
This manual describes BASIC language programs for operating the Canon AS-lOO
System. To realize the AS-lOO's full potential it is necessary to fully understand Canon
BASIC Language.

To make this task as easy as possible, this manual is divided into the following sections.

Chapter I Introduction

This chapter provides beginners with basic information on computers, and
how they operate, in addition to derming technical terms. You may skip this
chapter if you already have a working knowledge of computers as it contains no
essential information about Canon BASIC.

Chapter II Operation

This chapter explains various operations, including system generation and
programming of Canon BASIC. It describes all aspects of Canon BASIC for use
with the AS-lOO.

Chapter III Language

This chapter includes Canon BASIC language specifications and details on
programming. This section is mandatory for those who will be writing programs
in Canon BASIC language.

c

l J

I I

I I

Chapter I Introduction
Canon BASIC

Canon AS-100

This chapter provides beginners with basic information on computers, and how they oper
ate, in addition to defming technical terms. You may skip this chapter if you already have a
working knowledge of computers as it is contains no essential information about Canon
BASIC.

Contents

1. Basic Construction of the Computer. 1

2. Data .. 4

3. Programs... 6

4. Commands... 7

5. Operating System. .. 8

6. Disks... 9

7. BASIC Language. .. 10

(

I

(

(!

1. Basic Construction of the Computer

Until about twenty years ago, the word "computer" conjured up images of
human-like robots or vast rooms filled with monstrous contraptions that flashed
and whirred, things from another place and time. In fact, computers were the
very stuff of science fiction.

Computers have come a long way since then. Today they touch nearly every
aspect of our lives. Microcomputers can be found in automobiles and cameras,
television sets and stereos, typewriters and watches. And are being used to auto
mate every field from business and finance to education and medicine. Some
are designed to serve a multitude of functions, like the AS-IOO. All are playing
an increasingly vital role in society.

Despite thier varied forms, computers usually have the same basic struc
ture-an input unit, an output unit, a memory unit, an arithmetic unit, and a
control unit.

Input unit

Control unit --"T"T"--~ MemOry)

Output unit

The terms input, output, control, arithmetic, and memory are fundamental
to understanding how computers work. To give you a better understanding of
these terms, we've illustrated their functions in the following cartoon.

Processing Flow

G) Control

1111111111111111

Q) Memory

CD The supply of ingredients corresponds to data input. Data that will be pro-
cessed by the computer is entered or input into the computer.

Q) The place where the ingredients are mixed, kneaded, and fmally baked is the
arithmetic unit. Actual data processing (calculation, sorting, etc.) is performed
inside the computer.

Q) The bread is then sent (or stored) in the warehouse, where other ingredients
(data) are also stored. This warehouse is the memory or storage unit.

@ Finally the bread is shipped (or output) as a product. This task is handled by
the output unit.

G) This entire process is supervised by the control unit, from input and arith-
metic operation, to storage and output.

2

(

(

(

(

(

Let's take a closer look at the AS-IOO. Its basic construction is as follows.

Input unit

Output unit

Keyboard Disk

&wi' 1/ ~
[l~--r]

U
CPU (Central
Processing
Unit)

Arithmetic and control unit Memory unit

~ ____________ ~Il~ __ ~

&ciQ~
Printer CRT display

- Keyboard This is a unit for entering data and operator's instructions.

- Disk This is a unit media for recording or storing data magnetically.
The disk is classified as an input unit when magnetized data is
read from it.

-CPU (Central Processing Unit)
This unit controls all computer functions and performs various
processing operations like calculations. The CPU is the core of
the computer.

3

eMemory Memory usually means IC memory. This is a temporary
storage area for data and programs that will be executed
in the computer.

ePrinter This device prints data as readable characters, etc.

eCRT display This unit displays data as readable characters, etc.

eDisk The disk is classified as an output unit when data is writ
ten into it magnetically.

The disk is classfied both as an input unit and an output unit because like a
tape recorder, the disk can record data and the recorded data can also be read
from the disk. The disk is also called an external storage device.

2. Data

•

The computer must convert data into electrical signals for processing. Num
bers and characters you enter through a keyboard are all converted into electri
cal pulses called digital signals for transfer into the computer.

Digital signals convey information by their status: either on or off. Within
the computer, all processing is performed with the data and signals expressed by
two states: "on or off' or "1 or 0."

To use a computer, it is hardly necessary for you to understand the signal
flow inside the computer. But it is very important to have a clear concept of digi
tal signals to understand the way data is processed in the computer.

The smallest unit of data processed in a computer is a bit. The bit is the unit
that can indicates the on or off status. Groups of these bits are used to represent
data.

You may wonder how various kinds of data can be represented simply by
combining by these states. To understand this, you must first know the concept
of binary notation. For example, the number "26" is expressed in decimal nota
tion. This figure is expressed as "11010" in binary notation (in which only 1 and
o are used). That is, the collection of five bits that can represent 1 or 0 can ex
press the value 26.

Decimal
26

4

Binary
11010

(

(

The computer usually processes data in units called bytes. One byte consists
of eight bits. One byte can express numeric values from 0 through 255.

1 byte

Upper Lower

10101011111011101
t

Bit

Of course, the computer can process characters too.
Characters are expressed by preset codes. For example, if it is decided in ad

vance that the number 1 means "A", the data, 1, expressing the character, is
understood as "A". Thus one byte of data can express 256 different characters.

The coding system of the AS-100 is based on standard codes called ASCII
codes, which were established within the computer industry.

5

3. Programs

A program is a group of working instructions for the computer. The comput
er performs actions sequentially as instructed by the program. This is called pro
gram execution.

Computers do not understand human language. They only understand in
structions given in a particular programming language.

So for the computer to function, you first have to describe the job in a pro
gramming language that the computer understands. This step of description is
called programming. The computer can only do the job when a program is ex
ecuted.

Program

How is a program executed in the computer?

Executed in
the computer

r::\
\J

A program can only be executed when it is in memory. For example, when a
program is stored on a disk, the program must be first transferred or read to the
memory area of the computer. This step is called program loading. After the pro
gram is loaded, execution is possible. The computer reads instructions one by
one from the beginning (head) of the program in the memory and executes
them. Program execution is accomplished by the repetition of this reading and
execution sequence.

6

(

(

(

(

CPU Disk I CPU CPU 1<>
Execution

Program o U Read [1J
Instruction <:\

o ~ Program
Program

~ Memory Memory
Memory Load

Repeat

4. Commands

A program makes the computer perform certain tasks. But how is the pro
gram prepared and loaded? There has to be some way to operate the computer
while it is not executing a progrm.

The computer can be directed to perform certain routine operations not only
by programs, but also by entering commands through the keyboard using a par
ticular format. Basically, commands allow you communicate directly with the
computer. The computer also communicates with you through the display.

Direct communication

Here's an example. Let's say you want the computer to execute a certain
program.

Canon BASIC has a command called "RUN". Look at the display to see if
program execution is possible. If it is, depress the R, V, and N keys. You'll see
that RUN is displayed on the CRT. This confirms that the command has been
entered correctly. But the command is not yet complete. Depress the lEN T E R I
key, which indicates that command input is complete. After receiving the RUN
command, the computer evaluates the command and starts program execution.

7

5. Operating System

A direction issued by either a program or a command specifies the result of a
function like "Display ABC". To realize this function, a procedure consisting of
a group of simple action must be performed step by step. The computer first
reads the data which indicates the shapes of the characters "ABC" and then
sends them to the CRT display circuit. Finally the characters "ABC" are dis
played on the screen.

The operating system interprets this kind of direction and indicates the
details of the procedure which will carry out the direction according to the hard
ware specifications. This enables the operator to control the computer with the
simplest directions under the support of the operating system.

That is, the operating system is a program that acts as an intermediary be
tween software, like commands and programs, and the individual hardware
devices of the computer, thus creating an environment in which the user can
use the computer functions easily and effectively. The operating system is some
times called a system program.

Software

Programs

Commands

In the AS-IOO, the operating system is stored on a disk and loaded into
memory when the power is turned on. Unless the disk that stores the operating
system, called a system disk, is set in the disk drive, the AS-IOO cannot be used
even if the power is turned on.

8

(

(

(

6. Disks

The contents of memory in the computer are deleted when the power is
turned off. Therefore, the data and programs have to be stored in disks.

Like recording tapes, disks preserve data magnetically. There are basically 3
types of disks which used with the AS-lOO-mini floppy disks, floppy disks, and
hard disks.

Mini floppy disks and floppy disks are detachable flat circular plates enclosed
in square envelopes. When set in devices called disk drives, data can be read
from and written to it. Disks 5-1/4 inches in diameter are called mini floppy
disks. Those 8 inches in diameter are called floppy disks.

Hard disks are also called ftxed disks because data is read from and written
to disks ftxed on disk drives. There are also various other kinds of magnetic stor
age devices.

~ 0 DO
0

Mini floppy disk FIoppydisk Hard disk

Unlike an audio magnetic tape, a computer disk does not permit data reading
and writing unless work called "initialization" is performed. Sometimes called
formating, initialization is magnetically dividing the recording surface of the
disk into prescribed formats. The computer can only read data from and write it
to the disk after initialization.

You can not see a magnetic record on a disk which means a record could be
erased by accident. So important programs or data should be stored on more
than one disk. Then even if the program or data on one of them is erased, the
other disk can be used. Such a reserve disk is called a backup disk. Making
backup disks may seem like unnecessary work. But we recommend you always
prepare backup disks so that you will not lose important programs or data with a
simple mistake.

9

7. BASIC Language

BASIC is an acronym for "Beginners All-Purpose Symbolic Instruction
Code". Since its introduction, BASIC has been used extensively as a high level
programming language for microcomputers. BASIC seems to be the easiest pro
gramming language for two reasons-because its instructions or commands are
easy for beginners to memorize and because it allows versatile processing.

Canon BASIC language, described in Chapter III and elsewhere, is an ex
tended version of BASIC language that has some special instructions and facili
ties that allow you to use the AS-IOO's functions easily.

10

(

[

Chapter II --- Operation
Canon BASIC

Canon AS-100

(

a

This chapter explains various operations, including system generation, commands and
programming of Canon BASIC. It describes all aspects of Canon BASIC for use with the
AS-lOO.

Contents

1. An Outline of Canon BASIC. 1

1.1 System Outline. 1

1.2 Modes.. 3

1.3 Files. 4

1.4 Input/Output Control. 5

1.5 Programs. 6

1.6 Data. 7

2. Use and Operations. .. 8

2.1 System Generation. 8

2.1.1 Disk Initialization. .. 10

2.1.2 CP/M-86 Volume Copying 11

2.1.3 Canon BASIC Copying. .. 13

2.2 Hardware Units .. 14

2.2.1 CRT Display .. 14

2.2.2 Disk Drives ... 15

2.2.3 Keyboard. .. 16

2.3 System Start-up. .. 23

2.4 Command Operations .. 24

2.4.1 Outline and Format of Commands. .. 24

2.4.2 EDIT Command. .. 25

2.4.3 LOAD Command. .. 27

2.4.4 SAVE Command. .. 28

2.4.5 LIST Command ... 31

2.4.6 XREF Command. .. 33

2.4.7 RUN Command ... 35

2.4.8 CANCEL Command ... 37

2.4.9 DLIST Command ... 38

2.4.10 RNAME Command 40

2.4.11 NEW Command .. . 41 (

2.4.12 BYE Command 41

2.4.13 OS Mode Commands 42

2.4.14 Handlers 51

2.5 Programming 52

2.5.1 Programming Procedure 52

2.5.2 Coding .. . 53

2.5.3 Program Entry 54

2.5.4 Program Editing .. . 58

2.6 Debugging 73

2.6.1 Debugging Mode Outline 73

2.6.2 Debugging Commands .. . 75

2.6.3 Debugging Examples .. . 80

2.7 Functions of Control Key .. . 81

(

ii

1. An Outline of Canon BASIC

This section gives a general outline of Canon BASIC. For more details,
please refer to the explanations in the subsequent sections. In the descriptions
that follow, the word BASIC means Canon BASIC.

1.1 System Outline

Canon BASIC operates under the CP/M-86™ operating system. When the
AS-IOO is operated under Canon BASIC, it uses CP/M-86 indirectly. Conceptu
ally, the functions of Canon BASIC are actually performed by CP/M-86, which
BASIC requires to control the hardware.

EJ
Direct

Canon
BASIC

........ ~ AS-IOO

L-,/ ~ Ly' _H_ar_dw_ar_e_-,

Canon BASIC facilities can be classified into the following three categories:

Interpreter. Interprets a BASIC language program and executes it.

Editor A program used to create or edit a BASIC program in
memory.

Command processor
Interprets commands entered through the keyboard and exe
cutes them.

These facilities are actually used as shown in the next page.

• CP/M-86 is a trademark of Digital Research Inc.

1

Job

Program creation I
I

+
Program test

+
Program correction

I

I

~
Storing program to the disk

I

I
I
I

I

I
I

I
I
I
I

I
I

I
I

I

I

Facility used

Editor

Interpreter

Editor

Command processor

Other operations ~
~------~~~--------~

Command processor

Purpose

. To enter a program

To execute a program

To check a program

. To correct a program

To store a program on a disk
using the SAVE command

To list the contents of the disk

To output a program list

Other

The information in the table is merely an example of how the facilities are
used. Each will be explained in detail later.

The structure of Canon BASIC is illustrated below.

User

Hardware

2

(

1.2
(

Modes

There are two modes, a programming mode and operating mode, in BASIC.
The programming mode is for program creation and editing. The operating
mode is for execution of commands and programs. Besides, there is an OS
mode under the direct control of the OS and a debugging mode which is under
control ofthe operating mode.

Programming mode:

Operating mode:

1 0
20

$

When the editor is executed, the AS-IOO enters
the programming mode. Program creation and
editing can be performed in the programming
mode. This mode is indicated by prompting "%".
When the automatic numbering function of the
editor is used, line numbers are displayed instead
of "%".

Programs and commands can be executed in this
mode. The AS-IOO is automatically set to this
mode when BASIC is started up. This mode is the
basic status of Canon BASIC. The operating
mode is indicated by prompting "$" on the dis
play.

3

1.3 Files

A fIle is a program or a block of data recorded on a disk. A fIle consisting of
one program is called a program file. A file consisting of a block of data is called
a data fIle.

The program is loaded to memory or saved to disk in units called program
files. Data read/write from/to the disk is performed against the data file. In pro
gram and command operations, fIles are specified as follows:

< Drive name> : < File name> . < File type>

Program file A program file consists of a single program written in
BASIC language. The file name is the same as the program
name. The file type must be BAS.

A: AAA. BAS
'-----'t----t---- This indicates that the program is stored on the disk in

drive A.

The program name is specified by a maximum of 8 capital
alphabet letters and numbers, beginning with a capital
letter.

The file type indicates that the program file is written in
BASIC language.

4

(

(
Data me. A data file consists of a block of data which can be used in a

BASIC program. During program execution data is read from
and written to the data me. The me type must be DAT.

A: BBB. DAT

1.4 Input/Output Control

This indicates that the me is stored on the disk in
driveA.

The data me name is specified by a maximum of8
capital alphabet letters and numbers, beginning with a
capital letter.

The me type indicates that this is a data me.

All input and output in the AS-IOO under BASIC is controlled by specifying
the device name. In BASIC programs, however, device names must be defmed
as numbers called logical device numbers before execution of input/output in
structions. Specify the logical device number in advance with the input/output
instructions.

Device names are defmed as follows:

Connector No. RS232C I1F Centronics I1F

1 x LPT:orUPO:

2 USO:or1TY: UL1 : or UP1:

3 PTR:orPTP: UL1 : or UP1 :

4 US1: UL1: or UP1:

5 US2 : UL1 : orUP1:

The device name CRT: is given to the display and CON: is given to the key
board. This is specified only when input or output is performed through the dis
play or keyboard using either the GET or PUT statements (explained later).

... The Centronics IIF Board can only be added to connector 3, 4, or 5.

5

1 .5 Programs

The editor is used to create and edit BASIC programs. At this time, a pro
gram entered through the keyboard is actually created in memory in an inter
mediate code which can be interpreted by the interpreter.

It is possible to call and execute a machine language program in a BASIC pro
gram.

Only one BASIC program can be loaded (read from the disk to memory) at
a time. But two or more BASIC programs can be loaded in memory as sub
programs using the CALL statement (explained later).

The size of a BASIC program cannot exceed 32K bytes.

Memory

BASIC program

I

I Subprogram :
L _____________ J

Disk

When the program name is omitted in program specification of command
operations, the program in memory is automatically specified. This program is
called a priority program.

6

1.6
(

Data

There are three types of data processed under BASIC. They are real number
type, integer type, and string type data. Processing like calculation cannot be per
formed between different data types. (Processing can be performed between
integer type and real number type data.)

The reading and writing of data fromlto a disk is performed using input/out
put instructions like INPUT, PRINT, GET, and PUT statements. But be careful
when using tp.e GET and PUT statements, because the operating system
reads/writes data from/to the disk in 128-byte units. Please read the explana
tions of the statements carefully.

7

2. Use and Operations

2.1 System Generation

To use BASIC, you first have to generate a system disk for BASIC from the
original CP/M-86 disk and the original BASIC disk.

A Canon BASIC system disk, which will be called the system disk in this
manual, is generated by copying all of the CP/M-86 system programs onto a
blank disk and then copying all of the modules of the Canon BASIC subsystems
onto the same disk.

Original disk

CP/M-86

o
o

o
o

Canon BASIC

System disk

Original disk

Canon BASIC

o
o

(l

The system generation procedure consists of three steps:

1. Initializing a disk to use as the system disk.
2. Volume copying the CP/M-86 onto the disk.
3. Copying Canon BASIC onto the same disk.

8

(

System generation is basically copying the contents of one disk to another
disk. This means that a misoperation can erase an important original disk. Ob
serve the following cautions during system generation:

• Read the explanations carefully before performing each operation.

• Do not open the disk drive door except when "A> _" is displayed on the
CRT.

• Make sure the disks are set in the correct drives.

• Make sure that you depress the correct keys.

Other remarks:

• Key operations are indicated by a character enclosed by the key mark D.
The functions of g and lEN T E R I are the same.

• Detailed explanations of the commands used in this operation are given
later.

• If an error occurs during operation, refer to the explanation of the corre
sponding command or "6. Error Messages" in Chapter III.

• After system generation, store the original disks carefully in the correct envi
ronment.

• There is no explanation given for system generation involving disks of dif
ferent shapes, i.e. when an 8-inch Canon BASIC system disk is generated
from a 5-inch original disk. If copying to a different-sized disk is necessary,
read the explanation of each command and perform the same three steps ini
tializing the disks, copying the CPIM-86, and copying Canon BASIC. The
VOLCOPY and the COPYDISK commands cannot be used when copying
to disks of a different size.

9

2.1.1 Disk Initialization

New blank disks must be initialized before they are used with the AS-lOa.
Initialization involves checking a new blank disk and dividing or for mating the
disk surface into prescribed formats so that data can be written to and read from

the disk. The FORMAT command is used to initialize both mini floppy and
floppy disks .

• Disk initialization procedure

Empty

B

Original CP/M-86 disk

A

I Drive I
Disk to be initialized

Original CP/M·86 disk

1. Set the original CP/M-86 disk in drive A.

2. Turn the display unit's power on.

3. CP/M-86 is loaded and II A> II is dis
played.

4. Set the disk that will be initialized in drive B.

5. Depress [[][QI[RJ[M][8JITI Q]

6. The following message is displayed:

FORMAT Vx. xx
Disk B:will be destroyed,OK?_

7. Depress [y] and ~ .

(

* If !NJ and ~ are depressed, initialization)
is not performed and the display returns to

"A> _".

8. COPYING SECONDARY BOOT I
is displayed.

9. When initialization is completed without an
error, II A> _II is displayed.

* Initialization for mini floppy disks takes about 40 seconds; floppy disks take

about 90 seconds.

10

(

2.1.2
(

CP/M-86 Volume Copying

Volume copying means making a copy of the entire disk. In the following op

eration, the original CP 1M -86 disk is copied .

• Volume copying the original CP/M-86 disk

I Drive I
Initialized disk

Original CP/M-86 disk

1. Continued from the disk initialization
procedure described 2.1.1.

Drive A: Original CPIM-86 disk
Drive B: A new blank disk just initial

ized.
Display: A> _

2. Depress !Y)1QJ[[)[QIQJ[eJ[YJQ

3. The following message is displayed:

IEnter Source Disk Drive(A-D)?

4. Depress [AJ and QJ .

5. The following message is displayed:

IDestination Disk Drive(A-D)?_ 1

6. Depress [fi] and QJ .

7. The following message is displayed:

Copying Disk A:to Disk B:
Is this what you want to do(Y/N)?_

8. Depress [YJ and QJ .

(

* If ~ and QJ are depressed, VOlume)
copying is not performed and the display re
turns to II A> II

11

9. The following message is displayed:
I Drive I I COP Y I (

TRACK NUMBER=O
Copy of original
CP/M-86 disk

The track number being checked is dis-
~ played.

Original CP/M-86 disk
10. The following message is displayed:

iAl I Copy another disk(Y/N)?_1

II. Depress IN! and~.

12. When volume copying is completed without
an error, "A> _" is displayed.

*Volume copying CP/M-86 takes about 2 minutes.

(

12

2.1.3 Canon BASIC Copying

This procedure copies the contents of the original Canon BASIC disk to the
disk on which the original CP 1M -86 disk is copied.

Unlike volume copying, this operation uses the PIP command of the OS to
add the Canon BASIC system program to the CP/M-86 system disk .

• Copying Canon BASIC onto the CP/M-86 system disk

I Drive I
Copy of original CP/M-86 disk

Original CP/M-86 disk

I Drive I
Copy of original CP 1M -86 disk

Original Canon BASIC disk

L

I
Drive I

Canon BASIC I
system disk

Original Canon BASIC disk

1. Continued from the volume copying opera

c) 2.

tion described in 2.1.2.
Drive A: Original CP/M-86 disk
Drive B: Copy of original CP/M-86 disk
Display: A > _

Remove the CP/M-86 original disk from
drive A and set the original Canon BASIC
disk into this drive.

3. Depress Ic T R LI and [C) simultaneously.

4. The following is displayed:

~
~

5. Depress [aJ[TI(EJ[O(EJ Is P AC EI
[aJ[TIEl[AJ[TI~[J~g

6. When copying is completed without an
error, "A > _" is displayed.

* Copying Canon BASIC takes about
1 minute.

7. System generation is completed. The disk
now set in drive B is the Canon BASIC
system disk.

13

2.2 Hardware Units

2.2.1

(1)

(2)

This section explains the functions of the AS-IOO System units under
BASIC. For the specifications of hardware devices, please read the "AS-IOO
System Instruction Manual" included with the display unit and the instruction
manual for each peripheral device.

CRT Display

Capacity
The CRT display of the AS-IOO has a standard display capacity of 2000 char

acters (80 characters x 25 lines) -alphabetic letters, numbers, signs, and sym
bols. This is equivalent to 640 x 400 dots.

Cursor
Each input through the keyboard is displayed on the screen. This is called

input echo back. The cursor indicates the position where the input echo back
and data output are performed on the screen. Input can be made through the
keyboard when the cursor is displayed on the screen.

The cursor in the AS-IOO is "_". Each input is made at the cursor position.

14

(

(

(3) Promptings

2.2.2

(1)

A prompting is a symbol displayed just in front of the cursor to indicate the
current system mode. The following promptings are displayed for the different
modes.

$ BASIC operating mode

% BASIC programming mode

* When the automatic numbering function of the editor is used,
line numbers are displayed instead of the promting.

A> OS mode under the direct control of the operating system

@ Debugging mode (See 2.6 Debugging.)

Disk Drives

Drive Names
The drives of the mini floppy and floppy disk units are defmed by drive

name. Disks are specified by the drive name in the AS-IOO System.
In the mini floppy disk unit, the lower drive is defmed as A and the upper

drive as B. In the floppy disk unit, the left drive is defmed as A and the right
drive as B.

When there are two floppy disk units or when there is one mini floppy disk
unit and one floppy disk unit, the drive names of one of the two units must be
changed to C and D. Consult your Canon sales representative about changing
the drive names.

(2) Current Drive
If disk specification is omitted in a command operation or a program, drive

A is automatically specified. In this case, drive A is called current drive.

(3) Disk Replacement
The removal or setting of disks under using BASIC must always be carried

out in the command waiting state (see "2.4 Command Operations"). The
prompting "$_" is displayed to indicate the command waiting state.

During program execution, disks can be replaced when a message is dis
played by execution of the CHANGE statement (described later) .

Disk replacement at any other time, may cause destruction of the disk.

15

2.2.3 Keyboard

The AS-IOO keyboard is divided into three sections by function as shown
below.

Function key section

Typewriter key section Ten-key section

(1) Typewriter Key Section
The character inscribed on each key is entered depending on the conditions

set by the following keys that select the input modes:

Alpha lock key:

Shift key:

16

Sets the keyboard in the alpha lock
mode. Key depression alternately sets and
releases the alpha lock mode. The key lamp
lights in the alpha lock mode and goes out
when the mode is released.

Sets the shift mode.

• Normal mode: The alpha lock key lamp is off and the shift key is not depressed.

Ex.

Lowercase (small) alphabet letters, numbers and symbols can be en
tered.

• Alpha lock mode: Uppercase alphabet (capital) letters, numbers, and symbols can be en
tered.

Ex. CJ~ 1

• Shift mode: Uppercase alphabet (capital) letters and symbols can be entered.

Ex.

17

Summary 1

Summary 2

Other keys

~

~

[§J

~

Normal mode - a
Shift mode - A
Alpha lock mode - A

Shift mode

ill
Normal mode
or alpha lock mode

DEL key:

Tab key:

Control key:

CRkey:

Deletes the character immediately preceding the
cursor and moves the cursor one column to the
left.

Moves the cursor to the end of the current input
line. In the shift mode, it moves the cursor to the
beginning ofthe current input line.

Used when a console control code (described
later) is entered.

This is depressed at the end of a line. Each com
mand is executed when this key is depressed. It
has exactly the same function as the lEN T E R I
key. lQ Space bar: Enters a space at the cursor position.

18

(

(2)

(
Ten-key Section
Keys in the ten-key section are used to input numbers and move the cursor.

Delete line key:

Numeric keys:

Double zero key:

Deletes the current input line and returns
the cursor to the beginning of the line.

Enter numbers 0 through 9. In the cursor
control mode, these keys control the cursor.

Enters two zeros at once. Depressing this
key is the same as depressing the Ib key
twice.

Decimal point key: Enters a decimal point.

Minus key: Enters a minus sign.

Enter key: This is depressed at the end of a line. Each
command is executed when this key is de
pressed. It has exactly the same function as
theCR key.

Cursor lock key: Sets the numeric keys in the cursor control
mode. Each key depression alternately sets
and releases the cursor control mode. The
key lamp lights in the cursor control mode
and goes out when the mode is released. In
the cursor control mode, the cursor moves
one column at a time in the direction of the
arrow printed on the top of the 1Zl, @ ,
[§] and [B] keys.

19

(3) Function Key Section

(4)

This section consists of 12 function keys. A character string entered with
these keys when I '0 I is not depressed (shift down state) can be defined into a
required character string in BASIC programs.

Initially the 12 function keys are defmed as follows:

0 This key allows one-key, one-instruction input (described later)
when used in combination with the typewriter keys.

0 EDIT L-J

G LOADL........I

0 SA VE '---'

0 LIST '-'

0 XREFI..-.J

G RUN L-J

0 CANCEL '---'

0 DLIST '---'

G RNAME '---'

0 NEW

G BYE

* The symbol" L......I " in character strings represents a space.

Other Keys

[8]
[8]

[8J

Cancel key:

Delete key:

Insert key:

Stops BASIC program execution and sets the
system in the command waiting state.

This key deletes the character at the cursor posi
tion and shifts the following character string one
character to the left.

Inserts a character string, entered after this key is
depressed, at the cursor position. The insertion is

(

(

completed with the cursor movement operation (
or by depressing any key but a character key.

20

(5) One-Key, One-Instruction Function
The one-key, one-instruction function can be used to input the keywords

during program entry or editing.
y ou can~AAter the keywords shown below by depressing the corresponding

typewriter key after depressiriglh&ITJ] key.

mmmmmmmmm~~mm
MAT...... rRINT~ COLOfl..., ORIGIN .J PNODE\..,j PS ETu LINE......J RECT'-I CIRCL&...... NARK\..J TEXTI....I GG£TI...J GPUTt...+

[g]~[illJ~~~[g][[][g]~[[JJ[[]
FORMATI....I ~SINGu OEFu PARAM,-, CALk." OOTOu FRE~ ON...., IF...., FOR....J uTO PAINT\..J

~~~[illJl@J~~rnrnrnmm 
RENL.J DIMw INTEGEJkJ READ...... DATA...... RESTOR~ RETURN...., oosu~ \...ITH£N\..J NEXTI....I ...... STEPu ,-"WITHu 

~~~~~[@~rnrn~~ 
LETu INPUT...... MSO...... OPtNl..- CLOSE\..I GETw PUT...... EN~ SPACE TAB FEED

(6) Repeat Function and Click Tone
All typewriter keys and cursor control keys ([I), [IJ, Band B) are

equipped with a repeat function. This means that the input or cursor movement
is repeated as long as a key is depressed.

Each key on the keyboard produces a click tone when depressed to confirm
entry.

(7) Key Buffer
Keyboard input is transfered to the system through the key buffer. The key

buffer can store codes of up to 128 characters. Although you do not need to con
sider the key buffer for ordinary inputs, there are some instructions related to
the contents of key buffer.

21

(8) Key Operations in this Manual
Key operations are abbreviated in this manual as follows:

1. The character or symbol entered by a key operation is indicated by
enclosing it by o.

Ex. In the cursor control mode: (6) ===> E3

In the normal mode: 0 ~ lID

2. QJ and IENTERI are indicated as QJ.

3. Sequential key operations are joined by "-".

Ex. 0 and [[] are depressed one after another. ~

0- rn

4. Two keys depressed simultaneously are written with a "I" between
them.

Ex. [cTRLl and ~ are depressed simultaneously. ===3:> [cTRLl / ~

22

2.3 System Start-up

To start-up the Canon BASIC System, follow the procedure below.

n

n

1. Turn the power on as described in "2.3.3 Power
On/OfT Order" in the "AS-IOO System Instruc
tions" .
System disk as used in the manual means the
Canon BASIC system disk.

2. CP/M-86 is loaded, and the following boot strap
message is displayed:

3.

4.

5.

nnn K-BYTE SYSTEM
CP/M-86 LOADER Vm.mm
SEGMENT ADDRESS = xxxx

LAST OFFSET = yyyy

Canon AS-100 CP/M-86 Version z.zz
Copyright(C)198l,Digital Research Inc.
BIOS(A) Vp.pp by Canon Inc.
A>

* Refer to the "CP/M-86 User's Manual" for
the CP/M-86 boot strap message.

Depress [B][A]~ITl[Qg

BASIC is loaded and the following start-up
message is displayed:

Canon AS-100 BASIC Vn.nn
Copyright by Canon Inc.
User I s ~1emory mmmmmmm Bytes
$-

BASIC System start-up is completed and com
mands can now be entered.

Refer to "2.4.13 as Mode Commands" for the details ofthe preceding oper
ation.

23

2.4 Command Operations

The BASIC system is operated by entering commands through the key
board. Commands indicate the directives of specific actions and order the
AS-I00 perform the actions.

Like program instructions, each command has a specific format. Commands
can only be entered in the operating mode when prompting "$" and the cursor
are displayed. This is called the command waiting state.

2.4.1 Outline and Format of Commands

There are 11 commands under BASIC. Each command consists of a keyword
and an operand. By entering the command through the keyboard, the specified
action is performed. The format is interpreted as shown in the next example.

Example:
Keyword Operand

,r- The command is executed when
r , r

is depressed ~ at the end of
EDIT (L-J <Program specification>)g the line.

II

1
t t Element of operand

[UJ

t Part in brackets may be omitted.

The keyword and space can be entered using the [I2J key.

(1) Operands

<Program specification> The program file is specified by the drive
name, program name, and file type.
Ex. A: ABC.BAS

<File specification> The file name is specified by the drive
name, file name, and file type.
Ex. A: XYZ.DAT

<Drive specification> The drive name is specified by A:-D:.

24

(

(

(

(2) Notes to Command Operations

• No distinction is made between uppercase and lowercase letters in command
operations.

• The default value for specifications of the drive name, program name, file
name, and file type differ from one command to anther.

2.4.2 EDIT Command

The EDIT command activates the editor for program creation or editing.
This command cannot be executed for a secured program (explained later).

Format

EDIT C,---, <Program specification> J ~
II

[ill

<Program specification> The name of program that will be created
or edited is specified. If the program name
is omitted, the priority program in memory
is automatically specified. If the drive name
is omitted, the current drive is automatical
ly specified. The file type BAS may be omit
ted.

• When the specified program is not in memory or on the disk (i.e. when the
program will be created), the following message is displayed:

PROGRAM CREATION xxxxxxxx • x x x x x x x x: Program name

The system then enters the programming mode. At this time, "10 _" is dis
played by the automatic numbering function of the editor.

• When the specified program is on the disk (i.e. when the program will be
edited), the following message is displayed:

PROGRAM EDITION xxxxxxxx • x x x x x x x x: Program name

25

The system then enters the programming mode. At this time, the first 10
lines of the program are listed and "%_" is displayed.

Note: When the EDIT command is executed, the specified program is
searched on the disk first even if it is in memory. So when the program
specified in the EDIT command is in memory, the program in memory
is cleared when the command is executed.

For the details of program creation and editing, refer to "2.5 Programming."

Example 1
«Display»

$

PROGRAM CREATION ABC
10

Example 2
«Display»

$

PROGRAM EDITION
10

xvz

I

26

«Key Operation and Explanation»

-Create program" ABC" .

[fJ[Q][01I] Is PAC E 11AI[H][QG;!]

«Key Operation and Explanation»

- Edit program "XYZ" stored on the disk
in drive B.

[fJ [Q][O II] I SPA eE l [H] [l] 00 [Y][ZlG;!]

The first 10 lines of the
program are listed.

(

2.4.3
(

LOAD Command

The LOAD command loads a specified program from the disk to memory.
A program must be loaded in memory when the XREF command (described
later) and the LIST command are used, so the program is loaded from the disk
to memory in advance using this command.

Format

LOAD,----, <Program specificiation > ~
II

[ill

< Program specification> The program that will be loaded to memory
is specified. When the drive name is omit
ted, the current drive is automatically speci
fied. The file type BAS may be omitted.

Example 1
«Display»

The program name must be specified. If the
program specified is not on the disk, the
message "<Program specification> NOT
EXIST!" is displayed. Loading is not execut
ed and the system returns to the command
waiting state.

«Key Operation and Explanation»

• Load program "ABC" stored on the disk in drive B to
memory.

[] [Q] 1Al[Q] I SPA eEl ffiI ITlIAl ffiI [Q ~

27

2.4.4 SAVE Command

The SA VE command stores the program in memory to the disk. The pro
gram in memory is not deleted. When a program is stored or saved to the disk,
the program can be "secured" so that it cannot be specified in the XREF, LIST,
and EDIT commands. If there is no program in memory, executing this com
mand causes an error.

Format

SAVE (L....J <Program specification > J (, SECUREJ ~
II

[EJ

<Progrllm specification> The name of the program stored on the
disk is specified. The name specified does
not have to be the same as that of the pro
gram currently in memory.
When the program name is omitted, the
name of the program in memory is auto
matically specified. When the drive name is
omitted, the current drive is automatically
specified. The file type BAS may be omit
ted.

,SECURE When this is specified, the XREF, LIST,
and EDIT commands cannot be executed
for the program stored in the disk. (The
program in memory is not secured.) If the
XREF, LIST, or EDIT command is issued
to a secured program, the message:

28

II SEC U RED PRO G RAM! II is displayed and
the command is not executed. Once a pro
gram is secured, it cannot be released.

(

When this command is entered, the following confirmation message is dis
played:

S A V E '-' T 0 '-' < Program specification> L.....J (Y / N) ? _

When [YJ and QJ are depressed, the program is stored. When [NJ and g
are depressed, the command is not executed and the system returns to the
command waiting state. When a program of the same name as the program

specified is already stored on the specified disk, the following message is dis
played:

CAN C E L O L 0 <Program specification >L.....J(Y / N) ?_

When [YJ and Q] are depressed, the program already on the disk is deleted
and the specified program is stored. When [NJ and Q] are depressed, the com

mand is not executed and the system returns to the command waiting state.

Example 1

«Display»

$

«Key Operation and Explanation»

-Store program "ABC" in memory to the disk in drive
A using the same program name.

~ [8][YJ[:E] Q]

SAVE TO A:ABC.BAS (Y/N)?_

[YJQ]

$

Example 2

$

«Display» «Key Operation and Explanation»

-Store the program in the memory to the disk in drive B
using program name "XYZ".

~[8][Yl[() I SPA eEl [8J[I](x][y][Z]Q]

SAVE TO B:XYZ.BAS (Y/N)?_

[YJQ]

$

29

Example 3

Example 4

«Display»

$

«Key Operation and Explanation»

-Delete program "EFG" on the disk in drive A and
store the program in memory to the disk in drive A
using the same program name.

~][AHYl[EJ Is P AC E I [AI [TI[EJ[EJ[GJ g
SAVE TO A:EFG.BAS (Y/N)?_

rYJQI
CANCEL OLD A:EFG.BAS (Y/N)?

$

«Display»

$

IYJg

«Key Operation and Explanation»

-Secure and store program "POR" in memory to the
disk in drive A.

~[A)[YJ[EJ Is PAC E 1[J~[EJ~[QJffiI[E]Q

SAVE TO A:POR.BAS (Y/N)?_
rYJQ

$

30

(

2.4.5 LIST Command

The LIST command outputs the list of a program in memory to the specified
device. This command can also specify the the range of program lines that will
be listed. This command cannot be used for secured programs. If there is no pro
gram in the memory, executing this command causes an error.

Format

LIST L.....J (< Device name> J (< Range specification> J g
II

[ill

<Device name> The name of the device to which the list
will be output is specified. For device
names, refer to "1.4 Input/Output Con
trol." When the device name is omitted,
the display (CRT) is automatically speci
fied. When one of the disk drives (A:-D:)
is specified as the output device, a list me is
created on the disk in the specified drive.
(Refer to "2.5 Programming.") The name
of the list me consists of program name plus
the me type LST.

< Range specification> The range of the list that will be output is
specified by line number. It is specified as
follows:

No specification... All program lines are listed.
< Line number> ... Only the specified line is listed.
<Line number> ,... All lines from the specified line through the last line of

the program are listed.
, < Line number> ... All lines from the beginning of the program through

the specified line are listed.
< Line number> , < Line number> ...

All lines from the first line specified through the last
line specified are listed.

31

The following header is always output at the head of a list:

ABC. 1372
t

Program name Program size (bytes)

If the line specified to indicate the beginning of the output range is not found
in the program, listing starts from the line immediately following the line speci
fied. If the line specified to indicate the end of the output range is not found in
the program, listing ends with the line immediately preceding the line specified.
If only one line is specified and it is not found in the program, only the header is
output. The output of a list can be aborted by depressing ICANCELi or

ICTRLi l[g

Example 1

Example 2

«Display»

$

«Key Operation and Explanation»

-Output Lines 10-30, of the program in memory to
the display.

IOrn~ITlISPACEI ITJ[Q]D[J)[Q]Q]

ABC. 3 0 2 1 +--Program name and size

10 DIM A(30) }
2 Program contents from Lines 10-30

30 LET A(1)=10

«Display»

$

Printout

ABC. 3021
10 DIM A(30)

2

«Key Operation and Explanation»

-Output Lines 10-300, of the program in memory to
the printer connected to connector 1.

10m ~ITII SPACE I [lJ[E] ITIITJITJ[Q]D[J)[Q][Q] Q]

300 LET A(1)=10

$

32

(

2.4.6
(

XREF Command <Cross Reference)

The XREF command outputs a list of the variable names used in the pro
gram in memory. The list shows the line numbers where the variables are used.
This command cannot be used for secured programs. If there is no program in
memory, executing this command causes an error.

Format

XREF ('-'< Device name » Id
II

[ill

< Device name> The name of the device to which the list of varia
bles will be output is specified. For device names,
refer to "1.4 Input/Output Control". When the
device name is omitted, the display (CRT) is auto
matically specified. When one of the disk drives
(A: through D:) is specified, a list file is created on
the disk in the specified drive. The file name of the
list file consists of the program name plus file type
REF.

The list contains the following elements. A header is always output at the top
of the list.

XVZ. 1204 +- Program size

t Program name

A 10 20 30 --- The variable A is used on Lines 10, 20, and 30.

B 10 80
C 10 100

L Variable name

The output of a list can be aborted by depressing I C ANC E L\ or
=IC=T=R"LI / [g

33

Example 1

Example 2

«Display»

$

xvz. 1204

A 10 20 30
B 10 80
C 10 100

$

«Display»

$

Printout

XVZ. 1204

«Key Operation and Explanation»

-Output a list of the variables used in the program in
memory on the display.

«Key Operation and Explanation»

-Output a list of the variables used in the program in
memory to the printer connected to connector 1.

!Xl [fi][E] [E] Is PAC E I [[] lEI ITlITl g

A 10 20 30

B 10 80

C 10 100

$

34

2.4.7 RUN Command

The RUN command activates the interpreter to start BASIC program execu
tion. This command can also execute a program in the debugging mode by spe
cifying !D.

Format

(RUN L.....J) «Program specification) C/D) (;< Character string »
II

[ill

RUN The keyword can be omitted.
<Program specification> The name of the program that will be ex

ecuted is specified. When the drive name is
omitted, the current drive is automatically
specified. The file type BAS may be omit
ted. When program specification is omitted,
the priority program (program in memory)
is automatically specified. The relationship
between program specification and the pro
gram that will executed are summarized
below.

a) When the program name is not specified:
· The program in memory is executed.
·If there is no program in memory, the command is not executed and
the system returns to the command waiting state.

b) When the program name is specified:
· The specified program is automatically loaded from the disk to
memory and executed. In this case, the program already in memory
is deleted.

· If the specified program is not found on the disk, the message
" < Program specification> NOT E X 1ST! II is displayed, the com
mand is not executed, and the system returns to the command waiting
state. In this case, the program in the memory is not deleted.

35

Example 1

Example 2

ID This is specified to execute the program in the
debugging mode. For details, refer to "2.6
Debugging" .

; <Character string> This specifies the character string that will be as
signed to the COM$ function in a program. For
details, refer to the explanation of the COM$
function given in "3. Built-in Function of Chap
ter III Language" .

« Display»

Program execution

«Display»

$

Program execution

«Key Operation and Explanation»

eThe priority program is executed.

«Key Operation and Explanation»

eLoad program "ABC" from the disk in drive B to
memory and execute it.

36

2.4.8 CANCEL Command

Example

The CANCEL command deletes a specified program me or data me from
the disk.

Format

CANCEL L-J <File specification> ~
II

[ill

<File specification> The file that will be deleted from the disk is
specified. When the drive name is omitted, the
current drive is automatically specified. When
the file type is omitted, file type BAS (BASIC
program file) is automatically specified.

The following confirmation message is displayed when this command is

entered.

< File specification> CANC EL (Y / N) ? _

When [YJ and Q] are depressed, the specified program is deleted from the
disk. When [NJ and Q] are depressed, the command is not executed and the
system returns to the command waiting state.

«Display» «Key Operation and Explanation»

eDelete me "ABC.DAT" from the disk in drive B.

[Q 1Al!Nl[Q[£] OJ I SPA eE l [fiIOJIAl[fil[QO[QJIAlITIQ]
B:ABC.DAT CANCEL (Y/N)?_

[YlQ]

$

37

2.4.9 DLiST Command (Disk List)

The DLIST command outputs a list of specified fIles on a specified disk to
the display. This command permits wild card specification so that more than one
fIle can be specified at a time.

Format

DUST C L-J < File specification» Id
II

ill]

<File specification> The names of the files that will be listed are
specified. When only the drive name is specified,
all of the files on the disk in the drive specified
are automatically specified and all of their names
are listed. When the drive name is omitted, the
current drive is automatically specified. Wild
card specification, the specification of more than
one file at a time, is also possible.

Wild card specification

A wild card is used to specify more than one file at a time and is indicated
by the generalization symbols "*" and"?". The symbol "*" is used to indi
cate all character strings. The symbol "?" is used to indicate all single charac
ters.

The following are examples of wild card specification:

A: *.BAS All BASIC program files on the disk in drive A.
B: A*.* All files whose names begin with "A" on the disk in

drive B (i.e. B:A.BAS and B:ABC.OAT).
B:???* All files with names of three letters on the disk in drive B

(i.e. B:ABC.BAS, B:XYZ.DAT).
B:TEST?* ... All files with names of five letters beginning with TEST

(i.e. B:TESTA.BAS, B:TESTl.OAT, and B:TESTO.BAS).

38

(

(
The list ofthe mes displayed by the DLIST command is as follows.

A: Specified drive

ABC .BAS CDE .DAT
ANTNT .BAS

1
t

Example 1
«Display»

$

A:
ABC . BAS
OPQ . BAS

?

$

Example 2
«Display»

$

A:

TEST .BAS

I I File type

Filename

«Key Operation and Explanation»

- Display a list of the BASIC program mes on the disk in
drive A.

[Q][]ITl~ITlI SPACE 108!a11Al~g

AAA .BAS
TESTX .BAS

c?

«Key Operation and Explanation»

-Confirm that program me "TEST.BAS" is on the disk
in drive A.

[Q][]ITl~ITlISPACEI ITl[£]~ITl[J[a]IAl~~

TEST. BAS _, -- A name is not displayed if the specified file is not found on the disk.

$

39

2.4.10 RNAME Command (Rename)

The RNAME command changes the name of a file on a disk.

Format

RNAME,---, < File specification I> '---' TO '---' < File specification 2> QJ
II

[£ill

< File specification 1> The file whose name will be changed is specified.
When the drive name is omitted, the current
drive is automatically specified. Wild card specifi
cation is not available.

< File specification 2> The new file name is specified. The specification
consists of <File name> and <File type>.
Drive specification cannot be made. Wild card spe
cification is not available.

Example
«Display»

$

$

«Key Operation and Explanation»

eChange the name of program file "ABC.BAS" on the

disk in drive A to "XYZ.BAS."

llillNllAl!Mj[IllsPACEIIAl!6][QD~IAl~ ISPACE\
ITl[Q] \SPACE\ OO[YJ!ZlD!6]IAl~GJJ

40

2.4.11

Example

2.4.12

Example

NEW Command

The NEW command deletes the program in memory and clears the display.
Then the display returns to its original status at the time of BASIC start-up.

Format

NEW Id
II

ITill

«Display»

$

«Key Operation and Explanation»

~[E]IWQ]

Canon AS-100 BASIC Vm.mm
User's Memory nnnnnn Bytes
$

BYE Command

The BYE command terminates BASIC and returns the system to the OS
mode. The definitions made under BASIC return to their initial value
(CP/M-86 initial state). At this time, the display is cleared and a cursor and
prompting "A>" (indicating the OS mode) are displayed in the upper left-hand
corner of the screen.

Format

BYE Id
II

[}]I]

«Display»

$

A>

«Key Operation and Explanation»

41

2.4.13 OS Mode Commands

In the OS mode, before BASIC is started-up or after BASIC is terminated
using the BYE command, "A>" (A indicates the current drive) is displayed,
and the AS-IOO is put under the direct control ofthe CP/M-86 operating system.

In the OS mode, the commands supported by CP/M-86 can be used. Like
commands under BASIC, they can be used with the AS-IOO System.

This section explains the command functions of several OS mode commands
which are useful to operate BASIC. Refer to the "CP/M-86 User's Manual" for
OS commands not explained here and for the details of each command.

(1) VOLCOPY Command and COPYDISK Command
These commands copy the contents of one disk to another disk, thus prepar

ing a copy (backup) of the disk. The COPYDISK command copies the disk by
sector, and the VOLCOPY command by track. Their key operations are almost
the same. The processing speed of the VOLCOPY command is slightly faster
than that of the COPYDISK command. Before a disk copy is made using these
commands, the disk on which the copy will be made must be initialized using
the FORMAT command. The original disk (source) and copy disk (destination)
must be the same size.

Format

{
VOLCOPY} g
COPYDISK

Operations are made as follows:

«Display»

A>

«Key Operation and Explanation»

~[Q] [E](Y1[Q] [O[SJ [E] ~
(Or [2J[Q][[]~[Q][E][YJ~)

CP/M-86 Full Disk Copy Utility Version 2.0 or
VOLCOPY Vl. 01
Enter Source Disk Drive(A-D)?_

e Enter the name of the drive where the original disk is
set.
[Alg

Destination Disk Drive(A-D)?_

eEnter the name of the drive where the copy disk is set.

42

(

(
Copying disk A:to disk B:

L Source L Destination

Is this what you want to do(Y/N)?_

Copy started
Reading track nn
Writing track nn
Verifying track nn

e Confirm that the original disk and the copy disk are
correct, and depress !Yl and g . When [N] and QJ
are depressed, copying is not performed and the
message' 'Copy another dis k (Y / N) ?" is displayed.

eThe numbers of the tracks being processed are dis
played in sequence. The displays for the COPYDISK
command and the VOL COPY command are slightly
different.

) COPYDISK 00"

COpy TRACK NUMBER=nn(VOLCOPYonly)

Copy completed (COPYDISK only)

"Copy another disk(Y/N)?"
e When copying is complete, this message is displayed.

When !Yl and g are depressed, the system returns
to the beginning of command operation procedure and
copying is repeated for the new disk. When [N] and
Q] are depressed, copying ends.

Copy program exi sti ng (COPY DISK only)
A>

43

(2) FORMAT Command
The FORMAT command initializes a disk.

Format

FORMAT ~

«Display» «Key Operation and Explanation»

A>

FORMAT Vn.nn
Disk B:will be destroyed,OK?_

-Set the disk that will be initialized in drive B and dep
ress [YJ and QJ . When ~ and QJ are depressed,
the disk is not initialized, and" A> _" is displayed.

COPYING SECONDARY BOOT.

A> - "A > _" is displayed when initialization is completed.

44

(

(3) PIP Command
The PIP command copies a fIle on a disk to another disk.

Format

PIP,-, < Drive name> = < File specification> Id

<Drive name> , Specify the drive where the destination disk is set. The
drive name cannot be omitted.

<File specification> ... Specify the original file by <Drive name>, <File
name>, and < File type>. When the drive name is
omitted, the current drive is automatically specified.
Wild card specification can be made for the <File
name> and <File type>.

«Display»

A>

A>

«Display»

A>

Copying

TEST1.BAS

A>

«Key Operation and Explanation»

-Copy program file "TEST. BAS" from the disk in
drive A to the disk in drive B.

[EJOJ[EJ I SPA S E I[a]ITlEJITI[E]~ITI[J [a] [8] [S]Q]

«Key Operation and Explanation»

- Use wild card specification to copy all BASIC pro
grams on the disk in drive A to the disk in drive B.

[E]OJ[E]ls PA S EIIElITlEJ[!][JIEl[8]~g

-The names of fIles copied are displayed when the wild
card is specified.

