l
1L

Personal Computer PCjr
Hardware Reference
Library

- BASIC

By Microsoft Corp.

1502284

P

C

Personal Computer PCjr
Hardware Reference
Library

BASIC

By Microsoft Corp.

(First edition - June 1983)

This product could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the
publication.

The following paragraph applies only to the United States and
Puerto Rico: International Business Machines Corporation
provides this manual “as is,” without warranty of any kind, either
expressed or implied, including, but not limited to, the particular
purpose. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this manual at any
time.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer dealer.

A Reader’s Comment Form is provided at the back of this
publication. If the form has been removed, address comments to:
IBM Corp., Personal Computer, P.O. Box 1328-C, Boca Raton,
Florida 33432. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring
any obligations whatever.

© Copyright International Business Machines Corporation 1983

Preface

This book is a reference for both Cartridge and
Cassette versions of BASIC for the PCjr.

Throughout this book, the term BASIC refers to both
versions of Cassette BASIC and Cartridge BASIC.

In order to use this manual, you should have some
knowledge of general programming concepts; we are
not trying to teach you how to program in this book.
The BASIC Tutorial book that was shipped with your
system is designed to give you this general BASIC
programming knowledge.

iv

How to Use This Book

The book is divided into four chapters plus ten (10)
appendixes.

Chapter 1 is a brief overview of the two versions of
PCjr BASIC interpreter.

Chapter 2 tells you what you need to know to start
using BASIC on your PCjr. It tells you how to
operate your computer using BASIC.

Chapter 3 covers a variety of topics which you need
to know before you actually start programming.
Much of the information pertains to data
representation when using BASIC. We discuss
filenames here, along with many of the special input
and output features available in IBM PCjr BASIC.

Chapter 4 is the reference section. It contains, in
alphabetical order, the syntax and meanings of
every command, statement, and function in BASIC.

The appendixes contain other useful information,
such as lists of error messages, ASCII codes, and
math functions; plus helpful information on machine
language subroutines, diskette input and output, and
communications. You may find " Appendix D.
Converting Programs to IBM PCjr BASIC"
especially helpful, because it discusses the
differences between IBM PCjr BASIC and other
BASICs. You will also find detailed information on
more advanced subjects for the more experienced
programmer.

We suggest you read thoroughly Chapters 2 and 3 to
become familiar with BASIC. Then, while you are
actually programming, you can refer to Chapter 4 for
the information you need about the commands or
statements you are using. Syntax Diagrams

Each of the commands, statements, and functions
described in this book has its syntax described
according to the following conventions:

o Words in capital letters are keywords and must be
entered as shown. They may be entered in any
combination of uppercase and lowercase. BASIC
always converts words to uppercase (unless they are
part of a quoted string, remark, or DATA
statement).

e You must supply any items in lowercase italic
letters.

o Items in square brackets ([]) are opﬁonal.

o An ellipsis (...) indicates an item may be repeated as
many times as you wish.

« All punctuation except square brackets (such as
commas, parentheses, semicolons, hyphens, or equal
signs) must be included where shown.

Let’s look at an example:
INPUTL;]["prompt "';] variable[,variable]...

This says that for an INPUT statement to be valid, you
must first have the keyword INPUT, followed
optionally by a semicolon. Then, if you wish, you may
include a prompt within quotation marks. The prompt,
must be followed by a semicolon. An INPUT
statement must have at least one variable You may have
more than one variable if you separate them with
commas.

More detailed information on each of the parameters is
included with the text accompanying the diagram. The
information for this example is in Chapter 4, under
“INPUT Statement.”

Related Publications

The following manuals contain related information that
you may find useful:

The IBM PCijr Guide to Operati’ons manual

The IBM Personal Computer Disk Operating System
manual

The IBM PCjr Technical Reference manual
The PCjr BASIC Tutorial

The IBM Personal Computer BASIC Compiler
manual

Contents

Chapter 1. The Versions of BASIC 1-1
The Versions of BASIC 1-3
Cassette BASIC 1-5
Cartridge BASIC 1-6

Chapter 2. How to Start and Use BASIC 2-1
Getting BASIC Started 2-3

To Start Cartridge BASIC When Not
UsingDOS 2-4
To Start Cartridge BASIC While Using
DOS ...t 2-5
Returning to DOS from Cartridge BASIC 2-5
The Keyboard 2-6
TypewriterKeys 2-7
SpecialKeys 2-9
ControlMode 2-10
Alternate Mode 2-11
SystemReset 2-13
FunctionMode 2-14
The BASIC Program Editor 2-17
Special Program Editor Keys 2-17
How to Make Corrections on the
CurrentLine 2-29

Entering or Changing a BASIC Program 2-33
Changing Lines Anywhere on the

Screen, 2-35
Syntax Errors 2-38
Modes of Operation 2-39
Running a BASIC Program 2-40
Running a Program on Diskette 2-41
Running a Program on Cassette 2-48
Options on the BASIC Command 2-50
Redirection of Standard Input and Standard
Output 2-55

Chapter 3. General Information about Programming

MBASICciiiiiiiieinnceencnnnns eeee 3-1
LineFormatccccvunn.. 3-3
CharacterSetccivvinnnnnn. 3-4
ReservedWords 3-6
Constantsuiiiiieeernneennn 3-9

Numeric Precision 3-12
Variablescciiiiiiinnnn.. 3-14
How to Name a Variable 3-14
How to Declare Variable Types 3-15
Arraysciiiiiiiiiian.. 3-16
How BASIC Converts Numbers from One
Precisionto Another 3-20
Techniques for Formatting your Output ... 3-23
Numeric Expressions and Operators 3-25
Arithmetic Operators 3-25
Relational Operators 3-27
Logical Operators 3-30
Numeric Functions 3-34
Order of Execution 3-35
String Expressions and Operators 3-37
Concatenation 3-37
String Functions 3-38
InputandOutput 3-39
Filescoiiiiiiiiiiinnn. 3-39
Using the Screen 3-48
Attribute and Bits Per Pixel 3-53
Assigning Colors to Attributes 3-55
Other I/O Features 3-56
Chapter 4. BASIC Commands, Statements,

Functions, and Variables 4-1
How to Use This Chapter 4-3
Commandscciuvvunnnnn 4-6
Statements, 4-9

Non-I/O Statements 4-9
I/O Statements 4-14

Functions and Variables 4-19

Numeric Functions (return a numeric

value) ... 4-19
String Functions (return a string value) 4-23
ABSFunction 4-25
ASCFunction 4-26
ATNFunction 4-27
AUTOCommand 4-28
BEEP Statement 4-30
BLOADCommand 4-32
BSAVE Command 4-36
CALL Statement 4-38
CDBLFunction 4-40
CHAIN Statement 4-41
CHDIR Command 4-44
CHR$Functionccoo... 4-46
CINTFunction 4-48
CIRCLE Statement 4-49
CLEARCommand 4-53
CLOSE Statement 4-59
CLSStatement 4-61
COLOR Statement 4-63

The COLOR Statement in Text Mode 4-65
The COLOR Statement in Graphics

Modecoiiiiiiinn.. 4-68
COM(n) Statement 4-71
COMMON Statement 4-73
CONTCommand 4-74
COSFunction 4-76
CSNGFunction 4-77
CSRLIN Variable 4-78
CVI, CVS, CVD Functions 4-79
DATA Statement 4-81
DATES$ Variable and Statement 4-83
DEF FN Statement 4-85
DEF SEG Statement 4-88
DEFtype Statements 4-90
DEF USR Statement 4-92
DELETE Command 4-94
DIMStatement 4-96

DRAW Statement 4-98

EDITCommand 4-105
END Statement 4-106
EOF Function 4-107
ERASE Statement 4-108
ERR and ERL Variables 4-110
ERROR Statement 4-112
EXPFunctionccvvuun.. 4-114
FIELD Statement 4-115
FILESCommand 4-118
FIXFunction 4-121
FOR and NEXT Statements 4-122
FREFunctioncccoouun.. 4-127
GET Statement (Files) 4-129
GET Statement (Graphics) 4-131
GOSUB and RETURN Statements 4-134
GOTO Statement 4-136
HEX$ Function 4-138
IFStatementco0vvuunnn. 4-139
INKEY$ Variable 4-143
INPFunctioncccco.... 4-145
INPUT Statement 4-146
INPUT #Statement 4-149
INPUT$ Function 4-151
INSTR Function 4-153
INTFunction 4-154
KEY Statement 4-155
KEY(n) Statement 4-161
KILLCommand 4-163
LEFT$ Function 4-165
LENFunction 4-166
LET Statement 4-167
LINE Statement 4-169
LINE INPUT Statement 4-173
LINE INPUT # Statement 4-174
LISTCommand 4-176
LLISTCommand 4-178
LOADCommand 4-179

LOCPFunctionccevuuvn.. 4-182

LOCATE Statement 4-184

LOFFunction 4-187
LOGPFunction 4-189
LPOSFunction 4-191
LPRINT and LPRINT USING Statements 4-192
LSET and RSET Statements 4-194
MERGECommand 4-196
MID$ Function and Statement 4-198
MKDIR Command 4-201
MKI$, MKS$, MKD$ Functions 4-203
MOTOR Statement 4-205
NAMECommand 4-206
NEWCommand 4-208
NOISE Statement 4-209
OCT$Functioncvvue... 4-211
ON COM(n) Statement 4-212
ON ERROR Statement 4-215
ON-GOSUB and ON-GOTO Statements 4-217
ON KEY(n) Statement 4-219
ON PEN Statement 4-223
ON PLAY(n) Statement 4-225
ON STRIG(n) Statement 4-228
ON TIMER Statement 4-231
OPEN Statement 4-233
OPEN “COM... Statement 4-240
OPTION BASE Statement 4-247
OUT Statement 4-248
PAINT Statement 4-250
PALETTE Statement 4-257
PALETTE USING Statement 4-259
PCOPY Statement 4-262
PEEK Function 4-263
PEN Statement and Function 4-264
PLAY Statement 4-267
PLAY(n) Function 4-273
PMAPFunction 4-275
POINTFunction 4-277
POKE Statement 4-280
POSFunction 4-281

PRINT Statement 4-282

PRINT USING Statement 4-286
PRINT # and PRINT # USING Statements 4-292
PSET and PRESET Statements 4-295
PUT Statement (Files) 4-297
PUT Statement (Graphics) 4-299
RANDOMIZE Statement 4-304
READ Statement 4-307
REM Statement 4-309
RENUMCommand 4-310
RESET Command 4-312
RESTORE Statement 4-313
RESUME Statement 4-314
RETURN Statement 4-316
RIGHTS$ Function 4-317
RMDIR Command 4-318
RNDFunctioncccviuunn.. 4-321
RUNCommand 4-323
SAVECommand 4-325
SCREEN Function 4-328
SCREEN Statement 4-330
SGNFunctionccovvunnnnn 4-336
SINFunctionccco.... 4-337
SOUND Statement 4-338
SPACE$ Function 4-343
SPCFunctionc.civuueunun. 4-344
SORFunctioncciiuvnn.. 4-345
STICK Functionc.cc.... 4-346
STOP Statement 4-348
STR$ Functioncvvvn... 4-350
STRIG Statement and Function 4-351
STRIG(n) Statement 4-353
STRING$ Function 4-355
SWAP Statement 4-356
SYSTEM Command 4-357
TABFunction 4-358
TANFunctioncccouunn.. 4-359
TERM Statement ccoou... 4-360

TIMES$ Variable and Statement 4-368

TIMER Variable 4-370

TRON and TROFF Commands 4-371
USR Function 4-373
VAL Function 4-374
VARPTR Function 4-375
VARPTRS$ Function 4-378
VIEW Statement 4-380
WAIT Statement 4-385
WHILE and WEND Statements 4-387
WIDTH Statement 4-389
WINDOW Statement 4-393
WRITE Statement 4-398
WRITE # Statement 4-399
Appendix A. Messagescc0ceveecnnen A-3
Quick Reference A-19
Appendix B. BASIC Diskette Input and Output ... B-1
Specifying Filenames B-2
Commands for Program Files B-2
Diskette Data Files - Sequential and Random
I/O o B-4
Sequential Files B-4
RandomPFiles B-8
Appendix C. Machine Language Subroutines C-1

Setting Memory Aside for Your Subroutines C-2
Getting the Subroutine Code into Memory .. C-3
Poking a Subroutine into Memory C-4
Loading the Subroutine from a File ... C-5
Calling the Subroutine from Your BASIC

Program C-9
Common Features of CALL and USR . C-9

CALL Statement C-11

USR FunctionCalls C-15

Appendix D. Converting Programs to PCjr BASIC D-1
FileI/O ..., D-1
FOR-NEXTLoops D-1

Graphicsciiiiinn. D-2

IF-THEN D-2
LineFeeds D-3
Logical Operations D-3
MAT Functions D-4
Multiple Assignments D-4
Multiple Statements D-4
PEEKsand POKEs D-5
Relational Expressions D-5
Remarks D-5
Rounding of Numbers D-5
Soundingthe Bell D-6
String Handling D-6
UseofBlanks D-7
Other, D-7
Appendix F. Communications F-1
Opening a Communications File F-1
CommunicationI/O F-1
Sample Program1 F-4
Sample Program2 F-6
Operation of Control Signals F-7
Control of Output Signals with OPEN . F-7
Use of Input Control Signals F-8

Testing for Modem Control Signals ... F-8
Direct Control of Output Control Signals F-9

Communication Errors F-10

Appendix G. ASCII Character Codes G-1
ExtendedCodes G-6
Appendix H. Hexadecimal Conversion Tables H-1
Binary to Hexadecimal Conversion Table ... H-2
Appendix I. Technical Information and Tips I-1
MemoryMap I-2

How Variables Are Stored I-4

BASIC File Control Block I-5

Keyboard Buffer I-8

The Second Cartridge I-8

Tips and Techniques I-9
Appendix J.Glossaryccc000iiannn J-1

Appendix K. Keyboard Diagram and Scan Codes .. K-1
Keyboard Scan Codes for 62-key Keyboard . K-2

XV

xvi

Notes

Chapter 1. The Versions of BASIC

<
b
=
<%
O
Z
w
Contents
The Versions of BASICccccectecreenne 1-3
Cassette BASICccccteeeecccrcnnannns 1-5
Cartridge BASICccciivtiennrnnenns 1-6

1-1

Notes

The Versions of BASIC

PCjr offers two different versions of the BASIC
interpreter:

<
lgs!
=
Z
®)
Z
»

o Cassette
o Cartridge

The two versions of BASIC are upward compatible;
that is, everything that Cassette BASIC does, Cartridge
BASIC does plus a little more. The differences
between the versions are discussed in more detail
below.

The BASIC commands, statements, and functions for
both versions of the BASIC interpreter are described in
detail in Chapter 4, “BASIC Commands, Statements,
Functions, and Variables.” Included in each description
is a section called Versions:, where we tell you which
versions of BASIC support the command, statement, or
function.

For example, if you look under “CHAIN Statement” in
Chapter 4, you will note that it says:

Versions: Cassette Cartridge Compiler
%k %k (* *)

The asterisks show which versions of BASIC support
the statement. This example shows that you can use
the CHAIN statement for programs written in the
Cartridge version of BASIC.

In this example you will notice that the asterisks under
the word “Compiler” are in parentheses. This means
that there are differences between the way the
statement works under the BASIC interpreter and the
way it works under the IBM Personal Computer BASIC
Compiler. The IBM Personal Computer BASIC
Compiler is an optional software package available

from IBM. If you have the IBM Personal Computer
BASIC Compiler, the IBM Personal Computer BASIC
Compiler manual explains these differences.

Cassette BASIC

The nucleus of BASIC is the Cassette version, which is
built into your PCjr in read-only memory. The amount
of storage you can use for such things as programs and
data depends on how much memory you have in your
PCjr. The number of “bytes free” is displayed after
you switch on the computer.

The only storage device you can use to save Cassette
BASIC information is a cassette tape recorder. You
cannot use diskettes with Cassette BASIC.

Some special features you will find in both versions of
BASIC are:

« An extended character set of 256 different
characters which can be displayed. In addition to
the usual letters, numbers, and special symbols, you
also have international characters like , ,and .
You will also find symbols which are commonly
used in scientific and mathematical applications,
such as Greek letters. There are also a variety of
other symbols.

« Graphics capability. You can draw points, lines, and
even entire pictures. The screen is all points
addressable in either low, medium, or high
resolution. More information on this can be found
in the next chapter.

« Special input/output devices. The PCjr has a
speaker which you can use to make sound. Also,
BASIC supports a light pen and joystick which help
make your programs more interesting as well as
more fun.

1-5

<
g3l
=
4
®)
Z
@)

Cartridge BASIC

Cartridge BASIC is housed on a separate cartridge that
can be inserted into either one of the slots located on
the front of the PCjr.

Cartridge BASIC, the most extensive form of BASIC
available on the PCjr, does everything that Cassette
BASIC does, and more. As with the other version, the
number of free bytes you have for programs and data is
displayed on the screen when you start BASIC.

Key features found in Cartridge BASIC and not found
in Cassette BASIC are the following:

Input/output to diskette in addition to cassette
(only if DOS is present). See Appendix B, “BASIC
Diskette Input and Output,” for special
considerations when using diskette files.

An internal “clock,” which keeps track of the date
and time, (only if DOS is present).

Asynchronous communications (RS232) is
supported. Refer to Appendix E for details.

Event trapping. A program can respond to the
occurrence of a specific event by “trapping”
(automatically branching) to a specific program line.
Events include: communications activity, a function
key being pressed, the button being pressed on a
joystick, play activity, and the light pen being
activated.

Additional screen modes. Six screen modes with 2,
4, or 16 colors available, depending on the screen
mode.

Advanced graphics. Additional statements are
CIRCLE, PUT, GET, PAINT, DRAW, VIEW,

WINDOW, PALETTE, and PALETTE USING.
These operations make it easier to create more
complex graphics.

Advanced music support. The PLAY statement
allows easy usage of the built-in speaker to create
musical tones and can support multi-voice tones to
your television or external speaker.

<
i
=
Z
o
Z
w

Communications. The TERM statement is used to
communicate with other systems.

1-8

Notes

Chapter 2. How to Start and Use BASIC

AN Contents
Getting BASIC Startedccc000eenn 2-
To Start Cartridge BASIC When Not Using
DOS i i e 2-4

To Start Cartridge BASIC While Using DOS . 2-5
Returning to DOS from Cartridge BASIC 2-5

TheKeyboardciivieiinecnccnns 2-6
Typewriter Keys 2-7
Lowercase Shift 2-7
Uppercase Shift 2-8
SpecialKeyso i 2-9
EnterKey, 2-9
Backspacecciiiiiinn.. 2-10

N ControlModecciviivvnnnnn. 2-10
Alternate Mode 2-11
SystemResetcciiinnnn 2-13
FunctionMode 2-14
Break Function 2-15

Pause Function 2-15

Print Screen Function 2-16

Echo Print Function 2-16

The BASIC Program Editor 2-17
Special Program Editor Keys 2-17

How to Make Corrections on the Current Line 2-29
Entering or Changing a BASIC Program 2-33
Changing Lines Anywhere on the Screen ... 2-35
Syntax Errors 0., 2-38

2-1

Modesof Operationcc0000ueune. 2-39

DirectMode 2-39
IndirectMode 2-40
Running a BASIC Program 2-40
Running a Program on Diskette 2-41
Running the SAMPLES Program 2-41
Running the COMM Program 2-43
Running a BASIC Program on Another
Diskette 2-47
Running a Program on Cassette 2-48
Options on the BASIC Command 2-50

Redirection of Standard Input and Standard Output 2-55

Getting BASIC Started

It’s easy to start BASIC on the PCjr.

