PCjr Ins and Outs

LeRoy Tabb, Jr.
Philadelphia Area Computing Society

A frequent question about the PCjr is “What is the
difference between a PCjr and its full-grown big
brother?”

The differences can be listed briefly. The PCjr
does not have direct memory access (DMA); its video
RAM is not located in memory block BOO0OO or
B8000 hex; it cannot accept an 8087 Math
Coprocessor; it has two slots for ROM cartridges; and
it has only one disk drive and no expansion slots (but
can be upgraded by using sidecars). Also, it has a
larger allocation for video RAM and uses the
TI SN76469N sound generator chip. Got it? If not,
join the crowd, but I'll try to shed some light on all of
this.

The PCjr does not have DMA. This means that,
unlike its big brothers, the PCjr does not have a DMA
controller (the 8237A) to allow the diskette drive to
interact directly with memory. Therefore, diskette
input/output must be handled by the 8088 CPU
through a process called bit nibbling. The most
apparent result of this difference is that you can’t type
ahead while the disk drive is being addressed. The
most important result is probably that the CPU has to
suspend running our programs while it writes to or
reads from the diskette drive, so our PCjr is a bit
slower than the rest of the family. The fact that the
PCjr doesn’t use DMA may also be a point of poten-
tial incompatibility with some software written exclu-
sively for the PC (but that’s a rare problem).

In my mind, the most important difference
between the PCjr and the PC is the location of video
memory. Before we go on, however, let’s look at how
the PCjr and the PC use their memory. To under-
stand this, let’s digress one step further and begin by
talking about the brain and heart of the IBM PC, XT
and PCjr—the 8088 microprocessor.

The 8088 is a 16-bit processor, and through some
trickery called segmented addressing, is capable of
addressing up to 1,024K bytes, or one megabyte, of
memory. But not all of that memory is available for
our use. To see exactly how IBM uses that memory,
let’s pull out a map. (See Figure 1.)

Figure 1 is not a traditional map, but a map of
how the 8088’s memory capacity is used by IBM
computers. Each line in the memory map (00000
through FOO00) represents the starting hexadecimal
address for a 64K block of memory. Each block of
memory has a specific application. Blocks 00000 thru

. IBM MEMORY MAP
FO000 IBM ROM BIOS, ROM BASIC, etc.
E0000 ROM Cartridge '
D0een = Programs
C0000 Hard Drive |
'BO000 PC Monochrome
. 58000 PG Coloer Graphics ,
A0GG0 PC Enhanced Lraphics |
a0 v
80000 ...
70000 i1
- 60000 1
50000 ...
40000 7 Warking
30000 .] Nemory
20000 =
_iohee pede ' |
Goooo. - [lpmmy 0
Figure 1. IBM Memory Map

90000 are used for working memory. That’s what we
mean when we speak of a computer’s memory. These
blocks represent the memory available for our pro-
grams; they add up to the 640K maximum amount of
memory in the PC, XT, and PCjr. Above that, block
A0000 is used for IBM’s enhanced video options, the
Enhanced Graphics Adapter and the Professional
Graphics Adapter. Continuing to climb the map, we
find block BOOOO which, as I mentioned earlier, is
used for the video on the PC and XT. Our PCjr does
not use that block of memory. Still climbing, block
C0000 is used for the hard disk controller on the XT.

The next two blocks (D0O000 and E0000) are of
particular interest to PCjr users, because they are
addresses into which we plug our ROM cartridges.
This area is unused by the rest of the IBM family.
Finally, we come to the top of memory, block FO000,
where all of the built-in ROM resides. That includes
ROM BASIC (remember, Cartridge BASIC would be
in either block DO000 or E0000); the built-in diag-
nostics; the ROM BIOS; and the ever-popular Key-
board Adventure! This top part of memory holds a
lot of interesting things, but they will have to wait to
be explained in a future article.

