A close look at
Intel’s RISC-based
*Cray on a chip”

ou’ve heard the old adage:

Most people use only 15 per-

cent of their brainpower. Ge-

niuses, however, tap into the
85 percent reserve. Well, I don’t know if
that’s really true for humans, but it cer-
tainly applies to computers.

Thekey to great performance is a CPU
architecture that keeps transistors in con-
stant and productive use. The i860 has
that ability. Master its memory systems
and integer and floating-point proces-
sors, then make all these pipelined units
run in parallel, and you’re well on the
way to PC supercomputing.

Who needs personal MFLOPS (mil-
lions of floating-point operations per
second)? The scientists and engineers
who (like me) grew up on the IBM 7094s
of the sixties and 370s of the seventies,
and who today use VAXes, Crays, and
IBM 3090s—that’s who. In particular,
anyone who studies three-dimensional
physical systems develops an insatiable
lust for numeric horsepower. Of course,
all sorts of nontechnical professionals—
bankers, architects, economists, film-
makers, brokerage firms, meteorolo-
gists—also benefit from supercomputers
more than most people suspect.

Before the arrival of supercomputers,
you had to use simplifying assumptions
to reduce 3-D problems to two dimen-
sions. But when it comes to analyzing
something like the precise flow of air
over an airplane in flight, there’s no sub-
stitute for true 3-D analysis. And the
payoff can be dramatic. Shaving even a
fraction of a point of fthe drag coefficient
of a new airliner will result in immense
fuel savings over the lifetime of a fleet of
500 planes.
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Personal Supercomputing
with the Intel 1860

The most popular technique for study-
ing real-world objects is called finite-
element analysis. In FEA, you “mesh”
an object with a polygon grid to create an
armature of elements. Then you solve for
some property while applying con-
straints to each element.

Whether the property under investiga-
tion is an electrical, thermal, fluid-flow,
or stress field, the problem always boils
down to the same thing: solving a linear
equation that contains a matrix of coeffi-
cients. These matrices often have dimen-
sions in excess of 10,000 by 10,000 ele-
ments and can consume hundreds of
megabytes of disk storage. Of course,
matrix math also plays a key role in 3-D
graphics. Zooming, rotating, translat-
ing, and clipping all rely on matrix
operations.

These are just the operations at which
the i860 can excel. But it doesn’t happen
automatically. In scalar mode, as you’ll
see, the i860 doesn’t do much better than

an i486/80487 or a Weitek WTL4167.

To attain peak performance, you have
to exploit the chip’s pipelining and par-
allel-processing capabilities. Figure 1
shows the i860 with its recommended
memory subsystem. The architecture is
of the Harvard type, with separate in-
struction and data caches. Instructions
feed out of a 4K-byte, 64-bit-wide cache
that can drive both the CPU (“RISC
core”) and FPU simultaneously through
independent 32-bit instruction buses—
that’s one flavor of i860 parallelism.

Data feeds out of an 8K-byte, 128-bit-
wide cache that can drive two long real
arguments at a time at the adder, multi-
plier, or graphics unit. (The processor
also has 32 integer registers and 32 float-
ing-point registers, each 32 bits wide.)
The adder is a three-stage pipeline, as is
the multiplier, and these two units can
hook together in a variety of ways. That’s
another form of parallelism.

To make the i860 hit full stride on a
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Figure 1: The i860 features a Harvard architecture, wide internal data paths, pipelined arithmetic units, and a graphics unit.

numeric problem, as you’ll see, you have
to get the CPU and FPU working at the
same time, feed and flush the adder and
multiplier pipelines efficiently, and ex-
ploit the adder/multiplier synergy. Once
you see how that’s done, you’ll under-
stand better why the i860 has the archi-
tecture that it does. (For amore complete
review of the i860 architecture, see “The
Intel 80860,” December 1989 BYTE.)

The i860 in Scalar Mode

I normally use a benchmark that I call
the “Whetscale” (a variation of the
Whetstone) to compare scalar numeric
devices. Because scalar operations aren’t
repetitive and can’t be pipelined, the
Whetscale doesn’t give the i860 a chance
to really stretchits legs.

