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Abstract 

This paper describes a VLSI design process developed by a small team of 
logic designers and design tools specialists at the IBM Laboratory at 
Hursley in England. The design process consists of a large number of 
programs or design tools, many obtained from other IBM laboratories. 
Some of the “imported” programs were adapted and several other 
programs were specifically created. The design process has been used 
successfully to produce “first-time-right” VLSI integrated circuits K s )  
for several IBM projects, including IBM’s Image AdapteriA. 

The described design process may be summarised as follows: 
A design, to be implemented in VLSl hardware, is partitioned into a 
number of smaller units. The design of each smaller unit is entered as 
text in a High Level Language as a technology independent behavioural 
description, which is then compiled for input to logic synthesis, where it 
is converted into an optimised design in the target VLSI technology. 
When all the smaller units to be integrated into a single VLSI IC have 
undergone this process, they are assembled together by a further run of 
logic synthesis. The resulting IC design, in the target technology, is then 
processed to produce the artwork and test patterns required for 
manufacture of the IC. In support of all these activities, a number of 
programs exist to allow the design team to perform simulation, timing 
analysis, and validation of the logic synthesis process. 

Introduction 

The IBM Laboratory at Hursley in England has amongst its 
responsibilities the development of display adapters and monitors for the 
IBM Personal System/2 product family. 

Display adapters are complex logic and memory systems that are able to 
update text, graphics, and image data in a display buffer memory. They 
also control the refreshing of the display data from the display buffer 
memory to the electron guns of a cathode ray tube (CRT) or other 
display devices. Display adapters require a large amount of complex 
high-speed logic to perform the required functions. The size and 
complexity of this logic, together with commercial pressure to introduce 
new products rapidly, demand a logic design process that allows rapid, 
efficient, adaptable, and accurate design of application specific VLSI ICs. 

This paper describes such a VLSI design process, also termed a 
methodology, that has been developed to satisfy these requirements. I t  
begins with a description of the entire design cycle, from the point of 
view of a design team using the methodology. This is used to set the 
context, within the design methodology, for the various features of the 
methodology described in more detail later in the paper. 

Description of the Design Cycle 

The overall function of the hardware of the system being designed is 
partitioned into a number of Functional Islands ms), with the interfaces 
between the FIs clearly defined. If the overall function must be 
implemented using more than one IC, a decision on the partitioning 
between ICs can be made at the start or can be delayed until later in the 
design cycle. The FIs are constrained to a “manageable” size, so that a 
single designer can work on one or more FIs, and that a single FI can be 
handled rapidly by the design tools. The interfaces of each FI, in terms 
of its inputs and outputs, are listed in a FI Inter-Connect File (ICF). 

A designer uses a text editor at a computer terminal to create the design 
of a given FI as a technology-independent behavioural description of the 
design expressed in text form using the syntax of a High Level Language 
(HLL). The HLL text generated is the HLL source for the FI, and 
together with the ICF for the FI forms the complete design source data 
for the FI. The HLL source for each FI may be compiled either to a 
behavioural model (MDL) for behavioural simulation or to a 
Technology-Independent Database (TID) for processing by logic 
synthesis. 
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At an early stage, a designer may choose to perform behavioural 
simulation on a single F1, in isolation, using simple simulation test-cases. 
This early simulation of a single FI is often used as an integral part of the 
development of the FI design. When the design of several FIs reaches a 
given level of functionality, the design team may begin behavioural 
simulation on the system or a subset thereof. Several FIs are simulated 
together, as a single functional unit, for verification of system or 
sub-system function and to check the FI connectivity. The design team 
usually attempts to reach this stage early in the design cycle, to obtain 
early verification of system functionality. 

For system behavioural simulation, the FIs comprising the system are 
listed in a Hierarchy Content File (HCF). The HCF is used as input to a 
program (CREATE) that generates a system level ICF by linking together 
all the required ICFs. The system level ICF is then used in behavioural 
simulation to link together the MDLs for the FIs. 

In order to perform logic synthesis on the FI, the HLL source for the FI 
is compiled into a Technology-Independent Database (TID) form. The 
TID for the FI is then processed through logic synthesis, where a number 
of transforms are used to convert and optimise the design to create a 
Technology-Dependent Database (TDD) for the FI in the target 
technology. Transforms, within logic synthesis, are also used to create 
control data for use in any subsequent timing analysis. 

