HIILLASER XT SERIES PERSONAL COMPUTER

Technical

Reference Manual
For LASER Multi-I/O Card

TABLE OF CONTENT

CHAPTER 1 INTRODUCTION
1.1 FEATURES AND AVAILABLE OPTIONS 1-2
1.2 SYSTEM USAGE 1-3
CHAPTER 2 BOARD LAYOUT, CONNECTORS AND JUMPERS
2.1 BOARD LAYOUT 2-2
2.2 CONNECTORS AND JUMPERS 2-3
2.3 JUMPER SETTINGS 2-6
CHAPTER 3 HARDWARE DESCRIPTION
3.1 OVERALL BLOCK DIAGRAM 3-3
3.2 FLOPPY DISK INTERFACE AND TRANSCOPY FUNCTION 3-5
3.2.1 Hardware 3-5
3.2.2 Programming Considerations 3-8
3.2.3 Connector Pin Assignment 3-11
3.3 PARALLEL PRINTER PORT 3-12
3.3.1 Hardware 3-12
3.3.2 Programming Considerations 3-14
3.3.3 Connector Pin Assignment 3-16
3.4 RS232C SERIAL INTERFACE PORTS 3-17
3.4.1 Hardware 3-18
3.4.2 Programming Considerations 3-20
3.4.3 Connector Pin Assignment 3-21
3.5 GAME PORT 3-23
3.5.1 Hardware 3-24
3.5.2 Programming Considerations 3-25
3.5.3 Connector Pin Assignment 3-26
3.6 REAL-TIME CLOCK 3-27
3.6.1 Hardware 3-28
3.6.2 Programming Considerations 3-30
CHAPTER 4 GATE ARRAY C1
4.1 FUNCTIONAL BLOCK DIAGRAM 4-3
4.2 PIN ASSIGNMENT AND SIGNAL DESCRIPTION 4-4
4.3 ELECTRICAL SPECIFICATIONS 4-14
4.3.1 Absolute Maximum Ratings 4-14
4.3.2 Electrical Characteristics 4-14
4.4 MECHANICAL INFORMATION 4-15
CHAPTER 5 TROUBLE-SHOOTING GUIDE
5.1 GENERAL FAILURE 5-3
5.2 FLOPPY DISK INTERFACE / TRANSCOPY FAILURE 5-4
5.3 PARALLEL PRINTER PORT FAILURE 5-7
5.4 RS232C SERIAL INTERFACE PORT FAILURE 5-8
5.5 GAME PORT FAILURE 5-9
5.6 REAL-TIME CLOCK FAILURE 5-10

APPENDIX

A DATA SHEETS
A. 1 FDC Z765A
(uPD765 Compatible) A.1-1
A. 2 ACE INS8250 A.2-1
A. 3 RTC MSM6242 A.3-1
A. 4 RTC RP5C15 A.4-1
B MULTI-I/O SCHEMATICS B-1

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

The Multi-I/O Card is a multifunction enhancement product for the IBM ${ }^{\circledR} \mathrm{PC}, \mathrm{PC} / \mathrm{XT}$ family or compatible computers. This card incorporates Very Large Scale Integration (VLSI) Gate Array technology to reduce PCB area, minimize power consumption and improve reliability.

1.1 FEATURES AND AVAILABLE OPTIONS

The Multi-I/O Card provides standard features including:
. Floppy disk interface
Two double-sided, double-density floppy disk drives are supported.

- Parallel printer port

Interfaces with a Centronics type parallel printer.

- RS-232C serial interface ports

Up to two RS-232C serial interface ports are provided for interfacing with modem, serial printer, remote display terminal or other serial devices.
. Real - Time Clock
With the rechargeable backup battery, the real-time clock allows automatic setting up of time and date every time the computer is turned on.

- Game Port

Connects to game paddle or joystick, for interactive games and graphics software.

- Diskette Backup (Transcopy) Function

Provides diskette duplication of copy-protected or non-copy-protected software. This function is activated via jumper setting and an optional software package. Check with your dealer for details of this software.

The Multi-I/O Card is available in different versions for various levels of system requirements. Some version comes with only one serial interface port. Sockets and connectors are provided to allow upgrading to two serial ports. Refer to the user's manual for details of upgrading to two serial ports.

Another version of this card contains no floppy disk interface. This version is applicable to PC, PC/XT or compatible main units with built-in Floppy Disk Adapter logic.

Newer version (Enhanced) of this card has on board jumpers which allows disabling of some I/O functions when there is conflict with other devices in the system.

1.2 SYSTEM USAGE

The Multi-I/O Card interfaces with a PC, PC/XT or compatible main unit via a 62 pins PCB edge connector (slot). The following I/O Channel lines are used:

A0-A10	Address lines
D0-D7	Data lines
IOR, IOW	I/O Read and I/O Write lines
AEN	Address enable line
TC	Terminal count for DMA operation

RESET DRV	System Reset line
DACK 2	DMA acknowledge for DMA channel 2
DRQ 2	DMA request for DMA channel 2
IRQ2, IRQ3,	Interrupt request levels
IRQ4, IRQ5,	$2,3,4,5,6$ and 7
IRQ6, IRQ7	
$+5 \mathrm{~V},+12 \mathrm{~V}$,	$+5 \mathrm{~V},+12 \mathrm{~V}$ and -12 V DC
-12 V	supply voltages

The following table summarizes the I/O Address, Interrupt Levels and DMA Channels used by each of the functions:

