
THE VLSI ‘SILICON COMPILER’ DESIGN PROCESS

R.M.P.West

IBM United Kingdom Laboratories Ltd
Hursley Park,
Winchester,

England SO21 2JN

Abstract

This paper describes a VLSI design process developed by a small team of
logic designers and design tools specialists at the IBM Laboratory at
Hursley in England. The design process consists of a large number of
programs or design tools, many obtained from other IBM laboratories.
Some of the “imported” programs were adapted and several other
programs were specifically created. The design process has been used
successfully to produce “first-time-right” VLSI integrated circuits K s)
for several IBM projects, including IBM’s Image AdapteriA.

The described design process may be summarised as follows:
A design, to be implemented in VLSl hardware, is partitioned into a
number of smaller units. The design of each smaller unit is entered as
text in a High Level Language as a technology independent behavioural
description, which is then compiled for input to logic synthesis, where it
is converted into an optimised design in the target VLSI technology.
When all the smaller units to be integrated into a single VLSI IC have
undergone this process, they are assembled together by a further run of
logic synthesis. The resulting IC design, in the target technology, is then
processed to produce the artwork and test patterns required for
manufacture of the IC. In support of all these activities, a number of
programs exist to allow the design team to perform simulation, timing
analysis, and validation of the logic synthesis process.

Introduction

The IBM Laboratory at Hursley in England has amongst its
responsibilities the development of display adapters and monitors for the
IBM Personal System/2 product family.

Display adapters are complex logic and memory systems that are able to
update text, graphics, and image data in a display buffer memory. They
also control the refreshing of the display data from the display buffer
memory to the electron guns of a cathode ray tube (CRT) or other
display devices. Display adapters require a large amount of complex
high-speed logic to perform the required functions. The size and
complexity of this logic, together with commercial pressure to introduce
new products rapidly, demand a logic design process that allows rapid,
efficient, adaptable, and accurate design of application specific VLSI ICs.

This paper describes such a VLSI design process, also termed a
methodology, that has been developed to satisfy these requirements. I t
begins with a description of the entire design cycle, from the point of
view of a design team using the methodology. This is used to set the
context, within the design methodology, for the various features of the
methodology described in more detail later in the paper.

Description of the Design Cycle

The overall function of the hardware of the system being designed is
partitioned into a number of Functional Islands ms), with the interfaces
between the FIs clearly defined. If the overall function must be
implemented using more than one IC, a decision on the partitioning
between ICs can be made at the start or can be delayed until later in the
design cycle. The FIs are constrained to a “manageable” size, so that a
single designer can work on one or more FIs, and that a single FI can be
handled rapidly by the design tools. The interfaces of each FI, in terms
of its inputs and outputs, are listed in a FI Inter-Connect File (ICF).

A designer uses a text editor at a computer terminal to create the design
of a given FI as a technology-independent behavioural description of the
design expressed in text form using the syntax of a High Level Language
(HLL). The HLL text generated is the HLL source for the FI, and
together with the ICF for the FI forms the complete design source data
for the FI. The HLL source for each FI may be compiled either to a
behavioural model (MDL) for behavioural simulation or to a
Technology-Independent Database (TID) for processing by logic
synthesis.

1
CH2704-5/89/0000/1118/$01.00 0 1989 IEEE

At an early stage, a designer may choose to perform behavioural
simulation on a single F1, in isolation, using simple simulation test-cases.
This early simulation of a single FI is often used as an integral part of the
development of the FI design. When the design of several FIs reaches a
given level of functionality, the design team may begin behavioural
simulation on the system or a subset thereof. Several FIs are simulated
together, as a single functional unit, for verification of system or
sub-system function and to check the FI connectivity. The design team
usually attempts to reach this stage early in the design cycle, to obtain
early verification of system functionality.

For system behavioural simulation, the FIs comprising the system are
listed in a Hierarchy Content File (HCF). The HCF is used as input to a
program (CREATE) that generates a system level ICF by linking together
all the required ICFs. The system level ICF is then used in behavioural
simulation to link together the MDLs for the FIs.