The designer will often run synthesis on the FI early in the design cycle, 
in order to obtain a sizing for the FI in the target technology. The 
designer may also run timing analysis and design rules checking on the 
TDD for the FI, in isolation, as an early warning of internal timing 
problems and design rule violations. At this stage, the designer may also 
run a synthesis validation program, in order to verify that the transforms, 
within logic synthesis, have not corrupted the design of the FI. 

When all the FIs for a single IC have been synthesised to TDDs, logic 
synthesis is used to link the TDDs according to the FI interfaces defined 
in a system level ICF for the IC. The system level ICF for the IC is 
generated by the CREATE program that links together the ICFs of all 
the FIs of the IC. as listed in an IC level HCF. A different set of 
transforms, within logic synthesis, is used to create a single TDD for the 
entire IC and the control data to be used in timing analysis. At this 
stage, technology-dependent timing analysis and design rules checking are 
run on the TDD for the entire IC. Any timing or design rule faults 
found are related to offending Fls, and necessitate updates to the HLL 
sources for those FIs. System behavioural simulation is performed to 
ensure that the required function has not been compromised by any 
update. Updated FIs are resynthesised and the TDD for the IC is 
rebuilt, so that timing analysis and design rules checking can be rerun. 

As the design cycle proceeds. the design team spend less time on actual 
design and more time on simulation until, near the end, the entire effort 
of the design team is concentrated on simulation of the complete system. 
Behavioural simulation is used to verify the overall system function and is 
used extensively because of its speed and the large amount of simulation 
test data that can be handled. 

When a TDD exists for an entire IC, the TDD can be compiled into a 
gate-level simulation model (GLMI, which incorporates estimated 
technology-dependent gate delay information and timing rules. 
Gate-level simulation is necessarily slower than behavioural simulation, 
and therefore less simulation test data can be handled. The design team 
only performs gate-level simulation late in the design cycle, where it is 
used as a cross-check against behavioural simulation, as additional 
verification of the synthesis process, and to warn of any timing problems 
missed through assumptions made in timing analysis. 

When the design team is satisfied with the performance and functionality 
of an entire IC, automatic test pattern generation and the physical design 
process can begin. The design team often attempts to reach this stage 
early in the design cycle, in order to obtain early warning of any 
problems, with timing. testability. and wireabilility of the design that 
might occur in the latter stages of the design process. Automatic test 
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pattern generation and the physical design process can be run as parallel 
or independent activities. However, for the final generation of data to be 
sent to the IC manufacturing location, automatic test pattern generation 
must be run after the physical design process has been completed. 

In the physical design process, the TDD for the IC is processed by 
automatic placement and wiring programs as the first step towards the 
creation of the physical mask artwork required for the manufacture of 
the IC. The timing analysis program can be used to generate a list of 
timing critical signals, with capacitance targets that the placement and 
wiring programs will attempt to meet. The design team may choose to 
modify the list of critical signals, prior to placement and wiring. The 
placement and wiring programs also allow a limited amount of manual 
intervention. 

After placement and wiring, the capacitance and resistance values for all 
signal wiring are extracted. The extracted data is used to develop delay 
data for the IC. The delay data is used in timing analysis to ensure that 
no timing problems have been created by the physical design process. 
The delay data is also incorporated into the GLM, so that gate-level 
simulation may be rerun with physical delays. If any problems are found 
at this stage, manual updates can be made to the placement and wiring. 
If a large number of problems is found, then the list of critical signals is 
modified and the automatic placement and wiring programs are rerun. 
When satisfactory placement and wiring for the IC has been achieved, the 
physical mask artwork for the IC is generated and checked against 
technology ground rules. 

At the end of the design process. the test pattern data and the physical 
mask artwork data are sent together to the IC manufacturing location. 

Design Partitioning 

The design of any system requires design partitioning at several different 
levels. At the highest level, a partition may be defined between system 
software and system hardware. At the hardware level, the design must be 
partitioned between elements of the design that may be implemented in 
“off the shelf‘ components already available and elements of the design 
that must be integrated in one or more application specific VLSI ICs. 
The scope of this paper covers the design of system hardware that must 
be integrated in one or more application specific VLSI ICs. 

