

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 185
International character sets

% Unicode architecture

The complete Unicode character set is divided into four major zones, as shown in
Figure 15-1.

Unicode architecture FIGURE 15-1

Unicode The four zones in Unicode

Low byte =——b contain the following:

Alphabets contain all
00 20 40 60 80 A0 CO EO FF alphabets and all other
nonideographic script
characters, as well as
miscellaneous symbols.

CJK contain all Chinese,
Japanese, and Korean
ideographe.

Reserved is a currently
unassigned zone reserved
for future use.

Private Use Area contains
areas that corporations
can use to define their
owh characters. For
example, GO's gesture
glyphs are in the private
use area. This private area

also includes characters
. Alphabets |___| Reserved retained for compatibility
. with previous character
CJK . Private Use Area encoding standarde.

The character set is laid out in successive blocks of 256 code points. A Unicode
code point is a unique 16-bit number representing a particular character. For
example, the code point 0x0041 represents the Latin letter A’.

Each block (or group of blocks) of 256 code points forms a linguistic or functional
category. For example, there are blocks representing ASCII characters, Cyrillic let-
ters, Arrows, Mathematical Operators, and Chinese, Japanese, and Korean (CJK)
ideographs.

Each block is identified by the value of its upper byte. For example, ASCII characters
are in block 00, Arabic is in block 06, and Thai is in OE.

Chinese, Japanese, and Korean ideographs occupy the 76 blocks from hex 40 to 8B,
representing a total of approximately 19,500 characters.

For more details on how Unicode compares with existing double-byte character
sets, notably the popular JIS and Shift-JIS used in Japan, please see The Unicode
Standard 1.0 and the Part 3: PenPoint Japanese Applications Handbook.

2 / INTERNATIONALIZATION

186 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

% Code supporting Unicode

Providing Unicode support in your code is a straightforward, one-time procedure.
Once your code supports Unicode, you never need to rewrite substantial portions
of your code to support different character sets.

ASCII-based encoding systems use 8 bits to encode characters while Unicode uses The letter ‘a’ encoded as
16 bits. Supporting Unicode requires you to write code that deals with 16-bit &-bit (top) and 16-bit

. . . (bottom) code pointe.
rather than 8-bit characters. The PenPoint SDK 2.0 Japanese provides tools to help
you make the transition, which impacts the following categories of code:

¢ Character types.

¢ String functions.

Character and string constants.
¢ String formatting.

Each of these categories is discussed below. Table 15-1 below gives you a flavor of
how the new code will look compared to the old.

How fo work with strings TABLE 15-1
Attribute 8-bit strings 16-bit strings Both 8- and 16-bit
Character types CHARS CHAR16 CHAR

Character/string constants “John” L“John” U_L(“John”

String functions strlen(&aString) strlen16(8&aString) Ustrlen(&aString)
String formatting “%hs” “O%ls” “%s”

Library functions isupper(aChar) _uisupper(aChar) Uisupper(aChar)

The last column is labelled “Both 8- and 16-bit.” The code shown in this column
works with 8-bit characters in PenPoint 1.0 and 16-bit characters in PenPoint 2.0
Japanese (and beyond).

For example, declaring a variable of type CHAR declares an 8-bit character (CHARS)
character in PenPoint 1.0 and a 16-bit character (CHAR16) in PenPoint 2.0 Japa-
nese. Future releases of the PenPoint operating system will continue to use 16-bit
Unicode characters. Use these hybrid functions and types whenever possible.

Most of the hybrid types are defined CTYPE.H. The hybrid functions are defined in
the same C header file as the equivalent C function. For example, the Ustrlen()
function is defined in STRING.H. The U_L() macro is defined in INTL.H.

Several procedures in Chapter 16, beginning with “Examples” on page 210, list
step-by-step directions for writing code that supports Unicode. Read the following
sections for an overview of the process.

The SDK includes a DOS utility called INTLSCAN that flags code that may need to
be changed to support Unicode. The utility is on the Goodies disk in the directory
\SDK\UTIL\DOS. See “Using the DOS utility INTLSCAN” on page 210 for more

information.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 187
International character sets

%» Character types
The PenPoint operating system provides three type declarations for character data:
CHARS, CHARI16, and CHAR. The first two declare 8- and 16-bit characters, respec-
tively. The CHAR type is defined for code portability: it is 8 bits wide in PenPoint
1.0 and 16 bits wide in PenPoint 2.0 Japanese.

If you have PenPoint 1.0 code that uses the char (lower case) type, convert all

of your character data to use the CHAR (upper case) type. You may not need to
change declarations of noncharacter data. Use types such as U8 to declare variables
of fixed size.

Where noncharacter data depends on the size of CHAR beingl byte, you need to
update your code because CHAR is 2 bytes longs in PenPoint 2.0 Japanese.

The DOS utility INTLSCAN, included on the Goodies disk in \SDK\UTIL\DOS, flags
lines of code that may need to change to support Unicode. See “Using the DOS
utility INTLSCAN” on page 210 for information on how to use INTLSCAN.

% String functions
The familiar C string library functions (stremp(), strepy(), and so on) still exist in
PenPoint 2.0, but they work only on 8-bit characters. A set of PenPoint macros
such as Ustrlen() and Ustremp() allows you to work with 8-bit and 16-bit strings,
depending on the PenPoint version. These macros are defined in STRING.H.

In PenPoint 2.0 Japanese, the macros are defined to call new functions provided by
the WATCOM C compiler to work with 16-bit data. These functions all have the
character _u prepended to the equivalent C function name. For example, the
header file STRING.H defines prototypes for a set of string functions named
_ustremp(), _ustrepy(), and so on.

These 16-bit functions are defined in the same C header file you would find the
equivalent 8-bit C function. Prototypes for strlen() and _ustrlen(), for example, are
both defined in STRING.H.

One note before you replace all your 8-bit functions with the 16-bit or hybrid func-
tions like Ustrlen(). Some functions like isupper() not only have 16-bit equivalents,
- but they also have equivalents in the PenPoint international package. In this partic-
ular case, the equivalent to isupper() is IntlCharlsUpper() defined in CHARTYPE.H.

The international functions also work on 16-bit characters or strings, but these
functions are more likely to provide behavior appropriate for a particular language.
Use these functions, discussed beginning with the section “Locale-independent
code” on page 196, whenever you are processing linguistically meaningful text.

In summary, GO recommends that you use the following functions, in order of
Y; y g
preference:

¢ Use the PenPoint international functions such as IntlStrConvert() when you
are processing text the user sees.

¢ Use the U...() macros such as Ustrcmp() when an international function is
unavailable or when you are processing internal data.

2 / INTERNATIONALIZATION

188 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

¢ Use the _u...() functions such as _ustrlen() provided by WATCOM when you
are sure your data is 16-bits long.

¢ Use the C library functions such as strlen() when you are sure your data is 8-
bits long.

%» Character and string constants

When you use CHARS, you can use the standard C conventions for forming char-
acter and string constants. For example:

CHAR8 *s = "string";
CHAR8 ¢ = 'c';

«©»

When you use the CHARI16 type, you must wrap the L“” modifier around your lit-
eral character or strings. This tells the compiler you are using a 16-bit (or Long)
character, as in:

CHAR16 *s = L"string";

CHAR16 ¢ = L'c’; '
When you use the CHAR type, you must put the character or string constant in the -
macro U_L().

CHAR *s = U_L("string");

CHAR c = U L('c'");
Again, the U_L() macro is a hybrid. In PenPoint 1.0, U_L() tells the compiler to use
8-bit characters; in PenPoint 2.0, it tells the compiler to use 16-bit characters. GO
recommends that you use the U_L() macro around all of your literal strings.

The L” modifier is part of the C language, and the U_L() macro is defined in
INTL.H.

You can specify particular Unicode characters in literal strings by typing \x value in
the string, where value is a four-digit hexadecimal number. For example, here are
some Quick Help strings from the TextView class:

U_L"\xF61F \\tab Pigtail. Delete a character.\\par "
U L"\xF60A \xF609 \xF60C \xF60B \\tab Flicks. Scroll up, down, left, or
right.\\par "
This code uses the Unicode value for GO’s gesture glyphs to specify them in a literal
string. See Table 15-6 for a list of the Unicode value for all of the gesture glyphs.

% String formatting

When you use the standard C formatting codes to format strings, make sure you use
the correct format code. Note that the Uprintf() function requires the U_L() macro
wrapped around its format code, as shown below”

Uprintf(U_L(“%hs”), “I am an 8-bit string.”);
Uprintf(U_L(“%1s”), L“I am a 16-bit string.”);
Uprintf (U _L(“%s”), U_L(“I can be either kind of string.”));

%7 Memory and file space

You may be concerned about the additional memory and file space required to sup-
port Unicode. Rest assured that your data files will not automatically double their
size as a result of supporting Unicode.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 189
Resource files

Unicode does not demand much more storage space than popular multibyte
encoding schemes like Shift-JIS, a standard popular in Japan. Japanese text requires
2 bytes in JIS and Shift-JIS just as it does in Unicode.

Although a Unicode representation of English-only text requires twice the memory Compression affects only
space as an ASCII representation, you can compress the data efficiently when writing 3‘3 Qi'zllegf'l[ygz;jgi jtat:'
. . . « . . . ou wi | &
it to a file. In practice, a compressed Unicode file containing English-only text is per character of memory
less than 1% larger than the identical file stored in ASCIL. when processing data.

%r Compressing Unicode

You can compress Unicode strings with the PenPoint functions IntlCompress-
Unicode(), defined in \2_0\PENPOINT\SDK\INC\ISR.H. The function implements a
compression scheme called packed Unicode. This scheme adds 1 byte to every 255
bytes of ASCII data and compresses a typical Shift-JIS file by roughly a quarter. You
can compress data before writing it to a file.

You can also buy commercial compression algorithms to compress filed data. Be
aware, however, that many commercially available compression algorithms are opti-
mized for 8-bit data, and Unicode is 16 bits long. On the other hand, algorithms
like the 16-bit Huffman algorithm that are optimized for 16-bit characters are
often memory intensive.

Of course, the data in your application that does not represent text does not require
any additional memory.

VP Resource files

PenPoint resource files store objects and data in a structured way that is isolated
from source code. If you are unfamiliar with PenPoint resource files, read Part 11 of
the PenPoint Architectural Reference for an overview.

You can use resource files to store elements of your application that vary from locale
to locale. The most typical example of this is using resource files to store translated
user interface strings.

The following list gives examples of when you might use resource files to store
elements that differ between localized versions of an application.

Text for menus, Quick Help, and StdMsg...() messages.
¢ Different, locally appropriate versions of a bitmap representing “stop.”
¢ Two different window layouts for two different locales.

¢ Flags that your application reads and writes as binary data to save user
preferences.

Resource files usually store user interface elements like strings, window layouts,
and bitmaps. You can, however, use resource files to store things other than UI
elements. The last example, for example, is binary data that influences how your
application behaves.

2 / INTERNATIONALIZATION

190

4

L4

(1

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Think of resource files as a place to store modular elements that can be plugged in
and out of your application as appropriate to the locale. -

GO recommends that you use a strategy for naming resources files to represent the
specific localization. All of the PenPoint 2.0 sample code, for example, has a USA.RC
file for the American localization and a JPN.RC file for the Japanese localization.

You must use the exact names JPN.RC and USA.RC if your makefile uses the standard
makefile rules included with the sample applications (\2_0\PENPOINT\SDK\SAMPLE\
SRULES.MIF). The standard makefile rules look for particular strings in USA.RC or
JPN.RC to stamp the application directory with PenPoint information.

Resource files existed in PenPoint 1.0, although they were not used extensively in
sample code. Resource file architecture in PenPoint 2.0 Japanese is unchanged, and
there are additional utilities for working with resources in RESUTIL.H. The resource
file architecture supports 16-bit strings.

Strings in resource files

If you have literal strings in your source code, consider moving the strings to
resource files. The DOS utility INTLSCAN flags literal strings (as well as lines that
may not be appropriate for international applications) in your code. See “Using the
DOS utility INTLSCAN” on page 210 for details on how to use INTLSCAN.

While you may not need to move literal strings to resource files for a successful
compile, we strongly encourage you to do so. The trade-offs involved in the move
are described in the following sections.

Advantages of moving strings to resource files

Strings in resource files are easier to translate because all the strings are in one
place. You can simply pass the resource file to translators, and they can trans-
late the strings without any programming knowledge.

Applications with strings in resource files are easier to maintain because all
user interface strings are in one place rather than scattered throughout various
source and header files.

¢ Having strings in resource files makes it easier to maintain a single code base
even if you have many localized versions of your application. Ideally, you can
create new localized versions of your application by simply providing new
resource files.

Disadvantages of moving strings to resource files

Moving strings to resource files makes your code harder to read. People who want
to understand what your code does must follow the tag reference to another file.
Some of the sample code included with the SDK, like EmptyApp, leaves strings in
the source files for exactly this reason.

GO recommends that you use one resource file to contain all the strings for a
particular localization. The resource file name should describe the locale, as in
USA.RC and JPN.RC.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE
Resource files

¥ Resource file structure

This section describes the recommended structure for resource files. Before we
describe the structure, you should understand the following about strings in
resource files.

& Each string is associated with a tag that is defined in a header file. You use this
tag in your source code when you need to use the string.

¢ Each string can be part of a group. In the resource file, the entire group is
considered a single resource. The four predefined groups for each class are:
+ Toolkit strings.
+ Quick Help strings.
+ Miscellaneous strings (such as format strings for ComposeText
functions).
+ Standard Message strings.
You can define your own groups as needed.
¢ Each group can have up to four arrays that identify lists of indexed resources.
Each array or list is identified as a well-known list resource ID. Because each

atray may contain up to 256 entries, your class can have up to 1,024 tags and
corresponding strings just using the predefined groups.

The resource file from the sample Counter Application clearly shows the recom-
mended file structure. You can find this code in \2_0\PENPOINT\SDK\SAMPLE\
CNTRAPP.

%» Creating tags in header files

You must define a tag for each string you want to use. Remember that tags are just
32-bit numbers with a fixed structure. Define these tags in the header file that your
source code includes. For example, CNTRAPPH defines these tags:

#define tagCntrMenu MakeTag (c1lsCntrApp, 0)

#define tagCntrDec MakeTag(clsCntrApp, 1)
#define tagCntrOct MakeTag(clsCntrApp, 2)
#define tagCntrHex MakeTag (clsCntrApp, 3)

When you use resource utility functions from RESUTIL.H to read these strings from
a resource file, use these tags when the functions expect a variable of type
IX_RES_ID. See “Tags in source code” on page 193 for an example.

You must also define a RES_ID for each group. A RES_ID is a 32-bit number, defined
in CLSMGR.H, that identifies a resource. Use a RES_ID to identify a particular
resource in a resource file. The header file CNTRAPPH defines these RES_IDs:

#define resCntrTK MakeListResId (clsCntrApp, resGrpTK, 0)
#define resCntrMisc MakeListResId (clsCntrApp, resGrpMisc, 0)

%» Defining tags and strings in resource files

You put the literal strings and their associated tags in a resource file. GO recom-
mends that you put U.S. English strings in USA.RC, and Japanese strings in JPN.RC.

191

2 / INTERNATIONALIZATION

192 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

The data structure that contains a tag and its corresponding string is an array of
structures of type RC_TAGGED_STRING.

/**‘k*************************
Toolkit Strings
***/

/*
* Strings used by toolkit elements in CNTRAPP. 1In this case, there are
* only the Representation menu and its menu items.

*/

static RC_TAGGED_STRING tkStrings[] = {
// Representation menu
tagCntrMenu, U_L("Representation"),
// Decimal menu item
tagCntrDec, U_L("Dec"),
// Octal menu item
tagCntrOct, U _L("Oct"),
// Hexagonal menu item
tagCntrHex, U_L("Hex"),
Nil (TAG)

}i
Notice that the literal strings are surrounded by the U_L() macro which indicates
the string contains 8-bit character data in PenPoint 1.0 and 16-bit character data in
PenPoint 2.0 Japanese.

An RC_INPUT structure immediately follows the RC_TAGGED_STRING array.

static RC_INPUT tk = {
resCntrrTkK,
tkStrings,
0,
resTaggedStringArrayResAgent
i
The macro resCntrTK, defined in CNTRAPPH, is a 32-bit number that identifies
the resource, in this case the group of strings defined in tkStrings

#define resCntrTK MakeListResId(clsCntrApp, resGrpTK, 0)

The RC_INPUT structure also indicates how the Counter Application should inter-
pret the tkStrings array. In this case, the tagged string array resource agent inter-
prets the array. Every group has both of these structures: the RC_TAGGED_STRING
structure and the RC_INPUT structure.

Finally, after all the groups have been similarly defined, one more structure of type
P_RC_INPUT is required to identify all the groups.
P_RC_INPUT resInput[] = {

&app, // the Application Framework strings
&tk, // the TK strings for CNTRAPP

smisc, // the Misc strings for CNTRAPP
pNull // End of list.

i
Note that Counter Application uses only three out of the four standard groups.
This is fine. Groups may be left empty except for toolkit strings belonging to the \
Application Framework. The Application Framework uses those strings to display |
information about your application to the user. \

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 193
Resource files

Look at the sample code provided with the SDK for more examples of resource files.
The Goodies disk also contains three files in \SDK\UTIL\TEMPLATE. The files,
TEMPLATE.C, TEMPLATE.H, and TEMPLATE.RC, are examples of resource files and
source code that uses resources.

» Tags in source code

After defining tags in your resource file, you use them in one of three ways.

¢ Use tags directly if a function or message expects a tag as a parameter. Stan-
dard toolkit elements that inherit from clsTkTable often expect tags. This
code sets up a standard toolkit menu, again in Counter Application.

static const TK_TABLE ENTRY CntrAppMenuBar[] = {

{tagCntrMenu, 0, 0, 0, tkMenuPullDown | tkLabelStringId, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringId},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringId},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringId},
{pNull},

{pNull}

2 / INTERNATIONALIZATION

}i

When you use tags instead of literal strings in a TK_TABLE_ENTRY, you must
set (or add, using the bitwise OR operator) the tkLabelStringld flag. This flag
directs the code to read the required string out of a resource file.

¢ Use tags instead of literal strings. Many user interface objects that inherit Although thie was not

from clsLabel allow you to use tags in the place of literal strings. Let the object described in detail in the 1.0
.) ¢ . documentation, you can use
know that you are supplying a tag rather than a string by setting the infoType ta4s instead of strings in both
field of the LABEL_STYLE structure to IsInfoStringlId. This constant is defined Fenfoint 1.0 and Fenfoint 2.0

in LABEL.H. Japanese.
¢ Use resource utility functions to read the required string out of your resource
file. A variety of resource utility functions are defined in RESUTIL.H.

size = sizeof (resStr) / sizeof (CHAR);

ResUtilGetListString (resStr, size, resGrpMisc, tagCntrMessage);

The ResUtilGetListString() function expects a RES_ID to identify the group
in which the string is defined; in the example shown here, resGrpMisc is the
group defined in CNTRAPPH. The function also expects a IX_RES_ID.

See “Using tags in source code” on page 222 for more detailed instructions and
code samples.

% Predefined tags
The Application Manager has predefined tags that you use to identify your com-

pany, application name, and copyright information.

In PenPoint 1.0, you did this by filling in fields of the APP_MGR_NEW structure. In
PenPoint 2.0 Japanese, you must put these strings in a resource file and associate
them with the predefined tags defined in APPTAG.H.

194 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

The strings defined in this resource file are used in two ways:

¢ The Application Framework reads these strings from your resource file when it
needs to display information about your application to the user.

¢ Standard makefiles (such as those provided with the sample applications) use
the application name and type to stamp your project directory.

This example is from the Counter Application.

static RC_TAGGED_STRING appStrings[] = {

// Default document name
tagAppMgrAppDefaultDocName,
U _L("Counter Application"),

// The company that produced the program.
tagAppMgrAppCompany,
U_L("GO Corporation"}),

// The copyright string.
tagAppMgrAppCopyright,
U_L("\x00A9 Copyright 1992 by GO Corporation, All Rights Reserved."),

Nil (TAG) // end of list marker
}i
See “Makefiles” in Chapter 29 of Part 4: PenPoint Development Tools Supplement for
more information on how the standard makefile rules use these tags. As usual, a
RC_INPUT structure follows the RC_TAGGED_STRING structure.
static RC_INPUT app = {

tagAppMgrAppStrings, // standard resource ID for APP strings
appStrings, // pointer to string array
0, // data length; ignored for string arrays

resTaggedStringArrayResAgent // How to interpret the data pointer
}i

% Working with resource files

The PenPoint operating system provides three DOS utilities to work with compiled
resource files (for example, USA.RES). With these utilities, you can append
(RESAPPND), view (RESDUMP), and delete (RESDEL) resources from a resource file.

For example, here is output of the utility RESDUMP on the Counter Application’s
resource file USA.RES. The DOS utilities work only on compiled resource files, so the
following example shows the entire application being compiled and created in an
application directory under \2_0\PENPOINT\APP.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 195
Resource files

C:\>2_0\PENPOINT\SDK\SAMPLES\CNTRAPP> wmake

C:\2_0\PENPOINT\SDK\SAMPLES\CNTRAPP> cd \2_0\penpoint\app\cntrapp
C:\2_0\PENPOINT\APP\CNTRAPP> resdump usa.res
DOS/4GW Protected Mode Run-time Version 1.6
Copyright (c) Rational Systems, Inc. 1990-1992
File Header:
file key=0100023A
file format=3
creator class=[0x0100023A WKN: Scope=Global Admin=285 Ver=1]
file minimum system version=0
file end=383
reserved=00 00 00 00 00 00 00 00 00 00 0O 00 00 00
Resource 0 is a well-known data resource
resId = [0x4640008A WKN List: Scope=Global Admin=69 Group=Misc List=0]
Wkn data agent = 8(String Array), data length=162
Min sys version = 0
0: 05 00 00 01 00 00 00 00-16 00 00 00 27 00 00 00 *............ oL
16: 62 00 00 00 78 00 00 00-86 00 00 00 00 14 43 6F *b...X......... Co*
32: 75 6E 74 65 72 20 41 70-70 6C 69 63 61 74 69 6F *unter Applicatio*
48: 6E 00 00 OF 47 4F 20 43-6F 72 70 6F 72 61 74 69 *n...GO Corporati*
64: 6F 6E 00 00 39 A9 20 43-6F 70 79 72 69 67 68 74 *on..9. Copyright*
80: 20 31 39 39 32 20 62 79-20 47 4F 20 43 6F 72 70 * 1992 by GO Corp*
96: 6F 72 61 74 69 6F 6E 2C-20 41 6C 6C 20 52 69 67 *oration, All Rig*
112: 68 74 73 20 52 65 73 65-72 76 65 64 2E 00 00 14 *hts Reserved....*
128: 43 6F 75 6E 74 65 72 20-41 70 70 6C 69 63 61 74 *Counter Applicat*
144: 69 6F 6E 00 00 OC 41 70-70 6C 69 63 61 74 69 6F *ion...Applicatio*
160: 6E 00 *n. ¥
Resource 1 is a well-known data resource
resld = [0x40400456 WKN List: Scope=Global Admin=555 Group=ToolKit List=0]
Wkn data agent = 8(String Array), data length=59
Min sys version = 0
0: 04 00 00 01 00 00 00 00-11 00 00 00 17 00 00 00 *................ *
16: 1D 00 00 00 23 00 00 00-00 OF 52 65 70 72 65 73 *....%..... Repres*
32: 65 6E 74 61 74 69 6F 6E-00 00 04 44 65 63 00 00 *entation...Dec..*
48: 04 4F 63 74 00 00 04 48-65 78 00 *.Oct...Hex.*
Resource 2 is a well-known data resource
resld = [0x46400456 WKN List: Scope=Global Admin=555 Group=Misc List=0]
Wkn data agent = 8(String Array), data length=103
Min sys version = 0

0: 06 00 00 01 00 00 00 00-03 00 00 00 06 00 00 00 *................ *
16: 09 00 00 00 OC 00 00 00-28 00 00 00 47 00 00 00 *........ (...G...*
32: 00 01 00 00 01 00 00 01-00 00 01 00 00 1A 54 68 *.............. Th*

48: 65 20 63 6F 75 6E 74 65-72 20 76 61 6C 75 65 20 *e counter value *
64: 69 73 3A 20 5E 31 73 00-00 1D 52 65 70 72 65 73 *is: “ls...Repres*
80: 65 6E 74 61 74 69 6F 6E-20 74 79 70 65 20 75 6E *entation type un*
96: 6B 6E 6F 77 6E 2E 00 *known. .*

Each group defined in CNTRAPPH is a separate resource with its own RES_ID.

Notice that the Application Manager group has a different administered number

(Admin=69) than the Counter Application’s groups (Admin=555). Look in

CNTRAPPH to see that 555 is the well-known UID identifying clsCntrApp.

#define clsCntrAppMakeWKN (555, 1, wknGlobal)

See Part 4: PenPoint Development Tools Supplement for more information on these
DOS utilities.

2 / INTERNATIONALIZATION

196 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

W Locale-independent code

Your application’s behavior will likely vary between locales. Formatting, for
example, is a behavior that varies between locales. Table 15-2 shows some examples
of different formatting conventions.

Formatting differences between countries TABLE 15-2
Attribuie American English example Different country example
Number formatting 1,234,567.89 Germany: 1.234.567,89
Time formafﬁng 1 1:45 p.m. Ita].y: h 23,45
Date formatiing 3/31/92 Sweden: 92-03-31
Currency formatling $1995.95 Norway: Kr. 1,995
Address formatting John Smith Denmark:
Vice-President, Sales Administrerende direktor
Acme Widgets Corporation Acme Corp.
123 Industrial Boulevard Sandtoften 39
Providence, RI 02913 DK-2820 Gentofte
U.S.A. Danmark
Phone numbers (416) 325-2061 France: (16) 2.25.20.61
Paper sizes LCttel', 8.5" x11" England: A4, 210 cm x 297 cm
Sort order begins aAbBcCdDeE Portugal: aA2A4A4AZA

The following categories of behavior vary from locale to locale. If your application
supports any of these behaviors, make sure local versions of your application imple-
ment the behavior appropriately. This list is not comprehensive.
¢ Formatting conventions
+ Number formatting.
+ Currency handling.
.+ Time and date formatting.

+ Numbered items (for example, “3 files”).

*

Phone number formats.
Fax dialing formats, cover sheets, and form letters.

Paper sizes.

L 4

Sorting and comparison rules.

¢ Word and sentence.

L 2

Linguistic packages.

+ Dictionaries.

+ Heuristics for text processing.

+ Local handwriting translation engines.
Rather than write different code for each country, take advantage of PenPoint’s col-
lection of international functions. These international functions behave appropri-

ately for a particular language or country. Using these functions frees you from
implementing the locally appropriate version of a function yourself.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE
PenPoint’s international functions

In the ideal case, the international functions allow you to write and maintain a
single code base no matter how many local versions you create. This single code
base would be locale-independent code.

Sometimes, you cannot write a single block of code to implement all the local vari-
ants your application requires. You have two alternatives in this case:

+ You can create different DLLs from different source. You then load a different
DLL for each local version of your application. See Figure 14-2 for a diagram
of this situation.

¢ You can write a service to implement a specific function for a locale.*

W PenPoint’s international functions

The PenPoint operating system provides a host of types, data structures, and func-
tions that simplify your task of writing locale-independent code.

Consider a concrete example. Notice from Table 15-2 that Germans write

1.234.567,89 while the Americans prefer 1,234,567.89.

Rather than write your own formatting algorithm, you can simply call a function
called IntlFormatS32() in your code. The functions accepts, among other argu-
ments, a locale identifier (see “Locales” on page 199 for a discussion of locale iden-
tifiers), and returns the correctly formatted string.

Currently, PenPoint supports only U.S. English and Japanese versions of these inter-
national functions. Future releases of PenPoint will support more countries, lan-

guages, and functionality.

Table 15-3 describes the international functions PenPoint provides. The next sec-
tion describes the most important functions, most of which are in ISR.H. For details
on particular functions, see the on-line header files in \2_0\PENPOINT\SDK\INC.

197

PenPoint international functions TABLE 15-3

Header file jo include Contents

ISRH Types and functions such as word, sentence, and paragraph delimiting; line

(stands for “International Services break calculation; time, date, number, and currency formatting; sorting and

and Routines”) comparison; and Unicode manipulation. These functions deal primarily with
strings.

ISRSTYLE.H Styles that used to control how international functions behave. For example,

styles control how to format date and negative numbers, how to sort a list
(whether to consider spaces or not), and how to delimit words.

GOLOCALE.H Constants for country, language, and currency names, as well as names for
commonly used strings like days of the week, months of the year, time zones,
and units of measurement.

CHARTYPE.H Types, macros, and functions that work on individual characters. Sample

operations include checking for spaces and uppercase letters.

INTL.H Types and macros used by international functions.

2 / INTERNATIONALIZATION

198 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

PenPoint international functions TABLE 15-3 (confinued)
Header file to include Contents
GLPYH.H Macros for Unicode code points, such as GO gesture glyphs, commonly used

in PenPoint applications and services.

CMPSTEXT.H Functions that compose text from strings and variable values, allowing free
placement of the parameters throughout the text.

Remember to link the appropriate library with your source code if you use any of
these functions. All of the functions described below are defined in INTL.LIB with
the exception of ComposeText() functions, which are defined in SYSUTIL.LIB.

% International functions in ISR.H

Most of PenPoint’s international functions are defined in the header file ISR H.
Table 15-4 shows some of the most commonly used functions and their behavior.

Some functions from ISR.H TABLE 15-4
Function Default behavior

Int|DelimitWord() Delimits a word (or word-equivalent in languages with no words).
IntlDelimitSentence() Delimits a sentence.

IntIBreakLine() Calculates how to break a line of text that cannot fit on a single line.
IntlSecToTimeStruct() Converts time from seconds since 1970 to international time structure.
Intllntd TimeToOSDate Time() Converts from international time structure to system time structure.
IntlFormatS32() Formats a signed integer with the proper punctuation, as in 1,896.
IntlFormatNumber() Formats a floating point number with the proper punctuation.
IntlFormatDate() Formats a date, such as 26-Dec-1991.

IntlFormatTime() Formats a time, such as 12:45 A.M.

IntlParseS32() Parses a formatted signed integer, such as (1,592)

IntlParseNumber() Parses a formatted floating point number, such as 12,572.78
IntlParseDate() Parses a formatted date, such as 26-Dec-1991.

IntlParseTime() Parses a formatted time, such as 12:45 A.M.

IntlCompare() Compares Unicode value of characters.

IntlSort() Sorts strings.

IntlConvertUnits() Converts measures in different units, such as feet and meters.
IntlStrConvert() Converts strings between various formats, such as lower- and upper-case.
IntIMBToUnicode() Converts multibyte characters to Unicode characters.

Many of the functions come in pairs that reverse each other’s functionality:

¢ The formatting functions such as IntlFormatDate() have parsing equivalents
such as IntlParseDate().

¢ The conversion functions such as IntIMBToUnicode() have functions that
reverse the conversion such as IntlUnicodeToMB(),

Many of the functions also have counted and uncounted version. Counted
versions have the letter N in their names. For example, the counted version of

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 199
PenPoint’s international functions

IntlDelimitWord() is IntINDelimitWord(). The uncounted functions work on
null-terminated strings. The counted versions work on strings with known length.

Most of the functions require a 32-bit argument that identifies a locale. Locales are
explained in the next section.

Locales

This handbook uses the term locale rather than country or language because coun-
tries vary a great deal within their borders. Canada, Switzerland, and Singapore, for
example, are countries that use more than one language. Even within a language,
there are distinct variations called dialects. All of these differences influence the
localization process.

9 / INTERNATIOR AL L7 ATION

The PenPoint international functions take these factors into account by intro-
ducing a type called LOCALE_ID. This 32-bit number contains three byte-long
“fields” that correspond to the language, dialect, and country of a particular locale.
Thus, a variable of type LOCALE_ID unique identifies a locale as a 32-bit number.

LOCALE_ID uses only 3 bytes of data. The remaining bits are reserved for future
use. Fill those bits with Os if you do custom manipulation of these identifiers. Usu-
ally, just use predefined macros in GOLOCALE.H to manipulate variables of type
LOCALE_ID.

The following code uses a macro defined in INTL.H to create locale identifiers for
two familiar locales. The arguments are constants defined in GOLOCALE.H. The
three arguments correspond to the language, dialect, and country for each locale.

#define locUSA intlLIDMakeLocaleId(ilcEnglish, 0, iccUnitedStates)
#define locJpn intlLIDMakelLocaleId(ilcJapanese, 0, iccdJapan)

The types and macros for creating locale identifiers are defined in INTL.H. Lan-
guages, dialects, and countries are assigned an 8-bit code and a corresponding mne-
monic (like iccUnitedStates) in GOLOCALE.H.

Predefined locale identifiers

The PenPoint operating system identifies the current system locale by setting the a
LOCALE_ID called systemLocale. This initialization is done at boot time, so by the
time your application is running, systemLocale has been set.

- If your application must behave differently in different locales, your code can check
the value of systemLocale to control its behavior. The Clock sample application,
for example, checks the value of systemLocale to determine how it should format
the time. See “Checking the system locale” on page 227 for a code sample.

Most commonly, though, your application needs to behave appropriately for only a
single locale. To accomplish this single-locale behavior, use a series of macros whose
names begin with Loc...(). For example, use the macro called LocDelimitWord()
to provide word selection functionality appropriate to PenPoint’s current locale.
Here is the definition of LocDelimitWord in ISR.H:
#define LocDelimitWord(tx,s, st) IntlDelimitWord(tx, s, intlDefaultLocale, st)

200

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Notice that the macros simply call the related international function with the pre-
defined locale identifier intlDefaultLocale as an argument.

The international functions provide behavior to support Japanese and U.S. English.
As shown above, two locale identifiers, locUSA and locJpn, are defined in
GOLOCALE.H. You can send these identifiers as arguments to the international
functions.

Styles
Often, even a LOCALE_ID is not enough to specify how a function should behave.

There are, for example, at least four different ways to display a date in each Western
language.
PenPoint introduces a 32-bit number called a style to control how functions should
behave within locales. For example, the various styles associated with displaying a
date are defined in ISRSTYLEH as:

// Flags used with all Date format styles

#define intlFmtDateSpaceFill flaglé // Space fill numeric fields
#define intlFmtDateZeroFill flagl?7 // Zero fill numeric fields
// International Date format styles

#define intlFmtDateStyleNumeric 0x0001 // e.g. 1/14/92

#define intlFmtDateStyleAbbrv 0x0002 // e.g. 14-JAN-92

#define intlFmtDateStyleShort 0x0003 // e.g. Jan. 14, 1992

#define intlFmtDateStyleFull 0x0004 // e.g. January 14, 1992

You use these styles when calling the function IntINFormatDate(). Note that the
function expects, among other things, a locale and a style, as parameters:

S32 EXPORTED IntlFormatDate (
P_INTL_TIME pTimeVal, // Time to format

P_CHAR pString, // Out: converted string

U32 length, // Length of buffer

IX RES_ID format, // Optional explicit format

LOCALE_ID locale, // Locale to use, intlDefaultlocale for default
U32 style // Conversion style to use, or styleDefault

)i
Styles are divided into two halves. The two halves represent major variations (flags)
and more subtle variations (styles).

¢ A flag is a major variation that affects all the functions in a given category.
You can specify only one flag at a time.

¢ A format style is a more subtle variation. You can sometimes use multiple
variants simultaneously using the bitwise OR operator. If you specify an
unsupported collection of styles, an international function returns the status
stsRequestNotSupported.

The flag intlIFmtDateSpaceFill is a good example of a major style. It directs the
date formatting function to use spaces as a placeholder in dates, as in 12/ 3/92.
Because you can only specify one flag at a time, you cannot specify intlFmt-
DateSpaceFill and intlFmtDateZeroFill at the same time.

Unlike flags, you can specify a collection of format styles. For example, you can
specify intlFmtTimeStyleStandard and intlFmtTimeForce24Hour simultaneously

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 201
PenPoint’s international functions

to format a time that looks like 13:57. Use the bitwise OR operator to specify mul-
tiple styles simultaneously. For example, define myStyle as follows to specify the
two styles above:

U32 myStyle = intlFmtTimeStyleStandard | intlFmtTimeForce24Hour;

Use the predefined style intlStyleDefault as a parameter to an international
function when you want to use what GO expects to be the most common variation
for a given locale. Comments in ISRSTYLE.H identify the default style for a partic-
ular locale.

Query capability

Many of the PenPoint international functions require a buffer as an argument. A
function that requires a buffer often offers clients a query capability in which the
client requests the function to recommend a size for the buffer to pass in. For
example, if you pass pNull as two of the arguments to the IntlDelimitWord() func-
tion, the function returns the recommended size of buffer to pass in.

U32 size;
U32 style = intlStyleDefault;

size = LocDelimitSentence (pNull, pNull, style);

Use the size returned by the function to determine how much of your buffer to
send when you call the function again. See the procedure on delimiting words
inPart 3: PenPoint Japanese Localization Handbook for a more detailed code sample.

International function structures

The international functions use three new structures as shown in Table 15-5. All of
the structures are defined in ISR.H.

International function structures TABLE 15-5
Structure name Descripfion
INTL_CNTD_STR Contains a string and its count. Used by IntINSort() to sort a collection of

counted strings.

INTL_TIME A time structure that is a superset of the standard tm structure. It contains
two additional members to represent an era (for example, A.D., heisei) and

time zone. The year member represents the year of an era rather than years
since 1900. Valid eras are defined in GOLOCALE.H.

INTL_BREAK_LINE Contains information on how to break a line, including the position of the
break, the characters to delete from the end and start of the line, and the char-
acter to insert at the and start of the line.

The new time structure INTL_TIME introduces a new era member to accommodate
international calendars. Many calendar systems use era information more heavily
than the Western Gregorian calendar. For example, the Japanese imperial calendar
specifies dates relative to the reign of the current emperor. The year 1992 is repre-
sented as heisei 4, the fourth year of the current emperor’s reign.

There are international functions to convert between this international time struc-
ture and the system time structure OS_DATE_TIME.

A/ ERITEDNEATIORNI AL PY ATIAN

202 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

The line break structure INTL_BREAK_LINE is used by the IntlBreakLine() (and its
counted equivalent) to contain information about how a line should break. Dif-
ferent languages uses different rules about how lines should break.

For example, English permits words to break roughly at each syllable. A hyphen
is used to indicate that a word continues to the next line. So running becomes
run-ning.

In Japanese, on the other hand, characters simply follow each other sequentially
across lines. The only restriction is that certain characters, such as an open paren-
thesis, cannot end or begin a line.

As another example, when the German word backen breaks across lines, it becomes
bak-ken. Notice that the trailing ¢ becomes a trailing £ The IntlBreakLine() func-
tion uses the INTL_BREAK_LINE structure to retutn the necessary line break infor-
mation. The structure is defined in ISR.H as follows:

typedef struct INTL_BREAK LINE {
U32 breakat; // position of line break

This example is given to clarify
the structure. The PenFoint 2.0
Japanese version of
Int|BreakLine() supports only
U.S. English and Japanese.

U32 deleteThis; // chars to delete from end of this line

CHAR insertThis[intlBreakLineMaxInsert];

// chars to insert at end of this line
U32 deleteNext; // chars to delete from start of next line

CHAR insertNext[intlBreakLineMaxInsert];

// chars to insert at start of next line

} INTL BREAK LINE, *P_INTL BREAK LINE;

% Unicode glyphs
The file GLYPH.H defines mnemonics for the Unicode values of various standard
glyphs. Included are PenPoint user interface glyphs, GO gesture glyphs, Unicode

control characters, and the Unicode values of PenPoint’s standard gestures.
g

For example, you might use the mnemonics to assign the value of a character.
CHAR myGlyph = glyphCheckMark;

After you make this assignment, use the standard drawing context messages to draw
the gesture glyph on the screen. See Part 3 of the Architectural Reference for more
information on drawing PenPoint graphics.

Table 15-6 lists the Unicode values of GO’s gesture glyphs. The abbreviation “na”
means the gesture glyph was undefined in PenPoint 1.0.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 203

PenPoint’s international functions

GO’s gesture symbols TABLE 15-6

Gesture tag Unicode gggg 0'31] #define Symbol >
1.0 2

xgs1Tap F600 46 glyph1Tap 4 g

xgs2Tap F601 128 glyph2Tap Y §

xgs3Tap F602 129 glyph3Tap A4 %

xgsd Tap F603 130 glyph4Tap y é

xgsPressHold F604 138 glyphPressHold i z

xgsTapHold F605 137 glyphTapHold 4 ;

xgs2TapHold F606 244 glyph2TapHold

xgs3TapHold F607 245 glyph3TapHold

xgs4 TapHold F608 246 glyph4TapHold

xgsFlickUp F609 174 glyphFlickUp J

xgsFlickDown FG60A 175 glyphFlickDown |

xgsFlickLeft F60B 176 glyphFlickLeft —

xgsFlickRight F60C 177 glyphFlickRight —

xgsDblFlickUp F60D 178 glyphDblFlickUp i

xgsDblFlickDown FGOE 179 glyphDblFlickDown N

xgsDblFlickLeft F60F 180 glyphDblFlickLeft =

xgsDblFlickRight F610 181 glyphDblFlickRight =

xgs TrplFlickUp F611 na glyphTrplFlickUp I

xgs TrplFlickDown F612 na glyphTrplFlickDown]

xgs TrplFlickLeft F613 na glyphTrplFlickLeft =

xgs TrplFlickRight F614 189 glyphTrplFlickRight =

xgsQuadFlickUp F615 na glyphQuadFlickUp Il

xgsQuadFlickDown F616 na glyphQuadFlickDown m

xgsQuadFlickLeft F617 na glyphQuadFlickLeft =

xgsQuadFlickRight F618 193 glyphQuadFlickRight =

xgsVertCounterFlick F619 200 glyphVertCounterFlick I

xgsHorzCounterFlick F61A 201 glyphHorzCounterFlick =

xgsPlus '+' F61B 43 glyphPlus +

xgsLeftParens F61C 40 glyphOpenBracket [

xgsRightParens E61D 41 glyphCloseBracket]

xgsCross / xgsXGesture FG1E 88 glyphCross X

xgsPigtail Vert F61F 141 glyphPigtail 7

xgsScratchOut F620 140 glyphScratchOut =

xgsCircle xgsOGesture F621 79 glyphCircle o

xgsCircleTap F622 142 glyphCircleTap ®

xgsCircleLine F623 146 glyphCircleLine e

xgsCircleFlickUp F624 202 glyphCircleFlickUp &

xgsCircleFlickDown F625 203 glyphCircleFlickDown P

xgsDblCircle F626 204 glyphDblICircle -5

xgsCircleCrossOut F627 207 glyphCircleCross %

204

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

% Composed strings

GO’s gesture symbols TABLE 15-6 (continued)
Gesiure tag Unicode gggg o“::! . #define Symbof
xgsUpCaret F628 143 glyphCaret A
xgsUpCaretDot F629 95 glyphCaretTap A
xgsDblUpCaret F62A 161 glyphDblCaret A
xgsCheck / xgsVGesture F62B 86 glyphCheck Vv
xgsCheckTap F62C 136 glyphCheckTap V4
xgsUpArrow F62D 153 glyphUpArrow 1
xgsDownArrow FG2E 155 glyphDownArrow \2
xgsLeftArrow F62F na glyphLeftArrow <«
xgsRightArrow F630 na glyphRightArrow -
xgsUp2Arrow F631 na glyphUp2Arrow T
xgsDown2Arrow F632 na glyphDown2Arrow \’
xgsLeft2Arrow F633 na glyphLeft2Arrow &«
xgsRight2Arrow F634 na glyphRight2Arrow =
xgsUpLeft F635 240 glyphUpLeft A
xgsUpRight F636 173 glyphUpRight r
xgsDownlLeft F637 169 glyphDownlLeft)
xgsDownRight / F638 76 glyphDownRight L
xgsLGesture

xgsLeftUp F639 209 glyphLeftUp —
xgsLeftDown F63A 210 glyphLeftDown —
xgsRightUp F63B 165 glyphRightUp -
xgsRightDown F63C 167 glyphRightDown =
xgsDownLeftFlick F63E 170 glyphDownLeftFlick B
xgsDownRightFlick F640 168 glyphDownRightFlick L
xgsRightUpFlick F643 166 glyphRightUpFlick —
xgsNull FGFF 255 glyphUnrecognized

This table shows only some of the naﬁes defined in GLYPH.H. See the on-line
header file for a complete listing.

Because strings created dynamically differ between locales, you need to be careful
composing them. Many of the messages you display to the user are composed
dynamically. For example, the file system dynamically composes the message
“Delete MYFILE.DOC?” when the user makes the cross-out gesture over the file

MYFILE.DOC.

The rules for composing strings differ between locales. Punctuation, word order,
and capitalization rules, for example, vary between locales.

Because the familiar C library functions such as sprintf() and printf() fix the order
of their parameters, they are not appropriate for composing strings where word

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE 205
Managing your project

order varies. PenPoint’s compose text functions, defined in CMPSTEXT.H, allow you
to place parameters where necessary.
The strategy is as follows:

1 Write the message interspersed with placeholders for each of the variables
displayed in the message.

2 Place the entire message in a different resource file for each localized version
of your application.

2 / INTERNATIONALIZATION

3 Read the message out of the resource file when you need to display it.

For example, here is part of the resource file TEMPLATE.RC from the Goodies disk.
It shows the English version of a confirmation message. Versions of this message in
other languages may put the variables in different places.

// Define the warning/informational message resource for EXAMPLE.
static RC_TAGGED_STRING stdMsgWarningStrings[] = {

// Confirmation message used with the undo operation. It allows
// the user to undo the last operation or all operations.
// Buttons: [Undo “1s] The last operation is undone

// [Undo all] Undo all operations since last checkpoint

// [Cancell] Cancels the operation, nothing undone

// Parameters: “ls The type of the last operation (such as DRAW)
!/ A2s Name of the picture being worked on
stsExmplConfirmUndo,

U_L("[Undo ~1s] [Undo all] [Cancel] Undo the last operation (”ls) on *2s?"),
Nil(TAG)
Vi
There many ComposeText functions that accept literal strings, pointers to format
strings, and resource identifiers (RES_ID) as parameters. See the header file
\2_0\PENPOINT\SDK\INC\CMPSTEXTH for details. Remember to ink SYSUTIL.LIB
with your source code if you use these functions.

¥ Managing your project
Your project consists of a collection of files that comprise your application. It
includes header files, source code, resource files, makefiles, and supporting files like
Stationery and help documents. The following sections discuss strategies and tools
you use to create localized versions of your application.

See Chapter 29 of Part 4: PenPoint Development Tools Supplement for more infor-

mation on this topic.

% Project organization

GO suggests that you keep all your project files in a single directory, including all
the different resource files for your various localizations. Notice in the sample code,
for example, that every application contains a USA.RC and a JPN.RC file. Each file
corresponds to a particular localization.

When you build your application, compile the appropriate resource files and copy
the compiled file into your application directory along with the executable image.

206 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

The makefiles provided with the sample applications show you how to set up a
makefile to coordinate the process of producing different localizations of your
application. ‘

% Makefiles

The makefiles provided with the sample applications contain a few lines that help
create localized versions of your application. The information in this section applies
only if you are using the WATCOM WMAKE application to make your application.

First, you can add a LOCALE flag to the command line to make a particular local-
ized version of your application. For example, type one of the following to create
the Japanese or American version of your application:

wmake LOCALE=jpn

wmake LOCALE=usa
Inside the makefile, you can use three resource variables to identify which resource
files to include with the executable image:

Makefile variables TABLE 15-7
Variable Usage

RES_FILES For resource files that are the same for all locales
USA_RES_FILES For resource files unique to the U.S. localization
JPN_RES_FILES For resource files unique to the Japanese localization

See “Updating your makefile” on page 224 for details on how to use these
makefiles.

P Scanning your source code

INTLSCAN.EXE is a DOS utility located on the Goodies disk. It scans source code
files and flags lines that may not be appropriate for international applications. The
flagged lines fall into one of three categories.

@ Code that deals with ASCII. These lines of code usually need to change as
follows:

+ Code that performs ASCII (8-bit) manipulation must be changed to
code that performs Unicode (16-bit) manipulation.
+ Literal ASCII strings must become literal Unicode strings.

o Strings, including all the strings users see, should be moved into
resource files to facilitate translation.

¢ Functions that are locale-dependent. Using these locale-dependent functions
will make it difficult for you to localize your application. Consider replacing
your locale-dependent function with a locale-independent equivalent.

¢ PenPoint 1.0 code that will no longer work under the latest PenPoint version
because of API changes. Calls to the old APIs must be changed to reflect the
new APIs.

CHAPTER 15 / PENPOINT SUPPORT FOR INTERNATIONAL SOFTWARE
Missing functions

INTLSCAN searches for particular declarations and function calls in your code.
Because it cannot tell what you are doing with a particular variable or function,

it may flag a line that does not need to be changed. If you are certain the code
INTLSCAN flagged will work in all the locales you plan to market your application,
leave it alone.

Conversely, do not assume that because INTLSCAN did not flag any lines in your
code that your application is ready for localization. There are many international-
ization issues that INTLSCAN cannot possibly detect. For example, INTLSCAN
cannot tell you whether a particular piece of your application’s functionality is
appropriate to a particular locale.

Working with local users and getting familiar with popular local applications may
help you understand the needs of a locale.

See “Using the DOS utility INTLSCAN” on page 210 for step-by-step directions
on using INTLSCAN.

% Other DOS utilities

A new DOS utility called UCONVERT on the Goodies disk converts between
various character sets and Unicode. Chapter 24 of Part 3: PenPoint Japanese
Localization Handbook contains instructions on using Unicode to convert between
Shift-JIS, ASCII, and Unicode files.

Other utilities included with the PenPoint SDK 2.0 Japanese help you create local-
ized versions of your application. See Chapter 31 of Part 4: PenPoint Development
Tools Supplement for details on these utilities.

V Missing functions

If your want to maintain a single code base for multiple local versions of your appli-
cation, you need the international package unless you plan to implement a function
not already in PenPoint.

If you do implement a new function, and you think the function you implement
would be useful to many developers, contact GO Technical Services with your
suggestion.

207

2 / INTERNATIONALIZATION

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 16 / Procedures

This chapter provides step-by-step details on how to write internationalized code.
To help you use this chapter more efficiently, each procedure begins with a list of
references to prerequisite information and ends with a list of related information. If
you have read the previous chapters already, don’t worry about the prerequisite
information.

The prerequisite information discusses the concepts and motivations for doing a
particular procedure. If possible, an example is included with each task.

W Supporting Unicode

Read this section if you want to support Unicode in a new application. If you want If you followed the

to add Unicode support to an existing PenPoint 1.0 application, see “Using the suggestions in “Designing
for internationalization and

DOS utility INTLSCAN” on page 210. localization” in Chapter 5
of Fart 1: FenFoint Application
¥ Prerequisite information Writing Guide, your code

.) _ already handles 16-bit data.

Read the following for an overview of Unicode and the code required to support it: We still recommend that you
« . . work through this procedure

¢ Internatlonal Chal‘acter Sets on page 183. since it Provideg new d@ta”g

like which string manipulation
functions to call.

¢ “Multibyte and wide characters” on page 183.
¢ “Unicode architecture” on page 185.

¢ “Code supporting Unicode” on page 186.

% Procedure

T Declare character and strings (pointer to characters) as CHAR, which is a 16-
bit type in PenPoint 2.0 Japanese.

2 When you process text that a user sees, use the PenPoint international func-
tions such as IntlCharIsUpper() and IntlFormatS32(). These functions are
guaranteed to behave appropriately for the specified locale.

3 When no international functions are available, use the PenPoint macros U...()
functions Ustrcpy() and Uisupper() rather than the standard C library func-
tions to manipulate text. These functions work on 16-bit data in PenPoint 2.0
and on 8-bit data in PenPoint 1.0.

" 4 Use the WATCOM C compiler _u...() functions such as _ustrcpy() and _uisupper()
for 16-bit data only. These functions may not be locale-independent, so use the
PenPoint international functions whenever you are processing readable text.

210

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Wrap the U_L() macro around literal strings, including format strings in the
PenPoint U...() functions. See “Creating Unicode strings” on page 215 for
details.

Do not depend on CHAR being 1 byte long because CHAR is 2 bytes long in
PenPoint 2.0 Japanese.

Run INTLSCAN to help ensure your code supports Unicode. See “Using the
DOS utility INTLSCAN” on page 210 for details.

% Examples

See the following sections for code samples:

&

@

€

34

“Unicode: 8-bit type—consider CHAR or P_CHAR?” on page 212.
“Unicode: 8-bit function—consider 16-bit replacement” on page 212.
“Unicode: check mem size for sizeof(CHAR) != 17 on page 213.
“CHARS: fixed 8-bit type—are you sure?” on page 215.

% Related procedures

L4

£ 4

“Using the DOS utility INTLSCAN” on page 210.
“Interpreting INTLSCAN messages” on page 211.

W Using the DOS utility INTLSCAN

This procedure helps you use the DOS utility INTLSCAN.EXE. The utility identifies
lines of code that may not be internationalized.

%> Prerequisite information
Read the following to understand why you should use INTLSCAN.

L 2

4

A4

L 2

“Overview of international software” on page 177.
“Writing international software” on page 178.
“International character sets” on page 183.
“Resource files” on page 189.
“Locale-independent code” on page 196.
“Managing your project” on page 205.

“Scanning your source code” on page 206.

% Procedure

1

Copy INTLSCAN.EXE to your \2_0\PENPOINT\SDK\UTIL\DOS directory from
the \SDK\UTIL\DOS directory on the Goodies disk.

If necessary, use the CONTEXT.BAT batch file to update your PATH variable to
include \2_0\PENPOINT\SDK\UTIL\DOS in your DOS path. See Installing and
Running PenPoint SDK 2.0 for more information on the batch file.

context 2 0

CHAPTER 16 / PROCEDURES 211

Interpreting INTLSCAN messages

3 Run INTLSCAN on your source (.C) files by typing:
intlscan *.C

4 List the error files generated by INTLSCAN:
dir *.ERR

5 Open any .ERR file with a non-zero size. The file contains a list of line
numbers and corresponding INTLSCAN messages.

6 Make any necessary changes to your source code. The next procedure

“Interpreting INTLSCAN messages” on page 211 shows you how to make ~next error” command that

the changes INTLSCAN recommends.
7 Repeat steps 4 through 6 for all of your project’s header (H) files.
8 Repeat steps 4 through 6 for all of your project’s resource (.RC) files.

% Related information

¢ “Interpreting INTLSCAN messages” on page 211.
+ “Moving strings to resource files” on page 216.

¢ “Updating your makefile” on page 224.

W Interpreting INTLSCAN messages

Tip You can choose what kind
of code INTLSCAN flags. Type
INTLSCAN /H to see which
switches are available.

Tip Many editors feature a

moves you to the next line
that needs attention.

9 7 INTERNATIONAI 17 ATION

If INTLSCAN detects a line of code that may need to be changed, it writes the line
number and one of the following messages to the file FILENAME.ERR. This section
helps you interpret the message and make the recommended changes to your code.

Here is a list of INTLSCAN’s messages. Each of these is discussed below.
Unicode: 8-bit type—consider CHAR or P_CHAR.
¢ Unicode: Check mem size for sizeof(CHAR) != 1.
¢ Unicode: 8-bit function—consider 16-bit replacerﬁent.

¢ CHARS: Fixed 8-bit type—Are you sure?

L 4

Resource: Literal string.

Resource: Literal character.

L4

¢ ISR: USA function—consider ISR equivalent.

ISR stands for International Services and Routines.

¥ Prerequisite information

Read the following to understand why INTLSCAN flags certain lines of code.
¢ “International character sets” on page 183.
“Code supporting Unicode” on page 186.
¢ “Locale-independent code” on page 196.
¢ “Resource files” on page 189.

212 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

% Procedure
1 Open the FILENAMEERR file generated by INTLSCAN.

2 Ifyour editor supports multiple windows, open your source file, FILENAME.C.

3 Ifappropriate, make the first recommended change. Remember, the changes
are only recommendations. Some of the flagged lines may not need to change.

4 Ifyour editor supports a “next error” function, use it to move to the next line
INTLSCAN flagged.

5 You may want to run INTLSCAN after finishing your changes to make sure you
responded to all of INTLSCAN’s recommendations.

% Examples

Each of the possible INTLSCAN messages is listed and described below along with
old and rewritten code examples. The first sentence of each section describes why
INTLSCAN flagged your code.

%» Unicode: 8-bit type—consider CHAR or P_CHAR
You see this message when your code contains a 8-bit variable with a type such as
U8, P_STRING, or char. If appropriate, redeclare these variables as 16-bit strings or
characters (using types such as CHAR or P_CHAR). Any text processing should be
done in 16 bits. Actual byte-sized data should remain 8-bits long.

Remember that CHAR is 16-bits long in PenPoint 2.0 and 8-bits long in PenPoint
1.0. If you want 16-bit data all the time, use CHARI16.

Here are some examples of old and rewritten code. Old code is on top and grayed

out.
typedef char AM PM STR[5]; Strings heed to be made of
typedef CHAR AM PM STR[5]; 16-bit characters.
P_STRING tmpDate;

Fointers to (strings) also need

P_CHAR tmpDate; to be 16 bits.

Note that declarations like:
U8 fontSize;

need not change because fontSize is real 8-bit data.

%» Unicode: 8-bit function—consider 16-bit replacement

You see this message when your code calls a function that works only with 8-bit
data. You may want to replace the function with its 16-bit equivalent. Table 16-1
outlines some of your options.

CHAPTER 16 / PROCEDURES 213
Interpreting INTLSCAN messages

8- and 16-bit functions TABLE 16-1
If you want. . . Use. .. 2
A specific 8-bit function A function from the standard C library such as isupper(). ¢
A function that will work on 8-bit data in PenPoint 1.0 and A PenPoint macro such as Uisupper(). N
16-bit data in PenPoint 2.0. g
A function that works on 16-bit data only. A WATCOM _u...() function such as _uisupper(). -g
A function that works on 16-bit data and whose behavior is A PenPoint international function such as IntlCharls- 2
appropriate to any locale PenPoint supports. Upper().. g
©

If you want to maintain a single code base that compiles under PenPoint 1.0 and
PenPoint 2.0, use the U...() functions rather than the _u...() functions. The U...()
functions are 8-bit in PenPoint 1.0 and 16-bit in PenPoint 2.0. For more details on
maintaining a single code base, see “Single code base” on page 233.

Here are some examples of old and new code:

char sl[l; Standard C functions like
Ule ix; strlen() work only on &-bit
e arguments. Use Ustrlen()
ix = strlen(s); instead because it expects
CHAR s[]; 16-bit argumente.

Ule ix;

ix = Ustrlen(s);

strcat (tmpStr, " "), Literal strings need to be
Ustrcat (tmpStr, U L(" ")); 16 bits.

Notice the last code example contains the U_L() macro. This macro, defined in
INTL.H, makes the literal string inside a 16-bit string in PenPoint 2.0. In PenPoint
1.0, it allows strings to remain 8-bits long.

Unicode: check mem size for sizeof(CHAR) != 1

You see this message when your code calls a function like OSHeapBlockAlloc()
that takes a size in bytes. When you call such functions, remember that 16-bit
strings require twice the memory of 8-bit strings. Hence, if you depend on CHAR
being 1 byte long, multiply your former memory request by the size of CHAR. For

example:
#$define MAX DT STR 60
P_CHAR pBuf;

OSHeapBlockAlloc (osProcessSharedHeapld,
(SIZEOF) (MAX DT STR), &pBuf);

#define MAX DT STR 60
P_CHAR pBuf;
OSHeapBlockAlloc (osProcessSharedHeapld,
(SIZEOF) (sizeof (CHAR) *MAX DT STR), &pBuf);

214 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

You need to do this multiplication for CHAR types only. You do not need to change
the following code because the SizeOf() macro correctly computes the size of the
structure CLOCK_APP_DATA, taking into account any 16-bit characters or strings it
might have.

OSHeapBlockAlloc (osProcessHeapId, SizeOf (CLOCK_APP DATA), &pInst);

The SizeOf() macro is defined in GO.H.

%7 Resource: literal string

You see this when your code contains a literal quoted string. Consider putting these
strings in a resource file, unless the string falls into one of these categories:

¢ Strings that are meaningful in all languages and in all countries. Universally
recognized names like “Disneyland” or “Coca-Cola” might be examples.

¢ Debugging strings that you display using Debugf().
¢ Hidden filenames that users will never see.

If you leave the literal string in your code because it falls into one of these three cat-
egories, consider wrapping the U_L() macro around the string. This makes it a 16-
bit string in PenPoint 2.0 Japanese.

Move all other strings to resource files. See “Moving strings to resource files” on
page 216 for the procedure.

Here are samples of old and new code that may help you change your code:

strepy ((*pData) ~>token.buf, "Error"); Use ResUtilGetListString()
// where token.buf in pData is defined as CHAR[maxDigits] to read the string from a
ResUtilGetListString((*pData)->token.buf, maxDigits, resGrpMisc, resource file into a pre-
tagCalcAppError) ; allocated buffer rather than
// Where tagCalcAppError is a tag with a corresponding string in a use a literal string.

// resGrpMisc string array

SYSDC_TEXT OUTPUT tx;
tx.pText = "Hello"; Use ResUtilAllocListString()

SYSDC_TEXT OUTPUT tx; W[TG” {’EOL;”;O ;01’ ha‘;‘e a P;@'
P_CHAR helloStr; aflocated PUTEr, and you 4o

not know how long the string
helloStr =

. . . ‘ , might be. This function
ResUtilAllocListString (osProcessHeapld, resGrpMisc, tagHelloStr); o ates abuffer on the
// where tagHelloStr is a tag with a corresponding string in a

X X heap, into which it loads
// resGrpMisc string array the requested string from a

// Free the string when you are finished resource file. Remember to free
OSHeapBlockFree (helloStr); the string after using it.

%» Resource: literal character

You see this message when your code contains a literal character. Consider moving
the literal character to a resource file, unless you are certain this character is valid in
every language and every country in the world (and on all hardware, too). If a char-
acter stays literal, consider wrapping the U_L() macro around characters so that
they are 16-bit.

CHAPTER 16 / PROCEDURES
Creating Unicode strings
For example, change this code:
#define BACK SLASH CHAR '\\'

to this:
#define BACK_SLASH CHAR U L('\\')

Typically, you may leave back slashes (in a filename, for example) as literals, but
most other characters probably need to go into a resource file.

% ISR: USA function—consider ISR equivalent

You see this message when your code uses a locale-dependent function. Unless you
are sure this function will work in all the locales you sell this application, replace the
function with a locale-independent function from PenPoint’s international package.

See “Writing locale-independent code” on page 225 for details. Table 16-3, which
lists locale-dependent functions and their locale-independent equivalents, may also
be helpful.

%r CHARS: fixed 8-bit type—are you sure?
You see this message when your code declares an 8-bit data type by declaring some-
thing to be of type CHARS or P_CHARS. Make sure you intend the variable to con-
tain only 8-bit data. If the variable stores the value of a Unicode character, use a 16-
bit type like CHAR.

For example,
CHAR8 internalString = “private”;

should be changed to
CHAR internalString

U_L("private”);

Remember to make sure the user does not see this string. If the user does see the
string, it should go in a resource file.

% Related information

¢ “Moving strings to resource files” on page 216.

¢ “Updating your makefile” on page 224.

W Creating Unicode strings

This procedure writes Unicode characters and strings in your code.

% Prerequisite information

¢ “International character sets” on page 183.

¢ “Code supporting Unicode” on page 186.

% Procedure

1 Declare all characters and pointer to characters as a 16-bit type. Use CHAR16
for data that is always 16 bits and CHAR for data that will be 8 bits long in
PenPoint 1.0 and 16 bits in later releases. '

2 / INTERNATIONALIZATION

216 PENPOINT APPI.ICATION WRITING GUIDE
Part 2 / Internationalization Handbook

nn

2 Wrap the U_L() macro around literal characters and strings. Use the L"" mod-
ifier only if you are certain your character data will always be 16 bits long.

3 To specify special Unicode characters, use a \x followed by its Unicode value, a
4-digit hexadecimal number.

% Examples

These code fragments show examples of the U_L() macro and L"" modifier.
Uprintf(U_L(“I am 8 bits long in PenPoint 1.0; 16 bits in PenPoint 2.0");
P_CHAR16 pTheString = L"I am always a 16-bit string.”;

static RC_TAGGED_ STRINGqHelpStrings[] = {
tagTextView, U_L("\xF61F \\tab Pigtail. Delete a character.\\par "),
Nil (TAG)

nn

}i

" Related procedures
¢ “Using the DOS utility INTLSCAN” on page 210.

¢ “Interpreting INTLSCAN messages” on page 211.

W' Moving strings to resource files If you read “Designing for
. .)) . . internationalization and
This procedure explains how to put strings in a resource file and use those strings in |ocalization” in Chapter 5 of

source code. Part 1: FenPoint Application
Writing Guide, your code may

ST . already have its strings in
" Prerequisite information resource files.

& Part 11: Resources in PenPoint Architectural Reference.
¢ “Resource files” on page 189.

¢ “Strings in resource files” on page 190.
¢ “Resource file structure” on page 191.

¢ “Tags in source code” on page 193.

% Procedure

1 Copy a resource file named USA.RC or JPN.RC from one of the sample app-
lications into your project directory. Alternatively, copy the file \SDK\UTIL\
TEMPLATE\TEMPLATE.RC from the Goodies disk. For example, type the
following:
copy \2_0\penpoint\sdk\sample\cntrapp\usa.rc c:\myapp

2 Name the resource file to remind you of which localization the file is for:
USA.RC and JPN.RC, for example.

Identify the file in which you plan to use a particular string, say PROJECT.C.

4 Define tags for each string in the corresponding header file, PROJECTH. If you
want to use an array of strings in a group such as the Toolkit group, you need
a RES_ID for each group.

CHAPTER 16 / PROCEDURES
Moving strings to resource files

5 Replace the template resource file’s strings and tags with your own strings

and tags.

6 Modify your implementation in PROJECT.C to use your new tags rather than
the literal string. See “Using tags in source code” on page 222 for details.

7 Update your makefile to identify which resources should be included
with your application. See “Updating your makefile” on page 224 for more
information.

% Example

The following code comes from the Counter Application in 2_0\PENPOINT\SDK\
SAMPLE\CNTRAPP. It shows the result of moving strings to resource files.

The following tags are defined in the header file CNTRAPPH. The macro Make-

ListResId() is

defined in RESFILE.H, and the macro MakeTag() is defined in GO.H.

Each group must be identified by a RES_ID created by the MakeListResID() macro,
and each string must be defined by a TAG created by the MakeTag() macro.
/* The RES_IDs for the resource lists used with the TAGs.

*/
#define
#define
/*

* TAGs

*/
#define
#define
#define
#define
/*

* TAGs

*/
#define
#define

resCntrTK MakeListResId (clsCntrApp, resGrpTK, 0)
resCntrMisc MakeListResId (clsCntrApp, resGrpMisc, 0)

used to identify toolkit strings.

tagCntrMenu MakeTag (clsCntrApp, 0)
tagCntrDec MakeTag (clsCntrApp, 1)
tagCntrOct MakeTag(clsCntrApp, 2)
tagCntrHex MakeTag (clsCntrApp, 3)

used to identify miscellaneous CNTRAPP strings.

tagCntrMessage MakeTag(clsCntrApp, 4)
tagCntrUnknown MakeTag(clsCntrApp, 5)

The next code fragment comes from the resource file USA.RC. The file uses three
groups of strings, Application Framework strings, toolkit strings, and miscellaneous
strings. Note that all the literal strings are enveloped in the U_L() macro, making
them 16-bit Unicode strings.