We’ve seen that block BO0OO is not used by the
PCjr. Well, if our video isn’t stored there, where is it
stored? As you might guess, the PCjr allocates a part
of our normal RAM memory for video. The highest

Exchange/Issue 1, 1987

part of RAM on a standard PCjr is reserved for the
video. In text mode, 16K of our memory is allocated
to video; in graphics mode, 32K is allocated out of
RAM.

The PCjr
is extremely
compatible with its
big brothers.

There are several RAMifications (!) of this
arrangement:

First, some of our program memory is used up for
video. Therefore, some programs that can run on a
128K PC don’t have enough room to run on a
standard PCjr.

Second, when IBM originally released the PCjr,
they must have felt no one would want to expand it
beyond 128K. So they placed the video RAM at the
top of the 10000 block of memory. That caused a
separation between the first 128K of RAM and the
rest of the working memory (20000-90000), and that
meant our programs wouldn’t know where to find
additional memory, even if we did find a way to install
it. Well, as we all know, ways were found to install
additional RAM and to get around the gap in our
working memory. Getting around that gap is the
primary purpose of the CONFIG.SYS files used with
IBM'’s expanded memory sidecar.

The third problem associated with the location of
the PCjr’s video RAM is that it is physically located at
an address different from the one expected by PC
software. (This is, by far, the biggest source of
incompatibility between the PCjr and the PC.) In
other words, if a program goes to an address in block
B0000 on our PCjr, it would find no one home. It
would be like trying to send a letter to an address that
doesn’t exist. Fortunately, the post office can be
instructed to forward such mail to an alternate
address. In the case of the PCjr, that post office is
called a Video Gate Array (VGA). The VGA traps
any instructions aimed at the B8000 memory area

(where the PC Color/Graphics card would be; the
Color card is at BSOOOH and the Monochrome card is
at BOOOOH) and redirects them to the area of memory
that we are actually using. This all works fine, and
software that plays by the rules will have no problem
running on our PCjrs. The problems come when pro-
grams attempt to circumvent the system. Using the
letter example, suppose you are in a hurry to have it
delivered, so you deliver it personally. Surprise! Not
only is no one home, there isn’t even a house in the
area. Well, some software programs, typically arcade-
style games that rely on speed, behave this way.
Those programs make direct calls to the addresses
they need, thereby bypassing our VGA postman.
Finding themselves somewhere in the netherworld,
they crash. Almost all the arcade-style games
produced before the relaese of the PCjr will not run
on our machine. Fortunately, after the release of the
PCjr, many software developers recognized the
problem and wrote versions of software that would
also run on the PCjr.

An advantage of the PCjr’s use of working RAM
for the video memory is that it allows us to allocate
32K of video RAM rather that the 16K available on
the PC. This gives the PCjr a better color graphics
capability than the standard PC.

Another of PCjr’s advantages is that it uses the
TI SN76469N chip for generating sound. This allows
the PCjr to play music in three-part harmony. The
PCjr also can be made to synthesize human speech!

Don’t panic after reading all of this! In spite of its
differences, the PCjr is extremely compatible with its
big brothers. After I expanded my PCjr to 640K, I
found minimal compatibility problems. As previously
mentioned, incompatibilities came from older arcade-
style games (the newer ones are better anyway) and
from large-scale business-oriented software that
insists on using lots of memory and two disk drives. If
you add a second drive, you’ll reduce these problems
too.

I've touched on a few of the most important func-
tional differences between the PCjr and its bigger
brothers. There are other differences (the keyboard,
for instance). If you're interested in doing more
reading on your own, I can suggest three books by
Peter Norton: Discovering the IBM PCjr Home Com-
puter, Exploring the IBM PCjr Home Computer, and
Programmer’s Guide to the IBM PC.

Exchange/lssue 1, 1987

PCjr Program
Compatibility

Steve Mark
Atlanta IBM Employees PC Club

It has often been my experience
that programs that are not sup-
posed to function properly on the
PCjr actually run just fine. The
purpose of this article is to share,
with other PCjr owners, the
factors I have found that do and
do not affect PCjr compatibility.