If the destination disk contains a fIle of the same name as the fIle specified in
PIP command, the file on the destination disk is automatically deleted and copy
ing is performed. If the fIle on the destination disk is write-protected (see the
CP/M-86 User's Manual), the message "DESTINATION IS RIO, DELETE
(Y IN)?" is displayed. If (YJ is depressed, the fIle on the destination disk is
deleted and the new file of the same name is copied following the message. If
~ is depressed, copying is not performed.

45

(4) STAT Command
The STAT command displays the size of the free area on a disk.

Format

STAT Id

«Display» «Key Operation and Explanation»

A>
[s]ITl[AJITlQ]

A:RW,Free Space:16K

L L Attribute

Drive name

A>

(5) TOO Command

L Free area (bytes)

The TOD command sets the AS-100's internal clock or displays its current
value. In BASIC programs, the value of the internal clock can be modified or
read using the TOD$ and TIM functions. The internal clock is set at 00 hours 00
minutes 00 seconds when the power is turned on. The elapsed time is recorded
in seconds. Random values are set for date and day as the initial values. If the op
tional real-time clock is added, the elapsed time is counted even when the
power is off.

Format

TOD(, ... -l<Month>I<Day>I<Year>L.....J<Hour>:<Minute>:<Second> J Id

<Month>/<Day>/<Year> Specify the year, month, and day that
will be set using two-digit numbers.
Specify the year by the last two digits.
For example, January 10, 1983, is
specified as 01110/83.

<Hour>:<Minute>:<Second> ... Specify the time that will be set using
two-digit numbers. Specify the hour
according to 24-hour system. For
example, specify 3:05:00 p.m. as
15:05:00. When all of the operands are
omitted, the TOD command displays
the current time.

46

(

«Display»

A>

«Operation and Explanation»

-Set the internal clock for 7:25 a.m., March 3,1983.

[I][Q][QJ ISPASEI [QJ~0[QJ~12I[a]~ ISPACEI

[Q][lIITI[z]~ITI[QJ[Q]G!I

Strik key to set time
-The specified time is set when any key is depressed.

G!I
03/03/83(Thu),07:25:00

A>

«Display»

A>

-The time set is displayed. The day of the week is auto
matically set.

«Key Operation and Explanation»

-The current value of the internal clock is displayed.

[I][QI[QJQ]

03/03/83(Thu),07:26:05
A>

47

(6) TYPE Command
The TYPE command displays the contents of a character fIle. For example,

if this command is used when inputs are made from the character fIle using the
G command during program editing (see "2.3.4 Program Editing"), the con
tents of the character fIle can be checked in advance.

Format

TYPE '---' < File specification> g

<File specification> Specify the file name of the character fIle whose
contents will be displayed.

«Display»

A>

«Key Operation and Explanation»

• Display the contents of the character fIle on the disk in
drive A.

ITHY)[E] Ir]ls PAC EI ITl [r)[~ITlDJD[[)~ITl Q

100 REM ++CALC.ROUTINE++
110 A= 0 Contents of the character file

"TEST1.LST"

A>

48

(7) BASIC Command
The BAISC command activates the BASIC system. Specify the library

names in this command when the library modules (ISAM and MATRIX li
braries) will be loaded after the BASIC system module. This command can also
specify the BASIC program which will be executed immediately after BASIC
start-up.

Format

BASIC ('---' / < Library name > J ('---' <Program specification> J
(; < Character string> J Id

1< Library name> This is specified to load a library module in
memory where it will reside following the
BASIC system. A library is a file with file
type LIB, which is required to use matrix
related instructions, etc. If the library name
is not specified in the operand of the
BASIC command, it must be loaded during
the program execution to use the function.
The benefits of having the library reside in
memory are:
a) The memory is reserved for the BASIC

system including the library, so the
user's memory area displayed at BASIC
start-up indicates the actual memory
amount which can be used for user pro
grams.

b) The processing speed improves because
a library does not have to be loaded in a
program.

<Program specification> Specify the BASIC program that will be ex
ecuted just after BASIC start-up. The file
type BAS may be omitted.

<Character string> This is the same as the character string of
the RUN command of BASIC.

49

When the BASIC command that specifies the program that will be executed
just after BASIC start-up is executed in the SUBMIT file (refer to the
"CP/M-86 User's Manual"), the next line of the SUBMIT me is executed when
the specified BASIC program ends with the BYE statement.

«Display»

A>

«Operation and Explanation»

• BASIC is activated and then the BASIC program
"TEST" is executed. The MATRIX library resides in
memory just after the BASIC system.

[BJ!Al ~ [O~ Is PAC E IIZHMl!Al ITl[B] [000
I SPACEI ITl[I]~ITlQJ

Version no. --------,

Canon AS-100 BAS I C Vn. nn
Copyright by Canon Inc.
Option:MATRIX
User's Memory mmmmmm.Bytes

User area (byte) ~
<> The BASIC program "TEST" is executed.

$

50

(

(

2.4.14 Handlers

When using an optional printer with the AS-IOO, it is necessary to load han
dlers to memory before BASIC start-up (in the OS mode). The handlers and
their loading operations are shown below. Refer to the "CP/M-86 User's
Manual" for details of the handlers.

• AI200 Load this to use the A-I200 Wire Dot Printer connected to
connector 1.

Operation: [AJrn~[QJ[QJ~

• AI2IO Load this to use the A-I2IO Color Printer connected to connec-
tor 1.

Operation: [AJrn~rn[QJ ~

51

2.5 Programming

Creating a program is called programming. This section explains the pro
gramming procedure in sequence-from writing the program on a coding sheet
and entering the program through the keyboard, to editing it and storing it to a
disk. Refer to "2.6 Debugging" for details on debugging (fmding errors) in the
program.

2.5.1 Programming Procedure

The procedure that follows must be used to code the program or write it on
the coding sheet, enter the program, and actually execute it.

END OF
PROGRAMMING DEBUGGING

52

(

(

2.5.2 Coding

First, write the program on a coding sheet. Since Canon BASIC programs ac

como date up to 127 characters per line, including the line number and Q] , use
a 128-character coding sheet. Refer to "Chapter III Language" for the details of

Canon BASIC language used for programming.

Coding Example:

Coding Sheet
canon

PROGRAM I 0 0 2 3
NO. I PROGRAM I T EST 2 3

TITLE PROGRAMMER I L(t>5I1izawa..
LINE flO. KEY.ORD ~ OPERAND

iO H:H ttt i)ATA CHEe I(Pll.1Y frRAK +t+

10 NTEq ER liD CeDE A B

30 ~nM A(20), Be 2.0 .., I cD.al)

40 ~EM """ lNl TIALI I! 1: R& lA" I N"E =::

SO ~RI.In "_eHE c.Jt PR OErRAM NO". 1 "

&0 HPUi I1S6("11-/1:>0 T '1:~Ld~. PA s I'lW9R-t: I")NA ME~

70 6-P EN 1\\:1, " A : PASS . PAT"

80 frET tl W&-R I::t>: IF NAME ~<>IN() ~Kt T kEN e L~S'E *1: tee To bo

QO C.L9.SE :it • - -- ,- ---- --- r -

100 RH\ =:: KEJ,I U PRI tNT ,,-

53

2.5.3 Program Entry

Enter the program through the keyboard according to the coding sheet. Use
the following procedure to enter the program.

(1) Set the AS-IOO in the programming mode.
(2) Enter each program line.
(3) Release the programming mode.
(4) Save the program to a disk.

(1) Setting the Programming Mode
Before the program is entered, the editor must be activated and the AS-lOO

must be set in the programming mode using the EDIT command.
Specify the program name in the operand of the EDIT command as shown

below.

[EJ[QJITlITlISPACEI <Program name> g

The BASIC editor, in turn, activates the automatic numbering function, so
the line number is displayed instead of "%".

PROGRAM CREATION xxxxxxxx
t'---____ Program name

10 LJ_

The program can be entered when this is displayed. The line number in
creases by IO with the entry of each line.

Note: The program name can be omitted if a program is not loaded in
memory. The program name must be defIned by the N command (de
scribed later) before the programming mode is released .

•

54

(2)

(

Example 1

(

Entering Program Lines
After setting the AS-IOO in the programming mode, enter the program lines

according to the coding sheet. Depress Q] at the end of each line. It is not neces
sary to enter line numbers because they are entered automatically. The program
must not take up more than half the user memory area or execeed 32K bytes in
length.

«Display» «Key Operation and Explanation»

$
[£][Q]rnITlI SPACEI [8][81[Al~

\ ,
~

PROGRAM CREATION AAA
10

"---- program name

[Q]rn[MJ ISPACEI [Al[]ITJ[QJOJ

10 DIM A(10)

20

Keywords of instructions can be entered by depressing the ITJJ key and a
typewriter key using the one-key, one-instruction function. For details of the
one-key, one-instruction function, refer to "2.2.3, (5) One-key, one-instruction
function" .

If a mistake is made during program line entry, the line is not entered to the
system even if g is depressed. The cursor will automatically move to the posi
tion of the error. Then correct the error and depress ~ . The line is then en
tered to the system and the next line number is displayed.

The following keys are used for correction.

BEl : The cursor moves one character in the direction of the
arrow. The functions are repeated if the keys are con
tinuously depressed.

This key inserts a character string at the cursor position.
First depress IINSERTI and then enter the character
string that will be inserted. Insertion is completed when
the cursor is moved or when any key other than the
character keys are depressed.

55

Example 2
«Display»

a)

40 PRRINT A
"0

40 PRRINT A

40 PRINT A

b) 80 LET B+C

0

80 LET B+C

80 LET A=B+C

c) 9 0 P R I N T II ABC II

90 PRINT IIABC II

90 PRINT II II

90 PRINT IIXYZ II

This key deletes the character at the cursor position
and shifts the following character string one column to
the left.

These keys move the cursor to the beginning of the
line 0--) or to the end of the line (--Q.

This key deletes the character immediately preceding
the cursor and shifts the cursor one column to the left.

This key deletes the entire line except for the line
number.

«Key Operation and Explanation»

-Various correction operations are shown.

11+--1 BB

IDELETE I

ElElEl

II NSERTI [A)§]

BBBB

IDELETEIIDELETEIIDELETEI

II NSERTI OOlY][z]

56

(

(

(

d)

e)

100 GOT a 10000

IDELIIDELI
100 GOTO 100

70 INPUT A

70

IS PACEI leJlBJITHNlITllsPACEI [AJ

70 PRINT A

Programs can be entered using the basic operations described in this section.
The details of the editor, including the procedure for using the edit commands,
can be found in "2.5.4 Program Editing"

(3) Releasing the Programming Mode
After all program lines have been entered, release the programming mode

using the following procedure:

1) Depress Q] to display "%_".
2) Depress (£] and g to release the programming mode and set

the operating mode and then "$_" is displayed.

Now the program is in memory and can be executed. To prevent the pro
gram from being erased, save the program to a disk prior to execution.

(4) Saving the Program to a Disk
Use the SAVE command to save the entered program to a disk. The operand

of the SAVE command can be omitted.

1) Enter ~[AJ[Yl(£]g.
When saving a program to a disk other than the one in drive A,
specify the disk as follows:

~[AJ[YJ(£] ISPACEI <Drive name>: g
2) The message II SAV E TO A: <Program name> . BAS (YIN)? II

is displayed.

3) Depress!Yl and g .
4) The program in memory is saved to the disk in drive A. The

system then returns to the command waiting state.

57

2.5.4 Program Editing

This section contains a detailed explanation of the editor functions. The op- (
erations just described use only a fraction of the editor functions. The editor is
also used whenever an error is found during program checking or anytime a part
of the program is modified. Program editing is just about the same as program
creation. The only difference is whether the program being edited is in memory
or not.

(1) Activating the Editor
Activate the editor using the EDIT command. Refer to "2.4.2 EDIT Com

mand" for the details of this operation. The first 10 lines of the program are
listed, and the programming mode prompting "%_" is displayed.

(2) Basic Editor Functions
The Canon BASIC editor is a line editor which means that it edits a program

line by line.
There are two display statuses in the programming mode. One is the edit

command waiting state when edit commands can be entered. In this state,
prompting "%" is displayed. The other is the line input state, when program
lines can be entered and modified directly. Either a line number or a program
line with its line number is displayed.

Edit command waiting state:

%
L-Cursor

Line input state:
120 PRINT A,B,C

~Cursor

One line in a program is defmed as the key line for editing. This line is called
the current line. The current line changes according to editing procedure. Basi
cally the line displayed in the line input state is defmed as the current line.

120 PRINT A,B,C
130 GOTO 100
140 [SUB1J REM ==~

%C130
1 3 a GOT a 1 a a +- Current line

58

(

(

The editor checks the grammar (syntax) of each line as it is entered and
stores the lines as a program. If there is a syntax error in a line, the line is not en
tered to memory and the cursor will indicate the position of the error.

Correct line

140 PRINT A,B,C
%

Incorrect line

140 PRT ~,B, C

The syntax check performed by the editor starts at the beginning of a line.
This means that the cursor will be positioned at the character immediately fol
lowing the error.

(3) Edit Commands
Eleven edit commands can be used in the edit command waiting state of the

programming mode. Their functions are described below.
1) LINE command Inserts, deletes, or modifies a line.
2) I command Specifies automatic numbering.
3) R command Renumbers lines.
4) L command Displays a list of programs.
5) D command Deletes a specified line.
6) C command Calls a specified line.
7) N command Changes a program name.
8) G command Reads a character file.
9) M command Merges one BASIC program file with anoth

er one.
10) E command Releases the programming mode.
11) i ~ command Changes a line.

S9

1) LINE Command

Example 1

Example 2

The LINE command inserts, modifies, or deletes a specified line.

Format

<Line No.> «Contents of line» 1d

< Line No. > Specify the number of the line that will be inserted,
modified, or deleted.

<Contents ofline.> ... Specify the contents of the line. If this specification
is omitted, the line is deleted.

The line specified becomes the current line. If the line is deleted, the line
following it becomes the current line.

« Display»

%

%125 A=A+B
%

«Display»

%

%400

%

«Key Operation and Explanation»

• Insert Line 125.

* If there is already a Line 125, its contents are changed.

«Key Operation and Explanation»

• Delete Line 400.

60

2) I Command (Input)
This command specifies automatic numbering. The I command also sets the

display in the line input state.

Format

I C < Starting line» (, < Interval» g

<Starting line> Specify the line number where auto numbering will
start. If the starting line is omitted, auto numbering
starts from the line with a number equal to the number
of the last program line of the program plus the value
specified in < Interval> .

For example, if the starting line is omitted during the
editing of a program in which Line 500 is the last line and
the I command specifying a numbering interval of 5 is
executed, auto numbering starts from Line 505 with the
subsequent lines automatically numbered 510,515, 520 .
.. etc.

When a line already stored in the program is specified,
auto numbering starts from the line with line number
equal to the number of the line specified plus the value
specified in <Interval>. But if that value (specified line
number + interval) corresponds to a line already entered
in the program, the I command is ignored. It is possible to
specify F for the first line of the program and L for the last
line.

<Interval> The automatic numbering interval is specified. If the in
terval is omitted, 10 is automatically specified.

61

Example 1

Example 2

When the line number of line input state set by the automatic numbering
function matches or exceeds the line already entered in the program, auto num- (
bering is released and the editor returns to the edit command waiting state. The
last line entered immediately before line input state ends becomes the current
line.

The line input state is also released when QI is depressed without entering
the contents of a line in the line input state set by the automatic numbering
function.

«Display»

%

510

520
2

600

%

«Display»

%

52

54
2

58

%

«Key Operation and Explanation»

• Add Line 510 and subsequent lines to a program con
sisting of Lines 10-500.

«Key Operation and Explanation»

• Insert program lines at intervals of 2 between Lines
50 and 60.

[£][Q][fi] ISPACEI [DEllI] ISPACEI ITI[Q]

ISPACEI II][Q]Q

~(£]OOITIISPACEI [Dg

62

Additional

program

lines.

3) R Command (Renumbering)

Example

The R command renumbers the lines of a program at equal intervals. The
lines specified in a statement like the GOTO statement are automatically renum
bered.

Format

R (< Starting line> J (, < Interval > J ~

<Starting line> Specify what the beginning line number of a program
will be after renumbering. If this specification is omitted,
the value specified in <Interval> is automatically speci
fied as the first line of the program.

<Interval> Specify the renumbering interval for the line numbers.
If this specification is omitted, 10 is automatically speci
fied.

After this command is executed, the first 10 renumbered lines of the pro
gram are displayed. The last line displayed becomes the current line.

«Display»

%

«Key Operation and Explanation»

• Renumber lines at intervals of 100 beginning from
Line 100.

llilGJ!II[Q][Q]g
100 INTEGER A,B,C
200 DIM A(20),B(20),C(20)

2

1000 PRINT "OK?"
%

63

4) L Command (List)
The L command displays a program list. The part that will be listed can be

specified.

Format

L (<Starting line> J (, <Ending line> J Id

< Starting line> Specify the first line that will be listed. If the line speci
fied is not found in the program, listing starts from the
first line beyond the specified line. For example, if Line
25 is specified in a program containing Lines 10, 20, and
30, Line 30 becomes the starting line.

<Ending line> Specify the last line that will be listed. Ifthis specification
is omitted, 10 lines starting from the line specified by
<Starting line> are automatically listed.

If both of the operands are omitted, 10 lines starting from the current line
are listed. It is possible to specify F for the first line and L for the last line.

If the part of the program specified is not found, the message "LINE NOT
EXIST!" is displayed.

The last line listed after execution of this command becomes the current line.
The listing can be aborted using the ICANCEL! key or ICTRLi /~ .

64

Example 1

(

Example 2

«Display»

%

100-

r?

400-

%

«Display»

%

10-

20-

%

«Key Operation and Explanation»

• List Lines 100-400 of the program.

«Key Operation and Explanation»

• List the program from the fIrst line to the last line.

Note: If the lines listed exceed the display capacity, the lines displayed will be
scrolled up and off the display as listing progresses. To stop scrolling, use
the screen stop function described in "2.7 Functions of Control Key".

65

5) 0 Command (Delete)

Example 1

Example 2

The D command deletes a specified line.

Format

D <Starting line> (, <Ending line» Id

< Starting line> Specify the first line of the program that will be
deleted. If the starting line is specified without spe
cifying the ending line, only the specified starting
line is deleted.

< Endling line> Specify the last line of the program that will be
deleted.

When deleting only one line, if the specified line is not found in the pro
gram, the message "LINE NOT EXIST!" is displayed. When deleting more
than one line at a time, if line specified as the starting line or the ending line is
not found in the program, the lines that are found within the range specified are
deleted. If none of the lines specified are found in the program, the message
"LINE NOT EXIST!" is displayed. It is possible to specify F for the first line and
L for the last line. The line immediately following the line deleted after this com
mand is executed becomes the current line.

«Display»

%

%

«Display»

%

%

«Key Operation and Explanation»

• Delete Line 120.

[Q]1Il~[Q]~

(Operation 1Il~ImQ is also acceptable.)

«Key Operation and Explanation»

• Delete all lines from Line 150 through the last line of
the program.

66

(
6) C Command (Call)

The C command calls a specified line and sets the line input state.

Format

I C «Line number> 1 g

<Line number> Specify the program that will be called for correc
tion. If this specification is omitted, the current line
is automatically called.

When a program line is called using this command, its contents are dis
played and the editor enters the line input state. Correct the contents and dep
ress Q] to enter the correction. When correction is complete, the editor auto
matically returns to the edit command waiting state.

After this command is entered, the line called becomes the current line.

Example 1
«Display» «Key Operation and Explanation»

• Call and correct Line 150.
%

150 PRINT A

1-+IiEl~

150 PRINT B

%

67

7) N Command (Name)

Example 1

The N command changes the name of a program.

Format

N «Program name» Id

<Program name> Specify the new program name. The program name
must be a character string consisting of capital al
phabet letters and numbers, beginning with a capi
tal letter and not exceeding 8 characters.

«Display»

%

When this command is executed, the old program
name is displayed in the format "OLD
PROGRAM NAME <Program name>". When
the program name is omitted, the program name
does not change and the current program name is
displayed.

«Key Operation and Explanation»

• Change the name of program "AAA" to "BBB".

INI~~~QJ

OLD PROGRAM NAME AAA
%

68

(

8) G (Get) Command
The G command reads a character string from a character me on a disk. The

character string is treated the same as program entry through the keyboard and
a syntax check is performed.

Format

G < File specification> Id

<File specification> Specify the character file that will be read. If
the specified file is not found on the disk,
the message "< File specification> NOT
FOUND!" is displayed and the editor enters
the edit command waiting state.

A character string which is read from a character me using this command is
entered to the editor. If a syntax error is found in the character string which is
read from the me, reading is stopped temporarily and the line is displayed with
the cursor positioned at the error. When the error is corrected and ~ is de
pressed,readingisresumed.

Example
«Display»

%

200 A=B*C

«Key Operation and Explanation»

• A character me "ABC.LST" with the following con
tents is read and entered:

121olo1LJIAI=1 81*1 cicRIlFI2111 oly pi RINIT 1~llFI
1}

Syntax error

21 0 P R NT ... Suspended due to to the syntax error

- 8El II NSE RTIIIJ ... Correction

210 PRINT

%
g Correction completed

• Line 200 and 210 are entered after the operation
above.

69

Note: Program line entry from a character me is treated the same as an
entry through the keyboard. So, if a program line whose line number
has already been used in the program in the memory is specified with
program line entry from a character me, the program line in memory is
updated to the contents specified by the character string read from the
character file.

9) M Command (Merge)
The M command merges a part of a BASIC program with another program.

The range of program lines that will be merged can be specified. Only BASIC
programs created by this editor and consisting of an intermediate code can be
merged. Secured programs cannot be merged.

Format

M < Program specification> « Starting line> (, < Ending line>]] Q]

<Program specifica~ion> Specify the program that will be
merged. When the drive name is
omitted, the current drive is auto
matically specified. File type BAS
may be omitted.
If the specified program is not
found, the message" < Program
name> NOT Fa UNO! " is dis
played and the editor returns to the
edit command waiting state.

<Starting line> [, <Ending line>] Specify the part of the program
that will be merged by line num
bers. The method of specification
is similar to that of the D com
mand. When the merge range spe
cification is omitted, all program
lines are merged.

70

(

(

Example
«Display»

%

%

lOO
t?

200-

%

«Key Operation and Explanation»

• Merge lines 100-200 of program "XYZ" on the disk
in drive A with the program in memory.

IMOO[YJ[lJ[]J[QJ[QJGJ~[QJ[QJg
• The merged program lines are listed.

10) E Command (End)
The E command releases the programming mode and sets the system in the

operating mode.

Format

E !d

«Display» «Key Operation and Explanation»

$

71

11) l! Command (Up/Down)
This command is executed by the cursor control keys rn and rn. This oper

ation displays the line immediately preceding (rn) or following (rn) the line
currently displayed and sets the line input state. A warning buzzer sounds if rn
is depressed at the beginning of a program or rn is depressed at the end of a
program.

Format

rn or rn

«Display»

120 PRINT A

110 A=A+1

110 B=A+1

%

«Key Operation and Explanation»

rn
8[8]

72

(

(
2.6 Debugging

Debugging is fmding the incorrect parts of a program and correcting them.
When the RUN command in which "/D" is specified is executed, the program
is executed in the debugging mode and program can be checked during execu
tion. Program errors that are found are corrected using the editor.

2.6.1 Debugging Mode Outline

In the debugging mode, the program can be executed statement by state
ment. That is, the instructions in the program are executed one by one so that
the execution procedure of the program can be checked.

When program execution starts in the debugging mode, program exectuion
is suspended and the debugging prompting "@" is displayed together with the
program name, line number, and statement number as shown below, immedi
ately before the first statement is executed.

ABC.10.@_

f 1 L Statement no. (0)
Program
name Line no.

Numbers (0, 1, 2, .. .) are assigned to statements (muItistatements) written
on the same line. As shown in the above example, however, statement 0 is not
displayed.

Line no. -- 1 00 P R I NT A: LET A=A+l :GOTO 90

Statement j I j
no. o 2

73

This temporary suspension is called the debugging command waiting state.
The following seven debugging commands can be entered.

1) R command Restarts program execution.
2) S command Executes one statement.
3) T command Specifies the section that will be traced.
4) B command Sets a breakpoint.
5) U command Releases a breakpoint.
6) D command Displays the contents of a variable.
7) E command Ends the program.

Trace is program execution in which the line and statement number of the
statement currently being executed is displayed. The execution results of each
statement can be checked one by one.

A breakpoint is a point set in a program where program execution is tempo
rarily suspended. In the debugging mode, program execution is temporarily sus
pended just prior to the execution of a statement set as a breakpoint, and the
system enters in the debugging command waiting state.

For example, the result of a calculation by a program is different than expect
ed. If breakpoints are set at several points in the calculation routine and the
value of the variable is checked at these points, the statement responsible for
the incorrect calculation result can be found easily.

Even if the execution of a program is started without specifying" /0", pro
gram execution can be changed to debugging mode execution by depressing
ICTRU/[A] .

When the ICTRLI/[A] keys are depressed, program execution is tempo
rarily suspended and the system enters the debugging command waiting state.

Note: When the sub keyword THEN is included in the IF statement, the state
ment is treated as two statements like the example below.

400 IF A=100 THEN

Statement
no.

T
o

PRINT IIA=lOOIl:GOTO 800

I T
2

74

2.6.2

(1)

Debugging Commands

R Command (Run)
The R command restarts program execution starting from the statement

being displayed (i.e. the statement indicated by the line number and statement
number immediately preceding the prompting). When a breakpoint is set in the
program, the program stops and the system enters the debugging command
waiting state just prior to statement execution. When the specified trace section
is executed, the line and statement numbers are displayed one by one during ex
ecution.

Format

R ~

(2) S Command (Step)
The S command executes a statement being displayed (i.e. the statement in

dicated by the line number and statement number, immediately preceding the
prompting). The system enters the debugging command waiting state after one
statement is executed.

Format

Note: The S command has no keyword. Simply depressing the Q] key exe
cutes the S command.

(3) T Command (Trace)
The T command specifies a section for trace execution, in which a program

is executed and the line and statement number of each statement are displayed
as they are executed. The T command only specifies a trace section; actual trace
execution is performed when program execution is restarted and the statements
in the trace section are executed. A trace section can be specified in the sub
program called using the CALL statement.

Only one trace section can be specified in each program. If more than one
trace section is specified, only the last trace section specified is valid.

75

Format

T ((< Program name > J < Starting line> (, <Ending line> J Id

<Program name> When the trace section is specified in the sub
program that will be called by the CALL statement,
specify the subprogram name. If this specification
is omitted, the trace section is set to the program
whose execution is suspended temporarily. There
fore, when the system is in the debugging command
waiting state in a subprogram, the name of the main
program must be specified even if the trace section is
set in the main program.
The program name must be specified with capital
alphabet letters and numbers.

<Starting line> [, <Ending line> J
Specify a trace section by line number(s) as follows:
a) When only the starting line is specified:

Only that line is set to a trace section. If the line
specified is not found in the program, the specifi
cation is valid but tracing is not actually per
formed.

b) When both the starting line and ending line are
specified:
The section from the first statement on the line
specified < Starting line> through the last state
ment on the line specified < Ending line> is trace
section. If a line number specified in a program,
those lines actually included in the specified sec
tion are traced. The relationship between the start
ing line and ending line are shown below.

Starting line < Ending line ... Section specified
Starting line = Ending line ... The line only
Starting line > Ending line ... Error

76

(4) B Command (Break)

c) When the trace section specification is omitted:
The trace section currently set is displayed as fol
lows:
< Program name>. < Starting line>, < Ending
line>

d) When a negative line number is specified:
The trace section specification is reset.

Note: If an error is caused by the T command with an
incorrect operand, the trace section currently set
is released. An etTecive trace range is limited to
one program. For example, even if a section con
taining the CALL statement is specified as a
trace section, tracing is not performed in the sub
program called by the CALL statement.

The B command sets a breakpoint at the line number specified. One break
point can be set with each B command. Up to four breakpoints can be set in a
program. Program execution in the debugging mode is suspended immediately
before executing a statement set as a breakpoint and the system enters the
debugging command waiting state. The B command can also be used to set a
breakpoint in a subprogram.

Format

B CC <Program name>.) <Line No.> C<Statement No.») ~

Program name Specify the name of the subprogram
when a breakpoint is set to the sub
program that will be called by the
CALL statement. For details, refer to
the explanation of the T command.

<Line No.> [. < Statement No.> J .. Specify the numbers of the line and
statement where the breakpoint will be
set. If the statement number is omitted,
o is automatically specified.

77

(5) U Command (Unbreak)

When the B command is executed to set
a breakpoint when four breakpoints
have already been set, the message
"ALREADY 4 BREAK POINTS
EXIST!" is displayed together with the
line and statement numbers of the four
breakpoints already set.

If all operands are omitted, the program
name, line numbers, and statement
numbers in which breakpoints are set are
all displayed. If there are no breakpoints
set, the message "NO BREAK POINT!"
is displayed.

The U command releases a breakpoint.

Format

U ((<Program name>.] <Line No.> (.< Statement No. >]] g

<Program name> Specify the name of the program in
which the breakpoint will be released.
For details, refer to the explanation of
the B command.

<Line No.> (. <Statement No.>] .. Specify the number of the line and state
ment of the breakpoint that will be re
leased. If the specified breakpoint is not
set in the program, the message "NOT
EXIST!" is displayed together with all
breakpoints currently set. If all operands
are omitted, all of the breakpoints are re
leased. If breakpoints are not set, the
message "NO BREAK POINT!" is dis
played.

78

)

(

(6) D Command (Display)
The D command displays the current value of a variable.

Format

D <Variable name> Id

<Variable name> Specify the name of the variable whose current
value will be displayed. When a varible specify its
name with the subscript.

(7) E Command (End)

The display format is as follows:
- Arithmetic variables

Same as the PRINT statement without a format.
-String type variables
X" <Hexadecimal code>", "character string"

When a specified variable is not defined in a pro
gram, the message "VARIABLE NAME NOT
FOU N D!" is displayed.

The E command ends program execution. The E command has the same
function as the END statement.

Format

E !d

79

2.6.3 Debugging Example

This section gives a step-by-step explanation of a simple program debugging
example. Underlined portions of the display indicate inputs through the key
board. .,J indicates the ~ key.

«Display»
$LOAD DEBUG.J

$LIST
DEBUG.131
10 READ A, B
20 DATA 23, 24
30 C=A+B

40 PRINT C
50 C=A*B
60 PRINT C
70 END

«Explanation»

This is a simple program to
output the results of addition

and multiplication.

$/D.J • --------- Execution is started in the debugging mode. RUN DEBUG is
omitted.

DEB U G • 1 0@B40..J ~.--- A breakpoint is set on Line 40.

DEB U G • 1 a @ B .J The breakpont is verified.

DEBUG.40
DEB U G • 1 O@ T 6 0, 7 0 .. · -- A trace section is specified between Lines 60 and 70.

DEB U G • 1 a @ T ..J The trace section is verified.

DEBUG.60,70
DEB U G • 1 0@-1 ... ---- One statement is executed using the S command.

DEB U G • 20@ D A..J • The value of variable A immediately following the execution of

2 3 Line 10 is displayed.

DEB U G • 20@DB.J ... --- The value of variable B is also displayed.

24
DEB U G • 2 O@R.J ... ·>-----Executionisrestarted.

DEB U G • 4 0 @ D C..J • Program execution is temporarily suspended at the breakpoint. The

47 value of variable D at this point in program execution is displayed.

DEB U G • 4 0@R..J47 _ .. --- Execution is restarted.

60 : 552 .. This is an output caused by tracing. 60 and 70 are line numbers.

70: _---......1
$

80

2.7 Functions of Control Key

Several functions can be performed by simultaneously depressing ICTRL!
and one of several predetermined keys. These are called console control opera
tions, whose and their functions are described below.

• Abort Program Execution

Operation: ICTRU/[Q

Function: Aborts program exection. Like ICANCEU, this operation is also
valid to end of the output of lists, etc.

• Hard Copy of the Display

Operation: Ic T R U/[E]

Function: Outputs the display contents to the printer. The printer handler
must be loaded in memory to use this function.

• Temporary Suspension of Output to the Display

Operation: Ic T R U/[S]

Function: Suspends output to the display.
When output on the screen exceeds the display capacity, this opera
tion stops scrolling to permit confIrmation.

81

• Restart Output to the Display

Operation: ICTRU/!Qj

Function: Restarts output to the display after temporary suspension by
ICTRU/~

• Break for Debugging

Operation: ICTRU/[8]

Function: Sets the system in the debugging command waiting state during
program execution. (See "2.6 Debugging").

• Switch Between Smooth Scroll and Line Scroll

Operation: ICTRU/~

Function: Switches the display from line scroll to smooth scroll, or vice versa.

• Elimination of Click Tone

Operation: ICTRU/ITl

Function: Eliminates the click sound that confirms key operations. The
sound is restored by depressing ICTRU/ITl again.

82

Chapter III ---- Language
Canon BASIC

Canon AS-100

This chapter explains the detailed specifications of Canon BASIC language.

Contents

1. Program Elements. 1
1.1 Program Lines. 1
1.2 Constants. 2
1.3 Variables.. 4
1.4 Array Variables. 5
1.5 Arithmetic Operators. .. 6
1.6 Relational Operators and Expressions. 7
1. 7 Logical Operators and Expressions. 8
1.8 Arithmetic Expressions .. 13
1.9 String Expressions ... 14
1.10 Files .. 14
1.11 Logical Device Numbers. .. 15

2. Instructions 16
2.1 Formats. .. 17

2.1.1 Program Instruction Elements. .. 17
2.1.2 Symbols Used in Formats. .. 17
2.1.3 Format Interpretation Examples 18

2.2 Declaration Instructions .. 19
2.2.1 REM Statement ... 19
2.2.2 DIM Statement. ... 21
2.2.3 OPTION BASE Statement .. '. .. 24
2.2.4 INTEGER Statement .. 25
2.2.5 DEFKEY Statement. .. 27

2.3 Assignment Instruction. .. 29
2.3.1 LET Statement. .. 29

2.4 Input Instructions. .. 32
2.4.1 INPUT Statement 32
2.4.2 INPUT USING Statement. .. 40

2.5 Output Instructions ... 44
2.5.1 PRINT Statement. ... 44
2.5.2 PRINT USING Statement

FORMAT Statement. .. 58
2.6 Branch Instructions ... 66

2.6.1 GO TO Statement. ... 66
2.6.2 GOSUB Statement

RETURN Statement. .. 67
2.6.3 IF Statement. .. 70
2.6.4 ON Statement. .. 77

2.7 Loop Instructions. .. 80
2.7.1 FOR Statement

NEXT Statement. .. 80
2.8 Constant Defmition Instructions 85

2.8.1 READ Statement
DAT A Statement. .. 85

2.8.2 RESTORE Statement .. 88
2.9 Program Control Instructions .. 89

2.9.1 END Statement ... 89
2.9.2 BYE Statement. ... 90

2.10 Function Defmition Instruction 91
2.10.1 DEF FN Statement .. 91

2.11 Program Calling Instructions .. 93
2.11.1 CALL Statement

PARAMStatement .. 93
2.11.2 FREE Statement .. 98

2.12 File-Related Instructions ... 101
2.12.1 OPEN Statement ... 101
2.12.2 CLOSE Statement .. 105
2.12.3 CHANGE Statement. ... 107
2.12.4 PUT Statement. .. 109
2.12.5 GET Statement. .. 119
2.12.6 Other Inputs/Outputs. .. 126

2.13 Matrix-Related Instructions .. 131
2.13.1 Before Using Matric Related Instructions. .. 131
2.13.2 Notes to Use of Matrix Related Instructions 137
2.13.3 MAT INPUT Statement. 137
2.13.4 MAT READ Statement. 139
2.13.5 MAT PRINT Statement. 140
2.13.6 MAT MOV Statement .. 142
2.13.7 MAT ADD Statement .. 143
2.13.8 MAT SUB Statement ... 144
2.13.9 MAT MULStatement .. 145
2.13.10 MAT DIVStatement ... 147
2.13.11 MAT SUM Statement .. 148
2.13.12 MAT CSUM Statement. 149
2.13.13 MAT RSUMStatement. 150
2.13.14 MAT IDN Statement ... 151
2.13.15 MAT INVStatement ... 152
2.13.16 MAT TRNStatement. .. 153
2.13.17 MAT DET Statement. 154
2.13.18 MAT MLT Statement .. 155
2.13.19 MAT MAX Statement. 156
2.13.20 MAT MIN Statement. .. 157

ii

(

(
3. Built-in Functions. .. 159

3.1 Arithmetic Functions. .. 159
3.1.1 EXP Function .. 159
3.1.2 LOG Function .. 159
3.1.3 LGT Function .. 160
3.1.4 SQR Function. .. 161
3.1.5 FRC Function .. 161
3.1.6 RND Function. .. 162
3.1.7 ABS Function .. 163
3.1.8 SGNFunction .. 163
3.1.9 FIXO Function .. 164
3.1.10 FIX5 Function ... 165
3.1.11 FIX9 Function 166
3.1.12 FIXE Function. .. 166
3.1.13 INT Function .. 167
3.1.14 SIN Function ... 168
3.1.15 COS Function .. 168
3 .1.16 TAN Function. .. 169
3.1.17 ASN Function .. 170
3.1.18 ACSFunction .. 170
3.1.19 ATNFunction .. 171
3.1.20 RAD Function ... 171
3.1.21 DMS Function ... 172
3.1.22 ARD Function ... 173
3.1.23 ADS Function .. 173
3.1.24 MOD Function ... 174
3.1.25 MAX Function ... 175
3.1.26 MIN Function .. 176
3.1.27 TIM Function .. 176
3.1.28 PI Function .. 177
3.1.29 SIZE Function. .. 178
3.1.30 ERR Function .. 178
3.1.31 EOF Function .. 179
3.1.32 %CURXFunction .. 181
3.1.33 % CURY Function .. 181

3.2 String Functions .. 183
3.2.1 LEN Function. .. 183
3.2.2 IDX Function .. 184
3.2.3 VER Function .. 185
3.2.4 NUM Function ... 186
3.2.5 CHR$ Function .. 187
3.2.6 ASC$ Function ... 188
3.2.7 COD Function ... 189
3.2.8 STR$ Function ... 190

iii

3.2.9 INPUT$ Funtion ... 193
3.2.10 KEY Function .. 195
3.2.11 FKEYFunction .. 198
3.2.12 COM$ Function .. 201
3.2.13 HEX$ Function .. 202
3.2.14 TOD$ Function .. 203

4. ISAM Function ... 206
4.1 What Is ISAM _. .. 206

4.1.1 Indexed Access. .. 206
4.1.2 Keys .. 208

4.2 Canon BASIC ISAM Function. .. 209
4.2.1 General. .. 209
4.2.2 Records ... 210
4.2.3 Primary Keys and Alternate Keys 211
4.2.4 Files .. 213
4.2.5 Pointer .. 213
4.2.6 Limitations and Notes for Use 215

4.3 How to Use ISAM Instructions 216
4.3.1 Loading the IS AM Library 216
4.3.2 Design of Files ... 216
4.3.3 Variables .. 217
4.3.4 Return Code ... 218
4.3.5 How to Interpret Formats 218

4.4 Basic ISAM Instructions ... 219
4.4.1 ISAM OPEN Statement 219
4.4.2 ISAM CLOSE Statement 224

4.5 ISAM Data Write Instructions 225
4.5.1 ISAM PACK Statement. .. 225
4.5.2 ISAM WRITE Statement 228
4.5.3 ISAM REWRITE Statement. .. 231

4.6 ISAM Data Read Instructions 235
4.6.1 ISAMUNPACKStatement. 235
4.6.2 ISAM RREAD Statement .. 236
4.6.3 ISAM START Statement. 240
4.6.4 ISAM SREAD Statement. 242

4.7 Other ISAM Instructions. 246
4.7.1 ISAM DELETE Statement. 246
4.7.2 ISAM SECUR Statement. 248

4.8 Return Code .. 250
4.9 ISAMUtilityPrograms .. 253

4.9.1 ISGEN Utility .. 253
4.9.2 IDXINF Utility ... 259

4.10 How To Calculate File Size ... 261

iv

5. Graphic Functions .. 263
5.1 Graphic Functions ... 263

5.1.1 Coordinates .. 263
(

5.1.2 Palette and Display Color Specification 265
5.1.3 Current Point .. 268
5.1.4 Line Types ... 269
5.1.5 Pattern .. 269
5.1.6 How to use Graphic Instructions 270

5.2 Graphic Declaration Instructions 272
5.2.1 DEFCOL Statement .. 272
5.2.2 COLOR Statement. ... 273
5.2.3 ORIGIN Statement ... 275

5.3 Graphic Drawing Instructions 277
5.3.1 PSET Statement. ... 277
5.3.2 LINE Statement. ... 278
5.3.3 RECT Statement ... 280
5.3.4 CIRCLE Statement ... 281
5.3.5 FAN Statement. .. 283
5.3.6 ELLIP Statement ... 284
5.3.7 MARK Statement .. 285

5.4 Other Graphic Instructions ... 287

(
5.4.1 TEXT Statement ... 287
5.4.2 PAINT Statement .. 288
5.4.3 GGET Statement. .. 291
5.4.4 GPUT Statement ... 293
5.4.5 CONSOLE Statement. .. 295
5.4.6 PMODE Statement ... 298
5.4.7 PINPUT Statement ... 300
5.4.8 HCOPY Statement. ... 301
5.4.9 POINT Function .. 302

5.5 Application Examples .. 303
5.5.1 Line Chart ... 303
5.5.2 Bar Chart .. 305
5.5.3 Pie Chart .. 306

(

v

6. Error Messages. .. 310

Appendix 1 Character Codes , 316

Appendix 2 Reserved Words .. 317

Appendix 3 Commands. .. 318

Appendix 4 Syntax Table .. 319

Appendix 5 Display Control Codes. .. 322

Appendix 6 Calling a Machine Language Program. .. 326

vi

1.
(

1.1

Program Elements

This section gives definitions, limitations, and detailed explanations of the
elements used in preparing Canon BASIC language programs.

Program Lines

As shown below, each program consists of program lines with numbers.

1 a DIM A(100)
20 OPEN #l,IA:DFILE.DAT"
30 REM ++DATA READ++
40 1=1+1
60 GET #1 A (I) : GOTO 40
70 FOR J=l TO 1-1

.:>

Program lines are executed in numerical order unless there are branch direc
tives.

A program line can contain several statements. Statements on the same line
are executed from the beginning of the line. The statements are separated by a
colon (:). A line consisting of more than one statement is called a multi
statement line. Depress I±!l at the end of each line.

A statement is the unit by which instructions are executed. Each statement
consists of a keyword and an operand. A keyword is a word consisting of capital
alphabet letters that indicates the instruction's function. An operand is the part
in which the detailed contents of the instruction are specified. These elements
are described in detail below.

c) Statement

End or
d) Keyword e) Operand Statement Statement line

b) Line number l
~ .r-------____.. r---~ ... ""'----......

•
#1 A:GOTO 200~ a) ~~~gram _ 2 5 a OPE N #l,ILPT:" GET

t
Multi-statement
Separator

a) Program line A program line can contain up to 127 characters.

b) Line number .. , There must be a line number at the beginning of each line.
The number must be an integer within the range: 1-32767.
During program creation/editing, line numbers are assigned
automatically by the automatic numbering function of the
editor.

c) Statement Any number of statements can be included on a program
line as long as the total number of characters does not
exceed 127. Some types of statements do not allow multi
statements. A colon (:) mut be placed between statements
on the same line.

d) Keyword The keyword is determined according to the function of the
instruction and is defined in Canon BASIC.

e) Operand The operand is specified according to the syntax rules for
each statement.

1.2 Constants

Data used in programs are divided into the following three types:

1) Real Number-Type Constant

This is a number within the range: 1 x 1O-64S: X < 1 X 1064 • It can be assigned
to a real number-type variable as described later. It is treated as 8-byte data.

Real number-type constants can be specified with either of the following two
types of notation.

Floating type Indicated with a real number of up to 14 digits.

Examples: 1.234, -0.2345, 10000000

E type Indicated by a real number with a mantissa of up to 14 digits
and an exponent of up to 2 digits (-64S:x <64).

Examples: 1.23E12, -5.687E-12

2

2) Integer-Type Constant

This is an integer with the range: -32768 s:.xs:.32767. It can be assigned to
an integer-type variable as described later. It is treated as 2-byte data.
Examples: 123, -5232, 1000

Note: An integer within the range -32768 s:. x s:. 32767 can be assigned
to either a real number-type or an integer-type variable. It is processed
according to the type of variable to which it is assigned.

3) String Constant

This is character string consisting of I-byte characters. It can be assigned to a
string variable as described later. A string constant must be enclosed by double
quotation marks (").
Examples: "ABC", "1234" (different than the numerical value 1234)

A string constant can also be indicated by a hexadecimal figure in ASCII
code. In this case, prefix the symbol" &" to the 2-digit hexadecimal code. Refer
to "Appendix 1. Character Codes" for the ASCII Codes.

In this manual, 2-digit hexadecimal code (1 byte) are indicated in the format

"XXH"·

Examples: "&41" --+ "A", "&31&32&33" --+ "123"

Note: Specify"" or && respectively when a quotation mark (") or "&" is
used as a character in a string constant.

Examples: "A""12"" +" "A&&B"

~
A" 12" + A&B

3

1.3 Variables

A variable is used to temporarily store data in a program for processing.
The name of a variable is specified by a character string of up to 32 alphabet

letters and numbers, beginning with an alphabet letter. Keywords, sub
keywords, etc., called reserved words, cannot be used for variable names. (See
"Appendix 2. Reserved Words".)

Variables are divided into the following three types:

I) Real Number-Type Variable

This is an 8-byte variable that can store a real number-type arithmetic value.

Examples: ABC, DATI

2) Integer-Type Variable

This is a 2-byte variable that can store an integer-type arithmetic value. The
name of the variable must be defmed in advance by the INTEGER statement.
(See "2.2.4 INTEGER Statement.")

Examples: ABC, DATI after execution of "INTEGER ABC, DAT1"

3) String Variable

This is a variable (usually 8 bytes) that can store a character string. In a string
variable, 1 byte has a 1 character capacity. For example, an 8-byte string variable
can store a string of 8 characters. The length of a string variable can be defmed
within the range 1-255 bytes by the DIM statement. (See "2.2.2 DIM state
ment".)

Suffix the symbol "$" to the string variable name.

Examples: ABC$, NAME 1 $

All real number-type and integer-type variables are arithmetic variables.
The same name cannot be used for variables even if their types are different.

Correct variable names: A, XYZ, VERTICAL, NAME$

Incorrect variable names: 12XY A number cannot be used as the first
character.

LET Reserved words cannot be used.
$ABC "$" must be suffixed to the variable

name.

4

1.4 Array Variables

Array variables are convenient when handling a group of the same kind of
data items, because all data items in the group can be handled using the same
variable name. All array variables with the same name can be processed at once
in the PUT statement, the GET statement, and matrix instructions.

An array variable is defined using the DIM statement.

Example: 1 0 DIM ABC (40)

Executing the example above defmes an array variable with 40 elements,
from ABC(1)-ABC(40). It is possible to alter the starting subscript to 0 using
the OPTION BASE statement. Refer to the explanations of the DIM statement
and the OPTION BASE statement for details.

Real number-type variables, integer-type variables, and string variables can
all be defmed as array variables. Array subscripts must be integers in the range
0-32767.

In array subscripts there is no restriction on dimension. It is possible to use
any dimension of array subscripts within the range allowed by the memory
capacity.

Defming array variables:

DIM A(3) -+ A(1), A(2), A(3)
DIM X(2,2) -+ X(1,!), X(1,2), X(2,!), X(2,2)

Two-dimension array

5

An asterisk (*) can be specified instead of a subscript to handle all defmed
array variables as one block. When an asterisk is specified, all array variables
with the same name are handled as a block regardless of their dimension.

10 DIM A(5) 10 DIM A(5)

80 GET #lA(1),A(2),A(3),A(4),A(5) 80 GET #1 A(*)

For example, array variables of more than one dimension can be specified
with an asterisk that corresponds as follows:

Under the defmition of DIM X(3,3):
X(*) ~ X(1, 1), X(1,2), X(1,3), X(2,1), X(2,2), X(2,3), X(3,1),

X(3,2), X(3,3)

General specification of array variables using an asterisk is available for the
following statement:

CALL, PARAM, MAT, PUT, GET.

1.5 Arithmetic Operators

Arithmetic operations in a program are performed using the operators listed
below. An operation which mixes data of different types causes an error.
(Integer-type and the real number-type variables can be mixed.)

o Addition
o Subtraction
o Multiplication
o Division
o Power

o Priority operation

+

*
/
** (When X <0, Y must be an integer in power
calculations X**Y.)
(,)

The calculation is carried out according to the following priority: parentheses,
power, multiplication or division, and addition or subtraction. The addition
operator also connects character strings.

" ABC" + "XYZ" - " ABCXYZ"

6

(

1.6 Relational Operators and Relational Expressions

Relational operators that are used to compare the values of data in programs
are listed in the following table.

Relational operator Representation

= (Equals) -
> (Greater than) >
~ (Greater than or equal to) >=
< (Less than) <
s; (Less than or equal to) <=
#= (Not equal to) <>

Relational operators compare either two numeric values and or two charac
ters. A numeric value and a character string cannot be compared. Characters are
compared based on their values in ASCII code.

An expression using relational operators is called a relational expression. In
relational expressions the value of the expression is -1 (true) when the condi
tions are satisfied. When the conditions are not satisfied, the value of the expres
sion is 0 (false). Program examples using relational expressions are shown
below. Refer to the explanations of the IF and LET statements for details.

Relational expressions and logical expressions which have specified condi
tions, described later, are also called conditional expressions.

[Ex. 1.6-11

90 IF A>O GOTO 300

When variable A on line 90 is a positive value, the condition of the IF state
ment is satisfied and program execution branches to line 300.

7

[Ex. 1.6-2]

100 X=-((A>O)+(B>O)+(C>O))

A check is performed to determine the values of A, B, and C.
If A=3, B=-l, andC=-5
Then A>O: true (-1), B>O: false (0) and C >0: false (0).

So - « -1) + 0 + 0) is calculated and 1 is assigned to X.

1.7 Logical Operators and Logical Expressions

Logical operators are used to specify logical expressions (compare various
expressions) used in IF statements, etc. The following four types of logical oper
ators are available:

Logical operator Format

AND (Logical product) < Expression 1 > AND < Expression 2 >
OR (Logical sum) <Expression 1 >OR <Expression 2 >
XOR (Exclusive OR) <Expression 1> XOR <Expression 2 >
NOT (Negation) NOT <Expression 1 >

1) AND (Logical Product)

The result is true (-1) only when the conditions of < Expression 1 > and
<Expression 2> are both true. Otherwise the result is false (0).

When <Expression 1> and <Expression 2> are both arithmetic expres
sions (described later), their values are fIrst converted to 2-byte integer type
values. Then they are compared bit by bit. The resulting bit is 1 only when the
two corresponding bits are 1. Otherwise the resulting bit is O.

8

2) OR (Logical Sum)

The result is false (0) only when the conditions of <Expression 1> and
<Expression 2> are both false (0). Otherwise the result is true (-1).