If your computer is off:
1. Remove all cartridges.

2. If your PCjr has a diskette drive, remove any
diskette.

3. Switch on the computer.

The IBM logo screen appears while the computer is
checking itself. Then the words “Version C” and the
release number are displayed along with the number of
free bytes you have available.

If your computer is on:

1. Remove all cartridges.

2. If your PCjr has a diskette drive, remove any
diskette.

3. Press and hold down the Ctrl and Alt keys, then
press the Del key.

The words “Version C” and the release number are
displayed along with the number of free bytes available.

To Start Cartridge BASIC When Not Using

DOS

If your computer is off:

1. If your PCjr has a diskette drive, remove any
diskette.

2. Insert the Cartridge BASIC cartridge into either
slot.

3. Switch on the computer.

The words “Version J”’ and the release number are
displayed along with the number of free bytes available.
If your computer is on:

1. If your PCjr has a diskette drive, remove any
diskette.

2. Insert the Cartridge BASIC cartridge into either
slot. This causes your system to do a reset.

The words “Version J*’ and the release number are
displayed along with the number of free bytes available.

To Start Cartridge BASIC While Using DOS

1. Insert the Cartridge BASIC cartridge into either
slot. This causes your system to do a reset.

2. Enter the command BASIC or BASICA when the
DOS prompt (>) appears.

The words “Version J”’ and the release number are
displayed along with the number of free bytes available.

You can include options with the BASIC command
when you start Cartridge BASIC. To learn about these
options, see “Options on the BASIC Command” in this
chapter.

(@
£
4
)
o
>
O
3)

Returning to DOS from Cartridge BASIC
1. When BASIC prompts you for a command, type:

SYSTEM
then press the Enter key.

2. When you see the DOS prompt (>), DOS is ready
for you to give it a command.

For more information, see “SYSTEM Command” in
Chapter 4.

2-5

The Keyboard

u| Cﬂs}%é O
1%:“

=5
|
-

T

shit 1T z X c v B

J OO0

o

) OOOO0)

-
j—
(-

The keyboard is similar to a typewriter keyboard with
some special keys added. These special keys have
special functions. Two of these keys are the Alt and Fn
keys, which put the keyboard in Alternate mode or
Function mode.

All typewriter keys are typematic. This means that
each key repeats as long as you hold it down. The
typewriter keyboard and the special keys are explained
in more detail below.

Typewriter Keys

&
<
Z
o
oo
>
=
O

1
COOCCoO0000000
N s

e)
L=) L

Lowercase Shift

In Lowercase Shift, the typewriter area of the keyboard
looks and works much like a standard typewriter. The
numbers 0 through 9 are on the top row. The keyboard

also has some some special characters not found on a
standard typewriter, like [,], <, and >. The letters,

numbers, and symbols that the keyboard displays in
Lowercase Shift are shown in white above each key.

2-7

Uppercase Shift

To put the typewriter keyboard in Uppercase shift,
press and hold down one of the Shift keys while you
press one of the typewriter keys. In Uppercase shift,
the keyboard displays the letters, numbers, and symbols
that are shown in black above each key.

1 O B
1 O O
| B

| | B) - -

Another way of getting uppercase letters is with the
Caps Lock key.

After you press this key, you will continue to get capital
letters until you press it again. You can get lowercase
letters when in Caps Lock state by pressing and holding
one of the Shift keys. When you release the Shift key,
you’ll go back to Caps Lock state.

The Caps Lock key gives you only the uppercase
letters. To get the uppershift characters on the numeric
or symbol keys, you must use the Shift keys.

To get out of Caps Lock state, press the Caps Lock key
again.

Special Keys

Besides the typewriter keyboard, your PCjr keyboard

- has special keys. These keys are: Enter, Backspace,
Ctrl, Alt, Fn, Esc, Ins, Del, and the four cursor control
keys.

The Ctrl, Alt, and Fn keys put the keyboard into
Control, Alternate, and Function modes. These modes
are described later in this chapter. The Esc, Ins, Del,
and the four cursor control keys are used for editing
programs. These keys are described in “The BASIC
Program Editor’ later in this chapter.

Enter Key

COO0O0O00000000!
COOO000000000E
o 1
S OO00000000 (0 OO

OC— D 0ooo O

‘ The key shaped like a backwards L is the Enter key.
AN You usually have to press this key to enter information
into the computer.

Backspace

4
Backspace

1 O B A
S N O
S s O S o
S O O e
(S S S D

O

The Backspace key behaves somewhat differently from
the Backspace key on a typewriter. It not only
backspaces, it erases what you’ve typed as well. If you
use the Cursor Left key to backspace, you will not
erase what you’ve typed. Refer to “The BASIC
Program Editor” later in this chapter.

Control Mode

2-10

N N 6

1 B

(N O A o
| | B B B N B

OC——J 000 O

The Ctrl key puts the keyboard in Control mode. Use
the Ctrl key like the Shift keys. That is, press and hold
the Ctrl key, then press the desired key. Then you can
release both keys.

The Ctrl key is used to enter certain codes and
characters not otherwise available from the keyboard.

For example, Ctrl-G is the bell character. When this
character is printed, the speaker beeps. The command
“Ctrl-G” means that you press and hold the Ctrl key,
then press the G key.

You also use the Ctrl key together with other keys to
edit programs with the program editor.

Alternate Mode

c
&
Z
o
™
>
%
O

The Alt key puts the keyboard in Alternate mode. Use
the Alt key like the Shift keys. That is, press and hold
the Alt key, then press the desired key. Then you can
release both keys.

The Alt key lets you enter BASIC statement keywords
easily. You can enter an entire BASIC keyword with a
single keystroke. The BASIC keyword is typed when
the Alt key is held down while one of the alphabetic
keys A-Z is pressed.

2-11

2-12

Keywords associated with each letter are summarized
below.

A AUTO N NEXT
B BSAVE O OPEN
C COLOR P PRINT
D DELETE Q (no word)
E ELSE R RUN

F FOR S SCREEN
G GOTO T THEN
H HEXS$ U USING
I INPUT V VAL

J (no word) W WIDTH
K KEY X XOR

L LOCATE Y (no word)
M MOTOR Z (no word)

The Alt key also lets you display the symbols bordered
in blue on your keyboard. To display these symbols,
press and hold the Alt key while pressing a key with a
blue border.

The Alt key is also used with the number keys to enter
characters not found on the keys. This is done by

holding down the Alt key and typing the three-digit
ASCII code for the character. {gee Appendix G,

“ASCII Character Codes” for a complete list of ASCII
codes.)

Vamm

System Reset

The Alt key has a special use when combined with the
Ctrl and Del keys.

c
4
z
o
w
>
*
O

If the computer power is on, pressing Alt-Ctrl-Del
causes a System Reset. This is similar to switching the
computer from off to on. You must press the Alt and
Ctrl keys (in either order) and hold them down, then

Bress the Del ke¥i Then you can release all three keys.
oing a System Reset with these keys is preferable to

flipping the power switch off and on again, because the
system restarts faster.

2-13

Function Mode

2-14

1 O D A
1 O R A
1 A A O o

) B B O N, 0
OC——3J 000 O

The Fn key puts the keyboard in Function mode. To
use Function mode, press and release the Fn key, then
press a key that has a function assigned to it. The keys
bordered in green have already been assigned some
frequently used functions. You may change the
functions assigned to the numeric keys if you wish.

You do not need to hold down the Fn key while you
press another key.

You use the function keys:

e As “soft keys.” That is, you can set each key to
automatically type any sequence of characters. To
change the function assigned to a numeric key or to
assign a function:to a new key, refer to “KEY
Statement” in Chapter 4.

e As program interrupts in Cartridge BASIC, through
use of the ON KEY statement. See “ON KEY(n)
Statement” in Chapter 4.

You should be aware of some of the functions assigned
to the keys bordered in green. These are described
below and in ‘“‘Special Program Editor Keys” in this
chapter.

Break Function

D COOODOOOOE 3 D)
| N S N

Pressing the Fn key and then the Break key interrupts
program execution at the next BASIC instruction and
returns to BASIC command level. It is also used to exit
AUTO line numbering mode.

Pause Function

1 O O N
1 B B N |
S O NN D O
Ot— J 000 O

Pressing the Fn key and then the Pause key puts the
computer in a pause state. This can be used to
temporarily halt printing or program listing. The pause
continues until any key, other than the “shift” keys, the
Ins key, or Fn/Break, is pressed.

2-15

e
Z
V4
@
oo
>
L
O

2-16

Print Screen Function

1) 5 O O
| S O O
1 B J
| N
O Ct————3 000 O

Pressing the Fn key and then the PrtSc key causes a
copy of what is displayed on the screen to be printed on
the printer. Characters which are not recognized by the
printer are printed as blanks.

Another way to get a printed copy of your screen is to
use the Echo Print function.

Echo Print Function

@@mr@@@@@@@@@ -
B 0 O
S B -
| | S B S O, N
() S S |

Pressing the Fn key and then the Echo key serves as an
on-off switch allowing text sent to the screen to also be
sent to your system printer. Press the Fn key and then
press the Echo key to print the text that is on the
screen. Press both keys again to stop printing.

In BASIC, use the Fn/PrtSc keys to get a printed copy
of the screen.

The BASIC Program Editor

Any line of text typed while BASIC is at the command
level is processed by the BASIC program editor. The
program editor is a ‘“screen line editor.” That is, you

A~ can change a line anywhere on the screen, but you can
only change one line at a time. The change will only
take effect if you press Enter on that line.

The program editor can save you time during program
development. To understand how it works, we suggest
you enter a sample program and practice using all of the
edit keys. The best way for you to get a “feel” for the
-editing process is to try editing a few lines while
studying the information that follows.

As you type things on your computer, you’ll notice a
blinking underline or box appearing just to the right of
- the last character you typed. This line or box is called
the cursor. It marks the position at which the next
character is.to be typed, inserted, or deleted.

N ‘
Special Program Editor Keys

You use the four cursor control keys, the Backspace
key, and the Ctrl key to move the cursor to a location
on the screen, insert characters, or delete characters.
The keys and their functions are shown on the next

pages.

2-17

JISvVd ONISN

2-18

Key(s)

Function

(Cursor Up)

Y s
o
o
o s s
o I —

Moves the cursor one position up.

b

(Cursor Down)

| O O O

QQQQQ@Q@@Q@B -

|

N B B 6 -Q
o Y —

Moves the cursor one position down.

Key(s)

Function

. SR,

(Cursor Left)

=

COO0OE0E00000E
EQQQQQQQ@@Q@Q%ﬂjf
= COO0OOC00000CJE)
— ODOCO0OOOO) S0

ODC—— 000 O

Moves the cursor one position left. If the
cursor advances beyond the left edge of the
screen, the cursor will move to the right side
of the screen on the preceding line.

i

(Cursor Right)

COoOOOoCOCOCOoO00cIo |
COoOOO0O00O0000
I e
o O)y

(Y ——

Moves the cursor one position right. If the
cursor advances beyond the right edge of
the screen, the cursor will move to the left
side of the screen on the next line

down.

2-19

e
<
z
@
oo
>
Z
O

Key(s) Function

Fn / Home @ @

S B O O 5 5

COOOOOOOCO0O00000)

1N D A A B O

| N B N B B
OC——J000 O

y

Moves the cursor to the upper left-hand
corner of the screen.

. @ @

5 |y O 5 | e
CIDOOOOCOO0000E)
S B O B O -
| S S B |) —py
Or— 000 O

Clears the screen and positions the cursor in
the upper left-hand corner of the screen.

2-20

Key(s)

Function

Ctrl - PgDn

COoOOoOCO00000C
COOC0000000
o o

OCt——9 000 O

o

Moves the cursor right to the next word. A
word is defined as a character or group of
characters which begins with a letter or
number. Words are separated by blanks or
special characters. So, the next word will be
the next letter or number to the right of the
cursor which follows a blank or special
character.

For example, suppose the following line is
on the screen:

LINE (L1,LOW2)-(MAX,48) ,3, BF

As you can see, the cursor is presently in the
middle of the word LOW2. If we press Next
Word (Ctrl-Cursor Right), the cursor will
move to the beginning of the next word,
which is MAX:

LINE (L1,LOW2)-(MAX,48) ,3 , BF

If we press Next Word again, the cursor will
move to the next word, which is the number
48:

LINE (L1,LOW2)-(MAX,48) ,3, BF

2-21

c
Z
z
Qo
=
>
&
O

2-22

Key(s)

Function

Ctrl - PgUp

SDOO0DO0000000)
o
o oy
(e e—1 |

Moves the cursor left to the previous word.
The previous word will be the letter or
number to the left of the cursor preceded by
a blank or special character.

For example, suppose we have:
LINE (L1,LOW2)-(MAX,48) ,3, BF_

If we press Previous Word (Ctrl-Cursor
Left), the cursor moves to the beginning of
the word BF:

LINE (L1,LOW2)-(MAX,48) ,3, BF

When we press Previous Word again, the
cursor moves to the previous word, which is
the number 3:

LINE (L1,LOW2)-(MAX,48) ,3

And if we press it twice more, the cursor
will back up first to the number 48, then to
the word MAX:

LINE (L1,LOW2)-(MAX,48) ,3, BF

Key(s) Function

Fn / End

1 B B A A
| S S

o
1z
Z
o
w
>
%
O

Moves the cursor to the end of the logical
line. Characters typed from this position are
added to the end of the line.

Ctrl - Fn / End

Erases to the end of logical line from the
current cursor position. All physical screen
lines are erased until the last Enter is found.

2-23

2-24

Key(s)

Function

Ins

COO0O00O000000 o
[S §
(N
S S B e | ey
Oc———— OO0 O

Sets Insert mode. If Insert mode is off, then
pressing this key will turn it on. If Insert
mode is already on, then you will turn it off
when you press this key. When you’re in
Insert mode, the cursor covers the lower
half of the character position.

When Insert mode is on, characters above
and following the cursor move to the right
as typed characters are inserted at the
current cursor position. After each
keystroke, the cursor moves one position to
the right. Line folding occurs. That is, as
characters advance off the right side of the
screen they return on the left of the
following line.

When Insert mode is off, any characters
typed replace existing characters on the line.

Besides pressing the Ins key again, Insert
mode will also be turned off when you press
any of the cursor movement keys or the
Enter key.

Key(s)

Function

Del

o o

o

0 O O

o ' e
1 — | 0)

Deletes the character at the current cursor
position. All characters to the right of the

deleted character move one position left to
fill in the empty space.

Line folding occurs. That is, if a logical line
extends beyond one physical line, characters
on subsequent lines move left one position

to fill in the previous space, and the character
in the first column of each subsequent line
moves up to the end of the preceding line.

«—
Backspace

4—-
Backspace

1 N N O
1D N
N B A A o
| O
OCt——— 9000 O

Deletes the last character typed. That is, it
deletes the character to the left of the
cursor. All characters to the right of the
deleted character move left one position to
fill in the space. Subsequent characters and
lines within the current logical line move up

as with the Del key.

2-25

o
&
Z
o
w
>
%
O

2-26

Key(s)

Function

Esc

S S O
S O 0

1 s O 0 N (-

| S 0 B

OcC———JO00O0 O

When pressed anywhere in the line, erases
the entire logical line from the screen. The
line is not passed to BASIC for processing.
If it is a program line, it is not erased from
the program in memory.

Fn / Break

Returns the computer to command level,

without saving any changes that were made
to the current line being edited. It does not
erase the line from the screen like Esc does.

Function

1 B B

/SN D O

B B N o
| S B

OCt—— 000 O

Moves the cursor to the next tab stop. Tab
stops occur every eight character positions;
that is, at positions 1, 9, 17, etc.

When Insert mode is off, pressing the Tab
key moves the cursor over characters until it
reaches the next tab stop.

For example, suppose you have the
following line:

10 REM This is a remark

If you press the Tab key, the cursor will
move to the ninth position as shown:

10 REM This is a remark

If you press the Tab key again, the cursor
moves to the 17th position on the line:

10 REM This is a remark

2-27

c
%
Z
Q
w
>
~
O

2-28

Key(s)

Function

When Insert mode is on, pressing the Tab
key inserts blanks from the current cursor
position to the next tab stop.

Line folding occurs as explained under Ins.
For example, suppose we have this line:
10 REM This is a remark

If you press the Ins key and then the Tab
key, blanks are inserted up to position 17:

10REM Th is a remark

-~

How to Make Corrections on the Current Line

Lines of text typed while BASIC is at the command
level are processed by the program editor. You can use
any of the keys described in the previous section under
“Special Program Editor Keys.” BASIC is always at the
command level after the prompt Ok and until a RUN
command is given.

A logical line is a string of text which BASIC treats as a
unit. You can extend a logical line over more than one
physical screen line by simply typing beyond the edge
of the screen. The cursor will wrap to the next screen
line. You can also use a line feed (Ctrl-Enter). Typing
a line feed causes subsequent text to be printed on the
next screen line without your having to enter all the
blanks to move the cursor there. The line is not
processed; this only happens when you press Enter.

a
4
Z
Q
o)
>
Z
@)

Note that the line feed actually fills the remainder of
the physical screen line with blank characters. A line
feed character is not added to the text. These blanks
are included in the 255 characters allowed for a BASIC
line.

When the Enter key is finally pressed, the entire logical
line is passed to BASIC for processing.

Changing Characters

If you made a typing error, you can correct it by
moving the cursor to the position where the mistake
occurred, and typing the correct letters on top of the
wrong ones. Then, move the cursor back to the end of
the line using the Cursor Right or Fn/End keys, and
continue typing.

2-29

2-30

For example, suppose we want to load a program called
PROGRAM1, and we have typed the following:

LOAD "FROG_

You accidentally typed F instead of P. You can fix the
problem by pressing Previous Word (Ctrl-Cursor Left)
once, until the cursor is under the F:

LOAD "FROG
Then type P:
LOAD "PROG

Then press the Fn/End keys:

LOAD "PROG_

The error is fixed and you can continue typing:

LOAD "PROGRAM1"

Erasing Characters

If you notice you’ve typed an extra character in the line
you’re typing, you can erase (delete) it by using the Del
key. Use the Cursor Left or other cursor control keys
to move the cursor to the character you want to erase.
Press the Del key to erase the character. Then use the
Cursor Right or Fn/End keys to move the cursor back
to the end of the line, and continue typing.

For example, suppose you typed the following:
DEELETE

To erase the extra E, you press Cursor Left until the
cursor is under the extra E:

DEELETE

Then you press the Del key:

Then press the Fn/End keys:

and continue typing:

If the incorrect character was the character you just
typed, use the Backspace key to delete it. Then you can
simply continue typing the line as desired.

c
&
Z
o
o
>
wn
Ly
O

For example, suppose you have typed the following:

Simply press the Backspace key:

Adding Characters

If you see that you’ve omitted characters in the line
you’re typing, move the cursor to the position you want
to put the new characters. Press the Ins key to get into
insert mode. Type the characters you want to add. The
characters you type will be inserted at the cursor and
the characters above and following it will be pushed to
the right. As before, when you’re ready to continue
typing at the end of the line, use the Cursor Right or
Fn/End keys to move the cursor there and just
continue typing. Insert mode is turned off when you
use either of these keys.