The i860’s raw speed is impressive.
Table 1 shows the Whetscale results for a
variety of numeric devices. The improve-
ment in scalar performance over the last

eight years has been stunning—roughly a
factor of250 from the 80287 to the i860.
This correlates nicely with Moore’s law,
which states that semiconductor perfor-
mance has been doubling annually.

Notice, however, that the i860 is not
dramatically faster than the Weitek 4167
at single-precision scalar operations.
That shouldn’tbe a surprise. The state of
the art in fast FPUs has been at or below
the 100-nanosecond mark for the last
several years.

A number of chip companies, includ-
ing Weitek, Analog Devices, and Texas
Instruments, have made a business of
selling special floating-point data paths
for minicomputers to companies such as
Sun Microsystems and Alliant. The chal-
lenge now is not simply to build faster
data paths (i.e., the parts of the device
that carry out the arithmetic), but to or-
ganize the remainder of the system so
that it is able to feed the data paths as fast

as they consume numeric data.

It brings to mind the hot-rod speed-
shop business. The first solution to build-
ing faster cars is bigger engines. Soon
everyone has huge engines running in
cars that can’t make corners. The speed
problem then becomes one of cornering
and, after that’s mastered, of reducing
aerodynamic drag.

Weitek was the first of the “engine”
companies. It started out building 16-bit
flash multipliers and expanded into a
complete line of FPUs.

Intel, recognizing that none of its
OEMs was likely to take the Sun ap-
proach to incorporating Weitek support,
contracted with Weitek for a chip that
glued Weitek engines to a 386 using a
memory-mapped interface. That worked
as a stopgap measure: Intel could claim
Weitek performance for its 386 line and
compete with RISC machines while
maintaining DOS compatibility.

| WHETSCALES
Table 1: These arethe “Whetscales” for Intel and Weitek numeric devices, in MFLOPS. Note the 250-fold speedup
from the 80287 to the i860.
80287 80287 80387SX 80387DX 3167 80387 3167 1486 4167 i860
10MHz 20MHz 20MHz 20MHz 20MHz 33MHz 33MHz 25MHz 25MHz 33MHz
Single-precision 0.061 0.185 0.612 0.615 2.27 1.61 4.05 3.31 9.95 12.36
Double-precision 0.051 0.133 0.554 0.560 2.00 1.43 3.57 294 7.71 12.36
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WHETMATS

Table 2: These are the “Whetmats” for Intel and Weitek numeric devices, in MFLOPS. Even in scalar mode, the i860’s
raw speed gives it an edge over the Weitek 4167.

80287 80287 80387SX 80387DX 3167 80387 3167 1486 4167 i860

10MHz 20MHz 20MHz 20MHz 20MHz 33MHz 33MHz 25MHz 25MHz 33MHz
Single-precision 0.028 0.181 0.282 0.378 1.32 0.866 2.56 1.87 4.55 5.88
Double-precision 0.024 0.059 0.204 0.328 0.62 0.672 1.12 1.70 1.93 4.91

L

WHETMAT/WHETSCALE RATIO

Table 3: The W hetmat/W hetscale ratio describes how well a processor copes with the addressing overhead
associated with vector operations. For single-precision work, the 4167 and the i860 have comparable vector ef ficiencies,
but in double-precision the i860’s 64-bit external data bus pulls it significantly ahead of the 4167.

80287 80287 80387SX 80387DX 3167 80387
10MHz 20MHz 20MHz 20MHz 20MHz 33MHz

3167 i486 4167 i860
33MHz 25MHz 25MHz 33 MHz

Single-precision 0.460 0.441
Double-precision 0.470 0.440

0.469 0.614 0.581 0.537
0.368 0.585 0.307 0.469

0.632 0.565 0.457 0.475
0.313 0.578 0.250 0.397

Intel got busy back in the “frame”
shop building a device that could proper-
ly take advantage oftoday’s wide numer-
ic data paths. Think of the Whetscale as a
drag race. Both the 4167 and the i860
have plenty of whatittakesto post a good

mark: good compilers and brute force.
But when it comes to the Le Mans of the
numerics business—double-precision
vector operations (as exemplified by the
LINPACK benchmark)—the i860, with
its 160-MB-per-second memory inter-

face, runs the course asmuch as 10 times
faster than a 4167-equipped i486.

