
-
-
-

-

-
-
-
-

-
--

BASIC Made Easy
for the IBM PCjr

Building blocks to BASIC.
Learn to write programs, create
music and draw colorful pictures
... in eight friendly and fun lessons.

-
-

~

--- --=--=-=-= =-- ---- - ---- - ------- -----·-
Personal Computer
Education Series

BASIC Made Easy
for the IBM PCjr

First Edition (October, 1983)

The following paragraph does not apply to the United Kingdom or
any country where such provisions are inconsistent with local law:
International Business Machines provides this manual "as is",
without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. IBM may
make-improvements and/or changes in the product(s) and/or the
program(s) described in this manual at any time and without
notice.

This product could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your Authorized IBM Personal
Computer dealer.

A Reader's Comment Form is provided at the back of this
publication. If this form has been removed, address comments to:
IBM Corporation, Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate without
incurring any obligations whatever.

© Copyright International Business Machines 1983

,....

,....,

,.....

-
-
,,....

-

About This Book

BASIC Made Easy is for those who have no knowledge
of computers. If you have worked with computers
before, or if you know something about computer
languages, feel free to whiz through the book to get a
feel for the unique features of the IBM PC Jr and its
version of BASIC.

The book is broken up into four chapters with two
lessons in each: Chapter One starts you off with simple
one-line programs; Chapter Two teaches you how to
build programs that are several lines long; Chapter
Three shows you how to interact with your own
programs; and Chapter Four teaches you how to add
color and sound to what you have learned.

iii

iv

We assume that you have Cartridge BASIC for your
IBM PCjr and that you are using a 40-column color
television set. Most examples will work with other 40-
and 80-column monitors as well. Colors and intensities
used in Lessons 5 and 7, however, may vary depending
on your display device.

If you have never used a computer before, you will
want to work through the book carefully. As you finish
each lesson, hopefully you will feel more confident and
more comfortable with the computer.

We suggest you don't read through this book in an
armchair or while propped up against a pillow. Study it
in front of your computer. Try out every program in as
many ways as you can, making notes as you go along.
Don't hesitate for fear you might make a mistake.
Your mistakes won't hurt the computer. In fact, you'll
learn a lot more by making a few mistakes.

We also suggest that you do not try to go through all
the lessons in one sitting. You will tire and lose
interest as you try to remember all the information. Try
completing one chapter at a time and review the
material thoroughly, then take a break. Come back
later and complete the next chapter. This will help keep
the text informative and entertaining for you.

,.....

I'-

-
......

.....

....

-

In the text, programming examples help teach the
lessons. At the end of each lesson, projects (and their
solutions) help you practice what you've learned. Both
types have been kept simple and light-hearted. To solve
them, you won't need any advanced math-just a little
simple arithmetic. To inspire you, we've also thrown in
some ideas here and there for you to build your own
useful or entertaining programs.

We want you to enjoy every minute of this book so
we've put you in charge of teaching yourself. You learn
by doing. You decide how fast or slow to go, or when
you need a break; your computer is a very obedient and
patient helper. Take as long as you like to learn how to
give the computer instructions.

V

vi

And ... oh ... by the way, you're also in charge of what the
computer does. Don't expect it to tap you on the
shoulder and say, "Psst! I had a great idea last night
that you simply must try!"

Note: Students younger than 12 years of age may
need some guidance from an adult.

""""

--
......

,-..,

-

--

-

-

..

-

Contents

Introduction . 1
What You Need 3
Additional Reading . 3
Starting the IBM PCjr. 4

To Start Cartridge BASIC 5
To Start Cartridge BASIC While Using
DOS 8

Chapter 1 : Getting Started • . 9
About This Chapter . 9
Lesson 1. Instant Programming 10

The PRINT Command 10
The CLS Statement 12
What Is a String? 13
Correcting Mistakes 14
The BEEP Statement 15
The SOUND Statement 17
Your Turn 19
Solutions . 20
Quick Review . 21
Taking a Break? 22

Lesson 2. Writing Programs 24
Is the Computer Off? 25
Your First Big Program 26
LISTing Your Program 28
The REM Statement 30
Error Messages . 30
Editing Your Program 32
The NEW Command 34
Spacing and Print Zones 34
A Direct Statement: GOTO 35
Your Turn . 39
Solutions . 40

vii

viii

Chapter Review
Taking a Break?

................... 41
42

Chapter 2: Programs That Count 43
About This Chapter . 43

Is Your Computer Switched Off? 44
Error Messages . 44

Lesson 3. The Computer Remembers 45
Letters Equal Numbers 47
The INPUT statement 48
Your Own SOUND Track 51
Quick Review . 54
Your Turn . 55
Solutions . 56

Lesson 4. A Variety of Variables 57
String Variables 59
Four String Functions (or: A String

Quartet) . 62
READ and DATA Statements 66
FOR and NEXT Statements 70
Your Turn . 73
Solutions . 74
Chapter Review 75

Chapter 3: Branches and Loops 77
About This Chapter . 77

Error Messages . 78
Lesson 5. The Great Screen Escapade 81

Printing Anywhere On the Screen 81
Be a Math Whiz with FOR and NEXT . . 84
A Spot of Color 88
Your Turn . 92
Solutions . 93

Lesson 6. The Computer Decides 94
A Fork in the Road 94
Setting A Clear Path 96
How the Subroutine Works 100
Your Turn 102
Solution 103

""""'

,....

,.....

,....

,...

,....

-
,...
,....

Jllilii

-...
-

Jlllilt:

Chapter Review 104

Chapter 4: Games and Show Business 105
About This Chapter 105

Error Messages 105
Lesson 7. Music 106

Play Maestro Play 107
Once Again, With Feeling 111
Fast or Slow : . . . 112
High or Low . 113
Three-Part Harmony 119
Volume and Countermelody 121
Your Turn 124
Solutions . 125

Lesson 8. Art . 126
The Artist's Touch 126
The PSET Statement 132
The LINE Statement 133
The CIRCLE Statement 134
In Living Color 135
The PAINT Statement 139
Hooray for You 142
Your Turn 143
Solutions . 144
Chapter Review 145

Appendix A. Messages . 147

Appendix B. BASIC: A Quick Reference 153
Commands 153
Statements . 154

Appendix C. Resened Words in BASIC 157

Index . Index-I

ix

i-,

Notes: r-,

,.....

......

~

i-,

l"""-i

~

~

,....

r-

i-,

,....

i-'I

I'-

~

~

(-1

~

;.-

~

~

,-,

i--,

X ,.....

Introduction

BASIC Made Easy introduces you to the BASIC
computer language on the IBM PCjr. The first thing to
learn is that BASIC stands for Beginner's All-purpose
Symbolic Instruction Code and that it was designed
with you, the "beginner," in mind.

The second thing to learn is that a computer lan~uage,
like BASIC, is similar to a foreign language in tliat you
use a different set of words to convey a message. But
in this case, you are conveying a message to a computer
and not another person.

1

2

You'll learn also that a computer is not forgiving when
given an incorrect "translation" of a message. You
have to convey the message in the exact form that the
computer knows or it will give you an error message.
Remember to be consistently accurate in your messages
with the computer, and you and the computer will get
along well.

Learning a computer language is a lot easier than it
sounds. The first big hurdle is computer vocabulary;
you have to learn at least some of it to have the
computer work for you. It would be like asking a
carpenter to build a house without blueprints; if the
carpenter isn't given instructions (blueprints) he
understands, he can't begin to work.

You can learn the essentials of BASIC in a few
hours-much sooner than it takes to learn a foreign
language or build a house. In fact, you'll find that
learning BASIC is more like playing with pieces of a
construction set. Once you know the shapes and how to
join pieces, you will discover new uses for them. We
believe this book will teach you those "building block"
essentials of BASIC.

i--'I

--
,....

,,_

-

.... What You Need

..
,...

...

...

The following is the minimum hardware requirement to
perform the BASIC Made Easy examples:

• IBM PCjr with 64 KB of memory

• 40- or 80-column color television or color monitor

• BASIC Cartridge

These units should be hooked up according to the Setup
Instructions that come with the IBM PCjr .

Additional Reading

Before using this book, you should be familiar with
Chapter One and Chapter Two of the IBM PCjr Guide
to Operations. It shows you how to use the IBM PCjr
keyboard and also how to spot and solve some common
problems .

After reading BASIC Made Easy, you may want to look
into other advanced topics of the BASIC computer
language. If so, the IBM PCjr BASIC or the IBM PCjr
Hands-On BASIC books are for you. These books give
complete information on the BASIC language on the
IBMPCjr .

3

Starting the IBM PCjr

4

Before we get into the lessons, let's learn how to start
the IBM PCjr. Eventually while reading the book, you
may to take a break between lessons. You can ref er
back to this section each time for start up instructions.

For now, pick one of the following headings that best
fits your situation: if your computer is off, see the next
page, if your computer is on, see page 7, if you've
already started with DOS, see page 8.

To Start Cartridge BASIC

H Your Computer Is Off

1. Tum on the TV set (or color monitor) . Set the
volume control on low (if available) .

2. If you have a diskette drive, remove any diskette
that may be in it.

3. Slide the open end of the BASIC cartridge into
either of the cartridge slots. The label should be
facing up.

4. Find the power switch at the left rear of the IBM
PCjr System Unit and flip it on.

s

6

First you see the IBM logo. A few seconds later,
you see a screen titled The IBM PCjr BASIC. On
the second line of the screen, Version J lets you
know that you are using Cartridge BASIC. The
third line tells you how much memory is available.
The fourth line says OK. OK means that the
computer is ready.

5. If you cannot see the words to the left of the TV
screen, adjust the picture as follows: press and hold
down the Ctrl and Alt keys, then press the Cursor
Right (Pg Dn) key once or twice until the picture is
centered. In the same way, press the Cursor Left
(Pg Up) key to move the picture left on the screen.

DD
DO□□

-·------□□

6. The line at the bottom of the screen describes
certain special keys. Since you don't need this
information right now, type KEY OFF and press the

--
Enter key (E~) . The IBM PCjr returns an OK to
tell you it did what you said, and that it's now ready
for something else.

7. You are ready to begin Chapter 1: Getting Started.
Tum to that section now.

H Your Computer is On

1. If you have a diskette drive, remove any diskette
that may be in it.

2. Slide the open end of the BASIC cartridge into
either of the cartridge slots. The label shouJd be
facing up. This causes the System Unit to r~start
itself.

First you see the IBM logo. A few seconds later,
you see a screen titled The IBM PCjr BASIC. On
the second line of the screen, Version J lets you
know that you are using Cartridge BASIC. The
third line tells you how much memory is available.
The fourth line says OK. OK means that tile
computer is ready. I

3. If you cannot see the words to the left of the TV
screen, adjust the picture as follows: press and hold
down the Ctrl and Alt keys, then press the Cursor
Right (Pg Dn) key once or twice until the picture is
centered. In the same way, press the Cursor Left
key (Pg Up) to move the picture left on the screen.
(See previous page for illustration.)

4. The line at the bottom of the screen describes
certain special keys. Since you don't need this
information right now, type KEY OFF and press the

7

...

,...

...

...

..

...,

Chapter 1: Getting Started

About This Chapter

This chapter has two lessons. In these lessons, you will
learn to give simple commands to the computer and see
the results on the screen. When you're done with
Lessons 1 and 2, you will be able to:

• Write one-line programs that work instantly.

• Correct your typing mistakes, delete something you
don't want, and clear the screen before typing a new
program .

• Use two commands to create sounds on the
computer.

• Correct one or two errors-that may come up on your
screen .

9

Lesson 1. Instant Programming

The PRINT Command

Press a few keys and watch the screen. Works like a
typewriter, right? One of the things a computer can do
is remember an instruction and carry it out. Let's jump
right in and give IBM PCjr our first instruction.

Type your name and press the Enter key (~) .
(Pressing the Enter key tells the computer to read your
instruction and then perform it.)

Oops! You got a Syntax error which means the
computer did not understand your instruction. Don't
panic.

The computer understands only specific words called
either commands, functions, or statements. One of these
specific words is the PRINT statement, which tells the
computer to print something on the screen. For the
computer, the word PRINT always comes first,
followed by what you want to print enclosed in quotes.
You then press the Enter key (~ to perform the
instruction.

Let's try to get it right this time. (To get capital letters,
hold down the Shift key.)

1. Type the following line exactly as you see it:

PRINT "Hi! Anybody in there?"

2. Watch the screen and press the Enter key (~l .

11

If you make a typing mistake, press the Esc key EJ
(top left corner of the keyboard) to erase the entire
line, and start over.

Notice that the computer printed only what you typed
between the quotation marks.

Before we go on, look at the keyboard to see where all
the characters are located and how to get them.

The CLS Statement

12

The CLS statement clears the screen so you can start
typing at the top again. When you use CLS, you also
erase your instruction from the computer's memory if
you don't use line numbers. (We'll discuss memory and
line numbers in a little bit.)

1. To clear the screen, type:

CLS

2. Then press the Enter key (~ . Presto! A fresh
screen.

3. Now type (in small letters):

print"

4. Type your name, then type the closing quotation
mark.

5. Press the Enter key (~I .

You can type statements in small letters, if you like.
We'll show them in capitals throughout this book,
anyway.

What Is a String?
Just between you and your computer, a string is
whatever you type inside quotation marks. The
computer prints a string exactly as you type it. You
must always remember to type the PRINT statef ent
first.

·.:&
~

A string can be a word or a bunch of words, or it can be
a number or many numbers, such as your telephone
number or your age.

Have some fun printing different strings-a greeting,
your address, your phone number, your favorite movie,
or the name of a loved one. Put each message inside
quotation marks. Don't forget to use the PRINT
statement.

13

Correcting Mistakes

14

Another way to correct a mistake other than the Esc
key is to use the four arrow keys: Cursor Left [Paup) ,
Cursor Right [PuDn) , Cursor Up (;;}) , and Cursor
Down [;!) (lower right-hand side of the keyboard).
Press these keys to move the cursor up, down, left, or
right to the mistake. Then type the correct letter or
word, and press the Enter key (E~) . Your correction
takes effect only after you press Enter.

Also, remember from a few moments ago that if you
want to erase an entire line, press the Esc key.