2-31

2-32

For example, suppose you have typed the following:

LIS 10

You forgot the T in LIST. Press Cursor Left until the
cursor is under the space:

LIS 10
Then you press the Ins key and type the letter T:

LIST 10

Erasing Part of a Line

To break a line at the current cursor position, press the
Ctrl-Fn/End keys.

For example, suppose you have the following:

10 REM *** garbage garbage garbage
You have the cursor positioned under the g in the first
word garbage, so to erase the garbage press the
Ctrl-Fn/End keys.

10 REM ***

Cancelling a Line

To cancel a line that is in the process of being typed,
press the Esc key anywhere in the line. You do not
have to press Enter. This erases the entire logical line.

Entering or Changing a BASIC Program

For example, suppose you had this line:

(Vo]

THIS 1

A LINE THAT HAS NO MEANING_

Even though the cursor is at the end of the line, the
entire line is erased when you press Esc:

Any line of text that you type that begins with a
number is considered to be a program line.

=
<
Z
o
oo
>
Z
O

A BASIC program line always begins with a line
number, ends with an Enter, and may contain a
maximum of 255 characters, including the Enter. If a
line contains more than 255 characters, the extra
characters will be truncated when the Enter is pressed.
Even though the extra characters still appear on the
screen, they are not processed by BASIC.

BASIC keywords and variable names must be in
uppercase. However, you may enter them in any
combination of uppercase and lowercase. The program
editor converts everything to uppercase, except for
remarks, DATA statements, and strings enclosed in
quotation marks.

BASIC will sometimes change the way you enter
something in other ways. For example, suppose you
use the question mark (?) instead of the word PRINT
in a program line. When you later list the line, the ?
will be changed to PRINT with a space after it, since ?
is a shorthand way of entering PRINT. This expansion
may cause the end of a line to be broken if the line
length is close to 255 characters.

Warning: If your line reaches maximum length, the
255th character must be Enter.

2-33

2-34

Adding a New Line to the Program

Enter a valid line number (range is O through 65529)
followed by at least one non-blank character, followed
by Enter. The line will be saved as part of the BASIC
program in storage.

For example, if you enter the following:

This saves the line as line number 10 in the program.
Note that hello Dori is not a valid BASIC statement.
However, you will not get an error if you enter this line.
Program lines are not checked for proper syntax before
being added to the program. That only happens when
the program line is actually executed.

If a line already exists with the same line number, then
the old line is erased and replaced with the new one.

If you try to add a line to a program when there is no
more room in storage, you get an Out of memory error
and the line is not added.

Replacing or Changing an Existing Program Line

An existing line is changed, as indicated above, when
the line number of the line you enter matches the line
number of a line already in the program. The old line is
replaced with the text of the new one.

For example, if you enter:
10 this is a new line 10

The previous line 10 (hello Dori) is replaced with this
new line 10.

Deleting Program Lines

To delete an existing program line, type the line number
alone followed by Enter. For example, if you type:

10
and press enter, the line 10 is deleted from the program.
Or you may use the DELETE command to delete a

group of program lines. Refer to “DELETE
Command” in Chapter 4 for details.

c
2
Z
QO
w
>
Z
O

Note that if you try to delete a non-existent line, you
get an Undefined line number error.

Do not use the Esc key to delete program lines. Esc
causes the line to be erased from the screen only. If the
line exists in the BASIC program, it remains there.

Deleting an Entire Program

To delete the entire program that is currently in
memory, enter the NEW command (see “NEW
Command” in Chapter 4). NEW is usually used to
clear memory before entering a new program.

Changing Lines Anywhere on the Screen

To edit any line on the screen use the cursor control
keys (described under “Special Program Editor Keys”)
to move the cursor on the screen to the place requiring
the change. Then you can use any or all of the
procedures described previously to change, delete, or
add characters to the line.

If you want to modify program lines that do not happen
to be displayed at the moment, you can use the LIST
command to display them. List the line or range of
lines to be edited (see “LIST Command” in Chapter 4).

2-35

2-36

Position the cursor at the line to be edited and change
the line using the procedures already described. Press
Enter to store the modified line in the program. You
can also use the EDIT command to display the line you
want. Refer to “EDIT Command” in Chapter 4.

For example, you can duplicate a line in the program
this way: move the cursor to the line to be duplicated.
Then, change the line number to the new line number
by just typing over the numbers. When you press
Enter, both the old line and the new line are in the
program.

Or, you can change the line number of a program line
by duplicating the line as described above, then deleting
the old line.

A program line is never actually changed within the
BASIC program until you press Enter. Therefore,
when several lines need changes, it may be easier to
move around the screen making corrections to several
lines at once. When you’ve made all the changes, move
the cursor to the beginning of each changed line and
press Enter. By so doing, you store each changed line
in the program.

You do not have to move the cursor to the end of the
logical line before pressing Enter. The program editor
knows where each logical line ends and it processes the
whole line even if the Enter is pressed at the beginning
of the line.

Note: Use of the AUTO command can be very
helpful when you are entering your program.
However, you must exit AUTO mode by pressing
the Fn/Break keys before changing any lines other
than the current one.

Remember, changes made using these procedures only
change the program in memory. To save the program

with the new changes permanently, you should use the
SAVE command (see “SAVE Command” in Chapter
4) before entering a NEW command or leaving BASIC.

a
2
z
o)
oo
>
Z
O

2-37

Syntax Errors

2-38

When a syntax error is discovered while a program is
running, BASIC displays the line that caused the error
so you can correct it. For example:

Ok

10 A = 2%12

RUN

Syntax error in 10
Ok

10 A = 2%12

The program editor has displayed the line in error and
positioned the cursor under the digit 1. You can move
the cursor to the dollar sign ($) and change it to a plus
sign (+), then press Enter. The corrected line is now
stored in the program.

When you edit a line and store it back in the program
while the program is interrupted (as in this example)
the following happens:

o All variables and arrays are lost. That is, they are
reset to zero or null.

» Any files that were open are closed.
« You cannot use CONT to continue the program.

If you want to examine the contents of some variable
before making the change, press the Fn/Break keys to

return to command level. The variables are preserved
since no program line is changed. After you check

everything you need to, edit the line and rerun the
program.

Modes of Operation

Once BASIC is started, it displays the prompt Ok. Ok
means BASIC is ready for you to tell it what to do.
This state is known as command level. At this point,
you may talk to BASIC in either of two modes: the
direct mode or the indirect mode.

Direct Mode

Direct mode means you are telling BASIC to perform
your request immediately after the request is entered.
You tell BASIC to do this by not preceding the
statement or command with a line number. You can
display results of arithmetic and logical operations
immediately or store them for later use, but the
instructions themselves are not saved after they are
executed. This mode is useful for debugging as well as
for quick arithmetic operations that do not require a
complete program. For example:

s
Z
Z
o
o
>
=
O

Ok
PRINT 20+2
22
Ok

2-39

Indirect Mode

You enter programs using indirect mode. To tell
BASIC that the line you are entering is part of a
program, begin the line with a /ine number. The line is
then stored as part of the program in memory. The
program in storage begins when the RUN command is
entered. For example:

Ok
1 PRINT 20+2
RUN
22
0Ok

Running a BASIC Program

Two steps are involved in running a BASIC program
stored on a diskette, cassette or cartridge.

The first step is getting a copy of the program
transferred into the computer’s memory. This is called
loading the program and is done with the LOAD
command.

The second step is the actual performance of the
program’s instructions. This is called running the
program and is done with the RUN command.

2-40

Running a Program on Diskette

If you have the DOS Supplemental Programs diskette
that comes with DOS, let’s go through the sequence of
loading and running a program. You will use the
SAMPLES program on this diskette.

You must use the Cartridge BASIC cartridge if you
have a DOS system with a diskette drive.

Running the SAMPLES Program

c
2
Z
o
w
>
Z
9}

1. Make sure DOS is ready and A> is displayed on the
screen.

2. Insert the DOS diskette if it is not already in the
diskette drive.

3. Insert the Cartridge BASIC cartridge in either slot.
This causes your system to reset.

4. When the DOS prompt appears (>), type:
basic
and press the Enter key.
You see the BASIC prompt, Ok.

5. Now remove the DOS diskette and insert the DOS
Supplemental Programs diskette.

6. Type:
Toad "samples

and press the Enter key.

2-41

2-42

7. When you see Ok, type:

run

and press the Enter key.

When the following screen is displayed press the

space bar. ! ‘
4l IBM

Personal Computer
SAMPLES
Version 2.00
(C) Copyright IBM Corp 1982, 1983

\\» Press space bar to continue

8. Next you see the menu screen. You select the item
you want from a fixed number of choices, as you
would from a restaurant menu.

)N

ESC KEY — EXIT

ENTER LETTER OF PROGRAM

NOTE: A1l of the above programs

K require 64k if using BASICA

é SAMPLE PROGRAMS 1

A — MUSIC (64k)

B — ART (48k—Color/Graphics)

C — MORTGAGE (64k)

D — CIRCLE (BASICA—Color/Graphics)

E — DONKEY (BASICA—Color/Graphics)

F — PIECHART (BASICA—Color/Graphics)

G — BALL (BASICA—Color/Graphics)

H — COLORBAR (48k)

1 — SPACE (BASICA—Color/Graphics)

With your PCjr, you have at least 64K of memory
and either a color television or a Color/Graphics
Monitor, so you can choose any of the menu items if
you are using Cartridge BASIC.

Let’s try choice H—-COLORBAR. Type:

You do not need to press the Enter key. Follow
the directions on the screen to see the computer
display the different colors.

9. Return to the menu and select any of the other
items you want.

ar
&
Z
o
oo
>
=
O

10. When you have tried any or all of these programs,
press the Esc key. You see the BASIC prompt, Ok.
Type:

and press the Enter key.

This gets you back to DOS.

Running the COMM Program

A sample telecommunications program is also provided
on the DOS Supplemental Programs diskette. This
program lets you establish an asynchronous
communications link between your PCjr and another
PCjr, an IBM Series/1 computer, or two
communications network services.

This means that your computer can “talk” to another
computer or be part of a network service. Using a
network service is like being on a telephone “party
line.”

2-43

2-44

The COMM program will work only if you have the
necessary equipment, and subscriptions. If you need
help using external devices, consult your dealer.

You could also use the COMM program as a model for
writing your own telecommunications program.

Let’s look at the COMM program menu. (You can do
this even if you don’t plan to communicate with another
computer.) Follow these steps:

1. Make sure Cartridge BASIC is running and Ok is
displayed.

2. Insert the DOS Supplemental Programs diskette in
drive A if it is not already there.

3. Type:
load "comm
and press the Enter key.
4. Now type:
run
and press the Enter key.

5. The sample communications program menu is
displayed.

COMMUNICATIONS MENU)

Choose one of the following:

Description of program
Dow Jones/News Retrieval
IBM Personal Computer
Series/1

THE SOURCE

Other service

End program

Choice)

NO O P wMN =

6. You can use options 1 or 7 now, even if you are not
ready to establish communications.

7. Each choice (except 7) will lead you to another
menu screen.

When you’re through reading the information, press
the Fn/1 keys. The main menu is displayed again.

8. Type:
7

and press the Enter key.

You are back in Cartridge BASIC.

COMM Program Choices

Here’s a short description of the COMM program
choices.

1. Description of program

This choice displays a screen that describes the
COMM program.

2-45

=
&
Z
Qo
w
>
=~
O

2-46

. Dow Jones/News Retrieval

This choice lets you dial in to the Dow Jones/News
service.

You must have a Dow Jones/News service
subscription, as well as the communications
equipment, to run this choice.

. PCjr

This choice lets your PCjr communicate with
another PCijr.

Can also be used to let your PCjr communicate
with another PCjr.

. Series/1

This choice lets your PCjr communicate with an
IBM Series/1 computer, running either Realtime
Programming System (RPS) V5.1 or Event Driven
Executive (EDX) V3.0.

. THE SOURCE

This choice connects your computer to THE
SOURCE service.

To use this choice, you need to get a subscription to
THE SOURCE and purchase the necessary
communication equipment.

. Other service

This choice lets you describe the kind of
communications your PCjr will set up. You do this
if the choices that were made in the COMM
program are not correct for your case. Then you
can start the communications session using the
characteristics you’ve described.

7. End program

This option ends the COMM program and takes you
back into BASIC. You then see the BASIC prompt,
Ok.

Running a BASIC Program on Another
Diskette

For this example, let’s assume that the Cartridge
BASIC program you want to run is called BOWLING
and it is not on your DOS diskette.

=
<
z
@)
w
>
=
)

1. Make sure DOS is ready and A> is displayed.

2. Insert the DOS diskette if it is not already in the
diskette drive.

3. Insert the Cartridge BASIC cartridge int either slot.
This causes your system to reset.

4. When the DOS prompt appears (>), type:
basic
press the Enter key.
You will see the BASIC prompt, Ok.

5. Now remove the DOS diskette and insert the
diskette that contains the BOWLING file.

6. Type:
Toad "bowling

press the Enter key.

2-47

Note: If you do not supply an extension in the
command, BASIC will look for a file with the
extension .BAS. In this case, BASIC will look
for a file named BOWLING.BAS.

When you see the BASIC prompt again, type:
run
press the Enter key.

Now the BOWLING program will perform the
instructions in the program.

Running a Program on Cassette

2-48

Let’s assume that you have a program called BUDGET
on a cassette, and you have brought your machine up in
Cassette BASIC.

1.

After you see the BASIC prompt Ok, insert the
cassette and type:

load "budget

press the Enter key.

Note: BASIC looks for a BASIC program file
on the cassette tape. It skips over any data files.

When you see the BASIC prompt again, type:
run
press the Enter key.

Now the BUDGET program will perform the
instructions in the program.

There’s another way to run a program you have on
cassette.

1. Insert the cassette that has the program you want to
run.

2. Switch on the computer, if it is not already on, or
perform a system reset by pressing Alt-Ctrl-Del.

3. Press the Ctrl-Esc keys. This will cause the first
program on the cassette to be loaded and run.

When you use the Ctrl-Esc keys, the program that is

loaded and run is the first one on the cassette. If you
are already using the cassette when you press the

Ctrl-Esc keys, the next program on the cassette is
loaded and run.

a
2
z
o
oo
>
&
O

2-49

Options on the BASIC Command

2-50

You can include options on the BASIC command when
you start Cartridge BASIC. These options specify the
amount of storage BASIC uses to hold programs and
data, and for buffer areas. You can also ask BASIC to
immediately load and run a program.

Note: You must have DOS to use options on the
BASIC command.

These options are not required—BASIC works just fine
without them. So if you’re new to BASIC, you may
wish to skip over this section and go on to the next
section. Then you can refer to this section when you
become more familiar with BASIC and its capabilities.

The complete format of the BASIC command is:

BASICIA] [filespec] [<stdin] [>] [>stdout] [/F:files]
[/S:bsize] [/ C:combuffer] [/M:[max workspace] [, max
blocksize]]

filespec This is the file specification of a program
to be loaded and run immediately. It must
be a character string constant, but it
should not be enclosed in quotation marks.
filespec is expanded to allow the
specification of a path. It should conform
to the rules for specifying files described
under ‘“Naming Files” in Chapter 3. A
default extension of .BAS is used if none is
supplied and the length of the filename is
eight characters or less. If you include
filespec, BASIC proceeds as if a RUN
filespec command were the first thing you
entered once BASIC was ready. Note that
when you specify filespec, the BASIC
heading with the copyright notices is not
displayed.

N

<stdin A BASIC program normally receives its
input from the keyboard (standard input
device). Using <stdin allows BASIC to
receive input from the file you specify.
When you use <stdin, you must position it
before any switches. Refer to
“Redirection of Standard Input and
Standard Qutput” in this chapter for more
information.

>stdout A BASIC program normally writes its
output to the screen (standard output
device). Using >stdout allows BASIC to
write output to the file or device you
specify. When you use >stdout, you must
position it before any switches. Refer to
“Redirection of Standard Input and
Standard Output,” later in this chapter, for
more information.

c
2
Z
o
o
>
Z
O

Options beginning with a slash (/) are called switches.
A switch is a means used to specify parameters. The
following options on the BASIC command line are
switches.

/F-files This sets the maximum number of files
that may be open at any one time during
the running of a BASIC program. Each
file requires 188 bytes of memory for the
file control block, plus the buffer size
specified in the /S: switch. If the /F:
switch is omitted, the number of files
defaults to three. The maximum value for
BASIC is 15. The actual number of files
that may be open simultaneously depends
upon the value of the FILES= parameter
in the DOS configuration file,
CONFIG.SYS. The default, if not
specified in CONFIG.SYS, is FILES=38.
BASIC uses four files by default, leaving
four files for BASIC file I/O. Therefore,

2-51

2-52

/S:bsize

/F:4 is the maximum value that you can
give when FILES=8 and you want to be
able to have all files open at the same time.

This switch sets the buffer size for use
with random files. The record length
parameter on the OPEN statement may
not exceed this value. The default buffer
size is 128 bytes. The maximum value you
may enter is 32767 bytes.

/ C:combuffer

This sets the size of the buffer for
receiving data when using the
communications. The buffer for
transmitting data with communications is
always allocated 128 bytes. The maximum
value you may enter for the /C: switch is
32767 bytes. If the /C: switch is omitted,
256 bytes are allocated for the receive
buffer. If you have a high-speed line, we
suggest you use /C:1024. If you also have
the IBM internal modem option on your
system, both receive buffers are set to the
size specified by this switch. You may
disable RS232 support by using a value of
zero (/C:0), in which case no buffer space
will be reserved for communications.

/M:max workspace

This option sets the maximum number of
bytes that may be used as BASIC
workspace. BASIC is able to use a
maximum of 64K bytes of memory, so the
highest value you may set is 64K (hex
FFFF). You can use this option to reserve
space for machine language subroutines or
for special data storage. You may wish to
refer to “Memory Map”’ in Appendix I for
more detailed information on how BASIC

uses memory. If the /M: switch is
omitted, all available memory to a
maximum of 64K bytes is used.

max blocksize
If you intend to load programs above the
BASIC workspace, then use the optional
parameter max blocksize with the /M:
switch to reserve space for the workspace
and your programs. The parameter max
blocksize must be in paragraphs, which are
byte multiples of 16. When this parameter
is omitted, 4096 (&H1000) is assumed.
This allocates 65536 bytes for BASIC’s
DATA and STACK segment (because
4096 x 16 = 65536). If you want to
allocate 65536 bytes for the BASIC
workspace and 512 bytes for machine
language subroutines, use /M:,4112. This
gives you 4096 paragraphs for BASIC and
16 paragraphs for your routines.
Designating /M:,2048 means that BASIC
will allocate and use 32768 bytes (2048 x
16 = 32768) maximum for the BASIC
workspace. Designating /M:32000,2048
means that BASIC will allocate 32768
bytes maximum (2048 x 16 = 32768), but
use only the lower 32000. This leaves 768
bytes free for program space.

Note: The options files, max workspace, max
blocksize, bsize, and combuffer are all numbers that
may be either decimal, octal (preceded by &O), or
hexadecimal (preceded by &H).

