Silicon Graphics Confidential MGR Technical Reference

CHAPTER 6

RASTER SUBSYSTEM

The Raster Subsystem contains a Raster Engine chip which is responsible for performing low level
pixel rendering operations. The Raster Subsystem also contains two hardware cursor chips which
are used to draw block glyph or cross hair cursors. The Raster Engine is instructed by the
Geometry Engine to draw lines and horizontal spans. The Geometry Engine also instructs the Raster
Engine to perform pixel read and write DMA operations. The Raster Engine provides the control
signals for reading and writing the pixel values into the frame buffer bitplanes, the Window ID
(WID) bitplanes, the Pop Up (PUP) overiay bitplanes, the User Auxiliary (UAUX) bitplanes and
the optional Z buffer bitplanes if installed.

The following sections describe the external interfaces, the major components, the registers, the
basic operations and the programming considerations for the Raster Subsystem. ‘

External Interfaces

The Raster Subsystem has external interfaces with the Host System (via the Host Interface
Subsystem and the Geometry Subsystem), the Geometry Subsystem and the Display Subsystem. The
following paragraphs describe these external interfaces.

Host Interface

The Raster Subsystem has an interface with the Host System over the Utility Bus. The host can read
and write the cursor glyph and the cursor registers in the two cursor chips. The host can also have
the Geometry Subsystem initiate bitplane pixel DMA operations over the Geometry data bus. The
host software can use the GE_LOADRE token to load values into some of the Raster Engine registers.

Geometry Subsystem Interface

The Geometry Subsystem uses the REptr register in the HQ1 chip to address the various Raster
Engine registers. The data is then written into or read from the Raster Engine registers using the
Geometry data bus. The GES microcode can also initiate DMA transfers between the bitplanes and
the GES5 data RAM or the host system RAM. The HQ1 chip in the Geometry Subsystem also controls
the host data transfers to and from the registers in the two cursor chips.

Display Subsystem Interface

The Raster Subsystem receives timing controi signals from the Display State Machine in the
Display Subsystem. In response its bitplanes and cursor chips send data to the Dispiay Subsystem
to be converted to analog RGB signals for output to the high resolution color monitor.

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Major Components

The major components of the Raster Subsystem are shown in the block diagram of Figure 6.1. The
Raster Engine 2 (RE2) is a proprietary Silicon Graphics chip which performs the low levei pixel
rendering operations as instructed by the Geometry Subsystem. The Cursor chips are used to
display two single color cursors or a single multicolor cursor. The cursor can be either a user
defined glyph pattern or a cross hair pattern.

c XPCis
ursor or
b Chip 1 RAMDACs
Utility & oot
Bus Cursor WD — play
Chip 2 Bitpianes tate
s Mach
VRAM achine
REPTR ——9
UAUX L’
G 41> —§| Bitplanes
Data Bus RE2 vram | | Ly xPCts
] or
Gonwrol 1 PUP]‘> XMAP2s
Signals —&1 Bitplanes
VRAM
Optional
Z butfer | g ;3?:;
Bitplanes e Bitplanes
o VRAM
Raster Subsystem

Figure 6.1 Raster Subsystem Block Diagram

The frame buffer bitplanes are used to store the pixel image to be displayed on the monitor. The
Window 1D (WID) bitplanes are used for pixel write clipping and to index into the mode registers in
the XPC1 or XMAP2 chips in the Display Subsystem to control pixel display formats. The PUP and
UAUX bitplanes are used to hold overlay and underiay pixel data. The PUP bitplanes are managed by
the host window manager software and are used to draw menus and other overlays. The UAUX
bitplanes are controlled by the various graphics applications to display overlays or underlays. The
Z buffer bitplanes are used for doing Z axis depth comparison for hidden line removal.

The number of bitplanes available on the MGR adapter depends on the whether the base configuration
or the enhanced configuration is being used. For the base configuration, the MDE1 daughter board is
installed so the base configuration has 8 bitplanes of Frame Buffer VRAM, 2 bitplanes of WID VRAM
and 2 bitplanes of PUP VRAM. For the enhanced configuration the MEV2 daughter board is installed
so the enhanced configuration has 24 bitplanes of Frame Buffer VRAM, 4 bitplanes of WID VRAM, 2
bitplanes of PUP VRAM and 2 bitplanes of UAUX VRAM. Both the base and enhanced configuration can
have the optional MZB1 card installed with the 24 bitplanes of Z buffer DRAM. It the MZB1
daughter card is not installed then no Z buffer hidden line removal is available.

The following paragraphs describe the major components of the Raster Subsystem.

6-2

Silicon Graphics Confidential MGR Technical Reference

Raster Engine 2 (RE2)

The RE2 performs scan conversion of lines and spans into pixels and controls all memory timings
for writing these pixel values into the pixel bitplanes. The GES, in the Geometry Subsystem, loads
a bank of registers on the RE2 chip to indicate what kind of drawing operation is desired. The RE2
then iterates the x,y and z values and the red, green and blue colors to form the individual pixels
values which it then writes into the pixel bitplanes. The RE2 can fiat shade or Gouraud shade RGB
or color index values while at the same time performing pixel write conditioning checks and pixel
write mask operations. The RE2 can apply stipple patterns as it draws antialiased lines. The RE2
can also apply patterns as it draws spans. The RE2 provides support for 8, 12 and 24 bit RGB
pixels and it also provides support for 4, 8 or 12 bit color index pixels. The RE2 also provides
double buffer support for the 12 bit RGB and the 4 or 12 bit color index pixels. The color index
pixels and the 12 bit RGB pixels can have a dithering operation performed on the color values which
are used to calculate the Frame Buffer pixel values. The RE2 also provides support for 16 different
raster operations which are performed on a bit by bit basis. The following paragraphs describe the
main features of the RE2 chip.

RE2 Architecture

The RE2 consists of five major units as shown in the biock diagram of Figure 6.2. The following
paragraphs give a brief description of these five units.

Pixel Bit
REPTR — Generator Swizzl;s
28
° 7 + Datib Frame
G& p Address{ Buffer
<4)
DataBus g c;d:;:;r ' Sorman] L Port
8 ontg Bitplanes
Control “ 6 ’8 15
Signals Data
9 8 Write [@——t—t a
Check Address | Z buffer
Datapath 7 > 'port
|V\E 9 Controls | Bitplanes
Execution “é::'t‘:;ly
Control €4—P y
19
RE2

The Pixel Generator consists of three color co
The color component in
(DDA) and a dithering circuit. The interpolator for r
unit is responsible for calculating the Frame Buffer pi
part of the source data for the Raster operations. The
values to the current color values and then performs t

packing multiplexer.

Figure 6.2 RE2 Block Diagram

6-3

mponents interpolators, a dither matrix and a pixel
terpolaters contain a digital differential analyzer
ed is also used for the color index values. This
xel values. These values are then used as
color component interpolators add delta color
he dithering calculations. The resulting color

Cnapter 6 Raster Subsystem Silicon Graphics Confidential

values are then packed based on the current pixel type and is placed in the source buffer for the
Raster Operation. The result is then written into the Frame Buffer bitplanes.

The Address Generator consists of 2 DDAS, one for X and one for Y. This unit generates the addresses
used to access the various bitplanes. The address generator adds the deita x and y values to the
current x and y values to form the pixel address of the next pixel to be accessed.

The Write Check Datapath unit consists of the DDA used for calculating Z values. This unit also
contains the circuits for Z value comparisons, for window 1D checks and for pattern and stipple
checks. The delta Z value is added to the current z value to obtain the new z value. The new z value
is then compared to the current z value in the Z buffer bitplanes at the x and y location. If the
comparison fails the pixel is not written. The WID checking hardware is used to compare a current
WID value with the WID value in the WID bitplanes at the x and y location. If the WID check is
enabled and the WID comparison fails then the pixel is not written. The pattern checking can be
used to enable or disable pixel writes for shaded spans. The stipple checks can be used to enabie or
disable pixel writes for lines.

The Execution Control unit determines the type of operation that the Raster Engine is perfo.rming.
Possible operations include pixel write, Z write, memory refresh and display refresh. This unit
controls the operation of the Memory Control unit.

The Memory Control unit generates the memory control signals for the various bitplanes.

The bit swizzles unit is used to shift the various pixel data bits left into the appropriate data bit
locations for writing into the bitplanes. It aiso shifts the bits right as needed to right justify the
bits which are read from the various bitplanes.

The RE2 basic operations section of this chapter discusses the operations performed by the RE2 in
much greater detail.

Instruction Set

The RE2 has an Instruction Register and 56 microcode visible control registers. The GES microcode
loads instructions into the Instruction Register to specify the operation that the Raster Engine will
perform next. The 56 control registers are loaded with the data needed to perform the operation.
When the Instruction Register is loaded by the Geometry Engine, the values in the control registers
are loaded into the Raster Engine's execution units and the new instruction begins executing.

The control registers that are frequently loaded have input buffers. These control registers can be
loaded while the Raster Engine is drawing. The control registers without input buffers can be loaded
only when the Raster Engine is idle. The sequence of steps for issuing an instruction is:

1. Update control registers that have input buffers

2. If necessary, update control registers that do not have input buffers

3. Store instruction opcode in the Instruction Register
This sequence of steps gives the maximum overiap between Raster Engine execution and Geoq\etry
Engine execution. The GES microcode should try to update control registers that do not have input

buffers only while the RE2 is idie. If the RE2 is not idle, the microcode will be stalled until the
RE2 becomes idle.

Silicon Graphics Confidential MGR Technical Reference

The Registers section of this chapter defines the registers and the RE2 basic operations section of
this chapter describes the use of the RE2 instructions and the control registers to perform the RE2
operations.

Pixel Bitplanes

The MGR uses 1 Megabit VRAM chips to create the frame buffer bitplanes, PUP bitplanes, UAUX
bitplanes and WID bitplanes. The MGR uses 1 Megabit DRAM chips to create the Z buffer bitplanes.
The component timing restrictions require the VRAM and DRAM chips to be organized into five pixel
pipelines to create a 1280 x 1024 pixel screen display. The pixels on each scan line are organized
in an interleaved manner in groups of five pixels. The first pixel in each group of five pixels is
contained in VRAM 0. The second pixel in each group of five pixels in is contained in VRAM 1. The
third pixel in each group of five pixels is contained in VRAM 2. The fourth pixel in each group of
five pixels is contained in VRAM 3 and finally the fifth pixel in each group of five pixels is
contained in VRAM 4. Each VRAM chip provides 256 x 1024 x 4 pixels. The Z buffer pixels are
organized in the same manner. The x =0 andy =0 pixel location is defined to be the lower left
comer of the screen. The RE2 chip controls the storage of pixels into the VRAM chips and aiso the
transfer of pixels out of the VRAM chips to the Display Subsystem. ‘

The RE2 TOPSCAN register is used to specify the top scan line number to be displayed. This allows
the VRAM configuration to support multiple different screen formats. The MGR adapter has four
different display timings built into the Display State Machine (DSM) in the Display Subsystem.
The four timings include the 1280 x 1024 noninterlaced and interlaced timings, the NTSC timing
and the PAL timing. The TOPSCAN register must be set appropriately by the host software for each
of the different timings. '

The DSM controls the display timing for transfering pixels out of the VRAM to the Display
Subsystem for display on the attached monitor. For each line on the raster display the DSM issues
an transfer request to the RE2. The RE2 then uses the value in the TOPSCAN register to transfer the
top scan line in the five VRAMs into their internal shift registers. The TOPSCAN register aiso
contains the number of columns on each scan line. The DSM then generates a shift clock to the VRAM
for each pixel on the scan line. Each shift clock pulse causes a pixel 1o be shifted out of the
appropriate VRAM to the display subsystem for display. This process is repeated for each scan line
on the screen. After the RE2 causes the current row to be transferred into the shift register in the
VRAM it then decrements the TOPSCAN register so that it can access the next scan line row down the
screen. After the bottom scan line on the screen has been displayed the DSM generates a vertical
retrace to the monitor. After the vertical retrace period has completed the next raster image is
scanned in the same manner as before.

The Z Buffer pixels are used only by the RE2 when it performs the Z value depth comparisons and
the Z values are not shifted out to the Display Subsystem. This allows the Z buffer pixels to be
stored in DRAM chips rather than the dual ported VRAM chips. The following paragraphs discuss the
bitplane layouts in the base and the enhanced adapters.

Base Adapter Pixel Bitplanes

The base configuration of the MGR adapter contains 8 Frame Buffer bitplanes, 2 PUP bitplanes and
2 WID bitplanes as shown in Figure 6.3. These bitplanes are contained in fifteen VRAM chips. As
described above the VRAMs are interleaved in five pixel groups. Each VRAM provides 256 x 1024 x
4 pixels. The 2 PUP bitplanes and the 2 WID bitplanes are grouped in the same five VRAMs. The
chip layout shown in Figure 6.3 does not show the five pixel interleaving well. As described above,
each VRAM contains every fifth pixel on each scan line. The first pixel is in VRAM 0 and the fifth
pixel is in VRAM 4. This is repeated for each group of five pixels on each scan line.

6-5

Chapter 6 Raster Subsystem Silicon Graphics Confidential

_~ 4 Bitplanes
| 1 | | 1
_~ 4 Bitplanes
! |] | |
4 Bitplanes
T / 2WID
1024 | VRAM| VRAM| VRAM | VRAM | VRAM [——— 2 PUP
0 1 2 3 4 /
- / Frame Buffer

l‘——— 1280 —————eep>

Figure 6.3 Base Configuration VRAM Layout
The base configuration of the adapter can also have an optional 24 bit Z buffer card installed. The Z
buffer vaiues are stored in DRAM chips rather than in VRAM chips. The layout of the Z Buffer is
shown in Figure 6.4. The Z buffer DRAM chips are organized in the same five pixel interleaving

that is used for the VRAM chips. Each DRAM chip contains 256 x 1024 Z values. Each DRAM chips
provides 4 bits of the 24 bit Z value. This means that 30 DRAM chips are required for the Z Buffer.

/ 4 Bitplanes
| | |
(4 Bitplanes
| |] |
r/ 4 Bitplanes
| 1] |
(4 Bitplanes
] | | |
f/ 4 Bitplanes
| | | |

/ 4 Bitplanes

1024 | DRAM| DRAM | DRAM | DRAM | DRAM

4 1280 —m————p

Figure 6.4 Z Buffer DRAM Layout

Enhanced Adapter Pixel Bitplanes
The enhanced configuration of the MGR adapter contains 24 Frame Buffer bitplanes, 2 PUP

bitplanes, 2 UAUX bitplanes and 4 WID bitplanes as shown in Figure 6.5. These bitplanes are
contained in 40 VRAM chips. As described above the VRAMs are interieaved in five pixel groups.

6-6

Silicon Graphics Confidential MGR Technical Reference

Each VRAM provides 256 x 1024 x 4 pixels. The 2 PUP bitplanes and the 2 UAUX bitplanes are
grouped in the same five VRAMs.

~~ 4 Bitplanes
1 | S

/ 4 Bitplanes

] | { |

,(4 Bitplanes
| | | |

_~~ 4 Bitplanes .
(: 4l Bitpllnes — }—V——-‘-—,"‘ wit
'(AIBitpla:\es l l —_{—:_g_ zzu:tkjpx
14 Bitpllanes : : F-/
lZ l | — L/

4 Bitplanes /

1024 | VRAM] VRAM | VRAM | VRAM | VRAM V

24 Frame Buffer

| <4————— 1280 ——
Figure 6.5 Enhanced Configuration VRAM Layout

Frame Buffer Bitplanes

The Frame Buffer bitplanes are used by the host software to hold the normal display pixels which
are transferred to the Display Subsystem for display. The RE2 supports both color index and RGB
pixel formats as well as single and double buffer formats. The following pixel types are supported:

4 bit color index double buffer (both configurations, usually only the base configuration)

8 bii color index single butfer (base configuration only)

12 bit color index double buffer (enhénced configuration only)

8 bit RGB single buffer (base configuration only)

12 bit RGB double buffer (enhanced configuration only)
- 24 bit RGB single buffer (enhanced configuration only)

The GE_PIXTYPE token is used to specify the pixel type. For the color index pixels the GE_COLOR or
GE_COLORF token is used to specify the color index value. For RGB pixels the GE_RGBCOLOR token
is used to specify the red, green and biue color values which form the RGB pixels. The
GE_PIXWRITEMASK is used to specify the Frame Buffer pixel write mask. This mask is used 10
control which bits in the pixel are written. The host software uses the write mask to control
whether the front or back buffer is written for double buffer pixels.

Chapter 6 Raster Subsystem Silicon Graphics Confidential

PUP Bitplanes

The PUP bitplanes are normally used by the host window manager software to display overlay or
underlay pixels. The value written into the PUP bitplanes is used by the Display Subsystem as an
index into the overlay color map. The GE_COLOR or GE_COLORF tokens are used to specify the index
value. The GE_AUXWRITEMASK token is used to specify the write mask for the PUP bitplanes. Bits
0 and 1 of the aux write mask are used to mask PUP writes.

UAUX Bitplanes

The UAUX bitplanes are normally used by the user graphics application software to display overlay
or underlay pixels. The value written into the UAUX bitplanes is used by the Display Subsystem as
an index into the overlay color map. The GE_COLOR or GE_COLORF tokens are used to specify the
index value. The GE_AUXWRITEMASK token is used to specify the write mask for the UAUX
bitplanes. Bits 2 and 3 of the aux write mask are used to mask UAUX writes. The host software can
configure the PUP and UAUX bitplanes as 4 UAUX bitplanes.

WID Bitplanes

The Window ID bitplanes are used by the host window manager to control pixel clipping for
obscured windows. The LSB bit of the WID on the enhanced adapter is also used to perform Z value
invalidation for fast Z clear operations. The Window ID is used by the Display Subsystem as an
index into the mode registers of the XPC1 or XMAP2 chips to control pixel formatting operations
during the pixel display operations. The GE_COLOR or GE_COLORF tokens are used 1o specify the
window ID value. The GE_AUXWRITEMASK token is used to specify the write mask for the WID
bitplanes. Bits 4 through 7 of the aux write mask are used to mask WID bitplane writes.

Z Bufter Bitplanes

The Z buffer bitplanes are used to hold Z values for each pixel. The x and y locations of the pixel are
used to select which pixel is written and the 2 value can be used to perform depth comparison
operations. If Z butfer comparisons are enabied then the new Z value is compared to the existing Z
value in the bitplanes. |f the comparison passes then the new pixel value is written into the Frame
Buffer bitplanes, the PUP bitplanes, the UAUX bitplanes and the WID bitplanes subject to the
settings of the pixel and aux write masks. The aux write mask bit 8 is used to enable or disable the
Z buffer writes. The GE_ZBUFFER token is used to enable or disable Z butfer checks. The
GE_ZFUNCTION token is used to specify the comparison function. The GE_AUXWRITEMASK is used to
specify the write mask.

siicon Graphics Confidential MGR Technicai Reference

Cursor Chips

The Raster Subsystem uses two Brooktree Bt431 cursor controller chips to generate a cursor
which can be one of three colors or two separate 1 color cursors. The cursor can be either a user
defined 64 x 64 bit glyph pattern or a cross hair pattern. Both the glyph pattern and the cross hair
cursor pattern can be displayed simultaneously, with logical OR and exclusive-OR operations
supported. Either cursor may be moved off the top, bottom, left or right side of the screen without
wrap-around. The cross hair cursor may be implemented as a full screen or full window cross hair

cursor.

The cursor controller chip block diagram is shown in Figure 6.6. The cursor chip contains an
address register and other control registers. The address register is used to select the other
registers and the 64 x 64 bit RAM. The cursor chip contains Cursor X and Cursor Y registers
which are loaded with the screen location at which the cursor is to displayed. The Horizontal and
Vertical counters count the HSYNC and VSYNC signals from the Display State Machine in the Display
Subsystem. The comparators and control logic compare the counter values with the Cursor X and
Cursor Y values and when they are equal it enables the 64 x 64 bit RAM and cross hair logic
circuits to produce the appropriate outputs. The Format logic is used to generate from 1 to 5 output
signals that are used to select cursor colors.

HSYNC =11 horizontal and
VSYNC Vertical Counters
v _r_’ 64 x 64 > — OLA
Comparators and RAM - 0LB
Control Logic —> Format
. oLC
* Logte - 0LD
i 0
Cursor X,Y and — C?:rr::sr :'_{: ;r'c —> >
To Host Control Registers OLE
via g
Geometry]
Subsystem 8 Address Register

Figure 6.6 Cursor Chip Block Diagram

The MGR uses all five cursor output signals. The connections of the outputs from the two cursor
chips is shown in Figure 6.7. In the base configuration, the five outputs from both cursor chips are
connected 1o the five XPC1 chips. The cursor inputs to the XPC1 chips have the highest precedence
in determine which color value will be displayed. If either cursor output bit is a 1 then the OVL
output of the XPC1 chip processing the current pixel will be set to the two cursor chip output
values and the OVL bits will be used by the RGB RAMDAC chip to select the cursor color from the
overiay palette. If both cursor outputs are zero then the XPC1 will use the contents of the Frame
Buffer bitplanes and the PUP bitplanes to determine the pixel color. In the enhanced configuration,
the five outputs from both cursor chips are connected directly to the OL inputs of the three RAMDAC
chips. The RAMDACSs use the cursor inputs to select a value from the overlay palette. If both cursor
inputs are zero then the RAMDACs use the color input byte to select a color palette entry. Refer to
the Display Subsystem for a detailed description of the use of the cursor output bits.

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Base Configuration Enhanced Configuration
A
OLA oAl | ——»s
crmm— 7Y |] p——
Cé::“ ac > Cursor | "__: © RaMDAC
ip .
1 |aD XPC1 c:"p ap —(°
XPC1
OLA | cn2 i A
os XPC1 > B
Cursor {4~ ch3 OLA <l Green
Chip OB —&| © RAMDAC
2 ap : " Cursor | OLC o
Qe Chip 1D —
—P| Ch4 2]
A
—
—> B
—> Blue
—p| ¥ RAMDAC
D
—>
—>

Figure 6.7 Cursor Output Connections

The following paragraphs describe the host access to the cursor chip registers and the cursor chip
basic operations.

Host Access to the Cursor Chip Registers and Glyph RAM

The cursor controller chip contains Cursor X and Cursor Y registers which are used to position the
center of the cursor on the screen. It also has an address register which is used to access the 64 x
64 RAM and the other control registers. The control registers include a command register, a
window X register, a window Y register, a window width register and a window height register. The
host address map for these registers and the cursor RAM is shown in Table 6.1. The addresses are
the offset address from the base address of the MGR adapter.

Address Register

The address register is a 16 bit wide register which is used lo access the other registers and the
cursor glyph RAM in the cursor chip. The address register is written as two bytes called address
register 0 and address register 1. The host software writes a byte to the addresses shown in Table
6.1 to place the address in the address register. Once the address register has been written the host
can then read or write the register or glyph location whose address is in the address register.

6-10

Silicon Graphics Confidential MGR Technical Reference

Table 6.1 Cursor Host Address Map

Host Address Host Address Cursor Address N
Cursor Chip 0| Cursor Chip 1| Register 1-0 Value Source/Destination
560 Hex 580 Hex XX Cursor Address Register 0
564 Hex 584 Hex XX Cursor Address Register 1
568 Hex 588 Hex 000 - 1FF hex Cursor Glyph RAM
56C Hex 58C Hex 00 Command Register
56C Hex 58C Hex 01 Cursor X Low Register
56C Hex 58C Hex 02 Cursor X High Register
56C Hex 58C Hex 03 Cursor Y Low Register
56C Hex 58C Hex 04 Cursor Y High Register
56C Hex 58C Hex 05 ' Window X Low Register
56C Hex 58C Hex 06 Window X High Register
56C Hex 58C Hex 07 Window Y Low Register
56C Hex 58C Hex 08 Window Y High Register
56C Hex 58C Hex 09 Window Width Low Register
56C Hex 58C Hex 0A hex Window Width High Register
56C Hex 58C Hex 0B hex Window Heigth Low Register
56C Hex 58C Hex 0C hex Window Heightﬂgh—Register

HQMMSB Register must be set to 1

Cursor Glyph RAM

Each cursor chip has a 512 byte RAM which is used to store a 64 x 64 bit cursor glyph. This is
also referred to as a block cursor. The glyph contains the cursor pixel bit pattern used to form the
block cursor. The host software must initialize the cursor glyph after the MGR adapter is reset.
The host software loads the byte address in the address register and then reads or writes the RAM
location. After the RAM location has been read or written the address register is incremented. This
allows the host software 1o set the address register to 0 and then do 512 writes to fill the RAM. If

the address is Ox1FF it wraps to 0x000 after the read or write operation. The glyph RAM layout is
shown in Figure 6.8.

The bit 7 location of byte 0 is the upper left corner of the block cursor as it will be displayed on the
screen. The 64 bits in the x direction are contained in 8 bytes. The 64 bits in the y direction are
contained in 64 rows of 8 bytes.

The upper left corner of the glyph RAM is the 0, 0 position and the lower left corner of the screen
is the 0, O position for the graphics drawing operations. This means that the host software must
reverse the bit pattern of the glyph in the y direction from the way it would define other bit
patterns.

Chapter 6 Raster Subsystem Silicon Graphics Confidential

0.0 | @— ' 64 Bits —>

A 0x000 | Ox001 | 0x002 | 0x003 | 0x004 | 0x005 | 0x006 | 0x007
0x008 | 0x009 | 0x00A | 0x00B | 0x00C | 0x00D | Ox00E OxOOF
oxo10| ox011] ox012 | 0x013 | 0x014 | 0x015 | Ox016 | 0x017

64 Bits

ox1F8 | ox1F9 | ox1FA | oxiFB | 0x1FC| Ox1FD | Ox1FE Ox1FF

TN

| D7| DS| D5] D4] Dal DZl Dtl DOI

Figure 6.8 Cursor Glyph RAM Layout

Command Register

The command register is used by the host software to control the operation of the cursor chip. The
command register is used enable either the block cursor or the cross hair cursor or both cursors.
When both the block cursor and the cross hair cursor are enabled the command register is used to
specify whether the intersecting pixels in the two cursors are logically ORed or exclusively ORed.
The command register is also used to specify the pixel width of the cross hair cursor. The output
multiplex control bits in the command register are used to select the number of output bits the
cursor chip outputs on each clock cycle. The MGR adapter has the five pixel pipelines so the
multiplex control bits should be set to for five outputs. The host reads or writes the command
register by writing a 0 into the address registers and then reading or writing the cursor command
register.

Cursor X,Y Registers

The cursor X,Y registers are used to specify the X and Y location of the center of the cursor glyph or
the location where the cross hair cursor intersects. The cursor X and Y registers are 12 bit wide
registers and are read or written as a low byte and a high byte. The host software writes a 1 into
the address registers and then reads or writes the low byte of the cursor X register. The host then
writes a 2 into the address registers and then reads or writes the high byte of the cursor X register.
The host software writes a 3 into the address registers and then reads or writes the low byte of the
cursor Y register. The host then writes a 4 into the address registers and then reads or writes the
high byte of the cursor Y register. The new cursor location takes effect after the high byte of the
cursor Y register is written.

Wwindow X,Y Register

The window X.Y registers are used to specify the X and Y location of the upper left corner of the
cross hair cursor window. The cross hair window is used to specify the cursor cross hair cursor
clipping rectangle. The window width and height registers are used to specify the window size. The

6-12

Silicon Graphics Confidential MGR Technical Reterence

window X and Y registers are 12 bit wide registers and are read or written as a low byte and a high
byte. The host software writes a 7 into the address registers and then reads or writes the low byte
of the window Y register. The host then writes a 8 into the address registers and then reads or
writes the high byte of the window Y register.

Window Width and Height Registers

The window width register is a 12 bit register which is used to specify the width of the cross hair
cursor window. The host software writes a 9 into the address registers and then reads or writes the
low byte of the window width register. The host then writes an OxA into the address registers and
then reads or writes the high byte of the window width register. The window height register is a 12
bit register which is used to specify the height of the cross hair cursor window. The host software
writes an 0xB into the address registers and then reads or writes the low byte of the window height
register. The host then writes an 0xC into the address registers and then reads or writes the high
byte of the window height register. The new window size takes effect after the high byte of the
window height register is written.

Cursor Chip Basic Operations

The cursor chip provides the capability to display either a 64 x 64 bit block cursor or a cross hair
cursor. Both the block cursor and the cross hair cursor can be displayed at the same time. The
MGR adapter contains two cursor chips which allows either two block or cross hair cursors of the
same color to be displayed at different locations on the screen or a single block cursor to be
displayed on the screen with one to three colors. When both the cross hair cursor and the block
cursor are enabled on the same cursor chip the intersecting pixels can be combined with a logical
OR or a logical exclusive OR operation. The cursor X,Y registers are used to specify the screen
location of the center of the block cursor and the intersection point for the cross hair cursor.

The cross hair cursor is displayed within the cross hair cursor window. The window width and
height registers are used to specify the size of the cross hair cursor window. The window X,Y
registers are used to specify the upper left comer of the cross hair cursor window. The thickness
of the cross hair cursor can be specified in pixels. The width values are 1,3, 5 or 7 pixels and are
specified by two bits in the command register.

The horizontal and vertical sync pulses generated by the Display State Machine are used by the
cursor chip to determine the cursor outputs. The vertical sync marks the start of a new raster scan
and resets the cursors y counter to zero. Each horizontal sync pulse resets the the cursors X
counter to zero. The DSM generates pixel clock pulses for each pixel on the current scan line. The
upper left corner of the screen is the 0,0 position and the positive x direction is to the right and the
positive y direction is down the screen. The cursor compares the counter X,y values with the
cursor X,Y register values.

For the block cursor the comparison begins at cursor X - 31 and Y - 31 and continues for the next
64 pixel locations in the x direction and the next 64 scan lines in the y direction. When the location
comparison passes the cursor chip checks the contents of the cursor RAM to determine the output
value. If the cursor RAM contains a zero bit at the X,Y location the five outputs are all set to zero.
If the cursor RAM bit is a one then a one is output on all five outputs. For all screen locations
outside the block cursor 64 x 64 bit locations the cursor chip generates zeroes on all five outputs.

For the cross hair cursor the comparisons begin at the window boundaries and are controlled by the
cursor X, Y values and the thickness setting. For the pixels that are located on the cross hair cursor
x and y locations the cursor chip generates a one on all five outputs. For all pixel locations which
are not on the cross hair cursor the cursor chip generates zeroes on all five outputs.