Or, if you're having a bad day, you can clear the whole
screen by typing CLS.

,.....

-

I"'""

--
--

The BEEP Statement

Every computer loves to do something silly now and
then. Your computer loves to beep. Let's use the
BEEP statement to make it beep.

Use the CLS statement to clear the screen, then fype:

BEEP

15

16

Did you remember to press the Enter key? Good.
Remember to press the Enter key whenever you want
the computer to carry out your instruction.

Also remember that you can type statements in small
letters if you pref er.

You can type two statements in the same line, too.
Let's try it.

Type:

BEEP : PRINT "I love to beep . "

Notice that you need a colon to join two statements in
the same line.

Now press Enter to hear and see the program.

There you go! That one line is a program-an
instruction to tell the IBM PCjr what to do. I'll bet you
used the PRINT statement without knowing you wrote
a program. Let's see what else we can do with one-line
programs and the SOUND statement.

Enter key (~} . The IBM PCjr returns an OK to
tell you it did what you said, and that it is ready for
something else.

5. You are ready to begin Chapter 1: Getting Started.
Turn to that section now.

To Start Cartridge BASIC While Using DOS

8

DOS stands for Disk Operating System. You may have
previously started your IBM PCjr from the DOS
diskette.

1. If the BASIC cartridge is already in the slot and the
DOS prompt A> is on the screen, type the word
BASICA after the DOS prompt and press the Enter
key (~} .

2. If the BASIC cartridge is not in the slot, slide the
open end of the BASIC cartridge into either slot.
(The label should be facing up.) This causes the
System Unit to restart itself. After typing in the date
and time correctly, type BASICA and press the
Enter key (~ .

You see a screen titled The IBM PCjr BASIC. The
second line of the screen reads Version J to let you
know that you are using Cartridge BASIC. The third
line tells you how much memory is available. The
fourth line says OK. OK means that the computer
is ready.

3. You are ready to begin Chapter 1: Getting Started.
Tum to that section now.

~

fl/'t'v#"

~

~

,..,...

,-..,

,.....,

The SOUND Statement
A beeping computer! Hmmmf, you say. But can it sing
a high note? Get ready for this. Clear the screen with
CLS, then type:

SOUND 500, 50

Press Enter (E~) . The SOUND statement gets a
musical tone out of the computer.

17

18

Do you see the two numbers with a comma between
them? The first number (500) tells the IBM PC Jr what
tone to play; 1000 would be a higher one, 40 would be
a low scraping sound. IBM PC Jr can't go lower than
37, or higher than 32767.

The second number (50) tells IBM PC Jr how long or
short to play the tone. The bigger the number, the
longer the tone. IBM PC Jr can use a number from Oto
65535.

It probably wouldn't be a good idea to experiment with
the longest playing time until you learn how to stop it.
Somebody at home may not appreciate your creativity.
Later, we'll learn the trick of how to stop a program
that's already working.

Please do try, however, the SOUND statement with
different tone numbers. Make a funny low sound like a
large bullfrog, or a long high sound like a tea kettle
whistling.

-

-...

-
-

--

Your Tum

Project #1: Can you combine two SOUND statements
to make two tones? Try it. How about four tones in a
row?

Hint: You need to use a colon(:) to join statements.

Remember: When typing a zero, don't type the letter 0
by mistake. The zero key is on the top row of the
keyboard .

Project #2: Here are the frequencies (known as Hz)
for each of five notes on the piano. You may also know
these notes as "Do, re, mi, fa, sol."

C 523 Hz
D 587 Hz
E 659 Hz
F 698 Hz
G 784Hz

Write a one-line program to play any of these three
notes for a duration of about 1/2 second each.

Hint: You need to use a colon(:) to join statements.

19

Solutions

20

Project #1

SOUND 200,10:SOUND 250,10:SOUND 300,10:SOUND 400,10

(If you are using a 40-column screen, did you notice
that part of the SOUND statement was broken when
you tried to type the entire program on one line? Don't
worry, the program still works. The computer can read
a broken line. It all doesn't have to fit on the same
line.)

Project #2: We wrote three notes that will remind you
of the nursery rhyme "Three Blind Mice":

SOUND 659,10: SOUND 587,10: SOUND 523,10

Quick Review

Go ahead and do your own thing with the statements
you have learned. Here is a list to help you remember
these statements.

CLS Clears the screen.

PRINT Prints strings (messages inside quotation
marks).

BEEP Makes the computer beep.

SOUND Produces musical tones. You can make a
tone high or low, long or short.

21

Taking a Break?

22

If you need to take a short break, leave the computer
turned on until you return. If you want to tum off the
computer, you can later restart it by following one of
the procedures in the "Introduction".

-

-
~

-
I'"""'

--

,......

--

~ Notes:
~

~

~

,all!

-
~

.-

--

~

-

23

Lesson 2. Writing Programs

24

You have been writing short one-line programs that
worked as soon as you pressed the Enter key. In
Lesson 2, you will learn to combine many instructions
in a program and store the program in the computer's
memory. You will learn to perform such a program,
display it on the screen, change it, and run it again.

Learning how to program is like learning how to ride a
bicycle: starting out can be a little awkward, but with
practice, it gets easier.

-

-

Before you begin, here are some reminders:

• Don't forget to press Enter after typing a line, or
after making a correction.

• Use the four arrow keys to move your cursor where
you want it.

• Use the CLS command to clear the screen when it
gets cluttered or when you want to start over. It
does not clear away what you told the computer to
remember.

• Use quote marks after a PRINT command when you
want to print a string.

• If you prefer, type a statement in small letters.

- Is the Computer Off?
- If your computer is off, refer back to the

"Introduction" and follow the procedure. In time, you
- will know this procedure by heart and may nothave to

refer to the "Introduction." -

--
-- 25

Your First Big Program

26

A program is a set of instructions to the computer. So
far, you have been writing instant one-line programs
that work when you press the Enter key, and vanish
from the computer's memory when you clear the
screen.

You now will learn to write a program that stays in the
computer's memory after you press the Enter key.
Each line in such a program begins with a number
(called, naturally, a line number). The difference is
that you can perform such a program many times
because the computer remembers it.

Let's type a four-line program. First, clear the screen
by using the CLS statement. Then type each line
exactly as you see it (including the spaces).

10 CLS
20 PRINT "Noon whistle at the factory."
30 SOUND 600, 50
40 END

Note: Remember to press the Enter key
after typing each line. This time, however, nothing
will happen immediately.

You just typed a program with four numbered lines.
Line 10 tells the computer to clear the screen. Can you
guess what Lines 20 and 30 will do? Sure you can! Line
40 tells the computer to stop reading instructions. END
is another statement like PRINT or CLS.

Now, let's tell the computer to perform this program.
Type RUN, then press the Enter key ~ .

RUN is one of those computer words that was
mentioned in "About This Book" in the front of the
book. Literally it doesn't make sense to "run" a
program. How can a set of instructions run? What
RUN means in the computer sense is to operate like a
machine. You've often watched a blender or a washing
machine run. Like these, you "run" a program. RUN
is an example of a word in the BASIC language that
you learn to make the computer work for you.

To hear the whistle again, type RUN once more, and
press the Enter key ~l .

Another way to run the program which saves tyf ing is
to press the FN key (upper right corner of the
keyboard) and then press the F2 key. (See the figure
for their locations.)

27

□□ D□DDDDDDCI
DDDDDD□D□□□□□n
□DDDDDLJDCJD□D W 0
CJ □□□□□□□□□□Cl □□

c::i..._ ___ __. □□□ □

Throughout the rest of the book, we'll use Fn and F2 as
shown above to run a program.

LISTing Your Program

28

Let's look at that program again. Oops, where did it
go? It's stored in the computer's memory because you
started each line with a line number. To see it again,
type LIST, and press the Enter key (~) . This is
known as listing the program.

As you may have wondered, another way to list (or
display) the program is to press the Fn key and then the
Fl key. (See the figure on the next page.) When the
word LIST appears on the screen, press the Enter key.

We'll use Fn and Fl keys throughout the book like Fn
and F2. There is one more key combination we'll learn
later.

oL-Y..._.ooo□□□o□□□
DDDDDDDDD□□□Dn
DD□DDCJCJ□D□CJ□LJ □
D □□□□□□CJ□□□c::J□D

DC IUD□□

When you write a program like our "noon whistle"
program, line numbers like 1, 2, 3, and 4 would work as
well as 10, 20, 30, and 40. The computer reads and
does each command in numerical order. Numbering
lines in tens (10, 20, 30), however, allows you to add
new lines in between.

Let's add a new line. Below Ok, type:

35 PRINT "It's lunch time."

Did you press the Enter key? Good. Now list the
program again by pressing Fn EJ , and then
Fl ~ . Notice that Line 35 slid into place just after

29

Line 30. Let's go ahead and run the program, but
before you press Fn and then F2, make sure the cursor
is below the program. You will get an error message if
the cursor is not below the last line of the program.
When you've checked, press Fn EJ then Fl (h:=) to
RUN the program.

The REM Statement
One more thing. Let's give your program a title. Add
this line to your program. Type:

5 REM My First Program

Press Enter (~) , of course. Now, clear the screen
with CLS and list the program with Fn EJ and then

(IT\
Fl l.£!..._J • Neat, huh? You can also use REM as a
reminder or note in any part of the program. (REM
stands for "remark.") Run the program again, if you
like. Notice that your title did not get printed. It shows
up only when you list a program.

Error Messages

30

Sometimes a program you type may not work because
of an error in it. Just because you got an error message
does not mean there is a big problem with the
computer, the program, or you. The error could be a
misspelling, a misplaced word or letter, a missing or
wrong line number, or something else that the computer
did not understand. So don't panic.

Syntax error is an example you saw in Lesson 1. While
using this book, you may see an error message from the
list below. If you see a message not in this list, please
ref er to Appendix A in this book where frequently seen
error messages are explained.

-

-
-

Error messages you are likely to see while doing
Chapter 1 are:

• mega1 function call

The computer cannot do what you ask. LIST your
program and check line numbers, commands, and
statements. Then rerun the operation.

• Mmingoperand

Your program is missing a part of an instruction.
LIST your program and check it over before
re-trying the operation.

• Syntax error

A program line, command, or statement was typed
incorrectly. The incorrect line is displayed for you to
correct.

For a complete list of error messages, ref er to Appendix
A of the BASIC reference book.

31

Editing Your Program

32

Editing means changing or correcting. An easy way to
change a line is to use the EDIT command followed by
the line number of the line you want to change.

When editing, remember that your program is stored in
the computer's memory. To store your changes
properly, you must press Enter after editing and while
the cursor is still on the line.

Let's edit line 35 by adding a few words. Type:

EDIT 35

Press Enter [~) . Line 35 is now on the screen.

1. Move your cursor under the I in It's. (Use the
Cursor Right arrow key (Pgan) .)

2. Find the Ins (Insert) key eJ in the lower right
part of the keyboard. Press it.

This allows you to add words in a line. (You know
the Ins key has been pressed by the square flashing
cursor. Pressing Ins again gives you the normal
cursor again.)

3. Type:

Your attention, please!

Leave a space before It's.

4. Press Enter [~) (This stores the added words in
the computer's memory.)

By pressing the Enter key or any of the four cursor
control keys, you turn off the ability to insert words.
You would have to press the Ins key to use it again.

5. Clear the screen with CLS and LIST the program.

6. RUN the program and check it over.

You can rewrite a line the same way you add a line.
Simply type the line number, a space, then your new
BASIC line. Pressing the Enter key exchanges the new
line with the old. If you don't press the Enter key, the
change is not made.

Here are some more editing tips. Be sure to try each of
them on your program.

• To LIST a single line, type LIST and the line
number (separated by a space), then press Enter.

• To erase a line in the computer's memory, simply
type the line number and press Enter.

33

• To print a blank line, type PRINT and press Enter.

The NEW Command

Before going any further, let's clear your program from
the computer's memory. You do this by using the NEW
command.

Type:

NEW

and press the Enter key ~ .

Remember: When you type CLS, the screen is cleared,
but the computer still remembers your program. When
you type NEW, your program is no longer in the
computer's memory.

Now type CLS to clear the screen.

Spacing and Print Zones

34

Did you type NEW to clear your program? If so, type
this program:

10 REM WARNING!!!
20 PRINT "The"
30 PRINT "sky"
40 PRINT "is"
50 PRINT "falling!"
60 END

Run it. The words appear one under the other. To put
the words in a line, type a semicolon(;) at the end of
lines 20, 30, and 40. (Use the cursor control keys to
move the cursor to the end of each line, and press Enter
before leaving the line.)

Re-run the program. Oops, the words are jammed
together. You need to separate the words.

Here's a clue. On line 20, put a blank space after The
("The "). Run the program.

Hmmmm, it worked. Now do the same for lines 30 and
40. (Use the EDIT command to do your editing.)

What would happen if you put a comma in place of the
semicolon? Let's find out. First, clear the screen and
list your program. Now type commas instead of the
semicolons. (Remember to press the Enter key after
you edit each line.) RUN the program.

Notice how the words are spread out. A comma tells
the computer to put the next word into a new zone.
There are two print zones on your 40-column screen
(five if you have an 80-column screen).

A Direct Statement: GOTO
You can make the computer do something over and
over again by using the GOTO statement.

1. Clear your program from memory by using the
NEW command.

2. Enter this program:

5 CLS
10 PRINT "WARNING! The sky is falling!"
20 SOUND 480, 10: SOUND 520, 10
30 GOTO 5

3. Run the program by pressing Fn EJ , then
F2 ~l-

35

36

Do you want to stop the noise? To stop the noise,
calmly:

1. Press the Fn ~ key and release it.

2. Press the letter B key (Break).

Whew, that was close, huh? From now on, we'll call
this sequence of keys Fn-Break ~ - (~). (After
stopping that noise, it should be called something
better, like "great helper.") When you "break" a
program, the computer shows the line number where it
stopped running.

The GOTO statement in our program told the computer
to go back to line 5. Each time it did so, the computer
repeated lines 5, 10, and 20. Then it went back and
repeated line 5 again. Your program has put the
computer into what is referred to as an "endless loop."

-

Let's have some more fun with GOTO. First use the
NEW command.