/*******

%k kok ok ok ok ok

KAK KKK I IR A AR KA ARk kAR AR KRR AR Ak k kA hkkkkkkhkkkkkhkkkkkkhkkkkkkkkhkhkkkkk

APP framework strings
***/

static RC_TAGGED_STRING appStrings([] = {

//
ta

//
ta

//
ta

//
ta

Default document name
gAppMgrAppDefaultDocName,
U_L("Counter Application"),
The company that produced the program.
gAppMgrAppCompany,
U_L("GO Corporation"),
The copyright string.
gAppMgrAppCopyright,
U_L("\x00A9 Copyright 1992 by GO Corporation, All Rights Reserved."),
User-visible filename. 32 characters or less.
gAppMgrAppFilename,
U_L(“Counter Application”),

217

2 / INTERNATIONALIZATION

218

PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

// User-visible file type. 32 characters or less.
tagAppMgrAppClassName,
U_L(“Application”),
Nil (TAG) // end of list marker
}i
static RC_INPUT app = {

tagAppMgrAppStrings, // standard resource ID for APP strings
appStrings, // pointer to string array
o0, // data length; ignored for string arrays

resTaggedStringArrayResAgent // How to interpret the data pointer
i

/**
Toolkit strings
***/

/*
* Strings used by toolkit elements in CNTRAPP. In this case, there are
* only the Representation menu and its menu items.

*/
static RC_TAGGED_STRING tkstrings[] = {
// Representation menu
tagCntrMenu, U_L("Representation”),
// Decimal menu item
tagCntrDec, U_L("Dec"),
// Octal menu item
tagCntrOct, U_L("Oct"),
// Hexagonal menu item
tagCntrHex, U_L("Hex"),
Nil (TAG)

bi
static RC_INPUT tk = {
resCntrTk,
tkStrings,
0,
resTaggedStringArrayResAgent
¥
/**

Miscellaneous strings
***/

static RC_TAGGED_STRING miscStrings[] = {
//
// Message used to display counter value. The '“ls' argument allows
// the code to fill in the appropriate value based on the user's menu
// choice.
//
tagCntrMessage, U_L("The counter value is: “ls"),

//
// Message indicating an unknown representation type.

//
tagCntrUnknown, U_L("Representation type unknown."),
Nil (TAG)
i
static RC_INPUT misc = {
resCntrMisc,
miscStrings,
0,
resTaggedStringArrayResAgent
}i

CHAPTER 16 / PROCEDURES 219
Using predefined AppMgr tags

After each of the groups is defined with a RC_TAGGED_STRING and RC_INPUT
structure, a P_RC_INPUT structure identifies all the groups. Each of the groups is a

separate resource in the resource file. Z
/** E
. N

List of resources 3
***/ rd
(¢}

P_RC_INPUT reslInput [] = { 5
&app, // the Application Framework strings Z

&tk, // the TK strings for CNTRAPP %
gmisc, // the Misc strings for CNTRAPP =
pNull // End of list. o

}i
Finally, Counter Application’s source code needs to use these tags. Here is the code
that creates the application’s menu bar:

static const TK_TABLE ENTRY CntrAppMenuBar[] = {
{tagCntrMenu, 0, 0, 0, tkMenuPullDown | tkLabelStringld, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringId},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringId},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringId},
{pNull},
{pNull}
i
"% Related information

¢ “Using the DOS utility INTLSCAN” on page 210.
¢ “Updating your makefile” on page 224.

W Using predefined AppMgr tags

The Application Manager has predefined tags that you should use to identify your
company, application name, and copyright information. In PenPoint 1.0, you did

this by filling in fields of the APP_MGR_NEW structure. You should now put these

strings in a resource file and use the new predefined tags that are part of the Appli-
cation Manager’s toolkit group.

% Prerequisite information

¢ “Resource files” on page 189.

¢ “Strings in resource files” on page 190.
¢ “Resource file structure” on page 191.
o “Tags in source code” on page 193.

¢ “Predefined tags” on page 193.

% Procedure

1 Ifyou have PenPoint 1.0 code that uses the fields of the APP_MGR_NEW struc-
ture to identify your company, application name, and copyright information,
remove these lines.

220 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

2 Place this information in a resource file appropriate to the localized version.
For example, American strings might go in USA.RC, Japanese strings into
JPN.RC, and so on.

3 Your strings must be 32 characters or less.

% Example

Remove these lines from PenPoint 1.0 code:

strcpy (new.appMgr.company, "GO Corporation");
strcpy (new.appMgr.defaultDocName, "Counter Application");
ObjCallRet (msgNew, clsAppMgr, &new, s);

and simply call:
ObjCallRet (msgNew, clsAppMgr, &new, s)

Then put these lines in your resource file:
/**

APP framework strings
***/

static RC_TAGGED_STRING appStrings[] = {

// Default document name
tagAppMgrAppDefaultDocName,
U L("Counter Application"),
// The company that produced the program.
tagAppMgrAppCompany,
U_L("GO Corporation"}),
// The copyright string.
tagAppMgrAppCopyright,
U_L("\x00A9 Copyright 1992 by GO Corporation, All Rights Reserved."),
// User-visible filename. 32 characters or less.
tagAppMgrAppFilename,
U_L(“Counter Application”),
// User-visible file type. 32 characters or less.
tagAppMgrAppClassName,
U_L(“Application”),
Nil (TAG) // end of list marker
}i
static RC_INPUT app = {

tagAppMgrAppStrings, // standard resource ID for APP strings
appStrings, // pointer to string array
0, // data length; ignored for string arrays

resTaggedStringArrayResAgent // How to interpret the data pointer
}i

% Related information

+ “Moving strings to resource files” on page 216.

¢ “Updating your makefile” on page 224.

W Using resource utility functions

This procedure uses functions defined in RESUTIL.H to read data out of resource files.

CHAPTER 16 / PROCEDURES 221
Using resource utility functions

» Prerequisite information
¢ “Resource files” on page 189.
¢ “Resource file structure” on page 191.

¢ “Tags in source code” on page 193.

¥ Procedure

1 Find code where you use msgResReadObject or msgResReadData to read
data out of a resource file.

9 7 INTERNIATIOONIALIZ ATION

2 Call Resource Utility functions as shortcuts to reading objects and strings out
of resource files. Table 16-2 lists the available functions.

3 Call one of the first four functions in Table 16-2 to read a single object or
string from theProcessResList, the application’s standard list of resources
stored in USA.RES or JPN.RES.

1 Call one of the last three functions in Table 16-2 to read a string from a group.
The functions expect you to specify the group (RES_ID) and the string’s loca-
tion (IX_RES_ID) in that group. Use the RES_ID and TAGs you defined in your
header file with the MakeTag() and MakeListResID() macros. See “Strings in

resource files” on page 190 for details on strings in groups.

2 In most cases, avoid the load utilities ResUtilLoadObject() and ResUtil-
LoadListString() because these fuctions allocate their own memory.

3 Link RESFILE.LIB with your code if you use any of these functions.

Resource utility functions . TABLE162

Function Pescription

ResUtilLoadObject Loads an object from theProcessResList.

ResUtilLoadString Loads a string from theProcessResList into a buffer or a heap..

ResUtilGetString Same as ResUtilLoadString except that you provide a buffer and its size.

ResUtilAllocString Loads a string from theProcessResList into a heap you specify.

ResUtilLoadListString Loads an item from a string list in theProcessResList into a buffer or a heap.
You pass in the desired string’s group and its index in that group.

ResUtilGetListString Loads a string from a string array in theProcessResList into a buffer you
specify. You pass in the desired string’s group and index.

ResUtilAllocListString Loads a string from a string array in theProcessResList into a heap you
specify.

% Example
Replace this code:

#define sampleResId MakeWknResId(clsSample, 17)

readObj.resId = sampleResId;

readObj.mode = resReadObjectMany;

ObjCallRet (msgNewDefaults, clsObject, &readObj.objectNew, status);
status = ObjCallWarn(msgResReadObject, file, &readObj);

object = readObj.objectNew.uid;

nn

222 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

with this code:

#define sampleResId MakeWknResId(clsSample, 17)
status = ResUtilLoadObject (sampleResId, &object);

% Related information

¢ “Moving strings to resource files” on page 216.

¢ “Updating your makefile” on page 224.

W Using tags in source code

This procedure shows you two ways to use tags that you have defined in resource
and header files in your code.

% Prerequisite information

¢ “Resource files” on page 189.
¢ “Resource file structure” on page 191.

¢ “Tags in source code” on page 193.

% Procedure

You can choose any one of these steps as needed:
1 Use the tag directly when the function or message expects a tag as a parameter.

2 Usea tag in place of a literal string with any UI component that inherits from
clsLabel. Set the label style to IsInfoStringld to let the object know you are
using a tag rather than a literal string.

3 Use ResUtil functions to read the required string out of the resource file. Pass
the tag as a parameter to the function to let it know which string you want.

% Examples

The three examples below show the different ways to use a tag in source code.

%»¥ In toolkit tables

Code from \2_0\PENPOINT\SDK\SAMPLE\CNTRAPP\CNTRAPP.C uses tags to set up
Counter Application’s standard toolkit menu.

static const TK_TABLE ENTRY CntrAppMenuBar[] = {

{tagCntrMenu, 0, 0, 0, tkMenuPullDown | tkLabelStringId, clsMenuButton},
{tagCntrDec, msgCntrAppChangeFormat, dec, 0, tkLabelStringId},
{tagCntrOct, msgCntrAppChangeFormat, oct, 0, tkLabelStringId},
{tagCntrHex, msgCntrAppChangeFormat, hex, 0, tkLabelStringId},
{pNull},

{pNull}

}i

When you use tags instead of strings in a TK_TABLE_ENTRY, you must set the flag
tkLabelStringID flag. Notice that the bitwise OR operator is used to add the flag to
another flag, tkMenuPullDown.

CHAPTER 16 / PROCEDURES
Using ComposeText functions
%» In place of a literal string
The toolkit demo sample application in 2_0\PENPOINT\SDK\SAMPLES\ICONS.C
shows the use of tags in place of literal strings. Note that clsIcon inherits from
clsLabel.
ICON NEW in;

// Set the icon’s label
in.label.style.infoType = lsInfoStringld;
in.label.pString = (P_CHAR)tagIconGoLogo;

%r Using resource utility functions
You can also use tags to fetch the required string out of your resource file.

size = sizeof (resStr) / sizeof (CHAR);
ResUtilGetListString (resStr, size, resGrpMisc, tagCntrMessage);

Note that one of the parameter ResUtilGetListString() expects is the group in
which the string is defined; in this case, resGrpMisc.

P Using ComposeText functions

This procedure uses ComposeText functions to compose strings while your appli-
cation is running. These functions are described in CMPSTEXT.H. Remember to
link SYSUTIL.LIB if you any of these functions.

% Prerequisite information
¢ “Resource files” on page 189.

¢ “Strings in resource files” on page 190.

¢ “Composed strings” on page 204.

% Procedure
1 Identify strings that you compose dynamically from variable values and pieces
of text.

2 Unless these composed strings are never displayed to the user, move these
strings to resource files (if you have not already done so).

3 Include ComposeText parameters in each string, making sure you place the
parameter in the appropriate place.

4 Call ComposeText functions in your source code when you need to create this
string.

% Example

This code is from the sample Counter Application. First, here is the entry in the
resource file:

// Message used to display counter value. The '“ls' argument allows
// the code to fill in the appropriate value based on the user's menu
// choice.

tagCntrMessage, U_L("The counter value is: *1s"),

223

9 / INTERNATIONAI 7 ATION

224 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Here is the code that retrieves the string along with formatting information from
the resource file. The next block of lines composes the string,

P_CHAR pi
U32 size;
CHAR buffer [MINSTRLEN] ;

// Retrieve format string from resource file, and construct display

// string from format string and counter value.

size = MAXSTRLEN;

SComposeTextL(&p, &size, pNull, resGrpMisc, tagCntrMessage, buffer);
% Related information

¢ “Using resource utility functions” on page 220.

¢ “Updating your makefile” on page 224.

P Updating your makefile

This procedure shows you how to update your makefile to handle multiple resource
files. This applies only if you are using the WATCOM WMAKE tool.

% Prerequisite information
¢ “Managing your project” on page 205.
¢ “Makefiles” on page 206.

% Procedure

1 Specify a locale in the command line. If you don't specify a locale, the stan-
dard makefile rules assume it is JPN.

2 Specify the resource files needed to build a localized version of your applica-
tion by setting the RES_FILES, USA_RES_FILES, and JPN_RES_FILES variables in
your makefile. ’

3 Add $(APP_DIR)\$(TARGET_RESFILE) to your "all" line.

4 Set the variable RES_STAMP to yes. This directs the makefile to use the applica-
tion name and type defined in the resource file USA.RC or JPN.RC (depending
on the value of LOCALE).

% Example

From the command line, you can type either:
wmake LOCALE=usa
wmake LOCALE=jpn
to make the appropriate version of your application.

This sample makefile comes from NotePaper App, one of the sample appli-
cations included with the SDK. You can find the code in \2_0\PENPOINT\SDK\
SAMPLE\NPAPP,

CHAPTER 16 / PROCEDURES
Writing locale-independent code

The .res files for your project. If you have resources, add
$(APP_DIR)\$(TARGET_RESFILE) to the "all" target.

RES_FILES = bitmap.res
USA_RES FILES = usa.res
JPN_RES FILES = jpn.res

Targets
all: $(APP_DIR) \$ (PROJ) .exe S(APP_DIR)\$(TARGET_RESFILE) .SYMBOLIC

% Related information

¢ “Using tags in source code” on page 222.

WV Writing locale-independent code

This procedure helps make your code general enough to behave appropriately for a
given locale. The goal is to maintain a single code base for all local versions of your
application.

% Prerequisite information

“Writing international software” on page 178.

¢ “Locale-independent code” on page 196.

¢ “Using the DOS utility INTLSCAN” on page 210.
¢ “Interpreting INTLSCAN messages” on page 211.

% Procedure
1 Run INTLSCAN on your source files to identify code that may be locale-
dependent by typing:

intlscan -r -u PROJECT.C

The flags -r and -u force INTLSCAN to suppress messages about Unicode and

resource files. See “Using the DOS utility INTLSCAN” on page 210 for
details on using the INTLSCAN.

2 Identify other functionality that your application performs that may vary
between locales. See “Locale-independent code” on page 196 for a partial
listing of functionality categories that tend to vary tremendously between
locales.

3 Replace locale-dependent function calls with calls to PenPoint international
functions. Table 16-3 lists all the functions INTLSCAN flags and suggests
PenPoint replacements.

4 If the required function does not exist in the PenPoint international package,
write your own locale-independent code. Usually this means your function or
message accepts a locale (and, optionally, a style) as a parameter. If you think
the function you are writing would be widely useful to PenPoint developers,
contact GO Technical Services with your suggestion.

225

A 7 ERSTEMDALATIOUVNE &1 1Y S PIALL

226 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

% Example

Table 16-3 lists locale-dependent functions and their suggested replacements from
the PenPoint international package. This table should orient you to the problem
of locale-dependent code and suggest further areas of code that may be locale-
dependent.

Ellipses (...) in the chart indicate that there are a number of related functions with
similar names. For example, IntlFormat... means that there are a variety of func-
tions like IntlFormatS32(), IntlFormatDate(), and so on whose names begin with

IntdFormat.

Converting fo infernational functions TABLE 16-3
i you are using . . . Consider using And #include this
_asctime IntlFormatDate/ Time ISR.H
_bprintf ComposeText CMPSTEXTH
_ctime IntlFormatDate/Time ISRH
_gmtime IntlSecToTimeStruct ISR.H
_localtime IntlSecToTimeStruct ISR.H
_vbprintf ComposeText/IntFormat... CMPSTEXT.H / ISR.H
asctime IntlIFormatDate/Time ISRH

atof IntlParseNumber ISRH

atoi IntlParseS32 ISRH

atol IntlParseS32 ISR.H

bsearch Ihthompare (for compare routine) ISRH

ctime IntlFormatDate/Time ISR.H

fprintf ComposeText/IntlFormat... CMPSTEXT.H /ISR.H
fscanf IntlParse... ISRH

govt IntlFormatNumber ISRH

gmtime IntlSecToTimeStruct ISR.H

isalnum IntlCharlsAlphaNumeric CHARTYPE.H
isalpha IntlCharlsAlphabetic CHARTYPE.H
isentrl IntlCharlsControl CHARTYPE.H
isdigit IntlCharlsDecimalDigit CHARTYPE.H
isgraph IntlCharIsGraphic CHARTYPE.H
islower IntlCharlsLower CHARTYPE.H
isprint IntlCharlsPrinting CHARTYPE.H
ispunct IntlCharlsPunctuation CHARTYPE.H
isspace IntlCharIsSpace CHARTYPE.H
isupper IntdCharlsUpper CHARTYPE.H
isxdigit IntlCharlsHexadecimal Digit CHARTYPE.H
itoa IntlFormatS32 ISRH

lfind IntlCompare (for compare routine) ISR.H
localtime IntlSecToTimeStruct ISRH

Isearch IntlCompare (for compare routine) ISRH

ltoa IntlFormatS32 ISR.H

Converting to international functions

CHAPTER 16 / PROCEDURES 227
Checking the system locale

TABLE 16-3 (continued)

If you are using . . .
memicmp
mktime
printf
gsort
scanf
sprintf
sscanf
strftime
stricmp
strlwr
strnicmp
strtod
strtol
strtoul
strupr
tolower
toupper
ultoa
utoa
viprintf
viscanf
vprintf
vscanf
vsprintf

vsscanf

Consider using
IntINStrCompare
IntITimeStructToSec

ComposeText/IntlIFormat...

IntdSort/Compare
IntlParse...

ComposeText/IntdFormat...

IntlParse...
IntlFormatTime
IntlStrCompare
IntlStrConvert
IntINStrCompare
IntlParseS32

IntlParseS32

IntlParseS32 (if possible)
IntlStrConvert
IntlStrConvert
IndStrConvert
IntlFormatS32 (if possible)
IntlFormatS32 (if possible)

ComposeText/IntlFormat...

IntlParse...

ComposeText/IntlFormat...

IntlParse...

ComposeText/IntlFormat...

IntIParse...

W Checking the system locale

This procedure shows you how to check systemLocale to control your application’s

behavior.

% Prerequisite information

¢ “Locale-independent code” on page 196.

¢ “Locales” on page 199.

¢ “Predefined locale identifiers” on page 199.

% Procedure

And #include this
ISR.H

ISR.H
CMPSTEXTH /ISR.H
ISR.H

ISR.H

ISR.H

ISR.H

ISR.H

ISR.-H

ISRH

ISR.H

ISR.H

ISR.H

ISR.H

ISRH

ISR.H

ISR.H

ISR-H

ISR.H
CMPSTEXT.H / ISR.H
ISRH

'CMPSTEXT.H / ISR.H

ISR.H
CMPSTEXT.H / ISR.H
ISR.H

1 Compare the value of systemLocale with the locale you are interested in.

2 Write the code to perform the special function.

3 Use the comparison to control whether the code executes.

2 / INTERNATIONALIZATION

228 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

"% Example

The following code comes from the Clock sample application. The fragments come
from \2_0\PENPOINT\SDK\SAMPLE\CLOCK\CLOCKAPP.C. Here are the relevant type
and macro definitions:

#define bothUp (timeUp|dateUp)

#define oneRow 4

#define oneCol 8

#define sideBySide 32

#define alarmOnTime 64

#define timeAndDate (bothUp | oneRow | sideBySide | timeFirst)
#define dateOverTime (bothUp | oneCol | alarmOnTime)

#define defaultFmtUSA timeAndDate
#define defaultFmtJPN dateAndTime

#define filedData \
U8 fmt;

BOOLEAN alarmSnoozeEnable;

typedef struct CLOCK APP_DATA {
filedData // the filed portion of the instance data must come first

OBJECT self;
} CLOCK APP_DATA, *P CLOCK_APP DATA;

‘The code that uses these macros and types checks the system locale and selects an
appropriate date format.

#ifdef PP1 0
// Assume a USA locale for PenPoint 1.0
pInst->fmt = defaultFmtUSA;
#else

{
// Choose different defaults depending on locale

SYS_LOCALE currentLocale;

currentLocale.pLocaleString=pNull;
// get the current locale
ObjCallWarn (msgSysGetLocale, theSystem, ¤tLocale);

if (currentLocale.localeId==1ocUSA)
pInst->fmt=defaultFmtUSA;
else if (currentlocale.localeld==locdJdpn)
pInst->fmt=defaul tFmtJPN;
else
pInst->fmt=defaultFmt;

}
#endif

Like most of the sample applications, the Clock application has been written to be
compiled under both PenPoint 1.0 and PenPoint 2.0 Japanese. The symbol PP1_0 is
defined to mark code that is for PenPoint 1.0 only.

To maintain a single source code base, you must use the PenPoint bridging package
included with the PenPoint SDK 2.0 Japanese. See “Single code base” on page 233
in Chapter 17 for more information.

% Related procedures
¢ “Writing locale-independent code” on page 225.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 17 / Porting to PenPoint 2.0

This chapter discusses the changes you need to make if you are porting an existing
PenPoint™ 1.0 application to PenPoint 2.0 Japanese. You must perform these
four steps:

1 Make changes required by changed PenPoint APIs.
Update your gesture handling code.

Use bitmaps rather than fonts to display special characters.

B N

If you have not already done so, file version information as part of your
instance data.

You must also make the changes discussed in the first four chapters of this hand-
book. For example, your 8-bit character should now be 16-bit data, your strings
should be in resource files, and your locale-dependent functions should have been
replaced with locale-independent functions.

W Changed APIs

This procedure shows you how to update your PenPoint 1.0 code to reflect the new
PenPoint 2.0 APIs.

% Prerequisite information

Various categories of API changes have been made. Many of the fundamental
changes have been discussed in this handbook, such as 8-bit to 16-bit character
data. The PenPoint SDK 2.0 Release Notes describes most of the general API changes,
and the Part 5: Architectural Reference Supplement provides more message and struc-
ture-level details.

The DOS utility INTLSCAN flags lines of code that use PenPoint 1.0 APIs.

% Procedure

1 Run the utility to identify the lines in your code that contain PenPoint 1.0
APIs. See “Using the DOS utility INTLSCAN” on page 210 for details.

2 Replace the PenPoint 1.0 APIs with their updated APIs.

% Related information
¢ “Single code base” on page 233.

230 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

W Gesture handling code

This procedure updates your PenPoint 1.0 gesture handling code so that it compiles
under PenPoint 2.0.

% Prerequisite information
In PenPoint 1.0, gestures were encoded as 32-bit numbers. Beginning in 2.0, ges-

tures are encoded as Unicode characters.

The change is simple. The msg member of the GWIN_GESTURE date structure has
been renamed to gesture. So the declaration used to look like:
typedef struct GWIN GESTURE {

MESSAGE msg; // gesture Id

RECT32 bounds; // bounding box in LWC

XY32 hotPoint; // gesture hot point

OBJECT uid; // object in which the gesture was generated
U32 reserved; // reserved for future use

} GWIN GESTURE, *P_GWIN GESTURE;

and now looks like this:
typedef struct GWIN GESTURE {

CHAR gesture; // gesture Id (Unicode point)

RECT32 bounds; // bounding box in LWC

XY32 hotPoint; // gesture hot point

OBJECT uid; // object in which the gesture was generated
U32 reserved[2]; // reserved for future use

} GWIN GESTURE, *P_GWIN GESTURE;

% Procedure
To change your code, simply:
1 Search your .C files for instances of the msg member of the GWIN_GESTURE
structure.

2 Replace them with references to the gesture member.

3 Anywhere you have declared msg to be of type TAG, MESSAGE, or U32, make
sure to change the field name to be gesture of type CHAR.

4 Replace the following obsolete code fragments with their newer counterparts.
Unless you are maintaining a very old code base, you should not have to worry
about this last step.

+ Replace MsgNew(pg->msg) with pg->gesture.
+ Replace TagNum(xgsGestureName) with xgsGestureName.

% Examples

This sample comes from the Tic-Tac-Toe application. You can find the code listed
here in \2_0\PENPOINT\SDL\SAMPLE\TTT\TTTVIEW.C.

This code is from the TttViewGesture message handler. The old version reads:

MsgHandlerWithTypes (TttViewGesture, P_GWIN GESTURE, PP_TTT VIEW_INST)
{

STATUS s;
// OBJECT owner;

CHAPTER 17 / PORTING TO PENPOINT 2.0
Special characters

switch (MsgNum (pArgs->msqg)) {

case MsgNum(xgslTap):
ObjCallJdmp (msgTttViewToggleSel, self, pNull, s, Error);
break;

case MsgNum(xgsCross) :
StsJdmp (TttViewGestureSetSquare (self, pArgs, tttX), s, Error);
break;

case MsgNum(xgsCircle):
StsJdmp (TttViewGestureSetSquare (self, pArgs, tttO), s, Error);
break;

The new code instead looks like this. Notice pArgs->msg is now pArgs->gesture.

MsgHandlerWithTypes (TttViewGesture, P_GWIN_GESTURE, PP_TTT VIEW INST)

{
STATUS s;
// OBJECT owner;

switch (pArgs->gesture) {

case xgslTap:
ObjCallJdmp (msgTttViewToggleSel, self, pNull, s, Error);
break;

case xgsCross:
StsJmp (TttViewGestureSetSquare (self, pArgs, tttX), s, Error);
break;

case xgsCircle:
Stsdmp (TttViewGestureSetSquare (self, pArgs, tttO), s, Error);
break;

W Special characters

PenPoint 2.0 no longer supports the 1.0 font editor. If you used the font editor to
design special glyphs to display in your application’s user interface, these glyphs will
not display under 2.0.

% Prerequisite information

You might have designed certain user interface elements with the font editor. For
example, you might have designed a special interface that allows your application to
control a CD-ROM player. Its buttons are the familiar buttons found on most CD
players, and the icons representing play, skip track, and so on are actually special
glyphs of a font.

If you need to design special screen elements, use the bitmap editor instead of the
font editor.

If you have already created outline fonts with the font editor and need them in your
PenPoint 2.0 Japanese applications, contact GO Technical Services to see if your
fonts can be translated.

231

2 / INYERNATIONALIZATION

232 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

Also contact GO Technical Services if you need a particular Unicode glyph for your
application that is currently unsupported. Given enough demand, it is possible that
future releases of PenPoint will support the glyph you need.

% Procedure

1 Install the bitmap editor as you would any other PenPoint application. It is
available in \PENPOINT\APP\BITMAR.

2 Create the special symbols your application needs. Documentation on the
bitmap editor is in Chapter 31, Bitmap Editor, of Part 4: PenPoint Develop-
ment Tools Supplement. The bitmap editor saves your bitmap as a resource file
with the extension .RES. |

3 Use messages from clsIcon or clsBitmap to read the bitmap out of the
resource file and display it on the screen.

% Example

This code comes from the toolkit demo sample application. You can find this code
in \2_0\PENPOINT\SDK\SAMPLE\TKDEMO\ICONS.C. The first thing to do is create
an instance of clsIcon. '

ObjCallRet (msgNewDefaults, clsIcon, &in, s);

in.control.client = app;

in.win.tag = tagIconResource;

in.label.style.infoType = 1lsInfoStringId;

in.label.pString = (P_CHAR)tagIconResource;

ObjCallRet (msgNew, clsIcon, &in, s);

in.win.parent = parent;

ObjCallRet (msgWinInsert, in.object.uid, &in.win, s);
Notice no bitmap is specified here. When it needs the bitmap, clsIcon sends the
icon’s client msglconProvideBitmap. In this case, the client is the application itself.
When the application receives this message, it responds by passing the message to

its ancestor which provides the bitmap.

When you make TKDEMO, the resource compiler appends the ICON.RES file cre-
ated by the bitmap editor into either USA.RES or JPN.RES (depending on which
localization you are working on). The application class clsApp knows how to read
the icon our of the compiled resource file, so it responds appropriately to the mes-
sage msglconProvideBitmap.

% Noftes

There are several reasons GO requires you to create special symbols with the bitmap
editor rather than the font editor.

¢ Bitmaps can be local to an application, whereas fonts are a global resource
available to all applications.

¢ You can manipulate gray pixels with the bitmap editor.

CHAPTER 17 / PORTING TO PENPOINT 2.0 233
File version data

¢ clsIcon will scale bitmaps with respect to screen resolution and the window
layout, while fonts scale mathematically without regard for the surrounding
visual context. A 10-pt font scaled 120% is 12 points, regardless of whether
this is visually appropriate.

W File version data

Remember to file a version number with the instance data of your application. This
will make it possible for future versions of your application to read documents cre-
ated by previous versions of your application. One possible way to file version data
is to set aside the first byte of your filed instance data for a version number.

In general, you cannot read documents created by PenPoint 1.0 applications with
applications created for PenPoint 2.0 Japanese. This is because many PenPoint
objects are filing different data than they did in PenPoint 1.0.

P Single code base

GO provides a bridging package that allows you to maintain a single code base that
compiles and runs under both PenPoint 1.0 and PenPoint 2.0 Japanese. Your code
must be written in a special way and must make use of the header files, makefiles,

and library files provided with the bridging package.

See the PenPoint Bridging Handbook included with the PenPoint SDK 2.0 Japanese
for more details on how to use the bridging package. Most of all, the PenPoint
sample applications are specially written to compile and run under both versions of
PenPoint. Use these samples as templates for the applications and services you want
to create to run under both versions of PenPoint.

2 / INTERNATIONALIZATION

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 18 / Localization Guidelines

After you finish internationalizing your application, the only step remaining is to
prepare your application for a specific locale.

Remember that your product is much more than code. The released product should
include translated documentation, appropriate packaging, a support plan, and
other marketing and sales preparation.

The goal of localization is to produce a software product that respects a particular
culture’s language, customs, and traditions. Though this may seem obvious, a local-
ized software product should behave similarly to applications developed by people
native to your target locale.

This handbook does not cover specific details on how to localize to a particular
country. However, here are a few guidelines to consider as you begin the localiza-
tion process:

¢ Does the application support the local writing system? Your application
should read, write, render, process, and receive user input for all the characters
needed for communicating in the local writing system. The PenPoint™ oper-
ating system provides much, if not all, of the required support. Make sure
your application takes advantage of the provided support.

@ Does the application respect local text formatting conventions? Numbers,
times, dates, currencies, and other text should display as the local user expects.

¢ Does the application behave as expected? Localized applications, for instance,
should sort and compare using locally accepted precedence rules, calculate
mortgage and interest payments using local formulas, and select words, sen-
tences, and paragraphs using local grammatical rules.

¢ Does the application support standards popular in the local computing
environment? File and communication standards are particularly important.

¢ Does the application respect local customs, taboos, and traditions? For
example, make sure that any gestures, icons, and strings the application uses
are appropriate, meaningful, and nonoffensive.

¢ Is the user interface graphically pleasing? What one country considers attrac-
tive may not be attractive in another country. Japanese characters, for instance,
usually require more space than Roman characters. Does your interface make
more room elegantly?

236 PENPOINT APPLICATION WRITING GUIDE
Part 2 / internationalization Handbook

@ Is the documentation translated in a way local users find informative and
appropriate? Japanese users, for instance, tend to read documentation from
cover to cover rather than referring to the documentation only when needed.
Is your translation appropriate for such reading?

@ Is your packaging appropriate to the locale?

¢ Has your software and documentation been tested by quality assurance
personnel as well as local users?

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

PART 2 / INTERNATIONALIZATION HANDBOOK

Chapter 19 / Additional Resources

This appendix contains references to resources you may find helpful as you prepare
your code for an international market.

V Texts

These books may be helpful to you as you plan and design your application. Some
are general guidebooks; others provide specific information on particular countries.

PenPoint Application Writing Guide: Expanded Edition GO Corporation,
1992. An introduction to PenPoint programming updated from the origi-
nal edition to discuss new sample code and other changes to the PenPoint
SDK since PenPoint SDK 1.0.

Do’s and Taboos Around the World, 2nd ed. Roger Axtell, John Wiley & Sons,
1990. A funny but informative guide to culturally acceptable and unac-
ceptable behavior in various cultures.

Dos and Taboos Roger Axtell, John Wiley & Sons, 1989 Similar to Do
and Taboos Around the World, this book is aimed at small businesses.
It includes discussions of planning for international markets, pricing,
shipping, managing and motivating distributors, and communication.
It also includes an entire chapter on Japan.

Symbol Sourcebook Henry Dreyfuss, Van Nostrand Reinhold, 1984. A

collection of internationally recognized symbols and icons.

Hoover’s Handbook of World Business 1992 The Reference Press, 1991.
Includes statistical and descriptive profiles of major countries and
companies around the world.

The Unicode Standard 1.0: Worldwide Character Encoding The Unicode
Consortium, Addison-Wesley, 1991. The definitive, two-volume book on
the Unicode standard, its history and design, implementation help, and
common glyphs for all characters defined in Unicode 1.0.

Guide to Macintosh Software Localization Apple Computer, Inc., Addison-
Wesley, 1992. Despite its title, this book contains general information that
will help developers of any platform internationalize their software.

Digital Guide to Developing International Software Digital Press, 1991.
Although aimed at DEC programmers, this practical book contains tables
of sort orders, formatting conventions, and other specific data that will
help developers localize their products to North American and European
markets.

238 PENPOINT APPLICATION WRITING GUIDE
Part 2 / Internationalization Handbook

National Language Information and Design Guide, Volumes 1-4, 2nd ed., IBM

Canada, 1990. Order nos. SE09-8001-01 through SE09-8004-01.
A set of general guidelines and specific details on how to support national
languages. Volume 1 is an overview, and volumes 2 through 4 cover tech-
nical details on implementing “left-to-right and double-byte character set
languages” (vol. 2), Arabic scripts (vol. 3), and Hebrew (vol. 4)..

Gestures Desmond Morris, Peter Collett, Peter Marsh, and Marie O’Shaugh-
nessy. Scarborough House, Chelsea, Michigan. A vast collection of appro-
priate and inappropriate gestures by culture.

The Standard C Library PJ. Plauger, Prentice Hall, 1992. Although this book
discusses the entire library, it also discusses the C library functions that
deal with multibyte and wide character encoding. See “Large Character

Sets for C” by P]J. Plauger in the August 1992 issue of Dr. Dobb’s Journal
for an overview.

W Standards organizations

Contact these organizations for more information on their specific standards.

American National Standards Institute (ANSI)
1430 Broadway
New York, NY 10018

Japanese Industrial Standards Committee (JISC)
c/o Standards Department

Agency of Industrial Science and Technology
Ministry of International Trade and Industry
1-3-1, Kasumigaseki

Chiyoda-ku

Tokyo 100

Japan

Unicode Incorporated

c/o Metaphor Computer Systems

1965 Chatleston Avenue

Mountain View, CA 94043

Fax: USA 415-71--3714

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

Part 3/
PenPoint Japanese
Localization Handbook

4

243
243

v

245

247

250
251

4

255

262

266

273

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 20 / Introduction
Intended audience

Organization of this handbook

Chapter 21 / Japanese Characters

Overview of Japanese
Kanji

Kana

Romaji

Character encoding

The Japanese character set
Supplemental characters
Half- and full-width variants
Unicode

Fonts

JIS and Shift-JIS encoding

JIS encoding details

Shift-JIS encoding details
Character set code spaces
Converting to and from Shift-JIS
Gaiji

Chapter 22 / Processing Japanese Text

Japanese text entry
Handwriting recognition
Kana-kanji conversion
Romaji-kanji conversion
Supporting KKC and RKC
Using keyboards

Handling Japanese text

Delimiting words

Delimiting sentences

Comparing and sorting

Converting between character variants
Converting between Shift-JIS and Unicode
Compressing Unicode

Formatting Japanese text
Line breaks

Dates

Times

Numbers

Chapter 23 / Development Environment

Development tools
Text editors
Compilers
Debuggers
Makefiles

DOS utilities
Running PenPoint

278

279

279

283

284

285

286

287

289

290

PenPoint environment
ENVIRON.INI

MIL.INI

Initialization files

PenPoint tools

MiniText

Unicode Browser
Japanese virtual keyboard

Sample code
Japanese versions of sample code
Keisen Table application

Chapter 24 / Procedures
Working with Shift-JIS in text files

Prerequisite information
Procedure
Related information

Working with Unicode in source code
Prerequisite information

Procedure

Examples

Related information

Converting Unicode and Shift-JIS files
Prerequisite information

Procedure

Examples

Related information

Converting Unicode and Shift-]IS strings
Prerequisite information

Procedure

Example

Related information

Converting between character variants
Prerequisite information

Procedure

Example

Notes

Related information

Delimiting words
Prerequisite information
Procedure

Example

Notes

Related information

Delimiting sentences
Prerequisite information
Procedure

Example

Notes

Related information

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

291 Comparing strings
Prerequisite information
Procedure
Example
Notes
Related information

292 Sorting strings
Prerequisite information
Procedure
Example
Notes
Related information

293 Handling line breaks
Prerequisite information
Procedure
Example
Notes
Related information

295 Using Japanese fonts
Prerequisite information
Procedure
Examples
Related information

296 Supporting kana-kanji conversion
Prerequisite information
Procedure
Notes
Examples

P Chapter 25 / Resources
P Chapter 26 / Japanese Character Set

303 How the list was created

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 20 / Introduction

Japan is an exciting market for PenPoint™ applications. The Japanese localization
of the PenPoint 2.0 Japanese operating system provides many building blocks you
can use to create high-quality, innovative Japanese applications. These building
blocks include:

+ A highly accurate handwriting recognition engine.
¢ An innovative font rendering engine.

¢ Functions that provide high-level support for Japanese, such as sorting and
date formatting and parsing.

¢ Support for various ways of accepting Japanese input.

This handbook introduces concepts that help you localize your application to
Japan. It discusses the changes you may need to make to your code, the develop-
ment environment, and other issues that may influence the design of your Japanese
product.

P Intended audience

This handbook assumes the following about its readers:
You are a developer planning to localize your application or service to Japan.

¢ You are familiar with PenPoint programming. Part 1: PenPoint Application
Writing Guide is the best place to start if you are new to PenPoint program-
ming.

@ You have code that is ready to localize. Specifically, this handbook assumes
that you have applied the procedures described in the Parz 2: PenPoint Interna-
tionalization Handbook to internationalize your code. For example, your appli-
cation should support Unicode, use resource files to store strings, and contain
locale-independent code.

W Organization of this handbook

Chapter 20, Introduction, describes the organization of this handbook.

Chapter 21, Japanese Characters, describes the Japanese language from a devel-
oper’s point of view. It describes the official Japanese character set and how
PenPoint 2.0 Japanese represents the character set internally. This chapter includes
a discussion of the popular Shift-JIS (Japanese Industrial Standards) character
encoding standard and how it compares with Unicode.

244

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Chapter 22, Processing Japanese Text, builds on the previous chapter on Japanese
characters and discusses more global issues about processing Japanese text. Topics
include formatting conventions, sorting, and other text-related issues.

Chapter 23, Development Environment, describes the PenPoint 2.0 Japanese
development environment. It describes the tools, utilities, and sample files that are
designed specifically to help you create Japanese applications and services.

Chapter 24, Procedures, gives step-by-step instructions on how to perform
common tasks such as creating Shift-JIS strings, supporting kana-kanji conversion,
and using Japanese fonts.

Chapter 25, Resources, lists some books that may help you design, translate, and
market your Japanese application.

Chapter 26, Japanese Characters, contains a chart that shows the JIS character set
and the Unicode values of each character.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 21 / Japanese Characters

This chapter and Chapter 22, Processing Japanese Text, explain concepts that you
should understand when writing a Japanese application. This chapter discusses the
Japanese language and how the PenPoint™ operating system encodes Japanese
characters. Topics include:
¢ Overview of Japanese.
+ Kanji.
+ Kana.
+ Romaji.
¢ Character encoding.
+ The Japanese character set.
+ Half- and full-width variants.

+ Unicode.
+ Fonts.

+ JIS and Shift-JIS encoding.

+]IS encoding details.
Shift-JIS encoding details.
Converting to and from Shift-JIS.

*

*

+ Gaiji.
The next chapter discusses more general issues about handling user text input and

processing Japanese text. If you are new to the Japanese language and its encoding,
we recommend you read these two chapters in order.

W Overview of Japanese

The Japanese writing system is among the most complicated in the world. Where
most writing systems use fewer than 255 symbols, Japanese uses over 6,000 symbols.

Fortunately, you do not need to write any code to support this complex language.
Many PenPoint 2.0 Japanese classes and objects already support Japanese behavior.
For example, clsTextView can manipulate and display Japanese text in a window.

Use PenPoint 2.0 Japanese classes and objects whenever possible to implement this
behavior. See Part 4: UI Toolkit and Part 5: Input and Handwriting Recognition of
the PenPoint Architectural Reference for details.

Furthermore, the PenPoint 2.0 Japanese operating system provides a large set of
international functions that have been localized to manipulate Japanese characters.
For example, the IntlSort() function can correctly sort Japanese characters.

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Use these international functions whenever available to provide behavior Japanese
users expect. See Chapter 22, Processing Japanese Text, for details.

Most languages are written with a single set of symbols. English, for example, uses a
single set of characters from a 26-letter alphabet and a collection of numerals and
punctuation marks. Japanese writing, in contrast, uses four different sets of symbols
called kanji, hiragana, katakana, and romaji. Each of these sets is discussed below.
Table 21-1 summarizes the discussion.

Kaniji

Kaniji is a collection of more than 6,000 characters derived from Chinese. Kanji
is the core of Japanese, representing nouns, verbs, adverbs, and adjectives. When a
PenPoint 2.0 Japanese term has a good kanji translation, the kanji is used in the
user interface. An official list of 6,355 characters, representing more than 99 per-
cent of kanji in common use, has been published by the Japanese Industrial Stan-
dards (JIS) organization. See “Character encoding” on page 247 for more details.

Kana

Kana are two sets of symbols that represent syllables of spoken Japanese. These sets
are called syllabaries because each symbol represents a syllable of spoken language.
Each syllabary contains 46 basic characters. You can apply vocalization markings to
these basic characters to represent a possible total of 104 syllables. These vocaliza-
tion markings indicate how to pronounce a syllable. Not all of the possible charac-
ters are used in practice.

Hiragana is a set of 83 characters used mainly to write inflections. Both verbs
and adjectives are inflected in Japanese. Pure hiragana words are rare in
computer interfaces. Sometimes, though, you may see hiragana following
kanji to form a complete word, as shown in the examples for “Apply” and
“Close” in the margin.

Katakana is a set of 86 characters used mainly to write words borrowed from
foreign languages. These borrowed terms are called loanwords.
For example, the Japanese word for #ruck is written in katakana and
pronounced teruku; similarly, the word for baseball is written and pro-
nounced besubaru. A popular Japanese dictionary lists more than 13,000
loanwords. Katakana words, because of their foreign origin, are often used
in computer interfaces. The katakana equivalents of PenPoint (penpointo),
notebook (no10), and printer (purinda) are shown in the margin.

¥ Romadiji

Romaji is the set of characters of the Latin alphabet. /i means characterin Japanese,
so romaji is literally “roman character.” Romaji includes both uppercase and lower-
case letters, numerals, and English punctation marks. Japanese uses romaji to repre-
sent expressions without turning them into loanwords.

The Japanese localization of the PenPoint 2.0 Japanese operating system provides a
great deal of support for Japanese language processing. For example, the operating

Kanji is the most complex of
all scripte. Each character is
composed of an average of
eight strokes.

Document %ﬁ

Cancel HXZ%
Print Fl il

Hiragana characters are
rounded and composed of
two or three strokes.

Apply WHT %
Close Fﬁﬁ U5
Yes 3w

Katakana characters are
more angular than hiragana.

PenPoint RRA B
Notebook ./ — [\
Printer 70 U > 57

Examples include:

LPTT:
SDK
DOS

CHAPTER 21 / JAPANESE CHARACTERS

Character encoding

247

Japanese writing TABLE 21-1

Script Number of characters Typical uses Example

Kanji Roughly 6,400 Key concepts that translate AAGE =&
well into Japanese

Hiragana 83 commonly used Articles Hirl Ewn
Verb and adjective inflections

Katakana 86 commonly used Accepted loanwords RUBRA Y N

Plant, animal names

Onomatopoeia (bang, click) 7

yry

Telegrams
Romaji 52 letters, 10 numerals, Foreign words 2.0 SDK, VGA, DOS
147 symbols Transliteration of Japanese

system provides an easy way for developers to encode, display, and recognize
Japanese characters. The next few sections discuss character encoding, fonts,
handwriting recognition, and conversion to and from existing Japanese encoding
standards.

¥ Character encoding

The 7-bit ASCII character encoding scheme is too small to accommodate the thou-
sands of Japanese characters. The most popular encoding system commonly used to
encode Japanese in personal computers is called Shift-JIS. See “Shift-JIS encoding
details” on page 252 for details on this encoding system.

Because code that processes Shift-JIS text can be quite difficult to write, the
PenPoint 2.0 Japanese operating system uses Unicode to encode Japanese charac-
ters. The following sections discuss Unicode and how it compares with Shift-JIS.

PenPoint 2.0 Japanese provides simple facilities to work with Japanese encoded
characters in either Shift-JIS or Unicode, although your application must process
Unicode characters internally.

The Japanese character set

PenPoint 2.0 Japanese supports a standard list of characters published by the JIS
organization in 1990. The characters are listed in a document called JIS C 0208-1990
and include the following:

6,355 kanji in Level 1 and Level 2.

L

¢ 86 katakana characters.
+ 83 hiragana characters.
¢ 10 numerals.

¢ 52 Roman characters.

147 symbols.

L 4

L 4

66 Cyrillic characters.

48 Greek characters.

&

32 line elements for making charts.

L 4

3 / JAPANESE LOCALIZATION

248 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The kanji are divided into two levels. The Level 1 kanji contains 2,965 of the most These are exammples of radicals.
commonly used kanji sorted by pronunciation. The Level 2 kanji includes 3,390 L

less-frequently used characters sorted by radical. A radical is the most important J }

part of a kanji, somewhat analogous to a Latin or Greek root word in English.

Within each radical, characters are sorted by the number of strokes required to

write the character (excluding the radical).

Together, these levels define 6,355 characters, or more than 99 percent of the kanji
in common use.

The 1990 JIS standard derives from two previous JIS standards: one published

in 1978 and the other in 1983. New kanji were added and existing characters
rearranged in each edition, so that the standards are not strict supersets. Conversion
between sets, however, is straightforward.

PenPoint 2.0 Japanese has glyphs for all of the characters in the 1990 character set.
See “Fonts” on page 250 for more information.

The handwriting recognition engine that comes with the PenPoint SDK 2.0 Japa-
nese can recognize a large fraction of the characters in the 1990 list. See “Hand-
writing recognition” on page 255 for details.

% Supplemental characters

In 1990, JIS also published a supplemental character list in a document called JIS X
0212-1990. It specifies an additional 5,801 kanji, a collection of 245 Latin-based
characters, and 21 miscellaneous symbols and diacritical marks. These characters
are called the JIS Supplemental Characters. Because they are not part of the JIS Level
1 or 2 kanji, these characters are sometimes called gaiji, literally characters (j7)

- which are outside (gaz) the standard.

These supplemental characters are rarely used variants of characters primarily used
in proper names. The fonts shipped with PenPoint 2.0 Japanese do not contain
glyphs for these supplemental characters, although Unicode does assign each
character a code point. Thus you can represent any of these supplemental characters
internally, but PenPoint 2.0 Japanese cannot display the appropriate glyph.

Because there was no standard way of encoding these characters prior to Unicode,
PenPoint 2.0 Japanese files containing these supplemental characters are incompat-
ible. See “Gaiji” on page 254 for information on how PenPoint imports and exports
files containing these characters.

CHAPTER 21 / JAPANESE CHARACTERS 249
Character encoding

% Half- and full-width variants

Any katakana character may be half- or full-width. In Japanese, this is translated as Zenkaku (full-width)
hankaku (half-width) or zenkaku (full-width). PenPoint 2.0 Japanese can repre- o~ 32 o~

. . : RPA >
sent and display these half- and full-width variants. A HHH

This width distinction is not an inherent part of the language. Rather, it is a histor-

ical convention from the JIS standard. To allow more characters to fit per line, the Hankaku (half-width)
original JIS standard allowed a variant of the katakana characters to be as wide as a NV AY
monospaced Roman letter. Because kanji were twice as wide as Roman characters, T E Y

these katakana variants were called half-width characters.

In PenPoint 2.0 Japanese, a normal Roman character remains roughly half the
width of a kanji character. Because Roman characters are often proportional while
Japanese kana and kanji are always fixed-width, the comparison is a rough estimate.
In addition to these normal-width (hankaku) ASCII characters, PenPoint can also
represent and display double-width (zenkaku) ASCII characters.

7/ JAPANESE LOCALIZATION

X

The double-width Roman characters are monospaced, so they line up evenly with
kanji characters. You might use these double-width characters in a title or table that
contains mixed kanji and roman characters.

To see these zenkaku and hankaku variants, select some text in a MiniText docu-
ment and select To Zenkaku or To Hankaku from the Convert menu.

PenPoint 2.0 Japanese provides a function called IntlStrConvert() that can convert
between the half- and full-width characters. Remember that only katakana and
ASCII characters have these half-and full-width variants. See “Converting between
character variants” on page 287 for more information.

P Unicode

PenPoint 2.0 Japanese uses the 16-bit Unicode encoding standard to represent Jap- For more information on the

anese characters. Your source code should already support 16-bit Unicode charac- ~ Unicode standard, consult the
two-volume Unicode Standard:

ters. If it does not, see Part 2: PenPoint Internationalization Handbook for details on yursion 1.0 and Part 2: Penfoint

how to support Unicode. . Internationalization Handbook.

. Unicode encodes over 26,000
The Unicode standard assigns all the characters discussed above a unique 16-bit characters from the world's
number, sometimes called a code point. All the characters specified in the most ~ #¢ripte:

current 1990 list, the 5,801 supplemental kanji characters, as well as the half- and
full-width versions of katakana and Roman alphanumerics are assigned unique
Unicode code points. '

Thus, your application can represent and manipulate any of these characters
internally.

Table 21-2 shows how various Japanese characters are encoded in Unicode. One of
the design goals of Unicode was to eliminate redundant coding of characters
common to Chinese, Japanese, and Korean (CJK). If all three languages use the
same character, that character is assigned a single Unicode value.

250 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The space allotted to these unified characters is labelled CJK ideographs. All of the
JIS kanji fall into this range. Also, because Chinese, Japanese, and Korean share
many punctuation marks, many of the Japanese punctuation marks are encoded as
ideographic punctuation.

Unicode encoding of Japanese characters TABLE 21-2
Description Unicode values (hex) Widsh

Romaji (ASCII, Extended Latin) U+0000—>U+03FF Half, proportional
Ideographic punctuation U+3000—U+303F Full, monospaced
Hiragana U+3040—U+309F Full, monospaced
Regular-width katakana (zenkaku) U+30A0—-U+30FF Full, monospaced
CJK ideographs (kanji) U+4E00—U+9FFF Full, monospaced
Half-width katakana (hankaku) U+FF60—U+FF9F Half, monospaced
Double-width ASCII U+FF00—-U+FF5F Full, monospaced
Compatibility Zone U+FE00—U+FFEF Not applicable
Private Use Zone U+E000—U+F7FF Not applicable

Unicode encodes half-width katkana and double-width ASCII in an area called the
Compatibility zone. It is called the Compatibility zone because the characters in
this zone exist in Unicode solely to be compatible with other character sets like
Shift-JIS. Remember that the half- and full-width distinction for katakana is not
inherent in Japanese, so these characters would not need code points if they did not
exist in the JIS standard.

Because files created on Japanese computers may contain characters outside of the
official JIS list, PenPoint 2.0 Japanese must map them to some location in the Uni-
code code space. The Unicode Private Use Zone is used for this purpose. See
“Gaiji” on page 254 for details.

W Fonts
The PenPoint operating system 2.0 Japanese currently provides two Japanese fonts, Mincho
Heisei Mincho and Heisei Gothic. Use the Mincho font in roughly the same way B H A5
you use a Roman serif font, and use Gothic as you would a Roman sans-serif font.
Note that all kanji and kana are monospaced. Gothic
The Mincho and Heisei fonts contain glyphs for JIS levels 1 and 2 kanji as well as T wH BAE

all of the other JIS C 0208-1990 characters. This includes the hankaku and zenkaku
versions of ASCII and katakana characters, but does not include the supplemental
characters.

The default system font, used by the system and text applications, is 12-point
Mincho. The default user font used in fields is 12-point Gothic.

Users can set either of these defaults to Gothic, Roman, Sans Serif, or Mincho in
the Preferences section of the Settings notebook. If Roman is the chosen default
font, Japanese characters appear in Mincho. If Sans Serif is chosen, Japanese charac-
ters appear in Gothic.

CHAPTER 21 / JAPANESE CHARACTERS 251
JIS and Shift-JIS encoding

Again, the standard fonts do not contain glyphs for any of the 5,801 supplemental
kanji. So while your application can represent internally any Unicode character, the
only kanji that appear on the screen are JIS levels 1 and 2 characters.

If your application tries to display one of the 5,801 JIS Supplemental Characters, it Hex quads
will appear as a hex quad. A hex quad is a collection of four hex numbers that rep-

00 F1 00
resent a single 16-bit code. The first (high) byte is on top, and the second (low) byte IB F2 12
is on the bottom. The first example in the margin represents the hexadecimal
number 0x001B.

The fonts are divided into several files, as shown in Table 21-3.

Japanese font files TABLE 21-3
Font file Size in kilobytes Contents

MC55.FDB 873 Mincho, JIS Level 1

MCS80.FDB 1,101 Mincho, JIS Level 2

MCB81.FDB 10 Mincho, half-width (hankaku)

GT55.FDB 712 Gothic, JIS Level 1

GT80.FDB 878 Gothic, JIS Level 2

GT81.FDB 7 Gothic, half-width (hankaku)

W JIS and Shift-JIS encoding

JIS and Shift-JIS are two popular character encoding schemes used by current Japa-
nese computer systems. Think of JIS encoding as the standard on larger computers
and Shift-JIS as the personal computer standard. For example, IBM DOS J5.0/V and
KanjiTalk, the Japanese version of the Macintosh operating system, use the Shift-JIS
encoding standard.

Do not confuse the JIS encoding standard with the JIS character list. The JIS
encoding standard maps characters in the JIS character list to a particular code
point.

Both JIS and Shift-JIS are multibyte encoding systems. That is, both use two bytes
to represent Japanese characters. The only exception is a hankaku character, the
half-width version of katakana. Each hankaku character requires one byte.

Both schemes also use a single byte to represent ASCII characters. This allows a text
file to mix ASCII and Japanese characters.

% JIS encoding details

JIS encoding overlaps with the printable ASCII characters; that is, its codes fall
between decimal 33 and 126 (hex 21 through 5F). ASCII codes still represent ASCII
characters, and each Japanese character is represented as a sequence of 2 byte-
long ASCII codes. Hankaku characters are represented by a single byte between
0xAl and 0xDE

3 / JAPANESE LOCALIZATION

252 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

To distinguish a single-byte ASCII character from a double-byte Japanese character,
applications must search for a shift state. The shift state indicates whether a given
text stream is in one-byte-per-character mode (ASCII) or two-bytes-per-character
mode (Japanese).

A shift is indicated by a particular escape sequence like ESC $ @ (hex 1B 24 40).
“Shift out” marks the beginning of a series of double-byte JIS characters, while
“shift in” marks the return to single-byte ASCII characters. Different shift states are

used for each different character set (1978, 1983, 1990).

The shift state can make text-processing code quite complex. If the application
needs to process text in the middle of a sentence or page, for example, the code may
be required to read backwards to determine the state.

Because the JIS encoding system is not widely used by Japanese personal computers,
PenPoint 2.0 Japanese does not provide any support of the JIS encoding. If neces-
sary, convert any JIS files to Shift-JIS before importing them into PenPoint 2.0
Japanese.

% Shift-JIS encoding details

Shift-JIS, sometimes abbreviated XJIS, is a variation of JIS encoding used widely by
Japanese personal computers. It eliminates state information by shifting the code of
the first byte of a Japanese character to above hex 80.

The second byte falls between decimal 64 and 126 (hex 40 and 7E). This range
contains both printing and nonprinting ASCII characters. So while the first byte of a
Shift-JIS character cannot be confused with a standard 7-bit ASCII character, the

second byte can be. As in the JIS encoding, hankaku characters are represented by a
single byte between 0xAl and 0xDE

Although the ASCII standard itself is only 7 bits, most vendors use the high ASCII
characters above hex 80 for special characters. For example, IBM uses codes above
hex 80 for line drawing elements, European alphabets, and other glyphs. Thus even
the first byte of a Shift-JIS character overlaps with codes that are previously assigned
code points.

This overlap makes processing text difficult even without explicit state information
embedded in the text stream.

For example, say your code encounters a character with code value below hex 80. It
might be an ASCII character, but it might also be the second byte of a Japanese char-
acter. You can check the code of the previous character, but this check does not
always resolve the ambiguity.

If the previous character is above hex 80, it can still be the first or second byte of a
Japanese character. To determine the state of the current character, your code must
scan through the stream backwards until two sequential ASCII characters appear.
This algorithm is complex, error-prone, and computationally expensive.

CHAPTER 21 / JAPANESE CHARACTERS 253
JIS and Shift-JIS encoding :

% Character set code spaces

Figure 21-1 shows what codes the different character encoding systems occupy.
Each of the two-dimensional charts shows the high byte along the left edge and the
low byte along the top edge. Notice that the original JIS encoding completely over-
laps with 7-bit ASCII; all bytes fall between hex 20 and 80.

Although Shift-JIS solves this overlap problem for 7-bit ASCII, most 8-bit ASCII
code points still overlap with Shift-JIS code points.

Unicode code points are shown on the left side. The four labelled zones contain the
following characters:
Alphabets contains alphabets, syllabaries, and symbols.

CJK contains Chinese, Japanese, and Korean characters, including all the JIS
Level 1, Level 2, and supplemental kanji.

Private Use area contains compatibility zone characters and characters for pri-
vate, corporate use. GO’s gesture glyphs are in the corporate use zone. The
hankaku, katakana, and zenkaku ASCII characters are the in compatibility
zone.

Reserved area is reserved by the Unicode Consortium for future use.

Character code spaces FIGURE 21-1
Unicode JIS and Shift-JIS Shift-JIS
Low byte ——> Low byte ——> High byte: &1-9F, EO-EF
00 20 40 60 80 A0 CO E0 FF 00 20 40 60 80 A0 Co Eo FF Low byte: 40-7E, 80-FC
High 00 T N Zenkaku: AO-EO
byte
20 JIs
l 40 High byte: 21-7E
Low byte: 21-7E
60 Zenkaku: AO-EO
80
Unicode
A0 See Table 21-2 for the ranges
Co - of Unicode code pointe.
E0
FF

B shifs

. Alphabets D Reserved
- Private Use Are;/

00 20 40 60 80 A0 CO EO FF
= :

E 3/ JAPANESE LOCALIZATION

254 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

% Converting to and from Shift-JIS

PenPoint 2.0 Japanese provides various conversion facilities between Shift-JIS and

Unicode:

¢ Convert Shift-JIS files to and from Unicode with the DOS utility UCONVERT.
This utility is included with the SDK in \2_0\SDK\UTIL\DOS\UCONVERT. See
“Converting Unicode and Shift-JIS files” on page 285 for details on using the
uility. ~

¢ Directly import Shift-JIS files into MiniText. See “Working with Shift-JIS in
text files” on page 283 for details. ‘

¢ Use the functions IntlMBToUnicode() and IntlUnicode ToMB() to translate
text programmatically. The default behavior of this function in PenPoint 2.0
Japanese converts between Unicode and the 1990 Shift-JIS encoding.

¢ Use clsText messages msgTextRead and msgTextWrite to read and write
Shift-JIS strings. These messages are documented in TXTDATA.H. Specify
fileTypeASCII as the format. Because Shift-JIS uses 8-bit characters, file-
TypeASCII works for both Shift-JIS and 8-bit extensions to ASCIL. File types
are defined in FILETYPE.H.

Y% Gaiji
Gaiji literally means characters (j7) that are outside (ga7) of the standard. There are
thousands of characters that are not included in JIS levels 1 or 2, many of which are
rarely used characters or rare forms of characters used in proper names.

Many of these characters have been defined as part of the 5,801 supplementary
kanji added to JIS in 1990. Unicode assigns each of these characters a unique
16-bit code.

Before Unicode, however, implementation of these gaiji varied tremendously. Con-
sequently, files are often incompatible between applications and computer systems.
For example, the AX Consortium, NEC, and Fujitsu each support mutually incom-
patible gaiji encoding schemes.

When you import a file containing gaiji encoded by one of these three schemes, Unicode sets aside an area
PenPoint 2.0 Japanese automatically maps the characters into parts of the Unicode ~¢2lled the Private Use Area to
. . ' use as a repository for private
Private Use Area. The characters are displayed as hex quads because the fonts codes. The area lies between
shipped with PenPoint 2.0 Japanese do not contain glyphs for gaiji. When you U+EOOO and U+F7FF. See

export the documents, all the gaiji characters are mapped to their original values. éﬁ';ﬁ;:{:mmn 1O, Volume 2
Note that if the computer from which you are importing does not use the

same gaiji mapping as the computer to which you are exporting, the gaiji are

not mapped correctly. In other words, PenPoint 2.0 Japanese does not translate

between different gaiji encodings.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 22 / Processing Japanese Text

This chapter discusses how Japanese text is typically processed and how your
application can use the PenPoint™ operating system’s support for high-level text
processing. Topics include:
¢ Japanese text entry.
+ Handwriting recognition.

«» Kana-kanji conversion.

L 2

Romaji-kanji conversion.
Supporting KKC and RKC.
Using keyboards.

L 4

L 4

¢ Handling Japanese text.
o Delimiting words.
o Delimiting sentences.
+ Comparing and sorting.
+ Converting between Shift-JIS and Unicode.

+ Compressing Unicode.

¢ Formatting Japanese text.
+ Line breaks.
» Dates.
+ Times.

+ Numbers.

W Japanese text entry

Using a keyboard to enter Japanese kanji is a cumbersome and time-consuming
process. One of the most exciting features of PenPoint 2.0 Japanese is Japanese
handwriting recognition.

With PenPoint 2.0 Japanese, users can simply write Japanese characters on their
PenPoint machine and the handwriting recognition engine translates the characters
into a machine-readable form. You do not have to write any code to support this
feature.

% Handwriting recognition
The handwriting engine shipped with PenPoint 2.0 Japanese recognizes all of the
JIS kana, romaji, and almost all of the JIS levels 1 and 2 kanji. See “Character recog-
nition” on page 256 for more details on which characters the handwriting engine
recognizes.

256 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Here are a few tips that help the handwriting recognizer achieve higher accuracy.
You might mention these tips in your user documentation:

¢ Use the correct stroke order. Each Japanese character has a standard stroke
order. Although the engine recognizes popular variations on the stroke order,
recognition is better with the standard stroke order.

¢ Print neatly. Highly curved and joined strokes take more time to recognize.

¢ Keep radicals separate. Many Japanese characters are composed of two or
more radicals. Do not overlap them when writing.

¢ Do not add extra strokes. The engine tolerates missing strokes but not addi-
tional strokes.

¢ Experiment with simplified forms of a character. The engine recognizes tradi-
tional as well as some of the simplified forms of a character.

%» Character recognition
The handwriting engine recognizes all of the JIS Level 1 kanji (2,965) and roughly
2,900 of the 3,390 Level 2 kanji. The unrecognized characters fall into three
categories:

¢ Radicals that are not complete characters in themselves, suchas | = J .
Rarely used characters, such as i i fif§ .

¢ Rare variants of a character whose common style is recognized, such as

Users can enter characters not recognized by the handwriting engine in one of
three ways:

& Kana-kanji conversion (KKC) allows users to “spell” the kanji character in
either hiragana or katakana. The user then converts the kana sequence into a
kanji character. See “Kana-kanji conversion” on page 257 for more details

J] pag
on KKC.

¢ Romaji-kanji conversion (RKC) allows users to type in the English romaniza-
tion for a kanji character. PenPoint 2.0 Japanese uses the Hepburn system of
romanization. See “Romaji-kanji conversion” on page 258 for more infor-
mation.

¢ The Unicode Browser, a PenPoint accessory, allows users to enter these charac-
ters from a collection of pop-up lists. See “Unicode Browser” on page 279 for
details. The document New UI Features in PenPoint 2.0 shows you how to use
the Unicode Browser.

Because the fonts shipped with PenPoint 2.0 Japanese contain glyphs for all Level 1
and 2 characters, your application can display these characters even though the
handwriting recognition engine cannot recognize them. The limitation discussed
here applies only to the character recognition engine.

%r Punctuation recognition

CHAPTER 22 / PROCESSING JAPANESE TEXT 257
Japanese text entry

The handwriting engine recognizes the following Japanese punctuation marks and
symbols. ASCII punctuation marks are used primarily with romaji, although there is

some overlap. Japanese, for example, uses the English question mark.

See the Unicode Standard, Volume 1, pages 332 through 338, for representative

glyphs.

Japanese punctuation marks

TABLE 22-1

Unicode
valve

U+3002
U+3001
U+30FB
U+30FD
U+30FE

U+309D
U+309E

U+3003
U+3004

U+3005
U+3006
U+3007
U+30FC

U+300C
U+300D
U+3012

Unicode name

Ideographic period
Ideographic comma
Katakana middle dot
Katakana iteration mark

Katakana voiced interaction mark

Hiragana iteration mark

Hiragana voiced interation mark

Ditto mark

Ideographic ditto mark

Ideographic iteration mark
Ideographic closing mark
Ideographic number 0

Katakana-hiragana prolonged sound

mark

Opening corner bracket
Closing corner bracket
Postal mark

% Kana-kaniji conversion

Use

Denotes end of sentence.

Indicates pause, clarifies sentence structure.

3 / JAPANESE LOCALIZATION

Separates loanwords that may be unfamiliar to the reader.
Indicates that the previous katakana character should be repeated.

Indicates that the previous katakana character should be repeated
as a voiced character.

Indicates that the previous hiragana character should be repeated.

Indicates that the previous hiragana character should be repeated
as a voiced character.

Indicates above line should be repeated.

Used like a ditto mark to indicate the line above should be
repeated.

Indicates previous kanji should be repeated.
Indicates a deadline (for example, to mail in tax forms).
Denotes the number 0, commonly seen on business cards.

Used to indicate that the previous kana sound should be
elongated.

Used to start a quotation.
Used to end a quotation.

Indicates Japanese postal code, analogous to U.S. zip codes.

The typical method of entering Japanese with a personal computer is called kana-
kanji conversion (KKC). The approach is as follows.

The user types kana with a Japanese keyboard. The user then presses a special key to
convert a sequence of kana to a single kanji character.

Japanese has many homophones, words that sound alike. Consequently, a single
sequence of kana specifies a number of possible kanji. After the user presses the
convert key, a list of possible matches appears, and the user then selects the desired

character.

PenPoint 2.0 Japanese supports this method of entering kanji in addition to the
direct handwriting recognition discussed above. Users can type or write kana char-
acters, and then initiate KKC by pressing a special key (the space bar on American
keyboards and a dedicated KKC key on Japanese keyboards) or by using the right up

—! gesture.

258 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The easiest way to provide KKC support in your application is to use a PenPoint 2.0
Japanese object that implements the behavior. Instances of cIsIP or clsField auto-
matically support KKC without any additional code.

To provide KKC support with your own custom objects, read the protocol described
below in “Supporting KKC and RKC.” Also see “Supporting kana-kanji conver-
sion” on page 296 for a code sample.

% Romaiji-kaniji conversion
A process similar to KKC called romaji-kanji conversion (RKC) allows users to

enter Japanese characters by typing English letters. The letters are first translated
into kana, which then undergo KKC to specify a list of possible kanji.