Function	I/O Address (Hex)	Interrupt Level	DMA Channel
Floppy Disk Interface	3F2-3F5	6	2
Parallel Printer Port	$\begin{aligned} & 378-37 \mathrm{~A} \\ & \text { or } \\ & 3 \mathrm{BC}-3 \mathrm{BE} \end{aligned}$	7	/
RS232C Serial Port (COM1)	3F8-3FF	4	/
RS232C Serial Port (COM2)	2F8-2FF	3	/
Game Port	201	/	/
Real-Time Clock	$\begin{aligned} & 340-35 \mathrm{~F} \\ & \text { or } \\ & 2 \mathrm{C} 0-2 \mathrm{DF} \end{aligned}$	2 or 5	/
Transcopy Function	66 F or 6 EF or 76F or 7EF	$/$	2

CHAPTER 2

BOARD LAYOUT,

CONNECTORS AND

JUMPERS

2. BOARD LAYOUT, CONNECTORS AND JUMPERS

The Multi-I/O Card occupies one 62 pins PCB edge connector (slot) as a typical long card does. However, the two RS232C Serial Interface Ports uses two additional brackets on the back panel of the computer main unit. Therefore, a total of three slots will be required.

2.1 BOARD LAYOUT

The following figure shows the major elements, in particular, the jumper blocks and connectors on the Multi-I/O Card.

Fig 2.1 Multi-I/O Board Layout

2.2 CONNECTORS AND JUMPERS

. Connector J1, a 25 pins "D" type female connector, is for connecting to a Centronics standard parallel printer.

Connector J2, a 15 pins "D" type female connector, is for connecting to a joystick or game paddles.
. Connectors J3 and J4, 26 ways header wafer connectors, are connectors of the two RS232C Serial Interface Ports. J3 is for the Primary Port (COM1) and J4 is for the Secondary Port (COM2). The signals on these connectors are carried to the back of the computers via the cable(s) supplied.

- Connector J5, a 34 ways header wafer connector, is for connecting to floppy disk drives.

JP1, a 4 pins jumper block, is for selecting the two different interrupt request levels for the Real-Time Clock.

JP2, a 27 pins jumper block on newer versions of the card, is a configuration Jumper Block which allows the user to select different addresses for some of the I/O functions. Moreover, some I/O functions can be disabled in case of address conflict with other devices in the system.

On some earlier version of the Multi-I/O Card, JP2 is a 15 pins jumper block which serves similar purpose as that on the newer version. The Floppy Disk Interface, Parallel Port, RS232C Serial Interface Ports are hardwired to be enabled.

2.3 JUMPER SETTINGS

Various combinations of the jumper block and their meanings are summarized as follows. The jumpers irrelevant to the function under consideration are omitted for clarity.

Jumper Block JP1

Jumper Block JP2 (on newer versions)

25

27

1

3

Floppy Disk Interface Disabled

Floppy Disk Interface Enabled

Parallel Printer
Port Disabled

25

27

Printer Port
Address $=378-37 \mathrm{~A}$ (Hex)

Serial Port (COM 1) Disabled

Serial Port (COM2) Disabled

Parallel Printer
Port Enabled

Printer Port
Address $=3 \mathrm{BC}-3 \mathrm{BE}$ (Hex)

Serial Port (COM1) Enabled

Serial Port (COM2)
Enabled

Jumper Block JP2 (on earlier version)

Printer Port
Address=378-37A (Hex)

Select Real-Time Clock
Address=340-35F (Hex)

Transcopy Function
Disabled

Transcopy Function
Address=7EF (Hex)

Printer Port
Address=3BC-3BE (Hex)

Select Real-Time Clock Address=2C0-2DE (Hex)

Transcopy Function Enabled

Transcopy Function
Address=76F (Hex)

13

Transcopy Function Address = 6EF (Hex)

Transcopy Function Address $=66 \mathrm{~F}$ (Hex)

CHAPTER 3

HARDWARE DESCRIPTION

3. HARDWARE DESCRIPTION

This chapter describes the hardware structure of the Multi-I/O Card in terms of each function available. For a detail circuit diagram, component layout and component location list, please refer to the Appendix.

The heart of the Multi-I/O Card is a 100 pins flat package Very
Large Scale Integration (VLSI) Gate Array C1 (C1 is the code name used by the manufacturer for this particular chip and it will be used throughout this document).

The Gate Array C1 incorporates the hardware logic of :

- Floppy disk interface support logic for the external Floppy Disk Controller Chip uPD765 or compatibles.
. One Centronics Parallel Printer Interface.
- Address decoder and clock generator for two RS232C Serial Ports.

Address decoder for Joystick/Game Port.
Address decoder for Real-Time Clock chip.

- Logic for backup of protected floppy diskette (Transcopy Function).

Complete functions on the Multi-I/O Card are formed by addition of external LSI chips, buffers, latches, clock generators, battery and the required connectors.

Please refer to Chapter 4 for a complete specification of the Gate Array C1.

3.2 FLOPPY DISK INTERFACE AND TRANSCOPY FUNCTION

The floppy disk interface on the Multi-I/O Card is designed for double-sided, double-density, MFM-coded floppy disk drive. Up to two $5-1 / 4^{\prime \prime}$ double-sided, double-density floppy disk drives are supported. $3-1 / 2^{\prime \prime}, 720 \mathrm{~K}$, double-sided disk drives with the same data rate and suitable device driver program will also work with the Multi-I/OCard.

3.2.1 Hardware

The floppy disk interface section includes a Floppy Disk Controller (FDC) chip uPD765, several high current TTL drivers and some logic circuitry inside the Gate Array C1. The following block diagram illustrates the structure.