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Registers

The following paragraphs describe the registers for the following Raster Subsystem components:
- RE2 chip
- Cursor chip

RE2 Registers

The RE2 contains an instruction register and 56 control registers which are programmable by the
GES5 microcode. The Instruction Register is loaded with the opcode of the command to be executed by
the RE2. The other 56 registers are loaded with data which is used by the RE2 during the execution
of the command. The host does not have the ability to directly program any of the RE2 registers.
The ENABRGB and the TOPSCAN registers are the only registers that the host needs to program. The
host uses the GE_LOADRE token to load these two registers. The other registers are loaded by the
microcode and should not be modified by the host software. The following registers have input
buffers which allow multiple values to be written into them for multiple command execution:

- ENABRGB register : Specifies if 8 bit RGB pixels are to be used for 8 bitplane configuration

- BIGENDIAN register : Specifies the pixel packing order for the Write Buffer instruction

- FUNC register : Contains the raster op function

- HADDR register : Specifies the starting pixel offset in the first packed word

- NOPUP register : Specifies if 2 PUP and 2 UAUX bits or 0 PUP and 4 UAUX bits are used
~ . XYFRAC register : Contains the initial XY fractions bits for antialiased lines
- RGB register : Contains initial red, green and blue color values
- YX register : Contains the initial X and Y values
- PUPDATA register : Contains the 2 bit PUP data value
- PATL register : Contains the lower 16 bits of the pattern mask
- PATH register : Contains the upper 16 bits of the pattern mask
- D2 register : Contains the initial integer portion of the Deita Z value
- DZF register : Contains the fraction portion of the Delta Z value
- DR register : Contains the Delta Red value
- DG register : Contains the Delta Green value
- DB register : Contains the Delta Blue value

- Z register : Contains the initial Z value

6-14

Silicon Graphics Confidential MGR Technical Reterence

- R register : Contains the initial Red value
- G register : Contains the initial Green value
- B register : Contains the initial Blue value
- STIP register : Contains the line Stipple pattern
. STIPCOUNT register : Contains the LSB stipple bit repeat count
- DX register : Contains the Delta X value
- DY register : Contains the Delta Y value
- NUMPIX register : Contains the pixel count for the instruction
- X register : Contains the initial X value
- Y register : Contains the initial Y value
- IR register : Contains the instruction to be executed
The following registers do not have input buffers and are generally not changed for each instruction:
- RWDATA register : The Read and Write Buffer instruction data register
- PIXMASK register : Contains the Frame Buffer pixel write mask
- AUXMASK register : Contains the PUP, UAUX, WID and Z buffer bitplanes write mask
- WIDDATA register : Contains the 2 or 4 bit WID data value
- UAUXDATA register : Contains the 2 or 4 bit UAUX data value

- RWMODE register : Specifies the source or destination bitplanes for the Read and Write
Butfer instructions

- READBUF register : Selects which frame buffer is read by READBUF instruction
- PIXTYPE register : Selects the frame butfer pixel type

- ASELECT register : Selects the antialiasing weight

- ALIGNPAT register : Controls the pattern alignment

- ENABPAT register : Enables or disables the pattern mask

- ENABSTIP register : Enables or disables the line stipple pattern

- ENABDITH register : Enables or disables color dithering

- ENABWID register : Enables or disables WID checking for shaded span instructions

Chapter 6 Raster Subsystem Silicon Graphics Confidential

- CURWID register : Contains the current Window ID

- DEPTHFN register : Specifies the Z or color compare relational function

- REPSTIP register : Specifies the repeat count for all bits in the stipple count except LSB bit
- ENABLWID register : Enables or disables WID checking for Draw Line instructions

- FBOPTION register : Specifies if 8 or 24 bitplanes are installed

- TOPSCAN register : Specifies the number ot columns and rows to be displayed on the screen
- ZBOPTION register : Specifies if the Z buffer card is installed or not

- XZOOM register : Specifies the X zoom repeat count for Write Buffer instructions

- UPACMODE register : Specifies the number of pixels/long word for Write Buffer instruction
- YMIN register : Contains the bottom boundary of the hardware screen mask

- YMAX register : Contains the top boundary of the hardware screen mask

- XMIN register : Contains the left boundary of the hardware screen mask

- XMAX register : Contains the right boundary of the hardware screen mask

- COLORCMP register : Controls the selection of the Z compare or the color compare

- MEGOPTION register : Specifies if 1 MEG or 256K VRAMs are installed

Silicon Graphics Confidential MGR Technical Retference

ENABRGB Register

This is a one bit register which is used to enable 8 bit RGB pixels. This register is ignored on the
enhanced adapter when the FBOPTION register is set to one. When the FBOPTION register is set to
zero for the base adapter the value in the ENABRGB register is used by the RE2. When this register
is set to one the RE2 does the special 233 processing to form the 8 bit RGB pixels from the red,
green and blue color bytes. The RE2 takes the most significant 2 bits of the biue color value and
places them in the most significant 2 bits of the 8 bit RGB value. The most significant 3 bits of the
green value are placed in the middle 3 bits of the 8 bit RGB value and the three most significant bits
of the red value are placed in the three LSB bits of the 8 bit RGB value. When the ENABRGB register
is zero the 8 bit RGB processing is not performed on the color values. Instead the 8 bit red value is
placed in the 8 bit pixel values. The host software must set this register using the GE_LOADRE
token. It can be set at any time after the microcode has been downloaded and the three data
parameters have been sent. The format of the 8 bit RGB register is shown in Figure 6.9.

0
BN

Figure 6.9 ENABRGB Register
REptr index = 4
Buffered Input Register

Bit O : Enable 8 bit RGB (Write Only). This bit enables or disables 8 bit RGB mode on the base
adapter.

FBOPTION = 0

0 - Disable 8 bit RGB mode
1 - Enable 8 bit RGB mode

FBOPTION = 1

X - ENABRGB register is ignored and normal 24 bit RGB processing is performed

6-17

Chapter 6 Raster Subsystem Silicon Graphics Confidential

BIGENDIAN Register

This is a 1 bit register that specifies the byte order for packed pixels for the Write Buffer
instruction. When this register is set to one then the BIGENDIAN mode is enabled and the pixels are
packed in the long words from left to right. When this register is a zero the BIGENDIAN mode is off
and the pixels are packed right to left in the long words. Since the Eddy register provides the little
endian to big endian byte ordering this register is always set to one for BIGENDIAN mode. The
format of this register is shown in Figure 6.10.

0
BE

Figure 6.10 BIGENDIAN Register
REptr index = 5
Buffered Input Register
Bit 0 : Enable Big Endian mode (Write Only). This bit enables or disables Big Endian mode.

0 - Disable Big Endian mode
1 - Enable Big Endian mode

Silicon Graphics Confidential MGR Technical Reference

FUNC Register

This is a 4 bit register which is used to specify the Raster operation which is to be performed on
the pixel data. The raster op is performed between the new pixel data (src) and the pixel data in the
bitplanes (dst). The format of this register is shown in Figure 6.11.

func
1 | |

Figure 6.11 FUNC Register
REptr index = 6
Buffered Input Register

Bits 3-0 : func (Write Only). These bits specify the raster op function.

bits destination value
0000 zero
0001 src AND dest
0010 src AND (COMP dest)
0011 src ‘
0100 (COMP src) AND dest
0101 dest
0110 src XOR dest
0111 src OR dest
1000 (COMP src) AND (COMP dest)
1001 (COMP src) XOR dest
1010 COMP dest
1011 src OR (COMP dest)
1100 COMP src
1101 (COMP src) OR dest
1110 (COMP src) OR (COMP dest)
1111 Oe -

COMP - 1's complement

Chapter 6 Raster Subsystem Silicon Graphics Confidential

HADDR Register

This register is used to specify the starting pixel offset in the first long word DMAed to the RE2 to
be written to the bitplanes. This register allows the host buffer to start on a byte or short
boundary which is not long word aligned. The UPACMODE register specifies how many pixels per
long word are in each long word received by the RE2. The format of this register is shown in Figure
6.12

1 0

]
haddr
L

Figure 6.12 HADDR Register
REptr index = 7
Buffered Input Register

Bits 1-0 : haddr (Write Only). These bits specify the starting pixel location in the first packed
long word. The following bit definitions assume big endian mode is selected.

00 - Ist byte or short pixel is starting pixel

01 - 2nd byte pixel is starting pixel

10 - 3rd byte pixel or 2nd short is the starting pixel
11 - 4th byte pixel is starting pixel

6-20

Silicon Graphics Confidential MGR Technical Reference

NOPUP Register

This register is used to select either 2 PUP bits and 2 UAUX bits or 0 PUP bits and 4 UAUX bits.
This register is only used on the enhanced configuration and is ignored on the base adapter. The

format of this register is shown in Figure 6.13.

0
NP

Figure 6.13 NOPUP Register

REptr index = 8

Buffered Input Register

Bit 0 : NP (Write Only). This bit specifies the size of the UAUX bits on the enhanced adapter. When
this bit is 0 the overlay bits consist of 2 PUP bits and 2 UAUX bits. When this bit is 1 the
overlay bits consist of 0 PUP bits and 4 PUP bits. This bit is ignored on the base adapter.
This register is always set to 0 in the MGR adapter since the microcode provides the same

functionality.

0 - select 2 PUP and 2 UAUX bits
1 - select 0 PUP and 4 UAUX bits

6-21

Chapter 6 Raster Subsystem Silicon Graphics Confidential

XYFRAC Register

This register is used to improve the quality of antialiased lines. It is used to specify the initial
fraction bits of the x or y axis that is changing slower on the antialiased line. The value in the
register affects the value of the antialiasing weight used when drawing the first pixel on the line.
This register allows the space between antialiased lines to appear constant on slow moving
wireframes with closely spaced lines. The format of this register is shown in Figure 6.14.

3 2 1 0
] | |}
xyfrac
1

Figure 6.14 XYFRAC Register
REptr index = 9

Buffered Input Register

Bits 3-0 : xyfrac (Write Only). These bits specify the initial xyfrac value used in antialiased
lines.

6-22

Silicon Graphics Confidential MGR Technical Reference

RGB Register

This register is used to hold the initial red, green and blue color values. This register allows the
microcode to load the RGB values faster than using the R, G and B registers independently. This
register is the same functionally as the separate R, G and B registers. The format of this register is
shown in Figure 6.15.

27 16 15 87 0
Red Green Biue

Figure 6.15 RGB Register

REptr index = OxA

Buffered Input Register

Bits 27-16 : red (Write Only). These bits contain the ihitial red color.
Bits 15-8 : green (Write Only). These bits contain the initial green color.

Bits 7-0 : blue (Write Only). These bits contain the initial blue color.

6-23

Chapter 6 Raster Subsystem Silicon Graphics Confidential

YX Register

This register contains both the initial Y and X screen locations of the starting pixel location to be
read or written by the next instruction. The X value is in the special DIVMOD format in which the X
screen location is divided by 5 and the quotient is stored in the upper nine bits and the remainder is
stored in the lower 3 bits of the X part of this register. The format of this register is shown in
Figure 6.16.

22 12 11 32 0
Y X div . X mod

Figure 6.16 YX Register
REptr index = 0xB
Buffered Input Register
Bits 22-12 : Initial Y (Write Only). These bits contain the initial Y screen location.

Bits 11-0 : Initial X (Write Only). These bits contain the initial X screen location.

6-24

Silicon Graphics Confidential MGR Technical Reference

PUPDATA Register

This register is loaded with the data which is written into the PUP bitplanes. On the enhanced
adapter (FBOPTION = 1) the NOPUP register controls whether the 2 PUP bits are used or not. If
the NOPUP register is zero then the 2 PUP bits are used as well as 2 bits in the UAUX register. It
the NOPUP register is a one then the 2 PUP bits are not used and 4 bits in the UAUX register are
used instead. The format of this register is shown in Figure 6.17.

PUP Base Configuration

NOPUP =0 PUP Enhanced Configuration

NOPUP =1 Enhanced Configuration

=€

Figure 6.17 PUPDATA Register
REptr index = 0xC

Buffered Input Register

Bits 1-0 : PUP (Write Only). These bits contain the PUP data bits.

6-25

Chapter 6 Raster Subsystem Silicon Graphics Confidential

PATL Register

This register contains the lower 16 Dbits of the 32 bit Pattern Mask register used by the Draw
Shaded Span instruction to condition pixel writes with a texture pattern. When pattern masking is
enabled with the ENABPAT register the pixels whose pattern mask bits are one are written and
pixels whose pattern mask bits are zero are not written. If pattern masking is disabled the pattern
mask bits are ignored as shaded span pixels are written. The ALIGNPAT register is used to control
the pattern to screen pixels. The format of this register is shown in Figure 6.18.

15 0
PATL

Figure 6.18 PATL Register
REptr index = OxD
Buffered Input Register

Bits 15-0 : PATL (Write Only). These bits contain the lower 16 bits of the Pattern Mask.

6-26

Silicon Graphics Confidential MGR Technical Reference

PATH Register

This register contains the upper 16 bits of the 32 bit Pattern Mask register used by the Draw
Shaded Span instruction to condition pixel writes with a texture pattern. When pattern masking is
enabled with the ENABPAT register the pixels whose pattern mask bits are one are written and
pixels whose pattern mask bits are zero are not written. If pattern masking is disabled the pattern
mask bits are ignored as shaded span pixels are written. The ALIGNPAT register is used to control
the pattern to screen pixels. The format of this register is shown in Figure 6.19.

15 0
PATH

Figure 6.19 PATH Register
REptr index = OxE

Buffered Input Register
Bits 15-0 : PATH (Write Only). These bits contain the upper 16 bits of the Pattern Mask.

6-27

cnapter 6 Raster Subsystem Silicon Graphics Confidential

DZI Register

This register contains the integer portion of the delta Z value. This value is added to the Z value
after each pixel is written to get the next Z value. The value in the register is a 24 bit 2's
complement integer. The format of this register is shown in Figure 6.20.
23 22)
S Delta Z integer

Figure 6.20 DZ! Register
REptr index = OxF
Buffered Input Register

Bit 23 : DZI sign bit (Write Only). This bit contains the sign bit for the integer portion of the delta
Z value

Bits 22-0 : DZ! (Write Only). These bits contain the integer portion of the delta Z value

6-28

Silicon Graphics Confidential MGR Technical Reference

DZF Register

This register contains the fraction portion of the delta Z value. This value is added to the fraction
portion of the Z value after each pixel is written to get the next fractional part of the Z value. |if the
result of adding the two fractional parts is greater than 1 then the integer portion of the Z is
incremented. The format of this register is shown in Figure 6.21.

13 0

Deita Z fraction

Figure 6.21 DZF Register
REptr index = 0x10
Buffered Input Register

Bits 13-0 : DZF (Write Only). These bits contain the fraction portion of the delta Z value

6-29

Chapter 6 Raster Subsystem Silicon Graphics Confidential

DR Register

This register contains the delta Red color value which is added to the Red color value after the
current pixel is written to get the next Red color value. The integer portion of this register is a 2's
complement integer. The integer portion of this register is 12 bits wide because it is used for the
color index values for color index pixels. The format of this register is shown in Figure 6.22.

23 22 11 10 o]
S Delta R integer Delta R fraction

Figure 6.22 DR Register
REptr index = Ox11
Buffered Input Register

Bit 23 : DR sign bit (Write Only). This bit contains the sign bit for the integer portion of the delta
R value

Bits 22-11 : DR integer (Write Only). These bits contain the integer portion of the delta R value

Bits 10-0 : DR fraction (Write Only). These bits contain the fraction portion of the delta R value

6-30

Silicon Graphics Confidential MGR Technical Reference

DG Register

This register contains the delta Green color value which is added to the Green color value after the
current pixel is written to get the next Green color value. The integer portion of this register is a
2's complement integer. The format of this register is shown in Figure 6.23.

19 18 11 10 0
S Delta G integer Delta G fraction

Figure 6.23 DG Register

REptr index = 0x12

Buffered Input Register

Bit 19 : DG sign bit (Write Only). This bit contains the sign bit for the integer portion of the delta
G value

Bits 18-11 : DG integer (Write Only). These bits contain the integer portion of the delta G value

Bits 10-0 : DG fraction (Write Only). These bits contain the fraction portion of the delta G value

6-31

Chapter 6 Raster Subsystem

Silicon Graphics Confidential

DB Register

This register contains the delta Blue color valu
current pixel is written to get the next Blue co

e which is added to the Blue color value after the
lor value. The integer portion of this register is a

2's complement integer. The format of this register is shown in Figure 6.24.

19 18

11 10

0

S Delta B integer

Delta B fraction

Figure 6.24 DB Register

REptr index = 0x13

Buftered Input Register

Bit 19 : DB sign bit (Write Only). This bit contains the sign bit for the integer portion of the delta

B value

Bits 18-11 : DB integer (Write Only). These bits contain the integer portion of the deita B value

Bits 10-0 : DB fraction (Write Only). These bits contain the fraction portion of the delta B value

6-32

Silicon Graphics Confidential MGR Technical Reference

Z Register

This register contains the integer portion of the initial Z value. This value is used for the Z butter
checks and is written to the Z buffer along with the other pixel bits if the Z check passes. The delta
Z value is added to the Z value after each pixel is written to get the next Z value. The value in the
register is a 24 bit 2's complement integer. The format of this register is shown in Figure 6.25.

23 22 0
S Z value

Figure 6.25 Z Register
REptr index = 0x14

Buffered Input Register

Bit 23 : Z sign bit (Write Only). This bit contains the sign bit for the integer portion of the initial
Z value

Bits 22-0 : Z (Write Only). These bits contain the integer portion of the initial Z value

6-33

Chapter 6 Raster Subsystem Silicon Graphics Confidential

R Register

This register contains the initial Red color value which is used as the Red color component of the
RGB pixels or as the color index for color index pixels. The delta Red color value is added to the Red
color value after the current pixel is written to get the next Red color value. The format of this
register is shown in Figure 6.26.

22 11 10 0

R integer R fraction

Figure 6.26 R Register
REptr index = 0x15
Buffered Input Register
Bits 22-11 : R integer (Write Only). These bits contain the integer portion of the Red color value

Bits 10-0 : R fraction (Write Only). These bits contain the fraction portion of the Red value

6-34

Silicon Graphics Confidential MGR Technical Reference

G Register

This register contains the initial Green color value which is used as the green color component of
the RGB pixels. The delta Green value is added to the Green color value after the current pixel is
written to get the next Green color value. The format of this register is shown in Figure 6.27.

18 11 10 0
G integer G fraction

Figure 6.27 G Register

REptr index = 0x16

Buffered Input Register

Bits 18-11 : G integer (Write Only). These bits contain the integer portion of the Green color
value

Bits 10-0 : G fraction (Write Only). These bits contain the fraction portion of the Green color
value

6-35

Chapter 6 Raster Subsystem Silicon Graphics Confidential

B Register

This register contains the initial Biue color value which is used as the blue color component of RGB
pixels. The delta Biue value is added to the Blue color value after the current pixel is written to get
the next Blue color value. The format of this register is shown in Figure 6.28.

18 11 10 0

B integer B fraction

Figure 6.28 B Register
REptr index = 0x17
Buffered Input Register
Bits 18-11 : B integer (Write Only). These bits contain the integer portion of the Blue color value

Bits 10-0 : DB fraction (Write Only). These bits contain the fraction portion of the B color value

6-36

Silicon Graphics Confidential MGR Technical Reference

STIP Register

This register is used to hold the 16 bit line stipple pattern. When stipple conditioning is enabled
with the ENABSTIP register the LSB bit is used to determine if the pixel is written during Draw
Line instructions. If the LSB bit in the STIP register is a one the pixel is written if it is a zero the
pixel is not written. The STIPCOUNT register determines how many times the initial LSB bit is
used before the STIP register is rotated right one bit. For the remaining bits in the STIP register
the REPSTIP register contains the repeat count for how many times each of those bits will be used to
condition pixel writes before the STIP register is rotated right again. The format of this register is
shown in Figure 6.29.

15 0
Stipple Pattern

Figure 6.29 STIP Register
REptr index = 0x18
Buffered Input Register

Bits 15-0 : Stipple Pattern (R/W). These bits contain the line stipple pattern.

6-37

Chapter 6 Raster Subsystem Silicon Graphics Confidential

STIPCOUNT Register

This register contains the repeat count for the LSB bit in the STIP register. When stipple checking
is enabled with the ENABSTIP register the STIPCOUNT register determines how many pixel writes
will be conditioned by the LSB bit in the STIP register before the STIP register is rotated right.
The stipple pattern is used to condition pixel writes for the Draw Line instructions. The format of
this register is shown in Figure 6.30.

7 0
LSB Stipple Bit Count

Figure 6.30 STIPCOUNT Register
REptr index = 0x19
Buffered Input Register

Bits 7-0 : LSB Bit Stipple Count (R/W). These bits contain the repeat count for the LSB bit in the
stipple pattern register.

6-38

Silicon Graphics Confidential MGR Technical Reterence

DX Register

This register contains the deita X value. This value is added to the X value after each pixel is
written to get the next X value. if the result ot adding the two fractional parts is greater than 1 then
the integer portion of the X value is incremented. The integer portion of this register is a 2 bit 2's
complement format. The format of this register is shown in Figure 6.31.

15 14 13 0
S | DXint Delta X fraction

Figure 6.31 DX Register
REptr index = Ox1A
Buffered Input Register
Bit 15 : DX sign bit (Write Only). This bit contains the sign bit for the delta X value
Bit 14 : DX integer (Write Only). This bit contains the integer portion of the deita X value

Bits 13-0 : DX fraction (Write Only). These bits contain the fraction portion of the delta X value

6-39

Chapter 6 Raster Subsystem Silicon Graphics Confidential

DY Register

This register contains the delta Y value. This value is added to the Y value after each pixet is
written to get the next Y value. If the result of adding the two fractional parts is greater than 1 then
the integer portion of the Y value is incremented. The integer portion of this register is a 2 bit 2's
complement format. The format of this register is shown in Figure 6.32.

15 14 13 0
S | DYint Delta Y fraction

Figure 6.32 DY Register
REptr index = 0x1B
Buffered Input Register
Bit 15 : DY sign bit (Write Only). This bit contains the sign bit for the delta Y value
Bit 14 : DY integer (Write Only). This bit contains the integer portion of the delta Y value

Bits 13-0 : DY fraction (Write Only). These bits contain the fraction portion of the delta Y value

Silicon Graphics Confidential MGR Technical Reference

NUMPIX Register

This register is used as a pixel counter by the RE2. The number of pixels to be read or written
during the next instruction are written into this register. As each pixel is read or written the
NUMPIX register is decremented. When the count becomes zero the instruction execution
terminates. The format of this register is shown in Figure 6.33.

10 0
Pixel Count

Figure 6.33 NUMPIX Register
REptr index = 0x1C
Buffered Input Register

Bits 10-0 : Pixel Count (Write Only). These bits contain the pixel count for the current
instruction being executed.

6-41

Chapter 6 Raster Subsystem Silicon Graphics Confidential

X Register _

This register contains the initial X screen location of the starting pixel location to be read or
written by the next instruction. The X value is in the special DIVMOD format in which the X screen
location is divided by 5 and the quotient is stored in the upper nine bits and the remainder is stored
in the lower 3 bits of this register. The format of this register is shown in Figure 6.34.

11 32 0
| |
Xdiv anmd

Figure 6.34 X Register

REptr index = 0x1D

Buffered Input Register

Bits 11-0 : Initial X (Write Only). These bits contain the initial X screen location.

6-42

Silicon Graphics Confidential MGR Technical Reference

- Y Register

This register contains the initial Y screen location of the starting pixel location to be read or
written by the next instruction. The format of this register is shown in Figure 6.35.

10 (o]
Initial Y value

Figure 6.35 Y Register

REptr index = Ox1E

Buffered Input Register

Bits 10-0 : Initial Y (Write Only). These bits contain the initial Y screen location.

6-43

Chapter 6 Raster Subsystem Silicon Graphics Confidential

IR Register

This register is loaded with the instruction which the microcode wants the RE2 to execute. When
the instruction is loaded into the IR register the RE2 will execute it as soon as it completes the
previous instruction execution. The format of this register is shown in Figure 6.36.

2 1 0
1 1
inst’

L 1

Figure 6.36 IR Register

REptr index = Ox1F

Buffered Input Register
Bits 2-0 : Inst (Write Only). These bits contain the instruction to be executed by the RE2.

000 - Undefined

001 - Draw Shaded Span

010 - Draw 1 x 5 Flat Span

011 - Draw 1 x 20 Flat Span (Block Write Mode)
100 - Draw Top of Antialiased Line

101 - Draw Bottom of Antialiased Line

110 - Read Buffer

111 - Write Buffer

6-44

Silicon Graphics Confidential MGR Technical Reference

RWDATA Register

This register is the data register used by the read buffer and write buffer instruction. The data to
be written into the bitplanes is written by the DMA hardware into this register and the RE2 then
takes the value from the RWDATA register and writes it to the bitplanes selected by the RWMODE
register. The read bufter instruction reads the selected bitplanes and places the data into the
RWDATA register. The DMA hardware then transfers the data from the register to the host buffer
or to the pixel buffer in the GES data RAM. The format of the register is shown in Figure 6.37.

31 0

pixel data

Figure 6.37 RWDATA Register
REptr index = 0x20

Unbuftered Input Register

Bits 31-0 : pixel data (R/W). These bits contain the pixel data read from the bitplanes or to be
written to the bitplanes. For pixel writes all 32 bits can be used while only the right
most 28 bits will be used for pixel reads.

6-45

Chapter 6 Raster Subsystem Silicon Graphics Confidential

PIXMASK Register

This register contains the Frame Butfer pixel write mask which controls which bits in the pixel
data is written into the Frame Buffer bitplanes. The pixel write mask is used to select either a
single buffer write or a double buffer write. For the double buffer write the front or back buffer is
selected for writing with the value in the pixel write mask. The format of this register is shown in
Figure 6.38.

23 7 0
X FB pixel mask | Base Configuration
23 0
FB pixel mask Enhanced Configuration

Figure 6.38 PIXMASK Register
REptr index = 0x21
Unbuffered Input Register
Bits 23-0 : pixmask (Write Only). These bits contain the Frame Buffer pixel write mask.

0x0000FF - write to all the base adapter Frame Buffer bitplanes
0xFFFFEF - write to all the enhanced adapter Frame Buffer bitplanes
OxFFFFFF - write to all bits of PIXTYPE = 0 (24 bit RGB)

Ox0000FF - write to all bits of PIXTYPE = 0 (8 bit RGB)

OxOFOFOF - write to the front buffer with PIXTYPE = 1 (12 bit RGB)
OxFOFOFO - write to the back buffer with PIXTYPE = 1 (12 bit RGB)
Ox000FFF - write to the front buffer with PIXTYPE «= 2 (8 or 12 bit Ci)
OxFFE000 - write to the back buffer with PIXTYPE = 2 (8 or 12 bit Ci)
0x00000F - write to the front buffer with PIXTYPE = 3 (4 bit Cl)
0x0000F0 - write to the back buffer with PIXTYPE = 3 (4 bit Cl)

6-46

Silicon Graphics Confidential MGR Technical Reference

AUXMASK Register

This register contains the write mask which is used to control which bits are written into the PUP
bitplanes, the UAUX bitplanes, the WID bitplanes and the Z Buffer bitplanes. For the PUP bitplanes
the UAUX bitplanes and the WID bitplanes the bits in the aux mask are used to mask individual bits.
For the Z Butfer bitplanes a single mask bit is used to enable or disable writes into all 24 Z Buffer
bitplanes. The format of this register is shown in Figure 6.39.

g8 7 6 54 3 2 1 0

X § WD X PUP Base Configuration
8 7 4 3 2 1 0
NOPUP = 0 z WD UAUX PUP Enhanced Configuration
8 7 4 3 2 1 0
NOPUP = 1 z WID UAUX Enhanced Configuration

Figure 6.39 AUXMASK Register
REptr index = 0x22

Unbuffered Input Register

Bits 8-0 : auxmask (Write Only). These bits contain the write mask for the PUP bitplanes, the
UAUX bitplanes, the WID bitplanes and the Z Buffer bitplanes.

0x003 - to write to just the PUP bitplanes

0x00C - to write to just the UAUX bitplanes

OxO00F - to write to just the UAUX bitplanes with NOPUP =1 and FBOPTION =1
OxOF0 - to write to just the WID bitplanes

0x100 - to write to just the Z Buffer bitplanes

6-47

Chapter 6 Raster Subsystem Silicon Graphics Confidential

WIDDATA Register

This register contains the WID data which is written into the WID bitplanes if the WID mask bits in
the AUXMASK register are set to one. The GE_DRAWMODE token is used to specify the WID draw
mode and then the GE_COLOR or GE_COLORF tokens are used to specify the index value to be written
into the WIDDATA register. The WID data written into the WID bitplanes is used to condition pixel
writes for the shaded span, draw line, and write buffer instructions. The LSB bit of the WID data in
the WID bitplanes can also be used as a Z buffer invalidate bit for fast Z clears. This condition is
enabled or disabled with bit 3 of the DEPTHFN register. The WID data is also used as an index for
the mode registers in the XPC1 or XMAP2 chips in the Display Subsystem. The mode registers
control the pixel display formatting thus the WID data bits contro! the pixel formatting for the
various on screen windows. The format of the WIDDATA register is shown in figure 6.40.

X | WID | Base Configuration

WID data Enhanced Configuration

Figure 6.40 WIDDATA Register
REptr index = 0x23
Unbuffered Input Register

Bits 3-0 : WID data (Write Only). These bits contain the Window ID data bits.

6-48

Silicon Graphics Confidential MGR Technical Reference

UAUXDATA Register

This register contains the UAUX data which is written into the UAUX bitplanes if the UAUX mask bits
in the AUXMASK register are set to one. The GE_DRAWMODE token is used to specify the OVER draw
mode and then the GE_COLOR or GE_COLORF tokens are used to specify the index value to be written
into the UAUXDATA register. The UAUX data written into the UAUX bitplanes is used as an index for
the overlay palette registers in the RGB RAMDAC chip or the overlay color map registers in the
XMAP2 chips in the Display Subsystem. The index value selects an overlay or underlay color value
if the overlay or underlay conditions are satisfied. The format of the UAUXDATA register is shown
in figure 6.41.

X Base Configuration

3_ 21 0
NOPUP =0 X }UAUX| Enhanced Configuration

3 0
NOPUP = 1 UAUX Enhanced Configuration

Figure 6.41 UAUXDATA Register
REptr index = 0x24
Unbuffered Input Register

Bits 3-0 : UAUX data (Write Only). These bits contain the UAUX data bits.

6-49

Chapter 6 Raster Subsystem Silicon Graphics Confidential

RWMODE Register

This register specifies the source bitplanes for the Read Buffer instruction and specifies the
destination bitplanes for the Write Buffer bitplanes. The format of this register is shown in Figure

6.42.

2 0
rwmode

Figure 6.42 RWMODE Register

REptr index = 0x25

Unbuffered Input Register

Bits 2-0 : rwmode (Write Only). These bits specify the source or destination bitplanes to be read
or written.

000 - Frame buffer bitplanes

001 - PUP bitplanes

010 - UAUX bitplanes

011 - Z buffer bitplanes

100 - Window ID (WID) bitplanes
101 - invalid

110 - Frame buffer port

111 - Z buffer port

6-50

Silicon Graphics Confidential MGR Technical Reference

READBUF Register

This register specifies which buffer is read by the Read Buffer instruction when the RWMODE

register specifies the Frame Buffer as the read source bitplanes. The format of this register is
shown in Figure 6.43.

0
R8

Figure 6.43 READBUF Register
REptr index = 0x26
Unbuffered Input Register

Bit 0 : RB (Write Only). This bit specifies which Frame Buffer bitplane buffer is read by the Read
Buffer instruction.

0 - read front buffer
1 - read back buffer

6-51

Chapter 6 Raster Subsystem Silicon Graphics Confidential

PIXTYPE Register

This register specifies the type of pixel formatting that is performed on the R, G and B registers to
form the Frame Buffer pixel data which is written into the Frame Buffer bitplanes. The format of
this register is shown in Figure 6.44.

1 0

pixtype

Figure 6.44 PIXTYPE Register
REptr index = 0x27

Unbuffered Input Register

Bits 1-0 : pixtype (Write Only). These bits specify the pixel formatting performed on the color
components to form the pixel data written into the Frame Buffer bitplanes.

00 - 8 bit RGB single buffer pixel if FBOPTION = 0

00 - 24 bit RGB single buffer pixel if FBOPTION = 1

01 - 12 bit RGB double butfer pixel (FBOPTION =1 only)
10 - 8 bit C! single buffer. pixel (FBOPTION = 0)

10 - 12 bit Cl double butfer pixel (FBOPTION = 1)

11 - 4 bit Cl double buffer pixel (FBOPTION = 0 or 1)

6-52

Silicon Graphics Confidential MGR Technical Reference

ASELECT Register

This register contains antialiase weight usage control bits. The 3 most significant bits of the
fraction part of the X or Y minor axis (slower changing axis) are used to select a 4 bit antialiase
weight value which can be used to replace any nibble in the 24 bit Frame Buffer pixel value. The
ASELECT register is used to select which of the six nibbles are replaced by the antialiase weight
value. A 1 bit in any of the six bits in the ASELECT register causes the weight to replace the
corresponding nibble. The format of the register is shown in Figure 6.45.

