the supermarket. In the last three or four years, the computer
has even become commonplace in the home, as people have purchased mil
lions of computer games and millions of personal computers. Computers are
so common today that it is hard to imagine even a single day in which a com
puter will not somehow affect us.

In spite of the explosion of computer use in our society, most people know
very little about computers. They view the computer as an "electronic brain"
and do not know how a computer works, how it may be used, and how greatly
it may simplify various everyday tasks. This does not reflect a lack of interest.
Most people realize that computers are here to stay and are interested in find
ing out how to use them. If you are so inclined, then this book is for you!

This book is an introduction to personal computing for the novice . You
may be a student, teacher, homemaker, business person, or other curious indi
vidual. I assume that you have had little or no previous exposure to computers
and want to learn the fundamentals . I will guide you as you turn on your IBM
PCjr for the first time. (There 's really nothing to it!) From there , I will lead you
through the fundamentals of the disk operating system (DOS-for those of you
who have a PCjr equipped with a diskette drive). Then I'll teach you to talk with
your computer in the BASIC language. Throughout, I'll provide exercises for
you to test your understanding of the material. Together we will explore the
many ways you can use your computer. The exercises suggest programs you
can write. Many of the exercises are designed to give you insight into how
computers are used in business, home and industry. For good measure we'll
even build a few computer games!

What is personal computing?

In the early days of computing (the 1940s and 1950s), the typical com
puter was a huge mass of electronic parts that occupied several rooms . In
those days, it often was necessary to reinforce the floor of a computer room

2 Sec. 1.1

and to install special air conditioning so the computer could function properly.
Moreover, an early computer was likely to cost several million dollars. Over the
years, the cost of computers has decreased dramatically and, thanks to
microminiaturization, their size has shrunk even faster.

In the late 1970s, the first "personal" computers were put on the market.
These computers were reasonably inexpensive and were designed to allow the
average person to learn about the computer and to use it to solve everyday
problems. These personal computers proved to be incredibly popular and have
stirred the imaginations of people in all walks of life. It is no exaggeration to say
that a computer revolution is now underway, as millions of people are learning
to fit computers into their everyday lives.

The personal computer is not a toy. It is a genuine computer with most of
the features of its big brothers, the so-called "mainframe" computers, which
still cost several million dollars. A personal computer can be equipped with
enough capacity to handle the accounting and inventory control tasks of most
small businesses. It also can perform computations for engineers and scientists,
and it can even be used to keep track of home finances and personal clerical
chores. It would be quite impossible to give a complete list of the possible
applications of personal computers. However, the following list can suggest the
range of possibilities:

For the business person
Accounting
Recordkeeping
Clerical chores
Inventory
Cash management
Payroll
Graph and chart preparation
Word processing
Data analysis
Networking

For the home
Recordkeeping
Budget management
Investment analysis
Correspondence
Energy conservation
Home security
On-line information retrieval
Tax return preparation

For the student-
Computer literacy
Preparation of term papers
Analysis of experiments
Preparation of graphs and charts
Project schedules
Storage and organization of notes

For the professional
Billing
Data analysis
Report generation
Correspondence
Stock market data access
Scientific/ engineering calculations

For recreation
Computer games
Computer graphics
Computer art

What is a Computer? 3

As you can see, the list is quite extensive. If your interests aren't listed , don't
worry1 There's plenty of room for those of you who are just plain curious about
computers and wish to learn about them as a hobby.

The IBM PCjr *

This book will introduce you to personal computing on IBM's home com
puter, the IBM PCjr. • This machine is an incredibly sophisticated device that
incorporates many of the features of its big brothers, the IBM PC and PC / XT,
which currently are being used by millions of people in homes and offices
throughout the world. Before we begin to discuss these particular features of
the IBM PCjr, let's discuss the features common to a ll computers.

1.2 What is a Computer?
At the heart of every computer is a central processing unit (or CPU) that
performs the commands you specify. This unit carries out arithmetic, makes

INPUT
keyboard

t
MEMORY - CENTRAL OUTPUT

ROM Cassette - Screen PROCESSING -
~ UNIT Printer RAM Diskette

Figure 1-1. The main components of a computer.

• PCjr (pronounced "PC junior"} is a registered trademark of International Business Machines

Corporation.

4 Sec. 1.2

logical decisions , and so forth . In essence , the CPU is the "brain" of the com
puter. The memory of a computer allows it to "remember" numbers, words,
and paragraphs, as well as the list of commands you wish the computer to
perform. An input unit allows you to send information to the computer; an
output unit allows the computer to send information to you. The relationship
of these four basic components of a computer is shown in Figure 1-1.

In an IBM PCjr, the CPU is contained in a tiny electronic chip, called an
8088 microprocessor . As a computer novice , you don't need to know about
the electronics of the CPU. For now, view the CPU as a "magic device" some
where inside the case of your computer and don't give it another thought!

The main input device of the PCjr is the computer keyboard. We will dis
cuss the special features of the keyboard in Section 2.5. For now, think of the
keyboard as a typewriter. By typing symbols on the keyboard, you are inputting
them to the computer.

The PCjr has a number of output devices. The most basic is the "TV
screen" (sometimes called the video monitor or video display). You may
also use a printer to provide output on paper. In computer jargon, printed
output is called hard copy .

There are four types of memory in a PCjr: ROM , RAM , cassette , and
diskette . Each of these types of memory has its advantages and disadvan
tages. Microcomputers attempt to make memory as versatile as possible by
using several kinds of memory, thereby allowing them to take advantage of the
good features of each.

ROM
ROM stands for "Read Only Memory." The computer can read ROM but

cannot write anything in it. ROM is reserved for certain very important pro
grams necessary to the operation of the machine. These programs are
recorded in ROM at the factory and you cannot change them. The PCjr has
some ROM in its system unit. In addition, you may purchase ROMs containing
various games or an enhanced version of BASIC. These ROMs may be
plugged into one of the two cartridge slots on the PCjr.

RAM
RAM stands for " Random Access Memory. " This is the memory that you

can read from and write to. If you type characters on the keyboard, they are
then stored in RAM. Similarly, results of calculations are kept in RAM awaiting
output to you. As you will see, RAM even holds the instructions that perform
the calculations!

There is an extremely important feature of RAM that you should
remember:

If the computer is turned off, then RAM is erased.

A Grand Tour of the PCjr 5

Therefore, RAM may not be used to store data in permanent form. Neverthe
less, it is used as the computer's main working storage because of its great
speed. (It takes about a millionth of a second to store or retrieve a piece of
data from RAM.)

The size of RAM is measured in bytes . Essentially, a byte is a single char
acter (such as "A" or"!"). You often will hear statements like "The PCjr comes
with 64K of RAM. " The abbreviation "K" stands for the number 1,024. And
64K stands for 64 times 1,024 or 65,536 bytes.

Cassette Recorder

To make permanent copies of programs and data , you can use either a
cassette recorder or a diskette drive.

The cassette recorder is just a tape recorder that allows recording of infor
mation in a form the computer can understand. The recording tape is the same
type you use for musical recordings.

Diskette Drives

A diskette drive (Figure 1-2) records information on flexible diskettes that
resemble phonograph records. The diskettes are often called " floppy disks,"
and they can store several hundred thousand characters each! (A double
spaced typed page contains about 3,000 characters.) (See Figure 1-3.) A disk
ette drive can provide access to information in much less time , on the average,
than a cassette recorder. On the other hand, diskette drives are more costly.

1.3 A Grand Tour of the PCjr
Now that we know the elements of computer systems in general , let's take our
first look at IBM's PCjr .

•
Figure 1-2. A diskette drive .

6 Sec. 1.3

Figure 1-3. A floppy diskette .

The system comes in two versions: basic and enhanced. Let's describe the
basic version , shown in Figure 1-4.

Note that there are three component parts to the basic system. The key
board is the unit that looks like a typewriter. The system unit is the large box,
which contains the 8088 microprocessor and most of the electronics of the

\\\\\\\\\\\\11111

\\\\\\\\\\1111111 ,.

Figure 1-4. The PCjr basic system.

The Keyboard 7

PCjr. Inside the system unit is 64K of RAM. The system unit has two cartridge
slots into which you can insert program ROMs.

The other box is the transformer, which converts household electric cur
rent to a level the PCjr can use .

The enhanced system is shown in Figure 1-5. Note that this system has a
diskette drive in the system unit. (The diskette drive is the long, rectangular
door at the bottom of the unit.) In addition, the enhanced system has 128K of
RAM which, among other things, allows you to display an 80-character wide
line.

I will describe the various PCjr components in greater detail in the next
few sections.

Figure 1-5. An enhanced PCjr system.

1.4 The Keyboard

The keyboard is the device you use to communicate directly with the cbrnputer.
As you type , your keystrokes are recorded in RAM, awaiting action by the com
puter. What you type is called input.

The PCjr keyboard is very similar to that of a typewriter. However, a
number of special keys that are not found on a typewriter keyboard allow it to
perform many more functions. The keyboard of the PCjr is shown in Figure
1-6.

8 Sec. 1.5

Figure 1-6. The PCjr keyboard.

At first, the PCjr keyboard may seem strange and forbidding. However,
you can easily learn about its various keys using the Keyboard Adventure tuto
rial , which is stored in ROM. By hitting the escape key (ESC) once cassette
BASIC is started, you will start Keyboard Adventure. This tutorial is one of
several that comes with the PCjr and is designed to help you in learning the
keyboard. ·

The keyboard contains electronics to transfer your keystrokes to the sys-
tem unit. Transferring keystrokes may be done in either of two ways:

Infrared Optical Link-The keyboard has a built-in infrared communica
tions system that can transmit information from the keyboard to the sys
tem unit without using a cord. This system is powered by four AA
batteries and allows you to type on the keyboard as far as 20 feet from
the system unit. It is possible for you to use the keyboard while sitting in
an easy chair across the room from the system unit and display screen.

The cordless keyboard also gives you a lot of flexibility in arranging your
system in crowded rooms. For instance , the system unit could be placed
on a shelf in a wall unit and the keyboard across the room near the
television.

The infrared optical link has a restriction. It cannot "turn corners. " There
must be an unobstructed path from the system unit to the keyboard.

Cable Connection- You may connect the keyboard to the system unit via
an optional cable. This is advisable in classroom situations or may be nec
essary where there are several PCjrs in one room.

1.5 System Unit

Of all the components of the PCjr system, the system unit is the most complex.
Within its small cabinet is all the ingenious electronic circuitry that makes the

System Unit 9

computer work. In this section, you'll get familiar with the system unit, first from
the outside, and then on the inside.

Let's begin by looking at the front of the system unit , shown in Figure 1-7.
At the bottom right are two slots into which you may insert program car

tridges. Initially, IBM is offering assorted program cartridges containing games.
In addition, you may purchase Cartridge BASIC, an enhanced version of the
Cassette BASIC permanently stored in the PCjr's memory.

Actually, the cartridges are Read Only Memories (ROMs). By plugging in a
cartridge , you are extending the PCjr's memory by 64K. However, you can't
write to cartridge memory. You can only read from it.

The system unit may contain a diskette drive. (We'll discuss how to use a
diskette drive later on.) If the diskette drive is installed, you will find it at the top
right of the system unit. The enhanced model of the PCjr comes with a diskette
drive as standard equipment. However, even if you buy the basic model, it is
very simple to add a diskette drive later.

If you look at the sides and rear of the system unit, you will notice a
number of plugs ("connectors" in computerese). (See Figures 1-8 and 1-9.)
These allow you to connect a number of different devices to the system unit.
The connectors are coded by letters. For instance, the connector into which
you can plug a display is labeled "D." The various connectors on the PCjr
include:

Color Display (D) or Television (T)-You must connect the display to
the system unit with a cable. The type of cable and the connector into
which it is plugged depend on the display you choose. (See the next
section.) ·
Power (P)-All electric power for the system unit passes through the
transformer. The transformer is connected to the system unit with a cable.

\\\\\\\\\\\\\\\11
\\\\\\\\\\\\\\\11 •

Figure 1-7. The front of the system unit.

10 Sec. 1.5

-

\\1111111111111111111 lll-11111/lllJ:1•

Figure 1-8. The rear of the system unit.

Figure 1-9. The sides of the system unit.

Cassette (C) - You may connect a cassette recorder for long term pro
gram and data storage.
Keyboard Cord (K) - You may attach the keyboard to the system unit
with an optional cord.
Serial Port (S)- This connector allows you to connect devices which
have a serial interface .
Parallel Printer - This connector is on the side of the system unit and
allows you to connect the parallel printer adapter. This is required if you
wish to use the IBM graphics printer with your PCjr.
Printer (P) -Here is where you connect the IBM compact printer.

System Unit 11

Joystick (J) -You may equip your computer system with an optional
joystick. (See Figure 1-10.) The joysticks you use with a personal com
puter are similar to those used with the home video games that have
become so popular. The system unit already contains the circuitry neces
sary to use the joystick, which you plug into the rear of the unit.
Light Pen (LP)-A light pen is a device that lets you input information
just by pointing to the screen. (See Figure 1-11.) For example , the com
puter might display a list of actions. You could use a light pen to point to

•
Joystick

L

Figure 1-10. A joystick.

Figure 1-11. Light pens.

12 Sec. 1.5

Figure 1-12. A microcomputer cable.

the action you wish the computer to take. The light pen circuitry is able to
tell where the tip of the light pen touches the screen. You may plug a light
pen into the rear of the system unit.
Modem (M) -A modem is a device that translates internal computer data
into electric signals that can be transmitted over a phone line. Using a
modem, your PCjr can communicate with another computer or a data
service. (More about these later.) If you add a modem to your PCjr, you'll
need to connect the cable that comes with the modem to a modular
phone jack.

More About Cables-You may be confused by the above discussion of
cabling requirements. Don't be. The PCjr cables are designed so that they can
only be connected to the correct plug. For example, look at the plug in Figure
1-12. It contains 25 pins.

Each pin carries an electric signal with a particular meaning, so it 's impor
tant for each pin to be plugged into the correct place. Note that the end of the
plug is not rectangular. The mating connector has the same shape. The unu
sual shapes mean that you can make the connection in only one direction.
Therefore, each pin will be plugged into the correct place. Each of the PCjr's
cables has a differently shaped plug so that you can be guaranteed "goof
proof" connections.

Inside the System Unit
The inside of the system unit is a marvel of modern electronics. You don't

really need to know anything about the circuitry to enjoy using your computer.
Nevertheless, I'll spend a few moments describing what's inside the system unit.
Circuit Boards-Most of the electronic circuitry of the computer is organized
on circuit cards like the one shown in Figure 1-13. A circuit card usually is
called a " board."

A circuit board contains paths which conduct electricity. These
paths connect various semiconductor devices (also called "chips") to one
another. There are various types of chips on the circuit boards of your PCjr,

System Unit 13

Figure 1-13. A circuit board.

but the most important is the 8088 microprocessor, which is the "brain" of the
computer. The 8088 is approximately an inch long, but contains tens of
thousands of transistors that control the inner workings of the computer.
RAM Memory-On the circuit boards of the system unit are memory chips ,
both ROM and RAM. To get an idea of the size of such a chip, look at Figure 1-
14, which shows a RAM chip beside a paper clip.

Figure 1-14. A RAM chip.

14 Sec. 1.5

RAM memory is used for many purposes. When you type in a BASIC
program, it is stored in RAM. Sections of RAM are devoted to communications
with the printer, screen, and keyboard.
ROM Memory-Some of the memory chips inside the computer are Read
Only Memories (ROMs). These chips contain information that has been prere
corded at the factory and that you are unable to change by normal operation of
the computer. Within the ROMs are various diagnostic routines, a tutorial to
help you learn the keyboard, and the computer language-Cassette BASIC.
The cartridges that you plug into the slots on the front of the system unit are
just ROMs that extend the ROM memory otherwise available within the system
unit.
Expansion Slots-Inside the system unit on the main circuitry board are three
slots into which you may insert additional circuit boards. The slots are designed
so that each will take only one type of board. Here are the possibilities:

Diskette Drive Adapter Board-This board contains the electronics neces
sary to control a disk drive. To use a disk drive , this card must be in the appro
priate expansion slot and connected to the disk drive with an appropriate cable.
If you purchase an enhanced unit, the disk drive and this board are already
installed in the system unit. However, if you purchase the basic unit, then you
can upgrade to an enhanced unit simply by adding the extra circuit board and
disk drive.

Internal Modem-This circuit board allows you to connect your computer
to a telephone jack to establish computer-to-computer communications over
standard telephone lines.

64K Memory Expansion and Display Adapter Board-This board
increases total RAM to 128K and allows you enhanced display capabilities,
including:

• SO-character line width.
• Use of high-resolution graphics.

(For a further discussion of display capabilities, see Section 3.3.) This expan
sion board comes standard in the enhanced system unit. It may be added to
the basic system unit.
Other Possibilities-The IBM PC has five expansion slots; the IBM PC / XT
has eight. By comparison, the PCjr is short on expansion slots. Before you
commit yourself to filling all your slots, you should consult your dealer on the
latest offerings from other companies. If the past is any guide, a large number
of multipurpose expansion boards that incorporate three, four or more func
tions on a single board will be available. By using such boards, you can make
most efficient use of your precious expansion slots.

In addition to the three predefined expansion slots (modem, memory,
diskette) , the PCjr has an expansion connector on the right side of the system
unit. As of this writing, IBM has not indicated how many options may be con
nected via this connector; but it appears that all the electrical signals are pres
ent for adding an expansion module with additional expansion slots into which
you could connect additional diskette drives , a hard disk, additional memory,
and so forth.

Cassette and Diskette Storage 15

1.6 Cassette and Diskette Storage

The PCjr can use either cassettes or diskettes for long term storage. You will
require one or the other of these devices with your PCjr system if you are to be
spared the chore of repeatedly typing the same programs and data each time you
wish to use them. (Recall that RAM is erased when the computer is turned off.)

Cassette Recorder

You may connect a standard cassette recorder, (see Figure 1-15) using an
optional cable , to one of the connectors at the rear of the system unit. Cassette
BASIC, the version of the BASIC language that is in ROM and automatically
comes with every PCjr, contains instructions to save and recall programs from
the cassette. In addition, Cassette BASIC allows you to read and write data files
{like address lists, form letters, financial data) to and from the cassette.

As your storage medium, you may use the same cassettes you now use to
tape music or conversations. Just stay away from the bargain basement cas
settes. A small flaw in a tape may show up as static in a song. However, it could
spell disaster for a stored computer program or a crucial data file. If you stick
to good quality tapes, however, you should have no problems.

Note that your PCjr comes with all the electronics necessary to read and
write cassettes . The only additional components you must add are the cassette
recorder itself and the optional cable purchased from IBM (and, of course , a
supply of cassettes). You may use any cassette recorder you have around the
house. The only requirement is that the recorder have a connector into which
you can plug the cable from PCjr. And almost all cassette recorders have such
a connector.

Diskette Drive

You may use a diskette drive with the PCjr. If you have purchased a basic
unit, then you may add the diskette drive later. However, if you purchased the
enhanced unit, then a diskette drive is standard.

Figure 1-15. A standard cassette recorder.

16 Sec. 1.7

The visible portion of the diskette drive is the door at the top of the front
of the system unit. This door is for inserting diskettes (more about that later).
The electronic circuitry necessary to operate the diskette drive is contained on
the diskette drive adapter that occupies one of the expansion slots inside
the system unit.

The diskette drive for the PCjr is a "half-height" drive and can write to
either single-sided or double-sided diskettes. It uses "double-density" diskettes
and can write 180K bytes on each side of the diskette. We'll discuss the detailed
operation of the diskette drives in a later chapter.

1. 7 Displays
The display of your PCjr system is an extremely important component. As you
type on the keyboard, the keystrokes are displayed on the screen. (In computer
jargon, the keystrokes are echoed to the screen.) In addition, the display is an
output device to which programs send data.

You have three choices for the display of your system:
A television set
A "video composite" monitor
A "direct drive" or " RGB" monitor, such as the IBM color display

I'll describe the features of each of these displays.

Television Set-You can use a television set (black and white or color) as a
display. To connect it to the PCjr, you will need the optional PCjr Connector
for TV. You probably have used a similar connector if you ever have connected
a video game system to your television. The connector attaches to the video
input of your television (usually with two screws on the rear of the set) . It has
two positions: TV and Computer. On the PCjr, the cable is plugged into con
nector T on the rear of the system unit.

A television set allows you to display 25 lines of 40 characters each. In
graphics mode, a television screen is divided into as many as 200 lines of 320
dots each. In the case of a color set, you may display color text and graphics.
Moreover, the PCjr can produce sound using the speaker system in the televi
sion set.

Monitor-A monitor resembles a television set, except that it cannot receive
regular commercial broadcasts. It can display only what is sent to it from the
system unit. Monitors may be either color or black and white.

The PCjr can use any monitor that accepts what is called a "standard
composite video signal. " Don't worry what this means. If in doubt , ask your
dealer if a particular monitor will work. The display on a monitor will be clearer
than a corresponding display on a television set. Moreover, if your system is
equipped with a Memory Expansion and Display Adapter board, then a
monitor will give you additional display capabilities as follows:

Text lines may be either 40 or 80 characters wide.

Printers 17

You may use the high-resolution graphics mode, in which the screen is
divided into 200 lines of 640 dots each. However, you should note that in
high-resolution graphics mode you may use only four colors simultane
ously, as opposed to 16 in low- and medium-resolution modes.

A monitor will require a special cable to plug it into the connector on the
display adapter. (Note that the adapter cable for a television set will not do the
job.) This cable is plugged into connector D on the rear of the system unit.

IBM Color Display or other RGB Monitor- This display is a color monitor
that produces particularly striking colors. You may use this display on any of IBM's
personal computers (PCjr, PC, or PC/ XT). To use it on the PCjr, you will need a
special cable to connect it to the system unit (plugged into connector D).

1.8 Printers
There are several printers available for use with the PCjr. They span quite a
wide range of printer technology as well as a wide price range. They are dis
cussed in order of increasing price.

IBM Compact Printer
This is an inexpensive printer that takes up only a small amount of space.

It forms characters from dots , with each character printed in a 5-dot x 8-dot
rectangle .

This printer can print 50 characters per second and is capable of printing a
total of 191 different characters (the usual letters, numbers, and punctuation
marks, as well as a set of graphics characters).

The IBM Compact Printer uses a special thermal paper onto which the
printer " burns" the letters. You may purchase suitable paper in individual
sheets, rolls, or fanfold from your PCjr dealer.

You may print an 8-inch line on standard 8½-inch wide paper. You can
print standard width characters (10 per inch), double width characters (5 per
inch) , compressed characters (17.5 per inch), and compressed, double width
characters (8. 75 per inch).

The IBM Compact Printer has a graphics mode in which you may control
the individual dots in each character rectangle. In this mode , you can print lines
that are 560 dots wide and 8 dots high. This corresponds to a resolution of 70
dots per inch horizontally and 48 dots per inch vertically.

The IBM Compact Printer plugs directly into the system unit with a cable
that comes with the printer.

IBM 80 CPS Graphics Printer
This is the next printer in order of sophistication and price. It still prints

characters as rectangles of dots. However, each character is formed in a 9 x 12
rectangle. The advantages of this printer are:

18 Sec. 1.9

Its speed is 80 characters per second.
It delivers better print quality than the IBM Compact Printer.
It can use ordinary as opposed to thermal paper.
This printer has several graphics modes , a llowing much higher resolution
than is possible on the Compact Printer.

The main disadvantages are:

It takes up more space .
It costs more.
It is considerably noisier.

The IBM 80 CPS Graphics Printer requires a parallel interface. To sup
ply this interface in the PCjr, you must attach the Parallel Printer Attachment to
the right side of the system unit. You then plug your printer into the connector
on the attachment.

Other Printers

A host of non-IBM printers are compatible with the PCjr. Almost any
printer with a parallel interface will do. The EPSON FX-80 belongs to the same
family as the IBM Graphics Printer but has greater capabilities and twice the
print speed. Another possibility is the IBM Color Printer, which allows you to
print in four colors. There are many other printers. See your computer dealer
for details.

1. 9 Communications

Very significant among the features of the PCjr is its communications capability.
You may equip your PCjr system with a device called a modem that will enable
you to transfer computer data over ordinary phone lines. You can use this
capability in many interesting applications , which I'll explore in the next
chapter.

Internal versus External Modems

With the PCjr, you may use either an internal modem, which fits into one
of the expansion slots, or an external modem that connects to the serial port
(RS232-C interface) at the rear of the system unit.

The PCjr Internal Modem-The PCjr has an expansion slot designed to take
the PCjr Internal Modem board. This board contains the complete electron
ics for converting the electric signals that represent data within the computer
into corresponding electric signals that can travel along ordinary phone lines
and then be reconverted into computer data at the receiving end of the line .
(Of course , the conversion at the receiving end must be done by another
modem.)

The Serial Port 19

The PCjr Internal Modem has a single cable that extends from the system
unit. This cable must be plugged into a modular phone jack. Most phone instal
lations done in the past 10 years use modular jacks. If you can unplug your
phone from the outlet in the wall , then the socket remaining after you unplug
the phone is a modular jack. To connect the modem, just insert the plug at the
end of the cable into the modular jack. You will hear a slight "click" as the plug
seats itself into the jack.

PCjr BASIC has the instructions for operating the modem. These instruc
tions allow you to dial a number or repeatedly dial a number until a connection
is established. (This is useful for calling a line that is often busy.)

The speed of data transmission is measured in baud . Roughly speaking,
10 baud corresponds to one character per second. For example , a transmis
sion speed of 110 baud corresponds to about 11 characters per second. The
PCjr Internal Modem gives you a choice of two transmission speeds , 110 and
300 baud.

Using an External Modem-You also may connect an external modem to your
PCjr. To do this, you will need a modem cable to run from the serial port at the
rear of the system unit to the modem. There are two types of external modems.
The older (and less expensive) type is the acoustic modem. This type of modem
uses the acoustics in the phone receiver as part of the transmission process. To
use an acoustic modem, you must rest the phone receiver in a special cradle on
the modem. The computer data is then converted into audible tones that are then
converted, by the receiver, into electric signals that travel along the phone lines.
An acoustic modem can transmit at speeds up to 300 baud. An acoustic modem is
a possibility if you don't have modular phone jacks.

The more modern type of modem is a direct-connect modem, which
connects directly to a modular phone jack, just like the PCjr Internal Modem. A
direct-connect modem can transmit at speeds up to 1200 baud. If you will be
transmitting many lengthy documents, you will find that 300 baud is agonizingly
slow. In this case , you should consider the added speed of a direct-connect
modem. (At 300 baud, it takes about 10 seconds to transmit a single 300-word
page. Imagine transmitting a 300-page reportl)

Setting Communications Parameters
In order for two computers to communicate, their transmissions must

have the same characteristics. In particular, they must be set for the same baud
rate. BASIC has the software for adjusting the baud rate, as well as a number
of other communications parameters. In addition , each of the communicating
computers must be running a communications program to synchronize the
transmission of data.

1.10 The Serial Port
There are many devices you can connect to your PCjr, and other companies
are sure to increase the number of such devices in the months ahead. Most

20 Sec. 1.10

external devices are connected to the PCjr via the serial port, whose connector
can be found on the rear of the system unit.

A serial port (also called an RS232-C interface) uses a 25-pin connector,
where the electric signal carried by each pin of the connector is defined by an
international standard.

Using the serial port you may, for example, connect some letter quality
printers and plotters to your PCjr. Moreover, you may use the serial port to
directly wire two PCjrs together, so that they may exchange information.

In spite of the international standard of the RS232-C interface, there are
many variations requiring special cables. In using the serial port, you may
require a special cable for each device to be connected.

BASIC contains instructions for communicating data to the serial port.

Introducing -
Programs to Accompany IBM PCjr: An Introduction to DOS, BASIC

Programming Applications
Larry Joel Goldstein

You can get started right away, because all the program keyboarding has already
been done for you!

This companion software diskette offers you faster and easier access to PCjr programming and applica
tions. Just look at what you' ll get:

• All the programs(64 in alQ listed in the book. Including ready-to-run games . . . word processing . . . personal
financial management, and much more.

• Hours and hours of your valuable time saved. With the aid of this handy diskette, you'll be programming
in minutes!

• Frustrating, mind-numbing keyboarding errors eliminated with a sing le step. Leaves your mind clear, and
your fingers nimble to create and enjoy.

Here's How To Order Your Copy of Programs to Accompany IBM PCjr: An Introduction
to DOS, BASIC Programming Applications

Enclose a check or money order for $24.95 plus local sales tax. Slip in this handy order envelope - and
mail! No postage needed. Or charge it to your VISA or MasterCard. Just complete the information below.

ORDER TODAY!

DYES! I want to make bringing up"jr"fast and easy. Please rush me Programs to
Accompany IBM PCjr: An Introduction to DOS, BASIC Programming Applications/
D5378-8. I have enclosed payment of $24.95 plus local sales tax.

Name _________________ _

Address

City _________ State. __ ~Zip __ _

Charge my Credit Card Instead

D VISA D MasterCard

Account Number

Expi rat ion Date

Signature as it appears on Card

BradyRobert J. Brady Co. • Bowie, MD 20715
A Prentice-Hall Publishing and Communications Company
Dept. Y B1085-Sl(5)

Now you can make
bringing up "jr" even
easier!

See over for details .. :
. : . .

-~"lo.).~--~---.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1976 BOWIE, MD

POSTAGE WILL BE PAID BY ADDRESSEE

Robert J. Brady Co.
A Prentice-Hall Company
Bowie, Maryland 20715

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

2

USING YOUR PCjr FOR

THE FIRST TIME

In this chapter, I will guide you through your first session with the PCjr. If you
don 't have a disk drive , read only Section 2.1, which teaches you how to turn
on the machine, followed by Section 2.6, which teaches you the keyboard fun
damentals. You can skip Chapter 3 entirely and proceed directly to the intro
duction to BASIC, beginning in Chapter 4.

If your PCjr is equipped with a diskette drive, you should begin reading
with Section 2 .2.

At various points in the discussion, I include TEST YOUR UNDER
STANDING questions on your understanding of the material just covered.
The answers to these questions are at the end of the section. In addition, there
are exercises with answers at the back of the book.

2.1 Starting Your PCjr (Without DOS)
The following instructions tell you how to start you PCjr without using the Disk
Operating System (DOS). You should follow these instructions either if your

Figure 2-1.

22 Sec. 2.2

computer doesn't have a diskette drive or if you wish to operate the computer
without using the diskette drive.

There are two versions of BASIC: Cassette BASIC, which is stored in
ROM and is always available, and Cartridge BASIC, which is available in a
program cartridge. The starting procedures are slightly different depending on
the version of BASIC you wish to use.

Starting Cassette BASIC
1. Turn on the monitor.
2. On the system unit you will find the computer On-Off switch. (See

Figure 2-1.) Flick it to the On position.
3. For about 30 to 45 seconds, the computer does diagnostic testing to

determine if all its components are in good working order. When the
tests are complete, the computer should respond with a beep and a
display similar to:

The IBM Personal Computer Basic
Version C1.00 Copyright IBM Corp. 1981
xxxxx Bytes Free
Ok

Prompt Cursor

The C in the Version number indicates Cassette Basic.

4. Note the letters Ok in the last line of the display. These letters are the
BASIC prompt and indicate that cassette BASIC is ready to accept
instructions. The small blinking dash is called the cursor and indi
cates the place on the screen where the next typed character will
appear.

Starting Cartridge BASIC
1. Insert the program cartridge containing Cartridge BASIC into either

of the two cartridge slots in the front of the system unit.
2-5. Perform steps 1-4 above.

The version number in the final display will be slightly different from the one
given above and will be preceded by a J indicating PCjr Cartridge BASIC.

2.2 On Diskettes and Diskette Drives
If your PCjr is equipped with a diskette drive , it is a critical part of the system. It
will allow you to store and retrieve both programs and data. Before we proceed
any further, let's get acquainted with these remarkable devices.

On Diskettes and Diskette Drives 23

The Anatomy of a Diskette
To store information, the diskette drives use 5-1/ 4-inch floppy diskettes.

Diskettes come in single-sided and double-sided versions. The single-sided disk
ettes may be written on only one side, a double-sided diskette on both sides.
The diskette drive of your PCjr uses double-sided diskettes that can accommo
date roughly 360,000 characters (about 100 double-spaced typed pages).

Figure 2-2 shows the essential parts of a diskette. The diskette itself is a
magnetically coated circular piece of mylar plastic that rotates freely within a
stiff jacket. The jacket is designed to protect the diskette. The interior of the
jacket contains a lubricant that helps the diskette rotate easily. The diskette is
sealed inside. You should never attempt to open the protective jacket. The
labels on the jacket identify the contents of the diskette.

The diskette drive reads and writes on the diskette through the read-write
window. NEVER, under any circumstances, touch the surface of the diskette.
Diskettes are very fragile. A small piece of dust or even oil from a fingerprint
could damage the diskette and render parts of the information on it useless.

The write protect notch allows you to prevent changes to information
on the diskette. When this notch is covered with one of the write protect labels
provided with the diskettes , the computer may read the diskette , but it will not
write or change any information on the diskette. To write on a diskette, the
write protect notch must be uncovered.

Labels

r Read-write window

•
Write protect notch ~------

Figure 2-2. A diskette.

24 Sec. 2.3

You should have a few blank diskettes on hand. Take a moment to inspect
one of them and locate the parts of the diskette described above. (The labeling
on your diskettes may differ from that shown in Figure 2-2.)

Cautions in Handling Diskettes
Diskettes are extremely sensitive. Here are some tips in using them.
1. Always keep a diskette in its paper envelope when it is not in use.
2. Store diskettes in a vertical position just like you would a phonograph

record.
3. Never touch the surface of a diskette or try to wipe the surface of 9,

diskette with a rag, handkerchief, or other piece of cloth.
4. Keep diskettes away from extreme heat, such as radiators, direct sun,

or other sources of heat.
5 . Never bend a diskette.
6. When writing on a diskette label, use only a felt tipped pen. Never use

any sort of instrument with a sharp point.
7. Keep diskettes away from magnetic fields, such as those generated by

electric motors, radios, TVs, tape recorders, telephones , and other
electric devices. A strong magnetic field may erase data on a diskette.

8. Never remove a diskette while the drive is running. (You can tell if a drive
is running by the sound of the motor and the "in use" light on the front
of the drive.) Doing so may cause permanent damage to the diskette.

The above list of precautions may seem overwhelming to someone starting
out. However, once you set up a suitable set of procedures for handling and
storing diskettes, you'll find that they are a reliable, long-lasting storage medium.

Using Diskettes
To insert a diskette into a diskette drive , open the door of the drive. Turn

the diskette so that the label side is facing up and the read-write window is
closest to the computer. Gently push the diskette all the way into the drive.
Close the drive door. The diskette now can be read by the computer.

To remove a diskette from a drive , first be sure that the light to the left of
the drive door is off. Open the drive door and gently pull the diskette forward
and out of the drive.

TEST YOUR UNDERSTANDING 1
Take a blank diskette and practice inserting it in the diskette drive on the
left. Remove the diskette from the drive .

2.3 Starting Your PCjr (With DOS)
To control the flow of information to and from the diskette drive, we need a
program called an operating system . Such a program acts as a manager for
all the activities that go on in the computer. More specifically, it coordinates the

Starting Your PCjr (With DOS) 25

flow of information among the keyboard, video display, RAM, ROM, diskette
drive, and any other peripheral devices you may add to your computer system.

The official operating system of the IBM family of personal computers is
called IBM DOS (IBM Disk Operating System, pronounced IBM doss), also
called MS-DOS • , PC-DOS , or just DOS for short. Actually, DOS has under
gone several revisions since its conception. The latest version is DOS 2.10, and
this version runs on all three IBM personal computers: the PCjr, the PC, and
the PC/ XT.

When you purchased your system, you also should have bought a copy of
the Disk Operating System manual. Just inside the rear cover of the DOS
manual is a plastic jacket that contains two diskettes, one labeled DOS and the
other DOS Supplementary Programs . The first diskette is your master copy of
the programs necessary to operate your diskette drives. This diskette is extremely
important. So important, in fact, that it does not have a write protect notch. This
means that you can never write on this diskette. (No chance for accidentally alter
ing its programs!) I refer to this diskette as the master DOS diskette .

To use DOS, it's first n~cessary to read DOS into the computer. Ordinarily,
this would be done with a copy of the master DOS diskette, rather than with the
original itself. However, on your first pass, you don't yet have any extra copies of
the DOS diskette, so we must use the master. Here's the procedure to follow.

Starting Your Computer

1. Insert the DOS diskette into the diskette drive. The label side should
be up. Push the diskette all the way to the rear of the drive. Close the
drive door.

Figure 2-3.

• MS stands for Microsoft, the corporation that designed the operating system.

26 Sec. 2.3

2. Insert the BASIC cartridge into either cartridge slot (at the bottom of
the front of the system unit). Be sure to push the cartridge all the way
into the slot.

3. Turn on your monitor.
4. Turn on the printer (if one is connected).
5. On the system unit (the box in which the diskette drive sits) you will

find the computer On-Off switch. (See Figure 2-3.) Flick it to the up
position. For 30 to 45 seconds, the computer does diagnostic testing
to determine if all its components are in good working order. When
the tests are complete, the computer should respond with a beep and
the display:

Current date is Tue 1-01-1980
Enter new date:

6. Type in today's date (in the format 4-22-99 for April 22, 1999). Press
the ENTER key, which is the large key with the symbol:

Enter~

/

Fig. 2-4a

The computer will respond with a display similar to:

Current time is 0:00:00.00
Enter new time

Type in the correct time in the format 14:03:00 for 2:03 PM. (The
PCjr uses a 24-hour clock.) The computer will respond with a display
similar to :

The IBM Personal Computer DOS
Version 2.10 Copyright IBM Corp. 1981,1982,1983
A>_

Starting Your PCjr (With DOS) 27

The symbol A> is called the DOS prompt and it tells you that DOS
is loaded and ready to accept commands.

7. In this chapter, we 'll learn to use many of the DOS commands. At this
point, let's give the command to read the BASIC programming lan
guage from the DOS diskette into RAM. Type :

basic

Press the ENTER key. The computer will respond with a display simi
lar to:

The IBM Personal Computer Basic
Version J1 .00
Copyright IBM Corp. 1981,1982,1983
xxxxx Bytes Free
Ok

Cursor

Note the letters Ok in the last line of the display. These letters are the
BASIC prompt and indicate that the computer language (called
BASIC) is ready to accept instructions. The small blinking line is called
the cursor and indicates the place on the screen where the next typed
character will appear.

8. To return from BASIC to DOS, type:

system

and press ENTER. The computer will display the DOS prompt A> .

TEST YOUR UNDERSTANDING 2 * (answer on page 28)
a. Turn on your computer and load DOS.
b. Load BASIC.
c. Return to DOS.

Turning Off the Computer
1. Turn off the system unit.
2. Turn off the monitor.
3. Remove any diskettes from the drives.

•Answers to TEST YOUR UNDERSTANDING questions (where appropriate) are given at the

e nd of the current section .

28 Sec. 2.5

ANSWERS TO TEST YOUR UNDERSTANDING
2. a. Follow the instructions 1-8 for Starting Your Computer.

b. Follow instruction 7.
c. Follow instruction 8 .

2.4 More About Diskette Drives
The PCjr can be equipped with only a single diskette drive. However, DOS is
capable of recognizing up to four drives. The diskette drives are given the
names A: , B: , C:, and D: (note the colons). Drive names are used to refer to a
drive within a command.

The single diskette drive on the PCjr actually can be referred to by drive
name A: or B:. At any given moment, only one of these names is in effect. You
can tell which by looking at the DOS prompt. If the A: name is being used, then
the prompt will be A> . If the B: name is being used, then the DOS prompt will
be B> . Below you'll see the reason for this rather odd use of names. The drive
whose name is shown in the DOS prompt is called the current drive or the
default drive . If you give a command without referring to a drive , then the
current drive is assumed.

To change the current drive:
1. Obtain the DOS prompt A> or B> .
2. Type the name of the new current drive (remember the colon).

Press ENTER.

TEST YOUR UNDERSTANDING 1 (Answers on page 28)
a. Turn on your computer and change the current drive from A: to

B:.
b. Change the current drive back to A: .

ANSWERS TO TEST YOUR UNDERSTANDING
1. a. After turning on the computer and obtaining the DOS

prompt, type B: and press ENTER.
b. Type A: and press ENTER.

2. 5 Backing Up Your DOS Diskette
Good programming practice dictates that you keep duplicate copies of all your
diskettes. In computer language , a copy is called a backup_ Making backups

Backing Up Your DOS Diskette 29

reduces the chance that you'll lose your programs and data due to accidents
(power blackout, coffee spilled on a diskette , and so forth) . It is an especially
good idea to make a copy of the master DOS diskette the first time you use it.
Later, you should use only the copy. The original DOS diskette should be
stored in a safe place so that yet another copy can be made if the first copy is
damaged. Here is the procedure for making a backup copy of a diskette.

Copying One Diskette Onto Another
You must copy the contents of the master DOS diskette onto a blank

diskette.
1. Obtain the DOS prompt A>. Insert the DOS diskette into drive A:.

Type:

DISKCOPY

Then press the ENTER key. The computer will respond with the
display:

Insert source diskette in drive A:
Strike any key when ready

2. The source diskette , namely the DOS diskette, is already in drive A:,
so strike any key. The computer will respond with the prompt:

Copying 9 sectors per track, 1 sides(s)

DOS will copy a portion of DOS from the diskette into RAM. When it
has copied as much as it can, it will display:

Insert target diskette in drive A
Strike any key when ready

Remove the DOS diskette and insert a blank diskette. Next, press any
key. The computer will now copy the data in RAM onto the diskette . If
there is more data to be copied from the DOS diskette, you will be
directed to reinsert the DOS diskette. Then steps 1 and 2 will be
repeated a number of times. After all the data has been copied, the
computer will display the prompt:

Copy complete
Copy another? (Y/N)

Answer N to indicate that we do not wish to copy another diskette.
The computer will now display the DOS prompt:

A>

30 Sec. 2.5

3. Your blank diskette is now an exact copy of the original. At this point,
you may give another DOS command or request BASIC.

TEST YOUR UNDERSTANDING 1 (Answer on page 31)
Make a copy of the DOS system diskette supplied with your diskette oper
ating system.

From now on you should use only the copy of the master DOS diskette ,
and not the original. Put the original in a safe place , so that it can be used to
make yet another copy if the current copy is damaged.

A Word to the Wise
The backup procedure just described may be used to copy the contents of

a diskette onto another.• Because diskettes are fragile , I strongly urge you to
maintain duplicate copies of all your diskettes. A good procedure is to update
your copies at the end of each session with the computer. This may seem like a
big bother, but it will prevent untold grief if, by some mishap, a diskette with
critical programs or data is erased or damaged.

TEST YOUR UNDERSTANDING 2 (Answer on page 31)
Use your copy of the master DOS diskette to make another copy. (A copy
of a copy is just as good as the original!)

Figure 2-4. The PCjr keyboard.

• Note, however, that some diskettes conta ining programs are copy-protected by their manufac
turers. Such diskettes cannot be copied using the DISKCOPY command.

ANSWERS TO TEST YOUR UNDERSTANDING
1: Follow instructions 1-3 on page 29 .

The Keyboard 31

2: Follow instructions 1-3 on page 29 , but start with the copy DOS
diskette in drive A: .

2.6 The Keyboard

Examine the PCjr keyboard. (See Figure 2-4.) This keyboard looks complex,
but I'll cover the functions of the various keys slowly to give you time to feel
comfortable with the design.

The central section is very much like a typewriter keyboard. There are a
few symbols that are not present on a typewriter, such as :

<>A -[]\{}
Also, you should note the following important differences from a typewriter
keyboard:

1. There are separate keys for 1 (one) and 1 (el). (Many typewriters let
the lowercase I serve as a one.)

2. The number 0 (zero) is included with the other numbers. It has a slash
through it. This is to distinguish it from the letter 0.

Here are the functions of the other keys in the central portion of the
keyboard:

c::::::J Space bar. Generates a blank space just like the space bar on a
typewriter.

[Zl Shift key_ Shifts keys to their uppercase versions. For keys with two sym
LJ bols, the rightmost symbol takes effect. The uppercase versions are in

effect only as long as the shift key is held down. Releasing the shift key
causes keys to assume their lowercase meanings. Note that there are two
shift keys, one on each side of the keyboard.

~ Caps Lock key. In most computer work it is convenient to type using
t:.l only capital letters. For one thing, capitals are larger and easier to read on

the screen. You may turn off the lowercase letters by pressing the Caps
Lock key. In this mode , the letter keys are typed as capitals. Note, how
ever, that the nonletter keys (such as 1 and !) still have two meanings. To
type the upper symbol, you must still use the shift key. To exit from the all
capitals mode , once again press the Caps Lock key. With the Caps Lock
key engaged, if you press the shift key and a letter key, a lowercase letter
will be displayed.

r:7 Backspace key. Moves the cursor back one space. Erases any letter it
t.:..J backs over.
[7 ENTER key. Similar to a carriage return key on a typewriter. Used to end
L.l a line and to place the cursor at the beginning of the next line . A line may

be corrected with backspaces until ENTER is pressed.
§ Tab key. Works like the tab key on a typewriter. Moves the cursor to the

next tab stop.

32 Sec. 2.6

D Control key_ Used in combination with other keys. For example , the key
LJ combination Ctrl-A means to simultaneously press Ctr! and A. Such com-

binations are used to generate control codes for the screen and printer.
D Escape key_ Used to indicate that certain sequences of letters are to be
LJ interpreted as control codes.
0 Function key_ Used in combination with other keys to generate various
LJ function sequences.

Turn on your PCjr and obtain the DOS prompt A>. (If you are not using
DOS, obtain the BASIC prompt Ok.) Strike a few keys to get the feel of the
keyboard. Note that as you type, the corresponding characters will appear on
the screen. Note , also, how the cursor travels along the typing line . It a lways
sits where the next typed character will appear.

As you type, you should notice the similarities between the PCjr keyboard
and that of a typewriter. However, you also should note the differences. At the
end of a typewriter line you return the carriage manually or, on an electric
typewriter, with a carriage return key. Of course, your screen has no carriage to
return. However, you still must tell the computer that you are ready to move on
to the next line. This is accomplished by hitting the ENTER key. If you press
the ENTER key, the cursor will then return to the next line and position itself at
the extreme left side of the screen. The ENTER key also has another function .
It signals the computer to accept the line just typed. Until you hit the ENTER
key, you may add to the line, change portions, or even erase it. (You'll learn to
do these editing procedures shortly.)

Keep typing until you are at the bottom of the screen. If you hit ENTER,
the entire contents of the screen will move up by one line and the line at the
top of the screen will disappear. This movement of lines on and off the screen
is called scrolling

As you may have noticed, the computer will respond to some of your
typed lines with error messages. Don't worry about these now. The computer
has been taught to respond only to certain typed commands. If it encounters a
command that it doesn't recognize , it will tell you so with an error message. It is
extremely important for you to realize that these errors will in no way harm the
computer. In fact, there is little you can do to hurt your computer (except by
means of physical abuse, of course). Don't be intimidated by the occasional
slaps on the wrist handed out by your computer. Whatever happens, don't let
these "slaps" stop you from experimenting. The worst that can happen is that
you might have to turn your computer off and start a ll over!

System Reset

You may restart the computer from the keyboard by pressing the Ctr~
Alt, and Del keys simultaneously. This key sequence will return the computer
to the state it was in just after being turned on. Both RAM and the screen will
be erased.

The Keyboard 33

Printing the Screen

The PCjr provides several features that allow you to print what appears on
the screen. First, make sure your printer is turned on. Obtain the DOS prompt
A> and press the key combination Fn followed by Echo (which shares the E key).
We will write this key combination as Fn-Echo. All subsequent text that appears on
your screen also will be printed. This provides you with a written record of a ses
sion at the computer. To tum off the printing, press Fn-Echo again.

You may obtain a printed copy of the current screen by pressing the key
combination Fn-PrtSc. (PrtSc shares the P key.)

TEST YOUR UNDERSTANDING 1 (Answers on page 35)
Print the current contents of the screen.

Keyboard Usage in BASIC

Many of the keys have special meanings while BASIC is running. To illustrate
this keyboard usage, load BASIC by obtaining the DOS prompt and typing:

basic

followed by ENTER When you obtain the BASIC prompt, begin typing. Notice
that if you neglect to end a line , it spills over onto the next. However, after
several lines (255 characters) BASIC automatically terminates the line, just as if
you had pressed ENTER

Scrolling and corrections using the backspace key work pretty much the
same in BASIC as they do in DOS. Fill your screen with eight or ten lines of
text. To erase the screen, use this key combination:

Ctrl-Fn-Home

In using the Ctr! key in connection with any other key, press the other key while
holding down Ctrl. In this case, push Fn while holding down Ctr!. Release these
keys and then press Home. In response to the key combination Ctrl-Fn-Home, all
characters on the screen will be erased, and only the cursor will remain. The
cursor is positioned in the upper left comer of the screen, its so-called "home"
position.

Editing Keys
Cursor Motion Keys.These four arrow keys are used to move the cursor in
the indicated directions. Note that these keys move the cursor- only in BASIC.
Don't confuse the up arrow with the shift key.
Insert (INS) KeY.When this key is pressed, you may insert text at the current
cursor position. As text is inserted, existing text is moved to the right to accommo
date the new letters. The effect of the Ins key is cancelled either by pressing Ins
again, by pressing Del, by pressing ENTER, or by using the cursor motion keys.

34 Sec. 2.6

Delete Key. When this key is pressed, one letter is deleted at the cursor
position.
Note that the cursor motion keys (arrow keys) have the following alternate
designations:

PgUp on the left arrow
PgDn on the right arrow
End on the down arrow
Home on the up arrow

These alternate designations refer to ways in which these keys are used in com
bination with the Fn key.

TEST YOUR UNDERSTANDING 2 (Answers on page 35)
a. Type your name on the screen.
b. Erase the screen.
c. Repeat a. using all capital letters. (Don't worry about the com

puter's response to your typing!)

Line Width The basic PCjr unit displays lines having up to 40 characters. The
enhanced unit allows line widths of either 40 or 80 characters. To switch from
one line width to the other, use the WIDTH command. To switch to 40 charac
ters per line , type:

WIDTH 40

followed by ENTER. To return to 80 characters per line , type:

WIDTH 80

followed by ENTER. In the rest of this text, we will assume that the lines are 80
characters wide. If you use a 40 character line width, your displays may look
somewhat different than those indicated.
Function Key Display Note that the last line of the screen is filled with data
that does not change as you type. This data displays the assignment of certain
user-programmable key combinations, called Fl-Fl0. You may generate user
function Fl with key combination Fn-1. User function F2 may be generated
with the key combination Fn-2, and so forth . The current assignments of these
keys are displayed on the last line of the screen. Figure 2-5 shows the initial
function key assignment. Note, however, that if your screen width is currently
40, then only the definitions of keys Fl-F5 are displayed.
You may turn off the function key display by typing:

KEY OFF

followed by ENTER. If you wish to turn on the display, type:

The Keyboard 35

The IBM PC jr Basic
Version J1 .000
Copyright IBM Corp. 1981, 1982, 1983
60429 Bytes free

1LIST 2RUN 3LOAD" 4SAVE"

Figure 2-5. Function key display.

KEY ON

By keeping the display line off, you make the last screen line available for pro
gram use .

Exercises

Type the following expressions on the screen. After each numbered exer
cise, clear the screen. (These exercises contain some typical expressions you
will be typing when you use BASIC. They are provided as practice in typing and
manipulating the keyboard.)

1. 10 Print "Hello. " 2. 10 ARITH1 =1. 5378
3. 10 PRINT 3+7 4. 20 LET A= 3-5
5. 20 .05*68 6. 10 IF 38 > -5 THEN
7. 10 X=5: PRINT X 8. 20 IF X>O THEN 50
9. 10 LET X=10 10. 200 Y = X*2 - 5

20 LET Y=50.35 300 PRINT Y,"Y"

ANSWERS TO TEST YOUR UNDERSTANDING
1. Press Fn-PrtSc simultaneously.
2. a. Type your name , ending the line with ENTER.

b. Hit Ctr!, Fn, and Home simultaneously.
c. Hit Caps Lock. Now repeat part a.

50

3

AN INTRODUCTION TO

DOS

DOS is involved in every aspect of PCjr diskette use. It is no exaggeration to
say that every time you use your diskettes, you are using DOS. In this chapter,
we will learn to use some of the most essential DOS commands.

3 .1 Files and File Names
The contents of a diskette are broken into units called files. For the present,
you may think of a file as a collection of characters. For example, the charac
ters found in Section 3.1 of this book, when stored on diskette, might comprise
one file . On fact , as this book was being written, the sections were stored on
diskette in exactly that way.)

A diskette can contain as many as 110 files. However, diskette files may be
classified into two broad categories-programs and data files.

Programs A program is a sequence of computer instructions. Through
out this book, we will be discussing programs of one sort or another-pro
grams to compute loan interest, to play TIC TPC TOE, and to print form letters,
to mention but a few.

Data files A data file contains data, such as payroll information, person
nel data, recipes , train and airline schedules, appointment calendars, and so
forth. Programs often make use of data files. This is done by including instruc
tions within the program for reading (or writing) on particular data files. In this
way you may, for example, look up appointments and let the computer make
decisions based on data in the file.

File Names
Each file is identified by a file name. Here are some examples of valid file

names:
BASIC.COM
FORMAT.COM
PAYROLL
GAME.001

A file name consists of two parts-the main file name (BASIC, FORMAT,
PAYROLL, GAME) and an optional extension (COM, COM, no extension,

38 Sec. 3.1

001). The main file name may contain as many as eight characters, the exten
sion as many as three. The two parts of the file name are separated by a
period.

The following characters are allowed in a file name:
The letters AZ;
The digits 0-9;
Any of these characters:

!@#$%&()-_{}"

Note that a file name CANNOT include any of the following characters:
:\<> ,/ ?"~:+ = • /\

The only period allowed in a file name is the one that separates the two parts
of the file name. Moreover, a file name cannot have any spaces.

A file name may be spelled with either upper- or lowercase letters. How
ever, DOS will convert the file name into uppercase. So, for example, the file
names:

JOHN John

refer to the same file.

TEST YOUR UNDERSTANDING 1 (answers on page 39)
What is wrong with the following file names?

(a) ALICE 01 (b) #2324/1 (c) alphabetical

A particular diskette can have only one file with a particular name. How
ever, there is nothing wrong with using the same file name to refer to different
files on different diskettes.

When you name a file , choose a name that somehow suggests the con
tents. For example, if you generate a monthly payroll file , you can name the
various monthly files:

PAYROLL.JAN, PAYROLL.FEB, PAYROLL. MAR, . ..

and so forth.

The Directory

Each diskette has a directory that lists the name of each file on the diskette
as well as some descriptive information about the file. Let's analyze one direc
tory entry, the one for the file named DISKCOPY.COM. Actually this file is a
program, and one that we've already used; namely, the program for copying
the contents of one diskette onto another. We used this program to back up the
master DOS diskette. The directory entry for DISKCOPY.COM reads:

File Specifications 39

DISKCOPY COM 2444 3-08-83 12:00p

The first two parts of the entry, namely DISKCOPY and COM, give the file
name and the extension. The next part of the entry gives the size of the file in
bytes. DISKCOPY.COM is 2444 bytes long. The final two parts of the directory
entry give the date and time the file was last changed. In this example, DISK
COPY. COM was last altered on 3-08-83 at 12:00 pm.

DOS maintains the directory automatically. Each time a file is added or
changed, DOS makes the appropriate changes in the directory, so that it
always accurately reflects the contents of the diskette .

You may examine the directory of a diskette using the DOS command
DIR. For example , to examine the directory of the disk currently in the diskette
drive , you would type:

DIR

and press ENTER. The directory of drive A: then will be displayed on the
screen.

TEST YOUR UNDERSTANDING 2 (answer on page 39)
Display the directory of your DOS diskette.

Exercises (answers on page 349)

Which of the following file names are valid? If invalid, tell why.

1. SALLY.OO1

3. E>
5. #$%&{ }

7. ACCOUNT.O123

2. EXAMPLE. TXT

4. S:OO1

6. A. B. C
8. DEMONSTRATION. 823

ANSWERS TO TEST YOUR UNDERSTANDING
1: a . Illegal space

b. Illegal character (/)
c. Too many characters

2: Place the DOS diskette in the current drive, type :
DIR

and press ENTER.

3.2 File Specifications

As mentioned in the preceding section, two different files may have the same
name as long as they are on separate diskettes. But what happens when you

40 Sec. 3.2

put one of the diskettes in drive A: and one in drive B:? Clearly, there is poten
tial for dangerous confusion here. In order to specify a file without confusion,
you must give , in addition to the file name, the location of the file.

PC Device Names

DOS specifies the various components of the PC using the following
abbreviations:

A: , B:, C:, D: disk drives
CON: the console (monitor and keyboard)
SCRN: the screen
LPTl: printer # 1
LPT2: printer #2
CO Ml: communications adapter # 1
COM2: internal modem

Note that DOS 2.1 allows for four diskette drives even though the PCjr
has only one. This is because the same version of DOS 2.1 as you use on the
PCjr is also used on the PC and the PC/ XT. On the PCjr, your single drive is
the one named A:. However, to clarify certain commands that ordinarily would
involve two drives, your single drive will be considered as drive B:. For exam
ple , if you wish to copy a file from one diskette to another, you can specify a
copy operation from drive A: to drive B: . While DOS is reading the file from
your source diskette, the drive is called A:. When DOS must write the copy of
the file , the diskette drive will become drive B:. You will be directed to insert the
target diskette into drive B:. After the copy operation is complete, the identity
of the drive once again becomes A:.

Note also that PCjr systems will have only one printer attached. However,
DOS allows for expansion.

File Specifications

The combination of a device name and a file name is called a file specifi-
cation. Here are some examples:

A:ACCOUNTING
COMl:XYZ.01
LPTl :PRINT.2

Each file has an associated file specification that tells the location of the file and
the file name. The file specification contains enough information to find the file
without any problems.

In order for a file specification to be valid, both the device name and the
file name must be valid.

Wild Card Characters

The characters • and ? in a file name have a special meaning for DOS.

File Specifications 41

• The character • may be used as either the main file name or the exten-
sion. The portion of the file name replaced by * may be anything at all. For
example, consider this file name:

*.COM

It stands for any file with the extension COM. Similarly, the file name:

WS.*

stands for any file that has as its main name WS. Finally, the file name:

stands fo'r any file.
Such "ambiguous" file names can shorten various DOS commands. For

example, we may copy a file from one diskette to another using the COPY
command. (See Section 4.) To copy all fi les from the diskette in drive A: to the
diskette in drive B: , we give the command:

COPY A:*.* B:

Similarly, to copy all files on the diskette in drive A: having an extension COM
onto the diskette in drive B: , we use the command:

COPY A:*.COM B:

The character ? in a file name allows a single character to be ambiguous.
For example , consider this file name:

EXAMPLE. 00?

The third letter in the extension may be anything. Similarly, consider this file
name:

NIG??.000

The main fi le name has five letters, begins with NIG , and the last two letters of
the main file name may be anything.

File names using • and ? may be used in file specifications. For example ,
A:B • .TXT refers to any file on A: whose name begins with Band has the exten
sion TXT.

Exercises (answers on page 349)

Write file specifications for the following files :
1. ALICE.3 on COMl:
2. MESSAGE on LPTl:

42 Sec. 3.3

3. Any file on the diskette in drive A:.
4. Any file on the current drive.
5. A file on drive A: in which the main file name has only one letter.
6. A file on drive A: in which the main file name is RALPH and the

extension may be anything.

3.3 Executing Commands and Programs

DOS has many commands that perform "housekeeping" functions for the PC.
For example, we have already met the command DISKCOPY that lets you
copy the contents of one diskette onto another, and the DIR command, which
displays a diskette directory. In the rest of this chapter, we'll discuss the various
DOS commands and how to use them. However, let's first make some general
comments about DOS commands.

To execute a DOS command, the DOS prompt must be displayed. Then
do the following:

1. Type the DOS command.
2. Press ENTER.

DOS will execute the command. When execution is complete, DOS will redis
play the DOS prompt.

The above procedure already was explained in our discussions of the
DOS commands DIR and DISKCOPY.

Before you press ENTER, you may use the BACKSPACE key to correct
mistakes. If you make an error in a command, DOS is quite tolerant. For exam
ple, ·give the command XXXXXX. (There is no such command.) DOS will
respond with:

Bad Command or File Name
A>

You may now give another command.
Until you press the ENTER key, you may cancel the command on the

current line by pressing the ESC key. This puts a \ on the current line (indicat
ing that it is cancelled), moves the cursor to the next line and allows you to
retype the command.

Here 's another type of error that can occur. Remove the DOS diskette
and type the command DISKCOPY A: B: . DOS will attempt to read the DISK
COPY program frum the nonexistent diskette. After a few seconds, DOS will
respond with the prompt:

Error reading drive A:
Repeat(R), Ignore(!), or Abort(A)

Type R to repeat the command (presumably after you have replaced the diskette) ,
I to ignore the error (in this case, you will generate the same error message), or A
(in which case the command will be canceled and the DOS prompt redisplayed).
Note that in typing R, I, or A, you don't need to press ENTER.

Executing Commands and Programs 43

Internal versus External DOS Commands

We already have noted that the command DISKCOPY is contained in the
file DISKCOPY.COM on the DOS diskette. However, if you inspect the direc
tory of the DOS diskette, you won't find a fi le named anything like DIR.COM.
Where does DOS obtain the program corresponding to the command DIR ?
The answer is in the way DOS works.

When you start your computer system, you read part of DOS into RAM.
This portion of DOS stays in RAM throughout your session with the computer.
The most important DOS commands are contained in this portion of DOS so
that they can be available without getting them from the diskette. Such com
mands are called internal commands , and DIR is an example. You may
remove the DOS diskette from the current drive and still have the internal DOS
commands available.

It would be nice to have all DOS commands in RAM all the time. For one
thing, they would execute more quickly. However, this gain must be balanced
against the permanent decrease in the amount of RAM. Any decrease in RAM
would lower the allowable size of application programs. As a compromise, the
least frequently used DOS commands are stored on diskette. These commands
are called external commands . When you request an external command, the
corresponding diskette file is read into memory and executed. However, upon
completion, the memory is made available for the next program or command.

TEST YOUR UNDERSTANDING 1 (answer on page 43)
Remove the DOS diskette from drive A: . Give the command:

DISKCOPY A: 8:

What happens? Why?

Running Programs Under DOS

We have described the procedure for executing DOS commands. How
ever, the same procedure may be used for programs. Many programs you buy
will be stored in files with the extensions COM or EXE. To run such programs,
just type the file name without the extension and press ENTER. For example ,
the BASIC language is one of the programs on the DOS diskette, and its file
name is BASICA.COM. To run BASIC, type BASICA and press ENTER.

ANSWER TO TEST YOUR UNDERSTANDING
1: DOS reports an error reading drive A: , since it cannot find the

file DISKCOPY.COM to read.

44 Sec. 3.4

3.4 The COPY Command
You may move a file from one place to another within the computer using the
COPY command. As you might guess, this command is very important. Here is
how to use it.

1. Obtain the DOS prompt A> . (If you are in BASIC, type SYSTEM and
press ENTER to obtain this prompt.)

2. To copy file specification < filespecl > to file specification < file
spec2> , type:

COPY <filespec1> <filespec2>

and press ENTER. (Note that there is a space between the two file
specifications.)

For example , to copy A:BASICA.COM (the copy of the BASIC language
BASIO\.COM found on the diskette in drive A:) to drive B:, just type:

COPY A:BASICA.COM B:BASICA.COM

and press ENTER. The computer will make a copy of BASIO\.COM on the
diskette in drive B:.

Actually, if you want to leave the file name the same in the copy, you may
include only the device name in the second file specification. For example , the
above copying operation also could be accomplished by typing:

COPY A:BASICA.COM B:

followed by ENTER.

Creating a Diskette File
We can use the COPY command to copy from the keyboard (device name

CON:) directly to a diskette file. Here's how. Sit down at your computer and
obtain the DOS prompt A>. Type:

COPY CON: A:TEST

and press ENTER.
We have just told DOS that we want to copy a file from the console (key

board) to drive A: and give the resulting file the name TEST. Now type :

This is a test.
We are creating the file TEST on drive A:.

End each line with ENTER. Note that the above lines are displayed on the
screen. Moreover, DOS temporarily stores input lines in RAM. To indicate that
we are done inputting data, press function key F6, followed by ENTER. DOS
will copy the input lines from RAM to a diskette file, as you requested. You will

The COPY Command 45

see the drive light on drive A: go on. This means that the writing operation is in
progress. The computer will respond with the message:

1 File(s) copied

You have just created the file TEST. If you are not convinced, list the directory
of drive A: by typing:

DIR A:

followed by ENTER. Among the data appearing on the screen will be a line in
this form :

TEST 62 2/25/83 11 : 15a

This directory entry tells you that the name of the file is TEST, that it contains
62 bytes (62 characters, counting spaces, ENTERs, and so forth). The file was
created on 2 / 25/ 83 at 11:15 am. (The computer will compute the date and
time from the data you specified when you turned the computer on.)

If you still are not convinced that you have created a file , let's copy the file
back to the screen. Type:

COPY TEST CON:

and press ENTER. We have just requested that DOS copy TEST from the cur
rent drive (A:) to the console. (To the computer's way of thinking, the console
consists of both the keyboard and the screen.) Note that the contents of the file
will be displayed on the screen.

Finally, let's copy the file TEST to the printer with the command:

COPY TEST LPT1 :

followed by ENTER. (Before giving the command, check that the printer is on.)
The printer will print the contents of the file.

TEST YOUR UNDERSTANDING 1 (answer on page 46)
Create a file TEST2 on drive B: containing the following data:

This line is part of TEST2 on drive B:

TEST YOUR UNDERSTANDING 2 (answer on page 46)
Redisplay TEST2 on the screen.

Using Wild Card Characters with COPY
The wild card characters ? and • are very useful in describing COPY oper

ations . Recall that the character • replaces any sequence of characters within a

46 Sec. 3.5

main file name or an extension. For example, the file name * .001 refers to all
files with an extension of 001. Some examples of file names that qualify are:

JANE.001 HOWARD. 001 MONEY.001 A.001

A command of the form:

COPY A:*.001 B:

will copy all files on A: with extension 001 onto B: .
To copy all the files on A: to B:, you may use this command:

COPY A:*.* B:

Recall that the wild card character ? stands for a single character. Thus, for
example , the file name ??ME.001 can stand for the file names FAME.001 and
NAME.001 , as well as LAME.001 .

TEST YOUR UNDERSTANDING 3 (answer on page 46)
Write a command that copies all files on B: with an extension BAS to A:

Exercises (answers on page 349)

Write DOS commands to:
1. Print B:TEST.
2. Copy all files with the extension COM from A: to B: .
3. Display A:TEST.
4. Copy A:TEST to B: with the new name TEST3.
5. Copy from A: to B: all files whose file names begin with D and where

the main file name has eight characters.

ANSWERS TO TEST YOUR UNDERSTANDING
1: Obtain the DOS prompt A> . Type the line followed by ENTER.

Press F6 followed by ENTER.
2: Obtain the DOS prompt. Type COPY B:TEST2 CON:
3: COPY B: • .BAS A:

3.5 COPYing and FORMATting Diskettes
In Chapter 2 we made several copies of the DOS master diskette. However,
this diskette , important as it is , is not the only diskette we will need. Indeed, the
DOS diskette has very little unused space. We need a diskette with plenty of
room to write our own programs and data files. In this section, we 'll learn to
prepare such diskettes.

COPYing and FORMATting Diskettes 47

Formatting a Diskette

When DOS writes on a diskette , it does so in an orderly fashion . Data is
written in circular rings called tracks . (See Figure 3-1.) Each track is divided
into a number of sectors (eight or nine depending on the option you choose
when creating the tracks). (See Figure 3-2.)

Figure 3-1. The tracks of a diskette.

In order for DOS to write on a diskette , the track and sector boundaries
must be written on the diskette . The IBM PC uses soft-sectored diskettes ,
which means that the tracks and sector boundaries are not prerecorded at the
factory. Rather, it is your job to prepare a diskette for use by first writing these
boundaries on it. This task is called formatting and is carried out by the DOS
command FORMAT.

The FORMAT command is an external command. To use it , you must start
with the DOS supplementary diskette in the current drive. Type:

FORMAT <drive>

Here < drive > is the name of the drive that will contain the diskette to be
formatted. For example, to format a diskette in drive A: , you would type :

Sector 3

Sector 4 Sector 1

Sector 5 Sector 8

Sector 6

Figure 3-2. The sectors of a diskette track.

48 Sec. 3.5

FORMAT A:

DOS will respond with the prompt:

Insert new diskette for drive A:
and strike any key when ready

Place a blank diskette into drive A:. (If the DOS diskette is in drive A:, don't
worry you may remove it since the FORMAT program is already in RAM at this
point.) Press any key. The computer will proceed to format the diskette. Even
tually, the display will look something like this:

Formatting •.• Format Complete

362496 bytes on diskette
362496 bytes available

Format another (Y/N)?

At this point, you may answer the question with Y(=YES) to format another
diskette or N(= NO), in which case DOS will terminate the FORMAT operation ,
redisplay the DOS prompt, and await your next command.

The above procedure was designed so that you can format diskettes one
after another. It's a good idea to format an entire box of diskettes when you
first buy it. By doing this , you know that all the blank diskettes you have lying
around are ready for use.

The numbers displayed in your final FORMAT prompt may be different
from those above. The FORMAT command automatically will format your disk
ette as a double-sided diskette. If, however, you are formatting a diskette on a
double-sided drive but wish to then use it on a single-sided drive (say on a PC) ,
you must instruct DOS to format the diskette as single-sided. This is done using
the / 1 option. For example , to format the diskette in drive A: as a single-sided
diskette , use the command:

FORMAT A: /1

If you are formatting a diskette that might be used on an IBM PC using an early
version of DOS (either DOS 1.0, 1.05 or 1.1) then you'll need to format the
diskette so that it has only 8 sectors per track. This can be done with the
command:

FORMAT A: /8

You may use the / 1 and / 8 options together to produce a diskette that is
single-sided, with 8 sectors per track. In any case , don 't be concerned about

COPYing and FORMATting Diskettes 49

these alternate diskette formats . They will run on your PCjr without any
problems. The only effect will be on the number of bytes of storage available
on the formatted diskette.
NOTE : You may reformat a diskette that already has been formatted. This
erases all data on the diskette. (This is a sure way of destroying sensitive infor
mation you don 't want lying around.)

TEST YOUR UNDERSTANDING 1
Format a blank diskette.

The number of bytes available usually will be the same as the number of
bytes on the diskette. Occasionally, a diskette will contain microscopic flaws
that prevent DOS from formatting some sectors. DOS hides these sectors in an
invisible file called BADTRACK. You never need to worry about these sectors
being used in one of your files and ruining your data. However, if any sectors
are placed in BADTRACK, the number of bytes available on the diskette is
reduced.

The diskettes produced by the above procedure are totally blank. In partic
ular, they do not contain the DOS files necessary to start the computer. You
may include the DOS internal commands on the formatted diskette by using
this command:

FORMAT A: /S

A diskette produced by this command may be used to start the computer. The
DOS internal commands occupy a rather small portion of the diskette . There
fore , most of the diskette is available for your use. When you format a diskette
with the / S option, the final display looks something like this:

Formatting ... Format Complete

362496 bytes on diskette
39936 bytes used by system

322560 bytes available

Format another (Y/N)?

TEST YOUR UNDERSTANDING 2 (answer on page 50)
Format a blank diskette with the / S option.

a . Use this diskette to restart the computer.
b. Display the directory of A: . Can you explain what you see?

50 Sec. 3.6

In Chapter 2, we learned to copy a diskette using the DISKCOPY com
mand. We used this command to make a copy of the master DOS diskette.
However, we made no mention of FORMATting in that discussion. The reason
is that the DISKCOPY command automatically formats the diskette onto which
it is copying (the target diskette'). This formatting is performed only if
necessary.

ANSWERS TO TEST YOUR UNDERSTANDING
2: a. Place the formatted diskette in drive A: and press CTRL

ALT-DEL simultaneously.
The only file in the directory is COMMAND.COM, which
occupies 17664 bytes (in DOS 2.10). The system occupies
39936 bytes. The remaining bytes are contained in the
main DOS files , called IBMBIOS.COM and IBMDOS.COM,
which are invisible as far as the directory is concerned.

3.6 Other DOS Internal Commands
This section gives a brief survey of the most commonly used DOS internal
commands. Remember that these commands may be used whenever the DOS
prompt is displayed. They do not require any information from the DOS
diskette.

ERASE allows you to erase a file. For example, to erase the file EXAM
PLE.TXT on the diskette in drive A: , you could use the command:

ERASE A:EXAMPLE.TXT

If the drive designation is omitted, then the current drive is assumed. For
example:

ERASE EXAMPLE.TXT

will erase EXAMPLE.TXT on the diskette in the current drive. The erase com
mand may be used with the wild card characters • and ?_ For example, to erase
all files on the diskette in drive A: , use the command:

ERASE A:*.*

TEST YOUR UNDERSTANDING 1 (answer on page 52)
Write a command that erases all files on the current drive with a five
character main name and an extension of BAT.

Other DOS Inte rnal Commands 51

RENAME allows you to rename a file. For example, to rename A:OLDFILE
with the name NEWFILE, you could use the command:

RENAME A:OLDFILE NEWFILE

Note that the current file name comes first and then the new file name. If you
do not give a drive designation with the current file name , then the current
drive is assumed.

TEST YOUR UNDERSTANDING 2 (answer on page 52)
Write a command which renames A:TEST.COM to AT.COM.

DATE allows you to set the date. For example , to set the date to 4-12-83 , you
could use the command:

DATE 4-12-83

TEST YOUR UNDERSTANDING 3 (answer on page 52)
Write a command which sets the date to Dec. 12, 1984.

TIME allows you to set the time. For example, to set the time to 1:04:00 pm,
you could use the command:

TIME 13:04:00

TEST YOUR UNDERSTANDING 4 (answer on page 52)
Write a command to set the time to 12:00:00 am.

TYPE allows you to display the contents of a file. For example , to display the
contents of the file A:TESTl , you could use the command:

TYPE A: TEST1

If you try to display a program, it usually will look like a bunch of gibberish.
Program files are designed for the convenience of the computer, not for
humans. However, a text file will be displayed in readable form.