When both < Expression 1 > and < Expression 2 > are arithmetic expres
sions, their values are flrst converted to 2-byte integer type values. Then they
are compared bit by bit. The resulting bit is 0 only when the corresponding bits
are O. Otherwise the resulting bit is 1.

3) XOR (Exclusive OR)

The result is false (0) only when the conditions of <Expression 1> and
< Expression 2> are both true (-1) or both false (0). Otherwise the result is
true (-1).

When < Expression 1 > and < Expression 2 > are both arithmetic expres
sions, their values are fIrst converted to 2-byte integer type values. Then they
are compared bit by bit. The resulting bit is 0 only when the corresponding bits
agree. Otherwise the resulting bit is 1.

4) NOT (Negation)

The result is false (0) when the condition of <Expression 1> is true (-1).
The result is true (-1) when the condition is false (0).

When <Expression 1> is an arithmetic expression, it's value is fIrst con
verted to a 2-byte integer type value. Then the value of each bit of the 2-byte
value is inverted. The resulting bit is 0 when the bit is 1. The resulting bit is 1
when the bit is O.

1. When expressions are conditoinal:

Expression 1 Expression 2 AND OR XOR

True (-1) True (-1) True (-1) True (-1) False (0)
True (-1) False (0) False (0) True (-1) True (-1)

False (0) True (-1) False (0) True (-1) True (-1)

False (0) False (0) False (0) False (0) False (0)

Expression 1 NOT

True (-1) False (0)
False (0) True (-1)

9

2. When expressions are arithmetic:

Integer type -mT (2 bytes) TIT
I IIIIIII~I Value of the expression after conversion

15 14 13 1211 10 9 8 7 6 5 4 3 2 1 0 Bit n

Bit n after Bit n after Bit n in Bit n in Bit n in
conversion of conversion of result result result
expression 1 expression 2 of AND of OR ofXOR

1 1 1 1 0
1 0 0 1 1
0 1 0 1 1

0 0 0 0 0

Bit n after Bit n in
conversion of result of
expression 1 NOT

1 0
0 1

Expressions specified using AND, OR, XOR, and NOT are called logical ex
pressions. Program examples using logical expressions are given next. Refer to
the explanations ofthe IF and LET statements for details.

In all of the examples, the value of variable A is 5 and the value of variable B
is 3.

[Ex. 1.7-1]

Conditional expression of AND

90 IF A>O AND 8=3 GOTO 50

On line 90, A >0: true (5 >0) and B=3: true (3=3), so the result of the ex

pression is true. The condition of the IF sfatement is satisfied and program exe
cution branches to line 50.

10

(

[Ex. 1.7-2]

Arithmetic expression of AND

90 LET X=A AND B

On line 90, bits are compared as shown below and 1 is assigned to variable X.

A=5

2 bytes ~

1~lolololo~
AND of the

AND t t t··· ··· corresponding . .. t t t
bits

B=3 101010101010101010101010101011111
~~! ~~!

X=l 101010101010101010101 0 10101010111

[Ex. 1.7-3]

Conditional expression of OR

100 IF A<=O OR 8=3 GOTO 50

On line 100, A~O: false (5)0) and B=3: true (3=3), so the result of the
expression is true. The condition of the IF statement is satisfied and program ex
ecution branches to line 50.

[Ex. 1.7-4]

Arithmetic expression of OR

110 LET X=A+7 OR 8

On line 110, bits are compared as shown below and 15 is assigned to

variableX.