5 0

aselect

Figure 6.45 ASELECT Register
REptr index = 0x28
Unbuffered Input Register
Bits 5-0 : aselect (Write Only). These bits contain the antialiase weight replacement control bits.
000000 - No nibbles replaced with the weight
000001 - Replace nibble 0 with weight in 24 bit Frame Buffer pixel
000010 - Replace nibble 1 with weight in 24 bit Frame Buffer pixel

000100 - Replace nibble 2 with weight in 24 bit Frame Buffer pixel
001000 - Replace nibble 3 with weight in 24 bit Frame Buffer pixel

010000 - Replace nibble 4 with weight in 24 bit Frame Buffer pixel

100000 - Replace nibble 5 with weight in 24 bit Frame Buffer pixel

111111 - Replace all six nibbles with weight in 24 bit Frame Buffer pixel
000011 - Replace nibbles 0 and 1 with weight for double buffer 4 bit C! pixel
001001 - Replace nibbles 0 and 3 with weight for double buffer 12 bit Ci pixel

6-53

Chapter 6 Raster Subsystem Silicon Graphics Confidential

ALIGNPAT Register

This register controls the pixel alignment of the 32 bit pattern mask. The pattern can be either
screen pixel location aligned or relative drawing aligned. The patterned polygons are drawn with
screen alignment and characters are drawn with relative alignment. When screen alignment is
selected the pattern mask is applied to each group of 32 pixeis on the current scan line beginning
with the left most pixel. When drawing relative alignment is selected the pattern mask is applied
beginning with the starting X, Y pixel location. Each bit in the pattern mask is used by the shaded
span instruction to condition a pixel write. If the current bit in the pattern mask is one the pixel is
written and if it is zero the pixel is not written. The format of the ALIGNPAT register is shown in
Figure 6.46.

0
AP

Figure 6.46 ALIGNPAT Register
REptr index = 0x29
Unbuffered Input Register
Bit 0 : alignment (Write Only). This bit controls the pattern mask alignment.

0 - use drawing relative alignment (characters)
1 - use screen alignment (textured polygons)

6-54

Silicon Gréphics Confidential MGR Technical Reference

ENABPAT Register

This register is used to enable or disable the use of the pattern mask for the shaded span and write
buffer instructions. When enabled the 32 bit pattern mask contained in the PATH and PATL
registers is applied with the alignment specified in the ALIGNPAT register to condition pixel writes.

The format of this register is shown in Figure 6.47.

0
EP

Figure 6.47 ENABPAT Register

REptr index = 0x2A

Unbuffered Input Register
Bit 0 : Enable Pattern (Write Only). This bit is used to enable or disable pattern masking.

0 - disable pattern masking
1 - enable pattern masking

6-55

Chapter 6 Raster Subsystem Silicon Graphics Confidential

ENABSTIP Register

This register is used to enable or disable the use of the stipple pattern for the draw line
instructions. When enabled the 16 bit stipple pattern contained in the STIP register is applied with
the repeat counts specified in the STIPCOUNT and REPSTIP registers to condition pixel writes. The
format of this register is shown in Figure 6.48.

0
ES

Figure 6.48 ENABSTIP Register
REptr index = 0x2B
Unbuffered Input Register

Bit 0 : Enable Stip (Write Only). This bit is used to enable or disable the use of the stipple pattern
when drawing lines.

0 - disable stipple pattern
1 - enable stipple pattern

6-56

Silicon Graphics Confidential MGR Technical Reference

ENABDITH Register

This register is used to enable or disable the dithering operations during the Frame Butfer pixel
calculations. When enabled the dither matrix is indexed by the four MSB fraction bits for color
index pixels or the LSB nibble for 12 bit RGB pixels. The dither matrix value is compared to the
index value and if the index value is greater than the index value the integer component of the color
registers is incremented The format ot this register is shown in Figure 6.49.

0
B

Figure 6.49 ENABDITH Register

REptr index = 0x2C

Unbuffered Input Register
Bit 0 : Enable Dither (Write Only). This bit is used to enable or disable the dithering operations.

0 - disable dithering
1 - enable dithering

6-57

Chapter 6 Raster Subsystem Silicon Graphics Confidential

ENABWID Register

This register is used to enable or disable the WID checking for the various instructions which allow
WID checking. The ENABLWID register also must be enabled for line drawing WID checking. When
enabled the value in the WID bitplanes at the current X, Y location are compared to the value in the
CURWID register. If the values are the same the WID check passes. If the values are different the
WID check fails. The format of this register is shown in Figure 6.50.

0
BV

Figure 6.50 ENABWID Register
REptr index = 0x2D
Unbuffered input Register
Bit 0 : Enable WID check (Write Only). This bit is used to enable or disable WID checking.

0 - disable WID checking
1 - enable WID checking

6-58

Silicon Graphics Confidential MGR Technical Reference

CURWID Register

This register contains the current WID value which is compared to the WID data in the WID
bitplanes when WID checking is enabled. The WID check passes if the WID data value is the same as
the value in the CURWID register. If the two values are different the WID check fails. If the WID
check passes the pixel write depends on the other pixel write conditioning checks. If the WID check
fails the pixel is not written. If WID checking is disabled the WID check automatically passes. The
format of this register is shown in Figure 6.51.

3 o]

current WID

Figure 6.51 CURWID Register
REptr index = Ox2E
Unbuffered Input Register

Bits 3-0 : Current WID (Write Only). These bits contain the current WID value to be compared to
the WID bitplane data during WID checking operations.

6-59

Chapter 6 Raster Subsystem Silicon Graphics Confidential

DEPTHFN Register

This register specifies the relational comparison function which is performed by the Z comparator
hardware. If the COLORCMP register is zero the new Z value is compared to the Z value in the Z
Buffer. If the COLORCMP register is one the new Frame Buffer pixel value is compared to the color
value already in the Frame Buffer. Bit 3 of the DEPTHFN register is used to enable or disable the
use of the LSB bit of the WID bitplane data to invalidate the Z value for a fast Z clear operation. The
format of this register is shown in Figure 6.52.

3 2 0

Zl | Z function

Figure 6.52 DEPTHFN Register
REptr index = Ox2F
Unbuffered Input Register
Bits 3 : Z invalidate (Write Only). This bit specifies if the Z value is valid or not.

0 - disable old Z invalidate
1 - enable old Z invalidate if (WID LSB = 1)

Bits 2-0 : Depth function (Write Only). These bits specify the relational comparison function
performed by the Z comparator hardware.

000 - never passes

001 - passes if src < dest
010 - passes if src = dest
011 - passes if src <= dest
100 - passes if src > dest
101 - passes if src <> dest
110 - passes if src >= dest
111 - always passes

6-60

Silicon Graphics Confidential MGR Technical Reference

REPSTIP Register

This register contains the repeat count for the bits in the STIP register other than the LSB bit.
When stipple checking is enabled with the ENABSTIP register the STIPCOUNT register determines
how many pixel writes will be conditioned by the LSB bit in the STIP register before the STIP
register is rotated right. The count in the REPSTIP register determines how many pixel writes will
be conditioned by the each remaining bit in the STIP register before the STIP register is rotated
right. The stipple pattern is used to condition pixel writes for the Draw Line instructions. The
format of this register is shown in Figure 6.53.

7 0
Repeat Stipple Count

Figure 6.53 REPSTIP Register
REptr index = 0x30
Unbuffered Input Register

Bits 7-0 : Repeat Stipple Count (Write Only). These bits contain the repeat stipple count for all
bits in the STIP register except the LSB bit.

6-61

Chapter 6 Raster Subsystem Silicon Graphics Confidential

ENABLWID Register

This register is used to enable or disable the WID checking for the line drawing instructions. The
ENABWID register also must be enabled for the line drawing WID checking to be enabled. When
enabled the value in the WID bitplanes at the current X, Y location are compared to the value in the
CURWID register. If the values are the same the WID check passes. If the values are different the
WID check fails. The format of this register is shown in Figure 6.54.

0
Bw

Figure 6.54 ENABLWID Register
REptr index = 0x31
Unbuffered Input Register

Bit 0 : Enable Line WID Checking (Write Only). This bit is used to enable or disabie line WID
checking. The ENABWID register must be set to one for this register to take effect.

0 - disable line WID checking
1 - enable line WID checking

6-62

Silicon Graphics Confidential ' MGR Technical Reference

FBOPTION Register

This register is used to inform the RE2 if the additional Frame Buffer bitplanes card is installed on
the adapter. The first data parameter sent down to the microcode after the microcode download is
written into the FBOPTION register by the microcode during the adapter initialization. The format
of this register is shown in Figure 6.55.

1 0
L |
FB Option
1

Figure 6.55 FBOPTION Register
REptr index = 0x32
Unbuffered Input Register

Bits 1-0 : FO (Write Only). These bits indicate if the additional Frame Buffer bitplanes card is
installed on the adapter.

00 - 8 Frame Buffer, 2 PUP and 2 WID bitplanes installed

01 - 24 Frame Buffer, 2 PUP, 2 UAUX and 4 WID bitplanes installed

10 - Undefined ‘

11 - 16 Frame Buffer, 2 PUP, 2 UAUX and 4 WID bitplanes installed (not supported)

6-63

Chapter 6 Raster Subsystem Silicon Graphics Confidential

TOPSCAN Register

This register is used to specify how many rows and cols are being displayed for the currently
selected Display State Machine timing. The row count specifies the top row on the display and thus
the first row which will be displayed. Row 0 is always the bottom row displayed on the screen. The
col count specifies the number of columns on each scan line. Column 0 is always the left most
column displayed on the screen. The col value is the starting col divided by 5. The host software
must use the GE_LOADRE token to load the TOPSCAN register whenever it changes the monitor type
in the Display Subsystem. The format of this register is shown in Figure 6.56.

17 . 10 9 0
COLDIVS ROW

Figure 6.56 TOPSCAN Register
REptr index = 0x33
Unbuffered Input Register
Bits 17-10 : col (Write Only). These bits contain the col number of the first pixel to be displayed.

Bits 9-0 : row (Write Only). These bits contain the row number of the first pixel to be displayed.

monitor topscan

type col row

60Hz 0x00 Ox3FF (1023)
30Hz 0x00 Ox3FF (1023)
PAL 0x00 Ox23F (575)
NTSC 0x00 Ox1E4 (484)

6-64

Siicon Graphics Confidential MGR Technical Reference

ZBOPTION Register

This register is used to inform the RE2 if the Z Buffer card is installed on the adapter. The second
data parameter sent down to the microcode after the microcode download is written into the
ZBOPTION register by the microcode during the adapter initialization. The format of this register
is shown in Figure 6.57.

0

D

Figure 6.57 ZBOPTION Register
REptr index = 0x36
Unbuffered Input Register
Bit 0 : ZO (Write Only). This bit indicates if the Z Buffer card is installed on the adapter.

0 - Z Buffer card not installed
1 - Z Buffer card installed

6-65

Chapter 6 Raster Subsystem Silicon Graphics Confidential

XZOOM Register

This register specifies the x zoom factor which is applied to each pixel written during the execution
of the Write Buffer instruction. Each pixel will be written x zoom times along the current scan
line. The format of this register is shown in Figure 6.58.

7 0

X Zoom factor

Figure 6.58 XZOOM Register
REptr index = 0x37
Unbuffered Input Register

Bits 7-0 : xzoom (Write Only). These bits contain the x zoom tactor which is the number of times
each pixel is written during the Write Buffer instruction.

6-66

Silicon Graphics Confidential MGR Technical Reference

UPACMODE Register

This register specifies the pixel packing used during the Write Buffer instructions. The 2 bit value
specifies how many pixels are packed into each long word sent to the RE2 during the DMA operation.
The HADDR register is used to specify the starting pixel offset in the first long word. The NUMPIX
value will be the number of packed pixels written, not the number of long words sent to the RE2.

The format of this register is shown in Figure 6.59.
1 0

1
packmode
1

Figure 6.59 UPACMODE Register

REptr index = 0x38

Unbuffered input Register

Bits 1-0 : packmode (Write Only). These bits specify the number of pixels which are packed into
each long word received by the RE2 during a Write Buffer instruction.

00 - 1 pixel/long
01 - 2 pixels/long
10 - undefined

11 - 4 pixels/long

6-67

Chapter 6 Raster Subsystem Silicon Graphics Confidential

YMIN Register

This register specifies the bottom boundary of the hardware screen mask. Any pixel with a Y screen
coordinate less than the value in the YMIN register will be clipped. This register does not aftect
pixel read operations. The hardware screen mask is always enabled for all pixel writes and can
never be disabled. The format is shown in Figure 6.60.

10 0
YMIN value

Figure 6.60 YMIN Register
REptr index = 0x39
Unbuffered Input Register

Bits 10-0 : ymin (Write Only). These bits contain the bottom boundary of the hardware screen
mask.

6-68

Silicon Graphics Confidential MGR Technical Reference

YMAX Register

This register specifies the top boundary of the hardware screen mask. Any pixel with a Y screen
coordinate greater than the value in the YMAX register will be clipped. This register does not affect
pixel read operations. The hardware screen mask is always enabled for all pixel writes and can
never be disabled. The format is shown in Figure 6.61.

10 0
YMAX value

Figure 6.61 YMAX Register
REptr index = 0x3A
Unbuffered input Register

Bits 10-0 : ymax (Write Only). These bits contain the top boundary of the hardware screen mask.

6-69

Chapter 6 Raster Subsystem Silicon Graphics Confidential

XMIN Register

This register specifies the left boundary of the hardware screen mask. Any pixel with an X screen
coordinate less than the value in the XMIN register will be clipped. This register does not affect
pixel read operations. The hardware screen mask is always enabled for all pixel writes and can
never be disabled. The format of this register is in the special X DIV 5, X MOD 5 format as are all
the X registers in the RE2. The format is shown in Figure 6.62. '

11 32 0
X div :Xmod

Figure 6.62 XMIN Register
REptr index = 0x3B

Unbuffered input Register

Bits 11-0 : xmin (Write Only). These bits contain the left boundary of the hardware screen mask.

6-70

Silicon Graphics Confidential MGR Technical Reference

XMAX Register

This register specifies the right boundary of the hardware screen mask. Any pixel with an X screen
coordinate greater than the value in the XMAX register will be clipped. This register does not affect
pixel read operations. The hardware screen mask is always enabled for all pixel writes and can
never be disabled. The format of this register is in the special X DIV 5, X MOD 5 format as are all
the X registers in the RE2. The format is shown in Figure 6.63.

11 32 0
1
X div leod

Figure 6.63 XMAX Register
REptr index = 0x3C
Unbuffered Input Register

Bits 11-0 : xmax (Write Only).. These bits contain the right boundary of the hardware screen
mask.

Chapter 6 Raster Subsystem Silicon Graphics Confidential

COLORCMP Register

This register is used to control the sources for the Z comparator hardware in the RE2. The normal
usage is to compare new Z values with the current Z value already in the Z Bufter to perform hidden
line removal operations. The Z comparator hardware can also be used in antialiased line drawing
mode to improve the appearance of intersecting antialiased lines. In this mode the new Frame
Buffer pixel value is compared to the pixel data already in the Frame Buffer. Only the brighter of
the two pixels will be written at the points of intersection. The DEPTHFN register is used to specity
the comparison operation between the selected values. The format of the COLORCMP register is
shown in Figure 6.64.

0

o

Figure 6.64 COLORCMP Register
REptr index = 0x3D
Unbuffered input Register
Bit 0 : CC (Write Only). This bit specifies the compare source for the Z comparator hardware.

0 - Compare new Z value with Z value already in Z Buffer
1 - Compare new Frame Buffer pixel value with pixel value already in Frame Buffer

6-72

Silicon Graphics Confidential MGR Technical Reference

MEGOPTION Register

This register is used to inform the RE2 about the size of the VRAM chips installed on the adapter.
The MGR adapter always has 1 MEG VRAMs installed so this register should always be set to one.
The third data parameter sent down to the microcode after the microcode download is written into
the MEGOPTION register by the microcode during the adapter initialization. The format of this
register is shown in Figure 6.65.

0

MO

Figure 6.65 MEGOPTION Register
REptr index = Ox3E
Unbuffered Input Register

Bit 0 : MO (Write Only). This bit indicates if the MGR adapter has 256K or 1 MEG VRAM chips.
The MGR adapter always has 1 MEG VRAM chips so this register is set to 1 always.

0 - 256K VRAM chips installed
1 - 1 MEG VRAM chips installed (always for the MGR adapter)

6-73

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Cursor Registers

Each cursor chip contains the following registers:

address register

glyph RAM byte

- command register

- cursor X register

- cursor Y register

- window X register

- window Y register

- window width register
- window height register

The following paragraphs describe these registers.

6-74

Silicon Graphics Confidential MGR Technical Reference

Address Register

The address register contains the address of the glyph RAM bytes or the control registers. It is not
initialized at power on or MGR reset. The address register is written as a low byte and a high byte.
Only bit 0 in the high byte is used and the other 7 bits shouid be set to 0. The address register bytes
may be written by the host at any time. The format of the address register is shown in Figure 6.66.

8 0
Address

Figure 6.66 Address Register

Bits 8-0 : Address. These bits contain the address of the glyph RAM byte or the control register to
be read or written.

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Glyph RAM Byte

The bytes in the giyph RAM are used to hold the cursor bits which form the block cursor. The
Glyph RAM contains 512 bytes. The bytes are not initialized at power on or MGR reset. They may
be written by the host at any time. The format of each byte is shown in Figure 6.67.

7 0

Giyph RAM byte

Figure 6.67 Glyph RAM Byte
Bits 7-0 : Glyph RAM byte. These bits contain 8 bits of the glyph RAM .

6-76

Cilicon Graphics Confidential MGR Technical Reference

Command Register

The command register is used to control various functions of the cursor controller chip. It is not
initialized at power on or MGR reset. It may be written by the host at any time. The format of the
command register is shown in Figure 6.68.

7 6 5 4 3 2 1 o
T T

0 e | aE] RC | Multiplex | Thickness
]]

Figure 6.68 Command Register
Bit 7 : Reserved. This bit should always be zero.

Bit 6 : Cursor Block RAM Enable (RE). This bit is used to disable or enable the user defined cursor
Block RAM output.

0 - disables block cursor RAM output
1 - enables block cursor RAM output

Bit 5 : Cross Hair Enable (CHE). This bit is used to disable or enable the cross hair cursor output.

0 - disables cross hair cursor output
1 - enables cross hair cursor output

Bit 4 : Cursor Format Control (FC). This bit specifies the logical operation to be performed to
combine the overlapping cursor output pixels if both the RAM cursor and the cross hair
cursor are enabled.

0 - exclusive-OR overlapping pixels
1 - OR overlapping pixels

Bits 3-2 : Multiplex Control. These bits are used to select the number of outputs generated by the
- cursor controller.

00 - 1:1 multiplexing
01 - 4:1 multiplexing
10 - 5:1 multiplexing
11 - reserved

Bits 1-0 : Cross Hair Thickness. These bits specify the horizontal and vertical thickness of the
cross hair cursor in pixels.

00 - 1 pixel
01 - 3 pixels
10 - 5 pixels
11 - 7 pixels

6-77

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Cursor X Register

This register is used to specify the x coordinate of the center of the 64 x 64 block cursor glyph and
the x location of the point of intersection of the cross hair cursor. The format of the cursor X
register is shown in Figure 6.69. The register is 12 bits wide and is programmed as two bytes.
The upper 4 bits of the upper byte are always zero. The upper left comer of the screen is position
0,0.

The cursor x value to be written is calculated as follows:
Cx = desired display screen x position + D + H - P
where
D = skew in pixels between the output cursor data and the external pixel data

H = number of pixels between the first rising edge of CLOCK following the falling edge of
HSYNC to active video

P = 37 if 1:1 output multiplexing
= 52 if 4:1 output multiplexing
= 57 if 5:1 output multiplexing

1110 9 8 7 6 5 4 3 2 1 0
‘llllllllll

Cursor X Coordinate
v 11t

1 1 1

Figure 6.69 Cursor X Register

Bits 11-0 : Cursor X position. These bits specify the x location of the center of the cursor glyph or
the point of intersection of the cross hair cursor.

000 - FFF cursor x values

6-78

Silicon Graphics Confidential MGR Technical Reference

Cursor Y Register

This register is used to specify the y coordinate of the center of the 64 x 64 block cursor or the
point of intersection of the cross hair cursor. The format of the cursor y register is shown in
Figure 6.70. The register is 12 bits wide and is programmed as two bytes. The upper 4 bits of the
upper byte is always zero. After the upper byte has been written the cursor position is updated to
the position specified in the Cursor X and Y registers. The upper left corner of the screen is
position 0,0.

The cursor y value to be written is calculated as follows:
Cy = desired display screen y position + V - 32
where

V = number of scan lines from the first falling edge of HSYNC that is two or more clock
cycles after the falling edge of VSYNC to active video

1110 9 8 7 6 5 4 3 2 1 0
1 1.t ¢t 1 1+ 1 1"

Cursor Y Coordinate
I T | ['

1

Figure 6.70 Cursor Y Register

Bits 11-0 : Cursor Y position. These bits specify the y location of the center of the cursor glyph or
the point of intersection of the cross hair cursor. The 12 bit number is a 2's
complement signed value.

OxFCO - OxFBF (-64 to +4031) may be loaded into the cursor y values. The negative
values (0xFCO to OxFFF) are used to position the cursor off the top of
the screen.

6-79

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Window X Register

This register is used to specify the x coordinate of the upper left corner of the cross hair cursor
window. The format of the window x register is shown in Figure 6.71. The register is 12 bits wide
and is programmed as two bytes. The upper 4 bits of the upper byte are always zero. The upper
left corner of the screen is position 0,0.

The window x value to be written is calculated as follows:
Wx = desired display screen x position + D + H-P
where
D = skew in pixels between the output cursor data and the external pixel data

H = number of pixels between the first rising edge of CLOCK following the falling edge of
HSYNC to active video

P = 5 if 1:1 output multiplexing
= 20 if 4:1 output multiplexing
= 25 if 5:1 output multiplexing

11109876543210
L 1 r 1 1

1 \] 1
V\llindolw Xl Coolrdinlate

1 1 1 | | 1

Figure 6.71 Window X Register

Bits 11-0 : Window X position. These bits specify the x location of the upper left corner of the
cross hair cursor window.

000 - FFF window x values

6-80

Silicon Graphics Confidential MGR Technical Reference

Window Y Register

This register is used to specify the y coordinate of the upper left corner of the cross hair cursor.
The format of the window y register is shown in Figure 6.72. The register is 12 bits wide and is
programmed as two bytes. The upper 4 bits of the upper byte is always zero. After the upper byte
has been written the window position is updated to the position specified in the Window X and Y
registers. The upper left corner of the screen is position 0,0.

The cursor y value to be written is calculated as follows:
Wy = desired display screen y position + V

where

V = number of scan lines from the first falling edge of HSYNC that is two or moré clock
cycles after the falling edge of VSYNC to active video

11109876543210
71 1 1 1 1 1 i

]
Window Y Coordinate
1 | | | 1]

| 1 1 1

Figure 6.72 Window Y Register

Bits 11-0 : Window Y position. These bits specify the y location of the upper left corner of the
cross hair cursor window.

000 - FFF window y values

6-81

Ciiapier 6 Raster Subsystem Silicon Graphics Confidential

window Width Register

This register is used to specify the width of the cross hair cursor in pixels. The window width is
written or read as two bytes with the upper four bits of the second byte undefined. The actual
window width will be 2, 8 or 10 pixels greater than the window width specified in the register
depending on whether 1:1, 4:1 or 5:1 output multiplexing is selected. Since 5:1 output
multiplexing is specified for the MGR adapter the desired window width shouid have 10 subtracted
from the value written into the window width register. The window width register is not initialized
after power on or reset. The host software can access the register at any time. The format of this
register is shown in Figure 6.73.

1110 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 T T 1
Window Width
| S S WS S S NN S

1 1 1

Figure 6.73 Window Width Register

Bits 11-0 : Window width. These bits specify the window width size in pixels.

6-82

Silicon Graphics Confidential MGR Technical Reference

Window Height Register

This register is used to specify the height of the cross hair cursor in pixels. The window height is
written or read as two bytes with the upper four bits of the second byte undefined. The actual
window height will be 2, 8 or 10 pixels greater than the window height specified in the register
depending on whether 1:1, 4:1 or 5:1 output multiplexing is selected. Since 5:1 output
multiplexing is specified for the MGR adapter the desired window height should have 10 subtracted
from the value written into the window height register. The window height register is not
initialized after power on or reset. The host software can access the register at any time. The
format of this register is shown in Figure 6.74.

11710 9 8 7 6 5 4 3 2 1 0

71T 1 1 1 &t 1 1 T
Window Height
[T N DS S N T B

Figure 6.74 Window Height Register

Bits 11-0 : Window height. These bits specify the window height size in pixels.

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Interrupts

The Raster Subsystem does not generate any interrupts to the host system.

RE2 Basic Operations

The RE2 provides support for calculating pixel addresses and data for horizontal spans and lines. It
also provides DMA read and write support as well as the bitplane read and write control for
accessing the Frame Butfer, PUP, UAUX, Z buffer and WID bitplanes. The RE2 can execute the

following seven instructions:
- Draw Shaded Span
- Draw Flat 1 Span
- Draw Flat 4 Span
- Draw Top of Antialiased Line
- Draw Bottom of Antialiased Line
- Read Buffer (Read DMA support)
- Write Buffer (Write DMA support)

For each instruction the RE2 calculates pixel addresses for each pixel to be read or written. For the
instructions that perform pixel writes the pixel data values for each pixel are caiculated. The
calculated pixel data can also have logical bitwise raster operations using the source values to be
written and the destination values already in the bitplanes. The pixel data writes can then be
conditioned with pattern masks, stipple patterns, screen mask clipping, Window ID checks and Z

buffer depth comparison checks.

The RE2 is instructed to perform the various instructions by the Geometry Subsystem. The GES
microcode loads the RE2 control registers with data and then loads an instruction in the Instruction
Register. The RE2 executes the specified instruction using the values in the control registers and
stores the generated pixel values in the appropriate bitplanes. The following paragraphs describe
the RE2 operations invoived in calculating the pixel addresses, calculating the pixel data,
performing the raster operations and of applying the various pixel write conditioning. The
operation of each instruction is described and the differences in the pixel data calculations and the

pixel write conditioning are described.
Pixel Address Computation

Each of the RE2 instructions must calculate the pixel addresses from which the pixel data is read or
written. For each RE2 instruction the GES microcode loads the initial screen position to be used for
reading or writing pixels into the X and Y registers. The microcode also loads the X and Y delta
values used to calculate new screen positions into the DX and DY registers. For the first pixel to be
read or written the RE2 uses the initial pixel address stored by the GE5 microcode in the X and Y
registers as the current pixel address. For each successive iteration of the instruction the RE2 adds
the delta values in the DX and DY registers to the X and Y registers to get the new pixel address. The
delta values to be loaded for each instruction will be discussed in the paragraphs which describe the
instructions. Since the MGR adapter is a 3D graphics adapter each pixel also has a Z value
associated with each X and Y screen location. The Z values can be used to control depth comparison

6-84

Silicon Graphics Confidential MGR Technical Reference

operations. The Z values are stored in the Z Buffer and the use of these values are described in later
paragraphs. In summary a pixels X and Y values control where the pixel is drawn on the screen and
the pixels Z value can be used to control whether the pixel is drawn or not.

Raster Subsystem Bitplane Pixel Formats

The bitplane pixel formats and the operation of the RE2 are determined by the settings of the
FBOPTION, the ZBOPTION and the MEGOPTION registers. The FBOPTION register specifies if the
base configuration (FBOPTION = 0) or the enhanced configuration (FBOPTION = 1) of the adapter is
being used. The FBOPTION register is set with the first data parameter sent down after the
microcode has been downloaded. The ZBOPTION register is used to inform the RE2 if the optional Z
Buffer card is installed. If ZBOPTION is zero then the card is not installed and if it is one then the
card is installed. The ZBOPTION register is set with the second parameter sent down after the
microcode has been downloaded. Finally the MEGOPTION register determines if the VRAM is
composed of 256 K chips (MEGOPTION = 0) or 1 Meg chips (MEGOPTION = 1). The MEGOPTION
register is set with the third parameter sent down after the microcode has been downloaded. The
MGR adapter aiways uses 1 Meg VRAM chips so the MEGOPTION register should be set to one.

For each pixel address there can be up to 36 bits/pixel on the base adapter and up 10 56 bits/pixel
on the enhanced adapter. This pixel data is read and written through two data ports which are called
the Frame Butfer port and the Z Buffer port as shown in Figure 6.75. The Z Buffer port always
contains the Z Buffer and the WID data so that this data can be read together and used to condition
writes from the Frame Buffer port. This arrangement allows the operations to be performed in a
parallel manner to increase the performance.

7 0
Frame Buffer value Frame Buffer Port

27 26 25 24 23 0
PUP WD Z Buffer vaiue Z Buffer Port

Base Adapter (FBOPTION = 0)

27 26 25 24 23 0
UAUX PUP Frame Buffer value Frame Buffer Port
27 24 23 0

WD Z Buffer value Z Buffer Port

Enhanced Adapter (FBOPTION = 1)

Fig 6.75 Frame Buffer Port and Z Buffer Port Data Formats

For the base adapter the Frame Buffer port is used 1o read and write the 8 bits of Frame Buffer data.
The Z Buffer port is used to read and write the 24 bits of Z buffer data (if instailed), the 2 bits of
WID data and the 2 bits of PUP data. The PUP data is located in the Z Buffer port for the base
adapter because the WID data is only 2 bits wide and each VRAM chip can hold 4 bits of data. The
unused 2 bits in the WID VRAM are therefore used to hoid the PUP data thus reducing the hardware
costs for the base adapter.

6-85

Chapter 6 Raster Subsystem Silicon Graphics Confidential

For the enhanced adapter the Frame Buffer port is used to read the 24 bits of Frame Buffer data, the
2 bits of PUP data and the 2 bits of UAUX data. The Z Bufter port is used to read and write the 24
bits of Z buffer data (if installed) and the 4 bits of Window D data.

Write masks are used to control which bits in the bitplanes are actually updated during each pixel
write operation. The various pixel writes can be conditioned by the screen mask, pattern mask,
line stipple patterns, WID checks and the Z Buffer checks. The write masks and the pixel write
conditioning checks are described later.

The following paragraphs describe how the RE2 calculates the pixel data which is loaded into the
Frame Buffer port and the Z buffer port for writing to the bitplanes. Pixel data read into the two
ports from the bitplanes will of course already be in the appropriate format since it was originally
written via these two ports.

RE2 Pixel Data Flows and Calculations

When the RE2 begins the execution of an instruction it uses the data loaded into the various color
and data registers by the GE5S microcode to calculate the pixel data which is loaded into the Frame
Buffer port and the Z Buffer port to be written into the bitplanes at the current pixel location
specified in the X and Y registers. For the shaded span, fiat span and line drawing instructions the
RE2 writes the data in the Frame Buffer port and it determines when and if the Z Buffer port data is
written. The pixel writes can be conditioned with bitplane write masks and various checks which
determine if a pixel is written or not. After the current pixel is processed the RE2 updates the
pixel location, the pixel color values and the Z value and then processes the next pixel. This
continues for the number of iterations specified in the NUMPIX register. The following paragraphs
describe the data flow through the RE2 for a single iteration of an instruction. The descriptions of
the individual instructions indicate when and if the Z Buffer port is written.

The RE2 registers used to caiculate the pixel data are the R, G and B color registers, the PUP, UAUX
and WID data registers and the Z register. The R, G and B registers are loaded with the Frame
Buffer pixel color values and the PUP and UAUX data registers are loaded with the overlay or
underlay color values. The WID data register is loaded with the Window ID value used to perform
WID checks and to control the pixel display by the Display Subsystem. The initial Z value is
specified by the various tokens used 0 specify drawing operations and is loaded into the Z register.
The host software uses the GE_DRAWMODE token to control the loading of the PUP, UAUX and WID
data registers. The GE_COLOR or GE_COLORF tokens are used to specify the data values to be loaded
into these registers.

