
Silicon Graphics Confidential MGR Technical Reference

CHAPTER 4

GEOMETRY SUBSYSTEM

The Geometry Subsystem is responsible for performing the various transformations and lighting
computations on world coordinate data received from the host. It then performs any necessary
calculations to reduce the subsequent vertex data into points, lines or spans to pass to the Raster
Subsystem. It is also responsible for controlling the interface between the host and the other MGR
Subsystems.

The Geometry Subsystem is the heart of the MGR adapter and is responsible for performing the
geometry calculations and is also responsible for controlling the operation of the Raster Engine in
the Raster Subsystem. The Geometry Engine is a microcode controlled floating point processor that
is used to perform the geometry calculations as well as the lighting calculations. The two main
components of the Geometry Engine are the microcode sequence controller chip called the HQ chip
and the Weitek 3132 Floating Point Data Path chip which does the floating point multiplies and adds.
These components along with the other components will be discussed in greater detail in later
paragraphs.

The following paragraphs will describe the external interfaces, the major components, the
registers, the basic operation and the programming’considerations of theGeometry Subsystem.

External Interfaces

The following paragraphs describe the external Interfaces that the Geometry Subsystem has with
the Host Interface Subsystem, the Raster Subsystem and the Display Subsystem.

Host Interface Subsystem Interface

The Geometry Subsystem has an interface with the Host System via the Host Interface Subsystem.
The SGI Private bus connects these two subsystems and is used to transfer all data to and from the
host system. The Geometry Subsystem uses the 10 Mhz multi-phase clocks provided by the Host
Interface Subsystem for its timing.

Raster Subsystem Interface .

The Geometry Subsystem has a register pointer and a data bus which are used to access the Raster
Engine in the Raster Subsystem. The Geometry Subsystem also controls the addressing for host
accesses of the Cursor Chips in the Raster Subsystem. The Geometry Subsystem controls DMA
transfers between the Raster Subsystem, the Geometry Subsystem and the Host System.

Display Subsystem Interface

The Geometry Subsystem controls the addressing and data transfers between the Host System and the
registers in the various components of the Display Subsystem.

4-1

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Major Components

The major components of the Geometry Subsystem are shown in the block diagram of Figure 4.1.
The HQl chip controls the address decoding for the host and acts as a microcode sequencer. The
Weitek 3132 chip performs the floating point calculations and is controlled by the HQl. The
microcode RAM holds the microcode, while the microcode data RAM holds constants, data variables
and data buffers. These four components form the Geometry Engine 5 (GE5) which performs the
geometry calculations, lighting calculations and various other functions.

To execute graphics commands the host sends graphics command tokens and data to the Geometry
Engine. The Tag FIFO and Data FIFO provide a buffer between the host and Geometry Engine speeds.
The host can continue to send graphics tokens while the Geometry Engine is still executing
previously sent tokens. The Tag FIFO receives the command tokens from the host and passes the
command tokens to the HQl chip which uses the token as an index into a microcode branch table.
This causes the appropriate microcode routine to be executed for each token. These tokens instruct
the microcode to perform the desired operations. The Data FIFO receives the data parameters
associated with the various tokens. The microcode executes instructions which read the data FIFO
and transfers the data into either the Weitek 3132 chip or into the GE5 data RAM. ,

Vertical
; Retrace

int .’ ‘__
10 MHz
Clocks

MCA Bus

Microcode

32K x 40

GE Data Bus

Geometry Subsystem (GES)

Figure 4.1 Geometry Subsystem Block Diagram

- Display
and

b Raster __
Subsystem

b
Raster

Subsystem

+
Raster

Subsystem

L

The GRFl chip is used to add some additional capabilities to the HO1 chip. The GE Data BUS buy;;
and the Utility Bus buffer provide the necessary buffering required for these two data busses.
following paragraphs describe the Geometry Subsystem components.

4 -2

Silicon Graphics Confidential MGR Technical Reference

HQl Chip

The Head Quarters (HQl) chip is a proprietary Silicon Graphics design and is the main control
element in the Geometry Subsystem. The HQl is responsible for controlling the geometry engine
and the various data transfers among the MGR hardware components. The HO1 chip has six
functional units as shown in Figure 4.2.

10 MHz Clock

Hast
Addresses I/O

Address
Management

Control +-
Unit

Signals

Stall0Control
Unit

Memptr
Control

Unit

- Figure 4.2 HQl Functional Block Diagram

The following paragraphs describe these six functional units.

I/O Management Unit

The l/O management unit is responsible for providing the address decoding and bus control for
hardware accesses by the Host Interface Subsystem and the Geometry Engine. The host address
decoding is shown in Table 4.1. The host can access the following hardware components:

- HQl registers ’

- Tag and Data FIFO

- Mlcrocode Code RAM

- Microcode Data RAM

- 2 Finish Flags

- 2 Cursor Chips

_ 5 XMAPP and 5 Color Maps or 5 XPCl Chips

- 3 RAMDAC Chips or 1 RGB RAMDAC Chip

- - Display Registers

4 -3

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Table 4.1 Host Interface Address Decoding

The I/O management unit uses two registers to help control the MGR addressing. The 1 bit HO
Middle Address Register Most Significant Bit (HQMMSB) Register is used to control the address

4 - 4

Silicon Graphics Confidential MGR Technical Reference

_-

-

decoding. It is set to either zero or one as shown in Table 4.1. This register’s name derives from an
earlier implementation when it was bit 7 of the HQ middle address register (MAR). This is no
longer the ease, and the HQMMSB register is addressed independently from the HQ MAR. It can be
thought of as the Address Selection Control Register. This register should be set to zero when
addressing the low 32 bits of the code RAM or when accessing the data RAM. When accessing the
FIFO, the Finish Flags, the HQ MAR register or this register itself the value in the HQMMSB
register does not matter. For all other hardware components shown in Table 4.1 the HQMMSB must
be set to one before the components can be properly accessed.

The HQl uses the HQ MAR register as a page selection register when accessing the microcode code
and data RAMS. The MAR register is used to provide the upper 7 bits of the microcode code or data
RAM address. The bwer 8 bits of the microcode code or data RAM address provide the word offset
into the page selected by the MAR register. The word offset is obtained from bits 2-9 of the host
address. These bits are combined with the page address in the MAR register to form the microcode
code or data RAM address. The 15 bits allow 32K words of microcode code or data RAM to be
addressed by the host. The MGR adapter has 32K words of code RAM so all 15 bits of the address are
valid when addressing the code RAM. The MGR adapter has onty 8K words of data RAM so only 13
bits are valid when addressing the data RAM. This means that only 5 bits in the MAR register are
valid when addressing the data RAM. ,

The l/O management unit decodes the host addresses shown in Table 4.2 and generates the necessary
control signals to access the specified Geometry Subsystem components. The host can access the
microcode oode RAM, the microcode data RAM, the HQ Middle Address Rpgister (MAR), the HQ MAR
Most Significant Bit (HQMMSB) Register and the data and tag FIFO. The host can also issue
commands to the HQl to clear the stall condition and to clear the GE interrupt. The host can read the
microcode Program Counter (PC) register.

Table 4.2 HQl Address Map

ADDRESSRANGE HOhktSB SRC/DEST OpERAnoN R/W DATA
0x0000 - OxO3FC 0 UcodeRAMlow32 RWUcodeRAtvl RN 32 bits

0x0000 - OxO3FC 1 UcodeRAMhigh8 RWucodew FUV, 8 bits

0x0840 1 Hal clear stall w none
0x0740 1 PC in HO1 ReadHOPC R 15 bita

0x0780 1

0x0800 - OxOBFC X

OxOCOO - OxODFC X

HO1 clear GE int w none

FFoFtW RN 32 bitr

. HOMAR WriteHO MAR W none

OxOEOO - OxOEo4 x
0x1400 - Oxl7FC 0

HQMARMSB Write HQMMSB W none

Ucode Data RAM RWDataRAM w 32 bit:

0x2000 X 1 Finish Flag 0 1 Read Finish 0 1 l%V 1 32 bita

0x2004 X I Finish Flaa 1 1 Read Finish 1 I RN I 32 bit!

Two finish flags are provided to synchronize host accesses to the microcode data RAM with the
microcode execution and to synchronize the start of DMA operations to or from the adapter. The host
can read and write the finish flags while the microcode can only write to the finish flags.

The host can only access the GE5 data RAM or code RAM while the microcode is in a stalled state.
Finish flag 0 is provided to synchronize the host accesses to the microcode data RAM with the

4 - 5

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

microcode. The host systems sends a GE_FINISHO token down the FIFO to the microcode to commml
it to set the finish flag when lt finishes executing the tokens already in the FIFO. The host then
continuously reads address 0x2000 for finish flag 0 until finish flag 0 is set by the microcode.
When the microcode finishes its current operations and the FIFO is empty it sets finish flag 0 and
does a fetch from the FIFO which causes it to stall until the host sends another token. The host
system can then read or write the microcode data RAM without Interfering with the microcode.

Finish Flag 1 is provided to synchronize the start of DMA operations between the host and the MGR
adapter. When the host sends a token to the microcode that will require DMA operations the
microcode will setup for the DMA and then set Finish F&g 1. The host would poll address 0x2004
until it is set by the microcode and then the host would start the DMA operation. The use of the
finish flags will be discussed in greater detail later.

Handshake Control Unit

The handshake control unit is used to provide the necessary hardware handshake signals between the
Host Interface Subsystem, the Raster Engine (RE) in the Raster Subsystem, the microcode code and
data RAM and the XMAP2 or XPCl chips in the Display Subsystem. It stalls the GE5 when it is
appropriate and passes other handshakes through for accesses such as host to XMAP or host to RE. l

The handshake control unit allows two types of transfers between the Host Interface Subsystem and
the other MGR Subsystems. These two types of transfers are single word transfers and DMA
tresfers. :: _. .: - _

The host can access the following components using single word transfers:

- HQl PC and HQ1 commands

- tag/data FIFO

- microcode code RAM

.- microcode data RAM

- five XMAP2s or five XPCls

- an RGB RAMDAC or three RAMDACs

- five Color Maps

- two cursor chips

- five display registers

The following DMA transfers can occur:

- between the host and the microcode data RAM

- between the host and the Raster Engine

- between the Raster Engine and the microcode data RAM

These data transfers are described in later paragraphs in the appropriate chapters.

4 - 6

Silicon Graphics Confidential MGR Technical Reference

Stall Control Unit

The stall control unit is responsible for stalling the GE5 when a condition arises that requires it to
be stalled. The full stall keeps the l/O Management unit in its current state and also keeps the PC,
the MEMPTR and the REPTR from changing. The clod< to the Weitek 3132 is fully suppressed and
literally the entire GE5 is stalled. The host can still perform single word transfers as described
above.

The following conditions result in a full stall:

Reset - Whenever the HQl is reset it goes into a full stall. After the HQl has been reset it needs
to be initialized. The host downloads the microcode code and data and then writes to the clear
stall address to start the GE5 running. The host software must be aware of this type of stall
since il has to issue the clear stall HQl command.

Bucst DMA transfer - Whenever the HQl detects a host delay, an RE delay or a host burst
disable condition it will stall the GE5 until the appropriate handshake conditions exists to
continue the DMA transfer. At that time the HQl will clear the full stall and the transfer will
continue. This type of stall is transparent to the host software and would only be somewhat
evident if the DMA never completed.

- The GE5 microcode may execute a stall instruction which will put the
HQl into a full stall until the host writes to the clear stall address. This can be used to
synchronize the microcode with the host for passing data. The host software must be aware of
the instances where the microcode would issue a stall microinstruction since it would have to
issue the clear stall HCtl command.

Read FIFQ - When the GE5 microcode is executing a fetch instruction or a read from
data FIFO instruction, the HQl will go into a full stall in the middle of the read or fetch
microinstruction if the FIFO is empty. The stall condition will continue until data actually
becomes available. This is a stall condition that is frequently encountered and can be used by the
host software to access the GE5 data RAM. The GE-FINISH0 token is used by the host to
guarantee that the microcode has processed all of the data in the FIFO and is stalled at a fetch
instruction waiting for the next token to be sent by the host software. The host software can
then safely access the GE5 data RAM before sending the next command token.

not re& _ The HQl can load the Raster Engine (RE) registers when the
appropriate load enable signals are active. If the GE5 microcode attempts to write to an RE
register when the load enable signals are not active the HQl will go into a full stall until the load
enable signals becomes active. This is a temporary handshake stall between the GE5 and the RE2
and is totally transparent to the host software.

PC Control Unit

The Program Counter (PC) control unit acts as a microcode sequencer for the GES. The control unit
controls the microcode instruction execution sequencing through up to 32K words of microcode. The
PC control unit allows branching and conditional jumps. It uses a 15 bit wide PC to access the
microcode code RAM. Microcode instruclions are read from the address pointed to by the PC and
are executed by the HQl and the Weitek 3132 chip.

_- When the host needs to access the microcode code RAM it must access the bw 32 bits and the upper
8 bits of the 40 bit word separately. The upper 7 bits of the microcode word address are loaded into

4 - 7

%S’Gi 4 Geometry Subsystem Silicon Graphics Confidential

the MAR register. The tow 32 bits of the microcode code word are accessed by setting the HQMMSB
register to 0. A read or write is then performed and bits 9-2 of the host address are placed in the
PC bw byte and the MAR register contents are transferred into the PCs upper 7 bits. The 15 bit PC
address is then used to access the bw 32 bits of the microcode code RAM. The same procedure is
used to access the upper 8 bits except that the HQMMSB register must be set to 1.

MEMPTR Control Unit

The MEMPTR is used as a data pointer for accessing words in the microcode data RAM. The MEMPTR
is 14 bits wide allowing a maximum microcode data RAM size of 16K words. The MGR has only 8K
words of microcode data RAM and each microcode data RAM word is 32 bits wide. The MEMPTR is
baded from the microcode instructions to perform micmcode data RAM accesses by the microcode.

When the host wants to access the microcod8 data RAM it sets the HQMMSB to 0. It then loads the
MAR register with the upper 6 bits of the microcode data RAM address and does the read or write to
the appropriate microcode data RAM address. Bits 9-2 of the host address are placed in the
MEMPTR tow byte and the MAR register contents are transferred into the MEMPTRs upper 6 bits.
The 14 bit MEMPTR address is then used to access the microcode data RAM.

REPTR Control Unit
,

The REPTR is used as an address pointer to the RE registers. It is used by the GE5 microcode to load
the RE regis!ers.The REPTR is not accessible by the host which means that the host cannot directly
access the RE registers. A microcode token GE_LOADRE allows the host to load the RE registers with
an assist from the microcode. The host generally does not access the RE register directly and the
exceptions will be discussed later.

This concludes our journey inside the HQl chip. We will now continue looking at the other
hardware components of the Geometry Subsystem as previously shown in Figure 4.1.

FIFO
The FIFO is used to even the fbw of commands from the host and the subsequent command execution
by the GE5 The FIFO allows the host to continue to send graphics commands and data while the GE5
is still executing a previously received token. The FIFO has space for 512 entries of 40 bits each.
The host writes a 32 bit value to a range of FIFO addresses. The 32 bits of data are stored in the
Data FIFO and 8 bits from the host FIFO address are stored in the Tag FIFO. Bits 2 through 9 of the
host address are placed in the Tag FIFO. The FIFO therefore occupies a 1K byte range of addresses.
The value placed in the Tag FIFO represents.a command token to the microcode. When the FIFO
becomes half full an interrupt is generated so that the host can avoid overflowing the FIFO.

Tag FIFO

The tag FIFO gets host interface address bits 2 through 9 placed in it when the host writes to the
FIFO address. The tag FIFO contains the microcode command tokens which are used as an index into
the microcode command branch table. Sixteen of the 256 possible tokens are used to switch to a new
graphics context. The other 240 possible tokens are used in conjunction with the FETCH
instruction of the microcode to execute microcode commands.

Data FIFO

The Data FIFO contains the data parameters passed to the microcode for the various command tokens.
It can contain 512 words of 32 bits each. When the data FIFO is read, the 32 bit word is placed on
the GE5 data bus where it is accessed by the GE5.

4 -8

Silicon Graphics Confidential MGR Technical Reference

‘\ .-- Weitek 3132

The Weitek 3132 is a floating point data path chip. It provides pipelined floating point multiply and
add capability. It also provides 32 working registers to use during the floating point operations.
The 3132 is the heart of the GE5 and is used to perform all geometry and lighting transformations.

Microcode Code RAM

The microcode code RAM contains up to 32 K words of microcode. Each word is 40 bits wide and is
acc8ss8d using the PC in the HQl .

Microcode Data Ram

The microcode data RAM contains 8K words of data constants and variables. Each word is 32 bits
wide and is accessed using the MEMPTR in the HQl .

Utility Bus Buffer
,

This is an eight bit transceiver which allows data to pass between the host bus and the utility bus.
Only the low byte of the local bus are passed on to the utility bus. The address decoding and control
signal generation are handled by the HQl.

GE Data Bus Bufier-.

__
This is a 32 bit buffer which allows data to be passed between the GE5 bus and the host interface.
Sing18 word transfers use this data path to transfer data between the host and the microcode code
RAM, the microcode data RAM and th8 HQl PC register. DMA transfers between the host and the
microcode data RAM or between th8 host and the Raster Engine atso us8 this data path.

GRFl Gate Array

This chip is used to provide the two finish flags and to correct some other minor design flaws in the
HQl chip.

-

4-9

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

. Registers

The Geometry Subsystem contains the following registers in the HQl chip
chip:

- HQl Registers

Middle Address (HQMAR) register

Middle Address Most Significant Bit (HQMMSB) register

Program Counter (PC) register

Previous PC register

Memptr Register

Temp Memptr Register

REptr Register

DMA Count Register _ -- -

and the Weitek 3132

- Weitek 3132 Registers

- 32 Data Registers

- 3 Temporary Result Registers

These registers are described in the following paragraphs.

4 -10

=;;irr)n Graphics Confidential MGR Technical Reference

HQ Middle Address (MAR) Register

The HQMAR register is the page address register used by the host software to acc8ss the 256 word
pages of GE5 code and data RAM. The register is 7 bits wide and provides the upper 7 bits of the
microcode code and data RAM address. The full address of the word in the code or data RAM is formed
by taking the lower 8 bits from bits 2-9 of the host address bus and adding the upper s8v8n bits of
the HQMAR register to form the 15 bit address. The us8 of this register wilt be described more
completely in the PC and Memptr register diissions later. The HQMAR register can only b8
written by th8 host and cannot b8 read by th8 host. This means that WheneVer th8 host sOftwar8
changes the value in the HQMAR register it must us8 the GE_HQMBAV token to sav8 the value ln the
GE5 data RAM location HQMSAV. When a context switch is done this saved HQMAR value is part of
the saved context. When the context is later restored the saved value of the HQMAR r8giSt8r is used
by the host software to restore the HQMAR register. Figure 4.3 shows th8 format of the HQMAR
register.

6 5 4 3 2 1 0
r I I I I I I ,

Pw Address
I I I I I I

- -_ _ Figure 4.3 HQ Middle Address Register __ _

Bits 6-O : Page Address (Write Only) - Contains 7 bit page address value used for accessing
microcode code or data RAM.

-

4-11

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

HQ Middle Address Most Significant Bit (HQMMSB) Register

The HQMMSB register is a 1 bit wide register that is used by the HQl chip as an address control bit
to control the addressing of the hardware components shown in Table 4.1. The use of this register is
shown in Tables 4.1 and 4.2. This register must be set to 0 when accessing the low 32 bits of the
GE5 code RAM or the GE5 data RAM. The bit must be set to one when accessing the upper 8 bits of
the GE5 code RAM or when issuing an HQl command. It must also be set to one when accessing the
the hardware components in the Display Subsystem and the Cursor chips in the Raster Subsystem.
When accessing the HQMAR register, the HQMMSB register, the FIFO and the Finish Flags the value
in the HQMMSB register can be either a zero or a one. The host can oniy write this register so the
host software must make sure it manages the value in this register as needed for each hardware
component access. The host software shouid always clear the HQMMSB register when it is finished
accessing a hardware component. The value of this register is determined by the value of the host
address bit 2. This means that this register is cleared by writing to address OxEOO and is set by
writing to address OxE04. The value which is written to these addresses do not affect the clearing
or setting of the HQMMSB register. ,

The name of this register is from an earlier implementation when it was bit 7 of the HQ MAR
register. It is now accessed independently of the HQ MAR register. The format of the register is
shown in Figure 4.4.

Bit 0 :

_.- - - _ __.___ -.

0

clAC

Figure 4.4 HQ MAR Most Significant Bit Register

Address Control (AC) Bit (Write Only). Contains a bit used by the HQl in decoding host
addfBsSeS.

4-12

Siiioon Graphics Confidential MGR Technical Reference

HQ Program Counter (PC) Register

The PC register is a 15 bit wide register which is used by the HCX to access the GE5 microcode code
RAM as it sequences through the microinstructions. When the HQl chip is reset as part of the MGR
adapter reset the value in the PC register is undefined. The host software &es not have direct write
aazess to the PC register but it can load a value into the PC register indirectly by loading a page
address into the HQMAR register and then reading or writing a word in the code RAM. The tower 8
bits of the PC are baded from the host address bits 2-9 and the upper 7 bits of the PC register are
baded from the HQMAR register. The HQMMSB register controls whether the bwer 32 bits or the
upper 8 bits of the code RAM are accessed. This technique is used by the host software to download
the microcode to the adapter.

Once the microcode is downloaded the host bads the HQMAR register with zero and reads code word
zero to cause the PC value to be set to zero. The clear stall command can then be issued to cause the
microcode to begin executing the microcode hard initialization code. At this point the HQl controls
the value in the PC register as it executes the microcode instructions. The host software can read
the PC register by issuing the HQl read PC command. The format of the register is shown in Figure
4.5.

14 13 12 1 1 1 0 9 8 7 8 5 4 3 2 10
-. t

I
I I 1. I I I

Microcode
I I I- I

Address -
I I

.
I 1

.code RAM I
--

-.
Figure 4.5 HQ Program Counter Register

Bits 14-O : Microcode code RAM address. Contains the address of the microcode word which will be
accessed by the HQl or by the host system.

4-13

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

HQ Previous PC Register

The Previous PC register is a 15 bit wide register which is used by the HQl to save the value int
the HO PC register. Normally the use of the previous PC register Is totally transparent to the host
software. During the execution of the GE_CTXO or GE_CTXl tokens the HQl saves the current PC
ragister value. The context switch microcode saves the value In the previous PC register in the GE5
data RAM location PCSAVE. This value is part of the saved context data that is saved in the host data
RAM. When the host software later restores the saved context lt uses the value In the PCSAVE
location while doing the context restore operation. The use of the PCSAVE value will be discussed in
the discussion of the GE_CTXl to&en. The format of the register is shown In Pigure 4.6.

14 13 12 11 10 9 8 7 8 5 4 3 2 1 0
I I I I I I I I I I I I I I

saved PC vdueI I I I I I I I I I I I I .I
.

Pigure 4.6 HQ Previous PC Register ,

Bits 14-O : Saved PC Value. Contains the saved value from the PC register.

$j __ -* -- _ -- - -_ -

.

4-14

-

Silioon Graphics Confidential

HQ Memptr Register

MGR Technical Reference

The Memptr register is a 14 bit wide register whit is used by the HQl to aazess the GE5 microcode
data RAM. When the HO1 chip is reset as part of the MGR adapter reset the value in the Memptr
register is undefined. The host software does not have the ability to read the Memptr register. The
host software also cannot directly write to the Memptr register but it can load a value into the
Memptr register indirectly by loading a page address into the HQMAR register and then reading or
writing a word in the data RAM. The lower 8 bits of the Memptr are loaded from the host address
bits 2-9 and the upper 6 bits of the Memptr register are baded from the HQMAR register. The
HQMMSB register must be set to zero while the data RAM is being accessed. Normally the value in
the Memptr register is baded by the microcode as It executes. The format of the register is shown
in Figure 4.7.

13 12 11 10 9 8 7 6 6 4 3 2 1 0
I I I I I I 1 I I I I I I

Microcode data RAM Address
I I I I I I I I I I I t I

Figure 4.7 HQ Memptr Register

Bits 13-O : Microcode data RAM address. Contains the address of the data word which wi!l be
accessed by the HQl or by the host system.

4-15

Chapter 4 Geometry Subsystem

HQ Temp Memptr Register

Silicon Graphics Confidential

The Temp Memptr register is a 14 bit wide register which is used by the HO1 to temporarily save
the Memptr register for a single microcode instruction. The host software does not have the ability
to read or write the Temp Memptr register and it is only described here for completeness. The
format of the register is shown In Figure 4.8.

13 12 1110 9 8 7 6 5 4 3 2 10
I 1 I I I I 1 I I I I I I

saved Memptr Address
I I I I I I I I I I I I I

Figure 4.8 HQ Temp Memptr Register

Bits 13-O : Saved Memptr Value. Contains the saved value from the memptr register.
.

-. _ -- _. __- _. .-

-.

4-16

Silicon Graphics Confidential MGR Technical Reference

HQ REptr Register

The Reptr register is a 6 bit wide register which is used by the HQl to address the registers in the
Raster Engine. The host software does not have the ability to read or write the REptr register and it
is only described here for completeness. The format of the register is shown in Figure 4.9.

5 4 3 2 1 0
I I I I I

RE Register Add-
I I I I I

Figure 4.9 HQ REptr Register

Bits 5-O : Raster Engine Register Address. Contains the address of an RE2 regisier to be accessed.

,

--

.

4-17

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

HQ DMA, Count Register

The DMA Count register is a 11 bit wide register which is used by the HQl to count the number of
words DMAed by the HQl. The microcode bads the DMA count into the register and executes a
repeatgez instruction which causes the dma transfers to continue while the DMA count register is
greater than zero. For each word transfered the HQl decrements ccunt in the DMA Count register.
The host software does not have the ability to read or write the DMA Count register and it is only
described here for completeness. The format of the register is shown In Fqure 4.10.