Jacking into the Matrix
I use a second benchmark, called the
“Whetmat,” to evaluate performance on
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a typical vector operation—a matrix
multiplication. The Whetmat, in con-
junction with the Whetscale, gives you a
way to measure the relative efficiencies
of scalar and vector operations.

On scalar processors, vector opera-
tions run slower than scalars for two rea-
sons: They have to access operands from
memory instead of registers, and they
have to compute the address of each oper-
and as it is used. Table 2 shows raw
Whetscale results, and table 3 displays

“vector efficiency”—that is, Whetmats
divided by Whetscales, which I take as a
measure of how effectively a scalar pro-
cessor copes with the addressing over-
head of vector problems.

I’'m still restricting the i860 to scalar
mode, but even without the advantages of
pipelining and parallelism, notice how
the 1860 begins to distinguish itself from
the 1486 and 4167. The i860 continues to
perform well on the double-precision
Whetmat, while the 1486 and the 4167

Development Needs for

ware extension of the simulator!

The 24MHz real-time emulator has been

the industry standard for years. With its
complex breakpoint logic and advanced

trace, nobody can beat it for performance.

Plug-in or RS-232 configuration. All 8051
derivatives are supported!

NnoHau

CORPORATION

8051 &
68HC11

PC-Based
In-Circuit Emulators

Nohau
Covers All Your

for( p1 = arrayX, c = sizeof ( arra
75 1A 62 MOV .pi,He2
75 1B 6@ MOV  1B,400
75 1C 66 MOV 1C,n08
7518 3F MOV .c,#3F
ES 18 MV A,
MOV R?,A

51 E. Campbell Avenue, Campbell, CA 95008
(408) 866-1820 o FAX (408) 378-7869

Australia (02) 654 1873, Austria (0222) 38 76 38, Benelux +31 1858-16133, Canada (514) 689-5889, Denmark (42) 65 81 11,

Fintand 90-452 1255, France (01)-69412801, Germany 08131-25083, Great Britain 0962-73 3140, Hungary 01-137 2182,
Israel (03) 48 48 32, Italy (011) 771 00 10 Korea (02) 784 784 1, New Zealand (09) 392-464, Portugal (01) 81 50 454,
Sweden, Norway (040) 92 24 25, Singapore (065) 284-6077, Spain (93) 217 2340, Switzerland (01) 740 41 05,

Taiwan (02) 7640215, Thailand (02) 281-9596, Yugoslavia 061-57 19 49.

arehardly better than an i486 running on
its internal FPU. Moreover, the i860 out-
does the Weitek devices in terms of dou-
ble-precision vector efficiency.

The problem with the 4167 is that, for
large matrices, it’s bound by the data
bus. (You see the same thing happening
with the 80387SX, which keeps up with
its DX cousin on the Whetscale but falls
behind on the Whetmat.) Whatturns out
to be the biggest asset of the i860 for vec-
tor operations performed in scalar mode
is its 64-bit-wide external data bus.

If the 4167 were attached to the i486
with a 64-bit-wide bus, you could drive a
double-precision, memory-accessing op-
eration with two lines of i486 code (in-
stead of the four that it actually requires)
and thereby double the 4167’s perfor-
mance for certain vector operations.

Even in scalar mode, then, the i860’s
raw speed and wide external data bus
give it a significant edge over competing
numeric devices. But 4.91 double-preci-
sion MFLOPS falls far short of the chip’s
rated maximum: 66 MFLOPS (at 33
MHz). How do you get the i860 to live up
to its full potential?

Henry Ford Had the Right Idea

A pipelined processor works just like one
of Ford’s assembly lines. The i860 has
four of them, and you can use them or
not, depending on the problem and how
you decide to code it. The four pipelines
are the external memory loader, the ad-
der, the multiplier, and the graphics
unit.

The adder and multiplier can load
from registers, the data cache, or exter-
nal memory. The ability to pipeline loads
from external memory is crucial for vec-
tor operations on large matrices.

The adder and the multiplier, both of
which are three-stage pipelines, are
available to both scalar and pipelined in-
structions. In scalar mode, these units
produce a result every three cycles. But
pipelined instructions can control the
units on a cycle-by-cycle basis, produc-
ing new results each cycle.

The amount of work you can get out of
the i860 pipes is simply the speed of the
pipes times the number of pipes in opera-
tion. At 33 MHz, with both the adder and
multiplier yielding new results each
cycle, that’s 66 MFLOPS!