Fig. 3-2 Floppy Disk Interface

The disk drive parameters of the NEC uPD765 or compatible FDC are programmable. Transfer of data between the system memory and floppy disk controller is accomplished by Direct Memory Access (DMA) channel 2. An interrupt level 6 is also used to indicate when an operation is completed and a status condition requires processor attention.

The floppy disk interface employs write precompensation for its record data to improve reliability. Write pre-compensation is controlled by the FDC (uPD765) and performed inside the Gate Array C1. Write pre-compensation constant of 250 ns using a 4 MHz clock is implemented.

Data recovery of the MFM raw read data from floppy disk drive is done by a digital data separator built inside the Gate Array C1. The digital data separator is a synchronous counter type employing a 16 MHz reference clock for higher reliability margin in the separated data.

The hardware logic of Transcopy is built entirely inside the Gate Array C1. This part includes a control port, serial to parallel convertor, parallel to serial convertor, status port, data / clock pulse generator and their associated address decoder. When the Transcopy function is activated via proper software, the reading / writing of floppy disk data will go directly through the Transcopy logic and the FDC uPD765 is bypassed. This enables the Transcopy function to resolve the copy-protection schemes used by most software packages. The Transcopy logic uses DMA channel 2 for its operation.

3.2.2 Programming Considerations

The floppy disk interface presents a high level command interface to software I/O drivers. From a programming point of view, the interface consist of an 8-bit digital-output register plus a uPD765 or compatible floppy disk controller. The following table shows the I/O Address used.

Register
FDC Data Register 3F5
FDC Main Status Register
Digital Output Register

I/O AddressUsed (Hex)

3F4
3F2

The floppy disk controller (FDC) contains two registers that may be accessed by the system processor: a status register and a data register. The 8-bit main status register contains the status information of the FDC and may be accessed at any time. The 8-bit data register stores data, commands, parameters, and provides floppy drive status information.

The FDC is capable of executing 15 different commands, each initiated by a multi-byte transfer from the processor. The results of command execution is also a multi-byte transfer back to the processor. Each command can be broadly divided into three phases:
. Command Phase
Execution Phase
Result Phase
Please refer to the data sheet of FDC uPD765 in the Appendix for details of these command descriptions.

The digital output register (3F2) is an output-only register used to control drive motors, drive selection and feature enable. All bits are cleared by the I/O interface reset line. The hardware logic for this register, together with other address decoding and DMA support logic, are all built inside the Gate Array C1.

The bits in the digital output register have the following functions:
Bits 0,1 Decoded by hardware to select one drive.

Bit 1	Bit 0	Drive Selected
0	0	$0(\mathrm{~A})$
0	1	$1(\mathrm{~B})$
1	0	Not applicable
1	1	Not applicable

Bit 2 The FDC (uPD765) is reset when this bit is clear. It must be set by program to enable the FDC.

Bit 3 This bit, when set, allows the FDC interrupt and DMA request to be gated onto the System Bus. When cleared, interrupt and DMA cannot be generated.

Bit 4,5 These bits controls, respectively, the spindle motors of drive $0(A)$ and 1 (B). If they are set while the associated drive is selected, that motor will be turned on. Otherwise, it is off.

Bit 6, 7 Not used.
The Transcopy hardware appears to the programmer as a single Read/Write I/O port. The address of this I/O port is $7 \mathrm{EF} / 76 \mathrm{~F} / 6 \mathrm{EF} /$ 66 F depending on the current jumper block settings.

Bit definitions are as follows:

When CPU write:
Bit $0 \quad$ Transcopy DMA (channel 2) enable.
Bit $1 \quad$ Transcopy Read control.
Bit 2 Transcopy Write control.
Bits 3,4,5 Internal Counter control.
Bits 6,7 Transcopy Data Rate control.

When CPU read:
Bits 0-5 Not used (garbage).
Bit $6 \quad$ Value of Bit 7 on a previous CPU write operation to this I/O port.

Bit 7 Index signal from floppy disk drive.

All bits are cleared by system reset.
3.2.3 Connector Pin Assignment

Pin No. Function
1-33 (odd no.) Ground
2,4,6,34 Unused
8Index101214161820222426283032

Motor Enable A
Drive Select B
Drive Select A
Motor Enable B
Direction (Stepper Motor)
Step Pulse
Write Data
Write Enable
Track 0
Write Protect
Read Data
Select Head 1

3.3 PARALLEL PRINTER PORT

The parallel printer port on the Multi-I/O card is a Centronics type parallel port. This type of parallel port can be used as a general input / output port for any device or application that matches its signal input / output specification.

3.3.1 Hardware

Functional block diagram of the parallel printer port is as follows:

Fig. 3.3 Parallel Printer Port

8 bit data are output to the parallel device by writing to an 8 -bit register, while status signals can be read through a status register. An input line (ACK) can be used to create an interrupt to the processor when it is properly enabled.

Most of the necessary hardware logic and decoding are built inside the Gate Array C1. Externally, an 8-bit data latch, which also serves as signal driver, plus some open collector drivers and buffer, are needed.

3.3.2 Programming Considerations

The parallel printer port uses I/O Address 378-37A (Hex) or 3BC3BE (Hex), depending on the current jumper block setting. The hardware appears as registers / latches accessible by the system processor.

1/O Address (Hex)	Function
378/3BC	Printer Data Port
379/3BD	Printer Status Port
37A/3BE	Printer Control Port

Parallel Data Port 378 / 3BC:
This is an 8-bit read/write parallel data port for the parallel external device. The signal is held stable by latches and can be read back any time via the same I/O Address.

Printer Status Port 379 / 3BD:
This is a read only status port which can be accessed by the CPU to check for status of the external parallel device.