10 9 8 7 8 5 4 3 2 1 0\ I I I I I I I I I I
DW word count

I I I I I I I I I I

Figure 4.10 HQ DMA Count Register

Bits 1 O-O : DMA Word Count. Contains the number of words to be DMAed by the HQl.

_.- _- ___ . . _ .-... -- __ ._.

.

4-18

Silicon Graphics Confidential MGR Technical Reference

Weitek Registers

The Weitek chip contains 32 register which are used to store the source data and the results of the
floating point multiplies and adds. The chip also contains 3 temporary registers used to hold the
results of multiply and add operations. Each of the registers is 32 bits wide and can hold an IEEE
format single precision floating point value or a 24 bit sign extended 2’s complement integer value.
The host software does not have the ability to read or write the Weitek registers. The format of the
register is shown in Flgure 4.11.

31 2 4 2 3 1 6 1 5 6 7 0
I : I : I

Byte 3 i Byte 2 Byte 0
I , I

i

Figure 4.11 Weitek Registers

Bits 31-O : Floating Point or Integer Data. Contains the source data and result data of floating point
operations by the Weitek.

-._. _ -. -. -

4 - 1 9

*I+?-*a? 4 Geometry Subsystem Silicon Graphics Confidential

Interrupts

The Geometry Subsystem generates two interrupts which can generate an interrupt to the host
system. These are the GE interrupt and the FIFO Half-Full interrupt. These interrupts go to the
Host interface Subsystem which contains the interrupt mask register and the interrupt status
register. Refer to the Host interface Subsystem chapter for a description of these registers and for
a description of how a host interrupt is generated.

FIFO Half-Full Interrupt

The FIFO Half-Full interrupt is generated by the FIFO hardware when it becomes half full. The FIFO
can hold up to 512 entries and so if 256 entries are in the FIFO it generates an interrupt when the
next tag/data entry is placed In it. The half full level was chosen to provide adequate time for the
host operating system to respond to the interrupt without the FIFO becoming completely full.

GE Interrupt

The GE interrupt is generated by the HQl chip in response to a microcode instruction. The l

microcode causes a GE interrupt to be generated after it completes it’s startup lnitiaiization after
the microcode is downloaded. It also generates interrupts during picking and feedback mode each
time the pictifeedback buffer becomes full. if the GE_ENDPICK or GE_ENDFEEDBACK tokens are
sent tbe microcode causes a GE interrupt to be generated to tell the host when it can read the final
pi& or feedback data from the buffer.

The HQl latches the GE interrupt and the host must issue a clear GE interrupt HO command to clear
the interrupt. This must be done before the interrupt status register GE interrupt bit is cleared to
prevent a spurious interrupt to be generated by the Eddy Chip.

4 -20

Silicon Graphics Confidential MGR Technical Reference

GE5 Basic Operations

The Geometry Subsystem contains a single microcoded processor capable of 20 million floating-
point operations per second (MFLOPS). This processor is referred to as the Geometry Engine (GE)
and the MGR adapter has the fifth generation version which is referred to as the GE5 The basic
operation of the GE5 can be viewed at two different levels. The first level is the low level microcode
operational level. The second level is the 30 graphics functional level. The following sections
describe these two levels.

Microcode Operational Level

The GE5 consists of the HQl , the Weitek 3132, the microcode code RAM, the microcode data RAM and
the FIFO. The HQl acts the microcode sequencer and uses the PC register to read microcode words
from the code RAM. The Weitek 3132 is used to perform the floating point arithmetic needed to
perform the 30 graphics operations. The data RAM is holds various constants, variables and data
buffers needed by the microcode. The FIFO is used by the microcode to receive host command tokens
and data parameters. The tokens instruct the microcode to perform the necessary graphics
operations. 4

The microcode instructions are either one or two 40 bit words. The 40 bit microinstruction fields
provide control for the Weitek 3132 chip, the PC control unit, the REPTR, the MEMPTR and the
various GE5 da!a paths. Most instructions use only a sing!e 40 bit word format. However, some
instructions such as conditional and unconditional branches require a second 40 bit word as part of
the microinstruction. This second 40 bit field is used for constants, for target addresses for
branches, for values to load in the MEMPTR, for values used to set the interrupt bits and for control
values for the DMA channels.

Since the microcode is executed from RAM it must be downloaded by the host into the microcode code
RAM. The host reads a file called ge5_re2.bin which contains the microcode code and data constants.
Before doing the download the host issues a reset command to the MGR adapter which stalls the GE5
and resets the other hardware components. The host then writes the microcode code into the code
RAM and the data constants into the data RAM.

The microcode contains a branch instruction at location zero to an initialization routine. The host
reads location zero of the code RAM which causes the PC register to be loaded with zero. The host
then clears the GE5 stall condition. The microcode executes the initialization routine. When the
initialization is completed the microcode issues a GE interrupt to the host and does a stall
instruction. Meanwhile the host polls the interrupt status register waiting for the GE interrupt to
occur. Once the GE interrupt occurs the host issues a clear GE interrupt command to the l-IQ1 and
then issues a clear stall command to cause the microcode to start executing.

The microcode expects the host to send down three parameters at this point. The first parameter
informs the microcode if the extended bitplanes are installed. A zero means that the extended
bitplanes are not installed and a one means that they are installed. The second parameter indicates
if the Z buffer bitplanes are installed. A zero means that they are not installed and a one means that
‘they are installed. The third parameter indicates if the VRAM is 256K or 1 Meg chips. A zero
indicates 256K and a one indicates 1 Meg chips. Refer to the Display Subsystem chapter for
information on how to read the display registers to determine this infonation. At this point the
microcode loads these parameters into the appropriate Raster Engine registers and does a token
FETCH instruction from the tag FIFO.

The microcode is organized as a branch table in low memory and the corresponding routines above
the table in the microcode code RAM. The microcode does FETCH instructions to get command tokens

4-21

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

from the tag FIFO. Each FETCH causes the HO1 to read an eight bit quantity from the tag FIFO. The
HQl shifts the token left by one bit to form an index into the branch table and toads the index into
the PC. The left shift is necessary because each branch instruction in the table takes two 40 bit
microcode word locations.

The microcode branch instruct&n is executed by the HQl which causes the corresponding routine
higher up in the microcode RAM to be executed. The HQl executes the microcode instructions
contained in the routine to perform the desired function. The last instruction in the routine wilt be
a FETCH instruction. This causes the HQl to get the next token from the tag FIFO. This sequence is
repeated as long as the host continues to send tokens down the FIFO.

If the command token requires data parameters the appropriate microinstructions are performed to
read the 32 bit words from the data FIFO. The microcode can access the microcode data RAM as
needed for access to constants, variabfes and data buffers. The microcode also accesses the various
Raster Engine registers as needed to perform drawing operations.

The microcode can also execute jump to subroutine and return from subroutine i?WuCtiOnS to
allow the microcode to contain subroutines of commonly used code. The return address is saved on
an 8 level stack in the HQl.

,

Any further discussion of the operation of the microcode is beyond the scope of this document. The
following section describes the 30 functions implemented by the microcode.

,r;.. _- . .- .- -. . -
.*ti

4-22

Xcon Graphics Confidential MGR Technical Reference

3D Graphics Operations

The MGR adapter provides support for the drawing of a wide range of 3D geometric objects. The
objects can be drawn with a variety of attributes and can be solid filled using either flat shading or
Gouraud shading. Support is also provided for drawing objects with multiple lighting sourcas with
various lighting parameters specified for the surface characteristics of the objects being drawn.
The GE5 microcode performs the necessary coordinate transformations from world coordinates to
device coordinates and controls how the Raster Engine performs the pixel rendering operations
using either RGB or color index pixel formats. The microcode supports a single graphics context
and provides the necessary support for switching between multiple graphics contexts.

The GE5 processes a stream of command tokens and data which control the operation of the adapter.
As each token is executed the microcode performs the various coordinate transformations and pixel
rendering operations specified by the tokens and data. The various graphics context parameters ln
the GE5 data RAM are updated as necessary as the various tokens are executed. The appropriate
Raster Engine registers are loaded to specify the drawing parameters and then the instruction

. register is loaded to cause the Raster Engine to perform a drawing operation.

The following functional operations are supported by the MGR adapter:

.

Window Management Support

Graphics Context Support - _. _ _ -

Coordinate Transformations

Drawing of World Coordinate Geometric Objects

Drawing of Screen

Lighting Support

Feedback Support

Coordinate Objects

Picking and Selecting Support

- Pixel Rendering Support

These functional operations are described’in the following sections.

4-23

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Graphics Resource Management

The host operating system must provide the necessary operating system software to manage the
graphical resources provided by the MGR adapter. The graphical resources which need to be
managed include:

- On screen windows

- Current graphics context state information

- 2 DMA channels

l - 2 Cursor Chips

- XPCl or XMAPP mode registers

- Color map tables

- DAC color palettes

The management of the DMA channels is discussed in the Host Interface Subsystem chapter. The. . . . _.
mylagement of the mode registers, the color maps and the DACcoloqalettes are discussed In me
Display Subsystem chapter. The management of th8 cursor chips is discussed in the Paster
Subsystem chapter. The following paragraphs describe the management of the on screen Windows
and the graphics context.

.-

4-24

Silicon Graphics Confidential MGR Technical Reference

Window Management

if the host software wants to provide multiple graphics applications with the ability to
simultaneously share the MGR adapter it must provide a window manager which controls multiple
on screen windows. The window manager must manage the window creation and manipulation
requests of the various graphics processes as they execute. The window manager provides multiple
on screen windows by using the Window ID bitplanes and the hardware screen mask to control which
bitplanes the graphics applications can write to. The window manager must also provide the user
interface for controlling the appearance and location of the on screen windows.

The MGR adapter provides 2 WI0 bitplanes on the base adapter and 4 WI0 bitplanes for the enhanced
adapter. This means that the base adapter oan have up to 4 on screen windows and the enhanced
adapter can have up to 16 on screen windows. If the fast 2 clear mode is enabled on the enhanced
adapter then the number of on screen windows is limited to 8 since two window IDS are used for
each window in this mode.

The Window Manager can use the tokens shown in Table 4.3 to control the WI0 bitplanes and the
hardware screen mask. The WI0 bitplanes allow a bit by bit control of which pixels can be written
into. This allows very complex windows to be managed by the window manager. The hardware
screen mask is used to clip all pixel writes outside of the specified rectangular area.

- . Table 4.3 Window Management Tokens --- - _

Token

GE.--

Description

Specifies the current WID to use during window ID checking

1 GE_ENABLWlD 1 Used to enable the WID checking of lines I

=_-
Gt_FlATMCDE

GE__SCRMSH

Used to enable WID checking for other drawing except lines

Used to specify the span drawing mode and RE2 DX parameters

Used to specify the hardware screen mask rectangular coordinates

I Gl_SElPECES 1 Used to set a clipping piece list used by GE_SCREENCLEAR token I

The MGR adapter provides Window ID bitplanes which can be used to control pixel writes by the
Raster Engine. The Window Manager writes the window ID for each on soreen window into the WI0
bitplanes at the appropriate locations. The GE_CURRENTWID token is then used to specify which
Window ID is currently active. if WI0 checking has been enabled then the current WI0 will be
wmpared with the data in the WI0 bitplanes and only those pixels where the current WI0 is the
same as the WI0 data will be written. The GE_ENABWID token controls the WI0 checking for the
shaded span and write buffer instructions of the Raster Engine. The GE_ENABLWID token controls
the WI0 checking for the Draw tines instructions of the Raster Engine. These instructions are
described in greater detail in the Raster Subsystem chapter.

The GE_SCRMASK token specifies a rectangle which is loaded into the Raster Engine screen mask
registers. The screen mask is used to clip all pixel writes for pixels whose location is outside Of the
screen mask rectangle. The screen mask clipping is always enabled for all of the Raster Engine
instruction which write pixels. If no screen mask clipping is desired then the screen mask
rectangle should be set to the full screen dimensions.

The WI0 checking operations cause the Raster Engine instructions to draw tokens slower than when
WI0 checking is not enabled. Th8 use of the screen mask or WI0 checking to perform pixel writ8

4-25

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

clipping is dependent on the shape of the currently active window. If the current window is
unobscured (a single 1 piece window) then the screen mask can be used to clip pixel writes which
are outside of the window. If the window is partially obscured by other windows then the WID
checking must be enabled to clip pixel writes.

Since the WID checking performance is most noticeable for screen clear operations a special
optimization mechanism is provided by the GE5 microcode. This mechanism consists of the piece
list which is set using the GE_SETPIECES token. This token allows the window manager to specify
up to four rectangular clipping masks which are used by the GE SCREENCLEAR and the GE CZCLEAR
tokens. If the current window is unobscured or obscured 4th only 2 to 4 rectangular &es then
the piece list is used to control pixel clipping so that only the pieces of the current window are
cleared. If the window is divided into more than 4 rectangular pieces or is a non-rectangular shape
then WID checking must be used to control the pixel clipping. The SIMPLE flag in the GE5 data RAM
controls whether WID checking or the piece list control the screen clear pixel clipping. If the
current window contains from one to four rectangular pieces then the SIMPLE flag is set to 1. If the
window is divided into more than 4 rectangular pieces or the window is non-rectangular then the
SIMPLE flag is set to -1. The discussion below describes how the SIMPLE flag is written into the
current context or a saved context.

The GE_FLATMODE token is used to specify if the flat span instruction or the shaded span
instruction is used to draw filled polygons. The flat span instruction is faster than the shaded span
instruction but it does not allow window checking operations to be performed. The flat span
ingtruction can not draw shaded spans. The. shaded span instruction can be used to dr_a_w either
shaded or flat spans which can be WID checked. The GE_ENABWID token can be used to enable WlD
checking all the time for shaded spans and the GE_FLATMODE token can be used to specify whether
the shaded or flat span token is used to fill polygons. If the GE_SHADEMODEL token specifies shaded
fill mode then GE_FLATMODE token will be ignored and the shaded span instruction will be used. If
the GE_SHADEMODEL specifies a flat mode then the GE_FtATMODE token will control whether the
flat span or the shaded span will be used to fill the polygon. If the window is obscured and WID
checking is needed then the FLATMODE parameter of GE_FIATMODE will be set to 1 to indicate that
the shaded span instruction should be used. In this case the FIATDX parameter will be Set to
0x4000 for the RE2 OX register. If the window is unobscured then the FLATMODE parameter is set
to 2 to indicate that the ftat span instruction should be used to fill the polygon. The FLATDX
parameter would be set to 0 for this case.

The window manager can use the tokens described above only for the current graphics context.
However for the other windows whose shapes have changed the window manager can not use the
tokens described above to change the window management parameters. These tokens can only be used
for the current context if the window manager can guarantee that the graphics application is not in
the process of sending a data parameter stream for a token. A better approach would be to update the
parameters in the saved context in memory and then have these changes take affect when the context
is restored. For the current context this could be done by having the window manager switch out the
current context, change the parameters and then switch the context back into the adapter. The
parameters which are changed in the saved context are shown in Table 4.4.

The ENABLWID parameter Is used to enabte or disable line WID checking. The shaded span WID
checking would always be enabled as described above. The FLATMODE and FlATDX parameters are
used the same as described above. The NEWORG parameter is a flag which instructs the context
restore microcode to recalculate the screen mask and viewport parameters. If NEWORG is set to 1
the recalculation is performed and if NEWORG is -1 then the recalculations are not performed. The
XORG and YORG parameters are used to specify the lower left comer of the window. The SIMPLE ftag
is used as described above. Finally the last 17 parameters are the piece list count and the
specifications for the 4 piece rectangles. The 24 parameters are stored contiguously in the saved
context and can be written from an array into the context data area. __

4-26

Silicon Graphics COnfid8ntiai MGR Technical Reference

Table 4.4 Window Control Parameters in the Context

.

XIENI Specifies the x direction length of the first piece

LlXl Specifies the lower left x screen coordinate of the first piece
A wEN2 - . Spedi the y’ dhd+l length of tbd secoti piece

LLYP Specifies the lower left y screen coordinate of the second piece

xLEkt2 Specifies the x direction length of the second piece

Lu2’ Specifies the bwer left x screen coordinate of the second piece
Specifies the y direction length of the third piece

LLY3 Specifies the lower left y screen coordinate of the third piece

xEr43 Specifies the x direction length of the third piece

Specifies the lower left x screen coordinate of the third piece

Specifies the y direction length of the fourth piece

UY4 Specifies the lower left y screen coordinate of the fourth piece

xLEN4 Specifies the x direction length of the fouith piece

LLx4/ Specifies the lower left x screen coordinate of the fourth piece

The programming considerations for the WI0 bitplanes are described in the Raster Subsystem
chapter.

4 - 2 7

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Grap hits Context Management

The MGR adapter provides hardware and microcode support for only a single graphics context sc if
the host operating system supports multitasklng operations then it must perform a graphics context
switch when the current graphics process is made inactive and another process is activated. When
switching contexts the current graphics context must be saved in the host data RAM and a different
context must be loaded into the adapter and made active. The host operating system maintains the
appropriate data structures to albw the current state informatbn to be saved and a new context
switched to. The exact nature of these data structures is beyond the scope of this document and will
only be described in terms of the data which must be maintained for the proper operatbn of the
adapter.

The graphics context contains various state information which represents the current state of the
MGR adapter. The graphics context state information Is maintained in both the host data RAM and In
the MGR adapter. The host data RAM contains the state information which describes the window
manager state for the various windows be displayed on the adapter and the state of the Host Interface
and Display Subsystems. The adapter maintains the current state information for the Geometry
Engine and the Raster Engine. ,

The graphics context consists of the following state information:

2 - Host maintained state-. .__ _ . -- . . - _-.

- Current Context

graphics state maintained by graphics application (such as the SGI gl)

Window Manager state information

Host interface Subsystem state

Display Subsystem state

- Saved context state for each inactive process

- Adapter maintained state for current context

- GE5 operational state

- current contents of the Weitek registers

- current contents of the Raster Engine registers shadowed in GE5 data RAM

The GE5 data RAM layout is shown in Fiiure 4.12 and the symbolic names of the address are defined
in the file ge5Alob.h. This header file also defines the indivfdual address offsets in the variable
data area and the other areas. The DIVMOD table is used by the microcode to format the X screen
coordinates into the format required by the Raster Engine. The Constants table is used to hold
constants information required by the GE5 microcode as it executes. The DIVMOD and Constants
tables are not part of the graphics context since they can be considered as read only constants.

4-28

Silicon Graphics Confidential MGR Technical Reference

DfvKmBL
DNMOD Table

VAFIBASE ’

CONSTANTS Table

Variable Data

MATRIXMEM

NoRwuMzM ’
MVP Matrix Stack

Nonnat Matrix Stack

Weitek and HO register
save area

Vertex List Buffer
Pixel Buffers

Pi&Feedback Buffers
Surface Data Buffer

t

Small
Context

Save
Size

1

Figure 4.12 GE5 Data RAM Layout

The graphics context area includes the following data:

Big
Context

Save
Size

the variable data area

the Modeling/Viewing/Projection matrix stack

the Normal matrix stack

the’ register save area

lighting data area

data buffer area

The varfable data area contains the state information of the GE5 microcode as it executes the various

_--

tokens that it

- current

- current

- current

- current

receives. This area contains the following types of data:

color data

graphics position

character position

viewport data

4-29

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

- current screen mask data

- shadow RE2 register data

- window manager data (as defined in the previous section)

- various branch and mode flags

The window manager data described in the previous section is one area of the saved context that is
manipulated by the host software. The additional data items shown in Table 4.5 are also accessed by
the host software. The window manager sets the current WI0 in the saved context by writing to the
CURWID data location in the context. The other data items are used by the host software which does
the context switch. The us8 of these data locations are described in the programming considerations
for graphics contexts in th8 Programming Considerations section of this chapter.

Table 4.5 Context Data Accessed by the Host

I Address I Descrbtion

%J- -- HQt@AV
MEMPTR

PCSAVE

Contains the current WID data
Contains the HQM MAFI register value to be restored

Contains the GE5 memory pointer when the context was saved

Contains the saved microcode Program Counter

Contains the RE2 register pointer when the context was saved

The host software should not change any other data in the saved context besides those described
above. The host software can access other areas of the GE5 data RAM to get return data from the
miCrocod as it executes tokens. These data locations are described for the individual tokens and are
summarized at the end of the Token Definitions chapter.

Since the MGR adapter can only contain a single context it is necessary for the host Software to
maintain the appropriate data structures to hold saved contexts for graphics processes which have
been switched out of the adapter and saved in the host memory. After the host switches out a context
it restores a previously saved context or initializes a new context. The tokensshown in Table 4.6
are used to perform th8 context switching and context initialization.

Table 4.6 Context Switch Tokens

Address Description/
GE_clxo Initiates a Context Switch

GE_CTXl Initiates a Context Switch (in case first token is not recognized)

GE_INlT Initializes a new context .

The GE_CTXO and the GE CTXl tokens are used to initiate a context switching operation. The use of
these tokens is described% the Programming considerations section of this chapter. The GE_INIT
token is used to initialize a new context. This token causes the microcode to set all of its mode flags
to their default conditions and to initialize the various data structures. The GE_INIT token
definition defines the default settings for the various microcode data variables.

4 - 3 0

Silicon Graphics Confidential MGR Technical Reference

Coordinate Transformations

The MGR adapter provides support for three types of coordinate systems which include the world
coordinate system, the normalized coordinate system and the device coordinate system. The world
coordinates are specified as (x, y, z) triplets with values which are appropriate to the objects
being drawn. The world coordinates can be specified using either floating point or integer values
but the integer values will be converted to floating point by the microcode. The transformations
performed on the world coordinates are always done in floating point. The world coordinate system
uses a right handed system in which the positive x axis is to the right, the positive y axis is up and
the positive z axis toward the viewer.

The GE5 microcode provides support for the necessary matrix transformations to transform 30
world coordinates into device coordinates for use by the Raster Subsystem during the pixel
rendering operations. The microcode manages a 16 level 4 x 4 matrix stack which contains the
concatenated modeling, viewing and projection matrices which are used to transform the 30 world
coordinate data to the 30 normalized coordinates. The normalized coordinates are clipped against a
bounding cube which has the dimenslons of -1 to +l along each of the ‘x, y and z axis. Once the
normalized coordinates have been clipped against the normalized viewing volume they have the
perspective division applied to them. The perspective division consists of dividing the transformed
x, y and z coordinate values by the transformed w coordinate value. Finally the coordinates are
multiplied by the device scaling factors specified by the viewport specification. The viewport

_,Jranslation offset factors are .addnd tn the resulting coordinates- to get the resulting window relstivq
device coordinates.

The MGR adapter also provides a corresponding 16 level 3 x 3 matrix stack of normals for lighting
surface normal transformations. The use of the normal matrix stack is described in the later
section on lighting support.

The tokens shown in Table 4.7 are provided for the coordinate transformations. The
GE_LOADMATRIX token Is used to l oad the i n i t i a l p ro jec t i on ma t r i x on the
Modeling/Viewing/Projection matrix stack. The projection matrix can be either a perspective or
orthographic projection matrix. The GE MULTMATRIX token is used to concatenate the viewing and
modeling matrices with the project&n matrix on the top of the MVP matrix stack. The
GE_PUSHMATRIX token is used to push the matrices on the MVP stack down one level. The current
top of the matrix stack is left unchanged. The GE_POPMATRIX token is used to pop the matrices on
the MVP stack up one level. The previous current top of the stack matrix is overwritten.

Table 4.7 Coordinate Transformation Tokens

I Token Description
I

GE_LOADMATFtIX Loads the initial coordinate transformation matrix

GE_lDIDVlEWFJ Loads tha viewport device coordinate mapping values

GE_- Used to control the transformation matrix stack mode

GE_tvlULTMATPIX Multiplies the current transformation matrix with another matrix

GE_POPMATFtIX Used to do a pop operation on the matrix stack

GE_PUSHMATFtIX Used to do a push operation on the matrix stack.

The GE_MMODE token is provided to support lighting calculations. When it is set to single mode the
MVP stack is not connected in any way to the normal matrix stack. When the matrix mode is set to

4-31

%z%z: 4 Geometry Subsystem Silicon Graphics Confidential

viewing or projection mode then the push and pop operations cause both the MVP and normal matrix
stacks to be pushed or popped. The use of the GE_MMODE token is described in greater detail in the
section on lighting support.

The GE_LOADViEWP token is used to specify the scaling and translation factors applied to the
normalized coordinates to transform them to device coordinates. The translation factors are added to
the origin of the current window so that the resulting device coordinates are window relative.

The tokens shown in Table 4.8 are provided by the GE3 microcode to assist in the development of a
PHIGS graphics package. These tokens are not used by the Graphics Library supplied by Siiiin
Graphics. The tokens use the bottom six levels of the MVP matrix stack for their operations. These
tokens are defined in the Token Definitions chapter.

Table 4.8 PHIGS Matrix Support Tokens

Token Description
I

GE-TFUX Used to concatenate two matrices on PHIGS matrix stack
I

GE_COPYMATRlX 1 Used to copy a matrix from one location to another on PHIGS stack
GEJOADTOPhWRIX Used to copy a matrix to the top of the PHIGS matrix stack

GE_SEThMTRlX Used to load a matrix on the PHIGS matrix stack ._

4-32

,

Silicon Graphics Confidential MGR Technical Reference

Drawing World Coordinate 3D Geometric Objects

The GE5 microcode provides support for drawing geometric objects whose coordinates are specified
either in world or screen coordinates. The microcode provide support for drawing the following

:. world coordinate geometric objects:

points

lines and poiyiines

closed polyiines

filled polygons

triangle meshes

CUTVBS

NURBS

screen aligned boxes

text characters
__ .

