
p
:S*- ■ ^ V. James E. Kelley, Jr.,

author of The IBM/PC Guide
V. k.

v.

L k

C t.

C L V ^ v.

I.

v.. V

V,

V- . V C- ^

How to create spectacular shapes, 3-D pictures, animation,
music and sound effects in the BASIC language

1,--

P
"LJir

U^^L/ U J J UL

James E. Kelley, Jr.

A Banbury Book

Published by
Banbury Books, Inc.
353 West Lancaster Avenue

Wayne, Pennsylvania 19087
Copyright © 1984 by James E. Kelley, Jr.

All rights reserved. No part of this book may be
reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, record
ing or by any information storage and retrieval system,
without the prior written permission of the Publisher,
excepting brief quotes used in connection with reviews
written specifically for inclusion in a magazine or
newspaper.

ISBN: 0-88693-068-5

First printing—October 1984
654321

Printed in the United States of America

DISCLAIMER OF ALL WARRANTIES AND
LIABILITIES
The author and publisher make no warranties, either
expressed or implied, with respect to this book or with
respect to the programs or the documentation contained
herein, their quality, performance, merchantability, or fit
ness for any particular purpose. The author and the
publisher shall not be liable for any incidental or conse
quential damages in connection with, or arising out of, the
furnishing, performance, or the use of materials in this
book.

IBM PC and IBM PCjr are registered trademarks of
International Business Machines Corporation.

TABLE OF CONTENTS
PREFACE I

FUN WITH SOUND 2

FUN WITH GRAPHICS 2
WHAT HAVING FUN MEANS 2
WHAT YOU NEED TO KNOW 2

HOW THE MATERIAL IS INTEGRATED 2
MY PCjr 3
ACKNOWLEDGMENTS 3

1. WORKING ALL THE PARTS TOGETHER 5

1. FOOLIN'AROUND 6

2. USING A CASSETTE RECORDER WITH PCjr 14
3. STARTING UP WITH DOS 18
4. BASIC VERSUS DOS MODES 20
5. LOOKING AT DISKETTE FILES WITH DOS 21

6. SOME BASICS WITH BASIC 23
7. A PAUSE THAT REFRESHES 29
8. SCREEN DUMP (Fn-PrtSc) 29
9. BACK TO DOS 30

10. SECURITY OF YOUR DISKETTES 30
11. POWERING OFF 34

12. REVIEW YOUR PROGRESS 36

2. JUNIOR, WATCH YOUR BAOKTALK 39

1. SAY SOMETHING, PCjr! 40
2. GETTING SOME WORK DONE 41
3. DIRECT AND INDIRECT MODES 44
4. THE IMPERTURBABLE SCRATCH PAD 47

5. SAVE YOUR PROGRAM ON DISK 52
6. DISCOVERING THE SIMPLE AND USEFUL 53
7. PCjr KNOWS ITS ABC'S—AND THEN SOME 55
8. JUST FOR FUN 59

9. TAKING STOCK 68

3. THE SOUNDS AROUND US 75

1. SOME NEEDED BACKGROUND 76

2. GENERATING INTERESTING SOUND PATTERNS 78
3. A MORE SCIENTIFIC APPROACH 82
4. MULTIPLE-STROKE VOICE PRINTS 87
5. BIRDCALLS 91

6. WHAT DO YOU KNOW NOW? 98

4. EUTERPEAN MUSINGS 101

1. THE FUNDAMENTALS OF PCjr MUSIC-MAKING 102
2. PCjr—THE MELLOW FELLOW 108
3. WHEN YOU DON'T HAVE THE MUSIC 114
4. TUNE YOUR GUITAR 121

5. LITTLE PIANO 123

6. RUN THROUGH IT ONCE MORE 129

5. ADVENTURES WITH EUCLID 131

1. THE VIDEO SCREEN—OUR NEW DRAWING PAPER 132
2. DRAWING WITH LINES OF LIGHT 135
3. GEOMETRY CAN BE FUN 137
4. FUN WITH BOXES 142

5. AN ASIDE ON RENUM 143
6. MOIRE PATTERNS 144
7. ARTFUL EXPLOITATION OF MOIRE EFFECTS 146
8. HUMANIZING MATHEMATICAL FORMS 151
9. CIRCLES AND OTHER ROUNDISH STUFF 154
10. USING A "HAKE" BRUSH 159
11. CHANGING THE PALETTE 161

12. KEEP GOING BACK OVER EARLIER GROUND 162

6. MORE ADVANCED PICTURE-MAKING 165

1. IT'S IMPORTANT TO COLLECT SUBROUTINES 166
2. PUTTING IT ALL TOGETHER 169

3. SAVING PICTURES ON DISK 173

4. NOW IT'S YOUR TURN 174
5. RUBBER-SHEET GEOMETRY 178
6. PREPARING INPUT FOR DEFORM.BAS 183
7. DISTORTING THE FIGURE 184
8. SOME EXPERIMENTS 187

9. SAVING A FIGURE ON DISK 190

10. READING BACK YOUR PICTURES 191
11. DEFORM.BAS PROGRAM NOTES 191

12. REVIEW REVIEW, REVIEW 195

7. TWO AND THREE-PART HARMONY 199
1. THE KEY IDEA IS SIMPLE 200
2. ROUND AND ROUND 202

3. MAKE YOUR OWN PLAYER PIANO 209
4. EXPERIMENTAL MUSIC 214
5. MODERN AND PERSONAL 218

8. VIDEO ROCK A LA PCjr 227

1. THE SCENARIO 228

2. BUILDING A WORLD 228

3. PCjr's DRAWING LANGUAGE 230
4. THE ELEMENTS OF ANIMATION 236

5. PAINTING WITH PATTERNS 241
6. INTEGRATING SUMMER.BAS AND BEACH.BAS 243
7. BREATHING LIFE INTO A DOLL 245

APPENDIX: A GRAPHICS SCREEN-DUMP PROGRAM
FOR THE IBM COMPACT PRINTER 253

INDEX 257

n

ri

n

PREFACE

n

n

^ SOUND & GRAPHICS FOR THE IBM PCjr 1

Sound & Graphics for the IBM PCjr is dedicated to your having
fun. It explores BASIC language features of the PCjr that are not
available with the larger IBM PC.

FUN WITH SOUND

You know that sound had a great impact on the way movies
developed. They became more exciting, more creative, more lifelike.
The same thing happens when you add sound to computer graphics.
The clacks, bleeps and whistles that accompany your robot monster
across the video screen lend reality to the imaginary event. So it's
important that you know how to generate sirens, motors, chatters and
otfier noises that you can add to your programs.

But creating sound effects is just the beginning. You can also
reproduce your favorite melodies and do experiments in harmony and
musical composition. You can even play one of the parts as the PCjr
gives a duo, trio or quartet performance. I'll show you how. If you're a
nature lover, you can experiment with generating birdcalls.

FUN WITH GRAPHICS

PCjr has a special language for drawing, with which you'll learn to
create any shape you like. You'll also learn how to move these shapes
about on the video screen to do animation. Then you'll color them and
enhance their movements with sounds and music.

WHAT HAVING FUN MEANS

To me, fun with a computer means "discovery"—trying endless
permutations of a sound and graphics idea to see what interesting
things they produce. This book will involve you in a seek-and-find
process that shows you how to make your own discoveries.

WHAT YOU HEED TO KNOW

The book is written in conversational style for the novice. Of
course, the more you already know about your IBM PCjr, the better. But
for the most part, the text assumes you just took the computer out of the
boxes it came in.

HOW THE MATERIAL IS INTEGRATED

The first two chapters explain the fundamentals of working with
the PCjr—the things you absolutely need to know to get through the
book. These beginning steps are biased toward our subject of sound
and graphics.

The next couple of chapters are devoted exclusively to sound,
beginning with synthesizing real and not-so-real effects, then pro- ^5,
grossing to music. '

2 JAMES E. KELLEY, JR.

Next comes the more difficult topic of computer graphics, which
includes integrating graphics with sound. This is a rich subject with
many complications and special techniques. The math used in profes
sional systems is overwhelming. This book will limit the technicalities to
the most simple, but if the going gets slow at times, just hang in there.
You'll soon learn all you need to know to get by, and you'll have fun while
you're doing it.

The lion's share of every chapter involves stuff you need no spe
cialized background to work with. However, there are a few places
where some unexplained advanced BASIC material is involved. You'll
be able to key this material into PCjr, but you'll have to try another book
to get the background in BASIC for the PCjr. After you've gone through
Chapters 1 and 2 of this book, you can start at Chapter 3 of my IBM/PC
Guide (Dell/Banbury, 1983), which takes you through all the fundamen
tal techniques of programming in BASIC. With minor exceptions, the
material there is compatible with the PCjr.

MY PCjr

It may help you to know what equipment 1 used to write this book. I
have a 128K PCjr with one disk drive, utilizing the Disk Operating
System (DOS) 2.10, and Cartridge BASIC.

For monitors I have a SONY Trinitron TV and a LEEDEX Video 100
black and white video monitor attached. I wanted to see the effects
produced on each monitor so that I could warn you if there were any
unacceptable differences.

I also have an IBM Compact Printer to make printed records of my
computing projeots.

To see what cassette users experience, I attached an audio
cassette recorder to the PCjr system.

Though I've tried to make the elementary aspeots of this book
work with Cassette BASIC only, most of PCjr's sound and graphios
power resides in Cartridge BASIC. So if you don't have Cartridge
BASIC and you want to do sound and graphics, you'd be well advised
to buy it.

ACKNOWLEDGMENTS

I want to thank my son Timothy P. Kelley for helping me debug the
manusoript. His efforts have enhanced the final product in many ways.

And special thanks to my daughter Genevieve C. Kelley for
arranging and giving me permission to use one of her many musical
compositions for the PCjr. I hope you'll enjoy listening to Jenny's
"Summer Days/Summer Nights" as much as I do.

SOUND & GRAPHICS FOR THE IBM PCjr 3

CHAPTER 1
WORKING ALL THE PARTS
TOGETHER

Objectives:

It's important to find out how aii the
principai parts of your IBM PCjr reiate to
one another. By covering essentiai
procedures that you must know to
operate the equipment, you'ii quickiy
iearn how PCjr does things.

SOUND & GRAPHICS FOR THE IBM PCjr 5

1. FOOLIN' AROUND

Sit down at your PCjr. You may already know the procedures this
chapter describes, but why don't you read through it anyway, just to be
sure.

CAUTION: If you haven't done so already, it would be a good idea
to become familiar with your Guide to Operations manual, especially
Section 6 on testing your equipment. You want to be sure the sound,
color and other functions of your machine are working properly. In
addition, if you have a disk drive, be sure to run the program Exploring
the IBM PCjr, which is on the disk inserted in the cover of the Guide to
Operations. Even if you haven't done all this yet, don't worry. You'll cover
what you need to know as you go along.

Don't be discouraged if you must" hunt and peck" your way for a
while. And don't be intimidated by all the mystery about computers. By
the end of this chapter you'll be able to make all the principal parts of
your system operate as if you were an old pro. As you read, remember
to look up the references cited in the book. This practice will give you an
overview of what you're doing, and help you learn to find your way in the
manuals.

Powering Up

This book assumes that you have all the pieces of your PCjr
hooked together correctly. Your dealer should have shown you how to
do it.

Powering up is usually easy.

1. If you have a disk drive, disengage it by flipping the little lever on
the front clockwise until it's horizontal.

2. If you have Cartridge BASIC, be sure the cartridge is removed
from its slot. We're going to work with Cassette BASIC for a while.

3. Turn your TV power switch ON. Or, if you're using a video
monitor with a separate power switch, turn it ON.

4. Locate PCjr's little red power switch on the left side of the
System Unit at the top rear edge. Now flip PCjr's power ON!

CAVEAT: Some earlier personal computers had the nasty habit of
destroying recorded information on diskettes if you turned power off

6 JAMES E. KELLEY, JR.

with the disk drive doors closed. This should not be a problem with the
PCjr. However, I make it a habit to open the disk drive doors before
turning power off, and I recommend the habit to you—just in case.

First Actions

When you turn the PCjr on, the IBM logo appears on the video
screen. The PCjr then does a number of internal checks. The whole
startup process should take fifteen to twenty seconds. If thirty seconds
or more pass without some activity, turn the power switch OFF. Take
your cues from the testing procedures in your Guide to Operations,
Section 6.

CONTACT YOUR DEALER WHEN YOU CANT FIX THE PROBLEM
YOURSELF!

When things go well, a message appears on the screen, identify
ing a version of Cassette BASIC, a copyright notice, the number of
bytes of free memory (think of a byte as a letter or other typewriter
character) and the "Ok" prompt for BASIC. Below the prompt is a
blinking cursor (the underscore sign).

Using the TV or monitor controls, adjust the video picture to your
satisfaction for color, contrast, brightness, and horizontal and vertical
hold.

Showing up at the bottom of the screen is some other stuff, which
relates to the special functions F1-F5. There are also functions F6-F10,
but they are hidden from view when you power up. More about them
later.

A Buiit-in Demo

You have probably already discovered the built-in Keyboard
Adventure (see Section 2 of the Guide to Operations). The program
runs when you power up with Cassette BASIC and then press the
Esc(ape) key (in the upper left corner of the keyboard) before pressing
any other key.

If you have not run this Keyboard Adventure before and you're new
to computers, it would be worth spending the fifteen minutes it takes to
run through it.

NOTE: The Keyboard Adventure is not accessible if you have
Cartridge BASIC installed.

SOUND & GRAPHICS FOR THE IBM PCjr 7

Positioning the Screen

If the right or left edge of the information on the screen extends
beyond or comes too close to the border, try this method of adjusting
the horizontal positioning:

Locate <Ctrl> (for Control key), the leftmost key on the third row.
Also locate <Alt> (for Alternate Control key), just to the left of the space
bar, bordered in blue on three sides. Got them?

Okay. At the lower right edge of the keyboard are two keys with
white horizontal arrows above them, and <PgUp> and <PgDn>
below. Now for the trick.

With your left hand, hold down <Ctrl> and <Alt>. Watch the
screen as you strike either one of the two horizontal arrow keys. You
should see the screen shift left or right, depending upon which arrow
key you pressed.

The Keyboard Unit

Look at the Keyboard Unit for a couple of minutes. What do you
see? You've already noticed that it's very much like the standard
(QWERTY) typewriter keyboard, but with a few additional keys (the
nanhe QWERTY is derived from the first row of letters).

The principal character associated with each key is shown in
white just above and to the left of each key. The associated upper-case
characters are to the right in black. For some keys, there is a third
character or function, which is indicated just below the key in a splash
of color (e.g., the F1-F10 functions of the top row of the keyboard).

As you start to become oriented to the keyboard, you might want
to use your Gu/de to Operations manual. Section 3, "The Keyboard,"
as you go through this discussion.

The Escape Key

Do you still have BASIC'S "Ok" prompt and the blinking cursor on
the screen? Press a few letter and number keys to see what happens.

Notice how the cursor moves along as you type, showing where
the next character typed will appear.

Qn the left end of the keyboard, top row, next to the "1," is the
Esc(ape) key. Press <Esc> to see what happens on the screen.

How about that! It erased your typing and placed the cursor at the
left margin.

Do some more typing and erase it with <Esc>.

8 JAMES E. KELLEY, JR.

The Shift Keys

The Shift keys are in their usual typewriter keyboard positions with
the bottom row of letters. In addition to being labeled "Shift," they are
symbolized with an upward-pointing, hollowed-out arrow

Hold down a Shift key and press some letters and numbers.
Capitals and special upper-case characters should appear on

the screen. Try the other special characters on the keyboard with the
Shift key (colon, quote, etc.). Just like a typewriter!

Type a zero. Now type a capital letter O next to it. Note how the
zero has a slash through it so you won't confuse the two characters.

Also note that the number 1 (top left) and the lower-case I are
distinct characters. If you're used to using the I for a 1 you'll have to
break the habit.

The shift lock key is located just to the right of the space bar and is
designated <CapsLook>.

Press <CapsLock>. Don't be surprised that it does not lock as on
a typewriter. It's a toggle switch. Every time you strike it, you switch
between capitals and small letters.

Press some letter and number keys for different settings of
<CapsLock>.

Only letters appear as upper-case characters when
<CapsLock> is in effect. To get the special upper-case characters,
you must always use the Shift key.

Set <CapsLock> for upper-case letters. Hold <Shift> down and
strike some letters. How about that! It "unshifts" them. This may
confuse you for a while!

Backspace

The Backspace key is on the top row, right. It's labeled with an
arrow pointing left and the word "Backspace." Press <Backspace> a
couple of times and watch the cursor back up and erase characters
you've already typed.

Start typing again to see what happens.
Don't forget! By hitting the Bsc key (top left) you can erase the line

where the cursor lies.

SOUND & GRAPHICS FOR THE IBM PCjr 9

The Quick Brown Fox...

Now start typing again, just as if you were operating your type
writer. Don't worry about errors. If you must correct them, use
<Backspace>. Type:

"Mistress Mary, quite contrary, jumped over the garden into the
Wicker Works where Jack Benimble lit a flame deep in the Heart of
Texas by the Old Corral as the Masked Man with the silver bullets rode
off into the sunset..."

Don't stop in the middle. Keep typing so you can get used to the
idea.

If you typed long enough, you saw the line of characters automati
cally wrap around to the beginning of the next line when eighty charac
ters had been typed, but without hyphenating properly. (Hyphenating
English words is a tough programming problem. At this point you can't
do it with a computer, but need to consult a dictionary.)

<Enter> Starts Things Moving

Below the <Backspace> is a large key shaped like a backward
L. This is the Enter key. It corresponds to, and operates somewhat like,
the Carriage Return key on my IBM typewriter.

Press <Enger> to see what happens.

Did you get a "Syntax error" message? The PCjr doesn't like the
material you typed. You get this message whenever a BASIC gram
matical rule is violated. You'll learn them all eventually.

Try pressing <Enter> several times. Notice how the lines scroll
upward as the cursor reaches the last line of the screen. (Can you
figure out how many lines there are on the screen? How about
columns?)

Now hold down any letter or number, in Shift or non-Shift mode.
After a short delay it should start reproducing the character across the
line and down the screen, for as long as you hold it there. This saves
rapid pecking at keys when you want to generate strings of the same
character.

Keep Tabs

There is a Tab key located just to the left of the Q key. I n lower-case
or non-Shift mode, the motion of the Tab is to the right.

10 JAMES E. KELLEY JR.

Press <Tab> a few times. Note how it moves the cursor eight
character positions each time.

The left-moving <Tab> (upper-case mode) is not functional
unless you write special software to make It work.

Cleaning the Slate

By this time the video screen should be filled with your experimen
tal activity.

Type: <Esc> (Cancel current line)
Type: OLS <ENTER> (You may use lower-case

letters too!)

Whenever you want to clear the screen while in any BASIC mode you
may type CLS. The cursor will always jump to the upper left-hand
corner of the screen and give you the BASIC prompt ("Ok").

See Section 4 of your BASIC manual for more on CLS. Section 4
explains all the BASIC instructions. They are listed there in alphabetic
order. Get in the habit of checking what I say about these commands
by looking them up in Section 4. Eventually the BASIC manual must
become your principal source of information on the BASIC commands
and functions.

Put COLOR in Your Life

It's time to try a trick. First we need a screen setup command, so

Type: SCREEN 0,1 <ENTER> (Switch to color text mode)

Now for the trick.

Type: COLOR 0,15:CLS <ENTER>

Surprise! Now whatever you type will appear as dark on a light
background.

Type: "Anything you want, but lots of it!"

SOUND & GRAPHICS FOR THE IBM PCjr 11

To get back to light letters on a dark background

Type: COLOR 15,0:CLS <ENTER>

That's a relief. The light background is hard on the eyes.
By the way, the colon (:) is a symbol that lets you string BASIC

commands together and execute them with just one <Enter> com
mand. You could have performed each step separately. Try it.

Type: COLOR 0,15 <ENTER>
Type: CLS <ENTER>
Type: COLOR 15,0 <ENTER>
Type: CLS <ENTER>

We're going to use COLOR a lot, so start familiarizing yourself with
the command in Section 4 of the BASIC manual. Now let's see what
happens when we use some color.

Type: COLOR 15,1:CLS <ENTER>

With a color set, you should have high-intensity white letters (fore
ground) on a blue field (background). A black and white TV set or video
monitor should show white letters on a dark, textured field.

In color text mode (i.e., when you've executed the SCREEN 0,1
command), there are sixteen colors you may use for foreground (the
letters) and background (the field), as shown in Figure 1.1.

You can even put a border around the color text mode screen. Try
this:

Type: COLOR 4,6,1 :CLS <ENTER>

12 JAMES E. KELLEY JR.

The last digit specifies the color of the border.

0 black 8 gray
1 blue 9 light blue
2 green 10 light green
3 cyan 11 light cyan
4 red 12 light red
5 magenta 13 light magenta
6 brown 14 yellow
7 (dirty) white 15 high-intensity white

Figure 1.1: Foreground and Background Colors for Color Text
Mode

Try some experiments with COLOR, substituting different numeric
values for foreground, background and border. That is.

Type; COLOR [frgrnd #],[bkgrnd #],[border #]:CLS <ENTER>

You'll have some fun with this exercise, and you'll discover some
limitations (e.g., only 0-7 count for background) as well as lots of bilious
color combinations. With black and white video you'll see the various
textures you can get—a scale of grays.

Don't forget you have to do SCREEN 0,1 before COLOR will work in
color text mode.

Another Way to Clear the Screen

Put some more junk on the screen and I'll show you another trick.
First hold down the Ctrl key and strike the letter L. Voilal This way of
clearing the screen is even simpler than CLS. I use it almost exclusively,
but it's really of value only for manual (command level) operation. When
you start writing BASIC programs, you'll normally use CLS to clear the
screen.

Canceling COLOR

When you want to cancel color text mode, just

Type: SCREEN 0,0 <ENTER>

Go ahead, cancel COLOR right now.

SOUND & GRAPHICS FOR THE IBM PCjr 13

2. USING A CASSETTE RECORDER WITH PCjr

If you do not intend to use an audio cassette player with your PCjr,
skip to Section 3, which takes up the subject of using diskettes.

The rest of this book ignores the use of audio cassettes for storing
programs and data in favor of diskettes and the Disk Operating System
(DOS). But don't be put off. Most of the material here can be done using
a cassette recorder, provided you also have Cartridge BASIC.

In this section you'll learn how to use a cassette recorder with PCjr,
and how to interpret the rest of the book so you can adapt the material
for tape storage.

fOOssume your dealer has shown you how to attach a cassette
recorder to the PCjr and carried you through the first few steps.

You've Got to Have the MOTOR Running

Are you still in Cassette BASIC? Put a blank audio cassette in your
recorder. Try to make the tape move by depressing the PLAY switch. As
you see, it doesn't work. Unlock the PLAY switch and try FAST FOR
WARD. That's no good either. RECORD and REWIND give the same
negative results.

For your PCjr programs to control tape motion when one of these
switches is depressed, they must be able to turn the motor on and off.
Otherwise, the recorder will run off the epd of the tape prematurely.

Try this. Depress the PLAY switch once more. Now, watch the tape
spindles when you

Type: MOTOR 1 <ENTER>

Is the tape moving?

Type: MOTOR 0 <ENTER>

Is the tape stationary now?
As you see, you can switch tape movement on and off with the 1 and

0 tags to the MOTOR command, but you can also toggle the motor on
or off without the 1 or 0.

Type: MOTOR <ENTER>

14 JAMES E. KELLEY, JR.

Now the tape should be moving. Unlock the PLAY switch to stop the
tape motion, just as you would to stop music from playing. Now,
depress REWIND. You see that with MOTOR active, the recorder's
switches behave as you would normally expect.

Saving Stuff on Cassettes

To get past the leader of the tape, FAST FORWARD a little, and
STOP, just as you would if you were going to start a recording session.

Now, toggle the MOTOR off, i.e..

Type: MOTOR <ENTER>

Next, clear memory, i.e..

Type: NEW <ENTER>

and type in a remark.

Type: 100 ' This remark defines the first file <ENTER>

To see that what you just typed is in memory.

Type: LIST <ENTER>

Let's SAVE this remark on the cassette. Depress the RECORD and
PLAY switches just as you would to start recording. With the MOTOR off,
the tape should remain stationary. Okay, next step.

Type: SAVE "FILE-1" <ENTER>

(Lower-case letters are okay too.) The SAVE manages the motor with
out your help.

When the file has been recorded, tape motion will cease and you'll
have the "Ok" prompt on the screen.

Let's try it again. First change the file by substituting a new remark
for the old one.

Type: 100 ' Here's a new remark for the second file <ENTER>

Check that it's in memory with LIST.

SOUND & GRAPHICS FOR THE IBM PCjr 15

Proceed as before. Did you leave the RECORD and PLAY
switches depressed? If not, depress them now.

Type: SAVE "FILE-2" <ENTER>

Once again the information is written on the cassette.

LOADing Files from Cassette

Now let's look at what we've recorded. Unlock the RECORD-PLAY

switches. Then toggle MOTOR on, i.e..

Type: MOTOR <ENTER>

Now, REWIND and STOP the recorder. Finally, toggle MOTOR off (i.e.,
type: MOTOR <ENTER> once more).

To verify that the computer read information from the cassette,
clear memory with NEW, and test this action with LIST. Now we're ready
to go. Depress PLAY and

Type: LOAD "FILE-1" <ENTER>

LOAD is like SAVE and controls the motor by itself.
When FILE-1 is located, you're given the message "FILE-1.B

Found." The file is then read into memory. When all information has
been read, tape motion ceases. (The .8 is afilename extension indicat
ing this is a BASIC file.)

You can check whether or not the file actually got into memory.

Type: LIST <ENTER>

If everything looks okay, LOAD the seoond file, i.e..

Type: LOAD "FILE-2" <ENTER>

When the file is loaded, use LIST to check that FILE-2 was read
correctly. Then unlock PLAY, and rewind the tape to the beginning.

16 JAMES E. KELLEY, JR.

Disk Commands You Can't Use with Cassettes

There are only a few common disk commands that you can't use
with cassettes. These are:

FILES List all the files on a diskette

KILL Delete a file from a diskette

NAME Change the name of a file on a diskette

Other exceptions will be rare, but be on your guard. If what I'm
doing at a particular time doesn't seem to make sense for cassette use,
don't try it.

Listing Fiies on a Cassette

You can easily find out what files are on a cassette—attempt to
LOAD a nonexistent file, is the cassette with which we've been experi
menting rewound? if so, depress the PLAY switch, (if the tape starts to
move, you know the MOTOR is active, which it shouldn't be.) Then,

Type: LOAD "NO-FILE" <ENTER>

As the LOAD command searches for NO-FILE, it prints on the
screen the names of the fiies it finds, noting that it is skipping them. You
can write the names down, or use the <Fn-Echo> command we'll
cover later to get a printed list. You might also note the recorder's
counter value so you can FAST FORWARD to that file before initiating
the LOAD, it's the same strategy you use to find your favorite tune on a
cassette.

Test Programs Cassette

As we go along I'll be telling you to SAVE programs on your Test
Programs diskette. If you're using cassettes rather than diskettes, you'll
use a Test Programs cassette, obviously.

Because of the limited capability of cassettes, your strategy has
to be a little more involved. You should have two cassettes: one a
working cassette, on which you develop a single program at a time,
and the other an archive cassette, on which you store finished pro
grams and fiies.

SOUND & GRAPHICS FOR THE IBM PCjr 17

Here's how the process works: Position the archive tape by LOAD-
ing the last file on it into memory. Then remove the cassette without
rewinding, and replace it with your working programs cassette. Next,
LOAD the program to be archived from the working programs tape,
and SAVE it on the archive tape. A word of caution—be careful, when
recording data, that you don't destroy existing files. There are no good
protection schemes, such as those that work for disk files, that will save
you from your own mistakes. Have you figured out how to stop the
search for the nonexistent NO-FILE? It's easy.

Type: <Fn-Break>

You'll get a "Device Timeout" error and the "Ok" prompt. Toggle
MOTOR on and REWIND the cassette to return to familiar ground.

3. STARTING UP WITH DOS

I've taken a series of essential procedures from the PCjr reference
manuals to give you a feel for the equipment. These operations are
done so frequently that they will become as natural as shifting gears on
your car. Burn them into your brain right from the start by trying them out
as we cover each one. Two or three times in a row, in fact.

As you get a feel for what's happening, refer to your manuals for
more details. And make notes! In particular, you should be sure to read
the pamphlet entitled Disk Operating System User's Guide. The abbre
viation DOS (Disk Operating System) is pronounced "doss."

You Need Cartridge BASIC

For what follows, you must load Cartridge BASIC. You needn't turn
off PCjr's power to install the cartridge, though I'm chicken about such
things and usually do. The effect of inserting or removing a cartridge
while power is on is the same as turning power off and on again.

Start by holding the BASIC cartridge so you can read it, label side
up. Then insert it into either one of the two slots below the disk drive. I
usually use the left slot. You must use firm pressure. You'll feel the
cartridge snap into place.

Read Section 7 of the Guide to Operations for more about
cartridges.

18 JAMES E. KELLEY JR.

Warm Start of DOS <Alt-CtrhDel>

If the PCjr's power is ON, proceed as follows:

1. Locate your DOS diskette. It comes inside the back cover of the
Disk Operating System manual.

2. Put the DOS diskette in the disk drive. Then turn the disk access
lever counterclockwise (pointing down).

Be sure to insert the diskette correctly—label side up, exposed
area away from you. As you insert the diskette, the notch should be on
the left. Push it in as far as it wiii go.

NOTE: If the diskette has an untabbed write-protect notch (your
master copy should be notchless), put a metallic tab on it. Make it a
general practice never to put an untabbed disk into a drive unless you
fully expect to write on it. Even when you know what you're doing, you
can accidentaliy write over important data and programs.

3. With your left hand, hold down the Alt and Ctrl keys on the lower
left side of the keyboard. Then press the Del key on the lower right of the
keyboard.

Go ahead! Try this "warm start" procedure. (The screen clears,
and the disk drive whirs with its red light on.)

When things go well, you are told the current day and date. If you
don't have a clock calendar in your PCjr, the day and date will be
incorrect, probably Tue(sday), 1-01-1980 (January 1,1980). If the date is
the correct one, just press <Enter>. Otherwise you have the oppor
tunity to answer the message: "Enter new date:".

Using numbers on the top row of the keyboard, type in the date in
numeric form (e.g., Deo. 25,1984 = 12-25-84).

To register the date inside the PCjr,

Type: <ENTER>

If, in typing the date, you make a mistake in the format, the PCjr will
catch it and ask you to enter the date again.

Next you'll be told the current time in the form: [hour]:[min-
ute]:[second]. The hour runs from 0 (midnight) to 23 (11:00 p.m.).
Seconds are specified to two decimal places. Again, if you don't have a
built-in clock, the current time is probably incorrect. You may type in a
new time if you like, or simply press <Enter> to accept the one shown,
even if incorrect, i don't worry about the seconds unit but type a time
close to the minute shown on my watch (e.g., 13:15 for 1:15 p.m.).

SOUND & GRAPHICS FOR THE IBM PCjr 19

NOTE: It's a good idea to enter the correct date and time when you
power up. Whenever you save files and data on disk, the currently
recorded date and time are stamped in the disk directory so you can
tell when the file or data was generated.

If all goes well, you will see a copyright notice and DOS Version
number, and a little prompt of the form "A>." Whenever you see this
DOS (or just SYSTEM) prompt, the SYSTEM is waiting for you to give it a
command of some sort.

The "Alt-Ctrl-Del" procedure is also called SYSTEM RESET.

Cold Start of DOS

Here's the way to begin when computer power is OFF. STOP!!
DON'T TURN OFF THE COMPUTER! You'!! have a chance to do a
"co!d start" !ater on. For now, just read about it.

1. Put the DOS diskette in the disk drive. Don't forget to turn down
the iatch.

2. Fiip the red power switch to ON. if your monitor (or TV) has a
separate power switch, turn it on too. I often forget this myseif.

If PCjr is working properly, you will get the current date and the
" Enter new date:" message. Proceed from here as with the warm start.

4. BASIC VERSUS DOS MODES

Perhaps at this point you're a little confused. You started out in
Cassette BASIC mode, and now, all of a sudden, you're in DOS (or
SYSTEM) mode. And then there's Cartridge BASIC.

The explanation, though perhaps a little long, is this:
For a modern computer to be used in any practical way, it has to

be supplied with an operating system. Such a system makes it rela
tively easy to have all the computer units (keyboards, video screens,
printers, disks, memory, communication channels, etc.) talk with each
other in a well-ordered way.

An operating system is a special computer program written in
machine language, but as far as we are concerned, it is part of the
computer hardware. In fact, in the early days of computers, the func-

20 JAMES E. KELLEY, JR.

tions of operating systems were built into the hardware. Today that
control hardware is eliminated, which contributes to the lowered prices
of computers.

Your PCjr comes supplied with a built-in operating system called
Cassette BASIC. As we played with the keyboard and controlled the
screen, we made use of this operating system. Cassette BASIC also
includes a "programming language" aspect, which most operating
systems, including PCjr's DOS, do not have. CLS, for instance, is a
BASIC programming language command.

Coincidentally, CLS also clears the screen while you have the
DOS prompt (i.e., A>). Try typing CLS <Enter> with the DOS prompt
showing. BASIC uses some of the functions of DOS, but in ways that
are specified differently from those of DOS. It would be less confusing if
they were the same. But design compromises intervened.

As a BASIC programmer you will not use many of the facilities of
DOS, except as implemented through BASIC. You will use DOS a great
deal if you program in assembly language, Pascal, FORTRAN or "C."

The facilities of DOS that I cover here and in later chapters are
essential to you for exploiting sound and graphics on PCjr.

5. LOOKING AT DISKETTE FILES WITH DOS

Snooping in a Directory (DOS Mode)

The DOS diskette has information written on it in what are called
files. These files are named in a directory on the diskette. You can look
at it if you like.

Type: DIP <ENTER> (You can type lower-case tool)

Whoops! Some of the information scrolled right off the top of the
screen. I'll show you how to capture that lost information in a minute.
First let's see what directory information shows up on the screen.

Each line corresponds to a file on the diskette. The first column
gives the file's name, like "EDLIN," "MODE" or "PRINT." The second
column is an extension of the file name, which may be used to classify
files (e.g., .COM = a command file, .BAT = a batch file, .BAS = a
program in BASIC; etc.). (See Chapter 2 of the DOS User's Guide for
some details on file names.)

SOUND & GRAPHICS FOR THE IBM PCjr 21

The third column tells how much space the file takes up (in bytes).
The fourth and fifth columns give the date and time it was created. If
you don't have an installed clock or if you don't type in the date and time
at startup, the date-time stamp in the directory is going to be goofy.

You can have up to sixty-four file names in a directory.
For more on DIR, see Chapter 4 of the DOS User's Guide. (As we'll

see, DIR is accomplished in BASIC with a command called FILES.)

Screen Freeze (Fn-Pause)

Now let's see what's at the beginning of the directory. Locate the
"Fn" key (the Function key in the upper right corner). Got it? Now,
locate the "Pause" key (the same as the Q key). You can freeze the
screen (or suspend operations) while the directory is scrolling along by
pressing the Fn key and then pressing the Pause key. You may need to
practice a little to get the coordination down.

Try it now.

Type: DIR <ENTER>
Now quickly: <Fn-Pause>

Did you get it? If you missed, try again.
To unfreeze the screen, press any key (well, almost any). You can

freeze and unfreeze the screen on one scrolling pass as many times as
you wish.

This screen freeze function works in both BASIC and DOS modes.

Function-Break (Interrupting a Program)

Now locate the "Break" key—it's the B key. If you press <Fn>
followed by <Break> while PCjr is operating, you interrupt program
execution and return to DOS (or BASIC, if that's where control resides at
the time).

Let's try <Fn-Break>. Read the directory (i.e.. Type: DIR
<ENTER>). As the directory scrolls by, perform <Fn-Break>. Note
that when you do this operation you cannot start the directory scrolling
again by hitting a key as you could with <Fn-Pause>.

22 JAMES E. KELLEY, JR.

6. SOME BASICS WITH BASIC

Down to BASIC from DOS

While the DOS prompt (i.e., A>) is showing,

Type: BASIC <ENTER>

Almost immediately the screen changes to a new copyright notice
and announces a version of Cartridge BASIC and the number of free
bytes.

Syntax and Other Errors

While using this book you will from time to time make typing errors.
As you saw earlier, when you perform the <Enter> command, you
sometimes generate a "Syntax error." If this happens, just retype the
command correctly and go on.

You may also experience other errors that will at first puzzle you.
Be sure to make a record in your notebook of the errors you encounter
so you can begin developing a sense of their causes and eventually
learn how to correct and avoid them.

More Snooping in a Directory (in BASIC Mode)

You.can also call up the diskette directory from BASIC (we did it in
DOS with DIP). Try this.

Type: FILES <ENTER>

Well, this time the directory is arranged a bit differently, isn't it? (Proba
bly so you can see all of it at once.) Only the filename and extension are
given. You have to use DIP in DOS mode to get a file's size and date of
last change.

LOAD a BASIC Program

Most files on the DOS diskette are system programs. However,
there's a Supplemental Programs disk that comes with DOS, inside the
back cover of the DOS manual. Pemove the DOS diskette and insert
the Supplemental Programs diskette in the disk drive. When you have
the diskette in place.

Type: FILES <ENTER>

SOUND & GPAPHICS FOP THE IBM PCjr 23

Scan the directory to see what's there. Do you see the BASIC file called
BALL.BAS? Let's read it into the PCjr's memory.

Type: LOAD"BALL.BAS" <ENTER>

The disk drive will whir a bit as the program named BALL.BAS is
LOADed in. When the LOAD is completed, an "Ok" is printed on the
screen and PCjr awaits your next command.

LIST a BASIC Program to Screen

You can look at the program read into memory by transferring it to
the screen this way:

Type: LIST <ENTER>

Wow! Look at it go. Too much information for one screenful. To catch
the listing as it scrolls by. apply the screen freeze (Fn-Pause) procedure
as you did earlier when the diskette directory scrolled by.

I don't want to stop now to read this program with you. There would
be too many things to explain at this point. But you'll notice it's pep
pered with English words. So maybe there's hope that BASIC program
ming won't be so bad!

RUN a BASIC Program

Since the program BALL.BAS is in memory, let's RUN it to see
what happens:

Type: RUN <ENTER>

As images come up on the screen you will be instructed what to do.
When you tire of watching the ball bounce, hit <Esc> in the upper left
section of the keyboard. The ball has to return to the left-hand wall
before <Esc> is effective. When <Esc> executes, you are returned to
BASIC command mode.

Wide and Narrow Screens

Let's try a little trick.

Type: WIDTH 80 <ENTER>

24 JAMES E. KELLEY, JR.

What happened? Does your screen look unusual? Let's see If we can
bring up the program with the screen in this condition.

Type: LIST <ENTER>

There's the program BALL.BAS, which we LISTed before, but it looks
much different now. The letters are narrowed, and practically unreada
ble on my TV screen. In fact, the left end of each line is hidden beyond
the edge of the screen. But I can fix that by holding down the Alt and
Ctrl keys and striking the Right arrow once or twice. (You remember
that trick, don't you?)

Notice also that there are more characters across the screen
now—eighty, in fact. As you gather, that's the whole point of WIDTH, to
change the number of characters printed on a screen line. It's either
forty or eighty.

On my black and white monitor, legibility is not a problem,
because the monitor is designed to produce higher fidelity pictures
than a TV. If you want to run certain kinds of applications on your PCjr
that require an eighty-character screen (e.g., WordStar and other word
processors), you may want to consider buying a video monitor.

By now you've no doubt guessed how to change the screen back
to forty characters:

Type: WIDTH 40 <ENTER> (Be sure to put a space between H
and 4)

Now LIST the program in memory again. Legibility should be much
better.

Watch Your Spaces

Often PCjr is sensitive to the way you use spaces. In English, for
example, "thick set" does not mean "thickset." If PCjr "spoke"
English, it would probably class "thick set" as a syntax error. Similarly,
"any body" and "anybody" conjure up different ideas.

In like manner, you need to be sensitive to PCjr's use of spaces to
define the boundaries of the words and the character or number
groups it can recognize.

Try this again:

Type: WIDTH80 <ENTER> (Omit the space)

SOUND & GRAPHICS FOR THE IBM PCjr 25

Did you get a syntax error? There are cases where PCjr will do one thing n
if a space is present and another when it's not.

There is no general rule about spacing, but if you're sensitive to
the need, you'll get the hang of it in no time.

LUST a BASIC Program to Printer

Thus far, all the information you have seen on the screen has been
allowed to disappear forever once you've finished with it. You can
change that by using the printer, if you have one. I have the IBM PC
Compact Printer, and that's the only one I'm going to refer to in this
book. If you have a different printer, you'll have to adapt what follows to
its particular characteristics.

Before we start, be sure the printer is attached correctly and
paper is threaded through it properly. (See your printer manual for
directions. It should have come in the box with the printer. You're
supposed to insert the little manual into your Guide to Operations
manual.)

DON'T FORGET! IF YOU HAVE TO MONKEY AROUND WITH
CABLES, BE SURE ALL POWER IS OFF AND THE POWER CORD IS
PULLED FROM THE WALL SOCKET.

If everything is all set, turn the power to the printer on. Then, using
the paper feed button, adjust the paper to the position where you want
print to begin.

Is BALL.BAS still in memory? Okay,

Type: LLIST <ENTER>

(That wasn't a stutter! There are two L's in this LLIST command.)
You should hear the printer start to print the BALL.BAS prograrn as

soon as you hit <Enter>. It will print about a foot of paper. When it is
finished, the BASIC "Ok" will pop on the screen again.

You can stop LLIST with <Fn-Break>, or by turning the printer
OFF.

Let's try an experiment while BALL.BAS is still in memory.

Type: WIDTH " LPT1:" ,20:LLIST <ENTER> ^

26 JAMES E. KELLEY JR.

stop the printing after a few lines by hitting <Fn-Break>.
If the printer goes on for a bit after you execute <Fn-Break>, don't

worry. Just hit <Enter> again. With this you can now control the width
of the text by specifying the printer (designated "LPT1:")and the line
length (20 here) before calling for a LLIST.

To reset the printer to produce eighty-character lines,

Type: WIDTH "LPT1 :",80:LLIST <ENTER>

Remember, you can stop with <Fn-Break>.

Program Function Keys

Now you'll learn some short cuts.

Type: KEY ON <ENTER>

Along the bottom of the screen are the words that pop up when you do
a cold or warm start.

You should recognize at least three of those words: LIST, RUN and
LOAD. They are functions you've just learned. There are some more.
Once again.

Type: WIDTH 80 <ENTER>

Now you can see the full complement of ten program functions
available.

Notice that the word KEY has the number 9 to its left. Try this;

Type: <Fn-9>

That is, push the Fn key followed by the 9 key. The word KEY should
appear on the screen. Now,

Type: OFF <ENTER>

and the line of special function key prompts disappears. To bring it
back.

Type: <Fn-9> ON <ENTER>

SOUND & GRAPHICS FOR THE IBM PCjr 27

Now

Type: <Fn-1> <ENTER>

and BALL.BAS is listed to the screen again. (Stop with <Fn-Break>.)
Experiment with the other program function keys to see what

happens. For example,

Type: <Fn-9> <Fn-1 > <ENTER>

This combination does an inventory of the function keys for you.
The main purpose of these special function keys is to speed

operation and reduce typing errors, but you have to memorize them
first. In the meantime, why don't you make a printout of them you can
keep handy. You can do this with "Little Sir Echo."

Little Sir Echo

Turn on the printer, and

Type; WIDTH 40 <ENTER> (Restore screen to legibility)

Type: <Fn-9> <Fn-1 >

We're almost set up. Locate the "Echo" key—it's the E key. Then

Type: <Fn-Echo> <ENTER>

As the function key functions are listed on the screen, they are echoed
to the printer. But when the operation is over, we've got to toggle the
echoing off, so once again

Type: <Fn-Echo>

This echoing function also works while you're in DOS mode. Try it
sometime when you'd like a printout of the disk's directory (when you
do a DIR command).

28 JAMES E. KELLEY, JR.

7. A PAUSE THAT REFRESHES

Before I throw something new at you, let's practice some of what
you've already learned. The Supplemental Programs diskette is still in
the drive, isn't it?

Type: RUN"SAMPLES" <ENTER>

(Notice that you don't have to LOAD a program from disk before you can
RUN it. And if you know its extension is .BAS, you needn't type the
.BAS.)

See if you can operate SAMPLES by following the directions given
on the screen. If you can't figure out the directions, make a note about
your problem. It will be a helpful reminder to you lateron when you write
your own programs and must take the user's ignorance into account.

Now you're going to LLIST to your printer another one or two of the
files on your Supplemental Programs diskette that you can load into
memory using the LOAD command (it's not possible to LOAD a couple
of the system programs there). You might pick the programs that
interested you as you ran SAMPLES for later study. The general pro
cedure is:

LOAD"name.ext" <ENTER>

LLIST <ENTER>

Be sure the printer is on.
As you learn more, study these programs to see what kinds of

techniques the authors used to produce the effects you see on the
screen. There is no better way to grow as a programmer than to read
others' works.

8. SCREEN DUMP (Fn-PrtSc)

Here's a neat trick related to <Fn-Echo>. If there's a bunch of stuff
on the screen, make sure your printer is on and ready to go, then locate
the "PrtSc" key—actually the P key.

Type: <Fn-PrtSc>

SOUND & GRAPHICS FOR THE IBM PCjr 29

That is, push the Fn key, then the PrtSc key. All the text on the screen is
downloaded to the printer. Neat!

This function also works in DOS mode. It's a nice way to save
tables, line diagrams and certain types of graphics you may construct
on the screen. For instance, if you run the MORTGAGE option of
SAMPLES, you can save the Monthly Mortgage Payment Comparisons
table by hitting <Fn-PrtSc> while the table is showing on the screen.
And you can do it while the program is operating. Operations are
simply interrupted temporarily until printing is finished.

CAVEAT: <Fn-PrtSc> works only with the text-mode screen, so
you won't be able to get printed copies of the graphics-mode screens
on the IBM Compact Printer without a special program. However, if you
have the equivalent of an Epson MX-80 printer, you can make <Fn-
PrtSo function in graphics modes this way: While in DOS, type
GRAPHICS <Enter>. This action loads a special program into mem
ory that makes PrtSc function properly to dump pictures to the com
pact printer. Some of the figures later in the book were printed this way,
but using an IBM PC (rather than the PCjr) as host.