The design of system hardware is partitioned into a number of smaller 
units. These smaller units are termed Functional Islands u s ) .  Each FI 
performs a distinct system function or set of system functions. The FIs 
are constrained to a “manageable” size, so that a single designer can 
work on one or more FIs, and that a single FI can be handled rapidly by 
the design tools. Sometimes it may be considered appropriate for more 
than one designer to work on a single FI, particularly if one of the 
designers has limited design experience. 

The interfaces of each FI, in terms of its inputs and outputs, are clearly 
defined in a FI Inter-Connect File (ICF). If the design must be 
implemented using more than one IC. then each IC will be allocated a 
number of FIs. subject to a number of considerations including the 
minimisation of the complexity and size of the inter-IC interfaces, and the 
physical sizes of the ICs. The decision on the partitioning between ICs 
can be made at the start or can be delayed until later in the design cycle. 

The granularity, created by partitioning the design into FIs, allows each 
FI to be handled independently and allows the grouping of Fls at a 
number of different levels. The f I s  may be grouped at the entire system 
level or at any subsystem level, particularly at the level of the subsystem 
represented by a single IC. The FIs comprising a system or subsystem 
are listed in a Hierarchy Content File (HCF). HCFs at a number of 
different levels may be defined. The HCF is used as input to a program 
(CREATE) that generates a system level ICF by linking together all the 
required ICFs. System level ICFs are used in behavioural simulation and 
in logic synthesis. 

! ’ IcF Create 1 
! 

Figure 1 .  System level ICF generation 

During the design cycle a number of different versions of each FI may be 
produced, and a number of different versions of each HCF may be 
generated to incorporate different versions of FIs. The different versions 
of Fls may result from changes in functional requirements and any 
problems found in simulation or timing analysis. All HLL sources, ICFs, 
HCFs and MDLs are maintained in a design library system and are made 
available to the entire design team. In the design library system, different 
versions of Fls are identified by FI name and version number, and 
different versions of HCFs and system level ICFs are identified by their 
system levels and version numbers. This means of identification is 
retained throughout the design process. 

High Level Language Design Entry 

The High Level Language (HLL) allows the designer to design systems in 
list form rather than in block form (as with graphical design entry tools). 
It provides an extremely fast, efficient, and unambiguous means of design 
entry. The designer is able to work with bus-wide entities, but can freely 
use substringing. Because the design is entered as text, comments and 
in-source documentation can be included (similarly to a programming 
language). 

The text entered is the source specification of the design as a 
technology-independent behavioural description of the design and may be 
at a behavioural level or at a hardware-oriented level or a mixture of the 
two. The entire HLL specification of the design is, in fact, a behavioural 
description but the distinction between behavioural level and 
hardware-oriented level is made because many of the more complex HLL 
behavioural constructs do not have direct one-to-one mappings into 
VLSI hardware. 

Synthesis Behavioural 

‘6‘ 
To Synthesis 

T 
To Behavioural 
Simulation 

Figure 2. FI HLL compile 

The HLL source text for a design may be compiled into a behavioural 
model (MDL) for behavioural simulation of the design. When the HLL 
source of the design is specified at the hardware-oriented level, it can be 
compiled to a TID. which is used as the input to logic synthesis. Because 
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logic synthesis is able to operate on the TID to produce “optimal” logic 
in a target technology, the designer does not have to concentrate on the 
design at the gate level. This allows the designer to concentrate on the 
design of the system at a functional level. 

The designer has available a library of standard HLL macros that can be 
used as shorthand for complex, yet commonly used, HLL constructs. 
Support for user-defined HLL macros is also provided. The syntax of 
the HLL also allows the designer to apply attributes to detailed elements 
of the design, in order to control the effects of logic synthesis and the 
generation of timing analysis control data. If the designer wishes to 
override logic synthesis in any area of the design, the HLL provides 
syntax for the explicit specification of logic gates in any target 
technology. 

Because the HLL specification of a design is essentially technology 
independent, it can be used for logic synthesis into a number of different 
technologies. The HLL specification is also “portable” and can be used 
as part of a number of different ICs, including up-grades and follow-ons 
of any current IC. 

