j
b TeExas
INSTRUMENTS

TMS320C2x

User’s Guide

1990 Digital Signal Processing Products







TMS320C2x
User’s Guide

1604907-9721 revision B
December 1990

TEXAS
INSTRUMENTS



IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to discontinue any semiconduc-
tor product or service identified in this publication without notice. Tl advises its customers to ob-
tain the latest version of the relevant information to verify, before placing orders, that the informa-
tion being relied upon is current.

Tl warrants performance of its semiconductor products to current specifications in accordance
with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Unless mandated by government requirements,
specific testing of all parameters of each device is not necessarily performed.

Tl assumes no liability for Tl applications assistance, customer product design, software per-
formance, or infringement of patents or services described herein. Nor does Tl warrant or repre-
sent that license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of Tl covering or relating to any combination, ma-
chine, or process in which such semiconductor products or services might be or are used.

Texas Instruments products are not intended for use in life-support appliances, devices, or sys-
tems. Use of a Tl product in such applications without the written consent of the appropriate T|
officer is prohibited.

Copyright © 1990, Texas Instruments Incorporated



Preface

Read This First

S T e e e
it B VR R S R SO NSRS SN S SR DN S R R S SRR A S R S R M e SRS B

How to Use This Manual

The purpose of this user’s. guide is to serve as a reference book for the
TMS320C2x digital signal processors. Chapters 2 through 6 provide specific
information about the architecture and operation of the devices. Appendices
A through D furnish electrical specifications and mechanical data.

This document contains the following chapters:

Chapter 1 Introduction
Description and key features of the TMS320C2x generation of digital signal
processors.

Chapter 2 Pinouts and Signal Descriptions
Package drawings for TMS320C2x devices. Functional listings of the signals,
their pin locations, and descriptions.

Chapter 3 Architecture
' TMS320C2x design description, hardware components, and device operation.
Functional block diagram and internal hardware summary table.

Chapter 4 Assembly Language Instructions
Addressing modes and format descriptions. Instruction set summary listed ac-
cording to function. Alphabetized individual instruction descriptions with exam-
ples.

Chapter5  Software Applications
Software application examples for the use of various TMS320C2x instruction
set features.

Chapter 6 Hardware Applications
Hardware design techniques and application examples for interfacing to me-
mories, peripherals, or other microcomputers/microprocessors. XDS design
considerations. System applications.

Eleven appendices are included to provide additional information.

Appendix A TMS320C2x Data Sheet
Electrical specifications, timing, and mechanical data for the TMS320C2x de-
vices. :



Read This First

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix |

Appendix J

Appendix K

TMS320C26 Digital Signal Processor
Data sheet information on the TMS320C26 digital signal processor.

TMS320C25-33 Digital Signal Processor
Contains data sheet information on the TMS320C25-33 digital signal proces-
sor.

SMJ320C2x Digital Signal Processors
Contains data sheet information on the SMJ320C2x digital signal processors
family.

TMS320C2x System Migration
Information for upgrading a TMS320C1x to a TMS32020-based system and a
TMS32020 to a TMS320C25-based system

Instruction Cycle Timings.
Listings of the number of cycles for an instruction to execute in a given memory
configuration on the TMS32020 and the TMS320C25

TMS320E25 EPROM Programming
Programming hardware description and methodology.

Memories, Analog Converters, Sockets, and Crystals

Listings of the TI memories, analog converters, and sockets available to sup-
port the TMS320C2x devices in DSP applications. Crystal specifications and
vendors.

ROM Codes
Discussion of ROM codes (n-ask options) and the procedure for implementa-
tion.

Quality and Reliability .
Discussion of Texas Instruments quality and reliability criteria for evaluating
performance. o

Development Support
Listings ofthe hardware and software available to supportthe TMS320C2x de-

~ vices.

Related Documentation

General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1974.

Burrus, C.S. and Parks, T.W., DFT/FFT and Convolution Algorithms. New
York, NY: John Wiley and Sons, Inc., 1984.

Read This First



Read This First

Digital Signal Processing Applications with the TMS320 Family, Texas Instru-
ments, 1986; Prentice-Hall, Inc., 1987.

Gold, Bernard and Rader, C.M., Digital Processing of Signals. New York, NY:
McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1977.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Processing.
New York, NY: IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA: Kluw-
er Academic Publishers, 1986.

Jones, D.L. and Parks, T.W., A Digital Signal Processing Laboratory Using the
TMS32010. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Lim, Jae and Oppenheim, Alan V. (Editors), Advanced Topics in Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada: Carle-
ton University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V. and Schafer, R.W., Digital Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V. and Willsky, A.N. with Young, .T., Signals and Systems.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W. and Burrus, C.S., Digital Filter Design. New York, NY: John Wiley
and Sons, Inc., 1987.

Rabiner, Lawrence R., Gold and Bernard, Theory and Application of Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Treichler, J.R., Johnson, Jr., C.R. and Larimore, M.G., A Practical Guide to
Adaptive Filter Design. New York, NY: John Wiley and Sons, Inc., 1987.

Speech:

Gray, A.H. and Markel, J.D., Linear Prediction of Speech. New York, NY:
Springer-Verlag, 1976.

Jayant, N.S. and Noll, Peter, Digital Coding of Waveforms. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1987.



Read This First

Rabiner, Lawrence R. and Schafer, R.W., Digital Processing of Speech Sig-
nals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978. :

Image Processing:

Andrews, H.C. and Hunt, B.R., Digital Image Restoration. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C. and Wintz, Paul, Digital Image Processing. Reading, MA:
Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley and
Sons, 1978.

Digital Control Theory:

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel Dekker,
Inc., 1981. .

Katz, P., Digital Control Using Mlcroprocessors Englewood Cliffs, . NJ:
Prentice-Hall, Inc., 1981.

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholtand Winston,
Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Compensators.
Cambridge, MA: The MIT Press, 1983.

Phillips, C. and Nagle, H., Digital Control System Analysis and Design. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Style and Symbol Conventions

Vi

This document uses the following conventions.

{d Program listings, program examples, interactive displays, flenames, and
symbol names are shown ina special typeface similarto a typewrit-
er's. Examples use a bold version of the special typeface for empha-
sis; interactive displays use a bold version of the special typeface to
distinguish commands that you enter from items that the system displays
(such as prompts, command output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even
Here is an example of a system prompt and a command that you might en-
ter:

C: c¢sr —a /user/ti/simuboard/utilities

‘Read This First



Read This First

In syntax descriptions, the instruction, command, or directive is in a bold
typeface fontand parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect “section name”, address

.asectisthedirective. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be
an actual section name, enclosed in double quotes; the second parameter
must be an address.

Square brackets ([ and }) identify an optional parameter. If you use an op-
tional parameter, you specify the information within the brackets; youdon’t
enter the brackets themselves. Here's an example of an instruction that
has an optional parameter:

LALK 16-bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit con-
stant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with
acomma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

Braces ( {and} ) indicate alist. The symbol | (read as or) separates items
within the list. Here's an example of a list:

{ * | *+4 l *— }
This provides three choices: *, *+, or *—,

Unless the list is enclosed in square brackets, you must choose one item
from the list.

Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is: '

.byte value; |, ..., value,]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas. :

Vii



Read This First

Information about Cautions

This book may contain cautions. A caution describes a situation that could po-
tentially damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

Trademarks

MS, and MS-DOS are trademarks of Microsoft Corp.

VAX, VMS, and Ultrix are trademarks of Digital Equipment Corp.
PCDOS is a trademark of International Business Machines Corp.
Sun 3 is a trademark of Sun Microsystems, Inc. ~

UNIX is a registered trademark of AT&T Bell Laboratories.
XDS is a trademark of Texas Instruments Incorporated.

viii . Read This First



Contents

e e T T T T e s T
RpRES e sy SRR

IR 1€ oY TH T3 oY 1-1
1.1 General Description . ... .o e e e e 1-2
1.2 KeyFeatures ................. e 1-6
1.3 Typical Applications ... ... e e e e 1-8

2 Pinouts and Signal Descriptions ........ccciiiiiiiiiiiiniiinrrrreeisisaserennsan. 21
2.1 TMSB20C2X PiNOULS .« vttt ettt et e e e e s e 2-2
2.2  TMS320C2x Signal Descriptions .......oiiiiiii e i 2-3

3 Architecture ........ciiiiiiiiiiit i iienttenneenaaeteonasnaasraiaaesaseseaeanenan 3-1
3.1 Architectural Overview . ... ... ... i e 3-2
3.2  Functional Block Diagram ...ttt ittt it e e e 3-6
3.3 Internal Hardware SUMMAary .......coiiittt ittt eeaniieaenans 3-9
3.4 Memory Organization ..........oveiiiiiii i i e e 3-12

3.4.1  DataMemory ...t e e et e e 3-12
3.4.2 ProgramMemory ... ... et 3-12
3.43 TMS320C2xMemoryMaps ......ccovvvinvinninnnes. S 3-15
3.4.4 TMS320C26 MemMOry Maps . covv vt iiieiie i e eiaiinn st ieaaanns 3-16
3.45 Memory-MappedRegisters ...t e 3-21
3.4.6 Auxiliary Registers........ e 3-21
3.47 Memory Addressing Modes . ... ..ottt e 3-24
3.4.8 Memory-to-Memory MoVES ... ..ottt iiie it 3-25
3.5  Central Arithmetic Logic Unit (CALU) ... ... it iiiinnns 3-27
3.5.1  Scaling Shifter ... ..o e 3-29
3.52 ALUandAccumulator . ...ttt i 3-30
3.5.3 Multiplier, T and P Reglsters ......................................... 3-32
3.6 SystemM CONtrol ..ot e e 3-35
3.6.1 Program Counterand Stack ............cciuiiiireniiirerrnrernrieennn 3-35
3.6.2 Pipeline Operation . ........ ittt e 3-36
38,8  RESBl Lt e 3-47
3.6.4 Status Registers ..........iiiiiiiiii it it i e 3-49
3.6.5 Timer Operation ......ovui it i e e e e 3-51
3.6.6 RepeatCounter ...... ... i e e 3-53
3.6.7 Powerdown Modes (TMS320C25) .......uuvniriirerinininarainnnnnnn. 3-53
3.7 ExternalMemoryandl/OlInterface ...........ccooiiiii i 3-54
3.7.1  Memory Combinations .......ciiiiiit i i e e e 3-54



Contents

3.7.2 Internal Clock Timing Relationships .......... ...t 3-56
3.7.3 General-Purpose I/OPins (BIO and XF) .....cviiviineriinaneiiannnnnns 3-56
3.8  IMITUPES oo e e e e 3-59
3.8.1  Interrupt Operation . ....covir i e e 3-59
3.8.2 ExternallinterruptInterface ........... ..ot 3-60
3.9 SEnal PO o e e e e 3-63
3.9.1 Transmit and Receive Operations .............ciiiiiiiiiiiniinnnenen.. 3-65
3.9.2 Timingand Framing Control .......c.ccvieevniii i 3-67
3.9.3 Burst-Mode Operation ........ooiiiii i i e e 3-68
3.9.4 Continuous Operation Using Frame Sync Pulses (TMS320C25) .......... 3-70
3.9.5 Continuous Operation Without Frame Sync Pulses (TMS320C25) ......... 3-71

3.9.6 Initialization of Continuous Operation Without Frame Sync
Pulses (TMS320C25) .................. e 3-73
3.10 Multiprocessing and Direct Memory Access (DMA) ... 3-76
3.10.1 Synchronization ...ttt i 3-76
3.10.2 Global MemMO Y .ottt it e e et e e e 3-78
. 3103 The Hold FUNCHON ... i i i i e e i ettt e e 3-79
3.11 General Description of the TMS320C26 .. ..., . iiiirii i i eiie s 3-84
4 Assembly Language Instructions ..........cciiiiiiiiiiiiiinirieraianrantnronnnns 4-1
4.1  Memory Addressing Modes ... vvitiiiii i i i e 4-2
41.1 Direct AddressingMode . ...t e s 4-2
4.1.2 Indirect AddressingMode ... e 4-3
4.1.3 Immediate Addressing MOde . ......oevueireeriereeiei e, 4-8
4.2  InStruCtion Set ...t e e 4-11
421 Symbols and Abbreviations ...........eeetiritiiiiiii e 4-11
4.2.2 Instruction Set SUMMEANY . ...ovvvr et it en i neennenn e .... 4-13
4.3 Individual Instruction Descriptions ........ccoi i e 4-18
5 SOfWare APPlCAtIONS «.vv e ereeneetieniranernneenernnennsensenseensnnsennennns 5-1
5.1 Processor Initialization . .....covvii i i e e s 5-2
5.2 Program Control ... e e e 5-8
521 Subroutines ...t e P 5-8
522 Software Stack ... 5-10
523 Timer Operation ... ..ot e i 5-11
5.2.4 Single-Instruction LOOPS ..o v v viii it i e i e e e 5-13
525 Computed GOTOS . ittitiit ittt ettt e ittt e e 5-14
5.3 Interrupt Service RoUtiNg . ... ..ot i e e 5-16
53,1 Context Switching ... 5-16
5.3.2 InterruptPriority ... e 5-21
5.4  Memory Management ... ... i i e e e e 5-22
5.4.1  BloCK MOVES ...ttt e et e e 5-22
5.4.2 Configuring On-Chip RAM ..... e 5-24
5.4.3 Using On-Chip RAM for Program Execution ..................... ... ... 5-26
Table of Contents



Contents

5.5 Fundamental Logical and Arithmetic Operations .............. oot 5-31
5.5.1 Status Register Effecton Data Processing .............cooiviiiiii, 5-31

5.5.2 BitManipulation ....... .o e 5-32

5.6  Advanced Arithmetic Operations . .......ccciiiiin ittt i 5-34
5.6.1 Overflow Management ... ... ..ttt i ie e 5-34

B5.B.2  SCaAING . . ittt e e e e 5-34

5.6.3 MovingData . ..ot s 5-35

5.6.4 Multiplication ......... o i s 5-37

B.8.5  DiIVISION L uuitt it i i e e e 5-42

5.6.6 Floating-Point Arithmetic ........ ... .. .o i i 5-44

5.6.7 Indexed Addressing ...ttt i e e 5-47

5.6.8 Extended-Precision Arithmetic ........... ..o it 5-48

5.7  Application-Oriented Operations . ...t 5-57
5.7.1  ComMPaNdiNg ..ottt e e e 5-57

5.7.2 FIR/MRFIENNG .ottt i e et et 5-58

573 Adaptive Filtering .......oo it e 5-60

5.7.4 Fast Fourier Transforms (FFT) ..ottt 5-63

575 PIDCONIIOl ..ottt i e e e 5-71
Hardware Applications . ......coiiiiiiriii i ittt teti s tsaesssaarannenss 6-1
6.1 System Control CirCUItIY . ..ottt et e 6-2
6.1.1  Powerup Reset Circuit .........ooiiiiri it 6-2

6.1.2 Crystal Oscillator Circuit .. ..o ooi i e e 6-4

6.1.3  User Target Design Considerationsforthe XDS ..............c..cooot.. 6-7

6.2 Interfacing MemMOmES . .o v ittt it i e e e 6-11
6.2.1  Interfacing PROMS ...ttt i e ettt e 6-12

6.2.2 Wait-State Generator ...t 6-19

6.2.3 InterfacingEPROMS . ... it i e e 6-22

6.2.4 InterfacingStaticRAMs ........ ... .. i i e 6-26

6.2.5 Interface TIMINGANAlYSIS ... ..ottt i e e e 6-29

6.3 Direct Memory Access (DMA) ..ot it sttt an it 6-32
B.4  GlobDal MeMIO Y .« ittt it e e e e 6-35
6.5 Interfacing Peripherals ........ ..ttt i 6-37
6.5.1 Combo-CodecInterface ...ttt 6-37

B.5.2 AlCInterface .......ciiiiii i i e e 6-40

6.5.3 Digital-to-Analog (D/A) Interface ...... ... 6-42

6.5.4 Analog-to-Digital (A/D) Interface ...........coovvvivnernnen... PO 6-43

B.5.5 HOPOMS ..ot e e U 6-45

6.6  System Applications . ... .ciuiiii i e 6-48
6.6.1 EchoCancellation .........coiiiiiiii i it 6-48

6.6.2 High-SpeedModem ........ccciiiiiiiiiiiiiii it 6-48

6.6.3 VOIce CodiNg ..ovivnriiit ittt e i 6-49

' 6.6.4 Graphicsand Image Processing . ........vuvuenrireraennenenenennnnns. 6-49
6.6.5 High-Speed Control.......coiiiii ittt 6-50

xi



Contents

m O O W »

Xii

6.6.6 Instrumentation and Numeric Processing ..........cooviiiiiininnnennn, 6-51
TMS320C2x Digital Signal ProCessSOors ....cveuiirreecrternternrensaserssnnsssnnssas A-1
TMS320C26 Digital Signal ProCessSOor ... iiiranne it rrreerinnsrrsassrraannnes B-1
TMS320C25-33 Digital Signal Processor .......c.coieviiiiineeeinnnns eesreeaaens . C-1
SMJ320C2x Digital Signal Processors .....ccvvierirrriereienerrocansesssssansasans D-1
TMS320C2x System Migration .......cccciiiiiniiiiiiiiestanstnessrenssasssrannsns E-1
E.1 TMS320C1xto TMS32020 System Migration ............oviiiiiiiin i, E-2
E.2 TMS32020to TMS320C25 System Migration .............v i, E-4
Instruction Cycle TiMiNGs ....c.cvvvvriiiiiiieririnnnnnens e teiterieseeaseraaneas F-1
F.1 TMS32020 Instruction Cycle TIMINGS ... .o iiiiiii i iiiiannenans F-2
F.2  TMS320C25 Instruction Cycle TIMIiNgS . ..o ttiiii i iiiei e s F-4
TMS320E25 EPROM Programming .......ueeeerensnnererssennaensssesanasnssssannns G-1
G.1  Programming and Verification ..........cc i i i i e G-2

1€ 0 O T ! - L] - G-5

G.1.2 FAST Programming .............coovnenn e G-6

G.1.3 SNAP! Pulse Programming .........cuviiirtirinenniinersrennnnnnesa. G-6

LC T I O o doTo =T £ I =1 G-6

G.1.5 ProgramInhibit ........ceiiii i e e e G-9

L I T =T T G-9

G.1.7 OutputDisable ...t i i e i it e G-9
G.2 EPROM Protection and Verification .............cciiiiiiiiiiiiiiinen... G-10

G.21 EPROMProtection ... ..cvit it iinee s G-10

G.2.2 ProteCt Vel i e e e e e e G-12
Memories, Analog Converters, Sockets,and Crystals ............ccivvieiieiennnnn, H-1
H.1  Memories and Analog Converters ................ et H-2
L B~ IR el (= £ H-3
[ TR B O 47 - - T H-4
ROM COUES . .veuueneeentsnneeneeeuteaeaneeneeeaaneeaesaneesaeeaneeneenneannes I-1
Quality and Reliability . ......cccviiiiiiii it i it e ettt i e et aaaaas J-1
J.1 Reliability Stress Tests . ... ittt i ittt i ittt e et e J-2
Development SUPPOrt ...ttt e iiiiiie ettt ittt K-1
K.1  Device and Development Support Tool Nomenclature . ...........coovviiieennennn K-2

Table of Contents



Figures

1-1
2-1
3-1
3-2
3-3
34
3-5
3-6
37
3-8
3-9
3-10
3-11
3-12
3-13
3-14

3-15

3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
329

TMS320 Device EVOIULION . . ..o oottt e e 1-3
TMS3200C2x Pin AsSignmeEnts .. ..uii it i et et e 2-2
TMS320C2x Simplified Block Diagram ...t e 3-3
TMS320C2x Block Diagram .. ..ovve et e 3-7
TMS320C26 BloCK Diagram .. .ov vttt ettt e it 3-8
TMS320C2x On-Chip Data Memory . .....oviiiiiii e iiiiieein e 3-13
TMS320C26 On-ChipData Memory ....o.vveivt ittt 3-14
TMS320C2X MemMOry Maps . vvv ittt i it vt e e nenannnannnn 3-18
TMS320C26 Memory Maps .. .vvviiiii it ettt et aans 3-19
Indirect Auxiliary Register Addressing Example .................. PR 3-22
Auxiliary Register File ... i it it i e 3-23
Methods of Instruction Operand Addressing ........coiiiiiiiiiiniiiiinenennns 3-25
Central Arithmetic Logic Unit (CALU), TMS320C2X .. .. cvvviiiininennrneennnns 3-28
Central Arithmetic Logic Unit (CALU), TMS320C26 .......c.vvvverernnenrnnnnennns 3-29
Examples of TMS320C25 Carry Bit Operation ..o, 3-31
Program Counter, Stack, and Related Hardware .....................ccoviiiinn. 3-35
Three-Level Pipeline Operation (TMS320C25) .......c.cviiiiiiiiiiiie e 3-38
Two-Level Pipeline Operation . ......oovt it e ittt e i nnas 3-38 .
TMS320C25 Standard Pipeline Operation ..ot s 3-39
Pipeline Operation of ADD Followed by SACL ........ciiiiiiini it 3-41
Pipeline Operation with Wait States ........ A 3-42
Pipeline with External Data Bus Conflict . ............. T 3-43
Pipeline Operation of Branchto On-Chip RAM .. ... 3-44
Pipeline Operation of RET from On-Chip RAM . ........ . o i 3-45
TMS320C2x Status Register Organization ............ ..ttt 3-49
TMS320C26 Status Register Organization .........c..covviiiiiiiiiiiieniinns 3-50
Timer Block Diagram .. .ove ittt ittt e e ittt e 3-52
FOUr-Phase CloCK . . ..ttt e e 3-56
BIO TIMING DIagram ..o v vttt et tie et ettt e et e et aians 3-57
External Flag Timing Diagram .. ...oiitiiiiiin i iiiiaienersnn e esannes 3-58
Interrupt Mask Register (IMR) ... e it it 3-59

2 R A s TS B AR B oK 05 0 B s O G B Bk mmwwm«m B R R T SRR S AR BT ot 3 o SR R o
T ————— S : 2 ; T R RS S R



Figures

3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
4-1
4-2
5-1
5-2
5-3
5-4
5-5
5-6
5-7
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10

Xiv

Internal Interrupt Logic Diagram . ..ot i i e 3-61
Interrupt Timing Diagram (TMS320C25) ... ..ttt 3-62
The DRRand DXR Registers ...... ..ot i 3-64
Serial Port Block Diagram ... .oouuit ittt et e 3-65
Serial Port Transmit TIMING DIagram . ... ...ovvneerneeie e eeiaeeeeaneennns. 3-66
Serial Port Receive Timing Diagram . .......uietinr i iieiiinnercinnrneenn 3-67
Burst-Mode Serial Port Transmit Operation ........... ..ot 3-68
Burst-Mode Serial Port Receive Operation ..ottt iiiinnn. 3-69
Byte-Mode DRR Operation (TMS320C25) .......cciiriiiiiiiiiiiniiinn.. 3-70
Serial Port Transmit Continuous Operation (FSM=1) ...t 3-71
Serial Port Receive Continuous Operation (FSM=1) .........coiiviiiiiiin... 3-71
Serial Port Transmit Continuous Operation (FSM=0) ..........cvviiiiiiiinnn... 3-73
Serial Port Receive Continuous Operation (FSM=0) ................. e 3-73
Continuous Transmit Operation Initialization ........... ... ... .., 3-75
Continuous Receive Operation Initialization .............. ..o it 3-75
Synchronization Timing Diagram (TMS32020) . ......ov v iiiiiiii i 3-77
Synchronization Timing Diagram (TMS320C25) ........oiiiiiiniiir i, 3-77
Global Memory ACCESS TIMING ..t vttt it it 3-79
TMS320C25 Hold Timing Diagram . ..ot e 3-82
Direct Addressing Block Diagram ..ot i e 4-3
Indirect Addressing Block Diagram .........oiiiiiiii i e 4-4
On-Chip RAM Conﬁgurations .................................................. 5-25
MACD Operation . ...vi i i ittt et it e e e 5-36
Execution Time vs. Number of Multiply-Accumulates (TMS32020) .................. 5-39
Execution Time vs. Number of Multiply-Accumulates (TMS320C25) ................. 5-40
Program Memory vs. Number of Multiply-Accumulates ...............covvvnenan.n.. 5-41
An In-Place DIT FFT with In-Order Outputs and Bit-Reversed Inputs ................ 5-65
An In-Place DIT FFT with In-Order Inputs but Bit-Reversed Outputs ................ 5-65
Powerup Reset Circuit ...... ...ttt 6-3
Voltage on TMS320C25 RESEt PiN .o v vttt e it i 6-4
Crystal Oscillator Circuit . . ... ..o e e ens 6-5
Magnitude of Impedance of Oscillator LCNetwork .........coviiiiiiiiiiiiiiiinn. 6-6
Direct Interface of TBP38L165-35t0 TMS320C25 ........ccvvviiiiiinriiiinieeenss 6-14
Interface Timing of TBP38L165-35t0 TMS320C25 . ..., vc v vvriiiiiii e rnnnns 6-15
Interface of TBP38L165-35t0 TMS320C25 ......ooviiiiiii ittt 6-17
Interface Timing of TBP38L165-35 to TMS320C25 (Address Decoding) ............. 6-18
One Wait-State Memory Access Timing . ..o viiinnnn i eiiiianieenieannns 6-20
Wait-State GeneratorDesign ..........ciiiiiiiii it e -6-21

Table of Contents



Figures

611

6-12

6-13

6-14

6-15
6-16
617
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
626
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
E—1
G-1
G-2
G-3
G4
G-5
G-6
G-7
H-1
-
K1
K-2

Wait-State Generator TIMiNG . ...oveeintiiiiiiiit i iiirerennas P, 6-22
Interface of WS57CB5F-12 10 TMS320C25 . ..ot iiiei ittt e et ii e 6-23
Interface Timing of WS57C65F-1210 TMS320C25 ........c..iiiiiiininrinnnnnn. 6-24
Interface of TMS27C64-20 t0 TMS320C25 ...\ttt e 6-25
Interface Timing of TMS27C64-20t0 TMS320C25 . ... ..o it iii i ciieeiieaaeen 6-26
Interface of CY7C169-25t0 TMS320C25 . ... ..ttt e 6-28
Interface Timing of CY7C169-25t0 TMS320C25 ... ...t i, 6-29
Direct Memory Access Using a Master-Slave Configuration........................ 6-33
Direct Memory Accessin a PC Environment ... ....oiiiiiiiiiiiiiiiiiinnnnnn. 6-34
Global Memory Communication .........c.viviii e e 6-36
Interface of TMS320C2510 TCM29C16 COdBC ..o v et et en e 6-38
Interface of TLC32040 10 TMS320C2X . vt ii ittt i iiee ettt et et 6-41
Synchronous Timing of TLC32040 t0 TMS320C2X . ... vttt cieie e aeiieenns 6-41
Asynchronous Timing of TLC32040 10 TMS320C2X . . ..o oveiiiie i aeeeenn 6-42
Interface of TLC7524 10 TMS32020 ... .ciiiiiii ittt ittt e e aneeens 6-42
Interface Timing of TLC7524 t0 TMS32020 .. ... iiiiiiiiiiiiiii et eieeeennes 6-43
Interface of TLCOB20t0 TMS32020 ....cviiiiiitiiiiiie ettt iiaie e, 6-44
Interface Timing of TLC082010 TMS32020 .. .....vviii i ii it eei ety 6-45
/O Port AdAresSiNg .« o vviii ittt et e e e e e e 6-46
/O Port Processor-to-Processor CommUNICation .........v.vereervineeneneenennns 6-47
EchoCanceller ...............ccoovuuunn e 6-48
High-SpeedModem .......... ..o 6-49
Voice Coding Sy S emM ..ottt e e e et e 6-49
Graphics SYStemM .. i e e e 6-50
Robot Axis Controller SUbSYStEmM ... oot e e 6-51
Instrumentation System ... .. o e e 6-51
Serial Port System Migration . ....... ...t e E-8
EPROM Programming Data Format ..........oviiiiiiiiiiiiiiiiiiiiieennienns G-3
TMS320E25 EPROM Conversion to TMS27C64 EPROM Pinout ........vvvvvunnn.. G-4
FAST Programming Flowchart ........ ... i i e e G-7
SNAP! Pulse Programming Flowchart ......... ..., G-8
Programming Timing ... oot it it e it ittt et e s G-9
EPROM Protection Flowchart . ...t i i et e i G-11
EPROM Protection TimiNg . ....vvniiitt i ettt iies e aeenns G-12
Crystal ConNECHON ..ottt it et e e H-4
TMS320 ROM Code FIOWChAI ...ttt e eeeeee e ieeeeeeeeaannn -2
TMS320 Device Nomenclature .......cooviiieiiiiiiiiie it eitinnaneteannnnnas K-3
TMS320 Development Tool Nomenclature . .. ..o eiiiiiiiie it eeeenn K-4



TMS320C2X Processors OVeIVIBW o uvvvi ittt iit ittt it s e ie e einennans 1-4

Typical Applications of the TMS320 Family ...t 1-8
TMS320C2x Signal Descriptions ................... A 2-3
TMS320C2X INternal HArWAre ........ov'''eitiieeeeteeeeeeeeanreienen, 3-9
TMS320C25/26 Memory BIOCKS . . .« e 3-17
Memory-Mapped Registers ... ...ouiiiiiiii i et et et e e 3-21
PM Shift MOAES ..ottt e e e e i e 3-33
Instruction Pipeling SeqUENCE . ... .oi vt it i e e ettt e 3-40
Status Register Field Definitions . . ....co i i i i et e e e 3-50
Interrupt Locations and Priorities ... ..ot i e 3-59
Serial Port Bits, Pins, and Registers ...ttt it 3-63
Global Data Memory Configurations .........c.ouiiiiiiri i iiiiie e iiiennenass 3-79
Indirect Addressing Arithmetic Operations ........ ...ttt 4-6
Bit Fields for Indirect Addressing ......ooviti i it it eiie e eaaes 4-7
Instruction SYymbolS .. ... e e 4-12
Instruction Set SUMMaAINY ... ..ottt i it ittt e 4-14
Program Space and Time Requirements for u-/A-Law Companding ................. 5-58
256-Tap Adaptive Filtering Memory Space and Time Requirements ................. 5-63
Bit-Reversal Algorithm for an 8-Point Radix-2 DITFFT ........... oot 5-66
FFT Memory Space and Time Requirements .............. e e 5-71
Timing Parameters of TBP38L165-35 Direct Interface to TMS320C25 ............... 6-15.
Timing Parameters of TBP38L165-35 to TMS320C25 (Address Decoding) ........... 6-19
Wait States Required for Memory/Peripheral ACCess ........ooviiviiiiiiiiienn, 6-20
Timing Parameters of WS57C64F-12 Interface to TMS320C25 ..................... 6-24
Timing Parameters of TMS27C64-20 Interface to TMS320C25 ..................... 6-26
Timing Parameters of CY7C169-25 Interface to TMS320C25...............ccovvt 6-27
TMS32020 Instructions by Cycle Class ... .vvvv vttt iiciei it iiin e F-2
TMS32020 Instruction Cycle TimMiNgS ... .vverniiiiii it F-3
TMS320C25 Instructions by Cycle Class . ...t iii i, F-4
Cycle Timings for Cycle Classes When Notin RepeatMode ........................ F-5
Table of Contents .



Tables

F-5

G-2
H-1
J-1
J-2

Cycle Timings for Cycle Classes Whenin RepeatMode ............... ... ... ... F-7
TMS320E25 Programming Mode Levels ... G-5
TMS320E25 EPROM Protect and Protect Verify Mode Levels ................... .. G-10
Commonly Used Crystal FreqUeNCIES . . ... co vt ii it i i it iie s H-4
Micropro‘cessor and Microcontroller Tests . .......vvuriinii it J-5
TMS320C2X TransiStOrs ...ttt it it e J-5

xvii



_Examples

T N R
)

SRR

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30

xviii

Processor Initialization (TMS32020) ..ottt it e i i 5-3
Processor Initialization (TMS320C25) ... ..ccii i it et e 5-5
Processor Initialization (TMS320C26) ..ottt ittt 5-6
SUDIOULINES oot ittt e it i e e e 5-8
Software Stack EXpansion ... ...ttt i e e e 5-11
Clock Divider Using Timer (TMS32020) . ... ..cuuii i iaiiiieeii e eeeians 5-12
Clock Divider Using Timer (TMS320C25) ... ..ottt 5-13
Instruction Repeating . ...ovvvi i i i i e e 5-14
Computed GOTO ..ottt e et e e e 5-14
Context Save (TMS32020) ....c.vriiin ittt eeennasrn s erannnenssens 5-17
Context Restore (TMS82020) ... ..ottt e e e eiieens 5-18
Context Save (TMSB20C25) . .vvvvtt ittt ittt et e e e e e 5-19
Context Restore (TMS320C25) ...... .ottt et as 5-20
Interrupt Service Routine SR 5-21
Moving External Data to Internal Data Memory with BLKD ................. ... .00 5-22
Moving Program Memory to Data Memory with BLKP .. .........vvivieinnenninnnn, 5-22 -
Moving Program Memory to Data Memory with TBLR ...........oovviiniennnnnnn. 5-23
Moving Internal Data Memory to Program Memory with TBLW .............. ... ... 5-23
Moving Data from 1/O Space into DataMemorywith IN . ........ ... ..ot 5-23
Moving Data from Data Memory to I/O Space with QUT ............coviiiiivinnnn, 5-23
Configuring and Using On-Chip RAM ... e et 5-25
Program Execution from On-Chip Memory (TMS320C2X) .......cvvvviiienneenn... 5-27
Program Execution from On-Chip Memory (TMS320C26) ..........c.coovvvvvvevnn... 5-29
UsingBITand BBZ ......oovirii i e ittt e e it e 5-32
Using BITT and BBNZ ... i i e it e 5-33
Using MACD for MovingData ........... PP 5-37
MUBIDIY i i e e e e 5-37
_ Multiply-Accumulate Using the MAC Instruction (TMS32020) .........ccvvvvvnnnnnn. 5-38
Multiply-Accumulate Using the MAC Instruction (TMS320C25) ..................... 5-38
Multiply-Accumulate Using the LTA-MPY Instruction Pair .............ccoiiivoinn, 5-38
Table of Contents




Examples

5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-52

Using SQRA
Divide 33 by 5
Using SUBC for Integer Division
Using SUBC for Fractional Division
Using NORM for Floating-Point Multiply (TMS32020)
Using NORM for Floating-Point Multiply (TMS320C25)
Using LACT for Denormalization (TMS32020)
Using LACT for Denormalization (TMS320C25)
Row Times Column
64-Bit Addition (TMS32020)
64-Bit Addition (TMS320C25 and TMS320C26)
64-Bit Subtraction (TMS32020)
64-Bit Subtraction (TMS320C25)
32 x 32-Bit Multiplication (TMS32020)
32 x 32-Bit Multiplication (TMS320C25)
Implementing an 1R Filter
256-Tap Adaptive FIR Filter
Adaptive Filter Routine Concluded (TMS32020)
Adaptive Filter Routine Concluded (TMS320C25)
FFT Macros
- An 8-Point DIT FFT
PID Control

...................................................

.................................................................

.................................................................

XiX



Table of Contents



Chapter 1

Introduction

e TR S T S S s
RN A B B 3 e BS54 50385 N b 8 B A0 R AN

S MCRTD
TR I

The TMS320 family of 16/32-bit single-chip digital signal processors combines
the flexibility of a high-speed controller with the numerical capability of an array
processor, offering an inexpensive alternative to custom VLSI and multichip
bit-slice processors for signal processing.

The TMS32010, the first digital signal processor in the TMS320 family, was in-
- troduced in 1982. Since that time, the TMS320 family has established itself as
the industry standard for digital signal processing. The powerful instruction set,
inherent flexibility, high-speed number-crunching capabilities, and innovative
architecture make these high-performance, cost-effective processors ideal for
many telecommunications, computer, commercial, industrial, and military

applications.

Topics in this chapter include

Sections Page
1.1 General Description .. ..iriiiiiii ittt e e 1-2
1.2 KeyFeatures ...ttt 1-6
1.3 Typical Applications ..........ooviiiiii i 1-8

1-1



General Description

1.1

1-2

General Description

The TMS320 family consists of five generations: TMS320C1x, TMS320C2x,
TMS320C3x, TMS320C4x, and TMS320C5x (see Figure 1—1). The expansion
includes enhancements of earlier generations and more powerful new genera-
tions of digital signal processors. Many features are common among these
generations. Some specific features are added in each processor to provide
different cost/performance tradeoffs. Software compatibility is maintained
throughout the family to protect the user’s investment in architecture. Each
processor has software and hardware tools to facilitate rapid design.

This document discusses the second-generation devices (TMS320C2x) within
the TMS320 family: ‘

a

G

|

TMS32020, an NMOS 20-MHz digital signal proCessor capable of twice
the performance of the TMS320C1x devices

TMS320C25, a CMOS 40-MHz version of the TMS32020 with twice the
performance of the TMS32020

TMS320C25-33 a CMOS 33-MHz version of the TMS32025

TMS320C25-50, a CMOS enhanced-speed (50-MHz) version of the
TMS320C25

TMS320C26, a version ofthe TMS320C25 (40-MHz) with expanded confi-
gurable program/data RAM

TMS320E25, a version of the TMS320C25 (40-MHz) with on-chip ROM
replaced by secure, on-chip EPROM

Introduction



General Description

Figure 1-1. TMS320 Device Evolution

Perfomance

Fixed-point DSP

A

Floating-point DSP

TMS320C10
TMS320C10-14
TMS320C10-25
TMS320C15/E15
TMS320C15-25
TMS320E15-25
TMS320C16
TMS320C17/E17
TMS320C14/E14

TMS320C30
TMS320C31

TMS320C2x

TMS320C20
TMS320C25
TMS320E25
TMS320C25-50
TMS320C25-33
TMS320C26

TMS320C30-27

TMS320C50
TMS320C51

e —————

>

Generation

Plans for expansion of the TMS320 family include more spinoffs of the existing
generations as well as more powerful future generations of digital signal pro-
cessors.

The TMS320 family combines the high performance and specialized features
necessary in digital signal processing (DSP) applications with an extensive
program of development support, including hardware and software develop-
ment tools, product documentation, textbooks, newsletters, DSP design work-
shops, and a variety of application reports. See Appendix | for a discussion of
the wide range of development tools available.

The combination of the TMS320’s Harvard-type architecture (separate pro-
gram and data buses) and its special digital signal processing instruction set
provide speed and flexibility to execute 12.8 MIPS (million instructions per sec-
ond). The TMS320 family optimizes speed by implementing functions in hard-
ware that other processors implement through software or microcode. This
hardware-intensive approach provides the design engineer with power pre-
viously unavailable on a single chip.

The second generation of the TMS320 family includes six members:
TMS32020, TMS320C25, TMS320C25-33, TMS320C25-50, TMS320C26

1-3



General Description

and TMS320E25. The architecture of these devices is based upon that of the
TMS32010. Table 1-1 provides an overview of the TMS320C2x group of pro-
cessors with comparisons of technology, memory, I/O, cycle timing, and pack-

age type.

Table 1-1. TMS320C2x Processors Overview

Memory
Device Tech On-chip Off-chip 1/0 Ports 1 Cycle Package
RAM ROM/ Prog Data Time Type*

EPROM Ser Par DMA (ns) PGA PLCC CER
TMS32020% NMOS 544 — 64K 64K Yes 16x16 Yes 200 68 — —
TMS320C25% CMOS 544 4K 64K 64K Yes 16x16 Con 100 68 68 —
TMS320C25-33 CMOS 544 4K 64K 64K Yes 16x16 Con 120 — 68 —
TMS320C25-50§ | CMOS 544 4K 64K 64K Yes 16x16 Con 80 — 68 —
TMS320C26 CMOS 1568 256 64K 64K Yes 16x16 Con 100 — 68 —
TMS320E25§ CMOS 544 4K 64K 64K Yes 16x16 Con 100 — — 68

1SER = serial; PAR = parallel; DMA = direct memory access; Con = concurrent DMA.

FMilitary version available; contact nearest Tl Field Sales Office for availability.

§Military version planned; contact nearest Tl Field Sales Office for details.

*PGA = 68-pin grid array; PLCC = plastic-leaded chip carrier; CER = surface mount ceramic-leaded chip carrier (CER- QUAD)

The TMS32020, processed in NMOS technology, is source-code upward com-
patible with the TMS32010 and, in many applications, is capable of two times
the throughput ofthe TMS320C1x devices. It provides an enhanced instruction
set (109 instructions), large on-chip data memory (544 words), large memory
spaces, an on-chip serial port, and a hardware timer.

The TMS320C25, an enhanced version of the TMS32020, is processed in
CMOStechnology. The TMS320C25 is capable of executing 10 million instruc-
tions per second. It is pin-for-pin and object-code upward compatible with the
TMS32020. The TMS320C25’s enhanced features greatly increase the func-
tionality of the device over the TMS32020. Enhancements include 24 addition-
al instructions (133 total), eight auxiliary registers, an eight-level hardware
stack, 4K words of on-chip program ROM, a bit-reversed indexed addressing
mode, and the low-power dissipation inherent to the CMOS process.

The TMS320C25-33 is a 33-MHz version of the TMS320C25. It is capable of
an instruction cycle of less than 120 ns. It is architecturally identical to the
40-MHz version of the TMS320C25 and is pin-for-pin and object-code compat-
ible with the TMS320C25.

The TMS320C25-50 is a high-speed version of the TMS320C25. It is capable
of an instruction cycle time of less than 80 ns. It is architecturally identical to
the 40-MHz version ofthe TMS320C25 and is pin-for-pin and object-code com-
patible with the TMS320C25.

The TMS320C26 is pin-for-pin and object-code compatible (except for RAM

- configuration instructions) with the TMS320C25. It is capable of an instruction

Introduction



General Description

cycle time of 100 ns. The enhancement over the TMS320C25 consists of a
larger, configurable, on-chip RAM divided into 4 blocks, for a total 1568-word
program/data space.

The TMS320E25 is identical to the TMS320C25, except that the on-chip 4K-
word program ROM is replaced with a 4K-word on-chip program EPROM. On-
chip EPROM allows realtime code development and modification for immedi-
ate evaluation of system performance.

Note:

Throughout this document, TMS320C2x refers to the TMS32020,
TMS8320C25, TMS320C25-33, TMS320C25-50, TMS320C26, and
TMS320E25, unless stated otherwise. Where applicable, ROM includes the
on-chip EPROM of the TMS320E25.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

1-5



Key Features

1.2 Key Features

Key features of the TMS320C2x devices are listed below. Those that pertain
to a particular device are followed by the device name within parentheses.

(A Instruction cycle timing:

80-ns (TMS320C25-50)
100-ns (TMS320C25, TMS320C26, and TMS320E25)
120-ns (TMS320C25-33)

200-ns (TMS32020)

0

544-word programmable on-chip data RAM

(0

1568-word configurable program/data RAM (TMS320C26 only)

4K-word on-chip program ROM (TMS320C25, TMS302C25-33, and
TMS8320C25-50)

i

Secure 4K-word on-chib program EPROM (TMS320E25)
128K-word total data/program memory space

32-bit ALU/accumulator

16- x16-bit parallel multiplier with a 32-bit product

Single-cycle multiply/accumulate instructions

S Y SN E i E

Repeat instructions for efficient use of program space and enhanced ex-
ecution

Block moves for data/program management

On-chip timer for control operations

Up to eight auxiliary régisters with dedicated arithmetic unit

Up to eight-level hardware stack

Sixteen input and sixteén output channels

16-bit parallel shifter

Wait states for communication to slower off-chip memories/peripherals
Serial port for direct codec interface

Synchronization input for synchronous multiprocessor configurations

Global data memory interface

O Q0 d oo o090 40040Q3d

TMS320C1x source-code upward compatibility

1-6 Introduction



Key Features

L

L

Concurrent DMA using an extended hold operation (except TMS32020)

Instructions for adaptive filtering, FFT, and extended-precision arithmetic
(except TMS32020)

Bit-reversed indexed-addressing mode for radix-2 FFT (except
TMS32020)

On-chip clock generator
Single 5-V supply
Device packaging:

68-pin PGA (TMS32020 and TMS320C25)
68-lead PLCC (TMS320C25, TMS320C25-33 and TMS320C25-50)
68-lead CER-QUAD (TMS320E25)

Technology:

NMOS (TMS32020)
CMOS (TMS320C25, TMS320C25-33, TMS320C25-50, and
TMS320E25) ‘

Commercial and military versions available

1-7



Typical Applications

1.3 Typical Applications

The TMS320 family’s unique versatility and realtime performance offer flexible
design approaches in a variety of applications. In addition, TMS320 devices
can simultaneously provide the multiple functions often required in those com-
plex applications. Table 1-2 lists typical TMS320 family applications.

Table 1-2. Typical Applications of the TMS320 Family

General-Purpose DSP

Graphlcs/Imaging

Instrumentation

Digital Filtering
Convolution

Correlation

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

Waveform Generation

3-D Rotation

Robot Vision

Image Transmission/
Compression

Pattern Recognition
Image Enhancement
Homomorphic Processing
Workstations
Animation/Digital Map

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

Voice/Speech Control Military
Voice Mail Disk Control Secure Communications
Speech Vocoding Servo Control Radar Processing
Speech Recognition Robot Control Sonar Processing
Speaker Verification Laser Printer Control Image Processing

Speech Enhancement
Speech Synthesis
Text-to-Speech

Engine Control
Motor Control

Navigation
Missile Guidance
Radio Frequency Modems

Telecommunications Automotive

Echo Cancellation FAX Engine Control
ADPCM Transcoders Cellular Telephones Vibration Analysis
Digital PBXs Speaker Phones Antiskid Brakes
Line Repeaters Digital Speech Adaptive Ride Control
Channel Multiplexing Interpolation (DSI) Global Positioning
1200 to 19200-bps Modems X.25 Packet Switching Navigation
Adaptive Equalizers Video Conferencing Voice Commands
DTMF Encoding/Decoding Spread Spectrum Digital Radio
Data Encryption Communications Cellular Telephones

Consumer Industrial Medical
Radar Detectors Robotics Hearing Aids
Power Tools Numeric Control Patient Monitoring
Digital Audio/TV Security Access Ultrasound Equipment

Music Synthesizer
Toys and Games
Solid-State Answering
Machines

Power Line Monitors

Diagnostic Tools
Prosthetics
Fetal Monitors

1-8

Many of the TMS320C2x features, such as single-cycle multiply/accumulate
instructions, 32-bit arithmetic unit, large auxiliary register file with a separate
arithmetic unit, and large on-chip RAM and ROM make the device particularly
applicable in digital signal processing systems. Atthe same time, general-pur-
pose applications are greatly enhanced by the large address spaces, on-chip
timer, serial port, multiple interrupt structure, provision for external wait states,
and capability for multiprocessor interface and direct memory access.

Introduction



Typical Applications

The TMS320C2x has the flexibility to be configured to satisfy a wide range of
systemrequirements. This allows the device to be applied in systems currently
using costly bit-slice processors or custom ICs. These are examples of such
system configurations:

{1 A standalone system using on-chip memory,
(d Parallel multiprocessing systems with shared global data memory, or

1 Host/peripheral coprocessing using interface control signals.

1-9



Introduction



Chapter 2

Pin

S PR

Sk N

i{gna!

ROREIR RS

ions

escript

o
R R RS

The TMS320C2x (second-generation TMS320) digital signal processors are
available in one or more of three package types. The TMS32020 and the
40-MHz TMS320C25 are available in a 68-pin grid array (PGA) package. The
TMS320C25 (33-MHz and 50-MHz versions) and the TMS320C26 are avail-
able in a plastic 68-lead chip carrier (PLCC) package. The TMS320E25 is
packaged in a ceramic surface mount 68-lead chip carrier (CER-QUAD) pack-
age. All TMS320 packages conform to JEDEC specifications.

Conversion sockets that accept PLCC and CER-QUAD packages and have
a PGA footprint are commercially available. For more information, refer to Ap-
pendix F.

When using the XDS emulator, refer to subsection 6.1.3 for user target design
considerations.

Note:

Throughout this document, TMS320C2x refers to the TMS32020,
TMS320C25, TMS320C25-33, TMS320C25-50, TMS320C26, and
TMS320E25, unless stated otherwise. Where applicable, ROM includes the
on-chip EPROM of the TMS320E25.

L ]

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

Topics in this chapter include

Section Page -
2.1 TMS320C2x Pinouts ..........ccoiinnnen. e 2-2
2.2 TMS320C2x Signal Descriptions .. ... vvennniiiinan. 2-3

2-1

R R R SRR



TMS320C2x Pinouts

2.1 TMS320C2x Pinouts

Figure 2—1shows pinouts of the PGA, PLCC, and CER-QUAD packages for
the TMS320C2x devices. Note that the pinout and external dimensions of
PLCC and CER-QUAD are identical.

Figure 2-1. TMS320C2x Pin Assignments

68-Pin GB Pin Grid Array
Ceramic Packaget (Top View)

12 3 4 5 6 7 8 9 10N

4

A e o ©o o 0 ¢ o o o

B e & o o o 0o 0o 0o 0o T o
c o o o o
D e o o o
E o o o o
F o o e o
G o o o o
H o o o o
J o o o o
K 0 & o o 0o o o o 0 T o
L e ¢ 0 0o © 0 o o o

68-Pin FN Plastic Leaded Chip Carrier
Package and 68-Pin FQ Cer-Quad
Package (Top View)

JACK
MSC
CLKOUT1
CLKOUT2
XF
HOLDA
DX

FSX

X2 CLKIN
X1

BR
STRB
RW

Ps

5

5

Vss

2.2 Pinouts and Signal Descriptions



TMS320C2x Signal Descriptions

2.2 TMS320C2x Signal Descriptions

The signal descriptions for the TMS320C2x devices are provided in this sec-
tion. Table 2—1 lists each signal, its pin location (PGA, PLCC, and CER-
QUAD), function, and operating mode(s): that is, input, output, or high-impe-
dance state as indicated by I, O, or Z. The signals in Table 2—1 are grouped
according to function and alphabetized within that grouping.

Table 2-1. TMS320C2x Signal Descriptions

Signal Pin 1/0/Z% Description
(PGA/PLCCHY)
Address/Data Buses

"A15 MSB L10/43 0/z Parallel address bus A15 (MSB) through AO (LSB).

Al4 K9/42 Multiplexed to address external data/program memory or 1/O.
A13 L9/41 Placed in high-impedance state in the hold mode.

A12 K8/40

All L8/39

A10 K7/38

A9 L7/37

A8 K6/36

A7 K5/34

A6 L5/33

A5 K4/32

A4 L4/31

A3 K3/30

A2 L3/29

Al K2/28

A0 LSB K1/26

D15 MSB B6/2 1/0/2 Parallel data bus D15 (MSB) through DO (LSB). Multiplexed to
D14 A5/3 transfer data between the TMS320C2x and external data/pro-
D13 - B5/4 gram memory or I/O devices. Placed in the high-impedance state
D12 A4/5 when not outputting or when RS or HOLD is asserted.

D11 B4/6

D10 A3/7

D9 B3/8

D8 A2/9

D7 B2/11

D6 C1/12

D5 C2/13

D4 D114

D3 D2/15

D2 E1/16

D1 E2/17

Do LsSB Fi/18

Interface Control Signals

DS K10/45 0/Zz Data, program, and I/O space select signals. Always high unless
PS J10/47 low level asserted for communicating to a particular external
IS J11/46 space. Placed in high-impedance state in the hold mode.
READY B8/66 | Data ready input. Indicates that an external device is prepared for

the bus transaction to be completed. If the device is not ready
(READY = 0), the TMS320C2x waits one cycle and checks
READY again. READY also indicates a bus grant to an external
device after a BR (bus request) signal.

t Pin numbers apply to CER-QUAD as well as to PLCC.

1 Input/Output/High-impedance state.

2-3



TMS320C2x Signal Descriptions

Table 2—1.

TMS320C2x Signal Descriptions (Continued)

Signal

Pin
(PGA/PLCCY)

1/0/Z%

Description

Interface Control Signals (Continued)

H11/48

0/z

Read/write signal. Indicates transfer direction when communicat-
ingto an external device. Normally inread mode (high), unlesslow
level asserted for performing a write operation. Placed in high-im-
pedance state in the hold mode.

STRB

H10/49

0o/z

Strobe signal. Always high unless asserted low to indicate an ex-
ternalbus cycle. Placedin high-impedance state in the hold mode.

Multipro

cessing Signals

G11/50

0]

Bus request signal. Asserted when the TMS320C2x requires ac-
cess to an external global data memory space. READY is as-
serted to the device when the bus is available and the global data
memory is available for the bus transaction.

HOLD

A7/67

Hold input. When this signal is asserted, the TMS320C2x places
the data, address, and control lines in the high-impedance state.

HOLDA

E10/55

Hold acknowledge signal. Indicates that the TMS320C2x has
gone into the hold mode and that an external processor may ac-
cess the local external memory of the TMS320C2x.

SYNC

F2/19

Synchronization input. Allows clock synchronization of two or
more TMS320C2xs. SYNC is an active-low signal and must be
asserted on the rising edge of CLKIN.

Interrupt and Miscellaneous Signals

B7/68

Branch control input. Polled by BIOZ instruction. If BIO is low, the
TMS320C2x executes a branch. This signal must be active during
the BIOZ instruction fetch. .

B11/60

Interrupt acknowledge signal. Output is valid only while
CLKOUTT1 is low. Indicates receipt of an interrupt and that the pro-
gram is branching to the interrupt-vector location designated by
A15-A0.

H1/22
G2/21
G1/20

External user interrupt inputs. Prioritized and maskable by the in-
terrupt mask register and the interrupt mode bit.

A6

Microprocessor/microcomputer mode select pin for the
TMS320C25. When asserted low (microcomputer mode), the pin
causes the internal ROM to be mapped into the lower 4K words
of the program memory map. In the microprocessor mode, the
lower 4K words of program memory are external. On the

TMS32020, MP/MC must be connected to VoG-

1 Pin numbers apply to CER-QUAD as well as to PLCC.
t Input/Output/High-impedance state.

2-4

Pinouts and Signal Descriptions




TMS320C2x Signal Descriptions

Table 2-1.  TMS320C2x Signal Descriptions (Continued)
Signal Pin 1/0/2% Description
(PGA/PLCCY)
Interrupt and Miscellaneous Signals (Continued)

MSC C10/59 0 Microstate complete signal. Asserted low and valid only during
CLKOUT1 low when the TMS320C2x has just completed a
memory operation, such as an instruction fetch or adata memory
read/write. MSC can beusedto generate a one wait-state READY
signal for slow memory.

RS AB/65 ! Reset input. Causes the TMS320C2x to terminate execution and
forces the program counter to zero. When RS is brought to a high
level, execution begins at location zero of program memory. RS
affects various registers and status bits.

XF D11/56 0 External flag output (latched software-programmable signal).
Used for signaling other processors in multiprocessor configura-
tions or as a general-purpose output pin.

Supply/Oscillator Signals

CLKOUT1 C11/58 ¢} Master clock output signal (CLKIN frequency/4). CLKOUT1 rises
atthe beginning of quarter-phase 3 (Q3) and falls at the beginning
of quarter-phase 1 (Q1). See Appendix C for device phase defini-
tions.

CLKOUT2 D10/57 0 A second clock output signal. CLKOUT2 rises at the beginning of
quarter-phase 2 (Q2) and falls at the beginning of quarter-phase
4 (Q4). See Appendix C for device phase definitions.

Vce A10/61 | Four 5-V supply pins, tied together externally. On the TMS32020,

B10/62 pin A6 is also a supply pin.
H2/23
L6/35
Vss B1/10 I Three ground pins, tied together externally.
K11/44
L2/27 ‘

X1 G10/51 0] Output pin from the internal oscillator for the crystal. If a crystal is
not used, this pin should be left unconnected.

X2/CLKIN F11/52 | Input pin to the internal oscillator from the crystal. if crystalis not
used, a clock may be input to the device on this pin

1 Pin numbers apply to CER-QUAD as well as to PLCC.
1 Input/Output/High-impedance state.




TMS320C2x Signal Descriptions

Table 2-1.

TMS320C2x Signal Descriptions (Continued)

Signal

Pin
(PGA/PLCCH)

1/0/Zt

Description

Serial Port Signals

CLKR

B9/64

Receive clock input. External clock signal for clocking data from
the DR (data receive) pin into the RSR (serial port receive shift
register). Must be present during serial port transfers.

CLKX

A9/63

Transmit clock input. External clock signal for clocking data from
the XSR (serial port transmit shift register) to the DX (data trans-
mit) pin. Must be present during serial port transfers.

DR

Ji/24

Serial datareceive input. Serial data is received in the RSR (serial
port receive shift register) via the DR pin.

DX

E11/54

o/z

Serial data transmit output. Serial data transmitted from the XSR
(serial port transmit shift register) via the DX pin. Placed in high-
impedance state when not transmitting.

FSR

J2/25

Frame synchronization pulse for receive input. The falling edge of
the FSR pulse initiates the data-receive process, beginning the
clocking of the RSR.

FSX

F10/53

1o

Frame synchronization pulse for transmit input/output. The falling
edge of the FSX pulse initiates the data- transmit process, begin-
ning the clocking of the XSR. Following reset, the default operat-
ing condition of FSX is as an input. This pin may be selected by
software to be an output when the TXM bit in the status register
issetto 1,

1 Pin numbers apply to CER-QUAD as well as to PLCC.

1 Input/Output/High-impedance state.

2-6

Pinouts and Signal Descriptions




Chapter 3

| Arch_utecture_

The architectural design of the TMS320C2x emphasizes overall system
speed, communication, and flexibility in processor configuration. Control sig-
nals and instructions provide block memory transfers, communication to slow-
er off-chip devices, and multiprocessing implementations. Single-cycle multi-
ply/accumulate instructions, two large on-chip RAM Blocks, eight auxiliary reg-
isters with a dedicated arithmetic unit, a serial port, a hardware timer, and a
faster I/O for data-intensive signal processmg are features that increase
throughput for DSP applications.

Note:

Throughout this document, TMS320C2x refers to the TMS32020,
TMS320C25, TMS320C25-33, TMS320025-50, TMS320C26, and
TMS320E25, unless stated otherwise. Where applicable, ROM includes the
on-chip EPROM of the TMS320E25.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

Topics in this chapter include:

Section ' Page
3.1 Architectural Overview ..........iiiiiiiiiin i iiiinianenns 3-2

3.2 Functional Block Diagram .......coviiiiiiiinnn e 3-6

3.3 Internal Hardware SUMMAry .........ccciieiiiiiinnennennnn. 3-9

3.4 MemoryOrganization ..........cciiiiiiiiiniiinnennnennn, 3-12
3.5 Central Arithmetic Logic Unit (CALU) ..................ott 3-27
3.6 SystemControl ....... ...ttt e 3-35
3.7 ExternalMemoryandi/Olnterface .......................... 3-54
3.8 Interrupts oo s 3-59
3.9 Serial Port ... e 3-63
3.10 Multiprocessing and Direct Memory Access (DMA) ............ 3-76
3.11 General Description of the TMS320C26...................... 3-84

3-1



Architectural Overview

3.1 Architectural Overview

3-2

Harvard Architecture. The TMS320C2x high-performance digital signal pro-
cessors, like the TMS320C1x devices, implement a Harvard-type architecture
that maximizes processing power by maintaining two separate memory bus
structures, program and data, for full-speed execution. Instructions are in-
cluded to provide data transfers between the two spaces. Externally, the pro-
gram and data memory can be multiplexed over the same bus so as to maxi-
mize the address range for both spaces while minimizing the pin count of the
device.

On-Chip Memory. The TMS320C25 provides increased flexibility in system
design by two large on-chip data RAM blocks (a total of 544 16-bit words), one
of which is configurable either as program or data memory (see Figure 3-1).
The TMS320C26 provides three large on-chip RAM blocks, configurable either
as separate program and data spaces or as three continguous data blocks, to
provide increased flexibility in system design. An off-chip 64K-word directly ad-
dressable data memory address space is included to facilitate implementa-
tions of DSP algorithms.

The large on-chip 4K-word masked ROM on the TMS320C25 can be used to
cost-reduce systems, thus providing for a true single-chip DSP solution (see
Figure 3—1). Programs of up to 4K words can be masked into the internal pro-
gram ROM. The remainder of the 64K-word program memory space is located
externally. Large programs can execute at full speed from this memory space.
Programs may also be downloaded from slow external memory to on-chip
RAM for full-speed operation.

The 4K-word on-chip EPROM on the TMS320E25 allows realtime code devel-
opment and modification for immediate evaluation of system performance. In-
structions can be executed from the EPROM at full speed. The EPROM is
equipped with a security mechanism allowing you to protect proprietary infor-
mation. A programming adapter socket is available from Texas Instruments
that provides 68- to 28-pin conversion for programming with standard PROM
programmers. Refer to Appendix G for details.

Architecture



Architectural Overview

Figure 3—-1. TMS320C2x Simplified Block Diagram
+5V Gnd

11

Data/Prog Data RAM
| ‘ RAM 288-Word
_Interrupts . 1| 256-Word  Data(16) >
(1568-Word
TMS320C26) Multiprocessor
Interface
4-K Words ROM/EPROM L ——p—
(TMS320C25/E25)
Multiplier
Serial
-_ 32-Bit ALU/ACC _4____>_|nterface
— Shifters
Address (16)
l ] Timer

Arithmetic Logic Unit. The TMS320C2x performs 2s-complement arithmetic
using the 32-bit ALU and accumulator. The ALU is a general-purpose arithme-
tic unit that operates using 16-bit words taken from data RAM or derived from
immediate instructions or using the 32-bit result of the multiplier's product reg-
ister. In addition to the usual arithmetic instructions, the ALU can perform
Boolean operations, providing the bit manipulation ability required of a high-
speed controller. The accumulator stores the output from the ALU and is the
second input to the ALU. The accumulator is 32 bits in length and is divided
into a high-order word (bits 31 through 16) and a low-order word (bits 15
through 0). Instructions are provided for storing the high- and low-order accu-
mulator words in memory.

Multiplier. The multiplier performs a 16 x 16-bit 2s-complement multiplication
with a 32-bit result in a single instruction cycle. The multiplier consists of three
elements: the T register, P register, and multiplier array. The 16-bit T register
temporarily stores the muitiplicand; the P register stores the 32-bit product.
Multiplier values come from data memory, from program memory when using
the MAC/MACD instructions, orimmediately from the MPYK (multiply immedi-
ate) instruction word. The fast on-chip multiplier allows the device to perform
efficiently the fundamental DSP operations such as convolution, correlation,
and filtering.

The TMS320C2x scaling shifter has a 16-bit input connected to the data bus
and a 32-bit output connected to the ALU. The scaling shifter produces a left-
shift of O to 16 bits on the input data, as programmed in the instruction. The
LSBs of the output are filled with zeros, and the MSBs may be either filled with

3-3



Architectural Overview

3-4

zeros or sign-extended, depending upon the state of the sign-extension mode
bit of status register ST1. Additional shift capabilities enable the processor to
perform numerical scaling, bit extraction, extended arithmetic, and overflow
prevention.

Memory interface. The TMS320C2x local memory interface consists of a
16-bit parallel data bus (D15-D0), a 16-bit address bus (A15-A0), three pins
for data/program memory or I/O space select (DS, PS, and IS), and various
system contro! signals. The R/W signal controls the direction of a data transfer,
and the STRB signal provides a timing signal to control the transfer. When us-
ing on-chip program RAM, ROM/EPROM, or high-speed external program
memory, the TMS320C2x runs at full speed without wait states. The use of a
READY signal allows wait-state generation for communicating with slower off-
chip memories.

Up to eight levels of hardware stack are provided for saving the contents of the
program counter during interrupts and subroutine calls. Instructions are avail-
able for saving the device’s complete context. PUSH and POP instructions per-
mit a level of nesting restricted only by the amount of available RAM. The inter-
rupts used in these devices are maskable.

All control operations are supported on the TMS320C2x by an on-chip memo-
ry-mapped 16-bit timer, a repeat counter, three external maskable user inter-
rupts, and internalinterrupts generated by serial port operations or by the timer.
A built-in mechanism protects from instructions that are repeated or become
multicycle due to the READY signal and from holds and interrupts.

Serial Port. An on-chip full-duplex serial port provides direct communication
with serial devices such as codecs, serial A/D converters, and other serial sys-
tems. The interface signals are compatible with codecs and many other serial
devices with a minimum of external hardware. The two serial port memory-
mapped registers (the data transmit/receive registers) may be operated in ei-
ther an 8-bit byte or 16-bit word mode. Each register has an external clock in-
put, a framing synchronization input, and associated shift registers.

Serial communication can be used between processors in multiprocessing
applications. The TMS320C2x has the capability of allocating global data
memory space and communicating with that space via the BR (bus request)
and READY control signals. The 8-bit memory-mapped global memory alloca-
tion register (GREG) specifies up to 32K words of the TMS320C2x data
memory as global external memory. The contents of the register determine the
size of the global memory space. if the current instruction addresses an oper-
and within that space, BR is asserted to request control of the bus. The length
of the memory cycle is controlled by the READY line.

Direct Memory Access. The TMS320C2x supports direct memory access
(DMA) to its external program/data memory using the HOLD and HOLDA sig-
nals. Another processor can take complete control of the TMS320C2x external

Architecture



Architectural Overview

memory by asserting HOLD low. This causes the TMS320C2x to place its ad-
dress, data, and control lines in the high-impedance state. Signaling between
the external processor and the TMS320C2x can be performed using interrupts.
On the TMS320C25, two modes are available: a TMS32020-like mode in
which execution is suspended during assertion of HOLD, and a concurrent
DMA mode in which the TMS320C25 continues to execute its program while
operating from internal RAM or ROM, thus greatly increasing throughputin da-
ta-intensive applications.

3-5



Functional Block Diagram

3.2 Functional Block Diagram

The functional block diagram shown in Figure 3—2 and Figure 3—3 outlines the
principal blocks and data paths within the TMS320C2x processors. Further de-
tails of the functional blocks are provided in the succeeding sections. Refer to
Section 3.3, Internal Hardware Summary, for definitions of the symbols used
in Figure 3-2. The block diagram also shows all of the TMS320C2x interface
pins. Note that the shaded areas on the block diagram indicate enhancements
provided on the TMS320C25. Figure 3-3 shows the block diagram of the
TMS320C26.

The TMS320C2x architecture is builtaround two major buses: the program bus
andthe data bus. The program bus carries the instruction code and immediate
operands from program memory. The data bus interconnects various ele-
ments, such as the central arithmetic logic unit (CALU) and the auxiliary regis-
ter file, to the data RAM. Together, the program and data buses can carry data
from on-chip data RAM and internal or external program memory to the muiti-
plier in a single cycle for multiply/accumulate operations.

The TMS320C2x has a high degree of parallelism; for example, while the data
is being operated upon by the CALU, arithmetic operations may also be im-
plemented in the auxiliary register arithmetic unit (ARAU). Such parallelism re-
sults in a powerful set of arithmetic, logic, and bit-manipulation operations that
may all be performed in a single machine cycle.

LEGEND:

ACCH = Accumulator high IFR = Interrupt flag register PC = Program Counter

ACCL = Accumulator low IMR = Interrupt mask register PFC = Prefetch counter

ALU = Arithmetic logic unit IR = Instruction register RPTC = Repeat instruction counter
ARAU = Auxiliary register arithmetic unit MCS = Microcall stack GREG = Global memory allocation register
ARB = Auxiliary register pointer buffer QIR = Queue instruction register RSR = Serial port receive shift register
ARP = Auxiliary register pointer PR = Product register XSR = Serial port transmit shift register
DP = Data memory page pointer PRD = Period register for timer , ARO-AR = Auxiliary registers

DRR = Serial port data receive register TIM = Timer STO.ST = Status registers

DXR = Serial port data transmit register TR =Temporary register o] = Carry bit

3-6

Architecture



Functional Block Diagram

Figure 3-2. TMS320C2x Block Diagram

SYNG
i zro Program Bu§
T — %23 '
PsS 0¥
} Asy =933
- QIR(6).
STRB —] L
READY ——] STO(16)
BR—*]
B 5 ST1(16)
e ___’_—"‘ g RPTC(8)
HOLDA—<+1 & - IFRE)
e MCS(16) oR
BIO —> CLKR
RS —> ) FSR
IACK—4 $ 16 e
» ‘ e CLKX
N } P\ ~ Address. FSX
MPJTE . 16f  fmeee 16 n
NT(2.0) ——— ... Program; :
@0 _ROM/ XSR(16) A v %
16 £« 2 | crRoM;.. 18 DRR(16)
A15-A0 3 -(4096 X 16)
= st b DXR(16)
Instruction TIM(16)
16 PRD(16)
IMR(6
16 18 GRE((E )a
D15-D0 S -
= I
16,
3
ARO(16)
3 AR1(16) From IR MUX
ARP(3) > AR2(16)
r————nd —mne ] : Multiplier 16
ARG Shifter(0-16)
: 13 . AR5(16). I~ PRG2)
; Eiahsdladied J—
b +ARB(16)
5 v o - [
TARTUE). 16 % v
. -
| hifter(0-1 |
— = ) Shifter(0-16)
L16 132
ARAU(16) MU_X7 A4
MUX
g 16 I
: \ 4 A 4 :'16 32
MUX Ux
1 32
16 16 ALU(32)
Block B2 DATA/PROG {32
(32 % 16) RAM (256 x 16) —
| 9= X0 | ¢ | accH(ie) | accL(is
e Block BQ fc| (o) | () |
Block B1 [
(256 X 16)

t  Shifters on TMS32020 (0, 1, 4).
NOTE: Lighter shaded areas are for TMS320C25 and TMS320E25. Darker shaded areas indicate a bus.

»>-

32
v
Shifter(0-7)
16
B T RN i

3-7



Functional Block Diagram

Figure 3-3. TMS320C26 Block Diagram

3-8

XF —4—
HOLD —]
HOLDA —_—
MSC <]
810 —
RS —»

IACK —*+]

|—P— X1

Controller

X2/CLKIN
CLKOUT1
CLKOUT2

16
16

16

116 16
PC(16)

;' 16

;16 e

MP/MC
INT(2-0)

A15-Al

D15-DO

3

Address

Stack

Program
ROM

(256 x 16)

(8 X 16)

Instruction

3 16

MUX

Data Bus

Program Bus

L 4 7LSB TR (16
3 AR1(16] From IR
ARP@) | > AR2(16 s
AR3(16 (orad : Multiplier
AR4(16 1o Shifter{(0-16
3 AR5(16 e
. ARG(16) T | ’ 2 |
4
ARB(3 AR7(1E) 16 32 33
| Shiﬁergo-wi |
ARAU(16) v T
3 MU it

16

4
MU

16

y
MU.

16

DATA
RAM (32 x 16)
Block B2

DATA/PROG
RAM (512 X 16)
Block B3

DATA/PROG
RAM (512 x 16)
Block B1

DATA/PROG
RAM (512 x 16)
Block BO

MUX

ALU(32)

}
3 32

Program Bus

16 16
QIR(16)
IR(16)
iSS—— STO(16)
| — ] ST1(16)
> RPTC(8)
IFR(6)
DR
CLKR
FSR
DX
N =
r RSR(16)
XSR(16)
19 DRA(16)
16 DXR(16)
; TIM(16)
19 PRD(16)
§ IMR(6)
GREG(8)

1 ¢ | AccHpie) | AccLs) |

[ 32
v

[ shiteron )

16 1

Data Bus

Architecture



Internal Hardware Summary

3.3 Internal Hardware Summary

The TMS320C2x internal hardware implements functions that other proces-
sors typically perform in software or microcode. For example, the device con-
tains hardware for single-cycle 16 x 16-bit multiplication, data shifting, and ad-
dress manipulation. This hardware-intensive approach provides computing
power previously unavailable on a single chip.

Table 3—1 presents a summary of the TMS320C2x internal hardware. This
summary table, which includes the internal processing elements, registers,
and buses, is alphabetized within each functional grouping. All of the symbols
used in this table correspond to the symbols used in the block diagram of Sec-
tion 3.2, the succeeding block diagrams in this section, and the text throughout
this document.

Table 3—1. TMS320C2x Internal Hardware

Unit Symbol Function
Accumulator ACC (31-0) A 32-bit accumulator splitin two halves: ACCH (accumulator high) and
ACCH (31-16) ACCL (accumulator low). Used for storage of ALU output.
ACCL (15-0)

Arithmetic Logic Unit ALU A 32-bit twos-complement arithmetic logic unit having two 32-bit input
ports and one 32-bit output port feeding the accumulator.

Auxiliary Register Arithmetic ARAU A16-bitunsigned arithmetic unit used to perform operations on auxiliary

Unit register data.

Auxiliary Register File ARO-AR7 A register file containing five or eight 16-bit auxiliary registers

(15-0) (ARO-AR?), used for addressing data memory, temporary storage, or
integer arithmetic processing through the ARAU.

Auxiliary Register File Bus AFB(15-0) A 16-bit bus that carries data from the AR pointed to by the ARP.

Auxiliary Register Pointer ARP(2-0) A 3-bit register used to select one of five or eight auxiliary registers.

Auxiliary Register Pointer ARB(2-0) A 3-bit register used to buffer the ARP. Each time the ARP is loaded,

Buffer the old value is written to the ARB, except during an LST (load status
register) instruction. When the ARB is loaded with an LST1, the same
value is also copied into ARP.

Central Arithmetic Logic Unit CALU The grouping of the ALU, muitiplier, accumulator, and scaling shifter.

Data Bus D(15-0) A 16-bit bus used to route data.

Data Memory Address Bus DAB(15-0) A 16-bit bus that carries the data memory address.

Data Memory Page Pointer DP(8-0) A 9-bit register pointing to the address of the current page. Data pages
are 128 words each, resulting in 512 pages of addressable data
memory space (some locations are reserved).

Direct Data Memory Address DRB(15-0) A 16-bit bus that carries the direct address for the data memory, which

Bus is the concatenation of the DP register with the seven LSBs of the in-
struction.

Global Memory Allocation GREG(7-0) An 8-bit memory-mapped register for allocating the size of the global

Register memory space.

t Specific to TMS320C25, TMS320E25 and TMS320C26.

3-9



Internal Hardware Summary

Table 3-1.  TMS320C2x Internal Hardware (Continued)

Unit Symbol Function
Instruction Register IR(15-0) A 16-bit register used to store the currently executing instruction.
Interrupt Flag Register IFR(5-0) A 6-bit flag register used to latch the active-low external user interrupts

INT(2-0), the internal interrupts XINT/RINT (serial port transmit/re-
ceive), and TINT (timer) interrupts. The IFR is not accessible through

software.
Interrupt Mask Register IMR(5-0) A 6-bit memory-mapped register used to mask interrupts.
Microcall Stackt MCS (15-0) A single-word stack that temporarily stores the contents of the PFC

while the PFC is being used to address data memory with the block
move (BLKD/BLKP), multiply-accumulate (MAC/MACD), and table
read/write (TBLR/TBLW)and table read/write (TBLR/TBLW) instruction

Multiplier MULT A 16 x 16-bit parallel multiplier.
Period Register PRD (15-0) A 16-bit memory-mapped register used to reload the timer.
Prefetch Countert PFC (15-0) A 16-bit counter used to prefetch program instructions. The PFC con-

tains the address of the instruction currently being prefetched. It is up-
dated when a new prefetchis initiated. The PFC is also used to address
programmemory whenusing the block move (BLKP), multiply-accumu-
late (MAC/MACD), and table read/write (TBLR/TBLW) instructions and
to address datamemory when using the block move (BLKD) instruction.

Product Register PR(31-0) A 32-bit product register used to hold the multiplier product. The PR on
the TMS320C25 can also be accessed as the most or least significant
words using the SPH/SPL (store P register high/low) instructions.

Program Bus P(15-0) A 16-bitbus usedto route instructions (and data forthe MAC and MACD
instructions).

Program Counter PC (15-0) A 16-bit program counter used to address program memory. The PC al-
ways contains the address of the next instruction to be executed. The
PC contents are updated following each instruction decode operation.
Onthe TMS32020, the operations of the TMS320C25 prefetch counter
are performed by the program counter.

Program Memory Address PAB(15-0) A 16-bit bus that carries the program memory address.

Bus

Queue Instruction Register‘r QIR(15-0) A 16-bit register used to store prefetched instructions.

Random Access Memory RAM (BO) A RAM block with 256 x 16 locations configured as either data or pro-
(data or program) gram memory. (512 x 16 for TMS320C26)

Random Access Memory RAM (B1) A data RAM block, organized as 256 x 16 locations. (512 x 16 can be
(data only) configured as program or data for TMS320C26)

Random Access Memory RAM (B2) A data RAM block, organized as 32 x 16 locations.

(data only)

Random Access Memory RAM (B3) A RAM block with 512 x 16 locations configured as either data or pro-
(data or program) (TMS320C26 only) | gram memory (TMS320C26 only).

Read Only Memory ROM A ROM block, 4096 x 16 (256 x 16 for TMS320C26)

Repeat Counter RPTC (7-0) An 8-bit counterto control the repeated execution of a single instruction.
Serial Port Data DRR(15-0) A 16-bit memory-mapped serial port data receive register. Only the
Receive Register eight LSBs are used in the byte mode.

Serial Port Data Transmit DXR(15-0) A 16-bit memory-mapped serial port data transmit register. Only the
Register eight LSBs are used in the byte mode.

3-10 Architecture



Internal Hardware Summary

Table 3-1.  TMS320C2x Internal Hardware (Concluded)
Unit Symbol Function

Serial Port Receive Shift RSR(15-0) A 16-bit register used to shift in serial port data from the RX pin. RSR

Register contents are sent to the DRR after a serial transfer is completed. RSR
is not directly accessible through software.

Serial Port Transmit Shift XSR(15-0) A 16-bit register used to shift out serial port data onto the DX pin. XSR

Register contents are loaded from DXR at the beginning of a serial port transmit
operation. XSR is not directly accessible through software.

Shifters — Shifters are located at the ALU input, the accumulator output, and the
product register output. Also, an in-place shifter is located withinthe ac-
cumulator.

Stack Stack(15-0) A4 x 16 or 8 x 16 hardware stack used to store the PC during interrupts
or calls. The ACCL and data memory values may also be pushed onto
and popped from the stack.

Status Registers Temporary ST0,ST1 Two 16-bit status registers that contain status and control bits. A 16-bit

Register (15-0) register that holds either an operand for the multiplier or a shift code for
the scaling shifter.

Temporary Register TR(15-0) A 16-bit register that holds either an operand for the multiplier or a shift
code for the scaling shifter.

Timer TIM (15-0) A 16-bit memory-mapped timer (counter) for timing control.

T Specific to TMS320C25, TMS320E25 and TMS320C26.