9. BACK TO DOS

You may have forgotten by now just how we arrived where we are.
Look back to the procedure "Down to BASIC from DOS." We can
reverse our steps somewhat.

Type: SYSTEM <ENTER>

The screen clears. Drive A whirs—and there's that DOS prompt again
(i.e., "A>").

10. SECURITY OF YOUR DISKETTES

Backup Diskettes—Their Importance

The DOS diskette is rather important to you. Have you thought
what you'd do if you put a crease in it while inserting it in the drive?

30 JAMES E. KELLEY, JR.

Suppose that while you're demonstrating the PCjr, your best friend
drops hot cigarette ashes on it. What happens if the cat or dog plays
with it or you put it on a hot radiator mixed up with some papers? There
are endless ways you can destroy your diskette and the information on
it, one of which is exposing it to a magnetic field, so please keep
magnets away! This inciudes ringing teiephones and working eiectric
motors.

If you lose the DOS diskette, you may be only temporarily incon
venienced. Your deaier will probably let you copy his if you do some
thing dumb to destroy your only copy. Or IBM may sell you a
replacement at a nominal fee.

Suppose, however, that it's not a system diskette you've lost but
your own programs and data that you invested many hours or dollars to
assemble. Tragic, but fortunateiy avoidable if you maintain backup
copies of your programs and data.

Making a backup copy is a two-step process using DOS. First you
format a biank diskette. Then you copy the original onto it.

Format a Blank Diskette

If you have been following me right aiong, you have DOS loaded
and its cursor blinking away. (If not, load DOS with the procedure given
earlier.)

The formatting procedure for a single disk drive amounts to this:

.1. Insert the DOS diskette in the disk drive and shift into DOS
mode (i.e., if you don't have the DOS prompt, type SYSTEM if you are in
BASIC mode, or do a warm or cold start).

2. Initiate the FORMAT.COM program on the DOS diskette, i.e..

Type: FORMAT /S <ENTER>

You should get the message " Insert new diskette for Drive A: and
strike any key when ready." Your singie disk is calied drive A:. If you
had two disk drives, the second would be called B:.

NOTE: The/S option in the FORMAT command permits us to make
a "bootabie" diskette. That is, we'il be abie to start up DOS with it. We
won't have quite as much room on the diskette for other programs, but
we won't have to change diskettes ali the time.

3. Remove the DOS diskette from the drive and insert a blank

diskette, or one that you're willing to erase and reformat.

SOUND & GRAPHICS FOR THE IBM PCjr 31

4. Now, with the blank diskette in place, hit the Space or Enter key.
(I usually hit one of these two keys for operations of this type, but you
can hit any key on the keyboard.) The PCjr tells you it's "formatting." In
about a minute it tells you "Format complete" and gives you some
statistics on how disk space is being used, and how much space is
available.

5. PCjr also asks whether you want to format another diskette. If
you type Y (yes), you're back to inserting another blank (step 3). If you
type N (no), you're back to DOS command mode with the DOS prompt.
For now.

Type: N

Look at what's on the disk, i.e..

Type: DIR <ENTER>

There's just a DOS system program called COMMAND.COM and
a couple of others that are hidden, which are not important for us. You
can verify that the formatted diskette will" boot" the system by trying a
warm start.

Type: <Ctrl-Alt-Del>

6. Remove the formatted diskette and set it aside. (If you use a felt
marker and don't press hard, you might mark a little F on the diskette
label to indicate that it's "formatted.")

Try this formatting procedure youself. Proceed to format all your
blank diskettes (or at least some of them).

You are going to make some backup copies shortly, and you'll
need a reserve of formatted diskettes. In fact, you should never be
without a freshly formatted diskette. You may run out of disk space in
the middle of a program and need a pristine formatted disk.

See Chapter 4 of the DOS User's Guide for more on the FORMAT
command.

Label Your Test Programs Diskette

At this time prepare a label that says Test Programs and put it on
one of the newly formatted diskettes. To avoid creasing or denting the
diskette, write the label before attaching it.

32 JAMES E. KELLEY, JR.

You will be using your Test Programs diskette shortly to store
working programs and other data.

Copy a Diskette

Now you'll make some backup diskettes.

1. Put the DOS diskette in the disk drive and

Type: DISKCOPY <ENTER>

2. You're asked to " Insert source diskette in drive A:"; "Strike any
key when ready." The source diskette is the one you want to copy. You
will copy the DOS diskette this first time, so leave it in the drive.

3. When you're ready,

Type: <ENTER>

You'll get a message like "Copying 9 sectors per track, 2 side(s)."
The DISKCOPY program is simply filling up memory with the informa
tion on the diskette. When memory is full or the end of the data is
reached, you're told, "Insert target diskette in drive A;"; "Strike any
key when ready." The target disk is the blank diskette onto which you
will copy the source.

4. Okay, remove the source diskette and insert the target diskette
in the drive. Then,

Type: <ENTER>

The data in memory is written on the target disk. If there's any more
data on the source disk to be copied, you're told to "Insert the source
diskette in drive A:"; "Strike any key when ready."

And so it goes until all the data on the source diskette has been
copied to the target diskette. After about three passes you're told,
"Copy complete."

If you get an error message saying that the target disk may be
unusable, try the process again with a different blank disk.

SOUND & GRAPHICS FOR THE IBM PCjr 33

5. PCjr also asks if you want to repeat the copy operation with
another target diskette, or with new source and target diskettes, if you
type Y (yes), PCjr picks up at step 4. if you type N (no), PCjr exits to DOS
command mode.

Type; N

Test to see if the directory contains the programs you're expecting
to see there.

Type: DIR <ENTER>

6. Remove the target diskette and label it appropriately. (This first
time it's DOS—Working Copy.) Also place a metallic write-protect tab
over the write-protect notch.

Making Backup Copies

Now try the whole DiSKCOPY process again on your own, using
the Supplemental Programs diskette. And don't forget to label and tab
the diskette. Do you have any more systems or applications diskettes
for which you have but one copy right now? if they have untabbed write-
protect notches, tab them before you put them into a disk drive.

iViake backup copies right now, then take your originals and put
them in a box or envelope. Store them in a place that is out of harm's
way, dust free, and neither too hot nor too cold.

From now on, do all your day-to-day operations with the working
copies.

NOTE: When the information on a diskette is especially valuable,
you may want to consider holding two or more backups in reserve,
stored in different locations, of course!

11. POWERING OFF

It may seem a little silly to talk about turning OFF your IBM PCjr. It
looks so like a TV that you'd think it only takes the flip of a switch. But
there are some things you should consider.

34 JAMES E. KELLEY JR.

Save Programs and Data on Diskettes First

In contrast to a TV, you can't flip PCjr back ON and find yourself In
the program you just left. When you shut down, you lose what's on the
screen and in memory (RAM). Always ask: What will I lose if I turn the
power off?

Think before you act. It may save you hours of reconstructing lost
information. Be sure to save needed information on diskettes before
shutting down.

Disconnect the Waii Piugs

You know that heavy boxlike unit in the middle of PCjr's power
cord? It's a transformer. Perhaps you can hear it moaning. It's using
electricity even when the power switch is off. Disconnect it from the wall
outlet when you shut down operations.

It's also a good idea to disconnect your computer when a light
ning storm is in the area. If your power line is hit—not a very probable
event—your computer and other equipment could be severely
damaged. I've got my wife and kids trained to check the computer
room when there are signs of a storm.

Don't Forget to Tdrn OFF Your Other Units

It Is so easy to be in a hurry, to flip the power switch and walk away.
If your monitor doesn't have a prominent POWER ON light, you can
easily forget and let it run all night.

The same may apply to your printer or other equipment, unless
they have noisy fans that invite you to turn them off at the earliest
possible moment.

Avoid Turning PCjr ON and OFF Too Often

It's not a good idea to turn your PCjr ON and OFF frequently.
Heating up and cooling down tends to fatigue the electronic compo
nents and shorten their life.

If you've been running the PCjr all morning and expect to use it
after lunch, leave it ON. But be sure to save what you've been working
on. Someone may fool around with the equipment while you're gone,
power might be lost, or any number of unfortunate things might
happen.

SOUND & GRAPHICS FOR THE IBM PCjr 35

12. REVIEW YOUR PROGRESS

Congratulations! You have made It through Chaper 1 unscathed.
You have accomplished quite a lot in just a few hours. Take a few
moments to review your progress, and you'll see for yourself just how far
you've come.

Now look at Figure 1.2 at the end of the chapter. It summarizes the
key commands you should commit to memory. If you're unsure of any,
look back in the chapter to where they are covered. You should also
make a habit of looking them up in the BASIC and DOS manuals.

I hope you've been keeping good notes. Very soon now the
number of details you must deal with will begin to seem overwhelming,
and you will need your notes to find your way back and forth over the
ground we cover so you won't become completely lost. And don't avoid
recording errors you experience and data that will help isolate their
causes when you analyze them.

Test Yourself

Before continuing to the next chapter, you should test yourself.
You should know much of the detail behind the chapter summary in
Figure 1.1. You should also be able to handle these activities:

(1) Power up (" boot") your PCjr. (Do both a cold and a warm start.)

(2) Print the directory of the Supplemental Programs diskette.

(3) Switch back and forth between DOS and Disk BASIC com
mand modes. (BASIC and SYSTEM.)

(4) Print the directory of the DOS diskette on the screen while in
Disk BASIC mode.

(5) Run a program stored on the DOS diskette (say, SAMPLES).

(6) Print a BASIC program on the printer (LLIST). Why don't you try
LIST,"LPT1:" while you're at it?

(7) Format a blank diskette.

(8) Copy a diskette.

(9) Print the directory of a diskette on the printer while in DOS
mode.

36 JAMES E. KELLEY JR.

BASIC COMMAND

^SoNC,
COLOR 0,15

COLOR 15,0

COLOR 1,15

Ctrl-L

ENTER (<—')

Esc(ape)
FILES

KEY (ON, OFF)
LIST

LLIST

LOAD

LPT1

MOTOR

NEW

RUN

SAVE

SCREEN 0,1
SYSTEM

Tab (->1)
WIDTH

FUNCTION

Clear screen

Separate BASIC commands
on same line

Print dark letters on light
background

Print light letters on dark
background

Print light letters on blue
background

Clear screen

Carriage return; enter
commands/data

Delete line at cursor

Read diskette directory to
screen

Toggle the screen prompts
List program memory to
screen

List program memory to
printer

Load program on diskette or
cassette to program
memory

Device name of printer
Activate/deactivate cassette

recorder motor

Clear program memory
Execute program in program
memory

Write program file on cassette
Switch to color text mode

Transfer command control to

DOS

Tab advance

Change printing width of
screen or printer

SOUND & GRAPHICS FOR THE IBM PCjr 37

DOS COMMAND

BASIC Transfer command control to
Disk BASIC

Ctrl-Num Lock Freeze screen

Ctrl-Break Stop current operation
DIP Read diskette directory
DISKCOPY Copy a diskette
Esc(ape) Delete line at cursor
FORMAT Format a blank diskette
Fn-Break Stop program
Fn-Echo Echo screen output to printer
Fn-Pause Freeze screen

Fn-PrtSc Dump screen to printer

MISCELLANEOUS
Alt-Ctrl-Del Warm start; system reset
Default drive Drive selected when not

specified

Figure 1.2: Summary of Key Commands in Chapter 1

38 JAMES E. KELLEY, JR.

CHAPTER 2
JUNIOR, WATCH YOUR
BACKTALK

Objectives:

In this chapter you'll enhance your
"hands-on" skills and learn how to edit
text on the screen with the BASIC Editor.
You'll also gain a pretty good Idea off
how to manipulate the principal controls
off the PCjr and Its standard units, and
you'll learn a little about sound and
graphics programming In BASIC.

SOUND & GRAPHICS FOR THE IBM PCjr 39

1. SAY SOMETHING, PCjr!

One key to learning about your IBM PCjr is to experiment freely.
As iong as you don't monkey around with the electronics, or piug in
cables incorrectly, or abuse the equipment physicaiiy, there is littie
chance you wili hurt your PCjr. Don't be afraid to try ideas just to see
what happens. You wiil iearn things that are never very clear in any
book on the subject.

Beiow are some experiments you can try on your IBM PCjr just to
get into the mood, but develop a habit of continuing experiments on
your own.

First put the Test Programs diskette into the disk drive and do a
cold or warm start. If you have doubts about how to do this, refer back to
Chapter 1. When you see the DCS prompt A>,

Type; BASIC <ENTER>

You're now ready to write or run programs in Cartridge BASiC. Try
some commands performed with the standard keys on the keyboard.

Type: PRINT" Hi there!" <ENTER>

The computer should print "Hi there!" just below. The PRINT com
mand is the principal instruction for directing the computer to display
the information between quotes on the screen, or—using a slightly
modified form of the command—on the printer. It is also used to record
information on diskettes.

Try typing the PRINT statement incorrectly, e.g..

Type: PIRNT"Can't you spell?" <ENTER>

You should get a "Syntax error" at this point. This simpiy means that,
as far as BASIC is concerned, you typed nonsense.

Type: PRINT Here is what happens when you forget both quotation
marks <ENTER>

40 JAMES E. KELLEY, JR.

The PCjr looks at an unquoted string of characters and thinks the
words are names of variables. It assigns each the value zero. Try these
cases:

PRINT This Is no better" <ENTER>

PRINT "Now we're closer to the rule. <ENTER>

PRINT "But it screws up In this caserPRINT"Right!" <ENTER>

NOTE: In the last example the colon (:) lets you put more than one
command on a single line, but since the closing quote on the first literal
Is missing, the colon Is not effective. Compare the result with this case.

PRINT"But It doesn't screw up now" :PRINT" Understand?"
<ENTER>

By now you have the Idea that you must <Enter> after typing a
command If you want the PCjr to do anything. If the text of this book Isn't
explicit about this action at times, don't sit there waiting for something
to happen. Hit <Enter>!

NOTE: Here's a shortcut that will make your work a little easier.
Instead of typing the five-letter word PRINT, type a question mark (?).
You get the same result.

2. GETTING SOME WORK DONE

The PRINT command also lets you use the PCjr as a calculator. Try
these commands!

PRINT "3-1-2.1"

PRINT 3-h2.1

In the first case the numerals and plus sign are treated as part of a
sentence, as a "literal." When the quotation marks are removed, PCjr

SOUND & GRAPHICS FOR THE IBM PCjr 41

treats the expression as numbers subject to the operation of addition,
and proceeds to perform the indicated arithmetic.

The PCjr can do these elementary operations on numbers:
ADDITION: Specified by a plus sign (+) as above
SUBTRACTION: Specified by the usual minus sign (-)
MULTIPLICATION: The PCjr follows the general computer con

vention of the asterisk (*) for this operation. Try
this example:

PRINT 4*5

DIVISION: Specified by the slash (/). Try this case:

PRINT 81/9

Can you guess in advance what will happen when you try this
example?

PRINT 10/0

Make a note of the result. If you accidentally do this, you'll want to
be able to recognize the problem.

In this last case PCjr even tells you approximately how big it thinks
"infinity" is, namely, 1.701412E+38, which is nearly 2 followed by
thirty-eight zeros.

Occasionally you'll generate some funny-looking numbers like
that one. Don't let them hang you up in confusion. For now ignore them
and go on. I'll tell you about them when and if it's relevant. (If you must
know right now what this "scientific" notation means, read about
floating-point numbers in Chapter 3 of the BASIC manual.)

You'll also see some funny arithmetic results that will make you
suspect PCjr's arithmetic capability. Try this example:

PRINT 15*(1/15) (Thought you'd get one, didn't you?)

The problems PCjr has with arithmetic stem from rounding num
bers to a specific number of digits, or from converting a number from
binary to decimal representation. To deal with this issue adequately is
very complex and, for the moment, unimportant.

42 JAMES E. KELLEY, JR.

EXPONENTIATION: This is multiplying a number by itself a given
number of times. For example, 3*3*3*3*3 is represented as 3"5, the
circumflex C) denoting the superscripting operation one sees in
algebra books for "raising to a power." Do the following example and
check it by successive multiplications:

PRINT 3'7

Don't be concerned I If you don't use exponents in your work, you
don't have to use them with PCjr.

OTHER OPERATIONS: You can also do integer division, modulus
arithmetic, and elementary circular functions right on the screen as we
have just been doing. I won't introduce these advanced topics. If you
know about them already, you don't need me to explain them to you. If
you're not familiar with them now, you'll probably never have need for
them. (For the definitions of these operations and intrinsic functions,
see the BASIC manual.)

Though I've used integer numbers for the most part in these
examples, you can do the arithmetic operations with decimal frac
tions—you know, decimal points, and dollar-cents numbers. Try a few
cases of your own making for each arithmetic operation. When the
numbers get too big or too small, they are represented in scientific
notation.

BASIC performs arithmetic in a definite order—it's complicated.
The answer you get depends on your use of parentheses to group
terms. Try the following examples, recording in your notebook the
variety of answers obtained:

PRINT 3-k 4/2 PRINT 2*(3-k 4*5-6)
PRINT (3 -k 4)/2 PRINT 2*3 -h 4*5-6
PRINT 4/2-1-3 PRINT 2*(3-t-4)*5-6
PRINT 4/(2 -I- 3) PRINT 2*(3 -h 4)*(5-6)

Do you get the answers you expect?
Invent some more complex problems of your own to test how

parentheses are handled. Make notes of any unexpected results you
get. It's important to understand what happens to arithmetic results as
you do or don't use parentheses to group terms.

SOUND & GRAPHICS FOR THE IBM PCjr 43

3. DIRECT AND INDIRECT MODES

Making Your Point

By combining the PRINT and COLOR commands, you can pro
duce some fun and useful results. First let's set up the screen to color
text mode.

Type; SCREEN 0,1 <ENTER>

Okay, now try this long-winded combination of commands. (Don't
be concerned if the line wraps around when you reach forty charac
ters. But be careful, and watch out for the semicolons [.;].)

PRINT"To ";:COLOR 0,4:PRINT" EMPHASIZE, ";:COLOR
7,0:PRINT" use COLOR"

Don't forget the <ENTER>.
If you translate this series of commands into English, here is what

it says:
• At the line of the cursor, print the characters "To " and stay on

the same line (the semicolon keeps you there).
• Change the screen output to print dark characters on a red

background.
• Print "EMPHASIZE" and leave the cursor where it is.
• Change the screen output back to light characters on a dark

background.
• Print " use COLOR" and move the cursor to the next line. (No

semicolon this time.)
Repeat the above example, this time omitting all semicolons. Try

using the cursor controls to delete the semicolons in the line you just
typed. This approach can save work at times.

What happens is this: The semicolon prevents PCjr from automati
cally moving the cursor to the left margin (carriage return) and to the
next line (line feed). In this way you may generate a string of characters
on the same line using a series of PRINT commands. Make a note of
this! It's an important fact, but easily forgotten.

Try substituting other color combinations for foreground and
background. Remember the table of colors in Chapter 1. Look up the
COLOR command in the BASIC manual and begin getting familiar with
it.

44 JAMES E. KELLEY, JR.

Play It Again, Sam, and Again, and Again...

Now try this, being careful as you type the commands. Use
<Backspace> to correct errors.

Type: SCREEN 0,1:COLOR 1,15 <ENTER>
Type: CLS:FOR C0UNT=1 TO 500:PRINT"n";:NEXT COUNT

<ENTER>

Here's what happens, command by command.
• SCREEN 0,1 sets up color text mode. The screen should already

have been In this mode, but don't take chances.
• COLOR 1,15 sets up to print white letters on a blue field.
• CLS clears the screen and moves the cursor to the upper left-

hand corner.

• FOR sends a "repeat" command to the PCjr to do five hundred
times everything that Is sandwiched between It and the NEXT
statement.

•The tally Is kept In the variable called "COUNT." That Is, COUNT
starts at 1. On each repetition It Is Increased by 1 until It exceeds the
limit of 500. Then the process stops.

• Meanwhile, the PRINT Is repeated over and over. When a line Is
filled, printing "wraps around" to continue at the beginning of the next
line.

Try running the last example for different values of "COUNT," e.g.,
20, 100, 1000. Also try different combinations of characters In the
PRINT statement—as many characters as you like. See what kinds of
designs you can generate.

Understand What You're Doing

There Is a temptation to run through examples without stopping to
think about what you've done. Resist It, If you can, and stop to consider
what's going on. What does each command do? Translate them In
sequence Into English as I did earlier. Remember, You must be able to
read a program before you'll be able to write one. If you have trouble
understanding a piece of BASIC programming, use PCjr to help.

• Try Isolating and executing just a few of the commands In a
sequence so you can find out what they do and the state of PCjr when It
finishes them.

SOUND & GRAPHICS FOR THE IBM PCjr 45

• Successively add more commands in the sequence until you've
figured out just what the whole sequence does.

This little process, elaborated upon, is what I do all the time to
check out parts of my own and others' programs. Get in the habit of
doing it. PCjr itself is the final word on what it can and cannot do—not
what's written in books.

nirning Off Text Mode Color

Just as we selected to work with color on the text mode screen
with the command SCREEN 0,1, we can select to work without color.

Type: SCREEN Zero,Zero <ENTER>

Now type some stuff on the screen, or execute some commands. As
you see, you're back to white letters on black.

PCjr Remembers Your Commands

By this time you must be getting tired of keying almost the same
thing each time to try out different ideas. Although the exercise helps
you become familiar with the keyboard, we'll cover some ways to
reduce the amount of typing you do. Thus far you have been using the
PCjr in what is variously called COMMAND Mode, DIRECT Mode or
IMMEDIATE Mode. That Is, you execute commands directly from the
keyboard whenever you strike <Enter>.

The Command Mode provides a handy facility. It is not available
on many larger computers. Among other things, it makes it easy to test
various combinations of instructions when you do not quite understand
what they will do.

Now do this experiment.

Type: 50 FOR COUNT = 1 TO 500:PRINT"Your Message Goes
Here!";:NEXT COUNT:END

(Don't forget <Enter>. And don't forget the semicolon [;].)
This combination of commands is very much like what you did just

a few minutes ago. (END means just that. It prevents PCjr from execut
ing commands beyond it. Of course, there aren't any here.)

Nothing obvious should have happened when you pressed
<Enter>, unless you made a syntax or other error.

Type: GOTO 50 <ENTER>

46 JAMES E. KELLEY, JR.

That's more like it! Type "GOTO 50" again. And again. You can do it all
day because the statement you typed so many times is now stored in
PCjr's memory.

You can check the status of this stored statement.

Type: LIST 50 <ENTER>

Try typing LIST alone to see what happens. Maybe there are other
things in the memory you didn't know were there.

When you execute commands that are stored in the memory, you
are said to be operating in EXECUTE Mode, INDIRECT Mode or
DEFERRED Mode.

The number that labels the command or program statement is
called a line number. Line numbers can be any integers from 0 to
65529. Try these cases:

Type: -10 GOTO 50 <ENTER>
70000 GOTO 50 <ENTER>

4. THE IMPERTURBABLE SCRATCH PAD

Clearing Program Memory

Now that you know one way to store information in PCjr's program
memory, let's exploit your knowledge in a practical way. First, since you
know how to put things into the program memory, here's how to erase it:

Type: NEW <ENTER>

NEW will always clear out the program memory. Check me by typing

LIST <ENTER>

Voila! Nothing there! NEW is normally used when you've finished
running a BASIC program and want to key in a new program on a clean
slate.

SOUND & GRAPHICS FOR THE IBM PCjr 47

Keying a Program

Well, that's just what we want to do at this juncture. Here's a
program for you to type into program memory. Although it isn't indi
cated, remember that you have to type <Enter> at the end of each
numbered program line.

If you make an error as you are typing a line, use <Backspace> to
correct it. If you catch an error after you've ENTERed the line, forget
about it and go on to the next line. We'll pick up the loose ends later.

Carefully now, type exactly what you see.

100' LETTERS.BAS

110' A silly program for learning editing
120 PLAY-MF" ' PLAY SOUND IN BACKGROUND
130 SCRN 3 ' SELECT LOW RES GRAPHICS

140 CLS ' CLEAR SCREEN

150 FOR I = 110 155 ' COUNT COLORS

160 P = 35 ' INITIAL VALUES

165 0 = 120

170 FOR K = 1 TO 30 ' COUNT REPETITIONS
180 R = 1000*RND-k40 ' RANDOM FREQUENCY
190 SOUND R,1,6,0 ' GENERATE SOUND
200 NEXT' GO REPEAT SOUND
210 PRINT STRING$(20,63-kl);' DISPLAY LETTERS
220 NEXT I' INCREASE COLOR COUNT & REPEAT

230 GOTO 150 ' START OVER

CAVEAT: Don't try to RUN this little program yet. You might just
screw up the screen and not be able to recover without starting from
scratch with a warm start.

Get "Hardcopy" Output

As you've probably gathered, if you're to do some editing on this
program, there must be something wrong with it. Indeed, there is. Not
only are there the problems already included in the program, but
there's a good chance you made some errors as you keyed in the
program as well.

The first thing to do is get some "hardcopy"—a printout of the
program. (Remember? Just turn on your printer and Type: LLIST

48 JAMES E. KELLEY, JR.

<Enter>.) Of course, if you don't have a printer you'll have to LIST the
program to the screen and make notes.

Now compare the printout with the listing above, character by
character, and mark any deviations you find.

Substituting Stuff

In line 120, I Intended to play sounds In the background but
Inadvertently set PLAY to foreground mode. Let's fix this Item first.

Type: <Ctrl-L> (Clear screen)
Type: LIST <ENTER>

The program Is on the screen, and the blinking cursor Is below the
"Ok" prompt near the bottom, right? Using the UP arrow (or Home)
key, off to the center right, move the cursor up to line 120.

Next, using the right arrow (or PgDn) key, move the cursor to the
right until It's under the F In the MF string between the quotation marks.
When you're there.

Type: B <ENTER>

NOTE: It Is essential to press <Enter> for the change In the
program to register.

Adding Stuff

There's a more serious error In the next line, line 130. For some
reason, I abbreviated SCREEN. We've got to put the EE's Into the
command.

The <Enter> that registered the fix at line 120 should have put the
cursor at the beginning of line 130. In any case, put the cursor there
with the arrow keys (cursor movement keys, to be precise).

Now move the cursor under the N In SCRN. Locate the Ins(ert) key
on the bottom row, just to the right of <CapsLock>.

Watch the cursor as you quickly press and release the <lns>. Did
you see the cursor change from an underscore to a block that Is half the
height of a letter? Press <lns> again and you're returned to the
blinking underscore. <lns> Is a toggle key.

Well, we've still got the change to make, so press <lns> again.
Now for the correction. Watch the cursor as you

Type: EE

SOUND & GRAPHICS FOR THE IBM PCjr 49

Isn't that neat? Don't forget to register the correction—type:
<Enter>. Notice that hitting <Enter> cancels the Insert mode and
returns the cursor to a blinking underscore.

Deleting Stuff

Oh dear! My fingers stuttered on the 5 when I typed line 150. I've
got the color count running to 155 Instead of to 15.

Move the cursor with the arrow keys until It's under one of the 5's In
the 155 of line 150. Are you there?

Now locate the Del key on the bottom row, just to the right of the Ins
key. Got It?

Be sure you don't use a heavy hand on the next operation or you'll
wipe out a bunch of characters. Okay, watch the cursor as you quickly
press and release .

If the extra 5 didn't disappear, you may have been too light with
your touch. Try again.

And don't forget to register all corrections with <Enter>.

Scrap the Ttash

Good grief! Where did lines 160 and 165 come from? The vari
ables P and Q have no place In this program. We'll DELETE them.

Type: DELETE 160-165 <ENTER>

Let's check that the deletion took place correctly. Once more.

Type: <Ctrl-L>
Type: LIST <ENTER>

Inserting New Lines

I'll bet that my eye skipped line 160 when I typed In this program.
Ah, yes! Here's the missing piece In my hand-scrawled copy.

Type: 160 COLOR 1,16-1' SET FORE- & BACKGROUND
<ENTER>

LIST the program to the screen once more to see If the line was Inserted
correctly.

Notice how PCjr keeps all the program lines In correct sequence.

50 JAMES E. KELLEY, JR.

The EDIT Command

Sometimes it's not convenient to make changes in a screen LIST-
ing of your program as we've been doing. If the corrections are widely
separated, as when you have a long program, there's an easier way.

Type: <Ctrl-L>
Type: EDIT 210 <ENTER>

There you have line 210 all ready to be corrected. In this case we want
to change the number 20 inside the STRINGS command to a 100.

Move the cursor right to the 2 in 20. Then,

Type: (Cancel the 2)
Type: <lns> (Switch to Insert mode)
Type: 10 <ENTER> (Make the insert)

LIST line 210 to verify that the corrections were made correctly. That is.

Type: LIST 210 <ENTER>

In summary, here is how the corrections you made should look on
the screen:

120 PLAY" MB" ' PLAY SOUND IN BACKGROUND
130 SCREEN 3 ' SELECT LOW RES GRAPHICS
150 FOR I = 1 TO 15'COUNT COLORS
160 COLOR 1,16-1' SET FORE- & BACKGROUND
210 PRINT STRING$(100,63-kl):' DISPLAY LETTERS

And, of course, line 165 should no longer be with us.

Fix Your Own Boo-boos

If you introduced typing errors as you keyed in the program, fix
them now. It's just a matter of inserting, deleting or substituting charac
ters or program lines.

Don't run the program yet!

SOUND & GRAPHICS FOR THE IBM PCjr 51

n

5. SAVE YOUR PROGRAM ON DISK

A Little Insurance

CAVEAT: Make it a general rule when you've typed in a new
program, or made extensive or complicated changes in one, to SAVE it
on disk before you try RUNning it.

It's possible for you to make an error in writing or correcting a
program that will erase program memory or lock you out of the com
puter. In either case all your hard work is down the drain. If you had
SAVEd the program first, you'd at least have a copy on disk that you
could work with to locate and fix the problem.

With this in mind, let's SAVE LETTERS.BAS on disk. Test Programs
is still in the disk drive, isn't it? Okay,

Type: SAVE "LETTERS.BAS" <ENTER>

(You can omit the .BAS in this case if you like, but remember that you
can use a filename extension in the SAVE command. You can use any
three acceptable characters you like.)

Did the disk drive whir? Okay, check that the file LETTERS.BAS
was recorded.

Type: FILES <ENTER>

What would you do to bring LETTERS.BAS back into program
memory if you lost power, or inadvertently typed NEW <Enter>, or
something else unfortunate? You'd do a LOAD "LETTERS.BAS"
command.

It's Okay to RUN Now

You've been kept on the string long enough. You can RUN the
program now.

Type: <Fn-2> (Execute RUN command)

It really is a silly program, but it does show you a fair sampling of
PCjr's colors—in combination, too. Or, if you have only a black and
white set, you see the different textures and shades you can get.

If it still didn't work for you, you had better get a LLISTing on your
printer and check the copy against the book. You may still have a
keying error in the program.

52 JAMES E. KELLEY JR.

If you can't find your problem, don't be too concerned at this point.
The program has served its purpose as a vehicle to learn about the
BASIC Editor. Later on, when you know more, your present difficulties
will become obvious to you.

If LETTERS.BAS Works for You...

Don't go turning off power or pulling plugs to stop the horrid noise.
Just

Type: <Fn-Break>

Notice that the letters look bigger than before. They're twice as
wide, in fact. Count them. There are only twenty characters to the line.

To return to the forty-character text screen.

Type: SCREEN 0 <ENTER>

Make a LLISTing of LETTERS.BAS anyway so you'll have a copy to
mark on and study.

The BASIC Program Editor

When you were keying and correcting LETTERS.BAS, you used
the BASIC Editor. It is very important that you develop a ready skill with
it. The Editor will save you much agonizing typing effort.

Read about the BASIC Editor in Chapter 2 of the BASIC manual.
Then experiment with the commands, using LETTERS.BAS until you
feel you're gaining some mastery.

A summary of the Editor commands is given in Figure 2.1. There
may be a couple we haven't used explicitly, so be sure to try every one
of them.

6. DISCOVERING THE SIMPLE AND USEFUL

I want to keep emphasizing the importance of your experimenting
with PCjr. Discoveries are fun! And if you're persistent, you'll receive
valuable rewards for your efforts. Let's discover something interesting
and useful right now.

SOUND & GRAPHICS FOR THE IBM PCjr 53

Ctrl-Letter Combinations

You'll have noticed that some of the commands involve the joint
operation of two or more keys—like our clearing the screen with <Ctri-
L>. Let's find out if there are other combinations that do something
useful. Try this.

Type: <Ctrl-G> (Hold Ctrl and strike G)

How about that! A beep! incidentally, you can get the same sound at
least two other ways:

Type: BEEP <ENTER>
Type: PRINT CHR$(7) <ENTER>

These are not important at the moment.
Do you have a lot of junk on the screen? If not, put some there and

do this;

Type: <Ctrl-Fn-Home>

That is, hold down the Ctrl key. Then successively strike the Fn and
Home (or UP arrow) keys, in that order. The screen should clear—
same as CLS and <Ctrl-L>.

Now maybe you are beginning to see the potential. Find out what
all the letter keys do when you strike them while pressing <Ctrl>.

Make a table on a clean sheet of paper. The first column is the
alphabet. The second column is titled "Ctrl Key" (leave space for more
columns). In the second column write down what happens for each
letter struck in combination with Ctrl.

NOTE: If nothing seems to happen, put material on the screen, or
move the cursor to the middle of the screen before the experiment.
Good hunting!

Ait-Letter Combinations

After you've tried the Ctrl-letter combinations on your own, try this
experiment. Label a third column "Alt." Try pressing the letters as you
hold the Alt key down. Record your observations as before.

Check your discoveries by comparing your table with Figure 2.2.
Give yourself a high score if you discovered that <Ctrl-6> is "up
arrow" and <Ctrl-minus> is "down arrow."

54 JAMES E. KELLEY, JR.

7. PCjr KNOWS ITS ABC'S—AND THEN SOME

Here's an Alphabet for You

Here's something new to try. Clear program memory (Type: NEW)
and key the following little BASIC program.

100' ASCII.BAS

110 SCREEN 0,1 ' Color text mode screen
120 COLOR 15,1 ' White letters on blue
130 CLS ' Clear screen

140 FOR ASCII.CODE = 0 TO 255 ' Set count range
150 IF ASCII.CODE = 12 THEN 170 ' Avoid clear screen code
160 PRINT CHR$(ASCII.CODE);" ' Display character
170 NEXT ASCII.CODE ' Repeat for next character
180 END

NOTE: You don't need to type the remarks to the right of the
apostrophe ('). They are there to help you understand what's going on.

As soon as you've finished typing, LIST the program to the screen.
Examine it carefully, character by character. Did you make a mistake?
Use your BASIC Editor skills to correct any errors, then SAVE this
program.

Type: SAVE "ASCII",A <ENTER>

Did you notice? Another new wrinkle. What's that A for? Well, since
we're talking about ASCII (pronounced "ask-key") stuff, we might as
well SAVE this file as a.n ASCII file instead of as a binary file (whatever
that is; things'll clear up as we go along).

So now we can RUN ASCII.BAS.

Type: RUN <ENTER> (or <Fn-2>, right?)

This little program should bring PCjr's basic repertoire of charac
ters up on the screen. You should have heard a beep too, as it
displayed the characters.

Open your BASIC reference manual to Appendix G and you will
see a table of these two hundred fifty-six characters. Compare them

SOUND & GRAPHICS FOR THE IBM PCjr 55

with the contents of the screen. There are some irregularities in the way
the printing is laid out, because not all the codes of the table have
printing characters (carriage return, line feed, etc.).

Look once more at the program and see if you understand it. The
commands are executed in ascending order by line number unless
some command (e.g., the "IF") causes a change in this sequence.

LLIST a copy of the program and translate it into English.
Here are some hints. Lines 110 and 120 set up the color text screen

as we've done before. Line 130 clears the screen. Line 140 sets up a
FOR . . . NEXT loop (completed in line 170). When the counter,
ASCI I.CODE, reaches 255, execution continues to line 180, where the
program terminates. The "meat" of the program occurs in lines 150
and 160.

Line 150 introduces a new idea of considerable importance, as it
gives PCjr the ability to make decisions. It says that if the counter,
ASCII.CODE, is equal to 12, then skip to line 170, avoiding the print
statement in line 160.

Why would I want to skip 12? Does Appendix G of the BASIC
manual give you an idea? What if you tried this experiment, using PCjr
to help you understand?

Type; PRINT CHR$(12) <ENTER>

Of course, you know this clears the screen. If we left it in the
program, the first few characters PCjr printed would have been wiped
out when it got to 12.

What about line 160? The new thing there is the command CHR$
(for character). But you've deduced already that it simply generates
the characters in the table of Appendix G opposite the number spec
ified in parentheses. Try a few cases and check them with that table.

Type: PRINT CHR$(21) <ENTER>
Type: PRINT CHR$(65) <ENTER>
Type: PRINT CHR$(97) <ENTER>
Type: PRINT CHR$(273) <ENTER>

Mfhatls All This ASCII Business Anyway?

ASCII stands for American Standard Code for Information Inter
change. It was set up by people in the communications field to ensure
the information compatibility of different equipment manufacturers.

56 JAMES E. KELLEY, JR.

Your PCjr is considered a communication device. And indeed it
may be used as a terminal to communicate over telephone lines (if you
install some additional equipment). Most printers are also classed as
communication devices, and use the ASCII character codes.

The ASCII coding system covers only the characters up to 127.
IBM has doubled that number for the PCjr.

^ Are you curious to know how your printer will treat IBM's extended
character set? Turn your printer ON and we'll find out. Using the EDIT
command, or any other editing approach that does the job, change

^ line 160 to read

160 LPRINT CHR$(ASCII.CODE);"

Watch the semicolons.

We also need an additional instruction at the end of the program
to print what remains in the printer's buffer (the place where the printer
stores information waiting to be printed).

Type: 175 LPRINT' Empty printer buffer

Now turn on the printer and

Type: RUN <ENTER>

Almost any time you want to print on the printer instead of the
screen, put L in front of PRINT—but not alwaysl (See the BASIC
manual for more on LPRINT.)

Use ASCII.BAS to experiment with the text color combinations,
especially if you have only a black and white set. Some of the combina
tions are unreadable, even on the forty-character screen.

Decisions, Decisions

You will have noticed that ASCII codes 7-13, 28-31 and 255 print
no character on the screen. The little program you typed can be
changed to avoid them. The IF ... THEN is the key. Type the following

tm commands:

145 IF ASCII.C0DE> = 7 AND ASCII.C0DE< = 13 THEN 170

« 148IFASCII.CODE> = 28ANDASCII.CODE< = 31 THEN 170
150 IF ASCII.CODE = 255 THEN 170

SOUND & GRAPHICS FOR THE IBM PCjr 57

Don't forget to key <Enter> after eacfi statement.
At this point, LIST the program to see if you typed the lines

correctly. Everything okay?
RUN the program and watch the screen.
Well, do I have to tell you everything? You didn't delete the L in front

of PRINT in line 160. How can you print the characters on the screen?
And what about line 175? Make the changes and try again!

Let's look at what you did. Line 145 simply translates, "IF the
count, ASCII.CODE, is ever 7 or more, and at the same time 13 or less
(i.e., count is in the range 7-13), THEN skip to line 170 (i.e., bypass the
printing)." Compare this translation with line 145 to be sure it makes
sense to you. The "AND" is a logical operator called "conjunction."
But you know that from English grammar!

Look again at Appendix G in the BASIC manual to verify that the
ranges of numbers that we are to skip are correct. (Of course you know
that < means less than and > means greater than.)

Line 148 is similar to line 145. Line 150 has not changed its form.
You might have written

145 IF ASCII.C0DE>6 AND ASCII.C0DE<14 THEN 170

instead. It gives the same results. Why?
You'll see as we go along that there are still other ways to write

lines 145-150 using the IF ... THEN ... ELSE combination. You'll see
more as we go along. (For more on IF... THEN, read about it in Chapter
4 of the BASIC manual.)

More on ASCII

For almost all the ASCII characters associated with keys on the
keyboard, there is an alternate representation in BASIC. If you put a
letter or character between quotes, it's the same as writing CHR$()
with the appropriate number between the parentheses. Try these
cases;

PRINT CHR$(35),"#"
PRINT CHR$(65),"A"
PRINT CHR$(97),"a"
PRINT CHR$(126),"-^'

58 JAMES E. KELLEY, JR.

In each case the character should print twice, demonstrating
equivalence. (Notice I used a comma [,] instead of a semicolon [;] this
time. Try one or two cases with a semicolon to see what happens. Don't
forget the result. Make a note.)

There is an important exception to the equivalences noted. Try to
put a quote (") between quotes. That is,

Type: PRINT CHR$(34),"""

Only one quote should appear. BASIC uses quotation marks to deline
ate literals (strings of characters). It does not permit (double) quotes to
appear in the literal. If you want to PRINT a (double) quote, you must
use CHR$(34).

8. JUST FOR FUN

Zounds! What Beeps and Clicks Come from Yonder
Computer?

Here's something to play with.

Type: SOUND 523.25,30

How about that! It's not quite "Met" quality, but it approximates 0
above middle C on a piano. If you change the first number, the fre
quency in hertz (vibrations per second), you get different notes. If you
change the second number (the duration in units of 18.2 per second),
you make the tone longer or shorter.

To my ear, increasing the frequency by forty gives about a half
tone step on the piano. Try this one to play a kind of chromatic scale:

Type: SOUND OFF:BEEP ON <ENTER>
Type: FOR FREQ = 500 TO 7500 STEP 40:

SOUND FREQ,10:NEXT FREQ

That clears the wax from your ears! Notice that the STEP in the
FOR...NEXT sandwich is 40 hertz, the change in frequency from note to
note.

SOUND & GRAPHICS FOR THE IBM PCjr 59

Try the example again, but change the duration from 10 to 1. Use
your BASIC Editor commands to move the cursor up to the FOR
statement and make the change right on the screen. Saves typing!

Now change the 1 to .1 and try again. Keep making the duration
smaller and smaller. You can't go below 0.0015.

Using your screen editing skills, reverse the frequencies and put a
minus sign in front of the 40 so the line looks like this:

FOR FREQ = 7500 TO 500 STEP -40:SOUND FREQ.I:
NEXT FREQ

Translate this program example into English.

Random Sounds

Here's one I like:

Type: FOR COUNT=0 TO 500:SOUND 5000*RND(1)
+ 50,1 :NEXT COUNT

The new idea here is RND(1). This is a built-in BASIC function that
generates random numbers between 0 and 1.

Type: FOR C0UNT=1 TO 10:PRINT RND(1):NEXT COUNT
<ENTER>

So you see, every time you do RND(1), a new number between 0 and 1
is generated.

In the SOUND example, I added 50 hertz to the calculated fre
quency to avoid an error in case RND(1) became zero. The smallest
frequency allowed is 37 hertz. See the BASIC manual for more on RND.

Do you really understand what is happening in this example, how
the random number makes the tone jump all over the place? Translate
the program Into English.

Controlling SOUND from the Keyboard

Here's a neat trick that comes up over and over again in program
ming. Our objective is to set up a little conversation with PCjr that goes
something like this.

60 JAMES E. KELLEY, JR.

PCjr: Here's a sound. How do you like it?
You: Not too well. Make it a little higher.
PCjr: Okay, how about this?
You: No, a little higher yet.
PCjr: Now is it okay? You're hard to satisfy.
You: Too high now. Down a little.
PCjr: Dear me! There's no pleasing you! What about this

frequency?

And so on.

The core of this imagined conversation is a set of program steps like
this (clear program memory with NEW and start typing):

100' KBCTRL.BAS

110' Control SOUND from the Keyboard
120 F=500' Initial frequency
220 SOUND F,.8 ' Play sound

So far the program just plays a frequency of 500 hertz for 0.8 clock
ticks. The trick comes with the use of the BASIC command INKEY$ in
the following instruction:

130 A$ = INKEY$' Get character from keyboard

Whenever you strike a key, its code is generated and transferred
to a typing buffer of fifteen characters. When the INKEY$ command is
executed, the earliest character you typed is pulled from the buffer and
placed in a pigeonhole labeled A$. (We could have called it something
else, like CHARS, for character. The $ says the information is an ASCII
character or string.) If the buffer is empty, A$ is a string with no
characters.

So now that we have a character, what do we do with it? Well, if we
don't like the sound, let's type U or u to tell PCjr to make it a higher
frequency, or D or d to make it lower. PCjr has to know whether the
typed character is U or D. We use the IF command to inform it.

140' Test for upper or lower case U
150 IF A$ = "U" OR A$="u" THEN F = F + 10
160' Test for upper or lower case D
170 IFA$ = "D" OR A$ = "d" THEN F = F-10
230 GOTO 130 ' Repeat sound

SOUND & GRAPHICS FOR THE IBM PCjr 61

The key instructions are in lines 150 and 170. If A$ is U, the
frequency is increased by 10 hertz; if it's D, the frequency is decreased
by 10 hertz. After the change, the program jumps back to 130 with a
GOTO to see whether we typed another character.

Try RUNning the program.
There are a couple of other things worth doing to make the

program operate more smoothly. First we should make sure the fre
quency F does not go outside the legal range 37 to 32767 hertz. We
need a couple of IF's.

200 IF F<37 THEN F = 37' Stay at lower sound limit
210 IF F>32767 THEN F = 32767' Stay at upper sound limit

We also need a way to stop the program gracefully. Suppose we
test for the ASCII code for the Esc(ape) key like this.

180' Test for Escape, to quit
190 IF A$ = CHR$(27) THEN END

Finally, we can get some visual idea of the frequencies being
sounded by adding a statement to print the current value of F.

225 PRINT F

Don't forget to SAVE and LLIST KBCTRL.BAS for future reference.

So What Can You Use SOUND For?

People who are into games can make all sorts of pops, clicks and
buzzes from a simple mechanism like SOUND. I'll show you some of
these tricks as we go along.

But beyond games, there are more serious uses for sounds that
you should know about. I frequently use the sound-making facilities to
warn me when I should watch out for an error or when I should perform
some routine task such as changing disks or starting the printer.

Audio signals can prove to be a great convenience. Suppose that
while you're running one of your programs you want to work at some
thing else across the room. It's nice to write your program so you can
know what's going on when it's running without having to walk over and
check. Suppose you periodically put out a sound pattern that indi
cates, "I'm okay, just operating fine. But keep your hands off\" A

62 JAMES E. KELLEY JR.

different pattern mlghit Indicate a change In the phase of the program's
operation. A third pattern might say, "I need a new diskette mounted."
A fourth might say, "I'm ready to start printing reports. Turn ON the
printer." A fifth might say, " I've got an error that you should attend to."