I will try to keep this dis-
cussion very non-technical. I
don’t know much about interrupt
levels, assembly language, or
soldering irons, and have no
burning desire to learn now. I
promise to get no deeper than an
occasional reference to the
CONFIG.SYS file and some
Internal Modem command codes.

I also promise that everything
in this article is based on my per-
sonal experience unless otherwise
noted. There will be no ““I think I
heard somewhere that . . . »

My present system has 640K
with two diskette drives. I started
in September 1985 with a 128K,
single drive PCjr. A month later, I
bought a PCjr Internal Modem.
Then came a 128K Microsoft
Junior Booster, a Quadram
Expansion Chassis that included a
second drive, 384K, and a parallel
port. A Hayes 1200 bps external
modem and an IBM Proprinter
finished the configuration (and my
bank account).

Most reasons that programs
supposedly will not run on the
PCjr can be categorized as
follows:

1. Configuration
Communications issues
« The PCjr Internal Modem
+ Comm port addressing
« DMA

3. DMA

19

4. The Video Buffer
5. It actually won’t work on a
PCjr.

This article discusses each of the
above considerations and has a
section that contains some simple
techniques I have used to get the
best performance from my PCjr.

Configuration

One of the earliest sources of mis-
information regarding PCjr com-
patibility was the original
maximum configuration. Many
programs were said not to run on
the PCjr simply because the pro-
grams required two diskette drives
and/or more than 128K. To
confuse matters more, many
dealers and software vendors .
seemed unaware that several
accessory manufacturers made it
possible to add a second diskette
drive and/or a fixed disk to the
PCjr.

Some software manufacturers,
however, came out with PCjr ver-
sions of their packages. These
versions usually included one or
two cartridges and were designed
to run on a 128K, single-drive
machine. The use of the ROM
cartridges resulted in reasonably
good performance, but prevented
the PCjr version of these pro-
grams from running on anything
other than a PCjr. The trade-off
was that the user gained perform-
ance, but lost upward compat-
ibility.

Because there were special
PCjr versions of these programs,
and because these versions would
not run on other PCs, people
believed that the PC version
would not run on the PCjr.
Wrong! In most cases, the
“regular” version will run just fine
on PCjrs that meet the package’s
configuration requirements.

Vendors created versions of
their software (e.g., IBM’s Plan-

Exchange/lssue 1, 1987

ning Assistant) that utilized an
overlay structure to fit into 128K,
although with substantial perform-
ance degradation. Many PCjr
users who have upgraded their
machines to 256K and more are
still suffering unnecessarily from
the poor performance of the PCjr
version of their software because
they do not realize that the ori-
ginal constraint was memory, not
the “jr” on their machines’ name-
plates.

The PCjr has one unique
memory consideration. The
Color/Graphics Adapter on a PC
contains a 16K video buffer. The
PCjr’s display adapter does not
include memory for this buffer.
Therefore, when you boot the
PCjr, DOS allocates 16K of the
system’s memory for a video
buffer. (The positioning of this
buffer is the reason you need
drivers such as PCJRMEM.COM
in order to recognize memory
beyond 128K, but that is beyond
the scope of this article.) The
result is that a program that has
less than 16K to spare when
running on a PC will not run on
the same size PCjr. Remember
that the words “requires a 256K
system’ usually mean “will not fit
in a 128K system.”

Communications

The PCjr Internal Modem
Where do I start? This little jewel
has caused more confusion and
consternation than all the tax sim-

‘plification measures that the U.S.