3-11




Memory Organization

3.4 Memory Organization

3.4.1 Data Memory

The TMS320C2x provides a total of 544 16-bit words of on-chip data RAM, of
which 288 words are always data memory and the remaining 256 words may
be configured as either program or data memory. The TMS320C26 provides
a total of 1568 words of 16 bit on-chip RAM, divided into four separate bolcks
(B0, B1, B2, and B3). The TMS320C25 also provides 4K words of maskable
program ROM, while the TMS320E25 provides 4K words of EPROM. This sec-
tion explains memory management using the on-chip data and program
memory, memory maps, memory-mapped registers, auxiliary registers,
memory addressing modes, and memory-to-memory moves.

The 544 words of on-chip data RAM are divided into three separate blocks (BO,
B1, and B2), as shown in Figure 3—4. Of the 544 words, 256 words (block BO)
are configurable as either data or program memory by instructions provided
for that purpose; 288 words (blocks B1 and B2) are always data memory. A
data memory size of 544 words allows the TMS320C2x to handle a data array
of 512 words (256 words if on-chip RAM is used for program memory), while
still leaving 32 locations for intermediate storage. See subsection 3.4.3 for
memory map configurations.

In the TMS320C26, of the 1568 words, 32 words (block B2) are always data
memory, and all other words are programmable as either data or program
memory, as shown in Figure 3-5. A data memory size of 1568 words allows
the TMS320C26 to handle a data array of 1536 words, while still leaving 32 lo-
cations for intermediate storage. When using B0, B1, or B3 as program
memory, instructions can be downloaded from external program memory into
on-chip RAM, and then executed.

The TMS320C2x can address a total of 64K words of data memory. The on-
chip data memory and internally reserved locations are mapped into the lower
1K words of the data memory space. Data memory is directly expandable up
to 64K words while still maintaining full-speed operation. AREADY line is pro-
vided for interface to slower, less expensive memories, such as DRAMSs.

3.4.2 Program Memory

On-chip program RAM, ROM/EPROM, or high-speed external program
memory can be used at full speed with no wait states. Alternatively, the READY
line can interface the TMS320C2x to slower, less expensive external memory.
A total of 64K words of memory space is available. Internal RAM block BO can
be configured as program memory using instructions for that purpose. Execu-
tion from this block can be initiated after the memory space has been reconfi-
gured. See subsection 3.7.1 for a description of instruction execution using
various memory configurations.

Architecture



Memory Organization

Additionally, the TMS320C25 is internally equipped with 4K words of program-
mable ROM. This on-chip program ROM can be mask programmed at the fac-
tory with a customer’s program. The TMS320E25 provides a 4K-word, on-chip
EPROM. Either on-chip ROM or EPROM allows program execution at full
speed without the need for high-speed external program memory. The use of
this memory also allows the external data bus to be freed for access of external
data memory.

Figure 3-4. TMS320C2x On-Chip Data Memory

From From
Program Countert Auxiliary Registers
or or

From Data Page Pointer
" Prefetch Counterf and

Direct Memory Address

16 16 4 16
MUX
16 16
7
Block B2
| _(82x16) |
Data RAM Data/Prog
Block B1 RAM (256 x 16)
(256 x 16) Block BO
A
16
To Program Bus

T TMS32020 specific.
¥ Both TMS320C25 and TMS320E25.



Memory Organization

Figure 3-5. TMS320C26 On-Chip Data Memory

From Auxiliary
Registers
From Data Memory

Page Pointer
From Program

Counter
MUX
r \ \ 4 Y \ A4 \ A 4
MUX MUX MUX MUX
16 16 16 16
Data Data/Prog Data/Prog Data/Prog
RAM (32 x 16) RAM (512 x 16) RAM (512 x 16) RAM (512 x 16)
Block B2 Block B3 Block B1 Block BO
MUX MUX
A v A v
16
16 16 16 To Program Bus
Data Bus

Mapping of the first 4K-word block of off-chip/on-chip program memory is user-
selectable by means of the MP/MC (microprocessor/microcomputer) pin on
the TMS320C25. Setting MP/MC to a high maps in the block of off-chip
memory; holding the pin at a low maps in the block of on-chip ROM. Conse-
quently, compatible products which depend upon external memory from the
ROM can be manufactured in a shorter time frame than the TMS320C25.
Eventually, the off-chip memory device can be replaced by an on-chip memory
device at a lower cost since the PC board will not require any modification.

In another mapping technique, the XF (external flag) pin is used to toggle the
MP/MC pin by dynamically enabling or disabling the on-chip ROM. Note that
care must be taken and the instruction pipeline operation (see subsection
3.6.2) must be understood when using this method.

The MP/MC pin onthe TMS320C25is a V¢ pin onthe TMS32020. This allows
substitution of a TMS320C25 fora TMS32020 since the TMS320C25 automat-
ically operates in the microprocessor mode and therefore is plug-in compatible
in the system. See Chapter 2 for pinouts and signal descriptions.

Architecture



Memory Organization

3.4.3 TMS320C2x Memory Maps

The TMS320C2x provides three separate address spaces for program
memory, data memory, and I/0, as shown in Figure 3—6. These spaces are dis-
tinguished externally by means of the PS, DS, and IS (program, data, and /O
space select) signals. The PS, DS, IS, and STRB signals are active only when
external memory is being addressed. During an internal addressing cycle,
these signals remain inactive high, thus preventing conflicts in memory ad-

dressing, for example, when block BO is configured as program memory.

The on-chip memory blocks (B0, B1, and B2) consist of a total of 544 words
of RAM. Program/data RAM block BO (256 words) resides in pages 4 and 5 of
the data memory map when configured as data RAM and ataddresses OFF0Oh
to OFFFFh when configured as program RAM. Block B1 (always data RAM)
resides in pages 6 and 7, while block B2 resides in the upper 32 words of page
0. Note that the remainder of page 0 is composed of the memory-mapped reg-
isters and internally reserved locations, and pages 1-3 of the data memory
map consist of internally reserved locations. The internally reserved locations
may not be used for storage, and their contents are undefined when read. See
subsection 3.4.4 for further information on the memory-mapped registers.

The on-chip RAMis mapped into either the 64K-word data memory or program
memory space, depending on the memory configuration (see Figure 3-5). The
CNFD/CNFP instructions are used to configure block BO as either data or pro-
gram memory, respectively. The BLKP (block move from program memory to
data memory) instruction may be used to download program information to
block BO when it is configured as data RAM. Then a CNFP (configure block
as program memory) instruction may be used to convert it to program RAM
(see the code example in subsection 5.4.2). Regardless of the configuration,
you may still execute from external program memory. Note that when access-
ing internal program memory, external control lines remain inactive.

Reset configures block B0 as data RAM. Note that, due to internal pipelining,
when the CNFD or CNFP instruction is used to remap RAM block B0, there is
adelay before the new configuration becomes effective. This delay is one fetch
cycle if execution is from internal program RAM. On the TMS32020, a delay
of one fetch cycle occurs if execution is from external program memory. Onthe
TMS320C25, there is a delay of two fetch cycles if execution is from ROM or
external program memory. This is particularly important if program execution
is from the locations around OFF00h. Accordingly, a CNFP instruction must be
placed at location OFEFDh in external memory if execution is to continue from
the first location in block BO. If a CNFP is placed at location OFEFDh, and the
instruction at location OFEFFh is a two-word instruction, the second word of
the instruction will be fetched from the first location in block BO. If execution is
from above location OFFO0h and block BO is reconfigured, care must be taken
to assure that execution resumes at the appropriate point in a new configura-
tion. .



Memory Organization

to the larger ROM of the 'C25/E25 is also reserved.If one or more of the blocks
B0, B1, or B3 is configured as program memory, the program address space
from hexadecimal FAOOh to FFFFh is internally reserved for these blocks and
can not access external program memory. If all internal RAM blocks are confi-
gured as data memory, a program address in the range FA0OOh to FFFFh ac-
cesses external program memory.The on-chip program ROM can be mapped
into the lower 4K words of program memory. This ROM is enabled when MP/
MC is set to a logic low. To disable the on-chip ROM and use these lower ad-
dresses externally, MP/MC must be set to a logic high.

3.4.4 TMS320C26 Memory Maps

3-16

The memory map of the TMS320C26 is similar to that of the TMS32020/C25
and is shown in Figure 3-8. The on-chip memory-mapped register and block
B2 with 32 words on page 0 are unchanged.

The ROM is reduced to 256 words to allow more internal RAM. From the 256
words, 32 words are reserved for the reset and interrupt vectors. The 12 high-
est addresses from decimal 244 to 255 are reserved for test purposes, and you
may not use them. Accessing this or any other reserved block that is specified
or nonexistent has unknown results and should be avoided.

If the TMS320C26 is in microcomputer mode, the address space from 0 to
OFFFh is internal. External program memory, selected via PS (Program Se-
lect), can be used starting at address 1000h. The missing space from 0100h
to OFFFh, which would correspond to the larger ROM of the 'C25/E25, is also
reserved. If one or more of the blocks B0, B1, or B3 is configured as program
memory, the program address space from hexadecimal FAOOh to FFFFh is in-
ternally reserved for these blocks and can not access external program .
memory. If all internal RAM blocks are configured as data memory, a program
address in the range FAQOh to FFFFh accesses external program memory.

The external datamemory, selected with DS (Data Select), always starts at ad-
dress 800h (2048 decimal), regardless of the configuration mode ofthe internal
memory.

Because internal memory blocks B0, B1, and B3 (new) are of different size, the
internal data memory blocks of the TMS320C26 reside in pages 0 and 4 to 15,
while those of the TMS320C25 reside in, pages 0 and 4 to 7. Table 3—2 shows
both processors and their internal memory locations. Program memory is also
affected by the different block sizes, and the results are given in Table 3-2.

Architecture



Memory Organization

Table 3-2. TMS320C25/26 Memory Blocks

Configured As Data Memory

TMS320C26 TMS320C25
Address Address Address Address
Block | Pages Decimal Hexadecimal Pages Decimal Hexadecimal
B2 0 96-127 0060h—00F7h 0 96-127 0060h—00F7h
BO 4-7 512-1023 0200h-03FFh 4-5 . 512-768 0200h—-02FFh
B1 8-11 1024-1536 0400h—05FFh 6-7 769-1024 0300h—03FFh
B3 12-15 1537-2048 0600h—07FFh does not exist
Configured As Program Memory
TMS320C26 TMS320C25
Address Address Address Address
Block Pages Decimal Hexadecimal Pages Decimal Hexadecimal
B2 not configurable not configurable
BO 500-503 | 64000-64511 FAOOh-FBFFh 510-511 I 6528065535 FFOOh-FFFFh
B1 504-507 | 6451265023 FCOOh~-FDFFh not configurable
B3 508-511 65024—65535 FEQOh-FFFFh does not exist

Table 3-2 shows that a change of auxiliary register contents or data page
pointer is necessary if a program is transferred from the TMS320C25 to the
TMS320C26.

3-17



Memory Organization

Figure 3-6. TMS320C2x Memory Maps

Program
0 (0000h)
Interrupts
and Reserved
31 (001Fh) (External)
32 (0020h)
External
65,535 (OFFFFh)
i MP/MC = 1

{Microprocessor Mode)

Program
0 (0000h)
Interrupts
and Reserved
31 (001Fh) (External)
32 (0020h)

External
65,279(0FFooh) | ... _|
65,280 (OFFOOh )

On-Chip
Block BO
65,535 (OFFFFh )
1f MP/MC = 1

(Microprocessor Mode)

Program Data
0(0000h) m—— 0 (0000h) o
and Reser'ved Memory-Mapped
(On-Chip Registers
31 (001Fh) | ROM/EPROM 5 (0005h)
32 (0020h) 6 (0006h)
On-Chi Reserved Page 0
P 95 (005Fh
EPROM/ROM ( )
4015 (OFAFh) 96 (0060h ) )
4016 (OFBOh ) gln-ifgg
Reserved oc
4095 (OFFFh) 127 EOWFE ;
128 (0080
4096 (1000h ) Reserved Pages 1-3
511 (01FFh)
512 (0200h) .
-Ch
Extomnal on-Chip | Pages4s
ermna 767 (02FFh)
768 (0300h) OnChi
n-Chip .
BlockB1 | P29es 67
1023 (03FFh)
1024 (0400h)
Reserved Pages 8-511
65,535 (OFFFFh ) 65,535 (OFFFFh )
It MP/MC = 0
(Microcomputer Mode
on TMS320C25)
(a) Memory Maps After a CNFD Instruction
‘ Program Data
0 (0000h) Interrupts 0 (0000h) o
am(jo}?_ﬁgi%ed Men&orx-hfapped
31 (001Fh) |_ROM/EPROM) 5 (0005h ) egisiers
32 (0020h 6 (0006h)
( ) On-Chip Reserved Page 0
ROM/EPROM 95 (005Fh)
4015 (OFAFh) 96 (0060h) :
4016 (OFBOh ) gln'ihé%
Ri ed oc!
4095 (OFFFh) osenV 127 (007Fh)
128 (0080h
4096 (1000n) ¢ ) Reserved Pages 1-3
511 (01FFh)
512 (0200h)
Doe; Not Pages 4-5
External Exist
767 (02FFh)
768 (0300h) ]
g:cihé’i Pages 6-7
65,279(0FFoon) {  __ ____ __ _| 1023 (03FFh)
65,280 (OFFOOh ) On-Chi 1024 (0400h)
n-Chi
Block B0 Reserved Pages 8-511
65,535 (OFFFFh) 65,535 (OFFFFh)
I MP/MC = 0
(Microcomputer Mode
on TMS320C25)
(b) Memory Maps After a CNFP Instruction
Architecture



Memory Organization

Figure 3-7. TMS320C26 Memory Maps

Program
(0000h)
Interrupts
and Reserved
(001Fh) {External)
(0020h)
External
(FFFFh)
If MP/MC =1

(Microprocessor Mode)

Program
(0000h)
Interrupts
and Reserved
(001Fh) (External)
(0020h)
External
(F7FFh)
(F800h)
Reserved
(FOFFh)
(FAoOR) On-Chip
(FBFFh) Block BO
(FCOOh)
Reserved
(FDFFh)
(FEFFh)
Reserved
(FFFFh)
if MP/MC = 1

{Microprocessor Mode)

Program
(0ooon) Interrupts
and Reserved
(On-Chip
(001Fh) |_ROM/EPROM)
(0020h)
On-Chip
ROM
(0OF3h)
(00F4h) Internal
Reserved
(O0FFh) (ROM)
(0100h)
Reserved
(OFFFh)
(1000h)
External
(FFFFh)
If MP/MC = 0

{(Microcomputer Mode)

(0000h)

(0005h)
(0006h)

(005Fh)
(0060h)

(007Fh)
(0080h)

(01FFh)

. (0200h)

(03FFh)
(0400h)

(05FFh)
(0600h)

(O7FFh)
(0800h)

(FFFFh)

(a) Memory Maps After a CONFO Instruction and After Reset

Program
(0000h) Interrupts
and Reserved
(On-Chip ROM)
(001Fh)
(0020h) On-Chip
ROM
(00F3h)
(00F4h) Internal
Reserved
(0OFFh) (ROM)
(0100h)
(OFFFh) Reserved
(1000n) External
(F7FFh)
F800h
(F800h) Reserved
(FOFFh)
(FAQOh) On-Chip
Block BO
(FBFFh)
(FCooh)
Reserved
(FDFFh)
(FEFFh)
Reserved
(FFFFh)
IfMP/MC =0

(Microcomputer Mode

(2) Memary Maps After a CONF1 Instruction

(0000h)

(0005h)
(0006h)

(005Fh)
(0060h)
(007Fh)
(0080h)
(01FFh)
(0200h)

(03FFh)
(0400h)

(05FFh)
(0600h)

(07FFh)
(0800h)

(FFFFh)

Data

On-Chip
Memory-Mapped
Registers

Reserved

On-Chip
Block B2

Reserved

On-Chip
Block BO

On-Chip
Block B1

On-Chip
Block B3

External

Data

On-Chip
Memory-Mapped
Registers

Reserved

On-Chip
Block B2

Reserved

Does Not
Exist

On-Chip
Block B1

On-Chip
Block B3

External

Page 0

Pages 1-3

Pages 4-7

Pages 8 — 11

Pages 12-15

Pages 16-511

Page 0

Pages 1-3

Pages 4-7

Pages 8 - 11

Pages 12-15

Pages 16-511

3-19



Memory Organization

Figure 3-7.  TMS320C26 Memory Maps (continued)

Program
(0000h)

Interrupts

and Reserved
(001Fh) (External)
(0020}
External

(F7FFh)
(FAQON)
(FOFFn) Reserved
F
(FaoOR) On-Chip
(FBFFN) Block BO
(FCOOh) On-Chip

Block B1
(FDFFh)
(FEOON)

Doe; Not
(FFFFh) Exist

It MP/MC = 1

(Microprocessor Mode)

Program
(0000h)
Interrupts
and Reserved
(001Fh) (External)
(0020h)
External
(F7FFh)
(F800h)
Reserved
(FOFEh)
(FAOOh) )
On-Chip
Block B
(FBFFh) ock B0
(FCOOh)
On-Chip
Block B1
(FDFFh)
FEFFh
( ) On-Chip
(FFFFR) Block B3
It MP/MC = 1

(Microprocessor Mode)

3-20

Program
(0000h) Interrupts
and Reserved
(On-Chip
(001Fh) ROM)
(0020h)
On-Chip
ROM
(00F3h) °
(00F4h) Internal
Reserved
(O0FFh) (ROM)
(0100h) ’
R
(OFFFh) eserve
{}‘7’2%?, External
(FAOOh)
(FOFFh) Reserved
(FAOOh) On-Chip
(FBFFh) Block BO
(FCOOh) On-Chip
(FDFFh) Block B1
(FEOQh)
_Does_ Not
(FFFFh) Exist
1f MP/MC = 0

(Microcomputer Mode)

(c) Memory Maps After a CONF2 Instruction

Program

(0000h) Interrupts
and Reserved

(On-Chip
(001Fh) ROM)
(0020h) On-Chip
(0OF3h) ROM
(00F4h) Internal

Reserved
(00FFh) (ROM)
Eg::?_.?_.:; Reserved
(1000h)
(F7FFR) External
(FBOOh)

Reserved
(FoFFh) |-
(FAGO) | on.chip
(FBFFh) Block BO
(FCooh)

On-Chip
(FOFFh) Block B1
(FEFFh) On-Chip
(FFFFR) Block B3

It MP/MC = 0

(Microcomputer Mode

(d) Memory Maps After a CONF3 Instruction

(0000h)

(0005h)
(0006h)

(005Fh)
(0060h)

(007Fh)
(0080h)

(01FFh)
(0200h)

(03FFh)
(0400h)

(05FFh)
(0600h)

(07FFh)
(0800h)

(FFFFh)

(0000h)

(0005h)
(0006h)

(005Fh)
(0060h)

(007Fh)
(0080h)

(01FFh)
(0200h)

(03FFh)
(0400h)

(05FFh)
(0600h)

(07FFh)
(0800h)

(FFFFh)

Data

On-Chip
Memory-Mapped
Registers

Reserved

On-Chip
Block B2

Reserved

Does Not
Exist

Does Not
Exist

On-Chip
Block B3

External

Data

On-Chip
Memory-Mapped
Registers

Reserved

On-Chip
Block B2

Reserved

Does Not
Exist

Does Not
Exist

Does Not
Exist

External

Page 0

Pages 1-3
Pages 4-7
Pages 8~ 11
Pages 12-15

Pages 16-511

Page 0

Pages 1-3
Pages 4-7

Pages 8 - 11

Pages 12-15

Pages 16-511

Architecture



Memory Organization

3.4.5 Memory-Mapped Registers

The six registers mapped into the data memory space are listed in Table 3-2
and are shown in the block diagram of Figure 3-2.

The memory-mapped registers may be accessed in the same manner as any
other data memory location, with the exception that block moves using the
BLKD (block move from data memory to data memory) instruction cannot be
performed from the memory-mapped registers.

Table 3-3. Memory-Mapped Registers

Register Address
Name Location Definition

DRR(15-0) 0 Serial port data receive register
DXR(15-0) 1 Serial port data transmit register
TIM(15-0) 2 Timer register

PRD(15-0) 3 Period register

IMR (5-0) 4 Interrupt mask register
GREG(7-0) 5 Global memory allocation register

3.4.6 Auxiliary Registers

The TMS320C2x provides a register file containing up to eight auxiliary regis-
ters (AR0O-AR7). The TMS32020 has five auxiliary registers, and the
TMS320C25 has eight. This section discusses each register’s function and
how an auxiliary register is selected and stored.

The auxiliary registers may be used for indirect addressing of data memory or
for temporary data storage. Indirect auxiliary register addressing (see
Figure 4-2) allows placement of the data memory address of an instruction op-
erand into one of the auxiliary registers. These registers are pointed to by a
three-bit auxiliary register pointer (ARP) that is loaded with a value from 0
through 7, designating ARO through AR7, respectively. The auxiliary registers
and the ARP may be loaded either from data memory or by an immediate oper-
and defined in the instruction. The contents of these registers may also be
stored in data memory. (Chapter 4 describes the programming of the indirect
addressing mode.)

3-21



Memory Organization

Figure 3-8. Indirect Auxiliary Register Addressing Example

ARsT| 2 6B 1 h

ARt 0 00 8 h

‘Auxiliary Register File Data
Memory
ARO 053 7h Map
Location
AR | 515 0 h 000h Internal
Auxiliary 03FFh
Register 0400h
Pointer AR2 JOE 9 F Ch External
¢nstf(g 2 -——
ARP [o]1{1|—>AR3 [oF F 3 Ah|—>o0FF3an |31 21 h
AR4 | 103 Bh OFFFFh

AR7t| 8 43 Dnh
T TMS320C25, TMS320E25 and TMS320C26.

The auxiliary register files (ARO—AR4 on the TMS32020 and ARO-AR7 on the
TMS320C25) are connected to the auxiliary register arithmetic unit (ARAU),
shown in Figure 3-9. The ARAU may autoindex the current auxiliary register
while the data memory location is being addressed. Indexing by either 1 or by
the contents of ARO may be performed. As a result, accessing tables of infor-
mation does not require the central arithmetic logic unit (CALU) for address
manipulation, thus freeing it for other operations.

3-22 Architecture



Memory Organization

Figure 3-9. Auxiliary Register File

16

16

—»| Auxiliary Register 7 (AR7) (16)1
—>1 Auxiliary Register 6 (AR6) (16)T
—>1 Auxiliary Register 5 (AR5) (16)T
> Auxiliary Register 4 (AR4) (16) Auxil Auxl
- - uxiliary uxiliary
> Auxiliary Register 3 (AR3) (16) 3 Register /3 - Register
\—  Auxiliary Register 2 (AR2) (16) |* 7 om Pointer T Buffer
—>| _Auxiliary Register 1 (AR1) (16) | 4 gr RT (ARP) (3) (ARP) (3)
—>1 Auxiliary Register 0 (ARO) (16) T T
16 3
y ) !
InB Out In A 3
Auxiliary Register Arithmetic 3
Unit (ARAU) (16)
3LSB
Auxiliary Register File Bus (AFB) 16 R 3 or iR

T TMS320C25, TMS320E25 and TMS320C26.

As shown in Figure 3—6, auxiliary register 0 (ARO) or the eight LSBs of the in-
struction registers can be connected to one of the inputs ofthe ARAU. The oth-
er input is fed by the current AR (being pointed to by ARP). AR(ARP) refers
to the contents of the current AR pointed to by ARP. The ARAU performs the
following functions:

AR (ARP)+ ARO — AR (ARP) Index the current AR by adding a 16-bit
integer contained in ARO.

AR (ARP)— ARO — AR (ARP) Index the current AR by subtracting a
16-bit integer contained in ARO.

AR (ARP)+ 1 — AR (ARP) Increment the current AR by one.
AR (ARP)—-1 — AR (ARP) Decrement the current AR by one.
AR (ARP)— AR (ARP) AR(ARP) is unchanged.

In addition to the above functions, the ARAU on the TMS320C25 performs
functions as follows:

AR (ARP)+ IR(7-0)— AR (ARP) Add 8-bit immediate value to the
current AR.

3-23



Memory Organizaiion

AR (ARP)-IR (7— 0) — AR (ARP)  Subtract 8-bit immediate value to the
current AR.

AR (ARP)+ rcARO — AR (ARP) Bit-reversed indexing, add ARO with
reverse-carry (rc) propagation (see
subsection 4.1.2)

AR (ARP)—rcARO — AR (ARP) Bit-reversed indexing, subtract ARO
with reverse-carry (rc) propagation
(see subsection 4.1.2). ’

Although the ARAU is useful for address manipulation in parallel with other op-
erations, it may also serve as an additional general-purpose arithmetic unit,
since the auxiliary register file can directly communicate with data memory.
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple-
ments 32-bit 2s-complement arithmetic. Instructions provide branches depen-
dent on the comparison of the auxiliary register pointed to by ARP with ARO.
The BANZ instruction permits the auxiliary registers to be used also as loop
counters.

The three-bit auxiliary register pointer buffer (ARB), shown in Figure 3—6, pro-
vides storage for the ARP on subroutine calls and interrupts.

3.4.7 Memory Addressing Modes

3-24

The TMS320C2x can address a total of 64K words of program memory and
64K words of data memory. The on-chip data memory is mapped into the 64K-
word data memory space. The on-chip ROMinthe TMS320C25 ismapped into
the program memory space when in the microcomputer mode. The memory
maps, which change with the configuration of block B0, B1, and B3, are de-
scribed in detail in subsections 3.4.3 and 3.4.4.

The 16-bit data address bus (DAB) addresses data memory in one of the fol-
lowing two ways:

1) Bythe direct address bus (DRB) using the direct addressing mode (for ex-
ample, ADD 10h), or ‘

2) Bythe auxiliary register file bus (AFB) using the indirect addressing mode
(for example, ADD *).

Operands are also addressed by the contents of the program counter in the
immediate addressing mode.

Figure 3—10illustrates operand addressing in the direct, indirect, and immedi-
ate addressing modes.

Architecture



Memory Organization

Figure 3-10. Methods of Instruction Operand Addressing

Instruction

DirectAddressing[ Opcode I dma I DP
9
7 16
Operand I
Instruction
IndirectAddressing[ Opcode ] ARP ] .
3 16
AR(ARP)  [~—>| Operand ]
Instruction
lmmediateOperand[ Opcode I Operand I
PC —— Instruction
or
PCs+1 ] Operand

In the direct addressing mode, the 9-bit data memory page pointer (DP) points
to one of 512 pages, each page consisting of 128 words. The data memory ad-
dress (dma), specified by the seven LSBs of the instruction, points to the de-
sired word within the page. The address on the direct address bus (DRB) is
formed by concatenating the 9-bit DP with the 7-bit dma.

Inthe indirect addressing mode, the currently selected 16-bit auxiliary register
AR(ARP) addresses the data memory through the auxiliary register file bus
(AFB). While the selected auxiliary register provides the data memory address
and the data is being manipulated by the CALU, the contents of the auxiliary
register may be manipulated through the ARAU. See Figure 3-8 for an exam-
ple of indirect auxiliary register addressing. The direct and indirect addressing
modes are described in detail in Section 4.1.

When an immediate operand is used, it is contained either within the instruc-
tion word itself or, in the case of 16-bit immediate operands, in the word follow-
ing the instruction opcode.

3.4.8 Memory-to-Memory Moves

The TMS320C2x provides instructions for data and program block moves and
for data move functions that efficiently utilize the configurable on-chip RAM.

The BLKD instruction moves a block within data memory, and the BLKP in-
struction moves a block from program memory to data memory. When used
with the repeat instructions (RPT/RPTK), the BLKD/BLKP instructions effi-
ciently perform block moves from on- or off-chip memory.

Implemented in on-chip RAM, the DMOV (data move) function on the
TMS320C2x is equivalent to that of the TMS320C1x. DMOV allows a word to

3-25



Memory Organization

3-26

be copied from the currently addressed data memory location in on-chip RAM
to the next higher location while the data from the addressed location is being
operated upon in the same cycle (for example, by the CALU). An ARAU opera-
tion may also be performed in the same cycle when using the indirect address-
ing mode. The DMOV function is useful for implementing algorithms that use
the z—1 delay operation, such as convolutions and digital filtering where data
is being passed through a time window. The data move function can be used
anywhere within blocks BO, B1, or B2. It is continuous across the boundary of
blocks B0 and B1 but cannot be used with off-chip data memory. The MACD
{multiply and accumulate with data move) and the LTD (load T register, accu-
mulate previous product, and move data) instructions use the data move func-
tion.

The TBLR/TBLW (table read/write) instructions allow words to be transferred
between program and data spaces. TBLR is used to read words from on-chip
ROM or off-chip program ROM/RAM into the data RAM. TBLW is used to write
words from on-chip data RAM to off-chip program RAM.

Architecture



Central Arithmetic Logic Unit (CALU)

3.5 Central Arithmetic Logic Unit (CALU)

The TMS320C2x central arithmetic logic unit (CALU) contains a 16-bit scaling
shifter, a 16 x 16-bit parallel multiplier, a 32-bit arithmetic logic unit (ALU), a
32-bit accumulator (ACC), and additional shifters at the outputs of both the ac-
cumulator and the multiplier. This section describes the CALU components
and their functions. Figure 3—11 is a block diagram showing the components
of the CALU. In the figure, note that SFL and SFR indicate shifts to the left or
right, respectively.

The following steps occur in the implementation of a typical ALU instruction:
1) Data is fetched from the RAM on the data bus,

2) Datais passed throughthe scaling shifter and the ALU where the arithme-
tic is performed, and

‘3) The result is moved into the accumulator.

One input to the ALU is always provided from the accumulator, and the other
input may be transferred from the product register (PR) of the multiplier or from
the scaling shifter that is loaded from data memory.

Figure 3—12is a block diagram that shows the components of the CALU for the
TMS320C26.

3-27



Central Arithmetic Logic Unit (CALU)

Figure 3-11.  Central Arithmetic Logic Unit (CALU), TMS320C2x

T Both TMS320C25 and TMS320E25.
¥ Shifters on the TMS32020 of 0, 1, 4.

3-28

Program Bus
16 16
Data Bus
16
Y
16 16 MUX
TR(16)
chling 16
| SXor0 — Shifter t¢——0 16 Multiplier
SFL(0-16) :
] PR(32)
32
SX | sFre)] 82 SFL(1,4 0
32
M
32
SX
32 or0
16
A\ 4
ACCH(16) | ACCL(16) |-<j-o
3 16y
[ sFion* | [SFLon? fje—o0
Data Bus 16 16

Architecture



Central Arithmetic Logic Unit (CALU)

Figure 3-12.  Central Arithmetic Logic Unit (CALU), TMS320C26

Program Bus

sx or 0 —[" Shifter(0-16) Je— 0 TR (16)

Multiplier

‘32

PR(32)

¥ 32

| Shifter(0-16) |
[ 32

v
MUX

32

: ALU(32) :

| c | AccH(i) | AccL(te) |
32

A\ 4
Shifter(0-7)

3.5.1 Scaling Shifter

The TMS320C2x provides a scaling shifter that has a 16-bit input connected
to the data bus and a 32-bit output connected to the ALU (see Figure 3—11).
The scaling shifter produces a left shift of 0 to 16 bits on the input data, as pro-
grammed in the instruction. The LSBs of the output are filled with zeros, and
the MSBs may be either filled with zeros or sign-extended, depending upon the
status programmed into the SXM (sign-extension mode) bit of status register
STH.

The TMS320C2x also contains several other shifters, which allow it to perform
numerical scaling, bit extraction, extended-precision arithmetic, and overflow

3-29



Central Arithmetic Logic Unit (CALU)

prevention. These shifters are connected to the output of the multiplier and the
accumulator.

3.5.2 ALU and Accumulator

3-30

The TMS320C2x 32-bit ALU and accumulator implement a wide range of arith-
metic and logical functions, the majority of which execute in a single clock
cycle. Once an operation is performed in the ALU, the result is transferred to
the accumulator where additional operations such as shifting may occur. Data
that is input to the ALU may be scaled by the scaling shifter.

The ALU is ageneral-purpose arithmetic unitthat operates on 16-bit words tak-
en from data RAM or derived from immediate instructions. In addition to the
usual arithmetic instructions, the ALU can perform Boolean operations that
make possible the bit manipulation required of a high-speed controller. One in-
put to the ALU is always provided from the accumulator, and the other input
may be provided from the product register (PR) of the multiplier or the input
scaling shifter that has fetched data from the RAM on the data bus. After the
ALU has performed the arithmetic or logical operations, the result is stored in
the accumulator. ‘

The 32-bit accumulator (see Figure 3—11) is split into two 16-bit segments for
storage in data memory: ACCH (accumulator high) and ACCL (accumulator
low). Shifters at the output of the accumulator provide aleft-shift of 0to 7 places
on the TMS320C25 and of 0, 1, or 4 places on the TMS32020. This shiftis per-
formed while the data is being transferred to the data bus for storage. The con-
tents of the accumulator remain unchanged. When the ACCH data is shifted
left, the LSBs are transferred from the ACCL, and the MSBs are lost. When
ACCL is shifted left, the LSBs are zero-filled, and the MSBs are lost.

The TMS320C2x supports floating-point operations for applications requiring
a large dynamic range. The NORM (normalization) instruction performs left
shifts to normalize fixed-point numbers contained in the accumulator. The
LACT (load accumulator with shift specified by the T register) instruction de-
normalizes a floating-point number by arithmetically left-shifting the mantissa
through the input scaling shifter. The shift count, inthis case, is the value of the
exponent specified by the four low-order bits of the T register (TR). ADDT and
SUBT (add to/subtract from accumulator with shift specified by the T register)
instructions have also been provided to allow additional arithmetic operations.

The accumulator overflow saturation mode may be programmed through the
SOVM and ROVM (set/reset overflow mode) instructions. When the accumu-
lator is in the overflow saturation mode and an overflow occurs, the overflow
flag is set and the accumulator is loaded with either the most positive or the
most negative number, depending upon the direction of overflow. The value of
the accumulator upon saturation is 7FFFFFFFh (positive) or 80000000h (neg-
ative). If the OVM (overflow mode) status register bit is reset and an overflow

Architecture



Central Arithmetic Logic Unit (CALU)

occurs, the overflowed results are loaded into the accumulator without modifi-
cation. (Note that logical operations cannot result in overflow.)

The TMS320C2x can execute a variety of branch instructions that depend on
the status of the ALU and accumulator. These instructions include the BV
(branch on overflow) and BZ (branch on accumulator equal to zero). In addi-
tion, the BACC (branch to address in accumulator) instruction provides the
ability to branch to an address specified by the accumulator. Bit test instruc-
tions (BIT and BITT), which do not affect the accumulator, allow the testing of
a specified bit of a word in data memory.

The accumulator on the TMS320C25 also has an associated carry bit that is
set or reset, depending on various operations within the device. The carry bit
allows more efficient computation of extended-precision products and addi-
tions or subtractions. It is also useful in overflow management. The carry bit
is affected by most arithmetic instructions as well as the shift and rotate instruc-
tions. It is not affected by loading the accumulator, logical operations, or other
such nonarithmetic or control instructions. Itis also not affected by the multiply
(MPY, MPYK, and MPYU) instructions, but is affected by the accumulation pro-
cess in the MAC and MACD instructions. Examples of carry bit operation are
shown in Figure 3—13. '

Figure 3-13. Examples of TMS320C25 Carry Bit Operation

(o] MSB LsSB Cc MSsB LsSB

X F FFF F F F F ACC X 0000O 0 0 0 0 ACC

+ 1 - 1

1 0 00O 0000 0 FFFF F FFF

X 7 F FF F F F F ACC X 8 000 0 0 0 0 ACC

+ 1 (OVM=0) - 1 (OVM=0)

0 8 000 0000 1 7 FFF F F FF

1 0000 00 0 0 ACC 0 F FFF F F F F ACC

+ 0 (ADD - 0 (SusB
Instruction) Instruction)

0 0000 00 0 1 1 FFFF F F FE

The value added to or subtracted from the accumulator, shown in the examples
of Figure 3—13, may come from either the input scaling shifter or the shifter at
the output of the P register. The carry bitis setif the result of an addition or accu-
mulation process generates a carry; it is reset to zero if the result of a subtrac-
tion generates a borrow. Otherwise, it is reset after an addition or set after a
subtraction.

The ADDC (add to accumulator with carry) and SUBB (subtract from accumu-
lator with borrow) instructions provided on the TMS320C25 use the previous
value of carry in their addition/subtraction operation (see these instructions in
Chapter 4 for more detailed information).

3-31



Central Arithmetic Logic Unit (CALU)

The one exception to operation of the carry bit, as shown in Figure 3—-13, is in
the use of the ADDH (add to high accumulator) and SUBH (subtract from high
accumulator) instructions. The ADDH instruction can set the carry bit only if a
carry is generated, and the SUBH instruction can reset the carry bit only if a
borrow is generated; otherwise, neither instruction can affect it.

Two branch instructions, BC and BNC, can execute branching on the status
of the carry bit. The SC, RC, and LST1 instructions can also be used to load
the carry bit. The carry bit is set to one on a hardware reset.

The SFL and SFR (in-place one-bit shift to the left/right) instructions on the
TMS320C2x and the ROL and ROR (rotate to the left/right) instructions on the
TMS320C25 implement shifting or rotating of the contents of the accumulator
through the carry bit. The SXM bit affects the definition of the SFR (shift accu-
mulator right) instruction. When SXM = 1, SFR performs an arithmetic right
shift, maintaining the sign of the accumulator data. When SXM = 0, SFR per-
forms alogical shift, shifting out the LSB and shifting in a zero for the MSB. The
SFL (shift accumulator left) instruction is not affected by the SXM bit and be-
haves the same in both cases, shifting out the MSB and shifting in a zero. Re-
peat (RPT or RPTK) instructions may be used with the shift and rotate instruc-
tions for multiple shift counts.

3.5.3 Multiplier, T and P Registers

3-32

The TMS320C2x utilizes a 16 x 16-bit hardware multiplier, which is capable
of computing a signed or unsigned 32-bit product in a single machine cycle.
All multiply instructions, except the MPYU (multiply unsigned) instruction on
the TMS320C25, perform a signed multiply operation in the multiplier. That is,
the two numbers being multiplied are treated as 2s complement numbers, and
the result is a 32-bit 2s complement number. As shown in Figure 3—11 and
Figure 3—12, the following two registers are associated with the multiplier:

X A16-bittemporaryregister (TR) that holds one of the operands for the mul-
tiplier,

L A 32-bit product register (PR) that holds the product.

The output of the product register can be left-shifted 1 or 4 bits. This is useful
forimplementing fractional arithmetic or justifying fractional products. The out-
put of the PR can also be right-shifted 6 bits to enable the execution of up to
128 consecutive multiply/accumulates without the possibility of overflow.

An LT (load T register) instruction normally loads the TR to provide one oper-
and (from the data bus), and the MPY (multiply) instruction provides the sec-
ond operand (also from the data bus). A multiplication can also be performed
with animmediate operand using the MPYK instruction. In either case, a prod-
uct can be obtained every two cycles.

Two multiply/accumulate instructions (MAC and MACD) fully utilize the com-
putational bandwidth of the multiplier, allowing both operands to be processed

Architecture



Central Arithmetic Logic Unit (CALU)

simultaneously. The data for these operations may reside anywhere ininternal
or external memory or can be transferred to the multiplier each cycle via the
program and data buses. This provides for single-cycle multiply/accumulates
when used with repeat (RPT/RPTK) instructions. Note that the DMQV portion
ofthe MACD instruction will not function with external data memory addresses.
On the TMS32020, the multiplier and multiplicand must reside in separate on-
chip RAM blocks. On the TMS320C25, the MAC and MACD instructions can
be used with both operands in either internal or external memory or one each
in on-chip RAM. The SQRA (square/add) and SQRS (square/subtract) instruc-
tions pass the same value to both inputs of the multiplier for squaring a data
memory value.

The MPYU instruction on the TMS320G25 performs an unsigned multiplica-
tion, which greatly facilitates extended-precision arithmetic operations. The
unsigned contents of the T register are multiplied by the unsigned contents of
the addressed data memory location, with the result placed in the P register.
This allows operands of greater than 16 bits to be broken down into 16-bit
words and processed separately to generate products of greater than 32 bits.

After the multiplication of two 16-bit numbers, the 32-bit product is loaded into
the PR on the TMS320C2x. The product from the PR may be transferred to the
ALU.

Four product shift modes (PM) are available at the PR output and are useful
when performing multiply/accumulate operations and fractional arithmetic, or
when justifying fractional products. The PM field of status register ST1 speci-
fies the PM shift mode, as shown in Table 3—4.

Table 3-4. PM Shift Modes

If PMlIs: Result
00 No shift
01 Left shift of 1 bit
10 . Left shift of 4 bits
11 Right shift of 6 bits

Left shifts specified by the PM value are useful for implementing fractional
arithmetic or justifying fractional products. For example, the product of either
two normalized, 16-bit, 2s-complement numbers ortwo Q15 numbers contains
two sign bits, one of which is redundant. Q15 format, one of the various types
of Q format, is a number representation commonly used when performing op-
erations on noninteger numbers (see subsection 5.6.6 for an explanation and
examples of Q15 representation). The single-bit left shift eliminates this extra
sign bit from the product when it is transferred to the accumulator. This results
in the accumulator contents being formatted in the same manner as the muiti-
plicands. Similarly, the product of either a normalized, 16-bit, 2s-complement
or Q15 number and a 13-bit, 2s-complement constant contains five sign bits,
four of which are redundant. This is the case, for example, when using the
MPYK instruction. Here the four-bit shift properly aligns the result as itis trans-
ferred to the accumulator.

3-33



Central Arithmetic Logic Unit (CALU)

3-34

Use of the right-shift PM value allows the execution of up to 128 consecutive.
multiply/accumulate operations without the threat of an arithmetic overflow,
thereby avoiding the overhead of overflow management. The shifter can be
disabled to cause no shift in the product when working with integer or 32-bit
precision operations. This allows compatibility with TMS320C1x code to be
maintained. Note that the PM right shift is always sign-extended, regardless
of the state of SXM.

The four least significant bits of the T register (TR) also define a variable shift
through the scaling shifter for the LACT/ADDT/SUBT (load/add-to/subtract-
from accumulator with shift specified by the TR) instructions. These instruc-
tions are useful in floating-point arithmetic where a number needs to be denor-
malized, that is, floating-point to fixed-point conversion. The BITT (bit test) in-
struction allows testing of a single bit of a word in data memory based on the
value contained in the four LSBs of the TR.

Architecture



System Control

3.6 System Control

System control on the TMS320C2x is supported by the program counter, hard-
ware stack, PC-related hardware, the external reset signal, interrupts (see
Section 3.8), the status registers, the on-chip timer, and the repeat counter.
The following sections describe the function of each of these components in
system control and pipeline operation.

3.6.1 Program Counter and Stack

The TMS320C2x contains a 16-bit program counter (PC) and a hardware stack
of four (TMS32020) or eight (TMS320C25) locations for PC storage (see
Figure 3—14). The program counter addresses internal and external program
memory in fetching instructions. The stack is used during interrupts and sub-
routines.

Figure 3-14. Program Counter, Stack, and Related Hardware

16
To Program P )
Address Bus v

—>——  Stack?
(8% 16)

16

16,

T TMS320C25, TMS320E25 and TMS320C26.
¥ Four-level stack provided on the TMS32020.

The program counter addresses program memory, either on-chip or off-chip,
via the program address bus (PAB). Through the PAB, an instruction is fetched

3-35



System Control

from program memory and loaded into the instruction register (IR). When the
IR is loaded, the PC is ready to start the next instruction fetch cycle. The PC
may address on-chip RAM block BO when BO is configured as program
memory, or the on-chip ROM provided on the TMS320C25. The PC also ad-
dresses off-chip program memory through the external address bus A15-A0
and the external data bus D15-D0.

Data memory is addressed by the program counter during a BLKD instruction,
which moves data blocks from one section of data memory to another. The con-
tents of the accumulator may be loaded into the PC to implement computed
GOTO operations. This can be accomplished using the BACC (branch to ad-
dress in accumulator) or CALA (call subroutine indirect) instructions.

To start a new fetch cycle, the PC is loaded either with PC+1 or with a branch
address (for instructions such as branches, calls, or interrupts). In the case of
conditional branches where the branch is not taken, the PC is incremented
once more beyond the location of the branch address.

The TMS320C2x also has a feature that allows the execution of the next single
instruction N+1 times. N is defined by loading an 8-bit counter RPTC (repeat
counter). If this repeat feature is used, the instruction is executed, and the
RPTC is decremented until the RPTC goes to zero. This feature is useful with
many instructions, such as NORM (normalize contents of accumulator),
MACD (multiply and accumulate with data move), and SUBC (conditional sub-
tract). When used with some multicycle instructions, such as MACD, therepeat
features can result in these instructions effectively executing in a single cycle.

The stack is 16 bits wide and four (TMS32020) or eight (TMS320C25 and
TMS320C26) levels deep. The PC stack is accessible through the use of the
PUSH and POP instructions. Whenever the contents of the PC are pushed
onto the top of the stack, the previous contents of each level are pushed down,
and the bottom (fourth/eighth) location of the stack is lost. Therefore, data will
be lost if more than four/eight successive pushes occur before a pop. The re-
verse happens on pop operations. Any pop after three/seven sequential pops
yields the value at the bottom stack level. All of the stack levels then contain
the same value. Two additional instructions, PSHD and POPD, push a data
memory value onto the stack or pop a value from the stack to data memory.
These instructions allow a stack to be built in data memory for the nesting of
subroutines/interrupts beyond four/eight levels.

Note that on the TMS32020, the TBLR/TBLW, MAC/MACD, and BLKD/BLKP
instructions use one level of the stack. The TMS320C25 contains a separate
stack, MCS, (microcall stack) for use with these instructions; nolevel of the PC
stack is used.

3.6.2 Pipeline Operation

3-36

Instruction pipelining consists of the sequence of external bus operations that
occurs during instruction execution. The prefetch-decode-execute pipeline is

Architecture



System Control

essentially invisible to the user, except in some cases where the pipeline must
be broken (such as for branch instructions). In the operation of the pipeline, the
prefetch, decode, and execute operations are independent, which allows in-
struction executions to overlap. Thus, during any given cycle, two or three dif-
ferentinstructions can be active, each at a different stage of completion, result-
ing in the respective two-level pipeline on the TMS32020 or the three-level
pipeline on the TMS320C25.

The difference in pipeline levels does not necessarily affect instruction execu-
tion speed, but merely changes the fetch/decode sequence. Most instructions
execute in the same number of cycles, regardless of whether they are ex-
ecuted from internal RAM, ROM, or external program memory. The effects of
pipelining are included in the instruction cycle timings for the TMS32020 and
TMS320C25 listed in Appendix F.

Additional PC-related hardware (see Figure 3-14) is provided on the
TMS320C25 to allow three-level pipelining for higher performance. Included
in the related hardware are the prefetch counter (PFC), the 16-bit microcall
stack (MCS) register, the instruction register (IR), and the queue instruction
register (QIR).

In the three-level pipeline on the TMS320C25, the PFC contains the address
of the next instruction to be prefetched. Once an instruction is prefetched, the
instruction is loaded into the IR, unless the IR still contains an instruction cur-
rently executing, in which case the prefetched instruction is stored in the QIR. -
The PFC is then incremented, and after the current instruction has completed
execution, the instruction in the QIR is loaded into the IR to be executed.

The PC contains the address of the next instruction to be executed and is not
used directly in instruction fetch operations, but merely serves as a reference
pointer to the current position within the program. The PC is incremented as
eachinstructionis executed. When interrupts or subroutine call instructions oc-
cur, the contents of the PC are pushed onto the stack to preserve return linkage
to the previous program context.

The prefetch, decode, and execute operations of the pipeline are independent,
thus allowing instruction executions to overlap. During any given cycle, three
different instructions can be active, each at a different stage of completion.
Figure 3—15 shows the operation of the three-level pipeline for single-word,
single-cycle instructions executing from either internal program ROM or exter-
nal memory with no wait states.

3-37



System Control

Figure 3-15. Three-Level Pipeline Operation (TMS320C25)

I I |
I I I

|
[
CLKOUT1
I [ | I
I | J |
| I [ |
prefetch » N bre N+1 > N+2 >
| | I I
- 1
decode. :4 N-1 rl‘ N % N+ :::
I N-2 | N-1 I N [
execute 1¢ b >]< >

Pipelining is reduced to two levels when execution is from internal program
RAM due to the fact that an instruction in internal RAM can be fetched and de-
coded in the same cycle. Thus, separate prefetch and decode operations are
not required, as shown in Figure 3—16.

Figure 3-16. Two-Level Pipeline Operation

CLKOUT1

| [ | |
I | [ |
| N | N+1 | N+2 |

prefetch < e —bre be
I | | |

N+1 N+2

docode L N e + e e e
| N-1 ! N I N+ |

execute ﬁ * >]< >]<

The following paragraphs describe, in detail, the operation of the TMS320C25
pipeline. This description, in conjunction with Appendix D, gives sufficientinfor-
mation for predicting the operation of the TMS320C25 for hardware interface
optimization, accurate program cycle counting, and simulation modelling. Of-
ten, itis not necessary to understand the intricate detail of the pipeline to design
with the TMS320C25. Therefore, if you are not specifically interested in these
details, you can skip this description.

The TMS320C25 executes most of its instructions in a single cycle because
all the instructions are straight decodes and highly pipelined as opposed to
microcode. The basic pipeline operation is 3.25 cycles deep where the device

3-38 ' Architecture



System Control

sequence on any given cycle is fetching the third instruction, decoding the sec-
ond instruction, and executing the first. Figure 3—17 shows the internal opera-
tion of the TMS320C25 pipeline in reference to quarter phases 1 through 4
(Q1-Q4).

Figure 3—-17. TMS320C25 Standard Pipeline Operation

Cycle 1 Cycle 2 Cycle 3

lO2|Q3lO4|Q1|QZIQ3le|Q1|02|03|Q4!Q1|

CLKOUT1 | | | I | ]
1| ] .
cwoutz | | ! I | | |
| | l | I |
| | | | | i | | | | | |
STRB | | | | ! | |
| | | | |
| | | | [ | | | l 1
Address INST1 INST2 INST3
T T T T T T T T T | T
oan e J— [ J— E:l—*—'r—
| | | | | [
Decode INSTO ! INST1 | INST2 |
| ‘ ] | | |
RAMRD j___J— INSTIO | ! ! l lele
r] [ I Lo |
| | | ] |
Execute -—l INST ACC I——— INSTO ACC | ul l l
i l |H | ' L
Status , : :ll INST | ' ST 11 : E-
| ] | |
AUXREG ammm——d INSTO ARAU | LOAD INST1 ARAU _H LOAD INST2 ARAU _ H LOAD p—mm
|
| | |
|
| | | | | | | | | |
RAMWR INST
T T T T T 1 T ki T T

The TMS320C25 machine cycle, externally referenced by the falling edges of
the CLKOUT1 signal, consists of four internal cycles (or CLKIN cycles). This
allows internal operations of the pipeline to execute as fast as 1/4 the machine
cycle. The sequence of a general instruction execution in the pipeline is shown
in Table 3-5.

3-39



System Control

Table 3-5. Instruction Pipeline Sequence

3-40

Cycle Q Phase Operation
1

New PC is output on address bus
External read of instruction
External read of instruction
External read of instruction

Instruction decode
Instruction decode/ARAU execution
On-chip RAM access/ARAU execution

On-chip RAM access/load new AR value/update ARP
ALU execution

ALU execution

Load accumulator

2P ON—=|LPON— | DON—

4 Load status register

When using an add instruction (for example, ADD *+,12,AR4), the device
fetches the instruction in cycle 1. During Q2 and Q3 of cycle 2, the instruction
is decoded. This includes the ALU command decode as well as generation of
the data operand fetch address. In this case, the address comes from an auxil-
iary register. During Q4 of cycle 2 and Q1 of cycle 3, the operand is fetched
fromthe RAM location. The increment of the auxiliary register is performed dur-
ing Q3 and Q4 of cycle 2, and the value is loaded into the auxiliary register in
Q1 of cycle 3. The ARP is also updated in Q1 of cycle 3. During Q2 and Q3
of cycle 3, the data is passed through the barrel shifter to execute the 12-bit
left-shift, and the data is added by the ALU to the contents in the accumulator.
In Q4 of the third cycle, the ALU result is loaded into the accumulator. The sta-
tus of the ALU operation is loaded into the status register in Q1 of the fourth
cycle. The bits being loaded into the status register at this time consist of the
current ALU status and the ARP associated with the next instruction.

In the case of a store instruction (for example, SACL *0—,3,AR2), the device
operates the first two cycles in the same manner as the ADD instruction. In Q1
and Q2 of the third cycle, the data in the accumulator is passed through a barrel
shifter, left-shifted 3 bits, and zero-filled. The lower 16 bits of the shifted value
are written to the address specified by the current auxiliary register. During Q3
and Q4 of the third cycle, the index register (ARO) is added to the contents of
the current auxiliary register and loaded back into the current auxiliary register
in Q1 of the fourth phase. In Q1 of the fourth cycle, the auxiliary register pointer
ischangedto AR2. There is no execution phase of this instruction. Figure 3—-18
shows the ADD and SACL instructions operating back-to-back in a program
sequence. It is assumed that both instructions reside in external, zero wait-
state memory and that the data resides in on-chip RAM.

Architecture



System Control

Figure 3-18. Pipeline Operation of ADD Followed by SACL

Clock
CLKOUT1

CLKQUT2

Address
Data
Decode
RAM
Execute

AUXREG

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
Iozloslo«z Q1|02|03|O4 o1|02|03|o4 o1|02|03|04 o1|02|03|
| LT | LT 1T

L I I ‘ | |

Lo | | | L

| | |
p L L L 1 L L1
] ! | ] L | | | | | 1 | ! | | |
ADD *+12, AR4 SACL *0,3, AR2
]
T B "‘ N P P i"

1 I . t t 1 1 | t 1
I 1 ] | ! ! ! 1 ! ! | l Il
1 t t T ADD t SACL t t t 1 t T : +
[ | [ I | ] J P { [

I — | —t ADD/Read et ACL Write N i ot}
ol T 1 | |

t t + + } : } ADD  HACC Dummy
S A E N B T I
et {1 ARx+1_HLoad] AR4-ARO [{Loa =t T t

When the device is reading instructions out of on-chip ROM, the basic internal
operation ofthe pipeline isthe same. The only difference is thatthe controllines
(thatis, STRB, PS, and R/W) are inactive. If the device is fetching the instruc-
tions from on-chip RAM, the pipeline is shortened to 2.5 cycles, since the de-
vice canfetch the instruction in half a cycle as opposed to the full cycle required
in an external or on-chip ROM fetch. The instruction is fetched during Q4 and
Q1, then decoded in Q2 and Q3. The rest of the pipeline tracks as described
above.

Some operations add additional machine cycles to the instruction execution
without damaging the integrity of the program or hardware. External wait
states, multiplexed data bus conflicts, two-word instructions, and program
counter discontinuities are included inthese operations, as described in the fol-
lowing paragraphs.

Wait States. The TMS320C25 is designed to be interfaced to slower external
devices through the use of hardware-generated wait states. This applies to the
program, data, and I/O memory spaces of the Harvard architecture. Wait
states are a direct delay on the instruction pipeline. Each wait state inserted
during the instruction fetch contributes an additional machine cycle in the pipe-
line execution of the instruction. In addition, any wait state incurred when ac-
cessing external data or I/O space also contributes an additional machine
cycle to the pipeline execution of the instruction. This factor applies to all in-
structions. Figure 3—19 describes how the pipeline reacts to wait states in ex-
ternal program memory. Note that the wait state added in cycle 2 results in a
no-execution operation in cycle 4.

3-41



System Control

Figure 3-19. Pipeline Operation with Wait States

Clock
CLKOUT1
CLKOUT2

STRB
Address
Data
Decode
RAM
Execute

AUXREG

3-42

Cycle 1 | Cycle 2 l Cycle 3 l Cycle 4 l Cycle 5

| | ! | ! | ! | | | | | | | | | | | I
Il laaiQ il il ielialaiQlaiqlarlqiadl

: [ : : : }
Bl

|

|

- 11 ]
—

]

ADD *+,12, AR4 Wait State SACL *0,3, AR2 H Wait State OR *+
| 1
e e
i S AN N e i A S AR R e

} t T ADD + + + $ SACL } t t
Lo T | o 1 1 |
. — et ADD Read T e T . SACLMTite freem=t
I I R A T | I o
BN e S ADb__{ACC}——p——t——t——t—— Dummy ‘{:
e ' s
t t t t t ARx +1_ HLoad } t t t AR4-ARO_{Loadj——tm———f—

Multiplexed External Data Bus. The external data bus is multiplexed to sup-
port all three memory spaces of the TMS320C25. Therefore, external fetches
to multiple spaces in the same instruction add additional machine cycles to the
pipeline execution of the instruction. This is due to the fact that the external
fetch takes a full cycle, whereas the internal equivalent takes two quarter
phases and can be included in the execution stage of the three-deep pipeline.
Accessing the data memory space is controlled by setting of the data page
pointer or the value contained in the auxiliary register used in any instruction.
Also affecting the pipeline is the access of the I/O bus or the tables in program
memory (thatis, IN, OUT, TBLR, and TBLW). Figure 3—20 shows how the pipe-
line processes an instruction with external program and data access.

Architecture



System Control

Figure 3-20. Pipeline with External Data Bus Conflict

Clock
CLKOUT1
CLKOUT2

STRB

PS
[aX]

Address

Data

Decode |

EXTRAM

Execute

AUXREG

Cycle 1 I Cycle 2 | Cycle 3 | Cycle 4 l Cycle 5
t | | | | | | | | | | | | | | [ | | |
fQzlQ@ ol lQlo3iQlalQla3lQlarleiQiaiaQ lQl Q3!

Lo

NiE

I R iy

1
I
|

| 1 I

1 I —
|
ACL *0-,3, AR2 =1 LAC *+ J1___Data Space ta crﬂce

e s s s

T __rl T T I T T Write T i Read T i 1

- e

1] 1 ¥ 1 1 T

| B T ! [ R

I { SACL Write H LAC Read Je e
| | I  —— - L

| } ]

| |

1 )

T T

e s e o

1
T
I
L
1
I
.
I

—t——t—t——t— Durm I tac
| ]
HT.Ed——-I AR2 +1_|[Load] |

Two-Word Instructions. All two-word instructions take an additional cycle to
fetch the 16-bit immediate operand following the instruction mnemonic. The
first set of instructions for which this applies is the long immediate instructions.
The instruction mnemonic is followed by a 16-bitimmediate operand to be ex-
ecuted in the ALU. The second set applies to those instructions that use the
PFC register as a second data addressing unit on some optimized instruc-
tions — forexample, the multiply/accumulate and block move instructions
(MAC, MACD, BLKP, and BLKD). In the second set, the extra cycle appears
only once in arepeat loop. The third set involves conditional branches not tak-
en.

1 AR4-ARO

Program Counter Discontinuities. Because the TMS320C25 is pipelined, a
change (other than an increment) in the program counter requires that the
pipeline be flushed. This applies to all branches, subroutine calls, software
traps, interrupttraps, and returns. The pipeline, being three deep, has the next
instruction already loaded when the branch occurs. At this point, this instruc-
tion will not affect any data or registers, so itis cleared from the pipeline. There-
fore, two dead execution cycles are inserted while waiting for the pipeline to
reload. The device takes only one additional cycle if the destination of the
branch is in on-chip RAM block 0. The pipeline is only two-deep in this case
and takes only one cycle to reload. Figure 3—21 shows a branch from normal
execution to an address in on-chip RAM, and Figure 3—22 shows an example
of a return executed from on-chip RAM to a location in off-chip memory.

3-43



System Control

Figure 3-21. Pipeline Operation of Branch to On-Chip RAM

Cycle 1 I

Cycle 2

Cycle 3

Cycle 4 I

Cycle 5

T T T T T T T T R T e T e
lo2lo3lQi{a@j0o2i03]as|Q la2lQ3las|Qlo2la3io4|qiia2lasl

Clock I I ! I ' l
cwoutt 1T 1| : [T {] |__ U lI =| . | I; E!I
|

I |
) L I o b L]
CLKOUT2 1 ! I 1 Il | | - | I
I l | I | ' | ! L L | | 1
S il I.L_}-—P 4 R
Address BV H QFFOCh ADD *+, 12,AR4 : ; ; : : : :
T | I I
S o S T ]
T L T | | |
Decode == + ot BV r et ot UB } ADDH
T T s o 0 Oy oy S e |
INTRAM == i T i ; i I | T l ; ADDH *+ I l
I | | | ] l ! L L | L 1
DATARAM ' 4 SUB Read
[ l | I I [ [ T I | T i l .-—-rﬁ-l i 'I
Status | | I l 1 l l } } BV | } } |  Emaner
Lo | N
Execute  mmmmreeep L BV S . SUB
[ S R R ] [ I .
AUXREG == t t t t } t t i + t t t ARx -1 Htoa {
Architecture

3-44



System Control

Figure 3-22. Pipeline Operation of RET from On-Chip RAM

Clock
CLKOUT1
CLKOUT2

STRB

Address

Decode
INTRAM
DATARAM
Status
Execute

AUXREG

Cycla 1 | Cycle 2 I Cycle 3 I Cycle 4 I Cycle 5

| I | | | | I | | | ! | | | |
le2la3lQs |t l@iQ@la|jarleialoas|arliQla3lQ|Qrlalaq3l

] b |
[ [
= A P I | IL'
| | ] | | | . |
H ' ! d i v T T
[ T T R T B L1 I | L
I R R T P A [ 11
I I | [ | | I | { ADD *+, 12, AR4 SUB *0-, 3, AR2 OR *+
RN T S R ST S S ! —h ; {F - g _.L'_
e e T | |
"1__RET.,__| -+ttt ADD } SUB
S O O A O N e e B e e
= I O O N R
SN N S RN AN M N N N O A L
T : _“ll—-F
—l | ] | : ! ! | | | | ] | | — : —
= 1 1 | | L L
VRS S — RET D
N I A B T A R R B
e e ——t————_ARx+1_l{ Load

Interrupts are hardware-generated discontinuities to the sequential accessing
of the program counter. The interrupt is executed based upon instruction ex-
ecution complete, ratherthan memory operation complete. The instruction that
is currently executing at the time of an interrupt executes completely. The inter-
rupt traps following the completion of that instruction before the start of the ex-
ecution of the next instruction. In this case, the repeated instruction is consid-
ered one execution; therefore, the repeatloop finishes before the interrupt trap
istaken. This gives priority to the algorithm over the interrupt service. The inter-
rupt operation in reference to the pipeline execution is illustrated in the data
sheet timing diagrams (see Appendix A). Note that when interrupt vectors re-
side in external memory running with one wait state, there are two interrupt ac-
knowledge (TACK) pulses. If this is a problem, the IACK line should be gated
with READY.

Hardware Aspects of the Pipeline. Viewing these effects on the pipeline at
the hardware level requires additional explanation due to the lack of visibility
of on-chip operations or optimization of the pipeline execution. The following
paragraphs describe the effects of HOLD/HOLDA, RS, interrupts, accumulator
store, on-chip program access, external data access, and repeats as they are
visible from the pins of the device. In the cases of RS, interrupts, and HOLD/
HOLDA, the effects on the pipeline are shown in the data sheet timing dia-
grams (see Appendix A). '




System Control

3-46

Reset. The reset interrupt is a totally nonmaskable interrupt. When executed,
it stops operation of the pipeline and flushes the unexecuted parts. The reset
pulse must be at least three CLKOUT cycles wide. After the second CLKOUT
cycle has completed (before the third rising edge of CLKOUT1), the device has
brought all outputs into a high-impedance state. After the rising edge of RS,
the device begins to fetch the reset vector. Since the pipeline is empty, it does
not execute the reset vector branch until two cycles later. If the HOLD line is
brought low during the active reset, the device does not start the fetch of the
reset vector until after the active HOLD is removed and the device deactivates
the HOLDA line. When HOLD is activated with RS to allow bootloading of the
code, the HOLDA line will go active low in three cycles, regardless of whether
or not the RS line has gone high. This is useful in that the HOLDA line can be
used to enable the release of the RS line and guarantee the required three-
cycle reset.

Interrupts. The effects of aninterrupt become apparent on the hardware when
ainterrupt acknowledge (IACK) signal is valid on the rising edge of CLKOUT2.
This signifies the fetch of the first word of the interrupt vector. If wait states are
generated in the memory segment where the interrupt vector resides, an addi-
tional IACK pulse occurs for each wait state added. If this causes a problem
with the external interface, IACK can be gated with READY to accept only the
last interrupt acknowledge pulse. Note that the BIOZ instruction tests the level
of the BIO pin during the instruction fetch phase of the pipeline.

Hold/Hold Acknowledge. The hold operation, like that of interrupt, takes sec-
ond priority to algorithm execution; therefore, the hold will not be acknowl-
edged until after the currently running instruction is completed (a minimum of
three cycles). This includes repeated instructions. The next instruction, after
the final instruction executed before HOLDA, is latched into the pipeline and
executed two cycles after the HOLDA line goes inactive high. The second in-
struction after the last instruction executed is fetched two cycles again after the
HOLDA line goes inactive high. If the HM bit of status register ST1 is set high,
the TMS320C25 stops execution and sits idle until the hold is removed. This
lowers power consumption by removing the drive of the memory address and
control lines and also stopping major parts of the internal CPU circuits from
switching and drawing power. This can be used as a hardware powerdown
mode. Ifthe HM bitis low, the TMS320C25 continues executing any instruction
that can be executed with on-chip resources only. This means both program
and datareside in on-chip memory. The device will continue to operate normal-
ly unless an off-chip access is required by an instruction, at which time the pro-
cessor adds wait states until the hold state is removed. When running from on-
chip resources with HM = 0, the processor acknowledges HOLD with HOLDA
during a multicycle instruction.

On-Chip Program Access. When executing from on-chip resources, the
pipelineisvisible only inthe MSC line, which signals microstate complete when
active low on the rising edge of CLKOUT2. Note that executing from on-chip

Architecture



System Control

3.6.3 Reset

program memory does not allow instruction accessing of external data
memory to run in a single cycle. The normal operation of the instruction takes
only two quarter phases of the execution cycle to fetch the on-chip data
memory, whereas off-chip access requires all four quarter phases. The pipe-
line is, however, optimized to handle a repeated instruction that accesses ex-
ternal data memory with only one extra cycle for the first external fetch.

External Program/Data Access. Visibility of the pipeline when using external
program and data memory requires a monitoring of the MSC, STRB, PS, and
DS lines. The MSC line indicates at the rising edge of CLKOUT2 whether or
notthe cycle is the beginning of a new instruction fetch; that is, MSC active low
indicates the completion of an instruction and the acquisition of another in-
struction. The PS (program select) line indicates that the data bus is currently
being used to fetch an instruction. A step in the pipeline is not indicated, since
the PS line remains while the pipeline is fetching instructions externally. To
track the fetches, the STRB line, which frames external accesses, must be
monitored.

The PS line being active low does not necessarily mean thatthe device is fetch-
ing an instruction. In the cases of table read/write (TBLR/TBLW), multiply/ac-
cumulate (MAC/MACD), and block transfer (BLKP) instructions, the device
uses the PS line active low to access tables.

To monitor external data memory fetches, watch the data select (DS) line in
conjunction with the STRB line. An active low on the DS line indicates the data
bus is currently being used to access data memory space. This line remains
low for two memory fetches in the case of an accumulator store followed by
an ALU instruction, both operating with off-chip memory. However, two STRB
pulses will identify the individual access. Likewise, the line remains low for
many cycles in the case of a repeated instruction. I/O space access operates
similarily to data space operation with the OUT and IN instructions replacing
the save and ALU instruction.

A clear understanding of this information in conjunction with the data in Appen-
dix D should be sufficient to predict the operation of the TMS320C25 pipeline.

Reset (RS) is a non-maskable external interrupt that can be used at any time
to put the TMS320C2x into a known state. Reset is typically applied after pow-
erup when the machine is in a random state.

Driving the RS signal low causes the TMS320C2x to terminate execution and
forces the program counter to zero. RS affects various registers and status
bits. At powerup, the state of the processor is undefined. For correct system
operation after powerup, a reset signal must be asserted low for at least three
clock cyclesto guarantee areset of the device (see Section 5.1 for other impor-
tant reset considerations). Processor execution begins at location 0, which

3-47



System Control

3-48

normally contains a B (branch) statement to direct program execution to the
systeminitialization routine (also see Section 5.1 for aninitialization routine ex-
ample). Section 6.1 provides system control circuitry design examples.

When an RS signal is received, the following actions take place:

6)

8)
9)

Alogic 0 is loaded into the CNF (configuration control) bit in status register
ST1, causing all RAM to be configured as data memory.

The program counter (PC) is setto 0, and the address bus A15-A0 is driv-
en with all zeros while RS is low.

The data bus D15-D0 is placed in the high-impedance state.

All memory and 1/O space control signals (PS, DS, TS, RNV STRB, and
BR) are deasserted by setting them to high levels while RS is low.

All interrupts are disabled by settlng the INTM (interrupt mode) bit to 1.
(Note that RS is nonmaskable.) The interrupt flag register (IFR) is reset to
all zeros. '

Status bits are set:

For all TMS320C2x devices, 0 — OV, 1 — XF, 0 — FO, and 0 — TXM.
Except for the TMS32020, 1 — SXM, 0 — PM, 1 — HM,1 — C, and
1 — FSM. (The remaining status bits onthe TMS320C2x are unchanged.)

The global memory allocation register (GREG) is cleared to make all
memory local.

The RPTC (repeat counter) is cleared.

The DX (data transmit) pin is placed in the high-impedance state. Any
transmit/receive operations on the serial port are terminated, and the TXM
(transmit mode) bit is reset to a low level. This configures the FSX framing
pulse to be an input. A transmit/receive operation may be started by fram-
ing pulses only after the removal of RS.

10) The TIM register is set to the maximum value (OFFFFh) on reset for both

the TMS32020 and TMS320C25. Also, the PRD register on the
TMS320C25 is initialized by reset to OFFFFh. The TMS32020 requires a
software initialization of the PRD register (see Example 5-1). The TIM reg-
ister begins decrementing only after RS is deasserted.

11) The lACK (interrupt acknowledge) signal is generated in the same manner

as a maskable interrupt.

12) The state of the RAM is undefined following RS.
13) The ARB, ARP, DP, IMR, OVM, and TC bits are not initialized by reset.

Therefore, itis critical that you initialize these bits in software following re-
set.

Architecture



System Control

Execution starts from location 0 of program memory when the RS signal is tak-
en high. Note that if RS is asserted while in the hold mode, normal reset opera-
tion occurs internally, but all buses and control lines remain in the high-impe-
dance state. Upon release of HOLD and RS, execution starts from location
zero. The TMS320C2x can be held in the reset state indefinitely.

3.6.4 Status Registers

Two statusregisters, STOand ST1, contain the status of various conditions and
modes. The status registers can be stored into data memory and loaded from
data memory, thus allowing the status of the machine to be saved and restored
forinterrupts and subroutines. All status bits are written to and read from using -
LST/LST1 and SST/SST1 instructions, respectively (with the exception of
INTM, which cannot be loaded via an LST instruction).

Figure 3—23 shows the organization of both status registers, indicating all sta-
tus bits contained in each. Note thatthe DP, ARP, and ARB registers are shown
as separate registers in the processor block diagram of Figure 3—2. Because
these registers do not have separate instructions for storing them into RAM,
they are included in the status registers. As shown in Figure 3—23, several bits
in the status registers are reserved and read as logic 1s by the LST and LST1
instructions.

Figure 3-23. TMS320C2x Status Register Organization
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
STO| ARP |ov|ovm| 1 IINTMI DP |

15 14 13 12 1 10 9 8 7 6 5 4 3 2 f
stif ame  [one[Tc|onF| or|1 1] Hmi Fsmi x| FoltxM] Pm |
1On the TMS32020, bits 5,6, and 9 of ST1 are logic 1s.

The status register ST1 of the TMS320C26 uses one of the unused bits and
the CNF bit of the TMS320C25 to define the four configuration modes as de-
scribed above. The bits are named CNF0 and CNF1 and can be set by the in-
struction CONF const, where const is a number between 0 and 3. This two-bit
constant is loaded into the two status register bits CNFO and CNF1.

Some additional instructions or functions may affect the status bits, as indi-
cated in Table 3—6.

The bits can also be modified by the LST1 instruction, and both are set to 0 by
RESET. If TMS320C26 designs are started by using the TMS320C25 as a
base, consider defining the mask for loading the status register ST1 with the
instruction LST1 in such a way that the TMS320C26 is also configured as de-
sired.

Figure 3—24 shows the two status registers of the TMS320C26. All bits, be-
sidesthe redefined CNFO (CNF in the TMS320C25) and the new CNF1 bit, are
unchanged.

3-49



System Control

Figure 3-24. TMS320C26 Status Register Organization

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ST: ARP ov owm| 1 | INTM DP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ST1: ARB CNFO| TC|SXM| C | 1 | CNF1|HM|FSM] XF| FO|RXM| PM

Table 3-6. Status Register Field Definitions

Field Function

ARB Auxiliary register pointer buffer. Whenever the ARP is loaded, the old ARP
value is copied to the ARB except during an LST instruction. When the ARB
is loaded via an LST1 instruction, the same value is also copied to the ARP.

ARP Auxiliary register pointer. This three-bit field selects the AR to be used in indi-
' rectaddressing. When ARP s loaded, the old ARP value is copied to the ARB
register. ARP may be modified by memory-reference instructions whenusing
indirect addressing, and by the LARP, MAR, and LST instructions. ARP is
also loaded with the same value as ARB when an LST1 instruction is ex-
ecuted.

Ct Carry bit. This bit is set to 1 if the result of an addition generates a carry, or
reset to 0 if the result of a subtraction generates a borrow. Otherwise, it is re-
set after an addition or set after a subtraction, except if the instruction is
ADDH or SUBH. ADDH can only set and SUBH only reset the carry bit, but
cannot affect it otherwise. These instructions will also affect this bit: SC, RC,
LST1, shift, and rotate. Two branchinstructions, BC and BNC, have been pro-
vided to branch on the status of C. C is set to 1 on a reset.

CNF On-chip ram configuration control bit. If setto 0, block B0 is configured as data
memory; otherwise, block B0 is configured as program memory. The CNF
may be modified by the CNFD, CNFP, and LST1 instructions. RS resets the
CNF to 0.

DP Data memory page pointer. The 9-bit DP register is concatenated with the 7
LSBs of an instruction word to form a direct memory address of 16 bits. DP
may be modified by the LST, LDP, and LDPK instructions.

CNFX X =0 or 1: CNFO and CNF1 are the on-chip RAM configuration control bits
forthe TMS320C26. Depending on the status of these 2 bits, one of the 4 con-
figuration modes can be selected. RS resets both CNF0 and CNF1 to 0.

FO Format bit. When set to 0, the serial port registers are configured as 16-bit
registers. When set to 1, the port registers are configured to receive and
transmit eight-bit bytes. FO may be modified by the FORT and LST1 instruc-
tions. FO is reset to 0.

FSMt Frame synchronization mode bit. This bitindicates whetherthe serial port op-
erates with or without frame synec pulses. When FSM = 1, the serial port oper-
ation is initiated following a frame sync pulse on the FSX/FSR inputs. When
FSM =0, the FSX/FSRinputs are ignored and the serial port operates contin-
uously with no frame sync pulses required. The bit is set to 1 by a reset.

HMt Hold mode bit. When HM = 1, the processor halts internal execution when ac-
knowledging an active HOLD. When HM = 0, the processor may continue ex-
ecution out of internal program memory but puts its external interface in a
high-impedance state. This bit is set to 1 by a reset.

3-50 " Architecture



System Control

Table 3-6.  Status Register Field Definitions (Continued)

Fleld

Function

INTM

Interruptmode bit. When setto 0, allunmasked interrupts are enabled. When
set to 1, all maskable interrupts are disabled. INTM is set and reset by the
DINT and EINT instructions. RS and IACK also set INTM. INTM has no effect
on the unmaskable RS interrupt. Note that INTM is unaffected by the LST in-
struction.

ov

Overflow flag bit. As a latched overflow signal, OV is set to 1 when overflow
occursinthe ALU. Once an overflow occurs, the OV remains set until areset,
BV, BNV, or LST instruction clears the OV.

OVM

Overflow mode bit. When setto 0, overflowed results overflow normally in the
accumulator. When setto 1, the accumulator is set to either its most positive
or its most negative value upon encountering an overflow. The SOVM and
ROVM instructions set and reset this bit, respectively. LST may also be used
to modify the OVM.

PM

Product shift mode. If these two bits are 00, the multiplier's 32-bit product is
loaded into the ALU with no shift. If PM = 01, the PR output is left-shifted one
place and loaded into the ALU, with the LSBs zero-filled. If PM = 10, the PR
outputis left-shifted by four bits and loaded into the ALU, with the LSBs zero-
filled. PM = 11 produces a right shift of six bits, sign-extended. Note that the
PR contents remain unchanged. The shift takes place when transferring the
contents of the PR to the ALU. PM is loaded by the SPM and LST1 instruc-
tions. The PM bits are cleared by RS.

SXM

Sign-extension mode bit. SXM = 1 produces sign extension on data as it is
passed into the accumulator through the scaling shifter. SXM = 0 suppresses
sign extension. SXM does not affect the definition of certain instructions; for
example, the ADDS instruction suppresses sign extension regardless of
SXM. This bitis set and reset by the SSXM and RSXM instructions, and may
also be loaded by LST1. SXMis set to 1 by RS.

TC

Test/controlflag bit. The TC bit s affected by the BIT, BITT, CMPR, LST1, and
NORM instructions. The TC bit is set to a 1 if a bit tested by BIT or BITT is
a1, ifacompare condition tested by CMPR exists between ARO and another
AR pointed to by ARP, or if the exclusive-OR function of the two MSBs of the
accumulator is true when tested by a NORM instruction. Two branch instruc-
tions, BBZ and BBNZ, provide branching on the status of the TC.

TXM

Transmit mode bit. TXM = 1 configures the serial port’s FSX pin to be an out-
put. Inthis mode, a pulse is produced on FSXwhen DXR is loaded. Transmis-
sion then starts on the DX pin. TXM =0 configures the FSX pinto be aninput.
TXM is set and reset by the STXM and RTXM instructions and may also be
loaded by LST1. RS resets TXM to 0.

XF

XF pin status bit. This status bit indicates the state of the XF pin, a general-
purpose output pin. XF is set and reset by the SXF and RXF instructions or
may be loaded by LST1. XF is set to 1 by RS.

1 TMSS20C25 TMS320E25 and TMS320C26.

3.6.5 Timer Operation

The TMS320C2x provides a memory-mapped 16-bit timer (TIM) register and
a 16-bit period (PRD) register, as shown in Figure 3—25. The on-chip timer is
adown counter that is continuously clocked by CLKOUT1 on the TMS320C25
and TMS320C26. The timer on the TMS32020 is clocked by a signal whose
frequency is CLKOUT1/4 or whose period is 4 x CLKOUT1 cycles.