The GE_DRAWMODE token is also used to select the Frame Buffer as the drawing destination for
normal drawing operations. For the normal drawing mode the host controis the pixel type to be
drawn into the Frame Buffer with the GE_PIXTYPE token. When the pixel type is specified as a
color index pixel then the color index value is specified by the host software using the GE_COLOR or
the GE_COLORF tokens. Before an instruction is executed the color index value is loaded into the R
register. The G and B registers are ignored for color index pixels. If the pixel type is RGB then the
three color values specified by the GE_RGBCOLOR token are loaded into the R, G and B registers
before an instruction is executed. The following paragraphs describe the pixel data calculations and
the data flows for the base and the enhanced adapter.

Base Adapter Data Flows and Calculations

The pixel data calculations and data flow through the RE2 for the base adapter are shown in Figure
6.76. The Frame Buffer port data for the base adapter consists of the 8 bit frame buffer pixel data

6-86

Silicon Graphics Confidential MGR Technical Reference

only. The pixel type determines which type of pixel dithering and formatting operations are to be
performed on the color data. The dithering and pixel formatting will be described later.

Once the color data has been formatted it represents the source data for the raster operation
specified by the GE_RASTEROP token. The Frame Buffer bitplanes are read through the Frame
Buffer port to get the destination input data for the raster operation. The bitwise logical operation
is performed between the source and the destination input data. if the instruction is a line drawing
instruction the antialiase operation is performed and the result is placed in the Frame Buffer port
from which it is written to the bitplanes.

The Z Buffer port on the base adapter contains the 24 bit Z value, the 2 bit WID data and the 2 bit
PUP data. The Z value is loaded by the GE5S microcode into the Z register. This value represents the
Z depth value calculated by the microcode for the first pixel to be drawn. The Z value is placed
unchanged into the Z buffer port. The GE_DRAWMODE token is used to select the PUP or WID data
register to receive the index value specified with the GE_COLOR or the GE_COLORF tokens by the
host software. These values are specified by the host using the GE_COLOR or the GE_COLOREF tokens
since they represent index values into the mode registers of the XPC1 or into the overlay color
palette in the RGB RAMDAC in the Display Subsystem.

rwnoo:ng [z E:_I l::_l[i_l

[shitt Left 26 bits | [Shift_Left 24 bits] Do PIXTYPE Dithering
[] and Formatting
7 0

src
Raster Op

P R ettt bttt dd

SRR PR 22 22 4 244 L 44 S bt a bbb bbbt

result
¢ [Do Antialiasing |
0]
Zvalue | ZB Port 1 v [0
[Frame Buffer | FB Port
1.8 !

{ VRAM DRAM | \ A
i | AUXMASK i [pixmAask | i
§ [pupiwp Ji[C_ Z Buffer i { [[Frame Buffer | i
1__CAS % RAS__CAS i {___VRAM cAs |

AUXMASK[B]—-I Write Enable Conditioning -

L—write Enable Conditioning

Figure 6.76 Base Adapter Pixel Data Flow

The WID data is shifted left 24 bits and the PUP data is shifted left 26 bits and is then used as the
source data for the raster operation. The WID and PUP bitplanes are read through the Z buffer port
to get the destination input for the raster operation. The bitwise logical operation is performed
between the source and the destination input data and the result is placed in the Z Buffer port from
which it and the Z value data are written to the bitplanes.

6-87

Chapter 6 Raster Subsystem Silicon Graphics Confidential

The Frame Buffer port and the Z Buffer port writes can be conditioned by the screen mask check,
the Z buffer check, the WID check, the pattern mask check and the line stipple pattern check. These
checks will be described in greater detail in later paragraphs and the instruction descriptions will
describe which checks are performed for each instruction.

The initial color and Z values are loaded by the microcode along with the PUPDATA and the WIDDATA
which was loaded with the GE_DRAWMODE and GE_COLOR tokens. For each successive iteration of
an instruction the color values are updated by adding the color delta values in the DR, DG and DB
registers to the current color values in the R, G and B registers. The Z value is updated by adding
the delta Z value in the DZI and DZF registers to the current Z register value. The PUPDATA and the
WIDDATA values remain the same for each instruction iteration.

Enhanced Adapter Data Flows and Calculations

The pixel data calculations and data flow through the RE2 for the enhanced adapter are shown in
Figure 6.77. The Frame Buffer port data for the enhanced adapter consists of the 24 bit frame
buffer data, the PUP data and the UAUX data.. The microcode loads the color data into the R, G and B
registers. If the current pixel type specified with the GE_PIXTYPE token is color index then the
microcode loads just the R register with the color index value specified by the host software using
the GE_COLOR or the GE_COLORF tokens. If the pixel type is RGB then the R, G and B registers are
loaded by the microcode with the three color values specified by the GE_RGBCOLOR token. The pixel
type determines which type of pixel dithering and formatting operations are to be performed on the
color data. The dithering and pixel formatting will be described later.

The PUPDATA and UAUXDATA are normally 2 bits each and represent an index into the auxiliary
color map in the XMAP2 chips in the display subsystem. The GE_DRAWMODE token is used to select
the PUP, UAUX or WID data register to receive the index value specified with the GE_COLOR or the
GE_COLORF tokens by the host software. If the NOPUP register is set to one then the PUPDATA
register is ignored and the UAUXDATA is 4 bits wide. If the NOPUP register is zero then the PUP
data is shifted left 24 bits and the UAUXDATA is shifted left 26 bits and then they are placed in the
source data for the raster operation. If the NOPUP register is one then the UAUX data is shifted left
24 bits and the four bits are placed in the source data.

The dithered and formatted color data, the PUP data and the UAUX data represents the source data for
the raster operation specified by the GE_RASTEROP token. The Frame Buffer, PUP and UAUX
bitplanes are read through the Frame Buffer port to get the destination input data for the raster
operation. The bitwise logical operation is performed between the source and the destination input
data. If the instruction is a line drawing instruction the antialiase operation is performed and the
result is placed in the Frame Buffer port from which it is written to the bitplanes.

The Z Buffer port on the enhanced adapter contains the 24 bit Z value and the 4 bit WID data. The Z
value is loaded by the GES microcode into the Z register. This value represents the Z depth value
calculated by the microcode for the first pixel to be drawn. The Z value is placed unchanged into the
Z buffer port. The GE_DRAWMODE token is used to select the WIDDATA register for loading by the
host software using the GE_COLOR or the GE_COLORF tokens. The WID data is an index into the mode
registers of the XMAP2 chips in the Display Subsystem. The WID data is shifted left 24 bits and is
then used as the source data for the raster operation. The WID bitplanes are read through the Z
buffer port to get the destination input for the raster operation. The bitwise logical operation is
performed between the source and the destination input data and the result is placed in the Z Buffer
port from which it and the Z value data are written to the bitplanes. The Frame Buffer port write
can be conditioned by the screen mask check, the Z buffer check, the WID check, the pattern mask
check and the line stipple pattern check which will be described later.

6-88

Siticon Graphics Confidential MGR Technical Reterence

.....

=z] [uauxpata] [puppata] [R]
v v y

[Shift Left 24 bits | [Shift Left 26 bits] [Shift Lett 24 bits] Do PIXTYPE Dithering

and Formatting
27 &24 — ﬁ_' ¥ o
src data F : ! src data l

.‘a_'uooo--'ooo—o'ooa-oo—-‘-ooao-oo-—aooo'.a,‘..oooa-

‘-o-’a---'-.""—-"’r-'-‘""‘.n'-"-.l'- sosmmsssssne

‘ Do Antialiasing
o)
, 2726 2524 23 Y | 0
L WD __; ZValue | ZB Pont [GAUX PUP} Frame Buffer | FB Port
7 Y
t VRAM i DRAM |
|AUXM[7E§§ 5 [Auxma:o[___PixmasK]
p [wo i Z Buffer : { TUAUX: PUP{__ Frame Buffer | |
! _CAS i RAS__CAs | ! VRAM CAS
AUXMASK[8]— ' Write Enable Conditioning —)

L_write Enable Conditioning

Figure 6.77 Enhanced Adapter Pixel Data Flow

The Frame Buffer port and the Z Buffer port writes can be conditioned by the screen mask check,
the Z buffer check, the WID check, the pattern mask check and the line stipple pattern check. These
checks will be described in greater detail in later paragraphs and the instruction descriptions will
describe which checks are performed for each instruction.

The initial color and Z values are loaded by the microcode along with the PUPDATA, UAUXDATA and
the WIDDATA which had been previously loaded with the GE_DRAWMODE and GE_COLOR tokens. For
each successive iteration of an instruction the color values are updated by adding the color delta
values in the DR, DG and DB registers to the current color values in the R, G and B registers. The z
value is updated by adding the delta Z value in the DZI and DZF registers to the current Z register
value. The PUPDATA, UAUXDATA and the WIDDATA values remain the same for each instruction
iteration.

The following paragraphs describe the Frame Buffer pixel and the Z value calculations that are
performed by the RE2 to get the appropriate values for each pixel written during the execution of
an instruction.

Frame Buffer Pixel Data Formation
The Frame Buffer pixel data is formed from the color data placed in the R, G and B color registers.

The initial color values are loaded by the microcode along with the delta color values. During the
first pixel data calculation the initial color values are used. Then during successive iterations of an

6-89

Chapter 6 Raster Subsystem Silicon Graphics Confidential

instruction the DR, DG and DB delta color values are added to the current R, G and B color values to
get the new color values. For each iteration of the instruction being executed the Frame Bufter
pixel data values are calculated by performing dithering and various pixel packing operations on the
data in the R, G and B registers. The result of these operations is the source data for the raster
operations. The result of the raster operation is the input value for the antialiasing operation for
line drawing instructions. The results are then placed into the frame buffer bitplanes.

The GE_PIXTYPE token is used to specify the pixel type and this value is loaded into the PIXTYPE
register. |f the PIXTYPE register is set for a color index pixel type then only the R register is used
for the color index value which is specified with the GE_COLOR or the GE_COLORF token. If an RGB
pixel type is selected then the R, G and B registers are loaded with the three color values specified
with the GE_RGBCOLOR token. The GES microcode may modify the specified RGB color values
depending on whether lighting mode operations are being performed. In this case the initial color
values loaded into the R, G and B registers may be slightly different than those specified by the host.
The RE2 supports the following types of pixels:

- PIXTYPE = 00 (Single Buffered Only)

- 24 bit RGB (enhanced adapter only)
- 8 bit RGB (base adapter only)

- PIXTYPE = 01 (Double Buffered)
- 12 bit RGB (enhanced adapter only)
- PIXTYPE = 10 (Double Buffered)

- 8 bit color index pixels (base adapter only)
- 12 bit color index pixels (enhanced adapter only)

- PIXTYPE = 11 (Double Buffered)
- 4 bit color index pixels (both adapters but usually only the base adapter)

The following paragraphs describe the dithering calculations and the pixel formatting operations
performed to calculate the Frame Buffer pixel data for each pixel type.

Frame Buffer Pixel Dithering

The host software controls the enabling and disabling of dithering with the GE_ENABDITH operation.
The enable/disable flag sent by this token is loaded into the ENABDITH register in the RE2. If the
ENABDITH register is set to one then the dithering operation is performed on the pixel color data to
adjust the color value in the R, G and B registers. If the ENABDITH register is zero then the
dithering operations are not performed. The dithering operation is designed to cause a limited
number of pixel colors to appear as more colors. The dithering operation maps the 4 x 4 dither
matrix shown in Figure 6.78 to each 4 x 4 group of pixels on the screen. The low 2 bits of the X and
the Y pixel address are used to index into the dither matrix. The dither matrix vaiue indexed by the
current pixel address is compared with 4 bits from the current pixel colors in the R, G and B
registers.

For the 8 or 12 bit RGB pixels the lower nibble of the integer portion of each color component is
compared with the indexed dither matrix value. If the lower nibble is greater than the indexed
dither matrix value then the upper nibble of the color component will be incremented. For the
Color Index pixels the most significant 4 bits of the fractional part of the R register is compared to

6-90

Silicon Graphics Confidential MGR Technical Reterence

the indexed dither matrix value. |f the 4 fractional color bits are greater than the dither value then
the lower 8 bits of the color index value in the integer part of the R register are incremented. The
dithering operation causes a percentage of each 4 x 4 group of Frame Buffer pixels to be the
unincremented color value and the remainder to be the incremented color value. The percentage of
pixels that are incremented depends on the size of the color bits used for the comparison. If the
color bits used for the comparison are 8 then a checkerboard pattern will be written with the
colors alternating between the original color value and the incremented color value.

X[1:0]
o 1+ 2 3
Olo| 8]2 |10

1112 4 |14} 6

Y[1:0)
213 1111 9

3|l1s}] 7 {13} 5

Figure 6.78 RE2 Dither Matrix
The following paragraphs describe the frame buffer pixel data formating operations.
Frame Buffer Pixel Data Operations

The Frame Buffer pixel calculations depend on the setting of the FBOPTION register and the PIXTYPE
register. The FBOPTION register specifies whether the base (FBOPTION = 0) or enhanced
(FBOPTION = 1) adapter is being used The PIXTYPE register value loaded by the GE_PIXTYPE token
determines the type of dithering and formatting operations which are performed on the color data in
the R, G and B registers to create the frame butfer pixel data. The pixel formats for the base
adapter are shown in Figure 6.79. This configuration supports 8 bit RGB pixels and 4 and 8 bit
Color Index pixels.

7 0
ENABRGB =0 R PIXTYPE = 0 (24 bit RGB mode)
7 65320
ENABRGB = 1 | B | G|R l PIXTYPE = 0 (8 bit RGB mode)
7 0
Undefined PIXTYPE = 1 (12 bit RGB)
7 0
co PIXTYPE = 2 (8 bit Color Index)
7 43 0
Ct { Co PIXTYPE = 3 (4 bit Color Index)

Figure 6.79 Base Adapter Frame Buffer Pixel Formats

The R, G and B color registers consist of an integer portion and a fraction portion. Only the integer
portion of the registers is passed on to the source input 1o the raster operation. The pixel format
diagrams for the base and enhanced adapter only show the integer portion of the Frame Buffer pixe!
formats since that is all that is written into the Frame Buffer. The Frame Buffer pixel formats for

6-91

Chapter 6 Raster Subsystem Silicon Graphics Confidential

the enhanced adapter are shown in Figure 6.80. This configuration supports 12 and 24 bit RGB
pixels and 4 and 12 bit Color Index pixels.

23 1615 8 7 0

ENABRGB = X B G R PIXTYPE =0 (24 bit RGB mode)
23 1615 8 7 0

Bi{ Bo| Gl GO | R { RO | PIXTYPE=1 (12bit RGB)
23 12 11 0
c1 co PIXTYPE = 2 (12 bit Color Index)

23 87 43 O

Undefined C1 Cco PIXTYPE = 3 (4 bit Color index)

Figure 6.80 Enhanced Adapter Frame Buffer Pixel Formats

The RE2 uses the value in the ENABDITH register specified by the GE_ENABDITH token to determine
if dithering will be performed on the color data.The following paragraphs describe the operations
performed by the RE2 on the color data in the R, G and B registers to produce these Frame Buffer
pixel formats.

PIXTYPE 0 Data Formation

For the base configuration the ENABRGB register determines the pixel formatting done on the color
data. If the ENABRGB register is a zero the RE2 will attempt to format the data into 24 bit RGB
format. Since the Frame Buffer in the base configuration only has 8 bitplanes only the red color
component in the R register will be written to the bitplanes. This mode of operation is not
recommended and is only provided for compatibility with the RE1 chip. The normal mode of
operation for the base adapter with PIXTYPE 0 is to have the ENABRGB register set to one so that the
special 8 bit RGB formatting is performed. Dithering operations are not allowed for the 24 bit RGB
pixels. The GE_LOADRE token can be used by the host software to set the ENABRGB register.

When the pixel data is written into the Frame Buffer bitplanes the PIXMASK specified with the
GE_PIXWRITEMASK token controls which bits are written. For the 8 bit RGB pixels the PIXMASK
should be set to 0x0000FF to allow all 8 bits to be written. For the 24 bit RGB pixels the PIXMASK
should be set to OxFFFFFF o allow all 24 bits to be written.

The dithering and formatting operations for PIXTYPE 0 are shown in Figure 6.81. If FBOPTION is
one then the three src_data bytes are written with the values in the R, G and B registers without
any changes. If FBOPTION is zero then the dithering operation is performed if ENABDITH is one and
then the special 8 bit RGB formatting is performed. The upper 3 bits of the Red color are copied to
the lower 3 bits of the src_data byte. The upper 3 bits of the Green color are copied to the middie 3
bits of the src_data byte. Finally the upper 2 bits of the Blue color are copied to the upper 2 bits of
the src_data byte. The src_data value is then sent to the source input to the raster operation
hardware.

6-92

Silicon Graphics Confidential MGR Technical Reference

24 bit RGB

FBOPTION=07?

Q. ENABRGB =17
Y 8 bit RGB

L4
Red =R
Green=G
v Blue =B

src_data(7:0] = R[7:0] N
src_data[15:8] = G[7:0] I (> ENABDITH=17
src_data[23:16] = B[7:0] N Y
: Q, Red[3:0] > Dither[X][Y]
Y

++Red[7:4]

v —
src_data[7:0] = R([7:0] :% Green[3:0} > Dither[X][Y]
Y

++Green[7:4]

N
% Blue[3:0] > Dither{X][Y]
Y

++Blue(7:4]

__—:q

src_dataf2:0] = Red[7:5]
src_data[5:3] = Green|7:5]
src_data(7:6] = Blue([7:6]

— Pt — J

Figure 6.81 PIXTYPE 0 Flow Chart

For the enhanced adapter the RGB data is not changed by the pixel dithering and formatting
circuitry. It is passed from the R, G and B registers directly to the source input to the raster
operation. For the 8 bit RGB pixels the dithering is performed using the color data from the R, G
and B registers as shown in Figure 6.82. -

The lower nibble of the integer part of a color component is compared with the indexed dither

matrix value. If the color nibble value is greater than the matrix value then the upper nibble of the
color value is incremented. If the color nibble value is less than or equal to the matrix value then

6-93

Chapter 6 Raster Subsystem Silicon Graphics Confidential

the upper nibble of the color component is left unchanged. Each of the three color components are
dithered in the same manner.
PIXTYPE = 0, FBOPTION = 1 (24 bit RGB mode)

Dithering Invalid for 24 bit RGB pixels

PIXTYPE = 0, FBOPTION = 0 ENABRGB = 1 (8 bit RGB mode)

1815 141110 0 1815 141110 0 2219 1815 141110 0
[B1 : Bo| Bfract | [G1 i Go| Giract | [X TR { Ro| Riract |
L L Compared to |' L Compared to L Compared to
Dither[X][Y] Dither[X][Y] Dither{X]{Y]
Incremented if Incremented if incremented if
Bo > Dither{X][Y] GO > Dither{X][Y] RO > Dither{X}{Y]

Figure 6.82 PIXTYPE O Dithering

PIXTYPE 1 Data Formation

For the base adapter the 12 bit RGB double buftered pixel type is not defined. For the enhanced
adapter the dithering operation is performed if the ENABDITH register is set. Dithering is allowed
for 12 bit RGB pixels since the number of pixels colors is limited by the double buffering
operations used for this pixel. For the 12 bit RGB pixels the dithering is performed using the color

data from the R, G and B registers as shown in Figure 6.83.

The lower nibble of the integer part of a color component is compared with the indexed dither
matrix value. If the color nibble value is greater than the matrix value then the upper nibble of the
color value is incremented. If the color nibble value is less than or equal to the matrix value then
the upper nibble of the color component is left unchanged. Each of the three color components are
dithered in the same manner.

PIXTYPE = 1, FBOPTION = 1 only (12 bit RGB mode)

1815 141110 0 1815 141110 0 2219 1815 141110 0
(81§ Bo| Bfract | [G1 { 60 Giract | [X { R1 { RO Rfract |
‘ - Compared to L Compared to L Compared to
Dither[X][Y) Dither[X][Y] Dither{X](Y]
Incremented if incremented if incremented if

Bo > Dither[X][Y] GO > Dither{X][Y] Ro > Dither{X](Y]

Figure 6.83 PIXTYPE 1 Dithering

The dithering and formatting operations for PIXTYPE 1 are shown in Figure 6.84. If FBOPTION is
zero then the src_data byte is undefined. if FBOPTION is one the dither operation is performed it the
ENABRGB register is one. The upper nibble of each color component is duplicated into the lower
nibble and then the three src_data bytes are written with the three color values which result.

When the pixel data is written into the Frame Buffer bitplanes the PIXMASK specified with the
GE_PIXWRITEMASK token controls which bits are written. For the 12 bit RGB double buffered
pixels the PIXMASK controls which buffer is written. To write the front buffer pixels the PIXMASK
should be set to OxOFOFOF. To write the back buffer pixels the PIXMASK should be set to

6-94

Silicon Graphics Confidential MGR Technical Reterence

ngOFOFO. To write to both buffers the PIXMASK should be set to OxFFFFFF to allow all 24 bits to
e written.

R—

Cstart D

N
(D, FBOPTION =07

Red = R
Green =G
Bive = B

| N (?) ENABDITH =172
Ny
| (?) Red[3:0] > Dither[X][Y]
Y

++Red[7:4]

y v
src_data[7:0} = ?? % Green[3:0} > Dither[X][Y]
Y

++Green(7:4)

- TN
% Biue[3:0] > Dither{X][Y]
Y

++Blue(7:4)

src_data[3:0] = Red(7:4]
src_data[7:4] = Red([7:4]
src_data[11:8] = Green(7:4]
src_data[15:12 = Green(7:4]
src_data(19:16] = Blue(7:4]
src_data[23:20] = Blue[7:4]

=

Figure 6.84 PIXTYPE 1 Flow Chart

PIXTYPE 2 Data Formation

For PIXTYPE 2 the color index pixel value is placed in just the R register which has a 12 bit
integer portion and an 11 bit fractional part. If the ENABDITH register is one then the color index
in the R register is dithered. As shown in Figure 6.85 the most significant 4 bits of the fractional
part of the color index is compared to the indexed dither matrix value. If the fractional part is

6-95

Chapter 6 Raster Subsystem

Silicon Graphics Confidential

greater than the dither matrix value the lower 8 bits of the integer part of the color index pixel is
incremented. The upper 4 bits of a 12 bit color index pixel are never affected by the dithering

operation.

PIXTYPE = 2 (8 or 12 bit Color index)

22 18 11107 0
| 1 Rint | R fract |

\- L— Compared 10

Dither[X][Y]
incremented if
RO > Dither[X][Y]

Figure 6.85 PIXTYPE 2 Dithering

The dithering and data flow for PIXTYPE 2 are shown in Figure 6.86. For the base adapter the 8 bit

color index value can be
bit color index value is dithered and then the 12 bit color index is duplicated into both the lower and

dithered before it is placed in src_data. For the enhanced adapter the 12

upper 12 bits of the src_data. The src_data is then passed to the source input of the raster

operation.

ENABDMTH =17 ENABDITH=1?

Y Y
Red.fract[-1:-4] > Red.fract[-1:-4] >
Dither[X][Y]} Dither[X][Y]
' ++Red([7:0] ++Red[7:0]
src_data(11:0] = Red[11:0] [Trc_data[?:ol = Red[7:0]J

src_data[23:12] = Red[11:0]

Figure 6.86 PIXTYPE 2 Flow Chart

When the pixel data is written into the Frame Buffer bitplanes the PIXMASK specified with the
GE_PIXWRITEMASK token controls which bits are written. For the 8 bit Cl pixels the PIXMASK
should be set to Ox0000FF to allow all 8 bits to be written. For the 12 bit C! double buffered
pixels the write mask is used to control which buffer is written. To write the front buffer pixel

6-96

Silicon Graphics Confidential MGR Technical Reference

data the PIXMASK should be set to 0x000FFF. To write the back buffer pixel data the PIXMASK
should be set to OxFFF000. To write to both buffers the PIXMASK should be set to OxFFFFFF to
allow all 24 bits to be written. :

PIXTYPE 3 Data Formation

For PIXTYPE 3 the color index pixel value is placed in just the R register which has a 12 bit
integer portion and an 11 bit fractional part. The 4 bit color index pixel is used on the base adapter
and it could be used on the enhanced adapter but the 12 bit color index pixel provides greater color
resolution.

The dithering and data flow for PIXTYPE 3 are shown in Figure 6.87. For both the base and
enhanced adapter the 4 bit color index value is dithered and then the 4 bit color index is duplicated
into both the lower and upper nibbles of the right most byte of src_data. For the enhanced adapter

the upper 16 bits of src_data will be undefined. The src_data is then passed to the source input of
the raster operation.

Red.fract{-1:-4] >
Dither[X][Y]

Red.fract{-1:-4] >
Dither{X][Y]

++Red[3:0] ++Red[3:0]
src_data(3:0] = Red[3:0] src_data(3:0] = Red{3:0]
src_data[7:4] = Red[3:0] src_data{7:4] = Red|[3:0]
src_data{23:8] = ?? J

| ;
Figure 6.87 PIXTYPE 3 Flow Chart

If the ENABDITH register is one then the color index in the R register is dithered. As shown in
Figure 6.88 the most significant 4 bits of the fractional part of the color index is compared to the
indexed dither matrix value. If the fractional par is greater than the dither matrix value the lower
4 bits of the integer part of the color index pixel is incremented.

When the pixel data is written into the Frame Buffer bitplanes the PIXMASK specified with the
GE_PIXWRITEMASK token controls which bits are written. For the 4 bit Cl double buffered pixels
the write mask is used to control which buffer is written. To write the front buffer pixel data the
PIXMASK should be set to 0x00000F. To write the back buffer pixel data the PIXMASK should be

6-97

Chapter 6 Raster Subsystem Silicon Graphics Confidential

set to 0x0000F0. To write to both buffers the PIXMASK should be set to 0x0000FF to allow ail 8
bits to be writien.

PIXTYPE = 3 (4 bit Color index)
22 15 141110 7 0

t P R | R fract|
l. l—Corl'\paret:l to

Dither[X][Y]
Incremented if
RO > Dither{X][Y]

Figure 6.88 PIXTYPE 3 Dithering
Z Buffer Pixel Data Computation

The data written into the Z buffer represents the Z value of the pixel location. As mentioned
previously the X and Y values of the pixel are used to determine the pixel location on the screen
while the Z value is used in depth comparisons to control whether pixels are updated. The initial Z
value is specified by the host software as pan of the data sent with the various pixel drawing
commands. The initial Z value is loaded into the Z register in the RE2 by the GE5 microcode. The
microcode also determines the rate at which the Z value changes and loads the integer portion of the
delta Z value into the DZI register and loads the fractional portion of the delta Z value into the DZF
register. The Z register represents the integer portion of the Z value. The RE2 has an initial
fractional Z register which is always set to zero at the start of an instruction. The fractional part
of the Z register is not accessible by the microcode. The integer portion of the Z value is a 24 bit
2's complement number.

For the first iteration of an instruction the RE2 uses the value in the Z register and loads this vaiue
directly into the Z Buffer port so it can be written to the Z Buffer. For the following iterations of
an instruction the RE2 adds the delta Z values in the DZI and DZF registers to the current value in
the Z register. This new Z value is then loaded into the Z Butfer port for possible writing to the Z
Buffer. The individual instruction description will indicate when and if the Z buffer port is
written.

The Z Buffer writes can be conditioned by the Z Buffer write mask bit which is bit 8 of the
AUXMASK register. |f this bit is zero then the Z Buffer bitplanes will not be written even if the Z
Buffer port is written. The Z Buffer port writes can be conditioned with the pattern mask checks,
the stipple pattem checks, the WID checks, the Z Buffer checks and the screen mask checks. These
checks are described in the next section. The Z Buffer port writes will not be performed if the
upper five bits of the AUXMASK are all zero. This feature is provided to improve performance since
Z Buffer port writes slow down the execution of the instructions which write pixels.

Pixel Data Raster Operations

The RE2 provides the capability of performing raster operations between the source data to be
written into the bitplanes and the destination data already in the bitplanes. The bitwise logical
operation to be performed between the source and the destination data is specified with the
GE_RASTEROP token whose data parameter is stored in the FUNC register in the RE2. The legal
values for the FUNC register are shown in Table 6.2.

The raster operations can be performed on the source and destination data for the Frame Butfer,
PUP, UAUX and WID bitplanes. The Z Buffer bitplanes are not affected by the raster operation.

6-98

Silicon Graphics Confidential

When the raster operation is set to a
when the raster operation is set to 3.

value from the bitplanes and then write t
pipelining operations in the RE2. When the RE2 is rese

MGR Technical Reterence

ny value other than 3 (Copy) the RE2 ope
This is caused by the RE2 having to first re
he resuit value back to the bitplanes.

t the FUNC register is set to three.

Table 6.2 Raster Operation Values

FUNC Name Result of Raster Op

0 Clear 0

1 And src AND dst

2 And Reverse src AND NOT dst

3 Copy src

4 And Inverted NOT src AND dst

5 Noop dst

6 Xor src XOR dst

7 Or src OR dst

8 Nor NOT src AND NOT dst
9 Equiv NOT src XOR dst
10 Invert NOT dst
11 Or Reverse src OR NOT dst
12 Copy Inverted NOT src
13 Or Inverted NOT src OR dst
14 Nand NOT src OR NOT dst
15 Set 1

All sixteen raster operations can be use
instructions and the Write Buffer instruc
raster operation must be se
For the Write Buffer instruction the raster op

are performed.

NOT - 1's Complement

tto 3. The raster opera
eration must be set to 3

Antialiasing Calculations

An antialiased line is drawn by d
the draw bottom of antialiased lin

d with the Shaded Span instru
tion. For the Flat 1 Span an

rawing two adjac
es. Each line has antialiasing ¢

ent lines with the draw top of antialiased line and
alculations performed on each pixel

rates slower than
ad the destination
This disrupts the

ction, the Top and Bottom Line
d Flat 4 Span instructions the
tion has no affect on the Read Buffer instruction.
if pixel packing or x zooming

data value. Afer the Frame Buffer pixel data raster operation has produced a result the value is
placed into the Frame Buffer pixel data portion of the Frame Buffer port to be written to the Frame
Buffer bitplanes. |f the RE2 is executing a line drawing instruction it performs the antialiasing
calculations on the raster operation resuit data before it is placed into the frame buffer port. The
RE2 determines the minor axis from the size of the value in the DX or DY register. The minor axis
is the axis which has the smallest delta value which means that axis changes the slowest. The upper

Chapter 6 Raster Subsystem Silicon Graphics Confidential

3 bits of the fraction portion of the X or Y register which is the minor axis is used as an index into
the antialiase weight table shown in Table 6.3.

Table 6.3 Antialiase Weights

3 MSB fraction bits | Top Line Weight | Bottom Line Weight
000 0010 1101
001 0100 1011
010 0110 1001
ot1 0111 1000
100 1000 0111
101 1001 0110
110 1011 0100
111 1101 0010

The value selected by the index depends on whether the instruction is a draw top of line instruction
or a draw bottom of line instruction. A large value for the weight indicates that the line covers a
large portion of the pixel. The selected 4 bit antialiase weight is then placed into the nibbles
selected by the ASLECT register. Each bit in the ASELECT register corresponds to a nibble in the 24
bit frame buffer value. For each bit in ASELECT which is a one the corresponding nibble in the
frame buffer value is replaced with the selected antialiase weight vaiue. The result of the antialiase
galculations are then placed into the Frame Buffer port and are written to the Frame Butfer
itplanes.

For RGB pixels the antialiased lines can be drawn on a black background with a line that has a
primary color, a secondary color or white. The limitation on antialiased lines for RGB pixels is
that the color components of the background color that are non-zero must be equal to the
corresponding color components in the line color. The SGI Graphics Library does not support
antialiased lines for RGB pixels.