Congress could ever dream of!
Most of the problems in
getting communications programs
to run on the PCjr are really prob-
lems getting the programs to send
the proper commands to the PCjr
Internal Modem. The modem
does not accept the Hayes (AT)
command set. Most popular com-
munication programs (QMODEM,
PC-TALK, CROSSTALLK, etc.)

are set up to issue the Hayes
command set, with some method
of specifying a different command
set if necessary. In browsing
through bulletin board systems
around the country, it appears to
me that many people have prob-
lems using non-Hayes compatible
modems regardless of whether the
attached PC is a PCjr. The PCjr’s
internal modem just seems to get
more criticism because it is con-
centrated in one environment.

Some programs (including the
IBM PC Videotex Connection and
the terminal program on the PCjr
Sampler diskette) support the
Internal Modem’s command set
and will dial, communicate, and
hang up correctly. However, they
often will not properly do things
such as changing data format from
8-N-1 to 7-E-1. Other programs
such as QMODEM allow the user
to specify the control sequence for
dialing, etc., but also will not issue
the commands to change format.
The result is that the modem will
not dial, or else the received data
looks like garbage.

It is usually very simple (at
least it is with QMODEM and
PC-TALK) to manually issue
modem commands from the
‘“terminal” screen of your
program. Therefore, the best
advice I can give you is to keep
the PCjr’s command reference
handy. There is one in the small
supplement to the PCjr Guide to
Operations that comes with the
modem. There is a better one in
the PCjr Technical Reference. 1t’s
not really as onerous as it sounds,
though. The only time you should
need to enter commands manually
is when changing format or
entering transparency mode.

Now comes the fun part. If all
you want to do is exchange mes-
sages and download files, you can
skip this discussion. However, if
you want to endear yourself to
your favorite SYSOP and be a

20

good BBS citizen, you will occa-
sionally want to upload a file or
two. The PCjr’s internal modem
makes that a real adventure. To
understand why, you need to
realize that the modem attempts to
execute commands even if it finds
them in the middle of a data
stream that you are sending to
another computer. If you try to
upload a binary file (like a .COM
or .EXE file), sooner or later the
data will include a bit pattern that
the modem thinks is its command
character (Ctrl-N). It will not
only fail to send that character
down the line, but will try to
execute the “command” it thinks
comes behind it.

Without going any deeper into
what happens when the modem
receives what it thinks is an invalid
command, or delving into how to
put the modem into transparency
mode, it should be obvious that
the problem we are discussing is a
function of the modem being used
and not the fact that the system is
a PCjr. Try all the tricks you can
find documented on many bulletin
board systems until you find one
that works.

Communications Port
Addressing

This is one problem you won't
have if you use the internal
modem. Some people, cannot get
their communications programs to
recognize external modems. If
you have this problem, then you
may be facing the COM1 versus
COM2 addressing mystery.

When the PCjr Internal
Modem is installed, it is COM1,
and the external serial port on the
back of the system is COM2.
When there is no modem in the
internal slot, the external port
becomes COM1. So far, so good.
The problem is that, regardless of
whether an internal modem is
installed, the base address and
interrupt level of the external port

Exchange/lssue 1, 1987

remain the ones normally used for
COM2.

If your communications
program is well-behaved and does
not try to bypass the system BIOS,
none of this should cause any
problem. Just tell the program
that your external modem is
COM1. QMODEMjr (version
1.07) works fine this way. Other
programs seem to use the base
address and interrupt level associ-
ated with whatever comm port you
have specified for your modem.
To use these programs (e.g.,
QMODEM 2.0 and 2.2), just tell
them your modem is at COM2.
That is how these three programs
worked on my system after I
removed the internal modem.

But I have heard of different
people who got different results,
supposedly using the same pro-
grams! In fact, on several bulletin
board systems there are routines
available that claim to swap
COM1 and COM2 so you can use
an external modem. The SYSOP
of the IBMjr forum on
CompuServe tells me the problem
appears to be a function of the
compiler used to compile the
program and/or any external port
drivers that the compiler uses.

