FEATURE

THE INTEL
30860

Superscalar architectures bring a new level of performance
fo microprocessors

Neal Margulis

Editor’s Note: Earlier this year, Intel announced its first full-
scale RISC processor, the 80860. The 80860 operates at up to
50 MHz and has been called a one-chip supercomputer. (See
“Intel’s Cray-on-a-Chip" in the May BYTE.) We asked Neal
Margulis, Intel’s chief applications engineer for high-perfor-
mance processors, to provide us with this in-depth description of

the chip.
l transistors, the 80860 contains a RISC core, an
FPU, a memory management unit (MMU), a
graphics unit, and separate instruction and data caches.

The RISC core and the MMU allow the 80860 to run multi-
tasking operating systems. Its floating-point capability sup-
ports advanced modeling, signal and voice processing, and
simulation and CAD applications. The processor provides the
computation and display support for three-dimensional visual-
ization. Visualization lets a system display an enormous
amount of numeric data as computer-generated graphical
images, from which users can easily identify patterns.

Unlike a typical system where these capabilities are spread
across several chips, the 80860 was designed from the ground
up to integrate all these features. The result is a fully defined
architecture for handling integer math, memory management,
high-performance floating-point math, and 3-D graphics.

The 80860 eliminates the need for support chips such as
floating-point accelerators, vector processors, digital signal
processor chips, and graphics coprocessors. A fully defined
architecture that starts with the CPU eases the software devel-
oper’s job and results in more powerful applications software.

he 80860 microprocessor uses an advanced ar-
chitecture to deliver balanced integer and float-
ing-point performance. With over a million

Analyzing the Architecture
The major functional units of the 80860 microprocessor and the
paths between them are shown in figure 1. By incorporating all

the functional units on a single chip, the chip’s designers were
able to optimize the communication channels between them.
The wide internal buses balance data bandwidth with the pro-
cessing speed of multiple execution units. Separate 32-word
register sets for the RISC core and the FPUs provide further
support for concurrent execution.

The widespread use of pipelining throughout the chip en-
hances performance. The RISC core has a four-stage pipeline
consisting of fetch, decode, execute, and write stages. The
floating-point adder and multiplier also incorporate pipelining
with three stages each. In addition, a three-stage load pipeline
is matched to the external processor bus, which supports three
outstanding cycles.

The RISC core fetches both integer and floating-point in-
structions from the instruction cache. The CPU allows the pro-
grammer to specify two execution modes: single- and dual-
instruction.

Single-instruction mode is the traditional execution mode, in
which instructions are fetched sequentially. Pipelining allows
the sequential instructions to overlap so that multiple instruc-
tions are in various stages of completion at any one time.

The 80860 goes a step beyond instruction overlapping with
dual-instruction mode. This mode initiates two instructions at
once, one for the RISC core and one for the FPU. The FPU
achieves one floating-point result per clock cycle and has
“dual-operation™ instructions, in which an add and a multiply
operation execute simultaneously.

Programmers can combine the dual-instruction mode and
the dual-operation mode to achieve three operations per clock
cycle. With this execution model, the RISC core can execute
load, store, and loop-control instructions during floating-point
operations.

The result is that peak performance can be maintained while
executing the inner loops of common applications. The on-chip
data cache or external memory can load data into the floating-
point registers.

continued

DECEMBER 1989 * BYTE 333

FEA

TURE

THE INTEL 80860

Graphics

The floating-point hardware of the 80860 processor efficiently
performs graphics transformations, including the rotation,
scaling, translation, and advanced lighting calculations re-
quired for 3-D graphics. Displaying 3-D images requires spe-
cial operations for shading and for hidden surface removal. The
graphics unit hardware speeds these back-end rendering opera-
tions (i.e., operations that go from polygons to pixels) using the
floating-point registers and wide data paths to operate on multi-
ple pixels simultaneously.

The graphics instructions include intensity interpolation, z
interpolation, and z-buffer check. Intensity interpolation
allows for smooth linear changes in pixel intensity or color.
The z instructions let the programmer determine which objects
should be displayed based on their proximity to the viewer. The
RISC core also performs a pixel store instruction in parallel
with the graphics operations.

Virtual Memory
The 80860 microprocessor supports an address space of 4 giga-
bytes. The MMU includes a four-way set-associative 64-entry

formed in one clock cycle and in parallel with the cache
accesses.

