NI-488M"

Software Reference Manual

National Instruments IEEE 488
Multitasking UNIX Device Driver

July 1994 Edition
Part Number 320062-01

© Copyright 1985, 1994 National Instruments Corporation.
All Rights Reserved.

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (800) 328-2203
(512) 794-5678

Branch Offices:

Australia (03) 879 9422, Austria (0662) 435986, Belgium 02/757.00.20, Canada (Ontario) (519) 622-9310,
Canada (Québec) (514) 694-8521, Denmark 45 76 26 00, Finland (90) 527 2321, France (1) 48 14 24 24,
Germany 089/741 31 30, Italy 02/48301892, Japan (03) 3788-1921, Mexico 95 800 010 0793,

Netherlands 03480-33466, Norway 32-84 84 00, Singapore 2265886, Spain (91) 640 0085, Sweden 08-730 49 70,
Switzerland 056/20 51 51, Taiwan 02 377 1200, U.K. 0635 523545

Limited Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL
INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF
PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
This limitation of the liability of National Instruments will apply regardless of the form of action, whether in
contract or tort, including negligence. Any action against National Instruments must be brought within one year
after the cause of action accrues. National Instruments shall not be liable for any delay in performance due to causes
beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or
service failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance
instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

NI-488M™ is a trademark of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE
OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the
part of the user or application designer. Any use or application of National Instruments products for or involving
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all
traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent
serious injury or death should always continue to be used when National Instruments products are being used.
National Instruments products are NOT intended to be a substitute for any form of established process, procedure, or
equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

Preface

About This Manual

This manual describes the NI-488M GPIB software. All NI-488M function calls for the C
language are described in detail.

Organization of This Manual

This manual is divided into the following chapters and appendixes:
Chapter 1, Introduction, introduces you to the product and the manual.

Chapter 2, The C Language Library, contains a general discussion of the C language programming
interface to the NI-488M UNIX device driver.

Chapter 3, Using ibic, introduces you to ibic, the interactive control program that enables you to
communicate with GPIB devices through functions you enter at your keyboard. ibic is designed
to help you learn how to use the NI-488M functions to program your devices.

Chapter 4, Using ibconf, introduces you to ibconf, the screen-oriented interactive utility that is
used to edit the device and board data structures in a UNIX kernel.

Appendix A, NI-488M Functions and Utilities Reference, contains detailed information for using
the NI-488M UNIX driver functions and utilities.

Appendix B, Multiline Interface Command Messages, is a listing of Multiline Interface Messages.

Appendix C, GPIB Programming Example, illustrates the steps involved in programming a digital
voltmeter in the C Language. This section is designed to help you learn how to use the driver
software to execute certain programming and control sequences.

Background

This manual was developed as part of the documentation for a variety of NI-488M device driver
kits. Common software reference material can be found in this manual. Software and hardware
information specific to a particular interface board kit can be found in other documentation provided
with that kit.

Customer Support

We hope your experience will be a rewarding one. If you encounter difficulties, National
Instruments has a helpful staff of applications engineers ready to assist you with system setup or
software development. You can use the following toll-free numbers between the hours of 8:00 a.m.
and 5:30 p.m. (Central Time) to reach the National Instruments applications engineering
department:

(512) 794-0100
(800) IEEE-488 (toll-free U.S. and Canada)

© National Instruments Corporation v NI-488M Software Reference Manual

Contents

Chapter 1
INErOAUCHIONc.oviieeeeeeeeee ettt 1-1
THE DEVICE DITVEToeviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee ettt e et eaa st et ssaaeasasaassasssssssanenees 1-1
Chapter 2
The C Language LiDrary ... 2-1
GLODAL VATIADIEScooiiiiiieeeieeeeeeeeeee ettt e e e e ettt e e e e e eeesaaaseeeeeeenns 2-1
Status WOTd — IDSEA c.evveeeeiiiiieiiieeeee ettt e e e e e ea e 2-1
EIror Variable — IDEIToiiiiiiiiiieeeee ettt e e 2-2
Count Variable — IDCNLoooiiiiiiieiee et eeeeaaaaaas 2-4
Read and Write TermINAtiONuuueeiiiiiiiiieieeee e e ettt e e e e et e eeeeeeeeesaaaeeeeeeeeens 2-4
Compiling C PrOGramScooveiiiieriieiieieenieee ettt s 2-5
GPIB Function DeSCIIPLONScc.eerutiriiiiiiiiierieeieeeee ettt 2-5
DEVICE COMIMANGASovvvieeie ittt e et e ettt e e e e e e et eaaaeeeeseeeeesasnnseeeseeens 2-5
Board COmMIMANGScooovuiiieeie et ettt e e e e e e ettt e e e e eeeeeeesssaaanaas 2-6
Chapter 3
USINEG TDEC ... 3-1
Syntax Translation GUIAEcoccveiriieeiiieeiie ettt e reesveesbeeesaeeeeeeens 3-1
SAMPIE SESSIOM.....eeeiiiiieiiiieeiieeeieeeeiee ettt e et e et e steeestaeesbaeessbeeessseeessseeensseessseens 3-2
AUXIHATY FUNCHONS ..veeiiiieiiiieciieeciee ettt e et e e eaaeessaaeesnnaeesnseeenns 3-3
Chapter 4
USING IDCONE ...t 4-1
Appendix A
NI-488M Functions and Utilities Reference....................cocoooooiiiioieeeeeee A-1
12100\ 316 1 OO R A2
12 (O TSROSO A4
IBBINA(B) ittt ettt e e ettt e e e e s e e s ettt e e e e e e e s eeabarraeeeeesenans A-9
11O N O (S) IR ORI A-10
IBCLR(B) ceetiieiiieeeeeeeeeee ettt e e ettt e e e e e e s s e aaba e e e e e e e s sesasbaaeeeeeessenanns A-11
12100 1 DI RO A-12
123 D)\ VN) T USRI A-14
129 21O AT () ISR A-15
IBEOT(B) ettt ettt e ettt e e e e s e s e et e e e e e e s s sesnnataeeeeeeessennns A-17
129 200\ D1 IO A-18
|11 I () IR SRR A-19
129) N () TSROSO A-20
|12) I 1 (G) P RORRRRRR A-21
IBLIOC(3) .ottt ettt e ettt e e e e e e s et e e et e e e e s ssssbaabeeeeeeesseaanes A-22
121001 I G) TSRS A-23
12 2N 1) T RO SRRTRRRRN A-24
129 SO () TR RPN A-25
159 & S Ol (C) OO PP A-26
129 33 D1) ISR A-28
129 53 D) 2 G) TSRS RRRRORPP A-30
IBRPP(B) oottt ettt e ettt e e e e e s et e e e e e e e st ba e eea s A-31

© National Instruments Corporation vii NI-488M Software Reference Manual

Contents

IBRISC(B) ettt ettt ettt ettt ettt et b et a e bt et e et et et e e nee b enee A-32
IBRSP(3). ettt ettt ettt ettt et a e b et saeenes A-33
IBRISV () ittt ettt ettt ettt et b e e n e ae et entesneenae A-34
IBSAD(3) ettt ettt ettt ettt e a ettt et e bt e teentesteebeenean A-35
IBSET(3) ittt ettt ettt ettt et e e a et et e st et e entesae e teeneesneenten A-36
IBSGINL(3) ettt ettt ettt ettt ettt et e e s et e bt e be e be et e enneenee e A-37
IBSTC(3) ettt ettt ettt et sttt ettt et st ettt e e at et enteentenbeenteennene A-39
IBSRE(3) ettt ettt ettt ettt et sh et et aeebeeneen A-40
IBTIMO(3) ettt ettt ettt et at ettt e e st e bt e nteseee b e enteeneenbeenes A-41
IBTRG(3) .ttt ettt ettt et et e e e a et e et e e st e sbeenbeentesbeebeeneans A-43
IBW AIT(3) .ottt ettt ettt et ettt et a et e et e s bt e e estesaeenbesneesbeensens A-44
IBWRT(3) ettt ettt ettt sttt et e st e bt et e sse e beenaeeneenseenes A-46
IBWRTE(3).. ettt ettt ettt st et e b enees A-48
Appendix B
Multiline Interface Command MeSSages..................ccccoevevererererereverereeeeeee e B-1
Appendix C
GPIB Programming Example..................ccocooooiiiiiieee s C-1
Tables
Table 2-1. Status Word LayOuULl.........ccooiiiiiiiiiniieeieeeteeeee ettt et 2-1
Table 2-2. GPIB EITOr COAESeoriiiiiiiiiiiieniieeieesitcee ettt ettt st et 2-2
Table 3-1. Auxiliary Functions that ibic SUPPOIS.......ccceevviiiiiiiiiiiieiiieiceeeeeee e 3-3
Table A-1. Syntax of NI-488M Functions in ibiC.........ccceevvueiiiiiiiniiiiiiiiiicecieeee e A-4
Table A-2. Status Word LayOut..........cooiiiiiiiiiiiiieieeeee ettt A-6
Table A-3. GPIB EITOr COAEScoviiiiiiiiiiiiiiieeieeitceee ettt ettt enee e A-7
Table A-4. Auxiliary Functions that ibic SUPPOTIS.......ccccueiviiiriiiniieieceeceeeieeeee e A-7
Table A-5. Data Transfer Termination Method............ccccoivriiiiiiiiiniiieeeeeeee A-15
Table A-6. Signal Mask Layout.........cccoooiieriiiiiiieniieeieesiee ettt A-37
Table A-7. TIMEOUL SELHINESeevurieriiieriieerieeertee et e e riteeeiteesbteesbeeesibeeesabeesnaseesnreesaseeenanes A-41
Table A-8. Wait Mask LayOULccccueiiiiiiiiiiiiieeie ettt et A-44

NI-488M Software Reference Manual Vviii © National Instruments Corporation

Chapter 1
Introduction

The National Instruments NI-488 Multitasking Handler is a UNIX device driver that supports
concurrent access to different GPIB devices from separate application programs. The NI-488M
software contains a C language library (cib) that provides a uniform programming interface for
these application programs; an interactive control program (ibic) that is a controlled environment
for testing and debugging GPIB programs; and a screen-oriented, interactive configuration program
(ibconf) that changes default device parameters.

Note: In this manual, the term UNIX is used generally to refer to any operating system supported
by the NI-488M package (UNIX, SunOS, XENIX, and so on).

The Device Driver

National Instruments provides the device driver in object module form. It is linked into the UNIX
system using reconfiguration tools provided by the system vendor (see the installation guide or
getting started manual that you received with your interface board for specific details). The driver
supports multiple GPIB boards and multiple GPIB devices. Access to GPIB devices is controlled
by the driver, which uses internal tables of device-specific information. Standard drivers support up
to two boards and 16 devices. A device can be assigned any board to use as its access board. The
utility ibconf is used to edit the internal board and device tables.

The device tables contain information such as GPIB primary and secondary addresses, end-of-
string modes, and timeout limits. Once this information is properly set up, it is possible to
communicate with GPIB devices without any knowledge of GPIB protocol. stdout can

be redirected to a GPIB device asincat file > /dev/gpibplotter. However,
stdin cannot.

Different processes can access different devices concurrently; however, each device can be opened
by only one process at a time. A typical application would be a GPIB printer and GPIB plotter
each with its own spooler. The driver imposes no restrictions on access to the GPIB board itself, so
it is up to the system administrator to restrict read/write access to the board nodes (for example,
mode 600 owned by root).

The driver uses the minor device number to determine whether a node is a board or a device.
Boards are assigned the highest minor device numbers and devices are assigned starting at one. In
systems with two boards and 16 devices, minor device numbers 1 through 16 reference the 16
devices and minor numbers 254 and 255 reference the two boards. The first board is 255, the
second is 254. Once the first node (/dev/gpib0) is created, the configuration utility (ibconf)
creates and renames the other nodes.

In special cases, more direct control of GPIB protocol is needed. For these cases, the user can
access the GPIB board directly. In this mode of operation, the user is responsible for all
addressing, unaddressing, and polling operations. This is privileged access since direct board
commands will interfere with device-level commands.