If you think you have this
problem, you have two choices.
The first is to find an internal
modem and plug it into your
machine. This will straighten out
the addresses so you can use your
external modem as COM2. The
second is to get one of the pro-
grams that logically swaps the
addresses back to where they
belong. These programs have
names like SWAPCOM or
COMSWAP, and can be found on
many PCjr-oriented bulletin board
systems.

There has been an interesting
development on this issue. The
QINSTALL program for
QMODEM 2.2 lets the user
specify the base address and inter-

rupt level for each comm port.
The defaults are provided by the
program, so all you have to do is
switch the specifications for
COM1 and COM2. Because I
was unable to recreate the
problem on my system, I could not
test the effectiveness of this new
feature. In theory, however, it
should solve the problem.

Direct Memory Access

Direct Memory Access (DMA) is
a standard feature on all IBM PCs
except the PCjr. Simply stated,
DMA allows the processor to
overlap disk I/0 operations with
other work. Some manufacturers
offer a means of adding DMA to
the PCjr.

With regard to communi-
cations, DMA allows the system,
when downloading a file, to con-
tinue receiving new data while the
data just received is being written
to diskette. Without DMA, a few
incoming characters will be
dropped on the floor each time the
system writes out a buffer full of
data. When your download com-
pletes, you will have, at best, a
text file with some missing letters,
and, at worst, an unexecutable
program. Uploading is not
affected, because the system will
not try to send data while it is
reading from the diskette.

If you have very little extra
memory beyond that required to
run your communication program,
then the lack of DMA is indeed a
problem. But if you have extra
headroom, the solution is very
simple: do your downloading to a
RAM disk.

The documentation for
QMODEM 2.2 says, “A PCjr
must contain a DMA chip to suc-
cessfully use the transfer proto-
cols.” I say this is not true. I
normally run QMODEM with a

21

200K RAM disk. If I plan to
download more than 200K of
files, I simply install a larger RAM
disk. I have successfuily
up/downloaded files to bulletin
board systems, CompuServe, and
point-to-point. After the trans-
mission is completed, copy your
new files to a real diskette imme-
diately to prevent losing them in a
power outage.

I know that several PCjr users
have experienced system hangs
that require a reboot to clear.
This would make one quite
nervous about trusting a RAM
disk to receive a lengthy file. Let
me try to set you at ease. There is
a diskette containing patches to
DOS 2.10. These patches fix a
bug in the way DOS handles (or
fails to handle) certain keyboard
interrupts that are unique to the
PCjr. 1installed the patches (a
very simple process) over six
months ago and have not experi-
enced any lock-ups since that
time. You should be able to get
the patch diskette from your
dealer or another PCjr user. Ask
around, it’s worth the search.

DMA in General

The lack of DMA affects the per-
formance of programs that use
diskette drive(s). However,
except for the communications
concerns covered above, this
shortcoming rarely affects whether
a program will indeed run on a
PCjr.

Some programs will simply not
run correctly, or at all, without
DMA. I also understand that
some copy protection schemes use
the DMA processor. If true, these
programs obviously will not run on
a standard PCjr. (I do not have a
DMA chip in my PCjr and so have
had no first-hand experience with
these programs.)

Exchange/lssue 1, 1987

If the software you want to
run requires DMA, all it takes to
run it on your PCjr is money. At
least one manufacturer offers a
DMA chip for the PCjr. The hitch
is that the chips usually come
bundled in expansion units which
also include second drives, parallel
ports, and other goodies. That’s
fine if you are just starting to
expand your PCjr, but if you don’t
want (or already have) a second
drive, it’s an expensive DMA chip.

The Video Buffer

Here again, T am at (and some-
times beyond) the limits of my
personal knowledge, but I’ll give it
a try anyway.

The video buffer is where the
hardware gets the information it
needs to put characters and pic-
tures on the screen. Your
program has some options as to
how (or if) it will put information
into the buffer. If the program
uses DOS or normal BIOS to write
to the buffer, then there should be
no problem. Fortunately, most
programs are well-behaved in this
regard. If your program tries to
address the buffer directly, or
(worse) tries to write directly to
the display, bypassing the buffer,
then you’ve got a problem.