For 12 bit color index pixels the antialiase weight could be used to select the LSB of the nibble with
the remaining 8 bits representing a line color value index. This requires the color map to be
programmed as 256 different color ramps. Each color ramp contains 16 entries which provide 16
ditferent shades for the current color. This allows the antialiase weight to select different color
shades 1o smooth the line drawing. The same approach could be used for 8 bit and 4 bit color index
values. The 8 bit color index values are not double buffered while the 12 bit and 4 bit color index
values are double buffered. The GE_ANTIALIASE token is used to specify the value to be written into
the ASELECT register. For the 8 bit and 12 bit color index pixels the value is 9 (001001b) which
causes the least significant nibble for each butfer to be replaced with the antialiase weight selected
with the 3 MSB bits of the fraction portion of the minor axis value. For the 4 bit color index pixels
the vailue specified with the GE_ANTIALIASE token is 3 (000011b) which causes the 4 bit color
index to the replaced with the antialiase weight for both buffers.

Wide antialiased lines can be drawn as a sandwich of 1 or more non-antialiased lines between the
top and bottom half of an an antialiased line. Depth-cued antialiased lines can be drawn in color
index mode by using 4 bits of the color index for the antialiasing weight and 3 or 4 bits of the index
for the depth-cued intensity. The color map would contain the depth-cued intensity scaled by the

antialiasing weight blended with the background color.

6-100

Siiivon Graphics Confidential MGR Technical Reference

The GE_ANTIALIASE token data value should be 0 to disable antialiasing. With this value no nibbles
are replaced with the antialiase weight value. Either draw line instruction can be used to draw
non-antialiased lines.

The COLORCMP register allows the Z comparator hardware to be used to compare the new Frame
Buffer pixel value with the pixel value already in the Frame Buffer hardware. This comparison is
enabled when the COLORCMP register is set to one. This should only be done when antialiased lines
are being drawn. The GE_ZSOURCE token is used to set the COLORCMP register. The DEPTHFN
register should be set to greater than or equal when colors are being compared. This causes the
brightest pixels to be drawn at the points of intersection when antialiased lines are drawn. The
GE_ZFUNCTION token is used to specify the relational function which is loaded into the DEPTHFN
register.

The XYFRAC register can be used to specify an initial fraction bits for the minor axis. The fraction
bits in the XYFRAC register are used to select the antialiase weight for the first pixel in the line.
This makes the space between antialiased lines appear constant on slow moving wireframes with
closely spaced lines.

6-101

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Pixel Data Write Conditioning Checks

Pixel writes by the RE2 can be conditioned both on a bit by bit basis and on a complete pixel basis.
The PIXMASK and the AUXMASK write masks are provided to mask the writing of the individual bits
during a pixel write. Five pixel write conditioning checks are provided which enable or disable the
writing of the entire pixel. These checks include the Screen Mask check, the Pattern Mask check,
the Line Stipple Pattern check, the Z Buffer check and the WID check. The following paragraphs
describe the bitplane write masks and the pixel write conditioning checks performed by the RE2.

Bitplane Pixel Write Masks

The two bitplane write masks provided in the RE2 include the PIXMASK and the AUXMASK. The
PIXMASK is used to mask Frame Buffer bitplane writes and the AUXMASK is used to mask PUP,
UAUX, WID and Z Butfer bitplane writes. The following paragraphs describe these two write masks.

PIXMASK Write Mask

The PIXMASK register hoids the Frame Buffer pixel write mask. The PIXMASK value is specified by
the GE_PIXWRITEMASK token which causes the microcode to load the specified pixel mask into the
PIXMASK register. Before the Frame Buffer data in the Frame Buffer port is written out 1o the
Frame Buffer bitplanes the PIXMASK register is output to the Frame Buffer VRAM. The VRAM then
prevents writes to the bitplanes whose PIXMASK bits are zero and enables writes to the bitplanes
whose PIXMASK bits are one. For the base adapter the PIXMASK is 8 bits wide and for the enhanced
adapter the PIXMASK is 24 bits wide.

AUXMASK Write Mask

The AUXMASK register holds the write mask for the PUP, UAUX, WID and Z Buffer bitplanes as
shown in Figure 6.89. The AUXMASK value is specified by the GE_AUXWRITEMASK token which
causes the microcode to load the specified write mask into the AUXMASK register. Before the PUP,
UAUX or WID data in the Frame Buffer port or the Z Buffer port is written out the appropriate
AUXMASK bits are written out to the VRAM. The VRAM then prevents writes to the bitplanes whose
AUXMASK bits are zero and enables writes to the bitplanes whose AUXMASK bits are one. The Z
Buffer mask bit is bit 8 of the AUXMASK register. Since the Z Buffer is comprised of DRAM instead
of VRAM they do not provide the built bit masking feature. The Z mask bit is connected to the Row
Address Strobe (RAS) bits of the DRAM. When the Z mask bit is zero it prevents writes into all 24
of the Z Buffer bitplanes and when the Z mask is a one then it allows writes into all of the Z Buffer
bitplanes.

Base Adapter

g8 7 6 54 3 2 1 0
X WD X PUP

e

Enhanced Adapter

8 7 4 3 2 1 0
2 wiD UAUX PUP

Figure 6.89 AUXMASK Bit Definitions

6-102

Silicon Graphics Confidential MGR Technical Reference

Pixel Write Conditioning Checks

The following paragraphs describe the five pixel write conditioning checks which are used to either
enable or disable the writing of a complete pixel.

Screen Mask Check

The screen mask is applied to every pixel write operation that is performed by the RE2. The screen
mask is specified by the GE_SCRMASK token and is used to define a rectangular clipping region on
the screen. The microcode loads the data parameters sent with the GE_SCRMASK token into the
XMIN, YMIN, XMAX and YMAX registers. If the current X or Y location of the pixel address is outside
the screen mask rectangie then the pixel is clipped and the pixel write does not occur. If the pixel
location is not outside the screen mask rectangie then the other pixel write checks determine if the
pixel is written or not. If all of the other checks pass then the pixel is written and if any of them
fail the pixel is not written. This is shown in the flow chart of Figure 6.90.

X < XMIN or X > XMAX or
Y <YMIN or Y > YMAX ?

Do Other Pixel Write
Conditioning Checks

N Other Write Checks Pass ?

Y

ﬁ)o Pixel Writi]

CDane D

Figure 6.90 Screen Mask Check Flow Charnt

As stated above the screen mask clipping is performed for all pixel write operations by all of the
RE2 instructions. The screen mask check does not affect the operation of the Read Buffer
instruction. The following four write checks are performed for some but not all of the instructions
that write pixels. They can also be selectively enabled or disabled by the host software.

Pattern Mask Check

Two of the RE2 instructions can perform pattern masking of pixels as they are written into the
bitplanes. The Draw Shaded Span instruction and the Write Buffer instruction can use the pattern
masking capability. The Draw Flat Span instructions, the Draw Line instructions and the Read
Buffer instruction cannot use the pattern mask capability. The microcode does not support the use
of pattern masking for the Write Buffer instruction even though the RE2 supports it.

The host software uses the GE_SETPATTERN token to load a 32 x 32 pattern table into the GES data
RAM. The GE_PATTERN token is used to instruct the microcode to use the pattern table to setup the
RE2 registers to perform pattern masking or to disable RE2 pattern masking. The pattern mask is
currently only used for pattern filled polygons and for text character drawing. If pattern mask

6-103

Chapter 6 Raster Subsystem Silicon Graphics Confidential

usage is enabled then the microcode accesses the pattern table to get the appropriate line based on
the current scan line location. The 32 bits from the selected line of the pattern table are loaded into
the PATL and PATH register in the RE2. The ENABPAT register is used to enable or disable the use
of the pattern mask by the RE2. When the pattern mask is enabled the mask is applied to 32
adjacent pixels along the current scan line. After the 32nd pixel is drawn the mask is then applied
to the next group of 32 pixels and so on until the end of the scan line is reached or until the
specified number of pixels are drawn for the current instruction. The flow chart in Figure 6.91
shows the pattern mask check operations performed by the RE2 for a single pixel write.

ENABPAT = 1 ?
Y

Q, ALIGNPAT = 1 ?
Y

!

Pattern Mask

Check Pass
PATL or PATH bit PATL or PATH bit
G x-stanX%32=17 X %32=17
Y N
Pattern Mask Pattern Mask Pattern Mask
Check Fail Check Pass Check Fail
I j:ﬁ —]
Do Other Pixel Write
Conditioning Checks
N Pattern Mask Check and

v Other Write Checks Pass ?

ﬁ)o Pixel Writi]

Figure 6.91 Pattern Mask Check Flow Chart

The ALIGNPAT register determines if the pattern mask is applied with a screen alignment or a
drawing relative alignment. When screen alignment is selected the 32 bit pattern mask is applied
to each group of 32 pixels beginning with the pixel at the leftmost edge of the screen. Therefore the
current X location on the current scan line modulo 32 is used to index into the pattern mask
registers to get the appropriate pattern mask bit. When the drawing relative alignment is selected
the 32 bit pattern mask is applied beginning with the starting X location of the first pixel to be
drawn. The current X minus the starting X on the current scan line modulo 32 is used to index into
the pattern mask registers to get the appropriate mask bit. 1f the selected pattern mask is a one
then the pattern mask check passes. if it is zero then the pattern mask check tails. If the pattern
mask check fails then the pixel is not written regardless of the other pixel write checks. |If the

6-104

Silicon Graphics Confidential MGR Technical Reference

pattern mask check passes then the all the other write checks must also pass for the pixel to be
written.

The alignment selection is controlled by the microcode and is not controllable by the host software.
The microcode will select screen alignment while doing pattern filed polygons and will select
drawing relative alignment when drawing text characters. For the text character drawing the font
bitmap for a character is sent down to the microcode using the GE_DRAWCHAR token. For each row
of bits in the font bitmap the pattern mask registers are loaded and a Draw Shaded Span instruction
is executed.

Line Stipple Pattern Check

The Line Stipple Pattern Check is used only by the Draw Top of Line and the Draw Bottom of Line
instructions. None of the other RE2 instructions are affected by the stipple pattern checks. The
stipple check operation is shown in the flow chart of Figure 6.92.

ENABSTIP = 1 ?
Y

'

; STIP[O] = 1 ?
Stipple
Check Pass
Stipple Stipple
Check Pass Check Fail
[-sTIPCOUNT |
Y
STIPCOUNT >0
N
STIPCOUNT = REPSTIP
Rotate STIP right 1 bit

C Do D

Figure 6.92 Stipple Pattern Check Flow Chart

This flow chart is intended to show the stipple check operation performed for each pixel as the line
is being drawn. The ENABSTIP register controls whether the stipple pattern check is performed or
not. If the register is a one then the stipple pattern check is enabled and if it is zero then the
stipple pattern is ignored which can be considered as a pass condition. The STIP register contains
the stipple pattern specified with the GE_LINESTYLE token. The stipple pattern allows the drawing
of solid lines or patterned lines such as a dashed line. The LSB bit in the STIP register determines
whether the stipple check for the current pixel passes or fails. if the LSB bit is a one then the
stipple check passes and the pixel is written if the other write checks also pass. If the LSB bit is

6-105

Chopter 6 Raster Subsystem Silicon Graphics Confidential

zero then the stipple check fails and the pixel is not written regardless of whether the other write
checks pass.

The count value in the STIPCOUNT register determines how many times the current LSB bit in STIP
register is used to perform the stipple check. After each stipple check is performed for the
current pixel the STIPCOUNT register is decremented and when it becomes zero the stipple pattern
in the STIP register is rotated right one bit and the value in the REPSTIP register is loaded into the
STIPCOUNT register. This means that when the Draw Line instruction is started the count in the
STIPCOUNT register determines how many times the initial LSB bit is used and the value in the
REPSTIP register determines how many times each successive bit in the stipple pattern is used.
The GE_LSREPEAT token is used to specify the value which is loaded by the microcode into the
REPSTIP and the STIPCOUNT registers.

To get a continuous stipple across segments of a polyline, the microcode should only load the STIP,
STIPCOUNT and REPSTIP register for the first Draw Line instruction. For the remaining Draw Line
instructions the microcode should not change the values in the STIP register and the STIPCOUNT
register. This causes the current stipple to be continued for each of the line segments in the
polyline. To restart the stipple pattern the STIP, STIPCOUNT and REPSTIP register should be loaded
with the original values.

Z or Color Comparison Check

The RE2 has a hardware comparator that can be used to perform Z comparisons for hidden line
removal or color comparisons for antialiased lines. The COLORCMP register is used to control
which type of comparison is performed. When the COLORCMP register is set to 0 the comparator is
used to compare the Z register value with the Z bitplane value. When the COLORCMP register is set
to 1 the comparator is used to compare the Frame Buffer pixel value with the data in the Frame
Buffer bitplanes.

The normal mode of operation is set the COLORCMP register to 0 to perform Z Bufter depth
comparisons. The result of the comparison is used to condition the pixel writes. The Z Buffer
checking is performed for the Shaded Span, Draw Line and Write Buffer instructions. When the
Write Buffer instruction is being executed the Z Buffer check is not performed for writes to the Z
Bufter port. The Z Butfer checking is not done for the Flat Span or the Read Buffer instructions.
The color compare mode is only used when antialiased lines are being drawn with the Draw Line
instructions. The operations performed by the comparator hardware is shown in Figure 6.93.

The DEPTHFN register determines the type of relational comparison which is performed by the
comparator hardware. As shown in Table 6.4, bits 0, 1 and 2 control the type of comparison which
is performed between the new Z value and the Z Buffer bitplane data or between the Frame Buffer
pixel color value and the Frame Buffer bitplanes. If DEPTHFN bits 0, 1 and 2 are all set to one then
the comparison always passes and the pixel is written. This has the affect of disabling the Z Buffer
checking or color comparison checking.

When the COLORCMP register is 0 the default setting for these three bits is a 3 which means that a
new pixel is written only if it's Z value is <= to the previous Z value already written into the Z
buffer at the current pixel location. For the left handed screen coordinate system pixels further
from the viewer have greater Z values. With the DEPTHFN register set to 3 this means that only
pixels with a Z value closer to the viewer are written. This allows objects to be drawn in any order
and hidden pixels are not drawn.

6-106

Silicon Graphics Confidential MGR Technical Reference

COLORCMP =07
Y

!

A = new FB color value
B = existing FB value A = Z Register
B = Z Buifer value

(?) FBOPTION =1 ?

(3> DEPTHFN[3] =17
Y

) WID bitplane data bit 0 = 1 ? .
Y

N Z lnvalid
?) DEPTHFN[0] =1 ?
Y

DEPTHFN[1] =1 7?
() __~$A<B?
Y

DEPTHFN[2) = 1 ?
SRR L PR - B S
Y

Figure 6.93 Z or Color Comparison Flow Chart

When the COLORCMP register is set to 1 the comparator is used to compare the Frame Buffer pixel
values and the Frame Buffer bitplanes. This mode is only used when drawing antialiased lines so
that the appearance of the intersecting lines is improved. The DEPTHFN register should be set to 6
in this mode so that only the brighter pixels at the points of intersection are drawn.

A special Z invalidate mode is controlied by bit 3 of the DEPTHFN register. This mode is only used
when the COLORCMP register is 0 for Z Buffer checking mode. If bit 3 is zero then the Z Buffer
value is valid and the lower 3 bits of the DEPTHFN register control the Z check comparison. If Bit 3
of DEPTHFN is 1 then the LSB bit of the WID data is checked to see if the current Z Buffer value is

6-107

Chapter 6 Raster Subsystem Silicon Graphics Confidential

valid or invalid. If the LSB bit of the WID data is a 0 then the Z value is valid and the normal Z
check is performed. If the LSB bit of the WID data is 1 then the Z value is invalid and the Z check
automatically passes. This mode is provided to allow a fast Z clear operation in which only the LSB
bit of the WID bitplanes is set. This allows the Z clear to be four times faster than if the Z Buffer
bitplanes were actually cleared. The Z value is invalidated and is replaced by a new Z value as the
pixel data is written.

Table 6.4 DEPTHFN Register Bit Definitions

DEPTHFN Bit Meaning if bit set

Z compare passes if new Z < old Z

Z compare passes if new Z = old Z

Z compare passes if new Z > old Z
Enable old Z invalidate mode

wlnv |~ joO

The trick is that the LSB bit of the WID data is cleared to 0 as the new Z value is written and
therefore only the first Z value at this pixel location is made invalid. The following pixel writes 10
the current pixel location will have valid Z values to compare against. The fast Z clear is described
in greater detail in a later paragraph which describes the clearing of the various bitplanes. The 2
invalidate mode is only valid for the enhanced adapter. For the base adapter the WID checking
operation uses both WID bits and thus prevents the Z invalidate mode from being used.

Window ID Check

The base configuration of the MGR adapter contains 2 Window ID bitplanes and the enhanced
configuration contains 4 Window ID bitplanes. These bitplanes are used to store the window 1D's of
on screen windows. The WID values are used to condition pixel writes to the current window and to
select a mode register in the XPC1 or XMAP2 chips in the Display Subsystem. The mode register
determines the pixel display formatting. The WID checking is provided to allow pixel write
clipping for obscured windows which consist of more than one rectangular piece. if the current
window is not obscured and consists of a single rectangular piece then the hardware screen mask can
be used to clip pixel writes to that on screen rectangle. When the window is obscured and consists
of two or more on rectangular pieces or when the window is not rectangular the WID checking
allows pixel clipping of the pixel writes to just those pixels which are part of the current window.

The WID checking limits pixel writes to only those pixels whose WID bitplane data bits match the
current window 1D in the CURRENTWID register which is set by the GE_CURRENTWID token. WID
checking will only be performed after it has been be enabled and it can oniy be enabled for some
instructions and not for others. The Draw Shaded Span (IR = 1), the Draw Lines (IR = 4 or 5) and
the Write Buffer (IR = 7) instructions can be WID checked while the Draw Fiat Span and the Read
Buffer instructions cannot be WID checked. The ENABWID register is set by the GE_ENABWID token
and is used to enable or disable WID checking for the Draw Shaded Span and the Write Butter
instructions. The ENABLWID register is set by the GE_ENABLWID token and is used along with the
ENABWID register to enable or disable WID checking for the Draw Line instructions. The WID
checking operations are shown in Figure 6.94.

Since the Frame Buffer port and the Z butfer port are not the same for the base and enhanced
configurations of the adapter the RE2 uses the FBOPTION register to determine which adapter
configuration is present. The FBOPTION register is set with the number of bitplanes data
parameter sent down after the microcode was downioaded. If the FBOPTION register is set to one

6-108

Silicon Graphics Confidential MGR Technical Reference

then the enhanced adapter configuration is being used and if it is a zero then the base adapter is
being used. For the enhanced adapter the frame buffer port has the Frame Buffer, PUP and UAUX
bitplane pixel data written through it. The Z buffer port has the Z butter, WID and PUP bitplanes

written through it.

IR=1,4,50r77?

2
ENABWID = 1 ?
IR=40r5?
N N
< % ENABLWID = 1 ?
Y
Y
2 R=72?
N
N FBOPTION = 1 and
YRWMODE =0, 1,200 67
—»
< N Q0 FBOPTION = 0 and
Y RWMODE =00r6 ?
r<

FBOPTION =17?

DEPTHFN([3] =1 ?
y FastZclear

Q. WID bits [3:0] =
N CURWID(3:0] ?

N WID bits [1:0] =
CURWID([1:0] ?
Y

WID bits [3:1]
, CURWID(3:1] ?

N

[WiD Check Falled | [WID Check Passed] [WID Check Failed] | WID Check Passed]

Figure 6.94 WID Check Flow Chart

The Shaded Span and Draw Line instructions can have the data written through both the Frame
Butfer and Z Buffer ports WID checked. For the Write Buffer instruction the WID checking is only
performed for the bitplanes written through the Frame Buffer port. The bitplanes written through
the Z buffer port are not WID checked for the Write Buffer instruction. For the Write Buffer
instruction the flow chart shows the RE2 does not even do a WID check for the Z Buffer writes. The

pixels are simply written in this case.

6-109

Chapter 6 Raster Subsystem Silicon Graphics Confidential

For the Write Buffer instructions on the enhanced configuration if the RWMODE is 0, 1, 2 or 6 then
a WID check is performed if the ENABWID register is set to one. The Z buffer port has the Z buffer
and WID bitplanes written through it so if the RWMODE is 3, 4 or 7 then a WID checked is not
performed even if the ENABRGB register is one. For the base configuration the frame buffer port
has just the Frame Buffer bitplane pixel data written through it. This means that if the RWMODE is
0 or 6 then a WID check is performed if the ENABWID register is set to one and if the RWMODE is
1,3, 4 or 7 then a WID checked is not performed even if the ENABRGB register is one.

The WID check operation depends on the adapter configuration. For the enhanced adapter if the
DEPTHFN register bit 3 is set to 1 then the Fast Z clear mode is enabled. In this mode the LSB bit of
the WID bitplanes is used as a Z value validation control bit. Refer to the paragraphs on Z check
operation for more details. When Fast Z clear mode is enabled then only the upper 3 bits of the WID
bitplanes are compared to the upper 3 bits of the CURWID register. If the values are equal then the
WID check passes and the pixel is written. If the values are different then the WID check fails and
the pixel is not written. If the Fast Z clear mode is disabled (DEPTHFN[3] = 0) then all four bits of
the WID bitplanes are compared to the four bits in the CURWID register. Once again if the values
are equal then the WID check passes and the pixel is written. If the values are different then the
WID check fails and the pixel is not written.

For the base configuration the two bits of the WID bitplanes are compared to the LSB two bits in the
CURWID register. If the values are equal then the WID check passes and the pixel is written. If the
values are different then the WID check fails and the pixel is not written.

This completes the discussion of the pixel write conditioning capabilities. The following paragraphs
describe the instructions which the RE2 can execute.

6-110

Silicon Graphics Confidential MGR Technical Reference

Draw Shaded Span Instruction

The Draw Shaded Span instruction is used to draw Gouraud shaded or flat shaded horizontal spans
while doing fill operations on polygons and other geometric objects. The shaded spans can be Z
Buffer and WID checked as well as have the pattern mask applied to the pixel writes. As with all
pixel writes the hardware screen mask is used to clip the pixel writes which are outside of the
screen mask rectangle. The initial color values are loaded into the R, G and B registers for RGB
pixels or just in the R register for color index pixels. The DR, DG, and DB registers are loaded with
the delta color values which are used to vary the color value for Gouraud shaded spans. For flat
shaded spans the delta color values are all set to zero. The Draw Shaded Span instruction is used to
draw flat spans when they need to be Z Buffer checked, WID checked, pattern masked or a raster
operation other than copy needs to be performed. If none of these checks or operations is needed
then the Draw Flat Span instruction should be used.

The following paragraphs describe the register usage and the execution flow for the Draw Shaded
Span instruction.

Register Usage

The following list of RE2 registers are the registers which are normally specified and used each
time a new Shaded Span instruction is executed.

- X Contains the starting x screen location

-Y Contains the starting y screen location

-2 Contains the starting z value

- DX = +1 Contains the change in x which is added to the current x location to get
the next x location

-DY=0 Contains the change in y which is added to the current y location to get
the next y location

- bzl Contains the integer part of the deita Z value

- DZF Contains the fraction part of the deita Z value

- NUMPIX Contains a pixel count for the number of pixels to be written

- PIXTYPE Specifies the type of pixels being written

-R Contains the initial red color value or the initial color index value

-G Contains the initial green color value

- B Contains the initial blue color value

- DR Contains the delta value for the red color

- DG Contains the delta value for the green color

-D Contains the delta value for the blue color

- PATL, PATH Contains the pattern mask to be applied for the current scan line

The following registers affect the operation of the Shaded Span instruction but are usually written
by the microcode as it executes other tokens and then they remain in effect during the execution of
multiple Shaded Span instructions as well as other instructions.

- XMIN Lower left x coordinate of the hardware screen mask rectangle

- YMIN Lower left y coordinate of the hardware screen mask rectangle

- XMAX Upper right x coordinate of the hardware screen mask rectangle
- YMAX Upper right y coordinate of the hardware screen mask rectangle
- FUNC Contains the Logical Operation to be applied to each pixel

- ENABWID Determines if the WID checking is performed for each pixel

- CURWID Specifies the Current WID for the WID checking operations

- FBOPTION Specifies the adapter type (0 = base, 1 = enhanced)

6-111

Chapter 6 Raster Subsystem Silicon Graphics Confidential

- ENABRGB Specifies that 8 bit RGB pixels are to be written on the base adapter

- NOPUP Specifies if 2 or 4 UAUX bitplanes are available on the enhanced adapter

- DEPTHFN Bit 3 controls the FastZclear mode and affects WID and Z Buffer checking
- COLORCMP Specifies Z or color compare (Should be set to 0 for Shaded Spans)

- PIXMASK Determines which bits are written to the Frame Buffer bitplanes

- AUXMASK Determines which bits are written to the PUP, UAUX, WID and Z bitplanes
- WIDDATA Contains the data to be written to the WID bitplanes

- PUPDATA Contains the data to be written to the PUP bitplanes

- UAUXDATA Contains the data to be written to the UAUX bitplanes

- ENABPAT Specifies if the pattern mask is to be applied

- ALIGNPAT Specifies the type of pattem alignment used (Should be 1 for Shaded Spans)
- ENABDITH Determines if the Frame Buffer pixel color values are dithered

Once the RE2 registers have been set up and the Draw Shaded Span instruction has been written to
the IR register the RE2 will draw the number of pixels specified in the NUMPIX register. During
the execution of a Shaded Span instruction only pixels on the current scan line specified by the Y
register can be written. The first pixel to be written on the selected scan line is specified by the X
register. The following pixel writes then proceed to the right along the scan line.

Execution Filow

The Draw Shaded Span instruction has two modes of operation depending on the raster operation
specified in the FUNC register. These two modes are described in the following sections.

No Raster Operation Mode

The flow of execution for a raster operation of 3 (copy) is shown in Figure 6.95. When the raster
operation is set for copy the RE2 does not have to read the Frame Buffer bitplanes which allows it to
operate nine times faster than for any other raster operation. This is the equivalent to doing no
raster operation. In this mode the RE2 does the Draw Shaded Span instructions by writing the
Frame Buffer port bitplanes on a first pass and then going back and writing the Z Buffer port
bitplanes on a second pass. The Z Buffer port bitplanes are initially read to get the Z Buffer value
and the WID bitplane data. The Z Buffer check and the WID check are performed. The Z Bufter
check depends on the setting of the DEPTHFN register to determine if the Z compare passes. |f the
ENABWID register is set to one then the WID bitplane data is compared to the CURWID register.

The RE2 will proceed along doing the Z Bufter and WID checks until both pass. As long as either one
fails neither the Frame Butfer port nor the Z Butfer port is written. When both the Z Bufter check
and the WID check pass the RE2 saves the current X, Y and Z values so that it can use these as the
starting point for the second pass. The RE2 then begins the first pass where only the Frame Butfer
port bitplanes are written. When either the Z Buffer or the WID check fails the first pass ends and
the second pass is done using the saved X, Y and Z values as the starting point. A Z count is
incremented during the first pass and it determines the number of Z Bufter port bitplane writes 10
be performed during the second pass. Once the second pass is completed the RE2 continues from the
pixel location where it left off. It once again begins doing the Z Buffer and WID checks until both
pass. The first and second pass are then done and the entire procedure is continued until the
NUMPIX register has finally been decremented to zero. For each pixel in which either the Z Buffer
or WID check fails the NUMPIX register is decremented. The NUMPIX register is also decremented
for each pixel written during the first pass.

6-112

Siticcn Graphics Confidential MGR Technical Reterence

>
N
NUMPIX > 0 or Zcount > 0 ? ?
Y
Y
> NuMPix =07 (C Done
Update X,Y Location N
Update Z Value .
Update Color Values | Read zB port bitplanes |
-- Numpix
f ¥ [Do WID Check |
N Y WID Check
d ? Passed?
Y
¢ ﬁo Z Buffer CheckJ
28 port W | N X, Z Butfer Check
) y Passed?
y
7% Zcount>0?
N
() Zcount> 0
Y Save X, Y.Z
Z = Saved Z .*
XY = Saved X.¥ [Format FB Pixel Data |
Y . Y
Clipped ? Clipped ?
N N
[Do Pattern Check | [Do Pattern Check |
N A Pattern Check N X Pattern Check
vy Passed? y Passed?
WVrite ZB8 port bitplanes Write FB port bitplanesJ
Update X,Y Location
Update Z Value
daie 2 Ve
i

Figure 6.95 No Raster Op Draw Shaded Span Instruction Flow Chart
During the first pass when both the Z Bufter and WID checks are passing the Frame Buffer port

bitplanes are written if the pixel location is not outside the screen mask rectangle and the
appropriate pattern mask bit is a 1 if the ENABPAT register is set 10 1. The Frame Buffer pixel

6-113

Chapter 6 Raster Subsystem Silicon Graphics Confidential

value formatting depends on the color vaiues in the R, G and B registers and the settings of the
PIXTYPE and ENABDITH registers. For the base configuration the Frame Buffer bitplanes are
written and the bits which are affected depend on the setting of the PIXMASK register. For the
enhanced configuration the Frame Buffer bitplanes, the PUP bitplanes and the UAUX bitplanes are
written. The bits which are actually written depends on the setting of the PIXMASK and AUXMASK
registers. After the Frame Buffer pixels are written the delta color values are added to the current
color values and the delta pixel location values are added to the current pixel location values.

During the second pass the saved X, Y and Z values are used 1o specify the starting pixel location. If
the AUXMASK bits are set to 0 so that nothing will be written to the Z Buffer bitplanes the second
pass is skipped allowing the Draw Shaded Span instruction to operate almost twice as fast. For the
base configuration the PUP, WID and Z mask bits in the AUXMASK must all be zero for the second
pass to be skipped. For the enhanced configuration the WID and Z mask bits must be zero for the
second pass 1o be skipped. If any of the mask bits is not zero then the second pass is performed. The
Z Buffer port bitplanes are written for each of the pixel locations written during the first pass.
For the base configuration the PUP, WID and Z bitplanes are written and for the enhanced
configuration the WID and Z bitplanes are written. The bits which are atfected depends on the
setting of the AUXMASK register. The Z Buffer port bitplane writes are also conditioned by the
screen mask and the pattern mask if it is enabled.

Raster Operation Mode

The raster operation mode is performed for any raster operation other than copy. In this mode the
RE2 must read and write both the Z Butfer port and the Frame Buffer port for each pixel. This
causes the RE2 to not be able to use it's internal pipelining in an efficient manner and so this mode
is nine times slower than the no raster operation mode. For each pixel the WID check, Z buffer
check, pattern mask and screen mask can condition the pixel writes. The Frame Buffer pixel
formatting depends on the PIXTYPE register and whether dithering is enabled. The raster operation
is performed on the Frame Butfer pixel data as well as the PUP, UAUX and WID data. The raster
operation is performed on a bit by bit basis between the source bitplane data and the bitplane data
which was read from the bitplanes. Once all the pixel formatting and raster operations have been
performed the Frame Buffer port and Z Buffer port bitplanes are all written if all of the write
conditions are satisfied. The bits in the various bitplanes which are written depend on the settings
of the PIXMASK and AUXMASK registers. The execution flow for this mode is shown in Figure 6.96.

After the pixel data is written the color values are updated by adding the deita color values to the
current color values. The Z value is updated by adding the delta Z value to the current Z value. The
current X and Y location is updated by adding the delta X and Y values to the current X and Y values.
The DY value must be zero and the DX value must be +1 so that the next pixel to the right of the
current pixel is selected. The NUMPIX register is then decremented and this process continues
until the NUMPIX register becomes zero.

If Gouraud shaded fills are being performed the deita color values shouid be set for the appropriate
change in the color as needed. If a flat shaded fill is being performed the delta color values should
all be zero so that the initial color values do not change. The flat shaded fill shouid only be
performed by the Draw Shaded Span instruction if it needs to be Z Buffer checked, WID checked,
pattern masked or have a raster operation other than copy performed. If none of these checks or

operations are required then the Draw Flat Span instructions should be used instead since they are
much faster than the Draw Shaded Span instruction.

6-114

Silicon Graphics Confidential

Cstan D

——b

N
NUMPIX > 0?7

MGR Technical Reference

Y

Read FB port bitplanes
and ZB port bitplanes

[Do WID Check |

WID Check
Passed?