The MMU implements paged virtual memory management
and protection. The Intel 80386 and 80486 microprocessors
have the same two-level paging scheme. This commonality
allows these processors to interact more easily in a common op-
erating environment, and it facilitates the porting of virtual
memory software written in C.

RISC Instruction Set

In the 80860’s instruction set, all instructions are 32 bits long
and use the three-operand, load/store style typical of RISC pro-
cessors (see table 1). The three-operand format allows arith-
metic, logical, and shift instructions to specify two source reg-
isters and a destination register. The only operations that
operate on memory are load and store, with arithmetic per-
formed on the registers.

The core unit can execute instructions in one clock cycle.
Several techniques allow instructions to execute in one cycle,
although their completion may require additional cycles. Loads
from memory take one execution cycle, and the next instruction

translation look-aside buffer. The TLB translations are per- continued
FUNCTIONAL UNITS AND DATA PATHS OF THE 80860 MICROPROCESSOR
External L
address a2
3 Memory
Instruction cache Data cache
(4K bytes) il (8K bytes)
} Instruction address Data address | 1 Cache
External data data
FP instruction - 128
64 | Coreinstruction 32 [32,32 32 g
7 ‘ Vg 1 ‘ Faad
External RISC core Floating-point
Bus-control .
data 54 Rl control unit
Core registers FP registers
7 7 [/
647 647 647
RDest
Srei
Src2
e
5
I—' Kr
h' ‘t . .
Graphics uni Alicioe st Muttiplier
e unit

Figure 1: Wide data buses inside the chip and an external 64-bit bus supply the necessary bandwidth to support multiple
operations per clock cycle. Four floating-point registers can be loaded in one clock cycle with the 128-bit path from the data

cache.

334 BYTE * DECEMBER 1989

FEATURE
THE INTEL 30860

Mnemonic

Table 1: The 80860 processor’s instruction set has a full set of integer and floating-point instructions, each of which is 32
bits wide. The RISC core performs all the processor’s loads and stores.

THE 80860 MICROPROCESSOR'S INSTRUCTION SET

Core unit

Description

FPU

Mnemonic Description

id.x
st.x
fid.y
pfid.z
fst.y
pst.d

ixfr
fxfr

ddu

adds
subu
subs

Shift instructions
shl

shr

shra

shrd

Logical instructions
and

andh

andnot

andnoth

or

orh

xor

xorh

trap
intovr
br
bri
bc
be.t
bnc
bnec.t
bte
btne
bla
call
calli

flush
ld.c
st.c
lock
unlock

Load and store instructions

Load integer
Store integer

FP load
Pipelined FP load
FP store

Pixel store

Register-to-register moves

Transfer integer to FP register
Transfer FP to integer register

Integer arithmetic instructions

Add unsigned
Add signed
Subtract unsigned
Subtract signed

Shift left

Shift right

Shift right arithmetic
Shift right double

Logical AND

Logical AND high

Logical AND NOT
Logical AND NOT high
Logical OR

Logical OR high

Logical exclusive OR
Logical exclusive OR high

Control-transfer instructions

Software trap

Software trap on integer overflow
Branch direct

Branch indirect

Branch on CC

Branch on CC taken
Branch on not CC
Branch on not CC taken
Branch if equal

Branch if not equal
Branch on LCC and add
Subroutine call

Indirect subroutine call

System-control instructions

Cache flush

Load from control register
Store to control register
Begin interlocked sequence
End interlocked sequence

Floating-point multiplier instructions
fmul.p FP multiply

pfmul.p Pipelined FP multiply

pfmul3.dd Three-stage pipelined FP multiply
fmlow.p FP multiply low

frep.p FP reciprocal

frsqr.p FP reciprocal square root

Floating-point adder instructions

fadd.p FP add

pfadd.p Pipelined FP add

fsub.p FP subtract

pfsub.p Pipelined FP subtract

pfat.p Pipelined FP greater than compare
pfeq.p Pipelined FP equal compare

fix.p FP-to-integer conversion

pfle.p Pipelined FP less than or equal to
famou.p FP adder move

pfamou.p Pipelined FP adder move

pfix.p Pipelined FP-to-integer conversion
ftrunc.p FP-to-integer truncation

pftrunc.p Pipelined FP-to-integer truncation

Dual-operation instructions

fam.p Pipelined FP add and multiply
pfsm.p Pipelined FP subtract and multiply
pfmam Pipelined FP multiply with add
pfmsm Pipelined FP multiply with subtract
Long-integer instructions