Logic Synthesis 

Logic synthesis is normally run on a mainframe system in batch mode. 
For small designs, however, it may be run interactively. Logic synthesis 
is an environment set up for the manipulation of a logic design. Within 
logic synthesis, a number of transforms operate sequentially on a logic 
design to convert it from one form to another. The transforms used by 
logic synthesis are available in a transform library. Logic synthesis also 
has access to technology data, which is integrated into the internal 
synthesis database, from a set of technology libraries. 

The transforms, to be applied to a logic design, are listed in a synthesis 
control file, which is termed the synthesis “scenario” The design 
methodology described uses two basic scenarios. The first scenario is the 
“FI scenario”, which converts a TID into a TDD, with the logic 
optimised for the target technology. The second scenario is the “IC 
scenario”, which links a number of TDDs for the FIs that make up an 
IC, to create a TDD for the IC. 

In special circumstances, it is possible for a designer to modify a synthesis 
scenario by adding, removing, or altering specific transforms. This is 
usually undertaken by only the most experienced designers in order to 
“customise” the effect of logic synthesis for a specific design goal or to 
experiment with slightly different scenarios on the same design. Any 
perceived improvements may become permanently incorporated into the 
standard scenarios. Although the ability to alter the synthesis scenario 
sometimes yields improved results, it is potentially hazardous and hence 
the need for a synthesis validation program. 

Transform 
Library 
n 6 - F Technology Librarv 
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% 
1 1  U 

Analysis 
Control File 

Synthesis 
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Figure 3. FI Synthesis “FI Scenario”. 

In the “FI scenario”, a TID is read and converted to an internal synthesis 
database. The internal synthesis database contains a full representation 
of the design, inciuding any synthesis and timing analysis control 
attributes from the HLL source. Firstly, a sequence of 
technology-independent transforms is applied to remove redundant or 
equivalent logic, to propagate logic constants, and to simplify various 
logic constructions. A second set of transforms is then applied to 
optimise the design into a form suitable for efficient implementation of 
the design in the target technology. These transforms mimic an “expert 
logic designer” by repetitively applying DeMorgan’s Theorem, performing 
AND/OR/NOT optimisation. combining AND and OR functions into 

available AND-OR and OR-AND gates, and searching for logic 
constructs to map into efficient complex technology gates or macros. 
The goal of these “expert” transforms is to minimise the implementation 
of the design in the target technology. The design is then converted into 
the target technology and transforms are applied to repower any signals, 
whose fanout exceeds technology or design limits. After design 
minimisation and conversion into the target technology, the scenario 
may. optionally, include transforms to perform limited timing correction. 
The timing correction transforms calculate the delays in logic paths and 
attempt to restructure them to meet predefined timing targets. Finally, 
the internal synthesis database is output as a TDD. 

! 
Logic Library 
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Figure 4. IC Synthesis “IC Scenario”. 

In the “IC scenario”, the system level ICF for the IC is read in and 
converted to an internal synthesis database. At this stage the database 
consists of “black boxes” for each FI, interconnected according to the 
ICF. The next step is to read in the TDDs for each FI and insert them 
into the “black boxes”. In this manner a single design database, 
containing all the FIs, is created. Because the volume of design data is 
now very large, only a few simple transforms are applied. These include 
transforms to repower any signals, whose fanout exceeds technology or 
design limits, and to repower and balance all clock signals in the design. 
Finally, the internal synthesis database for the entire IC is output as a 
TDD. 

Within the logic synthesis scenarios, there are a number of transforms 
that monitor the progress of logic synthesis. These return information 
such as the number of signals, number and types of logic blocks, the size 
of the design in the target technology and the number of levels of logic 
between registers in the design. A number of transforms exist to handle 
any synthesis control attributes from the HLL source of FIs. These 
attributes may be used for a number of purposes, including identifying 
specific types of signals (e.g. clocks), identifying timing critical and 
non-critical signals, fixing signals at specific points in the logic, forcing 
specific logic implementations, temporarily hiding portions of logic from 
specific transforms and altering the rules that transforms may apply to 
specific logic signals and blocks. 

A set of transforms, within logic synthesis, can also be used to create the 
timing analysis control files used by the separate timing analysis program. 
The timing analysis control files list all the signals and gates in the design 
and associate with each timing analysis control attributes. These 
attributes are either derived directly from the design or as received from 
the HLL source. via the TID, or both. The attributes include the 
identification of clock signals and clock gates, “don’t care” signals to be 
excluded from timing analysis, timing adjust data, the cycle times of clock 
inputs, the arrival times for other inputs to the design, and the expected 
arrival times for outputs of the design. Where attributes can not be 
derived and are not supplied in the design database, default values are 
inserted. 