2-53

JISVd ONISN

2-54

Examples of how to use the BASIC command:

BASIC PAYROLL.BAS
This starts Cartridge BASIC so that it uses
the defaults as described — all memory and
three files. The program PAYROLL.BAS is
loaded and run.

BASIC INVEN/F:6
Here we start Cartridge BASIC to use all
memory and six files, and load and run
INVEN.BAS. Remember, .BAS is the
default extension.

BASIC /M:32768
This command starts Cartridge BASIC so the
maximum workspace size is 32768 bytes.
That is, BASIC will use only 32K bytes of
memory. No more than three files will be
used at one time.

BASIC CHKWRR.TST/F:2/M:&H9000
This command sets the maximum workspace
size to hex 9000. This means Cartridge
BASIC can use up to 36K bytes of memory.
Also, file control blocks are set up for two
files, and the program CHKWRR.TST on the
diskette is loaded and run.

Redirection of Standard Input and
Standard Output

You can redirect your BASIC input and output.
Standard input, normally read from the keyboard, can
be redirected to any file you specify on the BASIC
command line. Standard output, normally written to
the screen, can be redirected to any file or device you
specify on the BASIC command line.

Note that this requires the use of DOS 2.10.

o
Z
Z
o
=
>
Z
o)

BASIC filespec [<stdin] [>] [>stdout]

Examples:

1. In the following example, data read by INPUT,
INPUTS, INKEYS$, and LINE INPUT will continue
to come from the keyboard. Data written by
PRINT will go into the DATA.OUT file.

BASIC MYPROG >DATA.OUT

2. In this example, data read by INPUT, INPUTS,
INKEY$, and LINE INPUT will come from the
DATALIN file. Data written by PRINT will
continue to go to the screen.

BASIC MYPROG <DATA.IN

3. In the next example, data read by INPUT, INPUTS,
INKEY$, and LINE INPUT will come from the
MYINPUT.DAT file and data written by PRINT
will go into the MYOUTPUT.DAT file.

BASIC MYPROG <MYINPUT.DAT >MYQUTPUT.DAT

2-55

4. In the last example, data read by INPUT, INPUTS,
INKEY$, and LINE INPUT will come from the
\SALES\JOHN\TRANS file. Data output
written by PRINT will be added to the
\SALES\SALES.DAT file.

BASIC MYPROG <\SALES\JOHM\TRANS. >>\SALES\SALES}R

Notes:

1. When redirected, all INPUT, INPUT$, INKEYS$,
and LINE INPUT statements read from the
specified input file, instead of from the keyboard.

2. When redirected, all PRINT statements write to the

specified output file or device, instead of to the
screen.

3. Error messages still go to standard output (the
screen). All files are closed, the program ends, and
control returns to DOS.

4. INKEYS$, INPUTS$, and file input from “KYBD:” N
still read from the keyboard.

5. File output to “SCRN:” still goes to the screen.

6. BASIC continues to trap keys when an ON KEY(n)
statement is specified.

7. The Fn/Echo keys do not give a printed copy of the
screen when standard output is redirected.

8. The Fn/Break keys go to standard output, close all
files, and return control to DOS.

2-56

Chapter 3. General Information about
Programming in BASIC

Contents

LineFormatcciiiteeencecconncns 3-3

Character Setccoeeeeeeeeeccccennns 3-4

ReservedWordscc0ieeenceccccens

2

ConStantscceeeeeeencnonacnceannns Z

Numeric Precision =
=

Variablesccc0vivinnncnnnccncnns —
How to Name a Variable E
How to Declare Variable Types o)
AITays ...ttt e

How BASIC Converts Numbers from One

Precisionto Another 3-20

Techniques for Formatting your Qutput 3-23

Numeric Expressions and Operators 3-25
Arithmetic Operators 3-25
Relational Operators 3-27
Logical Operators 3-30
Numeric Functions 3-34
Order of Execution 3-35

String Expressions and Operators 3-37
Concatenation0..... 3-37
String Functions 3-38

3-1

3-2

Inputand OQutputcocveeveennnns 3-39

Filescuiiiiiiiiiiiiiiiinn, 3-39
NamingFiles 3-40
Tree-Structured Directories 3-43

Usingthe Screen 3-48
Displayccciiiiiiiiiiiii.. 3-48
TextModeciievnn... 3-48
GraphicsModes 3-52

Attribute and Bits Per Pixel 3-53
Assigning Colors to Attributes 3-55

OtherI/OFeatures 3-56
Clock . .oviii it 3-57
Soundand Music 3-57
LightPen 3-57
Joysticks il 3-58

Line Format

Program lines in a BASIC program have the following
format:

=~ nnnnn BASIC statement[:BASIC statement...][' comment]

and they end with Enter. This format is explained in
more detail below.

Line Numbers

“nnnnn”’ shows the line number, which can be from one
to five digits. Every BASIC program line begins with a
line number. Line numbers are used to show the order
in which the program lines are stored in memory and
also as reference points for branching and editing. Line
numbers must be in the range 0 to 65529. A period (.)
may be used in LIST, AUTO, DELETE, and EDIT
commands to refer to the current line.

O4NI TVHINIO

BASIC Statements

A BASIC statement is either executable or
nonexecutable. Executable statements are program
instructions that tell BASIC what to do next while
running a program. For example, PRINT X is an
executable statement. Nonexecutable statements, such
as DATA or REM, do not cause any program action
when BASIC sees them. All the BASIC statements are
explained in detail in the next chapter.

You may, if you wish, have more than one BASIC
statement on a line, but each statement on a line must
be separated from the last one by a colon, and the total
number of characters must not exceed 255.

3-3

For example:

Ok
10 FOR I=1 TO 5: PRINT I: NEXT
RUN

O wN-

Comments

Comments may be added to the end of a line using the ’
(single end quote) to separate the comment from the
rest of the line.

Character Set

The BASIC character set consists of alphabetic
characters, numeric characters and special characters.
These are the characters which BASIC recognizes.

The alphabetic characters in BASIC are the uppercase
and lowercase letters of the alphabet. The numeric
characters are the digits O through 9.

3-4

The following special characters have specific meanings
in BASIC:

Character Name

blank

equal sign or assignment symbol

plus sign or concatenation symbol

minus sign

asterisk or multiplication symbol

slash or division symbol

backslash or integer division symbol

caret or exponentiation symbol

left parenthesis

right parenthesis

percent sign or integer type declaration

character

number (or pound) sign, or

double-precision type declaration

character

$ dollar sign or string type declaration
character

! exclamation point or single-precision type
declaration character

& ampersand

, comma

period or decimal point

single quotation mark (apostrophe), or

remark delimiter

H semicolon

: colon or statement separator

? question mark (PRINT abbreviation)

less than

greater than

double quotation mark or string delimiter

underline

VA>/*|+"

X

*

o
Sl
Z
mm
b
>
=
Z
rry
o

SV A

Many characters can be printed or displayed even
though they have no particular meaning to BASIC. See
Appendix G, “ASCII Character Codes,” for a complete
list of these characters.

3-5

Reserved Words

Certain words have special meaning to BASIC. These
words are called reserved words. Reserved words
include all BASIC commands, statements, function
names, and operator names. Reserved words cannot be
used as variable names.

You should always separate reserved words from data
or other parts of a BASIC statement by using spaces or
other special characters as allowed by the syntax. That
is, the reserved words must be appropriately delimited
so that BASIC will recognize them.

The following section lists all of the reserved words in

BASIC.

ABS CVD
AND CVI

ASC CVS
ATN DATA
AUTO DATES$
BEEP DEF
BLOAD DEFDBL
BSAVE DEFINT
CALL DEFSNG
CDBL DEFSTR
CHAIN DELETE
CHDIR DIM
CHR$ DRAW
CINT EDIT
CIRCLE ELSE
CLEAR END
CLOSE ENVIRON
CLS ENVIRONS$
COLOR EOF
CoOM EQV
COMMON ERASE
CONT ERDEV
COS ERDEVS$
CSNG

CSRLIN

ERL
ERR
ERROR
EXP
FIELD
FILES
FIX

FNxxxxxxxx

FOR
FRE
GET
GOSUB
GOTO
HEXS$
IF

IMP
INKEY$
INP
INPUT
INPUT#
INPUT$
INSTR
INT
INTERS$
IOCTL
IOCTLS$
KEY
KILL
LEFT$
LEN
LET
LINE
LIST
LLIST
LOAD
LOC
LOCATE
LOF
LOG
LPOS
LPRINT
LSET

MERGE
MID$
MKDIR
MKD$
MKI$
MKS$
MOD
MOTOR
NAME
NEW
NEXT
NOISE
NOT
OCT$
OFF

ON
OPEN
OPTION
OR
OuT
PAINT
PALETTE
PCOPY
PEEK
PEN
PLAY
PMAP
POINT
POKE
POS
PRESET
PRINT
PRINT#
PSET
PUT

RANDOMIZE

READ
REM
RENUM
RESET
RESTORE
RESUME

OANI TVHINIO

3-8

RETURN
RIGHTS$
RMDIR
RND
RSET
RUN
SAVE
SCREEN
SGN
SHELL
SIN
SOUND
SPACE$
SPC(
SQR
STEP
STICK
STOP
STR$
STRIG
STRING$
SWAP
SYSTEM
TAB(

TAN
TERM
THEN
TIME$
TIMER
TO
TROFF
TRON
USING
USR

VAL
VARPTR
VARPTRS$
VIEW
WAIT
WEND
WHILE
WIDTH
WINDOW
WRITE

XOR

Constants

Constants are the actual values BASIC uses during
execution. There are two types of constants: string (or
character) constants, and numeric constants.

A string constant is a sequence of up to 255 characters
enclosed in double quotation marks. Examples of string
constants:

"HELLO"
"$25,000.00"
“Number of Employees"

There are a few cases where BASIC knows that a
particular thing must be a string constant, and the
quotation marks are not required. These cases are
noted where appropriate in this book. Also, if you start
a string with a quotation mark, but forget to add the
end quotation mark, BASIC is smart enough to know
what the problem is and automatically assumes that a
quotation mark is at the end of the line. However, this"
produces correct results only when the string is the last
thing on the line.

Q
1
Z,
1
=
>
=
Z
i
©)

Numeric constants are positive or negative numbers. A
plus sign (+) is optional on a positive number.
Numeric constants in BASIC cannot contain commas.
There are five ways to indicate numeric constants:

Integer Whole numbers between -32768 and
+32767, inclusive. Integer constants
-do not have decimal points.

Fixed point Positive or negative real numbers, that
is, numbers that contain decimal
points.

3-10

Floating point

Positive or negative numbers
represented in exponential form
(similar to scientific notation). A
floating point constant consists of an
optionally signed integer or fixed
point number (the mantissa) followed
by the letter E and an optionally
signed integer (the exponent).
Double-precision floating point
constants use the letter D instead of
E. For more information, see the next
section, ‘“Numeric Precision.” The E
(or D) means “times ten to the power
of.” For example,

23E-2

Here, 23 is the mantissa, and -2 is

the exponent. This number could be
read as “23 times 10 to the negative
two power.””You could write it as 0.23
in regular fixed-point notation.

‘More examples:
235.988E-7

is a single-precision number that is
equivalent to .0000235988.

2359D6

is a double-precision number that is
equivalent to 2359000000.

Remember, when you read floating
point notation: the E indicates
single-precision calculation and the D
indicates double-precision calculation.

You can represent any number from
2.9E-39 to 1.7E+38 (positive or
negative) as a floating point constant.

Hex

Octal

Hexadecimal numbers with up to four
digits, with a prefix of &H.
Hexadecimal digits are the numbers 0
through 9, A, B, C, D, E, and F.
Examples:

&H76
&H32F

Octal numbers with up to six digits,
with the prefix &O or just &. Octal
digits are O through 7. Examples:

&0347
&1234

O
5
Z,
tr
=
>
3
Z
ri
©)

3-11

Numeric Precision

Numbers may be stored internally as either integer,
single-precision, or double-precision numbers.
Constants entered in integer, hex, or octal format are
stored in two bytes of memory and are interpreted as
integers or whole numbers. With double-precision
calculation, the numbers are stored with 17 digits of
precision and printed with up to 16 digits. With
single-precision calculation, seven digits are stored and
up to seven digits are printed, although only six digits
may be accurate. Seven digits are printed in single
precision because any intermediary processing uses all
seven digits. To ensure the accuracy of final results,
enter all seven digits before the final results when you
do interactive processing.

A single-precision constant is any numeric constant that
is written with:

« seven or fewer digits, or
« exponential form using E, or
« a trailing exclamation point (!)

A double-precision constant is any numeric constant
that is written with:

« eight or more digits, or
» exponential form using D, or

e a trailing number sign (#)

3-12

The following table summarizes the precision and range
of integers, single-precision numbers, and
double-precision numbers:

TYPE RANGE ACCURACY
Integer -32768 to 32767 Perfect
Single-precision 10E-38 to 10+38 | 6 decimal digits
floating point

Double-precision 10D-38 to 16 decimal
floating point 10D+38 digits

Examples of single- and double-precision constants:

Single-Precision

46.8
-1.09E-06
3489.0
22.5!

345692811
-1.09432D-06
3489.0#
7654321.1234

Double-Precision

3-13

o
1
2,
tr
=
>
t
Z
i
O

Variables

Variables are names used to represent values that are
used in a BASIC program. As with constants, there are
two types of variables: numeric and string. A numeric
variable always has a value that is a number. A string
variable may only have a character string value.

The length of a string variable is not fixed, but may be
anywhere from 0 (zero) to 255 characters. The length
of the string value you assign to it will determine the
length of the variable.

You may set the value of a variable to a constant, or
you can set its value as the result of calculations or
various data input statements in the program. In either
case, the variable type (string or numeric) must match
the type of data that is being assigned to it.

If you use a numeric variable before you assign a value
to it, its value is assumed to be zero. String variables
are initially assumed to be null; that is, they have no
characters in them and have a length of zero.

How to Name a Variable

3-14

BASIC variable names may be any length. If the name
is longer than 40 characters, however, only the first 40
characters are significant.

The characters allowed in a variable name are letters
and numbers, and the decimal point. The first
character must be a letter. Special characters which
identify the type of variable are also allowed as the last
character of the name. For more information about
types, see the next section, “How to Declare Variable
Types.”

A variable name may not be a reserved word, but may
contain imbedded reserved words. (Refer to “Reserved

Words,” earlier in this chapter, for a complete list of
the reserved words.) Also, a variable name may not be
a reserved word with one of the type declaration
characters ($, %, !, #) at the end. For example,

10 EXP = 5
is invalid, because EXP is a reserved word. However,
10 EXPONENT = 5

is okay, because EXP is only a part of the variable
name.

A variable beginning with FN is assumed to be a call to
a user-defined function (see “DEF FN Statement” in
Chapter 4).

How to Declare Variable Types

A variable’s name determines its type (string or
numeric, and if numeric, what its precision is).

O4ANI TVIINID

String Variables: String variable names are written
with a dollar sign ($) as the last character. For
example:

A$ = "SALES REPORT"

The dollar sign is a variable type declaration character.
It “declares” that the variable will represent a string.

Numeric Variables: Numeric variable names may
declare integer, single-, or double-precision values.
Although you may get less accuracy doing
computations with integer and single-precision
variables, there are reasons you might want to declare a
variable as a particular precision.

e Variables of higher precisions take up more room in

storage. This is important if space is a
consideration.

3-15

Arrays

3-16

« It takes more time for the computer to do arithmetic
with the higher precision numbers. A program with
repeated calculations will run faster with integer
variables.
The type declaration characters for numeric variables
and the number of bytes required to store each type of
value are as follows:

% Integer variable (2 bytes)

! Single-precision variable (4 bytes)
Double-precision variable (8 bytes)

Note: If the variable type is not explicitly declared,
it defaults to single-precision.

Examples of BASIC variable names follow.

PI# declares a double-precision value
MINIMUM! declares a single-precision value
LIMIT% declares an integer value

N$ declares a string value

ABC represents a single-precision value

Variable types may also be declared in another way.
The BASIC statements DEFINT, DEFSNG, DEFDBL
and DEFSTR may be included in a program to declare
the types for certain variable names. These statements
are described in detail under “DEFtype Statements” in
Chapter 4. All the examples which follow in this book
assume that none of these types of declarations have
been made, unless the statements are explicitly shown
in the example.

An array is a group or table of values that are referred
to with one name. Each individual value in the array is

called an element. Array elements are variables and can
be used in expressions and in any BASIC statement or
function which uses variables.

Declaring the name and type of an array and setting the
number of elements and their arrangement in the array
is known as defining, or dimensioning, the array.
Usually this is done using the DIM statement. For
example:

10 DIM B$(5)

This creates a one dimensional array named B$. All of
its elements are variable length strings, and the
elements have an initial null value.

Array B$ could be thought of as a list of character
strings, like this:

B$(0)
B$(1)
B$(2)
B$(3)
B$(4)
B$(5)

O4NI TVHINTO

The first string in the list is named B$(0).

20 DIM A(2,3)

This creates a two-dimensional array named A. Since
the name does not have a type declaration character,
the array consists of single-precision values. All the
array elements are initially set to O.

3-17

3-18

Array A could be thought of as a table of rows and

columns, like this:

A(0,0) A(0,1) A(0,2) A(0,3)
A(1,0) A(1,1) A(1,2) A(1,3)
A(2,0) A(2,1) A(2,2) A(2,3)

The element in the second row, first column, is called
A(1,0).

Each array element is named with the array name
subscripted with a number or numbers. An array
variable name has as many subscripts as there are
dimensions in the array.

The subscript indicates the position of the element in
the array. Zero is the lowest position unless you
explicitly change it (see “OPTION BASE Statement” in
Chapter 4). The maximum number of dimensions for
an array is 255. The maximum number of elements per
dimension is 32767.

If you use an array element before you define the array,
it is assumed to be dimensioned with a maximum
subscript of 10.

For example, if BASIC encounters the statement:

50 SIS(3)=500

and the array SIS has not already been defined, the
array is set to a one-dimensional array with 11
elements, numbered SIS(0) through SIS(10). You may
only use this method of implicit declaration for
one-dimensional arrays.

One final example:

Ok
10 DIM YEARS(3
20 YEARS(2,3)=
30 FOR ROW=0 T
40 FOR COLUMN=
50 PRINT YEARS
60 NEXT COLUMN
70 PRINT
80 NEXT ROW
RUN
0
0
0
0
Ok

04

t])
1982
03
0T
(ROW,COLUMN) ;

OOoOOoOOoO
OOoOOO
oO—=OO
oNO O

Note: A regular variable may have the same name
as an array variable because AS$ is different than any
element in array A$ (n,...).

OANI TVIINIO

3-19

How BASIC Converts Numbers from
One Precision to Another

3-20

When necessary, BASIC converts a number from one
precision to another. The following rules and examples
should be kept in mind.

o If a numeric value of one precision is assigned to a
numeric variable of a different precision, the
number is stored as the precision declared in the
target variable name.

Example:

Ok

10 A% = 23.42
20 PRINT A%
RUN

23

Ok

« Rounding, as opposed to truncation, occurs when
assigning any higher precision value to a lower
precision variable (for example, changing from
double- to single-precision values).