To obtain a written copy of a file , first press Ctrl-PrtSc. Then give the
TYPE command. The file will be displayed on the screen and also printed on
your printer.

52 Sec. 3.7

COMP allows you to compare two files to determine whether they are
identical. For example, suppose that we wish to compare FILEl on the diskette
in drive A: with FILE2 on the diskette in drive B: . Give the command:

COMP A:FILE1 B:FILE2

This command can be used to check on the results of a COPY operation to
determine whether the copy is identical to the original. If the files to be com
pared are on different diskettes , then DOS will prompt you to remove the disk
ette with the first file and insert the diskette containing the second.

ANSWERS TO TEST YOUR UNDERSTANDING
1: ERASE ????? .BAT
2: RENAME A: TEST. COM A: T. COM
3: DATE 12-12-84
4: TIME 00:00:00

3. 7 Other DOS External Commands
In this section, we summarize some of the most commonly used DOS external
commands. Note that , in order to use any of these commands, DOS must
obtain the appropriate program from the DOS diskette.

DISKCOMP allows you to compare the contents of two diskettes, byte by
byte. For example, to compare the diskettes in drives A: and B: , you could use
the command:

DISKCOMP A: B:

You also use this command for diskette comparison, even though you don 't
have a drive B:. DOS will prompt you to swap the diskettes in your single drive
so that a comparison can be made.

CHKDSK allows you to check on the number of bytes remaining on a
diskette. It also performs a check to determine if any inconsistencies exist in the
way the files are stored. To perform a CHKDSK operation on the diskette in
drive A: , you could use the command:

CHKDSK A:

The result of this command is a display of the form :

362496 bytes total disk space
22272 bytes in 2 hidden files
45455 in 4 user files

294769 bytes available on disk
131072 bytes total memory
118321 bytes free

Creating Your Own DOS Commands-Batch Files 53

As usual , your numbers may vary, depending on your system, how your disk
ette has been formatted, and so forth .

You should execute a CHKDSK every so often for each of your diskettes,
to assure the integrity of your files and to determine ,the space remaining on
the diskette.

TEST YOUR UNDERSTANDING 1 (answer on page 53)
Suppose that the DOS diskette is in drive B: and that drive A: is the cur
rent drive. Write a command for performing CHKDSK on the diskette in
drive A: .

ANSWER TO TEST YOUR UNDERSTANDING
1: B:CHKDSK A:

3.8 Creating Your Own DOS Commands-Batch Files

In the preceding sections, we learned about the most useful DOS commands.
Most often, you will execute DOS commands by typing them directly from the
keyboard, as described earlier in the chapter. However, in many applications, it
is necessary to execute the same sequence of DOS commands repeatedly. For
example, consider the following situation.

Suppose that you have a diskette containing four files , named
ACCOUNTS.MAY, PROFIT.MAY, PAYABLE.MAY, and SALES.MAY. Your
business is computerized and every one of your 10 managers has an IBM PC.
Rather than distribute paper copies of the contents of the files , you wish to
send each manager a copy of the files on diskette.

A simple solution would be to use DISKCOPY to make 10 copies of the
diskette containing the files. Suppose, however, that your diskette also contains
some sensitive information that you do not wish to circulate. In this case , you
may prepare the duplicate diskettes by copying the files one at a time. This may
be done using the COPY command. Here are the DOS commands required to
prepare one duplicate diskette, starting from an unformatted diskette:

FORMAT B: /S
COPY A:ACCOUNTS.MAY B:
COPY A:PROFIT.MAY B:
COPY A: PAYABLE. MAY B:
COPY A:SALES.MAY B:

Assume that your files are contained on the same diskette as FORMAT.COM
and that this diskette is in drive A:. The duplicate diskette is in drive B:.

54 Sec. 3.8

It is possible to prepare the 10 duplicates by typing these commands in
manually. But what a chore! And it is easy to make a mistake in typing, espe
cially as the afternoon draws to a close. Fortunately, there is a much better way
to proceed: Use a batch file.

A batch file is a diskette fi le consisting of a list of DOS commands. A
batch file must have a file name with the extension BAT. In our case, let's name
the batch file C.BAT and store it on the diskette in drive A:. To create the batch
file , use the COPY command. Type:

COPY CON: A:C.BAT

and press ENTER. Now type in the DOS commands exactly as they appear in
the above list. At the end of each line, press ENTER. After the last line, press
function key F6 and then ENTER. DOS will respond with the message:

1 file(s) copied

The file C.BAT is now on the diskette in drive A: .
To execute the list of DOS commands, type the letter C and press ENTER.

(It is just as if we created a new DOS command with the name C.) DOS then
will search the current diskette (A:), find the batch file , and execute the various
commands, in the order specified.

TEST YOUR UNDERSTANDING l(answer on page 56)
Modify the above list of DOS commands so that they include a check that
the copies of the files are identical to the originals.

Now our copying job is cut down to size:
1. Insert a blank diskette into drive B:.
2. Type C and press ENTER.
3. Wait for the commands to be executed.
4. Repeat operations 1-3 until all 10 copies are made .

The AUTOEXEC.BAT File

The AUTOEXEC.BAT file is a batch file that is executed automatically
whenever DOS is started. If a diskette contains a fil e with the name
AUTOEXEC.BAT, then it is executed on DOS startup without any operator
action . For example , suppose that you want your PCjr to start BASIC auto
matically whenever DOS is started. Just create a diskette file called
AUTOEXEC.BAT containing the command:

BASIC

Creating Your Own DOS Commands-Batch Files 55

Note that you may have only one AUTOEXEC.BAT file on a given diskette. On
the other hand, you may have many batch files.

TEST YOUR UNDERSTANDING 2 (answer on page 56)
Modify your DOS diskette so that BASIC is started whenever you start
DOS.

The AUTOEXEC.BAT file may be used for some clever purposes. For
example, let's return to our example of a company with 10 managers. Suppose
that you wish to include a covering memo that reads:

TO:MANAGERS
HERE ARE THE STATEMENTS FOR MAY.
WE'LL MEET TO DISCUSS THEM ON 6/4
AT 5:30 pm.

JR

Here is how the message can be displayed automatically:
1. Create a file on your diskette that contains the text of the message.

Call the file MSSG.
2. Create a file AUTOEXEC.BAT that contains the DOS command:

TYPE MSSG

3. Modify the batch file C.BAT so that it copies MSSG and
AUTOEXEC.BAT onto each of the 10 copies.

Each manager will start his or her PCjr using a duplicate diskette. The
AUTOEXEC.BAT file will cause the file MSSG to be displayed on the screen.

Parameters

Let's stick with our fictitious company. Suppose that the 10 diskettes are
to be prepared and sent every month. The file names are always the same, but
the month abbreviations, as given in the file name extensions , vary. You could
prepare a new batch file C.BAT every month. However, there is a better way.
Designate the month abbreviation by the symbol. %1. (% is an abbreviation for
parameter and 1 is the number of the parameter.) The commands of the
batch file then are written:

FORMAT 8:/S
COPY A:ACCOUNTS.%1 8:
COPY A:PROFIT.%1 8:
COPY A:PAYA8LE.%1 8:
COPY A:SALES.%1 8:

For the month of MAY, we would give the batch command:

56 Sec. 3.8

C MAY

For the month of JUNE, give the batch command:

C JUN

And so forth .
You may use up to nine parameters %1, %2, ... , %9. You specify the values

of these parameters when you give the batch command, with consecutive
parameter values separated by spaces. For example , if a batch file D used the
two parameters %1 and %2, then to execute the batch file with %1 = JAN and
%2 = FEB, we would use the command:

D JAN FEB

ANSWERS TO TEST YOUR UNDERSTANDING
1: Add the DOS commands:

COMP A:ACCOUNTS.MAY B:
COMP A:PROFIT.MAY B:
COMP A: PAYABLE. MAY B:
COMP A:SALES.MAY B:

2: Add the file AUTOEXEC.BAT, which consists of the single DOS
command:

BASIC

DO

~~

D~UCRs@ID)(IJJ(CLJO@~
u@ [F)CC]IT 1fil~~rrcc

4

GETTING STARTED

IN BASIC

4.1 Beginning BASIC
In Chapter 2 , we learned to manipulate the keyboard and display screen of the
IBM PCjr. Now we'll learn how to communicate instructions to the computer.

Just as humans use languages to communicate with one another, com
puters use languages to communicate with other electronic devices (such as
printers) , human operators , and even other computers. There are hundreds of
computer languages in use today. And your IBM PCjr is capable of 'speaking"
quite a few of them. Among these languages, BASIC is both versatile and very
easy to learn. It was developed especially for computer novices by John
Kemeny and Thomas Kurtz at Dartmouth College. In the next few chapters , I
will concentrate on teaching the fundamentals of BASIC. In the process, you
will learn a great deal about the way in which a computer may be used to solve
problems.

The PCjr actually comes with two different versions of the BASIC lan
guage. The least powerful version of BASIC is called Cassette BASIC . This is
the BASIC version that is supplied with all PCjrs and it is stored in ROM. You
may purchase the more powerful language called Cartridge BASIC . This ver
sion includes a ll the commands of Cassette BASIC plus additional commands
that a llow you to make use of your diskette drives and advanced graphics
capabil ities.

4.2 BASIC Statements in Immediate Mode
Assume that you have loaded BASIC and have obtained the BASIC prompt.
Now give the computer some instructions in BASIC. Type:

PRINT 3+2

and press ENTER. The computer wi ll immediately fire back the answer:

5
Ok

60 Sec. 4.2

The Ok prompt indicates that BASIC is awaiting another instruction. Type:

CLS

and press ENTER. The screen will be erased and the cursor positioned in the
upper left corner (the so-called Home position).

Now try some other BASIC instructions. Assuming that you have a color
monitor, type:

SCREEN 1,0

and press ENTER. This instruction tells BASIC to enter medium- resolution
graphics mode (SCREEN 1). The "O" portion of the command enables color.
Next, set the background and text colors with the statement:

COLOR 1,2 <ENTER>

(From now on, I will write < ENTER > to mean "and press the ENTER key".)
Notice that the screen turns blue and the Ok prompt is displayed in yellow.

TEST YOUR UNDERSTANDING 1 Try out the statement:

COLOR 2,4 <ENTER>

What does it do?

TEST YOUR UNDERSTANDING 2 Try out the statements:

COLOR n <ENTER>

where n=0,1,2,3,4, ...
possible?

How many different background colors are

BASIC is equipped with an incredible array of statements that perform a
variety of tasks. As just a hint of things to come, try out a few graphics and
music statements.

Type the statement:

PLAY "CDEF" <ENTER>

The computer plays four notes. These notes are C, D, E, and F. PCjr BASIC
has a Music Macro Language* that enables you to play quite complicated musi
cal compositions in up to three-part harmony. To get a taste of the possibilities,
try this command:

• Registered trademark of Microsoft Corporation.

BASIC Statements in Immediate Mode 61

SOUND ON <ENTER>
PLAY "C","E","G" <ENTER>

If your PCjr is connected to a display with an extended speaker (such as your
home television set), you will hear a C major chord. (The chord consisting of
the notes C, E, and G.)

Next, clear the screen and type the statement:

CIRCLE (100,100),75

BASIC will draw a circle as in Figure 4-1.
Actually, BASIC has a large repertoire of graphics statements that you will
learn in due course.

The exercises below will give you an opportunity to explore a few more of
BASIC's instructions.

Exercises (Answers on page 349)

Determine the effect of the fo llowing BASIC instructions:
1. LOCATE 3, 4
2. LOCATE 12,8
3. LOCATE x,y
4. PRINT 3*6
5. PRINT 2*9
6. PRINT X*Y
7. PRINT 5 MOD 3

Figure 4-1. A circle centered at (100,100) with radius 75.

62 Sec. 4 .3

8. PRINT 6 MOD 2
9. PRINT 7 MOD 5

10. PRINT X MOD Y

4.3 BASIC Constants and Arithmetic
In learning to use a language, you first must learn the alphabet of the language.
Next, you must learn the vocabulary of the language. Finally, you must study
the way in which words are put together into sentences. In learning the BASIC
language, I will follow the progression just described. In Chapter 2, you learned
about the characters of the IBM PCjr keyboard. These characters are the
alphabet of BASIC. Next, you 'll learn some vocabulary words. The simplest
"words" are the so-called constants .

BASIC Constants
BASIC allows you to manipulate numbers and text. The rules for manipu

lating numeric data differ from those for handling text , however. In BASIC, we
distinguish between these two types of data as follows: a numeric constant is
a number, and a string constant is a sequence of keyboard characters that
may include letters, numbers, or any other keyboard symbols. The following
are examples of numeric constants:

5, -2, 3.145, 23456, 456.7834, 27134000000000

The following are examples of string constants:

"John", "Accounts Receivable", "$234.45 Due",
"Dec. 4,1981"

Note that string constants are always enclosed in quotation marks. In
order to avoid vagueness, quotation marks may not appear as part of a string
constant. (in practice, an apostrophe (') should be used as a substitute for a
quotation mark (") within a string constant.) Numbers may appear within a
string constant, such as "$45.30". However, you cannot use such numbers in
arithmetic. Only numbers not enclosed by quotation marks may be used for
arithmetic.

In many applications, it is necessary to refer to a string constant that has
no characters within its quotation marks, namely the string "" . This string con
stant is called the null string.

Arithmetic in BASIC
PCjr BASIC allows you to perform all the usual operations of arithmetic.

Addition and subtraction are written in the usual way:

5 + 4, 9 - 8.

BASIC Constants and Arithmetic 63

Multiplication, however, is typed using the symbol • , which shares the '8" key.
As an example , the product of 5 and 3 is typed:

Division is typed using / . For example , 8.2 divided by 15 is typed:

8.2/15

All elementary arithmetic operations (addition, subtraction, multiplication , divi
sion) are carried out to seven decimal places. So, for example, the result of the
statement:

PRINT 8.2/15

is the display:

.5466666
Ok

Example 1. Write a BASIC program to calculate the sum of 54. 75, 78.83 , and
548.
Solution. The sum is indicated by typing:

54.75 + 78.83 + 548

The BASIC instruction for printing data on the screen is PRINT , so write the
program as follows :

10 PRINT 54.75 + 78.83 + 548
20 END

The Order of Operations and Parentheses
BASIC carries out arithmetic operations in a special order. It scans an

expression and carries out all multiplication and division, proceeding in left-to
right order. Then it returns to the left side of the expression and performs
addition and subtraction in the same order.

For example, consfder the expression:

BASIC first scans the expression from left to right and performs all multiplica
tions and divisions in the order in which they are encountered. It simplifies the
expression to :

6 + 20 + 9

64 Sec. 4.3

BASIC then begins over at the left and performs all addition and subtraction
operations in the order encountered. This gives the result:

35

The order of operations is extremely important. Let's try another example:

1 - 3/2*5

BASIC first performs the division 3 / 2. This simplifies the expression to :

1 - 1.5*5

Next, it performs the multiplication 1.5 •5 to obtain:

1 - 7.5

Finally, it starts from the left again and performs addition and subtraction, to
obtain:

-6.5

Knowing the order of operations helps you to correctly translate familiar
arithmetic procedures into computer language. For example, consider the fol
lowing fraction:

5 + 3/2

According to the rules of arithmetic, you simplify this fraction by first simplifying
the numerator and denominator to obtain:

6.5

40

Note that you must perform the operations specified in the numerator and
denominator before performing the division indicated in the fraction. You may
indicate this in BASIC (as in algebra) by using parentheses:

(5+3/2)/(5*8)

BASIC simplifies an expression by first removing the parentheses. For exam
ple , in the above expression, the parentheses (5 + 3 / 2) and (5 • 8) are evaluated
first, to give:

6.5/40

BASIC Constants and Arithmetic 65

BASIC then performs the division.

TEST YOUR UNDERSTANDING 1

Evaluate the expression: 3*5 - 4*3/2 + 4 - 8/2

In evaluating parentheses, BASIC uses the same rules stated above: First
perform-all multiplications and divisions in left-to-right order. Then perform all
additions and subtractions in left-to-right order.

What about parentheses within parentheses? Well , you have enough
knowledge to figure out what BASIC does. Work out the example:

BASIC looks at the expression and decides it must first evaluate the left-most
parenthesis (1 +3 •(4+5)). When it attempts to evaluate it, however, it
encounters a parenthesis within, namely (4 + 5), which must be evaluated first.
So the first simplification is:

< 1 + 3*9)(1 +4)

Now BASIC begins all over. It evaluates the left-most parenthesis to get:

28*(1+4)

Next, it evaluates the right parenthesis to get:

Finally, it performs the multiplication to obtain the answer:

140

Example 2. What numeric values will BASIC calculate from these
expressions?

a. (5 + 7)/2

c. 5 + 7*3/2

b. 5 + 7/2

d. (5 + 7*3)/2

Solution. a. The computer first applies its rules for the order of calculation to
determine the value in the parentheses , namely 12. It then divides 12 by 2 to
obtain 6.

b. The computer scans the expression from left to right performing all multipli
cation and division in the order encountered. First it divides 7 by 2 to obtain

66 Sec. 4.3

3.5. It then rescans the line and performs all additions and subtractions in
order. This gives us:

5 + 3.5 = 8.5

c. The computer first performs all multiplication and division in order:

5 + 10.5

Now it performs addition to obtain 15.5.

d. The computer calculates the value of all parentheses first. In this case , it
computes 5 + 7 • 3 = 26. (Note that it does the multiplication first!) Next it
rescans the line which now looks like this :

26/2

It performs the division to obtain 13 .

TEST YOUR UNDERSTANDING 2 (answer on page 69)
Calculate 5 + 3 / 2 + 2 and (5 + 3) / (2 + 2) .

Example 3. Write a BASIC instruction to calculate the quantity

22x18 + 34x11 - 12.5x8.
27.8 + 42.1

Solution. Here is the instruction:

PRINT (22*18 + 34*11 - 12.5*8)/(27.8+42.1)

The parentheses in line 10 tell BASIC to calculate the values of the numerator and
denominator before doing the division implied by the fraction. First calculate
(22 •18 + 34• 11- 12.5•8) and (27.8 + 42.1) before performing the division.

TEST YOUR UNDERSTANDING 3 (answer on page 69)
Write BASIC programs to calculate:

a. ((4x3 + 5x8 + 7x9) / (7x9 + 4x3 + 8x7)) x 48.7
b. 27.8 % of (112 + 38 + 42)
c. The average of the numbers 88, 78, 84, 49, 63

Scientific Notation

For certain applications, you may wish to specify your numeric constants
in exponential format (also called scientific notation). This will be espe-

BASIC Constants and Arithmetic 67

cially helpful in the case of very large and very small numbers. Consider the
number 15,300,000,000. It is very inconvenient to type all the zeros, and it can
be written as 1.53E10. The 1.53 indicates the first three digits of the number.
ElO means that you move the decimal point in the 1.53 to the right 10 places.
Similarly, the number -237,000 may be written in the exponential format as
- 2.37E5. Exponential format also may be used for very small numbers. For
example , the number 0.00000000054 may be written in exponential format as
5.4E-10. The -10 indicates that the decimal point in 5.4 is to be moved 10
places to the left.

TEST YOUR UNDERSTANDING 4 (answer on page 69)
a. Write these numbers in exponential format: .00048 and

-1374.5
b. Write these numbers in decimal format: -9.7E3, 9.7E-3 and

-9.7E-3

BASIC can display at most seven significant digits of a number. If you ask
it to display a number with more than seven significant digits, BASIC will auto
matically shift to scientific notation. Thus, for example, the statement:

X=123456789:PRINT X

will produce the display:

1.234568E+09

Note that the initial seven digits are obtained by rounding the given 10 digits.

Exponentiation

Suppose that A is a number and N is a positive whole number (this means
that N is one of the numbers 1,2,3,4, ...). Then A raised to the Nth power is
the product of A times itself N times. This quantity usually is denoted A\ and
the process of calculating it is called exponentiation For example,

It is possible to calculate A :-: by repeated multiplication. However, if N is large,
this can be tiresome to type . BASIC provides a shortcut for typing this function.
Exponentiation is denoted by the symbol A, which is produced by hitting the
key with the upward-pointing arrow (this symbol shares the "6" key at the top
of the keyboard). For example , 23 is denoted 2A3. The operation of exponen
tiation is done before multiplication and division. This is illustrated in the follow
ing example .

68 Sec. 4.3

Example 5. Determine the value that BASIC assigns to this expression:

20*3 - 5*2 A3

Solution. The exponentiation is performed first to yield:

20*3 - 5*8 = 60 - 40
= 20

TEST YOUR UNDERSTANDING 5 (answer on page 69)
Evaluate the following, first manually, and then using an IBM PCjr program.

a. 24 X 3 3

b. 22 X 33
- 122 / 32 X 2

Integer Division
Recall the days when you first learned division. Your first problems

involved dividing one whole number by another. You were taught to express
the answer as a quotient and a remainder. For example , the result of dividing
14 by 5 is the quotient 2 and the remainder 4. This type of division may be
performed in BASIC using the operations \ and mod. For example:

14\5 = 2

and

14 mod 5 = 4

That is, 14 \5 equals the (whole number) quotient of 14 divided by 5; 14 mod 5
equals the remainder. The symbol \ is called a backslash and should not be
confused with the ordinary slash / .

Here is a table showing the order in which \ and mod are performed in
relationship to the other operations. The operations that are higher in the list
are performed first.

A

• , I
\
mod
+,-

Consider this expression:

The multiplications are performed first, to obtain:

15\4 mod 2

Next, the \ is performed, to obtain:

3 mod 2

BASIC Constants and Arithmetic 69

Finally, this last expression is simplified to obtain:

Exercises (answer on page 350)

Write BASIC programs to calculate the following quantities:
1. 57 + 23 + 48
2. 57.83 X (48.27 -12.54)
3. 127.86/ 38
4. 365/ .005 + 1.025

Convert the following numbers to exponential format:
5. 23,000,000
6. 175.25
7. - 200,000,000
8. .00014
9. -.000000000275

10. 53,420,000,000,000,000
Convert the following numbers in exponential format to standard format:

11 . 1.59E5
12. -20.3456[6
13. -7.456E-12
14. 2.39456E-18

Calculate the following quantities:
15. 18\6
16. 17 mod 3
17. 25 mod 2 •3
18. (17\4 mod 3)A2
19. (17\4) mod 3A2

ANSWERS TO TEST YOUR UNDERSTANDING
1: 9
2: 8.5 and 2
3: a. PRINT ((4•3 + 5•8 + 7•9) / (7 •9 + 4 •3 + 8 • 7)) •48.7

b. PRINT .278•(112+38+42)
C. PRINT (88+78+84+49+63) / 5

4: a. 4.8E-4, - l.3745E3
b. -9700, .0097, - .0097

5: a. 432
b. 76

70 Sec. 4.4

4.4 Running BASIC Programs
Sections 2 and 3 gave examples of several BASIC statements. You told BASIC
to execute a statement by typing it and then pressing the ENTER key. This
method of executing statements is called the immediate mode and is used for
executing a single instruction at a time.

In order to make BASIC do anything really complex, it 's necessary to
string together many instructions (sometimes as many as several thousand). A
sequence of instructions is called a program You will learn to write programs
that do arithmetic, draw charts, and even play TIC T/IC TOE. Before that , how
ever, let's look at one that IBM has prepared especially to demonstrate the
power of its computer. (Apologies to readers who don't have a diskette drive.
The following discussion is going to exclude you.)

Start the computer, and obtain the BASIC prompt Ok, as described in
Chapter 2. IBM has included many interesting programs on the PCjr Sampler
diskette as well as on the DOS Supplementary diskette.

One of my favorites is on the DOS Supplementary diskette , so remove the
DOS diskette and insert the DOS Supplementary diskette into the drive. To
obtain a list of the programs on the diskette , type:

FILES <ENTER>

The names of the programs on the diskette will be displayed on the screen.
One of the most impressive programs is MUSIC. (Note that it is listed

under the name MUSIC.BAS. The extension BAS indicates that the program is
written in BASIC.) To load the program MUSIC from the diskette into RAM,
type:

LOAD "MUSIC" <ENTER>

(Note the quotation marks.) The diskette drive light will go on , you will hear the
drive at work, and the program MUSIC will be loaded into RAM. The drive light
then will go out and the drive will stop.

Now let's make the computer perform the instructions in the program. (In
computer jargon, we run the program) Type:

RUN

and press ENTER The computer draws a piano keyboard on the screen and
displays the names of some songs. To play a song, press the key indicated.
Why not spend a few minutes enjoying the computer-generated music. Note
also how the computer 'animates" the keyboard by displaying a moving note,
which indicates the key being played.

Sooner or later, you will want to interrupt a computer program while it is
running. This is done by simultaneously pressing the Fn and Break keys. It's
a two-handed operation and with good reason. The keys are arranged so that
you won't interrupt programs accidentally. To illustrate how you may interrupt
a program, run MUSIC and play a song. In the middle of the song, simultane-

Writing BASIC Programs 71

ously hit Fn and Break. The program will stop. The screen will display a
message like this:

Break in Line xxxx
Ok

The line xxxx gives the place in the program at which you stopped the com
puter. (You'll learn about line numbers in the next section.) The BASIC prompt
Ok indicates that BASIC is awaiting another command. Interrupting a program
does not erase it from RAM. To run the program again, just type RUN and
press ENTER.

Well , enough music for now! Let's end the program. According to the
instructions on the screen, you may " EXIT" the program by pressing Esc, a key
located on the upper left side of the keyboard. Press this key. Note that the
BASIC prompt Ok is displayed, indicating that BASIC is awaiting a command.
You probably are curious to see the set of instructions for MUSIC. Nothing
could be easier. Type :

LIST

and press ENTER. You will see the instructions of the program displayed on the
screen. Of course, they are going by too quickly to read them. Later, you'll learn
how to stop the display where you want or to obtain a written copy on the printer.

TEST YOUR UNDERSTANDING 1
Pick out a program on the PCjr Sampler diskette, load it into memory,

. and run it.

ANSWER TO TEST YOUR UNDERSTANDING
1. Start from the BASIC prompt. Type LOAD < program name>

and press ENTER. Here < program name > is the name of the
program you wish to run. Omit the extension BAS. Now type
RUN and press ENTER.

4.5 Writing BASIC Programs
You may be intimidated by the number of instructions in the program MUSIC.
Don't be. In no time at all , you will be writing programs just as complicated.
Take one step at a time and first learn to write some simple BASIC programs.

Assume that you have followed the startup instructions of the Chapter 1
and the computer shows that it is -ready to accept further instructions by dis
playing the BASIC prompt:

72 Sec. 4 .5

Ok

From this point on, a typical session with your computer might go like this:
1. Type in a program.
2. Locate and correct any errors in the program.
3. Run the program.
4. Obtain the output requested by the program.
5. Either: run the program again, or repeat steps 1-4 for a new program, or

end the programming session (tum off the computer and go have
lunch).

To fully understand what is involved in these five steps, consider a particular
example , namely, a program to add 5 and 7. First, you would type the follow
ing instructions:

10 PRINT 5 + 7
20 END

This sequence of two instructions constitutes a program to calculate 5 + 7.
As you type the program, the computer records your instructions , but

does not carry them out . (The line numbers 10 and 20 tell BASIC that the
instructions are not to be carried out immediately.) As you are typing a pro
gram, the computer provides you with an opportunity to change, delete, and
correct instruction lines. (More on how to do this later.) Once you are content
with your program, tell the computer to run it (that is , to execute the instruc
tions) by typing the command • :

RUN

The computer will run the program and display the desired answer:

12
Ok

If you wish the computer to run the program a second time, type RUN again.
Running a program does not erase it from RAM. Therefore, if you wish to

add instructions to the program or change the program, you may continue
typing just as if the RUN command had not intervened. For example, if you
wish to include in your program the problem of calculating 5 - 7, type the
additional line:

15 PRINT 5 - 7

To see the program currently in memory, type LIST (no line number) and then
hit the ENTER key. The program consists of the following three lines, now
displayed on the screen:

• Don't forget to follow the command with ENTER. The computer will not recognize a line
unless it has been sent to it by hitting the ENTER key.

10 PRINT 5 + 7
15 PRINT 5 - 7
20 END

Writing BASIC Programs 73

Note how the computer puts line 15 in proper sequence. If you type RUN
again, the computer will display the two answers:

12
-2

Note that line numbers need not be consecutive. For example, it is perfectly
acceptable to have a program with line numbers 10, 23, 47, 55, and 100. Also
note that it is not necessary to type instructions in numeric order. You could type
line 20 and then go back and type line 10. The computer will sort out the lines and
rearrange them according to increasing number. This feature is especially helpful
in case you accidentally omit a line while typing your program.

Here is another important fact about line numbering. If you type two lines
with the same line number, the computer erases the first version and remem
bers the second version. This feature is very useful for correcting errors: If a
line has an error, just retype it and press ENTER.

Let's go on to another program by typing the command:

NEW

This erases the previous program from RAM and prepares the computer to
accept a new program. You should always remember the following important
fact:

RAM can contain only one program at a time.

TEST YOUR UNDERSTANDING 1 (answers on page 77)
a. Write and type in a BASIC program to calculate 12.1 + 98 +

5.32.
b. Run the program of a.
c. Erase the program of a from RAM.
d. Write a program to calculate 48. 75 - 1.674.
e. Type in and run the program of d.

Immediate Mode and Execute Mode
BASIC on the IBM PCjr operates in two distinct modes. In immediate

mode (also called command mode), the computer accepts typed program
lines and commands (like RUN and NEW) used to manipulate programs. The
computer identifies a program line by its line number. Program lines are not
immediately executed. Rather, they are stored in RAM until you tell the com-

74 Sec. 4.5

puter what to do with them. On the other hand, commands are executed as
soon as they are given.

While BASIC is running a program, it is in execute mode .
When you turn the computer on it is automatically in immediate mode,

indicated by the presence of the Ok prompt on the screen. The RUN com
mand puts the computer into execute mode . After the computer finishes run
ning a program, it redisplays the Ok prompt indicating that it is back in
immediate mode.

Uppercase versus Lowercase and Extra Spaces

The computer is a stern taskmaster! It has a very limited vocabulary
(BASIC), and this vocabulary must be used according to very specific rules
concerning the order of words, punctuation, and so forth. However, BASIC
allows for some freedom of expression. For example, BASIC commands may
be typed in capitals, lowercase , or a mixture of the two. Also , any extra
spaces are ignored. Thus, BASIC will interpret all of the following instructions
as the same:

10 PRINT A
10 print a
10 Print A
10 print A
10 print A

Note, however, that BASIC expects spaces in certain places. For example,
there must be a space separating PRINT and A in the above command.
Otherwise , BASIC will read the command as PRINTA, which is not in its
vocabulary!

A Word of Warning

Many people think of a computer as an "electronic brain" that somehow
has the power of human thought. This is very far from the truth. The elec
tronics of the computer and the rules of the BASIC language allow it to rec
ognize a very limited vocabulary, and to take various actions based on the
data that is given to it. It is very important to realize that the computer does
not have "common sense." The computer will attempt to interpret whatever
data you input. If what you input is a recognizable command, the computer
will perform it. It does not matter that the command makes no sense in a
particular context. The computer has no way to make such judgments. It can
only do what you instruct it to do. Because of the computer's inflexibility in
interpreting commands, you must tell the computer exactly what you want it
to do. Don't worry about confusing the computer. If you communicate a
command in an incorrect form, you won't damage the machine in any way!
However, in order to make the machine do our bidding, it is necessary to
learn to speak its language precisely.

Writing BASIC Programs 75

Printing Words

So far , you have used the PRINT statement only to display the answers to
numeric problems. However, this instruction is very versatile. It also allows you
to display string constants. For example , consider this instruction:

10 PRINT "Patient History"

During program execution, this statement will create the following display:

Patient History

In order to display several string constants on the same line, separate
them by commas in a single PRINT statement. For example , consider the
instruction:

10 PRINT "AGE", "SEX", "ADDRESS"

It will cause three words to be printed as follows:

AGE SEX ADDRESS

Both numeric constants and string constants may be included in a single
PRINT statement. For example:

100 PRINT "AGE", 65.43, 65000

Here is how the computer determines the spacing on a line as follows .
Each line is divided into print zones. In 80-character width, the first five print
zones each have 14 spaces and the sixth 10 spaces. In 40-character width in
cassette BASIC, there are three print zones, each with 14 characters and the
third with 12 characters. In 40-character width in Cartridge BASIC, there are
two print zones, each with 14 characters. By placing a comma in a PRINT
statement, you are telling the computer to start the next string of text at the
beginning of the next print zone. Thus, for example, the four words above
begin in columns 1,15,29,43 respectively, assuming an 80-character width.
(See Figure 4-2.)

1 ... 14 15 ... 28 29 ... 43 44 ... 57 58 ... 71 72 ... 80

Print Zone 1 Print Zone 2 Print Zone 3 Print Zone 4 Pri nt Zone 5 Print Zone 6

Figure 4-2. Print zones in SO-column mode.

76 Sec. 4.5

TEST YOUR UNDERSTANDING 2 (answer on page 77)
Write a program to print the following display.

LAST
SMITH

NAME
FIRST
JOHN

GRADE
87

TEST YOUR UNDERSTANDING 3 (answer on page 77)
Write a computer program which creates the following display.

FOOD
CAR
GAS
UTILITIES
ENTERTAINMENT

TOTAL

BUDGET-APRIL
387.50
475.00
123. 71
146.00
100.00

(Calculate total)

Exercises (answers on page 350)

1. Make a table of the first , second, third, and fourth powers of the numbers 2,
3, 4 , 5 , and 6. Put all first powers in a column, all second powers in another
column, and so forth.
2. Mrs. Anita Smith went to her doctor with a broken leg. Her bill consists of
$45 for removal of the cast, $35 for therapy, and $5 for drugs. Her major
medical policy will pay 80 percent directly to the doctor. Use the computer to
prepare an invoice for Mrs. Smith.
3. A school board election is held to elect a representative for a district consist
ing of Wards 1, 2, 3, and 4. There are three candidates: Mr. Thacker, Ms.
Hoving , and Mrs. Weatherby. The tallies by candidate and ward are as follows:

Ward 1 Ward 2 Ward 3 Ward 4
Thacker 698 732 129 487
Hoving 148 928 246 201
Weatherby 379 1087 148 641

Write a BASIC computer program to calculate the total number of votes
achieved by each candidate , as well as the total number of votes cast.
Describe the output from each of these programs:

4. 10 PRINT 8*2 - 3*(2 A4 - 10)
20 END

5. 10 PRINT "SI LVER", "GOLD", "COPPER", "PLATINUM"
20 PRINT 327,448,1052,2
30 END

Giving Names to Numbers and Words 77

6. 10 PRINT , "GROCERIES","MEATS","DRUGS"
20 PRINT "MON", "1,245","2,348","2,531"
30 PRINT "TUE"," 248","3,459","2,148"
40 END

ANSWERS TO TEST YOUR UNDERSTANDING
1: a. 10 PRINT 12.1 + 98 + 5.32

20 END
b. Type RUN and press ENTER.
c. Type NEW and press ENTER.
d. 10 PRINT 48.75 - 1.674

20 END
e. Type in the program. Type RUN and press ENTER.

2: 10 PRINT ,"NAME"
20 PRINT
30 PRINT "LAST","FIRST","MIDDLE","GRADE"
40 PRINT
50 PRINT "SMITH"," JOHN", "DAVID" ,87
60 END

3: 10 PRINT , " BUDGET-APRIL"
20 PRINT "FOOD",,387.50
30 PRINT "CAR",, 475.00
40 PRINT "GAS",, 123.71
50 PRINT "UTILITIES",, 146.00
60 PRINT "ENTERTAINMENT",, 100.00
70 PRINT,," "
80 PRINT "TOTAL",

387.50+475.00+123.71+146.00+100.00
90 END

4.6 Giving Names to Numbers and Words

In the examples and exercises of the preceding section, you probably noticed
that you were wasting considerable time retyping certain numbers over and
over. Not only does this retyping waste time , it also is a likely source of errors.
Fortunately, such retyping is unnecessary if you use variables.

A variable is a collection of characters used to represent a number. A
variable name must begin with a letter and can contain as many as 40 charac
ters. Therefore , you may use variables named PAYROLL, TAX, REFUND, and
BALANCE. Note , however, that not every sequence of characters is a legal
variable name. You must avoid any sequences of characters that are reserved
by BASIC for special meanings. Examples of such words are:

IF, ON, OR, TO, THEN, GOTO

78 Sec. 4.6

Once you become familiar with BASIC, it will be second nature to avoid using
these and other reserved words as variable names.

A variable name cannot begin with a number. For example, lA is not a
legal variable name. If you attempt to use a variable name that begins with a
number, BASIC will provide an error message.

At any given moment, a variable has a particular value. For example, the
variable A might have the value 5 while B might have the value - 2.137845.
One method for changing the value of a variable is through use of the LET
statement. The statement

10 LET A = 7

sets the value of A equal to seven. Any previous value of A is erased.
Once the value of a variable has been set, the variable may be used

throughout the program. The computer will insert the appropriate value
wherever the variable occurs. For instance, if A has the value 7, then the
expression:

A + 5

is evaluated as 7 + 5 or 12. The expression:

3*A - 10

is evaluated as 3•7 - 10 = 21 - 10 = 11. The expression 2 •AA2 is:

TEST YOUR UNDERSTANDING 1 (answer on page 86)
Suppose that A has the value 4 and B has the value 3. What is the value
of the expression AA2/2•BA2?

Note the following important fact:

If you do not specify a value for a variable, BASIC will assign it the value 0.

Here are three useful shortcuts.

Three Shortcuts

1. The word LET is optional. For example , the statement:

10 LET A=5

Giving Names to Numbers and Words 79

may be abbreviated as:

10 A=S

2. Several statements may be included on one line. To do so, just sepa
rate the various statements by colons. In particular, a single line may
be used to assign values to several variables. For instance , the
instruction:

100 LET C = 18: LET D = 23: LET E = 2.718

assigns C the value 18, D the value 23, and E the value 2 . 718. Using
shortcut 1, you may write this instruction in the simpler form:

100 C=18:D=23:E=2.718

3. You may use statements that extend beyond a single line. This is espe
cially useful when assigning values to many variables as in shortcut 2
above. When you reach the end of the physical line (40 or 80 charac
ters wide) just keep on typing. Hit ENTER when you are finished with
the material to be included with the current line number. An extended
line may contain as many as 255 characters. When an extended line
reaches 255 characters, BASIC will automatically terminate it just as if
you had pressed ENTER.

Variables in PRINT Statements
Variables also may be used in PRINT statements . For example , the

statement:

10 PRINT A

will cause the computer to print the current value of A (in the first print zone , of
course'). The statement:

20 PRINT A,B,C

will result in printing the current values of A, B, and C in print zones 1, 2 and 3,
respectively.

TEST YOUR UNDERSTANDING 2 (answer on page 86)
Suppose that A has the value 5 . What will be the result of the instruction:

10 PRINT A,A A2,2*AA2

80 Sec. 4.6

Example 1. Consider the three numbers 5.71 , 3.23, and 4.05. Calculate their
sum, their product, and the sum of their squares (i.e., the sum of their second
powers; such a sum is often used in statistics.).
Solution. Introduce the variables A, B, and C and set them equal, respec
tively, to the three numbers. Then compute the desired quantities:

10 LET A = 5. 71 : B = 3.23: C = 4.05
20 PRINT "THE SUM IS", A+B+C
30 PRINT "THE PRODUCT IS", A*B*C
40 PRINT "THE SUM OF SQUARES IS", AA2+BA2+c A2
50 END

TEST YOUR UNDERSTANDING 3 (answer on page 86)
Consider the numbers 101,102,103,104,105,and 106. Write a program
which calculates the product of the first two, the first three , the first four ,
the first five , and then all six numbers.

The following mental imagery is often helpful in understanding how
BASIC handles variables. When BASIC first encounters a variable, say A, it
sets up a box (actually a memory location) that it labels "A". (See Figure 4-3.)
It stores the current value of A in this box. When you request a change in the
value of A, the computer throws out the current contents of the box and inserts
the new value.

Note that the value of a variable need not remain the same throughout a
program. At any point in the program, you may change the value of a variable
(with a LET statement, for example). If a program is called on to evaluate an
expression involving a variable, it always will use the current value of the varia
ble , ignoring any previous values the variable may have had at earlier points in
the program.

LET

'
5. 781

A

Figure 4-3. The variable A.

Giving Names to Numbers and Words 81

TEST YOUR UNDERSTANDING 4 (answer on page 86)
Suppose that a loan for $5,000 has an interest rate of 1.5 percent on the
unpaid balance at the end of each month. Write a program to calculate
the interest at the end of the first month. Suppose that at the end of the
first month, you make a payment of $150 (after the interest is added).
Design your program to calculate the balance after the payment. (Begin
by letting B = the loan balance, I = the interest, and P = the payment.
After the payment, the new balance is B+ 1-P.)

Example 2. What will be the output of the following computer program:

10 LET A= 10: B = 20
20 LET A= 5
30 PRINT A+ B + C, A*B*C
40 END

Solution. Note that no value for C is specified, so C = 0. Also note that the
value of A initially is set to 10. However, in line 20, this value is changed to 5.
So in line 30, A, B, and C have the respective values 5, 20, and 0. Therefore ,
the output will be:

25 0

To the computer, the statement:

LET A=

means that the current value of A is to be replaced with whatever appears to
the right of the equal sign. Therefore, if you write:

LET A= A+ 1

you are asking the computer to replace the current value of A with A + 1. So if
the current value of A is 4, the value of A after performing the instruction is
4 + 1, or 5.

TEST YOUR UNDERSTANDING 5 (answer on page 86)
What is the output of the following program?

10 LET A = 5.3
20 LET A = A+1
30 LET A = 2*A
40 LET A = A+B
so PRINT A
60 END

82 Sec. 4.6

The variables you have been using are called single-precision numeric
variables and are capable of holding up to seven significant digits of informa
tion. (Later on, I'll talk about double-precision numeric variables, which can
hold more than seven significant digits.) If you set a single-precision variable
equal to a number with more than seven significant digits , BASIC automatically
will round the number to seven significant digits . Moreover, if displaying the
value of a number will require more than seven digits due to zeros before or
after the decimal place , BASIC automatically will shift to scientific notation.
Thus, for example , the statement:

X=123456789: PRINT X

will produce the display:

1.234568E+09

Note that the initial seven digits are obtained by rounding the given 10 digits.
Scientific notation is used because the rounded number, namely, 123456800,
requires more than seven digits to display.

String Variables

So far , all of the variables discussed have represented numeric values.
However, BASIC also allows variables to assume string constants (sequences
of characters) as values. The variables for doing this are called string variables
and are denoted by a variable name followed by a dollar sign ($). Thus, A$,
81$, and ZZ$ are all valid names of string variables. To assign a value to a
string variable, use the LET statement with the desired value inserted in quota
tion marks after the equal sign. To set A$ equal to the string "Balance Sheet" ,
use the statement:

LET A$= "Balance Sheet"

You may print the value of a string variable just as you print the value of a
numeric variable. For example , if A$ has the value just assigned, the statement:

PRINT A$

will result in the following screen output:

Balance Sheet

Example 3. What will be the output of the following program:

Giving Names to Numbers and Words 83

10 LET A$= "RECEIPTS":B$ = "EXPENSES"
20 LET A= 20373.10: B = 17584.31
30 PRINT A$,B$
40 PRINT A,B
50 END

Solution. Line 30 prints the values of the two string variables A$ and B$,
namely, "RECEIPTS" and "EXPENSES" , at the beginning of two print zones.
Line 40 displays the values of A and B. Here is the output of the program:

RECEIPTS
20373.10

EXPENSES
17584.31

Note that we have used the variables A and A$ (as well as B and B$) in the
same program. The variables A and A$ are considered different by the com
puter. One further comment about spacing: Note that the numbers do not
exactly align with the headings, but are offset by one space. This is because
BASIC allows room for a sign (+ or -) in front of a number. In the case of
positive numbers, the sign is left out, but the space remains.

The SWAP Statement

Suppose that your program involves the two variables A and B and that
you wish to reassign the values of these variables so that A assumes the value
of B, and B the value of A. This may be accomplished using the BASIC
statement:

10 SWAP A, B

For example, if A currently has the value 1.8 and B the value 7.5, then after the
above statement is executed, A will have the value 7.5 and B the value 1.8.

Note that SWAP also may be used to exchange the values of two string
variables , as in the statement:

20 SWAP A$, B$

However, you may never SWAP values between a string variable and a
numeric variable. BASIC will report an error if you try this.

TEST YOUR UNDERSTANDING 6 (answer on page 86)
Write a BASIC program to exchange the values of the variables A and B
without using the SWAP statement. (It's tricky. That's why BASIC includes
the SWAP statement.)

84 Sec. 4.6

Remarks in Programs
It is very convenient to explain programs using remarks. For one thing,

remarks make programs easier to be read by a human being. Remarks also
assist in finding errors and making modifications in a program. To insert a
remark in a program, you may use the REM statement. For example , consider
the line:

520 REM X DENOTES THE STAR SHIP POSITION

Since the line starts with REM, it will be ignored during program execution. As
a substitute for REM, you use an apostrophe , as in the following example:

1040 ' Y IS THE LASER FORCE

To insert a remark on the same line as a program statement, use a colon
followed by an apostrophe (or REM), as in this example:

10 LET A= PI*RA2 : ' A IS THE AREA,R IS THE RADIUS

Note , however, that everything after an apostrophe is ignored. Therefore , you
cannot put an instruction after a remark. In the line

20 LET B=A A2: 'B is the area: C=B+8

the instruction C = B + 8 will be ignored.
The importance of remarks cannot be overemphasized. In writing BASIC

programs, it is all too easy to write programs that no one (you included) can
decipher. You should aim at writing programs that can be read like text. And
the most significant step in this direction is to include many remarks in your
programs. In what follows, we will be generous in our use of remarks, not only
to make the programs easier to read, but also to set an example of good pro
gramming style.

TEST YOUR UNDERSTANDING 7 (answer on page 86)
What is the result of the following program line?

10 LET A=7:B$="COST":C$="TOTAL":PRINT C$,B$,"=",A

Using a Printer
In writing programs and analyzing their output, it is often easier to rely on

written output rather than output on the screen. In computer terminology, writ
ten output is called hard copy and may be provided by a wide variety of print
ers , ranging from a dot-matrix printer costing only a few hundred dollars to a

Giving Names to Numbers and Words 85

daisy wheel printer costing several thousand dollars. As you begin to make
serious use of your computer, you will find it difficult to do without hard copy.
Indeed, writing programs is much easier if you can consult a hard copy listing
of your program at various stages of program development. (One reason is
that in printed output you are not confined to looking at your program in 25-
line "snapshots. ") Also , you will want to use the printer to produce output of
programs, ranging from tables of numeric data to address lists and text files.

You may produce hard copy on your printer by using the BASIC statement
LPRINT. For example , the statement:

10 LPRINT A,A$

will print the current values of A and A$ on the printer, in print zones one and
two . (As is the case with the screen, BASIC .divides the printer line into print
zones that are 14 columns wide.) Moreover, the statement:

20 LPRINT "Customer","Credit Limit","Most Recent Pchs"

will result in printing three headings in the first three print zones, namely:

Customer Credit Limit Most Recent Pchs

Printing on the printer proceeds very much like printing on the screen. It is
important to realize , however, that in order to print on both the screen and the
printer, it is necessary to use both statements PRINT and LPRINT. For exam
ple , to print the values of A and A$ on both the screen and the printer, we must
give two instructions , as follows:

10 PRINT A,A$
20 LPRINT A,A$

Exercises (answers on page 351)
In Exercises 1-6, determine the output of the given program.

1. 10 LET A = 5: 8 = 5 2. 10 LET AA = 5
20 PRINT A+ 8 20 PRINT AA*8
30 END 30 END

3. 10 LET A1 = 5 4. 10 LET A = 2: 8 = 7: C = 9
20 PRINT A1 A2 +5*A1 20 PRINT A+8, A-C, A*C
30 END 30 END

5. 10 LET A$= "JOHN JONES" 6. 10 LET X = 11: Y = 19
20 LET 8$ = "AGE": C = 38 20 PRINT 2*X
30 PRINT A$, 8$, C 30 PRINT 3*Y
40 END 40 END
What is wrong with the following BASIC statements?

7. 10 LET A = "YOUTH" 8. 10 LET AA = -12
9. 10 LET A$ = 57 10. LET ZZ$ = Address

11. 250 LET AAA= -9 12. 10000 LET 1A = -2.34567

86 Sec. 4.7

13. Consider the numbers 2.3758, 4.58321 , and 58.11. Write a program that
computes their sum, product, and the sum of their squares.
14. A company has three divisions: Office Supplies, Computers, and Newslet
ters. The revenues of these three divisions for the preceding quarter were,
respectively, $346,712, $459,321, and $376,872. The expenses for the quarter
were $176,894, $584,837, and $402,195, respectively. Write a program that
displays this data on the screen, with appropriate explanatory headings. Your
program also should compute and display the net profit (loss) from each divi
sion and the net profit (loss) for the company as a whole.

ANSWERS TO TEST YOUR UNDERSTANDING
1: 72
2: It prints the display:

5 25 50
3: 10 LET A=101:B=102:C=103:D=104:E=105:F=106

20 PRINT A*B
30 PRINT A*B*C
40 PRINT A*B*C*D
50 PRINT A*B*C*D*E
60 PRINT A*B*C*D*E*F
70 END

4: 10 LET B = 5000: I = .015: P = 150.00
20 IN = I*B
30 PRINT "INTEREST EQUALS", IN
40 B = B+IN
50 PRINT " BALANCE WITH INTEREST EQUALS", B
60 B = B - P
70 PRINT "BALANCE AFTER PAYMENT EQUALS", B
80 END

5. 12.6
6. 10 TEMPORARY=A

20 A=B
30 B=TEMPORARY

7. It creates the display:

TOTAL COST =

4.7 Some BASIC Commands

7

Thus far , most of our attention has been focused on learning statements to
insert inside programs. Now let's learn a few of the commands available for
manipulating programs and the computer. The NEW command, previously
discussed, is in this category. Remember the following facts about BASIC
commands:

Some BASIC Commands 87

BASIC Commands
1. Commands are typed without using a line number.
2. You must press the ENTER key after typing a command.
3. A command may be given whenever the computer is in the command

mode. (Recall that whenever the computer enters the command
mode , it displays the Ok message. The computer remains in the com
mand mode until a RUN command is given.)

4. The computer executes commands as soon as they are received.

Listing a Program
To obtain a list of all program lines of the current program in RAM, you

may type the command:

LIST < ENTER >

For example, suppose that RAM contains the following program:

10 PRINT 5+7, 5-7
20 PRINT 5*7,5/7
30 END

(This program may or may not be currently displayed on the screen.) If you
type LIST, then the above three instruction lines will be displayed, followed by
the Ok message .

In developing a program, you often will find that it is necessary to add
program lines to sections of the program already written. This will require you
to input lines in nonconsecutive order. Also, it may be necessary to correct
lines already input. In either event, the screen often will not indicate the current
version of the program. Typing LIST every so often will assist in keeping track
of what has been changed. LISTing is particularly helpful in checking a pro
gram or determining why a program won't run.

Note that you may display up to 25 lines of text on the screen at one time .
This means you can display only 23 program statements at one time. (The
"Ok" prompt takes one line, as does the cursor.) Therefore, it is often neces
sary to list only selected lines, rather than the entire program. To LIST only
those statements with line numbers from 1 to 25, use the command:

LIST 1-25 <ENTER>

In a similar fashion , list any collection of consecutive program lines.
There are several other variations of the LIST command. To list the pro

gram lines from the beginning of the program to line 75, use the command:

88 Sec. 4.7

LIST -75 <ENTER>

Similarly, to list the program lines from 100 to the end of the program, use the
command:

LIST 100- <ENTER>

To list line 100 , use the command:

LIST 100 <ENTER>

TEST YOUR UNDERSTANDING 1 (answers on page 94)
Write a command to:

a. List line 200
b. List lines 300 to 330
c. List lines 300 to the end

Test these commands with a program.

Helpful Shortcut
If you press function key Fl and then ENTER, the PC}l'J will display a listing

of the current program.

Printed Listings
You will find that it is difficult to write a long program relying only on

screen listings. For more complex programs, a printed listing is essential. You
may generate such a listing using your printer. To list the program currently in
RAM, type :

LLIST

and press ENTER. All the variations of the LIST command apply also to the
LUST command. For example , you may list only those lines with line numbers
in a certain range, lines from the beginning of the program to a given line
number, and so forth .

Deleting Program Lines
When typing a program or revising an existing program, it is often neces

sary to delete lines that are already part of the program. One simple way is to
type the line number followed by ENTER. For example:

Some BASIC Commands 89

275

(followed by hitting the ENTER key) will delete line 275. The DELETE com
mand also may be used for the same purpose. For example, you may delete
line 275 using the command:

DELETE 275 <ENTER>

The DELETE command has a number of variations which make it quite flexi
ble . For example, to delete lines 200 to 500 inclusive , use the command:

DELETE 200-500 <ENTER>

To delete all lines from the beginning of the program to 350, inclusive, use the
command:

DELETE -350 <ENTER>

Note , however, that in Cassette BASIC, the DELETE command always must
include a last line number to be deleted. This is to prevent unfortunate mis
haps by which you mistakenly erase most of a program. If you wish to delete
all lines from 100 to the end of the program, you must specify a deletion
from 100 to the last line number. If you don 't remember the last line number,
LIST the program first , determine the final line number, and then carry out
the appropriate DELETE.

Helpful Shortcut (Cassette BASIC Only)
If your program is long , you may want to avoid listing it in order to

determine the number of the last line . Here is how to delete to the end of the
program without listing it. The largest possible line number is 65535. There
fore , type :

65535 END

and give the command

DELETE 100-65535

TEST YOUR UNDERSTANDING 2 (answers on page 94)
What is wrong with the following commands?

a. DELETE 450-
6. LIST 450-
c. DELETE 300-200

90 Sec. 4.7

Saving a Program

Diskette Once you have typed a program into RAM, you may save a copy
on cassette or diskette. At any future time , you may read the saved copy back
into RAM. At that point, you may reexecute the program, modify it, or add to
it. For the sake of concreteness, suppose that the following program is in
RAM:

10 PRINT 5+7
20 END

Program Names In order to save a program, you must first assign the pro
gram a name. A program name is a string of letters or numbers and may
contain as many as eight characters. In addition , you may include an exten
sion consisting of a period followed by three characters. If you specify more
than eight characters in a program name, characters nine , 10, and 11 are
assumed to be an extension. Here are some valid program names for pro
grams saved on diskette:

ACCOUNTING1 , GAMES.JOE, STORY.003

The first program name is equivalent to:

ACCOUNTI.NG1

If you do not specify an extension in a program name , then BASIC will
automatically add the extension .BAS.

Saving Programs Suppose that you choose the name RETAIN for your pro
gram. You may save this program on the diskette in either disk drive. To save
RETAIN on drive B:, for example , you would use the command:

SAVE "B: RETAIN"

When the computer finishes writing a copy of the program onto the desig
nated diskette , it will display the Ok prompt. Saving a program does not alter
the copy of the program in RAM.

Cassette The name of a program on cassette is limited to eight characters
with no extension. To save the program 'RETAIN ' on cassette , use the
command:

SAVE "CAS1: RETAIN"

If your system does not have a diskette drive , you should omit the portion
CASl :.

Some BASIC Commands 91

Helpful Shortcut
To save a program press function key F4. BASIC will display:

SAVE "

You then may fill in the program name and press ENTER.

Recalling a Program ·

To read a program from diskette into RAM, use the LOAD command.
For example , to read RETAIN from the diskette in drive B, use the command:

LOAD "B: RETAIN"

To recall the program "RETAIN" from cassette, you must position the
tape at the beginning (or at least at a position so that the cassette recorder
may reach the program only by going in the forward direction) and use the
command:

LOAD "CAS1: RETAIN"

If your system does not have a diskette drive , you should omit the portion
CASI:.

You should try the above sequence of commands using the given pro
gram. After saving the program, erase the program from RAM (by typing
NE~. Then load the program. Just to check that the program has indeed
be~n retrieved, you should LIST it.

Helpful Shortcut
To load a program press function key F3. BASIC will display:

LOAD "

You then may fill in the program name and press ENTER.

Erasing a Program From Diskette
You may erase a program from diskette using the KILL command. To

use this command, you must recognize that if you specify no extension in
your program name when you saved it, then BASIC automatically added the

92 Sec. 4.7

extension .BAS. For example , the program RETAIN is actually stored under
the name RETAIN.BAS. To erase this program, you may use the command:

KILL "B:RETAIN.BAS"

The only way to erase a program from cassette is to record over it.

Manipulating Line Numbers
BASIC provides several commands that can ease your burden in dealing

with line numbers .
The AUTO command may be used to automatically generate line num

bers . To use this feature , type:

AUTO

and press ENTER. BASIC wiJl generate line numbers 10, 20, 30, 40, A
line number will be displayed and the cursor moved to the second space after
the line number. In response , type the corresponding program line. As usual,
end the line by pressing ENTER. The computer then will automatically dis
play the next line number.

To disable the AUTO feature , simultaneously press the Fn and Break
keys . The BASIC prompt then will be displayed.

You may have noticed that we always use line numbers that are multiples
of 10. There is a good reason for this seeming waste of line numbers. It is
often necessary to add instructions between program lines. Our numbering
scheme leaves rooms for up to nine such additions. (In between lines 40 and
50, for instance , you could add instruction lines 41 , 42, ... , 49.)

There are several useful variations of the AUTO command. You may
start the automatic line number generation from any point. For example , to
generate the line numbers:

55, 65, 75, 85, ... ,

use the command:

AUTO 55

You also may adjust the spacing between line numbers. For example , to gen
erate the sequence of line numbers

38, 43, 48, 53, 58, ... ,

which begins with 38 and has a spacing sequence of 5 , just use the
command:

AUTO 38,5

Some BASIC Commands 93

BASIC also provides for automatic renumbering of lines. This is helpful ,
for example , when it ·is necessary to MERGE two programs whose line num
bers overlap. The command

RENUM

causes BASIC to renumber all line numbers. The renumbered program will
start with line 10 and use a spacing of 10. As with AUTO, the RENUM com
mand has several useful variations. To renumber a program so that the line
numbers begin with 1000, use the command:

RENUM 1000

Renumbering may be restricted to a portion of the current program. To
renumber lines 200 onward with the new line numbers beginning with 1000,
use the command:

RENUM 1000,200

All lines with numbers below 200 are not renumbered. You may even vary
the spacing of the renumbered lines. To renumber lines 200 onward with the
new line numbers beginning with 1000 and having a spacing sequence of
100, use the command:

RENUM 1000,200,100

To summarize, the general form of the RENUM command is :

RENUM <new Line> <,o l d Line> <,increment>

Exercises (answers on page 351)
Exercises 1-7 refer to the following program:

10 LET A= 19.1: B = 17.5
20 PRINT A+B,A*B
30 END

1. Type the above program into RAM and RUN it. Use the AUTO feature to
generate the line numbers.

2. Erase the screen without erasing RAM. LIST the program.
3. Save the program and erase RAM.
4. Recall the program and LIST it. RUN the program again.
5. Add the following line to the program:

25 PRINT AA2 + BA2

(Do not retype the entire program!) LIST and RUN the new program.
6. Save the new program without destroying the old one.

94 Sec. 4.8

7. Recall the new program. Delete line 20 and RUN the resulting program.
8. Renumber the lines so that the line numbers are 100, 200, 300.
9 . Renumber the lines so that the line numbers are 10, 2000, 2005.

ANSWERS TO TEST YOUR UNDERSTANDING
1: a. LIST 200

b. LIST 300-330
C. LIST 300-

2: a. OK in Cartridge BASIC. In Cassette BASIC, the line
number of the last line to be deleted must be specified. It
should read:

DELETE -450
b. Nothing wrong.
c. The lower line number must come first. The command

should read:

DELETE 200-300

4.8 Some Programming Tips
Writing programs in BASIC is not difficult. However, it does require a certain
amount of care and meticulous attention to detail. Each person must develop
an individual programming style. Here are a few tips that may help you over
some of the rough spots of writing those first few programs.

Programming Tips
1. Carefully think your program through. Break up the computation into

steps. Describe each step in clear English. (If you can't tell yourself what you
want the computer to do, it is unlikely that you can tell the computer.)

2. Write a set of instructions corresponding to each step. Check your
instructions carefully, with an eagle eye for misspellings, missing parentheses,
and other errors.

3 . Pepper your work with remarks. Next week (or next month) , you may
wish to modify your program. It's embarrassing not to be able to figure out
how your own works!

4. Type your program so that you can read it like a story. (More on how
to do this in the next chapter.)

5 . Work through your program by hand , pretending that you are the
computer. Don't rush. Go through your program one step at a time and
check that it does what you want it to do.

6. Have you given all variables the values you want? Remember, if you
do not specify the value of a variable, BASIC will automatically assign it the
value zero. This may not be the value you intend!

Using the BASIC Editor 95

In the upcoming chapters , I will not only teach you how to program in
BASIC. I will also encourage you to develop good programming habits and a
useful programming style. In the process , we will add to the above list of
programming tips.

4.9 Using the BASIC Editor

Suppose that you discover a program line with an error in it. How can you
correct it? Up to now, the only way was to retype the line. There is a much
better way. The PCjr has a powerful full-screen editor. This editor allows
you to add, delete , or change text in existing program lines. This section is
designed to teach you to use the editor.

The editing process (the process of changing or correcting characters
already typed) consists of three steps:

1. Indicate the location of the change.
2 . Input the change.
3. Send the change to the computer by using the ENTER key.
These steps make use of a number of special editing keys. Most of these

keys are found on the right side of the keyboard.
The best way to understand the editing process is to work through sev

eral examples. If at all possible , follow these examples by typing them out on
your keyboard. Suppose that you have typed the following program lines:

10 PRIMT X,Y,Z
20 IF A= 5 THN 50 ELSE 30

The third line indicates the cursor position. There are two spelling errors:
PRIMT and THN. (If the computer had any common sense, it would have
known what you meant.) In addition, suppose that you wish to change X, Y,
and Z in the first line to read : A, X, Y , Z. Finally, suppose you wish to delete
the ELSE 30 on the second line. Let's use the editing process to correct
them. The first step is to position the cursor at the first character to be cor
rected. To do this , use the various keys on the numeric keypad which move
the cursor like this:

i Cursor up one line
t Cursor down one line

- Cursor left one character
---+ Cursor right one character

(There are other cursor motion keys, but let's study only these for now.) To
correct the PRIMT error, we must first position the cursor at the M. To do
this , we first hit the i key twice. This moves the cursor up two lines. The
display now looks like this:

10 PRIMT X,Y,Z
20 IF A= 5 THN 50 ELSE 30

96 Sec. 4.9

Next we hit the - key six times to move the cursor to the right six spaces .
(Note that the space between O and P counts.) The display now looks like
this:

10 PRI.M.T X,Y,Z
20 IF A= 5 THN 50 ELSE 30

We have now accomplished step 1: The cursor is at the character to be cor
rected. Now we execute step 2: We type in the change. In this case, we type
N. Note that the N replaces the M. Here is the display:

10 PRINI X,Y,Z
20 IF A= 5 THN 50 ELSE 30

The first error has now been corrected. Note , however, that the correction
has not yet been sent to the computer via the ENTER key. We could do so at
this point, but it wouldn't make much sense since there is another error to
correct on the same line. Let's tend to that error now. To do so , we must
insert the characters A and , before the X. Move the cursor two spaces to the
right. Here is the display:

10 PR INT X, Y, Z
20 IF A= 5 THN 50 ELSE 30

To insert text at the cursor position, we hit the Ins key and type the material
to be inserted: A, . The Ins key puts the computer in insert mode. In this
mode , typed text is inserted at the current position and all other text moves
to the right. Here is the current di~play:

10 PRINT A,X, Y ,z
20 IF A= 5 THN 50 ELSE 30

Since we have finished the insertion, we cancel the insert mode . This may be
done in several ways. One method is to hit the Ins key again. This would
allow us to continue to make further corrections on the same line. Another
method (in this case the preferred one) is to hit the ENTER key. This cancels
the insert mode and sends the corrected line to the computer. Note that the
cursor may be in any position on the line when the ENTER command is
given. Here is the display after ENTER.

10 PRINT A,X,Y,Z
20 IF A= 5 THN 50 ELSE 30

Note that the cursor is now at the first character of line 20. We correct the
misspelling of THEN by moving the cursor to the N (14 spaces to the right),
typing Ins followed by E, followed by Ins. Here is how the display looks now.

Using the BASIC Editor 97

10 PRINT A,X,Y,Z
20 IF A= 5 THEN 50 ELSE 30

The final correction is to delete ELSE 30. This is done using the Del key.
First we position the cursor on the E in ELSE. Then we hit the Del key seven
times. Each repetition of the Del key deletes the character at the current
cursor position and moves the remaining text to the left. For example , after
hitting Del the first time, the display looks like this:

10 PRINT A,X,Y,Z
20 IF A= 5 THEN 50 LSE 30

After seven repetitions of the Del key, the display looks like this.

10 PRINT A,X,Y,Z
20 IF A= 5 THEN 50 _

The corrections are now complete. We send the line to the computer via the
ENTER key.

The above example illustrates various editing features of the IBM PCjr.
We may use the editing keys in the same way, to alter any line on the screen.
If you wish to alter a program line which is not currently on the screen, you
may display the desired line using the LIST command. Editing would then
take place as shown.

There are a number of other keys which make editing faster. For exam
ple , to speed up cursor movement, we have the following keys:

Fn-Home This key moves the cursor to the upper left corner of the
screen (the so-called " home" position) .

Ctrl-Fn-Home This key combination clears the screen and brings the
cursor to the home position.

Fn-End This key combination moves the cursor to the end of the cur
rent line .

Ctrl-Fn-End This key combination erases from the current cursor posi
tion to the end of the line.

Ctrl-PgDn This key combination moves the cursor to the space to the
right of the beginning of the next word. (Think of a word as any sequence of
characters not containing spaces. This is not exactly correct, but is close
enough for practical purposes.)

Ctrl-PgUp This key combination moves the cursor to the space to the
left of the beginning of the next word.

End This key moves the cursor to the end of the current line.

In addition to the editing keys described above, the following two key
combinations are useful.

Ctrl-Fn-End erases input from the current cursor position to the end of
the line .

Fn-Break cancels all editing changes in the current line.

98 Sec. 4.9

IMPORTANT NOTE: Editing changes occur only in the copy of the program
in RAM. In order for changes to be reflected in copies of the program on
cassette or diskette , it is necessary to save the edited copy of the program.
The moral :

AFTER MAKING CORRECTIONS, SAVE YOUR PROGRAM!

Exercises

What keystrokes accomplish the following editing functions?

1. Move the cursor four spaces to the right.
2 . Delete the fourth letter to the right of the cursor.
3. Insert the characters 538 at the current cursor position.
4. Delete the portion of the line to the right of the cursor position.
5. Move the cursor up eight spaces.
6. Move the cursor to the right three spaces.
7. List the current version of the line .
8. Change O to 1 at the current cursor position.
9. Delete the letter "a" eight spaces to the left of the current cursor

position.
10. Cancel all changes in the current line .

Use the line editor to make the indicated changes in the following program
line. The exercises are to be done in order.

300 FORM= 11 TO 99, SETP .5 : X = MA2 - 5

11 . Delete the ,
12. Correct the misspelling of the word STEP.
13. Change MA2 - 5 to MA3 - 2 .
14. Change .5 to -1.5 .
15. Add the following characters to the end of the line . : Y = M + 1 .

5

CONTROLLING THE FLOW

OF YOUR PROGRAM

In this chapter we will continue our introduction to diskette BASIC on the IBM
PCjr. Our discussion will center on the instructions for controlling the flow of
statement execution.

5 .1 Doing Repetitive Operations
Suppose that we wish to solve 50 similar multiplication problems. It is certainly
possible to type in the 50 problems one at a time and let the computer solve
them. However, this is a very clumsy way to proceed. Suppose that instead of
50 problems there were 500, or even 5000. Typing the problems one at a time
would not be practical. If, however, we can describe to the computer the entire
class of problems we want solved, then we can instruct the computer to solve
them using only a few BASIC statements. Let us consider a concrete problem.
Suppose that we wish to calculate the quantities

12
, 2 2, 32, ... , 102

That is , we wish to calculate a table of squares of integers from 1 to 10. This
calculation can be described to the computer as calculating Nt-.2, where the
variable N is allowed to assume, one at a time, each of the values 1,2,3 , ... ,10.
Here is a sequence of BASIC statements which accomplishes the calculations:

This is the This is the
first value of N last value of N

10 FOR N =
20 PRINT
30 NEXT N
40 END

lines 10-20-30 repeated
10 times

The sequence of statements 10,20,30 is called a loop . When the computer
encounters the FOR statement, it sets N equal to 1 and continues executing
the statements. Statement 20 calls for printing Nt-.2. Since N is equal to 1, we
have Nt-.2 = 1" 2 = 1. So the computer will print a 1. Next comes statement
30, which calls for the next N. This instructs the computer to return to the FOR
statement in 10, increase N to 2, and to repeat instructions 20 and 30. This
time , Nt-.2 = 2" 2 = 4. Line 20 then prints a 4. Line 30 says to go back to line

100 Sec. 5.1

10 and increase N to 3 and so forth. Lines 10, 20, and 30 are repeated 10
times! After the computer executes lines 10,20,and 30 with N = 10, it will leave
the loop and execute line 40.

Type in the above program and give the RUN command. The output will
look like this:

1
4
9
16
25
36
49
64
81
100
Ok

The variable N is called the loop variable. It may be used inside the loop just
like you would any other variable . For example, it may be used in algebraic
calculations and PRINT statements.

TEST YOUR UNDERSTANDING 1 (answer on page 110)
a. Devise a loop allowing N to assume the values 3 to 77.
b. Write a program which calculates N2 for N = 3 to 77.

Making Loops More Readable Note that we have indented the textual por
tion of line 20. This allows us to clearly see the beginning and end of the loop.
It is good programming practice to always indent loops in this way since it
increases program readability. The TAB key (the key with the two symbols 1-
and-·0 may be used to indent. BASIC sets up tab stops every five spaces.
These are just like the tab stops on a typewriter. Whenever you press the TAB
key, the cursor moves over to the next tab stop.

Let's modify the above program to include on each line of output not only
NA2, but also the value of N. To make the table easier to read, let's also add
two column headings. The new program reads:

10 PRINT "N","N A2"
20 FOR N=1 TO 10
30 PRINT N,N A2
40 NEXT N
50 END

The output now looks like this :

N
1
2

3
4
5
6
7
8
9
10
Ok

9
16
25
36
49
64
81
100

Doing Repetitive Operations 101

TEST YOUR UNDERSTANDING 2 (answer on page 110)
What would happen if we change the number of line 10 to 25?

Let us now illustrate some of the many uses loops have by means of some
examples.

Example 1. Write a BASIC program to calculate 1 + 2 + 3 + ... + 100.
Solution. Let us use a variable S (for sum) to contain the sum. Let us start S
at 0 and use a loop to successively add to S the numbers 1,2,3, ... ,100. Here is
the program.

10 LETS = 0
20 FOR N = 1 TO ~DO) These instructions
30 LETS = s + repeated 100 times
40 NEXT N
50 PRINT S
60 END

When we enter the loop the first time , S = 0 and N = 1. Line 30 then replaces
S by S + N, or 0 + 1. Line 40 sends us back to line 20, where the value of N
is now set equal to 2. In line 30, S (which is now 0 + 1) is replaced by S + N,
or 0 + 1 + 2. Line 40 now sends us back to line 20, where N is now set equal
to 3. Line 30 then sets S equal to 0 + 1 + 2 + 3. Finally, on the 100th time
through the loop, Sis replaced by 0 + 1 + 2 + .. . + 100, the desired sum. If
we run the program, we derive the output

5050
Ok

TEST YOUR UNDERSTANDING 3 (answer on page 110)
Write a BASIC program to calculate 101 + 102 + ... + 110.

TEST YOUR UNDERSTANDING 4 (answer on page 110)
Write a BASIC program to calculate and display the numbers
2,2A2,2A3, ... ,2A20.

102 Sec. 5.1

Example 2. Write a program to calculate the sum:
1 X 2 + 2 X 3 + 3 X 4 + .. . + 49 X 50

Solution. We let the sum be contained in the variable S, as in the preceding
example. The quantities to be added are just the numbers N • (N + 1) for
N = 1,2,3, ... ,49. Here is our program:

10 LETS= 0
20 FOR N = 1 TO 49
30 LETS= S + N*(N+1)
40 NEXT N
50 PRINT S
60 END

Some Cautions

Here are two of the errors you are most likely to make in dealing with loops:
1. Every FOR statement must have a corresponding NEXT. Otherwise ,

BASIC will halt your program and display the error message:

FOR without NEXT in Line xxxxx

2. Be sure that the loop variable is not already used with some other
meaning. For example, suppose that the loop variable N is used
before the loop begins. Then the loop will destroy the old value of N
and there is no way to get it back after the loop is completed.

Nested Loops

In many applications, it is necessary to execute a loop within a loop. For
example, suppose that we wish to compute the following series of numbers:

1A2, 2A2, 3A2, ... , 10 A2,
101 A2, 102 A2, 103A2, ... , 110A2,

2001 A2, 2002 A2, 2003A2, ... , 2010A2

There are 21 groups of 10 numbers each. Each line may be computed using a
loop. For example, the fi rst line may be computed using:

100 FOR I=1 TO 10
110 PRINT IA2
120 NEXT I

The second line may be computed using:

100 FOR I=1 TO 10
110 PRINT (100+I) A2
120 NEXT I

And the last line may be computed using:

100 FOR I=1 TO 10
110 PRINT (2000+I) A2
120 NEXT I

Doing Repetitive Operations 103

We could compute the desired numbers by repeating essentially the same
instructions 21 times. However, it is much easier to do the repetition using a
loop. The numbers to be added to I range from O (which is 0* 100) for the first
line , to 100 (which is 1 * 100) for the second line, to 2000 (which is 20 • 100) for
the last line . This suggests that we represent these numbers as J * 100, where J
is a loop variable which runs from O to 20. We may then compute our desired
table of numbers using this program:

10 FOR J=O TO 20
100 FOR I=1 TO 10
110 PRINT (100*J+I) A2
120 NEXT I
200 NEXT J

The instructions which are indented one level are repeated 21 times, correspond
ing to the values J = 0 through J = 20. On the first repetition (J = 0), lines 100-120
print the numbers in the first line; on the second repetition {J=l), lines 100-120
print the numbers in the second line, and so forth. Note how the indentations help
to read the program. This is an example of good programming style.