In order to perform logic synthesis on the FI, the HLL source for the FI
is compiled into a Technology-Independent Database (TID) form. The
TID for the FI is then processed through logic synthesis, where a number
of transforms are used to convert and optimise the design to create a
Technology-Dependent Database (TDD) for the FI in the target
technology. Transforms, within logic synthesis, are also used to create
control data for use in any subsequent timing analysis.

The designer will often run synthesis on the FI early in the design cycle,
in order to obtain a sizing for the FI in the target technology. The
designer may also run timing analysis and design rules checking on the
TDD for the FI, in isolation, as an early warning of internal timing
problems and design rule violations. At this stage, the designer may also
run a synthesis validation program, in order to verify that the transforms,
within logic synthesis, have not corrupted the design of the FI.

When all the FIs for a single IC have been synthesised to TDDs, logic
synthesis is used to link the TDDs according to the FI interfaces defined
in a system level ICF for the IC. The system level ICF for the IC is
generated by the CREATE program that links together the ICFs of all
the FIs of the IC. as listed in an IC level HCF. A different set of
transforms, within logic synthesis, is used to create a single TDD for the
entire IC and the control data to be used in timing analysis. At this
stage, technology-dependent timing analysis and design rules checking are
run on the TDD for the entire IC. Any timing or design rule faults
found are related to offending Fls, and necessitate updates to the HLL
sources for those FIs. System behavioural simulation is performed to
ensure that the required function has not been compromised by any
update. Updated FIs are resynthesised and the TDD for the IC is
rebuilt, so that timing analysis and design rules checking can be rerun.

As the design cycle proceeds. the design team spend less time on actual
design and more time on simulation until, near the end, the entire effort
of the design team is concentrated on simulation of the complete system.
Behavioural simulation is used to verify the overall system function and is
used extensively because of its speed and the large amount of simulation
test data that can be handled.

When a TDD exists for an entire IC, the TDD can be compiled into a
gate-level simulation model (GLMI, which incorporates estimated
technology-dependent gate delay information and timing rules.
Gate-level simulation is necessarily slower than behavioural simulation,
and therefore less simulation test data can be handled. The design team
only performs gate-level simulation late in the design cycle, where it is
used as a cross-check against behavioural simulation, as additional
verification of the synthesis process, and to warn of any timing problems
missed through assumptions made in timing analysis.

When the design team is satisfied with the performance and functionality
of an entire IC, automatic test pattern generation and the physical design
process can begin. The design team often attempts to reach this stage
early in the design cycle, in order to obtain early warning of any
problems, with timing. testability. and wireabilility of the design that
might occur in the latter stages of the design process. Automatic test

118

pattern generation and the physical design process can be run as parallel
or independent activities. However, for the final generation of data to be
sent to the IC manufacturing location, automatic test pattern generation
must be run after the physical design process has been completed.

In the physical design process, the TDD for the IC is processed by
automatic placement and wiring programs as the first step towards the
creation of the physical mask artwork required for the manufacture of
the IC. The timing analysis program can be used to generate a list of
timing critical signals, with capacitance targets that the placement and
wiring programs will attempt to meet. The design team may choose to
modify the list of critical signals, prior to placement and wiring. The
placement and wiring programs also allow a limited amount of manual
intervention.

After placement and wiring, the capacitance and resistance values for all
signal wiring are extracted. The extracted data is used to develop delay
data for the IC. The delay data is used in timing analysis to ensure that
no timing problems have been created by the physical design process.
The delay data is also incorporated into the GLM, so that gate-level
simulation may be rerun with physical delays. If any problems are found
at this stage, manual updates can be made to the placement and wiring.
If a large number of problems is found, then the list of critical signals is
modified and the automatic placement and wiring programs are rerun.
When satisfactory placement and wiring for the IC has been achieved, the
physical mask artwork for the IC is generated and checked against
technology ground rules.

At the end of the design process. the test pattern data and the physical
mask artwork data are sent together to the IC manufacturing location.

Design Partitioning

The design of any system requires design partitioning at several different
levels. At the highest level, a partition may be defined between system
software and system hardware. At the hardware level, the design must be
partitioned between elements of the design that may be implemented in
“off the shelf‘ components already available and elements of the design
that must be integrated in one or more application specific VLSI ICs.
The scope of this paper covers the design of system hardware that must
be integrated in one or more application specific VLSI ICs.