Of course, the problem that is being
solved must require some sequence of
additions and multiplications that alter-
nate, so the adder and multiplier can
work together. But that’s not as artificial
as it may seem. Vector dot products,
which are the core of other vector opera-
tions, such as matrix multiplication, have

<«— Circle221 on Reader Service Card
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exactly this sort of interleaved add/mul-
tiply behavior.

Given the right sort of problem, you’ve
got to arrange to keep your numeric fac-
tory fed with numbers, and to get rid of
the results as fast as they come out the
back end. Here, the i860’s Harvard ar-
chitecture comes into play.

The 64-bit external data bus can shuf-
fle 8 bytes of data to or from memory
every other cycle—that’s 4 bytes per
cycle, or 160 MBps. To start a single-
precision dot product on every cycle—
and thereby keep the load and numeric
pipelines fed—you will have to read one
operand from memory while grabbing
the second operand from a register or out
ofthe cache.

The i860’s 8K-byte data cache can
hold entire rows when multiplying matri-
ces as large as 2000 elements. As a mat-
ter of fact, the i860 is said to be operating
in “Cray” mode when its cache emulates

( REGISTER SETUP

Table 4a: Floating-point registers
f4 10 fl1 hold the first array,
and registers f12 to f19 hold the
second array. Results appear

in registers f12 to f19 after

a three-cycle delay.

srci src2 Destination
4 f12 12
5 13 f13
f6 f14 f14
7 15 f15
8 16 f16
f9 17 f17
10 18 18

f11 f19 f19

the vector registers of a Cray. That’s fea-
sible because the i860 can move data be-
tween its cache and the FPU’s register
file at a whopping 640 MBps. Moreover,
the two kinds of loads—pipelined loads
from external memory straight into reg-
isters, and cached loads that fill the
“vector register”—can proceed in par-
allel.

Wiring for Dual-Operation Mode
I've said that the i860 supports two forms
of parallelism. In dual-operation mode,
the adder and multiplier work in concert.
In dual-instruction mode, the RISC core
loads floating-point registers while the
FPU runs in parallel. The two modes are
complementary; I’ll tackle dual-opera-
tion mode first.

Before you can understand ‘‘dual-
ops,” though, let me review basic pipe-
lining. Tables 4a and b show the pipe-
lined multiplication of two arrays of
single-precision floating-point numbers.
As you can see, it’s a series of instruc-
tions of the form

pfmul.ss srcl, src2, dest

where the p in pfmul selects pipelined
mode, and the .ss specifies single-preci-
sion operands and a single-precision re-
sult. The special register fO acts as a
dummy destination for the first three
instructions, while the pipeline fills.
Thereafter, each instruction yields a re-
sult that began its trip through the pipe-
line three instructions ago. At the end,
register 0 acts as a placeholder again,
this time supplying dummy operands to
flush the last three results out of the
pipeline.

Now, a vector dot product boils down
to a sequence of operations like this:

I PIPELINED MULTIPLICATION IN ACTION
Table 4b: Once you prime the multiplier, it produces a new result each cycle
(G=garbage).

Multiplier
Instruction Stage 1 Stage 2 Stage 3 Result
pfmul.ss f4,{12,f0 f4xf12 G G None
pfmul.ss £5,13,f0 5xf13 f4 xf12 G None
pfmul.ss f6,{14,f0 f6 xf14 5xf13 4 xf12 None
pfmul.ss f7,f15,f12 f7xf15 f6xf14 f5xf13 f12<—f4xf12
pfmul.ss f8,{16,f13 f8xf16 f7 xf15 6 xf14 f13<— f5xf13
pfmul.ss 9,{17,f14 fOxf17 8 xf16 f7xf15 f14<— 6 xf14
pfmul.ss f10,{18,f15 f10xf18 fOxf17 8 xf16 f15<—f7xf15
pfmul.ss f11,{19,f16 f11 xf19 f10xf18 fOxf17 f16<— 8 xf16
pfmul.ss f0,f0,f17 G 11 xf19 f10xf18 17<—f9xf17
pfmul.ss f0,f0,f18 G G 11 xf19 f18<—f10xf18
pfmul.ss f0,f0,f19 G G G f19<—f11 xf19
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(1 X2)+BX4)+(5%X6)+. ..