In most applications, it is not necessary to perform any direct board commands. When the first
device is opened, its access board is brought online and, if it is System Controller (SC), the driver

© National Instruments Corporation 1-1 NI-488M Software Reference Manual

Introduction Chapter 1

sends Interface Clear (IFC). The driver also sends IFC whenever a GPIB bus error is detected. If
the GPIB board has been configured so it is not SC, device commands cannot be sent until the
board is passed control. When the last device is closed, the GPIB board is taken offline.

When opened to perform device commands, the driver will respond to a service request (SRQ)
interrupt by serial polling all open devices. Serial poll status bytes are stored in a queue per device.
Since serial polling is done automatically, it is possible for a process to wait for its device to request
service without impeding other GPIB activity.

NI-488M Software Reference Manual 1-2 © National Instruments Corporation

Chapter 2
The C Language Library

This chapter describes the GPIB device and GPIB board commands.

Global Variables

The next several paragraphs explain the status word (ibsta), the error variable (iberr), and the
count variable (ibcnt). These variables are updated each time a handler call is made, to reflect the
status of the most recently referenced board or device.

Status Word - ibsta

All functions return a status word which reports the success of the function call and information
about the state of the GPIB. The status word is also available as the external variable ibsta.

The status word contains 16 bits. The valid bits depend on whether a function is a device or a board
call. A bit value of one indicates that the corresponding condition is in effect; a bit value of zero
indicates that the condition is not in effect. Table 2-1 lists the conditions and the bit position to be
tested for that condition.

Table 2-1. Status Word Layout

Mnemonic Bit Hex Function | Description
Pos. Value Type

ERR 15 8000 dev,brd | GPIB error
TIMO 14 4000 dev,brd | Time limit exceeded
END 13 2000 dev,brd | END or EOS detected
SRQI 12 1000 brd SRQ interrupt received
RQS 11 800 dev Device requesting service
CMPL 8 100 dev,brd | I/O completed
LOK 7 80 brd Lockout State
REM 6 40 brd Remote State
CIC 5 20 brd Controller-In-Charge
ATN 4 10 brd Attention is asserted
TACS 3 8 brd Talker
LACS 2 4 brd Listener
DTAS 1 2 brd Device Trigger State
DCAS 0 1 brd Device Clear State

© National Instruments Corporation 2-1 NI-488M Software Reference Manual

The C Language Library Chapter 2

A description of each status word and its condition follows.

ERR

TIMO
END

SRQI
RQS
CMPL

LOK
REM
CIC
ATN
TACS
LACS
DTAS

DCAS

The ERR bit is set in the status word following any call that results in an error; the
particular error can be determined by examining the iberr variable. The ERR bit is
cleared following any call that does not result in an error.

The TIMO bit indicates whether the time limit has been exceeded.

The END bit indicates whether the END or EOS message has occurred during a read
operation.

The SRQI bit indicates whether the GPIB line SRQ is asserted.
The RQS bit indicates that the device is requesting service.

The CMPL bit indicates that the previous I/O operation is complete. Since I/O is
synchronous, CMPL is always set.

The LOK bit indicates whether the board is in a lockout state.

The REM bit indicates whether the board is in remote state.

The CIC bit indicates whether the GPIB board is the Controller-In-Charge.
The ATN bit indicates whether the GPIB line ATN is asserted.

The TACS bit indicates whether the GPIB board is addressed to talk.

The LACS bit indicates whether the GPIB board is addressed to listen.

The DTAS bit indicates whether the GPIB board has detected a device trigger
command.

The DCAS bit indicates whether the GPIB board has detected a device clear command.

Error Variable — iberr

When the ERR bit is set in the status word, a GPIB error has occurred. One of the following error
codes is returned in the external variable iberr.

Table 2-2. GPIB Error Codes

Suggested Decimal

Mnemonic Value Explanation
EDVR 0 UNIX error (code in ibcnt)
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 Write handshake error (e.g., no listener)

(continues)

NI-488M Software Reference Manual 2-2 © National Instruments Corporation

Chapter 2

The C Language Library

Table 2-2. GPIB Error Codes (continued)

Suggested Decimal

Mnemonic Value Explanation
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument to function call
ESAC 5 GPIB board not System Controller as required
EABO 6 1/0 operation aborted
ENEB 7 Non-existent GPIB board
EDMA 8 DMA hardware error
EBTO 9 DMA hardware bus timeout
ECAP 11 No capability for type of operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial Poll queue overflow
ESRQ 16 SRQ line asserted by unknown device

A description of each error and some conditions under which it may occur follow:

EDVR (0)

ECIC (1)

ENOL (2)

EADR (3)

EARG (4)

© National Instruments Corporation 2-3

This code is returned by the language interface when an error is returned from the
operating system. When this error occurs, additional error information is placed in
the count variable ibcent. In most cases, this is the UNIX error code that was
supplied by the variable errno. In other cases, it contains a system-specific
internal error code.

This code is returned when a call requiring the GPIB board to be Controller-In-
Charge (CIC) is made, but the board is not CIC. This could have happened because
the board was never made CIC, or it passed control to another Controller.

The most common cause of this error code i1s when a write operation is attempted
with no Listeners addressed. For a device write, this indicates that the GPIB address
configured for that device in the handler does not match the GPIB address of any
device connected to the bus. For a board write, the appropriate addressing
commands were not previously sent.

This error may also occur in situations in which the GPIB board is not the
Controller-In-Charge and the Controller asserts ATN before the write call in
progress has ended.

This error results from the GPIB board not addressing itself before read and write
calls when it is the Controller-In-Charge. This error can occur on a device call if
board calls are mixed with device calls.

This error results when an invalid argument is passed to a function call.

NI-488M Software Reference Manual

The C Language Library Chapter 2

ESAC (5) This error results when ibsic or ibsre is called and when the GPIB board does
not have System Controller capability.

EABO (6) This error indicates that I/O has been cancelled. This is usually due to a timeout
condition.

ENEB (7) This error occurs when there is no GPIB board at the I/O address specified in the
configuration program.

EDMA (8) This error indicates that a DMA hardware error occurred during an I/O operation.

EBTO (9) This error indicates that a hardware bus timeout occurred during an I/O operation.
This is usually the result of an attempt by a DMA Controller to access non-existent
memory.

ECAP (11) This error results when a particular capability is unsupported or has been disabled in
the handler, and a call is made that attempts to make use of that capability.

EFSO (12) This error results when an ibrdf or ibwrtf call encounters a problem
performing a file operation.

EBUS (14) This error indicates a GPIB bus error during a device call. This is usually the result
of the time limit being exceeded.

ESTB (15) This error indicates that a devices serial poll byte queue has become full and bytes
have been discarded for lack of room.

ESRQ (16) This error indicates that the SRQ line remains asserted after all open devices have
been serial polled. This is usually the result of an incorrect device address.

Count Variable — ibcnt

The ibcnt variable is updated after each read, write, or command function call with the number of
bytes actually transferred by the operation.

Read and Write Termination

The IEEE-488 specification defines two methods of identifying the last byte of device-dependent
(data) messages. The two methods permit a Talker to send data messages of any length without the
Listener(s) knowing in advance the number of bytes in the transmission. The two methods are as
follows:

* END message. In this method, the Talker asserts the End Or Identify (EOI) signal
simultaneously with transmission of the last data byte. By design, the Listener stops reading
when it detects a data message accompanied by EOI, regardless of the value of the byte.

* End-Of-String (EOS) character. In this method, the Talker uses a special character at the end of
its data string. By prior arrangement, the Listener stops receiving data when it detects that
character. Either a 7-bit ASCII character or a full 8-bit binary byte can be used.

These two methods can be used individually or in combination. However, it is important that the
Listener be properly configured to unambiguously detect the end of a transmission.

NI-488M Software Reference Manual 24 © National Instruments Corporation

Chapter 2 The C Language Library

The GPIB board always terminates ibrd operations on the END message. Using the
configuration program, you can accommodate all permissible forms of read and write termination.
The default configuration settings for read and write termination can be changed at run time using
the ibeos and ibeot functions, if necessary.

Compiling C Programs
Always include the file <sys/ugpib.h> in every GPIB program. This file defines all status bits,
error codes, and externals needed. Be sure to use the GPIB library cib when compiling. If, for
example, the library /1ib/1ibg.a was created, as described in the installation guide or getting
started manual that you received with your interface board, programs can be compiled with the
following command:

cc prog.c -1lg

For more information, refer to cc (1) or the equivalent in your UNIX documentation. Also refer
to the Getting Started or Installation Guide that you received with your GPIB interface board kit.

GPIB Function Descriptions

The remainder of this chapter is intended as a quick reference to the GPIB device and GPIB board
functions. Refer to Appendix A for more thorough information and specific examples.

Device Commands

The following functions can be performed on a GPIB device:

ibbna(d,bname) Changes the access board for device d. bname must be a valid interface
board. This function is a combination of IBGET and IBSET.

ibclr(d) Sends the message Selected Device Clear (SDC) to a device.
ibeos(d,v) Changes the End-Of-String (EOS) mode. The low byte contains the EOS

character and the high byte is any of REOS, XEOS, or BIN. v equal to 0
disables EOS checking. This function is a combination of IBGET and

IBSET.

ibeot (d,v) Enables sending END with the last byte of every GPIB write. v equal to 0
disables. This function is a combination of IBGET and IBSET.

ibfind(dname) Opens a device for reading and writing. The /dev/ prefix on the name is
optional. It returns the file descriptor for subsequent calls (or -1 for an
error).

ibllo(d) Places a device in local lockout mode.

ibloc(d) Returns a device to local mode.

ibonl(d,v) Reinitialize GPIB software. v equal to 0 performs a close operation.

© National Instruments Corporation 2-5 NI-488M Software Reference Manual

The C Language Library

ibpad(d,v)
ibpct(d)
ibppc(d,v)
ibrd(d,buf,cnt)
ibrdf (d, fname)
ibrpp(d,buf)

ibrsp(d,buf)

ibsad(d,v)

ibtmo(d,v)

ibtrg(d)
ibwait(d,mask)
ibwrt(d,buf,cnt)
ibwrtf(d, fname)

ioctl(d, IBGET,
&device)

ioctl(d,IBSET
&device)

Chapter 2

Changes the value of the primary GPIB address. This function is a
combination of IBGET and IBSET.

Will pass control to a device.

Configures a device for a parallel poll.

Reads from the GPIB into a buffer.

Reads from the GPIB into a file.

Executes a parallel poll.

Performs a serial poll of a device or returns the first value from a serial
poll queue.

Changes the secondary address. v equal to O disables secondary address
recognition. This function is a combination of IBGET and IBSET.

Changes the timeout value. v equal to O disables timeouts. Timeout
values are given in ugpib.h. This function is a combination of IBGET
and IBSET.

Triggers a device (sends GET).

Waits for events to occur. Valid events are TIMO and RQS.

Writes from a buffer to the GPIB.

Writes from a file to the GPIB.

Gets device parameters.

Sets device parameters.

Board Commands

The following commands can be performed on a GPIB board:

ibcac(b,v)

ibcmd (b, buf,cnt)

ibdma (b, V)

Takes a board from Controller Standby to Active Controller state (asserts
ATN). If v equals 1, the take control is synchronous, otherwise
asynchronous. The board must be CIC.

Sends a buffer of command messages. The board must be CIC, but need
not be Active Controller.

Changes the DMA mode. Refer to the installation guide or getting started
manual that you received with your interface board for specific values.
This function is a combination of IBGET and IBSET.

NI-488M Software Reference Manual 2-6 © National Instruments Corporation

Chapter 2

ibeos(b,Vv)

ibeot (b, Vv)

ibfind(bname)

ibgts(b,Vv)

ibist (b, v)

ibloc(b)
ibonl(b,v)

ibpad(b,v)

ibppc(b,v)

ibrd(b,buf,cnt)

ibrdf (b, fname)

ibrpp(b,buf)

ibrsc(b,v)

ibrsv(b,v)

ibsad(b,v)

ibsgnl (b, mask)

ibsic(b,v)

ibsre(b,v)

The C Language Library

Changes the end-of-string (EOS) mode. The low byte contains the eos
character and the high byte is any of REOS, XEOS, or BIN. v equal to 0
disables EOS checking. This function is a combination of IBGET and
IBSET.