Enter this program and run it:

5 CLS
10 PRINT "Malayalam"
20 SOUND 440, 10
30 GOTO 10

The word prints endlessly in a vertical line while the
noise plays on and on. Use our invaluable
Fn-Break EJ - (Break] to stop the endless loop.

Now, list the program and add a semicolon at the end
of line 10. Do you know what will happen when you
run it? Find out by running the program.

Aha! The words are put one after the other until the
screen is filled. Stop the loop by pressing
Fn-Break EJ -(~] .

You can use your own name in line 10, if you like. (By
the way, the word "Malayalam" can be read forwards
and backwards. It's actually the name of a South Indian
language.)

You can make the message print slow or fast by
changing the second number (10) in line 20. Try it.

Another question. What will a comma instead of the
semicolon do in line 10? To get a clue, go back to
where we first talked about the comma. Give up? Well,
type in the comma and run the program.

How did you do? How have you done so far? El cept
for the Projects and Chapter Review, you are done with

37

38

the first chapter. You may not want to go on to the next
chapter until you understand this one. Give yourself a
chance to learn. -

-
-
--

-
--

-

--
-
-
--
--
-

Your Tum

Project #1: Write a spooky sounding program that
also fills the screen with the word "Nevermore.'' Add a
SOUND statement to make the ghostly tone each time
the word appears on the screen.

Project #2: Write a program that prints your name,
your age, the color of your hair and eyes, your hobbies,
and your favorite food. Write a separate statement for
each item on the list.

39

Solutions

40

Project #1

10 CLS
20 PRINT "Nevermore"
30 SOUND 100, 10
40 GOTO 10

Use the Fn-Break EJ - (Break) keys to stop the
program.

Project #2: (Since we didn't know your name, we
wrote about a special little person.)

5 REM Special Little Person
10 PRINT "Name: Sarah Louise"
20 PRINT "Age: 811

30 PRINT "Hair: Dark Brown"
40 PRINT "Eyes: Light Brown"
50 PRINT "Hobby: Dodging Piano Practice"
60 PRINT "Favorite Food: Crispy Fried Anything"
70 END

--
--
--
-
-
--
-
--

--

Chapter Review
Here's what you learned in Lessons 1 and 2:

• You can use the PRINT statement to print a string
(letters, numbers, or spaces between quote marks).

• The BEEP statement makes a beeping sound for
1/4 second.

• The END statement tell the computer that this is the
last line of the program.

• The CLS statement clears the screen.

• The NEW command clears your program from the
computer's memory.

• The SOUND statement gives you a tone. You can
make this tone high or low, long or short. (More
about this in the next chapter.)

• You use a colon to join two commands or
statements in the same line.

• When you write a statement without a line number,
the computer does it right away (when you press
Enter). When you add line numbers, you RUN the
program by typing RUN or by pressing Fn, then F2.

• You can list a program from memory only if it has
numbered lines by typing LIST or by pressing Fn,
then Fl.

• You can edit a program by moving your curspr and
making corrections. The EDIT command prints the
line you want to correct.

41

• A semicolon prints strings together. A comma
separates strings into print zones.

• The GOTO statement makes the computer repeat a

-
program from the line you want. You jump out of ,-
this "endless loop" by pressing Fn, then Break (B). -

Taking a Break? -
Leaving the computer on while you take a break is quite -
all right. However, if you turn it off and need to restart
it, use the startup procedure from the "Introduction." -

-
,....
,....

-

-
-

42
""""'

-

-

--
-

Chapter 2: Programs That Count

About This Chapter

In this chapter, you will learn a few new statements that
allow you to pack more fun and power into your
programs. Remember, you're still in charge. So what
ever happens, keep that smile of confidence and success
on your face.

In Lesson 3, you will learn to:

• Use the PRINT statement with numbers.

• Give values to numeric variables in a program.

• Use the INPUT statement with numeric variables.

• Use the PLAY statement to play a musical tune.

In Lesson 4, you will learn to:

• Use LEN, LEFT$, RIGHT$, and MID$ on strings.

• Use the INPUT statement with character variables.

• Use the READ and DATA statements to simplify
your programs.

• Invent simple games, using variables.

43

Is Your Computer Switched Off?

If the computer is off, follow the startup procedure
described in the Introduction.

Error Messages

In Chapter 2, you may see one of these error messages:

• IDegal function call

The computer cannot do what you ask. LIST your
program and check the line numbers and
statements. Then re-run the program.

• Missing operand

Your program is missing part of an instruction.

--
-
,....

LIST the program and check it over before re-trying -

44

the operation.

• Syntax error

LIST your program and check the spelling and
punctuation. Then rerun the program.

• Undeimed line number

You have referred to a line number that's not in
your program. LIST and check your program
before you rerun it.

• Type mismatch

You gave a string value instead of a numeric value,
or vice versa. LIST and check the variables and
values in your program.

-
-

-
,...

Lesson 3. The Computer Remembers

Anyone out there have trouble with math problems? If
you do, the next program may help. Watch this.

Type this one-line program (don't type any quotation
marks):

PRINT 5 + 5

Press the Enter key. There. Was that fast enough for
you? Try adding a couple of big numbers.

Without quotation marks, the PRINT statement allows
you to add, subtract, multiply, and divide numbbrs. To

45

46

multiply, use the asterisk(*); to divide, use the slash
(/). Here is a program with four separate problems.
We'll use numbered lines this time.

Use the NEW command; then type the following
program (don't forget the line numbers or to press the
Enter key at the end of each line):

5 CLS
10 PRINT 62 + 28
20 PRINT 12 - 5
30 PRINT 4 * 5
40 PRINT 25 / 5
50 END

Run the program and check the answers. (Question:
Can you print the answers in one line?)

-

Use the NEW command, then clear the screen with the
CLS statement.

Now here's a way to print both the problem and the
answer.

10 PRINT 11 4 multiplied by 5 = 11 4 * 5
20 PRINT 11 25 divided by 5 = 11 25 / 5
30 END

The computer prints the problem (between quotation
marks) and then attaches the answer. By the way, if
you type words in a PRINT statement without
quotation marks, the computer prints a zero.

Letters Equal Numbers

The computer loves to equate things. For example, let's
tell the computer that A= 42, B = 37, and C = 21 .
Then we'll ask it to add A, B, and C.

Use NEW, then CLS. Then type and run this program:

5 CLS
10 LET A= 42
20 LET B = 37
30 LET C = 21
40 PRINT A+ B + C
50 END

The answer is 100. You can use any letter from A
through Z, even whole words (no spaces) to stand for a
number. If you've got nothing to do for a while, try a
long word like "supercalifragilisticexpialidocious." No
more than 40 letters though, please.

Edit line 40 to say LET D = A + B + C. Then in line
45 tell the computer to PRINT D.

47

40 LET D =A+ B + C
45 PRINT D

The letter symbols you used are called numeric variables
because they stand for numbers. The computer
remembers the number value you give to the variables
A, B, C, and D. The variable A has the value of 42. If
you later change A's value to 103, the value of 42
disappears from the computer's memory, and the new
value becomes 103.

The INPUT statement

48

The INPUT statement tells the computer to ask you for
some information. For example, the following program
will ask you for your age and then tell it to you.

Use the NEW command. Then enter these lines:

5 CLS
10 PRINT "What is your age?"
20 INPUT A
30 PRINT "You are" A "years old."
40 END

Before you run the program, read the next few
paragraphs first . We've just done something different.

The program above is a new type of program from
those that we've been writing; this one asks you to
answer a question before the computer finishes running
the program.

Here's how it works. The INPUT statement in line 20
puts a question mark on the screen. Line 30 assigns the
age you will type into the variable "A" which is
sandwiched between the two strings in quotation marks.

~

l"""ll

-

""'"I

The key to this new type of program is the INPUT
statement; it stops the program and makes the program
wait until you give it an answer.

Let's see how it works. RUN the program with
Fn-F2 E] - (~ @j and type your age after the question
mark, then press the Enter key ~] .

What happens if you type a word instead of your age?
Try it.

You get a message saying: Redo from start followed by
the question mark. Type a number this time af tf r the
question mark. It works. The message means you typed
the wrong "type" of answer; it was looking for l
number, not a word.

49

50

If you like, rewrite the program to give a different
answer. Here's an example:

5 CLS
10 PRINT "What is your age?"
20 INPUT A
30 LET B =A+ 1
35 PRINT "Next year you will be" B "years old."
40 END

Line 30 gives a value to the variable B. When asked to
print B, the computer adds 1 to the value of A. (See
again that the program works, even though a line is
split.) Then, line 35 prints the message.

Run the program.

You can do without the PRINT statement in line 10,
because the INPUT statement can also print your
message. Edit line 10 to read like this:

10 INPUT "What is your age?";A

Run the program again. Isn't it easier to type one line
instead of two? We'll include strings with the INPUT
statement wherever possible.

When you're ready to go on, use NEW, then CLS to
clear the memory and the screen.

Your Own SOUND Track

51

52

You can use the INPUT statement and a variable to
make musical tones. Remember that a SOUND
statement needs two numbers, one for frequency (high
or low note), the other for duration (long or short
note). Let's write a program that asks for a frequency
number (between 37 and 1000), then plays the tone for
about one half-second (duration = 10). If you want to
be precise, a second equals 18.

We'll cover each line separately:

Line 5 clears the screen.

5 CLS

Line 10 prints a message asking for a frequency
number. We'll use INPUT to print the message.

10 INPUT "Give a number between 37 and 1000 "; N

This prints the message and then a question mark.
(You may use any numeric variable, of course. We've
used N for note.)

Line 20 has the SOUND statement followed by the
variable N and the small duration number, 10.

20 SOUND N, 10

Type lines 5 through 20 and RUN the program.

Now add a GOTO statement at line 30 to make the
program repeat from line 5. RUN the program for as
long as you care to. Then press Fn-Break to jump out
of the loop.

Can you add a second INPUT statement to ask for a
duration number between 1 and 50? Of course you
can! Try it yourself before going any further.

-

Here's one way to add a second INPUT statement.
Add line 15 below and edit line 20 as shown.

15 INPUT "Now another number between 1 and 50 . "; D
20 SOUND N, D
30 GOTO 5

You can make the screen easier to read by putting a
blank line or two after line 10. A PRINT statement
with nothing after it gives you a blank line. Insert line
12 with an empty PRINT statement in it.

If you like to experiment, try asking for two or three
tones in a row before playing them with SOUND
statements.

53

Quick Review

54

.. ···. ! · .. .

• • f" ••. : ·
....... ·: .. ··

' : :,-......... :~ .•. · ..
•.,. • • • • • l .·• .. :·•···· ..

/ ·.,t: ·.:•
: .·

;.·
.... ~- .. ·:

• PRINT allows you to do arithmetic by writing
statements without quotation marks.

• Numeric variables are letter symbols that stand for
numbers.

• INPUT asks for information to continue running a
program.

• SOUND requires a frequency and duration number.

-
- Your Tum

-

-
-

Project #1: Write a program that asks for three
numbers, then prints the total. Use one INPUT
statement for each number you ask for, and a different
numeric variable for each.

Project #2: Write a program that asks for the total
grocery bill for each of four weeks. Then have the
computer calculate the total grocery expenses for a
month.

Project #3: Write a program that fills the screen with
numbers from 1 to 1000 and beyond. (Set the value of
your variable to 1, then increase it by 1. Use a GOTO
statement to repeat and a semicolon to fill the screen.)

55

Solutions

56

Project #1

5 REM Project #1
10 CLS
20 INPUT "Give me the first number ";A
30 INPUT "Give me the second number ";B
40 INPUT "Give me the third number ";C
50 PRINT A"+" B "+" C "=" A+B+C
60 END

Project #2

1 REM Monthly Grocery Expenses
10 CLS
20 INPUT "Grocery expenses: first week ";A
30 INPUT "Grocery expenses: second week ";B
40 INPUT "Grocery expenses: third week ";C
50 INPUT "Grocery expenses: fourth week ";D
60 PRINT "Total for the month =" A+B+C+D "dollars"
70 END

Project #3

1 REM Columns of Numbers
5 CLS
10 A= 1
20 PRINT A;
30 A= A+ 1
40 GOTO 20
50 END

Remember to use Fn-Break to stop the program.

-

-

Lesson 4. A Variety of Variables

You have seen how easy numeric variables are to use.
Now let's have fun with another kind of variable, the
string variable. We'll measure the string variable, chop
it up, and put it together again. We also will learn a way
to "loop" through a program with the FOR and NEXT
statements.

In Lesson 4, you will learn to:

• Use string variables in a program to make it asy to
print strings without typing them.

• Use the LEN, LEFT$, RIGHT$, and MID$
functions to play with strings.

57

58

• Use the READ and DATA statements with any set
of variables.

• Use the FOR and NEXT statements to make
program loop back to run a certain part of itself
again.

--
,.,..

-
-
,,,_

,.....

-

String Variables
Okay, let's get one thing straight. Anyone who still
thinks we are talking about a ball of string or a yoyo
gets to sit on a cactus patch until dawn. No, no. A
string is a group of letters, or numbers, or keyboard
symbols that are always enclosed in quotation marks.

Here is a short program with string variables. You'll
know a string variable by the dollar sign at the end.
(The LET statement is optional, so we left it out this
time.)

Use the NEW command. Then type:

59

60

5 CLS
10 A$ = "Sunday"
20 B$ = "Monday"
30 C$ = "Tuesday"
40 D$ = "Wednesday"
50 E$ = "Thursday"
60 F$ = "Friday"
70 G$ = "Saturday"
80 PRINT A$, B$, C$, D$, E$, F$, G$

We put each word in quotes so the computer will print
each word as it is. Each word, like "Sunday," is a string
value. Now RUN the program and see how the words
are printed in 2 columns (5 columns on an 80-column
screen).

Experiment a little. Replace the commas in line 80 with
semicolons and RUN the program.

String variables can stand for more than one word, too,
as in the next program. Type NEW, then press Enter to
clear the old program from the computer's memory.

Enter this new program:

5 CLS
10 ABC$= "What did the dirt say when it rained?"
20 XYZ$ = "If this keeps up, my name will be mud."
30 PRINT ABC$, XYZ$

RUN the program. Do you see how you can assign
entire sentences to string variables?