3-51




System Control

Figure 3-25. Timer Block Diagram

3-52

Crystal
or
External
Clock

PRD (16)

o Clock (Load)
Divide by hAY R P ~ Zero
Eour »Divide by NT » TIM(16) |e I Detect
A
. " 16
CLKOUT1 Tint

1 The divide ration, where N = 4 on the TMS32020 and N = 1 on the TMS320C25 and TMS320C26.

The TIM register is set to the maximum value (OFFFFh) on reset for both the
TMS32020 and TMS320C25. The PRD register on the TMS320C25 is also ini-
tialized by reset to OFFFFh. The TMS32020 requires a software initialization
ofthe PRD register (see Example 5—1). The TIM register begins decrementing
only after RS is deasserted. Following this, the TIM and PRD registers may be
reloaded under program control. See subsection 3.6.3 for reset information.

The TIM register, data memory location 2, holds the current count of the timer.
At every N CLKOUT1 cycle where N = 4 on the TMS32020 and N = 1 on the
TMS320C25, the TIM register is decremented by one. The PRD register, data
memory location 3, holds the starting count for the timer. A timer interrupt
(TINT) is generated every time the timer decrements to zero. The timer is re-
loaded with the value contained in the period (PRD) register within the next
cycle after it reaches zero so that interrupts can be programmed to occur at
regular intervals of (PRD + 1) cycles of CLKOUT1 on the TMS320C25 or (4
x PRD) cycles of CLKOUT1 onthe TMS32020. This feature is useful for control
operations and for synchronously sampling or writing to peripherals. By pro-
gramming the PRD register from 1 to 65,535 (OFFFFh), a TINT can be gener-
ated every 2 to 65,536 cycles on the TMS320C25. Note that, on the
TMS32020, a TINT can be generated every 4 10 262,140 cycles. A PRD regis-
ter value of zero is not allowed.

The timer and period registers can be read from or written to on any cycle. The
count can be monitored by reading the TIM register. A new counter period can
be written to the period register without disturbing the current timer count. The
timer will then start the new period after the current count is complete. If both
the PRD and TIM registers are loaded with a new period, the timer begins
decrementing the new period without generating an interrupt. Thus, the pro-
grammer has complete control of the current and next periods of the timer.

Architecture



System Control

If the timer is not used, either TINT is to be masked or all maskable interrupts
are to be disabled by a DINT instruction. The PRD register can then be used
as a general-purpose data memory location. If TINT is used, the PRD and TIM
registers are to be programmed before unmasking the TINT.

3.6.6 Repeat Counter

Therepeat counter (RPTC) is an 8-bit counter, which, when loaded with a num-
berN, causes the next single instruction to be executed N + 1 times. The RPTC
can be loaded with a number from 0 to 255 using either the RPT (repeat) or
RPTK (repeat immediate) instructions. This results in a maximum of 256 ex-
ecutions of a given instruction. RPTC is cleared by reset.

The repeat feature can be used with instructions such as multiply/accumulates

"~ (MAC/MACD), block moves (BLKD/BLKP), I/O transfers (IN/OUT), and table
read/writes (TBLR/TBLW). These instructions, which are normally multicycle,
are pipelined when using the repeat feature, and effectively become single-
cycle instructions. For example, the table read instruction may take three or
more cycles to execute, but when repeated, a table location can be read every
cycle. Note that not all instructions can be repeated (see Section 4.3 and Ap-
pendix D for more information).

3.6.7 Powerdown Modes (TMS320C25)

When operated in either of two powerdown modes, the TMS320C25 enters a
dormant state and requires approximately one-halfthe power normally needed
to supply the device (see the data sheet, Appendix A). Depending upon the
application, one powerdown mode is invoked by executing an IDLE instruction
while the other mode is invoked by driving the HOLD input low while the HM
status bit is set to one.

While in a powerdown condition, all of the internal contents of the TMS320C25
are retained. This allows the operation to continue unaltered after the power-
down condition is terminated. If the powerdown mode was entered by driving
HOLD low with HM = 1, the data and address buses and the interface control
signals (PS, DS, 15, STRB, and R/W) are all maintained in the high-impedance
state. If the mode was entered by the IDLE instruction, only the data bus goes
to the high-impedance state; address bus and interface control signals are
maintained in a steady-state condition and can still be driven. In accordance
with the execution process, the powerdown mode may be terminated either by
removing the HOLD input or by applying an interrupt signal during the IDLE op-
eration. For application and other information, refer to the descriptions of the

IDLE instruction in Chapter 4 and the hold function in subsection 3.10.3. '

3-53



External Memory and I/O Interface

3.7 External Memory and I/O Interface

3.7.1

3-54

The TMS320C2x supports a wide range of system interfacing requirements.
Data, program, and I/O address spaces provide interfacing to memory and 1/O,
thus maximizing system throughput. The local memory interface consists of:

(2 A 16-bit parallel data bus (D15-D0),

(X A 16-bit address bus (A15-A0),

[d Data, program, and I/O space select (DS, PS, and 1S) signals, and
(X Various system control signals.

The R/W (read/write) signal controls the direction of the transfer, and STRB
(strobe) provides a timing signal to control the transfer.

The TMS320C2x I/O space consists of 16 input and 16 output ports. These
ports provide the full 16-bit parallel I/O interface via the data bus on the device.
A single input or output operation, using the IN or OUT instructions, typically
takes two cycles; however, when used with the repeat counter, the operation
becomes single-cycle.

I/O design is simplified by having I/O treated the same way as memory. I/O de-
vices are mapped into the 1/O address space using the processor’s external
address and data buses in the same manner as memory-mapped devices.
When addressing internal memory, the data bus must be in the high-impe-
dance state and the control signals go to an inactive state (logic high). Refer
to Chapter 5 for the effect instructions have on I/O.

Interfacing to memory and 1/O devices of varying speeds is accomplished by
using the READY line. When communicating with slower devices, the
TMS320C2x processor waits until the other device completes its function, sig-
nals the processor via the READY line, and continues execution (see Chapter
6).

Memory Combinations

The exact sequence of operations performed as instructions execute depends
on the areas in memory where the instructions and operands are located.
There are eight possible combinations of program and data memory because
information can be located in internal RAM, external memory, or internal ROM/
EPROM (available on TMS320C25 /TMS320E25). The eight possible combi-
nations are:

1) Program Internal RAM/Data Internal (PI/DI)
2) Program Internal RAM/Data External (Pl/DE)
3) Program External/Data Internal (PE/DI)

Architecture



External Memory and I/O Interface

4) Program External/Data External (PE/DE)

5) Program Internal ROM/Data Internal (PR/DI) on the TMS320C25

6) Program Internal EPROM/Data Internal (PR/DI) on the TMS320E25
7) Program Internal ROM/Data External (PR/DE) on the TMS320C25

8) Program Internal EPROM/Data External (PR/DE) on the TMS320E25

Appendix D provides cycle timings for instructions, both when repeated and
when not repeated. The following is a summary of program execution, orga-
nized according to memory configuration.

Pi1/DI or PR/DI

PE/DI

When both program and data memory are on-chip,
the processor runs at full speed with no wait states.
Note that IN and OUT instructions have different
cycle timings when program memory is internal; IN
requires two cycles to execute, whereas OUT re-
quires only one cycle.

If external program memory is sufficiently fast, this
memory mode can run at full speed because internal
data operations can occur coincidentally with exter-
nal program memory accesses. If external program
memory is not fast enough, wait states may be gener-
ated by using the READY input.

PI/DE, PE/DE, or PR/DE

Additional cycles are required to execute instructions
that reference an external data memory space. At
least two cycles are required to execute read from ex-
ternal data memory instructions such as ADD, LAR,
etc. Further additional cycles may be required be-
cause of wait states if external data memory is not
fast enough to be accessed within a single cycle.
Note, however, thatthe TMS320C25 has the capabil-
ity of executing write to external data memory instruc-
tions in a single cycle when program memory is inter-
nal (two cycles are required if program memory is
also external). Additional cycles are also required in
this case if external data memory is not sufficiently
fast.

In all memory configurations where the same bus is used to communicate with
external data, program, or I/O space, the number of cycles required to execute
a particular instruction may further vary, depending on whether the next in-
struction fetch is from internal or external program memory. Instruction execu-
tion and operation of the pipeline are discussed in subsection 3.6.2 and in the
succeeding subsections.

3-55



External Memory and I/O Interface

3.7.2 Internal Clock Timing Relationships

The crystal or external clock source frequency is divided to produce aninternal
four-phase clock. The four phases are defined by CLKOUT1 and CLKOUT2,
as shown in Figure 3—26. All other timing figures in this document use the quar-
ter-phase timing conventions of the TMS320C25. Note that for the TMS32020,
the rising edge of CLKOUT 1 defines the start of quarter-phase 1 (Q1). For the
TMS320C25 and other second-generation devices, the rising edge of
CLKOUT1 defines the beginning of Q3. Refer to Appendix E for further device
phase definitions.

Figure 3-26. Four-Phase Clock

Phase #

oot | ot | ee | as | a8 | ar | oae |
Phase #
(TMS320C25) . Q3 Q4 Q1 Q2 Q3 Q4
| |
|

CLKOUTH : I \ | ) \
I I I
I

I
|
| I l |
I

| |
| |
| | | |
CLKOUT2 1 | b

l I I
I | |

Q-

J i
I |
| !
| !
! |
I |
] ]
| l
l |

Q2

Q3

|
|
I
Q4 |
}
I

3.7.3 General-yPurpose I/0 Pins (BIO and XF)

The TMS320C2x has two general-purpose pins that are software-controlled.
The BIO pinis a branch control input pin, and the XF pin is an external flag out-
put pin.

3-56 ' , 4 Architecture



External Memory and I/O Interface

The BIO pin is useful for monitoring peripheral device status. It is especially
useful as an alternative to using an interrupt when itis necessary not to disturb
time-critical loops. When the BIO input pin is active (low), execution ofthe BIOZ
instruction causes a branch to occur.

In Figure 3—27, BIO is sampled at the end of Q4 (Q2 on the TMS32020). The
timing diagram shown is for a sequence of single-cycle, single-word instruc-
tions without branches located in external memory. Because of variations in
pipelining due to instructions prior to and following the BIOZ instruction, this
timing may vary. Therefore, it is recommended that several cycles of setup be
provided if BIO is to be recognized on a particular cycle. :

Figure 3-27. BIO Timing Diagram

I | [ | 1

I : |

I

|

STRB l TN\ I ! |
[ | I [ |

1 [ | |

| | | |

[
I (Branch | (Next | (Next Instruction)

|

| (B1OZ) Address) | Instruction) | N+3or Branch
fetch | N > N+1 et N+2 o, Address |

I T g g g

VVVVVVV\/ \' \/\/ v.v‘v \/ V"‘V’V \/ "V V‘V‘V’v‘v \/ V’V’V V" v’v \/\/\/ V‘V’V’
0 D e e e et et e et e,

<

The XF (external flag) output pin is set to a high level by the SXF (set external
flag) instruction and reset to a low level by the RXF (reset external flag) instruc-
tion. XF is set high by RS. ‘

The relationship between the time the SXF/RXF instruction is fetched before
the XF pinis set or reset is shown in Figure 3-28. As with BIO, the timing shown
for XF is for a sequence of single-cycle, single-word instructions located in ex-
ternal memory. Actual timing may vary with different instruction sequences.

3-57



External Memory and I/O Interface

Figure 3-28. External Flag Timing Diagram

CLKOUT1

|
I
fetch ﬁ >:< - e VI‘ >
| I
I |
XF
(SXF) /
XF
(RXF) \

Notes: 1) N is the program memory location for the current instruction.

2) This example shows only the execution of single-cycle instructions fetched from external program
memory.

3-58 Architecture



Interrupts

3.8

3.8.1

Interrupts

The TMS320C2x has three external maskable user interrupts (INT2-INTO),
available for external devices that interrupt the processor. Internal interrupts
are generated by the serial port (RINT and XINT), by the timer (TINT), and by
the software interrupt (TRAP) instruction. Interrupts are prioritized with reset

(RS) having the highest priority and the serial port transmit interrupt (XINT)
having the lowest priority.

Interrupt Operation

This subsection explains details interrupt organization and management. Vec-
tor locations and priorities for all internal and external interrupts are shown in
Table 3-7. The TRAP instruction, used for software interrupts, is not prioritized
but is included here because it has its own vector location. Each interrupt ad-
dress has been spaced apart by two locations so that branch instructions can
be accommodated in those locations if desired.

Table 3-7. Interrupt Locations and Priorities

Interrupt Memory
Name Location Priority Function
RS 0 1 (highest) External reset signal
INTO 2 2 External user interrupt #0
INT1 4 3 External user interrupt #1
INT2 6 4 External user interrupt #2
8-23 Reserved locations
TINT 24 5 Internal timer interrupt
RINT 26 6 Serial port receive interrupt
XINT 28 7 (lowest) Serial port transmit interrupt
- TRAP 30 N/A TRAP instruction address

When an interrupt occurs, it is stored in the 6-bit interrupt flag register (IFR).
This register is set by the external user interrupts INT(2-0) and the internal in-
terrupts RINT, XINT, and TINT. Each interrupt is stored in the IFR until it is rec-
ognized, and then automatically cleared by the IACK (interrupt acknowledge)
signal or the RS (reset) signal. The RS signal is not stored in the IFR. No in-
structions are provided for reading from or writing to the IFR.

The TMS320C2x has a memory-mapped interrupt mask register (IMR) for
masking external and internal interrupts. The layout of the register is shown
in Figure 3—-29. A 1 in bit positions 5 through 0 of the IMR enables the corre-
sponding interrupt, provided that INTM = 0. The IMR is accessible with both
read and write operations but cannot be read using BLKD. When the IMR is
read, the unused bits (15 through 6) are read as 1s. The lower six bits are used
to write to or read from the IMR. Note that RS is not included in the IMR, and
therefore the IMR has no effect on reset.

Figure 3-29. Interrupt Mask Register (IMR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| RESERVED | xint| RINT| TiNT] TNT2] TN 1| IO

3-59



Interrupts

The INTM (interrupt mode) bit, which is bit 9 of status register STO, enables
or disables all maskable interrupts. INTM = 0 enables all the unmasked inter-
rupts, and INTM = 1 disables these interrupts. The INTM is setto 1 by the TACK
(interrupt acknowledge) signal, the DINT instruction, or areset. This bitis reset
to 0 by the EINT instruction. Note that the INTM does not actually modify the
IMR or IFR.

The TMS320C2x has a built-in mechanism for protecting multicycle instruc-
tions from interrupts. If an interrupt occurs during a multicycle instruction, the
interrupt is not processed until the instruction is completed. This mechanism
also applies to instructions that become multicycle due to the READY signal.

In addition, the device does not allow interrupts to be processed when an in-
struction is being repeated via the RPT or RPTK instructions. The interrupt is
stored inthe IFR until the repeat counter (RPTC) decrements to zero, and then
the interrupt is processed. Even if the interrupt is not used while the
TMS320C2x is processing the RPT or RPTK, the interrupt will still be latched
by IFR and pending until RPTC decrements to zero.

If both the HOLD line and an interrupt go active during a mutticycle instruction
or arepeat loop, the HOLD takes control of the processor at the end of the in-
struction or loop. When HOLD is released, the interrupt is acknowledged.

Interrupts cannotbe processed between EINT and the next instruction in a pro-
gram sequence. For example, if an interrupt occurs during an EINT instruction
execution, the device always completes EINT as well as the following instruc-
tion before the pending interrupt is processed. This insures that a RET can be
executed before the next interrupt is processed, assuming that a RET instruc-
tion follows the EINT. The state of the machine, upon receiving an interrupt,
may be saved and restored (see subsection 5.3.1).

3.8.2 External Interrupt Interface

3-60

Interrupts may be asynchronously edge- or level-triggered. In the functional
logic organization for INT(2-0), shown in Figure 3-30, the external interrupt
INTO is connected to an edge-triggered flip-flop. The INTO signal is ORed with
the interrupt edge flip-flop Q output and synchronized with internal quarter-
phases 1 and 2 to produce an interrupt signal (see Appendix B for phase rela-
tionships onthe TMS32020). In this way, the device can handle both edge-trig-
gered and level-triggered interrupts.

Architecture



Interrupts

Figure 3-30. Internal Interrupt Logic Diagram

r-—-—-"-"-"---"-""-""———_ - —_ _ |
| I
| : IACK
iack —o<] |
| I
| [
| | DINT
] | From
{ Data
: +5V a D i Bus
Interrupt
CLR
| D Q Mask | Interrupt
| Register s | Mode S
Interrupt (INTM)
| Edge Q
wl |7 | I
INT
01, Lo cx ! IACK
or2) | |
l [
| | Priority
Decode To
| | D QrE—D - Q i — pc
I S‘Y:EC lntFelrar;pt : Plnterrupt
" rocessor
| Register | lrxté{;upt y
ive achine
: [- CLK I— CLk * i State
| Qz Qq | T
L Logoforeucnoxomalieryt ] Fom

Internal
Interrupts

Due to the level sensitivity of the external interrupts and the synchronization
of the interrupts (first on Q2, then on Q1 of the following machine cycle), the
INT line must be set to an inactive high at least two cycles before the enabling
interrupts (EINT). If this criteria is not met, the TMS320C25 will immediately
take the interrupt trap following the EINT plus the next instruction.

Ifthe INTM bit and mask register have been properly enabled, the interrupt sig-
nal is accepted by the processor. An TACK (interrupt acknowledge) signal is
then generated. The IACK clears the appropriate interrupt edge flip-flop and
disables the INTM latch. The logic is the same for INT1 and INT2.

In atypical interrupt (INT2-INTO) operation, the interrupt is generated by a ne-
gative-going edge, and the IFR bit is set. Because INTM is disabled when the
interrupt is acknowledged, the level may continue to be present on the INT in-
put without generating further interrupts. If the level is removed before an EINT
instruction is executed, no furtherinterrupts are generated. If alow level contin-
ues to be present afterthe EINT, another interrupt is generated after the EINT/
next instruction sequence. In addition, if the INT pin is pulsed between the pre-
vious TACK and EINT, another interrupt is generated after EINT/RET because
the corresponding IFR bit is again set.

3-61



Interrupts

Figure 3—31 shows an interrupt, interrupt acknowledge, and various other sig-
nals for the special case of single-cycle instructions. An interrupt generated
during the current (N) fetch cycle still allows the fetch and execution of that in-
struction. The N+1 and N+2 instructions are also fetched, then discarded, and
the address N+1 is pushed onto the top of the stack. The instruction is fetched
again upon a return command from the interrupt routine.

Figure 3-31. Interrupt Timing Diagram (TMS320C25)

| | | | ] | |

|
| I | | I [ [ I
CLKOUT2 | | l | | | | l
[
STRB I | | | | l | [
| | | | | | l |
NT2-NTo T\ | [ ! ! | ! !
1 ‘ 1 . 1 ] T
| R | | ' ! |
Al5-A0 N X N+1 X N2 X | )K D 4D 4
| | | |
|
|
|

L
N 2 141 2
fetch + + ki
| | | | | [ |
N-2 | N1 | N | Dummy, Dummy_ | Dummy | I |
excoute [4———brg——— bbbl g — e —p!
I I | l N+1 l
| | Top of Stack '

vvvvvvvvvvv

Notes: 1) Nis the program memory location for the current instruction.
2) listhe interrupt vector location in program memory for the active interrupt.
3) For simplicity, this example shows only the execution of single-cycle in-
structions fetched from external program memory, rather than multicycle
instructions.

Three dummy execute cycles occur on an interrupt, as shownin the timing dia-
gram for the TMS320C25 (Figure 3-31). The IACK signal is asserted low dur-
ing CLKOUT1 low when the device initiates a fetch from the interrupt location
I. Note that TACK is a valid signal only when CLKOUT1 is low. An external de-
vice can determine which interrupt had occurred by latching the address bus
value present on A4—A1 with the rising edge of CLKOUT2 when IACK is low.

3-62 Architecture



Serial Port

3.9 Serial Port

A full-duplex on-chip serial port provides direct communication with serial de-
vices such as codecs, serial A/D converters, and other serial systems. The in-
terface signals are compatible with codecs and many other serial devices with
a minimum of external hardware. The serial port may also be used for inter-
communication between processors in multiprocessing applications.

Bothreceive and transmit operations are double-buffered on the TMS320C25,
thus allowing a continuous bit stream even if FSX is an output. The use of the
frame sync mode (FSM) bit provides continuous operation that, once initiated,
requires no further frame synchronization pulses. No minimum CLKR/CLKX
frequency (fmin = 0 Hz) is required for serial port operation.

The bits, pins, and registers that control serial port operation are listed in
Table 3-8. Availability of a function on a particular device is also indicated.

Table 3-8. Serial Port Bits, Pins, and Registers

Serial Port Bits/Pins/Registers TMS32020 TMS320C25
FO Format bit Yes Yes
™M Transmit mode bit Yes Yes
FSM Frame synchronization mode bit No Yes
CLKX  Transmit clock signal Yes Yes
CLKR Receive clock signal Yes Yes
DX Transmitted serial data signal Yes Yes
DR Received serial data signal Yes Yes
FSX Transmit framing synchronization signal Yes Yes
FSR Receive framing synchronization signal Yes Yes
DXR Data transmit register Yes Yes
DRR Data receive register Yes Yes
XSR Transmit shift register No Yes .
RSR Receive shift register No Yes

The serial port uses two memory-mapped registers: the data transmit register
(DXR) that holds the data to be transmitted by the serial port, and the data re-
ceive register (DRR) that holds the received data (see Figure 3-32). Both reg-
isters operate in either the 8-bit byte mode or 16-bit word mode, and may be
accessed in the same manner as any other data memory location. Each regis-
ter has an external clock, a framing synchronization pulse, and associated shift
registers. Any instruction accessing data memory can be used to read from or
write to these registers; however, the BLKD (block move from data memory to
datamemory) instruction cannot be usedto read these registers. The DXR and
DRR registers are mapped into locations 0 and 1 in the data address space.
The XSR and RSR registers are not directly accessible through software.

3-63



Serial Port

Figure 3-32. The DRR and DXR Registers

3-64

Address
MSB LSB
0000h DRR
0001h DXR

If the serial port is not being used, the DXR and DRR registers can be used
as general-purpose registers. In this case, the CLKR or FSR should be con-
nected to a logic low to prevent a possible receive operation from being initi-
ated.

Three bits in status register ST1 are used to control the serial port operation:
FO, TXM, and FSM. The FO (format) bit defines whether data to be transmitted
and received is an 8-bit byte or a 16-bit word. If FO = 0, the data is formatted
in 16-bit words. If FO = 1, the data is formatted in 8-bit bytes. In the 8-bit mode,
only the eight least significant bits are used for transmit/receive operations.
The FO bit is loaded by the FORT (format serial port registers) instruction. On
reset, FO is set to 0. :

The TXM (transmit mode) bit is used to determine if the frame synchronization
pulse for the transmit operation is generated externally or internally. If TXM =
1, the FSX pin becomes an output pin, and a framing pulse is produced on the
FSX pin every time the DXR register is loaded. This framing pulse is synchro-
nized with the rising edge of CLKX. If TXM = 0, the FSX pin becomes an input
pin. The TMS320C2x then walits for an external synchronization pulse before
beginning transmission. On a reset, TXM is set to zero, configuring FSX to be
aninput. The TXMbit can be loaded by the LST1, STXM, or RTXMinstructions.
IfDXRonthe TMS32020is loaded before the previous word is completely sent,
the serial port immediately begins transmitting the new word. The bits of the
previous word that have not been sent are lost. If TXM = 1 on the TMS32020,
a new FSX pulse is generated. If TXM = 0, the serial port immediately begins .
transmitting the new word without waiting for a new external FSX pulse.

The FSM (frame synchronization mode) status register bitis used to determine
whether frame sync pulses are required for each serial port transfer. When
FSM =1, frame sync pulses are required; consequently, they are not required
when FSM = 0. FSM is set by the SFSM (set frame synchronization mode) in-
struction and cleared by the RFSM (reset frame synchronization mode) in-
struction. When FSM = 1 and frame sync pulses are required, an FSX pulse
will cause the XSR to be loaded with data from the DXR, and transmission will
begin. If an FSX is presented prior to the last bit of the current transmission,
the XSR will be reloaded from the DXR, thus aborting the current transmission
and immediately beginning a new one.

Architecture



Serial Port

3.9.1 Transmit and

The frame sync mode is useful in communicating to PCM highways. For ATT
T1 and CCITT G711/712 lines, the processor can communicate directly in
these formats by counting the transmitted/received bytes in software and per-
forming SFSM/RFSM instructions as needed to set/reset the FSM bit.

Receive Operations

The transmit and receive sections of the serial port are implemented separate-
ly to allow independent transmit and receive operations. Externally, the serial
portinterface is implemented using the six serial port pins. Figure 3-33 shows
the registers and pins used in transmit and receive operations. Note that on the
TMS32020, the DXR and XSR are combined as one single register; the DRR
and RSR are combined as another single register.

Figure 3-38. Serial Port Block Diagram

(Carry)

DR RINT

I
16 16
Load
Control
Load ]
DRR (16) —(E—l—, Logic DXR (16)
4 Load (Load)
16 Control . 16
Logic L4
RSR (16) XSR (16)
(Carry) (Carry) (Carry)
Byte/Word Counter| (Clear) (Clear) |Byte/Word Counter
FSR FSX
CLKR CLKX XINT DX

Data is clocked onto the DX pin from the XSR of the TMS320C25 by a CLKX
signal. Data is clocked into the RSR of the TMS320C25 from the DR pin by a
CLKR signal. On the TMS32020, the data on the pins is clocked directly out
of the DXR or into the DRR. CLKX and CLKR are required to be present only
during actual serial port transfers, and may be stopped when no data is being
transferred. Data bits can be transferred in either 8-bit bytes or 16-bit words.
Data is clocked out to DXR on the rising edges of CLKX, while data is clocked
in from DRR on the falling edges of CLKR. The MSB of the data is transferred
first.

The XSR and RSR are connected to the DXR and DRR, respectively. Fortrans-
mit operations, the contents of DXR are transferred to XSR when a new trans-
mission begins. For a receive operation, the contents of RSR are transferred

3-65



Serial Port

to DRR when all of the bits have been received. Thus, the serial port is double-
buffered because data may be transferred to or from the DXR or DRR while
another transmit or receive operation is being performed.

Serial port transfers onthe TMS320C25 are generally initiated by a frame sync
pulse. The exception to this is when the continuous mode of operation is used
with FSM = 0, as described in a subsequent paragraph. Frame sync pulses are
input on FSX for transmit operations and on FSR for receive operations.

The transmit timing diagram is shown in Figure 3-34. The transmit operation
begins when data is written into the data transmit register (DXR). The
TMS320C2x begins transmitting data when the frame synchronization pulse
(FSX) goes low while CLKX is high or going high. The data, starting with the-
MSB, is then shifted out via the DX pin with the rising edge of CLKX. When all
bits have been transmitted, an internal transmit interrupt (XINT) is generated
on the rising edge of CLKX. When the serial port is not transmitting, DX is
placed in the high-impedance state.

Figure 3-34. Serial Port Transmit Timing Diagram

3-66

XINT

I
s
l
l
|
|
l
I
:
}
I

DX and FSX are unaffected by assertion of the HOLD input. Upon assertion
of HOLD, any serial port transmission in progress on the DX pin is completed
before DX is placed in the high-impedance state. FSX remains configured as
either an input or output, remaining low if it is an output.

The receive operation is similar to the transmit operation. The receive timing
diagram is shown in Figure 3—35. Reception is initiated by a frame synchroni-
zation pulse on the FSR pin. After FSR goes low, data onthe DR pin is clocked
into the RSR register on the TMS320C25 (DRR register on the TMS32020) on
every negative-going edge of CLKR. The first data bit is considered the MSB,
and RSRisfilled accordingly. After all the bits have been received (as specified

Architecture



Serial Port

by FO), aninternal receive interrupt (RINT) is generated on the rising edge of
CLKR, and the contents of RSR are transferred to DRR. Note that on the
TMS32020, the DRR should not be read before an RINT is received; other-
wise, the bits that have not been clocked at the time of the read will contain the
data from a previous transfer. Similarly, an overrun of the DRR register will be
prevented by having the DRR read before the next FSR.

Figure 3-35. Serial Port Receive Timing Diagram

RINT

/I

)

3.9.2 Timing and Framing Control

Upon completion of a serial porttransfer, aninternalinterruptis generated. The
RINT interrupt is generated for a receive operation, and XINT is generated for
atransmit operation. RINT and XINT are generated on therising edge of CLKR
and CLKX, respectively, after the last bit is transferred. Note that if DRRis read
before a RINT is received, it will contain the data from the previous operation.
Similarly, if DXR is loaded more than once after an XINT is generated (in the
continuous transmission mode), only the last value written will be loaded into
XSR for the next transmit operation.

When the TMS320C2x is reset, TXM is cleared to zero, and DX is placed in
the high-impedance state. Any transmit or receive operation thatis in progress
when the reset occurs is terminated.

The transmit framing synchronization pulse can be generated internally or ex-
ternally. The maximum speed of the serial portis 5 MHz. The timing of the serial
port signals is compatible with the Tl/Intel 29C1x series codecs. The timing is
also compatible with the AMI S3506 series codecs ifthe frame synchronization
signals are inverted.

Serial port transfers on the TMS320C25 are generally initiated by a frame sync
pulse, except when the continuous mode of operation is used with FSM = 0.
Frame sync pulses are input on FSX for transmit operations and on FSR for

3-67



Serial Port

receive operations. If FSM = 1, frame sync pulses are required; if FSM = 0, they
are not required. FSM is set by the SFSM (set frame synchronization mode)
instruction and cleared by the RFSM (reset frame synchronization mode) in-
struction.

3.9.3 Burst-Mode Operation

In burst-mode serial port operation, transfers are separated in time by periods
of no serial port activity (the serial port does not operate continuously). For
burst-mode operation, FSM must be set to one. Timing of the serial port in this
mode of operation is shown in Figure 3-36 and Figure 3-37.

Figure 3-36. Burst-Mode Serial Port Transmit Operation

LI aVUaUaUaValalalalaVaVaWaVWe
FSX
(TXM=1) ﬂ

I

I !

i i

Fonny ——KCALX A2 XA X A X A5 X A6 X A7 X A y——+—B1 X_

B | |

! I

[ |

] 1

| | MSB | | | | | LSB | | | |
| | ! | I I | [ [ | |
XINT I | I | I I | | I
T i ] 1 ! ] I | |
t 1 t
DXR . DXR
Loaded Reloaded
i Reloaded
(During CLKX Low)

3-68 Architecture



Serial Port

Figure 3-37. Burst-Mode Serial Port Receive Operation

FSR_L/—T\!

| | | I
| ! | | |
e I
T (N R N R NN N RN U J— [
(Fooy) KA A2 X A3 X A4 X A5 X A6 X A7 X A8
e | | msB | | | | | | | LsB | J | |
| | | | | | [ | I | | | [
RINT | | l [ | | ! I | ) 4 \ | I
T T T T T T 1 T T Tl | | T
DRR
Loaded
From RSR

When TXM = 1 (in the transmit operation) and the serial port register DXR is
loaded, a framing pulse is generated on the next rising edge of CLKX. XSR is
loaded with the current contents of DXR while FSX is high and CLKX is low.
Transmission begins when FSX goes low while CLKX is high or is going high.
Figure 3—36 shows the timing for the byte mode (FO = 1). XINT is generated
on the rising edge of CLKX after all 8 or 16 bits have been transmitted and DX
is placed in the high-impedance state. If DXR is reloaded before the nextrising
edge of CLKX after XINT, FSX will again be generated as shown, and XSR will
be reloaded.

Thereceive operation is similar to the transmit operation. The contents of RSR
are loaded into DRR while CLKR is low, just after reception of the last bit sent
by the transmitting device (see Figure 3-37). RINT is generated on the next
rising edge of CLKR, and DRR may be read at any time before the reception
of the final bit of the next transmission. When operating in the byte mode, the
eight MSBs of the DRR are the contents of the eight LSBs of the DRR prior to
reception of the current byte, as shown in Figure 3-38 for the TMS320C25. On
the TMS32020, the most significant byte is unaffected by successive 8-bit re-
ceive operations.



Serial Port

Figure 3-38. Byte-Mode DRR Operation (TMS320C25)

MSB LSB
Initial
Condition X Y
After 1st Receive :
(Byte 'A) Y A
After 2nd Receive
(Byte 'B) A B

3.9.4 Continuous Operation Using Frame Sync Pulses (TMS320C25)

The TMS320C25 provides two modes of operation that allow the use of a con-
tinuous stream of serial data. When FSM = 1, frame sync pulses are required.
Because DXR is double-buffered, continuous operation is achieved even if
TXM = 1. Writing to DXR during a serial port transmission does not abort the
transmission in progress, but, instead, DXR stores that data until XSR can be
reloaded. As long as DXR is reloaded before the CLKX rising edge on the final
bit being transmitted, the FSX pulse will go high on the rising edge of CLKX
during the transmission of the final bit and fall on the next rising edge when
transmission of the word just loaded begins. If DXR is not reloaded within this
period and FSM = 1, the DX pin will be placed in a high-impedance state for
at least one CLKX cycle until DXR is reloaded (as described in the previous
section). Figure 3—-39 and Figure 3—40 show the timing dlagrams for the con-
tinuous operation with frame sync pulses.

3-70 . Architecture



Serial Port

Figure 3-39. Serial Port Transmit Continuous Operation (FSM = 1)

CLKX
|
FSX |
(TXM= 1)

|
|
!
i
(F01 :XA7XA8XB1X32):L
|
|
T

| : I MSB| { II |I LSB} Il
XINT | | | | | )4 \,
| | T T T | |
t t t t
DXR XSR DXR XSR
Loaded Loaded Loaded Loaded
With B With C

Figure 3-40. Serial Port Receive Continuous Operation (FSM = 1)

| | |

P !

| |
(Fo- 1) :X A7 X A8 X B1 ij):gea )}( B4 X B5 X B6

| |

| |

T T

| MSB | | [ LS8 | I |
| I | [ | | | | |
RINT | | /X | | T\ |
| I T T | | T
t ]‘ t
Read Read
DRR DRR
DRR DRR
Loaded . Loaded
From RSR ) From RSR

Continuous receive operation with FSM = 1 is identical to that of burst-mode
operation with the exception that FSR is pulsed during reception of the final bit.
3.9.5 Continuous Operation Without Frame Sync Pulses (TMS320C25)

The continuous mode of operation on the TMS320C25 allows transmission
and reception of a continuous bit stream without requiring frame sync pulses
every 8 or 16 bits. This mode is selected by setting FSM = 0.

Figure 3—41 and Figure 3—42 show operation of the serial port for both states
of TXM to illustrate differences in operation for each case. FSM is initially set

3-71



Serial Port

3-72

to one, and frame sync pulses are required to initiate serial transfers. Before
the completion of the transmission (that is, before the next serial portinterrupt),
the FSM must be reset to zero by means of an RFSM (reset FSM) instruction.
RFSM can occur either before or after the write to DXR or read from DRR. From
this point on, the FSX and FSR inputs are ignored, with transmission occurring
every CLKX cycle and reception occurring every CLKR cycle as long as those
clocks are present.

If FSXis configured as an output, it will remain low until FSM is set back to one
and DXR is reloaded. If DXR is not reloaded with new data every XINT (every
8 or 16 CLKX cycles, depending on FO), the last value loaded will be trans-
mitted on DX continuously. Note that this is different from the case with FSM
=1 where DX is placed into a high-impedance state if DXR is not reloaded be-
fore transmission of the last bit of the current word in XSR. For example, if byte
C is not loaded into DXR as indicated in Figure 3—41, bits of byte B (B1-B8)
will be retransmitted instead of bits of byte C as shown.

For receive operations, DRR is loaded from RSR (and an RINT is generated)
every 8 or 16 CLKR cycles (depending on FO), regardless of whether or not
DRR has been read. An overrun of DRR is also possible with FSM = 1 if DRR
is not read before the next RINT. The only way to stop continuous transmission
or reception once started, when FSM = 0, is either to stop CLKX or CLKR or
to perform an SFSM (set FSM) instruction.

Continuous transmission without frame sync pulses is very useful in communi-
cating directly to telephone system PCM highways. For ATT T1 and CCITT
G711/712lines, FSX and FSR pulses are generated only every 24 or 32 bytes.
By counting the transmitted and received bytes in software after an initial FSX
or FSR and performing SFSM and RFSM instructions as required, the
TMS320C25 can easily be made to communicate in these formats.

Architecture



Serial Port

Figure 3-41. Serial Port Transmit Continuous Operation (FSM = 0)

CLKX
FSX
(TXM=1)
FSX
(TXM=0)
DX
(FO=1)
XINT
Loaded ] RFSM ]
With B
DRR DXR XSR
Loaded Loaded Loaded
From RSR With C

Figure 3—42. Serial Port Receive Continuous Operation (FSM = 0)

Loaded DRR Loaded
From RSR _From RSR

3.9.6 Initialization of Continuous Operation Without Frame Sync Pulses
(TMS320C25)

FSM is normally initialized during an XINT or RINT service routine to enable
or disable FSX and FSR, respectively, for the next serial port operation. It is
necessary to start this mode with FSM = 1 so that the first data transferred out
of the serial port is the data written to the DXR register. Otherwise, the serial

3-73



Serial Port

3-74

port starts transmitting the contents of the shift register before loading it with
the value stored in the DXR register. Upon each completion of a data packet
transmission, itloads the data contained inthe DXR register into the shift regis-
ter and continues transmitting. After the first frame pulse has been generated
by or sent to the TMS320C25, the FSM bit must be reset to 0 using the RFSM
instruction. This must be done before the next serial port interrupt to ensure
continuous transmission. If continuous transmission is stopped via software,
this initiation sequence must be repeated to restart the continuous mode oper-
ation.

As shown in Figure 3—-43 and Figure 3—44, RFSM may occur before a write to
DXR, regardless of the state of TXM. If TXM = 1, FSXis generated in a normal
manner on the next rising edge of CLKX, but only once. If TXM = 0, the
TMS320C25 waits to transmit until FSX is pulsed, but from then on, the FSX
input is ignored. Note that just as in the case of continuous-mode operation
without sync pulses described in subsection 3.9.5, the first data written to DXR
(byte A) is output twice unless DXR is reloaded before the second transmission
is started. Itis important to consider this dummy cycle when using continuous-
mode serial operation.

Thereceivetimings arethe same as those for the transmit operations with TXM
=0. The TMS320C25 waits to receive data until FSR is pulsed, but thereafter
the FSRinputisignored. No dummy cycle is associated with the receive opera-
tion; this is because DRR has a post-buffering nature as opposed to the prebuf-
fering nature of DXR.

Architecture



Serial Port

Figure 3-43. Continuous Transmit Operation Initialization

|
|
I
1

FSX
:0)
DX
=1)

(TXM

(TXM

(FO
XINT

XSR
Reloaded

XSR

Loaded
DXR
Loaded
With A

f
RFSM

Figure 3-44. Continuous Receive Operation Initialization

(Fo

RINT

!

DRR
Loaded
From RSR

RFSM

3-75



Multiprocessing and Direct Memory Access (DMA)

3.10 Multiprocessing and Direct Memory Access (DMA)

The flexibility of the TMS320C2x allows configurations to satisfy a wide range
of system requirements. Some of the system configurations using the
TMS320C2x are as follows:

(3 A standalone system (single processor),

4 A multiprocessor with devices in parallel,

[ A host/slave multiprocessor with shared global data memory space, or
[

A peripheral processor interfaced using processor-controlled signals to
another device.

These system configurations are made possible by three specialized features
of the TMS320C2x: the synchronization function utilizing the SYNC input, the
global memory interface, and the hold function implemented with the HOLD
and HOLDA pins. The following sections describe these functions in detail.

3.10.1 Synchronization

3-76

In a multiprocessor environment, the SYNC input can be used to greatly ease
interface between processors. This input is used to cause each TMS320C2x
inthe system to synchronize its internal clock, thereby allowing the processors
to run in lock-step operation.

Multiple TMS320C2x devices are synchronized by using common SYNC and
external clock inputs. A negative transition on SYNC sets each processor to
internal quarter-phase one (Q1). This transition must occur synchronously with
the rising edge of CLKIN. On the TMS320C25, there is a two-CLKIN-cycle
delay following the cycle in which SYNC goes low, before the synchronized Q1
occurs. On the TMS32020, there is no delay.

The timing diagrams for the SYNC input are shown in Figure 3—45 and
Figure 3—46 for the TMS32020 and TMS320C25, respectively. Note that the
internal clock timing relationships are different in the TMS32020 and
TMS320C25 (see Appendix E and subsection 3.7.2).

Architecture



Multiprocessing and Direct Memory Access (DMA)

Figure 3—45. Synchronization Timing Diagram (TMS32020)

CLKOUT1 —\I\_—/I(

| l
l l
CLKOUT2 |I (I \ I
1 I

I I

Figure 3-46. Synchronization Timing Diagram (TMS320C25)

CLKOUT2

I
I
CLKOUT1 *I
I
I
|
!
I

Normally, SYNC is applied while RS is active. If SYNC is asserted after areset,
the following can occur:

1) The processor machine cycle is reset to Q1, provided that the timing re-
quirements for SYNC are met. If SYNC is asserted at the beginning of Q1,
Q3, or Q4, the current instruction is improperly executed. If SYNC is as-
serted at the beginning of Q2, the current instruction is executed properly.

2) If SYNC does not meet the timing requirements, unpredictable processor
operation occurs. A reset should then be executed to place the processor
back in a known state.

3-77



Muiltiprocessing and Direct Memory Access (DMA)

3.10.2 Global Memory

3-78

For multiprocessing applications, the TMS320C2x is capable of allocating
global data memory space and communicating with that space viathe BR (bus
request) and READY control signals. '

Global memory is memory shared by more than one processor; therefore, ac-
cess to it must be arbitrated. When using global memory, the processor’s ad-
dress space is divided into local and global sections. The local section is used
by the processor to perform its individual function, and the global section is
used to communicate with other processors.

A memory-mapped global memory allocation register (GREG) specifies part
of the TMS320C2x’s data memory as global external memory. GREG, which
is memory-mapped at data memory address location 5, is an eight-bit register
connected to the eight LSBs of the internal D bus. The upper eight bits of loca-
tion 5 are nonexistent and read as 1s.

‘The contents of GREG determine the size of the global memory space. The

legal values of GREG and corresponding global memory spaces are shown
in Table 3-9. Note that values other than those listed in the table lead to frag-
mented memory maps.

Architecture



Multiprocessing and Direct Memory Access (DMA)

Table 3-9. Global Data Memory Configurations

GREG Value Local Memory Global Memory
Range # Words Range # Words
000000XX Oh — OFFFFh 65,536 _— 0
10000000 0h — O07FFFh 32,768 08000h — OFFFFh 32,768
11000000 Oh — OBFFFh 49,152 0C000h — OFFFFh 16,384
11100000 Oh — ODFFFh 57,344 0E000h — OFFFFh 8,192
11110000 Oh — OEFFFh 61,440 0F000h — OFFFFh 4,096
11111000 Oh — OF7FFh 63,488 0F800h — OFFFFh 2,048
11111100 0Oh — OFBFFh 64,512 0FC00h — OFFFFh 1,024
11111110 Oh — OFDFFh 65,024 0FEOOh — OFFFFh 512
11111111 O0h — OFEFFh 65,280 O0FFO00h — OFFFFh 256

When a data memory address, either direct or indirect, corresponds to a global
data memory address (as defined by GREG), BR is asserted low with DS to
indicate that the processor wishes to make. a global memory access. External
logic then arbitrates for control of the global memory, asserting READY when
the TMS320C2x has control. The length of the memory cycle is controlled by
the READY line. One wait-state timing is shown in Figure 3—47. Note that all
signals not shown have the same timing as in the normal read or write case.

Figure 3-47. Global Memory Access Timing

o™ N N
: |
|
\ | | / |
{ |
Valid
XX

STRB

.

IR
N e e

e

RIS
ERLIELEEXIEN K OB

0

3.10.3 The Hold Function

The TMS320C2x supports direct memory access (DMA) to its local (off-chip)
program, data, and 1/O spaces. Two signals, HOLD and HOLDA, are provided
to allow another device to take control of the processor’s buses. Upon receiv-
ing a HOLD signal from an external device, the processor acknowledges by
bringing HOLDA low. The processor then places its address and data buses

3-79



Multiprocessing and Direct Memory Access (DMA)

3-80

as well as all control signals (PS, DS, TS, R/W, and STRB) in the high-impe-
dance state. The serial port output pins, DX and FSX, are not affected by
HOLD. Signaling between the external processor and the TMS320C2x can be
performed by using interrupts. '

The timing for the HOLD and HOLDA signals is shown in Figure 3-48. HOLD
hasthe same setuptime as READY and is sampled at the beginning of quarter-
phase 3 (see Appendix C for phase relationships on the TMS32020). If the set-
up time is met, it takes three machine cycles before the buses and control sig-
nals go to the high-impedance state. Note that unlike the external interrupts
(INT2 — INT0), HOLD is not a latched input. The external device must keep,
HOLD low until it receives a HOLDA from the TMS320C2x.

If the TMS320C2x is in the middle of a multicycle instruction, it will finish the
instruction before entering the hold state. After the instruction is completed, the
buses are placed in the high-impedance state. This also applies to instructions
that become multicycle due to insertion of wait states or to the use of RPT/
RPTK instructions.

After HOLD is deasserted, program execution resumes from the same point
at which it was halted. HOLDA is removed synchronously with HOLD, as
shown in Figure 3—48. Ifthe setup time is met, two machine cycles are required
before the buses and control signals become valid.

HOLD s nottreated as aninterrupt. Ifthe TMS320C2x was executing the IDLE
instruction before entering the hold state, it-resumes executing IDLE once it
leaves the hold state. :

The hold function on the TMS320C25 has two distinct operating modes:

4 ATMS32020-like mode, in which execution is suspended during assertion
of HOLD, and

d A TMS320C25 concurrent DMA mode, in which the TMS320C25 contin-
ues to execute its program while operating from internal RAM or ROM,
thus greatly increasing throughput in data-intensive applications.

The operating mode is selected by the HM (hold mode) status register bit on
the TMS320C25. The HOLD signal is pulled low, as shown in the first part of
Figure 3—48. When HM = 1, the TMS320C25 halts program execution and en-
ters the hold state directly. When HM = 0, the processor enters the hold state
directly, as shown in Figure 3—48, if program execution is from external
memory or if external data memory is being accessed. If program execution
is from internal memory, however, and if no external data memory accesses
are required, the processor enters the hold state externally, but program ex-
ecution continues internally. This allows more efficient system operation be-
cause a program may continue executing while an external DMA operation is
being performed. »

Program execution ceases until HOLD is removed if the processor is in a hold
state with HM = 0 and an internally executing program requires an external

Architecture



Multiprocessing and Direct Memory Access (DMA)

access, or if the program branches to an external address. Also, if a repeat in-
struction that requires the use of the external bus is executing with HM = 0 and
a hold occurs, the hold state is entered after the current bus cycle. If this situa-
tion occurs with HM = 1, the hold state will not be entered until the repeat count
is completed. HM is set and reset by the SHM (set hold mode) and RHM (reset
hold mode) instructions, respectively.

All interrupts are disabled while HOLD is active with HM = 1. If an interrupt is
received during this period, the interrupt is latched and remains pending.
Therefore, HOLD itself does not affect any interrupt flags or registers. When
HM = 0, interrupts function normally.

3-81



Multiproceséing and Direct Memory Access (DMA)

Figure 3-48. TMS320C25 Hold Timing Diagram

| | | | |

PS, DS N
orl_Sl :Xl Valid IX Valid | [
| [ I |
[ | | |
RW | 1 N
| ! ! |
! [ [ |
D15-DO : /_\\m ) } \/m, ! ;
fetch :<—N—>h—><———JN : N+1 | = : . |
execute N-2 N-1 N =

} t f I {
FOLDA | | i \ I
| [ | |
Notes: 1) N is the program memory location for the current instruction.

2) This example shows only the execution of single-cycle instructions fetched from external program
memory.

3-82 Architecture



Multiprocessing and Direct Memory Access (DMA)

Figure 3—+48. TMS320C25 Hold Timing Diagram (Continued)

cukoutt N | | | \ | '

!
| |
s ———— S
STRB
| | | } | | I
] | | | | | |
| | | | | | |
HOLD | |/ [ [ | I |
| | | | I
I I : : | ! I
| L~ ! ! !
A15-A0 — | ( N2 X N42 X N+3 X N+4 )C
| | | [ | | |
. ! | | | | | |
PS,DS, _I | 4 Valid Valid valid X
orls | | | \I( >|( >K f
| | | | | | f
o | | ' ! | |
RW — : / | | | I
| | | | ] | |
| | | | ' L~
/| /\ I
D15-D0 — i T AN\
fetch I| R } . : _ || N+2 N+3 : , N+4 |
. - Net | Dummy N2 |
execute

| I ! t t ¢ }
HOLDA | |/ | | ! I |
| | [ I I

Notes: 3) N is the program memory location for the current instruction.

4) This example shows only the execution of single-cycle instructions fetched from external program
memory.

3-83



General Description of the TMS320C26

3.11 General Description of the TMS320C26

3-84

The TMS320C26 is a spin-off of the TMS320C25. It is processed in CMOS
technology, is capable of an instruction cycle time of 100 ns, and is pin-for-pin
and object-code compatible with the TMS32020 and TMS320C25 with the ex-
ception of the instructions for on-chip-memory configuration. The
TMS320C26's enhancement over the TMS320C25 is basically the larger on-
chip RAM (see the block diagram in Figure 3-3), divided into 4 blocks with
1568 words altogether. The three blocks, B0, B1,and B3 — eachwith512x 16
bits — are configurable as data or program memory. The block B2 with 32 x

16 bits is identical with the same block of the TMS320C25 and is usable as data

memory.

The ROM of the TMS320C26 consists of 256 words. It can be used for the pro-
gramming of abootstrap program and aninterrupt handler or to implement self-

. test routines.

In many applications, the large internal memory of the TMS320C26 allows you
to build single-chip solutions with all data and programs internal and the option
to reload programs or algorithms. A memory size of 1568 words allows the
TMS320C26to handle a data array of, for example, 1024 words with an on-chip
program RAM of 512 words and additional 32 words of data RAM. When using
internal blocks as program memory, instructions can be downloaded from ex-
ternal program memory into on-chip RAM and then executed. The
TMS320C26 allows the DMOV function in all internal data memory blocks. An-
FIR filter programmed with the MAC or MACD instructions can use the internal
program RAM for storing the coefficients.

Architecture



Chapter 4

B As’sembly Language instructlonsw

D e S

RS R R S R

The TMS320C2x instruction set supports numeric-intensive signal processing
operations as well as general-purpose applications, such as multiprocessing
and high-speed control. TMS320C1x source code is upward-compatible with
TMS320C2x source code. TMS32020 object code is upward-compatible with
TMS320C25 object code.

This section describes the assembly language instructions forthe TMS320C2x
microprocessor.

Topics in this chapter include:

Section Page
4.1 Memory AddressingModes ........... .o i i 4-2

42 Instruction Set ... ..ot e 4-11
4.3 Individual Instruction Descriptions . .......... e 4-18

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

Note:

Throughout this document, TMS320C2x refers to the TMS32020,
TMS320C25, TMS320C25-33, TMS320C25-50, TMS320C26, and
TMS320E25, unless stated otherwise. Where applicable, ROM includes the
on-chip EPROM of the TMS320E25.

4-1




Memory Addressing Modes

4.1 Memory Addr

essing Modes

The TMS320C2x instruction set provides three memory addressing modes:
L) Direct addressing mode

(4 Indirect addressing mode

d Immediate addressing mode

Both direct and indirect addressing can be used to access data memory. Direct
addressing concatenates seven bits of the instruction word with the nine bits
of the data memory page pointer to form the 16-bit data memory address. Indi-
rect addressing accesses data memory through the auxiliary registers. In im-
mediate addressing, the data is based on a portion of the instruction word(s).
The following sections describe each addressing mode and give the opcode
formats and some examples for each mode.

4.1.1 Direct Addressing Mode

4-2

Inthe direct memory addressing mode, the instruction word contains the lower
seven bits of the data memory address (dma). This field is concatenated with
the nine bits of the data memory page pointer (DP) register to form the full
16-bit data memory address. Thus, the DP register points to one of 512 possi-
ble 128-word data memory pages, and the 7-bit address in the instruction
points to the specific location within that data memory page. The DP register
is loaded through the LDP (load data memory page pointer), LDPK (load data
memory page pointer immediate), or LST (load status register STO) instruc-
tions.

Note:

The data page pointer is not initialized by reset and is therefore undefined
after powerup. The TMS320C2x development tools, however, utilize default
values for many parameters, including the data page pointer. Because of
this, programs that do not explicitly initialize the data page pointer may ex-
ecute improperly, depending on whether they are executed ona TMS320C2x
device or by using a development tool. Thus, it is critical that all programs ini-
tialize the data page pointer in software.

Assembly Language Instructions



Memory Addressing Modes

Figure 4—1 illustrates how the 16-bit data address is formed.

Figure 4-1. Direct Addressing Block Diagram

7 7 LSBs From
Instruction
Register (IR)

Direct addressing can be used with all instructions except CALL, the branch
instructions, immediate operand instructions, and instructions with no oper-
ands. The direct addressing format is as follows:

i 14 13 12 #11 10 9 8 7 6 &5 4 3 2 1 0

Opcode 0 dma

Bits 15 through 8 contain the opcode. Bit 7 = 0 defines the addressing mode
as direct, and bits 6 through 0 contain the data memory address (dma).

Example of Direct Addressing Format:

ADD 9,5 Add to accumulator the contents of data memory location
9 left-shifted 5 bits.

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0

o o o o o011 0 1 jo}j o o o0 1 o0 0 1

The opcode of the ADD 8,5 instruction is 05h and appears in bits 15 through
8. The notation nnh indicates nn is a hexadecimal number. The shift count of
5h appears in bits 11 through 8 of the opcode. The data memory address 09Sh
appears in bits 6 through 0.

4.1.2 Indirect Addressing Mode

The auxiliary registers (AR) provide flexible and powerful indirect addressing.
Five auxiliary registers (AR0—AR4) are provided on the TMS32020, and eight
auxiliary registers (AR0—AR7) are available on the TMS320C25. To select a
specific auxiliary register, the auxiliary register pointer (ARP) is loaded with a
value from 0 through 4 or 7, designating ARO through AR4 or AR7, respectively
(see Figure 4-2). ‘

4-3



Memory Addressing Modes

Figure 4-2. Indirect Addressing Block Diagram

4-4

Auxiliary
Registers

ARB (3) }esz-| ARP (3) ARO (16)

(ARP = 2) 3 AR1 (16)
AR2 (16) |—
AR3 (16)
AR4 (16)
ARs (16)t
ARe (16)t 16
AR7 (16)t

A 16 v
16 { Y

| ARAU (16) |

16-Bit Data Address

1TMS320C25, TMS320E25, and TMS320C26.

The contents of the auxiliary registers may be operated upon by the auxiliary
register arithmetic unit (ARAU), which implements 16-bit unsigned arithmetic.
The ARAU performs auxiliary register arithmetic operations in the same cycle
as the execution of the instruction. (Note that the increment or decrement of
the indicated AR is always executed after the use of that AR in the instruction.)

In indirect addressing, any location in the 64K data memory space can be ac-
cessedviathe 16-bit addresses contained inthe auxiliary registers. These may
beloaded by theinstructions LAR (load auxiliary register), LARK (load auxiliary
register immediate), and LRLK (load auxiliary register long immediate). The
auxiliary registers on the TMS320C25 may be modified by ADRK (add to auxil-
iary register short immediate) or SBRK (subtract from auxiliary register short
immediate). The TMS320C2x auxiliary registers may also be modified by the
MAR (modify auxiliary register) instruction or, equivalently, by the indirect ad-
dressing field of any instruction supporting indirect addressing. AR(ARP) de-
notes the auxiliary register selected by ARP.

Assembly Language Instructions



Memory Addressing Modes

The following symbols are used in indirect addressing, including bit-reversed
(BR) addressing:

* Contents of AR(ARP) are used as the data memory ad-
dress.

*— Contents of AR(ARP) are used as the data memory ad-

” dress, then decremented after the access.

*4 Contents of AR(ARP) are used as the data memory ad-
dress, then incremented after the access.

*0- Contents of AR(ARP) are used as the data memory ad-
dress, and the contents of ARO subtracted from it after the
access.

*0+ Contents of AR(ARP) are used as the data memory ad-
dress, and the contents of ARO added to it after the access.

*BRO- Contents of AR(ARP) are used as the data memory ad-

dress, and the contents of ARO subtracted from it, with re-
verse carry (rc) propagation, after the access
(TMS320C25).

*BRO+ Contents of AR(ARP) are used as the data memory ad-
dress, and the contents of ARO added to it, with reverse
carry (rc) propagation, after the access (TMS320C25).

There are two main types of indirect addressing with indexing:
(¥ Regular indirect addressing with increment or decrement, and

(a Indirect addressing with indexing based on the value of ARO:
Indexing by adding or subtracting the contents of AROQ, or
Indexing by adding or subtracting the contents of ARO with the carry
propagation reversed (for FFTs on the TMS320C25). -

In either case, the contents of the auxiliary register pointed to by the ARP regis-
ter are used as the address of the data memory operand. Then, the ARAU per-
forms the specified mathematical operation on the indicated auxiliary register.
Additionally, the ARP may be loaded with a new value. All indexing operations
are performed on the current auxiliary register in the same cycle as the original
instruction.

Indirect auxiliary register addressing allows for post-access adjustments of the
auxiliary register pointed to by the ARP. The adjustment may be an increment
or decrement by one, or it may be based upon the contents of ARO.

Bit-reversed addressing modes on the TMS320C25 allow efficient I/O to be
performed for the resequencing of data points in a radix-2 FFT program. The
direction of carry propagation in the ARAU is reversed when this mode is se-
lected and ARO is added to/subtracted from the current auxiliary register. Typi-

4-5



Memory Addressing Modes

Table 4—1. Indirect Addres.

4-6

cal use of this addressing mode requires that ARO first be set to a value corre-
sponding to one-half of the array size, and AR(ARP) be setto the base address
ofthe data (the first data point). See subsection 5.7.4 foran FFT example using
bit-reversed addressing modes.

Indirect addressing can be used with all instructions except immediate oper-
and instructions and instructions with no operands. The indirect addressing
format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 21 0
Opcode 1| 1bv| INc | DEC| NAR Y

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing mode
as indirect. Bits 6 through 0 contain the indirect addressing control bits.

Bit 6 contains the increment/decrement value (IDV). The IDV determines
whether ARO will be used to increment or decrement the current auxiliary regis-
ter. If bit 6 = 0, an increment or decrement (if any) by one occurs to the current
auxiliary register. If bit 6 = 1, ARO may be added to or subtracted from the cur-
rent auxiliary register as defined by bits 5 and 4.

Bits 5 and 4 control the arithmetic operation to be performed with AR(ARP) and
ARO. When set, bit 5 indicates that an increment is to be performed. If bit 4 is
set, a decrement is to be performed. Table 4—1 shows the correspondence of
bit pattern and arithmetic operation.

sing Arithmetic Operations

Bits Arithmetic Operation

No operation on AR(ARP)

AR(ARP) — 1 — AR(ARP)

AR(ARP) + 1 — AR(ARP)

Reserved

AR(ARP) — ARO — AR(ARP) [reverse carry propagation] t
AR(ARP) — ARO — AR(ARP)

AR(ARP) + ARO — AR(ARP)

AR(ARP) + ARO — AR(ARP) [reverse carry propagationj t

- = 4 2 0000 O®
- -2 OO0+ 2000
-0 20O 20 =0 &

1 TMS320C25, TMS320E25, and TMS320C26.

Assembly Language Instructions



Memory Addressing Modes

Bit 3 and bits 2 through 0 control the auxiliary register pointer (ARP). Bit 3
(NAR) determines ifa new value is loaded into the ARP. If bit 3 = 1, the contents
of bits 2 through O (Y = next ARP) are loaded into the ARP. If bit 3 = 0, the con-
tents of the ARP remain unchanged.

Table 4-2 shows the bit fields, notation, and operation used for indirect ad-
dressing. For some instructions, the notationin Table 4—2 includes a shift code:
for example, *0+,8,3 where 8 is the shift code and Y = 3.

Table 4-2. Bit Fields for Indirect Addressing

Instruction Field Bits Notation Operation
15 - 876543210
«— Opcode~+1 0000 <Y — * No manipulation of ARs/ARP
«—Opcode—=1 0001 «<Y— *Y Y — ARP
«—Opcode—1 0010 «-Y— *— AR(ARP) -1 — AR(ARP)
«—Opcode—=1 0011 «<¥Y— Y AR(ARP) -1 — AR(ARP) Y — ARP
«Opcode—=1 0100 «Y— *+ AR(ARP) +1 — AR(ARP)
<~ Opcode—1 0101 <Y~ *+,Y AR(ARP)+1 — AR(ARP) Y — ARP
«—Opcode—1 1000 «Y— *BRO- AR(ARP)-rcARO — AR(ARP) t
«—Opcode—+1 1001 «¥Y— *BRO-Y AR(ARP)-rcARO — AR(ARP)

Y — ARP t
«—Opcode—~1 1010 <Y~ *0— AR(ARP)-ARO — AR(ARP)
«—Opcode—1 1011 «<¥Y— *0-Y AR(ARP)-ARO — AR(ARP)

Y - RP
«—~Opcode—=1 1100 «Y— *0+ AR(ARP)+ARO — AR(ARP)
«—Opcode—>1 1101 «¥Y— *0+,Y AR(ARP)+ARO — AR(ARP)

Y — ARP
«QOpcode—=1 1110 «Y—> *BRO+ AR(ARP)+rcARO — AR(ARP) 1
«—Opcode =1 1111 «¥Y—> *BRO+,Y AR(ARP)+rcARO — AR(ARP)

Y — ARP t

T BR = bit-reversed addressing mode, and rc = reverse carry propagation (TMS320C25 and

TMS320C26).

The CMPR (compare auxiliary register with AR0), and BBZ/BBNZ (branch if
TC bit equal/not equal to zero) instructions facilitate conditional branches
based on comparisons between the contents of ARO and the contents of
AR(ARP).

The auxiliary registers may also be used for temporary storage via the load and
store auxiliary register instructions, LAR and SAR, respectively.

4-7



Memory Addressing Modes

4.1.3

The following examples illustrate the indirect addressing format:

Example 1

15

ADD *+,8 Add to the accumulator the contents of the data
memory address defined by the contents of the current auxiliary
register. This data is left-shifted 8 bits before beingadded. The cur-
rent auxiliary register is autoincremented by one. The opcode is
08A0h, as shown below.

14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

0

¢ o o0 1t 0 O0O]J1}] 0o 1 0 0 O O O

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

ADD *8 As in Example 1, but with no autoincrement; the
opcode is 0880h.

ADD *-,8 As in Example 1, except that the current auxiliary
register

is decremented by one; the opcode is 0890h.

ADD *0+,8 Asin Example 1, exceptthat the contents of auxil-
iary register ARO are added to the current auxiliary register; the op-
code is 08EOh.

ADD *0—,8 Asin Example 1, except that the contents of auxil-
iary register ARO are subtracted from the current auxiliary register;
the opcode is 08D0Oh.

ADD *+,8,3 Asin Example 1, except that the auxiliary register
pointer (ARP) is loaded with the value 3 for subsequent instruc-
tions;the opcode is 08ABh.

ADD *BR0-,8 The contents of auxiliary register ARO are sub-
tracted from the current auxiliary register with reverse carry propa-
gation (TMS320C25); the opcode is 08COh.

ADD *BRO0+,8 The contents of auxiliary register ARO are added
to the current auxiliary register with reverse carry propagation
(TMS320C25); the opcode is 08FOh. '

Immediate Addressing Mode

Inimmediate addressing, the instruction word(s) contains the value of the im-
mediate operand. The TMS320C2x has both single-word (8-bit and 13-bitcon-
stant) shortimmediate instructions and two-word (16-bit constant) long imme-
diate instructions. The immediate operand is contained within the instruction
word itself in short immediate instructions. In long immediate instructions, the
word following the instruction opcode is used as the immediate operand.

The following short immediate instructions contain the immediate operand in
the instruction word and execute within a single instruction cycle. The length

Assembly Language Instructions



Memory Addressing Modes

of the constant operand is instruction-dependent. Note that the ADDK, ADRK,
SBRK, and SUBK instructions are available on the TMS320C25.

ADDK Add to accumulator short immediate (8-bit absolute
constant)

ADRK Add to auxiliary register short immediate (8-bit absolute
constant)

LACK Load accumulator short immediate (8-bit absolute
constant)

LARK Load auxiliary register short immediate (8-bit absolute
constant)

LARP Load auxiliary register pointer (3-bit constant)

LDPK Load data memory page pointerimmediate (9-bit constant)

MPYK Multiply immediate (13-bit 2s-complement constant)

RPTK Repeat instruction as specified by immediate value (8-bit
constant)

SBRK Subtract from auxiliary register short immediate (8-bit
absolute constant)

SUBK ~ Subtract from accumulator shortimmediate (8-bit absolute
constant).

Example of short immediate addressing format:

RPTK 99 Execute the instruction following this instruction 100 times.

With the RPTK instruction, the immediate operand is contained as a part of the
instruction opcode. The instruction format for RPTK is as follows:

15 14 13 12 11 10 9 8 7 6 56 4 3 2 1 O

1 1 0 0 1 0 1 1 8-Bit Constant

For long immediate instructions, the constant is a 16-bit value in the word fol-
lowing the opcode. The 16-bit value can be optionally used as an absolute con-
stant or as a 2s-complement value.

ADLK Add to accumulator long immediate with shift (absolute or
2s complement)

ANDK AND immediate with accumulator with shift

LALK Load accumulator long immediate with shift (absolute or 2s
complement)

LRLK Load auxiliary register long immediate

ORK OR immediate with accumulator with shift

4-9



Memory Addressing Modes

4-10

SBLK Subtract from accumulator long immediate with shift (ab-
solute or 2s complement)

XORK Exclusive-OR immediate with accumulator with shift.

Example of long immediate addressing format:

ADLK 16384,2 Add to the accumulator the value 16384 with a shift to the
left of two, effectively adding 65536 to the contents of the
accumulator.

The ADLK instruction uses the word following the instruction opcode as the im-
mediate operand. The instruction format for ADLK is as follows:

5 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0

1 1 0 1 Shift o 0 0 0o 0 o0 1 O

16-Bit Constant

Assembly Language Instructions



Instruction Set

4.2 Instruction Set

The following sections list the symbols and abbreviations used in the instruc-
tion set summary and in the instruction descriptions. The complete instruction
setsummary is organized according to function. A detailed description of each
instruction is listed in the instruction set summary.

4.2.1 Symbols and Abbreviations

Table 4-3 lists symbols and abbreviations used in the instruction set summary
(in Table 4—4) and the individual instruction descriptions.

4-11



Instruction Set

Table 4-3. Instruction Symbols

Symbol

Meaning

A
ACC
ARB
ARn
ARP
B
BIO
C
CM
CNF
D
DATn
dma
DP
FO
FSM
HM

INTM

MCS
nnh
oV

OVM

PA
PC
PFC
PM
pma
PRGN

RPTC

STn
SXM

TC
TOS
TXM

XF

Port address

Accumulator

Auxiliary register pointer buffer

Auxiliary register n (ARO, AR1 assembler symbols equal to 0 or 1)
Auxiliary register pointer \

4-bit field specifying a bit code

Branch contro! input

Carry bit

2-bit field specifying compare mode

On-chip RAM configuration control bit

Data memory address field

Label assigned to data memory location n
Data memory address

Data page pointer

Format status bit

Frame synchronization mode bit

Hold mode bit

Addressing mode bit

Interrupt mode flag bit -

Immediate operand field

Microcall stack

nnh = hexadecimal number (others are decimal values)
Overflow mode flag bit

Overflow mode bit

Product register

Port address (PAO-PA15 assembler symbols equal to 0 through 15)
Program counter

Prefetch counter

2-bit field specifying P register output shift code
Program memory address

Label assigned to program memory location n
3-bit operand field specifying auxiliary register
Repeat counter

4-bit left-shift code

Status register n (STO or ST1)

Sign-extension mode bit

Temporary register

Test control bit

Top of stack

Transmit mode bit

3-bit accumulator left-shift field

XF pin status bit

Assembly Language Instructions




Instruction Set

Table 4-3.  Instruction Symbols (Continued)

Symbol Meaning
ind Is assigned to
| An absolute value
italics User-defined items
[] Optional items
O Contents of
{} Alternative items, one of which must be entered
Blanks or spaces must be entered where shown.

4.2.2 Instruction Set Summary

Table 4—4 shows the instruction set summary for the TMS320C25 processor,
which is a superset of the TMS320C1x and TMS32020 instruction sets. In-
cluded in the instruction set are four special groups of instructions to improve
overall processor throughput and ease of use.

[ Extended-precision arithmetic (ADDC, SUBB, MPYU, BC, BNC, SC, and
RC)

3 Adaptive filtering (MPYA, MPYS, and ZALR)
3 Control and I/O (RHM, SHM, RTC, STC, RFSM, and SFSM)

[d Accumulator and register (SPH, SPL, ADDK, SUBK, ADRK, SBRK, ROL,
and ROR).

The instruction set summary is arranged according to function and alphabet-
ized within each functional grouping. Additional information is presented in the
individual instruction descriptions in the following section. A superscript indi-
cates instructions that are specific to the TMS320C2x, TMS320C25/E25, and
TMS320C26. ‘



Instruction Set

Table 4-4. Instruction Set Summary

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

Mnemonic and Description Words ' 16-Bit Opcode
MSB LSB

1100 1110 0001 1011
0000 SSss IDDD DDDD
0100 0011 IDDD DDDD
0100 1000 IDDD DDDD
1100 1100 KKKK KXKKK
0100 1001 IDDD DDDD
0100 1010 IDDD DDDD
1101 Ssss 0000 0010
0100 1110 IDDD DDDD
1101 Sssss 0000 0100
1100 1110 0010 0111
0010 SSSS IDDD DDDD
1100 1010 KKKK KKKK
0100 0010 IDDD DDDD
1101 sSSSs 0000 0001
1100 1110 0010 0011
1100 1110 1010 0010
0100 1101 IDDD DDDD
1101 Sssss 0000 0101
1100 1110 0011 0100
1100 1110 0011 0101
0110 1XXX IDDD DDDD
0110 OXXX IDDD DDDD
1101 ssss 0000 0011
1100 1110 0001 1000
1100 1110 0001 1001
0001 SSsSs IDDD DDDD
0100 1111 IDDD DDDD
0100 0111 IDDD DDDD
0100 0100 IDDD DDDD
1100 1101 KKKK KKKK

ABS Absolute value of accumulator

ADD Add to accumulator with shift

ADDC*  Add to accumulator with carry

ADDH Add to high accumulator

ADDK}  Add to accumulator short immediate

ADDS Add to low accumulator with sign-extension suppressed
ADDTT  Add to accumulator with shift specified by T register
ADLK Add to accumulator long immediate with shift
AND AND with accumulator

ANDKT  AND immediate with accumulator with shift
cmpLt Complement accumulator

LAC Load accumulator with shift

LACK Load accumulator short immediate

LACTt  Load accumulator with shift specified by T register
LALKYT Load accumulator long immediate with shift

NEGT  Negate accumulator

NORMT  Normalize contents of accumulator

OR OR with accumulator

ORKT OR immediate with accumulator with shift

ROL¥ Rotate accumulator left

ROR¥  Rotate accumulator right

SACt  Store high accumulator with shift

SACL Store low accumulator with shift

SBLKT  Subtract from accumulator long immediate with shift
SFLt Shift accumulator left

SFRt Shift accumulator right

SUB Subtract from accumulator with shift

sSuBBt  Subtract from accumulator with borrow

SUBC Conditional subtract

SUBH Subtract from high accumulator

SUBK?  Subtract from accumulator short immediate

MR HERERNNRERPERRERNREBBEBNRRERRRNRNERRRRB B

SUBS Subtract from low accumulator with sign extension 0100 0101 IDDD DDDD
suppressed

SUBTT  Subtract from accumutator with shift specified by 1 0100, 0110 IDDD DDDD
T register

XOR Exclusive-OR with accumulator 1 0100 1100 IDDD DDDD

XORKT  Exclusive-OR immediate with accumulator with 2 1101 Ssss 0000 0110
shift

ZAC Zero accumulator 1 1100 1010 0000 0000

ZALH Zero low accumulator and load high accumulator 1 0100 0000 IDDD DDDD

ZALR¥  Zero low accumulator and load high accumutator 1 0111 1011 IDDD DDDD
with rounding

ZALS Zero accumulator and load low accumulator with 1 0100 0001 IDDD DDDD

sign extension suppressed

t). This instruction is specific to the TMS320C2x instruction set.
t) This instruction is specific to the TMS320C25/E25 instruction set.

4-14 Assembly Language Instructions



Instruction Set

Table 44.  Instruction Set Summary (Continued)
AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS
Mnemonic and Description Words 16-Bit Opcode
MSB LSB
ADRK}  Add to auxiliary register short immediate 1 0111 1110 KKKK KKKK
CMPRt  Compare auxiliary register with auxiliary 1 1100 1110 0101 O0OKK
register ARO
LAR Load auxiliary register 1 0011 ORRR IDDD DDDD
LARK Load auxiliary register short immediate 1 1100 ORRR KKKK KKKK
LARP Load auxiliary register pointer 1 0101 0101 1000 1RRR
LDP Load data memory page pointer 1 0101 0010 IDDD DDDD
LDPK  Load data memory page pointer immediate 1 1100 100K KKKK KKKK
LRLKT  Load auxiliary register long immediate 2 1101 ORRR 0000 0000
MAR Modify auxiliary register 1 0101 0101 IDDD DDDD
SAR Store auxiliary register 1 0111 ORRR IDDD DDDD
SBRK¥  Subtract from auxiliary register short immediate 1 0111 1111 XKKK KKKK
T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS
Mnemonic and Description Words 16-Bit Opcode
MSB LSB
APAC  Add P register to accumulator 1 1100 1110 0001 0101
LPHT Load high P register 1 0101 0011 IDDD DDDD
LT Load T register 1 0011 1100 IDDD DDDD
LTA Load T register and accumulate previous product 1 0011 1101 IDDD DDDD
LTD Load T register, accumulate previous product and 1 0011 1111 IDDD DDDD
move data

Lrpt Load T register and store P register in accumulator 1 0011 1110 IDDD DDDD
Lrst Load T register and subtract previous product 1 0101 1011 IDDD DDDD
MACT  Multiply and accumulate 2 0101 1101 IDDD DDDD
MACDT Multiply and accumulate with data move 2 0101 1100 IDDD DDDD
MPY Multiply (with T register, store product in P register) 1 0011 1000 IDDD DDDD
MPYA¥ Multiply and accumulate previous product 1 0011 1010 IDDD DDDD
MPYK  Multiply immediate 1 101K KKKK KKKK KKKK
MPYS%  Multiply and subtract previous product 1 1100 1111 IDDD DDDD
MPYU¥ Multiply unsigned 1 0011 1011 IDDD DDDD
PAC Load accumulator with P register 1 1100 1110 0001 0100
SPAC  Subtract P register from accumulator 1 1100 1110 0001 0110
SPHE  Store high P register 1 0111 1101 IDDD DDDD
SPLY  Store low P register 1 0111 1100 IDDD DDDD
SPMT  Set P register output shift mode 1 1100 1110 0000 10KK
SQRAT  Square and accumulate 1 0011 1001 IDDD DDDD
SQRST  Square and subtract previous product 1 0101 1010 IDDD DDDD

1) This instruction is specific to the TMS320C2x instruction set.
1) This instruction is specific to the TMS320C25/E25 instruction set.



Instruction Set

Table 4-4.  Instruction Set Summary (Continued)

BRANCH/CALL INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

/0 AND DATA MEMORY OPERATIONS

1100 1110 0010 0100
1111 1110 1DDD DDDD
1100 1110 0010 0110
1100 1110 0001 1110

CALA  Call subroutine indirect
CALL Cali subroutine

RET Return from subroutine
TRAPT  Software interrupt

B Branch unconditionally 2 1111 1111 1DDD DDDD
BACCt Branch to address specified by accumulator 1 1100 1110 0010 0101
BANZ  Branch on auxiliary register not zero 2 1111 1011 1DDD DDDD
BBNZ! Branchif TC bit = 0 2 1111 1001 1DDD DDDD
BBzt Branchif TC bit=0 2 1111 1000 1DDD DDDD
BC* Branch on carry 2 0101 1110 1pDD DDDD
BGEZ  Branch if accumulator = 0 2 1111 0100 1DDD DDDD
BGZ Branch if accumulator > 0 2 1111 0001 1DDD DDDD
BIOZ Branch on I/O status = 0 2 1111 1010 1pDD DDDD
BLEZ Branch if accumulator < 0 2 1111 0010 1DDD DDDD
BLZ Branch if accumulator < 0 2 1111 0011 1DDD DDDD
BNCY  Branch on no carry 2 0101 1111 1DDD DDPD
BNVt Branch if no overflow 2 1111 0111 1DDD DDDD
BNZ Branch if accumulator = 0 2 1111 0101 1DDD DDDD
BV Branch on overflow 2 1111 0000 1pDD DDDD
BZ Branch if accumulator = 0 2 1111 0110 1DDD DDDD

1

2

1

1

1/0 AND DATA MEMORY OPERATIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

1111 1101 IDDD DDDD !
1111 1100 IDDD DDDD
0101 0110 IDDD DDDD
1100 1110 0000 111K
1000 AAAA IDDD DDDD
1110 AAAA IDDD DDDD
1100 1110 0011 0110
1100 1110 0010 0000
1100 1110 0000 1100
1100 1110 0011 0111
1100 1110 0010 0001
1100 1110 0000 1101
0100 1000 IDDD DDDD
0101 1001 IDDD DDDD

BLKDT  Block move from data memory to data memary
BLKPT  Block move from program memory to data memory
DMOV  Data move in data memory

FORTt  Format serial port registers

IN Input data from port

ouT Output data to port

RFSM}  Reset serial port frame synchronization mode
RTXMT Resetserial port transmit mode

RXFt  Resetexternal flag

SFSM¥  Set serial port frame synchronization mode
STXMT  Set serial port transmit mode

SXFt  Setexternal flag

TBLR Table read

TBLW  Table write

1)  This instruction is specific to the TMS320C2x instruction set.
t)  This instruction is specific to the TMS320C25/E25 instruction set.

