
Mwave/OS: A Predictable Real-time DSP Operating System

Jay K. Strosnider and Daniel I. Katcher

Department of Electrical & Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

strosnider@ece.cmu.edu

March 1994

There is an industry trend in the development of single board computers based on DSPmi-

croprocessors. These microprocessors have specialized instruction sets that are optimized

for DSP operations and architectures that are tuned for DSP program control. They also

provide the structure necessary to support operating system functions. They are being

used to supplement processing in PC and workstation environments with DSP functional-

ity, such as telephony, audio and video processing, and fax and modem capabilities. This

latter requirement to support multiple DSP functions concurrently has led to the expanded

use of multi-tasking DSP operating systems.

DSP applications have real-time requirements, in the sense that individual tasks have

individual time constraints that must be met for the system to operate correctly. For exam-

ple, the system cannot afford to miss a deadline when performing a modem function, oth-

erwise data will be lost. Researchers at Carnegie Mellon University (CMU) have been de-

veloping formalisms that allow application developers to a priori determine the timing cor-

rectness of their applications inmulti-tasking environments. IBM’s MwaveWindSurferTM

card provided an excellent test case for thismethodology. A timingmodel of their DSP oper-

ating system running on their underlying DSP was built and shown to accurately capture

the timing performance of the Mwave card. This timing model enables the DSP devel-

oper to insure the timing correctness of arbitrary concurrency mixes of DSP tasks without

explicit testing.

1



In the following article we briefly explore the differences between real-time and general

purpose computing. We then discuss the basic approaches used to achieve predictable

timing performance. A high level summary of our methodology, which bridges the gap be-

tween idealized scheduling theory and implementation of scheduling in operating systems,

is provided. A scheduling (timing) model of the Mwave card is summarized. Lastly, we dis-

cuss the results of validation studies in which the Mwave/OS timing model was shown to

be accurate to within 1% in predicting the actual timing performance of DSP applications

running on the Mwave card. Thus the Mwave card provides a predictable execution envi-

ronment for multi-tasking DSP applications.

Real-Time vs. General Purpose Computing

Figure 1 captures the key differences between real-time and general-purpose computing

against the follow three criteria: Workload, Design Goals, and Response Time Deter-

mination Techniques. General-purpose (GP) computing environments are characterized

by largely aperiodic workloads with loose, aggregate-level timing requirements. Real-

time (RT) computing environments are generally dominated by continuous, periodic data

streams from sensors, communication links, control loops, video, audio, etc., but also sup-

port aperiodic workloads. The key difference between GP and RT workloads is in the na-

ture of their timing requirements. Whereas GP workloads typically have aggregate, av-

erage case timing requirements, RT workloads have explicit timing constraints that must

be satisfied for each individual task.

The design criterion typically used for GP computing is to maximize average case perfor-

mance with little or no concern for the worst case performance. In contrast, RT workloads

require explicit timing guarantees per task which require worst case performance analysis

on an individual task basis. The performance analysis techniques used in GP computing

tend to be queueing theoretic and simulation oriented, whereas RT computing requires

explicit, worst case timing analysis to assure the timing correctness of all tasks in multi-

tasking environments.

The approaches for insuring real-time timing correctness can be broken down into two cat-

2



General Purpose Computing
	 Workload: Aperiodic in Nature

	 Design: Optimized for Average Case 	
	 Performance (transactions/sec)

	 Technique: Queueing 	 	 	
	 Theoretic/Simulation Approaches 	
	 (thruput, mean waiting time, ...)

	 E.g. Scientific Computing, Banking 	
	 Systems, Retail Systems, etc.