~2bytes ~
A+7=12 IAOOOilolololojOO11O<fl

OR t t t· ·· ... ~~ofcorresponding ... t t t t

B==3 101010101010101010101010101011111
~~~ .................. ... ...... ~~~~ 

X=15 10101010\0\0\0101010\01 0\1\1\11 1\ 

11 



[EX. 1.7-5] 
Conditional expression ofXOR 

60 IF A-5=0 XOR 8-3>=0 GOTO 50 

70 .. 

On line 60, A-5=0: true (5-5=0) and B-3;;:::0: true (3-3=0), so the 
result of the expression is false. The condition of the IF statement is not satisfied 
and program execution proceeds to the next line. 

[Ex. 1.7-6] 
Arithmetic expression ofXOR 

70 X=A XOR 8 

On line 70, bits are compared as shown below and 6 is assigned to variable X. 

A=5 

2b~" ~ 
I~I 01 01 010 jOOO101J 

XORof 
X 0 R t t ...... corresponding· .. ••. t t t 

bits 

B=3 101010101010101010101010101011111 
!! ................................. !!! 

X=6 101010101010101010101010101111101 

[Ex. 1.7-7] 
Conditional expression of NOT 

120 IF NOT A>O GOTO 50 

130 ....... . 

On line 120, A>O: true (5)0), so the result is the negation of this, false. 
The condition of the IF statement is not satisfied and program execution pro
ceeds to the next line. 

12 

( 



( 
[Ex. 1.7-8] 

Arithmetic expression of NOT 

40 X=NOT A-5 

On line 40, bits are inverted as shown below and -1 is assigned to 
variable X. 

A-5=O 

X=-l 

2bytes ~ 

roNillAi§! 0 ! 0 ! 0 10 jOOOOO{il 
NOT of 

! ! !. . . ... corresponding • .• ! ! ! 
bits 

111111111111111111111111111111111 
• A negative value of integer-type 
data is expressed as 2.5 complement. 

1.8 Arithmetic Expressions 

Arithmetic expressions are expressions that represent values (real number
type and integer-type constants), arithmetic variables, and those values and 
variables combined by arithmetic, relational, and logical operators, etc. Logical 
and relational expressions are considered as arithmetic expressions because 
they have a value of -1 when their result is true and 0 when their result is false. 

The types of arithmetic expressions are shown below. 

324 .............. Integer-type constant 
1.5E23 ........... Real number-type constant 
A ............. " Arithmetic variable 
A+45 
A*(B+C) 
A AND B ......... Logical expressions 

C > =45 .......... Relational expression 

Calculation results of arithmetic expressions vary depending on the types of 
constants and variables (integer-type and real number-type) and also upon arith

metic operations. 

1) Addition, subtraction and multiplication: 
Integer-type and integer-type .... 
The result is an integer-type value. When the result exceeds the integer-type 
range (-32768S=x <32767), it is automatically converted to a real number

type value. 

13 



Integer-type and real number-type or real number-type and 
real number-type .... 
The result is a real number-type value. Integer-type values are automatically 
converted to real number-type values before calculation. 

2) Division and power: 
All results are real number-type values. Integer-type values are automatical
ly converted to real number-type values before calculation. 

1.9 String Expressions 

1.10 

String expressions consist of string constants, string variables, and character 
strings and combine those constants and variables. 

Various string expressions are shown below. 
"ABC" ........ String constant 
"&41&42" 
NAME$ ........ String variable 
A$+B$ 
C$+"XYZ" 

Files 

Files are classified into two general categories-program files and data files. 
There are also files managed exclusively by the operating system. 

Each file has a name. File names must be specified when handling the file. 
File names can be expressed with up to 8 capital alphabet letters or numbers, 
beginning with a capital letter . 

Up to 128 files can be stored on a disk. 
Refer to the "CP/M-86 User's Manual" for details about disk handling. 

Data is read from or written to a data file in a program by specifying a logical 
device number (described next). At this time, the operating system reads/writes 
data from/to files in 128-byte units. For details about processing, refer to "2.12 
File-Related Instructions. " 

14 



1.11 

( 
Logical Device Numbers 

Numbers must be defmed in advance to specify execution of input/output 
from/to files on disks or external peripheral devices. These numbers are called 
logical device numbers. Logical device numbers are defmed by the OPEN state
ment which is described later. The defmitions are canceled by the CLOSE state
ment. 

Nine logical device numbers (1-9) can be defmed. So up to 9 data files 
and/or I/O devices can be defined at the same time. 

[Ex. 1.11-11 

40 OPEN #l,IA:DATl" 

140 PUT #1 A,B,C 

400 CLOSE #1 

The OPEN statement on line 40 in the above program defmes the data file 
"DATI" in drive A as logical device number 1. On line 140, the PUT statement 
is executed against logical device number 1 and the contents of the variables A, 
B, and C are written to the data file. The CLOSE statement on line 400 cancels 

the defmition. 
Refer to "2. Instructions" for details of the respective statements. 

15 



2. Instructions 

This section explains the functions, formats, procedures, etc. of program in
structions using program examples. 

Each explanation contains the following: 

eHeading: 

eFunction: 

eFormat: 

The keyword and the full name of the instruction are shown. 

The function of the instruction is described briefly. 

The syntax ofthe instruction is shown. For the rule of interpreta
tion. Refer to "2.1 Formats". 

e Explanation: The details of the function, procedures for its use, limitations, 
etc. of the instruction are explained. The most important parts 

eNote: 

eAdvice: 

eExample: 

are underlined. 

The points that could lead to the misuse of the instruction are 
emphasized. 

Programming techniques and other hints are given for more effi
cient use of the instruction. 

A program example is given to explain how to use the instruc
tion. Lines not needed for explanation are omitted. Line num
bers are for the sake of convenience only. 

16 

( 



( 
2.1 Formats 

This section explains individual program instructions. Prior to the explana
tion, the rules for interpreting the formats of program lines is described. 

2.1.1 Program Instruction Elements 

Instruction word 
or keyword .......... Indicates the function of the instruction. It consists of 

capital alphabet letters. 

Operand ............ Specifies the detailed contents of the instruction. It is 
written after the keyword. 

Statement. .......... An instruction consisting of a keyword and the 
operand that specifies an action. 

[Example] 

Statement 

LET ...... A=B+C 

Keyword Operand 

The example above is the LET statement consisting of the keyword LET 
and the operand A=B+C. 

2.1.2 Symbols Used in Formats 

< > ..... Indicates one element in an operand. 

( ) ...... Indicates that the enclosed element can be omitted. 

} ...... Anyone of the elements between the brackets can be selected . 

...... ..... Indicates that the operand can be repeated as necessary. 

L.....J •••••• This indicates one or more spaces. 

17 



2.1.3 Format Interpretation Examples 

Format 1 

Can be omitted 

PRINTL.....J[#{<-I---·'-9>---}----..]·[ <String. > 
CD ExpressIOn 

< Arithmetic> < Arithme.tic > 
Variable 

Keyword 

Format 2 

Space Select any of 
the elements. 

ExpressIOn 

<~ub- . > 
tnstructIOn 

'- See Note I Elements in the operand 
can be continued as 
needed. 

This part of the format is shown separately to 
prevent the format from being too complex. 

< Sub-instruction> = FEED « Arithmetic Expression» 

SPACE«Arithmetic Expression» 

TAB « Arithmetic Expression» 

% HOME 

% CURSOR « Arithm~tic> <Arithm~tic» 
ExpressIOn ' ExpressIOn 

Note I: The comma at the end of a statement may be omitted. 

18 



( 
2.2 Declaration Instructions 

2.2.1 REM Statement (Remark) 

Function 
The REM statement inserts a comment into a program list. This statement 

does not affect program execution. 

Format 

REM L-.J < Comment> 

Explanation 
This is a statement that the programmer uses to insert comments into the 

program to clarify the program list. 
Because this instruction is stored as part of the program, it uses memory area 

in proportion to the length of the comment. 
It is indicated as a program line during program editing and listing, but it 

does not affect program execution. 

Any character that can be entered through the keyboard can be used in the 
comment. The REM statement can include up to 127 characters, including the 
line number, keyword, and g. 

There must be at least one space between the keyword and the comment. 

[Ex. 2.2.1-11 
The program title is entered at the head of the program. 

10 REM TEST PROGRAM NO.1 

19 



[Ex. 2 .. 2.1-2] 
A comment is inserted into each routine to describe the sections of a pro

gram. 

10 REM PROGRAM START 
20 REM INPUT ROUTINE 

150 REM CALCULATION ROUTINE 

300 REM OUTPUT ROUTINE 

Note All characters in the statement following the keyword REM are 
regarded as part of the comment. This means that any statements on the 
same line following REM are not executed. 

[Example] 

40 REM DEFINITION ROUTINE:DIM A(10) Wrong 

The entire description is regarded as a comment, so the DIM statement is not 
executed. 

40 DIM A ( 1 0) : REM D E FIN I T ION R 0 UTI N E Right 

20 

( 



( 

2.2.2 DIM Statement (Dimension) 

Function 

The DIM statement defmes array variables and string variables of an irregu
lar length and reserves space in memory for them. 

Format 

DIM ,---, < Variable> [, J ...... 

Explanation 
When array variables are used in a program or when string variables of a 

length of other than 8 bytes are used, this statement must be executed to defme 
the uses of the variables and reserve memory areas for them. Simple variables 
(variables without subscripts) and 8-byte string variables can be used without 
defmition by the DIM statement. 

A variable can only be defmed once by this statement. More than one defmi
tion causes an error. 

Definition of Array Variables 
Array variables are defmed by specifying the variable name with the highest 

subscript value in the operand. For example, specifying A(10) defines the 10 
array variables, A(l) -A(10). 

Because the highest subscript value allowed for array variables is 32767, spe
cifying a higher value causes an error. The array dimension (I-dimension: 
A(10); 2-dimension: A(10, 10) ... ) is unlimited. An error occurs if there is in
sufficient memory area for the variable that will be defined by this statement. 

Definition of String Variables 
String variables have an initial length of 8 bytes. But it is possible to change 

the length to accommodate strings of irregular lengths, for example, 3 characters 
or 10 characters. 

Not only does this save memory area but sometimes it even makes process
ing easier. 

21 



Advice 

To define the length of an irregular string variable, specify the necessary 
number of bytes immediately following the variable name. For example, spe
cifying A$30 in the DIM statement redefmes the length of string variable A$ as 
30 bytes. Only the variable name must be used in the program after defmition 
by the DIM statement. The length need not be specified. 

String variables can be defined within the range: 1-255 bytes. An error 
occurs if a length outside this range is specified. 

As you now know, array variables and string variables of irregular lengths 
cannot be used unless they are defmed by the DIM statement. The DIM state
ment can be executed anytime before such variables are used in the program. It 
is best, however to defme all variables at the beginning of the program to pre
vent duplicate defmitions, to reserve necessary memory area in advance, and to 
clarify the types of variables that will be used in the program. 

[Ex. 2.2.2-1] 
Array variables A(1,1)-A(2,2), B(1)-B(4), and C$(1)-C$(4) are 

defmed. 

10 DIM A(2,2),B(4),C$(4) 

In this example, the following 12 array variables are defmed: 

A(I,I),A(I,2),A(2,1),A(2,2) 
B(1), B(2), B(3), B(4) 
C$(1), C$(2), C$(3), C$(4) 

22 

Total: 12 variables 



( 

[Ex. 2.2.2-2] 
String array variables NAME$(1)-NAME$(10) are defmed as 20 bytes (20 

characters) per variable. 

10 DIM NAME$20(10) 

Memory is reserved as shown below . 

.-20 bytes "" .. 20 bytes --'0""--- 20 bytes - --- 20 bytes --

L--I _N_AM_E_$(_l)---L.I_N_AM_E$_(2_) L-I N_A_M_E_$(3_) -L-I ------tJI--[ .---I.1_N_AME_$_(10----4) I 
200bytes -------------... 

[Ex. 2.2.2-3] 
Three-dimensional array variables M (1,1,1) - M (2,2,2) are defmed. 

10 DIM M(2,2,2) 

The following 8 variables are defmed in the statement above. 
M(1,l,l), M(1,1,2), M(1,2,l)-M(2,2,2) ... 8 variables 

[Ex. 2.2.2-4] 
The number of array variables is specified by value of a variable. 

10 INPUT N 
20 DIM A(N) 

In this example, the value input for variable N on line 10 specifies the range 
of array variables that will be defmed by the DIM statement on line 20. (The 
INPUT statement is described later.) 

For example, if "10" is entered through the keyboard during execution of 
the INPUT statement on line 10, 10 array variables, A(l)-A(10), are defmed 
by the DIM statement on line 20. If a decimal fraction (e.g. 5.7) is entered for N, 
the DIM statement defmes array variables by automatically truncating the frac
tional part of the value ofN. 

23 



OPTION 
BASE 

2.2.3 OPTION BASE Statement (Option Base) 

Function 
The OPTION BASE statement specifies the subscript for the fIrst element of 

an array as 0. 

Format 

OPTION ,-, BASE '--' ° 

Explanation 
The subscript of an array variable is initially set to 1. This statement changes 

the starting subscript to 0. For example, the statement "DIM A(2)" usually 
defmes two variables, A(1) and A(2), but three variables, A(O) through A(2), 
are defmed after executing the OPTION BASE statement. This instruction must 
be executed before the DIM statement. Execution of this instruction more than 
once in a program causes an error. 

[Ex. 2.2.3-1] 
Specify that the subscript of an array variable start with 0. 

10 OPTION BASE a 
20 DIM A(3),B(2,2) 

The following array variables are defIned in the above example. 

A(O), A(!), A(2), A(3) ... 4 variables 

B(O,O), B(O,!), B(0,2) 
B(1,O), B(1,!), B(1,2) 
B(2,0), B(2,!), B(2,2) ... 9 variables 

Total: 13 variables 

Without the OPTION BASE statement on line la, 7 array variables, A(1), 
A(2), A(3), B(1,!), B(1,2), B(2,n, and B(2,2) are defmed. 

24 



( 

( 

Note 

2.2.4 

If this statement is executed somewhere in a program, the subscript of any 
array variable defined prior to the execution also starts with O. For example, an 
array A(l)-A(3) is A(O)-A(2) after the execution of this instruction. 

INTEGER Statement (Integer) 

Function 
The INTEGER statement defmes the name of an integer-type variable. 

Format: 

INTEGER L....J < Arithmetic Variable > [ , ] ...... 

Explanation 
This instruction defmes the name of an integer-type variable. The variable 

whose name is specified in the operand of this statement is treated as an integer
type variable after this statement is executed. 

Advice 

An integer-type variable has a length of 2 bytes. Values assigned must be 
integers within the range: -32768:aix~32767. Assigning a value outside this 
range causes an error. When a decimal fraction within this range (e.g. 7.25) is as
signed, the fractional part is truncated automatically. (That is, 7 is assigned.) 

To defme an array variable as an integer type-variable, execute an 
INTEGER statement that specifies only the name of the array variable (without 
the subscript) before executing the DIM statement that defmes the variable. 

When a variable is defmed as an integer-type variable, the range of values 
that can be assigned is limited. But it does save memory and increase the pro
cessing speed. Check the values that will be input to variables carefully during 
program design. Those values which can be processed within the value range of 
integer-type variables (e.g. employee numbers, etc.) should be processed as 
integer-type variables. 

25 



Note 

[Ex. 2.2.4-1] 
Integer-type variables R, S, and T are defmed. 

10 INTEGER R, S, T 

[Ex. 2.2.4-2] 

Ten integer-type array variables AREA are defmed. 

10 I NTEGE R AREA 
20 DIM AREA(10) 

In this example, 10 integer-type array variables, AREA(I)-AREA(lO), 
are defined. 

Reversing the order of line 10 and line 20 in above example causes an error. 
This is because if the DIM statement is executed first, the real number-type 
array variables having a length of 8 bytes are defmed then and memory is re
served for that length. Even if the INTEGER statement is executed later, the 
real number-type variable already defmed cannot be converted to an integer
type, so an error occurs. 

[Ex. 2.2.4-3] 
The fractional part of the data is truncated when an integer-type variable is 

used. 

10 INTEGER UNIT 
20 DIM UNIT(10) . 
80 LET UNIT(l)=X 

If data with a decimal fraction is assigned to an integer-type variable, the frac
tional part is truncated automatically. On line 80 of this example, the value of 
real number-type variable X is assigned to integer-type variable UNIT (I) by the 
LET statement (described later). When the value of X is 14.25,14 is assigned to 
UNIT(I). 

26 



( 

( 

2.2.5 DEFKEY Statement (Define Key) 

Function 
The DEFKEY statement defmes a character string entered when a function 

key is depressed in the shift down mode. 

Format 

DEFKEY L-..J < Arithmetic Expression >, < String Expression > 

Explanation 
In the initial state, various command names are defmed for both shift up and 

shift down mode of the 12 function keys (fFII-IFI2/). The DEFKEY statement 
changes the defmitions of the function keys in the shift down mode (in which 
the shift key is not depressed) and permits input of any character string using 
the function key operation. 

The number of the function key (1 - 12) is specified in the arithmetic ex
pression part of the operand. In the string expression part, the character string 
that will be defmed for the function key is specified. The character string cannot 
exceed 15 characters. A control code may be included. Only the fIrst 15 charac
ters specified are valid and excess characters are ignored. 

The character string defmed is valid until the defmition is changed using this 
statement or BASIC is ended (i.e. control is returned to the operating system or 

the power is turned otT) . 
If a decimal fraction within the range: 1 ~x< 13 is specified as a function key 

number, the fractional part is automatically truncated. Specifying a value outside 
this range causes an error. 

[Ex. 2.2.5-1] 
The character string "CANON" is defmed for function key 12. 

50 DEFKEY 12,IICANON II 

27 



Advice 

In this example, the character string "CANON" is defmed for IFl21. When 
IF121 is depressed in the shift down mode (the shift key is not depressed) after 
execution of the DEFKEY statement on line 50, the input is exactly the same as 
if /Cl1Al1NI /Q] IN! is depressed. 

[Ex. 2.2.5-2] 
A function key defmition program is prepared to permit the selection of a 

program that will be executed by function keys and the g key. 

10 DEFKEY 1, IPROG1" 
20 DEFKEY 2,IPROG2" 
30 DEFKEY 3,IPROG3" 
40 END 

After this program is executed, depressing IFll, IF21, and [f] in the shift 
down mode produces the same result as the inputting the program name. [FIJ 
corresponds to the operation for inputting program name "PROG l", IF21 to 
that of "PROG2", and IF31 to that of "PROG3". So each program is executed 
by depressing one of the three function keys and g. This defmition remains 
valid until control is returned to the operating system or the power is turned off. 

Use the function key overlays on the keyboard to write the defmitions so 
that programs and jobs can be selected easily. 

28 



2.3 Assignment Instruction 

2.3.1 LET Statement (Let) 

Function 
The LET statement assigns data to a variable. 

Format 

[LET L-J] < Variable> ={ < Arithmetic ExpreSSion>} 

<String Expression> 

Explanation 

Note 

The value on the right side of the operand is assigned to the variable on the 
left side. The equal sign ( = ) in the operand of the LET statement means to 
assign the value on the right side to the variable on the left side. 

The type of data on the right side of the operand must be the same as that on 
the left. So, if the left side is a string-type variable, the right side must be a string 
expression. If the type of data on the right and on the left side do not agree, an 
error occurs. 

The keyword LET can be omitted. Any operand consisting only of the right 
side and the left side with an equal sign in between is treated as a LET statement. 

Some built-in functions can be specified as a variable on the left side. Refer 
to "3. Built-in Functions". 

Using an array variable not defmed in advance by the DIM statement causes 
an error. 

[Ex. 2.3.1-1] 
The value 26 is assigned to arithmetic variable A. 

30 LET A=26 

When line 30 is executed, 26 is assigned to variable A. The same result is ob
tained when the example below, in which the keyword is omitted, is executed. 

30 A=26 

29 



[Ex. 2.3.1-2] 
The right side is calculated using the value of variable W and the result is as

signed to variable A. 

40 LET A=W*3.14+440 

If the value ofW is 100, the value of A is 754. 

[Ex. 2.3.1-3] 
The characters "JOHN" are assigned to string variable NAME$. 

90 LET NAME$=IIJOHNII 

Initially up to 8 characters can be assigned to a string variable. In this exam
ple, 4 characters are assigned to the string variable (8-byte). When as in this 
case, fewer than 8 characters are assigned, the NUL code (OOH) is automatically 
added to "JOHN". 

When more than 8 characters are assigned, only the nrst 8 characters entered 

are assigned and excess characters are ignored. 

Note The NUL code (OOH) is not treated as data. 

[Ex. 2.3.1-4] 
The result of a calculation using variable M is again assigned to variable M. 

60 LET M=M*12 

[Ex. 2.3.1-5] 
The character data in string variables B$ and C$ are connected to assign 

them to string variable A$. 
Example of data: 

"SIZE' L"="SIZE" +". L" 

70 LET A$=B$+C$ 

30 



[Ex. 2.3.1-6] 
The values of variables A, B, and C are compared using a relational operator, 

and the result of the conditional expression is assigned to variable D . 

• 90 LET D=-((A>B)+(A>C)) 

In this example, the following values are assigned to variable D, according to 
the values of the variables A, B, and C. 

A>B,A>C ..... 2 
ASB, A >C ..... 1 
A>B, AsC ..... 1 
ASB, A~C ..... 0 

When the value of the conditional expression is true, the value is -1, and 
when the expression is false, the value is O. 

31 



2.4 Input Instructions 

2.4.1 INPUT Statement (Input) 

Function 
The INPUT statement reads data entered through the keyboard and assigns 

it to a variable. Data from a disk file or an external input device can be assigned 
to a variable by specifying the logical device number. 

Format 

INPUTL-J[#{<1-9> J' ][MSG«SEtring. »][<Variable>][,l····· xpreSSlOn 
< Arithmetic> CD 

Variable 

Note 1: The comma (,) at the end of the statement can be omitted. 

Expalanation 
Any characters, numbers, or symbols entered through the keyboard can be 

assigned to variables using the INPUT statement. The Q] key must be de
pressed at the end of input. Depressing this key indicates that input to a variable 
is completed. 

Data separated by commas can be assigned to two or more specified variables 
at the same time. 

When this statement is executed without logical device number specification, 
"?" is displayed. An input operation through keyboard for the INPUT state
ment at that time is echoed back following "?". When Q] key is depressed, the 
data is assigned to the variable. Data can be corrected before ~ is depressed 
with IDELI, EfrJl:I, I DELETEI, or I INSERTI. Any message can be displayed in
stead of"?" using the sub-keyword "MSG". 

If incorrect data (unmatched with the variable) is entered, the data is not as
signed and entered data is displayed together with "??" to request reinput. 

The INPUT statement is the main statement to control input. It has such 
functions as branch operation and temporary program suspension. Details of 
these functions are described later. 

32 

( 



[Ex. 2.4.2-1] 

Data are input to variables "LENGTH1" and "LENGTH2" through the 
keyboard. 

50 INPUT LENGTH1,LENGTH2 

In this example, keyboard input operations are as follows: 

«Display» «Operation» 

? 
ITI~~ 

?123 
Q] 

?123? 
~~[Q] 

?123?456 
Q1 

?123?456 

"123" is assigned to variable LENGTH1 and "456" to LENGTH2. 
These two data that will be assigned to each variable can be input at the same 

time using a comma as shown below. This type of input is called batch input. 

«Display» «Operation» 

? 

?123,456 

?123,456 

As shown in this example, data separated by a comma(s) can be input at the 
same time to an arithmetic variable specified in the INPUT statement. Batch 
input cannot be performed to a string variable because a comma (,) is regarded 
as data. 

33 



Note During batch input, when the number of data connected by commas is less 
than the number of the variables specified in the INPUT statement, "?" is dis
played continuously, prompting input for the remaining variables. If there are 
more data than variables, only the data corresponding to the variables are as
signed sequentially, and the excess data are ignored. 

[Ex. 2.4.1-2] 
Data are input through the keyboard to arithmetic variable A and string 

variable NAME$. 

60 INPUT A,NAME$ 

«Display» « Operation» 

? 
[]~~ 

?123 

Q 
?123? 

[Q[AJ[NJ[Q][NJ 
?123?CANON 

Q 
?123?CANON 

In this program example, 123 is assigned to arithmetic variable A and 
"CANON" is assigned to string variable NAME$. 

Because string variable NAME$ has a length of 8 bytes, 3 NUL codes 
(OOH)l) are automatically added following the data "CANON". 

Only the first 8 characters entered are assigned and excess characters are ig
nored. 

Note 1: "XXH" is an ASeD code consisting of2 hexadecimal figures. 

34 



( 

( 

Retaining Data 

When Q] is depressed without data input during execution of the INPUT 
statement, data is not assigned to the variable and INPUT statement execution 
is ended. The contents of the variable are retained. This operation is called a no
input operation. Depressing Q] without data input changes the flow of program 
execution. This is called a branch operation and is explained later. 

[Ex. 2.4.1-3] 

80 LET C=328 
90 INPUT C 

During the input operation to variable C by the execution of line 90, when 
QJ key is depressed without data input, 328 assigned on line 80 is retained and 

program execution proceeds to the next line. 

To retain the data of one or more variables in batch input, input only 
commas as shown below. 

[Ex. 2.4.1-4] 

80 A=10:B=20:C=30 
90 INPUT A,B,C 

«Display» 

? 

? , ,95 

? , ,95 

«Operation» 

This is an example in which 95 is assigned to variable C and the contents of 
variables A and B are retained. When only a comma (s) is entered in batch input 
with data omitted, the contents of the variables corresponding to the data omit
ted are retained. 

35 



Note During batch input, to omit the data corresponding to the last variable, e.g. 
the third variable in an INPUT statement specifying 3 variables, a comma must 
be entered instead of data. 

[Example] To input data by executing "INPUT A, B, C", enter the follow-
ing to input data to variable B only. 

GJlIlrn[[]GJ?Q 
~ Comma to omlt",...,. "' .. tow"'~.C 

Data to variable B 

Branch Operation 

The no-input operation (depressing biJ without data input) changes the 
flow of program execution following an INPUT statement. 

And when I;J] is depressed without data input to a variable specified in the 
operand of the INPUT statement, program execution proceeds to the next line. 
This means that the statement placed on the same line following the INPUT 
statement is executed only when data is entered. But when data input is omitted 
during batch input, the execution flow is the same as if data was entered normal
ly. 

The execution order of a branch operation is illustrated below. 

I Data input I -. 
170 INPUT A:LET C=C+l :GOTO 40 

, I No data input I No-input operation 

180 LET C=O 

36 



( 

( 

( 

[Ex. 2.4.1-5] 

30 

40 

. 

A program branch made by the operator's input operation. 

INPUT A,B:GOTO 100 

100 

In this program example, data are input to variable A and B using the 
INPUT statement on line 30. The program execution flow varies depending on 
whether the GOTO statement (described later) on line 30 is executed or not. 
The GOTO statement is a branch instruction. When the GOTO statement on 
line 30 is executed, program execution branches to line 100. 

Assuming that the data that will be input to variable A is 10 and that the data 
that will be input to variable B is 20, the program is executed according to input 
operations as follows. 

a) OJ [Q] ~ 1Il [QJ ~ 

b) 

In this case, 10 is assigned to variable A and 20 to variable B. Then the next 
GOTO statement is executed and program execution branches to line 100. 

OJ LOJ I;] fI] [Q] g Batch Input 
(or [J[il[]Q or OIQ1J[]W or rn~ ) 

Data are assigned to the variables (or retained) according to the rules for 
batch input. Then the next GOTO statement is executed and program execution 
branches to line 100. 

c) OJ I.Q.]~ g ..... No-Input ofB 

In this case, 10 is assigned to variable A and program execution proceeds to 
the next line (line 40). The contents of variable B are retained. 

d) Q ..... No-Input Operation 

The contents of both variables are retained and program execution proceeds 
to line 40. 

Note Even when more than one variable is specified in an INPUT statement, 
when no-input operation is performed, INPUT statement execution is ended 
and program execution proceeds immediately to the next line even if some of 
the variables are not assigned data. 

37 



Input with a message 

When the INPUT statement is executed, it is possible to display another 
message instead of "?". The sub-keyword "MSG" is used to display a message. 

[Ex. 2.4.1-5] 
Input to variable HEIGHTI is prompted by displaying the message 

"HEIGHT L...I =". 

90 INPUT MSG(IIHEIGHT=II)HEIGHT1 

«Display» «Operation» 

HEIGHT -
[]~[QJ 

HEIGHT =150_ 
GdJ 

HEIGHT = 150 

150 is assigned to variable HEIGHT 1 using this operation. 

[Ex. 2.4.1-6] 
The value of a variable is displayed in a message. 
Using the character processing function CHR$ (described later), numeric 

data specified as a part of the message is converted into character data. 
In this example, data is input to array variable POINT(I) through the key

board according to variable I. At this time the message "POINT L-J OF L..J 

NO=I?L..J " is displayed. 

170 INPUT MSG(IIPOINT OF NO=II+CHR$(I)+II? II)POINT(I) 

38 



( 

( 

When 1=5; 

«Display» «Operation» 

POINT OF NO= 5? 

POINT OF NO= 5? 95 

POINT OF NO= 5? 95 

As a result of this operation, 95 is assigned to variable POINT (5) . The space 
just before "5" in the message is automatically inserted in front of the character 
string (number) when the numeric value is converted by the CHR$ function. 

Temporary Program Suspension 

Unless the name ofa variable is specified in the operand of the INPUT state
ment, program execution is suspended only temporarily and program execution 
is restarted by depressing g . This is called the pause function. Specify the fol
lowing for no display. 

INPUT MSG(IIII) 

A branch operation is valid even if the variable is not specified in the INPUT 
statement. When only g is depressed, program execution proceeds to the next 
line. When data is entered before depressing g, the input data are ignored and 
program execution proceeds to the following statement on the same line. 

Input from Disk Files 

Data can be read from a disk fIle or an external input device and assigned to 
a variable by specifying a logical device number in the INPUT statement. For 
details, refer to the explanation of the INPUT statement in "2.12.6 Other In
put/Output" . 

39 



I INPUT I USING 

2.4.2 INPUT USING Statement (Input Using) 

Function 
The INPUT USING statement enters data to variables by specifying the 

number of digits or characters that will be entered. 

Format 

INPUT LI ( * « 1-9> 
< Arithmetic> 

Variable 
) 

,) USING LI([ <LineNo.>] ) LI<Variable> ( , ) 

<Label> 

Explanation 
The basic function is the same as that of the INPUT statement, but the 

number of digits or characters that will be entered is specified in advance. Input 
is completed when the specified volume of data is entered. No input prompting 
symbol or cursor is displayed. 

The input format is specified by the FORMAT statement. The line on which 
the FORMAT statement is written must be specified following USING in the 
INPUT USING statement. Executing the FORMAT statement by itself has no 
effect. 

The FORMAT statement is also specifies the format for the PRINT USING 
statement. 

Input Specification Using the FORMAT Statement 

In the FORMAT statement used with the INPUT USING statement, the 
input format is specified by "#". Look at the following example using the 
INPUT USING statement and the FORMAT statement: 

140 INPUT USING 
150 FORMAT ..... ### 

Specification of the line of r FORMAT statement used 

150 A 

L Variable to which data is input 

tL __ Start of format specification 

In the FORMAT statement, specification of the input format starts after a 
space is entered following the keyword. In the above example, the input of 3 
digits is specified for variable A in the INPUT USING statement on line 140. 

40 



( 

( 

So when the INPUT USING statement on line 150 is executed, a 3-digit data 
can be input to the variable A. When [1], III, and 111 are depressed, for example, 
input to variable A is completed. After assignment of 123 to variable A, program 
execution proceeds to the next statement. 

Depressing Q is unnecessary when inputting data with the INPUT USING 
statement, because the number of digits or characters is specified by the 
FORMAT statement. 

The relationship between the specification of the input form by the 
FORMAT statement and the data assigned to the variable specified in the 
INPUT USING statement is shown next. 

FORMAT 
statement 

Input data Variable Data assigned to 
variable 

( Ll indicates a space.) 

### ITJ[]]rn A A=123 

### ITJrnrn[I]lliJC§J A(l), A(2) A (1) =-123 A(2)=456 

t ~ Corresponds repeatedly 
to 2 variables. 

### rn [I] !IHI] lliJ Q A(1), A(2) A(l)==123 A(2)=45 

L End of input 

I mpUT I usmG 

###LJ### ITJ []] [ill [I] ffi] jI][]] A(1), A(2) A(1)=-123 A(2)=567 

t i Space indicates data read skipping 
or separation. 

#### B$ B$="ABCD" 

#### ITJ~ElITJ A A=O.1 

,'---- The number of 
digits determines the input format for the E form, too. 

41 



I mpUT I usmG 

Data that can be entered using the INPUT USING statement are limited as 
follows according to the variable type. 

Arithmetic variable: 
Only the number of digits input must be considered, regardless of whether 

the variable is of the real number-type or the integer-type. Inputting invalid data 
causes an error. 

String variable: 
The data are characters, numbers, and symbols that can be entered through 

the keyboard. 

Note Using characters other than "#" or a space in the FORMAT statement used 
with the INPUT USING statement causes an error. But when the FORMAT 
statement is used with the PRINT USING statement, other characters are valid. 
So, do not use the FORMAT statement with both the INPUT USING statement 
and PRINT USING statement. 

[Ex. 2.4.2-1] 
Data entered one after another through the keyboard are assigned to several 

variables. 

100 INPUT USING 110 A,B,C,D 
110 FORMAT ### 

When the 12-digit data "123456789012" is entered in the input waiting state 
after execution of line 100, the data is separated into four blocks of 3-digit data, 
which are then assigned to the variables. The values of the variables are: 

A=123, B=456, C=789, D=12 

[Ex. 2.4.2-2] 
Part of the data is assigned to variables. 

50 INPUT USING 60 A$,B$,C$ 
60 FORMAT .............. ###L..J .............. ....,....,#####...., ....... ~ ..... # 

When the 20-character data "ABCDEFGHIJKLMNOPQRSI" is entered in 
the input waiting state after execution of line 50, the spaces in the FORMAT 
statement serve as data separators and data read skip marks. Character data are 
assigned to the three variables as follows: 

A$= "CDE", B$= "KLMNO", C$= "T" 

42 



( 

( 

Input from Disk Files 
Data can be read from a disk fIle or an external input device and assigned to 

a variable by specifying a logical device number in the INPUT USING state
ment. Refer to the explanation of the INPUT USING statement in "2.12.6 
Other Input/Output" for details. 

43 

I rnpUT I usrnG 



2.5 Output Instructions 

2.5.1 PRINT Statement (Print) 

Function 
The PRINT statement displays data on the screen. Data can also be output to 

the printer, a disk file, or any other external output device by specifying the logi
cal device number. 

Format 1 

PRINT ,---, [#{ < 1-9> ), ] [ < String. > 
ExpreSSIon 

< Arithmetic> CD 
Variable <Arithm~tic> 

ExpreSSIon 

<~ub- . > 
InstructIOn 

Format 2 

< Sub-instruction> = FEED « Arithmetic Expression» 

SPACE « Arithmetic Expression» 

TAB « Arithmetic Expression» 

%HOME 

Explanation 

% CURSOR « Arithm~tic> < Arithm~tic» 
ExpreSSIon ' ExpreSSIOn 

Note 1: The comma (,) at the end of a statement can be omitted. 

The PRINT statement displays characters and numbers on a display unit or 
outputs them to the printer. The contents of the variable or character string 
specified in the operand are output. Output is displayed on the screen if a logical 
device number is not specified. The form of output can be specified using sym
bols and sub-instructions in the operand. 

Unless otherwise specified, output to the screen or printer by the PRINT 
statement starts at the current cursor or print head position. (Immediately after 
program execution starts, the cursor is positioned at the beginning of the line 
following the program execution command line.) 

44 

( 



( 
The function of the PRINT statement is to output the contents specified in 

the operand to an output device (like the display unit) in ASCII code. For exam
ple, a display unit and printer have a different code table to control them, so that 
a different action is performed even if the PRINT statement with the same 
output code is executed. 

The form of data output varies depending on whether the data is numeric or 
character as shown below. 

Numeric data ..... Output is performed in the floating form when the value is 
within the range: 1 x 1O-4 ::S;;lx 1<1 X 1012 (e.g. 103.45). 

Otherwise output is performed in the E form (e.g. 1.52E13). 
In both cases, one space is assigned at the beginning of output 
and data is left justified. 

Character data .... Characters and symbols are output with left justification. 

Commas (,) and semicolons (;) in the operand have the following mean
ing: 

Semicolon (;) .... Used for continuous output. 

Comma (,) ...... Used for output in the 20-column zone (described later) . 

The CR code (ODH)1) and the LF code (OAH) are output automatically, and 
a new line is started if a comma or semi-colon is not specified at the end of a 
statement. 

Note 1: ASCII code in 2-digit hexadecimal figures. 

[Ex. 2.5.1-1] 

40 A=15:B=40:X$=IIABC II :Y$=IIXYZ Il 

50 PRINT A;B 
60 PRINT X$;Y$ 

In this example, after data are assigned to the variables on line 40, their con
tents are output by the PRINT statements on lines 50 and 60. 

The display is shown below. (The cursor is directly below" A" on the display 

after execution ofline 60.) 
The ASCII code output is also shown for reference. 

45 



PRINT 

Display < Output code> 

L...J 15 ...... 40 
20H 31H 35H 20H 34H 30H ODH OAH 

ABCXYZ ! ! ! ! ! ! ! ! 
LJ 1 5 LJ 4 0 CR LF 

41H 42H 43H 
! ! ! 

58H 59H 
! ! 

5AH 
! 

ODH 
! 

OAH 
! 

A B C X Y Z CR LF 

20-column Zone 

The 20-column zone is an area consisting of 20 columns set by the PRINT 
statement in relation to the display and the printer. Characters in each 20-digit 
zone can be output by specifying a comma (,) in the operand of the PRINT state
ment. 

Display (Printer) 

E >< 
20 digits 20 digits 20 digits 20 digits 

1st column 21st column 41st column 61st column 

The comma in the operand specifies a shift of the cursor or print head to the 
start of the next 20-column zone. The PRINT statement itself counts the 
number of characters output and automatically outputs the number of spaces 
necessary to move the cursor or print head to the beginning of the next 20-
column zone. 

For example, when the cursor is at positonCD and PRINT II Mil , "BB" 
is executed, the display is as shown in (2). 

Display 

Fig. CD 

) 
Fig.G) 

18 spaces . , " 
AA LJLJ "'--' LJLJ B B 
1 1 

1st column 21st column 

The 20-column zone is valid for only one line on the display or the printer. 
When automatic line feed is performed (described later) and output is continued 
on the next line, the position of the 20-column zone may be shifted. 

46 



[Ex. 2.5.1-2] 
( Characters are displayed using a 20-column zone specification. 

70 A$=IIAII:B$=IIBII:C$=IIC II 

80 PRINT A$,B$,C$ 
90 PRINT C$,B$,A$ 

In this program example, output by the PRINT statements on lines 80 and 
90 is as follows: 

A 
C 
t 

1st column 

Display 

B C 
B A 
t t 

21st column 41st column 

Automatic Linefeed Function and Scrolling 

When output exceeds the line capacity of the display or printer, linefeed is 
performed automatically at the end of each line and output continues from the 
beginning of the next line. 

Display 

= 
When linefeed is performed at the bottom line on the display screen, the 

screen contents move up to create new lines for output. When reverse linefeed 
is specified by the sub-instruction FEED (described later) the contents of the 
screen move down. These actions are called scrolling. The concept of scrolling is 
illustrated next. 

47 



Concept of Scrolling 

Note Display contents that are scrolled off the screen are not reproduced 
even if the line is redisplayed on the screen by reverse scrolling. 

Scrolling 

Specification of Output Characters 

Reverse 
scrolling 

A string variable is usually specified in the operand for character output. 
Character output can be specified directly by specifying the character string 
between quotation marks like in the LET statement. 

[Ex. 2.5.1-3] 

70 A=145 

80 PRINT IIAverage=II;A 

This program example produces the following display. 

Display 

Gverage = ~ 145 J 
48 



Note Specify two quotation marks (" ") when a quotation mark will be output as 
( a character. 

PRINT IAI18"-+Display: A"8 

[Ex. 2.5.1-4] 
Data is displayed on the screen using the function of the PRINT statement 

just described. 

140 NAME1$=IHARDINI:NAME2E$=IAMES" 

150 A=75:8=82 

160 PRINT "PUPIL I;NAME1$;" IS SCORE",A;"MARKS" 

170 PRINT "PUPIL I;NAME2$;" IS SCORE I ,8;IMARKS" 

Executing this program example results in the following display. 

Display 

PUPILL.....JHARDINL-JIS,-,SCORE 

PUPILL-JAMESL-J I SL.......ISCORE 

t 
1st column 

Sub-instructions 

L-J 7 5MARKS 

L-J 82MARKS 

f 
21st column 

The following sub-instructions can be specified in the operand of the PRINT 
statement. 

a) SPACE ( < Arithmetic Expression> ) 

A specified number of spaces are output. The number of spaces that will be 
output is specified by an arithmetic expression or numeric value in parentheses. 
The value that will be specified must be a integer within the range: 
-255 s: x s: 255. 

49 



When a negative value is specified, a backspace code (OSH) is output and the 
opposite action is performed (the output position moves one column to the 
left). When the cursor is located at the beginning of the line and the backspace 
code is output, the cursor moves to the end of the preceding line, but scrolling is 
not performed. When the destination of movement is outside of the current 
screen, the output position is the far-left column on the top line of the screen. 

[Ex. 2.5.1-5] 

70 PRINT IIA II ;SPACE(5);IIB II :SPACE(5);IIC II 

Display 

ALJLJL....l......JLJBLJLJLJLJLJC 
I , 

5 spaces 5 spaces 

[Ex. 2.5.1-6] 

80 PRINT II AII ;SPACE(10);IIB II ;SPACE(-5);IIC Il 

Display 

5 back spaces 
~ 

ALJLJLJLJLJLJCLJLJLJB 
l J 

10 spaces 

b) FEED ( < Arithmetic Expression> ) 
The number of lines specified are fed. The horizontal output position does 

not change. 
The number of lines that will be fed is specified by an arithmetic expression 

or numeric value in parentheses. The numeric value that will be specified must 
be an integer within the range: -255 :s;; x :s;; 255. When a negative value is 
specified, reverse linefeed is performed. 

50 

( 



( 

( 

When the output position specified by FEED is outside the current screen, 

scrolling or reverse scrolling is performed. 
When a positive value is specified, linefeed code (OAH) is output. When a 

negative value is specified, a control code (lBH, 4DH)1) is output. 

Note 1: the control code is only valid for display. 

[Ex. 2.5.1-7] 

70 PRINT 1I*II;FEED(l);II*II;FEED(l);II*1I 

Display 

c) TAB ( < Arithmetic Expression> ) 

TAB (0) TAB (79) 

+ ~ o .............. 0 
t t 

1st digit 80th digit 

The output position moves to the specified column on the line. The column 
is specified by an arithmetic expression or a numeric value in parentheses. In 
column specification, the head of the line is O. Integers within the range: 
o ~ x ~ 255 can be specified. When the value specified exceeds the length of a 
line (79 for the display), the movement continues on the next line. 

The PRINT statement counts the number of the characters output. When 
the movement of the output position is specified by TAB, the PRINT statement 
calculates the number of spaces or backspaces required to produce output at the 
specified position and then outputs the necessary number of spaces (20H) or 
backspaces (08H). 

51 



PRINT 

[Ex. 2.5.1-8] 

70 PRINT TAB(10);IABC I ;TAB(20);IXYZ" 

Display 

ABC XYZ 

f 1 
11th column 21st column 

Note The movement of the output position using TAB is actually per-
formed by outputting spaces or backspaces. Consequently the result of 
the PRINT statement execution is: 

PRINT II A II ; TAB ( 1 0) ; II B II ; TAB ( 5) ; II AA II ; TAB ( 1 5) ; II B B II 

Display Instruction Printer Output 
execution process (Logical device number 

must be specified.) 

G B }. "A" ;TAB( 10); "B" ; ... ~ B ] --. 

\) \) 

~ AA B )- .... TAB (5) ; "AA" ; .... l: AA B J ---
Q Q 

A AA 
j--, 

BB .... TAB(15);IBB"···· E AA B 3 I I L __ J 

----
B is erased. 

52 

( 



( 
d) 

Advice 

Dispiayby 
program 
execution 

L---

%HOME 
The entire screen contents are erased and the starting output position is set 

at the home position (fIrst column of ftrst line on the display). 

When program execution starts, the starting output positon on the display is 
the ftrst column of the line immediately following the program execution com
mand line. So, when output is performed to the display, the output resulting 
from program execution is performed after the display of command operations, 
etc. Execute "PRINT OfoHOME" to clear the display contents before executing 
any output instructions to the display. 

PRINT OfoHOME not specifted 

100END 
%E 
$SAVE ABC 
SAVE TO A:ABC.BAS(Y/N)?Y 
$RUN 
123 
234 
345 

PRINT OfoHOME specifIed 

123 
234 
345 

e) OfoCURSOR ( < Arithmetic Expression>, < Arithmetic Expression> ) 

x-coordinate 
0------- 79 

0.--------....., 
+ (X, y) 

y<o,"UMIo j 
24 L..-_____ -' 

Coordinates on the display are specifIed and the starting output position is 
moved to that position. 

x-coordinates 0-79 (horizontal) and y-coordinates 0-24 (vertical) are 
deftned for the display. The coordinates are specifIed as (x, y) to indicate the 
starting output position. 

The x and y coordinates are specifted by arithmetic expressions or numeric 
values. Integers within the range: -32767:Jix and ys;;.32767 can be specifIed. 
Negative values are regarded as O. Values exceeding 79 in x-coordinate specifIca
tion are regarded as 79. Values exceeding 24 in y-coordinate specifIcation are 
regarded as 24. 

Note Coordinates are defined on the screen. So even if output is per-
formed to coordinates (10,10), the result of output is moved to coordi
nates (10,10- n) after the display contents are scrolled up. 

53 



[Ex. 2.5.1-9] 

90 PRINT %CURSOR(5,10);IIABC II ;%CURSOR(10,10);IIXYZ II 

Code Output 

ABC 
t 
(5,10) 

Display 

XYZ 
t 

00,10) 

It is possible to specify the output of an ASCII code by specifying a hexadeci
mal figure in the PRINT statement. Output specification is performed by specify
ing a 2-digit hexadecimal code prefixed by the symbol "&" and enclosed with 
quotation marks ("). 

PRINT IIABC&OD&OA II ; 

t Codes ODH(CR) and OAH(LF) 
are output. 

The codes used in the PRINT statement and their functions are described 
below. 

• LF code (OAH) 

Linefeed·· . 
The cursor or paper is fed one line. The horizontal position of the cursor or 

print head does not change. The function is the same as that of FEED (1). 

• CR code (ODH) 

Carriage Return· .. 
The cursor or print head returns to the first column of the current line. The 

vertical position of the cursor or print head does not change. 

• BS code (08H) 

Backspace·· . 
The cursor is shifted one column to the left. The function is the same as that 

of SPACE (-1). 

• BEL code (07H) 

Bell··· 
The buzzer sounds for approximately 0.3 seconds. 

54 

( 



( 

Executing the following two PRINT statements produces the same result. 

PRINT IABCI ;FEED(1);SPACE(-3);IXYZ" 

IL>::=Y 
PRINT IABC&OA&08&08&08XYZ&OA&OD"; 

Output to Printer 

Data can be output to a printer or other external output device by specifying 
a logical device number in the PRINT statement. The logical device number 
must be defmed to the connecter where the output device is connected before 
executing the PRINT statement. 

[Ex. 2.5.1-10] 
Output is performed to the printer connected to connector no. 1. 

40 OPEN #l,ILPT:" 
50 PRINT #l,IABC" 
60 CLOSE #1 

The following is printed by executing this program example. 

ABC 

55 



Drawing Lines 

The display characters for the AS-100 include special characters to draw 
lines. Lines can be drawn on the display by specifying the output of these special 
characters in the PRINT statement. 

See "Appendix 1 Character Codes" for the shapes ofthe special characters. 

[Ex. 2.5.1-11] 
Lines are drawn using the special characters" I" (FOH), "-" (F5H), 

" -, "(F3H)," I " (F4H), " L "(FIH), and" -.J "(F2H). 

200 PRINT I&FO&F5&F5&F5&F3" 
210 PRINT I&F4ABC&F4" 
220 PRINT I&F1&F5&F5&F5&F2" 

The following lines and characters are displayed on the screen when this pro
gram example is executed. 

Display 

The relationship between lines and special characters is shown below. 

F~ F~ 

56 

( 



Output of Calculation Results 
The result of a calculation can be output by specifying an arithmetic expres

sion in the operand of the PRINT statement. 

[Ex. 2.5.1-12] 
The calculation result of an expression consisting of the three variables A, B, 

and C is output. 

140 PRINT (A+B)/C 

Assuming that A = 10, B = 20, and C = 5, the result of the above calcula
tion (6) is output as follows: 

Display 

(L...----~ 6 __ ) 

Output to Disk Files 

Data can be output to a disk file or an external output device by specifying 
the logical device number in the PRINT statement. Refer to the explanation of 
the PRINT statement in "2.12.6 Other Input/Output" for details. 

57 



PRINT 
USING 

FORMAT 2.5.2 PRINT USING Statement (Print Using) 
FORMAT Statement (Format) 

Function 

Format 

These statements are used to output tables, etc., when the output form must 
be specified in detail. 

PRINT L.....J [#1<1-9> j' ]USING L.....J l<LineNo.>j '--' l<Arithm~tic>j [ ,] ••. ExpressIon 

<Arithmetic> [<Label>] <Charac~er > 
Variable ExpressIOn 

FORMA T '--' < Format Specification> 

Explanation 
The contents of output are specified by the PRINT USING statement and 

the output form is specified by the corresponding FORMAT statement. 
The PRINT USING statement and the FORMAT statement must be used 

together. Executing the FORMAT statement by itself has no effect. 

Output Specification by the FORMAT statement 

Several different format specification characters can be used to specify the 
output form in the FORMAT statement used with the PRINT USING state
ment. So do not use a common FORMAT statement for the INPUT USING 
statement and the PRINT USING statement. 

The relationship between the PRINT USING statement and the FORMAT 
statement is shown below. 

I 
140 PRINT USING 150 A 
150 FORMAT ¥###. ## 

S8 

Specification of FORMAT 
statement line used 

Specification of 
output contents 

Format specification 



( 

PRINT 
USING 

In the FORMAT statement, the specification of the output format starts FORMAT 
after a space is entered following the keyword. The specification of the output 
format by the PRINT USING statement is made only in the format. Except for 
the specification of the FORMAT statement line, etc., only the variables specify-
ing the output contents and commas (separators) can be specified in the operand 
of the PRINT USING statement. (Commas used in this case do not specify 
printing in a 20-column zone.) 

The following format specification characters can be specified in the operand 
of the FORMAT statement. 

a) Basic Characters 
# ........... When effective number output has already started, all effective 

numbers are output. In other cases, a space is output. When 
data is a negative numeric value, the minus sign" -" is 
output just ahead of the numbers . 

. . . . . . . . . . . The position of the decimal point is specified and a decimal 
point (.) is output. 

A/\/\/\ ..... Output in the E form is specified. The output form is E+ XX 
(4 characters). 

b) Prefixed Characters 
* ............ When effective number output has already started, the 

number in the column is output. In other cases, (*) is output. 
When data is a negative numeric value, a minus sign (-) is 
output just ahead of the numbers. 

+ ........... When effective number output has already started, the 
number in the column is output. Otherwise, "+" or "-" is 
output depending on whether the data is positive value or 
negative value. 

- ........... When effective number output has already started, the 
number in the column is output. When data is negative value, 
a minus sign (-) is output just ahead ofthe numbers. 

59 



PRINT 
USING 

FORMAT $ ............ When effective number output has already started, the 
number in the column is output. The symbol "$" is output 
just ahead of the numbers. 

O ..•......... When effective number output has already started, the 
number in the column is output. Otherwise, "0" is output. 
When data is a negative value, "-" is output at just ahead of 
the numbers. 

c) Suffixed Characters 
+ ........... "+" or "-" is suffixed to the data depending on whether the 

data is positive or negative. 

- ........... When data is a negative value, "-" is suffixed. If data is posi
tive, a space is output. 

d) Inserted Characters 
, or ' ......... When effective number output has already started, a comma 

(,) or an apostrophe (') is inserted at the position specified. 

e) Comment Characters 
Characters other than those just listed can be specified directly in the format as a 
comment. 

Like in the INPUT USING statement, if there are fewer formats than varia
bles that will be output, the formats are used repeatedly. 

The relationship between format specification, output data, and output re
sults are shown below. 

Integer-type output 

<Format> 

##### 
##### 
##### 

##### 

<Data> 

25 
-30 
1.95 

1234567 

60 

<Output> 

l-J l-J l-J 25 
l-Jl-J - 30 
l-Jl-Jl-Jl-J I 

"The fractional part is truncated. 

##### 
"If output data exceeds the number 
of digits in the format, format 
specification is output as it is. This 
applies to all formats. 



PRINT 
USING 

Decimal number-type output FORMAT 

( <Format> <Data> <Output> 

####.## 20 
'---' '---' 2 O. 0 0 

####.## -0.1385 
'---' '---' - O. I 3 

####.## 12345.67 ####.## 

E-type output 
<Format> <Data> <Output> 

# #. # # # 1000 '---' 1.000E + 03 
# #. # # # -0.001234 - 1.234E-03 

Prefixed character output 
<Format> <Data> <Output> 

* * * * * * 234 ***234 
* * * * * * -256 * *-256 
++++ ++ 345 '---' '---' + 3 4 5 
+++ +++ -789 '---' '---' - 7 8 9 
+++ +++ 23.45 '---' '---' '---' + 2 3 
------ 789 '---' '---' '---' 7 8 9 
------ -795 '---' '---' - 7 9 5 
+##### 567 + '---' '---' 5 6 7 
+##### -239 - '---' '---' 2 3 9 

$ $ $ $ $ $ 639 '---' '---' $ 6 3 9 
$##### 329 $ '---' '---' 3 :2 9 
$ * * * * * 3276 ¥*3276 
o 0 0 0 0 0 320 000320 
o 0 0 0 0 0 -603 - 00603 

Suffixed character output 
<Format> <Data> <Output> 

#####+ 780 '---' '---' 7 8 0 + 
#####+ -968 ,---,,---,968-
#####- 824 '---' '---' 8 2 4 '---' 
#####- -987 '---' '---' 9 8 7 -

61 



PRINT 
USING 

FORMAT Inserted character output 

<Format> 

Character data output 
<Format> 

Output with comment 
<Format> 

###EXP ## 
###EXP ## 

[Ex. 2.5.2-1] 

<Data> 

<Data> 

8726 
23 

ABCDE 
ABC 
ABCDEFGH 

<Data> 

136,21 
ABCDEFGH 

Mixed output of numeric and character data. 

<Output> 

<Output> 

ABCDE 
ABC L-..J L-..J 

ABCDE 
"Digits in excess of format 
specification are ignored for character 
data. 

<Output> 

123EXP2 
ABCEXPDE 
"A comment is regarded as a separator 
for numeric data. A comment is 
regarded simply as an inserted 
character for character data. 

100 PRINT USING 110 NO,NAME$,Pl,P2,P3 
110 FORMAT ###~ '-'######~~L...J ###L...J L-...I ###I-J L-J ### 

Assuming that NO=101, NAME$="WATSON", P1=95, P2=72, and 
P3 = 100, the following is output. 

Display 

I \ 

101uuWATSONwuww95uuu72uul00 

f , t I 

I I I 
Format # # #L.JL..J# # # # # #L..JWW# # #L..JLJ # # #L..JW# # # 

62 

( 



( 

( 

[Ex. 2.5.2-2] 
A table of amounts is created using "$" and",". 

90 PRINT USING 100 ITEM$,ONEW,OOLO 

100 FORMAT ########uwu$$$,$$$WL..JL..J$$$,$$$ 

Assuming that ITEM$="SALES", DNEW=7450, and DOLD=6705, the 
following is output. 

Display 

I 

SALESu~u~uuu$7,450wu~~$6,705 

\ f f 1 
I I I 

Format ########w ......... $$$ ,$$$ ..... '-'u$$$ ,$$$ 

[Ex. 2.5.2-3] 
Output with direct specification of a comment in the FORMAT statement. 

70 PRINT USING 80 01,02,03 

80 FORMAT HIGHw###L.JL...l.MIOw ###L...JL...JLOWL...J ### 

Assuming that Dl = 240, D2 = 132, and D3 = 5, the following is output. 

Display 

Format HI GHu###uu M I O ... ###uw LOWu### 

63 

PRINT 
USING 

FORMAT 



PRINT 
USING 

FORMAT [Ex. 2.5.2-4] 
A format is used repeatedly for a PRINT USING statement. 

90 PRINT USING 100 A,B,C,D 
100 FORMAT ###w ..... .....,### 

Assuming that A=450, B=38, C=721, and D=5, the following is output. 

Display 

450"",wWL.J38 

Format ###uu~### 

Output to disk files 

Like with PRINT statement, data can be output to a disk file or an external 
output device by specifying the logical device number in the PRINT USING 
statement. Refer to the explanation of the PRINT statement in "2.12.6 Other 
Input/Output" for details. 

64 



( 

( 

2.6 Branch Instructions 

2.6.1 GOTO Statement (Go To) 

Function 
The GOTO statement changes the program execution flow. 

Format 

GOTO L-J {<Line NO.>} 

[< Label> ] 

Explanation 
The GOTO statement is an instruction that changes the program execution 

flow. The line number or label must be specified in the operand. Specify 
number of the line to which the branch will be made. When the label is specified 
in the operand, the same label must be placed at the head of the line to which 
the branch will be made (immediately following the line number). 

A branch destination is always the first statement in the line. A branch 
cannot be made to the second or following statement in a multi-statement line. 

Note Alphabet letters and numbers can be used for labels. Enclose the 
label in square brackets ([ ]) and position it immediately following the 
line number. There is no limit to the number of characters in the label. 

< Line No.> [< Label> J<Statement> 

Only one branch destination label can be placed on a line. 
An error occurs if the line contains only a label. Write a statement following 

the label. 

[Ex. 2.6.1-1] 
A branch to a specified line. 

70 PRINT X$ 

300 GOTO 70 

Execution branches from line 300 to line 70. 

65 



[Ex. 2.6.1-2] 

A branch to the line specified by the label. 

90 GOTO [CALC.ROUTINE] 

180 [CALC.ROUTINE]REM TOTALING 

Execution branches from line 90 to line 180. 

[Ex. 2.6.1-3] 
The GOTO statement is used as the second statement in a multi-statement 

line, and a branch is executed by the no-input operation. 

80 REM 

170 INPUT AGAIN:GOTO 80 

180 REM 

When data is input to the variable AGAIN on line 170, program execution 
branches to line 80 by the next statement, GOTO 80, and line 180 is executed 
when the no-input operation is performed. 

66 

( 



( 

2.6.2 GOSUB Statement (Go to Subroutine) 
RETURN Statement (Return) 

Function 
The GOSUB statement branches a program to a subroutine and executes the 

subroutine. The RETURN statement returns program execution to the main 
routine and executes the statement next to the GOSUB statement where the 
branch occurred. 

Format 

GOSUB '--' {< Line No. » 
[< Label> ] 

RETURN 

Explanation 
When there are several identical parts in a program, they are extracted from 

the program and made into a common routine 1). This is called a subroutine. 
Using subroutines makes a program easy to understand and decreases the pro
gram volume. 

The GOSUB statement branches program execution to a subroutine and ex
ecutes it. The RETURN statement returns execution from the subroutine to the 
original or main routine. 

[Program without subroutine] 

160_ 
170 
180 

260_ 
270 
280 

Main 
routine 

Sub-
routine 

[Program with subroutine] 

160 GOSUB 500 

260 GOSUB 500 

400 END 

{ 
500_ 
510 
520 
530 RETURN 

Note 1: A routine is a part of a program that performs a particular job. 

67 

GOSUB 

RETURN 



GOSUB 

RETURN A line number or a label can be specified in the operand of the GOSUB state
ment. Specify the line number on the frrst line of a subroutine. When a label is 
specified in the operand, the same label must be placed at the beginning of the 
line where the subroutine starts (immediately following the line number). Pro
gram execution proceeds to the statement next to the GOSUB statement to 
which the branch was made when the RETURN statement is executed. 

One subroutine can be branched to another. This is called the nesting of a 
subroutine. Any number of subroutines can be nested as long as the capacity of 
the stack area in memory is sufficient. But because the stack area is also shared 
by the FOR and the NEXT statements (described later), there is a correlation to 
nesting. Fig. 2 shows the nesting order in two levels. 

Fig. 2 

(START) 

[A) [B) /31 4/ 
GOSUB[A) / GOSUB[B) / 5 

:.!~ ~T~~ RETURN 

Main routine Subroutine A Subroutine B 

68 

( 



( 

( 

[Ex. 2.2.6-1] 

An input error warning is made into a subroutine. 
When a value greater than 100 is input to variable X, the alarm sounds and 

"ERROR" is displayed. 

140 INPUT X 

150 IF X<=lOO GOTO [Calculation A] 

160 GOSUB [Error] 

170 GOTO 140 

240 INPUT Y 

250 IF Y<=lOO GOTO [Calculation B] 

260 GOSUB [Error] 

270 GOTO 240 

500 [Error] REM Buzzer & Print 

510 PRINT "&07"; 

520 PRINT "ERROR" 

530 RETURN 

Line 510 is the PRINT statement to activate the alarm. 

69 

GOSUB 

RETURN 



2.6.3 IF Statement (If) 

Function 
A branch or statement is executed according to specified conditions. 

Format 

IFL-J { < Conditional Expression> 1 L-J 1 GOTOL-J {< Line No. > lJ 
l < Arithmetic Expression> l[ <Label> ] 

THEN L-J <Statement> 

Explanation 
This instruction changes the order of program execution depending on 

whether a specified condition is satisfied or whether the value of an expression 

is O. 
When a conditional expression is satisfied or when the value of an arithmetic 

expression is not 0, the GOTO statement or the statement following THEN is 

executed. 
When a conditional expression is not satisfied or when the value of an arith

metic expression is 0, the statements on the next line are executed. 
Six relational operators ( <, >, =, ~, ~, and :s;;) can be used in conditional 

expressions. In programs, they are indicated as follows: 

< - < 
> - > 
- - = 
~ - <> 
~ - <= 
~ - >= 

In judging the condition following IF, -1 means that the condition is satis
fied and 0 means that it isn't satisfied. This processing method allows logical op
erations (logical product, logical sum, exclusive OR, and negation) to judge two 

or more conditions. 

70 



( 
Logical operations are performed as follows: 

Logical product (AND) 

x y 
o 0 
o 

-1 
-1 

Logical sum (OR) 

-1 
o 

-1 

x Y 

o 0 
o 

-1 
-1 

-1 
o 

-1 

Exclusive OR (XOR) 

X Y 

0 0 
0 -1 

-1 0 

-1 -1 

Negation (NOT) 

Logical product of X and Y 

o 
o 
o 

-1 

Logical sum of X and Y 

o 
-1 
-1 
-1 

Exclusive OR of X and Y 

0 

-1 
-1 

0 

X Negation of X 

o -1 
-1 0 

The logical operators shown in parentheses are used in programs. 

Note A GOTO or THEN statement following the IF statement must be 
written on the same line with the IF statement. An error occurs if the 
THEN statement which follows IF and the condition specified are writ
ten on the next line. 

71 



[Ex. 2.6.3-1] 
The program branches according to a conditional expression comparing one 

variable with another. When the value of the variable RIGHT is greater than 
that of the variable LEFT, program execution branches to line 100. 

50 IF RIGHT>LEFT GOTO 100 

( Same with THE N GOT 0 1 0 0 ) 

This is shown in the flowchart below. 

YES 
To line 100 

NO 

To the next line 

[Ex. 2.6.3-2] 
When the comparison condition of string variables is satisfied, the statement 

following THEN is executed. 

80 [Input] REM Input Routine 

150 IF NAME1$<>NAME2$ THEN PRINT "NG!":GOTO [Input] 

160 REM Calculation Routine 

If the values of string variables NAME 1 $ and NAME2$ are the same, execu
tion proceeds to the next line. When they are not, "NG!" is displayed and pro
gram execution branches to the label [Input]. 

72 



( 
Input 

Calculation routine 

This example can be written as follows: 

80 [I nput] REM Input Routi ne 

150 IF NAME1$=NAME2$ GOTO 170 

160 PRINT liNG! II :GOTO [Input] 

170 REM Calculation Routine 

NG! 

Display 

In this case, when the contents of NAME 1 $ and NAME2$ on line 150 are 
the same, execution branches to the calculation routine on line 170. When they 
are not, line 160 is executed and execution branches to line 80. 

73 



[Ex. 2.6.3-3] 
The program branches according to the comparison of arithmetic expres

sions. 

120 IF M*N<P*Q THEN PRINT "Condition B" :GOTO 400 

130 PRINT IConditionA" 

140 REM Condition A 

400 REM Condition B 

When the values of variables M, N, P, and Q satisfy the condition 
M x N < P x Q, "Condition B" is displayed and program execution branches to 
line 400. Otherwise, "Condition A" is displayed and execution proceeds to the 
next line. 

NO 

Condition A Condition B 

To line 140 To line 400 

74 

( 



( 
[Ex. 2.6.3-4] 

Program execution branches according to the logical sum (OR) of the two 
conditional expressions. 

80 [SO RT] REM Hi gh-Low Compari son 

170 IF (Pl >LEVEL)OR(P2>LEVEL) THEN PRINT "PASS": GOTO [REG!] 

180 PRINT ICHECK&07";NAME$;GOTO [SORT] 

400 [REGI] REM NUMERICAL REGISTRATION 

When the value of either variable PI or P2 is greater than thc value of varia
ble LEVEL, "PASS" is displayed and program execution branches to the label 
[REGI]. Otherwise "CHECK" is displayed, the alarm sounds, the contents of 
string variable NAME$ are displayed, and program execution branches to the 
label [SORT]. 

CHECK 
"NAME$" 

To label 
[SORT] 

75 

YES 

PASS 

To label 

[REGI] 



[Ex. 2.6.3-5] 
Program execution branches according to the logical product (AND) of 

three conditional expressions. 
When variables Q(1), Q(2), and Q(3) satisfy all of the following conditions, 

program execution branches to label [CALC]: 
Q(1) > 100, Q(2) >45, Q(3) <0 

150 IF (Q(1»100)AND(Q(2»45)AND(Q(3)<O) GOTO [CALC] 
160 [CHECK] REM VALUE CHECK 

270 [CALC] REM CALCULATION OF VALUE 

AU conditions are satisfied 

At least one conditon is not satisfied 

To the next line 

(label[ CHECK]) 

To label 

[CALC] 

Each conditional expression whose specified condition is satisfied has a 
value of -1. When the condition is not satisfied, each has a value of O. If at least 
one of the conditional expressions has a value of 0, the total logical product is O. 
Program execution branches to the label [CALC] only when all of the condi
tions are satisfied. When at least one of the conditions is not satisfied, execution 
proceeds to the next line. 

76 

( 



( 

( 

2.6.4 ON Statement (On) 

Function 

Format 

Program execution branches according to the value of a variable or expres
sion. 

ON L....J < Arithmetic Expression>L....J{GOTO )L....J{<Line NO. » [,] ... 

lGOSUB l[ <Label> ] 

Explanation 
The value of an arithmetic expression following ON is converted to an inte

ger and program execution branches to the line indicated by the integer value. 
The relationship between the value of an arithmetic expression and the branch 
destination line is shown below. 

ON <Arithmetic Expression> GOTO <Line No.1>, <Line No.2>, ..... , 

<Line No.n> 

When the value of the arithmetic expression is 1, program execution 
branches to the line specified in <Line No.1>. 

When the value of the arithmetic expression is 2, program execution 
branches to the line specified in < Line No.2>. 

When the value of the arithmetic expression is n, program execution 
branches to the line specified in <Line No. n>. 

When the value of the arithmetic expression is 0 or negative, execution pro
ceeds to the statement next to the ON statement. 

When the value of the arithmetic expression is greater than the number of 
destinations, execution also proceeds to the next statement. 

As described above, a line number or a branch destination label must be 
specified following the GOTO or GOSUB statement. 

77 



[Ex. 2.6.4-11 
When the value of variable CODE is 1, program execution branches to line 

200. When the value is 2, program execution branches to line 350. When the 
value is 3, program execution branches to line 540. 

70 ON CODE GOTO 200,350,540 

200 REM CODE=l 

350 REM CODE=2 

540 REM CODE=3 

[Ex. 2.6.4-2] 

Under the same conditions as in Ex. 2.6.4-1, program branches according to 
the label. 

70 ON CODE GOTO [B1J,[B2J,[B3J 

200 [B1J REM CODE=l 

350 [B2J REM CODE=2 

540 [B3J REM CODE=3 

78 



( 
[Ex. 2.6.4-3] 

Program execution branches according to the conditional expression. 
When one of the variables A, B, or C has positive value, program execution 

branches to line 250. When two of them have positive values, program execu
tion branches to line 350. When all three variables have positive values, program 
execution branches to line 450. 

120 ON -((A>O)+(B>O)+(C>O)) GOTO 25,350,450 

250 REM 1 POSITIVE VALUE 

350 REM 2 POSITIVE VALUES 

450 REM 3 POSITIVE VALUES 

Each conditional expression has a value of -1 when its condition is satisfied 
and 0 if it is not. So the value of the expressions following ON is equal to the 
number of variables that have positive values. 

79 



~ 
~2.7 Loop Instructions 

2.7.1 FOR Statement (For) 
NEXT statement (Next) 

Function 
These instructions repeat the same processing. 

Format 

FOR,---, < Arit.hmetic> = < Arithm~tic > TO < Arithm~tic > [ STEP< Arithm~tic > ] 
Vanable Expression I '---' '---' ExpressIOn 2 '---' ExpressIOn 3 

NEXT,---, < Arithmetic Variable> 

Explanation 
A pair of FOR and NEXT statements are used to repeat all program lines 

from the FOR statement to the NEXT statement. This type of execution is 
called a loop. The arithmetic variable following FOR counts the number of 
times the loop is executed. The arithmetic variable in the operand of the NEXT 
statement must be the same as the arithmetic variable following FOR. 

Arithmetic expressions 1-3 are specified to determine the number of loop 
repetitions. The value of < Arithmetic Expression 1 > is called the starting 
value and specifies the arithmetic variable's initial value in the loop. The value 
of < Arithmetic Expression 2> is called the ending value and specifies the 
value of the arithmetic variable at which loop execution will end. 

The value of < Arithmetic Expression 3> is called the increment value and 
specifies the amount added to the arithmetic variable each time the loop is ex
ecuted. 

Numeric values, simple variables, and array variables are used for arithmetic 
expressions 1-3. The increment value is added to the starting value with each 
loop execution. The loop ends when the value of the arithmetic variable is great
er than the ending value. The statement following NEXT is executed when the 
loop ends. 

< Arithmetic Expression 3> can be omitted. When it is omitted, 1 is auto
matically specified. Negative values can be used for arithmetic expressions 1-3. 

80 

( 

( 

( 



c 

( 

The value of the arithmetic variable and the ending value are compared and I ;x: I 
the increment value is added by the NEXT statement. So, the loop is executed 
at least once no matter what the starting, ending, and increment values are. 

The values of arithmetic variable and arithmetic expressions 1 - 3 can be as
signed to other variables or referenced in a loop, but their values cannot be 

changed. 

A branch can be performed during loop execution. A branch to a line in the 
middle of the loop cannot be performed and causes an error. If program execu
tion branches during loop execution, the value of the arithmetic variable does 
not change. 

Loops between FOR and NEXT can be included in another loop between 
FOR and NEXT. This is called nesting. 

60 FOR X=l TO 5 60 FOR 1=1 TO 5 

[ 70 
FOR Y=l TO 3 70 FOR J=l TO 3 

1; 0 
[ 80 

FOR K=l TO 10 

NEXT Y 
1; 0 120 NEXT X NEXT K 

[~O 
FOR L=l TO 4 

150 NEXT L 
160 NEXT J 
170 NEXT 1 

Any number of nesting levels can be specified as long as the capacity of the 
stack area in memory is sufficient. Because the GOSUB statement and the 
RETURN statement also use the stack area, there is a correlation with their 

nesting. 
In nesting, the entire inner loop must be within the outer loop. The arithme

tic variable specified for the outer loop must not be specified for the inner loop. 

81 



~ 
~ Right Loop 

FOR X=l TO 5 
FOR Y=l TO 5 

NEXT Y 
120 NEXT X 

[Ex. 2.7.1-1] 

Wrong Loop 

40 FOR X=l TO 5 
50 FOR Y=l TO 5 

110 NEXT X 
120 NEXT Y 

*The entire inner loop is not within 
the outer loop. 

[

40 
~- 50 
I : 
I • 
1 110 

FOR X=l TO 5 
FOR Y=l TO 5 

NEXT X 

*Line 50 is ignored so there is no 
error, but FOR and NEXT are used in
correctly. 

The loop is executed five times with the condition that variable I == 1,2,3, 
4, and 5. The value of the array variable WORK en is displayed. The increment 
value is omitted (1) . 

. 
50 FOR 1=1 TO 5 
60 PRINT WORK(I) 
70 NEXT I 

When an loop execution ends, variable I has a value of 6. 

82 



( 
[Ex. 2.7.1-2] 

The loop is executed five times with the condition that variable COUNT = 

1, 3, 5, 7, and 9. The value of COUNT is displayed. 

110 FOR COUNT=1 TO 10 STEP 2 

120 PRINT COUNT 

130 NEXT COUNT 

When loop execution ends, variable COUNT has a value of 11. 

[Ex. 2.7.1-3] 
The loop is executed five times with the condition that variable I = 0.2, 

-0.2, -0.6, -1.0, and -1.4. The value of2 xl is displayed during loop execu
tion. 

210 FOR 1=0.2 TO -1.4 STEP -0.4 

220 PRINT 2*1 

230 NEXT I 

When loop execution ends, variable I has a value of -1.8 

83 

G 
8 



~ 
~ [Ex. 2.7.1-4] 

This is an example of 2-levelloop nesting. Data are input in sequence to 
array variables CONST (1, 1) - CONST (4, 4). 

10 DIM CONST(4,4) 

310 FOR J=1 TO 4 
320 FOR 1=1 TO 4 
330 INPUT CONST(I,J) 
340 NEXT I 
350 NEXT J 

When loop execution ends, variables I and J have values of 5. 

[Ex. 2.7.1-5] 
This is an example of an error. 
It is impossible to branch program execution from line 100 to line 410. 

70 FOR J=O TO 20 

100 IF A=O GOTO 410---. 
Wrong branch 

200 NEXT J 

400 FOR 1=0 TO 5 
410 FOR J=O TO 3 

500 NEXT J 
510 NEXT I 

84 

( 



2.8 
( 

2.8.1 

( 

Constant Definition Instructions 

READ Statement (Read) 
DATA Statement (Data) 

Function 
Numeric values and characters are assigned to variables. 

Format 

READ L..J <Variable> [ ,J 

DATA '-' { < Constant> } [ ,J ... 
l < Character> J 

Explanation 
The READ statement specifies the variable to which data will be assigned 

and the DATA statement actually assigns the data. 
The variable specified in the READ statement must correspond to the data 

specified in the DATA statement. So the number and the type of variables 
(arithmetic or string) must agree with corresponding data. But there is a special 
way to make the number of data smaller than that of variables to produce the 
same result as the no-input function of the INPUT statement. 

Data assigned to a string variable does not need to be enclosed with quota
tion marks ("). However the data must be in quotes if quotation marks are used 
as data. Characters which cannot be entered through the keyboard can be speci
fied by a hexadecimal code following "&". 

85 

~ 
~ 



R 
B [Ex. 2.8.1-11 

Data are assigned to variables as follows: 

10 20 30 WHITE 
~~ ~~ ~~ 

X Y z 

10 DIM C(3) 

150 READ X,Y,Z 

300 READ A$,B$ 

350 FOR 1=1 TO 3 
360 READ C (1) 

370 NEXT I 

~ 

A$ 

RED 
~~ 

B$ 

400 DATA 10,20,30,WHITE 
410 DATA RED,40,50,60 

40 
~~ 

C(l) 

50 60 
~~ -,Jlt 

C(2) C(3) 

Lines 400 and 410 can be combined into one line as DATA 10, 20, 30, 
WlllTE, RED, 40,50,60. 

86 

( 

( 



[Ex. 2.8.1-2] 
This is an example in which there are fewer variables than data (no input). 
Only two data are specified in the DATA statement on line 100. 
When the value of N entered on line 20 is less than or equal to 2, the data on 

line 100 is read and program execution proceeds to line 60. When the value ofN 
is greater than 2, execution proceeds to the next line (line 50), "NO DATA" is 
displayed and program execution ends. 

1 0 DIM A(10) 
20 INPUT N 
30 FOR 1=1 TO N 
40 READ A (1) : GOTO 60 
50 PRINT "NO DATA":END 
60 NEXT I 

100 DATA 11,22 

87 

~ 
6 



I RESTORE I 
2.8.2 RESTORE Statement (Restore) 

Function 
This instruction makes the ftrst data in the DATA statement correspond to 

the variable specified in the READ statement that immediately follows. 

Format 

RESTORE 

Explanation 
There must be a one to one correspondence between the number of varia

bles in the READ statement and the number of data in the DATA statement. 
But when the processing requires that the same data are read in the same order, 
the correspondence can be changed using the RESTORE statement. The ftrst 
data in the D AT A statement is made to correspond to the variable of the READ 
statement that immediately follows the RESTORE statement. 

[Ex. 2.8.2-1] 
Using the READ statement, data 10, 20, and 30 are assigned so that X==lO, 

Y ==20, Z==30, A==lO, and B==20. 

30 READ X, Y, Z 

40 RESTORE 

50 READ A, B 

100 DATA 10,20,30 

88 

( 



( 

( 

2.9 Program Control Instructions 

2.9.1 END Statement (End) 

Function 
This instruction ends program execution. 

Format 

END 

Explanation 
Several END statements can be placed on various program lines according 

to the program flow. The program ends when the END statement is executed. 
The END statement in a subprogram (Le. a program called by the CALL 

statement) has the same function as the RETURN statement in a subroutine. 
When the END statement is executed in a subprogram, program execution re
turns to the main program and the statement following the CALL statement is 
executed. 
[Ex. 2.9.1-1] 

Program execution ends after a branch by the IF statement. 

200 IF A>O GOTO 300 
210 REM CASE OF A=<O 

290 END 

300 REM CASE OF A>O 

380 END 

89 



2.9.2 BYE Statement (Bye) 

Function 
This statement ends BASIC and returns the system to the OS mode. 

Format 

BYE 

Explanation 
The BYE statement ends the program and returns the system to the OS 

mode. The function is exactly the same as that of the BYE command. It is used 
like the END statement. 

[Ex. 2.9.2-1] 

. 
400 BYE 

( 

In the above example, BASIC program execution ends and the system re- ( 
turns to the OS mode. 

Note 
When BASIC program execution is started by a BASIC command in a 

SUBMIT file (see the "CP/M-86 User's Manual"), the next line in the 
SUBMIT me is executed after the BASIC program is ended using the BYE state
ment. 

90 



( 
2.10 Function Definition Statement 

2.10.1 DEF FN Statement (Define Function) 

Function 
This instruction defines an expression used repeatedly as a user defmed func

tion. 

Format 

DEF <-.J FN < Function Name> « Variable> [ , ]- .. ) = < Defined Expressions> 

Explanation 
When the same calculation is repeated many times in a program, the calcula

tion expression can be defmed as a function using this instruction. 
The function name is specified according to the same rules as those used for 

variable name. The sub-keyword FN must be placed in front of the function 
name. "FN" must always be specified in capital letters. 

Two or more variables can be specified in an expression. This statement 
must be executed prior to execution of the statement that uses the function. 

[Ex. 2.10.1-1] 
Coshx = (ex + e-x)12 is defmed as FNCOSH(X). 

10 DEF FNCOSH(X)=(EXP(X)+EXP(-X))/2 

150 FOR 1=1 TO 360 

250 LET P=FNCOSH(I)*10 
260 PRINT P 
270 NEXT I 

EXP(X) is one of the built-in functions explained later. 

91 



[Ex. 2.10.1-2] 
2X2 + 4Y - Z is defmed as FNA (X, Y, Z). 

10 DIM D(3) 

20 DEF FNA(X, Y, Z)=2*X**2+4*Y-Z 

150 LET ANS=FNA(D(1),D(2),D(3)) 

The following calculation is performed on line 150. 
ANS=2x (D(I))2+4xD(2)-D(3) 
Assuming that D(I)=3, D(2)=2, and D(3)=1, 

ANS=2x 32+4x 2-1=25. 

92 



( 
2.11 Program Calli nstructions 

2.11.1 CALL Statement (Call) 
PARAM Statement (Parameter) 

Function 
The CALL statement loads other BASIC programs stored on the disk 

(called subprograms) and executes them. 
The P ARAM statement shares data between the main program and sub

programs. 

Format 

CALL L-J<Program> [( < Variable> [ ,J ... ) ] 

PARAM L-.J<Variable > [ ,J ... 

Explanation 
The CALL statement reads a subprogram from the disk, loads it to 

memory, and then executes it. 

( CALLA) 

Main 

Memory 

Subprogram A 

Disk 

o 

Main 
program 

( CALLS) 

Main 
program 

Subprogram A 

~ : Unused memory 

So when the CALL statement is executed, an error occurs unless there is 
sufficient memory to store the subprogram. 

93 

B a 



CALL 

PARAM Immediately after the CALL statement is executed, the system conftrms 
that the specilled subprogram is in memory. If found, the subprogram is execut
ed. If not, the subprogram is searched for on the disks, starting with the disk in 
drive A. If the subprogram is found, it is loaded to memory for execution. An 
error occurs if the subprogram is not found. 

Data can be shared with the subprogram by specifying a variable after the 
subprogram name of the CALL statement, and then placing the P ARAM state
ment in which the variables are specilled at the beginning of the subprogram. 
Another statement cannot be written before the P ARAM statement. 

If the END statement is executed in the subprogram, the statement next to 
the CALL statement in the main program is executed. The subprogram remains 
in memory after execution. Even if the same subprogram is called, it is not read 
from the disk again. The FREE statement (described later) can be used to pre
vent a memory overflow when subprograms are called. 

The subprogram starting with a P ARAM statement cannot be executed in
dependently. It must be called by the CALL statement. 

The CALL statement can be executed to call a different subprogram in a 
subprogram. The nesting of CALL statements is the same as the nesting of 
GOSUB statements. 

Main program Subprogram A Subprogram B 

CALLA 

END END 

94 



( 

Note 

~ 
[Ex.2.1l.1-I] ~ 

Variable D and data NAME$(1) - NAME$(3) are shared between program 

A (main program) and program B (subprogram). 

5 REM PROGRAM A 
1 0 DIM NAME$(3) 

110 PRINT D,NAME$(1) 
1 20 CALL B(D,NAME$(*)) 
130 PRINT D,NAME$(1) 

10 PARAM D,NAME$(*) 
15 REM PROGRAM B 

Asterisk (*) indicates aU array 

variables. 

The contents of variable D and data NAME$(1) - NAME$(3) are shared 

by the two programs using the CALL statement on line 120 in program A and 
the P ARAM statement on line lOin program B. 

The contents displayed on line 110 are shared with program B which is called 

by the CALL statement on line 120. There is a statement in program B to 
update the contents of variable D and NAME$(1) - NAME$(3). After execu

tion of program B, the updated data of each variable are shared with program A. 

As the example shows, the array variables shared by programs A and B 

using the P ARAM statement do not need to be defmed by the DIM statement 
in program B. But array variables not specified by the P ARAM statement, even 
if the same name is deftned in main program, must be defmed in program B by 

the DIM statement. In this case, the contents of the variables in programs A and 
B are not related. They are treated as different variables. 

95 



B 
B [Ex. 2.11.1-2] 

Data are assigned directly to the variables in the subprogram called. 
Instead of making a variable correspond to a variable using the CALL and 

P ARAM statements, the data specified in the CALL statement are assigned 
directly to the subprogram called. 

10 REM PROGRAM A 

100 CALL B(100,X) 

10 PARAM A, B 

20 REM P ROG RAM B 

When execution proceeds to program B, the contents of variables A and B 
are A = 100 and B = (Value of X in program A). When execution returns to 
program A, only the value ofB is given to X. 

( 

Numeric values and characters can be specified directly in the CALL state- ( 
ment. 

[Ex. 2.11.1-3] 
An expression is specified in the CALL statement. 

10 REM PROGRAM A 

100 CALL B(X,Y+Z) 

10 PARAM A,B 

15 REM PROGRAM B 

When execution proceeds to program B, the contents of variables A and B 
are A = (Value of X) and B = (Value of Y + Z). When execution returns to 
program A, the contents of A are assigned to X in program A but the contents 
ofY and Z do not change. 

96 



CALL 

[Ex. 2.11.1-4] PARAM 

( A nesting of program call is executed. 
Program C is called in program B which is called in program A. 

10 REM PROGRAM A 

· · 
100 CALL B(X,Y) 
· · · 

ProgramB 

1 0 PARAM X, Y 
15 REM PROGRAM B 

200 CALL C(Z) 
· 
· 

500 END 

ProgramC 

1 0 PARAM Z 
1 5 REM PROGRAM C 
· 

300 END 

( 

97 



2.11.2 FREE Statement (Free) 

Function 
This instruction deletes a subprogram from memory. 

Format 

FREE 

Explanation 
The subprogram called remains in memory after execution, so the memory 

may overflow when several subprograms are called, even if some programs are 
not used. These unnecessary subprograms can be deleted from memory using 
the FREE statement. 

( CALLA) ( FREE) ( CALLB ) 

Main 
program 

Memory CALL A 
FREE 
CALLB 

Main 
program 

Subprogram A 

Main 
program 

Main 
program 

Subprogram B 

~ : Free memory area 

When the FREE statement is executed, all of the programs following the 
program in which the FREE statement is executed in memory, are deleted. 
When the FREE statement is executed in the main program, all of the sub
programs called are deleted from memory. When the FREE statement is execut
ed in a subprogram, all of the subprograms following the subprogram in 
memory are deleted from memory. 

(CALLA ) ( CALLB ) (FREE) 

Main Main Main Main 
Memory program program program 

98 

Subprogram A 

Subprogram B 

'//////// 

Subprogram A 

( 



[Ex. 2.11.2-1] 

Subprograms Band C are deleted from memory and then subprogram Dis 
called. 

10 REM PROGRAM A 

100 CALL B 

300 CALL C 

500 FREE 
510 CALL 0 

Memory reservation is changed as follows: 

( CALLB ) ( CALLC ) ( FREE ) ( CALLD ) 

Memory Program A Program A Program A 

Subprogram B 

Subprogram C 

99 

Program A Program A 

Subprogram D 

: Free memory 
area 



[EX. 2.11.2-2] 
In this example, the FREE instruction is executed in subprogram C. 

10 REM PROGRAM A 

100 CALL B 

300 CALL C 

ProgramC 

10 REM PROGRAM C 

50 CALL X 

100 FREE 

200 END 

Memory reservation is changed as follows: 

( CALLB ) ( CALLC ) ( CALLX) (FREE) 

Program A Program A Subprogram B 

Subprogram B 

Program A 

Subprogram B 

Subprogram C 

Subprogram X 

In this case, only subprogram X is deleted from memory. 

100 

Subprogram B 

Subprogram C 

( 



( 

( 

2.12 File-Related Instructions 

2.12.1 OPEN Statement (Open) 

Function 
This instruction defmes the logical device number for data fIles on disks or 

peripheral devices so they can be used in a program. 

Format 

OPEN L-J # {< 1-9> } ,)" [ < Drive Name> ] < File Name>"j 

l < Arithmetic Variable> J "< Device Name>" 

< String Expression> 

Explanation 
The OPEN statement must be executed before using data files on disks or 

peripheral devices. 
The OPEN statement defmes the logical device number for fIles or peripher

al devices that will be used. The logical device number defmed by the OPEN 
statement must be specified in instructions (e.g. PUT, GET, etc. described 
later) that perform input/output from/to the files and peripheral devices. Integ
ers 1 - 9 can be specified as logical device numbers. If a logical device number 
is specified with an arithmetic variable, programs must be written to assign an 
integer 1 - 9 to the variable. 

Specify a drive name when the fIle on disk is defmed. When the drive name 
is omitted, the current drive is automatically specified. 

Drive Description on program 

Floppy disk A A:orFDO: 
Floppy disk B B:orFDl: 
Floppy disk C C:orFD2: 
Floppy disk D D:orFD3: 
Mini floppy disk A A:orFDO: 
Mini floppy disk B B:orFDl: 

101 



Refer to "1.10 Files" for the specification of fIle names. When the fIle type is 
omitted, DA T is automatically specified. 

Specify the following device names when the peripheral devices are defmed. 

No. 110 connector Device name 

0 Display unit or keyboard CON: or CRT: 
1 Centronics IIF LPT:orUPO: 
2 RS232C IIF (Centronics IIF) USO: or TTY:(UL1: or UP1:) 
3 RS232C (Centronics I/F) PTR: or PTP:(UL1: or UP1:) 
4 RS232C (Centronics IIF) US1:(UL1: or UP1:) 
5 RS232C (Centronics IIF) US2:(UL1: or UP1:) 

Note: Only one connector from connectors 2-5 can be used to connect a 
centronics I/F. 

The numbers correspond to those in the figure below. 

Rear View of Display Unit 

1 

4 I I 3 I I 2 

5 

The drive name, fIle name, or device name can also be specified with string 

expressions. 
The defmitions of the OPEN statement are valid until they are canceled by 

the CLOSE statement (described later). The defmitions are automatically can

celed when the program ends. 
Only one fIle or peripheral device can be defmed to a logical device number 

at a time. An error occurs if the OPEN statement is executed again for a fIle or 
peripheral device already defmed by the OPEN statement. 

102 

( 

( 



[Ex. 2.12.1-1] 
( The disk me POINT is defmed as logical device number 1. 

20 OPEN #l,IIA:POINT II 

When POINT.DAT is on the disk in drive A, logical device number 1 is 
defined to it. When it is not, a new me POINT.DAT is created on the disk in 
drive A and defmed as logical device number 1. 

[Ex. 2.12.1-2] 
A printer is connected to the Centronics IfF of connector 1 and defmed as 

logical device number 2. 

20 OPEN #2,IILPT: 1I 

90 PRINT #2,IIABC II 

[Ex. 2.12.1-3] 
Logical device numbers are defmed according to the value (1-9) entered 

through the keyboard. 

90 INPUT A 

100 OPEN #A,IILPT: II 

When 2 is entered through the keyboard on line 90, LPT: is defmed as logical 
device number 2. If a numeric value other than 1 - 9 is entered on line 90, an 
error occurs on line 100. 

103 



[Ex. 2.12.1-4] 
A disk file or peripheral device is defmed by the character string entered 

through the keyboard. 

40 DIM A$lO 

150 INPUT A$ 

160 OPEN #1,A$ 

When "LPT:" is entered through the keyboard on line 150, LPT: is defmed 
as logical device number 1. When" A: FILEGT" is entered, disk file 
FILEGT. DAT on the disk in drive A is defmed as logical device number 1. 

The DIM statement on line 40 specifies the number of characters that can be 
entered for the file name or device name as 10 characters (1 character for the 
drive name, 1 character for the colon, and 8 characters for the me name). 

104 

( 



{ 
2.12.2 CLOSE Statement (Close) 

Function 
This instruction cancels the defmition of a logical device number. 

Format 

CLOSE L-J # { < )-9> } [ , % DEL] 

l < Arithmetic Variable> J 

Explanation 
The contents of the logical device number defmed by the OPEN statement 

are canceled (closed). 
After the logical device number definitions are canceled (closed) by the 

CLOSE statement, they can be redefmed. 

Specify the logical device number that will be closed with 1-9. It also can be 
specified by arithmetic variable. When a logical device number is specified with 
an arithmetic variable, write the program so that the value of the variable is 
1-9. 

A me can be deleted from the disk after being closed by specifying % DEL 
(Delete). This specification is valid only when a disk me is closed. 

[Ex. 2.12.2-1] 
Logical device number #1 opened by the OPEN statement is closed. 

40 OPEN #1, IILPT: II 

170 CLOSE #1 

105 



[Ex. 2.12.2-2] 
Data me TRN.DAT on the disk on drive A is deleted at the same time logical ( 

device number #1 is closed. So if me TRN.DAT is opened after this, a new me 
is created on the disk. 

40 OPEN #l,IA:TRN" 

170 CLOSE #l,%DEL 

( 

106 



( 

( 

2.12.3 CHANGE Statement (Change) 

Function 
This instruction is used to change disks in a drive during the execution of a 

program. 

Format 

CHANGEL.....J[MSG «String Expression», J"<Drive Name> " 

Explanation 
In BASIC, mini floppy disks and floppy disks can usually be set into and re

moved from drives only when "$-" is displayed. If a disk is set or removed in 
another system status, the disk may be damaged or a data irregularity may occur 

in the file. 
But when the CHANGE statement is executed in the program, a disk can be 

set/removed into/from the drive. 
When the CHANGE statement is executed, the cursor is displayed and pro

gram execution is suspended temporarily. At this time, it is possible to set/re
move a disk into/from the drive specified by the CHANGE statement. After 
disk replacement, depress ~ to resume program execution. 

When a message is specified after MSG in the operand of the CHANGE 
statement, this message is displayed with the cursor during temporary program 

suspension. 
Before the CHANGE statement is executed to replace the disk, the disk file 

opened on the disk must be closed with the CLOSE statement. 

[Ex. 2.12.3-1] 

50 

90 

100 

110 

Processing is resumed after replacing of the disk in drive B. 

OPEN #1, IIB:SALES1 11 

CLOSE #1 
CHANGE MSG(IICHANGE THE DISK IN DRIVE B"),IIB:II 
OPEN #1, "B:SALES2 11 

Operations after the execution of line 100 are shown next. 

107 



CHANGE THE DISK IN DRIVE B 

If G!I is depressed after disk replacement, program execution is resumed 
starting from line 110. 

108 

( 



( 

( 

2.12.4 PUT Statement (Put) 

Function 
This instruction writes data to a file on a disk. 

Format 

PUT L...J #1< I -9> )[ , <Arithmetic Expression > l--, < Variable> [ ,] ... 

< Arithmetic> 
Variable 

Explanation 
The PUT statement writes the contents of variables to a me on a disk. The 

unit for data writing is called a record. It is determined by the total length of the 
variables specified in the operand of the PUT statement. The lengths of variables 
are usually as follows: 

Integer-type variable: 2 bytes 
Real number-type variable: 8 bytes 
String variable: 8 bytes 

The length of a string variable can be changed to 1-255 bytes. 
Each time the PUT statement is executed, one data record is written to a file. 
There are two methods of writing data to a me, called sequential access and 

random access. Access means writing data to a file or reading data from the me. 
In sequential access, file access is always performed starting from the first 

record of a me. In random access, the position of a record that will be accessed 
can be specified by record number. 

The operating system reads/writes a data to a me on disk in 128-byte units. 
So, the end of the data written by the PUT statement isn't necessarily the same 
as the end ofthe file. (Details are described later.) 

Therefore, the EOD (End of Data) record, which indicates the end of the 
data, must be written in the file at the end of the data written by use of the PUT 
statement. The EOD record is used only as the marker, so use a data which will 
not be confused with the file data. 

109 



The EOD record is effective when data is read by sequential access. When 
the contents of data (number of records and record length) are known, the 
EOD record isn't necessary. 

Data writing to a file by the PUT statement is performed as follows: 
The CP/M-86 operating system writes data to files in 128-byte units. So, the 

size of the file can be calculated as follows: 

lTotal record length J 
128 x 128 bytes =File size 

Note: L -.J indicates that fractions are rounded up. 

When ten 8-byte records are written to a file, the total record length is 80 
bytes (=8 x 10) but the file size is 128 bytes. 

Increasing the data volume in the file is automatically expands the file. But 
once a file is expanded, it cannot be made smaller. For example, even if a file is 
rewritten to include 100 data records and then the number of records is reduced 
to 50, the file size does not change. 

128 bytes 

~/----L...---_~-----I:: ~ I~roll __ I ~;:~~ u~=~,ryd'm 
& & 

EOD End oflile 

End oflile 

Before executing the PUT statement, the file must be opened by the OPEN 
statement. 

110 

( 



Note 

( The CP/M-86 operating system manages the disk in blocks, and consequent
ly the file reserves the disk area in block units of 2K-bytes. So even a file whose 
size is only 128-byte reserves 2K-byte disk area. 

Sequential Access 

When a file is opened by the OPEN statement, the write starting position (in
dicated by what is called a pointer) is at the beginning of the file. Once the PUT 
statement is executed, the pointer moves to the next write position immediately 
following the fIrst record. So in sequential access, records are written sequential
ly beginning at the head of the file. 

For sequential access, <Arithmetic Expression> which specifIes a record 
number (described later), is omitted. 

OPEN #1 .......... . 
File 

Pointer -

PUT #1 (Record A) 
(RecordA) 

Pointer __ 

PUT #2 (Record B) (Record A) 

(Record B) 
Pointer -

111 



PUT #1 (EOD Record) (RecordA) 

(Record B) 

(EOD Record) 

Pointer-

CLOSE#1 ..... 

Random Access 

In the execution of the PUT statement using random access, the pointer 
moves according to record numbers and records are written at the position in
dicated by pointer. After the data is written, the pointer is positioned immediate
ly following the last record written. 

For random access, record numbers must be specified in <Arithmetic Ex
pression>. 

o cannot be specified as a record number. 

OPEN#1 ..... 
File 

Pointer -

PUT # 1, 3 (Record A) 

LRecordNoo 

(Record A) -
PUT #1,1 (Record B) 

(Record B) -
(Record A) 

PUT #1,2 (Record C) 
(Record B) 

(Record C) - (RecordA) 

PUT #1, 4 (EOD Record) 
(Record B) 
(Record C) 
(Record A) 

(EOD Record) -

112 

( 



( 
[Ex. 2.12.4-1] 

The contents of variables D AT (l) - D AT (5) are written to a file by sequen

tial access. 

10 DIM DAT(5) 
20 EODREC=9.9999999999999E63 

140 OPEN #1,"B:MST1" 
150 FOR 1=1 TO 5 

200 PUT #1 DAT(I) 

300 NEXT I 
310 PUT #1 EODREC 
320 CLOSE #1 

In the above example, the PUT statement is executed five times in a loop on 
lines 150-300, and the contents of variables DAT(l) to DAT(5) are written by 
sequential access. 9. 9999999999999E63 is written immediately following the 
data as an EOD record. 

Unused area 
(128-8 x 6) =80 bytes 

113 



File 
A.DFILE.DAT 

[Ex. 2.12.4-2] 
Data blocks of different lengths are written to a file by sequential access. 

10 INTEGER NO,EODREC 
20 DIM NO(5),NAME${5) 

200 OPEN #1,IA:DFILE" 
210 FOR 1=1 TO 5 

300 PUT #1 NO{I) 

400 PUT #1 NAME${I) 

500 NEXT I 
510 EODREC=32767 
520 PUT #1 EODREC 
530 CLOSE #1 

In the above example, the record length in the PUT statement on line 300 is 
2 bytes and the record length in the PUT statement on line 400 is 8 bytes. These 
two PUT statements are repeated five times in a loop on lines 210-500 by 
sequential access. Data blocks of different lengths are written as shown below. 

2 bytes 8 bytes 2 bytes 

NO(I) NAME$(I) NO(2) 

50 bytes 

8 bytes 

NAME$(2) 

114 

2 bytes 

Unused area 
76 bytes 

( 

( 

( 



( 

( 

File 

[Ex. 2.12.4-3] 
The contents of array variables are written as one record to a me by specify

ing an asterisk (*). 

10 DIM DAT(5) 

20 EODREC=9.9999999999999E63 

1000PEN#1,IIB.MSTl II 

200 PUT #1 DAT(*) 

290 PUT #1 EODREC 

300 CLOSE #1 

The above example is a modified form of Ex. 2.12.4-1. Here an asterisk is 
used to specify all of the elements of array variables DAT(l) -DAT(5) as one 
record. 

DAT(*) End of file 
r~------------~~--------------~ 

DAT(I) DAT(2) 
B:MSTl.DAT ~-----:;:ol------I----__ ..I..-____ ...J-____ -L ____ --L:~~LL.L.L..~ I:.i.~~~ 

8 bytes t 
Unused area 80 bytes 

115 



[EX. 1.12.4-4] 
Data is written to a file by random access. 

10 DIM P(10) 

100 OPEN #1,IA:FILE1" 

200 PUT #1,5 P(5) 

300 PUT#1,7P(7) 

390 EOOREC=9.9999999999999E63 

400 PUT #1,11 EOOREC 

410 CLOSE #1 

In the above example, the data of variables P(5) and P(7) are written to a 
file by random access. 

Both ofthe variables specified in the operands of the PUT statement on lines 
200 and 300 have lengths of8 bytes. Data is written to a file as shown below. 

End of file 
8 bytes 8 bytes I 

File I 
A:FILEl.DAT 

rpm] r
p
(7)l I:e:d~~ 

Record 2 3 4 5 6 7 8 9 10 11 
Unused area 40 bytes 

116 

( 



( 
[Ex. 2.12.4-5] 

Data blocks of different lengths are written into a me by random access. 

10 DIM A$10,B$5,EOD$10 

20 EOD$="END-DATA" 

50 OPEN #1,IB:FILE2" 

100 PUT #1,4 A$ 

200 PUT #1,4 B$ 

300 PUT #1,5 EOD$ 

310 CLOSE #1 

The record length in random access is not fixed. The length of the variable 
specified in the operand of the PUT statement determines the record length. In 
the above example, because variable A$ in the PUT statement on line 100 has a 
length of 10 bytes, the contents of A$ are written beginning at the 31st byte 
from the head of the me (at the head of the 4th record in lengths of 10 bytes) . 

Likewise on line 200, writing starts at the 16th byte from the head of the me. 
When data of different record lengths are written to a me by random access, 

be careful about the specification of record numbers. 

Record 1 2 3 4 
End offile 

5~5~5~5~ I 

BALEWAT cr::m I B' I R~~~ BJ~ 
~~~ 

10 bytes 10 bytes 10 bytes 10 bytes 10 bytes Unused area 78 bytes

2 3 4 5

II7

[Ex. 2.12.4-6]

Record numbers are entered through the keyboard and data is written to a
file by random access.