Also, did you notice the string variables are three letters
long. You can make the variable names as descriptive
as you want. You could replace ABC$ and XYZ$ with
different string variables like JOKE$ and
PUNCHLINE$, or whatever word with a"$" at the
end. However, avoid using any of the reserved words
listed in Appendix C of this book.

You can use the INPUT statement to play around with
string variables. For instance, let's say "Aloha" to
somebody.

Use the NEW command, then enter this program:

5 CLS
10 INPUT "What is your name, Oh honorable one ";N$
20 PRINT "Aloha, most honorable" N$
30 END

RUN this program for yourself before trying it out on
your friends. Make sure there is a space betweer the
"e" in "honorable" in line 20 and the quotation mark.

If you like, add some more INPUT statements t© ask
for a person's favorite color, or best birthday present,
or the scariest thing.

61

Four String Functions (or: A String Quartet)

62

Now that you know a little about strings, let's look at
some fun things to do with them, namely, chop them
up.

First of all, there is something that you may have
figured out for yourself: strings can be joined by using a
plus sign.

Use the NEW command, then enter this example
without a line number:

PRINT "The " + "Mad " + "Hatter"

That's easy enough. (We left a space after each word
and before the quotation mark so the words wouldn't
be squeezed together.) Now for something a little
trickier.

The LEN Function

You can have the computer count the characters in a
string by using the LEN function. (LEN is short for
"length.")

Use the CLS command, type this program, and RUN it:

10 W$ = "alligator"
20 PRINT LEN(W$)

Let's tum this into a game. Let's write a program that
asks for a string then lets the computer count the
letters, numbers, and spaces in the string. Use NEW
and CLS, then enter this program:

10 PRINT "You type in any string and"
20 PRINT "I'll tell you how long it is."
30 PRINT
40 INPUT A$
50 S = LEN(A$)
60 PRINT "Your string is "; A$
70 PRINT "and has ";S;"characters in it."
80 END

Make sure there is a blank space after "is" in line 60.
RUN the program and type in your first name. If you
type your first and last name, the space between the
two names counts as a character, too.

Try it out on a friend. Change the wording, ma~be. Make
line 80 say GOTO 10, if you like, but remember to use
Fn-Break when you're finished.

63

64

The LEFT$ Function

Obviously, the computer can spot each character in a
string. If so, it could probably separate them as well.
Hmmm! Is that really possible?

Use the NEW command, then enter and RUN this
program:

10 W$ = "alligator"
20 PRINT LEFT$(W$,4)

Aha! To snip off the left portion of a string, we use
LEFT$. (W$,4) tells the computer to take the string
called W$, then snip off and print the first four
characters from the left ("alli"). The rest of the string
vanishes.

Try using LEFT$ to break up big, difficult words into
their parts. Or use this long word:
Turtlesareslowbutsure.

The RIGHT$ Function

As you might expect, RIGHT$ allows you to snip and
print any right-hand portion of a string. Here's how you
do it:

10 W$ = "alligator"
20 PRINT RIGHT$(W$,5)

The computer picks off the five rightmost letters
("gator") and prints them. We say (in our fancy
computer way) that the substring "gator" was printed.

Once again, try using RIGHT$ on a long word or a row
of numbers or the 26 letters of the alphabet.

Put some zip into your program by using FOR and
NEXT to snip off one or two letters at a time. Here's
an example:

Use the NEW command, then enter and RUN this
program:

10 W$ = "12345678901234567890"
20 FORK= 1 TO 20

Line 20 tells the computer to do something 20 times,
starting from one. Do what? We'll show you an
example of how you can snip off letters from both ends
of the word at the same time.

First, let's assign a string variable to the "numbe;r"
string, W$, and a numeric variable to the "snipping"
number, K, then assign the whole thing to two variable
names, L$ and R$.

30 L$ = LEFT$(W$,K) : R$ = RIGHT$(W$,K)

Now it's time to add a PRINT and SOUND statement:

40 PRINT
50 PRINT K;L$
60 PRINT K;R$
70 SOUND 440,1: SOUND 520,1
80 -------

Question: What should line 80 be?

Answer: 80 NEXT K

RUN the program. Can you see from the last few lines
on the screen how the first line adds a number on the
right, and the second line adds a number on the left,
until they both have the same last number.

65

And, for those of you who like starting from the
middle, BASIC proudly presents: MID$.

The MID$ Function

MID$ lets you snip and print the middle or inside
portions of a string. The MID$ function tells the
computer three things: which string, where to start
snipping, and how many characters to snip.

Use the NEW and CLS commands, then enter and
RUN this program:

10 W$ = "alliga t or"
20 PRINT MID$(W$,4,3)

The letters "iga" are printed (cute name for a space
creature, huh?) . The computer starts at the fourth
character and snips three characters.

There! You are now an expert in computer karate! Use
it well!

READ and DATA Statements

66

To continue with variables, sometimes you may want
the computer to read many items from a list and print
them in order. You can do this by assigning a list of
items to a variable.

The READ and DAT A statements help the computer
read items from a list, one at a time. Let's look at an
easy example.

We're going to ask the computer to read the numbers
100, 200, and 300 from a data list and then print them.

Now, since these are numbers, we must use numeric
variables (not string variables). Type NEW and enter
this program:

5 CLS
10 READ H
20 PRINT H
30 GOTO 10
40 DATA 100, 200, 300

Line 10 tells the computer to look for a number in line
40 because READ looks for DAT A; they're a couple.
Line 20 says: "Print that number." At line 30, rhe
computer begins repeating this operation and reads the
next number.

RUN this program. Once the three numbers are
printed in order, the computer tells you it is Out of
DATA in 10. READ wanted more numbers from
DATA but couldn't get them. Got it?

We can assign a variable to each of the three numbers
and add them up. In that case, we won't need a GOTO
statement.

Use the NEW command, then enter this program:

5 CLS
10 READ H, I , J
20 PRINT H +I+ J
30 DATA 100, 200, 300

Run it. Now, let's use string variables with the READ
and DATA statements. Clear your program from
memory and enter this one:

5 CLS
10 READ G$
20 PRINT G$
30 GOTO 10
40 DATA Papa Bear, Mama Bear, Baby Bear

67

68

Run it. First, the computer assigns the value "Papa
Bear" to the variable G$. The second time, it assigns
"Mama Bear" to G$, the third time, "Baby Bear."

You can place the DAT A statement anywhere in the
program. The important thing to remember is that your
items will be printed in order. If you write more than
one DAT A statement, the computer will begin with the
lowest line number, line 30 before line 40 for example.
Inside each DATA statement, the computer will go
from left to right.

Note that the three strings in line 40 do not have
quotation marks. You do not need quotation marks
around strings in a DA TA statement, unless a string
includes a comma, semicolon, or a leading or trailing
space.

Amuse yourself by dreaming up interesting uses for
what you have learned so far. We'll get you started
with this little show business gag.

Use the NEW command, then enter this program:

I"""!

5 CLS
10 INPUT "What is your name" ; N$
15 PRINT
20 PRINT "PRESENTING ... 11

30 SOUND 440,1:SOUND 520,1:SOUND 560,1
40 PRINT
50 PRINT "THE COMPUTER CAPERS OF"
60 SOUND 440,1:SOUND 880,1:SOUND 780,2
70 PRINT
80 PRINT "THE INCREDIBLE ... 11

90 PRINT
100 PRINT N$;
110 SOUND 44,1:SOUND 520,1:SOUND 560,1

Run this program for a chuckle. If you decide to add
line 120 to say GOTO 100, remember to use Fn-Break
to jump out.

69

FOR and NEXT Statements

70

While we are having fun with variables, let's quickly
look at another pair of statements that make use of
numeric variables. The FOR and NEXT statements tell
the computer to follow commands while counting
through a series of numbers.

Here's a simple example. We'll make the computer
print numbers from 1 to 10 by using the FOR and
NEXT statements.

Use the NEW command, then enter and run this
program.

5 CLS
10 FOR N = 1 TO 10
20 PRINT N
30 NEXT N

Run it. In line 10, N is a numeric variable that stands
for a series of numbers from 1 through 10. The first
time through, the computer reaches line 20 and prints 1.
At line 30, the computer gives N the next higher
number, then goes back to line 20 and prints 2. This is
repeated until the computer counts past 10. Then it
stops printing.

You can use a FOR/NEXT loop to slow down or speed
up a part of any program. For example, see how slowly
the following program puts a word on the screen.

Use the NEW command, then enter and run this
program:

5 CLS
10 INPUT "Where were you born" W$
20 PRINT W$;
30 FOR Y = 1 TO 2500
40 NEXT Y
50 GOTO 20

Remember to stop the loop by Fn-Break.

To get a better idea of what we mean about slowing
down or speeding up the timing of a program, speed up
the program by changing 2500 to 250, then to 25, and
run the program. Try it.

Get the idea? Good! We'll say more about the
FOR/NEXT loop in the next chapter. For now, think
about it as a delay tactic in a program. Try it out with
sound effects and see what it does.

71

72

OK. Hold it. We've seen a lot of these functions.
Before we end the chapter, a word about what a
function is.

1. A function (like RIGHT$) is not a command (like
PRINT). It cannot stand alone or begin a
statement.

10 PRINT RIGHT$(W$,3)
10 RIGHT$(W$,3)

is correct.
is not correct.

2. A function can hold a value, like a variable does. This
value can be put in the computer's memory and
printed later.

LEN(W$) is a function. It tells the computer to
count and remember the length of a string called
W$.

3. A function is immediately followed by parentheses
(). Inside these () are "mini-instructions" for the
computer. For example:

LEN function has one instruction:
LEFT$ function has two:
MID$ function has three:

LEN(W$)
LEFT$(W$,4)
MID$(W$, 1,5)

As you can see, the mini-instructions in parentheses

,..

I"""'

() can be either strings or numbers, or both. ,-

,.....

-
....

-

-

--
-
-
...
....

-

-

Your Tum

Project #1: Write a program that asks for the n?Jlle of
a month, asks how many letters to abbreviate in the
name of the month, then prints a message saying how
many letters the month will be abbreviated, the name of
the month to be abbreviated, and the abbreviation of
the month.

Project #2: When you finish this book, you may want
to throw a grand party. Use the READ and DATA
statements to print a short list of your guests. 1

'

Project #3: Play any series of musical tones, usJng the
READ and DATA statements. Print a title or m~ssage
for each tone. Use the FOR/NEXT statements to
make a delay loop.

73

Solutions

74

Project #1

1 REM Abbreviating the month
5 CLS
10 INPUT "Type the name of a month. ";M$
20 PRINT
30 INPUT "How many abbreviated letters";N
40 PRINT
50 L$ = LEFT$(M$,N)
60 PRINT "The ";N;"-letter abbreviation"
70 PRINT "of ";M$; "is ";L$
80 END

Project #2

1 REM Birthday Party Guests
5 CLS
10 PRINT "My party guests will be:"
20 FOR I=l TO 5
30 READ G$
40 PRINT G$
50 NEXT I
60 DATA Barb, Heidi, Marge, Donna, Teresa
70 END

Project #3

1 REM Musical Tones
5 CLS
10 READ T,D,N$
20 PRINT N$
30 SOUND T,D
40 FOR I=l TO 1000
50 NEXT I
60 GOTO 10
70 DATA 200,10,Low,1400,10,High,400,20,Long,900,5,Short
80 END

An Out of data message occurs at the end of the Project
#2 example. See if you can figure out how to add a
FOR NEXT loop to the program to eliminate the Out
of data message.

-
- Chapter Review
.- Here's what we covered in Lessons 3 and 4:

- • Without quotation marks, the PRINT statement

-

-

--
-
-

allows you to calculate with numbers.

• For the computer,

+ means add numbers.

- means subtract.

* means multiply.

/ means divide.

• Numeric variables stand for numbers. For example,
X = 10. The equals sign means "in place of."

• String variables stand for words (or symbols or
numbers) that you put between quotation marks.
For example, A$= "Wizard of Oz."

• The LEN measures the length of a string. LEFT$,
RIGHT$, and MID$ functions chop off diff,rent
parts of a string.

• How to distinguish functions from commands and
statements by what they do in a program.

• The INPUT statement tells the computer to ask for
information and to store the information in a
numeric or string variable.

• The READ and DATA statements tell the computer
to read items from a list. The READ statement must
come before the PRINT statement line. The DATA
statement can be anywhere in the program.

75

~

Notes: ,...
~

~

~

~

~

~

?-'!

~

1-

~

~

~

r-:

~

f-

~

,_

~

'I"--

~

~

~

76 ?-'!

Chapter 3: Branches and Loops

About This Chapter

Nobody can call you a mere beginner on the computer
any more. You have learned quite a few commands and
statements in BASIC as well as some practical and
amusing ways in which to apply them. By now, you are
probably breathing like a hungry dragon, saying:
"More, more, I want to learn more!" So we'll step
aside and let you go roaring off into Chapter 3.

77

There are two lessons in this chapter.

In Lesson 5, you learn to:

• Print messages in different parts of the screen.

• Use the FOR and NEXT statements to count and to
repeat instructions to the computer.

• Mix sound effects with background colors by using
the COLOR statement.

In Lesson 6, you learn to:

• Use the IF and THEN statements to help the
computer choose between two alternatives.

• Use different symbols to set clear conditions for
such a choice.

• Make smaller loops in your programs by using the
GOSUB and RETURN statements.

Error Messages

78

Here is a list of possible error messages you may
encounter in Chapter 3. If you get one, check through
the program again. If that doesn't work, just type the
program over again.

• FOR without NEXT or NEXT without FOR

You typed a FOR statement without a matching
NEXT statement, or vice versa. LIST and correct
your program before you rerun it.

,....

,...

--
-

--

-

--

• megal function call

The computer cannot do what you ask. LIST four
program and check line numbers, commands, '1nd
statements. Correct the program, then rerun it.

I

• Mis.sing operand

Your program is missing an instruction. LIST and
correct the program before you rerun it.

• Syntax error

Correct the spelling and punctuation in your
program, then rerun it.

• Undefined line number

Check the line numbers in your program, then rerun
it.