The design of system hardware is partitioned into a number of smaller
units. These smaller units are termed Functional Islands u s) . Each FI
performs a distinct system function or set of system functions. The FIs
are constrained to a “manageable” size, so that a single designer can
work on one or more FIs, and that a single FI can be handled rapidly by
the design tools. Sometimes it may be considered appropriate for more
than one designer to work on a single FI, particularly if one of the
designers has limited design experience.

The interfaces of each FI, in terms of its inputs and outputs, are clearly
defined in a FI Inter-Connect File (ICF). If the design must be
implemented using more than one IC. then each IC will be allocated a
number of FIs. subject to a number of considerations including the
minimisation of the complexity and size of the inter-IC interfaces, and the
physical sizes of the ICs. The decision on the partitioning between ICs
can be made at the start or can be delayed until later in the design cycle.

The granularity, created by partitioning the design into FIs, allows each
FI to be handled independently and allows the grouping of Fls at a
number of different levels. The f I s may be grouped at the entire system
level or at any subsystem level, particularly at the level of the subsystem
represented by a single IC. The FIs comprising a system or subsystem
are listed in a Hierarchy Content File (HCF). HCFs at a number of
different levels may be defined. The HCF is used as input to a program
(CREATE) that generates a system level ICF by linking together all the
required ICFs. System level ICFs are used in behavioural simulation and
in logic synthesis.

! ’ IcF Create 1
!

Figure 1 . System level ICF generation

During the design cycle a number of different versions of each FI may be
produced, and a number of different versions of each HCF may be
generated to incorporate different versions of FIs. The different versions
of Fls may result from changes in functional requirements and any
problems found in simulation or timing analysis. All HLL sources, ICFs,
HCFs and MDLs are maintained in a design library system and are made
available to the entire design team. In the design library system, different
versions of Fls are identified by FI name and version number, and
different versions of HCFs and system level ICFs are identified by their
system levels and version numbers. This means of identification is
retained throughout the design process.

High Level Language Design Entry

The High Level Language (HLL) allows the designer to design systems in
list form rather than in block form (as with graphical design entry tools).
It provides an extremely fast, efficient, and unambiguous means of design
entry. The designer is able to work with bus-wide entities, but can freely
use substringing. Because the design is entered as text, comments and
in-source documentation can be included (similarly to a programming
language).

The text entered is the source specification of the design as a
technology-independent behavioural description of the design and may be
at a behavioural level or at a hardware-oriented level or a mixture of the
two. The entire HLL specification of the design is, in fact, a behavioural
description but the distinction between behavioural level and
hardware-oriented level is made because many of the more complex HLL
behavioural constructs do not have direct one-to-one mappings into
VLSI hardware.

Synthesis Behavioural

‘6‘
To Synthesis

T
To Behavioural
Simulation

Figure 2. FI HLL compile

The HLL source text for a design may be compiled into a behavioural
model (MDL) for behavioural simulation of the design. When the HLL
source of the design is specified at the hardware-oriented level, it can be
compiled to a TID. which is used as the input to logic synthesis. Because

1 - 119

-1

logic synthesis is able to operate on the TID to produce “optimal” logic
in a target technology, the designer does not have to concentrate on the
design at the gate level. This allows the designer to concentrate on the
design of the system at a functional level.

The designer has available a library of standard HLL macros that can be
used as shorthand for complex, yet commonly used, HLL constructs.
Support for user-defined HLL macros is also provided. The syntax of
the HLL also allows the designer to apply attributes to detailed elements
of the design, in order to control the effects of logic synthesis and the
generation of timing analysis control data. If the designer wishes to
override logic synthesis in any area of the design, the HLL provides
syntax for the explicit specification of logic gates in any target
technology.

Because the HLL specification of a design is essentially technology
independent, it can be used for logic synthesis into a number of different
technologies. The HLL specification is also “portable” and can be used
as part of a number of different ICs, including up-grades and follow-ons
of any current IC.