If a loop is contained within a loop, then we say that the loops are nested.
BASIC allows you to have nesting in as many layers as you wish (a loop within
a loop within a loop, and so forth.)

TEST YOUR UNDERSTANDING 5 (answer on page 110)
Write a BASIC program to print the following table of numbers.

1 11 21 31
2 12 22 32

9 19 29 39

Warning: Nested loops may not "overlap." That is , the following sequence is
not allowed:

104 Sec. 5.1

10 FOR J=1 TO 100
20 FOR K=1 TO 50

80 NEXT J
90 NEXT K

Rather, the NEXT K statement must precede the NEXT J, so that the K loop is
"completely inside" the J-loop.

Applications of Loops

Example 3 . You borrow $7000 to buy a car. You finance the balance for 36
months at an interest rate of one percent per month. Your monthly payments
are $232.50. Write a program which computes the amount of interest each
month, the amount of the loan which is repaid, and the balance owed.
Solution. Let B denote the balance owed. Initially we have B equal to $7000.
At the end of each month let us compute the interest (I) owed for that month,
namely .01 • B. For example , at the end of the first month, the interest owed is
.01 • 7000.00 = $70.00. Let P = 232.50 to denote the monthly payment, and
let R denote the amount repaid out of the current payment. Then R = P - I.
For example, at the end of the first month, the amount of the loan repaid is
232.50 -70.00 = 162.50. The balance owed may then be calculated as B - R.
At the end of the first month, the balance owed is 7000.00 - 162.50 =
6837.50. Here is a program which performs these calculations:

10 PRINT "MONTH","INTEREST","BALANCE"
20 LET B = 7000 : 'B= in i ti al balance
25 LET P = 232.50 :'P=monthly payment
30 FORM = 1 TO 36 : 'M is month number
40 LET I = .01*8 :'Calculate interest for month
50 LET R = p - I :'Calculate repayment
60 LET B = B - R :'Calculate new balance
70 PRINT M,B :'Print out data for month
80 NEXT M
90 END

You should attempt to run this program. Notice that it runs, but it is pretty
useless because the screen will not contain all of the output. Most of the output
goes flying by before you can read it. One method for remedying this situation
is to press Fn and Pause simultaneously as the output scrolls by on the screen.
This will pause execution of the program and freeze the contents of the screen.
To resume execution and unfreeze the screen, press any key. The output will

Doing Repetitive Operations 105

begin to scroll again. To use this technique requires some manual dexterity.
Moreover, it is not possible to guarantee where the scrolling will stop.

TEST YOUR UNDERSTANDING 6
RUN the program of Example 3 and practice freezing the output on the
screen. It may take several runs before you are comfortable with the
procedure.

Let us now describe another method of adapting the output to our screen
size by printing only 12 months of data at one time. This amount of data will fit
since the screen contains 24 lines. We will use a second loop to keep track of
12-month periods. The variable for the new loop will be Y (for "years"), and Y
will go from 0 to 2. The month variable will be M as before , but now M will go
only from 1 to 12. The month number will now be 12 •Y + M
(12 times the number of years plus the number of months). Here is the revised
program.

10
20
30
40
50
60
70
80
90
100
110
120
130
140

LET 8=7000
LET P =232.50
FOR Y = 0 TO 2 :'Y=year number

PRINT "MONTH","INTEREST","PAYMENT","BALANCE"
FORM= 1 TO 12 :'Run through the months of year Y

LET I= .01*8:'Calcu late interest for month
LET R = P - !:'Calculate repayment for month
LET B = B - R:'Calculate balance for month

NEXT
STOP
CLS
NEXT Y
END

PRINT 12*Y+M,B:'Print data for month
M

·' Halts execution
·' Clears Screen
·' Goes to next 12 months

This program uses several new statements. In line 110, we use the STOP state
ment. This causes the computer to stop execution of the program. The com
puter remembers where it stops, however, and all values of the variables are
preserved. The STOP statement also leaves unchanged the contents of the
screen. You can take as long as you wish to examine the data on the screen.
When you are ready for the program to continue , type CONT and press
ENTER. The computer will resume where it left off. The first instruction it
encounters is in line 120. CLS clears the screen. So, after being told to con
tinue , the computer clears the screen and goes on to the next value of Y-the
next 12 months of data. Here is a copy of the output. The underlined state
ments are those you type.

106 Sec. 5.1

Ok

RUN

MONTH BALANCE
1 6837.5
2 6673.375
3 6507.609
4 6340.185
5 6171.087
6 6000.298
7 5827.8
8 5653.578
9 5477.614
10 5299.89
11 5120.389
12 4939.093

Break in 100
Ok
CONT

MONTH BALANCE
13 4755.984
14 4571.044
15 4384.255
16 4195.597
17 4005.053
18 3812.603
19 3618.229
20 3421.912
21 3223.631
22 3023.367
23 2821.101
24 2616.812

Break in 100
Ok
CONT

MONTH BALANCE
25 2410.48
26 2202.085
27 1991.606
28 1779.022
29 1564.312
30 1347.455
31 1128.43
32 907.2138

33
34
35
36

Ok

683.7859
458.1238
230.205
7.034302E-03

Doing Repetitive Operations 107

Note that the data in the output is carried out to seven figures , even
though the problem deals with dollars and cents. We will look at the problem of
rounding numbers later. Also note the balance listed at the end of month 36. It
is in scientific notation. The -03 indicates that the decimal point is to be moved
three places to the left. The number listed is .007034302 or about . 70 cents
(less than one cent)! The computer shifted to scientific notation since the usual
notation (.007034302) requires more than seven digits. The computer made
the choice of which form of the number to display.

Using Loops to Create Delays

By using a loop we can create a delay inside the computer. Consider the
following sequence of instructions:

10 FOR N = 1 TO 3000
20 NEXT N

This loop doesn't do anything! However, the computer repeats instructions 10
and 20 three thousand times! This may seem like a lot of work. But not for a
computer. To obtain a feel for the speed at which the computer works, you
should time this sequence of instructions. Such a loop may be used as a delay.
For example , when you wish to keep some data on the screen without stopping
the program, just build in a delay. Here is a program that prints two screens of
text. A delay is imposed to give you time to read the first screen.

10 PRINT "THIS IS A GRAPHICS PROGRAM
20 PRINT "TO DISPLAY SALES"
30 PRINT "FOR THE YEAR TO DATE"
40 FOR N = 1 TO 5000 } Delay Loop
50 NEXT N:
60 CLS
70 PRINT "YOU MUST SUPPLY"
80 PRINT "THE FOLLOWING PARAMETERS:"
90 PRINT "PRODUCT, TERRITORY, SALESPERSON"
100 END

Example 4. Use a loop to produce a blinking display for a security system.
Suppose that your security system is tied in with your computer and the system
detects that an intruder is in your warehouse. Let us print out the message

INTRUDER-ZONE 2

108 Sec. 5.1

For attention, let us blink this message on and off by alternately printing the
message and clearing the screen.

Solution: Here is our program.

10 FOR N = 1 TO 2000
20 PRINT "INTRUDER-ZONE 2"
30 FORK= 1 TO 50
40 NEXT K
50 CLS
60 NEXT N
70 END

The loop in lines 30-40 is a delay loop to keep the message on the screen for a
moment. Line 50 turns the message off, but the PRINT statement in line 20
turns it back on. The message wi)I blink 2000 times.

TEST YOUR UNDERSTANDING 7 (answer on page 110)
Write a program that blinks your name on the screen 500 times, leaving
your name on the screen for a loop of length 50 each time.

More About Loops

In all of our loop examples, the loop variable increased by one with each
repetition of the loop. However, it is possible to have the loop variable change
by any amount. For example, the instructions

10 FOR N = 1 TO 5000 STEP 2

1000 NEXT N

define a loop in which N jumps by 2 for each repetition, so N will assume the
values:

1, 3, 5, 7, 9 , ... , 4999

Similarly, use of STEP .5 in the above loop will cause N to advance by .5 and
assume the values:

1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, ... , 5000

It is even possible to have a negative step. In this case, the loop variable will run
backwards. For example, the instructions

Doing Repetitive Operations 109

10 FOR N = 100 TO 1 STEP -1 J

100 NEXT N

will "count down" from N = 100 to N = 1 one unit at a time. We will give
some applications of such instructions in the Exercises.

TEST YOUR UNDERSTANDING 8 (answer on page 110)
Write instructions to allow N to assume the following sequences of values:

a. 95, 96.7, 98.4 , .. . , 112
b. 200, 199.5, 199 , ... , 100

Exercises (answers on page 351)

Write BASIC programs to compute the following quantities.
1. I2+22+32+ .. . +252
2. (1/2)0 + (1/2)1 + (1/2)2 + ... + (112)1 0
3. 13 + 23 + 33 + ... + lQ3
4. 1 + (1/2) + (1/3) + ... + (1/100)
5. Write a program to compute N2 , N3, and N4 for N = 1, .. . ,12. The

format of your output should be as follows :
N NA2 NA3 NA4
1
2
3

12
6. Suppose that you have a car loan whose current balance is

$4,000.00. The monthly payment is $125.33 and the interest is one
percent per month on the unpaid balance. Make a table of the interest
payments and balances for the next 12 months.

7. Suppose you deposit $1 ,000 on January 1 of each year into a savings
account paying 10 percent interest. Suppose that the interest is com
puted on January 1 of each year, based on the balance for the pre
ceding year. Calculate the balances in the account for each of the next
15 years.

8. A stock market analyst predicts that Tyro Computers , Inc. will
achieve a 20 percent growth in sales in each of the next three years ,
but profits will grow at a 30 percent annual rate. Last year's sales
were $35 million and last year's profits were $5.54 million. Project
the sales and profits for the next three years , based on the analyst's
prediction.

110 Sec. 5.2

ANSWERS TO TEST YOUR UNDERSTANDING
1: a. 10 FOR N=3 TO 77 b. 10 FOR N=3 TO 77

20 PR INT N"2
30 NEXT N

100 NEXT N 40 END
2: The heading

N NA2
would be printed before each entry of the table.

3: 10 S=O
20 FOR N=101 TO 110
30 S=S+N
40 NEXT N
50 PRINT S
60 END

4: 10 FOR N=1 TO 20
20 PRINT 2"N
30 NEXT N
40 END

5: 10 FOR J=1 TO 9
2Q FOR I=O TO 3
30 PRINT 10*I+J
40 NEXT I
50 NEXT J

7: 10 FOR N=1 TO 500
20 PRINT "<YOUR NAME>"
30 FOR K=1 TO 50
40 NEXT K
50 CLS
60 NEXT N
70 END

8: a. 10 FOR N=95 TO 112 STEP 1. 7
b. 20 FOR N=200 TO 100 STEP - • 5

5 .2 Letting Your Computer Make Decisions

One of the principal features which makes computers useful as problem-solving
tools is their ability to make decisions. BASIC contains instructions which allow
you to ask a question. The computer will determine the answer and will take an
action which depends on the answer. Here are some examples of questions the
computer can answer:

IS A GREATER THAN ZERO?

IS A"2 AT LEAST 200?

Letting Your Computer Make Decisions 111

DOES THE STRING NAME$ BEGIN WITH A "Z" ?

IS AT LEAST ONE OF THE VARIABLES A, B OR C NEGATIVE?

Here are two BASIC statements which allow you to ask such questions:
The IF.. .THEN statement and the IF ... THEN ... ELSE statement. The first of
these statements has the form:

IF <question> THEN <statement or Line number>

Here is how this statement works:
1. The " question" part of an IF.. .THEN statement allows you to ask

questions like those above.
2. If the answer to the question is YES, the program executes the por

tion of the statement following THEN.
a. If a statement follows THEN , this statement is executed.
b. If a line number follows THEN, the program continues execution

with this line number.
3. If the answer to the question is NO, the program continues with the

next statement.
For example, consider this instruction:

500 IF N = 0 THEN PRINT "CALCULATION DONE"

The question portion of this instruction is N = O; the portion following THEN is
the statement: PRINT " CALCULATION DONE" . When the computer
encounters this statement, it first determines if N is equal to zero. If so, it prints
"CALCULATION DONE" and proceeds with the next instruction after line 500.
However, if N is not zero, the program immediately goes to the next instruction
line after 500. (It ignores the statement after THEN.)

Here is another example:

600 IF AA2 < 1 THEN 300

When the program reaches this instruction, it will examine the value of AA2. If
AA2 is less than 1, the program will go to line 300. Otherwise , the program will
go on to the next instruction.

The IF ... THEN ... ELSE statement is similar to an IF.. .THEN statement, but
it offers added flexibility in case the answer to the question is NO. The form of
the IF ... THEN ... ELSE statement is:

IF <question> THEN <statement or Line number>
ELSE <statement or Line numbe r >

This statement works as follows: The computer asks the given question. If the
answer is YES, the program executes the THEN portion; if the answer is NO,
the program executes the ELSE portion.

Here is an example:

112 Sec. 5.2

500 IF N = 0 TH EN PR INT II CALCULATION DONE II ELSE 250

The computer first determines if N equals 0. If so , it prints CALCULATION
DONE. If N is not equal to 0 , the program continues execution at line 250.

Another possibility is for both THEN and ELSE to be followed by instruc
tions, as in this example:

600 IF A+ B >= 100 THEN PRINT A+ B ELSE PRINT A

In executing this instruction, the computer will determine whether A+ B is
greater than or equal to 100. If so, it will print the value of A+ B; if not, it will
print the value of A In both cases, execution continues with the next instruction
after line 600.

After IF , you may insert any expression which the computer may test for
truth or falsity. Here are some examples:

N = 0

N > 5 (N is greater than 5)

N < 12.9 (N is Less than 12.9)

N >= 0 (N is greater than or equal to 0)

N <= -1 (N is Less than or equal to -1)

N >< 0 (N is not equal to 0)

A+ B <> C (A+ Bis not equal to C)

AA2 + BA2 <= CA2 (A 2 + B2 is Less than or equal to C2
)

You may even combine statements using the words AND and OR, as in the
following examples:

N = 0 OR A> B (Either N = 0 or A> B or both)

N >MAND I= 0 (Both N >Mand I= 0)

For clarity, it's advisable to put the individual statements within parentheses.
For example, the last two statements would be clearer if written in the form

(N=O) OR (A>B)

(N>M) AND (I=O)

Letting Your Computer Make Decisions 113

TEST YOUR UNDERSTANDING 1 (answers on page 124)
Write instructions which do the following:

a. If A is less than B, then print the value of A plus B; if not then go
to the end.

b. If A2 + D is at least 5000 then go to line 300; if not go to line
500.

c. If N is larger than the sum of I and K, set N equal to the sum of I
and K; otherwise , let N equal K.

Important Note that if the condition of an IF.. .THEN statement is false , then
the program goes to the next line number . If there are other statements on
the same line as the IF...THEN, they will be executed only if the condition is
true. Consider, for example, the following statements:

200 IF X>O THEN X=X+1: GOTO 300
210 X=O

If X is greater than 0, then X is replaced by X + 1 and the program goes to the
next statement, namely GOTO 300. On the other hand, if X is not greater than
0, then the program skips the statement GOTO 300 and proceeds to line 210.

The IF ... THEN and IF ... THEN ... ELSE statements may be used to
interrupt the normal sequence of executing program lines, based on the truth
or falsity of some condition. In many applications, however, we will want to
perform instructions out of the normal sequence, independent of any condi
tions. For such applications, we may use the GOTO instruction. (This is not a
typographical error! There is no space between GO and TO.) This instruction
has the form

GOTO< Line number>

For example , the instruction

1000 GOTO 300

will send the computer back to line 300 for its next instruction.
The next few examples illustrate some of the uses of the IF ... THEN ,

IF ... THEN ... ELSE, and GOTO statements.

Example 1. A lumber supply house has a policy that a credit invoice may not
exceed $1,000, including a 10 percent processing fee and 5 percent sales tax.
A customer orders 150 2x4 studs at $1.99 each, 30 sheets of plywood at
$14.00 each, 300 pounds of nails at $1.14 per pound, two double hung insu
lated windows at $187.95 each. Write a program which prepares an invoice
and decides whether the order is over the credit limit.
Solution. Let's use the variables Al, A2, A3, and A4 to denote, respectively,
the numbers of studs, sheets of plywood, pounds of nails , and windows. Let's

114 Sec. 5.2

use the variables Bl, B2, B3, and B4 to denote the unit costs of these four
items. The cost of the order is then computed as:

A1*B1+A2*B2+A3*B3+A4*B4.

We add 10 percent of this amount to cover processing and form the sum to
obtain the total order. Next, we compute 5 percent of the last amount as tax
and add it to the total to obtain the total amount due. Finally, we determine if
the total amount due is more than $1,000. If it is, we print out the message:
ORDER EXCEEDS $1,000. CREDIT SALE NOT PERMITTED. Here is our
program.

10 LET A1=150:A2=30:A3=300:A4=2:
20 LET B1=1.99:82=14:B3=1.14:84=187.95:
30 LETT= A1*B1+A2*B2+A3*B3+A4*B4:
40 PRINT "TOTAL ORDER", T
50 LET P = .1*T:
60 PRINT "PROCESSING FEE" ;P
70 LET TX= .OS*(P+T):
80 PRINT "SALES TAX", TX
90 DU= T + P + TX:
100 PRINT "AMOUNT DUE", DU
110 IF DU> 1000 THEN 200 ELSE 300:
200 PRINT "ORDER EXCEEDS $1,000"
210 PRINT "CREDIT SALE NOT PERMITTED"
220 GOTO 400:
300 PRINT "CREDIT SALE OK"
400 END

'Assign quantities
'Assign prices
'T=total price

'P=processing fee

'TX= tax

'DU=Amount due

'Order> $1000?

'End program

Note the decision in line 110: If the amount due exceeds $1,000 then the com
puter goes to line 200 where it prints out a message denying credit. In line 220,
the computer is sent to line 400 which is the END of the program. On the other
hand, if the amount due is less than $1,000, the computer is sent to line 300,
where credit is approved.

- '), -~:
. ,, :··,·,· ...

. ffiST YOUR UNDERSTANDING 2 (answe(91:1.pag¢124)
S~ppose that a credit card charges 1.5 percenf Pet month on any unpaid
balance up to $500 and l_ percent per month ori~ny excess over $500.

a. Write a program which computes the s¢rvice charge and the new
··· balance. ._. ·.·
'.',, (Testyour p1:ogpiun on the unpaid balances of $1300 -al\cl. $ -

1 :tiltON~~$TJ-\:NDIN<i.:i(~n~~~ onipAg~.J.24)
rf"he foll¢wiqgf;~q11ence of insti-ut;;ti.ci~S, .. ;> · .

•·.:,:··: < '< :.:,:,-:\::_,i.:-/;.~.;; ; - ·.. ' '.::: ... · :,:_·;,_~<,,<°,.'

100 IF A>=5 THEN 200
110 IF A>=4 THEN 300
120 IF A>=3 THEN 400
130 IF A>=2 THEN 500

Letting Your Computer Make Decisions 115

Suppose that the current value of A is 3. List the sequence of line num
bers which will be executed.

Example 2 . At $20 per square yard, a family can afford up to 500 square feet
of carpet for their dining room. They wish to install the carpet in a circular
shape. It has been decided that the radius of the carpet is to be a whole
number of feet. What is the radius of the largest carpet they can afford? (The
area of a circle of radius "R" is PI times R2

, where PI equals approximately
3.14159.)
Solution. Let us compute the area of the circle of radius 1, 2, 3, 4 , ... and
determine which of the areas are less than 500.

10 PI = 3.14159
20 R = 1 : 'R=radius
30 A= PI*RA2 : 'A=area
40 'Is A>=500? If so, END. Otherwise, PRINT R.
50 IF A>= 500 THEN 100 ELSE PRINT R
60 LET R = R + 1 : 'Go to next radius
70 GOTO 30: 'Repeat
100 END

Note that line 50 contains an IF ... THEN statement. If A, as computed in line
30, is 500 or more, then the computer goes to line 100, END. If A is less than
500, the computer proceeds to the next line, namely 50. It then prints out the
current radius, increases the radius by 1, and goes back to line 30 to repeat the
entire procedure. Note that lines 30-40-50-60-70 are repeated until the area
becomes at least 500. In effect, this sequence of five instructions forms a loop.
However, we did not use a FOR ... NEXT instruction because we did not know
in advance how many times we wanted to execute the loop. We let the com
puter decide the stopping point using the IF ... THEN instruction.

In Section 1 of this chapter, we discussed the notion of a loop. In this
section, we have discussed decision-making. The WHILE ... WEND pair of state
ments combines the two procedures. This statement pair has the form:

WHILE <expression>

WEND

The statements in between WHILE and WEND are repeated so long as
< expression > is true. Note , however, that the statements between WHILE

116 Sec. 5.2

and WEND may never be executed. If < expression> is initially false, the pro
gram skips to the next statement after WEND. The WHILE...WEND pair is
useful in executing loops for which you cannot specify in advance the number
of repetitions .

Example 2'. Rewrite the program of Example 2 using the WHILE...WEND
pair of statements .
Solution. Here is the program adaptation.

10
20
30
40
50
60

PI= 3.14159
R = 1 :
WHILE A< 500

A= PI*RA2
PRINT R
R=R+1:

70 WEND:
100 END

' R=radius

' A=area

' Go to next radius
' Repeat

Example 3. A school board race involves two candidates. The returns from
the four wards of the town are as follows:

Mr. Thompson
Ms. Wilson

Ward 1
487

1870

Ward 2
229
438

Ward 3
1540

110

Ward 4
1211
597

Calculate the total number of votes achieved by each candidate, the percentage
achieved by each candidate, and decide who won the election.
Solution. Let Al , A2 , A3, and A4 be the totals for Mr. Thompson in the four
wards; let B1-B4 be the corresponding numbers for Ms. Wilson. Let TA and TB
denote the total votes , respectively, for Mr. Thompson and Ms. Wilson. Here is
our program:

10 A1 = 487: A2 = 229: A3 = 1540: A4 = 1211
20 81 = 1870: 82 = 438: 83 = 110: 84 = 597
30 TA= A1+A2+A3+A4 'Total for Thompson
40 TB= 81+82+83+84 'Total for Wilson
50 T =TA+ TB : 'Total Votes Cast
60 PA= 100*TA/T 'Percentage for Thompson
70 ' TAIT is the ratio of votes for Thompson.
80 ' Multiply by 100 to convert to a percentage.
90 PB= 100*TB/T 'Percentage for Wilson
100 A$= "THOMPSON"
110 8$ = "WILSON"
120 ' Lines 130-150 print the percentages of the

candidates
130 PRINT "CANDIDATE", "VOTES", "PERCENTAGE"
140 PRINT A$, TA,PA
150 PRINT 8$,TB,PB
160 ' Lines 170-400 decide the winner.
170 IF TA> TB THEN 300: 'Thompson wins
180 IF TA< TB THEN 400: 'Wilson wins

190 PRINT A$, "AND",
200 GOTO 1000:
300 PRINT A$, "WINS"
310 GOTO 1000
400 PRINT 8$, "WINS"
1000 END

Letting Your Computer Make Decisions 117

8$, "ARE TIED!":
'End

'End

'Otherwise a tie

Note the logic used for deciding who won. In line 170 we compare the votes TA
and TB. If TA is the larger, then A (Thompson) is the winner. We then go to
300, print the result, and END. On the other hand, if TA > TB is false , then
either B wins, or the two are tied. According to the program, if TA > TB is
false , we go to line 180, where we determine if TA < TB. If this is true, then B
is the winner, we go to 400, print the result, and END. On the other hand, if TA
< TB is false , then the only possibility left is that TA = TB. According to the
program, if TA = TB, we go to 200, where we print the proper result, and then
END.

Infinite Loops and Fn-Break
As we have seen above, it is very convenient to be able to execute a loop

without knowing in advance how many times the loop will be executed. How
ever, with this convenience comes a danger. It is perfectly possible to create a
loop which will be repeated an infinite number of times! For example, consider
the following program:

10 LET N = 1
20 PRINT N
30 LET N = N+1
40 GOTO 20
50 END

The variable N starts off at 1. We print it and then increase N by 1 (to 2), print
it, increase N by 1 (to 3), print it , and so forth . This program will go on forever!
Such programs should clearly be avoided. However, even experienced pro
grammers occasionally create infinite loops. When this happens, there is no
need to panic. There is a way of stopping the computer. Just press the Fn and
Break keys simultaneously. (In the following we will refer to this key combina
tion as Fn-Break. This key sequence will interrupt the program currently in
progress and return the computer to the command mode. The computer is
then ready to accept a command from the keyboard. Note, however, that any
program in RAM is undisturbed.

TEST YOUR UNDERSTANDING 4
Type the above program, RUN it, and stop it using the Fn-Break key com
bination. After stopping it, RUN the program again.

118 Sec. 5.2

The INPUT Statement
It is very convenient to have the computer request information from you

while the program is actually running. This can be accomplished via the INPUT
statement. To see how, consider the statement:

570 INPUT A

When the computer encounters this statement in the course of executing the
program, it displays a ? and waits for you to respond by typing the desired value
of A (and then hitting the ENTER key). The computer then sets A equal to the
numeric value you specified and continues running the program.

You may use an INPUT statement to specify the values of several different
variables at one time. These variables may be numeric or string variables. For
example , suppose that the computer encounters the statement:

50 INPUT A,B,C$

It will display:

?

You then type in the desired values for A, B, and C$, in the same order as in the
program, and separate them by commas. For example, suppose that you type

10.5, 11.42, BEARINGS

followed by an ENTER- The computer then will set

A= 10.5, B = 11.42, C$ = "BEARINGS"

If you respond to the above question mark by typing only a single number,
10.5, for example, the computer will respond with:

? Redo from start
?

to indicate that you should repeat the input from the beginning. If you attempt
to specify a string constant where you should have a numeric constant, the
computer will respond with the message

? Redo from start
?

and will wait for you to repeat the INPUT operation.
It is helpful to include a prompting message which describes the input the

computer is expecting. To do so, just put the message in quotation marks after
the word INPUT and place a semicolon after the message (before the list of
variables to be input). For example, consider the statement:

L~ tting Your Computer Make Decisions 119

175 INPUT "ENTER COMPANY, AMOUNT"; A$, B

When the computer encounters this program line, the dialog will be as follows:

ENTER COMPANY, AMOUNT? AJAX OFFICE SUPPLIES, 2579.48

The underlined portion indicates your response to the prompt. The computer
will now assign these values:

A$= "AJAX OFFICE SUPPLIES", B = 2579.48

TEST YOUR UNDERSTANDING 5 (answer on page 124)
Write a program which allows you to set variables A and B to any desired
values via an INPUT statement. Use the program to set A equal to 12
and B equal to 17.

The next two examples illustrate the use of the INPUT statement and
provide further practice in using the IF ... THEN statement.

Example 4. You are a teacher compiling semester grades. Suppose there are
four grades for each student and that each grade is on the traditional 0 to 100
scale. Write a program which accepts the grades as input, computes the semes
ter average , and assigns grades according to the following scale:

90-100 A
80-89.9 B
70-79.9 C
60-69.9 D
< 60 F

Solution. We will use an INPUT statement to enter the grades into the com
puter. Our program will allow you to compute the grades of the students, one
after the other, via a loop. You may terminate the loop by entering a negative
grade. Here is our program.

10 PRINT "ENTER STUDENT'S 4 GRADES."
20 PRINT "SEPARATE GRADES BY COMMAS."
30 PRINT "FOLLOW LAST GRADE WITH ENTER."
40 PRINT "TO END PROGRAM, INCLUDE NEGATIVE GRADE."
50 INPUT A1,A2,A3,A4
60 IF A1 < 0 THEN 400
70 IF A2 < 0 THEN 400
80 IF A3 < 0 THEN 400
90 IF A4 < 0 THEN 400
100 LET A= (A1+A2+A3+A4)/4
110 PRINT "SEMESTER AVERAGE", A
120 IF A >= 90 THEN PRINT "SEMESTER GRADE = A" :GOTO 10
130 IF A >= 80 THEN PRINT "SEMESTER GRADE = B" :GOTO 10

120 Sec. 5.2

140 IF A >= 70 THEN PRINT "SEMESTER GRADE = C" : GOTO 10

150 IF A >= 60 THEN PRINT "SEMESTER GRADE = D" : GOTO 10
160 PRINT "SEMESTER GRADE = F" :GOTO 10

400 END

Note the logic for printing out the semester grades. First compute the
semester average A In line 120 we ask if A is greater than or equal to 90. If so ,
we assign the grade A and go on to the next line , 130, which sends us to line
10 to obtain the next grade . In case A is less than 90, line 120 sends us to line
140. In line 140, we ask if A is greater than or equal to 80. If so , then we assign
the grade B. (The point is that the only way we can get to line 140 is for A to be
less than 90. So if A is greater than or equal to 80, we know that A lies in the B
range.) If not , we go to line 160, and so forth. This logic may seem a trifle
confusing at first , but after repeated use , it will seem quite natural.

Example 5. Write a program to maintain your checkbook. The program
should allow you to record an initial balance , enter deposits, and enter checks.
It also should warn you of overdrafts.
Solution. Let the variable B always contain the current balance in the check
book. The program will ask for the type of transaction you wish to record. A
" D" will mean that you wish to record a deposit ; a "C" will mean that you wish
to record a check; a " Q" will mean that you are done entering transactions and
wish to terminate the program. After entering each transaction, the computer
will figure your new balance , report it to you , check for an overdraft, and report
any overdraft to you. In case of an overdraft, the program will allow you to
cancel the preceding check!

10 INPUT "WHAT IS YOUR STARTING BALANCE"; B
20 INPUT "WHAT TRANSACTION TYPE (D,C,or Q)"; A$
30 IF A$ = ' "Q" THEN 1000: 'End
40 IF A$= "C" THEN 200
100 'Process Deposit
110 INPUT "DEPOSIT AMOUNT"; D
120 LET B = B + D : ' Add desposit to balance
130 PRINT "YOUR NEW BALANCE IS", B
140 GOTO 20
200 'Process check
210 INPUT "CHECK AMOUNT"; C
220 LET B = B - C : 'Deduct check amount
230 IF B < 0 THEN 300 : 'Test for overdraft
240 PRINT "YOUR NEW BALANCE IS", B
250 GOTO 20
300 'Process overdraft
310 PRINT "LAST CHECK CAUSES OVERDRAFT"
320 INPUT "DO YOU WISH TO CANCEL CHECK(Y/N)"; E$
330 IF E$ = "Y" THEN 400
340 PRINT "YOUR NEW BALANCE IS", B

350 GOTO 20
400 'Cancel check
410 LET 8 = 8 + C:
420 GOTO 20
1000 END

Letting Your Computer Make Decisions 121

'Cancel Last check

You should scan this program carefully to make sure you understand how each
of the INPUT and IF ... THEN statements are used. In addition, you should
use this program to obtain a feel for the dialog between you and your com
puter when INPUT statements are used.

Note how the above program is divided into sections. For visual purposes ,
each section begins with a line number which is a multiple of 100. Moreover,
each section begins with a comment which identifies the function of the section.
In order to write a complex program, you should break the program into man
ageable sections. Don't get caught in a maze of complexity. Work out one sec
tion at a time and carefully comment on each section. Then put the various
sections together into one program.

Example 6. Write a BASIC program which tests mastery in addition of two
digit numbers. Let the user suggest the problems, and let the program keep
score of the number correct out of ten.
Solution. Request that the program user suggest pairs of numbers via an
INPUT statement. The sum also will be requested via an INPUT statement.
An IF ... THEN statement will be used to judge the correctness. The variable
R will keep track of the number correct. We will use a loop to repeat the pro-
cess ten times. ·

10 FOR N = 1 TO 10 : 'Loop to give 10 problems
20 INPUT "TYPE TWO 2-DIGIT NUMBERS"; A,B
30 INPUT "WHAT IS THEIR SUM"; C
40 IF A+ 8 = C THEN 200
100 'Respond to incorrect answer
110 PRINT "SORRY. THE CORRECT ANSWER IS",A+B
120 GO TO 300: 'Go to the next problem
200 'Respond to correct answe r
210 PRINT "YOUR ANSWER IS CORRECT! CONGRATULATIONS"
220 LET R = R+1 'Increase score by 1
300 NEXT N
400 'Print score for 10 problems
410 PRINT "YOUR SCORE IS",R,"CORRECT OUT OF 10"
510 PRINT "TO TRY AGAIN, TYPE RUN"
600 END

More About INPUTting Data
The INPUT statement, as we have seen, may be used to input one or

more constants (string or numeric) to a running program. However, the INPUT
statement has a serious defect. To explain this defect , consider the following
statement:

122 Sec. 5.2

10 INPUT AS,BS

Suppose that you wish to set A$ equal to the string:

"Washi ngton,George"

and B$ to the string:

"Jefferson,Thomas"

Suppose that you respond to the INPUT prompt by typing:

Washington,George, Jefferson,Thomas

BAS.IC will report an error:

? Redo from start

Here is the reason. INPUT looks for commas to separate the data items. The
first comma occurs between "Washington" and "George". So INPUT assigns
A$ the string "Washington" and B$ the string "George". But this gives excess
data. So BASIC declares an error. There's a simple way around this. Whenever
you wish to INPUT data containing a comma, surround the appropriate strings
with quotation marks. In our example, the response

"Washington,George","Jefferson,Thomas"

will assign A$ and B$ as we wished.
It is something of a bother to surround strings with quotation marks, so

BASIC provides another statement which is not sensitive to commas, namely
LINE INPUT. The LINE INPUT statement may be used to assign only one
variable at a time. It reads the input until it encounters ENTER. So, for exam
ple, suppose that we use the statement:

30 LINE INPUT A$

The computer waits for a response. Suppose that we respond with the string

Washington,George

and press ENTER. LINE INPUf then will assign A$ the string constant "Wash
ington, George". LINE INPUT may be used only to input data to a string
variable.

You may use a prompt with LINE INPUT exactly as you do with INPUT.
For example, the statement

40 LINE INPUT "Type NAME?";AS

Letting Your Computer Make Decisions 123

will result in the prompt:

Type NAME?

to which you would respond. Note that LINE INPUT does not automatically
display a ? like the INPUT statement. In the above example , the ? came from
the prompt.

There is a third statement which you may use to input data from the key
board, namely INPUT$. This statement allows you to specify an input of only a
specified length. For example, consider the statement:

10 A$=INPUT$(5)

It will cause the program to wait for five characters from the keyboard and will
assign them to A$. For example , if you type GEORGE, then A$ will be
assigned the string constant "GEORGE". INPUT$ is a more specialized state
ment than either INPUT or LINE INPUT because of the following facts:

1. INPUT$ does not automatically display the input characters on the screen.
If you want them displayed, it is your responsibility to display them.

2. INPUT$ accepts all keyboard characters, including Backspace and
ENTER. In particular, it does not allow you to correct your input.

If you are a beginning programmer, it's probably wisest to stick to INPUT and
LINE INPUT, but we mention INPUT$ mainly for completeness.

Exercises (answers on page 353)

1. Write a program to calculate all perfect squares which are less than
45,000. (Perfect squares are the numbers 1, 4, 9 , 16, 25, 36, 49,)

2. Write a program to determine all of the circles of integer radius and
area less than or equal to 5,000 square feet. (The area of a circle of
radius R is Pl •RA2, where PI = 3.14159, approximately.)

3. Write a program to determine the sizes of all those boxes which are
perfect cubes, have integer dimensions , and have volumes of less
than 175,000 cubic feet. (That is, find all integers X for which X3 is
less than 175,000.)

4. Modify the arithmetic testing program of Example 6 so that the oper
ation tested is for multiplication instead of addition.

5. Modify the arithmetic testing program of Example 6 so that it allows
you to choose , at the beginning of each group of ten problems, from
among these operations: addition, subtraction, or multiplication.

6. Write a program which accepts three numbers via an INPUT state
ment and determines the largest of the three.

7. Write a program which accepts three numbers via an INPUT state
ment and determines the smallest of the three.

8. Write a program which accepts a set of numbers via INPUT state
ments and determines the largest among them.

124 Sec. 5.2

9. Write a program which accepts a set of numbers via INPUT state
ments and determines the smallest among them.

10. The following data were collected by a sociologist. Six cities expe
rienced the following numbers of burglaries in 1980 and 1981:

City
A
B
C
D
E
F

Burglaries 1980
5,782
4,811
3,865
7,950
4,781
6,598

Burglaries 1981
6 ,548
6 ,129
4,270
8,137
4 ,248
7,048

For each city, calculate the increase (decrease) in the number of bur
glaries. Determine which had an increase of more than 500
burglaries.

11. Write a program which does the arithmetic of a cash register. That
is , let the program accept purchases via INPUT statements, then
total the purchases, figure out the sales tax (assume 5 percent), and
compute the total purchase. Let the program ask for the amount of
payment given, and then let it compute the change due .

12. Write a program which analyzes cash flow. Let the program ask for
cash on hand as well as accounts expected to be received in the next
month. Let the program also compute the total anticipated cash for
the month . Let the program ask for the bills due in the next month,
and let it compute the total accounts payable during the month. By
comparing the amounts to be received and to be paid out, let the
program compute the net cash flow for the month and report either
a surplus or a deficit.

ANSWERS TO TEST YOUR UNDERSTANDING
1: a. IF A<8 THEN PRINT A+8 ELSE END

b. IF AA2+D>=5000 THEN 300 ELSE 500
c. IF N>I+K THEN N=I+K ELSE N=K

2: 10 8 = <put unpaid balance here>
20 IF 8<=500 THEN IN= .015*8: GOTO 300
100 LET C=8-500
110 IN=.015*500 + .01*C
300 PRINT "INTEREST EQUALS"; IN
310 PRINT "NEW BALANCE EQUALS";8+IN
320 END

3: 100-110-120-400
5: 10 INPUT "THE VALUES OF A AND 8 ARE" ;A,8

20 END

Structuring Solutions to Problems 125

5.3 Structuring Solutions to Problems
You may have noticed our programs getting longer. There is no way around
this . In order to use the computer to solve real- life problems, programs often
must be quite long and must use the full range of capabilities of the computer.
This poses a number of problems:

1. Long programs are difficult to plan.
2. Long programs are difficult to write and correct.
3. Long programs are hard to read.

All three problems will confront you in programming your computer. Let's dis
cuss some ways to deal with them.

As an example of program planning, let's take the last program of the
preceding section. Recall that this is the program which tests addition. Suppose
that you are given the job of building such a program. How should you pro
ceed? Your first inclination might be to start writing BASIC statements. At all
costs, resist the temptation! Your first job is to plan the program.

The first step in program planning is to decide on the input and output.
What data does the user give and what responses does the computer give?
Make a list:

User input: Answers to questions
Computer output: Questions to answer

Responses to answers
a . Response to correct answer
b. Response to incorrect answer
c. Report of score

Question: Another set of problems?

The next step is to organize these inputs and outputs into a sequence of
steps which follow one another in logical order. Don't worry about computer
instructions at this point. Rather, describe reasonably general steps which, in
the end, may actually correspond to several computer instructions. Here is how
our addition program might be described.

1. Computer requests question
2. User responds
3. Computer requests answer.
4. User enters answer
5. Computer analyzes answers and responds

a. Reports whether answer is correct
b. Keeps score

6. Steps 1-4 are repeated 10 times
7. Computer reports score
8. Computer queries user whether to begin again.

The third step of program planning is to sketch out the structure of the
program. We see from step 6 that we will need a loop to keep track of the
problems. Moreover, we know that steps 1-4 are one line computer com
mands. Let's lump them together into one section of the program. On the

126 Sec. 5.3

other hand, handling correct answers is different from handling wrong answers.
Let's have a separate section of the program for each of these tasks. More
over, let's have a separate section of the program for steps 7 and 8. You should
write all this down (on paper) as follows:

10 FOR N=1 TO 10

Oines 20-80 are reserved for steps 1 to 3.)

100 'Respond to incorrect answer
200 'Respond to correct answer
300 NEXT N
400 'Print score for 10 problems
500 'Run again?
600 END

As the fourth step, you should begin to fill in the various steps in the above
outline. Here is where you may begin writing BASIC instructions, defining vari
ables, and so forth. Each of the steps corresponds to only a few program state
ments. So the program becomes easy to write and our final product is
something like the following program.

10 FOR N = 1 TO 10: 'Loop to give 10 problems
20 INPUT "TYPE TWO 2-DIGIT NUMBERS"; A,B
30 INPUT "WHAT IS THEIR SUM"; C
40 IF A+B=C THEN 200
100 'Respond to incorrect answer
110 PRINT "SORRY. THE CORRECT ANSWER IS",A+B
120 GO TO 300 : 'Go to the next problem
200 'Respond to correct answer
210 PRINT "YOUR ANSWER IS CORRE~T ! CONGRATULATIONS"
220 LET R=R+1 : 'Increase score by 1
300 NEXT N: 'Go to next problem
400 'Print score for 10 problems
410 PRINT "YOUR SCORE IS",R,"CORRECT OUT OF 10"
500 'Run again?
510 PRINT "TO TRY AGAIN, TYPE RUN"
600 END

It is possible that some of the steps correspond to complex sequences of
operations. If so, break such steps into smaller steps, just like we have done for
the entire program. Eventually, you should reduce your program to an organ
ized sequence of steps, each of which corresponds to no more than about a
dozen statements. (The actual number may be more or less, corresponding to
your comfort level. But don't allow the number to be too large. This· is the way
errors creep into your program!)

In organizing a program, you cannot plan the various steps in total isola
tion from one another. Here are some pitfalls to be aware of:

Structuring Solutions to Problems 127

1. If a variable is to be used in two steps , then it must be given by the
same name in each.

2. If a step assumes that the value of a variable has been assigned in a
previous step, be sure that this is done.

3. Don't mistakenly use the same variable to mean two different things.
This is an easy error to make. After several hours at the keyboard,
you may forget that you already used a variable name to mean some
thing else. No harm is done if the two variables are used in two iso
lated sections of the program. However, you may set the variable with
one meaning in mind, only to have the program then use it with the
other meaning. This can make your results incorrect.

4. Be sure to assign each variable its proper starting value. (This is called
variable initialization .) Remember that if you do not assign a value
to a variable , then BASIC will assign it the value 0 . It is good program
ming practice to even assign these zero values explicitly.

The procedure for program planning described above automatically incor
porates your documentation into your program. This makes it easier to read
your program to correct mistakes or to alter it at a later date.

The discussion of this section just scratches the surface of the subject of
program planning. Hopefully, it will ease the burden of writing and understand
ing BASIC programs and will lead you to develop your own approach to pro
gram planning and organization. We'll have more to say about the subject in
Chapter 7.

5 .4 Subroutines
In writing programs it is often necessary to use the same sequence of instruc
tions more than once. It may not be convenient (or even feasible) to retype the
set of instructions each time it is needed. Fortunately, BASIC offers a conve
nient alternative: the subroutine.

A subroutine is a program which is incorporated within another, larger
program. The subroutine may be used any number of times by the larger pro
gram. Often, the lines corresponding to a subroutine are isolated toward the
end of the larger program. This arrangement is illustrated in Figure 5-1. The
arrow to the subroutine indicates the point in the larger program at which the
subroutine is used. The arrow pointing away from the subroutine indicates that,
after completion of the subroutine, execution of the main program resumes at
the point at which it was interrupted.

Subroutines are handled with the pair of instructions GOSUB and
RETURN . The statement

100 G0SUB 1000

sends the computer to the subroutine which begins at line 1000. The computer
starts at line 1000 and carries out statements in order. When a RETURN state
ment in the subroutine is reached, the computer goes back to the main pro
gram, starting at the first line after 100.

128 Sec. 5.4

Main Program

G)

Subroutine

Figure 5-1. A subroutine.

Subroutines may serve as user-defined commands, as Example 1
illustrates.

TEST YOUR UNDERSTANDING 1 (answer on page 133)
Consider the following program.

10 G0SUB 40
20 PRINT "LINE 20"
30 END
40 PRINT "LINE 40"
50 RETURN

List the line numbers in order of execution.

Example 1. Design a BASIC subroutine which erases a specified line of the
screen and positions the cursor at the left end of the erased line.
Solution. The task described is required by many programs. It is a prelude to
writing on the line. In fact, it may be required many times within the same pro
gram. It would be wasteful to write separate instruction lines for each repetition.
So let's write a general subroutine which can be called whenever required. Sup
pose that line L is to be erased. This may be accomplished in the following steps:

1. Position the cursor at the left-most position on the line.
2 . Write 80 spaces (40 if you are in WIDTH 40).
3. Reposition the cursor at the left-most position on the line.

Subroutines 129

To position the cursor at row rand column c, we use the statement:

LOCATE r, c

We could use a loop to generate the spaces. However, there is an easier way. The
string SPPCE$(n) is a string of n spaces. By printing this string, we may "blank
out" n spaces beginning at the current cursor position. Here is our subroutine:

5000 'Blank out Line L
5010 LOCATE L,1: 'Position cursor at Left of Line L
5020 PRINT SPACE$(80)
5030 LOCATE L, 1
5040 RETURN

Whenever we wish to use this subroutine, we first set the value of L to the line
number to be erased. Next, we execute GOSUB 5000. Note that the value of L
must be set before the GOSUB 5000 instruction is issued.

TEST YOUR UNDERSTANDING 2 (answer on page 133)
Write a subroutine which erases the first M columns of line L and posi
tions the cursor in the upper left corner of the screen.

Example 2. Write a program which turns the computer into an electronic cash
register. The program should accept as entries both taxable and non-taxable
amounts. It should keep track of the totals of each. On command, it should
display the totals , compute the tax, and compute the grand total owed.
Solution. A listing of the program is included below. This program illustrates
some of the tricks involved in planning "user-friendly" programs. We allow the
user to choose from four requests displayed on the screen. Such a display is
called a menu. Here are the four possible requests.

1. New Customer. Zero all totals, clear the screen and display identify
ing headings as in Figure 5-2.

2. Enter item. Accept the amount of an item. The program asks whether
the item is taxable. The amount is displayed under the appropriate heading
and is added to the appropriate total (taxable or non-taxable).

3. Compute totals. Compute tax and display totals.
4. Exit. End program.

The instructions for displaying the menu are in lines 1000-1080. Note that the
subroutine to blank out a particular line begins in line 6000. In many parts of
the program, we will want to write on a line. We will use the subroutine begin
ning in line 6000 to erase that particular line .

In line 1100, the user is asked to make a choice of activity from the menu
by typing one of the numbers 1-4. Based on the user response, the program
goes to the subroutine at 2000, 3000, or 4000, or, in the case of choice 4, goes
to line 5000 (no subroutine-more about that below). After the subroutine is

130 Sec. 5.4

PC CASH REGISTER
1.~NEW CUSTOMER
2. ENTER ITEM
3. COMPUTE TOTALS
4. EXIT

REQUEST DESIRED ACTION [1-4]? ■

TAXABLE NON-TAXABLE

TAX TOTAL NON-TAX TOTAL

TAX GRAND TOTAL

Figure 5-2. Screen Layout for the PCjr Cash Register.

executed, the program returns to the line after the one calling the subroutine
and will make its way to line 1150. This line sends the program back to 1090,
which erases line 7 and requests another activity. You may use the program all
day. You may end the program by choosing option 4 on the menu.

Option 4 on the menu causes the program to go to line 5000, where the
screen is cleared and the program is terminated. We did not use a subroutine
to get to line 5000 since we did not expect to return. In this particular case., a
GOSUB 5000 could have been used with no harm. Since the program ends,
the computer will not look for a place to return. However, it is good program
ming practice to use a subroutine only in instances in which the program is
guaranteed to reach a RETURN instruction.

1000 'Display Menu
1010 CLS
1020 LOCATE 1,1: 'Home cursor
1030 PRINT "PCjr CASH REGISTER"
1040 PRINT" 1. NEW CUSTOMER"
1050 PRINT " 2. ENTER ITEM"
1060 PRINT " 3. COMPUTE TOTALS"
1070 PRINT " 4. EXIT"
1080 PRINT
1090 L=7:GOSUB 6000: 'Blank out entry line
1100 INPUT "REQUEST DESIRED ACTION (1-4)";REPLY$
1110 IF REPLY$="1" THEN GOSUB 2000
1120 IF REPLY$="2" THEN GO SUB 3000
1130 IF REPLY$="3" THEN GOSUB 4000
1140 IF REPLY$="4" THEN 5000
1150 GOTO 1090

2000 'New customer subroutine
2010 'Reset totals
2020 TAXTOTAL=O:NONTAXTOTAL=O:GRANDTOTAL=O
2030 'Blank out lines 8-24 of screen
2040 FOR L=8 TO 20
2050 LOCATE L,1
2060 PRINT SPACE$(40)
2070 NEXT L
2080 'Print titles
2090 LOCATE 9,1
2100 PR INT "TAXABLE", "NON-TAXABLE"
2110 LOCATE 12,1
2120 PRINT "TAX TOTAL", "NON-TAX TOTAL"
2130 LOCATE 15,1
2140 PRINT "TAX", "GRAND TOTAL"
2150 RETURN
3000 'Enter item subroutine

Subroutines 131

3010 L=7:GOSUB 6000: 'Clear entry line
3020 INPUT "AMOUNT (NO DOLLAR SIGN)"; AMOUNT
3030 L=7 : GOSUB 6000
3040 INPUT "TAXABLE=1, NON-TAXABLE=□"; STATUS
3050 L=10:GOSUB 6000
3060 IF STATUS=1 THEN PRINT AMOUNT,""
3070 IF STATUS=□ THEN PRINT "" ,AMOUNT
3080 IF STATUS=1 THEN TAXABLE=TAXABLE+AMOUNT
3090 IF STATUS=□ THEN NONTAXABLE=NONTAXABLE+AMOUNT
3100 RETURN
4000 'Compute totals subroutine
4010 L=10:GOSUB 6000: 'Clear entry line
4020 L=13:GOSUB 6000: 'Clear first total line
4030 PRINT TAXABLE,NONTAXABLE
4040 TAX=.05*TAXABLE
4050 GRANDTOTAL=TAXABLE+TAX+NONTAXABLE
4060 L=16:GOSUB 6000
4070 PRINT TAX,GRANDTOTAL
4080 RETURN
5000 'Exit subroutine
5010 CLS
5020 END
6000 'Clear entry line L
6010 LOCATE L,1
6020 PRINT SPACE$(40): 'Clear Entry Line
6030 LOCATE L,1
6040 RETURN

TEST YOUR UNDERSTANDING 3 (answer on page 133)
Enhance the program of Example 2 so that as a part of computing the
totals , it asks you the amount presented ($10 bill , $20 bill , and so forth)
and computes the change.

132 Sec. 5.4

Nested Subroutines

In Example 2, we used a number of subroutines which were contained
within subroutines. For example , lines 4000-4080 are a subroutine. However,

\

on lines 4020 and 4030, we called the subroutine at 6000. Such subroutines
are said to be nested . BASIC is able to handle such nesting. You may use
nesting to any level. (A subroutine within a subroutine within a subroutine , and
so forth.) However, you should be aware that a RETURN instruction always
refers to the innermost subroutine. To put it another way, a RETURN always
refers to the subroutine which was called most recently.

Caution: It is possible to accidentally create an infinite nesting of subroutines
by repeatedly issuing GOSUB instructions, as in this program:

10 GOTO 20
20 GOSUB 10

The computer eventually will run out of memory to keep track of this nesting
and an error will result.

The ON ... GOSUB Instruction

In Example 2 , we organized the program around four main subroutines,
corresponding to the four possible choices on the MENU. It took several
instructions to properly channel the program to the proper subroutine. BASIC
provides a convenient shortcut for use in such situations: the ON ... GOSUB
instruction. The form of this instruction is:

ON <expression> GOSUB <Line1>,<Line2>, ...

When BASIC encounters this instruction, it evaluates < expression>, which
should yield an integer value ; if the resulting value is 1, the program executes a
GOSUB to < linel > ; if the value is 2 , the program executes a GOSUB to
< line2 >, and so forth. If the value is zero or more than the number of line
numbers provided, the instruction will be ignored. (If < expression> yields a
negative value or an integer value larger than 255, an Illegal Function Call
error results.)

For example, lines 1110-1130 of Example 2 may be replaced by the single
line:

1110 ON VAL(REPLY$) GOSUB 2000,3000,4000

Here , the expression VAL(REPLY$) converts the string REPLY$ into its
numeric equivalent (" 1" converts to 1, "2" to 2 , and so forth) . If this value is 1,
the program executes a GOSUB 2000, if the value is 2, a GOSUB 3000, and if
the value is 3, a GOSUB 4000.

Subroutines 133

Exercises (answers on page 355)

1. Write a subroutine which prints 10 asterisks (*) beginning at the left
most column of row L.

2. Write a subroutine which prints M asterisks beginning at the left-most
column of row L.

3. Write a subroutine which prints M asterisks beginning at column K of
row L.

4. Write a program which uses the subroutine of Exercise 3 to print rows
of asterisks corresponding to K = 5 , L = 3 , M = 30; K = 4 , L = 5 ,
M=35; K=8, L=7, and M=12.

5. Consider this instruction:

10 ON J-2 GOSUB 100,200,300,400 500

What will be its effect if:
(a)J=4 (b)J =7 (c)J=2 (d)J=lO (e)J = 0?

6. Consider the program
10 Y=5
20 J=3
30 S=Y-J
40 ON S GOSUB 100,200,300,400
50 CLS
60 END
100 RETURN
200 RETURN
300 RETURN
400 RETURN
What are the two lines executed immediately after line 40?

ANSWERS TO TEST YOUR UNDERSTANDING
1: 10-40-50-20-30
2: 5000 'Blank out 1st M columns of Line L
5010 LOCATE L,1: 'Position cursor at Left of Line L
5020 PRINT SPACE$(M)
5030 LOCATE 1, 1
5040 RETURN
3: Add the following program lines

4071 LOCATE 20, 1
4072 INPUT "AMOUNT PAID";PAID
4073 PRINT "PAID","CHANGE"
4074 PRINT PAID,PAID-GRANDTOTAL

6

WORKING WITH

DATA

6.1 Working With Tabular Data-Arrays
In Chapter 4 we introduced the notion of a variable and used variable names
like:

AA, Bl , CZ, WO

Unfortunately, the supply of variables available to us is not sufficient for many
programs. Indeed, as we shall see in this chapter, there are relatively innocent
programs which require hundreds or even thousands of variables. To meet the
needs of such programs, BASIC allows for the use of so-called subscripted
variables. Such variables are used constantly by mathematicians and are iden
tifed by numbered subscripts attached to a letter. For instance, here is a list of
1000 variables as they might appear in a mathematical work:

The numbers used to distinguish the variables are called subscripts. Likewise ,
the BASIC language allows definition of variables to be distinguished by sub
scripts. However, since the computer has difficulty placing the numbers in the
traditional position, they are placed in parentheses on the same line as the
letter. For example, the above list of 1000 different variables would be written
in BASIC as

A(1), A(2), A(3) , ... , A(1000) .

Please note that the variable A(l) is not the same as the variable Al. You may
use both of them in the same program and BASIC will interpret them as being
different.

A subscripted variable is really a group of variables with a common letter
identification distinguished by different integer "subscripts." For instance , the
above group of variables would constitute the subscripted variable A(). It is
often useful to view a subscripted variable as a table or array. For example , the

136 Sec. 6.1

subscripted variable A() considered above can be viewed as providing the fol
lowing table of information:

A(l)
A(2)
A(3)

A(lO00)

As shown here, the subscripted variable defines a table consisting of 1000
rows. Suppose that J is an integer between 1 and 1000. Then row number J
contains a single entry; namely, the value of the variable A(J). The first row
contains the value of A(l) , the second the value of A(2), and so forth. Since a
subscripted variable can be thought of as a table (or array), subscripted vari
ables often are called arrays.

The array shown above is a table consisting of 1000 rows and a single
column. PCjr BASIC allows you to consider more general arrays. For example ,
consider the following financial table which records the daily income for three
days from each of a chain of four computer stores:

Day 1
Day 2
Day3

Store #1
1258.38
1107.83
1298.00

Store #2
2437.46
2045.68
2136.88

Store #3
4831.90
3671.86
4016.73

Store #4
987.12

1129.47
1206.34

This table has three rows and four columns. Its entries may be stored in the
computer as a set of 12 variables:

A(l ,1) A(l ,2) A(l ,3) A(l,4)
A(2,1) A(2,2) A(2 ,3) A(2,4)
A(3,1) A(3,2) A(3,3) A(3,4)

This array of variables is very similar to a subscripted variable, except that there
are now two subscripts. The first subscript indicates the row number and the
second subscript indicates the col4mn number. For example , the variable
A(3,2) is in the third row, second column. A collection of variables such as that
given above is called a two-dimensional array or a doubly-subscripted
variable . Each setting of the variables in such an array defines a tabular array.
For example, if we assign the values:

A(l ,1) = 1258.38, A(l ,2) = 2437.46,
A(l ,3) = 4831.90, and so forth ,

then we will have the table of earnings from the computer store chain.
So far , we have only considered numeric arrays-arrays whose variables

can assume only numerical values . However, it is possible to have arrays with

Working With Tabular Data-Arrays 137

variables that assume string values . (Recall that a string is a sequence of char
acters: letter, numeral , punctuation mark, or other printable keyboard symbol.)
For example , here is an array which can contain string data :

A$(1)
A$(2)
A$(3)
A$(4)

Here the dollar signs indicate that each of the variables of the array is a string
variable. If we assign the values

A$(1) = "SLON", A$(2)
"STOP"

then the array is this table of words:

SLON
FAST
FAST
STOP

Similarly, the employee record table

Social Security Number Age
178654775 38
345861023 29
789257958 34
375486595 42
457696064 21

"FAST", A$(3) . "FAST", A$(4) =

Sex Marital Status
M S
F M
F D
M M
F S

may be stored in an array of the form B$(1 ,J) , where I assumes any one of the
values 1, 2, 3 , 4, 5 (I is the row) , and J assumes any one of the values 1, 2, 3, 4
(J = the eolumn). For example, B$(1 ,1) has the value "178654775", B$(1 ,2)
has the value "38", B$(1 ,3) has the value "M", and so forth .

Note that you may not mix numerical and string entries in the same array. In
the example above, it is necessary to store the numbers as strings since the array
is defined as a string array. If we wished to store the above numerical data as
numerical constants, we could have used four different arrays-two numerical
arrays for the first two columns, and two string arrays for the last two columns.

The PCjr even allows you to have arrays with three , four , or even more
subscripts. For example , consider the computer store chain array introduced
above. Suppose that we had one such array for each of ten consecutive three
day periods. This collection of data could be stored in a three-dimensional
array of the form C(I ,J ,K) , where I and J represent the row and column, just as
before, and K represents the particular three-day period. (K could assume the
values 1, 2, 3 , ... , 10.)

138 Sec. 6.1

An array may involve up to 255 dimensions. The subscripts corresponding
to each dimension may assume values from Oto 32767. For all practical appli
cations, any size array is permissible .

You must inform the computer of the sizes of the arrays you plan to use in
a program. This allows the computer to allocate memory space to house all the
values. To specify the size of an array, use a DIM (dimension) statement. For
example, to define the size of the subscripted variable A(J), J = 1, .. . , 1000, we
insert the statement

10 DIM A(1000)

in the program. This statement informs the computer to expect variables A(0) ,
A(l) , .. . , A(lO00) in the program and that it should set aside memory space for
1001 variables. Note that, in the absence of further instructions from you,
BASIC begins all subscripts at 0. If you wish to use A(0), fine . If not, ignore it.

You need not use all the variables defined by a DIM statement. For exam
ple, in the case of the DIM statement above , you might actually use only the
variables A(l), ... , A(900). Don't worry about it! Just make sure that you have
defined enough variables. Otherwise you could be in trouble. For example, in
the case of the subscripted variable above, your program might make use of
the variable A(lO0l) . This will create an error condition. Suppose that this vari
able is used first in line 570. When you attempt to run the program, the com
puter will report:

Subscript out of range in 570

Moreover, execution of the program will be halted. To fix the error, merely
redo the DIM statement to accommodate the undefined subscript.

To define the size of a two-dimensional array, use a DIM statement of the
form:

10 DIM A(5,4)

This statement defines an array A(I,J), where I can assume the values 0, 1, 2, 3,
4, 5, and J can assume the values 0 , 1, 2, 3, 4. Arrays with three or more
subscripts are defined similarly.

TEST YOUR UNDERSTANDING 1 (answer on page 142)
Here is an array.

12 645.80
148 489.75
589 12.89
487 14.50
a. Define an appropriate subscripted variable to store this data.
b. Define an appropriate DIM statement.

Working With Tabular Data-Arrays 139

It is possible to dimension several arrays with one DIM statement. For
example, the dimension statement

10 DIM A(lO00) , B$(5) , A(S,4)

defines the array A(0), ... , A(l000), the string array B$(0) , ... , B$(5) and the
two-dimensional array A(I ,J) , I= 0, .. . , 5; J = 0, ... , 4.

We now know how to set aside memory space for the variables of an
array. We must next take up the problem of assigning values to these variables .
We could use individual LET statements, but with 1000 variables in an array,
this could lead to an unmanageable number of statements. There are more
convenient methods which make use of loops. The next two examples illustrate
two of these methods.

Example 1. Define an array A(J) , J = 1, 2, ... , 1000 and assign the following
values to the variables of the array:

A(1)=2, A(2)=4, A(3)=6, A(4)=8, ...

Solution. We wish to assign each variable a value equal to twice its subscript.
That is , we wish to assign A(J) the value 2 •J. To do this we use a loop:

10 DIM A(1000)
20 FOR J = 1 TO 1000
30 A(J) = 2*J
40 NEXT J
50 END

Note that the program ignores the variable A(0). Like any variable which has
not been assigned a value, it has the value zero.

TEST YOUR UNDERSTANDING 2 (answer on page 142)
Write a program which assigns the variables A(0), ... , A(30) the values
A(0)=0, A(l)=l , A(2)=4, A(3)=9,

When the computer is first turned on or reset, all variables (including those
in arrays) are cleared. All numeric variables are set equal to 0, and all string
variables are set equal to the null string (the string with no characters in it). If
you wish to return all variables to this state during the execution of a program,
use the CLEAR command. For example, when the computer encounters the
command

570 CLEAR

it will reset all the variables. The CLEAR command can be convenient if, for
example, you wish to use the same array to store two different sets of informa
tion at two different stages of the program. After the first use of the array you
could then prepare for the second use by executing a CLEAR.

140 Sec. 6.1

Example 2. Define an array corresponding to the following table of examina
tion grades. Input the values given, print the table on the screen, and calculate
the average grade.

Sally Smith
Examination Grades

95
78
85
87
80
70

Solution. Our program will print the headings of the table and then READ the
table entries into a numerical array A(J) , J = 1,2, ... ,6 . We dimension the array
as A(6) .

10 DIM A(6)
20 FOR J=1 TO 6
30 READ A(J)
40 NEXT J
50 CLS
60 PRINT "Sa L Ly Smith"
70 PRINT "Examination Grades"
80 FOR J=1 TO 6
90 PRINT A(J)
100 NEXT J
110 END
200 DATA 95, 78, 85, 87, 80, 70

TEST YOUR UNDERSTANDING 3 (answer on page 142)
Suppose that your program uses a 9x2 array A$(I,J) , a 9xl array B$(I,J),
and a 9x5 array C(I,J). Write an appropriate DIM statement(s).

If you plan to dimension an array, you should always insert the DIM state
ment before the variable first appears in your program. Otherwise , the first
time BASIC comes across the array, it will assume that the subscripts go from 0
to 10. If it subsequently comes across a DIM statement, it will think you are
changing the size of the array in the midst of the program, something which is
not allowed. If you try to change the size of an array in the middle of a pro
gram, you will get this error message:

Duplicate Definition

In our discussion above, we have been very casual about ignoring unused
subscripts, such as A(0) . In some programs, there may be so many large arrays

Working With Tabular Data-Arrays 141

that memory space becomes precious. Sometimes, considerable memory
space may be conserved by carefully planning which subscripts will be used and
defining only those variables. You may eliminate unused O subscripts using the
OPTION BASE statement. For example , the statement

10 OPTION BASE 1

begins all arrays with subscript 1. This statement must be used in a program
prior to the dimensioning of any arrays .

Deleting Arrays
It is very simple to create an array which occupies a huge amount of mem

ory space. For example, consider this seemingly harmless statement:

10 DIM A(10,10,10,10)

It defines an array with 10,000 entries. BASIC requires four bytes for each
entry, so the array takes up 40,000 bytes of RAM! For this reason, you must do
some planning so that your arrays do not overflow available memory. One
technique for this involves deleting arrays from memory in order to make room
for other arrays. You may do this using the ERASE statement. For example , to
delete the above array, we could use the statement

20 ERASE A

Once you execute ERASE, all the values of array A are lost , and the DIM
statement dimensioning A is cancelled. In particular, you may redimension an
array after an ERASE statement.

The ERASE statement may be used to delete several arrays at once , as in
this statement:

30 ERASE B,C,D

Exercises (answers on page 356)

For each of the following tables, define an appropriate array and determine the
appropriate DIM statement.

1. 5
2
1.7
4.9
11

2. 1.1 2.0 3.5
1.7 2.4 6.2

3. · JOHN
MARY
SIDNEY

4. 1 2 3

142 Sec. 6.2

5. RENT
UTILITIES
CLOTHES
CAR

575.00
249.78
174.98
348.70

6. Display the following array on the screen:

Receipts:
Store # 1 Store # 2 Store # 3

1/1-1/10 57,385.48 89,485.45 38,456.90
1/11-1/20 39,485.98 76,485.49 40,387.86
1/21-1/31 45,467.21 71,494.25 37,983.38
(This exercise is easiest on an SO-character wide screen. If you are
using a 40-character wide screen, it will be necessary to use PRINT
TAB statements (see Section 6.3) to position the data into the proper
screen positions.)

7. Write a program that displays the array of Exercise 6 along with totals
of the receipts from each store.

8. Expand the program in Exercise 7 so that it calculates and displays
the totals of ten day periods. (Your screen will not be wide enough to
display the ten day totals in a fifth column, so display them in a sepa
rate array.)

9. Devise a program which keeps track of the inventory of an appliance
store chain. Store the current inventory in an array of the form

Refrig.
Stove
Air Cond.
Vacuum
Disposal

Store # 1 Store #2 Store #3 Store #4

Your program should: 1) input the inventory corresponding to the beginning of
the day, 2) continually ask for the next transaction-the store number and the
number of appliances of each item sold, and 3) in response to each transac
tion , update the inventory array.

ANSWERS TO TEST YOUR UNDERSTANDING
1: a. A(I,J), 1=1,2,3,4; J=1,2

b. DIM A(4,2)
2: 10 DIM A(30)

20 FOR J=0 TO 30
30 A(J)=J A2
40 NEXT J
50 END

3: DIM A$(9,2),B$(9,1),C(9,5)

Inputting Data 143

6.2 Inputting Data
In the preceding section, we introduced arrays and discussed several methods
for assigning values to the variables of an array. The most flexible method was
via the INPUT statement. However, this can be a tedious method for large
arrays. Fortunately, BASIC provides us with an alternate method for inputting
data.

A given program may need many different numbers and strings. You may
store the data needed in one or more DATA statements. A typical data state
ment has the form

10 DATA 3.457, 2.588, 11234, "WINGSPAN"

Note that this data statement consists of four data items, three numeric and
one string. The data items are separated by commas. You may include as many
data items in a single DATA statement as the line allows. Moreover, you may
include any number of DATA statements in a program and they may be placed
anywhere in the program, although a common placement is at the end of the
program (just before the END statement). Note that we enclosed the string
constant "WINGSPAN" in quotation marks. Actually this is not necessary. A
string constant in a DATA statement does not need quotes, as long as it does
not contain a comma, a colon, or start with a blank.

The DATA statements may be used to assign values to variables and, in
particular, to variables in arrays. Here's how to do this. In conjunction with the
DATA statements, you use one or more READ statements. For example , sup
pose that the above DATA statement appeared in a program. Further, suppose
that you wish to assign these values:

A = 3 . 4 5 7, B = 2 . 5 8 8, C = 11 2 3 4, Z $ = "W ING SPAN"

This can be accomplished using the READ statement:

100 READ A,B,C,Z$

Here is how the READ statement works. On encountering a READ statement,
the computer will look for a DATA statement. It will then assign values to the
variables in the READ statement by taking the values, in order, from the DATA
statement. If there is insufficient data in the first DATA statement, the computer
will continue to assign values using the data in the next DATA statement. If
necessary, the computer will proceed to the third DATA statement, and so
forth.

TEST YOUR UNDERSTANDING 1 (answer on page 149)
Assign the following values:

A(1)=5.1 , A(2)=4.7, A(3)=5.8, A(4) = 3.2, A(5)=7.9,
A(6)=6.9.

144 Sec. 6.2

The computer maintains an internal pointer which points to the next
DATA item to be used. If the computer encounters a second READ statement,
it will start reading where it left off. For example, suppose that instead of the
above READ statement, we use the two read statements:

100 READ A,B
200 READ C,Z$

Upon encountering the first statement, the computer will look for the location
of the pointer. Initially, it will point to the first item in the first DATA statement.
The computer will assign the values A=3.457 and B=2.588. Moreover, the
position of the pointer will be advanced to the third item in the DATA state
ment. Upon encountering the next READ statement, the computer will assign
values beginning with the one designated by the pointer, namely C = 11234
and Z$ = "WIN GS PAN".

TEST YOUR UNDERSTANDING 2 (answer on page 149)
What values are assigned to A and B$ by the following program?

10 DATA 10,30, "ENGINE", "TACH"
20 READ A,B
30 READ C$,B$
40 END

The following example illustrates the use of DATA statements in assigning
values to an array.

Example 1. Suppose that the monthly electricity costs of a certain family are
as follows:

Jan.
Apr.
July
Oct.

$89.74
78.93

158.92
90.44

Feb.
May
Aug.
Nov.

$95.84
72.11

164.38
89.15

March
June
Sep.
Dec.

$79.42
115.94
105.98

93.97

Write a program calculating the average monthly cost of electricity.
Solution. Let us unceremoniously dump all of the numbers shown above into
DATA statements at the end of the program. Arbitrarily, let's start the DATA
statements at line 1000, with END at 2000. This allows us plenty of room. To
calculate the average, we must add up the numbers and divide by 12. To do
this , let us first create an array A(J) , J = 1, 2 , .. . , 12 and set A(J) equal to the
cost of electricity in the Jth month. We do this via a loop and the READ state
ment. Note that we have used a numerical array A(J) , since we wish to perform
arithmetic on the entries of the array. (Add them up. Divide by 12.) Since we
wish to perform arithmetic, we must remove the dollar signs and commas from

Inputting Data 145

the numbers before we put them into the arrays. The arithmetic portion of the
program consists of using a loop to add all the A(J)'s and then dividing by 12.
Finally, we PRINT the answer. Here is the program.

10 DIM A(12)
20 FOR J=1 TO 12
30 READ A(J)
40 NEXT J
50 C=O
60 FOR J=1 TO 12
70 C=C+A(J): 'C ACCUMULATES THE SUM OF THE A(J)
80 NEXT J
90 C=C/12 : 'DIVIDE SUM BY 12
100 PRINT "THE AVERAGE MONTHLY COST OF ELECTRICITY IS",C
1000 DATA 89.74, 95.84, 79.42, 78.93, 72.11, 115.94
1010 DATA 158.92, 164.38, 105.98, 90.44, 89.15, 93.97
2000 END

The following program could be helpful in preparing the payroll of a small
business .

Example 2. A small business has five employees. Here are their names and
hourly wages.

Name
Joe Polanski
Susan Greer
Allan Cole
Betsy Palm
Herman Axler

Hourly Wage
7.75
8.50
8.50
6.00
6.00

Write a program which accepts as input hours worked for the current week,
and calculates the current gross pay and the amount of Social Security tax to
be withheld from their pay. (Assume that the Social Security tax amounts to 6. 7
percent of gross pay.)
Solution. Let us keep the hourly wage rates and names in two arrays, called
A(J) and B$(J) , respectively, where J = 1, 2 , 3, 4 , and 5. Note that we can't
use a single two-dimensional array for this data since the names are string data,
and the hourly wage rates are numerical. (Recall that BASIC does not let us
mix the two kinds of data in an array.) The first part of the program will be to
assign the values to the variables in the two arrays. Next, the program will , one
by one, print out the names of the employees and ask for the number of hours
worked during the current week. This data will be stored in the array C(J) , J =
1, 2, 3, 4 , and 5. The program then will compute the gross wages as A(J) •C(J)
(that is , < wage rate > times <number of hours worked >). This piece of data
will be stored in the array D(J) , J = 1, 2, 3 , 4, and 5. Next, the program will
compute the amount of Social Security tax to be withheld as .0670• D(J). This
piece of data will be stored in the array E(J), J = 1, 2, 3, 4 , 5 . Finally, all the
computed data will be printed on the screen. Here is the program:

146 Sec. 6.2

10 DIM A(5),B$(5),C(5),D(5),E(5)
20 FOR J=1 TO 5
30 READ B$(J),A(J)
40 NEXT J
50 FOR J=1 TO 5
60 PRINT "TYPE CURRENT HOURS OF", B$(J)
70 INPUT C(J)
80 D(J)=A(J)*C(J)
90 E(J)=.0670*D(J)
100 NEXT J
110 PRINT "EMPLOYEE","GROSS WAGES","SOC.SEC.TAX"
120 FOR J=1 TO 5
130 PRINT B$(J),D(J),E(J)
140 NEXT J
200 DATA JOE POLANSKI, 7.75, SUSAN GREER, 8.50
210 DATA ALLAN COLE, 8.50, BETSY PALM, 6.00
220 DATA HERMAN AXLER, 6.00
1000 END

In certain applications , you may wish to read the same DATA statements
more than once. To do this you must reset the pointer using the RESTORE
statement. For example , consider the following program.

10 DATA 2.3, 5.7, 4.5, 7.3
20 READ A,B
30 RESTORE
40 READ C,D
50 END

Line 20 sets A equal to 2.3 and B equal to 5 . 7. The RESTORE statement of
line 30 moves the pointer back to the first item of data , 2.3. The READ state
ment of line 40 then sets C equal to 2.3 and D equal to 5. 7. Note that without
the RESTORE in line 30, the READ statement in line 40 would set C equal to
4.5 and D equal to 7.3.