Bit Number	Status
0	Not used
1	Not used
2	Not used
3	Not used
4	SLCT
5	PE
6	ACK
7	BUSY

Printer Control Port 37A / 3BE:

The Printer control port, when written to, presents the following latched control signals to the external parallel device:

Bit Number	Control Signal
0	$\overline{\text { STROBE }}$
1	AUTO FD
2	INIT
3	SLCTIN
4	IRQ7 Enable
5	Not used
6	Not used
7	Not used

The status of the control signals output being latched by a previous write command to I/O port 37A/3BE, can be read from the same address.

Bit Number	Status of Control Signal
0	$\overline{\text { STROBE }}$
1	AUTOFD
2	$\underline{\text { INT }}$
3	SLCTIN
4	Not used
5	Not used
6	Not used
7	Not used

System interrupt level 7 can be enabled by setting bit 4 in the Printer Control Port (37A / 3BE) and activating the $\overline{\mathrm{ACK}}$ input line.

3.3.3 Connector Pin Assignment

Pin No	Function
1	STROBE
2	Parallel Data D0
3	Parallel Data D1
4	Parallel Data D2
5	Parallel Data D3
6	Parallel Data D4
7	Parallel Data D5
8	Parallel Data D6
9	Parallel Data D7
10	ACK
11	BUSY
12	PE
13	SLCT
14	AUTO FD
15	ERROR
16	INIT
17	SLCTIN
$18-25$	GROUND

3.4 RS232C SERIAL INTERFACE PORTS

The Multi-I/O card supports up to two RS232C Serial Interface Ports. They are designated as COM1 and COM2 in accordance with their I/O Address 3F8-3FF (Hex) and 2F8-2FF (Hex) respectively. These serial ports provide interface for serial devices including modem, serial printer and terminal.

The serial communication ports are fully programmable and supports asynchronous communications only. They add and remove start bits, stop bits and parity bits. A programmable baud rate generator allows operation from 50 baud to 9600 baud. Five, six, seven or eight bit characters with $1,1-1 / 2$ or 2 stop bits are supported.

Each serial port has it assigned level of system interrupt. A fully prioritized interrupt system within each serial port controls transmit, receive, error, line status and data set interrupts. Diagnostic capabilities provide loopback functions of transmit / receive and input / output signals.

3.4.1 Hardware Description

Following is a block diagram of hardware for one serial port (COM1).

Fig. 3.4 RS232C Serial Interface Port

The heart of the Serial Communication Port is the INS8250 Asynchronous Communication Element (ACE), or its functional equivalent. Address decoding and clock generation is done in Gate Array C1. A 3.6864 MHz signal input to Gate Array C1 is divided by two and fed to the INS8250 ACE chip as a 1.8432 MHz master clock. Baud rates of 50 to 9600 are generated from this 1.8432 MHz signal.

The serial data output, together with modem control output from the ACE, are changed from TTL voltage into RS232C voltage levels via signal drivers 1488 or equivalent. Conversely, RS232C voltage levels are converted back to TTL levels by signal converters 1489 or equivalent and fed to the ACE inputs.

3.4.2 Programming Considerations

Apart from the general function listed above, the ACE also features:

Full double buffering eliminates extra hardware / software for precise synchronization.

Modem control functions of Clear to Send (CTS), Request to Send (RTS), Data Set Ready (DSR), Data Terminal Ready (DTR), Ring Indicator (RI), and Carrier Detect.

False - start bit detection.
Line - break generation and detection.

The INS 8250 ACE is fully programmable for each function and any communication protocol must be loaded before the serial port is operational. This is done by selecting the proper I/O Address for each Serial Port. The following tables summarizes the I/O Address assigned to the internal registers of INS8250 ACE in the Multi-I/O card. The divisor latch access bit DLAB (bit7) of the line control register is used to select certain register.

I/O Decode (in Hex)		Register Selected	DLAB State
COM1	COM2		
3F8	2F8	TX Buffer	DLAB $=0$ (Write)
3F8	2F8	RX Buffer	DLAB $=0$ (Read)
3F8	2F8	Divisor Latch LSB	DLAB=1
3F9	2F9	Divisor Latch MSB	DLAB $=1$
3F9	2F9	Interrupt Enable Register	
3FA	2FA	Interrupt Identification Registers	
3FB	2FB	Line Control Register	
3FC	2FC	Modem Control Register	
3FD	2FD	Line Status Register	
3FE	2FE	Modem Status Register	

I/O Decodes

Hex Address 3F8 to 3FF and 2F8 to 2FF											
A9	A8	A7	A6	A5	A4	A3	A2	Al	A0	DLAB	Register
1	1/0	1	1	1	1	1	X	X	X		
							0	0	0	0	Receive Buffer (read) Transmit Holding Reg (write)
							0	0	1	0	Interrupt Enable
							0	1	0	X	Interrupt Identification
							0	1	1	X	Line Control
							1	0	0	X	Modem Control
							1	0	1	X	Line Status
							1	1	0	X	Modem Status
							1	1	1	\mathbf{X}	None
							0	0	0	1	Divisor Latch (LSB)
							0	0	1	1	Divisor Latch (MSB)

Address Bits
Note: Bit 8 will be logical 1 for the port designated as COM1 or a logical 0 for the port designated as COM2.

A2, A1 and A0 bits are used to select the different register of the communications chip.

Please refer to the data sheet of ACE INS8250 in the Appendix for details of these internal registers.