Here's an example you can build upon:

100 ' ENDPROG.BAS—END OF PROGRAM SIGNAL ('NBC')
110 SEC = 20:NUM.TICKS = 875''SEC

120 SOUND 650,7
130 FOR COUNT = 1 TO lOOiNEXT COUNT:' PAUSE

140 SOUND 1100,7

150 FOR COUNT = 1 TO 100:NEXT COUNT:' ANOTHER PAUSE

160 SOUND 880,8
170 FOR TICK = 1 TO NUM.TICKS:NEXT' WAIT 20 SECONDS

180 GOTO 120:' REPEAT SIGNAL

Key this program Into program memory. Test It. You stop It with a
<Fn-Break>. The twenty-second delay between sounds Is a long time,
so be patient.

Then SAVE ENDPROG.BAS on your Test Programs diskette—as
an ASCII file.

There Is a useful Idea embedded In this little program. Lines 110
and 170 give you a method for setting up timing delays of specific
duration. These lines form a clock that beats at a certain number of
ticks per second. The clock rate Is slower when you Include the
counter's name In the NEXT command. When you omit the name, as In
line 170, the clock rate Is faster, about 875 beats per second. Notice
how this rate Is Incorporated In the count limit, NUM.TICKS, defined In
line 110.

Set up an experiment to test whether the constant Is really 875 or
an amount larger or smaller. (Hint: Do a BEEP at the start and at the end
of the FOR...NEXT with SECS = 10, and measure the time with your
watch. Your reward Is to prove I'm wrong and can't measure time very
well.)

Use your Imagination. Sounds can enhance your computer's
operations. (For more on SOUND, see the BASIC manual.)

So You Want to Be in Pictures!

Talking about movies, let's make one. No sense In thinking small.
We'll make a De Mllle special on the grand scale—and with a sound
track to boot.

SOUND & GRAPHICS FOR THE IBM PCjr 63

First, let's do a time-lapse version of the creation of the universe.
(How's that for grand scale?) But what theory shall we use? The "Big
Bang"? The "Steady State"? How about using our own theory? Call it
the "Random Position" theory.

We'll start with empty space. Then we'll put a star here, and a star
there, and on and on until we fill up all of space. And as we set the stars
aglow, we'll fill space with "space" music.

Roll 'em! First we need empty space of appropriate color. (Type
NEW to clear memory.)

110 SCREEN 0,1:COLOR 15,1
120 CLS:KEY OFF

And we want to turn off the cursor so it won't spoil the effect.

125 LOCATE „0 ' Turn off cursor

Don't omit those two commas.

Then we need a random position in space—a random row and
column on the screen.

130 ROW=22*RND(1)-i-1 ' Pick random row
140 COL = 39*RND(1)-l-1 ' Pick random column

We have to put a "star" in that random location.

150 LOCATE ROW, COL' Move cursor to row,col
160 PRINT ' Place star at cursor's position

Next we need sound effects—a magic "space" sound. Here's some
"brittle" music.

170 MAGIC = 5000*RND(1)-1-50 ' Calc sound frequency
180 SOUND MAGIC,3 ' Play MAGIC sound

Finally, we have to repeat the process for another star.

190 GOTO 130 ' repeat CREATION

64 JAMES E. KELLEY, JR.

But let's not forget the opening title.

100 • CREATION.BAS

There, that's just fine. Cut and print! (SAVE it on your Test Pro
grams diskette.)

If you're ready, let's see how our "creation" scene will look in the
theater. RUN it! Stop CREATION.BAS with <Fn'Break>.

Make a LLISTing of CREATION.BAS and write a translation of it
into English.

The only new idea here is the LOCATE command, which moves
the cursor to the row and column positions calculated in line 150, where
the star is printed. Don't forget to turn the cursor back on.

Type: LOCATE „1 <ENTER>

Why don't you try substituting other characters for the dot in line
160 of CREATION. Experimenting broadens your perspective and
opens up all sorts of possibilities.

Drawing Simple Shapes

The BASIC commands we've used thus far are simple but power
ful enough to illustrate the programming process in a useful way. The
capability of printing any ASCII character on the screen at a specific or
a random position can be exploited for a variety of effects.

Suppose you wanted to draw a small balsam fir on the screen—a
Christmas tree. How would you do it?

We don't have to be elaborate. A simple triangular shape will do.
We might draw it in outline form, using combinations of the hyphen,
period, underscore or other linear characters.

When you're thinking about something to put on the screen, it's
always a good idea to look at a table of ASCII characters. It might
suggest shapes to try that you hadn't thought of. (Open to Appendix G
in your BASIC manual.)

To generate the outline of the triangle, you would have to tell the
PCjr to start at a specific point and to generate a sequence of positions
along the perimeter of the shape.

But what about making a "solid" triangle instead?
Look at ASCII character 219. It gives us a character with which to

paint in a specific color.

SOUND & GRAPHICS FOR THE IBM PCjr 65

Now comes the strategy of drawing. We'll exploit the FOR...NEXT
command, which makes it easy to print a series of characters along a
given line on the screen. We'll use the LOCATE command to pick the
starting positions. We can start at the top and go to the base, or vice
versa.

Let's start at the bottom and print the tree in the middle of the
screen. The trunk will form a center line in column 20. Suppose the
base of the tree is on line 20. Then the length of this base, in numbers of
characters, must be such that the tree comes to a point, more or less, in
line 1. How big is the base?

Suppose we cut one character off each end of each successive
pair of layers as we build the tree. To come to a point in line 1, there must
be ten characters on each side of the center line (in column 20) in line
20.

Let's write the program. (Clear memory with NEW.) We'll start by
setting down the usual preliminaries—program name, color text
screen, etc. Start typing in lines. (Don't forget to clear memory first—
NEW.)

100 ' XMASTREE.BAS

110 SCREEN 0,1
120 KEY OFF

130'DRAW TREE

Then we'll color the tree green and clear the screen.

140 COLOR 2,0:CLS ' Color tree green

Starting in row 20 we have to build successive pairs of layers until
we get to row 1. We can do thisoperation with aFOR...NEXT sandwich.

150 FOR ROW=20 TO 1 STEP -2

250 NEXT ROW

With a STEP of -2 we express that we're to build two layers of the
tree each time the instructions between lines 150 and 250 are
executed. Granted, we don't know just what these instructions are yet.
Notice I've left lots of room to sandwich these layer-generating instruc
tions inside the FOR...NEXT.

As we conceived the drawing process, we noted that in lines 20
and 19 we'd need ten characters on the left and ten on the right of

66 JAMES E. KELLEY, JR.

column 20. In lines 18 and 17 we'd need nine. And so on. Therefore, to
generate one layer, we sandwich a PRINT statement in a FOR...NEXT
of the following sort.

155 ' Generate first layer of pair
160 FOR COL=20-((ROW-1))/2 TO 20 + ((ROW-1))/2
190 NEXT COL

Notice how we have the column position limits in the FOR...NEXT as
functions of the row position. As the row number decreases, the length
of the layer decreases.

However, there are two layers to print for the same column limits.
So reduce the row by one and repeat the same layer-generating
instructions.

195 ' Generate second layer of pair
200 NXROW= ROW-1 ' Reduce screen row by one
210 FOR COL = 20-((ROW-1))/2 TO 20-h ((ROW-1))/2
240 NEXT COL

To actually print the characters in a layer, we must position the
cursor and print the first layer of the pair:

170 LOCATE ROW,COL' Position cursor
180 PRINT CHR$(219);' Place character of 1st layer

The second layer is generated similarly, but at the next row, NXROW,
this way:

220 LOCATE NXROW,COL' Position cursor
230 PRINT CHR$(219):' Place character of 2nd layer

Let's put a red base on the Christmas tree this way. First the color.

260 ' DRAW BASE OF TREE

270 COLOR 4,0 ' Color base red

Then we'll put a splash of red under the center of the tree's bottom with
a string of ASCII character 219—the same one we've already used.

280 LOCATE 21,19
290 PRINT STRING$(3,CHR$(219));

SOUND & GRAPHICS FOR THE IBM PCjr 67

We're nearly finished. Only three more things to do. First, we don't
want to have BASIC'S "Ok" prompt on the screen when the program
stops. It'll spoil the view. This is easy to do with the following simple
closed loop;

320 GOTO 320 ' Avoid printing BASIC prompt

This means you have to do a <Fn-Break> to get back to BASIC when
you tire of viewing the tree.

Next, we want to keep the cursor from messing up the view. So
we'll turn it off this way:

310 LOCATE „0 ' Turn cursor off

Finally, we want to leave the screen colors in something that's
legible when you finally quit. Here's one possibility.

300 COLOR 15,1 ' Change color to white on blue

Now we're finished. SAVE the XMASTREE.BAS. Then go ahead
and RUN it to see if it works.

Now that you have a basic tree, there are other details you might
add, such as ornaments or lights (e.g., try ASCI11-5). You can make the
ornaments blink brightly (use foreground numbers for the COLOR
command in the range 16 to 31). You could put a star on top, or make a
tinkling sound as ornaments appear (SOUND FREQ,1), or play carols.
The possibilities are endless.

9. TAKING STOCK

These first two chapters have introduced you to the principal
manual skills you need to operate the PCjr, as well as some first ideas
about programming in BASIC in general, and sound and graphics in
particular. Before continuing, you should reinforce your learning expe
rience. Here are a few things to do:

68 JAMES E. KELLEY JR.

Do a Summary Check

(1) Take another look at the BASIC Editor commands, summa
rized in Figure 2.1. Are you sure you know them? Why don't you just try
each one once more.

(2) Turn to Figure 2.3. it summarizes, in alphabetical order, the
BASIC commands introduced in this chapter. Do you know what each
one does? What role it plays? Refer back to the chapter to reinforce
your memory, and look up the commands in the BASIC manual.

Read down the list, stopping at each entry. Shut your eyes and
visualize the command's function. Do you remember the examples in
which it was used? If you have trouble, look it up in your manuals and
trace back in the chapter to where and how it was used.

(3) Turn back to Figure 1.1, where the commands introduced in
Chapter 1 are summarized. Repeat the detailed review process.

The Proof of the Pudding

Here's where you really find out whether you know what's going on.
If you have trouble, get PCjr to help. Experiment with ideas. Delve
deeply into the table of ASCII codes (Appendix G in your BASIC
manual).

(1) Write an elaboration of the CREATION program of your own
devising. Consider making stars blink. Try other characters besides
the asterisk for the effects they produce. How could you make some of
the stars "die" with age? (Hint: print random blanks accompanied by
a high-frequency sound.) Some ideas for elaboration are given in the
DEMOPROG.BAS file on your BAS/C Utilities diskette.

(2) If you haven't done so, elaborate on the Christmas tree pro
gram. Try this: Generate the tree from the top down, with sounds
proceeding from high to low frequency. Then, on a second pass,
generate the lights from the bottom up with sounds proceeding from
low to high frequency. Finally, put a blinking star on top. (Hint: You can
overprint material on the screen. The last character printed stays
there.)

(3) Write and test a program to:
(a) Put a border around the screen. (Use FOR...NEXT and

LOCATE.)
(b) Put a tick-tack-toe game board on the screen.
(c) Draw diagonals on the screen.
(d) Draw a small box anywhere on the screen (a poor man's

"0").

SOUND & GRAPHICS FOR THE IBM PCjr 69

(e) Draw a small X anywhere on the screen.
(Here are the graphic ingredients for playing tick-tack-toe
with PCjr.)

(f) Draw a "solid" rectangle. (Adapt the Christmas tree
program.)

(4) Write and test a program to:
(a) Draw a triangle (just the outline) with horizontal base and

equal vertical sides (isosceles triangle).
(b) Draw the same triangle upside down.
(c) Combine the two triangles to form a Star of David.
(d) Draw a "solid" Star of David and decorate it.

(5) Write a program to draw an unending sequence of solid
rectangles of random size and position. Fill the rectangles with random
characters. It's okay for successive rectangles to overlap. Generate
some beeps and squawks to go with the rectangle generation pro
cess. (This problem may be a little hard for you, so don't worry if you
can't do it.)

WARNING: You'll learn very little if you perform the programmed
actions without understanding. Read the explanatory paragraphs with
concentration, answer all the questions, and do all the exercises. They
are there to teach you.

70 JAMES E. KELLEY, JR.

EDITOR COMMAND FUNCTION

Ctrl-ENTER Line feed & carriage return; line
NOT ENTER(ed) in program
memory

Ctrl-Pause Freeze output to screen
Ctrl —> Move cursor one word to right
Ctrl <— Move cursor one word to left

Ctrl-Fn-End Delete from cursor to end of line

Ctrl-Fn-Home Clear screen, cursor to upper left
Del Delete character at cursor

Down arrow Cursor down

Fn-Break Stop program
Fn-End Move cursor to end of line

Fn-Home Move cursor to upper left of screen
ENTER Line feed & carriage return; line is

ENTER(ed) in program memory
Esc(ape) Delete line of cursor

Ins Insert character at cursor

Left arrow (<—) Cursor left

Right arrow (—>) Cursor right
Up arrow Cursor up
Tab (—> 1) Tab 8 spaces right

Figure 2.1: Summary of BASIC Screen Editor Commands for
PCjr

SOUND & GRAPHICS FOR THE IBM PCjr 71

with with

CHARACTER CONTROL KEY ALT KEY

A Smiling face AUTO

B Left one word, BSAVE

Ctrl-LEFT arrow

C Move cursor to start of next COLOR

line

D Diamond DELETE

E Clear to end of line, ELSE

Ctrl-Fn-End

F Right one word. FOR

Ctrl-RIGHT arrow

G Beep GOTO

H Delete character to left of HEX$
cursor

1 Tab right 8 spaces INPUT

J Move character to start of next J

line

K Fn-Home KEY

L Clear screen LOCATE

M ENTER MOTOR

N Fn-End NEXT

0 Star OPEN

P Right arrow PRINT

Q Left arrow Q
R Ins(ert) RUN

8 Double exclamation SCREEN

T Paragraph sign THEN

U Item sign USING

V Heavy underscore VAL

w Up & down pointer WIDTH

X Up arrow XOR

Y Down arrow Y

z Right arrow Z

6 Move up cursor -

-(hyphen) Move down cursor -

Figure 2.2: BASIC Command Generation and Other
Cursor Controls for PCjr

72 JAMES E. KELLEY, JR.

BASIC COMMANDS

Alt-Letter

Arithmetic

Operations
ASC

BEEP

CHR$

CLS

COLOR 15,1

DELETE

EDIT

END

FOR...NEXT

GOTO

IF..THEN

INKEY$

KEY ON/OFF

KILL

LIST

LLIST

LOAD

LOCATE

LPRINT

FUNCTION

Generate BASIC reserved words

Add, subtract, multiply, divide,
raise to power

Convert character to ASCII code

Make "beep" sound
Convert ASCII code to character

Clear screen

Change screen foreground and
background colors

Delete lines from program
memory

LIST line, leaving cursor ready for
editing line

Terminate program
Repeat a sequence of commands
Take next command from line

specified
Make decision on program flow
Get typed character from input

buffer

Turn function key prompts
ON/OFF

Delete a diskette file or program
List program memory to screen
List program memory to printer
Transfer program from diskette to

program memory

Position cursor on screen

Print information on printer
(LPT1:)

SOUND & GRAPHICS FOR THE IBM PCjr 73

NAME...AS...

NEW

PRINT

RND

SAVE

SCREEN 0,1
SOUND

Rename a diskette file or program
Erase program memory
Print Information on the screen

Generate random number

between 0 & 1

Transfer BASIC program from
program memory to diskette

Set up color text mode
Play a sound frequency of specific

duration

Figure 2.3: Summary of Key Commands in Chapter 2

74 JAMES E. KELLEY, JR.

CHAPTER 3
THE SOUNDS AROUND US

Objective:

This chapter will let you experiment
with natural, and not so natural
sounds—everything from oiioks, bleeps
and screams to musical birdcalls.

SOUND & GRAPHICS FOR THE IBM PCjr 75

1. SOME NEEDED BACKGROUND

You have already discovered some simple ways to generate
sounds on PCjr. They were used to enhance the impact of generated
pictures, or to signal the current state of the computer. SOUND was the
BASIC command used for this purpose.

There's lots more fun to be had with SOUND. Here you'll discover
ways to imitate the sounds you hear every day. The same methods of
imitation can be used to invent new sound patterns for the creatures
and machines of your imagination.

To succeed in this venture, however, you must come to an under
standing of the fundamentals of sound.

What Is Sound Anyway?

Basically, sound is a vibration of matter. The shattering of your
best table glass, dropped onto the kitchen floor by a slippery-handed
child, is transmitted, via a compression wave in the air, to your ear.
There the eardrum vibrates in sympathy—if not sympathetically—and
transmits an electromechanical signal to the inner ear and on to the
brain, where it is compared with a memory data bank oTstored noises,
classified, and identified.

As you can see, real-life sounds are very complex affairs. But in its
simplest components, a sound consists of a constant-rate vibration (its
frequency or pitch), at a certain energy level (its volume, amplitude or
loudness), for a period of time (its duration).

The Ranges of Sound

The frequency of a sound is normally measured in beats or cycles
per second. This unit of measure is called a hertz, after the great
German scientist Heinrich Hertz (1857-1894). At low frequencies, less
than fifteen hertz (beats per second), you can only sense the vibration
as a shake or tremor. And if the amplitude is too small, say under two
one-hundredths of an inch, you might not even feel it.

For frequencies between fifteen and thirty hertz, the tremor may
be sensed with accompanying clicks, rumbles and other noises. The
rumbles of major earthquakes are so deep that you're not sure you've "
felt or heard them.

Somewhere just short of about thirty hertz is the beginning of
perceived sound vibrations. Musical sounds extend to about 15,000
hertz, the upper limit of audibility. However, the eighty-eight notes of my

76 JAMES E. KELLEY, JR.

piano run the narrower range from low A (27.5 hertz), three octaves
below middle C, to high C (4,186 hertz), four octaves above middle C.
Some pianos will play two or three notes lower than my Steinway

Figure 3.1 gives you an idea of the ranges of sound emitted by
various common sources.

SOUND SOURCE RANGE (IN HERTZ)

Pipe organ 10 - 8,000
Hi-fi system 15 - 30,000
Green frog 50 - 8,000
Clarinet 75 - 1,800
Man 85 - 1,100
Kettle drum 95 180

Lion 110 - 1,080
Trumpet 190 990

Violin 200 - 2,650
Horse 320 - 3,040
Dog 452 - 1,080
Cat 760 - 1,520
Falcon 1,500 - 4,500
Robin 2,000 - 8,000
Grasshopper 7,000 - 100,000
Porpoise 7,000 - 120,000
Bat 10,000 - 120,000
Silent dog whistle 12,000 - 14,000

Figure 3.1: Approximate Ranges of Sounds Emitted from
Common Sources

Picking Your Speaker

There are two sound-generator chips in PCjr. One is a single-note
generator with a range from 37 hertz to 32,767 hertz. Above about
15,000 hertz, only your dog or cat will hear what's going on.

Do you have the BASIC prompt showing? Try this:

Type: SOUND OFF:BEEP OFF <ENTER> (Direct sound to inter
nal speaker only)

Type: SOUND 37,8 <ENTER> (The Bronx Cheer)

SOUND & GRAPHICS FOR THE IBM PCjr 77

/

The other chip generates sounds from 110 hertz (the A note one
octave below middle C on the piano) to 32,767 hertz. Try this:

Type: SOUND ON:BEEP OFF <ENTER> (Direct sound to exter
nal speaker only)

Type: SOUND 37,8 <ENTER>

Notice you didn't get the Bronx Cheer, but something more pleasing,
namely the A of 110 hertz. In fact, every frequency from 37 to 110 hertz
will produce 110 hertz from this second chip. One way to verify this is to
play 110 hertz on the internal speaker and compare it with the notes
played on the external speaker:

Type: SOUND OFF:BEEP OFF <ENTER> (Direct sound to inter
nal speaker only)

Type: SOUND 110,8 <ENTER>

What's the highest frequency you can hear? Try both the internal
and the external speaker. You may get different answers. (Don't try too
hard to find the highest hertz value you can hear. You'll have to raise the
volume to do so, and you might hurt your ears.)

Not only can you switch sound outputs from the internal to the
external speaker, you can play through both speakers simultaneously.
Try this:

Type: SOUND OFF:BEEP ON <ENTER> (Use both speakers)
Type: BEEP <ENTER>

You cancel playing through both speakers by executing BEEP
OFF.

What happens to the sound when you do SOUND ON:BEEP ON?

2. GENERATING INTERESTING SOUND
PATTERNS

Now that you know some fundamentals, it's time to get down to
cases and apply what you know.

My first approach to generating sound patterns was partly logical
but mostly a random search for interesting noises. I'd think of a sound

78 JAMES E. KELLEY, JR.

I'd like to make and mentally analyze its component frequencies,
durations and counterpoints—using data like that of Figure 3.1 to set a
frequency range. Then I'd write a little program to produce the sound I
wanted. Of course, when I tried the program, it wouldn't even come
close to my intention, but the generated noise was often interesting
and sometimes like some other familiar sound. So I'd play around with
the program, and eventually I got a feel for how to generate various tone
and noise patterns.

I heartily recommend that you do this type of needling yourself. To
get you started, and to stimulate your imagination, I have presented a
small library of sound patterns in Figure 3.2 as a series of subroutines.
Key the subroutine library into program memory and then SAVE it on
your Test Programs diskette as an ASCII file. You'll then have it handy to
incorporate into other programs you write.

When you have finished keying Figure 3.2 and have SAVEd it, try
the various sound patterns. To call a particular sound pattern, the
Ambulance, for example.

Type: GOSUB 2330 <ENTER>

For other sound patterns, substitute in the GOSUB command the line
number of the remark statement that describes the pattern.

NOTE: These routines were written for the internal speaker and
may not work as designed for the external speaker. Try all the sound
patterns for each speaker separately, and note when the effect is
acceptable and when it is not.

When you tire of listening to the sound pattern, type <Esc> to
return to BASIC command mode. Be patient. Some of the subroutines
may have to complete a cycle before they detect the <Esc>.

As you listen to a sound pattern, read the program lines that
generate it so you can learn to associate the sound with the instruc
tions that produce it.

SOUND & GRAPHICS FOR THE IBM PCjr 79

2000' SOUNDLIB.BAS

2010 ' Subroutines for common or imaginative sounds
2020 ' to which the reader is to add his or her own.

2030 '

2040 ' TRUCKS PASSING ON THE HIGHWAY

2050 SOUND ON

2060 VEL=88:FREQ = 110

2070 F=(1800/(1800-VEL))*FREQ
2080 FOR V = 0 TO 15 STEP .01

2090 SOUND F,.06,V
2100 NEXTV

2110 F=(1800/(1800 + VEL))*FREQ
2120 FOR V = 15 TO 0 STEP -.01

2130 SOUND F,.06,V
2140 NEXTV

2150 A$ = INKEY$:IF A$ = CHR$(27) THEN SOUND
OFF:RETURN ELSE 2060

2160 '

2170 ' EXTRATERRESTRIAL MACHINERY

2180 FOR 1 = 600 TO 1400 STEP 250

2190 SOUND I,.55
2200 NEXT I

2210 A$ = INKEY$:IF A$ = CHR$(27) THEN RETURN
ELSE 2180

2220 '

2230 ' BRITTLE PATTERNS

2240 R = 5000*RND(1) + 500
2250 SOUND R,1
2260 A$ = INKEY$:IF A$ = CHR$(27) THEN RETURN

ELSE 2240

2270 '

2280 ' EXERCISES

2290 FOR K = 100 T01000 STEP 100:SOUND K,2;NEXT K
2300 FOR K= 1000T0100 STEP -50:SOUND K,1 :NEXT K
2310 A$ = INKEY$;IF A$ = CHR$(27) THEN RETURN

ELSE 2290

80 JAMES E. KELLEY, JR.

2320 '

2330 • AMBULANCE

2340 SOUND 700,7
2350 SOUND 800,7
2360 A$ = INKEY$:IF A$ = CHR$(27) THEN RETURN

ELSE 2340

2370 '

2380 ■ IMPATIENT BOY FRIEND

2390 FOR K = 1 TO

3:S0UND 400,4:SOUND 32767,1 :NEXT K
2400 FOR K=1 TO 2500:NEXT:' DELAY

2410 A$ = INKEY$:IF A$ = CHR$(27) THEN RETURN
ELSE 2390

2420 '

2430 ■ THE CLOCK

2440 SOUND 550,3:SOUND 100,0:SOUND 440,4:SOUND
880,0

2450 FOR I = 1 TO 600:NEXT I

2460 A$ = INKEY$:IF A$ = CHR$(27) THEN RETURN
ELSE 2440

2470 '

2480 ' THE CUCKCOO

2490 SOUND 900,3
2500 SOUND 725,4
2510 SOUND 32767,3
2520 FOR I = 1 TO 500:NEXT I

2530 A$ = INKEY$:IF A$ = CHR$(27) THEN RETURN
ELSE 2490

2540 '

2550 ' END OF PROGRAM SIGNAL

2560 SEC = 20:T = 1120*SEC

2570 SOUND 650,7
2580 FOR 1 = 1 TO 100:NEXT

2590 SOUND 1100,7
2600 FOR 1 = 1 TO 100:NEXT

2610 SOUND 880,8

SOUND & GRAPHICS FOR THE IBM PCjr 81

2620 FOR 1 = 1 TOT

2630 A$ = INKEY$:IF A$ = CHR$(27) THEN RETURN
2640 NEXT l:GOTO 2570

2650'

2660 ' BUCK ROGERS RAY GUN BLASTER

2670 FOR K=1 T0 5

2680 FOR 1 = 200 TO 1600 STEP 120

2690 SOUND I,.19
2700 NEXT

2710 NEXT K

2720 FOR 1 = 1 TO 875:NEXT

2730 A$ = INKEY$:IF A$ = CHR$(27) THEN RETURN
ELSE 2670

2740 '

2750 ' WWI AIRPLANE ENGINE

2760 FOR 1 = 40 TO 80

2770 SOUND I,.03
2780 NEXT I
2790 A$ = INKEY$:IF A$ = CHR$(27) THEN RETURN

ELSE 2760

Figure 3.2: SOUNDLIB.BAS—A Beginning Library of
Sounds and Noises.

3. A MORE SCIENTIFIC APPROACH

The Frequency-Time Diagram

You can have lots of fun trying all sorts of combinations of SOUND,
but for our purposes here, a more organized approach might be
helpful.

Have you ever seen the analysis of a birdcall on a TV nature show?
The naturalist feeds a tape recording of the sound into a spectrum
analyzer, which plots the various pitches that make up the sound onto a
time scale. The result looks like a series of painted strokes of various
lengths. Let's see if we can use this idea of a sound spectrum to
discover the constituent parts of noises and everyday sounds.

82 JAMES E. KELLEY, JR.

Figure 3.3 shows a sawtoothed curve, one of the simplest exam
ples of a frequency-time diagram. The vertical axis represents the
sound's pitch (or frequency). The horizontal axis represents time. The
leftmost slash on the diagram illustrates a repeating sound pattern that
starts at 1,000 hertz and rises to 4,000 hertz over a one-second period.
Then there's a one-second delay before the rising sound is repeated.

Let's find out what this diagram sounds like when it's programmed
for PCjr. As we go along, see how many familiar sounds you can think of
that have this simple sawtoothed character. You'll use your list later to
test the program you're about to develop.

Programming the Frequency-Time Diagram

Do you have a clean program memory? If not.

Type: NEW <ENTER>

Now you'll need a SOUND command to create whatever pitch you
want.

160 SOUND X,T,12,0

PITCH

5;000

4-, 000

3,000

2^000

1,000

>'

/
-r
i / 1 i
/
r

i
r-

TiM^
Figure 3.3: Repeated Single-Stroke Sound Pattern

SOUND & GRAPHICS FOR THE IBM PCjr 83

This Instruction plays a pitch of X hertz (unspecified yet), for a duration
of T computer clock times (unspecified yet), at loudness 12, through
voice channel 0.

You know what pitch is—the highness or lowness of a tone. But
what about a duration of T computer clock times? The explanation is
simple. PCjr has a clock inside. There are 18.2 clock times per second.
This means that one computer clock time is about 0.055 of a second.
So if we put T=1, pitch X will sound for 0.055 second.

The loudness or volume number controls the decibel level of the
sound. A value of 0 turns the sound off. The highest value permitted is
15.

The music chip used with the external speaker permits you to play
up to three voices together. They are numbered 0,1 and 2.

The next step is to specify the pitch of the sound. One value won't
do, of course. According to Figure 3.3, the pitch ranges from 1,000 to
4,000 hertz. Let's call the lower pitch limit A and the upper pitch limit B.
Then all you need do is sandwich the sound statement in a FOR...NEXT
loop this way:

150 FOR X = A TO B STEPS

170 NEXT

LIST the growing program so you can see the sandwich.
Although the figure shows the pitch varying continuously, we'll

move along by steps of length S.
NOTE: I've omitted the index (i.e., pitch) variable X from the NEXT

command to make the loop operate faster.
To see whether what you have so far works correctly, set up the

variables A, B, S and T manually for this test. Try these values:

Type: A=1000:B=4000:S=150:T=.5 <ENTER>
Type: GOTO 150 <ENTER>

The sound should have zipped along from low to high pitch. If it didn't,
check yourtyping. And if that's not the problem, you may have acciden
tally turned the sound off. Type: SOUND OFF:BEEP OFF <Enter> and
try again.

84 JAMES E. KELLEY, JR.

m;

Marking Time

The next step is to put In the delay before repeating the upward-
soaring noise.

190 SOUND 32767,18.2*S2„0

Keep LISTIng as lines are added so you appreciate the relations
among commands and the thought process Involved In building a
program.

With a pitch of 32767, you won't hear a sound at all. This Is
equivalent to a soundless delay of the specified duration. Notice that
seconds of delay, 82, are converted to clock ticks by multiplying by
18.2. There's no need for volume, but the delay should occur In voice
channel 0. Thus, the extra comma Is needed to tell PCjr that 0 Is to be
Interpreted as "voice," not "volume."

Closing the Loop

Next, we've got to repeat the sound pattern by starting again at
line 150.

200 GOTO 150

Let's see If It works. Just proceed as before.

Type: A = 1000:B = 4000:8 = 150:T = .5 <ENTER>
Type: GOTO 150 <ENTER>

Setup Preiiminaries

You're almost finished. You've already defined A and B, the lower
and upper pitch limits, and 82, the duration of the delay In seconds.
Call the duration of the sound Itself 81 (In seconds). Suppose you
divide this sound Interval Into N parts. Then you can define all the data
needed to reproduce the sound of Figure 3.3 In a line of coding like this:

110 A=1000:B = 4000:81 =1:82 = 1:N = 50

The number of clock ticks, T, for the SOUND command Is then
calculated from the value of 81 this way:

120 T = 18.2*81/N

SOUND & GRAPHICS FOR THE IBM PCjr 85

And the interval step of the FOR...NEXT loop is simply

130 S = (B-A)/N

Finally, a couple of technicalities.

140 SOUND ON-.BEEP OFFPLAY "MB"

Of course, you've already learned that SOUND ON:BEEP OFF directs
sound to the external speaker. PLAY, which we'll use extensively later, is
a special command that tells PCjr to run sound in the Background
Mode. That is, it permits the program to go ahead and do its thing while
the sounds play in the background from notes placed in a sound buffer
(a special part of the computer's memory set aside for that purpose).

Don't Leave Pieces Out

Before we go any further, there's an error we must take care of. The
SOUND statement will not work for a duration of under 0.015 clock
ticks, so if we specify a zero delay (i.e., 82 = 0) the program won't work.
Let's test for this case.

180 IF 18.2*S2<.015 THEN 150

Finishing the Job

Now label it;

100' SINGLE STROKE SOUND PATTERN

And save it.

Type: SAVE"1-STR0KE.BAS" <ENTER>

Does the program work?

Type: RUN <ENTER>.

If it doesn't work, check your typing against the text above. And if
you make corrections, don't forget to SAVE the program again.

For ready reference, make a printout of 1-STROKE.BAS with the
LLIST command.

86 JAMES E. KELLEY, JR. .

Discovering the Potential of 1-Stroke

As we've gone along, have you thought about what kinds of
familiar sounds might be imitated by a one-stroke sound pattern? To
imitate them with our program you must guess at A, B, S1, S2 and N.
Then you plug these guesses into line 110 and RUN. If your guess is not
acceptable, you've got to fiddle with the values until you find the best
imitation.

To get you started, here are a few examples you might try. Just
plug the indicated values into line 110 of 1-STROKE.BAS.

A B SI S2 N
Whooper Siren 800 1000 1.0 0 50

Busy Signal 50 100 .3 .8 10

Telephone Ring 500 505 .5 2.0 120
Hungry Chick 3500 2000 .2 .8 15

Try running these, as well as those you make up yourself, in the
foreground. That is, substitute "MF" (Foreground Mode) for "MB"
(Background Mode) in the PLAY instructions of line 140. Note the
different effects. You may be able to exploit them later on.

CAVEAT: If you find that your changes in A, B, etc. are not effec
tive, you probably forgot to type <Enter> to register the changes
before you moved to another line to do RUN or the equivalent.

4. MULTIPLE-STROKE VOICE PRINTS

As you discovered pretty quickly, the program 1-STROKE.BAS
has limited possibilities. The next obvious step is to work with voice
prints of two or more different strokes, separated by time delays—
including zero delay, of course. Figure 3.4 shows a possible pattern for
two strokes.

The Police Siren

The easiest way to program Figure 3.4 is to run 1-STROKE.BAS
twice in tandem, but with different values of A, B, SI, etc. Actually, the

SOUND & GRAPHIOS FOR THE IBM PCjr 87

ftnn
(Herti)

TIMS'
Figure 3.4: Repeated Double-Stroke Sound Pattern

(Police Siren)

program-building process is more like merging 1-STROKE.BAS with
itself, because you want to put the setup commands together up front.
Figure 3.5 shows how to do the merge. The data used here emulates a
police siren.

You can see by comparing 1-STROKE.BAS with 2-STROKE.BAS
that an index number, 1 or 2, has been appended to each variable so
that you'll know to which stroke it applies. For example, A1 and A2 are
the lower pitch limits of stroke 1 and stroke 2, respectively.

Notice, too, that I've introduced new variables, VI and V2, to
represent the volumes of the strokes. Varying volume is important if you
want one of the sound strokes to dominate.

A different scheme has also been used to create time delays,
namely the FOR...NEXT loops of lines 230 and 280. A count of 875 is

88 JAMES E. KELLEY, JR.

100 ' DOUBLE STROKE SOUND PATTERN
110'INITIALIZE

120 A1 =500:81 =2000:S11 = .8:S21 =0:N1 =40:V1 =12
130 A2 = 2000:82 = 500:S12 = .8:S22 = 0:N2=40:V2 = 12
140 T1=18.2*S11/N1

150T2 = 18.2*S12/N2

160 S1=(81-A1)/N1
170 S2 = (82-A2)/N2
180 SOUND 0N:8EEP OFF:PLAY "mb"
190 ' FIRST STROKE

200 FOR X = A1 TO 81 STEP SI

210SOUNDX,T1,V1,0
220 NEXT

230 FOR I = 1 TO 875*S21 :NEXT

240 " SECOND STROKE

250 FOR X = A2 TO 82 STEP S2
260 SOUND X,T2,V2,0
270 NEXT

280 FOR I = 1 TO 875*S22:NEXT' Pause before repeat
290 GOTO 200 ' Repeat cycle

Figure 3.5: 2-STROKE.8AS

close to one second on PCjr. So multiplying 875 by 821 and 822 (delay
in seconds) does the trick. This programming device works for a delay
of zero without need for the test introduced in line 180 of 1-
STROKE.BAS.

Applying 2-STROKE.BAS

The police siren was easy to conceive. However, you have to
concentrate a little harder now to analyze a two-stroke voice print.
There are so many variables. One way to develop skill in generating
voice prints is this:

Take a piece of paper and make columns headed A1, 81, S11
N1, A2, 82,..., N2—all the variables involved. Now select values for

SOUND & GRAPHICS FOR THE IBM PCjr 89

these variables and plug them into 2-STROKE.BAS. Listen to the
sound produced and classify it using common noise words: click,
burp, wail, chatter, rumble, buzz, chirp, warble, etc. Your early experi
ments should involve large changes in the variables so that you're not
stuck trying to distinguish between sounds that are too similar.

As soon as you've developed ten to twelve different sounds, you'll
begin to notice that particular types occur for given combinations of
the variables—e.g., high short with low long pitch, short with long play
interval, medium with high volume, many with few interval counts (i.e.,
N1 versus N2). Notice that when durations of individual sounds are
relatively long, there is a loss of continuity in the sound pattern.

To get you started, here are a few examples to try.

Bfoppy Sucking Sound

This is a funky boat's engine, like the one on the African Queen. Or
perhaps a mad scientist's lab equipment in operation. Be sure to do it
on the external speaker.

120 A1 =400:81 =5000:811 = .1:S21 =0:N1 =3:V1 =4

130 A2 = 50:82 = 999:812 = .05:822 = 0:N2 = 9:V2 = 12

CAVEAT: As you key these examples, take care that your eye
doesn't jump to the wrong line as you're typing. Lay a straightedge just
under the line being typed as a guide.

Crickets

Here's how you might simulate the sounds of a hot summer's night.

120 A1 =1800:81 =1810:811 = .1:821 =0:N1 = 20:V1 =12

130 A2 = 1500:82 = 1510:812 = .1:822 = 0:N2 = 30:V2 = 6

Bomb Drop—Sort Of!

This poor man's Stuka dive bomber could do with improvement.
What can you do with it?

120 A1 = 6000:81 = 1500:811 = 1.8:821 = 1.5:N1 = 100:V1 = 12

130 A2 = 110:82= 125:812 = .1:822 = 1:N2 = 30:V2 = 12

90 JAMES E. KELLEY, JR.

Frogs

Try these parameters;

120 A1 = 50:B1 = 40:S11 = .1 :S21 = .3:N1 = 15:V1 = 15
130 A2 = 40:B2 = 50:S12 = .1 :S22 = .3:N2 = 15:V2 = 15

It doesn't sound much like frogs yet, but the reason isn't in the
parameters. The two sound chips have different effects on the sound
equipment. The TV speaker seems to pick up a click when the multi-
voice chip is activated and deactivated.

Turn SOUND OFF in line 180, so that the program is played
through the internal speaker, and try it.

Now try all the previous sounds with this single-voice chip, that is,
with SOUND OFF, to hear what happens.

Has it occurred to you that it may be appropriate to play part of a
sound pattern through one chip and another part through the other
chip? Just use SOUND ON and SOUND OFF to do the switching back
and forth.

5. BIRDCALLS

The Chestnut-sided Warbler

Of course, you now see how you might expand 2-STROKE.BAS to
three or more strokes and develop all sorts of sound pattern combina
tions. There's one variation on the 4-stroke generator I'd like to show
you. It's really an N-stroke generator, but the middle N-1 strokes are all
the same.

Figure 3.6 illustrates the case. It depicts one of the calls of the
Chestnut-sided Warbler.

Figure 3.7 is a program to generate the sound patterns corre
sponding to Figure 3.6:

SOUND & GRAPHICS FOR THE IBM PCjr 91

%soo

fircH

hfiOO

4,000

Figure 3.6: Chestnut-Sided Warbier's Caii r/M0:

100 ' WARBLER.BAS, CHESTNUT-SIDED
110' Initialize

120 SOUND OFF:BEEP OFF:PLAY "mb" ' Select
internal speaker

130 A1 =6000:B1 =3000:S11 = .2:S21 = .9:N1 =15 '
Define notes

140 A2 = 3000:B2 = 3800:S12 = .1 :S22 = 0:N2 = 6
150 A3 = 3000:B3 = 6200:S13 = .05:S23 = .5:N3 = 9
160 A4 = 4200:B4 = 3000:S14 =. 1 :S24 = 2:N4 = 5
170 T1 =18.2*S11/N1 ' Define note durations
180T2 = 18.2*S12/N2

190T3 = 18.2*S13/N3

92 JAMES E. KELLEY, JR.

200T4 = 18.2*S13/N4

205T5 = .3

210 SI =(B1-A1)/N1 ' Define steps
220 S2 = (B2-A2)/N2
230 S3 = (B3-A3)/N3
240 S4 = (B4-A4)/N4
250 ' first stroke

260 FOR X = A1 TO B1 STEP SI

270 SOUND X,T1,12,0
280 NEXT

290 FOR I = 1 TO 875*S21 :NEXT ' Delay
300 ' second stroke

310 FOR K=1 TO 4' Create warble of second stroke
320 FOR X = A2 TO B2 STEP S2

330 SOUND X,T2,8,0
340 NEXT

350 NEXT K

360 FOR I = 1 TO 875*S22;NEXT' Delay
370 ' third stroke

380 FOR X=A3 TO B3 STEP S3

390 SOUND X,T3,10,0
400 NEXT

405 SOUND B3,T5,10,0 ' Sustain B3 slightly
410 FOR I = 1 TO 875*S23:NEXT' Delay
420 ' fourth stroke

430 FOR X=A4 TO B4 STEP S4

440 SOUND X,T4,6,0
450 NEXT

460 FOR X = 1 TO 875*S24:NEXT' Pause before repeat
470 GOTO 260' Go repeat call

Figure 3.7: WARBLER.BAS

Notice that the principal deviation from the general program
design of 2-STROKE.BAS is the embedding of the second stroke
in a FOR...NEXT loop, starting at line 310. in this way the stroke
may be repeated a number of times. Try modifying this program
so that varying volumes may be used.

Does a change in volume make any difference when you use
the internal speaker as we've done here?

SOUND & GRAPHICS FOR THE IBM PCjr 93

The Love Call of the Flicker

The same principles we've been learning can be simplified
to some extent by leaving out lines of coding that are redundant—
e.g., zero delays between strokes. Then you may not feel so
constrained to fit in additional sounds, sustaining the first and/or
last sound of a stroke.

Let's do an example by emulating the love call of the Yellow-
shafted Flicker, modeled in Figure 3.8.

PlflH
(Haft)

3,000-

3^000

1,000

TT

f&i
1
1 1 1
1 1 /
1 1 r

4

'rt

4

V.

Figure 3.8: Love Call of the Flicker nM^-

94 JAMES E. KELLEY, JR.

3.9.

The program corresponding to Figure 3.8 Is given In Figure

100 ' FLICKER.BAS—COURTSHIP CALL

110 SOUND OFF:BEEP OFFiPLAY "MB"
120 A=900:B = 3000:C = 1400

130 S = 525:T1 = .05:12 = .05:T3 = .1 :D = .02
140 FOR K=1 TO 6' Create repetition of pattern
150 SOUND A,T1 ' Sustain first note
160 FOR I = A TO B STEP S ' Play first stroke
170 SOUND l,T2
180 NEXT

190 SOUND C,T3' Sustain third note
200 FOR I = 1 TO 875*D:NEXT' Delay between stroke

patterns
210 NEXTK

220 FOR 1 = 1 TO 875*2:NEXT' 2-sec delay between
calls

230 GOTO 140 ' Go repeat call

Figure 3.9: FLICKER.BAS

SOUND & GRAPHICS FOR THE IBM PCjr 95

The Wood Pewee's Call

There's another example, a rather musical one, I'd like to share
with you. It's the Wood Pewee's call, diagrammed in Figure 3.10.

f,ooo

nizH
(Hlrti')

3.000

WO

TIM^

Figure 3.10: The Wood Pewee's Call

96 JAMES E. KELLEY, JR.

The program corresponding to Figure 3.10 is given in Figure 3.11.
As you read through the program, notice how it is built from the same
principles we've used already, though it's perhaps a little more involved
than the others.

100 ' WOODPWEE.BAS

110 A=4100:B = 2600:C = 3400:E = 2000

120 11 = 1 :T2 = .4:73 = .6:74 =. 1:75 = .3:76 = .2:77 = .2

130 SI =-100:82 = 50:83 = -100

140 D0 = .8:D1 = .3:D2 = 2.5:V=6

150 SOUND OFF:BEEP OFF:PLAY "MB"

160 FOR K = 1 70 3 ' Repeat first sound pattern
170 SOUND A,71 ,V' Sustain first note
180 FOR I = A 70 B S7EP 81 ' Do first stroke

190 SOUND l,72,V
200 NEX7

210 SOUND B,73,V ' Sustain second note
220 FOR I = B 70 C S7EP 82 ' Do second stroke
230 SOUND C,74,V
240 NEX7

245 FOR I = 1 70 875*D0:NEX7

249 NEX7 K

250 FOR 1 = 1 70 875*D1:NEX7 ' Delay before second
pattern

260 SOUND A,75,\/' Sustain starting note of stroke
270 FOR I = A 70 E S7EP S3 ' Do stroke

280 SOUND l,76,V
290 NEX7

300 SOUND E,77,V' Sustain ending note
310 FOR I = 1 70 875*D2:NEX7' Delay before repeating
320 G070 160 ' Repeat call

Figure 3.11: WOODPWEE.BAS

SOUND & GRAPHICS FOR 7HE IBM PCjr 97

Sources of Birdcalls

There's no guarantee that the birdcalls simulated here sound like
the real thing. I've never heard the birds in question. If realism is what
you require, you'll have to make the comparison yourself.

I was guided by a wonderful little book by Aretas A. Saunders, A
Guide to Bird Songs (Doubleday, 1951). You should try to borrow it from
the library. It's full of diagrams with the same flavor as Figures 3.6, 3.8
and 3.10. You can program them just as we've done here.

Saunders gives the approximate pitch of the key note in each call,
and a phonetic rendition. This is generally enough information to
approximate the frequencies involved.

Some bird identification books, such as Birds of North America,
by Robbins, Bruun and Zim (Golden Press, 1966), contain
audiospectrograms, or sonagrams, of many of the birdcalls. These
frequency-time diagrams were developed from Saunders' work. How
ever, they were generated by scientific instruments and contain all the
overtones and sound variations the birds produce. These voice prints
can be quite difficult to interpret for writing a simple computer pro
gram. What does one include, exclude? In fact, most overtones shown
in these sonagrams are drowned out by the principal tone and you
can't even hear them. So until you develop an interpretive skill, you'll
probably be more successful using Saunders' little book.

6. WHAT DO YOU KNOW NOW?

Are you following along okay? So far the strategy has been not to
introduce too many programming ideas, but to exploit simple, ever so
powerful, FOR...NEXT loops. The concentration here has been on
sound patterns themselves, and how by changing frequency ranges
and durations you can mimic things.

The more you practice making sound patterns, the better you'll
become at it. So why don't you go back through the chapter once more
and review each example. Ask yourself how you might improve the
different sounds and try out your ideas. Then ask yourself what other
sound patterns might be generated if you changed a frequency range
here or a duration there in the example. Be sure to record your results
for future reference.

