
■■

|v-::f#:iv CPWghlsr.
User's

■ ■■mJ: '.'-

v<,»

U

'1:

^:*v,"•'••(>■ :.'

Mm
iiSiM

^K';' • ■ ' ■ .!■:■■ ■ ■ : i^y^'-'f'-'y^-
<i ■

tail's-' ■:«'. ■ V ■■ ■

S»|s!l"A
'k :- -fi'-i^pi^s '■^■■■.-t;^ ' ' ■. "•■

wmi

,,*^'-£#•222 Route 69 ■■•''' ■ : ■
pSu^'N^,.York 10901 t
""'^(»M)W<»353iv> '

>•..>; ••/;»'■■=Ik

;• ' ■ '■ •-. ..Yr:y
;.. vy \i '•>; A:!' '

'i

'VK .•••«♦'• 'fvri
■ _' : ;■' •}; ■'Ai":,'^''.

j;, ili"!'' :,.v.^*

TABLE OF CONTENTS

1. INTRODUCTION.

1.1 WHO OR WHAT IS BAB* BLUE?.

1.2 SYSTEM REQUIREMENTS.

1.3 ABOUT THIS MANUAL.

1.4 SYMBOLS.

2. BABY BLUE HARDWARE INSTALLATION 2-1

2.1 THE EAST WAY.

2.11 CHECK FACTORY SWITCH SETTING

2.12 RUN DIAGNOSTICS 2-1

2.13 CUSTOMIZATION 2-2

2.14 STATIC ELECTRICITY.

2.2 OPTIONS: THE HARD WAY.

2.21 WHAT THE SWITCHES MEAN.

2.22 BASIC PROCEDURE 2-3

2.23 AVOIDING "RESERVED" MEMORY 2-4

2.24 RESOLVING CONFLICTS 2-4

2.25 SYSTEM BOARD SWITCHES.

2.3 CUSTOMIZATION NOTES

2.31 DETAILED INSTRUCTIONS 2-6

2.32 BABY BLUE DIP SWITCHES.

2.33 NOTE SYSTEM CONFIGURATION

2.34 IBM PC-1

2.36 IBM PC/XT.

2.35 IBM PC-2 2-10

2.37 OTHER PC'S 2-13

TABLE OF CONTENTS

1. INTRODUCTION.

1.1 WHO OR WHAT IS BAB* BLUE?.

1.2 SYSTEM REQUIREMENTS.

1.3 ABOUT THIS MANUAL.

1.4 SYMBOLS.

2. BABY BLUE HARDWARE INSTALLATION 2-1

2.1 THE EAST WAY.

2.11 CHECK FACTORY SWITCH SETTING

2.12 RUN DIAGNOSTICS 2-1

2.13 CUSTOMIZATION 2-2

2.14 STATIC ELECTRICITY.

2.2 OPTIONS: THE HARD WAY.

2.21 WHAT THE SWITCHES MEAN.

2.22 BASIC PROCEDURE 2-3

2.23 AVOIDING "RESERVED" MEMORY 2-4

2.24 RESOLVING CONFLICTS 2-4

2.25 SYSTEM BOARD SWITCHES.

2.3 CUSTOMIZATION NOTES

2.31 DETAILED INSTRUCTIONS 2-6

2.32 BABY BLUE DIP SWITCHES.

2.33 NOTE SYSTEM CONFIGURATION

2.34 IBM PC-1

2.36 IBM PC/XT.

2.35 IBM PC-2 2-10

2.37 OTHER PC'S 2-13

2.4 STBP BY STEP HAHDWARB INSTALLATIOH 2-14

2.41 IBM PC - ALL MODELS 2-14

2.411 Begin 2-14
2.412 Remove Cover 2-14
2.413 Verify Switch Settings 2-14
2.414 Choose Expansion Socket ...2-14
2.415 install Baby Blue2-14
2.416 Reconnect Cables and Test System 2-15
2.417 Finishing Up 2-15

3. OPBRATIOM; ROMMIMG CP/M PROGRAMS ..3-1

3.1 GETTING STARTED 3-1

3.11 DOS COMMANDS 3-1

3.12 THE BABY BLUE UTILITIES 3-1

3.13 OPERATING FUNDAMENTALS 3-3

3.2 MEDIA COMPATIBILITY: ACCESS TO CP/M DISKETTES 3-5

3.21 THE PROBLEM OF STANDARDS. 3-5

3.22 MICROLOG FILE TRANSFER UTILITIES 3-5

3.221 5" CP/M Diskettes 3-5
3.222 8" Diskettes

3.23 SERIAL COMMUNICATIONS 3-6

3.24 OTHER ALTERNATIVES 3-6

3.3 IMPORTING CP/M PROGRAMS: COMPATIBILITY 3-7

3.31 DEFINITION

3.32 TEXT AND DATA FILES

3.33 OPERATING CONSIDERATIONS 3-8

3.4 BABY BLUE AS A CP/M DEVELOPMENT SYSTEM

3.41 TRANSPARENCY OF HEADER DEFINED 3-10

3.411 Rule I: Creating COM Files..... 3-10
3.412 Rule II: Opening Existing COM Files 3-11
3.413 Rule III: Copying a COM File...
3.414 Rule IV: Opening Unbound COM Files 3-12

3.42 EXPORTING PROGRAMS....

11

4. BABY BLUE REFERENCE MANUAL j
4-1

4.1 INTRODUCTION

4.2 CONTROL FUNCTIONS ^
4-6

4.3 CONSOLE EMULATION
4-6

4.31 DESCRIPTION

4-6
4.32 PURPOSE

4-6
4.33 VIDEO OUTPUT

..4-6
4.331 operation........
4.332 Video Control Codes...

4-11
4.^4 KEYBOARD INPUT

4-11
4.341 Operation .^-ii
4.342 TV950 Function Key Programming « J
4 343 Keyboard Defaults
4!344 Emulating TV950 Keyboard Defaults 4-14

4.4 OPERATING SYSTEM TRANSLATOR.
4-15

4.41 DESCRIPTION
4-15

4.42 PURPOSE

4.43 CP/M BDOS FUNCTION CALLS
...4-21

4.44 CP/M BIOS CALLS

4.441 Logical to Physical Sector Mapping 4I23
4.442 BIOS Entry Points

4.5 EXTENDED BDOS FUNCTION CALLS ^
4-25

4.51 DESCRIPTION

4-25
4.52 PURPOSE

4-25
4.53 OPERATION

4.531 Call 247: Chain
4 532 Call 248: 8088 Software Interrupt... 4-26
4i33 call 249: System Memory Block Move Down..4-27
4*534 Call 250: System Memory Block Move DP»--«J-28
4*535 Call 251: Peek System Memory Byte 4-2»
^*.536 call 252: Poke System Memory Byte 4-28
4.537 Call 253: 8088 BIOS Call.........
4 538 Call 254: Output to Host 1/D J
4.539 Call 255: Input from Host I/O Port 4-29

t

1 i i

2.4 STBP BY STEP HAHDWARB INSTALLATIOH 2-14

2.41 IBM PC - ALL MODELS 2-14

2.411 Begin 2-14
2.412 Remove Cover 2-14
2.413 Verify Switch Settings 2-14
2.414 Choose Expansion Socket ...2-14
2.415 install Baby Blue2-14
2.416 Reconnect Cables and Test System 2-15
2.417 Finishing Up 2-15

3. OPBRATIOM; ROMMIMG CP/M PROGRAMS ..3-1

3.1 GETTING STARTED 3-1

3.11 DOS COMMANDS 3-1

3.12 THE BABY BLUE UTILITIES 3-1

3.13 OPERATING FUNDAMENTALS 3-3

3.2 MEDIA COMPATIBILITY: ACCESS TO CP/M DISKETTES 3-5

3.21 THE PROBLEM OF STANDARDS. 3-5

3.22 MICROLOG FILE TRANSFER UTILITIES 3-5

3.221 5" CP/M Diskettes 3-5
3.222 8" Diskettes

3.23 SERIAL COMMUNICATIONS 3-6

3.24 OTHER ALTERNATIVES 3-6

3.3 IMPORTING CP/M PROGRAMS: COMPATIBILITY 3-7

3.31 DEFINITION

3.32 TEXT AND DATA FILES

3.33 OPERATING CONSIDERATIONS 3-8

3.4 BABY BLUE AS A CP/M DEVELOPMENT SYSTEM

3.41 TRANSPARENCY OF HEADER DEFINED 3-10

3.411 Rule I: Creating COM Files..... 3-10
3.412 Rule II: Opening Existing COM Files 3-11
3.413 Rule III: Copying a COM File...
3.414 Rule IV: Opening Unbound COM Files 3-12

3.42 EXPORTING PROGRAMS....

11

4. BABY BLUE REFERENCE MANUAL j
4-1

4.1 INTRODUCTION

4.2 CONTROL FUNCTIONS ^
4-6

4.3 CONSOLE EMULATION
4-6

4.31 DESCRIPTION

4-6
4.32 PURPOSE

4-6
4.33 VIDEO OUTPUT

..4-6
4.331 operation........
4.332 Video Control Codes...

4-11
4.^4 KEYBOARD INPUT

4-11
4.341 Operation .^-ii
4.342 TV950 Function Key Programming « J
4 343 Keyboard Defaults
4!344 Emulating TV950 Keyboard Defaults 4-14

4.4 OPERATING SYSTEM TRANSLATOR.
4-15

4.41 DESCRIPTION
4-15

4.42 PURPOSE

4.43 CP/M BDOS FUNCTION CALLS
...4-21

4.44 CP/M BIOS CALLS

4.441 Logical to Physical Sector Mapping 4I23
4.442 BIOS Entry Points

4.5 EXTENDED BDOS FUNCTION CALLS ^
4-25

4.51 DESCRIPTION

4-25
4.52 PURPOSE

4-25
4.53 OPERATION

4.531 Call 247: Chain
4 532 Call 248: 8088 Software Interrupt... 4-26
4i33 call 249: System Memory Block Move Down..4-27
4*534 Call 250: System Memory Block Move DP»--«J-28
4*535 Call 251: Peek System Memory Byte 4-2»
^*.536 call 252: Poke System Memory Byte 4-28
4.537 Call 253: 8088 BIOS Call.........
4 538 Call 254: Output to Host 1/D J
4.539 Call 255: Input from Host I/O Port 4-29

t

1 i i

4.6 HARDWARE FUNCTIONS 4-30

4.61 Z-80 PORT ADDRESS DECODING 4-30

4.62 Z-80 CONTROL LINES 4-30

4.63 MEMORY ARBITRATION 4-32

appendices

A. THE BABY BLUE UTILITIES A-1

A.l BIND: THE CP/M-80 PROGRAM IN PC-DOS FORMAT A-1

A. 2 CONVERT: ACCESS TO CP/M DISKETTES A-3

A.3 KEYFIX: AUTOMATING YOUR KEYBOARD A-6

A.4 DIAGNOSTICS: TESTZ80 A-13

B. APPLICATIONS NOTES B-1

B.l EMULATING THE "SAVE" FUNCTION: DEBUG.DDT... B-1

C. WARRANTY INFORMATION C-1

IV

TABLES

...2-1
2-1: Factory Switch Setting

2-7 /
2-2: DIP Switch Settings

2-3: IBM PC-1: Mother Board SW2 Settings..

2-4: IBM PC-2: Mother Board SW2 Settings.

4-5
4-1: Memory Map

4-2; Televideo 950 Video Control Codes

4-3: TV950 Escape Sequence: Load Function Key 4-12
4-4: TV950 Function Key Codes ^
4-5: Function Key Default Definitions ^
4-6: Televideo 950 Function Key Defaults

4-31
4-7: Z-80 Functions Control Byte

4-32
4-8: Address Decoding

4-9: Segment and Port Assignments

4.6 HARDWARE FUNCTIONS 4-30

4.61 Z-80 PORT ADDRESS DECODING 4-30

4.62 Z-80 CONTROL LINES 4-30

4.63 MEMORY ARBITRATION 4-32

appendices

A. THE BABY BLUE UTILITIES A-1

A.l BIND: THE CP/M-80 PROGRAM IN PC-DOS FORMAT A-1

A. 2 CONVERT: ACCESS TO CP/M DISKETTES A-3

A.3 KEYFIX: AUTOMATING YOUR KEYBOARD A-6

A.4 DIAGNOSTICS: TESTZ80 A-13

B. APPLICATIONS NOTES B-1

B.l EMULATING THE "SAVE" FUNCTION: DEBUG.DDT... B-1

C. WARRANTY INFORMATION C-1

IV

TABLES

...2-1
2-1: Factory Switch Setting

2-7 /
2-2: DIP Switch Settings

2-3: IBM PC-1: Mother Board SW2 Settings..

2-4: IBM PC-2: Mother Board SW2 Settings.

4-5
4-1: Memory Map

4-2; Televideo 950 Video Control Codes

4-3: TV950 Escape Sequence: Load Function Key 4-12
4-4: TV950 Function Key Codes ^
4-5: Function Key Default Definitions ^
4-6: Televideo 950 Function Key Defaults

4-31
4-7: Z-80 Functions Control Byte

4-32
4-8: Address Decoding

4-9: Segment and Port Assignments

I. liiTRODDCTlOM

1*1 WHO OR WHAT IS BABY BLOB?

Baby Blue is a single-board microcomputer which enables the IBM
Personal Computer to run programs written for the CP/N-80
operating system. Although small enough to fit in a single
expansion slot, it contains a high-speed Z-80B microprocessor and
a full 64 Kilobytes of memory, making it actually more powerful
than most first-generation microcomputers.

The name derives from "Big Blue", IBH*s traditional nickname.
"Baby" connotes a symbiosis in which Baby Blue handles CP/M-80
code written for the Z-80, while depending on the the host PC*s
8088 microprocessor to manage "life support" (operating system)
functions - keyboard, screen, disk drives, printers, etc. The
closeness of this "mother-child" relationship is Baby Blue's
unique strength; you get dual operating system capability under
PC-DOS alone, not the hassle of maintaining two separate
operating systems.

If you can operate the PC, you can operate Baby Blue - there are
no new commands to learn, all peripheral devices work the same
way, and all programs use PC-DOS diskettes. You actually can't
tell the difference between a "native" program and a program
which uses Baby Blue - in effect, CP/M-80 becomes a vast library
of time-tested, mature PC-DOS programs in a dizzying variety of
applications. It's a whole world - the largest and most profes
sional software resource available for microcomputers - yet it's
almost unknown to many PC owners. We think you'll enjoy
exploring it.

By the way. Baby Blue doubles as a 64K memory expansion, although
it can be placed outside system memory if you're pressed for
space. You also get programmable function keys (KEYFIX), a file
transfer utility which gives you access to diskettes in a number
of CP/M formats (CONVERT), and a communications program with
sophisticated error checking for exchanging files with other
computers (BSTAM).

Baby Blue runs in most IBM-PC compatibles; Microlog manufactures
a companion product, BabyTex, for use in the Texas Instruments
Professional Computer.

1-1

I. liiTRODDCTlOM

1*1 WHO OR WHAT IS BABY BLOB?

Baby Blue is a single-board microcomputer which enables the IBM
Personal Computer to run programs written for the CP/N-80
operating system. Although small enough to fit in a single
expansion slot, it contains a high-speed Z-80B microprocessor and
a full 64 Kilobytes of memory, making it actually more powerful
than most first-generation microcomputers.

The name derives from "Big Blue", IBH*s traditional nickname.
"Baby" connotes a symbiosis in which Baby Blue handles CP/M-80
code written for the Z-80, while depending on the the host PC*s
8088 microprocessor to manage "life support" (operating system)
functions - keyboard, screen, disk drives, printers, etc. The
closeness of this "mother-child" relationship is Baby Blue's
unique strength; you get dual operating system capability under
PC-DOS alone, not the hassle of maintaining two separate
operating systems.

If you can operate the PC, you can operate Baby Blue - there are
no new commands to learn, all peripheral devices work the same
way, and all programs use PC-DOS diskettes. You actually can't
tell the difference between a "native" program and a program
which uses Baby Blue - in effect, CP/M-80 becomes a vast library
of time-tested, mature PC-DOS programs in a dizzying variety of
applications. It's a whole world - the largest and most profes
sional software resource available for microcomputers - yet it's
almost unknown to many PC owners. We think you'll enjoy
exploring it.

By the way. Baby Blue doubles as a 64K memory expansion, although
it can be placed outside system memory if you're pressed for
space. You also get programmable function keys (KEYFIX), a file
transfer utility which gives you access to diskettes in a number
of CP/M formats (CONVERT), and a communications program with
sophisticated error checking for exchanging files with other
computers (BSTAM).

Baby Blue runs in most IBM-PC compatibles; Microlog manufactures
a companion product, BabyTex, for use in the Texas Instruments
Professional Computer.

1-1

INTRO

1.2 SYSTBM RBQOlRBMgMTS

Baby Blue works in an IBM PC or compatible machine^ with the
following minimum characteristics:

- 64 Kilobytes system RAM (128K recommended for some
applications).

- One 5" floppy disk drive (one other drive recommended; it
need not utilize S** floppies).

- PC-DOS (or MS-DOS) Version 1.1 or 2.0.

1.3 ABOOT THIS MAMOAL

Although Baby Blue is simple to install and use, it is also a
subtle, mature design with a broad history of proven applica
tions. The board's many special features and other esoterica make
this a long book, but it's structured to give you easy access to
the information you need at any level.

To get you up and running quickly, we begin with a simplified
installation procedure, requiring nothing more complicated than
physically plugging Baby Blue into an expansion socket. The
factory configuration sidesteps the issues of switch settings and
memory mapping entirely, avoiding the painful part of most
installations. There is one drawback; you won't get a 64K memory
expansion with this method, and if this is important to
you'll have to come back later to reconfigure the board.
However, it is definitely the quick way to start running
programs on your Baby Blue.

With your board installed, you can skip to Chapter 3, "Operation
- within half a dozen pages, you'll already have run a sample
CP/M program. The remainder of Chapter 3 will fill you in on the
fine points of Baby Blue's capabilities, and the Appendix
contains in-depth reference sections for all the Microlog
utilities.

The rest is background and technical information about the inner
workings of Baby Blue's hardware and software. It's meant for
the interested user as well as the experienced programmer who
wants to design his own applications.

1-2

INTRO

1.4 SYMBOLS

The following symbols are used throughout this text:

<CR> -

< >

Carriage Return, or Enter: press
"Retrn" key when you see this symbol.

the "Enter" or

All characters enclosed by this symbol are non-printing
keystrokes used for control purposes: they are typed
but will not appear on your screen.

[xxx] items enclosed in square brackets must appear,
variable depending on context or user response.

but are

Boldface indicates characters appearing on your screen.

c: - Indefinite control drive name. A place-holder showing
where to put the name of the disk drive containing the
command file you wish to invoke.

s: - Indefinite source drive name. A place-holder showing
where to put the name of the disk drive from which you
are getting a file.

d: - Indefinite destination drive name. A place-holder
showing where to put the name of the disk drive you are
writing

e: - Another indefinite drive name.

1-3

INTRO

1.2 SYSTBM RBQOlRBMgMTS

Baby Blue works in an IBM PC or compatible machine^ with the
following minimum characteristics:

- 64 Kilobytes system RAM (128K recommended for some
applications).

- One 5" floppy disk drive (one other drive recommended; it
need not utilize S** floppies).

- PC-DOS (or MS-DOS) Version 1.1 or 2.0.

1.3 ABOOT THIS MAMOAL

Although Baby Blue is simple to install and use, it is also a
subtle, mature design with a broad history of proven applica
tions. The board's many special features and other esoterica make
this a long book, but it's structured to give you easy access to
the information you need at any level.

To get you up and running quickly, we begin with a simplified
installation procedure, requiring nothing more complicated than
physically plugging Baby Blue into an expansion socket. The
factory configuration sidesteps the issues of switch settings and
memory mapping entirely, avoiding the painful part of most
installations. There is one drawback; you won't get a 64K memory
expansion with this method, and if this is important to
you'll have to come back later to reconfigure the board.
However, it is definitely the quick way to start running
programs on your Baby Blue.

With your board installed, you can skip to Chapter 3, "Operation
- within half a dozen pages, you'll already have run a sample
CP/M program. The remainder of Chapter 3 will fill you in on the
fine points of Baby Blue's capabilities, and the Appendix
contains in-depth reference sections for all the Microlog
utilities.

The rest is background and technical information about the inner
workings of Baby Blue's hardware and software. It's meant for
the interested user as well as the experienced programmer who
wants to design his own applications.

1-2

INTRO

1.4 SYMBOLS

The following symbols are used throughout this text:

<CR> -

< >

Carriage Return, or Enter: press
"Retrn" key when you see this symbol.

the "Enter" or

All characters enclosed by this symbol are non-printing
keystrokes used for control purposes: they are typed
but will not appear on your screen.

[xxx] items enclosed in square brackets must appear,
variable depending on context or user response.

but are

Boldface indicates characters appearing on your screen.

c: - Indefinite control drive name. A place-holder showing
where to put the name of the disk drive containing the
command file you wish to invoke.

s: - Indefinite source drive name. A place-holder showing
where to put the name of the disk drive from which you
are getting a file.

d: - Indefinite destination drive name. A place-holder
showing where to put the name of the disk drive you are
writing

e: - Another indefinite drive name.

1-3

INTRO
INSTRU

HOTBS:

2. BABY BLOB HARDWARB INSTALLATION

2.1 THB BASY WAY

If you*ce gazing with horror at the maze of charts and instruc
tions in this chapter, we've got good news: you probably won't
need them. If you've ever installed an expansion board, just
read to the end of this section; then open your System Unit, plug
Baby Blue into an expansion slot, and close up (if at all pos
sible, avoid the leftmost slot - the one farthest from the power
supply).

Even if you've never been inside your System Unit, we've included
step-by-step instructions for all IBM PC's (See 2.41). This
section is also generally valid for IBM-compatibles not specifi
cally covered - use it in conjunction with the manufacturer's
documentation for your machine.

The only tool required is a medium blade-type screwdriver.

2.11 CHBCK FACTORY SWITCH SBTTING

Before beginning, check the "DIP" switch unit at Baby Blue's
right center - it's a brightly-colored,rectangular block contain
ing eight tiny sliding switches, with numbers to match. It's
also marked "DM" and "OFF" - the switches are set by sliding them
in the indicated direction, and should come from the factory as
shown below. Reset any switches that are incorrect.

Table 2-1: Factory Switch Setting

12345678

TTTTn n ON
CMMl 0 T

Switch Number:

Setting:

2.12 RUN DIAGNOSTICS

Just before replacing the System Unit cover, make sure your
system powers up and otherwise behaves norma|lly; then insert a
working copy (never the original) of your Baby Blue diskette, and
type:

TBSTZ80 <CR>

This will test your hardware installation, including all circui
try on Baby Blue itself. If TESTZ80 returns any errors, or your
system behaves abnormally, turn to the Appendix under
DIAGNOSTICS.

1-4

2-1

INTRO
INSTRU

HOTBS:

2. BABY BLOB HARDWARB INSTALLATION

2.1 THB BASY WAY

If you*ce gazing with horror at the maze of charts and instruc
tions in this chapter, we've got good news: you probably won't
need them. If you've ever installed an expansion board, just
read to the end of this section; then open your System Unit, plug
Baby Blue into an expansion slot, and close up (if at all pos
sible, avoid the leftmost slot - the one farthest from the power
supply).

Even if you've never been inside your System Unit, we've included
step-by-step instructions for all IBM PC's (See 2.41). This
section is also generally valid for IBM-compatibles not specifi
cally covered - use it in conjunction with the manufacturer's
documentation for your machine.

The only tool required is a medium blade-type screwdriver.

2.11 CHBCK FACTORY SWITCH SBTTING

Before beginning, check the "DIP" switch unit at Baby Blue's
right center - it's a brightly-colored,rectangular block contain
ing eight tiny sliding switches, with numbers to match. It's
also marked "DM" and "OFF" - the switches are set by sliding them
in the indicated direction, and should come from the factory as
shown below. Reset any switches that are incorrect.

Table 2-1: Factory Switch Setting

12345678

TTTTn n ON
CMMl 0 T

Switch Number:

Setting:

2.12 RUN DIAGNOSTICS

Just before replacing the System Unit cover, make sure your
system powers up and otherwise behaves norma|lly; then insert a
working copy (never the original) of your Baby Blue diskette, and
type:

TBSTZ80 <CR>

This will test your hardware installation, including all circui
try on Baby Blue itself. If TESTZ80 returns any errors, or your
system behaves abnormally, turn to the Appendix under
DIAGNOSTICS.

1-4

2-1

INSTALL

2.13 CUSTOHISATION

The standard installation has one drawback - it doesn't let Baby
Blue double as a 64K memory expansion. The rest of this chapter
is about alternate switch settings - use them when you want to
add Baby Blue's 64K to system memory or when the factory con
figuration proves unsuitable. As you'll see, choosing the
proper setting is complicated, because it involves your total
system configuration - the mother board, other expansion boards,
and Baby Blue itself. We've given you a configuration which
works for all current machines as originally manufactured; only a
few unusual systems will absolutely require customized switch
settings.

We suggest that everyone take the simple route first, if only to
be sure that Baby Blue is functioning properly. Try the board
out, run some programs, and get comfortable. Then come back if
you like, to customize the installation and pick up your bonus
64K.

2.14 STATIC BLBCTRICITY

A word about static electricity - the kind that gives you a shock
when you touch a doorknob or another person - it can damage
integrated circuits; the memory chips in your computer and on
Baby Blue are particularly vulnerable. Professionals often take
special precautions to insure that sparks don't jump from their
own bodies to the circuit boards on which they are working. You
aren't likely to have trouble if you observe elementary
precautions such as "tagging up" on a metal table to discharge
yourself before handling any circuit boards. However, if you're
in a place where you get a lot of little shocks, it's time to
look into antistatic sprays and other products for high-static
environments - those jolts aren't doing your computer any good
during normal operation.

2-2

INSTALL

2.2 OPTIONS: THB HARP WAY

You're here because you're not satisfied with the factory confi
guration: most likely you want to use Baby Blue's 64K for system
memory, as well as for running CP/M programs. We'll begin with
some background information, paying special attention to unusual
factors which may affect your installation. Even if you have some
experience, please scan these introductory notes to see if there
are any problems you may have overlooked.

2.21 WHAT THB SWITCHBS HBAN

Although Baby Blue is a self-contained microcomputer, your opera-
'ting system sees it as a simple 64K memory expansion. Memory is
divided into "Pages'^, or "Segments" of 64K each; when you set
Baby Blue's switches, you assign it to a single Page number such
as "1", "2", etc. The number must be unique, because your system
uses it to locate this particular block of memory: tfwo
physical blocks of memory can share the same Page number.

"System memory" is general-purpose memory available to the opera
ting system. It includes all Pages starting with "0" (which is
always on the mother board) and counting up to the first empty
Page. Any memory above the first empty Page is excluded from
system memory, meaning that it can only be used for special
purposes.

The factory setting assigns Baby Blue to the highest numbered
Page not reserved by the operating system, which is Page "E" in
hexadecimal notation (Page "14" in our normal way of counting).
Since this is outside the normal range of system memory, you
don't have to worry about the schemes used by different computers
to reserve parts of low system memory, or about other expansion
boards (only a few have been designed to use this Page). The
result is a simple, universal installation procedure - but you
don't get a 64K expansion to system memory.

The following instructions assume that you want to map Baby Blue
contiguously at the top of system memory, to gain a 64K
expansion.

2.22 BASIC PROCBDDRB

To map Baby Blue into system memory, refer to Table 2-2 ("Baby
Blue DIP Switch Settings"), after determining how many Kilobytes
of memory you have, including Baby Blue. Natch this number
under "Mew Total Memory", and read across to determine your Page
number and corresponding switch settings. This will put Baby
Blue's starting address on the first available Page (lowest
number) after allowing for all memory presently installed in your
system. For example, if you have 64K already, this uses up Page
0, so Baby Blue goes on Page 1. If you have 64K plus a 256K
expansion board, you've used up Pages 0,1,2,3 and 4 (five Pages
of 64K each, or 320K), so Baby Blue goes on Page 5.

2-3

INSTALL

2.13 CUSTOHISATION

The standard installation has one drawback - it doesn't let Baby
Blue double as a 64K memory expansion. The rest of this chapter
is about alternate switch settings - use them when you want to
add Baby Blue's 64K to system memory or when the factory con
figuration proves unsuitable. As you'll see, choosing the
proper setting is complicated, because it involves your total
system configuration - the mother board, other expansion boards,
and Baby Blue itself. We've given you a configuration which
works for all current machines as originally manufactured; only a
few unusual systems will absolutely require customized switch
settings.

We suggest that everyone take the simple route first, if only to
be sure that Baby Blue is functioning properly. Try the board
out, run some programs, and get comfortable. Then come back if
you like, to customize the installation and pick up your bonus
64K.

2.14 STATIC BLBCTRICITY

A word about static electricity - the kind that gives you a shock
when you touch a doorknob or another person - it can damage
integrated circuits; the memory chips in your computer and on
Baby Blue are particularly vulnerable. Professionals often take
special precautions to insure that sparks don't jump from their
own bodies to the circuit boards on which they are working. You
aren't likely to have trouble if you observe elementary
precautions such as "tagging up" on a metal table to discharge
yourself before handling any circuit boards. However, if you're
in a place where you get a lot of little shocks, it's time to
look into antistatic sprays and other products for high-static
environments - those jolts aren't doing your computer any good
during normal operation.

2-2

INSTALL

2.2 OPTIONS: THB HARP WAY

You're here because you're not satisfied with the factory confi
guration: most likely you want to use Baby Blue's 64K for system
memory, as well as for running CP/M programs. We'll begin with
some background information, paying special attention to unusual
factors which may affect your installation. Even if you have some
experience, please scan these introductory notes to see if there
are any problems you may have overlooked.

2.21 WHAT THB SWITCHBS HBAN

Although Baby Blue is a self-contained microcomputer, your opera-
'ting system sees it as a simple 64K memory expansion. Memory is
divided into "Pages'^, or "Segments" of 64K each; when you set
Baby Blue's switches, you assign it to a single Page number such
as "1", "2", etc. The number must be unique, because your system
uses it to locate this particular block of memory: tfwo
physical blocks of memory can share the same Page number.

"System memory" is general-purpose memory available to the opera
ting system. It includes all Pages starting with "0" (which is
always on the mother board) and counting up to the first empty
Page. Any memory above the first empty Page is excluded from
system memory, meaning that it can only be used for special
purposes.