There are two common errors in using READ and DATA statements.
First, you might try to READ more data than is present in the DATA statements.
For example , consider the following program.

10 DATA 1,2,3,4
20 FOR J=1 TO 5
30 READ A(J)
40 NEXT J
50 END

This program attempts to read five pieces of data , but the DATA statement
only has four. In this case, you will receive an error message :

Out of data in 30

Inputting Data 147

A second common error is attempting to assign a string value to a numeric
variable or vice versa. Such an attempt will lead to a Type mismatch error.

Exercises (answers on page 358)

Each of the following programs assigns values to the variables of an array.
Determine which values are assigned.

1. 10 DIM A(10)
20 FOR J=1 TO 10
30 READ A(J)
40 NEXT J
50 DATA 2,4,6,8,10,12,14,16,18,20
100 END

2. 10 DIM A(3),B(3)
20 FOR J=O TO 3
30 READ A(J), B(J)
40 NEXT J
50 DATA 1.1,2.2,3.3,4.4,5.5,6.6,7.7,8.8,9.9
60 END

3. 10 DIM A(3) ,B$(3)
20 FOR J=O TO 3
30 READ A(J)
40 NEXT J
50 FOR J=O TO 3
60 READ B$(J)
70 NEXT J
80 DATA 1,2,3,4,A,B,C,D
90 END

4. 10 DIM A(3), 8(3)
20 READ A(O),B(O)
30 READ A(1),B(1)
40 RESTORE
50 READ A(2),B(2)
60 READ A(3),B(3)
70 DATA 1, 2,3,4,5,6,7,8
80 END

5. 10 DIM A(3,4)
20 FOR I=1 TO 3

6.

30 FOR J=1 TO 4
40 READ A(I,J)
50 NEXT J
60 NEXT I
70 DATA 1,2,3,4,5,6,7,8,9,10,11,12
80 END
10
20
30
40

DIM A(3,4)
FOR J=1 TO 4

FOR I=1 TO 3
READ A(I,J)

148 Sec. 6.2

50 NEXT I
60 NEXT J
70 DATA 1,2,3,4,5,6,7,8,9,10,11,12
80 END

Each of the following programs contains an error. Find it.

7. 10 DIM A(5)
20 FOR J=1 TO 5
30 READ A(J)
40 NEXT J

8. 1 0 DIM A (5)

20 FOR J=1 TO 5
30 READ A(J)
40 NEXT J

50 DATA 1,2,3,4 50 DATA 1,A,2,B .
60 END 60 END

9. Here is a table of Federal Income Tax Withholding of weekly wages
for an individual claiming one exemption. Assume that each of the
employees, in the business discussed in the text, claims a single
exemption. Modify the program of Example 2 so that it correctly
computes Federal Withholding and the net amount of wages. (That
is , the total after Federal Withholding and Social Security are
deducted.)

Wages at Least
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340

But Less Than
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

Tax Withheld
29.10
31.20
33.80
36.40
39.00
41.60
44.20
46.80
49.40
52.10
55.10
58.10
61.10
64.10
67.10

10. Here is a set of 24 hourly temperature reports as compiled by the
National Weather Service. Write a program to compute the average
temperature for the last 24 hours. Let your program respond to a
query concerning the temperature at a particular hour. (For exam
ple , what was the temperature at 2:00 pm?)

12:00
1:00

AM
10
10

PM
38
39

2:00
3:00
4:00
5:00
6:00
7:00
8:00
9:00

10:00
11:00

9
9
8
11
15
18
20
25
31
35

40
40
42
38
33
27
22
18
15
12

Formatting Your Output 149

ANSWERS TO TEST YOUR UNDERSTANDING
1: 10 DATA 5.1,4.7,5.8,3.2,7.9,6.9

20 FOR J=1 TO 6
30 READ A(J)
40 NEXT J
50 END

2: A = 10, B$ = "TACH"

6.3 Formatting Your Output
In this section, we will discuss the various ways in which you can format output
on the screen and on the printer. PCjr BASIC is quite flexible in the form in
which you can cast output. You have control over the size of the letters on the
screen, placement of output on the line , degree of accuracy to which calcula
tions are displayed, and so forth. Let us begin by reviewing what we have
already learned about printing.

Semicolons in PRINT Statements
The screen width may be set for 40- or SO-character lines, using the

WIDTH statement. This gives 40 or 80 print positions in each line. These are
divided into print zones of 14 characters each. • To start printing at the begin
ning of the next print zone , insert a comma between the items to be printed.

In many applications , it is necessary to print more columns than there are
print zones. Or, output may look better if the columns are less than a full print
zone wide. To avoid any space between consecutive print items, separate them
in the PRINT statement by a semicolon. Consider the following instruction:

10 PRINT "PERSO"; "NAL COMPUTER"

It will result in the output:

• For an 80-column width, the last print zone has only 10 characters. For a 40-column width, the
last print zone has only 12 characters.

150 Sec. 6.3

PERSONAL COMPUTER

The semicolon suppresses any space between the display of PERSO and NAL
COMPUTER.

In displaying numbers, remember that all positive numbers begin with a
blank space, which is in place of the understood plus (+) sign. Negative num
bers, however, have a displayed minus(-) sign and do not begin with a blank
space. For example, the statement:

20 PRINT "THE VALUE OF A IS";2.35

will result in the display

THE VALUE OF A IS 2.35

The space between the S and the 2 comes from the blank which is considered
part of the number 2.35. On the other hand, the statement

30 PRINT "THE VALUE OF A IS";-2.35

will result in the display:

THE VALUE OF A IS-2.35

To obtain a space between the S and the -, we must include a space in the
string constant.

30 PRINT "THE VALUE OF A IS ";-2.35

At the completron of a PRINT statement, BASIC will automatically supply
an ENTER so that the cursor moves to the beginning of the next line. You may
suppress this ENTER by ending the PRINT statement with a semicolon. For
example, the statements

40 PRINT "THE VALUE+ OF A IS";
50 PRINT 2.35

will result in the display:

THE VALUE OF A IS 2.35

Formatting Your Output 151

TEST YOUR UNDERSTANDING 2 (answer on page 158)
Describe the output from the following program:

10 A=5:B=3:C=8
20 PRINT "THE VALUE OF A IS" ,A
30 PRINT "THE VALUE OF B";
40 PRINT "IS";B
50 PRINT "THE VALUE OF C IS";-C

Our discussion above was oriented to the display of data on the screen.
However, you also may use semicolons in LPRINT statements to control spac
ing of output on the printer.

Horizontal Tabbing
You may begin a print item in any print position. To do this , use the TAB

command. The print positions are numbered from 1 to 255, going from left to
right. (Note that a line may be up to 255 characters long. On the screen, an
oversized line will wrap around to the next line. However, the line will print
correctly on a printer having a wide enough print line.) The statement TAB(7)
means to move to column 7. TAB always is used in conjunction with a PRINT
statement. For example, the print statement

50 PRINT TAB(?) A

will print the value of the variable A, beginning in print position 7. It is possible
to use more than one TAB per PRINT statement. For example, the statement

100 PRINT TAB(5) A; TAB(15) B

will print the value of A beginning in print position 5, and the value of B begin
ning in print position 15. Note the semicolon between the two TAB
instructions.

TEST YOUR UNDERSTANDING 3 (answer on page 158)
Write an instruction printing the value of A in column 25 and the value of
B seven columns further to the right.

In some applications , you may wish to add a certain number of spaces
between output items (as opposed to TABbing where the next item appears in
a specified column). This may be accomplished using the SPC (=space) func
tion , which works very much like TAB. For example, to print the values of A
and B with 5 blank spaces between them, we may use the statement:

152 Sec. 6.3

110 PRINT A; SPC(5) B

Example 1. Write a program to print the following table of numbers.
12.5 14.8
11.8 1.8
4.53 .357

Solution. The columns begin, respectively, in columns 1 and 7. So we read
the numbers into an array A(I,J) and print the elements of the array using
PRINT TAB statements.

10 DIM A(3,2)
20 FOR I=1 TO 3
30 FOR J=1 TO 2
40 READ A(I,J)
50 NEXT J
60 NEXT I
70 FOR I=1 TO 3
80 PRINT A(I,1); TAB(?) A(I,2)
90 NEXT I
100 END
200 DATA 12.5,14.8,11.8,1.8,4.53,.357

Formatting Numbers

PCjr BASIC has rather extensive provisions for formatting numerical out
put. Here are some of the things you may specify with regard to printing a
number:

Number of digits of accuracy
Alignment of columns (ones column, tens column, hundreds column, and
so forth)
Display and positioning of the initial dollar sign
Display of commas in large numbers (as in 1,000,000)
Display and positioning of + and - signs.

All of these formatting options may be requested with the PRINT USING
statement. Roughly speaking, you tell the computer what you wish your
number to look like by specifying a "prototype." For example, suppose you
wish to print the value of the variable A with four digits to the left of the decimal
point and two digits to the right. This could be done via the instruction:

10 PRINT USING"####.##"; A

Here, each # stands for a digit and the period stands for the decimal point. If,
for example, A was equal to 5432.381 , this instruction would round the value
of A to the specified two decimal places and would print the value of A as:

5432.38

Formatting Your Output 153

On the other hand, if the value of A was 932.547, then the computer would
print the value as:

932.55

In this case, the value is printed with a leading blank space, since the format
specified four digits to the left of the decimal point. This sort of printing is
especially useful in aligning columns of figures like this :

367.1
1567.2

29573.3
2.4

The above list of numbers could be printed using the following program:

10 DATA 367.1, 1567.2, 29573.3, 2.4
20 FOR J=1 TO 4
30 READ A(J)
40 PRINT USING 11 #####.#";A(J)
50 NEXT J
60 END

TEST YOUR UNDERSTANDING 4 (answer on page 158)
Write an instruction which prints the number 456. 75387 rounded to two
decimal places .

You may use a single PRINT USING statement to print several numbers on
the same line. For example, the statement:

10 PRINT USING"##.##"; A,B,C

will print the values of A, B, and C on the same line, all in the format
. # #. Only one space will be allowed between each of the numbers. Addi
tional spaces may be added by using extra # 's. If you wish to print numbers on
one line in two different formats , then you must use two different PRINT
USING statements , with the first ending in a semicolon (;) to indicate a contin
uation on the same line.

If you try to display a number larger than the prototype , the number will
be displayed preceded by a percent (%) symbol. For example , consider the
statement:

10 PRINT USING"###"; A

If the value of A is 5000, then the display will look like:

154 Sec. 6.3

%5000

TEST YOUR UNDERSTANDING 5 (answer on page 158)
Write a program to calculate and display the numbers 2J, J = 1, 2 , 3, ... ,
15. The columns of the numbers should be properly aligned on the right.

You may have the computer insert a dollar sign on a displayed number.
The following two statements illustrate the procedure:

10 PRINT USING"$####.##"; A
20 PRINT USING "$####.##";A

Suppose that the value of A is 34. 78. The results of lines 10 and 20 then will be
displayed:

$ 34.78
$34.78

Note the difference between the displays produced by lines 10 and 20. The
single $ produces a dollar sign in the fifth position to the left of the decimal
point. This is just to the left of the four digits specified in the prototype
#. # #. However, the $ in line 20 indicates a "floating dollar sign."
The dollar sign is printed in the first position to the left of the number without
leaving any space.

Example 1. Here is a list of checks written by a family during the month of
March.

$15.32, $387.00, $57.98, $3.47, $15.88
Print the list of checks on the screen with the columns properly aligned and the
total displayed below the list of check amounts , in the form of an addition
problem.
Solution. We first read the check amounts into an array A(J) , J = 1, 2, 3 , 4, 5.
While we read the amounts, we accumulate the total in the variable B. We use
a second loop to print the display in the desired format.

10 DATA 15.32, 387.00, 57.98, 3.47, 15.88
20 FOR J=1 TO 5
30 READ A(J)
40 B=B+A(J)
50 PRINT USING "$###.##"; A(J)
60 NEXT J
70 PRINT " ___ "; B
80 PRINT USING"$###.##"; B
90 END

Here is what the output will look like:

$ 15. 32
$387.00
$ 57.98
$ 3.47
$ 15.88
$479.65

Formatting Your Output 155

Note that line 70 is used to print the line under the column of figures.
The PRINT USING statement has several other variations. To print com

mas in large numbers, insert a comma anywhere to the left of the decimal
point. For example , consider the statement

10 PRINT USING###,###; A

If the value of A is 123456, it will be displayed as:

123,456

The PRINT USING statement also may be used to position plus and
minus signs in connection with displayed numbers. A plus sign at the beginning
or the end of a prototype will cause the appropriate sign to be printed in the
position indicated. For example, consider the statement:

10 PRINT USING "+####. ###"; A

Suppose that the value of A is -458. 73. It will be displayed as:

4 spaces 3 spaces
\ / ---- 458.730

Similarly, consider the statement:

10 PRINT USING "+###. ##"; A

Suppose that A has the value .05873. Then A will be displayed as:

3 spaces 2 spaces ' .,----+ .06

Important Note: In the above discussion, we have only mentioned output on
the screen. However, all of the features mentioned may be used on a printer
via the LPRINT USING instruction. Note , however, that the wider line of the
printer allows you to display more data than the screen. In particular, there are
more 14-character print fields (just how many depends on which printer you
own), and you may TAB to a higher numbered column than on the screen.

156 Sec. 6.3

Recall that BASIC uses two different representations for numbers-the
usual decimal representation and scientific (or exponential) notation. You may
use to format numbers into scientific notation. For example, to display a
number in scientific notation with two digits to the left of the decimal point and
two to the right, you would use the format string

"##.## AMI/\ "

In this format , the number 100 would be displayed as

10.00E+01 .

Other Variants of PRINT USING
There are several more things you can do with the PRINT USING state

ment. They are especially useful to accountants and others concerned with pre
paring financial documents.

If you precede the prototype with • •, this will cause all unused digit posi
tions in a number to be fi lled with asterisks. For example , consider the
statement

10 PRINT USING "**####.#";A

If A has the value 34.86, the value will be displayed as

****34.9

Note that four asterisks are displayed since six digits to the left of the decimal
point are specified in the prototype. The asterisks count, but the value of A
uses only two. The remaining four are filled with asterisks.

You may combine the action of • • and $. You should experiment with this
combination. It is especially useful for printing dollar amounts of the form:

$*******387.98

Such a format is especially useful in printing amounts on checks to prevent
modification.

By using a minus sign immediately after a prototype, you will print the
appropriate number with a trailing minus sign if it is negative and with no sign if
it is positive . For example, the statement:

10 PRINT USING"####.##-"; A

with A equal to -57.88 will result in the display:

57.88-

Formatting Your Output 157

On the other hand, if A is equal to 57.88, the display will be:

57.88

This format for numbers is often used in preparing accounting reports.

Exercises (answer on page 359)

Write programs which generate the following displays. The lines of dots are not
meant to be displayed. They are furnished for you to judge spacing.
1. THE VALUE OF X IS 5.378 2. THE VALUE OF X IS 5.378

•••••••••••• •••••• ••••••••••e••••••••••••••••••••••••••
3. DATE QTY @ COST DISCOUNT NET COST ..

4. 6.753

6.

15.111
111.850

6.702

Calculate
Sum

Pay to the Order of
The sum of

7. 5,787
387

127,486
38,531

Calculate
Sum

5. $ 12.8'2
$ 117.58
$ 5.87
$.99
$.99

Calculate
Sum

Date 3/18/ 81
Wildcatters, Inc.

• • • • • • • • • $89,385.00

8. $385.41
- $17.85

Calculate
Difference

9. Write a program which prints a number rounded to the nearest inte
ger. For example , if the input is 11. 7, the output is 12. If the input is
158.2, the output is 158. Your program should accept the number to
be rounded via an INPUT statement.

10. Write a program which allows your computer to function as a cash
register. Let the program accept purchase amounts with INPUT
statements. Let the user tell the program when the list of INPUTs is
complete. The program should then print out the purchase amounts,
with dollar signs and columns aligned, compute the total purchase,
add 5 percent sales tax, compute the total amount due, ask for the
amount paid, and compute the change due.

11: Prepare the display of Exercise 4 using 40 characters per line.

158 Sec. 6.4

ANSWERS TO TEST YOUR UNDERSTANDING
1: 10 INPUT A,B

20 PRINT A;" +";B;" =";A+B
30 END

2: THE VALUE OF A IS 5
THE VALUE OF BIS 3
THE VALUE OF C IS-8

3: 10 PRINT TAB(25) A;TAB(32) B
4: 10 PRINT USING "###.##"; 456.7587
5: 10 FOR J=1 TO 15

20 PRINT USING "#####"; 2AJ
30 NEXT J
40 END

6.4 Gambling With Your Computer
One of the most interesting features of your computer is its ability to generate
events whose outcomes are "random." For example , you may instruct the
computer to "throw a pair of dice" and produce a random pair of integers
between 1 and 6. You may instruct the computer to "pick a card at random
from a deck of 52 cards." You also may program the computer to choose a
two-digit number "at random," and so forth. The source of all such random
choices is the BASIC function RND. To explain how this function works, let us
consider the following program:

10 FOR X=1 TO 500
20 PRINT RND
30 NEXT X
40 END

This program consists of a loop which prints 500 numbers, each called RND .
Each of these numbers lies between 0.000000 (inclusive) and 1.000000 (exclu
sive). Each time the program refers to RND (as in line 20 here), the computer
makes a "random" choice from among the numbers in the indicated range.
This is the number that is printed.

To obtain a better idea of what we are talking about, you should generate
some random numbers using a program like the one above. Unless you have a
printer, 500 numbers will be too many for you to look at in one viewing. You
should print four random numbers on one line (one per print zone) and limit
yourself to 25 displayed lines at one time. Here is a partial printout of such a
program.

.245121

.984546

.896609

.583931

.137119

.305003

.901159

.660212

.448163

.226544

.311866

.727313

.554489

.86774

.215274

.515163
6.83401E-03
.818675
.0331043
.876763

Gambling With Your Computer 159

What makes these numbers "random" is that the procedure the computer
uses to select them is "unbiased," with all numbers having an equal likelihood
of selection. Moreover, if you generate a large collection of random numbers,
then numbers between O and .1 will comprise approximately 10 percent of
those chosen, those between .5 and 1.0 will comprise 50 percent of those cho
sen, and so forth. In some sense, the random number generator provides a
uniform sample of the numbers between O and 1.

TEST YOUR UNDERSTANDING 1 (answer on page 166)
Assume that RND is used to generate 1000 numbers. Approximately how
many of these numbers would you expect to lie between .6 and .9?

The random number generator is controlled by a so-called "seed"
number, which controls the sequence of numbers generated. Once a particular
seed number has been chosen, the sequence of random numbers is fixed. This
would make computer games of chance rather uninteresting, since they always
would generate the same sequence of play. This may be prevented by changing
the seed number using the RANDOMIZE command. A command of the form:

10 RANDOMIZE
will cause the computer to print out the display:

Random Number Seed (-32768 to 32767)?
You then respond with a number in the indicated interval. Suppose, for exam
ple , you choose 129. The computer then will reseed the random number gen
erator with the seed 129 and will generate the sequence of random numbers
corresponding to this seed. Another method of choosing a seed number is with
a command of this form:

20 RANDOMIZE 129

This command sets the seed number to 129 without asking you. In Chapter 13,
we will show you how to use the computer's internal clock to provide a seed
number. This is a method of generating a seed over which no one has any
control.

The function RND generates random numbers lying between O and 1.
However, in many applications, we will require randomly chosen integers lying
in a certain range. For example , suppose that we wish to generate random
integers chosen from among 1, 2, 3, 4, 5, 6. Let us multiply RND by 6, to
obtain 6 • RND. This is a random number between 0.00000 and 5.99999.
Next, let us add 1 to this number. Then 6 • RND + 1 is a random number
between 1.00000 and 6.99999. To obtain integers from among 1, 2, 3, 4, 5, 6 ,
we must "chop off" the decimal portion of the number 6 • RND + 1. To do this,
we use the INT function. If X is any number, then INT(X) is the largest integer
less than or equal to X. For example:

160 Sec. 6.4

INT(S.23)=5, INT(?.99)=7, INT(100.001)=100.

Be careful in using INT with negative X. The definition we gave is correct, but
unless you think things through, it is easy to make an error. For example:

INT(-7.4)=-8

since the largest integer less than or equal to -7.4 is equal to -8. (Draw -7.4 and
-8 on a number line to see the point!) Let us get back to our random numbers.
To chop off the decimal portion of 6 •RND+ 1, we compute INT(6 • RND+ 1).
This last expression is a random number from among 1, 2, 3, 4, 5, 6 . Similarly,
the expression:

INT(1 OO*RND+1)

may be used to generate random numbers from among the integers 1, 2, 3, ... ,
100.

TEST YOUR UNDERSTANDING 2 (answer on page 166)
Generate random integers from 0 to 1. (This is the computer analog of
flipping a coin: 0 = heads, 1 =tails.) Run this program to generate 50 coin
tosses. How many heads and how many tails occur?

Example 1. Write a program which turns the computer into a pair of dice.
Your program should report the number rolled on each as well as the total.
Solution. We will hold the value of die # 1 in the variable X and the value of
die # 2 in variable Y. The program will compute values for X and Y, print out
the values and the total X + Y.

5 RANDOMIZE
10 CLS
20 X=INT<6*RND + 1)

30 Y=INT(6*RND + 1)
40 PRINT "LADIES AND GENTLEMEN, BETS PLEASE!"
50 INPUT "ARE ALL BETS DOWN(Y/N)"; A$
60 IF A$ = "Y" THEN 100 ELSE 40
100 PRINT "THE ROLL IS",X,Y
110 PRINT "THE WINNING TOTAL IS " ; X+Y
120 INPUT "PLAY AGAIN(Y/N)"; 8$
130 IF 8$="Y" THEN 10
200 PRINT "THE CASINO IS CLOSING. SORRY!"
210 END

Note the use of computer-generated conversation on the screen. Note also,
how the program uses lines 120-130 to allow the player to control how many
times the game will be played. Finally, note the use of the command RAN-

Gambling With Your Computer 161

DOMIZE in line 5. This will generate a question to allow you to choose a seed
number.

TEST YOUR UNDERSTANDING 3 (answer on page 166)
Write a program which flips a "biased coin." Let it report "heads" one
third of the time and tails two-thirds of the time.

You may enhance the realism of a gambling program by letting the com
puter keep track of bets as in the following example.

Example 2. Write a program which turns the computer into a roulette wheel.
Let the computer keep track of bets and winnings for up to five players. For
simplicity, assume that the only bets are on single numbers. (In the next exam
ple, we will let you remove this restriction!)
Solution. A roulette wheel has 38 positions: 1-36, 0, and 00. In our program, we
will represent these as the numbers 1-38, with 37 corresponding to 0 and 38
corresponding to 00. A spin of the wheel will consist of choosing a random integer
between 1 and 38. The program will start by asking the number of players. For a
typical spin of the wheel, the program will ask for bets by each player. A bet will
consist of a number (1-38) and an amount bet. The wheel will then spin. The
program will determine the winners and losers. A payoff for a win is 32 times the
amount bet. Each player has an account, stored in an array A(J), J = 1, 2, 3, 4 , 5.
At the end of each spin, the accounts are adjusted and displayed. Just as in Exam
ple 1, the program asks if another play is desired. Here is the program.

5 RANDOMIZE
10 INPUT "NUMBER OF PLAYERS";N
20 DIM A(5),B(5),C(5): 'At Most 5 Players
30 FOR J=1 TON: 'Initial Purchase of Chips
40 PRINT "PLAYER "; J
50 INPUT "HOW MANY CHIPS"; A(J)
60 NEXT J
100 PRINT "LADIES AND GENTLEMEN! PLACE YOUR BETS PLEASE!"
110 FOR J=1 TON : 'Place Bets
120 PRINT "PLAYER "; J
130 INPUT "NUMBER, AMOUNT"; B(J),C(J):'INPUT BET
140 NEXT J
200 X=INT(38*RND + 1): 'Spin the wheel
220 PRINT "THE WINNER IS NUMBER"; X
300 'Compute winnings and Losses
310 FOR J=1 TO N
320 IF X=B(J) THEN 400
330 A(J)=A(J)-C(J): 'Player J loses
340 PRINT "PLAYER ";J;"LOSES"
350 GO TO 420
400 A(J)=A(J)+32*C(J): 'Player J wins
410 PRINT "PLAYER ";J;"WINS "; 32*C(J); "DOLLARS"

162 Sec. 6.4

420 NEXT J
430 PRINT "PLAYER BANKROLLS": 'Display game status
440 PRINT
450 PRINT "PLAYER", "CHIPS"
460 FOR J=1 TON
470 PRINT J,A(J)
480 NEXT J
500 INPUT "DO YOU WISH TO PLAY ANOTHER ROLL(Y/N)";R$
510 CLS
520 IF R$ = "Y" THEN 100: 'Repeat game
530 PRINT "THE CASINO IS CLOSED. SORRY!"
600 END

You should try a few spins of the wheel. The program is fun as well as
instructive. Note that the program allows you to bet more chips than you have.
We will leave it to the exercises to add in a test that there are enough chips to
cover the bet. You could also build lines of credit into the game! In the next
example, we will illustrate how the roulette program may be extended to incor
porate the bets EVEN and ODD.

Before we proceed to the next example, however, let's discuss one further
defect of the program in Example 2. Note that line 5 contains a RANDOMIZE
statement. The program will then ask for a random number seed. The person
who selects the random number seed has control over the random number
sequence and hence over the game. This is most unsatisfactory. However,
there is a simple way around this difficulty.

DOS on the PCjr has an internal clock which is set each time you sign on
the computer. (The clock is not available if you are not using DOS.) This clock
keeps track of time in hours , minutes and seconds. The value of the clock is
accessed via the function TIME$. We will discuss use of the clock in detail in
Chapter 13. For the moment, however, let's borrow a fact from that discussion.
The current reading of the seconds portion of the clock is equal to:

VAL(RIGHT$(TIME$,2))

Let's use this number as our random number seed. (It is unlikely that anyone
can control the precise second at which the game begins.)

Example 3 . Modify the roulette program of Example 2 so that it allows bets on
EVEN and ODD. A one-dollar bet on either of these pays one dollar in winnings.
Solution. Our program will now allow three different bets: on a number and
on EVEN or ODD. Let us design subroutines, corresponding to each of these
bets, which determine whether player J wins or loses. For each subroutine , let
X be the number {1-38) which results from spinning the wheel. In the preceding
program, a bet by player J was described by two numbers: B(J) equals the
number bet and C(J) equals the amount bet. Now let us add a third number to
describe a bet. Let D(J) equal 1 if J bets on a number, 2 if J bets on EVEN , and
3 if J bets on odd. In case D(J) is 2 or 3, we will again let C(J) equal the amount
bet, but B(J) will be ignored. The subroutine for determining the winners of

Gambling With Your Computer 163

bets on numbers can be obtained by making small modifications to the corre
sponding portion of our previous program, as follows:

1000 'Bet=NUMBER
1010 IF B(J)=X THEN 1050
1020 PRINT "PLAYER ";J; "LOSES"
1030 A(J)=A(J)-C(J)
1040 GOTO 1070
1050 PRINT "PLAYER ";J; "WINS"; 32*C(J); "DOLLARS"
1060 A(J)=A(J) + 32*C(J)
1070 RETURN

Here is the subroutine corresponding to the bet EVEN.

2000 'Bet=EVEN
2010 K=O
2020 IF X=2*K THEN 2070 ELSE 2030
2030 K=K+1: IF K>=20 THEN 2040 ELSE 2020
2040 PRINT "PLAYER ";J;" LOSES"
2050 A(J)=A(J)-C(J)
2060 GOTO 2090
2070 PRINT "PLAYER " ;J;" WINS ";C(J);" DOLLARS"
2080 A(J)=A(J)+C(J)
2090 RETURN

Finally, here is the subroutine corresponding to the bet ODD.

3000 'Bet=ODD
3010 K=O
3020 IF X= 2*K+ 1 THEN 3070
3030 K=K+1:IF K>=19 THEN 3040 ELSE 3020
3040 PRINT "PLAYER "; J;" LOSES"
3050 A{J)=A(J)-C(J)
3060 GOTO 3090
3070 PRINT "PLAYER ";J;" WINS ";CCJ);" DOLLARS"
3080 A(J)=A(J)+C(J)
3090 RETURN

Now we are ready to assemble the subroutines together with the main portion
of the program, which is almost the same as before . The only essential altera
tion is that we must now determine, for each player, which bet was placed.

10 CLS
20 RANDOMIZE VAL(RIGHT$(TIME$,2))

INPUT "NUMBER OF PLAYERS";N
DIM A(5),B(5),C(5)

30
40
50 FOR J=1 TO N
60 PRINT "PLAYER ";J
70 INPUT "HOW MANY CHIPS";A(J)

164 Sec. 6.4

80 NEXT J
90 PRINT "LADIES AND GENTLEMEN! PLACE YOUR BETS PLEASE!"
100 FOR J=1 TON: 'Place bets
110 PRINT "PLAYER" ;J
120 PRINT "BET TYPE: 1 =NUMBER BET, 2=EVEN, 3=0DD"
130 INPUT "BET TYPE (1,2, OR 3)";D(J)
140 IF D{J)=1 THEN 170
150 INPUT "AMOUNT"; C (J)
160 GOTO 180
170 INPUT "NUMBER, AMOUNT BET";B(J),C(J)
180 NEXT J
190 X=INT(38*RND+1): 'Spin Wheel
200 CLS
210 PRINT "THE WINNER IS NUMBER";X
220 FOR J=1 TON: 'Determine winnings and Losses
230 ON D(J) GOSUB 1000,2000,3000
240 NEXT J
250 PRINT "PLAYER BANKROLLS"
260 PRINT "PLAYER", "CHIPS"
270 FOR J=1 TON
280 PRINT J,A(J)
290 NEXT J
300 INPUT "DO YOU WISH TO PLAY ANOTHER ROLL(Y/N)";R$
310 CLS
320 IF R$="Y" OR R$="y" THEN 90
330 PRINT "THE CASINO IS CLOSED. SORRY!"
340 END
1000 'Bet=NUMBER
1010 IF B(J)=X THEN 1050 ELSE 1020
1020 PRINT "PLAYER ";J; " LOSES"
1030 A{J)=A(J)-C(J)
1040 GOTO 1070
1050 PRINT "PLAYER ";J; "WINS"; 32*C(J); "DOLLARS"
1060 A(J)=A(J)+32*C(J)
1070 RETURN
2000 'Bet=EVEN
2010 K=O
2020 IF X=2*K THEN 2070 ELSE 2030
2030 K=K+1: IF K>=20 THEN 2040 ELSE 2020
2040 PRINT "PLAYER ";J;" LOSES"
2050 A(J)=A(J)-C(J)
2060 GOTO 2090
2070 PRINT "PLAYER " ;J;" WINS ";C(J);" DOLLARS"
2080 A(J)=A(J)+C(J)
2090 RETURN
3000 'Bet=ODD
3010 K=O
3020 IF X= 2*K+1 THEN 3070 ELSE 3030
3030 K=K+1:IF K>=19 THEN 3040 ELSE 3020
3040 PRINT "PLAYER ";J;" LOSES "
3050 A(J)=A{J)-C(J)
3060 GOTO 3090

3070
3080
3090
4000

PRINT "PLAYER ";J;"
A(J)=A(J)+C(J)

RETURN
END

Gambling With Your Computer 165

WINS ";C(J);" DOLLARS"

Note how the subroutines help to organize our programming. Each sub
routine is easy to write and each is a small task and you will have less to think
about than when considering the entire program. It is advisable to break a long
program into a number of subroutines. Not only is it easier to write in terms of
subroutines, but it is much easier to check the program and to locate errors
since subroutines may be individually tested.

You may treat the output of the random number generator as you would
any other number. In particular, you may perform arithmetic operations on the
random numbers generated. For example, 5• RND multiplies the output of the
random number generator by 5, and RND + 2 adds 2 to the output of the ran
dom number generator. Such arithmetic operations are useful in producing ran
dom numbers from intervals other than O to 1. For example, to generate
random numbers between 2 and 3, we may use RND + 2.

Example 4. Write a program which generates 10 random numbers lying in the
interval from 5 to 8.
Solution. Let us build up the desired function in two steps. We start from the
function RND, which generates numbers from Oto 1. First, we adjust for the
length of the desired interval. From 5 to 8 is 3 units, so we multiply RND by 3.
The function 3•RND generates numbers from Oto 3. Now we adjust for the
starting point of the desired interval , namely 5 . By adding 5 to 3 • RND, we
obtain numbers lying between O + 5 and 3 + 5, that is, between 5 and 8. Thus ,
3 • RND + 5 generates random numbers between 5 and 8. Here is the program
required.

10 FOR J=1 TO 10
20 PRINT 3*RND+5
30 NEXT J
40 END

Example 5. Write a function to generate random integers from among 5, 6, 7,
8, ... , 12.
Solution. There are 8 consecutive integers possible. Let us start with the func
tion 8 • RND, which generates random numbers between O and 8. Since we
wish our random number to begin with 5, let us add 5 to get 8 • RND + 5. This
produces random numbers between 5.00000 and 12.9999. We now use the
INT function to chop off the decimal part. This yields the desired function:

INT(8*RND+5)

Exercises (answers on page 360)

Write BASIC functions which generate random numbers of the following sorts.
1. Numbers from O to 100.

166 Sec. 6.4

2. Numbers from 100 to 101.
3. Integers from 1 to 50.
4. · Integers from 4 to 80.
5. Even integers from 2 to 50.
6. Numbers from 50 to 100.
7. Integers divisible by 3 from 3 to 27.
8. Integers from among 4, 7, 10, 13, 16, 19, and 22.
9. Modify the dice program so that it keeps track of payoffs and bank

rolls, much like the roulette program in Example 2. Here are the
payoffs on a bet of one dollar for the various bets:

outcome
2
3
4
5
6
7
8
9
10
11
12

payoff
35
17
11
8
6.20
5
6.20
8

11
17
35

10. Modify the roulette program of Example 2 to check that a player has
enough chips to cover the bet.

11. Modify the roulette program of Example 2 to allow for a $100 line of
credit for each player.

12. Construct a program which tests one-digit arithmetic facts with the
problems randomly chosen by the computer.

13. Make up a list of ten names. Write a program which will pick four of
the names at random. (This is a way of impartially assigning a nasty
task!)

ANSWERS TO TE~T VOtJR UNDERSTANDlNG i: 30.:p~rcenf .• '. •. ·'• .. 0 ·, •• • • •• I 't,.,

2: 10 FOR ,J:=t TO SO
?O PRJNT fNTC2*RND+1)
30 NEX't .J
40. END

. 3: 10 LET X.=:INT(3,*RND + ·1) · .
20 Tt x..;, "THEN :PRI'NT ;'HEAPS" sds;~· PiR~.r;Ir v:i~t:LS,')' 1 •

30 END

7

EASING PROGRAMMING

FRUSTRATIONS

As you have probably discovered by now, programming can be a tricky and
frustrating business. You must first figure out the instructions to give the com
puter. Next, you must type the instructions into RAM. Finally, you must run the
program. Usually after the first run, you must figure out why the program won't
work. This process can be tedious and frustrating, especially in dealing with
long or complex programs. We should emphasize that programming frustra
tions often result from the limitations and inflexibility of the computer to under
stand exactly what you are saying. In talking with another person, you usually
sift out irrelevant information, correct minor errors , and still maintain the flow
of communication. With a computer, however, you must clear up all of the
imprecisions before the conversation can even begin.

Fortunately, your computer has many features designed to ease the pro
gramming burdens and help you track down errors and correct them. We will
describe these features in this chapter. We will also present some more tips
which should help you develop programs quicker and with fewer errors.

7 .1 Flowcharting

In the last three chapters, our programs were fairly simple. By the end of Chap
ter 6, however, we saw them becoming more involved. And there are many
programs which are even much more lengthy and complex. You might be won
dering how it is possible to plan and execute such programs. The key idea is to
reduce large programs to a sequence of smaller programs which can be written
and tested separately.

The old saying, "A picture is worth a thousand words ," is true for com
puter programming. In designing a program, especially a long one, it is helpful
to draw a picture depicting the instructions of the program and their interrela
tionships. Such a picture is called a flowchart.

A flowchart is a series of boxes connected by arrows. Within each box is a
series of one of more computer instructions. The arrows indicate the logical
flow of the instructions. For example , the flowchart in Figure 7-1 shows a pro
gram for calculating the sum 1 + 2 + 3 + ... + 100.

The arrows indicate the sequence of operations. Note the notation
"J = 1,2, ... ,100" between the second and third boxes. This notation indicates a

168 Sec. 7.1

loop on the variable J . This means that the operation in box 3 is to be repeated
100 times-for J = 1, 2, ... , 100. Note how easy it is to proceed from the above
flowchart to the corresponding BASIC program:

10 S=O (box 2)
20 FOR J =1 TO 100
30 S=S+J (box 3)
40 NEXT J
50 PRINT S (box 4)
60 END (box 5)

There are many flowcharting rules . Different shapes of boxes represent
certain programming operations. We will adopt a very simple rule-that all
boxes are rectangular, except for decision boxes. Decision boxes are diamond
shaped. The flowchart in Figure 7-2 shows a program which decides whether a
credit limit has been exceeded.

Note that the diamond-shaped block contains the decision "Is D > Limit
L?". Corresponding to the two possible answers to the question, there are two

Start

''
Let S = 0

J=1,2,. .. ,100

Add J to S

',

Print S

End

Figure 7-1.

Figure 7-2.

Start

Input current purchase C

Let Debt(D) = Debt+ C

Yes

Print
"Credit Denied"

Let D = D-C

Stop

No

Flowcharting 169

Print
"Credit

OK"

170 Sec. 7.2

arrows leading from the decision box. Note also how we used the various
boxes to help assign letters to the program variables. Once the flowchart is
written, it is easy to transform it into the following program:

10 INPUT C (box 1,2)
20 INPUT D,L
30 D=D+C (box 3)
40 IF D>L THEN 100 ELSE 200 (box 4)
100 PRINT "CREDIT DENIED" (box 6)
110 D=D-C (box 7)
120 GOTO 300 ("No" arrow)
200 PRINT "CREDIT OK" (box 5)
300 END (box 8)

You will find flowcharting helpful in thinking out the necessary steps of a
program. As you practice flowcharting , you will develop your own style and
conventions. That's fine . I encourage all personalized touches, as long as they
are comfortable and help you write programs.

Exercises (answers on page 362)

Draw flowcharts planning computer programs to do the following.

1. Calculate the sum l2 + 22 + ... + 1002
, print the result, and deter-

mine whether the result is larger than, smaller than, or equal to 48A
2. Calculate the time elapsed since the computer was turned on.
3. The roulette program of Section 6.4 (page 161).
4. The payroll program in Example 2 of Section 6.2 (pagel46).

7 .2 Errors and Debugging

An error is sometimes called a " bug" in computer jargon. The process of find
ing these errors or "bugs" in a program is called debugging. This can often be
a ticklish task. Manufacturers of commercial software must regularly repair
bugs they discover in their own programs! Your PCjr is equipped with a number
of features to help detect bugs.

The Trace

Often your first try at running a program results in failure, but gives you no
indication as to why the program is not running correctly. For example , your
program might just run indefinitely, without giving you a clue as to what it is
actually doing. How can you figure out what's wrong? One method is to use the
trace feature. Let us illustrate use of the trace by debugging the following pro
gram designed to calculate the sum 1 + 2 + ... + 100 . The variable S is to con
tain the sum. The program uses a loop to add each of the numbers 1, 2, 3, .. . ,
100 to S, which is initially 0.

10 S=O
20 J=O
30 S=S + J
40 IF J=100 THEN 100 ELSE 200
100 J=J+1
110 GOTO 20
200 PRINT S
300 END

Errors and Debugging 171

This program has two errors in it. (Can you spot them right off?) All you know
initially is that the program is not functioning normally. The program runs, but
prints out the answer 0, which is nonsense. How can we locate the errors? Let's
turn on the trace function by typing TRON (TRace ON) and pressing ENTER.
The computer will respond by typing Ok. Now type RUN . The computer will
run our program and print out the line numbers of all executed instructions.
Here is what our display looks like:

TRON
Ok

RUN
[10] [20] [30] [40] [200] 0
[300]

The numbers in brackets indicate the line numbers executed. That is, the com
puter executes, in order, lines 10, 20, 30, 40, 200, and 300. The zero not in
brackets is the program output resulting from the execution of line 200. The list
of line numbers is not what we were expecting. Our program was designed (or
so we thought) to execute line 100 after line 40. No looping is taking place.
How did we get to line 200 after line 40? This suggests that we examine line 40:
Lo and behold! There is an error. The line numbers 100 and 200 appearing in
line 40 have been interchanged (an easy enough mistake to make). Let's cor
rect this error by retyping the line.

40 IF J=100 THEN 200 ELSE 100

In triumph, we run our program again. Here is the output:

[10] [20] [30] [40] [100] [110] [20] [30]

[40] [100] [110] [20] [30] [40] [100] [110]

[20] [30] [40] [100]

Break in 110

Actually, the above output goes whizzing by us as the computer races madly on
executing the instructions. After about 30 seconds, we sense that something is
indeed wrong since it is unlikely that our program could take this long. We stop

172 Sec. 7.2

execution by means of the Fn-Break key combination. The last line indicates
that we interrupted the computer while it was executing line 110. Actually, your
screen will be filled with output resembling the above . You will notice that the
computer is in a loop. Each time it reaches line 110, the loop goes back to line
20. Why doesn 't the loop ever end? In order for the loop to terminate , J must
equal 100. Well , can J ever equal 100? Of course not! Every time the computer
executes line 20, the value of J is reset to 0. Thus, J is never equal to 100 and
line 40 always sends us back to line 20. We clearly don 't want to reset J to O all
the time. After increasing J by 1 (line 100), we wish to add the new J to S. We
want to go to 30, not 20. We correct line 110 to read:

110 GOTO 30

We run our program again. There will be a rush of line numbers on the screen
followed by the output 5050, which appears to be correct. Our program is now
running properly. We turn off the trace by typing TROFF (TRace OFF) and
pressing ENTER. Finally, we run our program once more for good measure.
The above sequence of operations is summarized in the following display:

[40] [200] 5050
[300]
Ok

TROFF
Ok

RUN
5050
Ok

In our example above, we displayed all the line numbers executed. For a
long program, this may lead to a huge list of line numbers. You may be selec
tive by using TRON and TROFF within your program. Just use them with line
numbers, just like any other BASIC instruction. When BASIC encounters a
TRON , it begins to display the line numbers executed. When BASIC
encounters a TROFF, it stops displaying line numbers. To debug a program,
you may temporarily add TRON and TROFF instructions at selected places. As
you locate the bugs , remove the corresponding trace instructions.

Error Messages

In the example above , the program actually ran. A more likely occurrence
is that there is a program line (or lines) which the computer is unable to under
stand due to an error or some other sort of problem. In this case , program
execution ends too soon. The computer often can help in this instance ·since it
is designed to recognize many of the most common errors. The computer will
print an error message indicating the error type and the line number in which it

Errors and Debugging 173

occurred. The line with the error is automatically displayed, ready for editing.
Suppose that the error reads:

Syntax Error in 530
530 Y=(X+2(X A2-2)

We note that there is an open parenthesis "(" without a corresponding close
parenthesis")" . This is enough to trigger an error. We modify line 530 to read

530 Y=X+2(XA2-2)

We RUN the program again and find that there is still a syntax error in line 530!
This is the frustrating part since not all errors are easy to spot. However, if you
look closely at the expression on the right , you will note that we have omitted
the • to indicate the product of 2 and (XA2-2). This is a common mistake,
especially for those familiar with the use of algebra. (In algebra, the product is
usually indicated without any operation sign.) We correct line 530 again. (You
may either retype the line or use the line editor.)

530 Y=X+2*(X A2-2)

Now there is no longer a syntax error in line 530!
The next section contains a list of the most common error messages.

There are a number of errors not included in our list, especially those associ
ated with disk operations. For a complete list of error messages, the reader is
referred to the IBM PCjr BASIC Reference Manual .

Exercises (answers on page 364)

1. Use the error messages to debug the following program to calculate
(1 2 + 22 + ... + 502)(fl + 21 + .. . + 2Q'l).

10 S="O"
20 FOR J=1 TO 50
30 S=S + J(2
40 NEXT K
50 T=O
60 FOR J=1 TO 20
70 T=T +J A3
80 NXT T
90 NEXT T
100 A=ST
110 PRINT THE ANSWER IS, A
120 END

2. Use the trace function to debug the following program to determine
the smallest integer N for which N2 is larger than 175263.

174 Sec. 7.3

10 N=O
20 IF NA2 < 175263 THEN 100
30 PRINT "THE FIRST N EQUALS"
100 N=N+1
110 GOTO 10
200 END

7 .3 Some Common Error Messages

Syntax Error. There is an unclear instruction (misspelled?), mismatched paren
theses, incorrect punctuation, illegal character, or illegal variable name in the
program.

Undefined line number. The program uses a line number which does not corre
spond to an instruction. This can easily arise if you delete lines which are men
tioned elsewhere. It also can occur when testing a portion of a program which
refers to a line not yet written.

Overflow. A number too large for the computer.

Division by zero. Attempting to divide by zero. This may be a hard error to
spot. The computer will round to zero any number smaller than the minimum
allowed. Use of such a number in subsequent calculations could result in divi
sion by zero.

Illegal function call. (For the mathematically-minded.) Attempting to evaluate a
function outside of its mathematically defined range. For example, the square
root function is defined only for non-negative numbers, the logarithm function
only for positive numbers, and the arctangent only for numbers between -1 and
1. Any attempt to evaluate a function at a value outside these respective ranges
will result in an illegal function call error.

Missing Operand. Attempting to execute an instruction missing required data.

Subscript Out of Range. Attempting to use an array with one or more sub
scripts outside the range allowed by the appropriate DIM statement.

String Too Long. Attempting to specify a string containing more than 255
characters.

Out of Memory. Your program will not fit into the computer's memory. This
could result from large arrays or too many program steps or a combination of
the two.

String Formula Too Complex. Due to the internal processing of your formula,
your string formula resulted in a string expression that was too long or com-

Further Debugging Hints 175

plex. This error can be corrected by breaking the string expression into a series
of simpler expressions.

Type Mismatch. Attempting to assign cl. string constant as the value of a
numeric variable, or a numeric constant value to a string variable.

Duplicate Definition. Attempting to D!Mension an array which has already been
dimensioned. Note that once you refer to an array within a program, even if
you don't specify the dimensions, the computer will regard it as being dimen
sioned at 10.

NEXT without FOR. A NEXT statement which does not correspond to a FOR
statement.

RETURN without GOSUB. A RETURN statement is encountered while not
performing a subroutine.

Out of Data. Attempting to read data which isn't there. This can occur in read
ing data from DATA statements, cassettes , or diskettes.

Can't Continue. Attempting to give a CONT command after the program has
ENDed, or after a line has been modified.

Each error has a corresponding error number by means of which you
can refer to the error within a program. A complete list of errors and their error
numbers is given at the end of the book. Moreover, we will discuss errors fur
ther in Chapter 11, where we will learn how to react to errors without ending
the program.

7 .4 Further Debugging Hints

Debugging is something between a black art and a science. Tracking down
program bugs can be a very tricky business and to be good at it, you must be a
good detective. In the preceding section, we listed some of the clues which
BASIC automatically supplies , namely the error messages. Sometimes, how
ever, these clues are not enough to diagnose a bug. (For example, your pro
gram may run without errors. It may just not do what it is supposed to . In this
case , no error messages will be triggered.) In such circumstances you must be
prepared to supply your own clues. Here are some techniques.

INSERT EXTRA PRINT STATEMENTS

You may temporarily insert extra PRINT statements into your program to
print out the values of key variables at various points in the program. This
technique allows you to keep track of a variable as your program is executed.

176 Sec. 7.4

INSERT STOP COMMANDS
It is perfectly possible that your program planning may contain a logical

flaw. In this case , it is perfectly possible to write a program which runs without
error messages, but which does not perform as you expect it to. You may tem
porarily insert a STOP command to force a halt after a specified portion of the
program.

This debugging technique may be used in several ways.
1. When the program encounters a STOP instruction, it halts execution

and prints out the line number at which the program was stopped. If the pro
gram does stop, you will know that the instructions just before the STOP were
executed. On the other hand, suppose that the program continues on its merry
way. This tells you that the program is avoiding the instructions immediately
preceding the STOP. If you determine the reason for this behavior, then you
likely will correct a bug.

2. When the program is halted, the values of the variables are preserved.
You may examine them to determine the behavior of your program. (See
below for more information.)

3. You may insert several STOP instructions. After each halt, you may note
the behavior of the program (line number, values of key variables , and so
forth). You may continue execution by typing CONT and pressing ENTER.
Note that if you change a program line during a halt, then you may not con
tinue execution, but must restart the program by typing RUN and pressing
ENTER.

EXAMINE VARIABLES IN THE IMMEDIATE MODE
When BASIC stops executing your program, the current values of the pro

gram variables are not destroyed. Rather, they are still in memory and may be
examined as an indication of program behavior. This is true even if the pro
gram is halted by means of a STOP instruction or by hitting Ctrl-Break.

Suppose that a program is halted and that the BASIC prompt Ok is dis
played. To determine the current values of the program variables INVOICE
and FILENAME$, type

PRINT INVOICE, FILENAME$

and press ENTER. Note that there is no line number. This instruction is in
immediate mode. BASIC will display the current values of the two variables,
just as if the PRINT statement were contained in a program:

145.83 ACCTPAY. MAR

Warning: As soon as you make any alteration in your program (correct a line ,
add a line) , BASIC will reset all the variables. The numeric variables will be
reset to zero and the string variables will be set to null. Therefore , if you wish to
have an accurate reading of the variable values as they emerge from your pro
gram, be sure to request them before making any program changes.

Further Debugging Hints 177

EXECUTE ONLY A PORTION OF YOUR PROGRAM
Sometimes it helps to run only a portion of your program. You may start

execution at any line using a variation of the RUN command. For example, to
begin execution at line 500, type:

RUN 500

and press ENTER. Note , however, that the RUN command causes all variables
to be reset. If some earlier portion of your program sets some variables, then
starting the program in the middle may not give an accurate picture of program
operation. To get around this problem, you may set variables in immediate
mode and start the program using the GOSUB instruction. For example , sup
pose that the earlier portion of your program set INVOICE equal to 145.83
and FILENAME$ equal to ACCTPAY.MAR. To accurately run a portion of the
program depending on these variable values, you would first type:

INV0 ICE=145. 83: FILENAME$=" AC CT PAY. MAR"

and press ENTER. (These instructions could be entered on separate lines, each
followed by ENTER.) To start the program at line 500, you then would type:

GOTO 500

and press ENTER. Note that it is not sufficient to use the command:

RUN 500

The RUN command automatically resets the variables.

8

YOUR COMPUTER AS A

FILE CABINET

In this chapter we will discuss techniques for using your computer to store
and retrieve information.

8.1 What Are Files?

A file is a collection of information stored on a mass storage device (diskette ,
cassette , or hard disk). There are two common types of files: program files and
data files.

Program Files When a program is stored on diskette , it is stored as a
program file. You already have created some program files by saving BASIC
programs on diskette. In addition to the programs you create , your DOS disk
ette contains program files that are necessary to run your computer, such as
DOS and the BASIC language .

Data Files Computer programs used in business and industry usually
refer to files of information that are kept in mass storage. For example, a per
sonnel department would keep a file of data on each employee: name, age,
address, social security number, date employed, position, salary, and so forth .
A warehouse would maintain an inventory for each product with the following
information: product name, supplier, current inventory, units sold in the last
reporting period, date of the last shipment, size of the last shipment, and units
sold in the last 12 months. These files are called data files.

In this chapter, we will discuss the procedures for handling files in general
and data files in particular.

Consider the following example. Suppose that a teacher stores grades in a
data file . For each student in the class , there are four exam grades . A typical
entry in the data file would contain the following data items:

student name, exam grade # 1, exam grade # 2,
exam grade # 3, exam grade # 4
In a data file , the data items are organized in sequence. So the beginning

of the above data file might look like this:
"John Smith", 98, 87, 93, 76, " Mary Young" ,
99, 78, 87, 91 , " Sally Ronson" , 48, 63, 72,
80, ...

180 Sec. 8.2

The data fi le consists of a sequence of string constants (the names) and
numeric constants (the grades), with the various data items arranged in a par
ticular pattern (name followed by four grades). This particular arrangement is
designed so the file may be read and understood. For instance, if we read the
data items above , we know in advance that the data items are in groups of five
with the first one a name and the next four the corresponding grades.

In this chapter, we will learn to create data files containing information
such as the data in the above example. As we shall see , data may be stored in
either of two types of data fi les-sequential and random access. For each type
of fi le, we will learn to perform the following operations:

1. Create a data file.
2. Write data items to a file .
3. Read data items from a file.
4. Alter data items in a file.
5. Search a file for particular data items.

8.2 Sequential Files
A sequential file is a data file in which the data items are accessed in order.
That is , the data items are written in consecutive order into the file . The data
items are read in the order in which they were written. You may add data items
only to the end of a sequential file . If you wish to add a data item somewhere in
the middle of the file , it is necessary to rewrite the entire file . Similarly, if you
wish to read a data item at the end of a sequential file, it is necessary to read all
the data items in order and to ignore those that you don't want.

OPENing and CLOSEing Sequential Files
Before you perform any operations on a sequential file, you must first

open the file. You should think of the file as being contained in a file cabinet
drawer (the diskette). In order to read the file, you must first open the file
drawer. This is accomplished using the BASIC instruction OPEN. When
OPENing a file, you must specify the file and indicate whether you will be
reading from the file or writing into the file. For example , to OPEN the file
B:PAYROLL for input (for reading the file) , we use a statement of the form:

10 OPEN "B: PAYROLL" FOR INPUT AS #1

The # 1 is a reference number we assign to the file when opening it. As long as
the file remains open, you refer to it by its reference number rather than the
more cumbersome file specification B:PAYROLL. The reference number is
quite arbitrary. You may assign any positive integer you wish. Just make sure
that you don't assign two files that are to be open simultaneously to the same
reference number. (If you try this, BASIC will give you an error message.)

Here is an instruction for opening the file "GAMES" on cassette for input:

10 OPEN "CAS1: GAMES" FOR INPUT AS #1

Sequential Files 181

Here is an alternate form of the instruction for opening a file for input:

1 0 0 PEN II I 11
, # 1 , 11 B : PAYROLL 11

Here the letter "I" stands for "Input."
To OPEN the file B:GRADES.AUG for output (that is , to write in the file),

we use an instruction of the form:

20 OPEN 11 B:GRADES.AUG 11 FOR OUTPUT AS #2

Here is an alternate way to write the same instruction:

20 OPEN 11 0 11 ,#2, 11 B:GRADES.AUG 11

The letter " O" stands for "Output."
BASIC initially allows you to work with three open diskette files at a time.

Only one cassette file may be open at a time . This number may be increased by
giving the appropriate command when you start BASIC. For example , to allow

· use of as many as 5 files at once , start BASIC with the command:

BASIC /F:5

The "switch" / F:5 is what tells BASIC to set aside memory for simultaneous
manipulation of up to 5 files.

In maintaining any filing system, it is necessary to be neat and organized.
The same is true of computer files. A sequential file may be opened for input or
for output, but not both simultaneously. As long as the file remains open, it will
accept instructions (input or output) of the same sort designated when it was
opened. To change operations, it is necessary to first close the file. For exam
ple, to close the file B:PAYROLL in line 10 above, we use the instruction

40 CLOSE #1

After giving this instruction, we may reopen the file for output using an instruc
tion similar to that given in line 20 above. It is possible to close several files at a
time. For example, the statement:

50 CLOSE #5,#6

closes the files with reference numbers 5 and 6. We may close all currently
open files with the instruction:

50 CLOSE

In an OPEN or CLOSE statement, the # is optional. Thus, it is perfectly
acceptable to use:

182 Sec. 8.2

50 OPEN 1,2

50 CLOSE 5,6

Good programming practice dictates that all files be closed after use. In any
case , the BASIC commands NEW, RUN , and SYSTEM automatically close any
files that might have been left open by a preceding program.

WRITEing Data Items Into a Sequential File

Suppose that we wish to create a sequential file called INVOICE.001 ,
which contains the following data items:

DJ SALES 50357 4 $358.79 4/5/81

That is , we would like to write into the file the string constant "DJ SALES"
followed by the two numeric constants 50357 and 4, followed by the two string
constants " $358. 79" and "4/ 5 / 81". Here is a program that does exactly that:

100 OPEN "B:INVOICE.001" FOR OUTPUT AS #1
110 WRITE#1, "DJ SALES", 50357,4,"$358.79", "4/5/81"
120 CLOSE #1

The # 1 portion of line 110 refers to the identification number given to the file
in the OPEN instruction in line 100, namely 1. In a WRITE # statement, a
comma must follow the file number.

Note that the WRITE instruction works very much like a PRINT statement,
except that the data items are "printed" in the file instead of on the screen.

While a file is open, you may execute any number of WRITE instructions
to insert data. Moreover, you may WRITE data items that are values of vari
ables , as in the statement:

200 WRITE #1, A, A$

This instruction will write current values of A and A$ into the file.

Example 1. Write a program to create a file whose data items are the num
bers 1, 1A2, 2 , 2A2, 3, 3A2, ... , 100, 100A2.
Solution. Let's call the file "SQUARES" and store it on the diskette in drive
A: .

10 OPEN "A:SQUARES" FOR OUTPUT AS #1
20 FOR J=1 TO 100
30 WRITE#1, J,J A2
40 NEXT J
50 CLOSE #1
60 END

Sequential Files 183

Example 2. Create a data file consisting of names , addresses, and telephone
numbers from your personal telephone directory. Assume that you will type the
addresses into the computer and will tell the computer when the last address
has been typed.
Solution. We use INPUT statements to enter the various data. Let NME$
denote the name of the current person, ADDRESS$ the street address, CITY$
the city, STATE$ the state , ZIPCODE$ the zip code, and TELEPHONE$ the
telephone number. For each entry, there is an INPUT statement correspond
ing to each of these variables. The program then writes the data to the diskette.
Here is the program:

5 OPEN "TELEPHON" FOR OUTPUT AS #1
10 INPUT "NAME"; NME$
20 INPUT "STREET ADDRESS"; ADDRESS$
30 INPUT "CITY"; CITY$
40 INPUT "STATE"; STATE$
50 INPUT "ZIP CODE"; ZIPCODE$
60 INPUT "TELEPHONE"; TELEPHONE$
70 WRITE#1, NME$, ADDRESS$, CITY$, STATE$,

ZIPCODE$,TELEPHONE$
80 INPUT "ANOTHER ENTRY (Y/N)"; G$
90 IF G$="Y" THEN 10
100 CLOSE #1
110 END

There are several noteworthy points about the above program. Note the
unusual spelling of NAME (NME). We are forced into this queer spelling since
NAME is a BASIC reserved word. You should use the above program to set up
a computerized telephone directory of your own. It is very instructive. More
over, when coupled with the search program given below, it will allow you to
look up addresses and phone numbers using your computer.

TEST YOUR UNDERSTANDING 1
Use the above program to enter the following addresses into the file:

John Jones
1 South Main St. Apt. 308
Phila. Pa. 19107
527-1211

Mary Bell
2510 9th St.
Phila. Pa. 19138
937-4896

184 Sec. 8.2

Reading Data Items

To read items from a data file , it is first necessary to open the file for
INPUT (that is , for INPUT from the diskette.) Consider the telephone file in
Example 2. We may open it for input, via the instruction

300 OPEN "TELEPHON" FOR INPUT AS #2

Once the file is open, it may read via the instruction

400 INPUT #2, NME$,ADDRESS$,CITY$,STATE$,
ZIPCODE$,TELEPHONE$

This instruction will read six data items from the file (corresponding to one
telephone-address entry), assign NME$ the value of the first data item,
ADDRESS$ the second, and so forth.

In order to read a file , it is necessary to know the precise format of the
data in the fi le. For example, the form of the above INPUT statement was
dictated by the fact that each telephone-address entry was entered into the file
as six consecutive string constants. The file INPUT statement works like any
other INPUT statement: Faced with a list of variables separated by commas, it
assigns values to the indicated variables in the order in which the data items are
presented. However, if you attempt to assign a string constant to a numeric
variable or vice versa, BASIC will report an error.

As long as a file is open for INPUT, you may continue to INPUT from it,
using as many INPUT statements as you like. These may, in turn, be intermin
gled with statements that have nothing to do with the file you are reading. Each
INPUT statement begins reading the file where the preceding INPUT statement
left off.

Here 's how to determine if you have read all data items in a file . BASIC
maintains the functions EOF(l) , EOF(2) , ... , one for each open file . These func
tions may be used like logical variables. That is , they assume the possible val
ues TRUE or FALSE. You may test for the end of the file using an IF.. .THEN
statement. For example, consider the statement:

100 IF EOF(1) THEN 2000 ELSE 10

This statement will cause BASIC to determine if you are currently at the end of
file # 1. If so the program will go to line 2000. Otherwise, the program will go
to line 10. Note that you are not at the end of the file until after you read the
last data item.

If you attempt to read past the end of a file , BASIC will report an Input
Past End error. Therefore , before reading a file it is a good idea to determine
whether you are currently at the end of the file .

Example 3. A data file, called NUMBERS, consists of numerical entries. Write
a program to determine the number of entries in the file.

Sequential Files 185

Solution. Let us keep a count of the current number we are reading in the
variable COUNT. Our procedure will be to read a number, increase the count,
then test for the end of the file.

10 COUNT=O
20 OPEN "NUMBERS" FOR INPUT AS #1
30 IF EOF(1) THEN 100
40 INPUT #1,A
50 COUNT=COUNT+1
60 GOTO 30
100 PRINT "THE NUMBER OF NUMBERS IN THE FILE IS",COUNT
110 CLOSE
120 END

Example 4. Write a program that searches for a particular entry of the tele
phone directory file created in Example 2.
Solution. We will INPUT the name corresponding to the desired entry. The
program then will read the file entries until a match of names occurs. Here is
the program:

5 OPEN "TELEPHON" FOR INPUT AS #1
10 INPUT "NAME TO SEARCH FOR"; Z$
20 INPUT #1, NME$,ADDRESS$,CITY$,STATE$,ZIPCODE$,

TELEPHONE$
30 IF NME$ = Z$ THEN 100
40 IF EOF(1) THEN 200
50 GOTO 20
100 CLS
110 PRINT NME$
120 PRINT ADDRESS$
130 PRINT CITY$,STATE$,ZIPCODE$
140 PRINT TELEPHONE$
150 GOTO 1000
200 CLS
210 PRINT "THE NAME IS NOT ON FILE"
1000 CLOSE 1
1010 END

TEST YOUR UNDERSTANDING 2
Use the above program to locate Mary Bell's number in the telephone file
created in TEST YOUR UNDERSTANDING 1.

Example 5. (Mailing List Application) Suppose that you have created your
computerized telephone directory, using the program in Example 2. Assume
that the completed file is called TELEPHON and is on the diskette in drive A:.
Write a program that reads the file and prints out the names and addresses
onto mailing labels.

186 Sec. 8.2

Solution. Let's assume that your mailing labels are of the "peel-off" variety,
which can be printed continuously on your printer. Further, let's assume that
the labels are six printer lines high, so that each label has room for five lines of
print with one line space between labels . (These are actual dimensions of labels
you can buy.) We will print the name on line 1, the address on line 2 , the city,
state, and zip codes all on line 3, with the city and state separated by a comma.

10 OPEN "TELEPHON" FOR INPUT AS #1
20 IF EOF(1) THEN 1000
30 INPUT #1, NME$,ADDRESS$,CITY$,STATE$,

ZIPCODE$,TELEPHONE$
40 LPRINT NME$
50 LPRINT ADDRESS$
60 LPRINT CITY$;
70 LPRINT ", "; : 'PRINT COMMA
80 LPRINT TAB(10) STATE$;
90 LPRINT TAB(20) ZIPCODE$
100 LPRINT:LPRINT:LPRINT :'NEXT LABEL
110 GOTO 20
1000 CLOSE 1
1010 END

Adding to a Data File

Here is an important fact about writing data files : Writing a file destroys
any previous contents of the file. (In contrast, you may read a file any number
of times without destroying its contents.) Consider the file "TELEPHON" cre
ated in Example 2 above . Suppose we write a program that opens the file for
output and writes what we suppose are additional entries in our telephone
directory. After this write operation, the file "TELEPHON" will contain only the
added entries . All of the original entries will have been lost! How, then, may we
add items to a file that already exists? Easy. PCjr BASIC has a special instruc
tion to do this. Rather than OPEN the file for OUTPUT , we OPEN the file for
APPEND , using the instruction:

500 OPEN "TELEPHON" FOR APPEND AS #1

The computer will locate the current end of the file. Any additional entries to
the file will be written beginning at that point. However, the previous entries in
the file will be unchanged.

Example 6. Write a program that adds entries to the file TELEPHON. The
additions should be typed via INPUT statements. The program may assume
that the file is on the diskette in drive A:.
Solution. To add items to the file , we first OPEN the file for APPEND . We
then ask for the new entry via an INPUT statement and write the new entry
into TELEPHON . Here is the program:

Sequential Files 187

10 OPEN "TELEPHON" FOR APPEND AS #1
210 PRINT "TYPE ENTRY: NAME,S TR EET ADDRESS,CITY, STATE,"
220 PRINT "ZIP CODE, TELEPHONE NO."
230 INPUT #1, NME$,ADDRESS$, CITY$,STATE$,

ZIPCODE$,T ELEPHONE$
240 WRITE#1, NME$,ADDRES S$,CITY$,STATE$,

ZIPCOD E$,TE LEPHONE$
250 INPUT "ANOTHER ENTRY (Y /N)": Z$
260 IF Z$ <> "Y" THEN 500
300 CLS
310 GOTO 210
500 CLOSE 1
510 END

TEST YOUR UNDERSTANDING 3
Use the above program to add your name, address, and telephone
number to the telephone directory created in TEST YOUR UNDER
STANDING 1.

Exercises (answers on page 364)

1. Write a program creating a diskette data file containing the numbers
5.7, - 11.4, 123, 485, and 49.

2. Write a program that reads the data fi le created in Exercise 1 and
displays the data items on the screen.

3. Write a program that adds to the data file of Exercise 1 the data
items 5, 78, 4.79, and -1.27.

4. Write a program that reads the expanded file of Exercise 3 and dis
plays all the data items on the screen.

5. Write a program that records the contents of checkbook stubs in a
data file. The data items of the fi le should be as follows:

check # , date, payee , amount, explanation
Use this program to create a data fi le corresponding to your previous month 's
checks.

6. Write a program that reads the data fi le of Exercise 5 and totals the
amounts of all the checks listed in the fi le .

7. Write a program that keeps track of inventory in a retail store. The
inventory should be described by a data fi le whose entries contain
the following information:

item, current price , units in stock
The program should allow for three different operations: Display the data file
entry corresponding to a given item, record receipt of a shipment of a given
item, and record the sale of a certain number of units of a given item.

8. Write a program that creates a recipe file to contain your favorite
recipes.

9. (For Teachers) Write a program that maintains a student fil e contain
ing your class roll , attendance , and grades.

188 Sec. 8.3

10. Write a program maintaining a file of your credit card numbers and
the party to notify in case of loss or theft.

8.3 More About Sequential Files
When you WRITE a data item to a sequential file, BASIC automatically
includes certain "punctuation" that allows the data to be read:

1. Strings are surrounded by quotation marks.
2. Data items are separated by commas.
3. The last data item in the WRITE# statement is followed by

< ENTER > . Here < ENTER > means the ENTER key. To the com
puter, < ENTER > is a character, just like "A" or";". It tells the com
puter to end the current line and move the cursor to the start of the
following line. Actually, < ENTER> generates two characters: One is
a carriage return that returns the cursor to the left side of the line.
The other is a line feed that advances the cursor to the next line . In
what follows we will continue to use < ENTER > to stand for the com
bination of these two characters.

4 . Positive numbers are inserted in the file without a leading blank.

For example, suppose that A$= "JOHN", B$ = "SMITH", C = 1234, and
D = -14. Consider the following WRITE# statement:

10 WRITE#1, A$,B$,C,D

Here is how this statement would WRITE the data into file # 1:

"JOHN", "SM ITH", 1234, -14<ENTER>

When the above data is read by an INPUT# statement, the quotation
marks, commas, and ENTER enable BASIC to separate the various data items
from one another. For this reason, the punctuation marks are called delim
iters. In using the WRITE # statement, you need not worry about delimiters.
Howeve r, in other sequential file statements, you are not so lucky.

Consider, for instance, the PRINT# statement. This statement may be
used to PRINT data to a file exactly as if the data were being printed on the
screen. All of the usual features of PRINT, such as TAB, SPC, and semicolons,
are active. However, the PRINT # statement does not include any delimiters .
Consider the above variables A$, B$, C, and D. The statement:

20 PRINT#1, A$;B$;C;D

will write the following image to file # 1:

JOHNSMITH 1234-14<ENTER>

Note that:
1. The space before the positive number 1234 is included in the file ,

More About Sequential Files 189

2. There are no separations between the data items.
3. There are no quotation marks around the strings.

In order to correctly read the individual data items, you must supply delim
iters in your PRINT# statement. Here 's how. First, put commas as strings in
PRINT # :

20 PRINT#1, A$;",";B$;",";C;",";D

Here 's how the image in the file will now look:

J0HN,SMITH, 1234,-14<ENTER>

The individual data items now may be read.
This is not quite the end of the story, however! Notice that the strings still

do not have quotation marks around them. In this example , no harm will be
done. To understand why, let's discuss the operation of the INPlIT #
statement.

INPlIT recognizes the following list of delimiters: commas, ENTER, and
form feed (we'll learn about this character later). When faced with a stream of
data in a file , here is what INPUf # does:

1. INPlIT # scans the characters and peels off characters until it finds a
delimiter. This indicates the end of the current data item. (The delim
iter is not included as part of the data item.)

2 . If a numeric data item has been requested, INPlIT # checks that the
data item is a number (no illegal characters such as A, $, or ;). If
illegal characters are detected, a Type Mismatch error occurs .

3. If a string data item has been requested, INPlIT # checks to see
whether the data item is surrounded by quotation marks . If so, it
removes them.

Understanding the above sequence can prevent embarrassing errors . One
such error can occur if you wish to include a comma within a data item. For
example , suppose that A$= "SMITH,JOHN" , B$ ="CARPENTER" . The
PRINT # statement:

30 PRINT#1, A$;",";B$

will write the following image to the file:

SMITH,J0HN,CARPENTER<ENTER>

A subsequent INPlIT # statement:

40 INPUT#1, A$,B$

will result in A$= "SMITH" and B$ = "JOHN". To get around this problem,
you must explicitly include quotation marks around strings that include a
comma. A string that consists of a quotation mark is just CHR$(34) . (34 is the

190 Sec. 8.3

ASCII code for a quotation mark.) So to include the quotation marks around
the string A$= "SMITH,JOHN" , you may use the statement:

50 PRINT#1, CHR$(34);A$;CHR$(34);",";8$

The file image will now be:

"SMITH, JOHN", CARPENTER<ENTER>

Quotation marks must enclose strings containing commas, semicolons ,
beginning or ending blanks, or ENTERs.

As you can see, the PRINT# statement is much less convenient than
WRITE #. In most cases, it is much simpler to use WRITE#. However,
PRINT # has its advantages. With a PRINT#, you may include the USING
option to format your data. For example , to write the value of the variable A to
the file in the format # #. # , we could use the statement:

60 PRINT#1, USING "##.#";A

The INPUT# statement reads a single data item at a time. However, in
some applications you may wish to read an entire line from a file. That is, you
wish to read data until you encounter an ENTER. This may be done with the
LINE INPUT# statement. For example, suppose that the following data is con
tained in file # 1:

SMITH,JOHN,CARPENTER<ENTER>

The statement:

70 LINE INPUT #1, A$

will set A$="SMITH,JOHN,CARPENTER" . Note the following curious twist ,
however. If you saved your string data with quotation marks around it, those
quotation marks would be included as part of the string read by -LINE
INPUT # . If you plan to read data lines via a LINE INPUT# statement, it is
usually wise to save the data using PRINT# so that no extraneous quotation
marks are generated.

File Buffers
You may have noticed that the drive light does not always turn on when

you are writing to a file. For example, try this experiment: OPEN a data file and
write a single numerical data item to the file , but don't CLOSE the file. The disk
drive does nothing. However, if you run this program a second time, the drive
light will go on. This may seem strange. However, it has to do with the way
BASIC writes (and reads) diskette files.

Diskette drives are very slow when compared with the speed at which
BASIC executes non-diskette operations. In order to speed up diskette opera-

Random Access Files 191

tions , BASIC writes to the diskette using file buffers. A file buffer (or "buffer"
for short) is an area of RAM where BASIC temporarily stores data to be written
to a file. There is one buffer corresponding to each open file . BASIC reserves
the space for a buffer as part of the OPEN operation. When you use any file
writing operation, BASIC writes the corresponding information into the file's
buffer. When the buffer is full , BASIC writes the data to the file.

The CLOSE operation forces all buffers (full or not) to be written to their
corresponding files. When you don't close a file (as in our above experiment),
the buffer may be sitting with some data that has not yet been written to disk
ette. In this case, a RUN or END command also will cause the buffers to be
written to diskette. Also , as soon as you modify the program in RAM, the buff
ers will be written to diskette. In our experiment, it was the RUN statement that
caused the drive lights to go on, to write the final results of the previous run.

Exercises (answers on page 366)

Suppose that A$ = "MY", B$ ="DOG", C$ ="SAM", D = 1234. What is the
format of the data written to file # 1 by the following statements?

1. WRITE#1, A$,B$,C$,D
2. PRINT#1, A$,B$,C$,D
3. PRINT#1, A$;",";B$;",";C$;", ";D
4. PRINT#1, CHR$(34);A$;" ";8$;", ";CHR$(34);",";C$;",

II; D
Consider the file as written by Exercise 1. What will be displayed by the follow
ing statements?

5. INPUT#1, E$:PRINT E$
6. LINE INPUT #1, E$:PRINT E$

Consider the files as written by Exercises 2-4. What will be displayed by the
following statements?