Enables sending END with the last byte of every GPIB write. A value of 0
disables. This function is a combination of IBGET and IBSET.

Opens a board for reading and writing. The /dev/ prefix on the name is
optional. It returns the file descriptor for subsequent calls or -1 for an
error.

Puts a board in standby state (unasserts ATN). If v equals 1, the board
listens in continuous mode (should always be followed by a wait for
END).

Changes the value of a board's individual status (ist) bit. A value of 0
clears. This function is a combination of IBGET and IBSET.

Returns a board to local mode.
Reinitializes GPIB software. v equal to O performs a close operation.

Changes the value of the primary GPIB address. This function is a
combination of IBGET and IBSET.

Configures a board for a parallel poll. This function is a combination of
IBGET and IBSET.

Reads from the GPIB into a buffer. The board must have been previously
addressed to listen.

Reads from the GPIB into a file. If performed on a board, the board must
have been previously addressed to listen.

Executes a parallel poll. The board must be CIC.

Requests or releases system control. This function is a combination of
IBGET and IBSET.

Sets the serial poll response byte of the board. If bit 0x40 is set, the board
asserts SRQ. If the board is CIC, it will not assert SRQ.

Changes the secondary address. v equal to O disables secondary address
recognition. This function is a combination of IBGET and IBSET.

Requests that a UNIX signal be sent when any of the requested events
occur. The mask is a bit vector of which only SRQI, LOK, REM, CIC,
TACS, LACS, DTAS, and DCAS are valid.

Pulses Interface Clear (IFC). If v equals 2, IFC remains asserted; v equal
to O clears IFC; any other value pulses IFC.

Asserts Remote Enable (REN). v equal to O clears.

© National Instruments Corporation 2-7 NI-488M Software Reference Manual

The C Language Library Chapter 2

ibtmo (b, V) Changes the timeout value. v equal to O disables timeouts. Timeout
values are given in ugpib.h. This function is a combination of IBGET
and IBSET.

ibwait (b, mask) Waits for events to occur. Valid events for a board are: TIMO, END,
SRQI, LOK, REM, CIC, TACS, LACS, DTAS, and DCAS.

ibwrt (b,buf,cnt) Writes from a buffer to the GPIB. The board must have been previously

addressed to talk.
ibwrtf (b, fname) Writes from a file to the GPIB. The board must have been previously
addressed to talk.
ioctl (b, IBGET,
&board) Get board parameters.
ioctl(b,IBSET,
&board) Set board parameters.

NI-488M Software Reference Manual 2-8 © National Instruments Corporation

Chapter 3
Using ibic

The interface bus interactive control utility (1bic) is an interactive environment in which all of the
commands contained in the cib library (except IBGET, IBSET, and IBINFO) can be run.

Refer to Appendix A for detailed descriptions of the C language functions.

Syntax Translation Guide

To translate between C syntax and ibic syntax, use the following guide:

Omit the parentheses and first argument. ibic uses the current board or device for all of its
calls. A new board or device is made the current board or device with the ibfind function.
To return to a previous board or device use set. The ibic prompt displays the name of the
current board or device.

Functions with only one argument have no argument in ibic.

ibclr(d) becomes: ibclr

Functions with a single numeric argument are followed by a number.

ibsre(b,1) becomes: ibsre 1
ibeos (b, (BIN|REOS)<<8|'\n') becomes: ibeos 0x140A

Functions that write a buffer are followed by a string, but no count.
ibwrt (b, "text",4) becomes: ibwrt "text"
Functions that read a buffer are followed by a count only.
ibrd(b,buf,50) becomes: ibrd 50

Functions that perform a poll take no argument.

ibrpp(b,buf) becomes: ibrpp

Functions that take a board, device, or filename are followed by a name without quotation
marks.

ibfind("plotter") becomes: ibfind plotter
Functions that take a mask argument are followed by a list of mask bits in parentheses.

ibwait(d,TIMO|RQS) becomes: ibwait (timo rgs)

© National Instruments Corporation 3-1 NI-488M Software Reference Manual

Using ibic

Sample Session

Chapter 3

The following is a sample session of ibic that triggers a digital voltmeter, waits for a service

request, and reads in a buffer of data. User inputs are underlined.

: ibfind dvm
[0100] (cmpl)

dvm: ibclr
[0100] (cmpl)

dvm: ibwrt "F3R7T3"
[0100] (cmpl)
count: 6

dvm: ibwait (rgs timo)
[0900] (rgs cmpl)

dvm: ibrsp
[0100] (cmpl)
Poll: 0xCO

dvm: ibrd 10000
[2100] (end cmpl
count: 10

01 02 03 04 05 06
62 03

NI-488M Software Reference Manual

)

25 07

oo

© National Instruments Corporation

Chapter 3 Using ibic

Auxiliary Functions

Table 3-1 summarizes the auxiliary functions that ibic supports.

Table 3-1. Auxiliary Functions that ibic Supports

Function Syntax Description

set udname Change current device or board to a device or board already opened.

help [option] Display help information. All available functions are briefly described.

! Repeat previous command.

- Turn printing off. This is most often used with the $ command.

+ Turn printing on.

n* function Execute command n times.

n* ! Execute previous command n times.
S filename Execute indirect file.

print string Display string on screen.

e, gq,or °d Exit or quit ibic.

© National Instruments Corporation 3-3 NI-488M Software Reference Manual

Chapter 4
Using ibconf

The interface bus configuration utility (i bconf) is a screen-oriented, interactive program. It is

used to edit the device and board data structures in a UNIX kernel. ibconf also creates and

renames device special files.

Before running ibconf, complete the following tasks:

* Become super-user; that is, log in as root.

* Make a backup copy of the UNIX kernel to be edited.

* Set the TERM environment variable correctly for the current terminal or console device.

* If you have not already done so, create a device special file for the first interface board,
/dev/gpib0 (refer to the Getting Started manual or Installation Guide that came with your

interface board).

Run ibconf by entering ibconf, followed by the name of the UNIX kernel, and pressing
<Return>. The following example runs ibconf on the UNIX kernel /unix.

ibconf /unix
ibconf first displays a map of GPIB devices and their access board. Use the cursor keys
indicated on the display to position the cursor on the desired board or device. Then use the edit key
to move to a new screen where software configuration parameters can be edited. Online help, which
is available at all times, explains how to use ibconf, what the legal settings are, and what these
settings mean.

For a detailed explanation of the operation of ibconf, refer to ibconf{1) in Appendix A.

© National Instruments Corporation 4-1 NI-488M Software Reference Manual

Appendix A
NI-488M Functions and Utilities Reference

This appendix is a comprehensive reference for the functions and utilities contained in the
NI-488M software package. This material is presented in a format familiar to most users of the
UNIX operating system.

© National Instruments Corporation A-1 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBCONF(1) GPIB IBCONF(1)

Name
ibconf - interface bus configuration utility

Synopsis
ibconf [filename]

Description
ibconf is a screen-oriented, interactive program. It is used to edit the description of
characteristics of the GPIB devices and boards in the system. The settings created by
ibconf become the default settings for a device or board when it is first opened.

Commands
The following special commands are used to move between screens and between fields
within a particular screen. (The caret (") symbol represents the <Ctrl> key.)

“b — previous screen
When editing board or device parameters, b moves to the previous board or device.

~ £ — next screen
When editing board or device parameters, ~ £ moves to the next board or device.

"1 —edit device
~1 causes the screen to change from the device map page to the board or device
characteristics page so that you can examine or change values associated with the board
or device indicated by the current cursor position.

~o —return
If you are on the board or device characteristics page, ~o returns you to the device map
page. If you are on the device map page, "o lets you exit ibconf. In the latter case,
the user will have the option of either saving or ignoring the changes made in the current
editing session.

“q - help
~q displays help information.

~r —rename
If you are on the device map page, " r lets you rename the device indicated by the
current cursor position. The user can give a device a new name of up to 14 characters.
Although the device map page will only display the first seven characters, all 14 will be
saved as that name of the device.

~t — (dis)connect
If you are on the device map page, "t has the effect of either connecting or
disconnecting the selected device to or from the currently active board.

“w — explain field
On the board or device characteristics page, “w explains the current field.

NI-488M Software Reference Manual A-2 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

“y —reset value
On the board or device characteristics page, before leaving a field, "y will reset the value
to what it was when the field was first entered.

h — cursor left

H — home

j — cursor down

k — cursor up

1 — cursor right

See Also

ibic(1) and cib(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-3 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBIC(1) GPIB IBIC(1)

Name
ibic - interface bus interactive control program

Synopsis
ibic

Description
ibic is a command language for controlling the National Instruments GPIB interface. It
executes commands read from stdin or a file and returns detailed status information. All
commands from the GPIB library cib are supported.

Commands
Commands are directed to the current board or device. New boards and devices are opened
with ibfind. Once opened, the current board or device is changed with set. Table A-1
summarizes the NI-488M functions and syntax when called from ibic.

Table A-1. Syntax of NI-488M Functions in ibic

Function Function

Description Syntax Type Note
Change access board of device ibbna brdname dev 1
Become active controller ibcac [V] brd 2,3
Clear specified device ibclr dev
Send commands from string ibcmd string brd 4
Enable/disable DMA ibdma v brd 23
Change/disable EOS message ibeos v dev, brd 23
Enable/disable END message ibeot v dev, brd 2,3
Return unit descriptor ibfind bdname dev, brd 5
Go from active controller to standby ibgts v brd 23
Set/clear ist ibist v brd 23
Place device in local lockout state ibllo dev
Go to local ibloc dev, brd
Place device online or offline ibonl [V] dev, brd 2,3
Change primary address ibpad v dev, brd 3
Pass control ibpct dev
Parallel poll configure ibppc v dev, brd 3
Read data ibrd v dev, brd 6

(continues)

Table A-1. Syntax of NI-488M Functions in ibic (continued)

NI-488M Software Reference Manual A-4 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

Function Function

Description Syntax Type Note
Read data to file ibrdf fnam dev, brd 7
Conduct a parallel poll ibrpp dev, brd
Request/release system control ibrsc [Vv] brd 2,3
Return serial poll byte ibrsp dev
Request service ibrsv v dev
Change secondary address ibsad v dev, brd
Request UNIX signal on specific events ibsgnl [mask] brd
Send interface clear ibsic [V] brd 3
Set/clear remote enable line ibsre [V] brd 23
Abort asynchronous operation ibstop dev, brd
Change/disable time limit ibtmo v dev, brd 3
Trigger selected device ibtrg dev
Wait for selected event ibwait [mask] dev, brd 2.8
Write data ibwrt string brd 4
Write data to file ibwrtf fnam dev, brd 7

Notes
1. brdname is the symbolic name of the new board (for example, ibbna gpibl).

2. Values enclosed in square brackets ([]) are optional. The default value is zero for ibwait
and 1 for all other functions.

3. wvisahex, octal, or decimal integer. Hex numbers must be preceded by zero and x (for
example, 0xD). Octal numbers must be preceded by zero only (for example, 015). Other
numbers are assumed to be decimal.

4. string consists of a list of ASCII characters, octal or hex bytes, or special symbols. The
entire sequence of characters must be enclosed in quotation marks. An octal byte consists of a
backslash character followed by the octal value. For example, octal 40 would be represented by
\40. A hex byte consists of a backslash character and a character x followed by the hex value.
For example, hex 40 would be represented by \x40. The two special symbols are \r for a
carriage return character and \n for a linefeed character. These symbols provide a more
convenient method for inserting the carriage return and linefeed characters into the string, as
shown in the following string: "F3R5T1\r\n". Since the carriage return can be represented
equally well in hex, \xD and \r are equivalent strings.

5. bdname is the symbolic name of the new device or board (for example, ibfind dev1l or set
gpib0).

6. v is the number of bytes to read.

© National Instruments Corporation A-5 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

7. fnamis the UNIX pathname of the file to be read or written (for example, \test\meter or
printr.buf).

8. mask is a hex, octal, or decimal integer (see note 3) or a mask bit mnemonic.