The factory setting assigns Baby Blue to the highest numbered
Page not reserved by the operating system, which is Page "E" in
hexadecimal notation (Page "14" in our normal way of counting).
Since this is outside the normal range of system memory, you
don't have to worry about the schemes used by different computers
to reserve parts of low system memory, or about other expansion
boards (only a few have been designed to use this Page). The
result is a simple, universal installation procedure - but you
don't get a 64K expansion to system memory.

The following instructions assume that you want to map Baby Blue
contiguously at the top of system memory, to gain a 64K
expansion.

2.22 BASIC PROCBDDRB

To map Baby Blue into system memory, refer to Table 2-2 ("Baby
Blue DIP Switch Settings"), after determining how many Kilobytes
of memory you have, including Baby Blue. Natch this number
under "Mew Total Memory", and read across to determine your Page
number and corresponding switch settings. This will put Baby
Blue's starting address on the first available Page (lowest
number) after allowing for all memory presently installed in your
system. For example, if you have 64K already, this uses up Page
0, so Baby Blue goes on Page 1. If you have 64K plus a 256K
expansion board, you've used up Pages 0,1,2,3 and 4 (five Pages
of 64K each, or 320K), so Baby Blue goes on Page 5.

2-3

INSTALL

2.23 AVOIDING "RBSERVBD" MEMORY

Some machines effectively reserve low-numbered Pages for memory
chips to be installed in sockets directly on the mother board.
In these cases, you will have to pretend you have no less than a
certain amount of memory installed when you use the chart to set
Baby Blue's switches. For example, the IBM PC-2 reserves the
first four Pages (0, 1, 2, and 3) for the 256 Kilobytes which
can be installed on the motherboard - your lowest possible
switch setting will put Baby Blue on Page 4, corresponding to
320K total memory. This is true even if you actually have less
than 320K, including Baby Blue.

Note that if the mother board has not been fully populated, a
gap will appear in the sequence of memory Pages; if you have
memory assigned to Pages 0 and 1 (128K), with Baby Blue assigned
to Page 4, there is a gap at Pages 2 and 3. In this case you
can't have a 64K memory expansion anyway, so you might as well
stick to the standard installation.

2.24 RESOLVING CONFLICTS

You may need to insert Baby Blue somewhere in the middle of
system memory, rather than at the very top. For example, most
RAMdisk software is designed to use all of system memory above-
some predefined Page. If Baby Blue's memory is at the top of
system memory, the RAMdisk will attempt to use it at the same
time as Baby Blue's microprocessor. The system will see contra
dictory information and shut down in confusion. The answer is to
set Baby Blue as low as possible in system memory, that is,
immediately after the memory on the motherboard. Then tell the
RAMdisk software to begin using memory starting somewhere above
Baby Blue.

If you don't expect any difficulties, just go ahead and install
Baby Blue at the top of system memory, but should a problem
develop, or if there is any question of compatibility with
another expansion board, the best procedure is to remove all
expansion memory boards and complete the Baby Blue installation,
including testing, as if the other boards did not exist. This
will put Baby Blue's memory immediately above the memory on the
mother board. Then install the other boards, and reset all
switches per the manufacturer's instructions, counting the addi
tional 64K of Baby Blue memory which you have just installed.

The Quadram 256K Quadboard and the IBM 32K expansion memory
board are known to conflict with Baby Blue unless you position
them above Baby Blue in system memory. Many other RAM boards
will not permit any memory to be installed above them unless they
are fully populated, even if the empty banks are theoretically
disabled.

The factory setting avoids such complications, which arise only
when you make Baby Blue part of system memory.

2-4

m ■ 'n
A.4?

IN8TALI

2.25 SYSTEM BOARD SWITCHES

The switches on the mother board tell the computer's operatin
system how much memory is available in the system, and how it i
organized; also, some of the switches reflect your hardwac
configuration (how many disk drives, what kind of monitor, etc.)
Each time you turn power on, the operating system interrogate
the switches and proceeds according to the information it find
there. The information required will vary from machine t
machine.

For example, the IBM PC needs to be "told" both how much memor
is installed directly on the mother board, and also how muc
total memory is available, including any expansion boards. B
contrast, you tell the PC/XT how much memory is on the mothe
board, but it figures out how much total memory is in the systei
without reference to any switches. There are also two versions o
the PC: an older one which can socket 64K of RAM on the mothe
board, and a newer version, the "PC-2", which sockets 256K of RA
on the mother board. The switch blocks on these two machine
appear to be similar, but have different meanings, so you mus
know which machine you have. Some systems have no switches a
all.

Don't touch any switches on the mother board unless you chang
the amount of system memory. Since the factory setting exclude
Baby Blue from system memory, the standard installation doesn'
affect the mother board.

2-5

INSTALL

2.23 AVOIDING "RBSERVBD" MEMORY

Some machines effectively reserve low-numbered Pages for memory
chips to be installed in sockets directly on the mother board.
In these cases, you will have to pretend you have no less than a
certain amount of memory installed when you use the chart to set
Baby Blue's switches. For example, the IBM PC-2 reserves the
first four Pages (0, 1, 2, and 3) for the 256 Kilobytes which
can be installed on the motherboard - your lowest possible
switch setting will put Baby Blue on Page 4, corresponding to
320K total memory. This is true even if you actually have less
than 320K, including Baby Blue.

Note that if the mother board has not been fully populated, a
gap will appear in the sequence of memory Pages; if you have
memory assigned to Pages 0 and 1 (128K), with Baby Blue assigned
to Page 4, there is a gap at Pages 2 and 3. In this case you
can't have a 64K memory expansion anyway, so you might as well
stick to the standard installation.

2.24 RESOLVING CONFLICTS

You may need to insert Baby Blue somewhere in the middle of
system memory, rather than at the very top. For example, most
RAMdisk software is designed to use all of system memory above-
some predefined Page. If Baby Blue's memory is at the top of
system memory, the RAMdisk will attempt to use it at the same
time as Baby Blue's microprocessor. The system will see contra
dictory information and shut down in confusion. The answer is to
set Baby Blue as low as possible in system memory, that is,
immediately after the memory on the motherboard. Then tell the
RAMdisk software to begin using memory starting somewhere above
Baby Blue.

If you don't expect any difficulties, just go ahead and install
Baby Blue at the top of system memory, but should a problem
develop, or if there is any question of compatibility with
another expansion board, the best procedure is to remove all
expansion memory boards and complete the Baby Blue installation,
including testing, as if the other boards did not exist. This
will put Baby Blue's memory immediately above the memory on the
mother board. Then install the other boards, and reset all
switches per the manufacturer's instructions, counting the addi
tional 64K of Baby Blue memory which you have just installed.

The Quadram 256K Quadboard and the IBM 32K expansion memory
board are known to conflict with Baby Blue unless you position
them above Baby Blue in system memory. Many other RAM boards
will not permit any memory to be installed above them unless they
are fully populated, even if the empty banks are theoretically
disabled.

The factory setting avoids such complications, which arise only
when you make Baby Blue part of system memory.

2-4

m ■ 'n
A.4?

IN8TALI

2.25 SYSTEM BOARD SWITCHES

The switches on the mother board tell the computer's operatin
system how much memory is available in the system, and how it i
organized; also, some of the switches reflect your hardwac
configuration (how many disk drives, what kind of monitor, etc.)
Each time you turn power on, the operating system interrogate
the switches and proceeds according to the information it find
there. The information required will vary from machine t
machine.

For example, the IBM PC needs to be "told" both how much memor
is installed directly on the mother board, and also how muc
total memory is available, including any expansion boards. B
contrast, you tell the PC/XT how much memory is on the mothe
board, but it figures out how much total memory is in the systei
without reference to any switches. There are also two versions o
the PC: an older one which can socket 64K of RAM on the mothe
board, and a newer version, the "PC-2", which sockets 256K of RA
on the mother board. The switch blocks on these two machine
appear to be similar, but have different meanings, so you mus
know which machine you have. Some systems have no switches a
all.

Don't touch any switches on the mother board unless you chang
the amount of system memory. Since the factory setting exclude
Baby Blue from system memory, the standard installation doesn'
affect the mother board.

2-5

INSTALL

2.3 CUSTOMIZATION NOTES

2.31 DETAILED INSTRUCTIONS

This Section covers the fine points of configuring for specific
machines. Select yours from the following;

(2.34) IBM PC 1
(2.35) IBM PC 2
(2.36) IBM PC/XT
(2.37) Other IBM-Compatible PC's

2.32 BABY BLUE DIP SWITCHES

A master chart of possible Baby Blue switch settings appears in
Table 2-2: refer to it for all installations. To map Baby Blue
into system memory^ find the switch setting which corresponds to
the Kilobytes of total memory installed in your system, including
Baby Blue's 64K. For other applications, assign Baby Blue to the
desired Page (Segment). Switches 1 through 3 must always be ON,
switch 8 must always be OFF.

2.33 NOTE SYSTEM CONFIGURATION

Before going on, you should note your "system configuration" as
it affects Baby Blue, including especially:

- exactly which system and model you have, so that you can
refer to the proper set of instructions.

- how much memory you have in Kilobytes, and how it is
distributed between the "mother" board and expansion memory
boards.

- the manufacturer and model name of any expansion boards,
particularly memory expansions and disk drive interfaces.

- type of monitor (screen) and video interface.

- any installations made in software to your operating system,
for example whether you are using disk emulator software
(often called "RAMdisk", or "pseudo disk"), or a print
spooler.

2-6

INSTALL
I ̂

Table 2-2: DIP Switch Settings

New Total

Memory
Switch Sett

1 2 3 4 5 6

128K

192K V

256K

320K

384K

448K

5I2K

576K

640K

704K

768K

N/A

N/A

N/A

N/A

TrrrnrrnTr

rrrr
IL

ng Baby Blue
Memory

^8 Pa ge/ S egine n_t

ON 1

U I

ON

II I

il

ON

T

ON

t

ON

!

ON

T

ON

1

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

!

ON

T

A*

B*

C*

D*

i*

F*

One or more Pages in the range A through F are reserved by
all machines. For specifics, find your computer in the
Customization Notes which follow.

2-7

INSTALL

2.3 CUSTOMIZATION NOTES

2.31 DETAILED INSTRUCTIONS

This Section covers the fine points of configuring for specific
machines. Select yours from the following;

(2.34) IBM PC 1
(2.35) IBM PC 2
(2.36) IBM PC/XT
(2.37) Other IBM-Compatible PC's

2.32 BABY BLUE DIP SWITCHES

A master chart of possible Baby Blue switch settings appears in
Table 2-2: refer to it for all installations. To map Baby Blue
into system memory^ find the switch setting which corresponds to
the Kilobytes of total memory installed in your system, including
Baby Blue's 64K. For other applications, assign Baby Blue to the
desired Page (Segment). Switches 1 through 3 must always be ON,
switch 8 must always be OFF.

2.33 NOTE SYSTEM CONFIGURATION

Before going on, you should note your "system configuration" as
it affects Baby Blue, including especially:

- exactly which system and model you have, so that you can
refer to the proper set of instructions.

- how much memory you have in Kilobytes, and how it is
distributed between the "mother" board and expansion memory
boards.

- the manufacturer and model name of any expansion boards,
particularly memory expansions and disk drive interfaces.

- type of monitor (screen) and video interface.

- any installations made in software to your operating system,
for example whether you are using disk emulator software
(often called "RAMdisk", or "pseudo disk"), or a print
spooler.

2-6

INSTALL
I ̂

Table 2-2: DIP Switch Settings

New Total

Memory
Switch Sett

1 2 3 4 5 6

128K

192K V

256K

320K

384K

448K

5I2K

576K

640K

704K

768K

N/A

N/A

N/A

N/A

TrrrnrrnTr

rrrr
IL

ng Baby Blue
Memory

^8 Pa ge/ S egine n_t

ON 1

U I

ON

II I

il

ON

T

ON

t

ON

!

ON

T

ON

1

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

!

ON

T

A*

B*

C*

D*

i*

F*

One or more Pages in the range A through F are reserved by
all machines. For specifics, find your computer in the
Customization Notes which follow.

2-7

INSTALL

2.34 IBH PC-1

The PC-I was IBM's first Personal Computer, manufactured
until about March 1983. It sockets 64K on the mother board,
was supplied with DOS 1.1, and has five expansion slots.

Find the two DIP switch blocks in the middle of the mother board,
faintly labelled SWl and SW2 - SW2 is to the right, almost dead
center in the System Unit, and SWl is to the left.

Examine SWl, switches 3 and 4 : they should both be OFF. If they
are not, go no farther: this indicates that you do not have 64
Kilobytes of memory installed on the system board and your system
does not meet the minimum system requirements for using Baby Blue
(are you sure you're looking at the right switches?).

If you are mapping Baby Blue into system memory, calculate your
total memory in Kilobytes, including the 64K on Baby Blue. Find
the resulting figure under "New Total Memory" in Table 2-3, and
set SW 2 on the mother board to match the corresponding line of
the chart.

The PC-1 addresses a maximum of 544K as system memory. Baby Blue
can still be mapped above that point, but you won't see
additional system memory. Set Baby Blue's switches according to
Section 2.31 (Baby Blue DIP Switch Settings), avoiding the I
reserved Pages listed below.

RESERVED PAGES (Hex): A, B.

2-8

INSTALL

Table 2-3: IBH PC-1: Mother Board SW2 Settings

New Total

Memory

128K

192K

256K

320K

384K

448K

512K

544K^

Switch Setting

12345678

ij tj ir

[]

TT

TT

TT

TT

TT

II

.ULLil

] (1

1] tJLlil
—n"—-

ILL-OLUli

nr
11(1 im

(]

JL_LUUUl

tnHMH)

mutnn)

iiinmin

Switches 5,6,7 and 8 are always OFF.

ON

ON

t •

ON

T

ON

T

ON

I

ON

I

ON

T

ON

T

2-9

INSTALL

2.34 IBH PC-1

The PC-I was IBM's first Personal Computer, manufactured
until about March 1983. It sockets 64K on the mother board,
was supplied with DOS 1.1, and has five expansion slots.

Find the two DIP switch blocks in the middle of the mother board,
faintly labelled SWl and SW2 - SW2 is to the right, almost dead
center in the System Unit, and SWl is to the left.

Examine SWl, switches 3 and 4 : they should both be OFF. If they
are not, go no farther: this indicates that you do not have 64
Kilobytes of memory installed on the system board and your system
does not meet the minimum system requirements for using Baby Blue
(are you sure you're looking at the right switches?).

If you are mapping Baby Blue into system memory, calculate your
total memory in Kilobytes, including the 64K on Baby Blue. Find
the resulting figure under "New Total Memory" in Table 2-3, and
set SW 2 on the mother board to match the corresponding line of
the chart.

The PC-1 addresses a maximum of 544K as system memory. Baby Blue
can still be mapped above that point, but you won't see
additional system memory. Set Baby Blue's switches according to
Section 2.31 (Baby Blue DIP Switch Settings), avoiding the I
reserved Pages listed below.

RESERVED PAGES (Hex): A, B.

2-8

INSTALL

Table 2-3: IBH PC-1: Mother Board SW2 Settings

New Total

Memory

128K

192K

256K

320K

384K

448K

512K

544K^

Switch Setting

12345678

ij tj ir

[]

TT

TT

TT

TT

TT

II

.ULLil

] (1

1] tJLlil
—n"—-

ILL-OLUli

nr
11(1 im

(]

JL_LUUUl

tnHMH)

mutnn)

iiinmin

Switches 5,6,7 and 8 are always OFF.

ON

ON

t •

ON

T

ON

T

ON

I

ON

I

ON

T

ON

T

2-9

INSTALL

2.35 IBM PC-2

This is the second generation of IBM PC*s, featuring a
motherboard which can hold up to 256K of RAM before it is
necessary to install additional memory boards. The left edge
of the mother board is marked, **64KB-256KB CPU**.

Calculate your total system memory in Kilobytes, including Baby-
Blue*s 64K - this figure is your **New Total Memory**. The PC-2
reserves the first four Pages of system memory (0,1,2 and 3), or
the first 256K, for memory installed directly on the mother
board. Therefore, your first available Page is 4, configured as
follows:

New Total

Memory

Switch Setting

12345678

Baby Blue
Memory

Page/Segment

128-320K (1 (1 [) (] rm ON 4
» Li t

For total memory greater than 320K, refer to Table 2-2 (**BabyBlue
DIP Switch Settings**). Avoid the reserved Pages listed below.

If your calculated figure for **New Total Memory** is less than
320K (i.e., if your mother board is not fully populated). Baby
Blue cannot add 64K to system memory, and you shouldn*t change
any switches on the mother board. If your mother board was fully
populated, you now have available 320K or more total system
memory, and should set SW2 on the mother board as shown in Table
2-4.

RESERVED PAGES (Hex): 1, 2, 3, A, B.

2-10

INSTALL

Table 2-4 IBM PC-2: Mother Board SW2 Settings

New Total

Memory

128K

192K

256K

320K

384K

448K

512K

544K

576K

640K

Switch Setting

1 2 3 4 5 6 7 8

IJ (111(1 ON
—u [)im T

TiTrTm ON
U LULU I

Ti—rm ON
tin liiili T

(Kid (1 ON
d [Mid T

d d (1 ON
" " t

TTTl n ON
dd (Idd T

TJ n ON
"11" f'Hfi]

n ON
dddd ddd T

dddd ON
dddd T

Ti rm ON
_LJ dddd T

Switches 5,6,7 and 8 are always OFF.

2-11

INSTALL

2.35 IBM PC-2

This is the second generation of IBM PC*s, featuring a
motherboard which can hold up to 256K of RAM before it is
necessary to install additional memory boards. The left edge
of the mother board is marked, **64KB-256KB CPU**.

Calculate your total system memory in Kilobytes, including Baby-
Blue*s 64K - this figure is your **New Total Memory**. The PC-2
reserves the first four Pages of system memory (0,1,2 and 3), or
the first 256K, for memory installed directly on the mother
board. Therefore, your first available Page is 4, configured as
follows:

New Total

Memory

Switch Setting

12345678

Baby Blue
Memory

Page/Segment

128-320K (1 (1 [) (] rm ON 4
» Li t

For total memory greater than 320K, refer to Table 2-2 (**BabyBlue
DIP Switch Settings**). Avoid the reserved Pages listed below.

If your calculated figure for **New Total Memory** is less than
320K (i.e., if your mother board is not fully populated). Baby
Blue cannot add 64K to system memory, and you shouldn*t change
any switches on the mother board. If your mother board was fully
populated, you now have available 320K or more total system
memory, and should set SW2 on the mother board as shown in Table
2-4.

RESERVED PAGES (Hex): 1, 2, 3, A, B.

2-10

INSTALL

Table 2-4 IBM PC-2: Mother Board SW2 Settings

New Total

Memory

128K

192K

256K

320K

384K

448K

512K

544K

576K

640K

Switch Setting

1 2 3 4 5 6 7 8

IJ (111(1 ON
—u [)im T

TiTrTm ON
U LULU I

Ti—rm ON
tin liiili T

(Kid (1 ON
d [Mid T

d d (1 ON
" " t

TTTl n ON
dd (Idd T

TJ n ON
"11" f'Hfi]

n ON
dddd ddd T

dddd ON
dddd T

Ti rm ON
_LJ dddd T

Switches 5,6,7 and 8 are always OFF.

2-11

INSTALL

2.36 IBM PC/XT

This 18 the new IBM supet-PC, which comes standard with an
IBM-installed Winchester hard disk, DOS 2.0, 128 Kilobytes
of memory, and seven expansion slots. The mother board has

receive 256K of memory, but unlike the PC-2, the
memory installed in the expansion bus before

the mother board is fully populated*

memory in Kilobytes, including Baby
? , nf ̂ number under "New Total Memory", in Table2-2 "Baby Blue DIP Switch Settings", and set the switches on Baby
Blue accordingly, but avoid the reserved Pages listed below.

Do no^ change any switches on the mother board* The PC/XT uses
software, not switches, to determine the amount of memory in the
expansion slots* The switches on the mother board reflect only
the amount of memory directly installed there and have nothing
to do with Baby Blue. The XT is also unusual in that although it
sockets 256K on the mother board, this region of memory is not
strictly reserved. Even if the mother board is not fully popu-
lated, you can map Baby Blue into the Page just above presently
installed system memory, and the system will recognize the addi-.
tional 64K as general purpose memory*

RESERVED PAGES (Hex): A, B, C*

2-12

INSTALLti

2*37 OTHER PC'S

All the machines listed below reserve varying amounts of system
memory for RAM to be installed directly on the mother board*
Unless the mother board is fully populated (i.e* unless total
memory equals or exceeds the figure given below). Baby Blue won't
act as a memory expansion - you should not change any switches on
your mother board or otherwise instruct the operating system to
recognize Baby Blue's 64K as additional system memory* The
standard configuration is probably preferable in such a case*

Set the switches on Baby Blue as shown for your machine* Per
total memory in excess of the figure given, refer to Table 2-2
("Baby Blue DIP Switch Settings"), but avoid the reserved Pages
listed for each machine*

New Total

Memory
Switch Setting

12345678

Baby Blue
Memory

Page/Segment

Columbia : 64-128K tniono [] ON 2

0 0 T

Compaq : 64-128K C][][](l() C] ON 2

0 (1 T

Corona : 64-576K (i[i[] (](](] ON 8

n {) T

Eagle PC : 64-576K [](][] [][][] ON 8

n [] T

RESERVED PAGES (Hex):

Eagle PC; 1, 2, 3, 4, 5, 6, 7, A, B.

Columbia: 1, B*

Compaq: 1, A, B*

Corona: 1, 2, 3, 4, 5, 6, 7, B.

2-13

INSTALL

2.36 IBM PC/XT

This 18 the new IBM supet-PC, which comes standard with an
IBM-installed Winchester hard disk, DOS 2.0, 128 Kilobytes
of memory, and seven expansion slots. The mother board has

receive 256K of memory, but unlike the PC-2, the
memory installed in the expansion bus before

the mother board is fully populated*

memory in Kilobytes, including Baby
? , nf ̂ number under "New Total Memory", in Table2-2 "Baby Blue DIP Switch Settings", and set the switches on Baby
Blue accordingly, but avoid the reserved Pages listed below.

Do no^ change any switches on the mother board* The PC/XT uses
software, not switches, to determine the amount of memory in the
expansion slots* The switches on the mother board reflect only
the amount of memory directly installed there and have nothing
to do with Baby Blue. The XT is also unusual in that although it
sockets 256K on the mother board, this region of memory is not
strictly reserved. Even if the mother board is not fully popu-
lated, you can map Baby Blue into the Page just above presently
installed system memory, and the system will recognize the addi-.
tional 64K as general purpose memory*

RESERVED PAGES (Hex): A, B, C*

2-12

INSTALLti

2*37 OTHER PC'S

All the machines listed below reserve varying amounts of system
memory for RAM to be installed directly on the mother board*
Unless the mother board is fully populated (i.e* unless total
memory equals or exceeds the figure given below). Baby Blue won't
act as a memory expansion - you should not change any switches on
your mother board or otherwise instruct the operating system to
recognize Baby Blue's 64K as additional system memory* The
standard configuration is probably preferable in such a case*

Set the switches on Baby Blue as shown for your machine* Per
total memory in excess of the figure given, refer to Table 2-2
("Baby Blue DIP Switch Settings"), but avoid the reserved Pages
listed for each machine*

New Total

Memory
Switch Setting

12345678

Baby Blue
Memory

Page/Segment

Columbia : 64-128K tniono [] ON 2

0 0 T

Compaq : 64-128K C][][](l() C] ON 2

0 (1 T

Corona : 64-576K (i[i[] (](](] ON 8

n {) T

Eagle PC : 64-576K [](][] [][][] ON 8

n [] T

RESERVED PAGES (Hex):

Eagle PC; 1, 2, 3, 4, 5, 6, 7, A, B.

Columbia: 1, B*

Compaq: 1, A, B*

Corona: 1, 2, 3, 4, 5, 6, 7, B.

2-13

INSTALL

2.4 STEP BY STEP HARDWARE INSTALLATION

2.41 IBM PC - ALL MODELS

2.411 Begin

Turn the system OFF. Disconnect power from the System Unit, then
disconnect all peripheral devices (be sure you know how to rein
stall them). Take your monitor off the top of the System Unit
cabinet.

2.412 Reaove Cover

At the bottom corners of the System Unit rear panel you will find
at least two pan-headed screws that hold the cover in place -
later models have three more screws, two at the top corners and
one at top center (don't fiddle with the hex-headed ones: they
retain internal components). Remove the screws, then remove the
cover by sliding it towards the front of the System Unit and then
up.

2.413 Verify Switch Settings

For a standard installation, be sure you have read all of Section
2.1, and check Baby Blue's switches against Table 2-1. For a
custom installation, read Section 2.2 and refer to the customiza
tion notes for your machine in Section 2.3.

2.414 Choose Expansion Socket

You will be working in the open area on the left side of the
System Unit, as viewed from the front - to the rear of this area
you will find the system expansion sockets, sticking up from the
mother board. They are made to receive Baby Blue's "edge
connector" - that double row of thirty-one gold contacts projec
ting from the board's lower edge. You may choose any unoccupied
socket, but avoid the leftmost one if you can.

Directly in line with the expansion socket you've chosen, you
should see an L-shaped piece of metal about an inch wide,
fastened with a screw to the top of the back panel - it covers a
wide slot. Unscrew the retaining screw, then lift the slot cover
clear. Save the screw.

2.415 Install Baby Blue

Bolted to Baby Blue is a metal mounting bracket designed to
replace the slot cover. Grasping the board's top corners, lower
it into the System Unit, easing the mounting bracket's tongue
into the gap between the mother board and the back panel.
Carefully press Baby Blue into the expansion socket.

2-14

INSTALL 4

It's a tight fit, and if the boatd is cocked in any direction it
may not go in. Try rocking it lightly, end-to-end and side-to- ,
kside, while applying steady downward pressure. The board should
rseat without excessive pressure, and you should feel that »t has
gone all the way into the socket - it should sit sguare in the
chassis and not appear cocked. Be careful not to disturb any
Other expansion boards in the process.

Center the back panel screwhole within the mounting bracket's
elongated hole, then replace the screw which you
see that the board is still square to the chassis. Check for
accidentally dislodged plugs, particularly the speaker connection
at the front left of the System Unit.

2.416 Reconnect Cables and Test System

Before closing up, let's make sure everything is OK. Reconnect
your peripheral devices to the System Unit - y®" " ®®Vf^*
where everything went, see Section 2 (Setup), of your IBM Guide
To Operations. Reconnect power cables last of all, then turn on
the Wstem to make sure it boots (displays the cursor, beeps,
activates the A drive, then comes up asking you for the date,
etc.), and responds normally to DOS commands.

Hake a duplicate copy of the Baby Blue master diskette and put
the master away. Now put the copy in drive A; and types

A:TB8tZ80 <CR>

This initiates the Baby Blue diagnostic tests - if no errors are
shown, your Baby Blue is properly installed and working. If
TEST280 shows an error, or if your system behaves abnormally,
turn to the Appendix under DIAGNOSTICS.

2.417 Finishing Op

Everything works? Good - turn the power back off, and close up
the System Unit. To replace the cover, start by tipping it
downward, then leveling it as it slides on. Take care not to
bump any boards seated in the expansion sockets. The cover has
to go all the way on - if that black tab at the center of the
back panel protrudes above the cover, back off and try again.
Replace and tighten the cover retaining screws. |

This completes the hardware installation. Check again that your
system boots normally, and proceed to the next chapter.

2-15

INSTALL

2.4 STEP BY STEP HARDWARE INSTALLATION

2.41 IBM PC - ALL MODELS

2.411 Begin

Turn the system OFF. Disconnect power from the System Unit, then
disconnect all peripheral devices (be sure you know how to rein
stall them). Take your monitor off the top of the System Unit
cabinet.

2.412 Reaove Cover

At the bottom corners of the System Unit rear panel you will find
at least two pan-headed screws that hold the cover in place -
later models have three more screws, two at the top corners and
one at top center (don't fiddle with the hex-headed ones: they
retain internal components). Remove the screws, then remove the
cover by sliding it towards the front of the System Unit and then
up.

2.413 Verify Switch Settings

For a standard installation, be sure you have read all of Section
2.1, and check Baby Blue's switches against Table 2-1. For a
custom installation, read Section 2.2 and refer to the customiza
tion notes for your machine in Section 2.3.

2.414 Choose Expansion Socket

You will be working in the open area on the left side of the
System Unit, as viewed from the front - to the rear of this area
you will find the system expansion sockets, sticking up from the
mother board. They are made to receive Baby Blue's "edge
connector" - that double row of thirty-one gold contacts projec
ting from the board's lower edge. You may choose any unoccupied
socket, but avoid the leftmost one if you can.

Directly in line with the expansion socket you've chosen, you
should see an L-shaped piece of metal about an inch wide,
fastened with a screw to the top of the back panel - it covers a
wide slot. Unscrew the retaining screw, then lift the slot cover
clear. Save the screw.

2.415 Install Baby Blue

Bolted to Baby Blue is a metal mounting bracket designed to
replace the slot cover. Grasping the board's top corners, lower
it into the System Unit, easing the mounting bracket's tongue
into the gap between the mother board and the back panel.
Carefully press Baby Blue into the expansion socket.

2-14

INSTALL 4

It's a tight fit, and if the boatd is cocked in any direction it
may not go in. Try rocking it lightly, end-to-end and side-to- ,
kside, while applying steady downward pressure. The board should
rseat without excessive pressure, and you should feel that »t has
gone all the way into the socket - it should sit sguare in the
chassis and not appear cocked. Be careful not to disturb any
Other expansion boards in the process.

Center the back panel screwhole within the mounting bracket's
elongated hole, then replace the screw which you
see that the board is still square to the chassis. Check for
accidentally dislodged plugs, particularly the speaker connection
at the front left of the System Unit.

2.416 Reconnect Cables and Test System

Before closing up, let's make sure everything is OK. Reconnect
your peripheral devices to the System Unit - y®" " ®®Vf^*
where everything went, see Section 2 (Setup), of your IBM Guide
To Operations. Reconnect power cables last of all, then turn on
the Wstem to make sure it boots (displays the cursor, beeps,
activates the A drive, then comes up asking you for the date,
etc.), and responds normally to DOS commands.