98 JAMES E. KELLEY, JR.

Also be sure you understand the BASIC commands used. Figure
3.12 summarizes those used in the chapter. Go down the list and check
your recollection of their functions. When you're not sure, look them up
in the BASIC manual, and check back to where they're used in the
chapter.

BASIC COMMAND FUNCTION

FOR...NEXT Repeat a sequence of
commands

GOSUB...RETURN Call and return from

subroutine

GOTO Take next command from

line indicated

INKEY$ Read character from type-
ahead buffer

PLAY "mb" Play sounds in background
RND Generate random number

between 0 & 1

SAVE filespec.A SAVE program on disk in
ASCII format

SOUND ON:BEEP OFF Direct sound to external

speaker only
SOUND OFF:BEEP ON Direct sound to both

speakers
SOUND OFF:BEEP OFF Direct sound to internal

speaker only
SOUND ON:BEEP ON Turn off both speakers
SOUND Play pitch of specified

duration & volume

Figure 3.12: Summary ofCommands in Chapter 3

SOUND & GRAPHICS FOR THE IBM PCjr 99

CHAPTER 4
EUTERPEAN MUSINGS

Objective:

This chapter presents PCjr's easy-to-
iearn musical language.

SOUND & GRAPHICS FOR THE IBM PCjr 101

1. THE FUNDAMENTALS OF PCjr MUSIC-
MAKING

Scales and Stuff

All music, whether It be classical, jazz, bluegrass, rock, sacred or
whatever, is organized around fundamental musical structures called
scales. Whether you realize it or not, you're probably already familiar
with one of the most basic scales. It's called the diatonic major, and you
give a rendition of it every time you sing, "Do, re, mi, fa, sol, la, ti, do."
"Diatonic" simply means the tones that correspond to the white keys
on a piano.

PCjr also knows this scale. Here it is in the key of C;

Type: SOUND ON:BEEP OFF <ENTER>
Type: PLAY "03CDEFGAB>C" <ENTER>

That's a letter 0 for "octave" (eight tones of progressing degrees) in
the PLAY command, not the digit zero. Don't get them confused as we
go along.

The 03 selects the octave beginning at middle 0 (a note that's
close to the middle of the piano keyboard and that occupies the space
between the treble staff and bass staff on a sheet of music). The eight
notes of this scale, called the 0 Major scale, are named 0 D E F G A B
0. As you can see, the eighth, or octave, note of this scale has the same
name as the first, and this is true of the first and last notes of every
scale. To keep PCjr from getting confused, the > tells it to move up to
the C in the next octave, 04, rather than jump back to the C note at the
beginning.

NOTE: The eighth note of any octave is also the first note of the
next octave. All octaves on PCjr start at C.

Changing Octaves

The 0, or octave, command lets you select the octave in which you
want to play the lettered notes. There are seven octaves on PCjr,
numbered 0 to 6. You can see from Figure 4.1 where some of them fall
on the piano keyboard. But try out the diatonic scale in some of the
other octaves so that you can hear the differences. For example.

Type: PLAY "01CDEFGAB>C" <ENTER>

102 JAMES E. KELLEY, JR.

SOUND & GRAPHICS FOR THE IBM PCjr 103

L'TYre NOre REST P-TYPE
r—1

Ll = c3 W^ole = --- =P1

L2 = cJ = Hftlf = -^ = R2

L4 = J = Quarter = ;^ = P4 (p«»

L8 = •' = Eighth

II

II

oo

L-16 = = Sixteenth
k

= f =Pi(^

L3Z = t = 1^?2
LM = =Su'yfiiurtli

II

11

Figure 4.2: Note and Rest Values

Wait! Don't type It from scratch. If your previous PLAY command
with the scale Is still on the screen, use the BASIC editor, to change 03
to 01. Simply typing <Enter> after making the change will perform the
scale. If you've left the cursor on the line you just changed.

There's Naught in Time but Timing

To make the scale move along faster.

Type: PLAY "L8" <ENTER>

Now replay the scale. Using the up arrow, just move the cursor up to the
line that contains the PLAY command with the scale and type:
<Enter>.

□Id the scale play more quickly? It should have. With L8 we turned
all the quarter notes Into eighth notes, which play twice as fast.

In written music, vertical lines called bars divide music Into units

104 JAMES E. KELLEY, JR.

of time called measures. At the beginning of a musical composition a
regular number of beats is assigned to each measure by the time
signature, which consists of two numbers, one written over the other.
The most common signature, 4/4, indicates by the top number that
there are four beats assigned to each measure, and by the bottom
number that a quarter (1/4) note is the type that will signify one beat.
Thus, a measure in 4/4 time can contain four quarter notes or eight
eighth notes (two 1/8 notes equal one 1/4 note, just as the fractions 1/8
+ 1/8 = 1/4). Types of notes can also be combined so that you might fill
one of these measures with two quarter notes and four eighth notes. So
long as the total of their time values (i.e., beat) equals four, or their
fractional values (1/4 + 1/4 +1/8 + 1/8 +1/8 + 1/8) equal one, you're
legal.

Figure 4.2 shows the standard musical notes and indicates how
you specify them with the L, or note length, command.

Plug some different note lengths into the diatonic scale we con
structed earlier to hear what happens to the playing speed. Hold it!
Here's a short cut:

Type: PLAY "L1603CDEFGAB>C" <ENTER>

Then, simply change the 16 to a 32 or a 1 or whatever. As a matter
of fact, you can substitute any integer between 1 and 64 into the note
length command. You can get some pretty weird timing combinations
this way. Mostly you'll avoid using this facility unless you want to
reproduce some kinds of jazz and other modern music, which steal a
little time here and add it there in ways difficult to write on the musical
staff.

Sharps and Flats

Another musical scale, the m/nor scale, renders a different musi
cal effect from the major. Listen for yourself.

Type: PLAY "L403CDE-FGA-B>C" <ENTER>

The minus sign (-) tells the computer to flat the lettered note
preceding it. Two notes, however, C and F cannot be flatted in PCjr's
musical language, though they can be meaningfully represented in
normal musical notation. Try to flat 0 and F to see what happens.

SOUND & GRAPHICS FOR THE IBM PCjr 105

Another scale of interest Is the whole-tone scale, much exploited
by Debussy and other modern composers.

Type: PLAY "03L4CDEF#G#A#>CDC<A#G#F#EDC"
<ENTER>

The sharp sign (#) tells PCjr to play the lettered note as a sharp (a
tone that is halfway up to the next note in the scale). However, B and E
may not be sharped. You'll get an "Illegal function call" message. If
you want B# or E#, play C or F, respectively, instead. You'll get exactly
the tones you want. NOTE: You may use the plus sign (+) instead of #.

Sharps and flats correspond to the black keys on the piano.
In the above example, you saw how to change from octave 03 to

octave 04 by using the greater-than sign (>), and back again using the
less-than sign (<). If you want to jump up two octaves, use two >'s in
succession before playing the next note. Try the whole-tone scale in
several combinations of octaves and tempos (i.e., speeds).

Figure 4.1 shows the possible note letter combinations you can
use with PCjr, and where they are located on the piano and on the
music staff.

Dotted Notes

In written music, you can extend the time value of a note by one-
half simply by writing a dot (.) just to its right. You can do the same in
PCjr's musical vocabulary. Try this funky pentatonic (five-tone) scale, in
which every other note is dotted.

Type: PLAY "03L4CD.EG.A>C.DE.GA." <ENTER>

Sort of gives a syncopated feel, doesn't it?

Rests

Sometimes the most attractive thing about a piece of music is the
way the composer uses silence. Silence is denoted in written music by
the rest. On PCjr the P, or pause, command is used to perform a rest.
Try this example:

Type: PLAY "03L8FP8>C<FE-P8B-E-D-P8A-D-C" <ENTER>

106 JAMES E. KELLEY, JR.

Now let's speed it up a bit by changing the tempo. To make the
change

Type: PLAY "T230" <ENTER>

Now move the cursor up to the line of the previous PLAY command and

Type: <ENTER>

That moves along now. To slow it down, change the tempo to
something like T80 and try the example again. You may vary the tempo
from 32 to 255 quarter notes per minute. The default value is 120.

Look at the table of tempos given in Chapter 4 of the BASIC
manual, under the SOUND command. It gives the standard music
designations of tempo and the quarter-note-per-minute (beats) equiv
alent ranges.

The T command can be incorporated anywhere in a string of PCjr
music commands to change the tempo as the piece progresses.

Volume

Another important aspect of musical performance is dynamics—
how the forte (loud) and piano (soft) of the piece interplay. Of course,
you can control the overall sound level by using the TV's volume control
knob. But to vary the sound level within a piece, you need PCjr's V
(volume) command.

Try this example. But before you do, turn the TV volume down. You
don't want to hurt your ears. You can gradually raise the TV's volume to
enhance the contrasts.

Type: PLAY"V12AV4AV8A" <ENTER>

You say you didn't hear any difference? Well, you need to have
SOUND ON, to activate the external speaker, for the volume control to
be effective.

The volume number may range from 0 (silence) to 15 (pull out all
stops). The default value when you start is 8.

SOUND & GRAPHICS FOR THE IBM PCjr 107

2. PCjr—THE MELLOW FELLOW

By now you should have a sense that you don't need to be
conservatory-trained to get PCjr to make music, but the more you know,
the better. It is desirable that you at least become familiar with the
rudiments of reading music notation. Much of what you'll want to do
musically with PCjr amounts to transferring notes from printed music to
PCjr's music notation. But even if you only know how to play a tune on
the piano with one finger, you should still be able to transfer what you
can play to PCjr's music notation and then replay it on the computer.

If you don't have a piano, we will soon fix you up with a little
substitute so that you won't have that excuse to hide behind.

For now, let's give the music transcription business'a go.

Find the Starting Note

Here's a tune everybody can pick out. Hum "Three Blind Mice."
Now go to the piano and locate the opening three notes—to which you
sing the words "three blind mice." (It's okay to use a guitar, or flute, or
whatever.)

Have you got the keys? Okay, look at Figure 4.1 to identify them.
These notes orient you for the rest of the tune.

I don't know what your starting note is, but I started with E just
above middle C, so my first three notes are E, D, C. As you know by
looking at Figure 4.1, they belong to the 03 octave. Of course, these
same three notes are echoed in the next phrase, a repeat of "three
blind mice."

Define Your Basic Note Vaiue

In the third phrase, "See how they run," there's an extra syllable to
deal with, which gets us right to the question of timing and note value.

The first two phrases of the tune count off this way (count by
tapping your foot, one tap per beat):

Notes E D C

Words Three blind mice (pause) , .
Count DUM - DUM - DUM - silent beat frepeat}

Each phrase has four beats, so we'll try using a quarter note (four
to the bar) as a basic unit. Looking at Figure 4.2, we see that the quarter
note is defined by L4.

108 JAMES E. KELLEY, JR.

Let Your Ear Guide You

We've got enough data to try something on PCjr now.

Type: PLAY "03 L4E D 0" <ENTER>

Separating notes by spaces makes it easier to read music phrases, but
it's not essential to do so.

What we've just done is fine for the first phrase. But remember,
there's a pause before it's repeated.

Golden Moments of Silence

The pause has the same duration as the syllables, which are all
quarter notes, so we need a quarter rest. Look in Figure 4.2 again. You'll
see that the quarter-note rest, or pause, is specified by P4. Now move
the cursor up to the PLAY command and make the addition:

Type: PLAY "03 L4E D 0 P4" <ENTER>

We're getting there.

Save the Correct Answer

Now that we've got something working, we should save it in
program memory so we don't have to key it in and debug it all over
again. Don't clear the screen, but clear program memory with NEW,
then move the cursor up to the P in PLAY. Carefully,

Type: <lns> (The Insert key)
Type: 120 <ENTER>

Repeat this operation to save the second phrase, which echoes
the first; that is, change the 120 line number on the screen to 130 and hit
ENTER. You should now have the first two phrases of "Three Blind
Mice" in memory. To play it, we should select a speaker.

Type: 110 SOUND ON:BEEP OFF

Type RUN, and it should play for you. LIST, and you'll see the two PLAY
commands.

SOUND & GRAPHICS FOR THE IBM PCjr 109

Splitting Note Values

Next we have "See how they run" to deal with. First, on what note
does the phrase start? it's higher than E, so fish along up the scale on
the piano till you find it. Since i started on E, this next phrase starts on G
for me.

The count is a little more complex this time. Here's how I see it;

Notes G F F E

Words See how they run (pause) rreoeatf
Count DUM - DUM-di - DUM - silent beat ^ ^ '

The "see" and the "run" still have the feel of the quarter notes in
the first phrase, but the "DUM-di" business is two shorter beats that
must add up to a quarter note. Let's try two eighth notes for them. We're
still in octave 03, and we still need a quarter-note rest at the end of the
phrase.

Type: PLAY "03 L4G L8F F L4E P4" <ENTER>

That's close, but it doesn't quite capture the rhythm. The first F, the one
on the "DUM," should be held slightly longer than the one on the "di."

Let's steal a little time from the second F and add it to the first. This
stealing is done by "dotting" the first F and cutting the time of the
second in half. So where you see F F in the PLAY command, substitute
F. L16F using the cursor controls. To play the command, just hit
<Enter>.

Save this command in program memory too. Move the cursor up
to the P in PLAY, strike the Insert key, and

Type: 140 <ENTER>

The line should look like this:

140 PLAY" 03 L4G L8F. L16F L4E P4"

As before, duplicate this line by changing the 140 line number on
the screen to 150 and hit <Enter>. A RUN at this point plays the first
four phrases (actually measures or bars) of "Three Blind Mice." Try it.

110 JAMES E. KELLEY, JR.

Tougher Stuff

The next phrase is tougher yet. Here's how I gauge It.

Notes GCCBAB C CG G
Words They all ran af-ter the farm-er's wife, who
Count di - DUM-dl - DUM-de-di - DUM-dl - DUM - di

If a "DUM-di" corresponds to a dotted eighth and a sixteenth
(e.g., L8C.L16C), we've got something of a count mismatch. The first
word, "They," must be part of the previous phrase, in the same way
that "who" is the last word in the current phrase. We'll have to fix line
150.

Type: EDIT 150 <ENTER>

Move the cursor right under the last 4 in the P4 at the end of the line.
Append these new music characters:

Type: 8.L16G" <ENTER>

That'll take care of the "They" by converting the quarter rest to a dotted
eighth rest and adding the sixteenth note of value G.

The phrase also has another problem. The words "afterthe" have
three syllables, which must be fit into the time range of a quarter note—
a so-called triplet. How do you divide a quarter note into three equal
parts? You've got to be good at fractions or ratios to solve this kind of
problem: 1 is to 4 (the quarter) as 3 (the triplet) is to X (the unknown). I
get X=12. We've got to make the BAB triplet consist of twelfth notes.

This creates a problem. Twelfth notes don't exist in Figure 4.2. But
don't worry. PCjr has the answer, LI2. Write the phrase this way:

PLAY "04L8C. L16C <L12BAB >L8C. L16C <L8G. L16G"
<ENTER>

How these lines correspond to music notation is shown in Figure
4.3. From all this discussion you can see that playing music on the PCjr
is largely a copy operation—transcribing from notes on the piano or
sheet music.

SOUND & GRAPHICS FOR THE IBM PCjr 111

"T
hr

ee
 ^

li
nd

 M
i
c
&
"
 *

J
—
1

#
/

1
 1

—

—
<
—

-4
■H

J

>
W

 1

A
1 1

—
—

1

Li
fiC

 H
O

U'
lIC

 1
30

14

0

-N
—

1

%

—
*

r-
4

—
1

 1

C0
3L

4Q

Ll
f-

Uf
cF

w

e
P«

.
U

6Q
]

I
I'lA

 f.
 1

^0

p:
4-

P
a

m
J

_

9
f-

1
^

^
1

i
^

T
 I

I
I

I
I

1
1

.
1

.
'

i

Lm
e

ilp
o

Um
 h

iuv
inb

ers
-fi^

m
BI

NP
MI

O^
BA

S
(fi'

^u
re'

 4
.4)

-

1
 J

1
)

Fi
gu

re
 4

.3
:

Tr
an

sc
rib

in
g

M
us

ic
 N

ot
at

io
n

to
 P

C
jr

M
us

ic
 L

an
gu

ag
e

1
 1

1
 J

At this point you know all you need to know to finish "Three Blind
Mice" by yourself. But Figure 4.4 gives the whole tune so you can
check yourself against my try.

100 ' BLNDMICE.BAS

110 SOUND OFFiBEEP ON ' Internal speaker
120 PLAY"03L4E D 0 P4"

130 PLAY"03L4E D C P4"

140 PLAY"03L4G L8F. L16F L4E P4"

150 PLAY"03L4G L8F. L16F L4E P8. L16G"
160 PLAY"04L8C. LI 60 <L12BAB >L8C. LI 60 <L8G.

L16G"

170 PLAY"04L8C. LI60 <L12BAB >L80. LI60 <L8G.
L16G"

180 PLAY"04L80. LI 60 <L12BAB >L80. LI 60 <L8G.
L16F"

190 PLAY"03L4E D 0 P4"

Figure 4.4: BLNDMIOE.BAS

NOTE: Observe that I make a habit of writing PLAY commands by
the measure or bar. You don't have to, of course, but it seems easier to
correct errors and to modify arrangements when working in units of
one measure.

NOTE: I also consider a measure to be independent of its immedi
ate predecessor. So I tend to begin by specifying the octave anew as
well as the starting note length. If I'm concerned about dynamics, I'll
include a V command too. Tempo usually remains constant for a
section of the piece.

Jump Right into It!

The place to start, even if you're fairly competent in music, is with
simple tunes. Then, when you're, used to the way PCjr wants you to
transcribe a tune, you can branch out.

Right now why don't you try to transcribe for PCjr some simple
tunes like "Frbre Jacques": "Twinkle, Twinkle, Little Star"; "Row, Row,

SOUND & GRAPHICS FOR THE IBM PCjr 113

Row Your Boat"; "How Dry I Am"; "Yankee Doodle"; "London Bridge
Is Falling Down"; or "Mary Had a Little Lamb." You should begin with
unsyncopated tunes that stay within a one-octave range.

Don't be concerned if you don't get them correct the first time
around, even if you know how to read music. I have to hear each
measure and juggle the music character strings until I get them right. I
expect you'll have to do the same.

To get you launched, I've done "Twinkle, Twinkle" in Figure 4.5.
You'll note I probably got "Twinkle, Twinkle", " Baa, Baa, Black Sheep"
and the "A-B-Cs," which all go to the melody, a little mixed up in my
rendition.

n

100 'TWINKLE.BAS

105 SOUND ON:BEEP OFF

110 PLAY"03L4CCGG AAL2G"

120 PLAY "03L4F F E E LSD D D D L2C"

130 PLAY "03L4G G F F E E L2D"

140 PLAY "03L8G G L4G F F E E L2D"

150 PLAY "03L4C C G G A A L2G"

160 PLAY "03L4F F E E D D L2C"

Figure 4.5: TWINKLE.BAS—"Twinkle, Twinkle, Little Star"

3. WHEN YOU DON'T HAVE THE MUSIC

Well, how much hacking did you end up doing? Transcribing gets
kind of confusing, doesn't it? All those letters and numbers. You may
find that using lower-case letters instead of capitals, so that ietters and
numbers don't run together, will make for easier reading of the music
strings.

However, I think it's the number of things you've got to consider at
about the same time that is the really confusing factor. To deal with this
problem, I've found it best to develop a tune at the keyboard with a
layered approach using well-defined steps.

114 JAMES E. KELLEY JR.
n

First, get the notes of the tune correct, regardless of timing. Next,
iron out the timing. Third, handle the nuances—legato, staccato.
Finally, monkey with the dynamics (volume and tempo). (I don't think
this layered approach is necessary when you're transcribing directly
from written music. All the information needed is right in front of you on
the music paper.)

First Layer—the Notes

Let's try an example. The transcription of "Bicycle Built for Two"
(Daisy) in Figure 4.6 is what I ended up with at the end of the first step—
the sequence of notes of the tune, divided into what I thought were
measures. Type DAISY1.BAS into memory so we can go to the next
step.

100 ' DAISY1.BAS

105 SOUND ON:BEEP OFF

110 PLAY "T80 03G E 0 <G"

120 PLAY "02A B >0 <A >0 <G"

130 PLAY"03DG EC"

140 PLAY "02A B >0 D E D E"

150 PLAY "03F E D G E D 0 D"

160 PLAY "03E 0 <A >0 <A G G"

170 PLAY "030 E D <G >0 E"

180 PLAY "03D E F G E C D <G >0"

Figure 4.6: DAISY1.BAS—Sequence of Notes Only

Second Layer—the Timing

DAISY1.BAS sure is Dullsville—no character at all. It even drags
along because of the T80 I put in the first phrase (line 110) to more
easily identify errors as it's playing. So let's introduce the timing.

Although the default is the quarter note, put an L4 between the 3
and the G of line 110 for the correct timing of the first phrase.

Okay, what do you do with line 120? Well, the initial AB>C,
corresponding to the words "Give me your," isatriplet, right? You can
just feel three notes on one beat. We had this case in BLNDMICE.BAS,
you'll remember, and handled it with L12. So place L12 in line 120, just
before the AB>C sequence.

SOUND & GRAPHICS FOR THE IBM PCjr 115

The next word, "an-swer," corresponds to the A>C sequence of
notes. This is a "DUM-di" rhythm corresponding to a dotted eighth
and sixteenth note. So you replace A>C by L8A.>L16C, right?

Hold iti That's not a "DUM-di" rhythm. It's sort of a "DUM-a- di."
There's a triplet there, but only two notes. The "an-" of "answer" goes
with the "DUM-a" count. The "-swer" goes with the "di." So how do
we handle this case? Just write L12AAC.

There's another case like this one in line 140. So bewarel
The last word of line 120, "del", corresponds to the <G. This is at

least a quarter note. But, on humming the tune, you can feel it for two
beats. So make it a half note and put an L2 in front of the G in line 120.

Well, you've got the idea.
Fill in the rest of the timing commands for DAISY1.BAS, I ended up

with the expanded transcription shown in Figure 4.7. Check me to see
if I made an error.

100 ' DAISY2.BAS

105 SOUND ONiBEEP OFF

110 PLAY "T80 03L4G E 0 <G"

120 PLAY "02L12A B >0 <L12AA>C <L4G P4"
130 PLAY "03L4D G E 0"

140 PLAY "02L12A B >0 L12DDE L4D P8. L16E"

150 PLAY "03L12FED L8G. L16E LSD 0 P8. L16D"
160 PLAY "03L8E. LI60 <L8A. >L16C <L8A G P8.

L16G"

170 PLAY "03L8C. L16E LSD. <L16G >L8C. L16E"
180 PLAY "03L12DEF L12G E C LSD. <L16G >L2C"

Figure 4.7: DAISY2.BAS—Notes and Timing

Legato and Normal Modes

You've RUN DAISY2.BAS haven't you? Not bad except for the
double A's and D's in lines 120 and 140, respectively, right?

Maybe you haven't thought about it, but when you PLAY two or
more notes of the same pitch in sequence, you hear distinct notes. Try
this:

Type: PLAY "L4AAAA" <ENTER>

116 JAMES E. KELLEY JR.

Although these are quarter notes, they sound for only 7/8 the time
indicated by the L command. This is the "normal" mode of sounding
notes.

Now try this:

Type: PLAY "l\/ILL4AAAA" <ENTER>

Just use the editor to stick "ML" in front of the L4.
You should get a continuous sounding of A this time. It played the

notes legato (smoothly), passing from one note to the next without
pause. Of course, in normal music you'd write the four connected A's
as a whole note, not as a slurred sequence. It's when you have a
sequence of different notes that you want to play smoothly that you'd
write a slur. Hear how the following cases contrast:

Type: PLAY "MNL4CDEFG" <ENTER>
Type: PLAY "MLL4CDEFG" <ENTER>

The MN set normal mode—7/8 the note timing.
Now to apply all this to DAISY2.BAS. You've observed, I'm sure,

that the way we have the tune at this point, the notes seem overly
clipped in places. The triplet in line 120 is a case in point. Suppose we
play this triplet "smoothly"—in legato mode—so that the three notes
flow. But we want to avoid extending the flow to subsequent notes. We
can accomplish this goal by inserting ML before the first A, and MN
before the first C in line 120. Line 120 would then read

120 PLAY "02L12MLAB>MNC<L12AA>C<L4GP4"

Another use for legato mode occurs in line 120, to tie the double A
together as a single note. Insert ML before the first of these two A's. We
have a choice of placing the MN, to change back to normal mode, in
front of the second A or in front of the following C. In the second case
we'd be treating the triplet as legato, not just tying the A's together—
though that happens as a consequence.

Try your hand at phrasing DAISY2.BAS to make it play more
smoothly.

Figure 4.8 shows how I went about phrasing the tune. Notice I've
speeded it up a bit by setting the tempo to 100 in line 110.

SOUND & GRAPHICS FOR THE IBM PCjr 117

I make no claim that my version is the best one. I'm hardly a music
editor, and you may well find improvements. Notice that I tied dotted
eighth notes to following sixteenths using the legato mode. There are
lots of examples in the last few lines of the tune. I think the ties add a
little more body. If you don't like this idea, feel free to change it.

100 ' DAISY3.BAS

105 SOUND ON:BEEP OFF

110 PLAY "T10003L4GEC<G"

120 PLAY "02MLL12AB>MNC<L12MLAMNA>

C<MLL4GP4"

130 PLAY "03MNL4DGEC"

140 PLAY "02MLL12AB>MNCL12MLDMNDEMLL
4DP8.MNL16E"

150 PLAY "03MLL12FEMNDL8MLG.MNL16EL

8DMLCP8.MNL16D"

160 PLAY "03MLL8E.L16MNC<MLL8A.>MNL16C<
L8AMLGP8.MNL16G"

170 PLAY "03MLL8C.MNL16EL8MLD.<L16MNG>
L8MLC.L16MNE"

180 PLAY "03MLL12DEMNFMLL12GEMNCMLL8D.
<L16MNG>L2C"

Figure 4.8: DAISY3.BAS—With Nuances

Last Layer—Dynamics

The last step is to add interest by varying the dynamics of the
tune, principally variations in volume—forte, piano and all that.

I don't have any general rules. Mostly it's a matter of taste. But one
approach for a tune like "Daisy" is to carry the vocal lilt over into the
computer presentation. Play the downbeat a little louder than the other
notes—i.e., accent it.

Suppose you play these accents at V8. Then you may want to play
unaccented notes of higher pitch than the last accented one at say V6,
and those below it at V4. The reason for the difference is that higher
pitches are generally quieter than lower pitches for the same energy

118 JAMES E. KELLEY, JR.

input. So you'd want to play the lower notes at a somewhat softer
volume to even things out. But there's lots of leeway for you to choose-
almost too much.

Try your hand at building dynamics into DAISY3.BAS.
Contrast your solution with the one I did in Figure 4.9. Note the

addition of line 105 to be sure the external speaker is used while we're
controlling volume.

You can see from the complexity of Figure 4.9 why I suggested
you develop your transcriptions in layers.

ICQ ' DAISY4.BAS

105 SOUND ON:BEEP OFF
110 PLAY "T100O3L4V8GV4EV8C<V4G"
120 PLAY "02MLL12V8AV6B>MNC<L12MLV8

AMNA>V4C<MLL4V8GP4"
130 PLAY "03MNL4V8DV6GV8EV6C"
140 PLAY "02MLL12V8AV6B>MNCL12MLV8DMNDV6

EMLL4V8DP8.MNL16V6E"

150 PLAY "03MLL12V8FV6EMNDL8MLV8G.MNL16V6EL8V8
DMLV6CP8.MNL16D"

160 PLAY "03MLL8V8E.L16MNV6C<MLL8A.>MNL16C
<L8V8AMLV6GP8.MNL16G"

170 PLAY "03MLL8V8C.MNL16V6EL8MLV8D.

<L16MNV6G>L8MLV8C.L16MNV6E"
180 PLAY "03MLL12V8DV4EMNFMLL12V8GV6

EMNCMLL8V8D.<L16MNV6G>L2V8C"

Figure 4.9: DAISY4.BAS—With Dynamics Added

Staccato Mode

There's another note-quality mode, called staccato and desig
nated MS, by which each note sounds at 3/4 the time indicated by the L
command. Remember, normal mode sounds at 7/8 the Lvalue. When I
hear the word "staccato," David Rose's "Holiday for String" starts
playing in my brain, with all the pizzicato (plucked) notes of the first
part.

SOUND & GRAPHICS FOR THE IBM PCjr 119

Try these experiments to hear how this mode differs from the
normal mode.

Type; SOUND ONiBEEP OFF <ENTER>
Type: PLAY "03MSL1AAAA","03MNL1BBBB" <ENTER>

Now I know what's played when they do those civil-defense tests on the
radio!

Did you hear the A cut off before the B? Now move the cursor up to
the PLAY command and change the L1 to L2—in both places mind
you—and hit <Enter>. You can still hear the cutoff, right?

Successively raise the time value of the A and the B in the L
commands by one unit until you can't hear the cutoff any more. This
should give you some feel for staccato. Applying staccato to rapidly
moving passages can be a waste of effort—you may not hear the
difference.

I cast about for a simple tune to illustrate staccato contrasted with
legato and came up with one of my favorites, Bach's Gavotte in G. It's
illustrated in Figure 4.10.

100 ' GAVOTTE.BAS—Gavotte in G by Bach
110 SOUND ON:BEEP OFF

120 PLAY

130 PLAY

140 PLAY

150 PLAY

160 PLAY

170 PLAY

180 PLAY

190 PLAY

200 PLAY

"T160O4MSL4V8BV9G"

"04MLL4V10DL8V8EV9F#MSL4GV1 OE"
"03MLL2V9B>MSL4V8EV9C"

"03MLL4V10AL8V8B>CD<V9B>C<V1 OA
"04L8V9C<BAV8G>MSL4BV9G"

"04L4MNV10EL8V8MLEF#MSL4GV9E"
"04MLL4C#L8V7DEV8F#DV9GV1 OE"

"04L8F#V11DL4AL8V10GF#V9EV8F#"

"04L2V7MND"

210 GOTO 120

Figure 4.10: GAVOTTE.BAS—Gavotte in G by Bach

120 JAMES E. KELLEY, JR.

4. TUNE YOUR GUITAR

There are other fun things you can do with PCjr's musical
capabilities, such as writing a program to tune your guitar—or, with
some modifications, any instrument.

The Program

The program is listed in Figure 4.11. If you don't have a piano or a
pitch pipe, you may find it to be of great value. In any case, it gives us a
chance to further explore PCjr's music language.

Type in and SAVE TUNEGTAR.BAS and we'll try it.

100 ' TUNEGTAR.BAS

110 GOTO 330 ' Set up screen instructions
120 SEC=2 ' Delay between note soundings
130 SOUND ON:BEEP OFF' External speaker
140 PLAY"L2" ' Quarter note intervals

150 A$= INKEY$:IF A$ = "" THEN 150 ' Get keyboard input
160 NOTE = INSTR("EADGBeadgb654321Qq",A$)'

Decode key selected
170 IF NOTE = 0 THEN BEEP:GOTO 150 ' BEEP on

undefined key
175 ' Branch to play note selected
180 ON NOTE GOT0190,220,230,240,250,190,220,230,240,

250,260,220,230,240,250,270,280,280
190 PI_AY"01E" ' Special case
200 FOR 1 = 1 TO 875*SEC:NEXT

210 GOTO 270

220 PLAY"01A":G0T0 300

230 PLAY"O2D":GOTO300

240 PLAY"02G":G0T0 300

250 PLAY"028" :GOTO 300

260 PLAY"01E":GOT0 300

270 PLAY"03E":G0T0 300

280 PLAY"01EA>DGB>E" ' Play all strings at end
290 PRINT:PRINT"FINISHED TUNING":END

300 FOR 1 = 1 TO 875*SEC;NEXT' Between soundings
delay

SOUND & GRAPHICS FOR THE IBM PCjr 121

310 A$= INKEY$:IF A$ = CHR$(27) THEN 150 '
Cancel note

320 GOTO 180 ' Repeat note selected
330 ' Set up screen instructions
340 KEY OFF:CLS

350 PRINT:PRINT:PRINT" THE PCjr, HOT-ZOOTY
GUITAR TUNER"

360 PRINT:PRINTTAB(10);"STRING NOTE/KEY"
370 PRINT:PRINTTAB(10):" 1 E"
380 PRINT TAB(IO)
390 PRINT TAB(IO)
400 PRINT TAB(IO)
410 PRINT TAB(IO)
420 PRINT TAB(IO)

2 B"

3 G"

4 D"

5 A"

6 E (bass)"
430 PRINT PRINT" Press numbered or lettered keys to"
440 PRINT"sound note"

450 PRINTPRINT" Press <Escape> to cancel note"
460 PRINTPRINT" Press Q to quit program"
470 GOTO 120 ' Start up mainline of program

Figure 4.11: TUNEGTAR.BAS

To tune your guitar with TUNEGTAR.BAS, select the string you
want to adjust, and press the corresponding key on PCjr's keyboard.
Listen to the note and start adjusting the string until the string sounds
the note PCjr is playing. The note will sound over and over until you
strike the Escape key.

That's all there is to it. When you want to quit, type 0.
One peculiarity of the program is that if you select E with the

lettered key, you get the notes for both the first and the sixth strings in
succession. The reason: there's only one letter E on the keyboard, and I
didn't want to favor either the first or the sixth string.

Programming Notes

Notice that the program jumped down to line 330 right off to set up
the operating instructions on the screen. These are straightforward
PRINT instructions. Then you're sent back to the mainline (i.e., prin
cipal part) of the program at line 120.

122 JAMES E. KELLEY, JR.

At line 150, PCjr looks for input from the keyboard—one of the
letters or numbers defined on the screen. The one you pick is decoded
in line 160 by the INSTR(ing) command. The letter and number pos
sibilities are shown between quotes. Notice that both upper and lower
case letters are permitted. The INSTR command puts the position of
the match with the ASCII character in A$ into the pigeonhole called
NOTE. If there's no match, a zero is placed in NOTE.

In 170, NOTE is tested for zero. If it is, you're BEEPed at and sent
back to 150 to key in something else—a legitimate key this time.

If NOTE has a legitimate value, it is paired with a line number in 180
where the desired note is PLAYed. For instance, if you typed A, then
NOTE = 2, and you'd be sent to line 220. Line 220 then PLAYs the A in
octave 01 and jumps to line 300. The situation is similar for the other
notes of the open-string guitar.

At line 300 a two second delay occurs, giving you time to hit the
Escape key to cancel the note. <Esc> is detected in line 310. If you
don't press it, you're sent back to 180 to repeat the note. Otherwise
you're sent to 150 to make another selection.

When you press Q to quit, a 17 or 18 is placed in NOTE, depending
on whether you hit a capital or lower-case Q. Then line 180 sends you to
line 280, where all six notes are sounded just before the program
ENDS.

NOTE: It's important for you to study this listing if you're not very
familiar with programming. Though it may seem a little long and com
plex, it is really very simple. It just repeats a simple pattern over and
over for each of six possible notes. A great many interesting things can
be done by repeating patterns with slight variations. And you'll realize
that you can write such programs yourself, once you recognize that
long doesn't necessarily mean complex.

5. LITTLE PIANO

Let's turn PCjr into a musical instrument that can be played like a
recorder, ocarina or other instrument. The exercise will provide an
additional dimension to programming sounds and music, and you'll
end up with something to have fun with. You might even use it to help in
making transcriptions to PCjr musio language when you don't have a
piano or written music available.

SOUND & GRAPHICS FOR THE IBM PCjr 123

The Keyboard

First we'll need a keyboard, so let's adapt PCjr's for the purpose.
We'll make the second to top row correspond to the white keys on the
piano, with the letter T as middle 0. The top row will correspond to the
black keys.

Figure 4.12 shows the note values Inside the key blocks, and the
letter values above the blocks. You'll notice that not all keys on the top
row have musical functions for the assignment.

Retrieving a Note

The first thing we have to figure out Is how to translate the striking
of a key on the top two rows Into a sounded note. Recall that we can
read the keyboard with the INKEY$ command. So here's a start:

100 • LITTLE PIANO

160 A$ = INKEY$:IF A$ = " " THEN 160 ' Get note

This Instruction step tells PCjr to keep looking at the keyboard
until something Is put In the type-ahead buffer. The funny string of two
double quotes represents "nothing." That Is, the IF asks If there Is
anything In the type-ahead buffer. If there's "nothing," It returns to line
160 and asks again.

Eventually something will be put In the type-ahead buffer and the
problem of determining which key was struck will present Itself. The
special BASIC Instruction called INSTR(lng) can help us solve the
problem.

260 ' Decode typed note
270 NOTE = INSTR("Q2W3E4RT6Y7UI9O0P-[]",A$)

Compare the list of characters between the quotation marks In line 270
with the key assignments In Figure 4.12. You'll notice they're all the keys
to which notes have been assigned In ascending musical sequence—
except for the E of the Tab key.

INSTR(lng) compares this sequence of characters with the char
acter In A$. If It finds a match It sets NOTE equal to the position value of
the character (0 = 1, 2 = 2, W = 3, etc.). If there Is no match, as there
would be If you typed A or > or some other unasslgned character,
INSTR(lng) sets NOTE to zero. In this way you can figure out what note
to play. Well, almost.

124 JAMES E. KELLEY JR.

SOUND & GRAPHICS FOR THE IBM PCjr 125

Include <Tab> in the sequence of defined notes. <Tab> must
be generated by CHR$ since it is not a printed character. It's equal to
CHR$(9). Add it at the beginning of the character string this way;

270 NOTE = INSTR(CHR$(9) + "Q2W3E4RT6Y7UI9O0P-D",A$)

If NOTE turns out to be zero (i.e., an undefined key was struck), we
want to get another note. This is done as follows:

280' NOTE = 0 if undefined key struck
300 IF NOTE = 0 THEN 160 ' Get new note

Playing NOTE

Since the note E of the Tab key corresponds to the 14th playable
note in PCjr's repertoire while <Tab> is the first character in the
sequence (making NOTE = 1), we have to add an offset of 13:

310 NOTE = NOTE +13 ' Add offset

Now finally, we can play the note and return for another.

320 PLAY "N = NOTE;" ' Play current note
330 GOTO 160 ' Get next note

Taking Care of Lower-case Letters Too

Notice in line 270 that if you type a lower-case letter, q for instance,
NOTE will be set to zero. So if you want the program to work, you must
turn <CapsLock> on. But that's not the way to write a program. All we
have to do is repeat the essence of line 270, but with lower-case
characters instead. Like this:

290 IF NOTE = OTHEN N0TE = INSTR(CHR$(9) +
"q2w3e4rt6y7ul9o0p-D" ,A$)

Setting Initiai Defauits

It's a good idea to explicitly set the initial conditions you want in a
program. You can't always be sure of the state of the computer when
you make entries. Here are some we might use for our Little Piano:

110 V=8:T = 120 ' Default volume & tempo
120 SOUND ONiBEEP OFF 'Select external speaker
130 PLAY "MFL8T=t:V=v;" ' Initialize

126 JAMES E. KELLEY, JR.

Watch out for the semicolons.

All we're doing here is selecting the external speaker, setting the
initial tempo and volume, and specifying that the notes will be consid
ered eighth notes played in the foreground.

Changing Volume and Tempo as You Go Along

Not all tunes can be played acceptably with these tempo and
volume defaults. If you try the program the way it is now, notes are
sustained too long for fast tunes. Also, different sections of a tune
should be played at different volumes.

We can define additional keys to signal PCjr to change the
defaults. For instance, if we type a capital V, we can have PCjr raise the
volume one unit (remember the range is 0 to 15). Then by typing lower
case V we can have the volume reduced one unit.

Here are the program steps:

210' Capital V increases volume
220IF A$ = " V" THEN V=V -h 1 :IF V>15 THEN V = 15
230 ' Lower-case V decreases volume

240 IF A$ = "V" THEN V = V-1 :IF V<0 THEN V=0

Remember, A$ in line 220 has a character from the type-ahead
buffer. If it's a V then V is increased by 1. But if V exceeds 15, the upper
limit of volume allowed, then V is set to this maximum. The same
situation, but reversed, occurs in line 240 if a lower-case v is typed in.

We can handle changes in tempo in a similar way, but we can't
use T for "tempo," because T is already assigned. How about S for
"speed"? Now you can change tempo with these lines of coding:

170' Capital S increases tempo
180 IF A$ = "S" THEN T=T-t-20:IF T>255 THEN T = 255
190 ' Lower-case S decreases tempo
200 IFA$ = "s" THENT=T-20:IFT<32 THENT-32

When the defaults have been reset, they have to be executed in a
PLAY command to make them effective.

250 PLAY "T=t;V=v;" ' Set current tempo & volume

SOUND & GRAPHICS FOR THE IBM PCjr 127

Some Visual Reminders

It's always a good idea to give users some hints about how to use
your program. For Instance, the screen could be cleared and they
could be instructed where to find a note, say middle C. Like this;

140 CLS:LOCATE 10,9:PRINT" LETTER 'T' = MIDDLE 'C'"
150 LOCATE 13,11 PRINT"YOU GO FROM THERE!"

You might also want to tell the user that the keys on the top row of
the computer are the black keys of the piano. And how about saying
that you can change the volume and tempo with V and S. Try your hand
at adding these extra instructions to what's written on the screen.

Don't forget to SAVE this little program. I saved it under the name
LILPIANO.BAS.

ny Out the Piano

Here's a tune to try on the Little Piano (Figure 4.13). Just press the
keys indicated by the letters and other characters indicated. The dot (.)
at the beginning is a rest, so don't strike any key there. Play the notes at
equal time value in groups of three (triplets) to get the rhythmic feel. Do
you recognize the tune? It's a famous chorale by Bach.

Don't forget that you can speed up tempo with capital S and
increase volume with capital V. Use lower-case s and lower-case v to
reverse these actions.

. TYUOI I POO] [
]OUTYU IOPOlU
Y UTRTYWRY I UY

U T YUO I I POO] [
] P I TYU E O I UYT
WTRTUO]

Figure 4.13: " Jesu, Joy of Man's Desiring" (Bach), Arranged
for LILPIANO.BAS

128 JAMES E. KELLEY, JR.

6. RUN THROUGH IT ONCE MORE

You should have a pretty good handle on playing music on PCjr by
now, but there's still more to the subject. We'll take It up again after
we've had a chance to learn some graphics and to use what we know
to enhance our picture-making.

Before you go on, you ought to go back through the chapter and
review the material. Also, bring your notes up to date. If the material
begins to get overwhelming, you'll be glad you have notes to bail you
out.

As you review the chapter, also be sure you understand the BASIC
commands used to develop the examples. Figure 4.14 lists those used
in the chapter. Look over the list, and reinforce your growing habit of
looking up problem commands in the BASIC manual. I know it's tough,
but you've got to become familiar with that manual for the long haul,
and now's the time to do it.

BASIC COMMAND

BEEP ON/OFF

CLS

FOR...NEXT

GOTO

IF...THEN

INKEY$

INSTR

KEY OFF

LIST

LOCATE

ON...GOTO

FUNCTION

Speaker control with SOUND
ON/OFF

Clear screen

Repeat a sequence of commands
Take next command from line

specified
Make decision on program flow
Read character from type-ahead

buffer

Position of first occurrence of one

string in another
Toggle screen prompts off
List program memory to the
screen

Position cursor on screen for

printing text
Computed GOTO multiple line
numbers

SOUND & GRAPHICS FOR THE IBM PCjr 129

PLAY

PRINT

SOUND

SOUND ON/OFF

Sound the notes and execute the

commands in a music

command string
Print text on the screen

Play a pitch of specific duration
Speaker control with BEEP
ON/OFF

Figure 4.14: Summary of Commands in Chapter 4

130 JAMES E. KELLEY, JR.

CHAPTER 5
ADVENTURES WITH EUCLID

Objective:

This chapter explores graphics
generation, using dots, lines, space and
color.

SOUND & GRAPHICS FOR THE IBM PCjr 131

1. THE VIDEO SCREEN—OUR NEW DRAWING
PAPER

You've solved puzzles with match sticks, haven't you? And drawn
stick figures and boxes and all sorts of shapes using straight lines, and
then shaded them in with the side of your pencil or with a color crayon?

You're about to do the same with PCjr, the only difference being
that your pencils and crayons and colored construction paper will be
the video screen.

A Review of Text Mode

You know all this by now, but let's do the experiment anyway. Try
the little program in Figure 5.1. It simply fills the text screen with digits.

100 ' Fill the screen in text mode

110 KEY OFF:CLS ' Fresh screen

120 SCREEN 0,1 ' Set color text mode
130 COLOR 15,1 ' White char on blue
140 FOR COL=0 TO 39 ' Count off cols

150 FOR ROW = 0 TO 23 ' Count off rows

160 I = COL MOD 10' "I" goes 0 to 9 over and over
170 IF ROW=23 AND COL=39 THEN 210 ' Don't print

last digit
180 LOCATE R0W+1,C0L+1 PRINT CHR$(l + 48);'

Print digit
190 NEXT ROW' Do next digit
200 NEXT COL' Do next col

210 GOTO 210 ' Don't mess screen with Ok

Figure 5.1: Fill Text Mode Screen with Digits

How this program works should be pretty clear to you. A couple of
technical points however: Line 160 converts the value of COL, which
may range from 0 to 39, to a digit from 0 to 9. The MOD 10 tells PCjr to
divide COL by 10, and to save only the remainder. So if COL = 8 or 18
or 28 or 38, for instance, you get I = 8.

132 JAMES E. KELLEY JR.

An explanation for line 170 Is also in order. Every time you print a
character in the last column of a line, the cursor jumps to the first
column of the next line. What happens when it's the last column of the
last line? You've seen it a hundred times by now. The whole screen
scrolls upward. Line 170 prevents printing in this last space and
thereby avoids scrolling.

A last point. The program prints down a column instead of across
a row because we force it to do so with the LOCATE command in line
180. As you've seen, LOCATE permits you to put a character any place
on the screen.

The weird character formula printed in line 180, namely
CHR$(l + 48), is the equivalent of the digit I, but converted from
numeric form to an ASCII character. (Remember Appendix G of the
BASIC manual?) I did this conversion to avoid printing the spaces that
PCjr generates when you print numeric quantities.

You might try substituting PRINT I in line 180 to see what happens.
It generates quite different results.

Medium-Resolution Graphics

Our real interest is not the text mode screen. We're going to do a lot
of stuff on the medium-resolution graphics screen, so we need to
understand how it functions in relation to the text mode screen.