Real-time Computing
	 Workload: Periodic and Aperiodic in 	
	 Nature

	 Design: Guarantee Timing 	 	
	 Constraints for Individual Tasks 		
	 (Worst Case Performance)

	 Technique: Timelining or 		 	
	 Priority-Driven Scheduling 		 	
	 Approaches

	 E.g. Tactical Systems, Control 	 	
	 Systems, Multimedia Systems

Figure 1: General Purpose vs Real-Time Computing

egories: timelined and priority-driven scheduling, as illustrated in Figure 2. In timelined

schedulers resource allocations are statically bound to a fixed, repeating time sequence

called the timeline [1, 2]. Priority-driven approaches dynamically bind resource alloca-

tion at run-time using priority based arbitration. At any given time, the operating system

grants the CPU to the highest priority pending task.

The priority-driven approaches are further subdivided into two categories, fixed and dy-

namic priority scheduling. For fixed priority schedulers the task priorities are static, ie.,

any time the task is active it arbitrates at the same priority for the CPU. In contrast, dy-

namic priority schedulers determine the priority of tasks based upon some dynamically

changing criterion. like earliest deadline or least laxity. The earliest deadline approach

assigns the highest priority at a given time to the task with the earliest deadline; thus, the

priority of a task changes depending on its own deadline relative to the deadlines of other

pending tasks.

Each of the approaches has its own strengths and weaknesses. Timelining has been used

in the development of many real-time systems, because it is the easiest to understand

and tends to have the lowest implementation overhead. However, the technique generally

does not scale well to larger, more complex systems and has had life-cycle cost problems

in the defense systems arena. Priority-driven approaches are more modern and have been

3



gaining increasing favor in defense and real-time communities. Fixed priority scheduling

is a more mature technology than dynamic priority scheduling. However, dynamic priority

schedulers generally can guarantee all task deadlines at higher utilization levels than fixed

priority schedulers. However, special care must be taken to ensure that a dynamic priority

schedulers remains stable when when the system is overloaded.

It is interesting to note that major DSP OS vendors have each chosen a different approach

for providing timing correctness. AT&T’s VCOS DSP/OS uses a timeline scheduling ap-

proach, Spectron’s SPOX DSP/OS uses fixed priority scheduling, and IBM’s Mwave/OS

uses dynamic priority scheduling. The differences provide an excellent opportunity to ap-

ply the formalisms developed at CMU to quantitatively evaluate the relative strengths and

weaknesses of the three approaches. Such a study is currently being performed at CMU

as part of a graduate class. The remainder of this article summarizes results to date in

modeling and analysis of IBM’s Mwave/OS.

Timelined Algorithmic

Fixed 
Priority

Dynamic 
Priority

VCOS

SPOX MWave

Real-Time
Scheduling
Approaches

Figure 2: Summary of Real-Time Scheduling Algorithms

Operating System Scheduling Models

An operating system (OS) scheduling model is an abstraction which captures the timing

properties of an operating system. These models capture the overhead and limited pre-

emptability affects of real operating systems running on real hardware. IBM’s Mwave/OS

falls into the dynamic priority scheduling class (see Figure 2.) It implements the earliest

4



deadline scheduling algorithm, a dynamic priority algorithm, which was shown to be an

optimal dynamic scheduling algorithm by Liu and Layland [3]. Liu and Layland proved

that as long as the utilization of the periodic task sets does not exceed 100%, all tasks are

guaranteed to meet their deadlines. This may be expressed as

U

n

=

n

X

i=1

C

i

T

i

� 1:0; (1)

where the C
i

’s are the task run-times and the T
i

’s are the task periods. It is easy to see

that this scheduling algorithm is optimal - as long as one does not load the processor over

100% then all tasks are guaranteed to meet their deadlines. However, this result is subject

to the following assumptions:

� Perfect, instantaneous preemption,

� Zero overhead costs.

Clearly no real operating system executes its services in zero time and is perfectly pre-

emptable. Thus, one cannot apply the criterion in Equation 1 with any confidence. The

OS scheduling model methodology bridges this gap between scheduling theory and its im-

plementation in operating systems. To be accurate, these models must include the costs of

any system services that the operating system provides. The most basic service is schedul-

ing, but if synchronization or interprocess communication services are supported, such as

mailboxes or event flags, they, too, must be characterized and captured in the scheduling

models. For a detailed discussion of operating system scheduling models the reader is

directed to [4, 5].