For example, if the user types the word #ihongo and hits the convert key, the inser-

tion pad replaces nihongo with Japanese characters. nihongo= H A&

Users can use an attached keyboard or PenPoint’s virtual keyboard to type Japanese
characters. The space bar initiates RKC on the English keyboard. The Japanese key-
board has a dedicated conversion key, as well as extra keys for scrolling through
alternatives and reversing the conversion.

See “Using keyboards” on page 261 for tips on using the keyboards to type
Japanese.

% Supporting KKC and RKC

The easiest way to support KKC and RKC is to create an instance of cIsIP or clsField
because these objects already support both character conversions. In general, only
sophisticated text-processing applications, such as word processors, need create
their own classes to handle KKC and RKC.

If you create your own class to support KKC and RKC, it should follow the protocol
described below. Before we describe the protocol, you should know about three
new PenPoint 2.0 Japanese classes.

The first new class, called clsCharTranslator, is an intermediary between clients
that want to support character translation and services that provide character trans-
lation functionality. Because clsCharTranslator is an abstract class, its descendant
cIsKKCT serves as the actual intermediary.

Both these classes receive messages from the client (often via clsGwin, as described ooOect)

below), and then request services from cIsKKC. Because cIsKKC is a descendant of —]
clsService, it provides APIs for requesting services to perform actual character trans-

lations. This architecture permits you to replace the translation engine provided DleChar ‘
with PenPoint 2.0 Japanese with your own engine.

Because the character translator requests gesture information, its clients are almost olokKC-

. . CharTranslator
always subclasses of clsGWin. Every instance of clsGWin creates a character trans-

lator (during msglnit) to which it sends translation requests.

! Client
You can specify which translator clsGWin sends the message to by filling in the (Subclase

of clsGWin)
LOCALE_ID field of GWIN_NEW_ONLY. If you do not specify a translator, clsGWin

\

cleService

CHAPTER 22 / PROCESSING JAPANESE TEXT 259
Japanese text entry

creates a translator appropriate to the system locale. The default translator for Japan

(locJpn) is an instance of clsKKCT.
Here is an example of the protocol in action, described as cIsIP implements it:

1 The user writes a few kana characters in an insertion pad, then requests KKC
with the right up —! gesture, as shown in Figure 22-1. When the pad receives a
gesture, it self-sends the message msgCharTransGesture.

Handling the KKC gesture FIGURE 22-1

Send msgCharTrans-
Gesture when the user
makes a gesture.

3 / JAPANESE LOCALIZATION

Respond to msgCharTrans-
CetClientBuffer by sending
the requested portions of
your text buffer.

2 Rather than handling the message itself, cIsIP allows the message to be han-
dled by clsGWin. In turn, clsGWin sends the message to the character trans-
lator it created as part of its response to msglnit. Again, for PenPoint 2.0
Japanese, the default translator is an instance of cIsKKCT.

3 When the character translator (an instance of cIsSKKCT) receives the gesture
information it determines if the gesture is relevant to character translation.
Since the right-up gesture explicitly requests KKC, it sends the msgCharTrans-
GetClientBuffer to the client (clsIP) requesting a portion of its buffer.

4 The client sends the requested characters in response to msgCharTransGet-
ClientBuffer.

5 The translator communicates with cIsKKC, the front-end to the actual service
that provides KKC. In this case, a translation is needed, so the translator sends
msgCharTransModifyBuffer with the translation to the client.

6 Using information sent with msgCharTransModifyBuffer, the insertion pad
updates its internal buffer and user interface to display the translated char-
acter. Note that in the result, shown in Figure 22-2, the translated characters
are highlighted. The arguments sent with msgCharTransModifyBuffer con-
tain information on which characters to highlight. See Part 6: PenPoint User
Interface Design Reference Supplement for details on how character highlighting
should behave during KKC.

Displaying the translated characters FIGURE 22.2

Handle msgCharTrans-
ModifyBuffer to display
the result of character
translation.

260

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

7 The user then requests a list of alternatives by tapping on the highlighted
character. The insertion pad self-sends msgCharTransGesture, again allowing
the message to be handled by cIsGWin.

8 The translator receives the message from clsGWin and queries cIsKKC for
character alternatives. It also asks the client where the character alternatives
pop-up box should be placed by sending msgCharTransProvideListXY. The
insertion pad calculates the coordinates of the upper-left corner of the pop-up
box. The pop-up box should appear directly below the original character.

Handling a character alternatives request FIGURE 22-3

Self-send msgCharTrans-
Gesture to notify the
character translator of
the user’s tap.

Handle msgCharTrans-
ProvidelistXY to let the

- character translator
calculate where to place the
character alternatives list.

' Handle msgCharTrans-

. ModifyBuffer to update
your buffer with the user's
choice.

9 If the user selects an alternative from the pop-up box, the translator sends

msgCharTransModifyBuffer to the insertion pad. The insertion pad then

updates its buffer and user interface.

10 When the user taps OK to dismiss insertion pad, the pad self-sends msgChar-
TransGoQuiescent to reset the translator in preparation for the next character
translation request.

The description above does not exhaust the messages involved in the character
translation protocol. For example, it did not mention any of the messages involved
for supporting keyboard input. The following paragraphs describe the most impor-
tant messages involved in the protocol.

The client should self-send the following four messages when appropriate. How-
ever, the client should not define a method to handle the message. Rather, the client
should allow the message to be passed up to clsGWin.

1 Self-send msgCharTransKey each time the user presses a key.

2 Self-send msgCharTransChar each time the user edits an existing buffer (for
example, when the user inserts or deletes a character). Normally, you need not
send this message as the user writes a new character. See step 4 below for han-
dling this case.

3 Self-send msgCharTransGoQuiescent to cancel the current translation. When
the user taps outside an insertion pad, for example, cIsIP self-sends msgChar-
TransGoQuiescent.

4 Self-send msgCharTransGesture each time the user makes a gesture on
your text. '

CHAPTER 22 / PROCESSING JAPANESE TEXT

The client should respond to the following messages sent by the character
translator:

msgCharTransModifyBuffer, which contains information on how to translate
characters. The client should respond by updating its text buffer and user
interface, including updating strong and weak highlighting. The character
translator sends the client a CHAR_TRANS_MODIFY structure containing
all the relevant information.

msgCharTransGetClientBuffer, which asks the client for some text from its
buffer. Pass the requested text to the character translator as part of a
CHAR_TRANS_GET_BUF structure.

msgCharTransProvideListXY, which asks the client where to put the charac-
ter alternative list. The client should compute root window coordinates so
that the pop-up box appears below the original character.

See “Supporting kana-kanji conversion” on page 296 for more details and a code
sample.

% Using keyboards

The PenPoint operating system 2.0 Japanese supports a number of keyboards
including;

¢ IBM Japanese AO1.

¢ IBM U.S. keyboard (IBM AT).

¢ Toshiba laptop keyboards (Toshiba Dynabook 386/20).
¢ Toshiba desktop keyboards (Toshiba J3100ZS).

¢ AX Consortium keyboard (Okidata 486 VX530)

Set the Keyboard variable in MIL.INI to identify your keyboard. Valid values are
shown in MIL.INL

Here are some tips when using the American keyboard:

¢ The keyboard has two modes: One lets you type English characters, the other
Japanese characters. Press Ctrl-Shift-L to toggle between modes.

¢ If you are having problems toggling modes, cancel the insertion pad, press
Ctrl-Shift-L, and then open another pad.

¢ Press the space bar to initiate KKC or RKC.

¢ In Japanese mode, alphabetic keys map to hiragana. Hold down the Shift key
to enter katakana.

¢ Use the up and down arrows to scroll through the character alternatives pop-

up box.

The Japanese keyboard has dedicated keys to initiate character conversion, scroll
through character alternatives, and adjust the current selection.

Japanese text entry

261

3 / JAPANESE LOCALIZATION

262 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The virtual keyboard included as a PenPoint 2.0 Japanese accessory emulates both
American and Japanese keyboards. Bring up the keyboard from the Accessories
notebook and make the check gesture on the keyboard title bar to select an emu-
lation mode. See “Japanese virtual keyboard” on page 279 for more information.

¥ Handling Japanese text

PenPoint 2.0 Japanese provides a collection of international functions to perform
tasks like formatting dates and times, sorting, and word and paragraph selection.
Because the desired behavior of these functions varies widely between locales, the
international functions accept an argument that identifies a locale. The value of this
argument determines the function’s behavior.

Remember that in this context, a locale identifies a country, a language, and an
optional dialect. The default locale in PenPoint 2.0 Japanese is Japan, which is
defined as the 32-bit locale identifier locJpn in GOLOCALE.H.

See Table 22-2 for a summary of the default behavior of the most important inter-
national functions for Japan. The rest of this chapter provides more details by
describing how Japanese is typically processed. Topics include line breaking,
selecting words, sorting, and more.

See Part 2: PenPoint Internationalization Handbook for general information on
these international functions and locales. Most of the international functions are
defined in \2_O\PENPOINT\SDK\INC\ISR.H.

Chapter 24, Procedures, describes how to use PenPoint’s international functions to
give your applications the behavior described here.

If your application needs to provide appropriate behavior in just the default locale
locJpn, use the Loc...() macros rather than the Intl...() functions. For example,
here is the definition of LocDelimitWord() from ISR.H. Calling LocDelimitWord()
in PenPoint 2.0 Japanese delimits the Japanese equivalent of a word. |
#define LocDelimitWord(tx, s, st) IntlDelimitWord (tx, s, int1lDefaultLocale, st)

Notice that it calls the equivalent international function, sending intlDefaultLocale
as an argument.

Japanese behavior of international functions TABLE 22-2

Function Defauli behavior

IntlDelimitWord () Delimits a bunsetsu.

IntlDelimitSentence() Delimits a sentence ended by an ideographic period or other punctuation
mark.

IntlBreakLine() Prevents taboo characters from beginning or ending a line.

IntlSecToTimeStruct() Converts time since 1970 from seconds to the Imperial calendar system.

IntTimeStructToSec() Converts from the Imperial calendar system to seconds since 1970.

IntlFormatS32() Adds thousands separators and a minus sign, as in —1,234,567.

IntFormatNumber() Same as IntlFormatS32(), only adds decimal points as needed.

IntlFormatDate() Displays kanji to separate era, day, month, and year.

IndFormatTime() Displays A.M./PM., hours, and minutes with kanji separators.

CHAPTER 22 / PROCESSING JAPANESE TEXT 263
Handling Japanese text

Japanese behavior of international functions TABLE 22-2 {continued)

Function

Defauvlt behavior

IntiParseS32() Parses signed integers with thousands separators, decimal point, minus signs.
IntlParseNumber() Same as IntlParseS32(), only parses floating-point numbers.

IntlParseDate() Parses calendar format with kanji to indicate day, month, year.

IntlParse Time() Parses A.AM./PM., hours, minutes, with kanji separators.

IntlCompare() Compares Unicode values of two characters.

IntlSort() Sorts characters by Unicode value.

IntIMBToUnicode() Converts latest Shift-JIS encoding (1990) to Unicode.

IntlUnicodeToMB() Converts Unicode to latest Shift-JIS encoding (1990) to Unicode.

Many of these functions are discussed in detail in the rest of this chapter.

Delimiting words

The Japanese equivalent of an English word is called a bunsetsu, which literally
means a phrase.

Text with selected bunsetsu FIGURE 22-4

The rules for delimiting an English word are relatively straightforward because
English uses spaces and punctuation to separate words. Japanese does not use
spaces, so the rules for locating a bunsetsu are quite complicated.

Call the PenPoint 2.0 Japanese function LocDelimitWord() to locate a bunsetsu.

The prototype for the international function follows. Remember that the Loc...()

macro calls the Intl...() function, passing intlDefaultLocale as the LOCALE_ID.
S32 EXPORTED IntlDelimitWord (

P_CHAR pString, // Beginning of text region

P_U32 pStart, // In/Out: seed position/start of word
LOCALE_ID locale, // Locale to use -- from golocale.h .
U32 style // Delimit style -- from isrstyle.h

)i
This function and the IntlDelimitSentence() function both take a start position
and return the start and length of the requested item (a word or sentence). The
length is returned by the function, and the start position is returned as one of its
out parameters pStart.

Use the intlDelimitExpandLeft or intlDelimitExpandRight flags to extend the
selection in a single direction one bunsetsu at a time. See the file ISRSTYLE.H for
more details and other valid styles.

See “Delimiting words” on page 289 for more details on how to locate bunsetsu in
your application.

3/ JAPANESE LOCALIZATION

[

264 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

% Delimiting sentences

Japanese uses a mark called a maru to end a sentence. It works similarly to the
English period. Unicode calls the symbol the ideographic period (U+3002) because
it is common to Chinese, Japanese, and Korean.

Text with senfence selected FIGURE 22-5

Use the LocDelimitSentence() macro to find a sentence in a text stream. Here is

the prototype:
S32 EXPORTED IntlDelimitSentence (
P_CHAR pString, // Beginning of text region
P _U32 pStart, // In/Out: seed position/start of sentence
LOCALE ID locale, // Locale to use -- from golocale.h
U32 style // Delimit style -- from isrstyle.h

)i

See “Delimiting sentences” on page 290 for details on how to locate sentences in
your application.

% Comparing and sorting

There is a well-established ordering for the kana characters. The characters are
arranged according to the sounds of the “Fifty Sounds Table.” You can find the
table in any Japanese dictionary or introduction to Japanese writing. See Chapter
25, Resources, for references to some of these texts.

The kanji characters, however, are more difficult to order. Popular dictionaries sort
characters by radical. Within radicals, they sort characters by the number of addi-
tional strokes, not including the radical, it takes to write the character.

The JIS character list, unfortunately, is not uniformly ordered this way. The Level 1
kanji are ordered phonetically (that is, by their kana equivalents), while the Level 2
kanji are ordered by the radical-stroke scheme.

In a Shift-JIS text that contains both Level 1 and Level 2 kanji, sorting characters is
quite a challenge. Fortunately, the Unicode encoding already puts Japanese charac-
ters in sorted order. Thus PenPoint 2.0 Japanese can sort Japanese characters simply
by their Unicode value. Specify the intlSortStyleDictionary style when you call
IntlCompare() or IntlSort() to sort by radicals and number of strokes.

For more information on how Unicode orders Japanese characters, see The Unicode
Standard: Version 1.0, Volume 1.

The other available sort and compare style is intlSortStylePhoneBook. If you
specify this style, the sort and compare functions use the JIS ordering for Level 1
kanji; that is, comparing and sorting is done phonetically. There are various compli-
cated comparison rules for characters outside of the Level 1 kanji.

CHAPTER 22 / PROCESSING JAPANESE TEXT 265
Handling Japanese text

Here is the prototype for the IntlSort() function:

STATUS EXPORTED IntlSort(
PP_CHAR ppString, // list of strings to sort

U32 count, // number of strings in list
LOCALE _ID locale, // Locale to use -- from golocale.h
U32 style // Collation style -- from isrstyle.h

)i
See “Comparing strings” on page 291 and “Sorting strings” on page 292 for details
on how to give your application comparison and sort capabilities.

Converting between character variants

There are four typical character conversions you may want to support:
¢ Katakana to hiragana.
¢ Hiragana to katakana.
¢ Zenkaku (full-width) to hankaku (half-width).
¢ Hankaku to zenkaku.

The width conversion functions work with the ASCII and katakana characters. The
normal size for katakana is full-width (zenkaku), and the normal size for alphanu-

merics is half-width (hankaku).

You can convert individual characters or strings. Functions that work on individual
characters are in CHARTYPE.H, and have names that begin with IntlChar...(), as in
IntlCharToUpper(). The string conversion functions, defined in ISR.H. are IntIStr-
Convert() and IntINStrConvert().

All of these functions convert a Unicode character or string to another Unicode
character or string. They do not convert between character sets. For more informa-
tion on conversions between character sets, see the next section, “Converting

between Shift-JIS and Unicode.”

The Unicode representation of zenkaku and hankaku are in a special area called the
Unicode Compatibility Zone, which extends from U+FE00 to U+FFEE The zone
contains character variants that exist in Unicode solely to be compatible with other
characters sets like Shift-JIS.

The string conversion functions also support conversions to and from the Compat-
ibility Zone. Your application might, for example, import a Shift-JIS text, convert it
to Unicode, and then convert all the characters in the Compatibility Zone to their
equivalents outside of the Compatibility Zone. This would convert any half-width
katakana characters to full-width katakana. It would also convert any full-width
alphanumerics to half-width. Think of conversions out of the Compatibility Zone
as converting characters to their most typical form.

The string and character conversion functions also handle conversions between
upper and lowercase and between composed characters and their base character
plus diacritical mark equivalent.

See “Converting between character variants” on page 287 for details on how to pro-
vide character conversion support in your application.

3 / JAPANESE LOCALIZATION

See the header file
CHARTYPE.H for more
information about how the
character conversion functions
work. Some functions provide
only an approximation of the
desired conversion.

266 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

%> Converting between Shift-JIS and Unicode

Many existing Japanese files are in Shift-JIS format. Therefore, your application
may want to provide import capabilities for Shift-JIS files. PenPoint 2.0 Japanese
provides functions named IntIMBToUnicode() and IntlUnicodeToMB() to con-
vert between Shift-JIS to Unicode strings. The default translation converts to and
from the latest (1990) Shift-JIS encoding.

See “Converting Unicode and Shift-JIS strings” on page 286 for details on how to
use these functions.

If you are converting a string that contains a filename, set the intlCharSetFileNa-
meMapping flag. Because operating systems use different characters to represent
path and file names, the string conversion function must know whether the string
to be converted is (or contains) a filename. For example, most Japanese versions of
DOS use the yen (¥) character to separate path names, while most U.S. English ver-
sions of DOS use the backslash (\) character.

To convert entire files between different character sets, use the DOS utility UCON-
VERT. See “Converting Unicode and Shift-JIS files” on page 285 for details.

% Compressing Unicode

Unicode can be efficiently compressed when written to a file, especially if all the
characters in the text stream are from the same character set (for example, all ASCII
text).

All Unicode characters are 16-bits long. Shift-JIS, on the other hand, uses a single
byte to encode hankaku, katakana, and ASCII characters, and two bytes to encode a
all other Japanese characters. Thus, the two character encodings require roughly the
same amount of memory with mostly Japanese text.

When filed, however, Unicode data can be compressed. PenPoint 2.0 Japanese pro-
vides functions that allow you to compress Unicode strings before filing them. Typ-
ically, these compressed Unicode files store Japanese text using less space than the

identical Shift-JIS file.

Call IntlCompressUnicode() and IntlUncompressUnicode() to compress and
decompress Unicode strings. See the header file ISR.H for more information.

? Formatting Japanese text

The following sections describe Japanese text formatting conventions. Table 22-3
shows some of these conventions.

PenPoint 2.0 Japanese provides many formatting functions that provide appro-
priate formatting behavior for Japanese text. Your application should simply call
these functions whenever they are available.

The only formatting convention shown in Table 22-3 that does not have native
PenPoint 2.0 Japanese support is phone number formatting. Your application
should provide its own formatting functions to handle phone numbers. Note that
the number of digits in a Japanese area code varies with geographical location.

CHAPTER 22 / PROCESSING JAPANESE TEXT 267
Formatting Japanese text

TABLE 22-3

Default Japanese Formatting

Formatting area American English formatting Default Japanese fermatiing
Daie Formatting 3/31/92 199243 F 31

Time Formatting 11:45 PM. 1831514y

Number Formaftiné 1,234,567.89 1,234,567.89

Currency Formatting $1995.95 ' ¥199,500

Phone Numbers (415) 358-2000 (045) 472-6000

Paper Sizes Letter, 8.5 in. x 11 in. A4,210 cm x 297 cm

Table 22-3 shows the default format for a Western-style (Gregorian) date. See Table
22-5 for the default formatting of an Imperial calendar date.

Line breaks :

Japanese, like most other languages, does not permit certain characters to appear at
the beginning or end of a line. For example, in both English and Japanese, you
cannot begin a line with a close parenthesis or end a line with an open parenthesis.

Japanese characters do not use hyphens when they break across lines. Either a break
is permitted and the subsequent characters continue onto the next line, or no break
is permitted.

When romaji appears in text, Japanese uses the same rules as English for line breaks.

Call IntlBreakLine() to ensure your text breaks correctly. The function uses an
INTL_LINE_BREAK structure to contain information about how to break a line.
Here is the structure, defined in ISR.H:

typedef struct INTL_BREAK_LINE {
U32 DbreakAt; // position of line break
U32 deleteThis; // chars to delete from end of this line
CHAR insertThis[intlBreakLineMaxInsert];
// chars to insert at end of this line
U32 deleteNext; // chars to delete from start of next line
CHAR insertNext[intlBreakLineMaxInsert];
// chars to insert at start of next line
} INTL BREAK LINE, *P INTL BREAK LINE;

Because Japanese does not need hyphens to indicate a line break, you do not need
to use the fields when dealing with Japanese characters. However, because Japanese
follows the same rules as English when text contains romaji, your code should be

prepared to handle these fields. Here is the prototype for IntlBreakLine() itself:

S32 EXPORTED IntlBreakLine (
P_CHAR pString, // Line to break
U32 pos, // lst char that won't fit
P_INTL BREAK LINE pBreak, // Out: how to break it
LOCALE ID locale, // Locale to use
U32 style // breaking style

)i
See “Delimiting words” on page 289 for details.

3/ IAPANESE LOCALIZATION

|

The line break function does
not currently support
hyphenation, so the various
insert and delete fields in
INTL_BREAK_LINE are empty.
Hyphenation support is
planned for future releases of
FenFoint.

268

P

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Dates

Japanese uses two different date formats. One is based on the Western-style
Gregorian calendar, the other on the Japanese imperial calendar. In the Japanese
imperial calendar, the year 1992 is called Heisei 4, the fourth year of the reign of
the current emperor. Otherwise, the two calendar systems are identical.

The international functions use the structure INTL_TIME, defined in ISR.H, to rep-
resent the current time. The INTL_TIME structure contains a field to represent the
era. Use macros defined in GOLOCALE.H to fill in this field if you use the era field
to represent, for example, a Japanese imperial date.

Table 22-4 shows the four Japanese eras that PenPoint 2.0 Japanese supports, along
with the macro that represents the era. '

Supported Japanese eras . TABLE 22-4
Era name Macro in GOLOCALEH Years

Meiji itcEraMeiji 1868-1912

Taisho itcEraTaisho 1912-1926

Showa itcEraShowa 1926-1989

Heisei itcEraHeisei 1989—present

Call IntlFormatDate() to get a formatted date string from an INTL_TIME structure.
The functions accept a number of style flags that can present dates in various for-
mats, examples of which are shown in Table 22-5.

Date formais TABLE 22-5
Deate Locale and style

199243 431 H locJpn, indFmtDateStyleFull

k43 H31H loc]pn, intlFmtDateStyleFull; intlSecTo TimeStructStyleJapanese
1990.1.15 locJpn, intlFmtDateStyleAbbrv

90/1/15 loc]pn, intlIFmtDateStyleNumeric

January 15, 1990 locUSA, intlFmtDateStyleFull

Jan. 15, 1990 locUSA, intlFmtDateStyleShort

1/15/90 locUSA, intlFmtDateStyleNumeric

15-Jan-90 locUSA, intlFmtDateStyleAbbrv

You use the intlSecToTimeStructStyleJapanese style with the IndSecToTime-
Struct() function. All the other styles shown work with IntlFormatDate().

If you cannot create the date string you want, IntlFormatDate() also accepts an
explicit format string. The string represents a date string constructed from its con-
stituent parts. PenPoint 2.0 Japanese allows you to construct a date string using any
of the following parts: day, month, year, day of the week, day of the year, and an
era. See the header file ISRSTYLE.H for more information.

CHAPTER 22 / PROCESSING JAPANESE TEXT
Formatting Japanese text

You can also format a date according to user-specified system preferences. The func-
tion PrefsIntlDateToString() returns a pointer to the string containing a formatted
date when you pass it a P_INTL_TIME structure. The function is defined in
PREFS.H.

See Chapter 107 in the PenPoint Architectural Reference for more general informa-
tion on how to observe system preferences.

Times

Japanese uses almost the same time formats as American English. The only differ-
ence is that kanji characters are used to distinguish hours, minutes, seconds, and
whether the time is A M. or PM. Table 22-6 shows some of the time formats you can
create by specifying the appropriate styles when calling IntlFormatTime(). All of
the examples below assume the locale is locJpn.

269

Time Formats TABLE 22-6

Time Locale and styles

158514 intlFmtTimeStyleLocal

15055143 3455 intlFmtTimeStyleLocal, int!FmtTimeDispSeconds

1830551453 intlFmtTimeStyleLocal

15305145 340 intIFmtTimeStyleLocal, intIFmtTimeDispSeconds

3:514-%% intdFmtTimeStyleStandard

3:51:34F-1% intlIFmtTimeStyleStandard, intlFmtTimeDispSeconds

13:51:34 intlFmtTimeStyleStandard, intlFmtTimeForce24Hour,
intlIFmtTimeDispSeconds

13:51 intlIFmtTimeStyleStandard, intlFmtTimeForce24Hour

Numbers

Japanese uses Arabic numerals to represent numbers for most purposes. In more
formal settings, however, Japanese text uses kanji to represent numbers. PenPoint
2.0 Japanese currently supports only Arabic numerals, although ISRSTYLE.H defines
a style intl FmtNumStyleKanji for future use.

Numbers like 1,234,567 are split every thousand with commas as they are in
English. Specify the default style intlStyleDefault when you call one of the number

formatting functions to format numbers this way.

Japanese occasionally uses an older style of formatting that puts a comma after
every ten thousand, as in 12,3456. You must provide your own formatting function
if you want to support the older style.

Remember that Japanese currency amounts can get quite large. Billions of yen are
not uncommon in typical texts. Remember to set aside screen space to display all
the necessary digits.

3 / JAPANESE LOCALIZATION

270 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Call IntlFormatS32() or IntINFormatS32() to format a signed integer. The equiva-
lent functions IntiINFormatNumber() and IntlIFormatNumber() work on floating
point numbers.

You can specify many styles that control how numbers are formatted. The following
listing comes from ISRSTYLE.H.
/ *
The style flags for number formatting give you extensive control of

how the number is formatted. They work for both the FormatS32 and
the FormatNumber (double) functions.

intlFmtNumLeftJustify: Add padding spaces on the left so that the
decimal points align. This is based on the number of characters not
their widths, so it only works with fixed width fonts.

int1FmtNumRightJustify: Add padding spaces on the right so that the
decimal points align. This is based on the number of characters not
their widths, so it only works with fixed width fonts.

int1FmtNumDropTrailZeros: Drop trailing zeros after the decimal point.
E.g. 23.020 would become 23.02 with this set.

int1FmtNumScale: Move the decimal place to the left by the
number of digits specified by the 'scale' parameter. E.g. a scale of
two would cause 1234. to come out as 12.34 when this flag is set.
int1FmtNumSpaceFill: Force the fill character to be a space. So
if the results of a format would have been "***23.4" it would instead
be " 23.4".

int1FmtNumZeroFill: Force the fill character to be a zero. So
if the results of a format would have been "***23.4" it would instead
“be "00023.4".

intlFmtNumForceDecimal: Force a decimal point to be displayed
even if it would not normally be shown. E.g. "123" would become
"123." with this set. This is usually used with a scale of 0 or if
int1FmtNumDropTrailZeros is set.

int1FmtNumDisplayPositive: Force the display of the sign on
positive numbers. E.g. "123" would become "+123" with this set.

*/
#defineint1FmtNumLeftJustifyflaglé // Pad to align on left side
#defineint1FmtNumRightJustifyflagl? // Pad to align on right side
#defineint1FmtNumDropTrailZerosflagl8 // Drop trailing zeros in fraction
#defineint1FmtNumScale flagl9 // Move decimal by scale

" #define intlFmtNumSpaceFillflag20 // Use space character for fill
#define intlFmtNumZeroFillflag2l // Use 0 digit for fill
#define intlFmtNumForceDecimalflag22 // Use decimal even if not needed
#define intlFmtNumDisplayPositiveflag23 // Sign on positive num. (e.g. +5)
/*

Each style specifies a general way of formatting a number. The details depend on
the locale and the style flags you give. Also some of the styles are specific to some
regions of the world, and do not make sense everywhere.

int1FmtNumStylePlain: The simplest format for the locale. No

thousands separators or other fancy stuff. In USA & Japan you get
results like "1000.0" and "-1000.0" with this.

int1FmtNumStyleSimple: Default] This is the standard format used

in the locale. It normally includes the thousands separators. 1In
USA & Japan you get results like "1,000.0" and "-1,000.0" with this.

CHAPTER 22 / PROCESSING JAPANESE TEXT 271
Formatting Japanese text

int1FmtNumStyleAccounting: This is the typical style of numbers used
by accountants and such for the locale. In USA & Japan you get
results like "1,000.0" and "(1,000.0)" with this. This format always
uses some non-blank form of fill by default. For example "**3.45" is

used in USA and Japan.

int1FmtNumStyleFillSign: A common style in some places is to put the
space fill between the sign and the number. This style is only

defined for locales where this makes sense. In USA & Japan you get
results like "- 1,000.0" with this.

intlFmtNumStyleKanji: <<Not implemented>> This style indicates you
want Kanji digits instead of the normal 0-9.

*/

// International styles

#define intlFmtNumStylePlain0x0001
#define intlFmtNumStyleSimple0x0002
#define intlFmtNumStyleAccounting0x0003

// Common European/North American styles
#define intlFmtNumStyleFillSign0x0004

// e.g. 1000.0 & -1000.0
// e.g. 1,000.0 & -1,000.0
// e.g. 1,000.0 & (1,000.0)

3 / JAPANESE LOCALIZATION

// e.g. "- 1,000.0"

// Japanese Number Format styles, NOT supported at this time

#define intl1FmtNumStyleKanji0x0005

// Use Kanji digits

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 23 / Development Environment

The Japanese localization of the PenPoint™ 2.0 Japanese operating system devel-
opment environment contains many tools, utilities, and sample files that help you
edit, compile, link, and debug Japanese applications. This chapter highlights the
available tools, but does not discuss them in detail. More detailed information can
be found in PenPoint Development Tools and Part 4: PenPoint Development Tools
Supplement, in this book.

This chapter assumes that you are familiar with the process of creating PenPoint
applications. For more information on these topics, consult the PenPoint Applica-
tion Writing Guide, Expanded Edition and the two manuals mentioned above.
Chapter 28 of Part 4: PenPoint Development Tools Supplement contains a visual
overview of the entire process of creating PenPoint 2.0 Japanese applications

and services.

W Development tools

This section describes the tools you should use to edit, compile, and make
applications.

% Text editors

Your source code consists mostly of ASCII files since it is mostly C code.

Sometimes, though, your code contains literal Japanese strings. For example, the
Japanese version of your application resource file, JPN.RC, must contain Japanese
strings encoded as a combination of ASCII and Shift-JIS. Your application uses the
Japanese strings in JPN.RC in its user interface.

The easiest way to work with Shift-JIS files is with a Shift-JIS editor. Most editors
popular in the U.S. have Japanese versions that allow you to edit Japanese text.

You can use MiniText as a Shift-JIS and Unicode editor. First, make sure the
PenPoint system locale is JPN by specifying it when you run the GO batch file:

go Jjpn
When MiniText imports a DOS file, it assumes high ASCII characters are part of a

Japanese character; that is, it assumes the file contains Shift-JIS data. See “Working
with Shift-JIS in text files” on page 283 for details.

Keep the number of files that contain Shift-JIS characters at a minimum. This will
make your project easier to maintain because all your Japanese strings are in one
place. In the best case, only your application resource file JPN.RC will contain Shift-
JIS characters.

274 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

¥ Compilers
Make sure your compiler can compile code containing 16-bit characters. You must

set the compiler flag that enables this feature when compiling code that contains
16-bit Unicode or multibyte Shift-JIS strings.

For example, if you are using the WATCOM C compiler, you must set the compiler
flag /zKoU. The standard makefile rules provided with the sample applications as
SDEFINES.MIF automatically set this flag.

The PenPoint 2.0 Japanese resource compiler RC.EXE also uses this flag because
your resource files often contain Shift-JIS characters.

% Debuggers

PenPoint 2.0 Japanese allows you to display Japanese strings in the debugger
stream. You can specify which character set you want to display using the Debug-
CharSet variable in ENVIRON.INI discussed in the next section.

You can view the debugger stream on a second monitor only if your debugger
stream contains ASCII characters.

To view kanji in the debugger stream, use the System Log application or save the
debugger stream to a file. See Chapter 10 of PenPoint Development Tools and
Chapter 30 of PenPoint Development Tools Supplement for information on saving
the debugger stream to a file.

The value of DebugCharSet also controls the interpretation of the mini-debugger
memory dump commands (d, da, db, dd, and dw). See Chapter 30 of PenPoint
Development Tools Supplement for details on debugging.

%» DebugCharSet

The DebugCharSet variable in ENVIRON.INI controls the character set of your
debugging output. Table 23-1 shows the currently permissible values.

Debug CharSet variable values TABLE 23-1
VYalue Deseription

ASCII » Standard 7-bit ASCII

XJIS 1990 Shift-JIS character set

437 IBM Code Page 437 used in U.S. IBM PCs

850 IBM Code Page 850 used in Européan IBM PCs

If you are sending debugging information to your PenPoint monitor or a second
debugging monitor, make sure it can display characters in the specified Debug-
CharSet. GO does not support using Shift-JIS monitors as second debugging moni-
tors. See Chapter 30, Debugging, of Part 4: PenPoint Development Tools Supplement
for information about how to see Shift-JIS in your ﬁles

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 275
Development tools

Literal strings in Debugf() and DPrintf() appear in the specified character set.
Unsupported Unicode characters display as hex quads in PenPoint 2.0 Japanese.
On your monitor, they display as \x#nnn, where nnnn is a four-digit hex number.

The default value of DebugCharSet depends on the value of LOCALE, another
ENVIRONL.INI variable. If LOCALE=]PN, the default is Shift-JIS. The default is ASCII
if LOCALE=USA.

If DebugCharSet is set to an invalid value, the default character set is assumed.

% Makefiles

The standard makefile rules provided with the sample applications help you make
different localized versions of your application. If you write your makefile by tailor-
ing a makefile from a sample application, you can add a LOCALE argument to the
command line to make a particular localized version of your application. For
instance, type:

wmake LOCALE=3jpn

wmake LOCALE=usa
to create the Japanese and American versions of your application, respectively. If
you do not supply a LOCALE argument, JPN is the default locale.

You must create a file called JPN.RC to contain your application’s Japanese strings.
The file should at least contain strings for the tagAppMgrAppFilename and
tagAppMgrAppClassName. The standard makefile rules stamp the application
directory with the strings associated with these tags.

In your makefile, you can use three new variables to identify which resource files to
compile and copy into the application directory with the executable image.

GO’s sample makefile variables TABLE 23-2
Variable Use

RES_FILES Resource files to be included with all versions of your application.
USA_RES_FILES Resource files to be included with only the American version.
JPN_RES_FILES Resource files to be included only with the Japanese version of your application.

See Chapter 29 of PenPoint Development Tools for details on creating PenPoint
applications and services.

% DOS utilities

PenPoint 2.0 Japanese provides a collection of DOS utilities that help you work with
resource files, PenPoint file names, and international character sets. See Chapter 14
of PenPoint Development Tools and Chapter 31 of Part 4: PenPoint Development
Tools Supplement for detailed information on how to use the utilities.

3 / JAPANESE LOCALIZATION

276 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The following table briefly summarizes the purpose of each utility.

DOS vutilities

TABLE 23-3

Name

PSTAMP.EXE

PDEL.EXE
PCOPY.EXE
PDIR.EXE

PSYNC.EXE

RC.EXE
RESAPPND.EXE
RESDUMPEXE
RESDEL.EXE
UCONVERT.EXE
CONTEXT.BAT

GO.BAT

LOCALE.BAT

Purpose

Adds special PenPoint information to a DOS file or directory. Replaces
STAMP from PenPoint 1.0. '

Deletes specific directory entries from PENPOINT.DIR files.
Recursively copies files and directories to other PenPoint directories.

Lists the PenPoint names and file systems attributes for all the files and
directories in a DOS directory. Replaces GDIR from the utilities included
with PenPoint 1.0.

Scans the current directory and removes any entries from PENPOINT.DIR
for which there are no corresponding files.

Compiles resource files.

Appends resources from one resource file into another.

Shows the contents of a compiled resource file.

Deletes specified resources from a compiler file.

Converts files between character sets, for example from Shift-JIS to Unicode.

A DOS batch file that sets the required DOS environment variables

PenPoint requires. Takes an argument to indicate which version of
PenPoint (1.0 or 2.0).

Boots PenPoint on your development machine, allowing choice of the system
and user locales.

Switches the system and user locales that PenPoint uses.

In PenPoint 2.0 Japanese, the PENPOINT.DIR file is in Unicode format, although
the utilities that deal with PenPoint information can still read ASCII files. For addi-
tional information on each utility, type -? or /? after most of these commands to see
a help message. For example, type PDIR /2 for help on the PDIR utility.

See PenPoint Development Tools and its supplement for more information.

You can set two DOS environment variables to notify the utilities which character
set or locale you typically work with.

CHARSET can be one of ASCII, 437, LATIN1, or 850 to denote a character set.
LOCALE can be either USA or JPN.

For example, if you specify a LOCALE of JPN, then the DOS utility PDIR will inter-
pret your PenPoint names as a Shift-JIS string.

Do not confuse the DOS environment variable with the LOCALE in ENVIRON.INI.
Only the DOS utilities are sensitive to the DOS environment variable. PenPoint
itself is sensitive to the LOCALE in ENVIRONL.INI.

If you want, set these environment variables in your AUTOEXEC.BAT with the DOS
command SET. Other character sets and locales are supported, but the ones listed
here are the relevant values for Japan.

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 277

¥ Running PenPoint

You must remove any terminate-and-stay-resident (TSR) programs before booting
PenPoint 2.0 Japanese. Some TSRs use the same interrupts as PenPoint. This con-
flict causes boot error 106 (unknown boot error).

The easiest way to remove TSRs is to remove the programs in GO.BAT and reinstall
them, if necessary, after PenPoint exits. Comments in GO.BAT indicate where you
should remove and reload your TSRs.

The GO.BAT batch file now takes two optional parameters to specify the locales to
boot with:

go system locale user locale

When you specify a system locale, PenPoint’s behavior and user interface are
changed to be appropriate to the specified locale (U.S. or Japanese).

When you specify both a system and user locale, the batch file directs PenPoint to
change its behavior to match the system locale, but to change its user interface
strings to match the target locale.

When you type GO with no parameters, PenPoint boots in the same state as it was
last booted. If you type GO with no parameters and you are in DebugTablet mode,
PenPoint warm boots. See Chapter 30 of Part 4: PenPoint Development Tools Supple-
ment for more information about debugging modes and warm booting. For
example:

¢ 'To boot with Japanese behavior and strings, type
go jpn
¢ To boot with Japanese behavior, but English strings, type
go jpn usa
Because the batch file only controls the resource files PenPoint loads, the stamped
application and service names appear in the system locale language.

GO.BAT relies on LOCALE.BAT to do the locale switch. Make sure \2_0\PENPOINT\
SDK\UTIL\DOS is in your DOS PATH. Both GO.BAT and LOCALE.BAT require utili-
ties in that directory to switch locales.

When you specify a locale with GO.BAT (or LOCALE.BAT) the batch file recursively
deletes your \PENPOINT\SS directory. This deletes any documents that you had
saved in your PenPoint 2.0 Japanese file system. Make sure to save the files to your
hard drive if you need them.

Currently, only two locales are supported: JPN and USA. See page 45 of PenPoint
Development Tools for more information about the GO batch file. The manual
describes the PenPoint boot process, including the order in which files are read and
the actions that are taken as a result.

See Chapter 31 of Part 4: PenPoint Development Tools Supplement for details on how
the batch file coordinates the locale switching,

Development tools

i 3 7/ JAPANESE LOCALIZATION

Warning The GO.BAT and
LOCALE.BAT batch files delete
your PenPoint files when you
specify locales.

278 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

¥ PenPoint environment

This section describes the PenPoint 2.0 Japanese environment variables relevant for
developing Japanese applications.

% ENVIRON.INI

There are two important variables new to PenPoint 2.0 Japanese that you should set
when running Japanese applications.

¢ Locale can be set to USA or JPN. Its value controls PenPoint’s behavior and
appearance. Different locales use different fonts, dynamic link libraries, appli-
cations, and services. See Chapter 32 of Part 4: PenPoint Development Tools
Supplement for details.

¢ DebugCharSet can be set to ASCII, XJIS, 437, or 850, controls the interpreta-
tion of characters you send to the debugger stream. See Chapter 4 of PenPoint
Development Tools Supplement for details.

Remember to set your PenPointPath to \2_0 if you are working with PenPoint 2.0
Japanese development.

% MILINI

PenPoint supports many different U.S. and Japanese keyboard models. Set your
Keyboard variable in MIL.INI to identify your keyboard.

The value of Keyboard determines how the keyboard behaves throughout Pen-
Point. For example, clsField and cIsSKKCT observe this variable to determine how
it should handle character input. To change keyboards, you must warm or cold
boot. Swap booting does not change keyboard behavior.

See “Using keyboards” on page 261 for tips on using your keyboard to type Japa-
nese and English characters. ‘

% Initialization files

PenPoint 2.0 Japanese uses a collection of control files to set up its environment.
Since these files can sometimes contain Japanese filenames, some of these control
files can contain Shift-JIS or Unicode characters. The following table shows which
combinations are permitted.

Character sets in control files TABLE 23-4
Filename Permissible character sefs

MIL.INT ASCII only

ENVIRON.INI ASCII only

BOOT.DLC ASCII, Unicode

CONSOLE.DLC ASCII, Unicode

APPINI ASCII, Shift-JIS

SERVICE.INI ASCII, Shift-JIS

SYSAPPINI ASCII, Shift-JIS

SYSCOPY.INI ASCII, Shift-JIS

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 279
PenPoint tools

W PenPoint tools

The SDK includes some PenPoint 2.0 Japanese applications and accessories that can |
help you write Japanese applications.

% MiniText
You can use MiniText as a Shift-JIS and Unicode editor. It supports Japanese hand-
writing recognition, KKC, and RKC. Although insertion pads only let you enter
hankaku, you can convert between hankaku and zenkaku by selecting the To
Hankaku or To Zenkaku commands under the Convert menu.

MiniNote assumes any imported text file contain Shift-JIS when the Locale variable
in ENVIRONL.INI is set to JPN. Your Shift-JIS file can also contain RTF keywords.
Before you import an RTF file, run the file through the DOS utility RTFTRIM before
importing it. RTFTRIM removes RTF keywords that PenPoint’s text component does
not use from an RTF file. See Chapter 31 of Part 4: PenPoint Development Tools Sup-
plement for more information on RTFTRIM.

MiniText assumes that any file with a .UNC extension imported into PenPoint is a
Unicode file. Be sure your Unicode files have the .UNC extension before you import
them into your PenPoint notebook.

See “Working with Shift-]JIS in text files” on page 283 for details on how to create,
import, and export Shift-JIS files between PenPoint 2.0 Japanese and your develop-
ment machine.

¥ Unicode Browser

The Unicode Browser is a PenPoint 2.0 Japanese accessory that allows users to send
characters to the text stream by tapping on them in a table of possible characters.
See Using PenPoint for instructions on using the Unicode Browser.

% Japanese virtual keyboard

The virtual keyboard is another PenPoint 2.0 accessory that allows you to send
characters to the text stream. It offers various emulations, including American and
Japanese IBMJ-A01 keyboard modes.

Bring up the keyboard by tapping on its icon in the Accessories notebook. Change
modes by making the check " gesture over the title bar to switch modes.

With the Japanese keyboard, you can type romaji, hiragana, or katakana. There are
keys that toggle the keyboard between the character sets.

¥ Sample code

The sample code included with the SDK is a good starting point for your own appli--
cations. Here are a few details to note about the sample code included with the 2.0]
SDK in \2_0\PENPOINT\SDK\SAMPLE.

3 / JAPANESE LOCALIZATION

280 PENPOINT APPL_ICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

Unicode Browser

FIGURE 23-1

% Japanese versions of sample code

Most of the sample applications have two resource files, USA.RC and JPN.RC. As
their names suggest, these files contain U.S. English and Japanese strings. Use these
files to help write your own resource files.

All of the sample applications except the Keisen Table application make use of the
Bridging Package. This package allows you to maintain a single code base that com-
piles under both PenPoint 1.0 and 2.0. See the PenlPoint Bridging Handbook
included with the 2.0 SDK for details on how to do this.

Use the Unicode Browser to
enter hard-to-write
characters or characters
that are not recognized by the
handwriting recognition engine.

CHAPTER 23 / DEVELOPMENT ENVIRONMENT 281

Japanese virtual keyboard

PenPoint tools

FIGURE 23-2

% Keisen Table application

The Keisen Table sample application uses hard-coded Japanese strings because the
application is designed exclusively for Japan. It shows how to use toolkit tables to
create a complex Keisen Table, a popular way of gathering data in Japan.

All the hard-coded strings are in Shift-JIS format.

Use the virtual keyboard to
enter characters into the text
stream. You can simulate both
American and Japanese
keyboards.

3 / JAPANESE LOCALIZATION

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 24 / Procedures

This chapter contains step-by-step instructions on how to take advantage of the
PenPoint™ operating system’s support for Japanese applications. It describes in
detail how to perform several of the common procedures that developers use to
write Japanese applications.

W Working with Shift-JIS in text files

This procedure shows you one way of creating and editing Shift-JIS strings in a
text file.

% Prerequisite information

The easiest way to work with Shift-JIS is to edit it with a Shift-JIS editor. This
procedure shows you how to use MiniText as a Shift-JIS editor.

Shift-JIS strings are most commonly used in control files like APPINI and the
Japanese version of your resource file, JPN.RC.

¢ “Character encoding” on page 247.
¢ “Shift-JIS encoding details” on page 252.
o “Text editors” on page 273.

¢ “Initialization files” on page 278.

% Procedure

1 Set the B800 debugging flag so that you can access your hard drive with the
Connections notebook. You can do this one of two ways:

+ Add /B800 to the DebugSet line in ENVIRON.INI.

+ While in PenPoint, press Break to drop into the mini-debugger. Type
fs B +800 to set the flag, and then g to resume PenPoint.

2 Create 2 new MiniText document or import an existing document. You can
import by opening the Connections notebook and choosing Directory under
the View menu. Then browse through your disk and copy a Shift-JIS file to
your PenPoint notebook. Import the file as a MiniText document.

Turn to your new or imported MiniText document to edit it.
When you are done editing the file, turn back to your table of contents.
Open the Connections notebook and choose Directory under the View menu.

Move or copy the file to your hard drive.

b B < T R - T

Select Text File as the export type.

284 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

% Related information

+ “Working with Unicode in source code” on page 284.
¢ “Converting Unicode and Shift-JIS files” on page 285.
¢ “Converting Unicode and Shift-JIS strings” on page 286.

P Working with Unicode in source code

This procedure shows you how to create Unicode strings in your source code.

%W Prerequisite information
¢ Chapter 15, Part 2: PenPoint Internationalization Handbook.

¢ “Character encoding” on page 247.

¢ “Unicode” on page 249.

%> Procedure
1 Declare your character or pointer to characters as a 16-bit type. Use CHAR16

for data that is always 16 bits and CHAR for data that will be 8-bits long in
PenPoint 1.0 and 16 bits long in 2.0 and later releases.

2 Wrap the U_L() macro around literal characters and strings. Use the L""
modifier if you do not need your code to compile under PenPoint 1.0.

Type ASCII characters between the quotation marks.

4 To specify special Unicode characters, use a \x followed by a Unicode code
point, which has 4 hexadecimal digits.

¥ Examples

The following code uses the U_L() macro to indicate that the declared character or
strings are 8 bits long in PenPoint 1.0 and 16 bits long in PenPoint 2.0 Japanese.
The second example declares character data that is always 8 bits long,.

Uprintf(U L(“I am 8 bits long in PenPoint 1.0; 16 bits in PenPoint 2.0");
P_CHAR8 pTheString = L“I am always a 16-bit string.”;
static RC_TAGGED STRING qHelpStrings[] = { k
tagTextView, U L("\xF61F \\tab Pigtail. Delete a character.\\par "),
Nil (TAG)
}i

This last example specifies Unicode values directly because they cannot be typed
with the keyboard.

% Related information
& “Working with Shift-JIS in text files” on page 283.

¢ “Converting Unicode and Shift-JIS files” on page 285.
¢ “Converting Unicode and Shift-JIS strings” on page 286.

CHAPTER 24 / PROCEDURES 285

Converting Unicode and Shift-JIS files

W Converting Unicode and Shift-JIS files

This procedure converts files between Unicode and Shift-JIS formats.

% Prerequisite information

¢ “Character encoding” on page 247.

¢ “Unicode” on page 249.

¢ “Shift-JIS encoding details” on page 252.

¢ “Converting to and from Shift-JIS” on page 254.

% Procedure

If necessary, run CONTEXT.BAT to put your system in the 2_0 context.
The batch file adds \2_0\SDK\UTIL\DOS to the beginning of your PATH.

Run UCONVERT.EXE on the file to be converted. The syntax for this DOS
utility is:
UCONVERT s/[-d] [-m] ource-file dest-file [source CharSet] [dest CharSet]

You can specify a character set as either a code page or a locale as follows:

¢ Specify ASCII with one of the following: ASCII, 437, or USA.
¢ Specify Shift-JIS with XJIS or JPN.
¢ Specify Unicode with UNL

% Examples
Table 24-1 shows sample runs of the UCONVERT utility.
Using UCONVERT TABLE 24-1
Command Description
uconvert mytext.doc mytext.unc Puts a Unicode copy of ASCII document MYTEXT.DOC in the file
MYTEXT.UNC. ASCII-to-Unicode is the default conversion.
uconvert mytext.unc mytext.jis uni xjis Puts a Shift-JIS version of the Unicode document MYTEXT.UNC in the

file MYTEXTJIS

uconvert -d myfiles.doc myfiles.jis xjis uni ~ Puts a Shift-JIS version of the file MYFILES.TXT containing filenames in

the file MYFILES.JIS. The -d flag is necessary when the input Shift-]JIS file
contains filenames.

uconvert letter.jis letter.unc jpn uni Puts a Unicode copy of the Shift-JIS file LETTER.JIS in the file
. LETTER.UNC.
uconvert -m longfile.437 longfile.unc Puts a copy of the extended ASCII file LONGFILE.437 in the Unicode file

LONGFILE.UNC, converting all CR/LF combinations to the Unicode line
separator character (U+2028).

% Related information

¢ “Working with Shift-JIS in text files” on page 283.
¢ “Working with Unicode in source code” on page 284.

4 “Converting Unicode and Shift-JIS strings” on page 286.

3 / JAPANESE LOCALIZATION

286 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

¥ Converting Unicode and Shift-JIS strings

This procedure allows your code to convert between Unicode and Shift-JIS strings.

¥ Prerequisite information
¢ “Unicode” on page 249.

¢ “The Japanese character set” on page 247.
@ “Shift-JIS encoding details” on page 252.
@ “Converting to and from Shift-JIS” on page 254.

% Procedure
1 Include ISR H in your source file. Link INTL.LIB with your code by listing it in
your makefile. ‘
2 Call InthUnicodeToMB() to convert a Unicode string to a Shift-JIS string.
Use one of these styles to indicate which JIS character set to convert to:

+ intlCharSetStyleX]JIS maps to the most recent character set (currently
JIS X0208-1990)

+ intlCharSetStyleXJIS1978 for JIS C6226-1978
« intlCharSetStyleX]JIS1983 for JIS X0208-1983
o intlCharSetStyleX]JIS1990 for JIS X0208-1990
3 Call IntdMBToUnicode() to convert a Shift-JIS string to a Unicode string. Use

the same styles to indicate which character set you are converting from. The
default style uses the most current (1990) Shift-JIS standard.

4 Specify the style intlCharSetFileNameMapping if the string you want to con-
vert contains a filename.

% Example

This code fragment converts the multibyte string pStr8 to the Unicode string pStr.
MsgHandlerArgType (MyHandler, P_MY ARGS)

{
STATUS S;
U32 olLength, length;
P CHAR pStr;

P_CHARS pStrs8;
length = pArgs->len;
pStr8 = (P_CHAR8) pArgs->pData;
oLength = length;
if (SizeOf (CHAR) > 1)
{
StsWarn (OSHeapBlockAlloc (osProcessHeapld,
length*sizeof (CHAR), &pStr));
StsWarn (oLength=IntINMBToUnicode (pNull, 0, pStr8, &length,
intlStyleDefault));
StsWarn (length=Int1NMBToUnicode (pStr, oLength, pStr8, &length,
intlStyleDefault));

CHAPTER 24 / PROCEDURES
Converting between character variants

% Related information
o “Working with Shift-JIS in text files” on page 283.

¢ “Working with Unicode in source code” on page 284.

& Part 2: PenPoint Internationalization Handbook, “Locale-Independent Code,”
in Chapter 15.

P Converting between character variants

This procedure converts between various character sets, such as from zenkaku (full-

width) to hankaku (half-width), and from katakana to hiragana.

»» Prerequisite information
¢ “Kana” on page 246.

¢ “Half- and full-width variants” on page 249.

+ “Converting between character variants” on page 265.

P> Procedure
1 Include ISR H in your source file. Link INTL.LIB with your code by listing it in
your makefile.

2 Allow the user to specify a string to be converted. Collect the string in a buffer
with a terminating null.

Call the IntlStrConvert() function.

4 Update your memory and user interface.

% Example

This code sample uses clsTextView to support string conversion requested by the
user. The functions convert the selected text to all upper-case, all lower-case, or
initial capitals.

OBJECT myTextObject;
int desiredState;
U32 attrLimit, startlen, amtRemain, newLen, style;
TEXT_BUFFER textBuffer;
P_TV_SELECT pTarget;
switch (desiredState) {
case 1:
style = intlStrConvertStyleToUpper;
break;
case 2:
style = intlStrConvertStyleToProper;
break;
case 3:
style = intlStrConvertStyleToLower;

break;

287

3 / SAPANESE LOCALIZATION

288 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

while (pTarget->length)
{
// ensure buffer size is less then maxbufferlen
if (pTarget->length> MAXBUFFERLEN)
{
amtRemain = pTarget->length - MAXBUFFERLEN;
pTarget->length = MAXBUFFERLEN;
}
else
amtRemain = 0;

// Get selected chars into buffer
textBuffer.first = pTarget->first;
textBuffer.length = pTarget->length;
textBuffer.bufUsed = 0;
textBuffer.buf = pSrc;
textBuffer.bufLen = pTarget->length;
ObjCallWarn (msgTextGetBuffer, myTextObject, &textBuffer);
startLen = pTarget->length;
if (pTarget->length)
{
if (amtRemain)
style |= intlStrConvertMoreText;
else
style &= ~intlStrConvertMoreText;
// Do conversion with result in pDest
newLen = IntlNStrConvert (pDest, MAXBUFFERLEN * 2, pSrc,
& (pTarget->length), &ctx, intlDefaultlocale, style);

P> Notes

The function prototype for IntlStrConvert() is as follows:
532 EXPORTEDINTLStrConvert (

P_CHARpDest, // Out: converted string

U32 destLen, // Max space available in pDest
P_CHARpSrc, // Null-terminted string to be converted.
LOCALE IDlocale, // Locale to use -- from golocale.h

U32 style // Conversion style -- from isrstyle.h

bi
The relevant styles are:
// Flags used with string conversion styles.

#define intlStrConvertMoreText flaglé // More text than was passed.

// String Conversion styles

#define intlStrConvertStyleToUpper 0x0001 // All characters

$define intlStrConvertStyleToProper 0x0002 // lst letter of words only
#define intlStrConvertStyleToLower 0x0003 // All characters

#define intlStrConvertStyleToHiragana 0x0004 // from katakana, not kanji
#define intlStrConvertStyleToKatakana 0x0005 // from hiragana, not kanji
#define intlStrConvertStyleToComposed 0x0006 // minimize floating forms
#define intlStrConvertStyleToClean 0x0007 // maximize floating forms
#define intlStrConvertStyleToCompatibility 0x0008 // Map to C-Zone
#define intlStrConvertStyleFromCompatibility 0x0009 // Map from C-Zone
#define intlStrConvertStyleToHankaku 0x000A // Map to half-width chars

#define intlStrConvertStyleToZenkaku 0x000B // Map to full-width chars

CHAPTER 24 / PROCEDURES
Delimiting words

% Related information

See ISR.H for more information about how to convert large chunks of text
extending over multiple buffers (such as converting an entire file).

W Delimiting words

This procedure locates a bunsetsu, the Japanese equivalent of an English word or
phrase, in a text stream.

% Prerequisite information
“Delimiting words” on page 263.

% Procedure
1 Include ISR H in your source file. Link INTL.LIB with your code by listing it in
your makefile.

2 Locate where the user has requested a phrase selection.

3 Call LocDelimitWord() or LocNDelimitWord().

% Example

The following code demonstrates the query capabilities of the delimit word and
sentence functions. The code queries a function by calling it with pNull where it
expects a buffer. The function responds to the query by returning the size of the
buffer that the code needs to send to the function. The returned size is used in the

GetSpanBuf() call that fills the buffer with nCharToCopy characters.

#define atomSentence 4

typedef struct SPAN BUF {

P_CHAR buf;
TEXT_INDEX len;
U32 pos;
BOOLEAN freeBuf;

} SPAN BUF, *P_SPAN BUF;

SPAN_BUF spanBuf
TEXT INDEX oldPos, first, balen;
TEXT SPAN span, savNChToCopy, nCharToCopy;

STATUS s;
S32 style;
if (span.type == atomSentence)

savNChToCopy = nCharToCopy LocDelimitSentence (pNull, pNull, style);
else

savNChToCopy = nCharToCopy = LocDelimitWord (pNull, pNull, style);

289

3 / JAPANESE LOCALIZATION

290 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

while (TRUE) ({

spanBuf.pos = first;

s = GetSpanBuf (pB, &spanBuf, nCharToCopy);

if (s < stsOK) goto CleanUp;

oldPos = spanBuf.pos;

style = (first - spanBuf.pos) > 0 ?
FlagSet (intlDelimitMoreLeft, style)
FlagClr(intlDelimitMoreLeft, style);

style = (first + nCharToCopy) < balen ?
FlagSet (int1DelimitMoreRight, style)
FlagClr(intlDelimitMoreRight, style);

if (span.type == atomSentence)
s = LocNDelimitSentence (spanBuf.buf, spanBuf.len,

&spanBuf.pos, style);

else

s = LocNDelimitWord (spanBuf.buf, spanBuf.len, &spanBuf.pos, style);

The code uses two class manager macros FlagSet() and FlagClx() to set and clear
style flags. The macros are defined as follows in CLSMGR.H:
#define FlagSet (f,v) ((v) | (£f))

#define FlagClr(f,v) ((v) & (~f))
%> Nofes

The function prototype looks like this:
532 EXPORTED IntlNDelimitWord (

P_CHAR pString, // Beginning of text region

U32 length, // Length of text region.

P_U32 pStart, // In/Out: seed position/start of word
LOCALE ID locale, // Locale to use -- from golocale.h
U32 style // Delimit style -- from isrstyle.h

)i
The function expects a counted string, a locale, and a style. Remember that calling
LocDelimitWord() sends intlDefaultLocale and intIDefaultStyle as parameters.

Pass in a position you want to search from as pStart. When the function returns,
pStart contains the start of the bunsetsu, and the function itself returns the length
of the bunsetsu.

»%» Related information

¢ “Delimiting sentences” on page 290.

¢ The header files ISR.H and ISRSTYLE.H contain more information about dif-
ferent ways to call the delimit word and sentence functions.

¥ Delimiting sentences

This procedure locates a sentence in a text stream.

% Prerequisite information

“Delimiting sentences” on page 264.

CHAPTER 24 / PROCEDURES
Comparing strings

% Procedure

1 Include ISR.H in your source file. Link INTL.LIB with your code by listing it in
your makefile.

2 Locate the position in your text stream where the user requested a sentence
selection.

3 Call LocNDelimitSentence() or LocDelimitSentence().

¥ Example

See example for “Delimiting words” on page 289.

’» Notes

Here is the function prototype:
$32 EXPORTED IntlDelimitSentence(

P_CHAR pString, // Beginning of text region

P_U32 pStart, // In/Out: seed position/start of sentence
LOCALE_ID locale, // Locale to use -- from golocale.h

U32 style // Delimit style -- from isrstyle.h

)i
Specify intlDImtSntcStyleSentence as a style to select a sentence without any punc-
tuation.

’% Related information
“Delimiting words” on page 289.

¥V Comparing sirings

This procedure compares two null-terminated strings and returns their sort order.

¥» Prerequisite information

“Comparing and sorting” on page 264.

% Procedure

1 Find two null-terminated strings you want to compare.

2 Send the characters to IntlCompare().

% Example

This code compares two literal strings. It is intended as an example of how to call
IntlCompare() rather than as good coding practice. Do not use literal strings in
your code unless absolutely necessary.

P_CHAR firstString = L”First string”;
P_CHAR secondString = L”Second string”;
LocCompare (firstString, secondString, intlSortStyleDictionary);

291

3 / JAPANESE LOCALIZATION

292 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

% Notes

The function prototype follows:
S32 EXPORTED IntlCompare (

P_CHAR pleft, // left string of comparison

P_CHAR pRight, // right string of comparison
LOCALE_ID locale, // Locale to use -- from golocale.h
U32 style // Collation style -- from isrstyle.h

)i
The function returns:
¢ —1 when pLeft precedes pRight (left < right)
¢ 0 when pLeft is the same as pRight (left == right)
¢ 1 when pLeft follows pRight (left > right)
¢ stsRequestNotSupported if the locale or style is unsupported.

The following styles apply with sorting and comparing.

#define intlSortIgnoreCase flaglé // (*) Ignore case

#define intlSortStyleDictionary 0x0001 // e.g. treat space as first
character

#define intlSortStylePhoneBook 0x0002 // e.g. ignore spaces altogether

Remember that intlSortStyleDictionary uses the JIS order for Level 1 kanji and var-
ious rules for other characters, while intlSortStylePhoneBook sorts in Unicode
order, which is a good approximation of the radical and number of stroke sort
orders used in Japanese dictionaries.

% Related information
“Sorting strings” on page 292.

W Sorting strings

This procedure sorts an array of null-terminated strings.

% Prerequisite information
“Comparing and sorting” on page 264.

% Procedure

1 Include ISRH in your source file. Link INTL.LIB with your code by listing it in
your makefile.

Encode the strings you want sorted as an array of null-terminated strings.

Pass in the array as a pointer to a string (type PP_CHAR) as a parameter to Intl-
Sort().

% Example

No example available.

CHAPTER 24 / PROCEDURES
Handling line breaks

% Notes

The function prototype follows:

STATUS EXPORTED IntlSort (
PP_CHAR ppString, // list of strings to sort

U32 count, // number of strings in list
LOCALE_ID locale, // Locale to use -- from golocale.h
U32 style // Collation style -- from isrstyle.h

)i
See the Notes under “Comparing strings” on page 291 for details on the valid
styles.

Related information
“Comparing strings” on page 291.

Handling line breaks

This procedure breaks lines of text, ensuring that no character that is not allowed to
begin or end a line does so.

Prerequisite information
“Delimiting words” on page 289.

Procedure

1 Include ISRH in your source file. Link INTL.LIB with your code by listing it in
your makefile.

2 When displaying text that wraps, send the text stream to IntlBreakLine(). The
result is returned in an INTL_BREAK_LINE structure.

3 Check the breakAt field of INTL_BREAK_LINE for the position of the line
break.

4 If the position is at or before the start of a line, the function could not find an
appropriate break point. You should provide a default method to handle this
case. In most cases, you can just include all the characters that will fit on the
line and break when necessary.

Example

The following code checks to see if the text in pMetrics fits on the current line. If
the text does not fit, LocNBreakLine() is called to find an appropriate place to
break the line. If the function returns a break position at the beginning of the line,
no appropriate place was found to break the line, and hence the line need not be
remeasured. Otherwise, the line is remeasured and the buffer updated with the cor-
rect line break information.

P_TEXT LINE pMetrics;

P_POSSIBLE LINE maybeMetrics;

TEXT_INDEX savePos, pos, posInBuf;
CHAR charBufMem[MAX BUF SIZE];
CHAR *charBuf;

BOOLEAN wordWrap;

293

[3 / JAPANESE LOCALIZATION

294 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

INTL_BREAK LINE breakLine;
u32 style = intlStyleDefault;

if (('TextFits(pMetrics, &maybeMetrics)) && wordWrap)
{
savePos = pos;
posInBuf = charBuf-charBufMem;
LocNBreakLine (charBufMem, MAX BUF_SIZE, posInBuf, &breakLine, style);
if (posInBuf == breakLine.breakAt || breakLine.breakAt == 0)
goto NoReMeasure;
newBreakPos = pos - (posInBuf - breakLine.breakAt);
goto Remeasure;

¥ Notes

The IntlBreakLine() function requires a special structure as a parameter. When the
function returns, the information on how to break the line is passed out in this
structure. The following structure definition is in ISR.H:

typedef struct INTL BREAK LINE {
U32 breakAt; // position of line break
U32 deleteThis; // chars to delete from end of this line
CHAR insertThis[intlBreakLineMaxInsertl];
// chars to insert at end of this line
U32 deleteNext; // chars to delete from start of next line
CHAR insertNext[intlBreakLineMaxInsert];
// chars to insert at start of next line
} INTL_BREAK LINE, *P_INTL BREAK LINE;

The constant intlBreakLineMaxInsert is also defined in ISR.H. Its current value is 8.

Because Japanese simply breaks lines with no changes to the text stream, the fields

deleteThis, insertThis, deleteNext and deleteNext are typically empty.

The current version of this function does not support hyphenation, although such
support is planned. When hyphenation support is provided, and you use this func-
tion to check line breaks for romaji, the fields deleteThis and deleteNext are typi-

cally empty, while insertThis contains a hyphen.

The prototype for IntlBreakLine() is as follows:

532 EXPORTED IntlBreakLine (
P_CHAR pString, // Line to break
U32 pos, // 1lst char that won't fit
P_INTL BREAK LINE pBreak, // Out: how to break it
LOCALE ID locale, // Locale to use -- from golocale.h
U32 style // Break style -- from isrstyle.h

)i

% Related information
¢ “Delimiting words” on page 289.

¢ “Delimiting sentences” on page 290.

CHAPTER 24 / PROCEDURES 295
Using Japanese fonts

W Using Japanese fonts

This procedure describes various methods you can use to specify a particular Japa-
nese font.

¥ Prerequisite information
¢ “Fonts” on page 250
o PenPoint Architectural Reference, Part 3, Chapters 25-26.

% Procedure

There are a variety of ways your application can work with fonts.

¢ Use the default system fonts. Set the group field of SYSDC_FONT_ATTR struc-
ture to sysDcGroupDefault or sysDcGroupUserInput. The default fonts are
Mincho for the system and Gothic for the user.

¢ Use clsPopUpChoice to display currently installed fonts in a scrolling window
from which the user may select a font. See the example below for sample code.

¢ Set the drawing context with the desired font. The short font string for Min-
cho is MC55; for Gothic, the string is GT55. You can convert the string to a 16-
bit font identifier with the SysDcFontID() function. Note that if you specify
sysDcGroupTransitional, the group for Roman fonts, the system displays
Japanese characters in the Mincho font. Similarly, the system displays Gothic
characters when you specify the group as sysDcGroupSansSerif. See Chapter
26 of the Architectural Reference for details.

% Examples

The first example is from the Hello World application. It sets the font to be the
default user font by creating a drawing context in which the font group is sysDc-
GroupUserInput.