Logic Synthesis

Logic synthesis is normally run on a mainframe system in batch mode.
For small designs, however, it may be run interactively. Logic synthesis
is an environment set up for the manipulation of a logic design. Within
logic synthesis, a number of transforms operate sequentially on a logic
design to convert it from one form to another. The transforms used by
logic synthesis are available in a transform library. Logic synthesis also
has access to technology data, which is integrated into the internal
synthesis database, from a set of technology libraries.

The transforms, to be applied to a logic design, are listed in a synthesis
control file, which is termed the synthesis “scenario” The design
methodology described uses two basic scenarios. The first scenario is the
“FI scenario”, which converts a TID into a TDD, with the logic
optimised for the target technology. The second scenario is the “IC
scenario”, which links a number of TDDs for the FIs that make up an
IC, to create a TDD for the IC.

In special circumstances, it is possible for a designer to modify a synthesis
scenario by adding, removing, or altering specific transforms. This is
usually undertaken by only the most experienced designers in order to
“customise” the effect of logic synthesis for a specific design goal or to
experiment with slightly different scenarios on the same design. Any
perceived improvements may become permanently incorporated into the
standard scenarios. Although the ability to alter the synthesis scenario
sometimes yields improved results, it is potentially hazardous and hence
the need for a synthesis validation program.

Transform
Library
n 6 - F Technology Librarv

Synthesis

%
1 1 U

Analysis
Control File

Synthesis
Vahdation

Figure 3. FI Synthesis “FI Scenario”.

In the “FI scenario”, a TID is read and converted to an internal synthesis
database. The internal synthesis database contains a full representation
of the design, inciuding any synthesis and timing analysis control
attributes from the HLL source. Firstly, a sequence of
technology-independent transforms is applied to remove redundant or
equivalent logic, to propagate logic constants, and to simplify various
logic constructions. A second set of transforms is then applied to
optimise the design into a form suitable for efficient implementation of
the design in the target technology. These transforms mimic an “expert
logic designer” by repetitively applying DeMorgan’s Theorem, performing
AND/OR/NOT optimisation. combining AND and OR functions into

available AND-OR and OR-AND gates, and searching for logic
constructs to map into efficient complex technology gates or macros.
The goal of these “expert” transforms is to minimise the implementation
of the design in the target technology. The design is then converted into
the target technology and transforms are applied to repower any signals,
whose fanout exceeds technology or design limits. After design
minimisation and conversion into the target technology, the scenario
may. optionally, include transforms to perform limited timing correction.
The timing correction transforms calculate the delays in logic paths and
attempt to restructure them to meet predefined timing targets. Finally,
the internal synthesis database is output as a TDD.

!
Logic Library
Synthesis

Tnn

Figure 4. IC Synthesis “IC Scenario”.

In the “IC scenario”, the system level ICF for the IC is read in and
converted to an internal synthesis database. At this stage the database
consists of “black boxes” for each FI, interconnected according to the
ICF. The next step is to read in the TDDs for each FI and insert them
into the “black boxes”. In this manner a single design database,
containing all the FIs, is created. Because the volume of design data is
now very large, only a few simple transforms are applied. These include
transforms to repower any signals, whose fanout exceeds technology or
design limits, and to repower and balance all clock signals in the design.
Finally, the internal synthesis database for the entire IC is output as a
TDD.

Within the logic synthesis scenarios, there are a number of transforms
that monitor the progress of logic synthesis. These return information
such as the number of signals, number and types of logic blocks, the size
of the design in the target technology and the number of levels of logic
between registers in the design. A number of transforms exist to handle
any synthesis control attributes from the HLL source of FIs. These
attributes may be used for a number of purposes, including identifying
specific types of signals (e.g. clocks), identifying timing critical and
non-critical signals, fixing signals at specific points in the logic, forcing
specific logic implementations, temporarily hiding portions of logic from
specific transforms and altering the rules that transforms may apply to
specific logic signals and blocks.