3.4.3 Connector Pin Assignment

Pin No.	Function
1	Ground
2	TX
3	RX
4	RTS
5	CTS
6	DSR
7	Ground
8	RLSD
$9-19$	Notused
20	DTR
21	Notused
22	RI
$23-26$	Notused

DB25 male connector on bracket

Pin No.	Function	
1		Ground
2	TX	
3	RX	
4	RTS	
5	CTS	
6	DSR	
7	Ground	
8	RLSD	
$9-19$	Notused	
20	DTR	
21	Not used	
22	RI	
$23-25$	Not used	

3.5 GAME PORT

The Game Port on the Multi-I/O Card allows up to four game paddles or two joysticks to be attached. In addition, inputs for four switch buttons are provided. Paddle and joystick positions are determined by the variable resistance values sensed by the Joystick/ Game Port. The real-time resistive values are converted into a relative paddle or joystick position via appropriate software.

3.5.1 Hardware

The following is the block diagram of the joystick / game port.

Fig. 3.5 Joystick/Game Port

The chip for conversion of resistance value into digital state is the Quad-Timer NE558 or equivalent. Address decoding for the Joystick / Game Port is provided by the Gate Array C1. I/O Address
for triggering of four monostable timers as well as reading of position / button status byte is 201 Hex. The position/button status are gated via data buffer with its enable line decoded from Gate Array C1.

3.5.2 Programming Considerations

The Joystick / Game Port appears to the programmer as one Read/ Write Port with I/O Address 201 Hex.

When an I/O write command is issued to port address 201 Hex , irrespective of the data written, all four monostable outputs go high and will remain high for varying periods of time depending on the position each variable resistor of the joystick is set. The variable resistance on the joystick should have a range from 0 to 100 K -ohms.

These four monostable timer outputs are read by an I/O read command from port address 201 Hex and are reflected on data bits 0 through 3 .

Bit 4 through 7 of the I/O port reflects the real-time status of the switch buttons. These buttons default to an open state and are read as " 1 ". When a button is pressed, it is read as " $0:$ ". Programmers should note that these buttons are not debounced by hardware.

Bit Number		Function
0		Position 0
1		Position 1
2		Position 2
3		Position 3
4		Switch Button 0
5		Switch Button 1
6		Switch Button 2
7		Switch Button 3

Pin No.		Function
1		+5 VDC
2		Button 0
3		Position 0
4		Ground
5	Ground	
6	Position 1	
7	Button 1	
8	+5VDC	
9	+5VDC	
10	Button 2	
11	Position 2	
12	Ground	
13	Position 3	
14	Button 3	
15	+5VDC	

3.6 REAL-TIME CLOCK

The Multi-I/O Card is equipped with a Real-Time Clock and rechargeable battery backup. This function maintains the time and calendar, and, with suitable software, allows automatic setting up of time and date each time the computer is turned on.

3.6.1 HARDWARE

Following is a block diagram of the Real-Time Clock.

Fig. 3.6 Real-Time Clock

The heart of the Real-Time Clock is the real-time clock chip. The Multi-I/O Card has made provision to work with two different realtime clock chips, namely, the OKI MSM 6242 or the RICOH RP5C15. These chips are on different locations of the PCB.

The real-time clock chip runs with a clock of 32.768 KHz for its internal counting operation.

This chip normally draws power from the computer's +5 V supply when the computer is turned ON. The backup battery is recharged from the +5 V supply. When the power is OFF, the backup battery replaces the normal +5 V to keep the chip running.

A power down detection circuitry is added to pull the CS line of the real-time clock chip to logic low as soon as the computer's +5 V supply is dropping. This prevents transient garbage to be written to the chip during power down.

Address decoding for the real-time clock chip is done in Gate Array C 1 . The I/O Address range used is $340-35 \mathrm{~F}$ (Hex) or 2C0-2DF (Hex), depending on the current jumper block setting.

3.6.2 Programming Considerations

The Real-Time Clock function appears to the programmer as a number of CPU addressable registers. These registers serve functions including second, minute, hour, day, month, year and days of the week.

The real-time clock chip incorporates 16 such registers, while the Gate Array C1 decodes 32 different addresses. The upper 16 addresses map to the lower 16 addresses.

The Real-Time Clock utility programs SETCLOCK,GETCLOCK supplied with the card automatically handle the different chips used and different addresses selected.

Refer to the Appendix for detail meaning of the real-time clock chip registers.

CHAPTER 4

GATE ARRAY C1

CHAPTER 4
 GATE ARRAY C1

The Gate Array C1 is a 100 pins flat package VLSI Gate Array designed to implement a number of I/O functions for the IBM ${ }^{8} \mathrm{PC}$, PC/XT and compatibles.

It consists of the logic circuitry for the following popular I/O features:

- Floppy disk interface support logic for the Floppy Disk Controller Chip uPD765.
. One Centronics Parallel Printer Interface.
- Address decoders for two RS232C Serial ports.
- Address decoder of a Joystick/Game Port
- Address decoder for a Real-Time Clock Chip.
. Logic circuitry for backup of copy-protected diskette (Transcopy Function).