// Create a dc.
ObjCallRet (msgNewWithDefaults, clsSysDrwCtx, &dn, s);
data.dc = dn.object.uid;

// Open a font. Use the "user input" font (whatever the user has
// chosen for this in System Preferences.

fs.id = 0;

fs.attr.group= sysDcGroupUserInput;

fs.attr.weight= sysDcWeightNormal;

fs.attr.aspect= sysDcAspectNormal;

fs.attr.italic= 0;

fs.attr.monospaced= 0;

fs.attr.encoding= sysDcEncodeGoSystem;

ObjCallJdmp (msgDcOpenFont, data.dc, &fs, s, Error);

//
// Scale the font. The entire DC will be scaled in the repaint
// to pleasingly fill the window.
fontScale.x = fontScale.y = FxMakeFixed(initFontScale,0);
ObjectCall (msgDcScaleFont, data.dc, &fontScale);

// Bind the window to the dc.
ObjectCall (msgDcSetWindow, data.dc, (P_ARGS)self);

3 / JAPANESE LOCALIZATION

296 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

You can find this code in \2_ 0\PENPOINT\SDK\SAMPLE\HELLO\HELLOWIN.C.

The second example comes from the Clock Application. You can find the code in
\2_O\PENPOINT\SDK\CLOCK\CLOCKAPP.C.

You can set up a TK_TABLE that allows the user select from the available fonts. To

do so, include tkPopupChoiceFont as part of the flags field of a clsPopupChoice.

This notifies the popup filed to get the list of available fonts from the system.
static const TK_TABLE ENTRY clockDisplayCardEntries[] = {

{hlpClkAppDisplayFont, 0, 0, 0, tkLabelStringId, 0, hlpClkAppDisplayFont},
{fontPrune, 1, 0, tagFont, tkNoClient | tkPopupChoiceFont, clsPopupChoice,
hlpClkAppDisplayFont},

{pNull}
b
When the user taps Apply and this control is dirty, the Clock application must
rewrite each of its labels in the new chosen font.
StsRetNoWarn (ReadControl (pArgs->win, tagFont, &value, 0, 0, pNull, false), s);
if (s == stsDirtyControl) {
pInst->fontId = (Ul6) value;
SysDcFontString((Ul16) value, fontName);
Dbg {Debugf (U_L(“ClockApp: new font id is 0x%lx, \"%s\""“), value,
fontName) ;)
SetLabelFont (pInst->timeWin, pInst->fontId);
SetLabelFont (pInst->amPmWin, pInst->fontId);
SetLabelFont (pInst->dateWin, pInst->fontId);
SetLabelFont (pInst->alarmWin, pInst->fontId);
*pAppLayout = true;
SetLabelFont() is an internal function that updates the current font specs with the
new font ID.
STATUS SetLabelFont (OBJECT win, Ul6 fontId) {

SYSDC_FONT SPEC spec;

STATUS s;

if (win) {
ObjCallRet (msgLabelGetFontSpec, win, &spec, s);
spec.id = fontId;
ObjCallRet (msgLabelSetFontSpec, win, &spec, s);

}
} // SetLabelFont

% Related information
¢ “Working with Shift-JIS in text files” on page 283.

¢ “Working with Unicode in source code” on page 284.

W Supporting kana-kanji conversion

The easiest way to support KKC or RKC in your application is to create an instance
of cIsIP or clsField, because these classes already support character conversion.

This procedure describes how to make your own class the client of clsCharTrans.
The easiest way to do this is to make your class a subclass of cIsGWin or one of its
descendants.

CHAPTER 24 / PROCEDURES
Supporting kana-kanji conversion

% Prerequisite information

¢ “Kana-kanji conversion” on page 257.

& PenPoint Architectural Reference, Part 4, Chapter 32.

»» Procedure

1 Subclass clsGWin or one of its descendants.
2 Create your window as an instance of this subclass.

3 When appropriate, self-send the following messages to your window instance.
Do not handle the messages. Rather, allow them to pass up to clsGWin,
which sends the messages to its associated character translator. In PenPoint 2.0
Japanese, this translator is cIsKKCT.

Send msgCharTransKeyEvent whenever the user presses a key.

Send msgCharTransChar whenever the user changes the buffer (for example,
when the user inserts or deletes a character).

Send msgCharTransGesture when the user makes a gesture. If the gesture is
relevant to character translator, be prepared to handle msgCharTransGet-

ClientBuffer (described below).

Send msgCharTransGoQuiescent to abort any current translations.

4 Your class should respond to the following messages sent by the character
translator.

msgCharTransModifyBuffer, which contains information on how to update
g p
your buffer with the newly translated characters. Respond by updating
your text buffer and user interface, including updating strong and weak
highlighting. The character translator passes you a CHAR_TRANS_MODIFY
ghlighting p b4
structure.

msgCharTransGetClientBuffer, which asks your window instance for some
text. Pass the requested text to the character translator as part of a CHAR_
TRANS_GET_BUF structure.

msgCharTransProvideListXY, which asks your class where to put the charac-
ter alternative list. Compute the coordinates so that the list pops up below
the character.

msgCharTransSetMark, which notifies your class that the translator is collect-

ing characters. This message is sent for historical reasons. You can largely
ignore it.

297

3 / SAPANESE LOCALIZATION

298 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

% Notes

The following structures are used or required by the messages that the character
translator sends your class.

The character translator sends the CHAR_TRANS_MODIFY structure to let the client
know how to modify its buffer. The structure is sent with msgCharTransModify-
Buffer. Note that the markRelative, setActiveLenTo0, popupEvent, and user fields

are used internally and you generally do not need to worry about them.
typedef struct CHAR TRANS MODIFY {

CHAR TRANSLATOR ct; // in: originating translator
$32 first; // in: 1st char to modify

832 length; // in: # of chars to replace
S32 buflen; // in: # of chars in buf
P_CHAR buf; // in: chars to replace with
CHAR TRANS HIGHLIGHT highlight;

U32 markRelative:1,

setActivelLenTo0:1,
popupEvent:1,

reserved:29; // unused (reserved)
U32 user;
U32 sparel; // unused (reserved)

} CHAR TRANS MODIFY, *P_CHAR TRANS MODIFY;

The CHAR_TRANS_HIGHLIGHT structure contains information on how to high-
light characters in the current buffer. The character translator sends you this struc-
ture as part of the P_ARGS for msgCharTransModifyBuffer.

typedef struct CHAR TRANS_HIGHLIGHT {

532 weakStart;

s32 weakLen;

S32 strongStart;
S32 strongLen;

532 oldWeakLen;

532 oldStrongStart;
S32 oldStrongLen;

} CHAR TRANS HIGHLIGHT, *P CHAR TRANS HIGHLIGHT;
The character translator requests part of its client’s buffer with msgCharTransGet-
ClientBuffer. The CHAR_TRANS_GET_BUF structure describes what portion of the
buffer the character translator requires.

typedef struct CHAR TRANS GET BUF {

P_CHAR buf;

S32 startPosition;
832 length;

U32 reserved;

} CHAR TRANS GET BUF, *P_CHAR TRANS GET BUF;
When the user requests an alternative to the current translation, the translator
requests the client to provide the location for the pop-up box by sending msgChar-
TransProvideListXY. The client fills in the requested information as part of a
CHAR_TRANS_LIST_XY structure.

typedef struct CHAR TRANS LIST XY {

$32 charPosition; // character position in client buffer
XY32 XY; // root window coordinates for list
U32 reservedl;

U32 reserved?;

} CHAR_TRANS_LIST XY, *P_CHAR TRANS_LIST XY;

¥ Examples

CHAPTER 24 / PROCEDURES
Supporting kana-kanji conversion

The following code fragments illustrate different parts of the character translation
protocol. The first fragment shows a typical response to the user pressing a key.
const P_INPUT EVENT pEvent,

const OBJECT self,
P_KEY DATA pKeyData;
P_MY TEXT STRUCTURE pText;
Ulé key;

CHAR TRANS_ CHAR ctChar;

switch MsgNum(pEvent->devCode) {
case MsgNum(msgKeyChar) :

pKeyData = (P_KEY DATA) (pEvent->eventData);
key = pKeyData->keyCode;
ctKeyEvent.keyEvent = msgKeyChar;
ctKeyEvent .keyCode = key;

-ctKeyEvent.scanCode = pKeyData->scanCode;

ctKeyEvent.shiftState = pKeyData->shiftState;
s = ObjectCall (msgCharTransKeyEvent, self, &ctKeyEvent) ;
if (s < stsOK) :
s = HandleAnyKey(self, pText, pKeyData->shiftState,
key, pKeyData->repeatCount);
}

break;

The client self-sends msgCharTransKeyEvent each time the user presses a key. If
the translator does not use the key, the message returns a status less than stsOK. In
this case, the client responds by sending the key event to the internal function Han- -

dleAnyKey().

The second fragment is part of the HandleAnyKey() function. It shows a typical
instance of sending msgCharTransChar. Remember that you send msgCharTrans-
Char to self when a character in your buffer changes (for example, when the user
inserts or deletes a character). This particular code responds to the user pressing the

backspace key.

CHAR TRANS CHAR ctChar;

Ulé

switch (key)

{

repeatCount;

case uKeyBackSpace:

ctChar.c = (CHAR)key;
ctChar.position = r.first-1;
ctChar.operation = ctDeleteChar;
for (i = 0, sts==0K && i < repeatCount && ctChar.position >= 0; it++)
{
ObjCallWarn (msgCharTransChar, self, &ctChar);
ctChar.position--;

299

3 / JAPANESE LOCALIZATION

300 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

The third fragment shows the entire handler for msgTransCharGetClientBuf. The
character translator sends you this message to request a part of your buffer.
MsgHandlerArgType (SampleTextCharTransGetClientBuf, P_CHAR TRANS GET_BUF)

{

const P_MY TEXT STRUCTURE pText = IDataDeref (pData, P_MY TEXT STRUCTURE);
TEXT BUFFER myText;

myText .buf = pArgs->buf,

myText.first = pArgs->startPosition;

myText .length = text.buflen = pArgs->length;

ObjCallWarn (msgTextGetBuffer, pText->tb, &myText);

return (stsOK) ; i

MsgHandlerParametersNoWarning;

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

PART3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 25 / Resources

Here are some texts that may help you during your localization process. Though
not listed here, there are also consulting, translation, and marketing companies
that can help you design, test, and translate your Japanese application and
documentation.

Do’s and Taboos Around the World, 2nd ed. Roger Axtell, John Wiley & Sons,
1990. A funny but informative guide to culturally acceptable and unac-
ceptable behavior in various cultures.

Do and Taboos Roger Axtell. John Wiley & Sons, 1989. Similar to Do’ and
Taboos Around the World, this book is aimed towards small businesses.
Includes discussion of planning for international markets, pricing, ship-
ping, managing and motivating distributors, and communication. Also
devotes an entire chapter to Japan.

Electronic Handling of Japanese Text Ken Lunde. Describes how Japanese text is
handled electronically. Includes a superb history of Japanese character
encoding. Available through the Internet via anonymous FTP at
MSLUMN.EDU (128.101.24.1). The files, which include various utility
programs, are in the /PUB/LUNDE directory.

Localization for Japan Apple Computer, Inc. Apple Developer Technical
Publications, 1992. Contains a general overview of the Japanese computer
market. Aimed at the non-programmer.

Kanji and Kana Wolfgang Hadamitzky and Mark Spahn. Charles E. Tuttle
Company, 1981. A concise introduction to the Japanese writing system.

Soft Landing in Japan: A Market Entry Handbook for Software Companies
American Electronics Association, 1990. Contact the AFA at 408-
987-4200 for more information. '

The Unicode Standard: Version 1.0, Volume 1 The Unicode Consortium.

Addison-Wesley, 1991. Introduces the Unicode character encoding
system.

The Unicode Standard: Version 1.0, Volume 2 The Unicode Consortium.

Addison-Wesley, 1992. Shows glyphs for Chinese, Japanese, and Korean
ideographs.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART3 / JAPANESE LOCALIZATION HANDBOOK

Chapter 26 / Japanese Character Set

The following pages list all the kanji defined by the 1990 JIS character set listed in
Shift-JIS order. The Unicode value for each character is listed underneath each char-
acter as a 4-digit hexadecimal number.

We used PenPoint 2.0 Japanese to print this list with a standard 300 dots per inch
(dpi) laser printer.
The fonts shipped with PenPoint 2.0 Japanese contain glyphs for all the characters

listed. The characters that the handwriting recognition engine cannot recognize are
marked with an asterisk(*).

Shift-JIS is ordered by a system called ku-ten. Most Japanese characters require two
bytes of memory (half-width katakana characters, which require a single byte, are
the exception).

Shift-JIS identifies the first byte with a string between ku 1 and ku 94, and the
second byte with a string between ten 1 and ten 94. The kanji begin with ku 16
(hexadecimal 0x81).

Each ku is printed on a separate page that contains characters running from ten 1
to ten 94 for a given ku.

¥ How the list was created
The list was created as follows:

1T A C program generated an RTF file containing the characters in the proper
order and with the Unicode values.

2 The RTF file was passed into the DOS utility RTFTRIM. The result is a legal
RTF file stripped of the RTF keywords that PenPoint’s text component does
not use.

3 The trimmed file was imported as a MiniText document and printed to a
spool file. See Chapter 32 of Part 4: PenPoint Development Tools Supplement

for information on printing to a spool file.

4 The spooler output was copied to a laser printer.

304 PENPOINT APPLICATION WRITING GUIDE '
Part 3 / Japanese Localization Handbook

KU 16 1 2 3 4 5 6 7 8
H O W & R O x B O, KB &
4e9c¢ 5516 5a03 963f 54¢0 611b 6328 5916 9022
10 % % *% % j:}.% ?‘/E jlg; %)iz;: w2
8475 831c 7a50 60aa 63el 6e25 65ed 8466 82a6 9bfs
20 ¥OE B % % M i) B V5
6893 5727 65al 6271 5b9b 59d0 867b 98f4 7d62 7dbe
0 g = R O K O OE % B O£ H
9b8e 6216 7¢9f 88b7 5b89 Seb5 6309 6697 6848 95¢7
o % & L BB N &k & R E
978d 674f 4ee5 4£0a 414d 419d 5049 56f2 5937 59d4
« B OB O R OB 5% & B B B
5a01 5¢09 60df 610f 6170 6613 6905 70ba 754f 7570
o ®2 M & ¥ ZE= K BF & B E
79fb 7dad Tdef 80c3 840¢ 8863 8b02 9055 907a 533b
2 F = B OFvF B ® — T @ &
4¢95 4eals 57df 80h2 90c¢1 78el 4¢00 58f1 6ea2 9038
0 m X ¥ & & HEH W B 1R
7a32 8328 828b 9c2f 5141 5370 54bd S4el 56¢e0 59fb

5f15 982 6deb 80c4 852d

KU 17

10

20

40

50

70
80

90

>

pen
8fc2

12

N

5504
4¢91

66f3
e

&3]

885b

[

95b2

#

63a9

Hh
2

8276

519

3
=]
9640

5

9d5c
fg

9¢3b

1=

834f

6cf3
i

6db2

5186
=
18
6f14
p== =

=
9060

A

5180

CHAPTER 26 / JAPANESE CHARACTER SET

L O == A
HE x

S
a

—_
—

g

W %‘f “
w 4 w
o E)
— \O

N3

~X
N
i
o

v 2 BX

*

53f3

7
F
5b87

H

8l1fc

JA

T4dc

CH

5b30
ZH

Tade

A
157

60a6

5bb4
4nb

EAANY

71d5

i

65bc

3

4 \“!j

70cf
N
6€26

=]
958f
-2
571

9834

305

B2

Wiz

7525

306

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 18

20

40

50

70

80

8766

6211

J1

4ecb
ik

6062

1

#iF

62bc

=

9ecd

N
— [¢]
3 g N
& 3

3ai

W
jon
¢}

—

2>¥4 g; w3 ;4\
) g

i 3

2

it

65fa

]

Scal

e

4ffa

il

413d

79d1

1
6a2a
i
696

izl

5378
fitf
4fal
HER
6687
Vavasy
7b87
A
=1

8ca8
81c¢5

S6de

-]
7]

62d0

6b27
N
2K
837b

7N
6069

(E3

4173

679%¢

1t
82b!

1hn
8fc6

82bd
5
584a

44

6539

86fc

58ca

A3
213
7fcl

158
6106

9713

5609

KU 19

10

20

40

50

70

80

i

9b41

£

958b

6982

22

86d9
iz
64b9
L
8103

i

6390

f5

62ec
ME
691b

9d28

i

6666
Be
968¢
S
6daf
=

57a3

1%

683c

. Y

?
90ed
faran
BYN
7620
&
6d3b
i
6a3a

]

6822

3

7

68b0

H

8c9d
hg
788d
i
67ff
%
6838

3

95a3

B

6a2b
)
6e07
ol

9784

-

7

8305

4
i
v

6d77

86¢ce
AN
X
o6bbb
BE?
s}
9694
*E.
B
6a7f
JIE,
e
Gedl

3

0682a

=

=]

.

8431

CHAPTER 26 / JAPANESE CHARACTER SET

X
7070
B2
52be
i
8857
74

920e

&

7372

L3

9769

E

68b6

845b
gz

515¢

6

7

754¢

~

¥

5687
7a6b

5cb3

v
»,
é“%

6f5f
B
8f44
]

84b2

ey B

o
Y

[=x
3]

R

QMY M

[

-
HY £

O
—
(=N
o

307

89d2
984d
559d
7

9c39

938¢c

D 3/ JAPANESE LOCALIZATION

308 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 20 1 2 3 4 s 6 7 8 9
o N x B o ol & B OH
Tca$ 5208 82¢5 T4e6 4eTe 4£83 51a0 5bd2 520a
0 B & 5 W H®H % = E E F
5248 52¢7 5dfb 559a 582a 59¢6 5b8c 5b98 5bdb 5e72
2 B B K OB & # EH M #H 8
5¢79 60a3 611f 6163 61be 63db 6562 67d1 6853 68fa

i}

& T &= @ ¥ B O H H

[«,} N
.{.ﬁc‘ S
W
(<]

o
S
(¥
w

E M O® m % N

i
ol
B

40

Taff 7bal Tc21 7de9 7136 7£f0 809d 8266 83%¢ 89b3
50 w® OB B & ™M KR M KM ##g fH

8acc 8cab 9084 9451 9593 9591 95a2 9665 97d3 9928
@ WO 7 F B O B OB &5 B

8218 4e38 542b 5¢b8 Sdcc 73a9 764c 773¢ ~ 5ca9 7feb
0 E m® =M B B & &£ @& FE &4

8d0b 96¢l 9811 9854 9858 4101 4{0e 5371 559¢ 5668
0 2 # OB TFOok O OB = # Al

57fa 5947 5b09 Sbcd 5¢90 5e0c Sele Sfec 63ee 673a
w B OB B O FE

65d7 65¢2 671f 68ch 68c4

6¢57 6122 6197 6145 74b0 7518 76€3 770b

KU 21

20

40

50

70

90

%
#

5fbd

4¢80
53

7591
5403
811a

5f13

&5

Taae

S|

62d2

PARAY

9b5a

Vi

5e30

898f

%

507d

w

o oo & -
o o
i g W

5100

i

7fa9

o

6854
9006

6551
N
7d1a
25

6319

gl

4¢ab

&

6¢c17

il

8cb4

/53

5993

i

87tb

Ak

6a58

4¢18

i

673d
Mt
Tefe
VE
6¢20
h7i

4eac

CHAPTER 26 / JAPANESE CHARACTER SET

pAV.

757¢

)

8ecc

X

622f

[EE23
8b70

fik

7827

M

4ec7
&
6¢72

IH

65¢e7

R
8a31

;
A
7948
ﬁ
8f1d

%

6280

73

63ac

FF

6775

N

4f11
\‘_L'
DL
6¢ce3

He

725b

2]

8ddd

=

5b63

A E R

=0\ Y
= 8

Dt

W
&
<

\o -]
S Sx
o0

309

310 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 22 1 2

3 4 5 6 7 8 9
gt B/ R Oom * W B E
4f9b 4fa0 50d1 5147 7al6 5171 51f6 5354 5321
0 oo & XK O o=m O BOBE B R
537f¢ 53eb 55ac 5883 Scel 537 Sf4a 602f 6050 606d
2 ®oH B W OxE O B W & H
631f 6559 6a4b 6ccl 72c2 T2ed T7ef 80f8 8105 8208
0 & o s & &2 OB O OB
854¢ 9017 93el 971t 9957 9a5a 4ef0 Sidd Sc2d 6681
w X B 1 MW ET B O &£ B 5
696d 5c40 6612 6975 7389 6850 7c81 50c5 52¢4 5747
5 m & ;7 m &K F K & @ B
Sdfe 9326 65a4 6b23 6b3d 7434 7981 79bd 7b4b Tdca
o FAoOBE OB # E I & B @
82b9 83cc 887f 8951 8b39 8fd1 91d1 541f 9280 4e5d
L # A K #H A B H K B A
5036 53¢5 533a 72d7 7396 77¢9 82¢6 8eaf 99¢6 99¢8
. R & E O oz B B & B
99d2 5177 611a 865¢ 55b0 TaTa 5076 5bd3 9047 9685

w B8 9 B A

4e32 6adb 91e7 5¢51 5c¢48

KU 23

10

20

40

50

70

80

6817

AB

90el
13ea
643a

Tedb
v

%8
9dsf

73

5091

(L

5039

Sefa

e E

[
{Q
o

W
w
(o))
=)}

2

W
~1
(o]
(=

3 &

716

o

T E M

6b20

&

5026
J:l.gf\

61b2

CHAPTER 26 / JAPANESE CHARACTER SET

5
8f6l1

B

541b

(5

551

6075

7566

—

A
8a08

244

621f
e
7d50
Al

5263

6
¥
Taaa

S

85ab
T
5211

B

6176

T8

7a3d
2

=

(5] =]
8a63

5

6483

itk

8840
I}

55a7

7

RE
718a
Al

8al3

2

9688

ic3
Tfad
%
5553
#H

PIAARY
61a9
¥
e
Td4c

2

8efd
i
9699

6708

5805

311

Tc82

8ccd

572d

'y

63b2

I

7d99

|

981a

i

6841

{#

4ef6

Sacc

g 3/ JAPANESE LOCALZATION

312 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 24

~
S
“w
-3
~
L
o

WO 8 o’

T2ac 732¢ 7814 786f 7d79

3t -
>
&

N

(2.
O
—
o
N
t<l
N
=]
~
N
~3
(=N
~
&

o A R K

il
R

i
i
B
i
&

80a9 898b 8b19 8ce2 8ed2 9063 9375 967a 9855 9al3
2 @% JC SR ‘Z\j 32 M ‘0/?\ EZ IE‘
9¢78 5143 539f 53b3 Se7b 5126 6elb 6e90 7384 73fe
x % &% B ®#® R O+ @ &H & E
7d43 8237 8400 8afa 9650 4ede 500b 53e4 547¢ 56fa
. ;W B Mm% O W M
59d1 5b64 5df1 Seab 5127 6238 6545 67af 6e56 72d0
50 WMo kB O W R ¥ OB & B
Tecca 88b4 80al 80el 8310 864¢ 8a87 8de8 9237 96¢7
w B % H H H 4 B E B #
9867 9f13 4¢94 4¢92 410d 5348 5449 543e 5a2f 5f8¢c
o ®wmoOo®E B B W E FE O OBR E B
Sfal 609f 68a7 6a8¢ 745a 7881 8a9%¢ 8aad 8b77 9190
0 z X & & & Ot N o
4e5e 9bc9 4cad 4f7c 4faf 5019 5016 5149 516¢ 529f

52b9 52fe 539a 53¢3 5411

CHAPTER 26 / JAPANESE CHARACTER SET 313

KU 25 1 2 3 4 5 6 7 8 9
e M L % o AL EF K I
540e 5589 5751 57a2 597d 5b54 5b5d 5b8f 5de5

0 mooB = K K OKE A B O OROH

5de7 5df7 5¢78 5¢83 5¢9a Seb7 5f18 6052 614c 6297

2 WO O ®r A R OE M OB OB B

62d8 63a7 653b 6602 6643 66f4 676d 6821 6897 69cb

0 T # # # ® ®F 2 B/ B K

6¢5f 6d2a 6d69 6e2f 6¢9d 7532 7687 786¢ Ta3f Tce0

o AL Bk R M # 5 K B B

7d05 7d18 7d5¢ 7db1 8015 8003 80af 80b1 8154 818f

50 e ok fr # B B x® B

822a 8352 884c 8861 8blb 8ca2 8cfc 90ca 9175 9271

o R oW B OB OBE O OF & B HFH

783f 92fc 95a4 964d 9805 9999 9ad8 9d3b 525b 52ab

2 75 A & # B % @& # m A

; 5317 5408 58d5 6217 6fc0 8cba 815f 9¢b9 514b 523b

0 =) X BB OB OB OE OB B

544a 56fd 7a40 9177 9d60 9cd2 7344 6109 8170 7511
0 2 B & W\ A

Sffd 60da 9aa8 72db 8ibe

3/ IAPANESE LOCALIZATION

314

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 26

10

20

30

40

50

70

80

kg

9803

6628
=]

5319

3

5

4eca

i

68b1

i

Sdef
é*é

5750

=

5bbo
f
7815

=

5728

S

54b2

A

6714

it

518a

56f0
ke

6df7

Sde6

JiE
Sea7

3

5169
=
7826

%)

6750
Iz
5d0e

il
il

5237

57fc

Ta84

58be

7d3a

i)

67fb

(=

50b5

%
63al
V-
658¢
)
8cal

i

7895

7b56

b

5aS5a

826¢
NN
¥

6¢99

{[:5

50ac

683d
i
7d30
o
51b4

s

9dfa
29
7d22

9b42

7473

5742

fE

4f5c
He

YH

932f

2

61c7

4¢9b
w
7802

6700

88cl

962a

Ell

524a
N4

685¢

KU 27

10

20

40

50

70

80

5b57

2
Sbdf
il

634c

6492

=

1

523a

AE Mg EE M

Sbia

8cdc

J00N

6148

w =

64ac 64c6
fig I
9bab 76bf
S
685f 71c6
72 W
9910 65ac
8
5312 55¢3
T
5¢2b 5(d7
k3t
6b62 6b7b

5 %
8102 8113
1 -
96¢c 981¢
S
6301 60642

CHAPTER 26 / JAPANESE CHARACTER SET

s

AL

672d

Ui

6652

il

73ca

H

66ab
Y

56db
PN

601d
6¢0f
&

8996

6bol

/5

6bba

7345
A
8ase

=

4¢8b

96d1

Z
53¢c2

Te82

4edd

frii

59¢9

®

5bSc

ZiA

79¢1

—

H
8a66

fF

4f8d

315

3 o
g

E

(¥ \v» & [W
O (o)) Lo}
= o] ¢ Ml S

&

o))
g
I

=)

;55

3
=

i 3/ JAPANESE LOCALIZATION

316 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 28 i 2 3 4 s 6 7 8 9
X % v W@ B OF W R
6b21 6ecb 6¢cbb 723¢ 74bd 75d4 78cl 793a 800c
o B OB O OB XX B B =
8033 8lea 8494 819 6¢50 9c7f 5fof 8b58 9d2b Tafa
2 woR £ £ M O ® XK % = &K
8cf8 5b8d 96¢eb 4¢03 53f1 57f7 5931 5ac9 Sbad 6089
z 2 & K H £ =W ® & K =
6e7f 610 75be 8cea 5b9f 8500 7be0 5072 67f4 829d
o E & & & F H # & #® =K
5¢61 854a Tele 820c 5199 5¢04 6368 8d66 659¢ 716e
50 t B FH H O EH O E i B & A
793¢ 7d17 8005 8bld 8eea 906¢ 86¢7 90aa 501f 52fa
o R ® KX B B W #H = & 5
5c3a 6753 707¢ 7235 914c 91c8 932b 82e5 5bc2 531
. / £ W 5 F K K ¥ W®W &
609 4e3b 53d6 5b88 624b 6731 6b8a 72¢9 730 Ta2e
w o BB O\ ' OfF X W F & M
816b 8da3 9152 9996 5112 53d7 546a Sbff 6388 6a39

0

Tdac

S
=
=
H

KU 29

10

20

30

40

50

70

80

Ii\§

7d42

8f2f
i
5093

J5\

5919
R
8ff0
)

65ec

B2

9187

772

43
AR
6055

\',& % ‘:{l]_ —
s 7

B 3 8 B ad S
S S Ee
a — (=9

m

g_\un
£ N E

&=

i
5¢31
33

7fd2
914b
67d4

i

6dd1

N

Sdde
8led
M

916¢
6¢cdl
ro

795d
6625

6dI3

521d

T

8517

50b7

& *

=
&

)
B

(]
[38]
—_—
-—

6240

8al8
f&

511f

CHAPTER 26 / JAPANESE CHARACTER SET

6
o
62fe
&

8846

i

4ecO
it
7¢26
2
587¢
Z

821c¢

76f¢
m

i3

66d9

3

53d9

M
6d32
LL:
8972
(£
Af4f

B

9lcd

—aa

g
PAA LY

719f
BR

99(f
g
7d14

6cla

5973

317

O

g «
% 3/ IAPANESE LOUALIZATH

318

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 30

10

20

40

50

70

80

90

59be

570
(/A

677¢

&

7167

Y)
N

7d39

—

3]
8a73

4¢08

=]
60cSs

i

91b8

1

i

52dd

i

5a3c

7K

627f

I N C A o)

8096
8c61
4ele
=

64fe

9320

E # B

5320
]
5bbs

%
6284

5347
1%
5¢06

A

62db

|l\\\

6a3s
e
785d
qgi
848b
=
91a4

—

JL

5197

N

6756

TE]

5714

S3ec
/N
5¢0f

6377
6d88

7965
e
&
885d

i

937¢

1477

57ce

72b6

5531
5¢84
660c
6e58

TacO

2

8alf
B:E:

L
969c¢

58cc

7263

KU 31

10

20

30

50

70

80

5E

6b96

(3

4f38

65b0

9707

8a0a

2
9017

8870
6570

i

88l

CHAPTER 26 / JAPANESE CHARACTER SET

5
Te54
=
41b5

5439

9042
s

6742

6

i

8077

8da8

9310

96db

fik

89e6

636¢e

319

968f

6749

§ B ADANISE INCAITATION

320

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 32

10

40

50

70

80

52¢2

i

6816

897f¢

e

8106

&

Tcdd
63a5

8749
3
6247
15

717d

= B B 1

647a
i
5f81
i
6¢05

=

5bf8
:l\é[s

6027

»
(=)}

el

&

[2))
N
—
(=]

STl ESHE BE RS
o0 S r
g x Odg A g 2 =

A

[«
<]
el
\O

R

7dda

8

702¢
653f
76db
9192

65as5

B

8del
Rl
7bc0
=N
Sba3
e

6d45

51c4

Eo
]

6674
58f0
6589

773
7]

5207
¥

m
7d76

i

5ddd

6f5¢

KU 33

20

40

50

70

o £ m g W2

5897

bt

821b
P
9583
HE
Teee
BR
758¢
Ui

90061

723d
i

64ced

i

7618

N =3

85ib

f=2]
i
618¢

CHAPTER 26 / JAPANESE CHARACTER SET

s
fin
8239
f
9bae
e
564¢

=

85a6
W
Gl

524d
Lz
5851
il
7956

(=

50e7

=

5c64
6619
A ¢

]

Tedt

8d70

7
ey
8abe

=

=
5584

%N

5ca8
5|
79df
=l

5275

[}

531d
5de3
Tdcf
%

9001

8

555

8cce
W
6138

i

63aa
il
7c97

pyd

53cc

PAAAY

60e3

69¢cd
%yfz
VR

7d9c
B

906d

3

-]

8dfs

Jz\\

7136

66fe

7d20

53e2
18
60f3

i

69fd
Ay
[}

8061

9397

AT ALY AT

RaE

322 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 34 1 2 3 4 s 6 7 8 9
e B B & & M H’ B B
81d3 8535 8d08 9020 4fc3 5074 5247 5373 606f

o ® R OH OB H @B B K KB &

6349 675¢f 6e2c 8db3 901f 4fd7 Sc5e 8cca 65cf 7d%a

2 oo K Oo®W F O & H N &

5352 8896 5176 63c3 5b58 5b6b Sc0a 640d 6751 905¢
50 fi % XK K F HE K 2 B
4ed6 591a 592a 6¢70 8a51 553e 5815 59a5 60f0 6253
o ¥ of& B O B OB &K # ox
67cl 8235 6955 9640 99c¢4 9a28 4153 5806 Sbfe 8010
50 f ~F B B O B O W M
Scbl Se2f 585 6020 614b 6234 66ff 6¢f0 6ede 80ce

o B o5 K 5 BB & B & # K

817f 82d4 888b 8cb8 9000 902¢ 968a 9edb 9bdb 4ee3

L B K %5 K E & ®w # H K

5310 5927 7b2c 918d 984¢ 9dI9 6edd 7027 5353 5544

0 £ #£ W #H R E K FH # B

5b85 6258 629¢ 62d3 6ca2 Gfecf 7422 8al7 9438 6fcl

v @ H M #H KA

8afe 8338 5ic7 8618 S3ca

KU 35

20

40

50

70

80

90

68da
B
62¢S
e
7dbb
i
6696
&

667a
755¢

4e2d

B
8a3b

4e01

Al
53e9
:ES:
8c37

R

63a2

/¥

803d
13%1

—

6a80

6¢60

r

7af9

f

4ef2

B

914e
JK

5146

18

gy

4{46

J&

72€8

65¢6

w

it

9054

s
ﬁﬁ
b

& gﬁgg g
& £

i

]
[=a)
c

(=

3

~3
W
w
~

810

i

6a3d
e
6del
L
8495
AR
8ac7

7f6e
2
9010

i

62bd

1:7@5:

6al7

5bt5

CHAPTER 26 / JAPANESE CHARACTER SET

5

X

596a

—
=
=,
=3

R
8ab0

i
6¢e5b

25

935b

Tk

5024

8114

S

79¢9

#

7026

6

i

8131

732a

7

2

Sdfd
B
5358
35}

T7ed

—ts

i)

58¢7

B2

Taea

A

5606
Vi
Taef
G-
5f3e

i

Sf1b

l%‘m

99b3

]

Sael

H

866b
aﬂ»
RT
8457

323

Eo

8fbf

5|

—

5766

Tbaa

65ad |

b

6065
7bc9
7740
8877

ir

8caf

NESE LOCALIZATION

E 3/ IAPA

324

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 36

20

40

50

70

80

5b2¢

5243

1%

608c

it

8247

_ -
juyy

L
o

—
(<)}

o\
~
—
(=%

g{%

[
1
[=9
(2]

K

o 2

2

i3
¥

6l6e

8d85
L
6c88
7t
939a
i
8fbb

722a

5448

728

633a

-

8achd

=

S5e81

ik

7252
Bk
8df3

2

73cd

75db

&

8526

540a
be
5824
j; =
rE
63d0
i
8ed4

5f14
H
753a
ok

929a

8cc3
1
901a
2
7db4
i)

91¢3
5b9a
68af

it

9013

e
hE

8139

h\%

9ceS
b
6d25

63b4
&
6f70

&

4f4e

BE

Sead

1H

798¢

4
PJARY

612
=]

%

8178

52¢5
g%

589¢

W

69fb

by

576a

K

1%

505¢

Sef7

=

7a0b

KU 37

10

20

40

50

70

80

HY

7684

9244

LR

8ee2
5835

8ced
6012

5695
%
76d7
2z

7b54

5012
5¢f6
6dd8

7b52

5

912d
&
9069

=

586b

Jl\i

7069

il

59ac

#R

90fd

S515a

IS

5dsb
M=)
i
6e6f

Tcd6

HH
?Kk
199

6¢ba

5¢55

B
6bbf
1€
5192

R

7825
{5
Slcd

Ju
X

6295

2]

5230

CHAPTER 26 / JAPANESE CHARACTER SET

5
JE
6¢ces

=]

54f2

J5

5e97
1
6fbl
3L
6597

fh

7834
8

“
5200

&

642d

5

71c8

6

1

6458
1

5Mb9
6dfb

7530

Zan

675c

52aa
&

5510

6771
\%

5t53

7

#

64¢e2

i

64a4

i

Tesf
=2
=)

96fb
i
6e21

i3

Seab
&
5854
k
6843
;Ei

75d8

325

i
6ef4
iR
8fed

5

Lxn

5410

83df

4

5974
5957
R

68df

7b49

% 3/ IAPANESE LOCALIZATION

326 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 38

1 2 3 4 5 6 7 3 9
E B B F g =20 OB X B
8463 8569 85¢4 8a0c 8b04 8c46 8¢e0f 9003 900f
o w M HE OB OB & B OF B &
9419 9676 982d 9a30 95d8 50cd 52d5 540c¢ 5802 5c0e
2 H OB W B OE W &H & IR
61a7 649¢ 6dle 77b3 Tae5 80f4 8404 9053 9285 Scel
0 9 E £ @& = ¥ B XX B #
9d07 533f 5197 5fb3 6d9¢ 7279 7763 79bf Tbed 6bd2
“ oo O B &4 % B OB B O OO&
T2ec 8aad 6803 6a61 5118 7a81 6934 Sc4a 9cf6 82¢b
50 "B W oM T o= %, Wl K B
5bcs 9149 70le 5678 5c6f 60c7 6566 6¢8c 8c5a 9041
@ H & £ # T WM AN F N K
9813 5451 66¢7 920d 5948 90a3 5185 dedd 5lea 8599
0 Ak B ;s oM B M OB O Om
8b0e 7058 637a 934b 6962 99h4 7e04 7577 5357 6960
0 B o#% w == B X @B B Kk W
8edf 96¢3 6¢5d 4¢8¢ S5¢3c¢ 510 8fe9 5302 8cdl 8089

s i B #HOA

8679 Seff 65¢5 4¢73 5165

KU 39

10

20

40

50

70

80

90

5709

—_—

9019

6cea
<
T

Telb

877f

767d

83ab

676f

6885

79e4
PATAN

=l
7b94
=

99¢1

77¢7
s

7¢95

9cab

CHAPTER 26 / JAPANESE CHARACTER SET

5

/SR

598a

&

5e74

=

56a2

=

5df4
(==

e

175

ik

724c¢
i
7164
—
K
8429
fif

8236

AN
5fcd
oA

5ft5

wy/

R
60a9

i

628a

82ad
=
H

80cc
72|

721d

1A

an2f
%

8584

(T

=%
s
8a8d

jﬁ%

637b
6fc3

64ad

J\\\;

99ac

fif

80ba

8cb7
K

5265

~N

8fcb

58f2

535a

2

66dd

327

7960

Wy

71c3

&b
He

806
|
6177 |
Eﬁg —
Sec3

A

914d

N2
5]

8ced

ey

5

P
g
&
&
e

62cd
%=

620

328

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 40

10

20

40

50

70

80

=]

7551

7.3

629c¢

534a

30

72af

7

9812

5351

Lt

6bd4
Ak
8ab9

At

6787

ﬁ//Q
(W]

7872

9262

1

9¢ce9

)

5¢06

3

Tedl

e

6669

JFE

5¢87

76ae
JE
975¢

=]

7709

7891

98db

Tt8¢

6591

85¢9

via

76¢c4

FE

AT

60b2

79d8
Hii

6a0b

2

=

O
—
O
<

i

00
[
@

b

78d0

6249

o

7dcb
1

7¢38

R

6ac8

2
=

9aea

96bc
G
6c3e

#

7bc4

8543

it

6279

=121
777

i

5099

KU 41

10

20

40

50

70

2 MG 3

&

[2))
W
H
-

=

—, O o w
& EE W

o>
g

9f3b

3
e
Tal7

S

7562

i

5f6a

i
63cf
W
5f6¢
fF
4cd8
b3
6577

=

8cal
—

PAR DY

856a

—t

H
5¢45

4
Ut
5339
£
7b46

iz

6al9
T
75¢5

YK

658¢
I8
57¢0
s
6547
fiz

8cchd

P Y

iL
H

90c8

A

670d

CHAPTER 26 / JAPANESE CHARACTER SET

5
/B
758b

—_—

(=]

JE
903c
K
6¢37

®
79d2

i
6d5c¢

K

592b

Af7
=

666¢

b

8d74

+
j:\

5¢01

6d6e

961c¢

il

6953

-

5166

59¢b

98a8

==
O

o0
—
\O
(=N

3 ¢

~}
O
N
(-]

3R

S ¥
S8/

i

329

g 3/ JIAPANESE LOCALIZATION

330 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 42

1 2 3 4 5 6 7 8 9
w KB B #'® W % #h ¥ AL
798¢ 8179 8907 8986 6dI5 5f17 6255 6¢cb8 decf

o W M 2 W | " &' # B B

7269 9b92 5206 543b 5674 58b3 6lad4 626¢ 711a 596¢

» o ® M OF X H W O K B

7c89 Tcde 7d1b 9610 6587 805¢ 4el9 4f75 5175 5840
« W% B OOW X W B B Ok H
5e63 5e73 5f0a 67c4 4e26 853d 9589 965b 7c73 9801
o B B OZF M B B E R £
50fb 58cl 7656 78a7 5225 77a5 8511 7b86 504f 5909
50 FPeow w® 34 &k & & ® H» F
7247 Tbe7 7de8 8tba 81d4 904d 4fbf 52¢9 5a29 5fol

w HFOBR OB OB W O $» B O W

97ad 4fdd 8217 92¢a 5703 6355 6b69 752b 88dc 8f14

o BB 2 R . = o F M

Ta42 52dr 5893 6155 620a 66ac 6bced Tc3f 83e9 5023

w " x W B X & = B B

4{f8 5305 5446 5831 5949 5b9d 5¢l0 Scef 5d29 5¢96

2 U N/ GRS

62bl 6367 653¢ 65b9 670b

=

KU 43

20

30

40

50

70

80

8702
4eal

671b
e

927e
7267

672c

BR

6627

i

9¢52

Tebd

E

8912

7

508d

67d0

9632

fize

7766
1
7ftb
679
st

685d

9ebf

4fe3
1%

6162

7832

H

9046

59a8

i

Td21

e

5317

E7)
52¢3
6469
%
69d9

53¢8

6¢80

CHAPTER 26 / JAPANESE CHARACTER SET

5
e
7¢2b

e
92d2
g
Se3d

]

80aa

5

50d5
NI
=
6¢cal

P&

78c8

—pa

T

5¢55

R

62b9

9ebb

6795
IR

6cab

NI

623f

S

8c8c

64b2

58

Sedc
57¢cb
i

9baa

8fcd

331

84ec

4eAf

*

66b4

8cbf f

b

6734
5954

59b9

AE

67fe
S

4fad

g
o

o

4

o

332

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 44

10

20

40

50

70

80

84d1

725¢
HH
660e
i

7dbt
I
731b

Sauf

5301
4)JL
1%
5179

él!
P4

6108

TR
5473

'lu\

Tal4

Zig

77db
BH

.
76df

i

Tdec
7612
9905

4e51

7d04
i

6¢b9

4
R
672a

ik

®

7695

6¢ll
visy

g

5a7f

ed

59ea
=
6a2l
{eH

5132

il

8cb0

HR

8036
=3

9756

L

Scac

iliv

7720

I

5al8

i

725d
8302

6728

[

554f

i

9lce

o

67f3

KU 45

20

40

70

1%
60a0

th

7950

R

4f59
%

63da
Taaf

990a
LA
87ba

EL

4¢e71

5c65

=4
Gl
8aed

¥l

6182
2

88d5

4c0c

R

63fa

7f8a
ar
PIANAS

617¢

R

88f8
g

5375

674¢

L
8£38
=t
63d6

-

3
8298

2k
8489
7
64cl
T
8000

il

6291

6765
=
JEL
5d50
I
g1
68a8

w

| = {
W
R W

iy

O
S B3
o °

&

\

ol
w2

e

e
H
S
0

e

4151

Al

67da

9091

TR

9810
H

¥

694a

i

84¢9
X
6¢83
i
983¢
~ E Ty

L
Gfeb

i

7483

CHAPTER 26 / JAPANESE CHARACTER SET

8h21
Tee
6dlb

i

862d

7
R
53cb

3t

7336
B,
2
878d

gx

5996
6¢ebo

et

8c0a

=
Tite
%
7d61
=

89a7

W Lo
<3 ﬁll
LA

pa

~
w
w
~

X

W \M
g Y} 2
O (9]

]

333

HEHEE"
~)
“ a

3/ IAPANESE LOCALIZATION

-
o
o]

3§

334 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 46 1 2 3 4 5 6 7 3 9
w1 B & B OB B @ ® 3
75¢€2 88cf 88el 9lcc 96e2 9678 5£8b 7387 Tacb

0 ' O® OB & W W W # B K

844¢ 63a0 7565 5289 6d41 6e9c 7409 7559 786b 7c92

2 B o ® B B B Kk B T X% K

9686 Tadc 9f8d 4fb6 616e 65¢c5 865c 4¢86 4eae 50da

» mooow % B 72O M R B OB

4e21 5lcc Sbee 6599 6881 6dbc 131f 7642 77ad Talc

o m R B ®# B B ®H h & &

Tcel 826f 8ad2 907c 9lef 9675 9818 529b 7dd1 502b

M W B O R Wm0 B B M

5398 6797 6dcb 71d0 7433 81e8 8f2a 96a3 - 9c57 9e9f
« B 82 R A H @ & # W B
7460 5841 6d99 7d2f 985¢ 4eed 4£36 4f8b 51b7 52bl
c m MmO ' L F & o T OFE E
Sdba 601c 73b2 793c 82d3 9234 96b7 96f6 970a 9e97
T T T COE - S S
9162 66a6 6b74 5217 52a3 70c8 88c2 5ec9 604b 6190

2 OB B OB B

6f23 7149 Tc3e 7dr4 806f

KU 47

10

20

40

50

3 =

7262

i

808b

o

67a0
Wi

7897

G
932¢

R

Seca

8001

Ea
&
502d

4¢98

5442

5{04
1.
807¢

F

548¢

ng
%
9¢10

CHAPTER 26 / JAPANESE CHARACTER SET

6

i@

6ad3

7
AP
7089

B

6994
.

7\
S16d

]

8ccd

PR

8568

8

R

8cc2
R
6d6a

=

9¢93

i

8107

i

6900

335

ZATION

nnnnn

37 IAPAN

]

336

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 48

10

70

o

4e56

4e9f

1

4ec2

iy

4f5d

491

i

4fd1

e

5005

5043

{5

5080

X B X

5f0c

DS

4e58

et

4eal

fi

4ed7

/rad
fe
457

(E2

4fof

{#

4fda
(£

4flc

=
X

5047
%

509a

4¢10

&L

4¢l5
]+
4¢85
—ten
E*
4eb0
{53+

4eed

=y
]

476

G

4196

156
4fed
8
5021
&
5055
{&

50b4

A
4e2a
i

8c6b

4eb3

T

dedf
%
488
&
5118
{e
4fe5
==
=]
5029

&

5050

i

50b2

Jp

4e31
4c8a

4eb6
il
4ef7

7S

4f8f

{7

4fd4

f&

501a

{=

502¢

f

5048

N\ *®
4¢36
&

8212

dece
it
4£09
fE
4198

1%

4fdf

5

5028

{#

4ffe

fi

505a

4e3c

::E;*

5fod

1y

4ecd

(S

4f5a
Pk
4f7b
AH
4fce

i

5014

i

4fef

18-

5056

4e3f

4e8c

X

4ecd

(]

430

I

469

(E2

4fd8

{5

502a

{F

5011

{:c.*

506¢

4e42

4¢9¢

(dx

4ec6

i

4f5b
4f70

4fdb
2
5025

fri

5006
I,
fic*
5078

CHAPTER 26 / JAPANESE CHARACTER SET

KU 49 | 2 3 4 s 6 7 8
w B & # £ B £ @
50c9 50ca 50b3 50c2 50d6 50de 50e5 50ed

o w ® # & & B & B £

50ce 509 5015 5109 5101 5102 5116 5115 5114

2 woOB B O ® & JL L R &

5121 513a 5137 513c 513b 513f 5140 5152 514c
0 wmoo OB W & &5 ®H Il [Ex i
5162 Tat8 5169 516a S516e 5180 5182 56d8 518¢c

o B 5 # &# — % & X R

518f 5191 5193 5195 5196 51ad 51a6 51a2 51a9

0 v~ & @H M ok G- B W

Slab 51b3 S1bl 51b2 51b0 51b5 51bd 51c5 51c9

“ JL. B A & B L ® A FH

51e0 8655 51e9 Sled 510 5115 5ife 5204 520b

L n o H) C/I - B < 7 C{| I |

520¢ 5227 522a 522¢ 5233 5239 524f 5244 524b

0 @ o 8% ®w # A& B R #l

525¢ 5254 526a 5274 5269 5273 527f¢ 527d 528d

. B B B E W

5292 5271 5288 5291 8fa8

337

&

50e3
=

511a

ZHTION

o
oAl

I Y F
= LEIUALE

5154

FANESE L

3/ IAPANES

5189 |

cl
§

Slaa

»,

=
51db

Al
5214
#]

524c
2+

5294

*

338 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 50

10

20

40

50

70

80

90

)]
52¢3

7538

5338

&

536e
Ja
53b0

AN

53ed
i)
5429
=] =]
JL

5492

&3

54as5

2

)]

52ac
,...

£

98cd

&l
5310

.,

5346
D
all
537b

2

=

53c3
5
5401
IR
544¢
zk
5480

nt

P

54c4

il
52ad
2
52¢0
5t

530f

5345
&
5377

>
.
272

Tcl2

543d

>

K+

5481

U

5476

i

54c8

+
=]

52bc

=

52f3
5315
4el7
5382
i

96d9
5440

MRy

5475

g

5484

5448

s &

e NE RE

5

5486

Tlee
543¢
5471

P

54c7

&

52d7

&

5306

VR

5331

-t

535e

=

53a5
)
53ee
e
542¢

NER

5477
[=17)

54a2

73 . ©
w 4
[=%

(<]

&

W W
g Mg
w * o0

*

(¥
2
* O

W
w
®
(4]

KU 51

10

20

40

50

70

30

5619

5700

Ui

54¢2

Sdee
e

5545
|
559f

wda

5%
5548
l]EE

5616

L

5632
Lk
5640

L

i

56c3

]

56ft

3
(2588
54a4
e
54ed
R
5556

(i

557b

155
55da
Wk
55t

VN

5704

%

S54be

557¢

N

55¢5

551d
v
i
566b
HF-':

568f

oY

IE3D

56¢c8

5709

CHAPTER 26 / JAPANESE CHARACTER SET

&

54be

I

6

s

7

%;}
54e5

UE

5540
71
555d

5

55ae
172

=
55dc
IS
564e
i
566¢
2
56b6

g

56d3

5650

566a

56b4

S6d7

339

550f

= *

554c¢
o

5580

5583

Mg
55d4
M

71df

e

he

5686
56¢2

S56ee

3/ IAPANESE LOCALIZATION

|

340 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 52

6

1 2 3 4 5 7

| & i

5708 570b 570d 5713 5718 5716 55¢7 571c
EIE:

o FF HI K % #E R #f

%
;IR

5737 5738 574¢ 573b 5740 574f 5769 57c0 . 5788
» H W %R B OB R R
577¢ 5789 5793 57a0 57b3 57a4 57aa 57b0 57¢c3 57¢6
» WOOW OB E 4 o®'r W =E W B
57d4 5742 57d3 580a 57d6 57¢3 580b 5819 581d 5872
B K £ B B & ¥ = EH
5821 5862 584b 5870 6bc0 5852 583d 5879 5885 58b9
» VE OB O #® W % % H O Z£ B =%
589f 58ab 58ba 58de 58bb 58b8 58ae 58¢5 5843 58d1
0w B K O£ B B B B i = =
5847 5849 5848 58¢5 58dc 58¢c4 58df 58¢f 58fa 5819
» B OE F X X B F - B R
58fb 58fc 58fd 5902 590a 5910 591b 68a6 5925 592¢
v K KK F R wW ZE @A E R
592d 5932 5938 593¢ Tad2 5955 5950 594¢ 595a 5958

w E B B % @&

5962 5960 5967 596¢ 5969

KU 53

10

20

50

70

80

—

b=
|

L
\O
~J
=]

&

2 3
%‘Hﬁg

X

(¥
1N
O,
N

w0 N
*%\I g; 7!
= o

W
o
W
—

:t:.}a
%l'g*

W
=3
o
(=]

5¢46

CHAPTER 26 / JAPANESE CHARACTER SET

5b2a

5bh6s

B

5bat6
Lr=rd

5
Sbde
4]"\‘*

5¢l13

6

it

59a3

\‘g/ ! \E

Sall

4

59b2

Al

Salc

|

5a%9a
tlﬂ.‘_n‘

VTR
5ad6

g

5b3e
2h,
5b70
ﬁ*
5bc3

d Q\‘;

Sbeb

JC

5¢22

1R

59¢6

3

L7 IAPANESE LOCALIZATION

342

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 54

10

20

40

50

70

80

20

Sec2

5b71
Scab
Scfd

5d1b

W&

5d4b
AN

7

Sdae

K

5ddb

e

537
=1

S5ed7

5ed0

5d8c

5d22

i~

5d76

5db7

=G

5dfs

R

5e¢40

5e¢7a

5¢76
IE
5¢cb7
A

Scea

5dla
I
5d87

Mg

N

Sdbe

5e0b

i

Sede
E§§§

9ebc

iz
5¢719

5ccs

HE

5d0b

L

5d19

&

5d84

e

5dc9
Sela
i

5e57

5e7f

CHAPTER 26 / JAPANESE CHARACTER SET 343

KU 55 1 2 3 4 s 6 7 8 9
2 B K H Bk B R JE
Sed6 See3 Sedd Scda Sedb See2 Seel Sec8 Sec9
Seec Sefl Sef3 Sel0 Sef4 Sef8 Sefe 503 509 565d
» g L N 5 B H M & E W
5fSc 5f0b 5f11 5f16 5129 512d 538 5141 5148 5fac
s % &5 H % # ® 2Z- ¥ 1 1
Sfde Sf2f 5151 5156 5157 5159 5fél Sfed 5173 5€77
o " H #H m K’ K w R K
5183 5182 S7f 5f8a 5188 5191 5187 509¢ 599 5198
® w7 #% MmN i ot R
5fa0 5fa8 Sfad 5fbe 5fdé 5M1b Slc4 51f8 5ff1 5fdd
o B 2 B w® % MW 8 & £ @A
60b3 SEff 6021 6060 6019 6010 6029 600¢ 6031 601b
2 1= I U T R 1 S/ K S > (- S o SR
6015 602b 6026 600f 603a 605a 6041 606a 6077 605f
0 e B P B O M w OEF W&
604a 6046 604d 6063 6043 60064 6042 606¢ 606b 6059

» B B H W

6081 608d 60c7 6083 609a

i 3 / JAPANESE LOCALIZATION

344

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 56

10

20

40

S0

70

2

2
609b
s
60b4

KU 57

10

20

40

70

+H

625¢

=

6293

62c6

#

630c

634d

i

6389

24

63c9

651d

%

6493

639f
63d2
18

6417

64a5

634f
AN

i

63b5

R
6316
27
6428

1%

6449

640f

6488

64bc

CHAPTER 26 / JAPANESE CHARACTER SET

6230

Ho

627¢c

#

62d7

-

62¢a
E S

6308

ik

6380

23

63bc
=
6434
£

646f

6

31

£

6282

H

62d1

i

62c2
P&
62ef
i

63ab
1
63¢c9

1

6406

4

6476

7

41

6233

R

6289

i

62bb
15

62¢7

Hr

62(5

6376

#

63¢c0
7%=
6413

i

644e

B

6241

24

627¢

2

62cf

i+

629b

i

6350
Bl
63a3
%
63c6

#

6426

&

652a

345

§ 3/ IARANESE LOCALIZATION

346 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 58 1 2 3 4 5 6 7 8 9
B B #H £ # B B W B
64da 64d2 64c¢5 64c7 64bb 64d8 64¢c2 64f1 64¢7

o 2 ¥ # % £ ®#H # m B\,

8209 64¢0 64cl 62ac 64¢3 Gdef 652c 64f6 64f4 6412

zo w2 #% =®E O # & @ 2 # X

64fa 6500 64fd 6518 651c 6505 6524 6523 652b 6534
2 - e Ik ke B xR B O® # &K
6535 6537 6536 6538 754b 6548 6556 6555 654d 6558

“ e W mR B om0 & M B wr

655¢ 655d 6572 6578 6582 6583 8b8a 659b 659f 65ab

50 B W O % B OB O m B & T

65b7 65¢3 65¢6 65¢1 65¢4 65¢cc 65d2. 65db 65d9 65¢0

@ 72 2 & R 2 &HF W K &

65¢el 65f1 6772 660a 6603 651b 6773 6635 6636 6634

o 5 = B B R OB OE B B B

661c 6641 6644 6649 6641 665¢ 665d 6664 6667 6668

0 kOB W 5 =& B M 5 B IE

665f 6662 6670 6683 6688 668¢ 6689 6684 6698 669d

. B OB OB W

66c1 66b9 66¢9 66be 66bc

KU 59

20

40

50

70

80

66f5
wR_*
6736

6789

il

67b7

K

67¢2
i

6840

689f
2>

68b5

A

6922

67¢ce
s
684d
&
688f

A

6840

v

6926

23

66b8

i

670f

)
6738
7

6749

jm
7]

67b4

id

67b9

2

6832

7
68ad

22,

68ba

A

68c!

684c

6894

o

690f

1%

690c¢

I

66da

67le

a8

6746
#
676a
i
67b3
fi
67¢6
#
68h3
15
689d
fe
688d
7

68cd

CHAPTER 26 / JAPANESE CHARACTER SET

s
U
66¢0
24
6726

2

675¢
F\

/5

678¢

B

67c9

A

67¢7

HF

682b

il

689b

B

687¢

6

BI&»
663f
i

6727

AL

6760

1

678b

i)

67b8

it

6a9c
FEp
6859

HE

6883

o

FE

6901

347

i 3 / JAPANESE LOCALIZATION

348 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 60 1 2 3 4 s 6 7 8 9
B OB =K B M B B’ R W
68d4 68¢7 68d5 6936 6912 6904 68d7 68¢3 6925
o XK R M M A M B o Wm R
689 68¢0 68ef 6928 692a 691a 6923 6921 68c6 6979
» KOO W 8 &R B M B &
6977 695¢ 6978 696b 6954 697e 696¢ 6939 6974 693d
» M B R B R = K M R B
6959 6930 6961 695¢ 695d 6981 696a 69b2 69ae 69d0
o 29 W H® H® # 22 T B B R
69bf 69ct 69d3 69be 69ce 5be8 69ca 69dd 69bb 69c¢3
L fE R BOBH B Om M R B %
69a7 6a2e 6991 69a0 699c 6995 69b4 69de 69¢8 6a02
o z2 B O B W % OB W
6alb 69ff 6b0a 6919 69f2 69¢7 6a05 69b1 Gale 69ed
» B8 B M O K & B B &
6al4 69¢b 6a0a 6al2 6acl 6a23 6al3 6a44 6a0c 6a72
o MR B BB OB B OB B B &
6a36 6a78 6ad7 6262 6a59 6a66 6a48 6a38 6a22 6a90
« OB WM O m
6a8d 6aa0 6a84 6aa2 6aa3

349

CHAPTER 26 / JAPANESE CHARACTER SET

NOHYZNYOOT 38aNaYT / ©

I IR IR E

JIK SBE 588 2R G

KU 61

40

50

6¢c24
i

6c9b

6c81
.