The following paragraphs describe the world coordinate geometric drawing support provided by the
microcode. The screen coordinate drawing support is described in a later section.

Current Graphics Position

The current graphics position specifies th8 starting position where the next line drawing operation
begins. After the line drawing operation is COmpi8t8d the current graphics position is updated to the
8nd of the line position. The point drawing operations also update the current graphics position to
the specified point position.

4 -33

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Point Drawing

The GE5 microcode supports the drawing of points whose location is specified in world coordinates.
The point is one pixel wide and after the point is drawn the current graphics position is updated to
the location specified for the point. The tokens shown in Table 4.9 are provided for drawing points.

Table 4.9 Point Drawing Tokens

Token Descriptionr
GE_PNT2 Draw point at absolute floating point 20 coordinate

GE_PNTPI Draw point at absolute integer 2D coordinate

GE_PNT3 Draw point at absolute floating point 30 coordinate

GE_PNT31 Draw point at absolute integer 30 coordinate

GE_PNT4 Draw point at absolute homogeneous coordinate

GE_PNT41 Draw point at absolute homogeneous coordinate

~_shuzIolHPolNr Used to enable or disable the drawing of antialiased points

The location of the points- can be specified in either floating point or integer coordinates. The
integer coordinates are converted to floating point values by the microcode. The coordinate location
is an absolute coordinate which can be specified in 2D, 3D or homogeneous coordinates. The 20
coordinate specifies a row vector [x y 0 l] in which the z element is 0 and the w element is 1. The
30 coordinate specifies a row vector [x y z _i] in which the w element is 1. The homogeneous
coordinate specifies a row vector [x y z w] in which the w element is specified by the host software.

The GE_SMWTHPOINT token is used to enable or disable the drawing of antialiased lines.

4-34

Silicon Graphics Confidential MGR Technical Reference

Line and Polyline Drawing

The GE5 microcode provides support for drawing lines and polylines. The line drawing begins by
specifying a current graphics position and then issuing one or more line drawing tokens. The tokens
shown in Table 4.10 are provided for setting the current graphics position.

Table 4.10 Set Current Graphics Position Tokens

Token

GE-MOVF:’

Description

Set current graphics position using floating point absolute 20 coordinates

GEJuKnt-m

GE-M=3

Set current graphics position using integer z&solute 20 coordinates

Set current graphics position using floating point absolute 30 coordinates

GE_MovE3I
GE_MYJE4

GE_hflovE41

GEFwADvE2

GE_fUvlDVE21

GE_FtfvwE3

Set current graphics position using integer absolute 30 coordinates

Set current graphics position using floating point homogeneous coordinates

Set current graphics position using integer homogeneous coordinates

Set current graphics position using floating point relative 20 coordinates

Set current graphics position using integer relative 20 coordinates

Set currknt graphics position using flbatlng point relative 30 coordinates
*

1 GE_FtfvtOVE31 Set current graphics position using integer relative 30 coordinates I

The new current graphics position can be specified in either floating point or integer coordinates.
The Integer coordinates are converted to floating point values by the microcode. The new graphics
position can be specified as either an absolute coordinate or a relative coordinate. The absolute
coordinate replaces the current graphics position with the new coordinate position. The relative
coordinate is added to the current graphics position to create the new current graphics position.
The coordinates can be specified in 20.30 or homogeneous coordinates. The 20 coordinate specifies
a row vector [x y 0 l] in which the z element is 0 and the w element is 1. The 30 coordinate
specifies a row vector (x y t 1 J in which the w element is 1. The homogeneous coordinate can only
be specified in the absolute format and specifies a row vector [x y z w] in which the w element is
specified by the host software..

The line drawing tokens are shown in Table 4.11. A single line is drawn by sending one of the draw
tokens which causes a line to be drawn from the current graphics position to the coordinate position
specified with the draw tokens. After the line is drawn the current graphics position is updated to
the end of the line coordinate. To draw pofylines it is only necessary to set a current graphics
position with the move tokens shown above and then send multiple draw tokens. The current
graphics position is updated to the end of the last line drawn.

The draw tokens can be specified in either absolute or relative forms using either floating point Or
integer coordinates. The coordinate specifying where the line is to be drawn to can be specified in
20.30 or homogeneous coordinates.

The lines can be drawn with many different attributes as shown in Figure 4.12. The
GE ANTIALIASE token allows the enabling or disabling of the antialiased line drawing mode. The
antialiased lines have a smoother appearance but take longer to draw. The 2 compare hardware in
the RE2 can be used to improve the appearance of intersecting antialiased lines. Refer to the Z
Buffer support section later in this chapter for additional details.

4 -35

Silicon Graphics ConfidentialChapter 4 Geometry Subsystem

Table 4.11 Line Drawing Tokens

Token Descriptionr
r,E_DRAw2 Draw line from current GPOS to absolute floating point 20 coordinates

GE_DRAW21 Draw line from current GPOS to absolute integer 20 coordinates

GE_DFWw3 Draw line from current GPOS to absolute floating point 30 coordinates

GE_DRAw31 Draw line from current GPOS to absolute integer 30 coordinates

GE-DRAW4 Draw line from current GPOS to absolute homogeneous coordinates

GE_DRAw41 Draw line from current GPOS to absolute homogeneous coordinates

GE_RDRAw2 Draw line from current GPOS to relative floating point 20 coordinates

GE_RDRAW21 Draw line from current GPOS to relative integer 2D coordinates

GE_mRAw3 Draw line from current GPOS to relative floating point 30 coordinates

4 GE_RDFWV31 Draw line from current GPOS to relative integer 30 coordinates

The GE_DEPTHCUE token is used to enable or disable depth cued lines. The GE_RGBSHADERANGE
token is used to set the depth cued shade range for RGB pixels while the GE_SHADERANGE token is
used to set the de’pth cued shade range for Color Index pixels.

Table 4.12 Line Attribute Tokens
,

Token 1 Description 1
GEJNTIAUASE Used to enable or disabie antialiase line drawing mode

=pEpnraE Used to enable or disable depth cued line drawing
=_uNEsTyLE Used to set the line stipple pattern

GE_uNEwlDlH Used to set the line width in pixels

GE-T Used to set the repeat factor for the bits in the line stipple

GE_RESEns Used to cause the line stipple pattern to be reset

GE_. Used to set the depth cue color shade range for RGB pixels

E-B Used to set the depth cue color shade range for Color Index pixels

GE_SUBP@EL Used to enable the calculation of sub pixels during antialiase mode

The GEJINEWIDTH token is used to specify a wide line which covers multiple adjacent pixels. The
lines can also be drawn with a stipple pattern applied to them. The GEJJNESTYLE token is used to
specify a line stipple pattern and the GE_LSREPEAT token is used to specify a count of how many
times each pixel in the stipple pattern will be used as the line Is drawn. The GE_RESETLS token is a
flag which causes the stipple pattern to be reset for each line drawn. Refer to the Raster Subsystem
chapter for additional details on the use of stipple patterns in line drawing.

The polylines tokens can be used to draw several higher level unfilled geometric objects such aSi

- circles

.-c

4-36

Silicon Graphics Confidential MGR Technical Reference

- arcs

- ellipses

The circles and arcs can be drawn by divMing the circle or arc into a large number of small line
segments and then issuing the move and draw tokens. This technique can also be used to draw
elliptical shapes. The dosed poiyline tokens described in the next paragraph automatically save the
first coordinate and draw a closing line segment from the end of the last line segment to the
beginning of the first llne segment. The arc drawing would need to use the open pofylines since the
end line segment does not connect back to the beginning line segment. The drde and ellipse drawing
could perhaps be better done with the dosed potyllnes but are shown here since this is how the
Graphics Ubrary draws them.

1

,

4-37

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Closed PolyLine Drawing

The GE5 microcode provides a special form of the line drawing which causes a closed polyline to be
drawn. The tokens which support closed polylines are shown in Table 4.13. The polylines are
drawn as described above but they are enclosed by the two tokens shown. The GECLOSEDUNE token
sets a flag in the microcode which causes the microcode to save the new current graphics position
which is set by the first move token. The draw to&ens then cause the polylines to be drawn and
after the fast line segment is drawn the GE_ENDCLOSEDUNE token causes the microcode to draw one
last line segment to the saved graphics position of the beginning of the first line segment.

Table 4.13 Closed PolyLine Drawing Tokens

Token Description

E_a==L= Starts Pdy Line Mode

The line segments which form the closed polyline are drawn with the same attributes as described
above for line segments. The closed polylines are used to draw unfilled geometric objects which are
formed by a closed polyline boundary. The closed polyline tokens can be used to draw the following
higher level unfilled geometric objects: _ .: _ _~. _-_

- rectangles

- polygons

The next section describes the mechanism for drawing filled geometric objects.

.

4-38

Silicon Graphics Confidential MGR Technical Reference

Filled Polygon Drawing

The tokens described in this section are provided to draw closed polylines whose interiors are filled
with a specified pattern. The objects being drawn are specified as a sequence of vertices which form
a vertex list stored in the GE5 data RAM. The tokens shown in Table 4.14 are used to specify the
vertices which are stored in the vertex list which can hold a maximum of 256 vertices.

Table 4.14 Vertex Tokens

.-- The vertices can be specified in either absolute or relative formats. The relative format causes the
specified vertice coordinates to be added to the current graphics position to get the new current
graphics position. The vertices are specified in world coordinates using either floating point or
integer coordinates. The vertices can also be specified in 2D, 3D or homogeneous coordinates.

TO draw a filled polygon the tokens shown in Table 4.15 are used to specify the drawing style. Two
Styles of polygon drawing are supported by the microcode. An older style causes an outlined polygon
to be drawn while the newer style causes a point sampled polygon to be drawn.

The old style polygons have a line segment drawn between the vertices ind are filled inside the line
segment using point sampling. This style is slower than the point sampled style but gives a more
even edge appearance. The old style polygons are drawn by sanding the GE-POLYGON token followed
by the vertice list and then ended with the GE_ENDOLDPOLYGON !oken. When the
GE_ENDOLDPOLYGON token is received by the microcode the vertiw list is traversed and the filled
polygon is drawn. The GE_FATPOLY token is used to enable or disable the fattening of the outlined
edges when drawing old style polygons. If enabled the edge lines will be adjusted so that they appear
slightly wider than if this mode is disabled. This mode is provided for compatibility with older SGI
products.

The newer style of polygon drawing does the point sampled fill but does not drawn the outline around
the polygon edges. This method is faster than the older method. The newer style polygons are drawn
by sending the GE-POLYGON token followed by the vertice list and then ended with the
GE_ENDPOLYGON token. When the GE_ENDPOLYGON token is received the vertice list is traversed
and the point sampled polygon is drawn.

-_

4-39

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Table 4.15 Polygon Drawing Tokens

TokenI Description

GE_BAcxF~ Used to enable or dii bacface polygon removal mode

GE_coNcAvE Used to enable or disable concave polygon drawing mode
GE_EMXXDRIn#r Used to draw an old style outlined polygon

4:_aDFryYaxJ Used to draw a new style point sampled polygon

GE_FATPOLY Used to enable or dii the wide lines mode for outlined polygons
GE_KLYGC#J Used to specify the beginning of a vertice list for a polygon

The default polygon type is convex polygons which have the characteristic that if any polygon edge
line were extended forever it would never cross any other edge line except at the two vertices where
it connects to its adjoining two edges. The other type of polygon which can be drawn is a concave
polygon in which the above attribute does not hold true. Some edges of the polygon do go into the
polygon and so therefore the edge lines if extended would cross other edges of the polygon at locations
other than the adjoining vertices. The GE-CONCAVE token is used to enable or disable the drawing of
concave polygons. When the concave mode is disabled the convex polygon mode is in affect. The
microcode requires the host to set the concave mode before sending the concave polygon vertices to
let the microcode know that a concave-polygon is being drawn.

._

The GE BACFACE token is a form of hidden line removal supported for polygons when a Z buffer is
not avazable for removing hidden lines. The backface polygon removal requires that all polygon
V8r&8 lists b8 specified in a counterciockwise order. This means that if an object had been rotated
and the polygon was being drawn in a clock wise order it must now be a back facing polygon and
should b8 removed. The GE_BACKFACE token is used to enable or disable back facing polygon
removal. This mechanism does not work completely for concave polygons and should not be enabled
if a 2 buffer card is installed.

Th8 tokens shown in Table 4.16 control the fill pattern and shading attributes used during the
drawing of a filled polygon. The GE_SETPAlTERN token is used to specify a 32 x 32 bit pattern
which is used to fill the polygon. The GE-PATTERN token is used to enable or disabte the use of the
pattern. The GE_SHADEMODEL is used to specify whether th8 fill colors are flat or GOURAUD

Table 4.16 Polygon Fill Attribute Tokens

I Token I Description I
GE-PATTERN Used to enable or disable the use of the pattern for filled polygons

GE_SETPAIlEFW Used to specify a 32 x 32 bit pattern and enable pattern usage

=-s Specifas whether GOURAUO or Flat shading is used for filled polygons

The old style polygon microcode is used to draw the following filled geometric objects:

- old style outlined polygons

- rectangles

4 - 4 0

-

Silicon Graphics Confidential MGR Technical Reference

- arcs

- circles

The new style of point sampled polygons are used only for drawing new style polygons.

-

__

4-41

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Triangle Mesh Drawing

The microcode provides support for drawing a series of triangles which form a triangle mesh. The
triangle vertices are specified using the vertex tokens shown in table 4.14. The tokens shown in
Table 4.17 are used to draw the triangle meshes.

Table 4.17 Triangle Mesh Drawing Tokens

I TOken I Descrbtion I

GE_RFGMEsH

aCEmM3H

Starts Triangle Mesh Mode

Ends Triancle Mesh Mode
1 GE SVVAP~SH I Swaps the order of the saved triangle vertices1

The GE_BEGINMESH token causes the microcode to start using the following vertices for use in
drawing triangles. The first three vertices are used to draw the first triangle. The microcode saves
two vertices and a pointer to one of the two vertices. Initially the pointer will point to the first
vertex save location. When the first vertex arrives the vertex is stored in the vertex save location
pointed to by the pointer. After the first vertex is saved the pointer is updated to point to the
second vertex save location. After the second vertex is received it is stored in the seccnd save
location and the pointer is updated to point to the first save location. When the-third vertex arrives
the triangle is drawn, the third vertice replaces the first vertex in the save location being pointed
at by the pointer and the pointer is updated to point to the second vertex save location. When the
fourth vertex is received by the microcode a second triangle is drawn using the second, third and
fourth vertice. The fourth vertfce replaces the vertex which is being pointed to by the pointer and
then the pointer updated to point to opposite save location. This process continues until the
GE_ENDMESH token is received by the microcode at which time the triangle mesh drawing mode is

The GE_SWAPMESH token is provided to allow the pointer to be swapped from the vertex it is
currently pointing at to the other vertex save location. The next vertex received will replace the
vertex being pointed after the new triangle is drawn and the pointer will be updated to point to the
other vertex save location. The ability to swap the pointer between the saved vertices allows the
host software to control the order in which the vertices are replaced by the newly received
vertices. This allows the host software to draw triangles which require a particular vertice to be
used in two different triangles where th8 normal sequence of vertices woukf have caused the needed
vertice to ha!!8 been replaced by a new vertice-ff the swap pointer token had not been used to switch
the pointer to the opposite vertice so that th8 needed vertfce is not repfaced by the next received
vertice. Refer to SGI Graphics Library users guide for examples of the use of the triangle mesh
tokens.

4-42

Silicon Graphics Confidential MGR Technical Reference

Curve Drawing

The microcode provides support for drawing cures which include Berier cubic ewes, cardinal
spline curves and B-spline curves. The GE_LOADMATRIX and the GE_MULTMATRIX are used to load
the appropriate forward difference matrix onto the top of the matrix stack and the GE_CURVEIT
token shown in Table 4.18 is used to draw the curves using the forward difference matrix. An
iteration count specifies the number of line segments which are drawn to form the curved line.

Table 4.18 Cum Drawing Tokens
.

Token hSOripli0ll

=-- item&s the matrix stack and draws linesI

The same tokens can also be used to draw surface patches which is a wireframe of curve segments.
The parametric bicubii surface is the mathmatical basis for the surface patches.

,

4-43

sIL;;;;;ts; 4 Geometry Subsystem Silicon Graphics Confidential

The microcode Dfovides the tokens shown in Table 4.19 for drawing the non-uniform
spline curves. ’

.

NURBS Drawing

Table 4.19 NURBS Drawing Tokens

rational B-

Description

Used to move setv coefficients to a different location in the data RAM

Used to repanmetetie each patch in a surface to [O 1]
Used to comwte the second oarametric value

Used to compute the DeCasteIau coefficient

Used to compute the object space vertices along a strip of a patch
Used to indicate if a nurbs context exists

Used to indicate the polynomial order of the two parametric values
Used to compute the first parametric value
Used to load 1 NURBS data parameter
Used to load 3 NURBS data parameters

Used to load 4 NURBS data parameters

4 - 4 4

Silicon Graphics Confidential MGR Technical Reference

Screen Aligned Box Drawing

The microcode provfdes support for drawing a very fast filled 20 rectangle. The rectangle must be
aligned to the x and y coordinates so the transformation matrix used to transform the world
coordinate used to specify the lower left and upper right comers of the rectangle cannot have any

- rotation angles other than zero applied to them. The tokens shown in Table 4.20 are used to draw
the filled screen aligned rectangles. As shown in the table the coordinates can be specified in either
floating point or integer world coordinate values.

Table 4.20 Screen Aligned Box Drawing Tokens

Token DescriptionL
GE_gKNF Used to draw a screen aliinsd filled box specified with floating point

GEsmm Used lo draw a screen aligned filled box speclfd with integer

The filled screen aligned boxes are drawn using the current line style parameter specified with the
GE_LINESTYLE and GE LSREPEAT tokens. When drawing sboxes the lighting, depthcueing, z
buffering and Gouraud sha>ing cannot be used.

--. _

-

4 - 4 5

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Character Drawing

The microcode provides support for drawing text characters. The characters are drawn at the
current character position which is set with the tokens shown in Table 4.21. The character
position is specified in either 20, 30 or homogeneous coordinates using floating point or integer
coordinate values. The world coordinates are transformed into screen coordinates which are saved
for the GE_DRAWCHAR token shown in Table 4.22 to use to draw the character. The GEGETCPOS
token returns the current transformed screen coordinate character position. The old style pixel
read and write tokens described later also use and affect the transformed screen coordinate current
character position.

Table 4.21 Set Current Character Position Tokens

Token Description

GE_chlWE2 Set current character position using floating point absolute 20 coordinates

GE_CMNE21 Set current character position using integer absolute 2D coordinates

=_= Set current character position using floating point absolute 30 coordinates

oE_cMDvE3I Set current character position using integer absolute 30 coordinates

cE_chfWE4 Set currentcharacter position using floating point homogeneous coordinates _

GE_ctbKWE41 Set current character position using integer homogeneous coordinates

0E-m Get current character position,

The characters which are drawn are not affected by the scaling and rotation specified in the current
transformation matrix. The characters are always drawn along the horizontal axis. The characters
could be drawn vertically by modifying the font definitions for the characters and by manipulating
the current graphics after each character is drawn. The current character position is updated to
the pixel to the right of the last pixel in the current character being drawn. The current character
position does not affect the current graphics position in any way.

Table 4.22 Character Drawing Token

Token Description 1
GE_DRAwa-tAR Used to draw a text character with the specifad font metrics

The characters being drawn are clipped to the viewport and to the screen mask. If the current
character position is outside the viewport then the current character position Is invalid and the
characters are not drawn. The screen mask will clip the bits of the character which are outside of
the screen mask.

This completes the discussion of the world coordinate drawing support provided by the microcode.
The next section will discuss some routines whose coordinates are specified in screen coordinates.

-.

4 - 4 6

Z:&zcn Graphics Confidential MGR Technical Reference

Drawing Screen Goordinate 2D Objects

The GE5 microcode supports a limited number of tokens that draw 2D screen coordinate objects.
Screen coordinate direct pixel reads from the bitplanes are also supported. These object which are
drawn using screen coordinates do not have the world coordinate to. screen coordinate
transformations performed so the objects cannot be rotated, scaled or translated. The screen
coordinate support includes:

- Fast 20 lines

- Pixel Reads

- Pixel Writes

The following paragraphs describe these screen coordinate objects.

__ __-

4 - 4 7

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Fast 2D Line Drawing

The microcode provides support for drawing fast 20 lines as shown in Table 4.23. The GE_FMOVE
token is used to specify a fast line drawing positkn and the GE_FDRAW token is us8d to draw the fast
20 line from the current fast line drawing position to the coOrdinat8s sp8cified in the GE_FDRAW
token. The GE_FUNE token sp8cif18s th8 starting and ending coOrdiiat8s of the line whii is drawn.

Table 4.23 Fast ‘2D Line Tokens

The Graphics Library does not currently fully support the us8 of these fast line drawing tOk8nS.

Tokarl

GEFORAW

Description

Draw fast 2D line from current fast line graphics position.

=_-
GEFMXE

Draw fast 20 line between specified starting and ending coordinates
Set the current fast 20 line current drawing position

,

_ _- -_

4-48

-- ._.

Silicon Graphics Confidential MGR Technical Reference

Pixel Reads and Writes

The MGR adapter provides hardware and miorooode support for reading, writing and copying pixels
directly to and from the bitplanes. The various microcode command tokens which are provided are
summarized in Table 4.24. The pixel support can be dtvided into two basic types which are the old
Sty18 single soan line type and the newer multipie scan line type.

Table 4.24 Pixel Read and Write Token Comparisons

Max
S t a r t i n g Data Pixel Pixel

Token R/W Number Number
of Scan of Pixel Transfer Zoom Packing

Lines Pixels Location Method support Suppor

Current RE2 to GE5 DRAM DhAA
GE_READPtXELS R 1 1280 Character then No No

Position Host DRAM Reads
,

Current
Gl_READPIXDMA R 1 1280 Character RE2 to Host Oh& No rb

Position
- - XY RE2 to GE5 DRM DM4 --

GE_REGTww R 1024 7280 Data then No No
Parameters Host DRAM Reads

1280 XY
GE_- R 1024 X Data RE2 to Host DhAA k N3

1024 Parameters

Current Host FIFO Writes
GE_WRlTEPlXEB w 1 1280 Character then bb Yes

Position GE5 DRAM to RE2 DMA

XY Host FIFO Writes
GE_RECTWRJTE w t 024 1280 then bb Yes

Parameters GE5 DRAM to RE2 DMAs

Host to GE5 DRAM DMAs
then Yes Yes

1280 X Y GE5 DRAM to RE2 DMAs
GE_yMwEwxK w 1024 X Data

1024 Parameters
Host to RE2 DMAs No rb

R/W 1024
1280

Source and RE2 to GE5 DRAM DMA
then

X Dest x, Y Yes
1024

Data GE5 DRAM to RE2 DhAA
No

Parameters for each line

For the old type of pixel reads and writes the host software simply specifies the number of pixels to
be read or written and the transformed screen coordinate copy of the current character position is
used as the starting address for the pixel reads or writes. The pixels can only be read or written-
from the current scan line. The maximum number of pixels that can be read or written is limited

4-49

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

to 1280. These limitations meant that the host user software would have to provide it’s own
support for rectangle reads and writes by setting the current character position and doing the
necessary pixel reads or writes. After the pixels have been read or written the current character
position is updated to be to the right of the last pixel accessed. The GEJIEADPIXELS,
GE_READPIXDMA and GE_WRlTEPIXELS tokens are the old style of tokens. .

For the newer style of pixel support the host specifies the starting x and y location of a rectangle
and the x length and the y length of the sides of the rectangle. This allows multiple Scan lines to be
read or written in one execution of the token. This means that an entire rectangle can be read or
written at once. These tokens do not affect the current character position. The GE_RECTREAD,
GE_READBLOCK, GE_RECTWRlTE, GE_WRlTEBLOCK and the GE_RECTCOPY tokens are the new style.

Refer to the various token definitions for additional details on each token. For the tokens which
Perform host DMA transfers refer to the pixel DMA support paragraphs in the programming
considerations section of this chapter. For additional details on the RE2 DMA support refer to the
Raster Subsystem chapter.

Reading Pixels

The pixel reads are performed from the bitplanes which have been selected with the
GE_READSOURCE token. The pixels are read using either RE2 to Host DMA or the combination of
RE2 to GE5 Data RAM DMA followed by the host reading the individual words from the GE5 Data
RAM. If the selected bitplanes are the Frame Buffer bitplanes then the buffer which is read is- -
specified by the GE_READBUF token.

Writing Pixels

The pixel writes are performed to the bitplanes which have been selected with the GE_RWMODE
token. The pixels are written using either Host to RE2 DMA or the combination of Host FIFO writes
to the GE5 data RAM followed by GE5 Data RAM to RE2 DMA. The GE_WRITEBLOCK and the
GE_RECTCOPY tokens allow the pixels to be zoomed in the x and y dlrectbns. The x and y room
factors are specified with the GE_ZOOMFACTOR token. The three pixel writing tokens also support
the use of packed pixels in the host words sent to the adapter. When pixel zooming or pixel packing
is used the raster operation specified with the GE_RASTEROP function must be set to 3
(SRC_COPY). When pixel packing is net used then the raster operation can be any legal value.

This completes the discussion of the drawing support provided by the microcode. The following .
section discusses the lighting support provided by the microcode as it executes the drawing tokens.