7. INPUT#1, E$:PRINT E$
8. Consider the fi le as written by Exercise 4. Write a program to display:

MY DOG, SAM
1234

8.4 Random Access Files
The files considered so far in this chapter are all examples of sequential files.
That is , the files are all written sequentially, from beginning to end. These files
are very easy to create, but are cumbersome in many applications, since they
must be read sequentially. In order to read a piece of data from the end of the
file , it is necessary to read all data items from the beginning of the file. Ran
dom access files do not suffer from this difficulty. Using a random access file,
it is possible to access the precise piece of data you want. Of course, there is a
price to be paid for this convenience. (No free lunches!) You must work a little
harder to learn how to use random access files.

A random access file is divided into segments of fixed length called
records. (See Figure 8-1.) The length of a record is measured in terms of

192 Sec. 8 .4

RECORD 1 I I RECORD 2 I I RECORD 3

RECORD 4 I I RECORD 5 I I RECORD 6

Figure 8-1. A Random Access File.

bytes. For a string constant, each character, including spaces and punctuation
marks, counts as a single byte.
For example, the record consisting of the string

ACCOUNTING-5

is of length 12.
To store a data item in a random access file, all data must be converted

into string form. This applies to numeric constants and values of numeric vari
ables. (See below for the special instructions for performing this conversion.) A
number (more precisely, a single-precision number) is converted into a string of
length 4, no matter how many digits this number has. A record may contain the
four data items: ACCOUNTING, 5000, .235, · and 7886. These pieces of data
are stored in order, with no separations between them. The length of this par
ticular record is 22 bytes (10 for ACCOUNTING and four each for the numeri
cal data items). (See Figure 8-2.)

Field 1 Field 2 Field 3 Field 4 ---------- ----------- -----------
2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

C C 0 U N T 5000 in
coded form

Figure 8-2. A Typical Record.

.235 in
coded form

7886 in
coded form

To write data to a random access file, it is necessary to first open it. To
open a file named "DEPTS" as a random access file with a record length of
22, we would use the instruction:

10 OPEN "DEPTS" AS #1 LEN=22

Next, we must describe the structure of the records of the file . For exam
ple , suppose that each record of file # 1 is to start with a IO-character string
followed by three numbers (converted to string form) . Further, suppose that
the string represents a department name, the first number the current depart
ment income, the second number the department's efficiency rating, and the
third number the current department's overhead. We indicate this situation with
the instruction:

20 FIELD #1, 10 AS DEPT$, 4 AS INCOME$, 4
AS EFFICIENCY$, 4 AS OVERHEAD$

Random Access Files 193

This instruction identifies the file with the number used when the file was
opened. Each section of the record is called a field. Each field is identified by a
string variable and the number of bytes reserved for that variable .

To write a record to a random access file, it is first necessary to assemble
the data corresponding to the various fields. This is done using the LSET and
RSET instructions. For example , to set the DEPT$ field to the string
"ACCOUNTING" , we use the instruction:

30 LSET DEPT$="ACC0UNTING"

To set the DEPT$ field to the value of the string variable N$, we use:

40 LSET DEPT$=N$

If N$ contains fewer than 10 characters, the rightmost portion of the field is
filled with blanks. This is called left justification If N$ contains more than 10
characters, the field is filled with the leftmost 10 characters.

The instruction RSET works exactly the same as LSET, except that the
unused spaces appear on the left side of the field. (The strings are right
justified.)

To convert numbers to strings for inclusion in random access files, we use
the MKS$ (or MK!$ or MKD$) function. For example, to include .753 in the
EFFICIENCY$ field , we first replace it by the string MKS$(.753). To include the
value of the variable INC in the INCOME$ field, we first replace it by
MKS$(INC). After the conversion, we use the LSET (or RSET) commands to
insert the string in the field. In the case of the two examples cited, the sequence
is carried out by the respective instructions:

50 LSET EFFICIENCY$=MKS$(.753)
60 LSET INC0ME$=MKS$(INC)

Once the fields of a particular record have been set (using LSET or
RSET) , you may write the record to the file using the PUT instruction. Records
are numbered within the file, starting from one. The significant feature of a
random access file is that you may record or retrieve information from any
particular record. For example , to write the current data into record 38 of file
1, we use the instruction:

80 PUT #1, 38

TEST YOUR UNDERSTANDING 1 (answer on page 198)
Write a program that creates a file containing the following records:

ACCOUNTING
ENGINEERING
MAINTENANCE
ADVERTISING

5000
3500
4338

10832

235
.872
.381
.95

7886
2200
5130
12500

194 Sec. 8.4

To read a randa"m access file , you must first open it using an instruction of
the form:

90 OPEN "DEPTS" AS #1 LEN=23

Note: This is the same as the instruction for opening a random access file for
writing. Random access files differ from sequential files in this respect. By
opening a random access file you prepare it for both reading and writing .
Before closing the file , you may read some records and write others.

The next step in reading a random access file is to define the record struc
ture using a FIELD statement, such as

100 FIELD #1, 10 AS DEPT$, 4 AS INCOME$, 4 AS
EFFICIENCY$, 4 AS OVERHEAD$

This is the same instruction we used for writing to the file . Until the FIELD
instruction is overridden by another, it applies to all reading and writing for file
#1.

To perform the actual reading operation, we use the GET statement. For
example, to read record 4 of the file , we use the statement

110 GET #1, 4

The variables DEPT$, INCOME$, EFFICIENCY$, and OVERHEAD$ are now
set equal to the appropriate values specified in record 4 of file # 1. We could,
for example, print the value of DEPT$ using the statement

120 PRINT DEPT$

If we wish to use the value of EFFICIENCY$ (in a numerical calculation or in a
PRINT statement, for instance) , it is necessary first to convert it back into
numerical form. This is accomplished using the CVS function. The statement:

130 PRINT CVS(EFFICIENCY$)

will print out the current value of EFFICIENCY$; the statement

140 LET N=100*CVS(EFFICIENCY$)

sets the value of N equal to 100 times the numerical value of EFFICIENCY$.
It is important to note that field variables such as DEPT$ and EFFI

CIENCY$ contain the values assigned in the most recent GET statement. In
order to manipulate data from more than one GET statement, it is essential to
assign the values from one GET statement to some other variables before issu
ing the next GET statement.

Random Access Files 195

TEST YOUR UNDERSTANDING 2 (answer on page 198)
Consider the random access file of TEST YOUR UNDERSTANDING 1.
Write a program to read record 3 of that file and print the corresponding
four pieces of data on the screen.

Random access files use no delimiters to separate data items within the
file. Rather, the data items are sandwiched together, using the number of char
acters specified for each field. In order to peel those data items back apart, you
must divide the file into records of the correct length and each record into fields
of the proper numbers of bytes.

In our discussion above, we have used the instructions MKS$ and CVS to
convert numerical data to string format and back to numerical format. These
functions apply to single-precision numbers. In addition to single-precision
numbers, there are double-precision numbers (up to 17 digits) and integers
(whole numbers between -32768 and + 32767). To convert a double-precision
number to a string, we use the function MKD$; to convert back to numerical
form , CVD. To convert an integer to a string, use the function MKI$; to convert
back to numerical form , use CVI.

In either numerical form or string form , an integer is represented by 2
bytes , a single-precision number by 4 bytes and a double-precision number by
8 bytes. In particular, this means that MKI$ produces a 2-byte string, MKS$ a 4-
byte string, and MKD$ an 8-byte string.

BASIC provides several functions that help you keep track of random
access files. The LOF (=Length of File) function gives the actual number of
bytes in the file. For example, suppose that file #2 contains 140 bytes. Then:

LOF(#2) is equal to 140

The LOF function may be used to determine the number of records currently in
the file , according to the formula

<number of records>= LOF(<file number>)l<record Length>

Note that random access files cannot have any "holes." That is, if you
write record 150, BASIC sets aside space for records 1 through 149, even if
you write nothing in these records.

The LOC (Location) function gives the number of the last record read or
written to the file. For example, if the last record written or read to file # 1 was
record 58, then LOC(# 1) is equal to 58.

Here is an example that illustrates most of the procedures for using ran
dom access files.

Example 1 . Write a program to create an address / telephone directory using a
random access file. The program should allow for updating the directory and
for directory search corresponding to a given name.

196 Sec. 8.4

Solution. The program first opens the random access file TELEPHON, used
to store the various directory entries. Note that the record length is set equal to
128. This allows us to use LOF to calculate the number of records in the file
using either BASIC 1.1 or 2.00. The program then displays a menu allowing
you to choose from among the various options: Add an entry to the directory,
Search the directory, Exit from the program. After an option is completed, the
program redisplays the menu to allow you to make another choice. The code
corresponding to the three options begins at program lines 1000, 2000, and
3000, respectively. Here is the program:

1000 'Telephone File
1010 'Open File For Random Access
1020 OPEN "TELEPHON" AS #1 LEN=128
1030 FIELD#1, 20 AS NME$, 20 AS ADDRESS$, 20 AS

CITY$, 20 AS STATE$, 5 AS ZIPCODE$, 20 AS
TELEPHONE$, 23 AS BLANK$

1040 LSET BLANK$=""
1050 'Option Menu
1060 PRINT "OPTIONS"
1070 PRINT "1. MAKE ENTRY IN DIRECTORY"
1080 PRINT "2. SEARCH DIRECTORY"
1090 PRINT "3. EXIT PROGRAM"
1100 INPUT "CHOOSE OPTION (1/2/3)";0PT
1110 ON OPT GOSUB 2000,3010,4010
1120 GOTO 1060
2000 'Add to file
2010 CLS
2020 INPUT "NAME";N$
2030 LSET NME$=N$
2040 INPUT "ADDRESS";N$
2050 LSET ADDRESS$=N$
2060 INPUT "CITY";N$
2070 LSET CITY$=N$
2080 INPUT "STATE" ;N$
2090 LSET STATE$=N$
2100 INPUT "ZIPCODE";N$
2110 LSET ZIPCODE$=N$
2120 INPUT "TELEPHONE NUMBER" ;N$
2130 LSET TELEPHONE$= N$
2140 PUT #1
3000 RETURN
3010 'Search for a name
3020 NREC=LOF(1)/128
3030 INPUT "NAME TO SEARCH FOR";N$
3040 R=1
3050 GET #1, R
3060 GOSUB 5000: IF M$=N$ THEN 3100
3070 R=R+1
3080 IF R>NREC THEN PRINT "NAME IS NOT ON FILE":

GOTO 4000
3090 GOTO 3050

3100
3110
3120
3130
3140
3150
4000
4010
4020
4030
5000
5010
5020
5030
5040
5050

PRINT NME$
PRINT ADDRESS$
PRINT CITY$
PRINT STATE$
PRINT Z I PCODE$
PRINT TELEPHONE$

RETURN
'Exit from program

CLOSE
END
'Strip trailing blanks

M$=NME$
IF RIGHT$(M$,1) <> CHR$(32)
M$ = LEFT$(M$,LEN(M$)-1)
GOTO 5020

RETURN

Random Access Files 197

THEN 5050

Note that line 3020 computes the number of records using the LOF func
tion. In searching the file for a given name N$, the records are read one by one
and the first field is compared with N$. Note, however, that the first field is
always 20 characters long. If the corresponding name has less than 20 charac
ters, the field contains one or more trailing blanks. In comparing the first field
with N$, it is necessary first to remove these blanks. This is done in the subrou
tine beginning in line 5000.

Setting the Random File Buffer Size
When BASIC is started, it sets aside a portion of RAM to aid in reading

and writing random access files . This piece of RAM is called a random file
buffer . Its size places a limit on the record size of your random access files.
You may specify any record size you wish (see below). However, if you don't
specify the size of the random access buffer, BASIC will allow only 128 bytes.

Suppose , for example , that you wish to use random access files with rec
ord lengths as large as 200 bytes. You may arrange for this by starting BASIC
as follows:

1. Obtain the DOS prompt A> .
2. Type

BASIC /S:200

and press ENTER
BASIC then will display the Ok prompt and you may program as usual.

If you attempt to use a FIELD statement requiring more bytes than are
contained in the random access buffer, a Field Overflow error will result.

Exercises (answers on page 366)

1. Write a program that writes the file TELEPHON of Section 8.2 (page
186) as a random access file . Leave 20 characters for the NAME

198 Sec. 8.4

entry, 25 for the address, 10 for the city, 2 for the state, 5 for the ZIP
code, and 10 for the telephone number.

2. Here is a record from a personnel file. For ease in reading this record,
we have replaced all blanks with @.

JONES@@@@@@@JOHN@@@@@@JFILECLERK4@@@04/15/82HOURLY$5.85

Write a field statement that will correctly separate the fields of the
record.

3. Suppose that a file named "SALES" consists of 20 records, each con
taining four numbers. Write a program that reads the file and prints
the numbers in four columns on the screen.

4. Write a program that allows you to specify a name in the file
TELEPHON. The program locates the file entry and prints out an
address label corresponding to the name.

. !

ANSWERS TO TESTYOUR UNDERSTANDING
1: 10 OPEN "DEPTS" AS #1 LEN=23

;;·. ,.. . . ·•· ,
20 .FJEL:.D 1{1jc 11 AS '[).EPT$> 4 .AS INCOME$, 4 'As,

EFHClEN(Y$, 4 AS OVERHEAD$
30 FOR J=t TO 4
40 READ A$,B,C,D
50 LSET DE,P·T$:::;A$
60 LSET INCOME$=MKS$(B)'
70 LSET EFFICIENCY$=MKS$(C)
80 · LSET .OVERHEAD$=MKS$(D)
90 ·•· PU.T #1}~
100 NEXT J
110 DATA "ACCOUNTING" ,5000, .235, 7886
120 DATA ''ENGINEERING" ,350.0, .872,22OP
130 DATA·· 11MAlNTENANCE" ,4338,~~81,5.110
140 DATA "ADVERTISING",10832,.95,12500
150 CLOSE #1
160 END

2: 10 OPEN "DEPTS" AS #1, LEN=23
20 FIELD #1, 10 AS DEPT$, 4 AS INCOME$, 4 AS

EFFICIENCY$,4 AS OVERHEAD$
30 GET #1, 3
40 PRINT ''l>EPARTMENT", "INCOME'', "EF FlClENCY''/

"OVERHEAD"
50 PRINT DEPT$,CVS(lNCOME$),CVS(EFFlCIENCY$),

CVS(OVERHEAD$)
60 CLOSE #1
70 END

An Application of Random Access Files 199

8.5 An Application of Random Access Files

In this section, we work out a detailed example illustrating the application of
random access files . We will design and build a "list manager" program, which
allows you to manipulate a list. A program of this sort is sometimes called a
database management program

Our program will manipulate quite general lists. A typical list is structured
into a series of entries, with each entry divided into a series of data items. We
have allowed each entry of our list to contain as many as five string items and
five numerical items. The string items are listed first. A typical list entry has the
form:

ITEM #1 (STRING)
ITEM #2 (STRING)
ITEM #3 (STRING)
ITEM #4 (STRING)
ITEM #5 (STRING)
ITEM #6 (NUMBER)
ITEM #7 (NUMBER)
ITEM #8 (NUMBER)
ITEM #9 (NUMBER)
ITEM #10 (NUMBER)

It is not necessary to use all 10 items. The entries of a particular list might
consist of three strings followed by two numbers, for example. The program
asks for the structure of the list entries (number of strings and number of num
bers) . The program then assumes that all entries of the list contain the specified
numbers of data items of each type .

The list manager allows you to perform the following activities:
1. Give a name to a list and create a corresponding random access file to

contain the list.
2. Give titles to the various items ("NAME" , "ADDRESS" , "SALARY",

"TELEPHONE # "). An item title may be up to 12 characters long.
3. Enter list items. The program displays the various item names and

allows you to type in the various items for the list entry. You may repeat the
entry operation as many times as you wish, thereby compiling lists of any
length.

4. Change list entries. You may change a list entry by re-entering its data
items.

5 . Display list entries . You may display a single list entry or an entire set of
consecutive list entries.

6. Search the list. You may search the list for entries in which a particular
item (say ZIPCODE) has a particular value (say 20001). The program will
inform you of a match and give the entry number. It then will ask you if you
wish to see the corresponding list entry. If so, it will display the entry for you.
After you are done examining the entry, you hit ENTER, and the program will
continue to search for further matches.

200 Sec. 8.5

The following program is highly structured (major tasks correspond to
subroutines) and the listing is reasonably self-explanatory. However, you
should note the following:

1. The titles of the list are stored in record 1.
2. The actual list entries are stored beginning in record 2. The entry

number {list entry 5) is always one less than the corresponding record (record
6).

3. There are two menus. The main menu allows you to choose among the
following activities:

Specify Titles
Specify List Entry
Search and Display
Exit

The second menu is displayed if you choose the Search and Display option on
the main menu. The various options in this second menu are:

Display Single List Entry
Display Consecutive List Entries
Search
4. Entry items are numbered from 1 to 10, with the strings 1 to 5 and the

numbers 6 to 10. This numbering holds even if some items are not used. That
is, the first numerical item is always 6.

10 'List Manager
20 'Main Program
30 GOSUB 4200:
40 GOSUB 1010:
50 ON REPLY GOSUB
60 GOTO 40

'Obtain file name and open file
'Display Main Menu

2000,3000,4100,4140

1000 'Display main menu
1010 CLS
1020 PRINT "THE LIST MANAGER"
1030 PRINT:PRINT
1040 PRINT "PROGRAM ACTIVITIES"
1050 PRINT
1060 PRINT "1.
1070 PRINT "2.
1080 PRINT "3.
1090 PRINT "4.
1100 PRINT

ASSIGN DATA ITEM TITLES"
SPEC I FY LIST ENTRY"
SEARCH AND DISPLAY LIST"
EXIT FROM LIST MANAGER"

1110 INPUT "DESIRED ACTIVITY(1-4)"; REPLY
1120 RETURN
2000 'Assign Data Item Titles
2010 CLS
2020 IF LOF(1)=1 THEN 2040:
2030 GOSUB 4400:
2040 FOR ITEMNUMBER=1 TO 10

'New File?
'Get old titles

2050 PRINT "DATA ITEM #";ITEMNUMBER;TAB(20)
"CURRENT DEF'N ";

2060 PRINT A$(ITEMNUMBER)

An Application of Random Access Files 201

2070 INPUT "NEW DEF'N: ";TITLE$(ITEMNUMBER)
2080 LSET A$(ITEMNUMBER)=TITLE$(ITEMNUMBER)
2090 NEXT ITEMNUMBER
2100 PUT #1,1: 'Record new titles
2110 RETURN
3000 'Specify List entry
3010 CLS
3020 INPUT "LIST ENTRY NUMBER (O=NEW ENTRY)" ;

ENTRYNUMBER
3030 IF ENTRYNUMBER=O THEN ENTRYNUMBER=LOC(1)+1 ELSE

ENTRYNUMBER=ENTRYNUMBER+1
3040 GOSUB 4400: 'Obtain titles
3050 PRINT "LIST ENTRY #";ENTRYNUMBER-1 ; TAB(20)

"SPECIFY ENTRY ITEMS"
3060 FOR ITEMNUMBER=1 TO STRINGFIELDS
3070 PRINT "Data Item Title: " ; TITLE$

(ITEMNUMBER)
3080 INPUT "ENTRY (STRING)";ENTRY$
3090 LSET A$(ITEMNUMBER)=ENTRY$
3100 NEXT ITEMNUMBER
3110 FOR ITEMNUMBER=6 TO 5+NUMERICFIELDS
3120 IF TITLE$(ITEMNUMBER)="" THEN 3160
3130 PRINT "Data Item Title: ";TITLE$

(ITEMNUMBER)
3140 INPUT "ENTRY (NUMBER)";ENTRY
3150 LSET A$(ITEMNUMBER)=MKS$(ENTRY)
3160 NEXT ITEMNUMBER
3170 PUT #1,ENTRYNUMBER
3180 RETURN
4000 'Various Subroutines
4100 'Search and Display List
4110 GOSUB 4700: 'Search and Display Menu
4120 ON REPLY GOSUB 4800,4900,5100
4130 RETURN
4140 'Exit
4150 CLS
4160 CLOSE #1
4170 END
4180 RETURN
4200 'Obtain file name and open file
4210 CLS
4220 CLOSE
4230 PRINT "THE LIST MANAGER"
4240 INPUT "NAME OF FILE";FILENAME$
4250 INPUT "NUMBER OF STRING FIELDS (1-5)" ;

STRINGF IELDS
4260 INPUT "NUMBER OF NUMERIC FIELDS (1-5)" ;

NUMERICFIELDS

4270 OPEN FILENAME$ AS #1
4280 FIELD #1 , 12 AS A$(1), 12 AS A$(2), 12 AS A$(3),

202 Sec. 8.5

12 AS A$(4),12 AS A$(5),12 AS A$(6), 12 AS
A$(7), 12 AS A$(8), 12 AS A$(9), 12 AS A$(10)

4290 GOSUB 4400: 'Read Old titles
4300 RETURN
4400 'Read old titles
4410 GET #1,1
4420 FOR J=1 TO 10
4430 TITLE$(J)=A$(J)
4440 NEXT J
4450 RETURN
4500 'Display entry
4510 CLS
4520 PRINT: 'Advance to 2nd line
4530 GOSUB 4400: 'Read titles
4540 IF DISPLAYENTRY > LOF(1)/128 THEN 4680:

'Non-existant record
4550 GET #1, DISPLAYENTRY
4560 FOR ITEMNUMBER=1 TO STRINGFIELDS
4570 ENTRY$(ITEMNUMBER)=A$(ITEMNUMBER)
4580 PRINT TITLES(ITEMNUMBER);

TAB(21) ENTRY$(ITEMNUMBER)
4590 NEXT ITEMNUMBER
4600 FOR ITEMNUMBER=6 TO 5+NUMERICFIELDS
4610 IF A$(ITEMNUMBER)="" THEN4620 ELSE 4640
4620 PRINT TITLE$(ITEMNUMBER)
4630 GOTO 4660
4640 ENTRY(ITEMNUMBER)=CVS(A$(ITEMNUMBER))
4650 PRINT TITLE$(ITEMNUMBER);

TAB(21) ENTRY(ITEMNUMBER)
4660 NEXT ITEMNUMBER
4670 LOCATE 1, 1
4680 RETURN
4700 'Display and Search Menu
4710 CLS
4720 PRINT "DISPLAY AND SEARCH MENU"
4730 PRINT: PRINT
4740 PRINT "1. DISPLAY ENTRY WITH GIVEN NUMBER"
4750 PRINT "2. DISPLAY CONSECUTIVE ENTRIES"
4760 PRINT "3. SEARCH"
4770 PRINT
4780 INPUT "ACTIVITY(1-3)" ;REPLY
4790 RETURN
4800 'Display entry with given number
4810 CLS
4820 PRINT: 'Advance to 2nd Line
4830 INPUT "Number of entry to display";

DISPLAY ENTRY
4840 DISPLAYENTRY=DISPLAYENTRY+1
4850 IF DISPLAYENTRY > LOF(1)/128 THEN 4890
4860 GOSUB 4500

An Application of Random Access Files 203

4870 INPUT " TO CONTINUE, HIT ENTER KEY";REPLY$
4880 IF REPLY$="" THEN 4790 ELSE 4670
4890 RETURN
4900 'Display consecutive entries
4910 CLS
4920 PRINT: 'Advance to 2nd Line
4930 INPUT "NUMBER OF FIRST ENTRY TO DISPLAY";

DISPLAYENTRY
4940 DISPLAYENTRY=DISPLAYENTRY+1
4950 IF DISPLAYENTRY > LOF(1)/128 THEN 5020
4960 GOSUB 4500
4970 LOCATE 1, 1
4980 INPUT "DISPLAY NEXT ENTRY=O,RETURN TO

MAIN MENU=1 "; REPLY
4990 I F REPLY=1 THEN 5020
5000 DI SPLAYENTRY=DISPLAYENTRY+1
5010 GOTO 4950
5020 RETURN
5100 'Search
5110 CLS
5120 INPUT " ITEM NUMBER TO SCAN";ITM
5130 PRINT "LOOK FOR ITEM NUMBER"; !TM;" EQUAL TO";
5140 IF ITM<6 THEN INPUT MATCHSTRING$
5150 IF ITM>5 THEN INPUT MATCHNUMBER
5160 L=LEN(MATCHSTRING$):

'L=Length of the match string
5170 MATCHSTRING$=MATCHSTRING$+SPACE$(12-L) :

' Add blanks
5180 LNGTH=LOF(1)/ 128
5190 FOR J=2 TO LNGTH
5200 GET #1, J
5210 IF ITM > 5 THEN A=CVS(A$(ITM))

ELSE A$=A$(ITM)
5220 IF ITM < 6 AND A$=MATCHSTRING$

THEN GOSUB 5300
5230 IF ITM > 5 AND A=MATCHNUMBER

THEN GOSUB 5300
5240 NEXT J
5250 RETUR N
5300 'Response to a match
5310 CLS
5320 LOCATE 1, 1
5330 PRINT "M ATCH IN ENTRY"; J-1
5340 INPUT " Do You Wish to Di sp Lay

Entry (1 =Yes,O=No) "; REPLY
5350 IF REPLY=1 THEN 5360 ELSE 5400
5360 DISP LAY ENTRY=J
5370 GOSUB 4500
5380 INPUT "TO CONTINUE, HIT ENTER KEY"; REPLY$
5390 IF REPLY$="" THEN 5400 ELSE 5380
5400 RETUR N

204 Sec. 8.6

Note that the fields of the file records are all 12 characters wide. This is to
accommodate the titles in record 1. Since we do not specify a record length,
BASIC assumes that the records are 128 characters long. We are using 120 (12
characters per field x 10 fields) of these characters. If you wish, you may rede
sign this program to accommodate more data items and longer string items
and titles. However, if you use more than 128 characters per record, it will be
necessary to initialize BASIC to allow for a sufficiently large random access file
buffer.

Exercises

1. Type in the list manager program.
2. Use the list manager program to create a Christmas card list.
3. Practice using the search feature to locate particular data items.

8.6 Sorting Techniques

In the preceding sections, we have discussed the mechanisms to create, read,
and write data files. In this section, we discuss the organization of data within
such files.

If a data file is to be of much use, we must be able to easily access its data.
At first this might seem like a simple requirement. After all, we can always
search through a data file , examining records until we find the one we want.
Unfortunately, this is just not always possible . Until now, we have been working
with rather short data files. However, many applications require dealing with
data files containing thousands or even tens of thousands of records. When a
data file is large , even the great speed of the computer is insufficient to guaran
tee a speedy search. Indeed, if we are required to search through an entire file
for a piece of data , we might be required to wait for hours! For this reason (as
well as others), we usually organize the contents of a file in some way, so that
access to its data is improved. Here are some examples of common file
organizations:

1. A file of data on customers may be arranged in alphabetical order,
according to the customer name.

2. A mailing list may be arranged according to ZIPCODE.
3 . An inventory list might be arranged according to part number.
4. A credit card company most likely arranges its customer account files

according to their credit card number.
In each example , the records in the data file are arranged in a certain

order, based on the value of a particular field in the record (name field ,
ZIPCODE field , part number field, card number field). In maintaining such files ,
it is essential to be able to arrange the records in the desired order. The pro
cess of arranging a set of data items is called sorting. Actually, sorting is an
extremely important topic to computer programmers and has been the subject
of many research papers and books. In this section, we will give an introduction
to sorting by describing one of the more elementary sorting techniques-the
bubble sort.

Sorting Techniques 205

Let's begin by stating our problem in simple terms. Let's suppose that we
wish to arrange the records of a file according to a particular field , say field 1.

PROBLEM: Arrange the records so that the values in field 1 are in ascending
order.

For the sake of our initial discussion, let's suppose that the field values are
numbers. (Later, we will deal with fields containing strings.)

Let's set up arrays A() and B() as follows: Read the various values of field
1 into the array A().

A(1) = the value of field 1 for record 1,
A(2) = the value of field 1 for record 2,
A(3) = the value of field 1 for record 3 ,

and so forth. We wish to rearrange the records according to certain rules.
Because the actual records may be quite long, we will deal only with the con
tents of field 1. In order to keep track of the record to which a particular field
value belongs, we will use the array B() . That is ,

B(l) = the record number for the field value A(l) ,
B(2) = the record number for the field value A(2) ,
B(3) = the record number for the field value A(3),

and so forth. Assume that we initially read the values into array A() according
to increasing record number. Then we initially have

B(l) = 1, B(2) = 2, B(3) = 3,

The Bubble Sort Procedure

The bubble sort procedure allows you to arrange a set of numbers in
increasing order. It involves repeatedly executing a simple reordering process
that involves reordering consecutive items. Each repetition of the process is
called a pass . Let's illustrate the procedure to arrange the following list of
numbers in increasing order:

90, 38, 15, 48 , 80, 1
Pass 1. Start from the right end of the list. Compare the adjacent numbers. If
they are out of order, switch them. Otherwise leave them alone. Continue this
procedure with each pair of adjacent numbers , proceeding from right to left.
Here are the results:

90, 38, 15, 48, 1, 80 (1 < 80 so the pair 80,1 is
reversed)

90, 38, 15, 1, 48, 80 (1 < 48 so the pair 48,1 is
reversed)

90, 38, 1, 15, 48, 80 (1 < 15 so the pair 15,1 is
reversed)

90, 1, 38, 15, 48, 80 (1 < 38 so the pair 38,1 is
reversed)

1, 90, 38, 15, 48, 80 (1 < 90 so the pair 90,1 is
reversed)

206 Sec. 8.6

This is the end of Step 1. Note that the number 1 has assumed its correct place
in the list.
Pass 2. Apply the procedure of Step 1 to the rightmost five numbers of the
current list.

1, 90, 38, 15, 48, 80 (48 < 80 so no exchange)
1, 90, 38, 15, 48, 80
1, 90, 15, 38,48, 80
1, 15, 90,38,48,80

Note that the number 15 has now been moved to its proper position on the list.
Pass 3. Apply the procedure of Step 1 to the rightmost four numbers of the
current list.

1, 15, 90,38,48,80
1, 15, 90,38,48, 80
1, 15, 38, 90,48,80

Pass 4. Apply the procedure of Step 1 to the rightmost three numbers of the
current list.

1, 15,38,90,48, 80
1, 15, 38,48,90, 80

Pass 5. Apply the procedure of Step 1 to the rightmost two numbers of the
current list.

1, 15, 38, 48,80,90
The list is now in order.

Note the following characteristic of the bubble sort procedure. At each
step, the smallest remaining number is moved to its proper position in the list.
Suppose that we view the original list as written vertically:

90
38
15
48

1
80

Then at each step, the least number in the remaining list moves to its proper
level in the list. Think of each number as a bubble under water, whose buoy
ancy is determined by the value of the number. Then at each step, a bubble
moves up as far as it can toward the surface. This is the reason for the name
bubble sort .

We have carried out the manipulations in the above example in excruciat
ing detail to aid us in writing a correct program to implement the bubble sort
procedure. Let's suppose that the items to be ordered are stored in the array
A() of size N. Here is a program that carries out the bubble sort procedure.

200 'Bubble Sort Subroutine
210 FOR 1=2 TON
220 FOR J=N TO I STEP -1
230 IF A(J-1) > A(J) THEN SWAP A(J-1), A(J)
240 NEXT J
250 NEXT I
260 RETURN

Sorting Techniques 207

Note that we have written this program as a subroutine to be included in a
larger program. Note that the DIM statement for the array A() as well as the
number N of numbers to be sorted must be set in the larger program. You may
test this program with the sequence of numbers 100, 99, 98, 97, 96, ... , 1 by
inserting the lines of code:

10 DIM A(100)
20 N=100
30 FOR J=1 TO N
40 A(J)=101-J
50 NEXT J
60 GOSUB 200
70 FOR J=1 TO 100
80 PRINT J, A(J)
90 NEXT J
100 END

We may use this routine to infer some interesting characteristics of sort
routines. Here is a set of run times for various values of N, using the sequence
N, N-1 , N-2, ... , 1. (This is the worst case since interchanges are required at
each step.)

Value of N

N=lO0
N=50
N=20
N=lO

Run Time for Bubble Sort

67 seconds
17 seconds

4 seconds
1 second

First note that , with only 100 items to be sorted, the run time is already
substantial. Second, note the way that the run time increases as the number of
items increases. It appears that if the number of items is doubled then the run
time increases by a factor of four. Similarly, multiplying the number of items by
three increases the run time by nine. Generally, in this worst-case scenario,
multiplying the number of items by k multiplies the run time by k2

• On average,
the run times are not this bad. However, we have chosen a particularly bad
case to illustrate the manner in which sorting times quickly become
unmanageable.

One of the principal problems with our bubble sort procedure is the fact
that it is written in interpretive BASIC. In order to do any serious sorting, it is
necessary to compile the program into machine language. This may be done
using the BASIC compiler.

Let's return to our original problem, namely that of sorting the records of
a file. Let's use the bubble sort procedure to sort the array A(). However, at
each interchange , we wi ll interchange the corresponding elements of the array
B(). At the end of the subroutine , the array A() will be in ascending order and
B(J) will equal the number of the record from which A(J) was taken. Here is the
program:

208 Sec. 8.6

200 'Bubble Sort Subroutine for File Records
210 FOR !=2 TO N
220 FOR J=N TO I STEP -1
230 IF A(J-1) > A(J) THEN SWAP A(J-1),

A(J): SWAP B(J-1),B(J)
240 NEXT J
250 NEXT I
260 RETURN

The array B() may be stored in a file and used to read out the records of the
file according to the increasing order of the particular fi eld.

The bubble sort procedure performs particularly poorly for data that is
almost in order and is sorted into the correct order by one of the early passes .
The procedure as stated above has no way of knowing that that data is already
in order and that no further sorting is necessary. Let's now improve the bubble
sort algorithm by building a test into each pass that will determine whether any
further sorting is necessary.

Our test is based on the value of a variable SORTFLAG. Initially, we set
SORTFLAG equal to 0. During each pass, we set SORTFLAG equal to 1
when an interchange takes place . At the end of the pass, we examine the
value of SORTFLAG. If SORTFLAG is 0, then no interchange took place and
the algorithm is terminated. Otherwise , SORTFLAG is set equal to 0, and the
algorithm goes on to the next pass. Here is the code for the modified bubble
sort routine.

200 'Modified Bubble Sort Subroutine
210 SORTFLAG=O
220 FOR !=2 TON
230 FOR J=N TO I STEP -1
240 IF A(J-1) > A(J) THEN SWAP A(J-1), A(J):

SORTFLAG=1
250 NEXT J
260 IF SORTFLAG=O THEN I=N ELSE SORTFLAG=O
270 NEXT I
280 RETURN

Note the logic in line 260. If SORTFLAG is equal to 0, then the loop variable I
is set equal to N. In this case, the NEXT I in line 270 causes the I loop to
terminate. Otherwise, SORTFLAG is set equal to O and the next value of I is
considered.

TEST YOUR UNDERSTANDING 1
Compare the times required by both the original and modified bubble
sort routines in sorting the following list of numbers into ascending order:

1, 2,3,~5, ... ,95, 100,99,98, 97,96

BASIC File Commands 209

In this section, we have only scratched the surface of the subject of sorting.
For an extensive treatment, see Algorithms+ Data Structures= Programs by
Niklaus Wirth, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1976.

Exercises

1. Write a program to alphabetize the elements of the array A$() using
the bubble sort procedure.

2. Test the program of Exercise 1 using the array A$(1)= "Z" ,
A$(2)="Y", , A$(26)="A" .

3. Write a program that creates an array of N random numbers, where
N is given in an INPUT statement. The program should arrange the
array in increasing order and should use the clock to time the opera
tion. Make a table of sort times for various values of N. (Be sure to
use RANDOMIZE to create non-repetitive arrays.)

4. Write a program that determines the smallest element in field 1 in the
various records of the file "TEST". (Assume that the file is 25600
bytes long, the record length is 128 bytes, and field 1 is 4 bytes.

8. 7 BASIC File Commands
Cartridge BASIC has a number of useful commands which you may use to
perform various manipulations on files.

The Directory

You may request , from within BASIC, a directory of the files on a given
diskette. This may be done using the FILES command. For example, to list all
the files on the current diskette , type

FILES

and press ENTER This command is similar to the DOS command DIR, except
that this command is used within BASIC.

The FILES command is very versatile. You use it to provide a listing of all
files matching a given filespec. For example, to list all files having an extension
.BAS on drive B:, use the command:

FILES "B:*.BAS"

Similarly, to list all files on drive B: , use the command:

FILES "B:*.*"

Note that this last command may be abbreviated to:

FILES 11 8: 11

210 Sec. 8.7

TEST YOUR UNDERSTANDING 1 (answer on page 213)
Write a command that lists all files on the current drive with an extension
that begins with the letter B.

Erasing Files
You may erase files using the command KILL The format of this com

mand is:

KILL <file specification>

For example, to erase the file EXAMPLE.TXT, use the command:

KILL "EXAMPLE.TXT"

To erase all files on the diskette in drive B: , use the command:

KILL"*·*"

This last form of the KILL command is very dangerous. You might be erasing
some files you don 't really want to erase. Use this form of the KILL command
with some care.

Note that the KILL command may be used to erase program files as well
as data files .

In order to KILL a file , you must include any file name extension in the file
name. Be careful here. If the file is a BASIC program and if you saved it with
out specifying an extension, BASIC automatically added the extension BAS. In
order to specify the file name for the KILL command, you must include the
extension BAS.

TEST YOUR UNDERSTANDING 2 (answer on page 213)
Write BASIC commands to erase the following files :

a. The BASIC program named "COLORS"
b. The BASIC program "INVOICE.001"

Renaming a File
You may rename a file by using the NAME command. To change the

name of ROULETTE to GAME, we use the command:

NAME "ROULETTE" AS "GAME"

BASIC File Commands 211

Note that the old name always comes first , followed by the new name. An error
will occur if either ROULETTE doesn't exist or if there is already a file on the
diskette with the name GAME.

To rename a program file, you must include any file name extension in the
old file name. Be careful here . If the old file is a BASIC program, and if you
saved it without specifying an extension, BASIC automatically added the exten
sion BAS. To specify the file name for the NAME command, you must include
the extension BAS.

Saving Programs
As we learned in Chapter 2, you may save the current program on disk

ette , using the SAVE command. Let's take this opportunity to point out a few
additional features of this command. BASIC allows a program to be saved in
any of three alternate formats-compressed format, ASCII format , and pro
tected format.

Compressed Format This is the format we have used to save programs
up till now. In this format, the various words of BASIC (LET, PRINT, IF, THEN,
etc.) are reduced to a numerical shorthand, which allows the program to be
stored in reduced space. The compressed format is also called tokenized .

ASCII Format In ASCII format , the program is stored letter for letter as
you typed it. This requires more diskette space. However, it allows the program
to be MERGEd and CHAIN MERGEd. (See below.) Also , a program file must
be saved in ASCII format if it is to be used as a source code file for the BASIC
compiler.

To save a program in ASCII format , use the command

SAVE <filespec>, A

For example, to save the program TAXES on the diskette in drive B: in ASCII
format , we could use the command

SAVE "B: TAXES" ,A

Protected Format Once a program has been saved in protected format , it
may not be listed. This provides a mild degree of protection against snoopers.
To save TAXES on drive B: in binary format , we could use the command

SAVE "B:TAXES",P

BASIC provides no way to translate a program from binary back into a listable
format , so use this format with some care.

Merging Programs
BASIC has the ability to merge the program currently in RAM with any

other program on a diskette. This is especially useful in inserting standard sub-

212 Sec. 8.7

routines into a program and is accomplished using the MERGE command. For
example, to merge the current program with the program PAYROLL we use
the command:

MERGE II PAYROLL II

Suppose the program currently in RAM contained lines 10, 20, 30, and
100, and PAYROLL contained lines 40, 50, 60, 70, 80, 90, and 100. The
merged program would contain the lines 10, 20, 30, 40, 50, 60, 70, 80, 90,
100. Line 100 would be taken from PAYROLL. (The lines of PAYROLL would
replace those of the current program in case of duplicate line numbers.) To use
the merge feature , the program from diskette must have been SAVEd in ASCII
format. In the case of the above example, the command that SAVEd PAY
ROLL must have been of the form:

SAVE "PAYROLL", A

In case PAYROLL was not SAVEd using such a command, it is first necessary
to LOAD "PAYROLL" and resave it using the above command. (Watch out! If
you type in a program, say OX as an example, to merge with PAYROLL,
remember to save it before giving the MERGE command. If you don't, you will
lose OX.)

TEST YOUR UNDERSTANDING 3 (answer on page 213)
a. Save the following program in ASCII format under the name GHOST.

10 PRINT 5+7
100 END

b. Type in the program

30 PRINT 7+9
40 PRINT 7-9

c. MERGE the programs of a. and b.

Exercises (answers on page 367)

1. a. Write a program that computes l2 + 22 + ... + 502
.

b. SAVE the program under the name SQUARES. Use the SAVE.
A command.

2. a. Write a program that computes l3 + 2'1 + ... + 30\ Write this in
such a way that the line numbers do not overlap with those of the
program in la.

b. MERGE the program of la with the program of 2a.
c. LIST the MERGEd program.

BASIC File Commands 213

d. RUN the MERGEd program.
e. SAVE the MERGEd program under the name COMBINED.

3. Recover the program of 2a without retyping it.
4. Erase the program SQUARES of la.

ANSWERS TO TEST YOUR UNDERSTANDING
1: FILES "*.B*"
2: a. KILL "COLORS.BAS"

b. KILL "INVOICE.OO1"
3: a . Type in the program, then give the command: SAVE

"GHOST" ,A
b. Type NEW followed by the given program.
c. Type MERGE "GHOST" .

9

STRING MANIPULATION

In this chapter we discuss some of the fine points about strings. You may
view this discussion as a prelude to our discussion of word processing in Chap
ter 11.

9 .1 ASCII Character Codes

Each keyboard character is assigned a number between 1 and 255. The code
number assigned is called the ASCII code of the character. For example , the
letter "A" has ASCII code 65, while the letter "a" has ASCII code 97. Also
included in this correspondence are the punctuation marks and other keyboard
characters. As examples, 40 is the ASCII code of the open parenthesis "(" and
62 is the ASCII code of the "greater than" symbol >.

Even the keys corresponding to non-printable characters have ASCII
codes. For example, the space bar has ASCII code 32, and the backspace key, .
ASCII code 8. The printable characters have ASCII codes between 32 and 127.
Table 9-1 lists all these characters and their corresponding ASCII codes.

ASCII Code
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Character
blank

"

$
%
&

+

I
0
1
2

ASCII Code

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Character

3
4
5
6
7
8
9

<
=
>
?

@
A
B
C
D

216 Sec. 9.1

69 E 99 C

70 F 100 d
71 G 101 e
72 H 102 f
73 I 103 g
74 J 104 h
75 K 105
76 L 106 i
77 M 107 k
78 N 108 1
79 0 109 m
80 p 110 n
81 Q 111 0

82 R 112 p
83 s 113 q
84 T 114 r
85 u 115 s
86 V 116 t
87 w 117 u
88 X 118 V

89 y 119 w
90 z 120 X

91 [121 y
92 \ 122 z
93 l 123 {
94 I\ 124 I

I

95 125 }
96 126
97 a 127 Q
98 b

Table 9-1. ASCII character codes for printable characters.

We will discuss the ASCII control codes 0-31 in Section 9.3. For now,
however, let's call attention to just two:

ASCII Code Name Action
10 Line Feed Moves cursor down

one line
13 Carriage Return Moves cursor to the

leftmost position on
the current line

Pushing the ENTER key generates both a carriage return and a line feed . That
is , ENTER generates the two ASCII codes 13 and 10.

ASCII Character Codes 217

The computer uses ASCII codes to refer to letters and control operations.
Any file, whether it is a program or data, may be reduced to a sequence of
ASCII codes. Consider the following address:

John Jones
2 S. Broadway

As a sequence of ASCII codes, it would be stored as

74,111,104, 110,32, 74,111,110,101,115, 13, 10
50,32,83,46,32,66,114,111,,97,100,119,97, 121, 13,10

Note that the spaces are included (number 32) as are the carriage returns and
line feeds (created by pressing ENTER) at the end of each line (numbers 13
and 10).

ASCII codes allow us to represent any text generated by the keyboard as a
sequence of numbers. This includes all formatting instructions like spaces, car
riage returns, upper- and lowercase letters, and so forth. Moreover, once a
piece of text has been reduced to a sequence of ASCII codes, it also may be
faithfully reproduced on the screen or on a printer.

TEST YOUR UNDERSTANDING 1 (answer on page 219)
Write a sequence of ASCII codes which will reproduce this ad:

FOR SALE: Beagle puppies. Pedigreed.
8 weeks. $125.

You may refer to characters by their ASCII codes by using the function
CHR$. For example , CHR$(74) is the character corresponding to ASCII code
74 (uppercase J); CHR$(32) is the character corresponding to ASCII code 32
(space) . The PRINT and LPRINT instructions may be used in connection with
CHR$. For example , the instruction

10 PRINT CHR$(74)

will display an uppercase J in the first position of the first print field.

TEST YOUR UNDERSTANDING 2 (answer on page 219)
Write a program which will print the ad of TEST YOUR UNDERSTAND
ING 1 from its ASCII codes.

To obtain the ASCII code of a character, use the instruction ASC . For
example, the instruction

20 PRINT ASC("B")

218 Sec. 9.1

will print the ASCII code of the character "B", namely 66. In place of "B", you
may use any string. The computer will return the ASCII code of the first charac
ter of the string. For example, the instruction

30 PRINT ASC(A$)

will print the ASCII code of the first character of the string A$.

TEST YOUR UNDERSTANDING 3 (answer on page 219)
Determine the ASCII codes of the characters $, g, X, and + without look
ing at the chart.

ASCII codes have many uses in writing even the most simple programs. For
example, suppose that you wish to print out a quotation mark on the screen. To
do so, you must create a string which consists of a quotation mark. The usual way
to define a string is to enclose it in quotation marks. However, if you attempt to do
that in this case, you arrive at: " " " Unfortunately, here is how BASIC looks at
that string: The first quotation mark tells BASIC that a string is about to begin. The
second quotation mark tells BASIC that the string just ended. The third quotation
mark is ignored! So, for example, the command:

PRINT 1111

will print nothing on the screen!
The ASCII codes provide a way out of this dilemma. The ASCII code of "

is 34, and CHR$(34) is a string consisting of a single quotation mark. So we
may print " on the screen with the statement:

PRINT CHR$(34)

In a similar fashion, ASCII codes may be used to include carriage returns
and line feeds within a string. Note that you cannot type a string which includes
carriage returns or line feeds from the keyboard. Hitting ENTER is a signal for
BASIC to accept the line just typed. However, it will not include the carriage
return and line feed as part of the string. This must be done using ASCII codes.
(More about how this is done in Section 2.)

Exercises (answers on page 367)

1. Determine the ASCII codes of the following characters without look
ing at the table: A, a, B, b, C, c, D, d .

2 . Generalize from Exercise 1 to state a relationship between the ASCII
code of a capital letter and the ASCII code of the corresponding
lowercase letter (that is , between A and a).

3. Display the sequence of ASCII codes corresponding to the following
sentence.

Operations on Strings 219

He said to me , "The PCjr is an excellent computer".

ANSWERS TO TEST YOUR UNDERSTANDING
1: 70,79,82,32,83,65,76,69,58,32,66,101,97,103,108,

101,32,112,117,112,11 2,105,101,115,46,32,80,101,
100,105,103,114,101,1 01,100,46,13,10,56,32,119,
101,101,107,115,46,32,36,49,50,53,46,13,10

2: 10 DATA 70,79, (insert data from 1)

3: 10
20
30
40
50
60
70

11 DATA
12 DATA
20 FOR J=1 TO 44
30 READ A
40 PRINT CHR$(A) ;
50 NEXT J
60 END

DATA $,g,X,+
FOR J=1 TO 4

READ A$
B=ASC(A$)
PRINT A$, B

NEXT J
END

9 .2 Operations on Strings

In earlier chapters , our strings contained only printable characters. Let us now
extend that definition to allow characters corresponding to any ASCII code. So,
for example , a string may now include line feeds, carriage returns , and any of
the other control characters we soon will define. The control characters in a
string are treated just like any of the other characters.

BASIC lets you perform a number of different operations on strings. The
most fundamental operation is string addition (or, in computer jargon,
string concatenation). Suppose that A$ and B$ are strings, with
A$ = "word" and B$ = "processor" . Then the sum of A$ and B$, denoted
A$+ B$, is the string obtained by adjoining A$ and B$, namely:

"wordprocessor"

Note that no space is left between the two strings. To include a space , suppose
that C$ = " " . C$ is the string which consists of a single space. Then
A$+ C$ + B$ is the string

"word processor"

220 Sec. 9.2

TEST YOUR UNDERSTANDING 1 (answer on page 225)
If A$= "4" and B$ = "7", what is A$+ B$?

TEST YOUR UNDERSTANDING 2 (answer on page 225)
Set A$ equal to the string:

He said, "No". <carriage return> < line feed>

You may compute the length of a string by using the LEN function. For
example,

LEN("B0UGHT")

is equal to six, since the string "BOUGHT" has six letters. Similarly, if A$ is
equal to the string

"Fami Ly Income"

then LEN(A$) is equal to 13. (The space between the words counts!) Note that
carriage returns, line feeds, and other control characters count in the length.

Here is an application of the LEN instruction.

Example 1. Write a program which inputs the string A$ and then centers it on
a line of the display. (Assume an 80-character line .)
Solution. A line is 80 characters long, with the spaces numbered from 1 to 80.
The string A$ takes up LEN(A$) of these spaces, so there are 80-LEN(A$)
spaces to be distributed on either side of A$. The line should begin with half of
the 80-LEN(A$) spaces, or with (80-LEN(A$)) /2 spaces. So we should tab to
column (80-LEN(A$)) / 2 + 1. Here is our program.

10 INPUT A$
20 CLS
30 PRINT TAB((80-LEN(A$))/2+1) A$
40 END

TEST YOUR UNDERSTANDING 3 (answer on page 225)
Use the program of Example 1 to center the string "THE IBM PCjr".

It is possible to dissect strings using the three instructions LEFT$,
RIGHT$, and MID$. These instructions allow you to construct a string con
sisting of a specified number of characters taken from the left, right, or middle
of a designated string. Consider the instruction

10 A$=LEFT$("L0VE",2)

Operations on Strings 221

The string A$ consists of the two leftmost characters of the string "LOVE" .
That is , A$= "LO". Similarly, the instructions

20 B$="tennis"
30 C$=RIGHT$(B$,3)

set C$ equal to the string consisting of the three rightmost letters of the string
B$, namely C$ = "nis". Similarly, if A$= "Republican", then the instruction

40 D$=MID$(A$,5,3)

sets D$ equal to the string which consists of the three characters starting with
the fifth character of A$, which is D$ = "bli".

TEST YOUR UNDERSTANDING 4 (answer on page 225)
Determine the string constant:

RIGHT$(LEFT$("computer",4),3)

In manipulating strings, it is important to recognize the difference between
numerical data and string data. The number 14 is denoted by 14 ; the string
consisting of the two characters 14 is denoted " 14" . The first is a numerical
constant and the second a string constant. We can perform arithmetic using the
numerical constants. However, we cannot perform any of the character manip
ulation supplied by the instructions RIGHT$, MID$ and LEFT$. Such manip
ulation may only be performed on strings. How may we perform character
manipulation on numerical constants? BASIC provides a simple method. We
first convert the numerical constants to string constants by using STR$. For
example , the number 14 may be converted into the string " 14" using the
instruction:

10 A$=STR$(14)

As a result of this instruction, A$ has the value " 14". Note the blank in front of
the 14. This occurs because BASIC automatically leaves a space for the sign of
a number. If the number is positive, then the sign prints out as a space. If the
number is negative, then the sign prints out as a minus (-) . As another example ,
suppose that the variable B has the value 1.457. STR$(8) is then equal to the
string" 1.457".

To convert strings consisting of numbers into numerical constants, use
VAL Consider this instruction:

20 B=VAL<"3. 78")

This instruction sets B equal to 3. 78. You may even use VAL for strings consist
ing of a number followed by other characters. VAL will pick off the initial

222 Sec. 9.2

number portion and throw away the part of the string which begins with the first
non-numerical character. For example, VAL("12.5 inches") is equal to 12.5.

TEST YOUR UNDERSTANDING 5 (answer on page 225)
Suppose that A$ equals "5 percent" and B$ equals "758.45 dollars".
Write a program which starts from A$ and B$ and computes five percent
of $758.45.

The INSTR Statement
In some applications, it is necessary to search a string for a particular pat-

tern. Here are some examples of such searches:

Find the location of the first "A" in the string A$.
Find the location of the first period in the string B$.
Find the location of the first "1" in A$ occurring after the eighth character.
Does the sequence of characters "ABS" occur anywhere in the string A$?

All such searches are greatly simplified using the INSTR (= INSTRing)
function. This function may be used in either of two formats. The simplest is:

10 P=INSTR(A$,B$)

In response to this statement, P is set equal to the location of the first occur
rence of B$ in A$. For example, suppose that:

A$="This is a test of the INSTR statement."
B$="te"

In this case, the first occurrence of B$ in A$ is at the beginning of the word
"test". The location of the initial t is the eleventh character. So INSTR(A$,B$)
has the value 11.

If B$ does not occur in A$, then INSTR has the value zero. Therefore, to
determine whether the string "ABS" occurs in A$, we could use the program:

10 P=INSTR(A$,"ABS")
20 IF P=O THEN PRINT "ABS DOES NOT OCCUR"
30 IF P>O THEN PRINT "ABS OCCURS"

The second format of the INSTR statement allows you to begin the search
for B$ beginning with a designated location m. In this format the statement has
the form

P=INSTR(m ,A$,B$)

For example , if we wish the search for B$ to begin with the eighth character of
A$, we could use the instruction

Operations on Strings 223

P=INSTR(8,A$,B$)

Order Relations Among Strings
We arrange single characters in order of their respective ASCII codes. We

say that a character A$ is less than the character B$ provided that A$ comes
before B$ in the ASCII table . If A$ is less than B$, we write:

A$ <8$

For example , the following are valid inequalities among characters:
"A" < " B" ("A" has ASCII code 65,

" B" has ASCII code 66)
"a" < " b" ("a" has ASCII code 97,

"b" has ASCII code 98)
Note that arranging alphabetic characters in ascending order amounts to
arranging them in alphabetic order. However, the following additional compari
sons are valid and are not usually considered in alphabetic arrangements:

"A" < "a"
"O" < "a" ("O" has ASCII code 48)
" •" > " #" (" •" has ASCII code 42,

" # " has ASCII code 35)
" " < "O" (" " has ASCII code 32)
Strings having more than a single letter are compared as follows: First

compare first letters. If they are the same, compare second letters. If the first
two letters are the same, compare third letters. And so forth. For example ,
consider the two strings "Smith" and " SMITH" . Their first letters are the
same, so we compare their second letters " m" and "M", respectively. Accord
ing to their ASCII codes "M" comes before "m" , so:

"SMITH" < "Smith"

If the compared strings consist of only uppercase or only lowercase letters ,
then this comparison procedure will arrange the strings in the usual alphabetic
order. However, the procedure may be used to compare any strings . For
example:

Here is a bit of useful notation for strings: The notation A$ > = B$ means
that either A$> B$ or A$ = B$. Simply, this means that A$ either succeeds B$
in alphabetical order, or A$ and B$ are the same. The notation A$ < = B$ has
a similar meaning .

Using the above string order relation, we may design a modified bubble
sort procedure for sorting a string array A$() into increasing order. Here is the
subroutine:

224 Sec. 9.2

300 'Modified Bubble Sort Subroutine for Strings
310 SORTFLAG=O
320 FOR I=2 TON
330 FOR J=N TO I STEP -1
340 IF A$(J-1) > A$(J) THEN SWAP A$(J-1), A$(J):

SORTFLAG=1
350 NEXT J
360 IF SORTFLAG=O THEN I=N ELSE SORTFLAG=O
370 NEXT I
380 RETURN

When this routine is used to sort an array consisting only of uppercase or
only of lowercase letters, it will sort the array into alphabetical order. Here is an
example of this procedure .

Example 2. Write a program which alphabetizes the following list of words:
egg, celery, ball , bag, glove , coat, pants , suit , clover, weed, grass, cow, and
chicken.
Solution. We set up a string array A$(J) which contains these 13 words and
apply the bubble sort subroutine .

100 DIM A$(13)
110 DATA egg,celery,ball,bag , glove,coat
120 DATA pants, suit, clover, weed, grass
130 DATA cow, chicken
140 'Set up array A$
150 FOR J=1 TO 13
160 READ A$(J)
170 NEXT J
180 'Sort array A$()
190 GOSUB 300
200 'Print Sorted Array
210 FOR J=1 TO 13
220 PRINT A$(J)
230 NEXT J
240 END
300 'Modified Bubble Sort Subroutine for Strings
310 SORTFLAG=O
320 FOR !=2 TON
330 FOR J=N TO I STEP -1
340 IF A$(J-1) > A$(J) THEN SWAP A$(J-1), A$(J):

SORTFLAG=1
350 NEXT J
360 IF SORTFLAG=O THEN I=N ELSE SORTFLAG=O
370 NEXT I
380 RETURN

This program can be modified to make a program alphabetizing any collection
of strings . We will leave the details to the exercises.

Control Characters 225

Exercises (answers on page 368)
I

1. Use the program of Example 2 to alphabetize the following sequence
of words: justify, center, proof, character, capitalize, search, replace,
indent, store, and password.

2. Write a program which rewrites the addition problem 15 + 48 + 97 =
160 in the form

15
48
97

160

3. Write a program which inputs the string constants "$6718.49" and
"$4801.96" and calculates the sum of the given dollar amounts.

ANSWERS TO TEST YOUR UNDERSTANDING
1: "47"
2: A$="He said, "+CHR$(34)+"No"+CHR$(34)+". "+

CHR$(13)+CHR$(10)
3: Type RUN and press ENTER. When prompted, type in the

given string.
4: "omp"
5: 10 A$="5 percent":8$="758.45 dollars"

20 A=VAL(A$):B=VAL(B$)
30 PRINT A$,"0F",B$,"IS"
40 PRINT A*B*.01
50 END

9 .3 Control Characters
Table 9-2 contains a list of the control characters corresponding to ASCII codes
0-31. Some comments on the functions of the various codes are in order.

Code 000 (null) is exactly what its name suggests. It is a character which
does nothing. It often is used in communications, where a message will be
started with a string of nulls .

Codes 001-006 are graphics characters . You use them for games.

Code 7 (beep) beeps the speaker of the computer.

Code 8 (backspace) backspaces the cursor one space.

Code 9 (tab) moves the cursor to the next tab stop. BASIC automatically
places tab stops every five characters across the line.

226 Sec. 9.3

ASCII · Control

value Character character

000 (null) NUL
001 Q SOH
002 • STX
003 • ETX

. 004 ♦ EOT
005 + ENO
006 • ACK
007 (beep) BEL
008 a BS
009 (tab) HT
010 (line feed) LF
011 (home) VT
012 (form feed) FF
013 (carriage return) CR
014 n so
015 ◊ SI

016 ► OLE
017 ◄ DC1
018 * DC2
019 !! DC3
020 qr DC4
021 § NAK
022 - SYN
023 i ETB
024 t CAN
025 ~ EM
026 - SUB
027 - ESC
028 (cursor right) FS
029 (cursor left) GS
030 (cursor up) RS
031 (cursor down) us

*Coutesy of International Business Machi_nes Corpora!Ion.

Table 9-2. ASCII codes for control characters.

Code 10 {line feed) advances the cursor one line down.

Code 11 (home) positions the cursor at the upper left comer of the
screen.

Code 12 (form feed) advances the paper on the printer to the top of the
next page.

Control Characters 227

Code 13 (carriage return) returns the cursor to the leftmost position on
the current line.

Codes 14-27 are further graphics characters for use in displays.

Code 28 (cursor right) moves the cursor to the right one space.

Code 29 (cursor left) moves the cursor to the left one space.

Code 30 (cursor up) moves the cursor up one space.

Code 31 (cursor down) moves the cursor down one space.

To use the ASCII control codes, you PRINT them as if they were printable
characters. For example , to move the cursor one space up, use the statement

PRINT CHR$(30);

Note that the statement ended with a semicolon (;) . This is to prevent BASIC
from issuing a carriage return and line feed following the PRINT statement.
Otherwise , they would ruin the cursor positioning accomplished by control
character 30.

More on the Cursor
The ASCII codes controlling cursor motion allow you to position the cursor

relative to its current position. You may move the cursor to a specific position on
the screen using the LOCATE statement. The format of this statement is:

LOCATE row,column

For example, to position the cursor in column 5 of row 20, use the statement:

LOCATE 20,5

We can determine the column in which the cursor is currently located by
using the BASIC function POS(0). For example, if the cursor currently is
located in column 37, then POS(0) is equal to 37. The variable CSRLIN
always equals the number of the line in which the cursor currently is located.

For example, if the cursor currently is located in line 5, then CSRLIN is equal
to 5. You may use POS(0) and CSRLIN exactly as you would any other vari
ables in BASIC.

228 Sec. 9.3

TEST YOUR UNDERSTANDING 1 (answer on page 228)
Write a program to move the cursor two spaces to the right and two
spaces down.

Exercises (answers on page 368)

1. Print the string " HELLO" and then move the cursor to the H.
2. Write a program which asks the user for some input. In response to

an S, it moves the cursor to the left; in response to a D, it moves the
cursor to the right; in response to an E, it moves the cursor up; in
response to an X, it moves the cursor down. In response to any other
input, the program should do nothing.

3. Modify the program of Exercise 2 so that it accepts a series of cursor
moves of the type "SSDDXEEEESSSDDD".

4 . Practice moving the cursor to various positions on the screen.
5. Write a program moving the cursor to the bottom of the column in

which it currently resides.
6. Write a program moving the cursor to the left of the screen in the row

it is now on.

ANSWER TO TEST YOUR UNDERSTANDING
1: 10 PRINT CHR$(28);CHR$(28);CHR$(31);CHR$(31);

20 END

10

INTRODUCTION TO

GRAPHICS AND SOUND ON

THEIBMPCjr

The PCjr is capable of quite sophisticated graphics and sound. In this
chapter, we introduce you to these capabilities.

10.1 Graphics in Text Mode

When you first start BASIC, the screen is in text mode, in which the video
display can display only characters from the PCjr character set. (More about
tHat below.) In text mode, the display contains 25 rows of either 40 or 80 char
acters each. You may change from SO-character to 40-character width using the
WIDTH statement. The various character positions divide the screen into small
rectangles. Figure 10-1 shows the subdivision of the screen corresponding to
an SO-character line width.

The rectangles into which we have divided the screen are arranged in rows
and columns. The rows are numbered from 1 to 25, with row 1 at the top of
the screen and row 25 at the bottom. The columns are numbered from 1 to 80,
with column 1 at the extreme left and column 80 at the extreme right. Each
rectangle on the screen is identified by a pair of numbers , indicating the row
and column. For example , the rectangle in the 12th row and 16th column is
shown in Figure 10-2.

We may print characters on the screen using the PRINT and PRINT
USING instructions. For graphics purposes , it is important to be able to pre
cisely position characters on the screen. This may be done using the LOCATE
instruction. Remember that printing always occurs at the current cursor loca
tion. To locate the cursor at row x and column y, we use the instruction

100 LOCATE x, y

Example 1. Write a set of BASIC instructions to print the words " IBM PCjr
Computer" beginning at row 20, column 10.

230 Sec. 10.1

Figure 10-1. Screen layout for text mode (SO-character width).

15 If~l~~f ~lit l
·-· ·:.-- ... ·••-•·-·!--

Cl -· ···-·. ----o::I' --

. - - ··+-
.. -- . 1---l-·- . ~--+--~-!-

Clt---t--+--+
Mt---t----t-+-·

+--+--+----+--~-

~tt,Jli'
Cl
N

Ln Cl Ln

·- .' , ,.-~ .

Cl
N

i -~·
... ·, •·

, .. t· ...

Ln
N

0
00

-;s ,.._
L

' - •-
' - f -1

i ·-- ,_ __

. -~ '-i ~

-~-~ --·!--i--+-+--t--

Figure 10-2.

t

Graphics in Text Mode 231

' ,. , -

.. - ...

·• l

t -

_j __

··----l--
- .,_ .. _;_____ -- ._ _ .L

-- • • • ... • • . - L - •--. - i + ~ _, - t . ➔~-- • - --- - .I - ~--· ~-=ft--=-·--r 1 ! ·· • .. t ~-

~---+---- -4--••-------~------------~---------------~----.... ---........ -... 1---.--+--

Ln
0 N

,-
Ln 0

N
Ln
N

232 Sec. 10.1

Solution.

10 LOCATE 20,10
20 PRINT "IBM PCjr Computer"

Until now, we have printed only characters such as those found on a type
writer keyboard (letters, numbers, and punctuation marks). Actually, the PCjr
has a very extensive set of characters, including a collection of graphics charac
ters , as shown in Figure 10-3. Note that each character (including graphics
characters) is identified by an ASCII code. In Chapter 9, we introduced the
characters corresponding to ASCII codes 0-127. In Figure 10-3, we list the
characters corresponding to ASCII codes 128-255. For example, the character
with ASCII code 179 is a vertical line. To place this character at the current
cursor position, we use the instruction

30 PRINT CHR$(179);

Note the semicolon which prevents the PRINT statement from sending an
unwanted carriage return and line feed. (In most printing involving graphics,
you will want to use the semicolon.)

You may insert a graphics character into a program line by holding down
the ALT key and entering the character number on the numeric keypad (the
calculator-like numbers on the right side of the keyboard). This has the advan
tage that in a PRINT statement, you can see the character to be printed. For
example, the above statement line would appear on the screen as

30 PRINT I;

where the symbol I is entered from the keyboard by holding down ALT and
typing 179. In what follows , we will use the CHR$ notation to make clear the
code numbers of the various characters. However, in you own work, you
should use the ALT key to indicate graphics characters.

TEST YOUR UNDERSTANDING 1 (answer on page 237)
Write a set of instructions to print graphics character 179 in row 18, col
umn 22.

TEST YOUR UNDERSTANDING 2 (answer on page 237)
Write a program to display all 128 graphics characters on the screen.

We may use the graphics characters to build up various images on the
screen, as the next example shows.

Example 2. Write a program that draws a horizontal line across row 10 of the
screen. (Assume that you have a 40-column screen.)
Solution. Just in case the screen contains some unrelated characters, begin by
clearing the screen using the CLS instruction. Then print character 196 (a hori
zontal line) across row 10 of the screen. Here is the program:

ASCII
Value Character

128 c
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

158

159

160
161
162
163
164
165

u
e
a
a

a
a

A
e

e

e

A

I\
E
Cf

" 0

0

0
" u
-u

y

0

u
c::

£

l
Pt

f

a
i

6
u
ii

N

Graphics in Text Mode 233

Figure 10-3. PCjr graphics and special characte rs.

ASCII
Value Character
166 i!

167
168
169
170
1 71
172

173
174
175
176
177

178
179
180
181
182
183
184

185
186
187
188
189
190
191

192
193
194
195

196
197
198

199
200
201
202
203

½

¼

((

))

I
--l
=j

-JI
71

=ii
II

=.J

d

-,

L

le

r,=

d.!c

ASCII
Value Character

204 I~
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

_IL
7r

--'-

jL

,r

IL

b

F

rr

*
=l=
__J

r

I
•
I
I
•
ex
{3
r
7r

I
er
µ

T

Q

e
11
0

00

0
E
n

±

ASCII
Value Character
242 ~

243
244
245
246
247
248
249
250
251
252

r
J

0

n

253 2

254 I

255 (blank 'FF')

234 Sec. 10.1

10 CLS
20 LOCATE 10, 1
30 FOR J=1 TO 40
40 PRINT CHR$(196);
50 NEXT J
60 END

Note that the semicolon in the PRINT statement causes the characters to be
printed in consecutive positions. Lines 30-60 may be abbreviated using the
STRING$ function. The function value STRING$(40,196) equals a string consist
ing of 40 copies of character 196. So lines 30-60 could be written more simply:

30 PRINT STRING$(40,196);

Example 3. Write a program that draws a vertical line in column 25 from row
5 to row 15. The program should blink the line 50 times.
Solution. The blinking effect may be achieved by repeatedly clearing the
screen. Here is the program:

10 CLS
20 FOR K=1 TO 50:'K CONTROLS BLINKING
30 FOR J=5 TO 15
40 LOCATE J,25
50 PRINT CHR$(179);
60 NEXT J
70 CLS
80 NEXT K

TEST YOUR UNDERSTANDING 3 (answer on page 237)
Write a program to draw a vertical line from row 2 to row 20 in column 8.

Profit

Month
Figure 10-4.

Examr le 4. Draw a pair of x- and y-axes as shown in Figure 10-4. Label the
vertica axis with the word " Profit" and the horizontal axis with the word
" Month." (Assume that you have a 40-column screen.)
Solution. The program must draw two lines and print two words. The only
real problem is to determine the positioning. The word "Profit" has six letters.

Graphics in Text Mode 235

Let's start the vertical line in the position corresponding to the seventh charac
ter column. We 'll run the vertical line from the top of the screen (row 1) to
within two character rows from the bottom. (On the next-to-last row, we will
place the word "month." We won't print in the last row, as this will cause some
of the material printed above to scroll off the screen!) The layout of the screen
is shown in Figure 10-5. Here is our program to generate the display.

10 WIDTH 40:CLS
20 LOCATE 1, 1
25 PRINT "Profit"
30 LOCATE 23 , 35
35 PRINT "Month"
40 FOR J=1 TO 23
50 LOCATE J, 7 : PRINT CHR$(179);
60 NEXT J
65 LOCATE 22 , 7: PRINT CHR$(192);
70 FOR J=8 TO 40
80 LOCATE 22 , J : PRINT CHR$(196);
90 NEXT J
100 GOTO 100

Note the infinite loop in line 100. This loop will keep the di.splay on the screen
indefinitely while the computer spins its wheels. To stop the program, press Fn
Break. To see the reason for the infinite loop, try running the program after
deleting line 100. Note how the Ok interferes with the graphics. The infinite
loop prevents the BASIC prompt from appearing on the screen.

Exercises (answers on page 369)

Draw the following straight lines. (Assume an SO-column screen width .)
1. A horizontal line completely across the screen in row 18.
2. A vertical line completely up and down the screen in column 17.
3. A pair of straight lines that divide the screen into four equal squares.
4. Horizontal and vertical lines that convert the screen into a tic-tac-toe

board.
5. A vertical line of double thickness from rows 1 to 24 in column 30.
6. A diagonal line going through the character positions (1,1) , (2,2), ...

(24,24).
7. A horizontal line with "tick marks" as follows:

(Hint: Look for a graphics character that will form the tick marks.)
8. A vertical line with tick marks as follows:

i
9. Display your name in a box formed with asterisks:

5Z

<i
oz

0
,--i

Q)
~

::I
Ol
u:
0
t::
ell 5l

..c u

-2
::i
0
J\
~
J\
ell

P..
(f)

Ol
0
Lf)
0
,--i

Q)
~

::I
Ol

u:
5

,--i

ci
,--i

0
Q)

if)

"° M
N

* Your Name *

10. Display a number axis as follows :

Colors and Graphics Modes 237

0 10 20 30 40 50 60 70 80 90 100

11. Write a progrpm to display a graphics character that you specify in
an INPUT statement.

12. Create a display of the following form:
Cost
Price
Index

J F M A M J J A S O N 0

Month

ANSWERS TO TEST YOUR UNDERSTANDING
1: 10 LOCATE 18,22

20 PRINT CHR$(179)
2: 10 FOR J=128 TO 255

20 PRINT CHR$(J); 11 11
; • ' ONE SPACE BETWEEN CHARS

30 NEXT J
40 END

3: 10 CLS
20 FOR J=2 TO 20
30 LOCATE J,8: PRINT CHR$(179);
40 NEXT J
50 END

10.2 Colors and Graphics Modes

There are 7 screen modes on the PCjr, as listed below:

Screen Mode
0
1
2
3

Description
text
medium-resolution, 4 colors
high-resolution, 2 colors
low-resolution, 16 colors

238 Sec. 10.2

4
5
6

medium-resolution, 4 colors
medium-resolution, 16 colors
high-resolution , 4 colors

So far, we have discussed only text mode. For the rest of this chapter, let's
focus on the six graphics modes.

Low-Resolution Graphics In this mode, the screen is divided into 200
rows of 160 rectangles each. You may display up to 16 colors simultaneously.

Medium-Resolution Graphics In these modes, the screen is divided
into 200 rows of 320 rectangles each. You may display up to 16 or 4 colors,
depending on the mode.

High-Resolution Graphics In this mode , the screen is divided into 200
rows of 640 rectangles each. You may display up to four colors simultaneously,
or you may disable color and use only "black and white."

You may select between the various display modes by using the SCREEN
command. This command has the form:

SCREEN <mode>

For example , to choose high-resolution, 2-color mode , you would give the
command

SCREEN 2

You may use the SCREEN command to switch from one display mode to
another, either within a program or by using a keyboard command. Note, how
ever, that the SCREEN command automatically clears the screen. When
BASIC is started, the display is automatically in text mode. (SCREEN 0)

Graphics modes 5 and 6 are available only in Cartridge BASIC and only in
a PCjr with 128k of RAM. Graphics modes 5 and 6 require you to reserve
graphics memory using the CLEAR statement:

CLEAR , ,,32768

This statement should precede the SCREEN statement. If you attempt to enter
graphics mode 5 or 6 without reserving graphics memory, BASIC wi ll report an
Illegal Function Call.

Pixels
Each of the small screen rectangles (more properly, dots) is ca lled a pixel

(="picture element"). You may color each pixel on an individua l basis.

Graphics Coordinates Each pixel is specified by a pair of coordinates (x,y),
where x is the column number and y is the row number. Note the following
important facts:

1. Rows and columns are numbered beginning with O (not 1, as in text
mode) . In low-resolution graphics mode, the rows are numbered from Oto 199

Colors and Graphics Modes 239

and the columns are numbered from Oto 159. In the medium-resolution graph
ics mode , the rows are numbered from 0 to 199 and the columns from 0 to
319. In high-resolution graphics mode, the rows are numbered from Oto 199
and the columns from Oto 639.

2. Coordinates in graphics mode are specified with the column (x-coordi
nate) first. This is the opposite of the coordinates in text mode. (For example ,
the LOCATE statement requires the row first.)

y

_____ x _ ____ , (x,y)

Figure 10-6. Coordinates in graphics mode.