6¢1b

6¢c14
ik

6c9a
A

6¢c8d
R
6¢f1

6c82

6¢6a

6c62
2

6¢55
&
6¢73
H

6cac

H
6¢68
UiS

6cdd

6¢5e

6¢c23
i

6¢cbd 6cd7

6¢cd3

6¢90 6ccd
G
6¢be

6¢92
I

6¢7e
N

6¢bl

6¢cc5

350 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 62 1 2 3 4 5 6 7 3 9
w2 K’ & #H B T ®wW i
6cba 6¢db 6cef 6cd9 6cea 6d1f 884d 6d36 6d2b

1 B B W omwm W W O 1B

6d3d 6d38 6419 6d35 6d33 6d12 6d0c 6d63 6d93 6464

- B OW W & o #d OE B P

6d5a 6d79 6d59 6d8e 6d95 6fed 6d85 6df9 6el5 6e0a

” WOE OB W O OB" B OB O W OB &

6dbs 6dc7 6de6 6db8 6dc6 6dec 6dde 6dcc 6des 6dd2
6dc5 6dfa 6dd9 6ded 6dds 6dea 6dee 6e2d 6e6e 6e2e

50 o o® B B B W ®E B W B

6e19 6€72 6eSf 6e3e 6623 6¢6b 6€2b 6¢76 Gedd 6elf

“ wO®W Wm B W & W W B 3B

6e43 6e3a Gede 6e24 Geff 6eld 6¢38 6e82 6eaa 698

0 % B # B W O® ¥ O\ B

6ec9 6eb7 6ed3 6ebd 6eaf 6ecd 6eb2 6edd 6eds Ge8f

0 BB B O#H OB ¥ O E B B i

6ea5 6ec2 6e9f 6f41 6£11 704¢ 6eec 6¢f8 Gefe 6£3f

0 2w W kR’

6Gef2 6f31 6eef 6f32 6ece

KU 63

10

20

40

50

70

1
6f5b
6fb3
6fd4
]
700f

7032

6f3e

6f13
{H
6f6d
b

6fal
6ff1
701b

7063

PARMY

70cb

&
1\\2

7166

NN

Tlac

T1e7

15
6ef7
X
6£82

e

6fad

6fee
)

701a

7099

ARA)

70dd

7162

ik

71d7
S~

71£5

CHAPTER 26 / JAPANESE CHARACTER SET

—
Q
[,

~)]
§§ 2

~3 = = ¢ O\ s ¢ O\ ¢« O\ ¢ I
g BES BE WG B3R
g = & 3 E?*;?;*E-

S

Tl1c

351

g % PALARDEN NP AT IFATION

352

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 64

10

50

70

7317

734¢

737a

7405

7441

B

T4a7

1

7%

7169

R

723b
ii!
7281
X

T2c4

I

730a
=8
734f

)

73c8

5K

746f

ol
i
745¢

T4ca

2

%
714
X

ZH ~
723¢
-
7287

H

T2ce

= =3
]

731c

N

9ed8

H

73b3

B

7425
A&

7469

B

Tacf

3
1
720d

A

723f
"
7292

W

72d2

(12

7316

W

7357
FR+
73ce
BB
738

B

7470

B

74d4

7432

7463
B

73f1

721b

e

7246

"

T2a2

IR

72¢0

¥

7334

2t

7368

73¢0

33

743a

35 »\5

746a

7228

%

724b

5

T2a7

=

T2el
Ji+
732f
7370
73e5

7455

7476

~3 ~
N
N
(=%

i

~J ~3
g =5 R
© M, o

&

2
0
3

9 o
E S W

7378

73ee

743f

T47e

= -

7375

73de

23

745¢

748b

~} F -
2 X
° 4

=

g g B §

~
W
w
[¢]

&

~
5 MWAE B
©° B - O

~
&%
O

[¢]

353

CHAPTER 26 / JAPANESE CHARACTER SET

R IEEE e
e

REIBEEEE

KU 65

POHATAVIV I aReNDEY £ %

E%ﬁm%

R+

7410

®

7515

(728 i

755b 7546
W E B R
7578 7576 7586 7587 7574
VIR /S 7 R i f& -

756d
/N

tEis i

75¢c2 75b3

75a3

75a5

759d
e

759

7594

B

it

75d9

B R
R

23

75b1 75¢cd 75ca 75d2

75bc

e

75b8

23

L

w
7582
‘%735
7624

23

*® * £ 3

[se)
I B fmb Bol Bim B
~ ~ =~ ~ ~ ~ =
M*9 v o,

o)
S 88 8K
~ ~ = ~ =

X8 Ea) S5 Bl S 2

10
20
30
40

50

75fa 7513
i i
7622 7634
® OB OE E
7662

7601

750
R
7621

75€3 75de 75fe 75 75fc
760b 760d 7609 761f 7627 7620
®OE W B OB B

70
80

7668

763b 7647 7648 7646 765¢ 7658 7661

7630

766a 7667 766¢ 7670

7669

354

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 66

10

20

40

50

F

~
2.
\O
=)}

~
&

=

7708

el

778e

I

77bd

1)

780c

s

789a

78be

1

o

7672

it

7693
i*

Im
76d6

i

7707

BBF:

7747

i

778b

b

77bb

it

7812

bk

788¢

B

78bc

A
7676

B

M md FE B3

~3
~!
\O
=

8

9 < <
2 H3 @A
w0 >4 Q

S

~
o0
[e)

W

s

7678

1424
171

769a

=

76de
i%
7729

i

7768

77a0

767c
i)

76b0
76el
7724
776b
i

719%
77d7
792a
78aa

=

78ec

771e

775b

M

7760

g

77da

7845
hi+

78af

~
-]
~
Iy

&

78¢c6

~J
&
<

: &

*»

g

*

=2
~
—
o

1

<2
~
~3
o

i

3
~
S
-

o

3 v 2
oomﬁ.q
& 8

ST

78cb

KU 67

10

20

40

50

70

792b

o

2 1

7b35

FH

78da
i

7960

79a7

#E

Ta31

&

9f9d
Tac8
A
Tacf

Taf0

7b28

7814

N
795f

[

79aa
79¢3
Ta3e
7a79
7ab6

i

Tad3
%

Tb0f

7650

CHAPTER 26 / JAPANESE CHARACTER SET

i
7907
3

795a

6
3
7912
b
7955
%

79b3

i |
Ta0d
i
Ta43
47
7a88
=4
Tac4
.
Tada

&

7b06

4
&
7911
R
7953

&

79b9

A

Tal8

I‘L‘E\

TaS57

&

Ta97

&

Tabf
L L.
IATAY
7Tadd
ﬁi/c‘
H

7b33

i
7919
i}
797a

2

79ba

fE

Tal9

355

7 JAPANESE LOCALIZATION

L3

PENPOINT APPLICATION WRITING GUIDE

356

Part 3 / Japanese Localization Handbook

RS FE R & EE XL BEEE:

v 5 o ~ o« o X, o
VW0 B 2K B SeR SR TR T OBEE

Qum S Sap Sy S S By 3
B W 2 K A S R AN R

BRI B R BERE L

) o) o B < o @
BURE EE-NE NE LR B)

B B B S S B B B

g L X P *
ME IR I EE M AR I IR

Tcal

*

£

*

®

R ER R EM I Bl Y ER BN

¥ o« o -y O W& ~ o
o S8 2ok 28 SR SR IR
- = = = = = =~ =

KU 68

.r f* *
WEw S 2K B S B

10

70

Tca2

i

N
Tcbd

i

Tcf2

Tcc2 Tcd8 Tcd2 Tede Tce2 9b3b Tcef
¥
T

TceS

TecO

L

%

7Tcf6 Tcfa 7d06

Tcfd

CHAPTER 26 / JAPANESE CHARACTER SET 357

KU 69 1 2 3 4 s 6 7 8 9
o ks M F W M B Mt A
7d02 7dic 7d15 7d0a 7d45 7d4b 7d2e 7d32 7d3f
U " N S R I
7d35 7d46 7d73 7d56 Td4e 7d72 7d68 7d6e 7d4f 7d63 3;5
. OB B ORR Om R B OB OB R
7d93 7d89 7d5b 7d8f 7d7d 7d9b 7dba Tdae 7da3 7dbS gg
LM M B M M M R & R M
7dc7 7dbd 7dab Te3d 7da2 7daf 7ddc 7db8 7d9f 7db0 -
o w8 e B OB W B B ' M
7dd8 7ddd Tded 7dde 7dfb 7df2 7del 7e05 7ela 7e23
50 O M B8 M KB OB M
7e21 Tel2 7e31 Telf 7¢09 7e0b Te22 Te46 7e66 Te3b
o 2R M B R M B M Ml B
7e35 7e39 Ted3 Te37 Te32 7e3a 7e67 Te5d 7eS6 TeSe
- § wmOE e M e R B A M
7e59 TeSa 7e79 Teba 7e69 Telc 7eTb 7e83 7dd5 Te1d
o MoOBE B &/ & B &/ # B,
8fae 7e7f 7¢88 789 Te8c 7e92 7€90 7e93 Te94 7€96

w M- B H R

Te8e 7¢9b 7e9c 7£38 713a

PENPOINT APPLICATION WRITING GUIDE

358

Part 3 / Japanese Localization Handbook

S BB BB EN
TR ER ER

ERER IR

7

.I.* 2* n”
elE et 2

woW =

4

Tf4c

&5 B &

O TR Y
=
o
79¢

7f8¢

7168
7194
A B

765f
U
g+

KU 70

7fc6 7fca 71d5 7fd4 Tfel
€ £ £ X =
98dc 8006 8004 800b 8012 8018
Bk Hb- B¢ B HE BB

7fcS

W B W

7fe9

7fb8

B B B

801c

7b6

Tfae
L1
Tfe6
F

803f 803b 804a 8046 8052 8058
B B

8028

8021

8019

=

S

8079

g2 Ik B B B

A

807d
AL~

80ac
%

80f1

8070 8076
AR

8072

8073

8068

805f

2 B B W I

805a

At =K
809a
s

=

H
8093
N

5190
fig
80cf

80ad
Jik

8084 8086 8085 809b
g KB K B
80d9

807f
i

80db
H?:?é‘

80c4 80da 80d6 8109

s B B MK

80eS

8129 8123 812f 814b

811b

KU 71

10

20

40

50

70

80

90

1
F&
968b

AR

8174
fiz~
815f

&

81ba

8l1¢7

s

8210

]

825a

o

8278

’a]

82df

op

8306

2
it
8146

8183

ik

8153
i
818a

i

81b0

i

81dl

5

8lfe

=

== 2
B 2

o0 o0 o0
S WE S
o ~ (3%

<K

82d9

CHAPTER 26 / JAPANESE CHARACTER SET

5

it

8151

ie

8171

A
816e
il
8195

i

81bd

i

81da

8207

fig
8259
AP+

822e

82ac

15

82fb

359

HE

8165

&~

81a4
&

81c0
81df

820a

A

8258

L33

8271
e
DA

82e¢l

8219

37 IABANESE LOCALIZATION

360

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 72

20

40

50

70

80

849f
#
ZIN

8521

R

8540

~

i1

8334

#

8317

—n
pAA
8332
-+
A
8385

R

837¢c

84bb

e

Jonw

8517

—

=

8548

o

8340

s

83aa

K

8373

Bif

8403
I:151
i+

8420

B

8477

ME WS I

o0
2 &
® =

846b

e

T T I

8389

R

o0
w
(<)

p—

-

8506

Xt

846¢

i

84b9

84d6

it

8514

KU 73

10

20

0

50

70

[~ -
W
FN
—

HH

g

T

0
(5.3
o
]

*

o0
3P E
S
* w

&
W
W

N [¥]
G
4

*‘E‘
2
*

B &

(=3
Lh
O
S

2

(=]
L
[2]

-

i

&
[=]
<

X

86tb

i

8725

B
8768

8711

8729

876¢

CHAPTER 26 / JAPANESE CHARACTER SET

8580

i

R

0
)
el
[+]

w & W8

m ~2
2 mt
[+ -]

o0

i

[+]
(Y3
~
~

A

o0
W
[¢]

W

-,
z%

o0
o\
—
&

S

8778

00 o
W

2 Ml
st

i

b
W
~
o

5

o0
&
o

e
L

0
(=
W
o

i

[~
N
[

o

-

o0
oo
~N
w

&

&

NG

[*-]
~
w
ES

WAt

874c

361

°

i 3 / JAPANESE LOCALIZATION

362

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 74

10

20

40

50

70

W3 B

87ef

8811

it

8844

H

8875

id)

888d
88dd
R

8913

8938

L

8753 8763
L2
87¢0 87d0
S

8712 87¢0
8816 8815
12/

8842 8852

& *
88a4 88b0
2
8819 8902
BR fil
8943 89le
#o
894c 891d

88bf

88lc
i
8925
1
8960

=] s @
\l}H}’S
-5

) X

i

xR
=
P

&

R 5

]
~J
o’

WH
879t

87b3
e

87t6

8836

o0 Lo
1) H%
—

WEBE S

KU 75

10

20

30

40

50

70

80

8b49

8b5b

i

896d

8998

8ac7

8b07
AR
8h2b
=dh
nE

8b5a

4
=

896a

CHAPTER 26 / JAPANESE CHARACTER SET

6

it

363

W m o=

8977

897¢

8983

L]

89b2

g 3/ IBPANESE LOCALIZATION

364 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 76

1 2 3 4 5 6 7 8 9
B OB oW O B oM OB B B
8b5f 8b6e 8b6l 8b74 8b7d 8b80 8b&¢ 8b8e 8b92
. B OB O® B M % B B B B
8b93 8b96 8b99 8b9a 8¢3a 8cdl 8c3f 8cd8 8cdc 8cde
. % KX 2 I

o]
)
(¥
o
o0
e
W
W
o0
&
[o))
~
o0
&
(o))
&
o0
&
3
)
o0
g
2
&
o
o
o
N
[
I
o]
O
[+
&
-]
W

g
O
HE
O
Si
*
O
=
9
£F

o0
[<)
[+
(=%
Q0
o
o0
o
[
&
\O
&~
ol
le)
]
e}

40

&,
2
&
il
W E mE S
Ko
i
iz
i
F

8cb3 8cae 8cho 8cc8 8ced 8ce3 8cda 8cfd 8cfa

7 %k = 7 Exn
50 i B ' 7 wm O OB OF W
8cfb 8d04 8d05 8d0a 8d07 8dor 8d0d 8d10 9f4e 8d13

2
21
i
o
=
i
s
S
&3
o

8ccd 8d14 8d16 8d67 8dod 8d71 8d73 8ds1 8d99 8dc2
0 1 R SO | Y | S 7 N 7 SO - S G - R -
8dbe 8dba 8dcf 8dda 8ddo6 8dce 8ddb 8dcb 8dea 8deb
0 ROBE B OB B OB R OB OB W
8ddf 8de3 8dfc 8c08 8c09 gdit 8eld 8cle 8el0 8elf

8ed2 8e35 8e30 8c34 8cda

KU 77

10

40

50

70

8e63

S

8f4e
st
8faf
89

9036

F
8e50

B

8c7c

i

8c99

#l

8cch

8112
L]
8139
g
8162

8fcS
&

9015

8118

CHAPTER 26 / JAPANESE CHARACTER SET

6

v

8e59
B

8c87

8fea

900d

)
e
8e64

i

8c85

)

8cac

L3S

8efc

1444
i
8flc

LI

8f3e

&

8M9¢
iﬂ‘*
8fef
2

90le

9087

9016

365

=
3/ JAPANESE LOCALIZATION

=
i

8flb

8f49

8fa3

8ff4

900b

366

PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 78

20

w0

50

70

30

9169

91b5

9lel

9211

$h

9250
i

930f

2

e
9050
ic
906
s

908f

O ¢, =
3 ([

==
(amt

1

9132

932¢

&

903e

907d

9056

9081

KU 79

20

40

50

70

964f

1
Bl
9319

936e
A
93e5
5
9403

9444

947d

sk

9596

E3

95be

]

95¢l

i

964b

9677

B
9323
93ac
2,
93dd
i
9436

f}
D I‘m‘

9462

947¢

Bk

95a0

[

95¢3

g

9621
[

965¢

CHAPTER 26 / JAPANESE CHARACTER SET

5
933a
S
93ad
2
93d0
5
942b
945¢

78

9481

Ed

9548

&5

95c¢d

fe

9628

946a
947f

95a7

Ed

95¢c

b

962¢

7
933b

93b9

8
ke
935¢

B

93d6

*
ﬁ%g

941a
7
943a
i
9470

P«

9587

i

95bc

i

95d4

53

9642

367

9475

]

958a

]

95bb

[l

95d6

]

964c¢

LOCALIZATION

SAPANE

% .4.‘...4‘4.4,
o 3/ JAPANESE
g 5

368 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 80 1 2 3 4 5 6 7 8 9
R B B B MW R B B R
965d 965f 9666 9672 966¢ 968d 9698 9695 9697
1 e B OB B BROR R B OE B
96aa 96a7 96bl 96b2 96b0 96b4 96b6 96b8 96b9 96ce
zo mOW O % B E M B F £
96¢cb 96¢9 96cd 894d 96dc 970d 96d5 969 9704 9706
x w B OE E ¥ K OE E B B
9708 9713 9700 9711 9701 9716 9719 9724 972a 9730
“ E E %= f " T B B W 8
9739 973d 973¢ 9744 9746 9748 9742 9749 975¢ 9760
50 - BB &% B B & B B B
9764 9766 9768 52d2 976b 9771 9779 9785 977¢ 9781
@ BB E#OFE O OB B W &
977a 9786 978b 9781 9790 979¢ 97a8 97a6 97a3 97b3
0 Bee BE OB 0 B B OB £ B | =
97b4 97¢3 97¢c6 97¢8 97¢b 97dc 97cd 9f4f 9712 Tadf
0 & B TR M $ BE O fE S M B
9716 9715 980f 980c 9838 9824 9821 9837 983d 9846

%20 EE '%‘/) * gﬁ ? (‘VE\ %

984f 984b 986b 986I 9870

KU 81

10

20

50

70

98¢c6

991e

=

9950

%

99ae

B~

992

Ble

9a45
9a62
9acf

1

9aeb

9ad3
22

9af4

i1

9873
3

9903

992¢

B

9952

99db

B

9a01
L

9a43

9a69

i

9ad4
)

9afl

CHAPTER 26 / JAPANESE CHARACTER SET

B OB BB

98aa
L
9909
4
992e
%
994¢
BE
99dd

B

9a0f

R

9a3e

9a6b
=}

A

9ade
&%

9af7

98af

B2
9912

7

993d

%

9955
Ly

Bn

99d8

Bt

9a05

B

9a55

9aba

¥

9adf

98b1

B

9914

£

98b6

25

9918

i

8

S

98c4

15

9921

Gt

9949

#®

99a5

B

99¢c

%

9a2b
D

Bz

9a57

9abc
&

9ach

369

g 3/ IAPANESE LOCALIZATION

370 PENPOINT APPLICATION WRITING GUIDE
Part 3 / Japanese Localization Handbook

KU 82 1 2 3 4 5 6 7 s 9
g ## E X &8 E = M H
9afb 9b06 9b18 9bla 9b1f 9b22 9b23 9b25 9b27

o H OB B E ¥ & i R’ B

9b28 9b29 9b2a 9b2e 9b2f 9b32 9b44 9b43 9b4f 9b4d

» B B K e o M e R iR

9bde 9b51 9b58 9b74 9b93 9b83 9b91 9b96 9b97 9b9f

0 e & - B OR B8 W M &

9ba0 9ba8 9bb4 9bc0 9bca 9bb9 9bc6 9bef 9bd1 9bd2

o B 8 B O & 2)N R e R

9be3 9be2 9bed 9bd4 9bel 9c3a 9bf2 9bfl 9bf0 9cl5

o B BB O /- fF kO B B B i

9cl4 9c09 9c13 9¢0c 9c06 9c08 9cl12 9c0a 9¢04 9c2e

v BR- BROOHF OB W B K B & i

9c1b 9¢c25 9c24 9c21 9¢30 947 9c32 9c46 9c3e 9cS5a

70 ﬁ@ ﬁ% ﬁ* ﬁﬁ ‘% J%* A%* 2% % }% *

9¢60 9c67 9c76 9c¢78 9ce7 9cec 9cf0 9d09 9d08 9ceb

0 B B B B OB & B O ®H B O%

9d03 9d06 9d2a 9d26 9daf 9d23 9d1f 9d44 9d15 9d12

» ¥ % % & K

9d41 9d3f 9d3e 9d46 9d48

KU 83

10

20

40

50

70

KU 84

\O
8+
We B

9¢8b

9ead
4
5

9eel

9efd

8

9f54

i

of72

1

%

9d5d
5

9d6f
9dba

%

9dfd

B

9e8c

BE

9761
i
9ee5
i
9f07
]

9f63
JE0n

1]
976

582f

9f08
i

ofSf

9195

i

69c7

9eef
7667
Nizy

il

9f60

9f9c

9059

7464

CHAPTER 26 / JAPANESE CHARACTER SET

i

S1dc

i

9d59

9f67

PAR]

7199

.
£
9d72

25

9dc4

i

9df8

E

9e7d

53

9ea9

9edc

i

9ef9

9f3e

i

of6e

37N

LOCALIZATION

/ IAPANESE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

Part 4 /
PenPoint Development Tools
Supplement

4

375

4

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 4 / DEVELOPMENT TOOLS SUPPLEMENT

Chapter 27 / Introduction

Organization of this supplement

Chapter 28 / Road Map

377 Creating a PenPoint application

381
382
382

386

387

388

388

390

395

398

One time only tasks
Preliminary design
Creating an application
Preparing for distribution

Chapter 29 / Creating Applications
and Services

Overview

Where to put your files

Makefiles

Compiling

Linking

Stamping

Building a resource file

Changes from 1.0
Stamping changes
Specifying locales

Compiler details

16-bit character flag

DOS environment variables

Working with the method table compiler

PenPoint libraries
PenPoint applications

Installing PenPoint applications

Installing automatically

Installing applications in \2_0\PENPOINT\APP
Installing applications from any connected disk
Using the Settings notebook

Copying files to the application directory

Working with supporting files

Preparing distribution disks

Using short DOS path and file names
Stamping stationery with different names

Chapter 30 / Debugging

Overview

Debug version of PenPoint

Sending text to the debugger stream
Viewing the debugger stream
DebugCharSet

System Log

Debug modes

DebugTablet

DebugRAM

Running PenPoint 1.0 and 2.0
Warm booting

401 Using the mini-debugger
Displaying Unicode
Disabling the mini-debugger
Turning flag bits on and off
Getting help

p Chapter 31 / Tools and Utilities
403 Locales and character sets

404 PenPoint attribute utilities
PSTAMP
PCOPY
PDIR

408 Resource file utilities
RESDEL

409 Other DOS utilities
UCONVERT
RTFTRIM
CONTEXT batch file
GO batch file
LOCALE batch file
Bitmap editor
Font editor

413 PenPoint tools
MiniText
Unicode Browser
Japanese virtual keyboard

' Chapter 32 / Miscellaneous

415 MIL.INI
Keyboards
MonoDebug

416 ENVIRON.INI
Locale
Debugging character set
Shutdown and standby buttons
Versions and trademarks
Start application
Autozoom
BkshelfPath
Debugging flags
BOOT.DLC
Interpreting Japanese file names
Repeated lines

419 Printing to a spooler

420 Long DOS file names
Do not use CHKDSK /F

421 Changes to QuickHelp
421 Working with different locales

422 Corrections to previous documentation

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 4 / DEVELOPMENT TOOLS SUPPLEMENT

Chapter 27 / Introduction

This manual contains updated information about the PenPoint™ development
environment. It describes tools you use to create applications for the Japanese local-
ization of the PenPoint operating system.

Much of the information in the PenPoint Development Tools manual s still accurate.
Where information in the PenPoint Development Tools manual is outdated, this
manual provides updates. This manual also describes new tools and utilities avail-
able in the PenPoint SDK 2.0 Japanese.

Consult the following sources for more information on the PenPoint development
environment:

& PenPoint Development Tools
® PenPoint Application Writing Guide: Expanded Edition
& About PenPoint 2.0 SDK

To make information easy to find, this manual closely follows the organization of
the original PenPoint Development Tools manual.

¥ Organization of this supplement

This chapter, Introduction, describes the purpose and organization of this manual.
Chapter 3, Running PenPoint on a PC, from the original PenPoint Development
Tools has moved to a separate document called Installing and Running PenPoint
SDK 2.0.

Chapter 28, Road Map, describes the general process of writing PenPoint applica-
tions. This chapter also points out which volumes of the PenPoint documentation
will help you in this process.

Chapter 29, Creating Applications and Services, covers topics related to creating a
PenPoint application or service.

Chapter 30, Debugging, describes PenPoint debugging techniques, including new
tools for debugging PenPoint 2.0 Japanese applications.

Chapter 31, Tools and Ugtilities, describes various tools that you use to work with
PenPoint directories, resource files, and bitmaps.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 4 / DEVELOPMENT TOOLS SUPPLEMENT

Chapter 28 / Road Map

This chapter describes the typical process of creating a PenPoint™ application. The
steps involved are discussed below, and Figure 28-1 is a visual representation of part
of the process. Although applications are explicitly discussed here, the process of
creating a PenPoint service are nearly identical.

W Creating a PenPoint application

Creating a PenPoint application or service typically follows these steps. Indicated
after each step is where you can find more information on a particular process.

% One time only tasks

You only need to perform the following steps once.

1 Install the PenPoint SDK 2.0 Japanese.
o See Installing and Running the PenPoint SDK 2.0 Japanese for more
information.
2 Learn PenPoint programming and user interface concepts. See the following
for more information.
o PenPoint Application Writing Guide: Expanded Edition, Parts 1 and 6
+ PenPoint Development Tools
o+ PenPoint User Interface Design Reference

% Preliminary design
You need to perform the following preliminary design tasks each time you create a
PenPoint application or service.
1 Design your application taking advantage of PenPoint’s extensive class library.
o PenPoint Architectural Reference
o Part 2: PenPoint Internationalization Handbook
o DPart 3: PenPoint Japanese Localization Handbook
o Part 5: PenPoint Architectural Reference Supplement
2 Plan, design, and begin writing user documentation.
o Using PenPoint
o New Ul Features in PenPoint

3 Plan, design, and begin producing supporting documents such as Help note-
book documents, stationery, and sample documents.

» PenPoint Development Tools Supplement, Chapter 29

4 If necessary, plan for translation and other localization services.

378 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

% Creating an application
You take the following steps to create a PenPoint application. The steps here corre-

spond to the steps in Figure 28-1.

1 Write C code, including source code (.C), header files (.H), resource files (.RC),
a method table (METHODS.TBL), and a makefile (MAKEFILE). Name your
resource file (one for each localization) to remind you of the localization the
file corresponds to. For example, name your resource files JPN.RC and USA.RC
for the Japanese and U.S. English localizations.

o PenPoint Architectural Reference
o PenPoint Application Programming Interface
o PenPoint Development Tools

On-line header files in \2_0\PENPOINT\SDK\INC

L 4

2 Compile and link your code. This involves compiling source code, resource Typically, use a makefile
files, and your method table, as shown in Figure 28-1. You then link your based on one of the sample
. . ST . application makefiles to
object files with PenPoint libraries.

: coordinate steps 3 and 4.
o PenPoint Application Writing Guide: Expanded Edition
+ PenPoint Development Tools
+ Compiler documentation

3 Build your PenPoint application in its own directory underneath the Different releases of PenFoint

PenPoint application directory (\2_0\PENPOINT\APP) or service directory use different root directories.
: . . For example, FPenFoint 1.0 uses
(\2_0\PENPOINT\SERVICE). You must put in your application directory the _O1 26 ite root.

necessary executable file (EXE), dynamic link libraries (.DLL), compiled
resource files (RES), dependency identifier file (. DLC), and supporting
documents. '

o PenPoint Development Tools

4 Stamp your application directory with PenPoint information, including the
application name, the file type (application, service, font, and so on), and the
linker name.

o PenPoint Development Tools

% Preparing for distribution

As you prepare for distribution, remember to take the following steps to

1 Contact GO Technical Services to register your classes.

2 Verify user documentaﬁion, translations, and other localization issues
o Part 2: PenPoint Internationalization Handbook, Chapter 18

3 Create distribution disks.
_s PenPoint Development Tools Supplement, Chapter 29

379

CHAPTER 28 / ROAD MAP

Creating a PenPoint application

FIGURE 28-1

Creating an application

S100L INIWdOAIA / ¥ _

-
...
... O OO OO OO
o e S e . .
... . . .

B iriiicoesin XuMQ%mg %Mm%mmmﬁ%mmmmmm ,mmﬁh i awn%m%mw
- ShaimRedn Sii R e

. - . . =
S S aea S St -
. %mmmmmmmﬁ&x&n%wn‘mm«mmﬁmmms#mm%m%mmmm%m wmmw%m%%wmmmmmmmmgﬂ%mm%mm

ot

.. |
.
ammmﬁmﬁ&mﬁmmm%mmwm@mﬁmmmmxmmmmmmmmmwmm%mﬁm@ﬁ%ﬁm&%%&“mﬁmﬁwmﬁmmaﬁmgiﬁ%mﬁm%mﬁﬁmmm%
e e e e e e e e e e e e

L e L mmmmﬁmmmm%
S e e
.
e
L anne
Lol s
A e R P g S nmmmxmmWﬁwa T o
..
.. - |

BB PR R KSR B SPGB S B g
s s =
.
e
o

Ewwwnﬁmm&Euﬁnmgmuan&ﬁmua%ag&méﬁwM%%M%ﬁm Wm
. -
&x&;m&mﬁ%xmgmm%a&m&?mﬁmmﬁ@mﬁm&m .
... _ .
- @
..
o e

..
65

leiian sl

..
Siiesaaia e o i

. .
. . ‘%mm@%mmmmmmmwg a
5 P S
- _ @ .
. . .

...

e

-

.

p
ry

o ... _ - @ .. .]
. - - i
Rl e L e = e

\MyAp

irecto

- . - .
i e
.
xxxxx o i
= -
-
- -

e
G

e
o

C:
d

PERTO R
Bl S

seenian

.
oo 0
.

o
L
e
@mmmmmﬁmm

1001101

i

=

B

i

b

int\App
\MyApp
o

PenPo
o

mmmummwmwuﬁﬁu&mm%mm@mcfiwm‘%m%m!%@%Suﬁﬁm&u&@!& - Simoenan ety
... @ @ @ @ @ @@ @ ... @ |

e s . e .
SRameNEE Rl B i Shrea

s
L

e e g

wmmm@mmmm%mmmmwmu&ﬁ%mmgmmmzﬁmﬁmmﬂmm@mmmmwmmmmmﬁmm e e
. _ ___ __ _ _ __ _ . . -
. nnn e e e e - =

e e anmﬁm%m .

S sy
T
T |

&&m%ﬂ%mﬁﬁmm@%a%ﬁ i
-

Gpemann

.

e

1001101
1001101

BesBEEsaRE e eRlon: i

- o) L
e
4 4 e e

. e

. - A

e
S ...

e s o B e . L e

o G
- ...

St dmaanen e
. s e
b
e = Bnien e . i

%&w@.@m RS ESE SIS TR LR B e
= s s e
...

e e
.- @
...
... |
%mmmuﬁmmmmm;ggmﬁmsﬁﬁugmmaﬁm&m% andl
%&ﬁmﬁ@m%m%mﬁmﬁ@%‘mﬁmﬁm o
.. mmmmﬁmﬁmﬁmﬂmmﬁ%ﬁﬁm

- .

Genmneadinnitaenoec el il ha
o aRl e iisn i Bl
e
... .

e e e e

e e e
B -

1 Write C code

s -
| - - .- -
ﬁmmmmm%m%m%mwﬁggz o s e s i P o
v Shmami ke e -
SR e G SR R B R R B L SRR e
s @ L
= - .
B = aen 8 0 V e
- B A = . o
- - - . e -
S0 e e
.. . _ . e e
L ... @ @
= -]
Lavestusssasuatanauidarstana sisnau N BeshaTItERE s bubn o . =
.. a s s
E ... - . .
-tk ...]
s . ee——
sz
o - - - -
m&mmmmmmm - =
. mm%mw.mmmﬁ&mmukmm&%ﬂ SimE M%gmmmmwmmmmwwmw@m%mﬁ;mwmm&mwmmmﬁmw.mmmm@&fwmmmﬁummmﬂmmw =
N . .

SRS R ate e icn R e ARRAT SRR BR R RS AR A aRa TR B e

1001101

e

E. . -

... 5
5 =
S R R R ST SR

et . .

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 4 / DEVELOPMENT TOOLS SUPPLEMENT

Chapter 29 / Creating Applications
and Services

This chapter describes the process of compiling, linking, and preparing your appli-
cation or service to work under the PenPoint™ operating system.

V Overview

You typically take the following steps to create a PenPoint application. Although
this discussion centers on applications, the process of creating services is similar.

1 Compile your source code, resource files, and method table.

2 Link your object code with PenPoint libraries to create an executable image
and dynamic link libraries.

3 Build your application by placing the executable image, dynamic link
libraries, resource files, and supporting files in a directory within the PenPoint
application directory. In PenPoint 2.0 Japanese, the application directory is
\2_0\PENPOINT\APP.

4 Stamp your application directory and the PenPoint application directory with
PenPoint file names and attributes.

Rather than performing all these steps manually, you typically create a makefile that
your compiler uses to perform each of these steps. The sample applications
included with the SDK all build on three standard makefiles that work with the
WATCOM WMAKE utility.

© SDEFINES.MIF contains standard definitions used to compile and link
PenPoint applications and services.

¢ SRULES.MIF contains standard rules for creating PenPoint applications.
& SVCRULES.MIF contains standard rules for creating PenPoint services.

Use these makefiles as building blocks. Namely, define variables and add rules for

“your own project, but do not make any changes to the sample makefiles. Probably
the easiest way to write your own makefile is to modify one that comes with a
sample application such as Tic-Tac-Toe.

So that you can see the steps involved in creating a typical PenPoint application,
the section “Makefiles” on page 382 steps through the most important parts of
SRULES.MIE

382 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

» Where to put your files
Don’t use the SDK trees (for example, \2_0\PENPOINT\SDK) for your own projects.

GO reserves the right to change the organization of the SDK trees. Also, GO may
provide tools for moving, copying or otherwise manipulating these trees. If you
store your projects in the SDK trees, we cannot guarantee that these tools will work,
nor can we guarantee that they will preserve your sources.

You might use a directory in your root directory such as \MYAPP or in a special
directory containing all your applications such as \APPS\MYAPP.

¥ Makefiles

Most of the complexity of creating a PenPoint application is contained in the file
SRULES.MIE Stepping through the key parts of this file is a good way to understand
the steps involved in creating an application.

% Compiling
First, the makefile compiles your source code, method table, and resource files.
Compiler errors are saved in files with a .ERR extension. After the makefile finishes
creating your application, list all the .ERR files in your directory to make sure there
are no compiler errors.

These commands in the makefile compile your source code, method table, and
resource files.

.c.obj:
set WCC386=$ (WCC386)
wee386p /Fo$*.obj $*.c > $*.err
type $*.err
Method table
.tbl.obj:
set WCC=$ (WCC)
set WCC386=3 (WCC386)
$ (PENPOINT PATH) \sdk\util\clsmgr\mt $(MT_FLAGS) $< -Fo=$*.obj > $*.err
type $*.err
Resource compiler file
.rc.res: '
$(RC) $*.rc > $*.err
type $*.err

Some variables that are common to all projects are defined in SDEFINES.MIE For

example, the variable WCC386 lists all the compiler flags required to create the
appropriate object files.

Sometimes old object files get linked to your new project. This happens when the
compiler encounters errors in your updated source code and aborts compilation.
Type WMAKE CLEAN to delete old object files during your compile, test, debug,
and recompile cycles. ’

CHAPTER 29 / CREATING APPLICATIONS AND SERVICES 383
Makefiles

¥ Linking
After the source code is compiled into object code, it must be linked with PenPoint
libraries. The makefile accomplishes this by creating a temporary WLINK file. The
%create command creates this file, and the %append command adds the required
lines to the file.

These lines link object files with PenPoint libraries to create executable code or
dynamic link libraries.

$(APP_DIR) : .SYMBOLIC
mkdir $(APP_DIR)

%append $(PROJ) .eln $ (EXE_DATA DIRECTIVE)

%append $(PROJ) .eln OPTION Quiet, Map=$(PROJ).mpe, NOD, Verbose, &
Stack=$ (EXE_STACK), MODNAME="'$ (EXE_LNAME) '

wlinkp @$(PROJ) .eln

del $(PROJ).eln

copy $(PROJ) .mpe $(APP_DIR)

The following complexity is needed to build a WLINK command file. g
$ (APP_DIR)\$ (PROJ) .exe : $(APP_DIR) $(EXE OBJS) e
%create $(PROJ).eln 5
%append $ (PROJ) .eln SYSTEM PenPoint 5
$append $(PROJ).eln NAME §$(APP DIR)\$ (PROJ) .exe 8
$append $ (PROJ) .eln$ (LINK DEBUG) &
for %i in ($(EXE_OBJS)) do %append $(PROJ).eln FILE %i a
for %i in ($(EXE_LIBS)) do %append $(PROJ).eln LIBRARY %i LE

Your makefile must define some of the variables used by SRULES.MIF. For example,
the EXE_OB]JS variable lists all of your object files that are needed to create the final
executable image (.EXE). Again, the easiest way to write a makefile is to tailor the
makefile of a sample application to your own project.

The makefile links the method table object code at this step in the process, but it
does not link the resource object code. The resource object code stays separate from
the executable code so that resource file data is cleanly separated from the rest of
your application. See “Building a resource file” on page 385 for more information
on how the resource file is built later in the process.

The loops in the code above adds a line to the temporary file for each of the object
files and PenPoint libraries needed to create this application. The WLINKP com-
mand uses the information in the temporary file to link all the necessary object files
together, and the temporary file is deleted when the linker finishes.

Finally, the makefile copies a file with an .MPE extension to your application direc-
tory. The linker creates this so-called map file to provide details about line numbers
and symbol addresses created by the compiler and linker. You can view this file with
a text editor to see details of how the linker created your executable file.

384 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

% Stamping
The makefile uses a similar strategy for stamping the application directory. It first
creates a temporary file that contains information about how to stamp your direc-
tory, passes that temporary file to the PSTAMP utility, and deletes the file when the
utility is done. The following makefile rules accomplish this:

%$create $(PROJ).stm
$append $ (PROJ) .stm $(APP_DIR)\..
$append $(PROJ) .stm /u
$append $(PROJ).stm /n
! ifeq RES_STAMP yes
%$append $(PROJ) .stm /1 $(LOCALE)
%$append $(PROJ).stm /r "$(LOCALE).rc" ""
! else .
%$append $(PROJ) .stm /g "$ (EXE_NAME)"
! endif
%$append $(PROJ) .stm /d $ (PROJ)
%append $(PROJ) .stm /a imAttrVersion "$ (APP_VERSION) "
%$append $(PROJ).stm /a cimAttrProgramName "$(EXE_LNAME)"
$append $(PROJ) .stm /a appAttrClassName "Application"
$append $(PROJ) .stm /a appAttrClass 10001a0
~$(STAMP) -s $(PROJ) .stm
del $(PROJ).stm
$create $(PROJ).stm
%append $(PROJ).stm $(APP_DIR)
$append $ (PROJ) .stm /u
%append $(PROJ) .stm /n
! ifdef EXE_DLC
! ifeq RES_STAMP yes
$append $ (PROJ) .stm /1 $(LOCALE)
$append $(PROJ) .stm /r "$(LOCALE).rc" ".dlc"

! else
%append $ (PROJ) .stm /g "$(EXE_NAME) .dlc"
! endif
%append $(PROJ) .stm /D $(PROJ) .dlc
! else
! ifeq RES_STAMP yes
%$append $(PROJ) .stm /1 $(LOCALE)
%append $(PROJ) .stm /r "$(LOCALE) .rc" ".exe"
! else
%$append $(PROJ) .stm /g "$ (EXE_NAME) .exe"
! endif
%append $(PROJ).stm /D $(PROJ) .exe
! endif

-$ (STAMP) -s $(PROJ) .stm

del $(PROJ).stm
The makefile first stamps a user-visible PenPoint name for your application. The
standard rules use the string associated with tagAppMgrAppFilename as your
application name. The tag and string are defined in the localized version of your
resource file USA.RC or JPN.RC. If you need to stamp PenPoint names yourself, use
the -g or -r option with the PSTAMP utility.

The makefile also stamps the directory with the following four attributes:

¢ A user-visible string describing the file type such as Application, Font,
or Service. SRULES.MIF uses the string associated with tagAppMgrApp-
ClassName in the appropriate version of your resource file.

CHAPTER 29 / CREATING APPLICATIONS AND SERVICES 385

Makefiles

¢ The linker name of your application. Define this in your makefile with the
EXE_LNAME variable.

¢ The version number of your application. Define this in your makefile as the
APP_VERSION.

¢ A special 7-digit hexadecimal number that identifies the file as an application.
SRULES.MIF stamps this number for you. You don’t need to set this in either

your makefile or your resource file.

Table 29-1 shows more details about the information the makefile stamps. The
middle column shows the tags (in lower case) or makefile variables (in upper case)

you should

define.

Attributes stamped by the makefile

TABLE 29-1

Atiribute label Makefile variable / Resource file tag
Not an attribute tagAppMgrDefaultDocName
appAttrClassName tagAppMgrAppClassName
imAttrVersion APP_VERSION
cimAttrProgramName EXE_LNAME

appAttrClass None (automatically stamped)

Example attribute value

Counter Application

£ 7 BEVEIODAMENT TOGIS -

Application

2.0
GO-CNTRAPP-V2(0)
10001A0

Use the DOS program PSTAMP to manually stamp the directory with this required
information. See “PSTAMP” on page 405 for more information.

Notice that the makefile checks the value of RES_STAMP several times. You must
define this variable in your own makefile. Set it to YES if the makefile should stamp

your project with the application name and type in your resource file.

- If you do not set RES_STAMP to YES, the makefile directs PSTAMP to use the

EXE_NAME

Building

from your makefile and stamp the type as Application.

a resource file

By now, the makefile has created an executable in your project directory and
stamped your directory with PenPoint attributes. The next step is to build your

application
#
Buil
#

resource files, as shown in the following makefile rules:

d the app's .res file

$ (APP_DIR)\$ (TARGET RESFILE) : $(APP DIR) $($(LOCALE) RES FILES) $(RES_FILES)
for $i in ($(5(LOCALE) RES FILES)) do -$(RESAPPND) %i temp.res
tifdef RES FILES

lendif
tifdef

$ (PENP!
'endif

for %i in ($(RES_FILES)) do -$(RESAPPND) %i temp.res

DISTRIBUTED_DLLS
for %i in ($(DISTRIBUTED_DLLS)) do -$(RESAPPND)
OINT_ PATH) \sdk\d11\%i\$ (LOCALE) .res temp.res

copy temp.res $(APP_DIR)\$(TARGET RESFILE)
-del temp.res

386 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

The exact resource file that gets built depends on the LOCALE variable. You can
specify the value of LOCALE when you call WMAKE. See “Specifying locales” on
page 386 for details.

P Changes from 1.0

The following things have changed in SRULES.MIF since PenPoint 1.0.

% Stamping changes
In 1.0, SRULES.MIF stamped an application’s name and its type (“Application”) onto
the executable.

In 2.0, the rules changed to allow both the name and the type to be localized. The
new version of SRULES.MIF reads the application name and type from a resource
file. The resource file must have a name of the form LocaleRC where Locale is JPN
or USA.

All you need to do is provide tagAppMgrAppFilename and tagAppMgrApp-
ClassName in the resource file for each localization. For example, if you are making
a Japanese version of your application, these strings must be in JPN.RC.

% Specifying locales
The WATCOM make utility (WMAKE.EXE) helps you make different localized ver-
sions of your application. When you call WMAKE, specify a LOCALE argument in
the command line to make a localized version of your application. For instance,

you can type:

wmake LOCALE=jpn
wmake LOCALE=usa

to create the Japanese and American versions of your application.

The LOCALE variable tells the compiler which resource files to compile and then
copy to your application directory. Specifying JPN as the LOCALE directs the
makefile to use the resource files specified by the variable JPN_RES_FILES. For exam-
ple, with the Counter Application, the only resource file specified is JPN.RC.

You need a resource file for each of the localizations you create. If you have both
American English and Japanese versions of your application, you must have files
named USA.RC and JPN.RC.

In your makefile, use the three variables shown in Table 29-2 to identify which
resource files to compile and copy into the application directory with the executable

image.

Makefile variables TABLE 29-2
Variable Use

RES_FILES Resource files to be included with all versions of your application.
USA_RES_FILES Resource files to be included with only the American version.

JPN_RES_FILES Resource files to be included only with the Japanese version of your application.

CHAPTER 29 / CREATING APPLICATIONS AND SERVICES 387
Compiler details

For example, this fragment comes from the makefile for the NotePaper application
in \2_0\PENPOINT\SDK\NPAPP:

The .res files for your project. If you have resources, add
$(APP_DIR)\$ (TARGET RESFILE) to the "all" target.

RES_FILES = bitmap.res
USA RES FILES = usa.res
JPN RES FILES = jpn.res

Targets

all: $(APP_DIR)\$ (PROJ) .exe $(APP_DIR)\$ (TARGET RESFILE) .SYMBOLIC

W Compiler details

GO uses the WATCOM C 9.01d/386 compiler to compile PenPoint 2.0 Japanese
code. Although other compilers may work, GO does not support them.

% 16-bit character flag l

When you compile code containing 16-bit (Unicode) or double-byte (Shift-JIS)
characters, set a compiler flag so that the compiler works for 16-bit characters. For
example, if you are using the WATCOM C compiler, set the compiler flag /ZKoU. All
PenPoint 2.0 Japanese applications should support the 16-bit Unicode character
standard. For more information, see Chapter 15 of Part 2: PenPoint International-
ization Handbook.

/ DEVELOPMENT TOOLS

[

The standard makefile rules set this flag automatically in SDEFINES.MIE The Pen-
Point 2.0 Japanese resource compiler RC.EXE also sets this flag because your
resource files almost certainly contain Shift-JIS or Unicode strings.

"> DOS environment variables
You must identify the DOS PATH containing your WATCOM C compiler files. For
example, you might put the following line in your AUTOEXEC.BAT:
path=c:\watcom\bin;
Use the CONTEXT batch file to set up the other DOS environment variables
required to created PenPoint applications. See “CONTEXT batch file” on
page 410 for more details on how to use this batch file.

¥ Working with the method table compiler

The method table compiler, (\2_0\PENPOINT\SDK\UTIL\DOS\MT.EXE), creates a
header file named METHODS H from your source file METHODS.TBL. If
METHODS.H already exists, the compiler checks if the first line of the file matches
the following: ‘

"// WARNING: DO NOT EDIT ..."
If that is the first line of the file, or if the file does not exist, the compiler creates a
new METHODS.H.

If a METHODS.H file exists, but the first line is not the one above, the compiler
exists with the error message:

mtcom ERROR: Failed while opening intermediate file (.h file exists)

388 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

W PenPoint libraries

All the PenPoint 2.0 Japanese libraries are located in \2_0\PENPOINT\SDK\LIB. To
direct the makefile to link a given PenPoint library with your code, you must

include the name of the library as part of the definition of EXE_OBJS in your make-
file.

The PenPoint 2.0 Japanese header files tell you which libraries you need to link.
Remember to include the header file using the #ifndef, #include, and #endif pre-
processor directives. The directives prevent files from being included more than
once. For example, to use the PenPoint code that deals with memory allocation,
you must have:

#ifndef OS_ HEAP
#include <osheap.h>
#endif

in one of your header files. Then put the following line in your makefile:
EXE OBJS = PENPOINT.LIB

Note that INTL.LIB and BRIDGE.LIB are new to PenPoint 2.0 Japanese.

¢ INTL.LIB contains all the international functions that are described in more
detail in Part 2: PenPoint Internationalization Handbook.

¢ BRIDGE.LIB is virtually empty in PenPoint 2.0 Japanese. You can link this

file with specially written code to allow the code to compile and run under
both PenPoint 1.0 and 2.0. See the PenPoint Bridging Handbook for more
information.

W PenPoint applications

Many applications and services are stamped with their Japanese names in the 2.0
SDK. This is because no local application directory exists for each localization.
Applications and services are usually found in \2_0\PENPOINT\APP and \2_0\PEN-
POINT\SERVICE.

To see the Shift-JIS names of these applications and services, type
\2_0\penpoint\sdk\util\dos\pdir -c XJIS \2_0\penpoint\app

This also shows you how the Japanese file names relate to DOS names.

W Installing PenPoint applications

Section 3.15 of the PenPoint Development Tools suggests using the Installer to install
your application. The Installer no longer exists. Here are some ways to install your
application.

% Installing automatically

To have PenPoint automatically install your application at boot time:

1 Add its PenPoint name and path to the appropriate APPINI file.

2

CHAPTER 29 / CREATING APPLICATIONS AND SERVICES
Installing PenPoint applications

If the application name contains characters you cannot type with your key-
board, just copy the application name from the application’s resource file
Locale RC (USA.RC or JPN.RC) into APPINI.

The appropriate file depends on whether you are installing your application
for the Japanese (\2_0\PENPOINT\BOOT\JPN\APPINI) or American English
(\2_0\PENPOINT\BOOT\USA\APPINI) localization.

% Installing applications in \2_0\PENPOINT\APP
To install an application in the \2_0\PENPOINT\APP directory:

1

- I

Open the Connections notebook.
Make sure you are on the Disks page.
Choose Applications from the View menu.

Tap on the Install box next to the application you want to install.

Installing applications from any connected disk

To install an application from any connected disk:

i

o w B WM

Open the Connections notebook.

Make sure you are on the Disks page.

Choose Layout under the Options menu.

Select Install in the option sheet that appears.
Navigate to an application on any connected disk.

Tap on the Install box next to the application you want to install.

Using the Settings notebook

To install an application by copying it into the Settings notebook:

1

Open the Settings notebook, and tap on the Applications button. This shows
the currently installed applications.

To install an application, tap on the Install menu item. This brings up a screen
that shows you all the applications in \2_0\PENPOINT\APP. Tap on the Install
box for the application you want to install.

If you want to install an application not shown in this window, turn to the
Disks page of the Connections notebook.

Select View by Directory.
Navigate to the application you want to install.

Copy the application into the Installed Applications page of the Settings note-
book. Use the tap press % gesture to initiate the copy, then drag the applica-
tion on top of the Settings notebook.

Using the Settings notebook is easier if you also want to set preferences for software,
remove software, or save any changes you have made.

389

4 / DEVELOPMENT TOOLS

390

P

4

PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

Using the Connections notebook is more convenient if you also plan to set up a
printer, transfer files to and from the computer, format a floppy disk, or use net-

work resources. It also lets you install applications from any directory, not just

\2_O\PENPOINT\APP.

Aside from these differences, using the Settings notebook is identical to using
the Connections notebook. They are merely different user interfaces for the same

process.

Copying files to the application directory

On page 51 in PenPoint Development Tools, the last section instructs you to create a
directory called \PENPOINT\APP\EMPTYAPP, and copy EMPTYAPPEXE into that

directory.

Simply creating the directory and copying the executable file into that directory
does not create a PenPoint application. You need to copy in any resource files,
supporting documents, and stamp the directory with PenPoint information. See
“Stamping” on page 384 for more information on how the standard makefile rules

stamp PenPoint information on application directories.

Working with supporting files

In addition to the executable image and compiled resource files, your application

might require supporting files such as Quick Start documents, Help notebook

documents, and stationery. This section describes strategies for working with these
supporting documents.

% Preparing distribution disks

Each of your distribution disks for an application or service should contain certain
directories. Table 29-3 shows the structure for the sample Tic-Tac-Toe application.
You should put similar directories and files beginning at the root of your distribu-

tion disk.

Sample distribution disk structure

TABLE 29-3

Directory and contents

\PENPOINT\APP\TTT
\PENPOINT\APPATTT\PENPOINT.DIR
\PENPOINT\APP\TTT\TTT.EXE
\PENPOINT\APPATTT\USA.RES
\PENPOINT\APP\TTT\JPN.RES

\PENPOINT\APP\TTT\HELP
\PENPOINT\APPATTT\HELP\TTTHELP1
\PENPOINT\APP\TTT\HELPATTTHELPI\HELPTXT
\PENPOINT\APPA\TTT\HELP\TTTHELP2
\PENPOINT\APPA\TTT\HELP\TTTHELP2\HELPTXT

\PENPOINT\APP\TTT\STATNRY
\PENPOINT\APP\TTT\HELP\TTTSTAT1
\PENPOINT\APPA\TTT\HELP\TTTSTATIN\TTTFTUETXT
\PENPOINT\APP\TTT\HELP\TTTSTAT2
\PENPOINT\APPA\TTT\HELP\TTTSTAT2\TTTFTUETXT

Description

Application directory

PenPoint directory and application information.
Application executable.

Compiled resource file for the USA localization.
Compiled resource file for the JPN localization.

Help directory

Directory containing first page (document) of help text.

Actual help text, page 1

Directory containing second page (document) of help text.

Actual help text, page 2

Stationery directory

Directory containing first stationery document.
Actual contents used by stationery document.
Directory containing first stationery document.
Actual contents used by stationery document.

CHAPTER 29 / CREATING APPLICATIONS AND SERVICES
Working with supporting files

See Chapter 11 of this manual for more information on how Tic-Tac-Toe creates
and uses its supporting files. You may also want to examine the makefile for Tic-
Tac-Toe to learn how to set up the \HELP and \STATNRY directories.

There is one more file in the Tic-Tac-Toe directory called TTT.MPE. This map file is
created by the linker and is for debugging purposes only. You should not copy the
file to your distribution disks.

Using short DOS path and file names

DOS imposes a 64-character limit on the total length of a path and file name.

The PenPoint document model creates a separate directory for each file. Further-
more, each embedded document contains a separate subdirectory beneath the
directory of its parent document.

This recursive structure can create DOS file names longer than the maximum of
64 characters. For example, here is the full path to a stationery document that is
part of a stationery notebook for a typical application:
C:\2_O\PENPOINT\APP\MY APP\STATNRY\MY APP_Q\NOTEBOOK\CONTENTS\USQ1SALES\DOC.RES

You can work around the 64-character limit by using the short, 2-character path

name PenPoint creates for each directory. PenPoint can then translate the short file

names into full PenPoint names using information in PENPOINT.DIR. Using this

technique shortens the long path name above to the shorter path name:
C:\2_0\PENPOINT\APP\MY_APP\STATNRY\MQ\NB\CS\US\DOC.RES

To create these short DOS directory names, you must copy the document to a

\PENPOINT directory in the root of any volume.

For example, follow this procedure to save a MiniNote document as a Quick Start
stationery item. The sample application is called MyApp.

1 Before starting PenPoint, set the B flag to 800 by adding /DB800 to the
DebugSet line in ENVIRON.INI as follows:
DebugSet=/DD8000 /D*1 /DB800
You can also type FS B 800 in the mini-debugger to set the flag.

2 Start PenPoint and create a MiniNote document named something like
MyApp Quick Start. When you have finished the Quick Start document,

open the Connections notebook and set the View to Directory.
Open the \PENPOINT directory in the root of any volume except RAM.

4 Copy the Quick Start document into \PENPOINT. Make sure you are copying
into the \PENPOINT directory directly off the root of your volume. For
example, the \2_0\PENPOINT directory will not work.

5 Shut down PenPoint.

391

4 / DEVELOPMENT TOOLS

392

(4

PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

6 Navigate into your application directory, and create a \STATNRY subdirectory.
For example, the following creates the subdirectory in C:\2_0\PEN-
POINT\APP\MYAPP.

cd c:\2_0\penpoint\app\myapp
md statnry
cd statnry

7 Use the DOS utility PDIR to list the PenPoint names of the files in the
\PENPOINT directory: See “PDIR” on page 407 for more information.
pdir c:\penpoint

8 Note the DOS name of the directory containing MyApp Quick Start. In this
example, the DOS directory name is MT.

9 Copy the PenPoint document to your application’s \STATNRY directory. For
example, if the document is in the DOS directory MT, type the following:
xcopy c¢:\penpoint\mt mt /s/e

10 Append PenPoint attributes from the Quick Start document to the \STATNRY
directory. See “PenPoint attribute utilities” on page 404 for details.
pappend penpoint.dir c:\penpoint\penpoint.dir /g "Myapp Quick Start"
11 Stamp the document to put a check in its menu check box. This forces the
stationery document to appear in the Create menu.
pstamp /g "MyApp Quick Start" /A anmAttrStationeryMenu 1

12 Boot PenPoint and install MyApp. Verify that the only two stationery items
for the application are MyApp and MyApp Quick Start by opening the
Stationery Notebook.

GO uses this technique to save the Sample notebook and Help notebook. These
files are in the \2_0\PENPOINT\BOOT\DOC directory.

Stamping stationery with different names

When you create localized versions of your application, you may want to ship
different versions of your supporting documents, such as stationery and Quick
Start documents. Use the procedure described above in “Using short DOS path and
file names” to create the supporting documents.

However, some supporting documents you create are not language-specific. For
example, the Tic-Tac-Toe sample application uses a piece of stationery to fill in a
Tic-Tac-Toe board. Its stationery files are simply filled with a pattern of Xs and Os.
The only difference between localized versions of the stationery is the stamped
information (containing, among other things, the user-visible file name).

To create this kind of supporting document (which differs only by the stamped
information), create the document in your development directory as described
above.

CHAPTER 29 / CREATING APPLICATIONS AND SERVICES
Working with supporting files

When you build your application directory, copy the stationery files to \2_0\
PENPOINT\APP\MYAPP\STATNRY and stamp the files as appropriate to the locale.
For example, the following procedure stamps locally appropriate names onto

stationery:

1

Add a tag and an associated string to the resource file for each localization. For
example, you might use the tag tagMyStationeryName and add the appro-
priate strings to each resource file.

Add lines to your makefile that stamp your stationery with the string associ-
ated with the tag. Specify the name that should be stamped by prefixing the
tag name with the & (ampersand) symbol. For example, the following make-
file commands stamp the string associated with tagMyStationeryName on
your stationery:

%create statnry.stm

%append statnry.stm -u

$append statnry.stm -n

%$append statnry.stm $(PENPOINT PATH) \app\MyApp\statnry
%append statnry.stm -1 $(LOCALE)

$append statnry.stm -r $(LOCALE).rc ""

%$append statnry.stm -g &tagMyStationeryName

%append statnry.stm -d $(DOSNAME) f
%$append statnry.stm -a anmAttrStationeryMenu 1
-$ (STAMP) -s statnry.stm

del statnry.stm

Specify a locale when you call WMAKE to create your stationery. For example,
the following commands create U.S. English versions of Tic-Tac-Toe statio-
nery.

wmake stationery LOCALE=usa
wmake help LOCALE=usa

If you do not specify a locale, the makefile rules assume JPN.

393

4 / DEVELOPMENT TOOLS

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 4 / DEVELOPMENT TOOLS SUPPLEMENT

Chapter 30 / Debugging

You can use a variety of tools to debug your PenPoint™ applications. This chapter
provides an overview of those tools and discusses changes and improvements to the
debugging tools for PenPoint 2.0 Japanese.

See Part 2 of PenPoint Development Tools for more information on using PenPoint’s

debugging tools.

¥ Overview
There are a variety of ways to debug your application. Some common strategies are:
¢ Running the debug version of PenPoint 2.0 Japanese.

¢ Using Debugf() or DPrintf() to send text strings to the debugger stream. You
can display these strings on your PenPoint screen or a second monochrome
screen dedicated to displaying the debugger stream. You can also use the Sys-
tem Log application to write the debugger stream to a file.

¢ Using the PenPoint source debugger or the mini-debugger.

¢ Handling msgDump, which requests an object to format its instance data in a
readable format to send it to the debugger stream.

Each of these strategies is discussed in more detail below.

% Debug version of PenPoint

The PenPoint SDK 2.0 Japanese includes two versions of PenPoint, the production
and debug versions. Each version contains its own set of DLLs, services, and appli-
cations.

The production version is what the end-user sees. Its files are in \...\PENPOINT\
BOOT\DLL, \...\PENPOINT\BOOT\APR, and \...\PENPOINT\BOOT\SERVICE. The file
PENPOINT.OS is also part of the production version. The ellipses (...) represent
either 1_01 or 2_0, depending on which version of PenPoint you are developing for.

The debug version lets you see and use the following information in your debugger
stream:

¢ Warnings from ObjCallWarn/Ret/Jump and StsWarn/Ret/Jump.
¢ Symbolic names for objects, classes, messages, and status values.

¢ Additional debugging information that may be helpful for reporting bugs to
Developer Technical Services.

¢ Special debugging features documented in DEBUG.H.

396

PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

The debug version files are in \...\PENPOINT\BOOT_DLL, \...\PENPOINT\
BOOT_APR, and \...\PENPOINT\BOOT_SERVICE. The debug version of
PENPOINT.OS is _PPOS.

The drawbacks to using the debug version are:
It requires more memory.
¢ PenPoint 2.0 Japanese runs more slowly.
¢ It is unlike the final end-user environment.

¢ Some debug warning messages are benign, and these may cause you undue
worry about your own code.

You can modify the GO.BAT file to run either the debug or production version of
PenPoint 2.0 Japanese. The default is the production version.

Sending text to the debugger stream

You can write debug information to the debugger stream using the Debugf() and
DPrintf() functions. The sample code often uses this strategy to identify when a
particular method handler executes. For example, here is the CntrNewDefaults
method from the Counter Application:

MsgHandlerArgType (CntrNewDefaults, P_CNTR_NEW)
{
Dbg (Debugf (U_L("Cntr:CntrNewDefaults")) ;)

// Set default value in new struct.
pArgs->cntr.initialvValue = 0;

return stsOK;
MsgHandlerParametersNoWarning;

} /* CntrNewDefaults */

You can find this code in \2_0\PENPOINT\SDK\SAMPLE\CNTRAPP\CNTR.C.

Responding to msgDump is another way to send text to the debugger stream.
Because your shipping product should not handle msgDump, use the #IFDEF and
#ENDIF preprocessor directives to surround code that handles msgDump (and all
other debugging code). For example, here are excerpts from the Tic-Tac-Toe
method table showing how to use the directives:

MSG_INFO clsTttDataMethods[] = {

msgNewDefaults, "TttDataNewDefaults", objCallAncestorBefore,
#ifdef DEBUG

msgDump, "TttDataDump", objCallAncestorBefore,
#endif

}i
Put a line in your makefile to define the name DEBUG when your application com-
piles. When DEBUG is defined, all the debugging code surrounded by the #IFDEF
and #ENDIF preprocessor directives is compiled, so debugging information is sent
to the debugger stream. Here is the line in Tic-Tac-Toe’s makefile that defines the
name:

MODE = debug

CHAPTER 30 / DEBUGGING
Overview

Look in SDEFINES.MIF to see how the MODE line influences which compiler and
debugging flags are set.

See Chapter 10 in PenPoint Development Tools for more details on the functions that
send data to the debugger stream.

% Viewing the debugger stream

There are a variety of ways to view the debugger stream. Here are some of your
options. See Chapter 10 in PenPoint Development Tools for more information.

%¥ On the PenPoint screen

To view the debugger stream on the same monitor as your PenPoint screen, you
must uncomment the following line in MIL.INT:
MonoDebug=off

% On a second monitor

Make sure the line above is commented out if you want to see the debugger stream
on a second, monochrome monitor. This configuration is called two- or dual-
headed debugging. Be sure to set the appropriate DebugCharSet to indicate which
character set should be used to interpret the debugger stream codes. See “Debug-
CharSet” on page 398 for more details.

GO does not support viewing Shift-JIS on this second debugging monitor.

%¥ Using the System Log application
This PenPoint application saves the debugger stream to its own internal buffer. You
can use the application to see the stream in a variety of ways. See “System Log” on

page 398 for details.

%» Using a serial port
Assign a serial port to the SerialDebugPort variable in MIL.INT to send the debugger
stream to that serial port. The port should be connected to a terminal emulator that
can display the required character set. Most likely, this is another computer running
a terminal emulation package. See “MIL.INI” on page 415 for details.

%» As a file .
You can set variables in ENVIRON.INI to send the debugger stream to a file on your
PC’s hard drive. For example, set the following variables to save the stream to the file
PENPOINT.LOG in the root directory of your PC’s hard drive. The stream is flushed
to the file after every 10 characters written to the stream.
DebugSet=/DD8000

DebugLog=\PENPOINT.LOG
DebugLogFlushCount=10

397

4 / DEVELOPMENT TOOLS

398 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

¥ DebugCharSet

The DebugCharSet variable in ENVIRON.INI controls the character set of your
debugging output. Table 30-1 shows the currently permissible values.

DebugCharSet variable permissible values TABLE 30-1
Value Description

ASCII Standard 7-bit ASCII

XJIS 1990 Shift-JIS character set

437 Extended ASCII used in American PCs

850 Extended ASCII used in European PCs

If you are sending debugging information to your PenPoint monitor or a second
debugging monitor, make sure it can display characters in the specified Debug-
CharSet. If you don’t, you will see unmeaningful characters.

Literal strings in Debugf() and DPrintf() appear in the specified character set. Hex quads
Unicode characters that do not have glyphs display as hex quads in PenPoint 00 F1
2.0 Japanese. Outside of PenPoint, Unicode characters without glyphs display 1B F2
as /x value, where value is a 4-digit hexadecimal number. For example, the first hex

quad in the margin would be displayed as /x001B.

The default value of DebugCharSet depends on the value of Locale, another
ENVIRON.INI variable. If Locale is JPN, the default is Shift-JIS. The default is
ASCII if Locale is USA.

If DebugCharSet is set to an invalid value, the default character set is assumed.

P> System Log

The System Log application writes the debugger stream to a file.

See Chapter 11 of PenPoint Development Tools for information on using the applica-
tion. Contrary to the text on page 141 of that chapter, you cannot get or set debug
flags with the System Log application.

In PenPoint 2.0 Japanese, the System Log application can dlsplay Shift-JIS charac-
ters as well as ASCII text.

Note that the Device List command under View menu is not supported in the pro-
duction version of PenPoint 2.0 Japanese.

P Debug modes

You can run the debug version of PenPoint in either DebugRAM or DebugTablet
mode. The DebugRAM mode is convenient for early application testing because it
is much faster, while the DebugTablet mode is more appropriate for more refined
testing because it more closely simulates a notebook computer. For example, in
DebugTablet mode, files created in PenPoint persist between boots.

Because the DebugTablet mode most closely matches a real pen computer, GO
encourages you to run in DebugTablet mode as you get closer to shipping your
product.

CHAPTER 30 / DEBUGGING 399
Debug modes

% DebugTablet

The DebugTablet mode, the default mode in PenPoint 2.0 Japanese, simulates a
pen computer most closely. For example, files that you create will persist across
boots. Also, when applications are installed, PenPoint copies executable code to a
special system directory called the loader database. See Section 3.6 of PenPoint
Development Tools for more information on DebugTablet mode.

If you set SwapBoot to 2 in ENVIRON.INI, PenPoint writes the content of your
simulated notebook, complete with its documents and applications, to a swap file
called \PENPOINT.SWE. The next time you boot, PenPoint reads the swap file to
restore your simulated notebook. This considerably speeds up the boot process.

You specify the size of the swap file by setting SwapFileSize in ENVIRON.INL

% DebugRAM

In the DebugRAM mode, PenPoint creates its run-time file system (the Bookshelf,
Notebook, and document directories) in RAM. If you use the complete Japanese
font set in PenPoint 2.0 Japanese, this mode requires 12 megabytes of RAM. See
Installing and Running the PenPoint SDK 2.0 for strategies on reducing the required
amount of RAM.

In DebugRAM mode, PenPoint does not create the loader database of executable
system code, application executables, and DLLs. Instead, PenPoint pages them in
from the original files. Thus, PenPoint starts from a fresh state each time you boot

in DebugRAM mode.

You can still preserve files by copying them to your DOS disk by using the Connec-
tions notebook.

If you install an application or service from a floppy disk, and remove the disk
while the application or service is running, PenPoint 2.0 Japanese may page fault.

This is true only in DebugRAM mode.

% Running PenPoint 1.0 and 2.0

If you are developing PenPoint 1.0 and 2.0 Japanese applications on the same PC,
make sure only one environment uses DebugTablet mode. This protects you from
crashes that occur if the PenPoint operating system tries to read a swap file created
by a different version of PenPoint.

Because DebugTablet is the default mode in PenPoint 2.0 Japanese, set Debug-
RAM as your PenPoint 1.0 mode, or change the 2.0 defaul.

% Warm booting

When you are debugging, you frequently want to replace the existing code with the
most recent version. In DebugTablet mode, you may be able to replace the changed
EXE and .DLL files in the loader database (in \2_0\PENPOINT\SS\LR), thereby by-
passing the PenPoint installer. This technique, called warm booting, saves about
100 seconds during boot.

4 / DEVELOPMENT TOOLS

400 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

Warm booting works only when you have:
¢ Cold booted with your .DLL or .EXE running.
¢ Made no structural changes to your project’s destination directory.
¢ Not enabled swap booting.

The DLLs and EXEs in the loader database are the same as the files in \2_0\
PENPOINT\APP or \2_0\PENPOINT\BOOT\DLL, except that:

¢ They are stamped with PenPoint attributes.

& Their PenPoint names are in the linker form rather than the DOS directory
names. The syntax for the linker name is as follows:
company-project-VmajorVersion(minorVersion)

For example, the linker form of the dynamic link library required by the
Calculator sample application is GO-CALC_ENG-V2(0).

Leave the PenPoint attributes unchanged in \2_0\PENPOINT\SS\LR\PENPOINT.DIR,
and just copy in the new version of the DOS file.

The name of the files to copy are the DOS forms of your application’s PenPoint
name. The DOS names are usually the first eight letters of the linker name. For
example, GO-CALC_ is the DOS version of the linker name GO-CALC_ENG-V2(0).

If you can guarantee that the first eight characters identify the files you want, write
a makefile to perform the required copying automatically. You might write your
makefile so that typing make warmboot from the DOS prompt takes the required
steps. Your makefile might look something like this:

#

Warmboot puts the newly recompiled files into the loader database when
the user is using DebugTablet. This saves having to de-install and

re-install the app or service to get the new version.

#

WARMEXES =

if DLL DIR is defined, then we are processing a service, so don't copy
the DLL here. There is another double-colon warmboot target in the
svcrules.mif to handle the service DLL
! ifneq DLL_OBJS
! ifeq DLL DIR
WARMEXES += $(APP_DIR)\$(PROJ) .dll
! endif
! endif
only get the init.dll or the executable if they are built here
! ifneq INIT OBJS
WARMEXES += $ (APP_DIR)\init.dll
! endif
! ifneq EXE_OBJS
WARMEXES += $ (APP_DIR)\$ (PROJ) .exe
! endif
warmboot :: \penpoint\ss\lr\penpoint.dir $ (WARMEXES) .SYMBOLIC
! ifneq DLL_OBJS
! ifeq DLL DIR
-copy $(APP_DIR)\$ (PROJ) .dll \penpoint\ss\lr\$ (DLL_LNAME)
! endif
! endif

CHAPTER 30 / DEBUGGING 401
Using the mini-debugger

! ifneq INIT OBJS
-copy $(APP_DIR)\init.dll \penpoint\ss\lr\$(DLL_ LNAME)
! endif
! ifneq EXE OBJS
-copy $(APP_DIR)\$ (PROJ) .exe \penpoint\ss\lr\$(EXE_LNAME)
! endif
must have booted before to do make warmboot, so quit here if they haven't
\penpoint\ss\lr\penpoint.dir:

@if not exist \penpoint\ss\lr\penpoint.dir &
@echo ***xx*xx Error! **kkxkxkk

@if not exist \penpoint\ss\lr\penpoint.dir &
@echo You must first boot PenPoint with Config=DebugTablet to
able to 'make warmboot.'
@if not exist \penpoint\ss\lr\penpoint.dir @%quit

If you are working with services, you might put this rule in your standard service
makefile.

warmboot :: \penpoint\ss\lr\penpoint.dir $(DLL DIR)\$(PROJ).d1ll .SYMBOLIC
! ifneq DLL_DIR
-copy $(DLL_DIR)\$(PROJ).d1ll \penpoint\ss\1lr\$(DLL LNAME)
! endif
An 8-character name does not always uniquely identify a file. For example, if you
have two applications with the PenPoint names PENCOMPANY-PROJECT1-V1(0) and
PENCOMPANY-PROJECT2-V1(0), the first 8 letters does not distinguish between the

two files.

In this case, use the DOS utility PDIR to determine the DOS name of your .EXE and Note GDIR utility has been
DLL files. Then copy the file (with the 8-character DOS name PDIR shows) into ;egaj“@d FDIR in FenFoint

i apanese
\2_0\PENPOINT\SS\LR. P

W Using the mini-debugger

This section contains more detailed information about how to use the mini-
debugger. See Chapter 12 of PenPoint Development Tools for more information.

% Displaying Unicode
Table 12-1 on page 146 of PenPoint Development Tools shows a series of mini-

debugger commands (d, da, db, dd, and dw) that display the contents of particular
memory addresses as ASCII text.

In PenPoint 2.0 Japanese, the same commands display the memory contents as
either multibyte (Shift-JIS) or Unicode characters. The interpretation is controlled
by the mdb command, which controls various aspects of the mini-debugger.

Table 30-2 shows the currently defined controls. Simply type mdb followed by one
of these numbers to activate a control. For example, mdb 6 turns on Unicode inter-
pretation of memory dumps.

4 / DEVELOPMENT TOOLS

402 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

Mini-debugger controls TABLE 30-2
Controf Meaning

1 Turn off page fault protection.

2 Turn on page fault protection.

3 Turn off symbolic translation during stack traces (st).

4 Turn on symbolic translation during stack traces (st).

5 Turn off symbolic translation when displaying address information (ai).

6 Interpret memory contents as Unicode characters.

7 Interpret memory contents as multibyte (Shift-JIS) characters.

% Disabling the mini-debugger

In the end-user version of PenPoint, the mini-debugger is disabled. You can
explicitly disable the mini-debugger by setting the /DD10000 flag. When the mini-
debugger is disabled, applications or services that crash are simply terminated, and
operation continues.

Also, set the /DD40000 flag to disable the keys that drop you into the mini-
debugger. Without this flag, CTRL-C and BREAK drop you into the mini-debugger.

A PenPoint machine set up for a user has both flags set; namely, /DD50000 is set.

% Turning flag bits 6n and off

The mini-debugger fs command accepts + and — to enable and disable flags. The
operators toggle the value of the flag specified. For example, the following lines
toggle the B 800 flag.

fs B +800

fs B -800
These commands are much simpler than the source-level debugger commands,
where you are responsible for the addition and subtraction of the appropriate bits.

% Getting help
Type H or h to see the list of valid commands. Press the space bar to scroll through
the list one line at time; press Return to scroll through an entire screen at once.

Table 12-1 in PenPoint Development Tools erroneously states that you can type the
question mark (?) character to get help.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 4 / DEVELOPMENT TOOLS SUPPLEMENT

Chapter 31 / Tools and Utilities

This chapter describes various DOS utilities and PenPoint™ accessories that help
you create PenPoint 2.0 Japanese applications and services. Many of these utilities
are updates of tools found in the 1.0 SDK, so you should look in PenPoint Develop-
ment Tools for information on how to use these tools.

The old command-line syntax is still accepted for all utilities. You only need to
rename GDIR and STAMP in your 1.0 scripts, since these utilities have been
renamed.

Most of the new and updated DOS utilities are in \2_0\PENPOINT\SDK\UTIL\DOS.
Type -2 or /2 after any of these DOS utilities to see a help message.

VP Locales and character sets

Because you are likely to use different character sets while developing your Pen-
Point 2.0 Japanese application, most of the DOS utilities are sensitive to two DOS
environment variables.

& CHARSET can be one of the values in Table 31-1.

¢ LOCALE, a combination of a country, language, and dialect, can be either USA
or JPN. The locale maps to a default character set. The USA locale maps to
code page 437, while JPN maps to X]JIS.