A set of transforms, within logic synthesis, can also be used to create the
timing analysis control files used by the separate timing analysis program.
The timing analysis control files list all the signals and gates in the design
and associate with each timing analysis control attributes. These
attributes are either derived directly from the design or as received from
the HLL source. via the TID, or both. The attributes include the
identification of clock signals and clock gates, “don’t care” signals to be
excluded from timing analysis, timing adjust data, the cycle times of clock
inputs, the arrival times for other inputs to the design, and the expected
arrival times for outputs of the design. Where attributes can not be
derived and are not supplied in the design database, default values are
inserted.

Synthesis Validation

Synthesis Validation (see figure 3) is run on a mainframe system in batch
mode. It is used to check for exact logical equivalence between the input
to synthesis (usually a TID) and the output of synthesis (usually a TDD).
The check ensures that none of the transforms, used in logic synthesis,
has corrupted the design in any way.

The design is divided into logic cones, each with a single unique
destination point and one or more source points. The destination points
are either the outputs of the design or the inputs to registers within the
design. The source points are either the inputs of the design or the

1 - 120

1

outputs of registers within the design. Each source and destination point
is called a “Stop Point”. Extremely large logic cones can produce
problems with the synthesis validation process and cause excessively long
program run times. In this case, the designer may introduce additional
“Stop Points&cdq, at equivalent points in both the TID and the TDD.

The synthesis validation program begins by associating every “Stop
Point” in the TID with its equivalent in the TDD, on a one-to-one basis.
Any failure at this stage is indicative of a major problem. After the
“Stop Point” association process, the synthesis validation program checks
for the exact Boolean equivalence of all logic cones. Any failure in
Boolean equivalence checking is reported and indicates either a problem
within the synthesis validation process or some corruption introduced by
a transform in logic synthesis.

Synthesis validation is generally run when a new or updated transform
has been used in logic synthesis and also as a final check of the logic
synthesis used to produce a TDD. Any corruption problems found are
traced to specific transforms and the transforms are corrected. In
practice, very few such problems have been found.

Timing Analysis

Timing Analysis is run on a mainframe system in either batch or
interactive mode. I t is intended to give the designer quick, inexpensive
timing information as early as possible during the design cycle and also
after physical design has been completed. The designer has the choice of
running timing analysis with “Worst Case” or “Best Case” timing data.

Control File

E3 Timing
Data File

Physical Design
Delay Data
(If Available)

Critical
Signal
Listing

Timing
Analysis
Check Data

Figure 5 . Timing Analysis

The timing analysis program is supplied with data for the cycle times of
all clock inputs to the design, the arrival times of all other inputs to the
design, aiid the expected arrival times for all outputs of the design. The
timing analysis program is also supplied with timing analysis control
attributes associated with signals and gates in the design. The attributes
include signal timing adjust data and the identification of “don’t care”
signals to be excluded from timing analysis. Data and attributes are
either generated manually, or obtained from the timing analysis control
files generated by logic synthesis, or allowed to take on default values.

The timing analysis program first calculates the input-to-output delays
for all gates in the TDD. Delays are calculated for both logical polarities
of output signal. The delay of a gate is a function of gate type, signal
transition times, and the output load of the gate. Prior to physical
design, the output loads are estimated as a function of output signal
fanout. After physical design, the outputs loads are calculated as a
function of actual output signal wiring. With the output loads
determined, the gate delays and signal transition times are calculated
using data supplied in a timing data file for the technology. If any signal
transition times exceed a predetermined limit, then the timing analysis
program outputs a warning that identifies any affected signals.

The design is divided into logic cones, each with a single unique
destination point and one or more source points. The destination points
are either the outputs of the design or the clock and data inputs to
registers within the design. The source points are either the inputs of the
design or the outputs of registers within the design. The timing analysis
program uses the gate delay information to calculate the arrival times

associated with all destination points in the design. The arrival time at a
destination point, from a source point, is the sum of the source arrival
time and the delays of all the gates between the source and destination
points. For “Worst Case” analysis, the arrival time associated with a
destination point is the latest arrival time at that point. For “Best Case”
analysis, the arrival time associated with a destination point is the earliest
arrival time at that point.