Example:

Ok

10 C = 55.8834567+#
20 PRINT C

RUN

55.88346

Ok

This affects not only assignment statements (e.g.,
1% =2.5 results in 1% =3), but also affects function
and statement evaluations (e.g., TAB(4.5) goes to
the fifth position, A(1.5) is the same as A(2), and
X=11.5 MOD 4 will result in a value of 0 for X).

o If you convert from a lower precision to a higher
precision number, the resulting higher precision

number cannot be any more accurate than the lower
precision number. For example, if you assign a
single-precision value (A) to a double-precision
variable (B#), only the first six digits of B# will be
accurate because only six digits of accuracy were
supplied with A. The error can be bounded using
the following formula:

ABS(B#-A) < 6.3E-8 * A

That is, the absolute value of the difference
between the printed double-precision number and
the original single-precision value is less than 6.3E-8
times the original single-precision value.

Example:

:
0k
10 A = 2.04 ;g
20 B# = A >
30 PRINT A;B# !
RUN =
2.04 2.039999961853027 Z
ry
Ok O

When an expression is evaluated, all the operands in
an arithmetic or relational operation are converted
to the same degree of precision, namely the most
precise operand. Also, the result of an arithmetic
operation is returned to this degree of precision.

Examples:
0k
10 D# = 6#/7
20 PRINT D#
RUN
.8571428571428571
Ok

The arithmetic is performed in double precision
and the result is returned in D# as a
double-precision value.

3-21

3-22

0k

10 D = 6#/7
20 PRINT D
RUN
.8571429
Ok

The arithmetic is performed in double precision
and the result is returned to D (single-precision
variable), rounded, and printed as a single-precision
value.

Logical operators (see ‘“Logical Operators” in this
chapter) convert their operands to integers and
return an integer result. Operands must be in the
range -32768 to 32767 or an Overflow error occurs.

Techniques for Formatting your Output

BASIC has built-in statements and functions that you
can use in your programs to display numbers in the

desired format and with the desired accuracy.

Use DEFDBL to define your constants and
variables as double-precision numbers. For

example:

Ok
10
20
30
40
50
60
RU

WIDTH

DEFDBL A

A=70#

PRINT A/1004#,

A=A+1

IF A<100# GOTO 40

N

.7
.75
.8
.85
.9
.95

Ok

80

.71
.76
.81
.86
.91
.96

.72
.77
.82
.87
.92
.97

.73
.78
.83
.88
.93
.98

.74
.79
.84
.89
.94
.99

When you want your program results displayed in

decimal notation, use the PRINT USING and

LPRINT USING statements. These statements let
you choose the format in which the results will be
printed or displayed. For example, to print up to
three digits to the left of the decimal point and only

one to the right, you might try the following:

3-23

O4NI TVIINID

3-24

Ok

10 WIDTH 80
20 N=100.4
30 PRINT USING "###.# ";N;
40 N=N-2.5
50 IF N>5 GOTO 30
RUN
100.4 97.9 95.4 92.9 90.4
87.9 85.4 82.9 80.4 77.9
75.4 72.9 70.4 67.9 65.4
62.9 60.4 57.9 55.4 52.9
50.4 47.9 45.4 42.9 40.4
37.9 35.4 32.9 30.4 27.9
25.4 22.9 20.4 17.9 15.4
12.9 10.4 7.9 5.4
Ok
Notes:
1. Avoid using both single- and double-precision

2;

numbers in the same formula because it reduces
accuracy.

Use double-precision transcendentals for greater
accuracy.

Numeric Expressions and Operators

. 9

« Relational %’

o Logical <

« Functions E

=

- Arithmetic Operators %

Operator

MOD

+, -

A numeric expression may be simply a numeric
constant or variable. It may also be used to combine
constants and variables using operators to produce a
single numeric value.

Numeric operators perform mathematical or logical
operations mostly on numeric values, and sometimes on
string values. We refer to them as “numeric’ operators
because they produce a value that is a number. The
BASIC numeric operators may be divided into the
following categories:

Arithmetic

The arithmetic operators perform the usual operations
of arithmetic, such as addition and subtraction. In
order of precedence, they are:

Operation Sample Expression
Exponentiation XAY
Negation -X

Multiplication, Floating X*Y, X/Y
Point Division

Integer Division X\Y
Modulo Arithmetic XMODY
Addition, Subtraction X+Y, X-Y

3-25

3-26

(If you have a mathematical background, you will
notice that this is the standard order of precedence.)
Although most of these operations probably look
familiar to you, two of them may seem a bit
unfamiliar—integer division and modulo arithmetic.

Integer Division

Integer division is denoted by the backslash (\). The
operands are rounded to integers (in the range -32768
to 32767) before the division is performed; the quotient
is truncated to an integer.

For example:

0Ok
10 A = 10\4
20 B = 25.68\6.99
30 PRINT A;B
RUN
2 3
0k
Modulo Arithmetic

Modulo arithmetic is denoted by the operator MOD. It
gives the integer value that is the remainder of an
integer division.

For example:

Ok

10 A =7 MOD 4
20 PRINT A
RUN

3

Ok

This result occurs because 7/4 is 1, with remainder 3.

Ok
PRINT 25.68 MOD 6.99
5

Ok
The result is 5 because 26/7 is 3, with the remainder 5.

(Remember, BASIC rounds when converting to
integers.)

Relational Operators

Operator
<>or
><

<

>

<=or
>= 0r

Relational operators compare two values. The values
may both be either numeric, or string. The result of the
comparison is either “true” (-1) or “false” (0). This

result is usually then used to make a decision regarding o)
program flow. (See “IF Statement” in Chapter 4.) %
i
S
Relation Tested Sample Expressions -
Pt
Equality X=Y E
5
Inequality X<>Y; X><Y
Less than X<Y
Greater than X>Y
Less than or equal to X<=Y, X=<Y
Greater than or equalto X>=Y, X=>Y

(The equal sign is also used to assign a value to a
variable. See “LET Statement” in Chapter 4.)

3-27

3-28

Numeric Comparisons

When arithmetic and relational operators are combined
in one expression, the arithmetic is always performed
first. For example, the expression:

X+Y < (T-1)/2

will be true (-1) if the value of X plus Y is less than the
value of T-1 divided by Z.

More examples:

Ok

10 X=100

20 IF X <> 200 THEN PRINT "NOT EQUAL"
ELSE PRINT "EQUAL"

RUN

NOT EQUAL
Ok

Here, the relation is true (100 is not equal to 200). The
true result causes the THEN part of the IF statement to
be executed.

Ok

PRINT 5<2; 5<10
0 -1

Ok

Here the first result is false (zero) because 5 is not less
than 2. The second result is -1 because the expression
5<10 is true.

String Comparisons

String comparisons can be thought of as “‘alphabetical.”
That is, one string is “less than” another if the first
string comes before the other one alphabetically.
Lowercase letters are ‘“‘greater than” their uppercase
counterparts. Numbers are ““less than” letters.

The way two strings are actually compared is by taking
one character at a time from each string and comparing
the ASCII codes. (See Appendix G, “ASCII Chaacter
Codes” for a complete list of ASCII codes.) If all the
ASCII codes are the same, the strings are equal.
Otherwise, as soon as the ASCII codes differ, the string
with the lower code number is less than the string with
the higher code number. If, during string comparison,
the end of one string is reached, the shorter string is
said to be smaller. Leading and trailing blanks are
significant. For example, all the following relational
expressions are true (that is, the result of the relational
operation is -1):

IIAAII < IIABII

"FILENAME" = "FILENAME"

le&ll > llx#ll

lle 1] > Ilell

llk " > " "

"SMYTH" < "SMYTHE"

B$ < "718" (where B$ = "12543")

All string constants used in comparison expressions
must be enclosed in quotation marks.

@
5!
Z
i
=
>
=
Z
Fri
o

3-29

Logical Operators

Logical operators perform logical, or Boolean,

operations on numeric values. Just as the relational

operators are usually used to make decisions regarding

program flow, logical operators are usually used to

connect two or more relations and return a true or false N
value to be used in a decision (see “IF Statement” in

Chapter 4).

A logical operator takes a combination of true-false
values and returns a true or false result. An operand of
a logical operator is considered to be “true” if it is not
equal to zero (like the -1 returned by a relational
operator), or “false” if it is equal to zero. The result of
the logical operation is a number which is, again, “true”
if it is not equal to zero, or “false” if it is equal to zero.
The number is calculated by performing the operation
bit by bit. This is explained in detail shortly.

The logical operators are NOT (logical complement),

AND (conjunction), OR (disjunction), XOR (exclusive

or), IMP (implication), and EQV (equivalence). Each A~
operator returns results as indicated in the following

table. (“T” indicates a true, or non-zero value. “F”

indicates a false, or zero value.) The operators are

listed in order of precedence.

3-30

NoT

X NOTX

T
F

F
T

AND

XTFFF

N

D L

OR

GENERAL INFO

ORY

XTTTF

PN

D L

XOR

XORY

XFTTF

PN

P

IMP

XTFTT

PN

P L

3-31

3-32

Some examples of ways to use logical operators in
decisions:

IF HE>60 AND SHE<20 THEN 1000

Here, the result is true if the value of the variable HE is
more than 60 and also the value of SHE is less than 20.

IF I>10 OR K<O THEN 50

The result is true if I is greater than 10, or K is less than
0, or both.

50 IF NOT P THEN 100

Here, the program branches to line 100 if NOT P is
true. Note that NOT P does not mean that “it is not
the case that P is true” or “P is false”’; it means “‘the
NOT of P is true,” which is something different. That
is, NOT P does not produce the same result as NOT
(P<>0). Refer to the next section, “How Logical
Operators Work,” for an explanation.

100 FLAG% = NOT FLAG%

This example switches a value back and forth from true
to false.

How Logical Operators Work

Operands are converted to integers in the range -32768
to +32767. (If the operands are not in this range, an
Overflow error results.) If the operand is negative, the
two’s complement form is used. This turns each
operand into a sequence of 16 bits. The operation is
performed on these sequences. That is, each bit of the
result is determined by the corresponding bits in the
two operands, according to the tables for the operator
listed previously. A 1 bit is considered ““true,” and a 0
bit is “false.”

Thus, you can use logical operators to test for a
particular bit pattern. For instance, the AND operator
may be used to “mask’ all but one of the bits of a
status byte at a machine 1/0 port.

The following examples will help show how the logical
operators work.

A = 63 AND 16

Here, A is set to 16. Since 63 is binary 111111 and 16
is binary 10000, 63 AND 16 equals 010000 in binary,
which is equal to 16.

B = -1 AND 8

Bis set to 8. Since -1is binary 11111111 11111111
and 8 is binary 1000, -1 AND 8 equals binary
00000000 00001000, or 8.

C=40R2

Here, C equals 6. Since 4 is binary 100 and 2 is binary
010, 4 OR 2 is binary 110, which is equal to 6.

TWOSCOMP = (NOT X) + 1

This example shows how to form the two’s complement
of a number. X is 2, which is 10 binary. NOT X is
then binary 11111111 11111101, which is -3 in
decimal; -3 plus 1 is -2, the complement of 2. That is,
the two’s complement of any integer is the bit
complement plus one.

Note that if both operands are equal to either 0 or -1, a
logical operator will return either O or -1.

3-33

OANI TVIINIO

Numeric Functions

3-34

A function is used like a variable in an expression to
call a predetermined operation that is to be performed
on one or more operands. BASIC has “built-in”
functions that reside in the system, such as SQR
(square root) or SIN (sine). All of BASIC’s built-in
functions are listed under “Functions and Variables” in
the beginning of Chapter 4. Detailed descriptions are
also included in the alphabetical section of Chapter 4.
You can also define your own functions using the DEF
FN statement. See “DEF FN Statement” in Chapter 4.

Order of Execution

The categories of numeric operations were discussed in
their order of precedence, and the precedence of each
operation within a category was indicated in the
discussion of the category. In summary:

1. Function calls are evaluated first

2. Arithmetic operations are performed next, in this
order:

A
unary -
*/

\
MOD
+, -

e e o

3. Relational operations are done next

4. Logical operations are done last, in this order:

Q
gs!
2,
trd
=
>
o
Z
e
O.

NOT
AND
OR
XOR
EQV
IMP

e Ao op

Operations at the same level in the list are performed in
left-to-right order. To change the order in which the
operations are performed, use parentheses. Operations
within parentheses are performed first. Inside
parentheses, the usual order of operations is
maintained.

3-35

3-36

Here are some sample algebraic expressions and their

BASIC counterparts.

Algebraic Expression

X+2Y

Y
X-7

XY
Z

X+Y

X(-Y)

BASIC Expression
X+Y*2
X-Y/Z

X*Y/Z

X+Y)/Z

(XA2)AY

XA(YAZ)

X*(-Y)

Note: Two consecutive operators must be separated
by parentheses, as shown in the X*(-Y) example.

String Expressions and Operators

A string expression may be simply a string constant or
variable, or it may combine constants and variables by
using operators to produce a single string value.

String operators are used to arrange character strings in
different ways. The two categories of string operators
are:

« Concatenation
« Functions

Note that although you can use the relational operators
=, <>, <, >, <=, and >= to compare two strings,
these are not considered to be ““string operators”
because they produce a numeric result, not a string
result. Read through “Relational Operators” earlier in
this chapter for an explanation of how you can compare
strings using relational operators.

Concatenation

Joining two strings together is called concatenation.
Strings are concatenated using the plus symbol (+).
For example:

Ok

10 COMPANY$ = "IBM"

20 TYPE$ = " PC jr"

30 FULLNAME$ = TYPE$ + " Computer"
40 PRINT COMPANY$+FULLNAME$

RUN

IBM PC jr Computer

Ok

3-37

O4NI TVIINIO

String Functions

3-38

A string function is like a numeric function except that
it returns a string result. A string function can be used
in an expression to call a predetermined operation that
is to be performed on one or more operands. BASIC
has “built-in”’ functions that reside in the system, such
as MIDS$, which returns a string from the middle of
another string, or CHR$, which returns the character
with the specified ASCII code. All of BASIC’s built-in
functions are listed under ‘“Functions and Variables” in
the beginning of Chapter 4. Detailed descriptions are
also included in the alphabetical section of Chapter 4.

You can also define your own functions using the DEF
FN statement. See “DEF FN Statement” in Chapter 4.

Input and Output

The remainder of this chapter contains information on
input and output (I/O) in BASIC. The following topics
are discussed:

« Files — using BASIC files, naming files, and using
devices

o Paths — using BASIC paths, naming paths, and using
devices

o Tree-structured directories — using tree-structured
directories

o The screen — displaying things on the screen, with
an emphasis on graphics

o Other features — using the clock, sound, light pen,
and joysticks

Files

A file is a collection of information which is kept
somewhere other than in the random access memory of
the PCjr. For example, your information may be
stored in a file on diskette or cassette. To use the
information, you must open the file to tell BASIC where
the information is. Then you may use the file for input
and/or output.

BASIC supports the concept of general device I/O
files. This means that any type of input/output may be
treated like I/0 to a file, whether you are actually using
a cassette or diskette file, or are communicating with
another computer.

3-39

OANI TVYINIO

3-40

File Number

BASIC performs I/O operations using a file number.
The file number is a unique number that is associated
with the actual physical file when it is opened. It
identifies the path for the collection of data. A file
number may be any number, variable, or expression
ranging from 1 to n, where n is the maximum number of
files allowed. The variable n is 4 in Cassette BASIC
and defaults to 3 in Cartridge BASIC with DOS
present. It may be changed up to a maximum of 15 by
using the /F: option on the BASIC command for
Cartridge BASIC (when DOS is present.)

Naming Files

The physical file is described by its file specification, or
filespec for short.

The file specification is a string expression of the form:

device:filename

The device name tells BASIC where to look for the file,
and the filename tells BASIC which file to look for on
that particular device. Sometimes you do not need both
device name and filename, so specification of device
and filename is optional. Note the colon (:) indicated
above. Whenever you specify a device, you must use
the colon even though a filename is not necessarily
specified.

Note: File specification for communications devices
is slightly different. The filename is replaced with a
list of options specifying such things as line speed.
Refer to “OPEN ""COM... Statement” in Chapter 4
for details.

Remember that if you use a string constant for the
filespec, you must enclose it in quotation marks. For
example,

LOAD "A:ROTHERM.ARK"

A path consists of a list of directory names separated by
backslashes (\). The path is a string expression of the
form:

device:path

The device name tells BASIC where to look for the file,
and the path tells BASIC which path to follow to get to
the directory that contains a particular file. Sometimes
you do not need both the device name and the path, so
specification of both the device and the path is optional.
Note the colon (:) indicated above. Whenever you
specify a device, you must use the colon even though

you may not specify a path. o
| ™
You can use paths for the following commands: E
=
BLOAD KILL OPEN 2,
BSAVE LOAD RMDIR —
CHAIN MERGE RUN Z
CHDIR MKDIR SAVE O
FILES NAME
Notes:

1. A path may not contain more than 63 characters.

2. If you place a device name anywhere other than
before the path, you will see a Bad filename error
message.

3. If you use a string constant for the path, you must
enclose it in quotation marks.

"A:\SALES\JOHN\REPORT" - is valid
\SALES\JOHN\A:.REPORT - will give an error

If a filename is included, it must also be separated from
the last directory name by a backslash. If a path begins

3-41

3-42

with a backslash, BASIC starts its search from the root
directory; otherwise, the search begins at the current
directory.

If the file is not in the current directory, you must

supﬁly BASIC with the path of directory names leading
to the current directory. The path you specify can be

either the path of names starting with the root
directory, or the path from the current directory.

Tree-Structured Directories

Previous releases of BASIC used a simple directory
structure that was adequate for managing files on
diskettes.

Cartridge BASIC gives you the ability to.better
organize and manage your diskettes by placing groups
of related files in their own directories.

For example, let’s assume that XYZ company has two
departments, sales and accounting. All of the
company’s files are kept on the computer’s diskette.
The organization of the file categories could be viewed
like this:

ROOT
/ \
/ \
SALES ACCOUNTING
/ | | \
/ | | \
M}KE I SHANNON CHEII.LE
| PAM |
reports reports

With Cartridge BASIC, you can create a directory
structure that matches the organization above. For
more information, refer to the commands MKDIR,
RMDIR and CHDIR in Chapter 4.

Directory Types

As in previous releases of BASIC, a single directory is
created on each diskette when you format it. That
directory is called the root directory. A root directory
on a diskette can hold either 64 or 112 files.

3-43

OANI TVYINIO

3-44

In addition to containing the names of files, the root
directory also contains the names of other directories
called sub-directories. Unlike the root directory, these
sub-directories are actually files and can contain any
number of additional files and sub-directories—limited
only by the amount of available space on the diskette.

The sub-directory names are in the same format as
filenames. All characters that are valid for filenames
are valid for a directory name. Each directory can also
contain file and directory names that also appear in
other directories.

For example, using our tree-structure above, the
directory called ACCOUNTING could possibly have a
sub-directory called PAM at the same time that SALES
has a sub-directory called PAM. Likewise, the
directory SALES could also have a sub-directory called
SHANNON.

Current Directory

Just as BASIC remembers a default drive, it can also
remember a default directory for each drive on your
system. This is called the current directory and is the
directory that BASIC will search if you enter a filename
without telling BASIC which directory the file is in.
You can change the current directory by issuing the
CHDIR command. (Refer to “CHDIR Command” in
Chapter 4.)