4-50

Sillcan Graphics Confidential MGR Technical Reference

Lighting Modes

The GE5 microcx& provides support for performing lighting calculations needed to greatly enhance
the realism of the displayed geometry. The lighting support tokens provided by the microcode are
shown in table 4.25. The microcode allows the host software to specify the following parameters:

- light source properties

- color

- location

- direction

- surface material properties

- ambient light property

- diffuse light property

- emission property
._.
- shininess property

- specular light property

- lighting modei properties -

viewer position

view direction

lighting attenuation factor

The microcode supports up to eight local or infinite point light sources. If a lighting mode is
enabled then the color the GE5 microcode applies to each transformed coordinate is a function of the
coordinate position, the normal direction, the lighting model, the light sources and the
characteristics of the surface material. The result of the lighting calculations is a color value
which is different than the RGB color or Cobr Index cobr values specified by the host. The modified
cobr values reflect the effects of the lighting properties described above.

When performing lighting mode calculations it ls necessary to separate the Modeling, Viewing and
Projection matrix into two separate matrices. The Modeling and Viewing matrix is separated from
the Projection matrix. This is so that the normal vectors can be multiplied by the inverse
transpose of the Modeling and Viewing matrix. The host software must provide the support for the
two transformation matrix stacks. The microcode provides support for a single transformation
matrix stack and a normal matrix stack. The GE MMODE token allows the host software to specify
whether the projection matrix is a single matrix or if it is a Viewing/Modeling matrix or a
Projection matrix. When it is a single matrix the push and pop matrix tokens only affect the
transformation stack and do not affect the normal matrix stack. When the transformation stack is a
Viewing or Projection matrix the push and pop matrix tokens affect both the transformation matrix
stack and the normal matrix stack. The host software must use the GE_LOADMATRIX and the
GE_MULTMATRIX to manage the matrix stack. The host software handles the separation of the

4-51

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Modeling and Viewing matrix from the Projection matrix since their is not a separate matrix stack
on the adapter for these separated matrices.

Table 4.25 Lighting Support Tokens

Token

GEADNOFWU

Description

Flao used to cause the normal matrix to be recalculated

GE_LfGHTATTFIl 1 Used to load 1 lighting vector parameter I
GEJJGHTAITR2 1 Used to load 2 lighting vector parameters I

GE_LfGHTAm 1 Used to load 3 liahtina vector qarameters I
GEJGHTDATA4 Used to load lighting data parameters

GE_LfGHTDfREC~ Used to specify the light source direction

GE_LfGHTMEWTFI Used to set the address pointer to the lighting data in GE5 data RAM
GE UGHTMCVDATA Used to move liahtina data UD or down in the GE5 data RAM

GE_uGKIposlTK>N Used to load the lighting source position
GE_LhKGLCf7 Used to set the lighting mode color parameters

GE_LOADAMBIENT Used to load the ambient lighting parameters

GE_LOADASUM 1 Used to load the ambient sum lighting parameters
GE_LoADDlFFusE Used to load the diffuse reflections lighting parameters

GE_L0ADEMfsslCN Used to load material emission lighting parameters

GE_- Used to load the lighting source color
GE_LOADNWhML Used to load the top of the normal matrix stack

GE_WAfXPECUWt Used to load the specular reflectance lighting data

=-- 1 Used to specify the transformation matrix mode I
GE_WLTNOF&W I Used to multiply a normal matrix to the current normal matrix

GE-NORMAL I Used to update the normal v-or used in liihtinq calculations

The normal matrix stack is used to calculate’the lighting normals. The Modeling and Viewing matrix
is used to transform the world coordinates into eye coordinates. The inverse transpose of the
Modeling and Viewing matrix is used to transform the normal vector from world coordinates to eye
coordinates. The lighting calculations are then performed using the eye coordinate data. These
calculatkms produce the color data which is used to as the pixel color data. The Projection matrix is
used to transform the eye coordinates into normalized coordinates and the viewport specification is
used to transform the normalized coordinates into screen coordinates. The screen coordinates are
used lo select the pixel location which will be rendered with the calculated cokir values.

The next sections will describe the support provided for bounding boxes, feedback and picking.

4 -52

,

Silicon Graphics Confidential MGR Technical Reference

Bounding Box Support

The microcode provides support for culling operations. The culling operation determines which
parts of a drawing are below a minimum s&e and thus are too small to draw. The objects which are
smaller than the minimum sire are not drawn. The tokens which support the culling operation are
shown in Table 4.26.

Table 4.26 Bounding Box Tokens

The GE BEGINBBOX token is used to specify the xmin and ymin values used to check for minimum
feature &e and places the microcode into bounding box mode. The GE_ENDBBOX token is used to end
the bounding box mode. I

_ -- -

4-53

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Feedback Support

The microcode provktes support for feedback operations which are used to allow the host software to
get the transformed and clipped data from the Geometry Pipeline. The tokens shown in Table 4.27
are provided for feedback support. The GE-FEEDBACK token is used to cause the microcode to enter
the feedback mode of operation. While in feedback mode the output of the Geometry Pipeline are
placed in the feedback buffer. When the buffer becomes full a GE interrupt is generated to inform
the host that the feedback data needs to be read from the buffer. The GE_PASSTHROUGH token is used
to place known marker values in the feedback buffer to help the host software determine whether
some of the data sent to the Geometry Pipeline has been clipped out and is not in the pipeline. The
GE_ENDFEEDBACK token is used to taka the microcode out of the feedback mode. When this token is
received by the microcode ft generates a final GE interrupt to allow the host to get the partially full
feedback buffer.

Table 4.27 Feedback Tokens

rri

Token Description,
GE_- &ad to end feedback mod8

=-FFfnRAcK Used to begin feedback mode

-- E_PASSTHFOUGH Used to place markers in the feedback data _-
,

All the graphical objects are transformed, clipped and scaled by the viewport specifications. The
lighting calculations are performed and the resulting data is placed in the feedback buffer. Because
of clipping, more or fewer vertices may appear in the feedback buffer than were sent to the
geometry engine.

After a feedback session, the feedback buffer can contain any or all of the following data:

- points FB_POINT(95.0)

- moves FBJfOVE(103.0)

- draws FB_DRAW(113.0)

- polygons FB_POLYGON(72.0)

- character moves FB_CMOV(l63.0)

- passthrough markers FB_PASSTHROUGH(176.0)

- 2 buffer data FBZBUFFER(46.0)

- linestyle patterns FB_LINESTYLE(76.0)

- setpattern values

- linewidth values

FB_SETPATTERN(133.0)

FB_LINEWIDTH(77.0)

- fsrepeat values FB_LSREPEAT(90.0)

4 - 5 4

Silicon Graphics Confidential MGR Technical Reference

Each of the above data types Is assigned a floating point coda value which is deflned in the file feed.h.
The values from feed.h are shown above for the data types shown. Obviously if any differences exist
between the values shown above and feed.h then feed.h is correct.

The vertex data for the points, moves and draws always appear in groups of 6 floating point values
which follow the floating point code number. The following data format would be in the feedback
buffer for a point:

95.0
x, y,. z, r, Q. b

The x, y and z values are In screen coordinates but not window coordinates. The r, g and b values
are the color values that would be written Into the frame buffer at the vertex. The r value will be
in the range of 0 to 255 in RGB mode and in the range 0 to 4095 in Color index mode. The g and b
values are always in the range of 0 to 255 In RGB mode and are undefined in Color Index mode.

For polygons the data in the feedback buffer is the coda value for polygon followed by a count value
which sbecifies how manv vertex data values are present for this polygon entry In the feedback
buffer. rThe count will always be a multiple of six since the vertex bati consists of six values as
ShOWn above. The foliowing example shows the polygon format:

72.0 16.0
xl, yl , zl, rl, gl, bl
x2, y2 , z2, R, g2, b2
x3, y3 , z3, r3, g3, b3

The character move type consists ‘of the oode value followed by the x, y and z screen coordinate
values as shown below:

163.0
x, y, z

The rest of the commands (FB_PASSTHROUGH, FBJBUFFER, FB_LINESTYLE, FB_SETPAlTERN,
FB_LINEWIDTH, FB_LSREPEAT) have only their code values and a single value placed in the
feedback buffer. The following example shows the FB_PASSTHROUGH format:

.
176.0
value

While in feedback mode the host can sand any of the tokens to the microcode but only those shown
above will be placed in the feedback buffer. The others will cause their actions to be taken but will
not produce any entries in the feedbsck buffer.

4-65

Ctic*qr 4 Geometry Subsystem Silicon Graphics Confidential

Picking and Selecting Support _

The microcode provides support for picking and selecting objects which are drawn near the cursor
bcation. The to&ens which are provided for picking and selecting support are shown in Table 4.28.
The GE_PICKMODE token is used to place the microcode in picking or selecting mode. While in
picking or selecting mode nothing is actually displayed on the screen.

The host software specifies the picking region by using the GE_LOADMATRIX token to toad a special
pick projection matrix which causes the pick region to fill the entire viewport. The normal
projection matrix and the viewing and modeling matrices would then b8 concatenated to the special
picking matrix using the GE_-MULTMATRIX token. Any world coordinate which is transformed and is
not clipped is therefore withtn the picking region.

The host software specifies the selecting region by concatenating a special selecting viewing matrix
to the already specified projection matrix using the GE_MULTMATRIX token. Any world coordinate
which is transformed and is not clipped is therefore within the selecting region. The selecting
mechanism is a more general form of picking. Other than the differences in how the transformation
matrix is modified the picking and selecting modes operate the same.

Table 4.28 Picking and Selecting Tokens

Description ’ _. - ----

GE_ENDP- Used to end pick mode

GE IN-S Used to initialize the name stack

I ~~ZLoADNAhE ~Loadsanameonthetooofthenamestack 1
GEPlCXMOOE Used to begin pick mode

CEPICMYPE Used to specify the pick mode type

GE-= Usedtopopthenamesonthenamestack

I GEPUSHNAM: lUwdtooushthenamesonthenam6stack I

The key to the picking and selecting support is the name stack which is used to indicate which items
are within the picking or selecting region. The name stack comes into play for objects which are
picked or selected. The name stack is used to store marker names which are copied to the pick
buffer when an object is pidted or selected. The GEJNITNAMES token is used to initialize the name
stack and leave it empty. The GE_LOADNAME token is used to place a name marker on the top of the
name stack. The name markers are 32 Mt integer values. The GE_PUSHNAME token is used to push
the names on the name stack down a level and to add a new name to the stack. The GE_POPNAME
token is used to pop all the names on the name stack up one level. When a pick or select occurs th8
contents of the name stack are ccpi8d to the pick buffer.

The pick buffer is an area of the GE5 data RAM whii is also used as the feedback buffer. This means
that picking and fe8dback modes cannot be used at the same time. The GE_PICKTYPE token is used to
specify when the data on the name stack is copied to the pick buffer. and where in the buffer the data
is placed. When the pick type is set for pick none the microcode is in pick mode but nothing is ever
recorded in the pick buffer. When the pick type is set for pick frrst the first time a pick occurs the
name stack is copied to the pick buffer and all other picks are ignored. When the pick type is set for
pick last each pick causes the name stack to be written to the beginning of the pick buffer. When the
pick type is pick all each pick causes the name stack to be concatenated to the current data in the

4-56

Silicon Graphics Confidential MGR Technical Reference

name stack. When the pick buffer becomes full the microcode generates a GE interrupt to inform
the host to read the pick buffer. The GE_ENDPICKMODE token is used to take the microcode out of
pick mode. The microcode generates a final interrupt to inform the host to get the last partial pick
buffer when It receives the GE_ENDPICKMODE token. This is how the host gets the pick data for the
pick first and pick last types. The pick none type still generates the interrupt but no data is
present in the pick buffer. The default pick type is pick all.

GE5 Pixel Rendering Support

The GE5 does the first stage of scan conversion. The Raster Subsystem can only draw lines and
spans. The GE must pass the appropriate sbpe information for fines. Scan conversion of polygons
r8qUir8S the GE5 to break the polygon into trapezoids, to calculate the edge slopes of 8aCh trapezoid
and to iterate depth and color components along th8 slope. This data is then passed to the Raster
Subsystem for pixel rendering.

The GE5 performs scan conversions using ftoating-point precision to maintain coordinate integrity
during iterations and slop8 calculations. It also computes the x coordinates of polygon edges to a
fractional pixel tolerance. The GE5 first corrects all depth and color component iterations to the
nearest pixel center and then iterates them in full pixel steps. As a result, iterated color and depth
VahJ8S remain planer across polygonal SUrfaCeS and SubS8qU8nt ZbUff8r &XrtatiOnS reSUtt in Clean
intersections.

a-. The calculated x and y screen coordinates are used by the. Raster Engine in addressing the various
” bitplanes. The z screen coordinates are used by the Raster Engine to perform Z buffer calculations.

The x screen coordinate values are converted to a special DIVMOD format in which they are divided
by 5 and the quotient is used as an offset into the VRAM chips and the remainder is used to Select
which of the five pixel pipelines the pixel is written into. Actually the divmod formatting is done
by doing a table lookup in the constants portion of the GE5 data RAM. The concepts are described in
greater detail in the Raster Subsystems chapter.

.? The next paragraph describes some of th8 tokens which are provided to control the pixel formats and
attributes.

4-57

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Pixel Format and Attribute Support

The tokens shown in Table 4.29 are provided to control the pixel format and attributes. The
GE_PIXTYPE token is provided to select the format of the pixels written into the Frame Buffer
bitplanes. Four types of pixels are supported by the Raster Engine and include the 24 bit RGB
pixels, 12 bit RGB double buffered pixels, 8 or 12 bit Color Index double buffered pixels and 4 bit
Color Index double buffered pixels. The GE_RGBCOLOR token is used to specify the color components
for the RGB pixel types and the GE-COLOR token or the GE_COLORF token is used to specify the color
index value for the Color Index pixels.

Table 4.29 Pixel Format and Attribute Tokens

To&en I Description

GE_AUMMTEMASK 1 Used to write the AUXMASK value

GE_cocoR 1 Used to specify an integer color index

GE-- I Used to specify a floating point color index

GE_DRA-
GE_ENABof?H

Used to specify the drawing mode
Used to enable or disable dithering

GEPIXIYPE [Used to specify the pixel format - -

GE_PIXWFIlTEh&SK 1 Used to write the PIXMASK value
GE_f3wEFoP

GEFGaaIzR
Used to specify a logical bitwise operation
Used to soecifv an RGB color

GE WSEWEIW 1 Used to clear the bitdanes other than the Z buffer

The GE_DRAWMODE token specifies which bitplanes are written with the calculated pixel values.
The bitplanes which can be written include the Frame Buffer bitplanes, The Pop Up (PUP)
bitptan8S. the User Auxiliary (UAUX) bitplanes and the Window ID (WID) bitplanes. The Frame
Buffer bitplanes are used to display the image on the screen. The PUP bitplanes are used by the
Window Manager software to draw overlays on the scr88n such as menus. The UAUX bitplanes allow
a user graphics application to draw overlays on th8 screen. The Window ID bitplanes are used to
control pixel clipping for obscured windows. They also are used by the Display Subsystem to
control the pixel display formatting.

fh8 GE_SCREENCLEAR token is used to clear the MQtanes selected with the GE_DRAWMODE token to
the color specified with the GE_RGBCOLOR, GE-COLOR or GE_COLORF tokens. If the selected
bitplanes are the Frame Buffer then the color token used depends on the GE_PIXTYPE. For the PUP,
UAUX and WI0 bitplanes the GE-COLOR or GE_COLOLRF token specifies the color since these
bitplanes represent color Index type of pixels.

The actual bits if each pixel which are written depend on the value in the pixel write mask and the
aux write mask. The GE_PIXWRITEMASK is used to set the write mask which controls which bits of
the pixels are written into the Frame Buffer bitplanes. The GE_AUXWRITEMASK is used to set the
aux mask which controls which bits are written into the PUP, UAUX, WI0 and 2 Buffer bitplanes.
The bits which have a corresponding 1 bit in the pixel mask or aux mask are written and the bits
whose corresponding mask bits are zero are not written. These two write masks are applied on a bit
by bit basis for each pixel write operation by the RE2. The exception is for the Z Buffer bitplanes

4 - 5 8

g%Pn Graphics Confidential MGR Technical Reference

where if the single Z mask bit is a one the 24 bit Z value may be written and if the Z mask bit is a
zero then the 24 bit Z value is not written.

The GE_ENABDITH token is used to enable or disable dithering operation for the 12 bit RGB pixels
and the Color Index pixels written into the Frame Buffer. The dithering operation is used to smooth
the color transitions when a limited number of colors are available. The dithering operation is not
valid for the 24 bit RGB pixels. During a screen dear the dithering should be disabled.

The GE_RASTEROP token is provided to specify a logical bitwise operation which can be performed
between the new pixel value and the current pixel value already in the bitplanes at the current
pixel location. The raster operation can be applied to all of the bitplanes except the Z buffer
bitplanes. The default raster op is 3 which is a copy of the new pixel into the bitplanes without
doing the logical bitwise operation. When any of the other 15 raster ops is specified the
performance of the RE2 in drawing pixels is approximately nines times slower than when the
raster op is 3.

These concepts are discussed in much greater detail in the Raster Subsystem and Display Subsystem
chapters. The Z buffer checking support is described in the next section. .

.

4-59

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

2 Buffer Support

The MGR adapter provides hardware and microcode support for writing 2 values into a Z buffer and
for conditioning pixel writes by comparing new Z values with the Z values already in the Z Buffer.
For the Z Buffer to be used the optional Z Buffer card must be installed. This card contains 24
bitplanes in a 1280 x 1024 configuration. The tokens which are used by the host software to
control the Z Buffer are shown in Table 4.30.

Table 4.30 Z Buffer Support Tokens

Token I DescriDtion I

GE_AUXWRfTEhMBK Used to set the Write Mask for the 2 Buffer and other bitplanes

G E - F A R Clears the 2 Buffer and the other bitplanes to the specified values

Gl_DEPTH=N Used to temporarily make Z compares pass while clearing Z Buffer

Used to enable or disable Z Buffer mode
Used to wt the Z compare function used during Z Buffer mode \

I ==-- 1 Used to select the Z compare source (Z Buffer or Frame Buffer) I

As?the GE5 executei the various drawing tokens it transforms ihe sb world coordinates to device
coordinates. The modeling, viewing and projection matrix is used to transform the world
coordinates to normalized device coordinates and the viewport specification is used to map the
normalized device coordinates to actual device coordinates for rendering into the bitplanes by the
microcode and the RE2,-. Refer to the section on coordinate transformations described previously in
this chapter for additional details. The x and y device coordinates are used to select which pixel
location is to be written into. The z device coordinate can be used to perform depth comparisons to
control whether the pixel is written at the current pixel location. The depth comparison is
performed by the RE2 using the Z comparator hardware. The GE_ZBUFFER token is used to enable
or disable the 2 comparisons. If Z Buffer mode is enabled the Z comparisons will be used to
condition the pixel writes and if the Z Buffer mode is disabled the Z comparator is set so that the Z
comparisons always pass and therefore do not prevent any pixel writes.

The z values in the Z Buffer are 24 bits wide and are treated by the Z comparator hardware as
signed integers in 2’s complement format. The GE_VIEWPORT token which is used to specify the
device coordinate mapping can therefore specify a device mapping for the z axis with a range of
0x800000 to Ox7FFFFF. The z axis positive direction depends on the projection matrix which is
baded into the MVP matrix. The Graphics Library sets the projection matrix for a left hand screen
coordinate system so the z axis direction is into the screen and away from the viewer. This means
that the z values closer to the viewer are less than those that are further from the viewer. The
GE_ZFUNCTION token is used to specify the relational comparison function used by the Z comparator
hardware. The default setting when Z Buffer mode is enabled is to set the compare function to less
than or equal which allows only the pixels closer to the viewer to be drawn. Those pixels which are
further from the viewer than previously drawn pixels would not be drawn. If the projection
matrix specifies a right handed coordinate system then the positive z axis direction is out of the
screen and toward the viewer so the relational comparison would be set to greater than or equal for
pixels closer to the viewer to be drawn.

I
The Z comparator hardware has two modes of operation in which it can do comparisons between
different sources as specified by the GE_ZSOURCE token. The normal mode of operation is to
compare new Z values with the Z values in the Z Buffer. A second mode is provided to support the

/ 4-60

Silicon Graphics Confidential MGR Technical Reference

drawing of antialiased lines. This mode compares new color values with the color values in the
Frame Buffer bitplanes. This mode is only valid when the GE_ANTIAUASE token has been used to
select an antialiase drawing mode. For this mode the z compare function set with the GE_ZFUNCTION
token would be to allow pixels with a color value greater than or equal to the current color to be
drawn. This makes intersecting antialiased lines to have an improved appearance by allowing the
brighter pixels at the intersections to be drawn.

The GE AUXWRtTEMASK token is used to specify the write mask for the PUP, UAUX, WID and 2
Buffer bEplanes. Bit 8 of the AUXMASK controls the writes to the 2 Buffer. When this bit is 1 all
24 bits are written to the 2 Buffer and when this bit is 0 the 24 bits cannot be written into the Z
Buffer. Unlike the other bitplanes there is no bit by bit writer mask for the 2 Buffer. The
GE_DEPTHFN token provides a mechanism for specifying the Z comparator function. It has the same
format as the GE_ZFUNCTfON token but it can be used when the 2 Buffer mode is disabled.

Normally the drawing operations of the GE5 cause the z values to be written into the Z buffer. The
host software would not normally write directly to the Z Buffer other than to clear the z values to a
known state. However if the host needs to read or write to the 2 Buffer directly it can use the pixel
read and write tokens discussed previously in this chapter.

Two methods are provided for clearing the Z Buffer and include the fast Z clear method and the
GE_CZClEAR token. After the Z Buffer is cleared the first Z compare at each pixel location will
pass. After the first compare the remaining compares will depend on the relational Z compare

2 function nnd the current values in the Z Buffer. The fast Z clear method isused-.on the enhanced
i, adapter and is invalid on the base adapter. The GE_CZCLEAR token can be used to clear both the

Frame Buffer bitplanes and the Z Buffer bitplanes to the specified color and Z value respectively.
This method is always used on the base adapter since the fast Z clear method is invalid. The
GE_CZCLEAR token could be used on the enhanced adapter if the host software desired to clear the Z
Buffer to a specific value. The two methods of clearing the Z Buffer are discussed in greater detail
in the Raster Subsystem chapter.

4-61

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Miscellaneous Support

The tokens shown in Table 4.31 are provided to implement functions that do not functionally match
any of the functional groups discussed previously.

The GE_FINISHO token is provided to allow the host software to put the microcode in a state which
will allow the host software to access the GE5 data RAM. The microoode must be in a stalled state
when the host attempts to access the data RAM. The host software clears Finish flag 0, sends the
GE_FiNISHO token to the microcode and then polls finish flag 0 until it is set or a time out occurs.
After the microcode has finished processing all of the other tokens in the FIFO it finally executes the
GE-FINISH0 token. This token causes the microoode to set finish flag 0 and to execute a fetch token.
Since the host has not sent any additional tokens the FIFO is empty and so the fetch will cause the
microcode to stall. The host can then access the microcode data RAM without affecting the microcode.
If a timeout occurs it is an indication that the microcode may already be stalled which would indicate
that some activity the host software engaged in has caused a problem for the microcode which caused
it to stall. It could also indicate a hardware problem.

Table 4.31 Miscellaneous Tokens ,

-.

. .
TOken Description

GE_FINISHO Used to causethe microcode to set Finish flag 0 .__ -

GE_HCMSAV Used to cause the the microcode to save the MAR register
=-m Loads the specifti data at the specified address in data RAM

c=E_.- Loads the specifti data in the specified RE register

GE-= Returns the microcode version string

The GE_HQMSAV token is provided to allow the host software to keep a copy of the page address
written into the HQMAR register in the GE8 data RAM so that it will be saved as part of the graphics
context. This is necessary because the host software cannot read the HQMAR register. This means
that if the current context were switched out of the adapter and another context changed the HQMAR
register then when the original context it would have no way of restoring the proper value in the
HQMAR register if it were not saved in the current context. The GE_HQMSAV token has a data
parameter which is the page address that is going to be written into the HQMAR register following
the GE_HQMSAV token being sent to the microcode. The microoode reads the page address from the
data FIFO and places it in the GE8 data RAM lccation HQMSAV.

The GE_LOADGE token allows the host to have the micmcode write a value into a data RAM location
without having to go through the procedure of using the GE-FINISH0 to cause the microcode to go
into a fetch stall, changing the HQMAR page address and then writing the value into the data RAM.

The GE_LOADRE token allows the host software to bad a value into an RE2 register. Generally the
host software should never change the RE2 registers. The exception to this are the TOPSCAN and
ENABRGB registers. The TOPSCAN register specifies the starting row and column used to display
the data in the VRAM bitplanes. The ENABRGB register is used to enable the 8 bit RGB mode for the
base adapter. These registers are described in greater detail in the Raster Subsystem chapter.

The GE-VERSION token is used to read the microcode version number from the microcode data ram.
This token causes the version number to be placed in the pick buffer pointed to by the address in the
data ram variable PICKPTR. Since the version number would overwrite the first word of the pick

I,
/ 4-62

- Silicon Graphics Confidential MGR Technical Reference

data this token should not be sent while picking or feedback mode are active. The version number
azmsists of a 32 bit value.

. .
‘* .- ._ --

4-63

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Programming Considerations

The following paragraphs describe the programming considerations for the Geometry Subsystem.
The programming considerations for the Geometry Subsystem are divided into the following areas:

- Hardware Component Programming

- lnltialitation Programming

- 3D Graphics Programming

- Win&w and Context Management Programming

The hardware components programming section describes the macros that Silicon Graphics has
developed for accessing the various components. These macros are defined in the file mgr.h which
should be considered as the correct version should any differences exist between the examples
shown in this document and the contents of the mgr.h file.