100 OPEN #1,IIB:FILE211

200 INPUT RNO

210 IF(RNO>10)OR(RNO<1) GOTO 200

220 PUT #l,RNO OAT

290 EOOREC=9.9999999999999E63

300 PUT #1,11 EOOREC

310 CLOSE #1

On line 200, values 1-10 are entered to variable RNO as record numbers. If
the input values exceed this range, line 200 is executed again by the IF statement
on line 210. Data is written into the file by the PUT statement on line 220 ac
cording to the record number entered. If the RNO value is a fraction, the frac
tional part is automatically truncated.

When the input value is 4, the file is as shown below.

End of file

Record 2 3 4 5 6 7 8 9 10 11

B::~~DATI I I I DATI II IIIE~~
~'C:X::7""=7'C:X::7'C7 f
8 bytes Unused area 40 bytes

118

(

(

(
2.12.5 GET Statement (Get)

Function
This instruction reads data from a file on a disk.

Format:

GET L-J#l< 1-9> J [, <Arithmetic Expression>]L-J<Variable> [,] ...
< Arithmetic>

Variable

Explanation
The GET statement reads data from a file on a disk and assigns the data to a

variable. This statement is used for files in which data were written by the PUT
statement. It is necessary to know which data were written in what order.

With the execution of the GET statement, one record of data is read from a
file and assigned to variables. At this time, unless the type and length of data,
etc, match that of the record data written, an incorrect value is assigned to varia
bles.

Just as with the PUT statement, there are two kinds offile access, sequential
access and random access. For details, refer to the PUT statement.

Data is read from files in units of 128 bytes by the operating system. So,
except when the length of data written in a file is an integral multiple of 128
bytes, the end of data isn't the same as the end of the file. It is necessary, there
fore, to determine the end of data using the EOD record described in the PUT
Statement.

Like the INPUT statement, the GET statement has an automatic branch
function based on no-input. In the GET statement, the no-input branch occurs
when the data is read beyond the end of the file. At the same time, the value of
the EOF function becomes -1.

The file must be open by the OPEN statement before executing the GET
statement.

119

GET

[Ex. 2.12.5-1]

File
A:FILE1.OAT

Data is read from a file by sequential access.

10 DIM DAT(5)

100 OPEN #1,IA:FILE1"

110 FOR 1=1 TO 5

120 GET #1 DAT{I)

130 NEXT I

200 CLOSE #1

In this example, data is read sequentially from the top of data file
A:FILE1.DAT in which five records of real number-type data (8-byte) is stored.

8 bytes 8 bytes 8 bytes 8 bytes 8 bytes

Real Real Real Real EOD
number- number- number- number-
type data type data type data type data Record

.ij, .ij, -!J. .ij, .ij,
OAT(I) DAT(2) OAT(3) OAT (4) OAT(S) Unused area

In the above example, the number of records written to the file is known, so
it is not necessary to check the EOD record. But when the number of records
written to a file is not known, the end of the data must be determined as follows:

10 DIM DAT(l5)

100 OPEN #1,IA:FILE1"

11 0 1=0

120 1=1+1

130 GET #1 DAT{I):IF DAT{I)<>9.9999999999999E63 GOTO 120

140

In the above example, the IF statement is used to check whether the data
read on line 130 is the EOD record data. When the EOD record is read, reading
ends and execution proceeds to line 140.

120

(

(

(
In the previous example, if data is read from a file that does not contain a

EOD record or from a file in which the contents of the EOD record is other than
9.9999999999999E63, the no-input condition occurs at the end of the file and
execution proceeds to line 140. At this time, the value of the EOF function be
comes -1.

Advice
When data is read from a file by sequential access, an EOD record is required

to determine the end of the data unless the number of records in the file is
known. The EOD record can have any contents but some standardization is
recommended to prevent confusion.

It is also better not to set any EOD record but to use the flrst record of a file
as a file information record to indicate the number of records in a file.

8 bytes 8 bytes 8 bytes 8 bytes 8 bytes 8 bytes End of file

~~~~~~ ~ 

A:m~~~AT~B Dam2 I Dam 3 I Dam41 DamS __ 

+ + 
Information record Unused area 

The program shown below is used to read data from a file. 

1 0 OPEN #1,IIA:FILEII 

20 GET #1 RNO 
30 DIM DAT(RNO) 
40 FOR 1=1 TO RNO 
50 GET #1 DAT(!) 
60 NEXT I 
70 CLOSE #1 

121 



[Ex.2.12.S-21 
Data are read to all elements of the array variables by specifying an 

asterisk (*). 

10 DIM DAT(5) 

100 OPEN #l,IIB:MSTl II 

200 GET #1 DAT(*) 

300 CLOSE #1 

As in Ex. 2.12.4-3, the data are read and assigned to all elements (8 xS=40 
bytes) of array variables DAT(1)-DAT(S) as one record at the same time. 

8 bytes 8 bytes 8 bytes 8 bytes 8 bytes End of file 

~~~~~ ~ 

B:M~~~DATI I I CI ._
-U- V- -U- -U- -U- t

DAT(I) DAT(2) DAT(3) DAT(4) DAT(5) Unused area

In this example, the data is read on the assumption that the number of
records and data type in the file are known.

122

(

(

(

[Ex. 2.12.5-3]
Data is read from a file by random access.

10 INTEGER P,Q

100 OPEN #1,IA:FILE1"

200 GET #1,2 P,DATl$

300 GET#1,5Q,DAT2$

400 CLOSE #1

In the above example, each record is 10 bytes (integer-type: 2 bytes, string
type: 8 bytes) in the GET statements on line 200 and line 300. So, the data is
read from the file as shown below. In this example, it is assumed that the con
tents of the file are known.

Interger-type String-type

2 bytes 8 bytes
O,r--.....

1 1 181 8 1 1
-U- -U-
Q DAT2$

End of file

•
~m
Unused area

In this example, if the GET statement specifying a record number larger
than 6 is executed, incorrect data is read. If reading is performed beyond the
end of the file (i.e. record number greater than 12), no-input branch occurs and
the value of the EOF function becomes -1.

123

GET

[Ex. 2.12.5-4]

A record number is entered through the keyboard and data is read by

random access:

1 OPEN #1,IA:FILE3"

2 GET #1 RNO

100 INPUT X

110 IF (X<l)OR(X>RNO) GOTO 100

120 GET #l,X+l DAT

200 CLOSE #1

When a record number is entered through the keyboard, it is compared with

the number written as the fIrst record in a fIle indicating the number of records
in the fIle. In random access, even if an EOD record is written at the end of data,

it is not effective because the record read by random access is arbitrary.
In this case, it is useful to write an information record indicating the number

of records as explained before.

In this example, the data in the fIle shown below is read by random access. If
a value larger than the range of records is entered, it is checked by the IF state

ment on line 110 and line 100 is executed again. In the GET statement on line
120, 1 is added to the record number entered because record 1 is only an infor
mation record and is ignored. This means that data record 2 can actually be

specifIed with relative record number 1.

Relative record number 2 3 4 5 6 7 8 9 10
End of file

8~~ I

M====~~=~~ ,
A:F1L:~.DAT ~~I Da~ I Da~ I Da~ I Da~ 1~3 Da~ ITWJ~

t
Information record Unused area

D AT (when 6 is input)

124

(

(

(

(

[Ex. 2.12.5-5]
Data from an external input device is read by the GET statement.

10 DIM A$l

100 OPEN #1 ,IUS1:"
110 GET #1 A$
120 IF A$=1&20" GOTO 210

200 GOTO 110
210 CLOSE #1

In the above example, the GET statement is used to read I-byte data from
an external input device connected to I/O connector 4 (US 1 :). The data is then
assigned to I-byte string variable A$. In this case, in the GET Statement on line
110, program execution is suspended until a I-byte code is sent from the exter
nal input device. In the above example, execution of the data read routine ends
when a space code (20H) is sent as data.

125

Other Input
and Output

2.12.6 Other Input and Output

When the logical device number deftned by the OPEN statement described
before is specified by IIO-related instructions (INPUT, INPUT USING,
PRINT, and PRINT USING statements), input and output can be performed
from/to files and external 110 devices using these instructions.

This section gives examples and explanations of input and output from/to
files and external 110 devices.

(1) INPUT Statement

[Ex. 2.12.6-11
Data is read from a file.

120 OPEN #1,IIA:FILE1 11

200 INPUT #l,A$

400 CLOSE #1

In the above example, data is read from file "FILET.DAT" by the INPUT
statement. The reading of data from a file by the INPUT statement is performed
in almost the same way as sequential access by the GET statement. Reading
ends when the CR code (ODH) and the LF code (OAH) are read.

Assume that file "FILE1.DAT" has the following contents and the pointer
is at the head of the file.

FaEl I A I B I C I CR I LF I x I y I z I Q I R I CR I LF I LIM I N I CR I LF I EOFI
f

Pointer
• 1 space is equal to 1 byte.

When the INPUT statement on line 200 is executed under these conditions,
"ABC" is assigned to variable A$ and the pointer moves to position "X". After
data reading is repeated, the pointer reaches position "EOF code (1AH)",

which indicates the end of the file. Then when the EOF code is read by the
INPUT statement, the value of the EOF function (described later) becomes -1
and the no-input branch occurs, like when keyboard entry is performed. So data
reading is not performed and execution proceeds to the next line.

126

(

(

(

As previously mentioned, the CR and LF codes are regarded as the end of
one data when data is read from a file by the INPUT statement. So, a file read by
the INPUT statement is usually created by the PRINT statement without a
symbol at the end of statement. The EOF code (lAH) is automatically written to
mes created by the PRINT or PRINT USING statements.

In input to and output from a me by the PRINT or INPUT statement, the
correspondence between variables and data in the file do not have to be consid
ered. These statements are different from the PUT and GET statements in this
respect. Data from a character file created by the PRINT statement is regarded
by the INPUT statement as a data input operation through a keyboard.

File

PUT statement <Contents of Variable> =?W~ <Variable> GET statement

File

Other Input
and Output

Contents of.W C PRINT statement <v . bl >" <Character> " " < haracter> ~ <Variable> INPUT statement

(2)

ana e

INPUT USING Statement

Reading data from a file by the INPUT USING statement is almost the same
as that for the INPUT statement, but the CR and LF codes are not necessary to
indicate the end of one data.

[Ex. 2.12.6-2]
Data is read from a me.

100 OPEN #l,IIA:FILE II

200 INPUT #l,USING 210 A$

210 FORMAT ###

400 CLOSE #1

In the above example, the contents of file "FILE" are as follows:

FILE ~I _A~_B~_C~_D~~E __ ~F~_G~_H~ __ I~_J~_K~_L~I_M~I_E_O~FI

127

Other Input
and Output

When the pointer is at the beginning of the flle on line 200, the three charac-
ters specified by the FORMAT statement on line 210 are read from the begin- (
ning of the flle and assigned to variable A$. That is, A$ = "ABC" and the point-
er moves to positon "D", the next character, and execution proceeds to line
220.

At the end of the flle, if there are fewer digits in the remaining data in a flle
than the number of digits specified to be read, the excess digits are automatically
fllied by NUL code (OOH).

So even when the pointer points at the EOF code, NUL codes equal to the
number of input digits are assigned to the variable by the INPUT USING state
ment. And because the value of the EOF function becomes -1 when the point
er moves to the EOF positon, the end of file can be determined.

[Ex. 2.12.6-3]
Numeric data is read in.

150 OPEN #l,IA:FILE"

200 INPUT #l,USING 210 A,B,C

210 FORMAT ##

400 CLOSE #1

Assume that the flle "FILE" is as follows:

FILE I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 0 IEOFI ?
By executing the INPUT USING statement on line 200, two digits of data

are read from the flle and assigned to variables A, B, and C. So, the values of the
variables are: A=12, B=34, and C=56. Then the pointer moves to "7".

Reading data from an external input device using the INPUT or INPUT
USING statement is similar to reading data from a flle. Remember that 1 byte of
data (1 character) is regarded as one key operation. Be careful about the end of
one data (CR and LF code) and the EOF code that indicates the end of the flle.

128

(3)

(
PRINT Statement

As explained before, I-byte ASCII codes are output to a me or an external
output device according to specification by the PRINT statement. But when data
is output to a me using the PRINT statement, an EOF code (lAH) is written to
the end of the data as a data end code, so it is possible to detect the end of data
when the data is read from the me by the INPUT or INPUT USING statements.
In the GET statement, the EOF code is always regarded as a data.

Output to an external output device like a printer is similar to output to a dis
play unit. Depending on the specifications of printers, results may differ even if
the same data are output. Load a handler before activating BASIC to use a print
er.

The PRINT USING statement is used exactly like the PRINT statement.

[Ex. 2.12.6-4]
Output to a me

200 OPEN #1,IA:FILE"

300 A$=IABC":X=326

310 PRINT #1,A$;X

400 CLOSE #1

In the above example, the following me is created:

FILE.DATI A B C I~ I 3 2

t 1 1 1
20H

129

Other Input
and Output

Other Input
and Output

[Ex. 2.12.6-5]
Output to a printer.

200 OPEN #1,"LPT: 1I

300 A$=IIABC":X=512
310 PRINT #1,A$;X

400 CLOSE #1

In the above example, data is output to a printer connected to I/O connector
no. I. The printout is as follow:

Printout

ABC 512

130

(
2.13 Matrix·Related Instructions

2.13.1 Before Using Matrix Related Instructions

(1) Matrix

In a table, numeric values and characters are usually arranged in a rectan
gular or square format. The table below shows the performance of two pupils,
X and Y, in Science, English, and Mathematics.

Science English Mathematics

X 70 66 60

Y 60 75 80

This table can be represented as follows using parentheses:

(
70 66 60)
60 75 80

This type of figure arrangement is called a matrix. The individual figures
are called elements of the matrix.

In the above example, a horizontal line of figures (e.g. 70, 66, and 60) is
called a row. A vertical line of figures (e.g. 70 and 60) is called a column.

Generally, a matrix that has m rows and n columns is called an (m, n)

matrix. A matrix that has equal numbers of rows and volumns is called a square
matrix. An (n, n) matrix is called a square matrix of the nth degree.

A matrix is described as follows:

[AJ=

a12· .. a1n)
a22· .. a2n

a m2·· amn

131

(2) Unit Matrix

Ex.

A unit matrix is a square matrix in which all of the elements on the diagonal
line from left top to right bottom are 1 and the other elements are all O. The unit
matrix is represented by I.

In matrix calculations, the unit matrix corresponds to 1 in numeric calcula
tions.

(
1 0 0)

[IJ= 010
001

(3) Transposed Matrix

Ex.

Whe matrix [AJ consists of i rows and j columns, the matrix formed
by replacing the i rows by the j rows and the j columns by the i columns is
called a transposed matrix, which is represented by [AJt.

[I 3 2] t = [I 0] o 1 _I 3 1
2 -I

(4) Inverse Matrix
In a calculation with real numbers, the value of b that satisfies ab = 1 or

ba = 1 when a,* 0 is called the inverse of a. Likewise, when the product of two
square matrixes is equal to unit matix [IJ (i.e. [AJ [BJ = [IJ) , [BJ is called the
inverse matrix of [AJ and [AJ is the inverse matrix of [BJ. They are represented
by [AJ- 1 and [BJ- 1 respectively.

At this time, the following expression is valid:

[AJ [AJ -I = [AJ -I [AJ = [IJ

132

(

(

(5)

Ex.

Sum and Difference of Matrixes
When matrixes [A] and [B] have an equal number of rows and cloumns, the

matrix formed with the sums or differences of the corresponding elements of

the two matrixes is called the sum or difference of [A] and [B].1t is represented

by [A] + [B] or [A] - [BJ.

[A] + [B] = (5 7 9)
588

[A]-[B] = (~ ~ ~)
324

(6) Product of Matrixes
The product of matrixes is calculated as follows:

Take as a simple example:

[A] = (: :), [X] = (:~)

The product of [A] [X] is:

[A] [X] = (ax l + bX2)
CXl + dX2

The product of two square matrixes is:

[A] = (a b), [X] = (Xl Yl)
c d \ x2 Y2

[A] [X] = (aXI + bX2 aYI + bY2)
CXl + dX2 CYI + dY2

133

The product of matrixes is represented as follows:

m n

--- --- --- ---I
///.

ith row

\
~

1\
jth column m

~ I "/

II
[A) [B)

(7) Values of Determinants

, . , , , .
, , , ,

n

:::~:R--:: :::.-.-:.
:: cij · . · , · .

rC")

A determinant is an expression in which the elements of square matrixes
are calculated according to a certain rule. A determinant is represented by 'A ,.
The result of the calculation is called the value of the determinant.

Take as an example a square matrix:

(:: ::)
The value of the following expression is:

a 1b2-a2b l

is represented by:

I:: :~ I
This is called a determinant of the second degree. The value of a(b2 - a2b(

is called the value of the determinant.
A determinant of the third degree and its value are:

al b l CI
a2 b2 C2 =al(b2c3-b3cV-a2(blc3-b3cl)+a3(blc2-b2CI)

a3 b3 C3

134

(

(8) Expansion of Determinants

To formulate a calculation expression from the elements of a determinant is

called the expansion of the determinant.

• Second degree

I al b l \ =alb2- a2b l
a2 b2

• Third degree
al b l CI

a2 b2 c2
a3 b3 c3

= al(b2c3- b3C2) - a2(b lc3 - b3CI) + a3(blc2- b2CI)

• Fourth degree

al b l CI d l
b2 c2 d2 b l CI d l b l CI d l a2 b2 c2 d2

a3 b3 c3 d3
=al b3 c3 d3 -a2 b3 c3 d3 +a3 b2 c2 d2

a4 b4 C4 d4
b4 c4 d4 b4 C4 d4 b4 C4 d4

b l CI d l

-(4 b2 C2 d2
b3 c3 d3

Generally, to expand a determinant of the nth degree, minus signs are given
to the even elements in the first column. Then the sub-determinant of the ele

ments in the first column is obtained. A sub-determinant is a determinant of the
(n -l)th degree determined by removing the row and column that contain the
element from a given determinant finally the aggregate sum of the products of the

elements in the first column with the signs and the sub-determinants of the ele
ments is obtained.

(9) Characteristics of Determinants

Determinants have the following characteristics:
• Even if the rows and the columns are switched, the value of the determinant

does not change.

al b l CI al a2 a3
a2 b2 C2 = bl b2 b3
a3 b3 C3 CI C2 C3

• If two adjacent rows or columns are exchanged, the sign of the value of the
determinant changes.

• The value of a determinant in which each element consists of the same rows

or columns is O.
• When the elements in a row are equal to m times the corresponding elements

in another row, the value of the determinant is O.

135

• If a row of a determinant is multiplied by m, the value of the new deter-

minant is m times the value of the original determinant.

• al +PI +ql al b l CI PI b l CI ql b l CI
a2+ P2+q2 = a2 b2 C2 + P2 b2 C2 + q2 b2 C2
a3+P3+q3 a3 b3 C3 P3 b3 C3 q3 b3 C3

• al b l CI al+mb l b l CI
a2 b2 C2 = a2+ mb2 b2 C2
a3 b3 C3 a3+ mb3 b3 C3

(10) Solution of Simultaneous Linear Equations

As an application of matrixes, simultaneous linear equations are solved

by the two different methods shown here.

• Method Using the Values of Determinants
When:

{
ax+ by=p

cx+dy=q
the simultaneous linear equation becomes:

[A] [X] = [D]
where:

[A] = (: :) , [X] = (~) , [D] = (~)
When ab -. bc *0, the solution can be found by obtaining [A] -I, the inverse

matrix of [A] :
[X] = [A] -) [D]

• Method of Using the Values of Determinants

When:

I
alx + bly + CIZ = d l
a2x + b2y + C2Z = d2

a3x + b3y + C3Z = d3
assume:

al b l CI

D= a2 b2C2 *0, DI = d2 b2 C2 ,D2 = a2 d2 C2 ,D3 = a2 b2 d2
d3 b3 C3 a3 d3 C3 a3 d3 d3

Then the solutions x, y, and Z are obtained as follows:

136

(

(

(

(

2.13.2

2.13.3

Notes for Using Matrix·Related Instructions

Regarding integer-type and real number-type array variables of two dimen
sions as matrixes, matrix-related instructions perform various calculations.
Therefore, array variables for a matrix must be defined by the DIM statement
before executing matrix-related instructions. The method for definition is

described below.
For example, in order to define array variable A as a matrix of 3 rows

and 4 columns, specify:
DIM A(3, 4)

The subscript must be within the range: 1 (0) - 32767.
Use an asterisk (*) to specify all elements of array variables for a matrix.

[

A(I,I) A(I,2) A(1,3) A(l,4) 1
A(*)= A(2,1) A(2,2) A(2,3) A(2,4)

A (3, 1) A (3,2) A (3,3) A (3, 4)
Each element of the matrix corresponds to each of the array variables.
The execution of a matrix-related instruction requires the loading of a

matrix library. The library is loaded automatically when a matrix-related in
struction is executed. But it is also possible for the library to reside in memory.
Ehen the matrix library is resident in memory, it need not be loaded during pro
gram execution, so higher speed processing can be performed. For the specifi
cation of a resident matrix library, refer to the explanation of the BASIC com
mands in "Chapter 11,2.4.13 OS Mode Commands".

MAT INPUT Statement (Matrix Input)

Function
This statement assigns data to a matrix through the keyboard or a file.

Format

MAT INPUT«Variable>, <Array Variable> (*))

Explanation
To enter data through the keyboard, specify 0 in < Variable> indicating

the logical device number. The OPEN statement is not necessary to enter data
through the keyboard.

When entering data from a file, specify the logical device number defined
by the OPEN statement in < Variable> . The symbol # immediately preceding
the logical device number must be omitted.

137

[Ex. 2.13.3-1]
Data is entered through the keyboard to matrix A, consists of 2 columns

and 2 rows.

10 DIM A(2,2)

100 MAT INPUT(O,A(*))

In this example, the function is exactly the same as the one in the following
example using the INPUT statement.

10 DIM A(2,2)

100 INPUT A(1,1),A(l,2),A(2,1),A(2,2)

[Ex. 2.13.3-2]
As in the case of the INPUT statement, data is read into the matrix A from

a character file on a disk.

10 DIM B(2,2)

50 OPEN#1,IB:DATA1"

100 MAT INPUT(l,A(*))

Character
file

DATAl

.t.
A (I, I)

.t. .t. .t.
A (1,2) A(2,1) A (2, 2)

Data reading from a file starts at the pointer position just like in the INPUT
statement. Each data in a character file must also have a CR code and LF
code as the end of one data.

138

(

(

(
2.13.4 MAT READ Statement (Matrix Read)

Function
This statement assigns data specified by the DATA statement to a matrix.

Format

MAT READ«Array Variable> (*))

Explanation
Data specified by a DATA statement are assigned to the array variable

elements. The order of input is as follows:
For example, when A (1, 1)-A (2, 3), the order of input is A (I, I),

A (1, 2), A (1, 3), A (2, I), A (2, 2) and A (2, 3). Follow the order of data
specified by the DATA statement.

The RESTORE statement can also be used.

[Ex. 2.13.4-1]
Data is read to a matrix consisting of 2 rows and 3 columns.

10 DIM A(2,3)

50 MAT READ(A(*))

100 DATA 100,148,162,172,720,310

In this example, the function is exactly the same as the one in the following
example using the READ statement.

10 DIM A(2,3)

50 READ A(l, 1) ,A(l ,2) ,A(l ,3) ,A(2, 1) ,A(2,2) ,A(2,3)

100 DATA 100, 148, 162, 172, 720, 310

139

B
2.13.5 MAT PRINT Statement (Matrix Print)

Function
The MAT PRINT statement outputs the elements of a matrix.

Format

MA T PRINT « Variable>, < Array Variable> (*))

Explanation
This statement sequentially outputs the elements of a matrix to a file or a

device specified in < Variable> indicating the logical derice number.
Specify 0 for output to the display. The OPEN statement must also be ex

cuted. The elements are displayed one after another in a horizontal line. For
output in matrix form, use the PRINT statement or the PRINT USING
statement.

For output to a file on a disk, specify the logical device number defined by
the OPEN statement. The symbol # immediately preceding the logical device
number must be omitted.

[Ex. 2.13.5-1]
The elements of matrix A consisting of 2 rows and 3 columns are displayed.

10 DIM A(2,3)

50 MAT PRINT(O,A(*))

In this example, the function is exactly the same as the one in the following
example using the PRINT statement.

10 DIM A(2,3)

50 PRINT A(l, 1) ;A(l ,2) ;A(l ,3) ;A(2, 1) ;A(2,2) ;A(2,3)

When the values of the variable are:
A{l, 1) = 40,A(I,2) = 50,A{l,3) = 60
A (2, 1) = 70, A (2, 2) = 80, A (2,3) = 90

140

(

(

(

The following is output:

40 50 60 70 80 90

[Ex. 2.13.5-2]

Note

The values of the elements of a matrix are written to a file on disk.

10 DIM A(2,2)

50 OPEN #1,IIB:DATA1 11

100 MAT PRINT(l,A(*))

In the above example, if the values of the array variables are: A (1, 1) = 12,
A (1, 2) = 340, A (2, 1) = 5, and A (2, 2) = 372, the following character data
are written to the file;

r 1 byte

When data is written to a file using the MAT PRINT statement, a CR,
LF, or EOF code is not written at the end of the data.

141

EJ
2.13.6 MAT MOV Statement (Matrix Move)

Function

Format

This statement assigns the values of the elements of a matrix to those of
another matrix.

MAT MOV <Variable2> * , <Variable2> * (Array () {Array ()})

Explanation

< Arithm~tic >
ExpressIon

This instruction corresponds to the LET statement, which handles numeric
values.

The value of each element of <Array Variable 1> is assigned to the cor
responding element of < Array Variable 2>. In this case, the two matrixed
must have an equal numbers of rows and columns.

If < Arithmetic Expression> is specified instead of < Array Variable 2> ,
the value of the specified expression is assigned to all elements of <Array
Variable 1 > .

[Ex. 2.13.6-1]
The element values of matrix B are assigned to those of matrix A.

10 DIM A(2,2),B(2,2)

50 MAT MOV(A(*) ,B(*))

~ I t I [A(I.I) A (1.2)] [B(I.I) B (I. 2)]
A (*)= B (*) =

A (2, 1) A (2, 2) B (2, 1) B (2,2)

t I I I

142

(

[Ex. 2.13.6-2]
The 5 is assigned to each element of matrix A.

10 DIM A(2,2)

50 MAT MOV(A(*),5)

[Ex. 2.13.6-3]

2.13.7

The value of an arithmetic expression is assigned to each of the elements
of matrix A.

10 DIM A(3,3)

50 MAT MOV (A(*) ,X+Y)

If X = 40 and Y = 73, each element of matrix A is 113.

MAT ADD Statement (Matrix Addition)

Function

Format

This statement adds the values of the elements of a matrix to those of
another matrix.

MAT ADD«Arr~y >(*) {<Arr~y >(*)}) VarIable I 'VarIable 2

< Arithm:tic >
ExpressIOn

Explanation
The value of each element of < Array Variable 2> are added to those of

<Array Variable 1>. The two matrixes must have an equal numbers of rows
and columns.

If < Arithmetic Expression> is specified instead of < Array Variable 2>,
the value of the specified expression is added to the value of each element of
<Array Variable 1 >.

143

[Ex. 2.13.7-1]
The element values of matrix B are added to those of matrix A.

10 DIM A(2,2),B(2,2)

50 MAT ADD(A(*) ,B(*))

Assuming that:
[AJ= (12) [BJ= (5 6)

34' 7 8

then on line 50;

[AJ= (1~ 1~)

[Ex. 2.13.7-2]

2.13.8

The value of variable X is added to each of the elements of matrix A.

10 DIM A(3,3)

50 MAT ADD(A(*) ,X)

When the value of variable X is 246, 246 is added to each of the elements

of A (*).

MAT SUB Statement (Matrix Subtraction)

Function

Format

The values of the elements of a matrix are subtracted from those of another

matrix.

MAT SUB <Variable»' <Variable2> * (Array {Array () })

< Arithm~tic >
ExpressIOn

144

(

(

(

Explanation
The values of the elements of < Array Variable 2> are subtracted from

those of <Array Variable 1>. The two matrixed must have an equal number
of rows and columns.

When < Arithmetic Expression> is specified instead of < Array Variable
2>, the value of the specified expression is subtracted from the value of each
element of < Array Variable 1>.

[Ex. 2.13.8-1]
The element values of matrix B are subtracted from those of martix A.

A.

10 DIM A(2,2),B(2,2)

50 MAT SUB(A(*) ,B(*))

Assuming that: [A] = e~~) ,[B] = (~ !)
then on line 50: [A] = (

9
5

7
3

)

[Ex. 2.13.8-1]

2.13.9

The value of an arithmetic expression is subtracted from each of the ele
ments of matrix A.

10 DIM A(2,2)

50 MAT SUB(A(*) ,X+Y)

When X = 20 and Y = 30, 50 is subtracted from each of the elements of

matrixA.

MAT MUL Statement (Matrix Multiplication)

Function
This statement multiplies the values of the elements of a matrix by those of

another matrix.

145

Format

MAT MUL«Arr~y >(*) {<Arr~y >(*)j) VarIable I ' VarIable 2

< Arithm~tic >
ExpressIOn

Explanation
The values of the elements of <Array Variable 1> are multiplied by the

corresponding elements of <Array Variable 2>. The two matrixes must have

an equal number of rows and columns.

Use the MAT ML T statement (described later) to obtain the product of the

matrixes.

When <Arithmetic Expression> is specified instead of <Array Variable

2>, the value of each element of < Array Variable 1 > is multiplied by the

value of the specified expression

[Ex. 2.13.9-1]

The element values of matrix A are multiplied by those of matrix B.

10 DIM A(2,2),B(2,2)

50 MAT MUL(A(*) ,B(*))

Assuming that: [A]= (~!) ,[B]= (~:)
then on line 50: (

5 12)
[A] = 21 32

[Ex. 2.13.9-2]

Each element of matrix A is multiplied by the value of an arithmetic ex

pression.

10 DIM A(3,3)

50 MAT MUL(A(*),L*M)

When variable L = 7 and M = 8, each element of matrix A is multiplied by

56(=7x8).

146

(

(

(

2.13.10 MAT DIV Statement (Matrix Division)

Function

Format

This statement divides the values of the elements of a matrix by those of

another matrix.

MAT DIV«Arr~y >(*) {<Arr~y >(*)}) Variable I 'Variable 2

< Arithm~tic>
ExpressIOn

Explanation
The values of the elements of <Array Variable 1> are divided by those of

< Array Variable 2>. The two matrixes must have an equal numbef of rows

and columns.

When <Arithmetic expression> is specified instead of <Array Variable

2>, the value of each element of < Array Variable 1 > is divided by the value

of the specified expression.
The elements of the array variables and the value of the arthmetic expres

sion cannot be O.

[Ex. 2.13.10-1]

The element values of matrix A are divided by those of matrix B.

10 DIM A(2,2),B(2,2)

50 MAT DIV(A(*) ,B(*))

Assuming that: [AJ= (10 15) [8J= (53)
18 20 ' 9 4

then on line 50; [AJ = (~ !)

147

[Ex. 2.13.10-2]
Each element of matrix A is divided by the value of a variable.

10 DIM A(3,3)

50 MAT DIV(A(*) ,5)

When S = 100, each element of A (*) is divided by 100.

2.13.11 MAT SUM Statement (Matriex Sum)

Function
The sum of the values of the elements of a matrix is assigned to a variable.

Format

. Array ())
MAT SUM «Vanable>, <Variable> *

Explanation
The values of the elements of an array variable are totaled and the result is

assigned to another variable.

[Ex. 2.13.11-1]
The element values of matrix B are totaled and the result is assigned to

variable X.

10 DIM B(2,2)

50 MAT 5UM(X,B(*))

Assuming that: [B] _ (1 2)
- 3 4

then on line 50: X = 1 + 2 + 3 + 4 = 10

148

(

(

2.13.12 MAT CSUM Statement (Matrix Column Sum)

Function

Format

The total of the values of the elements in each column of a matrix is assigned

to another matrix.

MAT CSUM « Arr~y > (*) < Arr~y > (*))
VarIable 'Vanable 2

Explanation

Note

The total value of the elements in each column of < Array Variable 2> is

calculated and the result is assigned to <Array Variable 1>. The two matrixes

must have an equal number of columns. <Array Variable 1> must also have

only one raw.

<Array Variable 1> must be one-dimensional and <Array Variable 2>

must be two-dimensional.

[Ex. 2.13.12-1]

The values of the elements in each column of matrix B are totaled and the
result is assigned to matrix A.

10 DIM A(2),B(3,2)

50 MAT CSUM(A(*),B(*))

Assuming that: [B] = (~ ~)
10 11

then on line 50: [A] = (21 24)

149

EJ
2.13.13 MAT RSU M Statement (Matrix Row Sum)

Function

Format

The total of the values of the elements in each row of a matrix is assigned to

another matrix.

Array () Array >(*))
MAT RSUM«Yariable 1> * , <Yariable2

Explanation

Note

The total value of the elements in each row of < Array Variable 2> is

calculated and the result is assigned to <Array Variable 1>. The two matrixes

must have an equal number of rows. <Array Variable 1> must have only one

column.

< Array Variable 1 > must be one-dimensional, and < Array Variable 2 >
must be two-dimensional.

10 DIM A(2),B(2,2)

50 MAT RSUM(A(*),B(*))

Assuming that: [8J= (4 5 6)
789

then on line 50: [AJ = (~!)

150

(

(

(

2.13.14 MAT ION Statement (Matrix Identity)

Function
This statement constructs a unit matrix of the specified size.

Format

MAT ION « Array Variable> (*))

Explanation
A unit matrix is constructed by assigning 0 and 1 to the elements of an

array variable of the size defined by the DIM statement. The array variable

must be a square matrix.

[Ex. 2.13.14-1]

A unit matrix is constructed by assigning 0 and 1 to the elements of

square matrix A.

10 DIM A(4,4)

50 MAT IDN (A(*))

On line 50: o 0
1 0

o 1

o 0

151

~)

B
2.13.15 MAT INV Statement (Matrix Inverse)

Function
This statement constructs the inverse matrix of a specified square matrix.

Format

MAT INV « Array Variable> (*))

Explanation

Note

This statement calculates the inverse matrix of a matrix specified by the
array variable and assignes the result to the original array. The array variable

must be a square matrix. An error occurs if the specified matrix is not a
square matrix.

The array variable must be two-dimensional.

[Ex. 2.13.15-1]

The inverse matrix of matrix A is calculated.

10 DIM A(2,2)

50 MAT I N V (A (*))

Assuming that:

then on line 50:

(21 43) [A]=

[A] = (1.5 -2) because [A] [A] -I = [I].
-0.5 1

152

(

(

2.13.16 MAT TRN Statement (Matrix Transpose)

Function
This statement constructs the transposed matrix of a specified matrix.

Format

Explanation
The transposed matrix of the matrix specified by < Array Variable 2> is

assigned to the matrix specified by <Array Variable 1>. That is, the rows
become colums and the columns become rows.

The number of the rows of <Array Variable 1> must be equal to the
number of columns of < Array Variable 2> .

The number of the columns of <Array Variable 1> must be equal to that

of the rows of < Array Variable 2> .

[Ex. 2.13.16-1]
The transposed matrix of matrix B is assigned to A.

10 DIM A(2,3),B(3,2)

50 MAT TRN(A(*),B(*))

Assuming that: [Bl ~G D
then on line 50: [A] = (~ ~ ~)

153

G
2.13.17 MAT DET Statement (Matrix Determinant)

Function

Format

This statement calculates the value of the determinant of a specified
square matrix and constructs the its inverse matrix.

MAT DET«Variable>, <vArr~Ybl > (*))
ana e

Explanation
The determinant of a square matrix specified by <Array Variable> is

calculated and the result is assigned to the variable. Simultaneously, the
inverse matrix of the square matrix specified by < Array Variable> is assigned
to the original matrix. When the determinant is 0, a meaningless value is
assigned to the array variable because there is no inverse matrix.

[Ex. 2.13.17-1]

The value of the determinant of matrix A is calculated.

10 DIM A(2,2)

50 MAT DET(X,A(*))

Assuming that: [A] = (~ ~)

then on line 50: X = 2 x 3 - 4 x 1 = 2

[A] = [A] -I = (1.5 -1
2

)
-0.5

154

(

(
2.13.18 MAT MLT Statement (Matrix Multiplication)

Function
The product of matrixes is calculated.

Format

(Array () Array () Array > (*))
MAT ML T < V . bi I> * ,< V . bl 2> * ,< V . bi 3 ana e ana e ana e

Explanation
The product of the matrix specified by < Array Variable 2> and the

matrix specified by <Array Variable 3> is calculated and assigned to the
matrix specified by <Array Variable 1>.

The numb~r of the rows of the matrix specified by <Array Variable 1 >
equal the number of the rows of <Array Variable 2>. The number of the
columns of <Array Variable 1> must equal the number of the columns of
<Array Variable 3>.

The multiplication of the elements of array variables is performed by the
MAT MUL statement.

[Ex. 2.13.18-1]
The product of matrix B and matrix C is assigned to matrix A.

10 DIM A(2,2),B(2,3),C(3,2)

50 MAT MLT(A(*),B(*),C(*))

Assuming that: [BJ~ (~ ~ !) .[CJ~ G D
then on line SO:

[AJ= (IXl+2X3+3XS lX2+2X4+3X6) =
4xl+Sx3+6xS 4x2+Sx4+6x6

155

(
22 28)
49 64

B
2.13.19 MAT MAX Statement (Matrix Maximum)

Function
This statement searches the maximum value of the elements of a matrix.

Format

MAT MAX « Variable>, < vArr~Ybl > (*)) ana e

Explanation
The maximum value of the elements of a matrix specified by < Array

Variable> is assigned to <Variable>.

[Ex. 2.13.19-1]

The maximum value of the elements of the matrix A is assigned to X.

10 DIM A(3,4)

50 MAT MAX(X,A(*))

If [A] = (~ ~ ; :)
10 2 1 4

10 is assigned to X on line 50.

156

(

(

2.13.20 MAT MIN Statement (Matrix Minimum)

Function
This statement searches the minimum value of the elements of a matrix.

Format

MAT MIN « Variable>, < vArr~Ybl > (*)) ana e

Explanation
The minimum value of the elements of a matrix specified by <Array

Variable> is assigned to < Variable> .

[Ex. 2.13.20-1]

The minimum value of the elements of matrix A is assigned to X.

10 DIM A(3,4)

50 MAT MIN(X,A(*))

-4 is assigned to X on line 50.

157

Matrix-related Instructions

No. Instruction

MAT INPUT (n, A(.»
2 MAT READ (A (• »
3 MAT PRINT (n, A (.»
4 MAT MOV (A (•), B (• »

MAT MOV (A (*), Arithmetic

Expression)

5 MAT ADD (A (• »

MAT ADD (A (*), Arithmetic

Expression)

6 MAT SUB (A (•), B (* »
MAT SUB (A (•), Arithmetic

Expression)

7 MAT MUL (A (.), B (. »

MAT MUL (A (•), Arithmetic

Expression)

8 MAT DIV (A (*), B (• »

MAT DIV (A (•), Arithmetic

Expression)

9 MAT SUM (X, A (• »

IO MAT CSUM (A (•), B (* »

II MAT RSUM (A (•), B (* »
12 MATIDN(A(*»

13 MAT INV (A (* »

14 MAT TRN (A (•), B (• »

15 MAT DET (X, A (* »

16 MATMLT(A(*),B(*),C(*»

17 MATMAX(X,A(*»

18 MAT MIN (X, A (.»

Function

Input to A from logical device number n

Input to A from DATA statement

Output of A to logical device number n

Assignment of B to A

Assignment of arithmetic expression

to A

Addition of B to A

Addition of arithmetic expression

to A

Substraction of B from A

Subtraction of arithmetic expression

from A

Multiplication A X B

Multiplication A X arithmetic expres-

sion

Division A -7- B

Division A -7- arithmetic expression

Sum of A

Assignment of column sum to B from A

Assignment of row sum to B from A

Construction of unit matrix of A

Construction of inverse matrix of A

Assignment of transpose matrix of B to

A

Assignment of value of determinant

of A to X

Product of matrixes

Assignment of maximum value of A to X

Assignment of minimum value of A

to X

Note: I. A, B, and C indicate array variables.

2. n indicates a logical device number.

3. X indicates an arithmetic variable.

158

(

3. Built·in Functions

(3.1 Arithmetic Functions

Arithmetic functions are explained using arithmetic expressions X and Y.

3.1.1 EXP Function (Exponent)

Function
This function assigns the value of eX (e = 2.7182818284586).

Format

EXP«Arithmetic Expression »

[Ex. 3.1.1-1]
The value of eX is assigned to variable A.

150 LET A=EXP(X)

3.1.2 LOG Function (Log)

Function
This function assigns natural logarithms.

Format

LOG « Arithmetic Expression»

Note
The value of < Arighmetic Expression> must be positive.

159

Arithmetic
Function

Arithmetic
Function

[Ex.3.1.2-1J

The natural logarithm of X is assigned to variable A.

150 LET A=LOG(X)

3.1.3 LGT Function

Function
This function assigns common logarithms.

Format

LGT « Arithmetic Expression»

Note
The value of the < Artchmetic Expression> must be positive.

[Ex.3.1.3-1J

The common logarithm of X is assigned to variable A.

150 LET A=LGT(X)

160

(

(

3.1.4 SQR Function (Square Root)

(Function
This function assigns square roots.

Format

SQR (< Arithmetic Expression»

Note
The value of < Arithmetic Expression> must be positive.

[Ex. 3.14-1]
The square root of X is assigned to variable A.

150 LET A=SQR(X)

3.1.5 FRC Function (Fraction)

Function
This function is extracts a fraction.

Format

FRC (< Arithmetic Expression»

[Ex. 3.1.5-1]
The fractional part of the value of variable X is assigned to variable A.

150 LET A=FRC(X)

If X = 3.144592, A= 0.14592

161

Arithmetic
Function

Arithmetic
Function

3.1.6 RND Function (Random)

Function
This function generates random numbers.

Format

RND « Arithmetic Expression»

Explanation

Note

If RND(X) is specified, a value determined by the value of X is generated.
The value is generated as long as the value of X does not change. When the
value of X is 0, random numbers determined by the value of the system clock
are generated.

When RND is specified, new random numbers are generated based on the
random numbers generated by the preceding RND function. When a RND
function which has no parameter is used for the first time,the same result is
obtained as when RND (0) is specified.

Random numbers generated are 7-digit decimal fractions within the range:
O<X< 1.

[Ex. 3.1.6-1]
A random number determined by 8 is assigned to variable A.

150 LET A=RND(8)

[Ex.3.1.6-2J
A random number based on the value of the system clock is assigned to

variableA.

150 LET A=RND(O)

162

(

(

(
[Ex. 3.1.6-3]

A new random number is assigned to variable B based on the preceding
random number.

50 LET A=RND(O)

100 LET B=RND

3.1.7 ABS Function (Absolute)

Function
This function assigns an absolute value.

Format

ABS (Arithmetic Expression)

[Ex. 3.1.7-1]
The absolute value of X is assigned to variable A.

150 LET A=ABS(X)

3.1.8 SG N Function (Sign)

Function
This function checks the sign of a value.

Format

SON « Arithmetic Expression»

163

Arithmetic
Function

Arithmetic
Function

Explanation
The value-I, 0 ro 1 is assigned depending on the sign of X.
X <0: SGN(X) =-1
X=O: SGN(X) =0
X>O: SGN(X) =1

[Ex. 3.1.8-1]
Program execution branches depending on the sign of X.

150 ON SGN(X)+2 GOTO [MINUS],[ZERO],[PLUS]

200 [MINUS] REM X<O

250 [ZERO] REM X=O

300 [PLUS] REM X>O

3.1.9 FIXO Function (Fix 0)

Function
This function rounds a fraction down to the specified decimal place.

Format

FIXO « Arithmetic Expression>, < Variable»

Explanation
The value of <Variable> is converted to an integer. Assuming that the

integer is n, the value of < Arithmetic Expression> is rounded down to the
nth decimal place.

164

(
[Ex.3.1.9-1J

3.1.10

The value of X is rounded down to the third decimal place and the result
is assigned to variable A.

50 LET A=FIXO(X,3)

IfX=3.142592, A=3.141

FIX5 Function (Fix 5)

Function
This function rounds a decimal fraction off to the specified decimal place.

Format

FIX5 «Arithmetic Expression>, < Variable»

Explanation
The value of < Variable> is converted to an integer. Assuming that the

integer is n, the value of < Arithmetic Expression> is rounded of to the nth
dicimal place.

[Ex.3.1.1O-1J
The value of X is rounded off to the third decimal place and the result is

assigned to variable A.

50 LET A=FIX5(X,3)

IF X = 3.141592, A = 3.142

165

Arithmetic
Function

Arithmetic
Function

3.1.11 FIX9 Function (Fix 9)

Function
This function rounds a decimal fraction up to the specified decimal place.

Format

FIX9 «Arithmetic Expression>, < Variable»

Explanation
The value of <Variable> is converted to an integer. Assuming that the

integer is n, the value of < Arithmetic Expression> is rounded up to the nth
decimal place.

[Ex. 3.1.11-1]

3.1.12

The value of X is rounded up to third decimal place and the result is
assigned to variable A.

50 LET A=FIX9(X,3)

If X = 3.141592, A = 3.142

FIXE Function (Fix E)

Function

Format

This function assumes a value of the E-type form and rounds its mantissa
off to the specified number of digits.

FIXE « Arithmetic Expression>, < Variable»

Explanation
When lagre numeric value, e.g. 123456789, is represented in E-type

form, it becomes 1.23456789E8. The mantissa is rounded off to number of
digits specified by the variable. The value of the variable is converted to an
integer. Assuming that the integer is n, the value is rounded off to the nth
decimal place. For example, if n = 3, the value becomes 1.235E + 8. That is,
the original figure 123456789 is converted to 123500000.

166

(

(

(

[Ex. 3.1.12-1]

3.1.13

The mantissa of the value of X in the E form is rounded off to third ·
decimal place and the result is assigned to variable A.

50 LET A=FIXE(X,3)

If X = 3.141592E+20, A = 3.142E+20.

INT Function (Integer)

Function
This function truncates a decimal fraction and assigns only an integer.

Format

INT « Arithmetic Expression»

[Ex. 3.1.13]
The integer part of the value of X is assigned to variable A.

50 LET A=INT(X)

If X = 123.456, A = 123

167

Arithmetic
Function

Arithmetic
Function

3.1.14 SIN Function (Sine)

Function
This function assigns a sine value.

Format

SIN « Arithmetic Expression»

Note
The value of < Arithmetic Expression> must be specified in degrees.

[Ex. 3.1.14-1]
The sine value of X is assigned to variable A.

50 LET A=SIN(X)

If X = 90, A = 1.

3.1.15 COS Function (Cosine)

Function
This function assigns a cosine value.

Format

COS (< Arithmetic Expression»

Note
The value of <Arithmetic Expression> must be specified in degrees.

168

(

(

[Ex. 3.1.15-1]
The cosine value of X is assigned to variable A.

50 LET A=COS(X)

IfX=O, A= 1.

3.1.16 TAN Function (Tangent)

Function
This function is assigns a tangent value.

Format

TAN « Arithmetic Expression»

Note
The value of < Arithmetic Expression> must be specified in degrees. If

a value is specified that makes the tangent value infinity (Le. an integral
mUltiple of ± 90), the value of the function is the maximum or minimum

value in the system.