Device Name

The device name consists of up to four characters
followed by a colon (:). The following is a complete list
of device names, telling what device the name applies
to, what the device can be used for (input or output),
and which versions of BASIC support the device.

Device Name Chart
KYBD: Keyboard. Input only, all versions of BASIC.
SCRN: Screen. Output only, all versions of BASIC.

LPT1: Parallel printer. Output, all versions of BASIC.

COMMUNICATIONS DEVICES

COM1: IBM Internal Modem option or (RS232) Serial
Port when the Modem option is not installed.

COM2: RS232 Serial Port when the IBM Modem

option is installed. 0
52!
2
52|
STORAGE DEVICES &
=
CASI1: Cassette tape player. Input and output, all E
versions. e
o
A: First diskette drive. Input and output, Catridge
BASIC.

Refer to Appendix I, “Technical Information and Tips”
for information on which adapters are referred to by
the printer and communications device names.

3-45

3-46

Filename

The filename must conform to the following rules:
For cassette files:

« The name may not be more than eight characters
long.

o The name may not contain colons, hex 00s or hex
FFs (decimal 255s).

For diskette files, the name should conform to DOS
conventions:

« The name may consist of two parts separated by a
period (.):

name.extension

The name may be from one to eight characters
long. The extension may be no more than three
characters long.

If extension is longer than three characters, the extra
characters are truncated. If name is longer than
eight characters and extension is not included, then
BASIC inserts a period after the eighth character
and uses the extra characters (up to three) for the
extension. If name is longer than eight characters
and an extension is included, then an error occurs.

e Only the following characters are allowed in name
and extension:

A through Z

0 through 9

() {3}

@ # 9% % A & !
- [/ ~ !

Some examples of filenames for Cartridge BASIC are:
27THAL.DAD
VDL
PROGRAM1.BAS
$$@(").123
The following examples show how BASIC truncates
names and extensions when they are too long, as
explained above.
A23456789JKLMN becomes: A2345678.9JK
@HOME.TRUM10 becomes: @HOME.TRU

SHERRYLYNN.BAS causes an error

3-47

OANI TVHINIO

Using the Screen

3-48

BASIC can display text, special characters, points,
lines, or more complex shapes in color or in black and
white.

Display

The PCjr allows you to display text in 16 different
colors. (You can also display in just black and white by
setting parameters on the SCREEN or COLOR or
PALETTE statements.) Text refers to. letters,
numbers, and all the special characters in the regular
character set. You have the capability to draw pictures
with the special line and block characters. You can also
create blinking, reverse image, invisible, highlighted,
and underscored characters by setting parameters on
the COLOR statement. You also get complete graphics
capability to draw complex pictures. This graphics
capability makes the screen all points addressable in low,
medium and high resolution. This is more versatile than
the ability to draw with the special line and block
characters which you have in text mode. From now on,
the term graphics will refer only to this special
capability. The use of the extended character set with
special line and block characters will not be considered
graphics.

~

~

Character

position 1,

Text Mode

The screen can be pictured like this:

1‘[{% ______________ 7\

L]
Border
screen

Characters are shown in 25 horizontal lines across the
screen. These lines are numbered 1 through 25, from
top to bottom. Each line has 40 character positions (or
80, depending on how you set the width). These are
numbered 1 to 40 (or 80) from left to right. The
position numbers are used by the LOCATE statement,
and are the values returned by the POS(0) and
CSRLIN functions. For example, the character in the
upper left corner of the screen is on line 1, position 1.
WIDTH 80, requires that your system have 128K of
memory.

)
1
Z
2
=
>
3
Z
rri
©)

Characters are normally placed on the screen using the
PRINT statement. The characters are displayed at the
position of the cursor. Characters are displayed from
left to right on each line, from line 1 to line 24. When
the cursor would normally go to line 25 on the screen,
lines 1 through 24 are scrolled up one line, so that what

3-49

was line 1 disappears from the screen. Line 24 is then
blank, and the cursor remains on line 24 to continue
printing.

Line 25 is usually used for “soft key”’ display (see

“KEY Statement” in Chapter 4), but it is possible to

write over this area of the screen if you turn the “soft a
key” display off. The 25th line is never scrolled by

BASIC.

Each character on the screen is composed of two parts:
foreground and background. The foreground is the
character itself. The background is the “box” around
the character. You can set the foreground and the
background color for each character using the COLOR
statement. In Cartridge BASIC you can change
foreground color by using the PALETTE or PALETTE
USING statement.

You can use a total of 16 different colors.

0 Black 8 Gray

1 Blue 9 Light Blue A
2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 High-intensity White

The colors may vary depending on your particular
display device. Adjusting the color tuning of the
display may help get the colors to match this chart
better.

Most television sets or monitors have an area of

“overscan”’ which is outside the area used for

characters. This overscan area is known as the border.

You can also use the COLOR statement to set the color

of the border. N

3-50

The statements you can use to display information in
text mode are:

CLEAR PCOPY
CLS PRINT
COLOR SCREEN
LOCATE WIDTH
PALETTE WRITE
PALETTE USING

The following functions and system variables may be
used in text mode:

CSRLIN SPC
POS TAB

Another special feature you get in text mode and
graphics mode is multiple display pages. The PC jr
video memory is, by default, 16K. Video memory is
divided into segments called pages. The size of a page
is determined by the current screen mode. Text mode
uses only 2K or 4K per page, depending on the width.
So in a 16K memory, there would be 8 pages in 40
width, and 4 pages in 80 width. Refer to “SCREEN
Statement” in Chapter 4 for details. To use WIDTH 80
you must have 128K system memory.

9
5!
Z
m
=
>
=
Z
e
O

If you want to save some memory space because you
find you do not need all 16K of the video memory, or if
you find you need more space than 16K, the CLEAR
statement supplies features to help you. For instance,
since text mode only needs 2K or 4K depending on
your width, it is possible to recover 12K or 14K of
video memory with the CLEAR statement. If you
increase your video memory area, you can increase the
number of pages in the memory. This can be done
using the CLEAR statement. The CLEAR statement is
valid in all modes. For more information, refer to
“CLEAR Command” in chapter 4.

3-51

Graphics Modes

You can use BASIC statements to draw in three graphic

resolutions:

o low resolution: 160 by 200 points and 16 colors

o medium resolution: 320 by 200 points and 4 or 16
colors depending on the current SCREEN mode

« high resolution: 640 by 200 points and 2 or 4 colors
depending on current SCREEN mode

You can select which resolution you want to use with

the SCREEN statement.

The statements used for graphics in BASIC are:

CIRCLE
CLEAR
COLOR
DRAW
GET
LINE
PAINT
PALETTE

The graphics functions are:

PMAP
POINT

PALETTE USING
PCOPY

PRESET

PSET

PUT

SCREEN

VIEW

WINDOW

Attribute and Bits Per Pixel

For every point on the screen, there exists a numerical
value that describes the color of each point. This
numerical value is called an attribute. If you refer to
the COLOR statement where all available colors are
listed, you can see that the color blue is indexed by
attribute 1. Refer to “Assigning Colors to Attributes”
later in this section for more information.

The attribute is point information and varies depending
on the current screen mode. The variance is based on
the legal attribute range for each mode which is listed
below. The maximum attribute for each mode
determines how many bits are required to define the
attribute for a point. This is called the number of bits
per pixel. Consider the attribute range for screen 3
which is 0-15. In binary, four bits are required to
represent a decimal number as large as 15. For a screen
mode with an attribute range of 0-3, only two bits are
needed to represent these values. Mathematically, the
number of bits per pixel is equal to the log base 2 of the
total number of colors available. This concept is
particularly important when using the paint tiling
feature. See the “PAINT Statement” in chapter 4 for
more information.

Low Resolution: There are 160 horizontal points and
200 vertical points in low resolution. These points are
numbered left to right top to bottom, starting with 0.
That makes the upper left corner point (0,0), and the
lower right corner point (159,199). (If you are familiar
with the usual mathematical method for numbering
coordinates, this may seem upside-down to you). Low
resolution is set by a SCREEN 3 statement and is the
only low resolution mode. You may use 16 attributes
(0 to 15) in this mode. You can display text characters
in any combination of colors on the screen. When you
display text in low resolution, you get 20 characters on
a line, 25 lines.

3-53

O4NI TVHINIO

3-54

Medium Resolution: There are 320 horizontal points
and 200 vertical points in medium resolution. These
points are numbered from left to right and from top to
bottom, starting with zero. That makes the upper left
corner of the screen point (0,0), and the lower right
corner point (319,199). Medium resolution is set by a
SCREEN 1, SCREEN 4, or SCREEN 5 statement. Use
of medium resolution in SCREEN 5 requires 128K of
memory.

Medium resolution makes available the use of 4 or 16
attributes, depending on the current screen mode. It is
possible to choose 1 of 16 colors for each attribute with
the PALETTE or PALETTE USING statements. In
SCREEN 1, attribute 0 is always assumed to be the
background attribute. By default this is black but could
be changed with the PALETTE or PALETTE USING
Statements.

You may select one of two preset palettes for attributes
1,2 and 3 in screen 1. These palettes are a set of three
actual colors to be associated with the attributes 1, 2
and 3. If you change the palette with a COLOR
statement, all the colors on the screen change to match
the new palette. The COLOR statement is valid in all
screen modes but works differently in SCREEN 1 than
in the other graphics modes. You can display text in
any combination of colors on the screen. When you
display text in medium resolution you get 40 characters
on a line, 25 lines.

High Resolution: In high resolution there are 640
horizontal points and 200 vertical points. As in
medium resolution, these points are numbered starting
with zero so that the lower right corner point is
(639,199). High resolution is set by the SCREEN 2 or
SCREEN 6 statement. Use of high resolution in
SCREEN 6 requires 128K of memory.

In high resolution, SCREEN 2, there are only two
colors: black and white. Black is always the 0 (zero)
attribute, and white is always the 1 (one) attribute.

When you display text characters in high resolution,
you get 80 characters on a line, 25 lines. The
foreground attribute is 1 (one) and the background
attribute is 0 (zero); so characters will always be white
on black. High resolution, SCREEN 6, is different
from SCREEN 2 in that it allows the use of color. You
may use 4 attributes (0, 1, 2, 3) in this mode. These
attributes may be reassigned any of the 16 colors
through the PALETTE or PALETTE USING
statements.

Assigning Colors to Attributes

Suppose you were creating a paint by number picture.
You would first draw a border around the area to be
colored. You would then place a number in that area to
uniquely identify it. Once you had chosen the number,
it would never change. This number is the attribute
that uniquely identifies that area.

9
2
2
9}
=~
>
=
Z
i
O

Selecting a color for the attribute is done with the
PALETTE and PALETTE USING statements. For
example, to describe a sky, we would paint an area with
attribute one. We then would make the sky blue by
assigning color 1 (blue) to attribute one. We could
make the sky red by assigning color 4 to attribute 1.
Note that any point on the screen that has attribute one
will now appear red. You may use any of the 16
available colors for any one attribute by using the
PALETTE statement.

Specifying Coordinates

The graphic statements require information about
where on the screen you want to draw. You give this
information in the form of coordinates. Coordinates
are generally in the form (x,y), where x is the horizontal
position, and y is the vertical position. This form is

3-55

known as absolute form, and refers to the actual
coordinates of the point on the screen, without regard
to the last point referenced.

There is another way to show coordinates, known as
relative form. Using this form you tell BASIC where
the point is relative to the last point referenced. This
form looks like:

STEP (xoffset,yoffset)

You indicate inside the parentheses the offset in the
horizontal and vertical directions from the last point
referenced.

Initially, (after a change of screen in graphics mode,
WIDTH, or CLS) the “last point referenced” is the
point in the middle of the screen; that is (80,100) for
low resolution, (160,100) for medium resolution and
(320,100) for high resolution. Later graphics
statements may change the last point referenced. When
we discuss each statement in Chapter 4, we will
indicate what each statement sets as the last point
referenced.

This example shows the use of both forms of
coordinates:

100 SCREEN 1
110 PSET (200,100) 'absolute form
120 PSET STEP (10,-20) 'relative form

This sets two points on the screen. Their actual
coordinates are (200,100) and (210,80).

Other 1/0 Features

3-56

Clock

Cartridge BASIC provides the following statements and
system variables:

DATE$ Ten-character string which is the system
date, in the form mm-dd-yyyy. DOS required.

ON TIMER Traps time intervals.

TIMES$ Eight-character string which indicates the
time as hh:mm:ss. DOS required.

TIMER Indicates the number of seconds elapsed

since midnight or System Reset. DOS
required.

Sound and Music

You can use the following statements to create sound
on the IBM PCjr system:

BEEP Beeps the speaker.

SOUND Makes a single sound of given frequency
and duration.

NOISE Generates noise through external speaker.
ON PLAY Traps play activity.

PLAY Plays music as indicated by a character
string.

Light Pen

BASIC has the following statements and functions to
allow input from a light pen.

3-57

OANI TVYINIOD

PEN Function which tells whether or not the pen
was triggered and gives its coordinates.

PEN Statement which enables/disables light pen
function.

ON PEN Statement to trap light pen activity.

Joysticks

Joysticks can be useful in an interactive environment.
BASIC supports two 2-dimensional (x and y
coordinate) joysticks, or four one-dimensional paddles,
each of which has a button. (Four buttons are
supported only in Cartridge BASIC.) The following
statements and functions are used for joysticks:

STICK Function which gives the coordinates of the
joystick.

STRIG Function which gives the status of the
joystick button (up or down).

STRIG Statement which enables/disables STRIG
function.

ON STRIG Statement used to trap the button being
pressed.

STRIG(n) Statement which enables/disables the
joystick button interrupt.

3-58

Chapter 4. BASIC Commands,
Statements, Functions, and Variables

Contents

How to Use This Chapterccc00ute 4-3

Commandscccevveeeeeeeecccccncaces 4-6

Statementsccoeeeeeecececcccccccnse 4-9
Non-I/O Statements 4-9
I/OStatementscovvueenenn.. 4-14

Functions and Variablesccc0eeeee 4-19
Numeric Functions (return a numeric value) . 4-19
String Functions (return a string value) 4-23
ABSFunctioncouuuuunean. 4-25

SLNIWALV.LS

4-2

ASCFunctioncovvivuun... 4-26

ATNFunction 4-27
AUTOCommand 4-28
BEEP Statement 4-30
BLOADCommand 4-32
BSAVE Command 4-36
CALL Statement 4-38
CDBLFunction 4-40
CHAIN Statement 4-41
CHDIR Command 4-44
CHR$ Function 4-46
CINTFunction 4-48
CIRCLE Statement 4-49
CLEARCommand 4-53
CLOSE Statement 4-59
CLSStatement 4-61
COLOR Statement 4-63

The COLOR Statement in Text Mode 4-65
The COLOR Statement in Graphics

Modeoovivi.... 4-68
COM(n) Statement 4-71
COMMON Statement 4-73
CONTCommand 4-74
COSFunctionccouuu.. 4-76
CSNGFunction 4-77
CSRLIN Variable 4-78
CVI, CVS, CVD Functions 4-79
DATA Statement 4-81
DATES$ Variable and Statement 4-83
DEF FN Statement 4-85
DEF SEG Statement 4-88
DEFtype Statements 4-90
DEF USR Statement 4-92
DELETECommand 4-94
DIM Statement 4-96
DRAW Statement 4-98
EDITCommand 4-105
END Statement 4-106
EOF Function 4-107
ERASE Statement 4-108
ERR and ERL Variables 4-110
ERROR Statement 4-112

EXPFunction 4-114

FIELD Statement 4-115
FILESCommand 4-118
FIXFunction 4-121
FOR and NEXT Statements 4-122
FREFunction 4-127
GET Statement (Files) 4-129
GET Statement (Graphics) 4-131
GOSUB and RETURN Statements 4-134
GOTO Statement 4-136
HEX$ Function 4-138
IF Statement 4-139
INKEYS$ Variable 4-143
INPFunction 4-145
INPUT Statement 4-146
INPUT # Statement 4-149
INPUTS$ Function 4-151
INSTR Function 4-153
INT Function 4-154
KEY Statement 4-155
KEY(n) Statement 4-161
KILLCommand 4-163
LEFT$ Function 4-165
LENFunction 4-166 (:I
LET Statement 4-167 >
LINE Statement 4-169 ‘;
LINE INPUT Statement 4-173 Z
LINE INPUT # Statement 4-174 %"
LISTCommand 4-176 =
LLISTCommand 4-178 w
LOADCommand 4-179
LOCFunction 4-182
LOCATE Statement 4-184
LOFFunction 4-187
LOGFunction 4-189
LPOSFunction 4-191
LPRINT and LPRINT USING Statements 4-192
LSET and RSET Statements 4-194
MERGE Command 4-196
MID$ Function and Statement 4-198
MKDIR Command 4-201
MKI$, MKS$, MKD$ Functions 4-203

4-2.1

4-2.2

MOTOR Statement 4-205

NAMECommand 4-206
NEWCommand 4-208
NOISE Statement 4-209
OCT$Functioncocouvunn. 4-211
ON COM(n) Statement 4-212
ON ERROR Statement 4-215
ON-GOSUB and ON-GOTO Statements 4-217
ONKEY(n) Statement 4-219
ON PEN Statement 4-223
ON PLAY(n) Statement 4-225
ON STRIG(n) Statement 4-228
ON TIMER Statement 4-231
OPEN Statement 4-233
OPEN “COM... Statement 4-240
OPTION BASE Statement 4-247
OUT Statement 4-248
PAINT Statement 4-250
PALETTE Statement 4-257
PALETTE USING Statement 4-259
PCOPY Statement 4-262
PEEK Function 4-263
PEN Statement and Function 4-264
PLAY Statement 4-267
PLAY(n) Function 4-273
PMAP Function 4-275
POINT Function 4-277
POKE Statement 4-280
POSFunction 4-281
PRINT Statement 4-282
PRINT USING Statement 4-286
PRINT # and PRINT # USING Statements 4-292
PSET and PRESET Statements 4-295
PUT Statement (Files) 4-297
PUT Statement (Graphics) 4-299
RANDOMIZE Statement 4-304
READ Statement 4-307
REM Statement 4-309
RENUM Command 4-310
RESETCommand 4-312
RESTORE Statement 4-313
RESUME Statement 4-314

RETURN Statement 4-316

RIGHTS Function 4-317
RMDIR Command 4-318
RND Function 4-321
RUNCommand 4-323
SAVECommand 4-325
SCREEN Function 4-328
SCREEN Statement 4-330
SGNFunction 4-336
SINFunction 4-337
SOUND Statement 4-338
SPACES$ Function 4-343
SPCFunction 4-344
SQRFunction 4-345
STICK Function 4-346
STOP Statement 4-348
STR$ Function 4-350
STRIG Statement and Function 4-351
STRIG(n) Statement 4-353
STRINGS Function 4-355
SWAP Statement 4-356
SYSTEM Command 4-357
TABFunction 4-358
TANFunction 4-359 w
TERM Statement 4-360 =
TIMES$ Variable and Statement 4-368 =
TIMER Variable 4-370 2
TRON and TROFF Commands 4-371 <!
USR Function 4-373 Z
VALFunction 4-374 2]
VARPTR Function 4-375
VARPTRS$ Function 4-378
VIEW Statement 4-380
WAIT Statement 4-385
WHILE and WEND Statements 4-387
WIDTH Statement 4-389
WINDOW Statement 4-393
WRITE Statement 4-398
WRITE # Statement ~................. 4-399

4-2.3

4-2.4

How to Use This Chapter

This chapter has descriptions of all the BASIC
commands, statements, functions, and variables.
BASIC'’s built-in functions and variables may be used in
any program without further definition.