Compare the program of Figure 5.1 with that of Figure 5.2, line by
line. Then make the appropriate editing changes in the first to produce
the second. RUN it to see what happens.

100 ' Fill medium-resolution graphics screen
110 KEY OFF:CLS ' Fresh screen

120 SCREEN 1,0 ' Set med res graphics
130 COLOR 1,1 ' Palette 1 on blue
140 FOR COL=0 TO 299 ' Count off cols

150 FOR ROW = 0 TO 199 ' Count off rows

160 ' No equivalent required
170 ' No equivalent required
180 PSET (COL,ROW),3 ' Place dot
190 NEXT ROW' Do next dot

200 NEXT COL' Do next col

210 GOTO 210 ' Don't mess screen with Ok

Figure 5.2: Fill Medium-Resolution Screen with Dots

SOUND & GRAPHICS FOR THE IBM PCjr 133

Since this program takes a while to run, you might cheat a little.
After you've seen what the program is doing, verify that it ends cor
rectly by changing line 140 to read

140 FOR COL = 295 TO 299 ' Count off cols

I use that trick all the time in situations like this. It saves waiting for
the whole process to be completed. But don't forget to change the
modified line back to its correct form.

In the program of Figure 5.1, we don't have the same technicalities
to deal with as before. The key differences are these; The COLOR
command in 130 is interpreted differently now. It is the first digit that
follows COLOR, the 1 in this case, that defines the background (field)
color, not the second digit as with color text mode.

The second digit of COLOR represents one of two palettes (i.e.,
sets) of four colors you can pick for the foreground—the color of the
crayon you'll draw with. Figure 5.3 gives the table of default colors you
can use with each palette. As we'll see later, you can change these
defaults.

COLOR # PALETTE 0 PALETTE 1

0 None None

1 Green Cyan
2 Red Magenta
3 Brown White

Figure 5.3: Default Palette Colors

The number of colored objects you can place on the screen is
considerably larger now—three hundred across a row, two hundred
down a column. You can see this in lines 140 and 150.

Finally, instead of using LOCATE to determine where to place
something, in graphics mode you use PSET.

NOTE: Actually you can use LOCATE to put ASCII characters on
the graphics screen, just as if it were a text mode screen.

Note that in the PSET command, the COL comes before the ROW
specification. They're in the opposite order from the LOCATE com
mand. The number 3 specifies the color of the dot to be placed—white
in this case since we're using palette 1. (If you just want to move the

rn

134 JAMES E. KELLEY, JR.

graphics equivalent of the cursor to a given position on the screen to
specify where some following graphics command is to start, use color
0.)

2. DRAWING WITH LINES OF LIGHT

Clear memory (NEW), and set up the medium-resolution graphics
screen for some experiments.

Type: KEY OFF:SCREEN 1,0:COLOR 1,1 <ENTER>

Screen Coordinates

The position of a point on the screen, specified by the row and
column in which it lies, is called the point's coordinates and is desig
nated by the form: (column, row). You've probably guessed from Figure
5.2 that position (0,0) on the screen is in the upper left corner, and that
position (299,199) is in the lower right. Just to get a feel for this
arrangement, try these commands and watch where the dot is placed
on the screen.

Type: PSET (50,100),3 <ENTER>
Type: PSET (200,10),3 <ENTER>
Type: PSET (20,180),3 <ENTER>
Type: PSET (150,100),3 <ENTER>

Try a few more cases of your own invention. Clear the screen if you
get confused about where the dot is being drawn.

Erase one of the points you have put on the screen by changing
the color attribute to 0. That is, try something like this.

Type: PSET (20,180),3 <ENTER>
Type: PSET (20,180),0 <ENTER>

Do you know what happens to the dots you place on the screen if
you scroll off the bottom? What are their new coordinates?

Now that you know how to put dots on the medium-resolution
screen, here's a problem for you to solve:

SOUND & GRAPHICS FOR THE IBM PCjr 135

Translate CREATION.BAS from text mode to medium-resolution
mode. (You merely substitute a few commands.)

The Shortest Distance Between Two Points

Although you can use PSET to draw a line or dots between two
coordinates on the screen, there's an easier way to do it.

Type: <Ctrl-L>
Type: LINE (20,50)-(200,120),3 <ENTER>

You can erase the line by changing the attribute color, the 3 at the end
of the LINE command, to 0. Try it. Just move the cursor up to the typed
LINE command, change 3 to 0, and hit <Enter>.

A Pile of Hay

Let's fill the screen with random lines using the little program of
Figure 5.4.

100 ' RANDOM LINES

110 KEY OFF:SCREEN 1,0:COLOR 1,1
120 CLS' Clear screen

130 FOR I = 1 TO 200 ' Count off lines
140 XI =300*RND:Y1 =200*RND ' Beginning coordinate

(XI.YI)
150 X2 = 300*RND:Y2 = 200*RND ' Ending coordinate

(X2,Y2)
160 LINE (X1,Y1)-(X2,Y2),3 ' Generate line
170 NEXT' Go do another line

Figure 5.4: HAY.BAS—The Pile of Hay

The result looks something like a pile of hay—pretty disorganized.

A Random Waik

Suppose we make a little change or two. We'll use PSET to set a
starting point.

Type: 125 PSET (150,100),3

136 JAMES E. KELLEY JR.

Then we'll use another property of LINE. If you just specify the ending
coordinate in the command, the line will start at the last coordinate
specified. So

Type: 160 LINE -(X2,Y2),3 ' Generate line to (X2,Y2)

RUN the program with these changes to see what happens. You
still get a pile of hay, but it's one long straw this time—sometimes called
a "random walk." Don't worry about line 140. It's redundant. You can
eliminate it if you like. You'll get a different-looking result now because
you'll generate a different sequence of random numbers.

3. GEOMETRY CAN BE FUN

There's ,not much you can do with a pile of hay. A little more
organization is needed. Try some simple types of organization—draw
ing common geometric shapes, overlapping them on one another, and
coloring them.

The mangle

Figure 5.5 is a program called TRIANGLE.FUN. It draws an equi
lateral triangle centered on the medium-resolution screen. Type it in,
RUN it, and SAVE it. We'll use it as a springboard.

100 ' TRIANGLE.FUN

110 KEY OFFiSCREEN 1,0:COLOR 1,1
120 OLS ' Clear screen

130 PI = 3.141593:FR = PI/180

140 T=0:R = 30:X0 = 150:Y0 = 100

200 ' Calculate vertices

210 XI =R*C0S(FR*T):Y1 =R*SIN(FR*T)
220 X2 = R*COS(FR*(T -I-120)):Y2 = R*SIN(FR*(T +120))
230 X3 = R*COS(FR*(T+240)):Y3 = R*SIN(FR*(T+240))
240 ' Draw the edges

SOUND & GRAPHICS FOR THE IBM PCjr 137

250 PSET(X1 +X0,Y1 +Y0),0
260 LINE-(X2 + X0,Y2 + Y0),3
270 LINE-(X3 + X0,Y3 + Y0),3
280 LINE-(X1 +X0,Y1 +Y0),3

Figure 5.5: TRIANGLE.FUN

Don't be too concerned if you don't understand the formulas in
lines 210 to 230. Basically they're equations for circles of radius R
centered at origin. But you don't need to know this to enjoy the effects
produced. In a later chapter we'll get away from lines and circles and
purely geometric figures, and we'll actually draw on the screen. Then
you won't have to worry about math. But, frankly, to invent your own
geometric designs as we're doing here, you've got to know some
trigonometry and analytic geometry.

NOTE: As we go along, consider saving the program at its current
development stage for future reference. You may want to demonstrate
some of the patterns. Select punchy names for the files so you can
remember what they do.

Rotating the THangle

The variable T controls the orientation of the triangle. Watch what
happens when we put T in a FOR...NEXT loop with these lines:

190 FOR T = 0 TO 360 STEP 20

300 NEXT T

Actually, because of the symmetry, you can get the same effect faster
by taking T from 0 to 100 instead of to 360, but for present purposes
leave it at 360.

What happens when you change the step size to 60? Try it and
you'll get a familiar figure.

Controlling the "Mangle's Size

The radius R controls the size of the triangle. Insert these lines and
see what happens.

180 FOR R = 30 TO 90 STEP 30

310 NEXT R

138 JAMES E. KELLEY, JR.

Already you see that a variety of Interesting patterns will result just
from rotating the figure and changing its size.

Size and Orientation Together

But suppose we do both simultaneously. Make these changes:

180 FOR R = 10TO 100 STEP 10

190T=T+5

Type: DELETE 300 <ENTER>

That makes matters more interesting. We can do the figure from out to
in too. Try this change:

180 FOR R = 100TO 10 STEP -10

By drawing from the outside in, we can readily PAINT the figures to
get a fairly complex color pattern. Add these lines and try them:

170 CLR=2 ' Initial palette attribute (color)
300 PAINT (X0,Y0),CLR,3 ' Fill figure with color
305 CLR=((CLR-i-1) MOD 3)' Select next palette attribute

The PAINT command starts filling the screen with the palette color
(attribute) placed in the variable CLR. It will fill the whole screen unless
there's a boundary of the color (attribute) in the next parameter posi
tion, the 3 in the present case.

Play around with size and orientation to see what you can discover
on your own. For instance, what happens when you use a larger or
smaller step in line 180, or a larger range of R? Or what happens when
you make the change in T in line 190 larger or smaller?

Don't forget to SAVE the results you like. But use different file
names so you won't erase any files with similar names already
recorded on your Test Programs disk.

Changing the Center of the mangle

ReLOAD TRIANGLE.FUN and we'll do some different things. That
is.

Type: LOAD "TRIANGLE.FUN" <ENTER>

You need the filename extension in this case.

SOUND & GRAPHICS FOR THE IBM PCjr 139

You can get interesting effects if ycu change the center cf the
figure. And these can merit an "cch" cr "ah" when combined with
changes in R and T too.

Here are seme basic changes to move the triangle to another
center without removing the screen's center as a point of control. Type
them into TRIANGLE.FUN and RUN them.

160 R1 =60:11=0

165 NX0 = 150:Ny0 = 100 ' New screen center

175 FOR 11 = 0 TO 360 STEP 60 ' Change angle of center
180 XO = RrC0S(FR*T1) + NXO ' Gale figure center
185 Y0 = R1*SIN(FR*T1) + NY0
300 NEXT T1

As you see, these changes place identical triangles in a circle of
about radius 60.

Try changing the STEP in line 175 to 10, and other values. But put
the STEP back to 60 when you're finished experimenting.

We can get a more symmetric arrangement of the triangles by
rotating them. With the STEP in 175 at 60 degrees, add the following
line:

190 T=T+60 ' Rotate figure

Looks like someone cut slices out of a hexagonal (six-sided) pie. (This
motif could be the basis for an explosion in an animated story.)

Let's put the pie together by controlling R, the size of the figures.
Later on, change R in line 140 to the value 60, and reRUN. Then

you'll want to try other combinations of these parameters too. But for
now leave the program as it stands. There are more steps to take with it.

Designs That Snake Along

You can generate an interesting class of designs in which the
center of the figure changes a little from step to step and the orientation
and size also change along the way. To illustrate, make these additions
and RUN.

145 R = 60

170 FOR NX0 = 210 TO 110 STEP -10

310 NEXT NXO

140 JAMES E. KELLEY JR.

This pattern starts off looking like a jungle gym but ends up looking like
a weave of some sort. Let's see If we can't get something a llttte less
static.

How about putting all the figures on a horizontal line by making
R1 =0? That Is, Insert this line and RUN.

172R1=0

Not very Interesting. Another weave. You'll get lots of these.
Let's rotate the triangle. Make this change and RUN.

190 T=T+15

Sort of looks like a cocoon or a caterpillar. But still not very Interesting.
You don't really need lines 175 and 300. They don't apply right

now and only delay building the figure.

Type: DELETE 175 <ENTER>
Type: DELETE 300 <ENTER>

Let's make the triangle smaller as It moves along and give It a little less
rotation.

173R = R-5

190T=T + 5

Try RUNnIng now.
As you see, this makes a slightly twisted tunnel effect. But what

happens If the steps move along slowly? Try this change:

170 FOR NX0 = 210 TO 110 STEP -2

That twists much more drastically.
Try this, though It seems a little odd: Make the radius R of the

triangle vary as the sine of the angle T.

173 R = 70*SIN(FR*T)

But before you RUN, lower the STEP length In line 170 from -2 to -1.5.
Interesting, no?

SOUND & GRAPHICS FOR THE IBM PCjr 141

You can go on like this for hours with rather simple programs. It's
like eating salted peanuts as you look greedily for the next effect.

CAVEAT: It's a bit of a bother, but you should save your programs
at the current settings with great frequency and with imaginative file
names. Otherwise, you'll be sorry when you try to repeat some figure
you'd like to show off. You'll never remember the settings. You can
always trash the examples you don't want later on.

4. FUN WITH BOXES

There's another fun aspect of the LINE command. Clear the
screen and try this.

Type: LINE (100,100)-(50,50),3,B <ENTER>

Here's a property of LINE that's quite useful. Using your screen-
editing skills, put an F (for "fill") just to the right of the B (for" box," of
course), and hit <Enter>. Naturally, the color attribute should not be 0.
Try the command with attributes 1 and 2.

Figure 5.6 gives some surprising results when you vary its param
eters. Type it in and RUN it to see what it does.

100 'BOXSURPRISE

110 KEY OFF:SCREEN 1,0:COLOR 1,1
120 CLS

122 RF = 3.14159/180' Radians per degree
124 XO = 150:Y0 = 100' Center of circle

125 PSET (X0,Y0),0 ' Move to center
130 FOR ANGLE = 0 TO 360 STEP 90 ' Count off angles
135 ' Calculate coordinates of point on circumference
140 X = 100*SIN(RF*ANGLE) -h XO
150 Y=100*COS(RF*ANGLE) -K YO
160 LINE (X0,Y0)-(X,Y),3,B ' Plot box
170 NEXT' Do next box

Figure 5.6: BOX.BAS—Box Surprise

142 JAMES E. KELLEY JR.

For all the apparent complexity of this program, it's dull, Isn't it?
Just a couple of crossed lines.

Well, don't be too sure. Look at the STEP portion of line 130. This
command counts off angles around the center of a circle in steps of 90
degrees. That's not many times through the FOR...NEXT loop, consid
ering there are 360 degrees in a circle. So what happens if we make
this step smaller? Let's find out.

Use the EDIT command to bring up line 130 on the screen, and
use the cursor controls to change the 90 to a 60. Then RUN the
program again.

Not much more interesting, but be patient. On successive tries,
change the STEP in line 130 to the following values and RUN: 45, 30,
20,10, and 2 degrees.

Aha! That's more like it.

Before we leave this program, let's make one more change. Mod
ify line 160 so it reads:

160 LINE -(X,Y),3,B ' Plot box

This relieves the center of the circle from being a corner for each box.
Now the program will use a corner of the last box plotted for the new
box.

Starting with a STEP of 90 degrees in line 130, successively
reduce the STEP through the values we used earlier to see what
happens.

Whenever you have a little program that you or someone else has
developed for a particular graphics purpose, always play with it as we
have here. You will probably discover something of interest that you
didn't expect, and that you may be able to exploit at some future time.
Graphics programming is an art form—a grab bag of tricks. You've got
to experiment continually to develop and retain the skill.

5. AN ASIDE ON RENUM

You'll have noticed that the line numbers of Figure 5.6 don't move
along evenly as in earlier examples. The fact is I generated this pro
gram from the one of Figure 5.4 by adding and modifying a few lines. If

SOUND & GRAPHICS FOR THE IBM PCjr 143

I'd made too many additions, I'd have run out of line numbers and
could have had some difficulty organizing the program.

There's a neat editing feature of BASIC for PCjr that permits you to
RENUMber all the lines. While Figure 5.6 is still in memory try this:

Type: RENUM 1000 <ENTER>
Type: LIST <ENTER>

All the lines have been renumbered starting at 1000 and stepping
along by 10.

But what if you had fifty lines to add between two existing lines?
How can we make enough room? Try this:

Type: RENUM 500„100 <ENTER>
Type: LIST <ENTER>

Now you have plenty of room, and when you've made the addi
tions, you can straighten out the line numbers with something like
RENUM 100.

Read about RENUM in your BASIC manual.

6. MOIRE PATTERNS

Have your eyes ever played tricks on you when you've looked
through a window with overlapping screens, or driven past tennis
courts with high fences? You may have seen the same effect produced
by overlapping bamboo blinds. If you're into textiles, you're certainly
familiar with the moire patterns of silk and other glossy fabrics. The
effect comes from the parallel weave.

This shimmering effect can be produced by almost any pair of
superimposed sets of parallel lines that are slightly misaligned. To
illustrate, let's try some experiments with PCjr.

144 JAMES E. KELLEY, JR.

Effects of Different Periods

Figure 5.7 gives a simple program for drawing paraliel lines that
we can use as a point of departure. Key it into memory and RUN it.

100 ' MOIRE PATTERN FUN

110 KEY OFF:SCREEN 1,0:COLOR 6,1
120 CLS

130 CLR1=3:CLR2 = 2

140 S1=3:S2 = 3

150 FOR 1 = 0 TO 199 STEP 81

160 LINE (0,I)-(299,I),CLR1
170 NEXT

180 FOR 1 = 1 TO 199 STEP S2

190 LINE (0,I)-(299,I),CLR2
200 NEXT

Figure 5.7: MOIREFUN.BAS—Moire Pattern Fun

NOTE: If you're using a black and white TV or video monitor, you
may have trouble with these experiments. Some lines show up ever so
faintly on black and white.

You'll see from lines 140,150 and 180 that the two sets of parallel
lines have a period of three units. That is, the parallel lines in each set
are three units apart. Change the period by making S2=4 in line 140,
and RUN again.

How about that! Every fourth white line has disappeared. Of
course, the magenta line has hidden it, producing what are called
"beats." Try S2 = 5 to see what happens.

Now the beats are farther apart. But you can easily see why.

Effects of Misaiignment

Let's reset the program to equal periods, that is, set S2 = 3 in line
140. But let's make this second set of parallel lines intersect the first set
at a small angle. We can do this by modifying line 190 so that each line
intersects the right edge of the screen at a lower point than its intercept
does the left edge. Change line 190 to read this way:

190 LINE (0,IH299,I + 15),CLR2

SOUND & GRAPHICS FOR THE IBM PCjr 145

Where the magenta lines hide the white lines, we get a dark
vertical bar. These are beats of another type.

What do you suppose will happen if we increase the angle of
intersection even more, that is, move the intercept on the right edge
even farther down? Make this change in line 190:

190 LINE (0,I)-(299,H-99),CLR2

Ah! Just increases the number of beats.

Joint Effects

Now let's also change the periodicity. Change S2 in line 140 to 5
again, and RUN. Quite a texture, eh?

Now that you have the idea, do some of your own experiments with
this program. You can make finer-grained or coarser-grained textures,
mix colors by changing the background and the palette, or whatever.
Remember, experiment freely.

NOTE: To make the texture fill the whole screen, you have to start
the second set of parallel lines off the top of the screen. For instance, try
this substitution for line 180:

180 FOR I = -99 TO 199 STEP 82

7. ARTFUL EXPLOITATION OF MOIRE
EFFECTS

There are some simple ways you can make beats swirl around
and form interesting patterns. To get things rolling, try MOIRE.BAS of
Figure 5.8. It builds on what we've done. But instead of working with
parallel lines, we pick a random point on the screen and draw lines
from it to the edge of the screen. We let the spacing of the intercepts at
the edge of the screen be equal.

146 JAMES E. KELLEY, JR.

100 • MOIRE.BAS

110 KEY OFF:SCREEN 1,0:COLOR 1,1
120 CLR = 3

130 S = 3

140 CLS

150X0 = 300*RND

160 Y0 = 200*RND

170' Top quadrant
180 FOR I = 0 TO 299 STEP 8

190 LINE (X0,Y0)-(l,0),CLR
200 NEXT

210 ' Right quadrant
220 FOR 1=0 TO 199 STEP S

230 LINE (X0,Y0)-(299,I),CLR
240 NEXT

250 ' Bottom quadrant
260 FOR I = 0 TO 299 STEP S

270 LINE (X0,Y0)-(299-l,199),CLR
280 NEXT

290 ' Left quadrant
300 FOR 1 = 0 TO 199 STEP S

310 LINE (X0,Y0)-(0,199-I),CLR
320 NEXT

330 FOR 1 = 1 TO 1500:NEXT

340 GOTO 140

Figure 5.8: MOIRE.BAS

The essentials of MOIRE.BAS consist of four similar parts. Each
part draws lines from the random point (XO, YD) to one of the four screen
edges. Only every S-th point is selected as an intercept. S is set in line
130 and used as a STEP in lines 180, 220, 260 and 300. The results
become coarser as S increases.

The program is set up to repeat with a new random point after a
short pause (line 330) while you admire the result. Stop the program
with <Fn-Break>.

Compare the FOR...NEXT loops of Figures 5.8 and 5.7 to be sure
you understand how the effects differ.

SOUND & GRAPHICS FOR THE IBM PCjr 147

4 Moire Carpet

One undesirable aspect of MOIRE.BAS is the seams it produces
when it moves from one edge to the next. The problem is the abrupt
change in angle that occurs at these boundaries. One way to deal with
this problem is to use an angle generator such as one used to generate
circles or ellipses.

Figure 5.9 gives a little subroutine generating an ellipse out of
lines drawn from its center to its circumference. Type it into memory so
we can work with it.

1000 ' Ellipse of lines from its center
1010 FOR T=0 TO 360 STEP 8' Step around the ellipse
1020 ' Ellipse equations
1030 X=A*R*SIN(P*T) + XO
1040 Y=B*R*COS(P*T) + VO
1050 ' draw line from center to circumference

1060 LINE (XO,YO)-(X,Y),C
1070 NEXT' Repeat for next angle
1080 RETURN ' Go back to mainline

Figure 5.9: Ellipse of Lines from Its Center

There are a few things we've got to set up to use this subroutine,
such as the following:

110 KEY OFF:CLS

120 SCREEN 1,0 ' Med res graphics
130 COLOR 1,1 ' Blue field, palette 1
140 P=3.14159/180 ' Radians per degree

You've seen the screen setup commands before. Line 140 defines a
constant that will convert degrees into radians for the—ugh— trig
onometric functions you must use. One of the nice qualities of all

148 JAMES E. KELLEY, JR.

subroutines is that you can use them over and over again. To get
different effects, you must change the values for some of the constants
the subroutine uses. Here are some we can try with the present case.

150 ' Draw first ellipse
160 A = 6:B = 5 ' Aspect ratio for circle
170 S = 1 ' Step size in degrees
180 XO = 150:Y0 = 100 ' Center

190 R=50 ' Essentially the radius

If you try to draw a circle on your video screen using standard
formulas you are likely to get an ellipse rather than a circle, because the
vertical and horizontal units of space on the video screen are not equal.
As a result, you must play around with the constants A and B in Figure
5.9 to find the combination that works for you. For my color TV, the units
A = 6 and B = 5 seem to work best, as you see in line 160.

If you are to use the subroutine, you must also specify the angular
STEP size (8 in line 170) for angling the lines, the coordinates XO and
YO (line 180) where the figure will be centered, the radius R (line 190),
and the palette color, 0, to use. Oh, where's C? We'll define it at the
same time we call the subroutine.

200 C = 3:G0SUB 1010 ' Set color & go draw

But before we try this program, we'd better put in the statement

210 END

to halt the program. Okay, SAVE this program as CARPETBAS, and
RUN it!

As you can see, the result is similar to MOIRE.BAS but without the
seams. All you need do is define the center, (XO,YO), randomly, and
then recycle the process after a short pause. That is an exercise you
might try later.

Using the Ellipse Subroutine

Right now let's play a little with the ellipse-generating subroutine.
Don't type anything into program memory for a bit—you know, don't
use line numbers.

SOUND & GRAPHICS FOR THE IBM PCjr 149

You've noticed that the radius, R, is so large that the circum
ference of the circle is off the screen. Try this:

Type: <Ctrl-L>
Type: R = 5:gosub 1000 <ENTER>

There, you can see the edge of the circle. We can put another circle of
different radius at another point this way. Wait! Don't clear the screen!

Type: R = 7:X0 = 180:y0 = 175:gosub 1000 <ENTER>

My Phantom Spider

You might go on this way for as long as you like, plotting overlap
ping circles of various sizes. But I've got another idea based on what
we did earlier with moire patterns. Type in these lines along with what's
already in memory:

2000 ' PHANTOM SPIDER

2010 SCREEN 1,0:COLOR 1,1
2020 P=3.14159/180 ' Radians per degree
2030 CLS:A=8:B = 5:C = 3 ' Define ellipse
2040 R=50:S=3' Of large radius
2050 XO = 150:Y0 = 100 ' In center of screen

2060 GOSUB 1000 ' Go draw it

2070 XO = 165:Y0 = 100 ' Offset it slightiy
2080 GOSUB 1000 ' And redraw it

When you're ready.

Type: RUN 2000 <ENTER>

Notice how the beats form a series of curves extending from the
center of the screen. If you're into inkblots you may see the big spider,
formed from the beats, sitting in the center of its web. Step back from
the screen if you have trouble picturing it.

Don't forget to SAVE the program, perhaps with the name
SPIDER. BAS.

150 JAMES E. KELLEY, JR.

The Throbbing Eye

Let's try one more experiment with the ellipse subroutine of Figure
5.9. As a starting point, we'll use the moire carpet pattern we generated
earlier. The Instructions to generate It should still be In memory, lines
110 to 200. What we'll do Is superimpose a small ellipse on the center of
the carpet with these Instructions.

100'THROBBING EYE

210' Draw eye—second ellipse
220 A = 8:B = 5 ' Less circular aspect
230 C = 2:R = 10:S = 4:G0SUB 1010

NOTE: If you don't type In this line 210, be sure to DELETE the END
statement In the existing line 210.

Now give It a throbbing action.

235 ' Introduce the throb

240 FOR I = 0 TO 7:C0L0R 1,1 :FOR K = 1 TO
500:NEXT:NEXT:GOTO 240

That's It. SAVE It—I call It THROB.BAS—and RUN It.
Here's a series of experiments you might try. Insert a line In the

"ellipse of lines" subroutine to change the color of the line drawn on
each cycle of the FOR...NEXT loop. For Instance, try a line like this:

1015C = 2 + ((C + 1) MOD 2)

Or this variant of the same thing:

1015 C = 1+((C + 1) MOD 3)

Always keep experimenting. And go back to earlier examples to
try new tricks on them too. You might discover something great.

8. HUMANIZING MATHEMATICAL FORMS

All that we're doing with graphics In this chapter Is based on
mathematical forms—lines, boxes, circles, ellipses and so on. There's
a certain sllckness about such constructions that makes them look as If

SOUND & GRAPHICS FOR THE IBM PCjr 151

they were drawn by a robot, which of course they were. But you can
take advantage of the compactness and preciseness of math, and yet
mar the slickness a little to fool the humanist.

One way Is to Introduce random variations In the mathematical
forms so they appear to have been drawn by an unsteady eye. Another
technique Is to eliminate some detail. Human artists tend to paint the
"soul" of the subject, the essence, not the unimportant trifles. Let's try
It ourselves.

Fans

Figure 5.10 builds on the techniques we've worked with to splash
fanlike structures on the screen. On my black and white screen, some
of the pictures are reminiscent of frosted or cut glass designs. Type the
program and RUN It.

100 ' FANS

110CLS:KEYOFF

120 SCREEN 1,0
130 COLOR 1,1
140 FOR I = 1 TO 5 ' Count off 6 splashes
150 ' Define one end of first line

160 XI = INT(RND*320):Y1 = INT(RND*200)
170 ' Define the other end of first line

180 X2 = iNT(RND*320):Y2 = iNT(RND*200)
190 FOR J = 1 TO 55 ' Count off lines

200 ' Vary one end of line randomly
210 Y2 = Y2-1 -iNT(RND*5):X2 = X2-1 -iNT(RND*5)
220 LINE (X1,Y1HX2,Y2),3 ' Draw line
230 NEXT' Do next line

240 NEXT ' Do next splash
250 FOR K = 1 TO 2000:NEXT' Pause to admire picture
260 GOTO 110 ' Do next picture

Figure 5.10: FANS.BAS

152 JAMES E. KELLEY, JR.

Each fan is generated from a random line defined in program lines
150-180. The fan is then opened up from this starting line by subtract
ing a small random amount from the coordinates of one of the ends
(line 210). The number of fans is kept small to understate the resulting
splashes of forms.

Try changing the color patterns to see the effects produced. For
example, you might try these changes:

125PAL = (PAL+1) MOD 2
185 CLR = 1 -1-(INT(RND*3) MOD 3)
220 LINE (X1,Y1)-(X2,Y2),CLR

Textures

Building on FANS.BAS, Figure 5.11 frees the fan's pivot to let the
lines flow through space in a controlled but random manner. Type it into
memory and RUN it.

100 ' TEXTURES.BAS

110 KEY OFF:CLS

120 SCREEN 1,0
130 COLOR 1,1
140 ' Start drawing
150 CLS ' Clear screen

160 FOR 1 = 1 TO 6 ' Count off splashes
170 ' Define beginning of first line
180 XI = INT(RND*320):Y1 = INT(RND*200)
190 ' Define end of first line

200 X2 = INT(RND*320):Y2 = INT(RND*200)
210 ' Define direction of motion

220 IF RND<.5 THEN SN = -1 ELSE SN = 1
230 FOR J = 1 TO 50 ' Count off lines

240 ' Move ends of line in random pattern
250 Y2=Y2-I-SN*INT(1 -l-RND*5):X2 = X2-t-SN*INT

(1-hRND*5)
260 Y1 =Y1 -t-SN*INT(1 +RND*5):X1 =X1 -t-SN*INT

(1-t-RND*5)
270 LINE (X1,Y1)-(X2,Y2),3 ' Draw line

SOUND & GRAPHICS FOR THE IBM PCjr 153

280 NEXT' Do next line

290 NEXT ' Do next splash
300 FOR K = 1 TO 2000:NEXT ' Pause to admire picture
310 ' SPACE extends admiration period
320 A$ = INKEY$:IF A$= " " THEN 350
330 GOTO 150 ' Make another picture
340 ' Another SPACE renews picture-making
350 A$ = INKEY$;IF A$ = "" THEN 350
360 GOTO 150 ' Make another picture

Figure 5.11: TEXTURES.BAS

You quit TEXTURES.BAS with <Fn-Break>. if you want to pause
longer to study the generated picture, hit <Space>. To continue
generating pictures, just hit <Space> once more.

The visual effect of TEXTURES.BAS is similar to the hachuring or
shading an artist does. On a color TV the textured patterns are quite
attractive, giving the impression of twills and other coarse weaves. The
effect is not so interesting on RGB and black and white monitors. Being
of better quality, they filter out the video noise effects of the TV that can
actually enhance a picture of this character. This filtering condition is
especially noticeable with the moire patterns we generated earlier.

TEXTURES.BAS is designed as a conversation piece that you
might play at parties. Use <Space> to pause and ask what the pattern
represents—birds, ships in the night, crystals and so on. It's sort of an
inkblot game.

Compare TEXTURES.BAS closely with FANS.BAS to appreciate
how the differences generate the effects seen.

9. CIRCLES AND OTHER ROUNDISH STUFF

Circles

There's a neat BASIC command for PCjr that you've got to learn
about—CIRCLE. Let's try it. Clear memory and type these lines in:

100' Circie fun

110 KEY OFF:SCREEN 1,0:COLOR 1,1
120 CLS

154 JAMES E. KELLEY, JR.

To get started, just

Type: <Fn-2>

We now have a quick way to reset the screen after our little
experiments. We'll use these instruotions further on for a program.

Type: CIRCLE (150,100),30,3 <ENTER>

We've drawn a white circle of radius thirty units at the center of the
screen, right? Using the cursor, move up to the CIRCLE command and
change the radius to fifty and type <Enter>.

Using the cursor again, change the center of (150,100) to (50,150)
and hit <Enter>.

Now modify the command so it reads this way:

CIRCLE (50,100),50,3,„4 <ENTER>

Watch the number of commas between the 3 and the 4. Other stuff
goes there that we don't need just now.

Oohl An ellipse. The 4 is called the aspect ratio. We ran into it
earlier with our ellipse-of-lines subroutine (Figure 5.9). To make the
ellipse go the other way, try these changes:

Type: CIRCLE (200,100),40,3,„.5 <ENTER>

What figure do you get if the aspect ratio is 1? How about 5/6 (i.e.,
0.833)?

Arcs

Okay, you've got the idea of how to put circles and ellipses of
varipus sizes and aspects all over the screen. But there's something
else we can do with CIRCLE. First we need the value of pi, so put this
line in memory:

130 PI = 3.141593

SOUND & GRAPHICS FOR THE IBM PCjr 155

Pi, you remember, is the ratio of the circumference of a circle to its
diameter. It comes up all over the place.

Now try this:

Type: <Fn-2>
Type; CIRCLE (150,100),50,3,0*PI,.5*PI,1 <ENTER>

Did you get the arc of an ellipse? That's what the extra two numbers
defined, the start and the end of the arc. Change the CIRCLE com
mand to read this way:

Type; CIRCLE (150,100),50,3,rPI,1.5*PI,1 <ENTER>

Now you've got the arc halfway around the ellipse. You can start or end
the arc any place between -2*PI and +2*PI.

Try some examples of your own.
Rounding the corners of shapes built from lines is an important

use for elliptical arcs. But this kind of application can get you into some
messy math. Remember that you have to figure the center of the ellipse
and the aspect ratio so that everything fits flush.

Spiral of Arcs

Let's try to build a spiral of arcs from a series of ellipses of larger
and larger radii. We'll place the spiral at center screen and vary the
radius and arc start and end points using our constant companion, the
FOR...NEXT loop.

140 FOR R = 0 T0100 STEP .5 ' Change radii
150 START=START -I- .03*PI' Increase arc start point
160 IF START>2*PI THEN START=START-2*PI' Correct if too

big
170 ND = START -i-1 ' Arc end 1 greater than start
180 IF ND< = 2*PI THEN 190 ' Test for end of cycle correction
185 NDD = ND-2*PI;ND = 2*PI

187 CIRCLE (150,100),R,3,0,NDD,.8
190 CIRCLE (150,100),R,3,START,ND,.8 ' Draw arc
200 NEXT' Go draw next arc

156 JAMES E. KELLEY, JR.

For convenience, change the program name too.

100' SPIRALBAS

Two comments about this program. First, guard against making
the arc start and end points greater than 2*PI. Such values will render

^ an error. Lines 160 and lines 180-187 do the needed corrections.
Always be careful when dealing with periodic functions. From interpo
lated lines 185 and 187, you can detect that I wasn't careful the first time
round.

Second, we can't use END as a name for the end of arc—it's the
reserved name of a BASIC command. Thus, I used the similarly pro
nounced name ND instead.

Try a bunch of experiments making spirals. How can you control
the thickness of the spiral? The number of cycles? The distance
between successive loops?

Can you put some sound to the spiral generation to make it more
interesting to watch?

Here's a simple line on which to build sound effects.

105 SOUND OFF:BEEP OFF' Use internal speaker
145 PLAY "mb":SOUND 4*R-H 37,3.6

Can you make moire patterns using overlapping spirals?

Serendipity from Errors

I think all great discoveries must be made by accident. Columbus
sure wasn't looking for America when he bumped into it. And penicillin
derived from an experiment spoiled by a mold. What turns a spoiled
experiment into a discovery is the attitude of the experimenter toward
his frustration. Understanding why an experiment was spoiled can
open the door to greater things.

While my son Tim was running through this chapter, he made a
mistake typing in SPIRAL.BAS. He typed line 180 this way, omitting the
pi:

180 IF ND< = 2 THEN 190 ' Test for end of cycle correction

imm, Make the change to see what happens.
That's a much more interesting spiral. Sort of like a nebula or

galaxy—one of those great spirals of stars. And with the interruptions

SOUND & GRAPHICS FOR THE IBM PCjr 157

in the sound as the pitch gets higher, you can feel a strain, as if
something were about to explode. Let's see if we can actually make the
nebula "explode" as it reaches climax.

Figure 5.12 gives a first approximation to an explosion with sound
effects. Add it to SPIRAL.BAS and SAVE the result as NEBULA.BAS.
Then experiment to see if you can improve the program.

1000 ' Explosion—sort of
1010 SOUND ON:BEEP OFF' Use external speaker
1020 CLS:XO = 150:Y0 = 100 ' Define center of explosion
1030 PSET(X0,Y0),3
1040 FOR I = 1 TO 7 ' Repeat rumble
1050 COLOR 1,1 ' Add color—a throb
1060 V=16-2*l:D = 1/400' Decrease volume & increase duration

1070 NOISE 7,V,8' Make noise at pitch of SOUND command
1080 FOR F = 1400 TO 600 STEP-350 ' Range of rumble
1085 ' Explosion of lines
1090 LINE (X0,Y0)-(X0 + F*(RND-.5)/5,Y0 + F*(RND-.5)/5),3
1100 SOUND F,D,V,2 ' Create rumble with various frequencies
1110 SOUND 37 + F/3,D,V,2 ' around F as center
1120 SOUND 5*F,D,V,2
1130 SOUND37 + F/2,D,V,2
1140 SOUND 7*F,D,V,2
1150SOUND37 + F/4,D,V,2
1160 NEXT

1170 NEXT

1175 ' Continue throb

1180 FORI = 0TO7:COLOR l,1:F0RK=1 TO
500:NEXT;NEXT:GOTO 1180

Figure 5.12: Explosion for NEBULA.BAS

Just a couple of notes. The idea I had for the explosion sound is to
mix high and low frequencies that sweep down through a range con
trolled by the FOR...NEXT loop at line 1080. Notice how the frequencies
in the SOUND commands (lines 1100-1150) jump back and forth
around F, the central frequency.

158 JAMES E. KELLEY, JR.

To add some "fog" to this rumbling, I used the NOISE generator
(line 1070). This command adds a buzz to the frequency being
SOUNDed if you play it with the voice 2. See the 2's in the SOUND
commands? (Voices are numbered 0, 1 and 2, and we'll see more
about them later.)

Since an explosion starts loud and rapidly fades away, I made the
volume and duration variables V and D, respectively. Their values are
controlled in line 1060.

The visuals here leave much to be desired because of the random
lines radiating from the center of the screen (line 1090). With the
facilities we've covered thus far, the graphics operate too slowly to give
an effective result. We'd have to program individual pieces of the
exploding nebula, constructed in advance, and then flashed on the
screen in successive positions outward from the center. This is anima
tion, a subject we take up toward the end of the book.

You've seen the flashing colors before in the throbbing eye. Try
running NEBULA.BAS minus the line generator in line 1090 to appreci
ate its impact.

10. USING A "HAKE" BRUSH

So far we've been using a narrow brush to form most of our figures,
one the width of a single line. Even where we've filled up an area with
color, it's been by drawing lots of narrow lines. The exception is where
we used the "fill" option of the LINE command to paint the interior of a
box. And we did use the PAINT command once.

This fill facility, available with the PAINT command, is good for any
closed shape. Try it. (Set up the screen in medium resolution with white
on a blue field first.)

Type: <Ctrl-L>
Type: CIRCLE (150,100),50,3 <ENTER>

If you don't specify the "aspect," you get a circle.
Don't erase the screen. You're going to paint the circle's interior

"green." Right below the "Ok,"

Type: PAINT (150,100),1,3 <ENTER>

SOUND & GRAPHICS FOR THE IBM PCjr 159

NOTE: According to the BASIC manual (under COLOR) color 1 of
palettel is "cyan," a blue of some sort. My set produces a green color,
and I will refer to it as such. Differences in TVs and monitors can

produce quite different colors for the same input signals, so don't be
surprised if you generate colors nobody else gets.

We needn't select the center of the circle, (150,100), as the point
from which to paint. Any point inside the boundary of the figure will do.
The number 1 is the default green of palette 1. The 3 is the white of the
boundary. If you use another color, the PAINT command won't know
where to stop and in this case will paint the entire screen green.

Let's build on this example. Move the cursor up to the CIRCLE
command and change the aspect to 0.4.

Type: CIRCLE (150,100),50,3,„.4 <ENTER>

Now there's an ellipse inside the circle. It looks something like the
CBS "eye." Try painting the ellipse magenta. If the cursor is not at the
PAINT command, move it there and make these changes:

Type: PAINT (150,100),2,3 <ENTER>

Now put a circle inside the ellipse and erase the magenta fill color
by using the CIRCLE and PAINT commands on the screen and making
these changes in the order shown.

Type: CIRCLE (150,100),24,3 <ENTER>
Type: PAINT (150,100),0,3 <ENTER>

The blue inside the pupil of the eye is the field color. We can
change it this way. You should be at the fifth line down.

Type: COLOR 6,1 <ENTER>

The orange-brown on my set contrasts reasonably well with the
palette 1 colors. Let's see what palette 0 gives. Modify the COLOR
command on the screen so it reads this way:

Type: COLOR 6,0 <ENTER>

160 JAMES E. KELLEY, JR.

All the commands disappeared because the color 3 of palette 0 is
brown, the same as the field color. Not to worry. Carefully now—don't
make an error because you can't see to correct it—

Type: COLOR 1,1 <ENTER>

The screen should be intact again. If you got fouled up and it
didn't work, there's a recovery procedure you can try. Carefully now,
press the UP arrow key twice, quickly. This moves you up above the
picture.

Press <Esc(ape)> to clear the line.
Retype: COLOR 1,1 <ENTER>

If you still screw up, try again. And if you can't get this procedure to work
for you, you'll just have to begin over—say, with a warm start.

11. CHANGING THE PALETTE

Some of the default color combinations of palette 0 and 1 are
nauseous. Fortunately, you can change them. Move the cursor up to
the top line and erase the CIRCLE command with <Esc(ape)>. Let's
change the cyan (attribute 1) that is green on my TV to a light color such
as yellow—number 14 (see the COLOR command in the BASIC man
ual, the table of colors for the text mode screen).

Type: PALETTE 1,14 <ENTER>

The 1 is the palette attribute. The 14 is the yellow we want.
Let's also change the magenta (attribute 2) to red (color number

4). Change the PALETTE command to this:

Type: PALETTE 2,4 <ENTER>

SOUND & GRAPHICS FOR THE IBM PCjr 161

Play around with PALETTE, changing the assignment of colors to
attributes. You can also change the attributes of palette 0. Let's see
what they look like at the moment. Clear a line with <Esc(ape)> and

Type: COLOR 1,0 <ENTER>

Move back up to the PALETTE command and change it to this:

Type: PALETTE 1,8 <ENTER>

Try combinations of color assignments to the palette attributes so
you'll get a feel for the possibilities. When you finish playing, restore the
default assignments this way. Clear a line and

Type: PALETTE <ENTER>

12. KEEP GOING BACK OVER EARLIER
GROUND

By now you should be getting a pretty good idea of what it takes to
build pictures on the medium-resolution graphics screen. The empha
sis here has been to use formulas to form shapes from points, lines and
ellipses. Using formulas is not the only way to do computer graphics,
as you'll see shortly, but they do make up an important part of the bag of
tricks you need to be a successful practitioner of the art.

If there's one thing you should have learned from this chapter, it is
the importance of experimenting to combine ideas for new graphic
effects.

Go back through the chapter to see whether some of the tech
niques you learned toward the end can be used to enhance ideas
introduced earlier. Save your results and make notes both of ideas that
led to great results and of actions that got you into trouble.

Also be sure you understand the BASIC commands used to
develop the examples. Figure 5.13 lists those used in the chapter. Run
down the list and ask yourself whether you really understand what each
does. If you have some hesitation, look up the problem command in the
BASIC manual, and review how it was used in this chapter. Try the
examples in the BASIC manual too. They'll add to your perspective.

162 JAMES E. KELLEY, JR.

BASIC COMMAND FUNCTION

CIRCLE Draw an ellipse or arc at the
specified point of designated color
and aspect

CLS Clear screen

COLOR Set field and palette colors
COS Calculate trigonometric cosine
FOR...NEXT Repeat a sequence of commands
GOSUB Take next command from line

number, and RETURN to this
point when finished

GOTO Take next command from line spec
ified

IF...THEN Make decision on program flow
KEY OFF Toggle screen prompts off
LINE Draw a line between specified

points; build a box
LIST List program memory to the screen
LOCATE Position cursor on screen for

printing text
NOISE Generate various noise patterns

through the external speaker
PAINT Fill closed figure with specified color
PALETTE Reassign the color attributes of a

palette
PRINT Print text on the screen

PSET Print dot at specified location and
color on the graphics screen

RENUM Renumber the lines of a BASIC

program

RND Generate random number between

0& 1

SCREEN 1,0 Set medium-resolution graphics
screen

SIN Calculate trigonometric sine
SOUND Play a pitch of specific duration

Figure 5.13: Summary of Commands in Chapter 5

SOUND & GRAPHICS FOR THE IBM PCjr 163

CHAPTER 6
MORE ADVANCED PICTURE-
MAKING

Objectives;

This chapter will build on the techniques
presented thus far and will turn toward
composition and other graphics goals.

SOUND & GRAPHICS FOR THE IBM POjr 165

1. IT'S IMPORTANT TO COLLECT
SUBROUTINES

Curves Generated by Straight Lines

To do computer graphics programming successfully, you must
build a repertoire of subroutines that you'll use over and over again to
produce your brand of special effects. Sometimes they are very simple
programs, like the one In Figure 6.1. Type It Into memory so you can do
something with It.

1000 ' Corner net generator
1010 U1 =(X2-X1)/N • Define step lengths
1020 V1=(Y2-Y1)/N
1030 U2 = (X3-X2)/N
1040 V2 = (Y3-Y2)/N
1050 FORK=OTON

1060 LINE (XI +UrK,Y1 +VrKHX2 + U2*K,Y2 + V2*K),3
1070 NEXT

1080 RETURN

Figure 6.1: Corner Net Generator

The subroutine of Figure 6.1 Is just a variation on what we've
already done to draw crisscrossed lines. In this case the end points lie
on two lines that Intersect on the screen. Three points are Involved:
(X1,Y1), (X2,Y2) and (X3,Y3), where (X2,Y2) Is the point of Intersection
of the lines that also run through (X1,Y1) and (X2,Y2), respectively. N Is
the number of crisscrossed lines to draw.

Type: XI =50:Y1 =100 <ENTER>
Type: X2 = 250:Y2 = 50 <ENTER>
Type: X3= 150:Y3= 175 <ENTER>
Type: N = 10 <ENTER>
Type: <Ctrl-L>
Type: GOSUB 1000 <ENTER>

166 JAMES E. KELLEY, JR.

If we had made the angle between the base lines larger, the net
would look better, but the pretty curve the straight lines carve out
wouldn't be so nice. As you can easily visualize, you might develop
many variations of this curve by varying the angle at which the two base
lines intersect, by varying the length of these base lines, and by
making the step length for one base line different from that of the other.