79

Jlllloi!
I

Notes: r-
~

..-.i
I

~

r-
f--

~

r-
r--

--
~

r-:
,-

r-
r--

~·

~

~

r-,

r'-

i-

r--

~
I

80 r

Lesson 5. The Great Screen Escapade

Printing Anywhere On the Screen
So far, everytime you've used a PRINT statement, the
computer has been printing things on the left side of
your screen. That gets a bit boring after awhile, don't
you agree? Well, how would you like to print
something in the center of your 40-column screen?

Use NEW, then enter this short program:

5 CLS
10 LOCATE 12, 16
20 PRINT "Bullseye"

81

82

Now RUN the program. Aha, it worked! As you may
have guessed, the secret is in line 10; we located the
word "bullseye" at row 12 and column 16. Picture the
screen with 25 rows running left and right across the
screen like benches in a church, and 40 columns
running top to bottom like cans stacked on supermarket
shelves.

The computer can pick a spot anywhere on the screen
"grid" if you tell it which row and column you want. You
need two numbers to describe any position on the
screen. For example:

Position 1, 1 is the top left-hand corner of the screen.
This is also called the home position.

Position 25, 40 is the bottom right-hand corner of the
screen.

Question: Can you guess the numbers for the bottom
left-hand and top right-hand corners of the screen?

Answer: 25, 1 and 1, 40

~

-

.-

i--

-

1,1 . •

25, 1 • ------------·- • 25,40

Note: The lowest line on the screen you can use is
line 24, because the computer needs line 25 for
displaying the function keys that we see when we
start IBM PC Jr BASIC.

Now, to get back to our little program. The LOCATE
statement in line 10 told the computer to start printing
at position (12, 16) which is roughly the mid-point on
the 40-column screen for an eight letter word.

Use the LOCATE statement to print your name or a
number in different positions. If you use a long string
or many numbers, choose your starting position
carefully, or there won't be enough room. (Hint:
Divide the number of letters in the word by two and
subtract that number from 20.)

83

Be a Math Whiz with FOR and NEXT

84

In Lesson 4, you used FOR and NEXT to delay a part
of your program. If you don't remember how, go back
and refresh your memory. The FOR and NEXT
statements make the computer count through a series of
numbers. (You would have to use a PRINT statement,
for example, to print the numbers.) Here are some
correct examples:

FOR B = 1 TO 1000 : NEXT B
FOR X = 13 TO 73 : NEXT X
FOR W = 2.4 TO 7.8 : NEXT W

As you can see, it is also correct to pair FOR and
NEXT on the same line with a colon in between. This
can save you space.

Just for review, let's make the computer print CHEESE
four times.

Use the NEW command, then run this program:

5 CLS
10 FORK= 1 TO 4
20 PRINT "CHEESE"
30 NEXT K
40 END

......

,,....

Very good.

Now watch this. You say you want to see the
multiplication table for the number 12? All right, here
goes!

Use the NEW command, then enter this program:

5 CLS
10 FORM= 1 TO 10
20 PRINT "Twelve times" M 11 = 11 12 * M
30 NEXT M

The computer prints line 20 ten times with a different
answer and then stops. You might want to use your
own numbers to get a little practice.

85

86

So far, the computer has been counting by ones. By
adding a STEP command after the FOR statement, you
can make it count differently. For example, STEP 2
makes it count by twos, STEP 3 by threes, and so on.

Here's an example:

5 CLS
10 FORD 2 TO 24 STEP 2
20 PRINT D
30 NEXT D

Of course, the computer can count backwards as well.
STEP -2 makes it count down by twos, STEP -3 by
threes, and so on.

Doesn't this make all sorts of ideas pop up in your
head? If it doesn't, it will in a moment. First, change
line 10 in the previous program to line 10 below and
run it:

,....

10 FOR O = 24 TO 2 STEP -2

So much for that. We now can do something
interesting with the STEP command. For example, you
can make the computer slide up a range of tones and
then down again. Like an elevator, perhaps?

Use NEW and CLS, then enter this program:

5 REM "Elevator Ride"
10 FOR U = 50 TO 500 STEP 5
20 PRINT "Going up .. . "
30 SOUND U, 1
40 NEXT U
50 FOR O = 500 TO 50 STEP -5
60 PRINT "Coming down ... "
70 SOUND 0, 1
80 NEXT 0
90 ENO

87

After you RUN this program once or twice, change the
STEP numbers to suit your fancy.

A Spot of Color

88

We can't wait to show you how your computer handles
colors. For now, just as a taste, let's use the COLOR
statement to liven up your changing backgrounds.

Use the NEW command, then enter the following
statement,

SCREEN 1,0

When you press Enter, your computer gets into the
graphics mode. (Before this happened, it was in text

mode.) You will learn more about the graphics mode in
another chapter. All you need to know for now is that
you can use the COLOR statement to select one of 16
background colors.

Here is a list of these colors:

0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 White 15 Bright White

Here is a COLOR statement that changes the
background to blue (remember that colors vary
depending on your display device) . Enter the statement:

COLOR 1

Try this:

COLOR 4

Amuse yourself for awhile by switching between
background colors.

89

90

Now go back into text mode by typing the following:

SCREEN 0,1

In text mode you have a choice of colors. For your
background, you can select colors Oto 7. For your
foreground, you can select from among all 16 colors,
and the same holds true for the border around the
screen.

The following statement:

5 CLS
10 COLOR 14, 1, 4

produces a yellow foreground (the letters you type), a
blue background (area surrounding the letters), and a
red border around the screen. Try it.

Become familiar with the choices of color in text mode
and use them to liven up your screen printing. Play with
these three numbers in the COLOR statement. See
what we mean by foreground and background and
border. See what different colors look like on your
color screen.

Fun, huh? Looks like you're right on target.

91

Your Turn

92

Project #1: Write a program that asks for a tone
frequency and a background color from O to 7. Then
have the computer sound the tone against the color
background that is selected. You can include a question
for a foreground color as well.

Project #2: Write the multiplication table for the
number 8, from 8 times 1, to 8 times 10.

,,_

~

Solutions

Project #1

1 REM Colorful Music
10 SCREEN 1
20 CLS
30 INPUT "Enter tone frequency ";F
40 INPUT "Enter background color (0 to 7) "; B
45 INPUT "Enter foreground color (0 to 15) "; C
50 SOUND F, 18
60 COLOR C,B
70 END

Project #2

5 CLS
10 FORM= 1 TO 10
20 PRINT "Eight times" M "=" 8*M
30 NEXT M

93

Lesson 6. The Computer Decides

A Fork in the Road

94

In handling information, you may want the computer to
take one of two paths. The computer follows the
signposts in your program. You help the computer take
the right path by using the IF /THEN statement in your
programs. Each IF /THEN statement acts like a
signpost that tells the computer which path to take.

Here's an example of two paths in a program. Use the
NEW command, then enter this program:

5 REM Good Taste in Food
10 INPUT "Do you like peas (y or n)"; A$
20 IF A$= "y" THEN PRINT "So do I."
30 IF A$= "n" THEN PRINT "Me neither."

Run this program.

Do you see what is happening in lines 20 and 30? The
computer checks your answer.

If you answer "y" for yes, it prints one message; if "n"
for no, then it prints a different message.

After line 10, the program " branches out" in one of
two paths.

95

Setting A Clear Path

96

To help the computer take the right path, you must set
down clear conditions. In BASIC, we set clear
conditions by using certain signs (like the = sign you
just used).

The signs that the computer understands are:

SIGN MEANING EXAMPLE
= Equal to A$ = YES ;X = 10
< Less than X<2
> Greater than Y>5
<> Not equal to B$ <> "YES"
<= Less than or equal to X<= 25
>= Greater than or

equal to X >= 100

Let's write a simple program that uses some of these
signs.

We'll ask the computer to print a series of numbers
from 1 to 5 and then stop. Instead of using FOR and
NEXT, we'll use IF/THEN.

Use the NEW command, then enter this program.
Don't RUN it until you finish entering line 60.

5 CLS
10 N = 1
20 PRINT N
30 N = N + I

Got it so far? Line 30 increases the value in variable N
by one. We now need a line that tells the computer to
stop at 5. Hmmm! Let's try the sign that means
greater than or equal to(>=).

40 IF N >= 6 THEN 60

-

""""

When counting goes past five, the computer stops
printing because N, which becomes 6, would be equal
to 6. We then want the computer to go to line 60
(which we haven't written yet).

Meanwhile, we need a GOTO statement before line 60
(whatever that will be).

50 GOTO 20

Aha! The computer will print 1, 2, 3, 4, 5, and then
make a mad dash for line 60. What should we say in
line 60? How about:

60 PRINT "Counting Made Easy, Too!"

There now. RUN the program and see if it works. Try
another set of numbers. Change "6" in line 40 to "66"
or "366" and watch the numbers on the screen.

Better still, change the program to make the computer
count backwards from a high number to a low one.
Then use the < = sign (less than or equal to) in the IF
statement.

Is the hungry dragon panting for more? Good. Here
goes.

97

98

Let's introduce another famous boomerang couple,
GOSUB and RETURN! When you want a program to
branch to a particular line, do a few things there, and
then boomerang back, you use GO SUB and RETURN.
GOSUB means "Go to the Subroutine and do a few
things there, then come back" to where you branched
off and do more things. You might say it's like a
detour.

In other words, GOTO has no way to directly return
you where you left from. With GOTO, if line 100 says
to go back to line 10, line 20 through 90 must be run
again. With GOSUB and RETURN, if line 100 says
GOSUB to 10, line 20 can say RETURN and the
program will continue to run after line 100.

Let's type an example using a well-known camp-fire
song to see what we mean.

Use NEW, then enter the following lines:

1 REM First Verse
5 CLS
10 PRINT "Old MacDonald had a farm"
15 GOSUB 65
20 PRINT "And on his farm he had some ducks"
25 GOSUB 65
30 PRINT "With a quack, quack here"
35 PRINT "And a quack, quack there"
40 PRINT "Here a quack, there a quack"
45 PRINT "Everywhere a quack, quack."
50 PRINT "Old MacDonald had a farm"
55 GOSUB 65
60 END
65 PRINT "Ee-ay-ee-ay-oh."
70 RETURN

RUN the program, then read our explanation below and
RUN it again.

99

How the Subroutine Works

100

Follow along carefully. At line 15, the program skips to
line 65, prints the refrain, then goes back to line 20. At
line 25, the same thing happens. The program returns
to line 30 and goes all the way down to line 55. Then it
branches again to 65 and returns to line 60 where it
ends. The main program is from lines 5 to 60. The
little subroutine is in lines 65 and 70.

Subroutines are very important and useful to people
who write programs. Among many other uses, they are
of ten used to hold math formulas (when repeated
calculations have to be done). You also can use a
GOSUB to produce a delay or produce effects with
sound and colors in a repeating pattern.

Probably the biggest advantage to using a GOSUB and
RETURN is that you may save time and some program
space. Writing the fewest amount of program lines,
which therefore saves time, should be your objective
when you write your program. Writing the fewest
number of lines helps you in two ways: one, the
program runs faster because the computer does not
have to read so many lines; and two, you need less
memory to run your program which you may need if
you write a large program.

Enough of this "loopy" lesson. After completing the
Projects and reading the Chapter Review, you will
begin the most entertaining chapter in the book,
Chapter Four. Chapter Four, which is also the last
chapter, has the longest but the most fun examples.
You'll draw and paint circles and boxes, and compose
songs with harmonies and countermelodies. You may
even want to combine the two.

~

""""

Before you begin, though, we suggest you take a break.
We want you to be all refreshed and ready to learn
more about programming your IBM PCjr.

101

Your Tum

102

Project #1: Write a program that asks for a number,
then plays a musical tone. Keep the range of numbers
between 50 and 1500. Also try adding a request for a
number that specifies the duration of the tone.

Project #2 (Advanced project): Write a program in
which Player #1 is asked to give a letter of the alphabet
and Player #2 must guess the letter. Include a message
to say "Too high, try again" and "Too low, try again."
If the letter is guessed correctly, print a message saying
"Hooray! You did it!" followed by a musical note.

~

,,_

,.....

"'"""
,.....

-

Solution

Project #1

1 REM Number Game
10 CLS
20 INPUT "Enter a number between 50 and 1500 ";N
30 INPUT "Enter the duration of the tone ";D
40 SOUND N,D
50 END

Project #1

5 CLS
10 PRINT "Pl ayer #1, type any letter between a and z."
20 PRINT
30 INPUT "Your letter";L$
40 CLS
50 INPUT "Player #2, what's your guess";G$
60 IF G$ > L$ THEN PRINT "Too high, try again"
70 IF G$ < L$ THEN PRINT "Too low, try again"
80 IF G$ = L$ THEN GOTO 100
90 GOTO 50
100 PRINT
110 PRINT "Hooray! You did it!"
120 FOR M=50 TO 1000 STEP 20
130 SOUND M,1
140 NEXT M
150 END

103

Chapter Review

104

Quick, before you call your friends about your exciting
discoveries, think awhile about what you learned in
Chapter 3. You learned how to:

• Use the LOCATE statement to print a message in
different positions of the screen.

• Use the FOR and NEXT statements to count and to
repeat instructions to the computer.

• Change the screen background to one of eight
colors by using the COLOR statement in text mode.

• Use the IF and THEN statements to help the
computer choose between alternatives.

• Make smaller loops in your programs by using the
GOSUB and RETURN statements.

-
,....,

-
....

-
-
-
...,

......

-

Chapter 4: Games and Show Business

About This Chapter

Chapter 4 has something for everyone. It shows how
you can write and play songs on the computer. It gives
you a chance to do some drawing on the screen. And,
of course, you'll play some games with a new twist.

In Lesson 7, you will learn how to:

• Write and play a simple, well-known melody on the
computer.

Note: Lesson 7 does not try to teach the principles of
music, only a few of the ways to produce
computer-generated music .

In Lesson 8, you will learn how to:

• Draw figures on the screen in the graphics mode .

.- Error Messages
,-. The error messages you may see in Chapter 4 are the

same as those we listed at the start of Chapter 3. If you
- see an unexpected error message, ref er to Appendix A

in the BASIC Reference book.

-
......

-- 105

Lesson 7. Music

106

MUSIC
LESSONS

This lesson is a reward for your hard work. You are
going to be a star in your own show. (The computer
will be your secret partner, or your producer, if you
like.) You will play sweet music melodies that charm
the crowds and bring the house down with wild
applause.