Synthesis Validation 

Synthesis Validation (see figure 3) is run on a mainframe system in batch 
mode. It is used to check for exact logical equivalence between the input 
to synthesis (usually a TID) and the output of synthesis (usually a TDD). 
The check ensures that none of the transforms, used in logic synthesis, 
has corrupted the design in any way. 

The design is divided into logic cones, each with a single unique 
destination point and one or more source points. The destination points 
are either the outputs of the design or the inputs to registers within the 
design. The source points are either the inputs of the design or the 
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outputs of registers within the design. Each source and destination point 
is called a “Stop Point”. Extremely large logic cones can produce 
problems with the synthesis validation process and cause excessively long 
program run times. In this case, the designer may introduce additional 
“Stop Points&cdq, at equivalent points in both the TID and the TDD. 

The synthesis validation program begins by associating every “Stop 
Point” in the TID with its equivalent in the TDD, on a one-to-one basis. 
Any failure at this stage is indicative of a major problem. After the 
“Stop Point” association process, the synthesis validation program checks 
for the exact Boolean equivalence of all logic cones. Any failure in 
Boolean equivalence checking is reported and indicates either a problem 
within the synthesis validation process or some corruption introduced by 
a transform in logic synthesis. 

Synthesis validation is generally run when a new or updated transform 
has been used in logic synthesis and also as a final check of the logic 
synthesis used to produce a TDD. Any corruption problems found are 
traced to specific transforms and the transforms are corrected. In 
practice, very few such problems have been found. 

Timing Analysis 

Timing Analysis is run on a mainframe system in either batch or 
interactive mode. I t  is intended to give the designer quick, inexpensive 
timing information as early as possible during the design cycle and also 
after physical design has been completed. The designer has the choice of 
running timing analysis with “Worst Case” or “Best Case” timing data. 

Control File 

E3 Timing 
Data File 

Physical Design 
Delay Data 
(If Available) 

Critical 
Signal 
Listing 

Timing 
Analysis 
Check Data 

Figure 5 .  Timing Analysis 

The timing analysis program is supplied with data for the cycle times of 
all clock inputs to the design, the arrival times of all other inputs to the 
design, aiid the expected arrival times for all outputs of the design. The 
timing analysis program is also supplied with timing analysis control 
attributes associated with signals and gates in the design. The attributes 
include signal timing adjust data and the identification of “don’t care” 
signals to be excluded from timing analysis. Data and attributes are 
either generated manually, or obtained from the timing analysis control 
files generated by logic synthesis, or allowed to take on default values. 

The timing analysis program first calculates the input-to-output delays 
for all gates in the TDD. Delays are calculated for both logical polarities 
of output signal. The delay of a gate is a function of gate type, signal 
transition times, and the output load of the gate. Prior to physical 
design, the output loads are estimated as a function of output signal 
fanout. After physical design, the outputs loads are calculated as a 
function of actual output signal wiring. With the output loads 
determined, the gate delays and signal transition times are calculated 
using data supplied in a timing data file for the technology. If any signal 
transition times exceed a predetermined limit, then the timing analysis 
program outputs a warning that identifies any affected signals. 

The design is divided into logic cones, each with a single unique 
destination point and one or more source points. The destination points 
are either the outputs of the design or the clock and data inputs to 
registers within the design. The source points are either the inputs of the 
design or the outputs of registers within the design. The timing analysis 
program uses the gate delay information to calculate the arrival times 

associated with all destination points in the design. The arrival time at a 
destination point, from a source point, is the sum of the source arrival 
time and the delays of all the gates between the source and destination 
points. For “Worst Case” analysis, the arrival time associated with a 
destination point is the latest arrival time at that point. For “Best Case” 
analysis, the arrival time associated with a destination point is the earliest 
arrival time at that point. 

Using the calculated arrival times, the timing analysis program performs 
a number of checks. It checks that the arrival times for the outputs of 
the design satisfy the expected output arrival times. At registers, it checks 
that the data input arrival times satisfy the set-up and hold time 
requirements with respect to the clock input arrival times. At clock gates, 
it checks that the arrival times of gating signals, with respect to the 
clocks, will not result in sporadic clock pulses at the clock gate outputs. 
If any check fails, then the timing analysis program outputs a warning 
that identifies any affected signals. If failures occur, then the designer 
must take the appropriate action to correct the problem. 