Try a few examples of your own.
If you make N larger, you can make the network practically solid.

You've Got to Have Heart

There are all sorts of interesting curves you can dig out of analytic
geometry books and program as subroutines. Figure 6.2 is one I
particularly like. Without erasing the corner net generator, type Figure
6.2 into memory. You'll use the net generator shortly.

2000 ' HEART Generator

2010 CLR = 0:A = .5:6 = .025:C = .8

2020 RF = 3.1459/180

2030 GOSUB 2160

2040 FOR FX = -A TO A STEP B

2050 Fy = G*(EXP(LOG(FX'^2)/3)-SQR
(A"2-FX"2)):G0SUB 2170

2060 X = 300-(SX*HX + UO):Y = 200-(SY*HY + VO)
2070 LINE -(X,Y),CLR
2080 CLR = 3

2090 NEXT FX

2100 FOR FX = A TO -A STEP -B

2110 FY=C*(EXP(LOG(FX"2)/3) + SQR
(A'2-FX"2)):GOSUB 2170

2120 X = 300-(SX*HX + UO):Y = 200-(SY*HY + VO)
2130 LINE-(X,Y),CLR
2140 NEXT FX:GX = -A:GY = C*(EXP(LOG(A"2)/3)):

GOSUB 2180

2150 X = 300-(HX*SX + UO):Y = 200-(HY*SY + VO):LINE
-(X,Y),CLR:RETURN

SOUND & GRAPHICS FOR THE IBM PCjr 167

2160 STH = SIN(THETA*RF):CTH = COS(THETA*RF)
2170GX = FX:GY=FY

2180 HX = GX*CTH + GY*STH:HY = -

GX*STH + GY*CTH:RETURN

2190 ' Heart plots at center uO,vO
2200 ' Scale with sx and sy

Figure 6.2: Heart Generator

This subroutine is a bit complicated, even if you know analytic
geometry, but that doesn't mean you can't use it. A lot of people drive
cars without knowing what's under the hood. All you need to know is
that the heart needs the following numbers to specify it:

THETA The rotation angle
SX, SY Scale factors to stretch or shrink the heart in the

horizontal, vertical directions
DO, VO Where to center the heart on the screen

With this information let's try the subroutine.

Type: THETA=180 <ENTER>
Type: SX = 100:SY = 100 <ENTER>
Type: U0 = 150:V0 = 100 <ENTER>
Type: <Ctrl-L>
Type: GOSUB 2000 <ENTER>

To turn it rightside up, try again with THETA = 0 degrees. Every
thing else is okay.

Type: THETA=0 <ENTER>

You can distort the heart to get other figures. Does this set of
parameters come close to a bird of prey in your mind's eye?

Type: SX = 80:SY = 17:THETA = 5 <ENTER>
Type: <Ctrl-L>
Type: GOSUB 2000 <ENTER>

168 JAMES E. KELLEY, JR.

2. PUTTING IT ALL TOGETHER

To My Valentine

I'm sure this hint is enough for you to conceive of combining the
heart and the corner net subroutines to make a valentine on the screen.

There are lots of ways you might do so. Figure 6.3 is what i came up
with.

ENTINE

The program to generate the valentine is given in Figure 6.4. Type
in the program on top of the subroutines you've already typed to learn
how the picture is generated.

100 ' VALNTINE.BAS

110 KEY OFF

120 SCREEN 1,0:CLS ' Medium res graphics
130 COLOR 1,1 ' Blue field, palette 1
140 ' Draw lace in corners

150 ' Upper right

SOUND & GRAPHICS FOR THE IBM PCjr 169

160 N = 20:X1 =149:Y1=0

170 X2-299:Y2-0

180 X3 = 299:Y3 = 99

190 GOSUB 1000

200 ' Lower right
210 N = 20;X1=149:Y1=199

220 X2 = 299:Y2=199

230 X3 = 299:Y3 = 99

240 GOSUB 1000

250 ' Lower left

260 N = 20:X1 = 149:Y1 = 199

270 X2 = 0:Y2=199

280 X3 = 0:Y3 = 99

290 GOSUB 1000

300 ' Upper left
310 N = 20:X1=149:Y1=0

320 X2 = 0:Y2 = 0

330 X3 = 0:Y3-99

340 GOSUB 1000

350 ' Draw main heart

360 THETA=10 ' Rotation angle
370 SX = 150:SY = 110' Scale factors

380 U0 = 149;V0 = 99 ' Define center of heart

390 PSET (U0,V0),0 ' Move to center of heart
400 GOSUB 2010 ' Go draw heart

410 PALETTE 2,4 ' Assign red to attribute 2
420 PAINT (U0,V0),2,CLR ' PAINT heart red
430 ' Draw second small heart

440 THETA = -10 ' Rotation angle
450 SX=25:SY=20 ' Scale factors

460 U0 = 50:V0 = 65 ' Define center of heart

470 PSET (300-U0,200-V0),0 ' Move to center of heart
480 GOSUB 2010 ' Go draw heart

490 PAINT (300-U0,200-V0),2,CLR ' PAINT heart red
500 ' Draw feathers on arrow

510 LINE (62.5,143.75)-(50,143.75),CLR

170 JAMES E. KELLEY JR.

520 LINE-(75,131.25),CLR
530 LINE -(87.5,131.25),CLR
540 LINE -(81,142),CLR
550 LINE -(56,155),CLR
560 LINE -(62.5,143.75),CLR
570 ' Draw shaft of arrow

580 LINE (50,150)-(150,100),CLR
590 LINE (205,70)-(250,50),CLR
600 ' Draw arrowhead

610 LINE-(231.25,50),CLR
620 LINE-(241.5,65),CLR
630 LINE -(250,50),CLR
640' Print message
650 LOCATE 21,12:PRINT"TO MY VALENTINE";
660 GOTO 660

Figure 6.4: VALNTINE.BAS

The valentine program Is easy to follow. First a lacy net is placed in
each corner (lines 160-340), using the edges of the screen as base
lines. Next the main heart figure is drawn (lines 350-490). I've rotated it
slightly so it won't look so mathematical. By not correcting for aspect,
the heart is a little asymmetric, more like a heart an artist would draw.
Similarly for the second, little heart (lines 430-490). It is included for
balance.

Notice that I changed attribute 2 of palette 1 from magenta to the
more appropriate color red (lines 410-420).

Drawing the arrow, a corny feature, was a little work—an exercise
with graph paper. I don't know where to buy graph paper that's in the
same aspect ratio as my TV screen. The plots on square grids are
always distorted when transferred to the screen. Well, it took some
eyeball adjustments to make the feathers reasonably symmetric. With
the arrowhead I was less successful. I lucked out in guessing where
the head end of the arrow would appear from behind the heart. This
kind of thing is always a lot of work.

SOUND & GRAPHICS FOR THE IBM PCjr 171

Adding Sounds

More often than not, sound can improve a graphics demonstra
tion. Of course, if the approach used is inappropriate to the audience
or the subject, sound can be a big negative. So what can we do with
sound to enhance a presentation such as the valentine? Well, it rather
depends on your point of view. Do you want to be serious, romantic,
comic, mischievous, or what?

To illustrate, let's take the approach seen in many cartoons. We'll
let PCjr mumble and hum to itself as it draws the figures. To start, add
this line to the valentine program:

105 SOUND OFFiBEEP ON (Use internal speaker)

Now let's have PCjr put the lace in each corner with a little flourish,
and a slight pause in between for thinking. The sound produced will
depend on where you draw the lace on the screen. The sound should
be put inside the corner net generator subroutine to get maximum
control. Copy this:

1055 PLAY"mb":SOUND 200-h(X2 + U2*K)*(Y2-hV2*K)/2,.5

When the lace has been laid in one corner, we can pause a bit with this
line.

1075 FOR Z = 1 TO 500:NEXT

To add sound to the drawing of the heart, we also have to splice
the sound generator in the subroutine, in two places in fact. The
subroutine draws the heart in two halves. These lines will render a kind
of tapping sound.

2085 PLAY"mb":SOUND 37 + 5*(199-Y),.1
2135 PLAY"mb":SOUND 37-l-5*(199-Y),.1

The next action is to paint the heart. How about a sound that
denotes a "filling" process, starting with a high, loud sound, gradually
becoming softer and lower as the heart fills.

415 PLAY"mb":FOR Z = 500 TO 200 STEP -10

416 SOUND Z,1,Z/20-10:NEXT

172 JAMES E. KELLEY, JR.

This sound pattern Is Initiated before the PAINT command in line 420,
so it must run long enough in the background to span the time it takes
to fill the heart.

Coordinating sound to the action on the screen, as in this case,
can take a lot of fiddling with STEP sizes and other parameters. And if
you decide to add even more frills, you can upset the timing and have to
start fiddling all over again.

While filling the second heart, let's use a tinkle sound.

485 PLAY"MB";SOUND 2000,.5

Finally, we'll try to make a sound that indicates the arrow plopping
into the heart. To add a little surprise, we'll pause a moment to give the
viewer the mistaken idea that the action is over.

504 FOR Z = 1 TO 1500:NEXT

506 PLAY"MB":SOUND ON:NOISE 2,15,3

What's this NOISE command? All it does is generate a crackling
or hissing sound reminiscent of old-fashioned radios. You have the
choice of eight pitches and qualities of hiss. We're using type 2 in line
506, the lowest pitch, and playing it as loud as possible (volume = 15)
for a duration of three clock ticks. (See the NOISE command in Chapter
4 of the BASIC manual.)

3. SAVING PICTURES ON DISK

Is VALNTINE.BAS still in memory? I want to show you how to save a
copy of it on disk in picture form. With the SAVE command, you save
only the program to generate the picture; every time you want to look at
the picture, you have to generate it from scratch. This is not a problem
with the valentine, because it doesn't take long. But some pictures
could take half an hour or longer to generate. In these cases, you'll
want to save the generated picture so you can load it back on the
screen quickly next time you're showing off to friends.

Add these lines to VALNTINE.BAS.:

654 DEF SEG = &HB800 ' Block out the screen buffer

656 BSAVE " VALNTINE.PIC",0,&H4000' Transfer buffer to disk

SOUND & GRAPHICS FOR THE IBM PCjr 173

You don't need to understand these lines to use them In your
programs for saving pictures. Just change the name VALNTINE.PIC to
one of your own choosing. For those of you who are aficionados of
command-level language and hexadecimal codes, however, I'll tell you
that the DEF(lne) SEG(ment) statement sets a pointer to the beginning
of the buffer (memory area) where the picture on the screen Is stored.

Enough explanation. RUN VALNTINE.BAS again and watch the
picture being written on diskette when It executes line 656.

Did It work correctly? Let's verify. (SAVE the program first.)

Type: <Fn-Break>
Type: NEW <ENTER>
Type: <Fn-L>
Type: BLOAD "VALNTINE.PIC" <ENTER>

At this point you should see the picture being transferred from disk to
the screen—by alternate lines In two phases.

If you don't want the " Ok" prompt to mar the screen when BLOAD
finishes, key In and RUN a little program like this one:

100 SCREEN 1,0:COLOR 1,1:PALETTE 2,4
110 BLOAD "VALNTINE.PIC"

120 GOTO 120

In particular, note that I defined SCREEN, COLOR and PALETTE. If you
don't do this, the picture will be loaded as If It were defined for the
current screen settings. You can get some surprising results.

Try BLOADIng VALNTINE.PIC Into the text mode screen
(SCREEN 0.)

4. NOW IT'S YOUR TURN

Spring Is Here

Here's one more picture constructed with LINEs, CIRCLES and a
few math formulas, though on the surface It has little to do with math. It's
called SPRING.BAS and Is Illustrated In Figure 6.5.

174 JAMES E. KELLEY JR.

SPRING

J

The program to generate "SPRING" is in Figure 6.6. Type it in and
RUN it to see how it operates.

100 ' SPRING.BAS

110 KEY OFF:SCREEN 1,0:COLOR 1,1
120 CIS

130 RF = 3.14159/180

140 X0 = 186:Y0 = 60

150 ' Paint leaves

160 PSET (X0,199)
170 FOR 1 = 0 TO 90 STEP 15

180 RO = 65*SOR(ABS(SIN(2*RF*l)))
190 X = XO-RO*COS(RF*I)
200 Y=199-RO*SIN(RF*l)
210 LINE-(X,Y),1
220 NEXT

230 PAINT (X0-5,190),1
240 PSET (X0,199)

SOUND & GRAPHICS FOR THE IBM PCjr 175

250 FOR 1 = 0 TO 90 STEP 15

260 RO = 75*SQR(ABS(SIN(2*RF*l)))
270 X = XO + RO*COS(RF*l)
280 Y=199-RO*SIN(RF*l)
290 LINE -(X,Y),1
300 NEXT

310 PAINT (X0 + 5,190),1
320 ' Paint stem

330 K=1

340 LINE (X0-K,199)-(X0-K,Y0),1
350 LINE -(X0 + K,Y0),1
360 LINE-(X0 + K,199),1
370 PAINT (X0,190),1
380 ' Draw petals
390 S = 8;N = 4

400 PSET(X0,Y0),3
410 FOR ANGLE = 0 TO 360 STEP S

420 RO = 50*SIN(N*RF*ANGLE)
430 X = RO*COS(RF*ANGLE) + XO
440 Y = RO*SIN(RF*ANGLE) + YO
450 LINE -(X,Y),3
460 NEXT

470 ' Paint petals
480 FOR I = 0 TO 360 STEP 45

490 X = 20*COS(RF*(I + 22)) + XO
500 Y = 20*SIN(RF*(I + 22)) + YO
510 PAINT (X,Y),3
520 NEXT

530 ' Paint center of flower

540 CIRCLE (X0,Y0),10,2
550 PAINT (X0,Y0),2
560' Paint cloud

570 CIRCLE (45,50),25,3
580 PAINT (45,50),3
590 CIRCLE (70,40),30,3
600 PAINT (70,40),3
610 CIRCLE (30,40),15,3
620 PAINT (30,30),3
630 LOCATE 16,4:PRINT"SPRING"
640 GOTO 640

Figure 6.6: SPRING.BAS

176 JAMES E. KELLEY, JR.

Orchestrating Nature

Don't be put off by the math formulas that draw the leaves and
petals. After playing with them a little, you'll be able to adapt them to
your own needs by putting them into a subroutine for future use. For
now, there's another job for you to do.

Insert appropriate sounds and pauses into the program to slow
the action of progressive steps and to accompany these actions with
noises.

Here are some hints and background information on the program.
I used the equation of a two-leaved-rose lemniscate (= ribbon)

from my dog-eared analytical geometry book to draw the leaves (lines
160-230 for the first, lines 240-310 for the second). This curve turns out
to be more rounded than perhaps is desirable. But equations that
generate pointy leaves are too complicated for the purposes of this
book.

You might vary the sounds used in VALNTINE.BAS while generat
ing the large heart for outlining the leaves and coloring them. Do one
leaf, then pause dramatically before doing the second.

Similarly, wait before producing the stem. The sound for the stem,
which is drawn very quickly, might be a quick upward sweeping sound,
ending with a high-frequency NOISE. Then pause before doing the
petals.

This rose will have eight petals. Since this curve is drawn in a
periodic up and down motion, you might consider a sound that varies
frequency in phase with this motion. You might make the frequency a
function of Y in line 450 and insert the SOUND statement at line 455.
Make the duration relatively long so you get a sustained note minus all
the clicks and beats you get from short durations.

Consider accompanying the petal-painting action with random
high-frequency sounds so you get a bell-like or tinkling effect for each
petal, and slow down the action from petal to petal with a short pause in
line 515.

Wait before painting the center of the flower. Consider using a
NOISE like the one used for the little heart in VALNTINE.BAS.

Again, pause before drawing the cloud. Use your imagination to
program sound for this action.

It would be a worthwhile exercise to carry out this sound project
on your own. Everything has been done for you except actually writing
the BASIC statements.

SOUND & GRAPHICS FOR THE IBM PCjr 177

5. RUBBER-SHEET GEOMETRY

Do you have as much fun as I do on visiting the Hall of Mirrors in a
fun house? My favorite is to stand in front of the mirror that makes me
look skinny—and hope! Then there's the one that gives every girl the
classic hourglass figure, and then some. And the one that transforms
you into a basketball champion, or that grants you a certain likeness
with the Goodyear blimp.

You might imagine imitating these painless physical deformations
by drawing your outline on a sheet of rubber and then stretching the
sheet in various ways. Or perhaps by modeling in clay.

The earliest formal studies of deformations of the human body are
Albrecht Durer's (1471-1528). He and other artists of the time were
interested in reproducing correct body proportions in their work.

Purer had a particularly geometric turn of mind, and among his
studies are figures of human heads plotted on a square grid, like the
diagram of Figure 6.7. Purer shows how a normally shaped head can
be deformed to produce jutting chins, large faces and noses, pinched
looks, and other head shapes—all by changing the proportions of the
grid.

178 JAMES E. KELLEY, JR.

Closer to our time, Sir D'Arcy Thompson applied the same Idea to
the comparison of related animal and plant forms. Chapter IX of his On
Growth and Form (first published in 1917) is filled with grids overlaid on
bones of various animals, showing how they are related through contin
uous deformations of the grid. The correspondences seem so close for
mammals that you have little trouble concluding they evolved from a
common source.

For years I've been fascinated by Thompson's work. Although his
figures have been published widely, and his ideas discussed in the
scientific literature, little was done with his concepts until the computer
became available. Now it's possible to actually illustrate the changes
that might take place when molding a form like the head in Figure 6.7
into another shape.

Why don't you see for yourself? Figure 6.8 is a program that lets
you explore the world of rubber-sheet geometry. Just type it and SAVE
it. Then I'll tell you how to operate it, how it works, and how you might
modify it for other experiments.

100' DEFORM.BAS

110 GOTO 890 • Initialize

120 ' Coordinate transformation

130 X1=50-i-SX*

(A*XX*XX -t- S*XX*Y -h D*Y*Y -f- F*XX + G*Y+H)
140 Y1= 10-1-SY*

(Z*XX*XX -h X*XX*Y -k C*Y*Y -k V*XX -k B*Y -F N)
150 RETURN

160'Draw grid
170 ' First the vertical

180 FOR 1 = 1 TOO

190XX = X(1);Y = Y(I)
200 GOSUB 130

210 PSET (X1,Y1),0
220 FOR J = 2 TO 6

230 XX = XX(J)
240 GOSUB 130

250 LINE -(X1,Y1),CLR1„STYL
260 NEXT:NEXT

SOUND & GRAPHICS FOR THE IBM PCjr 179

270 ' Then the horizontal

280 FOR J = 1 TO 6

290XX = XX(J):Y=Y(1)
300 GOSUB 130

310 PSET (X1,Y1),0
320 FOR 1 = 2 TO 6

330Y = Y(I)
340 GOSUB 130

350 LINE -(XI ,Y1),CLR1 „STYL
360 NEXT:NEXT

370 RETURN

380' Draw figure
390 XX = FX(1):Y = FY(1):G0SUB 130 ' Gale new

position
400 PSET (XI ,Y1)' Move to start position
410 FOR K=2 TO P' Trace out figure
420 XX = FX(K):Y = FY(K);GOSUB 130 ' Gale next

position
430 LINE -(XI ,Y1),GLR2 ' Gonnect with line
440 NEXT ' Do next point
450 RETURN

460' Mainline

470 A$ = INKEY$:IF A$ = " " THEN 470
480 IF A$="Q" OR A$="q" THEN

GLS:PRINT" FINISHED" :BEEP:END

490 IF A$ = " P" OR A$ = " p" THEN 1150 ' Save current
picture

495' Select parameter to modify
500 PARAM = INSTR("ASDFGHJasdfghj",A$)
510 ON PARAM-hi GOTO

520,540,550,560,570,580,590,
600,610,620,630,640,650,660,670

520 PARAM = INSTR("ZXGVBNMzxcvbnm",A$)
530 ON PARAM+ 1 GOTO

880,680,690,700,710,720,730,740,
750,760,770,780,790,800,810

180 JAMES E. KELLEY JR.

535' Modify parameters
540 A=A + .5*DEL:G0T0 830

550 S = S + DEL:GOTO 830

560 D = D + .5*DEL:G0T0 830

570 F = F + DEL:GOTO 830

580 G = G + DEL:GOTO 830

590 H = H + 5*DEL:G0T0 830

600 JJ=JJ + DEL:GOTO 830

610 A = A-.5*DEL:G0T0 830

620 S = S-DEL:GOTO 830

630 D = D-.5*DEL:G0T0 830

640F = F-DEL:GOTO830

650G = G-DEL:GOTO830

660 H = H-5*DEL:G0T0 830

670 JJ = JJ-DEL:GOTO 830

680 Z = Z + .5*DEL:G0T0 830

690 X = X + DEL:GOTO 830

700 C = C + .5*DEL:G0T0 830

710 V = V + DEL:GOTO830

720 B = B + DEL:GOTO 830

730 N = N + 5*DEL:G0T0 830

740 M = M + DEL:GOTO 830

750 Z = Z-.5*DEL:G0T0 830

760 X = X-DEL:GOTO 830

770 C = C-.5*DEL:G0T0 830

780 V=V-DEL:GOTO830
790 B = B-DEL:GOTO 830

800 N = N-5*DEL:G0T0 830

810 M = M-DEL:GOTO 830

820 ' Draw new grid & figure
830 CLS:GOSUB 180

840 GOSUB 390 ' Draw figure
845 ' Manage visual and active screens
850 APAGE = (APAGE +1) MOD 2
860 VPAGE = (VPAGE +1) MOD 2
870 SCREEN „APAGE,VPAGE
880 BEEP:GOTO 470 ' Go accept new changes
890 ' INITIALIZE

SOUND & GRAPHICS FOR THE IBM PCjr 181

900 CLEAR,,,32768!' Double video buffer size
910 KEY OFF:SCREEN 1,0,0,0:COLOR 0,1
920 CLS:SOUND ONrBEEP OFF

930 CLR1 = 1 :CLR2 = 3 ' Grid & figure attributes (colors)
940 PALETTE CLR1,14 ' Try various grid line colors
950 STYL = &HCCCC ' Set dashed line style
960 DIM XX(24),Y(24),FX(50),FY(50)' Grid and figure

tables

970 FOR I = 1 TO 6' Load grid point table
980XX(I) = I-1:Y(I) = I-1
990 NEXT

1000 P=29' Number of points in figure
1010 FOR 1 = 1 TO P' Load figure table
1020 READ FX(I),FY(I)
1030 NEXT

1040 DEL = .06

1050 ' Define initial distortion parameters
1060 A = 0:S = 0:D = 0:F = 0:G = 0:H = 0:JJ = 0
1070 Z=0:X = 0:C = 0:V=0:B = 0:N = 0:M = 0
1080 F=1 :B = 1 ' Square grid parameters
1090 SX = 40:SY = 35 ' Scaling factors
1100 APAGE = 1 :VPAGE = 0 ' Active & visual page

selectors

1110 GOSUB 180 ' Draw initial grid
1120 GOSUB 390 ' Draw initial figure
1130 SCREEN ,,1,0 ' Change active screen
1140 GOTO 460' Go accept changes to parameters
1150 ' Save picture on current VPAGE
1160 CLS:SCREEN „APAGE,APAGE ' Messages on

active page
1180 PRINT:PRINT"Key name of picture"
1190 PRINT PRINT" (8 or fewer characters)
1200 PRINT:INPUT NA$ ' Type file name to save
1210 NA$ = LEFT$(NA$,8) + ".PIC" ' Attach .PIC

extension

182 JAMES E. KELLEY JR.

1220 SCREEN„VPAGE ' Make VPAGE active
1230 DEF SEG = &HB800 ' Start of video art

1240 BSAVE NA$,0,&H4000 ' Save picture
1250 SCREEN„APAGE,VPAGE ' Reset screen
1260 GOTO 460' Go accept more changes
1270 ' Figure points—substitute here for other figures
1280 DATA 2,4.5,1.8,3.62,1.25,3.12,.9,2.5
1290 DATA .95,1.7,1.25,.95,2,.45,2.87,.4
1300 DATA 3.68,.75,4.05,1.05,4.12,1.25,4.15,1.5
1310 DATA 4.1,1.75,4.03,1.95,4.45,2.75
1320 DATA 4.37,2.92,4.12,2.99,4.12,3.12
1330 DATA 4.25,3.37,4.1,3.4,4.15,3.51,4.02,3.7
1340 DATA 4.14,3.77,4,4,3,3.91,2.67,3.67
1350 DATA 3,3.91,3.25,3.97,3.37,4.5

Figure 6.8: DEFORM.BAS

6. PREPARING INPUT FOR DEFORM.BAS

When you RUN DEFORM.BAS, a grid of squares is drawn on the
screen, followed by the tracing of a figure. For the illustration, you'll see
the human head depicted in Figure 6.7. The grid is drawn automati
cally by the program. You must supply the figure in a set of DATA
statements beginning in line 1280.

I prepared the head you see on the screen by first sketching it on a
piece of graph paper. I used paper with eight grid lines per inch. Ten is
better and doesn't force you to think in eights when you want to read the
coordinates of a point. (Trace the figure if your freehand sketching is
too primitive.)

Next, I traced over the sketch with bold, straight line segments.
You can use a ruler or straightedge if you like. The purpose of this step
is to define the endpoints of a series of straight lines to be generated by
the LINE command.

SOUND & GRAPHICS FOR THE IBM PCjr 183

Then, starting with a free end of the figure, the lower back of the
neck In the Illustration, I read off coordinate pairs (x,y—I.e., horizontal
and vertical position) of successive end points of line segments. The
(0,0) coordinate (origin) Is the upper left corner of the grid; (5,5) Is the
lower right corner.

With this list of coordinates, I prepared the DATA statements
starting at line 1280. They move along In successive pairs of coordi
nates around the figure. The first few are as follows: (2,4.5), (1.8, 3.62),
(1.25, 3.12), (.9, 2.5). Check them against line 1280.

If the figure has forks (e.g., where the neck and jaw break away
from the chin), go to the nearest endpoint and double back to complete
the figure. For figures with two or more unconnected parts, you'll have
to modify the program to draw them properly.

7. DISTORTING THE FIGURE

Now comes the fun part. There are twelve things you can do to
transform the character of the picture. They are listed In Figure 6.9.
Keep referring to this figure as we try the operations.

UPf Down and Sideways Movements

The simplest operations are moving the figure up, down and
sideways. Flit N and watch the screen. In about ten seconds— sorry It's
so slow—you'll see the figure jump up a small amount, and you'll hear a
beep to signal the completion of the change. You don't see the figure
being drawn, because It's done on another page of video memory.
When the new picture Is ready, the other page Is switched to the
screen. It's easier to see the effect of the change this way.

Try hitting N a couple more times and see the figure move up
above the top edge of the screen.

CAVEAT: Be careful about hitting the keyboard while the program
Is creating a picture In the alternate page. These strokes are stored In
the type-ahead buffer and will be put Into action eventually. You may
not like what you did accidentally. I decided not to flush the buffer so
that I could deliberately load It with several commands (e.g., to shrink
the figure to screen size) while I did something else for the minute or
two that It takes to execute them.

184 JAMES E. KELLEY, JR.

KEYSTROKE* EFFECT

Centering
N Move figure up/down
H Move figure left/right

Dilation

vertically
B Expand/shrink (uniformly)
vertically
0 Expand/shrink (non-uniformly)
horizontally
F Expand/shrink (uniformly)
horizontally
A Expand/shrink (non-uniformly)

Shear

V Shift right edge up/down
(uniformly)

Z Shift right edge up/down (non-
uniformly)

G Shift bottom edge left/right
(uniformly)

D Shift bottom edge left/right (non-
uniformly)

Rotation

X Compress/expand right edge
8 Compress/expand bottom edge

* Holding <Shift> down as you strike a letter moves you in
the opposite direction

Figure 6.9: Distortion Operations

To move the figure downward, hold the Shift key and strike N. It'll
take a few of these strokes to reposition the figure.

The Shift key is used with all these operations to indicate move
ment in one direction. The operation key alone indicates movement in
the opposite direction.

SOUND & GRAPHICS FOR THE IBM PCjr 185

Right and left shifts of the figure are done with Shift-H and H, H
respectively. Try a couple of moves.

Dilation

Suppose you want to make the figure smaller to keep it within the
bounds of the screen. Type F and see the figure shrink toward the left.
Of course, a <Shift-F> will stretch the figure toward the right.

The F operation shrinks and expands the figure uniformly. That is,
the space between grid lines is changed proportionally. With the A
operation, the shrinking or expansion can be done non-uniformly. To
see what I mean, strike A a couple of times. Just the opposite effect is
brought about with <Shift-A>.

The V and Z commands are the vertical movement counterparts of
F and A, respectively. Try them to get. the feel.

Shear

So far we've done the simplest distortions. To keep matters sim
ple, clean the slate.

Type: Q (Quit)
Type: RUN <ENTER>

There, we're back at the beginning.
Strike <Shift-G> a couple of times. We've given the poor fellow

something of a jutting chin, or underbite. Notice that the shear of the
bottom edge, relative to the top, is done uniformly. This figure is prac
tically identical to one of Durer's drawings.

By using the <Shift-D> command, we can accelerate the move
ment. Strike <SHIFT-D> and see. Of course, G and D move you in the
opposite direction.

As before, V and Z do the equivalent shearing operations in the
vertical direction.

Mess around with the shear operations just to see their effects.
Don't go mixing up other operations with them until you've fixed the
shear operations in your mind.

Rotation

Rotations are the most difficult to intuit. We'd best get a clean slate rt
to try them. (Type: Q and RUN <Enter>.)

186 JAMES E. KELLEY, JR.

strike <Shlft-S> once. You can see that the bottom edge
stretches toward the right without curving or modifying the top and left
edges. It's like the F command, except that the amount of stretch
depends on the distance from the top edge.

Try the opposite. Type 8 twice. The poor fellow has a bit of an
overbite now.

The X command is D's counterpart for the vertical axis.
Play with the D and X commands to get the idea of the distortions

they produce.

8. SOME EXPERIMENTS

Keystroke Notation

Now that you've got the general idea, let's take up more complex
movements that involve combinations of the individual operations. To
save time, an abbreviated notation will be used to specify the steps one
can take to build a certain picture. If you are to strike a given key, I'll just
write the name of the key (e.g., D or F). If you are to hold <Shift> down
while striking the key, I'll write a small s in front of the letter (e.g., sD or
sF).

If I write a series of strokes separated by plus signs (+), e.g.,
D + sF+G, then you are to strike D, followed by <Shift-F>, followed by
G.

If I write a series of strokes in parentheses, preceded by a positive
integer, e.g., 3(D + sG), then you are to strike the pair D and sG three
times, in that order. If there's only one stroke to be done several times,
I'll omit the parentheses, e.g., 3D instead of 3(D).

If you're a little confused, don't worry. These rules will clear up as
you go along.

Man of the Future?

Let's start afresh. Quit DEFORM.BAS and RUN it again to get the
square grid picture. We'll begin with something easy to get used to the
notation. Try this:

2(A + C) (Shrink lower right toward upper right, non-uniformly)

Just do the keystrokes in this order: A, C, A, C.

SOUND & GRAPHICS FOR THE IBM PCjr 187

You might say this series of deformations chronicles the evolution
of man as his brain case expands to hold his evolving brain.

Square Sail Forms

Now watch what happens as you do this series of operations;

9sG+4D (Generate square sail form)

You can get the reverse of this picture by doing 9G+4sD. You've got to
start with the square grid again.

The equivalent changes in the vertical can be obtained with these
strokes.

9V+4sZ (Generate shield form)

Again, by symmetry, the reverse is generated by doing 9sV+4Z.

Diamond Forms

Let's start again, and pull on the poor fellow's chin.
Type: Q and RUN.

3(sD+sZ) (Generate spearhead shape)

Of course, you know you can shrink the figure with F and B to bring it
back onto the screen.

What happens if, starting from scratch, you do 3(D+Z)?
If, instead of the non-uniform shearing operations, we use the

uniform ones, we'll get straight-line figures. Do this:

3(sV -I- sG) (Generate diamond shape)

What would happen if you did 3(V-t-G) instead?
These diamond forms are useful for studying the effects of

stretching and shrinking axial symmetric shapes like fish. But in these
cases you should prepare the input so that the axis of symmetry runs
along the diagonal—i.e., the head in the upper left and the tail in the
lower right.

188 JAMES E. KELLEY, JR.

Foldings

Now for some more complicated motions. Try this one.

5(S + X) + 5(sH + sN) (Fold lower right back to and beyond
upper left corner)

If you had done 3(D+Z) a few more times, you'd have completed the
folding and gone beyond as was done here.

With some of these deformations, you'll probably want to rescale
the figure with B and F, and then recenter it with N and H.

Here's a process similar to the last one, but headed horizontally
and down.

4(S+sX)+7N (Fold lower right out and past lower left)

The 7N just gives you a chance to see what's happened below the
bottom of the screen. Keeping pictures within the screen is a bit of a
bother. You may want to move down even farther.

Try some additional possibilities of your own invention. Make
notes of what you discover so you can exploit them later.

The Monkey's Uncle

This subsection might have been titled "Man's Roots," "The
Origin of Man" or something equally Darwinian. My inspiration comes
from the figures in Thompson's On Growth and Form, which show the
relationships between the shape of the human skull and those of the
chimpanzee and the baboon. I thought it would be fun to see if I could
deform the human head on the screen to one approaching a simian
prototype. The best result I obtained is shown in Figure 6.10—a figure
more like a dog than a chimp. But the smaller brain case and large jaw
is the general effect sought.

To give you a feel for the process of reshaping a figure, try this
shortened reconstruction of the process I went through to obtain my
monkey's uncle.

10F + 10B + 8sA+10F+3sN + Z+2D + 4sS

+ 10F + G + 4sC + 10B + 3sC + 3V + 3sN + 2sX+8B + 2sH

SOUND & GRAPHICS FOR THE IBM PCjr 189

CAVEAT: Slow down. Be careful not to overload the type-ahead
buffer. It'll scream at you if you do, and you'll probably lose count of the
keystrokes. And if you do lose count, you won't end up with the same
figure I did.

9. SAVING A FIGURE ON DISK

If you want to save your handiwork to show others, here's how. Is
the monkey's uncle still on the screen? Okay,

Type: P (Save Picture)

You're asked to name the file you want to save it in.

Type: BABOON <ENTER>

The disk drive's red light goes on and you hear the file being
recorded. That's it.

190 JAMES E. KELLEY, JR.

Let's verify that BABOON.PIC (the extension .PIC is added by
DEFORM.BAS) is on the disk.

Type: Q (Quit DEFORM.BAS)
Type: FILES <ENTER>

Do you see it?

10. READING BACK YOUR PICTURES

To show off your hard-won pictures, you can do the following.
Clear program memory (NEW) and type in the following little program.

100 SCREEN 1,0
110 BLOAD"BABOON.PIC"

120 GOTO 120

Of course, you substitute the name you want for BABOON.PIC.
Line 120 just keeps you from ruining the picture with the "Ok" prompt.

11. DEFORM.BAS PROGRAM NOTES

Program Layout

When you RUN DEFORM.BAS, the first thing it does is jump from
line 110 to 890 to do the one-time setup actions. Because of the way
BASIC operates, it's important to reserve the low-order line numbers for
subroutines that are used most often. Figuring out the new positions for
the various plotted points (coordinate transformation, line 120), and
drawing the grid (line 160) and figure (line 380), are all at the front of the
program. The mainline (line 460) is sandwiched between these sub
routines and the initialization activity.

SOUND & GRAPHICS FOR THE IBM PCjr 191

Initialization

First define the video space. We have to double the size of the
graphics buffer so we'll have two pages between which we'll switch
back and forth. Normally you're given a 16K buffer. To double it, we use
the CLEAR command in line 900. With the space allocated, we can
define the graphics screen type (medium resolution) and which pages
will be active and visual—page 0 to start with (line 910).

NOTE: It is essential to follow this discussion with your BASIC
manual at hand. Read slowly and look up each of the commands
discussed. Some of them have a variety of purposes. To put them in
perspective, and even understand what I'm talking about, you must
relate our application of them here to these other functions.

I did a little experimenting with colors by assigning various
attributes and palette combinations in lines 930 and 940. You might try
some youself to see if there's a more satisfying combination of colors
for you.

To avoid making the grid lines solid, a dashed-line style is defined
in line 950, to be used in lines 250 and 350 when the grid is drawn. You
might try some experiments with other styles of lines (e.g., all dots, or
dot-dash combinations).

In line 960, space is allocated for the grid points and the points of
the figure you supply as input. You can make them larger if you need
more space for a figure, or want to use a finer-grained grid.

Lines 970-990 load the grid points into the grid table. Lines
1000-1030 do the same for the figure. You've got to specify the number
of points, P, in the figure at line 1000 so that the subsequent
FOR...NEXT loop knows when to stop READing DATA statements (line
1020).

The amount by which the figure is permitted to change from step
to step is specified by DEL in line 1040. For instance, if you double its
size, the amount you can shift the figure's center is doubled each time
you use the N or H command. This is a parameter with which you might
experiment.

Transforming Coordinates

The mechanism for distorting the grid and the figure is a pair of
equations that relate the original square grid to one with curved grid
lines. The equations I use in DEFORM.BAS are quadratic forms. They
are spelled out in lines 130 and 140. The square-grid coordinates are
XX and Y. The transformed coordinates are XI and Y1.

192 JAMES E. KELLEY, JR.

Each equation involves six coefficients—A, S, D, F, G, H; and Z, X,
C, V, B, N, respectively. I picked these letters so they would correspond
to successive letters on rows of the keyboard. In this way I could literally
feel them in the home position of my left hand, and easily know which
term of the quadratic form I was dealing with. Since X is one of the
coefficients, I used XX to represent the horizontal coordinate.

It turns out that if you let all the coefficients be 0 (except F and B,
which you set to 1) then the transformed grid is identical with the
original, square grid. These initial values are set in lines 1060-1080.

In addition, there's a scaling and centering problem to consider—
fitting the grid to the screen. The scale factors (SX and SY) are set in
line 1090 and are used in the transformation equations in lines 130 and
140. 1 picked values that seemed to produce a square grid of reason
able size. (Remember the aspect ratio problem?) Centering is done by
the constants 50 and 10 in the transformation equations at lines
130-140.

Drawing the Transformed Grid

The next initialization step (line 1110) is to draw the grid using the
subroutine at 180. This subroutine is also used in the mainline. The grid
is drawn in two steps—first the horizontal lines, then the vertical—by
almost identical routines. The coordinate transformation routine at line
130 is used to change the original grid coordinates to the new positions
(i.e., lines 200 and 240). The appropriate changed positions are then
connected by straight-line segments (i.e., line 250). It's a question of
picking a point along the left edge or top edge (lines 210 and 310), and
then zipping horizontally or vertically to form the grid lines.

Drawing the Figure

After the grid is drawn, the figure is superimposed. Initially this is
done in line 1120 using the subroutine at 390. The process is similar to
that of drawing the grid. The starting position is calculated (lines
390-400), then each successive position of the figure is transformed
(line 420), and a line is drawn to it from the previous point (line 430).

The Mainiine

Just before jumping to the mainline, the active and visual page
indicators are set (line 1100), and the screen setting is changed. Page 0
remains visible and page 1 is made active so we can build the next
transformation on it while we're still viewing the original figure.

SOUND & GRAPHICS FOR THE IBM PCjr 193

The mainline, which starts at line 470, is similar to keyboard input
loops we've used before, though perhaps a little more involved. Line
470 looks for you to strike a character on the keyboard. If you hit Q, the
program is over (line 480). If you hit P, you're sent off to line 1150 to save
the current picture.

Generally you'll strike one of the parameter keys to change the
coefficients of the quadratic equations. There are two cases. Coeffi
cients of the equation for XI (line 130) are detected in line 500; those of
the equation for Y1 (line 140) are detected in line 520. If the variable
PARAM turns out to be zero, you struck an undefined key. You're
BEEPed at (line 880) and sent back to line 470 to try again.

Lines 510 and 530 take care of selecting how to handle the
changed coefficient. Depending on whether you typed a capital or
lower-case letter, you'll add or subtract a multiple of DEL from that
coefficient. You can see all the possibilities delineated starting at line
540. I add/subtract only half of DEL to/from coefficients of squared
terms to compensate a bit for the large change these terms introduce. I
accelerate the constant terms by adding/subtracting five times DEL,
so changing the center of the figure moves it along more quickly. You
might do some experimenting here too.

Once the coefficients have been modified, the grid and the figure
are replotted (lines 830-840), but you don't see the new picture until the
active and visual pages are flipped (lines 850-870). I felt it was impor
tant to BEEP when the change is made, thereby letting you know you
can make another change.

Saving a Picture

If you enter a P, you are sent off to line 1160 to save the current
screen image. You are switched to the active screen so you can type in
the name of the file you want to save (line 1200). A .PIC extension is
added to the name (line 1210). If the name contains more than eight
characters, the machine recognizes only the first eight.

Now the visual page is made active (line 1220). This is important
because the BSAVE command saves only from the active page. The
standard formula for saving video memory is the commands at lines
1230 and 1240.

Finally the active page is switched back and you're sent back to
line 460 to make additional transformations.

194 JAMES E. KELLEY, JR.

other nansformations

If you know what you're doing, It's fairly easy to change the
I—I transformation equations In lines 130-140 to other mathematical forms.

The quadratic Is fairly limited In Its possibilities. The monkey's uncle
would probably have been more successful If the equations contained

I-* logarithmic or exponential terms.

12. REVIEW, REVIEW, REVIEW

This chapter contained some rather advanced graphics pro
gramming Ideas, but you have seen how the simple techniques we
used In earlier chapters arose again In these more difficult programs.
Still, as programming techniques became more and more Involved,
you may have had some difficulty with them.

The fact Is that If you want to do Interesting things with a computer,
there's a lot of stuff to know. Although your Interest may be graphics,
much of what you should be familiar with Is equally applicable to
Inventory control or accounting or other application areas. Manipulat
ing data by computer Is done pretty much the same way In all
applications.

Before going on, be sure you understand the BASIC commands
used to develop the examples In this chapter. We're building on what
we've learned thus far, so you want to be sure you're prepared for what
lies ahead.

Figure 6.11 lists the BASIC commands used In this chapter. Read
over the list to be sure you understand what each command does.
Look up problem commands In the BASIC manual. Then go back over
the chapter and try Introducing your own. You'll be surprised what you
can learn and how satisfying It can be when you get the sense that
you're controlling the PCjr yourself. You may want to delve Into other
books on BASIC to get other perspectives on the language and what
you can do with It.

BASIC COMMAND FUNCTION

ABS Change a number to Its positive
value

BEEP Make speaker beep

SOUND & GRAPHICS FOR THE IBM PCjr 195

BLOAD

BSAVE

CIRCLE

CLEAR,,,32768

CLS

COLOR

COS

DATA

DEF SEG

DIM

FOR...NEXT

GOSUB

GOTO

IF...THEN

INKEY$

INPUT

KEY OFF

LINE

LIST

Reload a section of memory
saved with BSAVE

Write a portion of memory to
disk or cassette

Draw an ellipse or arc at the
specified point of designated
color and aspect

Set up two pages for medium-
resolution graphics buffer

Clear screen

Set field and palette colors
Calculate trigonometric cosine
Store numeric or character data

for access by READ
command

Define the beginning of a block
of memory

Set up a table or array
Repeat a sequence of
commands

Take next command from line

number, and RETURN to this
point when finished

Take next command from line

specified
Make decision on program flow
Read character from type-
ahead buffer

Transfer keyboard data to a
variable

Toggle screen prompts off
Draw a line between specified

points; buiid a box; specify
style of line.

List program memory to the
screen

196 JAMES E. KELLEY JR.

LOCATE

NOISE

ON...GOTO

PAINT

PALETTE

PLAY

PRINT

PSET

READ

RENUM

RND

SCREEN 1,0

SCREEN,,apage,
vpage

SIN

SOUND

SQR

Position cursor on screen for

printing text
Generate various noise

patterns through the external
speaker

Computed GOTO multiple line
numbers

Fill closed figure with specified
color

Reassign the color attributes of
a palette

Sound the notes and execute

the commands in a music

command string
Print text on the screen

Print dot at specified location
and color on the graphics
screen

Transfer values from a DATA

statement to specified
variables

Renumber the lines of a BASIC

program

Generate random number

between 0 and 1

Set medium-resolution graphics
screen

Select active and visual pages
of video buffer

Calculate trigonometric sine
Play a pitch of specific duration
Take the square root of a
number

Figure 6.11: Summary of Commands in Chapter 6

SOUND & GRAPHICS FOR THE IBM PCjr 197

CHAPTER 7
TWO AND THREE-PART
HARMONY

Objective:

This chapter will further explore PCjr's
musical capabilities and demonstrate
how to program harmonized tunes.

SOUND & GRAPHICS FOR THE IBM PCjr 199

1. THE KEY IDEA IS SIMPLE

So far we've only considered how to transcribe single-voice tunes
using the PLAY command, but PLAY permits chords and harmonies to
be included in a tune. Here's how.

Three-Voiced Chords

You need SOUND ON to create simultaneous voicings with PLAY.

Type: SOUND ON:BEEP OFF <ENTER>

Now for some chords. First we'll anchor them at the octave of
middle 0.

Type: PLAY "03","03","03" <ENTER>

Notice there are three O commands specified, one for each voice. The
voices are labeled from left to right, 0, 1 and 2, respectively. Now for
some notes.

Type: PLAY "C","E","G" <ENTER> (C Major)
Type: PLAY "C","E-","G" <ENTER> (C Minor)
Type: PLAY "C","E-","G-" <ENTER> (C Diminished)
Type: PLAY "C","E","B-" <ENTER> (C Dominant 7th)
Type: PLAY "C","F","A" <ENTER> (F Major)

Let's try a sequence of them. To avoid confusion, write a table of
the chord sequence and the assignment of notes to voices.

Voice 0 Voice 1 Voice 2 Chord

03C 03E 03B- C Dominant 7th

C F A F Major
«B- D A- B-flat Dom 7th

E- <B- G E-flat Maj
A- >C G- A-flat Dom 7th

D- <A- F D-flat Maj
G- B- E G-flat Dom 7th

<B B D# B Maj 3rd

200 JAMES E. KELLEY, JR.

Note how PCjr music notation has been used to indicate changes
of octave within a voice, and how the starting octave has been reset to
03 to be sure it's properly selected. As you see, Voice 0 is the bass.
Voice 1 the alto, and Voice 2 the soprano. It doesn't make any dif
ference which voice you assign to which part. To hear how this noodling
sounds, write each part as a separate tune, but not in Direct Mode.
There's too much typing at risk. Clear memory (NEW) and enter this
line:

100 PLAY "03CC«B-E-A-D-G-<B",
"03EFD<B->C<A-B-B",
"03B-AA-GG-FED#"

Notice that each string of letters between quotes corresponds to a
column (voice) in the table we set out above.