L e Y T TN = X )

4-16 Assembly Language Instructions



Instruction Set

Table 4-4.  Instruction Set Summary (Continued)
CONTROL INSTRUCTIONS
Mnemonic and Description Words 16-Bit Opcode

MsB LSB
BITt Test bit 1 1001 BBBB IDDD DDDD
BITTT  Test bit specified by T register 1 0101 0111 IDDD DDDD
CNFDS  Configure block as data memory 1 1100 1110 0000 0100
CNFP8  Configure block as program memory 1 1100 1110 0000 0101
CONFS$ Configure block as data/program memory 1 1100 1110 0011 11KK
DINT Disable interrupt 1 1100 1110 0000 0001
EINT Enable interrupt 1 1100 1110 0000 0000
IDLET  Idle until interrupt 1 1100 1110 0001 1111
LST Load status register STO 1 0101 0000 IDDD DDDD
LST1T  Load status register ST1 1 0101 0001 IDDD DDDD
NOP No operation 1 0101 0101 0000 0000
POP Pop top of stack to low accumulator 1 1100 1110 0001 1101
POPDT Pop top of stack to data memory 1 0111 1010 IDDD DDDD
PSHDT  Push data memory value onto stack 1 0101 0100 IDDD DDDD
PUSH  Push low accumulator onto stack 1 1100 1110 0001 1100
Rc# Reset carry bit 1 1100 1110 0011 0000
RHME Reset hold mode 1 1100 1110 0011 1000
ROVM  Reset overflow mode 1 1100 1110 0000 0010
RPTT Repeat instruction as specified by data memory 1 0100 1011 IDDD DDDD

value

RPTKT Repeat instruction as specified by immediate value 1 1100 1011 KKKK KKKK
RSXMT Reset sign-extension mode 1 1100 1110 0000 0110
RTCY Reset test/control flag 1 1100 1110 0011 0010
sct Set carry bit 1 1100 1110 0011 0001
SHMmE Set hold mode 1 1100 1110 0011 1001
SOVM  Set overflow mode 1 1100 1110 0000 0011
SST Store status register STO 1 0111 1000 IDDD DDDD
ssT1t  Store status register ST1 1 0111 1001 IDDD DDDD
SSXMT  Set sign-extension mode 1 1100 1110 0000 0111
STC}  Settest/control flag 1 1100 1110 0011 0011

t)  This instruction is specific to the TMS320C2x instruction set.
t) This instruction is specific to the TMS320C25/E25 instruction set.
§) The CONF instruction is specific to the TMS320C26 instruction set; the instructions CNFD and CNFP are undefined.



Individual Instruction Descriptions

4.3 Individual Instruction Descriptions

Each instruction in the instruction set summary is described in the following
pages. Instructions are listed in alphabetical order. Information, such as
assembler syntax, operands, operation, encoding, description, words, cycles,
and examples, is provided for each instruction. An example instruction is pro-
vided to familiarize you with the special format used and to explain its content.
Refer to Section 4.1 for further information on memory addressing. Code ex-
amples using many of the instructions are given in Chapter 5, Software Appli-
cations.

4-18 ' Assembly Language Instructions



Example Instructions EXAMPLE

Syntax

Operands

Execution

Direct: [label ] EXAMPLE dma [, shift]
Indirect:  [/abel] EXAMPLE {ind} [, shift [ next ARP]]
Immediate: [ /abel] EXAMPLE [ constant ]

Each instruction begins with an assembler syntax expression. The optional
comment field that concludes the syntax is not included in the syntax
expression. Space(s) are required between each field ( label, command,
operand, and comment fields) as shown in the syntax. The syntax example il-
lustrates both direct and indirect addressing, as well as immediate addressing
in which the operand field includes constant .

The indirect addressing operand options, including bit-reversed (BR) address-
ing, are as follows:

TMS320C20: {*|*+|*~|*0+|*0-}
TMS320C25: {*|*+|*-|*0+|*0—|*BRO + | *BRO -}
O0=dma=s 127

OsnextARP <7
0 < constant < 255

Operands may be constants or assembly-time expressions referring to
memory, I/O and register addresses, pointers, shift counts, and a variety of
constants. The operand values used in the example syntax are shown. Note
that the next ARP on the TMS32020 is < 4 for auxiliary registers ARO — AR4.

(PC)+1—>PC :
(ACC) + [(dma) x 2 shift] - ACC

If SXM = 1:
Then (dma}) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by OVM and SXM.
Affects C (TMS320C25).

4-19



EXAMPLE Example Instructions

Encoding

Description

Words

Cycles

4-20

Direct:] 0 0 0 0 shift 0 Data Memory Address
Indirect:| o 0 0 0 shift 1 See Section 4.1
Immediate:| 1 0 o 13-Bit Constant

'20
'C25

'20
'C25

An example of the instruction operation sequence is provided, describing the
processing that takes place when the instruction is executed. Conditional ef-
fects of status register specified modes are also given. Those bits in the
TMS320C2x status registers affected by the instruction are also listed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode examples are shown of both direct and indirect addressing or of the
use of an immediate operand.

Instruction execution and its effect on the rest of the processor or memory con-
tents are described. Any constraints on the operands imposed by the proces-
sororthe assembler are discussed. The description parallels and supplements
the information given by the execution block.

1

The digit specifies the number of memory words required to store the instruc-
tion and its extension words.

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p '1+p — —
1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n+p

n+p

n+p

n+p

The table shows the number of cycles required for a given TMS320C2x instruc-
tion to execute in a given memory configuration when executed as a single in-
struction orinthe repeat mode. The column headings in the tables indicate the
program source location (Pl, PE, or PR) and data destination or source (DI or
DE), defined as follows:

Assembly Language Instructions



Example Instructions EXAMPLE

Pl
PR
PE
DI
DE

The instruction executes from internal program memory (RAM).
The instruction executes from internal program memory (ROM).
The instruction executes from external program memory.

The instruction executes using internal data memory.

The instruction executes using external data memory.

The number of cycles required for each instruction is given in terms of the pro-
gram/data memory and 1/O access times as defined in the following listing:

p

Program memory wait states. Represents the number of clock cycles
the device waits for external program memory to respond to an ac-
cess. Ty is the access time, in nanoseconds, (maximum) required by
the TMS320C2x for an external memory access to be made with no
wait states. Tmem is the memory device access time, and Ty, is the
clock period (4/crystal frequency).

p=0;If Tmem = Tac
p=1;lfTac<Tmems(Tp+Tac)

P=21f(Tp+ Tac) < Tmem s (Tpx 2+ Tyo)

p =K If[Tpx (k=1) + Tacl < Tmem = (Tp xk+ Tac)

Data memory wait states. Represents the number of cycles the device
must wait for external data memory to respond to an access. This
number is calculated in the same way as the p number.

1/0 memory wait states. Represents the number of cycles the device
must wait for external I/O memory to respond to an access. This num-
ber is calculated in the same way as the p number.

Other abbreviations used in the tables and their meanings are as follows:

br
int
INT
ext

n

Branch from ...

Internal program memory.
Interrupt.

External program memory.

The number of times an instruction is executed when using the RPT
or RPTK instruction.

Refer to Appendix D for further information on instruction cycle classifications
and timings.

4-21



EXAMPLE Example Instructions

Example ADD DAT1,3 ;(DP = 10)
or
ADD *,3 ;If current auxiliary register contains 1281.
Before Instruction After Instruction
Data Data
Memory 8h Memory 8h
1281 1281
ACC 2h ACC lzl 42h
C o]

The sample code presented in the above format shows the effect of the code
on memory and/or registers. The use of the carry bit (C) provided on the
TMS320C25 is shown in the small box.

4-22 ‘ Assembly Language Instructions



Absolute Value of Accumulator ABS

Syntax [label] ABS

Operands None

Execution (PCY+1—-PC
|(ACC)| — ACC

Affects OV; affected by OVM.
Affects C (TMS320C25).
Not affected by SXM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 o0 0 1 1 0 1 1

Description If the contents of the accumulator are greater than or equal to zero, the accu-
mulator is unchanged by the execution of ABS. If the contents of the accumula-
tor are less than zero, the accumulator is replaced by its 2s-complement value.

Note that 80000000h is a special case. When the overflow mode is not set, the
ABS of 80000000h is 80000000h. When in the overflow mode, the ABS of
80000000h is 7FFFFFFFh. In either case, the OV status bit is set. The carry
bit (C) on the TMS320C25 is always reset to zero by the execution of this in-

struction.
Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 1 1+p 1+p — —
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
20 n n n+p n+p — —
'C25 n n n+p n+p n n

4-23



ABS Absolute Value of Accumulator

Example ABS
Before Instruction . After Instruction
ACC 1234h ACC EI 1234h
C ‘ C
ACC OFFFFFFFFh . ACC E 1h
C C

4-24 _ Assembly Language Instructions



Add to Accumulator with Shit  ADD

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Direct:| 0 0 0 0

Indirect

.| o 0 0 0

Direct: [label ] ADD  dmal, shift]
Indirect:  [/abel] ADD  {ind} [, shift [, next ARP 1]
0=dma=127

OsnextARP <7
0 =< shift < 15 (defaults to 0)

(PC) +1 — PC
(ACC) + [(dma) x 2 shift] -~ ACC

if SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.

Affects OV, affected by OVM and SXM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

shift 0 Data Memory Address

shift 1 See Section 4.1

The contents of the addressed data memory location are left- shifted and add-
ed tothe accumulator. During shifting, low-order bits are zero-filled. High-order
bits are sign-extended if SXM = 1 and zero-filled if SXM = 0. The result is
stored in the accumulator. ‘

E

20
'C25

20
'C25

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-25



ADD Add to Accumulator with Shift

Example ADD DAT1,3 ;(DP = 10)
or
ADD *,3 ;If current auxiliary register contains 1281.
Before Instruction After Instruction
Data Data
Memory 8h Memory 8h
1281 1281

ACC 2h ACC E 42h
C Cc

4-26 ) Assembly Language Instructions



Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example 1

Direct:| 0 © 0 0 0 o 1 1 0

Indirect:] o 1 0 0 0o o 1 1 1

'C25

'C25

Add to Accumulator with Carry (TMS320C25) ADDC

Direct: [label ] ADDC dma
Indirect:  .[/abel] ADDC {ind} [, next ARP]
0 <dma =127

Osnext ARP <7

(PC) +1 - PC
(ACC) + (dma) + (C) = ACC

Affects OV'and C; affected by OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Data Memory Address

See Section 4.1

The contents ofthe addressed data memory location and the value ofthe carry
bit are added to the accumulator. The carry bit is then affected in the normal

manner.

The ADDC instruction can be used in performing multiple-precision arithmetic.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 14+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n ] 1+n+nd n+p 1+n+nd+p r n 1+n+nd
ADDC DATS5 ; (DP = 8)
or
ADDC * ;If current auxiliary register contains 1029.
, Before Instruction After Instruction
Data Data
Memory 4h Memory 4h
1029 1029
ACC EI 13h ACC E)] 18h
C C

4-27



ADDC Add to Accumulator with Carry (TMS320C25)

Example 2

4-28

ADDC DATS5
or
ADDC *

; (DP = 8)

;If current auxiliary register contains 1029.

Before Instruction

Data
Memory Oh

1029
OFFFFFFFFh

ACC
c

Data
Memory
1029

ACC

C

After Instruction

Oh

Oh

Assembly Language Instructions



Add to High Accumulator

ADDH

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

Direct

Indirect

'20
'C25

20
'C25

Direct: [ label ] ADDH dma
Indirect: [label ]
Osdmas127

O=snextARP <7

(PC) +1 ~PC
(ACC) + [(dma) x 216] — ACC

Affects OV; affected by OVM.
Affects C (TMS320C25).

Low-order bits of the ACC not affected.

15 14 13 12 11 10 9 8

ADDH {ind} [, next ARP]

40 1 o0 o0 1 0 0 O

Data Memory Address

40 1t 0 o0 1 0 0 O

See Section 4.1

The contents of the addressed data memory location are added to the upper
half of the accumulator (bits 31 through 16). Low-order bits are unaffected by
ADDH. The carry bit (C) on the TMS320C25 is set if the result of the addition
generates a carry; otherwise, Cis unaffected. The carry bitcan only be set, not

reset, by the ADDH instruction.

The ADDH instruction may be used in performing 32-bit arithmetic.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 14p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-29



ADDH Add to High Accumulator

Example ADDH DATS5
or
ADDH *

Data
Memory
1029

ACC
' C

4-30

; (DP = 8)

;If current auxiliary register contains 1029.

Before Instruction

4h

13h

Data
Memory 4h
1029
ACC B 40013h
C

After Instruction

Assembly Language Instructions



Add to Accumutator Short Immediate (TMS320C25) ADDK

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

Example

'C25

'C25

[label ] ADDK constant

0 < constant s 255

(PC)+1 - PC
(ACC) + 8-bit positive constant - ACC

Affects OVM and C; affected by OVM.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 o 1 1 o0 0 8-Bit constant

The 8-bitimmediate value is added, right-justified, to the accumulator with the
result replacing the accumulator contents. The immediate value is treated as
an 8-bit positive number, regardless of the value of SXM.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 14p BRET 1 1 i
Cycle Timings for a Repeat Execution
not repeatable
ADDK 5h

Before Instruction After Instruction

79B2E1h

79B2E6h

ACC

C

ACC @
Cc

4-31



ADDS Add to Accumulator with Sign-Extension Suppressed

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-32

Direct

Indirect

'20
'C25

'20
'C25

Direct: [label ] ADDS dma
Indirect: [label] ADDS {ind}[, next ARP ]

0 <dma =127
OsnextARP <7

(PC) + 1 —PC
(ACC) + (dma) — ACC
(dma) is a 16-bit unsigned number.

Affects OV; affected by OVM.
Affects C (TMS320C25).

Not affected by SXM.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0 1 0 o 1 0 0 1 0 Data Memory Address
0 1 0 0 1 o 0 1 1 See Section 4.1

The contents of the specified data memory location are added with sign-exten-
sion suppressed. The data is treated as a 16-bit unsigned number, regardless
of SXM. The accumulator behaves as a signed number. Note that ADDS pro-
duces the same results as an ADD instruction with SXM = 0 and a shift count
of 0.

1

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE 4 PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd |

Assembly Language Instructions



Add to Accumulator with Sign-Extension Suppressed AD DS

Example ADDS DAT11 :(DP = 6)
or
ADDS * ;If current auxiliary register contains 779.
Before Instruction After Instruction
Data Data
Memory 0F006h Memory 0F006h
779 779
ACC 3h ACC EI 0F00Sh
o]

C

4-33



ADDT Add to Accumulator with Shift Specified by T Register

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-34

Direct

Indirect

20
'C25

20 |

'C25

Direct: [label ] ADDT dma
Indirect: [label ] ADDT {ind} [, next ARP ]
0=<dma=<127

O<nextARP =<7
(PC)+1-PC
(ACC) + [(dma) x 2T register (3‘0)] — (ACC)

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV, affected by SXM and OVM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Memory Address

10 1 0 0 1 0o 1 0 1 See Section 4.1

The data memory value is left- shifted and added to the accumulator, with the
result replacing the accumulator contents. The left- shift is defined by the four
LSBs ofthe T register, resulting in shift options from 0 to 15 bits. Sign extension
on the data memory value is controlled by SXM.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions



Add to Accumulator with Shift Specified by T Register ADDT

Example ADDT DAT127
or
ADDT *

Data
Memory
639

ACC

i (DP = 4)

;If current

Before Instruction

auxiliary register contains 639.

Data
Sh Memory
639
OFF94h T
0F715h ACC [(ﬂ
C

After Instruction

gh

0FF94h

OF7A5h

4-35



ADLK Add to Accumulator Long Immediate with Shift

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-36

'20
'C25

‘20
'C25

[label ] ADLK constant [, shift ]

16-bit constant
0 = shift = 15 (defaults to 0)

(PC) + 2~ PC
(ACC) + [ constant x 2 shift]  ACC

If SXM = 1:
Then —32768 < constant < 32767.
If SXM = 0:

Then 0 s constant < 65535.

Affects OV; affected by OVM and SXM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 shift 0 0 0 0 0 o 1 0

16-Bit Constant

The 16-bitimmediate value, left- shifted as specified, is added to the accumula-
tor. The result replaces the accumulator contents. SXM determines whether
the constant is treated as a signed 2s-complement number or as an unsigned
number. The shift count is optional and defaults to zero.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+2p 2+2p —_ —
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable —_ —
not repeatable
ADIK 5,8

After Instruction
15EFh

Before Instruction

10EFh

ACC

C

ACC E
. Cc

Assembly Language Instructions



Add to Auxiliary Register Short Immediate (TMS320C25) ADRK

Syntax [label ] ADRK constant
Operands 0 = constant < 255
Execution (PC) +1 - PC
AR(ARP) + 8-bit positive constant — AR(ARP)
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:| 0 1 1 1 1t 1 1 0 8-Bit constant
Description The 8-bit immediate value is added, right-justified, to the currently selected

auxiliary register with the result replacing the auxiliary register contents. The
addition takes place in the ARAU, with the immediate value treated as an 8-bit
positive integer.

Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 not repeatable
Example ADRK 80h ; (ARP = 5)
Before Instruction After Instruction
AR5 4321h AR5 43A1h

4-37



AND AND with Accumulator

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-38

Direct

Indirect

20
'C25

'20
'C25

Direct: [label ] AND dma
Indirect: [label ] AND
0sdma =127

O=next ARP <7

(PC) + 1 PC
(ACC(15-0)) AND (dma) — ACC(15-0)
0 — ACC(31-16)

Not affected by SXM.

{ind} [, next ARP]

i5 14 13 12 11 10 9 7 6 5 4 2 1 0
o 1 0 0 1 1 1 0 Data Memory Address
] 0 1 0 0 1 1 1 1 See Section 4.1

The lower half of the accumulator is ANDed with the contents of the addressed
data memory location. The upper half of the accumulator is ANDed with all ze-
roes. Therefore, the upper half of the accumulator is always zeroed by the AND

instruction.
1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions



AND with Accumulator AND

Example AND DAT16 ;(DP = 4)
or
AND * ;If current auxiliary register contains 528.
Before Instruction After Instruction
Data Data
Memory OFFh Memory OFFh
528 528
ACC 12345678h ACC 00000078h
Cc Cc

4-39



ANDK AND Immediate with Accumulator with Shift

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-40

Direct
Indirect

20
'C25

'20
'C25

[label ]

16-bit constant -
0 < shift < 15 (defaults to 0)

(PC) + 2~ PC

ANDK constant [, shift ]

(ACC(30-0)) AND [( constant x 2 shift )] - ACC(30-0)

0 — ACC(31) and all other bit positions unoccupied by shifted constant.

Not affected by SXM.

15 14 13 12 11 10 9 8

d1 1 0 1 shift

. 16-Bit constant

The 16-bitimmediate constant is left-shifted as specified and ANDed with the
accumulator. The result is left in the accumulator. Low-order bits below and
high-order bits above the shifted value are treated as zeros, clearing the corre-
sponding bits in the accumulator. Note that the accumulator’s most-significant

bit is always zeroed regardless of the shift-code value.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+2p 2+42p —_
2 2 242p 2+2p 2
Cycle Timings for a Repeat Execution
not repeatable l —
not repeatable

ANDK OFFFFh,12

ACC

C

Before Instruction

12345678h

ACC

Cc

Assembly Language Instructions

After Instruction

02345000h




Add P Register to Accumulator APAC

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

Example

[label] APAC
None

(PC)+1-PC
(ACC) + ( shifted P register) - ACC

Affects OV; affected by PM and OVM.
Affects G (TMS320C25).
Not affected by SXM.

15 14 13 122 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 i1 0 0 O 0 1 0 1 0o 1

20
'C25

20
'C25

The contents of the P register are shifted as defined by the PM status bits and
added to the contents of the accumulator. The result is left in the accumulator.
APAC is not affected by the SXM bit of the status register; the P register is al-
ways sign-extended.

The APAC instruction is a subset of the LTA, LTD, MAC, MACD, MPYA, and
SQRA instructions.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p _— —
1 1 14p 14p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p — —
n n n+p n+p n n
APAC i (PM = 0)

Before Instruction After Instruction

P . 40h P 40h

ACC 20h ACC E 60h

C Cc

4-41



B Branch Unconditionally

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-42

[label ] B pma [,{ind} [, next ARP]]

0 < pma = 65535
O< nextARP <7

pma — PC
Modify AR(ARP) and ARP as specified.

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 11 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified, and control
passes to the designated program memory address (pma). Note that no AR
or ARP modification occurs if nothing is specified in those fields. The pma can
be either a symbolic or a numeric address.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 2 (int-to-int) 2+p (int-to-ext) — —
2+p (ext-to-int) 242p (ext-to-ext) - -
'C25 Destination on-chip RAM:
2 2 2+2p  2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
Cycle Timings for a Repeat Execution
20 not repeatable — —
'C25 not repeatable
B PRG191 ;191 is loaded into the program counter,

;and the program continues running from
;that location.

Assembly Language Instructions



Branch to Address Specified by Accumulator BACC

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
'C25
20
'C25
Example

[label ] BACC
None

(ACC(15-0)) — PC

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 © 1 0 0 1 0o 1

The branch uses the lower half of the accumulator (bits 15 — 0) for the branch
address.

9
Cycle Timings for a Single Instruction
PI/D} PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+p 2+p — —
Destination on-chip RAM:
2 2 2+p 2+p 2 2
Destination on-chip ROM:
3 3 3+p 3+p 3 3
Destination external memory:
3+p 3+p 3+2p 3+2p 3+p 3+p
Cycle Timings for a Repeat Execution
not repeatable - _
not repeatable
BACC
Before Instruction After Instruction
PC 16E4h PC 9545h
ACC OF7FF39545h ACC OF7FF9545h \
C o]

4-43



BANZ Branch on Auxiliary Register Not Zero

Syntax [label ] BANZ pma [{ind} [, next ARP ]]
Operands 0 < pma =< 65535
O=nextARP =7
Execution If AR (ARP) = 0:
Then pma — PC;
Else (PC) + 2 — PC.
Modify AR (ARP) as specified.
- Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 11 1 See Section 4.1
Program Memory Address
Description Controlis passed to the designated program memory address (pma) if the cur-
rent auxiliary register is not equal to zero. Otherwise, control passes to the next
instruction. The current auxiliary register and ARP are also modified as speci-
fied.
Description The current auxiliary register is either incremented or decremented from zero
when the branch is not taken. Note that the AR modification defaults to *-
(decrement current AR by one) when nothingis specified, making it compatible
with the TMS320C1x. The pma can be either a symbolic or a numeric address.
Words 2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 2 (int-to-int) 24p (int-to-ext) — —
2+p (ext-to-int) 2+2p (ext-to-ext) — —
'C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 . 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable —_ —
'C25 not repeatable

4-44 Assembly Language Instructions



Branch on Auxiliary Register Not Zero BANZ

Example 1 BANZ PRG35,

AR

PC

or
AR

PC

Example 2 BANZ PRG64,

AR

PC
or
AR

PC

EJ—

Before Instruction

1h

46h

Oh

46h

* o+

Before Instruction

OFFFFh

117h

oh

117h

AR

PC

AR

PC

AR

PC

AR

PC

After Instruction

oh

35h

OFFFFh

48h

After Instruction

oh

64h

1h

119h

Note:

BANZ is designed for loop control using the auxiliary registers as loop count-
ers. Using *0 + or *0 — allows modification of the loop counter by a variable
step size. Care must be exercised when doing this, however, because the
auxiliary registers behave as modulo 65 536 counters, and zero may be

passed without being detected if ARO > 1.

-

4-45



BBNZ Branch on TC Bit Not Equal to Zero

Syntax [label] BBNZ pma [{ind} [, next ARP]]
Operands 0 < pma < 65536

OsnextARP <7
Execution If test/control (TC) status = 1:

Then pma — PC;
Else (PC) + 2 — PC.
Modify AR (ARP) and ARP as specified.

Affected by TC bit
Encoding i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 See Section 4.1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if TC = 1. Otherwise, con-
trol passes to the next instruction. Note that no AR or ARP modification occurs
if nothing is specified in those fields. The pma can be either a symbolic or nu-
meric address. Note that the TC bit may be affected by the BIT, BITT, CMPR,
LST1, NORM, RTC, and STC instructions.

Words 2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 2 (int-to-int) 2+p (int-to-ext) — —
2+p (ext-to-int) 242p (ext-to-ext) —_ —

'C25 | True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3

Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 24+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable _ _
'C25 not repeatable
Example BBNZ PRG650 ;If TC = 1, 650 is loaded into the program

;counter ; otherwise, the program counter
;is incremented by 2. ‘

4-46 Assembly Language Instructions



Branch on TC Bit Equal to Zero

BBZ

Syntax
Operands

Execution

Encoding

Description

Words
Cycles

Example

‘20

'C25

20
'C25

[label]  BBZ pma [{ind} [, next ARP ]

0 = pma s 65536
O<snextARP <7

If test/control (TC) status bit = O:
Then pma — PC;
Else (PC) + 2 — PC.
Modify AR (ARP) and ARP as specified.

Affected by TC bit

15 14 13 12 1 i0 9 8 7 6 5 4 3 2 1

1 1 1 1 1 0 0 o0 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory addressif TC = 0. Otherwise, con-
trol passestothe nextinstruction. No AR or ARP modification occurrs if nothing
is speciified in those fields. The pma can be either a symbolic or a numeric ad-
dress. Note that the TC bit is affected by the BIT, BITT, CMPR, LST1, NORM,

RTC, and STC instructions.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 (int-to-int) 2+p (int-to-ext) - —
2+p (ext-to-int) 242p (ext-to-ext) — —
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM: :
3 3 3+2p 3+2p 3 3
Destination external memary:
3+4p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 242p 242p 2 2

Cycle Timings for a Repeat Execution

not repeatable — —_

not repeatable

BBZ PRG325 ;If TC = 0, 325 is loaded into the program
;counter; otherwise, the program counter
;1s incremented by 2.

4-47



BC Branch on Carry (TMS320C25)

Syntax [label ] BC pma  [{ind} [, next ARP]]
Operands 0 = pma =< 65536
OsnextARP =<7
Execution If carry bitC = 1:
Then pma — PC;
Eise (PC) + 2 — PC.
Modify AR (ARP) and ARP as specified.
Affected by TC bit
Encoding 15 14 13 1 10 9 8 7 6 5 4 3 2 1
0o 1 0 1 1 1 0 1 See Section 4.1
Program Memory Address
Description The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if the carry bit C is high.
Otherwise, control passesto the nextinstruction. Note that no AR or ARP mod-
ification occurs if nothing is specified in those fields. The pma can be either a
symbolic or a numeric address.
Notethatthe carry bit Cis affected by all add, subtract, and accumulate instruc-
tions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift instructions.
The carry bit is not affected by execution of BC, BNC, or nonarithmetic instruc-
tions.
Words 2
Cycles
Cycle Timings for a Single Instruction R
PI/DI PI/DE PE/DI J PE/DE PR/DI PR/DE
'C25 | True Conditions: )
Destination on-chip RAM:
2 2+2p 242p 2 2
Destination on-chip ROM:
3 3+2p 3+2p 3 3
Destination external memory:
3+p 343p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'C25 not repeatable
Example BC PRG512 ;If the carry bit C = 1, 512 is loaded into the

4-48

Assembly Language Instructions

;program counter. Otherwise, the PC is
;incremented by 2.




Branch if Accumulator Greater Than or Equal to Zero BGEZ

Syntax [label] BGEZ pma [, {ind}[, next ARP]]

Operands 0 < pma = 65536
OsnextARP =<7

Execution If (ACC) = O:
Then pma — PG;
Else (PC) + 2 — PC.
Modify AR (ARP) and ARP as specified.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0O 0 1 See Section 4.1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control then
~ passes to the designated program memory address (pma) if the contents of

the accumulator are greater than or equal to zero. Otherwise,.control passes

to the next instruction. Note that no AR or ARP modification occurs if nothing

is specified in those fields. The pma can be either a symbolic or a numeric ad-

dress.
Words 2
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 2 (int-to-int) 2+p (int-to-ext) —_ —
2+p (ext-to-int) 2+2p (ext-to-ext) —— #—
'C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+43p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable ] —_ I
'C25 not repeatable
Example ’ BGEZ PRG217 ;217 is loaded into the program counter if the

;accumulator is greater than or equal to zero.

4-49



BGZ Branch if Accumulator Greater Than Zero

Syntax [label] BGZ pma [,{ind}[,nextARP]]

Operands 0 < pma =< 65536
O=snextARP =<7

Execution If (ACC) > 0:
' Then pma — PC;
Else (PC) + 2 — PC.
Modify AR (ARP) and ARP as specified.

Encoding 15 14 13 12 N i0 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 o 1 1 See Section 4.1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are greater than zero. Otherwise, control passes to the next
instruction. Note that no AR or ARP modification occurs if nothing is specified
in those fields. The pma can be either a symbolic or a numeric address.

Words 2
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 2 (int-to-int) 2+p (int-to-ext) — —
2+p (ext-to-int) 2+2p (ext-to-ext) - -

'C25 | True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM: ‘
3 3 3+2p 3+2p 3 3
Destination external memory: .
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable J— —_
'C25 not repeatable
Example BGZ PRG342 7342 is loaded into the program counter if the

;accumulator is greater than or equal to zero.

4-50 Assembly Language Instructions



Branch on I/O Status Equal to Zero BIOZ

Syntax

Operands

Execution

Encoding

Description

Words

[label ] BIOZ pma [,{ind}[,next ARP]]

0 < pma < 65536
O=snextARP <7

IfBIO = O:
Then pma — PGC;
Else (PC) + 2 — PC.
Modify AR (ARP) and ARP as specified.

15 14 13 12 N 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the BIiO pinis low.
Otherwise, control passes to the nextinstruction. Note that no AR or ARP mod-
ification occurs if nothing is specified in those fields. The pma can be either a
symbolic or a numeric address.

BIOZ in conjunction with the BIO pin can be used to testif a peripheral is ready
to send or receive data. Polling the BIO pin by using BIOZ may be preferable
to an interrupt when executing time-critical loops.

2

4-51



BIOZ Branch on I/O Status Equal to Zero

Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 2 (int-to-int) 24p (int-to-ext) — —
2+p (ext-to-int) 242p (ext-to-ext) — —
'C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory: B
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable —_ o
'C25 not repeatable
Example BIOZ PRG64 ;If the BIO pin is active (low), then a branch
;to location 64 occurs.
4-52 Assembly Language Instructions




TestBit BIT

Syntax

Operands

Execution

Encoding

Description

Words

Direct: [label ] BIT dma , bit code
Indirect: [/abel] BIT {ind} , bit code [, next ARP]

0sdmas 127
O<nextARP <7
0 < bitcode < 15

(PC)+ — PC

(dma bit at bit address (15-bit code) ) — TC.

Affects TC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:| 1 0 0 1 Bit Code 0 Data Memory Address
Indirect:| 1 0 0 1 Bit Code 1 See Section 4.1

The BIT instruction copies the specified bit of the data memory value to the TC
bit of status register ST1. Note that the BITT, CMPR, LST1, and NORM instruc-
tions also affect the TC bit in status register ST1. A bit code value is specified
that corresponds to a certain bit address in the instruction, as given by the fol-

lowing table:
Bit Code
Bit Address 11 10 9 8
(LSB) 0 1 111
1 1 110
2 1 101
3 1 100
4 1 011
5 1 010
6 1 001
7 1 000
8 0 111
9 0 110
10 0 101
11 0 100
12 0 011
13 0 010
14 0 001
(MSB) 15 0 000

4-53



BIT Testsit

Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 2+d 1+p 2+d+p —_ —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 n 2n+nd n+p 2n+nd+p — —
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example BIT Oh, 8h ; (DP = 488)
or
BIT *,8 ;If current auxiliary register contains 0F400h.
Data Before Instruction Data After Instruction
. Memory 7E98h Memory 7E98h
F400h F400h
TC Oh TC 1h

Special circumstances and results have been identified when using this in-
struction with the TMS32020. Under the following three conditions, the BIT in-
struction may affect the contents within the accumulator:

1) The overflow mode is set (the OVM status bit is set to 1).

2) The two LSBs of the BIT instruction opcode word are zero.

a) Ifdirectmemoryaddressingis used, every fourth data word is affected
while all other locations remain unaffected.

b) [findirect memory addressing is used, the two LSBs will be zero when
a new ARP is not selected or when a new ARP is selected and that
ARP is 0 or 4.

3) Adding the contents of the accumulator and the contents of the addressed
data memory location, shifted by 2(bitcode), causes an overflow of the ac-
cumulator.

When all of these conditions are met, the contents of the accumulator will be
replaced by a positive or negative saturation value, depending on the polarity
of the overflow. To avoid this phenomenon, see TMS32020 Product
Notification in Appendix A.

4-54 Assembly Language Instructions



Test Bit Specified by T Register BITT

Syntax Direct: [label ] BITT dma
Indirect: [label ] BITT {ind} [, next ARP ]
Operands 0 =<dma =127
O=nextARP =<7
Execution (PC) +1—PC
(dma bit at bit address (15-T register(3-0) )} — TC
Affects TC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:{ 0 1 0 i 0 1 1 1 0 Data Memory Address
Indirect:] 0 1 0 10 1 1 1 1 See Section 4.1
Description The BITT instruction copies the specified bit of the data memory value to the

TC bit of status register ST1. Note that the BIT, CMPR, LST1, and NORM in-
structions also affect the TC bit in status register ST1. The bit address is speci-
fied by a bit code value contained in the LSBs of the T register, as given in the
following table: :

Bit Code
Bit Address 3210
(LSB) 0 1111
1 1110
2 1101
3 1100
4 1011
5 1010
6 1001
7 1000
8 0111
9 0110
10 0101
11 0100
12 0011
13 0010
14 0001
(MSB) 15 0000

Words 1

4-55



BITT Test Bit Specified by T Register

Cycles
Cycle TimIngs for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 2+d 14p 2+d+p — —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p — —
'Ca25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example BITT Oh ;Value in T register points to bit 14 of
;data word (DP 240).
or
BITT * ;If current auxiliary register contains 7800h.
Before Instruction After Instruction
Data Data
Memory 4DCsh Memory 4DC8h
7800h 7800h
TR 1h TR 1h
TC Oh TC 1h

4-56

Assembly Language Instructions




Branch if Accumulator Less Than or Equal to Zero BLEZ

Syntax [label]  BLEZ pma [{ind}[, next ARP ]|
Operands 0 < pma =< 65535

O=snextARP =<7
Execution If (ACC) < O:

Then pma — PC;
Else (PC) + 2 — PC.
Modify AR(ARP) and ARP as specified.

Encoding 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 10 t See Section 4.1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Controlthen
passes to the designated program memory address (pma) if the contents of
the accumulator are less than or equal to zero. Otherwise, control passes to
the next instruction. Note that no AR or ARP modification occurs if nothing is
specified in those fields. The pma can be either a symbolic or a numeric ad-

dress. ‘
Words 2
Cycles
Cycle Timings for a Single Instruction
PY/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 2 (int-to-int) 2+p (int-to-ext) — —
2+p (ext-to-int) 2+2p (ext-to-ext) — —
'C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
34p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'20 not repeatable — —
'C25 not repeatable
Example BLEZ PRG63 ;63 is loaded into the program counter if the

;accumulator is less than or equal to zero.

4-57



BLKD Block Move from Data Memory to Data Memory

Syntax

Operands

Execution

4-58

Direct: [label ] BLKD dmait ,dma2
Indirect: [label ] BLKD dmai ({ind} [, next ARP]

0 <dmai = 65535
0=dma2 =127
Osnext<ARP =<7

TMS32020:
(PC) + 2 - TOS

.dmail — PC

If (repeat counter) = 0:

Then (dmat, addressed by PC) — dma2,
Modify AR(ARP) and ARP as specified,
(PC) +1 — PC,

(repeat counter) — 1 — repeat counter.

Else (dmat, addressed by PC) — dma2
Modify AR(ARP) and ARP as specified.

(TOS) — PC
TMS320C25:

(PC)+2 —-PC
(PFC) — MCS
dmatl — PFC

If (repeat counter) = 0:

Then (dmat, addressed by PFC) — dma2,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 — PFC,

(repeat counter) — 1 — repeat counter. -

_Else (dma1, addressed by PFC) — dma2

Modify AR(ARP) and ARP as specified.
(MCS) — PFC

Assembly Langauge Instructions



Block Move from Data Memory to Data Memory BLKD

Encoding

Description

Words

Direct:] 1 1 1 1 1 1 0 1 0 Data Memory Address

Indirect:} 1+ 1+ 1 1 1 1 o 1]o0 See Section 4.1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Memory Address 1

Data Memory Address 1

Consecutive memory words are moved from a source data memory block to
a destination data memory block. The starting address (lowest) of the source
block is defined by the second word of the instruction. The starting address
of the destination block is defined by either the dma contained in the opcode
(for direct addressing) or the current AR (for indirect addressing). In the indi-
rect addressing mode, both the current AR and ARP may be modified in the
usual manner. Inthe direct addressing mode, dma2 is used as the destination
address for the block move but is not modified upon repeated executions ofthe
instruction. Thus, the contents of memory at the dma2 address will be the
same as the contents of memory at the last dma1 address in a repeat se-
quence.

RPT or RPTK must be used with the BLKD instruction, in the indirect address-
ing mode, if more than one word is to be moved. The number of words to be
moved is one greater than the number contained in the repeat counter RPTC
atthe beginning of the instruction. Atthe end of this instruction, the RPTC con-
tains zero and, if using indirect addressing, AR(ARP) will be modified to contain
the address after the end of the destination block. Note that the source and
destination blocks do not have to be entirely on-chip or off-chip. However,
BLKD cannot be used to transfer data from a memory-mapped register to any
other location in data memory.

The PC points to the instruction following BLKD after execution. Interrupts are
inhibited during a BLKD operation used with RPT or RPTK.

The BLKD instruction on the TMS32020 uses one level of stack. Therefore,
the value on the bottom of the stack is lost because the stack is pushed and
popped during the instruction operation.

2

4-59



BLKD Block Move from Data Memory to Data Memory

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE J PR/DI PR/DE
'C20 | Data source internal: .
3 3+d 3+2p 3+d+2p — —
Data source external: T
3+d 4+2d 3+d+2p 4+2d+2p — —
'C25 | Source data in on-chip RAM:
3 3+d 3+2p 3+d+2p 3 3+d
Source data in external memory:

4+d 4+2d 4+d+2p 4+2d+2p 4+d 4+2d
Cycle Timings for a Repeat Execution )
'C20 | Data source internal: 1
2+n 2+n+nd 2+n+2p 2+n+nd+ 2p — —
Data soure external: 1
2+n+nd  2+2n+2nd 2+ n+nd+2p 2+2n+2nd+2p — —

'C25 | Source data in on-chip RAM:

2+n 2+n+nd 2+n+2p 2+n+nd+2p 2+n 2+n+nd
Source data in external memory:
3+n+nd 2+n+nd  3+n+nd+2p 2+2n+2nd+2p  3+n+nd 2+2n+2nd

t Column headings DI/DE refer to data destination.

- 4-60 ‘ Assembly Langauge Instructions



Block Move from Data Memory to Data Memory BLKD

Example

RPTK 2

BLKD O0F400h,*+ ;If current auxiliary register contains 1030.

dma1l

Data
Memory
62464

Data
Memory
62465

Data
Memory
62466

dma2

Data
Memory
1030

Data
Memory
1031

Data
Memory
1032

Before Instruction

7F98h

OFFE6h

9522h

Before Instruction

7F98h

9315h

2531h

Data
Memory
62464

Data
Memory
62465

Data
Memory
62466

Data
Memory
1030

Data
Memory
1031

Data
Memory
1032

After Instruction

7F98h

OFFES6h

9522h

After Instruction

7F98h

OFFES6h

9522h

4-61



BLKP Block Move from Program Memory to Data Memory

Syntax

Operands

Execution

4-62

Direct: [label ] BLKP pma,dma

Indirect: [/abel ] BLKP pma{ind}{, next ARP]

0 < pma s 65535
0 <dma=i27
O=snextARP <7

TMS32020:

(PC) +2 —=TOS
pma — PC

If (repeat counter) = 0:
Then (pma, addressed by PC) — dma,
Modify AR(ARP) and ARP as specified,

(PC) + 1 — PC,
(repeat counter) — 1 — repeat counter.

Else (pma, addressed by PC) — dma
Modify AR(ARP) and ARP as specified.
(TOS) — PC

TMS320C25:

(PC)+2—=PC
(PFC) — MCS
pma — PFC

If (repeat counter) = 0:
Then (pma, addressed by PFC) — dma,
Modify AR(ARP) and ARP as specified,
' (PFC) +1 — PFC,
(repeat counter) — 1 — repeat counter,

Else (pma, addressed by PFC) — dma
Modify AR(ARP) and ARP as specified.
(MCS) — PFC

Assembly Langauge Instructions



Block Move from Program Memory to Data Memory BLKP

Encoding

Description

Words

Direct: 1 1 1 1 1 1 0 o o Data Memory Address

Indirect:] 1 1 1 1 1 1 0 O 1 See Section 4.1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Program Memory Address

Program Memory Address

Consecutive memory words are moved from a source program memory block
to a destination data memory block. The starting address (lowest) of the
source block is defined by the second word of the instruction. The starting ad-
dress of the destination block is defined by either the dma contained in the op-
code (for direct addressing) or the current AR (for indirect addressing). Inthe
indirect addressing mode, both the ARP and the current AR may be modified
in the usual manner. In the direct addressing mode, dma is used as the desti-
nation address for the block move but is not modified by repeated executions
of the instruction. Thus, the contents of memory at the dma address will be
the same as the contents of memory at the last pma address in a repeat se-
quence.

RPT or RPTK must be used with the BLKP instruction if more than one word
is tobe moved. The number of words to be moved is one greater than the num-
ber contained in the repeat counter RPTC at the beginning of the instruction.
Atthe end of this instruction, the RPTC contains zero and, if using indirect ad-
dressing, AR(ARP) will be modified to contain the address after the end of the
destination block. Note that source and destination blocks do not have to be
entirely on-chip or off-chip. '

The PC points to the instruction following BLKP after execution. Interrupts are
inhibited during a BLKP operation.

The BLKD instruction on the TMS32020 uses one level of stack. Therefore,
the value on the bottom of the stack is lost because the stack is pushed and
popped during the instruction operation.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this in-
struction and the program memory address used is less than 4096, an on-chip
ROM Iocation will be read. ’

2

4-63



BLKP Block Move from Program Memory to Data Memory

Cycles

4-64

'C20

'C25

'C20

'C25

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE ‘ I PR/DI I PR/DE
Program source internal: 1
3 3+d 3+2p 3+d+2p — —
Program source external: T
3+d 4+d+p 3+3p 4+d+3p — —
Table in on-chip RAM:
3 3+d 4+2p 4+d+2p 4 4+d
Table in on-chip ROM:
"4 4+d 4+2p 4+d+2p 4 4+d
Table in external memory:
4+p 4+d+p 4+3p 4+d+3p 44p 4+d+p

Cycle Timings for a Repeat Execution

Program source internal: t

2+n 2+n+nd 2+n+2p 2+n+nd +2p — —
Program source external: T
2+n+np  2+2n+nd+np 2+n+nd+2p 2+2n+nd+np+2p — —

Table in on-chip RAM:

2+n 2+n+nd 2+n+2p 2+n+nd+2p — —
Table in on-chip ROM:
3+n 3-+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd

Table in external memory: -
3+n+np  2+2n+nd+np 3+n+np+2p 2+2n+nd+ np+2p 3+n+np  2+2n+nd+np

1 Column headings DI/DE refer to data destination.

Assembly Langauge Instructions




Block Move from Program Memory to Data Memory BLKP

Example

RPTK 2

BLKP 65120,*+ ;If current auxiliary register contains 2048.

pma

dma

Data
Memory
65120

Data
Memory
65121

Data
Memory
65122

Data
Memory
2048

Data
Memory
2049

Data
Memory
2050

Before Instruction

0A08Sh

2DCEh

3AZFh

Before Instruction

1234h

2005h

0E98Ch

Data
Memory
65120

Data
Memory
65121

Data
Memory
65122

Data
Memory
2048

Data
Memory
2049

Data
Memory
2050

After Instruction

0AQ8Sh

2DCEh

3A9Fh

After Instruction

0A089h

2DCEh

3A8Fh

4-65



BLZ Branch if Accumulator Less Than Zero

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-66

'20

'C25

'20
'C25

[label ] BLZ pma [{ind}[, next ARP]]

0 =< pma =< 65535
O=snextARP =<7

If (ACC) < 0:
Then pma — PC;
Else (PC) +2 — PC.

Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8

7 6 5

4 3 2

1

0

1 1 1 1 0 o 1 1

1

See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are less than zero. Otherwise, control passes to the next in-
struction. Note that no AR or ARP modification occurs when nothing is speci-
fied in those fields. The pma can be either a symbolic or a numeric address.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/D! PR/DE
2(int-to-int) 2+p(int-to-ext) —_— -
24p(ext-to-int) 242p(ext-to-ext) —_ —_
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable — —_
not repeatable

BLZ PRG481 ;481 is loaded into the program counter if
sthe accumulator is less than zero.

Assembly Langauge Instructions




Branch on No Carry (TMS320C25) BNC

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

Example

'C25

'C25

[label ] BNC = pma [{ind} [, next ARP]]

0 < pma = 65535
OsnextARP =<7

If carry bit C = 0:
Then pma — PC;
Else (PC) +2 — PC.
Modify AR(ARP) and ARP as specified.
Affected by C.
15 14 13 12 1110 _9 8 7 6 5 4 3 2 1 0
0 1 0 11 1111 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Controlthen
passes to the designated program memory address if the carry bit C is low.
Otherwise, control passestothe nextinstruction. Note thatno AR or ARP mod-
ification occurs when nothingis specified inthose fields. The pma canbe either
a symbolic or a numeric address.

Notethatthe carry bit Cis affected by all add, subtract, and accumulate instruc-
tions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift instructions.
The carry bit is not affected by execution of the BC, BNC, or nonarithmetic in-
structions.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

BNC PRG325 ;If the carry bit C = 0, 325 is loaded into
;program counter. Otherwise, the PC is the
;incremented by 2.

4-67



BNV Branch if No Overflow

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-68

'20

'C25

'20
'C25

[label ] BNV pma [{ind} [, next ARP]]

0 < pma s 65535
O=<nextARP =<7

If overflow OV status bit = 0:

Then pma — PC;

Eilse (PC) +2 — PC and 0 — OV.
Modify AR(ARP) and ARP as specified.

Affects OV; affected by OV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

9

0

1 1 1 1 0 1 1 1 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the OV (overflow
flag) is clear. Otherwise, the OV is cleared, and control passes to the next in-
struction. Note that no AR or ARP modification occurs if nothing is specified

in those fields. The pma can he either a symbolic or a numeric address.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 (int-to-int) 2+p (int-to-ext) —_ —_
2+p (ext-to-int) 2+2p (ext-to-ext) — —
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
‘Cycle Timings for a Repeat Execution
not repeatable — ] —
not repeatable
BNV  PRG315 ;315 is loaded into the program counter if the

;joverflow flag is clear. OV is cleared.

Assembly Langauge Instructions




Branch if Accumulator Not Equal to Zero BNZ

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

20

'C25

'20
'C25

[label ] BNZ pma [{ind}[, next ARP]]

0 < pma =< 65535
OsnextARP =<7

If (ACC) = O:
Then pma — PC;
Else (PC) + 2 — PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 1 i0 9 8 7 6 5 4 3 2 1 0
11 1 1.0 1.0 1 A See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are not equal to zero. Otherwise, control passes to the next
instruction. Note that no AR or ARP modification occurs if nothing is specified
in those fields. The pma can be either a symbolic or a numeric address.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 (int-to-int) 2+p (int-to-ext) — —_—
2+p (ext-to-int) 2+2p (ext-to-ext) —_ —_
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM: ‘
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable J— J—
not repeatable

BNZ PRG320 ;320 is loaded into the program counter if the
;accumulator does not equal zero.

4-69



BV Branch on Overflow

Syntax

Operands

- Execution

Encoding

Description

Words

Cycles

Example

4-70

'20

'C25

'20
'C25

[label ] BV

0 < pma < 65535
OsnextARP =7

pma  [{ind} [, next ARP]]

If overflow (OV) status bit = 1:
Then pma — PC and 0 — OV;
Else (PC) + 2 — PC.
Modify AR(ARP) and ARP as specified.

Affects OV; affected by OV.

15 14 13 12

11 10 9 8 7 6 5

4

1

0

1 1 1 1

0 o 0 0 1

See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified, and the over-
flow flag is cleared. Control passes to the designated program memory ad-
dress (pma) if the OV (overflow flag) is set. Otherwise, control passes to the
nextinstruction. Notethatno AR or ARP modification occurs if nothing is speci-
fied in those fields. The pma can be either a symbolic or a numeric address.

2
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 (int-to-int) 2+p (int-to-ext) —_ —
2+p (ext-to-int) 2+2p (ext-to-ext) — —
True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Tlmlngs for a Repeat Execution
not repeatable — —_
not repeatable
BV PRG610 ;If an overflow has occurred since the overflow

;flag was last cleared, then 610 is loaded in

;the program counter and OV is cleared.

Assembly Langauge Instructions




Branch if Accumulator Equals Zero BZ

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

[label ] BZ pma  [{ind} [, next ARP]]

'20

'C25

‘20
'C25

0 <pma =65535
OsnextARP =<7

If (ACC) = 0:
Then pma — PC;

Else (PC) + 2 — PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 10 11 0 1 See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are equal to zero. Otherwise, control passes to the next in-
struction. Note that no AR or ARP modification occurs if nothing is specified
in those fields. The pma can be either a symbolic or a numeric address.

2
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 (int-to-int) 2+p (int-to-ext) — —
2+p (ext-to-int) 2+2p (ext-to-ext) — —_
True Conditions:
- Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeaf Execution
not repeatable — —
not repeatable

BZ PRG102 . ;102 is loaded into the program counter if
;the accumulator is equal to zero.

4-71



CALA cCall Subroutine Indirect

Syntax : [label] CALA
Operands None
Execution (PC) +1 - TOS

(ACC(15-0)) — PC

Encoding 15 14 13 12 1110 9 8 7 6 5 4 3 2 1. 0
1 1 0 0o 1 1 1 0 0 0 1 0 0 1 0

Description The currént program counter is incremented and pushed onto the top of the
stack. Then, the contents of the lower half of the accumulator are loaded into
the PC. The carry bit on the TMS320C25 is unaffected by this instruction.

The CALA instruction is used to perform computed subroutine calls.

Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
‘20 2 2 2+p 2+p — —

'C25 Destination on-chip RAM:
Destination on-chip RAM:

2 2 24p 24p 2 2
Destination on-chip ROM:
3 3 3+p 3+p 3 v 3
Destination external meémory:
3+p 3+p 3+2p 3+2p 3+p 3+p
Cycle Timings for a Repeat Execution
'20 not repeatable —_ —_
'C25 . not repeatable

4-72 Assembly Langauge Instructions



Call Subroutine Indirect CALA

Example

CALA

PC

ACC

Stack
(20)

Stack
('25)

Before Instruction

25h

83h

32h
75h
84h
49h

32h
75h

84h
48h
Oh
Oh
Oh

Oh

PC

ACC

Stack
(20)

Stack
('25)

After Instruction

83h

83h

26h
32h
75h
84h

26h
32h

75h
84h
48h
oh
Oh

Oh

4-73



CALL call Subroutine

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-74

[label] CALL pma [{ind} |, next ARP]]

0 < pma =< 65535
O=snextARP <7

(PC) + 2 - TOS
pma — PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 (4} 1 See Section 4.1

Program Memory Address

'20

'C25

20
'C25

The current auxiliary register and ARP are modified as specified, and the PC
(program counter) is incremented by two and pushed onto the top of the stack.
The specified program memory address (pma) is then loaded into the PC.
Note that no AR or ARP madification occurs if nothing is specified in those
fields. The pma can be either a symbolic or a numeric address.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 (int-to-int) 2+p (int-to-ext) —_ —
2+p (ext-to-int) 2+2p (ext-to-ext) — —
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
Cycle Timings for a Repeat Execution
not repeatable _— —
not repeatable

Assembly Langauge Instructions



Call Subroutine CALL

Example

CALL

pma

PRG109

Before Instruction

PC

33h

Stack
(‘20)

71h
48h
16h
80h

Stack
(25)

71h
48h

16h
80h
Oh
Oh
Oh

oh

PC

Stack
(20)

Stack
('25)

After Instruction

6Dh

35h
71h
48h
16h

35h
71h

48h
16h
80h
Oh
Oh

Oh

4-75



CMPL. complement Accumulator

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-76

'20
'C25

'20
'C25

[label ] CMPL

None
(PC)+1—-PC

(ACC) — ACC

15 14 13 12

1 10 9

1 1 0 0

1 1 1

The contents of the accumulator are replaced with its logical

complement).

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p —
1 1 1+p 1+p 1
Cycle Timings for a Repeat Execution
n n+p n+p —
n n+p n+p n
CMPL

Before Instruction

0F7982513h

ACC

C

Assembly Language Instructions

After Instruction

0867DAEChHh

inversion (1s




Compare Auxiliary Register with Auxiliary Register ARO CMPR

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

'C25

'20
'Ca5

[ label ] CMPR constant

OsCMs3‘

(PC)+1—=PC
Compare AR(ARP) to ARQ, placing result in TC bit of status register ST1.

Affects TC.
Not affected by SXM; does not affect SXM.

i5 14 13 12 1t 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0o 1 0 1 0 0 C™M

The CMPR instruction performs the following comparisons dependent on the
value of CM:

If CM = 00, test if AR(ARP) = ARO
If CM = 01, test if AR(ARP) < ARO
If CM = 10, test if AR(ARP) > ARO
If CM = 11, test if AR(ARP) = ARO

If the result of a test is true, a one is loaded into the TC status bit. Otherwise,
TC is loaded with a zero. The auxiliary registers are treated as unsigned inte-
gers in the comparison.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p —_ —_
1 1 1+p 14p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p — —
n n n+p n+p n n
CMPR 2 i (ARP = 4)

Before Instruction After Instruction

ARO OFFFFh ARO OFFFFh
AR4 7FFFh AR4 7FFFh
TC 1h TC oh

4-77



CNFD Configure Block as Data Memory

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-78

'20
'C25

'20
'C25

[label]  CNFD

None

(PC)+1—=PC
0 — RAM configuration control (CNF) status bit

Affects CNF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 0 o] 0 0 1 0 O

On-chip RAM block 0 is configured as data memory. The block is mapped to
locations 512 through 767 in data memory. This instruction is the complement
of the CNFP instruction and sets the CNF bit in status register ST1 to a zero.
CNF is also loaded by the CNFP and LST1 instructions.

On the TMS32020, the instruction fetch immediately following a CNFD or
CNFP instruction uses the old CNF value. The second fetch uses the new CNF
value, even if it is the fetch of the second word of a two-word instruction.

On the TMS320C25, the next two instruction fetches immediately following a
CNFD or CNFP instruction use the old value of CNF.

On the TMS320C26 this instruction is not valid and is undefined.
1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI  PR/DE
1 1 1+p 1+p — —
1 1 1+p 1+p 1 1
~ Cycle Timings for a Repeat Execution
n n n+p n+p — —
n n n+p n+p n n
CNFD ;A zero is loaded into the CNF status bit,

;thus configuring block B0 as data memory
; (see memory maps in Section 3.4).

Assembly Language Instructions



Configure Block as Program Memory CNFP

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

[label ] CNFP
None
(PC) +1—=PC

1 — RAM configuration control (CNF) status bit
Affects CNF.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 i 0 0 O 0 0 0 1 0 1

On-chip RAM block 0 is configured as program memory. The block is mapped
to locations 65280 through 65535 in program memory space. This instruction
is the complement of the CNFD instruction and sets the CNF bit in status regis-
ter ST1 to a one. CNF is also loaded by the CNFD and LST1 instruction.

Configuring this block as program memory allows the use of the program
counter as an address generator to access data from on-chip RAM. Used in
conjunction with the repeat instructions, this allows two data memory locations
to be addressed simultaneously, one from the auxiliary registers and one from
the program counter. Instructions that take advantage of this feature are the
MAC, MACD, BLKD, and BLKP instructions.

On the TMSSZOZO, the instruction fetch immediately following a CNFD or
CNFP instruction uses the old CNF value. The second fetch uses the new CNF
value, even if it is the fetch of the second word of a two-word instruction.

On the TMS320C25, the next two instruction fetches immediately following a
CNFD or CNFP instruction use the old value of CNF.

On the TMS320C286, this instruction is not valid and is undefined.

1

'20

'C25

20

'C25

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p — —

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

n n n+p n+p — —

n n n+p n+p n n

CNFP :The CNF bit is set to a logic 1, thus

;configuring block B0 as program memory
; (see memory maps in Section 3.4).

4-79



CONF Configure Blocks as Data/Program Memory (TMS320C26 Only)

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-80

'320C26

'320C26

[label ] CONF constant

0 = constant< 3

(PC)+1—PC
Constant — program/data memory configuration mode status bits

15 14 13 12 11 10 9 8 7 &6 5 4 3 2 1 0

1 1 0 0 1 1 i 0 0 O 1 11 1 CNF1 CNFO

The two low-order CNF bits of the instruction word are copied into the CNFO
and CNF1 field of status register ST1. The CNF0 and CNF1 status bits confi-
gure the on-chip RAM blocks into program or data memory. The bit combina-
tions and their meanings are shown below in the CONF mode decoding table.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 14p 14p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p n n
CONF Mode Decoding Table
CNF1 CNFo BO B1 B2 B3
0 0 data data data data
0 1 program data data data
1 0 program program data data
1 1 program program data program
CONF 2 ;Status register bit CNF1l is set to 1 and

;Status register bit CNF0 is set to 0, thus
;configuring the blocks B0 and Bl as
jprogram memory, B2 and B3 as data memory.

Assembly Language Instructions




Disable Interrupt DINT

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

'C25

20

'C25

[label ] DINT
None
(PC) + 1 —PC

1 — interrupt mode (INTM) status bit

Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 o0 0 0 0 o 0 1

The interrupt mode (INTM) status bit is set to logic 1. Maskable interrupts are
disabled immediately after the DINT instruction executes. Note that the LST
instruction does not affect INTM.

The unmaskable interrupt, RS, is not disabled by this instruction, and the inter-
rupt mask register (IMR) is unaffected. Interrupts are also disabled by a reset.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p — —_
1 1 14p 1+p 1 1
~ Cycle Timings for a Repeat Execution
n n n+p n+p — —
n n n+p n+p n n
DINT ;Maskable interrupts are disabled, and INTM is

;set to one.

4-81



DMOV Data Move in Data Memory

Syntax

Operands

Execution

Encoding

Description

Words

Cyi:les

4-82

Direct:] © 1 0 1 0 1 1 0 0

Indirect

'20
'C25

20
'C25

Direct: [label ] DMOV dma :
Indirect: [label ] DMOV {ind} [,<next ARP>]
0<dmas127

O=nextARP =7

(PC)+1—-PC

(dma) — dma + 1
Affected by CNF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Memory Address

il 0 1 0 1 0 1 1 0 1 See Section 4.1

The contents of the specified data memory address are copied into the con-
tents of the next higher address. DMOV works only within the on-chip data
RAM blocks BQ, B1, and B2. It works within block B0 if it is configured as data
memory and the data move function is continuous across the boundaries of
blocks B0 and B1; that is, it works for locations 512 to 1023. The data move
function cannot be used on external data memory. If used on external data
memory or memory-mapped registers, DMOV will read the specified memory
location but will perform no other operations.

When data is copied from the addressed location to the next higher location,
the contents of the addressed location remain unaltered.

The data move function is useful in implementing the z—1 delay encountered
in digital signal processing. The DMOV function is included in the LTD and
MACD instructions (see the LTD and MACD instructions or more information).

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions



Data Move in Data Memory DMOV

Example DMOV DATS

or
DMOV  *

Data
Memory
520

Data
Memory
521

; (DP=4)

;If current auxiliary register contains 520.

Before Instruction

43h

2h

. After Instruction

Data
Memory 43h
520

Data
Memory 43h
521

4-83



EINT Enable interrupt

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-84

20
'C25

'20
'C25

[label ]

None

(PC)+1—PC
0 — interrupt-mode (INTM) status bit

Affects INTM.

15 14

EINT

12

1 10 9

1 1

0

1 1 1

0 0

Theinterrupt-mode flag (INTM) in the status register is cleared to logic 0. Mask-
able interrupts are enabled after the instruction following EINT executes. This
allows an interrupt service routine to re-enable interrupts and execute a RET
instruction before any other pending interrupts are processed. Note that the
LST instruction does not affect INTM. (See the DINT instruction for further in-

formation.)
1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p — —
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p — —_—
n n n+p n+p n n
EINT ;Unmasked interrupts are enabled, and INTM is

;set to zero.

Assembly Language Instructions




Format Serial Port Registers FORT

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

20

'C25

'20

'C25

[ label ] FORT constant

Constant = 0 or 1

(PC)+1—=PC
Constant — format (FO) status bit

Affects FO.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0o 0 0 0 1 1. 1 |FO

1 1 0 0

The format (FO) status bit is loaded by the instruction with the LSB specified
in the instruction. The FO bit is used to control the formatting of the transmit
and receive shift registers of the serial port. If FO = 0, the registers are confi-
gured to receive/transmit 16-bit words. If FO = 1, the registers are configured
to receive/transmit 8-bit bytes. FO is set to zero on a reset.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p — —
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p — —
n n n+p n+p n n
FORT 1 ;The FO status bit is loaded with 1, making the

;bit length of the serial port 8 bits.

4-85



IDLE Idle Until Interrupt

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-86

[label] IDLE

'20
'C25

'20
'C25

None
TMS32020:
(PC)+1—-PC
TMS320C25:
(PC)+1—-PC

0 — interrupt mode (INTM) status bit

Affects INTM.

15 14 13 12

The IDLE instruction forces the program being executed to wait until an inter-
rupt or reset occurs. The PCis incremented only once, and the device remains
in an idle state until interrupted. On the TMS32020, the INTM bit must be set
to zero in order for the maskable interrupts to be recognized. On the
TMS8320C25, INTM is automatically set to zero. Execution of the IDLE instruc-
tion causes the TMS320C25 to enter the powerdown mode (see subsection
3.6.7). The on-chip timer continues to operate normally after execution of an

IDLE instruction,

1

Cycle Timings for a Single Instruction

P/DI | PIDE

PEDI | PE/DE

PR/DI

PR/DE

1 (min waits for INT)

1+p (min waits for INT)

(Interrupt) destination on-chip ROM

3 (min waits for INT)

(Interrupt) destination external memory:

3+2p (min waits for INT)

Cycle Timings for a Repeat Execution

not repeatable I

not repeatable

IDLE ;The processor idles until a reset or

;unmasked interrupt occurs.

Assembly Language Instructions




Input Data from Port IN

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Direct

Indirect

20
'C25

‘20
'C25

Direct: [label ]
Indirect: [label ]
0 sdma =127

Os=snextARP <7
0 =< port address PA < 15

(PC) + 1 — PC

IN dma,PA
IN {ind}, PA [, next ARP]

Port address — address bus A3-A0
0 — address bus A15-A4
Data bus D15-D0 — dma

i5 14 13 12 11 10 9 8 7 6 4 2 1 0
11 0 0 0 Port Address 0 Data Memory Address
o1 0 6 o0 Port Address 1 See Section 4.1

The IN instruction reads a 16-bit value from one of the external I/O ports into
the specified data memory location. The IS line goes low to indicate an 1/O ac-
cess, and the STRB, R/W, and READY timings are the same as for an external
data memory read.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1+i 2+d+i 2+p+i 3+d+p+i — —
24i 2+d+i 2+p+i 3+d+p+i 2+i 2+d+i
Cycle Timings for a Repeat Execution
n+ni 2n+nd+ni 2n+p+ni 3n+nd+p+ni — —
1+n+ni 2n+nd+ni 1+n+p+ni 1 +2n;r)d+p+ 1+n+ni 2n+nd+ni
i

4-87



IN Input Data from Port

Example IN STAT,PAS ;Read in word from peripheral on port address
;5. Store in data memory location STAT.
or
LRLK 1,520 ;Load AR1 with decimal 520.
LARP 1 ;Load ARP with decimal 520.
IN *—,PAl,0 ;Read in word from peripheral on port address

;1. Store in data memory location 520.
;Decrement ARl to 519,
;Load the ARP with 0.

4-88 ‘ Assembly Language Instructions



Load Accumulator with Shift LAC

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Direct: [label ] LAC  dma |, shift]
Indirect: [label] LAC  {ind} [, shift [, next ARP ]|
O0=dmas127

O=nextARP <7
0 =< shift < 15 (defaults to 0)

(PC) +1—=PC

(dma) x 2 shift = ACC

If SXM = 1:

Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.
Affected by SXM.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:| 0 0 1 0 Shift 0 Data Memory Address
Indirect:] o 0 1 ] Shift 1 See Section 4.1

The contents of the specified data memory address are left-shifted and loaded

into the accumulator. During shifting, low-order bits are zero-filled. High-order

bits are sign-extended if SXM = 1 and zeroed if SXM = 0.

1

Cycle Timings for a Single Instruction
PI/D1 PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 2+d 1+p 2+d+p — —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
‘20 n 2n+nd n+p 2n+nd+p — —
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-89



LAC Load Accumulator with Shift

Example LAC DAT6,4 ; (DP = 8)
or
LAC *,4 sIf current auxiliary register contains 1030.
Before Instruction After Instruction
Data Data
Memory 1h Memory 1h
1030 1030
ACC 12345678h ACC 10h
o] C

4-90 Assembly Language Instructions



Load Accumulator Immediate Short LACK

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

20
'C25

'20
'C25

[label ] LACK constant

0 s constant < 255

(PC)+1—=PC
8-bit positive constant — ACC

Not affected by SXM.

15 14 13 12 1t 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0o 1 0 8-Bit Constant

The 8-bit constant is loaded into the accumulator right-justified. The upper 24
bits of the accumulator are zeroed (that is, sign extension is suppressed).

4

Cycle Timings for a Single Instruction
P1/Dt PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p — —
1 1 1+p 1+p — —

Cycle Timings for a Repeat Execution
not repeatable — —

not repeatable
LACK 15h

After Instruction

ACC 15h
C

Before Instruction

ACC , 31h

c

4-91



LACT Load Accumulator with Shift Specified by T Register

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-92

Direct: LACT dma

Indirect:

[label ]
[label ]

0sdmas127
O<snextARP <7

(PC) + 1 — PC
(dma) x 2T register(3—0) — ACC

If SXM = 1:

Then (dma) is sign-extended.
IfSXM = 0:

Then (dmay) is not sign-extended.

Affected by SXM.

15 14 13 12 11 10 9 8

LACT {ind} [, next ARP]

5 4

2 1

0

Direct:} © 1 0 0 0 0o 1 0

Data Memory Address

Indirect:] o 1 0 60 o o0 ‘1 0

20
'C25

20
'C25

See Section 4.1

The LACT instruction loads the accumulator with a data memory value that has
been left-shifted. The left-shift is specified by the four LSBs of the T register,
resulting in shift options from 0 to 15 bits. Using the T register’s contents as

a shift code provides a variable shift mechanism.

LACT may be used to denormalize a floating-point number if the actual expo-
nentis placed in the four LSBs of the T register and the mantissa is referenced
by the data memory address. Note that this method of denormalization can be

used only when the magnitude of the exponent is four bits or less.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p -1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions




Load Accumulator with Shift Specified by T Register LACT

Example LACT DAT1 ;(DP = 6)
or
LACT * ;If current auxiliary register contains 769.
Before Instruction After Instruction
Data Data
Memory 1376h Memory 1376h
769 769
ACC 98F7EC83h ACC 13760h
o] Cc
T 3014h T 3014h

4-93



LALK Load Accumulator Long Immediate with Shift

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-94

'20
'C25

'20
'C25

[label]

16-bit constant

LALK constant [, shift]

0 < shift < 15 (defaults to 0)

(PC) +2 — PC

Constant x 2shift - ACC

If SXM = 1:

Then —32768 = constant < 32767.

If SXM = 0:

Then 0 s constant <= 65535.

Affected by SXM.

15 14 13 12 11 10 9 8

1 1 0 1

shift

16-Bit Constant

The left-shifted 16-bit immediate value is loaded into the accumulator. The
shifted 16-bit constant is sign-extended if SXM = 1; otherwise, the high-order
bits of the accumulator (past the shift) are set to zero. Note that the MSB of the
accumulator can be set only if SXM = 1 and a negative number is Ioaded The
shift count is optional and defaults to zero.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+2p 2+2p — —
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable —_ —
not repeatable

Assembly Language Instructions



Load Accumulator Long Immediate with Shift LALK

Example 1

Example 2

LALK O0F794h,8

; (SXM=1):

Before Instruction

ACC

12345678h

C

LALK OF794h,8

; (SXM=0):

Before Instruction

ACC

12345678h

C

After Instruction

OFFF79400h

soo

C

After Instruction

0F79400h

ACC

4-95



LAR Load Auxiliary Register

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

4-96

Direct:] 0 O 1 1.0 AR 0 Data Memory Address

Indirect:] o o 1 1 0 AR 1 See Section 4.1

'20
'C25

20
'C25

Direct: [/abel] LAR AR dma
Indirect:[ label ] LAR AR, {ind} [, next ARP]

0<dma=<127
0 s auxiliary register AR s 7
OsnextARP =7

(PC)+1—-PC
(dma) — auxiliary register AR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 i 0

The contents of the specified data memory address are loaded into the desig-
nated auxiliary register (AR).

The LAR and SAR (store auxiliary register) instructions can be used to load
and store the auxiliary registers during subroutine calls and interrupts. If an
auxiliary register is not being used for indirect addressing, LAR and SAR en-
able the register to be used as an additional storage register, especially for
swapping values between data memory locations without affecting the con-
tents of the accumulator.

1

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/D! PR/DE
1 2+d 14+p 2+d+p — ' —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 2n+nd n+p 2n+nd+p n 2n+nd

Assembly Language Instructions



Load Auxiliary Register LAR

-Example 1 LAR  ARO,DAT10 ; (DP = 4)
Before Instruction After Instruction
Data Data
Memory 18h Memory 18h
522 522
ARO 6h ARO 18h
Example 2 LARP AR4

LAR AR4,*—

Before Instruction After Instruction
Data Data
Memory 32h Memory 32h
617 617
AR4 617h AR4 32h

Note:

LAR, inthe indirect addressing mode, ignores any AR modifications ifthe AR
specified by the instruction is the same as that pointed to by the ARP. There-
fore, in Example 2, AR4 is not decremented after the LAR instruction.

4-97



LARK Load Auxiliary Register Immediate Short

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-98

'20
'C25

20
'C25

[label ] LARK AR, constant

0 =< constant = 255
0 < auxiliary register AR < 7

(PC)+1—PC
8-bit constant — auxiliary register AR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 .0 0 0 AR 8-Bit Constant

The 8-bit positive constant is loaded into the designated auxiliary register (AR)
right-justified and zero-filled (that is, sign-extension suppressed).

LARK s useful for loading an initial loop counter value into an auxiliary register
for use with the BANZ instruction.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 14p 14p — —_
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable — —
not repeatable
LARK ARO0,15
. Before Instruction After Instruction
ARO oh ‘ ARO 15h

Assembly Language Instructions



Load Auxiliary Register Pointer LARP

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

20
'C25

'C25

[label] LARP - constant

O=sconstant<7

(PC) + 1 - PC
(ARP) — ARB
Constant — ARP

Affects ARP and ARB.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0o 1 o 1 1 0 0 0 1 ARP

The auxiliary register pointer is loaded with the contents of the three LSBs of
the instruction (a 3-bit constant identifying the desired auxiliary register). The
old ARP is copied to the ARB field of status register ST1. ARP can also be mo-
dified by the LST, LST1, and MAR instructions, as well as any instruction that
is used in the indirect addressing mode.

The LARP instruction is a subset of MAR; that is, the opcode is the same as
MAR in the indirect addressing mode. The following instruction has the same
effect as LARP:

MAR *,constant

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p — —

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

n n n+p n+p — —_

n n n+p n+p n n

LARP 1 ;Aﬁy succeeding instructions will use auxiliary

;register ARl for indirect addressing.

4-99



LDP Load Data Memory Page Pointer

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-100

Direcf: [label ] LDP dma

Indirect: [label ] LDP  {ind} [, next ARP]

0=dma=127

O=<nextARP <7

(PC)+1—=PC

Nine LSBs of (dma) — data page pointer register (DP) status bits

Affects DP.

15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

Direct:f © t 0 1 0 0 1 0 Data Memory Address

Indirect:] o 1 0 1 0 0 1

20
'C25

20
'C25

See Section 4.1

The nine LSBs of the contents of the addressed data memory location are
loaded into the DP (data memory page pointer) register. The DP and 7-bit data
memory address are concatenated to form 16-bit data memory addresses.
The DP may also be loaded by the LST and LDPK instructions.

1

" Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p —_ —_
n 2n+nd n+p 2n+nd+p n 2n+nd
LDP DAT127 ;(DP = 511)
or
LDP * ;If current auxiliary register contains 65535.
Before Instruction After Instruction
Data Data
Memory OFEDCh Memory OFEDCh
65535 65535
DP 1FFh DP 0DCh

Assembly Language Instructions



Load Data Memory Page Pointer Inmediate

LDPK

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

20
'C25

'20
'C25

[ label ]

LDPK constant

0 < constant < 511

(PC) +1—PC
Constant — data memory page pointer (DP) status bits
Affects DP.
15 14 13 12 11 10 9 7 6 4 3 1.0
1 1t 0 0 1 0 O DP

The DP (data memory page pointer) register is loaded with a 9-bit constant.
The DP and 7-bit data memory address are concatenated to form 16-bit direct
data memory addresses. DP = 8 specifies external data memory. DP = 4
through 7 specifies on-chip RAM blocks B0 or B1. Block B2 is located in the
upper 32 words of page 0. DP may also be loaded by the LST and LDP instruc-

tions.
1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 14p 14p — —
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable —_ —
not repeatable
LDPK 64 ;The data page pointer is set to 64.

4-101



LPH Load High P Register

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-102

Direct: [label ] LPH
Indirect: [label ] LPH
0 <dmas127

O=snextARP <7

(PC)+1—=PC .
(dma) — P register (31 — 16)

15 14 183

12 11 10 9

dma
{ind} [, next ARP]

5 4 3 2

1 0

Direct:] 0 1 0

Data Memory Address

Indirect:] o 1 0

'20
'C25

20
'C25

See Section 4.1

The P register high-order bits are loaded with the contents of datamemory. The
low-order P register bits are unaffected.

The LPH instruction is particularly useful for restoring the high-order bits of the
P register after subroutine calls or interrupts.

1
Cycle Timings for a Single Instruction
PI/Di PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 14p 2+d+p — —_—
1 2+d 1+p 2+d+p 1 2+d
' Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
LPH DATO ; (DP = 4)
or
LPH  * ;If current auxiliary register contains 512.
Before Instruction After Instruction
Data Data
Memory OF79Ch Memory OF79Ch
512 512
P 30079844h P F79C9844h

Assembly Language Instructions



Load Auxiliary Register Long Immediate LRLK

Syntax

Operands
. Execution
Encoding

Description

Words

Cycles

Example

20
'C25

'20
'C25

[label ] LRLK AR, constant

0 < auxiliary register <7
0 =< constant < 65535

(PC)+2—-PC
Constant — AR
Not affected by SXM; does not affect SXM.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 AR 0 0 0 0 0 0 0 O

16-Bit Constant

The 16-bitimmediate value is loaded into the auxiliary register specified by the
AR field. The specified constant must be an unsigned integer, and its value is
not affected by SXM.

2

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+2p 2+2p — —
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable —_— —_

not repeatable

LRLK AR3,3080h
Before Instruction After Instruction

AR3 7F80h AR3

3080h

4-103



LST Load Status Register STO

Syntax

Operands

Execution

Encoding

Description

Words .

Cycles

4-104

Direct

Indirect

'20
'C25

'20
'C25

Direct: [label ]
Indirect: [1abel }
O0=<dmas=127

O<snextARP <7

(PC) + 1 - PC

LST
LST

(dma) — status register STO

dma

{ind} [, next ARP]

Affects ARP, OV, OVM, and DP.
Does not affect INTM or ARB.

15 14 12 N i0 9 8 7 6 5 4 1 0
o0 1 1 0 0 0 0 Data Memory Address
do 1 1 0 0 O 1 See Section 4.1

Status register STO is loaded with the addressed data memory value. Note that
the INTM (interrupt mode) bitis unaffected by LST. ARBis also unaffected even
though a new ARP is loaded. If a next ARP value is specified via the indirect
addressing mode, the specified value is ignored. Instead, ARP is loaded with

the value contained within the addressed data memory word.

The LST instruction is used to load status register STO after interrupts and sub-
routine calls. The STO contains the status bits: OV (overflow flag) bit, OVM
(overflow mode) bit, INTM (interrupt mode) bit, ARP (auxiliary register pointer),
and DP (data memory page pointer). These bits were stored (by the SST in-
struction) in the data memory word as follows:

15 14 12 10 9 8 7 6 5 4 1 0
| are | ov|owm| 1] inTw| DP |
1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —_
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 2n+nd n+p 2n+nd+p n 2n+nd

Assembly Language Instructions



Load Status Register ST0 LST

LARP 0
LST *,1

Example 1

Example 2 LST 60h

Data
Memory
96

ST0

ST1

Example 3 LARP AR4

LST *—

AR4

Data
Memory
1023

ST0

ST1

LARP AR4
LST  *—,1

Example 4

AR4

Data
Memory
1023

STO

ST1

; The data memory word addressed by the contents
;of auxiliary register ARO is loaded into
;status register STO0, except for the INTM bit.
;Note that even though a next ARP value is
;specified, that value is ignored, and even
;though a new ARP is loaded, the old ARP is not

;loaded into ARB.

;(DP = 0)

Before Instruction

2404h

6EQCh

0580h

; (AR4 = 3FFh)

Before Instruction

3FFh

0CEO6h

0FCO04h

OE780h

; (AR4= 3FFh)

Before Instruction

3FFh

OEE04h

OEEOOh

OF780h

Data
Memory
96

ST0

ST1

AR4

Data
Memory
1023

STO

ST1

AR4

Data
Memory
1023

STO

ST1

After Instruction

2404h

2604h

0580h

After Instruction

3FEh

0CEO06h

0CCo6h

OE780h

After Instruction

3FEh

OEEO04h

OEEO4h

OF780h

4-105



LST1 Load Status Register ST1

Syntax

Operands

Execution

Encoding

Description

Words

4-106

Direct:| 0 1 0 1 0 0 0 1 0 Data Memory Address

Indirect:| 0 1 0 1 0 0 0 1 1 See Section 4.1

Direct: [/abel ] LST1 dma
Indirect: [label ] LST1 {ind} [, next ARP]

0=dmas 127
O<nextARP <7

(PC)+1—PC
(dma) — status register ST1
(ARB) — ARP

Affects ARP, ARB, CNF, TC, SXM, XF, FO, TXM, and PM.
Affects C, HM, and FSM (TMS320C25)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status register ST1 is loaded with the data memory value. The bits of the data
memory value, which are loaded into ARB, are also loaded into ARP to facili-
tate context switching. Note that if a next ARP value is specified via the indirect
addressing mode, the specified value is ignored.