Mwave/OS Scheduling Model

Figure 3 provides a high level classification that covers most of the operating systems that

are available today. Many RT OS’s still rely on a periodic timer interrupt - these are timer-

driven operating systems. However, if task scheduling tends to be keyed off a particular

data stream that runs at a certain rate, then the OS can be characterized as event-driven.

The two types of event-driven mechanisms are integrated and non-integrated. Integrated

5



interrupts have the priority of the incoming interrupt matched to the software priority of

the current application; thus, interrupts will only be handled if they correspond to a higher

priority application. Non-integrated interrupts are always handled. Finally, the last as-

pect to consider is the design of the OS interrupt handling mechanism. Many OS’s simply

turn off or do not recognize interrupts when the OS is running (as opposed to the applica-

tion running.) If this is so, then the OS is non-preemptable. However, if interrupts can be

taken at any time, and the operating system can change direction and begin working on a

different, higher priority request for service, then the OS is preemptable. In general, an

OS that is non-preemptable for long segments can have an adverse effect on scheduling for

tasks which have high frequency timing requirements. However, supporting finer grained

preemption can result in a more complex implementation, which translates into higher

overhead costs. Scheduling models provide a quantitative way in which to evaluate that

trade-off from a real-time scheduling viewpoint.

Event
Driven

Integrated
Interrupt

Preemptable Non-
Preemptable Preemptable Non-

Preemptable

Non-
Integrated 
Interrupt

Timer
Driven

Preemptable Non-
Preemptable

RTOS
Implementations

Figure 3: Classification of RT OS Implementations

The Mwave/OS system is a event-driven, non-integrated interrupt, preemptable operating

system. It always handles incoming interrupts, and is almost instantaneously preempt-

able, with the exception of very negligible portions of its code. The Mwave system has

three different event-driven interrupt sources. The rates of the interrupts are 9600 inter-

rupts/sec (telephony applications), 8000 interrupts/sec (telephony and audio applications),

and 1378 interrupts/sec (44.1 KHz CD rate with 32 buffered samples.) Each real-time task

6



in Mwave specifies the interrupt source to which it is tied, the number of interrupts in its

period (called frame size), and its worst case execution time. For instance, a task tied to the

8 KHz interrupt source with a frame size of 4 and a worst case execution time of 200 cycles,

will run every 4=8000=500 usecs, and should use 200 cycles or less every time it runs. Tasks

which share the same interrupt source, and have the same period, are grouped together

into a common frame manager. Frame managers are scheduled by the Mwave operating

system. A frame manager sequences through its list of tasks once per period serially until

they are all completed. In this article, we assume that the transition time between tasks

in a frame manager is negligible. In the discussion below, frame manager i is specified by

T

i

, its period, and C
i

, the total worst case execution time of all its tasks.

When an interrupt occurs for a given source, an interrupt handler is invoked, which exam-

ines the frame manager at the head of the idle list associated with that interrupt source.

The idle list is a list of frame managers that are waiting for their next start time. If their

start time is past, they are ready to run and the scheduler is invoked. Otherwise, the in-

terrupt handler exits. Thus a constant cost of handling an interrupt from interrupt source

i is C
int

i

and the utilization of that interrupt source is C

int

i

T

int

i

.

When the scheduler does run, it moves the frame manager that is ready to run to the run

queue, where it is queued by priority as determined by its next deadline and the earliest

deadline first algorithm. If this newly queued frame manager is of higher priority than the

currently active frame manager, a preemption occurs; otherwise, the scheduler exits and

the active task will continue to execute. On a preemption, or context switch, the state of the

active frame manager and task is saved onto the run queue and the new frame manager

is loaded onto the CPU. We let C
activate

be the worst case cost to move frame managers

from the idle queue to the run queue and C
preempt

be the cost for performing a preemption

in the case where a frame manager has higher priority than the currently running frame

manager.