There are two differences
between the way the video buffer
is handled on the PC and on the
PCjr. First, as I mentioned
earlier, the video buffer is in main
memory on the PCjr, rather than
on the display adapter as is the

case on other PCs. This means it
is at a different physical address.
If your program tries to write
directly to the address where it
thinks the buffer is, it won’t work.
This is especially true if your PCjr
has been expanded beyond 128K,
because the memory management
software (PCJIRMEM.COM or
equivalent) moves the video buffer
so DOS can find the expansion
memory. I have not run across
many programs that fall into this
category, but I suppose that is
small comfort to those of you
whose favorite game does. I do
not know of any method of getting
such programs to run on the PCjr.

The second problem is another
that just takes money to solve. In
addition to being in a different
place, the PCjr’s video buffer is
mapped differently than the PC’s.
This means that a position in the
PCjr’s buffer corresponds to a dif-
ferent place on the screen than the
same position in the buffer on the
PC’s Color/Graphics Adapter. A
program that tries to manipulate
data directly within the buffer will
run, but the screen will look very
strange. I ran across a game once
whose title screen was garbage. 1
took a guess, pressed “any key,”
and the rest of the game ran fine.

As I said, all it takes to solve
this problem is money. The mys-
terious little PC/PC;jr switch on
the back of second drive units is
there for precisely this purpose.
When you power up your machine
with the switch in the PC position,
and execute the PCVIDEO
routine that comes with the hard-
ware, the mapping of the video
buffer is changed to match the
PC’s. After that, my game had a
real title screen. If you really want
to, you can even run a PCjr using
DOS 1.10 this way.

22

Some Programs Will
Not Work on a PCjr

The vast majority of software
written for the IBM PC will run
on an adequately configured PCjr.
In addition, we have discussed
several ways to make programs
that supposedly will not run on the
PCjr work as well.

The simplest way to
speed up your PCjr
is to add memory.

There are programs, though,
that cannot be made to execute
correctly on our PCjr machines.
Most of these programs write
directly to the hardware interface
for the diskette drive or display.
They do this to optimize perform-
ance, or to bypass some limitation
of the interface supplied by the
system BIOS. Some games and
graphics programs write directly to
the display to do fancy manipu-
lation of the screen images and
improve performance. Unless
there is a PCjr version of these
programs, you’re probably out of
luck.

A few programs rely on timing
to run correctly. And finally,
there are those programs that
require some piece of hardware
(like a math coprocessor) that
cannot be attached to the PCjr.

All told, these problems repre-
sent a very tiny portion of the
mountains of software available
for the PCjr.

Exchange/lssue 1, 1987

Performance Tips

The simplest, most effective thing
you can do to speed up your PCjr
is to add memory. There are three
ways you can use additional
memory to achieve a significant
(up to 50 percent in some (cases)
increase in performance.

The first was discussed earlier.
Some programs such as Writing
Assistant and Planning Assistant
come in two versions. One of
these versions is structured to run
in a 128K machine. It generally
makes heavy use of overlays and
goes out to diskette each time you
invoke a new function. It works in
128K, but I hope you like the
sound of your diskette drive
grinding away. The other version,
a resident version, loads com-
pletely into memory and only
needs to access the diskette for
data files. An added advantage is
that after the program is loaded,
you can usually remove the
program diskette and insert a sep-
arate data diskette. This gives you
much more room for files on a
single-drive system.