LST1 is used to load status bits after interrupts and subroutine calls. ST1 con-
tains these status bits: ARB (auxiliary register pointer buffer), CNF (RAM con-
figuration control), TC (test/control), SXM (sign-extension mode), XF (external
flag), FO (serial port format), TXM (transmit mode), and the PM (product regis-
ter shift mode). ST1 on the TMS320C25 also contains status bits: C (carry),
HM (hold mode), and FSM (frame synchronization mode). On the TMS32020,
bits 5, 6, and 9 are ones. The bits loaded into status register ST1 from the data
memory word are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
are | onFE| Tc| sxm| ot [ 1 13| Hmi{rsmd] xF [Foltxm] Pm |

1 Onthe TMS32020, bits 5, 6, and 9 are ones.
¥ On the TMS320C26, bits 12 and 7 hold CONFO and CNF1, respectively (see the CONF
instruction for decoding).

Assembly Language Instructions



Load Status Register ST1  LST1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p — —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p — —
'C25 n 2n+nd n+p 2n+nd+p n 2n+nd
Example 1 LARP 3
LST1 *— ;The data memory word addressed by the contents
;of auxiliary register AR3 replaces the status
;bits of status register ST1, and AR3 is
;decremented.
Example 2 LST1 61h ;(DP = 0)
Before Instruction After Instruction
Data Data
Memory 0580h Memory 0580h
97 97
STO 0ACO0Oh STO 0CO00h
ST1 0581h ST1 0580h
Example 3 LARP AR4 ; (AR4 = 3FEh)
LST1 *—
Before Instruction After Instruction
AR4 3FEh AR4 3FDh
Data Data
Memory 4F90h Memory 4F90h
1022 1022
STO 0FC04h STO 5C04h
ST1 0E780h ST1 4F30h

4-107




LST1 Load Status Register ST1

Example 4 LARP AR4

LST1 *—,1

AR4

Data
Memory
1022

STO

ST1

4-108

; (AR4 = 3FEh)

Before Instruction

3FEh

6190h

0FEO4h

0593h

After Instruction

AR4 3FDh
Data

Memory 6190h
1022
STO 7EQ4h
ST1 6190h

Assembly Language Instructions



Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

Load T Register LT
Direct: [label ] LT dma
Indirect:  [label] LT {ind} [, next ARP]
0=dma=<127

OsnextARP <7

(PC) +1 — PC

(dma) — T register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:} 0 0 1 101 1 0 0 0 Data Memory Address
Indirect;] 0 o0 1 1 1 1 0 0 1 See Section 4.1

20
'C25

20
'C25

The T register is loaded with the contents of the specified data memory ad-
dress (dma). The LT instruction may be used to load the T register in prepara-
tion for multiplication. See the LTA, LTD, LTP, LTS, MPY, MPYK, MPYA, MPYS,
and MPYU instructions.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
LT DAT24 ; (DP = 8)
or
LT * ;If current auxiliary register contains 1048.
Before Instruction After Instruction
Data Data
Memory 62h Memory 62h
1048 1048
T 3h T 62h

4-109



LTA Load T Register and Accumulate Previous Product

Syntax Direct: [ label ] LTA  dma
Indirect: [label ] LTA  {ind} [, next ARP]

Operands O0=sdmas127
O=nextARP =<7

Execution (PC)+1—=PC
(dma) — T register
(ACC) + (shifted P register) — ACC

Affects OV; affected by OVM and PM.
Affects C (TMS320C25).

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:| 0 © 1 1 1 0 1 0 Data Memory Address
Indirect:] 0 0 1 11 1 0 1 1 See Section 4.1
Description The T register is loaded with the contents of the specified data memory ad-

dress (dma). The contents of the product register, shifted as defined by the PM
status bits, are added to the accumulator, with the result left in the accumulator.

The function of the LTA instruction is included in the LTD instruction.

Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 2+d 1+p 2+d+p —_ —_—
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 n © 2n+nd n+p 2n+nd+p —_ -
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-110 Assembly Language Instructions



Load T Register and Accumulate Previous Product LTA

Example LTA  DAT36 ;(DP = 6, PM = 0)
or
LTA * ;If current auxiliary register contains 804.
Before Instruction After Instruction
Data Data
Memory 62h Memory 62h
804 804
T 3h T 62h
P OFh P OFh
ACC 5h ACC E)] 14h
C Cc

4-111



LTD Load T Register, Accumulate Previous Product, and Move Data

Syntax

Operands

Execution

Encoding

Description

Words

4-112

Direct

Indirect

20
'C25

20
'C25

] 0 0 1 1 1 11 1 0 Data Memory Address

Direct: [label ] LTD dma
Indirect:,  [label] LTD  {ind} [, next ARP]

0<dma=<127
O<nextARP =<7

PC)+1—=PC

(dma) — T register

(dma) — dma + 1

(ACC) + (shifted P register) - ACC

Affects OV; affected by OVM and PM.
Affects C (TMS320C25).

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 O 1 1 1 1 1 1 1 See Section 4.1

The T register is loaded with the contents of the specified data memory ad-
dress (dmay). The contents of the P register, shifted as defined by the PM status
bits, are added to the accumulator, and the result is placed in the accumulator.
The contents of the specified data memory address are also copied to the next
higher data memory address.

This instruction is valid for blocks B1 and B2 and is also valid for block BO if
block B0 is configured as data memory. The data move function is continuous
across the boundary of blocks B0 and B1 but cannot be used with external data
memory or memory-mapped registers. This function is described under the in-
struction DMOV. Note that if used with external data memory, the function of
LTD is identical to that of LTA. :

1

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions



Load T Register, Accumulate Previous Product, and Move Data LTD

Example LTD DAT126 ;(DP = 7, PM = 0)
or
LTD * ;If current auxiliary register contains 1022.
Before Instruction After Instruction
Data Data
Memory 62h Memory 62h
1022 1022
Data Data
Memory oOh Memory 62h
1023 1023
T 3h T 62h
P OFh P OFh
ACC 5h ACC E 14h
C C

4-113



LTP Load T Register and Store P Register in Accumulator

Syntax

Operands

Execution

Encoding

Description

Words
Cycles

Example

4-114

Direct

Indirect

'20
'C25

'20
'C25

Direct: [label ] LTP  dma

Indirect: [label ] LTP  {ind} [, next ARP]
0=<dmas<127

O=snextARP =<7

(PC) +1—PC

(dma) — T register
(shifted P register) - ACC

Affected by PM.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

;0 © 1 L 11 0 0 Data Memory Address

0 0 1 1 1 1 1 0 1 See Section 4.1

The T register is loaded with the contents of the addressed data memory loca-
tion, and the product register is stored in the accumulator. The shift at the out-
put of the product register is controlled by the PM status bits.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+4d 1+p 2+d+p —_— —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
LTP DAT36 ;(DP = 6, PM = 0)
or
LTP * ;If current auxiliary register contains 804.
Before Instruction After Instruction
Data Data
Memory 62h Memory 62h
804 804
T 3h T 62h
P OFh P OFh
ACC 5h ACC Fh
C C

Assembly Language Instructions



Load T Register, Subtract Previous Product LTS

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Direct

Indirect

20
'C25

20
'c25

Direct:
Indirect:

O0<dmas 127

[label] LTS dma
[label ] LTS

find] [, next ARP ]

OsnextARP =7

(PC) +1 — PC

(dma) — T register
(ACC) — (shifted P register) - ACC

Affects OV; affected by PM and OVM.
Affects C (TMS320G25).

15 14 12 11 10 9 8 7 6 5 4 1 0
4 0 1 1 1 o 1 1 0 Data Memory Address
10 1 1 1 o 1 1 1 See Section 4.1

The T register is loaded with the contents of the addressed data memory loca-
tion. The contents of the product register, shifted as defined by the contents
of the PM status bits, are subtracted from the accumulator. The resultis left in
.the accumulator.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-115



LTS Load T Register, Subtract Previous Product

Example LTS DAT36 ; (DP =
or

LTS * ;If current auxiliary register contains 804.

Before Instruction

After Instruction
Data Data
Memory 62h Memory 62h
804 804
T 3h T 62h
P OFh P 0Fh
ACC 5h ACC E’ OFFFFFFF6h
C o}

4-116 Assembly Language Instructions



Muiltiply and Accumulate

MAC

Syntax Direct: [label ] MAC pma,dma

Indirect: [label ] MAC  pma, {ind} [, next ARP]
Operands 0 < pma =< 65535

0=<dma =127

O<nextARP =<7
Execution TMS32020:

(PC) +2 —=TOS
(pma) — PC

If (repeat counter) = 0:
Then (ACC) + (shifted P register) — ACC,
(dma) — T register,
(dma) x (pma, addressed by PC) — P register,
Modify AR(ARP) and ARP as specified,
(PC) + 1 — PC,
(repeat counter) — 1 — repeat counter.

Eise (ACC) + (shifted P register) — ACC
(dma) — T register
(dma) x (pma, addressed by PC) — P register
Modify AR(ARP) and ARP as specified.
(TOS) — PC

Affects OV; affected by OVM and PM.
TMS320C25:

(PC)+2—-PC
(PFC) — MCS
(pma) — PFC

If (repeat counter) = 0.
Then (ACC) + (shifted P register) — ACC,
(dma) — T register, ’
(dma) x (pma, addressed by PFC) — P register,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 — PFC,
(repeat counter) — 1 —> repeat counter.
Else (ACC) + (shifted P register) — ACC
(dma) — T register
(dma) x (pma, addressed by PFC) — P register
Modify AR(ARP) and ARP as specified.
(MCS) — PFC

Affects C and OV; affected by OVM and PM.

4-117



MAC Multiply and Accumulate

Encoding

Description

Words

4-118

Direct:

Indirect:

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o1 o 1 1 1 0 1] o0 Data Memory Address

Program Memory Address

0 1 0 1 1 1 0 1 1 See Section 4.1

Program Memory Address

The MAC instruction multiplies a data memory value (specified by dma) by a
program memory value (specified by pma). It also adds the previous product,
shifted as defined by the PM status bits, to the accumulator.

The data and program memory locations on the TMS320C25 may be any non-
reserved, on-chip or off-chip memory locations. If the program memory is block
BO of on-chip RAM, then the CNF bit must be set to one. On the TMS32020,
data and program memory locations must reside on-chip. Note thaton both de-
vices, the upper eight bits of the program memory address should be set to
OFFh in order to address B0 program RAM, and the upper six bits of dma
should be set to 0 to address a location below 1024. When used in the direct
addressing mode, the dma cannot be modified during repetition of the instruc-
tion.

When the MAC instruction is repeated, the program memory address con-
tained in the PC/PFC is incremented by one during its operation. This enables
accessing a series of operands in memory. MAC is useful for long sum-of-pro-
ducts operations, since MAC becomes a single-cycle instruction once the RPT
pipeline is started.

2

Assembly Language Instructions



Multiply and Accumulate  MAC

Cycles
Cycle Timings for a Single Instruction
PY/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 3 N/A 3+2p N/A — _
'C25 Table in on-chip RAM:
3 4+d 4+2p 5+d+2p 4 5+d
Table in on-chip ROM: -
4 5+d 4+2p 5+d+2p 4 5+d
Table in external memory:
4+4p 5+d+p 4+3p 5+d+3p 4+p 5+d+p
Cycle Timings for a Repeat Execution
20 2+n N/A 2+n+2p N/A r — —
'C25 Table in on-chip RAM:
2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd
Table in on-chip ROM:
3+n 3+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd
Table in external memory:
3+n+np 3+2n+nd 3+n+np 3+2n+nd+p 3+n+np 3+2n+nd
+np +2p +2p +np

4-119



MAC Muitiply and Accumulate

Example SPM 3 ;Select a shift-right-by-6 mode on PR output.
;on PR output.
CNFP ;Configure block B0 as program memory
; (OFFXxh).
LARP 1 ;Use AR1 to address block Bl.
LRLK 1,768 ;Point to lowest location in RAM block Bl
RPTK 255 ;Compute 256 sum-of-product operations.

MAC  OFF0Oh,*+ ;Multiply/accumulate and increment AR1.

The following example shows register and memory contents before and after
the third step repeat loop:

Before Instruction After Instruction
AR 302h AR1 303h
RPT OFDh RPT OFCh
PC/PFC OFF02h PC/PFC OFFO3h
Data Data
Memory 23h Memory 23h
770 770
Program Program
Memory OFAAAh Memory OFAAAR
65282 65282
P 458972h P OFFFF453Eh
ACC 723EC41h ACC E 7250266h
C C

4-120 Assembly Language Instructions



Multiply and Accumulate with Data Move

MACD

Syntax

Operands

Execution

Direct: [label] MACD pma, dma
Indirect: [label] MACD pma, {ind} [, next ARP]

0 < pma =< 65535
0=dma =127
O=nextARP =<7

TMS32020:

(PC) + 2 — TOS
(pma) — PC

If (repeat counter) = 0.
Then (ACC) + (shifted P register) — ACC,
(dma) — T register,
(dma) x (pma, addressed by PC) — P register,
(dma) — dma + 1,
Modify AR(ARP) and ARP as specified,
(PC) +1 — PC,
(repeat counter) — 1 — repeat counter.
Else (ACC) + (shifted P register) — ACC
(dma) — T register,
(dma) x (pma, addressed by PC) — P register
(dma) — dma +1,
Modify AR(ARP) and ARP as specified.
(TOS) — PC
Affects OV; affected by OVM and PM.

TMS320C25:

(PC)+2 = PC
(PFC) — MCS
(pma) — PFC

If (repeat counter) = 0:
Then (ACC) + (shifted P register) — ACC,

(dma) — T register,
(dma) x (pma, addressed by PFC) — P register,
(dma) — dma + 1,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 — PFC,
(repeat counter) — 1 — repeat counter.

Else (ACC) + (shifted P register) — ACC
(dma) — T register,
(dma) x (pma, addressed by PFC) — P register
(dma) - dma + 1,

4-121



MACD Multiply and Accumulate with Data Move

Encoding

Description

Words

4-122

Direct:

Indirect:

Modify AR(ARP) and ARP as specified.
(MCS) - PFC

Affects C and QV; affected by OVM and PM.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 0 0 0 Data Memory Address

Program Memory Address

0 1 0 1 1 1 0 o0 1 See Section 4.1

Program Memory Address

The MACD instruction multiplies a data memory value (specified by dma) by
a program memory value (specified by pma). It also adds the previous product,
shifted as defined by the PM status bits, to the accumulator.

The data and program memory locations on the TMS320C25 may be any
nonreserved, on-chip or off-chip memory locations. If the program memory is’
block BO of on-chip RAM, then the CNF bit must be set to one. On the
TMS32020, data and program memory locations must reside on-chip. Note
that on both devices, the upper eight bits of the program memory address
should be set to OFFh in order to address BO program RAM, and the upper six
bits of dma should be set to 0 to address a location below 1024. When used
in the direct addressing mode, the dma cannot be modified during repetition
of the instruction. If MACD addresses one of the memory-mapped registers or
external memory as a data memory location, the effect of the instruction will
be that of a MAC instruction (see the DMOV instruction description).

MACD functions in the same manner as MAC, with the addition of data move
for block BQ, B1, or B2. Otherwise, the effects are the same as for MAC. This
feature makes MACD useful for applications such as convolution and transver-
sal filtering.

When the MACD instruction is repeated, the program memory address con-
tained inthe PC/PFC is incremented by one during its operation. This enables
accessing a series of operands in memory. When used with RPT or RPTK,
MACD becomes a single-cycle instruction, once the RPT pipeline is started.

Note:

The data move function for MACD can occur only within the data blocks,
BO — B2, of the on-chip RAM

S— |

2

Assembly Language Instructions-



Muitiply and Accumulate with Data Move

MACD

Cycles

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 3 N/A 3+2p N/A — —
'C25 Table in on-chip RAM:
3 4+d 4+2p 5+d+2p 4 5+d
Table in on-chip ROM:
4 5+d 4+2p 5+d+2p 4 5+d
Table in external memory:
44p 5+d+p 4+3p 5+d+3p 4+p 5+d+p
Cycle Timings for a Repeat Execution
0| 2+n N/A 2ene2p | NA — —
'C25 Table in on-chip RAM:
2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd
Table in on-chip ROM: '
3+n 3+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd
Table in external memory:
3+n+np 3+2n+nd 3+n+np 3+2n+nd+np 3+n+np 3+2n+nd
+np +2p +2p +np

4-123



MACD - Muitiply and Accumulate with Data Move

Example

4-124

SPM 0
SOVM
CNFP

LARP 3
LRLK 3,1023
RPTK 255

MACD OFFO00h, *—

;Select no shift mode on PR output.

;Set overflow mode.

;Configure block BO as program memory
; (OFFXXh).

;Use AR3 to address block Bl.

;Point to highest location in RAM block Bl.
;Compute 1 sample of a length-256
;convolution. _

;Multiply/accumulate, shift data word in
;block Bl and decrement AR3.

The following example shows register and memory contents before and after
the third step repeat loop:

Before Instruction After Instruction
AR1 3FDh AR1 3FCh
RPT OFDh RPT OFCh
PC/PFC OFF02h PC/PFC OFF03h
Data Data
Memory 23h Memory 23h
1021 1021
Data Data
Memory 7FCh Memory 23h
1022 1022
Program Program
Memory OFAAAQ Memory OFAAAhA
65282 65282
P 458972h P OFFFF453Eh
ACC 723EC41h ACC E 76975B3h
o] o]

Assembly Language Instructions



Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Direct

Indirect

20
'C25

'20
'C25

Modify Auxiliary Register MAR
Direct: [label ] MAR dma
Indirect: [label ] MAR  {ind} [, next ARP]
0 <dma =127
O=nextARP =<7
(PC)+1—=PC

Modifies ARP, AR(ARP) as specified by the indirect addressing field (acts as
a NOP in direct addressing). ‘

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 0] 1 0 1 0 1 0 Data Memory Address

] 0 1 0 1 0 1 0 1 1 See Section 4.1

The MAR instruction acts as a no-operation instruction inthe direct addressing
mode. Inthe indirect addressing mode, the auxiliary registers and the ARP are
modified; however, no use is made of the memory being referenced. MAR is
used only to modify the auxiliary registers or the ARP. If a next ARP is specified,
the old ARP is copied to the ARB field of status register ST1. Note that any op-
eration that MAR performs can also be performed with any instruction that sup-
ports indirect addressing. ARP may also be loaded by an LST instruction.

In the direct addressing mode, MAR is a NOP. Also, the instruction LARP is a
subset of MAR (that is, MAR *,4 performs the same function as LARP 4).

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p — —
1 1 1+p 1+4p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p — —
n n n+p n+p n n

4-125



MAR Modify Auxiliary Register

Example 1 MAR *,1 ;Load the ARP with 1.
Before Instruction After Instruction
ARP 0 ARP 1
Example 2 MAR  *— ;Decrement current auxiliary register (in this

;case, AR1l).

Before Instruction After Instruction
AR1 35h AR1 34h
Example 3 MAR  *+,5 ;Increment current auxiliary register (AR1l) and

;load ARP with 5.

Before Instruction After Instruction
AR1 34h AR1 35h
ARP 1 ARP 5

4-126 Assembly Language Instructions



Multiply MPY

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

Direct: [label ]
Indirect: [fabel ]
O=sdmas 127

OsnextARP <7

(PC) +1 - PC
(T register) x (dma) — P register

Direct:

Indirect:

MPY dma
{ind} [, next ARP]

MPY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 O 0 Data Memory Address
0o 0 1 1 1 0O 0 O 1 See Section 4.1

The contents of the T register are multiplied by the contents of the addressed
data memory location. The result is placed in the P register.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p —_ —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 n 2n+nd n+p 2n+nd+p — —
'C25 n 1+n+nd n+p 1+n+nd+p -n 1+n+nd
MPY DAT13 ; (DP = 8)
or
MPY * ;If current auxiliary register contains 1037.
Before Instruction After Instruction
Data Data
Memory 7h Memory 7h
1037 1037
T 6h T 6h
P 36h P 2Ah

4-127



MPYA Muitiply and Accumulate Previous Product (TMS320C25)

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-128

Direct] © o 1 1 1 0o 1 0 |o

Indirect:] 0 o 1 1 1 0 1 0 1

'C25

'C25

Direct: [label ] MPYA dma

Indirect: [flabel | MPYA {ind} [, next ARP]
O=<dmas<127

OsnextARP <7

(PC)+1—-PC

(ACC) + (shifted P register) — ACC
(T register) x (dma) — P register
Affects C and OV, affected by OVM and PM.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Data Memory Address

See Section 4.1

The contents of the T register are multiplied by the contents of the addressed
datamemory location. The resultis placed in the P register. The previous prod-
uct, shifted as defined by the PM status bits, is also added to the accumulator.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/D! PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
MPYA DAT13 ;(DP = 6, PM = 0)

or

;If current auxiliary register contains

MPYA *
Before Instruction
Data
Memory 7h
781
T 6h
P 36h
ACC " 54h

C

Data
Memory
781

T

P

ACC El
C

781.

After Instruction

7h

6h

2Ah

8Ah

Assembly Language Instructions



Multiply Immediate  MPYK

Syntax

Operands

Execution

Encoding

, Description

Words

Cycles

Example

'20
'C25

'20
'C25

[label ] MPYK constant

—4096 < constant < 4095
-212 < constant < 212 — 1

(PC) +1—=PC
(T register) x constant — P register

Not affected by SXM.

i5_14 13 12 1110 9 8 7 6 5 4 3 2 1 0
| 1 0 1 | 13-Bit Constant

The contents ofthe T register are multiplied by the signed, 13-bit constant. The
result is loaded into the P register. The immediate field is right-justified and
sign-extended before multiplication, regardiess of SXM.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 14p 14p — —
1 1 14p 14+p 1 1
Cycle Timings for a Repeat Execution
not repeatable — —
not repeatable
MPYK -9

Before Instruction After Instruction

T 7h T 7h

P 2Ah P OFFFFFFCth

4-129



MPYS Muitiply and Subtract Previous Product (TMS320C25)

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-130

Direct

Indirect

'C25

'C25

Direct: [label ] MPYS dma

Indirect:  [label] MPYS {ind} [, next ARP]
0=<dma=<127

O=<nextARP =7

(PC)+1—PC

(ACC) — (shifted P register) - ACC
(T register) x (dma) — P register

Affects C and OV, affected by OVM and PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 o 1 1 0 Data Memory Address

See Section 4.1

o0 o + 1 1+ 0 1 1 1

The contents of the T register are muttiplied by the contents of the addressed
data memory location. The resultis placed in the P register. The previous prod-
uct, shifted as defined by the PM status bits, is also subtracted from the accu-

mulator.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
MPYS DAT13 ;(DP = 6, PM = 0)
or
MPYS * ;If current auxiliary register contains 781.
Before Instruction After Instruction
Data Data
Memory 7h Memory 7h
781 781
T 6h T 6h
P 36h P 2Ah
ACC 54h ACC El 1Eh
C C

Assembly Language Instructions



Multiply Unsigned (TMS320C25) MPYU

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Direct:| 1 1 0 0 1 1 1 1 0

Indirect:| 1 1 0 0 1 11 1 1

'C25

'C25

Direct: [label ] MPYU dma

Indirect :  [label] MPYU {ind} [, next ARP ]
O=sdmas127

O=snextARP =<7

(PC)+1—-PC

Unsigned (T register) x unsigned (dma) — P register

i5 14 13 "12 11 10 9 8 7 6 5 4 3 2 1 0

Data Memory Address

See Section 4.1

The unsigned contents of the T register are multiplied by the unsigned contents
of the addressed data memory location. The result is placed in the P register.
Note that the multiplier acts as a 17 x17-bit signed multiplier for this instruction,
with the MSB of both operands forced to zero.

The shifter at the output of the P register will always invoke sign-extension on
the P register when PM = 3 (right-shift by 6 mode). Therefore, this shift mode
should not be used if unsigned products are desired.

The MPYU instruction is particularly useful for computing multiple-precision
products, such as when multiplying two 32-bit numbers to yield a 64-bit prod-
uct.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 14p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-131



MPYU Multiply Unsigned (TMS320C25)

Example MPYU DAT16 ;(DP = 4)
' or 7
MPYU * ;If current auxiliary register contains 528.
. Before Instruction After Instruction
Data Data
Memory : OFFFFh Memory OFFFFh
528 528
T OFFFFh T OFFFFh
P 1h P OFFFE0001h
4-132

Assembly Language Instructions



Negate Accumulator

NEG

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

‘20

'C25

20

'C25

[1abel]

None

(PC) + 1 — PC
(ACC) x —1 — ACC

NEG

Affects OV, affected by OVM.
Affects C (TMS320C25).

15 14 13

12

i1 10 9

1 1 0

0

1 1 1

The contents of the accumulator are replaced with its arithmetic complement
(2s complement). The OV bitis set when taking the NEG of 80000000h. If OVM
=1, the accumulator contents are replaced with 7FFFFFFFh. If OVM = 0, the
result is 80000000h. The carry bit C on the TMS320C25 is reset to zero by this
instruction for all nonzero values of the accumulator and is set to one if the ac-
cumulator equals zero.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 14p — —
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p — —
n n n+p n+p n n
NEG

ACC

Before Instruction

OFFFFF228h

ACC E

C

After Instruction

0DDs8h

4-133



NOP No Operation

Syntax [label] NOP

Operands None

Execution (PC) +1 —=PC

Encoding 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

o 1 0 1 0 1 0 1 0 0 0 0 0 0 o

Description No operationis performed. The NOP instruction affects only the PC. NOP func-
tionsinthe same manner asthe MAR instructioninthe direct addressing mode;
NOP has the same opcode as MAR in the direct addressing mode with dma
=0.

The NOP instruction is useful as a pad or temporary instruction during program
development.

Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 1 14p 1+p — —
'C25 1 1 14p 1+p 1 1
Cycle Timings for a Repeat Execution
'20 n n n+p n+p — —
'C25 n n \ n+p n+p n n
Example NOP

- 4-134 . Assembly Language Instructions



Normalize Contents of Accumulator NORM

Syntax

Operands
Execution

Encoding

Description

[label] ~ NORM  (TMS32020)
[label] NORM {ind} (TMS320C25)

None

TMS32020:
(PC) + 1 > PC

If (ACC(31)) XOR (ACC(30)) = 0:
Then 0 — TC,
(ACC) x 2 - ACC,
Modify AR(ARP) as specified;
Else 1 — TC.

Affects TC; affected by TC.
TMS320C25:

(PC)+1—=PC
If (ACC) = 0:
Then 1 — TC;
Else, if (ACC(31)) XOR (ACC(30)) = 0:
Then 0 — TC,
(ACC) x 2 = ACC,
Modify AR(ARP) as specified;
Else 1 — TC.

Affects TC; affected by TC.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 0 0 1 1 1 0 1 Modify AR 0 o 1

The NORM instruction is provided for normalizing a signed number that is con-
tained in the accumulator. Normalizing a fixed-point number separates it into
a mantissa and an exponent. To do this, the magnitude of a sign-extended
number must be found. ACC bit 31 is exclusive-ORed with ACC bit 30 to deter-
mine if bit 30 is part of the magnitude or part of the sign extension. If they are
the same, they are both sign bits, and the accumulator is left-shifted to elimi-
nate the extra sign bit.

The AR(ARP) is modified as specified to generate the magnitude of the expo-
nent. Itis assumed that AR(ARP) is initialized before the normalization begins.
The default modification of the AR(ARP) is an increment.

Multiple executions of the NORM instruction may be required to completely
normalize a 32-bit number in the accumulator. Although using NORM with RPT
or RPTK does not cause execution of NORM to fall out of the repeat loop auto-
matically when the normalization is complete, no operation is performed for the
remainder of the repeat loop. Note that NORM functions on both positive and
negative 2s-complement numbers.

4-135



NORM

Normalize Contents of Accumulator

Words

Cycles

Example 1

Example 2

4-136

20
'C25

'20
'C25

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/D! PR/DE
1 1 1+p 1+p — —
1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n+p n+p

n+p n+p

31-Bit Normalization:

1

LARP ;Use ARl for exponent storage.

LARK 1,0 ;Clear out exponent counter.

B2 ZERO ;If ACC = 0, a TMS32020 would be

;caught in an infinite loop

LOOP NORM *+ ;One bit is normalized.

BBZ LOOP ;If TC = 0, magnitude not found yet.
ZERO
I 1
Note:

If your accumulator is initially zero and a BBZ instruction is used to loop back
to NORM (see Example 1), a TMS32020 would be caught in an infinite loop.
A BZ instruction is used to bypass this code. The TMS320C25 checks the
accumulator for the zero condition and would not be caught in this loop.

L

15-Bit Normalization:

ARP 1 ° ;Use ARl to store the exponent.

LARK 1,15 ;Initialize exponent counter.

RPTK 14 ;15-bit normalization is specified
; (yielding 'a 4-bit exponent and
;16-bit mantissa).

NORM *— ;NORM automatically stops shifting

;when the first significant magnitude
;bit is found, for
;the remainder of the repeat loop.

performing NOPs

The first method is used to normalize a 32-bit number and yields a 5-bit expo-
nent magnitude. The second method is used to normalize a 16-bit number and
yields a 4-bit exponent magnitude. If the number requires only a small amount
of normalization, the first method may be preferable to the second. This results
because Example 1 runs only until normalization is complete. Example 2 al-

Assembly Language Instructions



Normalize Contents of Accumulator NORM

ways executes all 15 cycles of the repeat loop. Specifically, Example 1 is more
efficient if the number requires five or less shifts. If the number requires six or
more shifts, Example 2 is more efficient.

Note:

The TMS32020 accepts only the NORM instruction (no operand). Source
code compatibility of the TMS320C25 with the TMS32020 allows the NORM
instruction to be used also without a specified operand. Inthat case, any com-
ments on the same line as the instruction will be interpreted as the operand.
If the first character is an asterisk (*), then the instruction will be assembled
as NORM* with no auxiliary register modification taking place upon execu-
tion. Therefore, it is best to replace the NORM instructions with NORM* +
when the default modification of increment is desired.

The resulting value in the auxiliary register will not be the real exponent of
the number for all modification options. However, it can always be used to
obtain the exponent.

4-137



OR OR with Accumulator

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-138

Direct: [ label ] OR dma
Indirect: [label ] OR
0=<dmas127

O=snextARP =<7

(PC)+1—=PC

(ACC(15-0)) OR dma — ACC(15-0)
(ACC(31-16)) — ACC(31-16)

Not affected by SXM.

{ind} [, next ARP]

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Direct:] 0 1 0 o 1 1 0 1 0 Data Memory Address
Indirect:] o 1 0 0 1 0 1 1 See Section 4.1

'20
'C25

20
'C25

The low-order bits of the accumulator are ORed with the contents of the ad-
dressed data memory 'location. The high-order bits of the accumulator are
ORed with all zeros. Therefore, the upper half of the accumulator is unaffected
by this instruction.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 14p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
OR DATS ; (DP = 8)
or
OR* ;Where current auxiliary register contains
;1032.
Before Instruction After Instruction
Data Data
Memory O0F000h Memory OF00Ch
1032 1032
ACC 100002h ACC D 10F002h
C C

Assembly Language Instructions



OR Immediate with Accumulator with Shit ORK

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

20
'C25

'20
'C25

[fabel ] ORK constant  [,shift]

16-bit constant
0 < shift < 15 (defaults to 0)

(PC) +2 — PC
(ACC(30-0)) OR [constant x 2shift] — ACC(30-0)
(ACC(31)) — ACC(31)

Not affected by SXM.

15 14 13 12 M 10 9 8 7 6 5

1 1 0 1

Shift 0 0 0

16-Bit Constant

The left-shifted 16-bit immediate constant is ORed with the accumulator. The
resultis leftinthe accumulator. Low-order bits below and high-order bits above
the shifted value are treated as zeroes. The corresponding bits of the accumu-
lator are unaffected. Note that the most significant bit of the accumulator is not

affected, regardless of the shift code value.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+2p 2+2p — —
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable I — —
not repeatable
ORK OFFFFh, 8
Before Instruction After Instruction
ACC 12345678h ACC 12FFFF78h
o] Cc

4-139



OUT Output Data to Port

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-140

Direct

Indirect

'20
'C25

'C25

Direct: [label ] OUT dma, PA
Indirect:  [/abel] OUT {ind}, PA [, next ARP]
0=<dmas 127

O=nextARP s 7

0 < port address PA < 15

(PC) +1 —=PC

Port address PA — address bus A3 — A0
0 — address bus A15 — A4

(dma) — data bus D15 - D0

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 Port Address 0

Data Memory Address

o1 1 1 0 Port Address 1 See Section 4.1

The OUT instruction writes a 16-bit value from a data memory location to the
specified I/O port. The IS line goes lowto indicate an I/O access, and the STRB,
R/W, and READY timings are the same as for an external data memory write.
OUT is a single-cycle instruction when in the PI/Dl memory configuration (see
Appendix F).

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1+i 2+d+i 2+d+i 3+d+p+i — —
1+ 2:+d+i 24P+ 3+d+p+i 1+i 2+d+i
Cycle Timings for a Repeat Execution
n+ni 2n+nd+ni 2n+p+ni 3n+nd+p+ni — —
n+ni 2n+nd+ni 1+n+p+ni 1+2n+nd+p n+ni 2n+nd+ni
+ni
ouT 78h,7 ; (DP = 4) Output data word stored in data
;memory location 78h to peripheral on port
;address 7.
or
ouT *,0Fh ;Output data word referenced by current

;auxiliary register to peripheral on port
;address OFh.

Assembly Language Instructions



Load Accumulator with P Register

PAC

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

'20
'C25

20
'C25

[label ] PAC
None
(PC) +1—PC

(shifted P register) - ACC
Affected by PM.

15 14 13 12 11 10

1 1 0 o 1 1

The contents ofthe P register are loaded into the accumulator, shifted as speci-

fied by the PM status bits.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p — —
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p — —
n n n+p n+p n n
PAC i (PM = 0)
Before Instruction After Instruction
P - 144h P 144h
ACC 23h ACC 144h
C C

4-141



POP Pop Top of Stack to Low Accumulator

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

4-142

'20
'C25

'20
'C25

[label ] POP

None

(PC)+1—=PC

(TOS) — ACC(15 - 0)
0 — ACC(31 -16)
Pop stack one level.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 O 0 1 1 1 0o 1

The contents of the top of the stack (TOS) are copied to the low accumulator,
and the stack is popped after the contents are copied. The upper half of the ac-
cumulator is set to all zeros.

The hardware stack is a last-in, first-out stack with four (TMS32020) or eight
(TMS320C25) locations. Any time a pop occurs, every stack value is copied
to the next higher stack location, and the top value is removed from the stack.
Atfter a pop, the bottom two stack words will have the same value. Because
each stack value is copied, if more than three/seven pops (due to POP, POPD,
or RET instructions) occur before any pushes occur, all levels of the stack con-
tain the same value. No provision exists to check stack underflow.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+p 2+p — —
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
2n . 2n 2n+p 2n+p — —
n n n+p n+p n n

Assembly Language Instructions



Pop Top of Stack to Low Accumulator

POP

Example

POP

ACC

Stack
('20)

Stack
('C25)

Before Instruction

82h

45h
16h

7h
33h

45h
16h

7h
33h
42h
56h
37h
61h

ACC Iﬂ
C

Stack
('20)

Stack
('C25)

After Instruction

45h

16h

7h
33h
33h

16h

7h
33h
42h
56h
37h

61h
61h

4-143



POPD Pop Top of Stack to Data Memory

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-144

Direct: [label ] POPD dma

Indirect: [label ] POPD ({ind} [, next ARP]

O=dma=<127

O=nextARP =<7

(PC)+1—=PC

(TOS) — dma

POP stack one level.

15 14 13 12 11 10 9 8 7 6 5 4 1 0

Direct;| 0 1 1 11 o 1 0 0 Data Memory Address

'} o 1 1 1 1 o 1 0 1 See Section 4.1

Indirect

'C25

'20
‘C25

The value from the top of the stack is transferred into the data memory location
specified by the instruction. The values are also popped in the lower three
(TMS32020) or seven locations (TMS320C25) of the stack. The hardware
stack is described in the previous instruction POP. The lowest stack location
remains unaffected. No provision exists to check stack underflow.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2+d 2+p 2+d+p — —
1 1+d 1+p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
2n 2n+nd 2n+p 2n+nd+p — —
n n+nd n+p 1+n+nd+p n n+nd |

Assembly Language Instructions




Pop Top of Stack to Data Memory POPD

Example POPD DAT100 ;(DP = 8)
or
POPD * ;If current auxiliary register contains 1124.
Before Instruction After Instruction
Data Data
Memory 55h Memory 92h
1124 1124
Stack 92h Stack 72h
(20) 72h (20) 8h
8h 44h
44h 44h
Stack 92h Stack 72h
(C25) 72h ('C25) 8h
8h 44h
44h 81h
81h 75h
75h 32h
32h 4 0AAh
0AAh OAAh

4-145



PSHD pPush Data Memory Value onto Stack

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-146

Direct

Indirect

20
'C25

'20
'C25

Direct: [label ] PSHD dma
Indirect: [label ] PSHD {ind} [, next ARP ]
0 =dmas127
O=nextARP — 7
(dma) — TOS
(PC) +1—>PC
Push all stack locations down one level.
15 14 13 12 11 10 9 8 7 6 5 4 10
0 A 0 it 0 1 0 O 0 Data Memory Address
o0 1 0 1 0 1 0 0 1 See Section 4.1

The value from the data memory location specified by the instruction is trans-
ferred to the top of the stack. The values are also pushed down in the lower
three (TMS32020) or seven locations (TMS320C25) of the stack, as described
in the instruction PUSH. The lowest stack location is lost.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2+d 2+4p 2+d+p — —_
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n 2n+nd 2n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions



Push Data Memory Value onto Stack

PSHD

Example

PSHD DAT127 ;(DP = 3)
or
PSHD * ;If current auxiliary register contains 511.

Before Instruction

Data

Memory 65h
511

Stack 2h
(20) ash
78h
99h
‘Stack 2h
(C25) 33h
78h
9%h
42h
50h
Oh
Ch

Data
Memory
511

Stack
('20)

Stack
('C25)

After Instruction

65h

65h

2h
33h
78h

65h

2h
33h
78h
99h
42h

50h
oh

4-147



PUSH Push Low Accumulator onto Stack

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

4-148

'20
'C25

'20
'‘Ca5

[label]  PUSH

None

(PC) +1—-PC
Push all stack locations down one level.
(ACC(15-0)) — TOS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 0 o 1 i 1 0 0 O 0 1 1 i 0 0

The contents of the lower half of the accumulator are copied onto the top ofthe
hardware stack. The stack is pushed down before the accumulator value is co-
pied.

The hardware stack is a last-in, first-out stack with four (TMS32020) or eight
locations (TMS320C25). If more than four/eight pushes (due to CALA, CALL,
PSHD, PUSH, or TRAP instructions) occur before a pop, the first data values
written will be lost with each succeeding push.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+p 2+p — —_
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
2n 2n 2n+p 2n+p — —
n n .on+p n+p n n

Assembly Language Instructions



Push Low Accumulator onto Stack PUSH

Example PUSH:
Before Instruction After Instruction
ACC 7h ACC 7h
C C

Stack 2h Stack 7h
(20) 5h (20) 2h
3h 5h

Oh ) 3h

Stack 2h Stack 7h
(C25) 5h ('C25) 2h
3h 5h

Ch 3h

12h Oh

86h 12h

54h 86h

3Fh 54h

4-149



RC Reset Carry Bit (TMS320C25)

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-150

'C25

'C25

[label] RC
None
(PC) +1—-PC

0 — carry bit C in status register ST1
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 0 o 1 1 1 0 0 0 1 1 0 0 0 O

The carry bit C in status register ST1 is reset to logic zero. The carry bit may
also be loaded directly by the LST1 and SC instructions.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p n n
RC ;The carry bit C is reset to logic zero.

Assembly Language Instructions



Return from Subroutine RET

Syntax [label]  RET
Operands None
Execution (TOS) — PC
Pop stack one level.
Encoding 15 14 13 12 11 10 9 8 7 6 .5 4 3 2 A

1 1 0 0o 1 1 1. 0 0 O 1 0 0 1 1

Description The contents of the top stack register are copied into the program counter. The
stack is then popped one level. RET is used with CALA and CALL for subrou-
tines.

Words 1

Cycles

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 2 2 2+p 2+p — —
'C25 Destination on-chip RAM:
2 2 2+p 2+p 2 2
Destination on-chip ROM:
3 3 3+p 3+p 3 3
Destination external memory:
3+p 3+p 3+2p 3+2p 3+p 3+p
Cycle Timings for a Repeat Execution
'20 not repeatable I — ’ —
'‘C25 not repeatable
Example RET
Before Instruction After Instruction
PC 96h PC 37h
Stack 37h Stack 45h
(20) ash (20) 75h
75h 21h
21h 2th
Stack 37h Stack 45h
(C25) 45h ('C25) 75h
75h 2th
21h 3Fh
3Fh 45h
45h . 6Eh
6Eh 6Eh
6Eh 6Eh

4-151



RFSM Reset Serial Port Frame Synchronization Mode (TMS320C25)

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-152

'C25

'C25

[label ] RFSM
None
(PC)+1—PC

0 — FSM status bit in status register ST1
Affects FSM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1+ 1 o o0 1 1 1 0 o0 0 1 1 0 1 1 o0

The RFSM status bit resets the FSM status bit to logic zero. In this mode, exter-
nal FSR pulses are not required to initiate the receive operation for each word
received, but rather only one FSR pulse is required to initiate a continuous
mode of operation. The same holds true for FSX when TXM = 0. After the first
FSR/FSX pulse, these inputs are then in a don't care state. If TXM = 1, FSX
is pulsed the first time DXR is loaded but remains low thereafter. See Section
3.9 for further details on the operation of the serial port. FSM may also be
loaded by the LST1 and SFSM instructions.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p n n
RFSM ;FSM is reset, putting the serial port in a

;mode of operation where frame
;synchronization pulses are not required.
;This allows a continuous bit stream to be
;transmitted/received without FSX/FSR pulses
;every 8/16 bits.

Assembly Language Instructions



Reset Hold Mode (TMS320C25) RHM

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

[label ] RHM

None

(PC)+1—PC
0 — HM status bit in status register ST1

Affects HM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 0 0 1 1t 1 0 0 O 1 1 1 o 0 O

The RHM instruction resets the HM status bit to logic zero. In this mode, the
TMS320C2x is not halted during the assertion of HOLD when executing from
on-chip program memory (either RAM or ROM), butinstead places its external
buses in the high-impedance state and continues execution until an external
access must be made. External access can mean (in addition to the normal
connotation) the following conditions:

MP/MC CNF PC
0 0 PC 4096
0 1 4096 < PC < 65279
1 0 Any PC value (normal

TMS32020-type hold mode)
1 1 PC < 65279

HM can also be loaded by the LST1 and SHM instructions.
’

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 n n [ n+p n+p J n ] n ]
RHM ;HM is reset, implementing the TMS320C25 hold

;mode for on-chip program execution.

4-153



ROL Rotate Accumulator Left (TMS320C25)

Syntax

Operands
Execution

Encoding

Description

" Words

Cycles

Example

4-154

'C25

'C25

[label ]

None

(PC) + 1 — PC
(ACC(31)) = C

ROL

(ACC(30—0)) — ACC(31 -1)
(C, before ROL) — ACC(0)

Affects C.

Not affected by SXM.

15 14

12 11 10

9

1 1

0 1 1

1

0 O

The ROL instruction rotates the accumulator left one bit. The MSB is shifted
into the carry bit, and the value of the carry bit from before the execution of the

instruction is shifted into the LSB.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

' 1 1+p 14p 1 1
Cycle Timings for a Repeat Execution

n n n+p n+p n n

ROL
Before Instruction After Instruction
ACC 0B0001234h ACC 060002469h
C C

Assembly Language Instructions




Rotate Accumulator Right (TMS320C25) ROR

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

'C25

'C25

[label]  ROR

None

(PC)+1—=PC

(ACC(0)) — C

(ACC(31-1)) — ACC(30-0)
(C, before ROR) — ACC(31)

Affects C.
Not affected by SXM.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 it 1 0 0 O 1 1 0 1 0o 1

The ROR instruction rotates the accumulator right one bit. The LSB is shifted
into the carry bit, and the value of the carry bit from before the execution of the
instruction is shifted into the MSB.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p n n
ROR

Before Instruction After Instruction

0B0001234h 5800091Ah

ACC EI
C

4-155



ROVM Reset Overflow Mode

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-156

20
'C25

'20
'C25

[ label ] ROVM
None
(PCy+1—PC

0 — OVM status bit in status register STO
Affects OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0o 1 1 1 0 0

The OVM status bit is reset to logic zero, which disables the overflow mode.
If an overflow occurs with OVM reset, the OV (overflow flag) is set, and the
overflowed result is placed in the accumulator.

OVM may also be loaded by the LST and SOVM instructions.

1
Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 14p — —
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p . n+p — —
n n n+p n+p n n
ROVM ;s The overflow mode bit OVM is reset, disabling

;the overflow mode on any subsequent arithmetic
;operations.

Assembly Language Instructions



Repeat Instructions as Specified by Data Memory Value

RPT

Syntax

Operands

Execution

Encoding

Description

Words
Cycles

Example

Direct

Indirect

20
'C25

'20
'C25

Direct: [label ] RPT dma

Indirect: [label ] RPT  {ind} [,next ARP]
O0O=sdmas127

O=nextARP <7

(PC)+1—=PC

(dma(7-0)) - RPTC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 0 o 1 o 1 1 0 Data Memory Address

1o 1 0 0 1 0 1 1 1 See Section 4.1

The eight LSBs of the addressed data memory value areloaded into the repeat
counter (RPTC). This causes the following instruction to be executed one time
more than the number loaded into the RPTC (provided that it is a repeatable
instruction). Interrupts are masked out until the next instruction has been ex-
ecuted the specified number of times. (Interrupts cannot be allowed during the
RPT/next instruction sequence, because the RPTC cannot be saved during a

context switch.) The RPTC counter is cleared on a RS.

RPT and RPTK are especially useful for repeating instructions, such as BLKP,

BLKD, IN, MAC, MACD, NORM, OUT, TBLR, TBLW, and others.
1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
not repeatable — —
not repeatable
RPT DATI127 ;(DP = 31)
SFR
or
RPT * ;If current auxiliary register contains 4095.
SFR
Before Instruction After Instruction
Data Data
Memory 0oCh Memory 0Ch
4095 4095
ACC 12345678h ACC E 12345h
C C

4-157



RPTK Repeat Instructions as Specified by Immediate Value

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-158

20

'C25

'20

'C25

[fabel ]

RPTK constant

0 = constant < 255

(PC) + 1 > PC

Constant — RPTC

15 14

12 11 10 9

8

7

6

5

4 3

1 1

0o 1 (VR

8-Bit Constant

The 8-bit immediate value is loaded into the RPTC (repeat counter). This
causes the following instruction to be executed one time more than the number
loaded into the RPTC (provided that it is a repeatable instruction). Interrupts
are masked out until the next instruction has been executed the specified num-
ber of times. (Interrupts cannot be allowed during the RPT/next instruction se-
quence, because the RPTC cannot be saved during a context switch.) The

RPTC is cleared on a RS.

RPT and RPTK are especially useful for repeating instructions, such as BLKP,
BLKD, IN, MAC, MACD, NORM, OUT, TBLR, TBLW, and others.

1
Cycle Timings for a Single Instruction
PI/Di PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p — —
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable — —
not repeatable
LRLK AR2,200h ;Load AR2 with the address of X.
LARP 2 :
ZAC ;Clear the accumulator.
MPYK 0 ;Clear the P register.
RPTK 2 ;Repeat next instruction 3 times.
SQRA  *+ ;Compute X*%2 + Y¥%2 + Z*%2,
APAC

Assembly Language Instructions




Reset Sign-Extension Mode RSXM

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

'20

- 'C25

'20
'C25

[label] RSXM
None
(PC)+1—=PC

0— SXM‘sign-extension mode status bit
Affects SXM.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 0 0o 1 i1 1 0 0 O 0 0 0 1 1

The RSXM instruction resets the SXM status bit to logic zero, which sup-
presses sign-extension on shifted data memory values for the following arith-
metic instructions: ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB, and
SUBT.

The RSXM instruction affects the definition of the SFR instruction. SXM may
also be loaded by the LST1 and SSXM instructions.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 14+p 1+p — . —
1 1 1+p 14p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p — —
n n n+p n+p N n
RSXM ;SXM is reset, disabling sign-extension on

;subsequent instructions.

4-159



RTC Reset Test/Control Flag (TMS320C25)

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-160

'C25

'C25

[fabel ] RTC

None

(PC)+1—-PC
0 — TC test/control flag in status register ST1

Affects TC.

i5 14 13 12 11 10 9 8 7 6 5 4
1 1 0 o 1 1 1 0 0 O 1 1 0 o 1

The TC (test/control) flag in status register ST1 is reset to logic zero. TC can
also be loaded by the LST1 and STC instructions.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p I n+p n n
RTC ;TC (test/control) flag is reset to logic zero.

Assembly Language Instructions



Reset Serial Port Transmit Mode RTXWM

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

20
'C25

'20
'C25

[label ] RTXM
None
(PC) +1—=PC

0 — TXM transmit mode status bit
Affects TXM mode bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 0 0o 1 1t 1 0 0 0 1 0 0 0 0 O

The RTXM instruction resets the TXM status bit, which configures the serial
port transmit section in a mode where it is controlled by an FSX {external fram-
ing pulse). The transmit operation is started when an external FSX pulse is
applied. TXM may also be loaded by the LST1 and STXM instructions.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/D! PE/DE PR/DI PR/DE
1 1 1+p 1+p — —
1 1 1+p 1+p 1 1
Cycle Timings for a Rebeat Execution
n n n+p n+p — —
n n n+p n+p n n
RTXM ;TXM is reset, configuring FSX as an input.

4-161



RXF Rest External Flag

Syntax [label] RXF
Operands None
Execution (PC)+1 - PC
0 — XF external flag pin and status bit
Affects XF.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 0 0o 1 i 1 0 0 O 0 0 1 1 0

Description The XF pin and XF status bit in status register ST1 are reset to logic zero. XF
may also be loaded by the LST1 and SXF instructions.
Words 1 ‘
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 1 1+p 1+p — —
'C25 1 1 14p 14p 1 1
Cycle Timings for a Repeat Execution
'20 n n n+p n+p — —
'C25 n n n+p n+p n n
Example RXF :XF pin and status bit are reset to logic =zero.

4-162 ‘ Assembly Language Instructions



Store High Accumulator with Shift SACH

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

Direct:] 0 .1 1 0o 1 Shift 0

Indirect:| 0 1 1 0o 1 Shift 1

Direct: [label ]
Indirect: [label ]

SACH dma |, shift]
SACH {ind} [, shift [, next ARP]]

0 sdma =127

O<snextARP =<7

0 = shift < 0, 1, or 4 (defaults to 0) on the TMS32020
0 = shift s 7 (defaults to 0) on the TMS320C25
(PC)+1—-PC

16 MSBs of (ACC) x 2shift — dma

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5§ 4 3 2 1 0

Data Memory Address

See Section 4.1

The SACH instruction copies the entire accumulator into a shifter, where it
shifts the entire 32-bit number 0, 1, or 4 bits on the TMS32020, or anywhere
from 0 to 7 bits on the TMS320C25. It then copies the upper 16 bits of the
shifted value into data memory. The accumulator itself remains unaffected.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 14p 3+d+p — —
'C25 1 1+d 1+p 2+d+p 1 1+d
"~ Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 3n+nd+p — —
'C25 n n+nd n+p 1+n+nd+p n n+nd

SACH DAT10,4 ; (DP = 4)
or

SACH *,4 ;If current auxiliary register contains 522.

Before Instruction After Instruction

ACC 4208001h ACC 4208001h

C C
Data Data
Memory oh Memory 4208h
522 522

4-163



SACL Store Low Accumulator with Shift

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-164

Direct: [label ] SACL dma [, shift]
Indirect: [label] SACL {ind} [, shift [, next ARP ]]
0 =<dma =127

O=nextARP =<7
0 < shift <0, 1, or 4 (defaults to 0) on the TMS32020
0 = shift < 7 (defaults to 0) on the TMS320C25

(PC) + 1 — PC
16 LSBs of (ACC) x 2shift — dma

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 6§ 4 3 2 1 0

Direct:] o 1 1 0 o Shift 0 Data Memory Address

Indirect:} 0 1 1 0 o0 Shift 1 See Section 4.1

The low-order bits of the accumulator are shifted left 0, 1, or 4 bits on the
TMS32020 or from 0 to 7 bits on the TMS320C25, as specified by the shift
code, and stored in data memory. The low-order bits are filled with zeros, and
the high-order bits are lost. The accumulator itself is unaffected.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 3+d+p — —
'C25 1 1+d 14p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 3n+nd+p — —
'C25 n n+nd n+p 1+n+nd+p n n+nd

SACL DAT11,1 ;(DP = 4)
or »
SACL *,1 ;If current auxiliary register contains 523.
Before Instruction After Instruction
AcC 7C638421h acc[A 7C638421h
C o]
Data Data
Memory 5h Memory 842h
523 523

Assembly Language Instructions



Store Auxiliary Register

SAR

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Direct:| 0 1 1 1 0 AR 0

Indirect:] 0 1 1 1 0 AR 1

'20
'C25
'20
'C25

SAR
SAR

AR ,dma
AR, {ind} [, next ARP ]

Direct:
Indirect:

[label ]
[fabel ]

0=dmas 127

0 < auxiliary register AR s 7
OsnextARP <7
(PC)+1—-PC

(AR) — dma

15 14 13 12 11 10 9 8 7 6 5 4

Data Memory Address

See Section 4.1

The contents of the designated auxiliary register (AR) are stored in the ad-

dressed data memory location.

When you are modifying the contents of the current auxiliary register in the indi-
rect addressing mode, SAR ARn (when n = ARP) stores the value of the auxil-
iary register contents before it is incremented, decremented, or indexed by

ARO.
1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 3+d+p — —
1 1+d 14p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
2n+nd n+p 3n+nd+p —_— —
n n+nd n+p 1+n+nd+p n n+nd

4-165



SAR Store Auxiliary Register

Example 1 SAR
or
SAR ARO, *
ARO
Data
Memory
798
Example 2 LARP AR0
SAR . ARO,*0+
ARO
Data
Memory
1025

4-166

ARO,DAT30 ; (DP = 6)

;If current auxiliary register contains

Before Instruction

37h

18h

Before Instruction

401h

oh

ARO

Data
Memory
798

ARO

Data
Memory
1025

Assembly Language Instructions

After Instruction

37h

37h

After Instruction

798.

802h

401h




Subtract from Accumulator Long Immediate with Shift SBLK

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

20
"C25

20
'C25

[label ] SBLK constant [, shift ]

16-bit constant

0 =< shift < 15 (defaults to 0)
(PC)+2 —PC

(ACC) —[constant x 2shiftl -~ ACC

If SXM = 1:
Then —-32768 = constant < 32767,
If SXM = 0:

Then 0 s constant < 65535.

Affects OV, affected by OVM and SXM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0o 1 Shift 0 0 0 0 0 o 1t 1

16-Bit Constant

The immediate field of the instruction is subtracted from the accumulator. The
result replaces the accumulator contents. SXM determines whether the con-
stantis treated as a signed 2s-complement number or as an unsigned number.
The shift count is optional and defaults to zero.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+2p 2+2p — —
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable —_ —
not repeatable
SBLK 5,12
Before Instruction After Instruction
ACC 3FCOEFh ACC m 3F70EFh
C C

4-167



SBRK Subtract from Auxililary Register Short Immediate (TMS320C25)

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-168

'C25

'C25

[label] SBRK constant

0 < constant < 255
(PC)+1—=PC
AR(ARP) — 8-bit positive constant — AR(ARP)

15 14 13 12 11 i0 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 8-Bit Constant

The 8-bit immediate value is subtracted, right-justified, from the currently se-
lected auxiliary register withthe result replacing the auxiliary register contents.
The subtraction takes place in the ARAU, with the immediate value treated as
an 8-bit positive integer.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE * PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable
SBRK OFFh i (ARP = 7)

After Instruction
OFF01h

Before Instruction
AR7 oh AR7

Assembly Language Instructions



Set Carry Bit (TMS320C25) SC

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

'C25

'C25

[label] SC
None
(PC)+1—=PC

1 — carry bit C in status register ST1
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 t 1 0 0 O 1 1 0 o o0 1

The carry bit C in status register ST1 is set to logic one. The carry bit may also
be loaded directly by the LST1 and RC instructions.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 14p 14p 1 1
Cycle Timings for a Repeat Execution
n o n n+p n+p n n
sc ;Carry bit C is set to logic one.

4-169



SFL Shifit Accumulator Left

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-170

'20
'C25

20
'C25

[label ] SFL

None

TMS32020:

(PC)+1—-PC

(ACC(30-0) ) — ACC(31-1)
0 — ACC(0)

Not affected by SXM bit.
TMS320C25:

(PC) + 1 — PC
(ACC(31)) —» C
(ACC(30-0) ) = ACC(31-1)
0 — ACC(0)

Affects C.
Not affected by SXM bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1+ 1 o o 1 1 1 0 0 0 0 1 1 o0 0

The SFL instruction shifts the entire accumulator left one bit. The least signifi-
cant bit is filled with a zero. On the TMS32020, the most significant bit is lost.
Onthe TMS320C25, the most significant bitis shifted into the carry bit (C). Note
that SFL, unlike SFR, is unaffected by SXM.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p — —_
1 o1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p — —
n n n+p n+p n n
SFL
Before Instruction After Instruction
ACC 0B0001234h ACC 060002468h
C o]

Assembly Language Instructions



Shift Accumulator Right SFR

Syntax

Operands
Execution

Encoding

Description

Words

[label ] SFR

None
TMS32020:

(PC) + 1 — PC
If SXM = 0
Then (ACC(31-1)) — ACC (30-0) and 0 — ACC(31)
If SXM = 1
Then (ACC(31-1)) - ACC(30-0) and (ACC(31)) — ACC(31)

Affected by SXM bit.
TMS320C25:

(PC) + 1 — PC
If SXM = 0
Then (ACC(0)) — C
(ACC(31-1)) — ACC (30-0) and 0 — ACC(31)
If SXM = 1:
Then (ACC(0)) — C |
(ACC(31—1)) — ACC(30-0) and (ACC(31)) — ACC(31)

Affects C.
Affected by SXM bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 O 0 1 1 0o o 1

The SFR instruction shifts the accumulator right one bit.

If SXM = 1, the instruction produces an arithmetic right shift. The sign bit (MSB)
isunchanged and is also copied into bit 30. Bit 0 is shifted into the carry bit (C).

If SXM = 0, the instruction produces a logical right shift. All of the accumulator
bits are shifted by one bit to the right. The least significant bit is shifted into the
carry bit, and the most significant bit is filled with a zero.

On the TMS32020, note that bit 0 is lost.
1

4-171



SFR  Shift Accumulator Right

Cycles

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI ‘PR/DE
20 1 1 14p 1+p — —
'C25 1 1 1+p 1+4p 1 1
Cycle Timings for a Repeat Execution
'20 n n n+p n+p — —
'C25 n n n+p n+p n n
Example 1 SFR i (SXM = 0)
Before Instruction After Instruction
ACC 0B0001234h ACC EI 5800091Ah
C C
Example 2 SFR ;(SXM = 1)
Before Instruction After Instrucﬁon
ACC 0B0001234h ACC El 0D800091Ah
C C

4-172 Assembly Language Instructions



Set Serial Port Frame Synchronization Mode (TMS320C25) SFSM

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

'C25

'C25

SFSM

None

(PC)+1—->PC
1 — FSM status bit in status register ST1

Affects FSM.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 it 1 0 0 O 1 1 0 1 1 1

The SFSM instruction sets the FSM status bit to logic one. In this mode, an ex-
ternal FSR pulse is required for areceive operation, and an external FSX pulse
isrequired if TXM =0.If TXM =1, FSX pulses are generated in the normal man-
ner every time the transmit shift register XSR is loaded. See Section 3.7 for de-
tails on the operation of the serial port. FSM may also be loaded by the LST1
and RFSM instructions.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE. PE/DI PE/DE PR/DI PR/DE
1 1 14p 14p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p n n .
SFSM ;FSM is set, putting the serial port in a mode

;of operation where frame synchronization
;pulses are required for each word to be
;transmitted or received.

4-173



- SHM  Set Hold Mode (TMS320C25)

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-174

'C25

'C25

[label] SHM

None

(PC)+1—=PC
1 — HM status bit in status register ST1

Affects HM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 0 1 1 1 0 O 1

The SHM instruction sets the HM status bit to logic one. In this mode, the
TMS320C25 is halted in the normal manner whenever HOLD is asserted, re-
gardless ofthe PC value or the state of the MP/MC pin. HM may also be loaded
by the LST1 and RHM instructions.

1

Cycle Timings for a Single Instruction
PI/D} PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p n n
SHM ;BM is set, implementing the normal

; (TMS32020-type) hold mode of operation.

Assembly Language Instructions



Set Overflow Mode SOVM

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

‘20

- 'C25

‘20
'C25

[ label ] SOVM
None
(PC)+1—PC

1 — overflow mode (OVM) status bit
Affects OVM.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0o 1 1 1 0 0 0 0 0 0 0 1 1

The OVM status bit is set to logic one, which enables the overflow (saturation)
mode. If an overflow occurs with OVM set, the overflow flag OV is set, and the
accumulator is set to the largest representable 32-bit positive (7FFFFFFFh)
or negative (80000000h) number according to the direction of overflow.

OVM may also be loaded by the LST and ROVM instructions.
1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p — —

1 1 1+p’ 1+p 1 1
Cycle Timings for a Repeat Execution

n n n+p n+p — —

n n n+p n+p n n

SOVM ;The overflow mode bit OVM is set, enabling the

;overflow mode on any subsequent arithmetic
;operations.

4-175



SPAC Subtract P Register from Accumulator

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-176

'20
'‘C25

'20
'C25

[label ] SPAC
None
PC)+1—PC

(ACC) — (shifted P register) - ACC

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).
Not affected by SXM.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1
1 1 0 0 1 1 1 0 0 O 0 1 0 1 1

The contents of the P register, shifted as defined by the PM status bits, are sub-
tracted from the contents of the accumulator. The result is stored in the accu-
mulator. Note that SPAC is unaffected by SXM; the P register is always sign-ex-
tended.

The SPAC instruction is a subset of LTS, MPYS, and SQRS.
1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p — —

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

n n n+p n+p — —

n n n+p n+p n . n

SPAC ;(PM = 0)

Before Instruction After Instruction

P 24h P 24h

'ACC 3Ch ACC 18h

Assembly Language Instructions



Store High P Register SPH

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

Direct

Indirect

'Ca5

'C25

Jdo 1 1 1 1 1 0 1 {o

] 0

Direct: [/abel ] SPH dma

Indirect: [label ] SPH  {ind} [, next ARP]
0=dma=127

OsnextARP =<7

(PC) +1 —-PC

(PR shifter output (31-16)) — dma
Affected by PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Memory Address

See Section 4.1

The high-order bits of the P register, shifted as specified by the PM bits, are
stored in data memory. Neither the P register nor the accumulator are affected
by this instruction. High-order bits are sign-extended when the right-shift by 6
mode is selected. Low-order bits are taken from the low P register when left-
shifts are selected.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1+d 1+p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
n | n+nd | n+p l1+n+nd+p n n+nd
SPH  DAT3 ;(DP = 4, PM = 2)
or
SPH * ;If current auxiliary register contains 515.
Before Instruction After Instruction
P OFE079844h P OFE079844h
Data Data
Memory 4567h Memory 0E079h
515 515

4-177



SPL Store Low P Register (TMS320C25)

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-178

Direct:] 0 1 1 1 1 1 0 O 0

Indirect

'C2s5

'C25

Direct: [label ] SPL dma

Indirect: [label] SPL  {ind} [, next ARP]
Osdmas127

O=nextARP =7

(PC) +1—=PC

(PR shifter output (15-0)) — dma
Affected by PM.

1 14 18 12 11 10 9 8 7 6 5

4 3 2 1

0

Data Memory Address

40 1+ t 1 1 1 0 0 (1

See Section 4.1

The low-order bits of the P register, shifted as specified by the PM bits, are
stored in data memory. Neither the P register nor the accumulator are affected
by this instruction. High-order bits are taken from the high P register when the
right-shift by 6 mode is selected. Low-order bits are zero-filled when left-shifts

are selected.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1+d 1+p 2+d+p 1+d
Cycle Timings for a Repeat Execution
n n+nd n+p 1+n+nd+p n n+nd
SPL  DAT3 ;(DP = 4, PM = 2)
or
SPL * ;If current auxiliary register contains 515.
Before Instruction After Instruction
P OFE079844h P OFEQ79844h
Data Data
Memory 4567h Memory 8440h
515 515

Assembly Language Instructions




Set P Register Output Shift Mode

SPM

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

'20
'C25

‘20
'C25

[label ] SPM  constant

0 =< constant <3

(PC)+1—-PC

Constant — product register shift mode (PM) status bits

Affects PM.

15 14 13 12 11 10 9 6 4 3 10
101 o o 1 1 1 0 0o 1 PM

The two low-order bits of the instruction word are copied into the PM field of
status register ST1. The PM status bits control the P register output shifter. This
shifter has the ability to shift the P register output either one or four bits to the
left or six bits to the right, or to perform no shift. The bit combinations and their
meanings are shown below.

PM
00
01
10
11

ACTION

No shift of multiplier output
Output left-shifted 1 place and zero-filled

Output left-shifted 4 places and zero-filled
Output right-shifted 6 places, sign-extended; LSB bits lost.

The left-shifts allow the product to be justified for fractional arithmetic. The
right-shift by six bits has been incorporated to implement up to 128 multiply—ac-
cumulate processes without the possibility of overflow occurring. PM may also
be loaded by an LST1 instruction.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 14p — —
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable ] — —
not repeatable
SPM 3 ;Préduct register shift mode 3 is selected,

;causing all subsequent transfers from the
;product register to the ALU to be shifted

;to the right six places.

4-179



SQRA Square and Accumulate Previous Product

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-180

Direct: [label ] SQRA dma

Indirect:  [/abel] SQRA {ind} [, next ARP]
O=dma=127

O=nextARP =<7

(PC)+1—-PC

(ACC) + (shifted P register) - ACC
(dma) — T register
(dma) x (dma) — P register

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:| © 0 1 1 1 0o 0 1 0

Data Memory Address

Indirect:] o o 1 1 1 0o 0 1 1 See Section 4.1

The contents ofthe P register, shifted as defined by the PM status bits, are add-
ed to the accumulator. The addressed data memory value is then loaded into
the T register, squared, and stored in the P register.

1

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p — —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 n 2n+nd n+p 2n+nd+p — —
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions



Square and Accumulate Previous Product SQRA

SQRA DAT30 ;(DP = 6, PM = 0)

Example
or
SQRA * ;If current auxiliary register contains 798.
Before Instruction After Instruction
Data Data
Memory OFh Memory OFh
798 798
T 3h T OFh
P 12Ch P 0E1h
ACC 1F4h ACCE 320h
c o] '

‘ 4-181



SQRS Square and Subtract Previous Product

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-182

Direct: SQRS dma

Indirect:

[label ]
[label ]

0=dma =127
O<next ARP <7

(PC) +1 — PC
(ACC) — (shifted P register) — ACC
(dma) — T register

“(dma) x (dma) — P register

Direct

Indirect

'20
'C25

‘20
'C25

Affects OV; affected by PM and OVM.

Affects C (TMS320C25).

i5 14 13 12 11 10 9 8

SQRS {ind} [, next ARP ]

5 4

2 1 0

do 1+ o 1 1 o0 1 o0

Data Memory Address

0 1 0 1 1 o 1 0

See Section 4.1

The contents ofthe P register, shifted as defined by the PM status bits, are sub-
tracted from the accumulator. The addressed data memory value is then
loaded into the T register, squared, and stored into the P register.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/D! PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
) Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions



Square and Subtract Previous Product SQRS

Example SQRS DAT9 ;(DP = 6, PM = 0)
or
SQRS * ;If current auxiliary register contains 777.
Before Instruction After Instruction
Data Data
Memory 8h Memory 8h
777 777
T 1124h T 8h
P 190h P 40h
ACC 1450h ACCEI 12Coh
o] C

4-183



SST Store Status Register STO

Syntax

Operands

Execution

Encoding

Description

Words

4-184

Direct:] 0 1 1 11 0 0 0 |o Data Memory Address

Indirect:] o 1 1 1 1 0 0 O 1 See Section 4.1

Direct: [label ] SST dma
Indirect: [label] SST  {ind} [, next ARP]

0 s<dma=st27
O<nextARP <7

(PC)+1—=PC
(status register ST0) — dma -

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

Status register STO is stored in data memory.

In the direct addressing mode, status register STO is always stored in page 0,
regardless of the value of the DP register. The processor automatically forces
the page to be 0, and the specific location within that page is defined in the in-
struction. Note that the DP register is not physically modified. This allows stor-
age of the DP register in the data memory on interrupts, etc., in the direct ad-
dressing mode without having to change the DP. In the indirect addressing
mode, the data memory address is obtained from the auxiliary register se-
lected. (See the LST instruction for more information.)

The SST instruction can be used to store status register STO after interrupts
and subroutine calls. The STO contains the status bits: OV (overflow flag),
OVM (overflow mode), INTM (interrupt mode), ARP (auxiliary register pointer),
and DP (data memory page pointer). The status bits are stored in the data
memory word as follows:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
ARP OV|IOVM | 1 INTM DP

Note that SST * may be used to store status register STO anywhere in data
memory, while SST in the direct addressing mode is forced to page 0.

1

Assembly Language Instructions



Store Status Register ST0 SST

Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 2+d 14p 3+d+p — —_
'Ca25 1 1+d 1+p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 3n+nd+p — —
'C25 n n+nd n+p 1+n+nd+p n n+nd
Example SST  DAT96 ;(DP = don’t care)
or
SsT * ;If current auxiliary register contains 96.
Before Instruction After Instruction
Status Status
Recﬁ;_ister 0A408h Register 0A408h
STO STO
Data Data
Memory 0Ah Memory 0A408h
96 96

4-185




SST1 Store Status Register ST1

Syntax

Operands

Execution

Encoding

Description

Words

4-186

Direct:| 0 1 1 11 o o0 1 0 Data Memory Address

Indirect:] o 1 1 1 1 0o 0 1 1 See Section 4.1

Direct: [label ] SST1 dma
Indirect:  [/abel] SST1  {ind} [, next ARP ]

0 =dma <127
O<nextARP <7

(PC)+1—PC
(status register ST1) — dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status register ST1 is stored in data memory. In the direct addressing mode,
status register ST1 is always stored in page 0, regardless of the value of the
DP register. The processor automatically forces the page to be 0, and the spe-
cific location within that page is defined in the instruction. Note that the DP reg-
ister is not physically modified. This allows the storage of the DP in the data
memory on interrupts, etc., in the direct addressing mode without having to
change the DP. In the indirect addressing mode, the data memory address is
obtained from the auxiliary register selected. (See the LST1 instruction for
more information.)

SST1 is used to store status bits after interrupts and subroutine calls. ST1 con-
tains the status bits: ARB (auxiliary register pointer buffer), CNF (RAM configu-
ration control), TC (test/control), SXM (sign-extension mode), XF (external
flag), FO (serial port format), TXM (transmit mode), and the PM (product regis-
ter shift mode). ST1 onthe TMS320C25 also contains the status bits: C (carry)
bit, HM (hold mode), and FSM (frame synchronization mode). The bits loaded
into status register ST1 from the data memory word are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ARB CNFf| TC | SXM] Ct |1 13 |HMt | FSMY{| XF | FO | TXM}| PM

1 On the TMS32020, bits 5, 6, and 9 are ones.
$ On the TMS320C26, bits 12 and 7 hold CNFO and CNF1, respectively (see the CONF
instruction for decoding).

Note that SST1 * may be used to store status register ST1 anywhere in data
memory, while SST1 in the direct addressing mode is forced to page 0.

1

Assembly Language Instructions



Store Status Register ST1

Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 2+d C14p 3+d+p — —
'C25 1 1+d 14p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 3n+nd+p — —
'C25 n n+nd n+p 1+n+nd+p n n+nd
Example SST1 DAT97 ; (DP = don’t care)
or
SST1 * ;If current auxiliary register contains 97.

Status
Req_ister
ST1

Data
Memo
97 v

Before Instruction

O0A7EQh

0Bh

F{Status:
egister
SE

MData
emo
97 v

After Instruction

0A7EOh

0A7EOh

SST1




SSXM Set Sign-Extension Mode

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-188

'20
'C25

20
'C25

[label]  SSXM

None

(PC)+1—=PC
1 — SXM status bit in status register ST1

Affects SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 o 1 1 1 0 0 O 0 o0 0 1 11

The SSXM instruction sets the SXM status bittologic 1, which enables sign-ex-
tension on shifted data memory values for the following arithmetic instructions:
ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB, and SUBT.

In addition, SSXM affects the definition of the SFR instruction. You can load
SXM with the LST1 and RSXM instructions, as well.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DL PE/DE PR/DI PR/DE

1 1 1+p 1+p — —

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

n n n+p n+p — —

n n n+p n+p n n

SSXM ;SXM is set, enabling sign extension on

;subsequent instructions.

Assembly Language Instructions



Set Test/Control Flag (TMS320C25) STC

Syntax

Operands

Execution

Encoding

Description

Words .

Cycles

Example

'C25

'C25

[label ] STC
None
(PC)+1—-PC

1 — TC test/control flag in status register ST1
Affects TC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 i 1 0 0 0 1 1 0 0 11

The TC (test/control) flag in status register ST1 is set to logic one. TC may also
be loaded by the LST1 and RTC instructions.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p n n
STC ;TC (test/control) flag is set to logic one.

4-189



STXM Set Serial Port Transmit Mode

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-190

20
'C25

'20
'C25

[ label ]

None

(PC) + 1 — PC

STXM

1 — TXM status bit in status register ST1

Affects TXM.

15 14

12 1

9

5 4 3 2 1 0

1 1

0

1

1 0 0 0 0 1

The STXM instruction sets the TXM status bit to logic 1, which configures the
serial port transmit section to a mode where the FSX pin behaves as an output.
Apulse is produced on the FSX pin each time the DXR register is loaded inter-
nally. The transmission is initiated by the negative edge of this pulse. TXM may
also be loaded by the LST1 and RTXM instructions. If the FSM status bitis a
logic zero and serial port operation has already started, the FSX pin will be driv-
en low if TXM = 1.

.1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p —_ —
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p — —_
n n n+p n+p . n ‘ n
STXM ;TXM is set, configuring FSX as an output.

Assembly Language Instructions



Subtract from Accumulator with Shift  SUB

Syntax

Operands

Execution

Encoding

Description’

Words
Cycles

Example

Direct

Indirect

Direct: [label ] SUB dma |, shift]
Indirect: [label ] SUB {ind} [, shift [ next ARP]]
O<dmas 127

OsnextARP s 7
0 = shift = 15 (defaults to 0)
(PC) +1 — PC
(ACC) — [(dma) x 2shift] —~ ACC
If SXM = 1:

Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV, affected by OVM and SXM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

] 0 Shift 0 Data Memory Address

] 0 0 0 1 Shift 1 See Section 4.1

The contents of the addressed data memory location are left-shifted and sub-
tracted from the accumulator. During shifting, low-order bits are zero-filled.
High-order bits are sign-extended if SXM is high and zero-filled if SXM is low.
The result is stored in the accumulator.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p — —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 n 2n+nd ° n+p 2n+nd+p — —
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd |
SUB DAT80 ;(DP = 8)
or
SUB * ;If current auxiliary register contains 1104.
Before Instruction After Instruction
Data Data
Memory 11h Memory 11h
1104 1104
ACC 24h ACC 13h
Cc Cc

4-191



SUBB  Subtract from Accumulator with Borrow (TMS320C25)

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-192

Direct

Indirect

Direct: [label ] SUBB dma

Indirect: [label]  SUBB {ind}[, next ARP]
0 <dma =127

OsnextARP =<7

(PC) +1 —PC

(ACC) — (dma) — (C) — ACC
Affects C and OV, affected by OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Memory Address

] 0 1 0 0 1 1 1 1 1 See Section 4.1

The contents of the addressed data memory location and the value of the carry
bit are subtracted from the accumulator. The carry bitis then affected in the nor-
mal manner (see subsection 3.5.2).

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'C25 n | 1+n+nd n+p I 1+n+nd+p n 1+n+nd
SUBB DATS ; (DP = 8)
or
SUBB * ;If current auxiliary register contains 1029.
Before Instruction After Instruction
Data Data
Memory 6h Memory 6h
1029 1029
ACC E 6h ACCIEI OFFFFFFFFh
o] C

In the above example, C is originally zeroed, presumably from the result of a
previous subtract instruction that performed a'borrow. The effective operation

performed was 6 — 6 — (0)—1, generating another borrow (and resetting carry
again) in the process.

The SUBB instruction can be used in performing mulitiple-precision arithmetic.

Assembly Language Instructions



Conditional Subtract SUBC

Syntax

Operands

Execution

Encoding

Description

Words

Direct:] 0 1 0 o 0o 1t 1t 1 0 Data Memory Address

Indirect:| o 1 0 0 o0 1 1 1 1 See Section 4.1

Direct: [/abel] SUBC dma
Indirect:  [/abel] SUBC {ind} [, next ARP ]

0 <dma =127
O=<nextARP <7

(PC) + 1 — PC
(ACC) — [(dma) x 215] — ALU output

If ALU output = O:
Then (ALU output) x 2 + 1 — ACC;
Else (ACC) x 2 — ACC.

Affects OV.
Affects C (TMS320C25).
Not affected by OVM (no saturation); is affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The SUBC instruction performs conditional subtraction, which may be used for
division. The 16-bit dividend is placed in the low accumulator, and the high ac-
cumulator is zeroed. The divisor is in data memory. SUBC is executed 16 times
for 16-bit division. After completion of the last SUBC, the quotient ofthe division
is in the lower-order 16-bit field of the accumulator, and the remainder is in the
high-order 16 bits of the accumulator. SUBC provides the normally expected
results for division when both the divisor and dividend are positive. The divisor
is affected by the SXM bit. If SXM=1, then the divisor must have a 0 value in
the MSB. If SXM=0, then any 16-bit divisor value will produce the expected re-
sults. The dividend, which is in the accumulator, must initially be positive (that
is, bit 31 must be 0) and must remain positive following the accumulator shift,
which occurs during the SUBC operation.

If the 16-bit dividend contains less than 16 significant bits, the dividend may
be placed in the accumulator left-shifted by the number of leading nonsignifi-
cant zeroes. The number of executions of SUBC is reduced from 16 by that
number. One leading zero is always significant.

Note that SUBC affects OV but is not affected by OVM, and therefore the accu-
mulator does not saturate upon positive or negative overflows when this in-
struction is executed.