Return Values

All ibic functions return a status word in both hex and bit mnemonic form. Table A-2
lists the mnemonics of the status word. (This is the same information that is given in Table

2-1.)
Table A-2. Status Word Layout
Mnemonic Bit Hex Function | Description
Pos. Value Type

ERR 15 8000 dev,brd | GPIB error
TIMO 14 4000 dev,brd | Time limit exceeded
END 13 2000 dev,brd | END or EOS detected
SRQI 12 1000 brd SRQ interrupt received
RQS 11 800 dev Device requesting service
CMPL 8 100 dev,brd | I/O completed
LOK 7 80 brd Lockout State
REM 6 40 brd Remote State
CIC 5 20 brd Controller-In-Charge
ATN 4 10 brd Attention is asserted
TACS 3 8 brd Talker
LACS 2 4 brd Listener
DTAS 1 2 brd Device Trigger State
DCAS 0 1 brd Device Clear State

NI-488M Software Reference Manual A-6 © National Instruments Corporation

Appendix A

NI-488M Functions and Utilities Reference

If the ERR bit is set, an error mnemonic will be displayed as shown in Table A-3. (This is
the same information that is given in Table 2-2.)

Table A-3. GPIB Error Codes

Suggested Decimal

Mnemonic Value Explanation
EDVR 0 UNIX error (code in ibcnt)
ECIC 1 Function requires GPIB board to be CIC
ENOL 2 Write handshake error (e.g., no listener)
EADR 3 GPIB board not addressed correctly
EARG 4 Invalid argument to function call
ESAC 5 GPIB board not System Controller as required
EABO 6 1/0 operation aborted
ENEB 7 Non-existent GPIB board
EDMA 8 DMA hardware error
EBTO 9 DMA hardware bus timeout
ECAP 11 No capability for type of operation
EFSO 12 File system error
EBUS 14 GPIB bus error
ESTB 15 Serial Poll queue overflow
ESRQ 16 SRQ line asserted by unknown device

Auxiliary Functions

Table A-4 summarizes the auxiliary functions that ibic supports. (This is the same information
that 1s given in Table 3-1.)

Table A-4. Auxiliary Functions that ibic Supports

Function Syntax

Description

set udname

Change current device or board to a device or board already opened
with ibfind.

help [option]

Display help information. All available functions are briefly described.

Repeat previous command.

Turn printing off. This is most often used with the $ command.

+

Turn printing on.

(continues)

© National Instruments Corporation A-7 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference

Appendix A

Table A-4. Auxiliary Functions that ibic Supports (continued)

Function Syntax

Description

n* function

Execute command n times.

n* |

Execute previous command n times.

S filename

Execute indirect file.

print string

Display string on screen.

e, gq,or °d Exit or quit ibic.
Files
/dev/gpib?
/dev/*
See Also
ibconf{1) and cib(3)

Chapter 2, The C Language Library

Bugs

Catches only SIGINT. If ibsgnl uses a different signal, ibic will die.

NI-488M Software Reference Manual A-8

© National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBBNA(3) device only IBBNA(3)

Name
ibbna - change access board of the device

Synopsis
#include <sys/ugpib.h>
ibbna (d,bname)
int d;
char *bname;

Description
d is a file descriptor returned from an ibfind call. bname is a null-terminated string
corresponding to a GPIB board special file.

The ibbna function assigns the board that will be used in subsequent device-level
functions.

The assignment made by this function remains in effect until ibbna is called again, the

ibonl function is called, or the file is closed. The original configuration is not
permanently changed.

Example
Associate device dvm with interface board gpib0.

ibbna (dvm, "gpib0");
See Also

ibget(3), ibfind(3), and ibonl(3).
Chapter 2, The C Language Library

© National Instruments Corporation A-9 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBCAC(@3) board only IBCAC(3)

Name

ibcac - become Active Controller

Synopsis

#include <sys/ugpib.h>
ibcac (b,v)
int b,v;

Description

b is a file descriptor returned from an ibfind call. v identifies the type of take control.

If v 1s non-zero, the GPIB board takes control synchronously with respect to data transfer
operations; otherwise, the GPIB board takes control immediately (and possibly
asynchronously).

To take control synchronously, the GPIB board waits before asserting the ATN signal so
that data being transferred on the GPIB will not be corrupted. If a data handshake is in
progress, the take control action is postponed until the handshake is complete; if a
handshake is not in progress, the take control action is done immediately. Synchronous
take control is not guaranteed if an ibrd or ibwrt operation completed with a timeout or
error.

Asynchronous take control should be used in situations where it appears to be impossible to
gain control synchronously (for example, after a timeout error).

It is generally not necessary to use the ibcac function. Functions, such as ibcmd and
ibrpp (which require that the GPIB board take control), take control automatically.

The ECIC error results if the GPIB board is not Controller-In-Charge.

Examples

1.

Take control immediately without regard to any data handshake in progress.
ibcac(brd0,0);
Take control synchronously and assert ATN following a read operation.

ibrd(brd0,rd,512);
ibcac(brd0,1);

NI-488M Software Reference Manual A-10 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBCLR(@3) device only IBCLR(@3)
Name

ibclr - send Selected Device Clear (SDC)
Synopsis

#include <sys/ugpib.h>

ibclr (d)

int d;

Description
d is a file descriptor returned from an ibfind call.

The ibclr function sends the message SDC, the meaning of which depends on the
specific device. SDC usually resets all device functions. ibclr sends the following
commands and information:

* Untalk and Unlisten

* Listen address of the device

* Secondary address of the device, if applicable

* Selected Device Clear (SDC)

e Unlisten

Example
Clear device vmtr.

ibclr(vmtr);
See Also

ibcmd(3) and ibgts(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-11 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBCMD(3) board only IBCMD(3)

Name
ibcmd - send command message to GPIB

Synopsis
#include <sys/ugpib.h>
ibcmd (b,cmd,cnt)
int b,cnt;
char cmd[];

Description
b is a file descriptor returned from an ibfind call. cmd contains the commands to be sent
over the GPIB. cnt specifies the number of bytes to be sent over the GPIB.

The ibcmd function is used to transmit interface messages (commands) over the GPIB.
These commands, which are listed in Appendix B, include device talk and device listen
addresses, secondary addresses, serial and parallel poll configuration messages, and device
clear and device trigger instructions. The ibcmd function is also used to pass GPIB
control to another device. This function is not used to transmit programming instructions to
devices; programming instructions and other device-dependent information are transmitted
with the ibwrt function.

The ibcmd operation terminates on any of the following events:
* All commands are successfully transferred.

* Error is detected.

* Time limit is exceeded.

e Take Control (TCT) command is sent.

* Interface Clear (IFC) message is received from the System Controller (not the GPIB
board).

After termination, the ibcnt variable contains the number of commands sent. A short
count can occur on any of the above events but the first.

An ECIC error results if the GPIB board is not Controller-In-Charge. If it is not Active
Controller, it takes control and asserts ATN prior to sending the command bytes. It remains
Active Controller afterward.

In the examples that follow, GPIB commands and addresses are coded as printable ASCII
characters. When the hex values to be sent over the GPIB correspond to printable ASCII
characters, this is the simplest means of specifying the values. Refer to Appendix B for
conversions of hex values to ASCII characters.

NI-488M Software Reference Manual A-12 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

Examples

1.

Unaddress all Listeners with the Unlisten command (ASCII ?) and address a Talker at 0x46
(ASCII F) and a Listener at 0x31 (ASCII 1).

ibemd (brdo, "?F1",3); /* UNL TAD LAD */

Unaddress all Listeners with the Unlisten command (ASCII ?) and address a Talker at 0x46
(ASCII F) and a Listener at 0x6E (ASCII n).

ibcmd (brd0, "?F1n",4); /* UNL TAD LAD SAD */

Clear all GPIB devices (that is, reset internal functions) with the Device Clear (DCL)
command (0x14).

ibcmd (brd0, "\024",1); /* DCL */

Clear two devices with Listen addresses of 0x21 (ASCII !) and 0x28 (ASCII () with the
Selected Device Clear (SDC) command (0x4).

ibemd (brd0, "2!(\004",4); /* UNL LAD LAD SDC */

Trigger any devices previously addressed to listen with the Group Execute Trigger (GET)
command (0x8).

ibemd (brd0, "\010",1); /* GET */

Unaddress all Listeners and serially poll a device at talk address 0x52 (ASCII R) using the
Serial Poll Enable (0x18) and Serial Poll Disable (0x19) commands (the brdO listen address
1s 0x20 or ASCII blank).

ibemd (brd0, "?R \030",4); /*UNL TAD MLA SPE *x/
ibrd(brd0,rd,1); /* read one byte */
/* After checking the status byte in rd[0], disable this */
/* device and unaddress it with the Untalk (UNT) command */

/* (0xX5F or ASCII) before polling the next one. */
ibcmd (brd0,"031_",2); /*SPD UNT */
See Also

ibtrg(3), ibpct(3), ibclr(3), ibrsp(3), ibppc(3), ibcac(3), ibgts(3), ibloc(3), ibtmo(3), and
ibllo(3).
Chapter 2, The C Language Library

© National Instruments Corporation A-13 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBDMA(3) device or board IBDMA(3)

Name
ibdma - change DMA mode

Synopsis
#include <sys/ugpib.h>
ibdma (b,v)
int b,v;

Description
b is a file descriptor returned from an ibfind call. v is the DMA mode.

Some GPIB boards support more than one type of DMA transfer. For these boards, v will
select the DMA type. Consult the Getting Started or Installation Guide that you received
with your GPIB interface board for more information.

The assignment made by this function remains in effect until ibdma is called again, ibonl
is called, or the file is closed.

When ibdma is called and an error does not occur, the previous value of v is stored in
iberr.

Examples
Change the DMA mode to hex 33.

ibdma (b, 0x33)
See Also

ibset(3) and ibonl(3).
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-14 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBEOS(3) device or board IBEOS(3)

Name
ibeos - change or disable end-of-string mode

Synopsis
#include <sys/ugpib.h>
ibeos (bd,v)
int bd,v;

Description
bd is a file descriptor returned from an ibfind call. v is the EOS mode.

v selects the EOS character and the data transfer termination method according to Table
A-5. ibeos is needed only to alter the value from its configuration setting.

When ibeos is called and an error does not occur, the previous value of v is stored in

iberr. The assignment made by this function remains in effect until ibeos is called
again, the ibonl function is called, or the file is closed.

Table A-5. Data Transfer Termination Method

Method Value of v
High Byte Low Byte
A. Terminate read when EOS is detected. 0x04 (REOS) EOS
B. Set EOI with EOS on write function. 0x08 (XEO0S) EOS
C. Compare all 8 bits of EOS byte rather than
low 7 bits (all read and write functions). 0x04 (BIN) EOS

Methods A and C determine how read operations terminate. If Method A alone is chosen,
reads terminate when the low seven bits of the byte that is read match the low seven bits of
the EOS character. If Methods A and C are chosen, a full 8-bit comparison is used.

Methods B and C together determine when write operations send the END message. If
Method B alone is chosen, the END message is sent automatically with the EOS byte when
the low seven bits of that byte match the low seven bits of the EOS character. If Methods B
and C are chosen, a full 8-bit comparison is used.

When bd specifies a device, the options coded in v are used for all device-level reads and
writes in which that device is specified.

When bd specifies a board, the options coded in v become associated with all board-level
reads and writes.