Each section also shows example code fragments showing the usage of the macros. Examples are also
shown for how to program various functional requirements such as how to download the microcode.
The examples are taken from various Silicon Graphics source code and represent code fragments
wt@h are not necessarjly intended to represent the exact rest worM usage but are rather a
guideline as to the usage of the macros and of how to accomplish various functional tasks.

Another important point to remember is that this document is only intended to offer technical
information about the MGR adapter. The programming examples do not try to define in what type of
host software they would reside such as a kernel device driver, window manager or Graphics
Library. The necessary host software data structures and other programming requirements have
intentionally been abstracted as much as possible. This document is only intended to show the
interface requirements of the MGR adapter.

4-64

Silicon Graphics Confidential MGR Technical Reference

Hardware Component Programming

The programming considerations for accessing the hardware components of the Geometry Subsystem
include the following topics:

- MGR Base Address Programming

HQl Register Programming

HQl Command Programming

Finish Flag Programming

Microcode Code RAM Programming

Microcode Data RAM Programming

GE and FIFO Half-Full Interrupt Programming

- FIFO Programming

The followino paragraphs describe the programming considerations for accessing the various
“Geometry Subsystem hardware components.

4 -65

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

MGR Base Address Programming

To access any of the hardware components on the MGR adapter the base memory address of the card
must be determined. This is done during the initialization of the card as described in the Host
Interface Subsystem chapter. The physical memory address of the card is programmed into the POS
subaddress registers. The MGR adapter occupies a 32K byte range of addresses beginning at the base
address programmed into the POS subaddress registers. If the operating system of the host system
uses physical addresses only such as MSDOS then the physical addresses can be used to access the
hardware components on the adapter. In this case the base address is simply placed in the variable
GRP. The address for a particular component is formed by adding the address offset of the hardware
component to the value in GRP. This address is then used to read or write the desired component.

If the operating system provides a virtual to physical address translation mechanism such as UNIX
or OS/2 then the physical address programmed into the POS subaddress registers and the associated
32K byte range of addresses must be mapped to a 32K virtual address range. The virtual address is
a kernel virtual address if the software is part of the kernel such as a kernel device driver. The
virtual address is a user virtual address if the software is part of a user application program such
as the Graphics Library. The virtual to physical address mapping technique is host operating ’
system dependent and is beyond the scope of this document. In any case the virtual address is placed
into the variable GRP. The address for a particular component is formed by adding the address
offset of the hardware component to the value in GRP. This address is then used to. read or write the
desired component. _5 -_

The variable GRP would be defined as an unsigned tong and would have the physical address assigned
to it.

unsigned long G R P ;

The macro GRPsetup is defined in the file mgr.h and k used to dedare GRP as an extem.

#def ine GRPsetup extem unsigned long GRP

The user mode programs would assign the user virtual address to GRP and the kernel device driier
would perform the necessary user virtual to physical address mapping. The user virtual address
shown here is 0x1000 but it could be any virtual address which has the least significant 12 bits
equal to zero.

#define

#define

.

GR1_GFxPG_vADDFl 0x1000

t3F GRl_GFXPG_VADDR

The use of the GRP variable is shown in later paragraphs when the various macros are defined.

4 -66

Silicon Graphics Confidential MGR Technical Reference

HQl Register Programming

The HQl has two host programmable registers tiich can be written by the host but cannot be read
by the host. These are the HQ Mile Address Register (MAR) and the HQ MAR Most Significant Bit
(HQMMSB) Register. The Registers section of this chapter defines how these two registers are
used. The include file mgr.h contains macros which are used to write these two registers.

The HQMMSB is a 1 bit register which is used as an address control bit to select which MGR adapter
component is addressed. The HQMMSB register is set and cleared by writing to two different
addresses. The data value is unused and should be set to zero. The macro HQMMSB_WR allows the
host to set or clear the HQMMSB register. The macro takes the value of x and shifts it left twice and
then does an or of that value with the MGR adapter base address GRP and the offset address of the
HQMMSB register. The value of bit 2 in the host address is placed in the register. If x is zero then
the HQMMSB register is cleared and if x is a one then the register is set.

#def ine HQh&lSB_OFF OxEOO r HQMMSB base address ‘1

#define HQMMSB_WR(x) \
*(volatile long ‘)(GRP 1 HQMMSB_OFF 1 ((x) <c 2)) - 0

,

The HQ MAR is an address page register which is used to provide the upper 7 bits of the microcode
code RAM address when it is accessed by the host. It Is also used to provide the upper 5 bits of the
microcode data RAM address when it is accessed by the host. When a write is done by the host to the
HQ MAR register address, bits 8-2 of the host address are placed in the HQ MAR register.

The macro HQM_WR is provided to write the new page address into the HQMAR register. The macro
take the desired address value and shift bits 15-8 right 8 bits. The bits are then shifted left 2 bits
to put it into bits 8-2 as needed by the adapter. This value Is then ored with the HQ MAR base
address to form the complete host address. When this address is written to the adapter the page
address in bits 8-2 is written into the HQ MAR register. This macro is used In device drivers or in
code that cannot have a context switch occur while it is being executed. The HQMSAV location in the
GE5 data RAM can be read to get the value to restore Into the HQ MAR register.

#def ine HQf&QFF oxcoo

#define HQM_WR(addr) \
‘(volatile long l)(GRP 1 HQM_OFF 1

P The HQ MAR can address a page site
changed to address the next page. l /

#def ine HQM_PG_SlZE 256

P HQ MAR base address ‘1

((addr) >> 8) << 2)) - 0

of 256 words In the data or code RAM before it must be

The macro GL_HQM_WR sends the token GE__HQMSAV and the new page address value down the FIFO
to the microcode so that the microcode will save the page address in the microcode data RAM in
address HQMSAV. The new page address is then written into the HQ MAR register by the host using
the HQM WR macro. This macro is used when setting the HQ MAR from user mode code such as the
graphics%brary. This ls done so that if a context switch occurs after the HQ
manager code can restore the HQ MAR register when the context is restored.
the HQ MAR register cannot be read by the host.

MAR is set the context
This is necessary since

d e f i n e GL_HQM_WR(addr) { \
‘(volatile long ‘)(GRP 1 FIFO-OFF 1 ((GE_HQMSAV) << 2)) = 0; \

4 -67

~t*+iw 4 Geometry Subsystem Silicon Graphics Confidential

‘(volatile long ‘)(GRP 1 FIFO-OFF 1 ((GE-DATA) <c 2)) I a&k; \
‘(volatile bng ‘)(GRP 1 HQM_OFF 1 ((addr) << 2)) - 0:)

The HQl also contains the PC register which can be read dfrectfy by the host using the HQl HQRDPC
command described In the next section. The PC can also be written indirectly by reading from the
mbrocodecode RAM.

Example Usage:

#include ‘mgr.h’

GRPsekJp; /’ declare GRP extem l /

HQMMSB_WR(l): P set HQMMSB register l /

HQMMSB_WR(O); r clear HQMMSB register ‘/

P set HQ MAR to PICKPTR address in microcode data RAM*/

HQM_WR(PICKPTR);

r send GE_HQMSAV token and CPOSX address to microcode to save new HQ MAR address in
microcode data RAM. Then sat HQ MAI to CPOSX address.’ _ -.

GL_HQM_WR(CPOSX);

4-68

Silicon Graphics Confidential

- HQl Command Programming

MGR Technical Reference

;- #def ine HQCLRINT() \ -.T *(volatile long ‘)(GRP 1 HQCLRINT-OFF) - O”--

Example Usage:

The HQl accepts three commands from the host. These commands are clear stall, clear GE interrupt
and read HQl PC register. These commands are issued by doing a read or write to the appropriate
address as shown in Table 4.2. Three macros are provided in mgr.h to issue the commands. The
HQCLRSTL macro is used to clear a microcode stall condition. The HQRDPC macro is used to read the
HQl PC register. The PC is 15 bits wide so the 16 bits of data which are read are masked to 15
bits. The HQCLRINT macro ls used to clear the GE interrupt which was generated by the microcode.

#define HQCLRSTL_OFF 0x640 P dear stall cmd address’/

#define HQRDPC_OFF 0x740 P read HQ PC and address ‘1

#define HQCLFtINT_OFF 0x780 P clear GE int cmd address ‘1

#def ine HQCLRSTLO \
*(volatile long l)(GRP 1 HQCLRSTL_OFF) = 0 -

d e f i n e HQRDPC(x) \
x = ‘(volatile short l)(GRP 1 HQRDPC_OFF) CL Ox7FFF

#include ‘mgr.h”

int addr;

/

/
!

I
I
1
I
/
!

I
I

1

GRPsetup;

HQCLRSTL();

HQRDPC(addr);

HQCLRINTO;

r clear the stall ‘/

P read the PC into addr ‘1

r clear the GE inierrupt ‘1

4-69

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Finish Flag Programming

The Geometry Subsystem contains two finish flags. These flags are used to synchronize host and
microcode execution. The host software clears the appropriate finish flag and then polls the finish
flag address waiting for it to be set by the microcode. The flag being set indites that the microcode
is in a known state and the host can proceed with a desired operation.

finish flag 0 is used to indicate to the host that the microcode is in a stalled state so that the
microcode can read the GE5 data RAM. To use finish flag 0 the host clears finish flag 0 by writing a
zero to its address and then sends the GE-FINISH0 token to the FIFO. The host then polls finish flag
zero until it is set by the microcode. The microcode continues executing tokens which are in the
FiFO until it gets the GE_FINISHO token. It then sets finish flag 0 and does a fetch to get the next
token. Since the host has not sent any additional tokens the FIFO will be empty and the microcode
will stall. At this time the host can safely access the microcode data RAM.

Finish flag 1 is used to indicate to the host that the microcode is ready for a DMA operation to begin
or to indicate that a DMA operation has completed. In the case where the host wishes to do an output
DMA operation to the MGR adapter, it clears finish flag 1 and then writes the appropriate token
(such as GE_WRITEELOCK) to the FIFO to tell the microcode of the output DMA operation. It then
polls finish flag 1 until it has been set by the microcode. After the microcode sets Finish flag 1 the
host then starts the DMA. In the input DMA case, the host clears finish flag 1 and then writes the
appropriate token (such as GE_READBLOCK) to the FIFO. It then polls finish flag 1 until it _iS_S3t by
the microcode which indicates that the-host can start the input DMA operation. For those tokens
which cause the microcode to do a DMA from the RE2 to the pixel buffer in the GE5 data RAM Finish
ffag 1 is used to indicate to the host that the DMA has been completed and the host can read the pixel
buffer.

Three macros are provided in mgr.h to access the finish flags. the FINISH-R0 macro is used to read
either finish flag 0 or 1. The FINISH_WR macro is used to write a value to either finish flag 0 or
1. The FINISH_POU macro is used to return the current boolean state of either finish flag 0 or 1.

,

#define FlNISHO_OFF 0x2000 r Finish flag 0 address ‘1

#define FlNISHl_OFF 0x2004 P Finish flag 1 address ‘I

I
#define FINISH_RD(addr, x) \

x - ‘(volatile long ‘)(GRP 1 (addr)) & 0x1

#define FINISH WR(addr, x) \ .
‘(volatile bng:)(GRP 1 (addr)) - x

#define FINISH_POLL(addr) \
(‘(volatile long ‘)(GRP 1 (addr)) 8 0x1)

Example Usage:

#include ‘gecmds.h’
#include ‘mgr.h’

int flag1 ;

GRPsetup;

4 -70

c

/!!!zn Graphics Confidential MGR Technical Reference

FINlSH_WR(FINlSHO_OFF, 0); r clear finish flag 0 l /

GE(GE_FINISHO].I = 0; r Tell microcode to set finish 0 l /

while (1) {
if (FlNl~M_F&OLL(FlNlSHO_OFF)

.,
I

FlNlSH_RO(FlNlSHl_OFF, ftagl); r read finish ftag 1 V

.

-

-

4-71

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Microcode Code RAM Programming _L_.,

The microcode code RAM is 40 bits wide and k accessed in two parts. The bwet 32 bits are
programmed with the HQMMSB register set to zero. The upper 8 bits are programmed with the
HQMMSB register set to one. The code RAM k divided into 256 word pages and the HQ MAR register
must programmed to contain the page address which represents the upper 7 bits of the code RAM
address. Bits 9-2 of th8 host address represent the word address in the current page and form the
bw 8 bits of the microcode code RAM address. The code is then read or written with the HQMMSB
register set appropriately for the upper or bwer part of the microcode word. As the code RAM is
accessed the address must be checked for 256 word page boundaries and the HQ MAR register
updated as the page boundaries are crossed.

Two macros are provided to read and write the microcode code RAM. The URAM_RD macro k used to
read either the lower 32 bits or the upper 8 bits of the microcode word. The URAM_WR macro k
used to write either the lower 32 bits or the upper 8 bits of the microcode word.

#define URAM_QFF 0x000 r microcode code RAM base l /

#define URAM_RD(addr, x) \
x = ‘(volatile long ‘)(GRP 1 URAM_OFF 1 (((addr) I OxFF) << 2))

#define URAM_WR(addr, x) \
*(volatile long ‘)(GRP 1 URAM_OFF 1 (((addr) -8 OxPF) Ti 2)) L x _.

Example Usage:

#include “mgr.h’

bw addr, data:

GRPsetup;

r write to both the low 32 bits and the upper 8 bits ‘/

HQMMSB_WR(O);

URAM_WR(addr, data):

HQMMSB_WR(l);

r access iow 32 bits ‘I

1’ write lower 32 bits 9

r access upper 8 bits V

URAM_WR(addr, data); r write upper 8 bits ‘/

r read both the low 32 bits and the upper 8 bits l /

HQMMSB_WR(O);

URAM_RD(addr, data):

HQMMSB_WR(l);

URAM_RD(addr, data);

r access low 32 bits l I

r read lower 32 bits l I

r access upper 8 bits ‘1

r read upper 8 bits ‘1

4-72

Silicon Graphics Confidential MGR Technical Reference

Microcode Data Ram Programming

The microa& data RAM contains oonstants, variabks and data buffers used by the microcode during
its execution. The host software reads the microcode data RAM to get return data from the microcode
after some tokens have been executed. The various symbolic names and address constants are
defined in the include file g8Sgtob.h. The microcode data RAM address locations used by the host to
acc8ss microcode return values are defined in the token definition section.

The microcode data RAM is 32 bits wide and Is accessed with the HQMMSB register set to zero. The
data RAM is dlvkfed into 266 word pages and the HQ MAR register must programmed to contain the
page address which represents the upper 5 bits of th8 code RAM address. Bits 9-2 of the host
address form the bw 8 bits of the microcode data RAM address.

Two macros are provided to read and write the microcode data RAM. The DRAM_RD macro is used to
read the microcode data RAM. The DRAM_WR macro is used to write the microcode data RAM.

#define DRAM-OFF 0x1400 P microcode data RAM base l I

#define DRAM RD(addr, x) ‘((long *)&Ix) I \
‘(volatile long -;)(GRP + DRAM-OFF 1 (((addr) 8 OxFF) cc 2))

..L. #define DRAM WR(addr, x) \
‘(volatile long’)(GRP + DRAM-OFF 1 (((addr) 8 OxFF) << 2))-- ((long ‘)8x)

Example Usage:

#include ‘mgr.h’

bw addr, data;

GRPsetup;

HQMMSB_WR(O);

DRAM_WR(addr, data);

DRAM_RD(addr, data);

P access data RAM 32 bits ‘I

/’ write 32 bits ‘/

r read 32 bits ‘1

4-73

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

GE and FIFO Half-Full Interrupt Programming

The Geometry Subsystem can generate two hardware interrupts which go to the Host Interface
Subsystem. These interrupts are the GE interrupt and the FIFO Half-Full interrupt. The Host
Interface Subsystem contains the interrupt mask register and the interrupt status register which
the host system uses to enable interrupts and to determine which interrupt caused the host system
interrupt. Refer to the Host Interface Subsystem chapter for programming considerations for these
registers.

The GE interrupt is latched in the HQl and must be cleared by the host software. This is done by
using the HQCLRINT wmmand as described above. The host should clear the GE interrupt in the HQl
before it clears the GE interrupt bit in the interrupt status register. This prevents the possibility
of a false GE interrupt from occurring.

The FIFO Half-Full interrupt follows the half-full state of the FIFO hardware. When the FIFO goes
above half-full the interrupt is generated as an edge triggered event. The host software clears the
FIFO half-full bit in the interrupt status register and does not have to issue any commands to the
Geometry Subsystem hardware. The Host Interface Subsystem provides two status bits which can be I
polled to determine when the FIFO has gone back below the half-full state.

If the host software does not use the FIFO Half-full interrupt to notify it of potential FIFO overflows
it must poll the two status bits to check for FIFO half-full conditions. The GEWAIT macro _is
provided to handle this case. For FiFO writes from device drivers in kernel mode the polling does -
not have to be done as long as the number of FIFO writes would not cause a FIFO overflow. In the
Silicon Graphics graphics library this macro is placed before all token writes to the FIFO to check
the FIFO status. If either status bit is set then the macro delays until they both become cleared
indicating that the FIFO is no longer half-full. If the interrupt method is used then GEWAIT should
be defined to be nothing. If the polling method is used thtin the GEWAIT macro is left defined as
shown below.

#ifdef
#define

while
#else
#define
tendif

NO_FIFO_HF_INT
GEWAlT \

((‘(volatile char l)GFX_CTRLO_ADDR 8 GFX_FIFOSTAT)) ;

GEWAlT

Example Usage:

#include ‘mgr.h”

int color = 3;

r GEWAIT will poll the FIFO half-full status if the FIFO Half-full interrupt is not used. ‘1

GEWAlT;
GE[GE_COLOR].i - 0;
GE[GE_DATA].i = color:

4

4-74

Silicon Graphics Confidential MGR Technical Reference

FIFO Programming

The FIFO is used as a buffer between the host and the microcode to allow the host execution to
proceed in parallel with the microcode execution of tokens. The host sends tokens and data to the
microcode by writing to a 1K byte range of addresses reserved for the FIFO. For host addresses
within the FIFO address range the hardware takes bits 9-2 of the host address and places those 8
bits in the Tag FIFO. The hardware also places the 32 bits on the data bus in the Data FIFO.

When a command token is written the data value should be zero. The exception is when the GE-DATA
token is written, then the data should contain the desired data parameter. Each byte in the Tag FIFO
is used by the HO1 as an index into the microcode branch table. The branch instruction located at
the address pointed to by the token index points to the microcode function which will perform the
necessary operations for the token.

The host can write tokens and data parameters using several different methods. Which method is
used is dependent on the type of host operating system and whether the token is being written from a
kernel mode device driver or from a user mode application program. The MGR card is memory
mapped so the tokens and data can be written to the FIFO using a pointer to reference the FIFO. The
following examples demonstrate the different methods as used by Silicon Graphics in kernel mode
device drivers and in user mode graphics library code.

c Kernel Mode Device Driver - - . .

Kernel mode device drivers can access the MGR adapter using kernel virtual addresses. The include
file mgr.h contains various macros which are provided for writing tokens and data to the FIFO.

The macro FIFO_WR is. used to write a token or data to the FIFO from kernel device drivers. The
token cmd is left shifted twice and ored to the FIFO address. This places the token in the address in
bits 9-2 as described above. The data is then written to the desired FIFO address. The following
code fragment shows these macros.

#define FIFO-OFF 0x800 r FIFO base address ‘/

#define FIFO_WR(cmd, x) \
‘(volatile long ‘)(GRP 1 FIFO-OFF 1 ((cmd) << 2)) I ‘((long’) a(x))

The GRP variable will be assigned to the kernel virtual address of the adapter as discussed in the
Base Memory Address Programming section of this chapter.

If the kernel driver needs to send a floating point constant it should declare a data variable which is
assigned the floating point constant so that the compiler will calculate the floating point value and
store it’s hex equivalent in the data segment of the kernel driver. The FIFO_WR macro gets the
address of the data variable and casts the address into a long pointer and then gets the data variables
hex value and writes it to the address formed using the cmd. This technique allows the kernel
driver to send either integer variables or floating point constants to the FIFO.

Example Usage:

#include ‘mgr.h”

GRPsetup;

int one - 1:

4-75

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

FIFO_WR(GE_DATA, one): r such as one of the 3 download parameters ‘1

User Mode Program using Virtual Memory

The Silicon Graphics graphics library uses a user virtual address pointer to access the FIFO. The
kernel graphics output device driver will perform the necessary user virtual address to physical
address mapping to map the user virtual address to the physical address of the MGR graphics
adapter.

The include files mgr.h and imsetup.h contain the following macros which are used to access the
FIFO from user mode. The following typedef is used to define the union of tong and floating point
values. This is necessary to allow the user mode software to send both floating point and integer
data to the FIFO.

typedef unio;;edata 1
.

float fI
) gedata,t;

The GRl_GFXPG_VADDR macro is used to define the virtual address assigned to the base address of
the MGR adapter. The address of 0x1000 is an arbitrary address and can be set to any virtual
address. The only Jimitation is that the low 12 bits of the address should be. zero, The kernel driver
will map the user virtual address to the MGR adapter physical address.

d e f i n e GRl_GFXPG_VADDR 0x1000

#def ine flFO_OFF 0x800 P offset of FIFO from base address of adapter l

The FIFO-MAP macro is used to define the FIFO virtual base address. The im_GEsetup macro is used
to define a pointer to the FIFO virtual base address.

d e f i n e FIFO_MAP \
(volatile union gedata l)(GRl_GFXPG_VADDR 1 FIFO-OFF))

#define im_GEsetup volatile union gedata ‘GE = FIFO-MAP:

The FIFO virtual address is assigned to the pointer GE which is the user virtual address ored with ’
the FIFO-OFF value. The graphics library uses the C language array syntax to write to the range of
FIFO addresses. A C union is used to allow both floating point and Integer data to be sent to the FIFO.
The GE pointer is used in the form GE(token1.i I 0 to send command tokens to the FIFO. The GE
pointer is used in the form GE[GE_DATAJ.i I integer-data or GE[GE_DATA].f - fbat_data to send
data parameters to the FIFO. The GE variabfe is a pointer to a unbn of longs and floats. The bng and
floating point data are assumed to be 32 bit quantities. The compiler will perform the normal
array arithmetic to multiply the token value by 4 (sizeof long or float) and adds the scaled value to
the GE pointer.

Example Usage:

#include ‘mgr.h”
#include ‘imsetup.h”
#include ‘gecmds.h”

im_GEsetup;

4-76

Silicon Graphics Confidential MGR Technical Reference

.

int
float

int_data - 1:
float-data = 3.0;

GEWAIT;
GE[GE_TOKEN].i - 0; I’ an example token l /
GE[GE_DATA].i - int_data;
GE[GE_DATA].f = float-data;

Some processors have a problem sending floating point data to the MGR adapter. In these cases the
floating point data can be sent out by using the C languages ability to cast pointers to different types
as described earlier for the FtFO_WR macro. The address of the floating point variable is cast to an
integer pointer and this pointer is used to read the hex value which the compiler has generated for
the floating point value. This hex value is then written to the FIFO as If it were an integer. For
other languages this type of work around may not be allowed and some other solution will have to be
developed. The following is an example of the C language work around.

#include ‘mgr.h’
#include “imsetup.h’
#include “gecmds.h”

,

im_GEsetup;

int int_data = 1; --_
float float-data - 3.0;

GEWAlT;
GE[GE_TOKEN].i = 0; r an example token that has an integer and floating point parameter ‘1
GE[GE_DATA).i - int data;
GE[GE_DATA).i = l (int ‘)&float-data;

User Mode Program Using Physical Memory

The only difference between this mode of operation and the virtual memory mode is that the
GRl_GFXPG_VADDR macro can be assigned to the GRP variable instead of fhe virtual address.

d e f i n e GRl_GFXPG_VADDR w

In this case the GRP variable would have the physical base address of the MGR adapter. This allows
the user mode program to write directly to’the physical FIFO address still using the same GE pointer
as descriid above.

Now that we know how to program the hardware components
move on to initializing the subsystem and the graphics context.

In the Geometry Subsystem we can

4-77

i;napter 4 Geometry Subsystem Silicon Graphics Confidential

4-78

_ -

‘. , Initialization Programming

Before the MGR adapter can be used to draw 30 graphics objects it must be initialized. The
following steps must be performed to initialize the adapter from a power on condition:

- search all adapter slots to find the MGR adapter iD in POS registers 0 and 1

- program the POS registers not already programmed during system startup

- determine the physical address of MGR adapter and program it in subaddress regs

- reset the adapter

- read the hardware configuration bits in the display registers

- download the microcode

- write the three hardware configuration parameters to the FIFO

- initialize the Display Subsystem

- - _tnitialize the Display Registers _ __ ,_ _ _

- initialize the 5 XPCl or XMAPP chips

- initialize the 5 Color Map chips if enhanced adapter

- initialize the RGB RAMDAC chip or the 3 RAMDAC chips

- initialize the Raster Subsystem

- toad the TOPSCAN register value

- bad the ENABRGB register value

- clear the bitplanes

- initialize the 2 Cursor chips

- initial&e the graphics context

- initialize the transformation matrix

- initialize the viewport and the screen mask

- initialize the piece list

The programming considerations for programming the POS registers and for resetting the adapter
are described in the Host Interface Subsystem. The Raster Subsystem initialization steps are
described in the Raster Subsystem chapter. The Display Subsystem initialization is described in
the Display Subsystem chapter.

Silicon Graphics Confidential MGR Technical Reference

The following paragraphs describe the programming considerations required to perform the
microcode download and to initialize a new graphics context.

.* - -- _-

-.

4-79

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Microcode Download Programming

The microcode must be downloaded by the host since it is resident in RAM on the MGR adapter. The
host reads a file called ge5_re2.bin which contains the microcode code and data constants. Before
doing the download the host issues a reset command to the MGR adapter which stalls the GE5 and
resets the other hardware components. The host then writes the microcode code into the code RAM
and the data constants into the data RAM. The following code fragment shows the procedure for
reading the ge5_re2,bin file and then downloading the microcode and data constants.