1

4-193



SUBC cConditional Subtract

Cycles
Cycle Timings for a Single Instruction ,
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p — —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 n 2n+nd n+p 2n+nd+p — —
'C25 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example RPTK 15
SUBC DAT2 ; (DP = 4)
or
RPTK 15 .
SUBC * ;If current auxiliary register contains 514.
Before Instruction After Instruction
Data Data
Memory 7h Memory 7h
514 514
ACC 41h ACC 20008h
Cc C

4-194 Assembly Language Instructions



Subtract from High Accumulator

SUBH

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

Direct: [label ] SUBH dma
Indirect: [label ]
Osdmas 127

‘OsnextARP =<7

(PC) + 1 — PC
(ACC) — [(dma) x 216] - ACC

Affects OV, affected by OVM
Affects C (TMS320C25).

SUBH {ind} [, next ARP]

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Direct:f 0 1 0 0o 0 1 0 010 Data Memory Address
Indirect:| 0 1 0 0 0 1 0 0 1 See Section 4.1

The contents of the addressed data memory location are subtracted from the
upper 16 bits of the accumulator. The 16 low-order bits of the accumulator are
unaffected. The result is stored in the accumulator. The carry bit C on the
TMS320C25 is reset if the result of the subtraction generates a borrow; other-

wise, C is unaffected.

The SUBH instruction can be used for performing 32-bit arithmetic.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p — —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p — —
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd
SUBH DAT33 ; (DP = 6)
or
SUBH * ;If current auxiliary register contains 801.
Before Instruction After Instruction
Data Data -
Memory 4h Memory 4h
801 801
ACC 0A0013h ACC 60013h
C

C

4-195



SUBK Subtract from Accumulator Short Immediate (TMS320C25)

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-196

'C25 |

'C25

[label ] SUBK constant

0 = constant < 255

(PC)+1—-PC
(ACC) — 8-bit positive constant — ACC

Affects C and OV: affected by OVM.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i 1 0 0 1 1 0 1

8-Bit Constant

The 8-bit immediate value is subtracted, right-justified, from the accumulator
with the result replacing the accumuiator contents. The immediate value is
treated as an 8-bit positive number, regardless of the value of SXM.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable
SUBK 12h

After Instruction

ACC 25h
C

Before Instruction

‘ ACC 37h
C

Assembly Language Instructions



Subtract from Low Accumulator with Sign-Extension Suppressed SUBS

Syntax Direct: [label ] SUBS dma
Indirect: [label ] SUBS {ind} [, next ARP ]
Operands 0=<dma <127
O<snextARP <7
Execution (PC)+1—PC
(ACC) — (dma) — ACC
Affects OV; affected by OVM.
Affects C (TMS320C25).
Not affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:] 0 1 0 o o 1 0 1 0 Data Memory Address
Indirect:} o 1 0 0o 0 1 0 1 1 See Section 4.1
Description The contents of the addressed data memory location are subtracted from the
accumulator with sign-extension suppressed. The data is treated as a 16-bit
unsigned number, regardless of SXM. The accumulator behaves as a signed
number. SUBS produces the same result as a SUB instruction with SXM = 0
and a shift count of 0.
Words ' 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p — —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p — —
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example SUBS DAT2 ;(DP = 16)
' or
SUBS * ;If current auxiliary register contains 2050.
Before Instruction After Instruction
Data Data
Memory 0F003h Memory 0F003h
2050 2050

Before Instruction

ACC

0F105h

C

ACC
c

After Instruction

102h

4-197



SUBT Subtract from Accumulator with Shift Specified by T Register

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

4-198

Direct

Indirect

20
'C25

'20
'C25

SUBT dma
SUBT {ind} [, next ARP]

Direct:
Indirect:

[label ]
[label ]

0 =dma =127
OsnextARPs7
(PC)+1—-PC
(ACC) - [(dma) x 2 Tregister (3 - 0)] - (ACC)
If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by SXM and OVM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 i 1 0 0 Data Memory Address

i 0 1 0 0 0 1 1 0 1 See Section 4.1

The data memory value is left-shifted and subtracted:from the accumulator.
The left-shift is defined by the four LSBs of the T register, resulting in shift op-
tions from 0 to 15 bits. The result replaces the accumulator contents. Sign-ex-
tension on the data memory value is controlled by the SXM status bit.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Assembly Language Instructions



Subtract from Accumulator with Shift Specified by T Register SUBT

Example SUBT DAT127 ;(DP = 4)
or
SUBT * ;If current auxiliary register contains 639.
Before Instruction After Instruction
Data Data
Memory 6h Memory 6h
639 639
T OFF98h T . OFF98h
ACC OFDASh ACCE’ OF7A5h
C C

4-199



SXF Set External Flag

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

4-200

'20
'C25

'20
'C25

[label]  SXF

None

(PC)+1 —-PC .
1 — external flag (XF) pin and status bit

Affects XF.

i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 i 1 0 0 O 0 0 1 1 0o 1

The XF pin and the XF status bit in status register ST1 are set to logic 1. XF
may also be loaded by the LST1 and RXF instructions.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p —_ —_

1 1 1+p 1+p 1 1

' Cycle Timings for a Repeat Execution

n N n+p n+p — —

n n n+p n+p n n

SXF ;The XF pin and status bit are set to logic 1.

Assembly Language Instructions



Table Read TBLR

Syntax Direct: [label ] TBLR dma

Indirect: [fabel ] TBLR {ind} [, next ARP]]
Operands O=sdmas 127

OsnextARP <7
Execution TMS32020:

(PC) + 1 =TOS
(ACC(15-0)) — PC

If (repeat counter) = 0:
Then (pma) — dma,
Modify AR(ARP) and ARP as specified,
(PC) + 1.— PC,
(repeat counter) — 1 — repeat counter.

Else (pma) — dma
Modify AR(ARP) and ARP as specified.
(TOS) - PC

TMS320C25:

(PC) + 1 — PC
(PFC) — MCS
(ACC(15-0)) — PFC

If (repeat counter) = 0:

Then (pma, addressed by PFC) — dma,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 — PFC,

(repeat counter) — 1 — repeat counter.

Else (pma, addressed by PFC) — dma
Modify AR(ARP) and ARP as specified.

(MCS) — PFC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:] 0 1 0 1 1 0 0 O 0 Data Memory Address
Indirect:] 0 1 0 1 1 0 0 O 1 See Section 4.1

4-201



TBLR T7able Read

Description

Words

Cycles

4-202

'C25

'C25

The TBLR instruction transfers a word from a location in program memory to
a data memory location specified by the instruction. The program memory ad-
dress is defined by the low-order 16 bits of the accumulator. For this operation,
aread from program memory is performed, followed by a write to data memory.
In the repeat mode, TBLR effectively becomes a single-cycle instruction, and
the program counter that contains the ACCL is incremented once each cycle.

On the TMS32020, the contents of the lowest stack location are lost when the

TBLR instruction is used.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this in-
struction and the program memory address used is less than 4096, an on-chip

ROM location will be read.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/D! PE/DE PR/DI PR/DE
Table in internal program memory:
3 3+d 3+p 3+d+p — —
Table in external program memory:
3+p 4+d+p 3+2p 4+d+2p — —
Table in on-chip RAM:
2 2+d 3+p 3+d+p 3 3+d
Table in on-chip ROM:
3 3+d 4+p 4+d+p 4 4+d
Table in external memory:
3+p 3+d+p 4+2p 4+d+2p 4+p 4+d+p
Cycle Timings for a Repeat Execution
Table in internal program memory:
2+n 2+n+nd 2+n+p 2+n+nd+p — —_—
Table in external program memory:
2+n+np 2+2n+nd+np  2+n+np+p  2+2n+nd+np —_ —
+p
Table in on-chip RAM:
1+n 1+n+nd 2+n+p 2+n+nd+p 2+n 2+n+nd
Table in on-chip ROM:
2+n 2+n+nd 3+n+p 3+n+nd+p 3+n 3+n+nd
Table in external memory:
2+n+np 1+2n+nd+np  3+n+np+p 2+2n+nd+np 3+n+np 2+2n+nd+np
+p |

Assembly Language Instructions



Table Read TBLR

Example TBLR DAT6 ; (DP = 4)
or
TBLR * ;If current auxiliary register contains 518.
Before Instruction After Instruction
ACC 23h ACC 23h
Program Program
Memory 306h Memory 306h
23 23
Data Data
Memory 75h Memory 306h
518 518

4-203



TBLW Table Write

Syntax

Operands

Execution

Encoding

Description

4-204

Direct: [label] TBLW dma
Indirect: [label ] TBLW {ind} [, next ARP]

O=dmasi27
O=snextARP =<7
TMS32020:

(PC) + 1 — TOS
(ACC(15-0)) — PC

If (repeat counter) = 0:
Then (dma) — pma,
Modify AR(ARP) and ARP as specified,
(PC) + 1 — PC,
(repeat counter) — 1 — repeat counter.

Else (dma) — pma
Modify AR(ARP) and ARP as specified.
(TOS) — PC

TMS320C25:

(PC) + 1 - PC
(PFC) — MCS
(ACC(15-0)) — PFC

If (repeat counter) = 0: i
Then dma — (pma, addressed by PFC),
Modify AR(ARP) and ARP as specified,
(PFC) + 1 — PFC,
(repeat counter) — 1 — repeat counter.

Else dma — (pma, addressed by PFC),
Modify AR(ARP) and ARP as specified.
(MCS) — PFC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: 0 1 0 L 0 o0 1 0 Data Memory Address

Indirect:] 0 1 0 11 0 0 1 1 See Section 4.1

The TBLW instruction transfers a word in data memory to program memory.
The data memory address is specified by the instruction, and the program
memory address is specified by the lower 16 bits of the accumulator. A read
from data memory is followed by a write to program memory to complete the
instruction. In the repeat mode, TBLW effectively becomes a single-cycle in-
struction, and the program counter that contains the ACCL is incremented
once each cycle.

Assembly Language Instructions



Table Write TBLW

Words
Cycles
20
'C25
20
'C25

Onthe TMS32020, the contents of the lowest stack location are lost when the
TBLW instruction is used.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this in-
struction and the program memory address used is less than 4096, an on-chip
ROM location will be addressed but not written to.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
Table in internal program memory:
3 3+d 3+p 3+d+p —_ —
Table in external program memory:
3+p 4+d+p 3+2p 4+d+2p — —
Table in on-chip RAM: ,
2 3+d 3+p 4+d+p 3 4+d
Table in on-chip ROM:
not applicable
Table in external memory:
2+4p 3+d+p 3+2p 4+d+2p 3+p 4+d+p
Cycle Timings for a Repeat Execution
Table in internal program memory:
2+n 2+n+nd 2+n+p 2+n+nd+p — —
Table in external program memory:
2+n+np 2+2n+nd+np  2+n+np+p  2+2n+nd+np -— —
P
Table in on-chip RAM:
1+n 2+n+nd 2+n+p 3+n+nd+p 2+n 3+n+nd
Table in on-chip ROM:
not applicable
Table in external memory:
1+n+np 1+2n+nd+np  2+n+np+p  2+2n+nd+np 2+n+np 2+2n+nd+np
+p

4-205



TBLW Table Write

Example TBLW DATS
or
TBLW *

ACC

Data
Memory
4101

Program
Memory
257

4-206

; (DP = 32)

;If current auxiliary register contains 4101.

Before Instruction

257h

4339h

306h

ACC

Data
Memory
4101

Program
Memory
257

After Instruction
257h

4339h

4339h

Assembly Language Instructions



Software Interrupt

TRAP

Syntax

Operands
Execution

Encoding

Description

Words

Cycles

Example

'20
'C25

'20
'C25

[label]

None

TRAP

(PC) + 1 — stack

30 - PC

Not affected by INTM; does not affect INTM.

15 14

13 12 11 10 9

6 5 4

1 1

0 0

1 1

0 0 1

The TRAP instruction is a software interrupt that transfers program control

to program memory location 30 and pushes the program counter plus one onto
the hardware stack. The instruction at location 30 may contain a branch in-
struction to transfer control to the TRAP routine. Putting PC + 1 onto the stack
enables an RET instruction to pop the return PC (points to instruction after the
TRAP) from the stack.

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+p 2+p — —
Destination on-chip RAM:
2 2 2+p 2+p 2 2
Destination on-chip ROM:
3 3 3+p 3+p 3 3
Destination external memory:
3+p 3+p 3+2p 3+2p 3+p 3+p
Cycle Timings for a Repeat Execution
not repeatable — _—
not repeatable
TRAP ;Control is passed to program memofy location

;30. PC + 1 is pushed on to the stack.

4-207



XOR Exclusive-OR with Accumulator

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example ,

4-208

Direct

Indirect

20
'C25

20
'C25

Direct: [label ] XOR dma
Indirect: [label ] XOR
0=sdmas127

OsnextARP=7

(PC)+1—=PC

(ACC(15-0)) XOR dma — ACC(15-0)
(ACC(31-16)) — ACC(31-16)

Not affected by SXM.

15 14 183 12 11 10 9 8

{ind} [, next ARP}

4 3 2

1 0

40 1 o0 o0 1 1 0 O

0 Data Memory Address

4o t+ o o0-1 1 0 O

1

See Section 4.1

The low half of the accumulator is exclusive-ORed with the contents of the ad-
dressed data memory location. The upper half of the accumulator is not af-

fected by this instruction.

1
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
XOR  DAT127 ;(DP = 511)
or :
XOR  * ;If current auxiliary register contains 65535.
Before Instruction After Instruction
Data Dat
Memory OFOFOh Memory OFOFOh
65535 65535 -
ACC 12345678h ACC 1234A688h
C c

Assembly Language Instructions



XOR Immediate with Accumulator with Shift XORK

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

20
'C25

20
'C25

[label ] XORK constant [, shift ]

16-bit constant

0 = shift < 15 (defaults to 0)

(PC) +2 — PC

(ACC(30-0)) XOR [constant x 2shift] -~ ACC(30-0)
(ACC(31)) — ACC(31)

15 14 13 12 11 10 9 8 7 6 5

1 1 0 1 Shift 0 O 0

16-Bit Constant

The left-shifted 16-bitimmediate constant is exclusive-ORed with the accumu-
lator, leaving the result in the accumulator. Low-order bits below and high-order
bits above the shifted value are treated as zeros, thus not affecting the corre-
sponding bits of the accumulator. Note that the MSB, most significant bit, of the
accumulator is not affected, regardless of the shift code value.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+2p 2+2p —
2 2 2+2p 2+2p 2
Cycle Timings for a Repeat Execution
not repeatable —
not repeatable

XORK OFFFFh,8

Before Instruction

After Instruction

012345678h

12CBA978h

ACC
C

Cc

4-209



ZAC Zero Accumulator

Syntax [label ] ZAC
Operands * None
Execution (PC) +1<sPC
0sACC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 1 0 0 1 o 1t 0 o0 0 0 0 0 0 0

Description The contents of the accumulator are replaced with zero. The ZAC instruction
has been implemented as a special case of LACK. (ZAC assembles as LACK
0.) '

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

20 1 1 1+p 1+p — —

'C25 | - 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
190 not repeatable — —
'C25 not repeatable
Example ZAC
Before Instruction After Instruction
ACC 0A5A5A5A5h ACC Oh
C Cc

4-210 Assembly Language Instructions



ZALH

Zero Low Accumulator and Load High Accumulator

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

Direct

Indirect

20
'C2s

'20
'C25

or

1o 1 o o o o o o [o

‘0 1 0 0 0 0 o0 o0 {1

Direct: [label ] ZALH dma

Indirect:  [label] ZALH [{ind} [, next ARP]
0 sdma =127

OsnextARP <7

(PC)+1—PC

0 — ACC(15-0)
(dma) — ACC(31-16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Memory Address

See Section 4.1

ZALH loads a data memory value into the high-order half of the accumulator.
The low-order bits of the accumulator are zeroed.

ZALH is useful for 32-bit arithmetic operations.

1
Cycle Timings for a Single Instruction
PI/DI PYDE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p — —
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p — —
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
ZALH DAT3 i (DP = 32)
ZALH ~* ;If current auxiliary register contains 4099.
Before Instruction After Instruction
Data Data
4099 4099
ACC 77FFFFh ACC 3F010000h
C C

4-211



ZALR Zero Low Accumulator, Load High Accumulator with Rounding (TMS320C25)

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-212

Direct

Indirect

'C25

'C25

Direct: [label ] ZALR dma

Indirect:  [/abel] ZALR {ind} [, next ARP]
0 =<dma =127

OsnextARP <7

(PC)+1—=PC

8000h — ACC(15-0)
(dma) — ACC(31-16)

15 14 13 12 N i0 9 8 7 6 5 4 3 2 1 0

40 1 1 1 1 o 1 1 0 Data Memory Address

'l 0 1 1 1 1 0o 1 1 1 See Section 4.1

The ZALR instruction loads a data memory value into the high-order half of the
accumulator and rounds the value by adding 1/2 LSB; that is, the 15 low bits
(bits 0 —14) of the accumulator are set to zero and bit 15 of the accumulator
is set to one.

ZALR is a derivative instruction from ZALH.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 24d 1+p 24d+p 1 24d
Cycle Timings for a Repeat Execution
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
ZALR DAT3 ;(DP = 32)
or
ZALR * ;If current auxiliary register contains 4099.
Before Instruction After Instruction
Dat: Dat
Memory 3F0th Memory 3F01h
4099 4099
ACC 77FFFFh ACC 3F018000h
o] C

Assembly Language Instructions



Zero Accumulator, Load Low Accumulator with Sign-Extension Suppressed ZALS

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

‘ Example

Direct: [label ] ZALS dma

Indirect:  [/abel] ZALS {ind} [ next ARP]
0 <dma=127

OsnextARP s7

(PC)+1—-PC

0 — ACC(31-16)
(dma) — ACC(15-0)

Not affected by SXM.
15 14 13 12 10

Direct:] 0 1 0

Data Memory Address

Indirect:] o 1 0

See Section 4.1

The contents of the addressed data memory location are loaded into the 16
low-order bits of the accumulator. The upper half of the accumulator is zeroed.
The data is treated as a 16-bit unsigned number rather than a 2s-complement
number. Therefore, there is no sign-extension with this instruction, regardless
of the state of SXM. (ZALS behaves the same as a LAC instruction with no shift
and SXM =0.)

ZALS is useful for 32-bit arithmetic operations.

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 14p 2+d+p — —
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p — —
'C25 n 1+n+nd n+p 14n+nd+p n 1+n+nd
ZALS DATI1 ;(DP = 6)
or
ZALS * ;1f current auxiliary register contains 769.
Before Instruction After Instruction
Dat Dat
Memory OF7FFh Memory OF7FFh
769 769
ACC 7FF00033h ACC OF7FFh
' c

4-213



4-214 : ‘ Assembly Language Instructions



Chapter 5

Software Appiications

The TMS320C2x microprocessor/microcomputer design emphasizes overall
speed, communication, and flexibility. Many instructions are tailored to digital
signal processing tasks and provide single-cycle multiply/accumulates, adap-
tive filtering support, and many other features. General-purpose instructions
support floating-point, extended-precision, logical processing, and control
applications. |

This chapter provides explanations of how to use the various TMS320C2x pro-
cessor and instruction set features along with assembly language coding ex-
amples. More information about specific applications can be foundinthe book,
Digital Signal Processing Applications with the TMS320 Family (literature
number SPRA012A).

The assembly source code examples in this chapter contain directives and
commands specificto the Texas Instruments Assembly Language Tools. Publi-
cation TMS320 Fixed-Point DSP Assembly Language Tools (literature number
SPRUO018B) is highly recommended as a reference.

Note:

Throughout this document, TMS320C2x refers to the TMS32020,
TMS320C25, TMS320C25-33, TMS320C25-50, TMS320C26, and
TMS320E25, unless stated otherwise. Where applicable, ROM includes the
on-chip EPROM of the TMS320E25.

[ ]

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

Topics in this chapter include:

Section Page
5.1 Processor initialization ......... . i 5-2
5.2 Program Control .........ouvueneiniiiiiiii 5-8
5.3 Interrupt Service Routine ............oiiiiiiiiiiiee 5-16
5.4 Memory Management .........c.ooiiiiiiiiiiiiiiiii e 5-22
5.5 Fundamental Logical and Arithmetic Operations .............. 5-31
5.6 Advanced Arithmetic Operations ...........coooiii ot 5-34
5.7 Application-Oriented Operations .............oeeeeeeeenee. 5-57

5-1




Processor Initialization

5.1 Processor Initialization

Prior to the execution of a digital signal processing algorithm, it is necessary
toinitialize the processor. Generally, initialization takes place anytime the pro-
cessor is reset.

When reset is activated by applying a low level voltage to the RS (reset) input .
for at least three cycles, the TMS320C2x terminates execution and forces the
program counter (PC) to zero. Program memory location 0 normally contains
a B (branch) instruction to direct program execution to the system initialization
routine. The hardware reset also initializes various registers and status bits.

After reset, the processor should be initialized to meet the requirements of the
system. Instructions should be executed that set up operational modes,
memory pointers, interrupts, and the remaining functions necessary to meet
system requirements.

To configure the processor after reset, the following internal functions should
be initialized:

X Memory-mapped registers
X Interrupt structure

X Mode control (OVM, SXM, FO, TXM, PM; plus HM and FSM on
TMS320C25)

(2 Memory control (CNF)
[ Auxiliary registers and the auxiliary register pointer (ARP)
(4 Data memory page pointer (DP)

The OVM (overflow mode), TC (test/control flag), and IMR (interrupt mask reg-
ister) bits are not initialized by reset. The auxiliary register pointer (ARP), auxil-
iary register pointer buffer (ARB), and data memory page pointer (DP) are also
not initialized by reset.

Example 5-1, Example 5-2, and Example 5-3 show coding for initializing the
TMS32020, TMS320C25, and TMS320C26, respectively, to the following ma-
chine state, inaddition to the initialization performed during the hardware reset:

(2 Allinterrupts enabled
Overflow mode (OVM) disabled

Data memory page pointer (DP) set to bzero

S Wiy B

Auxiliary'register pointer (ARP) set to four (TMS32020) or seven
(TMS320C25 and TMS320C26)

i

Internal memory filled with zeros

5-2 Software Applications



Processor Initialization

Example 5-1. Processor Initialization (TMS32020)

title 'PROCESSOR INITIALIZATION'

.def RESET, INTO,INT1,INT2

.def TINT,RINT,XINT,USER

.ref ISR0,ISR1,ISR2

.ref TIME, RCV, XMT, PROC
" .
*  PROCESSOR INITIALIZATION FOR THE TMS32020.
* RESET AND INTERRUPT VECTOR SPECIFICATION.
* BRANCHES FOR EXTERNAL AND INTERNAL INTERRUPTS.
*

.sect "vectors”
RESET B INIT ; RS— BEGINS PROCESSING HERE.
*
INTO B ISRO ; INTO— BEGINS PROCESSING HERE.
INT1 B ISR1 ; INT1— BEGINS PROCESSING HERE.
INT2 B ISR2 ; INT2— BEGINS PROCESSING HERE.
*

.space (18h—($—RESET))*16
TINT B TIME ; TIMER INTERRUPT PROCESSING.
RINT B RCV ; SERIAL PORT RECEIVE PROCESSING.
XINT B XMT ;7 SERIAL PORT TRANSMIT PROCESSING.
*
USER B PROC ; TRAP VECTOR PROCESSING BEGINS.
*
* THE BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS EXECUTION TO BEGIN
* HERE FOR RESET PROCESSING THAT INITIALIZES THE PROCESSOR. WHEN RESET IS
* APPLIED, THE FOLLOWING CONDITIONS ARE ESTABLISHED FOR THE STATUS AND OTHER
* TINTERNAL REGISTERS:
*
*
* ARP ov OVM 1 INTM DP
* STO: XXX 0 X 1 1 XXXXXXXXX

*
* ARB CNF TC SXM 11111 XF FO TXM PM
* ST1l: XXX 0 X X 11111 1 0 0 XX
*
*  REGISTER ADDRESS DATA
* DRR 0000h XXXX XXXX XXXX XXXX
* DXR 0001h XXXX XXXX XXXX XXXX
* TIM 0002h 1111 1111 1111 1111
* PRD 0003h XXXX XXXX XXXX XXXX
* IMR 0004h 1111 1111 11XX XXXX
* GREG 0005h 1111 1111 0000 0000
*
* RESERVED XINT RINT TINT INT2 INT1 INTO
* IMR: 1111111111 X X X X X X
*
.text

INIT ROVM

DISABLE OVERFLOW MODE.

14
LDPK 0 ; POINT DP REGISTER TO DATA PAGE 0.
LARP 4 ; POINT TO AUXILIARY REGISTER 4.
LACK 3Fh ; LOAD ACCUMULATOR WITH 3Fh.
SACL 4 ; ENABLE ALL INTERRUPTS VIA IMR.

5-3



Processor Initialization

LALK
SACL
SSXM
SPMO

OFFFFh
3

~e ~e ~e o~

LOAD ACCUMULATOR WITH OFFFFh.
INITIALIZE PERIOD REGISTER.
SET SIGN-EXTENSION MODE TO 1.
SET PM BITS TO 0.

* INTERNAL DATA MEMORY INITIALIZATION.

*

L S

5-4

ZAC

LARK
RPTK
SACL

LRLK
RPTK
SACL

LRLK
RPTK
SACL

THE PROCESSOR IS INITIALIZED.
SYSTEM (BOTH ON- AND OFF-CHIP)

EINT

AR4,60h
31
*+

AR4,200h
255
*4

AR4,300h
255
ot

~ ~e ~e ~e ~e ~o

~

~

ZERO THE ACCUMULATOR.
POINT TO BLOCK B2.

STORE ZERO IN ALL 32 LOCATIONS.

POINT TO BLOCK BO.

ZERO ALL OF PAGES 4 AND 5.

POINT TO BLOCK Bl.

ZERO ALL OF PAGES 6 AND 7.

THE REMAINING APPLICATION-DEPENDENT PART OF THE
SHOULD NOW BE INITIALIZED.
ENABLE ALL INTERRUPTS.

Software Applications



Processor Initialization

Example 5-2. Processor Initialization (TMS320C25)
.title "PROCESSOR INITIALIZATION'

.def RESET, INTO,INT1,INT2
.def TINT,RINT,XINT,USER
.ref ISR0,ISR1,ISR2

.ref TIME,RCV,XMT,PROC

*

INTERRUPTS.

; RS—BEGINS PROCESSING HERE.

BEGINS PROCESSING HERE.
BEGINS PROCESSING HERE.
BEGINS PROCESSING HERE.

TIMER INTERRUPT PROCESSING.
SERIAL PORT RECEIVE PROCESSING.
SERIAL PORT TRANSMIT PROCESSING.

* PROCESSOR INITIALIZATION FOR THE TMS320C25.
* RESET AND INTERRUPT VECTOR SPECIFICATION.
* BRANCHES FOR EXTERNAL AND INTERNAL
*
.sect "vectors”

RESET B INIT
*
INTO B ISRO ; INTO-—
INT1 B ISR1 ; INT1-—
INT2 B ISR2 ; INT2—
*

.space (18h—(S—RESET))*16
TINT B TIME ;
RINT B RCV ;
XINT B XMT ;
*
USER B PROC

*

; TRAP VECTOR PROCESSING BEGINS.

* THE BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS EXECUTION TO BEGIN

* HERE FOR RESET PROCESSING THAT

INITIALIZES THE PROCESSOR.

WHEN RESET IS

* APPLIED,THE FOLLOWING CONDITIONS ARE ESTABLISHED FOR THE STATUS AND OTHER

* INTERNAL REGISTERS:
*
* ARP ov OVM
* STO: XXX 0 X
*
* ARB CNF TC
* ST1: XXX 0 X 1
*
* REGISTER ADDRESS
* DRR 0000h
* DXR 0001h
* TIM 0002h
* PRD 0003h
* IMR 0004h
* GREG 0005h
*
* RESERVED XINT RINT
* MR: 1111111111 X X
*
.text
INIT ROVM
LDPK 0
LARP 7
LACK 3Fh
SACL 4

*

XXXX

OXXXX

1111
1111
1111
1111

TINT INT2

X

~e we we we wo

INTM

1

11
11

DP

XXXXXXXXX

HM
1

DATA

XXXX
XXXX
1111
1111
1111
1111

X

* INTERNAL DATA MEMORY INITIALIZATION.

*

XXXX
XXXX
1111
1111
11XX
0000

INT1

FSM TXM
1 1 0 0

PM
00

XXXX
XXXX
1111
1111
XXXX
0000

INTO
X - X

DISABLE OVERFLOW MODE.

POINT DP REGISTER TO DATA PAGE 0.
POINT TO AUXILIARY REGISTER 7.
LOAD ACCUMULATOR WITH 3Fh.

ENABLE ALL INTERRUPTS VIA IMR.



Processor Initialization

ZAC ; ZERO THE ACCUMULATOR.

LARK AR7,60h ; POINT TO BLOCK B2.

RPTK 31

SACL .= *+ ; STORE ZERO IN ALL 32 LOCATIONS.
% :

LRLK  AR7,200h ; POINT TO BLOCK BO.

- RPTK 255

SACL  *+ ; ZERO ALL OF PAGES 4 AND 5.
*

LRLK  AR7,300h ; POINT TO BLOCK Bl.

RPTK 255 ‘

SACL  *+ ; ZERO ALL OF PAGES 6 AND 7.

*

THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION-DEPENDENT PART OF
THE SYSTEM (BOTH ON- AND OFF-CHIP) SHOULD NOW BE INITIALIZED.

*

EINT ; ENABLE ALL INTERRUPTS.

Example 5-3. Processor Initialization (TMS320C26)
.title *INIT26"
.title "TMS320C26 PROCESSOR INITIALIZATION'
.width 100
.option x

.def RESET, INTO,INT1,INT2
.def TINT,RINT,XINT,USER
.ref ISRO,ISR1,ISR2

.ref TIME,RCV,XMT,PROC

*

* RESET AND INTERRUPT VECTOR SPECIFICATION:

BRANCHES FOR EXTERNAL AND INTERNAL INTERRUPTS
*

*

RESET B INIT ; RS-will begin processing here
*
INTO B ISRO ; INTO— PROCESSING
INT1 B ISRl ; INT1- PROCESSING
INT2 B ISR2 ; INT2— PROCESSING

.space 16*16 ; RESERVED TIME
TINT B TIME ; TIMER INTERRUPT PROCESSING
RINT B RCV ; SERIAL PORT RECEIVE PROCESSING
XINT B XMT ; SERIAL PORT TRANSMIT PROCESSING
USER B PROC ; TRAP VECTOR PROCESSING

*
* THE BRANCH INSTRUCTION AT LOCATION 0 DIRECTS EXECUTION TO BEGIN HERE FOR RESET
* PROCESSING TO INITIALIZE THE PROCESSOR. WHEN RESET IS APPLIED, THE FOLLOWING
* CONDITIONS ARE ESTABLISHED FOR THE STATUS AND OTHER INTERNAL REGISTER.

* .

*IN THIS EXAMPLE THE BRANCH INCLUDES THAT THE ARP IS SET TO 7.

*THE AUXILIARY REGISTIER POINTER IS NOT SET FROM RESET.

*

* ARP ov OVM 1 INTM DP

* STO: 111 0 X 1 1 XXXXXXXXX

5-6 Software Applications



Processor Initialization

*
* ARB CNF0 TC SXM C 1 CNFl HM FSM XF FO TXM PM
* STl: XXX X 1 1 1 0 1 1 1 0 0 00
*
*  REGISTER ADDRESS DATA
* DRR 0000h XXXX XXXX XXXX XXXX
* DXR’ 0001h XXXX XXXX XXXX XXXX
* TIM 0002h 1111 1111 1111 1111
* PRD 0003h XXXX XXXX XXXX XXXX
* IMR 0004h 1111 1111 11XX XXXX
* GREG 0005h 1111 1111 0000 0000
*
* RESERVED XINT RINT TINT INT2 INT1 INTO
IMR: 1111111111 X X X X X X
*
def INIT
BO .set  0200h ; DATA MEMORY BLOCK BO
B2 .set 0060H ; DATA MEMORY BLOCK B2
IMR .set 4 ; INTERRUPT MASK REGISTER
. TEXT
INIT ROVM ; DISABLE OVERFLOW MODE
LDPK 0 ; POINT TO DATA MEMORY PAGE 0
LARP 7 ; POINT TO AUXILIARY REGISTER 7
CONF 0 ; CONFIGURE ALL INTERNAL RAM
; BLOCKS AS DATA MEMORY
LACK  O03FH ; LOAD ACCUMULATOR WITH INTERRUPT MASK
SACL IMR ; ENABLE ALL INTERRUPTS
*
* INTERNAL DATA MEMORY INITIALIZATION
*

LOOP1: RPTK 255

.sect “"INIT_RAM” ,
ZERO THE ACCUMULATOR

ZAC ;

LARK AR7,B2 ; POINT TO BLOCK B2 ~
RPTK 31

SACL *+ ; STORE ZERO IN ALL 32 LOCATIONS

POINT TO BLOCK BO
REPEAT LOOPl1 6 TIMES
ZEROING BLOCK BO, Bl AND B3

LRLK AR7,BO
LARK AR6,5

e e e~

SACL *+ ZERO THE PAGES: 4--15
LARP ARG
BANZ LOOP1, *—~,AR7 ; REPEAT 6 TIMES

* THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION DEPENDENT PART OF THE
SYSTEM (BOTH ON- AND OFF-CHIP) SHOULD NOW BE INITIALIZED.

EINT ; ENABLE ALL INTERRUPTS



Program Control

5.2 Program Control

To facilitate the use of the TMS320C2x in general-purpose high-speed pro-
cessing, a variety of instructions are provided for software stack expansion,
subroutine calls, timer operation, single-instruction loops, and external branch
control. Descriptions and examples of how to use these features of the
TMS320C2x are given in this section.

5.2.1 Subroutines

The TMS320C2x has a 16-bit program counter (PC) and a four-level
(TMS32020) or eight-level (TMS320C25) hardware stack for PC storage. The
CALL and CALA subroutine calls store the current contents of the program
counter on the top of the stack. The RET (return from subroutine) instruction
then pops the top of the stack to the program counter.

Example 5-3 illustrates the use of a subroutine to determine the square root
of a 16-bit number. Processing proceeds in the main routine to the point where
the square root of a number should be taken. At this point a CALL is made to
the subroutine, transferring control to that section of the program memory for
execution and then returning to the calling routine viathe RET instruction when
execution has completed.

Example 5—4. Subroutines
AUTOCORRELATION

*
*
* THIS ROUTINE PERFORMS A CORRELATION OF TWO VECTORS AND THEN CALLS A SQUARE ROOT
* SUBROUTINE THAT WILL DETERMINE THE RMS AMPLITUDE OF THE WAVEFORM.
*

LAC ENERGY
CALL SQORT
SACL ENERGY

*

* SQUARE ROOT

*

* THIS SUBROUTINE DETERMINES THE SQUARE ROOT OF A NUMBER X THAT IS LOCATED IN THE
* LOW HALF OF THE ACCUMULATOR WHEN THE ROUTINE IS CALLED. THE FRACTIONAL SQUARE
* ROOT OF XS TAKEN, WHERE 0 < X < 1 AND WHERE 1 IS REPRESENTED BY 7FFFh. THE
* RESULT IS RETURNED TO THE CALLING ROUTINE IN THE ACCUMULATOR.

* .

STO .set 60h ; SAVED STATUS REGISTER STO ADDRESS

ST1 .set 61h SAVED STATUS REGISTER ST1 ADDRESS

NUMBER .set 62h
TEMPR .set 63h
GUESS .set 64h

NUMBER X WHOSE SQUARE ROOT IS TAKEN
INTERMEDIATE ROOTS
SQUARE ROOT OF X*

e e we we N

5-8 Software Applications



Program Control

.text
SST
SST1
LDPK
SSXM
SPM1
SACL
LARP
LARK
LALK
SACL
SACL
SACH
LAC
SBLK
BL2Z
LAC
SACL
SACL
LARK

SQRT

*

* SQUARE

*

SQRTLP SQRA
ZALH
SPAC
BLZ
ZALH
SACH

NEXTLP LAC
SACH
ADDH
SACH
BANZ
LAC
LST1
LST
RET

STO ; SAVE STATUS REGISTER STO.
ST1 ; SAVE STATUS REGISTER ST1.
0 ; LOAD DATA PAGE POINTER = 0.
; SET SIGN-EXTENSION MODE.
; LEFT-SHIFT PR OUTPUT TO ACCUMULATOR.
NUMBER ; SAVE X.
AR1 ; INITIALIZE VARIABLES FOR SQUARE ROOT.
AR1,11 ; 12 ITERATIONS
800h ; ASSUME X IS LESS THAN 200h.
GUESS ; SET INITIAL GUESS TO 800h.
TEMPR ; SET FIRST INTERMEDIATE ROOT TO 800h.
ROOT ; SET SQUARE ROOT VALUE TO 0.
NUMBER ; LOAD X INTO THE ACCUMULATOR.
200h ; TEST IF X IS LESS THAN 200h.
SQRTLP ; IF YES, TAKE THE ROOT;
GUESS, 3 ; IF NO, THEN REINITIALIZE.
GUESS ; SET INITIAL GUESS TO 4000h.
TEMPR ; SET FIRST INTERMEDIATE ROOT TO 4000h.
AR1,14 ; 15 ITERATIONS
ROOT LOOP
TEMPR ; SQUARE TEMPORARY (INTERMEDIATE) ROOT.
NUMBER ; CHECK IF RESULT IS LESS THAN X.
NEXTLP ; IF IT'S NOT, SKIP ROOT UPDATE.
TEMPR ; IF IT IS, SET ROOT EQUAL TEMPR.
ROOT
GUESS, 15 ; SCALE DOWN GUESS BY 2 TO CONVERGE.
GUESS
ROOT ; ADD CURRENT ROOT ESTIMATE.
TEMPR ; UPDATE TEMPORARY ROOT VALUE.
SQRTLP ; REPEAT SPECIFIED NO. OF ITERATIONS.
ROOT ; LOAD THE ROOT OF X.
ST1 ; RESTORE STATUS REGISTER ST1.
STO ; RESTORE STATUS REGISTER STO.

The hardware stack s allocated for use in interrupts, subroutine calls, pipelined
instructions, and the emulator {(XDS). The TMS320C2x disables all interrupts
when it takes aninterrupt trap. If interrupts are enabled more than one instruc-
tion before the return of the interrupt service routine, the routine can also be
interrupted, thus using another level of the hardware stack. This condition
should be considered when managing the use of the stack. When nesting sub-
routine calls, each call uses a level of the stack. The number of levels used by
the interrupt mustbe remembered as well as the depth of the nesting of subrou-
tines. One level of the stack is reserved for the XDS to be used for breakpoint/
single-step operations. If the XDS is not used, this extra level is available for
internal use. Given these constraints, the following listings describe possible
allocations of the hardware stack levels:



Program Control

TMS32020:

— 1 level reserved for XDS stack

—1 level reserved for TRAP (software interrupt) instruction
— 1 level reserved for interrupt service routines (ISR)

— 1 level available for subroutine calls.

TMS320C25:

— 1 level reserved for XDS stack

— 1 level reserved for TRAP instruction
— 1 level reserved for ISR

— 5 levels available for subroutine calls.

or:

— 1 level reserved for XDS stack

— 1 level reserved for TRAP instruction
— 2 levels reserved for ISR

— 4 levels available for subroutine calls.

Whentwo levels are allocated for ISRs on the TMS320C25, the individual ISRs
can utilize one level of subroutine calls or one level of interrupt nesting.

5.2.2 Software Stack

Provisions have been made on the TMS320C2x for extending the hardware
stack into data memory. This is useful for deep subroutine nesting or stack
overflow protection. '

Use the PUSH and POP instructions to access the hardware stack via the ac-
cumulator. Two additional instructions, PSHD and POPD, are included in the
instruction set so that the stack may be directly stored to and recovered from
data memory.

A software stack can be implemented by using the POPD instruction at the be-
ginning of each subroutine in order to save the PC in data memory. Then before
returning from a subroutine, a PSHD is used to put the proper value back onto
the top of the stack.

When the stack has three (TMS32020) or seven (TMS320C25) values stored
on it and two or more values are to be put on the stack before any other values
are popped off, a subroutine that expands the stack is needed, such as shown
in Example 5—4. In this example, the main program stores the stack starting
locationin memory in AR2 and indicates to the subroutine whether to push data
from memory onto the stack or pop data from the stack to memory. If a zero
is loaded into the accumulator before calling the subroutine, the subroutine
pushes data from memory to the stack. If a one is loaded into the accumulator,
the subroutine pops data from the stack to memory.

Software Applications



Program Control

Because the CALL instruction uses the stack to save the program counter, the
subroutine pops this value into the accumulator and utilizes the BACC (branch
to address specified by accumulator) instruction to return to the main program.
This prevents the program counter from being stored into a memory location.
The subroutine in Example 5—4 uses the BANZ (branch on auxiliary register
not zero) instruction to control all of its loops.

Example 5-5. Software Stack Expansion

* THIS ROUTINE EXPANDS THE STACK WHILE LETTING THE MAIN PROGRAM DETERMINE WHERE
* TO STORE THE STACK CONTENTS OR FROM WHERE TO RECOVER THEM.

*

STACK LARP 2 ; USE AR2.
BNZ PO ; IF POPD IS NEEDED, GO TO PO.
POP ; ELSE, SAVE PROGRAM COUNTER.
RPTK 6 ; LOAD REPEAT COUNTER.
PSHD *+ ; PUT MEMORY IN STACK.
BACC ; RETURN TO MAIN PROGRAM.
PO POP ; SAVE PROGRAM COUNTER.
MAR *— ; ALIGN STACK POINTER.
RPTK 6 ; LOAD REPEAT COUNTER.
POPD *— ; PUT STACK IN MEMORY.
MAR *+ ; REALIGN STACK POINTER.
BACC ; RETURN TO MAIN PROGRAM.

5.2.3 Timer Operation

The TMS320C2x provides a 16-bit on-chip timer and its associated interrupt
to perform various functions at regular time intervals. The timer is a down
counter that is continuously clocked by CLKOUT1 on the TMS320C25 and
counts (PRD + 1) cycles of CLKOUT1. The timer is clocked by CLKOUT1/4 on
the TMS32020 and counts (4 x PRD) cycles of CLKOUT1. By programming
the period (PRD) register from 1 to 65,535 (OFFFFh), a timer interrupt (TINT)
can be generated every 2 to 65,536 cycles on the TMS320C25. Note that a
TINT can be generated every 4 ta 262,140 cycles on the TMS32020. (A period
register value of zero is not allowed.)

Two memory-mapped registers operate the timer. The timer (TIM) register,
data memory location 2, holds the current count of the timer. At every
CLKOUT1 cycle, the TIM register is decremented by one.. The PRD register,
data memory location 3, holds the starting count for the timer. When the TIM
register decrements to zero, atimerinterrupt (TINT) is generated. In the follow-
ing cycle, the contents of the PRD register are loaded into the TIM register. In
this way, a TINT is generated every (PRD + 1) cycles of CLKOUT1 on the
TMS320C25 or (4 x PRD) cycles of CLKOUT1 on the TMS32020.

The timer and period registers can be read from or written to on any cycle. The
count can be monitored by reading the TIM register. A new counter period can
be written to the PRD register without disturbing the current timer count. The
timer will then start the new period after the current count is complete. If both
the PRD and TIM registers are loaded with a new period, the timer begins

5-11



Program Control

decrementing the new period without generating an interrupt. Thus, the pro-
grammer has complete control of the current and next periods of the timer.

The TIM register is set to the maximum value on reset (OFFFFh) for both the
TMS32020 and TMS320C25. The PRD register is also initialized by reset on
the TMS320C25 to OFFFFh. The TMS32020 requires a software initialization
ofthe PRD register (see Example 5-1). The TIM register begins decrementing
only after RS is deasserted. If the timer is not used, TINT should be masked.
The PRD register can then be used as a general-purpose data memory loca-
tion. If TINT is used, the PRD and TIM registers should be programmed before
unmasking the TINT.

Example 5-6 and Example 5-7 show the assembly code that implements the
use of the timer to divide down the CLKOUT1 signal. To generate a 9600-Hz
clock signal, the PRD register should be loaded with 520. In the timer interrupt
service routine, the XF line is toggled. The XF output is used also as an input
for BIO in this example. The output of XF will provide a 50-percent duty cycle
clock signal as long as the main routine or other interrupt routines do not dis-
able interrupts. Interrupts may be disabled by direct or implied use of DINT or
by executing instructions in the repeat mode The value for the PRD register
is calculated as follows:

TMS32020:

CLKQUT1/(4 x PRD) = 2 x frequency of signal
5 MHz/(4 x 65) = 2 x 9600 Hz (= 9615 Hz for divided signal)

TMS320C25:

CLKOUT1/(PRD + 1) = 2 x frequency of signal
10 MHz/(520 + 1) = 2 x 9600 Hz (= 9597 Hz for divided signal)

Example 5-6. Clock Divider Using Timer (TMS32020)
* SETUP FOR INTERRUPT SERVICE ROUTINE.

%*

LACK
SACL
LACK
OR

SACL
EINT

* I/0 SERVICE ROUTINE.

*

TIME BIOZ
RXF
EINT
. RET
SET1 SXF
EINT
RET

5-12

65
DMA3
8
DMA4
DMA4

SET1

.
1

N Ne Ne W Ne e~

LOAD THE PERIOD REGISTER.

ENABLE THE TIMER INTERRUPT.

ENABLE INTERRUPTS.

CHECK THE CURRENT XF STATE.

XF WAS HIGH; SET IT LOW.
ENABLE INTERRUPTS.

RETURN TO INTERRUPTED CODE.

XF WAS LOW; SET IT HIGH.
ENABLE INTERRUPTS.

RETURN TO INTERRUPTED CODE.

Software Applications



Program Control

Example 5-7. Clock Divider Using Timer (TMS320C25)
* SETUP FOR INTERRUPT SERVICE ROUTINE.

*

LALK 520
SACL  DMA3 ; LOAD THE PERIOD REGISTER.
LACK 8
OR DMA4 :
SACL  DMA4 ; ENABLE THE TIMER INTERRUPT.
EINT ; ENABLE INTERRUPTS.
* I/0 SERVICE ROUTINE.
*
TIME BIOZ SET1 ; CHECK THE CURRENT XF STATE.
RXF ; XF WAS HIGH; SET IT LOW.
EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTED CODE.
SET1 SXF ; XF WAS LOW; SET IT HIGH.
EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTED CODE.

5.2.4 Single-Instruction Loops

When programming time-critical high-computational tasks, it is often neces-
sary torepeatthe same operation manytimes. Forthese cases, repeat instruc-
tions that allow the execution of the next single instruction N+1 times are pro-
vided. N is defined by an eight-bit repeat counter (RPTC), which is loaded by
the RPT or RPTKinstructions. The instruction immediately following is then ex-
ecuted, and the RPTC is decremented until it reaches zero.

When using the repeat feature, the instruction being repeated is fetched only
once. As a result, many multicycle instructions become single-cycle when re-
peated. This is especially useful for I/O instructions, such as TBLR/TBLW, IN/
OUT, or BLKD/BLKP.

Since the instruction is fetched and internally latched, the program bus can be
used to fetch or write a second operand in parallel to operations using the data
bus. With the instruction latched for repeated execution, the program counter
can be loaded with a data address and incremented on succeeding executions
tofetch datainsuccessive memory locations. As an example, the MAC instruc-
tion fetches the multiplicand from program memory via the program bus. Si-
multaneously with the program bus fetch, the second multiplicand is fetched
from data memory via the data bus. In addition to these data fetches, prepara-
tion is made for accesses in the following cycles by incrementing the program
counter and by indexing the auxiliary register. TBLR is another example of an
instruction that benefits from simultaneous transfers of data on both the pro-
gram and data buses. In this case, data values from atable in program memory
may be read and transferred to data memory. When repeated, the program
overhead of reading the instruction from program memory must be executed
only once, thus allowing the rest of the executions to operate in a single cycle.

5-13



Program Control

Programs, such as those implementing digital filters, require loops that ex-
ecute in a minimum amount of time. Example 5-8 shows the use of the RPT
or RPTK instructions.

Example 5-8. Instruction Repeating

THIS ROUTINE USES THE RPT INSTRUCTION TO SET UP THE LOOP COUNTER IN ONE CYCLE.
THE FOLLOWING EQUATION IS IMPLEMENTED IN THIS ROUTINE:

10

\ X(I) x Y(I)
/.

I =1

THIS ROUTINE ASSUMES THAT THE X VALUES ARE LOCATED IN ON-CHIP RAM BLOCK BO, AND
THE Y VALUES IN BLOCK Bl. WHEN REPLACING RPT NUM WITH RPTK 9, THE PROGRAM WILL
EXECUTE THE SAME WAY.

* Ok ok Kk Ok O F K ¥ Kk * * %

SERIES LARP AR4

CNFP ; CONFIG BLOCK B0 AS PROGRAM MEMORY.
LACK 9 ; SET COUNTER TO 9.

SACL NUM i (NUM) = 9.

LRLK AR4,300h ; POINT AT BEGINNING OF DATA.

MPYK Oh ; CLEAR P REGISTER.

ZAC ; CLEAR ACCUMULATOR.

RPT NUM ; EXECUTE NEXT INSTRUCTION 10 TIMES.
MAC  OFFO0Oh, *+ ; MULTIPLY-ACCUMULATE; INCREMENT AR4.
APAC

RET ; RETURN TO MAIN PROGRAM.

5.2.5 Computed GOTOs

Processing may be executed in a time- and process-dependent or selected
way. Following a specifictime or data processing path may then resultin select-
ing one of several processing options.

A simple computed GOTO can be programmed in the TMS320C2x by using
the CALA instruction. This instruction uses the contents of the accumulator as
the direct address of the call. Thus, the call address can be computed in the
ALU, as shown in Example 5-9.

Example 5-9. Computed GOTO
TASK CONTROLLER

THIS MAIN TASK ROUTINE CONTROLS THE ORDER OF EXECUTION AND SCHEDULING OF TASKS.
WHEN AN INTERRUPT OCCURS, THE INTERRUPT SERVICE ROUTINE IS EXECUTED TO PROCESS
THE INPUT AND OUTPUT DATA SAMPLES. AFTER THE INTERRUPT SERVICE ROUTINE HAS
COMPLETED,THE PROCESSOR BEGINS EXECUTION WITH THE INSTRUCTION FOLLOWING THE
IDLE INSTRUCTION. THIS ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT
SAMPLE CYCLE, CALLS THE TASK AS A SUBROUTINE, AND BRANCHES BACK TO THE IDLE TO
WAIT FOR THE NEXT SAMPLE INTERRUPT WHEN THE SCHEDULED TASK HAS COMPLETED
EXECUTION.

* ok % % % ok % o X ¥ *

WAIT IDLE ; WAIT FOR SAMPLE INTERRUPT.
LAC SAMPLE ; FETCH SAMPLE COUNT VALUE.

5-14 ‘ Software Applications



Program Control

SUB
BGEZ
LACK

OVRSAM SACL
ADLK
TBLR
LAC
CALA
B

*

TSKSEQ
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

ONE
OVRSAM
15
SAMPLE
TSKSEQ
TEMP
TEMP

WAIT

DUMMY
DUMMY
DUMMY
DUMMY
BDCLK2
DUMMY
ouT
DECODE
DEMODB
DUMMY
AGCUPT
DUMMY
BDCLK1
DUMMY
DUMMY
DUMMY

WO Ne Ne Ne Ne Ne N o~

B NE NE N Ne NE NG Ne N NE Ne ws S N e we

DECREMENT THE SAMPLE COUNT.

TEST FOR END OF BAUD INTERVAL.
INIT COUNT FOR NEW BAUD INTERVAL.
SAVE NEW COUNT VALUE.

ADD TASK TABLE BASE ADDRESS.

READ SUBROUTINE TASK ADDRESS.
LOAD ACCUMULATOR FOR TASK CALL.
EXECUTE APPROPRIATE TASK.

-
w»
|

UNUSED CYCLE

UNUSED CYCLE

UNUSED CYCLE

UNUSED CYCLE

COMPUTE ENERGY E(11)

— UNUSED CYCLE

— COMMUNICATE WITH U-CONTROLLER
— DECODE/GET SCRAMBLED DIBIT
— DEMODULATE IN MIDDLE OF BAUD
— UNUSED CYCLE

UPDATE AGC EVERY 3RD BAUD

— UNUSED CYCLE

— COMPUTE ENERGY E(3)

— UNUSED CYCLE

— UNUSED CYCLE

— UNUSED CYCLE

[
N W
[

—
ORNWEBUON YO
!



Interrupt Service Routine

5.3 Interrupt Service Routine

Interrupts on the TMS320C2x are prioritized and vectored. When an interrupt
occurs, the corresponding flag is set in the interrupt flag register (IFR). If the
corresponding bit in the interrupt mask register (IMR) is set and interrupts are
enabled (INTM=0), then interrupt processing begins.

Whenthe interrupt vector is loaded into the program counter, interrupts are dis-
abled (INTM=1) and a branch is made to the appropriate routine via the branch
instruction stored at the associated vector location. Since all interrupts are dis-
abled, interrupt processing may proceed without further mterruptlon unlessthe
interrupt service routine (ISR) re-enables interrupts.

Unless the interrupt service routines are simple /O handlers, the processing
in each ISR generally must assurethat the processor context is preserved dur-
ing execution. The context must be saved before the routine executes and
must be restored when the routine is finished. A common routine or routines
individualized for each interrupt may be used to secure the context of the pro-
cessor during interrupt processing. Context switching is also useful for subrou-
tine calls, especially when extensive use is made of the stack or auxiliary regis-
ters. Code examples of context switching and an interrupt service routine are
provided in this section.

5.3.1 Context Switching

Context switching, commonly required when processing a subroutine call or
interrupt, may be quite extensive or simple, depending on the system require-
ments. Onthe TMS320C2x, the program counteris stored automatically onthe
hardware stack. If there is any important information in the other TMS320C2x
registers, such as the status or auxiliary registers, these must be saved by soft-
ware command. A stack in data memory, identified by an auxiliary register, is
useful for storing the machine state when processing interrupts.

Example 5-10 and Example 5—11 show how to save and restore the state of
the TMS32020. Auxiliary register 4 (AR4) in both examples is the stack pointer.
Asthe stack grows, it expands into lower memory addresses. The statusregis-

ters (STO and ST1), accumulator (ACCH and ACCL), product register (PR),

temporary register (TR), all four levels of the hardware stack, and the auxiliary
registers (ARO through AR4) are saved.

Software Applications



Interrupt Service Routine

Example 5-10. Context Save (TMS32020)

.title "CONTEXT SAVE’
.def SAVE
*
* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT.
*
* ASSUME AR4 IS THE STACK POINTER AND AR4 = 128.
*
SAVE LARP 4 ; (ARP) — ARB, 4 — ARP, AR4 = 128
MAR *— ; AR4 = 127
*
* SAVE THE STATUS REGISTERS.
SST1 = *— ; ST1 — (127), AR4 = 126
SST e ; STO — (126), AR4 = 125
*
* SAVE THE ACCUMULATOR.
SACH  *-— ; ACCH — (125), AR4 = 124
SACL  *— ; ACCL — (124), AR4 = 123
*
* SAVE THE P REGISTER.
SPM 0 ; NO SHIFT ON PR OUTPUT
PAC
SACH  *— ; PRH — (123), AR4 = 122
SACL  *— ; PRL — (122), AR4 = 121
*
* SAVE THE T REGISTER.
MPYK 1h
PAC
SACL  *— ; TR — (121), AR4 = 120
*
* SAVE ALL FOUR LEVELS OF THE HARDWARE STACK.
RPTK 3
POPD  *— _; TOS (4) — (120), AR4 = 119
; STACK(3) — (119), AR4 = 118
; STACK(2) - (118), AR4 = 117
; BOS (1) — (117), AR4 = 116
*
* SAVE AUXILIARY REGISTERS ARO THROUGH AR3.
SARARO, *— ; ARO — (116), AR4 = 115
SARAR1, *— ; ARl — (115}, AR4 = 114
SARAR2, *— ; AR2 — (114), AR4 = 113
SARAR3, *— ; AR3 — (113), AR4 = 112

* SAVE IS COMPLETE.



Interrupt Service Routine

Example 5-11. Context Restore (TMS32020)

.title

* ok * ¥ F

RESTOR LARP 4
MAR *+

'CONTEXT RESTORE'
.def RESTOR

CONTEXT RESTORE AT THE END OF A SUBROUTINE OR INTERRUPT.

ASSUME AR4 IS THE STACK POINTER AND AR4 = 112.

; (ARP) — ARB, 4 — ARP AR4 = 112
; AR4 = 113

*
* RESTORE AUXILIARY REGISTERS ARO THROUGH AR3.

LAR AR3,*+
LAR AR2,*+
LAR ARI,*+
LAR ARQ, *+

*

*RESTORE ALL FOUR LEVELS OF THE HARDWARE STACK.

RPTK 3
PSHD *+

; (113) — AR3, AR4 = 114
; (114) — AR2, AR4 = 115
: (115) — ARI, AR4 = 116
; (116) — ARO, AR4 = 117
; (117) — BOS (1), AR4 = 118
; (118) — STACK (2), AR4 = 119
; (119) — STACK (3), AR4 = 120
; (120) — TOS (4), AR4 = 121

*
* THE RETURN PC IS NOW ON THE HARDWARE STACK FOR THE RET INSTRUCTION. NOTE THAT
* THE LOWER 16 BITS OF THE P REGISTER MUST BE LOADED VIA THE T REGISTER AND THAT
* THE STACK POINTER IS POINTING AT THE VALUE TO BE LOADED IN THE T REGISTER.
*
*
* RESTORE THE LOW P REGISTER.
MAR *+ ; AR4 = 122
LT  *— i (122) — TR, AR4 = 121
MPYK 1h ; (TR) — PRL, AR4 = 121
* .
* RESTORE THE T REGISTER. ;
LT  *+ ; (121) - TR, AR4 = 122
MAR *+ ; AR4 = 123
*
* RESTORE THE HIGH P REGISTER.
LPH *+ i (123) - PRH, AR4 = 124
*
* RESTORE THE ACCUMULATOR.
ZALS *+ ; (124) - ACCL, . AR4 =125
ADDH *+ ; (125) — ACCH, AR4 = 126
* RESTORE THE STATUS REGISTERS.
LST *+ i (126) — STO, AR4 = 127
LST1 * i (127) — sT1, AR4 = 128
*
* RESTORE IS COMPLETE.
EINT ENABLE INTERRUPTS.
RET RETURN TO INTERRUPTS OR

~e ~o ws

CALLING ROUTINE.

Example 5—12 and Example 5—13 show how to save and restore the state of
the TMS320C25. Auxiliary register 7 (AR7) in both examples is the stack point-
er. As the stack grows, it expands into lower memory addresses. The status
registers (STO and ST1), accumulator (ACCH and ACCL), product register
(PR), temporary register (TR), all eight levels of the hardware stack, and the
auxiliary registers (ARO through AR6) are saved.

Software Applications



Interrupt Service Routine

The routines in Example 5-12 and Example 5-13 are protected against inter-
rupts, allowing context switches to be nested. This is accomplished by the use
ofthe MAR*—and MAR*+ instructions at the beginning of the context save and
context restore routines, respectively. Note that the last instruction of the con-
text save decrements AR7, while the contextrestore is completed with an addi-
tional increment of AR7. This prevents the loss of data if a context save or re-
store routine is interrupted.

Example 5-12. Context Save (TMS320C25)

*
*

.title

.def SAVE

'CONTEXT SAVE'

CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT.

ASSUME AR7 IS THE STACK POINTER AND AR7 = 128.

SAVE LARP AR7 ; (ARP) — ARB, 7 — ARP, AR7 = 128
MAR  *— ; AR7 = 127
*
* SAVE THE STATUS REGISTERS.
SST1  *— ; ST1 — (127), AR7 = 126
SST *— ; STO — (126), AR7 = 125
*
* SAVE THE ACCUMULATOR. '
SACH *— ; ACCH — (125), AR7 = 124
SACL  *— ; ACCL — (124), AR7 = 123
*
* SAVE THE P REGISTER.
SPM 0 ; NO SHIFT ON PR OUTPUT
SPH > ; PRH — (123), AR7 = 122
SPL  *— ; PRL — (122), AR7 = 121
*
* SAVE THE T REGISTER.
MPYK 1 ; PR = TR
SPL >, ; TR — (121), AR7 = 120
*
* SAVE ALL EIGHT LEVELS OF THE HARDWARE STACK.
RPTK 7
POPD  *— ; TOS (8) — (120), AR7 = 119
* ; STACK(7) — (119), AR7 = 118
* ; STACK(6) — (118), AR7 = 117
* ; STACK(5) — (117), AR7 = 116
* ; STACK(4) — (116), AR7 = 115
* ; STACK(3) — (115), AR7 = 114
* ; STACK(2) — (114), AR7 = 113
* ; BOS (1) — (113), AR7 = 112
*
* SAVE AUXILIARY REGISTERS ARO THROUGH AR6.
SAR  ARO,*— ; ARO — (112), AR7 = 111
SAR  ARI,*— ; ARl — (111), AR7 = 110
SAR  AR2,*— ; AR2 — (110), AR7 = 109
SAR  AR3,*— ; AR3 — (109), AR7 = 108
SAR  AR4,*— ; AR4 — (108), AR7 = 107
SAR AR5, *— ; AR5 — (107), AR7 = 106
SAR ARG, *— ; AR6 — (106), AR7 = 105

SAVE IS COMPLETE.

5-19



Interrupt Service Routine

Example 5-13. Context Restore (TMS320C25)
.title 'CONTEXT RESTORE’

.def RESTOR
*
* CONTEXT RESTORE AT THE END OF A SUBROUTINE OR INTERRUPT.
*
* ASSUME AR7 IS THE STACK POINTER AND AR7 = 105.
*
RESTOR  LARP AR7 ; (ARP), — ARB, 7 — ARP, AR7 = 105
MAR *+ B ; AR7 = 106
*
* RESTORE AUXILIARY REGISTERS ARO THROUGH ARG6.
LAR ARG, *+ ; (106) — ARG, AR7 = 107
LAR AR5, *+ ; (107) - AR5, AR7 = 108
LAR AR4,*+ ; (108) — AR4, AR7 = 109
LAR AR3,*+ ; (109) — AR3, AR7 = 110
LAR AR2,*+ ; (110) — AR2, AR7 = 111
LAR AR1,*+ ; (111) — AR1, AR7 = 112
LAR ARO,*+ ; (112) — ARO, AR7 = 113
*
* RESTORE ALL EIGHT LEVELS OF THE HARDWARE STACK.
RPTK 7
PSHD *+ ; (113) — BOS (1), AR7 = 114
; (114) — STACK(2), AR7 = 115
; (115) — STACK(3), AR7 = 116
* ; (116) — STACK(4), AR7 = 117
* ; (117) — STACK(5), AR7 = 118
* ; (118) — STACK(6), AR7 = 119
* ; (119) — STACK(7), AR7 = 120
* ; (120) — TOS (8), AR7 = 121
*
* THE RETURN PC IS NOW ON TOP OF THE STACK FOR THE RET INSTRUCTION. THE LOWER 16
* BITS OF THE P REGISTER MUST BE LOADED VIA THE T REGISTER AND THE STACK POINTER
* BE POINTING AT THE VALUE TO BE LOADED IN THE T REGISTER.
*
* RESTORE THE LOW P REGISTER.
MAR *+ ; SKIP T REGISTER, AR7 = 122
LT  *— ; (122) - TR, AR7 = 121
MPYK 1 ; (TR) — PRL
* RESTORE THE T REGISTER. :
LT  *+ 3 (121) — TR, AR7 = 122
MAR *+ s SKIP P REGISTER LOW, AR7 = 123
*
* RESTORE THE HIGH P REGISTER.
LPH *+ ; (123) — PRH, AR7 = 124
*
* RESTORE THE ACCUMULATOR.
ZALS *+ ; (124) — ACCL, _ AR7 = 125
ADDH *+ ; (125) — ACCH, AR7 = 126
*
* RESTORE THE STATUS REGISTERS.
LST *+ ; (126) — STO, AR7 = 127
LST1 *+ ; (127) — sT1, AR7 = 128

* RESTORE IS COMPLETE.
EINT
RET

ENABLE INTERRUPTS. )
RETURN TO INTERRUPTS OR
CALLING ROUTINE.

e e e

5-20 Software Applications



Interrupt Service Routine

5.3.2 Interrupt Priority

Interrupts on the TMS320C2x are prioritized in hardware. This allows inter-
rupts that occur simultaneously to be servicedina prioritized order. Sometimes
priority may be determined by frequency or rate of occurrence. An infrequent,
but lengthy, interrupt service routine (ISR) might need to be interrupted by a
more frequently occurring interrupt. In the routine of Example 5-14, the ISR
for INT1 temporarily modifies the interrupt mask register (IMR) to permit inter-
rupt processing when an interrupt on INTO (but no other interrupt) occurs.
When the routine has finished processing, the IMR is restored to its original
state. Example 5—14is written for the TMS320C25; however, AR4 can be sub-
stituted for AR7 when the TMS32020 is used.

Example 5-14. Interrupt Service Routine
.title 'INTERRUPT SERVICE ROUTINE’

.def
.ref

* Ok O Ok ok F %

ISR1 LARP
MAR
SST1
SST
SACH
SACL
LDPK
PSHD
LACK
AND
SACL
EINT

*

ISR1
IMR

AR7

*_
*_

e

*

*

0

IMR
0001h
IMR
IMR

INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT1-.

THIS ROUTINE MAY BE INTERRUPTED BY AN INTERRUPT FROM THE EXTERNAL INTERRUPT
INTO~, BUT NO OTHER.

* MAIN PROCESSING SECTION FOR ISRI.

.

DINT
LDPK
POPD
LARP

ZALS
ADDH
LST
LST1
EINT
RET

0
IMR
AR7
*4
*+
*+
*+
* 4

ENABLE INTERRUPTS.

; 7 — ARP

; AR7 = AR7 — 1
; ST1 — *AR7, AR7 = AR7 — 1
; STO — *AR7, AR7 = AR7 — 1
; ACCH — *AR7, AR7 = AR7 — 1
; ACCL — *AR7, AR7 = AR7 - 1
; DP = 0

; IMR — TOS

; MASK FOR INTO-—

; MASK CURRENT IMR CONTENTS.

; ACC — IMR

; ENABLE INTERRUPTS.

; DISABLE INTERRUPTS.

; DP =0

; TOS — IMR

; AR7 — ARP

H ' AR7 = AR7 + 1
; *AR7 — ACCL, AR7 = AR7 + 1
; *AR7 — ACCH, AR7 = AR7 + 1
; *AR7 — STO, AR7 = AR7 + 1
; *AR7 — ST1, AR7 = AR7 + 1
7

5-21



Memory Management

5.4 Memory Management

The structure of the TMS320C2x memory map is programmable and can vary
for each application. Instructions are provided for moving blocks of data or pro-
gram memory, configuring a block of on-chip data RAM as program memory,
and defining part of external data memory as global. Explanations and exam-
ples of moving, configuring, and manipulating memory are provided in this sec-
tion. :

5.4.1 Block Moves

Since the TMS320C2x directly addresses a large amount of memory, blocks
of data or program code can be stored off-chip in slow memories and then
loaded on-chip for faster execution. Data can also be moved from on-chip to
off-chip for storage or for multiprocessor data transfers.

The BLKD and BLKP instructions facilitate memory-to-memory block moves
on the TMS320C2x. The BLKD instruction moves a block within data memory
as shown in Example 5—-15. Data may also be transferred between data
memory and program memory by means of the TBLR and TBLW instructions.
The instructions IN and OUT are used to transfer data between the data
memory and the I/O space.

Example 5-15. Moving External Data to Internal Data Memory with BLKD

* THIS ROUTINE USES THE BLKD INSTRUCTION TO MOVE A BLOCK OF EXTERNAL DATA MEMORY
* (DATA PAGES 8 AND 9) TO INTERNAL BLOCK Bl (DATA PAGES 6 AND 7).

*

MOVED LARP  AR2

LRLK AR2,300h DESTINATION IS BLOCK Bl IN RAM.

i
RPTK 255 ; REPEAT NEXT INSTRUCTION 256 TIMES.
BLKD  400h, *+ ; MOVE EXTERNAL BLOCK TO BLOCK Bl.
RET ; RETURN TO MAIN PROGRAM.

For systems that have external program memory but no external data memory,
'BLKP can be used to move program memory blocks into data memory.
Example 5-16 demonstrates how to use the BLKP instruction.

Example 5-16. Moving Program Memory to Data Memory with BLKP

* THIS ROUTINE USES THE BLKP INSTRUCTION TO MOVE DATA VALUES FROM PROGRAM MEMORY

* INTO DATA MEMORY. SPECIFICALLY, THE VALUES IN LOCATIONS 2, 3, 4, AND 5 1IN

* PROGRAM MEMORY ARE MOVED TO LOCATIONS 512, 513, 514, AND 515 IN DATA MEMORY.

. )

MOVEP LARP  AR2
LRLK AR2,512

SET REFERENCE FOR INDIRECT ADDRESSING.
LOAD BEGINNING OF BLOCK BO IN AR2.

~e we ws wo ~e

RPTK 3 SET UP LOOP.
BLKP 2h, *+ PUT DATA INTO DATA RAM.
RET RETURN TO MAIN PROGRAM.

The TBLR instruction is another method for transferring data from program
memory into data memory. When the TBLR instruction is used, a calculated,
rather than predetermined, location of a block of data in program memory may

5-22 Software Applications



Memory Management

be specified for transfer. A routine using this approach is shown in
Example 5-17. ’ ‘

Example 5-17. Moving Program Memory to Data Memory with TBLR

* THIS ROUTINE USES THE TBLR INSTRUCTION TO MOVE DATA VALUES FROM PROGRAM MEMORY
* INTO DATA MEMORY. BY USING THIS ROUTINE, THE PROGRAM MEMORY LOCATION IN THE
* ACCUMULATOR FROM WHICH DATA IS TO BE MOVED TO A SPECIFIC DATA MEMORY LOCATION
* CAN BE SPECIFIED. ASSUME THAT THE ACCUMULATOR CONTAINS THE ADDRESS IN PROGRAM
* MEMORY FROM WHICH TO TRANSFER THE DATA.
*
TABLER  LARP AR3

LRLK AR3,380 ; DESTINATION ADDRESS = PAGE 7.

RPTK 127 ; TRANSFER 128 VALUES.

TBLR *4 ; MOVE DATA INTO DATA RAM.

RET ; RETURN TO CALLING PROGRAM.

In cases where systems require thattemporary storage be allocated in the pro-
gram memory, TBLW can be used to transfer data from internal data memory
to external program memory. The code in Example 5—18 demonstrates how
to do this.

Example 5-18.  Moving Internal Data Memory to Program Memory with TBLW

* THIS ROUTINE USES THE TBLW INSTRUCTION TO MOVE DATA VALUES FROM INTERNAL DATA
* MEMORY TO EXTERNAL PROGRAM MEMORY. THE CALLING ROUTINE MUST SPECIFY THE
* DESTINATION PROGRAM MEMORY ADDRESS IN THE ACCUMULATOR. ASSUME THAT THE
* ACCUMULATOR CONTAINS THE ADDRESS IN PROGRAM MEMORY INTO WHICH THE DATA IS
* TRANSFERRED.
*
*
*
*
*
*
TABLEW LARP AR4

LRLK AR4, 380 ; SOURCE ADDRESS = PAGE 7.

RPTK 127 ; TRANSFER 128 VALUES.

TBLW *+ ; MOVE DATA TO EXTERNAL PROGRAM RAM.

RET ;+ RETURN TO CALLING PROGRAM.

The IN and OUT instructions are used to transfer data between the data
memory and the 1/O space, as shown in Example 5—19 and Example 5-20.

Example 5-19. Moving Data from I/O Space into Data Memory with IN

* THIS ROUTINE USES THE IN INSTRUCTION TO MOVE DATA VALUES FROM THE I/O SPACE
* INTO DATA MEMORY. DATA ACCESSED FROM I/O PORT 15 IS TRANSFERRED TO SUCCESSIVE
* MEMORY LOCATIONS ON DATA PAGE 5.

*

INPUT LARP AR2

LRLK AR2,2CCh DESTINATION ADDRESS = PAGE 5.

i
RPTK 63 ; TRANSFER 64 VALUES.
IN *+,PAl15 ; MOVE DATA INTO DATA RAM.
RET ; RETURN TO CALLING PROGRAM.

Example 5-20. Moving Data from Data Memory to I/O Space with OUT

* THIS ROUTINE USES THE OUT INSTRUCTION TO MOVE DATA VALUES FROM THE DATA MEMORY
* TO THE I/O SPACE. DATA IS TRANSFERRED TO I/O PORT 8 FROM SUCCESSIVE MEMORY
* LOCATIONS ON DATA PAGE 4.

5-23



Memory Management

*
ouTPUT

LARP
LRLK
RPTK
ouT
RET

AR4

AR4,200h ; SOURCE ADDRESS = PAGE 4.

63 ; TRANSFER 64 VALUES.

*+,PAS ; MOVE DATA FROM DATA RAM.
i

RETURN TO CALLING PROGRAM.

5.4.2 Configuring On-Chip RAM

5-24

TMS320C2x

The large amount of external memory and the configurability of on-chip RAM
simplify the downloading of data or program memory into the TMS320C2x.
Also, since data in the RAM is preserved when redefining on-chip RAM, block
BO can be configured dynamically as either data or program memory.
Figure 5—1 illustrates the changes in on-chip RAM when switching configura-
tions.

‘On-chip memory is configured by a reset or by the CNFD and CNFP instruc-

tions. Block BO is configured as data memory by executing CNFD or reset. A
CNFP instruction configures block BO as program memory.

TMS320C26

The reconfigurable memory space of the TMS320C26 is different in both the
number of configurable blocks and the size of the blocks. For the TMS32020
and TMS320C25, only 256 words in Block BO are reconfigurable using the
CNFD and CNFP instructions. The TMS320C26 has three reconﬁgurable
blocks — B0, B1 and B3 — each 512 words in length.

Four possnble configurations for the three blocks of the TMS320C26 are set
with the immediate instruction CONF. The configuration instructions CNFD
and CNFP are not defined for the TMS320C26, and CONF is not defined for
the TMS32020 or TMS320C25.

Because the start and stop addresses of internal memory are not the same,
applications using the reconfigurable memory of the TMS32020 or
TMS320C25 will need to be redefined. The memory maps and block descrip-
tions are given in subsection 3.4.3 and in Appendix B.

Software Applications



Memory Management

Figure 5-1. On-Chip RAM Configurations

Program
Bus
A\

L)

Program
Bus

Data
Bus

Memory-Mapped
Registers

Block B2

Block BO

T

Block B1

Data
Bus

Memory-Mapped
Registers

Block B2

Block BO

Block B1

ST ey Vg v e

;

Memory
Locations

Data 0-5
(0000h-0005h)

Data 96-127
(0060h~007Fh)

Data 512-767
(0200h—02FFh)

Data 768-1023
(0300h-03FFh)

Memory
Locations

Data 0-5
(0000h—0005h)

Data 96-127
(0060h—007Fh)

Prog 6528065535
(OFFO0h—OFFFFh)

Data 768—1023
(0300h—-03FFh)

Configuring block B0 as program memory is useful for implementing adaptive
filters or similar applications at full speed with only on-chip memories.
Example 5-21 illustrates the use of the configuration modes to utilize block BO
as data and program memory while executing from its on-chip program ROM.
Note that a more definitive example of the use of the TMS320C25 for adaptive
filtering is provided in subsection 5.7.3.

Example 5-21. Configuring and Using On-Chip RAM

.title
.def ADPFIR
.def X, Y

*

"ADAPTIVE FILTER'

* THIS 128-TAP ADAPTIVE FIR FILTER USES ON-CHIP MEMORY BLOCK BO FOR COEFFICIENTS

* AND BLOCK Bl FOR DATA SAMPLES.

THE NEWEST INPUT SHOULD BE IN MEMORY LOCATION X

* WHEN CALLED. THE OUTPUT WILL BE IN MEMORY LOCATION Y WHEN RETURNED.

*

COEFFP .set
COEFFD .set
ONE .set
BETA .set

OFFO00h
0200h

7Ah
7Bh

e N we we

BO PROGRAM MEMORY ADDRESS
BO DATA MEMORY ADDRESS

CONSTANT ONE (DP
ADAPTATION CONSTANT (DP = 6)

6)

5-25



Memory Management

ERR .set
ERRF .set
Y .set
X .set

FRSTAP .set
LASTAP .set

*

*

ADPFIR CNFP
MPYK
LAC
LARP
LRLK
FIR RPTK
MACD
CNFD
APAC
SACH
NEG
ADD
SACH

*

7ch ; SIGNAL ERROR (DP = 6)

7Dh ; ERROR FUNCTION (DP = 6)

7Eh ; FILTER OUTPUT (DP = 6)

7Fh ; NEWEST DATA SAMPLE (DP = 6)
0380h ; NEXT NEWEST DATA SAMPLE
03FFh ; OLDEST DATA SAMPLE

* FINITE IMPULSE RESPONSE (FIR) FILTER.

CONFIGURE BO AS PROGRAM:

P!
0 ; CLEAR THE P REGISTER.
ONE, 14 ; LOAD OUTPUT ROUNDING BIT.
AR3
AR3,LASTAP ; POINT TO THE OLDEST SAMPLE.
127
COEFFP, *— ; 128-TAP FIR FILTER.

; CONFIGURE B0 AS DATA:
Y,1 ; STORE THE FILTER OUTPUT.
X,15 ; ADD THE NEWEST INPUT.
ERR, 1 ; ERR(N) = X(N) — Y(N)

* LMS ADAPTATION OF FILTER COEFFICIENTS.

*

LT
MPY
PAC
ADD
SACH
LARP
LARK
LRLK
LRLK
DMOV
LT
MPY

ADAPT ZALH
ADD
APAC
* MPY
SACH
BANZ
RET

ADAPT, *—, AR2 END OF LOOP TEST.

RETURN TO CALLING ROUTINE.

ERR '
BETA ; 128-TAP FIR FILTER.

; ERRF(N) = BETA * ERR(N)
ONE, 14 ; ROUND THE RESULT.
ERRF, 1
AR3
AR1,127 ; 128 COEFFICIENTS TO UPDATE.
AR2, COEFFD ; POINT TO THE COEFFICIENTS.
AR3, LASTAP ; POINT TO THE DATA SAMPLES.
X ; INCLUDE NEWEST SAMPLE.
ERRF
*—,AR2 ; P = 2*BETA*ERR(N)*X(N — K)
*,AR3 ; LOAD ACCH WITH AK(N).
ONE, 15 ; LOAD ROUNDING BIT.

; AK(N + 1) = AR(N) + P
*—, AR2 ; P = 2%BETA*ERR(N)*X(N—K)
*+,0,AR1 ; STORE AK(N + 1).