© National Instruments Corporation A-15 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

Examples
1. Send END when the linefeed character is written for operations involving device dvm.

v = (XE0S<<8) | '\n'j; /* or v = 0x080A */
beos (dvm,Vv);

wrt[0] = '1'; /* data bytes to be written */
wrt[l] = '2';

wrt[2] = '3';

wrt[3] = '\n'; /* EOS character is last byte */

ibwrt(dvm,wrt,4);

2. Program interface board brd0 to terminate a read on detection of the linefeed character
("\n'==0x02) that is expected to be received within 512 bytes.

v = (RE0S<<8) | '\n'j; /* or v.= 0x040A */
ibeos (brd0,v);

/* assume board has been addressed; do board level read *x/
ibrd(brd0,rd,512);

/* The END bit in ibsta is set if the read terminated *x/
/* on the EOS character, with the actual number of bytes */
/* received contained in ibcnt. */

3. Program interface board brd0 to terminate read operations on the 8-bit value 0x82 rather
than the 7-bit character 0x0A.

v = ((BIN | REOS)<<8) | 0x82; /* or v = 0x1482 */
ibeos (brd0,v);

/* assume board has been addressed; do board level read *x/
ibrd(brd0,rd,512);

/* The END bit in ibsta is set if the read terminated *x/
/* on the EOS character, with the actual number of bytes */
/* received contained in ibcnt. */

4. Disable read termination on receiving the EOS character for operations involving board

brdo.

ibeos (brd0,0); /* No EOS modes enabled */
5. Send END with linefeeds and to terminate reads on linefeeds for operations involving board

brdo.

v = ((REOS | XEOS)<<8) | 0x0A; /* or v = 0x180A */

ibeos (brd0,v);

wrt[0] = '1'; /* data bytes to be written */

wrt[l] = '2';

wrt[2] = '3';

wrt[3] = 0x0A; /* EOS character is last byte */

ibwrt (brd0,wrt,4);
See Also

ibset(3), ibeot(3), and ibonl(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-16 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBEOT(3) device or board IBEOT(3)

Name
ibeot - change or disable END termination mode

Synopsis
#include <sys/ugpib.h>
ibeot (bd,v)
int bd,v;

Description
bd is a file descriptor returned from an ibfind call. v is the EOS mode.

If v 1s non-zero, the END message is sent automatically with the last byte of each write
operation. If v is zero, END is not sent. ibeot is needed only to alter the value from its
configuration setting.

The END message is sent when the GPIB EOI signal is asserted during a data transfer. It
1s used to identify the last byte of a data string without having to use an End-Of-String
character. ibeot is used primarily to send variable length binary data.

When ibeot is called and an error does not occur, the previous value of v is stored in
iberr.

The assignment made by this function remains in effect until ibeot is called again, the
ibonl function is called, or the file is closed.

Examples
1. Send the END message with the last byte of all subsequent writes to device plotter.

ibeot (plotter,1); /* enable sending of EOI */
/* It is assumed that wrt contains the data to be written */
/* to the GPIB */
ibwrt (plotter,wrt,3); /* write 3 bytes */

2. Stop sending END with the last byte for calls directed to board brd0.
ibeot (brd0,0); /* disable sending EOI */
See Also

ibset(3), ibeos(3), and ibonl(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-17 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBFIND(3) device or board IBFIND(3)

Name
ibfind - open GPIB special file

Synopsis
#include <sys/ugpib.h>
ibfind (name)
char *name;

Description
name specifies a null-terminated string corresponding to a GPIB device or GPIB board.

If the name begins with "/dev/", "/dev/" can be omitted. ibfind returns a file
descriptor to be used in subsequent function calls. ibfind performs the equivalent of
ibonl (bd, 1) to open the specified device or board and initialize software parameters to
their default configuration settings. The unit descriptor is valid until ibonl (bd,0) is
used to place that device or board offline. If the ibfind call fails, a negative number is
returned in place of the file descriptor.

Examples
1. Assign the unit descriptor associated with the device name "fsdvm" (Fluke Sampling
Digital Voltmeter) to the variable £sdvm.

fsdvm = ibfind("fsdvm");
if (fsdvm < 0) error ();

2. Assign the unit descriptor associated with board "gpib0" to the variable brd0.
brd0 = ibfind("gpib0");
if (brd0 < 0) error ();
or

brd0 = ibfind("/dev/gpib0");
if (brd0 < 0) error();

See Also

ibbna(3) and ibonl(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-18 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBGTS(3) board only IBGTS(3)

Name

ibgts - go from Active Controller to standby

Synopsis

#include <sys/ugpib.h>
ibgts (b,v)
int b,v;

Description

b is a file descriptor returned from an ibfind call. v is the type of go-to-standby.

The ibgts function causes the GPIB board to go to the Controller Standby state and to
unassert the ATN signal if it is the Active Controller. ibgts permits GPIB devices to
transfer data without the GPIB board being a party to the transfer.

If v is non-zero, the GPIB board shadows data transfer handshakes as an Acceptor, and
when the END message is detected, the GPIB board enters a Not Ready For Data (NRFD)
handshake holdoff state on the GPIB. If v is zero, no shadow handshake or holdoff is
done.

If the shadow handshake option is activated, the GPIB board participates in data handshake
as an Acceptor without actually reading the data. It monitors the transfers for the END
message and holds off subsequent transfers. This mechanism allows the GPIB board to
take control synchronously on a subsequent operation such as ibcmd or ibrpp.

ibgts (b, 1) should always be followed by a wait for END (see Example 2).

The ECIC error results if the GPIB board is not Controller-In-Charge.

Examples

1.

Turn the ATN line off.

ibgts(brd0,0);

2. Turn the ATN line off with the ibgts function after unaddressing all Listeners with the
Unlisten (ASCII ?) command, addressing a Talker at 0x46 (ASCII F), and addressing a
Listener at 0x31 (ASCII 1) to allow the Talker to send data messages.
ibemd (brd0, "?F1",3); /* UNL TAD LAD */
ibgts(brd0,1); /* listen in continuous mode */
ibwait (brd0,END|TIMO);

See Also

ibcmd(3), ibcac(3), and ibwait(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-19 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBIST(3) board only IBIST(3)

Name
ibist - set or clear individual status (ist) bit

Synopsis
#include <sys/ugpib.h>
ibist (b,v)
int b,v;

Description
b is a file descriptor returned from an ibfind call. v is the sense of the ist bit.

If v is non-zero, the ist bit is set. If v is zero, the ist bit is cleared.

The ibist function is used when the GPIB board participates in a parallel poll that is
conducted by another device that is the Active Controller. The Active Controller conducts a
parallel poll by asserting the EOI signal to send the Identify (IDY) message. While this
message is active, each device that has been configured to participate in the poll responds by
asserting a predetermined GPIB data line either true or false, depending on the value of its
local ist bit. The GPIB board, for example, can be assigned to drive the DIO3 data line true
if 1st=1 and false if ist=0; conversely, it can be assigned to drive DIO3 true if ist=0 and false
if ist=1.

The relationship between the value of ist, the line that is driven, and the sense at which the
line is driven is determined by the Parallel Poll Enable (PPE) message in effect for each
device. The GPIB board is capable of receiving this message either locally, via the ibppc
function, or remotely, via a command from the Active Controller. Once the PPE message is
executed, the ibist function changes the sense at which the line is driven during the
parallel poll, and in this fashion the GPIB board can convey a one-bit, device-dependent
message to the Controller.

When ibist is called and an error does not occur, the previous value of v is stored in
iberr.

Examples
1. Set the individual status bit.

ibist(brd0,1);
2. Clear the individual status bit.
ibist (brd0,0);
See Also

ibset(3), ibppc(3), and ibrpp(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-20 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBLLOQ@3) device only IBLLOQ@3)
Name

ibllo - place device in Local Lockout state
Synopsis

#include <sys/ugpib.h>

ibllo (d)

int d;

Description
d is a file descriptor returned from an ibfind call.

The ibl1lo function sends the message LLO, which places a device in the Local Lockout
state. This usually inhibits recognition of front panel input.

All devices are unaddressed. ibllo sends the following commands and information.
* Listen address of the device

* Secondary address of the device, if applicable

* Local Lockout (LLO)

e Unlisten

Example
Place device vimtr in Local Lockout state.

ibllo(vmtr);
See Also

ibcmd(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-21 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBLOC@3) device or board IBLOC@3)

Name

ibloc - go to local mode

Synopsis

#include <sys/ugpib.h>
ibloc (bd)
int bd;

Description
bd is a file descriptor returned from an ibfind call.

ibloc is used to move devices temporarily from a remote program mode to a local mode.
A device enters remote mode when the REN line is asserted and the device detects its listen
address.

If bd specifies a GPIB device, ibloc places the indicated device in local mode by sending
the following command sequence:

1.
2.

5.
6.

Untalk

Unlisten

Listen address of the device

Secondary address of the device, if applicable
Go To Local (GTL)

Unlisten

If bd specifies an interface board, the board is placed in a local state by sending the local
message Return To Local (rtl), provided it is not locked in remote mode (indicated by the
LOK bit of the status word, ibsta). This ibloc function is used to simulate a front
panel return to local switch when the computer is used as an instrument.

Examples

1. Return device dvm to local state.

ibloc(dvm) ;

2. Return board brd0 to local state.

ibloc(brd0);

See Also

ibsre(3) and ibllo(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-22 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBONL(@3) device or board IBONL@3)

Name
ibonl - place device or board online or offline

Synopsis
#include <sys/ugpib.h>
ibonl (bd,v)
int bd,v;

Description
bd is a file descriptor returned from an ibfind call. v specifies online or offline.

ibonl reinitializes all software as though bringing the device or board online for the first
time. If bd specifies a board, the GPIB hardware will be reset. If v is zero, the GPIB board
will be left offline, not participating in GPIB activity.

Call ibonl with v non-zero to reset a board or device to its power-on state. Call ibonl
with v zero only when finished with a board or device, as this also closes the file descriptor.

Examples
1. Disable device plotter.

ibonl (plotter,0);
2. Re-enable device plotter after taking it offline temporarily.

ibonl (plotter,0);
plotter = ibfind("plotter");

3. Reset the configuration settings of device plotter to their defaults.
ibonl (plotter,1);
4. Disable interface board brd0.
ibonl (brd0,0);
See Also

ibfind(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-23 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBPAD(3) device or board IBPAD(3)

Name

ibpad - change primary address

Synopsis

#include <sys/ugpib.h>

ibpad (bd,v)
int bd,v;

Description

bd is a file descriptor returned from an ibfind call. v specifies the primary GPIB
address.

ibpad is used to alter the value from its configuration setting. A device listen address is
formed by adding 0x20 to the primary address; the talk address is formed by adding 0x40
to the primary address.

Only the low five bits of v are significant and they must be in the range from 0O to Ox1E.

When ibpad is called and an error does not occur, the previous value of v is stored in
iberr.

The assignment made by this function remains in effect until ibpad is called again, the
ibonl function is called, or the file is closed.

When bd specifies a device, ibpad determines the talk and listen addresses based on the
value of v for use in all I/O directed to that device. The actual GPIB address of any device
is set within that device, either with hardware switches, or a software program. Refer to your
device documentation for instructions.

When bd specifies a board, ibpad programs the interface board to respond to the primary
talk and primary listen address indicated by v.

Examples
1. Change the primary GPIB listen and talk address of the device plotter from the
configuration setting to Ox2A and Ox4A, respectively.
ibpad(plotter, 0xA);
2. Change the primary GPIB listen and talk address of board brd0 from the configuration
setting to 0x27 and 0x47, respectively.
ibpad(brd0,7);
See Also

ibset(3) and ibsad(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-24 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBPCT(@3) device only IBPCT(3)

Name
ibpct - pass control

Synopsis
#include <sys/ugpib.h>
ibpct (d)
int d;

Description
d is a file descriptor returned from an ibfind call.

The ibpct function passes Controller-In-Charge authority to the specified device. The
board automatically goes to a Controller idle state. The function assumes that the device has
Controller capability.

ibpct sends the following commands and information.

* Talk address of the device

* Secondary address of the device, if applicable

e Take Control (TCT)

Example
Pass control to device pcxt.

ibpct (pcxt);
See Also

ibcmd(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-25 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBPPC(@3) device or board IBPPC(3)

Name
ibppc - parallel poll configure

Synopsis
#include <sys/ugpib.h>
ibppc (bd,v)
int bd,v;
Description
bd is a file descriptor returned from an ibfind call. v is a valid parallel poll enable/
disable command.

When ibppc is called and an error does not occur, the previous value of v is stored in
iberr.

When bd specifies a device, the ibppc function enables or disables the device from
responding to parallel polls.

ibppc sends the following commands and information.

» Listen address of the device

* Secondary address of the device, if applicable

* Parallel Poll Configure (PPC)

e Parallel Poll Enable (PPE) or Disable (PPD)

e Untalk (UNT) and Unlisten (UNL)

Each of the 16 PPE messages specifies the GPIB data line (DIO1 through DIO8) and
sense (one or zero) that the device must use when responding to the Identify (IDY) message
during a parallel poll. The assigned message is interpreted by the device along with the
current value of the individual status (ist) bit to determine if the selected line is driven true or
false. For example, if PPE=0x64, DIOS is driven true if ist=0 and false if ist=1. And if
PPE=0x68, DIOI is driven true if ist=1 and false if ist=0. Any PPD message or zero value

cancels the PPE message in effect.