Hake a duplicate copy of the Baby Blue master diskette and put
the master away. Now put the copy in drive A; and types

A:TB8tZ80 <CR>

This initiates the Baby Blue diagnostic tests - if no errors are
shown, your Baby Blue is properly installed and working. If
TEST280 shows an error, or if your system behaves abnormally,
turn to the Appendix under DIAGNOSTICS.

2.417 Finishing Op

Everything works? Good - turn the power back off, and close up
the System Unit. To replace the cover, start by tipping it
downward, then leveling it as it slides on. Take care not to
bump any boards seated in the expansion sockets. The cover has
to go all the way on - if that black tab at the center of the
back panel protrudes above the cover, back off and try again.
Replace and tighten the cover retaining screws. |

This completes the hardware installation. Check again that your
system boots normally, and proceed to the next chapter.

2-15

INSTALL

NOTES:

OPERATION

3. OPERATION: RONNIMG CP/M PROGRAMS

3.1 GETTING STARTED

3.11 DOS COMMANDS

In nornial operation Baby Blue is meant to be completely
''transparent'*, which means that it fits seamlessly into your
present operating system. When you run a CP/M program, it will
appear to be a native PC-DOS program: you'll use the same
commands and procedures, and execution speeds will be similar.

We're going to assume that you are already familiar with your
operating system. You should know how to physically insert a
diskette in a disk drive, "boot" your system from a diskette, and
perform common file operations using the following DOS utilities:

FORMAT

CHKDSK

COPY

DIR

RENAME

If you are at all unsure of these basic procedures, practice them
now before you begin, referring to the documentation which came
with your computer.

3.12 THE BABY BLUE UTILITIES

Although Baby Blue is now physically installed in your computer,
your operating system must be extended to run CP/M programs,
using the Microlog diskette labelled "Baby Blue Conversion
Software", first, make a backup copy of the Baby Blue software
on a new diskette. The command:

COPY A:*.* B: <CR>

will copy all files, where the original Microlog diskette is in
drive A, and the new diskette is in driveB.

Put the original Microlog diskette away for safekeeping, and take
a DIRectory of the new disk. You should see the files:

HEADER

CONVERT.COM

BINDXOM

STRIP.CON

KEYFIX.COH

SAMPLE.CPM

TESTZ80.COM

2-16

3-1

INSTALL

NOTES:

OPERATION

3. OPERATION: RONNIMG CP/M PROGRAMS

3.1 GETTING STARTED

3.11 DOS COMMANDS

In nornial operation Baby Blue is meant to be completely
''transparent'*, which means that it fits seamlessly into your
present operating system. When you run a CP/M program, it will
appear to be a native PC-DOS program: you'll use the same
commands and procedures, and execution speeds will be similar.

We're going to assume that you are already familiar with your
operating system. You should know how to physically insert a
diskette in a disk drive, "boot" your system from a diskette, and
perform common file operations using the following DOS utilities:

FORMAT

CHKDSK

COPY

DIR

RENAME

If you are at all unsure of these basic procedures, practice them
now before you begin, referring to the documentation which came
with your computer.

3.12 THE BABY BLUE UTILITIES

Although Baby Blue is now physically installed in your computer,
your operating system must be extended to run CP/M programs,
using the Microlog diskette labelled "Baby Blue Conversion
Software", first, make a backup copy of the Baby Blue software
on a new diskette. The command:

COPY A:*.* B: <CR>

will copy all files, where the original Microlog diskette is in
drive A, and the new diskette is in driveB.

Put the original Microlog diskette away for safekeeping, and take
a DIRectory of the new disk. You should see the files:

HEADER

CONVERT.COM

BINDXOM

STRIP.CON

KEYFIX.COH

SAMPLE.CPM

TESTZ80.COM

2-16

3-1

OPBRATIOH

Each of these files becomes a new command in your operating
system, with the exception of HEADER, which you will notice lacks
the extension ••COM". They:

- Convert CP/M-80 programs to run on Baby Blue under PC-DOS.

- Transfer files between selected CP/M formats and PC-DOS
diskettes.

- Provide user-programmable function keys for CP/M programs.

- Test and diagnose Baby Blue itself in the event of suspected
failure.

You have already used TESTZ80 to verify the hardware
installation. Here is a brief description of the other Baby Blue
utilities - for detailed information see the individual sections
in the Appendix.

HEADER

HEADER is a large program, practically an operating system
in its own right. The ••meat^^ of the Baby Blue software, it
is paradoxically the one utility you never command directly.
It does all its talking to your computer and you are aware
of it only through its effects - it makes CP/M programs run
on your machine.

Before a CP/M program will run on Baby Blue, it must have
HEADER attached to it - this is called ••binding^^ the
program. Binding is carried out using either CONVERT or
BIND, as outlined below.

CONVERT

Convert transfers disk files in either direction between PC-
DOS and selected CP/M formats. It can copy files, and
display directories of both PC-DOS and CP/M diskettes. It
also automatically binds HEADER to COM files as they are
written to a PC-DOS disk, and removes it when copying to a
CP/M disk.

CONVERT insures that you can purchase CP/M programs in at
least one format which you will be able to read. Actually,
you can buy most CP/M software already on a PC-DOS diskette,
in which case you won*t need CONVERT at all - this is often
called the ••Baby Blue" format. If you must purchase a CP/M-
formatted diskette, make sure that it is one of the formats
which CONVERT can read.

3-2

OPBRATldil

BIND

Like CONVERT, BIND attaches HEADER to CP/M COM file8|
unlike CONVERT, it works only with PC-DOS, not CP/M
diskettes. It^s used when you need to attach HEADER to a
CP/M program already on a PC-DOS diskette, which is the
recommended way to buy software.

If BIND finds a HEADER already attached to a file, it re^/
moves it before attaching another one - this is how you^
update your files with a new revision of HEADER.

STRIP

STRIP is the opposite of BIND - it removes HEADER from a^^
bound program. It^s used when you want to export a program|
from Baby Blue to a native CP/M system.

KEYFIX

KEYFIX allows you to define over fifty function keys for
each CP/M program - a single keystroke becomes a shorthand
way of entering as many as 80 separate characters. KEYFIX
saves the definitions on disk, in the HEADER attached to
each program.

SAMPLE

SAMPLE is a short CP/M-80 program, which is already on your
PC-DOS diskette, but has not yet been bound with HEADER.
All it does is post a line of text on your screen, but if
you can BIND it and get it to run, you^re ready to use Baby
Blue.

3.13 OPERATING FUNDAMENTALS

Let^s try running the SAMPLE program. Type:

BIND SAWLB <CR>

When the system prompt returns, take a DIRectory. You should see
two SAMPLE files:

SANPLB.CPN

SAMPLB.COM

Notice that SAMPLE.COM is much larger than SAMPLE.CPM - that^s
because it contains HEADER, and is ready to run. Type:

SAMPLE <CR>

3-3

OPBRATIOH

Each of these files becomes a new command in your operating
system, with the exception of HEADER, which you will notice lacks
the extension ••COM". They:

- Convert CP/M-80 programs to run on Baby Blue under PC-DOS.

- Transfer files between selected CP/M formats and PC-DOS
diskettes.

- Provide user-programmable function keys for CP/M programs.

- Test and diagnose Baby Blue itself in the event of suspected
failure.

You have already used TESTZ80 to verify the hardware
installation. Here is a brief description of the other Baby Blue
utilities - for detailed information see the individual sections
in the Appendix.

HEADER

HEADER is a large program, practically an operating system
in its own right. The ••meat^^ of the Baby Blue software, it
is paradoxically the one utility you never command directly.
It does all its talking to your computer and you are aware
of it only through its effects - it makes CP/M programs run
on your machine.

Before a CP/M program will run on Baby Blue, it must have
HEADER attached to it - this is called ••binding^^ the
program. Binding is carried out using either CONVERT or
BIND, as outlined below.

CONVERT

Convert transfers disk files in either direction between PC-
DOS and selected CP/M formats. It can copy files, and
display directories of both PC-DOS and CP/M diskettes. It
also automatically binds HEADER to COM files as they are
written to a PC-DOS disk, and removes it when copying to a
CP/M disk.

CONVERT insures that you can purchase CP/M programs in at
least one format which you will be able to read. Actually,
you can buy most CP/M software already on a PC-DOS diskette,
in which case you won*t need CONVERT at all - this is often
called the ••Baby Blue" format. If you must purchase a CP/M-
formatted diskette, make sure that it is one of the formats
which CONVERT can read.

3-2

OPBRATldil

BIND

Like CONVERT, BIND attaches HEADER to CP/M COM file8|
unlike CONVERT, it works only with PC-DOS, not CP/M
diskettes. It^s used when you need to attach HEADER to a
CP/M program already on a PC-DOS diskette, which is the
recommended way to buy software.

If BIND finds a HEADER already attached to a file, it re^/
moves it before attaching another one - this is how you^
update your files with a new revision of HEADER.

STRIP

STRIP is the opposite of BIND - it removes HEADER from a^^
bound program. It^s used when you want to export a program|
from Baby Blue to a native CP/M system.

KEYFIX

KEYFIX allows you to define over fifty function keys for
each CP/M program - a single keystroke becomes a shorthand
way of entering as many as 80 separate characters. KEYFIX
saves the definitions on disk, in the HEADER attached to
each program.

SAMPLE

SAMPLE is a short CP/M-80 program, which is already on your
PC-DOS diskette, but has not yet been bound with HEADER.
All it does is post a line of text on your screen, but if
you can BIND it and get it to run, you^re ready to use Baby
Blue.

3.13 OPERATING FUNDAMENTALS

Let^s try running the SAMPLE program. Type:

BIND SAWLB <CR>

When the system prompt returns, take a DIRectory. You should see
two SAMPLE files:

SANPLB.CPN

SAMPLB.COM

Notice that SAMPLE.COM is much larger than SAMPLE.CPM - that^s
because it contains HEADER, and is ready to run. Type:

SAMPLE <CR>

3-3

OPERATION

The response should be a congratulatory message. SAMPLE is a very
simple program, but you've just seen how to make a CP/M program
run. SAMPLE is now permanently a PC-DOS COM file: even if you
turn off your machine, the next time you power up you can still
run the program just by typing SAMPLE.

SAMPLE illustrates Baby Blue's special simplicity: once you bind
HEADER to a CP/M program, it is effectively a PC-DOS program and
will run in any computer equipped with a Baby Blue. You can put
the Microlog utilities away, and there are no restrictions to PC-
DOS. You use the Microlog utilities only when transferring files
between your system and a CP/M system.

Remember that you only bind CP/M COM files - overlays and inter
preted programs which run under the control of a COM file are not
bound, nor are text and data files. For example, you would not
bind Wordstar's ".OVR" files, because they run under the control
of WS.COM. You wouldn't bind CBASIC ".INT" or ".BAS" files,
because they run under CRUN.COM or CBAS.COM, respectively.

Don't bind Microlog-supplied applications programs such as
Wordstar or BSTAM - they come preinstalled and ready to run. A
number of independent vendors also package their software bound
with the Baby Blue HEADER - you need to rebind such programs only
when you receive an update of HEADER itself.

Notice that you haven't been asked to learn a separate set of
commands or create a separate set of disks in order to run CP/N
programs. This means that you can call native PC-DOS programs
and CP/M programs from the same disk, and just as important,
those programs can freely exchange data or text files. Because
you continue to operate under PC-DOS, the peripherals already
supported by your system will also work with Baby Blue (e.g.,
printer, hard disk, etc.).

NOTE:

There is one area in which we must depart from standard PC-
DOS practice: while running a program on Baby Blue, do not
attempt a "warm boot" using CTRL-ALT-DEL. This will fiTl"To
properly reset Baby Blue's Z-80 microprocessor, and you will
have to cycle power before using the board again. You may,
of course, use CTRL-ALT-DEL when you are not running a CP/M
program, even with Baby Blue physically installed.

3-4

OPERATION

3.2 MEDIA COHPATIBILITYS ACCESS TO CP/M DISKETTES

3«2I THE PROBLEM OP STAMIAEDS

^Simply by entering the marketplace, IBM created a new set of
standards for the manufacture of personal computers. Although
open to criticism on technical grounds, the IBM PC has been
invaluable »^s a serviceable, if somewhat arbitrary, convention
through which different manufacturers can insure mutual
compatibility of their products.

Incompatibilities have arisen as manufacturers strain against
some of the PC's limitations, and it is always possible that IBM
will someday violate or completely overturn its own standard, as
it has repeatedly done in the past. In the main, however, the
standard has been successful, and in both hardware and software
the owner of an 8088 microprocessor-based personal computer
eri'joys much greater freedom of choice than was possible before
the advent of the IBM PC. For example, almost all PC-DOS or MS-
DOS machines can exchange 5" floppy diskettes, with little or no
difficulty. This may seem natural if you have such a machine,
but it represents a tremendous advance.

As a standard operating system, CP/M-80 permitted microcomputer
software to reach a new level of maturity, since it became
possible for a manufacturer to develop application programs for a
broad base of otherwise heterogenous equipment. However, except
.for a single 8" CP/M disk format, no standard medium existed for
Ftransferring files from one manufacturer's microcomputer to
another's. It was still necessary to publish the same program in
a variety of machine-specific disk formats, and it was almost
impossible for the average user of 5" diskettes to transfer even
data or text files between different machines. Media
compatibility remains one of the technically most vexing issues
facing users of CP/M-80 applications programs.

Baby Blue avoids the issue as much as possible by using the
standard PC-DOS format, which means complete compatibility within
your system and maximum flexibility in communicating with other
similar systems. Most vendors now offer their CP/M software
already on PC-DOS formatted diskettes, in what is often called
the "Baby Blue format".

3.22 MICROLOG FILE TRANSFER UTILITIES

3.221 5" CP/M Diskettes

Baby Blue comes with CONVERT, a utility which enables you to
transfer files between PC-DOS disks and a number of popular CP/M-
80 formats (See Appendix, under CONVERT). You can purchase
^software in one of these formats, but we strongly recommend
robtaining PC-DOS diskettes whenever possible. You should be aware
that although you will have a wider choice of available software
than you normally would if you owned a CP/M-80 based machine, you
may still run across an incompatible format, especially if you

3-5

OPERATION

The response should be a congratulatory message. SAMPLE is a very
simple program, but you've just seen how to make a CP/M program
run. SAMPLE is now permanently a PC-DOS COM file: even if you
turn off your machine, the next time you power up you can still
run the program just by typing SAMPLE.

SAMPLE illustrates Baby Blue's special simplicity: once you bind
HEADER to a CP/M program, it is effectively a PC-DOS program and
will run in any computer equipped with a Baby Blue. You can put
the Microlog utilities away, and there are no restrictions to PC-
DOS. You use the Microlog utilities only when transferring files
between your system and a CP/M system.

Remember that you only bind CP/M COM files - overlays and inter
preted programs which run under the control of a COM file are not
bound, nor are text and data files. For example, you would not
bind Wordstar's ".OVR" files, because they run under the control
of WS.COM. You wouldn't bind CBASIC ".INT" or ".BAS" files,
because they run under CRUN.COM or CBAS.COM, respectively.

Don't bind Microlog-supplied applications programs such as
Wordstar or BSTAM - they come preinstalled and ready to run. A
number of independent vendors also package their software bound
with the Baby Blue HEADER - you need to rebind such programs only
when you receive an update of HEADER itself.

Notice that you haven't been asked to learn a separate set of
commands or create a separate set of disks in order to run CP/N
programs. This means that you can call native PC-DOS programs
and CP/M programs from the same disk, and just as important,
those programs can freely exchange data or text files. Because
you continue to operate under PC-DOS, the peripherals already
supported by your system will also work with Baby Blue (e.g.,
printer, hard disk, etc.).

NOTE:

There is one area in which we must depart from standard PC-
DOS practice: while running a program on Baby Blue, do not
attempt a "warm boot" using CTRL-ALT-DEL. This will fiTl"To
properly reset Baby Blue's Z-80 microprocessor, and you will
have to cycle power before using the board again. You may,
of course, use CTRL-ALT-DEL when you are not running a CP/M
program, even with Baby Blue physically installed.

3-4

OPERATION

3.2 MEDIA COHPATIBILITYS ACCESS TO CP/M DISKETTES

3«2I THE PROBLEM OP STAMIAEDS

^Simply by entering the marketplace, IBM created a new set of
standards for the manufacture of personal computers. Although
open to criticism on technical grounds, the IBM PC has been
invaluable »^s a serviceable, if somewhat arbitrary, convention
through which different manufacturers can insure mutual
compatibility of their products.

Incompatibilities have arisen as manufacturers strain against
some of the PC's limitations, and it is always possible that IBM
will someday violate or completely overturn its own standard, as
it has repeatedly done in the past. In the main, however, the
standard has been successful, and in both hardware and software
the owner of an 8088 microprocessor-based personal computer
eri'joys much greater freedom of choice than was possible before
the advent of the IBM PC. For example, almost all PC-DOS or MS-
DOS machines can exchange 5" floppy diskettes, with little or no
difficulty. This may seem natural if you have such a machine,
but it represents a tremendous advance.

As a standard operating system, CP/M-80 permitted microcomputer
software to reach a new level of maturity, since it became
possible for a manufacturer to develop application programs for a
broad base of otherwise heterogenous equipment. However, except
.for a single 8" CP/M disk format, no standard medium existed for
Ftransferring files from one manufacturer's microcomputer to
another's. It was still necessary to publish the same program in
a variety of machine-specific disk formats, and it was almost
impossible for the average user of 5" diskettes to transfer even
data or text files between different machines. Media
compatibility remains one of the technically most vexing issues
facing users of CP/M-80 applications programs.

Baby Blue avoids the issue as much as possible by using the
standard PC-DOS format, which means complete compatibility within
your system and maximum flexibility in communicating with other
similar systems. Most vendors now offer their CP/M software
already on PC-DOS formatted diskettes, in what is often called
the "Baby Blue format".

3.22 MICROLOG FILE TRANSFER UTILITIES

3.221 5" CP/M Diskettes

Baby Blue comes with CONVERT, a utility which enables you to
transfer files between PC-DOS disks and a number of popular CP/M-
80 formats (See Appendix, under CONVERT). You can purchase
^software in one of these formats, but we strongly recommend
robtaining PC-DOS diskettes whenever possible. You should be aware
that although you will have a wider choice of available software
than you normally would if you owned a CP/M-80 based machine, you
may still run across an incompatible format, especially if you

3-5

OPBRATJ.ON

are trying to transfer files from other machines, some of which
may not even be fully compatible with others of the same
manufacture. Future updates may extend the list of formats
available under CONVERT, but limitations in IBM's disk controller
hardware make a number of formats forever problematical.

3.222 8" Diskettes

Microlog manufactures an 8" disk drive controller for the IBM PC
which will format, read and write standard 8" CP/M diskettes
(single-sided, single-density). This is the only standard medium
for file transfer in the CP/M world, and gives you access to
practically all published CP/M software. The controller supports
up to four standard 8" floppy drives, and can store a maximum
of 1.25 Megabytes on a double-sided, double-density PC-DOS dis
kette. It also supports the PC-DOS standard single-sided, single
density 8" format. A separately sold utility, called REFORMATTER,
provides access to the IBM 8" floppy diskette format (3741), used
as a transfer medium by IBM minicomputers and mainframes.

3.23 SERIAL COMMONICATICMS

If you must import files from a machine with an incompatible disk
format, and you can set up a working serial line between the two
machines, you can use BSTAM (Byrom Software Telecommunications
Access Method), which comes preconfigured for your Baby Blue.
This is a sophisticated but easy to use communications program,
capable of high-speed, error-free data transfer, bypassing
entirely the question of media compatibility.

BSTAM will only talk to BSTAM, which means that you must acquire
it separately in a suitable version for the other end of the
line. This will generally be true of any program which can
transmit COM or binary data files, because error-checking
must be very precise, necessitating a very specialized protocol.

The requirements are somewhat relaxed for ordinary text or data
files, consisting purely of ASCII characters. Dissimilar
utilities can exchange such files, but error checking is often
rudimentary or non-existent; we don't recommend this mode of
transmission for sensitive data. Also, don't try to send COM
files in ASCII mode - ASCII transmissions preserve only the first
seven bits of each eight-bit data "word" - the loss of one bit
out of every eight renders a COM file completely useless.

3.24 OTHER ALTERNATIVES

For one hundred dollars per source diskette (less in quantity),
Microlog can transfer your files to a PC-DOS 5" diskette from
practically any soft-sectored CP/M diskette. The fee is payable
in advance, but will be refunded if the transfer is unsuccessful.
Microlog will also assist software producers who wish to publish
their CP/M software completely ready to run on PC-DOS diskettes.

3-6

OPERATION

3.3 IMPORTING CP/M PROGRAMS! COMPATIBILITY

3.31 OBPINITIOH

I To run on Baby Blue, a CP/M program must be:

1) Compatible with CP/M-80 version 2.2

"Version 2,2" represents an update of the original CP/H-80
operating system, with enhanced capabilities. Generally,
any program written for an earlier version (lower number)
will be compatible. Do not confuse CP/N-80 with CP/M-86,
which is an alternative to PC-DOS and doesn't need Baby Blue
to run on your computer.

2) Installable to a Televideo 950 terminal:

A program controls your video display using codes .which are
defined not by the operating system itself, but by the
manufacturers of the leading display terminals. Since CP/M-
80 programs are published to work with a variety of
terminals, they generally come with an installation module
which asks you to choose your terminal from a list of
available options.

Thus, in addition to emulating for your program's benefit
the environment of a CP/M operating system, HEADER must also
pretend to be one of the standard terminals for which CP/M-
80 programs were written. We have chosen the very popular
Televideo 950 terminal as our model - you will find that
this choice assures compatibility with the widest range of
available programs (programs will also work if they're in
stallable to the ADM-3A, which is a subset of the Televideo
950).

In general. Baby Blue supports programs which have proven trans
portable between hative CP/M-80 systems; that is, most reputable
commercially published software. Incompatibility arises when a
program depends upon nonstandard or questionable techniques
which, though workable in a particular implementation of CP/M,
would be considered unsound by the CP/M community aS a whole.

3.32 TEXT AND DATA FILES

Since Baby Blue operates under PC-DOS, it writes all files
directly to PC-DOS diskettes. Its files are therefore PC-DOS
files, available to any program, whether it be a native 8088
program or a CP/M program running on Baby Blue.

You will find this especially useful in a number of cases where
only some of the programs in a particular family are available in
PC-DOS versions. You can mix and match CP/M and PC-DOS modules,
as long as they communicate by exchanging text/data files.

3-7

OPBRATJ.ON

are trying to transfer files from other machines, some of which
may not even be fully compatible with others of the same
manufacture. Future updates may extend the list of formats
available under CONVERT, but limitations in IBM's disk controller
hardware make a number of formats forever problematical.

3.222 8" Diskettes

Microlog manufactures an 8" disk drive controller for the IBM PC
which will format, read and write standard 8" CP/M diskettes
(single-sided, single-density). This is the only standard medium
for file transfer in the CP/M world, and gives you access to
practically all published CP/M software. The controller supports
up to four standard 8" floppy drives, and can store a maximum
of 1.25 Megabytes on a double-sided, double-density PC-DOS dis
kette. It also supports the PC-DOS standard single-sided, single
density 8" format. A separately sold utility, called REFORMATTER,
provides access to the IBM 8" floppy diskette format (3741), used
as a transfer medium by IBM minicomputers and mainframes.

3.23 SERIAL COMMONICATICMS

If you must import files from a machine with an incompatible disk
format, and you can set up a working serial line between the two
machines, you can use BSTAM (Byrom Software Telecommunications
Access Method), which comes preconfigured for your Baby Blue.
This is a sophisticated but easy to use communications program,
capable of high-speed, error-free data transfer, bypassing
entirely the question of media compatibility.

BSTAM will only talk to BSTAM, which means that you must acquire
it separately in a suitable version for the other end of the
line. This will generally be true of any program which can
transmit COM or binary data files, because error-checking
must be very precise, necessitating a very specialized protocol.

The requirements are somewhat relaxed for ordinary text or data
files, consisting purely of ASCII characters. Dissimilar
utilities can exchange such files, but error checking is often
rudimentary or non-existent; we don't recommend this mode of
transmission for sensitive data. Also, don't try to send COM
files in ASCII mode - ASCII transmissions preserve only the first
seven bits of each eight-bit data "word" - the loss of one bit
out of every eight renders a COM file completely useless.

3.24 OTHER ALTERNATIVES

For one hundred dollars per source diskette (less in quantity),
Microlog can transfer your files to a PC-DOS 5" diskette from
practically any soft-sectored CP/M diskette. The fee is payable
in advance, but will be refunded if the transfer is unsuccessful.
Microlog will also assist software producers who wish to publish
their CP/M software completely ready to run on PC-DOS diskettes.

3-6

OPERATION

3.3 IMPORTING CP/M PROGRAMS! COMPATIBILITY

3.31 OBPINITIOH

I To run on Baby Blue, a CP/M program must be:

1) Compatible with CP/M-80 version 2.2

"Version 2,2" represents an update of the original CP/H-80
operating system, with enhanced capabilities. Generally,
any program written for an earlier version (lower number)
will be compatible. Do not confuse CP/N-80 with CP/M-86,
which is an alternative to PC-DOS and doesn't need Baby Blue
to run on your computer.

2) Installable to a Televideo 950 terminal:

A program controls your video display using codes .which are
defined not by the operating system itself, but by the
manufacturers of the leading display terminals. Since CP/M-
80 programs are published to work with a variety of
terminals, they generally come with an installation module
which asks you to choose your terminal from a list of
available options.

Thus, in addition to emulating for your program's benefit
the environment of a CP/M operating system, HEADER must also
pretend to be one of the standard terminals for which CP/M-
80 programs were written. We have chosen the very popular
Televideo 950 terminal as our model - you will find that
this choice assures compatibility with the widest range of
available programs (programs will also work if they're in
stallable to the ADM-3A, which is a subset of the Televideo
950).

In general. Baby Blue supports programs which have proven trans
portable between hative CP/M-80 systems; that is, most reputable
commercially published software. Incompatibility arises when a
program depends upon nonstandard or questionable techniques
which, though workable in a particular implementation of CP/M,
would be considered unsound by the CP/M community aS a whole.

3.32 TEXT AND DATA FILES

Since Baby Blue operates under PC-DOS, it writes all files
directly to PC-DOS diskettes. Its files are therefore PC-DOS
files, available to any program, whether it be a native 8088
program or a CP/M program running on Baby Blue.

You will find this especially useful in a number of cases where
only some of the programs in a particular family are available in
PC-DOS versions. You can mix and match CP/M and PC-DOS modules,
as long as they communicate by exchanging text/data files.

3-7

OPERATION

Keep in mind that not all programs can exchange data files - the
file may contain control codes and delimiters which are properly
interpreted only by a certain class of programs - for example,
Wordstar/Infostar compatible programs won't read DBASBII files
without translation, and vice-versa. This is true even for
programs running on the same machine under the same operating
system, and has nothing to do with transferring files between PC-
DOS and CP/M.

3.33 OPERATING CONSIDERATIONS

Some CP/M programs will run on Baby Blue, but show operational
peculiarities, due to differences between CP/M and PC-DOS. Most
problems result from "thinking CP/M", that is, when a program's
documentation or your own experience leads you to expect features
which are either not supported or are handled differently under
PC-DOS. The common areas of concern are listed below.

Transient Program Area (TPA)

Baby Blue's TPA is more than 63 Kilobytes. This is the
memory available to a CP/M program, and defines the maximum
size of the program you can run. 63K is very large in CP/M
terms - you won't run across programs which are too large
for Baby Blue. Note that HEADER is not part of this overhead
- it runs in system memory, not in Baby Blue's TPA.

CP/M Resident Commands

Use PC-DOS commands for operations like rename file,
directory, erase, etc. CP/M resident commands are not
emulated.

CP/M Transient Commands

DDT, ASM, and LOAD will run. File-oriented commands, such as
PIP and STAT may run but with poor or misleading results.
Use PC-DOS equivalents (e.g. COPY, CHKDSK). Duplicate the
SAVE function by running DDT under DEBUG (See "Applications
Notes", in the Appendix).

Line Editing

PC-DOS does not support CP/M line editing commands (e.g.
CTRL-U, CTRL-R). Use PC-DOS commands, which are assigned
to special function keys.

Enter ing Responses

You will often have to end a typed response by striking
Return, where the same program on a CP/M system would not
require it.

3-8

OPERATION

Submit ■4,
Not supported - use PC-DOS .BAT files for batch operations.
This provides a primitive way of chaining when.no other
means is available, and is one way that a CP/M program can
be chained to a native PC-DOS program. The Hicrolog Extended
BDOS Call 247 provides a more elegant method.

Note that although $$$.SUB is. not supported, it is possible
to edit a PC-DOS .BAT file while executing that same file.
If the changes are made to an as yet unexecuted command
line, they will take effect during the current execution of
the .BAT file. Thus a .BAT file can support conditional
chaining

PC-DOS doesn't distinguish between different logical devices
(e.g. printers). Therefore a CP/H program that relies on
this distinction, using the CP/H I/O Byte, will- only address
a single device when running on Baby Blue. The byte found
at location 0003H in Baby Blue's memory does not contain the
usual parameters for I/O redirection; instead, the high-
order nibble contains the Segment number at which HEADER
found the board.

Users

PC-DOS doesn't support multiple users. HEADER will always
default to User 0.

Case ^n File Names

PC-DOS treats all filename characters as upper case. Some
CP/M programs rely on the distinction between upper and
lower case filenames.

Read Only

Not supported under PC-DOS. CP/H supports a software "write
protect" which prevents writing to a disk under certain
circumstances, even though it is not physically write
protected.

Aborting With CTRL-C

You may use CTRL-C to abort a CP/H program which supports
it. This will return you to PC-DOS without rebooting your
system. In contrast to normal CP/H usage, a CTRL-C will
cause an abort when typed anywhere in a line, not merely at
the beginning.

3-9

OPERATION

Keep in mind that not all programs can exchange data files - the
file may contain control codes and delimiters which are properly
interpreted only by a certain class of programs - for example,
Wordstar/Infostar compatible programs won't read DBASBII files
without translation, and vice-versa. This is true even for
programs running on the same machine under the same operating
system, and has nothing to do with transferring files between PC-
DOS and CP/M.