Relative Coordinates in Graphics Mode In graphics mode , the cursor is
not visible . Instead, the computer keeps track of the last point referenced.
This is the point whose coordinates were most recently used in a graphics state
ment. You may specify the position of new points by giving coordinates relative
to the last point referenced. Such coordinates are called relative coordi
nates. Relative coordinates always are preceded by the word STEP. For exam
ple, suppose that the last point referenced is (100,75) . Then here is a point
specified by relative coordinates

STEP (20,30)

This is the point that is 20 units to the right and 30 units up from the last
referenced point. This is the point with coordinates (120,105). Similarly, con
sider the point specified by the relative coordinates:

STEP (-10,-40)

240 Sec. 10.2

This is the point that is 10 units to the left and 40 units down from the point
(120,105); that is , the point (90,35).

STEP (20,30)

-10 20

(100,75)
-40

STEP (-10 ,-40)

30

Figure 10-7. Relative graphics coordinates.

TEST YOUR UNDERSTANDING 1 (answer on page 243)
Suppose that the last referenced point is (50,80). Determine the coordi
nates of the following points:

a. STEP (50,50)
C. STEP (10,-40)

b. STEP (-20,10)
d. STEP (-20,-50)

Colors
To use color in your display, you must first enable color with the SCREEN

statement:

SCREEN 1,0 (means Low-resolution graphics, color ON)

You may disable color with the statement:

SCREEN 1,1 (means Low-resolution graphics, color OFF)

Once color has been enabled, you may choose both background and fore
ground colors. A pixel is considered part of the background (at a particular

Colors and Graphics Modes 241

moment) unless its color has been explicitly set by a graphics statement. When
you execute CLS, all pixels are set equal to the background color. A non
background pixel is said to belong to the foreground .

Here are the possible screen colors, numbered 0-15.
0 black 8 gray
1 blue 9 light blue
2 green 10 light green
3 cyan 11 light cyan
4 red 12 light red
5 magenta 13 light magenta
6 brown 14 yellow
7 white 15 high intensity white

Attributes and Palettes
An attribute is a number used to describe a color on the screen. For

example , you might draw a picture and specify that a certain part has attribute
1, a second section has attribute 2, and a third section has attribute 3. You then
may specify that attribute 1 corresponds to color 3, attribute 2 to color 4, and
attribute 3 to color 13. If you don 't like the coloring of the picture, you may
reassign the colors corresponding to the attributes.

The number of different possible screen attributes depends on the screen
mode. For example, in screen mode 6, there are four colors, so there are four
attributes, numbered 0 through 3. Similarly, in screen mode 5, there are 16
colors, so there are 16 attributes, numbered 0 through 15.

At any given moment, the assignment of colors to attributes is governed
by a table, called a palette , which is maintained by BASIC. You may change
the entries in the palette using the PALETTE statement. For example , to set
attribute 4 equal to color 2 , use the statement

PALETTE 4, 2

If you don 't specify a palette , then BASIC will assume that each attribute is
assigned the color with the corresponding number.

BASIC provides a more convenient method for changing many entries of
a palette in one step, using the PALETTE USING statement. To use this state
ment, you first create an array containing 16 entries, say A(0), .. . ,A(15). Set A(0)
equal to the color assigned to attribute 0, A(l) equal to the color assigned to
attribute 1, and so forth. If you wish to leave the color assigned to an attribute
unchanged, set the corresponding array entry equal to -1. After you set the
array entries equal to the desired colors, use the statement

PALETTE USING A(O)

The 0 in the statement tells BASIC the entry at which to start reading the array.
BASIC will read as many attributes as required by the current screen mode
starting with the specified entry in the array.

/

242 Sec. 10.2

Choosing Colors

Background and foreground colors are set using the COLOR statement:

100 COLOR 12,0

This statement sets the background color as black (color 0) and the attribute of
the foreground color as 0. These choices remain in effect until they are
changed with another COLOR statement. Note that the background is speci
fied as an actual color and not an attribute. On the other hand, the foreground
is specified in terms of an attribute.

Also note that the above description of the color statement works in all
screen modes except screen 1 (medium resolution, 4-color mode). To maintain
compatability with earlier versions of BASIC, IBM allows the COLOR statement
in this case to work as in BASIC 2.00. However, since medium-resolution 4-
color mode is available as mode 4 , we can safely ignore screen mode 1.

TEST YOUR UNDERSTANDING 2 (answer on page 243)
Write BASIC statements that select the medium-resolution graphics 16-
color mode, set the background color to high intensity white, and the fore
ground to attribute 1.

Illuminating Pixels The PSET statement is used to illuminate a pixel. For
example, the statement:

200 PSET (100,150),1

will illuminate the pixel at (100,150) in attribute 1 of the currently chosen
palette. Similarly, to turn off this pixel, use the statement:

300 PRESET (100,150)

Actually, this last instruction turns on pixel (100,150) in the background color.
This is equivalent to turning it off. In using the PSET and PRESET statements,
you may specify the pixel in relative form . For example, the statement

400 PSET STEP (100,-150), 2

will turn on the pixel that is 100 blocks to the right and 150 blocks up from the
current cursor position, using attribute 2.

Exercises (answers on page 371)

Write BASIC instructions that:
1. Select the background color magenta and the foreground color as

attribute 5.

Lines, Rectangles, and Circles 243

2. Select the background color light red and the foreground color as
attribute 7.

3. Turn on pixel (200,80) with attribute 1 of the current palette.
4. Turn on pixel (100,100) in red with background color cyan.
5. Set the pixel that is 200 blocks to the left and 100 blocks above the

last referenced point. Use attribute 3.
6. Turn on the pixel that is 100 units to the right of the last referenced

point.
7. Set the current palette so that the attributes are exactly reversed. That

is, assign attribute Oto color 15, attribute 1 to color 14, and so forth.

ANSWERS TO TEST YOUR UNDERSTANDING
1: a. (100,130) b. (30,90) c. (60,40)

d. < 30,30)
2: 10 CLEAR ,,,32768:SCREEN 5:C0L0R 1,15

10.3 Lines, Rectangles, and Circles

Straight Lines

You may use the PSET and PRESET statements to design color graphics
displays. However, BASIC has a rich repertoire of instructions that greatly sim-

(50,100)
-

------~ (150 ,20)

(250 ,130)

Figure 10-8. A triangle.

244 Sec. 10.3

plify the task. For the task of drawing straight lines, you may use the LINE
statement. For example, to draw a line connecting the pixels (20,50) and
(80,199), we use the statement:

10 LINE (20,50)-(80,199)

Example 1. Draw a triangle in medium-resolution mode with corners at the
three points (150,20) , (50,100), and (250,130). (See Figure 10-8.)
Solution. We must draw three lines: From (150,20) to (50,100) ; from (50,100)
to (250,130); and from (250,130) to (150,20). Here is the program:

10 SCREEN 2
20 LINE (150,20)-(50,100)
30 LINE (50,100)-(250,130)
40 LINE (250,130)-(150,20)
50 END

To draw a line from the last referenced point to (100,90) , use the
statement:

20 LINE -(100,90)

To draw a line from the last referenced point to the point 80 units to the right
and 100 units above, use the statement

30 LINE - STEP(B0,-100)

(250 ,130)

Figure 10-9. More triangles.

Lines, Rectangles, and Circles 245

Example 2. Let's reconsider the triangle of Example 1. The point (150,80) is
inside the triangle. Draw lines connecting this point to each of the corners of
the triangle. (See Figure 10-9.)
Solution. The point (150,80) needs to go with three line statements. So we
use the shorthand form to draw lines from this point to the three corners of the
triangle . To make (150,80) the last referenced point, we first PSET it.

10 SCREEN 2
20 LINE (150,20)-(50,100)
30 LINE -(250,130)
40 LINE -(150,20)
50 PSET (150,80) LINE -(150,20)
60 PSET (150,80): LINE -(50,100)
70 PSET (150,80): LINE -(250,130)
80 END

You also may specify the color of a line. For example, if you wish to draw
the line in statement 10 in attribute 1 of the current palette, use the statement:

40 LINE (20,50)-(80,199),1

This line is drawn in Figure 10-10.
Note that there are lines the computer cannot draw perfe~tly. Lines on a

diagonal are displayed as a series of visible " steps. " This is as close as the
computer can get to a straight line within the limited resolution provided by the

Figure 10-10.

246 Sec. 10.3

graphics modes. The higher the resolution (that is , the more pixels on the
screen), the better your straight lines will look.

TEST YOUR UNDERSTANDING 1 (answer on page 254)
a. Draw a line connecting (0,100) to (50,75) in attribute 2.
b. Draw the triangle with vertices (0,0), (50,50), and (100,30).

Rectangles

The LINE statement has several very sophisticated variations. To draw a
rectangle you need to specify a pair of opposite corners in a LINE statement
and add the code B (for BOX) at the end of the statement. For example, to
draw a rectangle , two of whose corners are at (50,100) and (90,175) , use the
statement:

50 LINE (50,100)-(90,175),1,B

This statement will draw the desired rectangle with the sides in color 1 of the
current palette (see Figure 10-ll(a)). The inside of the rectangle will be in the
background color. You may paint the inside of the rectangle in the same color
as the sides by changing the B to BF (B=Box, BF=Box Filled). (See Figure
10.11(6).) These instructions greatly simplify drawing complex line displays.

TEST YOUR UNDERSTANDING 2 (answer on page 254)
a. Draw a rectangle with corners at (10,10), (10,100), (50,100), and

(50,10).
b. Draw the rectangle of a. and color it and its interior with attribute

2.

Mixing Text and Graphics
You may include text with your graphics. Use either PRINT or PRINT

USING exactly as if you were in text mode . You may use LOCATE to position
the cursor at a particular (text) line and column. Note the following points,
however:

1. In medium-resolution graphics mode, you may use only a 40-character
line width. This corresponds to the "large" characters. In high-resolution
graphics, you may use only an SO-character line width. This corresponds to
"small" characters.

2. Text will print in color 3 of the current palette .
In planning text displays to go with your graphics, note that all letters (regard
less of line width) are 8 pixels wide and 8 pixels high. Thus, for example , the

Lines, Rectangles, and Circles 24 7

Figure 10-ll (a}. The B Option.

Figure 10-ll(b) . The BF Option.

248 Sec. 10.3

character at the top left corner of the screen occupies pixels (x,y) , where x and
y both range between O and 7.

Example 3. Write a command to erase text line 1 of the screen in medium
resolution mode .
Solution. Our scheme for erasing a line will be to draw a rectangle over the
line, with color equal to the background color (color 0). The first text line of the
screen occupies pixel (x,y) , where x ranges from Oto 319 (x equals the column
number) and y ranges from O to 7 (y equals the row number). Here is the
desired statement:

LINE (0,0)-(319,7),0,BF

Circles
Cartridge BASIC has the facility for drawing circles and circular arcs. To

draw a circle , you must specify the center and the radius, and, optionally, the
color. For example , here is the command to draw a circle at center (100,100)
and radius 50:

CIRCLE (100,100),50

Since no color has been specified, the circle will be drawn in color 3 (see Figure
10-12). To draw the same circle in attribute 1, we would use the statement:

CIRCLE (100,100),50,1

Figure 10-12.

Lines, Rectangles, and Circles 249

Note that the circles on the screen are not smooth, but have a "ragged"
appearance. This is due to the limited resolution of the screen. If you use high
resolution mode , you will notice that the appearance of your circles improves
greatly.

Circular arcs are somewhat more complicated to draw since their descrip
tion is based on the radian system of angle measurement. Let's take a few
moments to describe radian measurement.

Recall the number pi from high school geometry. Pi is a number, denoted
by the Greek letter 1T , that is approximately equal to 3.1415926 ... (the decimal
expansion goes on forever). Ordinarily, angles are measured in degrees, with
360 degrees equaling one complete revolution. In radian measurement, there
are 2 • pi radians in a revolution. That is:

2 • pi radians = 360 degrees
1 radian = 360 / (2 •pi) degrees

If you use the value of pi and carry out the arithmetic, you find that 1 radian is
approximately 57 degrees. When describing angles to the computer, you must
always use radians.

To draw a circular arc, you use the following variation of the CIRCLE
statement:

CIRCLE (xcenter,ycenter),radius,color,startangle, endangle

where startangle and endangle are measured in radians. For example, to draw
a circular arc for the above circle, corresponding to an angle of 1.4 radians ,
beginning at angle .1 radians, we may use the command

D

Figure 10-13A.

250 Sec. 10.3

CIRCLE (100,100),50,1,.1,1.5

The resulting angle is pictured in Figure 10-13A.
Note that Figure 10-13A does not include the sides of the sector. To

include a side on a circular arc, put a minus sign on the corresponding angle.
(We can't use -0, however. See below.) For example, to include both sides in
Figure 10-13A, we may use the statement:

CIRCLE (100,100),50,1,-.1,-1.5

The resulting arc will look like the one in Figure 10-138.

If you have an angle O and wish to include a side, just note that the angle 0
and the angle 2•pi are the same. So just replace Oby 2*pi = 6.28 ... , and put
a minus sign on this new angle!

Figure 10-13B.

Lines, Rectangles, and Circles 251

Aspect Ratio The CIRCLE statement has an added complication we haven't
yet mentioned, namely the aspect ratio. Usually, when you plot circles on graph
paper, you use the same scale on the x-axis as on the y-axis. If, for example, a
unit on the x-axis is larger than a unit on the y-axis, your circle will appear as an
ellipse , stretched out in the x-direction. Similarly, if the unit on the y-axis is
larger than the unit on the x-axis, the circle will appear as an ellipse stretched
out in the y-direction. So, like it or not, the geometry of circles is intimately
bound up with that of ellipses. For this reason, the CIRCLE statement may also
be used to draw ellipses.

Consider the following example in high-resolution graphics mode:

CIRCLE (300 , 100) , 100,, ,,.5

This statement plots an ellipse with center (300,100). The extra commas are
placeholders for the unspecified attribute, beginning angle and ending angle.
The x-radius is 100. The number .5 is called the aspect ratio . It tells us that
the y-radius is .5 times the x-radius, or 50.

Similarly, consider the statement

CIRCLE (300,100),100,,,,1 . 5

Here the aspect ratio is 1.5, which is larger than 1. In this case, BASIC assumes
that the radius 100 is the y-radius. The x-radius is 1.5 times the y-radius, or 45.
The corresponding ellipse is shown in Figure 10-15 .

/
/,/

I
I
' i

_

... ~.,..---.... ___ ... __

....... , __________ ...

Figure 10-14. The Ellipse CIRCLE (300,100),100,,,, .5.

252 Sec. 10.3

What is the aspect ratio for a circle? Well , that's a tricky question. On first
glimpse , you probably would guess that the aspect ratio is 1. And indeed it is if
you are looking for a mathematical circle . However, if you draw a circle with an
aspect ratio of 1, you will get an ellipse. The reason is that the scales on the x
and y-axes are different. Let's consider high-resolution graphics mode. The
screen is 640 x 200 pixels. The ratio of width to height is 200/ 640, or 5/16. So
to achieve a circle, you would expect to have to multiply the x-radius by 5 / 16 to
get the proper y-radius ; that is, an aspect ratio of 5 /16. Well , not quite! TV
screens are not square. The ratio of width to height is 4 / 3. So in order to
achieve an ellipse that is visually a circle , we must multiply by 5 / 16 and by 4 / 3.
In other words, the aspect ratio is:

(5 /16) • (4 / 3) = 5/12

Strange, but true. In medium-resolution mode, the aspect ratio giving a visual
circle is 5 / 6. If you use the CIRCLE statement without any aspect ratio , then
BASIC assumes an aspect ratio of 5 / 6 in medium-resolution mode and 5/12
in high-resolution mode. With these aspect ratios, circles look like circles . How
ever, the y-radius is quite different from the x-radius!

You can get even finer grained control over circles and ellipses if you apply
some mathematics. Suppose that an ellipse (or circle) has its center at the point
with coordinates (x0,yO). Suppose that the horizontal half-axis has length A and
the vertical half-axis has length B. Then a typical point (x,y) on the ellipse takes
the form:

x = x0 + A•cos(t)
y = yO + B•sin(t)

Figure 10-15. The Ellipse CIRCLE (300,100),100,,,, 1.5.

Lines, Rectangles, and Circles 253

where t is an angle between O and 2 • pi radians. The geometric meaning of the
angle t is shown in Figure 10-16. The above equations are called the paramet
ric equations for the ellipse. They are very useful in drawing graphics.

For example , here is a program that draws an ellipse with center
(320,100) (the center of the screen in high-resolution mode) by plotting dots in
a "sweep" fashion (see Figure 10-17). This graph may be used to simulate the
motion of a planet around the sun.

5 'planetary orbit
10 SCREEN 2:CLS:KEY OFF
20 FOR T=O TO 6.28 STEP .05
30 X=320+200*COS(T):Y=100+30*SIN(T)
40 PSET (X,Y)
50 FOR K=1 TO 25:NEXT K
70 NEXT T

Note that line 50 provides a delay between plotting of consecutive dots.

Exercises (answers on page 371)

Write BASIC instructions to draw the following:
1. A line connecting (20,50) and (40,100).
2 . A line in color 2 connecting the current cursor position and the point

(250,150).
3. A line in color 1 connecting (125,50) to a block 100 blocks to the right

and 75 units down from it.
4. A rectangle with corners at (10,20), (200,20), (200,150), and

(10,150).
5. The rectangle of Exercise 4 with its sides and interior in color 3.
6. A circle with radius 20 and center (30,50).
7. A circular arc of the circle of Exercise 6 with a starting angle 1.5 and

ending angle 3.1.
8. The circular arc of Exercise 7 with sides.
9. Write a program that simulates the movement of a sweep second

hand around the face of a clock.

B

(xo, yo)

t x = xo + A*cos(t)
y = yo + B*Sin(t)

Figure 10-16. An Ellipse in Parametric Form.

254 Sec. 10.4

• • • • • • • • • • • • • • • • • ••

Figure 10-17. Simulating a Planetary Orbit.

ANSWERS TO TEST YOUR UNDERSTANDING
1: a. 10 LINE (0,100)-(50,75),2

b. 10 LINE <0,0)-(50,50)
20 LINE (50,50)-(100,30)
30 LINE (100,30)-(0,0)

2: a. 10 LINE (10,10)-(50,100),,B
b. 10 LINE (10,10)-(50,100),2,B

3: a. 10 CIRCLE (125,75),60,,.25,.75
b. 10 CIRCLE (125,75),60,,-.25,.75

10.4 Computer Art

•

• • • • • • • • • • • • • • • • •

The graphics statements of PC BASIC may be used to draw interesting com
puter art on the screen. As just a taste of what can be done , the program below
dri;lws random polygons on the screen. The program is written in high-resolu
tion graphics mode, so that the screen has dimensions 640 x 200. The pro
gram first chooses the number N% of sides of the polygon. The polygon may
have up to 6 sides. Next, the program picks out N% + 1 random points (it takes
N% + 1 points to draw a polygon of N sides). The points are stored in the
arrays X%(J%) and Y%(J%), where J% = 0, 1, 2, ... , N%. To generate only
closed polygons, we define the point (X%(N%+ 1),Y%(N% + 1)) to be the initial

Computer Art 255

point (X%(0), Y%(0)). The program then draws lines between consecutive
points. Figure 10-18 shows a typical polygon.

The program then erases the polygon and repeats the entire procedure to
draw a different polygon. The program draws 50 polygons.

10 'Computer art
20 SCREEN 2:CLS:KEY OFF
30 RANDOMIZE VAL(RIGHT$(TIME$,2))
40 FOR M%=1 TO 50
50 C%=1 : GOSUB 90
60 C%=0:GOSUB 190
70 NEXT M%
80 END
90 'Draw random polygon

'Draw random polygon
'Erase polygon

100 'Determine number of sides
110 N%=INT(5*RND(1) + 1) 'N=# sides<= 6
120 'Compute coordinates of certices
130 FOR J%=0 TON%
140 X%(J%)=INT(640*RND(1))
150 Y%(J%)=INT(200*RND(1))
160 NEXT J%
170 X%(N%+1)=X%(0):Y%(N%+1)=Y%(0)
180 'Draw sides
190 FOR J%=1 TO N%+1
200 LINE (X%(J%-1),Y%(J%-1))-(X%(J%),Y%(J%)),C%
210 NEXT J%
220 RETURN

(X(4),Y(4))

(X(O),Y(O))

(X(5),Y(5))

Figure 10-18. A Typical Polygon.

256 Sec. 10.4

Here is a second program that draws a regular polygon (one with sides of
equal length) and then draws inscribed replicas of the original polygon, each of
smaller size , until the interior of the original polygon is filled with the inscribed
replicas. (See Figure 10-19.)

Figure 10-19. Inscribed polygons.

Here are the mathematics necessary to draw a regular polygon. Suppose
that you wish to draw a regular polygon having N sides and inscribed in a circle
of radius Rand centered at the point (X0,Y0) (see Figure 10-20).
The vertices are then the points

(X(J),Y(J)) (J=O,1,2, ... ,N), where:
X(J) =XO+ R*COS(2*Pl*J/N)
Y(J) =YO+ R*(5/12)*SIN(2*Pl*J/N)

The factor 5 / 12 corrects for the aspect ratio, so that the circle in which the
polygons are inscribed will appear visually as a circle. For our program, the
user will choose the value of N (up to 20). The center of the polygon will be the
center of the screen (320,100) in high resolution. Use an initial value of 100 for
the radius R. Then draw polygons corresponding to the same value of N, but
with successively smaller values of R. Shrinking the radius circle in which the
polygon is inscribed gives the illusion that the polygon is growing inward. Here
is the program:

100 DIM X%(21),Y%(21)
110 INPUT "NUMBER OF SIDES";N%
120 IF N%>20 THEN 110
130 SCREEN 2:CLS:KEY OFF
140 PI=3.14159
150 FOR R%=100 TOO STEP -4
160 GOSUB 190
170 NEXT R%
180 END
185 'Calculate vertices
190 FOR J%=0 TON%

Drawing Barcharts 257

200 X%(J%)=320+R%*COS(2*PI*J%/N%)
210 Y%(J%)=100+R%*(5/12)*SIN(2*PI*J%/N%)
220 NEXT J%
230 X%(N%+1)=X%(0):Y%(N%+1)=Y%(0)
235 'Draw polygon
240 FOR J%=0 TON%
250 LINE (X%(J%),Y%(J%))-(X%(J%+1),Y%(J%+1))
260 NEXT J %
270 RETURN

(X(2),Y(2))

(X(6),Y(6))

Figure 10-20. An Inscribed Polygon.

10.5 Drawing Barcharts

In this section, we 'll apply what we have just learned about drawing lines and
rectangles to draw the bar chart shown in Figure 10-21.

258 Sec. 10.5

1.00

0.90

0.80

0. 70

0.60

0.50

0.40

0.30

0.20

0.10

J F H A H J J A S O N D

Figure 10-21. A Barchart.

In setting up any graphics display, some planning is necessary to make the
display look "pretty." The main goal in this section is to illustrate the planning
procedure. This display is not too complicated, so let's stick to medium-resolu
tion graphics.

Note that there are 10 bars to be displayed. Also, we must put a tick mark
under each bar and a letter lined up centered on the tick mark. Each letter is 8
pixels wide. So we can approximate the centering of the letters on the tick
marks by placing the tick marks in one of the columns 4, 12, 20, 28, (The
corresponding letters will occupy columns 0-7, 8-15, 16-23, 24-31,)

Similarly, to center the labels on the vertical axis on the tick marks there,
we should choose the rows for the tick marks from among 4, 12, 20,

Let's place the vertical axis beginning in row 4. This allows us to place the
top tick mark in the proper row. There are at most 195 screen rows in which to
place the rest of the vertical axis. We must divide the vertical axis into 10 equal
parts. This suggests that each vertical part will be 16 rows high. This will cause
the vertical axis to be 160 rows high and will end in row 164. We need to leave
room for 4 characters (= 32 columns) to the right of the vertical axis as well as
the tick marks. And let's not push the labels too far to the left. Finally, the
vertical axis must be in one of the columns 4, 12, 20, 28, One possibility is
to put the vertical axis in column 52. It turns out that this gives a reasonable
looking display.

The horizontal axis will begin at the point (52,164). The horizontal axis is
divided into 13 equal parts. Let's make each part two characters (=32 columns)
wide. This means that the right endpoint of the horizontal axis is (52 + 13• 16,164).

Here is the section of the program to draw the two axes.

100 'Draw axes
110 LINE (52,164)-(52+16*13,164)
120 LINE (52,164)-(52,4)

Drawing Barcharts 259

Next, let' s draw the tick marks and print the labels. For the vertical axis , we use
a PRINT USING statement to format the labels to contain one digit to the right
of the decimal point. For the horizontal axis , we read the labels into a string
array A$(). That is , A$(1)= "J ", A$(2)="F" , To print the labels on the
horizontal axis, we then print the various string array entries . Here is the pro
gram segment that draws the tick marks and labels the axes:

200 'Draw tick marks
210 FOR J=1 TO 10
220 LINE (47,164-16*J)-(57,164-16*J)
221 LOCATE 21-2*J,1
222 PRINT USING "#.##";J/10;
230 NEXT J
240 FOR J=1 TO 12
250 LINE (52+16*J,164)-(52+16*J,169)
260 LOCATE 23,(52+16*J)/8
270 PRINT A$(J);
280 NEXT J

Note the positioning of the labels. The labels on the vertical axis are in rows
1, 3, 5, 7, ... , 19. However, the first label in is row 19, the tenth in row 1. To
achieve the correct positioning, we locate the cursor in row 21-2 •J . So when J is
1, the label is put in row 21-2 • l = 19, and when J is 10, the label is put in row 21-
2 * 10= 1. (The labels start from row 21 and back up two rows at a time.)

Similarly, the position of the Jth horizontal label is gotten by dividing the
column position, namely 52 + 16 •J , by 8 (since a character occupies 8 col
umns) . Note that this division always leaves a remainder of 4. The LOCATE
statement drops any fractional part, so the character is positioned at the char
acter position which starts just to the right of the tick mark. This is how the
positioning was set up.

Now we have drawn everything but the bars. We store the height of the Jth
bar in the variable BAR(J). The scale on the vertical axis is from Oto 1, and the
axis is 160 rows high. So the height of the Jth bar is BAR{J) • 160. So the Jth
bar runs from row 164 to row 164-BAR(J)• 160. Let's make the bar extend for
5 columns, two on either side of the tick mark. This means that the Jth bar
sta rts in column:

52+16*J - 2 = 50+16*J .

Similarly, the Jth bar ends in column:

52+16*J + 2 = 54+16*J .

Here are the instructions to draw the bars.

260 Sec. 10.5

300 'Draw bars
310 FOR J=1 TO 12
320 LINE (50+16*J,164)-(54+16*J,164-BAR(J)*160),,BF
330 NEXT J

Finally, we assemble the various pieces into a single program:

10 DIM A$(12),BAR(12)
20 CLS:SCREEN 1
30 KEY OFF
40 FOR J=1 TO 12
50 READ A$(J)
60 NEXT J
70 FOR J=1 TO 12
80 READ BAR(J)
90 NEXT J
100 'Draw axes
110 LINE (52,164)-(52+16*13,164)
120 LINE (52,164)-(52,4)
200 'Draw tick marks
210 FOR J=1 TO 10
220 LINE (47,164-16*J)-(57,164-16*J)
221 LOCATE 21-2*J,1
222 PRINT USING "#.##";J/10;
230 NEXT J
240 FOR J=1 TO 12
250 LINE (52+16*J,164)-(52+16*J,169)

food 20.0
rent 18.0
clothing 10.0
taxes 20.0
entertainment 10.0
car 15.0
savings 7.0

Figure 10-22.

Drawing Pie Charts 261

260 LOCATE 23 , (52+16*J)/8
270 PRINT A$(J);
280 NEXT J
300 'Draw bars
310 FOR J=1 TO 12
320 LINE (50+16*J,164) - (54+16*J,164-BAR(J)*160),,BF
330 NEXT J
1000 DATA J , F, M, A, M, J,J,A,S , O,N,D
1010 DATA .35, . 25 , .10,.13, . 40,.50,.45,.425 , .30,. 40,. 30, . 20
2000 GOTO 2000

10.6 Drawing Pie Charts
As an application of the CIRCLE command, let's draw the pie chart shown in
Figure 10-22.

To draw this pie chart, let's begin by creating an array to contain the vari
ous data and to list the data as shown on the left. We put the category names
(Food, Clothing, and so forth) in an array B$(). The numerical quantities we
put in an array A(). The first part of our program then consists of reading the
data from DATA statements and setting up the two arrays. Also, we perform
screen initialization by choosing SCREEN 2 (high-resolution graphics mode) ,
and turning the function key display off. Here is the section of the program that
accomplishes all these tasks:

100
11 o
120
130
140
150
160
170
180

'Program initialization
DIM A(7), B$(7),ANGLE(7)
DATA food, . 20 , rent, .18, clothing, .10, taxes,
DATA entertainment, .10, car, .15, savings, .07
FOR J=1 TO 7

READ B$(J) , A(J)
NEXT J
SCREEN 2:
KEY OFF:

'high resolution
'turn off function keys

. 20

Our next step is to create the left portion of the display. This requires
some care and planning. Let's skip the top 4 lines and begin the display in the
5th line. We set up the numbers in our data statements as decimals rather than
percentages since the computation of angles that follows is more conveniently
carried out in terms of decimals. However, to display percentages, we multiply
each number A(J) by 100. To get a formatted display, we use the PRINT
USING statement. Let's put the category description in print zone 1 and the
percentage in print zone 2. Here are the instructions corresponding to this sec
tion of the program. Pay particular attention to the print statements in lines 240
and 250.

200 'Display Listed data
210 CLS
220 PRINT : PRINT:PRINT:PRINT
230 FOR J=1 TO 7

262 Sec. 10.6

240 PRINT B$(J),;: 'print and move to 2nd print field
250 PRINT USING"##"; 100*A(J);"%"
260 NEXT J

Finally, we come to the section of the program in which we draw the pie. The
Jth data item corresponds to the proportion A(J) of the total pie. In angular
measure, this corresponds to A(J)• (2• PI) (recall that 2• PI radians corresponds
to the entire pie). The first slice of the pie begins at angle ANGLE(O), which we
set at 0; it ends at ANGLE(!)= A(1) • (2 • PI). The second slice begins where the
first slice ends; namely, at ANGLE(l). It ends at ANGLE(l)+A(2)•(2•PI). And
so forth. Here is the section of the program that draws the various pie slices.
Notice that each of the sides of the pie slices is drawn twice, once in each of the
slices to which it belongs. This does no harm.

300 'Draw Pie
310 ANGLECO)=O
320 PI=3.14159
330 FOR J=1 TO 7
340 T=A(J)*(2*PI): 'T=angle for current data item
350 ANGLE(J)=ANGLE(J-1)+T
360 CIRCLE (450,100),100,,-ANGLE(J),ANGLE(J-1)
370 NEXT J

Note that in line 360, we did not specify a color. Nevertheless, we left space for
the color parameter by inserting an extra comma. (The space for the color is
an imaginary one between the two commas.) If BASIC calls for a parameter in
a certain place, you usually may omit the parameter as long as you leave a
place for it. If you don't, BASIC can't understand your statement.

You might wonder how we chose the center of the circle at (450,100) and
the radius of 100. Well, it was mostly trial and error. We played around with
various circle sizes and placements and chose one that looked good! In graph
ics work, you should not be afraid to let your eye be your guide.

For convenience, we now assemble the entire program into one piece.

100
110
120
130
140
150
160
170
180
200
210
220
230
240
250

'Program initialization
DIM A(7), B$(7),ANGLE(7)
DATA food, .20, rent, .18, clothing, .10, taxes, .20
DATA entertainment, .10, car, .15, savings, .07
FOR J=1 TO 7

READ B$(J), A(J)
NEXT J
SCREEN 2:
KEY OFF:

'Display listed data
CLS

'high resolution
'turn off function keys

PRINT: PRINT:PRINT:PRINT
FOR J=1 TO 7

PRINT B$(J),;: 'print and move to 2nd print field
PRINT USING"##.#"; 100*A(J)

260 NEXT J
300 'Draw Pie
310 ANGLE(O)=O
320 PI=3.14159
330 FOR J=1 TO 7

Drawing Pie Charts 263

340 T=A(J)*(2*PI): 't=angle for current data item
350 ANGLE(J)=ANGLE(J-1)+T
360 CIRCLE (450,100),100,,-ANGLE(J),ANGLE(J-1)
370 NEXT J

This program is subject to a number of enhancements, some of which will
be suggested in the exercises.

Exercises

1. Alter the program above so that it accepts the data from the key
board. Allow it to keep asking for data until it receives a data name
" @". Allow for up to 20 data items.

2. Modify the above program so that the pie is drawn in color 2 of
palette 1. (This will involve some respacing, since you are now in
medium-resolution and 40-character width.)

(0,50)

(400,25)

Figure 10-23. A Triangle.

264 Sec. 10. 7

10. 7 Painting Regions of the Screen

Using the graphics commands of PCjr Cartridge BASIC, it is possible to draw a
tremendous variety of shapes. For example, Figure 10-23 shows a triangle you
may draw using several LINE statements. Figure 10-24 shows a circle drawn
using the CIRCLE statement. Underneath each shape is a statement to draw
the shape. The boundary lines of each shape are specified in the graphics state
ments used to draw it. The triangle is drawn in attribute 2. No color is indicated
in the case of the circle, so it is drawn in attribute 3.

The PAINT statement allows you to color the "inside" of a region , just as
if the region were in a coloring book and you used a crayon to color it. For
example, we may use the PAINT command to paint the interiors of the triangle
of Figure 10-23 and the circle of Figure 10-24.

The format of the PAINT command is:

PAINT (x,y),color,boundary

Here (x,y) is a point of the region to be painted, color is the color paint to use ,
and boundary is the color of the boundary. PAINT starts from the point (x,y)
and begins to paint in all directions. Whenever it encounters the boundary
color, it stops PAINTING in that direction.

For example, consider the triangle in Figure 10-23. The point (75,75) lies
inside the triangle. And the triangle itself is drawn in attribute 2. Suppose that
we wish to color the interior of the triangle in attribute 3. The appropriate
PAINT statement would be:

CIRCLE (100,100),50,3

Figure 10-24. A Circle.

Painting Regions of the Screen 265

PAINT (75,75),3,2

TEST YOUR UNDERSTANDING 1 (answer on page 274)
Write a statement which will color the interior of the circle of Figure 10-24
in color 1.

PAINT is a very straightforward statement to understand. The main diffi
culty, however, is in specifying a point within the region. Or, to put it more
precisely, if we are given a region, how do we specify a point within it? Well ,
that's a mathematical question. And I just happen to be a mathematician! So I
can't resist explaining a little mathematics at this point.

Let's begin by considering the case of the rectangle (xl ,yl)-(x2,y2). The
center of the rectangle is at the point ((xl+x2) / 2, (yl+y2) / 2) ; that is , to
obtain the coordinates of the center of the rectangle, we average the values of
the coordinates of the opposite corners. See Figure 10-26.

Another way of getting the same answer is to average the values of the
coordinates of all 4 corners: (xl ,yl) , (xl ,y2) , (x2 ,y2), (x2,yl) . Now there are 4
x-coordinates to add up, but we must divide by 4: We obtain (2 • xl + 2 •x2) / 4
= (xl + x2) / 2, and similarly for they-coordinate .

Let's now consider a triangle with vertices (xl ,yl) , (x2,y2) , (x3 ,y3). Sup
pose that you average the coordinates to obtain

(200, 25)

(0,50)

(100,125)

Figure 10-25. PAINTing the Interior of the Triangle.

266 Sec. 10. 7

(X2,Y2)

(X1,Y1)

Figure 10-26. The Center of a Rectangle.

((x1+x2+x3)/3, (y1+y2+y3)/3).

This point is called the centroid of the triangle and is always inside the
triangle .

Well, what works for 3- and 4-sided figures works in a more general set
ting. For many figures bounded by straight lines, you may compute a point
within the figure simply by averaging the coordinates of the vertices. For which
figures does this apply? The simplest such figures are the so-called convex
bodies. We say that a figure is convex if, whenever you connect two points
within the figure by a line, all points of the line are inside the figure. (See Figure
10-27.)

A Convex Figure A Non-Convex Figure

Figure 10-27. Convex and Non-Convex Figures.

The Graphics Macro Language 267

A convex figure bounded by line segments is a type of polygon. Suppose
that the vertices of such a polygon are (xl,yl), (x2,y2), , (xn,yn) . Then the
point

((x1+ ... +xn)/n, (y1+ ... +yn)/n)

obtained by averaging the x- and y-coordinates is called the centroid of the
polygon. And the centroid is always inside the polygon.

So if you wish to PAINT a convex polygon, just compute the centroid. And
this will give you the point to use in the PAINT statement!

10.8 The Graphics Macro Language*

Using the various statements of PC BASIC, you may draw some very complex
screen images. However, the programs can become rather complex. Many
drawings consist only of straight lines, in various positions on the screen. Such
drawings may be concisely described and drawn using the Graphics Macro
Language , as implemented in the DRAW statement.

To understand the DRAW command, it helps to think of an imaginary pen
you may use to draw on the screen. The motion of the pen is controlled by a
graphics language used by DRAW. The format of the DRAW command is:

DRAW <string>

Here < string > is a sequence of commands from the graphics language.
In giving commands, you will refer to points on the screen. The action of

many of the commands will depend on the last point referenced. This is the
point most recently referred to in a graphics command associated with DRAW.
The CLS and RUN statements both set the last point referenced to the center
of the screen (this is (160,100) in medium-resolution graphics and (320,100) in
high-resolution graphics).

The graphics commands associated with DRAW are indicated by single
letters. The most fundamental is the M command:

DRAW "M x,y"

which draws a straight line from the last point referenced to the point with
coordinates (x,y). After the statement is executed, the point (x,y) becomes the
last point referenced.

Here are two variations on the M command:
1. If M is preceded by N, then the last point referenced is not changed.

For example, here is a DRAW command to draw an angle, as in Fig
ure 10-28. (The vertex of the angle is at (360,100) and the computer
is assumed to be in SCREEN 2 .)

• Graphics Macro Language is a registered trademark of Microsoft Corporation.

268 Sec. 10.8

DRAW "M 500,100 NM 200,50"

2. If M is preceded by B, then the last referenced point is changed, but
no drawing takes place. The BM command is used to relocate the
pen. For example , here is a command to draw the angle of Figure 10-
29, with the vertex located at (300,110):

DRAW "BM 300,110 M 500,100 NM 200,50"

TEST YOUR UNDERSTANDING 2 (answer on page 274)
Use the DRAW command to draw the triangle of Figure 10-23.

Using Relative Coordinates In our above discussion, all of our coordinates
were absolute; that is, we specified the actual coordinates. However, you also
may use this form of the M command:

M +r,+s

It will draw a line from the last reference point to the point that is r units to the
right ands units down. (Down is in the direction of increasing y coordinates!) In
a similar fashion, we may use the commands:

Figure 10-28. An Angle.

M -r,+s
M -r,-s
M +r,-s

The Graphics Macro Language 269

Figure 10-29. Another Angle.

Specifying Coordinates Using Variables The coordinates in an M com
mand may be specified by variables < variable 1 > and < variable2 >, respec
tively. Here is the form of the command:

M =<variable1>;,=<variable2>;

Note the semicolons and the comma. You need these . For example, to draw a
line from the last referenced point to the point specified by the values of the
variables A and B, we could use the command:

M =A ;,=B;

By preceding = signs with a + sign, we may use variables to specify a
relative coordinate position. For example, to draw the line to the point that is A
units to the right and B units down, we could use the command:

M +=A;,+=B;

Note that the signs of A and B give the actual direction of motion. For exam
ple , if A is negative , then the motion will be ABS(A) units to the left.

270 Sec. 10.8

Figure 10-30 is an example of the sophisticated pictures you can compose
using DRAW. Here is a program to create this display.

10 SCREEN 1:CLS:KEY OFF
20 FOR R=O TO 6.3 STEP .1
30 A=160+70*COS(R):B=100+70*SIN(R)
40 DRAW "NM =A; ,=B;"
50 NEXT R

! l
; t I ,

I] , ' I
i I j 1 1' !
·, ;_ l, \ 1

1 t

'. \ \ i : i •

Figure 10-30. A Complex Display.

TEST YOUR UNDERSTANDING 3 (answer on page 274)
Use the random number generator to generate 50 pairs of random
points. Use DRAW to draw a line associated with each pair.

More About Relative Motions In most drawing, coordinates are given in
relative rather than absolute form. To shorten the lengths of the strings
involved in describing such motions, DRAW includes the following commands:

u n - Move n units up
D n - Move n units down
L n - Move n units Left
R n - Move n units right
E n - Move n units northeast

(n units to the right, n units up)

The Graphics Macro Language 271

F n - Move n units southeast
(n units to the right, n units down)

G n - Move n units southwest
(n units to the Left, n units down)

H n - Move n units northwest
(n units to the Left, n units up)

The effect of these commands is illustrated in Figure 10-31.
You may use the N and B options with the commands U-G. For example ,

the command:

DRAW "NU 50"

will draw a line from the last referenced point upward for 50 units . However,
the last referenced point is not updated. Similarly, the command:

DRAW "BU 50"

will update the last referenced point to the point 50 units up from the current
point. However, no line is drawn.

You also may use variables in connection with the commands U-G. For
example , consider the command:

DRAW "U =A; II

It will draw a line from the last referenced point A units upward. (If the value of
A is negative , then the motion will be downward.)

n n

Un Dn Ln A n En Fn Gn Hn

Figure 10-31. The Relative Motion Commands U-G.

Color You may specify color within DRAW by using the command:

C n

Here n is 0, 1, 2 or 3 and refers to a color in the current palette.
Here is a program to draw the sailboat of Figure 10-32.

10 SCREEN 1,0: CLS: KEY OFF
20 COLOR 7,0
30 DRAW "C1 L60 E60 D80 C2 L60 F20 R40 E20 L20"

The background is white, the sail green, and the boat red.

Angle You may rotate a figure through an angle that is a multiple of 90
degrees . Just precede the draw string (describing the figure in unrotated form)

272 Sec. 10.8

Figure 10-32. A Sailboat.

with the command:

A n

Here:

n=0 no rotation
n=1 90-degree rotation clockwise
n=2 180-degree rotation clockwise
n=3 270-degree rotation clockwise

For example, here is a program that illustrates the sailboat of Figure 10-32
rotated through the various possible angles. (See Figure 10-33.)

10 CLS: SCREEN 1: KEY OFF: PSET (160,100)
20 INPUT "ANGLE (0-3)";N
30 DRAW "A=N; BU40 L30 E30 D40 L30 F10 R20 E10 L10"

Scale You may automatically scale figures (make them larger or smaller) using
the command:

S n

All line lengths will be multiplied by n / 4. Here n is an integer in the range 1 to
255.

The Graphics Macro Language 273

Figure 10-33. Rotated Sailboats.

TEST YOUR UNDERSTANDING 4 (answer on page 274)
Write a command to draw the sailboat of Figure 10-33, but at half scale.

Substrings You may define a string, A$, outside a draw statement and then
use it in the form:

DRAW A$

Often, you will wish to use one string several times within a single picture. (This
is convenient, for example, if you wish to draw the same figure in several parts
of the screen.) You may incorporate a string A$ within a larger string by preced
ing it with the letter X. For example , here is a statement that draws A$, moves
up 50 units , and draws A$ again:

DRAW "XA$; BUSO; XA$"

Note that X commands are separated from adjacent commands with
semicolons.

Exercises

1. Write a program to draw the following figure:

274 Sec. 10.9

(0,0) (150,0)

(0,60) (150,60)

2. Write a program that draws the figure of Exercise 1, but rotates it 270
degrees clockwise.

3. Write a program that draws the figure of Exercise 1, but makes it
twice the size.

ANSWERS TO TEST YOUR UNDERSTANDING
1: PAINT (100,100),1,3
2: DRAW "BM 0,50 M 100,125 M 400,25 M 0,50"
3: 10 DIM X(50),Y(50)

20 CLS: SCREEN 2: KEY OFF
30 FOR J=1 TO 50
40 X(J)=INT(RND*620)): X*(J)=INT(RND*620))
50 Y(J)=INT(RND*200)): Y*(J)=INT(RND*200))
60 DRAW "BM =X(J); =Y(J); M =X*(J);=Y*(J);"
70 NEXT J

4: DRAW "S2 C1 L60 E60 D80 C2 L60 F20 R40 E20 L20"

10.9 Saving and Recalling Graphics Images

Cartridge BASIC contains commands that allow you to save and recall the con
tents of any rectangle on the screen. This is extremely convenient in many
graphics applications, particularly animation.

Let's begin this discussion with a description of the image to be saved. The
image must consist of a rectangular portion of the screen. The rectangle in
question may start and end anywhere , and may contain text characters, por
tions of text characters , or a graphics image. You specify the rectangle by giving
the coordinates of two opposite vertices: either the upper-left and lower-right,
or the lower-left and upper-right. Thus a rectangle is specified in the same way
as in using the LINE statement to draw a rectangle. Here are some specifica
tions of rectangles:

(0,0)-(100,100)
(3,8)-(30,80)

Saving and Recalling Graphics Images 275

In specifying rectangles, remember to indicate the coordinates in terms of
the current graphics mode (either medium- or high-resolution). In either graph
ics mode, text characters occupy 8 x 8 rectangles. For example , the character
in the upper left corner of the screen occupies the rectangle (0,0)-(7, 7). (Lines
of text are always 8 pixels high.)

TEST YOUR UNDERSTANDING 1 (answer on page 277)
Specify the rectangle consisting of the second text line of the screen.
(Assume that you are in the medium-resolution graphics mode.)

The GET statement allows you to store the contents of a rectangle in an
array. You may use any array as long as it is big enough. Suppose that the
rectangle is x pixels long and y pixels high. Then the size of the array must be at
least:

in medium-resolution and:

4 + (x+?)*y/32

in high-resolution. (Recall that the size of the array is specified in a DIM state
ment.) For example, suppose that the array is 10 pixels wide and 50 pixels high
and is in medium-resolution. Then the array required to store the rectangle
must contain at least:

4 + (2*10+7)*50/32 or 46

elements. We could use an array A() defined by the statement:

DIM A(46)

Once a sufficiently large array has been dimensioned , you may store in it
the contents of the rectangle using the GET statement, which has the form:

GET (x1,y1)-(x2,y2), arrayname

For example , to store the rectangle (0,0)-(9,49) (this rectangle is 10 by 50) in
the array A, we could use the statement:

GET (0,0)-(9,49), A

To summarize: To store the contents of a rectangle in an array, you must:

276 Sec. 10.9

1. Use a DIM statement to define a rectangle of sufficient size.
2. Execute a GET statement.
You may redisplay the rectangle at any point on the screen by using the

PUT statement. For example, to redisplay the rectangle stored in A, you could
use the statement:

PUT (100,125), A

This particular statement would redisplay the rectangle in A, with the upper left
corner of the rectangle at the point (100,125).

To see GET and PUT in action, let's examine the following program:

10 SCREEN 1
20 DIM LETTER(9)
30 LOCATE 1, 1
40 PRINT "A"
50 GET (0,0)-(7,7),LETTER
60 CLS
70 PUT (100,100),LETTER

Line 10 puts BASIC in medium-resolution graphics mode. We are out to store
an 8 x 8 array, so we use the above formulas to calculate the required array
size, which works out to 9. In lines 30-40, we print a letter "A" , and in line 50,
we store the image in the array LETTER. We then clear the screen. Line 70
recovers the image from the array and places it with its upper left corner at the
point (100,100).

Don't erase the screen yet. Type:

PUT (100,100),LETTER

and press ENTER. Note that the letter A at (100,100) disappears. If you type
the same line again, the A reappears. This feature may be used to create the
illusion of motion across the screen. Suppose that you wish to create the illu
sion that the letter A is moving across the screen. Merely display it and erase it
from consecutive screen positions. The screen creates the displays faster than
the eye can view them. What you see is a continuous motion of the letter
across the screen. Here is a program to create this animation:

10 SCREEN 1
20 DIM LETTER(9)
30 LOCATE 1, 1
40 PRINT "A"
50 GET (0,0)-(7,7),LETTER
60 CLS
70 FOR XPOSITION = 0 TO 311
80 PUT (XPOSITION,0),LETTER
90 PUT (XPOSITION,0),LETTER
100 NEXT XPOSITION

Saving and Recalling Graphics Images 277

Note that the XPOSITION runs from O to 311 . Although the screen is 319
pixels wide , the variable XPOSITION specifies the upper left corner of the rec
tangle, which is 8 x 8. So 311 is the largest possible value of the variable.

Animation is the backbone of all the arcade games that have become so
popular in recent years.

Saving a Screen Image on Diskette
Storing large graphics images (such as the entire screen) takes a great

deal of memory. To store the entire screen takes more than 16,000 bytes.
Compare this with the fact that BASIC can use a maximum of 65,536 bytes.
Because graphic images tend to use such large amounts of memory, it is often
necessary to save the screen image on diskette. Here is a program for saving
the current screen image on diskette under the filename "SCREEN".

10 DEF SEG = &HB800
20 BSAVE "SCREEN",0,&H4000

To recall the stored image to the screen, use the program:

10 DEF SEG = &HB800
20 BL0AD "SCREEN" ,0

Exercises

1. Specify the rectangle of length 80 and height 40 whose upper left
corner is at (10,10).

2. Specify the rectangle that consists of the first two text columns of the
screen.

3. Write a dimension statement for the rectangle specified in Exercise 1.
4. Write a dimension statement for the rectangle specified in Exercise

2.
5. Store the current screen contents on diskette.
6. Clear the screen and recall the screen contents stored in Exercise 5.
7. Store a happy face (ASCII character 2) in an array.
8. Display the happy face at the following points:

a. (0,0)
b. (50,50)
C. (0,100)

9. Construct an animation that moves the happy face across the screen
in text line 10.

10. Construct an animation that moves the happy face diagonally across
the screen from the upper left to the lower right corner.

ANSWER TO TEST YOUR UNDERSTANDING
1: (0,8)-(319,15)

278 Sec. 10.10

10.10 VIEW and WINDOW

In this section, we will discuss the VIEW and WINDOW statements-two of the
very powerful graphics enhancements provided in Cartridge BASIC.

The WINDO\N statement allows you to define your own coordinate system
on the screen. For example, consider the statement:

WINDOW (-2,0)-(2,100)

It causes the screen coordinates to be redefined, as shown in Figure 10-34.
Note that the lower left corner becomes the point (-2,0) and the upper right
corner becomes the point (2,100). The x-coordinates of the screen run from -2
on the left to 2 on the right. The y-coordinates run from O at the bottom to 100
on the top. The point in the middle of the screen is (0,50) .

After using a WINDOW command, all graphics commands work with the
new coordinates. For example , suppose that we execute the above WINDOW
statement. The statement:

PSET (0,50)

turns on the pixel at the center of the screen.

TEST YOUR UNDERSTANDING 1 (answer on page 282)
Assume that the scr·een coordinates are defined by the WINDOW com
mand of Figure 1. Describe the location of the points:

a. (1,75) b. (-1,100) c. (2,10)

(-2, 100)----------------(2, 100)

(-2,0)----------------...... (2,0)
Figure 10-34. Cartesian Coordinates (-2,0)-(2,100).

VIEW and WINDOW 279

The WINDOW statement does not disturb the contents of the screen, so
you may use several different coordinate systems within a single program.
Moreover, the placement of text is still governed by the usual text coordinate
system Oines 1-25, columns 1-40 or 80) , so you can mix text and graphics
determined by a WINDOW command.

The WINDOW statement automatically reorders the values of the extreme
x- and y-coordinates so that the lesser x-coordinate is on the left, the greater on
the right , the lesser y-coordinate is at the bottom and the greater is on the top.
Thus, for example, the following WINDOW statements are all equivalent:

WINDOW (-1, 1)-(1,-1)
WINDOW (1,1)-(-1,-1)
WINDOW (-1,-1)-(1, 1)
WINDOW (1,-1)-(-1,1)

Note that the above statements turn the screen into a portion of a Carte
sian coordinate system, of the same type used in graphing points and equa
tions in algebra. Note also that increasing values of the y-coordinate
correspond to moving up the screen. This is the exact opposite of the normal
graphics coordinates, in which the pixel rows are numbered from O (top of
screen) to 199 (bottom of screen). A coordinate system in which increasing
values of the y-coordinate correspond to moving down the screen are called
screen coordinates. You may use the WINDOW statement to create a set of
screen coordinates using the SCREEN option. For example, the statement:

WINDOW SCREEN (-2,0)-(2,100)

creates a coordinate system as shown in Fi~ure 10-35. Note that y-coordinate 0
is now at the top of the screen. ,

(-2,0)----------------(2,0)

(-2, 100) ----------------- (2,100)
Figure 10-35. Screen Coordinates (-2,0)-(2,100).

280 Sec. 10.10

Example 1. Use the WINDOW command to draw an expanding family of rec
tangles beginning at the center of the screen.
Solution. Let's use a single line statement, namely:

LINE (-.1,-.1)-(.1,.1),,B

to draw a rectangle with center (0,0). But let's use a sequence of WINDOW
commands to redefine the coordinate system so that the radius .1 corresponds
to successively larger distances on the screen. That is, we will let the Jth coordi
nate system be generated by the statement

WINDOW (-1/J,-1/J)-(1/J,1/J)

for J = 1, 2, ... , 10. For the first coordinate system, the screen corresponds to
(-1,-1)-(1,1) . So the distance .1 seems small. (It corresponds to only .05 of the
way across the screen) . On the other hand, for J = 10, the coordinate system
corresponds to (-.1,-.1)-(.1 ,.1), so .1 is halfway across the screen. Here is our
program:

10 SCREEN 2:KEY OFF
20 CLS
30 FOR
40
50
60 NEXT

J=1 TO 10
WINDOW (-1/J,-1/J)-(1/J,1/J)
LINE (-.1,-.1)-(.1,.1),,B
J

Figure 10-36. Expanding Rectangles.

VIEW and WINDCMJ 281

The output of the program is shown in Figure 10-36.
The WINDOW statement ignores points corresponding to positions off the

screen. This procedure is known as clipping .
RUN, SCREEN, and WINDOW with no parameters disable any previous

WINDOW command.
The VIEW statement allows you to restrict screen activity to a portion of

the screen. For example, to restrict all screen activity to the rectangle (20, 10)
(100,200) , we would use the statement

VIEW SCREEN (20,10)-(100,200)

This statement turns the rectangle (20,10)-(100,200) in a viewport . While a
viewport is in effect, you may not plot any points outside the viewport. For
example, if a circle statement refers to a circle that lies partially outside a
viewport, then only the portion within the viewport will be drawn.

If you execute CLS while a viewport is in effect, you will erase only the
inside of the viewport.

Note that the viewport applies only to graphics commands. Text com
mands may apply to any position on the screen, even though a viewport is in
effect. Thus, for example , you may use LOCATE and PRINT as if the viewport
were not present.

The full form of the VIEW statement is:

VIEW [SCREEN] (x1,y1)-(x2,y2),[color],[boundary]

The [color] option allows you to fill in the viewport with a particular attribute .
The boundary option allows you to put a rectanglular boundary around the
viewport. The value of [background] determines the attribute of the bounding
rectangle .

For example, the statement:

VIEW SCREEN (10,20)-(200,100),3,2

defines a viewport colored in attribute 3 with a boundary in attribute 2 , and the
statement:

VIEW SCREEN (10,20)-(200,100),,2

defines a viewport with a boundary in attribute 2. The interior of the viewport is
the background color.

You may omit the SCREEN parameter to obtain plotting relative to the
viewport. For example, consider the statement

VIEW (10,20)-(200,100)

It defines the same viewport as above. However, the point (x,y) in a graphics
statement will be interpreted to mean (x + 10,y+ 20). In other words, the upper

282 Sec. 10.11

left corner of the viewport is considered as the corner of the screen. The same
clipping rule as for VIEW SCREEN applies: If a point (as computed relative to
the viewport) lies outside the viewport , then it is not plotted.

You may disable a viewport using the statement:

VIEW

Similarly, using RUN or SCREEN will cancel a viewport.
You may combine VIEW and WINDOW. For example , consider the

statements:

10 VIEW (80,16)-(559,167),,3
20 WINDOW (0,0)-(20,100)

They define a viewport in the rectangle (80, 16)-(559, 167) and then redefine the
coordinates within the viewport as the Cartesian coordinates (0,0)-(20,100),
so (0,0) corresponds to the lower left corner of the viewport and (20,100) to
the upper right corner.

On the other hand, consider the statements:

10 VIEW SCREEN (80,16)-(559,167),,3
20 WINDOW (0,0)-(20,100)

Now the WINDOW command refers to the entire screen. (0,0) corresponds to
the lower left corner of the screen and (20,100) to the upper right corner of the
screen. The viewport serves as a mask to clip off all points that (in the coordi
nates specified by WINDOW) land outside the viewport.

As we'll see in the next section, viewports are ideal for generating business
graphics. We'll use a combination of VIEW and WINDOW to create a custom
coordinate system on which to draw a bar graph.

ANSWER TO TEST YOUR UNDERSTANDING

l:□tl,;51 [JJ. □
(·1,1001

(2,101

{al (bl (cl

10 .11 Sound and Music on the PCjr
The PCjr has a speaker located in the system unit. You may use this speaker to
introduce sound and music into your programs. There are three sound com
mands on the PCjr - BEEP, SOUND, and PLAY. Let's survey the capabilities of
these commands.

BEEP
The BEEP command is the simplest of the sound commands. It allows

you to sound the speaker for l / 4 second. This command gives you no control

Sound and Music on the PCjr 283

over the pitch or the duration of the sound. Here is an example of BEEP in a
subroutine that responds to a mistake in input.

80 PRINT "YOU MADE A MISTAKE, TRY AGAIN!"
90 BEEP
100 RETURN

You also may use a BEEP statement within other statements, as in:

10 IF X=100 THEN BEEP

Professional programs employ sophisticated input routines that subject
user input to a number of tests to determine if the input is acceptable. (Is the
length correct? Does the input employ any illegal characters?) Here is a simple
subroutine of this type. The main program assigns a value to the variable
LENGTH, which gives the maximum length of an input string. The subroutine
illuminates a box, beginning at location (1,1) (top left corner of the screen) to
indicate the maximum field size for the input. The routine then allows you to
input characters and to display them in the appropriate position in the illumi
nated field. For each character displayed, part of the illumination disappears.
Moreover, using the backspace key restores one character space of illumina
tion. If you atterrlRt to input characters beyond the illuminated field, the routine
beeps the speaker.

5000 'Input routine
5001 'LENGTH is the maximum number of characters in

input string
5002 'COUNT is the current cursor position in the input

field
5010 COUNT=1
5020 CLS
5030 LOCATE 1, 1
5040 PRINT ""
5050 LOCATE 1, 1
5060 FOR I=1 TO LENGTH
5070 LOCATE 1,I:PRINT CHR$(219);
5080 NEXT I
5090 LOCATE 1,1
5100 A$= INKE Y$
5110 IF A$="" THEN 5100
5120 IF A$=CHR$(8) THEN 5200
5130 IF A$= CHR$(13) THEN 5240
5140 IF COUNT= LENGTH+1 THEN 5180
5150 LOCATE 1,COUNT:PRINT A$;
5160 COUNT=COUNT+1
5170 GOTO 5100
5180 BEEP
5190 GOTO 5090
5200 COUNT=COUNT-1
5210 IF COUNT=O THEN BEEP:COUNT=COUNT+1

284 Sec. 10.11

5220 LOCATE 1,COUNT:PRINT CHR$(219);
5230 GOTO 5090
5240 RETURN

Sound
The second speaker command is called SOUND . This handy little com

mand enables you to access any frequency between 37 and 32767 Hertz
(cycles per second, also abbreviated Hz). The duration of the sound is mea
sured in clock ticks, and there are 18.2 clock ticks per second. A numeric
expression in the range Oto 65535 (that's slightly over one hour) is used. To
produce a sound at 500 Hz and make it last for 40 ticks of the clock, we would
use this statement:

SOUND 500, 40

Here is an elementary graphics program that has been enhanced by the
SOUND command. It draws fixed triangles and random circles and blinks them
in a manner suitable for illuminating rock concert. SOUND provides some
audio accompaniment.

10 KEY OFF
15 'turns the key Line off
20 SCREEN 1
25 ' switches from text mode to graphics mode
30 FOR !=1 TO 100
40 CIRCLE (RND*250, RND*200), 30
45 draws a circle with random coordinates and a

diameter of 30
50 SOUND RND*1000+37, 2
55 ' creates a random sound from 37 to 1037 Hz. with a

duration of 2 clock ticks
60 CLS
70 DRAW "E15; F15; L30"
75 ' draws a triangle
80 SOUND RND*1000 + 37, 2
90 CLS
100 NEXT I
110 END

Music on the PCjr
Next on the level of sound sophistication is the PLAY command. It

enables you to turn your PCjr into a piano and play musical compositions as
simple or as complex as you like. (There is even an arrangement of Beetho
ven's Moonlight Sonata for the PCjr!)

A few musical facts will help you a great deal in your programming:
1. Just like a piano, the PCjr uses 7 octaves, numbered 0 to 6. Each

octave starts with C and goes to B.

Sound and Music on the PCjr 285

2. Octave 3 starts with middle C.
3. The tempo of a song is the speed at which it is played. On the PCjr,

tempo is measured by the number of quarter notes per second. The
tempo may range from 32 to 255.

4. The PCjr allows you to style your notes as normal, legato, or staccato.
Normal means that notes are held down for 718 of their defined
length. Legato means that each note will play for the full time period
that you set it to play, while staccato means that each note is held for
only 3 / 4 of the time specified. Legato notes sound "smooth,"
whereas staccato notes are "crisp."

PLAY
The PLAY command allows you to show your creative musical genius,

even if you can't play a comb. It uses a language that allows you to write music
in the form of strings. Once the music has been transcribed, the PLAY state
ment allows you to play it on the speaker.

In order to use the PLAY command:
1. Code the desired musical notes as a string.
2. Use the PLAY command in the form

PLAY <string>

For example, consider this program. Why not type it in and listen to the results:

10 A$="03L4EDCDEE"
20 PLAY "XA$; E2DDD2EGG2; T255XA$; EEDDEDP2C1"

The program probably makes the music look quite mysterious. However, the
musical language is quite simple. Here is a summary.

NOTES Notes are indicated by the letters A to G with an optional # ,
+, or -. The # or + after a letter indicates a sharp, while -
indicates a flat.

LENGTH

For example, the note "A sharp" is written A#, whereas "G
flat" is written G-.

L defines the LENGTH of a note. Ll is a whole note, L2 is a
half note, L4 is a quarter note , .. . , L64 is a 64th note. The L
comlJ)and defines the length of all subsequent notes until an
other L command is given. For example, to play the string of
notes CDEFG in quarter notes, use this string:

L4 CDEFG

If you wish to define the length of a single note, omit the L
and put the number indicating the length after the note . For
example, C4 would indicate C held for a quarter note. Subse
quent notes would be held for an amount defined by the most
recent L command.

286 Sec. 10.11

REST

OCTAVE

As in musical notation, a dot after a note indicates that the
note is to be held for one-and-one-half times its usual length.

Pl is a whole note rest, P2 a half note, and so forth.

Initially, all notes are taken from octave 4 (the octave above
the one beginning with middle C). The octave is changed by
giving the O command. For example, to change to octave 2,
the command would be 02. After you give an octave com
mand, all notes are taken from the indicated octave unless
you change the octave or temporarily overrule the octave (see
below). Another method of specifying the octave is by using
the symbols > and < . The symbol > means to go up one
octave , and the symbol < means to go down one octave.

TEST YOUR UNDERSTANDING 1 (answer on page 287)
Write a string ·that plays an ascending C major scale in eighth notes,
pauses for a half-note, and then plays the same scale descending.

TEST YOUR UNDERSTANDING 2 (answer on page 287)
Write a string that plays the scale of TEST YOUR UNDERSTANDING 1
in octave 5.

TEMPO Tempo is the speed at which a composition is played. Tempo
is measured in terms of quarter beats per second. Unless you
specify otherwise, the tempo is set at 120. You may set the
tempo using the T command. For example , to set the tempo
to 80, use the command T80. The tempo remains unchanged
until you give another T command. The tempo may range
from 32 to 255.

TEST YOUR UNDERSTANDING 3 (answers on page 287)
Write a string that plays the scale of TEST YOUR UNDERSTANDING 1
at a tempo of 80; at a tempo of 150.

STYLE

CHORDS

You may select the style of notes from among: normal, legato,
or staccato. The respective commands are MN, ML, and MS.
The style chosen remains in effect until it is canceled by anoth
er style selection.

You may PLAY up to three strings simultaneously, thereby creat
ing harmony. For example, to play the C-major chord consisting
of the notes C, E and G, you could use the statement:

PLAY "C", "E", "G"

Sound and Music on the PCjr 287

Similarly, to simultaneously play the strings A$ and B$, you
could use the statement:

PLAY A$, B$

Of course , it's up to you to code the strings so that the correct
notes occur with one another. Chords may be used only if you
are using an external speaker, such as the speaker in a TV
set. Before playing chords, you must turn on the external
speaker using the command:

SOUND ON

TEST YOUR UNDERSTANDING 4 (answer on page 287)
Write a string that plays the scale of TEST YOUR UNDERSTANDING 1
with legato style ; with staccato style .

Ordinarily, the PLAY command will cause BASIC to stop while the speci
fied notes are played. However, you also may use the PLAY command in
background mode. In this mode, while the speaker plays the notes, BASIC
continues executing the program, beginning with the statements immediately
after the PLAY statement. The background mode may be started with the com
mand MB. You may return to normal mode (also called foreground mode)
with the command MF.

In coding music, you may wish to use the same string a number of times.
This would occur, for example, in the case of a refrain. The X command allows
you to repeat a string without retyping it. Just store the desired string in a string
variable, say A$. Whenever the string is required, type:

XA$;

Exercises

1. Choose a piece of piano music and transcribe it for the PCjr.

ANSWERS TO TEST YOUR UNDERSTANDING
1: A$="CDEFGAB 05 C 04 P2 CBAGFEDC"
2: A$="05CDEFGAB 06 C P2 C 05 BAGFEDC"
3: A$="T80 CDEFGAB 05 C P2 C 04 BAGFEDC"

A$="T150 CDEFGAB 05 C P2 C 04 BAGFEDC"
4: A$="ML CDEFGAB 05 C P2 C 04 BAGFEDC"

A$="MS CDEFGAB C 05 P2 C 04 BAGFEDC"

11

WORD PROCESSING

11.1 What is Word Processing?

Microcomputers are causing an office revolution. As microcomputers become
cheaper and easier to use, they are finding their way into every aspect of busi
ness. Nowhere does the revolutionary impact of microcomputers promise to be
greater than in the area of word processing. In brief, a word processor is a
device made by combining the traditional typewriter with the capabilities of the
computer for storing, editing, retrieving, displaying, and printing information. It
is no exaggeration to say that the traditional typewriter is now as obsolete as a
Model T. Over the next decade or so the typewriter will be completely replaced
by increasingly sophisticated word processors.

Basically, a word processor uses the microcomputer as a typewriter.
However, instead of using paper to record the words, a word processor uses
the computer memory. First, the words are stored in RAM. When you wish to
make a permanent record of them, you store them on disk as a data file. As
you type , the text can be viewed on the video display. This part of word
processing is not revolutionary. The true power of a word processor doesn't
come into play until you need to edit the data in a document. Using the
power of the computer, you can perform the following tasks quickly and with
little effort: Move to any point in the document ; add words, phrases,
sentences, or even paragraphs; delete portions of the text; move a block of
text from one part of the document to another; insert "boiler plate" informa
tion (standard pieces of text such as resumes or company descriptions) from
another data file (for example , you could add a name and address from a
mailing list) ; selectively change all occurrences of one word (say, "John") to
another (say, "Jim"); or print the contents of a file according to a requested
format.

In this chapter, we will discuss the characteristics of the various word
processing programs which you can purchase for your PCjr. Then, to give you
a taste of word processing proper, we will build a rudimentary word processor
which you can use to prepare letters, term papers , memos, or other
documents.

11.2 Using Your Computer As a Word Processor

A word processing system is a computer program for creating, storing, editing,
and printing text.

290 Sec. 11.2

At its most basic level , you use a word processing system like you would
use a typewriter. Suppose that you wish to prepare a document. You would
turn on the computer and run the word processing program. The program first
asks for the type of work you would like to perform. Possibilities include: Type
in a new document, edit an old document, save a document on diskette, or
print a document. Select the first option. Next describe various format parame
ters to the word processor: line width, number of characters per inch, number
of lines per page , spacing between lines, and so forth.

Then type the document exactly like you would on a typewriter. There are
several huge exceptions, however! First of all , don't worry about carriage
returns. The word processor takes care of forming lines. It accepts the text we
type, decides how much can go on a line, forms the line , and displays it. Any
text left over is automatically saved for the next line. The only function of the
carriage return is to indicate a place where you definitely want a new line , such
as at the end of a paragraph.

A second advantage of a word processor is in correcting errors. To correct
an error, move the cursor to the site of the mistake, give a command to erase
the erroneous letters or words, and type in the replacements. Of course, such
action generally will destroy the structure of the lines. (Some lines now may be
too long and others too short.) By using a simple command, it is possible to
"re-form" the lines according to the requested format.

Typically, a word processor has commands which enable you to scroll
through the text of a document to look for a particular paragraph. Some word
processors even allow you to mark certain points so that you may turn to them
without a visual search.

When the document is finally typed to your satisfaction, you give the com
puter an instruction which saves a copy of it on diskette. At a future time , you
may recall the document and add to it at any point (even within the body of a
paragraph!) . Typically, word processors have certain "block operations" which
allow you to "mark" a block and then either delete it, copy it, or move it to
another part of the document. You also may insert other documents into the
current document. This is convenient, for example , in adding boiler plate mate
rial , such as resumes, to your document. You may even use the block opera
tions to alter boiler plate material to fit the special needs of the current
document.

You may construct your document in as many sessions as you wish. When
your diskette finally contains the document as you want it, you give the instruc
tion to print. Your printer will produce a finished, error-free copy of the
document.

As if the above were not enough of an improvement over the conventional
typewriter, the typical word processor can do even more. The features available
depend, of course, on the word processor selected. Here are some of the
goodies to look for:

Global Search and Replace. Suppose that your document is a propo
sal. Further suppose that, at some later time , you wish to resubmit your propo
sal to Acme Energetics. In your original proposal, you included numerous
references to the original company, Jet Energetics. A global search and replace

A Do-It-Yourself Word Processor 291

feature allows you to instruct the computer to replace every occurrence of a
particular phrase with another phrase . For example , you could replace every
occurrence of "Jet Energetics" with "Acme Energetics." Global search and
replace can be even more sophisticated. In some systems, the word processor
can be instructed to ask you whether or not to make each individual change.
Another variation is to instruct the word processor to match any capitalization
in the phrases replaced.

Centering. After typing a line you may center it using a simple command.
Boldface. You may print certain words in darker type.
Underscore. You may underline portions of text.
Subscripts and Superscripts. You may print subscripts (as in a 1) and

superscripts (as in a 2
) . This is extremely useful for scientific typing and

footnoting.
Justification. You may instruct the word processor to "justify" the right

hand margins of your text, so that the text always ends exactly at the end of a
line. This is possible only if you have a printer which is capable of spacing in
increments smaller than the width of a single letter.

Spelling Correction. There are a number of spelling correction pro
grams which compare words of your document against a dictionary (sizes
range from 20,000 to 70,000 words). If the program doesn't find a match, it
asks you if the word is spelled correctly and gives you an opportunity to add the
word to the dictionary. In this way the output of a word processor can be proof
read by computer.

Footnotes and Indexing. Some of the more elaborate word processing
programs keep track of footnotes and place each one on the proper page
when the document is printed. In addition, some word processing packages
allow you to designate terms to be included in an index of your document.

As of this writing, several word processing programs are available for the
PCjr, practically all with sufficient power to handle all but the most demanding
tasks . You should plan on adding one of them to your personal software library
as soon as possible . If you don't, you will be missing out on one of the most
powerful applications of your PCjr.

11.3 A Do-It-Yourself Word Processor

It is quite impractical for you to build your own word processor. For one thing,
such a program is long and complicated. Moreover, if you write in BASIC, the
operation of the program will tend to be rather slow. An efficient word proces
sor almost always is written in machine language. Nevertheless, to acquaint you
with a few of the virtues of word processing, let's ignore what I just said and
build a word processor anyway!

Our word processor will be line-oriented: You type each line just as if you
are typing it on a typewriter. At the end of each line, you will give a carriage
return by typing ENTER. The Jth line will be stored in the string variable A$(J).
Assume that you have 32K of memory available for document storage. This
allows us to store and edit a document of about five double-spaced, typed
pages. Our word processor will have five modes. In the first mode, we input

292 Sec. 11.3

text. This operation will proceed exactly as on a typewriter. At the beginning of
each line, the word processor will display a ?. Type your line after the question
mark. Terminate the line with ENTER. To indicate that you don't wish to type
any more lines, type % followed by ENTER.

A second mode allows us to save a document. The program saves your
document as a data file under a file name requested by the program. The first
item in a document file always will be the number of lines in the document. This
quantity will be denoted by the variable L. Next are the lines of the document:
A$(1) , A$(2) , ... , A$(L) .

A third mode lets you produce a draft version of the document. In this
mode, the document is printed with each line preceded by its line number. The
line numbers allow you to identify lines with errors. In order to print a docu
ment, you first must save it on the disk.

A fourth mode allows for document editing. To correct errors, you identify
the line by number and retype the line. To end the edit session, type% followed
by ENTER. This will bring you back to the beginning of the program, but you
still will be working on the same document. After ending an edit session, your
next action should be to save the document. The fifth and final mode allows
you to print a final draft of a document.

When the word processor is first run, you will see the following prompt:

WORD PROCESSING PROGRAM
CHOOSE ONE OF THE FOLLOWING MODES

INPUT TEXT(I)
PRINT DRAFT (PD)
PRINT FINAL DRAFT (PF)
SAVE FILE (S)
EDIT (E)
QUIT (Q)

In response , you type I, PD, PF, S, E, or Q, followed by ENTER. If you
choose I, the screen will be cleared and you may begin typing your document.
For the other modes, there are prompts to tell you what to do . Here is a listing
of the program.

You should use this program to type a few letters. You will find it a big
improvement over a conventional typewriter. Moreover, this probably will whet
your appetite for the more advanced word processing features described in the
preceding section.