fisub.z Long-integer subtract

pfisub.z Pipelined long-integer subtract
fiadd.z Long-integer add

pfiadd.z Pipelined long-integer add
Graphics instructions

fzchks 16-bit z-buffer check

pfzchks Pipelined 16-bit z-buffer check
fzchkl 32-bit z-buffer check

pfzchkl Pipelined 32-bit z-buffer check
faddp Add with pixel merge

pfaddp Pipelined add with pixel merge
faddz Add with z merge

pfaddz Pipelined add with z merge

form OR with merge register

pform Pipelined OR with merge register

Assembler pseudo-operations

Mnemonic Description

mov Integer register-register move
fmov.qg FP register-register move

pfmov.q Pipelined FP register-register move
nop Core no-operation

fnop FP no-operation

plle.p Pipelined FP less than or equal to

336 BYTE « DECEMBER 1989

FEATURE
THE INTEL 80860

can begin on the following cycle.

The processor uses a technique called scoreboarding to
guarantee proper operation of the code at the highest possible
performance. The scoreboard keeps a history of which regis-
ters have pending loads. The actual loading of the data takes
one clock cycle if the data is in the cache, or several cycles if
it’s still in memory,

With traditional microprocessors, the next instruction can-
not start executing until the data is returned. Scoreboarding
allows execution to continue unless a subsequent instruction at-
tempts to use the register being loaded. In this case, the proces-
sor will wait for the data to be returned. Optimizing compilers
for the 80860 microprocessor organize the code so that such
freeze conditions rarely occur.

The 80860’s instruction set includes several control flow op-
timizations. Programmers can code conditional branch in-
structions with or without a delay slot. A delay slot allows the
processor to execute the instruction after a branch while it is
fetching the branch target. With both delayed and nondelayed
variations, the compiler can easily optimize the code according
to whether or not the branch is likely to be taken.

Branches can be performed conditionally based on the condi-
tion-code bit (e.g., be, bne, be.t, and bne. t) or through a com-
parison of two registers (bte and btne). There is also a branch-
loop-and-add instruction, bla, that performs a test, a branch,
and an add, all in a single instruction. This instruction reduces
program loop overhead.

Floating-Point Instructions

The floating-point hardware can operate on either single- or
double-precision IEEE standard 754 floating-point values and
on 32- and 64-bit integers. The FPU includes pipelined add and
multiply units, which can operate in either scalar or pipelined
mode. Source operands for each unit are supplied by the gen-
eral-purpose floating-point registers, by the special registers
(e.g., KR, KI, and T), or by the output of the unit itself.

Scalar-mode instructions specify the operation, the source
registers, and the destination register. Once issued, these in-
structions advance through the unit on each clock cycle until
they are completed. Although only one scalar-mode floating-
point operation can proceed at a time, it can be overlapped with
the execution of RISC core instructions. Scalar-mode execu-
tion requires three clock cycles for adds and single-precision
multiplies, and four cycles for double-precision multiplies.

Pipelined floating-point instructions advance the three-stage
add and/or multiply unit by one stage with each new instruc-
tion. This explicit control allows a pipelined floating-point in-
struction to execute and produce a result with every cycle. Like
the scalar-mode instructions, pipelined instructions specify
the source registers and the destination register. However, the
destination register of pipelined floating-point instructions is
the result of a calculation that begins with a prior instruction.

In the example in figure 2, the adder begins by adding the
numbers in f2 and f7. Because this is the first instruction of the
series and the pipeline is not yet full, the result emerging from
the adder is not needed and is sent to fO, which is always 0 and
is used as a null destination. On each successive clock cycle, an
add instruction is issued to advance the pipeline. When the sum
of the first add becomes available at the result stage, it is stored
to the destination specified by that instruction.

In this example, three cycles after the f2 plus f7 operation
starts, the result is stored to f12 by the instruction that is initiat-
ing the addition of f5 and f10. Once all the desired add instruc-
tions have started, three dummy adds are used at the end to
flush the desired results through the pipeline. When a long

series of numbers is added, the overhead of filling and flushing
the pipeline is negligible. When only one or two adds are per-
formed, using scalar mode minimizes pipeline overhead.

Parallelism

Dual-operation instructions allow software to perform add and
multiply instructions at the same time. One 32-bit instruction
initiates both an add and a multiply operation. Although the
two operations require six operands (four source operands and
two destination operands), the instruction format specifies
only three. The use of special registers KR, KI, and T, along
with data-path bypassing, provides the additional operands.