Which PPE and PPD messages are sent, and the meaning of a particular parallel poll
response are all system-dependent protocol matters to be determined by the user.

When bd specifies an interface board, the board itself is programmed to respond to a
parallel poll by setting its local poll enable (Ipe) message to the value of v.

Examples
1. Configure device dvm to respond to a parallel poll by sending data line DIO3 true if ist=0.

ibppc(dvm, 0x62);

2. Configure device dvm to respond to a parallel poll by sending data line DIO1 true if ist=1.

NI-488M Software Reference Manual A-26 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

ibppc(dvm, 0x68) ;
3. Cancel the parallel poll configuration of device dvm.
ibppc(dvm, 0x70);
4. Configure board brd0 to respond to a parallel poll by sending data line DIOS true if ist=0.
ibppc (brd0, 0x67);
See Also

ibcmd(3) and ibist(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-27 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBRD(@3) device or board IBRD(@3)

Name
ibrd - read data from the GPIB into a buffer

Synopsis
#include <sys/ugpib.h>
ibrd (bd,buf,cnt)
int bd,cnt;
char buf[];

Description
bd is a file descriptor returned from an ibfind call. buf identifies the buffer to use.
cnt specifies the number of bytes to read from the GPIB.

The ibrd function reads cnt bytes of data from a GPIB device.
Device Call
When bd specifies a device, the following steps are performed:

1. The device is addressed to talk and the access board is addressed to listen, if not already
addressed to do so.

2. The board reads the data from the device.
3. Attention (ATN) is re-asserted.

When the device-level ibrd function returns, ibsta holds the latest device status; ibcnt
is the actual number of data bytes read from the device; and iberr is the first error
detected if the ERR bit in ibsta is set.

Board Call

When bd specifies an interface board, the ibrd function attempts to read from a GPIB
device that is assumed to be already properly initialized and addressed.

If the board is Controller-In-Charge (CIC), the ibcmd function must be called prior to
ibrd to address a device to talk and the board to listen. If the board is not CIC, the device
on the GPIB that is the CIC must perform the addressing.

If the access board is Active Controller, the board is first placed in Standby Controller state,
with ATN off, and remains there after the read operation is completed. An EADR error
results if the board is CIC but has not been addressed to listen with the ibcmd function.
An EABO error results if the board is not the CIC and is not addressed to listen within the
time limit. An EABO error also results if the device that is to talk is not addressed and/or
the operation does not complete for whatever reason within the time limit.

NI-488M Software Reference Manual A-28 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

The ibrd operation terminates on any of the following events.
* Allocated buffer becomes full.

e Error is detected.

e Time limit is exceeded.

* END message is detected.

* EOS character is detected (if this option is enabled).

e Device Clear (DCL) or Selected Device Clear (SDC) command is received from another
device which is the Controller-In-Charge.

After termination, ibcnt contains the number of bytes read. A short count can occur on
any of the above events but the first.

Examples

1.

Read 56 bytes of data from device tape.

ibrd(tape, rdbuf,56);

/* Check ibsta to see how the read terminated: on CMPL, *x/
/* END, TIMO, or ERR. *x/
/* Data is stored in rdbuf. */
2. Read 56 bytes of data from a device at talk address 0x4C (ASCII L) and then unaddress it

(the GPIB board is at listen address 0x20 or ASCII blank).

ibemd (brd0, "?2L ", 3); /* UNL TAD MLA */
ibrd(brd0,rdbuf,56);

/* Check ibsta to see how the read terminated: on CMPL, *x/
/* END, TIMO, or ERR. *x/
/* Data is stored in rdbuf. */
/* Unaddress the Talker and Listener. */
ibemd (brdo," 2",1); /* UNT UNL */

See Also

ibeos(3), ibcmd(3), and ibrdf(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-29 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBRDF(3) device or board IBRDF(3)

Name
ibrdf - read data from GPIB into a file

Synopsis
#include <sys/ugpib.h>
ibrdf (bd,fname)
int bd;
char fname;

Description

bd is a file descriptor returned from an ibfind call. £name specifies a null-terminated
UNIX pathname.

The ibrdf function makes multiple calls to the ibrd function, terminating when END or
EOS is received.

Example
Read data from device tape into file tapedata.

ibrdf (tape, "tapedata");
See Also

ibrd(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-30 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBRPP(3) device or board IBRPP(3)

Name
ibrrp - conduct a parallel poll

Synopsis
#include <sys/ugpib.h>
ibrpp (bd,ppr)
int bd;
char *ppr;

Description
bd is a file descriptor returned from an ibfind call.

ppr identifies the address where the parallel poll response byte is stored.

The ibrrp function causes the identified board to conduct a parallel poll of previously
configured devices by sending the Identify (IDY) message (ATN and EOI both asserted).

An ECIC error results if the GPIB board is not Controller-In-Charge. If the GPIB board is
Standby Controller, it takes control and asserts ATN (becomes Active) prior to polling. It
remains Active Controller afterward.

Examples
1. Remotely configure device lermtr to respond positively on DIO3 if its individual status
bit is one, then parallel poll all configured devices on the same access board as lcrmtr.

ibppc(lcrmtr, O0x6A);
ibrpp(lcrmtr, &ppr);

2. Remotely configure a device at listen address 0x23 to respond positively on DIO3 if its
individual status bit is one, and then parallel poll all configured devices.

cmd[0] = 0x23; /* device listen address */
cmd[1] = PPC;

cmd[2] = PPE | S | 2; /* send PPR3 if ist =1 */
cmd[3] = UNL;

ibcmd (brd0,cmd, 4);

ibrpp(brd0, &ppr) ; /* PPR returned in ppr */

3. Disable and unconfigure all GPIB devices from parallel polling using the PPU command.
ibemd (brd0, "\x15",1); /* PPU */
See Also

ibcmd(3), ibppc(3), and ibist(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-31 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBRSC(3) board only IBRSC(3)

Name
ibrsc - request or release system control

Synopsis
#include <sys/ugpib.h>
ibrsc (b,v)
int b,v;

Description
b is a file descriptor returned from an ibfind call. v specifies request or release system
control.

If v 1s non-zero, functions requiring System Controller capability are subsequently allowed.
If v 1s zero, functions requiring System Controller capability are not allowed.

The ibrsc function is used to enable or disable the capability of the GPIB board to send
the Interface Clear (IFC) and Remote Enable (REN) messages to GPIB devices using the
ibsic and ibsre functions. The interface board must not be System Controller to
respond to Interface Clear sent by another Controller.

In most applications, the GPIB board will always be the System Controller. In other
applications, the GPIB board will never be the System Controller. In either case, the ibrsc
function is used only if the computer is not going to be System Controller for the duration
of the program execution. While the IEEE-488 standard does not specifically allow
schemes in which system control can be passed dynamically from one device to another, the
ibrsc function would be used in such a scheme.

When ibrsc is called and an error does not occur, the previous value of v is stored in
iberr.

Example
Request to be System Controller if the board brd0 is currently not so designated.

ibrsc(brd0,1);
See Also

ibset(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-32 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBRSP(3) device only IBRSP(3)

Name
ibrsp - return serial poll status byte

Synopsis
#include <sys/ugpib.h>
ibrsp (d,spr)
int d;
char spr[];

Description
d is a file descriptor returned from an ibfind call. spr is the buffer in which the poll
response is stored.

The ibrsp function is used to serial poll one device and obtain its status byte or to obtain a
previously stored status byte. If the 0x40 bit of the response is set, the status response is
positive, that is, the device is requesting service.

If automatic serial polling is enabled (default configuration), devices are polled the instant
they request service. Positive responses are saved in a queue, causing the RQS bit of the
responding device's status word to be set. A call to ibrsp when RQS is set returns the
oldest previously acquired status byte. If the RQS bit of the status word is not set when
ibrsp is called, the device is serial polled to obtain the status byte.

The interpretation of the response in spr, other than the RQS bit, is device-specific. For
example, the polled device might set a particular bit in the response byte to indicate that it
has data to transfer, and another bit to indicate a need for reprogramming. Consult the
documentation for the device for interpretation of the response byte.

Example
Obtain the serial poll response byte from device tape.

ibrsp (tape,spr);
/* The application program would then analyze the response */

/* in spr. */
See Also
ibrsv(3) and ibcmd(3)

Chapter 2, The C Language Library

© National Instruments Corporation A-33 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBRSV(3) board only IBRSV(3)

Name
ibrsv - request service and/or set serial poll status byte

Synopsis
#include <sys/ugpib.h>
ibrsv (b,v)
int b,v;

Description
b is a file descriptor returned from an ibfind call. v specifies the serial poll response
byte.

If the 0x40 bit is set in v, the GPIB board additionally requests service from the Controller
by asserting the GPIB SRQ line.

The ibrsv function is used to request service from the Controller using the SRQ signal
and to provide a system-dependent status byte when the Controller serial polls the GPIB
board.

It is not an error to call the ibrsv function when the GPIB board is the Controller-In-
Charge (CIC), although doing so makes sense only if control will be passed later to another
device. In this case, the call updates the status byte, but the SRQ signal is asserted only if
the 0x40 bit is set and only when control is passed.

When ibrsv is called and an error does not occur, the previous value of v is stored in

iberr.
Examples
1. Set the serial poll status byte to 0x41, which simultaneously requests service from an
external CIC.

ibrsv(brd0,0x41);
2. Stop requesting service (unassert SRQ).
ibrsv(brd0,0);
3. Change the status byte without requesting service.
ibrsv(brd0,0x01); /* new status byte value */
See Also

ibrsp(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-34 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBSAD(3) device or board IBSAD(3)

Name
ibsad - change or disable secondary address

Synopsis
#include <sys/ugpib.h>
ibsad (bd,v)
int bd,v;

Description
bd is a file descriptor returned from an ibfind call. v is a valid secondary address.

If v 1s a number between 0x60 and Ox7E, that number becomes the secondary GPIB
address of the device or interface board. If v is 0 or Ox7F, secondary addressing is
disabled. ibsad is needed only to alter the value from its configuration setting.

When ibsad is called and an error does not occur, the previous value of v is stored in
iberr.

The assignment made by this function remains in effect until ibsad is called again, the
ibonl function is called, or the file is closed.

When bd specifies a device, the function enables or disables extended GPIB addressing for
the device. When extended addressing is enabled, ibsad records the secondary GPIB
address of that device to be used in subsequent device-level I/O function calls. The actual
GPIB secondary address of any device is set within that device, either with hardware
switches or a software program. Refer to your device documentation for instructions.

When bd specifies an interface board, the ibsad function enables or disables extended
GPIB addressing and, when enabled, assigns the secondary address of the GPIB board.

Examples
1. Change the secondary GPIB address of device dvm from its current value to Ox6A.

ibsad(dvm, 0x6A) ;
2. Disable secondary addressing for device dvm.
ibsad(dvm,0);
See Also

ibset(3), ibpad(3), and ibcmd(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-35 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBSET(3) device or board IBSET(3)

Name
IBSET - set device or board parameters
IBGET - get device or board parameters
IBINFO - get board/device counts

Synopsis
#include <sys/ugpib.h>
ioctl(bd,IBSET, &device) or ioctl(bd,IBSET, &board)
ioctl(bd,IBGET, &device) or ioctl(bd,IBGET, &board)
ioctl(bd, IBINFO, &ibinfo)
int bd;
struct device device;
struct board board;
struct ibinfo ibinfo;

Description
bd is a file descriptor returned from an ibfind call. IBSET, IBGET, and IBINFO are
constants from ugpib.h. board, device, and ibinfo are structures defined in
ugpib.h.

The IBGET and IBSET ioctl functions are used to get and set board or device
information. Their use is analogous to the UNIX stty/gtty functions. IBGET can be
called alone to retrieve all current settings.

Refer to include file ugpib.h for structure fields and their meanings.