100 'Main Menu
110 CLS
120 DIM A$(150)
130 PRINT "WORD PROCESSING PROGRAM"
140 PRINT "CHOOSE ONE OF THE FOLLOWING MODES"
150 PRINT,"INPUT TEXT(!)"
160 PRINT , "PRINT DRAFTCPD)"
170 PRINT, "PRINT FINAL DRAFT(PF)"
180 PRINT, "SAVE FILE(S)"
190 PRINT, "EDIT(E)"

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700

PRINT, "QUIT(Q)"
INPUT X$
IF X$="I" THEN 300
IF X$="PD" THEN 390
IF X$="PF" THEN 480
IF X$="S" THEN 590
IF X$="E" THEN 670
IF X$="Q" THEN 830
GOTO 140
'Document Entry
L=1

A Do-It-Yourself Word Processor 293

PRINT "After each line of document, type ENTER"
LINE INPUT A$(L)
IF A$(L)="%" THEN L=L-1: GOTO 130
L=L+1 ,
IF L <= 150 THEN 320
IF L>150 THEN PRINT "DOCUMENT TOO LARGE"
GOTO 130
'Print a draft copy
INPUT "DOCUMENT NAME";Y$
OPEN Y$ FOR INPUT AS #1
INPUT #1 , L
FOR K=1 TO L

INPUT #1, A$(K)
LPRINT K;">";TAB(7) A$(K)

NEXT K
CLOSE 1
GOTO 130
INPUT "DOCUMENT NAME";Y$
'Print final copy of document
OPEN Y$ FOR INPUT AS #1
INPUT#1,L
FOR K=1 TO L

INPUT#1, A$(K)
LPRINT A$(K)

NEXT K
CLOSE 1
GOTO 130
'Save current document
INPUT "DOCUMENT NAME";Y$
OPEN Y$ FOR OUTPUT AS #1
WRITE#1,L
FOR K=1 TO L

WRITE#1,A$(K)
NEXT K
CLOSE 1
GOTO 130
INPUT "DOCUMENT NAME"; Y$
'Edit document
OPEN Y$ FOR INPUT AS #1
INPUT #1, L

294 Sec. 11.3

710 FOR K=1 TO L
720 INPUT #1,A$(K)
730 NEXT K
740 INPUT "NUMBER OF LINE TO EDIT";Z
750 CLS
760 PRINT A$(Z)
770 PRINT "TYPE CORRECTED LINE"
780 LINE INPUT A$(Z)
790 IF A$(Z) <> "%" THEN 740
800 CLOSE 1
810 GOTO 130
820 'Exit program
830 END

Exercises

1. Modify the word processor to allow input of line width. (You will not
be able to display lines longer than 80 characters on a single line.
However, string variables may contain up to 255 characters.)

2. Modify the word processor so that you may extend a line. This modifi
cation should let your corrected line spill over into the next line of
text. The program should then correct all of the subsequent lines to
reflect the addition.

3. Modify the word processor to allow deletions from lines. Subsequent
lines should be modified to reflect the deletion.

12

SOME ADDITIONAL

PROGRAMMING TOOLS

In this chapter we will present four additional programming tools.

12.1 The INKEY$ Variable
The Keyboard Buffer

Many programs depend on input from the operator. We have learned to
provide such input using the INPUT and LINE INPUT statements. When the
program encounters either of these statements, it pauses and waits for input.
The program will not proceed unless valid input is provided. The INKEY$ func
tion provides an alternative method of reading the keyboard.

When a key is pressed, BASIC interrupts what it is doing and places the
corresponding ASCII code in a reserved section of memory called the key
board buffer . The keyboard buffer has space to record a number of key
strokes. The process of recording information in the keyboard buffer usually
proceeds so that you don 't even realize that the keyboard buffer is there. For
instance , in typing program lines, BASIC is constantly reading the keyboard
buffer and displaying the corresponding characters on the screen. In a similar
fashion , an INPUT statement reads the keyboard buffer and displays the corre
sponding characters on the screen. A carriage return (generated by ENTER)
tells the INPUT statement to stop reading the buffer.

As characters are read from the buffer, the space they occupy is released.
If the buffer is full and you attempt to type a character, you will hear a beep on
the speaker. This is to inform you that , until the buffer is read, further typed
characters will be lost.

Note that you may type on the keyboard while a program is running. Even
though BASIC is busy executing a program, it will pause to place your typed
characters in the keyboard buffer and then return to execution. When the
buffer is next read, it will read the characters in the order they were typed. In
this way, you may "type ahead" of required program input.

The INKEY$ Variable
The INKEY$ function allows you to read one character from the keyboard

buffer. When the program reaches INKEY$, it will read the " oldest" character

296 Sec. 12.2

in the keyboard buffer and return it as a string. This procedure counts as read·
ing the character, so that the character is removed from the buffer. If there is
no character in the keyboard buffer, INKEY$ will equal the empty string.

INKEY$ has many uses. For example, suppose that you wish your pro·
gram to pause until some key is pressed. Here is a statement which accom·
plishes this task:

100 IF IN KEY$ = "" THEN 100

The program will continually test the keyboard buffer. If there is no character to
be read, the test will be repeated, and so on until some key has been pressed.

Caution: We have explained the operation of INKEY$ in terms of the key·
board buffer so that you could understand the following trap: If the keyboard
buffer is not empty, a reference to INKEY$ will remove a character. If you use
INKEY$ a second time , you will be referring to the keyboard buffer anew and
the value of the first INKEY$ will be lost. Moral: If you wish to use the value of
INKEY$ again, store the value in a string variable, as in the statement:

10 A$ = INKEY$

Exercises (answers on page 371)

Suppose that the keyboard buffer is originally empty and you type A followed
by F followed by c.

1. What is the value of INKEY$?
2. Suppose that the INKEY$ of Exercise 1 has been executed. Suppose

that it is followed by the statement:

IF INKEY$ <> "" THEN PRINT INKEY$

What letter will be displayed on the screen?
3. Write a program which tests the keyboard and displays the keys

pressed. It should display them in a single line , with no spaces
between consecutive characters.

12.2 The Function Keys and Event Trapping
The function keys are the 10 keys labeled Fl through FlO on the top of

the PCjr keyboard and are used in combination with Fn.

The Function Keys as User-Defined Keys
Each function key may be assigned a string constant containing as many

as 15 characters. When a function key is pressed, the corresponding string is
input to BASIC. In this way, you may reduce typing standard inputs to single
keystrokes . This tends to e liminate errors in typing. For example, suppose that

The Function Keys and Event Trapping 297

an input statement asked for a response of HIGH, LON, or AVERAGE. You
could define function keys Fl , F2, and F3 to be , respectively, the strings:

F1: HIGH <carriage return>
F2: LOW <carriage return>
F3: AVERAGE <carriage return>

Then pressing Fl , for example, would be equivalent to responding to the input
statement with the string HIGH followed by ENTER.

Setting Function Keys. You may assign strings to the function keys in either
command or execution mode. To assign < string > to the function key n, use
the statement:

KEY n, <string>

Suppose that you wish to assign key Fl the string:

LIST <carriage return>,

This may be done by the statement:

10 KEY 1, "LIST"+CHR$(13)

Subsequently, whenever you press key Fl (Fn-1) the desired string will be input
to BASIC. In particular, if you happen to be in the immediate mode , inputting
the string will cause the current program to be listed. In effect, you have cus
tomized the Fl key to a special application . In a similar fashion, you may cus
tomize other keys with commands or keystroke sequences which come up
often in your work.

If you assign a null string to a function key, this will disable the key.
To display the current function key string assignments, use the command:

KEY LIST

The current string assignments will be displayed on the usual text area of the
screen Oines 1-24).

In writing or running a program, it is often convenient to have a reminder
of the various key string assignments on the screen at all times. This may be
accomplished by giving the command:

KEY ON

The first 6 characters of each function key string will then be displayed in line
25 of the screen. (In case of a line width of 40, only the first 5 function key
strings are displayed.) To turn off the function key display in line 25, use the
command:

KEY OFF

298 Sec. 12.2

TEST YOUR UNDERSTANDING 1 (answers on page 301)
a . Write commands to assign the following strings to function keys

1-3.

F1 - "ADDITION"
F2 - "SUBTRACTION"
F3 - "MULTIPLICATION"

Disable all other function keys.
b. Display the function key assignments in line 25.

Event Trapping (Cartridge BASIC Only)
For this section, you must use the cartridge version of PCjr BASIC.
We have described how to input data using INPUT, LINE INPUT, and

INKEY$. All of these input methods have the following feature in common:
The program decides when to ask for the input. You may use the function keys
for a very different form of input.

Suppose that you wish the program to watch function key Fl. The instant
Fl is pressed, you wish the program to go to the subroutine in line 1000. This
may be accomplished first by turning on event trapping for key Fl using the
statement:

10KEY(1)0N

which tells the program to examine Fl after every program statement is exe
cuted. Next, we tell the program that whenever Fl is pushed, go to the subrou
tine starting in line 1000:

20 ON KEY(1) GOSUB 1000

The program will inspect the keyboard buffer at the end of each program state
ment. When it detects that Fl has been pushed, it will execute GOSUB 1000.

You may use event trapping to implement a menu, as illustrated in the
following example.

Example 1. Write a program to test addition, subtraction, and multiplication
of two-digit numbers. Let the user select the operation with function keys Fl
through F3. Let function key F4 end the program.
Solution. We create four subroutines, corresponding to addition, subtraction,
multiplication, and END. These four subroutines begin in lines 1000, 2000,
3000, and 4000, respectively. What is of most interest to us , however, are lines
10-210. We first clear the screen and define the strings associated with function
keys Fl to F4 as ADD, SUBTR, MULT, and EXIT. Then we disable the rest of
the function keys. In lines 140-170, we set up the event-trapping lines for func
tion keys Fl-F4. In lines 180-200, we turn the event trapping on.

The Function Keys and Event Trapping 299

In line 210, we select the two numbers to use in our arithmetic. In line 220
we set up an infinite loop which continuously goes from 220 to 210 and back to
220. Note that this infinite loop accesses different random numbers in each
repetition. Thus, the problem you get will depend on how long you take to
press one of the function keys. Therefore, it is really unnecessary to use the
randomize command to guarantee non-repeatability. The program keeps exe
cuting the loop until one of the function keys is pressed. Then it goes to the
appropriate subroutine. Notice that the strings attached to Fl-F4 are displayed
in line 25 of the screen. This is accomplished in line 130.

10 'Initialize function keys
20 CLS
30 KEY 1, "ADD"
40 KEY 2, "SUBTR"
50 KEY 3, "MULT"
60 KEY 4, "END"
70 KEY 5,""
80 KEY 6, '"'
90 KEY 7,""
100 KEY 8,""
110 KEY 9,""
120 KEY 10,""
130 KEY ON
140 ON KEY(1) GOSUB 1000
150 ON KEY(2) GOSUB 2000
160 ON KEY(3) GOSUB 3000
170 ON KEY(4) GOSUB 4000
180 FOR J=1 TO 4
190 KEY(J) ON
200 NEXT J
210 X=INT(100*RND):Y=INT(100*RND)
220 GOTO 210
1000 'Addition
1010 CLS
1020 PRINT "ADDITION"
1030 PRINT "PROBLEM"
1040 PRINT X;" +";Y;" EQUALS?"
1050 INPUT ANSWER
1060 IF ANSWER=X+Y THEN 1070 ELSE 1090
1070 PRINT "CORRECT"
1080 GOTO 1100
1090 PRINT "INCORRECT. THE CORRECT ANSWER IS";X+Y
1100 RETURN
2000 'Subtraction
2010 CLS
2020 PRINT "SUBTRACTION"
2030 PRINT "PROBLEM"
2040 PRINT X;" -";Y;" EQUALS?"
2050 INPUT ANSWER
2060 IF ANSWER=X-Y THEN 2070 ELSE 2090

300 Sec. 12.2

2070 PRINT "CORRECT"
2080 GOTO 2100
2090 PRINT "INCORRECT. THE CORRECT ANSWER IS" ;X-Y
2100 RETURN
3000 'Multiplication
3010 CLS
3020 PR INT "MULTIPLICATION"
3030 PRINT "PROBLEM"
3040 PRINT X;" *";Y;" EQUALS?"
3050 INPUT ANSWER
3060 IF ANSWER=X*Y THEN 3070 ELSE 3090
3070 PRINT "CORRECT"
3080 GOTO 3100
3090 PRINT "INCORRECT. THE CORRECT ANSWER IS" ;X*Y
3100 RETURN
4000 'Exit
4010 CLS
4020 KEY OFF
4030 END

There may be certain sections in the program where you want to disallow
trapping of function key n. This may be done using either of the statements:

KEY(n) STOP
KEY(n) OFF

You may resume trapping of function key n using the statement

KEY(n) ON

If function key n is pressed while a STOP is in effect, the event will be
remembered. When trapping is turned on, the program will jump to the appro
priate subroutine. If you use a KEY(n) OFF statement, then function keys are
not remembered.

In addition to the function keys, you may trap the cursor motion keys.
(These are the four keys on the numeric keypad with arrows pointing in the
four possible directions of cursor motion.) The commands for trapping these
keys are

ON KEY(n) GOSUB
KEY(n) ON
KEY(n) OFF
KEY(n) STOP

where n = 11 corresponds to cursor up, n = 12 to cursor left, n = 13 to cursor
right , and n = 14 to cursor down.

Exercises (answers on page 372)

1. Write a statement which disables function key FS.

Error Trapping 301

2. Write a statement which assigns function key Fl the string
"LIST" <carriage return> .

3. Write a program which causes function key Fl to erase the screen
and start a new program.

4. Modify the program of Example 1 to disallow function key trapping
during the subroutines beginning in lines 1000, 2000, and 3000.

ANSWER TO TEST YOUR UNDERSTANDING
1: a.

10 DATA ADDITION,SUBTRACTION,MULTIPLICATION
20 FOR J=1 TO 3
30 READ A$(J)
40 NEXT J
50 FOR J=1 TO 10
60 KEY J,A$(J)
70 NEXT J
b. KEY ON

12.3 Error Trapping

At the moment, our programs have only a single way to respond to an error:
The program stops and an error message is displayed. Sometimes the program
stops with good cause , since a logical error prevents BASIC from making any
sense of the program. However, there are other instances in which the error is
rather innocent: The printer is not turned on, the wrong data diskette is in the
drive, or the user provides an incorrect response to a prompt. In each of these
situations, it is desirable for the program to report the error to the user and
wait for further instructions. Let's learn how to make the program take such
action.

Ordinarily, the response to an error is to halt the program. However, an
alternative is provided by the

ON ERROR GOTO <Line number>

statement. If your program contains such a statement, BASIC will go to the
indicated line number as soon as an error occurs. For example, suppose your
program contains the statement:

ON ERROR GOTO 5000

Whenever an error occurs, the program will go to line 5000. Beginning in line
5000, you would program an error-trapping routine , which would:

1. Analyze the error
2. Notify the user of the error

302 Sec. 12.3

3. Resume the program and / or wait for further instructions from the
user.

The ON ERROR GOTO is called an error-trapping statement. It may
occur anywhere in the program. After you type RUN , BASIC scans your pro
gram for the presence of an error-trapping statement. If BASIC finds an error
trapping line, it sets up code to send your program to the desired program line,
should an error occur. In order to minimize BASIC's time to search for an
error-trapping statement, you should place an error-trapping statement at the
beginning of the program.

To see how an error-trapping routine is constructed, let's consider a partic
ular example. Suppose that your program involves reading a data file , which
must be on the diskette in the current drive. The program user may place the
wrong diskette in the drive or may not insert any diskette at all. Let's write an
error-trapping routine to respond to these two types of errors.

Let's place our error-trapping routine beginning in line 5000. We begin
our program with the error-trapping line:

10 ON ERROR GOTO 5000

When an error occurs, BASIC makes a note of the line number in the
variable ERL (error line) and the error number in ERR It then goes to line
5000. The values of the variables ERL and ERR are at our disposal , just like
the values of any other variables.

In our particular example , there are two types of errors to look out for:
File Not Found (error number 53) and Disk Not Ready (error number 71).
The first error occurs when the file requested by the program is not on the
indicated disk. The second error occurs when either the diskette drive door is
open or no diskette is in the drive. The error numbers were obtained from
either the list of errors on the summary card at the back of the book or in
Appendix A of the BASIC Reference Manual. In the case of each error, the
error-trapping routine should notify the user and wait for the situation to be
corrected. Here is the routine :

5000 'Error-trapping routine
5010 IF ERR=53 PRINT "File Not Found"
5020 IF ERR=71 PRINT "Disk Not Ready"
5030 IF ERR<>53 AND ERR<>71 THEN PRINT "Unrecoverab Le

Error": END
5040 PRINT "CORRECT DISKETTE. PRESS ANY KEY WHEN READY."
5050 IF INKEY$="" THEN 5060
5060 RESUME

Several comments are in order. Notice that the error-trapping routine only
allows recovery in the case of errors 53 and 71. If the error is any other type,
line 5040 will cause the program to END. Line 5050 tells the operator to cor
rect the situation. In line 5060, the program waits until the operator signals that
the situation has been corrected. The RESUME in line 5070 clears the error

Chaining Programs 303

condition and causes the program to resume execution with the line that
caused the error.

Note that we analyzed our errors using ERR. Note that ERL returns the
line number, which is the same for both errors. So ERL doesn't allow us to tell
the errors apart.

The RESUME statement has several useful variations:
RESUME NEXT - causes the program to resume with the line

immediately after the line which caused the error.
RESUME <Line number> - causes the program to resume with

the indicated line number.
In designing and testing an error-trapping routine , it is helpful to be able to

generate errors of a particular type. This may be done using the ERROR state
ment. For example, to generate an error 50 (field overflow) in line 75, just
replace line 75 with

75 ERROR 50

When the program reaches line 75, it will simulate error 50. The program then
will jump to the error-trapping routine to be tested.

Exercises (answers on page 372)

1. Write an error-trapping routine which allows the program to ignore all
errors.

2 . Write an error-trapping routine which allows detection of a Type Mis
match error in line 500. The response should be to display the error
description and go to line 600.

12.4 Chaining Programs
The CHAIN instruction allows you to call a BASIC program from within an
operating program. For example , the statement:

2000 CHAIN "SQUARES"

will cause the program to load and execute the program "SQUARES" . The
current program will be lost , as will the values of all its variables. BASIC will
begin execution of "SQUARES" with its first line .

You may begin execution of "SQUARES" at line 300 by using the
statement:

2000 CHAIN "SQUARES",300

You may carry ALL of the variables of the current program over into
"SQUARES" and begin with the first statement of " SQUARES" by using the
statement:

2000 CHAIN "SQUARES" ,,ALL

304 Sec. 12.4

To carry forward a ll of the variables of the current program and to begin
"SQUARES" at line 300, use the statement:

2000 CHAIN "SQUARES",300,ALL

A CHAIN statement is useful if a particular program is too large for mem
ory. You may break the program into subprograms and use CHAIN statements
to link them into a single program. In the interest of saving memory, you may
wish to carry over only some of the variables of the current program. You may
do this with the COMMON statement. For example, to pass the variables A, B,
and C$ to "SQUARES", we would include the following statement in the chain
ing program:

10 COMMON A,B,C$

If, in addition, you wish to pass the values of the array SALARY(), the COM
MON statement should be in the form:

10 COMMON A,B,C$,SALARY()

You may include as many COMMON statements as you wish. However, a varia
ble may appear in only one of them. COMMON may appear anywhere in a
program, but it is a good idea to place it at the beginning.

Be careful in using the CHAIN statement. It has the following significant
effects:

1. There is no way to pass user-defined functions to the chained
program.

2. Any variable types that have been defined by the statements DEFINT,
DEFSNG, or DEFDBL will not be preserved. (See Chapter 14 for a
discussion of variable types.)

3. Any error-trapping line number will not be preserved.
4 . All files are closed.
The CHAIN statement completely eliminates the current program. You

may keep a portion (or all) of the current program by using the CHAIN
MERGE statement. For example, the statement:

CHAIN MERGE "SQUARES",300

will merge the program "SQUARES" with the current program and resume
execution at line 300. The lines of "SQUARES" will be interleaved with the
lines of the current program. If a line number in "SQUARES" duplicates a line
number in the current program, then the line in the current program will be
deleted in favor of the corresponding line in "SQUARES".

The program to be MERGEd must have been stored in ASCII format.
(This is the format created by the command SAVE,A.) Otherwise BASIC will
report a Bad File Mode Error.

Chaining Programs 305

In some applications, you may wish to delete a section of the current pro
gram before MERGEing. For example , the statement:

CHAIN MERGE "SQUARES",300,DELETE 300-1000

will first delete lines 300-1000 of the current program, merge "SQUARES"
with the current program, and resume execution at line 300 of the resulting
program.

CHAIN MERGE leaves files currently open and preserves variables, varia
ble types, and user-defined functions .

Exercises (answers on page 372)

1. Write a statement to merge the program "L" into the current pro
gram and begin at the first line of the resulting program.

2. Write a program to run the programs "A", "B" , and "C" one after
the other.

13

COMPUTER GAMES

In the last few years, computer games have captured the imaginations of
millions of people. In this chapter, we will build several computer games that
use both the random number generator and the graphics capabilities of the
PCjr. In many games, we need a clock to time moves. We will start by learning
to tell time with the computer.

13.1 Telling Time With Your Computer (Cartidge BASIC
With DOS Only)

The PCjr Disk Operating System has a built-in clock (a real-time clock in
computer jargon) that allows your programs to take into account the time of
day (in hours, minutes, and seconds) and the date (month, day, and year). You
can use this feature for many purposes, such as timing a segment of a program
(see Example 1).

Reading the Real-Time Clock
The real-time clock keeps track of six pieces of information in the follow-

ing order:
Month (01-12)
Day (01-31)
Year (1980-2099)
Hours (00-23)
Minutes (00-59)
Seconds (00-59)

The date is displayed in the following format:

2-15-1984

The time is displayed in the following format:

14:38:27

The above displays correspond to February 15, 1984, at 27 seconds after 2:38
pm. Note that the hours are counted using a 24-hour clock, with O hours corre
sponding to midnight. Hours 0-11 correspond to am, and hours 12-23 corre
spond to pm. Also note that the year must be in the range 1980-2099.

308 Sec. 13.1

The clock is programmed to account for the number of days in a month
(28, 30, or 31), but it does not recognize leap years.

In BASIC, time is identified as TIME$. To display the current time on the
screen, use the command:

10 PRINT TIME$

If it is currently 5: 10, pm the computer will display the time in the format:

17:10:07

(The :07 denotes 7 seconds past the minute.)
BASIC identifies the date as DATE$. To display the current date of the

screen, use the command

20 PR I NT DATE$

If it is currently December 18, 1984, the computer will display

12-18-1984

TEST YOUR UNDERSTANDING 1 (answer on page 311)
Display the current time and date.

Setting the Clock
You have an opportunity to set the clock when starting the Disk Operating

System. Recall that the initial DOS display asks you for the date. If you accu
rately answer this question, the computer will keep the correct date as long as it
is operating continuously. Note, however, that the computer will lose track of
this data as soon as it is turned off. You also may use TIME$ and DATE$ to
set the time and date as follows : Suppose that the time is 12:03: 17 and the
date is 10/ 31/1984. You would then type the commands:

TIME$= "12:03:17"
DATE$ = "10-31-1984"

These commands may be typed whenever the computer is not executing a
program and they are typed without a line number. These commands also may
be used within a BASIC program (with a line number, of course). For example,
to reset the time to 00:00:00 within a program, you would use the statement

10 TIME$ = "00:00:00"

Telling Time With Your Computer (Cartidge BASIC With DOS Only) 309

In setting the date , two variations are acceptable. First, you may replace
some or all of the dashes in the date by slashes. All of the following are accept
able forms of the date :

10/31/1984 10-31 - 1984
10/31-1984 10-31/1984

Second, you may input the year as two digits. For example, you could input
1984 as 84. The computer will automatically supply the missing 19.

TEST YOUR UNDERSTANDING 2 (answer on page 311)
Write instructions which set the hours of the clock to 2 pm and the date to
January 1, 1984.

TEST YOUR UNDERSTANDING 3 (answer on page 311)
Set the clock with today's date and time. Check yourself by printing out
the value of the clock.

TEST YOUR UNDERSTANDING 4 (answer on page 311)
Write a program which continually displays the correct time on the screen.

Calculating Elapsed Time
The real-time clock may be used to measure elapsed time. You could ask

the computer to count 10 seconds or three days. In such measurements, it is
convenient to have the components (that is , the hours, minutes, seconds , and
so on) of the time and date available individually. Next, let's discuss a method
for determining these numbers.

Begin with the string TIME$. Suppose that TIME$ is now equal to:

"10:07:32"

To isolate the seconds (the 32), we must chop off the initial portion of the
string, namely "10:07: ". We may do this using the statement RIGHT$:

RIGHT$(TIME$,2)

forms a string out of the rightmost two digits of the string TIME$. This is the
string "32" . In most applications, we will require the 32 as a number rather
than as a string. To convert a string consisting of digits into the corresponding
numeric constant, we may use the VAL function:

VAL("32") = 32,
VAL(" -15") = -15

and so forth. To obtain the SECONDS portion of the time as a numeric con
stant, use the statement:

310 Sec. 13.1

10 SECONDS= VAL(RIGHT$(TIME$,2))

In a similar fashion , we may calculate the HOURS portion of the time by
extracting the left two characters of the time and converting the resulting string
into a numeric constant. The statement to accomplish this is:

20 HOURS= VAL(LEFT$(TIME$,2))

Finally, to calculate the MINUTES portion of the time , we must extract from
TIME$ a string of two characters in length beginning with the fourth character.
For this purpose , we use the MID$ statement as follows :

30 MINUTES= VAL(MID$(TIME$,4,2))

To calculate the MONTH, DAY, and YEAR portions of the date as numeric
constants, we use the statements:

40 MONTH= VAL(LEFT(DATE$,2))
50 DAY= VAL(MID$(DATE$,4,2))
60 YEAR= VAL(RIGHT$(DATE$,4))

The ON TIMER statement is even more convenient for calculating elapsed
time . Consider the following two statements:

10 ON TIMER(10) GOSUB 200
20 TIMER ON

The first statement tells the computer that whenever the timer is turned on ,
BASIC should count 10 seconds and then go to 200. The timer may be turned
on anywhere within the program using a statement like that on line 20.

Example 1. In Example 6 of Section 5.2, we developed a program to test
mastery of addition of two-digit numbers. Redesign this program to allow 15
seconds to answer the question.
Solution. Let us use the real-time clock. After a particular problem has been
given, we will start the seconds portion of the clock at O and perform a loop
until 15 seconds have elapsed. After 15 seconds, the program will print out,
"TIME'S UP. WHAT IS YOUR ANSWER?" Here is the program. Lines 50 and
60 contain the loop.

10 FOR J=1 TO 10: 'LOOP TO GIVE 10 PROBLEMS
20 INPUT "TYPE TWO 2-DIGIT NUMBERS"; A,B
30 PRINT "WHAT IS THEIR SUM?"
40 ON TIMER(15) GOSUB 100
50 TIMER ON
60 GOTO 60: 'WAIT 15 SECONDS
100 INPUT "TIME'S UP! WHAT IS YOUR ANSWER";C
120 IF A+B=C THEN 200
130 PRINT "SORRY. THE CORRECT ANSWER IS",A+B

Telling Time With Your Computer (Cartidge BASIC With DOS Only) 311

140
200
210
220
500
600
700
800

GOTO 500:
PRINT "YOUR
R=R+1 :

'GO TO THE NEXT
ANSWER IS CORRECT!

'INCREASE SCORE
I GO TO THE NEXT

PROBLEM
CONGRATULATIONS"
BY 1

GOTO 500: PROBLEM
NEXT J
PRINT "YOUR SCORE IS", R, "CORRECT OUT OF 10"
PRINT "TO TRY AGAIN, TYPE RUN"
END

TEST YOUR UNDERSTANDING 5 (answer on page 311)
Modify the above program so that it allows you to take as much time as
you like to solve a problem, but keeps track of elapsed time (in seconds)
and prints out the number of seconds used.

Exercises (answers on page 372)

1. Set the clock with today's date and the current time.
2. Print the current time on the screen.
3. Write a program which prints the date and time

intervals.
4. Write a program which prints the date and time

intervals.

ANSWERS TO TEST YOUR UNDERSTANDING
1: 10 PRINT TIME$: PRINT DATE$

20 END
RUN

2: TIME$ = "14:00:00"
DATE$ = "1 /1 /84"

4: 10 PRINT TIME$
20 CLS
30 FOR J=1 TO 500
40 NEXT J: 'DELAY
50 GOTO 10
60 END

at one-second

at one-minute

Note: This program is an infinite loop and will need to be termi
nated by pressing the key combination Ctrl-Break.

5: Delete lines 45-60. Add these lines:
100 INPUT "WHAT IS YOUR ANSWER";C
110 MINUTES= VAL(MID$(TIME$,4,2))
111 SECONDS= VAL(RIGHT$(TIME$,2))
112 PRINT "YOU TOOK" ,60*MINUTES+SECONDS,
"SECONDS"

312 Sec. 13.2

13.2 Blind Target Shoot

The object of this game is to shoot down a target on the screen by moving your
cursor to hit the target. The catch is that you only have a two-second look at
your target! The program begins by asking if you are ready. If so, you press any
key. The computer then randomly chooses a spot to place the target. It lights
up the spot for two seconds. The cursor then moves to the upper left position
of the screen (the so-called "home" position). You then must move the cursor
to the target, based on your brief glimpse of it. You have five seconds to hit the
target. (See Figure 13-1.)

Your score is based on your distance from the target , as measured in
terms of the moves it would take to get to the target from your final position.
Here is the list of possible scores:

Distance From Target
0

1 or 2
3 to 5

6 to 10
11 to 15
16 to 20
over 20

Score
100
90
70
50
30
10
0

Move the cursor using the cursor motion keys on the numeric keypad. We will
use event trapping to interrupt the program while it is running.

Here is a sample session with the game. The underlined lines are those
you type.

cursor

■

Figure 13-1. Blind Target Shoot.

Blind Target Shoot 313

RUN

BLIND TARGET SHOOT
TO BEGIN GAME, PRESS ANY KEY

Press any key. The screen clears. The target is displayed. See Figure 13-2.
The screen is cleared and the cursor is moved to the home position. See

Figure 13-3a. The cursor is then moved to the remembered position of the
target. See Figure 13-36. Time runs out. See Figure 13-3c.

The score is calculated. See Figure 13-4.
Here is a listing of the program:

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

'Title Screen
CLS
KEY OFF
SCREEN 0: WIDTH 40
RANDOMIZE VAL(RIGHT$(TIME$,2))
PRINT "BLIND- TARGET SHOOT"
PRINT "TO BEGIN GAME, PRESS ANY KEY"
IF INKEY$="" THEN 170
CLS

'Initialization
TIME$= "0:0:0": 'Reset Clock
LOCATE , ,0: 'Turn off cursor

'Choose target Location (targrow,targcol)
TARGCOL = INT(40*RND)+1
TARGROW = INT(25*RND)+1

■

Figure 13-2.

314 Sec. 13.2

■

■

■

Figure 13-3a Figure 13-3b Figure 13-3c

250 LOCATE TARGROW,TARGCOL
260 PRINT CHR$(219): 'Display target
270 'Look at target
280 SECONDS= VAL(RIGHT$(TIME$,2))
290 IF SECONDS= 2 THEN 310 ELSE 280
300 'Two seconds elapsed
310 LOCATE TAR GROW, TARGCOL.
320 PRINT" ";: 'Blank out target
330 LOCATE ,,1,0,7
340 PRINT CHR$(11)
350 TIME$= "0:0:0"
360 'Reset clock to 0
370 'Turn on cursor key trapping
380 ON KEY(11) GOSUB 480
390 ON KEY(12) GOSUB 520
400 ON KEY(13) GOSUB 560
410 ON KEY(14) GOSUB 600
420 KEY(11) ON
430 KEY(12) ON
440 KEY(13) ON

YOUR DISTANCE FROM THE TARGET IS 12

Figure 13-4.

Blind Target Shoot 315

450 KEY(14) ON
460 SECONDS= VAL(RIGHT$(TIME$, 2))
470 IF SECONDS= 5 THEN 700 ELSE 370
480 'Cursor Up
490 GOSUB 640
500 PRINT CHR$(30);
510 RETURN
520 'Cursor Left
530 GOSUB 640
540 PRINT CHR$(29);
550 RETURN
560 'Cursor Right
570 GOSUB 640
580 PRINT CHR$(28);
590 RETURN
600 'Cursor Down
610 GOSUB 640
620 PRINT CHR$(31);
630 RETURN
640 'Turn off cursor motion trapping
650 KEY(11) OFF
660 KEY(12) OFF
670 KEY(13) OFF
680 KEY(14) OFF
690 RETURN
700 'Compute score
710 D = ABS(POS(O)-TARGCOL)+ABS(CSRLIN-TARGROW)
720 CLS
730 PRINT "YOUR DISTANCE FROM THE TARGET IS";D
740 IF D=O THEN PRINT "CONGRATULATIONS"
750 IF D=O THEN PRINT "YOU HIT THE TARGET!"
760 SC= 100
770 IF D>O THEN SC=SC-10
780 IF D>2 THEN SC= SC-20
790 IF D>S THEN SC= SC-20
800 IF D>10 THEN SC=SC-20
810 IF D>15 THEN SC= SC-20
820 IF D>20 THEN SC= SC-10
830 PRINT "YOUR SCORE IS",SC
840 INPUT "DO YOU WISH TO PLAY AGAIN(Y/N) "; B$
850 IF 8$ = "Y" OR B$="y" THEN 180 ELSE 860
860 END

Exercises (answer on page 373)

1. Experiment with the above program by making the time of target
viewing shorter or longer than one second.

2. Experiment with the above program by making the time for target
location shorter or longer than five seconds.

3. Modify the program to keep a running total score fo r a sequence of
10 games.

316 Sec. 13.3

4. Modify the program to allow two players, keeping a running total
score for a sequence of 10 games. At the end of ten games, the com
puter should announce the total scores and declare the winner.

13.3 Shooting Gallery

In this section, we develop a game called Shooting Gallery, which simulates the
shooting galleries of carnivals. The player has a gun to fire at a moving target.
(See Figure 13-5.) The program keeps track of the hits. The game shows 20
moving targets during one play.

The design of this game incorporates most of what we know. Let's begin
by enabling event trapping of the cursor motion keys: up, down, right, and left.
The right and left motions will tell the program that we wish to move the gun to
the right or left. The cursor-up key will fire the gun. Lines 10-80 turn on the
appropriate trapping.

This program will be in the medium-resolution graphics mode. The
gun initially will be in the center of the last text row of the screen. The first
position of the bullet after being fired will be in row 185. We will keep track
of the horizontal position of the gun in the variable GUNPOSITION and the
vertical and horizontal positions of the bullet in the variables BULLETROW
and BULLETCOL, respectively. Line 90 initializes GUNPOSITION and
BULLETROW.

For the gun, we will use the small house-shaped figure (ASCII character
127). The bullet will be a vertical arrow (ASCII character 24), and the target will
be a happy face (ASCII character 2). All of these figures are to be animated, so

~"I~ ., ~

~ "'I'
c~ ~

· ~

Figure 13-5. The Game of Shooting Gallery.

Shooting Gallery 317

it is necessary to GET all of them in appropriate arrays A%, B%, and C%. This
is done in lines 100-210. The use of% means that the arrays will contain inte
gers. Limiting the type of number that the arrays can contain will speed up
program execution. {This is a concern, since animations tend to run slowly in
BASIC.)

Line 220 places the gun in its initial position. The main program is in lines
230-330. There is an outer loop for 20 targets and an inner loop, each step of
which moves the target two columns across the screen and the bullet (if any
have been fired) 8 rows up the screen. If you fire the gun (using the cursor-up
key), the program is interrupted and the gun-firing routine is called. This dis
plays the bullet in its initial position. All subsequent motion of the bullet is
controlled by the main loop. The bullet disappears when it reaches the row of
the target. The target disappears when it hits the right edge of the screen. If the
bullet and the target are at the same place at the same time, both disappear
and you are credited with a hit.

The BEEP command is used to sound the speaker when you score a hit.
Also note the use of the function ABS in line 670. ABS(X) is just X with its sign
removed. For example, ASB(+5) = 5, whereas ABS(-5) = 5.

10 'Initialization
20 KEY OFF
30 ON KEY(11) GOSUB 590
40 ON KEY(12) GOSUB 530
50 ON KEY(13) GOSUB 470
60 KEY(11) ON
70 KEY(12) ON
80 KEY(13) ON
90 GUNPOSITION=160:BULLETROW=185
100 DIM A%(100),B%(100),C%(100)
110 SCREEN 1
120 CLS
130 PRINT CHR$(2)
140 GET (0,0)-(7,7),A%
150 CLS
160 PRINT CHR$(127)
170 GET (0,0)-(7,7),8%
180 CLS
190 PRINT CHR$(24)
200 GET (0,0)-(7,7),C%
210 CLS
220 PUT (GUNPOSITION,185),8%
230 'Main program Loop
240 FOR TARGET=1 TO 20
250 PUT (0,8),A%
260 FOR COLUMN=2 TO 312 STEP 2
270 GO SUB 340: 'Move target
280 GO SUB 380: 'Move bu LL et
290 NEXT COLUMN
300 IF CO LUMN=316 THEN 320
310 PUT (312,8),A%

318 Sec. 13.3

320 NEXT TARGET
330 END
340 'Move target
350 PUT (COLUMN-2,8),A%
360 PUT (COLUMN,8),A%
370 RETURN
380 'Move bullet
390 I~ BFLAG=O THEN 460
400 PUT (BULLETCOL,BULLETROW),C%
410 BULLETROW=BULLETROW-8
420 IF BULLETROW<10 THEN GOSUB 670 ELSE 450
430 BFLAG=O
440 GOTO 460
450 PUT (BULLETCOL,BULLETROW),C%
460 RETURN
470 'Move gun 8 steps to right
480 PUT (GUNPOSITION,185),8%
490 GUNPOSITION=GUNPOSITION+8
500 IF GUNPOSITION>311 THEN GUNPOSITION=311
510 PUT (GUNPOSITION,185),8%
520 RETURN
530 'Move gun 8 st~ps to Left
540 PUT (GUNPOSITION,185),8%
550 GUNPOSITION=GUNPOSITION-8
560 IF GUNPOSITION<O THEN GUNPOSITION=O
570 PUT (GUNPOSITION,185),8%
580 RETURN
590 'Shoot gun
600 IF BFLAG=1 THEN 650
610 BFLAG=1
620 BULLETCOL=GUNPOSITION
630 BULLETROW=177
640 PUT (BULLETCOL,BULLETROW),C%
650 RETURN
660 'Determine if target is hit
670 IF ABS(BULLETCOL-COLUMN)<7 THEN GOSUB 690
680 RETURN
690 'erase target and bullet
700 PUT (COLUMN,8),A%
710 BEEP
720 SCORE=SCORE+1
730 LOCATE 1, 1
740 PRINT "SCORE";SCORE;" hits";
750 COLUMN=314
760 RETURN

Exercises (answers on page 373)

1. Run the above program to get a feel for its operation.
2. Modify the above program so that the bullet speed is increased by a

factor of two. (This makes the game easier!)

Tic Tac Toe 319

3. Modify the above program so that the bullet speed is divided by a
factor of two.

4. Modify the above program so that every fifth target is a sun (ASCII
code 15). Modify the scoring so that hitting a sun counts for fi~e hits.

13.4 Tic Tac Toe
In this section, we present a program for the traditional game of tic tac toe. We
won't attempt to let the computer execute a strategy. Rather, we will let it be
fairly stupid and choose its moves randomly. We will also use the random
number generator to "flip" for the first move. Throughout the program, you
will be "O" and the computer will be "X". Figures 13-6 through 13-9 illustrate
a sample game.

LOAD "TICTAC"

READY

RUN

Figure 13-6.

TEST YOUR UNDERSTANDING 1 (answer on page 324)
How can the computer toss to see who goes first?

The computer draws a tic tac toe board in Figure 13-8.
The computer displays your move and makes a move of its own in Figure 13-9.
The computer will now make its move and so on until someone wins or a tie
game results.

320 Sec. 13.4

TIC TAC TOE
YOU WI LL BE O;THE COMPUTER WI LL BE X
THE POSITIONS OF THE BOARD ARE NUMBERED
AS FOLLOWS:

1
4
7

2
5
8

3
6
9

THE COMPUTER WILL TOSS FOR FIRST.
YOU GO Fl RST.
WHEN READY TO BEGIN TYPE 'R'
R

Figure 13·7.

TYPE YOUR MOVE(1-9)

?5

Figure 13·8.

0

TYPE YOUR MOVE(1-9)

?

Figure 13-9.

Here are the variables used in the program:
Z = 0 if it's your move and Z= 1 if it is the computer's.

Tic Tac Toe 321

A$(J) (J = 1, 2, ... , 9) contains 0 , X, or the empty string, indicating the
current status of position J.

S = the position of the current move .
M = the number of moves played (including the current one) .

We used a video display worksheet to lay out the board, and to determine the
coordinates for the lines and the X's and O's.

Here is a listing of our program.

1000 'Initialization
1010 CLEAR:KEY OFF
1020 SCREEN 1
1030 RANDOMIZE VAL(RIGHT$(TIME$,2))
1040 DIM A$(9)
1050 DIM 8(9)
1060 CLS
1070 PRINT "TIC TAC TOE"
1080 PRINT "YOU WILL BE O; THE COMPUTER WILL BE X"
1090 PRINT "THE POSITIONS ON THE BOARD ARE NUMBERED"
1100 PRINT "AS FOLLOWS"
1110 PRINT "1";TAB(8) "2";TAB(16) "3"
1120 PRINT "4";TAB(8) "5";TAB(16) 11 6 11

1130 PRINT "7";TAB(8) "8";TAB(16) "9"
1140 PRINT "THE COMPUTER WILL TOSS FOR FIRST"
1150 FOR J=1 TO 2000:NEXT J
1160 IF RND(1) > .5 THEN 1170 ELSE 1210

322 Sec. 13.4

PRINT "YOU GO FIRST"
FOR J=1 TO 2000:NEXT J
Z=O:
GOTO 1240
PRINT "I I LL GO FIRST"
FOR J=1 TO 2000:NEXT J

'Player goes first

1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
2000
2010
2020
2030
2040

Z=1: 'Computer goes first
PRINT "WHEN READY TO BEGIN, PRESS ANY KEY"
IF INKEYS="" THEN 1250
CLS

'Main program
GOSUB 3000:
FOR M=1 TO 9:

'Draw game board
'M=move #

2050

NEXT M

IF Z=O THEN GOSUB 5000
IF Z=1 THEN GOSUB 6000
Z=1-Z
IF WIN=1 THEN 2100 2060

2070
2080
2090

PRINT "THE GAME IS TIED"
FOR J=1 TO 2000:NEXT J

CLS
LOCATE 1, 1
INPUT "ANOTHER GAME(Y/N)";RS
IF RS="Y" OR RS="y" THEN 1060

'Draw TIC TAC TOE Board
CLS

2100
2110
2120
2130
3000
3010
3020
3030
3040
3050
3060
4000 I

4010
4020
4030
4040
4050
4060
4070
4080
4090
4100

LINE (103,8)-(103,191)
LINE (206,8)-(206,191)
LINE (8,70)-(311,70)
LINE (8,132)-(311,132)
RETURN

Display current game status
LOCATE 5,7: PRINT A$(1);
LOCATE 5,20: PRINT A$(2);
LOCATE 5,33: PRINT A$(3);
LOCATE 14,7: PRINT A$(4);
LOCATE 14,20: PRINT A$(5);
LOCATE 14,33: PRINT AS(6);
LOCATE 21,7: PRINT A$(7);
LOCATE 21,20: PRINT A$(8);
LOCATE 21,33:PRINT A$(9);

RETURN

ELSE END

5000 'Player's
5010

Move
LOCATE· 1, 1

5020
5030
5040
5050
5060
5070
5080

INPUT "TYPE YOUR MOVE(1-9)";S
IF AS(S) = "" THEN 5100
LOCATE 1, 1
LINE (0,0)-(319,7),0,BF:'Blank
PRINT "ILLEGAL MOVE"
FOR J=1 TO 2000:NEXT J
GOTO 5000

out first row

5090
5100
5110
5120
5130
5140
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280
7290
7300
7310
7320

GOSUB 7000
A$(S) = "O"

Tic Tac Toe 323

GOSUB 7000: 'Is game over?
LINE (0,0)-(319,7),0,BF:'Blank out first row
GOSUB 4000: 'Display move

RETURN
'Computer's Move

LOCATE 1, 1
PRINT "Here's my move!";
GOTO 8000: 'Is there a winning move?
'If not, choose random move
S = INT(9*RND+1)
IF A$(S) = 1111 THEN 6070 ELSE 6050
A$(S) = 11 X"
FOR J=1 TO 2000:NEXT
GOSUB 7000:
GOSUB 4000:

RETURN
'Is the game over?

J: 'Delay
'Is game over?
'Display move

IF Z = 0 THEN C$ = "0 11 ELSE C$ = "X"
IF A$(1) = A$(2) THEN 7030 ELSE 7050
IF A$(2) = A$(3) THEN 7040 ELSE 7050
IF A$(3) = C$ THEN 7260
IF A$(1) = A$(4) THEN 7060 ELSE 7080
IF A$(4) = A$(7) THEN 7070 ELSE 7080
IF A$(7) = C$ THEN 7260
IF A$(1) = A$(5) THEN 7090 ELSE 7110
IF A$(5) = A$(9) THEN 7100 ELSE 7110
IF A$(9) = C$ THEN 7260
IF A$(2) = A$(5) THEN 7120 ELSE 7140
IF A$(5) = A$(8) THEN 7130 ELSE 7140
IF A$(8) = C$ THEN 7260
IF A$(3) = A$(6) THEN 7150 ELSE 7170
IF A$(6) = A$(9) THEN 7160 ELSE 7170
IF A$(9) = C$ THEN 7260
IF A$(4) = A$(5) THEN 7180 ELSE 7200
IF A$(5) = A$(6) THEN 7190 ELSE 7200
IF A$(6) = C$ THEN 7260
IF A$(7) = A$(8) THEN 7210 ELSE 7230
IF A$(8) = A$(9) THEN 7220 ELSE 7230
IF A$(9) = C$ THEN 7260
IF A$(3) = A$(5) THEN 7240 ELSE 7320
IF A$(5) = A$(7) THEN 7250 ELSE 7320
IF A$(7) = C$ THEN 7260 ELSE 7320
GOSUB 4000
LOCATE 1, 1
PRINT SPACE$(80);
LOCATE 1, 1
PRINT C$, "WINS THIS ROUND":WIN=1
FOR J=1 TO 2000:NEXT J

RETURN

324 Sec. 13.4

'Look for a winning move
COUNT= 0
FOR !=1 TO 9

IF A$(I) = II XII THEN B(I) = 1

8000
8010
8020
8030
8040
8050
8060
8070
8080
8090
8100
8110
8120
8130
8140
8150
8160
8170
8180
8190

IF A$(I) = fl II THEN B(I) = 0
IF A$(I) = II O II THEN B(I) = -1

NEXT I
READ I,J,K
COUNT= COUNT+1
IF COUNT= 8 THEN 8180
S = B(I)+B(J)+B(K)
IFS= 2 THEN 8120 ELSE 8070
IF B(J) = 0 THEN A$(J) = II XII ELSE 8140
GOTO 8310
IF B(K) = o THEN A$(K) = II XII ELSE 8160
GOTO 8310
IF B(I) = o THEN A$(I) = II XII ELSE 8070
GOTO 8310
RESTORE
COUNT= 0

8200 READ I,J,K
8210 COUNT= COUNT+ 1
8220 S = B(I)+B(J)+B(K)
8230 IF COUNT= 8 THEN 8320
8240 IF S=-2 THEN 8250 ELSE 8200
8250 IF B(J) = 0 THEN A$(J) = 11 X11 ELSE 8270
8260 GOTO 8310
8270 IF B(K) = 0 THEN A$(K) = 11 X11 ELSE 8290
8280 GOTO 8310
8290 A$(I) = 11 X11

8300 GOTO 8310
8310 RESTORE : GOTO 6080
8320 RESTORE:GOTO 6040
8330 DATA 1,2,3,4,5,6,7,8,9,1,4,7,2,5,8,3,6,9,1,5,9,3,5,7

Exercises

1. Modify the above program so that you and the computer may play a
series of ten games. The computer should decide the champion of the
series.

2. Modify the above program to play 4x4 tic tac toe.

ANSWER TO TEST YOUR UNDERSTANDING
1: See lines 120-170 of the tic tac toe program.

14

DIFFERENT KINDS

OF NUMBERS IN BASIC

In this chapter we will discuss the various types of numbers used by BASIC
and the library of "built-in" mathematical functions which you may use.

14.1 Single- and Double-Precision Numbers

Up to this point, we have used the computer to perform arithmetic without
giving much thought to the level of accuracy of the numbers involved. How
ever, when doing scientific programming, it is absolutely essential to know the
number of decimal places of accuracy of the computations. Let's begin this
chapter by discussing the form in which BASIC stores and uses numbers.

Actually, BASIC recognizes three different types of numeric constants:
integer, single-precision, and double-precision.

An integer constant is an ordinary integer (positive or negative) in the
range from -32768 to + 32767. (32768 is 2 raised to the fifteenth power. This
number is significant to the internal workings of the PCjr.) Here are some
examples of integer numeric constants:

7, 58, 3712, -15, -598

Integer constants may be stored very efficiently in RAM. Moreover, arithmetic
with integer constants takes the least time. Therefore , in order to realize these
efficiencies, PCjr BASIC handles integer constants in a special way.

A single-precision constant is a number with seven or fewer digits ,
which is not an integer. Some examples of single-precision constants are:

5.135, -63.5785, 1234567, -1.467654E12

Note that a single-precision constant may be expressed in "scientific" or " float
ing point" notation, as in the final example shown here . In such an expression,
however, you are limited to seven or fewer digits. In PCjr BASIC, single-preci
sion constants must lie within these ranges : Between -lxl038 and -lxl0-38

;

Between lx10-:isand lxl038
• This limitation seldom is much of a limitation in

practice. After all, 1 x 10-:is equals:

326 Sec. 14.l

.00000000000000000000000000000000000001

(37 zeros followed by a 1), which is about as small a number as you are ever
likely to encounter! Similarly, 1 x 10~8 equals:

100,000,000,000,000,000,000,000,000,000,000,000,000

(a 1 followed by 38 zeros), which is large enough for most practical
calculations.

A double-precision constant is a number containing more than seven
digits. Here are some examples of double-precision numbers:

2.0000000000, 3578930497594, -3946.635475495

Scientific notation also may be used to represent double-precision numbers:
Use the letter D to precede the exponent. For example , the number:

2. 7575757575D-4

equals the double-precision constant:

.00027575757575

The number:

l.3145926535D + 15

equals the double-precision constant:

1,314,159,265,350,000

A double-precision constant may have up to 17 digits. Double-precision con
stants are subject to the same range limitations as single-precision constants.

Single-precision constants occupy more RAM than integer constants.
Moreover, arithmetic with single-precision constants proceeds slower than inte
ger arithmetic. Similarly, double-precision constants occupy even more mem
ory, and arithmetic proceeds even slower than with single-precision constants.
PCjr BASIC recognizes each of the three types of numerical constants and uses
only as much arithmetic power as necessary.

Here are the rules for determining the type of a numerical constant:

1. Any integer in the range -32768 and 32767 is an integer constant.
2. Any number with seven or fewer digits that is not an integer constant is

a single-precision constant. Any number in scientific notation using E before
the exponent is assumed to be a single-precision constant. If a number has
more than seven digits in scientific notation but uses an E, it will be interpreted
as a double-precision constant. For example , the number:

Single- and Double-Precision Numbers 327

1.23456789£15

will be interpreted as the double-precision constant:

l.23456789D

3. A number with more than seven digits will be interpreted as a double
precision constant. If more than 17 digits are specified, then the number will be
truncated after the seventeenth digit and written in scientific notation. For
example, the number:

123456789123456789

will be interpreted as the double-precision constant:

1.2345678912345678D17

The type of a numeric constant may be specified by means of a type
declaration tag. For instance, a numeric constant followed by % will be inter
preted as an integer constant. For example, 1 % will be interpreted as the inte
ger constant 1. A % sign in a number containing a decimal will be ignored. For
example, the number:

1.85%

will be interpreted as the single-precision constant:

1.85

If the constant containing a % is too large to be an integer constant (that is , not
in the range -32768 to + 32767), an OVERFLOW error will occur. A numeric
constant followed by ! will be interpreted as a single-precision constant and
rounded accordingly. For example , the constant:

1.23456789!

will be interpreted as:

1.234567

The constant:

123456789!

will be truncated to seven significant digits and written in scientific notation as :

1.2345678£9

328 Sec. 14.1

A # serves as a type declaration tag to indicate a double-precision constant.
For example , the constant:

1.2 #

will be interpreted as the 17-digit double-precision constant:

1.2000000000000000.

In scientific notation, the letter D serves as a type declaration tag.

TEST YOUR UNDERSTANDING 1 (answers on page 330)
Write out the decimal form of the following numbers:

a. -7.5%
b. 4.58923450183649E + 12
C. 270D-2
d. 12.55 #
e. -1.62!

A type declaration tag supersedes rules 1-3 in determining the type of a
numeric constant.

Let's discuss the way BASIC performs arithmetic with the various constant
types. The variable type resulting from an arithmetic operation is determined
by the variable types of the data entering into the operation. For example, the
sum of two integer constants will be an integer constant, provided that the
answer is within the range of an integer constant. If not, the sum will be a
single-precision constant. Arithmetic operations among single-precision con
stants will always yield single-precision constants. Arithmetic constants among
double-precision constants will yield a double-precision result. Here are some
examples of arithmetic:

5% + 7%

The computer will add the two integer constants 5 and 7 to obtain the integer
constant 12.

4.21! + 5.2!

The computer will add the two single-precision constants 4.21 and 5.2 to obtain
the single-precision result 9.41.

312

Here the two constants 3 and 2 are integers. However, since the result, 1.5, is
not an integer, it is assumed to be a single-precision type.

Single- and Double-Precision Numbers 329

The result of:

l/3

is the single-precision constant .3333334. Similarly, the result of the double
precision calculation:

1# / 3#

is the double-precision constant .33333333333333333.

TEST YOUR UNDERSTANDING 2 (answers on page 330)
What result will the computer obtain for the following problems?

a. 2/ 5 + l/3
b. .4% + .3333333333333333333%
C. .4# + .3333333333333333333#
d. .4! + .3333333333333333333!

It is important to realize that if a number does not have an exact decimal
representation (such as l/3 = .333 ...) or if the number has a decimal repre
sentation which has too many digits for the constant type being used, the com
puter then wi ll be working with an approximation of the number rather than the
number itself. The built-in errors caused by the approximations of the com
puter are called round-off errors Consider the problem of calculating:

l/3 + l/3 + l/3

As we have seen above, l/3 is stored as the single-precision constant
.3333334. The computer will form the sum as

.3333334 + .3333334 + .3333334 = 1.0000002

The sum has a round-off error of .0000002.
PCjr BASIC displays up to seven digits for a single-precision constant. Due

to round-off error, the answer to any single arithmetic operation is guaranteed
accurate to only six places , however. Double-precision constants are displayed
rounded off to 16 digits. For a single arithmetic operation, the computer's
design guarantees that a double-precision answer will be accurate to 16 digits .
If you perform many such operations , it is possible that cumulative round-off
error will make the sixteenth or earlier digits inaccurate.

Exercises(answers on page 374)

For each of the constants below, determine the number stored by the
computer.

1. 3 2. 2.37

330 Sec. 14.2

3. 5.78E5 4. 2#
5. 3! 6. -4.1!
7. -4.1% 8. 3500.684 7586958658!
9. 2.176D2 10. -5.94E12

11. 3.5869504003837265374 12. -234542383746.21
13. -2.367D20 14. 457000000000000000!

For each of the arithmetic problems below, determine the number as stored by
the computer.

15. 1 + 45 16. 2 / 4
17. 3# 15# 18. 3! / 5! + 1
19. 2# / 3# 20. 2# /3# + .53#
21. 2 / 3 22. 2 / 3 + .53
23. .5E4 - .37E2 24. 1.75D3 - 1.0D-5
25. For each of exercises 15 through 24, determine how the computer

will display the result.
26. Calculate 1/3 + 1/3 + 1/3 + ... + 1/3 (1000 l/3's) using single

precision constants. What answer is displayed? Is this answer accu
rate to six digits? If not, explain why.

27. Answer the same question as Exercise 26, but use double-precision
constants and 17 digits.

ANSWERS TO TEST YOUR UNDERSTANDING
1: a. -7.5

b. 4,589,235,000,000
C. 2. 7000000000000000
d. 12.550000000000000
e. -1.620000

2: a. . 7333333
b. 0
C. . 73333333333333333
d . . 7333333

14.2 Variable Types
In the previous section we introduced the various types of numerical constants:
integer, single-precision, and double-precision. There is a parallel set of types
for variables.

A variable of integer type takes on values which are integer type con
stants. An integer type variable is indicated by the symbol % after the variable
name. For example , here are some variables of integer type:

A%, BB%, Al%

In setting the value of an integer type variable , the computer will round any
fractional parts to obtain an integer. For example, the instruction

Variable Types 331

10 A%= 2.54

will set the value of A equal to the integer constant 3. Integer type variables are
useful when keeping track of integer quantities, such as line numbers in a
program.

A variable of single-precision type is one whose value is a single-preci
sion constant. A single-precision type variable is indicated by the symbol ! after
the variable name. Here are some examples of single-precision variables:

K!, W7! , ZX!

In setting the value of a single-precision variable, all digits beyond the sev
enth are rounded. For example, the instruction

20 A! = 1.23456789

will set A! equal to 1.2345678.
If a variable is used without a type designator, the computer will then

assume that it is a single-precision variable. All of the variables we have used
until now have been single-precision variables. These are, by far , the most com
monly used variables.

A double-precision variable is a variable whose value is a double-preci
sion constant. Such variables are useful in computations where great numerical
accuracy is required. A double-precision variable is indicated by the tag # after
the variable name. Here are some examples of double-precision variables :

B#, Cl #, EE #

In setting the values of double-precision variables, all digits after the seven
teenth digit are rounded.

Note that the variables A%, A! , A#, and A$ are four distinct variables.
You could, if you wish, use all of them in a single program. (But it probably
would be very confusing and probably would produce errors if you did.)

TEST YOUR UNDERSTANDING 1 (answer on page 333)
What values are assigned to each of these variables?

a. A# = 1#
b. C% = 5.22%
C. BB! = 1387.5699

Using the type declaration tags %, !, and # is a nuisance since they must
be included whenever the variable is used. There is a way around this tedium.
The instructions DEFINT, DEFSNG, and DEFDBL may be used to define
the types of variables for an entire program, so that type declaration tags need
not be used. Consider the instruction

332 Sec. 14.2

100 DEFINT A

It specifies that every variable which begins with the letter A (such as A, AB, or
Al) should be considered as a variable of integer type. Here are two variations
of this instruction:

200 DEFINT A,B,C
300 DEF INT A-G

Line 200 defines any variables beginning with A, B, or C to be of integer type.
Line 300 defines any variables beginning with any of the letters A through G to
be of integer type. The DEFINT instruction usually is used at the beginning of
a program, so that the resulting definition is in effect throughout the program.

The instruction DEFSNG works exactly like DEFINT and is used to
define certain variables to be single-precision. The instructions DEFDBL and
DEFSTR work the same way for double-precision and string variables,
respectively.

Note that type declaration tags override the DEF instructions. For exam
ple, suppose that the variable A was defined to be single-precision using a
DEFSNG instruction at the beginning of the program. It would be legal to use
A# as a double-precision variable , since the type declaration tag # would
override the single-precision definition.
WARNING: Here is a mistake that is easy to make . Consider the following
program:

10 LET A#= 1.7
20 PRINT A#
30 END

This program seems harmless enough. We set the double-precision variable
A# to the value 1. 7 and then display the result. You probably expect to see the
display:

1. 700000000000000

If you actually try it, the display will read :

1.700000047683716

What went wrong? Well , it has to do with the way the internal logic of the
computer works and the way in which numbers are represented in binary nota
tion. Without going into details , let us merely observe that the computer inter
prets 1. 7 as a single-precision constant When this single-precision constant
is converted into a double-precision constant (an operation which makes use of
the binary representation of 1. 7) , the result coincides in its first 16 digits with
the number given above. Does this mean that we must worry about such crazi
ness? Of course not! What we really should have done in the first place is to
write

Mathematical Functions in BASIC 333

10 A#= 1.7#

The display then would be exactly as expected.

Exercises (answers on page 374)

Calculate the following quantities in single-precision arithmetic.
1. (5.87 + 3.85 - 12.07)/ 11.98
2. (15.1 + 11.9)1'4/12.88
3. (32485 + 9826) / (321.5 - 87.6A2)
4. Rework Exercise 1 using double-precision arithmetic.
5. Rework Exercise 2 using double-precision arithmetic.
6. Rework Exercise 3 using double-precision arithmetic.
7. Write a program to determine the largest integer less than or equal to

X, where the value of X is supplied in an INPUT statement.
Determine the value assigned to the variable in each of the following exercises.

8. A% = -5 9. A% = 4.8
10. A% = -11.2 11. A! = 1.78
12. A# = 1.78# 13. A! =

14. A! = 4.25234544321E21
16. A# =

3.283646493029273646434

32.653426278374645237
15. A! = -1.23456789E-32
17. A# = -5.74 #

ANSWERS TO TEST YOUR UNDERSTANDING
1: a. 1.0000000000000000

b. 5
C. 1387.570

14.3 Mathematical Functions in BASIC

In performing scientific computations, it is often necessary to use a wide
variety of mathematical functions , including the natural logarithm, the exponen
tial, and the trigonometric functions . PCjr BASIC has a wide range of these
functions " built-in. " In this section we will describe these functions and their
use.

All mathematical functions in BASIC work in a similar fashion. Each func
tion is identified by a sequence of letters (SIN for sine, LOG for natural loga
rithm, and so forth). To evaluate a function at a number X, we write X in
parentheses after the function name. For example, the natural logarithm of X is
written LOG(X). The program uses the current value of the variable X and will
calculate the natural logarithm of that value. For example, if X is currently 2 ,
then the computer will calculate LOG(2).

Instead of the variable X, we may use any type of variable : integer, single
precision, or double-precision. We also may use numerical constants of any

334 Sec. 14.3

type. For example , SIN(.435678889658595) asks for the sine of a double-pre
cision numerical constant. Note that unless you take special precautions (see
below), all BASIC functions return a single-precision result accurate to six dig
its. For example , the above value of the sine function will be computed as:

SIN(.435678889658595) = .422026

To obtain double-precision values for the various built-in functions, you must
request BASIC using the I D option. That is , when you type BASICA to start
BASIC, use a command line of the form:

BAS I CA / D

BASIC lets you calculate a function of any expression. Consider the
expression XA2 + YA2 -3 • X. It is perfectly acceptable to call for calculations
such as :

The computer will first evaluate the expression X A2 + Y A2 - 3 • X using the
current values of the variables X and Y. For example , if X = 1 and Y = 4, then
XA2 + YA2 -3 • X = l2 + 42

- 3 • 1 = 14. So the above sine function will be
calculated as SIN(14) = .9906074.

Trigonometric Functions
PCjr BASIC has the following trigonometric functions available:
SIN(X) = the sine of the angle X
COS(X) = the cosine of the angle X
TAN(X) = the tangent of the angle X

Here the angle X is expressed in terms of radian measure. In this measurement
system, 360 degrees equal two times pi radians . Or one degree equals .017453
radians, and one radian equals 57.29578 degrees . If you want to calculate trig
onometric functions with the angle X expressed in degrees , use these
functions :

SIN(.017453 • X)
COS(.017453 •X)
TAN(.017453 • X)
The three other trigonometric functions , SEC(X), CSC(X), and COT(X) ,

may be computed from the formulas:
SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = SIN(X) / COS(X)

Here, as above, the angle X is in radians. To compute these trigonometric
functions with the angle in degrees, replace X by:

.017453*X

Mathematical Functions in BASIC 335

PCjr BASIC only has one of the inverse trigonometric functions , namely
the arctangent, denoted ATN(X). This function returns the angle whose tangent
is X. The angle returned is expressed in radians. To compute the arctangent
with the angle expressed in degrees, use the function :

57.29578*ATN(X)

TEST YOUR UNDERSTANDING 1 (answer on page 338)
Write a program which calculates sin 45°, cos 45°, and tan 45°.

Logarithmic and Exponential Functions
BASIC allows you to compute ex using the exponential function :

EXP(X)

Furthermore, you may compute the natural logarithm of X via the function:

LOG(X)

You may calculate logarithms to base b using the formula :

LOG h (X) = LOG(X)/LOG(b)

Example 1. Prepare a table of values of the natural logarithm function for
values X = .01 , .02, .03, ... , 100.00. Output the table on the printer.
Solution. Here is the desired program. Note that our table has two columns
with a heading over each column.

10 LPRINT "X", "LOG(X)"
20 J = .01
30 LPRINT J, LOG(J)
40 IF J = 100.00 THEN END
50 J = J + • 01
60 GOTO 30
100 END

TEST YOUR UNDERSTANDING 2 (answer on page 338)
Write a program which evaluates the function f(x) = sin x/ (log x + e)
for x = .45 and x = .7.

Example 2. Carbon dating is a technique for calculating the age of ancient
artifacts by measuring the amount of radioactive carbon-14 remaining in the
artifact , as compared with the amount present if the artifact were manufactured

336 Sec. 14.3

today. If r denotes the proportion of carbon-14 remaining, then the age A of
the object is calculated from the formula

A= -(1/.00012)*L0G(r)

Suppose that a papyrus scroll contains 47% of the carbon-14 of a piece of
papyrus just manufactured. Calculate the age of the scroll.

Solution. Here r = .47 so we use the above formula.

10 LET R = . 47
20 LET A= -(1/.00012)*LOG(R)
30 PRINT "THE AGE OF THE PAPYRUS IS", A, "YEARS"
40 END

Powers
PCjr BASIC has a square root function, denoted SQR(X). As with all the

functions considered so far , this function will accept any type of input and will
output a single-precision constant. For example, the instruction

10 LET Y = SQR(2.00000000000000000)

sets Y equal to 1.414214.
Actually, the exponentiation procedure we learned in Chapter 4 will work

equally well for fractional and decimal exponents, and, therefore, provides an
alternate method for extracting square roots. Here is how to use it. Taking the
square root of a number corresponds to raising the number to the 1/2 power.
We may calculate the square root of X as:

Note that the square root function, SQR(X), operates with greater speed and
is , therefore , preferred. The alternate method is more flexible , however. For
instance, we may extract the cube root of X as:

or we may raise X to the 5.389 power, as follows:

Greatest Integer, Absolute Value, and Related
Functions

Here are several extremely helpful functions. The greatest integer less
than or equal to X is denoted INT(X) . For example, the largest integer less
than or equal to 5.46789 is 5, so:

Mathematical Functions in BASIC 337

INT(5.46789) = 5

Similarly, the largest integer less than or equal to -3.4 is -4 (on the number line ,
-4 is the first integer to the left of -3.4). Therefore:

INT<-3.4) = -4

Note that for positive numbers, the INT function throws away the decimal
part. For negative numbers, however, INT works a little differently. To throw
away the decimal part of a number (positive OR negative), we use the function
FIX(X) . For example:

FIX(5.46789) = 5
FIX(-3.4) = -3

The absolute value of X is denoted ABS(X). Recall that the absolute value
of Xis X itself if Xis positive or 0, and is -X if Xis negative. Thus:

ABS(9.23) = 9.23
ABS<O) = 0

ABS(-4.1) = 4.1

Just as the absolute value of X "removes the sign" of X, the function
SGN(X) throws away the number and leaves only the sign. For example:

SGN(3.4) = +1
SGN(-5.62) = -1

Conversion Functions
PCjr BASIC includes functions for conversion of a number from one type

to another. For example, to convert X to integer type, use the function
CINT(X) . This function will round the decimal part of X. Note that the resulting
constant must be in the integer range of -32768 to 32767 or an error will result.

To convert X to single-precision, use the function CSNG(X). If Xis of inte
ger type , then CSNG(X) will cause the appropriate number of zeros to be
appended to the right of the decimal point to convert X to a single-precision
number. If X is double-precision, then X will be rounded to seven digits.

To convert X to double-precision, use the function CDBL(X). This function
appends the appropriate number of zeros to X to convert it to a double-preci
sion number.

Exercises (answers on page 375)

Calculate the following quantities :
1. er,1.54
3. log 58
5. sin 3.7

2. eA-2.376
4. log .0000975
6. cos 45°

338 Sec. 14.4

7.
9.

11.

12.

arctan 1
arctan 2 (expressed in
degrees)

8 . tan .682
10. log 1018 .9

Make a table of values of the exponential function exp(x) for x =
-5.0 , -4.9, ... , 0 , .1, .. . , 5.0.
Evaluate the function

3xA(l/4)log(5x) + exp(-1.8x)tan x

for x = 1.7, 3. 1, 5.9, 7.8, 8.4, and 10.1.
13. Write a BASIC program to graph the function y = sin x for x from 0

to 6 .28. Use an interval of .05 on the x-axis.
14. Write a BASIC program to graph the function y = ABS(x).
15. Write a program to calculate the fractional part of x. (The fractional

part of x is the portion of x which lies to the right of the decimal
point.)

ANSWERS TO TEST YOUR UNDERSTANDING
1: 10 A = .017453

20 PRINT SIN(45*A), COS(45*A), TAN(45*A)
30 END

2: 10 DATA .45,.7
20 FOR J=1 TO 2
30 READ A
40 PRINT SIN(A)/(LOG(A)+EXP(A))
50 NEXT J
60 END

14.4 Defining Your Own Functions
In mathematics, functions usually are defined by specifying one or more formu
las . For instance, here are formulas which define the functions f(x) , g(x), and
h(x) :

g(x) = 3x2
- 5x - 15

h(x) = l/(x-1)

Note that each function is named by a letter, namely f, g, and h, respectively.
PCjr BASIC a llows you to define functions like these and to use them by name
throughout your program. To define a function, we use the DEF FN instruction.
This instruction is used before the first use of the function in the program. For
example , to define the function f(x) above, we could use the instruction:

Defining Your Own Functions 339

10 DEF FNF(X) = (X A2 - 1) A(1/2)

To define the function g(x) above, we use the instruction:

20 DEF FNG(X) = 3*XA2 - 5*X - 15

Note that in each case, we use a letter (F or G) to identify the function. Sup
pose that we wish to calculate the value of the function G for = 12.5. Once the
function has been defined, this calculation may be described to the computer
as FNF(12.5) . Such calculations may be used throughout the program and will
save the effort of retyping the formula for the function in each instance.

You may use any valid variable name as a function name. For example,
you may define a function INTEREST by the statement:

10 DEF FNINTEREST(X) = •••

Moreover, in defining a function, you may use other functions. For example, if
FNF(X) and FNG(X) are as defined above, then we may define their product by
the instruction:

30 DEF FNC(X) = FNF(X)*FNG(X)

All of the functions above were functions of a single variable . However,
BASIC allows functions of several variables as well. They are defined using the
same procedure as above. To define the function A(X,Y,Z) = X2 + Y2 + Z2

,

use the instruction:

40 DEF FNA(X,Y,Z) = XA2 + YA2 + ZA2

You may even let one of the variables be a string variable. Consider the
following function:

50 DEF FNB(A$) = LEN(A$)

This function computes the length of the string A$.
Finally, functions may produce a string as a function value. The name for

such a function must end in $. Consider the following function :

60 DEF FND$(A$,J) = LEFT(A$,J)

This function of the two variables A$ and J will compute the string consisting of
the J leftmost characters of the string A$. For example, suppose that A$
"computer" and J = 3. Then:

FND$(A$,J) = "com"

340 Sec. 14.4

Exercises (answers on page 375)

Write instructions to define the following functions .
1. xA2 - 5x 2. 1/x - 3x
3. 5exp(-2x) 4. x log(x/2)
5. tan x I x 6. cos(2x) + 1
7. The string consisting of the right two characters of C$.
8. The string consisting of the four middle characters of A$ beginning

with the Jth character.
9. The middle letter of the string B$. (Assume that B$ has an odd

number of characters.)
10. Write a program which tabulates the value of the function in Exercise

3 for X = 0 , .1 , .2, .3, .4, ... , 10.0.

15

COMPUTER-GENERATED

SIMULATIONS

15.1 Simulation
Simulation is a powerful analysis tool which lets you use your computer to
perform experiments to solve a wide variety of problems which might be too
difficult to solve otherwise.

To describe what simulation is, let us use a concrete example. Assume
that you own a computer software store. At the moment, you have only one
salesperson behind the counter, but you are considering adding a second. Your
question is: Should you hire the extra person? Being an analytical person, you
have collected the following data. Traffic through your store varies by the hour.
However, you have kept a log for the past month and are able to estimate the
average number of potential customers arriving in the shop according to the
following table:

9-10
10-11
11-12
12-1 pm
1-2
2-3
3-4
4-5
5-6
6-7
7-8
8-9

10
15
15
40
30
10
10
8

25
50
45
30

You have observed that you are currently paying a penalty for not having a
second salesperson: If there is too long a wait, a customer will go somewhere else
to buy software. A certain percentage of people entering the shop will leave,
depending on the size of the line. Here are the results of your observations:

line size

0
1
2
3

fraction leaving

0
.2
.2
.3

342 Sec. 15.1

4
5
6
7
8
9
10
11
12
13
14
15 or more

.3

.4

.4

.4

.5

.6

.65

.7

.75

.75

.75

.75

The average time to wait on a person is two minutes and the size of the aver
age purchase is $30. The cost of hiring the new salesperson is $300 per week.
Assuming that the salesperson works continuously while the shop is open, what
action should you take?

This problem is fairly typical of the problems which arise in business. It is
characterized by data accumulated from observations and unpredictable events
(When will a given customer arrive? Will he or she encounter a long line? Will
he or she be the impatient sort who walks out?). Nevertheless, you must make
a decision based on the data you have. How should you proceed?