You will use the sensational PLAY statement to write
and perform a few easy tunes. (Something some of you
never dreamed you would do, right?)

Play Maestro Play

1 i !.r_
, ;: , 1/1'!11''=!!:-

You say you don't know the first thing about music?
Well, read on and you might just amaze yourself.

Music is made of notes. There are seven notes, from A
to G, no more. The computer knows these notes. Let's
test it:

PLAY "CD EFG AB"

After typing the line, press the Enter key to hear the
seven notes. Run it a few times. Sounds good, huh?

The sounds go up like rungs in a ladder, a little higher
each time.

107

108

On the piano keyboard, these notes look like this:

- ~ ~

I I
CDEFGAB CDEFGAB

You see seven white keys and five black keys. Going
from left to right, the black keys stand for: C sharp, D
sharp, F sharp, G sharp, and A sharp. Going from right
to left, these same black keys stand for: B flat, A flat,
G flat, E flat, and D flat. Simple? Maybe. Let's go on.

On the computer, the sign for sharp is either# or +.
The sign for flat is a minus sign (-). From left to right,
let's now play the notes associated with the white and
black keys. Look at our keyboard picture while the
program runs.

PLAY "CC# DD# E FF# G G# A A# B"

Run it. Now play the same notes in the same order, but
use flat signs instead. Type:

PLAY "CD-DE-EFG-GA- AB- B"

One more thing. A note can be timed to the beat you
want. The first line of the song "Yankee Doodle" goes
like this. Type the line and RUN it:

PLAY "C CD EC ED"

Something wrong? Make the last note D2 and run it
again.

Aha! D2 played twice as long as D. Hmmmm!

Just out of curiosity, try these timings for the following
notes and compare how they sound. Let's forget about
"Yankee Doodle" for now. We'll come back to it.

10 PLAY "C2 D2 E2 F2 G2"
20 PLAY "Cl D1 El Fl Gl"
30 PLAY "C8 D8 E8 F8 G8"
40 PLAY "C16 D16 E16 F16 G16"

Run the musical program a couple of times and try to
pick out the different notes and their timing.

Now add these lines:

5 PLAY "C4 D4 E4 F4 G4"
6 PLAY "CD EFG"

Lines 5 and 6 sound exactly the same. The computer
plays any note without a number to the beat or
"timing" of 4, unless you put in a different number. Cl
is twice as long as C2, and C2 is twice as long as C4.
C4 is twice as long as C8, and so on. Numbering of
notes will make more sense as you experiment with it.
Let's try one.

109

110

Before we can listen to the music, we have to write the
notes and lyrics in a program. We'll practice with
another familiar tune.

.: ,-.:'.

*

Use the NEW command, then enter this program:

5 REM "Twinkle, twinkle, little star"
10 PLAY "C CG GA A G2"
15 REM "How I wonder what you are."
20 PLAY "F FEED D C2"
25 REM "Up above the world so high"
30 PLAY "G G FF EE D2"
35 REM "Like a diamond in the sky."
40 PLAY "G G FF EE D2"
45 REM "Twinkle, twinkle, little star"
50 PLAY "C CG GA A G2"
55 REM "How I wonder what you are."
60 PLAY"--------------"

Line 60 is yours to fill . Should be a piece of cake by
now.

Answer: Line 60 is the same as line 20.

The curtain opens. Play your first song. RUN the
program, close your eyes, and smile from ear to ear.
(Eat your heart out, Beethoven!)

You can play it again, uh, Sam! Add GOTO 10 in line
70, if you like. Remember to use Fn-Break to stop the
song.

Once Again, With Feeling
You can change the "flow" of any computer-generated
song on the IBM PCjr by adding one of the following
after a PLAY statement:

PLAY "ML"

PLAY "MS"

PLAY "MN"

means music legato. ML will sound the
notes smoothly, with two breaks
between the notes.

means music staccato. MS will sound
each note distinctly for three-fourths
of its duration. You will hear a slight
break between notes.

means music normal. MN will sound
each note for seven-eighths of its
duration. Unless you specify
otherwise, the computer will play
notes in music normal.

Add line 8 below to "Twinkle, twinkle, little star" :

8 PLAY "ML"

111

Rerun the program and listen carefully for the change.

Then replace "ML" in line 8 with "MS" and run the
program. Finally, replace "MS" with "MN" and hear
what music normal sounds like.

To make listening even more interesting, a piece of
music may be played in more than one style. Depending
on the melody you're working with, you may wish to
switch from "MN" to "ML" and back again, or from
"ML" to "MS" and then to "MN" again.

Fast or Slow

112

You can play a song faster or slower. We call this
"varying the tempo." By itself, the computer plays any
song at T120, or 120 C4 notes per minute, or 60 C2
notes per minute. You can change the value of T,
provided you don't go below 32 or above 255.

We'll repeat this information for clarity's sake.

Standard timing for music is T120. You can change this
tempo number to play a song fast or slow. T60 would
be half the standard tempo. T240 would be double
time.

The slowest tempo on the IBM PC Jr is T32 and the
fastest is T25 5.

Add line 8 to your program:

8 PLAY "T60"

RUN the program. The song plays at half the tempo.
Try changing T to 150, or 80, or 240 and hear the
difference.

- High or Low
Finally, to play lower C's or higher B's, you must know
how notes are arranged on the piano. The piano keys
are divided into seven equal groups called octaves. Each
octave has seven notes, starting with C and ending with
a higher B. The leftmost octave on the piano sounds
very low indeed, the rightmost octave has those
tinkling, high-pitched notes in it. Now, how does the
computer know which of the seven octaves you mean?

Picture the middle octave on the piano keyboard, the
series of seven notes starting with the middle C, on up
to the higher B, CDEFGAB. The computer knows this
as the octave 3 on the piano, or 03 ("O" stands for
octave).

113

Below 03 (to the left of it on the piano) are three
octaves known to the computer as 00, 01, and 02.

Low High

111111111 111 1111111 1!1! 111 111111!1 !Il l !II 111111 1 lll l I
00 01 02 03 04 05 06

Above 03 (to the right of octave 4 on the piano), are
three more octaves: 04, 05, and 06. That makes a
total of seven octaves, 00 TO 06. Got it?

Low High

11111 1!1!1!11111 111 1111 111 1111 1111111111 1111 11111111 I
00 01

114

02 03 ====== ~- :=:::;:;::::;:::J 04 05 06

-

-

The computer will play notes in 04 (fifth octave from
the left), unless you specify a different octave.

Let's play a C note in four different octaves.

Use NEW and CLS, then enter this without line
numbers:

PLAY "03 C 04 C 05 C 02 C"

Let's play a descending sequence of eight notes, from
an 04 G down to a lower G (in octave 3) .

Use CLS, then enter this program:

10 PLAY "G F# ED C"
20 PLAY "03 BAG"

Notice when you don't specify the octave, the computer
understands 04. Line 20 has notes that go below
fourth octave C, so we specify 03. Try out a different
series of notes that dip into a lower octave or climb into
a higher one. The computer stays in the octave you specify
until you change it.

Another way to shift octaves is to use the">" (greater
than) or the"<" (less than) sign. For example, ">C"
means you will hear the C in octave 5 (remember the
usually-played octave is 4). Similarly, "<C" gives you
the C in octave 3. Let's try it. Type NEW, CLS and
enter this program:

115

116

10 PLAY "<C >C >C"
20 PLAY "03 C 04 C 05 C"

When you run the program, both lines should sound the
same notes.

Oops, curtain call. By popular request, "Yankee
Doodle."

Type the following song:

10 PLAY "03 CC DEC E D2"
20 PLAY "03 CC DE C2 02 B2"

The last note there was B in octave 2.

30 PLAY "03 CC DEF ED C"
40 PLAY "02 B G AB 03 C2 C2"

If you go any further, be prepared to use dotted notes
and the note value of 8. A dot (or period) after a note
increases its length by half. For example, C. = C4 +
C8, making it one and one-half times an ordinary C.

Hmmmm! Sounds dreadfully complicated. Not really.
Listen. Add these computer music lines to your 4-line
program.

50 PLAY "02 A. B8 AG AB 03 C2"
60 PLAY "02 G. A8 G F E2 G2"
70 PLAY "02 A. B8 AG AB 03 C"
80 PLAY "02 AG 03 C 02 B 03 D 03 C2 C2"
90 END

117

118

There. Keep running the program and you'll get the
hang of it.

If you need a blank pause anywhere in a song
(musicians call it a "rest"), use Panda time value (1, 2,
4, 8, 16 and so on) wherever needed. By the way, the
spaces between notes are not necessary. We have used
them to help you learn more easily.

Three-Part Harmony

Perhaps the choicest musical feature of your IBM PCjr
is that it will serenade you in three-part harmony. In
plain language, this means that you can run a program
on the IBM PCjr to sound two or three notes together,
or up to three melodies that can blend with each other
(how well they blend is up to you).

You may not know a great deal about musical harmony,
but in a few short minutes you will be amazed at the
talents hidden in this cuddly little computer of yours.

The first thing you must put in your program is a
statement to turn off the speaker (beeper) in your IBM
PCjr System Unit and another to turn on the speaker in
your TV set. (Harmonies will not play on the System
Unit speaker.)

Use CLS, and NEW, then enter these lines:

1 REM Some Classy Chords
5 BEEP OFF: SOUND ON

Line 5 will turn off the system's speaker and begin
channeling all the sounds through the TV set. Enter this
line:

10 PLAY "<C", "<E"

Now run this three-line program. You hear two notes
sounding briefly together. Both notes are in Octave 3.
As you can see, the two strings are separated by a
comma, but the computer read and performed both
together.

Let's add a third note to produce a pleasing chord. But
before doing that, let us lengthen the duration of each
note by specifying a length of one for each.

119

120

8 PLAY "Ll", "Ll"

Let's add that third note in line 10. Edit line 10 to read:

10 PLAY 11 <C 11 , 11 <E 11 , 11 <G 11

Run the program. Oops, that G note is too short.
Notice that each string must be defined separately.
Edit line 8 to specify "L 1" for the third string. While
you're at it, specify the octave you want in line 8
instead of line 10 (this allows the notes to be plain to
see) :

8 PLAY "Ll<", "Ll<", "Ll<"
10 PLAY "C", "E", "G"

Run the program. Can you hear the combined notes?
Run it a few times, then add the following lines to your
program:

20 PLAY
30 PLAY
40 PLAY
50 PLAY

11 D11 , "F+", "A"
"F", "A", 11 >C 11

11 D11 , "G", 11 B11

"E", "G", "C"

Run the program a few times. You are hearing a series
of chords used frquently in popular jazz music. To
improve the effect, make all "first string" notes sound
in Octave 1, "second string" notes in Octave 2, and
"third string" notes in Octave 3. Edit line 8 as follows:

8 PLAY "01 Ll", "02 Ll", "03 Ll"

Rerun the program. Experiment some more with
chords, if you care to.

Volume and Countermelody
If any note sounds too loud or soft for your liking, you
might want to reduce or raise its volume. In a PLAY
statement, V stands for volume. V can have a value
from Oto 15. Unless you specify differently (like
octaves), Vis always set at 8 (which is moderate
volume). 0 is low volume, 15 is high.

Let's make one last change to our jazzy music. Let's set
the volume of the third string at 12. Edit line 8 to look
like this:

8 PLAY "01 Ll", "02 Ll", "03 L1 V 12"

Fascinating though the possibilities are, you need a fair
amount of musical knowledge to compose harmonies on
the IBM PCjr.

In music, along with beautiful harmonies, you may hear
songs in which there is not only a main melody but a
secondary melody, called a countermelody. Combining
a main melody and countermelody can also create
beautiful or interesting music.

To help you see how a countermelody can be added to
a song, we off er you this version of "Twinkle, Twinkle
Little Star" (lines 30, 40, and 60 appear here as they
would if you have a 40-column screen):

121

122

1 REM "Twinkle, twinkle" in harmony
3 BEEP OFF:SOUND ON
5 PLAY "MN 03", "ML 02 V6", "MS 01 V7"
10 PLAY "CCGGAAG2", "C<G>ECF2E2"
20 PLAY "FFEEDDC2", "DC<AFG8Ll6AB>C2"
30 PLAY "GGFFEED2", "L8EE<G>EDD<G>DCC<AB
-B2"
40 PLAY "GGFFEED2", "L8<EEL16CDL8EDDL16<
B>Cll 6«ABL8>C<B2"
50 PLAY "CCGGAAG2", "C<G>ECF2E2"
60 PLAY "FFEED8Ll6BAGFEDC2", "CCCC<BB>C2
", "AAGGL8GFEDL2C"

Run the program. Close your eyes and listen closely for
the two melodies. Can you pick out the main melody
and the secondary melody? Do you see how the
secondary melody was created in the program?

Now you can try your hand at writing other songs you
know. Try some easy ones first without
countermelodies, like "Row, row, row your boat" or
"Three Blind Mice" or "Happy Birthday to You."
Then see if you can write a countermelody for them.
This is quite a challenge.

If you need inspiration to start, here is a tune that will
CHEER you on:

5 PLAY "Tl60"
10 PLAY "02 G8 03 C8 E8 G E8 G2 P2"
20 PLAY "02 G#8 03 C#8 F8 G# F8 G#2 P2"
30 PLAY "02 A8 03 D8 F#8 A F#8 A2 P2"

~

123

Your Tum

124

Project #1: Write a program that plays a series of
notes in a single octave. Use a FOR and NEXT loop to
play this series in each of the seven octaves, from 00 to
06.

Project #2: Write a program that asks for a series of
six letters, one at a time, between A and G. Then have
it ask for an octave number. Then have the computer
play a silly tune made of the six notes.

,....

,....

,....

,...,

,...,

-
,...,

.....

,...