The IBINFO ioctl function is used to determine the number of boards and devices in the
system and whether a file descriptor specifies a board or a device. It uses the following
structure:

struct ibinfo {
char nbrds, /* number of boards */
ndevs, /* number of devices */
isdev; /* non-zero if called with a device
file descriptor */

}i

See Also
ibbna(3), ibdma(3), ibeos(3), ibeot(3), ibist(3), ibpad(3), ibppc(3), ibrsc(3), ibsad(3), and
ibtmo(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-36 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBSGNL(3) board only IBSGNL(3)

Name
ibsgnl - request UNIX signal on specific events

Synopsis
#include <sys/ugpib.h>
ibsgnl (b,mask)
int b,mask;

Description
b is a file descriptor returned from an ibfind call. mask is a bit mask with the same bit
assignments as the status word, ibsta.
A mask bit is set to request a signal when the corresponding event occurs. A mask of zero
disables signals. Table A-6 displays the recognized bits.

Table A-6. Signal Mask Layout

Bit Hex
Mnemonic Position | Value | Description
SRQI 12 1000 SRQ on
LOK 7 80 GPIB board is in Lockout State
REM 6 40 GPIB board is in Remote State
CIC 5 20 GPIB board is Controller-In-Charge
TACS 3 8 GPIB board is Talker
LACS 2 4 GPIB board is Listener
DTAS 1 2 GPIB board is in Device Trigger State
DCAS 0 1 GPIB board is in Device Clear State

ibsgnl is similar to the ibwait function except that it returns immediately, freeing the
application program to perform other tasks. Except for SRQI, a signal will be sent on any
transition into or out of the specified state (for example, from TACS to non-TACS).

The default signal is SIGINT.

You must arrange for the signal to be caught or your program will terminate when the signal
is sent.

An ibsgnl call remains in effect until an ibonl of 0, an ibsgnl of 0, or the program
terminates.

© National Instruments Corporation A-37 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

Example
Request a signal on service request.

ibsgnl(brd0,SRQI);

See Also
signal(2), ibwait(3), and ibset(3)
Chapter 2, The C Language Library

Bugs
ibsgnl cannot be used with device-level calls. In particular ibsgnl (b, SRQTI) will
override automatic serial polling. A signal may be missed if the signal condition occurs
during an ibrd, ibwrt, or ibcmd call.

NI-488M Software Reference Manual A-38 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBSIC(3) board only IBSIC(3)

Name
ibsic - send Interface Clear (IFC)

Synopsis
#include <sys/ugpib.h>
ibsic (b,v)
int b,v;

Description
b is a file descriptor returned from an ibfind call. v specifies how IFC is sent.

If v equals 1, the ibsic function causes the GPIB board to assert the IFC signal for at
least 100 usec, provided the GPIB board has System Controller authority. This action
initializes the GPIB and makes the interface board Controller-In-Charge (CIC). It is
generally used to become CIC or to clear a bus fault condition.

Some non-standard devices may require a pulse of IFC longer than 100 usec. To help
these devices, a value of v==2 will leave IFC asserted and a value of v==0 will unassert
IFC. Any other value will pulse IFC.

The IFC signal is supposed to reset only the GPIB interface functions of bus devices and
not intended to reset internal device functions. Device functions are reset with the Device
Clear (DCL) and Selected Device Clear (SDC) commands. To determine the effect of these
messages, consult the device documentation.

The ESAC error occurs if the GPIB board does not have System Controller capability.

Example
Initialize the GPIB and become CIC at the beginning of a program.

ibsic(brd0,1);
See Also

ibrsc(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-39 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBSRE(3) board only IBSRE(3)

Name
ibsre - set or clear the Remote Enable (REN) line

Synopsis
#include <sys/ugpib.h>
ibsre (b,v)
int b,v;

Description
b is a file descriptor returned from an ibfind call. v specifies set or clear.

If v 1s non-zero, the Remote Enable (REN) signal is asserted. If v is zero, the signal is
unasserted.

The ibsre function turns the REN signal on and off. REN is used by devices to select
between local and remote modes of operation. REN enables the remote mode. A device
does not actually enter remote mode until it receives its listen address.

The ESAC error occurs if the GPIB board is not System Controller.

When ibsre is called and an error does not occur, the previous value of v is stored in

iberr.
Examples
1. Place a device at listen address 0x23 (ASCII #) in remote mode with local ability to return to
local mode.
ibsre(brd0,1); /* set REN to true */
ibemd (brd0, "#",1); /* LAD */

2. Exclude the local ability of the device to return to local mode by sending the Local Lockout
command (0x11), or include it in the command string in Example 1.

ibemd (brd0, "\x11"); /* LLO */
or

ibsre(brd0,1); /* REN true */

ibemd (brd0, "#\x11"); /* LAD LLO */

3. Return all devices to local mode.
ibsre(brd0,0); /* set REN to false */
See Also

ibset(3), ibrsc(3), and ibsic(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-40 © National Instruments Corporation

Appendix A

IBTMO(3)

Name

NI-488M Functions and Utilities Reference

device or board

ibtmo - change or disable time limit

synopsis

#include <sys/ugpib.h>
ibtmo (bd,v)

int bd,v;

Description

IBTMO(3)

bd is a file descriptor returned from an ibfind call. v is a code specifying the time limit.
Table A-7 lists the timeout settings.

ibtmo is needed only to alter the value from its configuration setting.

Table A-7. Timeout Settings

Actual Minimum

Code Value Timeout
TNONE 0 disabled*
T10us 1 10 usec
T30us 2 30 usec
T100us 3 100 usec
T300us 4 300 usec
T1lms 5 1 msec
T3ms 6 3 msec
T10ms 7 10 msec
T30ms 8 30 msec
T100ms 9 100 msec
T300ms 10 300 msec
Tls 11 1 sec
T3s 12 3 sec
T10s 13 10 sec
T30s 14 30 sec
T100s 15 100 sec
T300s 16 300 sec
T1000s 17 1000 sec

* If you select TNONE, no limit will be in effect
and 1/O operations could proceed indefinitely.

© National Instruments Corporation

A-41]

NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

The time limit is an escape mechanism used to exit gracefully from a "hung bus" condition.
Since the GPIB is an asynchronous bus, read and write operations can be held up
indefinitely.
Timeout values are approximate, though never less than indicated.
Examples
1. Change the time limit for device level I/O operations involving device tape to
approximately 300 msec.
ibtmo(tape,T300ms) ;
2. Perform I/O operations with no timeout in effect (not recommended).
ibtmo(brd0,0);
See Also

ibset(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-42 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

IBTRG(3) device only IBTRG(3)
Name

ibtrg - Group Execute Trigger (GET)
Synopsis

#include <sys/ugpib.h>

ibtrg (d)

int d;

Description
d is a file descriptor returned from an ibfind call.

The ibtrg function addresses and triggers the specified device, then unaddresses all
devices on the GPIB.

ibtrg sends the following commands and information:
» Listen address of the device

* Secondary address of the device, if applicable

* Group Execute Trigger (GET)

e Untalk (UNT) and Unlisten (UNL)

The response to a trigger is device-dependent.

Example
Trigger device analyz.

ibtrg(analyz);
See Also

ibcmd(3) in this appendix.
Chapter 2, The C Language Library

© National Instruments Corporation A-43 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBWAIT(3) device or board IBWAIT(3)

Name
ibwait - wait for selected events

Synopsis
#include <sys/ugpib.h>
ibwait (bd,mask)
int bd,mask;

Description
bd is a file descriptor returned from an ibfind call. mask is a bit mask with the same bit
assignments as the status word, ibsta.

A mask bit is set to wait for the corresponding event to occur.

The ibwait function is used to monitor the events selected in mask and to delay
processing until any of them occur. These events and bit assignments are shown in Table A-

Table A-8. Wait Mask Layout

Bit Hex
Mnemonic Pos. Value Description
TIMO 14 4000 Time limit exceeded
END 13 2000 GPIB board detected END or EOS
SRQI 12 1000 SRQ on
RQS 11 800 Device requesting service
LOK 7 80 GPIB board is in lockout state
REM 6 40 GPIB board is in remote state
CIC 5 20 GPIB board is CIC
TACS 3 8 GPIB board is Talker
LACS 2 4 GPIB board is Listener
DTAS 1 2 GPIB board is in device trigger state
DCAS 0 1 GPIB board is in device clear state

If mask=0, the function returns immediately. This is used to report the current device or
board state.

If the TIMO bit is O or the time limit is set to 0, timeouts are disabled. Disabling timeouts
should be done only when it is certain the selected event will occur.

When bd specifies a device, the only valid wait event is RQS, with or without TIMO.

When waiting for RQS, a device frees its access board to perform other tasks. The function
will return when a positive serial poll status byte is received from the device.

NI-488M Software Reference Manual A-44 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

When bd specifies a board, all activity on that board is suspended until the event occurs.

Examples
1. Wait indefinitely for device 1logger to request service.

ibwait(logger,RQS);

2. Wait for a service request or a timeout on brd0.
ibwait (brd0,SRQI|TIMO);

3. Report the current status for ibsta.
ibwait(bd,0);

4. Wait indefinitely until control is passed from another Controller-In-Charge (CIC).
ibwait(bd,CIC);

5. Wait indefinitely until addressed to talk or listen by another CIC.
ibwait (bd,TACS|LACS);

See Also

ibsgnl(3), ibtmo(3), ibgts(3), and ibrsp(3)
Chapter 2, The C Language Library

© National Instruments Corporation A-45 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBWRT(3) device or board IBWRT(3)

Name
ibwrt - write data to GPIB from a buffer

Synopsis
#include <sys/ugpib.h>
ibwrt (bd,buf,cnt)
int bd,cnt;
char buf[];

Description
bd is a file descriptor returned from an ibfind call. buf contains the data to be sent over
the GPIB. cnt specifies the number of bytes to be sent over the GPIB.

The ibwrt function writes cnt bytes of data to a GPIB device.
Device Call
When bd specifies a device, the following steps are performed:

1. The device is addressed to listen and the access board is addressed to talk, if they are not
already so addressed.

2. The board writes the data to the device.

When the device-level ibwrt function returns, ibsta holds the latest device status,
ibcnt is the actual number of data bytes written to the device, and iberr is the first error
detected if the ERR bit in ibsta is set.

Board Call

When bd specifies an interface board, the ibwrt function attempts to write to a GPIB
device that is assumed to be already properly initialized and addressed.

If the access board is Controller-In-Charge (CIC), the ibcmd function must be called prior
to ibwrt to address the device to listen and the board to talk. Otherwise, the device on the
GPIB that is the CIC must perform the addressing.

If the access board is Active Controller, the board is first placed in Standby Controller state
with ATN off and remains there after the write operation has completed. Otherwise, the
write operation commences immediately. An EADR error results if the board is CIC but
has not been addressed to talk with the ibcmd function. An EABO error results if the
board is not the CIC and is not addressed to talk within the time limit. An EABO error also
results if the operation does not complete for whatever reason within the time limit.

NI-488M Software Reference Manual A-46 © National Instruments Corporation

Appendix A NI-488M Functions and Utilities Reference

The ibwrt operation terminates on any of the following events:
* All bytes are transferred.

e Error is detected.

e Time limit is exceeded.

e Device Clear (DCL) or Selected Device Clear (SDC) command is received from another
device which is the Controller-In-Charge.

After termination, ibcnt contains the number of bytes written. A short count can occur on
any of the above events but the first.

Examples
1. Write ten instruction bytes to device dvm.

ibwrt (dvm, "F3R1X5P2G0",10);
2. Write five instruction bytes terminated by a carriage return and a linefeed to device ptr.
ibwrt (ptr, "IP2X5\r\n",7);

3. Write ten instruction bytes to a device at listen address 0x35 (ASCII 5) and then unaddress
it (the talk address of the access board is 0x40 or ASCII @).

ibemd (brd0, "?@5",3); /* UNL MTA LAD */

/* send instruction bytes */

ibwrt (brd0, "F3R1X5P2G0",10);

/* unaddress all listeners and talkers *x/

ibemd (brdo," ?",2); /* UNT UNL *x/
See Also

ibcmd(3) and ibwrtf(3)

Chapter 2, The C Language Library

© National Instruments Corporation A-47 NI-488M Software Reference Manual

NI-488M Functions and Utilities Reference Appendix A

IBWRTF(3) device or board IBWRTF(3)

Name
ibwrtf - write data to GPIB from a file

Synopsis
#include <sys/ugpib.h>
ibwrtf (bd,fname)
int bd;
char *fname;

Description
bd is a file descriptor returned from an ibfind call. £name is the null-terminated UNIX
pathname of the file to be sent over the GPIB.
The ibwrtf function is called repeatedly until EOF is reached on the data file.