The timing analysis program can be used to generate a list of timing 
critical signals, with capacitance targets that the placement and wiring 
programs will attempt to meet. The timing analysis program generates a 
listing of all arrival times and timing margins for all the checks it has 
made. Using the timing margins generated and the timing data file for 
the target technology, a program utility may be used to generate a list of 
timing critical signals, with capacitance targets. The program utility 
works backwards from the timing margins and calculates maximum 
signal loads that will satisfy the timing requirements. The calculated 
maximum signal loads are adjusted and distributed along signal paths 
within the logic. Signals and signal paths that cause timing problems or 
have low timing margins will be assigned lower maximum capacitance 
targets. The generation of capacitance targets is only useful if the 
number and size of any timing problems are small. Otherwise 
capacitance targets will be set too low for the placement and wiring 
programs to achieve. 

Simulation 

Simulation is the means by which a designer or a design team attempts to 
verify that a design correctly performs its required function. This is 
achieved by writing simulation test-cases, which provide the stimuli 
required to simulate functional operation of the design. The simulated 
response of the design to the applied stimuli is examined to verify that 
the correct function has been performed. It is the goal of simulation to 
check every function and combination of functions of the design in 
response to every possible set of functional stimuli. In practice, for large 
and complex designs, this goal is unachievable, and the selection of 
simulation test-cases must be based on “engineering judgement” and 
experience. Most simulation test-cases are written as “self-checking” 
test-cases, in that the simulated responses are tested against expected 
responses by the test-case. If a check fails, the test-case may generate a 
warning or may suspend the simulation. 

The simulation environment provides a number of utilities to examine the 
results. These include the ability to graphically display signal waveforms 
internal to the design under sin~ulation. If the simulation is being run 
interactively on a workstation, then the signal waveform display is 
continually updated as the simulation proceeds. This interactive display 
is extremely useful in the early stages of the design cycle, when designers 
are “debugging” their designs. 

Two types of simulation are used in the design process, behavioural 
simulation and gate-level simulation. Simulation may be run either 
interactively on workstations or in batch mode on a mainframe. As the 
design cycle proceeds, the design team spend less time on actual design 
and more time on simulation until, near the end, the entire effort of the 
design team is concentrated on simulation of the complete system. 

Behavioural simulation is in the form of event-driven simulation. It has 
no concept of logic timing or delays, unless some time-dependent 
behaviour has been built into the behavioural model. An event is a 
change in one or more inputs to the design, most commonly a transition 
of a clock input. Since a clock is generally a cyclical stream of events, 
this type of simulation is often termed “Cycle Simulation”. When an 
event occurs, the logical state of the behavioural model is changed to 
reflect the effects of that event. The new logical state is a function of the 
previous logical state and the event causing the change of state. Once the 
new logical state of the behavioural model has been achieved, behavioural 
simulation processes the next event. 
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Figure 6 .  Behavioral Simulation 

To perform behavioural simulation on a FI, the HLL source for that FI 
is compiled to a behavioural model (MDU. If a number of FIs are to be 
simulated together as a system or a subset thereof, the MDLs for the 
required FIs are linked together by a system level ICF to form the 
equivalent of a larger single behavioural model. 

In gate-level simulation, each gate of the design is modelled by a 
behavioural model with the element of time built in. The time element is 
used to model the input-to-output delays of the gate. Gate-level 
simulation is event-driven simulation, differing from behavioural 
simulation in that every gate output is capable of causing an event at 
some time after an event has occurred at the gate inputs. Between the 
time of arrival of an event a t  a gate input and the time of any resulting 
event at a gate output, an event is said to be “pending” within the gate. 
An event at one or more of the inputs of the design causes the 
propagation of a sequence of events, dispersed in time, through the gates 
of the design. The effects of multiple events are analysed concurrently. 
The gate models may also contain internal checks that generate warnings 
based on in-built rules. Warnings may be generated in a number of 
circumstances including when undefined signal values are encountered. or 
when events of less than a required minimum duration occur, or when 
events occur in illegal or undesirable combinations or at times likely to 
cause hardware problems. 