Now put in the SOUND ON line:

90 SOUND ON:BEEP OFF

Now run the program. This is the classic cycle of fifths that runs
through all of Occidental music. I was going to say "western" music,
but you might have thought I was talking about the cowboy variety.

Easier Manipulation of Music Fragments

Though there were only eight notes in each voice in this last
example, you can tell immediately that line 100 is not the way to write
polyphonic music (several voices supporting a melody). In fact, there is
an easier way for some purposes. Let's test your editing skills as we
move into it.

Clear the screen (<Ctrl-L>, and LIST 100 to put line 100 at the top
of the screen. Move the cursor up to PLAY command and change the
line number to 200. Don't hit <Enter> yet.

Now type the characters A$ = over the PLA in PLAY and delete
the Y with the Del key.

Next, move the cursor right to the first comma and type <Ctrl-Fn-
End> to erase the tail end of the line.

Now you can hit <Enter> to register the new line 200. What you've
done is to assign the string of notes for Voice 0 to the pigeonhole
labeled A$. (The dollar sign, of course, tells PCjr that what's in the
pigeonhole is a string of ASCII characters, not a number.)

^ SOUND & GRAPHICS FOR THE IBM PCjr 201

LIST the growing program to see if the music string in line 200
matches Voice 0 in line 100.

Using the editing controls, pull out the music strings for Voice 1
and Voice 2, and put them in pigeonholes labeled B$ and C$ at lines
210 and 220, respectively. You should end up with program lines that
look like this:

200 A$ = "03CC«B-E-A-D-G-<B"
210 B$ = "03EFD<B->C<A-B-B"
220 C$ = "03B-AA-GG-FED#"

To all this, add the following line:

230 PLAY ")(A$;","XB$;","XC$;"

Don't omit the semicolons. Okay, RUN the program. You should hear
the sequence of chords twice.

The X is a special PCjr music language character. It says to treat
the characters following it as the label of a music string that is stored
elsewhere. The semicolon simply specifies the end of the label so that
PCjr can switch back to interpreting the characters as music language
operations.

While these variables are still active, try these Direct mode,
commands:

Type: PLAY "XA$;","","XC$;" <ENTER>
Type: PLAY "","XB$;","XC$:" <ENTER>
Type: PLAY "XA$;","XB$;","" <ENTER>

Kind of fun to hear the voices by twos.

2. ROUND AND ROUND

Play Rounds on PCjr

Perhaps the earliest personal experience that children have with
harmonizing is the singing of rounds, songs with two or more voices
overlapping a melody. Cbvious examples are tunes such as "Three
Blind Mice," "Row, Row, Row Your Boat" and "Frere Jacques."

202 JAMES E. KELLEY, JR.

Figure 7.1 is a program called ROUNDS.BAS, which permits PCjr
tc play a round in three parts.

ROUNDS.BAS consists of three sections. First there are a few lines
that set the initial conditions (lines 10-70). Then there's the round
itself—"Frere Jacques" in the figure (lines 100-200). It is represented
as a series of strings, loaded into the array B$, measure by measure.
Finally, there's the round-playing controller (lines 1000-1160). This is
what does all the work of selecting which measures to PLAY together.

10' ROUNDS.BAS

20' Play musical rounds
30 SOUND ON:BEEP OFF ' Select external speaker
40 BARS = 50:DIM B$(BARS)' Define array to store

measures

50 I = 0:J = 0:K=0:A$ = " " :M = 2:T = 120 ' Defaults
60 VI = 10:V2 = 8:V3 = 6 ' Voice volumes

70' Insert tune from 100-999

100'FREREJACQUES

110 BARS = 8:M = 2;T = 150 ' No. of measures, offset &
tempo

120 B$(0) = "PI" ' Dummy measure of rests
130 B$(1) = "03L4CDEC" ' First measure
140 B$(2)="03L4CDEC"
150 B$(3) = "03L4EFL2G"
160 B$(4) = "03L4EFL2G"
170 B$(5) = "03L8GAGFL4EC"
180 B$(6) = "03L8GAGFL4EC"
190 B$(7) = "03L4C<G>L2C"
200 B$(8) = "03L4C<G>L2C" ' Last measure
1000' Round controller

1010 ON KEY(1) GOSUB 1160 ' Set <Fn-1> stop playing
1020 KEY(1) ON ' Activate function key 1
1030 PLAY "t = T;","t = T;","t=T;" ' Set tempo
1040 1 = 1-1-1 ' Increase measure count for voice 1

1050 IF J = 0 AND l<1 -f-M THEN 1070 ' Voice 2 starts at

offset

SOUND & GRAPHICS FOR THE IBM PCjr 203

1060 J=J +1 ' Increase measure count for voice 2

1070 IF K=0 AND l<1 +2*M THEN 1090 ' Voice 3 starts

at offset

1080 K=K+1 ' Increase measure count for voice 3

1085' Tests whether to stop playing or not
1090 IF K>BARS THEN IF V2 = 0 AND A$ = CHR$(27)

THEN END ELSEK = 1

1100 IF J>BARS THEN IF VI = 0 AND A$ = CHR$(27)
THEN V2-0:J = 1 ELSE J = 1

1110 IF l>BARS THEN IF A$ = CHR$(27) THEN
VI =0:1 = 1 ELSE 1 = 1

1130 ' Here's where the objective is fulfilled
1140 PLAY "v = v1 ;XB$(l);","v = v2;XB$(J);

","v = v3;XB$(K);"
1150 GOTO 1040

1160 A$ = CHR$(27):RETURN ' Executed when <Fn-1>
struck

Figure 7.1: ROUNDS.BAS, for Playing Rounds on PCjr

When you have keyed in the program, LLIST it, correct the typos,
and SAVE it under the name ROUNDS.BAS. Then RUN it. You can stop
its playing with <Fn-1>.

The Playing Defaults

Consider turning off Voices 2 and 3 so you can check aurally to
make certain you keyed the music correctly. With multiple voices
playing, it's difficult to hear precisely where a sour note is occurring. To
turn off these voices, set V2 and V3 to 0 in line 60. Restore their values
later.

Note that by using different values for VI, V2 and V3, you can
control how the voices dominate.

Although the default number of measures (or bars) is 50, you must
redefine it to its exact value in the music, as in line 110. Similarly, you
must also define the offset, M—the number of measures to delay
before the next voice starts. And don't forget the tempo, T, at which you
want the tune played. If you care to, you may also redefine the voice
volumes, VI, V2 and V3, in the tune near line 110.

204 JAMES E. KELLEY, JR.

Puffing a Time from a Program

We can extract the tune "Frere Jacques" from the program so
that it can be used for other things. At the same time, we'll doctor up
ROUNDS.BAS so that it can work with other tunes. With the Test
Programs diskette in the disk drive,

Type: LIST 100-200,"BRO-JOHN" <ENTER>

This variation of LIST writes the program lines of "Frere Jacques"
to the file BRO-JOHN.BAS instead of to the video screen. You can
check whether it got there by typing FILES <ENTER>.

The Generic Form of ROUNDS.BAS

Now let's purge ROUNDS.BAS of the tune "Frere Jacques" so
that other tunes can be inserted.

Type: DELETE 100-200 <ENTER>

Use LIST to check that the tune is deleted.
ReSAVE ROUNDS.BAS in its generic form. That is.

Type: SAVE "ROUNDS.BAS",A <ENTER>

Now we have the tools for generating and playing additional
rounds. So how about trying another tune.

Row, Row, Row Your Boat

Figure 7.2 is the music for this old chestnut. Clear memory and
type it in.

100 ' ROW, ROW, ROW YOUR BOAT
110 BARS = 8:M = 2:T = 110 ' No. of measures, offset &

tempo
120 B$(0) = "P2" ' Dummy measure of rests
130 B$(1) = "03 L4D D"
140 B$(2) = "03 LSD. L16E L4F#"
150 B$(3) = "03 L8F#. L16E L8F#. L16G"
160B$(4) = "O3L2A"

SOUND & GRAPHICS FOR THE IBM PCjr 205

170 B$(5) = "04 L12DDD <L12AAA"
180 B$(6) = "03 L12F#F#F# L12DDD"
190 B$(7) = "03 L8A. L16G L8F#. L16E"
200B$(8) = "03L2D"

Figure 7.2: ROWBOAT.BAS—"Row, Row, Row Your Boat"

When you finish typing "Row, Row, Row Your Boat," LLIST it and
correct any typos you may have made. Then SAVE it as an ASCIi file this
way:

Type: SAVE "ROWBOAT",A <ENTER>

When you've finished SAVing, reLOAD ROUNDS.BAS. That is.

Type: LOAD "ROUNDS" <ENTER>

Next, we're going to insert ROWBOAT into ROUNDS with another
trick:

Type: MERGE "ROWBOAT.BAS" <ENTER>

Use LIST to verify that ROWBOAT was inserted into ROUNDS correctly.
If it's okay, RUN the program.

When you tire of playing this tune, SAVE the combined program
under a different name so you can play it again without merging
ROWBOAT with ROUNDS each time you want to hear it.

Dona Nobis Pacem

One of the loveliest of rounds is the Austrian traditional "Dona
Nobis Pacem"—"Give us peace." It consists of three parts of eight
bars each. Each voice sings the three parts in series before returning to
the first part to repeat the process. The first voice sings the first part
through. As the second part is taken up, the second voice starts the
first part. Similarly, as the second voice starts the second part, the third
voice starts the first part. And, of course, the first voice is starting the
third part.

206 JAMES E. KELLEY, JR.

The whole round is given in Figure 7.3, ready for you to key it into
memory.

100 ' DONA NOBIS PACEM

110 BARS= 24:M = 8:T=120

120 B$(0) =="P4P4P4"

130 B$(1) == "03MLL8FMNCL2A"
140B$(2) == "03MLL8GMNCL2B-"
150B$(3) == "03MLL4AMNGF"
160 B$(4) == "03L4FL2E"
170 B$(5) ="04MLL4DL8CMN<B-MLAMNG"
180B$(6) ="04MLL4C.MN<L8B-L4A"
190B$(7) == "03MLL8AGL4FMNE"
200 B$(8) ="03L2F."
210B$(9) == "04L2C."
220B$(10= "04L2C."
230 B$(11= "04MLL4CMN<B-A"
240B$(12= "03L4AL2G"
250 B$(13= "04L4DL2D"
260 B$(14= "04L4CL2C"
270B$(15= "04MLL8C<B-L4AMNG"
280 B$(16= "03L2F."
290 B$(17= "03L2F."
300 B$(18= "03L2E."
310B$(19= "03MLL4F.MNL8GMLAMNB-"
320 B$(20= "04L4CL2<C"
330 B$(21= "03L4B-L2B-"
340 B$(22= "03L4AL2A"
350 B$(23= "03MLL8EG>L4CMN<C"
360 B$(24= "03L2F."

Figure 7.3: PACEM.BAS—The Round "Dona Nobis
Pacem"

SOUND & GRAPHICS FOR THE IBM PCjr 207

Once again, SAVE this tune as an ASCII file under the name
PACEM.BAS. Then LOAD the generic program ROUNDS.BAS into
memory, and MERGE PACEM.BAS into it. You're ready to RUN it and
SAVE it under a new name, say PEACE.

Try your hand at preparing the music for, and playing, other
rounds of your acquaintance. You should be able to adapt
BLNDMICE.BAS to this new format. Or how about trying "C How Lovely
Is the Evening." Then there's "The Donkey," "Scotland's Burning,"
"Peter Piper" and "Hey, Ho! To the Greenwood". You might even try
"The CId Grey Mare," "She'll Be Coming Round the Mountain," and
other old-timers, to see if they work out as rounds.

Many books of folk songs and traditional melodies contain rounds
you can adapt for the PCjr. A particularly good one is Mary C. Taylor's
Rounds & Rounds (Hargail Music Press, 1959).

I'll leave you with one more short round in Figure 7.4, the seven
teenth-century "Banbury Ale."

100'BANBURYALE

110 BARS = 4:M = 1 :T = 150 ' No. of measures, offset &
tempo

120 B$(0) = "P1" ' Dummy measure of rests
130 B$(1) = "C4 L4C L8CC <L2B"
140 B$(2) = "04 L4C <0 L2G"
150 B$(3) = "04 L8C D E C L4D. L8D"
160 B$(4) = "03 L8G G L4G L2G"

Figure 7.4: BANBURY.ALE (17th century)

NOTE: Don't forget the filename extension when you MERGE
Figure 7.4 into ROUNDS.BAS, i.e..

Type: MERGE "BANBURY.ALE" <ENTER>

208 JAMES E. KELLEY, JR.

3. MAKE YOUR OWN PLAYER PIANO

Figure 7.5 Is a variation on ROUNDS.BAS that plays up to three
parts of precoded music. You should have little difficulty reading the
program at this point. Just type it in so we can use it.

10' THREE-PART PLAYER

20 SOUND ON:BEEP OFF' Select external speaker
30 T = 120:V1 = 10:V2 = 10:V3 = 10 ' Set defaults

40 BARS = 100:DIM B$(BARS,3)' Define array to store
music

50 ' SANDWICH VOICE PARTS AFTER HERE AND

BEFORE LINE 1000

100' Test tune

110 T = 120:V1 = 8:V2 = 8:V3 = 8 ' Set tempo and volume
120 BARS = 1 ' Number of measures

130 B$(1,1) = "o2cdefgab>c"
140 B$(2,1) = "o3cdefgab>c"
150 B$(3,1) = "o4cdefgab>c"
1000 ' The section that plays the tune
1010 FOR I = 1 TO BARS ' Count measures

1020 A$ = INKEY$ ' Check keyboard for tempo change
1025 ' Test for change in tempo signal
1030 IF A$= "s" THEN T=T-10:IF T<32 THEN T=32
1040IFA$ = "S" THENT=T-hi0:IFT>255THENT=255
1050 PLAY"mbt = T;","mbt = T;","mbt=T;" 'Settempo
1055 ' Play a full measure in three parts
1060 PLAY "V = V1 ;XB$(I,1);","V = V2;XB$(I,2):

","V = V3;XB$(I,3);"
1070 NEXT I

1080 PRINT"HIT <SPACE> TO REPEAT; <Esc> TO
QUIT"

1090 A$ = INKEY$:IF A$ = " " THEN 1090
1100 IF A$ = CHR$(27) THEN PRINT"FINISHED" :END
1110 IFA$ = " " THEN 1010
1120 BEEP:GOTO 1090

Figure 7.5: 3-PART.BAS—Three-Part Player

SOUND & GRAPHICS FOR THE IBM PCjr 209

Lines 100-150 are a test tune to check out the program—three C
Major scales in parallel octaves. Delete these lines when you've used
them, then SAVE the program under the name 3-PART.BAS.

Lines 110-120 set substitutes for the tempo and volume defaults,
and specify the exact number of measures of the tune.

Lines 130-150 typify how each measure of music Is coded In the
two-way array called B$(measure,volce). They are substituted In the
PLAY command of line 1060.

If you wish to override the tempo (T) and volume (VI, V2, V3)
settings. Include them In the B$ for each measure. But be sure the
tempos for all the voices are the same. Otherwise, they'll clash when
played together. In fact, PCjr Is quite fussy about your making the
timing of the same measures for different voices match. When peculiar
combinations of things play, that's probably your doing.

Working 3-PA/tT.BAS

Figure 7.6 gives the harmonization for a medieval tune called
"Attende Domlne." It's set up to operate with 3-PART.BAS. Key It Into
memory and SAVE It as an ASCII file underthe name HEARLORD.BAS.
Watch out for lower-case L's—don't misread them as Ts. Then LLIST
the file and check It for typos before merging It Into 3-PART.BAS.

100 ■ HEARLORD.BAS

110BARS = 3:T=90

120 B$(1,1) = "o3l8mldf#mnaaamll4a."
130 B$(1,2) = "p8o3l4mlc#<ba."
140 B$(1,3) = "p8o2mll2dl4d."
150 B$(2,1) = " pi 6mll8>dc#<abl4al8aa."
160 B$(2,2) = "p16mll8o2b>c#d#ff#edd."
170 B$(3,1) = "p8mll8>d<aegamnf#mlf#el4d."
180 B$(3,2) = "p8mll8o3c<gf#l4>dl8dl4c#<b."
190 B$(3,3) = "p8p8p8p8mll4o2el8el4d<a."

Figure 7.6; HEARLORD.BAS—"Attende Domlne"
(Gregorian)

210 JAMES E. KELLEY, JR.

When you've finished preparing HEARLORD and have SAVEd it
on your Test Programs, LOAD 3-PART.BAS into memory again. That is,

Type: LOAD "3-PART" <ENTER>

Then MERGE HEARLORD so you have the two program pieces joined
together:

Type: MERGE "HEARLORD" <ENTER>

Now RUN the combined program in memory to find out how it
sounds. You'll probably get a sour note or two—at any rate, I always do.

A dependable approach to locating music code and typing prob
lems is to play each part separately. Do this by setting the volume
controls in line 110 to zero for the voices you're not concerned with at
the moment. Also keep at hand a LLISTing of the B$ coding, and the
printed music, if available, to aid in the debugging process.

A Little Fun with Bach

I wanted you to get used to 3-PART.BAS on a little tune before I
gave you a difficult case to deal with. Figure 7.7 has the coding for
Bach's Two-Part Invention No. 1. Keying this tune in will test your mettle.
If you have the music you might compare my coding against it.

LOAD 3-PART.BAS first, then type the Bach Invention into the
proper slot in memory. Type only a few bars at a time, and check them
out bit by bit by RUNning 3-PART.BAS. As you get beyond the middle of
the tune, you can save time by modifying line 1010 so that variable "I"
starts not at the first measure each time but at a later one of your
choosing.

100 • BACH: TWO-PART INVENTION NO. 1

110 T = 80:V1 = 10:V2 = 10:V3 = 10' Set tempo and
volume

120 BARS = 22 ' Number of measures

130 B$(1,1) = "p16116o3cdefdecmsg8o4c8o
3b32a32b16o4c8"

140 B$(1,2) = "p4p4p100211 Scdefdec"
150 B$(2,1) = " mso4dmno3gabo4co3abgmso

4d8mng8f32e32f16g8"

SOUND & GRAPHICS FOR THE IBM PCjr 211

160 B$(2,2) = "o2msg8o1 g8p4p16mno2gabo3co2abg"
170 B$(3,1) = " mso4eagfegfagfedcedf"
180 B$(3,2) = "l8o3co2bo3cdeo2gab"
190 B$(4,1) = " II 6o4edco3bao4co3bo4dco3bagf+agb"
200 B$(4,2) = "o3l8co2ef+ gmsabmno3mlc4"
210 B$(5,1) = " mso3a8d8o4mnc32o3b32o4c

8d16o3l1 Sbagf+egf+a"
220 B$(5,2) = "mno3l16co2def+ gef+ dmsg

8mno1b8o2c8d8"

230 B$(6,1) = "gbao4co3bo4dcemsdmno3b32o
4c32dmsgmno3b32o4c32o3b1 Sag"

240 B$(6,2) = " mso2l8ef+gemlol b.o2c1 Smsdol d"
250 B$(7,1) = "o3g8p8p4p16l16gabo4co3abg"
260 B$(7,2) = "mnp16l16o1gabo2co1abgo2msd

8mng9l8f+g"
270 B$(8,1) = " iSiTinf+p8p4p16116ab>cdc<a"
280 B$(8,2) = "I16msamndef+gef+dl8msamn>dcd"
290 B$(9,1) = " I8bp8p4p16! 16>dc<ba>cd"
300 B$(9,2) = "I16<g>gfedfegmsl8fefd"
310 B$(10,1) = "I8cp8p4p16116edcdc + e"
320 B$(10,2) = "msl16emnagfegfamsl8gfge"
330 B$(11,1) = "l8dc + def<ab>c+"
340 B$(11,2) = " 11 Smnfb-agfagb-agfedfeg"
350 B$(12,1) = "d<f+g + amsb>cmll4d"
360 B$(12,2) = " II 6fedcdcedc<bag + ba>c"
370 B$(13,1) = " II 6dmn<ef+g + af+g + e>edcedcd"
380 B$(13,2) = "l8ms<bemnl32>dcl

8dl16ec<bagf+ag + b"
390 B$(14,1) = "cag + baefd<g + >fedl32cdl16cba"
400 B$(14,2) = "I16a>cdcedfl8mse<a>e<e"
410 B$(15,1)= "o3l16msamn>agfegfal2mlg"
420 B$(15,2) = "o2l8msa<ap4p16116»edcdc+e"
430 B$(16,1) = "mnl16gefgafgemll2f"
440 B$(16,2) = "I2mldmnl16d<ab>cdc<a"
450 B$(17,1) = "mnl16fgfedfegmll2f"
460 B$(17,2) = " I2mlbmnl16b>dc<ba>cd"
470 B$(18,1) = "mnll 6fdefgefdl2mle"

212 JAMES E. KELLEY, JR.

480 B$(18,2) = "I2mlcl16mnc<gab->c<ab-g"
490 B$(19,1) = "mnl16ecdefdecdefgafge"
500 B$(19,2) = "l8ab-agf>dc<b-"
510 B$(20,1) = "fgab>c<abg>l8c<gl31efl16edc"
520 B$(20,2) = "a>fedl16msemn<defgefd"
530 B$(21,1) = "c<b-agfagb-ab>c<ed>c<fb"
540 B$(21,2) = " I8ecdel16fdefl8msg<g"
550 B$(22,1) = "mnl1>c"
560 B$(22,2) = "l1mn>c"

Figure 7.7: Bach's Two-Part Invention No. 1

NOTE: You'll have noticed I'm pretty inconsistent about transcrib
ing music. Sometimes it's all capitals. Other times it's lower-case
letters. Sometimes I put spaces to separate notes. Sometimes the
bass is Voice 0, other times it's Voice 2. I've no justification. I'm just
inconsistent. Sorry.

Music Minus One—YOU!

Do you play an Instrument in a chamber orchestra or a small
band—or would you like to? 3-PART.BAS gives you an opportunity to
practice your part when the other band members are elsewhere. Here's
how.

Let's say you play violin in a quartet or trio. Get copies of the
musical parts your fellow musicians play and code them for 3-
PART.BAS as shown above. If it's a trio, you might code your own part
too—especially if you're learning a new part.

Now you're all set to go. As PCjr plays the other parts, you play
along with your instrument. And if your part is also coded, you might let
it play too, perhaps at a lower volume so that it won't interfere with your
live playing, but loud enough to hear how you're doing by comparison.

One nice characteristic of this approach to practicing your part is
that you can slow the tempo (just vary T in line 110) without changing
the pitch—just like a real music group. As you know, slowing or speed
ing a tape or a record changes the key in which you hear the
arrangement.

SOUND & GRAPHICS FOR THE IBM PCjr 213

4. EXPERIMENTAL MUSIC

Another feature of the PCjr's music language is the N command. It
permits you to treat notes as numbers instead of letters. For instance,

Type: SOUND ONiBEEP OFF <ENTER>
Type: PLAY "N37 P2 030" <ENTER>

Middle 0 should have played twice. Look at the top of Figure 4.1 again
and you'll see how each note is numbered.

This note-number correspondence makes it possible to process
music arithmetically before you play it. This presents a great advantage
when you transpose a piece of music into another key. Try writing a
program to transpose by manipulating the letters of the alphabet. You'll
soon find out that if the music were represented by numbers instead of
letters, you could transpose simply by adding or subtracting a con
stant from each note.

You can do transposition on your own. Right now, there is a much
more interesting application—creating music by computer. This is a
tough one, but there are some simple things you can do that might be
fun.

Imitate a Musical Pattern

The trick is to avoid purely random sequences of notes and
chords, but to use randomness to embellish and extend music pat
terns you're familiar with. Figure 7.8 is an example that may give you an
idea of how to go off on your own.

Here's the musical process: Pick a scale—almost any scale will
do. The left hand starts playing the scale upward in one of the lower
octaves, say 01 or 02, beginning with almost any note. The right hand
plays parallel thirds, fourths, or fifths in almost any combination, in one
of the upper octaves, say 03 or 04. But the right hand runs down the
scale at half the rate the left hand is coming up. Try to keep the hands
two or more octaves apart for best results.

After playing a sequence of five or six chords this way, the left
hand jumps down about an octave to change the contrast as the right
hand continues down the scale. After playing three or four more notes,
the right hand jumps up a fifth, an octave, or an octave and a half, and
then starts down the scale again. This time you might change the
interval of parallel thirds to parallel fifths, or whatever.

214 JAMES E. KELLEY, JR.

Figure 7.8 Is an attempt to simulate this process on the PCjr in a
simple way. The program does not take into account how rhythms and
other nuances may be changed. You may want to change scales in the
middle of a progression, or play different scales at different tempos in
each hand. The possibilities are endless.

The program has a certain fuguelike character. Play around with it
to see what other musical effects you can generate. Besides experi
menting with the tempo and lengths of runs, use some different scales.
Here are some possibilities:

Minor Scale. Make these changes:

160S(3) = 3
190 S(6) = 8

Whole Tone (French Romantic). Make these changes:

130ST = 6

160S(3) = 4
170S(4) = 6
180 S(5) = 8
190 S(6) = 10
DELETE 200

Pentatonic (Oriental). Make these changes:

130ST=5

160 S(3) = 5
170 S(4) = 7
180 S(5) = 9
DELETE 190 and 200

There are a whole bunch of other scales (modes) you can try too.
When you've gotten the idea, try a pattern of your own devising.

That's when the fun really begins.

100 ' FUGAL.BAS—Experimental music
110ROOT=11 'KEY OF B

120 ' SCALE NOTES—DIATONIC

130 ST=7 ' 7 SCALE TONES

SOUND & GRAPHICS FOR THE IBM PCjr 215

140 S(1) = 0
150 S(2) = 2
160 S(3) = 4
170 S(4) = 5
180 S(5) = 7
190 S(6) = 9
200 S(7) = 11
210V=10

220 7=110' TEMPO

230 R = 3.141593/180 ' Radians per degree
240 SOUND ON:BEEP OFF ' External speaker
250 PLAY"LI6MBT=t;","L8MBT=t;" L8MBT = t;"
260 BROOT = R00T+4:IF BR00T>12 THEN

BR00T=BR00T-12

270 0CTV11 = INT(RND*2)' SELECT OCTAVE
280 0CTV2 = 0CTV1 +3

290 N11 = INT(RND*ST) +1 ' SELECT STARTING NOTE
300 N12 = N11 +1:0CTV12 = 0CTV11

310 IF N12>ST THEN N12 = N12-

ST:OCTV12 = OCTV12 + 1

320 N2 = INT(RND*ST) + 1
330 N3 = N2-3:OCTV3 = 0CTV2

340 IF N3<1 THEN N3 = N3 + ST:OCTV3 = OCTV3-1

350 MAX = 7 + INT(RND*7)' SELECT NUMBER OF
NOTES

360 K = 0 ' PLAYED NOTE COUNT

370 N0TE11 = BROOT + S(N11) +12*0CTV11
380 N0TE12 = BROOT+S(N12) +12*0CTV12
390 N0TE2 = BROOT + S(N2) +12*OCTV2
400 N0TE3 = BROOT+S(N3) +12*OCTV3
410 PLAY "MN","ML","ML"
420 A = (A+ 15) MOD 360
430 V = 4 + 3*SIN(R*A)
440 PLAY "VON = N0TE11 ;N = N0TE12;","V = v;N =

NOTE2;","V = v;N = NOTE3;"
450 IFN11> = STTHEN N11=N11-

ST:0CTV11 = 0CTV11 +1 :GOTO 470

216 JAMES E. KELLEY JR.

460N11=N11+2

470 IF N12> = ST THEN N12 = N12-

ST:0CTV12 = 0CTV12 +1 :GOTO 490

480N12 = N12 + 2

490 IF N2 = 1 THEN N2 = ST:0CTV2 = 0CTV2-1:

GOTO 510

500 N2 = N2-1

510 IF N3 = 1 THEN N3 = ST:0CTV3 = 0CTV3-1:

GOTO 530

520 N3 = N3-1

530 K = K +1 :IF K>MAX THEN 270

540 GOTO 370

Figure 7.8: FUGAL.BAS—Experimental Music

Program Notes

Basically, all FUGAL.BAS does is play the scale. You specify
which scale to play by inserting the number of the ROOT note (line 110)
and the numbers of the scale tones (lines 130-200) relative to "do." In
the program I picked, the key of B, I set R00T=11, the lowest B I
wanted to playl There are seven tones in the B Major scale (ST=7). I
assign the number 0 to "do," 1 to "do#," 2 to "re," etc. In this way the
seven tones of the major diatonic scale are 0,2,4,5,7,9 and 11. For the
minor scale, change 4 and 9 to 3 and 8, respectively. If you want the
pentatonic scale, don't forget you have to make ST=5 in line 130
besides changing the scale tones.

The control of the playing process runs from line 370 to line 540.
The scale tones to play are N11 and N12 (left hand), and N2 and N3
(right hand). N2 and N3 play together as a chord; N11 and N12 play
sequentially at twice the rate of N2 and N3. The octaves in which they
play are 0CTV11, 0CTV12, 0CTV2 and 0CTV3, respectively.

You can see how the left hand is set to play up the scale in line 460
and 480, while the right hand runs down the scale (lines 500 and 520).
The switching of octaves is done in lines 450, 470, 490 and 510.

The actual notes played must be calculated from the scale tone
and the octave. This is done in lines 370-400. Essentially all you need
do is multiply the octave number by twelve and add the current scale
tone to play. But to obtain the correct value, an offset, BROOT, calcu
lated in line 260, must also be added in.

SOUND & GRAPHICS FOR THE IBM PCjr 217

You can experiment with the qualities of notes played by chang
ing line 410.

Lines 420-430 make the volume vary in a sine wave pattern. You
might try other ways of introducing dynamics. For instance, make all
three voices vary in volume by different sine waves, no two of which are
in phase.

The real work is done in line 440. Notice how the volume and note

values, which are calculated values, not constants, are incorporated in
the PLAY command. Normally we'd write that command something like
this: PLAY " V803C," assuming L is set in a previous command. But we
might also write the command as PLAY " V8N37," or as a sequence of
commands:

VOL=8:N0TE = 37:PLAY "V = VOL:N = NOTE"

The equal sign in the music character string tells PCjr to treat what
follows as the label of a number. The semicolon defines the end of the
label so PCjr can switch back to reading music notation.

A similar construction is used in line 250 to set the tempo.
The number of notes to play in sequence (MAX) is set in line 350.

I've made it vary between 7 and 13. MAX is tested for in line 530. When
this limit is detected, the starting conditions are reset for a new
sequence of chords, starting at line 270.

The left hand and the top note of the right are selected as random
scale tones (lines 290-320). The bass octave is also a random number,
but the right hand is set to start three octaves above (lines 270-280).
The other note in the right hand is set a fourth below the top note (line
330). Its octave is set to that of the top note, but if it's really in the octave
below, this fact is detected in line 340 and corrected.

5. MODERN AND PERSONAL

We've played enough with the classical and traditional. It's time to
find out how PCjr fares with music in the modern American idiom. I
asked my daughter, Genevieve C. Kelley, a graduate of the Temple
University School of Music, and a keyboard player and vocalist with the
Intergalactic Bus Tour rock group, to put PCjr to the test. She has kindly

218 JAMES E. KELLEY, JR.

arranged one of her compositions, "Summer Days/Summer Nights,"
in three voices for the PCjr. The melody and words are given in Figure
7.9.

I've transcribed Jenny's arrangement in Figure 7.10, in a form you
might adapt to run under 3-PART.BAS. But don't bother. I have an idea
for a home-brew, video-rock short based on Jenny's arrangement that
we can develop in the next chapter. To prepare for this experience in
animation, we've got to control playing the tune in a somewhat different
fashion.

I hope you won't be put off by the amount of typing you've got to do
to key in this arrangement. It's really a lovely thing. The melody is
handled in Voice 2. The bass is handled in Voice 0. It should be an
octave lower than I've coded it, but it sounds better on the PCjr this way.
And there's a pretty, flutelike descant in the treble.

5000 ■ SUMMER DAYS/SUMMER NIGHTS

5010 ' COPYRIGHT 1981 BY GENEVIEVE C. KELLEY

5020 ' USED WITH PERMISSION

5030 A$(1, 1) = "V601L8A.>L16MLEL8MNE<E01L8A.
>L16MLEL8MNE<E"

5040 A$(2, 1) = "V6P8L1604BMLEMNEBL8EP8L1604
BMLEMNEBL8E"

5050 A$(3, 1) = "V10P4O3L8C#P8C#MLEMNL16
EMLEMNL8F#"

5060 A$(1, 2) = "01 L8A.>L16MLEL8MNE<E01 L8A.
>L16MLEL8MNE<E"

5070 A$(2, 2) = "P8L1604AMLDMNDAL8DP8L1604
AMLDMNDAL8D"

5080 A$(3, 2) = "02L4BP4P8L8F#A>MLC"
5090 A$(1, 3) = "01 L8A.>L16MLEL8MNE<E01 L8A.

>L16MLEL8MNE<E"

5100 A$(2, 3) = "P8L1604GMLCMNCGL8CP8L1604
GMLCMNCGL8C"

5110 A$(3, 3) = "03MNL2CP8L8MLDMNDC"
5120 A$(1, 4) = "01L8A.>L16MLEL8MNE<E01L8A.

>L16MLEL8MNE<E"

5130 A$(2, 4) = " P8L1604AMLDMNDAL8DP8L1604
AMLDMNDAL8D"

SOUND & GRAPHICS FOR THE IBM PCjr 219

(/cru)

Ni^fs
ky Gwvi eic- C • 1^1^/

AM^ dmf/A Am^

PjllQl l> M-I 1) -1

$iveeh ^wM my— fkdd-

p tf y emilA

gi

A c\o\A^

S2

iir\

sS-
/IMA

fi^e -$ky

i 5

Szti

_

A wfcsym fciovo

$m7/A

•IMi
'3-

§s

M I'-

D jf tf .

1! 19-

3C

^ hVi^
6h^7 /4

\\JAt

9 9 9—9 ^

-"Hw^ badc(»d iak-rw^ i-t -^y-

) ft ,.tf — 3ffi'f/A
i . # >

•pKg^—V\0 p!*i•K\.

220 JAMES E. KELLEY, JR.

*5
S:

S

VtAI C^m f

m i7^ ^

11
NM£

tt

\Vv^ i'a +K^ OA Vu>h - +6(r - v\<»iv\, X coAi

_ Pwf AhA^
A ---

-#

I hAV<j iAi>-HiiVi^ -li? ^h but- -$»w/(f(tff^«A-i-fy.
Qm1l4 4m ̂ BiM' "J/a

(ck^rni) T

■f—
^\MA'^^ Aacf bKna like

T

^—*

■^#=- S

dr - A - •

PM (SM

1i
7

M-g

4u.ma' iMek- dAy$ -zk U'lce. -tke" <5»ia
F^im^ ^ ^ CM-r

+We ^AAd.

£?g
Hol- a>a4 -zy \e>A^ amJ I a—zy, aaA
FM7 ^

22
JC

WOWS' -lii^aiM y^ cCJA ^^ojaA-
Figure 7.9: "Summer Days/Summer Nights"

«= Copyright 1981 by Genevieve 0. Kelley.
Used with Permission

SOUND & GRAPHICS FOR THE IBM PCjr 221

5140 A$(3, 4) = "02L8BL16AMLBL4BP2"
5150 A$(1, 5) = "01L8A.>L16MLEL8MNE<

E01 L8A.>L16MLEL8MNE<E"

5160 A$(2, 5) = "P8L1604BMLEMNEBL8EP8L1604
BMLEMNEBL8E"

5170 A$(3, 5) = "P8O2L8A>L4C#EL8F#MLC#"
5180 A$(1, 6) = "01L8A.>L16MLEL8MNE<E01L8A.

>L16MLEL8MNE<E"

5190 A$(2, 6) = " P8L1604AMLDMNDAL8DP8L1604
AMLDMNDAL8D"

5200 A$(3, 6) = "03MNL8C#<MLBMNL4BP2"
5210 A$(1, 7) = "01L8A.>L16MLEL8MNE<E01L8A.

>L16MLEL8MNE<E"
5220 A$(2, 7) = "P8L1604QMLCMNCGL8CP8L1604

GMLCMNCGL8C"
5230 A$(3, 7) = "P802L8EL4ML>CMNL8CMLDMNDC"
5240 A$(1, 8) = "01 L8A.>L16MLEL8MNE<E01 L8A.

>L16MLEL8MNE<E"
5250 A$(2, 8) = "P8L1604AMLDMNDAL8DP8L1604

AMLDMNDAL8D"

5260 A$(3, 8) = "03L4EL8CMLDMNL4D.L8E"
5270 A$(1, 9) = "01 L8A.>L16MLEL8MNE<E01 L8A.

>L16I\/ILEL8MNE<E"

5280 A$(2, 9) = "P8L1604BMLEMNEBL8EP8L1604
BMLEMNEBL8E"

5290 A$(3, 9) = "03L8EEEEL4EL8DC"
5300 A$(1, 10) = "O1L8A.>L16MLEL8MNE<EO1L8A.

>L16MLEL8MNE<E"
5310 A$(2, 10) = "P8L16O4AI\/ILDMNDAL8DP8L16O4

AMLDMNDAL8D"

5320 A$(3, 10) = "03L8DL16CMLDMNL4DP4.L8<A"
5330 A$(1, 11) = "01 L8A.>L16MLEL8MNE<E01 L8A.

>L16MLEL8MNE<E"
5340 A$(2, 11) = " P8L1604GMLCMNCGL8CP8L1604

GMLCMNCGL8C"
5350 A$(3, 11) = "03L16CL8C.P8<A>C.

MLL16DMNL8DC"

5360 A$(1, 12) = "01L8A.>L16MLEL8MNE<E01L8A.
>L16MLEL8I\/INE<E"

222 JAMES E. KELLEY, JR.

5370 A$(2, 12) = " P8L1604AMLDMNDAL8DP8L1604
AMLDMNDAL8D"

5380 A$(3, 12) = "03L8EL16CMLDMNL4DP2"
5390 A$(1, 13) = "01L8D.L16MLF#L8F#AD.

L16MLF#L8F#A"

5400 A$(2, 13) = "05P8L8C#P16<L8B.P8AP16B."
5410 A$(3, 13) = "03L8C#EEL16C#MLEMNL8EP8C#E"
5420 A$(1, 14) = "01L8C#.L16MLEL8EG#L8C#.

L16MLEL8EG#"

5430 A$(2, 14) = "05P8L8C#P16<B.P8G#P16A."
5440 A$(3, 14) = "03L4AL8F#L16EMLF#MNL8F

#MLEMNEC#"

5450 A$(1, 15) = " V801 L8G.MLL16BL8B>D<L8G.
MLL16BL8B>D"

5460 A$(2, 15) = "V804P8L8GP16A.P8BP16>D."
5470 A$(3, 15) = "V803L8DDDMLEMNED"
5480 A$(1, 16) = "V10O1L8DP16MLL16DMNL8DV8P8

P16EL16DL8C#<B"

5490 A$(2, 16) = "V10O5L8FP16MLL16FL8FMNP8P2"
5500 A$(3, 16) = "V1103L8EP4V9<EF#AAL16BMLA"
5510 A$(1, 17) = "V601L8A.>L16MLEL8MNE<E01L8A.

>L16MLEL8I\/INE<E"

5520 A$(2, 17) = "V6P8L1604BMLEMNEBL8EP8L1604
BMLEMNEBL8E"

5530 A$(3, 17) = "V602L4MNAP4P2"
5540 A$(1,18) = " V401 L8A.>L16MLEL8MNE<E01 L8A.

>L16MLEL8MNE<E"

5550 A$(2, 18) = "V5P8L1604AMLDMNDAL8DP8L1604
AMLDMNDAL8D"

5560 A$(3, 18) = "P1"
5570 A$(1, 19) = "V201L8A.>L16MLEL8MNE<E01L8A.

>L16MLEL8I\/INE<E"

5580 A$(2, 19) = "V4P8L1604GMLCMNCGL8CP8L1604
GMLCMNCGL8C"

5590 A$(3, 19) = "P1"
5600 A$(1, 20) = " V401 L8A.>L16MLEL8MNE<E01 L8A.

>L16MLEL8MNE<E"

5610 A$(2, 20) = " V5P8L1604AMLDMNDAL8DP8L1604
AMLDMNDAL8D"

SOUND & GRAPHICS FOR THE IBM PCjr 223

5620 A$(3, 20) = "P1"
5630 A$(1, 21) = "01L8D.L16MLF#L8F

#AD.L16MLF#L8F#A"

5640 A$(2, 21) = "03L8F#F#L4EF#.L8F#"
5650 A$(3, 21) = "03L8AAL4G#A.L8B"
5660 A$(1, 22) = "01 L8C#.L16MLEL8EG#L8C

#.L16MLEL8EG#"

5670 A$(2, 22) = "03L8G#L16F#MLG#L4MNG#P2"
5680 A$(3, 22) = "03L8EL16DMLEL4MNEP2"
5690 A$(1, 23) = "OOL8B.MLL16>DMNL8DF#<B.MLL16

>DMNL8DF#"

5700 A$(2, 23) = "03L8DDL4EL8F#EDF#"
5710 A$(3, 23) = "03L8F#F#L4G#L8AG#F#A"
5720 A$(1, 24) = "01 L8D.L16MLF#L8F#AG<GB>D"
5730 A$(2, 24) = "03L8A.L16MLG#MNL8G

#F#F#P8P4"

5740 A$(3, 24) = "04L8C#.<L16MLBMNL8BABP8P4"
5750 A$(1, 25) = "OOL8F#.ML>L16C#MNL8C

#F#<F#.ML>L16F#L8MNF#C#"
5760 A$(2, 25) = "03L8E.MLL16EL8MNEMLG

#G#EEP8MN"

5770 A$(3, 25) = "03L8G#.MLL16G#L8MNG
#MLBBG#G#P8MN"

5780 A$(1, 26) = "01L8C.MLL16EL8MNEGC.
MLL16EMNL8EG"

5790 A$(2, 26) = "03L8E.MLL16EMNL8EMLGMNGFED"
5800 A$(3, 26) = "03L8G.MLL16GMNL8

GMLBMNBAGF#"
5810 A$(1, 27) = "01L8F.MLL16AMNL8A>C<F.

MLL16AMNL8A>C"
5820 A$(2, 27) = "03L4CCL8CMLCMNCD"
5830 A$(3, 27) = "03L4EEL8EMLEMNEE"
5840 A$(1, 28) = " V901L8EEP8EP2"
5850 A$(2, 28) = "V904L8EEP8EP2"
5860 A$(3, 28) = "P1"

Figure 7.10: "Summer Days/Summer Nights"—PCjr
Arrangement

Used with Permission

224 JAMES E. KELLEY, JR.

Loading the Music Buffer Oniy When Needed

All our music programs so far have worked in the same way: They
fill the music buffer and then hang around until there's enough space to
put more music into it. This strategy won't always do. You'll often want to
be able to go off and do something else instead. You can do this now,
but what if you don't get back to check on the music buffer before it
runs out? Of course, you'll get undesirable breaks in the music.

To deal with these common situations, PCjr permits you to set an
"interrupt" that works like this: When the number of notes in the music
buffer reaches a limit you preset, you're jumped to a subroutine with
which you can put more music in the buffer.

With this idea in mind, add the following statements to the music
for "Summer Days/Summer Nights" (Figure 7.10).

10' SUMMER.BAS

20 GOTO 5025 ' Initialize program
30' Play tune subroutine
40 PLAY "xa$(1,i);","xa$(2,i);","xa$(3,i):"
50 I = I +1 :IF l>28 THEN 1 = 1' Select next measure

60 RETURN

5025 DIM A$(3,28)' Define an array for the music
6000' Start music

6010 SOUND ON;BEEP OFF ' External speaker
6020 PLAY"T90MBV6","T90MBV6","T90MBV6 ' Set tempo,

background
6030 I = 1 :GOSUB 40' Play 1 st measure
6040 ON PLAY(4) GOSUB 40 ' Define interrupt
6050 PLAY ON ' Turn on interrupt
6060 PRINT l;:GOTO 6060 ' Dummy program

When you've typed in these lines, SAVE the combined program as
SUMMER.BAS. Then RUN it.

Let's run through this little program quickly to be sure you under
stand what's happening when it plays. Lines 10-20 bypass the play
subroutine and jump you to the initialization instructions. Since the
array A$ is not defined in Figure 7.10, we've got to include the DIMen-
sion statement at 5025 so that there will be a place for all the music
defined in the subsequent lines.

SOUND & GRAPHICS FOR THE IBM PCjr 225

When all the measures of music have been loaded in array A$, we
can start the music. The external speaker is selected (line 6010), and
the tempo and background are set (line 6020).

Then the first measure is defined (1=1) and we're sent to the
subroutine at line 40. There the first measure is loaded into the music
buffer. The next measure is selected by adding 1 to I, or by setting it
back to 1 to begin again. We're now returned to line 6040.

Here's the new idea; The ON PLAY(4) statement says, "Whenever
there are four or fewer notes left in the music buffer, GOSUB 40 to load
another measure." To make this interrupt effective, we must execute a
PLAY ON. PLAY OFF stops the interrupt from functioning.

Line 6060 simply keeps the program running. I included a PRINT
statement so you could see when each measure is loaded and how
many times line 6060 is executed between reloads of the music buffer.
This will give you a feel for the amount of work that can be done while
the music is playing.

You'll notice that when certain notes are sustained, everything
seems to come to a halt. As of this writing, I'm not sure what the cause
of this effect is or how one should deal with it. Frankly, it's disconcerting
and it breaks the smooth flow of graphics, as we'll see in the next
chapter.

226 JAMES E. KELLEY, JR.

CHAPTER 8
VIDEO ROCK A LA PCjr
Objective:

This chapter demonstrates how to
design and buiid an animated graphics
scene with an integrated soundtrack.

SOUND & GRAPHICS FOR THE IBM PCjr 227

1. THE SCENARIO

The first thing you'll need for your animation is a story. After all, if
you're going to move objects about on the screen in a reasonably
realistic way, you've got to have some purpose or objective in mind. It's
fine to have a beautiful galloping horse on the video screen, but if it's
not in a race or running to the rescue or fleeing from something, what's
the point?