The first pages contain a list of all the commands,
statements, functions, and variables. These lists may be
useful as a quick reference. The rest of the chapter
describes each command, statement, function, and
variable in more detail.

The distinction between a command and a statement is
largely a matter of tradition. Commands, because they
generally operate on programs, are usually entered in
direct mode. Statements generally direct program flow
from within a program, and so are usually entered in
indirect mode as part of a program line. Actually, most
BASIC commands and statements can be entered in
either direct or indirect mode.

The description of each command, statement, function,
or variable in this chapter is formatted as follows:

Purpose: Tells what the command, statement, function, or
variable does.

7
=
>
=
i
=
tr1
Z
~
)

Versions: Indicates which versions of BASIC allow the
command, statement, function, or variable. For
example, if you look under “CHAIN Statement” in
this chapter, you will note that after Versions: it
says:

Cassette Cartridge Compiler
* k% (¥k)

The asterisks indicate which versions of BASIC
support the function. This example shows that you
can use the CHAIN statement for programs written
in the Cartridge version of BASIC.

4-3

Format:

Remarks:

Example:

4-4

In this example you will notice that the asterisks
under the word “Compiler” are in parentheses. This
means that there are differences between the way the
statement works under the BASIC interpreter and
the way it works under the IBM Personal Computer
BASIC Compiler. The IBM Personal Computer
BASIC Compiler is an optional software package
available from IBM. If you have the BASIC
Compiler, the IBM Personal Computer BASIC
Compiler manual explains these differences.

Shows the correct format for the command,
statement, function, or variable. A complete
explanation of the syntax format is presented in the
Preface. Keep these rules in mind:

e Words in capital letters are keywords and must be
entered as shown. They may be entered in any
combination of uppercase and lowercase letters.
BASIC always converts words to uppercase
(unless they are part of a quoted string, remark,
or DATA statement).

¢ You are to supply any items in lowercase italic
letters.

o Items in square brackets [] are optional.

e An ellipsis (...) indicates that an item may be
repeated as many times as you wish.

« All punctuation except square brackets (such as
commas, parentheses, semicolons, hyphens, or
equal signs) must be included where shown.

Describes in detail how the command, statement,
function, or variable is used.

Shows direct mode statements, sample programs, or
program segments that demonstrate the use of the
command, statement, function, or variable.

In the formats given in this chapter, some of the
parameters have been abbreviated as follows:

X0z represent any numeric expressions

i.j,k,m,n represent integer expressions

x3, y$ represent string expressions
v, v8 represent numeric and string variables,
respectively

If a single- or double-precision value is supplied where
an integer is required, BASIC rounds the fractional
portion and uses the resulting integer.

Functions and Variables: In the format description,
most of the functions and variables are shown on the
right side of an assignment statement. This is to remind
you that they are not used like statements and
commands. It is not meant to suggest that you are
limited to using them in assignment statements. You
can use them anywhere you would use a regular
variable, except on the left side of an assignment
statement. Any exceptions are noted in the particular
section describing the function or variable. A few of
the functions are limited to being used in PRINT
statements; these are shown as part of a PRINT
statement.

2]
<!
>
-
|
2
i
Z
or |
7

Commands

The following is a list of all the commands used in
BASIC. The syntax of each command is shown, but
not always in its entirety. You can find detailed
information about each command in the alphabetical
part of this chapter. You may also want to check the
next section in this chapter, ‘“Statements,” for a list of
the BASIC statements.

Command Action

AUTO number,increment
Generates line numbers
automatically.

BLOAD filespec,offset
Loads binary data (such as a
machine language program) into
memory.

BSAVE filespec,offset,length
Saves binary data.

CHDIR path Changes the current directory.

CLEAR m,s,v Clears program variables, and
optionally sets memory area.

CONT Continues program execution.

DELETE linel-line2
Deletes specified program lines.

EDIT line Displays a program line for changing.

FILES filespec Lists files in the diskette directory
that match a file specification.

KILL filespec Erases a diskette file.

LIST linel-line2,filespec
Lists program lines on the screen or
to the specified file.

LLIST line1-line2
Lists program lines on the printer.

LOAD filespec Loads a program file. Can include
the R option to run it.

MERGE filespec Merges a saved program with the
program in memory.

MKDIR path Creates a directory on the specified

diskette.

NAME filespec AS filename
Renames a diskette file.

NEW Erases the current program and
variables.

RENUM newnum,oldnum,increment
Renumbers program lines.

RESET Reinitializes diskette information.
Similar to CLOSE.

RMDIR path Removes a specified sub-directory
from an existing directory.

w
—
>
!
os!
=
tr
z
=
»

RUN filespec Executes a program. The R option
may be used to keep files open.

RUN line Runs the program in memory
starting at the specified line.

SAVE filespec Saves the program in memory under

the given filename. A or P option
saves in ASCII or protected format.

4-7

SYSTEM Ends BASIC. Closes all files and
returns to DOS.

TRON, TROFF Turns trace on or off.

Statements

This section lists all the BASIC statements
alphabetically in two categories: I/O (Input/Output)
Statements and Non-I/O Statements. The list tells
what each statement does and shows the syntax. For
the more complex statements the syntax shown may not
be complete. You can find detailed information about
each statement in the alphabetical portion of this
chapter, later on.

You may also want to look at the previous section,
“Commands,” for a list of the BASIC commands.

Non-I/0 Statements

Statement Action

CALL numvar(variable list)
Calls a machine language program.

CHAIN filespec Calls a program and passes
variables to it. Other options allow
you to use overlays, begin running
at a line other than the first line,
pass all variables, or delete an
overlay.

%)
<!
>
-
|
=
gl
4
—
»

COM(n) ON/OFF/STOP
Enables and disables trapping of
communications activity.

COMMON list of variables
Passes variables to a chained
program.

DATES = x$ Sets the date.

4-9

4-10

DEF FNname(arg list)=definition
Defines a numeric or string
function.

DEFtype ranges of letters
Defines default variable types,
where type is INT, SNG, DBL, or
STR.

‘DEF SEG=address Defines current segment of

memory.

DEF USRn=offset Defines starting address for
machine language subroutine n.

DIM Iist of subscripted variables
Declares maximum subscript values
for arrays and allocates space for
them.

END Stops the program, closes all files,
and returns to command level.

ERASE arraynames
Eliminates arrays from a program.

ERRORn Simulates error number n.

FOR variable=x TO y STEP z
Repeats program lines a number of
times. The NEXT statement closes
the loop.

GOSUB line Calls a subroutine by branching to
the specified line. The RETURN
statement returns from the
subroutine.

GOTO line Branches to the specified line.

IF expression THEN clause ELSE clause
Performs the statement(s) in the
THEN clause if expression is true
(nonzero). Otherwise, performs
the ELSE clause or goes to the next
line.

KEY ON/OFF/LIST
Displays soft keys, turns display
off, or lists key values.

KEY n, x$ Sets soft key n to the value of the
string x$.
KEY(n) ON/OFF/STOP

Enables/disables trapping of
function keys or cursor control
keys.

LET variable=expression
Assigns the value of the expression
to the variable.

MID$(v$,n,m)=y$ Replaces part of the variable v$
with the string y$, starting at
position n and replacing m
characters.

MOTOR state Turns cassette motor on if state is
nonzero, off if state is zero.

SLNAWILV.LS

NEXT variable Closes a FOR...NEXT loop. (see
FOR).

ON COM(n) GOSUB line
Enables trap routine for
communications activity.

ON ERROR GOTO line
Enables error trap routine
beginning at line specified.

4-11

ON n GOSUB line list
Branches to subroutine specified by
n.

ON n GOTO line list
Branches to statement specified by
n.

ON KEY(n) GOSUB line
Enables trap routine for the
specified function key or cursor
control key.

ON PEN GOSUB line
Enables trap routine for light pen.

ON PLAY(n) GOSUB line
Enables trap routine for play
activity.

ON STRIG(n) GOSUB line
Enables trap routine for joystick
button.

ON TIMER(n) GOSUB line
Enables trap routine for time
intervals.

OPTION BASE n Specifies the minimum value for
array subscripts.

PEN ON/OFF/STOP Enables/disables the light pen

function.

POKE n,m Puts byte m into memory at the
location specified by n.

RANDOMIZE n Reseeds the random number
generator.

REM remark Includes remark in program.

4-12

RESTORE line

Resets DATA pointer so DATA
statements may be reread.

RESUME line/NEXT/0

RETURN line

STOP

STRIG ON/OFF

Returns from error trap routine.
Returns from subroutine.

Stops program execution, prints a
break message, and returns to

command level.

Enables/disables joystick button
function.

STRIG(n) ON/OFF/STOP

Enables/disables joystick button
trapping.

SWAP variablel,variable2

TERM

TIMES$ = x$

v = TIMER

WAIT port,n,m

WEND

Exchanges values of two variables.

If you are using Cartridge BASIC
and have the proper communication
device (IBM Internal Modem or
external modem), then you can
enter into a Terminal Emulation
program via the TERM statement.
For more information refer to the
TERM statement in this Chapter.

v
-
>
-
g|
2
2!
Z
~
w

Sets the time.

Returns the number of seconds
since midnight or last System Reset.

Suspends program execution until
the specified port develops the
specified bit pattern.

Closes a WHILE...WEND loop
(see WHILE).

4-13

WHILE expression
Begins a loop which executes when
the expression is true.

I/0 Statements

4-14

Statement Action

BEEP Beeps the speaker. Options
enable/disable sound to the
internal/external speaker when used
in conjunction with SOUND
ON/SOUND OFF.

CIRCLE (x,y),r Draws a circle with center (x,y) and
radius r. Other options allow you to
specify a part of the circle to be
drawn, or to change the aspect ratio
to draw an ellipse.

CLOSE #f Closes a file.
CLS Clears the screen.

COLOR foreground,background,border
In text mode, sets colors for
foreground, background, and the
border screen.

COLOR foreground,background
In graphics modes 3-6 sets color for
foreground,background.

COLOR background,palette
In graphics mode, (SCREEN 1) sets
background color and palette of
foreground colors.

DATA list of constants
Creates a data table to be used by
READ statements.

DRAW string Draws a figure as specified by string.

FIELD #f,width AS stringvar...
Defines fields in a random file
buffer.

GET #f,number Reads a record from a random file.

GET (x1,y1)-(x2,y2),arrayname
Reads graphic information from
screen.

INPUT “prompt”;variable list
Reads data from the keyboard.

INPUT #f,variable list
Reads data from file f.

LINE (xl,yl)-(x2,y2)
Draws a line on the screen. Other
parameters allow you to draw a box,
fill in the box and do line-styling.

LINE INPUT “prompt”;stringvar

w

Reads an entire line from the ;

keyboard, ignoring commas or other [§%|

delimiters. E

tr

LINE INPUT #f,stringvar 5
w

Reads an entire line from a file.

LOCATE row,col Positions the cursor. Other
parameters allow you to define the
size of the cursor and whether it is
visible or not.

LPRINT list of expressions
Prints data on the printer.

LPRINT USING v$;list of expressions

Prints data on the printer using the
format specified by v$.

4-15

4-16

LSET stringvar=x$
Left-justifies a string in a field.

NOISE source,volume,duration
Generates noise through external
speaker.

OPEN filespec FOR mode AS #f
Opens the file for the mode
specified. You can also specify a
path to be followed. Another option
sets the record length for random
files.

OPEN mode,#f filespec,recl
Alternative form of preceding
OPEN.

OPEN “COMn:options” AS #f
Opens file for communications.

OUT n,m Outputs the byte m to the machine
port n.

PAINT (x,y),paint,boundary,background
Fills in an area on the screen defined
by boundary with the paint color.

PALETTE attribute,color
Allows control of hardware palette.

PALETTE USING arrayname (starting index)
Allows setting of all palette entries
with one statement.

PCOPY source,destination
Allows copying of one page to
another page.

PLAY string Plays music as specified by string.

PRINT list of expressions
Displays data on the screen.

PRINT USING v$;list of expressions
Displays data using the format
specified by v§$.

PRINT #f, list of exps
Writes the list of expressions to file
f.

PRINT #f, USING v$;list of exps
Writes data to file f using the format
specified by v$.

PRESET (x,y) Draws a point on the screen in
background color. See PSET.

PSET (x,y),attribute
Draws a point on the screen, in the
foreground color if attribute is not
specified.

PUT #f,number Writes data from a random file
buffer to the file.

PUT (x,y),array,action
Writes graphic information to the
screen.

w
—
>
=
g3l
=
trd
2
-
w

READ variable list
Retrieves information from the data
table created by DATA statements.

RSET stringvar=x$

Right-justifies a string in a field. See
LSET.

4-17

4-18

SCREEN mode,burst,apage,vpage,erase
Sets screen mode, color on or off,
display page, active page, and
amount of video memory to be
erased.

SOUND freq,duration,volume,voice
Generates sound through the
speaker.

VIEW (x1,y1)-(x2,x2),attribute,boundary
Defines a viewport within the actual
limits of the screen.

WIDTH size Sets screen width. Other options
allow you to specify the width of a
printer or a communications file.

WINDOW (x1,y1)-(x2,y2)
Defines transformation between
upper-left coordinates and
lower-right coordinates.

WRITE list of expressions
Outputs data on the screen.

WRITE #f, list of expressions
Outputs data to a file.

Functions and Variables

The built-in functions and variables available in BASIC
are listed below, grouped into two general categories:
numeric functions, or those which return a numeric
result; and string functions, or those which return a
string result.

Each category is further subdivided according to the
usage of the functions. The numeric functions are
divided into general arithmetic (or algebraic) functions;
string-related functions, which operate on strings; and
input/output and miscellaneous functions. The string
functions are separated into general string functions,
and input/output and miscellaneous string functions.

Numeric Functions (return a numeric value)

ARITHMETIC
Function Result
ABS(x) Returns the absolute value of x. E
!
ATN(x) Returns the arctangent (in radians) [s:!
of x. E
V4
CDBL(x) Converts x to a double-precision ﬁ
number.
CINT(x) Converts x to an integer by
rounding.
COS(x) Returns the cosine of angle x, where
X is in radians.
CSNG(x) Converts x to a single-precision
number.
EXP(x) Raises e to the x power.

4-19

FIX(x) Truncates x to an integer.

INT(x) Returns the largest integer less than
or equal to x.

LOG(x) Returns the natural logorithm of x.

RND(x) Returns a random number.

SGN(x) Returns the sign of x.

SIN(x) Returns the sine of angle x, where x

is in radians.
SQR(x) Returns the square root of x.

TAN(x) Returns the tangent of angle x,
where X is in radians.

STRING-RELATED
Function Result

ASC(x$) Returns the ASCII code for the first
character in x$.

CVI(x$), CVS(x$), CVD(x$)
Converts x$ to a number of the
indicated precision.

INSTR(n,x$,y$) Returns the position of first
occurrence of y$ in x$ starting at

position n.
LEN(x$) Returns the length of x$.
VAL(x$) Returns the numeric value of x$.

4-20

I/0 and MISCELLANEOUS

Function

CSRLIN

EOF(f)

ERL

ERR

FRE(x$)

INP(n)

LOC(f)

LOF(f)

LPOS(n)

Result

Returns the vertical line position of
the cursor.

Indicates an end of file condition on
file f.

Returns the line number where the
last error occurred (see ERR).

Returns the error code number of
the last error.

Returns the amount of free space in

memory not currently in use by
BASIC.

Reads a byte from port n.
Returns the “location” of file f:

e next record number of random
file

« number of sectors read or written
for sequential file

o number of characters in
communications input buffer

v
<!
>
=
i
2
i
Z
~
»

Returns the length of file f:

« number of bytes in sequential or
random file

« number of bytes free in
communications input buffer

Returns the carriage position of the
printer.

4-21

4-22

PEEK(n)

PEN(n) Reads the light pen.

PLAY(n) Returns the number of notes in the
music background buffer.

PMAP Maps actual and relative coordinates.

POINT(x,y) Returns the color of point (x,y)
(graphics mode).

POINT(n) Returns the value of the current x or
y coordinate.

POS(n) Returns the cursor column position.

SCREEN(row,col,z)
Returns the character or color at
position (row,col).

STICK(n) Returns the coordinates of a joy
stick.

STRIG(n) Returns the state of a joy stick
button.

USRn(x) Calls a machine language subroutine
with argument x.

TIMER Returns the number of seconds since
midnight or System Reset.

VARPTR(variable)
Returns the address of the variable
in memory.

VARPTR(#f) Returns the address of the file

Reads the byte in memory location
n.

control block for file f.

String Functions (return a string value)

GENERAL
Function Result
CHR$(n) Returns the character with ASCII

code n.

LEFT$(x$,n) Returns the leftmost n characters of
x$.

MID$(x$,n,m) Returns m characters from x$
starting at position n.

RIGHT$(x$,n) Returns the rightmost n characters of
x$.

SPACES$(n) Returns a string of n spaces.

STRING$(n,m) Returns the character with ASCII
value m, repeated n times.

STRING$(n,x$) Returns the first character of x$

repeated n times. E
I/0 and MISCELLANEOUS %
Function Result %
DATES$ Returns the system date. -
HEX$(n) Converts n to a hexadecimal string.
INKEY$ Reads a character from the

keyboard.

INPUT$(n,#f) Reads n characters from file f.
MKI$(x), MKS$(x), MKD$(x)

Converts x in indicated precision to
proper length string.

4-23

4-24

OCT$(n)

SPC(n)

STR$(x)

TAB(n)

TIME$

VARPTR$(v)

Converts n to an octal string.

Prints n spaces in a PRINT or
LPRINT statement.

Converts x to a string value.

Tabs to position n in a PRINT or
LPRINT statement.

Returns the system time.

Returns a three-byte string
containing the type of variable, and
the address of the variable in
memory.

ABS
Function

Purpose:

Versions:

Format:

Remarks:

Example:

Returns the absolute value of the expression x.

Cassette Cartridge Compiler

* %k %k * %k %k * % ¥

v = ABS(x)
x may be any numeric expression.

The absolute value of a number is always positive or
Zero.

Ok
PRINT ABS(7*(-5))
35
Ok

The absolute value of -35 is positive 35.

4-25

w
e
>
:
;
7

ASC

Function

Purpose: Returns the ASCII code for the first character of the

string x$.
Versions: Cassette Cartridge Compiler
% %k %k *kkk % %k %k

Format: v = ASC(x3$)
Remarks: xJ$ may be any string expression.

The result of the ASC function is a numerical value
that is the ASCII code of the first character of the
string x$. (See Appendix G, “ASCII Character
Codes,” for ASCII codes.) If x§ is null, an Illegal
function call error is returned.

The CHR$ function is the inverse of the ASC
function, and it converts the ASCII code to a
character.

Example:

Ok

10 X$ = "TEST"
20 PRINT ASC(X$)
RUN

84

Ok

This example shows that the ASCII code for a

capital T is 84. PRINT ASC("TEST") would work
just as well.