#include ‘mc.out.h’
#Include ‘ge5-glob.h’
#include “mgr.h’
#include “grl_ucode.h’

#define DEFAULTBINFILE

mcout_t head;
uc_hdr_t UC;
int ucfd;
char l bufp:
register unsigned long ‘lp;
register long count: _
register long addr;
tong zero=O,one-1;
bng tmp;

._ .- -- __

r Load the microcode from ge5_re2.bin into the structure pointed to by the variable UC. The
following code fragments are from the file ge5_bad.c l /

path = DEFAULTBINFILE;

r open microcode file, read header and check for the correct magic number stored in the
header. ‘I

if ((ucfd = open(path, 0;RDONLY.
r. handle error condrtion ‘1

)

if (read(ucfd, &head, sizeof(head))
r handle error condition ‘1

)

if (head.f_magic I- GES_MAGIC) {
r handle error condition ‘1

)

0)) == -1) I

-- -1) {

r transfer version and magic numbers to header ‘/

uc.magic = head.f_magic;
uc.version = head.f_version;

/’ allocate a descriptor buffer, seek to it and read it from the ge5.bin file into UC ‘I

4-80

Silicon Graphics Confidential MGR Technical Reference

bufp I malloc(head.f_desclen+l);

if (bufp I- NULL) (
/’ handle the error condition ‘/

if (Iseek(ucfd, head.f_descoff, 0) =- -1) {
P handle the error condition ‘/

1

If (read(ucfd, bufp, head.f_desclen) - -1) {
r handle the error condition ‘1

r Null terminate descriptor and save the pointer in UC’/

bufp[head.f_desclen] = 10’;
uc.descriptor = bufp;

r transfer code length to header, obtain buffer, seek to microcode and read it from file ‘/

1 ucxodelen = head.f_codelen;
bu fp - calloc((head.f_codelen+3)>>2, sizeof(long));

if (bufp =- NULL) {
r handle the error condition ‘1

1

if (IS88k(uCfd, head.f_codeoff, 0) -- -1) {
r handle the error condition ‘1

1

if (read(ucfd, bufp, head.f_codelen, 0) =- -1) {
/’ handle the error condition ‘/

1

uc.code = (unsigned long l) bufp; P save buffer pointer ‘1

r transfer data constants length to header, obtain buffer, seek to constants and read from file
‘I

UC.ConStf8n = head.f_constlen;
b u f p = cafloc((h8ad.f_COnStl8n+3)>>2, sizeof(iong));

If (burp -- NULL) (
r handle th8 error condition ‘/.

if (Iseek(ucfd, head.f_constoff, 0) -= -1) (
r handle th8 error condition ‘1

)

if (read(ucfd, bufp, head.f_constlen, 0) -- -1) {

4 - 8 1

Chapter 4 Geometry Subsystem

r handle the error condition ‘/
-. 1

ucconstants = (unsigned long ‘) bufp; P

r This completes the code fragment for
structure in memory. l /

r Download the microcode into code RAM
grl_downid.c ‘/

Silicon Graphics Confidential

save pointer ‘/

foading the contents of the ge5bin file into the UC

from UC-> code. The code fragments are from the file

addr - 0; P microcode starts at address - 0 l /
lp - uc->code; r get pointer to code words ‘/

for (count = 0: count < uc-Bcodeien; count +=2’sizeof(long))(
if (addr % HQM_PG_SiZE -- 0) f address on a page boundary? ‘I

HQM_WR(addr); r yes, set HQ MAR page address ‘1
HQMMSB_WR(O); f low 32 bits of code RAM ‘1

URAM_WR(addr, ‘ip++); /’ write lower 32 bits ‘/
HQMMSB_WR(1); f upper 8 bits of code RAM ‘1
URAM_WR(addr, l ip++); f wrtte upper 8 bits ‘/
addr++; f next address ‘I

.&*._1 -.

f Download constants into microcode data RAM ‘1

addr - DIVMODTBL; f start address of constants ‘I

HQMMSB_WR(O); f 32 bit data RAM word ‘I

HQM_WR(addr); f set HQ MAR address l /

ip - uc-sconstants; f get pointer to constants ‘1

for (count = 0 : count < uc->constien; count += sizeof(long)) {
if (addr % HQM_PGSIZE n 0) f address on a page boundary? ‘I

HQM_WR(addr); r yes, set HQ MAR page address ‘1
DRAM_WR(addr, ‘ip++); f write the data word ‘/

addr++; f next address ‘1

f read address zero of code RAM to set PC - 0 l /

HQMMSB_WR(l): r set for following accesses l /

HQM_WR(O); f set HQ MAR to zero ‘1

URAM_RD(O, tmp); f read URAM so PC = 0 ‘1

f Unstaii the microcode so that it executes the initialization code
‘I

HQCLRSTLQ:

which begins at address zero

4 -82

r-
Silicon Graphics Confidential MGR Technical Reference

._- r Poll the GE interrupt which the microcode will set when it’s done. If the GE interrupt is not
set after a millisecond then indicate an error. If the GE interrupt is set then the microcode is
initialized and is stalled waiting for the host to restart it. l /

-delay (1000); /’ wait for a millisecond ‘/

if (l(GFXINTR_TEST(GFX_INT_GE))) (
printf (“GRl_DOWNLD: GE5 not responding\n’);
return (-1); /’ assumes code fragment is function ‘1

1

HOCLRINT(); r clear the GE Interrupt in HQl ‘1

GFXlNTR_CLR(GFX_INT_GE); r clear GE int bit In int stat reg l /

HQCLRSTLO; /’ clear the stall to restart microcode ‘1

r this ends the code fragment from grl_downld.c for downloading the code and data constants ‘1

The microcode is now waiting for three data parameters to be sent down the FIFO to indicate the
various installed options. The display registers must be read to determine If the extra bitplanes

_ and Zbuffer are installed. Refer to the Display Subsystem chapter for examples of how to read the
display registers and the setting of the hwconfig variable. The hwconfig variable is set during the
Display Subsystem initialization to indicate which options are installed.

-. The first parameter indicates if the extra bitplanes option is installed. If the extra bitplanes
daughterboard is installed then a one is sent else a zero is sent.

The second parameter indicates if the Zbuffer option is installed. If it is installed then a one is Sent
else a zero is sent.

The third parameter Indicates if 256K or 1 Meg VRAMs are installed. The MGR adapter uses only 1
Meg VRAMs so a one should be sent

The following code fragment, from grl.c, shows how the appropriate
.

‘1

parameters are sent down.

if (hwconfig 8 DREG_BITPLANES)
FIFO_WR(GE_DATA, zero):

else
FIFO_WR(GE_DATA, one);

if (hwconfig 8 DREG_ZBlJF)
FIFO_WR(GE_DATA, zero):

else
FlFO_WR(GE_DATA, one):

FIFO_WR(GE_DATA, one);

r no extra bitplanes

r extra bltplanes ‘1

r no Zbuffer installed ‘1

P Zbuffer installed l /

r MGR uses 1 MEG VRAM ‘1

/’ the microcode is now ready to accept tokens ‘1

The initialization performed by the microcode after
following initialization steps:

receiving the three parameters includes the

4-83

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

- Perform hard initialization after reset operation

- Save the three parameters in data variabies in the GE5 data RAM

- Load the hardware configuration into the appropriate FE2 registers

- Perform the soft initialization which is performed by the GE_iNiT token.
See the next paragraph for th8 GE_iNiT initialization steps

Refer to the r8Qistets section of th8 Raster Subsystem chapter for a d8SCXiptiOn Of the RE2 register
Settings after the hard initialization has completed. The microcode is ail set to receive tokens SO
now we should initialize the graphics context and get on with drawing some 30 graphics objects.

- -

4-84

Silicon Graphics Confidential MGR Technical Reference

New Context Initialization Programming

The graphics context is initialized by sending the GE_INIT token to the microcode. This should only
be done once for each new graphics process as it does it’s Initialization steps. The following
initialization steps are performed by the microcode when it receives the GEINIT token:

Window Manager Variables

SIMPLE Set screen clear flag to indicate fast clear mode of 1 to 4 piece win&w
MTMODE Set flat mode = 2. for fast block write fill mode without WI0 checking
RE2DX Set RE2 OX value to 0 to match flatmode - 2

Set new window origin flag to false

E2
Set window x origin to 0
Set window y origin to 0

ENABLWID Set for no line WI0 checking

Disable WI0 checking
Set Screen Mask for full screen rectangle

Other Graphics Context Variables

CURWlD
&3&4v

Set Current Window ID to 0
Set saved HQMAR register value IO 0

Coordinate Transformation Support

Initialize the Normal matrix stack linked list pointers
Initialize the MVP matrix stack linked llst pointers
Initialize the top matrix on the MVP matrix stack to the identity matrix

Point Drawing

Turn off antialiased point drawing mode

Line Drawing

’ Initialize the current graphics position to 0
Turn off antialiased line drawing mode
Set antialiase weighting to 0 (ASELECT - 0)
Enable the use of stipple patterns
Set the stipple pattern to OxFFFF
Set the stipple bit repeat count to 1
Turn off depthcued line drawing mode
Set the line width for 1 pixel
Turn off wide line drawing mode (line width of 1 pixel is default)

Closed Polyline Drawing

Turn off closed polyline drawing mode

Filled Polygon Drawing

Turn off concave polygon mode (convex polygons are the default)

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Turn off backfacing polygon removal mode
, Turn off pattern masking during filled polygons

Enable the old style outlined polygon drawing mode
Disable subpixel starting vertices mode
Set shade model for flat shading of filled polygons

Triangle Mesh Drawing

Turn off Triangle Mesh drawing mode

NURBS Drawing

Turn off NURBS drawing mode

Character Drawing

Make the current character position invalid
Set pattern alignment to drawing relative mode for characters

Pixel Reads/Writes

Set pixel buffer flag to indicate pixel buffer is empty
Set RWMODE to 0 (Frame Buffer port destination of pixel.write)

_ Set-Read Buffer to 0 (Front Buffer for Frame Buffer pixel reads]
Set the zoom x factor to 1
Set the zoom y factor to 1
Turn off pixel packing mode

Lighting Support

Initialize the MVP matrix free list pointer
Initialize the Normal matrix free list pointer
Initialize the top matrix on the Normal matrix stack to the identity matrix
Set the matrix mode to SINGLE for a combined MVP matrix
Set the abnormal flag off to indicate no recalculation of the normal matrix is required
Turn off Lighting mode

Bounding Box Support
.

Turn off the bounding box mode

Feedback Support

Turn off Feedback mode

Pick Support

Turn off Picking mode

Pixel Format and Attributes

Set Pixel Type to 2 (12 bit Color Index)
Set Pixel write mask to OxFFF (front buffer)
Set Aux write mask to 0

4 -86

Silicon Graphics Confidential MGR Technical Reference

Set WID data value to 0
Set PUP data value to 0
Set UAUX data value to 0
Set Raster Operation to 3 (Src Copy)
Turn off dithering mode

2 Buffer Support

Disable 2 Buffer checking
Set Depth Function to 7 for always pass (Disable 2 Ch8cking)
Set for 2 Buffer compare with new 2 value

Miscellaneous

Clear Finish flag 0
Clear Finish flag 1

Refer to the registers section of Raster Subsystem chapter for a description of the RE2 register
settings after the GE_INIT initialization is completed. The graphics context is now initialized but
the transformation matrix contains only an identity matrix so we need to load a projection matrix
before we can draw any 3D graphics objects.

/ __

4-87

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

3D Graphics Programming 5 .

This section discusses the programming considerations for drawing 3D graphics objects. The
following topics are discussed in this section:

- Coordinate Transformation Programming

- Viewport Programming

- Pixel Format and Attribute Programming

- 2 Buffer Programming

- Pixel DMA Programming

The following paragraphs describe the programming considerations for drawing 30 graphics
objects.

.

4-88

Silicon Graphics Confidential MGR Technical Reference

Coordinate Transformation Programming I.

As described in the basic operations section the GE5 microcode provides support for a coordinate
transformation matrix stack. When lighting mode is not enabled the current top of the stack matrix
contains the concatenated modeling, viewing and projection matrix. This matrix is used to
transform the world coordinate data into normalized coordinates. The viewport specification is then
used to transform the normalized coordinates into screen coordinates. The transformation matrix is
initialized to the identity matrix by the GE_INIT token so the host software must toad a projection
matrix which will map the desired range of world coordinates to a normalized coordinates with a
range of -1 to +l in the x, y and z directions.

The following coordinate transformation matrices and viewport transformations are described in
the following sections:

- Projection Matrix Transformations

- Viewing Matrix Transformations

- Modeling Matrix Transformations

- Viewport Transformations

4-89

Ci~u@er 4 Geometry Subsystem Silicon Graphics Confidential

Projection Matrix Programming

While many different types of projections could be used the SGI Graphics Library supports
odhographic and perspective projections. The Graphics Library specifies the world coordinates
in a right handed coordinate system and the screen coordinates In a left handed coordinate system.
The right handed coordinate system has the positive x to the right, the positive y up and the positive
z direction toward the viewer. The left handed coordinate system reverses the positive z direction
to be away form the viewer. The right handed to left handed coordinate system transformation is
accomplished simply by multiplying the z scale factor portion of the projection matrix by -1.

The 20 and 30 orthographic projection matrices are shown in Figure 4.13. The left and right
values represent the minimum x and maximum x values that the world coordinates will have with
the positive x direction to the right. The bottom and top values represent the minimum and
maximum y world coordinate values with the positive y direction up. The far and near values
represent the minimum and maximum z world coordinate values with the near value being Closer to
the viewer.

2D Orthographic Projection Matrix

2.0
right - left

0 0

-0
2.0

top - bottom 0

0 0 -1 .o

-(right + left) -(top + bottom)
right - left top - bottom 0

3D Orthographic Projection Matrix

2.0 fi n
right - left v ”

0

0

2.0
top - bottom 0

0
-2.0

far - near

-(right + left) -(top + bottom) -(far + near)
right - left top - bottom far - near

0

0

0

1

0

0

0

1

Figure 4.13 2D and 3D Orthographic Projection Matrices

The perspective projection transformation matrices are shown in Figure 4.14. The perspective
projections account for the far shortening of distant objects and gives a more realistic projection of
near and far objects. The perspective projection is used to project all points in a world coordinate
space to a single view point. This forms an infinite four sided pyramid with the apex at the viewers

4-90

Silicon Graphics Confidential MGR Technical Reference

eye. The near and far clipping planes modify
apex is at the origin and the line of sight is
perpendicular to the line of sight.

the pyramid into a rectangular viewing frustum. The
down the negative z axis. The projection plane is

FOV Perspective Projection Matrix

0
-(far + near) -1

far - near

-2.0 x far x near
0 far - near

0

Window Perspective Projection Matrix

2.0 x near
right - left

0

0

2.0 x near

top - bottom

0 0

0 0

right + left
right - left

top + bottom -(far + near)
- 1

top - bottom far - near

0 0
-2.0 x far x near

far - near
0

Figure 4.14 Perspective Projection Matrices

The matrix labeled FOV Perspective lets the host software specify a field of view in the y direction
and an aspect ratio of the x size to the y size. The near and far z clipping planes are also specified.
The matrix labeled Window Perspective specifies the near and far clipping plane distances. It also
specifies the left, right, bottom and top values of the near clipping plane rectangle of the viewing
frustum. The window perspective matrix should not be confused with the window manager screen
windows since they refer to different things.

The GE LOADMATRIX is used to bad the projection matrix onto the matrix at the top of the matrix
stack. ?he Initial projection matrix that the Graphics Ubrary loads onto the MVP matrix is the
projection matrix for a 2D orthographic projection which specifies the world coordinates to be the
same as the screen coordinates. The GE_LOADMATRIX token definition shows an example of this
projection matrix being baded. .*. .

:.
. -.

4-91

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

-Viewing Matrix Programming

The projection matrix loaded into the MVP matrix on the top of the matrix stack has a viewing
direction which is looking down the z axis and the projection plane is perpendicular to the z axis.
The host software can change the viewing position and direction by concatenating the appropriate
rotation and translation matrices to the projection matrix already loaded into the transformation
matrix. The host software can concatenate a translation along the z axis and a rotation along the x, y
and z axis to change the viewing position and direct&n. If the angles of rotation and the translation
distance are specified for a right handed coordinate system they all need to be multiplied by a -1
since the transformation matrix converts the right handed world coordinate system to a left handed
screen coordinate system.

Example Code :

#include ‘mgr.h”
#include “imsetup.h’
#include “gecmdsh’

im_GEsetup;

float tx=eo* ty - 0, tz - -5.0;
float _ = -50;
float sin2 - sin(angle), cosz I cos(angle); -
float
int

N&4,1:.* 9

for (row - 0 ; row c 4 ; row++)
for (co1 - 0 ; col * 4 ;)

m[row][col++] = 0 ;

r Multiply current matrix by translation matrix ‘1

GEWAIT;
GE[GE_MULTMATRI~.i - 0;

for (row = 0 : row * 4 ; row++)
for (co1 - 0 ; col < 4 :)

GE[GE_DATA].f I m[row][col++];

r Multiply current matrix by rotation around z axis matrix ‘1

m[O][O] - cost;
m[O][l] - sinr;
m[l][O] I -sinr;
m[l][l] = cosz;

4-92

Siicon Graphics Confidential MGR Technical Reference

m[2](2] - 1 .0 ;
m[3][3] - 1 .0 ;

GEWAIT;
GE[GE_MULTMATRIX].i = 0;

for (row - 0 ; row e 4 ; row++)
for (WI - 0 ; cd c 4 ;)

GE[GE_DATA&f - m[rowJ[col++];

- --

4-93

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Modeling Matrix Programming

The translation and rotation matrices concatenated to the projection matrix for the viewing position
and direction transformations affect all of objects drawn on the screen. The modeling
transformations allow the host software to apply scaling, rotation and translation transformation to
the individual objects It draws.

The translation matrix is shown in Figure 4.15 and is concatenated to the current matrix on the top
of the matrix stack using the GEJvtULTMATRIX token. An example of concatenating a translation
matrix to the current matrix is shown in the example code later in this section.

1 0 0 0

0 1 0 0.

0 0 1 0

TX - .--- Ty TZ 1

Figure 4.15 Translation Matrix

The scaling matrix Is shown in Figure 4.16 and is concatenated to the current matrix on the top of
the matrix stack using the GE_MULTMATRIX token. An example of concatenating a. scaling matrix to
the current matrix Is shown In the example code later in this section.

S X 0 .o 0

0 SY 0 0.

0 0 . sz 0

0 0 0 1

Figure 4.16 Scaling Matrix

The rotation matrices are shown in Figure 4.16 and are concatenated to the current matrix on the
top of the matrix stack using the GE_MULTMATRIX token. An example of concatenating a rotation
matrix to the current matrix is shown in the example code later in this section.

4-94

Silicon Graphics Confidential MGR Technical Reference

-

1 0 0

0 cow sin(+)

0 -oin@) Cosw)

0 0 0

Rotate around Y axis

cowe)

0

sin(+)

0 -sin@)

1 -0

0 CO6@e)

0 0 0

Rotate around 2 axis

cow) 6m9) 0

-sin(+)

0

COS@e) 0

0

b 1

0 0

Figure 4.17 Rotation Matrices

Rotate around X axis

0

0

0

1

0

0

0

1

0

0

0

1

.

This is accomplished using the GE_MULTMATRIX token to concatenate the various modeling
transformations to the current viewing and projection transformation matrix. The
GE PUSHMATRIX and GE POPMATRIX tokens can be used to control which modeling transformations
are-&plied to the various objects which are drawn. The GE_PUSHMATRIX token can be used to save
a particular MVP matrix and the GE_POPMATRIX token can be used to restore the saved MVP
matrix. The transformation matrix at the top of the matrix stack is always used to perform the

4-95

Chapter 4 Geometry Subspt8fn Silicon Graphics Confidential

world coordinate to normalized coordinate transformation. The following example code shows how
the scaling, rotation and translation matrices are concatenated to the current matrix on the top of
the matrix stack.

Example Code :

#include ‘mgr.h”
#include ‘imsetup.h”
#include ‘gecmds.h’

im_GEsetup;

float tx - 10.0, ty - 20.0, tz - 5.0;
float sx - 2.3, sy - 4.0, ST - 1.1;
float angle - 30;
float sinx = sin(angle), cosx - cos(angle);
float
int

for (row - 0 ; row < 4 ; row++)
for (cot - 0 ; cd < 4 ;)

m[row](col++] = 0 ;

P Multiply current matrix by translation matrix ‘/

m[O][O] = 1 .0 ;
W; = 1.0;

- 1.0;
m[3][0] = t x ;
mPl[~l = ty:
m[31(21 = tr:
m[3][3] - 1 .0 ;

GEWAlT;
GE[GE_tvlULTMATRIX].i - 0;

for (row - 0 ; row < 4 ; row++)
for (col - 0 ; col c 4 ;)

GE(GEJATAl.1 - m(row][col++]:

for (row - 0 ; row < 4 ; row++)
for (col - 0 ; ccl * 4 ;)

m[row][col++] - 0 :

P Multiply current matrix by scaling matrix ‘/

m[O][O] = sx:

m(3][3] - 1 .0 ;

GEWAIT;
GE[GE_MULTMATRI~.i - 0;

4-96

Silicon Graphics Confidential

for (row - 0 ; row * 4 ; row++)
for (co1 = 0 ; cot < 4 ;)

GE[GE_DATA].f I m[row][col++];

P Multiply current matrix by rotation around x axis matrix ‘1

MGR Technical Reference

m[y~ - l-0:
- cosx;

m[1][2] = sinx;
m[2][1] - -sinx;
m(2)(2) - cosx:
m(3][3] - 1.0;

GEWAIT;
GE[GE_MULTMATRIXJ.i - 0;

for (row = 0 ; row * 4 ; row++)
for (co1 = 0 ; col e 4 ;)

GE[GE_DATA].f = m[row][col++];

r‘ the rotation matrix for the y and z axis are similar to the x axis shown above ‘1

.

4-97

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Viewport Programming

The host software must specify a viewport which defines the normalized coordinate to screen
coordinate transformation. The viewport specification includes the x, y and z scale factors which
are used to scale the normalized device coordinates to the screen coordinates. The viewport
specification also specifies the non-window relative translation values which are added to the
window origin x and y values. The window relative translation values are added to the scaled screen
coordinate values to get the window relative screen coordinates. The window relative screen
coordinates are then used to perform the various drawing operations.

The window relative left screen coordinate of the viewport cannot be less than -XMAXSCREEN. The
window relative right screen coordinate of the viewport cannot be greater than P’XMAXSCREEN.
The window relative bottom screen coordinate cannot be less than -YMAXSCREEN. The window
relative top screen coordinate cannot be greater than P’YMAXSCREEN. The right - left size of the
viewport cannot be greater than 2048 and the top - bottom size of the viewport cannot be greater
than 2048.

The GE_LOADVIEWP token is used to load the viewport specification. The definition of the ’
GE_LOADVIEWP token shows an example code fragment for loading the viewport specification. After
the viewport is loaded the host software should load the hardware screen mask. Programming the
hardware screen mask is covered in the Window and Context Management Programming section
later in this chapter. ._

Pixel Format and Attribute Programming

The MGR adapter has a base and enhanced hardware configuration. The base adapter supports 8
Frame Buffer bitplanes; 2 PUP bitplanes, 2 WID bitplanes and optionally 24 2 Buffer bitplanes.
The enhanced adapter supports 24 Frame Buffer bitplanes, 2 PUP bitplanes, 2 UAUX bitplanes, 4
WID bitplanes and optionally 24 2 Buffer bitplanes. The GE_DRAWMODE token controls the access
to the Frame Buffer, PUP, UAUX and WID bitplanes. The GE_ZBUFFER and the GE_ZFUNCTION token
control the access to the Z Buffer bitplanes. The normal mode of operation is that the
GE_DRAWMODE token is used to select one of the drawing modes and the pixel and aux write masks
are set to allow only the selected bitplanes to be written into. The Z buffer is normally enabled to
perform hidden line removal but this is independent of the drawing modes for the other bitplanes.

The following paragraphs discuss the programming considerations for the Frame Buffer, PUP,
UAUX and WID bitplanes and the section on Z Buffer Programming covers the Z Buffer bitplane
programming considerations.

Frame Buffer Bitplane Programming

The MGR adapter supports two types of pixels which can be written into the Frame Buffer bitplanes.
The two types of pixels are the RGB pixels and the Color Index pixels and the GE_PIXTYPE token is
used to select the pixel type. The GE_RGBCOLOR token is used to specify the red, green and blue
color components for the RGB pixel types. The GE-COLOR and GE_COLORF tokens are used to specify
the color index value for the Color Index pixels. The adapter also supports two buffers into which
the Frame Buffer pixels can be written. The GE_PIXWRITEMASK is used to control which buffer is
written into. The double buffered mode is provided for smooth animation effects in which one buffer
is displayed while the other buffer is being displayed. The mode registers in the XPC or XMAP chips
in the Display Subsystem must be set appropriately for the pixel type and the buffer select bit in
the mode register determines which of the two buffers are displayed.

4-98

Silicon Graphics Confidential MGR Technical Reference

The enhanced adapter configuration supports 24 bit single buffer pixels and 12 bit RGB double
buffered pixels. The enhanced adapter also supports 12 bit Color Index double buffered pixels and 4
bit Color index double buffered pixels. The 4 bit Color Index pixels are generally not used on the
enhanced adapter. The base adapter supports 8 bit RGB single buffer pixels which are a special
representation of the 24 bit RGB pixels. Refer to the Raster Subsystem chapter for details on the 8
bit RGB pixel formats. The base adapter also supports 8 bit Color Index single buffer pixels and 4
bit Color index double buffered pixels. The following code examples show how to write pixels into
the Frame Buffer bitplanes. These examples assume an enhanced adapter configuration is being
us&.