In casting about for something simple but useful that we might try,
I recalled my daughter Jenny's mentioning that her group was consid
ering making a video-rock tape of her "Summer Days/Summer
Nights." We'll try the same thing, but you'll create a more sedate
version. We won't have bouncing musicians, foxy birds, hunks, and a
light show, but we'll learn how to project our imaginations onto the video
screen to the rhythms of music.

"Summer Days/Summer Nights" reminds me of the many happy
summer vacations we had at the shore in Milford, Connecticut. Our
cottage was right on the beach. On many a hot afternoon I sat in the
porch shade, with iced tea in hand, occupied with the inactivity before
me. Only a gull or two, or a boy with a new sailboat, ventured into that
scorching sun.

The movement of those gulls and the fluttering sails caught the
eye with mesmerizing effect, so they will be the principal subjects of the
story. But it's the mood this scene projects that I'd like to see if we can
recapture using PCjr's graphics.

2. BUILDING A WORLD

Drawing with Lots of Colors

First we'll need a beach, water for the boat to sail on, and a sky for
the gulls to fly about in. For this purpose, let's do some experimenting
with SCREEN 5. It has sixteen colors we can draw with, but it also
requires 32K of memory to hold the video buffer—not the 16K default.

1"^

228 JAMES E. KELLEY, JR.

Remember, we solved this memory allocation problem earlier in
DEFORM.BAS by using the CLEAR command. (As we go along now,
just start entering program statements into a cleared memory.)

1000' Initialize

1010 CLEAR,,,32768!' 32K video buffer
1020 SCREEN 5' Med Res, 16 colors
1030 COLOR 15,0' White foreground, black background
1060 CLS:KEY OFF

The COLOR statement works differently for SCREEN 5 from the
way it does for SCREEN 1. Now the first number is the foreground color,
the second the background. Just don't use black (color 0) for the
foreground, or you'll get an "Illegal function call" message.

The Beach

To lay out a nice, curving beach we'll use a trick we learned earlier
with the CIRCLE command for drawing the arc of an ellipse—you
know, a small aspect ratio.

1350' Build world

1360 CIRCLE (100,0),380,1,„.4' Light yellow beach
1370 PAINT (130,190),14,1
1380 GOTO 1380

Let's see what this looks like so far. Hit RUN. Did you get the beach?
The GOTO in line 1380 is just a trick we'll use throughout to test

how the program is developing. We'll wipe it out now as we add in the

Water

Do a <Fn-Break> and type in

1380 LINE (0,100)-(319,100),1 ' Dark blue water
1390 PAINT (150,120),1,1
1400 GOTO 1400

Go ahead, RUN again. Did the water PAINT in okay?AII we need now is

SOUND & GRAPHICS FOR THE IBM PCjr 229

The Sky

1400 PAINT (150,50),9,1 ' Sky
1410 GOTO 1410

RUN once more to be sure the picture is in good shape.

The Sun

While we're at it, let's add the scorching sun—up in the right-hand
corner, with a black border for emphasis.

1480 'Place sun

1490 CIRCLE (320,0),30,0,5/6
1500 PAINT (315,5),14,0
1510 GOTO 1510 ' Test GOTO

Before you test this addition, don't forget to DELETE 1410. Otherwise
you won't see the sun.

3. PCjr's DRAWING LANGUAGE

Now that we've got a backdrop for the action, we ought to address
the characters of our drama: the sea gulls, and the boy and his
sailboat. Here's where we can exploit PCjr's DRAW command. Let's see
how it works.

SAVing Intermediate Results

Before experimenting with DRAW, you should SAVE what you've
already typed in. Do a <Fn-Break> and

Type: SAVE "BEACH" <ENTER>

It's always a good idea to SAVE partially developed programs after
you've worked out wrinkles. You never know when you may lose power
or do something screwy that wipes out memory.

230 JAMES E. KELLEY, JR. p,

An Aside on DRAW

DRAW is much like the PLAY command in that it executes a

character string of instructions that you provide for defining a series of
lines to draw on the screen. One way to specify the figure you want to
draw is by a series of left-right, up-down and diagonal moves. Here's
how you might draw a box. (I'll change screen modes for this, but it's
the same in all modes.)

Type: SCREEN 1,0:COLOR 1,1 <ENTER>
Type: PSET (100,100),3 <ENTER>
Type: DRAW "U20 R40 D20 L40" <ENTER>

As you may gather, U means up, R means right, D means down,
and L means left. And the numbers that follow them are the numbers of

units to move in that direction. These and the diagonal moves that are
possible are defined in the compass rose of Figure 8.1.

ll 11 r

H1 In jE
\ A r
1
\

h A A%
s r

\
s
V
s
s

1 1 s|4
f

li14 [I/f C
n rl T 1

Figure 8.1: Graphic Cursor Moves in the Draw Command

SOUND & GRAPHICS FOR THE IBM PCjr 231

In the illustration still on the screen, the color used to draw the box
is defined by the 3 in the PSET command, which moved the graphics
cursor to the starting point of the DRAW. However, the color can be set
in the DRAW command itself. Move the cursor under the U in the DRAW
command, hit the Ins(ert) key, and

Type: CO <ENTER>

That's a zero, not the letter 0.
The box erases because color 0 is " no color." Change the 0 to a 1

and hit <Enter>. Now the box is drawn in green, which is not easily
visible on that blue background.

Now move the cursor under the rightmost quotation mark of the
DRAW command and

Type: BE5 P3,1" <ENTER>

As you can see in Figure 8.1, the E command says to move diagonally
up and right. The B before the E says, "move, but don't draw
anything."

When the BE5 instruction combination is through, the graphics
cursor is relocated within the box. This permits the P, or PAINT, com
mand to take effect. It paints the box with the attribute 3 (white),
provided it has a boundary with attribute 1 (green), which it has.

Change the 3 after the P to a 0 (zero) and hit <Enter>. Do you
understand what happened? Put the cursor on the DRAW command
once again and hit <Enter>.

Because of the way the DRAW command is set up with the BE5
instruction, we could keep on drawing box over box up the diagonal.

Here, add another wrinkle. Put the cursor under the C at the
beginning of the character string of DRAW, hit the Ins(ert) key, and

Type: TA45 S5 <ENTER>

The TA (turn angle) rotates the box (from -360 to -1-360 degrees), here
45 degrees. S (size or scale) makes the figure larger (max = 255) or
smaller (min = 1).

Much of what we've just discussed might also be done with the
LINE command. But it's much easier with DRAW.

Retry some of the earlier programs we did with the LINE com
mand to see if you can use the DRAW command instead.

232 JAMES E. KELLEY, JR.

DRAWing Sea Gulls

Being limited to drawing figures with angles of 45 and 90 degrees
is rather restrictive. But we can actually draw a line from any point to
any other using the DRAW command, and we'll use it to draw the sea
gulls for our scene.

You have to start with a picture, typically drawn on a piece of
graph paper as shown in Figure 8.2. I start out drawing a freehand
sketch of what I want inside a box scaled to the size I'd like to see on the
screen. Do this sketch before confusing the issue with numerical
coordinates, then try to select the closest coordinate points on the grid
for the end points of the line segments to be drawn. The coordinates
you see in Figure 8.2 are then incorporated into a PSET-DRAW com
bination this way:

1070 ' Construct sea gulls
1080 PSET(1,4),3:DRAW"m6,4 m8,6 ml 0,5 ml 4,8" ' 1st gull
1090 PSET(13,1),3:DRAW"m19,3 m20,5 m22,4 m28,5" '

2nd gull
1100 GOTO 1100 ' Test GOTO

Figure 8.2: Flying Sea Gulls

SOUND & GRAPHICS FOR THE IBM PCjr 233

The first point in the sequence is put into the PSET comnnand, and the
drawing color is set. Each successive point is then incorporated in the -
DRAW command, preceded by an M (move to).

RUN and see what's been drawn.
NOTE: There's another way to initiate DRAW, without the PSET

command. Write instead:

n
1080 DRAW "BM1,4 C3 M6,4 ... etc.

Saving a Picture in an Array ^

Now that we have the sea gulls, we must save them in an array so
they can be quickly drawn onto and erased from the screen. It's by
successively drawing and erasing figures in changing positions that
we give the impression of movement and carry out the animation
process.

The BASIC command for saving a picture is GET (from the
screen).

1100 GET (0,0)-(28,8),GULL
1110 CLS ' Clear screen for next figure

A whole rectangle of points around the picture is saved. You specify the
upper left and lower right corners, as illustrated in line 1100. The array
into which the points are transferred is called GULL. It must be defined
in a DIM(ension) statement. We'll also need arrays for other figures, so
I'll include them now.

1040 DIM GULL(50),BT(500),TENT(800)

(See the GET command in the BASIC manual for information on cal
culating the space you need in an array to accommodate a figure. The
formula is too complicated for me, so I just pick a number. If it works,
good. If not, I make it larger.)

Transferring a Picture Array to the Screen

To verify that the sea gulls are properly stored in the array GULL,
we use the PUT (onto the screen) command.

Type: RUN "
Type: <Fn-Break>

234 JAMES E. KELLEY, JR.

Don't clear the screen, but just

Type: PUT (150,75),GULL,XOR <ENTER>

Did the sea gulls pop out on the screen? This verifies that GULL has
what we want. We'll deal more with PUT shortly.

The Sailboat

I handled drawing the sailboat in the same way as the gulls. It's a
slightly more complicated figure, with four parts, and it took longer to
construct. Here's what I came up with:

1120' Construct sailboat

1130 PSET(8,43),3:DRAW"m7,41m40,36m34,40m8,43" ' Hull
1140PAINT(24,40),3,3
1145' Mainsail

1150 PSET(29,38),13:DRAW" m38,5m30,16m16,
29m5,34m28,35m28,38"

1160 PAINT(24,24),13,13
1170 PSET(37,8),14:DRAW"m41,34m34,32m37,8" 'Jib
1180 PAINT(36,25),14,14
1190 LINE(1,45)-(5,44),15' Wake
1200 GOTO 1200 ' Test GOTO

RUN to verify that the sailboat is constructed correctly. Then save
it in the array BT this way:

1200 GET (0,5)-(45,45),BT ' Save in BT
1210 CLS

Devise your own test (using PUT) to show that the sailboat is
indeed stored in BT.

A Lone Cloud

I figured that something else ought to be in the sky to balance the
scene, so I drew a cloud. I used the graphics cursor movements of
Figure 8.1 directly on the screen instead of drawing a cloud on graph

SOUND & GRAPHICS FOR THE IBM PCjr 235

paper first. I did this by picking a starting point (PSET) and then
entering successive moves in a DRAW command using the BASIC
editor.

As the cloud took shape on the screen, I modified the growing
character string to shape it to my liking. I used that GOTO trick to
prevent the program from proceeding too far. This process took a little
patience, but it was faster than drawing a cloud and plotting points.

Here are the clouds. Typing these DRAW statements will really test
your patience and accuracy. Don't confuse I's and Ts.

1410'Cloud

1420 PSET(50,40),0' Start drawing in black
1430 DRAW" h3u4e3r6f2ng3e3r7f2bg4u1 e2r3

el r6f1 r4f2r2f2d2g1 d1 g112g112"
1440 DRAW"g2bh2f2d1 g2l1 g2l2g115ne2g2l6h2

II ne3g113g113h3l1 hi u2e2u1 e2r2"

Better test what you have so far with RUN. If the outline doesn't
look like a cloud, or doesn't connect back on itself, check for errors.
When all is okay, paint the cloud.

1450 PAINT (60,35),15,0 ' Color white

Okay, RUN and see what happens.

4. THE ELEMENTS OF ANIMATION

Now we've got a world and some characters to populate it. The
next step is to give them life. We'll start simply and make certain that the
ideas are properly developed.

With the setup or initializing work behind us, we want to perform
the animation work with low order line numbers. That way, PCjr won't
have to search far for a line number when it does a GOTO or IF
statement. This saved time could be crucial. So let's begin these
animation instructions at about line 100. This will leave us some addi-

236 JAMES E. KELLEY, JR.

tional space for other subroutines that may be even more sensitive to
search time. But be sure to do the setup work first. We need

100' BEACH.BAS

110 GOTO 1010 ' Set up screen

We also have to get back to the beginning here, so insert

1700 GOTO 120' Start animation process
120' Place figures at initial positions

Start Positions

Let's try the sea gulls first. To retrieve them from the array named
GULL—recall we put them there with a GET (from screen) command—
we use a PUT (on screen) command. We'll start them at the left margin
of the screen, about a quarter of the way down, at (2,40), this way:

170 XS = 2:YS = 40:X0 = XS:YO = YS:JMP = 1 ' Initial position on
left

180 PUT(XO,YO),GULL,XOR' Place gulls on screen
190 GOTO 190 ' Test GOTO

XS and YS are the start positions: XO and YD are positions from which
we'll erase the gulls. As we'll see, X1 and Y1 are the (changing) new
positions of the gulls. JMP is used later, but it must be initialized up
front.

DELETE the test GOTO in line 1510 and RUN the program. Notice
that the PUT command has almost the same form as the GET. However,
there are several actions possible when a figure is placed on the
screen with PUT. The XOR action is the only one we'll be concerned
with here. It is specialized for animation so that when you PUT a figure
twice onto a complex background, that background is replaced
unaltered.

Marching Across the Screen

To test this XOR action, we'll need a clock to tick off time units T.

190 FOR T = 1 TO 150' Start clock

270 NEXTT:END

SOUND & GRAPHICS FOR THE IBM PCjr 237

Let's make the gulls move on a straight line across the screen,
from left to right. To do this we'll just move them right three positions for
each tick of the clock, and maintain the vertical position. The new
positions are calculated from the start position this way:

210X1 =XS + 3*T:Y1=YS

According to theory, we should restore the background if we PUT
the gulls at (XO,YO) with action XOR. Then we should PUT the gulls at
the new position, (X1,Y1).

240 PUT(XO,YO),GULL,XOR:PUT(X1 ,Y1),GULL,XOR

We must not forget to update XO,YO for the next time around.

250 X0=X1 :Y0=Y1 ' Update last position of gulls

We should be able to see the gulls move now. Try RUNning. If all
goes well, you'll run the birds off the right edge of the screen. You'll get
an "Illegal function call" in line 240 because we're trying to PUT GULL
beyond the edge of the screen.

More Realistic Fiight

The birds are moving but to seem realistic, their flight should be
more looping. They might enter the screen high, glide down toward the
water, then fly up to gain altitude. They might come back and do the
same thing in the opposite direction.

To simulate this action, you must substitute a different calculation
for the one at line 210. Also, the action should be slowed down a bit.
The calculation for XI is okay. It's the value of Y1 that needs attention.
There are many ways that Y1 could be modified to produce the action
you're seeking. Here's the method I used: a parabolic curve. Type it in
and RUN.

210 XI =XS + 3*T:Y1 =YS + 2.3*T-.02*T*T

260 FOR K = 1 TO 50:NEXT' Slow the action

238 JAMES E. KELLEY, JR.

That's better, but there's still an "Illegal function call" to deal with,
as well as the problem of bringing the gulls back in the opposite
direction.

Back and Forth Motion

Suppose we let the sea gulls go off the screen, where they loop
around and come back to trace a similar flight path over the water. We
have to test for the edge of the screen to avoid the "Illegal function
call." And there'll be a delay while they're looping back, off screen.
Let's also make them do the same looping turn while they're off the left
end of the screen.

150' Control gull movement
160 FOR K = 1 TO 1000:NEXT' Off screen delay on left
200 ON JMP GOTO 210,220 ' Select move right or left
210 XI =XS + 3*T:Y1 = YS + 2.3*T-.02*rT:GOTO 230'

Move right
220 XI =XS-3*T:Y1 = YS + 2.3*T-.02*rT' Move left

230 IF XI >290 OR XI <2 THEN PUT

(XO,YO),GULL,XOR:GOTO 280
280 ON JMP GOTO 290,160 ' Select move right or left
290 XS = 290:YS = 40:X0 = XS:Y0 = YS:JMP = 2 ' Initial position

on right
300 FOR K = 1 TO 1000;NEXT:GOTO 180 ' Off screen delay on

right

RUN to see if this addition works okay for you.
Line 230 is the pivotal test. It tells when the sea gulls reach the

margin of the screen. When the margin is reached, the gulls are
erased.

Now we have to decide how to reset the initial position of the birds.
This is done in line 280. The variable JMP keeps track of the direction in
which the birds are moving, 1 meaning to the right, 2 meaning to the
left. If the birds have been moving to the right (JMP = 1), the start
position is reset in line 290; otherwise, as initially, in line 170 via line 160.
At the same time, a 1,000-tick delay is performed (line 300 or 160) while
the birds loop back off screen.

The calculation of XI also depends on the direction of motion
(lines 210 and 211), controlled by JMP in line 200.

SOUND & GRAPHICS FOR THE IBM PCjr 239

n

Coordinating the SaiiboaVs Motion

Now to integrate the sailboat into the scene. Suppose we also
start the boat from the left margin. We need to specify its initial position
and draw it on the screen.

130 U0 = 2;V0 = 90 ' Boat's initial position
140 PUT(UO,VO),BT,XOR:GOTO 170 ' Place boat on screen

The sailboat travels much slower than the birds. Say we move the
boat every nine ticks of our master clock, like this.

260 IF (T MOD 9) = 0 THEN GOSUB 310 ELSE FOR K = 1 TO
50:NEXT

Every time T is a multiple of nine, we go to the subroutine at line 310 to
move the boat. Otherwise we delay a bit before moving the birds.

The subroutine to move the sailboat follows the same principles
we used to move the birds.

310 U1 =U0 + 1.7:V1 =V0-.04 ' Move boat

330 PUT(UO,VO),BT,XOR:PUT(U1 ,V1),BT,XOR
350 U0=U1 :V0=VI ' Update last position of boat
360 IF U0< = 270 THEN RETURN ' Test for edge of screen
370 PUT(UO,VO),BT,XOR' Reinitialize
380 PUT(X1,Y1),GULL,X0R
390 GOTO 130

Try RUNning to see how this integrated action progresses. And don't
forget to SAVE BEACH.BAS.

The subroutine operates a little crudely. When the sailboat
reaches the right margin, all it does is put the boat and the birds into
their initial positions and continue as if we were starting from scratch.
We'd need another boat image to tack on a right-to-left course. In this
case you'd want the boat to get smaller as it sails toward the horizon.

240 JAMES E. KELLEY, JR.

5. PAINTING WITH PATTERNS

The scene still looks a little barren. Perhaps a little bathhouse tent
on the beach would fill it in a bit. This will give me an opportunity to
show you a couple more tricks you can do with PCjr. Just enter these
additions to BEACH.BAS and try them out. The explanation will follow.

1510'Tent

1520 DRAW" bm236,195 cO m-12,-23 m +12,-28 m + 8,-l-8
m-8,-l-43 m-I-48,-11"

1530 DRAW" m-16,-36 m-24, -I- 4 m + 8,-20 m-16, +12
m-M6,-12 m-I-0,-12"

1540 DRAW" m -I- 20, -I- 4 m-20, -l-8m-i-16,-l-16 m-6,-8 m-10,-8"
1550 RED$ = CHR$(68):GREEN$ = CHR$(26)' Define colors
1555 LBLUE$ = CHR$(115):IVORY$ = CHR$(127)
1560 TILE1$ = STRING$(4,RED$)-hSTRING$(4,GREEN$)'

Tile strings
1565 TILE2$ = IVORY$ IVORY$ -F LBLUE$ -k LBLUE$
1570 PAINT(240,190),TILE1$,0 ' Tile tent panels
1580 PAINT(240,144),TILE1$,0
1590 PAINT(240,155),TILE2$,0
1595 PAINT(254,145),TILE2$,0
1600 PAINT(254,122),13,0' Pennant

Relative DRAWing Moves

The first trick you learned was that you may use DRAW for drawing
lines to destination points that are a specified number of units away
from a given starting point, not just to an absolute coordinate position
on the screen. In line 1520 you are moved to absolute coordinate
position (236,195) to begin with. Subsequent moves are made relative
to the last position because each X and Y value has a plus sign (-i-) or
minus sign (-) attached. Thus the first line to be drawn extends from
(236,195yto (236-12,195-23) (i.e., absolute position [224,172]).

Defining a figure using relative moves is useful when you want to
redraw a figure, perhaps of a different size and orientation, at another
place on the screen. You can't really do this with GET and PUT.

SOUND & GRAPHICS FOR THE IBM PCjr 241

Tiling

The second trick you saw was the striped PAINTing of the tent
panels. We used a technique called tiling. The PAINT command per
mits you to specify a sequence of colors with which you want to fill an
area. When the PAINTing process takes place, it looks at the sequence
of colors you've indicated and fills the successive lines according to
that sequence.

The colors themselves are defined by ASCII characters, so there
are one hundred twenty-seven possibilities. Unfortunately, many of
these colors are repeated, so the true number available for use is much
smaller. There is, however, a variety of shades useful in producing
shadowing effects that give the impression of three dimensions. I'll
show you the available spectrum of shades in a moment.

Notice that the ASCII codes for a few colors are translated in lines
1550-1555. With them I define TILE1$ in 1560 as a string of four red and
four green lines. These alternate stripes color the large facing panel
and its diagonal (lines 1570-1580). TILE2$ is then defined as a
sequence of two ivory and two light blue lines. They paint the other two
tent panels.

The pennant is painted with color 13, but you might use any ASCII
character or tiling mix you choose.

SAVE BEACH.BAS with the tent now.

The Tiling Rainbow

There's a little utility program in Figure 8.3 that you can use to
select ASCII characters corresponding to colors with which you'd like
to paint or tile. Type it in and try it out.

100 ' RAINBOW.BAS—Palette of TILE colors
110 CLEAR ,„32768!:CLS:SCREEN 5:KEY OFF
120 COLOR 15,0
130FOR J = 1 TO 6

140 FOR 1 = 1 TO 22

150 R0W=I:C0L=6*(J-1)-H
160N = l-t-22*(J-1)
170 IFN>127THEN 290

180 TIL$ = CHR$(N)

242 JAMES E. KELLEY, JR.

190 LOCATE ROW,COL:PRINT STR$(N)
200 XO = 8*C0L + 25;Y0 = 8*(R0W-1)
210X1=X0 + 13:Y1=Y0 + 8

220 VIEW (X0,Y0)-(X1,Y1),0,0
230 GOSUB 270

240 NEXT I

250 NEXT J

260 END

270 PAINT(12,4),TIL$,9
280 RETURN

290 GOTO 290

Figure 8.3: RAINBOW.BAS—Tiling Shades

One way you might use RAINBOW.BAS is to RENUMber it to some
high line number (e.g., 10000) and SAVE it as an ASCII file—you know,
with the ",A" at the end. Then, when you're developing a graphics
program, MERGE RAINBOW.BAS into your growing program. When
you need a color, just RUN 10000 <Enter> to temporarily display the
available colors on the screen. A <Fn-Break> and LIST get you back
to where the color character goes in your program. When you've
finished your program, just DELETE RAINBOW.BAS and SAVE the rest.

6. INTEGRATING SUMMER.BAS AND
BEACH.BAS

The Big Merge

Our video rock production is almost completed. We just have to
add the musical soundtrack, which we prepared in the last chapter. If
you're sure you've SAVEd BEACH.BAS, we'll combine the programs.

Type: MERGE "SUMMER.BAS" <ENTER>

SOUND & GRAPHICS FOR THE IBM PCjr 243

There are only a couple of connections to make at this point to
coordinate the action with the sound. First, redirect the starting point
from loading in the music at line 5025 to line 1000, where the graphics
are initialized. So make this change:

20 GOTO 1000 ' Initialize

Then, instead of jumping back to line 120 from line 1700 when the
graphics initialization is completed, we should go on and initiate the
music.

Type: DELETE 1700 <ENTER>

Finally, when the music has been initialized and the PLAY interrupt
set, we can initialize the graphics activity. So change line 6060 to read

6060 GOTO 120 ' Start graphics activity

As we saw earlier, with the PLAY interrupt set, whenever the music
buffer is approaching empty, PCjr will jump from what it's doing with
graphics (in this case) to the subroutine at line 40 to insert another
measure in the music buffer.

SAVE the integrated program as BEMUSE.BAS. Then RUN it to
see what happens.

Where'd the Boat Go?

Did you see the sailboat disappear at times—and the sea gulls
too? And how about the way the action comes to a halt on certain music
passages? We can do something about the boat disappearing, but I
don't know how to fix the frozen action.

The boat disappears because an interrupt to fill the music buffer
occurs while the first half of line 330 is erasing the figure. There's a wait
then before the redraw action takes place.

To prevent the boat from disappearing, we've got to turn off the
PLAY interrupt just before erasing the boat, and then turn it back on just
after the redraw. Try these additions to the program:

320 PLAY OFF

340 PLAY ON

244 JAMES E. KELLEY, JR.

Theoretically we should also be able to prevent the birds from
disappearing using this same technique. You might try adding these
instructions:

235 PLAY OFF

245 PLAY ON

The birds don't disappear now, but they're not halfway across the
screen before the music cuts out altogether.

This problem puzzled me for a long time. I finally guessed that the
music buffer must have fewer than four notes left—the ON PLAY limit—
by the time PLAY ON occurs, making it impossible for the PLAY
interrupt to function. Inserting the following line seems to fix the
problem.

243 IF PLAY(0)< = 4 AND PLAY(1)< = 4 AND PLAY(2)< = 4
THEN GOSUB 40

This line cranks up the music again.

7. BREATHING LIFE INTO A DOLL

You may think we cheated a bit in calling BEMUSE.BAS an illustra
tion of animation. After all, we merely used a couple of pictures and
moved them about on the screen. But that's half the battle, isn't it?

You've seen enough about how Walt Disney and other animators
make cartoon movies using hundreds of overlays called eels (with one
I) to laboriously construct their productions one frame at a time. We can
do something of the sort right on PCjr. The process doesn't involve any
really new ideas—just repetitions of old ones.

To illustrate the animation process, I'll replicate the figure of a
marionette that one of my girls gave me. It hangs in the window next to
the computer. This cute little man is dressed in an old-fashioned way,
with a bushy mustache, red nose and tall hat. His arms and legs are
articulated so that if you pull on the string that hangs down, his arms
and legs fly up in the air and he does a funny dance.

SOUND & GRAPHICS FOR THE IBM PCjr 245

The animation job in ARKANSAS. JIG (Figure 8.4) is fairly straight
forward. However, it involves drawing and storing eighteen eels—three
left and three right arms, and six left and six right legs, all articulated
differently. This work takes up most of the initialization section of the
program (line 480 on).

To get a reasonable sense of proportion, I traced the marionette
on a piece of graph paper first. Drawing the body was the most
detailed part of the job. I did all the drawing directly on the screen,
building each DRAW command character by character.

I really had to draw only one arm and a single leg of three parts to
get the eighteen necessary eels. As you read through ARKANSAS. JIG,
you'll see that all the arms and legs are generated by rotating and
placing the parts appropriately. Placing is the toughest part. It took a lot
of experimentation. While developing the figures, I had RAINBOW.BAS
resident at line 10000 so the available shades would be conveniently at
my disposal.

As you may have guessed, the music that plays to the marionettes
jig is "Arkansas Traveler." There's even a mouth-harp to keep the
rhythm—defined in line 1020.

The mainline (starts at line 380) is very short. It involves starting
the play of one measure of the music, and then making appropriate
changes in the positions of the arms and legs—random patterns that
exclude repetitions. The actual drawing is done in the many little
subroutines, almost all identical, at the head of the program. The old
eel is erased before the new one is laid down.

If you're going to do much animation, you'd be well advised to
invest in a digitizing pad so you can readily trace things on the screen
and save them in arrays (on disk) or in DRAW or DATA statements. You
could really have fun, for example, tracing successive frames of Ead-
weard Muybridge's many photographs of people and animals in
motion.

100' ARKANSAS.JIG

110 GOTO 490 ' Go initialize
120 ON ORA GOSUB 190,200,210 ' Select arms to place
130 ON NRA GOSUB 190,200,210:RETURN
140 ON OLA GOSUB 160,170,180
150 ON NLA GOSUB 160,170,180:RETURN
160 PUT(113,80),LU,XOR:RETURN ' Place arms
170 PUT(102,97),LM,XOR:RETURN

246 JAMES E. KELLEY JR.

180 PUT(111,109),LD,XOR:RETURN
190 PUT(160,78),RU,XOR:RETURN
200 PUT(158,99),RM,XOR:RETURN
210 PUT(158,110),RD,XOR:RETURN
220 ON ORL GOSUB 260,270,280,290,300,310 '

Select legs
230 ON NRL GOSUB 260,270,280,290,300,310:RETURN
240 ON OLL GOSUB 320,330,340,350,360,370
250 ON NLL GOSUB 320,330,340,350,360,370:RETURN
260 PUT(148,135),RLD1,XOR:RETURN ' Place legs
270 PUT(128,135),RLD2,XOR:RETURN
280 PUT(148,133),RLM1,XOR:RETURN
290 PUT(148,133),RLM2,XOR:RETURN
300 PUT(144,131),RLU1,XOR:RETURN
310 PUT(144,131),RLU2,XOR:RETURN
320 PUT(124,135),LLD1,XOR:RETURN
330 PUT(124,135),LLD2,XOR:RETURN
340 PUT(87,132),LLM1,XOR:RETURN
350 PUT(87,133),LLM2,XOR:RETURN
360 PUT(64,131),LLU1,XOR:RETURN
370 PUT(64,131),LLU2,XOR:RETURN
380' Mainline

390 IF PLAY(0)>2 THEN 390 ' Hold music to action
400 PLAY"t = T:xa$(l);","t = T;xr$;" ' Load next measure
410 L = L + 1:IF L>16 THEN L = 1 '

Keep track of measure
420 OLA = NLA:NLA = 1 + ((NLA+2 + SGN(RND-.5))

MOD 3)' Arm/leg positions
430 0RL=NRL:NRL=1 +INT(6*RND):IF NRL = ORL

THEN NRL = 1 + (NRL MOD 6)
440 GOSUB 140:GOSUB 220 ' Go place left

arm & right leg
450 0RA = NRA:NRA = 1 +((NRA + 2 + SGN(RND-.5))

MOD 3)
460 OLL=NLL:NLL = 1 + INT(6*RND):IF NLL = OLL

THEN NLL = 1 + (NLL MOD 6)
470 GOSUB 120:GOSUB 240:GOTO 390 ' Go place right

arm & left leg
480' Initialize

SOUND & GRAPHICS FOR THE IBM PCjr 247

490 CLEAR ,,,32768!' Video buffer space for SCREEN 5
500 RF=3.141593/180 ' Radians/degree
510 SCREEN 5:C0L0R 14,0
520 DIM MAN(500),RU(200),RM(200),RD(200)
530 DIM LU(200),LM(200),LD(200)
540 DIM LLU1(500),LLU2(500),LLM1(500),

LLM2(500),LLD1 (500),LLD2(500)
550 DIM RLU1(500),RLU2(500),RLM1(400),

RLM2(500),RLD1 (300),RLD2(400)
560 KEY OFF:CLS

570' Construct arms

580 A = 45:GOSUB 1470

590 GET(50,20)-(80,50),RU
600 CLS:A = 0:GOSUB 1470

610 GET(50,40)-(90,60),RM
620 CLS:A = -45:GOSUB 1470

630 GET(50,50)-(80,75),RD
640 CLS:A= 135:GOSUB 1470

650 GET(20,25)-(50,50),LU
660 CLS:A= 180:GOSUB 1470

670 GET(10,40)-(50,60),LM
680 CLS:A = 225:GOSUB 1470

690 GET(20,50)-(50,80),LD
700 ' Construct right legs
710 CLS:A=0;B = 0;GOSUB 1540:GOSUB 1630

720 GET(90,105)-(120,160),RLD1
730 CLS:A=0:B = 65:GOSUB 1540:GOSUB 1630

740 GET(70,105)-(120,160),RLD2
750 CLS:A = 35:B = 0:GOSUB 1540:GOSUB 1630

760 GET(90,105)-(155,150),RLM1
770 CLS:A = 35:B = 65:GOSUB 1540:GOSUB 1630

780 GET(90,105)-(155,155),RLM2
790 CLS:A = 65:B = 0:GOSUB 1540:GOSUB 1630

800 GET(90,100)-(180,130),RLU1
810 CLS:A = 65:B = 65:GOSUB 1540:GOSUB 1630

820 GET(90,100)-(180,140),RLU2
830 ' Construct left legs

248 JAMES E. KELLEY, JR.

840 CLS:A=0:B = 0:GOSUB 1540:GOSUB 1660

850 GET(80,105)-(110,160),LLD1
860 CLS:A=0;B = -65:GOSUB 1540:GOSUB 1660

870 GET(80,105)-(130,160),LLD2
880 CLS:A=-35:B = 0;GOSUB 1540:GOSUB 1660

890 GET(45,105)-(110,150),LLM1
900 CLS:A=-35:B = -65:GOSUB 1540:GOSUB 1660

910 GET(45,105H110,155),LLM2
920 CLS:A=-65:B = 0:GOSUB 1540:GOSUB 1660
930 GET(20,100)-(110,140),LLU1
940 CLS:A=-65:B = -65:GOSUB 1540:GOSUB 1660

950 GET(20,100)-(110,140),LLU2
960 CLS:GOSUB 1250 ' Build body
970 NLL= 1 :GOSUB 320:NRL= 1 :GOSUB 260

980 NLA=3:G0SUB 180;NRA = 3:GOSUB 210

990' ARKANSAS TRAVELER

1000 DIMA$(16)
1010 SOUND ON:BEEP OFF

1020 R$="o0mnl8fp8fp8" ' jew's-harp
1030 A$(1) = "o3ms II6fagf I8dd"
1040 A$(2) = "o3ms I8ccff"
1050 A$(3) = "o3ms I8ggaa"
1060 A$(4) = "o3ms I16gagf mnl8dc"
1070 A$(5) = A$(1)
1080 A$(6) = "o3ms I8cc mnl4f"
1090 A$(7) = "o4ms II6fefcfed"
1100 A$(8) = "o4ms I16c<b-ag mnl8f o4mll16ab-
1110 A$(9) = "o5ms I16c<b-a>c<b-agb-"
1120 A$(10) = "o4ms II 6agfage mnl8c"
1130 A$(11) = "o4ms II6fefage rnnlOc"
1140 A$(12) = "o4mn I16fefa I8g msl16ab-"
1150 A$(13) = A$(9)
1160 A$(14) = "o4ms II 6agfage 18c"
1170 A$(15) = "o4ms II6fefcdfed"
1180 A$(16) = "o4ms I16c<b-ag mnl8f p8"
1190T=122:V = 8:L=2

1200 PLAY"t=T;v = V:mb","t=T:v1 :mb"

1210 PLAY"t=T;xa$(1):","t=T;xr$;"

SOUND & GRAPHICS FOR THE IBM PCjr 249

1230 LOCATE 2,14:PRINT" ARKANSAS JIG"
1240 GOTO 390

1250' Draw body
1260 PSET(150,100),7
1270 DRAW'IIO gS d6 f5 r20 eS u6 h5 110"
1280 PAINT STEP (+ 0, + 5),CHR$(24),7
1290 DRAW"bm + 0, + 15"
1300 DRAW"c7 110 gS d6 fS r20 eS u6 hS 110"
1310 PAINT STEP (+ 0, + 5),CHR$(24),7
1320 DRAW"c7 bm-10,-5 u4 bm + 20, + 0 d4 bllO bu2"
1330 PAINT STEP (+ 0, + 0),14,7
1340 DRAW"c4 bulS brS u3 110 d3 rIO u1 110" ' Neck

1350 CIRCLE STEP (+ 5,-11),11,12,„.9 ' Head
1360 PAINT STEP (+ 0, + 0),CHR$(92),12
1370 CIRCLE STEP (+ 0, + 2),1,4' Nose
1380 PAINT STEP (+ 0, + 0),4,4
1390 CIRCLE STEP (+ 0,-9),14,6,„.2 ' Hat
1400 CIRCLE STEP (+ 0,-16),9,6,„.2
1410 DRAW"c6 bl9 d13 br18 u13"

1420 DRAW"c2 bl9 d13"

1430 PAINT STEP (+ 0, + 0),CHR$(8),6
1440 DRAW'cO bd8 bl6 r2h1g1 br1212e1f1" ' Eyes
1450 DRAW"bl8 bd6 g3 r1 e3 br3 f3l1h3" ' Mustache
1460 RETURN

1470 PSET(50,50),0 ' Draw arm
1480 DRAW"ta=A;"
1490 DRAW"c7 br8 u2 e2 r4 f2 e1r2 el r4 f1 r3 f1 r3 d2 13

g1 13 g1 14 hi I2h1 g2 14 h2 u2"
1500 PAINT STEP (+ 5*COS(RF*A),-5*SIN(RF*A)),

CHR$(24),7
1510 DRAW"c12 br19 e2 r2 f1 r2 f1 d2 g1 12 g1 12 h2

u1" ' Hand

1520 PAINT STEP (+ 3*COS(RF*A),-3*SIN(RF*A)),
CHR$(92),12

1530 RETURN

1540 PSET(100,100),0 ' Draw leg

n

250 JAMES E. KELLEY, JR.

1550 DRAW"ta = A;"
1560 DRAW"c7 bdS r2 f3 dS g1 d4 g1 d3 g1d315 u3 h1u3

h1u4h1u6 e3 r2"

1570 PAINT STEP (+ 5*SIN(RF*A), + 5*COS(RF*A)),
CHR$(24),7

1580C = A-B

1590 DRAW"c15bd17ta=C:r2f2d6g1 d5g1 d313 u3
hi u5 hi u6 e2 r2"

1600 PAINT STEP (+ 5*SIN(RF*C), + 5*COS(RF*C)),15,15
1610 RETURN

1620' Draw right foot
1630 DRAW"c6 bd14 r6 f1 r4 f1 r2 f1 d3 g1 118 h2 u2 el

u1 el r3"

1640 PAINT STEP (+ 3*SIN(RF*C),+3*COS(RF*C)),
CHR$(8),6

1650 RETURN

1660 ' Draw left foot
1670 DRAW"c6 bd1416 g1 14 g1 12 g1 d3 f1 r18 e2 u2 hi

u1 hi 13"

1680 PAINT STEP (+ 3*SIN(RF*C), + 3*COS(RF*C)),
CHR$(8),6

1690 RETURN

Figure 8.4: ARKANSAS.JIG—Illustration of Animation

SOUND & GRAPHICS FOR THE IBM PCjr 251

APPENDIX

^ SOUND & GRAPHICS FOR THE IBM PCjr 253
i !

A GRAPHICS SCREEN-DUMP PROGRAM FOR
THE IBM COMPACT PRINTER

I think owners of the IBM Compact Printer should have a way of
printing pictures. The screen-dump program In Figure A permits you to
print pictures drawn In SCREEN 1 mode. Type It In carefully and SAVE It
as MRDUMRBAS (for medium-resolution screen dump).

To use MRDUMP you must first generate a picture on SCREEN 1
and SAVE It In a picture file. We did this kind of thing with BSAVE In
Chapter 6, sections 3 and 9. When you run MRDUMP, you're asked to
type In the name (fllespec) of the picture file. Then turn on the IBM
Compact Printer and hit <Space>.

Try printing VALNTINE.PIC, which we created In Chapter 6.
The printing process Is slow, so be patient If It doesn't start

Immediately. When printing stops, hit <Esc> to start over with another
picture. Quit with <Fn-Break>.

NOTE: If you get funny stuff printing out, you might turn off the
printer to reset It, and then begin the printing process all over again
from scratch.

Working with printers Is messy. The printing codes for the IBM
Compact differ significantly from those of the standard IBM dot matrix
printer (essentially an Epson) that's matched to the IBM PC and for
which standard graphics screen-dump programs exist within DOS 2.0
and 2.1. You can see these printing codes toward the end of the
pamphlet "IBM PC Compact Printer Installation and Operating
Instructions." You should have It In your Guide to Operations.

Studying the printer codes In the pamphlet and seeing how they
are used In Figure A will give some Insights Into how you might do other
Interesting things with them (e.g., double-width and compressed
characters).

ICQ ' MRDUMRBAS—Med Res Screen Dump
110 CLEAR

120 SCREEN 1,0:COLOR 1,1 :KEY OFF:CLS
130 DEFINT A-Z' Integer arithmetic for speed
140 PRINTiPRINT TAB(8):"'' * * SCREEN DUMP * * *"
150 PRINT:PRINT:PRINT" Print Medium Res Screen on

IBM Compact"
160 PRINT:PRINT:PRINT"Key fllespec of picture: ";

254 JAMES E. KELLEY, JR.

170 INPUT"",NA$
180 PRINT:PRINT:PRINT"Hlt <SPACE> when ready to

print"
190 PRINTPRINT"Hit <Esc> for new picture"
200 A$ = INKEY$;IF A$<>" " THEN 200
210 CIS

220 BLOAD NA$
230 OPEN "LPT1:" AS #1 ' Open line printer
240 WIDTH #1,255

250 PRINT#1,CHR$(24);' Initialize printer
260 PRINT#1,CHR$(27):CHR$(48);' Set line spacing
270 DEF SEG = &HB800 ' Start of video buffer

280 FOR I = 0 TO 79 ' Column count

290 PRINT#1,CHR$(27);"K";CHR$(144):CHR$(1);' Set
bit graphics

300 P = I + &H1 EFO ' Start position (last row)
310 FOR N = 1 TO 100' Double row count

320 R0W1 =PEEK(P):ROW2 = PEEK(P + &H2000)
330 PRINT#1 ,CHR$(ROW2):CHR$(ROW2);

CHR$(R0W1):CHR$(R0W1);' Double density printing
340 P = P-80' Next start row (count backwards)
350 NEXT

360 PRINT#1,CHR$(13):CHR$(10):' Carriage return &
line feed

370 NEXT

380 PRINT#1,CHR$(13);CHR$(24);CHR$(27);
CHR$(50);:CLOSE

390 A$ = INKEY$;IF A$<>CHR$(27) THEN 390
400 GOTO 110

Figure A: MRDUMP.BAS—Medium-Resolution Screen
Dump

SOUND & GRAPHICS FOR THE IBM PCjr 255

A> 20

ADDITION 42

Alt-letter combinations 54

AND 57

arcs 155

ASCII 56, 57-59
aspect ratio 155
asterisk (*) 42

6
Backspace 9
backup diskettes 33
BASIC editor 53

BASIC mode 20

BEEP 54

cancel color text mode 13

CapsLock 9
Cartridge BASIC 20
Cassette BASIC 23
CHR$ 56
CIRCLE 154

CLS 11. 21
cold start 20

colon (:) 12
CCLCR 11,134
color text mode 12

command mode 46

COUNT 45

Ctrl-Fn-Home 54

Ctrl-G 54

Ctrl-L 54

Ctrl-letter combinations 54

cursor off 68

SOUND & GRAPHICS FOR THE IBM PCjr 257

D
deferred mode 47

diatonic major 102 «
DIP 21

direct mode 46

directory 21 p
Disk Operating System User's Guide 18
DISKCOPY 33
division 42 i—t

DOS 18
DOS (system) prompt 20
DOS (system) mode 21
dot (.) 106
duration 59

echo 28

END 46

Enter 10

Esc(ape)8
execute mode 47

Exploring the IBM PCjr 6
exponentiation 43
external speaker 78

FILES 23
fill 159

Fn22

Fn-Break 22

Fn-Echo 28

Fn-PrtSc 29

FOR 45

format 31

formatting procedure 31
frequency 59, 76
function keys 27
Function-Break 22

258 JAMES E. KELLEY, JR.

GOTO 46

greater than (>) 58,106
Guide to Operations 6

H
hertz 59, 76

I
IF . .. THEN 57

Immediate mode 46

INKEYS 61
INSTR(ing) 124
Internal speaker 78

K
KEY ON 27

Keyboard Adventure 72
Keyboard unit 8

L (note length) command 104
less than (<) 58,106
LINE 136

line number 47

LIST 25

literal 41, 59
LLIST 26

LOAD 23
LOCATE 66
LPRINT 57

LPT1: 26

SOUND & GRAPHICS FOR THE IBM PCjr 259

M
medium resolution graphics 133
minor scale 105 r-i
minus sign (-) 705
moire patterns 144
MOTOR 14 n
multiplication 42

N
NEXT 46

NO-FILE 17

NOISE 159, 173
NOTE 126

O
0 (octave) command 102
operating system 18
operations 43

P (pause) command 106
PAINT 139,159
palette 134,161
PLAY 102

plus sign (-I-) 106
powering up 6
PRINT 40

print buffer 57
PrtSc 29

PSET 134

question mark (?) 41

260 JAMES E. KELLEY, JR.

R
radius 138

RND 60

RUN 24

saving pictures 173
scales 102

screen coordinates 135

screen dump 29
screen freeze (Fn-Pause) 22
semicolon (;) 44
sharp sign (#) 106
shift 9

slash (/) 42
SOUND 59

source diskette 33

STEP 60

subtraction 42

syntax error 10, 26
SYSTEM 36
system reset 20

T (tempo) command 107
Tab 10

target diskette 33
text mode 132

typing buffer 61

V
V (volume) command 107

W
Warm start 19

whole-tone scale 106

WIDTH 25

SOUND & GRAPHICS FOR THE IBM PCjr 261

Creative
Computing

Now you can express yourself creatively with the IBM PCjr! With humor and pa
tience, Sound & Graphics for the IBM PCjr teaches you the fundamentals of the
BASIC programming language and clever programming tricks so that you can make
the most of the PCjr's sound and graphics capabilities. You'll learn to use BASIC
commands such as PAINT, BEEP, COLOR, NOISE, LINE, PLAY, SOUND, and
DRAW, to name just a few of the techniques that generate impressive music and
spectacular graphics.

With this book and your PCjr, you can create:

SOUND

SOUND EFFECTS and BIRD CALLS
TWO- AND TRREE-RART HARMDNIES
FAMILIAR MELODIES
ORIGINAL MUSICAL COMPOSITIONS

GRAPHICS

GEOMETRIC CONSTRUCTIONS
ABSTRACT PATTERNS

NATURALISTIC PICTURES

ANIMATED CARTDDNS

The text is chock-full of instructions and program listings that will challenge you to
stretch your imagination while you have fun with your PCjr.

iNir
. I-

RAP
H

by James E. Kelley, Jr.,
author of The IBM/PC Guide,

The IBM/PC & 1-2-3 and The IBM/PC & Business Software.

31936 00068

A Banbury Book

ISBN 0-88693-068-5

Distributed to bookstores by The Putnam Publishing Group

$14.95
Cover printed in U.S.A.