Solutions

Project #1

1 REM Sailing the Seven C's
5 CLS
10 FOR I= 0 TO 6
20 PLAY "O = I; CEFGl"
30 NEXT I
40 END

Project #2

1 REM Make up a silly tune
5 CLS
10 PRINT "Type a note each time I ask for one."
20 PRINT
30 PRINT "Each note should be between A and G."
40 PRINT
50 PRINT "Then type an octave between O and 6."
60 PRINT
70 INPUT "First note ";A$
80 INPUT "Second note ";B$
90 INPUT "Third note ";C$
100 INPUT "Fourth note ";D$
110 INPUT "Fifth note ";E$
120 INPUT "Sixth note ";F$
130 INPUT "Enter octave number (0 to 6) ";0
140 PLAY "O = 0;" +A$+B$+C$+D$+E$+F$
150 END

125

Lesson 8. Art

The Artist's Touch

126

Time to change from aspiring musician to creative
artist. Just as PLAY was our tool to recreate music,
DRAW will be our tool to design colorful pictures.

Do you remember in Lesson 5, we learned how to shift
from text mode (SCREEN 0, 1) to graphics mode
(SCREEN 1,0)? Type SCREEN 1,0 now to get into
graphics mode again.

Although you can't immediately tell, your screen is like
a grid full of tiny squares. The squares are called
points. In graphics mode, there are 320 points from left
to right (columns), and 200 points from top to bottom
(rows). The following lines list the four comer points
on the screen by column and row position:

Position 0,0 is at the top left-hand comer.

Position 319,0 is at the top right-hand comer.

Position 0,199 is at the bottom left-hand comer.

Position 319,199 is at the bottom right-hand comer.

The starting position for SCREEN 1,0 is in the middle
of the screen. It is as though your pencil is in the
middle of a piece of paper ready to draw.

127

128

You can move your "pencil" from the starting position
to another position by giving the following directions:

U means "move up" USO means "move up 50 points"

R means "move RSO means "move right 50
right" points"

D means "move D50 means "move down 50
down" points"

L means "move left" LSO means "move left 50 points"

These four prefixes, or substatements, (U, R, D, L) will
let us draw a box on the screen.

Let's try it. Use NEW, then enter this program:

5 CLS
10 B = 50
20 DRAW "U = B; R = B; D = B; L = B;"

RUN the program. (To make the program easier to
enter, we used a numeric variable in line 10.) Do you
see how the lower left comer of the box is in the middle
of the screen. This is the automatic starting position.
We'll learn how to change the starting position in a
moment, but first let's use the middle of the screen to
start.

Change the value of B to make the box smaller or
bigger, try 100 and 150.

We can shape this box to look like a diamond (diagonal
box) by using the following instructions:

E means "move diagonally up and right"

F means "move diagonally down and right"

G means "move diagonally down and left"

H means "move diagonally up and left"

Let's do it.

Use NEW and CLS, then enter this program:

5 CLS
10 D = 50
20 DRAW "E D; F D; G = D; H = D;"

RUN it.

Because of the speed of the computer, you can't see
how each line is drawn separately. If you could, you
would see a line drawn from the center of the screen
"diagonally up and right" 50 positions. The next line
would be drawn "diagonally down and right" 50
positions to form an up-side-down "V." The two other
lines would connect like dots to form the bottom of the
diamond.

Once again, change the proportions as you like and
rerun the program.

You can also get lines to begin from the same starting
point by typing the substatement N before each
directional substatement. Relax! That's not as tricky as
it sounds. An example will help.

Use NEW and CLS, then enter this program which
traces a line and returns the cursor to where it began:

129

130

5 CLS
10 DRAW "NU40"
20 DRAW "NE40"
30 DRAW "NR40"
40 DRAW "NF40"
50 DRAW "ND40"
60 DRAW "NG40"
70 DRAW "NL40"
80 DRAW "NH40"

Run it.

Get the idea? Each line originates from the center of
the screen instead of from the end of the previous line.
Repeat the program if you're still confused.

There also is a way to move the starting point from a
previous position without drawing a line and that is by
using the substatement, B. To see how B works, use
NEW and CLS, then enter this program:

10 CLS
20 DRAW "USO"
30 DRAW "BF50"
40 DRAW "D50"

Run it.

Here's what you just did. Line 20 draws a line 50
positions up from the center as before. Line 30 moves
the starting point "diagonally down and right" 50
positions from the previous point, and line 40 draws a
line down 50 positions from there.

Where line 30 begins to draw its line still depends on
the location of the ended point drawn by line 20.

The next letter substatement we'll learn does not rely
on any previous end point or automatic starting point.

To move your "pencil" to any starting point, use the M
(stands for move) substatement. Try this one.

Use NEW and CLS, then enter this program:

5 CLS
10 DRAW "BM160,0 M160,199"

Run it. It draws a vertical line down the center of the
screen. "BM160,0" moves the starting point to the top
center of the screen. "M160" draws the line from the
top to the bottom of the screen.

131

(For more information about the N, B, or M
substatements, look them up under "DRAW" in the
IBM PCjr BASIC book.)

Experiment with these substatements until you feel
quite familiar with what they can do for you.

Remember:

N means "move, but return to my starting point"

B means "move, but don't make a line"

M means "go to a new starting point"

The PSET Statement

132

O.K. What else can we do? Plenty. A handy way to
master screen positions is to use the PSET statement; it
puts dots on the screen. Let's put a dot in the center of
the screen.

Use CLS, then enter without line numbers:

PSET (160, 100)

Run it.

Vary the two numbers (we call them "coordinates") .
Place a dot in the corners of the screen and wherever
else you wish to see one. You can do detailed things
with dots, but they take time to do.

Try using dots to draw buttons with dots for holes,
pretend the dots are stars in space, or create a small
face with dots for eyes, nose, and a mouth.

The LINE Statement
Let's go one step further with the PSET statement and
use it as another way to draw lines.

The IBM PCjr can draw a straight line by connecting
two dots on the screen made with PSET. Let's place
two dots on the screen, one below the other. Use NEW,
CLS, and then enter these lines:

5 CLS
10 PSET (160,60)
20 PSET (160,140)

Run the program and look for the dots. Then enter:

133

30 LINE (160,60) - (160,140)

Notice that the coordinates in line 30 are the same as
those in lines 10 and 20. Run the program and watch
the screen. See the line?

Experiment with different sets of coordinates until you
become familiar with how the LINE statement works.

After you've tried drawing different geometric shapes,
you may want to reward yourself with this star:

5 CLS
10 LINE (160,49) - (120,170)
20 LINE (120,170) - (225,99)
30 LINE (225,99) - (95,99)
40 LINE (95,99) - (200,170)
50 LINE (200,170) - (160,49)
60 END

The CIRCLE Statement

134

Circles are probably one of the most fun things to
draw. The CIRCLE statement tells the computer
where to put the circle and how big it should be.

The CIRCLE statement has two parts:

1. Center of circle (position x, position y)

2. Radius (distance from the center to the edge)

Use CLS, then enter this without line numbers:

CIRCLE (250, 35), 20

Press Enter. This program draws a circle of radius 20
near the upper right corner of the screen.

l!l!!!!I

We'll get back to circles in a moment, but first let's
learn more about how to play with color.

In Living Color

In Lesson 5, we dabbled with the COLOR statement in
graphics mode to change our screen background. If a
refresher course is necessary, go back to Lesson 5, "A
Spot of Color," and work through that section once
more.

To prevent possible confusion, here are notes on the
COLOR statement for text mode and graphics mode.

135

136

Text Mode (SCREEN 0,1)

The COLOR statement in text mode has three parts to
it:

COLOR foreground, background, border

But before you use the color statement, you must
remember to turn on the "color burst" feature by
including the " l ":

SCREEN 0,1

The following is an example of a COLOR statement in
text mode:

COLOR 14,2,1

This sets a yellow foreground, a green background, and
a blue border.

With a color monitor in text mode, foreground has 16
possible colors (0 - 15), background has 8 possible
colors (0 - 7), and border has 16 possible colors (same
as foreground).

If you are using a color TV set, the colors you see may
be weak or blurred. Try adjusting the color control to
improve the picture.

Graphics Mode (SCREEN 1,0)

Both the color television set and the color monitor use
graphics mode.

The COLOR statement in graphics mode has two parts:

COLOR background, palette

137

138

The background has 16 possible colors (O - 15).

The palette gives you two selections of three colors
each. Let's step through this slowly.

You can select palette O or palette 1.

Color
1
2
3

Palette 0
Green
Red
Brown

Palette 1
Cyan
Magenta
White

In both palettes, 0 gives the background color already
on the screen.

An example might help. First, use CLS, then turn on
the graphics with color burst (different from color burst
in text mode):

SCREEN 1,0

Now enter this line without a line number:

COLOR 9, 1

Press Enter. This program sets a light blue background,
and selects palette 1 (which, as you can see, has three
possible colors). Now what? You need a figure of
some sort to apply a color from palette 1.

Very well, let's use what we've learned and draw a
circle.

Draw a circle in the center of the screen having a radius
of 30. Try this:

CIRCLE (160, 100), 30

Add a number from 1 to 3 for the color you want in
palette 1. Magenta? All right, if you insist. Here's the
complete statement.

Use CLS, then enter this without line numbers:

CIRCLE (160, 100), 30, 2

If you forget to add the last number, the computer picks
number 3 (white in palette 1, brown in palette 0).

Understanding how palettes work is not easy at first.
Later, you can come back and look at this section
again. For now, let's go on.

The PAINT Statement
Now that we know how to make colorful circles, let's
learn how to fill them with color.

You use the PAINT statement to fill a shape or figure
with a color from palette O or palette 1.

The PAINT statement gives the computer a starting
point anywhere inside the area to be "painted." Then it
gives the color to be used inside the figure. Finally, it
gives the color that serves as the boundary for the
painted area.

Here are the parts of the PAINT statement:

1. PAINT (position x, position y)

2. Inside color

3. Figure border color

139

140

Use CLS, then enter this example. Don't RUN it until
after entering line 30 below:

10 COLOR 1, 1

sets a blue background and selects palette 1.

20 DRAW "U20; R20; 020; L20;"

draws a rectangle on the screen.

30 PAINT (165, 95), 2, 3

fills the box with magenta (color 2, palette 1), leaving
the edges of the box white (color 3, palette 1).

RUN the program.

Hey, that's a lot more fun than crayons.

Be sure to practice working with these graphics
statements. And be nice to yourself if you see
something you didn't expect. Surprising yourself can be
fun!

Let's try one last example. As a final test of your
understanding of graphics, think of what this program
will do as you enter each line. (You may also like what
you see.)

5 CLS
10 CIRCLE (130,59), 55, 1
20 CIRCLE (210,59), 55, 1
30 CIRCLE (170,100), 55, 1
40 PAINT (130,59), 55, 1
50 PAINT (210,59), 55, 1
60 PAINT (170,100), 55, 1
70 PALETTE 1, 1: PALETTE 2, 14: PALETTE 3, 13

Were you surprised?

141

Hooray for You

142

You deserve a tremendous round of applause for
plowing through the material in this book. We hope
you're happy for having made the effort.

Are you a programmer now? Well, you're on the way
to being one. You have learned to approach tasks on
the small computer like a programmer does. You know
a lot about the BASIC language on the IBM PC Jr. And
you have sampled the joys of building a program and
seeing it work. You're in great shape, friend.

We'll say 'bye for now. We hope your appetite for
learning about computers keeps growing. We wish you
luck.

-

"""" ..

--

...
-

-

Your Tum

Project #1: Write a program that draws the outline of
a table with legs. Then center a triangle on top of the
table.

Project #2: Draw five circles (radius 10 each), one in
the center of the screen, one in each of the four comers
of the screen. Fill the center circle with red, and make
its edge green.

143

Solutions

144

Project #1

5 CLS
10 SCREEN 1,0:CLS
20 DRAW "L30D4Rl5D30R4U30R40D30R4U30Rl5U4L47"
30 DRAW "BU1BL8El6F16L31"

Project #2

10 SCREEN 1,0: CLS: COLOR 8,0
20 CIRCLE (160, 100), 10, 1
30 CIRCLE (30, 9), 10, 1
40 CIRCLE (289, 9), 10, 1
50 CIRCLE (30, 190), 10, 1
60 CIRCLE (289, 190), 10, 1
70 PAINT (160, 100), 2, 1

- Chapter Review
~

""""' --

-
-
"'""'

Take a moment to review what you learned in Chapter
4. You learned to:

• Use the PLAY statement to write and perform
melodies on the computer.

• Use the DRAW statement to draw simple figures on
the screen.

• Use the COLOR statement in graphics mode to
change the background, foreground, and border
colors.

• Use the PSET statement to put a point in any
position on the screen.

• Use the CIRCLE statement to draw a circle of any
radius.

• Use the PAINT statement to fill a shape or figure
with a color from palette O or palette 1.

145

Notes:

146

1""'91

"""'

,-

,....

,--

I°"""

-

-
-

-

-
-
-

Appendix A. Messages

When the computer finds something going wrong, it
flashes an error message on the screen. You have
already seen many instances of error messages
explained in this book. This appendix lists a few more
error messages. For a complete list of errors and their
explanation, refer to the BASIC reference manual.

Number Me~e

73 Advanced Feature

17

71

Your program used an Advanced BASIC
feature while you were using Disk BASIC.

Start Advanced BASIC and rerun your
program.

Can't continue

You tried to use CONT to continue a
program that:

• Halted because of an error

• Was changed during a break in running it

• Is not there

Check your program, and use RUN to run it.

Disk not Ready

147

,...
The diskette drive door is open or a diskette
is not in the drive.

,....

Place the correct diskette in the drive and
,....

continue the program. -
70 Disk Write Protect ,....

You tried to write to a diskette that is -write-protected. ,....
Make sure you are using the right diskette. If
so, remove the write protection, then retry

,....
the operation. ,....
This error may also occur because of a -hardware failure.

,....
11 Division by zero -In an expression, you tried to divide by zero,

or you tried to raise zero to a negative power. -
It is not necessary to fix this condition,

,....
because the program continues running. ,....

26 FOR without NEXT ,....

A FOR was encountered without a matching ,....
NEXT. That is, a FOR loop was active when
the physical end of the program was reached. ,....

Correct the program so it includes a NEXT ~

statement. ,....

~

148 ,....

-
12 fflegal direct -

~ You tried to enter a statement in direct mode
(without line numbers) that the computer - does not allow.

- The statement should be entered as part of a
program line.

~

5 - fflegal function call

- The computer cannot do what you asked.
Check your program and line numbers before - you rerun it.

- 22 Mming operand

- An expression contains an operator, such as
• or OR, with no operand following it. -- Make sure you include all the required
operands in the expression.