4.1 FUNCTIONAL BLOCK DIAGRAM

Fig 4.1 Gate Array C1 Function Diagram

4.2 PIN ASSIGNMENT AND SIGNAL DESCRIPTION

Abbreviation on pin type:
I Input
O Output
I/O Bi-directional

Pin	Pin Name \quad Description
No.	type

1 I PTRENB Printer Port enable line Active high input.
1 = printer port enabled
$0=$ printer port disabled
2 I PTASEL Printer Port I/O address select.
$1=378-37 \mathrm{~A}$ (Hex)
$0=3 \mathrm{BC}-3 \mathrm{BF}$ (Hex)
3 O RTC1CS Real-Time Clock 1 address decoder. Active low output. Address range $=340-35 \mathrm{~F}$ (Hex)

4 / N.C. No connection.
5 O RTC2CS Real-Time Clock 2 address decoder. Active low output.
Address range $=2 \mathrm{C} 0-2 \mathrm{DF}$ (Hex)
6 O COM1CS RS232C Serial Port 1 address decoder.
Active low output.
Address range $=3 \mathrm{~F} 8-3 \mathrm{FF}$ (Hex)
7 O COM2CS RS232C Serial Port 2 address decoder.
Active low output.
Address range $=2$ F8-2FF (Hex)

| 8 I | FDENB | Floppy Disk Interface enable.
 Active low input.
 0=Floppy Interface enabled
 1=Floppy Interface disabled |
| :--- | :--- | :--- | :--- |
| 9 I | TCENB | Transcopy Function enable.
 Active high input.
 1=Transcopy Function enabled
 0=Transcopy Function disabled |
| 10 I | TCASL1 | Transcopy Function address select 1. |

14	0	GDSEL2	Partially decoded Drive B select signal for the Floppy Disk Interface. Active high output. This signal should be NAND with CLQ5 to produce the valid Drive B select signal.
15	1	GND	0 V
16	0	GDSEL1	Partially decoded Drive A select signal for the Floppy Disk Interface. Active high output. This signal should be NAND with CLQ4 to produce the valid Drive A select signal.
17	0	CLQ4	Motor enable signal for floppy disk drive A . Active high output.
18	0	CLQ5	Motor enable signal for floppy disk drive B. Active high output.
19	0	DWE	Floppy drive write enable signal. Active high output.
20	0	DWDA	Floppy drive write data signal. Active high output.
21	0	10	This signal is a logical AND of the IOR, IOW. Active low output, indicating I/O Read, I/O Write is in progress.
22	0	F1M8	This signal is a 1.8432 MHz square wave output signal derived from the 3.6864 MHz input signal.

23	0	F4M	This is a 4 MHz square wave output derived from the 16 MHz input signal. This signal is used as the clock input of an external FDC uPD765, or as the reference clock in an external data separator WD9216.
24	O	FDCWR	Decoded output signal to the Write input of an external FDC uPD765. Active low output. This line is activated when the CPU writes to the FDC or DMA write to the FDC is in progress.
25	O	FDCRD	Decoded output signal to the Read input of an external FDC uPD765. Active low output. This line is activated when the CPU reads from the FDC or DMA read from the FDC is in progress.
26	O	FDCTC	Terminal count output to an external FDC uPD765. Active high output. This line is activated at the end of each DMA transfer for Floppy Disk Interface.
27	/	N.C.	No connection.
28	O	FDWRCK	Write clock output to an external FDC uPD765. 500 KHz positive going pulse signal.
29	0	FDRES	Reset output to an external FDC uPD765. Active high output. This line is activate when a " 0 " is written to the Digital Output Register (Hex 03F2) of the Floppy Disk Interface inside the Gate Array.

30	O	DRQGT	Control output for Floppy Disk Interface DMA Request. Active low output. This line is used for enabling an external tri-state buffer (LS125) which has output driving the system DMA Request channel 2.
31	0	DRQOUT	Floppy Disk Interface DMA Request. Normally tri-state with active high output. This line is connected to a tri-state buffer (LS125) which drives the system DMA Request channel 2.
32	0	DMAGT	Control output for Floppy Disk Interface Interrupt Request. Active low output. This line is used for enabling an external tri-state buffer (LS125) which has input from the uPD765 Interrupt line, and drive the system IRQ level 6.
33	I	FDPS0	Floppy Disk Interface Write Precomp 0.
34	I	FDPS 1	Floppy Disk Interface Write Precomp 1.
			FDPS0,FDPS1 are input signals from an external FDC uPD765. These two signals controls the amount of write pre- compensation to be effected on the write data to floppy disk drive. Maximum write pre-compensation is $+/-250 \mathrm{nS}$.
35	I	TC	System Terminal Count. Active high input.
36	0	SEDOUT	Separated Data out. Active low output from an internal digital data separator inside the Gate Array. The active duration of the pulse output is 62.5 nS .

37	O	DWOUT	Data Window out. This is a 250 KHz rectangular wave output from the internal digital data separator inside the Gate Array. The phase (edges) of this signal will shift back and forth according to the raw read data from the floppy disk drive.
38	I	SEPDA	Separated Data input. This is the separated read data for use by Floppy Disk Interface and the Transcopy Function. If the internal digital data separator is used, this pin should be connected to the SEDOUT (pin 36) of the Gate Array. If an external data separator is adopted, this pin should be connected to the separated data output from the external data separator.
39	I	SEPCLK	Separated Clock input. This is the separated clock, or the data window used by the Floppy Disk Interface and the Transcopy Function. If the internal digital data separator is used, this pin should be connected to the DWOUT (pin 37) of the same Gate Array. If an external data separator is adopted, this pin should be connected to the separated clock, or data window output from the external data separator.
40	I	FDWE1	Floppy disk drive write enable. Active high input from an external FDC uPD765.
41	/	VCC	+5V DC supply voltage.
42	I	FDWDA	Floppy disk write data. Active high input from an external FDC uPD765. This write data is not yet write pre-compensated.