Example
Write file dvimdata to device dvm.

ibwrtf (dvm, "dvmdata");
See Also

ibwrt(3)
Chapter 2, The C Language Library

NI-488M Software Reference Manual A-48 © National Instruments Corporation

Appendix B
Multiline Interface Command Messages

The following tables are multiline interface messages (sent and received with ATN TRUE).

© National Instruments Corporation B-1 NI-488M Software Reference Manual

Multiline Interface Command Messages

Appendix B

Multiline Interface Messages

Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg
00 000 0 NUL 20 040 32 SP MLAO
01 001 1 SOH GTL 21 041 33 ! MLAL1
02 002 2 STX 22 042 34 " MLA2
03 003 3 ETX 23 043 35 # MLA3
04 004 4 EOT SDC 24 044 36 $ MLA4
05 005 5 ENQ PPC 25 045 37 % MLAS
06 006 6 ACK 26 046 38 & MLAG6
07 007 7 BEL 27 047 39 ' MLA7
08 010 8 BS GET 28 050 40 (MLAS8
09 011 9 HT TCT 29 051 41) MLA9
0A 012 10 LF 2A 052 42 * MILA10
0B 013 11 VT 2B 053 43 + MLA11
0C 014 12 FF 2C 054 44 , MLA12
0D 015 13 CR 2D 055 45 - MLA13
OE 016 14 SO 2E 056 46 . MLA14
OF 017 15 SI 2F 057 47 / MLAIS
10 020 16 DLE 30 060 48 0 MLA16
11 021 17 DCl1 L1LO 31 061 49 1 MLA17
12 022 18 DC2 32 062 50 2 MLA1S8
13 023 19 DC3 33 063 51 3 MLA19
14 024 20 DC4 DCL 34 064 52 4 MLA20
15 025 21 NAK PPU 35 065 53 5 MLA21
16 026 22 SYN 36 066 54 6 MLA22
17 027 23 ETB 37 067 55 7 MLA23
18 030 24 CAN SPE 38 070 56 8 MLA24
19 031 25 EM SPD 39 071 57 9 MILA25
1A 032 26 SUB 3A° 072 58 : MLA26
1B 033 27 ESC 3B 073 59 ; MLA27
1C 034 28 FS 3C 074 60 < MLA28
1D 035 29 GS 3D 075 61 = MLA29
1E 036 30 RS 3E 076 62 > MLA30
1F 037 31 Us 3F 077 63 ? UNL

Message Definitions

DCL Device Clear MSA My Secondary Address

GET Group Execute Trigger MTA My Talk Address

GTL Go To Local PPC Parallel Poll Configure

LLO Local Lockout PPD Parallel Poll Disable

MLA My Listen Address

NI-488M Software Reference Manual B-2 © National Instruments Corporation

Appendix B Multiline Interface Command Messages

Multiline Interface Messages

Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

40 100 64 @ MTAOQ 60 140 96 * MSAQ,PPE
41 101 65 A MTA1 61 141 97 a MSA1,PPE
42 102 66 B MTA2 62 142 08 b MSA2,PPE
43 103 67 C MTA3 63 143 99 c MSA3,PPE
44 104 68 D MTA4 64 144 100 d MSA4,PPE
45 105 69 E MTAS 65 145 101 e MSAS5,PPE
46 106 70 F MTAG6 66 146 102 f MSAG6,PPE
47 107 71 G MTA7 67 147 103 g MSA7,PPE
48 110 72 H MTAS 68 150 104 h MSAS,PPE
49 111 73 I MTA9 69 151 105 i MSA9,PPE
4A 112 74 J MTA10 6A 152 106 j MSA10,PPE
4B 113 75 K MTA11 6B 153 107 k MSA11,PPE
4C 114 76 L MTA12 6C 154 108 1 MSA12,PPE
4D 115 77 M MTA13 6D 155 109 m MSA13,PPE
4E 116 78 N MTA14 6E 156 110 n MSA14,PPE
4F 117 79 o) “MTAL1S 6F 157 111 o MSA15,PPE
50 120 80 P MTA16 70 160 112 P MSA16,PPD
51 121 81 Q MTA17 71 161 113 q MSA17 PPD
52 122 82 R MTA18 72 162 114 r MSA18,PPD
53 123 83 S MTA19 73 163 115 s MSA19,PPD
54 124 84 T MTA20 74 164 116 t MSA20,PPD
55 125 85 U MTA21 75 165 117 u MSA21,PPD
56 126 86 \"/ MTA22 76 166 118 v MSA22,PPD
57 127 87 w MTA23 77 167 119 w MSA23,PPD
58 130 88 X MTA24 78 170 120 X MSA24,PPD
59 131 89 Y MTA25 79 171 121 y MSA25,PPD
5A 132 90 Z MTA26 7TA 172 122 z MSA26,PPD
5B 133 91 [MTA27 7B 173 123 { MSA27,PPD
5C 134 92 \ MTA28 7C 174 124 | MSA28,PPD
5D 135 93] MTA29 7D 175 125 } MSA29,PPD
SE 136 94 A MTA30 TE 176 126 ~ MSA30,PPD
5F 137 95 _ UNT 7F 177 127 DEL

PPE Parallel Poll Enable SPE Serial Poll Enable

PPU Parallel Poll Unconfigure TCT Take Control

SDC Selected Device Clear UNL Unlisten

SPD Serial Poll Disable UNT Untalk

© National Instruments Corporation B-3 ' NI-488M Software Reference Manual

Appendix C
GPIB Programming Example

This appendix illustrates the programming steps that could be used to program a representative
IEEE-488 instrument from a terminal using the driver functions. The application program is
written in C. The target instrument is a digital voltmeter (DVM). This instrument is otherwise
unspecified. The purpose here is to explain how to use the driver software to execute certain
programming and control sequences, not how to determine those sequences.

Because the instructions that are sent to program a device as well as the data that might be returned
from the device are called device-dependent messages, the format and syntax of the messages used
in this example are unique to this device. Furthermore, the interface messages or bus commands
that must be sent to devices will also vary, but to a lesser degree. The exact sequence of messages
to program and to control a particular device are contained in its documentation.

For example, the following sequence of actions is assumed to be necessary to program this DVM
to make and return measurements of a high-frequency AC voltage signal in the autoranging mode:

1. Initialize the GPIB interface circuits of the DVM so that it can respond to messages.
2. Place the DVMin remote programming mode and turn off the front panel control.
3. Initialize the internal measurement circuits.

4. Program the DVM to perform the proper function (F3 for high-frequency AC volts), range (R7
for autoranging), and trigger source (T?3 for external or remote).

5. For each measurement:
a. Send the-Group Execute Trigger (GET) command to trigger the DVM.

b. Wait until the DVM asserts Service Request (SRQ) to indicate that the measurement is
ready to be read.

¢. Serial poll the DVM to determine if the measured data is valid (status byte = 0xCO) or if a

fault condition exists (the 0x40 bit and another bit of the status byte, other than 0x80, are
set). i

d. If the data is valid, read 16 bytes from the DVM.
6. End the session.

The example program given here also assumes that the GPIB board is the designated System
Active Controller of the GPIB and that there is no change to the GPIB board default hardware
and software parameters. ’

© National Instruments Corporation C-1 NI-488M Software Reference Manual

GPIB Programming Example Appendix C

Example Program

#include <sys/ugpib.h>

char omd[512]; /* command buffer *x/
char «rd[512]; /* read buffer */
char wrt[512]; /* write buffer *x /

unsigned int mask; /* events to be waited for */

main () {
int dvm;
struct device device;

/* find device "dvm" */
dvm = ibfind ("dvm");
if (dvm < 0)
error ("cannot find dwvm");

/* set device parameters */
ioctl (dvm, IBGET, &device);

device.d tmo = T10s; /* 10 second timeout */
device.d _pad = 3; /* primary address octal 3 */
device.d_sad = 0; /* no secondary address */
device.d uflags = EOT; /* send END with last byte,

no EOS modes x/

ioctl(dvm, IBSET, &device);

/* Send the Selected Device Clear (SDC) message to clear
internal device functions. */
if (ibclr(dvm) & ERR) err();

/* Send the Local Lockout (LLO) message. *x/
if (ibllo(dvm) & ERR) err();

/* Write the function, range, and trigger source
instructions to the DVM. */
if (ibwrt (dvm, "F3R7T3",6) & ERR) err();

/* Send the Group Execute Trigger (GET) message to
trigger a measurement reading. */
if (ibtrg(dvm) & ERR) err():;

/* Wait for the DVM to set SRQ or for a timeout. */
if (ibwait (dvm, TIMO|RQS) & (ERR|TIMO)) err();

/* Read serial poll response; if not equal to 0xCO,

report dvm error. . */
if (ibrsp(dvm,rd) & ERR) err();
if ((rd[0] & OxFF) != 0xCO) dvmerr();
/* read the measurement. */

if (ibrd(dvm,rd,16) & ERR) err();

NI-488M Software Reference Manual C-2 © National Instruments Corporation

Appendix C GPIB Programming Example

/* Disable the device dvm. *x/
ibonl (dvm, 0) ;

}

err() {

/* An error checking routine at this location would, among other
things, check iberr to determine the exact cause of the error
condition and then take action appropriate to the application.
For errors during data transfers, ibcnt can be examined to
determine the actual number of bytes transferred. */

}

dvmerr () {

/* A routine at this location would analyze the fault code

returned in the DVM's status byte and take appropriate
action. */

© National Instruments Corporation C-3 NI488M Software Reference Manual

User Comment Form

National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: NI-488M™ Software Reference Manual
Edition Date July 1994
Part Number: 320062-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02 MS 53-02
Austin, TX 78730-5039 (512) 794-5678

© National Instruments Corporation Appendix-1 User Manual

	NI-488M Software Reference Manual
	Support
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL

	Preface
	About This Manual
	Organization of This Manual
	Background
	Customer Support

	Contents
	Chapter 1 Introduction
	The Device Driver

	Chapter 2 The C Language Library
	Global Variables
	Status Word – ibsta
	Error Variable – iberr
	Count Variable – ibcnt

	Read and Write Termination
	Compiling C Programs
	GPIB Function Descriptions
	Device Commands
	Board Commands

	Chapter 3 Using ibic
	Syntax Translation Guide
	Sample Session
	Auxiliary Functions

	Chapter 4 Using ibconf
	Appendix A NI-488M Functions and Utilities Reference
	IBCONF(1)
	IBIC(1)
	IBBNA(3)
	IBCAC(3)
	IBCLR(3)
	IBCMD(3)
	IBDMA(3)
	IBEOS(3)
	IBEOT(3)
	IBFIND(3)
	IBGTS(3)
	IBIST(3)
	IBLLO(3)
	IBLOC(3)
	IBONL(3)
	IBPAD(3)
	IBPCT(3)
	IBPPC(3)
	IBRD(3)
	IBRDF(3)
	IBRPP(3)
	IBRSC(3)
	IBRSP(3)
	IBRSV(3)
	IBSAD(3)
	IBSET(3)
	IBSGNL(3)
	IBSIC(3)
	IBSRE(3)
	IBTMO(3)
	IBTRG(3)
	IBWAIT(3)
	IBWRT(3)
	IBWRTF(3)

	Appendix B Multiline Interface Command Messages
	Appendix C-GPIB Programming Example
	User Comment Form
	Tables
	Table 2-1. Status Word Layout
	Table 2-2. GPIB Error Codes
	Table 3-1. Auxiliary Functions that ibic Supports
	Table A-1. Syntax of NI-488M Functions in ibic
	Table A-2. Status Word Layout
	Table A-3. GPIB Error Codes
	Table A-4. Auxiliary Functions that ibic Supports
	Table A-5. Data Transfer Termination Method
	Table A-6. Signal Mask Layout
	Table A-7. Timeout Settings
	Table A-8. Wait Mask Layout