[Ex. 2.1.16-1]
The tangent value of X is assigned to variable A.

50 LET A=TAN(X)

IfX=45, A= 1.

169

Arithmetic
Function

Arithmetic
Function

3.1.17 ASN Function (Arcsine)

Function
This function is assigns an arcsine value.

Format

ASN «Arithmetic Expression»

Note

3.1.18

The value of < Arithmetic Expression> must be specified as a numeric
value. The result is within the range: -90-90 degrees.

ACS Function (Arccosine)

Function
This function is assigns an arccosine value.

Format

ACS « Arithmetic Expression»

Note
The value of < Arithmetic Expression> must be specified as a numeric

value. The result is within the range: 0 -180 degrees.

[Ex. 3.1.18-1]
The arccosine value of X is assigned to variable A.

50 LET A=ACS(X)

IfX= 1, A=90

170

(

(
3.1.19 A TN Function (Arctangent)

Function
This function assigns an arctangent value.

Format

A TN (< Arithmetic Expression»

Note
The value of < Arithmetic Expression> must be specified as a numeric

value. The result is within the range: - 90 - 90 degrees.

[Ex. 3.1.19-1]
The arc tangent value of X is assigned to variable A.

50 LET A=ATN(X)

IfX= 1, A=45.

3.1.20 RAD Function (Arctangent)

Function
This function converts degrees to radians.

Format

RAD (< Arithmetic Expression»

Note
<Arithmetic Expression> must be specified in degrees. The result is

within the range: 0-6.2831853071794 (211").

171

Arithmetic
Function

Arithmetic
Function

[Ex.3.1.20-1J

3.1.21

The value of X is converted into radians and the result is assigned to

variableA.

50 LET A=RAD(X)

If X = 180, A = 3.1415926535897.

DMS Function (Degree·Minute·Second)

Function

Format

This function converts a decimal value in degrees to a sexagesimal value
in degrees, minutes, and seconds.

DMS « Arithmetic Expression»

Note
<Arithmetic Expression> must be specified in degrees. The decimal

fraction consists of 4 digits. The first 2 digits indicate minutes and the last 2
digits indicate seconds.

[Ex. 3.1.21-1J
The value of X is converted into degrees, minutes, and seconds, and the

result is assigned to variable A.

50 LET A=DMS(X)

If X = 45.26, A = 45.1536. This means that 45.26 degrees is equal to 45
degrees, 15 minutes, and 36 seconds.

172

(

(

3.1.22 ARD Function

Function
This function converts a radian value to a degree value.

Format

ARD «Arithmetic Expression»

Note
< Arithmetic Expression> must be specified in radians.

[Ex. 3.1.22-1]

Cos X is calculated in radians.

50 LET A=COS(ARD(X))

When X = 1.047 (;) radians, the value of ARD (X) is 60 degrees and
A=O.5. .

3.1.23 ADS Function

Function
This function converts a value in degrees, minutes, and seconds into a

value in degrees.

Format

ADS « Arithmetic Expression»

Note
Specify a decimal value for <Arithmetic Expression>. In the decimal

number, the integer indicates degrees, the first 2 digits of the dacimal fraction
indicate minutes, and the last two digits indicate seconds.

173

Arithmetic
Function

Arithmetic
Function

[Ex.3.1.23-1J

3.1.24

The value of X is converted to a value in degrees and the result is assigned to
variableA.

50 LET A=ADS(X)

If X = 45 degrees, 15 minutes, and 36 seconds (45.1536), A = 45.26 degrees.

MOD Function (Modulo)

Function
This function assigns the remainder of a division.

Format

MOD « Arithmetic Expression 1 >, < Arithmetic Expression 2»

Explanation
The value of < Arithmetic Expression 1 > is divided by the value of

< Arithmetic Expression 2 >, and the function value becomes the remainder
of this calculation. When the value of < Arithmetic Expression 1 > is negative,
the remainder is also negative. When the value of < Arithmetic Expression 2 >
is greater than that of <Arithmetic Expression 1>, the remainder is the
value of < Arithmetic Expression 1 > .

[Ex.3.1.24-1J
The remainder when X is divided by Y is assigned to the variable A.

50 LET A=MOD(X, Y)

174

(

(
The values of X, Y, and A are shown below.

X Y MOD (X, Y)

7 2 1

-10 3 -1

-10 3 -1
2 10 2

3.1.25 MAX Function (Maximum)

Function

Format

This function assigns the maximum value from a specified group of

variables.

MAX «Variable>, ...)

[Ex.3.1.25-1J
The maximum value from the values of variables D (1) - D (4) is assigned

to variable A.

50 LET A=MAX(D(l),D(2),D(3),D(4))

Assuming that D (1) = 130, D (2) = 2790, D (3) = 4, and D (4) = 2789, then
A=2790.

175

Arithmetic
Function

3.1.26 MIN Function (Minimum)

Function

Format

This function assigns the minimum value from a specified group of

variables.

MIN « Variable>, ...)

[Ex. 3.1.26-1]

3.1.27

The minimum value of the values of variables D (1) - D (4) is assigned to

variable A.

50 LET A=MIN(D(l),D(2),D(3),D(4)

Assuming that D (1) = 130, D (2) = 2790, D (3) = 4, and D (4) = 5789, then
A=4.

TIM Function (Time)

Function

Format

This function reads hours, minutes, and seconds from the AS-l()()'s system

clock.

TIM

Explanation
The TIM function reads the time that has elapsed since power-on in hours,

minutes and seconds. Hours, minutes and seconds are indicated as follows:

HH.MMSS

T T~ Se,conds
_ L.. ____ Mmutes

'------- Hours

The value of the TIM function is within the range: 00.0000 - 23.5959.

00.0000 comes after 23.5959.

176

(

(

(

The value of the TIM function can be changed by the LET statement.
The system clock used by the TIM function is the same as that used by string

function TOD$.

[Ex. 3.1.27-1]

3.1.28

The processing time of an calculation routine is displayed.

50 LET TIME=O

60 REM CALCULATION ROUTINE

400 LET T=TH1

410 PRINT T

TIM is set to 0 on line 50 and the time when the calculation routine ends
is assigned to T on line 400.

For example, if 3.4513 is displayed, it means that calculation took 3 hours,
45 minutes, and 13 seconds.

PI Function (Pi)

Function
The function has a value of 11" (= 3.1415926535898)

Format

PI

[Ex. 3.1.28-1]

The area of a circle whose radius is R is calculated and assigned to variable
A.

50 LET A=PI*R**2

177

Arithmetic
Function

Arithmetic
Function

3.1.29 SIZE Function

Function
This function indicates the size of the unused memory area.

Format

SIZE

Explanation
The function has a value which indicates the size of the unused memory

area when the function is executed. The value is in bytes.

[Ex. 3.1.29-1]

3.1.30

The size os the unused memory area when the program ends is displayed.

910 PRINT SIZE
920 END

ERR Function (Error)

Function
This function detects a numeric value overflow.

Format

ERR

Explanation
There is a limit to the size of a value that can be processed by a system.

(The limit is 9.9999999999999 X 1063 for Canon BASIC.) An overfflow occurs
if the result of a calculation exceeds this limit or a value larger than the limit
is input. An overflow also occurs when a value is divided by O.

When an overflow occurs, the value of the ERR function changes from
o to 1. The ERR function is initially set to 0 when program execution begins.

The LET statement can be used to assign 0 to the ERR function.

178

(

(

(

[Ex. 3.1.30-1]

3.1.31

An overflow of a value is checked.

70 INPUT B,C

150 LET A=B*C
160 IF ERR=l GOTO 280

280 PRINT "OVERFLOW"
290 LET ERR=O
300 GOTO 70

When the result of the mUltiplication on line 150 exceeds the range:
1.0 x 1O-64~ Ix I < 1.0 X 1064, program execution branches to line 280. After
"OVERFLOW" is displayed, processing is performed again from line 70.

On line 290, the overflow status of the ERR function is reset by assigning
o with the LET statement.

EOF Function (End of File)

Function
This function detects the end of a specified file.

Format

EO F (< Arithmetic Expression»

Explanation
< Arithmetic Expression> specifies the logical device number of the file

defined by the OPEN statement.
When the specified file is opened, 0 is antomatically assigned to the EOF

function corresponding to the file.
For details of the status under which the value of EOF function becomes

-1, refer to the explanation of the INPUT, INPUT USING, and GET
statements.

179

Arithmetic
Function

Arithmetic
Function

[Ex. 3.1.31.-1]

Data is read and displayed by random access from a file prepared by the
PUT statement.

10 OPEN #1,IB:FILE1"

50 INPUT RNa

100 GET #l,RNO RECORD

110 IF EOF(l) GOTO 50

120 PRINT RECORD

150 CLOSE #1

The record number displayed on line 50 is entered through the keyboard.
If the record number entered is outside the file area, reinput must be made.

180

(

(

3.1.32 %CURX Function (%Cursor X)

Function
This function reads the x-coordinate at the cursor position on the display.

Format

%CURX

Explanation

3.1.33

This function has the value that indicates the x-coordinate of the cursor
position on the display. The value is within the range: 0 -79.

x =0-79

v

y=0-24

1

%CURY Function (%Cursor Y)

Function
This function reads the y-coordinate at the cursor position on the display.

Format

%CURY

Explanation
This function has the value that indicates the y-coordinate of the cursor

position on the display. The value is within the range: 0 - 24.

181

Arithmetic
Function

No.

1

2

3
4

5

6
7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Functions

EXP (X)

LOG (X)

LGT(X)

SQR(X)

FRC(X)

RND(X)

ABS (X)

SGN (X)

FIXO(X, Y)

FIX5 (X, Y)

FIX9 (X, Y)

FIXE (X, Y)

INT (X)

SIN (X)
COS (X)

TAN (X)

ASN (X)

ACS (X)

ATN(X)

RAD(X)

DMS(X)

ARD(X)

ADS (X)

MOD (X, Y)

MAX (XI, ... , XrJ

MIN (X h ... , XrJ

TIM

PI

SIZE

ERR
EOF(X)

OJoCURX

OJoCURY

Arithmetic Functions

Use Significant
(

digits

eX 12

loge X: natural logarithm 12

log 10 X: common logarithm 12

..Jx: square root 14

Extracting a decimal fraction 14

Random numbers 7

I X I : absolute value 14

Sign discrimination 1

Round-down 14

Round-off 14

Round-up 14

E-type expression round-off 14

In integers 14

SinX 12

CosX 12

Tan X 12
Sin- I X 12
Con-IX 12
Tan- I X 12

Degree - radians 14

Degree-degrees, minutes, seconds 14

Radians - degrees 14

Degrees, minutes, seconds - degrees 14

Remainder of X + Y 14

Maximum value 14

Minimum value 14

Hours, minutes, seconds -

7r 12

Size of unused memory area -

Overflow check 1
End of file checking 1
x-coordinate of cursor 2
y-coordinate of cursor 2

(

182

(

(

3.2 String Functions

3.2.1 LEN Function (Length)

Function
This function checks the number of characters in a character string.

Format

LEN « String Expression»

Explanation
This function has the value of the number of characters in a specified

string expression. Each blank space is counted as one character.

[Ex. 3.2.1-1]
When X$ = "ABCDEFG", the number of characters in X$ is assigned to

variable I.

50 LET I=LEN(X$)

When line 50 is executed, 7 is assigned to variable I. If X$ = "ABC LJ LJ

EFG", I = 8. (LJ indicates one space.)

183

Strin
F

.g
unction

S~g
FunctIOn

3.2.2 lOX Function (Index)

Function
This function confirms whether there is a specified character string in a

certain string expression or not.

Format

IDX (< String > < String > [< Arithmetic> J)
Expression I ' Expression 2 ' Expression

Explanation
This function searches the character string specified by < String Expression

2> in a string expression specified by < String Expression 1 >. If it is found,
this function has a value indicating where the match lies from the beginning of
< String Expression 1 >. When there is more than one match in < String Expres
sion 1 >, the value of < Arithmetic Expression> specifies which occurrance
of the match will be searched.

If the character string specified is not found, the value of this function is O.
A space is counted as one character.

[Ex. 3.22-11]
When X$ = "RED'----lWHITE'----lBLUE'----lWHITE'----l YELLOW", the

second character string "WHITE" is searched.

50 LET Z=2

60 LET A=IDX(X$,IIWHITEII,Z)

When line 150 is executed, character string "WHITE" is searched in
string variable X$. Because the second "WHITE" starts at the 16th character,
the value of A is 16.

184

(

(

3.2.3 VER Function (Verify)

Function
This function verifies that a certain character string consists only of the

specified characters.

Format

VER « String Expression I>, < String Expression 2»

Explanation
This function verifies that the character string specified by < String Ex

pression 1 > consists only of the characters specified by < String Expression
2>. Two or more characters can be specified for < String Expression 2> .

When < String Expression 1 > consists only of the characters specified by
< String Expression 2> , the value of this function is O.

If < String Expression 1 > contains a character not specified by < String
Expression 2>, this function has a value indicating the column number
where the unspecified character in < String Expression 1 > .

[Ex. 3.2.3-11]
When X$ = "ABCCABC2B4A", find out at what column number in

X$ a character other than A, B, or C appear for the first time.

50 LET A=VER(X$,"ABC")

When line 50 is executed, a check is performed to verify if there is any
character other than A, B, or C in character string X$. Because the eighth char
acter in X$ is 2,8 is assigned to A.

185

Strin .g
Function

S~g
Function

3.2.4 NUM Function (Number)

Function
This function converts a numbers (character data) to a numeric value.

Format

NUM «String Expression»

Explanation
Some character strings consist of numbers (0 - 9) and look like numerical

values, but they cannot be used for calculation. The NUM function converts
such character data into numeric values. The following characters can be
specified in a string expression:

• Numbers: 0 - 9
• Decimal point:

• Sign:

(If there is more than one decimal point, the
characters following the second one are ignored.)
+ or - (The sign can be specified only at the beginning
of numbers or immediately following E.)

• Exponent expression: E (If there is more than one E, the characters follow
ing the second E are ignored.)

If a character other than one of those listed above is included in the char
acter string. all characters following that character are ignored.

If the string expression does not contain a number, the value of the

function is O.

[Ex. 3.2.4-1]
X$ is converted to a numeric value when X$ = "123AB5".

50 LET A=NUM (X$)

When line 50 is executed, the value 123 is assigned to A.
"AB5" is ignored.

186

(
3.2.5 CHR$ Function (Character)

Function
This function converts a numeric value to character data.

Format

CHR$ « Arithmetic Expression»

Explanation
The function is the opposite of the NUM function. It converts a numeric

value specified by < Arithmetic Expression> to a string of numbers (character
data).

This function has a defined length according to the number of digits.
The first charcter is always a space.

If a number whose value is expressed in the E form is specified, it is con
verted into a character string in the E form.

[Ex. 3.2.5-11]
The character string" 1234" is assigned to A$ when X = 1234.

50 LET A$=CHR$(X)

When line 50 is executed, the value 1234 is converted to a charater string
and ",---, 1234" is assigned to A$.

187

String
Function

String
Function

3.2.6 ASC$ Function (ASCII)

Function
This function converts a specified ASCII code to character data.

Format

ASC$ (< Arithmetic Expression»

Explanation
This function's value is a one-byte character data in ASCII code that cor

responds to the value specified by < Arithmetic Expression>. The numeric
value in an arithmetic expression must be specified in decimal notation. The
range of values that can be specified is : 0 - 255 (00 - FF in hexadecimal
notation). Specifying a value outside this range causes an error.

Refer to "Appendix 1. Character Codes" for ASCII codes.

[EX. 3.2.6-1]
The integer 65 is converted into a corresponding character.

50 LET X=65

60 LET A$=ASC$(X)

On line 60, character "A", which corresponds to the ASCII code 65 (41H),
is assigned to A$.

188

3.2.7 COD Function (Code)

Function
This function converts a specified character to ASCII code.

Format

COD (< String Expression»

Explanation
This function has the value of the first character of a specified character

string converted to decimal ASCII code.
Refer to "Appendix 1. Character Codes" for ASCII codes.

[Ex. 3.2.7-11]
When string variable X$ is "BOOK", the ASCII code that corresponds to

the first character is assigned to variable A.

50 LET A=COD (X$)

When line 50 is executed, the first character (B) of X$ = "BOOK" is
converted to ASCII code and 66 (42H) is assigned to A.

189

String
Function

String
Function

3.2.8 STR$ Function (String)

Function
This function extracts part of a variable.

Format

STR$ « String . > < Arithm~tic > [< Arithm~tric > J)
ExpressIOn ' ExpressIOn I ' ExpressIOn 2

Explanation
A character string specified by <Arithmetic Expression 1> and

< Arithmetic Expression 2> is extracted from the character string speci
fed by < String Expression>.

<Arithmetic Expression 1> specifies the position of the character string
that will be extracted.

< Arithmetic Expression 2> specifies the number of characters that will
be extracted. < Arithmetic Expression 2> can be omitted. If it is omitted,
all characters following the column specified by < Arithmetic Expression 1 >
are extracted.

The contents of < String Expression> do not change when a character
string is extracted using this function.

If this function is specified for the left side of an expression in the LET state
ment, a part of a specified character string can be replaced by another character
string. In this case, the position of the first character of the character string that
will be replaced is specified by < Arithmetic Expression 1 > , and the number of
characters that will be replaced is specified by < Arithmetic Expression 2>.
< Arithmetic Expression 2> can be omitted. If it is omitted, all characters
following the column specified by < Arithmetic Expression 1 > are replaced.

For example, suppose that the following specification is made by the LET
statement:

LET STR$(A$,X,Y)=B$

At this time, there are three different methods of replacement depending
on the position specified by X:

• When the position specifed by X is in the character string of A$.

• Character
• string AS~

Y

190

(

(
In this case, only the character string specified by Y is replaced. If fewer

characters are specified by Y than are specified by B$, Y characters from the
beginning of B$ are used to replace A$. If more characters are specified by Y

than are specified by B$, all characters of B$ are used to replace A$, and the
number of characters specified by Y is ignored.

• When the position specified by X exceeds the character area of X$:

A$~
+ y
I

The space (20H) is filled.

Only the character string specified by y is replaced (added) and space codes
are filled.

• When the position specified by X exceeds the character area of A$:

A$~

In this case, replacement is not performed.

[Ex. 3.2.8-1]

x
~

"DEF" is extracted from string variable X$ = "ABCDEFGHI" and
assigned to string variable A$.

10 DIM X$9

50 LET A$=STR$(X$,4,3)

When line 50 is executed, three characters starting from the fourth char
acter are extracted from "ABCDEFGHI" and assigned to A$ so A$ = "DEF" .

191

String
Function

String
Function

[EX. 3.2.8-2]
"DEF" in character string "ABCDEFGH" is replaced by "123".

50 LET A$=IIABCDEFGH II

60 LET STR$(A$,4,3)=1I123 11

When line 60 is executed, the contents of A$ changes from "ABCDEFG"
to "ABCI23GH".

In this case, even if "12345678" is specified instead of "123", the result is
the same. If "12" is specified instead of "123," the result is "ABCI2FGH".

[Ex. 3.2.8-3]
Assuming that "AB" is in a string variable with a length of 10 bytes,

"123456" is added starting from the the fourth character.

10 DIM A$10

20 LET A$=IIABII

50 LET STR$(A$,4,6)=1I123456 11

When line 50 is executed, the contents of A$ changes from "AB" to
"AB LJ 123456". B is followed by one space (20m, and 6 is followed by a
NUL code (OOm.

192

(

(
3.2.9 INPUT$ Function

Function
This function reads a character string.

Format

INPUT$ « Arithm~tic > [< Arithm~tric > [< String. >] J)
ExpressIOn I ' ExpressIOn 2 ' ExpressIon

Explanation

Note

This function reads character strings entered through the keyboard, char
acter data from a file on a disk, or character strings output from an external
input device.

This function is almost the same as the INPUT statement. But it has the
values of the character strings read by the function itself. When the character
(code) specified as the end code is read during the reading of a character string,
the reading ends. < Arithemetic Expression 1 > specifies the length (the
number of characters) of the character string that will be read. Integers
within the range: 1 - 255 can be specified.

< Arithmetic Expression 2> specifies the logical device number of the
external input device or file from which reading will be performed. An integer
of 0 - 9 can be specified. The logical device number must be defined in
advance by the OPEN statement. But logical device number 0 indicates the
keyboard, which is automatically opened by the system. < Arithmetric Ex
pression 2> can be omitted. If it is omitted, the <String Expression> must
also be omitted. It this case, the keyboard is automatically specified.

< String Expression> specifies the character that ends the reading. When
this character is read during character string reading reading ends.

Up to four such characters can be specified as end codes at the same
time. If more than one character is specified, reading ends when one of them
is read. At the end of data reading, the end code itself is read. Even if an end
code is specified, when the character string of the length specified by
< Arithmetic Expression 1 > is read, the reading ends. < String Expression>
can be omitted. If it is omitted, the character string of the length specified by
< Arithmetric Expression 1 > is read.

"DOH" can not be specified as a end code.

When a character string entered through the keyboard is read by this
function, the characters stored in the key buffer are actually read and cleared
from the key buffer.

193

String
Function

String
Function

[Ex. 3.2.9-1]
A string of 255 characters is read from the file on a disk. Reading ends

when":" is read.

10 DIM A$255

20 OPEN #1,IIB:FILE111

50 LET A$=INPUT$(255,1,1I:1I)

When the data that will be read from the file is "ABCDEFGH:IJI", A$
is "ABCDEFG:".

[Ex. 3.2.9-2]
A character string entered through the keyboard is assigned to string

variable A$. Reading ends when a code representing a comma (,) or GJI is
read.

10 DIM A$128

50 LET A$=INPUT$(128,0,1I,&OD II)

On line 50, the 0 is specifed for reading through the keyboard. Because
the keyboard is already opened by the system, the OPEN statement does not
have to be excuted.

When line 50 is executed, nothing on the screen but the system is set to
the key input waiting state. Then if "ABCD," is entered, A$ becomes
"ABeD,". Then execution proceeds to the next line and the key buffer is
cleared. (Unlike the INPUT or INPUT USING statement, the INPUT$
function does not cause input echo back.)

194

(

(

3.2.10 KEY Function (Key)

Function
This function checks a character string entered through the keyboard.

Format

KEY [(<String Expression»]

Explanation

Note

Characters entered through the keyboard are first stored in the key buffer.
The key buffer can store up to 128 characters.

With this function, the number of characters stored in the key buffer or
and where character is located in the key buffer can be checked. Only one
character can be specified in < String Expression>. If more than one char
acter is specified, only the first character is valid, and other characters are
ignored. This function has a value indicating the specified character's column
number in the character string stared in the key buffer. If the specified
character is not found, the value is o.

If < String, Expression> is omitted, this function has the value indicating
the number of characters in the buffer. A value of 0 - 128 is assigned to the
function.

The contents of the key buffer remain as long as they are not read by the
INPUT$ function. So, clear the buffer before the program ends. Refer to
the example to learn how to clear the buffer.

195

String
Function

String
Function

[Ex. 3.2.10-1]
Characters entered through the keyboard are stored in the key buffer.

Processing starts when g is depressed.

5 DIM A$10
1 0 IF KEY >=10 GOTO [EXIT]
20 IF KEY("&OD")<>O GOTO [EXIT]
30 GOTO 10
40 [EXIT] REM PROCESSING START
50 PRINT "PROCESSING START"

A loop is made by lines 10 - 30. The branch condition from this loop is the
storage of 10 characters in the key buffer or the depression of Q] . "&OD"
on line 20 is the code for Q] .

When this program is executed, nothing is displayed and the system is set
to the key input waiting state. Character can be entered through the keyboard
in this state. The character string is not displayed on the screen but is stored
in the key buffer. When Q] is depressed or 10 characters are entered,
"PROCESSING START" is displayed on the screen.

[Ex. 3.2.10-2]

The contents of the key buffer are cleared.

50 A$=INPUT$(KEY)

When line 50 is executed, the value of the KEY function (the number of
characters in the buffer) is used as the parameter for the INPUT$ function
and the contents of key buffer are assigned to A$. So the key buffer is cleared.

196

(

.(

(

[Ex. 3.2.10-3]
When a comma (,) is entered, the character string is assigned to A$.

5 DIM A$128

10 IF KEy(II,II)=O GOTO 10

20 A$=INPUT$(KEY(II,II))

30 A$=STR$(A$,l ,LEN(A$)-l)

On line 10, the input through the keyboard is stored in the key buffer.
When the comma is entered, the value of KEY changes from 0 to the number of
characters stored in the key buffer and execution proceeds to line 20.

On line 20, the entire character string (including the comma) in the key
buffer is assigned to A$.

On line 30, the entire character string except the comma is extracted and
assigned again to A$.

When the program is executed, nothing is displayed and the system is set
to the input waiting state. At this time, if "ABCDE," is entered through the
keyboard, "ABCD" is assigned to A$.

197

String
Function

String
Function

3.2.11 FKEY Function (Function Key)

Function
This function checks a key when it is depressed.

Format

FKEY [(< Arithmetric Expression»]

Explanation
Function keys and other special keys generate the character strings shown

in Table 3.1 in the key buffer.
< Arithmetic Expression> specifies the number corresponding to a key

shown in Table 3.1. The range of values is: 1-43.
When <Arithmetic Expression> is specified, the function searches the

key buffer for the character string corresponding to the specified key. If the
character string is found, the function has a value indicating the number of
column where the character string begins. At the same time, the character
string is cleared from the key buffer and the remaining character string is
moved up. If the character string corresponding to the specified key is not
found, the value of the function is 0 and the contents of the key buffer do
not change.

If < Arithmetic Expression> is not specified, the function checks if there
is a character string at the head of the key buffer that corresponds to any
of the keys shown in Table 3.1. If such a character string is found, the
function has a value indicating the the key number in the table. At this time,
the character string found is cleared from the key buffer and the remaining
character string is moved up. If there is not a character string corresponding
to a key in the table, the value of the function is 0 and the contents of the key
1?uffer do not change.

198

(

(
No.

1

2

3

4

5

6

7

8

9
10

11

12

13
14

15

16

17

18

19

20

21

22

Note

(

Table 3.1

Key
Key Character

No. Key
Key Character

No. String No. String

Fl 1 ESCO 23 -(6) 23 ESC [C

F2 2 ESCP 24 -(4) 24 ESC [D
F3 3 ESCQ 25 PgUp (9) 25 ESC [E

F4 4 ESCR 26 PgDn (3) 26 ESC [F

F5 5 ESCS 27 -(5) 27 ESC [G

F6 6 ESCT 28 HOME (7) 28 ESC [H

F7 7 ESCU 29 -(1) 29 ESC [I

F8 8 ESC V 30 CLEAR 30 ESC [21

F9 9 ESCW SCREEN

FlO 10 ESCX 31 -(0) 31 ESC [N

Fll 11 ESCY 32 it /Fl 32 ESC 0

F12 12 ESCZ 33 it/F2 33 ESCp

COPY 13 ESC3 34 it/F3 34 ESCq

MOVE 14 ESC4 35 it/F4 35 ESCr

DELETE 15 ESC5 36 it/F5 36 ESCs

INSERT 16 ESC6 37 it/F6 37 ESCt
it I+---+1 17 ESC7 38 it/F7 38 ESCu
PD-A 18 ESCO 39 it/F8 39 ESCv
PD-B 19 ESC 1 40 it/F9 40 ESCw
PD-C 20 ESC2 41 it/FlO 41 ESCx
t (8) 21 ESC[A 42 it IFll 42 ESCy
1(2) 22 ESC[B 43 it/F12 43 ESCz

1. ESC indicates "IBH" in ASCII code.

2. Numbers 0 - 9 in parentheses indicate ten-key numbers.

3.

4.
5.
6.

Numbers 21-29 and 31 indicate key operations performed in the
cursor control mode.

- indicates that nothing is printed on a key.

it indicates that the key is depressed simultaneously with the shift key.

PD-A - PD-C are function keys on the pointing device.

199

String
Function

String
Function

[Ex. 3.2.11-1]
When EI is depressed, execution proceeds to the next routine.

50 IF FKEY(23)=0 GOTO 50
60 REM MOVE CURSOR TO RIGHT

When EI (key no. 23) is depressed on line SO, the next line is executed. At
this time, character string "ESC [C" in the key buffer is cleared.

[Ex. 3.2.11-2]

When WJ , r:::E2J , or IT:IJ is depressed, a branch occurs to the res
pective routine.

10 DIM A$l

40 IF KEY=O GO TO 40
50 ON FKEY GOTO [Fl],[F2],[F3]
60 A$=INPUT$(l)
70 GOTO 40

100 [Fl] REM F1 PROCESSING

150 [F2] REM F2 PROCESSING

200 [F3] REM F3 PROCESSING

The system awaits key input on line 40. If a key is depressed, it is checked
on line SO. If the key is one of the function keys specified, a branch occurs
to the respective processing. If the key is not one of the function keys
specified, line 60 is executed to clear the key buffer, and the execution returns
to line 40.

200

(

(
3.2.12 COM$ Function (Command)

Function
This function extracts a character string specified by the RUN com

mand.

Format

COM$

Explanation

Note

This function enables the use of a character string, entered after a
semicolon (;) in the RUN command, in a program.

If there is no semicolon or character string following the semicolon, this
function has NUL code (OOW as its value.

The semicolon immediately following the RUN command is not included
in the character string of this function.

[Ex. 3.2.12-1]
In the RUN command input to execute program EX1, the name of the

file that will be used in the program is specified.

5 REM PROGRAM EX1

10 DIM DF$10

50 LET FNAME$=COM$

60 DF$=IIA: II+FNAME$

70 OPEN #1, DF$

Assume that the following is input to start program execution.
RUN EX1;FABC QJ
EX1;FABCQJ
or EX1;FABC g
or ;FABC g

In each case, data file FABC. DAT on the disk in drive A is opened on
line 60.

201

String
Function

String
Function

3.2.13 H EX$ Function (Hexadecimal)

Function
This function converts a specified value to a hexadecimal figure.

Format

H EX$ (< Arithmetic Expression»

Explanation
This function converts a value specified by <Arithemetic Expression>

to a two-digit hexadecimal figure (character string). The range of values that
can be specified by < Arithmetic Expression> is : 0 - 255.

[Ex. 3.2.13-1]
The ASCII code of a character entered through the keyboard is converted

to a hexadecimal figure.

S DIM A$1,X$2
10 INPUT A$
20 LET Q=COD(A$)
30 LET X$=HEX$(Q)
40 PRINT X$

If "$" is entered on line 10, ASCII code 36 (decimal) is assigned to Q on
line 20. On line 30, character string 24, which is the hexadecimal figure
equivalent to 36, is assigned to X$. So "24" is displayed on line 40.

202

(

(
3.2.14 TOO$ Function (Time of Day)

Function
This function sets the date, day, and time.

Format

TOO$

Explanation

Note

This function has the value of the AS-IOO's system clock. It is expressed
as a 22-character string as shown below.

mm/dd/yy (www), hh:mm:ss

T I 1 ",,,,nd (2 ""'m"'~' 00-59)

Minute (2 characters: 00-59)

Hour (2 characters: 00-23)
'---______ D f k (2 characters: SUN, MON, TUE,
- ay 0 wee WED, THU, FRI, SAT)

'-----------Year (2 characters: 00-99)

L..-----------Day of month (2 characters: 00-31)

'-------------Month (2 characters: 01-12)

The value of the AS-IOO's system clock is set as the day and the time.
The value of the system clock can be also set by the OS mode command

TOO.
The hour, minute, and second value handled by this function is linked to

the TIM function.

• Method for setting the data and time
TOD$ = "mm/dd/yy, hh:mm:ss"

• Method for setting the date only
TOD$ = "mm/dd/yy"

• Method for setting the time only
TOD$ = "hh:mm:ss"

When the date or the time is set, a two-digit figure must be specified
for each element. When the date (year/month/day) is specified, the day of
week is automatically set.

The value is counted according to the system clock.

When the real time clock (option) is attatched to the AS-100, the value of
the system clock elapses even when the power is off.

203

String
Function

String
Function

[Ex. 3.2.14-1]
January 5, 1983, 8:30:00 is set.

10 LET TOO$=1I01/05/83,08:30:00 11

[Ex. 3.2.14-2]
A date entered through the deyborad is set.

10 INPUT MSG(IIOATE(mm/dd/yy)=II)OAY$

20 LET TOO$=OAY$

[Ex. 3.2.14-3]

Note

The value of the system clock is displayed.

50 PRINT TOO$

The result is as shown below. The contents is the value of the system
clock at the time line 50 is executed.

"01/05/83 (WED), 08:35:12"

When the system clock is set using the TOD command (an OS mode
command), a space (u) instead of a comma, must be placed between the
data and the time as follows:
TOD mm/dd/YYuhh:mm:ss

204

String
Function

List of Character Processing Functions

{
No. Function Use

1 LEN (X$) Number of characters
2 IDX (X$, Y$, Z) Search

3 VER(X$, Y$) Locate

4 NUM(X$) Character string - numeric value

5 CHR$(X) Numeric value - character string

6 ASC$ (X) ASCII code - character string

7 COD (X$) Character - ASCII code

8 STR$ (X$, Y, Z) Extraction and replacement

9 INPUT$ (X, Y, Z$) Reading

10 KEY (X$) Key buffer retrieval

11 FKEY(X) Function key retrieval

12 COM$ Extracts the character string form

RUN commands

13 HEX$(X) Decimal value - hexadecimal
figure

14 TOD$ Date and time

(

205

8
4. ISAM Function

This section explains the ISAM function of Canon BASIC, which can be
used by loading an ISAM library into memory.

4.1 What Is ISAM?

ISAM is an abbreviation for Indexed Sequential Access Method. This
function reads and writes data (indexed access) to and from a file by
referencing the contents of the data as an index.

4.1.1 Indexed Access

When accessing a file using the GET statement, the PUT statement, etc., data
is read from and written to the file by specifying the record number in the file.

With indexed access, data is read from and written to a file by specifing the
contents of records as an index, disregarding the record numbers in the file
(the record positions in the file).

For example, with ordinary access, an instruction is given to read the data
from record 4. But with indexed access, an instruction is given to read the data
from the record that contains •• ABC" .

• Access with GET, PUT and others

Data

eReaddata
from record 4.

Record 1

Record 2

Record 3

Record 4

RecordS

Record 6

File

Data

Data

Data

Data

Data

Data

206

• Indexed Access

Data

STU ...

from record
that contains
data "ABC." LMN ...

POR ...

(

(

(

An index for indexed access is called a key. The part of the record where
"ABC" is written is the key in the figure.

The key can be set at any position in a record. The data in the key (key
value) of the record serves as the index in indexed access.

Assume that a record the following contents:

Record

2-byte
integer r l<==

8-byte character
string

~I

If the first two bytes are set as a key, indexed access can be performed using
the value of the 2-byte integer data as an index. The record that has data
"45" as a key can be read from the file by indexed access when the data
"45" is specified as a key.

Integer Character string
F =,,....-== --.......

Data read C 45 J E F 0 I
"t Read

-Read data from the record
whose key value is "45".

Key
File

Key Key
c =, I 45 JEFO

F J 68 ISTU

Key

rm"'1 M NO

Indexed access is possible because there is an index file. An index file
records the key information of the records in a data file. An index file is also
created when a data file which is accessed with indexed access is created.

When data is read from a file with indexed access, the key information in
the index file is first retrieved according to the specified key value. Then the
record specified by the key information is read.

With this procedure the data of a specific record can be read into a
program.

In indexed access, a data file and an indexed file function only when they
are used together, so, they must always be copied together.

207

Access instruction ~ Index file I~ I Data file

< f)
Data

In indexed access, allocation of a data file and an index file to a disk,
writing of key information into the index file, and other processing are all
performed automatically by the ISAM function. So during design, only the
data structure of the record and the location of the key have to be con
sidered.

4.1.2 Keys

This part explains the rules governing a key as an access index in indexed
access.

Assume that a record is as shown here.

2-byte 8-byte character
integer string

Record 10 Byte Fata 1 c==== Data B ==--,

1J
Key

And assume that a file consisting of four records with the following data is
created with indexed access:

Data A DataB

27 AA AAAAAA

49 BBBBBBBB

132 CCCCCCCC

SO DDDDDDDD

1t
Key

Because data A is defined as a key, the priority shown below is assigned to
each record according to the key value. The priority is not related to the order
of writing the records. The ISAM function automatically assigns higher
priority to smaller key values by referring to the key values of the records in
the file. This priority is called a key order.

208

(
Data A DataB

Key order 1 27 AAAAAAAA

Key order 2 49 B B BBBBBB

Key order 3 50 D D DDDDDD

Key order 4 132 CCCCCCCC

1f
Key

Reading data from the records continuously in key order is called indexed
sequential read.

Reading data from the records, without regard to the key order, by
specifying the key values (Data A) of the records that will be read is called
indexed random read.

4.2 Canon BASIC ISAM Function

This part describes how indexed access is performed by the ISAM func
tion of Canon BASIC.

4.2.1 General

The ISAM function of Canon BASIC uses a special data file and a special •
index file for indexed access. These files have a different structure than data
files used by the GET, PUT, and other statements. A file created by the PUT
statement can be converted to a file for ISAM using ISGEN, one of the
ISAM utility programs explained later.

A file created by ISAM can be accessed by the ISAM function of
Level II COBOL*(Canon AS-tOO Specifications).

The ISAM function is executed by eleven ISAM instructions and two ISAM
utility programs. The functions of the instructions and the utilities are illust
rated on the next page.

*Level II COBOL is a trademark of Micro Focus Ltd.

209

4.2.2

Variable

/)
-ISAM PACK statement -ISAM UNPACK statement··· Data read f rom

er
Data assignment of record buffe

os ~ record buff
r OJ os

Cl Cl

V
record buffer

-ISAM WRITE statement. .. /). -ISAM START statement. .. Current recor d set
Data write

-ISAM SREAD statement.. Sequential rea
-ISAM REWRITE statement..

Data update -ISAM RREAD statement.. Random read

-ISAM DELETE statement. ..

Record delete

Index file

informati~n
*IDXINF
utility

Record buffer

~./

File II
File conversion

I(
~

ISGEN utility

-ISAM OPEN statement. File open

-ISAM CLOSE statement File close

-ISAM SECUR statement. File security

. File
created
by PUT
statement

The functions of the instructions and utilities are explained in detail later.

Records

d

Although the record length is determined by the length of the variable
specified in the GET statement and the PUT statement, it is regarded as fixed in
ISAM processing. The record length can be defined within the range: 1- 510
bytes. A fixed record length here means that all the record lengths in the same
file are equal and the reading/writing of the data from/to file is always
performed in record units.

210

(

(

In ISAM, data cannot be read and written directly. Data is first stored in
an area called a record buffer before it is written into a file or assigned to a
variable. For example, when one data record is written to a file, the value of
each variable that consists of the record data is assigned to the record buffer in
advance using the PACK statement. Then an instruction to write the contents
of the record buffer into the file is executed.

-Ordinary file reading/writing

PUT statement

File

-File reading/writing by ISAM

Read: ISAM UNPACK
statement

Assign: ISAM PACK
statement

ISAM file read/ write instruction

File

The record buffer consists of a record length of string-type array variables
in which each array element is one byte. By using the PACK statement (assign)
and the UNPACK statement (read), the record buffer delivers or receives
data to/from the variables.

4.2.3 Primary Keys and Alternate Keys

Up to four keys in each record can be set in ISAM. There is one primary
key and three alternate keys. The primary key must always be set.

The value of the primary key cannot be duplicated in a file. This means that
records having the same primary key value are not written to a file.

One, two, or three alternate keys can be set. It must be specified if
duplication is valid or not for each key.

211

The length of each key is specified within the range: 1 - 32 bytes.

Key values are compared byte by byte from the beginning of the key regard
less of the data type.

For example, when comparing character strings "ABC" and "ACC",
both strings have "A" in the first byte. Comparison proceeds to the second
byte, where "B" and "C" are compared. Because "B" = 42H and "C" = 43H,
the key value "ACC" is regarded as greater than that of "ABC".

Record A Record B Ace I

t
J <

Record A < Record B

Key values are compared in the same way for integer type-data (2 bytes)
and real number-type data (8 bytes).

Since the numeric order and the order of key value are different for
negative values, negative numeric values should not be used in ISAM.

The comparative order of key values of integer-type data are as shown
below.

I Minimum I 0 - 32767, - 32768 - -11 Maximum I

Note Refer to "Appendix 6, Execution of Machine Language Programs".
for the structure of integer-type data and real number-type data.

212

(

4.2.4 Files

Regardless of files opened with the OPEN statement, under ISAM up to
six pairs of files can be open at the same time.

Each file is opened with the ISAM OPEN statement. File numbers are
defined automatically to the files. The file numbers must be specified to access
these files in the program.

When a files are opened, the open mode (described later) must be
specified to the opened files according to the mode access.

The following number of records can be written into a pair of files:

• When the record length is 126 bytes or less: 65535 records

• When the record length is 127 bytes or more:
The value of the integer N in
(Record length + 2) x N ~ 65535 x 128

* These limits do not apply when the disk is full.

4.2.5 Pointer

When an index for indexed access is a key value, a pointer in ISAM serves
as a direct index for file access.

For example, assume that a key value is specified and the data of the record
that has the key value specified is read.

ISAM first searches the key information in the index file for the specified
key value and finds the corresponding record in the data file.

Then ISAM moves the pointer to the corresponding record, reads the data
of the record indicated by the pointer, and assigns the data to the record buffer.
After this processing, ISAM moves the pointer to the next record in the key
order and processing is completed.

213

The record where the pointer is located is called the current record and the

key serving as the basis of pointer movement is called the current key.

This process is shown here.

2-byte 2-byte
integer integer

8-byte character
string

Record r T r =--1 12 bytes

Primary key Alternate key 1

• Reading of data from the record in which the alternate key value is 24.

I) Key information of alternate key 1 is searched.

Index File

Key information
of primary key

Key information
of alternate key 1

ISAM

3) Data is read from the record
at the pointer position.

Record buffer

2) The pointer is moved according to the key
information.

134 167 1 1

pointer" 1135 1241 1

1 6 1731 ...•...•• 1

170 1 40 1 .. · .. ····1

11351241······ .. ·1

4) For alternate key I, the pointer is moved to the record next in the key order.

Data File

134 167 1 1
.:-,

l~~~rentl 6 1731········ ·1

Pointer "l7014O 1 J
5) End of processing

214

The current key has nothing to do with indexed random access, but it serves
as an index for access in indexed sequential access. The next record in indexed
sequential access means the next record in the key order with respect to the
current key.

4.2.6 Limitations and Notes for Use

• Up to six files can be open at the same time.

• The record length is within the range: 1 - 510 bytes.

• The maximum number of keys is four: 1 primary key and 3 alternate keys.

• The maximum key length is 32 bytes.

• The maximum number of records that can be written in a pair of files is 65535.

1) Record length ~ 126 65535 records
2) Record length ~ 127 N records in

(Record length 2) x N ~ 65535 x 128

• The value of the primary key cannot be duplicated .

• Key values are compared byte by byte as characters. The order of a numeric
value and the order of key values are different for negative values.

• The ISAM library must always be loaded at BASIC start-up and be resident
in memory.

215

B
4.3 How To Use ISAM Instructions

This part describes the procedures for using ISAM.

4.3.1 Loading the ISAM Library

The ISAM library must always be resident in memory to use ISAM.
"/ISAM" must be .specified in the BASIC command to start BASIC, and
the ISAM library is loaded into memory when the BASIC command is
executed.

• Operation
BASIC,-, IISAM QJ

4.3.2 Design of Files

A file for indexed access must be designed for use by ISAM. Only the
record structure must be considered because file design is determined by the
record design.

• Data structure:

• Record length:

• Key:

• File name:

The data that makes up a record is determined.

The record length is determined according to the data
structure of the record. It must be within the range:
1- 510 bytes.

The key part of the record is determined.

The file type specified should be ISAM to prevent
confusion with non-ISAM data files. The name of a
data file added to the file type IDX is automatically
specified as an index file.

*Refer to "4.10 How To Calculate File Size" to calculate the size of a file.

216

(

4.3.3

[Ex.]

File Name: MST. ISM

2-byte
integer

Emp
Record length 50 bytes loyee

code

2 -byte integer
1 byte character

30-byte character string

Ad~~ 0
1 2 3 4 5 6 7 8 17 18 19 20 21 22 2324 25 26 27 28 2930 50

Variable NO NAME$ CODE S$ ADDR$

ll: Alternate key 2 (1 byte from the 20th byte;
duplication acceptable)

Alternate key 1 (2 bytes from the 18th byte;
duplication acceptable)

~======================= Primary key (2 bytes from the 1st byte)

Variables

The use of ISAM requires a number of different variables. The names of
the variables must be defined in advance. The examples shown here are the
same variables used in the ISAM program examples.

• Data Variables to which data making up records is assigned
NO, NAME$, etc.

• Record buffer String-type array variables used as a record buffer
Each element has a length of 1 byte.

BUF$(l) - BUF$(n)

• File structure
information Integer-type array variables to which data indicating

the file structure specified for the ISAM OPEN
statement are assigned

PARM(1)-PARM(n)

• File number This is an integer-type variable to which a file number
is assigned.

ID

217

• Return code This is an integer-type variable to which a return
code indicating the result of ISAM instruction execu- (
tion is assigned.

STAT

The details of these variables are explained in the explanation of each ISAM
instruction. In addition to these variables, other variables necessary to execute
of ISAM instructions must sometimes be defined.

4.3.4 Return Code

When an ISAM instruction is executed, a return code indicating the result of
instruction execution is automatically assigned to a specified variable. Be sure
to check this return code following execution of an ISAM instruction in the
program.

4.3.5 How To Interpret Formats

Like other Canon BASIC statements, each ISAM statement consists of
an instruction word (keyword) and an operand. Specify a keyword and an
operand according to the format shown for each ISAM statement.

But the method of specifying formats is somewhat different from that of
other instructions. In other Canon BASIC statements, a specifiable element
such as < Arithmetic Expression> is shown in the operand specified in the
format. In ISAM statements, the definition of an element in the operand is
specified as < File Number>, < File Name>, etc.

The part that specifies the variable to which the data is returned from
ISAM is underlined (=) in the format.

Example:

ISAM OPEN « File No. >, < File Name>, < File Structure>, < Return Code »

218

(
4.4 Basic ISAM Instructions

4.4.1 ISAM OPEN Statement (ISAM Open)

Function
This statement opens a pair of data files and index files.

Format

ISAM OPEN « File No. >, < File Name> , < File Structure>,
< Return Code»

Explanation
The ISAM OPEN statement opens a pair of data files and index files for

indexed access.

Specify an integer-type variable in < File No. >. When this statement is
executed, an identification number (1- 6) of the pair of files opened is auto
matically assigned to the variable as the file number. Specify the file number
assigned to the variable for indexed access to the file after execution of the
statement. If the file is not opened, 0 is assigned.

Specify the name of the data file that will be opened with the drive name,
file name, and file type in < File Name> .

It must be specified with a string expression (a string variable or a
character string in quotation marks). An index file with the same name as the
specified data file with the IDX file type attached, is opened by the ISAM
OPEN statement on the same disk as the data file. If the drive name is omitted,
the current drive is automatically specified.

Any file type can be specified here. If the file type is omitted, a file whose
me type isn't defined is opened. Because the CANCEL command of the Canon
BASIC cannot delete a file whose file type isn't defined, specify this file type
as "ISM". A file created by ISAM cannot be accessed using the GET state
ment, PUT statement, etc. Do not use the file type "DAT" to prevent con
fusion with ordinary data files.

219

Specify an integer-type array variable of one dimention to which the value
corresponding to the structure of the file that will be opened is assigned in
advance in < File Structure> .

For the file structure (record information, key information, etc.) of the
pair of files that will be opened using the ISAM OPEN statement for indexed
access, the value corresponding to the structure must be assigned in advance
to the integer-type array variable of one dimension by the method shown below.

For the integer-type array variable, the length corresponding to the
quantity of the file structure information must be defined in advance with the
INTEGER and DIM statements.

Specify the file structure information as shown below.

Subscript of array

2

3

4

5

6

7

8

Omissible 9

10

11

12

13

14

• Open Mode

Open mode

Record length

Primary key position

Primary key length

Attribute of alternate key 1

Position of alternate key 1

Length of alternate key 1

Attribute of alternate key 2

Position of alternate key 2

Length of alternate key 2

Attribute of alternate key 3

Position of alternate key 3

Length of alternate key 3

0

Input mode: I, Output mode: 2,
Update Mode:3

1-510

1 - Record length

1-32

Duplication unacceptable: I,
duplication acceptable:2

End code

Select the input mode (1), output mode (2), or update mode (3) according
to the form of indexed access.

Specify the input mode when only the reading of data from the file will be
performed. When files are opened in this mode, data cannot be written to the
file. An error occurs if the pair of files specified in this mode are not on the
disk.

220

(

(

Specify the output mode to create a file. If files are opened in this mode,
data cannot be read from the file. When files are opend in this mode, if the
specified files are already on the disk, they are deleted from the disk and new
files are created.

Specify the update mode to read data from a file and write data to a file.
When files are opened in this mode, if the specified files are not on the disk,
new files are created. An error occurs if either the data file or an index file
specified is not on the disk.

• Record Length
Specify the length of the record in bytes. The length must be an integer

within the renge: 1-510.

• Primary Key Position
Specify 1 plus the number of bytes preceding the position of the primary

key. With the beginning of the record being 1, specify an integer within the
range of the record length.

• Primary Key Length
Specify the primary key length in bytes. Specify an integer within the range:

1-32. Make sure that the key range does not exceed the record length.

• Attribute of Alternate Key 1 (2, 3)
Specify whether the duplication of alternate key attributes is unacceptable

(1) or acceptable (2).

• Position and Length of Alternate Key 1 (2, 3)
Specify the position and length of each alternate key just as for the primary

key.

• End Code
Specify 0 to mark the end of the file structure information.

Specify an integer-type variable in < Return Code>. The return code
indicating the result of execution of the ISAM OPEN statement is assigned to
the variable specified here. When the files are opened correctly, 0 is assigned.
< Return Code> must be specified in the operand of every ISAM instruction.
When 0 is assigned to this variable, it means that the ISAM instruction was
executed correctly. Return codes will not be explained later. Refer to "4.8
Return Codes" for the meanings of the return codes.

When a file on the disk will be opened with the ISAM OPEN statement,
the file structure specified with this statement is checked to see if it is the
same as the structure of the file on the disk. An error occurs if they are not
the same. If fewer alternate keys are specified than the number of alternate
keys of the file on the disk, a warning return code is returned and the pro
cessing continues.

221

When a file is opened in the input or update mode, the record that has the
lowest primary key value in the file becomes the current record, and the
primary key becomes the current key.

[Ex. 4.4.1-1]
A file "DFILE. ISM" consisting of the following records is created on

the disk in drive A:

2-byte 8-byte character
integer string r 'C:

Record length 10 bytes I I

Primary key

10 INTEGER ID, PARM, STAT

20 DIM BUF$l(10), PARM(5)

30 PARM(1) =2: REM OUTPUT MODE

40 PARM(2)=10: REM RECORD LENGTH=10 BYTES

50 PARM(3)=1: REM P KEY POSITION=lST BYTE

60 PARM(4) =2: REM P KEY LENGTH=2 BYTES

70 PARM(5)=0: REM END CODE

80 ISAM OPEN (ID, "DFILE.ISM", PARM(*), STAT)

In this example, the INTEGER and DIM statements on lines 10 and 20
define the integer-type variables required to execute the ISAM OPEN stat
ment.