One technique is to let your computer "imitate" your store. Let the com
puter play a game which consists of generating customers at random times.
These customers enter the " shop" and, on the basis of the current line , decide
whether or not to stay. The computer will keep track of the line , the number of
customers who leave, the revenue generated, and the revenue lost. The com
puter will keep up the simulated traffic for an entire "day" and present you with
the results of the daily activity. But, you might argue, the computer data may
not be valid. Suppose that it generates a "non-typical" day. Its data might be
biased. This c.ould, indeed, happen. In order to avoid this pitfall, we run the
program for many simulated days and average the results . The process we
have just described is calledsimulation .

In this chapter we will provide a glimpse of the power of simulation and
provide you with enough of an idea to build simple simulations of your own.

First, let us handle some of the mathematical ideas we will need in the
next section. The required notions center around the following question: How
do we make the computer imitate an unpredictable event? Consider the irate
customer who arrives to encounter a line of four people ahead of him. Accord
ing to the above table, the customer will leave 30 percent of the time and
remain in line 70 percent of the time. How do you let the computer make the
decision for the customer?

Easy! Use the random number generator. Recall that RND generates a
random number between O (included) and 1 (excluded). Suppose we ask how
often RND is larger than .30. If, indeed, the numbers produced by the random
number generator show no biases, approximately 70 percent of the numbers
produced will lie in the given interval since this interval occupies 70 percent of
the length of the interval from O to 1. We let our customer decide as follows: If

Simulation of a Computer Store 343

RND > .30 then the customer joins the line; otherwise, the customer walks out
in a huff. We will employ this simple idea several times in designing our
simulation.

15 .2 Simulation of a Computer Store

Let us build a simulation to solve the problem stated in the preceding section.
We must decide on techniques for imitating each of the important aspects of
the problem.

Since the problem calls for analysis of actions as time passes , we must
somehow measure the passage of (simulated) time. To do this , we will use the
variables HOUR and MINUTES to keep track of the current time . In order to
avoid a problem with am and pm, let's use the military time system. In this
system the pm hours are denoted as 13 through 24. For example, 1:15 pm is
shown as 13:15. As our unit of simulated time , let's use four minutes, the time
it takes to serve a customer. Our program will then look at time in four-minute
segments. During each four-minute segment, it will take certain actions and
then advance to the next time segment by adjusting HOUR and MINUTES.

Let us store the statistical data on customer arrivals in the array TRAF
FIC(J) (J = 9, 10, .. . , 20). TRAFFIC(9) will equal the number of customers
arriving between 9 and 10 am, TRAFFIC(lO) the number arriving between 10
and 11 am, .. . , TRAFFIC(20), the number arriving between 8 and 9 pm. The
first action of the program is to set up the array TRAFFIC().

The next step will be to read in the customer "impatience data." Let
WALKOUT(K) be the percentage of customers who leave when the line is K
people long. We next read the given data into this array.

Our program will keep track of the following variabl~s:
CASHFLOW = total sales for the day
CUSTOMERSERVED = number of customers served for day
LOSTCASH = cash lost to impatient customers
MAXLINE = maximum line length during the day
At the beginning of each hour, the program will schedule the arrival of the

customers . For the Jth hour, it will schedule the arrival of TRAFFIC(J) custom
ers. Each customer will be given a time of arrival in minutes past the hour. The
computer will choose this arrival time using the random number generator. In
the absence of any other information, let's assume that the customers spread
themselves out in a random but uniform manner over the hour. The way we'll
handle things inside the computer is as follows. At the beginning of each simu
lated hour, we set up an array CUST(SEG) with 15 entries, one for every four
minute segment in the hour. This array will indicate how many customers arrive
in each four-minute interval. For example , if CUST(lO) = 4 , then four custom
ers will arrive between 36 and 40 minutes past the hour (that is , in the tenth
four-minute interval in the hour). The program will randomly place each of the
TRAFFIC(J) customers in four-minute intervals using the random number
generator.

The program progresses through the simulated hour in four-minute seg
ments. For the Tth four-minute segment, it causes CUST(T) customers to

344 Sec. 15.2

arrive at the store. The computer lets these customers each look at the line and
decide whether to leave or stay. If a customer decides to stay, then he or she is
added to the line. If the customer decides to go, the computer makes a note of
the $30 cash flow lost. After the customers are either in line or have left, the
salesperson services two customers (remember, two customers are serviced
every four minutes) and $30 is added to the cash flow. Finally, the time is
updated and the entire procedure is repeated for the next four-minute seg
ment. Let's be rather hard-hearted. If there are any customers left in line at
closing time, we don't wait on them and add their business to that lost. This
rather odd way of doing business is appropriate since we are analyzing the
need for more personnel, and any overtime should be considered in that
analysis.

Here is our program.

10 'Initialization
20 DIM TRAFFIC(20),WALKOUT(15),CUST(15)
30 RANDOMIZE VAL(RIGHT$(TIME$,2))
40 'Read arrival data
50 DATA 10,15,15,40,30,10,10,8,25,50,45,30
60 FOR HOUR=9 TO 20
70 READ TRAFFIC(HOUR)
80 NEXT HOUR
90 'Read walkout data
100 DATA .2,.2,.3,.3,.4,.4,.4,.5,.6,.65,.7,.75,.75,

.75,.75
110 FOR LNE=1 TO 15
120 READ WALKOUT(LNE)
130 NEXT LNE
140 'Initialize Variables
150 LNE=O
160 MAXLINE = 0
170 LOSTCASH = 0
180 CASHFLOW = 0
190 CUSTSERVED = 0
200 '*************Main Program**************
210 CLS:PRINT "SIMULATING. PLEASE WAIT."
220 FOR HOUR= 9 TO 20
230 FOR MINUTE= 0 TO 56 STEP 4
240 'Update clock
250 IF MINUTES= 0 THEN GOSUB 570: 'Plan hour
260 SEG = MINUTES/4 + 1
270 'Simulate arrivals for current 4 minute segment
280 FOR J=1 TO CUST(SEG)
290 GOSUB 390
300 NEXT J
310 'Simulate customers served
320 GOSUB 490
330 NEXT MINUTE
340 NEXT HOUR
350 'Compute daily statistics

Simulation of a Computer Store 345

360 GOSUB 660
370 END
380 '**************Subroutines**************
390 'Arrival of one customer
400 IF LNE > 15 THEN L=15 ELSE L=LNE
410 IF RND>WALKOUT(L) THEN 420 ELSE 460
420 'Customer stays
430 LNE=LNE+1
440 IF LNE>MAXLINE THEN MAXLINE=LNE
450 GOTO 480
460 'Customer Leaves
470 LOSTCASH=LOSTCASH+30
480 RETURN
490 'Wait on Customers
500 FOR J=1 TO 2
510 IF LNE=O THEN 550
520 LNE=LNE-1
530 CASHFLOW=CASHFLOW+30
540 CUSTSERVED=CUSTSERVED+1
550 NEXT J
560 RETURN
570 'Plan Customer Arrivals for Next Hour
580 FOR SEGMENT=1 TO 15
590 CUST(SEGMENT) = 0
600 NEXT SEGMENT
610 FOR I=1 TO TRAFFIC(HOUR)
620 X = INT(15*RND)+1
630 CUST(X) = CUST(X) + 1
640 NEXT I
650 RETURN
660 'Print Summary of Day
670 CLS
680 PRINT
690 PRINT "CASH FLOW"; TABC30) CASHFLOW
700 PRINT "CUSTOMERS SERVED"; TAB(30) CUSTSERVED
710 PRINT "CUSTOMERS NOT SERVED";

TAB(30) 288-CUSTSERVED
720 PRINT "LOST CASH"; TABC30) LOSTCASH
730 PRINT "MAXIMUM LINE"; TABC30) MAXLINE
740 RETURN

Here are the results of four runs of the program:

RUN # 1:

CASH FLOW 6900
CUSTOMERS SERVED 230
CUSTOMERS NOT SERVED 58
LOST CASH 1620
MAXIMUM LINE 9

346 Sec. 15.2

RUN # 2:

CASH FLOW 6780
CUSTOMERS SERVED 226
CUSTOMERS NOT SERVED 62
LOST CASH 2160
MAXIMUM LINE 9

RUN # 3:

CASH FLOW 7020
CUSTOMERS SERVED 234
CUSTOMERS NOT SERVED 54
LOST CASH 2040
MAXIMUM LINE 13

RUN #4:

CASH FLOW 7320
CUSTOMERS SERVED 244
CUSTOMERS NOT SERVED 44
LOST CASH 2070
MAXIMUM LINE 10

We observe several interesting facts about the output. First note that the
runs are not all identical. This is because the RANDOMIZE instruction creates
new random customer arrival patterns for each run. Second, note the small
percentage error in the data from the various runs. We seem to have discov
ered a statistical pattern which persists from run to run.

Finally, and most significantly, note that we are losing several thousand
dollars per day in business because of our inability to service customers. At
$300 per week, the additional salesperson is a bargain! Even a single day's lost
sales is enough to pay the salary. It appears that we should add the extra sales
person. Actually, a bit more caution is advisable. We were dealing with cash
flow rather than profit. In order to make a final decision, we must compute the
profit generated by the additional sales. For example , if our profit margin is 40
percent then the profit generated by the extra sales will clearly amount to more
than $300 per week and the extra salesperson should be hired.

The above example is fairly typical of the way in which simulation may be
applied to analyze even fairly complicated situations in a small business. We will
present some further refinements in the exercises.

Exercises

1. Run the above program for ten consecutive runs and record the data.
Does your data come close to the data presented above? (Remember:
Due to the RANDOMIZE instruction, you cannot expect to duplicate
the given results exactly, only within statistical error.)

Simulation of a Computer Store 34 7

2. Suppose that customers become more impatient, and the likelihood
of leaving is doubled in each case. Rerun the experiment to determine
the lost cash flow in this case.

3. Suppose that customers become more patient, and the likelihood of
leaving is cut in half in each case. Redo the experiment to determine
the lost cash flow in this case.

4. Consider the original set of experimental data. Now assume that the
second salesperson has been hired. Rerun the experiment to deter
mine the average lost cash flow and the average line at closing.

5. Modify the given program so that you may calculate the average wait·
ing time for each customer.

ANSWERS TO
SELECTED EXERCISES

CHAPTER3

Section 3.1 (page 39)
1. Valid
2. Valid
3. > is an illegal character
4. The colon is an illegal character
5. This is legal (believe it or not!)
6. Use only one period
7. Extensions may only have 3 characters.
8 . Names may only have 8 characters.

Section 3.2 (page 41)
1. COM1 :ALICE.3
3. A:*.*
5. A:?.*

2. LPT1 : MESSAGE
4. *·*
6. A: RALPH.*

Section 3.4 (page 46)
1. COPY 8:TEST LPT1:
2. COPY A:*.COM 8:
3. ERASE A: TEST
4. COPY A:TEST 8:TEST3
5. COPY A:D???????.* 8:

CHAPTER4

Section 4.2 (page 61)
1. Locates the cursor in row 3 and column 4 .
2. Locates the cursor in row 12 and column 8.
3. Locates the cursor in row x and column y.
4. Displays 18.
5. Displays 18.
6 . Displays the product of x and y.
7. Displays 2 .
8. Displays 0.
9. Displays 2 .

10. Displays the integer quotient of x divided by y.

350 Answers

1.

2.

3.

4.

5.
7.

11.
12.
14.
18.

1.

2.

3.

Section 4.3 (page 69)

10 PRINT 57+23+48
20 END
10 PRINT 57.83*(48.27 -12.54)
20 END
10 PRINT 127.86/38
20 END
10 PRINT 365/.005 + 1 . 02A5
20 END
2.3E7 6. 1.7525E2
-2E+08 8. 1.4E-04 9. -2. 75E-10 10. 5.342E+16
159,000
-20,345,600 13. -.000000000007456
.00000000000000000239456 15. 3 16. 2 17. 1
1 19. 1

Section 4.5 (page 76)

10 PRINT 2A1,2A2,2 A3,2A4
20 PRINT 3A1,3A2,3A3,3A4
30 PRINT 4A1,4A2,4A3,4A4
40 PRINT 5A1,5A2,5 A3,5 A4
50 PRINT 6A1,6A2,6 A3,6A4
60 END
10 PRINT "CAST REMOVAL" ,45
20 PRINT "THERAPY",35
30 PRINT "DRUGS",5
40 PRINT
50 PRINT "TOTAL" ,45+35+5
60 PRINT "MAJ MED", .8*(45+35+5)
70 PRINT "BALANCE", .2*(45+35+5)
80 END
10 PRINT "THACKER", 698+732+129+487
20 PRINT "HOVING", 148+928+246+201
30 PRINT "WEATHERBY",379+1087+148+641
40 PRINT "TOTAL VOTES", 698+732+129+487+148+928+

246+201+379+1087+148+641
50 END
Note that line 40 extends over two lines of the screen. To type such a line
just keep typing and do not press ENTER until you are done with the line.
The maximum line length is 255 characters.

4. -2
5. SILVER GOLD COPPER PLATINUM

6.
327 448 1052 2

MON
TUE

GROCERIES
1,245

248

MEAT DRUGS
2,348 2,531
3,459 2,148

Answers 351

Section 4.6 (page 85)
4 . 9 -7 18 1. 10 2. 0 3. 50

5. JOHN JONES AGE 38 6. 22 7.
57

A can only assume
numeric constants as
values.

8. Nothing 9. A$ can only assume 10. No line number.
string constants as String constant not in
values. quotes.

11. Nothing 12. A variable name must begin with a letter.
13. 10 LET A=2.3758:B=4.58321:C=58.11

20 PRINT A+B+c
30 PRINT A*B*C
40 PRINT AA2+BA2+C A2
50 END

14. 10 LET A$="0ffice Supplies":B$="Computers":C$="Newsletters"
20 LET RA=346712:RB=459321:RC=376872
30 LET EA=176894:EB=584837:EC=402195
40 PRINT ,A$,B$,C$
50 PRINT "REVENUE",RA,RB,RC
60 PRINT "EXPENSES" ,EA, EB, EC
70 LET PA=RA-EA:PB=RB-EB:PC=RC-EC
80 PRINT "PROFIT",PA,PB,PC
90 PRINT
100 PRINT "TOTAL PROFIT",PA+PB+PB

Section 4. 7 (page 93)
2. Type CLS and press ENTER. Type LIST and press ENTER.
3. Type SAVE "PROGRAM!" and press ENTER. Type NEW and press

ENTER.
4. Type LOAD "PROGRAM! " and press ENTER. Type LIST and press

ENTER.
5. Type the new line and press ENTER.
6. Type SAVE " PROGRAM2" and press ENTER.
7. Type LOAD "PROGRAM2" and press ENTER. Type DELETE 20 and

press ENTER. Type RUN and press ENTER.
8. Type RENUM 100,, 100 and press ENTER.
9. Type RENUM 2000,20,5 and press ENTER.

CHAPTERS

Section 5.1 (page 109)
1. 10 S=O

20 FOR J=1 TO 25
30 S=S+J A2
40 NEXT J

352 Answers

50 PRINTS
60 END

2. 10 S=O
20 FOR J=O TO 10
30 S=S+(1/2)AJ
40 NEXT J
50 PRINTS
60 END

3. 10 S=O
20 FOR J=1 TO 10
30 S=S+JA3
40 NEXT J
50 PRINTS
60 END

4. 10 S=O
20 FOR J=1 TO 100
30 S=S+1/J
40 NEXT J
50 PRINTS
60 END

5. 10 PRINT "N","NA2","NA3","NA4"
20 FOR N=1 TO 12
30 PRINT N,NA2,NA3,NA4
40 NEXT N
50 END

6. 10 PRINT "MONTH","INTEREST","BALANCE"
20 8=4000,P=125.33
30 FOR J=1 TO 12
40 I=.01*8:'I=THE INTEREST FOR MONTH
50 R=P-I:'R=REDUCTION IN BALANCE FOR MONTH
60 B=B-R: NEW BALANCE
70 PRINT J,I,B
80 NEXT J
90 END

7. 10 PRINT "END OF YEAR", "BALANCE"
20 8=1000
30 FOR J=1 TO 15
40 8=8+1000+.10*8 :'ADD DEPOSIT AND INTEREST
50 PRINT J,B
60 NEXT J
70 END

8. 10 S=3.5E7: P = 5.54E6
20 PRINT "END OF YEAR", "SALES", "PROFITS"
30 FOR J=1 TO 3
40 S = 1.2*S: P = 1.3*P
50 PRINT J,S,P
60 NEXT. J
70 END

Section 5.2 (page 123)

1. 10 J=1
20 IF JA2 >= 45000 THEN 100 ELSE 30
30 PRINT J,JA2
40 J=J+1
50 GOTO 20
100 END

2. 10 PI=3.14159
20 R=1
30 IF PI*RA2 <= 5000 THEN 40 ELSE 100
40 PRINT R,PI*RA2
50 R=R+1
60 GOTO 30
100 END

3. 10 PRINT "SIDE OF CUBE", "VOLUME"
20 S=1
30 V = SA3
40 IF V <175000 THEN 50 ELSE 100
50 PRINT S,V
60 S=S+1
70 GOTO 30
100 END

Answers 353

4. 10 FOR J = 1 TO 10 : 'LOOP TO GIVE 10 PROBLEMS
20 INPUT "TYPE TWO 2-DIGIT NUMBERS"; A,B
30 INPUT "WHAT IS THEIR PRODUCT";C
40 IF A* B = C THEN 200
50 PRINT "SORRY. THE CORRECT ANSWER IS",A*B
60 GOTO 500: 'GO TO THE NEXT PROBLEM
200 PRINT "YOUR ANSWER IS CORRECT! CONGRATULATIONS"
210 LET R = R+1 : 'INCREASE SCORE BY 1
220 GOTO 500 : 'GO TO THE NEXT PROBLEM
500 NEXT J
600 PRINT "YOUR SCORE IS",R,"CORRECT OUT OF 10"
700 PRINT "TO TRY AGAIN, TYPE RUN"
800 END

5. 10 FOR J = 1 TO 10 : 'LOOP TO GIVE 10 PROBLEMS
15 PRINT "CHOOSE OPERATION TO BE TESTED:"
16 PRINT "ADDITION (A), SUBTRACTION (S), OR

MULTIPLICATION (M)"
17 INPUT A$
20 INPUT "TYPE TWO 2-DIGIT NUMBERS"; A,B
21 IF A$ = "A" THEN 30
22 IF A$ = "S" THEN 130
23 IF A$= "M" THEN 230
30 INPUT "WHAT IS THEIR SUM";C
40 IF A+ B = C THEN 400
50 PRINT "SORRY. THE CORRECT ANSWER IS",A+B

354 Answers

60 GOTO 500 : 'GO TO THE NEXT PROBLEM
130 INPUT "WHAT IS THEIR DIFFERENCE"; C
140 IF A-B = C THEN 400
150 PRINT "SORRY. THE CORRECT ANSWER IS",A-B
160 GOTO 500 : 'GO TO THE NEXT PROBLEM
230 INPUT "WHAT IS THEIR PRODUCT"; C
240 IF A*B = C THEN 400
250 PRINT "SORRY. THE CORRECT ANSWER IS",A+B
260 GOTO 500 : 'GO TO THE NEXT PROBLEM
400 PRINT "YOUR ANSWER IS CORRECT! CONGRATULATIONS"
410 LET R = R+1 : 'INCREASE SCORE BY 1
420 GO TO 500 : 'GO TO THE NEXT PROBLEM
500 NEXT J
600 PRINT "YOUR SCORE IS",R,"CORRECT OUT OF 10"
700 PRINT "TO TRY AGAIN, TYPE RUN"
800 END

6. See the answer to Exercise 8.
7. See the answer to Exercise 9.
8. 10 INPUT "NUMBER OF NUMBERS";N

20 FOR J=1 TO N
30 INPUT A
40 IF J=1 THEN B=A
50 IF A>B THEN B=A
60 NEXT J
70 PRINT "THE LARGEST NUMBER INPUT IS" ,B
80 END

9. Replace line 50 in Exercise 8. by:
50 IF A<B THEN B=A

10. 10 A0=5782:A1=6548:B0=4811:B1=6129:C0=3865:C1=4270
20 D0=7950:D1=8137:E0=4781:E1=4248:F0=6598:F1=7048
30 FOR J=1 TO 6
40 IF J=1 THEN A=A0:B=A1
50 IF J=2 THEN A=BO:B=B1
60 IF J=3 THEN A=CO:B=C1
70 IF J=4 THEN A=DO:B=D1
80 IF J=5 THEN A=EO:B=E1
90 IF J=6 THEN A=FO:B=F1
100 I= B-A
110 IF I>O THEN PRINT "CITY",J,"HAD AN INCREASE OF" , I
120 GOTO 200
130 IF I<O THEN PRINT "CITY",J,"HAD A DECREASE OF",A-B
140 GOTO 300
200 IF I>500 THEN PRINT "CITY",J,"MORE THAN 500 INCREASE"
300 NEXT J
400 END

11. 10 PRINT "THIS PROGRAM SIMULATES A CASH REGISTER"
20 PRINT "AT THE QUESTION MARKS, TYPE IN THE PURCHASE"
30 PRINT "AM'TS. TYPE -1 TO INDICATE THE END OF THE ORDER"

40 INPUT "TYPE 'Y' IF READY TO BEGIN"; A$
50 IF A$ = "Y" THEN 60 ELSE 10
60 CLS
70 INPUT "ITEM"; A
80 IF A= -1 THEN 200 ELSE 90
90 T = T+A: TIS THE RUNNING TOTAL
100 GOTO 70
200 PRINT "THE TOTAL IS", T
210 S = .05*T:'S=SALES TAX
220 PRINT "SALES TAX", S
230 PRINT "TOTAL DUE", S+T
240 INPUT "PAYMENT GIVEN" ;P
250 PRINT "CHANGE DUE", P-(S+T)

300 END
12. 10 INPUT "CASH ON HAND"; C1

Answers 355

20 PRINT "INPUT ACCOUNTS EXPECTED TO BE RECEIVED IN NE XT
MONTH."

30 PRINT "TO INDICATE END OF ACCOUNTS TYPE -1 . "
40 INPUT "ACCOUNTS RECEIVABLE" ;A
50 IF A=-1 THEN 100
60 C2 = C2+A : 'C2=RUNNING TOTAL OF ACCOUNTS RECEIVABL E
70 GOTO 40
100 PRINT "INPUT ACCOUNTS EXPECTED TO BE PAID IN NEXT

MONTH."
110 PRINT "TO INDICATE END OF ACCOUNTS TYPE - 1 . "
120 INPUT "ACCOUNTS PAYABLE";A
130 IF A= - 1 THEN 200
140 C3 = C3+A:'C3=RUNNING TOTAL OF ACCOUNTS PAYABLE
150 GOTO 120
200 PRINT "CASH ON HAND", C1
220 PRINT "ACCOUNTS RECEIVABLE",C2
230 PRINT "ACCOUNTS PAYABLE",C3
240 PRINT "NET CASH FLOW", C1 +C2-C3
300 END

1. 1000 I

1010
1020
1030

2. 1000 I

1010
1020
1030
1040
1050

Section 5.4 (page 133)

10 Asterisks
LOCATE L,1

PRINT"**********"
RETURN
M Asterisks
LOCATE L,1
FOR J=1 TO M

PRINT"*";
NEXT J
RETURN

356 Answers

3. 1000 ' M Asterisks; General Position
1010 LOCATE L,K
1020 FOR J=1 TOM
1030 PR INT "*";
1040 NEXT J
1050 RETURN

4 10 K=5:L=3:M=30
20 GOSUB 1000
30 K=4:L=5:M=35
40 GOSUB 1000
50 K=8:L=7:M=12
60 GOSUB 1000
70 END
1000' M Asterisks; General Position
1010 LOCATE L,K
1020 FOR J=1 TOM
1030 PRINT "*";
1040 NEXT J
1050 RETURN

5. The program execution goes to line:
(a) 200 (b) 500 (c) The line after 10
10 (e) Error. Program terminates.

6. Lines 200 and 50.

CHAPTER6

Section 6.1 (page 141)
1. DIM A(5) 2. DIM A(2,3) 3. DIM A$(3)
4. DIM A(1,3)
5. DIM AS(4) ,8(4)
6. 10 DIM AS(3),B(3,3),C$(3)

20 PRINT ,,"Receipts"

(d) The line after

30 CS(1) = "Store #1":C$(2) = "Store #2": CS(3) = "Store
#3"

40 AS(1) = "1/1-1/10":A$(2) = "1/11-1/20":A$(3)="1/21-1/31"
50 8(1,1)= 57385.48:B(1,2)=89485.45:B(1,3)=38456.90
60 8(2,1)=39485.98:8(2,2)= 76485.49:8(2,3)=40387.86
70 8(3,1)=45467.21:B(3,2)=71494.25:B(3,3)=37983.38
100 PRINT ,C$(1),C$(2),C$(3)
200 FOR J=1 TO 3
220 PRINT A$(J),B(J,1),B(J,2),8(J,3)
230 NEXT J
300 END

7. Add these instructions:
5 DIM 0(3)
240 FOR J=1 TO 3

250 D(J) = 8(1,J)+B(2,J)+B(3,J)
260 NEXT J
270 PRINT "TOTALS",D(1),D(2),D(3)

8. Move the END to 400 and add the following instructions.
6 DIM E(3)
300 FOR J=1 TO 3
310 E(J) = B(J,1)+B(J,2)+8(J,3)
320 NEXT J
330 PRINT
340 PRINT "PERIOD", "TOTAL SALES"
350 FOR J=1 TO 3
360 PRINT A$(J), E(J)
370 NEXT J
400 END

9. 10 DIM A$(4), 8$(5), C(5,4)

Answers 357

20 A$(1) = "Store #1",A$(2) = "Store #2", A$(3) = "Store
#3"

21 A$(4) = "STORE #4"
30 8$(1) = "REFRIG.",8$(2)="STOVE",8$(3)="AIR COND."
40 8$(4) = "VACUUM", 8$(5) = "DISPOSAL"
50 PRINT "INPUT THE CURRENT INVENTORY"
60 FOR J=1 TO 4
70 PRINT A$(J)
80 PRINT
90 FOR I=1 TO 5
100 PRINT 8$(I)
110 INPUT C(I,J)
120 NEXT I
130 NEXT J
200 REM REST OF PROGRAM IS FOR INVENTORY UPDATE
210 PRINT "CHOOSE ONE OF THE FOLLOWING"
220 PRINT "RECORD SHIPMENTS(R)"
230 PRINT "DISPLAY CURRENT INVENTORY(D)"
240 INPUT "TYPE R OR D"; D$
250 IF D$="R" THEN 300
260 IF D$="D" THEN 600 ELSE CLS:GOTO 200
300 CLS
310 PRINT "RECORD SHIPMENT"
320 INPUT "TYPE STORE#(1-4)";J
330 PRINT "ITEM SHIPPED"
340 PRINT "REFRIG=1,STOVE=2,AIR

COND.=3,VACUUM=4,DISPOSAL=5"
350 INPUT I
360 INPUT "NUMBER SHIPPED";S
370 B(I,J) = B(I,J)-S
380 GOTO 200
600 CLS
610 PRINT A$(1),A$(2),A$(3),A$(4)

358 Answers

620 FOR I=1 TO 5
630 FOR J=1 TO 4
640 PRINT 8(I,J);
650 NEXT J
660 NEXT I
670 GOTO 200
1000 END
Note that this program is really an infinite loop. For this type of program,
this is a good idea. You don't want to accidentally end the program,
thereby erasing the current inventory figures! End this program using Ctrl
Break.

Section 6 .2 (page 14 7)

1. A(1)= 2,A(2)=4,A(3)=6,A(4)=8,A(5)=10,A(6)=12,A(7)=14,
A(7)=16,A(8)=18,A(9)=20

2. A(O) = 1.1, A(1) = 3.3, A(2) = 5.5, A(3) = 7.7,
8(0)=2.2, 8(1) = 4.4, 8(2) = 6.6, 8(3) = 8.8

3. A(O) = 1, A(1) = 2, A(2) = 3, A(3) = 4, 8$<0) = "A",
8$(1) = 11 8 11

, 8$(2) = "C", 8$(3) = "D"
4. A(O) = 1,8(0)=2,A(1)=3,8(1)=4,A(2)=1,8(2)=2,A(3)=3,8(3)=4
5. A(1,1)=1,A(1,2)=2,A(1,3)=3,A(1,4)=4,A(2,1)=5,A(2,2)=6,

A(2,3)=7,A(2,4)=8,A(3,1)=9,A(3,2)=10,A(3,3)=11,A(3,4)=12
6. A(1,1)=1,A(2,1)=2,A(3,1)=3,A(1,2)=4,A(2,2)=5,A(3,2)=6,

A(1,3)=7,A(2,3)=8,A(3,3)=9,A(1,4)=10,A(2,4)=11,A(3,4)=12
7. Out of DATA in 30
8. 2 Type Mismatches in 30. (Attempt to set a numeric variable equal to a

string and a string variable equal to a numeric constant.) Also, Out of
Data in 30.

9. Set F(J) equal to the federal withholding tax for employee J , N{J) = the
net pay, and add the following lines.
280 PRINT "EMPLOYEE", "WITH HOLD ING", "NET PAY"
290 FOR J = 1 TO 5
300 IF D(J) <= 200 THEN F(J) = 0
310 IF D(J) <= 210 THEN F(J) =29.10
320 JF D(J) <= 220 THEN F(J)=31.20
330 IF D(J) <= 230 THEN F(J)=33.80
340 IF D(J) <= 240 THEN F(J)=36.40
350 IF D(J) <= 250 THEN F(J)=39.00
360 IF D(J) <= 260 THEN F(J)=41.60
370 IF D(J) <= 270 THEN F(J)=44.20
380 IF D(J) <= 280 THEN F(J)=46.80
390 IF D(J) <= 290 THEN F(J)=49.40
400 IF D(J) <= 300 THEN F(J)=52.10
410 IF D(J) <= 310 THEN F(J)=55.10
420 IF D(J) <= 320 THEN F(J)=58.10
430 IF D(J) <= 330 THEN F(J)=61.10

440 IF D(J) <= 340 THEN F(J)=64.10
450 IF D(J) <= 350 THEN F(J)=67.10
500 N(J) = D(J)-E(J)-F(J)
600 PRINT B$(J),F(J),N(J)
700 NEXT J

Answers 359

10. 5 DIM A(25)

1.

2.

3.

4.

5.

10 DATA 10,10,9,9,8,11,15,18,20,25,31,35,38,39,40,40,42,38
20 DATA 33,27,22,18,15,12
30 FOR J=O TO 23
40 READ A(J)
50 S=S+A(J)
60 NEXT J
70 PRINT "AVERAGE 24 HOUR TEMP.", S/24
100 PRINT "TO FIND THE TEMPERATURE AT ANY PARTICULAR HOUR''
110 PRINT "TYPE THE HOUR IN 24-HOUR NOTATION: 0-12=AM"
120 PRINT "13-24=PM"
130 PRINT "TO END THE PROGRAM, TYPE 25"
140 INPUT "DESIRED HOUR";A
150 IF A=25 THEN 200
160 PRINT "THE QUERIED TEMPERATURE WAS" ,A(J), "DEGREES"
170 GOTO 100
200 END

Section 6.3 (page 157)

10 PRINT "THE VALUE OF X IS",5.378
20 END
10 PRINT "THE VALUE OF X IS";TAB(22) 5 . 378
20 END
10 PRINT "DATE";TAB(7) "QTY"; TAB(13) "@"; TAB(18) " COST";
20 PRINT TAB(26) "DISCOUNT";TAB(38) "NET COST"
30 END
10 X=6.753:Y=15.111:Z=111.850:W=6.702
20 PRINT USING "###.###"; X
30 PRINT USING "###.###"; y

40 PRINT USING "###.###"; z
50 PRINT USING "###.###"; w
60 PRINT II

II

70 PRINT USING "###.###"; X+Y+Z+W
80 END
10 X=12.82:Y=117.58:Z=5.87:W=.99
20 PRINT USING "$###.##"; X
30 PRINT USING "$###.##"; y

40 PRINT USING "$###.##"; z
50 PRINT USING "$###.##"; w
60 PRINT USING "$###.##"; w
60 PRINT" II

360 Answers

70 PRINT USING "$###.##"; X+Y+Z+W+W
80 END

6. 10 PRINT TAB(46) "DATE 11 ;TAB(53) 11 3/18/81"
20 PRINT
30 PRINT "Pay to the Order of";
40 PRINT TAB(27) 11 Wi ldcatters, Inc."
50 PRINT
60 PRINT "The Sum of";TAB(41) "*********$89,385.00 11

7. 10 X=5787:Y=387:Z=127486:W=38531
20 PRINT USING 11 ###,### 11

; X
30 PRINT USING 11 ### ,### 11

; Y
40 PRINT USING 11 ### ,### 11

; Z
50 PRINT USING 11 ###,### 11

; W
60 PRINT 11

"

70 PRINT USING 11 ###,### 11 ;X+Y+Z+W
80 END

8. 10 X=385.41:Y=17.85
20 PRINT 11 ";:PRINT USING "$$###.##";X
30 PRINT"-";
40 PRINT USING "$$###. ##"; Y
50 PRINT" "
60 PRINT " ";:PRINT USING "$$###.##";X-Y
70 END

9. 10 INPUT "NUMBER TO BE ROUNDED"; X
20 PRINT USING "######";X
30 END

10. Modify the program of Example 2 of Section 5.4 by substituting PRINT
USING "$ # # # #. # # "; statements.

11. Put the computer into 40-character-per-line mode by typing WIDTH 40
followed by ENTER. Then RUN the program of Exercise 4 .

Section 6.4 (page 165)

1. 1 00*RND 2. 1 00+RND 3. INT(50*RND+1)
4. INT(4+ 77*RND) 5. 2* INT(25*RND+1) 6. 50+50*RND
7. 3*INT(9*RND+1) 8. 1+3*INT<7*RND+1)

10. Add the following instructions:
132 IF C(J) > A(J) THEN 135 ELSE 140
135 PRINT "BET INVALID:NOT ENOUGH CHIPS PURCHASED"
137 C(J)=0
139 GOTO 120

11. Change line 132 in Exercise 10 to read:
132 IF C(J) > A(J)+100 THEN 135 ELSE 140

12. 10 PRINT "CHOOSE OPERATION TO BE TESTED"
20 PRINT "ADD I TION (A), SUBTRACT! ON (S), MULTIPLICATION(M)"
30 INPUT A$
40 A= INT(10*RND):B=INT(10*RND)

50 IF A$ = "A" THEN 100
60 IF A$ = "S" THEN 200
70 IF A$ = "M" THEN 300
100 CLS
110 PRINT "WHAT IS ";A;"+";B;"?"
120 INPUT C
130 D = A+B
140 GOTO 400
200 CLS
210 PRINT "WHAT IS ";A;"-";B;"?"
220 INPUT C
230 D = A-B
240 GOTO 400
300 CLS
310 PRINT "WHAT IS ";A;"X";B;"?"
320 INPUT C
330 D = A*B
340 GOTO 400
400 IF C=D THEN 410 ELSE 420
410 PRINT "YOUR ANSWER IS CORRECT"
415 GOTO 430

Answers 361

420 PRINT "INCORRECT. THE CORRECT ANSWER IS", D
430 INPUT "ANOTHER PROBLEM(Y/N)";B$
440 IF A$ = "Y" THEN 10
450 END

13. Put your names in a series of DATA statements located in lines 1000-
1010.

5 DIM A$(10)
10 FOR J=1 TO 10
20 READ A$(J)
30 NEXT J
40 FOR J=1 TO 4
50 PRINT A$(INT(10*RND))
60 NEXT J
70 END

362 Answers

CHAPTER 7

S=O

J .. 1 ,2, ...• 100

S•S+J"2

PRINT
"S>4&7·3"

END

No

Section 7 .1 (page 170)

PRINT
"S<•487·3"

Figure A-1.

READ
HOURS (HI

'
READ

MINUTES (Ml

l

READ
SECONDS (SI

!
PRINT: "THE
COMPUTER

HAS BEEN ON
H HOURS,

M MINUTES,
S SECONDS

Figure A-2.

Answers 363

t 1

' t

INPUT# DETERMINE DETERMINE IF

PLAYERS N WINNING PLAYER J
NUMBER WINS

~ J=1,2 , ... ,N t '
PLAYER J CONVERT DETERMINE

PURCHASES 37 TO 0 AMOUNT

CHIPS 38 TO 00 WON OR LOST

' ' t
1 J=1,2 ... ,N

' PLAYER J DISPLAY ADD OR
BETS WINNING SUBTRACT

INPUT
BET TYPE NUMBER

FROM PLAYER J

(ODO, EVEN,
BANKROLL

NUMBER) I !
+ i

INPUT AMOUNT
OF PRINT PLAYER

BET BANKROLLS

+
CONVERT

0 TO 37 Yes ANOTHER
00 TO 38 ROLL?

t

' No

SPIN
WHEEL

ENO

I

Figure A-3.

364 Answers

READ
EMPLOYEE
NAMES AND

WAGE RATES

' J=1,2,3,4 ,5

INPUT HOURS
OF EMPLOYEE J

'J=1,2,3,4 ,5

COMPUTE
GROSS WAGES,
SOC. SECURITY
OF EMPLOYEE J

'J=1,2,3,4 ,5

PRINT:
EMPLOYEE J's

NAME
GROSS WAGES

SOC. SECURITY

i

END

Figure A-4.

Section 7.2 {page 173)
1. Here are the errors:

TYPE MISMATCH in line 10: "O'' should be 0
line 30: J(2 should be JA2
line 80: NXT T should be NEXT T
line 90: should be deleted
line 100: ST should be S•T
line 110 quotes around "THE ANSWER IS"

2. Line 30 should read: PRINT "THE FIRST N EQUALS" ,N
Need a line 40 stating GOTO 200

CHAPTERS

1. 10
20
30
40

Section 8.2 {page 187)
DATA 5.7,-11.4,123,485,49
OPEN "NUMBERS" FOR OUTPUT AS #1
FOR J=1 TO 5

READ A

50 WRITE #1, A
60 NEXT J
70 CLOSE 1
80 END

2. 10 OPEN "NUMBERS" FOR INPUT AS #1
20 FOR J=1 TO 5
30 INPUT #1,A
40 PRINT A
50 NEXT J
60 CLOSE 1
70 END

3. 10 OPEN "NUMBERS" FOR APPEND AS #1
20 DATA 5, 78, 4.79, -1.27
30 FOR J=1 TO 4
40 READ A
50 WRITE#1,A
60 NEXT J
70 CLOSE 1
80 END

4. 10 OPEN "NUMBERS" FOR INPUT AS #1
20 FOR J = 1 TO 9
30 INPUT #1, A
40 PRINT A
50 NEXT J
60 CLOSE 1
70 END

5. 10 OPEN "CHECKS" FOR OUTPUT AS #1
20 PRINT "TYPE CHECK DATA ITEMS REQUESTED."

Answers 365

30 PRINT "FOLLOW EACH ITEM BY A CARRIAGE RETURN."
40 OPEN "CHECKS" FOR OUTPUT AS #1
50 INPUT "CHECK #" ;A
60 INPUT "DATE" ;8$
70 INPUT "PAYEE"; C$
80 INPUT "AMOUNT(NO $) "; D
90 INPUT "EXPLANATION"; E$
100 WRITE #1,A,B$,C$,D,E$
110 INPUT "ANOTHER CHECK(Y/N)";F$
120 CLS
130 IF F$ = "Y" THEN 20
140 CLOSE
150 GOTO 1000
1000 END

6. 10 OPEN "CHECKS" FOR INPUT AS #1
20 IF EOF(1) THEN GOTO 500
30 INPUT #1, A,B$,C$,D,E$
40 S=S+D
50 GOTO 30
100 CLOSE

366 Answers

110 PRINT "TOTAL OF CHECKS IS",S
120 GOTO 1000
1000 END

Section 8.3 (page 191)

1. "MY","DOG","SAM", 1234<ENTER>
2. MYDOGSAM1234<ENTER>
3. MY ,DOG,SAM, 1234<ENTER>
4. "MY DOG, ",SAM, 1234<ENTER>
5. MY
6. "MY","DOG","SAM", 1234
7. MYDOGSAM1234

MY
MY DOG ,

8. 10 INPUT#1,E$
20 PRINT E$;
30 INPUT#1,E$
40 PRINT " "; E$
50 INPUT#1,E$
60 PRINT E$

Section 8.4 (page 197)

1. 10 OPEN "TELEPHON" AS #1 LEN=72
20 FIELD #1, 20 AS NAME$, 25 AS ADDRESS$, 10 AS

CITY$, 2 AS STATE$, 5 AS ZIP$, 10 AS TELEPHONE$
30 CLS
40 INPUT "NAME" ;A$
50 INPUT "STREET ADDRESS" ;8$
60 INPUT "CITY";C$
70 INPUT "STATE"; D$
80 INPUT "ZIP CODE"; E$
90 INPUT "TELEPHONE NUMBER"; F$

100 LSET NAME$=A$
110 LSET ADDRESS$=8$
120 LSET CITY$=C$
130 LSET STATE$=D$
140 LSET ZIP$=E$
150 LSET TELEPHONE$=F$
160 PUT #1, LOF(#1)+1
170 INPUT "ANOTHER ENTRY (Y/N)";G$
180 IF G$="Y" THEN 20 ELSE 200
190 CLOSE #1
200 END

Answers 367

2. 10
20

OPEN "SALES" AS #1 LEN=16
FIELD #1, 4 AS NUM1$, 4 AS NUM2$, 4 AS NUM3$, 4 AS
NUM4$

30 FOR J=1 TO 20
40
50

GET #1, J
PRINT CVS(NUM1$), CVS(NUM2$), CVS(NUM3$),

CVS(NUM4$)
60 NEXT J
70 CLOSE #1
80 END

Section 8. 7 (page 212)

1. (a) 1 O S=O (b) Type SAVE " SQUARES" ,A
20 FOR J=1 TO 50
30 S=S+J A2
40 NEXT J
50 PRINT S
60 END

2. (a) 100 s = 0 (b) Type MERGE " SQUARES" (c) Type LIST
110 FOR J=1 TO 30
120 S=S + S+J A3
130 NEXT J
140 PRINT S
150 END

(d) DELETE 60 (This is the END of SQUARES.) Type RUN.
(e) Type SAVE "COMBINED",A (The A is optional.)

3. Type LOAD 'COMBINED'
4. Type ERASE 'SQUARES'

CHAPTER 9

Section 9 .1 (page 218)

1. 10 PRINT ASC("A")
20 PRINT ASC("a")
30 PRINT ASC("B")
40 PRINT ASC("b")
50 PRINT ASC("C")
60 PRINT ASC("c")
70 PRINT ASC("D")
80 PRINT ASC("d")

2. The ASCII codes of upper- and lowercase letters differ by 32.
3. 10 PRINT "He said to me,"+cHR$(ASC("))+"The IBM is an

excellent computer"+CHR$(ASC("))+"."

368 Answers

Section 9 .2 (page 225)
2. 10 A$= "15+48+97=160"

20 8$(1) = LEFT$(A$,2)
30 8$(2) = MID$(A$,4,2)
40 8$(3) = MID$(A$,7,2)
50 8$(4) = RIGHT$(A$,3)
60 FOR J=1 TO 4
70 8(J) = VAL(8$(J))
80 NEXT J
90 FOR J=1 TO 3
100 PRINT USING "###", B(J)
110 NEXT J
120 PRINT" "
130 PRINT USING "###", 8(4)
140 END

3. 10 INPUT A$:INPUT 8$
20 A1$= RIGHT$(A$,7):81$= RIGHT$(8$,7)
30 A2 = VAL(A1$): 82 = VAL(81$)
40 PRINT USING "$####.##",A2
50 PRINT USING "$####.##",82
60 PRINT" "
70 PRINT USING "$####.##",A2+82
80 END

Section 9 .3 (page 228)
1. 10 PRINT "HELLO"

20 PRINT CHR$(28)+CHR$(28)+CHR$(28)+CHR$(28)+CHR$(28);
2. 100 INPUT S$.

110 IF S$="S" THEN PRINT CHR$(29);
120 IF S$="D" THEN PRINT CHR$(28);
130 IF S$="X" THEN PRINT CHR$(31);
140 IF S$="E" THEN PRINT CHR$(30);
150 END

3. 10 INPUT LONGSTRING$
20 L=LEN(LONGSTRING$)
30 S$=LEFT$(LONGSTRING$,1)
40 LONGSTRING$=RIGHT$(LONGSTRING$,L-1)
50 GOSU8 100
60 IF L=1 THEN 80
70 GOTO 20
80 END
100 'Effect motion for S$
110 IF S$="S" THEN PRINT CHR$(29);
120 IF S$="D" THEN PRINT CHR$(28);
130 IF S$="X" THEN PRINT CHR$(31);
140 IF S$="E" THEN PRINT CHR$(30);
150 RETURN

5. 10 C=POS(O)
20 LOCATE 25,POS(O)

6. 10 LOCATE CSRLIN, 1

CHAPTER 10

1. 10
20
30
40

2. 10
20
30
40

3. 10
20
30
40
50
60
65
70

4. 10
20
30
40
50
60
70
80
90
100
110
112
113
114
115
120

5. 10
20
30
40
50

6. 10
20

Section 10.1 (page 235)

FOR J=1 TO 80
LOCATE 18,J: PRINT CHR$(196);

NEXT J
END
FOR J=1 TO 25

LOCATE J,17: PRINT CHR$(179);
NEXT J
END
FOR J=1 TO 80

LOCATE 13,J: PRINT CHR$(196);
NEXT J
FOR J = 1 TO 25

LOCATE J,40: PRINT CHR$(179);
NEXT J
LOCATE 13,40: PRINT CHR$(197)
END
CLS
FOR J=1 TO 2

FOR K=1 TO 80
LOCATE 8*J,K: PRINT CHR$(196);

NEXT K
NEXT J
FOR J=1 TO 2

FOR K=1 TO 25
LOCATE K,26*J: PRINT CHR$(179)

NEXT K
NEXT J
LOCATE 8,26: PRINT CHR$(197);
LOCATE 8,52: PRINT CHR$(197);
LOCATE 16,26:PRINT CHR$(197);
LOCATE 16,52: PRINT CHR$(197);
END

FOR J=1 TO 24
LOCATE J,30: PRINT CHR$(219);
LOCATE J,31: PRINT CHR$(219);

NEXT J
END
FOR J=1 TO 24

LOCATE J,J: PRINT CHR$(219);

Answers 369

370 Answers

30 NEXT J
40 END

7. 10 FOR J=1 TO 80
20 LOCATE 12,J: PRINT CHR$(219);
30 NEXT J
40 FOR K=1 TO 3
50 LOCATE 11,20+K*20:PRINT CHR$(219);
60 LOCATE 13,20+K*20: PRINT CHR$(219);
70 NEXT K
80 END

8. 10 FOR J=1 TO 25
20 LOCATE J,40:PRINT CHR$(219);
30 NEXT J
40 FOR J=O TO 4
50 LOCATE S+S*J,39: PRINT CHR$(219);
60 NEXT J
70 END

9. Suppose that the name to be displayed is "JOHN JONES".
10 LOCATE 2,2
20 PRINT "JOHN JONES"
30 LOCATE 1, 1
40 FOR J=1 TO 12
50 LOCATE 1,J: PRINT CHR$(42);
60 LOCATE 2,J: PRINT CHR$(42);
70 NEXT J
80 LOCATE 2,1: PRINT CHR$(42);
90 LOCATE 2,12: PRINT CHR$(42);
100 END

10. 10 FOR J =1 TO 80
20 LOCATE 16,J: PRINT CHR$(219);
30 FOR J=O TO 10
40 LOCATE 15,8*J:PRINT CHR$(219);
50 LOCATE 17,8*J:PRINT CHR$(219);
60 LOCATE 8*J,18
70 PRINT 8*J
80 NEXT J
90 END

11. 10 INPUT "ASCII GRAPHICS CODE",A
20 PRINT CHR$(A)
30 END

12. 10 CLS
20 LOCATE 1, 1
30 PRINT "COST"
40 LOCATE 1,2
50 PRINT "PRICE"
60 LOCATE 1,3
70 PRINT "INDEX"
80 FOR J=1 TO 25

90 LOCATE J,6: PRINT CHR$(219)
100 NEXT J
110 FOR J=1 TO 80
120 LOCATE 22,J: PRINT CHR$(219)
130 NEXT J
140 DATA J,F,M,A,M,J,J,A,S,O,N,D
150 FOR J=1 TO 12
160 READ A$
170 LOCATE 21,6*J: PRINT CHR$(219)
180 LOCATE 23,6*J: PRINT CHR$(219)
190 LOCATE 6*J,24
200 PRINT A$
210 NEXT J
220 LOCATE 72,25
230 PRINT "MONTH"
240 END

Section 10 .2 (page 242)
1. 10 COLOR 5,1 2. 10 COLOR 12,0
3. 10 PSET (200,80), 1 4. 10 COLOR 3,0

Answers 371

20 PSET (100,100), 2
5. 10 PSET STEP (-200,-100) 6. 10 PSET STEP (100,0)
7. 10 DIM P(15)

20 FOR J=O TO 15
30 P(J)=15-J
40 NEXT J
50 PALETTE USING P(O)

Section 10.3 (page 253)
1. 10 LINE (20,50)-(40,100)
2. 10 LINE -(250,150),2
3. 10 LINE (125,50)-STEP(100,75),1
4. 10 LINE (10,20)-(200,150),,B
5. 10 LINE (10,20)-(200,150),3,BF
6. 10 CIRCLE (30,50),20
7. 10 CIRCLE (30,50),20,,1.5,3.1
8. 10 CIRCLE (30,50),20,,-1.5,3.1

Chapter 12

Section 12.1 (page 296)
1. "A"
2. "c"
3. 10 A$= IN KEY$

20 IF A$<>"" THEN PRINT A$;

372 Answers

30 GOTO 10

Section 12.2 (page 300)
1. KEY 5, ""
2. KEY 1, "LIST"+CHRS(13)
3. 10 KEY 1, "CLS"+CHRS(13)+"NEW"+CHR$(13)
4. Let the first line of each subroutine be:

FOR J=1 TO 4:KEY(J) STOP :NEXT J
Let the last line of each subroutine be:
FOR J=1 TO 4:KEY(J) ON :NEXT J

5. KEY(11) ON

Section 12.3 (page 303)
1. 10 ON ERROR GOTO 1000

1000 RESUME
2. 10 ON ERROR GOTO 1000

1000 IF ERR=13 THEN 30 ELSE END
1010 IF ERL=500 THEN 40 ELSE END
1020 PRINT "Type Mismatch Error in Line 500"
1030 RESUME 600

Section 12.4 (page 305)
1. CHAIN MERGE "L"
2. End program "A" with the statement: CHAIN "B" . End program "B"

with the statement CHAIN "C" .

CHAPTER 13

Section 13.1 (page311)
1. Type:

DATES="mm/ dd/yy"
Press ENTER. (Here mm is the month, dd is the day and yy is the year.)
Type:
TIMES="hh:mm:ss"
Press ENTER. Here hh is the hour, mm is the minutes, ss the seconds.

2. Type:
PRINT TIME$
Press ENTER.

3. 10 AS=TIMES
20 SS=RIGHTS(TIMES,2)
30 IF SS<>S1$ THEN 40 ELSE 20
40 S1$=S$
50 CLS

60 PRINT TIME$
70 GOTO 10

4. 10 A$=TIME$
20 S$=MID$(TIME$,4,2)
30 IF S$<>S1$ THEN 40 ELSE 20
40 S1$=S$
50 CLS
60 PRINT TIME$
70 PRINT DATE$
80 GOTO 10

Section 13.2 {page 315)

1. Modify line 290 of the program.

Section 13.3 {page 318)
1. (10,10)-(89,49)
2. <0,0)-(639,15) (in high resolution mode)
3. DIM Z%(212)
4. DIM Z%(327)
5. Use the program given in the text.
6. Use the program given in the text.
7. 10 SCREEN 0

20 CLS
30 PRINT CHR$(2);
40 DIM Z%(9)
50 GET (0,0)-(7,7),Z%

8. 60 SCREEN 1
70 PUT (0,0), Z%
80 PUT (50,50), Z%
90 PUT (0,100), Z%

9. 10 SCREEN 0
20 CLS
30 PRINT CHR$(2);
40 DIM Z%(9)
50 GET (0,0)-(7,7),Z%
60 SCREEN 1
70 FOR J=O TO 312
80 PUT (J,72), Z%
90 PUT (J,72), Z%
100 NEXT J

10. 10 SCREEN 0
20 CLS
30 PRINT CHR$(2);
40 DIM 2%(9)
50 GET (0,0)-(7, 7),Z%

Answers 373

374 Answers

60 SCREEN 1
70 FOR J=O TO 312
80 PUT (J,200*J/320), Z¼
90 PUT (J,200*J/320), Z¼

. 100 NEXT J

CHAPTER 14

Section 14.1 (page329)

1. 3 2. 2. 370000 3. 578,000.0
4. 2. 00000000000000000 5. 3. 000000 6. -4. 100000
7. -4 8. 3500. 684 9. 217.60000000000000

10.
12.
13.
14.
17.
19 .
20.
23.
25.

-5,940,000,000,000 11. 3.5869504003837265
-2.345423837461E10
-236,700,000,000,000,000,000
4. 570000E 18 15. 46 16. . 5000000
. 60000000000000000 18. 1 . 600000
. 66666666666666666
1 . 1966666666666666 21. . 6666666
4963.000 24. 1749.9999900000000

22. 1 . 196666

46, .5, .6#, 1.6#, . 6666666666666666, 1.196666666666666,
.666666, 1.19666, 4963, 1749.99999#

26. 3. 333332, accurate to six digits.
27. 3. 3333333333333330, round-off error occurs in the seventeenth

place.

Section 14.2 (page 333)

1. 10 PRINT (5.87 + 3.85 - 12.07)/11.98
20 END

2. 10 PRINT (15.1 + 11.9) A4/12.88
20 END

3. 10 PRINT (32485 + 9826)/(321.5 - 87.6A2)
20 END

4.-6. Place # after all constants in the above programs.
7. 10 INPUT X¼

20 IF X¼ < 0 THEN X¼ = X¼ - 1
30 PRINT X¼
40 END

8. -5 9. 5 10. -11 11. 1.780000
12. 1.7800000000000000
13. 32. 65343 14. 4. 252345E21 15. -1. 234568E-32
16. 3. 2836464930292736 17. -5. 7400000000000000

Answers 375

Section 14.3 (page 337)
1. 10 PRINT EXP(1.54) 2. 10 PRINT EXP(-2.376)

20 END 20 END
3. 10 PRINT LOG(58) 4. 10 PRINT LOG(9.75E-5)

20 END 20 END
5. 10 PRINT SINC3.7) 6. 10 PRINT COSC.017453*45)

20 END 20 END
7. 10 PRINT ATN(1) 8. 10 PRINT TAN(.682)

20 END 20 END
9. 10 PRINT 57.29578*ATN(2) 10. 10 PRINT LOG(18.9)/LOG(10)

20 END 20 END
11. 10 FOR X=-5.0 TO 5.0 STEP .1

20 PRINT X, EXP(X)
30 NEXT X
40 END

12. 10 DATA 1 . 7, 3. 1, 5. 9, 7. 8, 8. 4, 1 0. 1
20 FOR J=1 TO 6
30 READ X
40 PRINT X, 3*XA(1/4)*LOG(S*X) + EXP(-1.8*X)*TAN(X)
50 NEXT J

15. 10 INPUT X
20 PRINT "THE FRACTIONAL PART OF",X,"IS", ABS(X-FIX(X))
30 END

1.
2.

10 DEF
10 DEF

3. 10
4. 10
5. 10
6. 10
7. 10
8. 10
9. 10

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
FOR

Section 14.4 (page 340)
FNA(X) = XA2 - S*X
FNA(X) = 1/X - 3*X
FNA(X) = S*EXP(-2*X)
FNA(X) = X*LOG(X/2)
FNA(X) = TAN(X)/X
FNA(X) = COS(2*X) + 1
FNA$(C$) = RIGHT$(C$,2)
FNA$(A$,J) = MID$(A$,J,4)
FNA$(B$) = MID$(B$,INT(LEN(B$)/2)+1,1)
FNA(X) = S*EXP(-2*X)
X=O TO 10 STEP .1

PRINT X, FNA(X)

10. 10
20
30
40
so

NEXT X
END

Index

absolute coordinates, 268
absolute value , 336
acoustic modem, 19
adding data to a file , 186
alphabetizing strings, 224
Alt, 32
Alt key, 232
AND, 112
animation, 276, 277
APPEND, 186
applications of loops, 104
arithmetic, 62
arithmetic practice , 121
array, 135, 139
array, two-dimensional , 136
arrays, deleting, 141
ASC, 217
ASCII code, 215
ASCII codes, table of, 215
ASCII control codes, 226
ASCII control codes , table of, 227
aspect ratio, 251
attribute , 241
AUTO, 92
autoexec.bat fi le, 54
axes, 235

background color, 240
background music, 287
backslash, 68
backspace, 225
Backspace key, 31
backup, 28
Bad File Mode, 304
barchart 25 7, 258
BASIC compiler, 207
BASIC editor, 95
BASIC file commands, 209
BASIC interpreter, 207
BASIC prompt, 22, 27, 70
BASIC Reference Manual, 173
batch fi le , 53, 54
batch file parameters, 55
baud, 19

BEEP, 225, 282, 283
Beethoven, 284
Blind Target Shoot, 312
blinking a display, 108
boldface, 291
boundary (for PAINT) , 264
Break, 71
BSAVE, 277
bubble sort, 204, 205
bubble sort, modified, 208
byte, 5, 192, 192

cable, 10
cable connection for keyboard, 8
Caps Lock key, 31
carbon dating, 335
carriage return, 188, 216, 226
cartesian coordinates, 278
Cartridge BASIC, 9, 59, 248, 298
Cartridge BASIC, starting, 22
cash register, 129
cassette , 3, 15, 90
Cassette BASIC, 9, 59, 89
cassette BASIC cartridge BASIC, 59
cassette connector, 10
cassette recorder, 5
CDBL(X), 337
centering, 291
central processing unit , 2
centroid, 266, 267
CHAIN, 303
CHAIN MERGE, 304
checking, 120
CHR$, 217, 232
CIN(X), 337
CIRCLE, 61 , 243, 248, 249
circuit board, 12
circular arc, 249
CLEAR, 139, 238
clipping, 281
clock, 307
clock, setting, 307
CLOSE, 180, 181
closing a file , 180

378 Index

CLS, 60, 105, 232
COLOR, 60,242,264
color display, IBM, 17
colors, 240
colors, choosing, 242
command mode, 73
command, BASIC, 86, 87
commands, 41
COMMON, 304
communications, 18
communications parameters, 19
COMP, 52
compressed format for saving

programs, 211
computer art, 254
concatenation of strings, 219
connector, 9, 9, 11
connector, cassette, 10
connector, color display, 9
connector, joystick, 10
connector, keyboard, 10
connector, light pen, 10
connector, modem, 10
connector, power, 9
connector, printer, 10
connector, television, 9
constant, 62
CONT, 105
control characters, 225
Control key, 31
conversion functions, 337
convex figure, 266
COPY, 44
copying diskettes, 29, 46
correcting errors in programs, 95
COS(X), 334
COT(X), 334
CPU,2
creating a diskette file, 44
CSC(X), 334
CSNG(X), 337
CSRLIN, 226
Ctr!, 32
current drive, 28
cursor, 22, 27, 226
cursor down, 226
cursor left, 226
cursor motion keys, 33

cursor right, 226
cursor up, 226

Dartmouth College, 59
DATA, 143, 146
data file, 37, 179
data, entering, 118
data, inputting, 121, 121, 143
database management program,

199
DATE,51
DATE$, 307
debugging, 170
debugging hints, 175
DEF FN, 338
DEF SEG, 277
default drive, 28
DEFINT, 331
DEFSNG, 331
Del, 32
Del key, 96
delay loops, 107
delays, 107
DELETE, 89
Delete key, 33
deleting program lines, 88
delimiter, 188
device names, 40
dice, 160
DIM, 138, 139
DIR, 39
direct-connect modem, 19
directory, 38, 45, 209
directory entry, 45
Disk Not Ready, 302
DISKCOMP, 52
DISKCOPY, 29, 29
diskette, 3, 5, 6, 9, 15, 22, 23, 90
diskette drive, 5, 9, 15, 22
diskette drive adapter, 16
diskette drive adapter board, 14
diskette, cautions in handling, 24
diskette, soft-sectored, 46
division, integer, 68
DOS prompt, 26
DOS Supplementary Programs, 25
double-precision constant, 326
double-precision variable, 331

doubly-subscripted variable , 136
DRAW, 267
duplicate definition, 140

easing programming frustrations ,
167

echo, 16, 16
editing, 97
editor, 95
elapsed time , 308
ellipse, 251 , 252
ellipse, parametric equations for,

252
End, 33,33
enhanced PCjr system, 8
ENTER, 26, 32, 72
ENTER key, 31
entering data, 118
ERASE, 141
erasing a program, 91
erasing files, 210
erasing the screen, 33
ERROR, 303
error messages, 172
error messages, table of, 174
error number, 175
error trapping, 301
error trapping routine, 301
error trapping statement, 302
errors , 170
escape key, 8 , 31
event trapping, 296, 298
execute mode , 73, 74
executing commands, 41
executing programs, 42
EXP(X), 335
expansion slot, 14
exponent, 67
exponential format, 66
exponentiation, 67
external commands, 43
external commands, DOS, 52

FIELD, 192, 193, 194
field of a random access file , 193
Field Overflow, 197
file, 37, 179
file buffer, 191

Index 379

file buffer, random access , 197
file commands, 209
file name, 37
File Not Found, 302
file specification, 39, 40
file, adding data to a, 186
file, appending, 186
file , writing a sequential, 182
FILES, 70, 209
files , setting number of

simultaneous, 181
FIX(X), 337
floppy diskette , 6
flowchart , 167
flowcharting , 167
Fn-Break 117, 235
footnotes , 291
FOR, 99
FOR without NEXT, 102
FOR. .. NEXT, 115
foreground color, 241
foreground music, 287
form feed , 226
FORMAT, 46
FORMATting diskettes, 46
formatting numbers , 152
formatting output, 149
full-screen editor, 95
function key display, 35
function , 333
Function key, 31 , 296
function , user-defined, 338

gambling, 158
GET, 194, 194, 275
global search and replace, 290
GOSUB, 128, 129
GOTO, 113
graphics, 229
graphics characters, 232
graphics characters , table of,

233
graphics coordinates , 238, 239
graphics images, saving and

recalling, 274
Graphics Macro Language, 267
graphics, high-resolution , 238
graphics, low-resolution, 238

380 Index

graphics, medium-resolution, 238
greatest integer, 336

hard copy, 3, 84
Herz, 284
high-resolution graphics, 14
high-resolution graphics mode, 17
Home, 33, 226
horizontal tabbing, 151

IBM 80 cps Graphics Printer, 17
IBM color display, 17
IBM compact printer, 17
IF...THEN, 110, 111, 113, 115, 119
IF ... THEN ... ELSE, 110, 111, 113,

115
immediate mode, 59, 70, 73
indexing, 291
infinite loops, 117
infrared optical link, 8
INKEY$, 295, 296
input, 7, 118, 119, 122
Input Past End, 184
input routine, 283
input unit, 3
INPUT#, 184, 189
INPUT$, 123
Ins key, 96
insert key, 33
insert mode, 96
INSTR, 221, 222
INT, 160
INT(X), 336
integer constant, 325
integer division, 68
integer type variable, 330
interest, 81
internal command, DOS, 50
internal commands, 43
internal modem, 14, 18, 19

joystick connector, 10
justification, 291

Kemeny, John, 59
KEY LIST, 297
KEY n, 297
KEY OFF, 35, 297

KEY ON, 35, 297
KEY(n) OFF, 300
KEY(n) ON, 300
KEY(n) STOP, 300
keyboard,6, 7, 8, 29
Keyboard Adventure, 8
keyboard buffer, 295
keyboard cord connector, 10
KILL, 91, 210
Kurtz, Thomas, 59

last point referenced, 239, 267
left justification, 193
LEFT$, 220
LEN, 220
length of a string, 220
LET, 78, 80, 81
light pen connector, 10
line,243,244
line feed, 188, 188, 216, 226
LINE INPUT, 122, 122
LINE INPUT#, 190
line number, 92
line width, 34, 229
LIST, 71, 72,87,89,97
list manager program, 199
LOAD, 70, 91
loan, 81, 105
LOC, 195
LOCATE, 129,226,229,239
LOF, 195
LOG(X), 335
loop, 99, 100
loop variable, 100
loops, applications of, 104
loops, making readable, 100
LPRINT, 85
LPRINT USING, 155
LSET, 193

mailing list, 184, 185
making decisions, 110
master DOS diskette, 25
mathematical function, 333
memory, 3
memory chip, 13
memory expansion and display

adapter, 16

MERGE, 211 , 212
merging programs, 211
microprocessor, 3, 6
MID$, 220
mixing text and graphics, 245
MKD$, 193
MK!$, 193
MKS$, 193
MOD, 68, 69
modem connector, 10
modem, acoustic, 19
modem, direct-connect, 19
monitor, direct drive , 16
monitor, RGB, 16
monitor, video composite , 16
Moonlight Sonata, 284
music, 282, 284
Music Macro Language, 60

NAME, 210
ne~edloops, 102, 103
nested subroutines, 132
NEW, 73
NEXT, 99, 99
null string, 62
numbers, formatting , 152
numeric constant, 62
numeric variable, 82

ON ERROR GOTO, 301
ON KEY(n) GOSUB, 298
ON TIME GOSUB, 310
ON ... GOSUB, 132
OPEN 180, 192
opening a file , 180
operating system, 24
operations on strings , 219
OPTION BASE, 141
OR, 112
order of operations, 63
order relations among strings, 223
output unit , 3
output, formatting , 149

PAINT, 264
palette , 241
PALETTE USING , 241
parallel interface , 18

Index 381

parameters , batch file , 55
parametric equations of an ellipse ,

252
parentheses , 63
payroll, 145
PCjr, 2, 5
PCjr basic model, 9
PCjr Internal Modem, 19
PCjr keyboard, 8, 29, 31
PCjr, starting with DOS, 24
personal computing, 1
PgDn, 33
PgUp, 33
Pi , 249
pie chart, 261
pixel , 238
pixels, 242
PLAY, 60, 284, 285
polygon, 255
polygon, inscribed, 256
POS(0), 226
power, 67
power connector, 9
powers, 336
PRESET, 242
PRINT, 63, 75, 79
PRINT USING , 152
print zones, 75
PRINT#, 189
printer, 17, 84
printer connector, 10
printer, IBM 80 cps Graphics , 17
printer, IBM compact, 17
printing the screen, 33
program, 37, 70, 179
program file , 37, 179
program name, 90
programming tips, 94
protected format for saving

programs, 211
PSET, 242
PUT, 193, 276

RAM, 5, 13
RAM cassette , 3
random access file , 191
random access file , file buffer of,

197

382 Index

random access file , length of, 195
random access file , location in ,

195
random access file , reading, 194
random access file , writing, 193
random number seed, 159
random numbers, 158, 165
RANDOMIZE, 159
READ, 143, 146
read-write window, 23
reading a random access file , 194
reading a sequential file, 184
real time clock, 307
recalling a program, 91
recalling graphics image, 274
record, 191 , 192
rectangle , 243, 245
rectangles, expanding, 280
relative coordinates, 239, 268
REM, 84
remarks , 84
RENAME, 51
renaming files, 210
RENUM, 93
repetitive operations, 99
reserving graphics memory, 238
reset, 32
RESTORE, 146
RESUME, 303
RESUME NEXT, 303
RETURN , 128, 129
right justification, 193
RIGHT$, 220
RND, 158
ROM, 3, 14
roulette , 161 , 163
round-off errors , 329
RS232-C interface , 20
RSET, 193
RUN , 70, 72, 73, 74

saving a program, 90
saving a screen image on diskette,

277
saving graphics image, 274
saving programs, 211
saving programs, compressed

format , 211

saving programs, protected format
for , 211

saving programs, tokenized format
for , 211

scientific notation, 66
SCREEN, 60,238, 240
screen coordinates, 279
scrolling, 31 , 32
search and replace, 290
SEC(X), 334
semicolon, 149
sequential file , 180, 182, 191
sequential file , reading, 184
serial port, 19
SGN(X), 337
shift key, 31
Shooting Gallery, 313
simulation, 341
SIN(X), 334
single-precision, 82
single-precision constant, 325, 332
single-precision type variable, 331
sorting, 204
sound,282,284
space bar, 31
SPACE$, 129
SPC, 151
special characters, table of, 233
spelling, 291
starting PCjr (without DOS), 21
statement, BASIC, 59
STEP, 109, 109, 239
STOP, 105
STR$, 221
straight line, 243
string addition, 219
string concatenation, 219
string constant, 62
string variable, 82
STRING$, 234
string, length of a , 220
structuring solutions to problems,

125
subroutine , 127, 128 ·
subscript, 135, 291
Subscript out of range , 138
subscripted variable, 135
superscript, 291

SWAP, 82
system reset , 32
system unit, 6, 8, 12, 13

TAB, 151 , 155, 220,225
Tab key, 31
TAN(X) , 334
target diskette , 50
telephone directory program, 183
telephone directory, random access

version, 196
text mode, 229
Tic Tac Toe , 313
TIME, 51
TIME$, 162, 307, 308
TIMER ON , 310
tokenized format for saving

programs, 211
trace , 170
triangle, 243, 244
TROFF, 172
TRON , 171
TYPE, 51
type declaration tag, 327
type mismatch, 147, 189, 303
type of a variable , 330

underscore , 291
user-defined function , 338
user-defined keys, 296

VAL, 132, 162, 221 , 308
variable , 77

Index 383

variable of double-precision type,
331

variable of integer type , 330
variable of single-precision type , 331
variable type, 330
variable initialization, 127
video display, 3
video monitor, 3
VIEW, 278, 281
VIEW SCREEN, 281
viewport, 281

WEND, 115
WHILE ... WEND, 115
WIDTH, 34, 229
wild card character, 40
wild card characters, 45
WINDOW, 278
WINDOW SCREEN, 279
Wirth, Niklaus, 209
word processing, 289
word processor, 292
write protect notch, 23
WRITE #, 182, 188
writing a random access file , 193
writing a sequential file , 182
writing BASIC programs, 71

Documentation For
Optional Program Diskette

Seventy of the major programs in this book are available on diskette . You
may order this diskette at your local bookseller or via the attached order enve
lope . Using the diskette, you may use the programs in the book without going
through the somewhat painful tasks of typing and debugging .

USING THE PROGRAM DISKETTE
1. If you are using the Program Diskette for the first time , make a

backup copy just as you would for any master diskette. (Follow the
backup procedure outlined on pages 29-39.)

2. Start your computer, load Cartridge BASIC by typing BASICA and
obtain the BASIC Ok prompt. Follow the procedure on page 22 (if
you are not using DOS) or page 25-27 (if you are using DOS). Note
that the Program Diskette does not contain DOS. You must start the
PCjr with your own copy of DOS. Moreover, the BASIC cartridge
must be in one of the cartridge slots when starting the computer.

3. The programs on the diskette are listed below by program name and
page number. To run a program, first insert the Program Diskette .
You may use either disk drive. If you insert the Program Diskette into
the current drive , type:

RUN "<program name>"

and press ENTER. For example, to run the program TICTAC type:

RUN "TICTAC"

and press ENTER.
4. When the program is finished, BASIC will redisplay the Ok prompt.

You may then rerun the same program by typing RUN and pressing
ENTER or you may run another program by giving a command as
described in 3.

5. To interrupt a program, simultaneously press Fn and Break.

PROGRAM DISKETTE CONTENTS
Name Pg Name Pg

SUMPRODl 80 LOANl 104
LOOPl 99 LOAN2 105
LOOP2 101 DELAYl 107
SUMPROD2 102 SECURITY 108
LOOP3 103 LUMBER 114

386 Documentation

CARPET 115 CENTER 220
CARPET2 116 ALPHABET 224
ELECTION 116 LINE 234
GRADES 119 BLINK 234
CHECKING 120 TRNGLl 244
ARITHl 121 TRNGL2 245
CASHREG 130 PLANET 253
ARRAYl 139 ART 255
ARRAY2 140 POLYGON 257
ELECTRIC 144 BARCHART 260
PAYROLL 145 PIECHART 262
ARRAY3 146 BOATSl 271
FORMATl 152 BOATS2 272
FORMAT2 153 LETTER 276
DICE 160 ANIMATE 276
ROULETl 161 WINDOW 280
ROULET2 163 BEEP 283
FILEl 182 INPUT 283
FILE2 182 ROCKCONC 284
TELEINPT 183 MUSIC 285
COUNT 185 WORDPROC 292
TELESRCH 185 ARITH2 299
LABEL 186 ARITH3 310
TELEAPND 187 TARGET 313
TELERND 196 SHOOT 317
LIST 200 TICTAC 321
BUBBLEl 206 LOG 335
BUBBLE2 207 CARBDAT 335
BUBBLE3 208 STORE 344
BUBBLE4 208

Now-The Critics' Choice!

Now-for the first time ever-a text specifically designed for novices,
potential buyers, and existing owners of the IBM PCjr! Here is a self
study guide that gives beginning PCjr users a clear, complete, and up-to
date account of the programming capabilities and applications of this
remarkable new machine. Contains all the information you need to
know about the IBM PCjr, from turning it on to programming and why!

In this book you will find:
.. A clear, concise outline of what the PCjr is and how it works
.. A thorough treatment of DOS and PC BASIC with helpful tips on

easing the frustrations of programming
.. A detailed discussion of graphics, sound, and file handling
.. Immediate applications to business, games, and word processing

Extensive coverage on structuring, planning, and debugging
programs
Plus-comprehensive tables, charts, appendices, and much more!

Whether you plan to use your PCjr to run programs you buy or to run
programs you write, this is the book for you!

A First Look At Computers / Using Your PCjr For The First Time I An
Introduction To DOS / Getting Started In BASIC / Controlling The
Flow Of Your Program / Working With Data / Easing Programming
Frustration / Your Computer As A File Cabinet / String Manipulation /
An Introduction To Computer Graphics / Word Processing / Some
Additional Programming Tools / Computer Games / Different Kinds Of
Numbers In PC BASIC I Computer Generated Simulations / Answers
To Selected Exercises I Index

ISBN 0-89303-539-4

	2020_07_29_15_35_57
	2020_07_29_15_45_08
	2020_07_29_15_48_43