ﬁo Z Buffer ChecL]

N Z Buffer Check
Q,

Y Passed?

Y {?) Clipped ?
N

[Do Pattern Check |

N Pattern Check

Y Passed?

Format FB Pixel Data
and perform
raster operation

Y

Write FB port bitplanes
and ZB port bitplanes

—

Update XY Location
Update Z Value
Update Color Values
-- Numpix

|

Figure 6.96 Raster Op Draw Shaded Span Instruction Flow Chart

6-115

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Draw Flat Span Instructions

The RE2 has two forms of the Draw Flat Span instruction which are used to draw flat shaded
horizontal spans while doing fill operations on various geometric objects. The two forms are the
Draw Flat 1 Span and the Draw Flat 4 Span. The only use of the Draw Flat 1 Span instruction would
be to clear the Z Buffer bitplanes which are DRAM chips and do not have the block write feature of
the 1 Meg VRAM chips. The Draw Flat 4 Span instruction uses the block write mode of the VRAM
chips. The flat spans cannot be Z Buffer checked, WID checked or have the pattern mask applied to
the pixel writes. The FUNC register must be set to 3 for a no raster operation mode ot copy. As
with all pixel writes the hardware screen mask is used to clip the pixel writes which are outside of
the screen mask rectangle. The bitplane write masks are also used to determine which bits in the
bitplanes are written. The initial color values are loaded into the R, G and B registers for RGB
pixels or just in the R register for color index pixels. The DR, DG, and DB registers are always
loaded with zero.

The following paragraphs describe the register usage and the execution flow for the Draw Flat Span
instruction.

Register Usage

The following list of RE2 registers are the registers which are normally specified and used each
time a new Flat Span instruction is executed.

- X Contains the starting x screen location

-Y Contains the starting y screen location

-2 Contains the starting z value

-DX=0 Contains the change in x which is added to the current x location to get
the next x location

-DY=0 Contains the change in y which is added to the current y location to get
the next y location

- DZI Contains the integer part of the delta Z value

- DZF Contains the fraction part of the deita Z value

- NUMPIX Contains a pixel count for the number of pixels to be written

- PIXTYPE Specifies the type of pixels being written

-R Contains the initial red color value or the initial color index value

-G : Contains the initial green color value

-B Contains the initial blue color value

-DR=0 Contains the deita value for the red color

-DG =0 Contains the delta vaiue for the green color

-DB=0 Contains the delta value for the blue color

The following registers affect the operation of the Flat Span instruction but are usually written by
the microcode as it executes other tokens and then they remain in effect during the execution of
multiple Shaded Span instructions as well as other instructions.

- XMIN Lower left x coordinate of the hardware screen mask rectangle

- YMIN Lower left y coordinate of the hardware screen mask rectangie

- XMAX Upper right x coordinate of the hardware screen mask rectangle

- YMAX Upper right y coordinate of the hardware screen mask rectangle
-FUNC =3 Contains the Logical Operation to be applied to each pixel

- FBOPTION Specifies the adapter type (0 = base, 1 = enhanced)

- ENABRGB Specifies that 8 bit RGB pixels are 10 be written on the base adapter

- NOPUP Specifies if 2 or 4 UAUX bitplanes are available on the enhanced adapter

6-116

Silicon Graphics Confidential MGR Technical Reference

- PIXMASK Determines which bits are written to the Frame Buffer bitplanes

- AUXMASK Determines which bits are written to the PUP, UAUX, WID and Z bitplanes
- WIDDATA Contains the data to be written to the WID bitplanes

- PUPDATA Contains the data to be written to the PUP bitplanes

- UAUXDATA Contains the data to be written to the UAUX bitplanes

- ENABDITH Determines if the Frame Buffer pixel color values are dithered

Once the RE2 registers have been set up and the Draw Fiat Span instruction has been written to the
IR register the RE2 will draw the number of pixels specified in the NUMPIX register. During the
execution of a Flat Span instruction only pixels on the current scan line specified by the Y register
can be written. The first pixel to be written on the selected scan line is specified by the X register.
The following pixel writes then proceed to the right along the scan line.

Execution Flow

The execution flow for the Flat Span is designed to be very simple so that it is very fast and is shown
in Figure 6.97. The Frame Buffer pixel formatting is performed based on the PIXTYPE selected and
whether dithering is enabled. The formatted pixel data is placed in the Frame Bufter port since the
raster operation must be 3 which is a copy raster operation. If the current pixel location is not
outside of the screen mask the current pixel data will be written from both the Frame Buffer and Z
Buffer ports. The number of pixels which are written depends on whether the Draw Flat 1 Span
instruction or the Draw Flat 4 Span instructions. The Draw Flat 1 Span instruction can write 1 to
5 adjacent pixels while the Draw Flat 4 Span instruction can write 1 1o 20 adjacent pixels. The
Draw Flat 4 Span instruction uses the block write mode of the 1 Meg VRAM chips to write up 10 20
pixels.

NUMPIX > 0 7

Y
Do FB Pixel Formatting

Y

7 Clipped ?
N

Write FB Port and ZB Port data
to 1 to 5 Pixels for Fiat 1 Span or
to 1 to 20 Pixels for Flat 4 Span

—*y

Update X, Y and Z vaiues
Subtract 1 to 20 from NUMPIX

_

Figure 6.97 Fiat Span Instruction Fiow Chart

The number of adjacent pixels which are written depends on the current X location. The RE2 can
write 1 to 4 pixels, groups of 5 pixels and groups of 20 pixels. If the current X is on a 20 pixel
group boundary then all 20 pixels will be written for the Draw Flat 4 Span instruction. If the
starting X location is not on a 20 pixel or a 5 pixel boundary then the RE2 will write from 1 to 4

6-117

Cnanter 6 Raster Subsystem Silicon Graphics Confidential

pixels to get to the next 5 pixel boundary. It will then write as many 5 pixel groups as possible
until it reaches a 20 pixel boundary. At that time it will write a 20 pixel group assuming that at
least 20 pixels are left to write. The reverse procedure is used for the last group of pixels which is
less than 20. First as many 5 pixel groups as possible are written and then the final 4 to 1 pixels
are written.

For each group of pixels which are written the same data from the Frame Buffer and Z Buffer pon
are written to each pixel. The Z value is then updated and a new Frame Buffer pixel format
calculation are performed for the next pixel. Since the delta color values are zero and dithering
should be disabled the Frame Buffer pixel value will not change. For each pixel which is written
the PIXMASK and AUXMASK registers determine which bits are actually written.

6-118

Silicon Graphics Confidential MGR Technical Reference

Draw Line Instructions

The RE2 provides two Draw Line instructions which are the Draw Bottom of antialiased line
instruction and the Draw Top of antialiased line instruction. These instructions as their names
imply are used to draw antialiased lines. The only difference between these instructions is in the
antialiase weight selection from the antialiase weight table. The three most significant fraction bits
of the minor axis (slower changing axis) are used as an index into the antialiase weight table. The
bottom weight entries are used for the Draw Bottom Line instruction and the top weight entries are
used for the Draw Top Line instruction. Either line can be used to draw non-antialiased lines which
is the mode when the ASELECT register is set to zero.

The initial color values are loaded into the R, G and B registers for RGB pixels or just in the R
register for color index pixels. The DR, DG, and DB registers are loaded with the delta color values
which are used to vary the color value for depth-cued lines. For flat lines the delta color values are
all set to zero. The delta X and Y values can be set to any integer and fraction values which define the
slope of the line. The values can be negative. One of the entries should be set to + or -1 and the
other entry to the slope of the line.

The following paragraphs describe the register usage and the execution flow for the Draw Line
instructions.

Register Usage

The following list of RE2 registers are the registers which are normally specified and used each
time a new Draw Line instruction is executed.

- X Contains the starting x screen location

-Y Contains the starting y screen location

-Z Contains the starting z value

- DX Contains the change in x which is added to the current x location to get
the next x location

-DY Contains the change in y which is added to the current y location to get
the next y location

- DZI Contains the integer part of the deita Z value

- DZF Contains the fraction part of the deita Z value

- NUMPIX Contains a pixel count for the number of pixels to be written

- PIXTYPE Specifies the type of pixels being written

-R Contains the initial red color value or the initial color index value

-G Contains the initial green color value

-B Contains the initial blue color value

- DR Contains the delta vaiue for the red color

- DG Contains the delta value for the green color

- DB Contains the delta vaiue for the blue color

- STIP Contains the stipple pattern to be applied for the current scan line

- STIPCOUNT Contains the repeat count for the initial LSB bit in STIP

- REPSTIP Contains the repeat count for all other bits in STIP

The following registers affect the operation of the Draw Line instruction but are usually writtgn by
the microcode as it executes other tokens and then they remain in effect during the execution of
multiple Shaded Span instructions as well as other instructions.

- XMIN Lower left x coordinate of the hardware screen mask rectangle
- YMIN Lower left y coordinate of the hardware screen mask rectangle

6-119

Chapter 6 Raster Subsystem Silicon Graphics Confidential

- XMAX Upper right x coordinate of the hardware screen mask rectangle

- YMAX Upper right y coordinate ot the hardware screen mask rectangie

- FUNC Contains the Logical Operation to be applied to each pixel

- ENABWID Determines if the WID checking is performed for each pixel

- CURWID Specifies the Current WID for the WID checking operations

- FBOPTION Specifies the adapter type (0 = base, 1 = enhanced)

- ENABRGB Specifies that 8 bit RGB pixels are to be written on the base adapter

- NOPUP Specifies if 2 or 4 UAUX bitplanes are available on the enhanced adapter
- DEPTHFN Bit 3 controls the FastZclear mode and affects WID and Z Buffer checking
- COLORCMP Specifies Z or color compare (Should be set 10 0 tor Shaded Spans)

- PIXMASK Determines which bits are written to the Frame Buffer bitplanes

- AUXMASK Determines which bits are written to the PUP, UAUX, WID and Z bitplanes
- WIDDATA Contains the data to be written to the WID bitplanes

- PUPDATA Contains the data to be written to the PUP bitplanes

- UAUXDATA Contains the data to be written to the UAUX bitplanes
- ENABSTIP Specifies if the stipple pattern is to be applied
- ENABDITH Determines if the Frame Buffer pixel color values are dithered

Once the RE2 registers have been set up and the Draw Line instruction has been written to the IR
register the RE2 will draw the number of pixels specified in the NUMPIX register. During the
execution of a Draw Line instruction pixels on any scan line can be written beginning with the scan
line specified by the initial Y. The pixel on that scan line specified by the X register is written and
then pixeis on the same scan line or other scan lines are written depending on the slope values in
the DX and DY registers.

Execution Flow

The Draw Line instructions have two modes of execution which are the fast line mode and the slow
line mode. As shown in Figure 6.98 the mode is determined by checking the Z Buffer mode, the wID
enable register and the raster operation FUNC register. |f Z Buffer checking, WID checking and
raster operations are disabled then fast line mode is used. The color compare must also be disabled
during fast line mode. If any of these checks or operations are enabled then slow line mode is used.
The Z Buffer checking is disabled by setting the DEPTHFN register to 7 and clearing the AUXMASK
bits for the Z Buffer port bitplanes. For the base adapter this means the PUP, WID and Z mask bits.
For the enhanced adapter this means the WID and Z mask bits. The WID checking is disabled by
setting the ENABWID register to 0. The raster operation is disabled by setting the FUNC register to
3 for copy mode. The color compare is disabled by setting the COLORCMP register to 0. The
following paragraphs describe the fast and slow line modes.

Fast Line Drawing Mode

The fast line mode is a simple mode which is designed to draw lines quickly. in this mode the Frame
Buffer pixel formatting is done and then the antialiase operation is done. The resulting Frame
Buffer pixel data is placed into the Frame Buffer port and the Frame Buffer and Z Buffer ports are
written if the pixel location is not outside the screen mask rectangle and if the LSB bit in the STIP
register is a one if the ENABSTIP register is a 1. The bits which are written are determined by the
PIXMASK and the AUXMASK registers. The X, Y and Z registers are updated by adding the DX, DY and
DZ registers to them. The R, G and B color values are updated by adding the DR, DG and DB registers
1o them. The NUMPIX register is decremented and the next pixel is then formatted and written as
before. This process continues until the NUMPI!X register reaches zero at which time the
instruction execution is completed and the RE2 reads the IR register to get the next instruction 10 be
executed.

6-120

Silicon Graphics Confidential MGR Technical Reference

DEPTHFN[2-0] = 7 and ENABWID = 0

Slowline N
and FUNC = 3 and COLORCMP =0 ?

— Fastline
N
NUMPIX > 0 7 ? 4 NUMPIX >0 ?
Y
Read FB port bitplanes @ Clipped ?
and ZB port bitplanes N
[Do Stipple Check |
[_Do wiD Check] N Y Stipple Check
N Y WID Check y Passed?
Passed?)
Do FB Pixel Formatting
rDo Z Bufter ChecL] *
N & Z Buffer Check Do antialiase operation
y Passed? *
y (?) Clipped ? Write FB Port
N and ZB Port data
[Do Stipple CheckJ .l
N Stipple Check
Y Passed? Update X, Y and Z values
Update R, G and B values
Format FB Pixel Data, --NUMPIX
do raster operation |
and antialiase operation

Y

Write FB port bitplanes
and ZB port bitplanes

g

Update X,Y Location
Update Z Value
Update Color Values
-- Numpix

_

Figure 6.98 Draw Line Instruction Fiow Chart

Slow Line Drawing Mode

ch pixel to be conditioned by the Z Buffer or Color comparison

This drawing mode ailows ea
ormed on the pixel

checking, the WID checking and to have a raster operation other than copy pertf

6-121

Chapter 6 Raster Subsystem Silicon Graphics Confidential

data. The pixel writes can also be conditioned by the stipple pattern if the ENABSTIP register is set
to 1. As with all pixel writes the pixel location must be on or inside the screen mask rectangle or
the pixel write is clipped. For each pixel location the Z Buffer port bitplanes are read and the Z
Buffer and WID checks are performed. If these checks and the stipple check all pass the pixel can be
written if it is not clipped. The Frame Buffer pixel data formatting depends on the PIXTYPE and
ENABDITH register settings. Once the pixel formatting has been performed the raster operation and
the antialiasing operation are performed and the Frame Butfer data is placed into the Frame Buffer
port. The Frame Bufter port and the Z Buffer port are then written to the bitplanes if all of the
enabled write conditioning checks pass. The bits which are written depend on the settings of the
PIXMASK and AUXMASK registers.

After the pixel is written the X, Y and Z values are updated as well as the R, G and B values. The
NUMPIX register is decremented and it it is still greater than zero the next pixel is processed and
written. If the NUMPIX register is zero then the instruction execution has completed and the RE2
reads the IR register to get the next instruction lo execute. If no instruction is in the IR register
the RE2 waits for the IR register to be written 10 before beginning the next instruction execution.

6-122

Silicon Graphics Confidential MGR Technical Reference

Bitplane DMA Support

The RE2 supports both read and write DMA operations. The DMA can be between the host and the
RE2 bitplanes or between the GES data RAM and the RE2 bitplanes. To perform a DMA transfer the
microcode must first load the appropriate parameters into various RE2 registers. The data to be
loaded into the registers will have been saved in the GE5 data RAM by the execution of previous
tokens or it will be sent down with the token which causes the DMA operation to be performed.
After the RE2 registers have been loaded the Read Buffer or the Write Buffer instruction is loaded
into the IR register to start the DMA operation.

The DMA source or destination bitplanes is controlled by the RWMODE register in the RE2, as
shown in Table 6.5. The host uses the GE_READSOURCE token to specify the source bitplanes for a
read DMA transfer. The bitplanes used for the write destination are specified with the GE_RWMODE
token. The microcode will use the values specified by these tokens to load the appropriate value into
the RWMODE register depending on whether it is doing a read DMA or a write DMA. In the case of
the GE_RECTCOPY token the microcode performs both read and write DMA operations so it will use
the value specified by GE_READSOURCE when DMAing a line out of the source bitplanes and will use
the value specified by GE_RWMODE when writing the line into the destination bitplanes.

Table 6.5 RWMODE Register Contents

RWMODE | Width of Data (bits) | Data Source or Destination
0 4, 8, 12 or 24 Frame Buffer bitplanes
1 0or2 PUP bitplanes
2 0,20r4 UAUX bitplanes
3 24 Z buffer bitplanes
4 2 or 4 WID bitplanes
5 None Undefined
6 28 Frame Buffer port
7 28 Z butfer port

The following paragraphs describe the DMA support for both reading from and and writing to the
specified bitplanes.

DMA Support for Bitplane Reads

The Read Buffer instruction is used for DMA reads from the bitplanes in the Raster Subsystem.
Each DMA cycle will transfer a 32 bit word from the RWDATA register of the RE2 to a host buffer
or to the GE5 data RAM. Each 32 bit word contains a single pixel in an unpacked format with the
pixel being right justified in the word. The following paragraphs describe the format of the pixels
read from the selected bitplanes as well as the Read Buffer instruction used to read the bitplanes.

6-123

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Pixel Formats for Read DMA Transters

When a read pixel DMA transfer is initiated by the host software the host data buffer will receive
pixel data from the selected source bitplanes. The source bitplanes are selected with the
GE_READSOURCE token. When a token is sent to the microcode which uses read pixel DMA transters
the microcode loads the source bitplane value sent with the GE_READSOURCE token into the
RWMODE register in the RE2. The pixels read from the source bitplanes are placed in the 32 bit
words in the host buffer right justified. Multiple pixels are never packed into a single host word.
Any bits to the left of the pixel data will be undefined in the the 32 bit host buffer words. The
screen mask and write masks do not affect the bitplane reads and the reads can be from any valid
pixel location in the source bitplanes. For pixel reads from the Frame Buffer bitplanes the
GE_READBUF token is used to specify which buffer the pixel data will be read from. The buffer
value sent with the GE_READBUF token will be placed in the READBUF register of the RE2 by the
microcode. The appropriate pixel data from the selected buffer is then placed into the host buffer.
The following paragraphs describe the pixel formats for the base and the enhanced adapter.

Base Adapter Pixel Formats

The base adapter has 8 frame buffer bitplanes, 2 PUP bitplanes, 2 WID bitplanes and optionally 24
Z buffer bitplanes. These bitplanes can all be read from using DMA transfers. The pixel formats
for the base adapter DMA reads are shown in Figure 6.99 and the following paragraphs describe the
pixel formats of the data words which will be placed in the host buffer.

Frame Buffer Pixel Formats

For pixel reads from the frame buffer the PIXTYPE determines the type of action that the RE2 will
take when reading the pixel data. For pixels written with PIXTYPE set to binary 00 the RE2 will
have formatted the pixel data in the frame bufter in a special 8 bit RGB format. When these pixels
are read they will be returned to the host in the same 8 bit RGB format. Bits 0 through 2 will
represent the most significant three bits of the original 8 bit Red color component. Bits 5 through
3 will represent the most significant three bits of the original 8 bit Green color component. Bits 7
and 6 represent the most significant two bits of the original 8 bit Blue color component. This
spacial 233 format for 8 bit RGB pixels right justified in the 32 bit word placed in the host buffer.

The base adapter does not support the use of 12 bit RGB pixels. This means that double buffered
RGB mode is not supported on the base adapter and therefore a PIXTYPE equal to binary 01 is invalid
on the base adapter and pixels of this format should never be read back from the Frame Bufter
bitplanes of the base adapter.

For pixels written with PIXTYPE set to binary 10 the RE2 uses the right most 8 bits of each word it
receives as an 8 bit Color Index (Cl) value and the 8 bits are written into the frame buffer
bitplanes. When pixels of this type are read the 8 bit color index value will be placed in the host
buffer 32 bit word right justified.

For pixels written with PIXTYPE set to binary 11 the RE2 duplicates the 4 bit color index value
into the upper nibble and the PIXMASK determines which buffer is written. The host specifies
which of the buffers it wishes to read using the GE_READBUF token to specify either the front or
pack buffer for reads. The READBUF register is loaded by the GE5 microcode with the vaiue
specified by the GE_READBUF token. The RE2 returns either the right most nibble for the front
buffer or the left most nibble for the back buffer. The 4 bit color index value contained in the
selected nibble is placed in the host bufter 32 bit word right justified.

6-124

Giuicon Graphics Confidential

RWMODE = 0 (Frame Buffer = 8 bitplanes)
PIXTYPE = 00 (8 bit RGB mode)
31 87 65320
X B]G|R
. 7 0
PIXTYPE = 10 (8 bit Color Index) i
31 87 0
X cl
PIXTYPE = 11 (4 bit Color Ind 7 43 2
= (4 bit Color Index) 1 co
31 43 O
X cl
1 0
RWMODE =1 (PUP = 2 bitplanes) PUP
31 210
X PUP
RWMODE = 3 (Z buffer = 24 bitplanes)
23 0
Z value
31 24 23 0
X Z value
RWMODE = 4 (WID = 2 bitplanes) 10
WD
31 210
X WD
RWMODE = 6 (Frame buffer port = 8 bitplanes) 7 o
31 87 0
X Pixel
RWMODE = 7 (Z buffer port = 28 bitplanes)
27 26 2524 23 0
PUP | WD Z value
3128 2726 2524 23 0
X | PUP | WD Z value

MGR Technical Reference

X is don't care

Data Read From Frame Buffer by RE2

Data Placed in the Host Buffer Word

Data Read From Frame Buffer by RE2

Data Placed in the Host Buffer Word

Data Read From Frame Buffer by RE2

Data Placed in the Host Buffer Word
READBUF = 0, Cl = CO
READBUF = 1, Cl = C1

Data Read From PUP Bitplanes by RE2

Data Placed in the Host Buffer Word

Data Read From Z Buffer Bitplanes by RE2

Data Placed in the Host Buffer Word

Data Read From WID Bitplanes by RE2

Data Placed in the Host Buffer Word

Data Read From FB Port by RE2

Data Placed in the Host Buffer Word

Data Rqad From ZB Port by RE2

Data Placed in the Host Buffer Word

Figure 6.99 Base Adapter Pixel Formats for DMA Reads

6-125

Chapter 6 Raster Subsystem Silicon Graphics Confidential

PUP Pixel Formats

The base adapter contains 2 Pop Up (PUP) bitplanes which can be uéed to display either overlay or
underlay colors. When the PUP bitplanes are read the 2 bit PUP color index value is placed in the
host buffer 32 bit words right justified.

WID Pixel Formats

The base adapter contains 2 Window 1D (WID) bitplanes which are used as an index into the XPCi1
mode registers. When the WID bitplanes are read the 2 bit WID mode register index value is
placed in the host buffer 32 bit words right justified.

Z Buffer Pixel Formats

The base adapter can have an optional Z buffer card installed which contains 24 Z buffer bitplanes
which are used to perform depth (Z) comparisons to enable or disable pixels from being updated.
When the Z buffer pixel bitplanes are read the 24 bit Z values is placed in the host buffer 32 bit
word right justified.

Frame Buffer Port Fixel Formats

The base adapter has a Frame Buffer port which only contains the frame buffer pixel and no other
pixel data. When the frame buffer port is read the 8 bits of pixel data contained in the Frame
Buffer bitpianes are returned unmodified. Both buffers are returned for the double buffered pixels
rather than just the buffer selected by the READBUF register. The 8 bit data will be right justified
in the 32 bit words placed in the host buffer.

Z Buffer Port Pixel Formats

The base adapter has a Z buffer port which allows the host to access the Z buffer, WID and PUP
bitplanes all at once. The 24 bit Z value is placed in bits 0 to 23, the WID data in bits 24 and 25
and the PUP data in bits 26 and 27 of the host buffer. The 28 bits of data will be right justified in
the 32 bit words returned to the host butfer.

Enhanced Adapter Pixel Formats

The enhanced adapter has 24 frame buffer bitplanes, 2 PUP bitplanes, 2 UAUX bitplanes, 4 wiD
bitplanes and optionally 24 Z buffer bitplanes. These bitplanes can all be read from using DMA
transfers. The pixel formats for the enhanced adapter DMA reads are shown in Figure 6.100 and
the following paragraphs describe the pixel formats of the data words which will be placed in the
host buffer.

Frame Buffer Pixel Formats

For pixel reads from the frame buffer the PIXTYPE determines the type of action that the RE2 will
take when reading the pixel data. For pixels written with PIXTYPE set to binary 00 the RE2 will
have written the three 8 bit RGB color components into the bitplanes with the Red color component
in the right most byte, the Green color component in the middle byte and the Blue color component
in the left most byte. When this type of pixel is read the same BGR bytes are read from the
bitplanes and are placed in the host buffer right justified.

For pixels written with PIXTYPE set to binary 01 the RE2 uses the right most 4 bits of each of the
three color components and duplicates that nibble into the lower nibble of the corresponding color

6-126

Silicon Graphics Confidential MGR Technical Reterence

component. This PIXTYPE is used normally in a double buffer mode and the PIXMASK controls which
buffer receives the color component nibbles. The host specifies which of the buffers it wishes to
read using the GE_READBUF token to specify either the front or back buffer for reads. The
READBUF register is loaded by the GE5 microcode with the value specified by the GE_READBUF
token. The RE2 always returns 24 bit RGB values for this pixel type. If the front buffer is selected
then the right most nibble of each color component will be duplicated into the upper nibble of each
of the color components in the word returned to the host. If the back butfer is selected then the left
most nibble of each color component will be duplicated into the lower nibble of each of the color
components in the word retumed to the host. The 24 bit RGB pixel data is placed in the host butter
32 bit word right justified.

For pixels written with PIXTYPE set to binary 10 the RE2 duplicates the 12 bit color index into
upper 12 bits and the PIXMASK determines which buffer receives the pixel data. When this pixel
type is read the READBUF register determines which of the 12 bit color index values will be
returned to the host. |f the front butfer is selected then the right most 12 bit color index will be
returned. If the back buffer is selected then the left most 12 bit color index will be returned. The
returned 12 bit color index value will be right justified in the host butfer word.

For pixels written with PIXTYPE set to binary 11 the RE2 duplicates the 4 bit color index valug
into the upper nibble and the PIXMASK determines which buffer is written. The host specifies
which of the buffers it wishes to read using the GE_READBUF token to specify either the front or
back buffer for reads. The READBUF register is loaded by the GE5 microcode with the value
specified by the GE_READBUF token. The RE2 returns either the right most nibble for the front
buffer or the left most nibble for the back buffer. The 4 bit color index value contained in the
selected nibble is placed in the host buffer 32 bit word right justified.

PUP Pixel Formats

The enhanced adapter contains 2 Pop Up (PUP) bitplanes which can be used to display either
overlay or underlay colors. When the PUP bitplanes are read the 2 bit PUP color index value is
placed in the host buffer 32 bit words right justified. If the NOPUP register is set then the PUP
bitplanes become part of the UAUX bitplanes and are read with the UAUX bitplanes as the selected
source for the read.

UAUX Pixel Formats

The enhanced adapter contains either 2 or 4 User Auxiliary (UAUX) bitplanes which can be used to
display either overlay or underiay colors. When the UAUX bitplanes are read the 2 or 4 bit UAUX
color index value is placed in the host buffer 32 bit words right justified. If the NOPUP register is
0 then their are 2 PUP bitplanes and 2 UAUX bitplanes. If the NOPUP register is 1 then there are
no PUP bitplanes and 4 UAUX bitplanes.

WID Pixel Formats

The enhanced adapter contains 4 Window ID (WID) bitptanes which are used as an index into the
XMAP2 mode registers and to control pixel writes into the various bitplanes. When the WID
bitplanes are read the 4 bit WID mode register index value is placed in the host buffer 32 bit words
right justified.

Z Buffer Pixel Formats

The enhanced adapter can have an optional Z buffer card installed which contains 24 Z buffer
bitplanes which are used to perform depth (Z) comparisons to enable or disable pixels from being

6-127

Chapter 6 Raster Subsystem

Silicon Graphics Confidential

updated. When the Z buffer pixel bitplanes are read the 24 bit Z values is placed in the host butter
32 bit word right justified.

RWMODE = 0 (Frame Buffer = 24 bitplanes)

PIXTYPE = 00 (24 bit RGB mode)

23 16 15 8 7 0
B G R
31 04 23 1615 3 7 0
X B G R
PIXTYPE = 01 (12 bit RGB)
23 1615 8 7 0
B1: Bo| Gl ; GO | Rl i RO
31 242320 10 16151211 87 43 0
READBUF = 0 X B0 1 B0 | @ | G | Ro{ Ro
31 242320 19 16151211 87 43 0
READBUF = 1 X Bi1 B1 | Gt |Gl | Rl |RI
PIXTYPE = 10 (12 bit Color Index)
23 12 11 0
ci co
31 12 1 0
READBUF = 0 X co
31 12 11 0
- READBUF = 1 X c1
PIXTYPE = 11 (4 bit Col
(4 bit Color Index) 1187 43 0
X {c1 |co
31 43 0
READBUF = 0 X co
31 43 0
READBUF = 1 X ci
RWMODE = 1 (PUP = 2 bitplanes) L
PUP
31 21 0
X PUP

X is don't care
Data Read From Frame Buffer by RE2

Data Placed in the Host Buffer Word

Data Read From Frame Buffer by RE2

Data Placed in the Host Buffer Word

Data Placed in the Host Buffer Word

Data Read From Frame Butfer by RE2

Data Placed in the Host Buffer Word

Data Placed in the Host Buffer Word

Data Read From Frame Buffer by RE2

Data Placed in the Host Buffer Word

Data Placed in the Host Butfer Word

Data Read From PUP Bitplanes by RE2

Data Placed in the Host Butfer Word

Figure 6.100 Enhanced Adapter Pixel Formats for DMA Reads

6-128

Silicon Graphics Confidential

1 0

UAUX

31 2 1 0

X UAUX

RWMODE = 2 NOPUP = 1 (UAUX = 4 bitplanes) 3 0
UAUX

31 3 0
X UAUX

RWMODE = 3 (Z buffer = 24 bitplanes)

23 0
Z value
31 24 23 0
X Z value
RWMODE = 4 (WID = 2 bitplanes) 3 2
P WD
31 4 3 0
X WD
RWMODE = 6 (Frame buffer port = 28 bitplanes)
27 26 2524 23 0
UAUX | PUP Pixel
3128 27 26 2524 23 0
X |UAUX | PUP Pixel
RWMODE = 7 (Z buffer port = 28 bitplanes)
27 24 23 0
wiD Z value
31 28 27 24 23 . 0
X wiD Z value

MGR Technical Reference

X is don't care

Data Read From UAUX Bitplanes by RE2

Data Placed in the Host Buffer Word

Data Read From UAUX Bitplanes by RE2

Data Placed in the Host Buffer Word

Data Read From Z Buffer Bitplanes by RE2

Data Placed in the Host Buffer Word

Data Read From WID Bitplanes by RE2

Data Placed in the Host Buffer Word

Data Read From FB Port Bitplanes by RE2

Data Placed in the Host Buffer Word

Data Read From ZB Port Bitplanes by RE2

Data Placed in the Host Buffer Word

Figure 6.100 Enhanced Adapter Pixel Formats for DMA Reads (Cont.)

Frame Buffer Port Pixel Formats

The enhanced adapter has a Frame Buffer port which contai
or 2 PUP bitplanes and the 2 or 4 UAUX bitplanes. When th
of pixel data contained in the Frame Buffer bitplanes are retu

returned for the double buffered pixels rather than just the
register. The 24 bit frame buffer pixel data will be in bits 0 to 23, the PUP pixel data will be in

bits 24 and 25 and the UAUX pixel bits will be
the UAUX pixel will be in bits 24 to 27. The
words placed in the host buffer.

6-129

ns the 24 bit frame buffer pixel, the 0
e frame buffer port is read the 24 bits
rned unmodified. Both buffers are
buffer selected by the READBUF

in bits 26 and 27. If the NOPUP register is 1 then
28 bits of data will be right justified in the 32 bit

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Z Buffer Port Pixel Formats

The enhanced adapter has a Z bufter port which allows the host to access the Z bufter and WID
bitplanes at the same time. The 24 bit Z value is placed in bits 0 to 23 and the WID data in bits 24
to 27. The 28 bits of data will be right justified in the 32 bit words returned to the host buffer.