ID is the variable to which the file number of the pair of files opened is
assigned. STAT is the variable to which the return code is assigned.

Array variables P ARM (1) - P ARM (5) are integer-type array variables that
specify the structure of the files that will be opened. The values of file struc
ture information are assigned to the variables by the LET statements (with
the keyword omitted) on lines 30 - 70. The number of the array elements is 5
because alternate keys are not specified. 2 is assigned to variable
PARM(I) to specify the output mode, and 10 is assigned to variable PARM(2)
as the length of the record. Because the primary key position is at the 1st byte
from the beginning, 1 is assigned to PARM(3) as the key position and 2 is
assigned to PARM(4) as the key length. 0 is assigned to PARM(5) as the end
code.

222

(

(

The ISAM OPEN statement on line 80 actually opens the files for indexed
access. With the execution of this ISAM OPEN statement, data file "DFILE.
ISM" and index file "DFILE.IDX" are opened on the disk in drive A. After
the files are opened correctly, 0 is assigned to variable ST AT, and the file
number (1- 6) is assigned to variable ID. After the execution of the ISAM
OPEN statement, processing to the files is performed by specifying the file
number assigned to ID.

223

8
4.4.2 ISAM CLOSE Statement (ISAM Close)

Function
This statement closes a pair of data files and index files.

Format

ISAM CLOSE«File No.>, <Return Code»

Explanation
The ISAM CLOSE statement closes the pair of files specified by the file

number.
The open data file and index file must be closed with this statement before

the program ends. Ending the program without closing the files may cause data
irregularities when additional writing, modification, or other processing is
performed.

[Ex. 4.4.2-1]
The file opened in Ex. 4.4.1-1 is closed.

10 INTEGER ID,PARM,STAT

80 ISAM OPEN(ID,"DFILE.ISW',PARM(*),STAT)

500 ISAM CLOSE(ID,STAT)
510 IF STAT=O THEN PRINT "NORMAL CLOSE":GOTO 530
520 PRINT "CLOSE ERROR";STAT
530

The IF statement of line 510 confirms that the file has been closed cor

rectly.

224

(

(

(

4.5 ISAM Data Write Instructions

4.5.1 ISAM PACK Statement (ISAM Pack)

Function
This statement assigns data to the record buffer.

Format

ISAM PACK «Buffer>, <Expression>, , < Expression > ,
< Return Code»

Explanation
The ISAM PACK statement assigns data to the record buffer. Assigning

data to the record buffer is always performed using this statement.
The part of a record buffer to which data will be assigned can be specified.

Data can also be rewritten in a part of the record buffer.
Specify the string array variable, and its subscript, defined as a record

buffer, in < Buffer> . The array variable specified here indicates the position
in the record buffer where data assignment will start. For example, if
BUF$(l) - BUF$(15) are defined as a record buffer, specify BUF$(3) to start
data assignment at the third byte of the record buffer.

Specify the data that will be assigned to the record buffer in < Expression> .
More than one block of data can be specified, but the data specified must
conform to the data structure of the record (the length of each block of data).

The relationship between the data assigned to a record buffer and the
specification of a record buffer is shown on the next page.

225

Note

Record 18 bytes

Record buffer
18 bytes

2-byte 8-byte character
integer string

(No"E NAMES

I byte

I

8-byte real
number

DAT

n 11111111111111111
BUF$(1) BUF$(l8)

• When one record of data is assigned to the record buffer:

ISAM PACK(BUF$(l),NO,NAME$,DAT,STAT)

t
From head of
record buffer

v

Data

• When only the data of NAME$ is assigned to the record buffer:

ISAM PACK(BUF$(3),NAME$,STAT)

t ~
From 3rd byte of
record buffer

Each specified length of data is assigned to the record buffer starting from
the specified position. Data assignment can start at any position in the record
buffer. Be sure that the data assigned does not exceed the record length.

When string data or a value is specified directly in < Expression> of
the operand of the ISAM PACK statement, the legth of data is:

ISAM PACK(BUF$(3),IABC",STAT)

L 3 bytes (number of characters
number of bytes)

ISAM PACK(BUF$(11),342,STAT)

L 8 bytes (Numeric value is 8 bytes)

226

(

(

[Ex. 4.5.1-1]
The data of a record is assigned to the record buffer:

2-byte 8-byte character
integer string
< 'C:: / "

8-byte real
number

Record 18 bytes L..I _...L.I ______ -'I ______ ~I

~ ~
Variables NO NAMES

10 INTEGER NO,ID,PARM,STAT
20 DIM BUF$1(18),PARM(5)

OAT

80 ISAM OPEN(ID,"DFILE.ISW',PARM(*),STAT)

200 INPUT MSG("NO.?")NO:PRINT
210 INPUT MSG("NAME?")NAME$:PRINT
220 INPUT MSG("DATA?")DAT:PRINT
230 ISAM PACK(BUF$(l) ,NO,NAME$,DAT,STAT)

Line 20 defines a record buffer length of 18 bytes with I-byte string-type
array variables BUF$(l) - BUF$(I8). After the file is opened on line 80, the
data input on lines 200 - 220 is assigned to the record buffer using the ISAM
PACK statement on line 230.

Input Input Input , , l
I NO I NAMES OAT

2 bytes 8 bytes 8 bytes

D D D
Record buffer I 11111111111111 II II

BUF$(I)- BUFS(15)

227

8
4.5.2 ISAM WRITE Statement (ISAM Write)

Function
This statement writes the contents of an additional record to a file.

Format

ISAM WRITE « File No. >, < Buffer>, < Return Code»

Explanation

Note

The ISAM WRITE statement writes an additional record to a file opened in
the output or update mode.

Specify the file number, defined when opening the file, to which additional
writing will be performed in < File No. >. The file to which additional
writing will be performed must be a file opened in the output mode (2)
or update mode (3). An error occurs if this statement is executed on a file
opened in the mode.

Specify all of the elements of the string-type array variables defined as the
record buffer with an asterisk (*) in < Buffer> .

Before the execution of this statement, the data of the record that will be
written must be assigned to the record buffer using the ISAM PACK statement.

This statement checks for the duplication of the key values of the record
that will be written and the key value of all records in the file before the addi
tional writing of the record. Because the duplication of primary key values is
unacceptable, if the value of the primary key of the record that will be written
is the same as the value of the primary key of any other records in the file,
return code 2 is returned and the additional writing of the record is not
performed.

This also applies to the alternate keys for which duplication is unacceptable.
If the values of the keys for which duplication is specified as acceptable are
duplicated, warning return code 3 is returned and the additional writing of the
record is performed.

The current record and the current key are reset after execution of the
ISAM WRITE statement.

228

(
[Ex. 4.5.2-1]

File "FILE1.ISM", consisting of records with the following data struc
ture, is created on the disk in drive A.

2-byte 8-byte character
integer string
< ,--- -........

Record 10 bytes I L J

if
Primary key

Variables NO NAMES

10 INTEGER NO,ID,PARM,STAT

20 DIM BUF$1(10),PARM(5)

30 PARM(1)=2:REM OUTPUT MODE

40 PARM(2)=10:REM RECORD LENGTH = 10 BYTES

50 PARM(3)=1 :REM P KEY POSITION = 1ST BYTE

60 PARM(4)=2:REM P KEY LENGTH = 2 BYTES

70 PARM(5)=0:REM END CODE

80 ISAM OPEN(ID,"FILE1. ISM" ,PARM(*) ,STAT)

90 INPUT MSG("NO.=")NO:PRINT

100 IF NO=O GOTO [END]

110 IF NO<O GOTO 90

120 INPUT MSG("NAME=")NAME$:PRINT

130 ISAM PACK(BUF$(l),NO,NAME$,STAT)

140 ISAM WRITE(ID,BUF$(*),STAT)

150 IF STAT=-2 THEN PRINT "DUP. ERROR!":GOTO 90

160 GOTO 90

170 [END] ISAM CLOSE (10, STAT)

229

A file in which one record is 10 bytes (integer data: 2 bytes; character
data: 8 bytes) is created for indexed access.

The LET statements on lines 30 -70 assign the file structure information to
array variables PARM (l)-PARM (5). The output mode (2) is selected as the
open mode to create a new file.

The data input routine is on lines 90 -120. The data of the record that will
be written is input through the keyboard.

After data is input to the variables NO and NAME$, the data is assigned to
the record buffer with the ISAM PACK statement on line 130. In this case,
the data of the entire record is assigned to the record buffer so BUF$(l) is
specified in the operand of the ISAM PACK statement to assign the data from
the beginning of the record buffer.

The contents of the record buffer are written to the file using the ISAM
WRITE statement on line 140. If the duplication of key values occurs between
the data of the record that will be written and the data of the record in the file,
the message "DUP. ERROR" is output by the IF statement on line 150 and
writing is not performed.

230

(

(
4.5.3 ISAM REWRITE Statement (ISAM Rewrite)

Function
This statement rewrites the record data in a file.

Format

ISAM REWRITE«File No.>, <Buffer> , < Return Code»

Explanation
The ISAM REWRITE statement updates the record in the file whose

primary key value is the same as the primary key value specified in the record
buffer.

Specify the number of the file that will be rewritten in <File No. >. Specify
the variable defined in the record buffer in < Buffer> .

For example, if data is read from a file to the record buffer and this state
ment is executed after the modification of a part other than the primary key
of the data, that part of the record from which the data was read, is rewritten.

Rewrite Rewrite

! 100 ! 200

Record Buffer I 30 1%'.-\2/ 60 I

Record 1 30 t?;~ZI 60

Lprimary
File key

Execute
ISAM REWRITE
statement

Record 1100 [~2! 200 1

File

The same result is obtained by assigning the same value as the primary key
value of the record that will be rewritten to the record buffer, without reading
the data from the file.

Assign Assign Assign

! 100! A pOO

Record Buffer 1 100 Ia'AJa 200 I
(

Rewrite Rewrite

Record 1 100 I%~~ 200 I
File

231

ISAM REWRITE statement

Note

[Ex·1

In this case, unless the record having the primary key value specified in the
record buffer was written in the file, the record is not rewritten and return code
2 is returned.

When the modification of an alternate key value is specified, the newly
specified alternate key value is checked to see if it duplicates the key value of
record in the file. If an alternate key value is duplicated when duplication

is specified as unacceptable, return code 2 is returned and the record is not
rewritten. If the duplication of an alternate key value is specified as acceptable,
return code 3 is returned and the record is rewritten.

Only the part rewritten with the ISAM PACK statement is changed.

Contents of record NAME $ = II H G F E DC BA II
buffer are rewritten. ISAM PACK(BUF$(3) ,NAME$,STAT)

Record Buffer \128\ H G FED C B A I 32.148

The current record and the current key are reset when the ISAM
REWRITE statement is executed.

232

(

(
[Ex. 4.5.3-1)

Rewrite data in a file written with the following record.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

2-byte 8-byte character
integer string

r y=
8-byte real
number

-.......... rre====
Record 19 bytes

o
Primary key

Variable NO NAMES

INTEGER NO,ID,PARM,STAT
DIM BUF$1(18),PARM(5)
PARM(1)=3:REM UPDATE MODE
PARM(2)=18:REM RECORD LENGTH

OAT

= 18 BYTES
PARM(3)=1 :REM P KEY POSITION=lST BYTE
PARM(4)=2:REM P KEY LENGTH=2 BYTES
PARM(5)=0:REM END CODE
ISAM OPEN(ID,"DFILE. ISM" ,PARM(*) ,STAT)
INPUT MSG("NO.")NO:PRINT
IF NO=O GOTO [END]
INPUT MSG("NAME=")NAME$:PRINT
INPUT MSG("DATA=")DAT:PRINT
ISAM PACK(BUF$(l),NO,NAME$,DAT,STAT)
ISAM REWRITE(ID,BUF(*) ,STAT)
IF STAT=-2 THEN PRINT UNREGISTERED!":GOTO
GOTO 90
[END]ISAM CLOSE(ID, STAT)

233

90

The data of the record in the file is rewritten according to the primary key
value, so the file is opened in the update mode (3).

The data is assigned to the record buffer by the ISAM PACK statement on

NAME$ and DAT with the INPUT statements on lines 110 and 120.
The data is assigned to the record buffer by the ISAM PACK statement of

line 130, and the data of the file is rewritten with the ISAM REWRITE state
ment on line 140. If the record having the primary key value specified (input to
the variable NO) is not in the file (return code 2), the data of the record is not
rewritten and the message "UNREGISTERED!" is displayed, requiring
reinput of data.

This processing is shown below.

File close
Yes

Open file in
update mode

Input to variable t-----------,
NO

Assign values of
NO,NAMES,
andDATto

Record buffer

ISAM PACK statement

ISAM REWRITE statement 1-------------------,
No

I Retrun Code 2

I
I
I
I
I
I
I

Yes

Rewrite record
data to values

of NAMES and
DAT

Does any record have the
value of the variable NO as
the primary key value?

I
I
I

L ___________________ ~

234

(

(

4.6 ISAM Data Read Instructions

4.6.1 ISAM UNPACK Statement (ISAM Unpack)

Function
This statement reads data from a record buffer and assigns it to a variable.

Format

ISAM UNPACK «Buffer>, < Variable > , ... , <Return Code»

Explanation
The ISAM UNPACK statement is the opposite of the ISAM PACK state

ment. It reads data from any part of the record buffer and assigns it to a
variable.

Specify the elements of the operand as for the ISAM PACK statement.
The length of data that will be read from the record buffer depends on the

length of a variable specified in the operand. Be careful not to specify the
reading of data that exceeds the length of the record buffer.

An example of a program using this statement is shown in the explanations
of the ISAM RREAD statement and ISAM SREAD Statement.

235

B
4.6.2 ISAM RREAD Statement (ISAM Random Read)

Function
This statement reads record data by specifying a key value. (Indexed ran

dom read).

Format

ISAM RREAD«File No.>, < Buffer> , < Return Code> [, <Key Type > J)

Explanation
This statement searches a file for a record having a specified key value and

reads the data from that record into the record buffer.
A key value is specified by assigning the value to the key part of the record

buffer before this statement is executed.
Specify the file number defined when opening the file from which data will

be read in < File No. >. The file must be opened in the input or update mode.
For < Buffer> , specify all of the elements of the string-type array variables

defined as the record buffer with an asterisk (*).

Specify an integer-type variable in < Key Type>. This variable must be
selected from the integer values 1 - 4, which indicate the key type serving as an
index for record retrieval and assigned before the execution of this statement. 1
indicates the primary key, 2 indicates alternate key 1, 3 indicates alternate key
2 and 4 indicates alternate key 3. If the specification is omitted, 1 (the prima
rykey) is automatically specified.

After this statement is executed, the current key becomes the type of key
specified with this statement, and the next key in the key order to the record
from which data was read becomes the current record.

When more than one record has the specified key value (i. e. when an alter
nate key accepting duplication is specified), data is read from the record written
to the file first. In this case, the current record after the execution of this state
ment, is the record written to the file second.

When there is no record having the specified key value, reutrn code - 2 is
returned and data reading is not performed.

236

(

The indexed random read processing with this statement is shown below.

2-byte 8-byte character

Record 10 bytes L I
integer string
c ",,======-

Primary key

CD Key value is assigned to record buffer.

NO=135

ISAM PACK (BUPS (1), NO, STAT)

Record Buffer 1611 ;;;;,13;;,,5 J..1 =====~II
o ISAM RREAD statement is executed.

Record Buffer

CD Data is read from correspond
ing record into record buffer.

Record Buffer 11135 I ABC D E F G H II

Index file

Corresponding record is found

Data file

j62!STUVWXYZ!

Pointer .--=;::::=======:::::-...J
911351 ABC D E F G H I

1 205 10PQRSTUvi

0) Contents of record buffer
are read.

CD Pointer is moved.

ISAM UNPACK (BUF$ (3), NAME$, STAT)

Variable NAME$ I ABC D E F G H I

237

62!ST UVWXYZI

1135 I ABC D E F G H I
Pointer (current record)

91 205 ! 0 P Q R STU V I
t Current key

[Ex. 4. 6.2-1]
The key value of alternate key 1 in a record with the following data is

specified, and the data is read from the record in the file:

2-byte 8-byte character

Record 18 bytes

integer string

r 1"== -=-,===
{) {)

8-byte real
number ----=.

Primary key Alternate key I (duplication unacceptable)

Variable NO NAMES

10 INTEGER NO,ID,PARM,STAT,KEYNO
20 DIM BUF$l (18) ,PARM(8)
30 PARM(l)=l :REM INPUT MODE

OAT

40 PARM(2)=18:REM RECORD LENGTH = 18 BYTES
50 PARM(3)=1:REM P KEY POSITION = 1ST BYTE
60 PARM(4)=2:REM P KEY LENGTH = 2 BYTES
70 PARM(5)=1 :REM A1 KEY DUPLICATION UNACCEPTABLE
80 PARM(6)=3:REM A1 KEY POSITION = 3RD BYTE
90 PARM(7)=8:REM A1 KEY LENGTH = 8 BYTES
100 ISAM OPEN(ID,IFILE3.ISM",PARM(*),STAT)
110 INPUT MSG("NAME?")NAME$:PRINT
120 IF NAME$="E" GOTO [END]
130 ISAM PACK(BUF$(3),NAME$,STAT)
140 KEYNO=2:REM KEY TYPE = ALTERNATE KEY 1
150 ISAM RREAD(ID,BUF$(*),STAT,KEYNO)
160 IF STAT=-2 THEN PRINT "NAME UNREGISTERED!":GOTO 110
170 ISAM UNPACK(BUF$(l),NO,NAME$,DAT ,STAT)
180 PRINT "NO.=";NO
190 PRINT "DATA=";DAT
200 GOTO 110
210 [END]ISAM CLOSE(ID, STAT)

238

(

(

In this example, the value of alternate key 1, whose duplication is specified
as unacceptable, is specified, and data is read from the record that has the
specified key value. The file is opened in the input mode.

The INPUT statement on line 110 inputs the data (key value) serving as an
index for record retrieval to the variable NAME$.

The ISAM PACK statement on line 130 assigns the key value input to
NAME$ to the record buffer. Because data is assigned to only the alternate key
1 part of the record buffer, BUF$ (3) (from the third byte of the record buffer)
is specified in the operand.

After the key value is assigned to the record buffer, the ISAM RREAD
statement on line 150 reads data from the file. The LET statement on line 140
specifies the key type as alternate key 1.

If the record specified with the ISAM RREAD statement on line 150 is not
in the file, return code - 2 is returned. After the message "NAM
EUNREGISTERED!" is displayed, the system again enters the input status.

The ISAM UNPACK statement on line 170 assigns the contents of the
record buffer to the variable.

239

B
4.6.3 ISAM START Statement (ISAM Start)

Function
This statement defines the reading start record for the sequential reading of

record data according to the key order. (Indexed Sequential Read).

Format

ISAM START«File No.>, <Buffer>, <Start Code>, <Return Code>

[, < Key No.> J)

Explanation
The ISAM START statement defines the first record where the reading

data will start when indexed sequential read is performed with the ISAM
SREAD statements described later. Actually the pointer moves according to the
conditions specified with this statement, and the current record and the current
key are set.

As with the ISAM RREAD statement, the conditions for setting the record
to start reading data are specified by assigning a specified key value to the
record buffer in advance and specifying the variable of the record buffer and
the key type (< Key No. >) of the record in the operand of the ISAM SREAD
statement. With this statement, however, it is possible to specify a comparison
between the key value of the record that will be searched and the specified
value. (With the ISAM RREAD statement, the record that has the same key
value as the specified value is searched.)

For < Start Code>, specify an integer-type variable, and assign 0, 1, or 2
to it according to the conditions of key values comparison in advance. Specify
the start code as follows:

o Specified key value = Record key value
• The record that has the same key value as

the specified key value is the current
record

1 Specified key value ~ Record key value
• The record that has the same key value as

the specified key value is the current
record. When there is no record with the
same key value, the record that has the
next key value in the key order is the cur
rent record.

240

(
2 Specified key value < Record key value

• The record that has the first key value
larger than the specified key value is the
current record.

When there is more than one record that has the same key value
corresponding to the specified conditions (when an alternate key accepting
duplication is specified), the record written to the file first is the current record.
If there is no corresponding record, return code - 2 is returned and the
pointer is not defined.

The movement of the pointer by the execution of this statement and the
ISAM SREAD statement is shown below.

2-byte 3-byte character
integer string

Record 5 bytes r r >'1
{}

Primary key

Assign

If
Record buffer 11_00--1.1 __ -1 Record buffer DEF

File

63 I ABC

File

63 I ABC 1 63 1 ABC

¢I 123 I DEF 1
Pointer I Current record ...

1240 I GHI

1 123 I DEF

1240 I ... 1 123 I DEF

¢12401 I
1920 I JKL

CD Execution of ISAM START
statement r-----------,

: Specify: :
I I
I I
I Key ... Primary key I
I I

I :
I Key vaiue ... 123 I

I I
I Start code ... I (=) I L _____________ .J

GHI

1920 I JKL

ill Execution of ISAM SREAD
statement

GHI
Pointer t Current record

I 920 I JKL

CD After execution of ISAM
SREAD statement

1

An example of a program using this statement is shown in the explanation
of the ISAM SREAD statement.

241

8
4.6.4 ISAM SREAD Statement OSAM Sequential Read)

Function
This statement reads data in sequence from the records of a file according

to the key order. (Indexed Sequential Read.)

Format

ISAM SREAD«File No.>, < Buffer> , < Return Code»

Explanation
The ISAM SREAD statement reads one record of data from the current

record of the file into the record buffer and moves the pointer to the next
record in the key order of the current key. Data in records are read in sequence
according to the key order of the current key (indexed sequential read) with the
repeated execution of this statement.

Specify the file number defined when opening the file from which data will
be read in < File No. > . The file must be opened in the input or update mode.

For < Buffer>, specify all elements of string-type array variables defined
as the record buffer with an asterisk (*).

The ISAM START statement must be executed to set the current record
and the current key before the start of indexed sequential access by this state
ment. But when the primary key is used as the current key and indexed sequen
tial read starts with the record with the lowest key value, the ISAM START
statement need not be executed because the current record and the current key
are set automatically just after execution of the ISAM OPEN statement.
Remember that the current record and the current key change when the ISAM
RREAD statement is executed.

When the current key is an alternate key whose duplication is specified as
acceptable and there is more than one record that has the same key value, the
records are read in the order in which they were written to the file.

242

(
[Ex. 4.6.4-11]

Assuming that the records consist of the following data, data is read in the
key order from the records whose primary key values are between 100 and 200:

2-byte 8-byte
integer character string
('),........-= ::::=-"

Record 10 bytes I I I
{]

Primary key

Variables NO NAME$

10 INTEGER NO, I D ,PARM ,STAT ,SCODE
20 DIM BUF$l(10),PARM(5)
30 PARM(l)=l:REM INPUT MODE
40 PARM(2)=10:REM RECORD LENGTH: 10 BYTES
50 PARM(3)=1 :REM P KEY POSITION: 1ST BYTE
60 PARM(4)=2:REM P KEY POSITION: 2ND BYTE
70 PARM(5)=0:REM END CODE
80 I SAM 0 PEN (I D , II F I L E 3 . ISM II , PAR M (*) ,S TAT)
90 P R IN T II COD Ell, II N AM Ell: P R IN T
100 SCODE=1:NO=100:REM 100<=CODE
110 ISAM PACK(BUF$(l) ,NO,STAT)
120 ISAM START(ID,BUF$(*),SCODE,STAT)
130 ISAM SREAD(ID,BUF$(*),STAT)
140 IF STAT=-2 GOTO [END]
150 ISAM UNPACK(BUF$(l) ,NO,NAME$,STAT)
160 IF NO>200 GOTO [END]
170 PRINT NO,NAME$
180 GOTO 130
190 [END]ISAM CLOSE(ID, STAT)

243

In this example, data is read from the records in the key order of primary
key values and is displayed.

The file from which data is read is opened in the input mode.
The two LET statements on line 100 specify the key value of the record

where data reading will start. They assign 1 as the start code and 100 as the key
value to each variable and specify the current record to the first record in the
key order from the records whose primary key values are 100 or more.

The ISAM START statement on line 110 actually moves the pointer to the
record mentioned before. At the same time, the primary key becomes the cur
rent key.

The indexed sequential read routine is on lines 120-180. It is a loop to
repeat execution the required number of times. In this loop, the ISAM SREAD
statement is executed repeatedly to read data from records according to the key
order of the records' data.

When the primary key value of the record read exceeds 200, the loop ends
and the file is closed. When there is not a record whose primary key value is
larger than 200, data reading reaches the end of the file before the data that ex
ceeds 200 is read. In this case, return code - 2 is returned and the loop ends
with the IF statement on line 140.

The processing for this program example is shown next.

CD 120 ISAM START(ID,BUF$(*),SCODE,STAT)
t t

100 1

Record buffer L.I _100---1.1 ______J

File

~ 1120 IDE F -
Pointer t Current record

1143 1 G H I -

1195 1 L M N

1210 1 STU

244

(

(

CD 130 ISAM SREAD(ID,BUF$(*),STAt)

Record buffer 1120 IDE F

File

1120 IDE F -

(
~ 11431 G H I -

Pointer t
Current record

1195 I L M N -

I 210 1ST U' -

® The ISAM SREAD statement is repeated.

QD 130 ISAM SREAD(ID,BUF$(*) ,STAT)

Record buffer I 210 1ST U -

File

InIABc-

1120 IDE F -

11431 G H I -

1195 I L M N -

1210 1ST U -

CD 160 IF NO>200 GOTO [END] ...
190 [END]ISAM CLOSE(ID,STAT)

245

.;

B
4.7 Other ISAM Instructions

4.7.1 IS AM DELETE Statement (ISAM Delete)

Function
This statement deletes a specified record from a file.

Format

ISAM DELETE « File No. >, < Buffer>, < Return Code»

Explanation

Note

The ISAM DELETE statement deletes the record that has the same primary
key value as the one specified in the record buffer from an index file. Records in
the data file are not deleted with this statement. But, because the key informa
tion in the index file is deleted, the record deleted with this statement cannot be
read with indexed access. The area of the data record deleted with this state
ment is used for the additional writing of a record.

Specify the file number defined when opening the file from which a record
will be deleted for < File No. >. The file must be opened in the output mode or
update mode.

For < Buffer>, specify all of the elements of string-type array variables
defined as the record buffer with an asterisk (*). Assign the primary key value
of the record that will be deleted to the record buffer before this statement is ex
ecuted.

If the record specified is not in the file, return code - 2 is returned.

The current record and the current key are reset after execution of the
ISAM DELETE statement.

246

(
[Ex. 4.7.1-1]

Delete all records with a primary key value of 100 - 200.

2-byte 8-byte character
integer string

Record lO-bytes IL..< _'.J,..I === _____,..-11

{}
Primary key

10 INTEGER NO,ID,PARM,STAT

80 ISAM OPEN(ID,"FILE3.ISM",PARM(*) ,STAT)

90 FOR NO=100 TO 200

100 ISAM PACK(BUF$(l),NO,STAT)

110 ISAM DELETE(ID,BUF$(*) ,STAT)

120 IF STAT<>-2 THEN PRINT "DELETE";NO

130 NEXT NO

140 ISAM CLOSE(ID,STAT)

In this example, records whose primary key values are 100-200 are
deleted.

The IF statement on line 120 checks the return code after execution of the
ISAM DELETE statement and displays the primary key value of the record
deleted.

247

8
4.7.2 ISAM SECUR Statement (ISAM Security)

~unction
This statement specifies the period for writing into a file from the ISAM

system buffer.

Format

ISAM SECUR « Switch>, < File Information>, < Return Code»

Explanation
When data is written to a file with indexed access, the data is temporarily

stored in a memory area called the ISAM system buffer where it is defined
automatically by ISAM before it is written to the data file and index file.

When the program ends abnormaJly. during me updating, the data written
to the ftle may be wrong. It number of data written to a file correctly may differ
depending on the data writing period from the ISAM system buffer to the file.

The ISAM SECUR Statement -specifies the periad for writing the contents
of the ISAM system buffer to the me.

This specification determines the processing speed and the security of data.
In < Switch>, specify an integer-type variable. Assign 1, 0, or -1 to this

variable indicating the period of writing the contents of the ISAM system buf
fer. These values have the following meanings:

1 Each time the statement for writing data to a file is executed, the
contents of the ISAM system buffer are written to the file.
Although the processing speed is slow, the highest degree of file
security is guaranteed.

o When the contents of the ISAM system buffer reaches capacity, the
contents are written to the me. The disk is always checked to ensure
that there is suffucient area to write the contents of the ISAM
system buffer. The processing speed is higher than in 1, and an
medium degree of me security is guaranteed. This method is
adopted when the ISAM SECUR statement is not executed.

248

(

-1 This method is the same as O. But the disk area availability is not
checked until the writing of the contents of the ISAM buffer is per
formed. Although the processing speed is the highest, sometime the
contents of the ISAM system buffer cannot be written to the disk.

In < File Information>, specify the elements of the integer-type array
variables defined for the file information with an asterisk (*)

Specify the integer-type array variables for < File Information> . The array
rariable must consist of 6 array elements. The information of each file is assign
ed to each of the variables as follows when this statement is executed. If 0 is
assigned, the file is normal. If the file is abnormal, 1 is assigned.

Ex: IFINF (1) - (6)

File No.1 File No.2 File No.3 File No.4 File No.5 File No.6

IFINF(l) IFINF(2) IFINF(3) IFINF(4) IFINF(5) IFINF(6)

[Ex. 4.7.2-1]
ISAM processing is performed with 1 (the highest degree of file security)

specified in switch.

10 INTEGER ID,PARM,STAT,SW,IFINF

20 DIM BUF$1(10),PARM(5),IFINF(6)

400 SW=l

410 ISAM SECUR(SW,IFINF(*),STAT)

249

~
4.8 Retu rn Codes

The values of the return codes returned by ISAM statements have the
following meanings:

<Normal>

o Normal end

<Errors>

1, 3, 4, 6 and 10 The index file is wrong.

2 The disk is full.

5 The directory area of the disk has overflowed.

7 The specified file is not on the disk.

8 The disk or file has a read-only attribute.

9 An attempt is made to open the same file twice.

11 The number of records in the file has exceeded the limitation.

12 The EOD record is wrong.

13 There is no EOD record.

20 The parameter attribute is wrong.

21 An attempt is made to open more than six pairs of files at the same
time.

32 The file name specification is wrong.

23 The parameter value is wrong.

24 The record length is wrong.

26 An attempt is made to execute an instruction that cannot be ex
ecuted in the specified open mode.

250

(

(

(

27 The key specification is wrong.

28 When an attempt is made to open files in the update mode, either
the data file or the index file is not on the disk.

29 The number of a file that is not opened is specified.

30 The contents of the index file are wrong.

31 Error in the ISAM SECUR statement.

32 The index file size has exceeded the limitation.

<Warnings>

Note

- 1 An attempt is made to read data beyond the end of data.

- 2 The key specification is wrong.

- 3 The key value is duplicated.

-4 Because the index file is wrong, the alternate key position is wrong.

- 5 The number of keys specified with file structure information is
greater than the number of the keys of the records in the file opened.

- 6 The record deleted is wrong.

Warning codes -1 and - 2 indicate the abnormal execution of the ISAM
instructions and record data is not read or written.

When -4 or -6 is returned, the statement is executed but the result is not
guaranteed because the data file or index file is abnormal.

When the integer-type variable for < Return Code> is not specified in the
operand or when the specified variable is not of the integer-type, a return code
is not returned.

251

Caution Disk Overflow

The disk may overflow during ISAM processing. This may occur
in following cases:

When writing to a data file ISAM WRITE statement execution
When writing to an index file ISAM WRITE, REWRITE,

DELETE, CLOSE statement ex
ecutions

In these cases, return code 2 is returned and the file may become
invalid for ISAM. So use a disk which has sufficient free area for
ISAM to prevent the overflow. This error may occur even if the
ISAM SECUR statement, which specifies switch 1, is executed.

If the file becomes invalid because of this error, reorganize the
file using the ISGEN utility and reactivate the file for ISAM. Refer to
"4. 9. 1 ISGEN Utility" for details of this recovery operation.

252

(

4.9 ISAM Utility Programs

The ISGEN utility and IDXINF utility are utility programs that can be
executed in the OS mode. This part explains the functions and the procedures
for using these two utility programs.

4.9. 1 ISG EN Utility

The ISGEN utility is a utility program to generate an index file from a data
file. It can be used to regenerate an index file from a data file that has lost an in
dex file for some reason, or to create a pair of files for indexed access from a

data file created using the PUT statement.

In data files used in ISAM, a 2-byte flag for ISAM is attached to the end of
each record. The flag is "ODHOAH" if the record is active (not deleted) and
"OOHOOH" if the record is deleted. An EOD record containing information for
ISAM is also attached to the end of data. This data file for ISAM is called a
data file of the ISAM format.

2 bytes 2 bytes 2 bytes

Data file of I Data
ISAM format record I I Data record r 1)) I Data record r 1 EOD record I

~ t !
Flag for Flag for Flag for
ISAM ISAM ISAM

In contrast, the following file created with the PUT statement is called a
data file of the BASIC format:

~~;I~l~o~~at ... 1 _D_at_a_r_ec_o_rd_IL...-D_at_a_r_ec_o_rd-,-I_D_at_a_r_ec_o_rd_IL...-_---')~ I Data record I

253

A>

The functions of the ISGEN utility are next described in detail for files of
these two different formats.

One of the functions of this utility is to regenerate an index file according to
the data of an ISAM format data file that has lost a corresponding index file,
thus reenabling indexed access.

It is also possible to reorganize files for ISAM according to the contents of
the data file or index file which have become unusable for ISAM because of a
disk overflow.

The other function is to generate a pair of files for indexed access according
to a data file of the BASIC format created with the PUT statement.

This utility is used in the interactive operation.
The starting method and operation are shown below.

«Display» «Operation and Explanation»

• Make sure that the OS mode is set.

<D * Source Fil e Name?

< File Name > ~
• Enter the name of the data file that serves as

the source for generation of an index file.

~*Type of Data File (Reformat/Isam/Basic)?
IBlg or COg or [6Jg
• Enter I if the data file is of the ISAM for

mat and B if it is of the BASIC format.
If R is entered, the file reformatting
(reorganization) is performed with proces
sing as follows:

a) The data file is reformatted by physically
deleting the records which are deleted
logically by ISAM DELETE statement.

b) Reorganization of the files which have
become unusable with disk overflow.

254

(

(

"

(

«Dipslay» «Operation and Explanation»

® * Source Data Record Length?

Only when B or R is selected in 0 .

@* Data Fil e Name to create?

Only when B is selected in 0 .

< Record Length> Q]
- Enter the record length of one record in

bytes. The value must be an integer within
the range: 1 - 510. (When the data file has a
ISAM format, omit the ISAM flag from the
record length.)

<File Name> Q]
-Enter, together with the file type, the name
of the data file of ISAM that will be created
from the data file of BASIC format or from
the incorrect data file of ISAM format.

a> * Creati on Data Record Length?

® * Record Count?

BASIC format only

(J) * Primary Key Position?

< Record Length> Q]
- Enter the record length of the data file of

ISAM format that will be created. If the
record length entered here is less than the
record length entered in Q) , the excess
records of the original file are ignored. If it
is greater, OOH is added to create file.

< Record Count> Q]

- Enter the number of records which will be
converted for ISAM use. The default (Q]
only) is that all records are converted.

< Primary Key Position> Q]
- Enter the position of the primary key.

255

«Dipslay» «Operation and Explanation»

® * Primary Key Length?

< Primary Key Length> Q]
• Enter the length of the primary key.

® * Transfer ratio 1 Ov90(%)[defaul t=50%]?

< Transfer Ratio> Q]
• The transfer ratio is a value (an integer

within the range: 10 - 90) that shows the size
of the spare area of key information in the
index file. The way the key information is
split depends on this value.
Enter an integer within the range: 10 - 90.
For processing efficiency, enter 90 when the
records of the original data file are arranged
in the key order (from smallest to greatest
values) and not many records will be added.
Enter 50 when alot of records will be added
or modified. Enter 10 when the records of
the original file are arranged in the reverse
key order (from greatest to smallest values).
The default (Q] only) is that 50 is specified.

Repeat only when an alternate key is specified.

®*Alternate key[O:No l:Yes(No dup)2:Yes(dup)]?

@*Alternate Key Position?

IQ] or rn or ~ Q]
• Enter 1, 2, or 3 to specify whether an alter

nate key is set or not.
If 0 is entered, an alternate key is not set. If
1 is entered an alternate key not accepting
duplication is set.
If 2 is entered, an alternate key accepting
duplication is set. Steps ® to @ are
repeated until 0 is entered here or three
alternate keys are specified.

< Key Position > ~
• Enter the position of the alternate key.

256

(

,

(

«Dipslay» «Operation and Explanation»

@ * Alternate Key Length?

< Key Length> g
• Enter the length of the alternate key.

@ * Transfer rati 0 1 <Yv90(%) [default=50%]?

Repeat only when an

alternate key is specified

@* ISGEN Start OK (No/Yes)?

< Transfer Ratio> g
• Enter the transfer ratio (10 - 90) as explain

edin 9.

[YJ (or IN]) g
• Make sure that the values entered are cor

rect, then enter Y create the file. If N is
entered, restart input at Q) .

When there is already a file of the same name as the file that will be created
on the disk, the message:

* File Already Exists Delete (Yes/No)?
is displayed. If Y is entered, the file is deleted before the start of file creation. If
N is entered, reinput of the file name is required.

During processing, the record number being processed is displayed.

The following error messages are displayed during the input of values or
during processing:

«During the input of values»

Invalid File Name The file name specification is wrong.

File doesn't exist.. The specified file is not on the disk.

Invaled Parameter. The value entered is wrong.

Read Only File The file that will be deleted has a read-only at
tribute.

Invalid Key Data The specification of record length, key position,
or key length is wrong.

257

«During processing»

Error: Code = < Return Code>
... This has the same meaning as the return code of

ISAM instructions.

··Delete Record Found: Rec No = <Record No. >
... The record of < Record No. > in the original

data file is a delete record. The record is also
written as a delete record in the file that will be
created .

.. Invalid Record Flag: Rec No = < Record No. >
... The ISAM flag of the record having < Record

No. > in the original file is wrong. The record is
written as it is to the file that will be created.

··Invalid Key Found: Rec No = <Record No> Key No = <Key No> Ignored
The key value of < Record No. > is duplicated
in < Key No. > even if duplication is not accep
table. The record is not written to the file that
will be created.

··Duplicate Key Found: Rec No = <Record No. > Key No = <Key No. >
... The key value of < Record No. > is duplicated

in <Key No. > when duplication is acceptable.
The record is written to the file to be created.

The processing speed using ISGEN can be improved by rearranging, in ad
vance, the records of the original data file in the key order. When more than
one key is specified, rearrange the records on the basis of the key order of the
greatest key length.

258

4.9.2 IDXINF Utility

This utility displays the key information of an index file to confirm the
record length, record number, key position, key length, etc.

This utility is started with the following input in the OS mode.

IIJ[Q]OOIIJINI[E]I SPACE I <Index File Name> [,---,<Character>] ~

< Index File Name> Specify the index file whose key information
will be displayed.

< Character> If some character is specified, the index informa
tion is output to the printer connected to the 110
connector of LPT:. The default is that the infor
mation is displayed on the CRT.

The display of index information with this utility is shown next. The
numbers CD to ® explain the meanings of the messages.

259

[Example]

*** Index File Information Display Vn.nn ***

(1) Da ta Record Leng th : 62·········· · .. ······· .. CD
(2) Last Data Record: 1000 Q)

(3) Last Index Record: 35 Q)

(4) Free Data Record: @

(5)

(6)

23 41

Free Index Record: None G)

Key Informations: ®
Key no=l

Posi tion: 27

Length: 5

Root Rec.: 2

Max Level:

**************** End of Information ***************

CD Record length of data.
Q) Number of data record.
Q) Number of index record. Not the number of data record.
@ Deleted records. Records 23 and 41 are deleted.
G) Free index record. Nil.
® Key information. Only the primary key is set. The key position is the 27th

byte from the beginning of the record and the key length is 5 bytes.

260

4.10

(

(

How To Calculate File Size

The method of calculating the size of ISAM data files and index files are
shown here. The size of an index file is an approximate value based on the
assumption that the transfer ratio is 500/0.

According to CP IM-86 specifications, a file is written to a disk in 128-byte
units and reserves disk area in 2K-byte units.

• Size of a data file (lSAM format)

Size = (< Record length> + 2) x < Number of data record> (bytes)

• Size of an index file (Approximate value)

Size = (< Key length> + 2) x < Number of data record>
x 1.110.7 (bytes)

261

ISAM Instruction Formats

CD ISAM OPEN «File No. >, <File Name>, <File Structure>, <Return Code»

Q) ISAM CLOSE (< File No. >, < Return Code>)

G) ISAM PACK (< Buffer>, < Expression> ,"', < Return Code >)

@ ISAM WRITE (< File No. >, < Buffer>, < Return Code >)

m ISAM REWRITE «File No.>, <Buffer>, <Return Code »

® ISAM UNPACK « Buffer>, < Variable>, , < Return Code >)

(J) ISAM RREAD « File No. >, < Buffer>, < Return Code> [, < Key Type>])

® ISAM START «File No.>, <Buffer>, <Start Code>, <Return Code>

[, <Key No. >])

® ISAM SREAD «File No.>, <Buffer>, < Return Code»

@ ISAM DELETE (< File No. >, < Buffer>, < Return Code>)

([j) ISAM SECUR « Switch>, < File Information>, < Return Code>)

262

(

(

6.

6.1

Graphic Functions

This section explains how to use the instructions for the various graphic
functions of the AS-IOO display through the Canon BASIC program.

Graphic Functions

The graphic functions enable the operator to draw various figures with the
dots (640 x 400) on the display. The graphic functions use dots rather than
characters as the unit of display.

The AS-lOO graphic functions are supported by the CP/M-86 operating sys
tem and can be controlled by outputting defined codes to the display.

Refer to the CP IM-86 User's Manual for details of the display control codes.

5.1.1 Coordinates

The location of a figure that will be drawn is specified with the coordinates
of dots on the display.

The display screen has 0 - 639 coordinates on the X axis (horizontal) and
0-399 coordinates on the Y axis (vertical). They are coordinated with the dots
on the display. These coordinates are called as absolute coordinates.

Relative coordinates are used for each instruction to facilitate coordinate
specification in a program. Relative coordinates can be defined by the ORIGIN
statement. When the ORIGIN statement is not executed, the absolute coordi
nates are identiacl to the relative coordinates.

263

Note

The relationship between the absolute coordinates and the relative coordi
nates is as shown below.

Absolute coordinates

o ------..... - 639

o

399 ----------

Relative coordinates

- 320 --- 0 --... - 319

-200 ~---------.

!
o

~
199 '__ ________ _

~The origin (0, 0) of the relative
coordinates is set as (320, 200) of
the absolute coordinate system by c/ the ORIGIN statement.

Each of the coordinates is specified as (x, y). The figure will not be dis
played when it is drawn at coordinates which are outside the display range. The
valid range of x, y is - 32768 - 32767 (absolute coordinates). Any numeric
specification outside this range causes an error. A decimal within this range is
automatically converted to an integer by truncating the decimal fraction.

The length of the figure that will be drawn is specified by the number of
dots.

The coordinates used for the graphic functions are not related to the
coordinates of x=0-79, y=0-24 specified in OJoCURSOR of PRINT state
ment. Do not confuse the two.

264

5.1.2 Palette and Display Color Specification

Users can specify a display color (for color display) and a display mode (for
monochrome display) with a palette. The palettes and display colors (display
modes) are explained below.

AS-l00 color display can display 27 colors. These 27 colors are numbered
0-26.

A palette is like a dish that stores one of these 27 colors. For example, a red
circle can be drawn with the screen by specifying the red pallete.

The AS-I00 color display has eight palettes, which are numbered 0 -7. The
palette used for each of the figures displayed is memorized so the display color
can be changed by simply specifying the color of a palette. For example, assume
that the red circle was drawn with palette No.2. The red circle can be changed
to white by changing the definition of palette 2 to "white" .

The same principle applies to the monochrome display.

The monochrome display supports 1-VRAM (Video RAM is the memory
area for the data image displayed.) specification and 2-VRAM specifications.
Like the color display, the monochrome display has a palette and color
numbers. However, these color numbers are actually display mode numbers.

The 1-VRAM specifications of the monochrome display have two palettes
and two color numbers (No-color=O and Colored = 1). The 2-VRAM specifi
cations have four palettes and five color numbers (No-color, Standard Bright
ness, High Brightness, Blinking Standard Brightness, and Blinking High
Brightness).

The relationaship between the palettes and the display is shown in the
next page. (This is a color display.)

265

Palette 8 colors

o
Display

All graphic figures are displayed through the palettes. This means that the
number of palettes is equal to the number of colors that can be displayed
simultaneously on the screen.

The color numbers are defined as shown below.

• Monochrome Display (l-VRAM specifications)

No-color
Colored

No.
D
1

• Monochrome Display (2-VRM specifications)

No-color
Standard brightness
High brightness

No.
D
1

2

Blinking standard brightness 27
Blinking high brightness 28

266

t
• Color Display

No. No. No. No.

0 7 14 21

1 8 15 22

2 9 16 23

3 10 17 24

4 11 18 25

5 12 19 26

6 13 20

The initial values are automatically set to each palette when BASIC is acti
vated.

When the color definition of a palette is modified in a program, the modifi
cation is retained during program execution. The color definition of the palette
will be automatically reset to the initial values when program execution ends.

The color display contents can be printed with the A-121O Color Printer. In
this case, the color used on display will match the printout colors (approximately)
only if the initial pallettes are not modified. The white portions of the screen
are printed as black and the no-color (no-display) area is not printed.

The initial values of the palettes in Canon BASIC are as follows.

• Monochrome Display (l-VRAM specifications)

Palette Number 0 1
Color Number 0 1

(no-color) (colored)

• Monochromatic Display (2-VRAM specifications)

Palette Number 0 1 2 1
Color Number 0 2 27 1

(No-color) (High brightness) (Blinking standard (Standard
brightness) brightness)

267

I Grapruc I

• Color Display

Palette
Number

0 1 2 3 4 5 6 7

Color 0 1 9 10 3 4 12 13
Number (No-color) (Blue) (Red) (Purple) (Green) (Light blue) (Yellow) (White)

5.1.3 Current Point

The default value of the coordinate specification in a graphic instruction is
the current point.

The current point is determined by the last graphic statement executed.
Its initial value is the origin (0, 0) of the absolute coordinate immediately
following the start of program execution.

For example, draw a line from the coordinates (0,0) to (150,200) and then
execute a graphic instruction for drawing a circle without specifying the
coordinates of the center. The center of the circle will be (l50, 200) because the
current point was moved to (150,200) when the line was drawn.

Current Point

Display

268

5.1.4 Line Types

Note

A line type can be specified for drawing fitures. Five line types are supported.

They are numbered 0 - 4.
The numbers 0 - 4 correspond to the following line types.

Number Line Type

0

1

2

3

4

Solid line

Short broken line

Long broken line

Single dot chain line

Double dot chain line

Numbers exceeding 4 correspond to the line types as follows, 5 = 0,

6 = 1,7=2

5.1.5 Pattern

A paint pattern in figures, i.e., rectangles, circles, fans, or an ellipses can be

specified. Seven paint patterns (excluding no-paint) are supported. They are

numbered 0-8. When a paint pattern in a figure is specified, the frame is drawn

with a solid line regardless of the line type specification.

The numbers 0 - 8 correspond to the following patterns.

Number

o :

1

2

3

4

269

Note

5

6

7

8

Numbers exceeding 8 correspond to the paint patterns as follows, 9 = 0,

10= 1,11 =2 ...

5.1.6 How To Use Graphic Instructions

Like the other Canon BASIC statements, each graphic statement consists

of a keyword and operands. Specify keywords and operands according to the
format description for each statement.

The format descriptions of graphic statements differs slightly from those
of the other Canon BASIC statements. For example, a specificable element like
< Arithmetic Expression> is shown as an operand in the format description of
other BASIC statements. But an element which indicates the function of a
parameter, like < Coordinate> snf < Angle>, is shown as an operand of

graphic statements.

Example:
LINE,--, [< Coordinate I>] , < Coordinate 2>] , < Coordinate 3>]

['--' WITH '--' [< p>] [, < Line Type>]]

The principal elements of the operand are:

< Coordinate> Specify a coordinate in the form (x, y).

<Angle> Specify an angle in degrees.

< P > Specify a palette number (0 -7).

< Line Type> Specify a line type (0 - 4).

< Pattern> Specify a paint pattern (0 - 8).

270

(

Each element of operand is specified with a numeric value or an arithmetic
expression. When a decimal is specified, the fractions are truncated automatically.

The sub-keyword WITH and the subsequent operands specify the graphic
conditions, like the palette number, line type, and paint pattern. The following
are the default values of WITH and the subsequent operands.

• < P > Pallette number of foreground (described later)

• < Line Type> Solid line (0)

• < Pattern> No-paint

• <Mark> X (4)

271

I Graphic I
5.2 Graphic Declaration Instructions

5.2.1 DEFCOL Statement (Define Color)

Function
Sets colors to palettes.

Format

DEFCOL L-J [<Coloro>] , [<Color,>] , , [<Color7>]
CD

Note 1: The comma at the end of a statement can be omitted.

Explanation
The DEFCOL statement changes the color definition of palettes. Specify up

to 8 color numbers, separating them with commas (,).
The color number specifications correspond to Palette 0, Palette 1, Palette 2,

etc. This statement does not change the definition of those palettes for which
a color number is not specified. The palette definition by this statement is
retained only during program execution. The palette definition is reset to the
initial value when program excution ends.

[Example 5.2.1-11]

Modify the definition of palettes 0, 1, 3 of the color display.

40 DEFCOL 3,20,,8

Assuming that the palette definition prior to line 40 is the initial value, the
definition of the palettes 0 - 7 are modified as shown below by the execution of
line 40.

o 2
Palette 3 9

5
4

6
12

7
13

This definition is retained until redefinition by the DEFCOL statement
is performed or until program execution ends.

272

(
5.2.2 COLOR Statement (Color)

Function
Specifies the palette for the display as the default value.

Format

Explanation
Output to the display is always performed through the palettes. When an

output instruction without color specification (like the PRINT statement) is
executed, the color of display (called the foreground) and the display field (called
the background) are automatically determined by the defined palettes. Without
palette specification, white characters are displayed on the no-color field on the
display. This is because the system automatically specifies palette 7 as the fore
ground and the palette 0 as the background when the palette specification is
omitted.

The COLOR statement modifies the palette definition of the foreground
and the background, specifies the palette number for the foreground as < PI>,
and specifies the palette number for the background as < P2 >. The default
value of < P2 > is Palette O.

When a graphic instruction without palette specification is executed, the
palette which is initially defined as the foreground is automatically specified.