The only other scheduling cost occurs when a frame manager exits after it has finished its

computation in its period. At that point, the frame manager is restored onto the idle queue,

7



its next start time is computed, and the frame manager that was previously preempted is

restored back onto the processor. We call this worst case cost C
exit

. C
activate

, C
preempt

, and

C

exit

are each a function of the number of frame managers on each interrupt source and

can be calculated by finding the worst case path through the operating system code and

calculating the number of cycles it takes. Thus, for a frame manager to run, it must incur

total cost equal to C
activate

+ C

preempt

+ C

exit

.

Another term in themodel of the Mwave system accounts for the DMA load required by the

tasks when they communicate with the external interfaces or the host processor (a PC.)

DMA is limited to one of every four cycles on Mwave. This is reflected in the feasibility

test by adding a term for DMA load with a utilization of 25%. Because this is a heavy

penalty, we are currently working to better specify the DMA requirements of tasks such

that this penalty can be reduced. Finally, a high frequency frame manager can have its

processing interrupted by the interrupts and arrival of lower priority frame manager that

have less stringent timing requirements. We add a blocking term that reflects this cost,

because this analysis verifies that the task set will work in the worst case. This term is

the cost of activating n � 1 frame managers in the period of the highest frequency frame

manager, which we denote as T1.

Putting it all together, the final equation for the Mwave system and a set of n frame man-

agers looks like this:

P3
j=1

C

int

j

T

int

j

+

P

n

i=1
C

i

+C

preempt

+C

exit

+C

activate

T

i

+

C

DMA

T

DMA

+

(n�1)C
activate

T1
� 1: (2)

Though seemingly complicated, the application developer and end-user need never see this

detailed aspect. This scheduling feasibility test can be easily programmed for evaluation

either on or off line. It could easily be incorporated into a tool that helps application de-

velopers put together DSP applications.

Another important real-time feature of the Mwave system is its hardware supported cycle

counter. The Mwave system allows the application developer to specify the exact number

of cycles that are required by each task in the worst case. This number is loaded into a

8



register on the processor when it begins to execute. A cycle counter tracks the number

of cycles actually used by the task. Mwave/OS uses this feature to contain task overruns

and isolate timing faults to the offending task. This feature is also extremely useful in

debugging the timing characteristics of real-time applications. This feature, along with its

tight well characterized OS, made MWave/OS an excellent test case for bridging the gap

between scheduling theory and its realization in OS’s.

Validation of the Mwave/OS Scheduling Model

The Mwave/OS scheduling model has been validated on the actual Mwave card with a

synthetic task set. The synthetic task set consisted of cycle burners, tasks that loop on the

CPU for a specific number of cycles. We scaled the task set to its maximum schedulable

utilization, the point at which any increase in cycle requirements by any task would cause

at least one task to miss a deadline. This number agreed closely (to within 1%) with the

utilization predicted by the model.

Providing an accurate set of feasibility tests for these systems is an ongoing challenge. A

graduate level class at CMU is currently evaluating the three different DSP systems men-

tioned in this article, and developing models for each of them. At the end of the semester,

the output of this effort should be a set of detailed models that will allow application de-

velopers to test their timing requirements with confidence on a diverse set of systems.

References

[1] T. P. Baker and A. Shaw, “The cyclic executive model and ada,” The Journal of Real-
Time Systems, vol. 1, pp. 7–25, June 1989.

[2] C. D. Locke, “Software architecture for hard real-time applications: Cyclic executives
vs. fixed priority executives,” The Journal of Real-Time Systems, vol. 4, pp. 37–53,
March 1992.

[3] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard real-
time environment,” Journal of the ACM, vol. 30, pp. 46–61, January 1973.

[4] D. Katcher, H. Arakawa, and J. Strosnider, “Engineering and analysis of fixed priority
schedulers,” IEEE Transactions on Software Engineering, vol. 19, September 1993.

9



[5] H. Arakawa, D. Katcher, J. Strosnider, and H. Tokuda, “Modeling and validation of the
real-time mach scheduler,” 1993 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, May 1993.

10