Read Buffer Instruction

To perform a bitplane read DMA transfer the microcode must set up the proper RE2 registers and
then issue the Read Buffer instruction to the RE2. This causes the RE2 to read the pixel data from
the selected source bitplanes and to place the pixel data in the RWDATA register. The read DMA
transfer is controlled by the HQ1 chip in the Geometry Subsystem. The HQ1 executes a microcode
instruction which instructs it to perform the necessary hardware operations to transfer data words
from the RWDATA register in the RE2 to the Host Buffer or to the GES Data RAM. The number of
word transfers is specified by the count that the microcode had previously loaded into the HQ1 DMA
Count register. The RE2 does not do any screen mask clipping, WID checking or pattern mask
checking when doing the pixel reads. The following paragraphs describe the RE2 register usage and
execution flow of the Read Buffer instruction.

Register Usage

The following list of RE2 registers are the registers which are normally specified and used each
time a new Read Buffer instruction is executed.

- X contains the starting x screen location

-Y Contains the starting y screen location

- DX = +1 Contains the change in x which is added to the current x location to get
the next x location

-DY =0 Contains the change in y which is added to the current y location to get
the next y location

- NUMPIX Contains a pixel count for the number of pixels to be read

- PIXTYPE Specifies the type of pixels being read if the frame buffer is the source

- RWMODE Specifies the source bitplanes to be read

- READBUF Specifies the frame buffer pixel data to be read

- RWDATA The output data port of the RE2 for the Read Buffer instruction

The following registers affect the operation of the Read Buffer instruction but are usually written
by the microcode as it executes other tokens and then they remain in effect during the execution of
multiple Read Buffer instructions as well as other instructions.

- FBOPTION Specifies the adapter type (0 = base, 1 = enhanced)
- ENABRGB Specifies that 8 bit RGB pixels are to be used on the base adapter
- NOPUP Specifies if 2 or 4 UAUX bitplanes are available on the enhanced adapter

Once the RE2 registers have been set up and the Read Buffer instruction issued then the RE2 will
read the pixel data and place the pixel data in the RWDATA register so that the HQ1 chip will
transfer the data to the Host Buffer or to the GES Data RAM. During the execution of a Read Buffer
instruction only pixels on the current scan line specified by the Y register can be read. The first
pixel to be read on the selected scan line is specified by the X register. The following pixel reads
then proceed to the right along the scan line. The number of pixels to be read is specified in the
NUMPIX register.

6-130

Sitcon Graphics Confidential MGR Technical Reference

Execution Flow
A logical representation of the Read Butfer instruction execution flow is shown in the flow diagram
shown in Figure 6.101. The NUMPIX register contains the count for the number-of pixels to be read
by the Read Buffer instruction. The main loop is executed until the number of pixels in the NUMPIX
register have been read. For each pass through the main loop the following major operations are
performed.

- read the pixel data at the current pixel location into the Z Buffer and the Frame Buffer Ports

- if frame buffer pixels are being read then use READBUF to determine which buffer is used

- right justify the pixel data which is being read

- wait for the previously read pixel to be removed from the RWDATA register

- place the pixel data in the RWDATA register

- update the pixel location and decrement NUMPIX

Cstan D

N
NUMPIX > 0?2
Y
Read Pixel from Selected o

Bitplanes at Pixel Location X, Y

N RWMODE = 0 and
Y y PIXTYPE = 1,2 0r 3 ?

Use READBUF to
Determine Pixel Data

—

Right Justify Pixel Data

RWDATA Empty ?
Y

RWDATA = Pixel Data

v

Update Pixel Location
--NUMPIX

_

Figure 6.101 Read Buffer Instruction Flow Chart

6-131

Chapter 6 Raster Subsystem Silicon Graphics Confidential

For each pixel location to be read the RE2 reads all of the bitplanes for the current pixel location
specified by the X and the Y registers into the Frame Butfer port and the Z Buffer port. The
appropriate field is selected by the source specified in the RWMODE register. If the Frame Butfer
pixel data is the source and the PIXTYPE is a double buffered pixel type then the READBUF register
determines the part of the data that is returned to the host. For 12 bit RGB pixels (PIXTYPE = 01)
the selected nibble in each color component is duplicated into the unselected nibble and the 24 bit
RGB value is returned. For the color index pixel types the selected buffer is returned. For the 24
bit RGB pixel type the data is returned unmodified. On the base adapter the 8 bit RGB pixels are
returned in the special 233 format. Reter to the pixel format paragraphs above for greater details.

The selected pixel data is shifted to the right if necessary so that it is always returned to the host
buffer right justified. After the pixel data has been appropriately shifted it is placed into the
RWDATA register. The RE2 will wait for the HQ1 to empty the RWDATA register before placing the
next word in it. The pixel location is updated by adding the DX register to the X register and the DY
register to the Y register. Since the DX register is +1 and the DY register is 0 the next pixel is to
the right of the current one. Finally the NUMPIX register is decremented and the loop is executed
again. This process continues until the NUMPIX register becomes zero and the Read Butfer
instruction terminates.

DMA Support for Bitplane Writes

The Write Buffer instruction is used for DMA writes into the bitplanes in the Raster Subsystem.
Each DMA cycle will transfer a 32 bit word from the host or the GES data RAM to the RWDATA
‘register of the RE2. The 32 bit word can contain pixels in a packed or unpacked format. The format
of the pixels must match the pixel format of the destination bitplanes specified by the RWMODE
register. |If the destination is the Frame Buffer bitplanes then the pixel value must match the
current pixel type specified with the GE_PIXTYPE token. The pixels can also have a zoom factor
applied to them to cause each pixel to be written into multiple adjacent pixels in the x and y
directions. The following paragraphs describe the pixel packing, pixel formats and pixel zooming in
greater detail.

Pixel Packing and Unpacking

The host software can pack multiple pixel values into each 32 bit word that is DMAed to the selected
bitplanes. The GE_WRITEPIXELS, GE_RECTWRITE and GE_WRITEBLOCK tokens support the use of
packed pixels. Each of these tokens requires the host to send down the upac and haddr parameters as
part of the data parameters sent with the token. The microcode then places the values in the
UPACMODE and the HADDR registers in the RE2 before doing the Write Buffer instruction

During the execution of the Write Buffer instruction each 32 bit word to be written to the bitplanes
is transferred from the GE5 Data RAM or the Host Buffer to the RWDATA register. The RE2
UPACMODE register is used to specify the number of pixel values packed into each 32 bit word
received in the RWDATA register. Each 32 bit word can can be thought of as an array which can
contain either a single 32 bit pixel, two 16 bit pixels or four 8 bit pixels as shown in Figure
6.102. If the size of the pixel value being packed is less than the above sizes they will be right
justified within the 8, 16 or 32 bit spaces allocated for each pixel. For example if four 4 bit WID
pixel values are being packed into a 32 bit word each 4 bit WID pixel will occupy 8 bits in the word
and the 4 bits will be right justified in the 8 bits. The other unused four bits in each byte would be
ignored.

6-132

Silicon Graphics Confidential MGR Technical Reference

UPACMODE | Pixels/32 bit word
00 1 '
01 2
10 Undefined
11 4
31 0
HADDR=00
31 1615 o}
HADDR=00 HADDR=01
31 24 23 1615 8 7 0
HADDR=00 | HADDR=01 | HADDR=10 HADDR=11

31 27 2423 19 1615 11 87 3 0
wbD WD wiD wiD

Example of Packing 4 WID pixels into one word

31 27 1615 11 0
12 bit Cl 12 bit Cl

Example of Packing two 12 bit Cl pixels into one word

Figure 6.102 UPACMODE and HADDR Register Usage

The HADDR register is loaded with the pixel offset of the first pixel in the first word received by
the RE2. This allows the host the freedom of defining buffers on byte boundaries even though the
DMA transfer will be done on 32 bit word boundaries. The pixels are packed into the host buffer
words in a left to right order. The RE2 uses the pixel at offset HADDR as the first pixel to be drawn
at the starting X and Y location. It then proceeds to the right to the next pixel location in the first
word until it has used all the pixels in that word. It will then use all of the pixels in the following
words starting with the left most pixel and proceeding to the right. The exception is that after the
NUMPIX number of pixels have been processed any unused pixeis in the last word will be ighored.

Pixel Formats for Write DMA Transfers

The host software must place the appropriately formatted data into the host data buffer before the
data is DMAed to the RE2 for writing into the bitplanes which have been selected with the
GE_RWMODE token. The pixel data must also be right justified in the host data buffer. |f pixels
are packed each pixel must be right justified in the 8 or 16 bits in which the pixel is packed. For
example if two 12 bit color index pixels are packed into a 32 bit word each pixel uses 16 bits of the
word and each pixel will be right justified in the 16 bits which hoid it. If the destination bitplanes
are the Frame Buffer the pixel data format must correspond to the pixel type selected with the
GE_PIXTYPE token. In the following discussion the figures that are referenced show a PIXMASK and

6-133

Chapter 6 Raster Subsystem Silicon Graphics Confidential

an AUXMASK of all ones to show which bitplanes the RE2 would attempt to write for each pixel
format.

Base Adapter Pixel Formats

The base adapter has 8 frame buffer bitplanes, 2 PUP bitplanes, 2 WID bitplanes and optionally 24
Z buffer bitplanes. These bitplanes can all be written to using DMA transfers. The pixel formats
for the base adapter DMA writes are shown in Figure 6.103 and the following paragraphs describe
the pixel formats of the data which must be placed in the host buffer. They also describes how the
data is modified by the RE2 before it is written into the selected bitplanes.

Frame Buffer Pixel Formats

When PIXTYPE is set to 00 the RE2 formats the pixel data in the frame buffer in a special 8 bit RGB
format. For the 8 bit RGB mode to be enabled the RE2 ENABRGB register must be set to 1 during the
adapter initialization. The GE_LOADRE token is used to set the ENABRGB register. For PIXTYPE
equal to 00 the host buffer must place 24 bit RGB formatted data in the host buffer. The RE2
converts each of the 24 bit RGB data words it receives to 8 bit RGB format. The conversion
consists of taking the 2 most significant bits of the Blue color component and placing them in bits
7-6 of the 8 bit RGB byte. The 3 most significant 3 bits of the Green color component are placed in
bits 5-3 of the 8 bit RGB byte. Finally the most significant 3 bits of the Red color component are
placed in bits 0-2 of the 8 bit RGB byte and then the 8 bit RGB byte is written into the bitplanes.
This means that the original 24 bit RGB data has become 8 bit RGB data in the special 233 format.
The PIXMASK would normally be set to OxFF to write the 8 bit RGB value into the bitplanes. On the
base adapter if the ENABRGB register is 0 and PIXTYPE is equal to 00 then only the Red color
component would be written to the frame buffer bitplanes. This is not considered a valid mode so
make sure the ENABRGB register is set to 1. Since the host buffer words contain 24 bit RGB data
pixel packing cannot be used. The 24 bit RGB pixel value must be right justified in the 32 bit word.

The base adapter does not support the use of 12 bit RGB pixels. This means that double buffered
RGB mode is not supported on the base adapter and PIXTYPE equal to 01 is invalid on the base
adapter.

When PIXTYPE is set to 10 the RE2 uses the right most 8 bits of each word it receives as an 8 bit
Color Index (C!) value and the 8 bits are written into the frame buffer bitplanes. This pixtype is
usually used for single buffer data. The PIXMASK wouid normally be set to OxFF to write the 8 bit
Cl value inta the bitplanes. If pixel packing is not used then the single 8 bit C! pixel must be right
justified in the word received by the RE2. If pixel packing is done then a maximum of four 8 bit Ci
pixels can be packed into the 32 bit word and each 8 bit pixel will be in a byte.

When PIXTYPE is set to 11 the RE2 uses the right most 4 bits of each word it receives as a 4 bit
Color Index value. The RE2 duplicates the 4 bit Cl value into the upper nibble and writes the two
nibbles to the frame buffer bitplanes. This PIXTYPE is used normally in a double buffer mode. The
PIXMASK would be set to 0xOF to allow only the front buffer to be updated and it would be set to
0xFO to allow only the back buffer to be written. As shown in Figure 6.103, if the PIXMASK is set
1o OxFF the 4 bit C! value would be written into both buffers. If pixel packing is not used then the
single 4 bit Cl pixel must be right justified in the word received by the RE2. If pixel packing is
done then a maximum of four 4 bit C! pixels can be packed into the 32 bit word and each 4 bit Cl
pixel will be right justified in the byte that it is in.

6-134

Silicon Graphics Confidential

RWMODE = 0 (Frame Buffer = 8 bitplanes)
PIXTYPE = 00, ENABRGB = 1 (8 bit RGB mode)

31 24 23 1615 8 7 0
X B G R
7 65320
PIXTYPE = 10 (8 bit Color index) Bnn
31 87 0
X cl
7 0
cl
PIXTYPE = 11 (4 bit Color Index)
31 43 0
X cl
7 43 O
cl cl
RWMODE = 1 (PUP = 2 bitplanes)
31 210
X PUP
1t 0
PUP
RWMODE = 3 (Z buffer = 24 bitplanes)
31 24 23 0
X Z value
23 0
Z value
RWMODE = 4 (WID = 2 bitplanes)
31 210
X WD
1 0
WD
RWMODE = 6 (Frame buffer port = 8 bitplanes)
31 87 0
X Pixel
7 0
Pixel
RWMODE = 7 (Z butfer port = 28 bitpianes)
3128 2726 2524 23 0
X | PUP |WD Z value
2726 2524 23 0
PUP | WD Z value

MGR Technical Reference

X is don't care
PIXMASK = OxFF
" AUXMASK = Ox1FF

Host Buffer Word Sent to RE2

Data Written by RE2 to Frame Buffer
Host Buffer Word Sent 1o RE2

Data Written by RE2 to Frame Buffer

Host Buffer Word Sent to RE2

Data Written by RE2 to Frame Buﬂef

Host Buffer Word Sent to RE2

Data Written by RE2 to PUP Bitplanes

Host Buffer Word Sent to RE2

Data Written by RE2 to Z Buffer

Host Buffer Word Sent to RE2

Data Written by RE2 to WID Bitplanes

Host Buffer Word Sent to RE2

Data Written by RE2 to FB port

Host Butfer Word Sent to RE2

Data Written by RE2 to Z Buffer port

Figure 6.103 Base Adapter Pixel Formats for DMA Writes

6-135

Chapter 6 Raster Subsystem Silicon Graphics Confidential

PUP Pixel Formats

The base adapter contains 2 Pop Up (PUP) bitpianes which can be used to display either overlay or
underiay colors. The 2 bitplanes are masked by the LSB 2 bits of the AUXMASK register. The value
placed in the PUP bitplanes is a color index into the overlay palette in the RGB RAMDAC. Refer to
the Display Subsystem chapter for additional information on the use of the PUP bitplanes. If pixel
packing is not used then the single PUP pixel must be right justified in the word received by the
RE2. If pixel packing is done then a maximum of four PUP pixels can be packed into the 32 bit word
and each 2 bit pixel will be right justified in the byte that it is in.

WID Pixel Formats

The base adapter contains 2 Window 1D (WID) bitplanes which are used as an index into the XPC1
mode registers. The mode registers specify the display modes that a particular window will have.
The WID values can also be used to prevent drawing outside of a specified window. The 2 WIiD
bitplanes are masked by bits 4 and 5 of the AUXMASK register. Refer to the Display Subsystem
chapter for additional information on the use of the WID bitplanes. If pixel packing is not used then
the single WID pixel must be right justified in the word received by the RE2. If pixel packing is
done then a maximum of four WID pixels can be packed into the 32 bit word and each 2 bit pixel
will be right justified in the byte that it is in.

Z Buffer Pixel Formats

“The base adapter can have an optional Z butfer card installed which contains 24 Z buffer bitplanes
which are used to perform depth (Z) comparisons to enable or disable pixels from being updated.
Normally the host only accesses the Z buffer bitplanes to set an initial depth value. After that the
RE2 updates the values in the Z buffer bitplanes. The Z buffer bitplanes are masked by bit 8 in the
AUXMASK. Since the host buffer words contain 24 bit Z data pixel packing cannot be used. The 24
bit Z value must be right justified in the 32 bit word.

Frame Buffer Port Pixel Formats

The base adapter has a Frame Buffer port which only contains the frame butfer pixel and no other
pixel data. The RE2 does not perform the same pixel format manipulations as described above for
the frame buffer bitplanes. This means that the host buffer must format the frame buffer pixel data
in the same manner that the RE2 would do if the frame buffer bitplanes were being written
(RWMODE = 0). For example if the host wanted to write 4 bit Cl pixels then it would have to
duplicate the 4 bit Cl value into the upper nibble of the byte and then place the byte in the host word
right justified. The PIXMASK value would determine which buffer actually had the 4 bit Cl value
written into it. The bitplanes written through the Frame Buffer port can be WID checked. This
means that on the base adapter only the frame buffer pixel data can be WID checked.

Z Buffer Port Pixel Formats

The base adapter has a Z buffer port which allows the host to access the Z buffer, WID and PUP
bitplanes all at once. The 24 bit Z value is placed in bits 0 to 23, the WID data in bits 24 and 25
and the PUP data in bits 26 and 27 of the host buffer. The format of these pixels is the same as
described above with the exception that the WID and PUP pixel bits must be placed in the indicated
bit positions rather than being right justified. The bitplanes written through the Z Butfer port
cannot be WID checked. This means that the Z butfer, WID and PUP pixels cannot be WID checked on
the base adapter.

6-136

Silicon Graphics Confidential MGR Technical Reference

Enhanced Adapter Pixel Formats

The enhanced adapter has 24 frame buffer bitplanes, 2 PUP bitplanes, 2 UAUX bitplanes, 2 WID
bitplanes and optionally 24 Z buffer bitplanes. These bitplanes can all be written to using DMA
transfers. The pixel formats for the base adapter DMA writes are shown in Figure 6.104 and the
following paragraphs describe the pixel formats of the data which must be piaced in the host buffer.
They also describes how the data is modified by the RE2 before it is written into the selected
bitplanes.

Frame Buffer Pixel Formats

When the PIXTYPE is set to 00 on the enhanced adapter the ENABRGB register setting is ignored and
the pixel type is 24 bit RGB. The host buffer must contain data in a 24 bit RGB format and the
entire 24 bits is written into the frame buffer. PIXTYPE equal to 00 is normally used as a single
buffer mode and PIXMASK is set to OxFFFFFF. Since the host buffer words contain 24 bit RGB data
pixel packing cannot be used. The 24 bit RGB pixel value must be right justified in the 32 bit word.

When the PIXTYPE is set to 01 the 24 bit RGB pixel data is handled by the RE2 as 12 bit RGB pixels.
The most significant nibble of each of the three color components is used. The RE2 duplicates the
upper nibble into the lower nibble for each color component and writes that value out to the
bitplanes. This PIXTYPE is used normally in a double buffer mode. The PIXMASK would be set to
0xOFOFOF to allow only the front buffer to be updated and it would be set 10 OxFOFOFO to allow only
the back buffer to be written. As shown in Figure 6.104, if the PIXMASK is set to OxFFFFFF the
upper nibble of each color component would be written into both buffers. Since the host buffer
words contain 24 bit RGB data pixel packing cannot be used. The 24 bit RGB pixel value must be
right justified in the 32 bit word.

When PIXTYPE is set to 10 the RE2 uses the right most 12 bits of each word it receives as a 12 bit
Color Index (Cl) value. The 12 Cl value is duplicated into the upper 12 bits and the 24 bits are
written into the frame buffer bitplanes. This pixtype can be used for single buffer data or double
buffer data. For single buffer use the PIXMASK would normally be set to 0xO00FFF to write the 12
bit C! value into only the front buffer. For double buffer applications the PIXMASK would be set to
Ox000FFF for the front buffer and to 0xFFFO0Q for the back butfer. As shown in Figure 6.104, if
the PIXMASK is set to OxFFFFFF the 12 bit Cl vaiue would be written into both buffers. If pixel
packing is not used then the single 12 bit C! pixel must be right justified in the word received by
the RE2. If pixel packing is done then a maximum of two 12 bit Ci pixels can be packed into the 32
bit word and each 12 bit Cl pixel must be right justified in the 16 bits which hold it..

When PIXTYPE is set to 11 the RE2 uses the right most 4 bits of each word it receives as a 4 bit
Color Index value. The RE2 duplicates the 4 bit Cl value into the upper nibble and writes the two
nibbles to the frame buffer bitplanes. This PIXTYPE is not normally used on the enhanced adapter
since PIXTYPE 10 provides greater color selection. if pixel packing is not used then the single 4 bit
Cl pixel must be right justified in the word received by the RE2. If pixel packing is done then a
maximum of four 4 bit Cl pixels can be packed into the 32 bit word and each 4 bit Cl pixel will be
right justified in the byte that it is in.

PUP Pixel Formats

The enhanced adapter contains 2 Pop Up (PUP) bitplanes which can be used to display either
overiay or underlay colors. The 2 bitplanes are masked by the LSB 2 bits of the AUXMASK register.
The value placed in the PUP bitplanes is a color index into the auxiliary color map in the XMAP2
chips. Refer to the Display Subsystem chapter for additional information on the use of the PUP
bitplanes. These bitplanes are usually accessed by the window manager. The PUP bitplanes can be

6-137

Chapter 6 Raster Subsystem Silicon Graphics Confidential

used as UAUX bits if the NOPUP register is set. If pixel packing is not used then the single PUP
pixel must be right justified in the word received by the RE2. If pixel packing is done then a
maximum of four PUP pixels can be packed into the 32 bit word and each 2 bit pixel will be right
justified in the byte that it is in.

UAUX Pixel Formats

The enhanced adapter contains 2 or 4 User Auxiliary (UAUX) bitplanes which can be used to display
either overlay or underiay colors. Normally the adapter is configured to use the 4 auxiliary
bitplanes as 2 bits of UAUX and 2 bits of PUP. The NOPUP register controls the configuration and if
it is set to 1 then the 4 auxiliary bitplanes are used as 4 UAUX bitplanes. If the NOPUP register is
0 then the normal configuration of 2 UAUX and 2 PUP bitplanes is used. The host uses the
GE_LOADGE token to set the UAUX_4BIT flag to instruct the GE5 microcode on how to set the NOPUP
register. The UAUX bitplanes are masked by bits 2 and 3 of the AUXMASK if NOPUP is 0 and by bits
0 to 3 it NOPUP is 1. The value placed in the UAUX bitplanes is a color index into the auxiliary
color map in the XMAP2 chips. Refer to the Display Subsystem chapter for additional information
on the use of the UAUX bitplanes. If pixel packing is not used then the single UAUX pixel must be
right justified in the word received by the RE2. If pixel packing is done then a maximum of four
UAUX pixels can be packed into the 32 bit word and each UAUX bit pixel will be right justified in the
byte that it is in.

WID Pixel Formats

The enhanced adapter contains 4 Window ID (WID) bitplanes which are used as an index into the
XMAP2 mode registers. The mode registers specify the display modes that a particular window will
have. The WID values can also be used to prevent drawing outside of a specified window. The 4 WID
bitplanes are masked by bits 4 to 7 of the AUXMASK register. Refer to the Display Subsystem
chapter for additional information on the use of the WID bitplanes. If pixel packing is not used then
the single WID pixel must be right justified in the word received by the RE2. If pixel packing is
done then a maximum of four WID pixels can be packed into the 32 bit word and each 4 bit pixel
will be right justified in the byte that it is in.

Z Buffer Pixel Formats

The enhanced adapter can have an optional Z buffer card installed which contains 24 Z bufter
bitplanes which are used to perform depth (2) comparisons to enable or disable pixels from being
updated. Normally the host only accesses the Z bufter bitplanes to set an initial depth value. After
that the RE2 updates the values in the Z buffer bitplanes. The Z buffer bitplanes are masked by bit
8 in the AUXMASK. Since the host buffer words contain 24 bit 2 data pixel packing cannot be used.
The 24 bit Z pixel value must be right justified in the 32 bit word.

Frame Buffer Port Pixel Formats

The enhanced adapter has a frame buffer port which allows the host 1o access the frame buffer, PUP
and UAUX bitplanes at the same time. The frame buffer pixel value is placed in bits 0 to 23, the
PUP data in bits 24 and 25 and the UAUX data in bits 26 and 27 of the host buffer. If the NOPUP
register is set then bits 24 to 27 are all UAUX bits. The RE2 does not perform the same pixel
format manipulations as described above for the frame buffer bitplanes. The host must perform the
equivalent pixel formatting as described above for RWMODE equal to 0. For example the host would
have to duplicate the upper nibble of each RGB color component into the lower nibble if it were
writing 12 bit RGB pixels into the frame buffer bitplanes using the frame buffer port. The value in
the PIXMASK would then determine which buffer received the pixel data. The bitplanes written
through the Frame Buffer port can be WID checked. This means that the Frame Buffer, PUP and
UAUX pixels can be WID checked on the enhanced adapter.

6-138

Silicon Graphics Confidential

RWMODE = 0 (Frame Buffer = 24 bitpianes)
PIXTYPE = 00, ENABRGB = X (24 bit RGB mode)
31 24 23 1615 8 7 0
X B G R
23 16 15 8 7 0
B G R
PIXTYPE = 01 (12 bit RGB)
31 24 23 16 15 8 7 0
X Bl { Bo| GI i G0 | Rt | Ro
232019 161512 11 8 7 43 0
B1{ B1 Gt | G R1 | Rt
PIXTYPE = 10 (12 bit Color Index)
31 12 11 0
X cl
23 12 11 o
ci ci
PIXTYPE = 11 (4 bit Color Index)
31 43 O
X cl
7 43 O
cl ci
RWMODE = 1 (PUP = 2 bitplanes)
31 21 0
X PUP
1 0
PUP
RWMODE = 2 NOPUP = 0 (UAUX = 2 bitplanes)
31 21 O
X UAUX
1 0
UAUX
RWMODE = 2 NOPUP = 1 (UAUX = 4 bitplanes)
31 43 0
X UAUX
3 0
UAUX

MGR Technical Reference

X is don't care
PIXMASK = OxFFFFFF

AUXMASK = Ox1FF
Host Buffer Word Sent to RE2

Data Written by RE2 to Frame Buffer

Host Buffer Word Sent to RE2

Data Written by RE2 to Frame Buffer

Host Buffer Word Sent to RE2

Data Written by RE2 to Frame Buffer

Host Buffer Word Sent to RE2

Data Written by RE2 to Frame Buffer

Host Buffer Word Sent to RE2

Data Written by RE2 to PUP Bitplanes

Host Buffer Word Sent to RE2

Data Written by RE2 to UAUX Bitplanes

Host Butfer Word Sent to RE2

Data Written by RE2 to UAUX Bitplanes

Figure 6.104 Enhanced Adapter Pixel Formats for DMA Writes

6-139

Chapter 6 Raster Subsystem Silicon Graphics Confidential

X is don't care
RWMODE = 3 (Z buffer = 24 bitplanes) PIXMASK = OxFFFFFF
AUXMASK = Ox1FF

31 24 23
X Z value Host Buffer Word Sent 1o RE2
23 0
Z value Data Written by RE2 to Z Buffer
RWMODE = 4 (WID = 2 bitplanes)
31 4 3 0
X WD Host Buffer Word Sent to RE2
3 0

WID Data Written by RE2 to WID Bitplanes

RWMODE = 6 (Frame buffer port = 28 bitplanes)

3128 27 26 25 24 23 0
X UAUX | PUP Pixe! Host Buffer Word Sent to RE2

27 26 2524 23 0

UAUX | PUP Pixel Data Written by RE2 to FB port

RWMODE = 7 (Z buffer port = 28 bitpianes)

3128 27 24 23 0

X wD Z value Host Buffer Word Sent to RE2
27 24 23 0

WD Z value Data Written by RE2 to Z Buffer port

Figure 6.104 Enhanced Adapter Pixel Formats for DMA Writes (cont.)
Z Buffer Port Pixel Formats

The enhanced adapter has a Z buffer port which allows the host to access the Z buffer and WID
bitplanes at the same time. The 24 bit Z value is placed in bits 0 to 23 and the WID data in bits 24
to 27 of the host buffer. The format of these pixels is the same as described above with the
exception that the WID pixel bits must be placed in the indicated bit positions rather than being
right justified. The bitplanes written through the Z Buffer port cannot be WID checked. This means
that the Z buffer and WID pixeis cannot be WID checked.

Pixel Zooming

The host specifies the x and y zoom factors with the GE_ZOOMFACTOR token prior to issuing the
GE_RECTCOPY or the GE_WRITEBLOCK tokens. These two tokens use the x and y zoom factors to
perform the pixel zooming. When /doing a zoom operation the RE2 chip can perform the zoom in the
x direction while the GES5 microcode must perform the zoom in the y direction by causing the same
pixel lines to be written the y zoom count number of times.

Write Buffer Instruction

To perform a bitplane write DMA transfer the microcode must set up the proper RE2 registers and
then issue the Write Buffer instruction to the RE2. This causes the RE2 to process the pixel data
which it receives in the RWDATA register. The write DMA transfer is controlled by the HQ1 chip in

6-140

Silicon Graphics Confidential MGR Technical Reference

the Geometry Subsystem. The HQ1 executes a microcode instruction which instructs it to perform
the necessary hardware operations 1o transfer data words from the Host Buffer or the GES Data RAM
to the RWDATA register in the RE2. The number of word transfers is specified by the count that the
microcode had previously loaded into the HQ1 DMA Count register. For each word placed in the
RWDATA register the RE2 performs the necessary unpacking of the pixels in the word and then it
uses the x zoom count to determine how many times it needs o process each pixel value. For each
pixel the RE2 does the screen mask clipping, WID checking and pattern mask checking. If the
checks are passed then the RE2 does any necessary pixel formatting of the pixel data and then writes
it to the selected bitplanes. These concepts will be explained in greater detail in later paragraphs.

Register Usage

The following list of RE2 registers are the registers which are normally specified and used each
time a new Write Buffer instruction is executed.

- X contains the starting x screen location

-Y Contains the starting y screen location

- DX = +1 Contains the change in x which is added to the current x location to get
the next x location

-DY=0 Contains the change in y which is added to the current y location to get
the next y location

- NUMPIX Contains a pixel count for the number of pixels to be written

- PIXTYPE Specifies the pixel type being written if the frame buffer is the destination

- UPACMODE Contains the number of pixel/32 bit word

- HADDR Specifies the offset of the first pixel in the first word

- XZO0OM Specifies the number of times each incoming pixel is to be written

- RWMODE Specifies the destination bitplanes to be written

- RWDATA The input data port to the RE2 for the Write Buffer instruction

The following registers affect the operation of the Write Buffer instruction but are usually written
by the microcode as it executes other tokens and then they remain in effect during the execution of
muiltiple Write Buffer instructions as well as other instructions.

- XMIN Lower left x coordinate of the hardware screen mask rectangle

- YMIN Lower left y coordinate of the hardware screen mask rectangle

- XMAX Upper right x coordinate of the hardware screen mask rectangle

- YMAX Upper right y coordinate of the hardware screen mask rectangle

- FUNC Contains the Logical Operation to be applied to each pixel

- PATL, PATH Contains the 32 bit pattern mask

- ENABPAT Determines if the pattern mask is enabled

- ENABWID Determines if the WID checking is performed for each pixel

- FBOPTION Specifies the adapter type (0 = base, 1 = enhanced)

- ENABRGB Specifies that 8 bit RGB pixels are to be written on the base adapter
- NOPUP Specifies if 2 or 4 UAUX bitplanes are available on the enhanced adapter
- DEPTHFN Bit 3 controls the FastZclear mode and affects WID checking

- CURWID Specifies the Current WID for the WID checking operations

Once the RE2 registers have been set up and the Write Butfer instruction issued then the RE2 will
process the incoming pixel data and determine which pixels are written. During the execution of a
Write Buffer instruction only pixels on the current scan line specified by the Y register can be
written. The first pixel to be written on the selected scan line is specified by the X register. The
following pixel writes then proceed to the right along the scan line. The number of pixels to be
written is specified in the NUMPIX register.