4-26

ATN

Function
Purpose: Returns the arctangent of x.
Versions: Cassette Cartridge Compiler
*kx *kx ko
Format: v = ATN(x)
Remarks:
x may be a numeric expression of any type.

The ATN function returns the angle whose tangent is
x. The result is a value in radians in the range -PI/2
to P1/2, where PI=3.141593. If you want to
convert radians to degrees, multiply by 180/PL

The value of ATN is calculated in single precision in
Cassette BASIC and in either single or double
precision in Cartridge BASIC.

Example: The first example below calculates the arctangent of
3. The second example finds the angle whose
tangent is 1. It is .7853983 radians, or 45 degrees.

Ok

PRINT ATN(3)
1.249046

Ok

10 RADIANS=ATN(1)

20 PI=3.141593: DEGREES=RADIANS*180/PI
30 PRINT RADIANS,DEGREES

RUN

.7853983 45

Ok

4-27

SINIWHLV.LS

AUTO

Command

Purpose:

Versions:

Format:

Remarks:

4-28

Generates a line number automatically each time you
press Enter.

Cassette Cartridge Compiler
%k %k %k * %k

AUTO [number] [,[increment]]

number is the number which will be used to start
numbering lines. A period (.) may be
used in place of the line number to
indicate the current line.

increment is the value that will be added to each
line number to get the next line number.

Numbering begins at number and increments each
subsequent line number by increment. If both values
are omitted, the default is 10,10. If number is
followed by a comma but increment is not specified,
the last increment specified in an AUTO command is
assumed. If number is omitted but increment is
included, then line numbering begins with 0.

AUTO is usually used for entering programs. It
spares you from having to type each line number.

If AUTO generates a line number that already exists
in the program, an asterisk (*) is printed after the
number to warn you that any input will replace the
existing line. However, if you press Enter
immediately after the asterisk, the existing line will
not be replaced and AUTO will generate the next
line number.

AUTO
Command

AUTO ends when you press the Fn key followed by
the Break key. The line in which the Fn and Break
keys are typed is not saved. After you press the Fn
and Break keys, BASIC returns to command level.

Note: When in AUTO mode, you may make
changes only to the current line. If you want to
change another line on the screen, be sure to exit
AUTO by first pressing the Fn key followed by
the Break key.

Example:
AUTO

This command generates line numbers 10, 20, 30,
40, ...

AUTO 100,50

This generates line numbers 100, 150, 200, ...

AUTO 500,

This generates line numbers 500, 550, 600, 650, ...
The increment is 50 since 50 was the increment in
the previous AUTO command.

7]
—
>
|
t
5
Z
=
»

AUTO ,20

This generates line numbers 0, 20, 40, 60, ...

4-29

BEEP

Statement
Purpose: Causes the speaker to beep.
Versions: Cassette Cartridge Compiler
ok *hok .

Format: = BEEP

BEEP ON

BEEP OFF
Remarks: The BEEP statement sounds the speaker at 800

4-30

Hertz (cycles per second) for 1/4 second. BEEP
has the same effect as:

PRINT CHR$(7);

In Cartridge BASIC the BEEP statement can be
used with the SOUND statement to specify where to
direct sound. It may be directed to the internal
speaker and/or the external speaker.

BEEP ON : SOUND OFF

This sends the sound source through the
television/external speaker and the internal speaker.

BEEP OFF : SOUND OFF

This sends the sound only through the internal
speaker.

BASIC will restore the machine to the default BEEP
ON/SOUND OF€F state when a RUN command is
executed.

———

BEEP
Statement

Refer to “SOUND Statem.nt” in this chapter for an
explanation of SOUND with the external speaker.

Example:
2430 IF X < 20 THEN BEEP
In this example, the program checks to see if X is

less than 20 (out of range). If it is, the computer
“complains” by beeping.

w
=,
»>
=
:
7

4-31

BLOAD

Command

Purpose: Loads a memory image file into memory.

Versions: Cassette Cartridge Compiler
- . *xx

Format: BLOAD filespec [,offset]

Remarks:

4-32

filespec is a string expression for the file
specification. It must conform to the
rules outlined under ‘“Naming Files” in
Chapter 3, otherwise a Bad file name
error occurs and the load is canceled.

offset is a numeric expression in the range 0 to
65535. This is the address at which
loading is to start, specified as an offset
into the segment declared by the last
DEF SEG statement.

If offset is omitted, the offset specified at BSAVE is
assumed. That is, the file is loaded into the same
location it was saved from.

When a BLOAD command is executed, the named
file is loaded into memory starting at the specified
location. If the file is to be loaded from the device
CASI1:, the cassette motor is turned on
automatically.

If you are using Cassette BASIC and the device
name is omitted, CAS1: is assumed. CAS1: is the
only allowable device for BLOAD in Cassette
BASIC and in Cartridge BASIC when DOS is not

BLOAD
Command

used. If you are using Cartridge BASIC with DOS
and the device name is omitted, the DOS default
diskette drive is assumed.

BLOAD is intended to be used with a file that has
previously been saved with BSAVE. BLOAD and
BSAVE are useful for loading and saving machine
language programs. (You may perform machine
language programs from within a BASIC program by
using the CALL statement.) However, BLOAD and
BSAVE are not restricted to machine language
programs. Any segment may be specified as the
target or source for these statements via the DEF
SEG statement. You have a useful way of saving
and displaying screen images: save from or load to
the screen buffer.

Warning: BASIC does not do any checking on
the address. That is, it is possible to BLOAD
anywhere in memory. You should not BLOAD
over BASIC'’s stack, BASIC’s variable area, or
your BASIC program.

Notes when using CAS1:

1. If you enter the BLOAD command in direct
mode, the file names on the tape will be displayed
on the screen followed by a period (.) and a
single letter indicating the type of file. This is
followed by the message Skipped for the files not
matching the named file, and Found when the
named file is found. Types of files and the
associated letter are:

.B for BASIC programs in internal format
(created with SAVE command)

4-33

2
<!
>
!
i
3
V4
~
%

BLOAD

Command

4-34

P for protected BASIC programs in internal
format (created with SAVE ,P command)

A for BASIC programs in ASCII format
(created with SAVE ,A command)

.M for memory image files (created with
BSAVE command)

.D for data files (created by OPEN followed
by output statements)

If the BLOAD command is executed in a BASIC
program, the file names skipped and found are
not displayed on the screen.

You may press the Fn key followed by the Break
key any time during BLOAD. This will cause
BASIC to stop the search and return to direct
mode between files or after a time-out period.
Previous memory contents do not change.

If CAS1: is specified as the device and the
filename is omitted, the next memory image (.M)
file on the tape is loaded.

Example:

BLOAD
Command

10 'load the screen buffer

20 'point SEG at screen buffer

30 DEF SEG= &HB800

40 'load PICTURE into screen buffer
50 BLOAD "PICTURE",O

This example loads the screen buffer which is at
absolute address hex B8000. Note that the DEF
SEG statement in 30 and the offset of 0 in 50 is
wise. This ensures that the correct address is used.

The example for BSAVE in the next section
illustrates how PICTURE was saved.

7]
3
>
5
tr
é
7

4-35

BSAVE

Command
Purpose: Saves portions of the computer’s memory on the
specified device.
Versions: Cassette Cartridge Compiler
% %k %k % %k %k % %k k
Format: = BSAVE filespec,offset,length
Remarks:

4-36

filespec is a string expression for the file
specification. It must conform to the
rules outlined under ‘“‘Naming Files” in
Chapter 3; otherwise, a Bad file name
error occurs and the save is canceled.

offset is a numeric expression in the range 0 to
65535. This is the offset into the
segment declared by the last DEF SEG.
Saving will start from this position.

length is a numeric expression in the range 1 to
65535. This is the length of the
memory image to be saved.

If offset or length is omitted, a Syntax error occurs
and the save is canceled.

If the device name is omitted in Cassette BASIC,
CASI1: is assumed. CASI: is the only allowable
device for BSAVE in Cassette BASIC and in
Cartridge BASIC when DOS is not used. If you are
using Cartridge BASIC with DOS and the device
name is omitted, the DOS default diskette drive is
assumed.

Example:

BSAVE
Command

If you are saving to CAS1:, the cassette motor will
be turned on and the memory image file will be
immediately written to the tape.

BLOAD and BSAVE are useful for loading and
saving machine language programs (which can be
called using the CALL statement). However,
BLOAD and BSAVE are not restricted to machine
language programs. By using the DEF SEG
statement, any segment may be specified as the
target or source for these statements. For example,
you can save an image of the screen by doing a
BSAVE of the screen buffer.

10 'Save the color screen buffer
15 'point segment at screen buffer
20 DEF SEG= &HB800

25 'save buffer in file PICTURE
30 BSAVE "PICTURE",0,&H4000

As explained in the example for BLOAD in the
previous section, the address of the 16K screen
buffer is hex B800O0.

The DEF SEG statement must be used to set up the
segment address to the start of the screen buffer.
Offset of 0 and length &H4000 specifies that the
entire 16K screen buffer is to be saved.

0]
4
>
<
tri
E
7

4-37

CALL

Statement

Purpose: Calls a machine language subroutine.
Versions: Cis:stte Caril;igge Cor;g;il)er
Format: CALL numvar [(variable [,variable]...)]
Remarks:

4-38

numvar is the name of a numeric variable. The
value of the variable indicates the
starting memory address of the
subroutine being called as an offset into
the current segment of memory (as
defined by the last DEF SEG
statement).

variable is the name of a variable which is to be
passed as an argument to the machine
language subroutine.

The CALL statement is one way of interfacing
machine language programs with BASIC. The other
way is by using the USR function. Refer to
Appendix C, ‘“Machine Language Subroutines” for
specific considerations about using machine language
subroutines.

Example:

CALL
Statement

100 DEF SEG=&H1800
110 0Z=0
120 CALL 0Z(A,B$,C)

Line 100 sets the segment to location hex 18000.

OZ is set to zero so that the call to OZ will execute
the subroutine at location hex 18000. The variables
A, B$, and C are passed as arguments to the machine
language subroutine.

2]
4
»>
3
i
E
7

4-39

CDBL

Function

Purpose: Converts x to a double-precision number.

Versions: Cassette Cartridge Compiler

% %k % * %k % % %k

Format: v = CDBL(x)

Remarks: x may be any numeric expression.
Rules for converting from one numeric precision to
another are followed as explained in “How BASIC
Converts Numbers from One Precision to Another”
in Chapter 3. Refer also to the CINT and CSNG
functions for converting numbers to integer and
single precision.

Example:

4-40

Ok

10 A = 454.67

20 PRINT A;CDBL(A)
Ok

RUN

454 .67 454.6700134277344

The value of CDBL(A) is only accurate to the
second decimal place after rounding. This is because
only two decimal places of accuracy were supplied
with A.

CHAIN
Statement

Purpose:

Versions:

Format:

Remarks:

Transfers control to another program, and passes
variables to it from the current program.

Note: This statement requires the use of DOS
2.10. If DOS 2.10 is not present, then an Illegal
function call error will occur.

Cassette Cartridge Compiler
% %k %k (* %k)

CHAIN [MERGE] filespec [,[line] [,[ALL]
[,LDELETE rangell]

filespec follows the rules for file specifications
outlined in “Naming Files” in Chapter 3. The
filename is the name of the program that is
transferred to. Example:

CHAIN "A:PROG1"

line is a line number or an expression that evaluates
to a line number in the chained-to program. It
specifies the line at which the chained-to program is
to begin running. If it is omitted, execution begins at
the first line in the chained-to program. Example:

2
—
>
=
3
Z
7

CHAIN "A:PROG1",1000

line (1000 in this example) is not affected by a
RENUM command. If PROG]1 is renumbered, this
example CHAIN statement should be changed to
point to the new line number.

4-41

CHAIN
Statement

4-42

ALL specifies that every variable in the current
program is to be passed to the chained-to program.
If the ALL option is omitted, you must include a
COMMON statement in the chaining program to
pass variables to the chained-to program. See
“COMMON Statement” in this chapter. Example:

CHAIN "A:PROG1",1000,ALL

MERGE brings a section of code into the BASIC
program as an overlay. That is, a MERGE operation
is performed with the chaining program and the
chained-to program. The chained-to program must
be an ASCII file if it is to be merged. Example:

CHAIN MERGE "A:OVRLAY",1000

After using an overlay, you will usually want to
delete it so that a new overlay may be brought in.
To do this, use the DELETE option, which behaves
like the DELETE command. As in the DELETE
command, the line numbers specified as the first and
last line of the range must exist, or an Illegal function
call error occurs. Example:

CHAIN MERGE "A:OVRLAY2",1000,DELETE 1000-5000

This example will delete lines 1000 through 5000 of
the chaining program before loading in the overlay
(chained-to program). The line numbers in range are
affected by the RENUM command.

CHAIN
Statement

Notes:

1.

2.

3.

The CHAIN statement leaves files open.

The CHAIN statement with MERGE option
preserves the current OPTION BASE setting.

Without MERGE, CHAIN does not preserve
variable types or user-defined functions for use
by the chained-to program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or
DEF FN statements containing shared variables
must be restated in the chained program.

The CHAIN statement does a RESTORE before
running the chained-to program. This means that
the read operation does not continue where it left
off in the chaining program. The next READ
statement accesses the first item in the first
DATA statement encountered in the program.

2]
<!
>
-
tr
=
i
Z
=
»

4-43

CHDIR
Command

Purpose:

Versions:

Format:

Remarks:

Examples:

4-44

Allows you to change the current directory.

Note: This command requires the use of DOS
2.10.

Cassette Cartridge Compiler

* %k k

CHDIR path

path is a string expression, not exceeding 63
characters, identifying the new directory
that will become the current directory.
For more information on paths refer to
“Naming Files” and “Tree-Structured
Directories” in Chapter 3.

ROOT
/ \
/ N\
SALES ACCOUNTING
/ / \
/ / \
MIKE SHANNON CHELLE
/
/
PAM

The following examples refer to the tree-structure
above.

To change to the root directory from any
sub-directory, use:

CHDIR
Command
CHDIR "\"

To change to the directory PAM from the root
directory, use:

CHDIR "SALES\MIKE\PAM"

To change to the directory CHELLE from the
directory ACCOUNTING, use:

CHDIR "CHELLE"

To change from the directory MIKE to the directory
SALES, use:

CHDIR "

w
=
>
!
i
3
Z
s |
»

4-45

CHRS$

Function

Purpose:

Versions:

Format:

Remarks:

Example:

4-46

Converts an ASCII code to its character equivalent.

Cassette Cartridge Compiler
% %k %k % % %k %%k k¥

v§ = CHRS$(n)
n must be in the range O to 255.

The CHRS$ function returns the one-character string
with ASCII code n. (ASCII codes are listed in
Appendix G, “ASCII Character Codes.””) CHRS is
commonly used to send a special character to the
screen or printer. For instance, the BEL character,
which beeps the speaker, might be included as
CHR$(7) as a preface to an error message (instead
of using BEEP). Look under “ASC Function,”
earlier in this chapter, to see how to convert a
character back to its ASCII code.

Ok
PRINT CHR$(66)
B
Ok

The next example sets function key Fn+1 to the
string “AUTO” joined with Enter. This is a good
way to set the function keys so the Enter is
automatically done for you when you press the
function key.

Ok
KEY 1,"AUTO"+CHR$(13)
Ok

CHRS$
Function

The following example is a program which shows all
the displayable characters, along with their ASCII
codes, on the screen.

10 CLS

20 FOR I=1 TO 255

30 ' ignore nondisplayable characters

40 IF (I>6 AND I<14) OR (I>27 AND I<32) THEN 100
50 COLOR 0,7 ' black on white

60 PRINT USING "###"; 1 ; ' 3-digit ASCII code
70 COLOR 7,0 ' white on black

80 PRINT " "; CHR$(I); " ";

90 IF P0S(0)>75 THEN PRINT ' go to next line

100 NEXT I

92}
4
»>
3
tr
5
Z
7

4-47

CINT

Function

Purpose: Converts x to an integer.

Versions: Cassette Cartridge Compiler
% %k %k %%k %k %k %k %k

Format: v = CINT(x)

Remarks:

X may be any numeric expression. If x is not in
the range -32768 to 32767, an Overflow error
occurs.

x is converted to an integer by rounding the

fractional portion.

See the FIX and INT functions, both of which also

return integers. See also the CDBL and CSNG

functions for converting numbers to single or double
precision.
Example:

4-48

Ok
PRINT CINT(45.67)
46
Ok
PRINT CINT(-2.89)
-3
Ok

Observe in both examples how rounding occurs.

CIRCLE
Statement

Purpose:

Versions:

Format:

Remarks:

To draw an ellipse on the screen with center (x,y)
and radius r.

Cassette Cartridge Compiler
* k% * %k

Graphics mode only.

CIRCLE (x,y),r [,attribute [,start,end [,aspect]]]

(x.y) are the coordinates of the center of the
ellipse. The coordinates may be given in
either absolute or relative form. See
“Specifying Coordinates” under
“Graphics Modes” in Chapter 3.

r is the radius (major axis) of the ellipse in
points.

attribute is an integer or an integer expression that
specifies the attribute of the ellipse, in
the range of 0 to 15. In low resolution
there are 16 attributes available (0 to
15). In medium resolution, there are 4 (0
to 3) or 16 (0 to 15) attributes available,
depending on the current screen mode.
In high resolution there are 2 (0 and 1)
or 4 (0 to 3) attributes available,
depending on the current screen mode.
The default attribute is always the
maximum attribute for the current screen
mode. O is the background attribute.
(For more information see ‘“Graphics
Mode” in Chapter 3).

7
'_1,
>
~
tr
=
tr
V4
!
%

4-49

CIRCLE
Statement

4-50

Note: Screen modes 3-6 are not
supported in the BASIC Compiler.

start, end are angles in radians and may range from
-2*PI to 2*PI, where PI=3.141593.

aspect is a numeric expression.

start and end specify where the drawing of the ellipse
will begin and end. The angles are positioned in the
standard mathematical way, with O to the right and
going counterclockwise:

P1/2

Pl 0,2*PI

3*PI1/2

If the start or end angle is negative (-0 is not
allowed), the ellipse will be connected to the center
point with a line, and the angles will be treated as if
they were positive (note that this is not the same as
adding 2*PI). The start angle may be greater or less
than the end angle.

For example,

10 PI=3.141593
20 SCREEN 1
30:CIRCLE:: £160,100),60,,-P1,~P1/2

draws a part of a circle similar to the following:

Example:

CIRCLE
Statement

aspect affects the ratio of the x-radius to the y-radius.
The default for aspect is 5/3 in low resolution, 5/6 in
medium resolution and 5/12 in high resolution.
These values give a visual circle assuming the
standard screen aspect ratio of 4/3.

If aspect is less than one, then r is the x-radius. That
is, the radius is measured in points in the horizontal
direction. If aspect is greater than one, then r is the
y-radius. For example,

10 SCREEN 1
20 CIRCLE (160,100),60,,,,5/18

will draw an ellipse like this:

In many cases, an aspect of 1 (one) will give nicer
looking circles in medium resolution. This will also
cause the circle to be drawn somewhat faster.

7
=
>
~
t
2
Z
-
»

The last point referenced after a circle is drawn is the
center of the circle.

Points that are off the screen are not drawn by
CIRCLE.

The followi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>