The 32 variations of dual-operation instructions specify the
source and destination operands for the adder and multiplier,
With these instructions, programmers can efficiently imple-
ment applications such as fast Fourier transforms (FFTSs),
graphics transforms, and matrix operations.

The following example shows the acceleration that the use of
pipelined operations makes possible. A series of 100 numbers
is multiplied by a constant, added to a second series of 100
numbers, and stored:

DO 10, I=1, 100 10X[1]=A[1] *C+B[1i]

If the add and multiply are executed in scalar mode, a result is
produced every six clock cycles. For example,

fmulC, A[1], temp fadd temp, B[1], X[1]

First the multiply is performed and the result stored in a tempo-
rary register. Then the add is performed with the temporary
register, and the result is stored. Each multiply and add take
three clock cycles, and the six-cycle sequence is repeated 100
times for a total of 600 cycles of floating-point execution time.

With pipelined, dual-operation instructions, the add and

continued

FLOATING-POINT PIPELINES
f2 2 7 7 f12
fa 3 f8 8 13
f4 4 f9 9 f14
5 5 f10 10 f15
f6 6 f11 11 f16

X ¥ z

Instruction sequence Add pipeline Destination
pfadd.ss |f2, f?.IfO 2471 ? ? None
pfadd.ss 13, f8, f0 2 None
pfadd.ss f4, 9, f0 449] 348 | 247 | None
pfadd.ss 15, f10, f12 5+410] 449 | 348 JE t—)
pfadd.ss f6, f11, {13 6+11]5+10] 448 13 =it
pfadd.ss 10,10, 14 [0 |6+11]5410 14 =—13.

Figure 2: The adder unit has a three-stage pipeline. Each
instruction can start an add operation and store the result
from a previous add. Every clock cycle produces a new result.
Here the adder implements z < x + y.

DECEMBER 1989 « BYTE 337

FEATURE
THE INTEL 80860

multiply are performed in parallel and a new result is produced
during each clock cycle. For example,

r2plB[i-3], A[1], X[i-6]

This illustrates the pfam dual-operation instruction variation
specified as r2pl srel, srec2, rdest. The instruction speci-
fies that the multiply is initiated with the constant register KR
and src2 as the operands, that the add is initiated with the re-
sult from the multiply and srec1 as the operands, and that the
result from an earlier add is stored to rdest.

Because the three stages of the add and multiply pipelines are
chained in series, the result comes from the operation that
began six clock cycles previously. By overlapping the multiply
and add, the loop of 600 cycles in scalar mode is reduced to 100
cycles of floating-point execution time.

The FPU’s ability to produce new results every clock cycle
gives it a tremendous appetite for data. To provide this data, the
RISC core can operate in parallel with the FPU to move data in
and out of the floating-point registers and to provide program
flow control. The processor enters dual-instruction mode if you
specify a d. prefix in the floating-point instruction mnemonic.

Once in dual-instruction mode, the instruction sequence
consists of 64-bit aligned instruction pairs. The upper half con-
tains the integer instruction, and the lower half contains the
floating-point instruction. In dual-instruction mode, the 64-
bit-wide instruction cache allows the execution of a pair of in-
structions every cycle. The modes can be changed with no over-
head for any number of instructions,

By taking advantage of the 128-bit data-cache path, the RISC

the f1d instruction. Also, a special load instruction called pf1d
loads the floating-point registers from external memory with-
out the data being placed into the cache. This unique instruc-
tion allows data that will be referenced only once to be loaded
from external memory, while data that is being continually ref-
erenced can be kept in the on-board cache.

Like the floating-point execution units, the pfld uses a
three-stage load pipeline. This instruction specifies a load ad-
dress and a destination register. Each pfld advances the load
pipeline one stage and stores the result from the load address
that began three instructions previously. Auto-increment ad-
dressing avoids using a separate add instruction by automati-
cally incrementing the base register before each load.

Performance Evaluation

One common measure of integer performance is millions of in-
structions per second. At 40 MHz, the 80860 processor deliv-
ers 33 VAX MIPS (based on the Stanford integer benchmark
suite) and performs 85,000 Dhrystones on version 1.1 and
80,000 on version 2.1. These results illustrate the RISC core’s
optimized instruction set and its ability to execute most instruc-
tions in one clock cycle. Combined with efficient memory man-
agement, the 80860 processor performs well in large applica-
tions that use virtual memory.