- 1 NEXT without FOR - The NEXT statement doesn't have a - corresponding FOR statement. A variable in
the NEXT statement may not match any - previous FOR statement variable.

~ Fix the program so the NEXT has a

~
matching FOR.

..... 4 Out of data

- A READ statement is trying to read more
data than is in the DAT A statements. ---- 149

~

Conect the program so that there are enough
I'"'-

constants in the DATA statements for all the
READ statements in the program. I"'-

7 Out of memory ,...,

A program is too large, has too many FOR -loops or GOSUBs, too many variables,
expressions that are too complicated, or ~

complex painting. -
You may want to clear the screen with CLS -at the beginning of your program to set aside
more stack space or memory area. -

27 Out of Paper -
The printer is out of paper, or the printer is i--

not switched on.
~

You should insert paper (if necessary), verify -that the printer is properly connected, and
make sure that the power is on; then,

~
continue the program. -6 Overflow -The number you entered is too large for the
BASIC number format. -

3 RETURN without GOSUB I"'""'

~

A RETURN statement needs a previous
GOSUB statement. ,._

Correct the program. You probably need to -put a STOP or END statement before the
subroutine so the program doesn't "fall" into -
the subroutine.,

I""'"\

150 ,.....

-- 15 String too long

- You wrote a string more than 25 5 characters
long. Try to break the string into smaller - strings.

- 2 Syntax error

- A line contains an incorrect sequence of - characters, such as an unmatched
parenthesis, a misspelled command or - statement, or incorrect punctuation. Or, the
data in a DATA statement doesn't match the type (numeric or string) of the variable in a
READ statement. - When this error occurs, the line to be - corrected is displayed. Edit the line or the
program. -

13 Type mismatch -- You gave a string value where a numeric
value was expected, or you had a numeric - value in place of a string value.

- 8 Undefined line number

- A line reference in a statement or command
refers to a line which doesn't exist in the ,_
program.

- Check the line numbers in your program, and
~ use the correct line number.

--
~

-- 151

Notes:

,,....

-

-
,...

-
-

152

-
- Appendix B. BASIC: A Quick Reference

--
....

-
-
1111111

-
--

This appendix lists the BASIC commands and
statements you have been using in this book. These
lists can serve you as a quick reference. For detailed
information about each item, look up Chapter 4,
"Commands, Statements, Functions, and Variables," in
the BASIC Reference book.

Commands

The following is a list of BASIC commands you have
used in this book. The parts of each command are
shown, but not always in complete form. The purpose
of each command is briefly explained.

Command Action

DELETE linel-linel

EDIT line

LIST linel-linel

NEW

RUN

Deletes specified program lines.

Displays a program line for changing.

Displays program lines on the screen.

Erases the current program and
variables.

Performs a program. The R option
may be used to keep files open.

153

RUN line Runs the program in memory
starting at the specified line.

Statements

154

This section lists the BASIC statements you have used
in this book. The list tells what each statement does
and shows its parts. For the more complex statements,
the parts shown may not be complete. You can find
detailed information about each statement in the
BASIC Reference book.

Statement

END

Action

Stops the program, closes all files,
and returns to command level.

FOR variable=x TO y STEP z

GOSUB line

GOTO line

Repeats program lines a number of
times. The NEXT statement closes
the loop.

Calls a subroutine by branching to
the specified line. The RETURN
statement returns from the
subroutine.

Branches to the specified line.

IF expression THEN clause ELSE clause
Performs the statement(s) in the
THEN clause if the condition is met.
Otherwise, performs the ELSE
clause or goes to the next line.

-
-

-
-
--

-

-
-

-

-
--
-

--

LET variable=expression

NEXT variable

REM remark

BEEP

Sets the value for a variable.

Closes a FOR. .. NEXT loop (see
FOR).

Includes remark in program.

Makes the speaker sound a short
note.

CIRCLE (x,y),r Draws a circle with center (x,y) and
radius r.

CLS Clears the screen.

COLOR f oreground,background,border
In text mode, sets colors for
foreground, background, and the
border screen.

COLOR background,palette
In graphics mode, sets background
color and palette of foreground
colors.

DATA Hst of constants

DRAW string

Creates a data table to be used by
READ statements.

Draws a figure as specified by string.

INPUT ''prompt";variable Hst
Reads data from the keyboard.

LOCATE row,col Positions the cursor. Other
parameters allow you to define the
size of the cursor and whether it is
visible or not.

155

156

,._

PAINT (x,y),paint,boundary l"-

Fills in an area on the screen defined
by boundary with the paint color. ,-

PLAYstring Plays music as specified by string.

PRINT list of expressions

PSET (x,y),color

READ variable list

SCREEN mode

Displays data on the screen.

Draws a point on the screen, in the
foreground color if color is not
specified.

Retrieves information from the data
table created by DATA statements.

Sets screen mode, color on or off.

SOUND freq,duration

WIDTH size

Generates sound through the
speaker.

Sets screen width. Other options
allow you to specify the width of a
printer or a communications file.

-
-

-
--

-

-

-
- Appendix C. Reserved Words in BASIC

--
--

--
--

Certain words have special meaning to BASIC. These
words are called reserved words. Reserved words
include all BASIC commands, statements, function
names, and operator names. Reserved words cannot be
used as variable names.

You should always separate reserved words from data
or other parts of a BASIC statement by using spaces or
other special characters as allowed by the rules for
BASIC.

Following is a list of all the reserved words in BASIC:

ABS
AND
ASC
ATN
AUTO
BEEP
BLOAD
BSAVE
CALL
CDBL
CHAIN
CHOIR
CHR$
CINT
CIRCLE
CLEAR
CLOSE
CLS
COLOR
COM

COMMON
CONT
cos
CSNG
CSRLIN
CVD
CVI
CVS
DATA
DATE$
DEF
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
DIM
DRAW

157

,....
EDIT LEN -ELSE LET
END LINE ,....
ENVIRON LIST
ENVIRON$ LLIST ,....
EOF LOAD
EQV LOC -
ERASE LOCATE -ERDEV LOF
ERDEV$ LOG -ERL LPOS
ERR LPRINT r--
ERROR LSET
EXP MERGE -FIELD MID$
FILES MKDIR -
FIX MKD$
FNxxxxxxxx MKI$ -
FOR MKS$ -FRE MOD
GET MOTOR -GOSUB NAME
GOTO NEW ,....
HEX$ NEXT
IF NOT -IMP OCT$
INKEY$ OFF

,....
INP ON
INPUT OPEN -
INPUT# OPTION -INPUT$ OR
INSTR OUT ,--,

INT PAINT
INTER$ PEEK ~

IOCTL PEN
IOCTL$ PLAY -KEY PMAP
KILL POINT -
LEFT$ POKE -

i-,

158 -

-
POS STOP - PRESET STR$

- PRINT STRIG
PRINT# STRING$ - PSET SWAP
PUT SYSTEM - RANDOMIZE TAB(
READ TAN - REM THEN
RENUM TIME$ - RESET TIMER
RESTORE TO - RESUME TROFF - RETURN TRON
RIGHT$ USING

- RMDIR USR
RND VAL - RSET VARPTR
RUN VARPTR$ - SAVE VIEW
SCREEN WAIT - SGN WEND

- SHELL WHil.E
SIN WIDTH

- SOUND WINDOW
SPACE$ WRITE - SPC(WRITE#
SOR XOR - STEP
STICK -

-

- 159

Notes:

160

,...,

-

I"""°'

~

--
-
--

--
-
--

-

Index

Special Characters B

< sign 96
<> sign 96
<= sign 96
+ sign 75
$ sign 59
* key 45
* sign 75
- sign 75
/ key 45
/ sign 75
> sign 96
>= sign 96
= sign 96

A

about Chapter 1 9
about this book iii
adding a line 28
addition 45
additional reading 3
arrow keys 14

Backspace key 14
BASIC commands 153
BASIC statements 21, 153,

154
non-I/O 154

BEEP statement 15, 21, 26
blank line 33, 52
blanks 157
breaking an endless loop 36

C

calculator functions 45, 46
chapter reviews

Chapter 1 41
Chapter 2 75
Chapter 3 104
Chapter 4 145

CIRCLE statement 134
clearing the screen 13, 26
CLS statement 13, 21, 26
colon 15
COLOR statement 88, 90, 136
colors 88

background colors 88, 135,
139

Index-1

l"'9"'>

foreground colors 88, 135, E -139
comma 35,37 -commands in BASIC 10 EDIT command 32

BEEP statement 15, 21 editing a program 28, 32 ,-

CLS statement 13, 21 editing your program 33
EDIT command 32 Endkey 14 i-,

LIST command 28 END statement 26
NEW command 34, 35, 46, endless loop 36 -

60 Enterkey 10 ,....
PRINT command 10 erasing lines 12
PRINT statement 21, 33 error codes Appendix A -SOUND statement 15, 17, error messages 30, Appendix

21 A ,....
STEP command 86 FOR without NEXT 79

computer's memory 32 illegal function call 30, 44, -coordinates, screen 132 79
correcting a line 14 missing operand 30, 44, 79 -cursor 10, 14, 32 NEXT without FOR 79 -out of DATA 67

redo from start 49 -syntax error 10, 30, 44, 79

D type mismatch 44 ,-
undefined line number 44,
79 ,....

delay tactic 70 Esckey 12
diagonal lines 128 I"'-,

division 45 -division by zero 148
DRAW statement 128 F r--
drawing on the screen 127,

128,132 -duration 15, 52 flashing square cursor 32
Fnkey 26 -Fn-Break keys 36
FOR/NEXT statements 70, -
84

frequency 15,52 -
,....

-
Index-2 ~

-- function (Fn) key 14 J
functions in BASIC 72 ,- LEFT$ function 64

LEN function 62 joining strings 62 - MID$ function 66
RIGHT$ function 64 - Fl key 28

- F2 key 26 K

- keys - G Backspace key 14
Ctrl key 14 - cursor keys 14

- getting a blank line 33, 52 Endkey 14
GOSUB/RETURN Enterkey 10 - statements 98 Esc key 14
GOTO statement 35, 52 Fnkey 28 - graphics mode 88, 128, 137 Fl key 28

F2 key 28 - Ins key 32
NumLockkey 14 - H Shift key 10

-- hardware requirements 3

L -- I LEFT$ function 64
LEN function 62 -

- IF /THEN statements 94
INPUT Statement 48, 52, 60 - Ins key 32
inserting words 32 - introduction 1

--- Index-3

r-
LET statement 50 0 ~

line numbers 26, 28
LINE statement 133 io-,,

LIST command 28, 33 octaves 113
listing a program 28, 33 overflow 150 -
listing one line 33

~ LOCATE statement 81, 83
loops 70 -p ,,_

M PAINT statement 139 I"'-

palette colors 13 7, 13 9
piano keyboard 107, 109

i-,

making corrections 14, 28, 32 PLAY statement 107, 109 r--,
math problems 46 playing a melody 107
melody, writing a 107 practice exercises ,i--
memory of computer 32 for Lesson 1 20
messages 44, Appendix A for Lesson 2 39 -MID$ function 66 for Lesson 3 55
mini-instructions 72 for Lesson 4 73 I""'"'

multiplication 45 for Lesson 5 92
musical notes 107, 109 for Lesson 6 102 ~

musical pause 118 for Lesson 7 124
musical timing 109, 112 for Lesson 8 143 -
musical tones 15, 52 PRINT command 10 -PRINT statement 21, 26, 33,

52 -print zones 35

N program 26
program loops 70 -
program statement 26 -NEWcommand 34,35,46,60 PSET statement 132

numeric variables 4 7, 52, 66 -----
Index-4 i--

-- Q SOUND statement 15,17,21,
52

- spaces 157
quotation marks 13 spacing your output 60 - comma 35,37

print zones 34 - semicolon 35

- R square flashing cursor 32
starting the computer 5
statements - READ/DATA statements 66 CIRCLE statement 134 - REM statement 30, 34 COLOR statement 88, 90,

reserved words in BASIC 60, 136 - 157 DRAW statement 128
review of Chapter 1 41 FOR/NEXT - review of Chapter 2 75 statements 70, 84
rewriting a line 32 GOSUB/RETURN - RIGHT$ function 64 statements 98
RUN command 26 GOTO statement 35, 52 - running a program 26, 32 IF /THEN statements 94

- INPUT statement 48, 60
LET statement 50 - LOCATE statement 81, 83

s PAINT statement 139 - PLAY statement 107, 109
PSET statement 132 - screen columns 81 READ/DATA

screen coordinates 132 statements 66 - screen graphics 128 REM statement 30, 34

- screen positions 81, 127, 132 SCREEN statement 88

screen rows 81 statements in BASIC 21

- SCREEN statement 88, 136 STEP command 86

semicolon 34, 35, 60 string 59 - setting conditions 96
shapes, drawing 128 - slowing down a program 70

- snipping characters 65
software requirements 3

--
-, lndex-5

string functions 62
string variables 57, 59
strings 13
subroutine 98, 100
subtraction 45
syntax error 10

T

tempo 109, 112
text mode 88, 90, 136
title for your program 30
tones 15

u

using colors 135
using the BEEP statement 15,

21
using the CLS statement 13,

21
using the keys

• key 45
/ key 45
arrow keys 14
Backspace key 14
Crtl-Break keys 36
Endkey 14

Index-6

Enterkey 10
Fl key 28
F2 key 26
Ins key 32
Shift key 13

using the LIST command 28
using the NEW command 34
using the PRINT command 10
using the PRINT statement 21
using the RUN command 26
using the SOUND
statement 15, 17, 21

V

value 60
values 48
variables

numeric variables 47, 52,
66

string variables 57, 59, 94

w

writing a program 26
writing music 107, 109

,....

""""

""""

""""'

--
""""
"""" -
"""" -
,.....

-
,.....

,....

~

""""'

"'""
~

"""'ll

""""

!'!""II

-

---- ------- - - --- ---- - ---- - - ------- ------·-

System requirements:

/iJ
IBM Color Display or
a color TV

64KB of memory

Cartridge BASIC

©IBM Corp. 1983
All rights reserved

International Business
Machines Corporation
P.O. Box 1328-S
Boca Raton, Florida 33432

6024116

Printed in USA

......

......

-