The foreground and background palette definitions by the COLOR state
ment are retained during program execution. They are reset to the initial value
when program execution ends.

For the a monochrome display, the initial value of the foreground is Palette
1 (1-VRAM) or Palette 3 (2-VRAM) and that of the background is Palette O.

273

[Example 5.2.2-1]

The palette definition of the foreground and the background is modified by
the COLOR statement and characters are displayed by PRINT statement.

10 COLOR 2,6

20 PRINT "ABC"

If the palette color definition is not changed in the above example, the
display contents are as shown below when line 20 is executed.

The characters are red (2)
and the field is yellow (6).

[Example 5.2.2-2]

Display (Color)

Graphic instruction in which the palette is not specified.

10 COLOR 6

20 LINE (100,100),(200,200)

In this example, the LINE statement is executed on line 20. If the palette
color definition is not changed, the line is drawn on the display as follows by
executing the LINE statement without palette specification on line 20. (The
LINE statement is described later.)

Display (Color)

Yellow (6)

274

(

(

5.2.3 ORIGIN Statement (Origin)

Function
Defines the origin of relative coordinates.

Format

ORIGIN~< Coordinate>

Explanation
Relative coordinates specify the location of a figure that will be drawn on a

display using the graphic functions. The ORIGIN statement defines the relative
coordinates. The absolute coordinates which are specified as < Coordinate>
will be the origin (0, 0) of the relative coordinates. When the ORIGIN statement
is not executed, the absolute coordinates are the same as the relative coordinates.

Absolute coordinates Relative coordinates

0---" 639 --0-+
0,------...,

+ (x, y)
ORIGIN (x, Y) ::> f

o

i
+ '--------1

+ (0,0)

399'--____

After execution of ORIGIN (xo, Yo), the relative coordinates (x, y) are the
absolute coordinates (x + Yo, Y + Yo).

The definition of relative coordinates by the ORIGIN statement is retained
during the program execution.

[Example 5.2.3-11]

Draw a circle at the center of the screen.

40 ORIGIN (320,200)

50 CIRCLE (0,0),100

275

The ORIGIN statement on line 40 defines the absolute coordinates (320,
200) as the origin (0, 0) of the relative coordinates. The CIRCLE statement on
Line SO specifies a circle whose center is (0, 0) and radius is 100. This circle is
drawn on the screen as shown below.

Display

276

(0, 0) Relative coordinates
(320,200). Absolute coordinates

(

(

5.3 Graphic Drawing Instructions

5.3.1 PSET Statement (Point Set)

Function
Draws a dot.

Format

PSET L....J[< Coordinates, >] [, < Coordinates2>] ... ['--' WITH '--' < P>]

Explanation
The PSET statement draws a dot at the specified coordinates with the

specified palette color. More than one set of coordinates can be specified.
The default value of < Coordinates) > is the current point. After the

execution of this statement, the current point will be the coordinates of the last
dot drawn.

[Example 5.3.1-1]
Draw a sine curve.

10 PRINT %HO~1E

20 ORIGIN (0,200)
30 FOR I=O TO 639
40 A=100*SIN(I)
50 PSET (I , A) WITH 5
60 NEXT I

In the above example, a sine curve is drawn by displaying 640 dots in the
direction of the x-axis. The screen is as shown below.

Display

277

I Graphic I
5.3.2 LINE Statement (Line)

Function
Draws a line.

Format

LIN El-J [<Coordinates I>], <Coodinates 2> [, <Coordinates 3> J- ..
[L-JWITHL-J[< P>], [, < Line Type>]]

Explanation
The LINE statement draws a line of the specified line type connecting the

specified coordinates. More than one set of coordinates can be specified.
The default value of < Coordinates 1 > is the current point. After the execution
of the statement, the current point will be the point where the last line drawn

ends.

[Example 5.3.2-1]

Draw a line between the relative coordinates (0, 0) to (100, 100).

10 PRINT %HO~lE

20 ORIGIN (320,200)

90 LINE (0,0),(100,100)

The following line is desplayed whern line 90 is executed.

Display

(0,0)

~
(100, 100)

278

(

(

(

(

[Example 5.3.2-2]

Move a line by repeating line display and erasure.

10 PRINT %HOME

50 FOR 1=0 TO 639

60 LINE (0,0),(1,399)

70 LINE (0,0),(1,399) WITH °
80 NEXT I

In the porgram example, the value of the x- coordinate which specifies the
drawing location of the line is increased in a loop to shift the location of the line.

A line is drawn using the LINE statement of line 60. The line is erased by
drawing the same line with no-color (Palette 0) using the LINE statement of

line 70.
In other words, the line is drawn and then erased immediately. This operation

is repeated as the location is shifted gradually. As a result, the line looks like it
is moving.

As this example shows, a figure is erased by drawing the same figure with
no-color (or with the field color). This example can also be used with the mono
chrome display because the figure is erased with no-color (Palette 0).

Display

----~
moving

279

I Grapruc I
5.3.3 REel Statement (Rectangle)

Function
Draws a rectangle.

Format

RECT,-, [< Coordinates I >], < Coordinates 2 >
[l-JWITHl-J[<P>] [, [<Line Type>] [, <Pattern>]]]

Explanation
The RECT statement draws a rectangle by specifying the coordinates of its two

opposite corners. The default value of one set of coordinates is the current point.
The inside of the rectangle can be painted by specifying a paint pattern. In

this case, the line type will be a solid line (0) regardless of the specification. The
current point is < Coordinates 1 > after the execution of this statement.

[Example 5.3.3-1]

Draw a rectangle whose opposite corners are coordinates (-100, -100) and
(100, 100). Specify the net pattern in the rectangle. Use Palette 6.

10 PRINT %HOME

20 ORIGIN (320,200)

90 RECT (-100,-100),(100,100) WITH 6,,6

The following figure is displayed by executing the previous program example.

Display

(-100, -100)

(100, 100)

280

(

(

(

5.3.4 CIRCLE Stanement (Circle)

Function
Draws a circle or an arc.

Format

CIRCLEL....l [< Coordinates>], < Radius> [, < Angle I>, < Angle 2>]
[L-J WITH L....l [<P>] [, <Line Type>] [, <Pattern>]]]

Explanation
The CIRCLE statement draws a circle or an arc by specifying the coordi

nates of the center and the radius. Do not specify < Angle 1 > and < Angle 2 >
to draw a circle.

If < Angle 1 > and < Angle 2> are specified, the statement draws an arc.
< Angle 1 > is the starting angle indicating the starting postion of the arc.
< Angle 2> is the range angle indicating the drawing range of the arc. A
poxitive angle indicates the clockwise direction.

The range angle is positive. The range angle is negative.

Range angle Range angle

--------+'-_~-~,~-----T---- x --------+-~~-----r--~x ,-

~--....-I/ Starting angle Starting angle

y y

To draw an arc, specify the starting point with a starting angle and specify
the degrees and the direction (clockwise direction; positive value, or counter
clockwise direction, negative value with a range angle. The starting angle
must be within the range: 0 - 360 and the range angle must be an integer
value within the range: - 32768 - 32767. As the drawings show, some ars can
be drawn by specifying starting angle = 90 and range angle = 90, or specifying
starting angle = 180 and range angle = -90.

Any paint pattern specification is ignored for arc drawing. The current
point is the center of the circle or arc after execution of this statement.

281

[Example 5.3.4-1]

Draw a circle whose center is at the coordinates (0, 0) and whose radius is 100.
Paint the inside of the circle completely. Use Palette 2.

10 PRINT %HOME

20 ORIGIN (320,200)

70 CIRCLE (0,0),100 WITH 2,,0

The following figure will be displayed by executing the above example.

Display

[Example 5.3.4-2]

Draw an arc using a broken line. Use Palette 2.

10 PRINT %HOME

20 ORIGIN (320,200)

80 CIRCLE (0,0),100,90,-270 WITH 2,1

The following figure is displayed by executing the above example.

Display

,--, " , I \
I \ ,

I

" --"

282

(

(

5.3.5 FAN Statement (Fan)

Function
Draws a fan.

Format

FAN,---, [< Coordinates>], < Radius>, <Angle I >, <Angle 2>
['---'wIT H,---,[<P>] [, [<Line Type>] [, <Pattern>]]]

Explanation
The FAN statement draws a fan by specifying operands like those for

drawing an arc.

[Example 5.3.5-1]

Draw a fan and paint the inside completely. Use Palette 3.

10 PRINT %HOME

20 ORIGIN (320,200)

70 FAN (0,0),100,0,90 WITH 3,,0

The following figure is displayed by executing the above example.

Display

•

283

5.3.6 ELLIP Statement (Ellipse)

Function
Draws an ellipse.

Format

[,] Long Short [] ELLlP L-J <CoordInates> , <R d ' >, <R d' > , <Angle> a IUS a IUS

[L-J WITH L-J [<P>][, [< Line Type>][, < Pattern>]]]

Explanation
The ELLIP statement draws an ellipse by specifying the coordinates of

the center, the long radius, the short radius, and the angle. < Angle> is the
angle which the long radius forms against the x - axis. It must be within the
range: 0 - 360. The default value of < Angle> is O.

--------~--=_~~~===-~----,,--~~x

y

[Example 5.3.6-11]

" " ,

Draw an ellipse whose center is at coordinates (0, 0), with a long radius
of 200, short radius of 100, and angle of 45. Paint the inside of the ellipse
using paint patterns. Specify Palette 4.

10 PRINT %HOME

20 ORIGIN (320,200)

90 ELLIP (0,0),200,100,45 WITH 4,,2

The following figure will be displayed by executing the above example.

284

(

Display

5.3.7 MARK Statement (Mark)

Function
Draws a mark at the specified coordinates.

Format

MARKL.....J [< Coordinates>] [L.....JW IT HL.....J [< P>] [, < Mark>]]

Explanation
The MARK statement draws one of seven types of marks at the specified

coordinates. Specify a mark number (0 - 6) for < Mark>. The default value of
< Mark> is 4(x). The current point is < Coordinates> after the execution of
this statement.

The marks and their numbers are shown below. 0 indicates a dot and + is
the center of each mark.

0: 000
o 0
0+0 o 0

000

4: 0 0
o 0

@
o 0

o 0

Note

1: 000
00000
00(£)00
00000

000

5:

o
o 0

0+0
0000000

2:00000
o 0
0+0
o 0
00000

6:

3:00000
00000
00(f)00
00000
00000

080
OO(±)OO

0000000

Numbers exceeding 6 coorespond to the mark type as follows,: 7 = 0,

8=1,9=2 ...

285

[Example 5.3.7-1]

Draw eight periods (.). Use Palette 6.

10 PRINT %HO~lE

20 ORIGIN (320,200)

70 FOR 1=0 TO 70 STEP 10

80 MARK (1,0) WITH 6,1

90 NEXT I

The following figure is displayed by executing the above example.

Display

••••••••

286

(

5.4 Other Graphic Instructions

5.4.1 TEXT Statement (Text)

Function
Displays a character string using graphic specification.

Format

TEXT ,--, [< Coordinates> J, < Character String> [L....J WITH L....J [< P> J

[[< . . >J [<Width > <Height > JJJ , DIrectIon 'magnification' magnification

Explanation

Note

The TEXT statement draws character strings using graphic specification.
Output directions and magnification of characters can be specified.

It can output the same characters that can be output by THE PRINT
statement. < Coordinates> specifies the starting point of display, which is
the left top of the first character of a character string. The current point is the
right top of the last character after the execution of this statement.

Specify one of the following numbers, right = 0, up = 1, left = 2, down
= 3 for < Direction> . The default value is ° (right).

Specify the character magnification for <Width magnification> and
< Height Magnification> with a number within the range: 1 -16. The default
value is 1.

These syntax rules are summarized below.

y

Numbers exceeding 3 correspond to the directions as follows,: 4 = 0, 5 = 1,
6=2 ...

287

[Example 5.4.1-1]
Display the character string "ABC" at a width magnification of 15 and at

a height magnification of 5.

10 PRINT %HOME

40 TEXT (O,O),"ABC" WITH,,15,5

In the above example, the relative coordinates are the same as the absolute
coordinates because the ORIGIN statement is not executed. The following
character string is displayed by executing the above example.

Display

A E3 C

5.4.2 PAINT Statement (Paint)

Function
Paints an enclosed area.

Format

PAINT,-, [<Coordinates>] [, <Boundary Palette>]
[,-,WITHL......J [<P>] [, <Pattern>]]

Explanation
The PAINT statement paints the area containing the specified coordinates

with the specified paint pattern and in the color of the specified palette. Here
an area is a portion of the screen enclosed by a line(s).

For example, define the origin of relative coordinates as (320, 200) of the
absolute coordinates using the ORIGIN statement. Then, draw a circle with a
radius of 70 at (- 50, 0) and another circle with the same radius at (50, 0). If a
paint pattern is not specified in the circles, four areas, A, B, C, and D are formed
on the screen as shown on the next page.

288

(

If the PAINT statement which specifies (50, 0) as the coordinates para
meter is executed, area C which contains (50, 0) is painted. Areas B and A are
painted by the PAINT statement which specifies (0,0) and (-50,0) respectively.
The entire screen except the two circles (area D) is painted by the PAINT state
ment which specifies (0, -100).

The PAINT statement which specifies a boundary palette enables painting a
figure drawn with the specified palette. For example, assume that the same circles
described previously are drawn by the following two CIRCLE statements.

50 CIRCLE (-50,0),70 WITH 1

60 CIRCLE (50,0),70 WITH 6

The left circle is drawn with Palette 1 (blue) and the right circle is drawn
with Palette 6 (red). If PAINT statement which specifies (50, 0) as < Coordinate>
and Palette 6 as < Boundary Palette> is executed, area B and area C will be
painted. This is because the arc between area B and area C has been drawn with
Palette 1 and so is ignored by this PAINT statement. At this time, the arc con
necting area B and area C is erased.

However, area A and area B cannot be painted by executing a PAINT
statement which specifies (- 50, 0) as < Coordinates> and Palette 1 as
< Boundary Palette> .

289

This is because the circles drawn by the two CIRCLE statements intersect and
the left circle has been partially eclipsed by the right circle. So a PAINT statement
specifying Palette 1 for < Boundary Palette> treats the entire screen as one area.

Palette I Palette 6

When intersecting figures are drawn on the screen as explained in the previous
example, the last figure will remain on the screen, so be careful when executing
PAINT statements with boundary palette specification.

The current point is < Coordinates> after execution of the PAINT statement.

[Example 5.4.2-1]
Paint the area enclosed by three lines.

10 PRINT %HOME

20 ORIGIN (320,200)

30 LINE (-300,0),(300,-100)

40 LINE (-100,-200),(-100,200)

50 LINE (-300,200),(300,-150)

60 PAINT (0,0) WITH 2

The following figure is displayed by executing the above example.

Display

290

5.4.3 GGET Statement (Graphic Get)

Function
Assigns the image data displayed on the screen to variables.

Format

GGET,-, [<Coordinates I> J, <Coordinates 2>, <Array Variable >

Explanation
The GGET statement assigns the image data of a specified area on the screen

to variables. The image data which are assigned to variables by this statement can
be reproduced on the screen using the GPUT statement, explained later.

The image that will be written to variables as image data is specified with
< Coordinates 1> and < Coordinates 2>. The area is the rectangle whose
diagonal line is the line connecting these two coordinates. This is illustrated
below. Either (x It y I) or (X2' Yu may be specfied as < Coordinates 1> or
< Coordinates 2>. The larger number specified as < Coodinates 1 > or
<Coordinates 2> is treated as (x2, yu. the smaller one is treated as (xlt YI)'
The default value of < Coodinates 1 > is the current point.

Display

• The frame of the rectangle is also in
cluded in the area.

The necessary number of array variables is defined according to the area of
the image. The momory size (the total length of variables) is calculated using the
following equation.

Memory size (in bytes) = 4+Nxl(Y2-YI+l)x(x2-xl+1)/S J

·Value of N: N =3 (Color), N= 1 (Monochrome I-VRAM), N=2 (Monochrome 2-VRAM)
• L J means to round fractions up.

291

,

Array variables may be of the real number-type, integer-type, of string-type.
The image data cannot be stored if the array variable defined doesn't have

the memory size calculated above.
However, the maximum subscript value of the array is 32767. The use of real

number-type variables is recommended considering the amount of image data.
Therefore, the maximum subscript value of the array variable is the result ob
tained by dividing the calculated memory size by 8 bytes and rounding the frac
tions up.

The data are assigned to variables are shown below. Refer to "The CP /
M-86 User's Manual" for details of the Video RAM.

Number of dots Number of dots Dot information of Dot information of Dot information of
in direction in direction Video Video Video

x y RAMI RAM 2 RAM 3

• . . n - - ..
2 bytes 2 bytes J

Enough array variables must be defined by the DIM statement in advance
to assign image data. If not, executing the GGET statement will cause an error.

The current point is < Coordinates 1> after the execution of this statement.

292

(
5.4.4 GPUT Statement (Graphic Put)

Function
Reproduces images recorded as image data on the screen.

Format

GPUT'---.J [<Coordinates>], <Array Variable>

Explanation
The GPUT statement reproduces an image on the screen using the image

data which have been assigned to variables by the GGET statement.
< Coordinates> specifies where the image will be reproduced. Specify the top

left coordinate of the image area that will be displayed. If a part of the image
extends beyond the screen display area, this statement is ignored.

Display Area

(x, y)

Reproduced
image

(x,

Specify the array variables to which the image data have been assigned by
the GGET Statement.

The current point is < Coordinates> After execution of this statement.

293

[Example 5.4.4-1]
A figure is moved using the GGET statement and GPUT statement.

10 DIM IMAGE(176)

20 PRINT %HOME

30 ORIGIN (320,200)

40 CIRCLE (0,0) ,30

50 GGET (-30,-30),(30,30),IMAGE(*)

60 GPUT (100,100),IMAGE(*)

In the above example, the image data of a dele drawn at the center
of the screen (color display) are assigned to the array variables IMAGE using
the GGET statement. Then this figure is reproduced at another position on the
screen.

The image area which id recorded in variables as image data is from (- 30,
- 30) to (30, 30), so the necessary number of the elements of the array variables is
calculated by the following method.

Bytes = 4+ 3 xL(30+ 30+ 1) x (30+ 30+ 1)!8J

= 1402
Because real number-type array variables are used,
Number of array elements = L1402J

= 176

The array variables IMAGE(1) - IMAGE(176) are defined by the DIM
statement on line 10. The following figures are displayed by executing the
above example.

Display

o
o

294

(

(
5.4.5 CONSOLE Statement (Console)

Function
Clears the screen and specifies the screen status.

Format

CONSOLE '--'[g~p [, [{~p [, <Starting Line>, <Number of Lines>]]

Explanation
This statement clears the contents of screen, specifies the capacity of the

display lines on the screen (20 or 25), specifies smooth scroll or line scroll (0 or 1),
and the range of partial scrolling (Starting Line and Number of Lines).

The capacity of display lines on the screen is the display capacity of one
screen when characters are displayed using the PRINT statement, etc. The initial

value is 25 lines. When this operand is not specified, the number of display lines
remains the same. When the number of display lines is changed to 20, the y- co
ordinates of the character coordinates on the screen (coordinates specified by
0/0 CURSOR, etc.) are 0 -19.

The next operand (0 or 1) specifies smooth scroll or line scroll. The unit of
smooth scroll is one dot and that of line scroll is one line. The same result can
be obtained using console control code 1 CTRL 1/[2]. Specify 1 for smooth scroll
and 0 for line scroll. When this operand is not specified, the scroll mode remains

the same.
The last two operands < Starting Line> and < Number of Lines> specify

partial scrolling.
The initial status of scrolling is all screen scrolling. It can be modified to partial

scrolling by specifying < Starting Line> and < Number of Lines>. < Starting
Line> specifies the line (counted from the top line of the screen) where partial
scrolling starts. < Number of Lines> specifies the range of partial scrolling.

The display functions change as follows when partial scrolling is specified.

295

Assume the area of partial scrolling is specified as 10 lines starting from the
5th line by executing the following CONSOLE statement.

CONSOLE ,,5,10
Display

Area A

{

5th line }

Partial scrolling area ~~~~~~~~~~~ 10 lines

AreaC

• Functions of PRINT 07oCURSOR(x, y), %CURX function, and %CURY

No change.

• Functions of PRINT %HOME ...
If the cursor is in area A or B (lst-14th line), the display contents of area

A and B are erased and the cursor moves to the top left corner of the screen.
If the cursor is in area C (l 5th - 25 (20)th line), the display contents in area

C are erased and the cursor moves to the beginning of the 15th line.

• Continuous output functions using the PRINT statement ...
Assume that the following program is executed.

FOR 1=1 TO 20

PRINT I
NEXT I

If the cursor is in area A, data is displayed normally up to the 15th line. The
16th line is not displayed and scrolling is performed in the partial scrolling area.

5th line

15th line

1
2
3
4

I Scrolling in this range 11 }
20

296

(

(
Scrolling is the same in the partial scrolling area when the cursor is in area B.

When the cursor is in area C, data is displayed normally through the last

line of the screen.
All remaining output to the screen is displayed one after another on the

last line and the final output displayed is retained as the last line on the screen.

15th line 1
2

I
9

10
Last line 20 --- Output is displayed on this line one after another.

All specifications of the CONSOLE statement are retained until another
CONSOLE statement is executed or the power is turned off.

[Example 5.4.5-1]

Specify the display capacity as 20 lines and set line scroll mode.

10 CONSOLE 20,0

Caution
All the display contents are cleared by executing the CONSOLE statement

above.

297

5.4.6 PMODE Statement (P·Mode)

Function
Controls the pointing device and the graphic cursor.

Format

PMODE L--' {~} [, [{ ~} J [, <Coordinates>]]

Explanation
The PMODE statement activates the optional pointing device which

controls the graphic cursor.
The graphic cursor is " + ". It is moved by operating the slider on the pointing

device. The position of the graphic cursor can be read by the PINPUT statement,
which is explained later.

The first operand (0 or 1) of the PMODE statement specifies whether to
display the graphic cursor or not. Specify 1 for graphic cursor display or
o for no display. This operand only specifies whether the graphic cursor is dis
played or not, and does not change any other functions.

The next operand (0 or 1) specifies the open/close status of the pointing
device. Specify 0 to open the pointing device. In this status, the graphic cursor
can be moved with the pointing device. Specify 1 to close the pointing device. In
this status, the graphic cursor cannot be controlled by the pointing device.

< Coordinates> specifies the position of the graphic cursor in relative co
ordinates.

298

(
• Operation of the pointing device

Pointing Device

Fast button

•

Function key A Slider

'--1-- function key C

'---t-- function key B

When the slider is shifted in the direction of one of the arrows, the graphic
cursor moves continuously in that direction. When the fast button is pressed at
the same time, the graphic cursor moves faster.

Function keys A, B, and C are defined as 18, 19, and 20 in FKEY functions.
These three function keys operate regardless of the status (open/close) of the
pointing device.

The graphic cursor display specification and the pointing device open/close
status of this statement are retained until another PM ODE statement is executed
or the power is turned off. No graphic cursor display and pointing device close
are automatically specified as initial values when BASIC is activated.

An example of the PMODE statement is explained with the PINPUT
statement.

299

I Grapmc I
5.4.7 PINPUT Statement (P·lnput)

Function
Reads the position of the graphic cursor.

Format

PIN PUT L-J <Variable I >, <Variable 2>

Explanation
When the PINPUT statement is executed, the relative coordinates of the

current graphic cursor position are assigned to variables. The x-coordinate is
assigned to < Variable 1 > and the y-coordinated is assigned to < Variable 2> .

(Example 5.4.7-1]
Move the graphic cursor with the pointing device. When function key A

is depressed, draw a circle with a radius of 50 with the center at the graphic
cursor position.

10 PRINT %HOME
20 ORIGIN (320,200)
30 PMODE 1,0,(0,0)
40 IF KEY=O GOTO 40
50 IF FKEY(18)=0 THEN A$=INPUT$(l) :GOTO 40
60 PINPUT X,Y
70 CIRCLE (X,Y),50

When line 30 in the example is executed, the graphic cursor is displayed
at the center of the screen and the pointing device is opened.

The KEY function of line 40 and the FKEY statement on line 50 confirms
whether or not function key A on the pointing device is depressed. When
function key A is depressed, the coordinates of the current graphic cursor
position are assigned to variables X, Y by the PINPUT statement on line 60.
A circle is drawn when line 70 is executed. The center of the circle is the
coordinates of the current graphic cursor position.

300

5.4.8 HCOPY Statement (Hard Copy)

Function
Prints the display contents on the printer.

Format

HCOPY

Explanation
Executing the HCOPY statement outputs the contents of the current screen

to the printer connected to I/O connector no. 1.
The printer must be the Canon Color Printer A-121O, Canon Dot Impact

Printer A-1200, or another Canon-specified printer. The handler for the printer
must be loaded before Canon BASIC is activated to use this statemente.

The contents of the color display can be printed with Color Printer A-121O.
The colors on the screen are the same as the printout colors (approximate colos)

only when the initial values of the palette color definition have not been changed.
No-color on the screen is not printed and white is printed as black.)

This statement has the same function as concole control code 1 C T R L I/[Ej .
Printing using this statement can be aborted by depressing 1 CANE L \ or

r-::I C-=T'=R ""'-'L I/~ .

[Example 5.4.8-1]
Draw a circle on the screen and make its hard copy.

30 PRINT %HOME

40 CIRCLE (320,200),100

50 HCOPY

The following figure is be printed by executing the above example.

301

Printout

o
5.4.9 POINT Function (Point)

Function
Reads the palette information of the dot at the specified coordinates.

Format

POINT « Arithmetic Expression I>, < Arithmetic Expression 2»

Explanation
The POINT function is an arithmetic function and is used like other

arithmetic functions.
This function checks the palette with which the dot at the specified coordinates

is drawn.
When the x-coordinate of a dot is specified as < Arithmetic Expression 1 >

and the y-coordinate of the dot as < Arithmetic Expression 2>, this function
has the palette number (0 -7) of the dot specified.

For example, assuming that the dot at (100, 100) is a part of a circle drawn
with Palette 2, POINT (100, 100) has a value of "2".

lExample 5.4.9-1]
Output the palette number of the dot at the specified coordinates.

40 INPUT X,Y
50 PRINT POINT(X,Y)

302

(
5.5 Application Examples

Various graphs can be created using the graphic functions. Examples of
such programs are explained in this section.

5.5.1 Line Chart

Draw a line chart using the LINE statement and the MARK statement.

10 DIM DAT(6)
20 PRINT %HOME
30 ORIGIN (100,300)
40 READ DAT(l) ,DAT(2) ,DAT(3) ,DAT(4) ,DAT(5) ,DAT(6)
50 DATA 45,40,68,72,65,90
60 LINE (0,-300) ,(0,0),(400,0)
70 FOR 1=1 TO 6
80 MARK (1*50,-DAT(I)*3) WITH ,0
90 NEXT I

100 PSET (50,-DAT(1)*3) WITH 0
110 FOR 1=2 TO 6
120 LINE,(I*50,-DAT(I)*3) WITH ,1
130 NEXT I
140 END

In this example, a line chart is drawn based on six data. Points are plotted
by the MARK statement in the loop of lines 70 - 90. These points are connected
by the LINE statement in the loop of lines 110-130. The PSET statement on
line 100 moves the current point to draw a line by the loop.

The line chart on the next page is drawn by executing this example.

303

Display

The graphic functions handle the downward direction of y-axis as positive
direction. To draw an ordinary x, y graph on the screen, invert the signs by
adding a minus sign (-) to the data of y-coordinates.

304)

5.5.2

(
Bar Chart

Draw a bar chart using the RECT statement.

10 DIM DAT(4)
20 PRINT %HOME
30 ORIGIN (100,300)
40 READ DAT(1) ,DAT(2) ,DAT(3) ,DAT(4)

50 DATA 45,40,68,80
60 LINE (0,-300),(0,0),(400,0)
70 FOR 1=1 TO 10
80 LINE (0,-1*30) ,(400,-1*30) WITH , 1

90 NEXT I
100 FOR 1=1 TO 4
110 RECT (1*70,-1) ,(I*70+40,-DAT(I)*3) WITH ,,2

1 20 NEXT I
130 END

In this example, a bar chart is drawn from four data. The x-axis, the y-axis,
and the scale are drawn by the LINE statements on lines 60 - 90.

The bars are drawn by the RECT statement of line 110. Parameter -1 in
the RECT statement prevents the erasure of the x-axis. The following chart is
drawn by executing the program example.

Display

305

I Grapmc I
5.5.3 Pie Chart

Draw a pie chart using the FAN statement.

10 PRINT %HOME
20 ORIGIN (320,200)
30 READ A,B,C,D
40 DATA 80,62,30,15
50 T=360/(A+B+C+D)
60 A=A*T:B=B*T:C=C*T:D=D*T
70 A=FIX5(A,0) :B=FIX5(B,0) :C=FIX5(C,0) :D=FIX(D,O)
80 IF A+B+C+D=360 GO TO [GRAPH]
90 IF A+B+C+D>360 GOTO [+]

100 IF A=MIN(A,B,C,D) THEN A=A+l:GOTO [GRAPH]
110 IF B=MIN(A,B,C,D) THEN B=B+l :GOTO [GRAPH]
120 IF C=MIN(A,B,C,D) THEN C=C+l :GOTO [GRAPH]
130 0=0+1 :GOTO [GRAPH]
140 [+] IF A=MAX(A,B,C,D) THEN A=A-l :GOTO [GRAPH]
150 IF B=MAX(A,B,C,D) THEN B=B-1:GOTO [GRAPH]
160 IF C=MAX(A,B,C,D) THEN C=C-l :GOTO [GRAPH]
170 0=0-1
180 [GRAPH] FAN (0,0),150,0,A
190 FAN ,150,A,B WITH ,,7
200 FAN ,150,A+B,C WITH ,,2
210 FAN ,150,A+B+C,D WITH ,,3
220 END

In this example, a pie chart is drawn from four data.
A pie chart is drawn by combining fans. The total angle of the fans must be

360 degrees and the angle specification of each FAN statement must be an
integer. Because of this, the angle of each fan is corrected on lines 90-170.
When the angles of the fan total 359 degrees, 1 is added to the smallest angle.
When the total is 361 degrees, 1 is subtracted from the largest angle. (The error
produced by execution of line 70 is ± 1.)

306

(

The following pie chart is drawn by executing the previons example.

(
Display

307

Graphic Instruction Formats

I. DEFCOL ,-, [<Coloro>] , [<Color) >] ,'" , [< Color7>]

3. ORIGIN,-, < Coordinates>

4. PSET,-, [< Coodinates I>] [, < Coordinates 2>] ... ['-' WITH '-' < P>]

5. LINE,-, [<Coordinates I>] , <Coordinates 2> [, <Coodinates 3> l··

['-' WITH '-' [< P> J[, < Line Type>]]

6. RECT,--, [< Coordinates I>] , < Coordinates 2 >

['--' WITH '-' [< P> J[, [<Line Type> J[, < Pattern>]]]

7. CIRCLE,-, [<Coordinates>] ,<Radius> [, <Angle I> ,<Angle 2>]

['-' WITH '-' [< P> J[, < Line Type> J[, < Pattern>]]]

8. FAN '--' [<Coordinates>] , <Radius> , <Angle I> , <Angle 2>

['-' WITH '-' [< P> J[, [<Line Type> J[, < Pattern>]]]

[.] Long Short [] 9. ELLIP,-, < Coodmates> ,< R d' >, < R d' > ,< Angle> a IUS a IUS

['-' WITH '--' [< P>] [, [< Line Type>] [, < Pattern> JJ]

10. MARK '-' [<Coordinates>] ['-' WITH '--' [<P>] [, <Mark>]]

II. TEXT,-, [< Coodinates>] , < Character String>

['-' WITH '--' [< P>] [, [< Direction>] [, [< ~~~~ilication> ,< ~~:~:lication>]]]

12. PAINT,-, [<Coodinates>] [,<Boundary Palette> J

['--' WITH '-' [< P> J [, < Pattern>]]

13. GGET'--J [<Coordinate I>J, <Coordinate 2> ,<Array Variable>

308

14. GPUT,--, [<Coordinates>] , <Array Variable>

15. CONSOLE '--' [g~p [, [{~p [,<Starting Line> , <Number of Lines>]]

17. PIN PUT '--' <Variable I> , <Variable 2>

18. HCOPY

POINT (< Arithmetic > < Arithmetic » F .
19. Expression I ' Expression 2 ••• unctIon

309

B
6. Error Messages

No.

1

2

3

4

5

The error messages output by Canon BASIC have the following format:

< Error Message>! < Program Name> . < Line No. > [. < Statement No. >] , /

The name of the program in which the error occurs is
displayed. The location of the error is indicated by line

number and statement number. When < Statement
No. > is 0, the 0 is omitted.
These are displayed only when errors occur during pro
gram execution.

The following error messages are displayed by Canon BASIC.

Message Meaning/Example

< File Name> NOT EXIST • The specified file is not found on the disk.

< File Name> ILLEGAL • The file specified as a BASIC program file
PROGRAM does not have the correct BASIC program

format.

< File Name> ALREADY • The specified logical device number is
OPENED already open.

< Device Name> NOT READY • The specified dvice is not ready to use.

< File Name> DISK OVERFLOW • There is not enough free area for writing
on disk specified.

< File Name> ILLEGAL • The record number specified for file assess
RECORD NO. exceeds the range 1 - 32767.

[Ex.]

PUT # 1,40000 A$

310

(No. Message

7 INVALID COMMAND

8 NOTLOADEDPFOGRAM

6 FILE NOT OPENED

7 STOP AT

8 DECLARATION ERROR

9 TYPE ERROR

10 CONVERSION ERROR

Meaning/Example

• The specified command is not defined.

• The program is not loaded.

[Ex.]

~[AJ[2][]g operation when the program

is not in memory.

• The logical device number specified is not
defined.

• The program was aborted by I C T R L I/~
or I CANCEL I .

• There is an error in declarative instructions.

[Ex.]

10 DIM A (l0) =r
20 INTEGERA

Order is reversed.

I

• There is an error in the data type.

[Ex.]

3+A$or A$+B

• There is an error in type conversion.

[Ex.]

A=B$

t ~ String variable

~Arithmetic variable

311

No. Message Meaning/Example

11 DATA ERROR • There is an error in data read by the READ
statement.

[Ex.]

40 READ A, B - Arithmetic variable

50 DATA XYZ, STU - Character data

12 ILLEGAL ARGUMENT • There is an error in the value limitation.

[Ex.]

A=ASN(-2)
L Negative value unacceptable

[Ex.]

OPEN # 12,"A ... "
L Logical device numbers

must be 1-9.

13 BRANCH ERROR • There is an error in the specification of a
branch destination.

[Ex.]

GOTO 100 in a program that does not

contain line 100.

14 MEMORY OVERFLOW • The memory area is full.

15 ENTRY NOT FOUND • There is an error in the specification of the
entry name (keyword).

[Ex.]

MAT AAA(IO, 10)
(

312

(No. Message Meaning/Example

16 ADDRESS ERROR • There is an error in the subscript of an
array variable.

(Ex.)

10 DIMA(5)

:
40 A(lO) = 100

L Not defined

17 CONVERSION OVERFLOW • There is an error in the conversion of a
value from the real number-type to the
integer-type.

[Ex.]

10 INTEGER A

50 A = 100000

lOutside the range of integer-type

constants.

18 SYNTAX ERROR • There is a syntax error.

19 UNMATCHED NUMBER OF • The number of the argument is not matched
ARGUMENT correctly.

[Ex.]

PARAM A, B in program A
against CALL A(A).

20 ILLEGAL FILE NAME • There is an error in the specification of
a file name.

313

No. Message Meaning/Example (

21 BAD INCREMENT VALUE • There is an error in the line interval speci-
fication of a program edit command.

[Ex.]

RIO,O g

L Line interval o.

22 LINE NOT EXIST • The line specified by a program edit
command is not found in the program.

[Ex.]

C100 QJ in the editing of a program that
does not contain line 100.

23 ILLEGAL LINE NUMBER • There is an error in the line specification
of a program edit command.

[Ex.]

C40000

t line no. must be 0 - 32767 .

24 PROGRAM OVERSIZE • The program size has exceeded the limitation
and no more additions can be made.

25 SECURED PROGRAM • The specified command cannot be executed
because the program is secured.

26 PROGRAM NAME NOT • The program name is not defined.
DEFIND (

314

(No.

27

28

-

29

30

31

Message Meaning/Example

< File Name> ALREADY EXIST • A me with the same name as the one specified
is already on the disk.

[Ex.]

RNAME < me 1> TO < file 2>

t
This file is already on the disk

< File Name> DIRECTORY FULL • The specified file cannot be created be-
cause the directory area of the disk is full.

INSUFFICIENT GGET • The length of array variable defined for
MEMORY the GGET statement is less than that re-

quired to record image data.

ILLEGAL DEF-FN STATEMENT • There is an error in DEF FN statement.

[Ex.]

10 DEF FNA = S(I)

L Undefined array variable
20 PRINTFNA

>I< Error occurs on Line 20

< File Name> READ ONLY • Data deltion or writing cannot be per-
formed because the type of file specified is
read-only.

Command; SA VE, CANCEL, or RNAME
Statement; PRINT, PUT, CLOSE/DEL, etc.

Besides these error messages output by BASIC, there are error messages
from the operating system. Refer to "The CP/M-86 User's Manual" for these
messages.

315

Appendix 1. Character Codes

The table below shows the character codes for display.
Code: mn

~ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL DLE (I ~ p ,
p ... E of r

1 SOH DC1 ,
I A Q a q ® L § ~ J(L ·

2 STX DC2 ...
2 B R b r • J A a J ·3 X

3 ETI'X DC3 # 3 C S c s , 0 If , .,
4 EOT OC4 $ q 0 T d t • I 0 (!l 2 I
5 ENQ NAK % 5 E U e u ~ ill ~ t --
6 ACK SYN & 6 F V f V ! 1 I) I) .j. +
7 BEL ETB • 7 G W 9 ' • L jj ij ~ ~
8 BS CAN (8 H X h X C J I) 0 ~ i
9 HT EM) 9 I Y i Y 0 .:t i J.I. T -r

A LF SUB * · J 2
. z I 1 .

6 .L · J

B VT ESC + · K [k { 0 F', 9 4t ~ •
C FF FS < L " \.

,
~ ~ e 0: -• ,

D CR GS M] m) .
11 I) 13 ~ - = ~

E SO RS · > N "" n .-.' .i. IE- e r =

F SI US / ? 0 - 0 DEL I I e £ I
o 16 32 48 64 80 96 112 128 144 160 176 192 208 224240

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

"'For conversion to a decimal figure, add the two figures outside the table
as follows:

57H -7

t 80+7=87
80 So 57H = 87 (decimal notation)

316

(

(
Appendix 2. Reserved Words

a) Keywords

LET, GOTO, GOSUB, RETURN, FOR, NEXT, IF, ON, DIM, INTEGER,
DEF, INPUT, PRINT, BYE, OPTION, CALL, FREE, END, READ, DATA,
RESTORE, FORMAT, REM, OPEN, CLOSE, GET, PUT, PARAM, MAT,
DJoLOAD, DJoCALL, CHANGE, DEFKEY

b) Sub-keywords

%CURSOR, %HOME, %DEL, BASE, AND, OR, XOR, NOT, TO, STEP,
THEN, USING, MSG, TAB, SPACE, FEED

c) Function Names

SQR, EXP, LOG, LGT, SIN, COS, TAN, ASN,ACS, ATN, FRC, RAD,
DMS, ARD, ADS, SGN, ABS, INT, LEN, IDX, VER, NUM, COD, STR$,
CHR$, ASC$, SIZE, MOD, FIXO, FIX5, FIX9, FIXE, MAX, MIN, TIM, PI,
ERR, RND, %CURX, DJoCURY, KEY, EOF, INPUT$, HEX$, FKEY,
COM$, TOD$

317

Appendix 3. Commands

a) BASIC Commands
(

1. EDIT[L-J < Program SpecificationJ

2. LOAD L-J < Program Specification>

3. SAVE [L-J< Program Specification> J [,SECURJ

4. LIST[L-J<Device Name> J [L-J<Range Specification>

5. XREF[L-J< Device Name> J

6. [RUNL-JJ [< Program Specification> H / DJ [;< Character String> J

7. CANCELL-J < File Specification>

8. DLIST[L-J< File Specification> J

9. RNAME < File Specification I> TO < File Specification 2>

10. NEW (

11. BYE

b) OS Commands

1. COPYDISK

2. VOLCOPY

3. FORMAT

4. PIPL-J< Drive Name> = < File Specification >

5. STAT

6. TOD[L-J<Month> I <Day>I< Year >L-J< Hour> : <Minute> : <Second> J

7. TYPEL-J< File Specification >

8. BASIC [L-J I < Library Name> J [L-J < Program Specification>

[;<Character String> JJ

318

(

(
Appendix 4. Syntax Table

I. REM '-' < Comment>

2. DIM L-J < Variable> [, } ..

3. OPTION BASE 0

4. INTEGER L-J < Arithmetic Variable> [,} ..

5. DEFKEY L-J <Arithmetic Expression> , <Character Expression>

6. [LET L-J J < Variable> ={< Arithmetic Expression> }
< Character Expression>

7. INPUT L-J [# 1 < 1-9>), J [MSG «String. » J [< Variable> J [, } ..
A

. h . ExpressIOn
< nt metlc>

Variable

8. INPUTL-J [#1<1-9>),JUSINGL-J{<Line No.>}<variable> [,} ..
< Arithmetic> [< Label>]

Variable

9. PRINT L-J [#1 < 1-9>)' HI <String Expression>) H{ , } J'"
<A rithmetic> <Arithmetic Expression> ;

Variable < Sub-keyword>

< Sub-keyword> = SPACE « Arithmetic Expression»
FEED (< Arithmetic Expression»
TAB « Arithmetic Expression»
% HOME

% CURSOR « Arithm~tic> , < Arithm~tic»
ExpressIOn ExpressIOn

10. PRINT L-J [#1 < 1-9>)' J USING L...J {< Line NO.>} L-J {< Arithm:tiC>} [, J [J ExpressIon
< Anthmetlc> <Label> <String. >

Variable ExpressIon

FORMAT ,--, < Format Specification>

319

11. GOTO~{<Line NO.>}
[< Label>]

12. GOSUB~{<Line NO.>}
[<Label>]

RETURN

13. IF'---J{<conditional Expression>}'---J{GOTO{<Line NO.>} }
< Arithmetic Expression> [< Label>]

THEN,---, < Statement>

14. ON,---, < Arithmetic Expression> '---' {GOTO } '---' {< Line No. >} [,] ...
GOSUB [<Label>]

15 FOR ~ < Arit.hmetic> = < Arithm~tic > ~ TO '--' < Arithmetic > [STEP < Arithmetic >]
• Variable Expression I ExpressIOn 2 '--' '--' Expression 3

NEXT,---, < Arithmetic Variable>

16. READ,--, < Variable> [,} ..

DATA '--' {< Constant> } [,] ...
< Character>

17. RESTORE

18. END

19. BYE

20. DEF,--, FN < Function Name> « Variable> [,} ..) = < Definition Expression>

21. CALL,--, <Program> [«Variable> [,] ...)]

PARAM,---, <Variable> [,} ..

22. FREE

23. OPEN,---,:I* {< I ~9> . }' I" [< Drive Name>] < File Name>"}

< ArIthmetic> "<D' N >" eVlce arne
Expression

<String Expression>

320

24. CLOSE <---.J **{<1-9> l[,%DELJ
< Arithmetic>

Variable

25. CHANGE ,-, [MSG « String Expression» , J"< Drive Name>"

26. PUT ,-, ** { < \-9> 1 [, < Arithmetic Expression> J '-' < Variable> [, l··
< Arithmetic>

Variable

27. GET ,-, ** { < \-9> 1 [, < Arithmetic Expression> J L-..I < Variable> [, l··
< Arithmetic>

Variable

(

321

Appendix 5. Display Control Codes

The various functions of the AS-lOO's display can be used by outputting
specific codes to the display. These codes are called display control codes. They
are supported by the CP/M-86 operating system.

This appendix explains the use of these display control codes. For further
details, refer to "The CP/M-86 User's Manual."

Each display control code consists of a code string called an escape
sequence or a control sequence I). Various functions can be performed by out
putting these codes with the PRINT statement.

An escape or control sequence is a code string beginning with the ESC code
(lBw. The part following the ESC code specifies the function that will be used
and the value (parameter) requred for its execution. Sometimes a specific code
must be output at the end of a code string to indicate the end of the control
code sequence.

Ex. ESC > Pf; Pi s

,---.J t LCode indicating the end of control sequence

~parameter
'----------- Code indicating function

'---------------ESCcode

The parameter is specified by a number (0 - 9). Two or more parameters
are connected by a semicolon (;).

Note1: "The CP IM-86 User's Guide" calls a code string beginning wit
ESC [a control sequence, and a code string beginning with ESC an
escape sequence.

322

(
1)

[Ex.]

Specifying underlined display

Characters are underlined when they are output.

ESC 4m

All characters displayed after this code is output are underlined. The
specification is retained until the code to reset it is output.

20 PRINT IIABC II

30 PRINT lI&lB[4m"

40 PRINT "ABC"

Executing the program example displays the following:

Display

ABC

ABC

2) Resetting character display attributes

The underlined display specification is reset.

ESC [0 m

323

[Ex.]

50

60

70

80

PRINT lI&lB[4m ll

PRINT IIABC II

P RI NT lI&lB[Om ll

PRINT IIABC II

Executing the program example displays the following:

ABC

ABC

Display

3) Sound Generation

Musical notes are generated from a speaker.

ESC [> P f ; P f s

Pf: The pitch of the musical note is specified. The relationship between
numbers and pitches is shown below.

C C# D D# E F F# G G# A A# B

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60

22 =440 Hz (A)

324

(

(

(

[Ex.]

(

Pi:

Duration
(seconds)

The duration of sound is specified. The relationship between
numbers and duration is shown below. The number must be
within the range: 0-255.

1 10 50 100 150 200 255

0.016 0.16 0.8 1.6 2.4 3.2 4.08

The ratio is 1: 0.016 second.

The parameter must not exceed 30 characters including a semicolon.

The C major scale is generated with one tone with a duration of 0.8 second.

50 PRINT 1&1B[>13;50;15;50;17;50;18;505";

60 PRINT 1&1B[>20;50;22;50;24;50;25;505";

325

Appendix 6. Calling a Machine Language Program

It is possible to load and execute a machine language program in a Canon
BASIC program using the OJoLOAD statement and the OJoCALL statement.
This appendix explains how to call a machine language program.

Refer to "The CP/M-86 User's Manual" for machine language programs
and more detailed explanations.

I) Structure

A machine language program must have the following structure:

Loading start
address

,

BASE PAGE (256 bytes)

Term Instruction (1 byte)

Entry Table

Code Section

./

Paragraph
border CS, DS

Created by
programmer

A machine language program must be created under the 8080 memory
model. CS and DS are set to the loading start address.

BASE PAGE:

Term Instruction:

Entry Table:

~~

OOH

...... ./

1 byte

This is created by a generator (GENCMD).

This is a I-byte FAR RET instruction to prevent
problems in sole execution.

This has the following structure:

8b ytes

Entry Name (6 bytes) Offset (2 bytes)

~ «: ~ ~ ~ ~

326

(

• Entry Name:

• Offset:

Code Section:

2) Execution Environment

The entry name consists of 6 capital alphabet
letters and numbers starting with an capital letter.
When the number of the characters is less than
6, the space is filled.

This is an offset address from CS for the routine
corresponding to the entry name.

Processing program of each routine.

Canon BASIC loads a machine language program specified by the OJoLOAD
statement next to the BASIC program in memory. It searches the entry table
for the entry name specified by the %CALL statement. If the entry name is
found, Canon BASIC sets CS and DS to the load address and calls a routine
by CALL FAR of the corresponding offset. The routine ends with FAR
RET and execution returns to the BASIC program.

When a machine language program is loaded, memory clearing by the FREE
statement is also valid for the machine language program. The effect of the
FREE statement in this case is the same as in the BASIC program.

The formats of the OJoLOAD statement and the %CALL statement are
shown below.

% LOAD '---' < File Specification>

%CALL'----J <Entry Name>(<Augment> (,] ...)

When the %CALL statement is executed, Canon BASIC searches the
routine specified and then its offset is set to control the program, the environ
ment is as follows:

• CS = DS indicates the loading start address of the selected machine language
program .

• IP holds the offset from CS of the selected routine.

• ES = SS indicates the head address of BASIC system program.

327

• SS = SP indicates the usable stack in BASIC. The usable stack is approximately
1 K-byte.

• SS + BX indicates the head of the argument table delivered by BASIC.

All registers can be used in machine language program execution. But when
control returns to BASIC, SS and PS must be set to their original values. The
contents of registers other than SS and PS do not change.

3) Registers

SS,ES

BASIC system

System stack
SS+SP --;;.0 ~---------------------

Return address to BASIC
FAR: 4 bytes

S
SS+BX

s

S
CS,DS

Machine language program

CS+IP ~ 1----- - - - - - - - - - - - - - - - -.

Argument
table

Selected routine

I K B

!

Selecte d
m progra

SS+BX
orES Type Length Segment address Offset address

(l byte) (l byte) (2 bytes) (l byte)

ol::~ 't ~ <::~ 'Ci:: ~

End mark
FFH

328

<::~

Type: This is the type of data delivered.
1 byte)

b7 b6 bS b4 b3 b2 b 1 bO

Length:

Address:

1 : Integer 0 : Real number

'----- 1 : Character string
o : Real number or integer

L-_____ 1 : Array 0: Scaler

Note: Array indicates that all elements of the array are delivered.

The length of data delivered is indicated in bytes. When the data
delivered is an array, the length of one element is shown.

Real number - 8 bytes
Integer - 2 bytes
Character string - 1 - 255 bytes

This is the head address where the delivered data is stored. When
the data is an array, the address is the head address including
the array structure information which begins the dim~nsion of the
array.

Physical address = (Sgement Address) x 16 + (Offset Address)

4) Data Structure

• Integer data

~LOWb'"
High byte

This is 2-byte binary data. It is stored in order of from the low-byte to the
high-byte data.

Note: This is different from the ordinary notation 8088 and 8086.

329

• Real number data

• Character data

• Array data

1 byte Main part 7 bytes

1.2 3 4 5 6 7 8 9 0 2 3 4

'---- Mantissa part is of 14 digits in binary
coded decimal notation

'----- Position of decimal point

'------ Mantissa sign 1 bit (0: +, I: -)

'------__ Exponent represented by 7 bits
In complement notation of2, -64 -63 show 10-64 _1063 •

n-byte area

* The number of characters can be specified within
the range: 1-255.

* When a character string is shorter than the area
length n, NUL is filled.

1 byte 2 bytes (ml x m2 x . .. x mt) elements of n bytes

(H)

Number of dimensions (I)

* Byte length n is the data length of one element
defined in the vaviable table.

* The size is set in order from the lowest byte to the
highest byte.

* The total size of the array data may exceed 64KB

Note: When data exceeding the range of the data area is written or when the
information part of array data is rewritten, the result is not guaranteed.

330

(

	Chapter I - Introduction
	Chapter II - Operation
	Chapter III - Language