3.33 OPERATING CONSIDERATIONS

Some CP/M programs will run on Baby Blue, but show operational
peculiarities, due to differences between CP/M and PC-DOS. Most
problems result from "thinking CP/M", that is, when a program's
documentation or your own experience leads you to expect features
which are either not supported or are handled differently under
PC-DOS. The common areas of concern are listed below.

Transient Program Area (TPA)

Baby Blue's TPA is more than 63 Kilobytes. This is the
memory available to a CP/M program, and defines the maximum
size of the program you can run. 63K is very large in CP/M
terms - you won't run across programs which are too large
for Baby Blue. Note that HEADER is not part of this overhead
- it runs in system memory, not in Baby Blue's TPA.

CP/M Resident Commands

Use PC-DOS commands for operations like rename file,
directory, erase, etc. CP/M resident commands are not
emulated.

CP/M Transient Commands

DDT, ASM, and LOAD will run. File-oriented commands, such as
PIP and STAT may run but with poor or misleading results.
Use PC-DOS equivalents (e.g. COPY, CHKDSK). Duplicate the
SAVE function by running DDT under DEBUG (See "Applications
Notes", in the Appendix).

Line Editing

PC-DOS does not support CP/M line editing commands (e.g.
CTRL-U, CTRL-R). Use PC-DOS commands, which are assigned
to special function keys.

Enter ing Responses

You will often have to end a typed response by striking
Return, where the same program on a CP/M system would not
require it.

3-8

OPERATION

Submit ■4,
Not supported - use PC-DOS .BAT files for batch operations.
This provides a primitive way of chaining when.no other
means is available, and is one way that a CP/M program can
be chained to a native PC-DOS program. The Hicrolog Extended
BDOS Call 247 provides a more elegant method.

Note that although $$$.SUB is. not supported, it is possible
to edit a PC-DOS .BAT file while executing that same file.
If the changes are made to an as yet unexecuted command
line, they will take effect during the current execution of
the .BAT file. Thus a .BAT file can support conditional
chaining

PC-DOS doesn't distinguish between different logical devices
(e.g. printers). Therefore a CP/H program that relies on
this distinction, using the CP/H I/O Byte, will- only address
a single device when running on Baby Blue. The byte found
at location 0003H in Baby Blue's memory does not contain the
usual parameters for I/O redirection; instead, the high-
order nibble contains the Segment number at which HEADER
found the board.

Users

PC-DOS doesn't support multiple users. HEADER will always
default to User 0.

Case ^n File Names

PC-DOS treats all filename characters as upper case. Some
CP/M programs rely on the distinction between upper and
lower case filenames.

Read Only

Not supported under PC-DOS. CP/H supports a software "write
protect" which prevents writing to a disk under certain
circumstances, even though it is not physically write
protected.

Aborting With CTRL-C

You may use CTRL-C to abort a CP/H program which supports
it. This will return you to PC-DOS without rebooting your
system. In contrast to normal CP/H usage, a CTRL-C will
cause an abort when typed anywhere in a line, not merely at
the beginning.

3-9

OPERATION

3.4 BABY BLDK AS A CP/M DEVELOPMENT SYSTEM

Baby Blue makes an excellent tool for CP/M program development.
Most CP/H-80 compilers, interpreters, and development utilities
(including SID and DDT) have been thoroughly tested on Baby Blue;
their maturity and depth often makes these tools preferable even
where PC-DOS equivalents exist. Because of its relatively large
Transient Program Area (63K), Baby Blue can handle larger
development files than most CP/M systems.

Since you know that any COM files you produce will need HEADER to
run on Baby Blue, you will want to know whether this is going to
be a problem. Do you have to bind the COM files you create? How
do you get HEADER off again when you want to work on them? What
about chaining between programs?

Again, the rule is transparency - as far as you're concerned,
except when transferring programs to and from a native CP/M
system, you can forget that HEADER is there. A development tool
is like any other program - once you've bound it, it handles
operating system transactions automatically, and all files are
produced ready to use.

3.41 TRANSPARENCY OF HEADER DEFINED

The following are the formal rules by which HEADER handles files
containing HEADER itself. We've expanded the discussion to
include the most relevant cases.

Please note carefully that the rules apply only when under the
control of HEADER, that is, when running a CP/M-80 program on
Baby Blue - native PC-DOS programs will not recognize the
presence of HEADER. Also note that in the case of interpreters
and pseudo-compilers (e.g. CBASIC) which do not produce COM
files, HEADER is not even part of your program files - it is
bound only to the run-time module or interpreter.

3.411 Rule I: Creating COM Files

New COM files are automatically written with HEADER attached. The
program which creates the file copies its own HEADER to the new
file.

A) new files are produced ready to run under PC-DOS.

B) HEADER need not be present as a separate file.

C) any variables stored in HEADER, such as KEYFIXed function
key definitions, will be transferred from the creating
program to the new file.

D) output files with an extension other than "COM" are never
written with HEADER attached. "*

OPERATKNI!

E) Files received from another computer by a CP/M serial commu
nications program, such as the Microlog-supplied BSTAM, will
also be bound if they are written to disk with the extensioc
"COM".

3.412 Rule II: Opening Existing COM Files

HEADER is skipped, and the file is opened at the first line oi
the program itself.

A) When debugging a COM file (e.g. under DDT), everything i:
where you expect to find It, not offset to account foi
header's extra code.

B) You can chain to bound CP/M programs.

3.413 Rule III: Copying COM Files

This is not a new definition, but a consequence of the rules foi
opening an existing file and creating a new one. In copying ai
existing COM file, the input (original) file is read without
HEADER, and the output (copy) is a newly created file which obeyi
Rule I.

Note: These rules do not apply to COPY or other PC-DOS utilities
which have no provision for any special handling of HEADER.

A) If you copy a COM file to a file with some other extensioi
(e.g. ".CPM"), the new copy won't contain HEADER. This ii
because the input file is read (opened) without HEADER, am
since the output is not a COM file, it is written as is
again without HEADER.

B) If the copy is also a COM file, it will contain not thi
HEADER of the input file, but rather the HEADER of thi
program which does the copying - this is true even if thi
input and output filenames are exactly the same. Thi
distinction is academic unless the two HEADERS at'
different, either with respect to version number, or ti
variable information.

1) This is one way to automatically transfer a whole se
of function key definitions to a new file - just KEYFI
some COM file capable of performing a COPY operatio
(most text editors have this facility), and the
"graft" the KEYFIXed HEADER on to any number of file
simply by copying them.

2) It's important that installation modules be KEYFIXei
identically to the applications programs they are mean
to serve. Otherwise, when you process (copy) the appli
cations program to install it, you'll lose you
function key definitions, since the installed copy wil
have lost its original HEADER.

OPERATION

3.4 BABY BLDK AS A CP/M DEVELOPMENT SYSTEM

Baby Blue makes an excellent tool for CP/M program development.
Most CP/H-80 compilers, interpreters, and development utilities
(including SID and DDT) have been thoroughly tested on Baby Blue;
their maturity and depth often makes these tools preferable even
where PC-DOS equivalents exist. Because of its relatively large
Transient Program Area (63K), Baby Blue can handle larger
development files than most CP/M systems.

Since you know that any COM files you produce will need HEADER to
run on Baby Blue, you will want to know whether this is going to
be a problem. Do you have to bind the COM files you create? How
do you get HEADER off again when you want to work on them? What
about chaining between programs?

Again, the rule is transparency - as far as you're concerned,
except when transferring programs to and from a native CP/M
system, you can forget that HEADER is there. A development tool
is like any other program - once you've bound it, it handles
operating system transactions automatically, and all files are
produced ready to use.

3.41 TRANSPARENCY OF HEADER DEFINED

The following are the formal rules by which HEADER handles files
containing HEADER itself. We've expanded the discussion to
include the most relevant cases.

Please note carefully that the rules apply only when under the
control of HEADER, that is, when running a CP/M-80 program on
Baby Blue - native PC-DOS programs will not recognize the
presence of HEADER. Also note that in the case of interpreters
and pseudo-compilers (e.g. CBASIC) which do not produce COM
files, HEADER is not even part of your program files - it is
bound only to the run-time module or interpreter.

3.411 Rule I: Creating COM Files

New COM files are automatically written with HEADER attached. The
program which creates the file copies its own HEADER to the new
file.

A) new files are produced ready to run under PC-DOS.

B) HEADER need not be present as a separate file.

C) any variables stored in HEADER, such as KEYFIXed function
key definitions, will be transferred from the creating
program to the new file.

D) output files with an extension other than "COM" are never
written with HEADER attached. "*

OPERATKNI!

E) Files received from another computer by a CP/M serial commu
nications program, such as the Microlog-supplied BSTAM, will
also be bound if they are written to disk with the extensioc
"COM".

3.412 Rule II: Opening Existing COM Files

HEADER is skipped, and the file is opened at the first line oi
the program itself.

A) When debugging a COM file (e.g. under DDT), everything i:
where you expect to find It, not offset to account foi
header's extra code.

B) You can chain to bound CP/M programs.

3.413 Rule III: Copying COM Files

This is not a new definition, but a consequence of the rules foi
opening an existing file and creating a new one. In copying ai
existing COM file, the input (original) file is read without
HEADER, and the output (copy) is a newly created file which obeyi
Rule I.

Note: These rules do not apply to COPY or other PC-DOS utilities
which have no provision for any special handling of HEADER.

A) If you copy a COM file to a file with some other extensioi
(e.g. ".CPM"), the new copy won't contain HEADER. This ii
because the input file is read (opened) without HEADER, am
since the output is not a COM file, it is written as is
again without HEADER.

B) If the copy is also a COM file, it will contain not thi
HEADER of the input file, but rather the HEADER of thi
program which does the copying - this is true even if thi
input and output filenames are exactly the same. Thi
distinction is academic unless the two HEADERS at'
different, either with respect to version number, or ti
variable information.

1) This is one way to automatically transfer a whole se
of function key definitions to a new file - just KEYFI
some COM file capable of performing a COPY operatio
(most text editors have this facility), and the
"graft" the KEYFIXed HEADER on to any number of file
simply by copying them.

2) It's important that installation modules be KEYFIXei
identically to the applications programs they are mean
to serve. Otherwise, when you process (copy) the appli
cations program to install it, you'll lose you
function key definitions, since the installed copy wil
have lost its original HEADER.

OPERATION

RErBRnig

3,414 Rule IV: Opeoiog Unbound COM Files

If a COM file does not contain HEADER, a "not found" error is
returned when you attempt to open it.

A) A 16-bit program cannot be called as an overlay to a CP/M
program.

B) An unbound CP/M program can be called as an overlay, but
only if its extension is not "COM".

3.42 EXPORTING PROGRAMS

As you have seen, there is never a need to remove HEADER while a
program is running under PC-DOS; however, it must come off
before the program will run on a native CP/M system. Any of the
following will work:

1) Use the Microlog utility STRIP.

2) Transfer the file to a CP/M diskette under CONVERT.

3) Under the control of a CP/M program (not a PC-DOS
utility), copy the file to an extension other than-
"COM".

4) Transmit the file using a CP/M serial communications
program such as the Microlog-supplied BSTAM.

STRIP is a native program and does not require a Baby Blue to
work. The other methods work according to the formal rules set
forth above - they all contain HEADER, and produce an output file
which is not a PC-DOS COM file. For example, the file actually
transmitted by the communications program appears to the
operating system under a different name, usually with an
extension like

Once HEADER is removed, COM files are fully transportable from
the Baby Blue to other CP/M systems. You must, of course, pro
vide for different terminal standards, and your program must fit
within the TPA (Transient Program Area) of the target system,
which will typically be much smaller than Baby Blue's.

3-12

4. BABY BLUE REFERENCE MANUAL

4.1 INTRODUCTION

Baby Blue function^ as an emulated CP/M environment, occupying a
single 64K Page (Segment), within the host 8088 microprocessor*fl
memory space. Memory is dual-ported, directly accessible ta
either the Z-80 or the 8088 - arbitration circuitry automatically
ensures that only one processor has access to the bus at any
vgiven time. The Z-80 is addressed separately from memory as a
device in the 8088's I/O map, through physically distinct
decoding circuitry. Therefore, the 8088 can treat Baby Blue'a
segment as an ordinary 64K memory expansion whenever the Z-80 ia
not executing a program.

During native PC-DOS program execution, the Z-80 is in a HALTed
state, during which it executes a bare memory refresh cycle:
dummy "Read" operations on each address in turn, taking no actioc
on the stored information. The effect is to physically maintaic
the electrical level at each location in Baby Blue's memory, sc
that the information there remains intact. The two processor!
alternate control of Baby Blue's memory according to the hand
shaking scheme described in "Hardware Functions".

This chapter explains how HEADER drives Baby Blue, and converse
ly, how a CP/M program running on the Baby Blue gains access tc
host system functions. Since handshaking and memory arbitratioi
are hard-wired, applications can and have been written which d<
not use HEADER functions at all; however, the discussion ol
HEADER illustrates all relevant issues, divided as follows:

Control Functions

Describes overall system layout and flow of control durinc
CP/M program execution.

Operating System Translator

Details the conversion of standard CP/M function calls t(
their PC-DOS equivalents.

Console Emulation

Describes the action of the Televideo 950 Emulator, with i
complete list of implemented control sequences.

Extended BDOS Function Calls

Introduces a special series of CP/M-style function calls,
enabling a program running on Baby Blue to utilize host
system memory, interrupt facilities, and I/O ports.

4-1

OPERATION

RErBRnig

3,414 Rule IV: Opeoiog Unbound COM Files

If a COM file does not contain HEADER, a "not found" error is
returned when you attempt to open it.

A) A 16-bit program cannot be called as an overlay to a CP/M
program.

B) An unbound CP/M program can be called as an overlay, but
only if its extension is not "COM".

3.42 EXPORTING PROGRAMS

As you have seen, there is never a need to remove HEADER while a
program is running under PC-DOS; however, it must come off
before the program will run on a native CP/M system. Any of the
following will work:

1) Use the Microlog utility STRIP.

2) Transfer the file to a CP/M diskette under CONVERT.

3) Under the control of a CP/M program (not a PC-DOS
utility), copy the file to an extension other than-
"COM".

4) Transmit the file using a CP/M serial communications
program such as the Microlog-supplied BSTAM.

STRIP is a native program and does not require a Baby Blue to
work. The other methods work according to the formal rules set
forth above - they all contain HEADER, and produce an output file
which is not a PC-DOS COM file. For example, the file actually
transmitted by the communications program appears to the
operating system under a different name, usually with an
extension like

Once HEADER is removed, COM files are fully transportable from
the Baby Blue to other CP/M systems. You must, of course, pro
vide for different terminal standards, and your program must fit
within the TPA (Transient Program Area) of the target system,
which will typically be much smaller than Baby Blue's.

3-12

4. BABY BLUE REFERENCE MANUAL

4.1 INTRODUCTION

Baby Blue function^ as an emulated CP/M environment, occupying a
single 64K Page (Segment), within the host 8088 microprocessor*fl
memory space. Memory is dual-ported, directly accessible ta
either the Z-80 or the 8088 - arbitration circuitry automatically
ensures that only one processor has access to the bus at any
vgiven time. The Z-80 is addressed separately from memory as a
device in the 8088's I/O map, through physically distinct
decoding circuitry. Therefore, the 8088 can treat Baby Blue'a
segment as an ordinary 64K memory expansion whenever the Z-80 ia
not executing a program.

During native PC-DOS program execution, the Z-80 is in a HALTed
state, during which it executes a bare memory refresh cycle:
dummy "Read" operations on each address in turn, taking no actioc
on the stored information. The effect is to physically maintaic
the electrical level at each location in Baby Blue's memory, sc
that the information there remains intact. The two processor!
alternate control of Baby Blue's memory according to the hand
shaking scheme described in "Hardware Functions".

This chapter explains how HEADER drives Baby Blue, and converse
ly, how a CP/M program running on the Baby Blue gains access tc
host system functions. Since handshaking and memory arbitratioi
are hard-wired, applications can and have been written which d<
not use HEADER functions at all; however, the discussion ol
HEADER illustrates all relevant issues, divided as follows:

Control Functions

Describes overall system layout and flow of control durinc
CP/M program execution.

Operating System Translator

Details the conversion of standard CP/M function calls t(
their PC-DOS equivalents.

Console Emulation

Describes the action of the Televideo 950 Emulator, with i
complete list of implemented control sequences.

Extended BDOS Function Calls

Introduces a special series of CP/M-style function calls,
enabling a program running on Baby Blue to utilize host
system memory, interrupt facilities, and I/O ports.

4-1

REFBRENCB

Hardware Functions;

Describes not HEADER, but the physical structure of the
board, covering memory arbitration (handshaking), address
decoding, and available control lines (port structure).

4-2

Mf/Ct9Li

4.2 COMTROL gOMCTIOMS

The process of tunning a CP/M program begins when PC-DOS loads
the program from disk, into system memory. Execution begins J
with the first byte of HEADER, which is written in code native to
the 8088.

First, HEADER "polls" system memory to find out where Baby Blue'
ik installed. Starting on Page 1, it saves the contents of a
short address space, then uses that space to write a program,
instructing the Z-80 to set a "Found" flag within Baby Blue's
memory. The HALT state is lifted, activating the Z-80. If a
valid "Found" is returned, HEADER knows it has found Baby Blue,-
If not, HEADER restores the original contents of the borrowed
locations, and the poll is repeated for the next segment, up to
Page B, covering all possible locations. If a valid "Found" is
not returned, control returns to the operating system, and the*
message "No Baby Blue Installed" appears on the screen.

Once the Z-80 is found, it enters a tight polling loop starting
at location FE20H, and waits while HEADER constructs a simulated
CP/M environment within PC-DOS. The first task is to install a
Televideo 950 Console Emulator in system memory to handle

I keyboard and monitor transactions, by rerouting traffic through a
'new set of console drivers. The host drivers remain intact but
disabled.

Baby Blue's memory receives an abridged CP/M operating system and
the CP/M program itself (See Table 4-1). The bottom 256 bytes
hQld the usual CP/M system-control parameters: for example, the
expected jump table vectors are at 0000H and 0005H. The I/O Byte
normally at 0003H is not implemented; instead, the high order
nibble at this location holds the segment number at which
HEADER'S polls located Baby Blue. The top 500 or so bytes contain
the Z-80 portion of the Operating System Translator, which me
diates between a CP/M program's function calls and PC-DOS. The
bulk of Baby Blue's memory, starting at location 100H, is TPA
(Transient Program Area) - the area used to run CP/M programs.

Those familiar with CP/M memory layout will notice at once the
very large "true" TPA - more than 63K entirely reserved for
program execution. In an ordinary CP/M-80 environment, the
boundaries of the memory map are also 64K wide, because that is
the largest memory space which the Z-80 can directly address.
Normally, large sections of that memory are taken up with
elements of the operating system, imposing such severe

I constraints that a major element of the operating system (the
CCP, or Console Command Processor) is routinely overwritten in
memory when a transient program is loaded. This increases the
available TPA, but means that the CCP must be reloaded from the
system diskette every time you exit a program and return to the

4-3

REFBRENCB

Hardware Functions;

Describes not HEADER, but the physical structure of the
board, covering memory arbitration (handshaking), address
decoding, and available control lines (port structure).

4-2

Mf/Ct9Li

4.2 COMTROL gOMCTIOMS

The process of tunning a CP/M program begins when PC-DOS loads
the program from disk, into system memory. Execution begins J
with the first byte of HEADER, which is written in code native to
the 8088.

First, HEADER "polls" system memory to find out where Baby Blue'
ik installed. Starting on Page 1, it saves the contents of a
short address space, then uses that space to write a program,
instructing the Z-80 to set a "Found" flag within Baby Blue's
memory. The HALT state is lifted, activating the Z-80. If a
valid "Found" is returned, HEADER knows it has found Baby Blue,-
If not, HEADER restores the original contents of the borrowed
locations, and the poll is repeated for the next segment, up to
Page B, covering all possible locations. If a valid "Found" is
not returned, control returns to the operating system, and the*
message "No Baby Blue Installed" appears on the screen.

Once the Z-80 is found, it enters a tight polling loop starting
at location FE20H, and waits while HEADER constructs a simulated
CP/M environment within PC-DOS. The first task is to install a
Televideo 950 Console Emulator in system memory to handle

I keyboard and monitor transactions, by rerouting traffic through a
'new set of console drivers. The host drivers remain intact but
disabled.

Baby Blue's memory receives an abridged CP/M operating system and
the CP/M program itself (See Table 4-1). The bottom 256 bytes
hQld the usual CP/M system-control parameters: for example, the
expected jump table vectors are at 0000H and 0005H. The I/O Byte
normally at 0003H is not implemented; instead, the high order
nibble at this location holds the segment number at which
HEADER'S polls located Baby Blue. The top 500 or so bytes contain
the Z-80 portion of the Operating System Translator, which me
diates between a CP/M program's function calls and PC-DOS. The
bulk of Baby Blue's memory, starting at location 100H, is TPA
(Transient Program Area) - the area used to run CP/M programs.

Those familiar with CP/M memory layout will notice at once the
very large "true" TPA - more than 63K entirely reserved for
program execution. In an ordinary CP/M-80 environment, the
boundaries of the memory map are also 64K wide, because that is
the largest memory space which the Z-80 can directly address.
Normally, large sections of that memory are taken up with
elements of the operating system, imposing such severe

I constraints that a major element of the operating system (the
CCP, or Console Command Processor) is routinely overwritten in
memory when a transient program is loaded. This increases the
available TPA, but means that the CCP must be reloaded from the
system diskette every time you exit a program and return to the

4-3

REF/CTRL

system level. No such overwcite takes place on Baby Blue, since
the permanently available TPA is definitely large enough to hold
any CP/M program.

The source of the extra TPA is that with very minor exceptions,
the entire operating system resides in the memory of the host and
is managed by the 8088. To the extent that the CCP and other
transient routines need not be treated as overlays, execution
speeds increase. A collateral advantage is that it is not
necessary to introduce an entire CP/M operating system, with the
result that to the operator, and for the most part to the rest of
the system, the operating system remains the familiar PC-DOS.

At location FFF0H in Baby Blue's memory, there is a one-byte
register which we will call the "semaphore": the contents of this
byte indicate which processor controls the bus. With 'the 8088 in
control, this byte is filled with "l"'s (FFH), which means that
the 8088 is in control. When a CP/M program is fully loaded, the
8088 sets the semaphore to a line of "0"'s (00H), then toggles
the "Start" flag to set the Z-80 running.

At this point, the 8088 is free to conduct normal operations,
using any segment of system memory. HEADER turns it into a
dedicated I/O controller: it locks into a loop of code which
causes it to periodically interrupt the Z-80 and inspect the
contents of the semaphore. As long as the semaphore remains low
(00H), Baby Blue runs at full speed, completely independent of
the host system - except for the 8088's occasional poll, there is
no handshaking to retard execution.

When the CP/M program needs to communicate with the outside
world, it issues a function call to the operating system. Since
the Z-80 has no I/O channels at its disposal, it relies on the
host system to carry out the transaction. The Z-80 posts the
contents of its internal registers in a table just above the
semaphore address, and toggles the semaphore to FFH, surrendering
control to the 8088. Handshaking resumes, with the Z-80 executing
a polling loop of its own to periodically inspect the semaphore.

The 8088 inspects the Z-80 register table for the function call
number and other parameters. The Operating System Translator
translates the CP/M instructions issued by the program into their
logical PC-DOS equivalents, after which it's business as usual
under PC-DOS. Information is returned to the Z-80 register table
and other relevant tables in Baby Blue's memory. Finally, the
8088 resets the semaphore to 00H and lapses into dormancy, pol
ling for another I/O request.

When the Z-80 discovers that the semaphore has changed, it
resumes program execution. At the end of execution, control
returns to the 8088, but not immediately to the system. First
HEADER does a house-cleaning which HALTS the Z-80 and returns the
host operating system to normal, removing all traces of unusual
activity. Only now does HEADER retire, relinquishing control to
PC-DOS.

Table 4-1: Memory Hap

Hexadecimal

Begin Z80 Register Table

Semaphore

Z-80 Portion of Translator

CP/M BIOS Jump Table

CP/M BDOS Jump Table

Transient Program
Area - Space

for User Programs

Page Zero

DMA Address

Second Input Filename

First Input Filename

Jump Vector to BDOS Translation

Not I/O Byte: Contains Baby Blue
Segment Number

Jump Vector to BIOS Jump Table

* Subject to change

REF/CTRL

system level. No such overwcite takes place on Baby Blue, since
the permanently available TPA is definitely large enough to hold
any CP/M program.

The source of the extra TPA is that with very minor exceptions,
the entire operating system resides in the memory of the host and
is managed by the 8088. To the extent that the CCP and other
transient routines need not be treated as overlays, execution
speeds increase. A collateral advantage is that it is not
necessary to introduce an entire CP/M operating system, with the
result that to the operator, and for the most part to the rest of
the system, the operating system remains the familiar PC-DOS.

At location FFF0H in Baby Blue's memory, there is a one-byte
register which we will call the "semaphore": the contents of this
byte indicate which processor controls the bus. With 'the 8088 in
control, this byte is filled with "l"'s (FFH), which means that
the 8088 is in control. When a CP/M program is fully loaded, the
8088 sets the semaphore to a line of "0"'s (00H), then toggles
the "Start" flag to set the Z-80 running.

At this point, the 8088 is free to conduct normal operations,
using any segment of system memory. HEADER turns it into a
dedicated I/O controller: it locks into a loop of code which
causes it to periodically interrupt the Z-80 and inspect the
contents of the semaphore. As long as the semaphore remains low
(00H), Baby Blue runs at full speed, completely independent of
the host system - except for the 8088's occasional poll, there is
no handshaking to retard execution.

When the CP/M program needs to communicate with the outside
world, it issues a function call to the operating system. Since
the Z-80 has no I/O channels at its disposal, it relies on the
host system to carry out the transaction. The Z-80 posts the
contents of its internal registers in a table just above the
semaphore address, and toggles the semaphore to FFH, surrendering
control to the 8088. Handshaking resumes, with the Z-80 executing
a polling loop of its own to periodically inspect the semaphore.

The 8088 inspects the Z-80 register table for the function call
number and other parameters. The Operating System Translator
translates the CP/M instructions issued by the program into their
logical PC-DOS equivalents, after which it's business as usual
under PC-DOS. Information is returned to the Z-80 register table
and other relevant tables in Baby Blue's memory. Finally, the
8088 resets the semaphore to 00H and lapses into dormancy, pol
ling for another I/O request.

When the Z-80 discovers that the semaphore has changed, it
resumes program execution. At the end of execution, control
returns to the 8088, but not immediately to the system. First
HEADER does a house-cleaning which HALTS the Z-80 and returns the
host operating system to normal, removing all traces of unusual
activity. Only now does HEADER retire, relinquishing control to
PC-DOS.

Table 4-1: Memory Hap

Hexadecimal

Begin Z80 Register Table

Semaphore

Z-80 Portion of Translator

CP/M BIOS Jump Table

CP/M BDOS Jump Table

Transient Program
Area - Space

for User Programs

Page Zero

DMA Address

Second Input Filename

First Input Filename

Jump Vector to BDOS Translation

Not I/O Byte: Contains Baby Blue
Segment Number

Jump Vector to BIOS Jump Table

* Subject to change

RBF/COIIODT

REF/CONOOrl

4.3 COMSOLB BMDLATIOM

4.31 DBSCBIPTIOH

Baby Blue's Televideo 950 Emulator installs in two parts: an
output section, which handles all screen output from a CP/M
program, and a keyboard input section, which supports TV950-style
programmable function keys as well as Microlog's own KEYFIX
facility.

4.32 PURPOSB

The Emulator establishes portability of almost all CP/M programs
to Baby Blue's console - that is, any program installable to the
Televideo 950 terminal (or the ADM-3A). The purpose is not to
emulate a Televideo 950 with respect to the operator or a remote
system. Keyboard input is passed straight through without trans
lation - control sequences entered at the keyboard will not alter
video functions, but appear literally as the values typed.

4.33 VIDEO OOTPOT

4.331 Operation

Before loading a CP/M program onto Baby Blue, HEADER replaces the
PC-DOS CONOUT interrupt, diverting control to the TV950 Emulator
and bypassing the host screen driver. As a result, CP/M console
output passes without translation from Baby Blue to the host
system, thence to the Emulator where it is finally interpreted,
still without translating the original CP/M output. CONOUT is
therefore handled by the 8088 under PC-DOS, but while the CP/M
program is running, PC-DOS itself drives the screen through the
TV950 Emulator and not through the usual driver.

4.332 Video Control Codes

Table 4-2 defines the standard set of codes for CP/M programs
running under HEADER. Do not confuse them with keyboard entry
codes - the TV950 keyboard is not emulated, and the presence of
Baby Blue in no way alters the operating features of PC-DOS. The
codes are available only to a transient CP/M program using
successive^ CONOUT function calls. The apparent keystroke
sequences in the chart are for convenient cross-reference, and
should be regarded as mnemonics only.

4-6

i

Table 4-2: Televideo 950 Video Control Codes

Control Sequences:

ASCII ASCII

Mnemonic Decimal Hexadecimal Comment

CTRL G 7 07H Bell

CTRL H 8 08H Backspace/cursor left

CTRL I 9 09H Tab

CTRL J 10 0AH Line feed

CTRL K 11 0BH Cursor up

CTRL L 12 0CH Cursor right

CTRL M 13 0DH Carriage down

CTRL V 22 16H Cursor down

CTRL Z 26 lAH Clear screen

CTRL 30 lEH Home cursor

CTRL 31 IFH New line (carriage ret

'..i

Escape Sequences:

ASCII ASCII

Mnemonic Decimal Hexadecimal

ESC $ 27, 36 IBH, 24H

Comment

Graphics mode on (IBM, not Tele
video, graphics set)

ESC % 27, 27 IBH, 25H Graphics mode off

ESC (27, 40 IBH, 28H Set high intensity

ESC) 27, 41 IBH, 29H Set low intensity

ESC * 27, 42 IBH, 2AH Clear screen

ESC 27, 43 IBH, 2BH Clear screen

ESC 27, 44 IBH, 2CH Clear screen

4-7

RBF/COIIODT

REF/CONOOrl

4.3 COMSOLB BMDLATIOM

4.31 DBSCBIPTIOH

Baby Blue's Televideo 950 Emulator installs in two parts: an
output section, which handles all screen output from a CP/M
program, and a keyboard input section, which supports TV950-style
programmable function keys as well as Microlog's own KEYFIX
facility.