Valid values for CHARSET TABLE 31-1
Valve Description

ASCII Standard 7-bit ASCIL.

X]JIS Shift-JIS encoding of the 1990 JIS character set.

XJIS 1983 Shift-JIS encoding of the 1983 JIS character set.

XJIS 1978 Shift-JIS encoding of the 1978 JIS character set.

437 IBM code page 437 used in U.S. PCs.

850 IBM code page 850 used in European PCs.

LATIN1 International Standards Organization (ISO) Latin 1 character set.

Set these environment variables to reflect the character set that your keyboard uses.

You can set the variables in AUTOEXEC.BAT if you use a particular character set
most of the time. Use this line, for-example, to specify code page 437 as the default
character set.

set charset=437

With this variable set, the DOS utilities will interpret the characters in stamped
names as ASCII characters. Other character sets and locales are supported, but the
ones mentioned here are the only ones relevant to PenPoint 2.0 Japanese.

404 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

If you want to specify a character set or locale for just one time, most utilities accept
a -cor -l argument. For example, you can type either of the following commands to
display PenPoint directory information, with the PenPoint names interpreted as
Shift-JIS characters.

pdir -cxjis

pdir -1 jpn
Notice in the above example that spaces are not required between flags and their
values. You can type either -cXJIS or -c¢ XJIS to specify the character set.

You may specify explicit Unicode characters by embedding \x/hhh in your strings,
where hhbh is up to 4 hexadecimal digits. For example,
pstamp MyDir -u -g “Q3 Sales in \x00A5” -d Q3SALES

~ stamps the directory MyDir with the name Q3 Sales in ¥ because the Unicode
value 0x00AS5 represents the ¥ symbol.

P PenPoint atiribute utilities

PenPoint 2.0 Japanese provides a collection of DOS utilities to stamp directories,
applications, services, and documents with PenPoint attributes. This information is
stored in a file named PENPOINT.DIR in the same DOS directory. Table 31-2 shows
the available utilities.

In PenPoint 2.0 Japanese, PENPOINT.DIR can contain Unicode strings, although
the utilities can still read PENPOINT.DIR containing ASCII strings. That means the
utilities still work with PenPoint 1.0 files. You must have the DOS4GW.EXE file in
your DOS PATH to run any of these utilities.

Atiribute utilities TABLE 31-2
Name Purpose
PSTAMP Adds special PenPoint information to a DOS file or directory.
PDEL Deletes specific directory entries from PENPOINT.DIR files.
PCOPY Recursively copies files and directories to other PenPoint directories. Appends
the appropriate entries in PENPOINT.DIR.
PDIR Lists the PenPoint names and file systems attributes for all the files and direc-

tories in a DOS directory. Replaces GDIR from the utilities included with
PenPoint 1.0.

PSYNC Scans the current directory and removes any entries from PENPOINT.DIR
for which there are no corresponding DOS files. Note that this updates the
PenPoint directory information from the DOS information; it does 7ot
update DOS files from the information in PENPOINT.DIR.

CHAPTER 31 / TOOLS AND UTILITIES 405
PenPoint attribute utilities

%> PSTAMP
PSTAMP replaces STAMP from PenPoint 1.0. It has changed in the following ways:

¢ You can stamp Unicode strings by specifying the -u option.

¢ You can specify a script file of arguments using the -s option to help automate
the stamping process. The script file must contain the same arguments you
would type in at the command line. These scripts help you avoid the 128-
character limit DOS imposes on commands.

¢ You can now delete an attribute by specifying the -x argument. Previously, the
only way to do this was to create a new entry that did not contain the attribute
you wanted to delete.

¢ When manipulating attributes, you can refer to entries one of three ways:
+ By PenPoint name (as it was in the STAMP from 1.0).
+ By DOS name.

o By the string associated with tagAppMgrAppFilename in a resource file
(JPN.RC or USA.RC).

PSTAMP assumes you want to manipulate the PENPOINT.DIR in the current
directory, so you don’t need to specify a PENPOINT.DIR file each time you run
PSTAMP You can still specify PENPOINT.DIR files in other directories if you
want.

¢ You may change the PenPoint name of an entry by specifying the -n flag. You
must specify the new PenPoint name and the old DOS name as arguments. If
the entry does not exist already, a new one is created. For example, this com-
mand changes the name of the Paint sample application from Paint Demo to
My Paint Program:
PSTAMP -N -D “PAINT.EXE” -G “My Paint Program”

¢ You may specify symbolic names for all system-defined attributes instead
of attribute numbers. The symbolic names are the #define names of the
attributes in the header files. All names that are defined using a function

of the form FSMake*Attr() are valid.

Table 31-3 shows some attributes that are commonly stamped onto items you
can install in PenPoint (for example, applications and services). Remember
that there are three kinds of attributes: strings, variables, and fixed (32-bit or
64-bit). See Chapter 72, Using the File System in the Architecture Reference for

more information.

4 / DEVELOPMENT TOOLS

406

PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

Attributes stamped on installable items

TABLE 31-3

Admin

62

260

157

193

157

Index

0

12

Category

String
String
String

String

FIX32

Must
use?

Yes
No
No

Yes

Yes

Label

header file
fsAttrName
FS.H

imAttrVersion
INSTLMGR.H

appAttrClassName
APPDIR.H

cimAttrProgramName
CODEMGR.H

appAttrClass
APPDIR.H

Comment

User-visible name of installable item. Must
be unique within the parent directory.

User-visible version string.

User-visible installable type name (for exam-
ple, Application, Service, Font, Printer).
Module name such as GO-ABAPP-V2(0).

Must match the module name in the LBC
file used to build the module.

Installable type. Must be set to the
appropriate installation manager such
as thelnstalledApps (010001A0).

Table 31-3 shows attributes that are commonly stamped on PenPoint documents.

Atiributes stamped on documentis

TABLE 31-4

Admin

62

28

157
157
157
157
157
157
157

157

Index

0

12

10

10

Category

String
FIX64
String
FIX32
FIX32
FIX32

FIX64

String

String

String

Must
wse?

Yes

Yes

No

Yes

Yes

Yes

Yes

No

No

No

Label

header file
fsAttrName
FS.H
fsAttrDirIndex
FS.H

appAttrClassName
APPDIR.H

appAttrClass
APPDIR.H

appAttrSequence
APPDIR.H

appAttrNumChildren
APPDIR.H

appAttrFlags
APPDIR.H

appAttrBookmark
APPDIR.H

appAttrAuthor
APPDIR.H

appAttrComments
APPDIR.H

Comment

User-visible name of document. Must be
unique within the parent directory.

Directory index. Must be unique.

User-visible name of document’s application
(for example, GOMail, MiniNote).

Document’s application class.

Sequence number describing the position of
an embedded document.

Number of documents embedded within
this document.

Documentss file system flags (for example,
moveable, readOnly).

User-visible name of a document’s tab in the
notebook.

User-visible author field.

User-visible comments field.

See “Stamping changes” on page 386 for more information about how the standard
makefile rules have changed stamping behavior since 1.0.

CHAPTER 31 / TOOLS AND UTILITIES 407
PenPoint attribute utilities

% PCOPY

PCOPY allows you to recursively copy files and directories to other PenPoint direc-
tories. If the directory you are copying contains a PENPOINT.DIR file, PCOPY
updates the target PENPOINT.DIR file to include the new information.

PCOPY source [target-dir] [/V] [/L locale | /C charset]

The source can be a file or a directory. If source is a directory, PCOPY copies the con-
tents recursively. You can also use the standard DOS wildcards * and ? to specify
multiple files or directories. The locale and charset specify the locale or character set
from which to translate the PenPoint name. PenPoint names, remember, are written
as Unicode strings. See “Locales and character sets” on page 403 for a list of valid
values.

For example, you might need to copy an application from \2_0\PENPOINT\SDK\APP,
such as SSHOT, to \2_0\PENPOINT\APP. With the tools available in PenPoint 1.0,
you had to use XCOPY to copy the SSHOT directory into \2_0\PENPOINT\APE, then
use PAPPEND to copy SSHOT attributes from its original directory to \2_0\PEN-
POINT\APP.

Now, you can simply type the following to achieve the same result:
PCOPY \2_O0\PENPOINT\SDK\APP\SSHOT \2_O0\PENPOINT\APP

PCOPY recursively copies SSHOT to the target and updates the PENPOINT.DIR file in
\2_O\PENPOINT\APP.

PCOPY cannot copy to already existing subdirectories below the target directory.
For instance, you can't:

MD D:\2_0\PENPOINT
PCOPY C:\2_0\PENPOINT\SDK\APP D:\2_0\PENPOINT
PCOPY C:\2_0\PENPOINT\APP D:\2_0\PENPOINT

The second PCOPY fails because D:\2_0\PENPOINT\APP already exists.

% PDIR

PDIR replaces GDIR from PenPoint 1.0. While GDIR allowed you to specify only
directories, PDIR allows you to specify files as well. For example:
PDIR PENPOINT.BAK

displays PenPoint information about the file PENPOINT.BAK.
PDIR also differs from GDIR in the following ways:

¢ Attributes are only printed when you specify the -a argument rather than
printing automatically.

¢ Unicode names that have been stamped using PSTAMP’s -u option are inter-
preted as characters from the set specified in CHARSET.

If some of the characters in your Unicode strings display as spaces, there is no
equivalent character in the character set you specified. Change your character set or
specify the -u option to display unprintable Unicode characters as hex numbers.

4 / DEVELOPMENT TOOLS

408 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

P Resource file utilities
The resource utilities from PenPoint 1.0 have been ported to 2.0 Japanese.

¢ RC, the resource compiler, compiles .RC files into .RES files. Applications and
services actually use .RES files, not .RC files.

¢ RESAPPEND appends resources from one resource to another. It also compacts
the target resource file by removing deleted or duplicated resources.

¢ RESDUMP allows you to view the contents of a resource file.

% RESDEL

A new resource file utility, RESDEL, deletes specific resources from a compiled
resource file. The syntax of the command:

RESDEL resource-file-name [resource-ID-spec]

The resource-ID-spec identifies a particular resource in a variety of ways. You can
find a resource ID by examining the contents of a resource file using RESDUMP.

For example, if you wanted to delete a resource from the USA.RES of Tic-Tac-Toe,
first examine the contents of the file by typing:
resdump c:\2_0\penpoint\sdk\app\ttt\usa.res > tempfile

Open tempfile with a text editor and notice that a typical resource looks like the
following:
Resource 0 is a well-known object resource
resId = [0x0780001A WKN: Scope=Global Admin=13 Tag=15]
Objects class = [0x010002F4 WKN: Scope=Global Admin=378 Ver=1], data length=401
Min sys version = 0

You can specify the resource with the hexadecimal number 0x0780001A. To delete

It, just type:
RESDEL C:\2_O0\PENPOINT\SDK\APP\TTT\USA.RES 0x(0780001A

There are more complex ways of specifying a resource, as shown in Figure 31-1.

Specifying a resource with RESDEL FIGURE 31-1

type
I
! :
R wkn-res-id
| —{ :)—
[| (x) (decimal number),
(| \V N—r
O
®

decimal number decimal number

CHAPTER 31 / TOOLS AND UTILITIES
Other DOS utilities

In the above example, note that the resource if a well-known object resource with
global scope, an administered number of 13, and a tag number of 15. Given this
information, you can delete the resource by typing:

RESDEL C:\2_0\PENPOINT\SDK\APP\\TTT\USA.RES G13T15

Type RESDEL /H for details on these alternate ways of specifying resources.

VW Other DOS utilities

"

There are a collection of DOS utilities that do not deal with PenPoint attributes or
resource files.

UCONVERT

A new utility UCONVERT allows you to convert entire files from one character set
to another. The syntax of the command is as follows:
UCONVERT [-d] [-m] source-file dest-file [source CharSet] [dest CharSet]

You can specify a character set as either a code page or a locale. Any character set
shown in Table 30-1 in Chapter 30, Debugging, is valid. You may also specify UNI
to indicate the Unicode character set. Each locale maps to a default character set:

USA maps to code page 437 (specified as 437).
JPN maps to Shift-JIS (specified as X]JIS).
Table 31-5 shows examples of using the UCONVERT utility.

Using UCONVERT

TABLE 31-5

409

4

Command Description

uconvert mytext.doc mytext.unc

Puts a Unicode copy of ASCII document MYTEXT.DOC in the file
MYTEXT.UNC. ASCII-to-Unicode is the default conversion.

uconvert mytext.unc mytext.jis uni xjis Puts a Shift-JIS version of the Unicode document MYTEXT.UNC in the

file MYTEXT.JIS

uconvert -d myfiles.doc myfiles.jis xjis uni ~ Puts a Shift-JIS version of the file MYFILES. TXT containing filenames
in the file MYFILES.JIS. The -d flag is necessary when the input Shift-JIS

file contains filenames.

uconvert letter.jis letter.unc jpn uni
LETTER.UNC.

uconvert -m longfile.437 longfile.unc Puts a copy of the extended ASCII file LONGFILE.437 in the Unicode
file LONGFILE.UNC, converting all CR/LF combinations to the Unicode

line separator character (U+2028).

RTFTRIM

You can use RTFTRIM to convert an RTF document into a form usable by the Help
notebook.

RTFTRIM converts the Japanese RTF form \’xx\)y to uuuu where xx and yy are the
first and second bytes of a Shift-JIS character and wwuu is the Unicode equivalent.

RTFTRIM also introduces a new keyword \UNC that allows you to embed Unicode
characters in a 7-bit RTF file. Just put \UNCxxxx where xxxx is the hex representa-
tion of the Unicode character.

Puts a Unicode copy of the Shift-JIS file LETTERUJIS in the file

4 / DEVELOPMENT TOOLS

410 PENPOINT APPI.ICATION‘ WRITING GUIDE
Part 4 / Development Tools Supplement

This allows you to 3pecify’ GO gesture glyphs in RTF help files. For example, the lit-
eral /UNCF600 represents the Unicode point for the single tap gesture. See the

header file \2_0\PENPOINT\SDK\INC\GLYPH.H for a list of Unicode values for the
GO gesture glyphs: '

% CONTEXT batch file
The CONTEXT batch file, located in \2_0\PENPOINT\SDK\UTIL\DOS, helps you set
up the DOS environment variables required to run PenPoint and compile PenPoint
applications and services. .

Because the batch file accepts 1_01 or2_0 as arguments, it is especially useful if you
need to switch between PenPoint 1.0 and 2.0 development.

After reading the argument that represents the development environment,
CONTEXT.BAT performs the following actions:

- ¢ Sets these environment variables:
o CONTEXT
¢ PEPUX)HQTLJ¥¥TPL(RD_PAIT{,PATPI
¢ INCLUDE
¢« LIB

¢ Adds \2_0\SDK\UTIL\DOS to the end of your PATH.

¢ Creates \PENPOINT and \PENPOINT\BOOT directories in the root of your
current volume (if they don't already exist).

¢ Copies the ENVIRON.INI file from the appropriate \..\PENPOINT\BOOT
directory into \PENPOINT\BOOT in the root.

CONTEXTBAT assumes C: is the source drive. You can change this by reassigning
- the SRC_DRYV variable. '

If you change your path in AUTOEXEC.BAT, reboot your machine. Do not simply
run AUTOEXEC.BAT to get the new path because CONTEXT.BAT sets up an environ-
ment variable that must be cleared if you change your path.

% GO batch file , :
The GO.BAT batch file now takes two optional parameters to specify the locales to
boot with:
go [system locale] [user locale]
When you specify a system locale, PenPoint’s behavior and user interface are
changed to be appropriate to the specified locale (U.S. or Japanese).

When you specify both a system and user locale, the batch file directs PenPoint 2.0
Japanese to change its behavior to match the system locale, but to change its user
interface strings to match the user locale.

CHAPTER 31 / TOOLS AND UTILITIES 41
Other DOS utilities

For example:

+ To boot with Japanese behavior and strings, type the following command:
go Jjpn
¢ To boot with Japanese behavior and English strings, type the following
command:
go jpn usa
When you type GO with no parameters, PenPoint 2.0 Japanese boots in the same
state as it was last booted. If you type GO with no parameters and you are in
DebugTablet mode, PenPoint warm boots. See “Warm booting” on page 399 for
more information. Because the batch file only controls which resource files
PenPoint loads, the stamped application and service names appear in the system
locale language.

GO.BAT relies on LOCALE.BAT to do the locale switch. Both GO.BAT and
LOCALE.BAT require utilities in the \2_0\PENPOINT\SDK\UTIL\DOS directory to
switch locales.

4 / DEVELOPMENT TOOLS

When you specify a locale with GO.BAT (or LOCALE.BAT) the batch file recursively Warning The GO.BAT
deletes your \PENPOINT\SS directory. This deletes any documents that you had and LOCALE.BAT batch files

.~ delete your fenFoint 2.0
saved in your PenPoint file system. Make sure to save the files to your hard drive if Japanese fles when you specify
you need them. locales.

Currently, only two locales are supported: JPN and USA.

% LOCALE batch file

GO.BAT calls LOCALE.BAT to implement the required changes. You can call
LOCALE.BAT yourself if you want to change the configuration without booting
PenPoint. Its syntax is similar to GO.BAT:

locale system locale [user locale]

LOCALE.BAT edits ENVIRON.INI and copies the appropriate MIL.RES file from the
appropriate locale-specific boot directory (\2_0\PENPOINT\BOOT\JPN or \2_0\
PENPOINT\BOOT\USA) to \2_0\PENPOINT\BOOT. If you want to load any of your
applications or services at boot time, remember to specify them in the appropriate
APPINI or SERVICE.INI file. PenPoint 2.0 Japanese uses the initialization files in the
directory corresponding to the user locale.

For example, if you are running the system with Japanese behavior and English
strings, only the services in \2_0\PENPOINT\BOOT\USA\SERVICE.INI are loaded. The
KKC engine is not listed in this SERVICE.INI, so you need to explicitly install this
service if you want to test your application with KKC enabled. Use the Settings -
notebook to install the services.

Do not make the changes that LOCALE.BAT implements unless you are sure your
changes are not destabilizing. The way PenPoint 2.0 Japanese handles locales will
change in the future, so you should let LOCALE.BAT handle the switch.

412

PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

% Bitmap editor
The bitmap editor is in' \2_0\PENPOINT\SDK\APP\BITMAP.

See “Installing applications from any connected disk” on page 389 for details on
how to install the bitmap editor.

Here is the typical procedure for working with bitmaps:

1

8

Create a bitmap using the bitmap editor. See Chapter 16 of PenPoint Develop-
ment Tools for details on how to use the bitmap editor.

If you are creating an icon, define an appropriate hot spot. The hot spot deter-
mines the origin of the bitmap. Make sure your hot spot is defined in a way so
that the icon is clearly visible when it is drawn on-screen.

If you are creating a bitmap other than an application icon, tap on the
Custom Resource Id choice under the Options menu. Set the following
values:

+ Set the Class number to the administered number for your class.
+ Set the Scope value to match the scope of your class.
o Set the Id value to the tag value you use to identify your bitmap in your

header file.

Export the bitmap. If your bitmap is an application icon, select App or Small
App from the Resource Id pop-up menu. Otherwise, select Custom. Note that
bitmaps are exported as resource object (.RES) files.

Create a tag to identify your bitmap with the MakeTag() macro. Typically, this
is done in a header file. Use the Id value you used in step 3.

Create an instance of clslcon or clslconToggle.

Assign the field that identifies a bitmap to the tag you defined in step 5. For
example, set the win.tag field of the ICON_NEW structure or the
iconToggle.offTag of the ICON_TOGGLE_NEW structure to the tag you
defined to identify your bitmap. See below for an example.

Set the control.client field of ICON_NEW to OSThisApp().

The following code comes from the Ul Companion, a sample application in
\2_0\PENPOINT\SDK\SAMPLE\UICOMP. The code shows how the frog icon on the
“Lists” page of the Ul Companion was created and used.

When the bitmap was created, the following values were assigned in the Custom
Resource Id option sheet:

The values used in the option sheets come from the header file UICOMPH:

#define clsUICompApp MakeGlobalWKN (3524, 1)

#define tagIconFrog MakeTag (clsUICompApp, 36)

CHAPTER 31 / TOOLS AND UTILITIES

The code in LISTS.C uses this tag to identify the bitmap when creating an instance

of clslconToggle:
ICON_TOGGLE_NEW itn;
STATUS S;

ObjCallWarn (msgNewDefaults, clsIconToggle, &itn);
itn.iconToggle.offTag tagIconFrog;
itn.iconToggle.onTag = tagIconPrince;

itn.icon.pictureSize.w = iconSizeNormal;
itn.icon.pictureSize.h = iconSizeNormal;
itn.control.client = OSThisApp();

itn.border.style.edge = bsEdgeAll;
ObjCallRet (msgNew, clsIconToggle, &itn, s);

See the in-line comments in UICOMPC for more information on using bitmaps.

% Font editor

The font editor for PenPoint 2.0 Japanese fonts is no longer supported. You should
convert your fonts to bitmaps.

If you have fonts created with the font editor that you believe would be valuable to
a large community of PenPoint programmers, contact GO to negotiate translating
those fonts for use in PenPoint 2.0 Japanese.

Contact GO if you want to see the font specification. With the font specification,
you can create your own fonts.

¥ PenPoint tools

Aside from the DOS utilities, there are a number of PenPoint 2.0 Japanese applica-
tions and accessories to help you create applications and services.

¥ MiniText

You can use MiniText as a Shift-JIS and Unicode editor. MiniText supports Japa-
nese handwriting recognition, KKC, and RKC.

See Chapters 4 and 5 of the Japanese Localization Handbook for more details on
how to use MiniText as a text editor.

% Unicode Browser

The Unicode Browser allows you to find specific characters and put them into the
input stream. It contains all the characters available in the Japanese fonts when
those fonts are installed.

‘The first row of characters in the Unicode Browser consists of Latin characters
(the letters a through z, the numbers 0 through 9, mathematical operators,
accented characters, Cyrillic characters) and special fonts (gestures and other GO
glyphs) installed in PenPoint 2.0 Japanese. The remaining rows of the Unicode
Browser contain kanji radicals.

PenPoint tools

413

4 / DEVELOPMENT TOOLS

414 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

Tap on any character in the top level of the Browser to open a submenu. For non-
kanji (the top row), the submenu contains the characters in the set represented. For
kanji radicals, the submenu contains all characters that use the displayed radical as
their base radical. The size of this submenu varies from radical to radical.

Tap on a character in the submenu to insert the character into the input stream at
the current insertion point. Tap outside the submenu to close the submenu without
any character being selected. If there is no current insertion point, the submenu
closes and nothing happens.

‘% Japanese virtval keyboard
The virtual keyboard is another PenPoint 2.0 Japanese accessory that allows users to
send characters to the text stream. It offers U.S. and Japanese IBM-A01 keyboard

“ modes. Bring up the keyboard and make the check +/ gesture over the title bar to
switch modes. .

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 4 / DEVELOPMENT TOOLS SUPPLEMENT

Chapter 32 / Miscellaneous

This chapter describes miscellaneous topics including:
¢ MIL.INL
¢ ENVIRON.INL
¢ Printing to a spooler.
¢ Long DOS file names.
¢ Changes to QuickHelp.

¢ Corrections to previous documentation.

¥ MIL.INI

The MIL may print out some initial errors before PenPoint 2.0 Japanese boots.
Because PenPoint isn’t running at this time, it hasn’t read ENVIRON.INI to deter-
mine whether to log to a file. To see these pre-boot errors, either use a second
monochrome monitor or use MIL.INI to log to the serial port.

To see low-level output on a second monochrome monitor, set
LowLevelDebug=mono

in MIL.INI. To direct low-level output to a serial port, connect a serial port to
another computer running a telecommunications package and set

LowLevelDebug=coml
SerialDebugPort=1

in MIL.INT.

% Keyboards

The MIL.INI file contains a new variable that allows you to specify what kind of
keyboard you are using. PenPoint 2.0 Japanese supports the following keyboard

types:
& USA 101-key (IBM AT) keyboard.

¢ IBM AO1 Japanese keyboard.
¢ AX Consortium keyboard.
¢ Toshiba 3100 desktop keyboards.
& Toshiba 3100 laptop keyboards.
See MIL.INI for valid values for the Keyboard variable.

The value of Keyboard determines how the keyboard behaves in PenPoint 2.0
Japanese. To change keyboards, you must warm or cold boot. Swap booting does
not change keyboard behavior.

416 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement v

% MonoDebug

The only reason you need to set the MonoDebug variable is if you have a mono-
chrome card, but you nonetheless want PenPoint to use the VGA screen for debug-
ging output.

The description on page 44 in PenPoint Development Tools may be misleading,
because it suggests that you need to set the variable even if you have a VGA card.

P ENVIRON.INI
This section describes changes to ENVIRON.INI since PenPoint 1.0.

% Locale

You can boot PenPoint 2.0 Japanese with a system locale different than its user
locale. For example, you can boot with Japanese behavior and English strings in its
user interface. This configuration helps you use PenPoint and test the Japanese ver-
sion of your product without having to read Japanese.

See “GO batch file” on page 410 for more details on how system and user locales
differ and how to switch locales.

A new variable named Locale has been added to ENVIRON.INI to represent the
system locale. You should not specify a value for Locale yourself. Instead, use the
GO.BAT or LOCALE.BAT batch files to specify locales.

If you specify a user locale while running either GO.BAT or LOCALE.BAT, the batch
files create a variable named LocaleUser in your ENVIRON.INIL. Do not modify this
variable. Instead, call the batch files to specify system and user locales.

PenPoint uses LocaleUser to determine where to search for its initialization files
APPINI, SERVICE.INI, SYSAPPINT, and SYSCOPY.INI. When Locale is USA, PenPoint
uses \2_0\PENPOINT\BOOT\USA to find the required initialization files. When
Locale is JPN, PenPoint uses \2_0\PENPOINT\BOOT\JPN.

% Debugging character set

The DebugCharSet variable in ENVIRON.INI controls the character set of your
debugging output. See “DebugCharSet” on page 398 for more information.

% Shutdown and standby butions
A value of 1 puts the button on

You can put shutdown and standby buttons on the Bookshelf at boot time by the far left side of the Bookshelf

assigning values to two new variables, ShutDownButton and StandByButton. For example, these lines put the

. . ..) shutdown and standby buttons
The values of the variables indicate the position of the buttons in the Bookshelf. o4t o each other on the left

side of the Bookshelf.

% Versions and trademarks ‘ ShutDownButton=1

In PenPoint 1.0, the three variables Version, Trademark, and CommVersion had StandByButton=2

multiline strings, with text items separated by the vertical bar (I) symbol.

CHAPTER 32 / MISCELLANEOUS a7
ENVIRON.INI

In PenPoint 2.0 Japanese, the version and trademark information is represented
with single-part strings. Everything else is stored in a PenPoint resource file.

Version=2.0
Copyright=1992
CommVersion=1991-1992

Note that the Trademark variable has been replaced by the Copyright variable.

If your code depends on the PenPoint 1.0 strings, you must change the code to
reflect the new values and variable name. GO discourages you from writing code
that depends on these strings.

¥ Start application

The variable used to define the default initial application, StartApp, has been
removed from the default ENVIRON.INI. If you want to specify your own initial
application, add a line to ENVIRON.INI defining the StartApp variable.

Its value should be the complete path and file name of the initial application. The
file name must contain only ASCII characters.

%> Autozoom

The Autozoom setting has been removed from ENVIRON.INL It is now stored in
the resource file associated with the Bookshelf application. The resource file con-
tains the name of the document that is to be automatically zoomed.

% BkshelfPath

The BkShelfPath variable identifies the path to the default contents of the
Bookshelf. When PenPoint 2.0 Japanese boots, it copies the contents of this direc-
tory into the Bookshelf.

Uncommenting the BkShelfPath line in by the default ENVIRON.INI causes
PenPoint to load the Help notebook and several sample documents into the main
PenPoint notebook.

This description updatés the description on pages 36 and 37 of the PenPoint
Development Tools. ‘

¥» Debugging flags
Some common debugging flags are set in ENVIRON.INI with the DebugSet
variable. You can set any debugging flag in DebugSet.

¢ /D*1 works only if you run the debug version of PenPoint 2.0 Japanese.
It directs the heap manager to validate heaps after any heap allocations or
deallocations. This validation degrades performance by about 15 percent and
dramatically slows screen layout.

¢ /DD8000 sends a copy of the debugger stream to the file specified in the
Debuglog variable in ENVIRON.INI. See “Viewing the debugger stream” on
page 397 for details.

4 / DEVELOPMENT TOOLS

418 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Develop t Tools Suppl t

P

& /DB800 causes your PenPoint boot volume (the hard drive from which you
booted PenPoint) or RAM (if you specified DebugRAM mode), to appear in
the Connections notebook. Set this flag to copy files between your hard drive
(or RAM) and the PenPoint file system.

Also, page 34 of PenPoint Development Tools says that you should modify

\PENPOINT\BOOT\ENVIRON.INI to enable logging by uncommenting the line
#DebugSet =/D*1 /DD8000

You should make sure the first DebugSet line is commented out:

#DebugSet=/D*1
DebugSet=/DD8000 /DB800 /D*1

PenPoint ignores duplicate lines in initialization files.

% BOOT.DLC

The file BOOT.DLC has moved from \2_0\PENPOINT\BOOT to \2_0\PENPOINT\
BOOT\USA and \2_0\PENPOINT\BOOT\JPN.

Do not put comments in any .DLC files, including BOOT.DLC. Comments some-
times cause PenPoint to fail booting.

Where necessary, the version numbers for DLLs have been changed to 2.0. Com-
pared to the 1.0 version, the 2.0 version of BOOT.DLC loads additional DLLs. The
exact list of additional DLLs varies between locales.

If you have a .DLC file that refers to a PenPoint DLL, you must update the file to use
the DLLs new version number. For example, the Notepaper App sample application
uses NOTEPAPR.DLL. In 1.0, NPAPPDLC contained these lines:

GO-NotePaper-V1(0) notepapr.dll
GO-NOTEPAPER_APP-V1(0) npapp.exe

In PenPoint 2.0 Japanese, NPAPPDLC contains:

GO-NotePaper-V2 (0) notepapr.dll
GO-NOTEPAPER APP-V2(0) npapp.exe

% Interpreting Japanese file names

Japanese names in the initialization files, such as SERVICE.INI and APPINI, have
English translations in the comments above them.

" Repeated lines

Make sure you do not try to set a variable twice. PenPoint uses the first assignment
if you have two lines trying to assign a value to a variable. For example, if your
MIL.INI contains the lines:

ScreenType=Std480
ScreenType=SuperScriptII

PenPoint uses the Std480 screen parameters.

CHAPTER 32 / MISCELLANEOUS
Printing to a spooler

W Printing to a spooler

The PenPoint SDK 2.0 Japanese includes a special printer service called PRSPOOL.
Use PRSPOOL to print PenPoint files to a spool file on a DOS disk. You can later
copy this spool file to a printer. This procedure lets you print a PenPoint document
without a tablet computer and with no printer attached to your PC. Remember that
end-user versions do not support printing to a spooler.

1

@ N o w

10

11

Make sure you load the Out box services. Because printers create sections in
the Out box, you cannot create a printer with Out box support.

Install PRSPOOL by uncommenting its line in SERVICE.INI.

Install a printer driver by uncommenting the appropriate line in your
SERVICE.INI file. Alternatively, install the service by opening the Disk page of
the Connections notebook. Select the Services view, and tap on an Install box
to install service. HP LaserJet printers use the PCL setvice.

Turn to the Printers page of the Connections notebook. Create a new driver
with the caret a gesture. Choose a driver in the pop-up list.

Enter a name for this virtual printer.
Enable the printer by tapping on the Enable box.
Turn to the document you want to print.

Set any special page layout properties (headers, footers, margins, and so on) by
choosing Print Setup in the document menu.

Print the document by tapping on the Print command. You should see the
Out box icon change to full, then eventually return to empty.

Exit from PenPoint and go to the root of your PenPoint directories. The
default root is \2_0 for PenPoint 2.0 Japanese.

The documents you printed will be named PRFILE, PRFILE_1, PRFILE_2, and so
on in your root PenPoint directory. Print these from DOS by copying them to
a port. For example, this line sends the file to the printer attached to LPT1:
copy PRFILE LPT1: /b :
The /B flag tells DOS to use binary mode, which prevents DOS from interpret-
ing print driver control characters as end of file markers.

If you print many documents, your PenPoint directory information may get out of
sync. You may want to clean up your directory with a batch file like this:

Delete any spooler files

del \PRFILE*.*

Clean out redundant entries in PENPOINT.DIR
psync /B /D \ /V

The arguments to PSYNC direct the utility to creates a backup PENPOINT.BAK file
and lets you know what files are being cleaned up.

419

4 / DEVELOPMENTY TOOLS

420

4

PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

Long DOS file names

The PenPoint document model creates a directory for each file. Each embedded
document is contained in a separate subdirectory within the directory that contains
the parent document. This recursive structure could create DOS file names longer
than the maximum of 64 characters.

See “Using short DOS path and file names” on page 391 for strategles on creating
distribution disks without violating this 64-character limit.

Do not use CHKDSK /F

Do not use the DOS utility CHKDSK with the /F flag if your PenPoint file system
contains DOS path names longer than 64 characters.

The DOS utility CHKDSK skips all the files whose path names are longer than

64 characters and marks the clusters used by those as lost. Running CHKDSK with
the /F flag will free those erroneously marked clusters, thereby corrupting your file
system. '

PenPoint returns stsFSVolCorrupt when it tries to read this file system. Even worse,
you may lose data before secing this warning from PenPoint if those incorrectly
freed clusters are allocated and used by other files.

You can use CHKDSK without any parameters to check for path names that are too
long. To navigate to those files, you need a DOS utility to shorten the path names
through renaming.

For example, say you have the following path name on a disk:
B:\2_0\PENPOINT\APP\MY APP\STATNRY\MY APP Q\NOTEBOOK\ . . . \DOC.RES

Running CHKDSK on B: yields the following output:

c:\>chkdsk b:
Errors found, F parameter not specified
Corrections will not be written to disk
1 lost allocation units found in 1 chains.
512 bytes disk space would be freed
1457664 bytes total disk space
4096 bytes in 8 directories
1453056 bytes available on disk
512 bytes in each allocation unit
2847 total allocation units on disk
2838 available allocation units on disk
655360 total bytes memory
473856 bytes free

Running CHKDSK /F instead of CHKDSK would have erroneously freed the single
allocation unit reported above.

CHAPTER 32 / MISCELLANEOUS 421
Changes to QuickHelp

W Changes to QuickHelp

In PenPoint 1.0, you specified special characters like the GO gesture glyphs by
changing the font to Symbol, and using the /F63 keyword.

In PenPoint 2.0 Japanese, you can specify a Unicode character representing the spe-
cial character by using the \xhbhh where hhhh is a 4-digit hexadecimal Unicode
value. GO has placed its gesture fonts in the Unicode corporate zone from 0xF6600
to 0xF700. The letter gestures share the same code as the corresponding letter, so
the codes are scattered between 0x0041 and 0x005A. Look in the header file
GLYPH.H for exact code assignments.

The keyword /F63 is no longer recognized in PenPoint 2.0 Japanese.

¥ Working with different locales

You can boot PenPoint with different user and system locales as described in “GO

batch file” on page 410.

Only you as a developer can take advantage of this locale switching behavior. GO
will never ship an end-user system that supports mixed locales. Consequently,
always do your final user testing with the same system and user locales.

Here are a few other things to note when you boot with a USA user locale:

¢ To enable kana-kanji conversion or romaji-kana conversion, you must install
the KKC engine. You can install the engine turning to the Installed Software
page of the Settings notebook, and tapping on the Install menu. The KKC
engine icon has Japanese characters that say VACS VJE. To load the engine
at boot time, add the KKC engine name to \2_0\PENPOINT\BOOT\USA\
SERVICE.INI. Copy and paste the name from \2_0\PENPOINT\BOOT\JPN\
SERVICE.INI

¢ To enable Japanese handwriting recognition, you must install the Japanese
handwriting recognition engine.

4 / DEVELOPMENT TOOLS

422 PENPOINT APPLICATION WRITING GUIDE
Part 4 / Development Tools Supplement

W Corrections to previous documentation

PenPoint Development Tools errata TABLE 32-1
Page and section Old text followed by correction
Page 25, line 3 The simulation is imperfect {no static RAM, no pen-on-screen interaction, and so on)
The simulation is imperfect (for example, no pen-on-screen interaction)
Page 36 Specifies the when to flush the debug log to 2 file.
Line 6 of Table 3-5 Specifies when to flush the debug log to a file.
Page 43, paragraph 1 Repeats next to last paragraph of previous page. Disregard it.
Page 54 The section on “Volume Selection” belongs on page 37.
Page 60, paragraph 2 Use the UniPenPort tag in MIL.INI to select a predefined protocol.
Use the UniPenType tag in MIL.INI to select a predefined protocol.
Page 61 You will probable have to “tune” these...for the specific characteristics of your digitizer.
Line 2 You will probably have to “tune” these...for the specific characteristics of your digitizer.
Page 61, The digitizing resolution of the AceCat5by5 and the MM are listed as 19,500. That should
Section 3.18.2.1 be corrected to 19,685.
Page 61 The tags are UNIPENCOMPORT'...UNIPENPROTOCOL, UNIPENPROTOCOL
Section 3.18.2 The tags are UNIPENCOMPORT...UNIPENYPROTOCOL, UNIPENPROTOCOL.
Page 146 Typing ? displays the available mini-debugger commands.
Section 12.2 Typing h displays the avajlable mini-debugger commands.
Page 162 Part 6: File System in the PenPoint Architectural Reference, explains file system. ..

Section 14.1 Part 7: File System in the PenPoint Architectural Reference, explains file system...

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

Part 5/
PenPoint
Architectural Reference

Supplement

4

427

428

433
433

434

4

435

437

438

441

441

442

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 33 / Overview

About this supplement
Intended audience
Document structure

PenPoint 2.0 Japanese
Fundamental changes

New sample code

General code and API changes

Chapter 34 / Class Manager
What's new

Tips and clarifications
Using keys

Don’t use msgScavenged
Posting msgDestroy

Corrections and errata
ObjectSend()

app Version and minApp Version
Change in title

Typographical errors

Chapter 35 / Application Framework

‘What's new

Document recovery message
Initialization DLL

New and obsolete tags

Tips and clarifications

Unimplemented flag for msgPrintGetProtocol
Printed document and msgSave

Class defaults for clsAppMonitor subclasses
Page sequencing and msgAppMgrCreate

Corrections and errata

msgSave

Reactivating a document

Getting attributes for many application directories
Terminating a Document

Handling msgAppTerminate

Typographical errors

Chapter 36 / Windows and Graphics

What's new
PANOSE typeface matching
Unicode values for gestures and system Ul

Tips and clarifications

Filing window resources

Receiving msgWinVisibilityChanged
Windows and WKNs

Corrections and errata
The current grafic
Repaint

Using a bitmap
Typographical errors

4

445

447

448

451

460

460

463

465

4

Chapter 37 / Ul Toolkit

What's new

UI components with built-in KKC translation
Text highlighting and “dirtying”

Standard strings

clsKbdFrame

Acetate Layout and Markup classes

Tips and clarifications

clsBorder tracks on pen down

Progress bars

XList handlers must handle msgGWinGesture
Field change

Bug in clsLabel

Bug in clsToggleTable

Corrections and errata

UI Toolkit programming details
Incorrect table reference
Providing custom backgrounds
Typographical errors

Chapter 38 / Input and Handwriting
Recognition

What’s new

Kana-kanji conversion class

The character translator classes
Return of translation alternatives
Handwriting changes

Letter practice removed

Changed and obsolete gesture names

Tips and clarifications
clsAnimSPaper metrics
Transparent input

Corrections and errata
Adding a filter
Typographical errors

Chapter 39 / Text

What’s new

Gesture targeting

Font substitution algorithm
Hankaku/zenkaku implementation

Unicode import type

No white space correction in Japanese version
Taboo and bunsetsu rules

Using msgTextModify

Corrections and errata

Typographical errors
Chapter 40 / The File System

467 What’s new

Stamped file system attributes

468

468

Vv

471

474

479

480

482

483

492

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Tips and clarifications
Open handles on files

msgFSSetSize does not reposition file pointer

StdioStreamUnbind
Memory mapped file problem

Corrections and errata
Locators

Iseek() and msgFSSeek
Typographical errors

Chapter 41 / System Services

‘What's new

String composition functions

Getting the current locale
Multibyte/Unicode conversion routines

Corrections and errata

Ugetc and Uungete bugs

Renaming of 16-bit utility functions
ecvt and fevt

HASH.H

SYSTEM.H

OSMemInfo, OSMemUselnfo, OSMemAvailable

Typographical errors

Chapter 42 / Utility Classes

What’s New

Matching hiragana or katakana text
Adding gestures to Quick Help strings
clsNotePaper changes

Tips and clarifications

Cannot intercept export messages
msglmportQuery can arrive twice

New stream disconnected status

clsTable Bug

Known bugs in the NotePaper component

Corrections and errata

Getting the current selection

Classes that respond to search messages
Reading and writing streams

Using the PenPoint gesture font

Chapter 43 / Connectivity

What'’s new

Finding, binding to, and opening a modem
Initialization

Establishing a connection (outbound)
Wiaiting for a connection (inbound)
Transmitting and receiving data
Terminating the modem service

clsModem messages

Corrections and errata

Reading and writing with the serial port
Predefined service managers
Typographical errors

W Chapter 44 / Resources

495 What's new
Resource file utility routines
New system preferences
New resource group
New and renamed string resource agents

496 Tips and clarifications
msgResWriteData does not copy pData
Saving bitmap editor resources

497 Corrections and errata

Typographical errors

P Chapter 45 / Installation API

499 What's new
KKC engine installation

500 Tips and clarifications
Other installation information

500 Corrections and errata
Installation clarifications for production PenPoint
Erroneous Directory
Dynamic Link Libraries

7 Chapter 46 / Writing PenPoint Services
503 What’s new

503 Tips and clarifications
MIL services and other services
theServiceManagers
Responding to msgTrackProvideMetrics
Deinstalling dependent services and applications

505 Corrections and errata
The Service Class and class instances
Handling msgSvcOpenDefaultsRequested
In box and Out box changes

P Chapter 47 / International Services
and Routines

507 International and related header files

508 .International routines
Delimiting and hyphenation routines
Time conversion routines
Formatting routines
Parsing routines
Collation routines
String conversion routines
Character set conversion routines
String compression routines
Units conversion routine

512 Character conversion and testing macros
Character flags
External tables

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 33 / Overview

This document provides material that supplements the PenPoint Architectural We sometimes use the names

Reference manual published for version 1.0 of the PenPoint Software Developers FenFoint 2.0" and “Fenfoint

. SDK 2.0 in this document.

Kit (SDK). It describes architectural concepts and API definitions and procedures Because this release of

that are new with both PenPoint SDK 1.0 and PenPoint SDK 2.0 Japanese. It also PenPoint has been localized only
; ; : to Japan, these terms refer to

offers programming tips, suggests workarounds for known bugs, clarifies some the Penoint 2.0 Japaness

concepts and procedures, and amends conceptual, procedural, and typographical operating system and the

errors found in the earlier manuals. FenPoint SDK 2.0 Japarnese.

W About this supplement

% Intended audience

This book is intended for PenPoint application developers who are familiar with
the two-volume PenPoint Architectural Reference or who have access to it. Ideally,
you should read the Supplement with the earlier volumes at hand. This manual
makes frequent references to these manuals, particularly when it corrects or clarifies
them.

If you do not have copies of the version 1.0 manuals, you can still learn much that
is useful and interesting to PenPoint application developers from this document,
particularly the material new to PenPoint SDK 2.0 Japanese. But to get the full value
of the information presented in the following pages, you should treat the
Supplement as a companion document to its predecessors.

P Document structure

The structure of Part 4: PenPoint Architectural Reference Supplement is simple. Each
chapter after this Overview chapter is mapped to a part of the earlier PenPoint
Architectural Reference. Thus Chapter 28 is entitled “The Class Manager,” the same
title as Part 1 of the earlier document; Chapter 29 is entitled “The Application
Framework,” and so on. The last chapter, “International Routines and Services,”
covers functionality entirely new to PenPoint 2.0 so it has no counterpart in the
version 1.0 manuals.

Within each chapter there are up to three major sections. The first section, “What's
New,” describes concepts and defines interfaces and functions that are new since
the PenPoint 1.0 SDK. “Tips and Clarifications,” the second section, gives some
suggestions on programming and clarifies areas that might have caused confusion.
The final section, “Corrections and Errata,” catalogs typographical errors and
amends sections in the earlier manuals that were inaccurate.

428 PENPOINT APPLICATION WRITING GVUIDE
Part 5 / Architectural Reference Supplement

¥ PenPoint 2.0 Japanese

% Fundamental changes

The major difference between PenPoint 2.0 Japanese and earlier versions is that
PenPoint 2.0 Japanese contains general modifications to support languages other
than English and specific modifications to support the Japanese language. This
support required three major changes:

¢ PenPoint expects strings to consist of 16-bit characters.
¢ Most text strings for display have been moved to resource files.
¢ Gestures are now Unicode values.

The following sections expand briefly on these changes. For a full description of
these changes, please see the Part 2: PenPoint Internationalization Handbook.

PenPoint 2.0 Japanese supports only American English and Japanese. However, the
modifications present in PenPoint 2.0 SDK Japanese provide most of the features
necessary for supporting other languages in the future.

%¥ 16-bit characters

Almost all strings in PenPoint 2.0 are represented by 16-bit characters, using the
Unicode standard encoding. This global modification implies a number of other
changes. For example, the CHAR type is 16 bits wide and all the U...() string func-
tions of the standard C library expect 16-bit characters.

% Text strings moved to resource files

Most text strings displayed in PenPoint 2.0 Japanese have been moved to resource
files. There are currently two versions of each resource file in the PenPoint operating
system; the file USA.RES contains American English strings; the file JPN.RES con-
tains Japanese strings.

The resource files that PenPoint uses are determined by the setting of the Locale
and LocaleUser environment variables in ENVIRON.INL. See Part 4: PenPoint
Development Tools Supplement for more information on these variables.

While we have worked to ensure that all strings have been moved to resource files
and translated to Japanese, a small number of strings might have escaped our
notice. If you find one of these strings in the Japanese version, please notify GO
Developer Technical Support.

CHAPTER 33 / OVERVIEW 429
PenPoint 2.0 Japanese
% Gestures are now Unicode values

Earlier versions of PenPoint encoded gestures as 32-bit IDs. In PenPoint 2.0
Japanese, gestures are encoded as 16-bit Unicode values. Unicode values further
separate the character used for a gesture and its meaning.

If you use gestures, you must change the ID for each gesture to the Unicode for
that gesture. The Unicode values for gestures and standard User Interface (UI) icons
and symbols are in GLYPH.H.

’% New sample code

The PenPoint SDK 2.0 Japanese includes four new sample applications:

¢ Keisen Table Application (Japanese only), project name KEISEN

¢ Serial /0 Demo, project name SXDEMO

¢ Video Player, project name VIDPLAY

¢ UI Companion, project name UICOMP
Additionally, two samples that were previously released via CompuServe (LBDEMO
and SAMPLMON) are now part of the sample code in the PenPoint SDK 2.0
Japanese.
There are also a number of changes to the 1.0 and 1.0.1 SDK samples. Most of
them (with the exceptions of EMPTYAPR, HELLO, HELLOTK, BASICSVC and
MILSVC) have had their text strings moved to resource files. (All of them have been

ported, obviously.) All of the eatlier sample code has also been updated to use the
Bridging Package; the sample code runs under both the 1.0 and 2.0 Japanese SDKs.

% General code and API changes

%v Library changes
PenPoint 2.0 Japanese contains a new library, INTL.LIB, which contains many of the
functions that you use to store Unicode strings and to get information pertaining to
the current locale.

Please see the documents shipped with the WATCOM compiler for changes in the
PENPOINT.LIB file.

The library BRIDGE.LIB is empty in the PenPoint SDK 2.0 Japanese but is provided
for makefile compatibility when using the Bridging Package. The Bridging Package
allows you to compile your applications under both PenPoint 1.0 and PenPoint 2.0
Japanese. See the PenPoint Bridging Handbook for details.

5 / ARCHITECTURAL REFERENCE

430

PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

%» New header files

The header files listed in Table 33-1 have been added to PenPoint SDK 2.0 Japa-
nese. Descriptions of these files’ contents occur in the appropriate chapter of this

document.

New header files

TABLE 33-1

File
GLYPH.H
KKC.H
PANOSE.H

STDSTR.H
ISR.H
ISRSTYLE.H
INTL.H
ALAYOUT
GOLOCALE.H
CHARTYPE.H
CHARTR.H
BRIDGE.H

KKCCTH

Contents
Unicode values for PenPoint glyphs and gestures.
Definitions for cIsKKC, the class that communicates with the kana-kanji conversion service.

The API for the PANOSE™ Typeface Matching System.
(PANOSE is a trademark of ElseWare Corporation, Seattle, Washington.)

Tags for UI Toolkit strings.

Header for international routines in INTL.LIB.

Definitions for styles used by routines in ISR.H (included by ISR.H).

Macros for building and manipulating locale values; also the U_L() macro.
Definitions for clsAcetateLayout, a descendent of clsNotePaper, used for layout.
Definitions for locale-related constants used by the ISR routines. Replaces LOCALE.H
Definitions for character types and macros for international character manipulations.
Definitions for clsCharTranslator, the character translator abstract class.

Definitions that allow developers to maintain the same source code for both 1.0 and 2.0
Japanese SDKs.

Definitions for cIsKKCCharTranslator, the character kana-kanji translator class.

%¥ Changes for resource files and tags

The following table lists the header files that have been changed to support resource

files and tags.

Header files changed for resource strings

TABLE 33-2

File Nome

APPTAG.H

APPWIN.H
BATTERY.H
CBWIN.H
GOTO.H
HWGEST.H
HWLETTER.H
ICONWIN.H
POWERULH
PREFS.H
QHELPH
RCAPPH
SYSTEM.H

Change .

All Standard Application Menus (SAMs), all standard option card titles, default document name,
company, copyright for 16-bit filename and classname, used in building app dir. obsolete:
tagAppMgrDefaultDocName, tagAppMgrDisplayedAppName.

Icon win Quick Help. Articles, miscellaneous strings, and errors.
Errors, warnings, and toolkit strings.

Cork board window Quick Help.

Reference button Quick Help and miscellaneous strings.
Toolkit string and gesture names.

Miscellaneous strings.

Icon window layout option card title string.

Power button string.

Toolkit and miscellaneous strings.

Quick Help, toolkit and miscellaneous strings.

Root container application name and document name.

Warnings.

%» Name changes of data elements

CHAPTER 33 / OVERVIEW
PenPoint 2.0 Japanese

Table 33-3 presents some of the major name changes of data structures, constants,
and variables since version 1.0 of PenPoint. As you can see from scanning the table,
many of these name changes reflect the transition to Unicode. This list is 7oz com-
prehensive; for instance, name changes of enumerated and defined values are not

431

included.

Some data name changes TABLE 33-3

Header file Data type Old name New name

VOLGODIR.H typedef LV_NATIVE_NAME LV_NATIVE_FS_NAME

XFER.H S typedef XFER_ASCII_METRIC XFER_STRING_METRIC
tag xferASCIIMetrics xferStringMetrics

SENDSERV.H typedef ADDR_BOOK_ATTR SEND_SERV_ATTR

STDIO.H constant _ERR _SFERR

TXDATA.H typedef BYTE_INDEX TEXT_INDEX

XLIST.H typedef X2GESTURE GWIN_GESTURE

XSHAPE.H typedef XS_ASCII_MATCH XS_LATIN1_MATCH
(see names) U32 gestureld CHARI6 gestureld
typedef XS_ASCII_MATCH XS_TEXT_MATCH
array asciiMatch[xsMaxCharList] textMatch[xsMaxCharList]
U16 matchArraySize matchArrayLength

5 / ARCHITECTURAL REFERENCE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 34 / Class Manager

» What’s new

The Class Manager contains no new AP, functions, or other features.

W Tips and clarifications

% Using keys
Readers should read Section 2.7 of the PenPoint Architectural Reference with the
following caveat in mind: you must use unique constants for keys on classes created
by distributed DLLs. The keys must be kept private, or others may be able to
subvert or delete these classes. Particularly, do not use ObjWknKey as the key.

Many applications use a function pointer or pointer to a method table as a key
when creating a class. This will cause a problem if the class is replaced or upgraded;
the new key won’t match the old one, so class creation by the new DLL fails. The
problem typically surfaces in distributed DLLs, because two versions of one can be
running at the same time. It does not cause a problem when upgrading applica-
tions, because old and new versions of the application do not co-exist.

% Don’t use msgScavenged

msgScavenged is an obsolete message. It is never sent by the Class Manager, and its
message number is the same as msgFreeSubtask.

Don’t send or respond to this message. If you see msgScavenged in any debugging
output, the actual message sent was probably msgFreeSubtask.

% Posting msgDestroy

You can use ObjectPost to deliver messages at a later time, which is usually under-
stood to be when the handling of the current message is complete. If, however, a
system modal note is displayed during the execution thread of a message handler,
all messages that are currently in the input queue are delivered. Thus a posted mes-
sage is delivered before the current execution thread is unwound, and this case
causes severe problems if the posted message is a destructive message, particularly
msgDestroy.

PenPoint guarantees that a posted msgDestroy will not be delivered until the cur-

rent execution thread has unwound from the current method handler. If you have

code or logic that depends on a posted msgDestroy getting through while a system
modal note is up, you will need to rethink your logic.

You should also carefully think about any other destructive messages you post
which may get delivered before you unwind from the current execution thread.

434 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

W Corrections and errata

% ObjectSend()
Section 2.5.1 in PenPoint Architectural Reference contains the paragraph:

When you send a message with ObjectSend(), your code’s task is suspended
while waiting for the message handler to return. Your task resumes operation
when the message handler returns.

These statements are not quite accurate. When you send a message with
ObjectSend(), it is true that the sending task waits for a return status. However, it
can still handle incoming messages while it is waiting. After it sends a message,
ObjectSend() responds to any one of the following events:

¢ The return status from the called object, after which the calling task continues
to the next line.

¢ A task-terminated indication, upon which the task continues to the next line.

¢ Any incoming ObjectSend() messages for objects owned by the tasks, which
the waiting ObjectSend() dispatches. Specifically, the task’s flow of control
jumps to the method that handles the incoming message, returns a status, and
resumes waiting for one of the three events.

% appVersion and minAppVersion

The fields appVersion in OB]_RESTORE and minApp Version in OBJ_SAVE are
incorrectly documented in the file CLSMGR.H. These 16-bit fields are no longer
used by PenPoint and should not be used by your code.

% Change in title
Rename the title of section 4.4.5 of the PenPoint Architectural Reference from
“Getting a Class’s Class,” to “Getting a Class’s Ancestor.”

% Typographical errors

Part 1 (Class Manager)—typos TABLE 34-1
Volume, section, paragraph Old text on first fine

New fext on second line
I, Preface, vii Code example: pInst->>placeHolder = -1L

Code example: pInst->placeHolder = -1L
I,2.4,92 Code example (twice): if (s stsOK)

- Code example (twice): if (s < stsOK)

I,4.3.1,92 The message taks a pointer to an OBJ_NOTIFY_OBSERVERS structure...

The message takes a pointer to an OBJ_NOTIFY_OBSERVERS structure...
1,4.6.3,92 An object must be in prepared to handle msgDestroy...

An object must be prepared to handle msgDestroy...

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 35 / Application Framework

V What’s new

¥» Document recovery message

The Application Framework includes a new clsApp message that enables your This section applies to clsApp.
application to respond appropriately when its resource file is corrupted. The mes-

sage is msgAppRecover; its pArgs argument points to the handle (DIR_HANDLE) of

the resource file and returns STATUS.

When msgAppRestore fails, the application object self-sends msgApplnit.
Respond to this message as you would when creating a document (initialize your
instance data). clsApp then sends msgAppRecover to its descendants so that they
can modify their instance data. It passes in the handle (DIR_HANDLE) to the
resource file; if this handle is set to objNull, then the resource-file object was not
found or was damaged.

clsApp descendants should respond to msgAppRecover by doing something to

handle the error condition:

They can reset their instance data to a state different than that of a just-created
document.

If they are passed a handle to the resource file, they can salvage as much data as

they can. (Make sure that the handle is a valid object, and not objNull.)

¢ They can determine the cause of the error and display a message that is more
informative than the standard PenPoint error message.

¢ They can simply return stsOK. By doing this, the data is lost, but the docu-
ment can be re-opened without losing any embedded documents.

If descendents choose not to handle msgAppRecover, PenPoint displays a standard
error message and does not recover the document. If this happens, the document
cannot be re-opened and all embedded documents are lost.

% Initialization DLL

To conserve memory, you can include an initialization DLL in your application’s This section applies to
installation procedure. An initialization DLL typically contains code that your clsAppMon.
application needs to execute only once, such as code that creates UI components.

When installation occurs, the application monitor installs the initialization DLL in
the loader database, runs it once and then deinstalls the DLL code before it installs
the application code. The objects created by the DLL code are saved to a resource
file before the installation of the application.

436

PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

To use an initialization DLL in you application’s installation, complete the proce-
dure outlined here. The examples presented are from the Ul Companion sample
code (UICOMP):

i

In the application project directory, create a DLL source file named INIT.C.
The entry point must be InitMain, not DLLMain. The code should perform
some once-only initializations, such as building the application’s UI compo-
nents. In the application’s MAKEFILE, you can link the INIT.C file to existing
source files (see item 4, below).

Create a file called INITLBC and in it list all exported functions defined in the
initialization DLL. In most cases, the only exported function is InitMain. Fach
line in the file has the form:
++entry-point.’' company ID-project-major version(minor version)’
Thus the sole entry in the UICOMP example of INIT.LBC is:
++InitMain.’GO-UICOMP-V1(0)’

Create a file that has the project name and an extension of .DLC (for example,
UICOMPDLC). This file expresses the dependencies between an application’s
executable file and that application’s DLLs. Each line of the file pairs the name
for a PenPoint executable or DLL with the DOS path to the corresponding exe-
cutable or DLL file (relative to the application directory in \PENPOINT\APP).
When PenPoint loads an application, it reads the .DLC file to determine which
DLL files to load before it installs the application. The UICOMPDLC file, for
example, has these two lines:

GO-UICOMP DLL-V1(0) uicomp.dll

GO-UICOMP_EXE-V1(0) uicomp.exe
Finally, include several lines in the application’s MAKEFILE to specify the linker
name, object files and libraries for the initialization DLL. The following
example from UICOMP is typical:

INIT LNAME = GO-UICOMP DLL-V1(0)
INIT OBJS = init.obj buttons.obj lists.obj menus.obj
INIT _LIBS = penpoint resfile

o

When you build the initialization DLL, the resulting DLL file (such as UICOMPDLL)
is placed in the same location as the application’s executable. This is the default ini-
tialization DLL file. When installation begins, msgAMLoadInitDIl is sent to the
application monitor, which then looks in the application directory for the initializa-

tion DLL file. If you subclass clsAppMonitor, we recommend that your subclass not
respond to msgAMLoadInitDIL

% New and obsolete tags

New tags defined in APPTAG.H allow application writers to define the following text
strings in a resource file:

tagAppMgrAppDefaultDocName The default document name for the
application. This appears in the Create menu and the Stationery note-
book. If one is not assigned by the application, the tagAppMgrApp-

Filename string is used.

<

CHAPTER 35 / APPLICATION FRAMEWORK
Tips and clarifications

tagAppMgrAppCompany The name of the company creating the
application.

tagAppMgrAppCopyright The copyright date information for the applica-
tion. The Unicode code point \x00A9 can be used for the copyright sym-
bol in the string. (This is defined in GLYPH.H, but must be literally
included in the string.)

tagAppMgrAppFilename The name of the application or service. This
appears in the Settings notebook and Installation time of the application.
This is also the stamped name of the application when it is built. It is also
the name that is entered in the APPINI file.

tagAppMgrAppClassName The type of executable being created: Applica-

tion, Service, and so on.

The resource that contains these strings is resAppMgrAppStrings. Two Application
Framework tags are now obsolete: tagAppMgrDefaultDocName and tagAppMgr-
DisplayedAppName.

W Tips and clarifications

% Unimplemented flag for msgPrintGetProtocol

Do not set the paginationMethod flag to prPaginationScale (PRINT_PROTOCOLS)
when you send msgPrintGetProtocol. Pagination scale is not implemented and
using it can block printing,

% Printed document and msgSave

Developers should be aware that their documents, when activated by the print
wrapper, receive a msgSave before msgAppOpen. This order, of course, is the
reverse for a screen document. In summary, a printed document receives msglnit,
msgRestore, msgSave and msgAppOpen, in that order.

% Class defaults for clsAppMonitor subclasses

When you create a subclass of clsAppMonitor, set the following CLASS_NEW fields
after sending msgNewDefaults to clsClass:
new.cls.pMsg Assign to this field a pointer to the method table for your
subclass.
new.cls.size Set this to the size of your class instance data. This data is usu-
ally defined in some structure such as MY_INST_DATA. In this case, assign
SizeOf(MY_INST_DATA) to the size field.
new.cls.ancestor Set this to the class from which you want your class to
inherit its behavior: clsAppMon.

Note The Fenfoint
Architectural Reference
does not specifically
mention this flag.

437

ARCHITECTURAL REFERENCE

[

438 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

new.cls.newArgsSize Set this field to the size of the structure that the
msgNewDefaults and msgNew messages for class instantiation take as an
argument. For some developers who have tried to subclass clsAppMon,
this field has caused some confusion. This class has no _NEW_ONLY struc-
ture of its own and so no lamination takes place. When this situation
occurs, you must provide the size of the ancestor class’s newArgs structure.
clsAppMon’s ancestor is clsApp, so you assign Sizeof(APP_NEW) to
newArgsSize.

For most subclasses that you create, you may recall, you send msgNewDefaults and
msgNew to clsClass. But when you create subclasses of clsAppMon and other
application classes, send these messages to the application superclass clsAppMgr.

% Page sequencing and msgAppMgrCreate

When you create a new document with msgAppMgrCreate, set the sequence field
(APP_MSG_CRFATE) to a sequential number, with the parent application being 0.
Thus, if you want your document to be the first thing in the parent application, set
sequence to 1. Page numbers are global sequence numbers and not attributes.
PenPoint 2.0 Japanese keeps track of the number of children of a document, and
can compute page numbers from that.

By the way, always set the renumber field to TRUE unless you are going to create
another document with msgAppMgrCreate immediately afterward.

7 Corrections and errata

P> msgSave

Item 2 of the numbered list in section 8.2.5.2 of the PenPoint Architectural
Reference, says that “clsApp sends msgResWriteObject to the resource file handle
with the document’s main window as the object.” This is incorrect. clsApp sends
msgResPutObject to the resource file handle.

% Reactivating a document

Item 5 of the numbered list in section 8.2.6 of the PenPoint Architectural Reference
(clsApp sending msgResReadObject to the resource file handle) is redundant and
should be deleted.

% Getting attributes for many application directories

Section 16.6 of the PenPoint Architectural Reference contains a few inaccuracies.
First, you should not use msgAppDirGetNextInit in obtaining the attributes of
document directories. Instead, use msgAppDirGetNext only.

You cannot specify a starting point in pFirst. PenPoint 2.0 Japanese sets and resets
this member (and pNext) internally, regardless of what you assign to them. Instead,
assign zero to the handle member and complete attrs, pName, and fsFlags as speci-
fied. After the last iteration through an application directory, msgAppDirGetNext
returns pNull in pNext. Send the message once before going into the while loop

CHAPTER 35 / APPLICATION FRAMEWORK 439
Corrections and errata

because on the first iteration pNext is pNull. When it completes, msgAppDirGet-
Next returns stsOK if a directory is found and stsNoMatch if none is found.

In addition to the foregoing errors, the section states that “you must send
msgAppDirGetNextlnit to clsAppDir.” Instead, you send msgAppDirGetNextInit
and msgAppDirGetNext to an instance of clsAppDir.

»% Terminating a document

Sections 8.2.5 and 8.2.5.1 of the PenPoint Architectural Reference contain a few
errors in the actual order of messages that occur when a user closes a document.
The Notebook does not terminate a document by sending it msgFree. Also, the
first few sentences of 8.2.5.1 give the impression that, after an application frees its
objects, it calls its ancestor (clsApp), which sends msgAppSave to save these just-
freed objects.

When a user closes a document, the following exchange of messages occur up to the
point at which the document (application instance) itself receives msgFree:

1 The Notebook sends msgApp Terminate to the document; the document does
not handle this message, but lets it percolate up to clsApp.

2 If msgAppTerminate is sent with pArgs of TRUE, clsApp self-sends
msgFreeOK; if the document doesn’t respond to this message, stsOK is
assumed.

3 If the document responds positively (OK to free), clsApp self-sends
msgAppSave. Descendents do not usually handle msgAppSave.

4 clsApp then self-sends msgDestroy.
5 Asaresult, the document receives msgSave and then msgFree.

The descriptions in section 8.2.5.1 from the third sentence to the end of the section
are correct.

% Handling msgAppTerminate
Section (13.4.1.2) of the PenPoint Architectural Reference can be deleted. msgApp-

Terminate is no longer sent to application monitors.

% Typographical errors
Part 2 (Application Framework)—typos TABLE 35-1

Volume, section, paragraph Old text on first line
New text on second line

I,7.4, 911 Resourcet files.

Resource files.

5 / ARCHITECTURAL REFERENCE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 36 / Windows and Graphics

V What's new

¥ PANOSE typeface matching

Clients using the font API (see section 26.12 in the PenPoint Architectural Reference)
can now access GO’s implementation of the PANOSE™ Typeface Matching System.
The PANOSE system defines certain values for typographical attributes in various
scripts, or writing systems (GO currently supports only Latin characters and kanji).
These attributes include genre (display text, decorative, symbols, and so on),
weight, monospace, contrast, ratio, slant, tool type, stroke type, and so on.

Developers of text-processing applications might find the PANOSE API useful. They
must specify the required PANOSE values in structure PANOSE_MEM in a nibble
format (two values per byte). A set of macros is provided for inserting and
extracting these values. Two utility functions, PanoseToXDR and PanoseFromXDR
enable the conversion of PANOSE numbers to and from their XDR representations,
something you must do before filing away the numbers and reading them back in
to your application.(XDR stands for eXternal Data Representation.)

When you have built your PANOSE_MEM structure, insert it into the structure
SYSDC_FONT_DESC. Then pass a pointer to SYSDC_FONT_DESC when sending
msgDCGetFontDesc and msgDCSetFontDesc. This causes msgDCGetFontDesc
to fetch the DC’s current font state and msgDCSetFontDesc to set the drawing
context’s current font state. These messages replace msgDCOpenFont.

The API definitions of the PANOSE structures, functions, macros, and definitions
are in PANOSE.H. The API definitions of the drawing-context messages are in
SYSGRAEH. The definition of SYSDC_FONT_DESC is in SYSFONT.H.

% Unicode values for gestures and system Ul

The file GLYPH.H contains the Unicode values for the standard gestures and for
common Ul icons, symbols and other graphics.

¥ Tips and clarifications

% Filing window resources

If you file a window with msgResPutObject, that window must not have
wsFilelnline set in its style flags.

This is likely to concern you if you allow windows and components (such as refer-
ence buttons) to be embedded in your view and you also file those objects yourself.
This is because the view files the objects too, and if wsFilelnline is set, then you'll
end up with two copies when you restore them.

442 . PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

The solution is that whenever you deal with a embedded window being added
(normally in your response to msgWinlInsertOK), make sure that the wsFileInline
bit is turned off and the wsSendFile bit is set the way you want (usually on).

P> Receiving msgWinVisibilityChanged
msgWinVisibilityChanged is sent only when a window’s wsVisible flag changed.
When the window is extracted, msgWinIsVisible will return true, but the flag will
not be changed unless you explicitly change it.