For this job, you’d need to interleave ad-
dition and multiplication. There are 62
ways to chain together the i860°s adder
and multiplier. Figure 2a shows the full

set of possibilities. The adder, for exam-
ple, canreceive operands from floating-
point registers, the special T (temporary)
register, the multiplier, or itself.

To perform the dot product, combine
the adder and multiplier tocreatea “mul-

DUAL-OPERATION
BLOCK DIAGRAM
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Figure 2a: The multiplier and adder
can receive inputs from registers, their
own outputs, or each other’s outputs.
They can be wired 62 different ways to
create special-purpose instructions,
such as “multiply-accumulate.”

Figure 2b: T he multiply-accumulate
instruction is formed by combining the
adder and the multiplier. The multiplier
feeds the adder, while the adder’s
results recirculate back through

the adder.
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recirculate back through the adder.
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tiply-accumulate” instruction, which, as
shown in figure 2b, recirculates the add-
er’s results back through the adder.

Take a look at the dot product example
in tables 5a and b. In table 5b, the cryptic
mi2apm.ss is the multiply-accumulate
instruction. It wires the FPU so that the
multiplier gets two operands from regis-
ters, and so that the adder’s two operands
are the multiplier’s result and its own
prior result. During the priming phase,
you fill up the multiplier with the first
three product terms: 1X9, 2X10, and
3X11. When terms reach stage 3, you
start referring to them by their value.

By the fourth instruction, you have a
problem. The third stage of the adder is
about to feed back into the adder’s first
stage and get added to the garbage value
there. Instructions 4 through 6 therefore
prime the adder with Os using pipelined
additions involving the dummy register
f0. Since pfadd.ss is a pipelined opera-
tion, it will take three cycles to complete.
The pfadd.ss instructions affect only
the adder; the values in the multiplier are
untouched.

Now you can enter the steady-state
part of the algorithm. After another
three-cycle latency, during whichthe ad-
der combines multiplier results with the
Osin its pipeline, the adder begins its real
work: accumulating partial sums in each
of its stages.

Figure 3 shows what’s happening in a
more graphical way. For the first six
cycles of the journey through the pipe-
line’s stages, all terms progress fromleft
to right, just like on an assembly line.
Then the pattern abruptly reverses, as
adder results feed back to the first stage
of the adder. In a real program, the
steady-state part would be a loop with
dozens or hundreds of operand pairs.

When all the product pairs have been
fed in from their registers, start harvest-
ing the sums. First, flush the multiplier
with Os. You use the same multiply-accu-
mulate instruction, since, while you're
flushing the multiplier, you want the
adder to keep accumulating sums.

After three cycles, the multiplier’s job
is done. The adder contains partial sums
in each of its stages; once you combine
these, you’ll have the answer. You could
load them off to three registers and then
use scalar operations to combine them,
but this would cost at least three cycles to
unload the pipes plus nine cycles to per-
form the three additions. Instead, use a
series of pipelined additions with a single
scalar addition, for a total of eight cycles.

The final code sequence in table 5b is
wortha close look. Begin by taking what
was in the adder pipe at the end of the last
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multiply-accumulate, 117, and put it in
register £20. The next instruction should
strike you as bizarre. It appears to place
f20 and f21 into the pipeline, while put-
ting the stage 3 adder result into f21. But
this is the first use of f21. How can the
result you’re about to place in f21 also be
the same operation’s input value?
Simple: The i860 works backward. Its
internal clock breaks pipelined opera-
tions into three parts. On cycle 1 of the
internal clock, the last stage of the adder
gets stored to the destination. On cycle 2,
stages 1 and 2 advance to stages 2 and 3.
On cycle 3, the inputs latch into stage 1.
This backward way of doing things
actually makes a lot of sense, as it starts
of f the most time-consuming part of the

process (storing results) early. It’s also
what makes it possible for results to re-
circulate back through the adder with a
single instruction.

Preparefor Lift-off:

Entering Dual-Instruction Mode
Until now, the assumption has been that
operands are simply available in regis-
ters. To load those registers without
stallingthe pipeline, you’ll have to tackle
the second form of i860 parallelism:
dual-instruction mode.