4.32 PURPOSB

The Emulator establishes portability of almost all CP/M programs
to Baby Blue's console - that is, any program installable to the
Televideo 950 terminal (or the ADM-3A). The purpose is not to
emulate a Televideo 950 with respect to the operator or a remote
system. Keyboard input is passed straight through without trans
lation - control sequences entered at the keyboard will not alter
video functions, but appear literally as the values typed.

4.33 VIDEO OOTPOT

4.331 Operation

Before loading a CP/M program onto Baby Blue, HEADER replaces the
PC-DOS CONOUT interrupt, diverting control to the TV950 Emulator
and bypassing the host screen driver. As a result, CP/M console
output passes without translation from Baby Blue to the host
system, thence to the Emulator where it is finally interpreted,
still without translating the original CP/M output. CONOUT is
therefore handled by the 8088 under PC-DOS, but while the CP/M
program is running, PC-DOS itself drives the screen through the
TV950 Emulator and not through the usual driver.

4.332 Video Control Codes

Table 4-2 defines the standard set of codes for CP/M programs
running under HEADER. Do not confuse them with keyboard entry
codes - the TV950 keyboard is not emulated, and the presence of
Baby Blue in no way alters the operating features of PC-DOS. The
codes are available only to a transient CP/M program using
successive^ CONOUT function calls. The apparent keystroke
sequences in the chart are for convenient cross-reference, and
should be regarded as mnemonics only.

4-6

i

Table 4-2: Televideo 950 Video Control Codes

Control Sequences:

ASCII ASCII

Mnemonic Decimal Hexadecimal Comment

CTRL G 7 07H Bell

CTRL H 8 08H Backspace/cursor left

CTRL I 9 09H Tab

CTRL J 10 0AH Line feed

CTRL K 11 0BH Cursor up

CTRL L 12 0CH Cursor right

CTRL M 13 0DH Carriage down

CTRL V 22 16H Cursor down

CTRL Z 26 lAH Clear screen

CTRL 30 lEH Home cursor

CTRL 31 IFH New line (carriage ret

'..i

Escape Sequences:

ASCII ASCII

Mnemonic Decimal Hexadecimal

ESC $ 27, 36 IBH, 24H

Comment

Graphics mode on (IBM, not Tele
video, graphics set)

ESC % 27, 27 IBH, 25H Graphics mode off

ESC (27, 40 IBH, 28H Set high intensity

ESC) 27, 41 IBH, 29H Set low intensity

ESC * 27, 42 IBH, 2AH Clear screen

ESC 27, 43 IBH, 2BH Clear screen

ESC 27, 44 IBH, 2CH Clear screen

4-7

RBF/CONODT

ESC .a

MC

26 IBH, 2EH Set cursor attribute, where
••a**«"attribute", coded as follows:

0 48 30H No cursor
2 50 32H Steady block cursor
4 52 34H Steady underline cursor

ESC « rc 27, 61 IBH, 3DH Position cursor, where r and c are
row and column, with of"fset of 32
(20H) added to each

ESC ? 27, 63 IBH, 3FH Transmit current cursor position
(row, column)

ESC E 27, 69 IBH, 45H Insert line

ESC G a

MC

71 IBH, 47H Set video attribute, where
••a"»"attribute", coded as follows:

0 or e 48, 64 30H, 40H normal
1 or A 49, 65 31H, 41H blank
2 or B 50, 66 32H, 42H blink
3 or C 51, 67 33H, 43H blank
4 or D 52, 68 34H, 44H reverse

5 or E 53, 69 35H, 45H reverse blank
6 or F 54, 70 36H, 46H reverse blink
7 or G 55, 71 37H, 47H reverse blank
8 or H 56, 72 38H, 48H underline
9 or I 57, 73 39H, 49H underline blank
: or J 58, 74 3 AH, 4AH underline blink
} or K 59, 75 3BH, 4BH underline blank
< or L 60, 76 3CH, 4CH underline
» or M 61, 77 3DH, 4DH underline reverse blank
> or N 62, 78 3EH, 4 EH reverse blink
? or 0 63, 79 3FH, 4FH underline reverse blank

The first (numeric) set of values for "a" will also step the
cursor forward one character,
the cursor stationary.

The second (alphabetic) set leaves

ESC Q 27, 81 IBH, 51H Insert character

ESC R 27, 82 IBH, 52H Delete line

ESC T 27, 84 IBH, 54H Clear to end of line

ESC N 27, 78 IBH, 4 EH Set page edit mode

ESC 0 27, 79 IBH, 4FH Set line edit mode

4-8

REF/CONOOT

BSC V c 21, 86 IDH, 56H Sat color, where "c^-^color, code4'?$
as follows:

ESC W

BSC Y

0 48 30H foreground black

1 49 31H foreground blue

2 50 32H foreground green

3 51 33H foreground cyan

4 52 34H foreground red

5 53 35H foreground magenta

6 54 36H foreground brown

7 55 37H foreground white

8 56 38H foreground grey

9 57 39H foreground light blue
: 58 3AH foreground light green
t 59 3BH foreground light cyan
< 60 3CH foreground light red
s 61 3DH foreground light magenta
> 62 3EH foreground yellow
? 63 3FH foreground high-intensity white

0 64 40H background black

A 65 41H background blue

B 66 42H background red

C 67 43H background magenta
D 68 44H background green

E 69 45H background cyan

F 70 46H background brown

G 71 47H background white

H 72 48H border black

I 73 49H border blue

J 74 4AH border green
K 75 4BH border cyan
L 76 4CH border red

N 77 4DH border magenta
N 78 4 EH border brown

0 79 4FH border white
P 80 50H border grey
Q 81 51H border light blue
R 82 52H border light green
S 83 53H border light cyan
T 84 54H border light red
U 85 55H border light magenta
V 86 56H border yellow
W 87 57H border high-intensity white

ro

00

IBH, 57H Delete character

27, 89 IBH, 59H Clear to end of screen

ESC F 27, 102 IBH, 66H
text (user entry)
CR 13 0DH

Load user buffer I
(80 characters max)

4-9

RBF/CONODT

ESC .a

MC

26 IBH, 2EH Set cursor attribute, where
••a**«"attribute", coded as follows:

0 48 30H No cursor
2 50 32H Steady block cursor
4 52 34H Steady underline cursor

ESC « rc 27, 61 IBH, 3DH Position cursor, where r and c are
row and column, with of"fset of 32
(20H) added to each

ESC ? 27, 63 IBH, 3FH Transmit current cursor position
(row, column)

ESC E 27, 69 IBH, 45H Insert line

ESC G a

MC

71 IBH, 47H Set video attribute, where
••a"»"attribute", coded as follows:

0 or e 48, 64 30H, 40H normal
1 or A 49, 65 31H, 41H blank
2 or B 50, 66 32H, 42H blink
3 or C 51, 67 33H, 43H blank
4 or D 52, 68 34H, 44H reverse

5 or E 53, 69 35H, 45H reverse blank
6 or F 54, 70 36H, 46H reverse blink
7 or G 55, 71 37H, 47H reverse blank
8 or H 56, 72 38H, 48H underline
9 or I 57, 73 39H, 49H underline blank
: or J 58, 74 3 AH, 4AH underline blink
} or K 59, 75 3BH, 4BH underline blank
< or L 60, 76 3CH, 4CH underline
» or M 61, 77 3DH, 4DH underline reverse blank
> or N 62, 78 3EH, 4 EH reverse blink
? or 0 63, 79 3FH, 4FH underline reverse blank

The first (numeric) set of values for "a" will also step the
cursor forward one character,
the cursor stationary.

The second (alphabetic) set leaves

ESC Q 27, 81 IBH, 51H Insert character

ESC R 27, 82 IBH, 52H Delete line

ESC T 27, 84 IBH, 54H Clear to end of line

ESC N 27, 78 IBH, 4 EH Set page edit mode

ESC 0 27, 79 IBH, 4FH Set line edit mode

4-8

REF/CONOOT

BSC V c 21, 86 IDH, 56H Sat color, where "c^-^color, code4'?$
as follows:

ESC W

BSC Y

0 48 30H foreground black

1 49 31H foreground blue

2 50 32H foreground green

3 51 33H foreground cyan

4 52 34H foreground red

5 53 35H foreground magenta

6 54 36H foreground brown

7 55 37H foreground white

8 56 38H foreground grey

9 57 39H foreground light blue
: 58 3AH foreground light green
t 59 3BH foreground light cyan
< 60 3CH foreground light red
s 61 3DH foreground light magenta
> 62 3EH foreground yellow
? 63 3FH foreground high-intensity white

0 64 40H background black

A 65 41H background blue

B 66 42H background red

C 67 43H background magenta
D 68 44H background green

E 69 45H background cyan

F 70 46H background brown

G 71 47H background white

H 72 48H border black

I 73 49H border blue

J 74 4AH border green
K 75 4BH border cyan
L 76 4CH border red

N 77 4DH border magenta
N 78 4 EH border brown

0 79 4FH border white
P 80 50H border grey
Q 81 51H border light blue
R 82 52H border light green
S 83 53H border light cyan
T 84 54H border light red
U 85 55H border light magenta
V 86 56H border yellow
W 87 57H border high-intensity white

ro

00

IBH, 57H Delete character

27, 89 IBH, 59H Clear to end of screen

ESC F 27, 102 IBH, 66H
text (user entry)
CR 13 0DH

Load user buffer I
(80 characters max)

4-9

REF/COMOUT

BSC f

text

OR

BSC g

BSC h

BSC j

BSC t

BSC y

27, 102 IBH, 66H
(user entry)
13 0DH

Load user buffer II

(80 characters max)

27, 103 IBH, 67H Display user buffer I (on line 25)

27, 104 IBH, 68H Display user buffer II (on line 25
- in a real TV950, this buffer
contains the status line)

27, 106 IBH, 6AH Reverse line feed

27, 116 IBH, 74H Clear to end of line

27, 121 IBH, 79H Clear to end of screen

4-10

REP/COM III

4.34 KEYBOARD INPUT

4.341 Operation

Console input functions (i.^. keyboard) remain largely intact,
but are routed through a Keyboard Emulator for two functions:

- a greatly expanded TV95U-style operator-definable function
key set, yielding not 22 but 56 programmable function kays
divided into two tables of 256 characters each (double the
TV950 256-character table). The included KEYFIX utility
offers complete flexibility to the unsophisticated end-user,

- the standard TV950 facility for definition of function keys
under program control.

HEADER alters the keyboard interrupt vectors, modifying the
effective action of CONIN and CONSTAT when a function key is
pressed, but leaving console input functions otherwise intact.
Normally a valid CONSTAT results in a single CONIN, returning one
value for the depressed key. When HEADER recognizes a function
key, however, control passes to a special handler which finds the
character string assigned to that key in a table, and determines
its length. The handler loops CONIN and CONSTAT for the required
number of iterations, returning characters one by one until the
end of the table entry is reached, at which point CONSTAT returns
to the inactive state.

Keep in mind that although a program may issue the TV950 cursor
control codes, CP/M resident line edit functions are not valid at
the keyboard - since we are operating under PC-DOS, we must use
the PC-DOS line editor. This is significant whenever the read
buffer (READBUF) is in use, that is, whenever the system waits
for a <CR> before inputting the values posted on the screen. An
operator whose experience or documentation leads him to expect
the CP/M line editing sequences may suffer some confusion. Also,
remember that where CP/M will automatically close the buffer and
enter the string at a specified length, PC-DOS requires a <CR>
for closure.

4.342 TV950 Fttoction Key Pcogcaomiiiig

CP/M programs can use the following sequence to define twenty
function keys (Normal and Shifted F1-F10) - the TV950's Fll is
not supported by the IBM keyboard. Text entered during the
sequence will be input to the program whenever the designated
function key is pressed. The effect is transient with the cur
rent execution: when execution terminates, all keys revert to the
definitions stored in HEADER and must be reinitialized with each
load of the program. This is in contrast to the user-definable
mode offered under KEYFIX, which physically logs the operator's
definitions to disk.

4-11

REF/COMOUT

BSC f

text

OR

BSC g

BSC h

BSC j

BSC t

BSC y

27, 102 IBH, 66H
(user entry)
13 0DH

Load user buffer II

(80 characters max)

27, 103 IBH, 67H Display user buffer I (on line 25)

27, 104 IBH, 68H Display user buffer II (on line 25
- in a real TV950, this buffer
contains the status line)

27, 106 IBH, 6AH Reverse line feed

27, 116 IBH, 74H Clear to end of line

27, 121 IBH, 79H Clear to end of screen

4-10

REP/COM III

4.34 KEYBOARD INPUT

4.341 Operation

Console input functions (i.^. keyboard) remain largely intact,
but are routed through a Keyboard Emulator for two functions:

- a greatly expanded TV95U-style operator-definable function
key set, yielding not 22 but 56 programmable function kays
divided into two tables of 256 characters each (double the
TV950 256-character table). The included KEYFIX utility
offers complete flexibility to the unsophisticated end-user,

- the standard TV950 facility for definition of function keys
under program control.

HEADER alters the keyboard interrupt vectors, modifying the
effective action of CONIN and CONSTAT when a function key is
pressed, but leaving console input functions otherwise intact.
Normally a valid CONSTAT results in a single CONIN, returning one
value for the depressed key. When HEADER recognizes a function
key, however, control passes to a special handler which finds the
character string assigned to that key in a table, and determines
its length. The handler loops CONIN and CONSTAT for the required
number of iterations, returning characters one by one until the
end of the table entry is reached, at which point CONSTAT returns
to the inactive state.

Keep in mind that although a program may issue the TV950 cursor
control codes, CP/M resident line edit functions are not valid at
the keyboard - since we are operating under PC-DOS, we must use
the PC-DOS line editor. This is significant whenever the read
buffer (READBUF) is in use, that is, whenever the system waits
for a <CR> before inputting the values posted on the screen. An
operator whose experience or documentation leads him to expect
the CP/M line editing sequences may suffer some confusion. Also,
remember that where CP/M will automatically close the buffer and
enter the string at a specified length, PC-DOS requires a <CR>
for closure.

4.342 TV950 Fttoction Key Pcogcaomiiiig

CP/M programs can use the following sequence to define twenty
function keys (Normal and Shifted F1-F10) - the TV950's Fll is
not supported by the IBM keyboard. Text entered during the
sequence will be input to the program whenever the designated
function key is pressed. The effect is transient with the cur
rent execution: when execution terminates, all keys revert to the
definitions stored in HEADER and must be reinitialized with each
load of the program. This is in contrast to the user-definable
mode offered under KEYFIX, which physically logs the operator's
definitions to disk.

4-11

REF/CONIN

Table 4-3: TV950 Escape Sequence: Load Function Key

ASCII

Mnemonic Decimal

ESC I

FUNKEY

1

(text)

[CTRL P

CTRL Y

21, 124

XX

49

16

25

ASCII

Hexadecimal Comment

IBH, 7CH Load function keys

XXH Get ASCII code from Table 4-4

31H Start of Message , ^

This will be the programmed^input,
for the designated key.

10H) Optional - precedes any non-print
character

19H End of Message

Table 4-4: TV950 Function Key Codes

ASCII ASCII SHIFT ASCII ASCII

KEY CHAR. DEC. HEX. KEY CHAR. DEC. HEX.

PI 1 49 31 S-Fl < 60 3C

F2 2 50 32 S-F2 s 61 3D

F3 3 51 33 S-S3 > 62 3E

F4 4 52 34 S-S4 ? 63 3F

F5 5 53 35 S-F5 0 64 40

F6 6 54 36 S-F6 A 65 41

F7 7 55 37 S-F7 B 66 42

F8 8 56 38 S-F8 C 67 43

F9 9 57 39 S-F9 D 68 44

F10 10 58 3A S-F10 E 69 45

Because all function keys share a sequential buffer^ your program
must define them in the order shown. The buffer's capacity is
256 bytes, including all text plus one byte for each key
programmed (e.g. If F2 is programmed to input the message "Hil" a
total of 4 characters are used up in the table: one for each of
the three text characters, and one more for F2 itself).

RBF/OOII]

4.343 Keyboard Defaults

HEADER is shipped with the function key definitions shown
Table 4-5. Unlike CP/M (which uses CTRL codes) PC-DOS assigi
line editing functions to a set of function keys. HEADER :
shipped with the definitions shown in Table 4-5, where tl
sequences beginning with ••''(a" (<CTRL 0>) are the codes expect*
by PC-DOS. Since overwriting these sequences disables tl
corresponding DOS line-editing function, redefined function ke;
may cause problems if the target CP/M program employ8|tl
operating system's edit facility.

Table 4-5: Function Key Default Definitions

Key Unshifted Shifted Control Alt

F1 "8; (00H,3BH) S-FUNl C-Fl A-Fl

F2 "0< (00H,3CH) S-FUN2 C-F2 A-F2

F3 (00H,3DH) S-FUN3 C-F3 A-P2

F4 "0> (00H,3BH) S-FUN4 C-F4 A-F4

F5 "0? (00H,3FH) S-PUN5 C-F5 A-F5

F6 "00 (00H,40H) S-FUN6 C-F6 A-F6

F7 "0A (00H,41H) S-FUN7 C-F7 A-F7

F8 FUNS S-FUN8 C-F8 A-F8

F9 FUN9 S-PUN9 C-F9 A-F9

F10 FUN10 S-FUN10 C-F10 A-F10

L ARROW "0< (00H,04BH) C-LF

R ARROW "0< (00H,04DH) C-RT

U ARROW UP

D ARROW DOWN

HOME HOME CTRL HOME

END END CTRL END

PC UP PG UP CTRL PG UP

PC DN PG DN CTRL PG DN

INSERT "0R (00H,52H)
DELETE "0S (00H,53H)

4-12

4-13

REF/CONIN

Table 4-3: TV950 Escape Sequence: Load Function Key

ASCII

Mnemonic Decimal

ESC I

FUNKEY

1

(text)

[CTRL P

CTRL Y

21, 124

XX

49

16

25

ASCII

Hexadecimal Comment

IBH, 7CH Load function keys

XXH Get ASCII code from Table 4-4

31H Start of Message , ^

This will be the programmed^input,
for the designated key.

10H) Optional - precedes any non-print
character

19H End of Message

Table 4-4: TV950 Function Key Codes

ASCII ASCII SHIFT ASCII ASCII

KEY CHAR. DEC. HEX. KEY CHAR. DEC. HEX.

PI 1 49 31 S-Fl < 60 3C

F2 2 50 32 S-F2 s 61 3D

F3 3 51 33 S-S3 > 62 3E

F4 4 52 34 S-S4 ? 63 3F

F5 5 53 35 S-F5 0 64 40

F6 6 54 36 S-F6 A 65 41

F7 7 55 37 S-F7 B 66 42

F8 8 56 38 S-F8 C 67 43

F9 9 57 39 S-F9 D 68 44

F10 10 58 3A S-F10 E 69 45

Because all function keys share a sequential buffer^ your program
must define them in the order shown. The buffer's capacity is
256 bytes, including all text plus one byte for each key
programmed (e.g. If F2 is programmed to input the message "Hil" a
total of 4 characters are used up in the table: one for each of
the three text characters, and one more for F2 itself).

RBF/OOII]

4.343 Keyboard Defaults

HEADER is shipped with the function key definitions shown
Table 4-5. Unlike CP/M (which uses CTRL codes) PC-DOS assigi
line editing functions to a set of function keys. HEADER :
shipped with the definitions shown in Table 4-5, where tl
sequences beginning with ••''(a" (<CTRL 0>) are the codes expect*
by PC-DOS. Since overwriting these sequences disables tl
corresponding DOS line-editing function, redefined function ke;
may cause problems if the target CP/M program employ8|tl
operating system's edit facility.

Table 4-5: Function Key Default Definitions

Key Unshifted Shifted Control Alt

F1 "8; (00H,3BH) S-FUNl C-Fl A-Fl

F2 "0< (00H,3CH) S-FUN2 C-F2 A-F2

F3 (00H,3DH) S-FUN3 C-F3 A-P2

F4 "0> (00H,3BH) S-FUN4 C-F4 A-F4

F5 "0? (00H,3FH) S-PUN5 C-F5 A-F5

F6 "00 (00H,40H) S-FUN6 C-F6 A-F6

F7 "0A (00H,41H) S-FUN7 C-F7 A-F7

F8 FUNS S-FUN8 C-F8 A-F8

F9 FUN9 S-PUN9 C-F9 A-F9

F10 FUN10 S-FUN10 C-F10 A-F10

L ARROW "0< (00H,04BH) C-LF

R ARROW "0< (00H,04DH) C-RT

U ARROW UP

D ARROW DOWN

HOME HOME CTRL HOME

END END CTRL END

PC UP PG UP CTRL PG UP

PC DN PG DN CTRL PG DN

INSERT "0R (00H,52H)
DELETE "0S (00H,53H)

4-12

4-13

RBF/CONIN

4.344 Boiulating TV950 Keyboard Defaults

The Televideo 950 contains a set of default function key defini
tions which are active in the absence of any other definitions.
Occasionally, instead of reprogramming the keys, a program simply
looks for the default definitions to initiate control functions.
In such a case, the program must be KBYFIXED according to Table
4-6 before the function keys will work on Baby Blue. Some of the
keys shown are not available on the IBM PC - they are shown so
that their definitions can be assigned to some other available
key.

Table 4-6: Televideo 950 Function Key Defaults

Unshifted

4-14

Shifted

F1 <CTRL A> 0 <CTRL M> <CTRL A> * <CTRL M>

F2 <CTRL A> A <CTRL M> <CTRL A> a <CTRL M>

F3 <CTRL A> B <CTRL M> <CTRL A> b <CTRL M>

FS <CTRL A> D <CTRL M> <CTRL A> d <CTRL M>

F6 <CTRL A> E <CTRL M> <CTRL A> e <CTRL M>

F7 <CTRL A> F <CTRL M> <CTRL A> f <CTRL M>

F8 <CTRL A> G <CTRL M> <CTRL A> g <CTRL M>

F9 <CTRL A> H <CTRL M> <CTRL A> h <CTRL M>

F10 <CTRL A> I <CTRL M> <CTRL A> i <CTRL M>

Fll <CTRL A> J <CTRL M> <CTRL A> j <CTRL M>

L ARROW <CTRL H> <CTRL H>

R ARROW <CTRL L> <CTRL L>

U ARROW <CTRL K> ESC j
D ARROW <CTRL V> <CTRL J>

HOME <CTRL 6> <CTRL 6>

BACKTAB BSC I ESC I

PRINT ESC P ESC L

LINE INS BSC E ESC N

LINE DEL ESC R ESC 0

CHAR INS ESC Q BSC q

CHAR DEL ESC W ESC r

LINE ERASE ESC T ESC t

PAGE ERASE ESC Y ESC y

SEND ESC 7 ESC 6

CLEAR SPACE <CTRL Z> ESC *

RBF/TRMISLKTOKM

4.4 OPBRATIMG SYSTEM TRAMSLATOR

4.41 DESCRIPTION

The Translator converts CP/H BIOS and BDOS calls issued by the
transient program into their nearest logical PC-DOS equivalent^
for execution by the host operating system. Just as the console
emulator defines CP/H compatibility for a TV950 standard
terminal, the Translator defines program compatibility with
respect to the function calls employed.

4.42 PURPOSE

The Translator provides mutual transparency between the transient
program and the host operating system. There is no point-to-
point correspondence between CP/N and PC-DOS - although they are
close cousins there are some fundamental differences, the roost
important of which concerns access to disk files. Some features
of CP/M are not supported under PC-DOS: these function calls will
return default values reflecting the state invariably imposed on
that function by PC-DOS (e.g.. User Code always returns as 0,
because PC-DOS does not support more than one user).

4.43 CP/H BDOS FUNCTION CALLS

All BDOS calls follow standard CP/N procedure. We will treat them
under the standard CP/M function call numbers.

0: System Reset

Used to terminate program execution. Returns control to PC-
DOS (COMMAND.COM), for full normal operation. Before relin-?uishing control, HEADER performs a general house-cleaning
n the BIOS, returning all vectors to their normal values,

re-enabling the native PC-DOS console drivers, and resetting
the Z-80.

1: Console Input (CONIN - "Get/Read a Console Character**)

A straight-line translation to PC-DOS CONIN, except that
function keys are handled differently as detailed under
Keyboard Emulator. See **10: Read Console Buffer** for
further comments about keyboard entry functions.

4-15

RBF/CONIN

4.344 Boiulating TV950 Keyboard Defaults

The Televideo 950 contains a set of default function key defini
tions which are active in the absence of any other definitions.
Occasionally, instead of reprogramming the keys, a program simply
looks for the default definitions to initiate control functions.
In such a case, the program must be KBYFIXED according to Table
4-6 before the function keys will work on Baby Blue. Some of the
keys shown are not available on the IBM PC - they are shown so
that their definitions can be assigned to some other available
key.

Table 4-6: Televideo 950 Function Key Defaults

Unshifted

4-14

Shifted

F1 <CTRL A> 0 <CTRL M> <CTRL A> * <CTRL M>

F2 <CTRL A> A <CTRL M> <CTRL A> a <CTRL M>

F3 <CTRL A> B <CTRL M> <CTRL A> b <CTRL M>

FS <CTRL A> D <CTRL M> <CTRL A> d <CTRL M>

F6 <CTRL A> E <CTRL M> <CTRL A> e <CTRL M>

F7 <CTRL A> F <CTRL M> <CTRL A> f <CTRL M>

F8 <CTRL A> G <CTRL M> <CTRL A> g <CTRL M>

F9 <CTRL A> H <CTRL M> <CTRL A> h <CTRL M>

F10 <CTRL A> I <CTRL M> <CTRL A> i <CTRL M>

Fll <CTRL A> J <CTRL M> <CTRL A> j <CTRL M>

L ARROW <CTRL H> <CTRL H>

R ARROW <CTRL L> <CTRL L>

U ARROW <CTRL K> ESC j
D ARROW <CTRL V> <CTRL J>

HOME <CTRL 6> <CTRL 6>

BACKTAB BSC I ESC I

PRINT ESC P ESC L

LINE INS BSC E ESC N

LINE DEL ESC R ESC 0

CHAR INS ESC Q BSC q

CHAR DEL ESC W ESC r

LINE ERASE ESC T ESC t

PAGE ERASE ESC Y ESC y

SEND ESC 7 ESC 6

CLEAR SPACE <CTRL Z> ESC *

RBF/TRMISLKTOKM

4.4 OPBRATIMG SYSTEM TRAMSLATOR

4.41 DESCRIPTION

The Translator converts CP/H BIOS and BDOS calls issued by the
transient program into their nearest logical PC-DOS equivalent^
for execution by the host operating system. Just as the console
emulator defines CP/H compatibility for a TV950 standard
terminal, the Translator defines program compatibility with
respect to the function calls employed.

4.42 PURPOSE

The Translator provides mutual transparency between the transient
program and the host operating system. There is no point-to-
point correspondence between CP/N and PC-DOS - although they are
close cousins there are some fundamental differences, the roost
important of which concerns access to disk files. Some features
of CP/M are not supported under PC-DOS: these function calls will
return default values reflecting the state invariably imposed on
that function by PC-DOS (e.g.. User Code always returns as 0,
because PC-DOS does not support more than one user).

4.43 CP/H BDOS FUNCTION CALLS

All BDOS calls follow standard CP/N procedure. We will treat them
under the standard CP/M function call numbers.

0: System Reset

Used to terminate program execution. Returns control to PC-
DOS (COMMAND.COM), for full normal operation. Before relin-?uishing control, HEADER performs a general house-cleaning
n the BIOS, returning all vectors to their normal values,

re-enabling the native PC-DOS console drivers, and resetting
the Z-80.

1: Console Input (CONIN - "Get/Read a Console Character**)

A straight-line translation to PC-DOS CONIN, except that
function keys are handled differently as detailed under
Keyboard Emulator. See **10: Read Console Buffer** for
further comments about keyboard entry functions.

4-15

RBF/TRANSLATOS

2- Console Output (CONOUT - "Write a Console Character")

A straight-line translation to the PC-DOS CONOUT, but note
that PC-DOS itself is routed through the TV950 emulator, not
through the normal host screen driver - hence monitor
controls must conform to the TV950 standard (See Table 4-2).

3: Reader Input

A direct call to the PC-DOS Aux In.

4: Punch Output

A direct call to the PC-DOS Aux Out.

5: List Output

Calls PC-DOS PRINT OUT, routing direct to the PRN device.

6: Direct Console I/O

Fully supported.

7/8: Get/Set I/O Byte

Ignored because PC-DOS does not support I/O redirection at
this level - "Get I/O Byte" will always return the default
value 0. At Baby Blue's location 0003H, where the CP/M I/O
byte is normally found, the high-order nibble contains
instead the segment number occupied by Baby Blue-'s 64K.

9: Print String

Fully supported - a direct translation to the same PC-DOS
function.

10: Read Console Buffer

A straight-line translation, but note that this means PC-DOS
line editing commands will be in effect, not CP/M, so that
an operator expecting to use the CP/M set may be confused.
Also note that redefining the function keys may disable PC-
DOS line-editing features (See "1: Console Input").

4-16

RBF/TRANSLATOR

11: Get console Status (CONSTAT: "Interrogate Console Ready")

A straight-line translation except that like "1: Console
Input", this will be handled, and sometimes automatically_.iput .
repeated, by the Keyboard Emulator

12: Return Version Number

Returns Version 2.2.

13: Reset Disk System

Ignored, since the purpose of this call is always satisfied
under PC-DOS (all disks perpetually set to read/write). No
incompatibility will result from the use of this command,
but it may mask a deeper problem if the program or its
documentation depends on the CP/M software wr ite-protect.
facility (see "28: Write Protect Disk").

14: Select Disk

Direct translation - designates default drive. However, the
drive will not automatically go to a read-only state if the
disk media is physically changed, as it would under CP/M
(See "28: Write Protect Disk").

15: Open File

Fully supported, however some confusion may result if you
don't fully understand how the HEADER handles CP/M COM
files under development, as explained under OPERATION.

16: Close File

Direct translation to PC-DOS function call. AL returns
either 00H (successful close) or FFH (file not found). When
closing a COM file, this call also finds the size of the Z-
80 code (less HEADER) and stores this number at location
0107H in the HEADER attached to the target file. The size of
HEADER itself is stored at location 0105H.