The comments for the message in WIN.H are not correct, because they imply that it
will be sent on insertion. msgWinExtracted is sent on extraction, and then you can

check the wsVisible flag.

% Windows and WKNs

Developers should not create window instances with private or process well-known
UIDs. The window system maintains a PenPoint-global database of all windows,
and it expects each UID to be unique.

You can use private well-known UIDs for classes, not for instances.

W Corrections and errata

¥ The current grafic

The third paragraph of section 27.5.2 the PenPoint Architectural Reference states
in the:

Note that clsPicSeg allocates the memory for the grafic-dependent data struc-
ture from the process heap, but it is up to the client to free it with
OSHeapBlockFree().

This statement is not complete. By system default, if pData is pNull, clsPicSeg
allocates the memory for the data structure from the local process heap
(osProcessHeapld); otherwise, it uses the heap that you pass in. If you want to have
the heap shared between your process and another process, assign
osProcessSharedHeapld as the default heap when you create your clsPicSeg object
(new.object.heap). You must call OSHeapBlockFree() to deallocate both
osProcessHeapld and osProcessSharedHeapld.

% Repaint
Section 28.2.3 in the PenPoint Architectural Reference begins with two sentences
that describe an obsolete message:

A TIFF object repaints when it receives msgPicSegRedraw. Since a TIFF object
isn’t a window and isn’t bound to one, you must pass in a drawing context as
the message argument to msgPicSegRedraw.

These descriptions are no longer true. To repaint a TIFF object in its display list, a
clsPicSeg object now must send it msgPicSegPaintObject, passing the TIFF object
a pointer to PIC_SEG_PAINT_OBJECT. Specify the painting rectangle in logical units

CHAPTER 36 / WINDOWS AND GRAPHICS 443
Corrections and errata

and assign the UID of the drawing context or PicSeg object to the picSeg. Ignore all
other fields.

" Using a bitmap
Replace the second paragraph of section 28.1.1 with in the PenPoint Architectural
Reference the following text:

Having created a bitmap, you usually want to get it on the screen in some form.
One way to display a bitmap is to send an instance of clsBitmap msgBitmapCache-
ImageDefaults. This message takes a pointer to the SYSDC_IMAGE_CACHE struc-
ture used by msgDcCachelmage. clsBitmap fills in the structure with default
values. You can send the bitmap msgDcCachelmage, and then send it msgDc-
Copylmage to have the sampled image stored in the bitmap rendered in the
window.

You can also display bitmaps by creating instances of clsIcon or one of its descen-
dants. See Part 4: PenPoint Development Tools Supplement for a step-by-step proce-
dure. The Ul Companion sample application uses this procedure to create an
instance of clsIconToggle to display some bitmaps. The source code and comments
are in \2_0\PENPOINT\SDK\INC\SAMPLE\UICOMP\UICOMP.C.

" Typographical errors

Part 3 (Windows and Graphics)—typos TABLE 36-1

Volume, section, paragraph Old text on first line
New text on second line

I,22.1, 93 - However, every application requires that you design at least one custom sublcass of
clsWin...

. However, every application must use a subclass of clsWin...

I, 23.6, 91 Applications somtimes require windows to have a particular size...
Applications sometimes require windows to have a particular size...

[,26.12.3.1,92 The function SysDcFontID performs this algorithm...

The function SysDcFontID() performs this algorithm...

5 / ARCHITECTURAL REFERENCE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION

PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 37 / Ul Toolkit

WV What’s new

% Ul components with built-in KKC translation

cIsField and cIsIP objects have built-in support for translation of Japanese charac- References to page numbers
are to the Fenfoint Architectural

ters. If you want to create your own Ul client of the kana-kanji conversion (KKC)
Reference, Volume .

character translator, see “The character translator classes” on page 453. If you want
to subclass cIsKCC to make your own interface to a KKC engine, see “Kana-kanji
conversion class” on page 451.

% Text highlighting and “dirtying”
clsLabel now provides a new flag and message with which you can give text selec-
tions one of two highlight styles. One highlight style (strong highlighting) is the
standard dark grey rectangle with inverted text. The other highlight style (weak
highlighting) encloses the selection in light grey and underlines it.

The new message is msgLabelProvideHighlight. Because clsLabel self-sends this
message, you must create a subclassed instance of clsLabel. When you change the
LABEL_NEW_ONLY structure defaults for this object, set the label.style.getHigh-
light flag to TRUE. (Set only the label.style.stringSelected flag to TRUE if you want
only the standard highlighting style.)

During repaint operations (msgWinRepaint or msgBorderPaintForeground),
clsLabel self-sends msgLabelProvideHighlight if the getHighlight or string-
Selected flags are set. For each area to be highlighted, your subclassed object must
specify the span information in a LABEL_SPAN structure and highlight style that
clsLabel needs to draw the highlight graphic. (clsLabel ignores this highlight field if
the stringSelected flag is set to TRUE.)

Next, put these LABEL_SPAN blocks in the spanBuf array of a LABEL_HIGHLIGHT
structure, sorted by increasing index. Set the pSpans field of LABEL_HIGHLIGHT to
point to the start of this buffer. When you send msglLabelProvideHighlight to
clsLabel, pass it a pointer this LABEL_HIGHLIGHT structure. (clsLabel sets the
SYSDC_RGSB fields of the structure.)

Another new message, msglabelDirtySpan, is related to msglLabelProvide-
Highlight. Send clsLabel this message, passing it a pointer to LABEL_SPAN, to have
it dirty the area indicated by the span. The highlight information for the span

is ignored.

446 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

% Standard strings

STDSTR.H contains tag definitions for the standard UI Toolkit strings that were
moved to resource files (such as “OK,” “Apply and Close,” and “Contents”).

% clsKbdFrame

A new class, clsKbdFrame, provides generalized behavior for simulated keyboards.
It supports input filtering and the queuing of character events. PenPoint’s virtual
keyboard and its Unicode Browser, for example, make use of clsKbdFrame. The
immediate ancestor of clsKbdFrame is clsFrame. API definition for clsKbdFrame is
in KBDFRAME.H.

W Acetate Layout and Markup classes

Two classes have been added to PenPoint to increase the markup functionality
of clsNotePaper: clsAcetateLayout and clsMarkup. Essentially, clsMarkup
implements the transparent, scalable, and rotatable data-drawing layer, and
clsAcetateLayout overlays an instance of clsMarkup on top of an application
window. You can also use clsAcetateLayout to lay one window over another,
thereby enhancing gesture handling.

%¥ Using clsMarkup and clsAcetateLayouf together

When you want to add a markup layer to your application, you can use clsMarkup
and clsAcetateLayout in a complementary way. clsAcetateLayout synchronizes the
scrolling of a clsMarkup window that is layered over a client application window. It
also handles document embedding so that documents are embedded only in the
client window.

You can think of clsAcetateLayout as an intermediate layer in the window hier-
archy. It mediates between the clsMarkup view and the application’s own view.
clsAcetateLayout treats the application window as its client (in this context, a client
is a window that is subordinate to the acetate layout in the window hierarchy).

To implement this behavior, insert the instances of clsAcetateLayout and
clsMarkup when your application handles msgAppOpen. After creating the appli-
cation’s scrolling window, instantiate the Acetate Layout, after setting its client field
to the scrolling window. The Acetate Layout, in tuin, has as its child the applica-
tion’s view (that is, the Opaque View) and the Markup View, layered so that the
Opaque View lies below the Markup View.

% clsAcetatelayout

When you want to lay a window atop another window, you must typically put up
with a lot of drudgery to handle pass-through of gestures and to synchronize the
behavior of the two windows. clsAcetateLayout enables an application to imple-
ment a markup overlay atop its window without having to implement gesture and
event pass-through or graphical markup.

Some of the queuing
functionality of clsKbdFrame
will be replaced in future
Fenfoint versions by
generalized improvements

to the input system.

Do not confuse clsAcetate-
Layout with the FenFoint
windowing system’s
“acetate” layer.

CHAPTER 37 / Ul TOOLKIT
Tips and clarifications

As a subclass of clsCustomLayout, clsAcetateLayout allows an application to place
and correctly lay out a client window (usually a markup layer) atop the application
window. To synchronize the two windows, it handles the messages described in

447

Table 37-1.

clsAcetatelayout synchronization messages TABLE 37-1

Message Takes Description

msgScrollbarVertScroll P_SCROLLBAR_SCROLL Client should perform vertical scroll.
msgScrollbarHorizScroll P_SCROLLBAR_SCROLL Client should perform horizontal scroll.
msgScrollbarProvideVertInfo P_SCROLLBAR_PROVIDE Client should provide the document and view

information for a vertical scroll.

nsgScrollbarProvideHorizinfo P_SCROLLBAR_PROVIDE Client should provide the document and view
information for a horizontal scroll.

msgScrollWinProvideSize P_SCROLL_WIN_SIZE Self-sent to determine bubble location and size.
msgScrollWinProvideDelta P_SCROLL_WIN_DELTA Self-sent so that descendants can normalize the
scroll.

%v clsMarkup

Developers can use clsAcetateLayout to help them use clsMarkup. clsMarkup is a
subclass of clsNotePaper optimized so that developers can have graphical markup
tools for a document without requiring their applications to know markup.
clsMarkup is a transparent instance of clsNotePaper with the additional ability to
scale and rotate. clsMarkup provides useful annotation functions, but does not per-
form smart markup; that is, the annotations are not tied to the marked-up applica-
tion data. You could use clsMark (or an appropriate subclass) to tie the items
together.

¥ Tips and clarifications

% clsBorder tracks on pen down

clsBorder doesn't start tracking until it receives msgPenDown. If your application
consumes msgPenDown as part of a press ! gesture (to create a move icon, for
example), it must self-send a new msgPenDown, which tells clsBorder to start
tracking.

¥» Progress bars

When advancing a progress bar, you must advance it by an amount greater than
zero, or your application may page fault.

% XList handlers must handle msgGWinGesture

If a gesture window has timeout events enabled, and a hold timeout is initiated by
the user, the gesture window converts the inputHold Timeout event directly into a
msgGWinGesture, rather than going through the normal protocol of sending out
an XList that will get self-converted to a gesture. If your application is processing
XLists rather than gestures, you must add a handler for msgGWinGesture.

5 / ARCHITECTURAL REFERENCE

448 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

% Field change

As a result of better hand printing recognition, there is a change in FIELD.H
related to character box memory. fstBoxMemoryFour is replaced with fstBox-
MemoryTwo, which uses two characters of box memory. Existing code that uses
fstBoxMemoryFour will still compile; however, it will only use two-character box
memory.

% Bug in clsLabel

After you create a label object, clsLabel resets the label.style.infoType field to
IsInfoString. This causes problems particularly if you had earlier set infoType to
IsInfoStringld so that you could read strings from a resource file; attempts to get
new strings for the label object by sending msgLabelSetStringld do not succeed,
Until this bug is fixed, work around it by setting the label.style.infoType field to
lsInfoStringld before sending msgLabelSetStringld.

% Bug in clsToggleTable

Instances of clsToggleTable have handlers that override certain clsControl mes-
sages. As clsControl defines it, four of these messages (msgControlGetDirty, msg-
ControlSetDirty, msgControlGetEnable and msgControlSetEnable) take as
P_ARGS a pointer to a 16-bit BOOLEAN value. But clsToggleTable defines the
P_ARGS for these same messages as a pointer to a U32 data type, bits of which it
reads or toggles before returning the bitmask to the caller. Page faults can occur as a
result of this discrepancy, particular with the msg...Get... messages.

As a workaround for msgControlGetDirty and msgControlGetEnable, declare a
U32 variable for the return value and pass a pointer to it. For msgControlSetDirty
and msgControlSetEnable, just be aware of the discrepancy when you send these
messages to clsToggleTable.

¥ Corrections and errata

% Ul Toolkit programming details

The first paragraph of section 31.5.4 in the PenPoint Architectural Reference suggests
that you can create your application’s UI in a separate INIT.DLL and when the appli-
cation’s “DLLMain routine is called by the Installer, create the UL” The entry point
for INIT.DLL should be named InitMain, not DLLMain; DLLMain gives INIT.DLL

its own process.

For information on creating an initialization DLL for your application, see “Initial-
ization DLL” on page 435 of this document.

% Incorrect table reference

On the top of page 386 of PenPoint Architectural Reference (section 34.4.2) the def-
inition of the constraint field refers to Table 34-2. It should be Table 34-3.

CHAPTER 37 / Ul TOOLKIT 449
Corrections and errata

" Providing custom backgrounds
The description of the BORDER_BACKGROUND fields in section 33.4.5 in the
PenPoint Architectural Reference omits the borderInk field. The value you assign to

this field specifies the color of a graphic object’s bordering line. Typical values are
color constants such as bsInkGray66 and bsInkBlack (the default).

% Typographical errors

Part 4 (Ul Toolkit) — typos TABLE 37-2

Volume, section, paragraph

I, 46.6, 917

I, Table 40.3

Old text on first Line
New text on second line

Assuming that clsMyView does not create a custom sheet, othen...
Assuming that clsMyView does not create a custom sheet, ...
Title: SCROLLWIN_STYLE Styles

Title. SCROLL_WIN_STYLE Styles

verticalScrollbar
vertScrollbar

& / ARCHITECTURAL REFERENCE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 38 / Input and Handwriting
Recognition

P What's new

Two sections in this chapter present information on two new character-translation
components: the kana-kanji conversion class (cIsKKC) and the character-transla-
tion classes, clsCharTranslator and cIsKKCCharTranslator. The information in
these sections pertain to developers who:

o Want their application to handle text entry, particularly direct text entry
(“The character translator classes”).

o Want to write their own classes to support kana-kanji conversion (“Kana-kanji
conversion class” and “The character translator class”).

o Want to implement their own KKC engine (“Kana-kanji conversion class”).

% Kana-kanji conversion class

The kana-kanji conversion class (cIsKKC) provides default superclass behavior for
kana-kanji conversion (KKC) engines. PenPoint’s KKC engine, developed for
PenPoint 2.0 Japanese, is based on this superclass. cIsKKC inherits from clsService;
KKC engines are implemented as services. Table 38-1 shows the relationship of
cIsKKC and the other classes related to translation of Japanese characters.

The API defined in KKC.H is primarily for developers who want to port exiting KKC
engines to PenPoint 2.0 Japanese. In PenPoint, all KKC engines inherit from
cIsKKC. This class provides substantial default behavior for its descendents, thereby
simplifying the work of porting.

Developers may also want to be direct clients of a clsKKC service and provide their
own user interface to the conversion engine. Although this is possible, the character
translator API for KKC (defined in CHARTR.H and KKCCT.H) already provides a
rich, high-level, international protocol and a sophisticated user interface that is
build into objects of clsField and cIsIP.

The PenPoint KKC engine has a RKC (romaji-kana) component that converts romaji
into hiragana characters as they are typed or written. Then, given the proper gesture
or keyboard command, the engine converts the hiragana or katakana characters in
the proximate bunsetsu (phrase context) into a list of kanji alternatives for each
kana character. It presents these alternative characters to the user in a pop-up
window.

452

PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Generally, cIsKKC and its subclasses operate by processing data contained in an
XList. For KKC engines, an XList must contain only two types of elements, xtText
and xtKKCSpan. The xtText elements contain unconverted text and xtKKCSpan
elements hold text that has already been converted.

A KKC span in an XList contains, in addition to the converted text, information
such as conversion alternatives and the decomposition of text into stem and ending.
While there can be multiple conversion alternatives associated within a given span,
only one of them can be the display choice.

A KKC engine service can always construct a display string from the XList. The dis-
play string consists of the ordered concatenation of each xtText element and each
xtKKCSpan display choice for that element. The engine operates on the XList by
specifying indices into the display string.

The API definition in KKC.H provides many more details about using cIsKKC inter-
faces, both for porting purposes and as a client. For information on writing services,
refer to Part 13 of the Penpoint Architectural Reference. For information on using
services, see Chapter 94 of Part 10, “Connectivity.” If you are interested in porting
KKC engines, you can contact GO Technical Support to obtain a copy of the “KKC

Porting Kit.”

cIsKKC messages

clsKKC messages TABLE 38-1

Message Tokes Description

msgKKCConvertSingle P_KKC_CONVERT Produces a list of conversion alternatives for a range of
text. Subclass responsibility.

msgKKCConvertMultiple P_KKC_CONVERT Converts all unconverted text. Subclasses have the
option of implementing this message.

msgKKCConvertRange P_KKC_CONVERT Converts all text in the specified range as a single span.
Subclasses have the option of implementing this mes-
sage.

msgKKCUnconvertSingle =~ P_KKC_CONVERT Converts specified kanji text back to hirigana. Sub-
classes may optionally implement this message to pro-
vide “reverse henkan” functionality.

msgKKCAccepted P_XLIST Client sends when user accepts current choice.
A subclass option.

msgKKCGetMetrics P_KKC_GET_METRICS Fetches information about the current XList. Useful in
determining the length of the display string and the
number of KKC spans and text elements.

msgKKCSetChoice P_KKC_SET_CHOICE Changes the current choice for the given span. Super-
class responsibility.

msgKKCAlterSpan P_KKC_ALTER_SPAN Extends or shortens the boundaries of a converted
string. Superclass responsibility.

msgKKCChangeText P_KKC_CHANGE_TEXT Inserts, deletes and replaces text in the display string.
Superclass responsibility.

msgKKCGetChars P_KKC_GET_CHARS Extracts a substring from the given XList and puts it in

a buffer. Superclass responsibility.

cIsKKC messages

CHAPTER 38 / INPUT AND HANDWRITING RECOGNITION

What's new

TABLE 38-1 (continued)

453

Message

msgKKClnsertSpan

msgKKCFindElement

msgKKCDumpXlist

msgKKClnitialize

msgKKCRKC

Takes

P_KKC_INSERT_SPAN

P_KKC_FIND_ELEMENT

P_XLIST

P_KCC_INITIALIZE

P_KKC_RKC

" The character translator classes

Description

Creates, initializes and inserts a new xtKKCSpan.

A KKC engine can self-send this message to have the
superclass manipulate the XList when the engine needs
to supply KKC results to the client object.

Finds the element that contains the character of the dis-
play string specified by an index. A KKC engine self-
sends this message to convert an incoming display index
into usable text. The superclass passes back the element
index, the string index and the element itself.

Prints the contents of the XList to the debugging con-
sole. Valid only in DEBUG mode.

Performs service initialization for a KKC engine. Sub-
classes should send this message to cIsKKC as part

of their DLLMain(). Clients should never send this
message.

Subclasses can implement this message so that they can
change the default behavior of the superclass’ romaji-to-
kana conversion algorithm.

l 5 / ARCHITECTURAL REFERENCE

Character translators assist in the translation of characters from one set to another

and in the presentation of translation alternatives to users. Working together with

their client UI components, character translators create the user interface for trans-
lations of character sets. They also act as intermediaries between their UI clients and
the engines that perform the character-set conversions.

PenPoint SDK 2.0 Japanese has two new classes related to character-set translation.
The abstract class clsCharTranslator specifies the standard interfaces and imple-
ments the standard methods for the translations. It inherits from clsObject.

Because clsCharTranslator is an abstract class, only a subclass of it can realize the
latent functionality for a particular character set. PenPoint SDK 2.0 Japanese pro-
vides the KKC character translator class for this purpose. cIsKKCCharTranslator is a
subclass of clsCharTranslator; objects of this class act as clients to kana-kanji con-
version engines through interfaces defined in cIsKKC.

The sketch to the right depicts the relationship of these classes. The API definition
for clsCharTranslator is in CHARTR.H. The API definition for cIsKKCCharTrans-
lator is in KKCCT.H.

Relation of translator

classes

clsObject

cleChar-
Translator

N

clsKKC-

\

clsService l
[

CharTranslator

Client
(Subclass
of clsGWin)

454

PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

%» Creating a client of KKC character translator

Because a character translator requests gesture information, its clients usually are This section is intended for
instances of clsGWin or one of clsGWin's subclasses (although, strictly speaking, — developers who, instead of

using clsField or clslP, want to

they don't need to be). Client objects exchange messages with the KKC character ,reate their own cleGWin
translator class, cIsSKKCCharTranslator (and, by inheritance, with clsChar- descendent client of the KKC

Translator). The KKC character translator requests translation services from

character translator.

the KKC conversion-engine class (clsKKC) and receives back translation alterna-
tives, which it forwards to the client.

Developers who want to implement their own UI interface for kana-kanji character
conversion in an application must set certain fields in their client object’s
_NEW_ONILY structure that derive from clsGWin. Then they must have their client
object observe a specific protocol.

During msglnit, every instance of clsGWin (or one of its subclasses) can create a
character translator that handles translation requests. You must first indicate that
you want a translator created by setting the new.gwin.style.useCharTranslator field
TRUE. Then assign to new.gwin.charTrLocaleld field the locale identifier
(LOCALE_ID) for the translator. If you specify no locale ID (by setting charTk-
Localeld to zero), clsGWin creates a translator appropriate to the system locale.
The default translator for Japan (locJpn) is an instance of cIsKKCCharTranslator.

Rather than generalizing the protocol for all possible client objects of clsGWin, we
can describe the protocol as a client object of cIsIP actually implements it:

1

The user writes a few kana characters in an insertion pad, then requests KKC
with the right up —! gesture. When the pad receives the gesture, it self-sends
the message msgCharTransGesture.

Rather than handling the message itself, cIsIP allows clsGWin to handle the
message. In turn, clsGWin sends the message to the character translator it cre-
ated when it responded to msglnit. Again, for PenPoint SDK 2.0 Japanese, the
default translator is an instance of cIsSKKCCharTranslator.

When the character translator (an instance of cIsSKKCCharTranslator)
receives the gesture information, it determines whether the gesture is relevant
to character translation. Since the right up —! gesture explicitly requests KKC,
it sends the message msgCharTransGetClientBuffer to the client (cIsIP)
requesting a portion of its buffer.

The client sends the requested characters in response to msgCharTransGet-
ClientBuffer.

The translator communicates with cIsKKC, the front-end to the actual service

that provides KKC. In this case, a translation is needed, so the translator sends
msgCharTransModifyBuffer with the translation to the client.

CHAPTER 38 / INPUT AND HANDWRITING RECOGNITION 455
What’s new

6 Using information sent with msgCharTransModifyBuffer, the insertion pad
updates its internal buffer and user interface to display the translated char-
acter. Note that the translated character is highlighted. The P_ARGS sent
with msgCharTransModifyBuffer also contains highlighting information.
See Part 6: PenPoint User Interface Design Reference Supplement for details on
how character highlighting should behave during KKC.

7 The user then requests a list of alternatives by tapping on the highlighted
character. The insertion pad self-sends msgCharTransGesture, again allowing
the message to be handled by clsGWin.

8 The translator receives the message from clsGWin and queries cIsKKC for
character alternatives. It also asks the client where the character alternatives

pop-up box should be placed by sending msgCharTransProvideListXY.

The insertion pad calculates the coordinates of the upper-left corner of
the pop-up box. The pop-up box should appear directly below the original

character.

9 If the user selects an alternative from the pop-up box, the translator sends
msgCharTransModifyBuffer to the client. The insertion pad should then
update its buffer and user interface.

10 When the user taps OK to dismiss the insertion pad, the pad should self-send
msgCharTransGoQuiescent to synchronize the character counts between the
text view and the character translator. This step ensures the correct setting and
clearing of the weak and strong character highlights.

The description above does not exhaust the messages involved in the character
translation protocol. For example, it did not mention any of the messages that
support keyboard input. These are the most important messages involved in the
protocol:

The client should self-send the following four messages when appropriate. How-
ever, the client should not define a2 method to handle the message. Rather, the client
should allow the message to be passed up to clsGWin.

¢ Self-send msgCharTransKey each time the user presses a key.

¢ Self-send msgCharTransChar each time the user edits an existing buffer (for
example, when the user inserts or deletes a character). As the user writes new
characters, you normally do not send this message until the user makes the
translation gesture. However, when the user is typing, you send each character
with this message.

¢ Self-send msgCharTransGoQuiescent to cancel the current translation. When
the user taps outside an insertion pad, for example, clsIP self-sends msgChar-
TransGoQuiescent. '

¢ Self-send msgCharTransGesture each time the user makes a gesture on
your text.

5 / ARCHITECTURAL REFERENCE

456 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

The client should respond to the following messages sent by the character

translator:

¢ msgCharTransModifyBuffer, which contains information on how to translate
characters. The client should respond by updating your text buffer and user
interface, including updating strong and weak highlighting. The character

translator passes you a CHAR_TRANS_MODIFY structure.

¢ msgCharTransGetClientBuffer, which asks your window instance for some
text from the client’s buffer. Pass the requested text to the character translator

as part of a CHAR_TRANS_GET_BUF structure.

¢ msgCharTransProvideListXY, which asks the client where to put the charac-
ter alternative list. The client should compute the coordinates so that the pop-

up box appears below the original character.

%r Highlighting information

When a character translator sends msgCharTransModifyBuffer to a client, that
client should examine the highlight fields in CHAR_TRAN_HIGHLIGHT. It should
begin weak highlighting from weakStart and extend it for weakLen. Strong high-
lighting should begin from strongStart and extend for strongLen. Previous high-
lighting information is provided in oldWeakLen, oldStrongStart and

oldStrongLen.

Some of the length fields can hold 0, indicating that highlighting can be removed.
For example, if there is no strong highlighting required, strongLen is 0. The client
may need to clear any old highlighting that is specified by the old... fields. Note
that if the character translator just wants to change highlighting information, it will
send this message with the delete and insert lengths of CHAR_TRAN_HIGHLIGHT

set to 0, but with the highlight information changed.

%r Class Character Translator messages

cIsCharTranslator messages

TABLE 38-2

Message Takes...

msgNewDefaults P_CHAR_TRANS_NEW
msgNew P_CHAR_TRANS_NEW
msgCharTransKeyEvent P_CHAR_TRANS_KEY_EVENT

Commenis

CHAR_TRANS_NEW is passed in with all argu-
ments set to zero (or pNull, as appropriate).

Creates a character translator. If pArgs->char-
Trans.pBindings is pNull, the default bindings
(from the system preferences) are used.

Clients self-send this message to notify a charac-
ter translator of a keyboard event. If the character
translator does not use the key, it returns an error
message. Otherwise, the client should not use the
key because it is being used by the translator.

CHAPTER 38 / INPUT AND HANDWRITING RECOGNITION 457

clsCharTranslator messages

What’s new

TABLE 38-2 (continued)

Message

msgCharTransChar

msgCharTransSetMark

msgCharTransGetClientBuf

msgCharTransModifyBuffer

msgCharTransProvideListXY

msgCharTransListActivate

Takes...

P_CHAR_TRANS_CHAR

P_CHAR_TRANS_SET_MARK

P_CHAR_TRANS_GET_BUF

P_CHAR_TRANS_MODIFY

P_CHAR_TRANS_LIST_XY

P_CHAR_TRANS_LIST_XY

Return of translation alternatives

Comments

The client self-sends this message to notify a
character translator of a character about to be
changed. The client then receives back msg-
CharTransModifyBuffer; it should examine the
arguments passed it in P_CHAR_TRANS_
MODIFY to determine exactly what the charac-
ter translator wants to have changed.

The character translator sends this message to the
client to notify that it (the translator) is begin-
ning to collect characters at the given position.

The translator sends this message to the client to
request a copy of the characters in the client’s
buffer. The client should copy length characters
from startPosition into buf. If fewer than length
characters are available, the client must end the
string that it copies with a null character.

clsCharTranslator (or a subclass of it) sends this
message to the client to tell it how to modify its
buffer. The client should delete length characters
beginning at first and replace them with bufLen
characters from buf. The client should also adjust
its highlighting according to the values in the
highlight structure (CHAR_TRAN_
HIGHLIGHT). See “Highlighting information”
on page 456.

Sent to the client to request the X-Y coordinates
for the top left corner of the pop up menu for the
alternatives list. Current Ul guidelines dictate
that the client should compute the coordinates so
that the menu pops up below the character. The
coordinates are in relation to the root window.

Self-sent to subclasses to activate the alternatives
list. pArgs->charPosition has the character posi-
tion in the client’s buffer and pArgs->xy has the
root window X-Y coordinates for the list.

The text subclasses for handwriting translation, clsXText and clsXWord, include
new flags that request the translation object to return information in addition to
the best-guess translation. Most other translation flags (hwxFlags) govern which of
the various scoring rules the translation object applies when it chooses the best
translation. The new translation flags specify which additional data that object is to

return:

¢ xltReturnAltWords: Return the highest ranking alternative word translations.

¢ xltReturnAltChars: Return the alternative characters in each position of the

best-guess translation.

+ xltReturnStrokelds: Return the strokes that belong with each character of the

best-guess translation.

5 / ARCHITECTURAL REFERENCE

458

PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

You can set one or more of these flags in the "NEW structures for both clsXText and
clsXWord (pArgs->xlate.hwxFlags) when you create the translation object. You can
also set and clear them with msgXlateSetFlags and msgXlateClearFlags any time
before the translation object has received the first stroke from the scribble. To find
out the current hwxFlags settings, send msgXlateGetFlags to the translation object.

To get the information on alternatives, send msgXlateData, to the clsXText or
clsXWord object as usual; pass it via P_XLATE_DATA an identifier of the heap from
which memory is to be allocated for the Xlist elements. The translation object
returns the requested information in linked Xlist elements (see Table 38-1).

xltReturnAltWords The translation object returns, along with the best-
guess translation for a word (as defined by Locale), a list of alternative
word translations, ranked in order of their scores. The Xlist element
requested by this flag is of type xtTextAltWords, which points to a
WORD_LIST structure that contains the alternative word choices.

xItReturnAltChars The translator returns a list of all alternatives for each of
the characters in the best-guess word translation. Each alternative’s plausi-
bility is determined by the translator’s shape matcher. The Xlist element
requested by this flag is of type xtTextAltChars, and it points to a
XL_CHAR_LIST structure that holds alternative character information.

xltReturnStrokelds The translator returns the pen strokes that underlie
every best-guess and alternate character in the word translation. The Xlist
element requested by this flag is of type xtTextStrokeldList, and it points
to a structure of XL_STROKE_ID_LIST.

If you set the xltReturnStrokelds flag, you might also want to set
xltReturnAltChars. You can use the stroke-count information returned
via the xtTextAltChars Xlist element to interpret the stroke IDs returned
via the xtTextStrokeldList Xlist element.

The linked list of Xlist elements returned for each type of alternative information
(word, character, and stroke ID) is often extended beyond a single translated word.
The translator can link that word’s sequence of Xlist elements with the Xlist ele-
ments returned for the next translated word.

All hwxFlags are defined in the header file for the abstract superclass, clsXtract/
clsXlate (XLATE.H).

Handwriting changes

Handwriting customization has been removed as a feature from PenPoint 2.0 Japa-
nese. Because this version of PenPoint does not use the GOWrite engine, there is no
implementation of handwriting customization.

The header file HWCUSTOM.H remains, as does the hook to the Customize...

button on the Settings notebook’s Installed Handwriting page. ISVs who wish to
use customization may write their own clsFrame descendants conforming to the
HWCUSTOM.H header; customization will proceed as it did in PenPoint 1.0 and

CHAPTER 38 / INPUT AND HANDWRITING RECOGNITION 459
What's new
Translation alternatives returned by msgXlateData FIGURE 38-1
R))
Bound. <tWord xtTextAle xtTextAlt xtStrokeld
xtbounds Word Chars List
flags > flags > flags > flags > flags >
G / 2
XLATE_BDATA WORD_ENTRY l WORD_LIST l XL_CHAR_LIST XL_STROKE_ID_LIST
box) (scorelH|O|L| E] (bounds count = 4 count
baseline count = 2 alt chars[} stroke ID
WORD_ENTRY. |l s -3 [[soke D
-~ word[1] alt chars[] stroke ID
scores(] stroke ID
strokes = 1 e ID
XL_CHAR_ALTS |l chars o
scores|[] stroke ID
strokes = 1 stroke ID
alt chars[] stroke ID
scores|]
strokes = 4 stroke ID
alternative characters include best-guess characters
PenPoint 1.01. But the customization classes that GO provided in PenPoint 1.0 and
PenPoint 1.01 are not part of PenPoint 2.0 Japanese.
% Letter practice removed
The header file HWLETTER.H remains, as does the hook to the Practice... button on
the Settings notebook’s Installed Handwriting page. ISVs who wish to use letter
practice may write their own clsFrame descendants conforming to the
HWLETTER.H header; letter practice will proceed as it did in PenPoint 1.0 and
1.01. But the letter practice classes that GO provided in PenPoint 1.0 and 1.01 are
not part of PenPoint 2.0.
% Changed and obsolete gesture names
Changed gesfure names TABLE 38-3

Gesture...

xgsLLCorner
xgsLLCornerFlick
xgsLRCorner
xgsLRCornerFlick
xgsULCorner

Is Now...

xgsDownRight

xgsDownRightFlick
xgsDownLeft

xgsDownlLeftFlick

xgsUpRight

5 / ARCHITECTURAL REFERENCE

460 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Obsolete gesture names TABLE 38-4
xgsAsterisk xgsBordersOn xgsCircleDbITap

xgsDblArrow ‘xgsDblDownCaret xgsDownTriangle

xgsFlickTapDown xgsFlickTapLeft xgsFlickTapRight

xgsFlickTapUp xgsInfinity xgsLeftCaret

xgsLineCaretLeft xgsLineCaretRight xgsLineDblCaret

xgsParagraph xgsPigtailHorz xgsPlusTap

xgsPolyline xgsRect xgsRightCaret

xgsRoundRect xgsSpline xgsUpCaretDblDot

xgsUpTriangle

» Tips and clarifications

% clsAnimSPaper mefrics

Instances of clsAnimSPaper will crash (divide by zero) if they are redrawn with the
delay and interstroke metrics both set to zero. To avoid the problem, ensure that the
interstroke is always non-zero whenever the delay is zero.

% Transparent input

If you want transparent input (inputTransparent set), you must make sure that
inputLRContinue is clear.

» Corrections and errata

% Adding a filter
Section 53.3.2 in the PenPoint Architectural Reference on InputFilterAdd() shows an
incomplete prototype and does not describe two of the function’s arguments (page
571). The actual prototype is:
STATUS EXPORTED InputFilterAdd (

OBJECT newFilter,
INPUT_FLAGS inputEventFlags,
FILTER FLAGS filterFlags,

U8 priority

)i
The arguments are defined as follows:

newFilter The UID of the filter object to be placed on the filter list.

inputEventFlags By setting flag bits in this U32 field, you indicate those
input events (and related messages) that you want your filter to handle.
Examples of input events that you can specify are inputTip, inputEnter,
and inputTap. See INPUTH or Table 53-2 in the PenPoint Architectural
Reference for a list of these flags.

CHAPTER 38 / INPUT AND HANDWRITING RECOGNITION 461
Corrections and errata

filterFlags The flags set in this U32 field control event distribution to your
filter. Currently developers can set only one flag, iflSendMyWindowOnly.
By setting it you instruct the input system to withhold messages from the
filter unless the event happened in the filter or in one of that filter’s win-
dow children or window ancestors.

priority A value from 0 to 255 that indicates the relative priority of the filter.
This value specifies the position of the filter in the list.

% Typographical errors

Part 5 (Input and Handwriting Translation)—typos TABLE 38-5
Volume, section, poragraph Old text on first line

New fext on second line
1,524, 91 ...win.input.flags...

...win.flags.input...

5 / ARCHITECTURAL REFERENCE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 39 / Text

V What's new

¥ Gesture targeting

In PenPoint 2.0 Japanese, clsTextView targets gestures differently than in other

PenPoint versions. In PenPoint 2.0 Japanese, where a gesture would expand its

target to a word (bunsetsu in the Japanese version), the gesture targets the character

where the hotpoint of the gesture was. As in PenPoint 1.0x or PenPoint 2.0 running Type the following to run PenFoint

with U.S. behavior, however, if the gesture is over a selection, then the selection is with U.S. behavior:

the target. 40 Usa usa

. . . Note, however, that GO has no
Table 39-1 lists the gestures that have new (non-bunsetsu) targets in PenPoint 2.0 plans to ship a end-user U.S.

Japanese. The Like-Type gestures select similar contiguous characters (that is, those localization of FenPoint 2.0.
characters that are all kana or all kanji) instead of following the standard bunsetsu
selection rules.

New gesture ftargets TABLE 39-1
Gesture Type Gesture Description Target
Insertion) New paragraph between characters
B New line between characters
;\t Embedder between characters
A Floating input pad between characters
A Embedded input pad between characters
Selection’ [Select to left between characters
] Select to right between characters
Like-Type F Find selected word similar contiguous characters
B Bold similar contiguous characters
I Italic similar contiguous characters
N Normal similar contiguous characters
u Underline similar contiguous characters
1 Increase font size similar contiguous characters
NS Decrease font size similar contiguous characters

1. In PenPoint 2.0 Japanese, these selection gestures have additional behavior. Making a right bracket gesture before a selection is equivalent
to a single tap (select character); making a left bracket gesture after a selection is equivalent to a double tap (select word).

In terms of AP, a new atom type, atomLikeType, enables the selection of a span
that conforms to the international style intlDImtWordStyleWord. (This new atom
type is in TXTDATA.H.) In addition, move and copy operations for PenPoint 2.0
Japanese now target to the character instead of to the word.

464

4

4

PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Font substitution algorithm

When users now type or write in a Latin or non-Latin font, and a certain character PANOSE is a trademark

is missing, the PenPoint 2.0 Japanese operating system substitutes a character from ~©f EleeWare Corporation,
. . T . Seattle, Washington

the closest matching font. This substitution is based on an algorithm that uses the

PANOSE™ Typeface Matching System,

Each font has a selection of Unicode points that identify its characters, which are
mapped to glyphs. If a user-requested glyph is not available in a logical font, the
font-substitution algorithm uses the PANOSE number of that font to get an ordered
list of related fonts, sorted by distance from the original font. It scans the fonts in
this list undil it finds the glyph, and then substitutes it.

With the Heisei or Mincho fonts selected, PenPoint 2.0 Japanese converts typed or

written Latin letters and numbers to the closest matching Latin font, and displays Initial spaces are always
proportionally spaced (hankaku) glyphs. If you don’t want this substitution, you iliipiy;dciiviﬁ:ﬂﬁz:q“”'655
can select the appropriate option from the Convert menu or make the right arrow 64 the Convert menu.
gesture to convert the Latin Unicode points to the Compatibility zone equivalents

that display full-width monospaced glyphs. Typing or writing kanji or kana with a

Japanese font selected results in no substitution. The full-width (zenkaku) glyphs

are used for display.

Hankaku/zenkaku implementation

In clsTextView, all Latin letters including the space character (0x0020) and the
Latin punctuation characters (period, question mark, and so on) default to their
hankaku form. All other kana, kanji, and Japanese punctuation characters default
to their zenkaku form. However, the keyboard driver for the JPN keyboard has
mode switches with which you can control the kinds of characters generated. In
addition, users can convert characters to all hankaku or all zenkaku via the Gestures
or MiniText menus. '

Unicode import type

MiniText now supports the Unicode file type (specified in FILETYPE.H). If the
import file has the .UNC extension, the code points will be interpreted as Unicode.
Other imported files are treated as either 7-bit RTF or Shift-JIS depending on the
header. If the file starts with a valid RTF header, it will be read as 7-bit RTE, other-
wise it will be treated as a Shift-JIS file. Because there is no standard for exporting
8-bit (that is, Shift-JIS) characters in RTF format, PenPoint no longer exports RTF in
the 2.0 Japanese version; it does export text as Unicode and Shift-JIS.

No white space correction in Japanese version

Because Japanese doesn’t delimit words with spaces, PenPoint 2.0 Japanese does not
correct white space during:

¢ Move/copy and delete operations.

¢ While accepting translated text from either an embedded IP or a floating IP

%

v N

CHAPTER 39 / TEXT

Corrections and errata

Taboo and bunsetsu rules

Lines breaks follow taboo processing rules for Japanese text. In addition to the
English or European characters that cannot start or end a line, extra Japanese char-
acters have been added that cannot start or end a line. For example, you cant end a
line with an open bracket ([) and you can’t start a line with a close bracket (J).

Word selection follows the Japanese rules for selecting bunsetsu.

Using msgTextModify

Because text views set the gWin style.useCharTranslator to TRUE, the text view
character count must be synchronized with the character translator to ensure the
correct setting and clearing of the weak and strong highlights. Always end a KKC
session with msgCharTransGoQuiescent before you send a msgTextModify mes-

sage to a text view. To end the KKC session, send a message similar to the following:

ObjectCallWarn (msgCharTransGoQuiescent, self, pNull);

In this message, self is the text view object. clsGWin handles this message by self-
sending messages to clear the weak and strong highlights before the
msgTextModify message can change the character counts. Character offsets are
thus synchronized between the character translator and the text view object.

The text view itself ends the KKC session in response to gestures that add and delete
characters. See CHARTR.H for more information on the character translator.

Corrections and errata

Typographical errors

465

Part 6 (Text)—typos TABLE 39-2
Volume, section, paragraph Old text on first line

New text on second line
I, Chpt 67 intro, 92 Code example: s = ObjectCall{msgWinlnsert, new.object.id, &new.win);

Code example: s = ObjectCall(msgWinInsert, new.object.uid, &new.win);

5 / ARCHITECTURAL REFERENCE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 40 / The File System

» What’s new

% Stamped file system attributes

The following file system attributes are stamped on installable items (applications,
services, fonts, and so on) and documents.

Stamped attributes—PenPoint 2.0 installable items TABLE 40-1

Admin/ Type Label Header file Comment

index

62/0 USTR fsAttrName FS.H The visible name of the installable. It must be unique

within the parent directory. It has a minor program-
matic use to handle collisions with items that are
already installed. It is mandatory.

260/3 USTR imAttrVersion INSTLMGR.H The visible version string. It is not used in
source code and is optional.

157/12 USTR appAttrClassName APPDIR.H The visible installable type name (such as Applica-
tion, Font, Printer). It is not used in source code and
is optional.

193/2 USTR cimAttrProgramName CODEMGR.H The module name, for example, GO-ABAPP-V2(0).
This name must match the module name in the LBC
file used to build the module. It is used in source
code.

157/1 FIX appAttrClass APPH The installable type. This attribute must be set to the
installation manager that controls this type of install-
able: thelnstalledApps, which is 010001A0. It is

mandatory.

Stamped attributes—PenPoint 2.0 doecuments TABLE 40-2

Admin/ Type Label Header file Comment

index

62/0 USTR fsAttrName FS.H The visible name of the document. It must be unique
within the parent directory and is mandatory.

28/0 FIX64 fsAtrDirlndex FS.H The directory index. It must be unique and is manda-
tory.

157/12 USTR appAttrClassName APPDIRH The visible name of the document’s application, for

: example, MiniText or GOMail. It is not used pro-

grammatically and is optional.

15771 FIX appAttrClass APPDIR.H The document’s application class. It is mandatory.

157/4 FIX appAtuSequence APPDIR.H The sequence number, which reflects the position of
the document within its embeddor. It is mandatory.

15713 FIX appAterNumChildren APPDIR.H The number of documents that are embedded within
this document. It is mandatory.

157/6 FIX64 appAttrFlags APPDIR.H The document’s flags, such as moveable and

readOnly. It is mandatory.

468 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Stamped attributes—PenPoint 2.0 documents TABLE 40-2 {continued)

Admin/ Type Label Header file Comment

index :

15719 USTR appAttrBookmark APPDIR.H The visible name of the document’s tab in the Note-
book. It is optional.

157/10 USTR appAttrAuthor APPDIR.H The visible author field. It is optional.

157/10 USTR appAttrComments APPDIR.H The visible comments field. It is optional.

W Tips and clarifications

%> Open handles on files

When your application has finished with a file or directory, it must free the handle
on the node, especially if the node is on a floppy or other removable media. If you
don’t do this and a user ejects the disk, they will continually get a number of
prompts for the disk, which cannot be cancelled.

% msgFSSetSize does not reposition file pointer

If you use msgFSSetSize to truncate a file, the file position will not be changed
during the call. To write at the end of the file, you must seek to the end of file.

% StdioStreamUnbind

If you use StdioStreamBind() and a read, a subsequent StdioStreamUnbind() will
change the file pointer. Thus, if you plan to rebind and pick up where you left off,
you must get the current file location with an ftell() before unbinding so you can
reset the file pointer after rebinding.

% Memory mapped file problem

It’s not a good idea to implement a memory-mapped file in a document directory.
Why? Let’s say someone launches a document from an extended bookshelf on a
floppy disk. You start writing to the memory map, and then the user ejects the
floppy disk. This causes the memory manager to choke with a page fault.

Because all application directories live on theSelectedVolume, memory-mapped
files in the global application directory are still okay. This seems to be the standard
implementation for memory-mapped files anyway, such as a shared PIM database.

P Corrections and errata

% Locators

Section 70.6 in the PenPoint Architectural Reference describes implicit and explicit
locators, but does not mention flat locators. Flat locators hold an entire locator
string in a linear (flat) structure. In PenPoint 2.0 Japanese, flat locators are defined
by structure FS_FLAT_LOCATOR and are used by browser objects (clsBrowser). See
Chapter 80 for descriptions of how instances of clsBrowser use flat locators.

CHAPTER 40 / THE FILE SYSTEM 469
Corrections and errata

% Iseek() and msgFSSeek

The WATCOM C Library Reference for PenPoint states that when calling Iseek(), the
requested file position may be beyond the end of the file.

This is not true in PenPoint 2.0 Japanese. When the requested position is beyond
the end of file and the file pointer is currently positioned at the end of file, both
Iseek() and msgFSSeek return errors. When the requested position is beyond the
end of file and the file pointer is not positioned at the end, they move the file
pointer to the end and do not return an error status.

The workaround for this problem is to use chsize() or msgFSSetSize to extend the
file, then use Iseek() or msgFSSeek.

% Typographical errors

Part 7 (File System)—typos TABLE 40-3
Volume, section, paragraph Old text on first Line}
New text on second line
11, 69.2.2, 95 Code example: OF_GET get;
(Remove)
11, 72.1.1, Table 72-2 fsDenyWriters Deny access to readers

fsDenyWriters Deny access to writers.

5 / ARCHITECTURAL REFERENCE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 41 / System Services

V What's new

% String composition functions

PenPoint SDK 2.0 Japanese has added six new routines to its Compose Text package This section replaces section
of functions that allow you to compose formatted text strings. The new functions ~ 79:3:3 in the Fenfoint

. . . Architectural Reference.
allow the construction of counted strings (as opposed to null-terminated ones) and

enable you to compose strings using resource files. These functions are:
¢ SComposeTextN
¢ VSComposeTextN
¢ SComposeTextL
¢ VSComposeTextL
¢ SComposeTextNL
¢ VSComposeTextNL
“Function definitions” on page 473 describes these functions in detail.

These Compose Text functions are similar to standard C stdio functions such

as printf() and sprintf(). They use positional format codes to copy a format
argument into an output string, after performing the required substitutions for
the format codes. Use these functions rather than sprintf() to create strings in your
user interface.

The Compose Text functions feature format codes other than those for the usual
data-type conversions. One format code and convention enables conditional inser-
tion of singular or plural word forms, such as “is” or “are.” Other format codes
make it possible to specify text strings and string lists stored as resources.

Although they accomplish the same thing, the Compose Text functions come in The Con’:poge Text functions

several varieties. Some allow you to include the strings for composition as argu- are ideally suited for
internationalization,

particularly because they
from resource files. In addition, some functions terminate the composed string with use resource files.

a null character and others do not. The API definitions for these functions are in
CMPSTEXT.H. The functions themselves are in SYSUTIL.LIB.

ments, others require pointers to those strings, and other functions get the strings

%y Format codes

The format string used in string composition contains one or more format codes.
Format strings can also contain literal text, though they need not. A format code
starts with a caret character (*), has one or more digits in the middle, and concludes
with a single letter.

472 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

The string arguments (as literal text, pointers or resource file identifiers) follow the
format string. The digits of the format code specify which argument to insert in
that position and the letter indicates the type of the argument. For instance, format
code A2s directs a function to insert the second argument as a string.

The following example fills buffer with the string a B b A ¢”:

SComposeText (¢buffer, &size, heap, U _L“a “2s b *1s c¢”, “A", “B");

Compose Text format code types TABLE 41-1
Type Code Description
s String. The argument or arguments are pointers to text strings.
r Resource ID of a string resource.
1 Group number and indexed list resource ID for string list. The group num-
ber and the list resource ID must be two separate arguments (in that order).
d U32 argument printed as a decimal number.
U32 argument printed as a hexadecimal number.
A Literal A character (**) for putting # in a string, There is no number.
{1} This delimiter format type permits you to conditionally insert singular or

plural word forms into text strings based on the value of an argument. Insert
the singular and plural forms of a word, in that order and separated by a |
character, between the braces. When you use this format type, the Compose
Text function examines the specified argument. If its value is 1, the function
inserts the first string; otherwise, it inserts the second string,

As an example of the {...|...} format type, the following function call generates
“There is 1 apple” if numApples is equal to 1 and “There are 5 apples” if
numApples is equal to 5:

{
SComposeText (¢buffer, &size, heap,
U _L(“There *1{is|are} ~1d “1{applel/apples}”), numApples);
}

%» Function arguments and memory management
The first three arguments for all Compose Text functions are identical:
¢ A handle (type PP_CHAR) to the buffer that will contain the composed string.

¢ A pointer (type P_U32) to the size of the buffer (In) or to the length of the text
string in the buffer (Out).

¢ An identifier of the heap used to allocate memory for the buffer
(OS_HEAP_ID).

All Compose Text functions return the length of the generated string in the length
argument. For those functions that compose null-terminated strings, the null is not
counted in the length.

CHAPTER 41 / SYSTEM SERVICES
What’s new

The Compose Text functions give you two ways to supply the buffer memory:

¢ You can supply a buffer handle and buffer length and set the heap ID to null.
If this technique is used, and the buffer is too small to hold the results, an
error status is returned.

+ You can specify a valid heap ID to have the function allocate memory for the
buffer from the specified heap. You must free the memory when finished with
OSHeapBlockFree(). If you pass null for the buffer length when specifying a
heap ID, you do not get the actual length of the string back.

%¥ Function definitions

SComposeText Composes a null-terminated text string from a format and
arguments.

VSComposeText Composes a null-terminated text string from a format and
a pointer to an argument list.

SComposeTextl. Composes a null-terminated text string from a resource-
file format and arguments. Unlike SComposeText, this function fetches
the format string from a string array in a resource file.

VSComposeTextl. Composes a null-terminated text string from a resourci-
fied format and a pointer to an argument list. This function differs from
VSComposeText in that it fetches the format string from a string array in
a resource file.

SComposeTextN Composes a counted string from a format and arguments.
Unlike SComposeText, the generated string is not terminated with a null
character.

VSComposeTextN Composes a counted string from a format and a pointer
to an argument list. Unlike VSComposeText, the generated string is not
terminated with a null character.

SComposeTextNL Composes a counted string from a resource-file format
and arguments. Unlike SComposeTextL, the generated string is not ter-
minated with a null character.

VSComposeTextNL Composes a counted string from a resource-file format
and a pointer to an argument list. Unlike VSComposeTextL, the gener-
ated string is not terminated with a null character.

% Getting the current locale

To determine the locale the PenPoint 2.0 Japanese operating system is currently
running in, send msgSysGetLocale to the system. The locale ID and a string
describing the locale are returned. msgSysGetLocale is defined in SYSTEM.H.

473

5 / ARCHITECTURAL REFERENCE

£

474 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

% Multibyte/Unicode conversion routines

The international conversion functions IntIMBToUnicode() and IntlUnicode-
ToMB() replace the PenPoint 2.0 Alpha functions Ustrcpy8to16() and
Ustrepy16to8(), respectively. Note that this a replacement of functionality, not a
renaming of functions. The interfaces for these new, replacement functions are in
ISR.H. Chapter 47, International Services and Routines, describes these and similar
international conversion functions.

P Corrections and errata

% Ugetc and Uungetc bugs

Ugetc() and Uungetc() are WATCOM’s Unicode implementations of getc() and
ungetc(). Ugetc() is supposed to return the next Unicode character from the input
stream. Ungetc() is supposed to push that character back onto the stream. There is
currently a bug in these routines. Ugetc() loses the upper half of the Unicode char-
acter after bufsiz (512) bytes have been read. Uungetc() faults when it tries to push
this character back just after a new buftfer is filled.

To work around this bug, include the following code immediately after the
#include for STDIO.H:

#undef Ugetc

#define Ugetc(_fp) FixedUgetc((_£fp))
static int FixedUgetc(FILE *file)

{

int tempChar, tempChar2;

tempChar = getc(file);

if (tempChar == EOF) return EOF;
tempChar &= O0xO00FF;

tempChar2 = getc(file);

if (tempChar2 == EQF) return EOF;
return (tempChar2 << 8 | tempChar); }

#undef Uungetc
#define Uungetc(ch, _fp) \
(CHAR) (ungetc((_ch) >> 8, (_fp)), ungetc((_ch)&0xFF, (_fp)))

% Renaming of 16-bit utility functions

The following functions have been renamed:

Renamed counted string functions

Version 1.0 Version 2.0
Umemccpy Uchrccpy
Umemchr Uchrchr
Umemcmp Ustrncmp
Umemcpy Ustrncpy
Umemicmp Ustrnicmp

Umemset Uchrset

CHAPTER 41 / SYSTEM SERVICES 475
Corrections and errata

Note that Ustrnemp, Ustrncpy and Ustrnicmp, unlike their predecessors, do not
copy null as any other character. They treat nulls as early termination, copying the
null and then stopping,.

These other 16-bit WATCOM functions have also been renamed:

Renamed WATCOM functions TABLE 41-3

Version 1.0 Version 2.0 Version 1.0 Version 2.0

asctimel6 __uasctime assert16 _uassert

atof16 _uatof atol16 _uatol

chdirl6 _uchdir creatl6 _ucreat

ctimel6 _uctime fdopen16 _ufdopen

fgetcl6 _ufgetc fgetchar16 _ufgetchar z
fgets16 _ufgets fopen16 _ufopen §
fprintf16 _ufprintf fputcl6 _ufputc ‘
fputcharl6 _ufputchar fputsi6 _ufputs 3
freopenl6 _ufreopen fscanf16 _ufscanf ;
getcl6 _ugetc getcharl6 _ugetchar g
getcwd16 _ugetcwd getenv16 _ugetenv :
gets16 _ugets isalnum16 _uisalnum ‘
isalphal6 _uisalpha isasciil6 _uisascii

iscntrl16 _uiscntrl isdigit16 _uisdigit

isgraph16 _uisgraph islower16 _uislower

isprint16 _uisprint ispunct16 _uispunct

isspacel6 _uisspace isupperl6 _uisupper

isxdigit16 _uisxdigit itoal6 _uitoa

ltoal6 _ultoa memccpyl6 _uchrecpy

memchr16 _uchrchr memcmpl6 _ustencmp

memcpyl6 _ustrncpy memicmpl6 _ustrnicmp

memsetl6 _uchrset openl6 _uopen

printf16 _uprintf putcl6 _uputc

putcharl6 _uputchar puts16 _uputs

removel6 _uremove renamel6 _urename

rmdirl6 _urmdir scanfl6 _uscanf

setenvl6 _usetenv sopenl6 _usopen

sprintf16 _usprintf sscanfl6 _usscanf

strcatl6 _ustrcat strchr16 _ustrchr

stremp16 _ustrcmp strempil6 _ustrcmpi

strepyl6 _ustrcpy strespnl6 _ustrespn

strdup16 _ustrdup strerrorl6 _ustrerror

stricmp16 _ustricmp strlenl6 _ustrlen

strlwrl6 _ustrlwr strncatl6 _ustrncat

strnemp16 _ustrncmp strncpyl6 _ustrncpy

strnicmp16 _ustrnicmp _ strnset16 _ustrnset

strpbrk16 _ustrpbrk strrchrl6 _ustrrchr

476 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Renamed WATCOM functions

TABLE 41-3 (continued)

% SYSTEM.H

These functions are no longer available in PenPoint 2.0 Japanese.

HASH.H

Version 1.0 Version 2.0 Version 1.0 Version 2.0
strrevl6 _ustrrev strset16 _ustrset
strspnl6 _ustrspn strstrl6 _ustrstr
strtod16 _ustrtod strtok16 _ustrtok
strtol16 _ustrtol strtoul16 _ustrtoul
struprl6 _ustrupr swabl6 _uswab
tmpnam16 _utmpnam tolower16 _utolower
toupperl6 _utoupper ubprintf16 _uubprintf
ultoal6 _uultoa ungetcl6 _uungetc
utoal6 _uutoa viprintf16 _uviprintf
viscanfl16 _uvfscanf vprintf16 _uvprintf
vscanfl6 _uvscanf vsprintf16 _uvsprintf
vsscanf16 _uvsscanf _Ubprintf U_bprintf
_ubprintf _u_bprintf _Ufullpath U_fullpath
_Umakepath U_makepath _umemccpy _uchrcepy
_umemchr _uchrchr _umemcmp _ustrncmp
_umemcpy _ustrncpy _umemicmp _ustrnicmp
_umemset _uchrset _Usplitpath U_splitpath
_Usplitpath2 U_splitpath2 _Uvbprintf U_vbprintf
_uvbprintf _u_vbprintf

% ecvt and fevt

The value in hashTableMaxFillPct has changed from 80 to 98. Now it also
includes HashFunctionString8() and HashCompareString8() for 8-bit strings.

Both sysSysServiceFile (SYSSERV.INI) and sysResFile (PENPOINT.RES) have been
removed. These two files are combined in locale.RES (for example, JPN.RES). SYS-
TEM.H also includes sysLocaleIndependentResFile (ALL.RES), msgSysGetLocale, a
SYS_LOCALE structure, an 8-bit sysGoldenMaster_8 and a resource ID for warn-

ings.

OSMeminfo, OSMemUselnfo, OSMemAvudilable

OSMemlnfo() is obsolete and has been replaced by OSMemUselnfo().

OSMemAvailable() returns the amount of swappable memory that can be allocated
before the caution zone is reached. This is the point at which the system begins put-

ting up notes warning that memory is getting low.

CHAPTER 41 / SYSTEM SERVICES 477
Corrections and errata

% Typographical errors

Part 8 (System Services)—typos TABLE 41-4

Volume, section, paragraph Old text on first line
New text on second line

I1, 74.6.5, 94 A timer request can continue to count down after a PenPoint computer is
powered on.

A timer request can continue to count down after a PenPoint computer is
powered off.

! 7 BESAR SSTELOWD I R E TSI YRR RN

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 42 / Utility Classes

PV What's New

¥» Matching hiragana or katakana text

In search and replace operations on Japanese text, you can request
theSearchManager to match text based on the type—hiragana or katakana—of the
specified find string. If the types are different, the target text is passed over, even if
the senses are identical.

To effect this search refinement, set the matchHiraKata flag TRUE. This flag is in
the SR_FLAGS structure, which is itself part of the SR_METRICS structure. Then call
msgSRInvokeSearch (SR_METRICS is part of the argument structure SR_INVOKE_
SEARCH). msgSRRememberMetrics also uses a pointer to SR_METRICS as an
argument.

Note the matchHiraKata flag is automatically set TRUE when the user selects the
Same Hira/Kata Sense option under Match.

% Adding gestures to Quick Help strings

RTF is no longer needed to embed gesture glyphs in Quick Help text strings in your
resource files. Because the representation of strings is now Unicode-based, all you
must do is type the Unicode code point for a gesture glyph (in hexadecimal) where
you want the gesture to appear. (These glyphs are defined in GLYPH.H.) You no
longer need to specify \\f63 to enter a gesture font and \\f0 to return from it.

You can still use RTF formatting commands in Quick Help text (such as \\line), and
you can still use the \qh macro to set up an RTF header (although it no longer does
any font mapping). However, you must remove all occurrences of {\\f63 ¢ (where ¢
is the gesture symbol) and \\f0 from your Quick Help strings and replace the \\63

sequence with the correct Unicode values.

The following code fragment shows a typical use of a Unicode-specified gesture in
Quick Help strings:

editMenuTag,

U-L(”Edit Command]|”)

U-L(”{\\qh Tap Edit to display an edit pad “)

U-L(”"with the selected text.\\line “)

U-L(”\\line “)

U-L(”You can also put the selected text in an edit “)

U-L("pad by drawing a Circle \xF621 gesture “)

U-L(”"on the selection.}”,)

Note that you must type Il to separate the title and the body of text, and that
you must preface each string with the L (or U_L) macro to provide 16-bit
compatibility.

480 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

This information on gestures in Quick Help strings replaces sections 84.3.3.1 and
84.3.3.2 in the PenPoint Architectural Reference.

% cIsNotePaper changes

%» API changes

cIsNPData includes two new messages, msgGetScribbleClass and msgGetTextClass.
When you subclass clsNPTextItem or clsNPScribbleltem, you should also subclass
cIsNPData and override the handlers for these two messages to have them return the
appropriate class. These message handlers are required because clsNotePaper instanti-
ates text and scribble objects on its own, and needs to be told when to use a subclass.
For this reason, you should not subclass cIsNPItem directly; you should only subclass
clsNPTextltem and cIsNPScribbleltem.

If you want to add different types of graphical objects, you can treat
clsScribbleltem in an abstract manner. However, if your implementation is not
complete, make sure that it satisfies all requirements of the NPScribbleltem API.

%» File format changes
In addition to API changes, clsNotePaper includes changes in file formats, particu-
larly for file import and export. It now imports Unicode text files. As with Mini-
Text, it requires a file suffix of .UNC for Unicode files. For Shift-JIS it expects files to
have suffixes of .SJS. As before, it expects ASCII files to have .TXT suffixes.

Import of .TXT files depends on locale. In the Japan locale, clsNotePaper imports
the file using the Shift-JIS interpretation of the ASCII character set. On the import
of files, clsNotePaper also supports the same word or bunsetsu handling (depending
on locale) that MiniText performs. It does not perform any taboo processing.

Export can be to Unicode or multibyte text files (Shift-JIS/ASCII). The multibyte
format that is used depends on the locale setting of the pen computer (Shift-JIS in
Japan, ASCII elsewhere).

¥ Tips and clarifications

% Cannot intercept export messages

Applications that need to modify their document’s files on export cannot detect an
export operation. If your application modifies the contents of its documents on
export, it must provide its own menu button to perform special export operations.

% msgimportQuery can arrive twice

Under certain race conditions, an application can get msgImportQuery twice.
Message handlers should not assume that they will receive msgImportQuery
only once.

CHAPTER 42 / UTILITY CLASSES 481
Tips and clarifications

% New stream disconnected status

stsStreamDisconnected has been added to STREAM.H to report disconnected con-
ditions in cIsMILAsyncSIO.

Typically, SIO clients should not attempt stream calls unless they are connected.
However, if the connected state of SIO changes to disconnected while in the middle
of an SIO stream call, the stream call will return stsStreamDisconnected instead of
stsFailed.

The difference is important. stsFailed return means that a client should or could
retry. However a stsStreamDisconnected return means that a client must not retry.
For one, there is no reason to retry since the call will continue to return immedi-
ately with the same stsStreamDisconnected status, possibly for ever, even if the
cable is reconnected. (The connection functionality in PenPoint 2.0 Japanese
involves messages so it requires that the message input queue be available.)

SIO clients will need to wait for the connected state to change before attempting
any stream call to SIO that can be done in a couple of different ways (they may be
observers of theSerialDevices service manager or may poll the service manager for
connected state information; see SERVICE.H or SERVMGR.H).

WP mowmaRE BRI SNTE IER M K PRI EUETER SN DA

% clsTable bug

There is a known bug in clsTable that causes the called table object to return stsOK
when it should return an error status. If you set the tbIRowPos field of the pArgs
structures to Nil(TBL_ROW_POS) when sending msgTBLColGetData or
msgTBLRowGetData, stsOK is returned. Nil(TBL_ROW_POS) is undefined for
these messages, and should cause the called object to return an error.

Clients must test the tbIRowPos field value in their TBL_COL_GET_SET_DATA and
TBL_GET_SET_ROW structures to ensure that it is not Nil before sending the mes-
sages.

msgTBLColGetData and msgTBLRowGetData are described in the PenPoint
Architectural Reference in Table 90-1 (section 90.5, “Using Table Messages”) and
section 90.13, “Getting Data.” clsTable interfaces are defined in TS.H.

%> Known bugs in the NotePaper component
Developers should be aware of the following bugs in MiniNote/NotePaper:

¢ Setting the paper width to 99999 confuses the horizontal scroll bar.

¢ Setting the line width to zero confuses MiniNote so that further width
changes do not take effect.

¢ Copying a selection that contains an embedded document from MiniText
into MiniNote results in the embedded document being replaced by a check
mark.

¢ The circle tap ® gesture is not targeted, while the circle © gesture is.

482 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

P Corrections and errata

% Geftting the current selection

Modify the fourth sentence of section 80.2.2 (in the “Using clsBrowser” chapter in
the PenPoint Architectural Reference) so that it reads: “These two messages take a
pointer to a FS_FLAT_LOCATOR structure in which the called object returns the
path or name of the cutrent selection.” The messages referred to are
msgBrowserSelection and msgBrowserSelectionDir.

% Classes that respond to search messages

Section 86.3 in the PenPoint Architectural Reference states that “clsText is the only
class that responds to the search and replace messages.” You should replace clsText
with clsTextView in this sentence.

% Reading and writing streams

Sections 79.3 and 79.4 in the PenPoint Architectural Reference are accurate in their
descriptions of how to use msgStreamRead and msgStreamRead TimeOut to read
communications streams. But some implications raised should be clarified. For a
serial communications stream, there is no reliable notion of “end of stream”; con-
ceptually, the byte stream is continuous, with no beginning or end. To read such a
stream, you should send msgStreamRead TimeOut only. Moreover, if you want to
make a nonblocking read of a serial stream, set the timeOut field (STREAM_READ_
WRITE_TIMEOUT) to zero before sending msgStreamRead TimeOut.

% Using the PenPoint gesture font

Table 84-2 on pages 188-190 of the PenPoint Architectural Reference lists the tags,
symbols, and ASCII values for the PenPoint gesture font. It is no longer accurate.
Gesture tags are now associated with glyph tags that represent Unicode values.
GLYPH.H contains the current list of glyphs and their associated Unicode values;
XGESTURE.H contains the current list of gesture tags and their associated glyphs.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 43 / Connectivity

V What’s new

clsModem has been re-implemented as a service. As a result, much of the material
covered in Chapter 97 of the PenPoint Architectural Reference, “Data Modem Inter-
face,” is no longer valid. This section describes the major conceptual changes and
summarizes the new procedure for using a modem service. Except where noted, it
replaces Chapter 97. Refer to MODEM.H for complete API definitions.

% Finding, binding to, and opening a modem
Since a modem is a service instance, you locate it, bind to it, and open it as you
would any other service. In this case, you must send a series of clsServiceMgr mes-
sages to the predefined service manager for modems, theModems. (A modem is
automatically associated with a serial port, so you no longer need to bind to and
open a serial port explicitly, as Chapter 97 describes.)

The following list summarizes the clsServiceMgr messages you must send initially.
These messages are described in greater detail in Chapter 94 in the PenPoint
Architectural Reference.

1 Find the modem service by sending msgIMFind. You pass theModems service
manager the name of the service; in the pArgs structure (IM_FIND), assign a
pointer to the service name to the pName field. If the service is found, you get
back a handle to that service. If it is not found, the return status is sts-

NoMatch.

If your application lets users choose a modem, send msgIMGetList to
theModems to get a list of UIDs for modem services. Then send
msgIMGetName to get the name of each service in the list and display these
names in a list. When a user selects one, assign the name to the pName field of
IM_FIND and send msgIMFind.