Example Code :

#include ‘gecmds.h’
#include ‘imsetup.h’

im_GEsetup;

int red, green, blue;
int color;
lnt t-mask - 0x11; P enable fast z clear mode and Z buffer updates ‘1

/* set draw mode for Frame Buffer *I

GEWAiT;
GE[GE_DRAWMODE].i - 0;
GE[GE_DATA].i - 1;
GE[GE_DATA].i - 1;
GE[GE_DATAJ.i = 1;

P set the aux write mask so we don’t affect the PUP, UAUX and WID bitplanes *I

GE[GE_AUXWRiTEMASKj.i = 0;
GE[GE_DATA].i = 0 1 (z-mask << 4);

p Clearing the Frame Buffer example l /

GE[GE_PIXTYPE].i = 0;
GE[GE_DATA].i I 0; P set pixel type for 24 bii RGB pixels ‘1

r set RGB color for a black color ‘/

red - 0;
green - 0;
blue - 0;

GE[GE_RGBCOLOR].i - 0;
GE[GE_DATA].i = red:
GE[GE_DATA].i = green:
GE[GE_DATA].i = blue;

r set the pixel write mask so ail 24 bits are cleared ‘1

GE[GE_PlXWRiTEMASK].i = 0;

4-99

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

GE[GE_DATA].i - OxFFFFFF;
,I

r Clear the Frame Buffer bitplanes l /

GE(GE_SCREENCLEAR].i = 0;

/* 24 bit RGB pixel example l /

GE[GE_PIXTYPE].i - 0;
GE[GE_DATA].i = 0; r set pixel type for 24 bit RGB pixels l I

r set RGB color for a full red color l /

red = OxFF;
green = 0;
blue I: 0;

GqGE_RGBCOLOR].i = 0;
GE[GE_DATA].i = red;
GE[GE_DATA].i - green;
GE[GE_DATA].i - blue;

r set the pixel, write mask so all 24 bits are written ‘/

GE[GE_PlXWRITEMASK].i = 0;
GE[GE_DATA].i = OxFFFFFF;

_ _

r Now we can do any type of 30 drawing we would like and the pixels will be written into the
Frame Buffer bitplanes and the 2 values will be updated l /

GE[GE_MOVE3l].i - 0;
GE[GE_DATA].i = 100;
GE[GE_DATA].i = 200;
GE[GE_DATA].i = 10; r set th8 current graphic8 position to 100, 200, 10 ‘1

GE[GE_DRAW3l].i = 0;
GE[GE_DATA].i = 600;
GE[GE_DATA].i = 400;

.

GE[GE_DATA].i - 10; r draw a line from current graphics position to 600, 400, 10 ‘1

/’ 12 bit RGB pixel example l /

GE[GE_PIXTYPE].i - 0;
GE[GE_DATA].i - 1; r set pixel type for 12 bll RGB pixels ‘I

r set RGB color for a white color l I

red = OxFF;
green - OxFF;
blue = OxFF;

GqGE_RGBCOLOR].i = 0;
GE[GE_DATA].i = red;
GE[GE_DATA].i = green;

4-100

Silicon Graphics Confidential MGR Technical Reference

GE[GE_DATAJ.i - blue;

P set the pixel write mask so the back buffer is written ‘1

GE[GE_PIXWRITEMASK].i - 0;
GE[GE_DATA].i = OxFOFOFO;

r Draw a closed polyline to draw an unfilled rectangle ‘1

GE[GE_CLOSEDLlNEJ.i - 0; P set closed polyline mode ‘1

GE[GE_MOVEPI].i - 0;
GE[GE_DATA].i = 100;
GE[GE_DATA].i = 200; r set the current graphics position to 100, 200 ‘1

GE(GE_DRAW2ll.i = 0;
GE[GE_DATA].i = 100;
GE[GE_DATA].i I 400; r draw a line from current graphics position to 100, 400 ‘1

GE[GE_DRAW2ll.i = 0;
GE[GE_DATA].i = 400;
GE[GE_DATA].i I 400; r draw a line from current graphics position to 400, 400 ‘1

- .
GE[GE_DRAW2l].i - 0;
GE[GE_DATA].i = 400;
GE[GE_DATA].i = 200; r draw a line from current graphics position to 400, 200 ‘1

GE[GE_ENDCLCSEDLINE].i = 0; P end closed polyline mode and draw last line to 100, 200’1

1’ 12 bit Color Index pixel example l /

GE[GE_PIXTYPE].i I 0;
GE[GE_DATAJ.i = 2; r set pixel type for 12 bit Color Index pixels ‘1

r set color index to index of 4 which is programmed to be blue color l I

color - 4; .

GE[GE_COLOR].i - 0;
GE[GE_DATA].i = color;

P set the pixel write mask so the front buffer Is written l I

GE[GE_PIXWRITEhMSKJ.i = 0;
GE[GE_DATA].l = OxOOOFFF;

r Draw a filled polygon ‘/

GE[GE_POLYGONJ.l = 0; r set filled polygon mode *I

GE[GE_VERTEX2l].i = 0;
GE[GE_DATA].I = 100;
GE[GE_DATA].i = 200; r set first vertex to 100, 200 ‘/

4-101

C&pier 4 Geometry Subsystem Silicon Graphics Confidential

.cr GE[GE_VERTEX2l].i I 0;
GE[GE_DATA).i = 200;
GE[GE_DATA].i - 400; P set second vertex to 100, 400 ‘/

GE[GE_VERTEX2l].i - 0;
GE[GE_DATA].i - 400;
GE[GE_DATA].i - 400; P set third vertex to 400, 400 ‘1

GeGE_ENDPOLYGONJ.i = 0; r draw point sampled polygon l /

1’ 4 bit Color Index pixel example l /

GE[GE_PIXTYPE].i - 0;
GE[GE_DATA].i - 3; r se1 pixel type for 4 bit Color index pixels ‘1

r set color index to index of 6 which is programmed to be cyan color ‘1

color = 6;

GE[GE_COLOR].i = 0;
GE[GE_DATA].i = color;

P set the pixel write mask so the badk buffer is written ‘1

GE[GE_PlXWRITEMASK].i = 0;
GE[GE_DATA].i - OxOOOOFO;

r Draw a point l / -

GE[GE_PNTPI].i - 0;
GE[GE_DATA].i = 100;
GE[GE_DATA].i - 200; P draw point .a1 100, 200 l /

PUP Bitplane Programming

The PUP bitplanes are used by the window manager to display pop up overlay menus and window
outline rectangles and whatever else it may wish to place in an overlay. The 2 bits in the PUP
bitpianes are used as an index into the auxiliary color map in the XMAPZ chip on the enhanced
adapter. On the base adapter the 2 PUP bitplanes are used as an index into the auxiliary color
palette in the RGB RAMDAC. Because the PUP bits represent a color index the GE-COLOR or
GE_COLORF token is used to specify the color index value which is written into the PUP bitplanes.
Bits 0 and 1 of the AUX write mask controls the pixel writes into the PUP bitplanes. The pixel
write mask should be set to 0 when writing to the PUP bitplanes so that the Frame Buffer bitplanes
are not changed. .

The 0 color index is a transparent overlay so it is not a valid cobr to program into the PUP
bitplanes except when clearing the bitplanes. The normal usage of the 2 Buffer is to remove hidden
lines while drawing into the Frame Buffer. This means that the 2 buffer checking would not
normally be needed when writing to the PUP bitplanes. Since the base adapter has the PUP
bitplanes as part of the 2 Buffer port the 2 Buffer should be set to pass all t compares and the aux
write mask should be set so that the 2 buffer values will ba written. This makes sure that the PUP
bitplanes will be written. Refer to the Raster Subsystem chapter for additional details on the 2

4-102

Silicon Graphics Confidential MGR Technical Reference

Buffer port and the PUP bitplane writes. The following example code shows how to write into the
PUP bitplanes.

Example Code :

#Include “gecmds.h’
#include ‘imsetup.h’

im_GEsetup;

int
int

color;
z-mask - 0x11; P enable fast z clear mode and 2 buffer updates ‘/

/* set draw mode for PUP bitplanes l /

GEwm
GE[GE_DRAWMODE].i = 0;
GE[GE_DATA].i = .-1 ;
GE[GE_DATA].i = -1;
GE[GE_DATA].i - 1;

r set the pixel write mask to 0 so the pixel bitplanes are not affected ‘1

GE[GE_PlXWRlTEMASK].i = 0;
GE[GE_DATA].i - 0;

r set the aux write mask -to allow the PUP bitplanes to be written and the UAUX and WID
bttptanes to not be written. The 2 mask values allows the fast z clear mode to be active and the Z
values to be written l /

GE[GE_AUXWRITUAASKJ.i = 0;
GE[GE_DATA].i = 0x03 1 (z-mask cc 4):

p Clearing the PUP bitplanes example l /

F set color index to index of 0 which is transparent overlay ‘1

color - 0:
.

GE[GE_COLOR].i = 0;
GE[GE_DATA].i - color:

r Clear the PUP bitplanes l I

GqGE_SCREENCLEAR].i = 0;

/’ PUP bitplane drawing example l /

r set color index to index of 1 which is programmed as red color l /

color = 1;

- GE[GE_COLOR].i = 0;
GE[GE_DATA].i = color;

4-103

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

f Draw a closed polyline to draw an unfilled rectangle l /

GE[GE_CLOSEDLINEJ.i - 0;

GE[GE_MOVE2l].i = 0;
GE[GE_DATA].i I 100:
GE[GE_DATA].i = 200;

r set closed polyline mode ‘/

/’ set the current graphics position to 100, 200 ‘/

GE[GE_DRAWPI].i - 0;
GE[GE_DATA].i I 100;
GE[GE_DATA].i = 400; r draw a line from current graphics position to 100, 400 ‘/

GE[GE_DRAW2l].i - 0:
GE[GE_DATA].i I 400;
GE[GE_DATA].i = 400; r draw a line from current graphics position to 400, 400 ‘1

GE[GE_DRAW2l].i - 0;
GE[GE_DATA].i - 400;
GE[GE_DATA].i = 200; r draw a line from current graphics position to 400, 200 ‘/

GE[GE_ENDCLCSEDLINE].i = 0; r end closed polyline mode and draw last line to 100, 200’1

UAUX Bitplane Programmirig

The UAUX bitplanes are used by the various graphics applications to display user overlays. The 2
bits in the UAUX bitplanes are used as an index into the auxiliary color map in the XMAPP chip on
the enhanced adapter. On the base adapter there are no UAUX bitplanes. Because the UAUX bits
represent a color index the GE-COLOR or GE COLORF token is used to specify the color index value
which is written into the UAUX bitplanes. E%s 2 and 3 of the AUX write mask controls the pixel
writes into the UAUX bitplanes. The pixel write mask should be set to 0 when writing to the UAUX
bitplanes so that the Frame Buffer bitplanes are not changed.

The 0 color index is a transparent overlay so it is not a valid color to program into the UAUX
bitplanes except when clearing the bitplanes. The normal usage of the Z Buffer is to remove hidden
lines while drawing into the Frame Buffer. This means that the Z buffer checking would not
normally be needed when writing to the UAUX bitplanes. The Z Buffer should be set to pass all z
compares and the aux write mask should be set so that the Z buffer values will be written. This
makes sure that the UAUX bitplanes will be written.

The 2 PUP bitplanes and the 2 UAUX biilanes can be combined to act as 4 UAUX bitplanes by using
the GEJOADGE token to set the UAUX_4BlT ftag in the GE5 data RAM. When this flag is set to 1 the
4 bitplanes are combined to form 4 UAUX bitplanes. When the flag is set to -1 the 4 bitplanes are
separated into 2 PUP and 2 UAUX bitplanes. On the base adapter the flag would be used to control
whether there are 2 PUP bitplanes or 2 UAUX bitplanes. The following example code shows how to
write into the UAUX bitplanes.

Example Code :

#include “gecmds.h”
#include ‘imsetup.h’

im_GEsetup;

4-104

Silicon Graphics Confidential MGR Technical Reference

int
int

color:
z-mask = 0x11; r enable fast z clear mode and 2 buffer updates ‘/

I* set draw mode for UAUX bitplanes ‘1

GEWAiT;
GYGE_DRAWMODE].I = 0;
GE[GE_DATA].i I -1;
GE[GE_DATA].i I -1:
GE[GE_DATA].i I -1;

r set the pixel write mask to 0 so the pixel bitplanes are not affected ‘1

GE[GE_PlXWRITEMASK].i - 0;
GE[GE_DATA].i = 0;

p set the aux write mask to allow the UAUX bitplanes to be written and the PUP and WI0
bitplanes to not be written. The Z mask values allows the fast t clear mode to be active and the Z
values to be written ‘/

GE[GE_AUXWRITEMASl(l.l - 0;
GE[GE_DATA].i - OxOC 1 ,(z_mask cc 4);.. __

/* Clearing the UAUX bitplanes example l /

-.

/’ set color index to index of 0

color = 0;

GE[GE_COLOR].I - 0;
GE[GE_DATA].i I color;

P Clear the UAUX bitplanes ‘1

GaGE_SCREENCLEAR].i - 0;

p UAUX bitplane’ drawing

which is transparent overlay ‘1

example l /

r set color index to index of 1 which is programmed as red color ‘1

color - 1;

GE[GE_COLOR].i = 0;
GEfGE_DATA].i = color:

/’ Draw a closed polyline to draw an unfilled rectangle ‘/

GE[GE_CLCSEDUNE).i = 0;

GE[GE_MOVE2l].i = 0;
GE[GE_DATA].i = 100;
GE[GE_DATA].i = 200;

r set closed polyline mode ‘/

r set the current graphics position to 100, 200 ‘1

4-105

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

. -4, . . . GE[GE_DRAW2l].i = 0;
GE(GE_DATA].i - 100;
GE[GE_DATA].i - 400; r
GE[GE_DRAWPI].i = 0;
GE[GE_DATA].i - 400;
GE[GE_DATA].i = 400; r
GE(GE_DRAW2l].i = 0;
GE[GE_DATA].i = 400;
GE[GE_DATA].i = 200; I’

GE[GE_ENDCLOSEDLlNE].i = 0; r

/* 4 U A U X bitplane

#include ‘ge5_glob.h’

GE[GE_LOADGE].i - 0;

example

draw a line from current graphics position to 100, 400 ‘1

draw a line from current graphics position to 400, 400 ‘1

draw a tine from current

end closed polyline mode

l /

graphics position to 400, 200 ‘1

and draw last line to 100, 200’1

r set flag for 4 UAUX bitplanes ‘1
_

GE[GE_DATA].i I UAUX_4BiT;
GE[GE_DATA].i = 1;

WID Bitplane Programming

The 2 or 4 bits of WI0 bitplanes are used to control pixel writes when WI0 checking is enabled and
they are the index into the mode registers in the XPC or XMAP chips in the Display Subsystem. The
mode registers select which of the two buffers will be displayed and also control the pixel display
formatting. The mode registers also provide the overlay and underlay enable bits for controlling
the overlay displays from the PUP and UAUX bitplanes. Refer to the Display Subsystem chapter for
additional details on the mode registers. Because the WI0 bits represent a color index the
GE_COLOR or GE COLORF token is used to specify the color index value which is written into the
WI0 bitpianes. B& 4 through 7 of the AUX write mask controls the pixel writes into the WI0
bitplanes. The pixel write mask should be set to 0 when writing to the WI0 bitplanes so that the
Frame Buffer bitplanes are not changed.

The normal usage of the Z Buffer is to remove hidden lines while drawing into the Frame Buffer.
This means that the Z buffer checking would not normally be needed when writing to the WlD
bitplanes. The Z Buffer should be set to pass all z compares and the aux write mask should be Set so
that the Z buffer values will be written. This makes sure that the WI0 bitplanes will be written.
The following example code shows how to write into the WI0 bitplanes.

Example Code :

#include ‘gecmds.h’
#include ‘imsetup.h’

im_GEsetup:

int color;
int xl - 100, yl - 200, x2 = 400, y2 - 800;
int z-mask - 0x11; r enable fast z clear mode and Z buffer updates ‘1

I* set draw mode for WI0 bitplanes *I

4-106

Silicon Graphics Confidential MGR Technical R8f8f8nC8

GEWAJT;
GE[GE_DRAWMODE].i - 0;
GE[GE_DATA).i - -1;
GE[GE_DATA].i - 1;
GE[GE_DATA].i - 1;

P set the pixel writ8 mask to 0 so the pixel bitplanes are not affected ‘1

GE[GE_PIXWRITEMASKJ.i = 0;
GE(GE_DATA].i - 0;

r set the aux write mask to allow the WID bitplanes to be written and the PUP and UAUX
b&planes to not be written. The 2 mask values allows the fast z clear mode to be active and the 2
values to be written ‘1

GE[GE_AUXWRlTEfvlASKj,i - 0;
GE[GE_DATA].i - OxFO 1 (z-mask ec 4); .

,
P Clearing the WID bftplanes example l /

r Set color index to index of 0 *I 8

- _
color = 0;

GE[GE_COLOR].i = 0;
GE(GE_DATA].i I color;-__.

r Clear the WID bitplanes l /

GE[GE_SCREENCLEAR].I = 0;

/* WID bitplane drawing example l /

r set color index to index of 1 l /

color = 1;

GE[GE_COLOR].i - 0;
GE[GE_DATA].i I color;

/’ Draw a screen aligned rectangle to fill a window piece ‘1

GEWAIT;
GE[GE_SBOXFI].i = 0;
GE[GE_DATA].I I xl ;
GE(GE_DATA].i = yl;
GE[GE_DATA].i = x2;
GE[GE_DATA].i = y2;

4-107

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Z Buffer Programming I

The normal usage of the 2 buffer is to perform hidden line removal by comparing new z values with
the current z values for each pixel as it is drawn. As world coordinates are transformed into screen
coordinates an x, y and t screen coordinate value Is produced. The x and y values are used to select a
pixel location and the z value is used by the 2 compare hardware to condition the pixel writes. Since
the screen coordinate system Is a left handed coordinate system with the positlve x axis into the
screen the Z compare should be set to pass if the new z value Is less than or equal to the current z
value at the pixel location specified by the x and y values. If the Z compare gasses then the new
pixel is written and the z value is updated. If the new z ls greater than the current z value It means
that the new pixel is behind the current pixel so it is not written.

The ccmpare hardware can also be used to compare color values so that when antlaliased lines
Intersect the brightest pixels are drawn at the point of the intersection. In this case the compare
logic should be set so that a compare passes if the new color Is greater than or equal to the current
color.The GE_ZFUNCTION token is used to specify the relational comparison that the Z compare
hardware will perform. The GEZSOURCE token is used to specify whether the comparison is
between z values or between color values, The GE_ZBUFFER token is used to specify whether the ’
comparison hardware is enabled or not. When the comparison is enabled the value specified by the
GE_ZFUNCTION token is used as the comparison operation. When the comparison is disabled the
comparison relational operation is set so that all compares pass thus allowing all pixel writes to be
performed without any conditioning by the comparison hardware. The following code examples show__
how to program the Z buffer hardware.

Example Code :

#Include “gecmds.h
#include ‘imsetup.h’

im_GEsetup;

int rfunction, zsource;

P Aux mask would be set as shown in the previous four sections to enable fast z clear mode and
z updating. ‘1

P enable Z buffer mode V a

GEWAIT;
GE[GE_ZBUFFERJ.I - 0;
GE[GE_DATA].I - 0;

P set Z source to z compare and set 2 function to CI l /

zsource = 1; r select Z buffer and new z value for comparison l /

GEWAIT;
GE[GE_ZSCURCE].i - 0;
GE[GE_DATA].i - zsource;

rfunction - 3; r Z compare passes if <= 7

GEWAIT;

4-108

Silicon Graphics Confidential MGR Technical Reference

GYGE_ZFUNCTION].i - 0;
GE[GE_DATA].I - zfunction;

r set 2 source to color compare and set 2 function to += ‘1

zsource - -1; P select Frame buffer and new color value for comparison ‘/

GEWAIT;
GE[GE_ZSOURCEj.i - 0;
GE[GE_DATAJ.i I zsource;

tfunction = 6; r 2 compare passes if >= l /

GEM/AR
GE[GE_ZFUNCTION].i = 0;
GE[GE_DATA].i - zfunction;

/* disable 2 buffer mode l /

GEVVAIT;
GE[GE_ZBUFFER].I = 0;
GE[GE_DATA].i I -1;

-. -

-

4-109

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Pixel DMA Programming

The MGR adapter provides support for performing both read and write pixel DMA transfers. For
the read transfers the DMA can handle a single line or a multiple line block. The GE_READPIXDMA
token uses the SINGLE mode of operation to read a single scan line of pixels. The GE_READBLOCK
token uses the multiple line block mode of operation to read pixels from multiple scan lines. For
the write transfers the DMA can be performed in a multiple line block mode or in a LNBYLN mode to
transfer multiple lines on a line by line basis. The GE_WRITEBLOCK token uses the block mode if it
is writing a rectangle from a host buffer which is not packed and the x and y zoom factors are both
1.0. The GE_WRfTEBLOCK token uses the LNBYLN mode if the host buffer is packed and/or the x or
y zoom factor is greater than 1 .O. The following paragraphs describe the various Operating modes
for the DMA transfers. The code fragment which follows the operating mode descriptions assumes
that if flags is zero then it is doing a write DMA in block mode with no GE interrupt.

The single mode of operation is a read DMA mode and uses a Raster Engine to Host buffer DMA
transfer to read pixels for a single scan line from the selected bitplanes. The source bitplanes to be +
read are specified with the GE_READSOURCE token. The starting x and y bcation for the pixel read
are specified by the current character position. The single mod8 is enabled In the fOlIOWing code
fragment by passing a flags word with the SINGLE bit set. The READ bit should also be set to indicate
that a single read DMA transfer is to be performed. _. .-

To read the pixels in single mode the host must perform the following steps:

- clear finish flag 1

- send the GE_READPIXDMA token and the following data parameters down the FIFO

- the x direction pixel length

- setup the next DMA transfer

- x length is the word count to be transfered

- buffer pointer address is the start address for

- transfer direction is graphics adapter to host

- during the first tfme through the loop

the transfer

- poll finish flag 1 until it is set by the microcode Inditing that either the DMA can be
started or that an error has occurred and the DMA has been canceled

_ read the DMA_FLAG word in the m’crooode data RAM to d8t8nttin8 if an error has occurred.
If an error has occurred abort the token execution

- start the read DMA transfer

- poll the EDDY DMA status register or process the DMA
the DMA transfer has completed or if an error occurred

complete interrupt to determine when

4-110

Silicon Graphics Confidential MGR Technical Reference

-

-

The block mode of operation uses Host buffer to Raster Engine DMA transfers to write the rectangle
intO the Selected bitplanes. It also uses the Raster Engine to Host buffer DMA transfer to read the
rectangles from the Sel8Ct8d bitplanes. The microcode allows the host to read or write the rectangle
as one large block or as multiple smaller blocks. For th8 multiple blocks method the rectangle is
divided along the y axis. The number of rows in each block can b8 different but the number of pixels
in the x direction must be the same in each bbck. Each block can also be in different host buffers
since the Eddy DMA registers would be set up differently for each block. As the DMA transfers are
performed the rectangle is read or written beginning at the lower left comer specified by the x, y
parameters and progresses to the upper right corner. For a write the different blocks are
concat8nat8d into one contiguous rectangle. As each block is tranSfered the host software needs to
determine when the current block transfer has completed so the next transfer can begin. The host
can tell the microcode to generate a GE interrupt after it has completed the current block or it can
poll the Eddy chip’s DMA status registers or use a DMA complete interrupt to determine when the
last line of the block has finished being DMAed. The DMA complete or the GE interrupt method may
be more efficient in multitasking environments. The interrupt or poll method is specified to the
microcode with the dma_flag parameter. The blodc mode is enabled in the following code fragment
by passing a flags word with the SINGLE bit and the LNBYLN bit not set. The INTR bit set indicates
that the GE interrupt should be generated at the end of each block. If the READ bit is set then a block
read transfer is done else a block write transfer is done.

To read or write the rectangle in block mode the host must

- clear finish flag 1

- send the GE_WRITEBLOCK or the GE_READBLOCK
down th8 FIFO

- pixel packing mode parameter set to 0

- fOW8r left X SCr88n location Of th8 r8Ct8flgl8

- the x direction pixel length

- tower left y screen location of the rectangle

- dma_flag parameters down the FIFO

perform the following steps:

token and th8 following data parameters

- loop white any rows remain to be sent performing the following steps

- if the ylen is s 0 send the current blocks y length down the FIFO and adjust the row
counter for bbck size and if y length CI 0 then Send th8 DMA_DONE flag down the FIFO

- setup the next DMA transfer

- x length is the word count to be transfered

- current buffer pointer address is the start address of the transfer

. if a read DMA the direction is graphics adapter to host and for a writ8 DMA transfer
the direction is host to graphics adapter

4-111

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

- during the first time through the loop

- poll finish flag 1 until it is set by the microcode indicating that either the first DMA
can be started or that an error has occurred and the DMA has been canceled

- read the DMA_FLAG word in the microcode data RAM to determine if an error has
occurred. If an error has occurred abort the token execution

- during the remaining times through the bop

- if the GE interrupt mode of operation is being used to check for the block transfer
complete then wait for a semaphore to be set

- if the GE interrupt is not being used, then poll the Eddy DMA status register or wait
for a DMA complete interrupt for the appropriate channel to see if the previous DMA
had completed

- if the row counter is > 0 start the next DMA

- adjust the current buffer pointer for the next line

- decrement the ylen parameter by the block size _ _

- Continue with the next pass through the loop

The line by line mode of operation uses Host buffer to GE5 Data RAM DMA transfers and then GE5
Data RAM to Raster Engine DMA transfers to write the rectangle into the selected bitplanes. The
host must send the rectangle on a line by line basis since the GE5 Data RAM has pixel buffer which
can only hold a maximum of 1280 long words. The line by line mode allows the host buffer to be in
a packed or unpacked format. The mode also albws no pixel zooming to be in effect or a zoom in the
x direction, y direction or both. The x and y zoom factors are specified with the GE_.ZOOMFACTOR
token. If the host buffer is packed then it can contain either 2 or 4 pixels per 32 bd word. As the
DMA transfers are performed the rectangle is written beginning at the lower left corner specified
by the x, y parameters and progresses to the upper right corner. The different lines are
concatenated into one contiguous rectangle. If pixel packing or pixel zooming in the x direction are
being used then the raster operation specified with the GEJASTEROP token must be set to 3
(SRC_COPY). If packing and x zooming are not being used then the raster operation can be any of
the 16 legal values.