17/18: Search for First/Next

Direct translation to PC-DOS function calls. Returns 00H
(file found) or FFH (file not found) in AL. The directory
image buffered at the DMA address is artificially construc
ted from the PC-DOS image, with the following surprises:

4-17

RBF/TRANSLATOS

2- Console Output (CONOUT - "Write a Console Character")

A straight-line translation to the PC-DOS CONOUT, but note
that PC-DOS itself is routed through the TV950 emulator, not
through the normal host screen driver - hence monitor
controls must conform to the TV950 standard (See Table 4-2).

3: Reader Input

A direct call to the PC-DOS Aux In.

4: Punch Output

A direct call to the PC-DOS Aux Out.

5: List Output

Calls PC-DOS PRINT OUT, routing direct to the PRN device.

6: Direct Console I/O

Fully supported.

7/8: Get/Set I/O Byte

Ignored because PC-DOS does not support I/O redirection at
this level - "Get I/O Byte" will always return the default
value 0. At Baby Blue's location 0003H, where the CP/M I/O
byte is normally found, the high-order nibble contains
instead the segment number occupied by Baby Blue-'s 64K.

9: Print String

Fully supported - a direct translation to the same PC-DOS
function.

10: Read Console Buffer

A straight-line translation, but note that this means PC-DOS
line editing commands will be in effect, not CP/M, so that
an operator expecting to use the CP/M set may be confused.
Also note that redefining the function keys may disable PC-
DOS line-editing features (See "1: Console Input").

4-16

RBF/TRANSLATOR

11: Get console Status (CONSTAT: "Interrogate Console Ready")

A straight-line translation except that like "1: Console
Input", this will be handled, and sometimes automatically_.iput .
repeated, by the Keyboard Emulator

12: Return Version Number

Returns Version 2.2.

13: Reset Disk System

Ignored, since the purpose of this call is always satisfied
under PC-DOS (all disks perpetually set to read/write). No
incompatibility will result from the use of this command,
but it may mask a deeper problem if the program or its
documentation depends on the CP/M software wr ite-protect.
facility (see "28: Write Protect Disk").

14: Select Disk

Direct translation - designates default drive. However, the
drive will not automatically go to a read-only state if the
disk media is physically changed, as it would under CP/M
(See "28: Write Protect Disk").

15: Open File

Fully supported, however some confusion may result if you
don't fully understand how the HEADER handles CP/M COM
files under development, as explained under OPERATION.

16: Close File

Direct translation to PC-DOS function call. AL returns
either 00H (successful close) or FFH (file not found). When
closing a COM file, this call also finds the size of the Z-
80 code (less HEADER) and stores this number at location
0107H in the HEADER attached to the target file. The size of
HEADER itself is stored at location 0105H.

17/18: Search for First/Next

Direct translation to PC-DOS function calls. Returns 00H
(file found) or FFH (file not found) in AL. The directory
image buffered at the DMA address is artificially construc
ted from the PC-DOS image, with the following surprises:

4-17

REF/TRANSUTOR

In the case of a COM file, the record count returned
includes HEADER, accurately reflecting the disk space
required, but not the TPA.

There is only one entry, so AL, if found, is always 0
(not 1, 2 or 3). The remaining 96 bytes, which might
ordinarily contain further entries, are filled with
E5H.

The correct number of group entries are filled in, but
they are all set to 01H, since the actual pointer in
PC-DOS is to the file's first entry in the File Alloca
tion Table.

19: Delete File

• Direct translation to PC-DOS function call.

20: Read Sequential

Direct translation to PC-DOS function call - for a COM file,
the first record returned will be the first line of Z-80
code - HEADER is skipped over.

21: Write Sequential

Direct translation to PC-DOS. In the case of a COM file,
the presence of HEADER on the disk is automatically
accounted for - no special adjustments are required to
insure that the write indeed begins at the end of the file.

22: Make File:

Direct translation to PC-DOS. As explained under OPERATION,
HEADER is automatically bound when the file to be created is
designated as a COM file. HEADER is written and closed
immediately, before the COM file is opened, so even if you
decide not to write to the file, or not to close it, you'll
still find that you've created a file containing HEADER.

23: Rename File

Automatically binds HEADER when the filename extension is
changed from something else to COM, and vice-versa. Since
in the first case the bound file is larger by the length of
HEADER, it's possible there will be insufficient disk space
available to write it. Rather than lose the file, we
recover by leaving the file unbound, and tagging it with the
extension "CPM".

• i m

RBF/TRANSLATOR

24: Return Log-in Vector

Not supported, because it is irrelevant under PC-DOS.
Returns the default value FFFFH.

25: Return Current Disk

Direct translation to PC-DOS function call.

26: Set D^ Address

See BIOS Call FF24H: SETDMA, below.

27: Return Allocation Vector

Not supported. This function, usually not used by allocation
programs, returns a value which refers to physical
properties of a CP/M diskette. Since PC-DOS diskettes do
not share these attributes, the function is meaningless when
directed at a PC-DOS diskette.

28: Write Protect Disk

Not supported, since PC-DOS does not support the software
write-protect facility offered by CP/M.

29: Return Read Only Vector

Not supported, see "28: Write Protect Disk".

30: Set File Attributes

Not supported, since the attributes themselves reside in the
physical directory of a CP/M disk and have no equivalent
under PC-DOS. Therefore, this call will also fail to
"discover" a file which has been defined as "hidden" under
PC-DOS.

31: Get Address of Disk Parameters

Partially emulated. The parameters involved are properties
of a CP/M diskette and are not supported by PC-DOS. The
address returned points to a dummy parameter table based on
an assumed 5" diskette.

2: Get/Set User Code

Returns value 0. PC-DOS does not support multiple users.

4-18
4-19

REF/TRANSUTOR

In the case of a COM file, the record count returned
includes HEADER, accurately reflecting the disk space
required, but not the TPA.

There is only one entry, so AL, if found, is always 0
(not 1, 2 or 3). The remaining 96 bytes, which might
ordinarily contain further entries, are filled with
E5H.

The correct number of group entries are filled in, but
they are all set to 01H, since the actual pointer in
PC-DOS is to the file's first entry in the File Alloca
tion Table.

19: Delete File

• Direct translation to PC-DOS function call.

20: Read Sequential

Direct translation to PC-DOS function call - for a COM file,
the first record returned will be the first line of Z-80
code - HEADER is skipped over.

21: Write Sequential

Direct translation to PC-DOS. In the case of a COM file,
the presence of HEADER on the disk is automatically
accounted for - no special adjustments are required to
insure that the write indeed begins at the end of the file.

22: Make File:

Direct translation to PC-DOS. As explained under OPERATION,
HEADER is automatically bound when the file to be created is
designated as a COM file. HEADER is written and closed
immediately, before the COM file is opened, so even if you
decide not to write to the file, or not to close it, you'll
still find that you've created a file containing HEADER.

23: Rename File

Automatically binds HEADER when the filename extension is
changed from something else to COM, and vice-versa. Since
in the first case the bound file is larger by the length of
HEADER, it's possible there will be insufficient disk space
available to write it. Rather than lose the file, we
recover by leaving the file unbound, and tagging it with the
extension "CPM".

• i m

RBF/TRANSLATOR

24: Return Log-in Vector

Not supported, because it is irrelevant under PC-DOS.
Returns the default value FFFFH.

25: Return Current Disk

Direct translation to PC-DOS function call.

26: Set D^ Address

See BIOS Call FF24H: SETDMA, below.

27: Return Allocation Vector

Not supported. This function, usually not used by allocation
programs, returns a value which refers to physical
properties of a CP/M diskette. Since PC-DOS diskettes do
not share these attributes, the function is meaningless when
directed at a PC-DOS diskette.

28: Write Protect Disk

Not supported, since PC-DOS does not support the software
write-protect facility offered by CP/M.

29: Return Read Only Vector

Not supported, see "28: Write Protect Disk".

30: Set File Attributes

Not supported, since the attributes themselves reside in the
physical directory of a CP/M disk and have no equivalent
under PC-DOS. Therefore, this call will also fail to
"discover" a file which has been defined as "hidden" under
PC-DOS.

31: Get Address of Disk Parameters

Partially emulated. The parameters involved are properties
of a CP/M diskette and are not supported by PC-DOS. The
address returned points to a dummy parameter table based on
an assumed 5" diskette.

2: Get/Set User Code

Returns value 0. PC-DOS does not support multiple users.

4-18
4-19

REF/TRANSLATOR

33/34: Read/Write Random

Direct translation to PC-DOS function call. Files createdi
while running on Baby Blue will not introduce gaps in a
random access file, and so will be fully transportable.

35: Compute File Size

Returns true file size. Since gaps are not permitted in a
random access file under PC-DOS, "virtual size" is always
the physical size of the file. HEADER is subtracted from
the physical size of a .COM file, giving the size of the Z-
80 code only. This will be accurate for operations
conducted on Baby Blue or on another CP/M system, since
HEADER will not appear in memory in either case. If it is
desired to return the size of a .COM file including HEADER,
the directory image returned to the DMA address by function
calls 17 and 18 will contain this information in the record

count.

36: Set Random Record

Direct translation to PC-DOS function call.

37: Reset Drive

Ignored as irrelevant to PC-DOS.

38: Not used

39: Not used

Write Random With Zero Fill

Translated to Function 34: Write Random. (This function
refers to physical properties of a CP/M diskette not
duplicated under PC-DOS)

4-20

REF/TRANSLATOR

4.44 CP/H BIOS CALLS

HEADER maintains a CP/M BIOS jump table starting at FF00H in Baby
Blue's memory, with the standard pointer at 0000H. Except for
disk-based routines, most calls pass to their BDOS counterparts,
which in turn call their direct equivalents in PC-DOS. Because
CP/M and PC-DOS locate physical disk sectors very differently,
disk-based calls undergo a more complicated translation.

4.441 Logical to Physical Sector Mapping

All disk I/O is based on a conversion of CP/M Track/Sector
parameters to corresponding PC-DOS logical sectors, assuming an
ideal "CP/M" diskette of thirty-two 128-byte sectors per track.
This ideal format is automatically mapped onto a real PC-DOS 5"
diskette of eight 512-byte sectors per track, through the
following algorithm:

Logical PC-DOS Sector « (32 * T + S - 1) / SCALE

Where:

T » "Track number"

S » "Segment number"

and SCALE is computed automatically upon disk selection, as:

real physical sector size in bytes / 128

The algorithm assumes 4096 bytes per track, with a limit of 1024
bytes per sector. It will find the specified sector on any disk
conforming to these parameters; SCALE automatically accomodates
different sector sizes. There is no range check on sector
number, but it must be in the range 1 to 255. The first segment
on the disk is Track 0, Sector 1, which becomes PC-DOS Logical
Sector 0 - therefore, the physical sector always equals the
logical sector plus one.

Remainders are truncated, guaranteeing that the logical sector
will always contain the expected 128-byte sector. This is
because remainders are only produced when physical sector size is
larger than 128 bytes, in direct proportion to SCALE - some
remainder "n" is really a pointer to the nth 128-byte block
kwithin the physical sector. The physical sector is read into a IK
^buffer maintained in HEADER, and deblocked into 128-byte segments
for loading at the DMA address.

4-21

REF/TRANSLATOR

33/34: Read/Write Random

Direct translation to PC-DOS function call. Files createdi
while running on Baby Blue will not introduce gaps in a
random access file, and so will be fully transportable.

35: Compute File Size

Returns true file size. Since gaps are not permitted in a
random access file under PC-DOS, "virtual size" is always
the physical size of the file. HEADER is subtracted from
the physical size of a .COM file, giving the size of the Z-
80 code only. This will be accurate for operations
conducted on Baby Blue or on another CP/M system, since
HEADER will not appear in memory in either case. If it is
desired to return the size of a .COM file including HEADER,
the directory image returned to the DMA address by function
calls 17 and 18 will contain this information in the record

count.

36: Set Random Record

Direct translation to PC-DOS function call.

37: Reset Drive

Ignored as irrelevant to PC-DOS.

38: Not used

39: Not used

Write Random With Zero Fill

Translated to Function 34: Write Random. (This function
refers to physical properties of a CP/M diskette not
duplicated under PC-DOS)

4-20

REF/TRANSLATOR

4.44 CP/H BIOS CALLS

HEADER maintains a CP/M BIOS jump table starting at FF00H in Baby
Blue's memory, with the standard pointer at 0000H. Except for
disk-based routines, most calls pass to their BDOS counterparts,
which in turn call their direct equivalents in PC-DOS. Because
CP/M and PC-DOS locate physical disk sectors very differently,
disk-based calls undergo a more complicated translation.

4.441 Logical to Physical Sector Mapping

All disk I/O is based on a conversion of CP/M Track/Sector
parameters to corresponding PC-DOS logical sectors, assuming an
ideal "CP/M" diskette of thirty-two 128-byte sectors per track.
This ideal format is automatically mapped onto a real PC-DOS 5"
diskette of eight 512-byte sectors per track, through the
following algorithm:

Logical PC-DOS Sector « (32 * T + S - 1) / SCALE

Where:

T » "Track number"

S » "Segment number"

and SCALE is computed automatically upon disk selection, as:

real physical sector size in bytes / 128

The algorithm assumes 4096 bytes per track, with a limit of 1024
bytes per sector. It will find the specified sector on any disk
conforming to these parameters; SCALE automatically accomodates
different sector sizes. There is no range check on sector
number, but it must be in the range 1 to 255. The first segment
on the disk is Track 0, Sector 1, which becomes PC-DOS Logical
Sector 0 - therefore, the physical sector always equals the
logical sector plus one.

Remainders are truncated, guaranteeing that the logical sector
will always contain the expected 128-byte sector. This is
because remainders are only produced when physical sector size is
larger than 128 bytes, in direct proportion to SCALE - some
remainder "n" is really a pointer to the nth 128-byte block
kwithin the physical sector. The physical sector is read into a IK
^buffer maintained in HEADER, and deblocked into 128-byte segments
for loading at the DMA address.

4-21

EEP/TRAMSLATOR

You can also read a non-con£oriiiing format if its parameters are
known, and sector size does not exceed 1024, but you must first
transpose the target track and sector number into the '*ideal**
equivalents expected by HEADER. Find the target sector as the
"Nth** physical sector, counting from the beginning of the disk:

NthSectpj^yg « (SPT * ''^phys^ * ®phys

Where:

SPT » Physical Sectors per Track on the target disk.

Tphys " Physical (literal) track number.

Sphys Physical (literal) sector number.

Multiply this number by SCALE, converting it to the nth 128-byte
block (NthSect]^28^ *

NthSectj^2Q ® SCALE * NthSectpj^yg

Now divide by 32. The quotient is the desired track number (T),
and the remainder is the segment (S). The combined formula
reads:

T + S « SCALE * (SPT ♦ Tp^^yg + Spj^yg) / 32

Passing these calculated values to SETTRK and SETSEC will yield
the desired physical sector.

For example, given an 8" single-sided, single-density diskette
of twenty-six 128-byte sectors per track, SCALE » 1. Therefore,
physical [Track 10, Sector 5] yields:

(26 10) 5 / 32 265/32 « 8 + 8

Or [Track 8, Sector 8]. [Track 7, Sector 40) is also valid,
since there is no range check, but not [Track 0, Sector 265),
because the highest allowable sector number is 255.

4-22

REP/TRANSLATOR

4.442 BIOS Entry Points

|The standard BIOS entry points are listed below in address order.
All BIOS calls follow standard CP/M procedure, except as
indicated.

FF00H: COLD BOOT

Not supported - initialization is controlled by HEADER under
PC-DOS.

FF03H: WARM BOOT

Invokes BDOS call 0, System Reset.

FF06H: CONST

Invokes BDOS call 11, Get Console Status.

FF09H: CONIN

Invokes BDOS call 6, Direct Console I/O (input)

FF0CH: CONOUT

Invokes BDOS call 2, Console Output.

FF0FH: LIST

Invokes BDOS Call 5, List Output.

FF12H: PUNCH

Invokes BDOS Call 4, Punch Output.

FF15H: READER

Invokes BDOS Call 3, Reader Input.

,FF18H: HOME

Not supported.

4-23

EEP/TRAMSLATOR

You can also read a non-con£oriiiing format if its parameters are
known, and sector size does not exceed 1024, but you must first
transpose the target track and sector number into the '*ideal**
equivalents expected by HEADER. Find the target sector as the
"Nth** physical sector, counting from the beginning of the disk:

NthSectpj^yg « (SPT * ''^phys^ * ®phys

Where:

SPT » Physical Sectors per Track on the target disk.

Tphys " Physical (literal) track number.

Sphys Physical (literal) sector number.

Multiply this number by SCALE, converting it to the nth 128-byte
block (NthSect]^28^ *

NthSectj^2Q ® SCALE * NthSectpj^yg

Now divide by 32. The quotient is the desired track number (T),
and the remainder is the segment (S). The combined formula
reads:

T + S « SCALE * (SPT ♦ Tp^^yg + Spj^yg) / 32

Passing these calculated values to SETTRK and SETSEC will yield
the desired physical sector.

For example, given an 8" single-sided, single-density diskette
of twenty-six 128-byte sectors per track, SCALE » 1. Therefore,
physical [Track 10, Sector 5] yields:

(26 10) 5 / 32 265/32 « 8 + 8

Or [Track 8, Sector 8]. [Track 7, Sector 40) is also valid,
since there is no range check, but not [Track 0, Sector 265),
because the highest allowable sector number is 255.

4-22

REP/TRANSLATOR

4.442 BIOS Entry Points

|The standard BIOS entry points are listed below in address order.
All BIOS calls follow standard CP/M procedure, except as
indicated.

FF00H: COLD BOOT

Not supported - initialization is controlled by HEADER under
PC-DOS.

FF03H: WARM BOOT

Invokes BDOS call 0, System Reset.

FF06H: CONST

Invokes BDOS call 11, Get Console Status.

FF09H: CONIN

Invokes BDOS call 6, Direct Console I/O (input)

FF0CH: CONOUT

Invokes BDOS call 2, Console Output.

FF0FH: LIST

Invokes BDOS Call 5, List Output.

FF12H: PUNCH

Invokes BDOS Call 4, Punch Output.

FF15H: READER

Invokes BDOS Call 3, Reader Input.

,FF18H: HOME

Not supported.

4-23

RBP/TRJUISCATOE

FFIBH: SELDSK

Calculates SCALE* The disk parameters are always based on an
ideal 40-track diskette, with 32 128-byte sectors per
track*

FFIEH: SETTER

FF21H: SETSEC

Literal physical track and sector numbers are valid for any
disk of 4096 bytes per track, and no more than 1024 bytes
per sector* other formats are accessible with translated
parameters, as described above* The first physical sector on
each track is number 01H*

FF24H: SETDMA

The initial address is the expected 80H* This call invokes
BDOS Call 26, which means that either call alters the ad
dress set by the other* The usual 128-byte allocation is
sufficient, regardless of physical sector size - the physi
cal sector is stored and deblocked from a 1024-byte buffer
maintained in HEADER*

FF27H: READ
FF2AH: WRITE

Data is buffered and blocked/deblocked as described above,
under SETDMA*

FF30H: SECTRAN

The physical sector always equals the logical sector plus
one*

FF2DH: LISTST

Always returns "ready** (FFH in A)*

REF/EXBDOS

'"'i

4.5 BXTBMDBD BDOS fUHCTIOH CALLS

4.51 OBSCRIPTION

Mictolog has created a set of new CP/M-80 style function calls
for use on Baby Blue. They are:

Number

247

248

249

250

251

252

253

254

255

Function

Chain

8088 Software Interrupt

System Memory Block Move Down
System Memory Block Move Up

Peek Host Memory Byte
Poke Host Memory Byte

8088 BIOS Call (Subset of # 248)

Output to Host I/O Port
Input from Host I/O Port

4*52 PORPOSB

The extended BDOS function calls are provided to support true
user—designed applications using Microlog*s Co-processor boards.
By means of these functions a CP/M-80 program can gain access to
the host system at the following levels:

-8088 software interrupt

-Host memory (block moves and individual locations)

-Direct I/O through host ports

4*53 OPBRATION

IaII extended function calls parallel standard CP/M-80 usage*

4-24

4-25

RBP/TRJUISCATOE

FFIBH: SELDSK

Calculates SCALE* The disk parameters are always based on an
ideal 40-track diskette, with 32 128-byte sectors per
track*

FFIEH: SETTER

FF21H: SETSEC

Literal physical track and sector numbers are valid for any
disk of 4096 bytes per track, and no more than 1024 bytes
per sector* other formats are accessible with translated
parameters, as described above* The first physical sector on
each track is number 01H*

FF24H: SETDMA

The initial address is the expected 80H* This call invokes
BDOS Call 26, which means that either call alters the ad
dress set by the other* The usual 128-byte allocation is
sufficient, regardless of physical sector size - the physi
cal sector is stored and deblocked from a 1024-byte buffer
maintained in HEADER*

FF27H: READ
FF2AH: WRITE

Data is buffered and blocked/deblocked as described above,
under SETDMA*

FF30H: SECTRAN

The physical sector always equals the logical sector plus
one*

FF2DH: LISTST

Always returns "ready** (FFH in A)*

REF/EXBDOS

'"'i

4.5 BXTBMDBD BDOS fUHCTIOH CALLS

4.51 OBSCRIPTION

Mictolog has created a set of new CP/M-80 style function calls
for use on Baby Blue. They are:

Number

247

248

249

250

251

252

253

254

255

Function

Chain

8088 Software Interrupt

System Memory Block Move Down
System Memory Block Move Up

Peek Host Memory Byte
Poke Host Memory Byte

8088 BIOS Call (Subset of # 248)

Output to Host I/O Port
Input from Host I/O Port

4*52 PORPOSB

The extended BDOS function calls are provided to support true
user—designed applications using Microlog*s Co-processor boards.
By means of these functions a CP/M-80 program can gain access to
the host system at the following levels:

-8088 software interrupt

-Host memory (block moves and individual locations)

-Direct I/O through host ports

4*53 OPBRATION

IaII extended function calls parallel standard CP/M-80 usage*

4-24

4-25

REP/BXBDOS

4.531 Call 247: Chain

Entry Parameters

Register C:
Register DE:
Register B:

F7H

Starting Address of ASCII Command String
Length of Command String

Return:

Exits the current program, then invokes the indicated
command file.

The Command String may contain the name of any PC-DOS COM, EXE or
BAT file, including any passed parameters (DOS resident commands
are invalid); it must terminate with 0DH (<CTRL M>, or <CR». No
provision is made for reentry to the calling program.

4.532 Call 248: 8088 Software Interrupt

Entry Parameters:

Register C: P8H
Register HL: Address of pseudo 8088 Interrupt/Register

Table

Return:

Executes specified interrupt
Updates 8088 Register Table at address specified by [HL]

Emulates an 8088 "INT" instruction. The HL register pair points
in Baby Blue's memory to the starting address of a table
representing the 8088 registers, as follows:

Byte »:

8088 Interrupt/Register Table

Interrupt Registers
Number M5*£*B*5£SIDIDSES
00 01 03 05 07 09 11 13 15 17

Flags
19

Flag Byte #19:

Flag:
Bit I:

SF ZF — AF — PF — CF

The parameters become active as the specified interrupt is^^
executed. Upon completion, the contents of the 8088 registers are^^
returned to the table.

4-26

RBF/BXBDOflfl

4.533 Call 249: System Memory Block Move Down

Entry Parameters:

Register C: F9
Registers HL: Block Move Table Address

Return:

Executes block move down in system memory (64K max.)

Upon entry, the HL register pair points to a 10 byte table in
Baby Blue's memory, organized as follows;

Source Source Destination Destination Block
Offset Segment Offset Segment size

Byte #: 00 02 04 06 08

Where:

total number of bytes to transfer (up to FF Hex

^^^ou^^io'ving?^'" location of first byte in the block
Source S^ment - Present memory segment containing the block

to be moved. Note that this could be Baby Blue's
memory.

Destination g^fset - 16-bit location to fill with first byte
or the block. ^

Destination Segment - Memory segment to which block is to be

mfmfru 4 o anywhere in systemmemory, including Baby Blue.

the Z-80 LDDR block move instruction, orthe 8088 REP2 MOVSB with the STD instruction, i.e., it moves the

mive dit« t'o lowest byte and incrementing. You can
off B^by Blue. " system memory, including on or

4-27

REP/BXBDOS

4.531 Call 247: Chain

Entry Parameters

Register C:
Register DE:
Register B:

F7H

Starting Address of ASCII Command String
Length of Command String

Return:

Exits the current program, then invokes the indicated
command file.

The Command String may contain the name of any PC-DOS COM, EXE or
BAT file, including any passed parameters (DOS resident commands
are invalid); it must terminate with 0DH (<CTRL M>, or <CR». No
provision is made for reentry to the calling program.

4.532 Call 248: 8088 Software Interrupt

Entry Parameters:

Register C: P8H
Register HL: Address of pseudo 8088 Interrupt/Register

Table

Return:

Executes specified interrupt
Updates 8088 Register Table at address specified by [HL]

Emulates an 8088 "INT" instruction. The HL register pair points
in Baby Blue's memory to the starting address of a table
representing the 8088 registers, as follows:

Byte »:

8088 Interrupt/Register Table

Interrupt Registers
Number M5*£*B*5£SIDIDSES
00 01 03 05 07 09 11 13 15 17

Flags
19

Flag Byte #19:

Flag:
Bit I:

SF ZF — AF — PF — CF

The parameters become active as the specified interrupt is^^
executed. Upon completion, the contents of the 8088 registers are^^
returned to the table.

4-26

RBF/BXBDOflfl

4.533 Call 249: System Memory Block Move Down

Entry Parameters:

Register C: F9
Registers HL: Block Move Table Address

Return:

Executes block move down in system memory (64K max.)

Upon entry, the HL register pair points to a 10 byte table in
Baby Blue's memory, organized as follows;

Source Source Destination Destination Block
Offset Segment Offset Segment size

Byte #: 00 02 04 06 08

Where:

total number of bytes to transfer (up to FF Hex

^^^ou^^io'ving?^'" location of first byte in the block
Source S^ment - Present memory segment containing the block

to be moved. Note that this could be Baby Blue's
memory.

Destination g^fset - 16-bit location to fill with first byte
or the block. ^

Destination Segment - Memory segment to which block is to be

mfmfru 4 o anywhere in systemmemory, including Baby Blue.

the Z-80 LDDR block move instruction, orthe 8088 REP2 MOVSB with the STD instruction, i.e., it moves the

mive dit« t'o lowest byte and incrementing. You can
off B^by Blue. " system memory, including on or

4-27

REF/BXBDOS

4*534 Call 250: Systea Meaory Block Move Op

Entry Parameters:

Register C: FAH
Registers HL: Block Move Table Address

Return:

Executes block move up in system memory (64K max.)

Identical in all respects to Call 249, except that it emulates
the 2-80 LDIR instruction, or the 8088 HEPZ HOVSB with OLD, i.e..
It moves the block starting with the last location and
decrementing.

4.535 Call 251: Peek Systc

Entry parameters:

Memory Byte

Register C:
Registers DE;
Registers HL:

FBH

Offset number

Segment number

Return:

Register A: Contents of Byte

Reads a byte from the location specified in (DEI and (HL].
Enables a 2-80 program to read from any location in the 8088's
address space, including Baby Blue's memory.

4*536 Call 252: Poke System Memory Byte

Entry parameters:

Register C: FCH
Register B: Contents of Byte
Registers DB: Offset number
Registers HL: Segment number

Return:

Writes contents of byte to specified location in system
memory.

The contents of (£>) will be written to the location specified in
(DEJ and (HL). Enables a Z-80 program to write to any location
in the 8088-s address space.

4-28

RBP/BXBD08'

4*537 Call 253: 8088 BIOS Call

Entry parameters:

Register C:
Registers HL:

FDH

3088 Interrupt/Register Table Address

Return:

Executes specified interrupt.
Updates 8088 Interrupt/Register Table at specified address.

This function is included for compatibility with earlier versions
of HEADER, and is a subset of Call 248. Its action is identical
in every respect except that it passes only the first four regi
sters (AX, BX, CX, DX), and the effective table is onlv nine
bytes long. ^

4*538 Call 254: Output to Host I/O Port

Entry Parameters:

Register C: FEH
Register E: 8-bit output value
Registers HL: Host system port number

Since the Baby Blue has no ports of its own, all I/O must pass
through the 8088. This function enables a Z-80 program to output
values directly to a port (under the control, of course, of the
8088) - use this function instead of an OUT instruction.

4*539 Call 255: Input from Host I/O Port

Entry Parameters:

Register C: FFH
Registers HL: Host system port number.

Return:

Register A: 8-bit input value.

Complements Call 254, enabling the Z-80 to input values directly
from an 8088-controlled port.

4-29

REF/BXBDOS

4*534 Call 250: Systea Meaory Block Move Op

Entry Parameters:

Register C: FAH
Registers HL: Block Move Table Address

Return:

Executes block move up in system memory (64K max.)

Identical in all respects to Call 249, except that it emulates
the 2-80 LDIR instruction, or the 8088 HEPZ HOVSB with OLD, i.e..
It moves the block starting with the last location and
decrementing.

4.535 Call 251: Peek Systc

Entry parameters:

Memory Byte

Register C:
Registers DE;
Registers HL:

FBH

Offset number

Segment number

Return:

Register A: Contents of Byte

Reads a byte from the location specified in (DEI and (HL].
Enables a 2-80 program to read from any location in the 8088's
address space, including Baby Blue's memory.

4*536 Call 252: Poke System Memory Byte

Entry parameters:

Register C: FCH
Register B: Contents of Byte
Registers DB: Offset number
Registers HL: Segment number

Return:

Writes contents of byte to specified location in system
memory.

The contents of (£>) will be written to the location specified in
(DEJ and (HL). Enables a Z-80 program to write to any location
in the 8088-s address space.

4-28

RBP/BXBD08'

4*537 Call 253: 8088 BIOS Call

Entry parameters:

Register C:
Registers HL:

FDH

3088 Interrupt/Register Table Address

Return:

Executes specified interrupt.
Updates 8088 Interrupt/Register Table at specified address.

This function is included for compatibility with earlier versions
of HEADER, and is a subset of Call 248. Its action is identical
in every respect except that it passes only the first four regi
sters (AX, BX, CX, DX), and the effective table is onlv nine
bytes long. ^

4*538 Call 254: Output to Host I/O Port

Entry Parameters:

Register C: FEH
Register E: 8-bit output value
Registers HL: Host system port number

Since the Baby Blue has no ports of its own, all I/O must pass
through the 8088. This function enables a Z-80 program to output
values directly to a port (under the control, of course, of the
8088) - use this function instead of an OUT instruction.