;

14

5.4.3 Using On-Chip RAM for Program Execution

5-26

To use on-chip memory (block BO) for program execution, you must first load
this memory with executable code from external memories while it is confi-
gured as data memory. On-chip execution is initiated by using the CNFP in-
struction to reconfigure block B0 as program memory and performing a branch
or call to an on-chip RAM address. By configuring block BO as program
memory and executing from this internal memory, you can achieve full-speed
execution in systems using slower external memory. Example 5-22 illustrates
how to write a program to be loaded into and executed from on-chip memory.

Software Applications



Memory Management .

One group of instructions, the branch/call instructions, are impacted by the
location of execution. Normally, by using labels, the assembler properly deter-
mines the location to which a branch is taken. Because the code is relocated
prior to execution from on-chip memory, it is necessary to alter the address de-
termined by the assembler for branch instructions. This alteration is necessary
so that the branch address that is determined can be consistent with the ad-
dress space used during execution. In Example 5-22, this is accomplished by
use ofthe .asect directive. The .asect directive simply indicates thatthe named
sectionisto be assembled as if it were at the specified address. The addresses
defined within this named section are absolute with respect to the specified ad-
dress. The section may, then, be placed in any area of program memory by the
linker and relocated at runtime to its fixed location for execution as is shown
in this example. The code in Example 5-23 for the TMS320C26 is equivalent
to the code in Example 5-22 written for the rest of the TMS320C2x.

Example 5-22. Program Execution from On-Chip Memory (TMS320C2x)
.title ”ON-CHIP RAM PROGRAM EXECUTION EXAMPLE”

~.width 96
.option X
.text

RESET B INIT

*

* BRANCHES FOR EXTERNAL OR INTERNAL INTERRUPTS FOLLOW HERE AT THE DESIGNATED
* LOCATIONS AS REQUIRED.

*
*

.space (32—($—RESET))*16

*

* A BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS PROCESSOR EXECUTION

HERE.

*
*
*
*
*

INIT ROVM
SSXM
LDPK
SPM
LARP
LARK
LALK
SACL
SACL
ZAC
SACH

LARP
LRLK
RPTK
BLKP

*

LDPK

0

0

AR4
AR4,PRD
OFFFFh
* 4

>t

*

INITIALIZE THE PROCESSOR.

DISABLE OVERFLOW MODE.

SET SIGN EXTENSION.

POINT DP REGISTER TO DATA MEMORY PAGE 0.
NO SHIFT ON PRODUCT REGISTER OUTPUT.

USE AUXILIARY REGISTER 4 (SET ARP = 4).
POINT AR4 TO PERIOD REGISTER.

SET ACCUMULATOR TO 0000FFFFh.

LOAD PERIOD REGISTER WITH MAXIMUM VALUE.
ENABLE ALL INTERRUPTS VIA IMR.

CLEAR ACCUMULATOR.

CLEAR GREG TO MAKE ALL MEMORY LOCAL.

N8 Ne NS Ne N NS Ns e Ne we we

* LOAD TIME-CRITICAL CODE FROM EXTERNAL SLOW MEMORY TO INTERNAL RAM
. )

AR1 ; USE AUXILIARY REGISTER 1 (SET ARP = 1).

AR1,PROGR ; POINT AR1 TO RECONFIGURABLE BLOCK BO.

PROGIL~1 ; LOAD REPEAT COUNTER WITH BLOCK LENGTH.
i

P1_START, *+

6

MOVE CODE FROM PROG MEMORY TO ON-CHIP RAM

INITIALIZE PARAMETERS FOR EXECUTION.

; POINT DP REGISTER TO DATA MEMORY PAGE 6.

5-27



Memory Management

LACK
SACL
LRLK
RPTK
BLKP
CNFP
LALK

BACC
*

* SIGNAL PROCESSING CODE TO BE

*

.asect
PROG .label
LPTS BIOZ
B
GET ouT
IN
LRLK
ZAC
MPYK
RPTK
MACD
APAC
SACH
B
PROGE .label
PROGL .equ
*

1

ONE
AR1,COEFF
COEFL—1
Cl_START,*+

LPTS

Ne Mo Ne Ne No we we we

"on-chip”,0FF00h
P1_START

GET

LPTS

FILOUT,PA2
FILIN,PA2
AR1,SIGNAL

0
15
COEF, *—

FILOUT,1
PTS

P1_END :
PROGE—PROG ;

N NE Ne Ne Ne Ne NE Ne e we we we

SET ACCUMULATOR TO 0001h.

STORE VALUE OF 1.

POINT AR1 TO INTERNAL MEMORY ADDRESS.

LOAD REPEAT COUNTER WITH BLOCK LENGTH.
MOVE DATA FROM PROG MEMORY TO ON-CHIP RAM.
CONFIGURE BLOCK BO AS PROGRAM MEMORY.

LOAD ACC WITH PROG ADDR IN INTERNAL RAM.
BRANCH TO ON-CHIP EXECUTION ADDRESS.

EXECUTED FROM ON-CHIP RAM.

WAIT FOR INPUT SIGNAL.

BRANCH IF NO SIGNAL.

OUTPUT LAST FILTER OUTPUT.

INPUT NEW SIGNAL SAMPLE.

POINT AR1 TO SIGNAL DATA TO PROCESS.
CLEAR THE ACCUMULATOR.

CLEAR THE P REGISTER.

REPEAT MACD INSTRUCTION FOR 16 TAPS.
MULTIPLY, ACCUMULATE, SAMPLE DELAY.
ACCUMULATE THE LAST PRODUCT.

SAVE THE RESULT.

LOOP TO WAIT FOR NEXT SAMPLE.

PROGRAM CODE LENGTH.

* COEFFICIENT DATA TO BE LOADED INTO ON-CHIP RAM.

*

COEF .label
.word
.word
.word
.word

COEFE .label

COEFL .equ

C1_START
385,-1196,1839,~2009
1390,407,-4403,19958
19958,—4403,407,1390
—2009,1839,-1196,385
C1_END

COEFE-COEF ;

COEFFICIENT DATA LENGTH.

* DATA PAGE 0 (BLOCK B2) — DATA MEMORY LABELS.

*
.bss
.bss
.bss
.bss
.bss
.bss

.bss
.bss

.bss

DRR, 1
DXR, 1
TIM,1
PRD, 1
IMR, 1
GREG, 1

~e me No ~o wo ~e

RSVRDO, 052h

'B2,020h

RSVRD1,0180h

SERIAL PORT DATA RECEIVE REGISTER.
SERIAL PORT DATA' TRANSMIT

TIMER REGISTER.

PERIOD REGISTER.

INTERRUPT MASK REGISTER.

GLOBAL MEMORY ALLOCATION REGISTER.

*
* DATA PAGE 4 (BLOCK BO) — DATA MEMORY LABELS.

*

BO .bss  PROGR,PROGL ; LOCATIONS FOR INTERNAL PROGRAM CODE.
.bss COEFF,COEFL ; LOCATIONS FOR COEFFICIENT MEMORY.
.bss  FREEO, 0100h—(PROGL+COEFL)

*

* DATA PAGE 6 (BLQCK Bl) — DATA MEMORY LABELS.

*

5-28

Software Applications



Memory Management

Bl .bss
.bss
.bss
.bss
.bss
.end

Example 5-23.
.file

ONE, 1
FILOUT, 1
FILIN,1
SIG,13

SIGNAL,1

e e me

RESERVED FOR DATA VALUE OF 1.
FILTER OUTPUT SIGNAL VALUE.
FILTER INPUT SIGNAL VALUE.

LAST SIGNAL DELAY VALUE.

Program Execution from On-Chip Memory (TMS320C26)

4onchip264

.title 4ON-CHIP RAM PROGRAM EXECUTION EXAMPLE FOR THE TMS320C264
.width 96
.option X

PGMBO .set

BLKSIZ .set
.text

RESET B

*

O0FAQOh
00200h

INIT,*,AR1

.
’
-
!

BLOCKSIZE OF TMS320C26

ARP = ARl

* BRANCHES FOR EXTERNAL OR INTERNAL INTERRUPTS FOLLOW HERE AT THE DESIGNATED

* LOCATIONS AS REQUIRED.

*

.space (32-($-RESET))*16

*

* A BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS PROCESSOR EXECUTION

* HERE.
*

*

INIT ROVM

LDPK
*

0

.
L4
.
r

DISABLE OVERFLOW MODE
POINT DP REGISTER TO DATA MEMORY PAGE 0

* LOAD TIME-CRITICAL CODE FROM EXTERNAL SOW MEMORY TO INTERNAL RAM

*
LRLK
RPTK
BLKP

*

LDPK
LACK
SACL
LRLK
RPTK
CONF
B

*

.asect "ONCHIP"”, PGMBO

PROG
LPTS

.LABEL
BIOZ
B
GET OUT
IN
LRLK
ZAC
MPYK
RPTK
MACD
APAC

AR1,PROGR
PROGL-1
P1_START, *+

8

1

ONE
AR1l,COEFF
COEFL-1

1

LPTS

P1_START
GET

LPTS
FILOUT, PA2
FILIN,PA2
AR1,SIGNAL

0
15
COEF, *—

.
I
.
I
14

Ne ~e Ne N Ne o Se ~e

NE Ne Ne Ne NS Ne N Ne Ne e

POINT ARl INTO RECONFIGURABLE BLOCK BO
LOAD REPEAT COUNTER WITH BLOCK LENGTH
MOVE CODE FROM PROGRAM MEMORY TO ON-CHIP RAM

INITIALIZE PARAMETERS FOR EXECUTION.

POINT DP REGISTER TO DATA MEMORY PAGE 8

SET ACCUMULATOR TO 0001h

STORE VALUE OF 1

POINT ARl TO INTERNAL MEMORY ADDRESS

LOAD REPEAT COUNTER WITH BLOCK LENGTH
BLOCKBO = PROGRAMMEMORY/B1, B3 = DATAMEMORY
BRANCH TO ON-CHIP EXECUTION ADDRESS

SIGNAL PROCESSING CODE TO BE EXECUTED FROM ON-CHIP RAM.

WAIT FOR SIGNAL = LOW

BRANCH IF SIGNAL = HIGH

OUTPUT LAST FILTER OUTPUT

INPUT NEW SIGNAL SAMPLE

POINT ARl TO SIGNAL DATA TO PROCESS
CLEAR THE ACCUMULATOR

CLEAR THE P REGISITER

REPEAT MACD INSTRUCTION FOR 16 TAPS
MULTIPLY/ACCUMULATE, SAMPLE DELAY
Accumulate the last product

5-29



Memory Management

SACH FILOUT,1 ; Save the result

B LPTS . ; Loop to wait for next sample
PROGE .label P1_END
PROGL .equ PROGE~PROG ; Program code lenth
*

* Coefficient data to be loaded into on-chip RAM
*
COEF .label Cl_START
.word 385,-1196,1839,-2009
.word 1390,407,-4403,19958
.word 19958,-4403,407,1390
.word -2009,1839,-1196,385
COEFE .label C1_END
COEFL .equ COEFE-COEF ; Coefficient data length
*

* Data page 0 (Block B2) — Data memory labels.
*

.bss DRR,1
.bss DXR,1

Serial port data receive register
Serial port data transmit register

.bss TIM,1 Timer register
.bss PRD,1 Period register
.bss IMR,1 Interrupt mask register

e Ne e ~e e o~

.bss  GREG,1 Global memory allocation register
.bss RSVRDO, 05Ah

.bss B2,020h

.bss RSVRD1,0180h

Data page 4 (Block B0) — Data memory labels.

* %

BO .bss PROGR, PROGL ; Location for internal program code
.bss COEFF,COEFL ; Location for coefficent memory
.bss FREE0,0100h — (PROGL + COEFL)

*

* Data page 6 (block Bl) — data memory labels

Bl .bss ONE, 1 Reserved for data value of 1
.bss FILOUT,1 Filter output signal value
.bss FILIN,1 Filter input signal value
.bss SIG,13
.bss SIGNAL,1
.end

~e ~o o

Last signal delay value

~

5-30 Software Applications



Fundamental Logical and Arithmetic Operations

5.5 Fundamental Logical and Arithmetic Operations

Although the TMS320C2x instruction set is oriented toward digital signal pro-
cessing, the same fundamental operations of ageneral-purpose processor are
included. This section explains basic operations of the TMS320C2x central
arithmetic logic unit (CALU), particularly accumulator operations, the status
register effect on data processing, and bit manipulation.

The TMS320C2x provides a complete set of logical operations, including AND,
OR, XOR, and CMPL (complement) instructions. This enables the device to
perform any logical function. These instructions can convert sign magnitude
to 2s complement or the reverse.

You can store the contents of the accumulator in data memory with the SACH
and SACL instructions or in the stack with the PUSH instruction. You can load
the accumulator from data memory with the ZALH and ZALS instructions,
which zero the accumulator before loading the data value. The ZAC instruction
zeros the accumulator. POP can be used to restore the accumulator contents
from the stack.

The accumulator is also affected by the ABS and NEG instructions. ABS re-
places the contents of the accumulator with the absolute value of its contents.
NEG generates the arithmetic complement of the accumulator in complement
form.

5.5.1 Status Register Effect on Data Processing

Three data processing options allow the ALU to automatically suppress sign
extension, manage overflow, or scale product accumulations. These options
are enabled or disabled through bits in the status registers and function in par-
allel with normal execution of the instructions. They cause no additional ma-
chine cycles and therefore no performance overhead.

The sign-extension mode option is used to determine whether or not the shifted
data values fetched for ALU operations should be sign-extended. The SXM
status bit controls this operation. The SSXM instruction sets this bit to 1 for en-
abling sign extension, and the RSXM instruction sets it to 0 for suppressing
sign extension. This operation affects all the instructions that include a shift of
the incoming data value, thatis, ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK,
SFR, SUB, and SUBT.

The overflow mode option minimizes the effects of an arithmetic overflow by
forcing the accumulator to saturate at the largest positive value (or in the case
ofunderflow, the largest negative value). The OVM status bit controls this oper-
ation. The overflow mode is enabled by setting the OVM bit to a 1 with the
SOVM instruction, and reset with the ROVM instruction. This feature affects
all arithmetic operations in the ALU.

The product register shift mode option forces all products to be shifted before
they are accumulated. The products can be left-shifted one bit to delete the ex-

5-31



Fundamental Logical and Arithmetic Operations

tra sign bit when two 16-bit signed numbers are multiplied. The products can
be left-shifted four bits to delete the extra sign bits in multiplying a 16-bit data
value by a 13-bit constant. The product shifter can also be used to shift all prod-
ucts six bits to the right to allow up to 128 product accumulations without the
threat of an arithmetic overflow, thereby avoiding the overhead of overflow
management. The shifter can be disabled to cause no shiftinthe product when
working with integer or 32-bit precision operations. This also maintains com-
patibility with TMS320C1x code. These operations are controlled by the value
contained in the PM bits of status register ST1. The SPM instruction sets the
PM bits. This feature affects all the instructions that use the product of the multi-
plier, that is, APAC, LTA, LTD, LTP, LTS, MAC, MACD, MPYA, MPYS, PAC,
SPAC, SPH, SPL, SQRA, and SQRS.

5.5.2 Bit Manipulation

The BIT instruction tests any of the 16 bits of the addressed data word. The
specified bit is copied into the TC of the status register. The bit tested is speci-
fied by a bit code in the opcode of the instruction. Both the BBZ (branch on TC
bit = 0) and BBNZ (branch on TC bit = 1) instructions check the bit and allow
branching to a service routine.

Bit testing is useful in control applications where a number of states or condi-
tions may be latched externally and read into the TMS320C2x via an IN instruc-
tion. Atthis point, individual bits can be tested and branches taken for appropri-
ate processing.

Because the BIT instruction requires the bit code to be specified with the in-
struction, it cannot be placed in a loop to test several different bits of a data
word or bits determined by prior processing for efficient use. The TMS320C2x
also has a BITT instruction in which the bit code is specified in the T register.

Because the T register can easily be modified, BITT may be used to test all bits

of a data word if placed within a loop or to test a bit location determined by past
processing.

Example 5-24. Using BIT and BBZ

THIS ROUTINE USES THE BIT INSTRUCTION TO TEST THE CONDITION OF AN EXTERNAL MUX.
BIT 4 DETERMINES THE UTILITY OF THE REMAINING DATA. IF 2ZERO, A COUNTER IS

IF ONE, ADDITIONAL PROCESSING OCCURS AND THE COUNTER IS CLEARED.

THE ROUTINE IS INVOKED WHENEVER A TIMER INTERRUPT OCCURS.

*
*
* INCREMENTED.
*
*

TIME SST
LDPK
LARP
IN
BIT
BBZ

LARK

5-32

STO

0

AR3
DAT, PAS
DAT, 0Bh
INCR

AR3,0

; SAVE STATUS REGISTER STO.

; READ IN VALUE.
; TEST BIT 4.
; BRANCH AND INCREMENT IF POSITIVE.

; CLEAR THE COUNTER.

Software Applications



Fundamental Logical and Arithmetic Operations

LST STO ; RELOAD THE STATUS REGISTER.
EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTED ROUTINE.

INCR MAR *+ INCREMENT THE COUNTER.

;
LST STO ; RELOAD THE STATUS REGISTER.
EINT ; ENABLE INTERRUPTS.
RET ;7 RETURN TO INTERRUPTED ROUTINE.

Example 5-25. Using BITT and BBNZ .
THIS ROUTINE USES THE BITT INSTRUCTION TO TEST THE CONDITION OF AN EXTERNAL

*
* MUX. A BIT IN THE MUX IS SIGNIFICANT ONLY WHEN PRIOR PROCESSING HAS DESIGNATED
* THE BIT TO BE ACTIVE. INDIVIDUAL PROCESSING WILL TAKE PLACE BASED UPON THE
* STATE OF THE TESTED BIT. THE BITS ARE TESTED EACH TIME A TIMER INTERRUPT
* OCCURS.
*
TIME SST STO ; SAVE STATUS REGISTER STO.

LDPK 0

LARP AR3

LAR  AR3,BCNT ; LOAD COUNT OF ACTIVE BITS.

LRLK AR4,BTBL ; LOAD THE BIT TABLE ADDRESS.

IN  DAT,PAS ; READ IN VALUE.

B LTEST, *—, 4
TMLOOP LT *+,3 LOAD BIT CODE.

BITT DAT TEST SPECIFIED BIT.

e we Ne

BBNZ LTEST BRANCH IF BIT IS ONE.

.

LTEST BANZ TMLOOP,*—,4

LST STO ; RELOAD THE STATUS REGISTER.
EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTED ROUTINE.

5-33



Advanced Arithmetic Operations

5.6 Advanced Arithmetic Operations

The TMS320C2x provides instructions, such as MACD, SQRA, SUBC, and
NORM, that facilitate efficient execution of arithmetic-intensive DSP algo-
rithms. Explanations and examples of how to use these instructions with over-
flow management and for data move, multiplication-accumulation, division,
floating-point arithmetic, indexed addressing, and extended-precision arith-
metic are included in this section.

5.6.1 Overflow Management

5.6.2 Scaling

5-34

The TMS320C25 has four features that can be used to handle overflow man-
agement: the branch on overflow conditions, accumulator saturation (overflow
mode), product register right shift, and accumulator right shift. These features
provide several options for overflow protection within an algorithm.

A program can branch to an error handler routine on an overflow of the accu-
mulator by using the BV (branch on overflow) instruction or bypass an error
handler by using the BNV (branch if no overflow) instruction. These instruc-
tions can be performed after any ALU operation that may cause an accumula-
tor overflow.

The overflow mode is a useful feature for DSP applications. This mode simu-
lates the saturation effect characteristic of analog systems. When enabled, any
overflow inthe accumulator results in the accumulator contents being replaced
with the largest positive value (7FFFFFFFh) if the overflowed number is posi-
tive, or the largest negative value (80000000h) if negative. The overflow mode
is controlled by the OVM bit of status register STO and can be changed by the
SOVM (set overflow mode), ROVM (reset overflow mode), or LST (load status
register) instructions. Overflows can be detected in software by testing the OV
(overflow) bitin status register ST0. When a branch is used to test the overflow

~ bit, OV is automatically reset. Note that the OV bit does not function as a carry

bit. It is set only when the absolute value of a number is too large to be repre-
sented in the accumulator, and it is not reset except by specific instructions.

Another method of overflow management, which applies to multiply-accumu-
late operations, is the use of the right shifter of the product register. The right
shifter, which operates with no cycle overhead, allows up to 128 accumulations
without the possibility of an overflow. The least significant six bits of the product
arelost, and the MSBs are filled with sign bits. This feature is initiated by setting
the PM bits of status register ST1 to 11 with the SPM or LST1 instructions.

The TMS320C2x also has a right shift of the accumulator (using the SFR in-
struction) to scale down the accumulator when it nears overflow.

Scaling the data coming into the accumulator or already in the accumulator is
useful in signal processing algorithms. This is frequently necessary in adapta-

Hardware Applications



Advanced Arithmetic Operations

5.6.3 Moving Data

tion or other algorithms that must compute and apply correction factors or nor-
malize intermediate results. Scaling and normalizing are implemented on the
TMS320C2x viaright and left shifts in the accumulator and shifts of data on the
incoming path to the accumulator.

Right and left shifts of the accumulator can be performed using the SFL and
SFR instructions. SFL performs a logical left shift. SFR performs logical or
arithmetic right shifts depending on the state of the SXM bit in the status regis-
ter. A one in the SXM bit, corresponding to sign-extension enabled, causes an
arithmetic shift to be performed. :

In addition to the shift instructions, data can be left-shifted 0 to 15 bits when
the accumulator is loaded by using a LAC instruction, and left-shifted 0, 1, or
4 bits on the TMS32020 or 0 to 7 bits on the TMS320C25 when storing from
the accumulator by using SACH or SACL instructions. These shifts can be
used forloading numbersinto the high 16 bits ofthe accumulator and renormal-
izing the result of a multiply. The incoming left shift of 0 to 15 bits can be
supplied in the instruction itself or can be taken from the lowest four bits of the
T register. Left shifts of data fetched from data memory are available forloading
the accumulator (LAC/LACT), adding to the accumulator (ADD/ADDT), and
subtracting from the accumulator (SUB/SUBT). The contents of the P register
may also be shifted prior to accumulation.

Many DSP applications must perform convolution operations or other opera-
tions similar in form. These operations require data to be shifted or delayed.
The DMOV, LTD, and MACD instructions can perform the needed data moves
for convolution. '

The data move function allows a word to be copied from the currently ad-
dressed data memory location in on-chip RAM to the next higher location while
the data from the addressed location is being operated upon (that is, by the
CALU). The data move and the CALU operation are performed in the same
cycle. In addition, an ARAU operation may also be performed in the same cycle
when using the indirect addressing mode. The data move function is useful in
implementing algorithms, such as convolutions and digital filtering, where data
is being passed through a time window. It models the z—1 delay operation en-
countered in those applications. The data move function is continuous across
the boundary of the on-chip data memory blocks B0, B1, and B2. However, the
data move function cannot be used if off-chip memory is referenced.

In Example 5-26, the following equation is implemented:

2
Y(n) = Z HK)X(n—K)
k=0

5-35



Advanced Arithmetic Operations

where the H values stay the same, and the X values are shifted each time the
microprocessor performs one of the following series-of multiplications (similar
to operations performed in FIR filters):

First Series: Y(©@) = (HO) (X2) + (H1) (X1) + (H2) (X0)

Second Series:  Y(3)

(HO) (X3) + (H1)(X2) + (H2) (X1)
Third Series: Y(4)

(HO) (X4) + (H1) (X3) + (H2) (X2)

The MACD instruction, which combines accumulate and multiply operations
with a data move, is tailored to the type of calculation shown in the summation
equation above. In order to use MACD, the H values have been stored in block
B0 and configured as program RAM; the X values have been read into block
B1 of data RAM as shown in Figure 5-2.

Figure 5-2. MACD Operation

5-36

Program Data
Block BO Block B1
PC —9p] H2 }|«¢— OFFOOh 300h —p4 X2
l H1 |<4— OFFO01h 301th—p{ X1
HO |<4— OFF02h 302h—p{ X0 |-<4—— ARt

(Coefficients) ‘ (Samples)

Also, in Example 5-26, the summation in the above equation is performed in
the reverse order, that is, from K = 2 to 0, because of the operation of the data
move function. Thisresults in the oldest X value being used and discarded first.

Ifthe MACD instruction is replaced with the following two instructions, then the
MAC instruction can be utilized with the same results.

MAC *
DMOV *—

In cases where many more than three MACD instructions are required, the
RPT or RPTKinstructions may be used with MACD, yielding the same compu-
tational results but using less assembly code.

Hardware Applications



Advanced Arithmetic Operations

Example 5-26. Using MACD for Moving Data
THIS ROUTINE IMPLEMENTS A SINGLE PASS OF A THIRD-ORDER FIR FILTER. IT IS
ASSUMED THAT THE H AND X VALUES HAVE ALREADY BEEN LOADED INTO THEIR RESPECTIVE
MEMORY LOCATIONS,

THAT THE ACCUMULATOR AND P REGISTER ARE BOTH RESET TO ZERO,

THE REPEAT MODE, BUT IT IS NOT IMPLEMENTED HERE.

*
*
*
* AND THAT AR1 IS POINTING AT X0. NOTE THAT THE MACD INSTRUCTION MAY BE USED IN
*
*
*

FIR CNFP
LARP
MAC
MACD
MACD
APAC
CNFD
RET

1

CONFIGURE BLOCK B0 AS PROGRAM MEMORY.
AR1 SHOULD POINT AT THE X VALUES

OFFO00h, *— P = (X0)(H2)
OFFO1h, *— ACC = (X0)(H2)
0FF02h, * ACC = (X0)(H2) + (X1)(Hl)

5.6.4 Multiplication

Example 5-27. Multiply

* THIS ROUTINE MULTIPLIES TWO VALUES IN DATA MEMORY LOCATIONS 200h AND 201h WITH
* THE RESULT STORED IN 202h AND 203h.

*

MUL  LRLK
LARP
LT
MPY
PAC
SACL
SACH
RET

*

ACC = (X0)(H2) + (X1)(HL) + (X2)(HO)
CONFIGURE BLOCK BO AS DATA MEMORY.
RETURN TO MAIN PROGRAM.

Ne Ne Ne Ne Ne Ne we Ne

The TMS320C2x hardware multiplier normally performs 2s-complement
16-bit by 16-bit multiplies and produces a 32-bit result in one processor cycle.
Asingle TMS320C25 instruction, MPYU, can be used to multiply two 16-bit un-
signed numbers. To multiply two operands, one operand must be loaded into
the T register (TR). The second operand is moved by the multiply instruction
to the multiplier, which then produces the productin the P register (PR). Before
another multiply can be performed, the contents of the PR must be moved to
the accumulator. A single-multiply program is shown in Example 5-27. Pipelin-
ing multiplies and PR moves makes it possible to perfom most multiply opera-
tions in a single cycle.

A common operation in DSP algorithms is the summation of products. The
MAC instruction, normally performed in multiple cycles, adds the contents of
the PR to the accumulator and then simultaneously reads two values and multi-
plies them. When you use the MAC instruction, a data memory value is multi-
plied by a program memory value. One of the operands can come from block
B1 or B2in on-chip data memory while the other operand may come from block
BO. Block BO must be configured as program memory when it supplies the sec-
ond operand. Pipelining of the MAC instruction with a repeat instruction results
in an execution time for each succeeding multiply-and-accumulate operation
of only one cycle.

STORE HIGH WORD AT 203h.

AR1,200h ; POINT AT BLOCK BO.
1
*+ ; GET FIRST VALUE AT 200h.
*+ ; MULTIPLY BY VALUE AT 201h.
; PUT RESULT IN ACCUMULATOR.
*+ ; STORE LOW WORD AT 202h.
i
i

RETURN TO MAIN PROGRAM.

5-37



Advanced Arithmetic Operations

The pipelining of the MAC and MACD instructions incurs a certain amount of
overhead in execution. In those cases where speed is more critical than pro-
gram memory, it may be beneficial to use LTA or LTD and MPY instructions
rather than MAC or MACD. Example 5-28 andExample 5-29 show an imple-
mentation of multiply-accumulates using the MAC instruction. Example 5-30
shows animplementation of multiply-accumulates using the LTA-MPY instruc-
tion pair. Figure 5-3, Figure 5—4, and Figure 5-5 provide graphically the infor-
mation necessary to determine the efficiency of use for each of the techniques.

Example 5-28. Multiply-Accumulate Using the MAC Instruction (TMS32020)

* CLOCK TOTAL CLOCK PROGRAM TOTAL PROGRAM
* CYCLES CYCLES MEMORY MEMORY
*

LARP ARl . ;1 1

LRLK AR1,300h ;2 2

CNFP ;1 1

ZAC ;1 1

MPYK 0 ;1 1

RPTK N-1 i1 1

MAC OFFOOh, *+ ; 2 4+ N 2

APAC i1 10 + N 1 10

Example 5-29. Multiply-Accumulate Using the MAC Instruction (TMS320C25)

CLOCK TOTAL CLOCK PROGRAM TOTAL PROGRAM
* CYCLES CYCLES MEMORY MEMORY
*
LARP ARl ;1 1
LRLK AR1,300h ;2 2
CNFP ;1 1
ZAC ;1 1
MPYK 0 7 1 1
RPTK N-1 ;1 1
MAC OFFOOh, *+ ; 3+ N 2
APAC ; 1 11 + N 1 10

Example 5-30. Multiply-Accumulate Using the LTA-MPY Instruction Pair

* CLOCK TOTAL CLOCK PROGRAM TOTAL PROGRAM
* CYCLES CYCLES MEMORY MEMORY
*
ZAC ;1 1
LT D1 ;1 1
MPY Cc1 ;1 1
LTA D2 ;1 1
MPY c2 ;1 1
H 2N 2N
. 3
LTA DN ;1 1
MPY CN ;1 1
;1 2+2N 1 2+2N

~ APAC

5-38 Hardware Applications



Advanced Arithmetic Operations

Figure 5-3. Execution Time vs. Number of Multiply-Accumulatés (TMS32020)

LTA-MPY Implementation
Break-Even Point

. A T T “Juppiy P
1
MAC Implementat

r r v Y T n T T

1 ) ) ) ) ] ) ' 1

i) 1 L 1 ] ]

R T T SR U S .

- Q-7 0y ' T 1 “ ” '

' ' ' ' 1 ' ' ' '
e T S

' v ' ' ' ' \ ) '

1 ) ) ] ) ) 1 ' 1
.|i.||..||0°|.||..|lT||.|||.||.|l

' ) ] L} 1 ) ' 1 '

' ) 1 1 1 L}

'

' [ ' ' ' ' ' ' '
lll-llhl|-||‘-I°.O'I-l’l—|lr||.||

1 1 ¥ L} [ ' 1 1 1

1 1 ) ] 1 1 1 ) )
.I'l-ll.—.l'-ll|-|I.|IO|||J||~I|I-||

t ' 1 1 1 ] ' ' t

1 L} L} 1 ) ) ) ' 1
1||-II.J|I-II|-|IJ¢I-I’.0|II-l‘-ll

1 1 ] . ¥ 1 ) 1 N

l- ) 1 t L} 1 ¥ '
- -||I—||—|||_II|-|| ' 1 )

’ ' ) L L} ' ' 1 1
L L Qs S

1 1 ' ) ] ] 1 v '

) 1 Ll L} L} 1 ) 1 '
R LA AR A A LR - T e

' ' [ ' ' ' ' . '

1 1 1 L ) '

' ' ' ‘ ' ' ' ' '

] ] 1 t 1 ' N N N

| | ] 1 i ! f ] ]

T N4 © ©® © T o O

o N [aV] - - -~ -~ ~— @

$8J2A0 ¥00[D Ul uoNNdsX3

9 10 N

8

Number of Multiply-Accumulates to Be Performed

5-39



Advanced Arithmetic Operations

Figure 5-4. Execution Time vs. Number of Multiply-Accumulates (TMS320C25)

M N i N v 1 1 [ 1 O O
' ' ' ! ' ' 1 ' ) 1 ' '
I} 1 L} ) '

R e LR Rt EE T ERTEERE
l 1 1 L) + * N 1 1 1 fod '
T R Ok ' T e R T T Q - - 4
' ' ' ! ' ! ' 1 ' ' T
] ' [ ¢ ' 1 ' ' f ’ cF .
.||_I|L||X|l.||..||T||_|||_l|.|||.l.cnllue - =
1 ' 1 [ ' ' ' . ' ' amm.

“etl
A S R R I R -5 -
' 0 L -o & 1 ] i ) ' mmP_

1 ' 1 v 1 ' ' f f .ln_nuwm_
L T PR, > -
e At bl -y W 17}

' 1 ' [ ' 1 N 7 ' _mM.“.
l||.||»||.|||_|..r||0.||.||1||.||J|AAe_ll
1 ' 1 1 [ ' ' f f _Mu&_
L e S R R L DU
|||-|||—"ﬂ|||_ll.||—|llO"l—ll—‘l’_l - =
' ' ' ' ) ' \ ) . ' e OX
TR U R S S T -
! ' ' ' ! ' i v [ ' ' '

! ! ' ! ! ' ) ' ' ' ' '
T L N Y @ Y PSP
' ' ' ' ' ' ' ' ' ' ' '

' ' ! ! ¢ ! ' [ 1 ) ) '
et Sl et A Al el B Tl S Sl © Rl Sl Sl
! ! ! ! ! ' ) ' ' 1 ' '

] ] 1 ] L} 1

P S A Rl e S Tl bl
' ' ' ' ' ! ' ) ' 1 ' '
1 ) 1 1 1 t N M _ N N "
| | | 1 | ! ] | | | R
< [ o
I 882 e TN o e o o«

$8)9A0 %00}D Uy uonnoaxy

9 10 11

8

Number of Multiply-Accumulates to Be Performed

Hardware Applications

5-40



Advanced Arithmetic Operations

Figure 5-5. Program Memory vs. Number of Multiply-Accumulates

Program Memory in Words

24 —-_'n"T-_|_"|-__|".-":"',_-T--f--d.)’"
S O A
T N T IS B g e JRC U A S
18 e
o
T It e I SO e
S IR AT O S
o et bbb
R T R e R P
. _OJL..'

. .5.2__1__ o =MACImplementation R
4 C o =LTA-MPY Implementation ~ |
! l ! X = Break-Even Point !

Number of Multiply-Accumulates to Be Performed

In numerical analysis, it is often necessary to square numbers as well as add
or subtract. The TMS320C2x has two instructions, SQRA and SQRS, that ac-
complish this in a single machine cycle. The result of the previous operation
inthe PRis first added to the accumulator if SQRA is used, or subtracted from
the accumulator if SQRS is used. Then the data value addressed is squared,
and the result is stored in the PR. Example 5-31 uses the SQRA instruction
to perform the computation.

5-41



Advanced Arithmetic Operations

* Example 5-31. Using SQRA

*
*
*
*
*

5.6.5 Division

5-42

THIS ROUTINE USES THE SQRA INSTRUCTION TO COMPUTE THE SQUARE OF THE DISTANCE
BETWEEN TWO POINTS WHERE D**2 IS DEFINED AS FOLLOWS:

(XA — XB)**2 + (YA — YB)**2

XA
XB
XT

YA
YB
YT
XT

YT

; XT = XA — XB

; YT = YA — YB

i (P) = XT**2

i (AcCC) = 0

; (P) = YT**2, (ACC) = XT**2

(ACC) = XT**2 4+ YT**2 = D**2
; RETURN TO MAIN PROGRAM.

When performing multiply-and-accumulate operations, you may choose to
shift the product before adding it to the accumulator. You can do both simuilta-
neously with the MAC instruction by using the product shift mode on the
TMS320C25. This mode, controlled by two bits in the PM field of status register
ST1, shifts the value from the PR while itis transferred to the accumulator. The
contents of the PR are not shifted.

Division is implemented on the TMS320C2x by repeated subtractions using
SUBC, a special conditional subtract instruction. Given a 16-bit positive divi-
dend and divisor, the repetition of the SUBC command 16 times produces a
16-bit quotient in the low accumulator and a 16-bit remainder in the high accu-
mulator.

SUBC implements binary division in the same manner as is commonly done
in long division. The dividend is shifted until subtracting the divisor no longer
produces a negative result. For each subtraction that does not produce a nega-
tive answer, aoneis putinthe LSB of the quotient and then shifted. The shifting
of the remainder and quotient after each subtraction produces the separation
of the quotient and remainder in the low and high halves of the accumulator.

There are similarities between long division and the SUBC method of division.
Both methods are used to divide 33 by 5 in Example 5-32.

The condition of the divisor, less than the shifted dividend, is determined by the
sign of the result; both the dividend and divisor must be positive when using
the SUBC command. Thus, the sign of the quotient must be determined and
the quotient computed using the absolute value of the dividend and divisor.

Integer and fractional division can be implemented with the SUBC instruction
as shown in Example 5-33 and Example 5-34, respectively. When imple-
menting a divide algorithm, it is important to know if the quotient can be repre-
sented as a fraction and the degree of accuracy to which the quotient is to be
computed. For integer division, the absolute value of the numerator must be
greater than the absolute value of the denominator. For fractional division, the
absolute value of the numerator must be less than the absolute value of the
denominator.

Hardware Applications



Advanced Arithmetic Operations

Example 5-32. Divide 33 by 5

Long Division:
000000000000110 Quotient
000000000000010t )000000000100001
~101_
110
-101
11 Remainder
SUBC Method:
|32 HIGH ACC LOWACC 0 Comment
I
0000000000000000 0000000000100001 (1) Dividend is loaded into ACC. The di-
-10 1000000000000000 visor is left-shifted 15 and subtracted
—-10  0111111111011111 from ACC. The subtractraction is
negative, so discard the result and
shift the ACC left one bit.
| |1 l
0000000000000000 0000000001000010 (2) 2nd subtract produces negative an-
-10 1000000000000000 swer, so discard result and shift ACC
-10 0111111110111110 (dividend) left.
l |
0000000000000100 0010000000000000 (14) 14th SUBC command. The result is
—-10 1000000000000000 positive. Shift result left and replace
0000000000000001 1010000000000000 LSB with 1.
l
0000000000000011 0100000000000001 - (15) Resultis again positive. Shift result
-10 1000000000000000 left and replace LSB with 1.
0000000000000000 11000000000000001
0000000000000000 1000000000000011  (16) Last subtract. Negative answer, so
-10 1000000000000000 discard result and shift ACC left.
- 1111111111111101
000000000000001 1 0000000000000110 Answer reached after 16 SUBC in-
structions.
| Remainder | ] Quotient |

5-43



Advanced Arithmetic Operations

Example 5-33. Using SUBC for Integer Division
* THIS ROUTINE IMPLEMENTS INTEGER DIVISION.

*

DN1 LT NUMERA ;7 GET SIGN OF QUOTIENT.
MPY DENOM
PAC
SACH TEMSGN ; SAVE SIGN OF QUOTIENT.
LAC DENOM
ABS
SACL DENOM ; MAKE DENOMINATOR POSITIVE.

LAC NUMERA
ABS

ALIGN NUMERATOR.

~

*

IF DIVISOR AND DIVIDEND ARE ALIGNED, DIVISION CAN START HERE.

RPTK 15 .

SUBC DENOM ; 16-CYCLE DIVIDE LOOP.

SACL  QUOT

LAC TEMSGN

BGEZ DONE ; DONE IF SIGN IS POSITIVE.

ZAC

SUB QuoT

SACL QUOT ; NEGATE QUOTIENT IF NEGATIVE.
DONE LAC QuoT

RET ; RETURN TO MAIN PROGRAM.

Example 5-34. Using SUBC for Fractional Division
* THIS ROUTINE IMPLEMENTS FRACTIONAL DIVISION.

*

DNl LT NUMERA ; GET SIGN OF QUOTIENT.
MPY DENOM
PAC

SACH TEMSGN
LAC DENOM
ABS

SACL DENOM MAKE DENOMINATOR POSITIVE.
ZALH NUMERA ; ALIGN NUMERATOR.

ABS

SAVE SIGN OF QUOTIENT.

~e

~

*

IF DIVISOR AND DIVIDEND ARE ALIGNED, DIVISION CAN START HERE.

RPTK 14

SUBC DENOM ; 15-CYCLE DIVIDE LOOP.
SACL QUOT

LAC TEMSGN

BGEZ DONE DONE IF SIGN IS POSITIVE.

~

ZAC

SUB QuoT

SACL QUOT ; NEGATE QUOTIENT IF NEGATIVE.
DONE LAC QuUOT

RET ; RETURN TO MAIN PROGRAM.

5.6.6 Floating-Point Arithmetic

Floating-point numbers are often represented on microprocessors in a two-
word format of mantissa and exponent. The mantissa is stored in one word.

5-44 Hardware Applications



Advanced Arithmetic Operations

The exponent, the second word, indicates how many bit positions from the left
the decimal point is located. If the mantissa is 16 bits, a 4-bit exponent is suffi-
cient to express the location of the decimal point. Because of its 16-bit word
size, the 16/4-bit floating-point format functions most efficiently on the
TMS320C2x. The theory and implementation of floating-point arithmetic has
been presented in an application report in the book, Digital Signal Processing
Applications with the TMS320 Family (literature number SPRAQ12A).

Operations in the TMS320C2x central ALU are performed in 2s-complement
fixed-point notation. To implement floating-point arithmetic, operands must be
converted to fixed point for arithmetic operations, and then converted back to
floating point.

Conversion to floating-point notation is performed by normalizing the input
data, that is, shifting the MSB of the data word into the MSB of the internal
memory word. The exponent word then indicates how many shifts are re-
quired. To multiply two floating-point numbers, the mantissas are multiplied
and the exponents added. The resulting mantissa must be renormalized; since
the input operands are normalized, no more than one left shift is required to
renormalize the result.

Floating-point addition or subtraction requires shifting the mantissa so that the
exponents of the two operands match. The difference between the exponents
is used to left-shift the lower power operand before adding. Then, the output
of the add must be renormalized.

TMS320C2x instructions useful in floating-point operations are the NORM,
LACT, ADDT, and SUBT instructions. NORM may be used to convert fixed-
point numbers to floating-point. LACT may be used to convert back to fixed-
point numbers. Addition and subtraction can be computed in floating point by
using ADDT and SUBT.

Example 5-35 and Example 5-36 show a floating-point multiply on the
TMS32020 and TMS320C25, respectively. The mantissas are assumed to be
in Q15format. Q15, one of the various types of Qformat, is a number represen-
tation commonly used when performing operations on noninteger numbers. In
Q format, the Q number (15 in Q15) denotes how many digits are located to
the right of the binary point. A 16-bit number in Q15 format, therefore, has an
assumed binary point immediately to the right of the most significant bit. Since
the most significant bit constitutes the sign of the number, the numbers in Q15
may take on values from +1 (represented by +0.99997...) to —1.

Example 5-35. Using NORM for Floating-Point Multiply (TMS32020)

*
*
*
*
*
*

MC * 2**EC

THIS SUBROUTINE PERFORMS A FLOATING~POINT MULTIPLY USING THE NORM INSTRUCTION.
THE INPUTS AND OUTPUTS ARE OF THE FORM:

SINCE THE MANTISSAS, MA AND MB, ARE NORMALIZED, MC CAN BE NORMALIZED WITH A

5-45



Advanced Arithmetic Operations

* LEFT SHIFT OF EITHER 0 OR 1 IN THE ACCUMULATOR. THE EXPONENT OF THE RESULT IS
* ADJUSTED APPROPRIATELY. FOR EXAMPLE, MULTIPLICATION OF THE TWO NUMBERS A AND B,
* WHERE A = 0.1 * 2%%2 AND B = 0.1 * 2**4, PROCEEDS AS FOLLOWS:
*
* 1) A * B = 0.01 * 2%%6
* 2) A * B =0.1 * 2%¥*5  (NORMALIZED RESULT)
*
MULT LAC  EA
ADD  EB ; EC = EXPONENT OF RESULT BEFORE
SACL EC ; NORMALIZATION.
LT MA
MPY  MB
PAC ; (ACC) = MA * MB
*
SFL ; TAKES CARE OF REDUNDANT SIGN BIT.
LARP  ARO
LAR  ARO,0 ; ARO IS INITIALIZED TO O.
* . . :
* NORM ; FINDS MSB AND MODIFIES ARO.
*
SACH MC ; MC = MA * MB (NORMALIZED)
SAR  AR0O,TMP
LAC  EC
SUB  TMP
SACL EC
RET ; RETURN TO MAIN PROGRAM.

Example 5-36. Using NORM for Floating-Point Multiply (TMS320C25)

THIS SUBROUTINE PERFORMS A FLOATING-POINT MULTIPLY USING THE NORM INSTRUCTION.
THE INPUTS AND OUTPUTS ARE OF THE FORM:

C = MC * 2**EC

*

*

*

*

*

* SINCE THE MANTISSAS, MA AND MB, ARE NORMALIZED, MC CAN BE NORMALIZED WITH A
* LEFT SHIFT OF EITHER 0 OR 1 IN THE ACCUMULATOR. THE EXPONENT OF THE RESULT IS
* ADJUSTED APPROPRIATELY. FOR EXAMPLE, MULTIPLICATION OF THE TWO NUMBERS A AND B,
* WHERE A = 0.1 * 2%%2 AND B = 0.1 * 2%*4, PROCEEDS AS FOLLOWS:

*

*

*

*

0.01 * 2%%6
0.1 * 2%%5 (NORMALIZED RESULT)

1) A

* B
2) A*B

W

MULT ©LAC EA

ADD  EB ; EC = EXPONENT OF RESULT BEFORE
SACL EC ; NORMALIZATION.
LT MA
MPY  MB
PAC ; (ACC) = MA * MB
%*
SFL ; TAKES CARE OF REDUNDANT SIGN BIT.
LARP AR5

LAR AR5,EC AR5 IS INITIALIZED WITH EC.

~e

NORM  *— ; FINDS MSB AND MODIFIES ARS.
*

SACH MC ; MC = MA * MB (NORMALIZED)

SAR  ARS5,EC

RET ; RETURN TO MAIN PROGRAM.

Floating-point implementation programs often require denormalization as well
as normalization to return results in a 16-bit format. Example 5-37 and

5-46 ' Hardware Applications



Advanced Arithmetic Operations

Example 5-38 illustrate the denormalizing of numbers that were normalized
with the NORM instruction. This program assumes that the mantissa is in the
accumulator and that the exponent is in an auxiliary register, which is the for-
mat of the NORM instruction after execution.

Example 5-37. Using LACT for Denormalization (TMS32020)

* THIS ROUTINE DENORMALIZES NUMBERS NORMALIZED BY THE NORM INSTRUCTION. THE
* DENORMALIZED NUMBER WILL BE IN THE ACCUMULATOR.

*
DENORM LARP

1

; USE ARl TO POINT AT BLOCK BO.

LRLK -AR1,200h
SAR ARQ,*+ ; STORE EXPONENT AT 200h.
SACH *-— ; STORE MANTISSA AT 201h.
*
* SUBTRACT EXPONENT FROM 16 TO DETERMINE THE NUMBER OF SHIFTS REQUIRED TO
* DENORMALIZE.
*
LAC * ; LOAD ACCUMULATOR WITH EXPONENT.
BZ ouT ; CHECK FOR ZERO EXPONENT.
LACK 10h
SUB *
SACL *
LT *+
LACT * ; DENORMALIZE NUMBER.
RET ; RETURN TO MAIN PROGRAM.
ouT MAR *+ ; POINT TO MANTISSA.
ZALH * ;7 LOAD ACCUMULATOR WITH RESULT.
RET ; RETURN TO MAIN PROGRAM.
Example 5-38. Using LACT for Denormalization (TMS320C25)

* THIS ROUTINE DENORMALIZES NUMBERS NORMALIZED BY THE NORM INSTRUCTION (NORM *-—).
* THE DENORMALIZED NUMBER WILL BE IN THE ACCUMULATOR

*

DENORM LARP
LRLK
SAR
SACH

ouT MAR

1

; USE AR1 TO POINT AT BLOCK BO.

AR1,200h
AR4, *+ ; STORE EXPONENT AT 200h.
e ; STORE MANTISSA AT 201h.
* ; LOAD ACCUMULATOR WITH EXPONENT.
ouT ; CHECK FOR ZERO EXPONENT.
*h
* DENORMALIZE NUMBER.
RETURN TO MAIN PROGRAM.
*4+ POINT TO MANTISSA.

*

LOAD ACCUMULATOR WITH RESULT.
RETURN TO MAIN PROGRAM.

e we wo wo we

5.6.7 Indexed Addressing

The auxiliary register arithmetic unit (ARAU) allows the next indirect address
to be calculated using increment/decrement calculations or indexed address-
ingin parallelto the current arithmetic operation. For example, in the multiplica-
tion of two matrices, the operation requires addressing across the rows (incre-
menting the address by one) or down the columns (incrementing by n).
Example 5-39 gives the code for multiplying a row times a column of two
10x10 matrices. The first matrix resides in data RAM block B1, and the second
matrix resides in block BO.

5-47



Advanced Arithmetic Operations

Example 5-39. Row Times Column

LARK
LARP
LRLK
CNFP
ZAC

MPYK
RPTK
MAC

APAC

EXECUTE FINAL ACCUMULATION.

0,0Aah ; SET INDEX TO 10.
1 ; ARl FOR ADDRESSING THE COLUMN.
1,300h ; POINT ARl TO THE START OF BLOCK Bl.
; SET B0 TO PROG ADDRESS FOR PIPELINE.
; INITIALIZE THE ACCUMULATOR.
0 ; CLEAR THE PRODUCT REGISTER.
9 ; REPEAT 10 TIMES AS MATRIX DIMENSION.
OFFO0Oh, *0+ ; MULTIPLY ROW TIMES COLUMN.
i
’

ACCUMULATOR CONTAINS PRODUCT.

The algorithm in Example 5-39 executes in 22 machine cycles. The key to this
performance is the parallel addressing of both multiplicands simultaneously.
The operation is made possible by the use of the data bus to fetch one multipli-
cand and the program bus to fetch the other. The auxiliary register indexes
down the column of one matrix while the PC generates incremental addressing
of each row of the other matrix. Each cycle of the repeat loop performs the fol-
lowing operations:

—

Accumulates the previous product,

W N

)
) Multiplies the row element times the column element,
) Increments the row address, and

)

4) Indexes the column address.

5.6.8 Extended-Precision Arithmetic

5-48

Numerical analysis, floating-point computations, or other operations may re-
quire arithmetic to be executed with more than 32 bits of precision. Since the
TMS320C2x processors are 16/32-bit fixed-point devices, software is required
for the extended-precision of arithmetic operations. Subroutines that perform
the extended-arithmetic functions for both the TMS32020 and TMS320C25
are provided in the examples of this section. The technique consists of per-
forming the arithmetic by parts, similar to the way in which longhand arithmetic
is done.

The TMS320C25 hastwo featuresthat help to make extended-precision calcu-
lations more efficient. One of the features is the carry status bit. This bit is af-
fected by all arithmetic operations of the accumulator (ABS, ADD, ADDC,
ADDH, ADDK, ADDS, ADDT, ADLK, APAC, LTA, LTD, LTS, MAC, MACD,
MPYA, MPYS, NEG, SBLK, SPAC, SQRA, SQRS, SUB, SUBB, SUBC, SUBH,
SUBK, SUBS, and SUBT). The carry bit is also affected by the rotate and shift
accumulator instructions (ROL, ROR, SFL, and SFR) or may be explicitly mo-
dified by the load status register ST1 (LST1), reset carry (RC), and set carry
(SC) instructions. For proper operation, the overflow mode bit should be reset
(OVM = 0) so that the accumulator results will not be loaded with the saturation
value. Note that this means that some additional code may be required if over-
flow of the most significant portion of the result is expected.

Hardware Applications



Advanced Arithmetic Operations

The carry bitis set whenever the addition of a value from the input scaling shift-
erorthe P register to the accumulator contents generates a carry out of bit 31.
Otherwise, the carry bit is reset because the carry out of bit 31 is a zero. One
exception to this case is the ADDH instruction, which can only set, not reset,
the carry bit. This allows the accumulation to generate the proper single carry
when the addition to either the lower or upper half of the accumulator actually
causes the carry. The following examples help to demonstrate the significance
of the carry bit on the TMS320C25 for additions:

c  wMsB LsB c MsB LS8

X FFFF FFFI:ACC X FFEFF FFF ACC
+ " FFFF F F FF

1 0000 0000 (e FFTEE

X 7FFF F FFF ACC X 7 FFF F ACC
* ! Y FEFEF FFF

0 8000 0000 ' 7 FFCF FFFE

X 8000 000 0 ACC X 8000 0000 ACC
* ! * FFFF _FFFF

0 8000 000 1 ' 7 FFF FFFF

1 0000 00 00 ACC 1 FFFF F FFF ACC
+ 0 (ADDC) + o (ADDC)

0 0000 00 0 1 1 0000 0000

1 8000 FFFF ACC 1 8000 F FFF ACC
* 0000 0 0 0 0 (ADDH) + FFEF 000 o (ADH

1 8000 FFF 1 F FF FFFF

Example 5-40 shows an implementation of two 64-bit numbers added to each
other to obtain a 64-bit result. This example, which adds 16-bit partsand gener-
ates a carry (C) bit in the accumulator, will run on the TMS32020.

Example 5-40. 64-Bit Addition (TMS32020)

* TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING A 64-BIT RESULT. THE
* 64-BIT RESULT. THE NUMBERS X (X3,X2,X1,X0) AND Y (Y3,Y2,Yl,Y0) ARE ADDED
* RESULTING IN W (W3,W2,W1,W0).
*
* X3 X2 X1 X0
* 4+ Y3 Y2 Y1 YO
*
* W3 W2 W1 WO
*
ADD64 ZALS X0 ; ACC = 00 X0
ADDS YO ; ACC = 00 X0 + 00 YO = C W0
SACL W0
SACH CARRY «
LAC CARRY ; ACC = 00 C

5-49



Advanced Arithmetic Operations

ADDS X1 ; ACC = 00 C + 00 X1

ADDS Y1 ; ACC = 00 C + 00 X1 + 00 Y1 = C W1
SACL W1

SACH CARRY

LAC CARRY ; ACC = 00 C

ADDS X2 ; ACC = 00 C + 00 X2

ADDS Y2 ; ACC = 00 C + 00 Y2 + 00 Y2 = C W2
SACH CARRY

LAC CARRY ; ACC = 00 C .

ADDS X3 ; ACC = 00 C + 00 X3

ADDS Y3 ; ACC = 00 C + 00 X3 + 00 Y3 = C W3
SACL W3

RET

Example 5-41 illustrates the same addition as Example 5-40 but is specific
to the TMS320C25 and to the TMS320C26. This implementation makes use
of the carry (C) status bit, adding 32-bit parts.

Example 5-41. 64-Bit Addition (TMS320C25 and TMS320C26)

* TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING A 64-BIT RESULT. THE
NUMBERS X (X3,X2,X1,X0) AND Y (¥3,Y2,Y1,Y0) ARE ADDED RESULTING IN W

*

* (W3,W2,W1,W0).

*

*

*

* X3 X2 X1 X0

*  + Y3 Y2 Y1 YO

* ———————— e

* W3 W2 W1 WO

*

ADD64 ZALH X1 ; ACC = X1 00
ADDS X0 ; ACC = X1 X0
ADDS Y0 ; ACC = X1 X0 + 00 YO
ADDH Y1 ; ACC = X1 X0 + Y1 YO = Wl WO
SACL W0
SACH Wl
ZALH X3 ; ACC = X3 00
ADDC X2 i ACC = X3 X2 + C
ADDS Y2 ; ACC = X3 X2 + 00 Y2 + C
ADDH Y3 ; ACC = X3 X2 + Y3 Y2 + C = W3 W2
SACL W2
SACH W3
RET

In a similar way to addition, the carry bit on the TMS320C25 is reset whenever
the input scaling shifter or the P-register value subtracted from the accumulator
contents generates a borrow into bit 31. Otherwise, the carry bitis set because
no borrow into bit 31 is required. One exception to this case is the SUBH in-
struction, which can only reset the carry bit. This allows the generation of the
proper single carry when the subtraction from either the lower or upper half of
the accumulator actually causes the borrow. The following examples help to
demonstrate the significance of the carry bit for subtractions:

5-50 Hardware Applications



Advanced Arithmetic Operations

MSB LSB

0000 ooo?ACC

FFFF FFFF

7 FFF FFFF ACC
1

7 FFF FFFE

8 00 0 000 0 ACC
1

7 FFF FFFF

0000 000 0 ACC
0 (3UBB)

FFFF FFFF

8000 FFF F ACC

000 1 0 00 o (SUBH

F

MSB LsB
0000 0000 ACC
FFF F F F
0000 00 01
7 F FFFF ACC
F FFFF
8000 0000
8000 0000 ACC
FFFF FFF
8000 00 01
FFFF FFFF ACC
o (suBB)
FFFF FFFE
8 0 FFFF ACC
F F 0.0 0 g (SUBH
8 1 FFFF

Example 5—42 implements the subtraction of two 64-bit numbers on the
TMS32020. A borrow (B) is generated within the accumulator for each of the
16-bit parts of the subtraction operation.

5-51



Advanced Arithmetic Operations

Example 5-42. 64-Bit Subtraction (TMS32020)
* TWO 64-BIT NUMBERS ARE SUBTRACTED,

*

Example 5-43. 64-Bit Subtraction (TMS320C25)

* X3 X2 X1 X0

% — Y3 Y2 Y1 YO

* e ———————————

* W3 W2 W1 WO

*

SUB64 ZALS X0
SUBS Y0
SACL wo
SACH  BORROW
LAC BORROW
ADDS X1
SUBS Y1
SACL W1
SACH BORROW
LAC BORROW
ADDS X2
SUBS Y2
SACL W2 -
SACH  BORROW
LAC BORROW
ADDS X3
SUBS Y3
SACL W3
RET

ACC
ACC

~e ~e

ACC
ACC
ACC

~e ~o ~e

ACC
ACC
ACC

~e ws ~a

; ACC

;7 ACC

nun nwu non
Oww

www

W ww

PRODUCING A 64-BIT RESULT. THE NUMBER Y
* (Y3,Y2,Y1,Y0) IS SUBTRACTED FROM X (X3,X2,X1,X0) RESULTING IN W (W3,W2,W1,W0).

00

X0

00 X0 — 00 YO

00
00

00
00

00
00

=B
X1
X1 — 00 Y1
X2
X2 — 00 Y2
X3
X3 — 00 Y3

WO

1]

B Wl

B W2

B W3

The coding in Example 5-43 shows the advantage of usingthe carry (C) status
bit onthe TMS320C25 to implement the same subtraction as in Example 5—42.

* TWO 64-BIT NUMBERS ARE SUBTRACTED,

* % %k * Ok %

SUB64 ZALH
ADDS
SUBS
SUBH
SACL
SACH
ZALS
SUBB
ADDH
SUBH
SACL
SACH
RET

5-52

X3 X2 X1 X0
— ¥3 Y2 Y1 Y0

W3 W2 W1 WO

X1
X0
YO
Y1
w0
Wl
X2
Y2
X3
Y3
w2
W3

ACC
ACC
ACC
ACC

~e Ne wo ~

ACC
ACC
ACC
ACC

~e Neo we w»

[ (|

o nn

PRODUCING A 64-BIT RESULT. THE NUMBER Y
* (Y¥Y3,Y2,Y1,Y0) IS SUBTRACTED FROM X (X3,X2,X1,X0) RESULTING IN W (W3,wW2,W1,W0).

— Y1

- 00
— 00
— Y3

Wl WO

The second feature of the TMS320C25 that assists in extended-precision cal-
culations is the MPYU (unsigned multiply) instruction. The MPYU instruction
allows two unsigned 16-bit numbers to be multiplied and the 32-bit result to be
placed in the product register in a single cycle. Efficiency is gained by generat-

Hardware Applications



Advanced Arithmetic Operations

ing partial products from the 16-bit portions of a 32-bit or larger value instead
of having to split the value into 15-bit or smaller parts.

Example 5-44 and Example 545 show implementations of multiplying two
32-bit numbers to obtain a 64-bit result. The coding of Example 5-44 will per-
form the 32-bit multiply on a TMS32020. The advantage in using the MPYU
instruction can be observed in Example 5-45, which will execute on the
TMS320C25.

Example 5-44. 32 x 32-Bit Multiplication (TMS32020)

* TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT RESULT. THE NUMBERS X
* (X1,X0) AND Y (Y1,Y0) ARE MULTIPLIED RESULTING IN W (W3,W2,W1,W0).

X1 X0
Y1l YO

Y1*YO0
X0*YO0
X1*Y0

X0*Y1

W3 W2 Wl WO

THE PROCEDURE FOR MULTIPLICATION IS TO SEPARATE THE 32-BIT MAGNITUDE VALUES OF
X AND Y INTO THREE PARTS OF 2, 15, AND 15 BITS EACH. THE MULTIPLICATION BY
PARTS THEN PRODUCES A 5-PART RESULT OF 3, 5, 15, 15, AND 15 BITS, WHICH ARE
RECOMBINED INTO FOUR DATA WORDS OF 16 BITS EACH.

X2 X1 X0
x Y2 Y1 YO

X0*YO
X1*Y0
X0*Y1
X2*Y0
X1*Y1
X0*Y2
X2*Y1
X1*Y2
X2+*Y2

* % Ok Ok Ak R b R ok F % X ok % F Rk Ok X F ¥ % X Ok F %

W4 W3 W2 W1l WO

* DETERMINE THE SIGN OF THE PRODUCT.

*

MPY32 ZALS X1 ; ACCL = SXXX XXXX XXXX XXXX
XOR Y1 ; ACCL = S—= = =— === —=— == ———~-
SACH SIGN,1 ; SAVE THE PRODUCT SIGN 0 = +, 1 = —,

*

* TAKE THE ABSOLUTE VALUE OF BOTH X AND Y AND REPARTITION.
*

ABSX ZALH X1 ; ACC = X1 00
ADDS X0 ; ACC = X1 X0
ABS
SACH X1,1 ; SAVE | X2 X1].

AND M7FFF

5-58



Advanced Arithmetic Operations

SACL X0 ; SAVE | X0 .

ZALS X1

SACH X2,1 ; SAVE | X2 |.

AND M7FFF

SACL X1 ; SAVE | X1|.
ABSY ZALH Y1 ; ACC = Y1 00

ADDS YO ; ACC = Y1 YO0

ABS

SACH Y1,1 ; SAVE | Y2 Y1|.

AND M7FFF

SACL YO ; SAVE | YO |.

ZALS Y1

SACH Y2,1 ; SAVE | Y2|.

AND M7FFF

SACL Y1 ; SAVE | Y1 {.

*
* MULTIPLY | X | AND | Y | TO PRODUCE | W |.

*

MULT LAC X2 "AND’ FUNCTION IS A 1-BIT BY

L4

AND Y2 ; 1-BIT MULTIPLICATION.

SACL W4 ; SAVE PARTIAL | W4 |.

LT X0 i T = X0

MPY Y0 ;i T = X0, P = X0*Y0

PAC WO ; T = X0, P = X0*Y0, ACC = X0*Y0
L4

SACH Wl,1
AND M7FFF
SACL WO

SAVE PARTIAL ] Wl

SAVE | WO

’
ZALS Wl ; T = X0, P = X0*Y0
* ; ACC = X0*Y0*2+%*—16
MPY Y1 | ; T = X0, P = X0*Y1
* ; ACC = X0*Y0*2**—16
LTA X1 ; T =X1, P = X0*Y1
* ; ACC = X0*Y1l + XO0*Y0*2**—16
MPY Y0 ; T = X1, P = X1*Y0
* ; ACC = X0*Y1 + X0*YQ*2**-16
LTA X0 ;i T = X0, P = X1*Y0 .
* ; ACC = X1*Y0 + XO*Y1 + XO*YQ#2%*—16
SACH W2,1 ; SAVE PARTIAL |W2|.
AND M7FFF
SACL Wl ; SAVE |w1 |.
ZALS W2 ; T =X0, P = X1*Y0
* ; ACC = (X1*Y0 + X0*Y1)*2*%x—16
MPY Y2 i T = X0, P = X0*Y2
* ; ACC = (X1*Y0 + X0*Y1l)*2%*—16
LTA X1 ; T = X1, P = X0*Y2
* ; ACC = X0*Y2 + (X1*Y0Q + XO*Yl)*2%x_16
MPY ¥l ; T = X1, P = X1*Y1
* ; ACC = X0*Y2 + (X1*Y0 + XO0*Y1)*2%*—16
LTA X2 ; T = X2, P = X1*Y1
* ; ACC = X1*Y1l + X0*Y2 + (X1*YO+X0*Y1l)*2%*-16
MPY Y0 ; T =X2, P = X2*Y0
* ; ACC = X1*Y1l + X0*Y2 + (X1*YO+X0*Y1)*2%*-16
LTA X1 ; T = X1, P = X2*Y0
* ; ACC = X2*Y0 + X1*Y1l + XO0*Y2
* ;oF (X1*YO0+X0*Y1)*2%*—16
SACH W3,1 ; SAVE PARTIAL | W3|.
AND M7FFF
SACL W2 ; SAVE | w2
ZALS W3 ; T = X1, P = X2*Y0
* ; ACC = (X2*Y0 + X1*Y1l + X0*Y2)*2%*—16
MPY Y2 ;i T = X1, P = X1*Y2

5-54 Hardware Applications



Advanced Arithmetic Operations

ACC = (X2*Y0 + X1*Y1 + X0*Y2)*2%*—16

LTA X2 T = X2, P = X1*Y2

* ACC = X1*Y2 + (X2*Y0 + X1*Y1l + XQ*Y2)*2**-16
MPY Y1l T = X2, P = X2+*Y1

* ACC = X1*Y2 + (X2*Y0 + X1*Y1l + X0*Y2)*2**-16
APAC ACC = X2*Y1 + X1*Y2

+ (X2*Y0 + X1xY1l + X0*Y2)*2%*%—16
ACC = X2*%Y2#%2%*15 + X2*Yl + X1*Y2
+ (X2*%Y0 + X1*Y1l + X0*Y2)*2%%—16

ADD W4,15

e Ne Ne e we we Ne we we we

SACH Ww4,1 SAVE | w4 |.
AND M7FFF
SACL W3 ; SAVE | W3 |.

* RECOMBINE W AND GENERATE 2S-COMPLEMENT RESULT.

ZAC
SUB SIGN
SACL  SIGN ; SIGN 0 = +, =1 = —.
*
LAC W1,15 ; ACC = | W1 00
ADD WO ; ACC = | W1 WO
ADD SIGN «
XOR SIGN ; COMPLEMENT WO WHEN SIGN = -—1.
SACL WO ; SAVE | WO
SACH Wl ; SAVE PARTIAL | W1 |.
LAC W2,14 ; ACC = | W2 00
ADD Wl ; ACC = | W2 Wl
XOR SIGN ; COMPLEMENT W1 WHEN SIGN = —1.
SACL Wl ; SAVE | Wl |.
SACH W2 ; SAVE PARTIAL | W2 |.
LAC W3,13 ; ACC = | W3 00
ADD W2 ; ACC = | W3 W2
XOR SIGN ; COMPLEMENT W2 WHEN SIGN = 1.
SACL W2 ; SAVE | w2 |.
SACH W3 ; SAVE PARTIAL | W3 |.
LAC W4,12 ; ACC = | w4 00
ADD W3 ; ACC = | W4 W3
XOR SIGN ; COMPLEMENT W3 WHEN SIGN = —1.
SACL W3 ; SAVE | W3 |.
RET

Example 5-45. 32 x 32-Bit Multiplication (TMS320C25)

* TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT RESULT. THE NUMBERS X
* (X1,X0) AND Y (Y1,Y0) ARE MULTIPLIED RESULTING IN W (W3,W2,W1,W0).
*

* X1 X0

* S X Y1 YO

*

* X0*Y0

* X1*Y0

* X0*Y1

* X1*Y1

* R —

* W3 W2 W1 WO

*

* DETERMINE THE SIGN OF THE PRODUCT.

*

MPY32 ZALS X1 ; ACCL = SXXX XXXX XXXX XXXX
: XOR Y1 i ACCL = Se— = = mm = cmm = —m— =

5-55



Advanced Arithmetic Operations

SACH SIGN,1 ;

*

* TAKE THE ABSOLUTE VALUE OF BOTH X AND Y.

*

ABSX ZALH X1 ;
ADDS X0 :
ABS
SACH X1 :
SACL X0 ;
ABSY ZALH Y1 :
ADDS YO ;
ABS
SACH Y1 ;
SACL YO ;

*

* MULTIPLY
*

MULT LT X0 :
MPYU YO ;
SPL WO :
SPH wi :
MPYU Y1 ;
LTP X1 :
MPYU YO :
ADDS W1 ;
* H
MPYA Y1 H
* H
SACL W1 :
SACH W2 :
ZALS W2 :
* .
I’
BNC SUM ;
ADDH ONE
SUM APAC :
SACL W2 ;
SACH W3 H

*

TEST THE SIGN OF THE PRODUCT;

LAC SIGN

BZ DONE ;
*

ZALH Wl ;

ADDS WO ;

CMPL

ADD ONE :

SACL WO ;

SACH W1 ;

ZALS W2 ;

ADDH W3 ;

CMPL

ADDC  ZERO :

SACL . W2 ;

SACH W3 ;
DONE RET

5-56

|X| AND |Y| TO PRODUCE | W |.

SAVE THE PRODUCT SIGN 0 = +, 1 = —,
ACC = X1 00

ACC = X1 X0

SAVE | X1|.

SAVE | X0 |.

ACC = Y1 00

ACC = Y1 YO

SAVE | Y1].

SAVE | YO |.

T = X0

T = X0, P = X0*Y0

SAVE | WO|.

SAVE PARTIAL | W1].

T = X0, P = X0*Y1

T = X1, P = X0*Y0, ACC = X0*Yl

T = X1, P = X1*Y0, ACC = X0*Y1l

T =X1, P = X1*Y0,

ACC = XO0*Y1l + XO0*YQ*2**-~16

T = X1, P = X1*Y},

ACC = X1*Y0 + XO0*Y1l + X0*Y0*2**—16

SAVE |W1 |.

SAVE PARTIAL | W2
P = X1*Y1l,

ACC = (X1*Y0 + X0*Y1l)*2x*—16
TEST FOR CARRY FROM W2.

ACC = X1*Y1 + (X1*YQ + XO*Y1)*2%%—-16
SAVE | w2 |.
SAVE | w3 |.

NEGATE IF NEGATIVE.

RETURN IF POSITIVE.

ACC = Wl 00

ACC = Wl WO

ACC = W1 WO AND CARRY GENERATION
SAVE WO.

SAVE Wl.

ACC = 00 w2

ACC = W3 W2

ACC = W3 W2

SAVE w2|.

SAVE W3 i|.

Hardware Applications



Application-Oriented Operations

5.7 Application-Oriented Operations

The TMS320C2x efficiently implements many common digital signal process-
ing algorithms. The architecture discussed in Chapter 3 supports features that
solve numerically intensive problems usually characterized by multiply/accu-
mulates. Some device-specific features that aid in the implementation of spe-
cific algorithms include companding, filtering, Fast Fourier Transforms (FFT),
and PID control. These applications require 1/0O performed either in parallel or
serial. Hardware requirements for 1/O are discussed in Chapters 3 and 6.

5.7.1 Companding

Inthe area of telecommunications, one of the primary concerns isthe I/O band-
width in the communications channel. One way to minimize this bandwidth is
by companding (COMpress/exPAND). Companding is defined by two interna-
tional standards, A-law and p-law, both based on the compression of the equiv-
alent of 13 bits of dynamic range into an 8-bit code. The standard employed
in the United States and Japan is u-law; the European standard is A-law. De-
tailed descriptions and code examples of both types are presented in an appli-
cation report on companding routines included in the book, Digital Signal Pro-
cessing Applications with the TMS320 Family (literature number SPRA012A).

The technique of companding allows the digital sample information corre-
sponding to a 13-bit dynamic range to be transmitted as 8-bit data. For pro-
cessing in the TMS320C2x, it is necessary to convert the 8-bit (logarithmic)
sign-magnitude datato a 16-bit 2s-complement (linear) format. Prior to output,
the linear result must be converted to the compressed or companded format.
Table lookup or conversion subroutines may be used toimplement these func-
tions.

Software routines for u-law and A-law companding, flowcharts, companding
algorithms, and detailed descriptions are provided in the application report on
companding routines mentioned above. The algorithm space andtime require-
ments for p-law and A-law companding on the TMS32020/C25 are given in
Table 5-1. '

5-57



Application-Oriented Operations

Table 5-1. Program Space and Time Hequirements‘for u-/A-Law Companding

LAC
ADLK
TBLR

SAMPLE
MUTABL
SAMPLE

Function Memory Words Program Cycles Time (us) Requlredf
Program  Data |Initialization Loop 20 'C25
p-Law:
Compression 74 8 19 45 9 45
Expansion 276 2 14 5 1 0.5
A-Law:
Compression 100 8 19 50 10 5
Expansion 276 2 14 5 1 0.5

t Assuming initialization
1 Worst case

Inexpanding from the 8-bit datato the 13-bitlinear representation, table lookup
is very effective because the table length is only 256 words. This is especially
true for a microcomputer design because the TMS320C25 has 4K words of
mask-programmable ROM, and the TMS320E25 has 4K words of EPROM.
The table lookup technique requires three instructions (four words of program
memory), one data memory location, 256 words of table memory, and seven
instruction cycles (program in on-chip ROM) to execute.

; LOAD 8-BIT DATA.
; ADD THE CONVERSION TABLE BASE ADDRESS.
; READ THE CORRESPONDING LINEAR VALUE.

The above conversion could be programmed as a subroutine. This would elimi-
nate the need for a table but would increase execution time and require addi-
tional data memory locations.

When the output data has been determined in a system transmitting compan-
ded data, a compression of the data must be performed. The compression re-
duces the data back to the 8-bit format. Unless memory for a table of length
16384 is acceptable, the table lookup approach must be abandoned for con-
version routines. Details of these implementations may be found in the applica-
tion report on companding.

Access to new companding code as it becomes available is provided via the
TMS320 DSP Bulletin Board Service. The bulletin board contains TMS320
source code from application reports included in Digital Signal Processing
Applications with the TMS320 Family (literature number SPRAQ12A). See the
TMS320 Family Development Support Reference Guide (literature number
SPRUO011A) for information on how to access the bulletin board.

5.7.2 FIR/IIR Filtering .

5.58

Digital filters are a common requirement for digital signal processing systems.
The filters fall into two basic categories: finite impulse response (FIR) and Infi-
nite impulse response (lIR) filters. For either category of filter, the coefficients
of the filter (weighting factors) may be fixed or adapted during the course of the

Hardware Applications



Application-Oriented Operations

signal processing. Presented in Digital Signal Processing Applications with the
TMS320 Family (literature number SPRAQ12A), an application report dis-
cusses the theory and implementation of digital filters.

The 100-ns instruction cycle time of the TMS320C25 reduces the execution
time of allfilters — especially the lIRfilters — because fewer multiply/accumu-
late routines are required. Correspondingly, the amount of data memory for
samples and coefficients is not usually the limiting factor. Because of sensitivity
to quantization of the coefficients themselves, IR filters are usually implem- -
ented in cascaded second-order sections. This translates to instruction code
consisting of LTD-MPY instruction pairs rather than MACDs. Example 5-46iil-
lustrates an implementation of a second-order R filter.

Example 5-46. Implementing an IIR Filter

* % ok *

THE FOLLOWING EQUATIONS ARE USED TO IMPLEMENT AN IIR FILTER:

d(n) =
y(n) =

START IN

*

LAC

LT
MPY

LTD
MPY

APAC
SACH
ZAC
MPY

LTD
MPY

LTD
MPY

APAC
SACH
ouT

RPTK
MACD

“x(n) + d(n — 1l)al + d(n — 2)a2

d(n)b0 + d(n — 1)bl + d(n — 2)b2

XN, PAO
XN, 15

DNM1
Al

DNM?2
A2
DN, 1
B2

DNM1
Bl

DN
BO

YN, 1
YN, PAl

255

; INPUT NEW VALUE XN
; LOAD ACCUMULATOR WITH XN

; d(n) = x(n) + d(n — 1l)al + d(n — 2)a2

; y(n) = d(n)b0 + d(n — 1)bl + d(n — 2)b2
; YN IS THE OUTPUT OF THE FILTER

FIR filters also benefit from the faster instruction cycle time. An FIR filter re-
quires many more multiply/accumulates than does the IR filter with equivalent
sharpness at the cutoff frequencies and distortion and attenuation in the pass-.
bands and stopbands. The TMS320C2x can help solve this problem by making
longerfilters feasible to implement. This is accomplished by allowing the coeffi-
cients to be fetched from program memory at the same time as a sampleis be-
ing fetched from data memory. The simple implementation of this process uses
the MACD instruction with the RPT/RPTK instruction. :

COEFFP, *—

5-59



Application-Oriented Operations

The coefficients on the TMS32020 may be stored anywhere in on-chip RAM.
Filters of up to 256 taps can be implemented at an execution speed of 200 ns
per tap.

The coefficients on the TMS320C25 may be stored anywhere in program
memory (reconfigurable on-chip RAM, on-chip ROM, or external memories).
When the coefficients are stored in on-chip ROM or externally, the entire on-
chip data RAM may be used to store the sample sequence. Ultimately, this al-
lows filters of up to 512 taps to be implemented on the TMS320C25. The filter
executes at full speed or 100 ns per tap as long as the memory supports full-
speed execution.

5.7.3 Adaptive Filtering

5-60

LRLK
LRLK
LARP
LT

ZALH
ADD
MPY
APAC
SACH

With FIR/NR filtering, the filter coefficients may be fixed or adapted. Ifthe coeffi-
cients are adapted or updated with time, then another factor impacts the com-
putational capacity. This factor is the requirement to adapt each of the coeffi-
cients, usually with each sample. The MPYA or MPYS and ZALR instructions
on the TMS320C25 aid with this adaptation to reduce the execution time.

A means of adapting the.coefficients on the TMS320C2x is the least-mean-
square (LMS) algorithm given by the following equation:

by (i + 1) = bk()) + 2B e(i) x(i-k)
where e(i) = x(i) — y(i)

N-1
andy(i) Z bx(i—K)
K=0

Quantization errors in the updated coefficients can be minimized if the result
is obtained by rounding rather than truncating. For each coefficient in the filter
at a given point in time, the factor 2*B*e(i) is a constant. This factor can then
be computed once and stored in the T register for each of the updates. Thus,
the computational requirement has become one multiply/accumulate plus
rounding. Without the new instructions, the adaptation of each coefficient is
five instructions corresponding to five clock cycles This is shown in the follow-
ing instruction sequence:

AR2,COEFFD ; LOAD ADDRESS OF COEFFICIENTS.
AR3,LASTAP ; LOAD ADDRESS OF DATA SAMPLES.
AR2
ERRF ; errf = 2*Bre(i)
*  AR3 ; BCC = bk(i)*2**16
ONE, 15 ; ACC = bk(i)*2%*16 + 2**15
*—,AR2
; ACC = bk(i)*2**16 + errf*x(i — k) + 2**15
>t ; SAVE bk(i + 1).