43	0	FDDACK	Floppy Disk Interface DMA Acknowledge. Active high output signal to an external FDC uPD765.
44	I	FDDRQ	Floppy Disk Interface DMA Request. Active high input signal from an external FDC uPD765.
45	I	RAWDA	Raw read data from floppy disk drive. Active low input which is used by the internal digital data separator.
46	O	PTIRQ	Printer Port interrupt request. Tri-state normally, high when active. This pin should connect to a tri-state buffer (LS125) which drives the system Interrupt level 7.
47	0	PRQGT	Printer Port interrupt request control. Active low output. This pin should be used for controlling a tri-state buffer (LS125) which drives the system Interrupt level 7.
48	I	ERROR	Printer status signal - ERROR.
49	I	INDEX	Floppy disk drive Index signal. Active low input. This signal is used by the Transcopy logic inside the Gate Array.
50	I/O	BD0	Data line D0
51	I/O	BD1	Data line D1
52	I/O	BD2	Data line D2
53	I/O	BD3	Data line D3

54	I/O	BD4	Data line D4
55	I/O	BD5	Data line D5
56	I/O	BD6	Data line D6
57	I/O	BD7	Data line D7
58	I	AEN	System Address Enable. Active low input. All CPU Read/Write takes place when AEN is active.
59	I	IOR	System I/O Read. Active low input.
60	I	IOW	System I/OWrite. Active low input.
61	I	DACK2	System DMA channel 2 Acknowledge. Active low input.
62	I	RESET	System Reset. Active high input.
63	I	BA0	Address line A0
64	I	TEST	Test input for factory diagnostic purpose. Must be grounded (tie to 0 V) for normal operation.
65	/	GND	0 V
66	I	BA1	Address line A1
67	I	BA2	Address line A2
68	I	BA3	Address line A3
69	I	BA4	Address line A4
70	I	BA5	Address line A5
71	I	BA6	Address line A6

72	I	BA7	Address line A7
73	I	BA8	Address line A8
74	I	BA9	Address line A9
75	I	BA10	Address line A10
76	0	STROBE	Printer control output - STROBE
77	0	AUTOFD	Printer control output - AUTOFD
78	O	INIT	Printer control output - INIT
79	0	SLCT IN	Printer control output - SLCT IN
80	O	WRPTL	Printer Port parallel data latch signal. Active low output. Decoded address $=378 / 3 \mathrm{BC}(\mathrm{Hex})$
81	I	PTL0	Printer Port parallel data 0 input
82	I	PTL1	Printer Port parallel data 1 input
83	I	PTL2	Printer Port parallel data 2 input
84	I	PTL3	Printer Port parallel data 3 input
85	I	PTL4	Printer Port parallel data 4 input
86	I	PTL5	Printer Port parallel data 5 input
87	I	PTL6	Printer Port parallel data 6 input
88	I	PTL7	Printer Port parallel data 7 input
89	0	BUFEN	Enable signal for an external data buffer (LS245) connected between the data lines of the Gate Array and the system data bus.
90	I	EXSTB	Printer status signal - STROBE
91	$/$	VCC	+5V DC supply voltage.
92	I	EXAUFD	Printer status signal - AUTOFD
93	I	EXINIT	Printer status signal - INIT

94	I	EXSLCT	Printer status signal - SLCT IN
95	I	SLCT	Printer status signal - SLCT
96	I	PE	Printer status signal - PE
97	I	ACK	Printer status signal - ACK
98	I	BUSY	Printer status signal - BUSY
99	O	GAMRD	Game Port Read signal. Active low output. I/O address decoded = 201 (Hex)
100	O	GAMWR	Game Port Timer Trigger. Active low output. I/O address decoded $=201$ (Hex)

4.3 ELECTRICAL SPECIFICATIONS

4.3.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	$-0.3 \sim+6.7$	V
Terminal voltage	Vt	$-0.3 \sim \mathrm{Vcc}+0.3$	V
Output Current			
-per one output	Io	$-8 \sim+8$	mA
-total	Iot	$-40 \sim+40$	mA
Operating Temperature	Topr	$-20 \sim+75$	C
Storage Temperature	Tbias	$-20 \sim+85$	C
- with Bias			
- without Bias	Tstg	$-55 \sim+125$	C

4.3.2 Electrical Characteristics

$\mathrm{Vcc}=5 \mathrm{~V}+/-5 \%, \mathrm{Ta}=-20^{\circ}$ to $75^{\circ} \mathrm{C}$

Parameter	Symbol	\min	\max	unit
Input Voltage	VIH	2.2	Vcc+0.3	V
	VIL	-0.3	0.8	V
Output Voltage	VOH	3.5		V
	(IOH = -2mA)		0.5	
	VOL			
Input Leakage Current	(IOL = 5mA)		1	uA
Output Leakage Current	ILO		1	uA

4.4 MECHANICAL INFORMATION

Fig 4.2 Gate Array C1

CHAPTER 5

TROUBLE - SHOOTING GUIDE

CHAPTER 5 TROUBLE-SHOOTING GUIDE

This chapter describes the general guidelines for trouble-shooting of the Multi-I/O Card.

For more detail information on logic states please refer to the Gate Array C1 Specification in Chapter 4, data sheets of various components and the circuit schematic diagrams in the Appendix.

Technical reference manual of the host main unit will also be of help.

Refer to your DOS (Disk Operating System) User's Manual for errors associated with disk I/O.

The description contained in this chapter assumes that the problem comes from, or most likely from, the Multi-I/O Card. This can easily be verified by removing the card from the system, exchange for another I/O Card, or move the suspected Multi-I/O Card to another system and observe the result. Remember to turn power OFF before removing any card.

5.1 GENERAL FAILURE

Symptom

Computer system no response after power up. Power indicator on main unit does not light up.

Possible causes

+5 V failure/ short circuited on MultiI/O Card.