4*539 Call 255: Input from Host I/O Port

Entry Parameters:

Register C: FFH
Registers HL: Host system port number.

Return:

Register A: 8-bit input value.

Complements Call 254, enabling the Z-80 to input values directly
from an 8088-controlled port.

4-29

RBF/HARDPOH

4.6 HARDWARE FDMCTIOMS

4.61 Z-80 PORT ADDRESS DECODING

The assignment of address lines to the Z-80*8 I/O port is
given in Table 4-8 ("Blue DIP Switch Decoding"). Note that the
memory page (segment) address lines map onto the low-order bits
of the port address by sharing the same switches for signal
decoding. This means that the port address could vary from
0300H to 031CH, depending on the base address of Baby Blue's
memory (Table 4-9).

In a single Baby Blue system, port address and segment
decoding could be separate, but tying them together offers the
possibility of running more than one in parallel - mapping the
onboard memory into different pages will automatically define
separate port addresses, without special accomodations from the
host control program. HEADER in fact uses this facility when it
polls memory to locate the Baby Blue - once the memory
segment is located, the port address is automatically known.

Note that here, OFF « 1 = High, and ON « 0 « Low. Numbers in
"{}" brackets are set for compatibility with HEADER, but could
be set differently to interface a different control program.
Since A8 and A9 are hard-wired high ("1"), the high-order nibble
of the port address is always 3H. A0 is tied Low ("0"), so all
addresses are given as even, even though the low order bit is
really a "don't care".

4.62 Z-80 CONTROL LINES

REF/HARDFUN

RESET is activated only by a power-up system reset, and is not
available to the programmer - use NMI with a Z-80 service routine
at 66H to emulate any desired RESET functions.

Control lines are accessed through the Z-80's I/O port address of
as follows:

1

(0) 03XXH (Control Data Byte]

Where:

(0] a OUT Instruction

03XXH a Port address in hexadecimal, where XX are
determined by DIP switch settings on the Baby Blue (See
Table 4-9: "Baby Blue DIP Switch Decoding").

(Control Data Byte) a information transmitted to the port to
select the available control lines. Only bits 0, 2 and
3 of this byte are significant: the rest are "don't
cares" ("x"). it maps onto the control lines as
follows:

Table 4-7: Z-80 Fonctions Control Byte

Data Lines

NMI INT X HALT

control lines available to the 8088 programmer are: Functions D3 D2 D1 D0 Decimal

NMI (Non-Maskable Interrupt: Jump to Location 66H) HALT Z-80: 0 0 X 0 0

In HEADER this interrupt is serviced by a routine which RUN (all off): 0 0 X 1 1

emulates a Z-80 system reset.
INTERRUPT: 0 1 X 1 5

INT (interrupt)
Loc. 68H:JUMP to 1 0 X 1 9

HALT
All control lines latch and so must be cancelled

A special, discretely configured control line which
presents a hard-wired HALT instruction (76H) to the z-
80 data bus, bypassing RAM. Following activation of
this line, the HALT instruction waits to appear on the
data bus for the next instruction fetch, permitting the
orderly completion of the current machine cycle.

When the z-80 is in a HALT state, it executes No-ops,
which are essentially bare memory refresh cycles. A
HALTed Z-80 recognizes only an NNI or an INT (with mask
enabled), so one of these must be used to resume
processing.

4-30

For example, the "JUMP to Location 66H" cancels HALT with a "1"
on D0 so that NMI will execute, but NMI must in turn be be
cancelled by a "RUN" instruction (0 on D3) for the service
routine to begin - otherwise the Z-80 will continuously execute
an NMI.

4-31

RBF/HARDPOH

4.6 HARDWARE FDMCTIOMS

4.61 Z-80 PORT ADDRESS DECODING

The assignment of address lines to the Z-80*8 I/O port is
given in Table 4-8 ("Blue DIP Switch Decoding"). Note that the
memory page (segment) address lines map onto the low-order bits
of the port address by sharing the same switches for signal
decoding. This means that the port address could vary from
0300H to 031CH, depending on the base address of Baby Blue's
memory (Table 4-9).

In a single Baby Blue system, port address and segment
decoding could be separate, but tying them together offers the
possibility of running more than one in parallel - mapping the
onboard memory into different pages will automatically define
separate port addresses, without special accomodations from the
host control program. HEADER in fact uses this facility when it
polls memory to locate the Baby Blue - once the memory
segment is located, the port address is automatically known.

Note that here, OFF « 1 = High, and ON « 0 « Low. Numbers in
"{}" brackets are set for compatibility with HEADER, but could
be set differently to interface a different control program.
Since A8 and A9 are hard-wired high ("1"), the high-order nibble
of the port address is always 3H. A0 is tied Low ("0"), so all
addresses are given as even, even though the low order bit is
really a "don't care".

4.62 Z-80 CONTROL LINES

REF/HARDFUN

RESET is activated only by a power-up system reset, and is not
available to the programmer - use NMI with a Z-80 service routine
at 66H to emulate any desired RESET functions.

Control lines are accessed through the Z-80's I/O port address of
as follows:

1

(0) 03XXH (Control Data Byte]

Where:

(0] a OUT Instruction

03XXH a Port address in hexadecimal, where XX are
determined by DIP switch settings on the Baby Blue (See
Table 4-9: "Baby Blue DIP Switch Decoding").

(Control Data Byte) a information transmitted to the port to
select the available control lines. Only bits 0, 2 and
3 of this byte are significant: the rest are "don't
cares" ("x"). it maps onto the control lines as
follows:

Table 4-7: Z-80 Fonctions Control Byte

Data Lines

NMI INT X HALT

control lines available to the 8088 programmer are: Functions D3 D2 D1 D0 Decimal

NMI (Non-Maskable Interrupt: Jump to Location 66H) HALT Z-80: 0 0 X 0 0

In HEADER this interrupt is serviced by a routine which RUN (all off): 0 0 X 1 1

emulates a Z-80 system reset.
INTERRUPT: 0 1 X 1 5

INT (interrupt)
Loc. 68H:JUMP to 1 0 X 1 9

HALT
All control lines latch and so must be cancelled

A special, discretely configured control line which
presents a hard-wired HALT instruction (76H) to the z-
80 data bus, bypassing RAM. Following activation of
this line, the HALT instruction waits to appear on the
data bus for the next instruction fetch, permitting the
orderly completion of the current machine cycle.

When the z-80 is in a HALT state, it executes No-ops,
which are essentially bare memory refresh cycles. A
HALTed Z-80 recognizes only an NNI or an INT (with mask
enabled), so one of these must be used to resume
processing.

4-30

For example, the "JUMP to Location 66H" cancels HALT with a "1"
on D0 so that NMI will execute, but NMI must in turn be be
cancelled by a "RUN" instruction (0 on D3) for the service
routine to begin - otherwise the Z-80 will continuously execute
an NMI.

4-31

RBF/HASDFOH

Table 4-8: Address Decoding

PORT .PORT

NUMBER ADDRESS

(HEX) LINES

SETTING SEGMENT MEMORY

DIP (BINARY ADDRESS SEGMENT
SWITCH VALUE) LINES (PAGE)

X

(0 OR 1)

(2 THRU C)

All - X - -

A10 - X - -

A9 HIGH (1) - -

AS HIGH (1) - -

A7 SWl ON {0} - -

A6 SW2 ON (0) - -

A5 SW3 ON {0} - -

A4 SW4 ? A19
r***** 0

A3 SW5 ? A18

THRU
A2 SW6 ? A17

E

A1 SW7 ? A16

A0 LOW XX —

4.63 MEMORY ARBITRATION

Memory access is as straightforward as writing or reading a
location within Baby Blue's memory segment. Since the Z-80
handles refresh, handshaking is constant, but it is automatically
controlled by the board's hardware.

The 8088 has priority access to Baby Blue's onboard memory. A
validly decoded address, combined with an active /MEMR or /MEMW,
presents an active /BUSREQ to the Z-80. The z-80 must respond by
relinquishing the bus, but first completes its current machine
cycle. The 8088 waits, responding to an active signal on its I/O
CHANNEL READY line. An active /BUSACK indicates that the Z-80
has relinquished the bus, and lifts I/O CHANNEL READY, permitting
the 8088 to complete its cycle. Now /BUSREQ goes high, starting
the Z-80 and insuring that each memory access by the 8088 is
followed by at least one Z-80 cycle, to maintain refresh.

4-32

RBF/HARDFUM

Table 4-9: Segment and Port Assignments

Switch Setting
1234 5678

IL

ON

T
ON

T

ON

1

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

!

ON

T

Memory
Segment

7

8

9

A*

B*

C*

D*

E*

F*

Address

Range

10000-lFFFF

20000-2FFFF

30000-3FFFF

40000-4FFFF

50000-5FFFF

60000-6FFFF

70000-7FFFF

80000-8FFFF

90000-9FFFF

A0000-AFFFF

B0000-BFFFF

C0000-CFFFF

D0000-DFFFF

E0000-EFFFF

F0000-FFFFF

Z-80 Port

Address

302

304

306

308

30A

30C

30E

310

312

314

316

318

31A

31C

31E

* One or more Pages in the range A through F are reserved by
all machines.

4-33

RBF/HASDFOH

Table 4-8: Address Decoding

PORT .PORT

NUMBER ADDRESS

(HEX) LINES

SETTING SEGMENT MEMORY

DIP (BINARY ADDRESS SEGMENT
SWITCH VALUE) LINES (PAGE)

X

(0 OR 1)

(2 THRU C)

All - X - -

A10 - X - -

A9 HIGH (1) - -

AS HIGH (1) - -

A7 SWl ON {0} - -

A6 SW2 ON (0) - -

A5 SW3 ON {0} - -

A4 SW4 ? A19
r***** 0

A3 SW5 ? A18

THRU
A2 SW6 ? A17

E

A1 SW7 ? A16

A0 LOW XX —

4.63 MEMORY ARBITRATION

Memory access is as straightforward as writing or reading a
location within Baby Blue's memory segment. Since the Z-80
handles refresh, handshaking is constant, but it is automatically
controlled by the board's hardware.

The 8088 has priority access to Baby Blue's onboard memory. A
validly decoded address, combined with an active /MEMR or /MEMW,
presents an active /BUSREQ to the Z-80. The z-80 must respond by
relinquishing the bus, but first completes its current machine
cycle. The 8088 waits, responding to an active signal on its I/O
CHANNEL READY line. An active /BUSACK indicates that the Z-80
has relinquished the bus, and lifts I/O CHANNEL READY, permitting
the 8088 to complete its cycle. Now /BUSREQ goes high, starting
the Z-80 and insuring that each memory access by the 8088 is
followed by at least one Z-80 cycle, to maintain refresh.

4-32

RBF/HARDFUM

Table 4-9: Segment and Port Assignments

Switch Setting
1234 5678

IL

ON

T
ON

T

ON

1

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

T

ON

!

ON

T

Memory
Segment

7

8

9

A*

B*

C*

D*

E*

F*

Address

Range

10000-lFFFF

20000-2FFFF

30000-3FFFF

40000-4FFFF

50000-5FFFF

60000-6FFFF

70000-7FFFF

80000-8FFFF

90000-9FFFF

A0000-AFFFF

B0000-BFFFF

C0000-CFFFF

D0000-DFFFF

E0000-EFFFF

F0000-FFFFF

Z-80 Port

Address

302

304

306

308

30A

30C

30E

310

312

314

316

318

31A

31C

31E

* One or more Pages in the range A through F are reserved by
all machines.

4-33

:F/HAia>FaH

MOTES:

4-34

APPENDICES

:F/HAia>FaH

MOTES:

4-34

APPENDICES

BIND

A. THE BABY BLUE UTILITIES

A.l BIND; THE CP/M-80 PROGRAM IN PC-DOS FORMAT

BIND attaches HEADER to CP/M-80 programs which are on PC-DOS
diskettes, as opposed to CONVERT, which does the same thing to
programs on CP/M diskettes. Use BIND when:

- as recommended, you purchase CP/M software published on PC-
DOS diskettes, though not yet bound with HEADER,

- you transfer software from a CP/M system by some means which
does not directly involve the Co-Processor, e,g, a PC-DOS
communications program or the Microlog 8" Disk Controller.
(Programs running on the Co-Processor will automatically
BIND HEADER to any COM files they write on a PC-DOS disk).

- you update your files with a new version of HEADER,

PROCEDURE

Both BIND.COM and HEADER must be on the same disk in the default,
or logged-in drive. Type:

c:BIND s:filename.COM d: <CR>

BIND first checks for the presence of HEADER in the target file.
If the file contains some version of HEADER, it will be replaced
with the version currently on your disk. If source and destina
tion are on the same drive, the old filename.COM will be over
written. This is how BIND is used to update a program with a new
version of HEADER.

If filename.COM does not contain HEADER, BIND will respond with
the warning:

This ".COM" file may be an 8088 file —
if you still wish to bind it,
rename it with extension ".CPM"

If you attach HEADER to a native PC-DOS program, the program
will no longer run - BIND is making sure that won*t happen. If
you know you've got a CP/M file, type:

RENAME s:filename.COM filename.CPM <CR>

A-1

BIND

A. THE BABY BLUE UTILITIES

A.l BIND; THE CP/M-80 PROGRAM IN PC-DOS FORMAT

BIND attaches HEADER to CP/M-80 programs which are on PC-DOS
diskettes, as opposed to CONVERT, which does the same thing to
programs on CP/M diskettes. Use BIND when:

- as recommended, you purchase CP/M software published on PC-
DOS diskettes, though not yet bound with HEADER,

- you transfer software from a CP/M system by some means which
does not directly involve the Co-Processor, e,g, a PC-DOS
communications program or the Microlog 8" Disk Controller.
(Programs running on the Co-Processor will automatically
BIND HEADER to any COM files they write on a PC-DOS disk).

- you update your files with a new version of HEADER,

PROCEDURE

Both BIND.COM and HEADER must be on the same disk in the default,
or logged-in drive. Type:

c:BIND s:filename.COM d: <CR>

BIND first checks for the presence of HEADER in the target file.
If the file contains some version of HEADER, it will be replaced
with the version currently on your disk. If source and destina
tion are on the same drive, the old filename.COM will be over
written. This is how BIND is used to update a program with a new
version of HEADER.

If filename.COM does not contain HEADER, BIND will respond with
the warning:

This ".COM" file may be an 8088 file —
if you still wish to bind it,
rename it with extension ".CPM"

If you attach HEADER to a native PC-DOS program, the program
will no longer run - BIND is making sure that won*t happen. If
you know you've got a CP/M file, type:

RENAME s:filename.COM filename.CPM <CR>

A-1

BIND

Then;

c:BIND s:filename.CPM d: <CR>

This will unconditionally attach HEADER to filename.CPM#
producing the larger filename.COM. The size of the two files will
differ by exactly the length of HEADER.

You may of course rename your file to the CPM extension before
running BIND the first time, but be careful: if the file already
contains HEADER, it will now be *'double-bound'*, containing two
HEADERS, and it won't run. It's safest to probe for the presence
of HEADER by attempting to BIND your COM file first, before you
RENAME it to CPM.

BIND does not accept global, or ^wildcard" filenames, for
example:

BIND *.CPM

will not match a series of files; instead, it will look for a
single file literally named "*.CPM". Since you only BIND each
COM file once, the absence of globals shouldn't be a serious
handicap.

A-2

CONVERf

A.2 CONVERT: ACCESS TO CP/H DISKETTES

Use CONVERT to:

- Move files in either direction between PC-DOS and CP/M.

To transfer a file, you must have two diskettes, one
formatted for PC-DOS (double or single sided), the
other for CP/M (single sided only).

- Inspect the directory of a CP/M diskette.

Don't use CONVERT to attach HEADER to a file which is already on
a PC-DOS formatted diskette - use BIND instead. Convert requires
two disk drives to operate; at least one must be a 5-inch flooov
disk drive.

PROCEDURE

Type:

Response:

ciCONVERT s:filename

CP/M IBM File Transfer Utility
Version 2.0 (c) 1982, Microlog Inc.

IBM Disk:

Type the one-letter name of the drive which contains your PC-DOS
formatted diskette - no <CR> is necessary. Notice that CONVERT
immediately posts your response at the top of the screen. It
will continue to do this with each parameter (selection) you
supply, forming a "status line" for easy reference. The next
prompt is:

CP/M Disk:

Type the name of the drive containing your CP/M diskette.

Response:

AVAILABLE FORMATS:

1. NEC PC-8001

2. IMS 5000

3. DEC VT-18X
4. Heath/Zenith Soft Sectored
5. CP/M-86 on the IBM PC

SELECT FORMAT:

A-3

BIND

Then;

c:BIND s:filename.CPM d: <CR>

This will unconditionally attach HEADER to filename.CPM#
producing the larger filename.COM. The size of the two files will
differ by exactly the length of HEADER.

You may of course rename your file to the CPM extension before
running BIND the first time, but be careful: if the file already
contains HEADER, it will now be *'double-bound'*, containing two
HEADERS, and it won't run. It's safest to probe for the presence
of HEADER by attempting to BIND your COM file first, before you
RENAME it to CPM.

BIND does not accept global, or ^wildcard" filenames, for
example:

BIND *.CPM

will not match a series of files; instead, it will look for a
single file literally named "*.CPM". Since you only BIND each
COM file once, the absence of globals shouldn't be a serious
handicap.

A-2

CONVERf

A.2 CONVERT: ACCESS TO CP/H DISKETTES

Use CONVERT to:

- Move files in either direction between PC-DOS and CP/M.

To transfer a file, you must have two diskettes, one
formatted for PC-DOS (double or single sided), the
other for CP/M (single sided only).

- Inspect the directory of a CP/M diskette.

Don't use CONVERT to attach HEADER to a file which is already on
a PC-DOS formatted diskette - use BIND instead. Convert requires
two disk drives to operate; at least one must be a 5-inch flooov
disk drive.

PROCEDURE

Type:

Response:

ciCONVERT s:filename

CP/M IBM File Transfer Utility
Version 2.0 (c) 1982, Microlog Inc.

IBM Disk:

Type the one-letter name of the drive which contains your PC-DOS
formatted diskette - no <CR> is necessary. Notice that CONVERT
immediately posts your response at the top of the screen. It
will continue to do this with each parameter (selection) you
supply, forming a "status line" for easy reference. The next
prompt is:

CP/M Disk:

Type the name of the drive containing your CP/M diskette.

Response:

AVAILABLE FORMATS:

1. NEC PC-8001

2. IMS 5000

3. DEC VT-18X
4. Heath/Zenith Soft Sectored
5. CP/M-86 on the IBM PC

SELECT FORMAT:

A-3

CONVERT

Select from this list the format that matches your CP/M diskette,
and type the appropriate number, 1 through 5. Now the Functions
Menu appears:

!• Copy from CP/M to IBM
2* Copy from IBM to CP/M
3* Print Directory of IBM disk
4. Print Directory of CP/M disk
5. Change parameters (restart program)
6. Bxit program

ENTER SELECTION:

Type a number from 1 to 6 - the entire menu remains on the
screen, but the other functions fade to half-intensity,
highlighting your choice. Your function remains highlighted until
execution is completed.

FUNCTIONS

1. Copy from CP/M to IBM

Type "1" to bring a file into PC-DOS from CP/M. Your screen looks
like this:

IBM Disk: d: CPM Disk: s: CPM format type: formattype

1. Copy from CP/M to IBM
2. Copy from IBM to CP/M
3. Print Directory of IBM disk
4. Print Directory of CP/M disk
5. Change parameters (restart program)
6. Exit program

ENTER FILE NAME (<return> to exit copy) :

You now type:

filespec <CR>

Which is soon replaced by:

COPYING FILE s:filename.ext

You may use global parameters in place of filenames and exten
sions (e.g. •.ext , or *•*)•

When the copy is finished, CONVERT says:

ENTER FILE NAME «return» to exit) :

Enter another filename, or type <CR>, returning to the Functions
Menu.

A-4

CONVERT

2. Copy From IBM to CP/M

Identical to the procedure for Function 1, except of course that %
now the source is a PC-DOS formatted diskette, and the destina- t
tion is a CP/M diskette. |

3. Print Directory of IBM Disk

This function displays the directory of the disk listed as '*I3H
disk** at the top of your screen, so you don*t have to exit
CONVERT to find out which files you*ve got. If you*ve got the
wrong type of disk in there, you*ll get an error..The directory
appears at the bottom of the screen and remains there for
reference after control returns to the Function Menu.

4. Print Directory of CP/M Disk

Similar to Function 3, except that you get the directory of the
disk listed as the **CP/M disk**. This is the only way to read the
directory of a CP/M diskette under PC-DOS.

5. Change Parameters

When you want to change an entry in the onscreen status line,
this function allows you to quickly restart CONVERT from the top,
without exiting to system level.

You type ''S**, the screen clears, and CONVERT begins again with
the prompt:

IBM Disk:

6. Exit Program

The screen clears, and the system prompt appears, returning you
to PC-DOS command level.

A-5

CONVERT

Select from this list the format that matches your CP/M diskette,
and type the appropriate number, 1 through 5. Now the Functions
Menu appears:

!• Copy from CP/M to IBM
2* Copy from IBM to CP/M
3* Print Directory of IBM disk
4. Print Directory of CP/M disk
5. Change parameters (restart program)
6. Bxit program

ENTER SELECTION:

Type a number from 1 to 6 - the entire menu remains on the
screen, but the other functions fade to half-intensity,
highlighting your choice. Your function remains highlighted until
execution is completed.

FUNCTIONS

1. Copy from CP/M to IBM

Type "1" to bring a file into PC-DOS from CP/M. Your screen looks
like this:

IBM Disk: d: CPM Disk: s: CPM format type: formattype

1. Copy from CP/M to IBM
2. Copy from IBM to CP/M
3. Print Directory of IBM disk
4. Print Directory of CP/M disk
5. Change parameters (restart program)
6. Exit program

ENTER FILE NAME (<return> to exit copy) :

You now type:

filespec <CR>

Which is soon replaced by:

COPYING FILE s:filename.ext

You may use global parameters in place of filenames and exten
sions (e.g. •.ext , or *•*)•

When the copy is finished, CONVERT says:

ENTER FILE NAME «return» to exit) :

Enter another filename, or type <CR>, returning to the Functions
Menu.

A-4

CONVERT

2. Copy From IBM to CP/M

Identical to the procedure for Function 1, except of course that %
now the source is a PC-DOS formatted diskette, and the destina- t
tion is a CP/M diskette. |

3. Print Directory of IBM Disk

This function displays the directory of the disk listed as '*I3H
disk** at the top of your screen, so you don*t have to exit
CONVERT to find out which files you*ve got. If you*ve got the
wrong type of disk in there, you*ll get an error..The directory
appears at the bottom of the screen and remains there for
reference after control returns to the Function Menu.

4. Print Directory of CP/M Disk

Similar to Function 3, except that you get the directory of the
disk listed as the **CP/M disk**. This is the only way to read the
directory of a CP/M diskette under PC-DOS.

5. Change Parameters

When you want to change an entry in the onscreen status line,
this function allows you to quickly restart CONVERT from the top,
without exiting to system level.

You type ''S**, the screen clears, and CONVERT begins again with
the prompt:

IBM Disk:

6. Exit Program

The screen clears, and the system prompt appears, returning you
to PC-DOS command level.

A-5

KBYPIX

A.3 KBYFIX: ADTOMATHiG YOOR KBYBOARD

KEYFIX allows you to program more than fifty "definable" function
keys to output any character string (sequence of keystrokes), up
to 80 characters long. Because the function key definitions
reside in HEADER, KEYFIX can only be used with CP/M programs
running on Baby Blue.

PROCEDURE

Type:

Response:

c:RBYPIX sifilename <CR>

ENTER THE KEY YOU WISH TO DEFINE, <Q>-TO EXIT

Press a "definable" key, as explained below. The screen clears,
and you see this:

KEY SELECTED: (FUHKBYl

CURRENTLY DEFINED AS:

(current designation]

TO DEFINE A KEY HIT <RETURN> TO LEAVE THE KEY UNCHANGED
HIT ANY OTHER KEY.

Press "Return" (<CR>). All information currently on the screen
remains there, and in addition,

To define a key, enter a string of characters. Define-
able keys may not be used. They will be ignored.
Control characters are okay. The maximum length of one
entry is 80. Any characters exceeding this size or the
total table size will be truncated.

TO END THE STRING, ENTER THE KEY YOU ARE DEFINING.

Now type:

(character string] <FUNKEY>

A-6

KEYFIX

The symbol "<FUNKEY>" means "press the key you are currently
defining" - that's how KEYFIX knows you're done. Why not <CR>?
Because you might use that as part of your definition - if you
do, it will display as "^M".

The screen clears, and you're back at the top, ready to start on
another key. This is the only way to exit once you begin to
define a key: whatever you see at the bottom of your screen is
stored literally as the key definition. If there is nothing at
the bottom of your screen, your key will be stored as a "null",
meaning that when you press it during program execution, nothing
at all will happen.

Restarting KEYFIX

You can always get back to top of KEYFIX by pressing the
currently selected key, but remember that once you have
started to define a key, the bottom of your screen will be
stored as the new key definition, even if there is nothing
there.

To Inspect the Definition of a Key

Press the key to display its current status; press the key
again, and you're back at the top of KEYFIX.

To Finalize Your Entries

When you've finished setting up your keys, type "Q" ("Quit")
at the top of KEYFIX, to return to PC-DOS. Always exit in
this way if you want to save your entries - KBYFIX will
write them all to disk, in the HEADER attached to the target
program. Now, whenever you call that program, your keys will
work as you have programmed them.

To Clear a Function Key

You may want to erase the definition of a function key
simply to disable it, but the main reason is to clear table
space for long entries to other keys, as explained below.

Go to the initial prompt, and press the key. Now press
"Retrn"; at this point, your cursor is standing on an empty
line at the bottom of the screen. Immediately press the
selected key again, entering a "null", or inactive, string
for the selected key.

A-7

KBYPIX

A.3 KBYFIX: ADTOMATHiG YOOR KBYBOARD

KEYFIX allows you to program more than fifty "definable" function
keys to output any character string (sequence of keystrokes), up
to 80 characters long. Because the function key definitions
reside in HEADER, KEYFIX can only be used with CP/M programs
running on Baby Blue.

PROCEDURE

Type:

Response:

c:RBYPIX sifilename <CR>

ENTER THE KEY YOU WISH TO DEFINE, <Q>-TO EXIT

Press a "definable" key, as explained below. The screen clears,
and you see this:

KEY SELECTED: (FUHKBYl

CURRENTLY DEFINED AS:

(current designation]

TO DEFINE A KEY HIT <RETURN> TO LEAVE THE KEY UNCHANGED
HIT ANY OTHER KEY.

Press "Return" (<CR>). All information currently on the screen
remains there, and in addition,

To define a key, enter a string of characters. Define-
able keys may not be used. They will be ignored.
Control characters are okay. The maximum length of one
entry is 80. Any characters exceeding this size or the
total table size will be truncated.

TO END THE STRING, ENTER THE KEY YOU ARE DEFINING.

Now type:

(character string] <FUNKEY>

A-6

KEYFIX

The symbol "<FUNKEY>" means "press the key you are currently
defining" - that's how KEYFIX knows you're done. Why not <CR>?
Because you might use that as part of your definition - if you
do, it will display as "^M".

The screen clears, and you're back at the top, ready to start on
another key. This is the only way to exit once you begin to
define a key: whatever you see at the bottom of your screen is
stored literally as the key definition. If there is nothing at
the bottom of your screen, your key will be stored as a "null",
meaning that when you press it during program execution, nothing
at all will happen.

Restarting KEYFIX

You can always get back to top of KEYFIX by pressing the
currently selected key, but remember that once you have
started to define a key, the bottom of your screen will be
stored as the new key definition, even if there is nothing
there.

To Inspect the Definition of a Key

Press the key to display its current status; press the key
again, and you're back at the top of KEYFIX.

To Finalize Your Entries

When you've finished setting up your keys, type "Q" ("Quit")
at the top of KEYFIX, to return to PC-DOS. Always exit in
this way if you want to save your entries - KBYFIX will
write them all to disk, in the HEADER attached to the target
program. Now, whenever you call that program, your keys will
work as you have programmed them.

To Clear a Function Key

You may want to erase the definition of a function key
simply to disable it, but the main reason is to clear table
space for long entries to other keys, as explained below.

Go to the initial prompt, and press the key. Now press
"Retrn"; at this point, your cursor is standing on an empty
line at the bottom of the screen. Immediately press the
selected key again, entering a "null", or inactive, string
for the selected key.

A-7

KBYFIX

Correcting Errors

There is no practical way to correct an error, except to
again. Press the selected key twice, then press

"Retrn**, to start over.

Duplicate Definitions

To KEYFIX the same definitions to a number of programs,
rename HEADER to HEADER.COM - now you can KEYFIX HEADER
itself. Then change the name back to HEADER, and BIND it to
your programs.

Sorry, you can't run KEYFIX on KEYFIX itself - it's not a
CP/M-80 program.

SCOPE

Definable Keys

You can define a total of 56 different function keys,
divided into four registers. The unshifted, or "normal"
register consists of:

10 Function Keys: <F1>-<F10>.
4 Arrow Keys: <Up>, <Down>, <Left>, <Right>.
6 Others:<Home>, <End>, <Pg Up>, <Pg Dn>,

<Delete>^ <Insert>.
20 Total ~

To select an unshifted key, type:

<Function key>

For example,

<P1>

displays:

KEY SELECTED: FUNCTION 1

The "control" register consists of:

10 Function Keys <F1> - <F10>
2 Arrow Keys: <Left>, <Right>

1 Others: _<Home>, <End>^ <Pq Op>, <pq Dn>
16 Total ""

A-8

KEYFIX

To select one of the 16 keys in the "control" register,
press <CTRL> and the function key simultaneously. For example:

<CTRL HOME>

displays:

KEY SELECTED: CTRL HOME

The "Shift" and "Alternate" registers each contain 10 keys:

10 Function Keys <F1> - <F10>
10 Total

For example,

<SHIFT Fl> (or <ALT Fl>)

displays:

KEY SELECTED: SHIFT Fl (or ALT Fl)

Default Definitions

HEADER comes with all function keys predefined as shown in
Table 4-5. The peculiar symbols beginning with "^0" are
sequences expected by the PC-DOS line editor: you use this
facility, for example, every time you delete a character
while typing a DOS command, if you redefine these keys, you
will disable the corresponding DOS line-edit function during
execution of your KEYFIXED program. This will only be a
problem in the rare case where a program does not have its
own line-edit functions.