6-141

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Execution Flow

A logical representation of the Write Buffer instruction execution flow is shown in the flow diagram
shown in Figure 6.105. The NUMPIX register contains the count for the number of pixels to be
processed by the Write Buffer instruction. For each pass through the main loop the NUMPIX count
is decremented by the number of pixels processed while going through the loop. The Write Buffer
instruction continues to execute while NUMPIX is greater than zero. The main loop represents the
processing of each new word received in the RWDATA register. The next inner loop represents the
unpacking of the individual pixels from the RWDATA word and finally the inner most loop
represents the processing of each individual pixel XZOOM times.

For each pass through the outer most loop the following major operations are performed.
- get the next 32 bit word from the RWDATA register
- unpack the pixels if they are packed
- process each pixel the number of times specified in the XZOOM register
- determine if the pixel value should be written into the current pixel location
- if the pixel can be written do any necessary pixel formatting and write the pixel
- update the pixel location and decrement the NUMPIX register
- when all the pixels in the current 32 bit word have been processed go get the next word

The RWDATA register is the input data port for the Write Buffer instruction. During a host to RE
or a GES to RE DMA write operation the microcode executes a loop instruction that transfers the
number of words specified by the DMA count register to the RE2 RWDATA register one at a time.
The RE2 then processes each of the incoming words. The RE2 uses the value in the UPACMODE
register to determine if the incoming words contain packed pixel data which must be unpacked. The
UPACMODE register contains the number of pixels per 32 bit word minus one. |f the value in
UPACMODE is greater than zero (meaning 1 pixel/word) then the incoming data must be unpacked
and each pixel processed individually. The HADDR register is used to determine the offset to the
first pixel in the first word. The first pixel and the others to the right of it in the first word are
processed. All the pixels in the following words are processed until the number specified in
NUMPIX have been processed. At that time the RE2 has completed the current Write Buffer
instruction. '

For each incoming pixel the RE2 uses the value in the XZOOM register to determine how many pixel
locations the pixel value will be written into. For each pixel location the RE2 must determine
whether the pixel can be written or not. For the Write Buffer instruction the RE2 performs a
screen mask clipping check, a WID check if it is enabled and a pattern mask check if it is enabled.
The screen mask check cannot be disabled and is performed on all pixel writes. If the current pixel
location specified by the X and Y registers is outside the screen mask boundary then the pixel is
clipped and is not written.

6-142

Siicon Graphics Confidential

MGR Technical Reference

[Firstword = TRUE |

NUMPIX > 07 Q
Y

RWDATA = Next Word to Write| -
Packcount = UPACMODE + 1

Pixindex = HADDR
Firstword = FALSE

Pixindex = O

Pixel = RWDATA[Pixindex++]
--Packcount
Xzoomeount = XZOOM

X < XMIN or X > XMAX or
Y < YMIN or Y > YMAX ?

0
5]
g
z

[Do WID Check |

WID Check
Passed?

N

() ENABPAT = 1?

Do Pattern Check

N Pattern Check
Y Passed?

rDo Pixel WriteJ

=

Update Pixel Location
--Xzoomcount
--NUMPIX

Xzoomcount > 0 ?

Packcount > 0 ?

Figure 6.105 Write Buffer Instruction Flow Chart

6-143

Cnapier 6 Raster Subsystem Silicon Graphics Confidential

For pixels which are not clipped, if WID checking has been enabled a WID check is performed and
pixeis which fail the WID check are not written. Finally for pixels which have passed the clipping
and WID checks, a pattern mask check is done if it is enabled. The appropriate bit offset into the
pattern mask is calculated based on the current pixel location. If that pattern mask bit is a 1 then
the pixel is written. If the pattern mask bit is a 0 then the pixel is not written.

Pixels which have passed all of the above tests will be written. Before the pixel data is written the
RE2 does any necessary pixel formatting based on the destination bitplanes and the pixel type.
Refer to the pixel format section above for a description of the pixel formatting which is performed.
Finally the logical operation specified in the FUNC register is performed on the pixel data. The
appropriate write mask is applied to the bits in the data and the unmasked bits in the selected
bitplanes are updated with the pixel value.

Once the pixel has been processed and written or bypassed the RE2 moves to the next pixel location.
The next pixel location is calculated by adding the DX register to the X register and the DY register
to the Y register. Since the DX register is set to +1 and the DY register is set to 0, the next pixe!
location is to the right of the current location on the same scan line. After the new pixel location
has been calculated the NUMPIX register is decremented and the Xzoomcount is decremented so the
next pixel location can be processed. Once the same pixel value has been used for Xzoomcount pixel
locations the inner most loop is exited and the next pixel value is obtained. If the incoming word
contained packed pixel data the next pixel value is obtained from the current RWDATA word. If all
the pixels in the current word have been processed then pixel unpacking loop is exited and the next
word received in the RWDATA register is processed. The RE2 continues in this fashion until it has
‘repeated the process for NUMPIX pixel locations. The WID checks performed for the Write Buffer
instruction are described in the WID checking paragraphs earlier in this chapter. The foilowing
paragraphs describe the pixel writing steps in greater detail.

Pixel Writes for the Write Buffer Instruction

“For each pixel location that the RE2 writes to it writes both the Frame Butfer port data and the Z
buffer port data. This is true for ail pixel writes regardiess of which instruction the RE2 is
currently executing. The individual instructions determine what data is placed in the Frame Buffer
and Z butffer ports to be written. For the Write Buffer instruction the RWMODE register specifies
where the incoming pixel data is placed in the two ports. For other instructions the pixel data is
computed internally by the RE2.

if the RWMODE register is zero then the pixel data in the RWDATA register is processed and placed
in the Frame Buffer part of the Frame Butter por. The processing consists of using the current
PIXTYPE value and doing the formatting described in the Pixel Formats section. Once the pixel data
has been formatted then the logical operation specified in the FUNC register is done on the data and
the result is placed in the Frame Buffer field of the Frame Butfer pont. The PUP, UAUX, WID and Z
buffer fields of the Frame Buffer and Z Buffer ports will be undefined when the RWMODE is zero.
Finally the data in the two ports is written out to the bitplanes. The PIXMASK and the AUXMASK bits
which are set to one allow the corresponding bitplanes to be updated while the mask bits which are
zero prevent the corresponding bits from being updated.

If the RWMODE register is one then the pixel data in the RWDATA register is processed and placed in
the PUP field of the Frame Buffer port on the enhanced adapter and in the Z Buffer port on the base
adapter. The processing consists of shifting the data sent by the host the necessary number of bits
to the left to align it to the proper location in the Frame Bufter or Z Buffer port. Once the pixel data
has been shifted left then the logical operation specified in the FUNC register is done on the data and
the result is placed in the PUP field of the Frame Buffer or Z Buffer port. The Frame Buffer, UAUX,
WID and Z buffer fields of the Frame Butfer and Z Buffer ports will be undefined when the RWMODE

6-144

Silicon Graphics Confidential MGR Technical Reterence

is one. Finally the data in the two ports are written out to the bitplanes. The PIXMASK and the
AUXMASK bits which are set to one allow the corresponding bitplanes 1o be updated while the mask
bits which are zero prevent the corresponding bits from being updated.

if the RWMODE register is two then the pixel data in the RWDATA register is processed and placed
in the UAUX field of the Frame Buffer port. The processing consists of shifting the data sent by the
host the necessary number of bits to the left to align it to the proper location in the Frame Buffer
port. Once the pixel data has been shifted left then the logical operation specified in the FUNC
register is done on the data and the result is placed in the UAUX field of the Frame Buffer port. The
Frame Buffer, PUP, WID and Z buffer fields of the Frame Buffer and Z Bufter ports will be
undefined when the RWMODE is two. Finally the data in the two ports are written out to the
bitplanes. The PIXMASK and the AUXMASK bits which are set to one allow the corresponding
bitplanes to be updated while the mask bits which are zero prevent the corresponding bits from
being updated.

If the RWMODE register is three then the pixel data in the RWDATA register is placed in the Z data
field of the Z Buffer port. The Frame Bufter, PUP, UAUX and WID fields ot the Frame Buffer and Z
Buffer ports will be undefined when the RWMODE is three. Finally the data in the two ports are
written out to the bitplanes. The PIXMASK and the AUXMASK bits which are set to one allow the
comesponding bitplanes to be updated while the mask bits which are zero prevent the corresponding
bits from being updated.

If the RWMODE register is four then the pixel data in the RWDATA register is processed and placed
in the WID field of the Z Butfer port. The processing consists of shifting the data sent by the host
the necessary number of bits to the left to align it to the proper location in the Z Butfer port. Once
the pixel data has been shifted left then the logical operation specified in the FUNC register is done
on the data and the result is placed in the WID field of the Z Butfer port. The Frame Buffer, PUP,
UAUX and Z buffer fields of the Frame Buffer and Z Buffer ports will be undefined when the
RWMODE is four. Finally the data in the two ports are written out 1o the bitplanes. The PIXMASK
and the AUXMASK bits which are set to one allow the corresponding bitplanes to be updated while the
mask bits which are zero prevent the corresponding bits from being updated.

If the RWMODE register is six then the pixel data in the RWDATA register is placed directly into the
Frame Buffer port with no processing or bit shifting. The host must place the properly formatted
data in the pixel data sent to the RE2. When writing to the Frame Buffer port directly the host must
be aware of whether it is writing to the base or the enhanced adapter so that it places the proper
data into the proper locations in the data words it sends. The Z Buffer port data will be undefined
when the RWMODE is six. Finally the data in the two ports are written out to the bitplanes. The
PIXMASK and the AUXMASK bits which are set to one allow the corresponding bitplanes to be updated
while the mask bits which are zero prevent-the corresponding bits from being updated.

If the RWMODE register is seven then the pixel data in the RWDATA register is placed directly into
the Z Buffer port with no processing or bit shifting. The host must place the properly formatted
data in the pixel data sent to the RE2. When writing to the Z Buffer port directly the host must be
aware of whether it is writing to the base or the enhanced adapter so that it places the proper data
into the proper locations in the data words it sends. The Frame Buffer port data will be undefined
when the RWMODE is seven. Finally the data in the two ports are written out to the bitplanes. The
PIXMASK and the AUXMASK bits which are set to one allow the corresponding bitplanes to be updated
while the mask bits which are zero prevent the corresponding bits from being updated.

This completes the description of the RE2 registers, the following paragraphs describe the clearing
of the various bitplanes and the setting of the WID bitplanes.

6-145

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Clearing the Bitplanes

The host software is responsible for clearing the various bitplanes. After power-on or a reset
operation the contents of the bitplanes are undefined. The following paragraphs describe the
necessary operations required to clear the Frame Butfer bitplanes, the PUP bitplanes, the UAUX
bitplanes, the WID bitplanes and the Z buffer bitpianes.

Clearing the Frame Buffer Bitplanes

The GE_DRAWMODE token must be set to select the Frame Buffer bitplanes and then the GE_COLOR
or GE_RGBCOLOR token must be used to specify the color which the bitplanes are to be cleared to.
The color token depends on the pixel type selected with the GE_PIXTYPE token. The
GE_WRITEPIXMASK token should be used to set the Frame Buffer pixel write mask to all ones so
that all the Frame Buffer bitplanes are cleared. The GE_AUXWRITEMASK token should be set to zero
so that the PUP, UAUX, WID and Z bitplanes are not atfected when the Frame Buffer bitplanes are
cleared. Finally the GE_SCREENCLEAR token is used to clear the Frame Buffer bitplanes. The
GE_SETPIECES token must have been previously used to set the piece list of the 1 to 4 rectangular
pieces that will be cleared. For a full screen clear the piece list should be set to 1 piece that has a
single rectangle that covers the entire screen. :

Clearing the PUP Bitplanes

The GE_DRAWMODE token must be set to select the PUP bitplanes and then the GE_COLOR token is
-used to specify the color which the bitplanes are to be cleared to. The color is normally a 0 so that
the PUP bitplanes are cleared to transparency. The GE_WRITEPIXMASK token should be used to set
the Frame Buffer pixel write mask to all zeroes so that all the Frame Buffer bitplanes are not
affected by the PUP bitplane clear operation. The GE_AUXWRITEMASK token should be set to 3so0
that the UAUX, WID and Z bitplanes are not affected when the PUP bitplanes are cleared. Finally the
GE_SCREENCLEAR token is used to clear the PUP bitplanes.

-Clearing the UAUX Bitplanes

The GE_DRAWMODE token must be set to select the UAUX bitplanes and then the GE_COLOR token is
used to specify the color which the bitplanes are to be cleared to. The color is normally a 0 so that
the UAUX bitplanes are cleared to transparency. The GE_WRITEPIXMASK token should be used to set
the Frame Buffer pixel write mask to all zeroes so that all the Frame Buffer bitplanes are not
affected by the UAUX bitplane clear operation. The GE_AUXWRITEMASK token should be set to 0x0C
so that the PUP, WID and Z bitplanes are not affected when the UAUX bitplanes are cleared. Finally
the GE_SCREENCLEAR token is used to clear the UAUX bitplanes.

Clearing the WID Bitplanes

The GE_DRAWMODE token must be set to select the WID bitptanes and then the GE_COLOR token is
used to specify the WID index value which the bitplanes are to be cleared to. The index is normally
a 0 so that window O is selected. The index could be any of the 16 possible WID values however.
The GE_WRITEPIXMASK token should be used to set the Frame Buffer pixel write mask to all zeroes
so that all the Frame Butfer bitplanes are not affected by the WID bitplane clear operation. The
GE_AUXWRITEMASK token should be set to 0xFO so that the PUP, UAUX and Z bitplanes are not
affected when the WID bitplanes are cleared. Finally the GE_SCREENCLEAR token is used 1o clear
the WID bitplanes.

6-146

Silicon Graphics Confidential MGR Technical Reference

Clearing the Z Buffer Bitplanes

The Z Buffer can be cleared in two ways one of which is a fast Z clear and the other which takes four
times longer to ciear the Z Buffer. For the slower method the microcode loads the desired Z value
into the Z register and executes Flat 1 Span instructions to write the Z value into the Z Buffer. The
Fiat 1 Span must be used since the Z Bufter is formed by DRAM chips and the special block write
mode provided by the 1 Meg VRAM chips is not available in the DRAM chips. The AUXMASK bit 8
must be set to one for the Z Buffer writes to be allowed of course. The GE_CZCLEAR tokens can be
used to clear the Z Buffer bitplanes by the host software.

The fast Z clear is a special RE2 mode provided to allow the Z Buffer clear to be performed four
times faster using the Flat 4 Span instruction. This mode allows the Z value to be invalidated so that
if Z checking is being performed the Z check automatically passes. The fast Z clear is performed by
writing a one into the LSB bits of the WID bitplanes and by enabling the Z invalidate by setting bit 3
in the DEPTHFN register. The WIDDATA should then be set to 0 so that after the Z value has been
made invalid the new Z value is written and the LSB of the WID bitplanes is cleared to zero turning
off the Z invalidate for this pixel. The GE_DEPTHFN token can be used to set the DEPTHFN register
value. .

Setting the WID bitplanes

The WID bitplanes are normally written only by the host window manager software. The contents of
the WID bitplanes are used to clip pixel writes outside of the current window when WID checking is
enabled. The WID values are also used as an index into the mode registers in the XPC1 or XMAP2
chips in the Display Subsystem. When writing the WID bitplanes the host software should disable
WID checking, Z Buffer checking and pattern masking. The window manager writes the desired
window 1D into the WID bitplanes when a window is created. If the window is a single rectangle the
screen mask can be set to the size of the rectangle and the GE_SCREENCLEAR token used to clear the
screen as described above for the WID bitplane clearing.

The window manager also needs to program the WID bitplanes when a window is moved or is pushed
behind other windows or is popped in front of other windows. If the window is 1 to 4 rectangular
pieces the GE_SCREENCLEAR token can be used to write the WID bitplanes. This assumes the
GE_SETPIECES token has been used to set the piece list to the rectangular areas that comprise the
screen. If the window is comprised of more than 4 rectangular pieces the GE_SBOXFI token can be
used to write the multiple pieces or multiple piece list can be set and the GE_SCREENCLEAR token
used to write the pieces.

6-147

Chapter 6 Raster Subsystem Silicon Graphics Confidential

Programming Considerations

This section describes the programming considerations for the Raster Subsystem and includes the
following topics: °

- Cursor Chip Programming Considerations

- Bitplane Programming Considerations

- Raster Subsystem Initialization
Cursor Chip Programming Considerations
The MGR adapter contains two Brooktree Bt431 cursor chips which are used to display either a
single multicolor cursor or two single color cursors. The following macros are defined in the file
mgr.h. Macros are provided to read and write the address registers, the control registers and the
glyph RAM bytes.

/* Cursor Chip defines */

#define CURS_GLYPH_SIZE 512

#define CURS_CMDMASK (0x3 << 2) /* Command Register address offset */

#define CURS_AREGO (0x0 << 2) /* Address low register address offset */
#define CURS_AREGH (0x1 << 2) /[Address high register address offset™/
#define CURS_GLYPH (0x2 << 2) [* Glyph RAM address offset

#define CURS_CR (0x3 << 2) /* Control Registers address offset */

/* Control Register offsets */

#define CURS_CMD 0
#define CURS_XLO 1
#define CURS_XHI 2
#define CURS_YLO 3
#define CURS_YHI 4
#define CURS_WINXLO 5
#define CURS_WINXHI 6
#define CURS_WINYLO 7
#define CURS_WINYHI 8
#define CURS_WINWLO 9
#define CURS_WINWHI 10
#define CURS_WINHLO 11
#define CURS_WINHHI 12

/* SGI graphics library defines glyph origin as lower left bit. Hotspot is at the center of the
glyph. */

#define CURS_XHOTOFF 31 I* x offset from origin to hotspot */
#define CURS_YHOTOFF 32 /* y offset from origin to hotspot */

/* Cursor offsets for the 4 monitor types *

#define CURS_XOFF 189 /* 60 Hz monitor x hardware offset */

6-148

Silicon Graphics Confidential

MGR Technical Reference

#define CURS_YOFF 6 /* 60 Hz monitor y hardware offset */
#define CURS_XOFF_30 39 /* 30 Hz monitor x hardware offset °/
#define CURS_YOFF_30 18 /* 30 Hz monitor y hardware offset */
#define CURS_XOFF_170 -6 /* NTSC monitor x hardware offset °/
#define CURS_YOFF_170 -14 /* NTSC monitor y hardware offset */
#define CURS_XOFF_PAL 24 /* PAL monitor x hardware offset */

#define CURS_YOFF_PAL -9 /* PAL monitor y hardware oftset */

/* Cursor initial

#define
#define

CURS_XINIT
CURS_YINIT

screen coordinates

639
511

/.
I'

initial x coordinate for 1280 x 1024 */
initial y coordinate for 1280 x 1024 */

/* Command register bits */

#define CURS_BLOCK 0x40 /* block cursor */

#define CURS_CRCSS 0x20 /* cross hair cursor */

#define CURS_FMT 0x01 /* block and cross hair overlap format */
#define CURS_STO1MUX 0x04 I use 5 to 1 multiplexing */

#define CURS_1THICK 0x00 /* cross hair 1 pixel thick */

#define CURS_3THICK 0x01 /* cross hair 3 pixel thick °/

#define CURS_STHICK 0x02 /* cross hair 5 pixel thick */

#define CURS_7THICK 0x03 /* cross hair 7 pixel thick */

/* Cursor base address offsets */

#define CURSO_OFF 0x560 /* cursor chip 0 offset */
#define CURS1_OFF 0x580 /* cursor chip 1 offset */

/* Cursor address registers R/W macros */

#define CURS_AORD(curs_off, x) \
x = *(volatile long *)(GRP | curs_off | CURS_AREGO0) & OxFF

#define CURS_A1RD(curs_off, x) \
x = *(volatile long *)(GRP | curs_off | CURS_AREG1) & OxFF

#define CURS_AOWR(curs_off, x) \
*(volatile long *)(GRP | curs_off | CURS_AREGO) = (long) ((x) & OxFF)

#define CURS_A1WR(curs_off, x) \
*(volatile long *}GRP | curs_oft | CURS_AREG1) = (long) ((x) & OxFF)

/* Cursor glyph RAM R/W macros */

#define CURS_GLYPHRD(curs_off, x) \
x = *(volatile long *}(GRP | curs_oft | CURS_GLYPH) & OxFF

#define CURS_GLYPHWR(curs_off, x) \
*(volatile long *)}(GRP | curs_oft | CURS_GLYPH) = (long) ((x) & OxFF)

/* Cursor control registers R/W macros */

#define CURS_CRRD(curs_off, x) \

6-149

Chapter 6 Raster Subsystem Silicon Graphics Confidential

x = *(volatile long *)(GRP | curs_off | CURS_CR) & OxFF

#define CURS_CRWR(curs_off, x) \
*(volatile long *)}(GRP | curs_off | CURS_CR) = (long) ({x) & OxFF)

Example Code :

#include “"mgr.h"

int i;

/* assume glyphp points to an array of 512 unsigned char containing glyph definition. */

unsigned char ‘glyphp;

/* assume curs_x and curs_y contain the current cursor Xy position */

/* set command register for 5 to 1 Multiplexing and enable the block cursor */

/* set cursor chip 0 */

CURS_AOWR(CURS0_OFF, CURS_CMD);

CURS_A1WR(CURS0_OFF, CURS_CMD);

CURS_CRWR(CURS0_OFF, CURS_BLOCK | CURS_STO1MUX);

/* set cursor chip 1 °/

CURS_AOWR(CURS1_OFF, CURS_CMD);

CURS_A1TWR(CURS1_OFF, CURS_CMD);

CURS_CRWR(CURS1_OFF, CURS_BLOCK | CURS_STO1MUX);

/* set the cursor glyph RAM in both chips the same */

I* set cursor chip 0 */

CURS_AOWR(CURSO_OFF, 0); /* set address regs to0*

CURS_A1WR(CURSO0_OFF, 0);

for (i = CURS_GLYPH_SIZE ;i ; i) {
CURS_GLYPHWR(CURSO_OFF, *glyphp++);

/* set cursor chip 1 °/

CURS_AOWR(CURS1_OFF, 0); /* set address regs to 0 °/

CURS_A1WR(CURS1_OFF, 0);

for (i = CURS_GLYPH_SIZE ;i ; --i) {
CURS_GLYPHWR(CURS1_OFF, *glyphp++);

1 set the cursor x and y position in both chips the same */

/* set cursor chip 0 °/

CURS_AOWR(CURSO0_OFF, CURS_XLO);

CURS_A1WR(CURS0_OFF, CURS_XLOY);
CURS_CRWR(CURSO_OFF, curs_x & OxFF); I x low */

6-150

Silicon Graphics Confidential MGR Technical Reference

CURS_CRWR(CURSO_OFF, (curs_x >> 8) & OxF); /* x high */

CURS_CRWR(CURSO0_OFF, curs_y & OxFF); /"y low */
CURS_CRWR(CURSO_OFF, (curs_y >> 8) & 0xF); /* y high */
/* set cursor chip 1 */

CURS_AOWR(CURS1_OFF, CURS_XLO);

CURS_A1WR(CURS1_OFF, CURS_XLO);
CURS_CRWR(CURS1_OFF, curs_x & 0xFF); " x low */
CURS_CRWR(CURS1_OFF, (curs_x >> 8) & OxF); /* x high */
CURS_CRWR(CURS1_OFF, curs_y & OxFF); /*y low */
CURS_CRWR(CURS1_OFF, (curs_y >> 8) & OxF); /* y high */

Bitplane Programming Considerations

The Geometry Subsystem chapter contains a section which describes how to program the various
bitplanes so refer to that chapter for details on the programming considerations for the various
bitplanes.

Raster Subsystem Initialization

To initialize the Raster Subsystem the host software must initialize the TOPSCAN register and the
ENABRGB register. It must also initialize the two cursor chips and clear the various bitplanes. The
following example code shows the initialization steps.

Example Code :
#include "mgr.h"

#include "gecmds.h”
#include “imsetup.h”

im_GEsetup;

int red, green, blue;

int color, zero = 0, one = 1, mone = -1;
int curs_x, Curs_yY;

" initialize the TOPSCAN register and the ENABRGB register */

/* microcode must be already downloaded and the three data parameters sent down FIFO */
/* set TOPSCAN for 1 Meg VRAM and 60 Hz 1280 x 1024 monitor */
FIFO_WR(GE_LOADRE, zero);

tmp = RE_TOPSCAN;

FIFO_WR(GE_DATA, tmp);

tmp = Ox3FF; /* 1 Meg VRAM 60 Hz monitor value °/
FIFO_WR(GE_DATA, tmp);

/* set the ENABRGB register to 1 °/

FIFO_WR(GE_LOADRE, zero);

tmp = RE_ENABRGB;
FIFO_WR(GE_DATA, tmp);

6-151

Chapter 6 Raster Subsystem Silicon Graphics Confidential

tmp = 1;
FIFO_WR(GE_DATA, tmp);

/* Now clear the bitplanes */

/* Clear the Frame Buffer bitplanes °/

FIFO_WR(GE_DRAWMODE, zero);

FIFO_WR(GE_DATA, one);

FIFO_WR(GE_DATA, one);

FIFO_WR(GE_DATA, one);

[set the aux write mask so we don't affect the PUP, UAUX and WID bitplanes */

FIFO_WR(GE_AUXWRITEMASK, zero);
FIFO_WR(GE_DATA, zero);

FIFO_WR(GE_PIXTYPE, zero);
tmp = 2; /* 12 bit color index pixtype °/
FIFO_WR(GE_DATA, tmp);

FIFO_WR(GE_COLOR, zero);
FIFO_WR(GE_DATA, zero);

/" set the pixel write mask so all 24 bits are cleared */
FIFO_WR(GE_PIXWRITEMASK, zero);

tmp = OxFFFFFF;

FIFO_WR(GE_DATA, tmp);

FIFO_WR(GE_SCREENCLEAR, zero);

I* set the pixel write mask to 0 so it prevents FB bitplane writes during other clears */

FIFO_WR(GE_PIXWRITEMASK, zero);
FIFO_WR(GE_DATA, zero);

r* clear PUP bitplanes */

FIFO_WR(GE_DRAWMODE, zero);
FIFO_WR(GE_DATA, mone);
FIFO_WR(GE_DATA, mone);
FIFO_WR(GE_DATA, one);

/* set the aux write mask to allow the PUP bitplanes to be written and the UAUX, WID and Z
bitplanes to not be written. */

FIFO_WR(GE_AUXWRITEMASK, zero);
tmp = 0x3;
FIFO_WR(GE_DATA, tmp);

FIFO_WR(GE_COLOR, zero);
FIFO_WR(GE_DATA, zero);

6-152

Silicon Graphics Confidential MGR Technical Reference

FIFO_WR(GE_SCREENCLEAR, zero);
/* clear UAUX bitplanes */

FIFO_WR(GE_DRAWMODE, zero);
FIFO_WR(GE_DATA, mone);
FIFO_WR(GE_DATA, mone);
FIFO_WR(GE_DATA, mone);

/* set the aux write mask to allow the UAUX bitplanes to be written and the PUP, WID and Z
bitplanes to not be written. */

FIFO_WR(GE_AUXWRITEMASK, zero);
tmp = 0x0C;
FIFO_WR(GE_DATA, tmp);

FIFO_WR(GE_COLOR, zero);
FIFO_WR(GE_DATA, zero);

FIFO_WR(GE_SCREENCLEAR, zero);
/* clear WID bitplanes °/
FIFO_WR(GE_DRAWMODE, zero);
FIFO_WR(GE_DATA, mone);
FIFO_WR(GE_DATA, one);
FIFO_WR(GE_DATA, one);

/* set the aux write mask to allow the WID bitplanes to be written and the PUP, UAUX and Z
bitplanes to not be written. */

FIFO_WR(GE_AUXWRITEMASK, zero);
tmp = OxFO;
FIFO_WR(GE_DATA, tmp);

FIFO_WR(GE_COLOR, zero);
FIFO_WR(GE_DATA, zero);

FIFO_WR(GE_SCREENCLEAR, zero);
/* leave the aux write mask set to 0 */

FIFO_WR(GE_AUXWRITEMASK, zero);
FIFO_WR(GE_DATA, zero);

/* Now initialize the cursor chips */
/* load the cursor 0 glyph with zeros */
CURS_AOWR(CURSO_OFF, 0);
CURS_A1WR(CURS0_OFF, 0);

for (i = CURS_GLYPH_SIZE ;i ; --i)
CURS_GLYPHWR(CURSO_OFF. 0);

6-153

Chapter 6 Raster Subsystem Silicon Graphics Confidential

/* load the cursor 1 glyph with zeroes */

CURS_AOWR(CURS1_OFF, 0);

CURS_A1WR(CURS1_OFF, 0);

for (i = CURS_GLYPH_SIZE ;i ; --i)
CURS_GLYPHWR(CURS1_OFF, 0);

curs_x = CURS_XINIT + CURS_XOFF;
curs_y = CURS_YINIT + CURS_YOFF;

I* set cursor chip 0 position */

CURS_AOWR(CURS0_OFF, CURS_XLO);
CURS_A1WR(CURSO_OFF, CURS_XLO);

CURS_CRWR(CURSO_OFF, curs_x & OxFF); /* x low */
CURS_CRWR(CURSO_OFF, (curs_x >> 8) & OxF); /* x high */
CURS_CRWR(CURSO_OFF, curs_y & OxFF); Iy low */

CURS_CRWR(CURSO_OFF, (curs_y >> 8) & OxF); /* y high */

/* set cross hair cursor window for full screen */

CURS_CRWR(CURSO0_OFF, 0); /* window x low */
CURS_CRWR(CURSO0_OFF, 0): I* window x high */
CURS_CRWR(CURSO0_OFF, 0); I* window y low */
CURS_CRWR(CURSO0_OFF, 0); /" window y high */
CURS_CRWR(CURSO0_OFF, OxFF); /* window width low */
CURS_CRWR(CURSO0_OFF, 0xF); [~ window width high °/
CURS_CRWR(CURSO_OFF, OxFF); I window height low */
CURS_CRWR(CURSO0_OFF, OxF); /* window height high */

/* set cursor chip 1 position */

CURS_AOWR(CURS1_OFF, CURS_XLO);
CURS_A1WR(CURS1_OFF, CURS_XLO);

CURS_CRWR(CURS1_OFF, curs_x & OxFF); " x low */
CURS_CRWR(CURS1_OFF, (curs_x >> 8) & OxF); /* x high */
CURS_CRWR(CURS1_OFF, curs_y & OxFF); Iy low */

CURS_CRWR(CURS1_OFF, (curs_y >> 8) -& OxF); /* y high */
/* set cross hair cursor window for full screen */

CURS_CRWR(CURS1_OFF, 0);
CURS_CRWR(CURS1_OFF, 0);
CURS_CRWR(CURS1_OFF, 0);

CURS_CRWR(CURS1_OFF, 0);

window x low °/
window x high */
window y low °/
window y high °/

SRR

CURS_CRWR(CURS1_OFF, OxFF); I* window width low °/

CURS_CRWR(CURS1_OFF, 0xF); /* window width high °/
CURS_CRWR(CURS1_OFF, OxFF); /* window height low */
CURS_CRWR(CURS1_OFF, OxF); /* window height high */

/* set the cursor 0 command register for block cursor and 5 to 1 multiplexing */

6-154

Siticon Graphics Confidential MGR Technical Reference

CURS_AOWR(CURS0_OFF, CURS_CMD);
CURS_A1WR(CURS0_OFF, CURS_CMD); :
CURS_CRWR(CURS0_OFF, CURS_BLOCK | CURS_ST O1MUX);

/* set the cursor 1 command register for block cursor and 5 to 1 multiplexing */
CURS_AOWR(CURS1_OFF, CURS_CMD);

CURS_A1WR(CURS1_OFF, CURS_CMD);
CURS_CRWR(CURS1_OFF, CURS_BLOCK | CURS_STO1MUX);

6-155