In that mode you will be doing pipe-
lined loads and pipelined computation at
the same time. But, again, let’s start by
looking at a simple pipelined load. The
memory subsystem uses a three-stage

| REGISTER SETUP

Table 5a: Registers f4 to f11

contain the first array, and f12 to

f14 contain the second.

srci Value src2 Value
f4 1.0 f12 9.0
5 2.0 f13 10.0
6 3.0 14 11.0
7 4.0 15 12.0
8 5.0 f16 13.0
f9 6.0 f17 14.0
10 7.0 f18 15.0
f11 8.0 19 16.0

[ 8

MULTIPLY-ACCUMULATE IN ACTION

Table 5b: During the steady-state part of the algorithm, each instruction drives the three stages of the multiplier and the
three stages of the adder in parallel (G=garbage).

Multiplier stages Adder stages Result
Priming: Fill multiplier with
first three products
m12apm.ss f4,f12,f0 1x9 G G G G G Ignore
m1i2apm.ss {5,f13,f0 2x10 1x9 G G G G Ignore
m12apm.ss f6,f14,f0 3x11 2x10 1x9 G G G Ignore
Priming: Prepare adder
for first product
pfadd.ss 0,f0,f0 3x11 2x10 1x9 0 G G Ignore
pfadd.ss f0,f0,f0 3x11 2x10 1x9 0 0 G Ignore
pfadd.ss f0,f0,f0 3x11 2x10 1x9 0 0 0 Ignore
Steady state
m12apm.ss 7,f15,f0 4x12 3x11 20 9+0 0 0 Ignore
m1i2apm.ss 8,f16,f0 5x13 4x12 33 20+0 9+0 0 Ignore
m12apm.ss 9,f17,f0 6x14 5x13 48 33+0 20+0 9 Ignore
Now the first product term
feeds back to the adder
m1i2apm.ss f10,f18,f0 7%x18 6x14 65 48+9 33+0 20 Ignore
m12apm.ss f11,f19,f0 8x19 7x18 84 65+20 48+9 33 Ignore
We’ve multiplied all terms,
now flush the multiplier
m1i2apm.ss f0,f0,f0 0x0 8x18 126 84+33 65+20 57 Ignore
m12apm.ss f0,f0,f0 0x0 0x0 162 126+57 84+33 85 Ignore
m1i2apm.ss f0,f0,f0 0x0 0x0 0x0 152+85 126+57 17 Ignore
Combine adder stages
and store result
pfadd.ss f0,f0,f20 G G G 0+0 152+85 183 f20<—117
pfadd.ss f20,f21,f21 G G G 183+117 0+0 237 f21<—183
pfadd.ss f0,f0,f20 G G G 0+0 183+117 0 f20<—237
pfadd.ss f0,f0,f0 G G G 0+0 0+0 300 f0<—0
pfadd.ss f0,f0,f21 G G G 0+0 0+0 0+0 f21<—300
fadd.ss f20,f21,f20 G G G G G G f20<—537
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HANDS ON
UNDER THE HOOD

Listing 1: Note the use of both pipelined (pf£1d) and scalar (£1d) load
instructions. Pipelined loads are appropriate when you're going to use

an operand once and then throw it away. Use scalar loads when you want
operands to get stored in the cache.

/| Multiply eight elements of row A by column B.
|| Row A is contained in registers f4.f11.
|| Row B is contained in registers f12..f19.

pipeline that is controlled by the in-
structions of the form:

pfld.z srcl(src2), freg
or

pfld.z srcl(src2)++, freg
| |autoincrement

In both forms, src2 provides a base ad-
dress to which srcl gets added. In the
auto-increment mode, each instruction
increments src2 by srcl; that makes it
possible to load arrays with constant
stride factors stored insrcl.