Allowable Strings

You may enter any character as part of the definition for a
function key, except that nothing will happen if you try to
enter one of the definable keys. This means that one
function key cannot call another, nor can a function key
call itself.

The so-called "parallel functions" - ALT, SHIFT and CTRL -
are always used as part of a two-keystroke combination. If
you type <CTRL> nothing happens; however, if you hold <CTRL>
down and type another character, for example "C", you get
this on your screen:

A-9

KBYFIX

Correcting Errors

There is no practical way to correct an error, except to
again. Press the selected key twice, then press

"Retrn**, to start over.

Duplicate Definitions

To KEYFIX the same definitions to a number of programs,
rename HEADER to HEADER.COM - now you can KEYFIX HEADER
itself. Then change the name back to HEADER, and BIND it to
your programs.

Sorry, you can't run KEYFIX on KEYFIX itself - it's not a
CP/M-80 program.

SCOPE

Definable Keys

You can define a total of 56 different function keys,
divided into four registers. The unshifted, or "normal"
register consists of:

10 Function Keys: <F1>-<F10>.
4 Arrow Keys: <Up>, <Down>, <Left>, <Right>.
6 Others:<Home>, <End>, <Pg Up>, <Pg Dn>,

<Delete>^ <Insert>.
20 Total ~

To select an unshifted key, type:

<Function key>

For example,

<P1>

displays:

KEY SELECTED: FUNCTION 1

The "control" register consists of:

10 Function Keys <F1> - <F10>
2 Arrow Keys: <Left>, <Right>

1 Others: _<Home>, <End>^ <Pq Op>, <pq Dn>
16 Total ""

A-8

KEYFIX

To select one of the 16 keys in the "control" register,
press <CTRL> and the function key simultaneously. For example:

<CTRL HOME>

displays:

KEY SELECTED: CTRL HOME

The "Shift" and "Alternate" registers each contain 10 keys:

10 Function Keys <F1> - <F10>
10 Total

For example,

<SHIFT Fl> (or <ALT Fl>)

displays:

KEY SELECTED: SHIFT Fl (or ALT Fl)

Default Definitions

HEADER comes with all function keys predefined as shown in
Table 4-5. The peculiar symbols beginning with "^0" are
sequences expected by the PC-DOS line editor: you use this
facility, for example, every time you delete a character
while typing a DOS command, if you redefine these keys, you
will disable the corresponding DOS line-edit function during
execution of your KEYFIXED program. This will only be a
problem in the rare case where a program does not have its
own line-edit functions.

Allowable Strings

You may enter any character as part of the definition for a
function key, except that nothing will happen if you try to
enter one of the definable keys. This means that one
function key cannot call another, nor can a function key
call itself.

The so-called "parallel functions" - ALT, SHIFT and CTRL -
are always used as part of a two-keystroke combination. If
you type <CTRL> nothing happens; however, if you hold <CTRL>
down and type another character, for example "C", you get
this on your screen:

A-9

KBYFIX

Your system uses a caret ("''••) to represent the "hidden"
<CTRL> keystroke - don't confuse it with the "real" caret,
or <Shift 6> on your keyboard. Your system interprets this
C" not as two characters, but as one: the normally non

printing command sequence <CTRL C>.

If you type:

<SHIFT 6><C>

You'll also see:

but this is interpreted, and normally printed (or displayed)
as the two characters and "C".

Some keys, such as <Tab> and <Retrn> will post peculiar
con.trol codes on the screen as you define a function, but
don't worry - during program execution your system will
properly interpret these as commands, and will not print or
display unintended characters.

Space Limitations:

The longest definition you can enter is 80 characters - if
you enter too many, the following message appears at the
bottom of your screen:

ERROR: NO SPACE AVAILABLE

However, there is also a hidden limitation: your total
entries, for all functions, cannot exceed the size of the
"table" which has been reserved for them. There are actual
ly two tables, each of 256 characters, divided between the
possible function keys as follows:

Table 1 256 Characters Total

10 Normal Functions: <F1> - <F10>
10 Shift Functions: <SHIFT F1 - <SHIFT P10>
20 Keys Total

Average 12.8 Characters per Function.

A-10

KEYPIX

Table 2 256 Characters Total

10 ALT Functions: F1 - F10
10 CTRL Functions: F1 - F10
6 Cursor Controls: <UP>,<DO

10 Other Functions:

WN>,<RIGHT>,<LEFT>,
<CTRL RIGHT>,<CTRL LEFT>
<HOME>,<END>,<PG UP>,<PG DN>,
<INS>,<CTRL HOME>,<CTRL END>,
><CTRL PG UP>,<CTRL PG DN>

36 Functions Total

Average 7.1 Characters per Function.

If you have some really long strings, you may want to use
the functions of Table 1, in order to save space in Table 2.
In most applications, the Arrow and Other functions tend to
be short strings, and it is quite natural to save elaborate
instructions for the Normal keys F1 - F10.

header's original default definitions occupy most of the
table space already - this is why you may suddenly receive a
No Space Available" error after only a moderately long

string. To get more space, clear some functions you aten't
using by redefining them as nulls.

EXAMPLE

The following exercise programs a hypothetical text editor named
TEDIT.COM to output a name and address at the touch of function
ivsy £ X •

Run KEYFIX on TEDIT:

KEYFIX TEDIT <CR>

Select Fl:

<F1>

Elect to define Fl:

<CR>

Enter key definition:

Ethel and Rupert Snoot''M35 Tar-Boosh Ln.'^MHog-Jaw, N.D.<F1>

Exit KEYFIX:

A-11

KBYFIX

Your system uses a caret ("''••) to represent the "hidden"
<CTRL> keystroke - don't confuse it with the "real" caret,
or <Shift 6> on your keyboard. Your system interprets this
C" not as two characters, but as one: the normally non

printing command sequence <CTRL C>.

If you type:

<SHIFT 6><C>

You'll also see:

but this is interpreted, and normally printed (or displayed)
as the two characters and "C".

Some keys, such as <Tab> and <Retrn> will post peculiar
con.trol codes on the screen as you define a function, but
don't worry - during program execution your system will
properly interpret these as commands, and will not print or
display unintended characters.

Space Limitations:

The longest definition you can enter is 80 characters - if
you enter too many, the following message appears at the
bottom of your screen:

ERROR: NO SPACE AVAILABLE

However, there is also a hidden limitation: your total
entries, for all functions, cannot exceed the size of the
"table" which has been reserved for them. There are actual
ly two tables, each of 256 characters, divided between the
possible function keys as follows:

Table 1 256 Characters Total

10 Normal Functions: <F1> - <F10>
10 Shift Functions: <SHIFT F1 - <SHIFT P10>
20 Keys Total

Average 12.8 Characters per Function.

A-10

KEYPIX

Table 2 256 Characters Total

10 ALT Functions: F1 - F10
10 CTRL Functions: F1 - F10
6 Cursor Controls: <UP>,<DO

10 Other Functions:

WN>,<RIGHT>,<LEFT>,
<CTRL RIGHT>,<CTRL LEFT>
<HOME>,<END>,<PG UP>,<PG DN>,
<INS>,<CTRL HOME>,<CTRL END>,
><CTRL PG UP>,<CTRL PG DN>

36 Functions Total

Average 7.1 Characters per Function.

If you have some really long strings, you may want to use
the functions of Table 1, in order to save space in Table 2.
In most applications, the Arrow and Other functions tend to
be short strings, and it is quite natural to save elaborate
instructions for the Normal keys F1 - F10.

header's original default definitions occupy most of the
table space already - this is why you may suddenly receive a
No Space Available" error after only a moderately long

string. To get more space, clear some functions you aten't
using by redefining them as nulls.

EXAMPLE

The following exercise programs a hypothetical text editor named
TEDIT.COM to output a name and address at the touch of function
ivsy £ X •

Run KEYFIX on TEDIT:

KEYFIX TEDIT <CR>

Select Fl:

<F1>

Elect to define Fl:

<CR>

Enter key definition:

Ethel and Rupert Snoot''M35 Tar-Boosh Ln.'^MHog-Jaw, N.D.<F1>

Exit KEYFIX:

A-11

iYFIX

cit KEYFIX:

le symbol •• M" appeared each time you pressed <Retrn> while
itering the key definition itself. It represents <CTRL-M>, which
; properly interpreted as a carriage return by the computer.

)w, whenever you press <F1> during a TEDIT session, the
illowing text appears:

Ethel and Rupert Snoot
35 Tar-Boosh Ln.

Hog-Jaw, N.O.

lis occupies 53 of the 256 characters available in Table 1.
► te that all symbols count, including (1 character) and
>aces.

•n*t limit yourself to simple text entry - you can KEYFIX
lything you can type, especially command sequences which can
rn a sound but awkward program into a high-performance vehicle,
ly often-repeated complex series of keystrokes is a candidate
r a function key "mini-program" - a complicated graphic figure

•r example, or a text editing sequence. With eighty characters
your disposal, you can achieve spectacular results.

my powerful software packages are so complicated that you end
» seldom using many functions simply because it's too much
ouble to remember all the codes. A logically arranged KEYFIX is
ten the answer - you'll find that the function keys fall natu-
lly into groups for easy reference.

A-12

TB8TX80

A.4 DIAGNOSTICS: TBSTZ80

TESTZ80 is a diagnostic program which tests all hardware
.functions on the Baby Blue board, including memory. Use it any
time you suspect a physical malfunction on the board. It is
included so that you can distinguish Baby Blue related problems
from faults in other parts of your system, including possible
problems with software.

PROCEDURE

Type:

TBSTZ80 <CR>

System Response:

Z80 CO-PROCESSOR CONFIDENCE TEST VERSION 1.02
COPYRIGHT(C), 1983, HICROLOG, INC.

1 BABY BLUE LOCATOR PASSED
2 INTERRUPT TEST 66 PASSED
3 8088 MEMORY TEST PASSED
4 8088 ADDRESS LINES PASSED
5 INTERRUPT TEST 38 PASSED
6 Z80 ADDRESS LINES PASSED

** TESTING SUCCESFULLY COMPLETED **

If you see this, you know the problem is definitely elsewhere,
either somewhere else in your system, or in software, if your
board fails TESTZ80, or you suspect a hardware fault in your
system, continue reading through "Troubleshooting", below.

TROUBLESHOOTING

You're here because your system failed to behave normally after
you installed Baby Blue, or because TESTZ80 returned an error.
At worst, you may have to return your board to Microlog for
service, but that's going to take some time, so you're hoping to
find another answer. Our experience indicates that very few
boards actually fail after factory testing, and that apparent
faults are usually due to some factor overlooked during the
installation. Most boards received by our service department turn
out to be in perfect working order.

Here are some common faults:

- At boot-time, an error message appears at the top of your
screen (e.g. "10AA 201", Parity 2).

A-13

iYFIX

cit KEYFIX:

le symbol •• M" appeared each time you pressed <Retrn> while
itering the key definition itself. It represents <CTRL-M>, which
; properly interpreted as a carriage return by the computer.

)w, whenever you press <F1> during a TEDIT session, the
illowing text appears:

Ethel and Rupert Snoot
35 Tar-Boosh Ln.

Hog-Jaw, N.O.

lis occupies 53 of the 256 characters available in Table 1.
► te that all symbols count, including (1 character) and
>aces.

•n*t limit yourself to simple text entry - you can KEYFIX
lything you can type, especially command sequences which can
rn a sound but awkward program into a high-performance vehicle,
ly often-repeated complex series of keystrokes is a candidate
r a function key "mini-program" - a complicated graphic figure

•r example, or a text editing sequence. With eighty characters
your disposal, you can achieve spectacular results.

my powerful software packages are so complicated that you end
» seldom using many functions simply because it's too much
ouble to remember all the codes. A logically arranged KEYFIX is
ten the answer - you'll find that the function keys fall natu-
lly into groups for easy reference.

A-12

TB8TX80

A.4 DIAGNOSTICS: TBSTZ80

TESTZ80 is a diagnostic program which tests all hardware
.functions on the Baby Blue board, including memory. Use it any
time you suspect a physical malfunction on the board. It is
included so that you can distinguish Baby Blue related problems
from faults in other parts of your system, including possible
problems with software.

PROCEDURE

Type:

TBSTZ80 <CR>

System Response:

Z80 CO-PROCESSOR CONFIDENCE TEST VERSION 1.02
COPYRIGHT(C), 1983, HICROLOG, INC.

1 BABY BLUE LOCATOR PASSED
2 INTERRUPT TEST 66 PASSED
3 8088 MEMORY TEST PASSED
4 8088 ADDRESS LINES PASSED
5 INTERRUPT TEST 38 PASSED
6 Z80 ADDRESS LINES PASSED

** TESTING SUCCESFULLY COMPLETED **

If you see this, you know the problem is definitely elsewhere,
either somewhere else in your system, or in software, if your
board fails TESTZ80, or you suspect a hardware fault in your
system, continue reading through "Troubleshooting", below.

TROUBLESHOOTING

You're here because your system failed to behave normally after
you installed Baby Blue, or because TESTZ80 returned an error.
At worst, you may have to return your board to Microlog for
service, but that's going to take some time, so you're hoping to
find another answer. Our experience indicates that very few
boards actually fail after factory testing, and that apparent
faults are usually due to some factor overlooked during the
installation. Most boards received by our service department turn
out to be in perfect working order.

Here are some common faults:

- At boot-time, an error message appears at the top of your
screen (e.g. "10AA 201", Parity 2).

A-13

STZ80

- Your machine won't boot at all. Either you don't get a
cursor, or you only get a cursor, or the system locks up as
the titles come on.

- You get erratic operation, often associated with a
particular utility or peripheral device.

- TESTZ80 returns various errors.

1 of these appear to be "hard" errors, indicating defective
rdware. Since Baby Blue is the only new factor, it is natural
assume that the board is defective. However, as explained in

ction 2.2, problems may arise from conflicts between elements
your system, where neither part is in itself at fault. Such
nflicts can be resolved, but it's important to know first where
3 fault lies.

e the following procedure to isolate the problem. Remember,
fore you touch any boards, ̂ sure that you turn power OFF,
d disconnect the power cable from your System Unit.

rst, remove Baby Blue, and turn all the DIP switches on and off
0 or three times; then reset them as recommended and try rein-
ailing the board. DIP switches are Baby Blue's only mechanical
mponent, and they sometimes get "tired" - exercising them is
ten a quick fix. Make sure they're really set - push hard.

e next step is to isolate Baby Blue - you don't know the board
defective unless you have removed all other factors which
ght affect it. This means removing as many other boards as
ssible, stripping your computer down to bare essentials,
viously, you wouldn't remove your video interface or disk drive
ntroller, since without them your computer won't run anyway,
it any extra memory boards or peripheral device interfaces
lould come out. Also, your boot disk should contain a plain-
nilla operating system - if you've made any software installa-
ons to your working copy of DOS, make a new copy of your
iginal operating system for testing purposes.

jfore you start pulling boards, make some notes, if you haven't
>ne so already. Don't change anything you can't undo, and make
ire you've recorded the settings of any switches you can see.
1 most machines, you'll have to change the switches on the
>therboard after removing any memory boards. When you're done,
)U should have returned your machine to its original factory
>nfiguration.

ike sure the machine works normally in every way, then install
iby Blue, using the factory switch settings shown in Section
11. Don't do any customizing at this point - we're trying to
Lnd out whether the board is OK, so keep it simple. You now
ive a complete isolation test - the only change to your working
achine is plugging in Baby Blue - you haven't even changed a
^itch position.

A-14

TESTZ80

If the board doesn't work now, try a different expansion slot
you'd be surprised how often this works, even though all slots
are theoretically the same. The manufacturer's documentation
won't mention it, but many machines have shown problems with the
physical distribution of signals on the expansion bus. The same
principle applies if you have an expansion chassis, only more so;
try your putting your board in the System Unit, or vice-versa. If
the board still doesn't work, it's time to turn to the Warranty
section and get some help.

If your board works now, you can start reinstalling your various
options until you find the one that doesn't like Baby Blue. When
you find the problem. Section 2.2 may give you some idea of
what's causing it. The way to fix a conflict with another board
is to change the Page assignment of one or both boards - this
will remove possible overlaps in the memory map.

Changing Baby Blue's memory Page also changes its "port address",
which is a separate addressing scheme used by your system to
locate peripheral devices such as printers and disk drives. This
means that you can also resolve conflicts involving non-memory
boards, simply by changing Baby Blue's Page assignment.

Contact your dealer for any problem you can't fix - he is in the
best position to help, since he is on the scene and can directly
observe the symptoms. If you can't get satisfaction locally,
contact Microlog at:

Technical Support
Microlog Inc.
222 Route 59

Suffern, NY 10901
914-368-0353

When reporting any problem, be sure you include the following
information:

-Serial number, dealer's name, and date of purchase.
-System configuration, as outlined in Section 2.26.
-A short history of your attempts to fix the problem,
including contacts with your dealer.

A-15

STZ80

- Your machine won't boot at all. Either you don't get a
cursor, or you only get a cursor, or the system locks up as
the titles come on.

- You get erratic operation, often associated with a
particular utility or peripheral device.

- TESTZ80 returns various errors.

1 of these appear to be "hard" errors, indicating defective
rdware. Since Baby Blue is the only new factor, it is natural
assume that the board is defective. However, as explained in

ction 2.2, problems may arise from conflicts between elements
your system, where neither part is in itself at fault. Such
nflicts can be resolved, but it's important to know first where
3 fault lies.

e the following procedure to isolate the problem. Remember,
fore you touch any boards, ̂ sure that you turn power OFF,
d disconnect the power cable from your System Unit.

rst, remove Baby Blue, and turn all the DIP switches on and off
0 or three times; then reset them as recommended and try rein-
ailing the board. DIP switches are Baby Blue's only mechanical
mponent, and they sometimes get "tired" - exercising them is
ten a quick fix. Make sure they're really set - push hard.

e next step is to isolate Baby Blue - you don't know the board
defective unless you have removed all other factors which
ght affect it. This means removing as many other boards as
ssible, stripping your computer down to bare essentials,
viously, you wouldn't remove your video interface or disk drive
ntroller, since without them your computer won't run anyway,
it any extra memory boards or peripheral device interfaces
lould come out. Also, your boot disk should contain a plain-
nilla operating system - if you've made any software installa-
ons to your working copy of DOS, make a new copy of your
iginal operating system for testing purposes.

jfore you start pulling boards, make some notes, if you haven't
>ne so already. Don't change anything you can't undo, and make
ire you've recorded the settings of any switches you can see.
1 most machines, you'll have to change the switches on the
>therboard after removing any memory boards. When you're done,
)U should have returned your machine to its original factory
>nfiguration.

ike sure the machine works normally in every way, then install
iby Blue, using the factory switch settings shown in Section
11. Don't do any customizing at this point - we're trying to
Lnd out whether the board is OK, so keep it simple. You now
ive a complete isolation test - the only change to your working
achine is plugging in Baby Blue - you haven't even changed a
^itch position.

A-14

TESTZ80

If the board doesn't work now, try a different expansion slot
you'd be surprised how often this works, even though all slots
are theoretically the same. The manufacturer's documentation
won't mention it, but many machines have shown problems with the
physical distribution of signals on the expansion bus. The same
principle applies if you have an expansion chassis, only more so;
try your putting your board in the System Unit, or vice-versa. If
the board still doesn't work, it's time to turn to the Warranty
section and get some help.

If your board works now, you can start reinstalling your various
options until you find the one that doesn't like Baby Blue. When
you find the problem. Section 2.2 may give you some idea of
what's causing it. The way to fix a conflict with another board
is to change the Page assignment of one or both boards - this
will remove possible overlaps in the memory map.

Changing Baby Blue's memory Page also changes its "port address",
which is a separate addressing scheme used by your system to
locate peripheral devices such as printers and disk drives. This
means that you can also resolve conflicts involving non-memory
boards, simply by changing Baby Blue's Page assignment.

Contact your dealer for any problem you can't fix - he is in the
best position to help, since he is on the scene and can directly
observe the symptoms. If you can't get satisfaction locally,
contact Microlog at:

Technical Support
Microlog Inc.
222 Route 59

Suffern, NY 10901
914-368-0353

When reporting any problem, be sure you include the following
information:

-Serial number, dealer's name, and date of purchase.
-System configuration, as outlined in Section 2.26.
-A short history of your attempts to fix the problem,
including contacts with your dealer.

A-15

TBSTZ80

APPNOTES

NOTES:

B. APPLICATIONS NOTES

B.l EMULATING THE "SAVE* FUNCTION: DEBUG>DDT

Although DDT and si.nilar utilities work on Baby Blue, they're not
very useful if you can't write the results of your work to disk.
Normally, you would use the CP/M resident SAVE command, but this
command is not available under PC-DOS. A neat solution is to run
DDT under the control of DEBUG, using DEBUG's Write facility in
much the same way you would use SAVE. Note that unlike SAVE,
DEBUG makes it very easy to compute the file size to write,
because it's given simply as the number of bytes in hexadecimal.

The screen display is shown in boldface; comments follow the
semicolon.

A>DEBUG DDT.COM <CR>

-G <CR>

;run DDT under DEBUG

; start DDT

DDT STARTS HERE

xxxxxxxxxxxxxxxx

-I tfilespec) <CR>

-R <CR>

NEXT PC

nnnn pppp

; DDT*s signon message

; specifies target file

; DDT reads the file

; DDT responds with the next free
address following the file, and the
assumed program counter (100H for .COM
files). You can use this information
to determine the size of the loaded
file.

-[do whatever you want] ; modify target file under DDT.

; IMPORTANT: before exiting DDT, find
out how many bytes you want to save,
and also the starting memory location
(usually 100H).

A-16
B-1

TBSTZ80

APPNOTES

NOTES:

B. APPLICATIONS NOTES

B.l EMULATING THE "SAVE* FUNCTION: DEBUG>DDT

Although DDT and si.nilar utilities work on Baby Blue, they're not
very useful if you can't write the results of your work to disk.
Normally, you would use the CP/M resident SAVE command, but this
command is not available under PC-DOS. A neat solution is to run
DDT under the control of DEBUG, using DEBUG's Write facility in
much the same way you would use SAVE. Note that unlike SAVE,
DEBUG makes it very easy to compute the file size to write,
because it's given simply as the number of bytes in hexadecimal.

The screen display is shown in boldface; comments follow the
semicolon.

A>DEBUG DDT.COM <CR>

-G <CR>

;run DDT under DEBUG

; start DDT

DDT STARTS HERE

xxxxxxxxxxxxxxxx

-I tfilespec) <CR>

-R <CR>

NEXT PC

nnnn pppp

; DDT*s signon message

; specifies target file

; DDT reads the file

; DDT responds with the next free
address following the file, and the
assumed program counter (100H for .COM
files). You can use this information
to determine the size of the loaded
file.

-[do whatever you want] ; modify target file under DDT.

; IMPORTANT: before exiting DDT, find
out how many bytes you want to save,
and also the starting memory location
(usually 100H).

A-16
B-1

'PHOTBS

>3 <CR>

:CTRL-C>

; displays contents of Baby Blue
location 0003H in first position.
Ordinarily, this would be the CP/M I/O
Byte, which is not implemented in
HEADER. Instead, the high-order nibble
contains the segment number occupied
by Baby Blue in the host's memory
(e.g, a Baby Blue with base address
E0000H will display "EB** with this
command). You'll need this information
to Write your file under DEBUG.

; exits DDT, returns to DEBUG

ograa terminated normally ; DDT signs off;

DDT ENDS HERE

I<file8pec> <CR>

:CX <CR>

;X:xxxx <CR>

segment:offset <CR>

<CR>

; specifies DEBUG output file

; calls CX register

; enter number of bytes to save (HEX)

; write output file to disk: enter Baby
Blue's segment, followed by colon,
followed by the starting address to
save within Baby Blue's memory
(usually the beginning of the program,
at I00H).

; exit DEBUG

8-2

WARRANTY

C. WARRANTY IMPORHATION

DISCLAIMER

Microlog, Inc. makes no representations or warranties with
respect to the software programs included herein and specifically
disclaims any implied warranties of merchantability or fitness
for a particular purpose. Furthermore, Microlog, Inc. reserves
the right to revise the software programs included herein and to
make changes from time to time in the content thereof. Microlog,
Inc. is not obligated to notify any person or organization ot
such revision or change.

LIMITED WARRANTY

Miccolog warrants the original user o£ this hardware product that
it is free from defects in materials and workmanship for a period
of ninety (90) days from the date of shipment from Microlog or
Dealer to the original end user. If any Microlog product becomes
defective within the first ninety (90) days from the date of
shipment, Microlog will replace or repair, at its sole option,
that unit which proves to be defective. This warranty is void
if. in the sole opinion of Microlog, the product has been subject
to abuse, misuse, or modification. All warranties are non-
transferrable. This warranty is in lieu of any other warranty,
exnressed or implied, and in any event, is limited to product
"pair or replLeme^t. Microlog shall not be liable for any
incidental or consequential damages of any kind resulting from
use of this product.

IF YOUR BOARD FAILS TO OPERATE.

Microlog rigorously tests every product to insure that our boards
will not fail in the field. However, even with this level of
testing, problems do occur. If your board requires repair,
please refer to the return procedure outlined below.

C-1

'PHOTBS

>3 <CR>

:CTRL-C>

; displays contents of Baby Blue
location 0003H in first position.
Ordinarily, this would be the CP/M I/O
Byte, which is not implemented in
HEADER. Instead, the high-order nibble
contains the segment number occupied
by Baby Blue in the host's memory
(e.g, a Baby Blue with base address
E0000H will display "EB** with this
command). You'll need this information
to Write your file under DEBUG.

; exits DDT, returns to DEBUG

ograa terminated normally ; DDT signs off;

DDT ENDS HERE

I<file8pec> <CR>

:CX <CR>

;X:xxxx <CR>

segment:offset <CR>

<CR>

; specifies DEBUG output file

; calls CX register

; enter number of bytes to save (HEX)

; write output file to disk: enter Baby
Blue's segment, followed by colon,
followed by the starting address to
save within Baby Blue's memory
(usually the beginning of the program,
at I00H).

; exit DEBUG

8-2

WARRANTY

C. WARRANTY IMPORHATION

DISCLAIMER

Microlog, Inc. makes no representations or warranties with
respect to the software programs included herein and specifically
disclaims any implied warranties of merchantability or fitness
for a particular purpose. Furthermore, Microlog, Inc. reserves
the right to revise the software programs included herein and to
make changes from time to time in the content thereof. Microlog,
Inc. is not obligated to notify any person or organization ot
such revision or change.

LIMITED WARRANTY

Miccolog warrants the original user o£ this hardware product that
it is free from defects in materials and workmanship for a period
of ninety (90) days from the date of shipment from Microlog or
Dealer to the original end user. If any Microlog product becomes
defective within the first ninety (90) days from the date of
shipment, Microlog will replace or repair, at its sole option,
that unit which proves to be defective. This warranty is void
if. in the sole opinion of Microlog, the product has been subject
to abuse, misuse, or modification. All warranties are non-
transferrable. This warranty is in lieu of any other warranty,
exnressed or implied, and in any event, is limited to product
"pair or replLeme^t. Microlog shall not be liable for any
incidental or consequential damages of any kind resulting from
use of this product.

IF YOUR BOARD FAILS TO OPERATE.

Microlog rigorously tests every product to insure that our boards
will not fail in the field. However, even with this level of
testing, problems do occur. If your board requires repair,
please refer to the return procedure outlined below.

C-1

WARRANTY

RETURN POLICY

All defective products in question, whether purchased directly
from Microlog, or through an authorized dealer, must be returned
to Microlog for repair or replacement according to the conditions
set forth in the limited warranty.

Prior to returning any defective product for replacement or
repair, you must receive a RMA (Return Materials Authorization)
number from Microlog. When requesting an RMA number, please
provide the following information:

A brief description of the problem.

Serial number of the unit to be returned.

The name of the dealer from whom the unit was
purchased.

4. The date of purchase.

Upon receipt of an RMA number from Microlog, pack the unit along
with a copy of your proof of purchase and ship it prepaid to
Microlog. Items received without proof of purchase cannot be
serviced and will be returned at the sender's expense. The RMA
number must be marked on the outside of the shipping container.

Repaired units, if still in warranty, will be shipped prepaid by
UPS surface. Customer requests for any method of shipment other
than UPS will be charged to the customer. All requests for
air freight will be shipped collect.

All products returned for repair or testing and found to be out
of warranty will be assessed a minimum $55.00 service charge. If
the charge for repair is to exceed $55.00, the customer will be
notified for authorization prior to Microlog's repair of the
unit. An RMA number is also required for out of warranty repair.

All prices are subject to change without notice.

Ship to;

Microlog Inc.
222 Route 59

Suffern, N.Y. 10901
(914) 368-0353

f 'Mf 'r •*«

t,'.

»" 'x*"

. ' - jv

I

i

I

WARRANTY

RETURN POLICY

All defective products in question, whether purchased directly
from Microlog, or through an authorized dealer, must be returned
to Microlog for repair or replacement according to the conditions
set forth in the limited warranty.

Prior to returning any defective product for replacement or
repair, you must receive a RMA (Return Materials Authorization)
number from Microlog. When requesting an RMA number, please
provide the following information:

A brief description of the problem.

Serial number of the unit to be returned.

The name of the dealer from whom the unit was
purchased.

4. The date of purchase.

Upon receipt of an RMA number from Microlog, pack the unit along
with a copy of your proof of purchase and ship it prepaid to
Microlog. Items received without proof of purchase cannot be
serviced and will be returned at the sender's expense. The RMA
number must be marked on the outside of the shipping container.

Repaired units, if still in warranty, will be shipped prepaid by
UPS surface. Customer requests for any method of shipment other
than UPS will be charged to the customer. All requests for
air freight will be shipped collect.

All products returned for repair or testing and found to be out
of warranty will be assessed a minimum $55.00 service charge. If
the charge for repair is to exceed $55.00, the customer will be
notified for authorization prior to Microlog's repair of the
unit. An RMA number is also required for out of warranty repair.

All prices are subject to change without notice.

Ship to;

Microlog Inc.
222 Route 59

Suffern, N.Y. 10901
(914) 368-0353

f 'Mf 'r •*«

t,'.

»" 'x*"

. ' - jv

I

i

I