Hardware Applications



Application-Oriented Operations

LRLK
LRLK
LARP
LT

ZALR
MPYA

SACH

When the MPYA and ZALR instructions on the TMS320C25 are used, the
adaptation reduces to three instructions corresponding to three clock cycles,
as shown in the following instruction sequence. Note that the processing order
has been slightly changed to incorporate the use of the MPYA instruction. This
is due to the fact that the accumulation performed by the MPYA is the accumu-.
lation of the previous product.

AR2,COEFFD ; LOAD ADDRESS OF COEFFICIENTS.
AR3,LASTAP ; LOAD ADDRESS OF DATA SAMPLES.
AR2

ERRF ; errf = 2*B*e(i)

* ,AR3
*—, AR2

*4

ACC = bk(i)*2%*16 + 2%*15

ACC = bk(i)*2**16 + errf*x(i — k) + 2**15
PREG = errf*x(i — k + 1)

SAVE bk(i + 1).

~e e we =0

Example 5-47 shows a routine to filter a signal and update the coefficients.
Example 548 and Example 5—49 provide the conclusion to the adaptive FIR
filter routine for the TMS32020 and TMS320C25, respectively.

Adaptive filter length is restricted both by execution time and memory. Due to
the adaptation, there is more processing to be completed per sample , and the
adaptation itself dictates that the coefficients be stored in the reconfigurable
block of on-chip RAM. Thus, the practical limit of an adaptive filter with no exter-
nal data memory is 256 taps.

Example 5-47. 256-Tap Adaptive FIR Filter

.title

.def ADPFIR
.def X,Y

* % ok F F

THE
*
COEFFP
COEFFD
*

ONE
BETA
ERR
ERRF

Y

X
FRSTAP
LASTAP

DATA

.set
.set

.set
.set
.set
.set
.set
.set
.set
.set
.text

"ADAPTIVE FILTER'

THIS 256-TAP ADAPTIVE FIR FILTER USES ON-CHIP MEMORY BLOCK BO FOR COEFFICIENTS
AND BLOCK Bl FOR DATA SAMPLES. THE NEWEST INPUT SHOULD BE IN MEMORY LOCATION X
WHEN CALLED. THE OUTPUT WILL BE IN MEMORY LOCATION Y WHEN RETURNED. ASSUME THAT

PAGE IS 0 WHEN THE ROUTINE IS CALLED.

OFFO0Oh
0200h

7Ah
7Bh
7Ch
7Dh
7Eh
7Fh
0300h
03FFh

; BO PROGRAM MEMORY ADDRESS
; BO DATA MEMORY ADDRESS

CONSTANT ONE (DP = 0)
ADAPTATION CONSTANT (DP = 0)
SIGNAL ERROR (DP = 0)

ERROR FUNCTION (DP = 0)
FILTER OUTPUT (DP = 0)
NEWEST DATA SAMPLE (DP = 0)
NEXT NEWEST DATA SAMPLE
OLDEST DATA SAMPLE

N NE Ne N Ne Ne Ne we

5-61



Application-Oriented Operations

*
*

FINITE IMPULSE RESPONSE (FIR) FILTER.

*

ADPFIR CNFP
MPYK
LAC
LARP
LRLK

FIR RPTK
MACD
CNFD
APAC
SACH
NEG
ADD

SACH
*

0
ONE, 14

AR3
AR3,LASTAP
255
COEFFP, *—

Y,1

X,15
ERR,1

~e ~e ~e

CONFIGURE B0 AS PROGRAM:
Clear the P register.

Load output rounding bit.
Point to the oldest sample.

256-tap FIR filter.
CONFIGURE B0 AS DATA:

Store the filter output.

Add the newest input.
err(i) = x(i) — y(1)

* LMS ADAPTATION OF FILTER COEFFICIENTS.

*
LT
MPY
PAC
ADD
SACH

MAR
LAC
SACL

LRLK
LRLK
LT
MPY

Example 5-48.

ADAPT ZALH
ADD
APAC
MPY
SACH

ZALH
ADD
APAC
MPY
SACH

ZALH
ADD
APAC
MPY
SACH

ZALH
ADD

APAC
MPY

5-62

ERR
BETA

ONE, 14
ERRF,1

*4

* X

AR2,COEFFD
AR3,LASTAP
ERRF
*—,AR2

~e ~e

~

.
7

.
7

14

errf(i) = beta * err(i)
ROUND THE RESULT.

INCLUDE NEWEST SAMPLE.

POINT TO THE COEFFICIENTS.
POINT TO THE DATA SAMPLES.

P = 2*beta*err(i)*x(i—255)

Adaptive Filter Routine Concluded (TMS32020)

*,AR3
ONE, 15

*—, AR2
*t

*,AR3
ONE, 15

*—,AR2
*4

* ,AR3
ONE, 15

*—, AR2
*p

*,AR3
ONE, 15

*—,AR2

Ne Ne we we e ~e we we e we

e Ne we we N

LOAD ACCH WITH b255(i).

ADD ROUNDING BIT.

b255(i + 1) = b255(i) + P

P = 2*beta*err(i)*x(i — 254)
STORE b255(i + 1).

LOAD ACCH WITH b254(i).

ADD ROUNDING BIT.

b254(i + 1) = b254(i) + P

P = 2*beta*err(i)*x(i — 253)
STORE b254(i + 1).

LOAD ACCH WITH b253(i).

ADD ROUNDING BIT.

b253(i + 1) = b253(i) + P

P = 2*beta*err(i)*x(i — 252)
STORE b253(i + 1).

LOAD ACCH WITH bl(i).

ADD ROUNDING BIT.

bl(i + 1) = bl(i) + P

P = 2*beta*err(i)*x(i — 0)

Hardware Applications



Application-Oriented Operations

SACH

ZALH
ADD

APAC
SACH

RET

- Example 5-49.

ADAPT ZALR
MPYA

*

SACH

*

ZALR
MPYA

SACH

ZALR
MPYA

SACH
ZALR
MPYA
SACH
ZALR
APAC
SACH

RET

* 4

*

ONE, 15

*4

; STORE bl(i + 1).

LOAD ACCH WITH b0 (i).
ADD ROUNDING BIT.
bO(i + 1) = bO(i) + P
STORE b0 (i + 1).

Ne Ne ~e ~e

; RETURN TO CALLING ROUTINE.

Adaptive Filter Routine Concluded (TMS320C25)

* ,AR3
*—,AR2

*4

*  AR3
*—,AR2

*4

ot

LOAD ACCH WITH b255(i) & ROUND.
b255(1i + 1) = b255(i) + P

P = 2*beta*err(i)*x(i—254)
STORE b255(i + 1).

~e e e ~e

LOAD ACCH WITH b254(i) & ROUND.
b254(i + 1) = b254(i) + P

P = 2*beta*err(i)*x(i-253)
STORE b254(i + 1).°

e Ne we we

LOAD ACCH WITH b253(i) & ROUND.
b253(i + 1) = b253(i) + P

P = 2*beta*err(i)*x(i—252)
STORE b253(i + 1).

~e No we we

LOAD ACCH WITH bl(i) & ROUND.
bl(i + 1) = bl(i) + P

P = 2*beta*err(i)*x(i — 0)
STORE bl(i + 1).

~ me ~e ~

; LOAD ACCH WITH bO(i) & ROUND.
©; bO(i + 1) = bo(i) + P
; STORE bO(i + 1).

; RETURN TO CALLING ROUTINE.

Table 5-2 provides a comparison of data memory, program memory, and CPU
cycles for a 256-tap adaptive FIR filter implementation using the TMS32020
and TMS320C25. Note that n = 256 in the table.

Table 5-2. 256-Tap Adaptive Filtering Memory Space and Time Requirements

Device Words In Memory CPU Cycles
Data Program
TMS32020 5+2n 29 + 5n 30+ 6n
TMS320C25 5+2n 30 +3n 33 +4n

5.7.4 Fast Fourier Transforms (FFT)

Fourier transforms are an important tool used often in digital signal processing
systems. The purpose of the transform is to convert information from the time
domain to the frequency domain. The inverse Fourier transform converts infor-
mation back to the time domain from the frequency domain. Implementations

5-63



Application-Oriented Operations

5-64

of Fourier transforms that are computationally efficient are known as Fast
Fourier Transforms (FFTs). The theory and implementation of FFTs on the
TMS32020 has been discussed in an application reportin the book, Digital Sig-
nal Processing Applications with the TMS320 Family (literature number
SPRAO12A). \

The TMS320C25 reduces the execution time of all FFTs by virtue of its 100-ns
instruction cycle time. In addition to the shorter cycle time, an addressing fea-
ture has been added to the TMS320C25, which provides execution speed and
program memory enhancements for radix-2. FFTs. As demonstrated in
Figure 5-6 and Figure 5-7, the inputs or outputs of an FFT are not in sequen-
tial order — thatis, they are scrambled. The scrambling of the data addressing
is a direct result of the radix-2 FFT derivation. Observation of the figures and
the relationship of the input and output addressing in each case reveal that the
address indexing is a bit-reversed order, as shown in Table 5-3. As a result,
either the data input sequence or the data output sequence must be scrambled
in association with the execution of the FFT.

Hardware Applications



Application-Oriented Operations

Figure 5-6. An In-Place DIT FFT with In-Order Outputs and Bit-Reversed Inputs

Stage 1 Stage 2
x(0)
W,
o o X
x(2) QL
W W,
o o )W
W
(1) 2
Wo
x(5) ):( ~ "
0 2

Stage 3

x(3)

W, Wo W3
o o X

0 2 3
LEGEND FOR TWIDDLE FACTOR: Wo=W g W1=W g Wp=W g W3=W

1

Figure 5-7. An In-Place DIT FFT with In-Order Inputs but Bit-Reversed Outputs

x(5)
x(6)

8

x(7)
LEGEND FOR TWIDDLE FACTOR: Wg=W g Wq=W

1
8

2
W2=W8W3=W

3
8

x()
x(4)
x(2)
x(6)
x(1)
X(5)
x(3)

x(7)

5-65



Application-Oriented Operations

Table 5-3. Bit-Reversal Algorithm for an 8-Point Radix-2 DIT FFT

5-66

Index Bit Pattern Bit-reversed Pattern Bit-reversed Index
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

On the TMS32020, the bit reversal is handled by loading the accumulator with
pairs of points that must be swapped and then storing them back in the
swapped locations. An addressing feature that uses reverse carry-bit propaga-
tion allows the TMS320C25 to scramble the inputs or outputs while it is per-
forming the 1/O. The addressing mode is part of the indirect addressing im-
plemented with the auxiliary registers and the associated arithmetic unit. In this
mode (a derivative of indexed addressing), a value (index) contained in ARO
is either added to or subtracted from the auxiliary register being pointed to by
the ARP. However, the carry bit is propagated in the reverse direction rather
than the forward direction. The result is a scrambling in the address access.

The procedure for generating the bit-reversal address sequence s to load ARO
with avalue corresponding to one-halfthe length ofthe FFT and toload another
auxiliary register, for example, AR1, with the base address of the data array.
Implementations of FFTs involve complex arithmetic; as a result, there are two
data memory locations (one real and one imaginary) associated with every
data sample. Generally, the samples are stored in memory in pairs with the real
part in the even address locations and the imaginary part in the odd address
location. This means thatthe offset fromthe base address forany given sample
is twice the sample index. Real input data is easily transferred into the data
memory and stored in the scrambled order, with every other locationinthe data
memory representing the imaginary part of the data.

Hardware Applications



Application-Oriented Operations

RPTK
IN

7
*BRO+, PAO

The following list shows the contents of auxiliary register AR1 when ARO is ini-
tialized with a value of 8 (8-point FFT) and when data is being transferred by

the code that follows.

ARO:

AR1

AR1:

ARt:

ART:

AR1:

AR1:

AR1:

AR1:

AR1:

MSB

6000

0000

0000

0000

0000

0000

0000

0000

06000

0000

0000

0010

0010
0010
0010
0010
0010
0010
0010

0010

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

L.SB
1000

0000

0000
1000
6100
1100
0010
1010

0110

1110

8-Point FFT

Base Address

XR(0)
XR(4)
XR(2)
XR(6)
XR(1)
XR(5)
XR(3)

XR(7)

Example 5-50 consists of lists of macros used in the implementation of FFTs.
The first macro implements the bit reversal as required for the TMS32020 and
is not necessary for implementations on the TMS320C25.

Example 5-50. FFT Macros

BITREV $MACRO PR,PI,QR,QI
*

* BIT REVERSAL CODE — SWAP PR AND QR, SWAP PI AND QI.

*

ZALH
ADDS
SACL
SACH
ZALH
ADDS
SACL
SACH
SEND

*

:PR:
:QR:
:PR:
:QR:
tPI:
:QI:
:PI:
:QI:

COMBO $MACRO
*

R1,I1,R2,I2,R3,I3,R4,I4

* CALCULATE PARTIAL TERMS FOR R3, R4, I3, AND I4.

LAC

:R3:,14

; ACC

(1/4) (R3)

5-67



Application-Oriented Operations

ADD :R4:,14 ; ACC = (1/4) (R3 + R4)

SACH :R3:,1 ; R3 = (1/2) (R3 + R4)

SUB  :R4:,15 ; ACC = (1/4) (R3 + R4)—(1/2)(R4)
SACH :R4:,1 ; R4 = (1/2) (R3 — R4) ’
LAC  :I13:,14 ; ACC = (1/4) (I3)

ADD :I4:,14 ; ACC = (1/4) (I3 + I4)

SACH :I3:,1 ; I3 = (1/2) (I3 + I4)

SUB  :I4:,15 ; ACC = (1/4) (I3 + I4)—(1/2)(I4)
SACH :I4:,1 ; I4 = (1/2) (I3 — I4)

*
* CALCULATE PARTIAL TERMS FOR R2, R4, I2, AND I4.

LAC :R1:,14 ; ACC : = (1/4) (R1)

ADD :R2:,14 ; ACC : = (1/4) (Rl + R2)

SACH :Rl:,1 ; R1 = (1/2) (Rl + R2)

SUB  :R2:,15 ; ACC = (1/4) (Rl + R2) — (1/2)(R2)
ADD :I4:,15 ; ACC = (1/4) [(R1l — R2) + (I3 — I4)]
SACH :R2: ; R2 = (1/4) [(R1 — R2) + (I3 — I4)]
SUBH :I4: ; ACC = (1/4) [(Rl — R2) — (I3 — I4)]
DMOV :R4: ; I4 = R4 = (1/2)(R3—R4)

SACH :R4: ; R4 = (1/4) (Rl — R2) — (I3 — I4)]
LAC :Il1:,14 ; ACC = (1/4) (I1)

ADD :I2:,14 ; ACC = (1/4) (I1 + I2)

SACH :Il:,1 ; Il = (1/2) (Il + I2)

SUB  :I12:,15 ; ACC = (1/4) (Il + I2) — (1/2) (12)
SUB  :I4:,15 ; ACC = (1/4) [(I1] — I2) — (I3 — I4)]
SACH :I2: ; I2 = (1/4) [(I1 — I2) — (I3 — I4)]
ADDH :I4: ; ACC = (1/4) [(I1 — I2) + (I3 — I4)}
SACH :I4: i 14 = (1/4) [(I1 — I2) + (I3 — I4)]

*

* CALCULATE PARTIAL TERMS FOR R1l, R3, Il, AND I3.

LAC :R1:,15 ; ACC : = (1/4) (R1+R2)
ADD :R3:,15 ; ACC : = (1/4) [(R1 + R2) + (R3 + R4)]
SACH :R1l: ; R1 = (1/4) [(R1 + R2) + (R3 + R4)}
SUBH :R3: ; ACC = (1/4) [(R1l + R2) — (R3 + R4)]
SACH :R3: ; R3 = (1/4) [(R1 + R2) — (R3 + R4)]
LAC :Il:,15 ; ACC = (1/4) (I1 + I2)
ADD :I3:,15 ; ACC = (1/4) [(I1 + I2) + (I3 + I4)]
SACH :I1: ; Il = (1/4) [(I1 + I2) + (I3 + I4)]
SUBH :1I3: ; ACC = (1/4) [(I1 + I2) — (I3 + I4)]
SACH :1I3: ; I3 = (1/4) [(I1 + I2) = (I3 + I4)]
$END

*

ZERO  $MACRO PR,PI,QR,QI

*

* CALCULATE Re[P+Q] AND Re[P—Q]
LAC  :PR:,15 : ACC = (1/2) (PR)
ADD . :QR:,15 ; ACC = (1/2) (PR + QR)
SACH :PR: ; PR = (1/2) (PR + QR)
SUBH :QR: ; ACC = (1/2) (PR + QR) — (QR)
SACH :QR: ;7 OR = (1/2) (PR — QR) ‘

*

* CALCULATE Im[P+Q] AND Im[P—Q]
LAC :PI:,15 ; ACC = (1/2) (PI)
ADD :QI:,15 ; ACC = (1/2) (PI + QI)
SACH :PI: ; PI = (1/2) (PI + QI)
SUBH :QI: ; ACC = (1/2) (PI + QI) — (QI)
SACH :QI: ; oI = (1/2) (PI — QI)
$END

*

PIBY4 $MACRO PR,PI,QR,QI,W

*

5-68 Hardware Applications



Application-Oriented Operations

LT
LAC
SUB
SACH
ADD
SACH
LAC
MPY
APAC
SACH
SPAC
SPAC
SACH
LAC
MPY
APAC
SACH
SPAC
SPAC
SACH

$END
*

PIBY2 $MACRO
*

* CALCULATE Re(P+3jQ] AND Re[P—jQ]

LAC :PI:, 15
SUB :QR:,15
SACH :PI:
ADDH :QR:
SACH :QR:

*

* CALCULATE Im[P+jQ] AND Im[P—j
LAC :PR:,15
ADD :QI:, 15
SACH :PR:
SUBH :QI:
DMOV :0R:
SACH :QR:
SEND

*

PI3BY4 $MACRO PR,PI,QR,QI,W
*

LT
LAC
SUB
SACH
ADD
SACH
LAC
MPY
APAC
SACH
SPAC
SPAC
MPY
SACH
LAC
SPAC
SACH
APAC
APAC

HAH

:QT:, 14
:QR:, 14
:QI:,1
:QR:,15
:QR:,1
:PR:,14
:QR:

:PR:,1

:QR:,1
:PI:, 14
:QI:

:PI:,1
:QI:,1

PR,PI,QR,QI

HYH

:QI:, 14
:QOR:, 14
:QI:,1
:QR:,15
:QR:,1
:PR:, 14
:QX:

:PR:,1
:QR:

:QR:,1
:PI:, 14

:PI:,1

00 Ne NE Ne Ne N N NE Ne NE N Ne e

Ne Ne Ne Ne N e Ne

i

7
7
.
14
.
r

.
I
7
.
17
.
7
I
-
7

NE NS NE NP Ne N Ne NS NS NS NS NE NS Ne N Ne Ne N6 N

T REGISTER
ACC
ACC
QT
ACC
OR
ACC :
P REGISTE
ACC :

PR
ACC
ACC
QR
ACC

| 1 A | R | I}

~

LA (A Ty

P REGISTER :

ACC
PI
ACC
ACC
QT

P REGISTER :

ACC
PR
ACC
ACC :
P REGISTE
OR :
ACC
ACC
PI
ACC
ACC

wnonu

ool

: = W = COS(PI/4) = SIN(PI/4)
(1/74) (QI)

(1/4) (QI — QR)

(1/2) (QI — QR)

(1/4) (QI + QR)

(1/2) (QI + QR)

(1/4) (PR)

: = (1/4) (QI — QR) *W
(1/4) [PR + (QI + QR) *W]
(1/2) [PR + (QI + QR) *W]
(1/4) (PR)

(1/4) [PR — (QI + QR) *W]
(1/2) [PR — (QI + QR) *W]
(1/4) (PI)

= (1/4) (QI — QR) *W
(1/4) [PI + (Q1l — QR) *W]
(1/2) [PI + (QI — QR) *W]
(1/4) (PI)

(1/4) [PI — (QI — QR) *W]
(1/2) [PI — (QI — QR) *W]

ACC = (1/2) (PI)
ACC = (1/2) (PI — QR)
PI = (1/2) (PI — QR)
ACC = (1/2) (PI — QR) + (QR)
QR = (1/2) (PI + QR)
ACC = (1/2) (PR)
ACC = (1/2) (PR + QI)
PR = (1/2) (PR + QI)
ACC : = (1/2) (PR + QI) — (QI)
OR - QI
. OR : = (1/2) (PR — QI)
T REGISTER : = W = COS (PI/4) = SIN (PI/4)
ACC = (1/4)(QI)
AccC = (1/4) (QI — QR)
oI = (1/2) (QI — OR)
ACC = (1/4) (QI + QR)
OR = (1/2) (QI + QR)
ACC = (1/4) (PR)

= (1/4) (QI — QR) *W
(1/4) [PR + (QI — QR) *W]
(1/2) [PR + (QI — QR) *W]
(1/4) (PR)

(1/4) [PR — (QI — QR) *W]
: = (1/4) (QI + QR) *W
(1/2) [PR — (QI — QR) *W]
(1/4) (PI)

(1/4) [PI — (QI + QR) *W]
(1/2) [PI — (QI + QR) *W]
(1/4) (PI)

(1/4) [PI + (QI + QR) *W]

5-69



Application-Oriented Operations

SACH  :QI:,1 ; oI : = (1/2) [PI + (QI + QR) *W]

$END
Example 5-51 shows the bit-reversal addressing capability of the
TMS320C25 for implementing an 8-point DIT FFT. On the TMS320C25, the
following instructions input the data and store it in memory in the bit-reversed

sequence:
RPTK 7
IN *BRO+, PAO
This code combines the functions of input and bit-reversal addressing that
were previously implemented separately on the TMS32020. The following im-
plementation uses a separate bit-reverse macro:
RPTK 7
IN *0+,PAO
BITREV X1R,X1I,X4R,X4T
BITREV X3R,X3I,X6R,X6I
Example 5-51. An 8-Point DIT FFT
XO0R .set 00
X0I .set 01 .
X1R .set 02
X1I ~ .set 03
X2R .set 04
X2I .set 05
X3R .set 06
X3I .set 07
X4R .set 08
X41I .set 09
X5R .set 10
X51 .set 11
X6R .set 12
X61 .set 13
X7R .set 14
X71 .set 15
1 .set 16 '
WVALUE .set 5A82h ; VALUE FOR SIN(45) OR COS(45)
.text*

* INITIALIZE FFT PROCESSING.

*

FFT SPM 0 NO SHIFT OF PR OUTPUT

I
SSXM ; SET SIGN-EXTENSION MODE.
ROVM ;' RESET OVERFLOW MODE.
LDPK 4 ; SET DATA PAGE POINTER TO 4.
LALK WVALUE ; GET TWIDDLE FACTOR VALUE.
SACL W ; STORE SIN(45) OR COS(45)-

*

INPUT SAMPLES, STORING IN BIT-REVERSED ORDER.

LARK ARO,8 ; LOAD LENGTH OF FFT IN ARO.

LRLK AR1,200h ; LOAD ARl WITH DATA PAGE 4 ADDRESS.
LARP ARl

RPTK 7

IN *BRO+,PAOD ; ONLY REAL-VALUED INPUT

* 1ST & 2ND STAGES COMBINED WITH DIVIDE-BY-4 INTERSTAGE SCALING.

COMBO XOR,X0I,X1R,X1I,X2R,X2I,X3R,X3I,

5-70 Hardware Applications



Application-Oriented Operations

COMBO X4R,X4I,X5R,X5I,X6R,X6I,X7R,X7I.

*

* 3RD STAGE WITH DIVIDE-BY-2 INTERSTAGE SCALING.

ZERO X0R,X0I,X4R,X4I
PIBY4 X1R,X1I,X5R,X5I,W
PIBY2 X2R,X2I,X6R,X6T

PI3BY4 X3R,X3I,X7R,X7I,W

*

OUTPUT SAMPLES, SUPPLYING IN SEQUENTIAL ORDER.

LRLK AR1,200h ; LOAD AR1 WITH DATA PAGE 4 ADDRESS.
RPTK 15

ouT *+,PAQ ; COMPLEX~VALUED OUTPUT

RET

Table 54 provides a comparison of execution speed, program memory, and
data memory for an 8-point DIT FFT implementation using the TMS32020 and

TMS320C25.
Table 5-4. FFT Memory Space and Time Requirements
Device Words In Memory CPU Cycles Time
Data Program (us)
TMS32020 17 169 216 43.2
TMS320C25 17 153 178 17.8

5.7.5 PID Control

Control systems are concerned with regulating a process and achieving a de-
sired behavior or output from the process. A control system consists of three
main components: sensors, actuators, and a controller. Sensors measure the
behavior of the system. Actuators supply the driving force to ensure the desired
behavior. The controller generates actuator commands corresponding to the
error conditions observed by the sensors and the control algorithms pro-
grammed in the controller. The controller typically consists of an analog or digi-
tal processor.

Analog control systems are usually based on fixed components and are not
programmable. They are also limited to using single-purpose characteristics
of the error signal, such as P (proportional), | (integral), and D (derivative), or
a combination. These limitations, along with other disadvantages of analog
systems, such as component aging and temperature drift, are reasons why
digital control systems increasingly replace analog systems in most control
applications.

Digital control systems that use a microprocessor/microcontroller are able to
implement more sophisticated algorithms of modern control theory, such as
state models, deadbeat control, state estimation, optimal control, and adaptive
control. Digital control algorithms deal with the processing of digital signals and
are similar to DSP algorithms. The TMS320C2x instruction set can therefore
be used very effectively in digital control systems.

5-71



Application-Orientéd Operations

The most commonly used algorithm in both analog and digital control systems
is the PID (Proportional, Integral, and Derivative) algorithm. The classical PID
algorithm is given by

de

u(t) = Ke(t) + K,I edt + Kd?

The PID algorithm must be converted into a digital form for implementation on
a microprocessor. Using a rectangular approximation for the integral, the PID
algorithm can be approximated as

u(n) = u(n-1) + Ky e(n) + Ko e(n-1) + K3 e(n-2)

This algorithm is implemented in Example 5-52.

Example 5-52. PID Control
.title 'PID CONTROL’

.def PID

* THIS ROUTINE IMPLEMENTS A PID ALGORITHM.

UN .set
EO0 .set
El .set
E2 .set
K1l .set
K2 .set
K3 .set

.text

AU WNEHEO

OUTPUT OF CONTROLLER
LATEST ERROR SAMPLE
PREVIOUS ERROR SAMPLE
OLDEST ERROR SAMPLE
GAIN CONSTANT

GAIN CONSTANT

GAIN CONSTANT

~e N8 Ne we o w0 e

* ASSUME DATA PAGE 0 IS SELECTED.

*

PID IN
LAC
LT
MPY
LTD
MPY
LTD
MPY
APAC
*
SACH
ouT

5-72

EO0,PAO
UN
E2
K2
El
K1l
EO
KO

UN,1
UN,PAl

READ NEW ERROR SAMPLE

ACC = u(n-1)

LOAD T REG WITH OLDEST SAMPLE

P = K2*e(n — 2)

ACC = u(n — 1) + K2*e(n — 2)

P = Kl*e(n — 1)

ACC = u(n — 1) + Kl*e(n — 1) + K2*e(n — 2)

P = KO*e(n)

ACC = u(n — 1) + KO*e(n) + Kl*e(n — 1)
+K2*e(n — 2)

STORE OUTPUT

SEND IT

Ne Ne N8 e we Ne Ne we N we e e

The PID loop takes 13 cycles to execute (2.6 us at a 20-MHz clock rate or 1.3
us at a 40-MHz clock rate). The TMS320 can also be used to implement more
sophisticated algorithms, such as state modeling, adaptive control, state esti-
mation, Kalman filtering, and optimal control. Other functions that can be im-
plemented are noise filtering, stability analysis, and additional control loops.

Hardware Applications



Chapter 6

Hardware Applications

o e 1 R A I A M O

R AR R il ORIk

The TMS320C2x has the power and flexibility to satisfy a wide range of system
requirements. The 128K-word address space for program and data memory
can be used to interface external memories or to implement single-chip solu-
tions. Peripheral devices can be interfaced to the TMS320C2x to perform ana-
log signal acquisition at different levels of signal quality.

Information and examples on how to interface the TMS320C2x to external de-
vices are presented in this section. The examples given are general enough
to be adapted easily for a particular system requirement. For more detailed in-
formation, refer to the application reports, Hardware Interfacing to the
TMS32020 and TMS32020 and MC68000 Interface, included in the book, Digi-
tal Signal Processing Applications with the TMS320 Family, Volume | (litera-
ture number SPRA012A). Refer also to the application report, Hardware Inter-
facing to the TMS320C25 (literature number SPRA014A), published separate-
ly. Appendix F provides listings and brief information regarding T memories,
peripherals, and analog conversion devices that are used in many of the appli-
cations in this chapter.

Note: - I
Throughout this document, TMS320C2x refers to the TMS32020,
TMS320C25, TMS320C25-33, TMS320C25-50, TMS320C26, and

TMS320E25, unless stated otherwise. Where applicable, ROM includes the
on-chip EPROM of the TMS320E25.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

Topics in this chapter include:

Section Page
6.1 System Control Circuitry ..........oviiiiiiiiiiiiiiia.. 6-2

6.2 InterfacingMemories ........ooviiiiiiii i 6-11
6.3 Direct Memory Access (DMA) .....oiiiiiiiin i 6-32
6.4 GlobalMemory ..ot i e e e 6-35
6.5 Interfacing Peripherals ...........cooiiiiiiiiiiiiiii. 6-37
6.6 SystemsApplications............coiiiiiiiiiiii i 6-48




System Control Circuitry

6.1 System Control Circuitry

The system control circuitry performs functions that are critical for proper sys-
tem initialization and operation. A powerup reset circuit design and a crystal
oscillator circuit design are presented in this chapter. The powerup reset circuit
assures that a reset of the part occurs only after the oscillator is running and
stabilized. This oscillator circuit allows the use of third-overtone crystals, which
are readily available at frequencies above 20 MHz. For a more detailed discus-
sion of system control circuitry, refer to the application report, Hardware Inter-
facing to the TMS320C25 (literature number SPRAQ14A).

6.1.1 Powerup Reset Circuit

The reset circuit shown in Figure 6—1 performs a powerup reset, that is, the
TMS320C2x is reset when power is applied. Note that the switch circuit must
include debounce circuitry. Driving the RS signal low initializes the processor.
Reset affects several registers and status bits (see subsection 3.6.2 for a de-
tailed description of the effect of reset on processor status).

Hardware Applications



System Control Circuitry

Figure 6-1. Powerup Reset Circuit

TMS320C25

\%
+5 T A8

Ry =1MQ

7

DGND

For proper system initialization, the reset signal must be applied for at least
three CLKOUT cycles, that is, 300 ns for a TMS320C25 operating at 40 MHz.
Upon powerup, it can take from several to hundreds of milliseconds before the
system oscillator reaches a stable operating state. Therefore, the powerup re-
set circuit should generate a low pulse on the reset line until the oscillator is
stable (that is, 100 to 200 ms).

The voltage on the reset pin RS is controlled by the R4C¢ network (see
Figure 6-1). After areset, this voltage rises exponentially according to the time
constant R1C1, as shown in Figure 6-2. The Schmidt-Trigger inverter in this
case couldbe a74HC14. Ifa TTL device were used, the low-level input current
() would initially cause the voltage on C4 to rise faster than expected.

6-3



System Control Circuitry

Figure 6-2. Voltage on TMS320C25 Reset Pin

Voltage“
/— V=Voc (1 —e—t/T)
Vee b————————
Vi |—
|
]
to=0 t4 , Time

The duration of the low pulse on the reset pin is approximately t1, which is the
time it takes for the capacitor C4 to be charged to 1.5 V. This is approximately
the voltage at which the reset input switches from a logic level 0 to a logic level
1. The capacitor voltage is given by

V= vcc[1 —e-%] "

where T = R{C4 is the reset circuit time constant. Solving (1) for © gives

\Y
t=— 1—— ,
R1C1 In[ VCC] (‘
For example, setting the following:
Ry =1MQ Vec=5V
C1 =047 pF V=Vy=15V

gives t=t4 = 167 ms. In this case, the reset circuit of Figure 6—1 can generate
a low pulse of long enough duration (167 ms) to ensure the stabilization of the
oscillator upon powerup in most systems.

6.1.2 Crystal Oscillator Circuit ’

6-4

The crystal oscillator circuit shown in Figure 6-3 is designed to operate at
40.96 MHz. Since crystals with fundamental oscillation frequencies of 30 MHz
and above are not readily available, a parallel-resonant third-overtone oscilla-
tor is used. If a packed clock oscillator is used, oscillator design is of no con-
cern.

The master clock frequency of 40.96 MHz is chosen because it can be conve-
niently converted to the timing signals of interface circuits used by the commu-
nications industry. A combo-codec example is given in subsection 6.5.1.

Hardware Applications



System Control Circuitry

Figure 6-3. Crystal Oscillator Circuit

TMS320C25 +5V ferystal
T
101

74AS04 =10KQ
11 4.7 kQ
CLKIN ‘ J_
74AS04 0.1 uF
10kQ |C=
20 pF - 1.8 uH

L = Digital Ground =

The 74AS04 inverter in Figure 6-3 provides the 180-degree phase shift that
a parallel oscillator requires. The 4.7-kQ resistor provides the negative feed-
back that keeps the oscillator in a stable state; that is, the poles of the system
are constrained in a narrow region about the jo axis of the s-plane (analog do-
main). The 10-kQ potentiometeris used to bias the 74AS04 in the linear region.

In athird-overtone oscillator, the crystal fundamental frequency must be atten-
uated so that oscillation is at the third harmonic. This is achieved with an LC
circuit that filters out the fundamental.

The impedance of the LC network must be inductive below and capacitive
above the second harmonic. The impedance of the LC circuit is given by

L
c

z(w) = —j[a)L = a:_c] ®)

Therefore, the LC circuit has a pole at

1
W, = —— 4
p \/—LE 4

6-5



System Control Circuitry

Atfrequencies significantly lower than wp, , the 1/(wC) term in (3) becomes the
dominating term, while wlL can be neglected. This gives

Z(w) = joL forw < < w, (5)

In (5), the LC circuit appears inductive at frequencies lower than wp. On the
other hand, at frequencies much higher than wp, the wlL term is the dominant
term in (3), and 1/(wC) can be neglected. This gives

z(w)—L forw > > w 6
= G P ©
The LC circuit in (6) appears increasingly capacitive as frequency increases

above wy. This is shown in Figure 6—4, which is a plot of the magnitude of the
impedance of the LC circuit of Figure 6-3 versus frequency.

Based on the discussion above, the design of the LC circuit proceeds as fol-
lows: choose the pole frequency wp, approximately halfway between the crys-
tal fundamental and the third harmonic. The circuit now appears inductive at
the fundamental frequency and capacitive at the third harmonic.

In the oscillator of Figure 6-3, wp = 26.5 MHz, which is approximately halfway
between the fundamental and the third harmonic; The values used in this case
are determined by using C = 20 pF; then, using (4), L = 1.8 uH.

Figure 6—4. Magnitude of Impedance of Oscillator LG Network

.
[2(@)]

6-6

A

Capacitive
Region

Inductive
Region

v

w
(rad/s)

&l-
O

Hardware Applications



System Control Circuitry

- 6.1.3 User Target Design Considerations for the XDS

The architecture for the TMS320C2x emulator (XDS) maximizes speed and
performance. No external serial logic levels have been added to any of the ad-
dress, data, or control signals other than those added to the setup times of
READY, RS, BIO, and HOLD, and the propagation delay of HOLDA (hold ac-
knowledge). The additional loading on outputs induced by the XDS is compre-
hended in the XDS and TMS320C2x device design, thus allowing the user the
full drive as specified in the TMS320C2x device data sheet. The DC loading
characteristics of inputs is defined in Chapter 9 of the XDS/22 TMS320C2x
Emulator User’s Guide (literature number SPDUOQ55).

The emulator architecture works closely with the user’s system design to allow
the user’s memory to have maximum access times. Areas of close interaction
between the emulator and target system are:

(X Bus control

[ READY timing and memory substitution
[d Resetand hold

[ Miscellaneous considerations

Bus Control

When the emulator is halted from the keyboard or any of the breakpoint func-
tions, the current state of the device being emulated is extracted by the control
processor. This processor communicates with the emulated device over the
emulated device's data bus. Additional communication is generated by com-
mands entered from the keyboard.

Before communication between the control processor and the device being
emulated begins, the control processor generates an interlock sequence on
the emulated device’s HOLD inputin order to define data bus ownership. Once
the target HOLD is deactivated, this interlock prevents the target system from
receiving an active HOLDA until the emulator has completed accessing the
processor resources. The emulator will not attempt to use the data bus until
the interlock is successful, thus guaranteeing that it will not try to use the data
bus when HOLDA is asserted to the target system.

When communication between the control processor and the device being
emulated is complete, the hold interlock is released, and the target system can
again receive hold acknowledge when HOLD is asserted. At this point, the
emulator is waiting for another command from the keyboard. Communication
between the device being emulated and the control process occurs when DS,
PS, 1S, and HOLDA are all high.



System Control Circuitry

6-8

The target system should drive the data bus only when the following conditions
are met:

1 HOLDA is active, or
@ DS, PS, or [Sis active and R/W is high.

The XDS hardware uses the data bus only while the above signals are inactive.
When these rules are not followed, the XDS gives a PROCESSOR SYNC
LOST 1160 error. This error may also be caused by signal-to-signal shorts in
the target system, misalignment of the target connector, poor grounding of the

‘target connector, or wiring errors on the target system.

READY and Memory Substitution

Because the XDS adds one internal leve! of 7 ns in series with the READY in-
put, your system is left with only 10 ns to generate READY. This can be accom-
plished by generating READY with a 10-ns TIBPAL16R4 device. READY
should be generated from DS, PS, or IS and the decode of the address lines.

The target system must present a valid READY high on each external access,
even when using the XDS substitution memory. Suggested implementation of
READY logic on the target system should hold READY high until target
memory requiring wait states is addressed.

The XDS provides two types of memory substitution: fast static RAM at a fixed
address and slower dynamic RAM at mappable addresses. You are is respon-
sible for deselecting target memory residing in the same address of the emula-
tor’s fast static memory if this emulator memory is mapped in. (Note that the
target should not drive the data bus on aread.) This fast static emulator substi-
tution memory consists of 8K words of fast static RAM, which can be individual-
ly mapped in as 4K words of program memory starting at address 0000 and
4K words of data memory starting at location 0000. In this case, the target sys-
tem cannot drive the data bus even though DS or PS is active. Although this
emulator static RAM can operate with zero wait states, you can model target
wait states by using the target READY signal. However, this requires the target
system to eventually respond with a valid READY high. The emulator gener-
ates wait states until it does.

The slower dynamic RAM controls bus access through the DS S or PS control
signals. The target system can drive the data bus when PS or IS is asserted.
Emulator logic assures that DS, PS, and IS are returned to their inactive state
when the dynamic RAM substitution memory uses the data bus on reads.

The dynamic RAM substitution memory always uses more than one clock to
return data. An access to address space mapped to the dynamic substitution
memory is accompanied by the assertion of DS or PS, and STRB. When the
target logic generates a READY high condition, the device appears to com-
plete the memory cycle by driving DS, PS, IS, or STRB to their inactive states

Hardware Applications



System Control Circuitry

at their normal switching times. The device under emulation is held not ready
for at least one extra clock cycle or until the memory substitution data is avail-
able. The memory substitution data is then driven onto the data bus on reads
while all bus control signals at the target connector are high.

Additional wait states can be added with the use of the target READY line. In
this case, the memory control lines model the target access timing. However,
the program cycle countis affected by the additional cycles internal to the emu-
lator’s access of the dynamic RAM. Since the system responds to the READY
line, the target must eventually return a valid READY high on each access.

Miscellaneous Considerations

When the XDS is powered up, the device under emulation is placed in the run
mode with all memory substitution turned off. The control processor does not
attempt to communicate with the device under emulation until you communi-
cate with the emulator. If the target system is asserting RS, HOLD, or not
READY continuously to the device under emulation, the control processor can-
not gain control of the device under emulation and reports a PROCESSOR
SYNCLOST 1160 error. This condition can be caused by a powered-up emula-
tor plugged into a powered-down target system. Although the RS, HOLD, and
READY are pulled up with resistors on the emulator, the impedance of the pow-
ered-down target system can assert a control signal or load the data bus so
that the XDS cannot function properly.

The conductive foam on the XDS target cable must be removed along with the
foam on the logic show pod prior to XDS powerup. Failure to do so can also
cause the PROCESSOR SYNC LOST 1160 error.

TMS320C25 Designs Using HOLD and HOLDA. When the target system as-
serts HOLD active low while the emulator is processing user-invoked com-
mands requiring access of the device-under-emulation resources, the target
will not receive HOLDA until the command is complete.

When interfacing to dynamic RAM in the target system, use READY rather
than HOLD to insert refresh cycles. A user-invoked command could hold off
HOLDA long enough to lose charge in the dynamic cells. Likewise, if the ad-
dress lines to the DRAMs are not buffered, the refresh cycle in a RAS ONLY
REFRESH system could conflict with the emulator system that controls ad-
dressing during command processing.

Stack Usage. An interrupt is used to halt the device being emulated, thereby
using one of the emulated device stack locations. When an XDS is to be used,
the applications programmer should reserve one level of the stack for code de-
velopment.

Transmission Line Phenomena. Because the XDS target cable is approxi-
mately 20 inches, use of advanced CMOS or fast/advanced Schottky TTL may
cause line reflections (ringing above input thresholds) on input lines to the

6-9



6-10

XDS. Series termination resistors (22 to 68 ohms) can help eliminate this prob-
lem. In some cases where significant additional signal length is added to XDS
outputs, the series resistors on the XDS may not be sufficient to control reflec-
tions. In this case, additional corrective actions may be necessary.

Clock Source. The XDS does not supportthe use of a crystalin the target sys-

- tem. The emulator’s clock source can be selected from three sources:

td A clock (with TTL levels) driven up the target cable on pin F11 (PGA) or
pin 35 (PLCC),

[d A socketed changeable crystal on the emulator board (Y1), or
[ A socketed changeable canned TTL oscillator on the EMU (U9).

TMS32020/TMS320C25. The XDS supports both the TMS32020 and
TMS320C25. The operating frequencies are 20 MHz and 40 MHz, respective-
ly. The unit is shipped configured as a TMS320C25 emulator, but it can easily
be converted to a TMS32020 emulator by replacing the TMS320C25 device
on the emulator with the TMS32020 device found in the spare parts kit. The
crystal, TTL oscillator, and/or input clock frequency must be adjusted to corre-
spond to TMS32020 specifications. See Chapter 9 inthe XDS/22 TMS320C2x
Emulator User’s Guide (literature number SPDU055) for additional timing and
loading information.

Hardware Applications



Interfacing Memories

6.2

Interfacing Memories

The following buses, port, and control signals provide system interface to the
TMS320C2x processor:

[J 16-bit address bus (A15 — A0)

L3 16-bit data bus (D15 — D0)

Serial port

PS, DS, IS (program, data, I/O space select)
R/W (read/write) and STRB (strobe)

READY and MSC (microstate complete)

HOLD and HOLDA (hold acknowledge)
INT (2-0) and IACK (interrupt acknowledge)

S S M SRR SEN =

BIO (branch control) and XF (external flag)
L SYNC (synchronization) and BR (bus request)

The TMS320C2x can be interfaced with PROMs, EPROMSs, and static RAMs.
The speed, cost, and power limitations imposed by a particular application de-
termine the selection of a specific memory device. If speed and maximum
throughput are desired, the TMS320C2x can run with no wait states. In this
case, memory accesses are performed in a single machine cycle. Alternative-
ly, slower memories can be accessed by introducing an appropriate number
of wait states or slowing down the system clock. The latter approach is more
appropriate when interfacing to memories with access times slightly longer
than those required by the TMS320C2x at full speed.

When wait states are required, the number of wait states depends on the
memory access time (see subsection 6.2.3). With no wait states, the READY
input to the TMS320C2x can be pulled high. If one or more wait states are re-
quired, the READY input must be driven low during the cycles in which the
TMS320C2x enters a wait state.

The TMS320C2x implements two separate and distinct memory spaces: pro-
gram space (64K words) and data space (64K words). Distinction between the
two spaces is made through the use of the PS (program space) and DS (data
space) pins. A third space, the 1/O space, is also available for interfacing with
peripherals. This space is selected by the IS (I/O space) pin, and is discussed
in Section 6.5.

The following brief discussion describes the TMS320C2x read and write
cycles. For the memory read and write timing diagrams, refer to the

6-11



Interfacing Memories

TMS320C2x Data Sheet of Appendix A. For further information about read and
write operation, see subsection 3.7.3 . Throughout this chapter, Q is used to
indicate the duration of a quarter phase of the output clock (CLKOUT1 or
CLKOUT2). Memory interfaces discussed in this chapter assume that the
TMS320C2x is running at 40 MHz; that is, Q = 25 ns.

In a read cycle, the following sequence occurs:

1) Near the beginning of the machine cycle (CLKOUT1 goes low), the ad-
dress bus and one of the memory select signals (PS, DS, or IS) becomes
valid. R/W goes high to indicate a read cycle.

2) STRBgoeslow nolessthantg,a) = Q —12 ns after the address bus is val-
id.

3) Earlyinthe second half of the cycle, the READY input is sampled. READY
must be stable (low or high) at the TMS320C25 no later than tys|_R) =
Q-20 ns after STRB goes low.

4) With no wait states (READY is high), data must be available no later than
ta(sy) = ta(a) — tsu(a) = 2Q — 23 ns after STRB goes low.

The sequence of events that occurs during an external write cycle is the same
as the above, with the following differences:

1) R/W goes low to indicate a write cycle.

2) The data bus begins to be driven approximately concurrently with STRB -
going low.

3) After STRB goes high, the data bus must enter a high-impedance state no
later than tgis(p) = Q+15 ns.

6.2.1 Interfacing PROMs

Program memory in a TMS320C2x system can be implemented through the
use of PROMs. Two different approaches for interfacing PROMs to the
TMS320C2x can be taken, depending on whether or not any of the memories
in the system require wait states. When no wait states are required for any of
the memories, READY can be tied high, and the interface to the PROMs be-
comes a direct connection. In this first approach, address decoding is not re-
quired, because the system contains only a small amount of one type of
memory. When some of the system memories require wait states, address de-
coding must be performed to distinguish between two or more memory types
with different access times. Inthe second approach, a valid READY signal that
meets the TMS320C2x timing requirements must be provided. An efficient
method of accomplishing this is to use one section of circuitry to generate the
address decode, and a second, independent section to generate the READY
signal. These two approaches are discussed in this section. For more detailed

Hardware Applications



Interfacing Memories

information, see Hardware Interfacing to the TMS320C25 (literature number
SPRAOQ14A).

An example of a no-wait-state memory system is the direct PROM interface
design shown in Figure 6-5. In this design, the TMS320C25 is interfaced with
the Texas Instruments TBP38L165-35, a low-power 2K x 8-bit PROM. The in-
terface timing for the design of Figure 6-5 is shown in Figure 6—6. The same
techniques can be used with both of the TMS320C2x devices. The
TMS320C25 has been chosen for the following examples because it has the
most stringent timing requirements.

The TMS320C25 expects data to be valid no later than 2Q—23 ns after STRB
goes low. (This is 27 ns for a TMS320C25 operating at 40 MHz.) The access
times of the TBP38L165-35 are 35 ns maximum from address ta(a), and 20 ns
maximum from chip enable t5(g). Onthe TMS320C25, address becomes valid
a minimum of tg(a) = Q-12 ns = 13 ns before STRB goes low. Therefore, the
data appears on the data bus within 27 ns after STRB goes low, as required
by the TMS320C25.

When aread cycle is followed by a write cycle, take care to avoid bus conflict.
Bus conflict also may occur when a TMS320C25 write cycle is followed by a
. memory read cycle. In this case, the TMS320C25 data lines must enter a high-
impedance state before the memory starts driving the data bus.

6-13



Interfacing Memories

Figure 6-5. Direct Interface of TBP38L165-35 to TMS320C25

6-14

TMS320C25

TBP38L165-35

K1 8 9 DO
A0 f— —— A0 : Qo
ar <2 7} s Q1|10 D1
a0 [E3_A 6] ‘ao Qal11 D2
|K3 5 13 D33
ATy N A Q314 s
ol o N o415 D5
A5 | A5 Q5
AB L5_/ 2] A6 Qs __1_6_&
A7 55 — U a7 q7|2-B?
A8 KL/ 23 A8
A9 L __22] A9
74ALSOS Gl G2 G3
4ALSO 720 |18 |19
—1J10 N,
PS
SR P10
— |H11
RW +5V
20 |18 [19
%WQ Gl G2 G3
READY B8 : 8 A0 Qo 5 _D8
7 |10 D9
Fi Al Q1
DO f=—— 6 11 D10
E2 —21 A2 Q2
D1 |\ 5 13 D11
E1 —>1 A3 Q3
D2 [5o—\ 4 s Qal14Di2
D3| D1 N N—3_] A5 Q515_'3_1%
D4 o 2 16 D14
c2 —=1 A6 Q6
D5 |=— 1 17 D15
pe |C1 ——] A7 Qa7 ——=
o7 |22 o
D8 A2 A9
Ds |B3 . 211 A10
A3
D10 TBP38L165-35
D11 V
Di2|
B5
D13 [
D14 [£=
Dis Q
N
Hardware Applications



Interfacing Memories

Figure 6-6. Interface Timing of TBP38L165-35 to TMS320C25

CLKOUT1 \ / \__

STRB

A15-A0,
PS

D15-D0

|
/\L Data In }——

The most critical timing parameters of the TBP38L165 -35 direct interface to
the TMS320C25 are summarized in Table 6-1.

Table 6-1. Timing Parameters of TBP38L165-35 Direct Interface to TMS320C25

Description Symbol Used In Value
Figure 6-6
TMS320C25 address setup before strobe low tsu(A) 13 ns (min)
TMS320C25 data setup time after strobe low ta(sL) 27 ns (max)
TMP38L165-35 disable time tdis 15 ns (max)
TMP38L165-35 access time from address ta(a) 35ns (max)T
TMP38L165-35 access time from chip enable ta(s) 20 ns (max)
74ALS04 inverter rise time tPLH 11 ns (max)
Total address access time = t3(a) —tsu(A) ta(A-sL) 22 ns (max)T
Total enable access time = ta(s) + tPLH- tsu(A) ta(E-SL) 18 ns (max)t

T Because ta(E-SL) < ta(A-SL), the specification t(A) dominates performance. All timing com-
parisons are made from strobe low.

The second design example illustrates the interface of PROMs to the
TMS320C25 using address decoding. An approach that can be used to meet
the READY timing requirements is shown in Figure 6-7. This design utilizes
one address decoding scheme to generate READY, and a second address de-
coding scheme to enable the different memory banks. In this design, the me-
mories with no wait states are mapped at the upper half (upper 32K) of the pro-
gram space. The lower half is used for memories with one or more wait states.
This decoding is implemented with the 74AS20 four-input NAND gate.

Address decoding is implemented by the 74AS138. This decoding separates
the program space into eight segments of 8K words each. The firstfour ofthese
segments (lower 32K of address space) are enabled by the YO0, Y1, Y2, and
Y3 outputs of the 74AS138. These segments are used for memories with one

6-15



“Interfacing Memories

6-16

or more wait states. The other four segments select memories with no wait
states (the TBP38L165s are mapped in segment 5, starting at address 8000h).
Note that in Figure 6-7, R/W is used to enable the 74AS138. This prevents a
bus conflict from occurring if an attempt is made to write to the PROMs.
Figure 6—8 shows the timing for the circuit shown in Figure 6-7. READY goes
high 10 ns (worst case) after the address has become valid.

Hardware Applications



Interfacing Memories

Figure 6-7. Interface o

f TBP38L165-35 to TMS320C25

TMS320C25 TBP38L165-35
AO K_1J —8 AO Qo 9 Do
K2 7 10 D1
Al e —1 A1 Qi
L3 6 1 D2
A2 2 — 1 A2 Q2
K3 5 13 D3
A3 P —21 A3 Q3
La 4 14 D4
A4 P2 —21 A4 Qa4
K4 3 15 D5
As 2 —21 A5 Qs
(5 2 16 D6
A8 F=2— —=<1 A6 Q6
K5 1 17 D7)
A7 [ —5] A7 a7 P24
Ag P8~ —23] A8
7 22
A9 7 21] A°
A10 = 74AS138 —| Al0
L9 1 Gl G2 G3
A13 A —15
A4 K9 2 B G2B "‘l 20 18 -[19
Ats =10 31c =
PS [12 teen |1 | WEWSEL
RW G1
1kQ +5V
74AS20
___|K10 1 kQ
DS
5
READY
STRB [0 > MEMSTRB
0o |E1 74AS04 20 |18 |19
E2 ) G1 G2 G3
D1 f=2—] 8 9 D8
Ed —81 a0 Qo P—22,
D2 el 7 10 D9
D3 |22 N Q1141 b1o
D1 A2 Q2
D4 5 13 D11
Cc2 —31 A3 Q3
D5 [£2— 71 ¥ o [14D12)
D6 B2 N\ \___3_ A5 Q5 LDB\
p7 |B2 ] 2 16 D14
A2 —21 a6 Q6
D8 |22 1 17 D15
B3 N a7 PR,
o0 A —231 Ag
D10 {23 22| o
11 |24 21
D1s [A4 —21] A0
D13 |23
AN TBP38L165-35
D14 [A5—
D15




Interfacing Memories

Figure 6-8. Interface Timing of TBP38L165-35 to TMS320C25 (Address Decoding)

CLKOUT1 \ /
CLKOUT2 /

K

d

TN

-y
w
C

I
MEMSTRB | /‘Il \
=+ |‘—ta(3)—'JI .~
| i t1 l
75, DS, 5, :
' T T [
> :"‘ I I I
- T | !
MEMSEL } ' | | I /—
T T l
—’} t3 I | !
READY | /r N } i \
} | ] | — e tgis
— t4_—’= | | l '
D15-D0 : l {L Data In }___

The most critical timing parameters of the TBP38L165-35 interface with ad-
dress decoding to the TMS320C25 are summarized in Table 6-2.

6-18 - Hardware Applications



Interfacing Memories

Table 6-2. Timing Parameters of TBP38L165-35 to TMS320C25 (Address Decoding)

Description Symbol Used in Value
Figure 6-8
Propagation delay through the 74AS04 H 5 ns (max)
Propagation delay through the 74AS138 to 10 ns (max)
Address valid to READY t3 10 ns (max)
TBP38L165-35 disable time tdis 15 ns (max)
TBP38L165-35 address access time tg 35 ns (max)
TBPL165-35 enable access time ta(s) 20 ns (max)
Data latch setup time after strobe low ta(sL) 27 ns (max)

6.2.2 Wait-State Generator

The READY input of the TMS320C2x allows it to interface with memory and
peripherals that cannot be accessed in a single cycle. The number of cycles
in a memory or /O access is determined by the state of the READY input. If
READY is high when the TMS320C2x samples the READY input, the memory
access ends atthe nextfalling edge of CLKOUT1. IfREADY is low, the memory
cycle is extended by one machine cycle, and all other signais remain valid.
Figure 6-9 shows a one-wait-state memory access. Note that for on-chip pro-
gram and data memory accesses, the READY input is ignored. Refer to Hard-
ware Interfacing to the TMS320C25 for detailed information regarding wait-

state generation.

The automatic generation of one wait state can be accomplished by the use
of the microstate complete (MSC) signal. The MSC output is asserted low dur-
ing CLKOUT1 low to indicate the beginning of an internal or external memory
or1/O operation (see Figure 6-9). By gatingMSC with the address and PS, DS,
and/or IS, a one-wait state READY signal can be generated. Note that MSC
is a valid signal only when CLKOUT1 is low; see page A-31.

A wait-state generator is an alternative approach for generating wait states
when interfacing with memories and peripherals. In this design, READY must
be valid (low or high) no later than Q-20 ns = 5 ns after STRB goes low. If
READY is high, then the memory/peripheral access is completed with the pres-
entmachine cycle. If READY is low, the access is extended to the next machine
cycle; thatis, a wait state is introduced. The number of wait states required de-
pends on the access time t, of the particular memory device or peripheral. If
t3 < 40 ns, no wait states are required. If 40 ns < t; < 140 ns, one wait state
must be inserted. In general, N wait states are required for a particular access

if
TMS32020: [200 (N—1) + 85] ns < t, =< [200N + 85] ns
TMS320C25: [100 (N—1) + 40] ns <t < [100N + 40] ns




- Interfacing Memories

Figure 6-9. One Wait-State Memory Access Timing
| I I | |

awoun TN N

|
STRB | \ :
|
|

}

A TR s

TR R TR
SR

N T

D15-DO
(For Read
Operation)

!
|
D15-P0 [
|
|

(For Write
Operation)

I
1
|
|
W;I Data Out
|

CEREECEEEIEETOry,
LKL

RTTRIRXITIIIRIR)
NSLKEEOLIEEN

........

The information on the number of wait states required for a memory or periph-
eral access is summarized in Table 6-3.

Table 6-3. Wait States Required for Memory/Peripheral Access

Number Of Wait
States Required

TMS32020
Access Time

TMS320C25
Access Time

tg <85ns
85ns <t3<285ns
285ns <ty <485ns

tg<40ns
40ns<ty3<140ns
140 ns <t3 <240 ns

240ns <t3<340ns
340 ns <t3<440ns

HOWON=O

485ns <t3<685ns
685 ns <t3 <885 ns

Design and timing of a wait-state generator are shown in Figure 6—10 and
Figure 6-11, respectively. In the case of one wait state, time t4 in Figure 6—11
is the time from address valid to memory select of the particular device that re-
quires the wait state. This corresponds to the propagation delay through the
address decode logic. For a 74AS138 decoder, ty = 10 ns (max).

Time to is the time from memory select going low to CLKOUT2 going low.
to=tp+tsy=11ns+20ns =31 ns

Time t3 is the time from CLKOUT2 going low to READY going high.
t3=19ns+5ns =24 ns

READY must remain high until it is sampled again, shortly after CLKOUT1
goes high. In Figure 610, READY remains high well after CLKOUT1 goes

6-20 Hardware Applications



Interfacing Memories

high. On the falling edge of CLKOUT2, J = 1 and K= Q = 1 are the inputs to
the J-K flip-flop; this places the flip-flop in a toggle mode. When CLKOUT2
goes low, Q goes back to logic 1. READY goes low and stays low until one of
the inputs of the 74AS30 is pulled low.

To implement two wait states, a second J-K flip-flop is utilized as shown in
Figure 6-10. This delays READY going high by an additional machine cycle
(see Figure 6-11). If more wait states are required, additional J-K flip-flops
must be included in the wait-state generator design.

Figure 6-10. Wait-State Generator Design

1kQ
45V —MW—o
1/2 74ALS20A
: ¢ 2 10| 1/2 74ALS114A -
2 PRE
t< 4 6 3 R 121
13
5 2 ! 9 2 74AS30
1/2 74ALS20A < q : S
F [ CLR “ $<% TMS320C25
From r :
TMS320C25: 1/2 74ALS114A l &
CLKOUT2 !
RS

1 Connections to other devices in the system that require two wait states. (Inputs not used by other devices
should be pulled up.)

$ Connections to other devices in the system that require one wait state. (Inputs not used by other devices should
be pulled up.)

§ Connections to other devices in the system that require zero wait states. (Inputs not used by other devices
should be pulled up.)

6-21



Interfacing Memories

Figure 6-11. Wait-State Generator Timing

6.2.3

6-22

CLKOUTH

\ / Two Wait
~ States

T .
| ,

| / One Wait
! 2 State

Interfacing EPROMSs

EPROMs can be a valuable tool for debugging TMS320C2x algorithms during
the prototyping stages of a design, and may even be desirable for production.
Two different EPROM interfaces to the TMS320C2x are discussed: adirect in-
terface of an EPROM that requires no wait states, and EPROM interfaces that
require one and two wait states.

A direct interface similar to that used for PROMs may be implemented when
EPROM access time meets the TMS320C2x timing specifications. A Texas In-
struments TMS27C292-35 2K x 8-bit EPROM can interface directly to the
TMS320C25 with no wait states. The TMS27C292-35 isa CMOS EPROM with
access times of 35 ns from valid address and 25 ns from chip select.

When slower, less costly EPROMs are used, a simple flip-flop circuit (see sub-
section 6.2.2 for wait-state generator design) can be used to generate one or
more wait states. Figure 6—12 shows an EPROM interface with one wait state,
where Wafer Scale WS57C64F-12 8K x 8-bit EPROMs are interfaced to the
TMS320C25. The WS57C64F-12 is the slowest member of the WS57C64F
EPROM series but still meets the specifications for one wait state. With slower
EPROMSs, however, data output turnoff can be slow and must be taken into
consideration in the design. The WS57C64F-12s are mapped at address
2000h. Figure 6—13 provides the interface timing diagram.

Hardware Applications



Interfacing Memories

Figure 6-12. Interface of WS57C65F-12 to TMS320C25

TMS320C25 WS57C64F-12
Aol 1010 ool DO
K2 9 12 DI
A= —=JA1 01—
L3 8 13 D2
A2 K3 7] A2 02 15 D3
A3 — a3 o3> D38
L4 6 16 D4
Ad— —2A4 04—
K4 5 17 D5
A5 |—— —21A5 05—
L5 4 18 D6
A6 — —21A6 06—
A7 |KE \__3la; orfe_D7
K6 25
A8 N—=21 A8
K7 L 21
A1OE—/ 23 A10 1 kQ
Al —— N~———1A11 PGM
Al2 K8/ 74AS138 '_2‘A12 27
L9 1 Al
A13[o 1A CE OE
Al4 L10 B — | 14 MEMSEL 20 22
MSf—{c VTP
PSIET 652~ GaBp> 74AS32
R/W Gi 1_
STREIH10 = ) DTSTR
polEl—
D1 |E2 20| 22
E1 = ==
D255 Wait-State _10|S& SNt os
YR Generator
D21 N3 (O EERTT
D5 <2 (One Wait State) 7172 02 E—p4y
ps |&1 —flAs o3f2——
B2 6 16 D12
D7 25— A4 04—
AD 5las  os17_DI3
D8fas— 4 18 D14 N
polB3 . A6 06—\
A3 N_—31a7 o7Ho-D15
D10} 25 K7 —
3112 g 74AS30 24| 0 W5V
B5 21
p13[22— —53]A10 % 1k
A5 _ 23] —
D14} >|A11 PGM >
D15 ——gg —21A12
READY WS57C64F-12

6-23 -



Interfacing Memories

Figure 6-13. Interface Timing of WS57C65F-12 to TMS320C25

CLKOUT2

STRB \

wort N\____ /T N/ N\

T

DTSTR \I | /
T
— |
PS/RW,
|
—! Yy |
MEMSEL | \.' ! /
I T
| |
|
READY ! / ] \
[ t3 > le—t;, —»
D15-D0 { Valid >

Table 64 summarizes the most critical timing parameters of the

WS57C64F-12 interface to the TMS320C25.

Table 64. Timing Parameters of WS57C64F-12 Interface to TMS320C25

Description Symbol Used In Value
Figure 6-13
Address valid to MEMSEL low t4 10 ns (max)
STRB low to DTSTR low) to 5.8 ns (max)
TMS320C25 address valid to WS57C64F-12 data t3 130 ns (max)
valid
STRB high to WS57C64F-12 output disable ta 40.8 ns (max)

An EPROM interface with two wait states is shown in Figure 6—14, in which the
TMS27C64-20 is interfaced to the TMS320C25. The TMS27C64-20 is a
CMOS 8K x 8-bit EPROM with an access time of 200 ns. The timing diagram

is shown in Figure 6—15.

6-24

Hardware Applications



Interfacing Memories

Figure 6-14. Interface of TMS27C64-20 to TMS320C25

TMS320C25 TMS27C64-20 74ALS244A
A0 ———/2 ———13 A0 Qf 112 :‘; 1A1 1Y1 12 g?
A= N—A1 Q2 1A2 1Y2
3 8 13 6 14 D2
A2 K3 —_,—AZ Q3 15 8 1A3 1Y3 2 D3
A3 5143 Q4fre 1A YRS
Al WS (SN EF BTN PN PR
A5 e —21A5 Q6 2A2 2Y2H—2
L5 4 1815 5 D6
A6 F ——3- A6 Q7 19 17 2A3 ZYSW
A7 —=1A7 Q8 2A4 2Y4
Py LA — 2518 M G 2G
nslEL —2H 9 1k 11 119
A0} — —=1A10 BGH
A1 S — 2311 27
A12p8 74AS138 21710 gh2?
Ataf2— 1r3 e |1
K9 2 —_— v gy -
Al4 B __| 14 MEMSEL 20
AsfEY31c Y0
—=|J10 4 1 =r 5
PS40 GzB =i 74AS32
RW G1 1 - DTSTR
STRB |12 = '
olEl
o [E2 20 1 |19
D2 l— Wait-State E 1G 2G
Dg% Generator %AO Qi 112 i 1A 1Y1H
DatRl_ _ — A1 Q2 1A2 1v2pS =2
D5 E2 (Two Wait — 8> qaflS Bliaz qyafid DIO
Ct States) — Az Qs —8lias qyapi2 B
Do[B2 —Slas asH81foar oyq|2 D12
07 [a2 —Slas Qs l—131on2 oyofl D13
D8[o=— 4 18 15 5 D14
Sl rem) 3% U723 23 s
DiotAS o ] vy, 2A4 2Y4—
D11} —251 a8 y
v 74AS30 24|, ik TAALS244A
8:5 BS ) —2 a10 PGM
B6 —2la12 Gp22
D15[5g il
READY TMS27C64-20 )

6-25



Interfacing Memories

Figure 6-15. Interface Timing of TMS27C64-20 to TMS320C25

CLKOUT2

7

STRB \
DTSTR \'
PS/RW,

Ats.A0 XX Valid.

Bk

|
- <t |
MEMSEL | \' I
| T
| |
| ]
READY ! / |
e t3 =: le— t4 ——ﬂl
D15-D0 L Valid >

Table 6-5 summarizes the most critical timing parameters of the
TMS27C64-20 interface to the TMS320C25.

Table 6-5. Timing Parameters of TMS27C64-20 Interface to TMS320C25

Description Symbol Used In Value
Figure 6-15
Address valid to MEMSEL low t1 10 ns (max)
STRB low to DTSTR low ' to 5.8 ns (max)
TNII.3320025 address valid to TMS27C64-20 data i3 220 ns (max)
vali
STRB high to TMS27C64-20 output disable . tq 18.8 ns (max)

For detailed information regarding EPROM interfacing, see the applicationre-
port, Hardware Interfacing to the TMS320C25 (literature number SPRAQ14A).

6.2.4 Interfacing Static RAMs

Interfacing external RAM to the TMS320C2x can be useful for expanding inter-
nal data memory or implementing additional RAM program memory. Static
RAM can be used as data memory to extend the TMS320C2x 544-word inter-
nal RAM. When used as program memory, object code can be downloaded into
the RAM and executed. Inthe first case, the static RAM is mapped intothe data
space, while in the second case it is mapped into the program space.

6-26 ' Hardware Applications



Interfacing Memories

In cases where RAMs of different speeds are used, separate schemes for ad-
dress decoding and READY generation can be used to meet READY timing
requirements in a manner similar to that used for the PROM interface de-
scribed in subsection 6.2.1. RAMs with similar access times may then be
grouped together in one segment of memory.

The static RAM for this interface is the Cypress Semiconductor CY7C169-25
4K x 4-bit static RAM. This RAM has a 25-ns access time from address ta(a)
and a 15-ns access time from chip enable t; ). Note that these access times
are fast enough so that a wait-state generator is not required for this interface.
If, however, RAMs that require wait states are used in the system, the wait-
state generator described in subsection 6.2.2 can be used.

The design shown in Figure 6-16 utilizes an approach similar to the one de-
scribed in subsections 6.2.1 and 6.2.3; that is, one address decoding scheme
is used to generate READY, and a second address decoding scheme enables
the static RAM. In this design, RAMs with no wait states are mapped at the low-
er half (lower 32K words) of the TMS320C25 data space. The upper half is
used for memories with one or more wait states. Figure 6—17 shows the timing
for memory read and write cycles.

Table 6-6 summarizes the most critical timing parameters of the CY7C169-25
interface to the TMS320C25.

Table 6-6. Timing Parameters of CY7C169-25 Interface to TMS320C25

Description Symbol Used In Value
Figure 6-17

Address valid to READY valid t4 10.8 ns (max)
STRB low to MEMSEL low to 8.5 ns (max)
STRB high to MEMSEL high t3 7.5 ns (max)
CLKOUT1 lowto TMS320C25 data bus entering the tq 15 ns (max)
high-impedance state
MEMSEL low to CY7C169-25 driving the data bus t5 5 ns (min)
MEMSEL low to CY7C169-25 data valid tg 15 ns (max)
MEMSEL highto CY7C169-25 entering the high-im- ty 15 ns (max)
pedance state
Data setup time for a write t8 32 ns (min)
Data hold time 19 7.5 ns (min)

6-27



Interfacing Memories

Figure 6-16. Interface of CY7C169-25 to TMS320C25

TMS320C25 , CY7C169-25
Ki
A0
K2
A
3
Azk=—
K3
Asf=—
L4
Ad—
Ka
AsHo—
L5
Ae=2—
K5
A7
K6
Asl—=—
nott? 15 DO
atof<7 101 B
L8 14 D1
A= (7] presmu=vaN
B8 o33 D2
READY]| Yoo ERE
74AS30 4
DS K10 15 D4
74AS32 Vo1 114 D5
KNAO 16 A0 1/02 1 D6
L10 5, T4AS138 . AL 7] 103 |43 o
Atshes A wpt—— A2 _1sll, 1/O4
Al4 B A3 19
L9 1 +5V S L&
A13 C NA4 1 15 D8
S ey A4 1104
—|H10 51824 1kQl NAS 2], 14 D9
STRB G2B  G1 A6 3 10243 D10
—1H11 6 ——1 A6 1/03
RIW A7 44, 12 D11
F1 AB 5 /104
D1 EL A9 6|0
1 A10 7 15 D12
D2lE— | NA10_7]
D3 22—, MEMSEL IR NS KT D13
D1 A1l /0o
D4 f—— 9l== 13 D14
[C2 1|ES VO3, D15
od [3]] W 104
D6
B2
nyd =
A2
D8 j==—
B3
D9 =
A3
Diof=—
B4
D11 -
Ad
D12}
B5
D13
A5
D14rEs
D15 _\L

6-28 Hardware Applications



Interfacing Memories

Figure 6-17. Interface Timing of CY7C169-25 to TMS320C25

6.2.5

/

CLKOUTH % \
|
. | L1—t1 —>|
READY : /'“ \
I
STRB I \ /|'
| | l
RW ! |
_M - R rw
|
MEMSEL ] \L /l’
ke tg o | | .. Read
TMS320C25 @ — % L_ } Cycle
D15-D0 e t
s ™
CY7C169-25 s - = }_______F_W
D15-D0
R A LK
MEMSEL \ /i
—| t Write
Ilq_ts ___pqr— ° ~ Cycle
TMS320C25 —.—QQQQQ%Z: §?<><><><?<>§-
D15-D0
CY7C169-25 =™\
1/04-1/04 —_—

Interface Timing Analysis

When interpreting TMS320C25 timing specifications, particularly in the area
of memory interface timing, itis necessary to understand clock input and clock
timing relationships shown in timing diagrams as compared with the actual
data sheet specifications. If interpreted incorrectly, the specifications may sug-
gestthatinterfacing to the device is more constrained than necessary. Without
exception, the TMS320C25 meets every specification given in the data sheet
(Appendix A). Some timings are specified more conservatively than others,
due to yield distributions, etc.; but each TMS320C25 is guaranteed by Texas
Instruments to conform explicitly with the minimum values as stated in the
tables and shown in the timing diagrams of the data sheet.

Clock input and internal clock timing relationships must be considered in the
interpretation of output timing characteristics and requirements. At the clock

6-29



Interfacing Memories

6-30

input to the device, only the rising edges of the clock are used to initiate transi-
tions on internal clocks and output signals. Thus, with an input clock of a stable
frequency (regardless of duty cycle variation within specifications), extremely
symmetric timing is exhibited throughout the device. A significant conse-
quence of this is that CLKOUT1, CLKOUT2, and STRB timing skew with re-
spect to each other, and high and low pulse widths are integer multiples of Q
(the input clock period or one-fourth of the output clock period) to within a few
nanoseconds. This occurs because transitions on the output signals are initi-
ated directly from the internal clocks (Q1-Q4) and driven through identical out-
put buffer circuits. Since the internal clocks are very symmetric, close tracking
ofthese outputs results. The large skews inthese timings, as shown inthe data
sheet, are a factor of temperature and process. Because there is no variation
in process and negligible variation in temperature across a single device, the
skew of the outputs relative to the inputs is consistent for all outputs. Regard-
less of the magnitude of such skews, interfaces to the TMS320C25 can be de-
signed independently of these skews in most cases.

This section discusses three interface timings: READY, memory read, and
MSC. For READY, there are two pairs of related timings; one timing can be met
without the other one being met, and the device still guaranteed to function
properly. These pairs of timings are t4(sL-R) and tq(coH-R), and th(s| Ry and
th(c2H-R)-_These front-end and back-end READY timings are specified with
respect to STRB and CLKOUT2. For zero wait-state accesses, READY is ref-
erenced to STRB, but for wait-state accesses, STRB remains low and another
timing reference is required. Note that the actual timings for each of these pa-
rameter pairs are identical, and the timings with respect to CLKOUT2 and
STRB are equivalent. Therefore, if READY timing meets the requirements with
respect to one of these references (but not necessarily the other), the timing
requirements of the device are satisfied regardless of the actual skews be-
tween the two signals. For the purpose of interface timing, t4(c2—g) can be as-
sumed to be 0 ns with respect to other signals on the TMS320C25. The same
is also true of tyc1—g) and ty(sy); these timings can be assumed to be Q and
2Q, respectively. These relationships are accounted for in specifications and
device testing.

In memory read operations, the two key timings, t4(a) and tgy(p)R. are related
by taa) =tsu(a) + tw(sL) —tsu(p)r- However, when the worst case ty, (s ) speci-
fications are used inthis equation to generate an expression for ty ), the resuit
differs from the specification for t(a) in the data sheet. Both the specification
for ty(a) and tsy(p)R are tested explicitly on the device and guaranteed. This
again justifies the assumption of ty(sp ) to be 2Q with respect to other signals
onthe device. This is confirmed by the fact that if (s ) = 2Q is used to calcu-
late t(a), consistency results in all of these related timings. If an interface is
designed where tg,(p)R is met but ty(4) is not met because of actual signal
skews, the interface is still guaranteed to function with the TMS320C25. The
same is true (but is not as likely) if an interface is designed where ty(a) is met
but tsyp)R is not. Thus, even if ty, (| ) is actually less than 2Q, meeting either

Hardware Applications



Interfacing Memories

ta(a) ortsy(p)R is still sufficent to guarantee a valid memory cycle because both
parameters are guaranteed independently.

Note that when considered in the absolute sense, timings such as ty, sy will
have some finite tolerance, although considerably less than that specified. For
example, if STRB is used to generate a WE pulse for a device that t specifies
a minimum WE low pulse width, the data sheet specification for STRB low
pulse width must be used for a worst-case design.

With regard to MSC timing, the th(c2H-R) timing is a constraint that must be
satisfied, and the tymsc) is @ parameter more conservatively specified than
many other timings. When you_consider these timing parameters and
CLKOUT1/CLKOUT?2 skews, the MSC does not meet worst-case timings for
generating READY, the purpose for which the MSC signal was intended. The
READY timing is met by MSC, however, regardless of when MSC goes high.
This timing is explicitly guaranteed by th(\m-R) = 0, even though MSC exhibits
some finite skew from CLKOUT1.

6-31



Direct Memory Access (DMA)

6.3 Direct Memory Access (DMA)

6-32

Some advanced hardware design concepts supported by the TMS320C2x in-
clude direct memory access (DMA) and global memory (see Section 6.4). Di-
rect memory access can be used for multiprocessing by temporarily halting the
execution of one or more processors to allow another processor to read from
or write to the halted processor’s local off-chip memory. Direct memory access
to external program/data memory is performed by using the HOLD and
HOLDA signals.

Multiprocessing is typically a master-slave configuration where the master
may initialize a slave by downloading a program into its program memory
space and/or by providing the slave with the necessary datato complete atask.
In a typical TMS320C2x direct memory access scheme, the master may be a
general-purpose CPU, another TMS320C2x, or perhaps even an analog-to-
digital converter. A simple TMS320C2x master-slave configuration is shown
in Figure 6—18. The master TMS320C2x takes complete control of the slave’s
external memory by asserting HOLD low via its external flag (XF). This causes
the slave to placeits address, data, and controllines in a high-impedance state.
By asserting RS in conjunction with HOLD, the master processor can load the
slave’s local program memory with the necessary initialization code on reset
or powerup. The two processors can be synchronized by using the SYNC pin
to make the transfer over the memory bus faster and more efficient.

After control of the slave’s buses is given up to the master processor, the slave
alerts the master to this fact by asserting HOLDA. This signal may be tied to
the master TMS320C2x’s BIO pin. The slave’s XF pin may be used to indicate
to the master when it has finished performing its task and needs to be repro-
grammed or requires additional data to continue processing. Inamultiple slave
configuration, priority of each slave’s task may be determined by tying the
slave’s XF signals to the appropriate INT(2-0) pin on the master TMS320C2x.

Hardware Applications



Direct Memory Access (DMA)

Figure 6-18. Direct Memory Access Using a Master-Slave Configuration

TMS320C2x TMS320C2x
(Master) (Slave)
XF HOLD
BIO HOLDA
INTO-INT2 XFE
IACK BIO
A15-A0 ¢ « A15-A0
Buffer 7
D15-D0 P and D15-D0
RW Logic

[ Al

Master
Data
Memory
(RAM)

Master Slave Slave
Program Program Data
Memory Memory Memory

(ROM) (RAM) (RAM)

A PC environment presents another example of a potential direct memory ac-
cess scheme in which a system bus (the PC bus) is used for data transfer. In
this configuration, either the master CPU or a disk controller may place data
onto the system bus, which can be downloaded into the local memory of the
TMS320C2x. Here, the TMS320C2x acts more like a peripheral processor with
multifunction capability. In a speech application, for example, the master can
load the TMS320C2x's program memory with algorithms to perform such tasks
as speech analysis, synthesis, or recognition, and fill the TMS320C2x’s data
memory with the required speech templates. In another application example,
the TMS320C2x can serve as a dedicated graphics engine. Programs can be
stored in TMS320C2x program ROM or downloaded via the system bus into
program RAM. Data can come from PC disk storage or provided directly by the
master CPU. '

Figure 6—19 depicts a direct memory access using a PC environment. In this
configuration, decode and arbitration logic is used to control the direct memory
access. When the address on the system bus resides in the local memory of
the pe