Compile 

Gate-Level 

Simulation 
Test-Cases 

Physical Design 
Delay Data 
(If Available) 

‘&-iml Simulation 

Results 

Figure 7. Gate-Level Simulation 

To perform gate-level simulation on a design, the TDD for the design 
must be compiled into a gate-level simulation model (GLM). The GLM 
for a design incorporates technology-dependent gate delay information 
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and timing rules. The behavioural models and rules for the gates of the 
design are obtained from a library of technology gate models. Prior to 
physical design, the gate delays are estimated as a function of output 
signal fanout. After physical design, the gate delays are calculated as a 
function of actual output signal wiring. Three types of gate delays are 
available: “Worst Case”, “Best Case”, or “Nominal”. Gate-level 
simulation can be performed by selecting any of these three options 
applied to all gates of the design. 

Gate-level simulation is necessarily slower than behavioural simulation. 
Behavioural simulation is used extensively, throughout the design cycle. 
because of its speed and, therefore large volumes of simulation test data 
can be handled. Behavioural simulation is run either on workstations or 
on a mainframe, and is used to verify the function of a system or any 
subset thereof. Gate-level simulation is normally run on a mainframe. 
The design team only performs gate-level simulation late in the design 
cycle, where it is used as a cross-check against behavioural simulation, as 
additional verification of the synthesis process, and to warn of any timing 
problems missed through assumptions made in timing analysis. Because 
gate-level simulation is slower than behavioural simulation, less 
simulation test data can be handled. The test data used for gate-level 
simulation is usually a subset of the simulation test data used in 
behavioural simulation. 

Automatic Test Pattern Generation 

Automatic test pattern generation is performed by a program that uses a 
number of different algorithms to generate test pattern data. The test 
pattern data is used in the IC manufacturing location to test and verify 
the fabrication of an IC design, and to separate faulty and fault-free ICs 
from a manufacturing batch. 

In test pattern generation, an IC design is considered to be a large 
collection of nodes, any one of which may be stuck at either logical one 
or zero to simulate a fault condition in the fabrication of the IC. This 
approach is commonly known as “DC Stuck-Fault Testing”. To observe 
a stuck fault within an IC design, the inputs of the logic must be 
stimulated with a pattern that will make the effect of a stuck fault 
statically observable at one or more outputs of the IC. 

The test pattern generation program uses a number of different 
algorithms to derive patterns to make stuck faults observable. When a 
pattern has been derived that makes a stuck fault observable, that stuck 
fault is said to have been tested. In some cases, a single pattern tests a 
large number of stuck faults, but in other cases, a large number of 
patterns may be needed to test a single stuck fault. The derived patterns 
do not necessarily bear any relation to actual functional patterns, but are 
developed by the algorithms on the basis of the logic present and the 
stuck faults being tested. 

The test pattern generation program is run incrementally, with run after 
run being performed until the required number of stuck faults has been 
tested. The percentage of all the stuck faults, associated with the design, 
which have been tested is commonly known as the “test coverage”, and is 
considered to be a measure of the “testability” of the design. It is a 
requirement of the IC manufacturing location that a given level of test 
coverage be achieved or exceeded. The design team often attempts to 
start test pattern generation early in the design cycle, in order to obtain 
early warning of any problems with the testability of the design. Any 
problems with the testability of the design will necessitate updates to the 
design, which may involve restructuring the design or providing 
additional non-functional test paths in the design. For the final 
generation of data to be sent to the IC manufacturing location, automatic 
test pattern generation must be run after the physical design process has 
been completed. 

The first run of the program begins with a list of all stuck faults in the 
design. When the program generates a pattern that makes a stuck fault 
observable, that stuck fault is removed from the list so that no further 
attempt is made to make that fault observable. A list of stuck faults 
remaining and the patterns generated are output at the end of each run, 
along with the current test coverage figure. Each subsequent run uses the 
list of remaining stuck faults from the previous run and adds to the 
patterns generated. In special cases, the program can be used to 
incorporate and analyse manually generated test patterns. 

If the design follows the rules of Level Sensitive Scan Design (LSSD), 
then the task of test pattern generation is made far easier, since all LSSD 
registers in the design can be considered to be both inputs and outputs of 
the design. In a well structured LSSD design, the test pattern generation 
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program will obtain very high test coverage, approaching or even 
reaching 100% of all stuck faults tested. 