Using the calculated arrival times, the timing analysis program performs
a number of checks. It checks that the arrival times for the outputs of
the design satisfy the expected output arrival times. At registers, it checks
that the data input arrival times satisfy the set-up and hold time
requirements with respect to the clock input arrival times. At clock gates,
it checks that the arrival times of gating signals, with respect to the
clocks, will not result in sporadic clock pulses at the clock gate outputs.
If any check fails, then the timing analysis program outputs a warning
that identifies any affected signals. If failures occur, then the designer
must take the appropriate action to correct the problem.

The timing analysis program can be used to generate a list of timing
critical signals, with capacitance targets that the placement and wiring
programs will attempt to meet. The timing analysis program generates a
listing of all arrival times and timing margins for all the checks it has
made. Using the timing margins generated and the timing data file for
the target technology, a program utility may be used to generate a list of
timing critical signals, with capacitance targets. The program utility
works backwards from the timing margins and calculates maximum
signal loads that will satisfy the timing requirements. The calculated
maximum signal loads are adjusted and distributed along signal paths
within the logic. Signals and signal paths that cause timing problems or
have low timing margins will be assigned lower maximum capacitance
targets. The generation of capacitance targets is only useful if the
number and size of any timing problems are small. Otherwise
capacitance targets will be set too low for the placement and wiring
programs to achieve.

Simulation

Simulation is the means by which a designer or a design team attempts to
verify that a design correctly performs its required function. This is
achieved by writing simulation test-cases, which provide the stimuli
required to simulate functional operation of the design. The simulated
response of the design to the applied stimuli is examined to verify that
the correct function has been performed. It is the goal of simulation to
check every function and combination of functions of the design in
response to every possible set of functional stimuli. In practice, for large
and complex designs, this goal is unachievable, and the selection of
simulation test-cases must be based on “engineering judgement” and
experience. Most simulation test-cases are written as “self-checking”
test-cases, in that the simulated responses are tested against expected
responses by the test-case. If a check fails, the test-case may generate a
warning or may suspend the simulation.

The simulation environment provides a number of utilities to examine the
results. These include the ability to graphically display signal waveforms
internal to the design under sin~ulation. If the simulation is being run
interactively on a workstation, then the signal waveform display is
continually updated as the simulation proceeds. This interactive display
is extremely useful in the early stages of the design cycle, when designers
are “debugging” their designs.

Two types of simulation are used in the design process, behavioural
simulation and gate-level simulation. Simulation may be run either
interactively on workstations or in batch mode on a mainframe. As the
design cycle proceeds, the design team spend less time on actual design
and more time on simulation until, near the end, the entire effort of the
design team is concentrated on simulation of the complete system.

Behavioural simulation is in the form of event-driven simulation. It has
no concept of logic timing or delays, unless some time-dependent
behaviour has been built into the behavioural model. An event is a
change in one or more inputs to the design, most commonly a transition
of a clock input. Since a clock is generally a cyclical stream of events,
this type of simulation is often termed “Cycle Simulation”. When an
event occurs, the logical state of the behavioural model is changed to
reflect the effects of that event. The new logical state is a function of the
previous logical state and the event causing the change of state. Once the
new logical state of the behavioural model has been achieved, behavioural
simulation processes the next event.

1 - 121

Simulation
Test-Cases

Simulation
Results

Figure 6 . Behavioral Simulation

To perform behavioural simulation on a FI, the HLL source for that FI
is compiled to a behavioural model (MDU. If a number of FIs are to be
simulated together as a system or a subset thereof, the MDLs for the
required FIs are linked together by a system level ICF to form the
equivalent of a larger single behavioural model.

In gate-level simulation, each gate of the design is modelled by a
behavioural model with the element of time built in. The time element is
used to model the input-to-output delays of the gate. Gate-level
simulation is event-driven simulation, differing from behavioural
simulation in that every gate output is capable of causing an event at
some time after an event has occurred at the gate inputs. Between the
time of arrival of an event a t a gate input and the time of any resulting
event at a gate output, an event is said to be “pending” within the gate.
An event at one or more of the inputs of the design causes the
propagation of a sequence of events, dispersed in time, through the gates
of the design. The effects of multiple events are analysed concurrently.
The gate models may also contain internal checks that generate warnings
based on in-built rules. Warnings may be generated in a number of
circumstances including when undefined signal values are encountered. or
when events of less than a required minimum duration occur, or when
events occur in illegal or undesirable combinations or at times likely to
cause hardware problems.