The z stands for the number of bytes to
load into memory: 4 or 8. Because you’re
working with a three-stage pipeline, the
destination register, freg, receives the
data specified in the third prior pf1d in-
struction, not the current one. As you can
imagine, it’s just about impossible to
write pipelined code for the 1860 without
drawing stage diagrams to visualize what

inner::
d.m12apm.ss f4,£12,f0 ||Start f4*f12 into multiply-accumulate pipe.
fld.q 16(r29)++,f8 [/Load 4 elements of A into f8..f11
|| from cache, and increment r29 by 16.
d.ml2apm.ss £5,f13,f0 |/Start £5%f13 into multiply-accumulate pipe.
pfld.d 8(r24)++,f16 [/Load third stage of pipe into f16,f17
//and increment f24 by 8.
d.ml2apm.ss £6,f14,£0 //Continue with multiply-accumulate pipe.
pfld.d 8(r24)++,f18 [[Load and service B pipeline.
d.ml2apm.ss £7,£15,f0 | /Continue with multiply-accumulate pipe.
fld.q 16(r29)++,f4 [[Load A now for use at top of loop!
d.ml2apm.ss £8,£16,f0 | |Continue with multiply-accumulate pipe.
nop | [Dual-instruction mode always requires pairs.
d.ml2apm.ss f9,£17,f0 | |Continue with multiply-accumulate pipe.
pfld.d 8(r24)++,f12 [/Load B now for use at top of loop!
d.ml2apm.ss £10,£18,f0 | |Continue with multiply-accumulate pipe.
bla r27,r28,inner [/Start branching to the label now!
d.m12apm.ss f11,£19,f0 | |Last multiply-accumulate in inner loop.
pfld.d 8(r24)++,f14 [[/Load B for next loop now!

is happening in the pipelines.
In dual-instruction mode, you execute
pipelined loads and pipelined add/

multiply operations simultaneously. To

SOURCE
CODE

The AT BiosKit gives you a complete Bios with
source code in C you can modify for your own appli-
cations! The BiosKitincludes a Bios on diskette ready
for programming Eproms, and includes the utilities
you need to Rom the sources Code. The Bios also has
a Rom Monitor/Debug and Setup. At last you have
control over the core of your system. Over 380 pages,
with diskette, $199. The XT BiosKitis only $99. The
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We'll include a free copy of the pocket-
FREE sized XT-AT Handbook by Choisser and

BIOS
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accomplish this feat, you exploit the
i860’s ability to fetch two instructions at
once from the instruction cache.

Listing 1 shows the inner loop of a ma-
trix multiplication in dual-instruction
mode. The d. prefix that precedes each
multiply-accumulate instruction tells the
processor to execute this floating-point
instruction and the following core in-
struction simultaneously.

Note the use of both pipelined (pf1d)
and scalar (f1d) load instructions. With
pipelined loads, you bypass the cache;
that’s appropriate for large arrays that
you're going to touch just once. Scalar
loads fill the cache; that’s useful for
small matrices that will fit entirely in the
cache, or for larger matrices whose rows
can be cached.

There are many points of interest in
this short piece of code, which takes just
eight cycles (200 ns) to execute at 40
MHz. On every cycle, the i860 schedules
four or five processor activities. For ex-
ample, the third and fourth lines of code
start the multiplier (and adder) pipes,
store the third previous pipelined load to
f16 and f17, and increment r24 by a con-
stant stride factor of 8. That means the
i860 performs five tasks every 25 ns, or
one every 5 ns, which is the equivalent of
200 million operations per second on a
conventional system. That’s what tran-
sistor productivity is all about.

The code has a unique rhythm. The
pipelined loads at the head of the loop de-
liver their goods at the bottom half of the
loop, while the loads at the bottom are ar-
ranged to feed the top of the loop. The
whole loop has the feel of the antique
push-pull amplifiers used to power radio
transmitters back in the old days.

After rewriting the Whetmat to call a
hand-coded matrix multiply like the one
that is shown in listing 1, the i860 hit 62
MFLOPS. That’s quite close to the theo-
retical limit of66 MFLOPS (at 33 MHz),
and much faster than the 4.9 MFLOPS
the i860 achieves in scalar mode.

The i860 can make your dreams of
personal supercomputing come true. My
i860-powered Compaq 386/20 portable
computer turns in over 10 LINPACK
MFLOPS. How good is that? The top-of-
the-line VAX 8800 produces 1.2 LIN-
PACK MFLOPS; an IBM 3081K does
only slightly better at 2.1. Of course, a
Cray X cranks out over 60 LINPACK
MFLOPS, but I can’t carry one home. B

Stephen S. Fried is president of Micro-
Way, Inc. (Kingston, MA), whose prod-
ucts include NDP Fortran-386 and an
i860-based coprocessor for PCs. He can
be reached on BIX c/o “editors.”