Physical Design 

Physical design is performed by a number of programs that convert the 
TDD for an IC into physical mask artwork required to manufacture the 
IC. The first stage of physical design is the automatic placement 
program, which places the gates of the IC design onto the IC image. The 
placement program is the most crucial phase of physical design, since it 
can have dramatic effects on the wireability and the timing performance 
of the design. The next stage is the automatic wiring program which 
attempts to route all the signal wiring between the gates. Any signals 
which are not successfully routed are wired manually. The next stage is a 
program which generates the physical mask artwork for the entire IC. 
The final stage is an artwork checking program which verifies that no 
violations of the physical ground rules for the technology have occurred. 

Automatic Placement 

In the first stage of physical design, an automatic placement program 
places the gates of the IC design onto a grid of legal locations on the IC 
image. The program takes a heuristic approach to the placement of 
gates, it continually changes the locations of gates and evaluates its own 
progress by assigning a score to each unique placement configuration. 
Initially, the program interchanges gate locations almost at random and 
slowly reduces the number of interchanges with a strategy to continually 
improve the score. The score is a function of a number of parameters, 
including estimates of wiring congestion in any direction, densities of 
logic gate input/outputs. and estimates of signal wiring length and 
capacitance. The weighting for any parameter, used to determine the 
score, may be changed by overriding the default values with a placement 
control file. The program also attempts to meet any supplied wiring 
capacitance targets for timing critical signals. I t  is also possible to 
confine the placement of specific gates, input receivers and output drivers 
to either fixed locations or predefined areas of the IC image. 

At the end of the automatic placement program, data on the final 
placement configuration is listed and may be assessed by the design team. 
From the data, the design team is able to estimate whether the automatic 
wiring program will be able to successfully route the required signal 
wiring for the generated placement configuration. By using the estimates 
of wiring capacitance, it is possible to obtain an estimate of the output 
loads for all the gates in the design. This output load data can be 
supplied to the timing analysis program, to obtain a better estimate of the 
likely timing performance of the design. If the data suggests that any 
wiring or timing problems are likely to occur, then the automatic 

placement program may be rerun with revised control data in an attempt 
to resolve the problems. 

Automatic Wiring 
In the next stage of physical design, when the design team is satisfied 
with the placement configuration, an automatic wiring program is used to 
route the signal wiring between the gates placed on the IC image. The 
program routes the signal wiring of the design on a wiring grid, 
compatible with the physical design rules for the technology. The 
program attempts to route each signal along the shortest possible path on 
the wiring grid, whilst avoiding areas reserved for the wiring of power 
supplies and the wiring within the gates of the design. The program also 
attempts to meet any supplied wiring capacitance targets for timing 
critical signals. As more and more wires are routed, wiring path conflicts 
begin to occur. Wiring path conflicts are resolved by choosing alternative 
wiring paths and, where necessary, rewiring signals that are causing path 
conflicts. At the end of the wiring program, any signals for which the 
wiring is incomplete can be wired manually on a graphics screen. 
Provided that the placement configuration is of good quality, then very 
few signals will require manual intervention. 

When the wiring is complete, the output loads for all the gates in the 
design can be obtained. The output load data is used to develop delay 
data, which is then used by the timing analysis program and in gate-level 
simulation. Thereby the performance of the IC can be analysed with 
physical delays. If small timing problems are found, the automatic wiring 
program may be rerun with revised wiring capacitance targets, or the 
signal wiring can be manually updated. In the unlikely event of major 
timing problems being found, then manual updates to both the placement 
and wiring may be attempted, or the entire physical design process may 
have to be restarted. 

Artwork Generation and Checking 

In the next phase of physical design, when successful placement and 
wiring have been achieved, a program is run to generate the physical 
mask artwork for the IC. The mask artwork for the gates of the design 
is obtained from physical data in the technology gate library. Signal and 
power supply wiring is converted from lines on the wiring grid into 
polygons, whose width and spacing are defined by technology ground 
rules. 

As a final check on the physical design process, a program is run to 
verify that the generated mask artwork does not violate any physical 
ground rule for the technology. No ground rule violations should be 
found since the placement and wiring programs are designed to operate 
within the technology ground rules. 
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