Compile

Gate-Level

Simulation
Test-Cases

Physical Design
Delay Data
(If Available)

‘&-iml Simulation

Results

Figure 7. Gate-Level Simulation

To perform gate-level simulation on a design, the TDD for the design
must be compiled into a gate-level simulation model (GLM). The GLM
for a design incorporates technology-dependent gate delay information

1

and timing rules. The behavioural models and rules for the gates of the
design are obtained from a library of technology gate models. Prior to
physical design, the gate delays are estimated as a function of output
signal fanout. After physical design, the gate delays are calculated as a
function of actual output signal wiring. Three types of gate delays are
available: “Worst Case”, “Best Case”, or “Nominal”. Gate-level
simulation can be performed by selecting any of these three options
applied to all gates of the design.

Gate-level simulation is necessarily slower than behavioural simulation.
Behavioural simulation is used extensively, throughout the design cycle.
because of its speed and, therefore large volumes of simulation test data
can be handled. Behavioural simulation is run either on workstations or
on a mainframe, and is used to verify the function of a system or any
subset thereof. Gate-level simulation is normally run on a mainframe.
The design team only performs gate-level simulation late in the design
cycle, where it is used as a cross-check against behavioural simulation, as
additional verification of the synthesis process, and to warn of any timing
problems missed through assumptions made in timing analysis. Because
gate-level simulation is slower than behavioural simulation, less
simulation test data can be handled. The test data used for gate-level
simulation is usually a subset of the simulation test data used in
behavioural simulation.

Automatic Test Pattern Generation

Automatic test pattern generation is performed by a program that uses a
number of different algorithms to generate test pattern data. The test
pattern data is used in the IC manufacturing location to test and verify
the fabrication of an IC design, and to separate faulty and fault-free ICs
from a manufacturing batch.

In test pattern generation, an IC design is considered to be a large
collection of nodes, any one of which may be stuck at either logical one
or zero to simulate a fault condition in the fabrication of the IC. This
approach is commonly known as “DC Stuck-Fault Testing”. To observe
a stuck fault within an IC design, the inputs of the logic must be
stimulated with a pattern that will make the effect of a stuck fault
statically observable at one or more outputs of the IC.

The test pattern generation program uses a number of different
algorithms to derive patterns to make stuck faults observable. When a
pattern has been derived that makes a stuck fault observable, that stuck
fault is said to have been tested. In some cases, a single pattern tests a
large number of stuck faults, but in other cases, a large number of
patterns may be needed to test a single stuck fault. The derived patterns
do not necessarily bear any relation to actual functional patterns, but are
developed by the algorithms on the basis of the logic present and the
stuck faults being tested.

The test pattern generation program is run incrementally, with run after
run being performed until the required number of stuck faults has been
tested. The percentage of all the stuck faults, associated with the design,
which have been tested is commonly known as the “test coverage”, and is
considered to be a measure of the “testability” of the design. It is a
requirement of the IC manufacturing location that a given level of test
coverage be achieved or exceeded. The design team often attempts to
start test pattern generation early in the design cycle, in order to obtain
early warning of any problems with the testability of the design. Any
problems with the testability of the design will necessitate updates to the
design, which may involve restructuring the design or providing
additional non-functional test paths in the design. For the final
generation of data to be sent to the IC manufacturing location, automatic
test pattern generation must be run after the physical design process has
been completed.

The first run of the program begins with a list of all stuck faults in the
design. When the program generates a pattern that makes a stuck fault
observable, that stuck fault is removed from the list so that no further
attempt is made to make that fault observable. A list of stuck faults
remaining and the patterns generated are output at the end of each run,
along with the current test coverage figure. Each subsequent run uses the
list of remaining stuck faults from the previous run and adds to the
patterns generated. In special cases, the program can be used to
incorporate and analyse manually generated test patterns.

If the design follows the rules of Level Sensitive Scan Design (LSSD),
then the task of test pattern generation is made far easier, since all LSSD
registers in the design can be considered to be both inputs and outputs of
the design. In a well structured LSSD design, the test pattern generation

122

program will obtain very high test coverage, approaching or even
reaching 100% of all stuck faults tested.