The Whetstone is a common benchmark used to gauge scalar
floating-point performance. The 80860 processor achieves 24
million Whetstones at 40 MHz. The peak million-floating-
point-operations-per-second ratings for the 80860 are 80
MFLOPS single-precision and 60 MFLOPS double-precision.

Although peak performance numbers are often misleading,

core can load up to four floating-point registers per cycle with continued
SOFTWARE TOOLS FOR THE INTEL 80860 MICROPROCESSOR
FORTRAN . FORTRAN
source Vectorzer compiler Simulation/
/ debugger
c A :
compiler ssembler Linker
80860
ASM P processor
source primitive
library
Math
library
3-D graphics
library

Figure 3: Scientific FORTRAN applications take advantage of the vectorizing precompiler that automatically calls the vector

library. C programs also can call the libraries.

3383 BYTE * DECEMBER 1989

Circle 218 on Reader Service Card —s

=

O

___1_
-

If you're looking for some good
reading, you've just found it. The
free Consumer Information
Catalog.

The Catalog lists about 200 federal
publications, many of them free.
They can help you eat right,
manage your money, stay
healthy, plan your child’s
education, learn about federal
benetfits and more.

So sharpen your pencil. Write for
the free Consumer Information
Catalog. And get reading worth
writing for.

=='w Consumer Information Center
* Department RW
Pueblo, Colorado 81009

A public service of this publication and
the Consumer Information Center of the U.S. General Services Administration.

340 BYTE « DECEMBER 1989

FEATURE
THE INTEL 80860

dual-instruction mode and dual-operation mode allow the
microprocessor to achieve peak performance for inner loops of
common matrix operations. In the LINPACK benchmark, the
80860 attains over 10 MFLOPS. The inner loop of a complex
FFT requires 10 floating-point operations. The 80860 per-
forms the 10 operations in six clock cycles, calculating a 1024-
point FFT in 1 millisecond.

Tools of the Trade

Intel’s internal development teams and independent vendors
are providing a full complement of software development tools
and operating systems for the 80860. Figure 3 shows the devel-
opment tools’ environment, including C and FORTRAN com-
pilers, an assembler/linker, a simulator/debugger, and a FOR-
TRAN vectorizer. In addition, there are the mathematical,
vector primitive, and 3-D graphics libraries.

The initial development environments use cross compilers
hosted on Unix System V/386 and OS/2. The optimizations
used in the compilers include coloring for register allocation,
register-based parameter passing for calls, interblock common
subexpression and loop invariant elimination, constant propa-
gation, strength reduction, extensive peephole optimizations,
and instruction scheduling.

Programmers write much of their engineering and scientific
applications in FORTRAN because it is so well suited for vec-
torization. The 80860 support includes a FORTRAN vectoriz-
ing precompiler. Vectorization is performed on DO and IF
loops, outer loops, and forward-branching conditional opera-
tions. The precompiler recognizes these structures and gener-
ates calls to a set of highly optimized, hand-coded procedures.
These procedures take full advantage of dual-instruction and
dual-operation modes, managing the data cache as a vector
register.

In addition, programmers can access these procedures from
other high-level languages. Work is under way to further in-
crease the degree of parallelism of the processor. A library of
assembly language routines for scalar mathematics is also
available.

A multiprocessing version of Unix System V 4.0 is under de- °
velopment for the 80860. The project is a joint effort by AT&T,
Unisys, Intel, Olivetti, Prime, Okidata, and others. The Intel
programming tools will maintain high-level-language source
code compatibility between the 80386, 80486, and 80860
microprocessors. A document is available that specifies an ap-
plication’s binary interface standard for the 80860 to allow por-
tability of applications software across systems from different
companies.

A Supercomputer on Your Desk?

The 80860 delivers balanced integer and floating-point perfor-
mance that only a million-transistor processor can provide.
Software developed for the 80860 can take full advantage of the
architecture, bringing the power of supercomputers into the
hands of desktop computer users.

But in addition to providing a new level of performance, the
80860 is the first of a new class of microprocessors. By break-
ing the one-operation-per-clock-cycle barrier, it has become
the first commercial superscalar microprocessor. The advent
of superscalar architectures will allow microprocessor perfor-
mance to work alongside advances in semiconductor technol-
ogy to bring even greater capabilities to desktop computers. B

Neal Margulis is chief applications engineer for high-perfor-
mance processors at Intel Corp. in Santa Clara, California. He
can be reached on BIX c/o “editors.”