As each line is transfered the host software polls the finish 1 flag to determine when the microcode
has finished with the current line so that the GE5 Data RAM is free to receive the next fine. For
each line transfered to the GE5 data RAM the line is DMAed to the RE2 for writing into the selected
bitplanes. Each line will be transferred to the RE2 the number of times specified in the y zoom
factor. The RE2 hardware will handle the x zoom of each pixel it receives.

The host buffer ccntains the pixel data in a contiguous array and the buffer can be located on a byte
boundary. The Eddy chip requires the DMA transfers to occur on a long word boundary. Also the
number of pixels on each line can be a value that does not end on a long word boundary even if the
buffer did start on a long word boundary. This requires the host software to calculate for each line
the necessary starting byte offset and the dma word count taking into account the cases where a line

4-112

Silicon Graphics Confidential MGR Technical Reference

does not start on a long word boundary and does not end on a long word boundary. The host must also
manage it’s host buffer pointer to take into account the times when a long word contains pixels from
two lines and therefore that long word must be sent as the last word of the current line and again as
the first word of the next line.

Since there are four bytes per long word the byte offsets and dma counts will repeat after every
four lines. This means that the host can calculate the necessary parameters for the first four lines
and then use them repeatedly for each group of four lines to be sent. In the following discussion and
code example the first word byte offsets for the four lines are called haddr[O], haddrill, haddr[2]
and haddr[3]. The number of tong words needed by a line if started on a tong word boundary is
called iinesizlong. The actual dma word counts for th8 four lines taking into account the starting
and ending byte offsets from long word boundaries are called dma[O], dma[l), dma[2] and dmap].
A flag word must also be calculated which allows the microcode to calculate the actual dma word
counts as well. The margin flag parameter specifies the number of bytes between the ending byte
offset of a line and the starting byte of the next tong word. If the line starts and ends on tong word
boundaries or the ending byte offset is just 1 past the starl of a tong word then the dma word count
will be the same for each line. In this case the margin flag is set to -1 to allow the microcode to
skip the dma word count calculations. The example code fragment shown later shows how these
variables are calculated. The line by line mode is enabled in the following code fragment by passing
a flags word with the LNBYLN bit set. The READ, SINGLE and INTR bits should not be set for a line
by line mode transfer since it is a write line by line transfer only.

To write the rectangle in line-by line mode the host must perform the fottowing steps:

- calculate the linesizlong variable which tells the microcode how long each line is in long
words if it started on a long word boundary

- calculate the margin flag variable which tells the microcode how to calculate the actual dma
count for each line if it is does not start on a long word boundary

. calculate haddr[O], haddr(l], haddr[2] and haddr[3] variables which indicate the byte offset
for the first pixel in the first word of the first four lines

- calculate dma[O], dma[l], dma[2] and dma[3] variables which are used as the actual dma
word count for the (row 8 3)

- clear finish flag 1 .

- send the GE_WRITEBLOCK token and the following data parameters down the FIFO

- pixel packing mode parameter set to 0, 1 or 3 (pixels/long - 1)

- lower left x screen location of the rectangle

- the x direction pixel length

- lower left y screen location of the rectangle

- the y length parameter

. if the pixel packing mode is not zero then send the following pixel packing parameters

W the iinesizlong parameter (indicates the number of words that would have to be
transfered if the line started on a long word boundary)

4-113

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

,.. . - the margin flag (used to calculate the actual number of words for the current line if
does not start on a long word boundary)

- the haddr[O] parameter

- the haddr[l] parameter

- the haddr(2] parameter

- the haddr[3] parameter

- bOp while any rows remain to be sent performing the following steps

S8tUp the DMA transfer for the next line

- dma count for (row 8 3) is the word count to be transfered

- current buffer pointer address is the start address of the transfer

- the direction is host to graphics adapter

decrement the row counter_

during the first time through the loop

poll finish flag 1 until it is set by the microcode indicating that either the first DMA
can be started or that an 8rmr has occurred and the DMA has been canceled .

read the DMA_FLAG word in th8 microcode data RAM to determine if an error has
occurred. lf an error has occurred abort th8 token 8X8WtiOn

during the remaining times through the loop

- poll the finish 1 flag to see if the microcode is done with the last line previously sent

if row counter > 0 start the next DMA

adjust the current buffer pointer for, the next line

dear finish flag 1

- Continue with the next pass through the loop

Refer to the Host Interface chapter for information on the
setup and start the DMA transfers. The DMA controVstatus
th8 DMA error status.

Eddy DMA registers which are used to
registers provide the DMA complete and

For the selected destination bitplanes the appropriate bitplane mask register will .determine which
bits in the bitplanes will actually be written. The GE_PIXWRITEMASK will affect which bits in the
frame buffer would be written. The GE_AUXWRITEMASK token would control bit writes to the PUP,
UAUX, WI0 and Z buffer bitplanes. The pixel values written to the frame buffer PUP or UAUX
bitplanes can have the logical operation performed on each pixel before it is written. The

4-114

--

Silicon Graphics Confidential MGR Technical Reference

GEJIASTEROP token is used to specify the desired logical operation to be performed. The write
masks and the logical operation do not affect read DMA operations.

The current screen mask will clip writes to any bitplanes to the bits on or within the screen mask
rectangle. If window ID checking is enabled then the bits to be written will be WID checked and only
those that pass the check will be written. The exception to the checking are the 2 buffer and WID
bitplanes. On the base configuration adapter the PUP bitplanes are also not WI0 checked. On the
enhanced adapter the PUP planes will be WI0 checked. The screen mask and WI0 checking do not
have any effect on read DMA operations.

For write DMA transfers the host buffer is expected to have data that is appropriately formatted for
the destination bltplanes. Refer to the RE2 DMA support paragraphs in the Raster Subsystem
chapter for a description of the pixel formats and the pixel packing requirements for both read and
write DMA transfers from and to all of the different bitplanes.

Example Code :

r The code fragment below assumes that it is part of a function in the operating system kernel
or in a kernel level device driver. Normally this function would be called by a higher level
function with the appropriate parameters to perform the necessary transfer. ‘1

#include
#include

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

‘mgr.h’
“geS_glob.h’

TIMEOUT_1 STOMA
TIMEOUT_GDMA

&!% NOINTR
GDfvIA--lNTR
Df&_CANCEL
MAxxl.EN

=
FIRST-TIME
LNBYLN
INTR
BlXXSlzE

5000000
1000000
- 1
- 1

1
-1

1280
1024

- 1
1
2
4
0x40
50’

r
r
rr
::r
::
::
l

;r

1st DMA timeout value l /
not 1st DMA timeout value ‘1
Microcode expects this value ‘1
Microcode expects this value l I
Microcode expects this value ‘1
Microcode may return this value ‘/
pixels in 1 complete scan line ‘1
the number of rows in entlre screen ‘1
arbitrary, system dependent value ‘1
arbitrary value l /
arbitrary value ‘/
arbitrary value ‘/
arbitrary value ‘/

lers do 50 lines at a time ‘/

r The do_pixel_dma function handles both read and write DMA operations. For the DMA read
operations the function handles the both the single line case and the multiple line cases. For the
DMA write operations the function handles the multiple line case or the line by line case for
packed or zoomed rectangle writes.

cfo_pixel_dma (token, pixbuf, pixstze, flags, x, xlen, y, ylen)
fang token, pixsize, flags, x, xlen, y, ylen;
char ‘pixbuf;

f

tong
fang
fang
tong
bng

upacmode - (4 >> (pixsfze *> 1)) - 1;
‘bufptrlong;
blocksize, row, i;

4-115

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

bw
‘; i n t

int
int

offset, lineoffset, iinesiz, linesiziong, margin;
tmp = 0, dma_flag - DONE:
tmpl - 0;
doJock;

if ((xien > MAXXLEN)]] (yien > MAX/LEN))
return (ERROR);

r Do the necessary kernel level things to mark the current context as doing a DMA, set the DMA
bck semaphore and anything else such as determining if the host buffers have been locked
already or if this function needs to do H. If this function will do the bck then flags I= DOLOCK
should be executed here ‘/

P calculate the byte length of a line and the long word length of a Mock ‘1

iinesiz = xlen l pixsize; r get the byte count for a line ‘I

block&e - xlen l BLOCKSIZE; /* get blocksize word length for block mode l 1

F if we are in a LNBYLN mode then calculate the pixel offsets into each of the lines and the dma
size of the lines. ‘/

if (flags & LNBYLN) { _.

r get byte offset of starting byte in pixbuf from long word boundary ‘/

offset = (long) pixbuf 8 3;

P Using the byte count for a line, determine the byte offset of the last long word assuming
the line starts on a long word boundary’/

lineoffset - line& 8 3;

P Calculate the starting pixel byte offset into the first word for each of the first four lines
‘I

haddr[O] = offset; r. first line is the buffer offset ‘1
haddr[l] - (haddr0 + lineoffset) & 3; P add line offset to prevbus pixel offset ‘1
haddfl2] - (haddrl + lineoffset) & 3; r add line offset to previous pixel offset ‘1
haddr[3] = (haddr2 + lineoffset) & 3; P add line offset to prevbus pixel offset ‘1

P Calculate the number of bng words required for each line If it were long word aligned ‘I/

linesiziong = (iinesiz + sireof(iong) - 1) >* 2;

P Calculate the number of long words to be sent for each line taking into account the
non word alignment of the byte offsets of the first byte and the last byte of the line. l /

for (i = 0 ; i c 4 ; ++i)
dma[i] = (iinesir + haddr[i] + sizeof(long) - 1) 8 -3:

r Calculate the margin flag to allow the microcode to calculate the number of words
it will receive for each line. if the lineoffset is 1 or the buffer is long word aligned

(offset -9 0 88 lineoffset -= 0) then the four dma lengths are equal to the

4-116

Giicon Graphics Confidential MGR Technical Reference

finesirlong calculation so set the margin ffag to -1 so the microcode will use the
linesizlong parameter for the dma lengths. If the lineoffset is > 1 or the offset is > 0 then
the dma lengths for the four lines will vary and must be calculated by the microcode. ‘/

margin - (sizeof (long) - lineoffset) & 3;

if (margin == 3 11 (offset == 0 88 lineoffset -= 0))
margin = -1;

1

FINISH_WR(FINISHl_OFF, 0); r Clear finish 1 flag since it will be polled later ‘/

if (flags 8 INTR)
r Clear interrupt semaphore which will be checked later ‘/

P Send the token. The remaining tokens to be sent depend on the mode ‘/

FIFO_WR(token, tmp);

P the data parameters depend on the transfer mode ‘I

if (flags 8 LNBYLN) {

-

FIFO_WR(GE. DATA, upacmode);
FlFO_WR(GE_DATA, x);
FIFO_WR(GE_DATA, xlen);
FIFO_WR(GE_DATA, y);
FIFO_WR(GE_DATA, ylen); r Tell ucode the entire y length now ‘/

r the remaining parameters are sent only if the host buffer is packed ‘/

if (upacmode) { r pixel packing in effect? ‘/
FIFO_WR(GE_DATA, linesizlong); P the number of long words per aligned line ‘/
FfFO_WR(GE_DATA, margin): P flag to calculate the actual unaligned line sizes l /
FIFO_WR(GE_DATA, haddr[O]); r pixel offset into first word of line 0 ‘/
FIFO_WR(GE_DATA, haddr[l)); r pixel offset into first word of line 1 l /
FfFO_WR(GE_DATA, haddr[2)); r pixel offset into first word of row 2 ‘I
FIFO_WR(GE_DATA, haddr[3]); P pixel offset into first word of row 3 l / .

1
) else if (ftags 8 SINGLE) (

FIFO_WR(GE_DATA, xlen);’
) else (r block mode l /

FIFO_WR(GE_DATA, upacmode); r should be 0 for block mode l /
FIFO_WR(GE_DATA, x);
FIFO_WR(GE_DATA, xlen);
FIFO_WR(GE_DATA, y);
if (flags & INTR)

FIFO_WR(GE_DATA, GDfvlA_INTR); P send down dma interrupt flag ‘/
else

FlFO_WR(GE_DATA, GDMA_NOINTR); r send down no dma interrupt flag ‘/

P Now do the loop to read or write the blocks of data or the separate lines using multiple DMA
transfers. This example assumes that for block mode each block is of size BLOCKSIZE. If

4-117

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

BLOCKSIZE were equal to yien then only one DMA transfer would be performed to read or
write the entire rectangle. For the single mode oniy one pass through the loofj is made. 7

flags I= FIRSTTIME;
bufptrlong - (long) &pixbuf[OJ;

row I 0;
P need long ptr to host buffer l /

while (ylen > 0) {

r The buffers must have already been locked by the user process for the LNBYLN mode ‘1

if (flags 8 DOLOCK) {
r Lock the host buffer if necessary’/
if (lock_error) {

FiFO_WR(GE_DATA, done-flag): P Tell uccde we quit l /
r Do any necessary kernel level cleanup ‘1
return (ERROR):

1
} else if (flags 8 READ)

/* flush the data cache or anything else that needs to be done for a read ‘/

P Tell the microcode how big the current block is if in block mode ‘1

if (I(flags 8 (LNBYLN 1 SINGLE)))
if (ylen > 0)

if (ylen < BLOCKSIZE)
FIFO_WR(GE_DATA, yien);

else
FIFO_WR(GE_DATA, BLOCKSIZE);

else
FiFO_WR(GE_DATA, dma_flag); P Tell the microcode were done ‘1

- -..

P During the first time through the loop set up Eddy DMA channel 0 and for each successive
pass use the alternate channel. Set the start address to the current host buffer pointer
(bufptriong). l /

if (flags 8 READ)
r Set the direction bit for graphics adapter to host. 7

else
r Set the direction bit for host to graphics adapter. l I

if (I(flags 8 (LNBYLN 1 SINGLE)) {

P set the DMA length to the word count of the blodr to be sent.

) else if (flags 8 LNBYLN) {

r For the LNBYLN mode we break up the transfer into groups of four lines. Use the
dma(row & 31 length for the current line. ‘1

) else { r SINGLE l /

r set the DMA length to xien. *I

4-118

Silicon Graphics Confidential MGR Technical Reference

r The first time through the while loop we must wait for the microcode to set finish flag 1
Indicating that it is ready for us to start the DMA transfers. All other times through the loop
we just wait for the previously started DMA to complete. ‘/

if (flags 8 FIRSTTIME) { r First pass through the while loop ‘1

r Poll the finish 1 flag to see if the microcode is ready to have the DMA started. This
example shows a simple spin loop with a counter. ‘1

for (tmp - 0 ; 1; tmp++) {
if (tmp 8 0x7) r Don’t poll every time ‘/

continue;
if (FINlSH_POLL(FlNlSH1_OFF));

break;
if (tmp > TIMEOUT_lSTDMA) {

P process error, probably need to reset graphics adapter ‘1r do any kern81 level cleanup l /
return (ERROR);

r Check to see if microcode has decided there is no DMA to do. This would only occur if
something is wrong with the data parameters. ‘/

HQM_WR(DMA_FLAG);
DRAM_RD(DMA_FlAG, tmp);

P Read DMA flag in data RAM ‘f

HQM_WR(HQMSAV); r Get any previously Saved HQ MAR value ‘1
DRAM_RD(HQMSAV, tmpl);
HQM_WR(tmpl); r Restore the HQ MAR to previous value ‘I

P If DMA_FLAG contained DMA_CANCEL then th8 microcode did not like the parameters
and canceled the token execution. Just clean up and exit. l /

if (tmp =- DMA_CANCEL)‘{ r DMA_CANCEL defined in g85glob.h ‘I
r do any kernel 18~81 clean up ‘/
r e t u r n (E R R O R) ;

1

flags 8= -FIRSTTIME; r clear first time through loop flag l /

) else (r not first time through the loop ‘/
if (I(flags 8 LNBYW)) { /’ bkzk mode ‘1

if (flags 8 INTR) (

r GE interrupt signals end of previous block transfer l I

/’ wait for GE interrupt service routine to S8t the semaphore l /

} else (/* Eddy dma complete indicates the end of the block transfer ‘1

4-119

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

f poll Eddy for DMA complete or DMA error on the DMA started in the
previous time through the loop ‘/

i f (dma_error) {
f reset the graphics adapter and do any necessary kernel level Cleanup ‘1
return (ERROR);

1
I

} else (r LNBYLN mode l /

f Poll the finish 1 flag to see if the microcode is ready to have the next DMA
started. In zoom pixel mode the ucode is not necessarily done after the last byte
has been transferred. This example shows a simple spin loop with a counter. ‘1

for (tmp = 0 ; 1; tmp++) {
if (tmp 8 0x7) r Don’t poll every time l /

continue;
if (FINiSH_POLL(FINlSH1_OFF));

break:
if (tmp > TIMEOUT_GDMA) {

f process error, probably need to reset graphics adapter ‘1
/? do any kernel level cleanup l / .- -
return (ERROR);

)
)

)

FiNlSH_WR(FiNiSHl_OFF, 0);

if (ylen > 0)

f clear the finish 1 flag for next time thru loop ‘I

r Set appropriate start bit in the Eddy chip to start the next DMA transfer ‘1

if (I(flags 8 LNBYLN)
bufptrlong += blocksize;

else (
bufptriong +- dma[row 8 31; r add dma word count of line to ptr 7
if (haddr[(row & 3) + l]) r if next line is not word aligned ‘1

-bufptrlong; f the last word of this line is 1st word of next line ‘1
1
if (flags 8 SINGLE) { f single only goes through the bop once ‘1

f poll Eddy for DMA complete or DMA error on the DMA started in the previous time
through the loop ‘/

if (I(flags 8 (LNBYLN I SINGLE))) r block mode ‘1

} else
jlen 0; BLOCKSIZE; - - -
f f LNBYLN mode or single mode ‘/
--ylen;
++row;

1
} r end of while loop ‘/

4-120

Silicon Graphics Confidential MGR Technical Reference

P do any kernel level final processing ‘/

return (0);

} /* The rectangle should now have been read or written if no errors were encountered ‘/

4-121

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

Window and Context Management Programming

The window manager controls the following aspects of the MGR adapter:

- Window origin

- Hardware screen mask

- WID checking enable or disable

- WID bitplane programming

- Window piece list

- Graphics Context Switching

The window manager controls these components of the MGR adapter by writing to the saved graphics
contexts in the host memory and by instructing the graphics applications to reset some of the ’
parameters by issuing a REDRAW input event to the application.

The following paragraphs describe the programming considerations for these MGR resources.

Skd Context Programming

The window manager communicates primarily with the graphics context to manage the window
origin, WID checking and the piece list. The window manager writes to the saved graphics context to
control these resources. The GRl_GETOCX macro is provided to allow the window manager to access
the saved data variables in the graphics context. This macro is defined in the include file geS3lob.h
and is shown here for reference only. Obviously the defines in the ge5glob.h file supersede these
definitions shown here if any differences should be

#def ine MAXKfIS 1450

#def ine D-El MAXCONS - 1

found at a later time.

#def ine GRI_GETOCX(addr) ((addr) - (DMABASEl + 1))

The following paragraphs indicate when the GRI_GETOCX macro is used to accass the saved context.

Window Origin Programming

The window manager must write the window origin into the graphics context when the window
origin is changed. The GRl_GETOCX macro ia used to update the XORG and tha YORG addresses in the
saved context with the x and y window origin values. The window manager also sets the NEWORG
flag in the context to instruct the context restore microcode to recalculate the viewport window
origin offsets using the XORG and the YORG values.

The window manager also communicates with the graphics applications through a shared memory
segment. The window origin values are programmed into the shared memory for use by the
application when it receives a REDRAW event or when it programs the viewport and screen mask
values. The Graphics Library uses the window origin values to do window relative offset
calculations. The values are also returned to the application program when it does a getorigin
system call to enable it to also do window relative calculations.

4-122

Silicon Graphics Confidential MGR Technical Reference

Hardware Screen Mask Programming

The RE2 chip in the Raster Subsystem contains a built-in hardware screen mask. The screen mask
is specified as a rectangular region of the the screen which clips all pixel writes which have a
screen location outside of the screen mask rectangle. The screen mask is set to the same size as the
viewport rectangle and the screen mask rectangle lower left and upper right coordinates are added
to the window x and y origin to make the screen mask rectangle window relative. If the screen mask
is smaller than the window the host software must set the %-VP-CUP flag in the GE5 data RAM.
The GEJOADGE token is used to bad the flag value. If the screen mask is smaller than the window
the flag should be set to 1 and if the screen mask is not smaller than the window then the flag should
be set to -1. The GE_SCRMASK token is used to set the screen mask and it shows an example of how
to program the screen mask.

WID Checking Management Programming

The window manager must keep track of whether windows are unobscured or are obscured.
Unobscured windows are not covered by any other windows on the screen and are therefore a single
rectangular piece. Obscured windows are partially covered by one or more windows and the
obscured window consists of multiple rectangular pieces. For unobscured windows the screen mask
can be used for pixel clipping so that only the pixels within the window are written. When the
window is obscured and consists of two or more rectangular pieces the window manager must use

__. the Window ID bitplanes to control the pixel writes. This is done-by writing the window ID of the
current window in the WID bitplanes for the various rectangular pieces and then enabling window
ID checking. The CURWID variable in the context is set with the current window ID which is used to
perform the WID checking.

-- When the window is obscured and WID checking is enabled then the ENABLWID checking flag is set to
cause the line WID checking to be enabled. Normally the shaded span WI0 checking is enabled and
the FLATMODE flag in the context is set to control whether shaded spans or flat spans are used to
draw filled polygons. If the GE SHADEMODEL token had set the polygon fill mode for shaded fills
then the FLATMODE variable is-unored and shaded spans are drawn which are WID checked. If the
shade model is set for flat shading the FLATMODE variable is set by the window manager based on
whether WID checking is needed or not. If WID checked flat spans are required then the FLATMODE
variable is set using the GRl GETOCX macro to a value of 1 so that the shaded spans are drawn using
a flat shading. If WID che&ng is not needed then the FLATMODE variable is set to 2 so that the filk
are done using the flat span instructions. The FLATDX variable is set to 0x4000 if the FLATMODE is _
set to 1 and is set to 0 if the FLATMODE variable is set to 2. Refer to the Raster Subsystem chapter

I for additional details on the shaded span and flat span instructions.

WID Bitplane Management Programming

The window manager loads the rectangular areas which form the obscured window by writing the
current Window ID into the rectangular areas. The GE_SBOXFI token can be used to program the
rectangular areas of the window. The window manager turns off patterns and sets the shademodel to
flat so that the window ID bitplanes are written using the flat span instruction.

Piece List Programming

-_

The microcode provides a piece list mechanism which is used to optimize screen clears for obscured
windows. The piece list can contains a count and up to 4 rectangular piece descriptions. When the
window is unobscured or is obscured with more than four pieces the piece list count is set to 1 and
the single rectangle specification is set to the same size as the screen mask. If the obscured window
consists of 2 to 4 pieces then the piece count is set to the number of pieces and the rectangle

4-123

Chapter 4 Geometry Subsystem Silicon Graphics Confidential

locations and sizes are written into the list. The window manager can write the piece list into the
saved context or the current application can write the piece list after it receives a REDRAW event.
The window manager would have written the piece list description into the shared memory region
shared by the window manager and the graphics applications. The graphics application can use the
GE_SETPIECES token to write the piece list.

The GE_SCREENCLEAR and GE CZCLEAR tokens use the piece list to clear the bitplanes. The piece
list must be set or these tokens GilI not function properly. No other tokens are affected by the piece
list. The window manager uses the SIMPLE flag in the context to control whether th’e two tokens use
flat spans or shaded spans to clear the bitplanes. If the window is 1 to 4 pieces then the SIMPLE flag
is set to 1 so that the non-WID checked flat spans are used to clear the bitplanes. if the window is
more than 4 pieces then the SIMPLE flag is set to -1 so that the WID checked shaded span
instruction is used to clear the bitplanes.

Context Switch Programming

As the host operating system switches among the various processes running on the system it is
necessary for il to switch the current mntext out of the adapter and to restore a context into the
adapter. The host must also remap the user virtual address to physical mapping required for the ’
graphics application to access the adapter memory mapped addresses. The graphics context
switching is very dependent on the host operating system and the host window manager software.
The host operating system and window manager must manage the switching of the currently active
context out of the adapter and the switching of a different context into the adapter. A..graphics
context switch can occur before the micro&e gets ail the parameters for a token. This means that
the the host software cannot send any tokens to the adapter after this context has been restored.
Before a context is restored the host software must use the value of the saved PC in the saved context
to access the restart instruction and the following instruction and adjust the memptr and reptr
values appropriately. The GE_CTXO and the GE_CTXl token descriptions describe the context
switching steps involved in saving the current context and restoring a previously saved context.

4-124