Physical Design

Physical design is performed by a number of programs that convert the
TDD for an IC into physical mask artwork required to manufacture the
IC. The first stage of physical design is the automatic placement
program, which places the gates of the IC design onto the IC image. The
placement program is the most crucial phase of physical design, since it
can have dramatic effects on the wireability and the timing performance
of the design. The next stage is the automatic wiring program which
attempts to route all the signal wiring between the gates. Any signals
which are not successfully routed are wired manually. The next stage is a
program which generates the physical mask artwork for the entire IC.
The final stage is an artwork checking program which verifies that no
violations of the physical ground rules for the technology have occurred.

Automatic Placement

In the first stage of physical design, an automatic placement program
places the gates of the IC design onto a grid of legal locations on the IC
image. The program takes a heuristic approach to the placement of
gates, it continually changes the locations of gates and evaluates its own
progress by assigning a score to each unique placement configuration.
Initially, the program interchanges gate locations almost at random and
slowly reduces the number of interchanges with a strategy to continually
improve the score. The score is a function of a number of parameters,
including estimates of wiring congestion in any direction, densities of
logic gate input/outputs. and estimates of signal wiring length and
capacitance. The weighting for any parameter, used to determine the
score, may be changed by overriding the default values with a placement
control file. The program also attempts to meet any supplied wiring
capacitance targets for timing critical signals. I t is also possible to
confine the placement of specific gates, input receivers and output drivers
to either fixed locations or predefined areas of the IC image.

At the end of the automatic placement program, data on the final
placement configuration is listed and may be assessed by the design team.
From the data, the design team is able to estimate whether the automatic
wiring program will be able to successfully route the required signal
wiring for the generated placement configuration. By using the estimates
of wiring capacitance, it is possible to obtain an estimate of the output
loads for all the gates in the design. This output load data can be
supplied to the timing analysis program, to obtain a better estimate of the
likely timing performance of the design. If the data suggests that any
wiring or timing problems are likely to occur, then the automatic

placement program may be rerun with revised control data in an attempt
to resolve the problems.

Automatic Wiring
In the next stage of physical design, when the design team is satisfied
with the placement configuration, an automatic wiring program is used to
route the signal wiring between the gates placed on the IC image. The
program routes the signal wiring of the design on a wiring grid,
compatible with the physical design rules for the technology. The
program attempts to route each signal along the shortest possible path on
the wiring grid, whilst avoiding areas reserved for the wiring of power
supplies and the wiring within the gates of the design. The program also
attempts to meet any supplied wiring capacitance targets for timing
critical signals. As more and more wires are routed, wiring path conflicts
begin to occur. Wiring path conflicts are resolved by choosing alternative
wiring paths and, where necessary, rewiring signals that are causing path
conflicts. At the end of the wiring program, any signals for which the
wiring is incomplete can be wired manually on a graphics screen.
Provided that the placement configuration is of good quality, then very
few signals will require manual intervention.

When the wiring is complete, the output loads for all the gates in the
design can be obtained. The output load data is used to develop delay
data, which is then used by the timing analysis program and in gate-level
simulation. Thereby the performance of the IC can be analysed with
physical delays. If small timing problems are found, the automatic wiring
program may be rerun with revised wiring capacitance targets, or the
signal wiring can be manually updated. In the unlikely event of major
timing problems being found, then manual updates to both the placement
and wiring may be attempted, or the entire physical design process may
have to be restarted.

Artwork Generation and Checking

In the next phase of physical design, when successful placement and
wiring have been achieved, a program is run to generate the physical
mask artwork for the IC. The mask artwork for the gates of the design
is obtained from physical data in the technology gate library. Signal and
power supply wiring is converted from lines on the wiring grid into
polygons, whose width and spacing are defined by technology ground
rules.

As a final check on the physical design process, a program is run to
verify that the generated mask artwork does not violate any physical
ground rule for the technology. No ground rule violations should be
found since the placement and wiring programs are designed to operate
within the technology ground rules.

1 - 123