2 Bind to the service instance so that the service manager can add your applica-
tion to the observer list for the service. Your application should bind to the
modem service so that, when the status of the modem changes, theModems
will notify your application and all other observers (see Table 43-6, “Client
and observer notification messages,” on page 491). You bind to the modem
service instance by sending msgSMBind to theModems. In the message
argument structure (SM_BIND), set the handle field to the value returned by
msgIMFind and set the caller field to self.

484 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

3 Open the service instance by sending msgSMOpen to the modem service
manager (theModems). This message takes a pointer to an SM_OPEN_CLOSE
structure that contains the handle returned by msgIMFind, the caller (self)
and a pointer to an argument structure (pArgs) containing data specific to the
modem service.

4 If msgSMOpen returns stsOK, it also returns the UID of the opened modem
service in the service field of SM_OPEN_CLOSE. Assign this UID to a variable
of type OBJECT and specify this object in subsequent messages to the modem
until you close the modem.

The following code fragment demonstrates the locating, binding and opening

procedure:
IM FIND imf;
SM_BIND smb;
SM OPEN smo;
OBJECT myModem;
STATUS 5;

imf.pName = U_L("Hayes2400");

ObjCallRet (msgIMFind, theModems, &imf, s); // find/get the modem handle

smb.handle = imf.handle;

smb.caller = self;

ObjCallRet (msgSMBind, theModems, &smb, s); // bind to modem service

smo.handle = imf.handle;

smo.caller = self;

ObjCallRet (msgSMOpen, theModems, &smo, s); // open modem

myModem = smo.service;
Instead of steps 1 to 3 above, you can send msgSMAccess to theModems and get
back the UID of the modem service in the service field of a SM_ACCESS structure.
When your are finished with the modem service, send msgSMRelease to unbind

and close it. See SERVMGR.H for more information about these messages.

% Initialization
The object that opens a modem service (for example, your application) becomes its

client. Before it begins sending and receiving data through the modem, the client
should initialize the modem firmware and the serial I/O port.

%» Applying the default settings

You reset the modem firmware and the I/O port state to the default settings by
sending the modem-service instance msgModemReset. This message takes no
arguments. After sending this message, you can change the reset defaults selectively.
A typical usage, following our previous example, would be:

ObjCallRet (msgModemReset, myModem, Nil(P_ARGS), s);

The default modem firmware settings are:
¢ Auto-answer disabled.
Busy tone detection enabled, or as current modem option card settings.
¢ Command termination = carriage return (ASCII 13).

¢ Dialing mode from dialing environment.

CHAPTER 43 / CONNECTIVITY 485
What’s new

*

Dial tone detection enabled, or as current modem option card settings.
¢ Enable carrier upon connect.

¢ Escape code = ASCII 43.

¢ Local character echo disabled.

¢ Send command result codes (words).

Send verbal result codes.

L 2

L 2

Speaker control on until carrier detected, or as current modem option card
settings.

Speaker volume medium, or as current modem option card settings.

1

Default I/O port state settings TABLE 43-1 g‘
Setting $1I0_METRICS Field Default value ;E‘
baud rate baud Highest supported data mode baud rate g

o, if not available, 2400 G
data bits line.dataBits 8 bits (sioEightBits) g
stop bits line.stopBits 1 bit (sioOneStopBits) <
parity line.parity no parity (sioNoParity) "
RTS controlOut.rts true
DTR controlOut.dtr true
XON char flowChar.xonChar 0x11
XOFF char flowChar.xoffChar 0x13
flow control flowType.flowControl off (sioNoFlowControl)

%¥ Sefting I/O port state options

You can change the default I/O port state settings by sending msgSioSetMetrics to a
modem service. To discover what these settings are, prior to altering them, send
msgSioGetMetrics to the modem-service object. Other cIsMILAsyncSIODevice
messages that clsModem handles are msSiolnit, msgSioBreakSend,
msgSioControllnStatus, msgSiolnputBufferStatus, and msgSioInputBufferFlush.
Refer to SIO.H for descriptions of these messages.

The following code fragment demonstrates a typical use of msgSioSetMetrics:

SIO METRICS smetrics;

/* Initialize serial port to preferences */
ObjCallWarn (msgSioGetMetrics, myModem, &smetrics);
smetrics.baud = (U32)9600;

smetrics.line.dataBits = sioSevenBits;
smetrics.line.stopBits = sioTwoStopBits;
smetrics.flowType.flowControl = sioNoFlowControl;
ObjCallWarn (msgSioSetMetrics, myModem, &smetrics);

486

By

PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Initializing the modem

After the serial I/O port has been initialized, you can send clsModem messages to
set the desired features, control flags, and attributes of the modem. You can either
make these settings as a group by sending msgSvcSetMetrics. Or you can initialize
the modem by sending discrete messages (listed below).

If you elect to use msgSvcSetMetrics, you might first want to send
msgSvcGetMetrics to the modem-service object to obtain the current settings.
Both messages take a pointer to the argument structure SVC_GET_SET_METRICS,
whose pMetrics field points to a buffer containing MODEM_METRICS. This met-
rics structure consists of a collection of enumerated types that list mutually exclu-
sive settings for various modem features. These enumerated data types are also used
as argument structures in the messages that set individual options in the modem
service.

Table 43-2 describes the enumeration fields that make up MODEM_METRICS and
that are used by the messages that set discrete options. Table Table 43-3 lists these
discrete initialization messages; note that most of these messages take as pArgs the
enumerated value itself (which is 32 bits) and not a pointer to that value.

MODEM_METRICS fields TABLE 43-2
Type Field Possible Settings {default emphasized)
MODEM_DIAL_MODE mdmDialMode Dialing mode: pulse, touch-tone, client sup-

plies mode embedded in dial string, use current
dialing environment mode or current modem

Sfirmware dialing mode.
MODEM_DUPLEX_MODE mdmDuplexMode Half duplex, fill duplex.
MODEM_SPEAKER_CONTROL mdmSpeakerControl Modem speaker: off, on, off until carrier
detection.
MODEM_SPEAKER_VOLUME mdmSpeakerVolume Speaker volume: whisper, low, medium, high.
MODEM_TONE_DETECTION mdmToneDetection Busy tone and dial tone: detect neither, detect
both, detect busy tone only, detect dial tone
only.
MODEM_ANSWER_MODE mdmAnswerMode Type of calls to answer and report connection
about: data mode, fax mode, voice mode.
MODEM_AUTO_ANSWER mdmAutoAnswer Enable/ disable auto-answer.
U32 mdmAutoAnswerRings Number of rings before modem answers
MODEM_MNP_MODE mdmMNPMode Set MNP mode: disable, both modems must

support MNP levels 1-4, attempt to establish
MNP connection, LAPM connection.

MODEM_MNP_COMPRESSION mdmMNPCompression Enable/ disable MNP (class 5) compression.

MODEM_MNP_BREAK_TYPE mdmMNPBreakType How to handle breaks: don’t send break to
remote, empty data buffers before sending
break, send break when its received, send break
relative to data to be sent.

MODEM_MNP_FLOW_CONTROL mdmMNPFlowControl Flow control for MNP mode: none, XON/
XOFE RTS/CTR.

Discrete modem initialization messages

CHAPTER 43 / CONNECTIVITY 487
What’s new

TABLE 43-3

Message

msgModemSetAnswerMode

msgModemSetAutoAnswer

msgModemSetDial Type
msgModemSetDuplex

msgModemSetMNPBreakType
msgModemSetMNPCompression
msgModemSetMNPFlowControl

msgModemSetMNPMode
msgModemSetSpeakerControl

msgModemSetSpeakerVolume

Response mode

Takes
MODEM_ANSWER_MODE

P_MODEM_SET_AUTO_ANSWER

MODEM_DIAL_MODE
MODEM_DUPLEX_MODE

MODEM_MNP_BREAK_TYPE
MODEM_MNP_COMPRESSION
MODEM_MNP_FLOW_CONTROL

MODEM_MNP_MODE
MODEM_SPEAKER_CONTROL

MODEM_SPEAKER_VOLUME

Description

Filters the type of incoming call to answer
and to report connection on. (Some
modems do not have this capability.)

Disables or enables auto-answer mode.
The argument passed in is a pointer to
a structure containing MODEM _
AUTO_ANSWER and an S32 field for
the number of rings before answering.
Sets the mode for dialing

Sets the duplex mode (half or full) for

inter-modem communication.

Specifies how the modem handles a
break character when in MNP mode.

Sets MNP class 5 compression off and
on.

Sets the type of flow control to use

when in MNP mode.
Sets the MNP mode of operation.

Controls the behavior of the modem

speaker.

Sets the volume of the modem speaker.

In your code’s modem-initialization section or at any time while a modem service is

open, may also want to set the response mode of the modem service. The response
mode, set with msgModemSetResponseBehavior, affects how the modem-service

object responds to its client:

Respond via status

In this mode, the client sends a message to the modem

service, which then sends a command to the modem and then blocks,

wd
1>
&
o
[+
3
1w
b
o
3
2
&
il
=
o
-4
4
.
Fe]

waiting for the response from the modem. If a timeout period (specified in
the pArgs structure) elapses, stsTimeout is returned. Respond via status is
the default response mode; the default timeout periods are 2.5 seconds for
commands and 30 seconds for the connection.

Respond via message notification In this mode, the modem service acts as it
does in Respond via status mode. But in addition, it sends
msgModemResponse to the client. This mode is useful when you want to
return to handle other work (such as handling certain abort commands)
without waiting for a return. The client can post a request (via Object-
PostAsync) to the modem, thereby freeing up the execution thread so it
can process input events. See Table 43-6, “Client and observer notification
messages,” on page 491 for more on msgModemResponse.

488 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Transparent This mode essentially disables the modem service’s response
processing. Responses to modem commands remain unaltered in the
input data stream. It is the responsibility of the client to read and interpret
these responses. They must ensure that the expected sequences of com-
mands are sent (via msgModemSendCommand or through the discrete
command messages).

The advantage of transparent mode is that there is less overhead in pro-
cessing characters received from a remote modem. Aside from better per-
formance, your application is less likely to have character overruns at high
baud rates. If decide to operate in transparent mode, you might want to
switch to it after initializing the modem and establishing a connection in
one of the other modes.

A related message, msgModemGetResponseBehavior, passes back to the client the
current modem response mode and timeout values. Refer to MODEM.H for details
on msgModemSetResponseBehavior and msgModemSetResponseBehavior.

¥ Establishing a connection (outbound)

If you are initiating an exchange of data, you use clsModem messages to dial and
connect with the remote modem.

To dial another modem, send msgModemDial to the modem service. This message
takes a pointer to a MODEM_DIAL structure that contains the field dialString,
which is of type DIALENV_DIAL STRING. Assign to this field the phone number
(in the form of a text string) of the remote modem.

The phone number usually contains the number to dial. It can also contain a
number of dial string modifiers defined by the AT command set (although this is
not required). These dial string modifiers are described in the section, “Dial string
modifiers”, in Chapter 97 of the PenPoint Architectural Reference.

Although this phone-number string would normally be something that a user
enters or selects from an address book, the following code fragment shows how
dialing would occur with a hard-coded string.

MODEM DIAL dial;
STATUS s;

dial.dialstring = U_L"(415-345-7400");

ObjPostAsync (msgModemDial, myModem, &dial, s);
If msgModemDial returns stsOK, a connection is established with the remote
modem. You can begin sending and receiving data. You can also send
msgGetConnectionlnfo to find out the details of the connection. When you are
finished, send the modem service msgModemHangUp (it takes no arguments).
This message terminates the connection and hangs up the phone.

CHAPTER 43 / CONNECTIVITY
What’s new

% Waiting for a connection (inbound)

When a remote modem attempts to make a connection with your local modem,
you can instruct the modem-service object to automatically answer the phone or
you can answer the phone yourself with clsModem messages.

To instruct the modem to answer the phone automatically, set the
MODEM_AUTO_ANSWER enumerated type to mdmAutoAnswerEnabled, specify
the desired number of rings to wait, and send msgSvcSetMetrics or msgModem-
SetAutoAnswer (see “Initializing the modem,” on page 486). When another
modem dials your modem’s number and the phone rings, the modem service takes
the phone off-hook and sends the client the notification message
msgModemConnected. The client can then send msgModemGetConnectionInfo
to get more information about the connection.

To answer the phone yourself, set MODEM_AUTO_ANSWER to
mdmAutoAnswerDisabled and send msgSvcSetMetrics or msgModemSet-
AutoAnswer. When the phone rings, the modem service notifies the client via
msgModemRingDetected. The client answers the phone by sending msgModem-
Answer to the modem service (no arguments required). Once connection is estab-
lished, the client can send msgModemGetConnectionlnfo to get more
information about the connection.

Transmitting and receiving data

Once you have established a connection with a remote modem, you can begin
reading or writing data. You effect these functions through clsStream messages.
Send msgStreamWriteTimeout to transmit data to the modem service (and ulti-
mately to the remote modem); send msgStreamRead Timeout to read the stream of
data coming into the modem service. See Chapter 79 in the PenPoint Architectural
Reference or STREAM.H for more information on these messages.

If the connection between modems is lost, the client receives msgModem-
Disconnected.

Terminating the modem service

To end a modem service, first make sure there is no connection established. Then
send msgSMClose to theModems to close the service. This message takes a pointer
to a SM_BIND structure, which contains:

handle Set to the service handle (obtained early in the procedure via
msgIMFind).

caller Set to the UID of the modem-service client (usually self).

When the message completes successfully, it returns stsOK. Finally, remove your
client from the service’s observer list by sending smgSMUnbind to the service man-
ager for modems (theModems). If you had opened and bound a modem service
through sending msgSMAccess, close and unbind that service by sending
msgSMRelease.

489

5 / ARCHITECTURAL REFERENCE

490 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

% clsModem messages

See “Initializing the modem,” on page 486 for a description of msgSvcSetMetrics.
Refer to Table 43-3 for a list of discrete modem initialization messages.

Modem service creation and initialization messages TABLE 43-4

Message Takes Description

msgNewDefaults P_ MODEM_NEW Initializes the MODEM_NEW structure to

: default values.

msgNew P_MODEM_NEW Creates a new instance of a modem service.
Modem service request messages TABLE 43-5

Message Takes Description

msgModemAnswer nothing Immediately answers a telephone call.
msgModemDial P_MODEM_DIAL Dials a remote modem and attempts to

establish a connection.

msgModemGetConnectionInfo P_MODEM_CONNECTION_INFO Passes back information about the current
connection. This information consists
of baud rate, connection type (standard,
LAPM and MNP) and MNP class (if
applicable).

msgModemGetResponseBehavior P_MODEM_REPONSE_BEHAVIOR Passes back the current modem response
mode and the current command-to-
response timeout values.

msgModemHangUp nothing Hangs up and disconnects to terminate a
connection.

msgModemOffHook nothing Picks up the phone line.

msgModemOnline nothing Forces the modem online into data mode.

msgModemReset nothing Resets the modem firmware, I/O port state
and service state to default values.

msgModemSendCommand P_MODEM_SEND_COMMAND Sends a command to the modem.

The command strings are from the

AT command set (see section 97.4 in the
PenPoint Architectural Reference). In the
argument structure you can also send a
timeout value that supersedes any timeout
specified via msgModemSetResponse-
Behavior. The response to the command
is returned via the argument structure.
Clients should use this message only to
obtain modem behavior unavailable
through other messages in the clsModem
API. They are responsible for ensuring that
commands altering modem registers do
not adversely affect clsModem.

msgModemSetCommandState nothing Sets the modem into command mode.

CHAPTER 43 / CONNECTIVITY 491
What’s new

Modem service request messages TABLE 43-5 (continued)

Message Takes Description

msgModemSetResponseBehavior P_MODEM_RESPONSE_BEHAVIOR = Set the modem’s response mode and the
command-to-response timeout values.
(See “Response mode,” on page 487 for a
description of available response modes.)

msgModemSetSignallingModes P_MODEM_SIGNALLING_MODES Restricts the operation of the modem
within specified voiceband and wideband
signalling modes or standards.

The modem service sends two kinds of notification messages, one to its client and
one to its observers. There are several client notification messages, but only one
observer notification message, msgModemActivity.

In order for the client to receive client notification messages, the response mode
must be set to Respond via status (msgModemSetResponseBehavior). Observer
notification messages are sent to all objects on the modem service’s observer list;
they can be objects other than the client of the modem service.

5 / ARCHITECTURAL REFERENCE

Client and observer notification messages TABLE 43-6
Message Takes Comments
msgModemActivity MODEM_ACTIVITY Observer notification. Informs observers of

a change in modem activity. Passes a pointer
to MODEM_ACTIVITY, which enumerates
possible modem states.

msgModemResponse P_MODEM_RESPONSE_INFO Client notification. Provides the response
to a previous command or request sent to
the modem object. The response behavior
must be set to mdmResponseViaMessage
via msgModemSetResponseBehavior.
A pointer is passed in to MODEM_
REPONSE_INFO, which enumerates
possible responses.

msgModemConnected . nothing Notifies client that the modem has con-
nected with a remote modem.

msgModemDisconnected nothing Notifies client that the current connection
has been terminated.

msgModemRingDetected nothin Notifies client that a ring indication has
8 g 2 : g
been received from the modem.

msgModemTransmissionError nothing Notifies client that an error was detected
during the transmission (sending or receiv-
ing) of data. The modem service typically
sends this message as a result of a data-
framing error or some other error generated
by low-level modem link protocol.

msgModemErrorDetected nothing Notifies client that an unexpected error
indication was received from the modem.

492 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

P Corrections and errata

% Reading and writing with the serial port

Section 95.2.4 of the PenPoint Architectural Reference erroneously calls the pointer-
to-buffer field of STREAM_READ_WRITE pReadBuffer. It should be called pBuf,
and its definition should read:

A pointer to a buffer that receives data read from the stream or that contains
data to be written to the stream. On msgStreamRead, the buffer must be big
enough to hold at least numBytes of data.

Note that this correction applies also to the definition of the
STREAM_READ_WRITE fields in section 79.3 in the PenPoint Architectural Reference.

Predefined service managers

GO defines a number of service managers in UID.H. Table 43-7 defines the service
managers only listed in section 94.2.1 in the PenPoint Architectural Reference.

Predefined service managers

TABLE 43-7

Service Manager

Function

theMILDevices Maintains and manages the list of current MIL services (device drivers).
theParallelDevices Maintains and manages the list of current parallel port devices.
theAppleTalkDevices Maintains and manages the list of current AppleTalk port devices.
theSerialDevices Maintains and manages the list of current serial port devices.
thePrinterDevices Maintains and manages the list of all devices that support printers.
thePrinters Maintains and manages the list of all current printers.
theSendableServices Maintains and manages the list of all services that have interfaces
with the Send Manager and whose names appear in the Send menu
(for example, fax and E-mail).
theTransportHandlers Maintains and manages the list of current transport-level network proto-
col handlers.
theLinkHandlers Maintains and manages the list of current data-communication services
for physical network devices (such as LocalTalk).
theHWXEngines Maintains and manages the current list of installable handwriting-trans-
lation engines.
theModems Maintains and manages the list of instances that handle communication

theHighSpeedPacketHandlers

theDatabases

over a type of modem.

Maintains and manages the services that perform high-speed packet
transfer over parallel and serial ports.

Maintains and manages services that implement PIA databases.

CHAPTER 43 / CONNECTIVITY 493
Corrections and errata

% Typographical errors
Part 10 (Connectivity)—typos TABLE 43-8

Volume, section, paragraph Old text on first Line
New text on second line

II,94.1,9 3 The services architecture can be though of as being..
The services architecture can be thought of as being...

II, 99.3.4, 91 You must add any servicespecific behaviors...
You must add any service-specific behaviors...

5 / ARCHITECTURAL REFERENCE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 44 / Resources

¥ What's new

% Resource file utility routines

New functions defined in RESUTIL.H help your application read strings in from its
resource files (theProcessResList). Table 44-1 defines all the resource file utility
functions and marks those that are new.

Resource file utility routines TABLE 44-1

Function New? Comments

ResUtilLoadObject Loads an object from theProcessResList.

ResUtilLoadString Loads a string from theProcessResList. You can allocate memory by
specifying a buffer and a length or by specifying a heap to allocate from.

ResUtilGetString Yes Gets a string item from theProcessResList.

ResUtilAllocString Yes Reads a string item from theProcessResList and puts it in allocated
memory.

ResUtilLoadListString Loads a string from a string array in the application resource list (thePro-

cessResList). It uses the group and indexed resource ID to construct the
resource ID of a string list and the index into it. You can allocate mem-
ory by specifying a buffer and a length or by specifying a heap to allocate
from.

ResUtilGetListString Yes Gets an item from a string list in the application’s resource list. It uses the
group and indexed resource ID to construct the resource ID of a string
list and the index into it. You can allocate memory by specifying a buffer
and a length.

ResUtilAllocListString Yes Gets an item from a string list in the application’s resource list. It uses the
group and indexed resource ID to construct the resource ID of a string
list and the index into it. You can allocate memory by specifying a heap.

All of these functions are shortcuts to using msgResReadData. They are imple-
mented in RESFILE.LIB.

% New system preferences
The system preference file (PREEH) contains several new preferences and some new

functions for accessing and manipulating preferences. These items include:

¢ New preferences for fully enclosed (Japanese-style) character box height and

width.

& New preference for import/export data exchange format (1983 JIS
vs. 1978 JIS).

496 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

¢ The function PrefsIntlDateToString(), which returns a string containing the
Unicode representation of the formatted date based on the current user pref-
erence. Use this function instead of PrefsDateToStringy().

¢ The function PrefsIntlTimeToString(), which returns a string containing the
Unicode representation of the formatted time based on the current user pref-
erence. Use this function instead of PrefsTimeToString().

¢ New tag tagBSAppAutoZoomDocument, which identifies the document to
be automatically zoomed when PenPoint boots. This replaces the AutoZoom
string in ENVIRONLINIL.

¥ New resource group

A new resource group in PenPoint SDK 2.0, called resGrpMisc, allows developers to
read in strings that fall into a miscellaneous category (that is, resources that are not

Toolkit or Quick Help strings).

% New and renamed string resource agents

In PenPoint SDK 2.0, the names resStringResAgent and resStringArrayResAgent
now refer to 16-bit string resources. The two resource agents for strings that in
PenPoint 1.0 had these names have been renamed: resStringResAgent is now
resString8ResAgent, while resStringArrayResAgent is now resString8ArrayRes-
Agent.

W Tips and clarifications

% msgResWriteData does not copy pData

You send msgResWriteData to file some data in an object file, passing a pointer to
the data to be written. If this is inside a msgSave handler, clsResFile has not been
written when msgResWriteData returns; clsResFile has just queued it for writing
in the future.

If (P_RES_WRITE_DATA)pArgs->pData points to data on the stack, it will probably
be corrupt when clsResFile unwinds and writes the data. If pData points to allo-
cated memory, there’s no easy way to know when it’s safe to free it (you could post
self a message to free it).

clsResFile’s queued-write behavior is not a complicated multi-threading subtask.
Object filing starts when someone tells clsResFile to write an object; clsResFile tells
that object to save. If one object sends a message to write another object or data
while it’s saving, clsResFile queues the write. When msgSave returns, control is
returned to clsResFile, which then processes queued writes. It all takes place by
ObjectCall within one task. Just remember that clsResFile is in the driver’s seat.

% Saving bitmap editor resources

If while using the bitmap editor you save a bitmap to a resource file, make sure the
file has a name different from any existing resource files. If you save a bitmap to an
existing resource file, the bitmap will be appended to the existing file.

CHAPTER 44 / RESOURCES 497
Corrections and errata

P Corrections and errata

¥ Typographical errors
Part 11 (Resources)—typos TABLE 44-2

Volume, section, paragraph Old text on first fine
New text on second line

11,102.2, 96 Code example (twice): ObjectCall(... clsFileHandle,...)
Code example (twice): ObjectCall(...,clsResFile,...

5 / ARCHITECTURAL REFERENCE

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 45 / Installation API

V What's new

» KKC engine installation

Several new API enhancements make possible the installation and deinstallation Since KKC Engines are FenFoint
of kana-kanji conversion (KKC) engines. In the user interface, these changes show ~ ervices, the Disk Viewer shows

. . . . all installable services on the
up in the KKC engines page of the Installed Software section of the Settings note- | "~ " 2 KKC Engines.

book. This page lists the installed KKC engines and lets users perform the normal [fyou install an ordinary
service from the KKC page (or
. . . - vice versa), it finds ite way to
tap the Install menu item, or when they select the KKC engines view within the the propez Installed 50%531,6
Connections notebook, PenPoint 2.0 Japanese creates a disk viewer that shows all page.

installable KKC engines on the selected volume.

operations for setting the current engine, deleting an engine, and so on. When users

%v Install Manager class

PenPoint SDK 2.0 has a new class of installation managers, clsKKClInstallMgr, that
handles the installation and deinstallation of KKC Engines. This class is a subclass of
clsServicelnstallMgr. The new public header file KKCIMGR.H documents the API
for implementing cIsKKClnstallMgr.

At boot time, the INSTALL.DLL creates cIsKKClInstallMgr and a single well-known
instance of it, called thelnstalledKKCEngines. The cIsKKClnstallMgr makes the

first KKC Engine installed the current engine.

Before installation, KKC engines are in the same directory as services
(\2_0\PENPOINT\SERVICE). Once they are installed, however, KKC engines live in
their own subdirectory, \PENPOINT\KKC. In order for a service to be recognized as a
KKC engine, its directory must be stamped differently: appAttrClass must have the
value thelnstalled KKCEngines (01000416) instead of thelnstalledServices
(01000240).

%y KKCCT class

The KKC Character Translator class participates as a client in the protocol defined

by cIsKKClInstallMgr. This protocol enables clients to open and close engines and
provides dynamic notification of engine changes. User interface elements dynami-
cally track the users’ preferences for the current engine anywhere that KKC happens
in the system. See KKCIMGR.H for definitions of the protocol.

%7 KKC class

cIsKKC provides certain default behavior for deinstallation. Specifically, it responds
to msgSvcTerminate, msgSvcTerminateOK, and msgSvcClassGetMetrics.

500 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

% Installation routing via appAtirClass

To facilitate the boot-time installation of services and applications, the processing
of .INI files has changed. Instead of the INI filename determining the destination
installation manager, each installable in an INI file is sent to the installation man-
ager designated by the appAttrClass attribute on the installable.

If the attribute is not a valid installation class, the item is sent to the installation
manager designated by the name of the INI file being processed. Although this
change implies that APPINT and SERVICE.INI could be collapsed into a single file,
they remain separate.

W Tips and clarifications

% Other installation information

There are messages in SYSTEM.H to locate the active area, and messages in
AUXNBMGR H to locate particular auxiliary notebooks on the Bookshelf.

PenPoint 2.0 by default doesn’t consider theSelectedVolume something that it dis-
plays in a browser, hence the user can’t see theSelectedVolume in Connections or
any other list of attached volumes. This is why in DebugTablet mode, you can’t
install software from the hard drive. Setting the B800 debugging flag overrides this.

P Corrections and errata

% Installation clarifications for production PenPoint

Chapter 110, “Organization of Distribution Volumes,” in the PenPoint Architec-
tural Reference doesn’t mention the \PENPOINT\SYS\LOADER database of code. This
is a key concept on a pen computer. There’s no \PENPOINT\APP; instead application
code is copied to \PENPOINT\SYS\LOADER and renamed after the EXE and DLL
Iname strings. On a cold boot, PenPoint uses attributes stamped on files in the
loader database to determine the order in which to load these .DLL and .EXE files—
there’s no APPINI on a pen computer.

The hierarchy descriptions in Chapter 110 are for the PenPoint configuration for
the SDK, not the pre-set configuration on pen computer installation disks or the
actual configuration of a pen computer running PenPoint.

On a running PenPoint machine, there typically is nothing 6u#\PENPOINT\SYS and
\PENPOINT\BOOT\ENVIRON.INL There’s no other .INI files in the BOOT directory
and there is no \PENPOINT\APP

% Erroneous Directory

Pages 383 and 388 of the PenlPoint Architectural Reference, have diagrams showing a
\PENPOINT\SYS\DOC directory. The directory is \PENPOINT\SYS\Bookshelf.

CHAPTER 45 / INSTALLATION API 501
Corrections and errata

»» Dynamic Link Libraries

Chapter 111 of the PenPoint Architectural Reference on Dynamic Link Libraries
(DLLs) requires several corrections and clarifications.

%r Minor version numbers

Section 111.3 in the PenPoint Architectural Reference claims that the minor version
number (the one in parentheses in the dll-id string) is optional and “is ignored by
the operating system when it determines whether a DLL is already loaded in the
PenPoint computer.” Section 111.5 in the PenPoint Architectural Reference says that
“the application monitor does not compare minor version numbers.” Both state-
ments are wrong. The application monitor does take the minor version number
into account if the rest of both dll-ids are identical. If a DLL is being installed and a
DLL with the same company name, module name and major version number is
already installed, the application monitor installs the new DLL only if it has the
higher minor version number.

%¥ Deinstallation

Section 111.5 in the PenPoint Architectural Reference states that “when an applica-
tion is deinstalled, the application monitor again opens the corresponding .DLC file
and compares its dll-ids against the currently loaded dll-ids.” Not true. Once an
application is installed on a running PenPoint system, there might not be any
“corresponding .DLC file” to open (for example, the file is on an installation disk).
So, when it deinstalls an application, the application monitor gets the application’s
dll-ids from the attributes stamped in the \PENPOINT\SYS\LOADER database for
that application.

What happens next is as described in 111.5. The application monitor matches the
to-be-deinstalled dll-id against the application’s dll-ids and, if there is a match, dec-
rements the dll-id reference counter. If the reference counter becomes zero, the
application monitor deinstalls the DLL.

%» Naming conventions

Section 111.4in the PenPoint Architectural Reference is mistaken about the naming
conventions for an application directory, an application’s .EXE file and its .DLC file.
It is not true that “the .DLC file must have the same name as the application direc-
tory and the executable file.” A simple application might have only an executable
file (that is, no DLLs); in this case, the name of the executable file should be the
same as that for the application directory. Otherwise, the .DLC file should have the
same name as the application directory; the name of the executable file can be any
valid DOS filename, as long as it’s referenced in the .DLC file.

In light of these changes, the examples cited in section 111.4 need to be updated.
An application with the PenPoint name Graph it Right is stored in the directory
\PENPOINT\APP\Graph It Right. If the application has no DLL files, the executable file
is named Graph It Right. EXE. If the application has DLLs, there is a Graph It Right. DLC
file in the application directory; this file lists the dll-ids and DOS pathnames of the
application’s DLL files and executable file in order of dependency.

5 / ARCHITECTURAL REFERENCE

502

PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Let’s say (as in the section 111.4 example) that the executable file in the Graph It
Right directory is named GRAPHER.EXE. The application’s one DLL file is named
FORMS.DLL. Therefore, the application’s .DLC file is name Graph It Right.DLC
(not grapher, as in the example) and it contains two lines:

GO-forms_dl1-V1(2) FORMS.DLL
GO-Grapher_exe-V1 GRAPHER.EXE

Minimum operating system version

In its last sentence, section 111.8 in the PenPoint Architectural Reference says that
“an application can specify the minimum operating system version it will run under
at installation time.” Although an application can no longer specify the minimum
operating system version, it can still accomplish the same end.

PenPoint SDK 1.0 has in the pArgs structure for msgSave (OBJ_SAVE) the fields
minAppVer and minSysVer. The minAppVer, once used to specify the minimum
version of PenPoint for an application, is now obsolete. (minSysVer is used for a
different purpose: it helps to prevent the restoration of a system-synchronized
object from a resource file to an older version of PenPoint that may not understand

the filed format.)

An application, at initialization time, can send the message msgGetSysVersion to
obtain the current version number of PenPoint. If that version is incompatible with
the application, the application can then do something in response, such as dis-
playing a warning message and exiting.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 46 / Writing PenPoint Services

V What’s new

PenPoint 2.0 Japanese contains no new features, API, or functions for inclusion in
this chapter.

¥ Tips and clarifications

% MIL services and other services

Some readers of the PenPoint Architectural Reference thought that section 93.4.2 did
not clearly explain the difference between MIL services and other services. One one
level, the difference is in function: MIL services generally implement objects that act
as device drivers for a type of device. Other services operate at a more abstract level:
they are removed from the hardware but have interfaces with MIL services.

But there is a more essential difference. The principle difference between MIL ser-
vices and other services lies in the use of protected memory. A MIL service com-
prises two DLLs. One runs as a protected task in Ring 0 (protected) memory.
Written in procedural code, this DLL controls and responds to the device itself.
Another DLL in Ring 3 memory provides the API for applications and other ser-
vices. This DLL, written in object-oriented code, mediates between these client
objects (applications and regular services) and the Ring 0 code.

Non-MIL services can implement many things. The following is a partial list:
¢ Connectivity services (for printing, faxing, E-mail, and so on).
@ Network protocol stacks (using chain of targeted services).
¢ Installable file systems.
Database engines.
¢ Handwriting engines.

Writing a MIL service is not a trivial matter. If you intend to write a MIL service,
refer to the HDK documentation for information on how to proceed.

% theServiceManagers

There is a problem with the well-known list theServiceManagers in PenPoint. Its
entries are not the UIDs of the currently existing service managers. Rather, the
entries are pointers into stack frames that have disappeared. When a service man-
ager is created, it does add an entry to theServiceManagers, but what it adds is a
bogus pointer into the stack rather than its own UID.

504 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

This situation leads to a couple of effects:

¢ If your service A targets service B and tries to bind to it before service B’s ser-
vice manager exists, the delayed bind does 7ot automatically happen (as docu-
mented and expected) when B’s service manager gets created. That’s because A
is waiting for B’s service manager UID to get added to theServiceManager, and
that never happens. If B’s service manager does exist, there’s no problem.

¢ If (as documented in SERVMGR H) you observe theServiceManagers you will
get notified (via msgListNotifyAddition) when a service manager is created.
However, there’s no way of knowing which service manager it is.

If you're waiting for a particular service manager to be created, first observe
theServiceManagers. When you receive msgListNotifyAddition, check pArgs->list
to make sure theServiceManagers is sending the notification. Then send msgObject-
Valid to clsObject, passing in the UID of the service manager that youre waiting
for; the response from clsObject tells you whether this service manager now exists.

% Responding to msgTrackProvideMetrics

When a service has the autoMsgPass style bit set to TRUE, it forwards all messages
that are not clsObject, clsService, or clsOption messages to its target service. One
such message can be msgTrackProvideMetrics. For example, if the service is the
client of a clsFrame window, it will receive msgTrackProvideMetrics when the
window is dragged around on the screen.

Most services do not need to handle msgTrackProvideMetrics. However, if the ser-
vice’s target is not opened, a stsSvcTargetNotOpen will be returned when
clsService attempts to forward the message to the target. This could create a
problem if the caller (of msgTrackProvideMetrics) is expecting either stsOK or
stsMessagelgnored before proceeding further. In our clsFrame example, msgTrack-
ProvideMetrics is sent to the frame’s client (the service) after clsFrame already pro-
vides an adequate track metrics. The idea is to let the frame’s client have a crack at
poking the track metrics. If the service returns stsSvcTargetNotOpen instead of
stsMessagelgnored, when the user drags the clsFrame window, a black box might
appear briefly, but no tracker is created, and thus the window remains where it was.

To fix this problem, simply return stsMessagelgnored in response to
msg TrackProvideMetrics. In your method table, you can say:
{msgTrackProvideMetrics, "StsMessageIlgnoredMsgHandler",
|
See CLSMGRH for examples of other default message handlers returning stsOK,
stsFailed, and so on.

(4

< ¥

CHAPTER 46 / WRITING PENPOINT SERVICES 505
Corrections and errata

Deinstalling dependent services and applications

PenPoint 2.0 Japanese allows you to bundle applications and services together. For
example, you might ship a database user interface application along with the data-
base service. The service, in this case, is referred to as the dependent service. This
association is made by putting the database service and the SERVICE.INI file in the
application’s directory. Deinstallation of the application and service happens when
the application is deinstalled.

If you chose not to bundle your application and service together, you need to be
very careful about the programmatic dependencies between the two items. You
must be especially careful to test deinstallation, because it is possible to write code
in such a way that once the application is deinstalled, the service would fail to dein-
stall, thereby leaving the service permanently installed.

Corrections and errata

The Service Class and class instances

The last paragraph of section 116.4.2 in the PenPoint Architectural Reference says
that “the service can also tell its openers the entry points to specific procedural
interfaces (if any).” But it neither describes how this is done nor refers to another
section containing the general procedure. If you want your service to provide its
clients with a function interface, thereby saving the overhead of object calls, it
should respond to msgSvcGetFunctions. (This message is merely mentioned in
Table 117-1 of the PenPoint Architectural Reference.) To do this, it must be a sub-
classed instance of clsService (which, by default, returns a null pointer.) Your ser-
vice should pass back to the opener a pointer to a table of function entry points.
The format of this pointer block is up to the service to define. See SERVMISC.H for
more information about msgSvcGetFunctions.

Handling msgSvcOpenDefaultsRequested

In section 117.7.2.4 of the PenPoint Architectural Reference, delete the last sentence
of the third paragraph. (This sentence is in parentheses and begins “The METH-
OD.TBL in the TESTSVC directory does not specify an ancestor call for msgSv-
cOpenDefaultsRequested...”) The method table for the TESTSVC sample service
does specify objCallAncestorBefore for msgSvcOpenDefaultsRequested.

In box and Out box changes

There is an In box/Out box bug that can affect an existing client of the In box/Out
box service. The fix for this bug changes how a client enables or disables an Out box
service.

You should use this
function-interface
approach only if you are
having performance
problems with your service.

5 / ARCHITECTURAL REFERENCE

506 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

The change adds an explicit message for a client to programmatically enable an Out
box service. In 1.0 (and 1.0a), enabling an Out box service means that the service
becomes the owner of the target. For example:

ObjCallRet (msgSvcGetTarget, anOutboxService, &getTarget, s);

setOwner.handle = getTarget.targetHandle;

setOwner.owner = anOutboxService;

ObjCallRet (msgSMSetOwner, getTarget.target.manager, &setOwner, s);
In PenPoint 1.01 and PenPoint 2.0 Japanese, the above code becomes:

ObjCallRet (msgIOBXSvcEnableService, anOutboxService, (P_ARGS)TRUE, s);
And the default behavior of msglOBXSvcEnableService is to do exactly what is

done in PenPoint 1.01 and PenPoint 2.0, namely to make anOutboxService the
owner of its target.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 5 / ARCHITECTURAL REFERENCE SUPPLEMENT

Chapter 47 / International Services
and Routines

Falling under the umbrella designation of International Services and Routines area Note that, despite the title
collection of functions, macros, structures and defined values that help developers ~f ‘International Services
. and Routines,” there are no
internationalize application code. With the international routines, you can write “utornational” services in

one code base for your application that works naturally in several countries. version 2.0 of Penpoint. In
. L . . .) future versions, routines will
Internationalization in PenPoint makes use of both the international routines and call services to implement

resource files. Resource files can hold the Unicode text strings—in multiple lan- E/’Icernat:]clmalization more
o . : oroughly.
guages—that an application requires for its UI and other purposes. o

Your application will probably need to use the international routines if it must take
into account anything that is culturally dependent, such as time and date formats,
hyphenation rules, units of measure, and so on. (Of course, your application must
also use Unicode for its strings.)

Part 2: PenPoint Internationalization Handbook, describes all aspects of writing your
code for an international market.

International and related header files

Header files TABLE 47-1

Header File Description

ISR.H Prototypes the functions and defines structures for the PenPoint international
routines. Some routines perform text delimiting, hyphenation, data-type
conversion and the conversion and parsing of dates and times. Other routines
compare, sort and compress strings, and perform conversions involving
dialects, character sets, units of measure and other linguistic elements. The
routines themselves are in INTL.LIB. See “International routines” on
page 508 for descriptions of these routines.

ISRSTYLE.H Contains definitions of style values used as parameters in the ISR.H routines.
Most international routines allow the client to specify a style for the opera-
tion. Styles modify the locale and must be appropriate to the routine. For
example, some styles enable the client to specify dates in one of the four
(or more) formats possible in each western language.

GOLOCALE.H Defines the locale values used as parameters in the ISR.H routines. These
values are of type LOCALE_ID, which is itself composed of three values:
language, dialect, and country. (See description of INTL.H, below.) Values
for weights and measures, currencies, time zones, eras and other international
units are also defined. In addition to a list of current locale values,
GOLOCALE.H specifies the required resource IDs for the lists containing the
text strings, contains some macros that make tags for locale values, and
defines some common locales. Note that this header file was named
LOCALE.H in earlier versions of PenPoint.

508 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Header files TABLE 47-1 (continued)

Header File Description

CHARTYPE.H This file defines some classification tables for Unicode characters and pro-
vides a set of macros for testing and manipulating characters as specified in
those tables. These macros are similar to those defined in CTYPE.H for the
conversion and testing of ASCII characters. See “Character conversion and
testing macros” on page 512.

INTL.H This file defines the LOCALE_ID used as a parameter in the international
routines. It also contains the macros that you can use to create, modify and
access locale values. LOCALE_ID is an unsigned 32-bit type with three 8-bit
fields for the language, dialect and country values defined in GOLOCALE.H.
Currently, the other bits are reserved for future use.

The macros in INTL.H are:

intlLIDMakeLocaleId(l,d,c) // l=language, d=dialect, c=country
intlLIDGetLanguage (locale) // (values defined in GOLOCALE)
intlLIDGetDialect (locale)

int1LIDGetCountry (locale)

intlLIDSetLanguage (locale,v) // v = GOLOCALE value
intlLIDSetDialect (locale, v)

int1LIDSetCountry(locale, v)

¥ International routines

Most functions require you to supply a locale and a style as arguments. The locale is
a 32-bit type (LOCALE_ID) containing three 8-bit values; one identifies the country
whose conventions the routine should observe and the remaining two identify the

language and dialect that the routine must process. (Currently, no dialect values are

defined, but they could easily be added in the future.)

In most cases the international routines require a style value as a parameter. A style
value modifies the way a routine processes a locale, because there can be variations
of linguistic forms within countries and languages. Styles are 32-bit types con-
taining 16-bit segments; the low-order segment identifies a base style and the high-
order segment contains flags that modify the base style.

The locale values are defined in GOLOCALE.H. You can compose LOCALE_ID struc-
tures by using the intlLIDMakeLocaleld() and related macros in INTL.H. You use
bitwise operators and intlStyleMask and intlStyleFlagsMask to set the base value
and one or more of the flags defined in ISRSTYLE.H in an unsigned 32-bit integer.

Those routines that take a locale as argument provide a macro that substitutes
intlDefaultLocale for the locale. The default locale requests the current system
locale. The macro has the same name as the function, but the prefix is Loc instead
of Intl. The following example shows a typical macro definition:
#define LocDelimitWord(tx,s,st) \

IntlDelimitWord(tx, s, int1lDefaultlocale, st)
Most of the international functions come in nearly identical pairs. The Intl... ver-
sions work on null-terminated strings and the IntIN... versions work on counted
strings. The IntIN... functions take an extra argument that specifies the legnth of
the passed string. When you read the definitions of international routines in the

CHAPTER 47 / INTERNATIONAL SERVICES AND ROUTINES
International routines

following sections, remember that there is a counted-string counterpart to the null-
terminating function listed (unless specifically noted otherwise). In other words,
the definition for IntlDelimitWord applies equally to IntINDelimitWord.

Some of the functions that handle null-terminated strings return the required
length of an output buffer. Remember that these counts do not include the null
character, so if you are using these functions to allocate memory for these buffers,
make sure to add one to the count.

Delimiting and hyphenation routines

Delimiting routines TABLE 47-2

Function Description

IntlDelimitWord Finds a “word” in a string. The style argument controls the internal definition
of a word.

IntlDelimitSentence Finds a “sentence” in a string. The style argument determines what is

considered a sentence.

Hyphenation roufines TABLE 47-3
Function Description
IntlBreakLine Given a string of a certain length, this routine calculates a line break that is

valid for the locale and returns the hyphenation information in a structure of
type INTL_BREAK_LINE. This information includes the position at which
to make the line break, the number of characters to delete from each side of
the break, and the characters to insert on each side of the break point.

Time conversion routines

These routines pass in or receive back time information in an argument of
INTL_TIME. This structure is a superset of the standard tm structure. In addition to
the standard tm fields, it includes the time zone as a posix string (pTz) and an era
field that can put the year in a context other than anno Domini (AD).

Time conversion functions TABLE 47-4
Function Description
IntlSecToTimeStruct Converts the time, in seconds since 0:00 January 1, 1970 UTC (GMT),

into an international time structure (INTL_TIME). Use the time() function
to get the current time in seconds. For the current release of PenPoint, set the

pTimeZone field (the target time zone) to pNull.

IntlTimeStructToSec Converts an international time structure (INTL_TIME) to the time in sec-
onds since 0:00 January 1, 1970 UTC (GMT). Currently, this function
works only on times in the current time zone.

IntlOSDateTimeTolntI Time Converts the time in the PenPoint system format into the international time
structure (INTL_TIME). Since the system time is always a modern Gregorian
date, the era in INTL_TIME is always set to itcEraAD.

IntlIntl TimeToOSDateTime Converts the time specified in the international time structure (INTL_
TIME) into the PenPoint system format. Since the system time is always a
modern Gregorian date, you must set the era in INTL_TIME to itcEraAD.

5 / ARCHITECTURAL REFERENCE

510 PENPQINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

Note that these last two functions, IntlOSDateTimeTolntITime and IntlIntl-
TimeToOSDateTime, should be used only by code that is involved in setting the
system clock. Other code should use the time() function and then do conversions
to and from international time with IntlSecToTimeStruct and Int/Time-
StructToSec.

% Formatting routines
These functions take an input value and convert it into a string. They return the

length of the generated string or, if pString is pNull, they do no formatting but do
return the size required for the output buffer.

Calls to IntlFormatS32 and IntlFormatNumber include two extra arguments, one
to indicate the minimum number of integer digits and the other to specify the max-
imum number of fractional digits. For $32 values, the fraction displayed is always
zero, unless the intlFmtNumScale flag is set. This allows scaling, particularly for
displaying currency.

Calls to IntlFormatDate and IntlFormatTime include as an argument a resource
tag for a format string. If this tag is not NIL, the routine fetches the format from
theProcessResList with a resource group of resGrpTK. You can use the format with
Compose Text functions to generate the output string,.

Formatting functions TABLE 47-5
Function Description

IntlFormatS32 Converts a signed integer to a string.

IntlIFormatNumber Converts a floating point number to a string.

IntlFormatDate Converts a time structure to a date string.

IndFormatTime Converts a time structure to a time string.

% Parsing routines

These routines convert an input string into the value of the requested type. They
return the length of the parsed string. You can treat the string as a single item or as
a set of tokens of known type (see ISR.H for further details). Note that the date and
time parsing routines only set values for the date elements that they find in the
string; they do not set default date values. For example, “September” results only in
IntlParseDate setting the mon field and nothing else. You should therefore ini-
tialize the INTL_TIME structure with intlTimeStructInit before making a call, so
that you can find out which fields were filled.

Parsing functions TABLE 47-6
Function i Description
IntlParseS32 Converts a string to a signed integer.
IntlParseNumber Converts a string to a floating point number.
IntlParseDate Converts a string to a date as contained in an international time
o (INTL_TIME) structure.
IntParseTime - . Converts a string to a time as contained in an international time

(INTL_TIME) structure.

CHAPTER 47 / INTERNATIONAL SERVICES AND ROUTINES 511
International routines

% Collation routines

Sort and compare functions TABLE 47-7
Function Pescription
IntlCompare Compares two strings in a linguistically correct method according to the

locale. You can use it in searching or in sorting a list (although the IntlSort
routine does that already).

IntSort Sorts an array of strings in a linguistically correct way, according to the locale.

¥ String conversion routines

The IntlStrConvert routine converts Unicode strings from one stylistic or linguistic
format to another, such as between upper and lower case, katakana and hiragana
and composed characters and floating diacritics. Unlike the character-conversion
macros in CHARTYPE.H, these routines handle conversions that affect the lengths of
strings, or that depend on locale, on context, or on a dictionary for some characters.

You can use the Unicode string conversion routines in three ways:
¢ In asingle call.
¢ Writing from a single input buffer.
¢ Using extended input.

See ISR.H for further details on these methods.

¥ Character set conversion routines

Both functions return the number of target characters that were produced (not
counting the null) unless there is an error. If InttMBToUnicode, for instance, finds
an unknown character, it converts it to OxFFFD unless you specify a flag to override
this conversion. (The actual character displayed depends on the character set.) The
style parameter specifies the character set to convert from.

The difference in the behavior between the null-terminating and counted-string
versions of these functions is significant in this area. If, for example, there is no null
character in the string given to IndMBToUnicode, the output buffer fills up and
the string is truncated. IntNMBToUnicode updates the source length to be the
number of characters processed and returns normally. To verify that the string was
processed, you can then compare the number of characters passed in with the
number returned.

By the way, do not confuse these routines with the IntlStrConvert function, which
only does conversions within Unicode.

Character set conversion functions TABLE 47-8
Funetion Description
IntIMBToUnicode Converts a multibyte string to a Unicode string.

IntlUnicode ToMB Converts a Unicode string to a multibyte string.

B 7 ADSLMTESATHID A DESEDLRAE

512

PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

% String compression routines

String compression functions

TABLE 47-9

Function

IntlCompressUnicode

IntlUncompressUnicode

Description

Converts a Unicode string into a compressed form stored in a counted array
of bytes. If successful, it returns the number of bytes of compressed data. The
output buffer must be big enough to hold the compressed data, so you can
call either routine first with a null pointer for the destination, and the
required buffer size is return. (Remember to add 1 for the null character
when allocating memory for this buffer.)

Uncompresses a compressed Unicode string. It returns the number of charac-
ters produced, unless there is an error. The output buffer must be big enough
to hold the uncompressed data, so you can call either routine first with a null
pointer for the destination, and the required buffer size is return. (Remember
to add 1 for the null character when allocating memory for this buffer.)

Units conversion routine

The IntlConvertUnits routine converts an input value specified in one unit of mea-
sure to a value in another unit of measure. (These unit-of-measure definitions are in
GOLOCALE.H.) It does not require locale or style as arguments.

P Character conversion and testing macros

These macros are defined in CHARTYPE.H:

CHARTYPE macros TABLE 47-10

Macro Description

IntlGetCharType Returns the 16-bit flags that apply to a character from the set defined in the
section “Character flags” on page 514. These flags are intended to be “inter-
national,” rather than specific to any particular language.

IntdChar ToUpper If a character is in lower case, it returns the upper-case equivalent; if the char-
acter is not in lower case, it returns the character unchanged. One-to-one
single character conversions do not work for all characters.

IntlCharToLower If a character is in upper case, it returns the lower-case equivalent; if the char-
acter is not in upper case, it returns the character unchanged. One-to-one
single character conversions do not work for all characters.

IntlCharlsUpper Returns TRUE if the character passed is an uppercase character.

IntICharlsLower Returns TRUE if the character passed is a lowercase character.

IntlCharToFullWidth If a character is half-width, it returns the full-width equivalent; if the charac-
ter is not half-width, it returns the character unchanged. This macro maps

~ only the romaji and katakana characters, not the hangul ones.

IntlCharToHalfWidth If a character is full-width, it returns the half-width equivalent; if the charac-
ter is not full-width, it returns the character unchanged. This macro maps
only the romaji and katakana characters, not the hangul ones.

IntlCharlsFullWidth Returns TRUE if the character passed is a full-width character.

IntlCharlsHalfWidth Returns TRUE if the character passed is a half-width character.

IntlCharlsKatakana Returns TRUE if the character passed is a katakana character. Includes both
hankaku and zenkaku katakana.

IntlCharIsHiragana Returns TRUE if the character passed is a hiragana character.

CHAPTER 47 / INTERNATIONAL SERVICES AND ROUTINES 513
Character conversion and testing macros

CHARTYPE macros TABLE 47-10 {continued)
Macro Description
IntlCharlsHan Returns TRUE if the character passed is a kanji, hanja or hanzi character.

IntlCharlsCompatibilityZone

XJIS gaiji characters are mapped into the private use area: 0xf300 to Oxf5fc.
Returns TRUE if the character passed is in the Compatibility zone.

IntlCharlsGOCorporate Returns TRUE if the character passed is in the GO Corporate zone.

IntlCharIsSpace returns TRUE if the character passed is a space character of any kind. This
does not include cursor movement control characters such as tab and
linefeed.

IntlCharlsAlphabetic Returns TRUE if the character passed is a character from an alphabetic script.
These include Latin, Greek, Cyrillic, and Latin characters from the Compati-
bility zone and excludes digits, punctuation, spaces, and so on.

IntCharIsAlphanumeric Returns TRUE if the character passed is a character from an alphabetic script
or an international digit (for example, [0-9]). This includes Latin, Greek,
Cyrillic, and Latin characters from the Compatibility zone and excludes
punctuation, spaces, and so on.

IntlCharlsFloating Returns TRUE if the character passed is a floating diacritic. These include
bound graphemes such as circumflex, accent acute, and daku ten.

IntlCharlsComposed Returns TRUE if the character passed is a composed character. Composed
characters can reasonably be represented by a base character and a floating
diacritic.

IntlCharlsPunctuation Returns TRUE if the character passed is a punctuation character.

IntlCharlsGraphic Returns TRUE if the character passed corresponds to a glyph. The character
cannot be a control, spacing, or undefined character.

IntlCharlsPrinting Returns TRUE if the character passed corresponds to a glyph or space. The
character cannot be a control or undefined character.

IntlCharlsControl Returns TRUE if the character passed is a control character.

IntCharIsDecimalDigit
IntlCharlsHexadecimalDigit

Returns TRUE if the character passed is an international digit ({0-9]).
Returns TRUE if the character passed is a hex digit ([0-9a-fA-F]).

5 / ARCHITECTURAL REFERENCE

514 PENPOINT APPLICATION WRITING GUIDE
Part 5 / Architectural Reference Supplement

% Character flags

The following list defines the flags that can be associated with characters. You can
obtain the flags for a character through the IntlCharGetFlags macro.

int1lCharTypeSentEndflag0// Can end a sentence
intlCharTypeLineBrkflagl// Breaks a line
int1lCharTypeSpaceflag2// White Space (not tab, line Brk)
int1CharTypeNumberflag3// valid char in a number
intlCharTypeWordflag4// valid char in a word
intlCharTypeCantStartlLineflag5// Can't start a line
intlCharTypeCantEndLineflag6// Can’t end a line
intlCharTypeAlphabeticflag7// Latin, Greek, or Cyrillic
intlCharTypeFloatingflag8// Floating Diacritic
intlCharTypeComposedflag9// Composed Character
int1lCharTypePunctuationflagl0// Punctuation Character
int1CharTypeGraphicflagll// Any printing, non-space char
int1lCharTypeDecimalDigitflagl2// Decimal digit

% External tables

The character conversion and testing macros operate on a set of Unicode tables for
each alphabet. These tables are defined in CHARTYPE.H.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION '

Part 6 /
PenPoint User
Design Reference
Supplement

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 6 / USER INTERFACE DESIGN REFERENCE SUPPLEMENT

P Chapter 48 / Introduction

P Chapter 49 / The Notebook

519 Table of Contents
Operational model

519 Standard elements
Table of Contents gestures
Menus
Option sheets

522 Tabs
Change notes

P Chapter 50 / The Bookshelf

523 Help
Change notes

523 Settings
Operational model
Change notes
Preferences
Installed software
Status

533 Accessories
Unicode Browser

Keyboard

P Chapter 51 / Overall System Changes
535 Option sheets

535 MiniText
Change notes
Option sheets
Gestures
Menus

539 MiniNote
Option sheets
MiniNote gestures

543 Edit pads
Operational model
Change notes
English edit pads
Edit pad gestures
Japanese edit pads
Japanese edit pad gestures

547 Menus
Change notes

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 6 / USER INTERFACE DESIGN REFERENCE SUPPLEMENT

Chapter 48 / Introduction

This document is intended for software developers who are developing products
for PenPoint 2.0 Japanese. It provides a description of the user interface from the
end-user’s point of view. However, this document is not intended as a user guide
to PenPoint.

The structure of this document is designed to be both useful for finding specific
information and for reading large sections at a time. A considerable amount of
cross-referencing takes place, allowing information to appear in only one place
wherever possible.

Information has been presented in a way that focuses on the “component” level,
often to the exclusion of the “big-picture” level that is provided by end-user docu-
mentation. Many of these components are used in multiple places throughout
PenPoint, and this provides the rationale behind the structure.

The major change between version 1.0 and 2.0 of the PenPoint operating system is
support of the Japanese language. Specifically, PenPoint 2.0 Japanese is the Japanese
version of PenPoint, as well as the foundation for a future international versions of
the operating system. Changes to functional components from PenPoint 1.0 can be
found in the sections labelled “Change Notes.”

This document relies heavily on the existing set of PenPoint 1.0 documentation,
especially the PenPoint User Interface Design Reference.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 6 / USER INTERFACE DESIGN REFERENCE SUPPLEMENT

Chapter 49 / The Notebook

The Notebook application is the principal user interface to the PenPoint system I B
provided by GO Corporation, the NUI (Notebook User Interface). It serves as the
organizing metaphor for the user as well as the underlying component for the
Stationery notebook and other system-level applications.

WV Table of Contents

The Table of Contents (TOC) of the PenPoint 2.0 Japanese notebook is used as the
central location for management of documents. The TOC is an application itself
that runs inside the Notebook application (clsSectApp).

¥ Operational model

The TOC is the central application in the PenPoint Notebook, appearing on the
first page of the Notebook and controlling creation and navigation of the Notebook
contents. The user can not delete the TOC page from the Notebook.

The user can only select one item (document or section) at a time in the TOC. The
user can re-order pages by moving or copying document icons. To move the docu-
ment, the user presses 4 the document title and drags it a new location. Similarly, to
copy the document, the user tap presses 4 the document title and drags the mar-
quee to a new location.

When the user creates a new document, the icon appears in one of three places,
depending on how the user creates the document:

¢ At the gesture point if the user uses the caret A gesture.
¢ Below the current selection if the user taps Y on the menu item Create.

¢ After the last page if there is nothing selected when the user taps Y on
Create.
The user turns to documents in the Notebook with the tap Y gesture. A double
tap Y gesture floats (if float is enabled) the document over the TOC. The user may
tap on the page number or the icon or button (depending on the view) to the left of
the document name. A tap on the document name selects the text. A double tap on
a section name expands the section in the TOC. The circle © gesture is used to edit

document names.

¥ Standard elements

The TOC contains a list of the documents and sections currently in the Notebook,
along with the pages on which they are found. Section pages contain another TOC
for that section. The Layout menu controls the view of the TOC.

520 PENPOINT APPLICATION WRITING GUIDE
Part 6 / User Interface Design Reference Supplement

% Table of Contents gestures

Gestures used in the Table of Confenis

TABLE 49-1
Gesture Name Keybooard Action
y Tap Enter Turns to page (on page # or icon).
Selects name of page (on page).
4 Double tap Ctrl + Enter Floats document (if float enabled).
' Open/closes section.

J Flick up Page Up Scrolls up or down.

or down Page Down
I Double flick up Ctrl + Home Up scrolls to end of TOC.

or down Ctrl + End Down scrolls to beginning of TOC.
X Cross out Delete Deletes target page.
A Caret Opens Create menu at target point.

% Menus

There are five menus in the TOC: Document, Edit, Options, View, and Create.

%> Document menu

Send Document Submenu of available services. Selected documents are sent
via selected service.

About Contents Information sheets on Table of Contents.

%v Edit menu
Move Places selection into Move mode.
Copy DPlaces selection into Copy mode.
Delete Deletes selection. Confirm note is opened.

Rename Opens Edit Pad with selection name available for editing.

*»» Options menu

Document Only available when a document is selected. Opens Document
option sheet.

Section Only available when a section is selected. Opens Section option
sheet.

Layout Opens Layout option sheet.

Controls Opens Controls option sheet.

%¥ View menu

Expand Opens all sections one level if no selection. Opens selected section
one level.

Collapse Collapses all sections if no selection. Collapses selected section.
Turn To Turns to selected document or section.

Bring To Floats selected document or section.

CHAPTER 49 / THE NOTEBOOK

w»v Create menu

Document List A list of all documents in Stationery notebook that have
Menu checked. When the user selects one, PenPoint creates a new docu-
ment of that type after currently selected document or at end of TOC if no
selection.

Section Creates a new section after current selection or at end of TOC if no
selection.

¥ Option sheets

There are 4 option sheets available from the Table of Contents: Document, Section,
Layout, and Controls. The Document/Section sheets are only visible when a Docu-
ment/Section is selected. The main TOC page (as opposed to the Section TOC
pages) is the only page in the Notebook that does not have the standard Access and
Comments option sheets. The Access Speed for the main TOC is always set to
Accelerated.

%r Document

The Document option sheet provides access to the fixed and variable attributes of a
selected document. These include:

Title The title of the document; not editable here.
Type The typé of document (the application it represents); not editable.
Created The creation date and time; not editable.

Last Modified The date and time of the last access (last checkpoint or page-
turn away from document); not editable.

Filed Size The size of the file on disk in kilobytes; not editable.
Author The author; editable.

Comments Comments; editable.

Standard elements

%¥ Section

The Section option sheet is the same as the Document option sheet described in
the preceding section, only the title changes from Document to Section. The
option sheet changes its content as the user changes the selection.

521

& / Ul DESIGN REFERENCE

522 PENPOINT APPLICATION WRITING GUIDE
Part 6 / User Interface Design Reference Supplement

%» Layout

The Layout option sheet provides controls for the visual display of the TOC. The
Show choice allows the user to select either icons or square buttons or neither as the
indicator to the left of the document name. The default is Icons.

The Columns checklist is a multiple choice list that sets up the columns displayed
in the TOC as well as the Column Headers. The Document name and Page number
always appear, and the user cannot remove them. The default is Column Headers.

The Sort pop-up selects the sort criteria for the TOC. There are five choices: Page,
Name, Type, Date, Size. The default is Page. Sort direction is ascending for Page,

Name, and Type; descending for Date and Size. Sorting only affects the display in
the TOC; it does not re-order the pages of the Notebook.

In PenPoint 2.0 Japanese the sort order is phonetic, with kanji being indexed by the
first phonetic of their Chinese reading according to the JIS standard. Non-JIS char-
acters follow in Unicode order.

%7 Controls

The Controls option sheet is the standard PenPoint Controls sheet with the only
choices being: Menu Line, Scroll Margins, and Cork Margin. The default state is
Menu Line on, Scroll Margins on, and Cork Margin off.

¥ Tabs
% Change notes

o Tabs do not contain vertical text.

¢ Contains zenkaku by default.

PENPOINT APPLICATION WRITING GUIDE / EXPANDED EDITION
PART 6 / USER INTERFACE DESIGN REFERENCE SUPPLEMENT

Chapter 50 / The Bookshelf

» Help
¥ Change notes

There are no functional changes to the Help system from 1.0 to 2.0.

W Settings (“ v
% Operational model

The Settings notebook gives the user a single place to go to view and modify set-
tings both for the PenPoint 2.0 Japanese operating system as a whole and for what-
ever software is currently installed in the system.

While it employs the notebook metaphor, the Settings notebook differs from the
normal PenPoint data notebook in two ways:

It is optimized for quick navigation through a small number of pages
with only one level of sections. Instead of local contents pages for each
section, each page has a pop-up menu in its title line allowing the user
to turn to any other page in that section.

¢ It is not editable in any way by the user. Neither the pages nor the tabs
can be deleted, re-ordered, or renamed, and the table of contents has no
menu line and no display options.

¢ It doesn’t have page numbers.

524 PENPOINT APPLICATION WRITING GUIDE
Part 6 / User Interface Design Reference Supplement

% Change notes
¢ Pen section changed to Pen & Keyboard.

¢ Writing changed to Writing Style and moved to fifth position from the
first position.

¢ Keyboard choice added to Pen & Keyboard with pop-up: American,
Japanese AO1.

¢ Import/Export choice added to Fonts & Layout with pop-up: 1990
JIS, 1978 JIS.

¢ Kana-Kanji Conversion section added to Software section.
¢ Practice... button (and facility) removed from Handwriting sheet.
¢ Date formats changed.

¢ Time formats changed.

% Preferences

The user uses the Preferences section of the Settings notebook for viewing and
setting system-wide user preferences. It contains 8 sections.

% Pen & Keyboard
- There are 5 preferences for pen and keyboard input:
Tap to Align Pen User taps in center of square to align pen.
Pen Cursor User can turn pen cursor on or off (default = off).

Primary Input Determines primary input device, pen or keyboard
(default = pen).

Writing Timeout Interval system pauses after user lifts pen from screen
before translating input (default = 0.6 seconds, range = 0.2 to 1.0 in 0.1
increments, 1.2, 1.5, 2.0 seconds).

Press Timeout Interval user must touch the pen to the screen before the
press gesture is recognized (default = 0.5 seconds, range = 0.2 to 1.0
seconds in 0.1 increments).

CHAPTER 50 / THE BOOKSHELF
Settings

%¥ Fonts & Layout

PenPoint Font Font used by system and applications for text (not in
edit fields) (default = Mincho, choices = Gothic, Roman, Courier,
Sans Serif, Mincho).

Field Font Font used by system for translated text (default = Mincho,
choices = Gothic, Roman, Courier, Sans Serif, Mincho).

Font Size Font size (in points) used as default for both system text and field
text (default = 12 pt., choices = 10, 12, 14, 16, 18, 20, 24 pt.).

Top Edge Determines orientation of screen. Menu has four arrows, one
pointing to each edge of computer. The user chooses one arrow to re-ori-
ent the display so that the edge is at the top. After the user taps the Apply
button, the arrow again points to the top edge.

Hand Preference Hand Preferences for screen layout. Effects placement of
scrollbars (default = Right, choices = Left, Right).

Scroll Margins Allows user to choose either a traditional scroll margin with
arrows and a drag box or a simple margin for flicking (default = Arrows &
Drag Box, choices = Tap & Flick Area, Arrows & Drag Box).

Import/Export Determines the data exchange format to use (default = New
JIS, choices = New JIS, JIS).

%»v Float & Zoom

Floating Documents Determines if the user can float documents or not

(default = Not Allowed, choices = Allowed, Not Allowed).

Zooming Documents Determines if the user can zoom documents or not

(default = Not Allowed, choices = Allowed, Not Allowed).

525

6 / Ul DESIGN REFERENCE

526 PENPOINT APPLICATION WRITING GUIDE
Part 6 / User Interface Design Reference Supplement
%» Writing
Writing Style Determines the type of character input allowed (default =
Mixed Case, choices = Upper Case Only, Mixed Case [applies to Roman
text only]). '

Writing Pad Determines type of box used in edit pads (default = Boxed,
choices = Ruled/Boxed, Ruled, Boxed).

Box Size Determines size of box in edit pads with boxes (default = Medium,
choices = Very Small, Small, Medium, Large, Very Large).

Box Shape Determines the proportional shape of the box in edit pads
(default = Medium, choices = Short, Medium, Tall).

Ruled Height Determines the height of space above ruled line in edit pads
(default = Medium, choices = Very Small, Small, Medium, Large,
Very Large).

Unrecognized Character Determines character used to indicate unrecog-
nized character, default = @, choices = @, _).

%v Time

Current Time Current time as read from the system clock.

Time Zone Local time zone, with hours difference from GMT
(default = +9 Tokyo).

Format Determines the time format that the user would like PenPoint and
applications to display.

Style Determines the style of the time display that the user would like
PenPoint and applications to display.

Seconds Determines if the user wants seconds displayed as part of time
(default = Not Displayed, choices = Displayed, Not Displayed).

Hour Write-in field to allow user to set the hour (range = 1 to 12 for
12-hour format, 0 to 23 for 24-hour format).

CHAPTER 50 / THE BOOKSHELF
Settings
Minute Write-in field to allow user to set the minutes (range = 0 to 59).
Second Write-in field to allow user to set the sec