The second performance
improvement you will gain from
adding memory takes us back to
our old friend, the video buffer.
In order to keep the current image
on the screen, the image needs to
be refreshed every few microsec-
onds. If you remember, the PCjr’s
video buffer is in main memory.
Because of this, the cycles it takes
to do this video refresh are taken
from other jobs that are executing

in main memory. (I’m not sure,

but I believe one out of every
three cycles is used for this
purpose.) That is why the PCjr
seems to process slower than the
PC even though it has the same
clock and 8088 processor. The
good news is that this impacts only
the first 128K of memory. Pro-
grams that are loaded into expan-
sion memory are not affected.

There are two ways to force
all of your programs to load into
expansion memory. The simplest
is to use the “/C” parameter with
PCIRMEM.COM in your
CONFIG.SYS file. This causes
DOS to fill the system’s main
memory with I/O buffers, and
force all user programs to be
loaded above 128K. It also allows
the use of the PCjr’s enhanced
video modes, but that’s another
story.

The other way to fill up the
first 128K is to define a RAM disk
of at least 90K. This combined
with DOS and the video buffer
will fill the main memory, and
your programs will be loaded into
the expansion memory.

Does it really help? I have a
program called THATSALL.EXE
that plays the well-known cartoon
theme and writes “That’s all
Folks” across the screen. It takes
about 26 seconds to run in main
memory, but in expansion
memory, it takes about 17
seconds, the same as on a PC or
XT. That’s a 35 percent improve-
ment.

The third way to take advan-
tage of additional memory takes
us back to my old favorite, the
RAM disk. Let’s go back to those
programs that had to overlay
themselves to fit into 128K.
Sometimes the full version is a
separate product that will cost you
either an upgrade fee or the full
price for the product. If you don’t
need the additional features that
may be available in the full
product, you can still get near-

_ resident performance from the
PCjr version.

Just load the program and its

required modules onto your RAM

23

disk, and execute it from there. It
will still go through its overlaying
process, but will do so at the speed
of memory rather than the diskette
drive. With a little experimenting,
it’s not hard to determine which
files must be copied to the RAM
disk to make this trick work.
(Note: this technique does not
apply to overlaid programs.) I use
this technique to make the Per-
sonal Computer Picture Graphics
program run almost as fast on my
PCjr at home as it does on the XT
with fixed disk at work.

The PCjr
is a much
more useful machine
than it is
given credit for.

Some programs, including the
Assistant Series, allow you to
specify a work drive for the
program to use when sorting and
doing various other tasks. By
using your RAM disk for this
purpose, many jobs will go a lot
faster.

Are you tired of having to
swap back to your DOS diskette
every time you want to use an
external command such as
DISKCOPY, CHKDSK, PRINT,
FORMAT, etc.? Why not just
copy those programs that you use
often onto your RAM disk when
you boot the system? Then they
will be right there on drive C for
you to use whenever you need

Exchange/lssue 1, 1987

them. It’s almost like having a
small fixed disk.

The one caution to remember
about a RAM disk is that when
you reboot, or if a power fluctu-
ation causes the system to do a
power on/reset, the contents of
your RAM disk are lost. There-
fore, you should not put any non-
recoverable data on a RAM disk.
I’m a little gutsy, so when I use
Filing Assistant, I copy my file to
the RAM disk, update it there,
and then copy it back. (Editor’s
note: Don’t be gutsy in South
Florida, where lightning often
causes power outages.) 1 figure
that, at worst, I may have to
reenter the session’s updates if
something happens before I can
copy the file back to diskette. In
the eleven months I have been
operating this way, I have never
had a problem. Not only does it
seem as if I were using a fixed
disk, but I've also saved a lot of
wear and tear on my diskette
drives. If you are using Reporting
Assistant, the effect is truly
amazing.

Summary

I hope this has been of some help
to you. I have tried not to go too
far away from the intended
subject. For example, there has
been no discussion of the PCjr’s
advantages over the PC (video,
music, and a smaller footprint), or
the fact that the PCjr comes with
things that you have to add to a
PC (like a display adapter, serial

port, game port, etc.). My objec-

tive has been simply to show that
the PCjr is a much more useful
machine than it is generally given
credit for.