Solution

. Check for +5 V DC short-circuiting on Multi-I/O Card
. Check for short-circuited decoupling capacitor.

Check for short-circuited I.C. chips.

Check if the card is inserted properly in the main unit slot.

Symptom

Main unit power indicator lights up. Computer no video, or no other response, including the power up 'beep' sound.

Possible causes

- System address bus, data bus, or control lines contamination due to Multi-I/O Card failure.
- Multi-I/OCard not inserted properly.

Solution

- Check data buffer and address buffer I.C. U1,U6, U12 on Multi-I/O Card.

Check if the card is inserted properly in the slot.

5.2 FLOPPY DISK INTERFACE/TRANSCOPY FAILURE

Symptom

Floppy drive not booting.

Possible causes

- Floppy drive function disabled (on newer versions of this card).

I/O Address conflict with another floppy drive adapter on the main unit.

- Data bus contamination on all I/O functions.

Solution

Change jumper block setting to enable this function.

Change jumper block setting to disable this function, while use the built-in adapter on the main unit.

Check I/O data bus buffer U1.
. Check all other LSI, I.C. connected to the I/O data bus.

Check Gate Array C1 (U20).
. Check FDC chip uPD765 (U27), U21,U25,U26, U30, U28,U29,U14,U30, R19,R20,R21,R22,Xtal 2.

Check cables and connectors for proper connection and correct orientation.

Floppy disk drive failure.

Check for proper jumper (if any) settings on floppy disk drive.

Check power (DC +5 V , +12 V) on floppy disk drive.

DIP switch on main unit set wrongly, which indicates no floppy disk drive.

Check for proper DIP switch settings on main unit.

Symptom

Floppy drive boot up normal. Unable to format or write data to drive, or fail to retrieve the data written by the same computer.

Possible causes

Floppy drive failure.
Floppy drive interface write logic failure.

Floppy write data Precompensation failure.

Floppy drive signal cable broken.

Diskette defective or improper media quality.

Solution

Check floppy drive.
Check Gate Array
C1 (U28), uPD765 (U27), U29.

Check Gate Array C1 (U28), uPD765 (U27).

Check for proper connecting cable between card and disk drive.

Check diskette for double-sided, doubledensity and it is not defective.

Symptom

Transcopy function not working. Floppy disk function normal.

Possible causes

- Transcopy function not enabled.
- Address conflict with other I/O devices on the system slot.

Solution

. Check jumper block for proper setting.

- Check for I/O devices attached to system slot. Select another I/O address for Transcopy in case of conflict.
- Replace Gate Array C1 (U20).

5.3 PARALLEL PRINTER PORT FAILURE

Symptom

Printer Port not functioning properly.

Possible causes

. Printer cable and connectors not properly connected.

- Printer port not enabled (on newer versions of the card)

Operating System is assumming another parallel port, with different address, on another peripheral card.

- Printer port logic failure.

Printer interrupt failure.

Solution

- Check for proper connection between the card and printer.
- Change jumper block setting to enable function.
. Check for another parallel port in the system. Use the other port for printer if higher priority is given to that port.

Check Gate Array C1 (U20), U2,U8,U3,U7.
. Check printer port interrupt logic in Gate Array C1 (U20), U9.

5.4 RS232C SERIAL INTERFACE PORT FAILURE

Symptom

RS232C Serial Interface Ports not functioning properly.

Possible causes

Serial cables and connectors not connected properly.

Serial Ports not enabled (on newer versions of the card).

- Only one serial port is built-in on some cards.

Improper serial cable used for serial printer (different from modem cables).

- Serial port hardware logic failure.

Solution
Check for proper connection between card and bracket, between connectors and serial device.

Change jumper block settings to enable the function.

Expand to two serial ports. Refer to user's manual.

Check if the proper serial printer cable is used.

Check Gate Array
C1 (U20), ACE 8250 (U15, U16), RS232 signal convertors U10, U11,U17,U18,U19,U9, Xtal 1.

5.5 GAME PORT FAILURE

Symptom

Game Port not functioning properly.

Possible causes

- Joystick/paddle connector or cable not properly connected,
- Defective joystick or paddle.
. Game port hardware logic failure.

Solution

- Check for proper connection in the cable and connector of joystick/paddle.

Check for defective joystick/paddle device, or improper resistance value inside joystick.

Check Gate Array C1(U20),U5,U4,R1-R4,C26-C29.

5.6 REAL-TIME CLOCK FAILURE

Symptom

Real-Time Clock not responding, or lose time after power down, or no alarm.

Possible causes

. Real-time clock not enabled.
. Defective real-time clock hardware logic.

Solution

Check for proper jumper setting to enable the function.

Check Gate Array C1(U20), U23(or U22), Xtal 3, VC1, C84,Q1,Q2,D1,D2 U21,U26.

Check 3.6V battery, C83,R17,D3.

- Power up the computer a few hours to charge the battery. exhausted.

Address conflict with other devices in the system.

Check for address conflict and change to another address for the real-time clock.

Z765A FDC
 Floppy Disk Controller

Advance Information Product Specification

April 1985

FEATURES

Address Mark detection circuitry internal to the FDC simplifies the phase locked loop and read electronics. The track stepping rate, head load time, and head unload time are user-programmable.

Z765A features are:

- IBM-compatible format, Single and Double Density
- Multisector and multitrack transfer capability
- Data scan capability-scans a single sector or an entire cylinder comparing byte-for-byte host memory and disk data

■ Drives up to 4 floppy-disk drives (FDD)

- Data transfers in DMA or non-DMA mode
- Parallel seek operations on up to four drives
- Compatible with most general-purpose microprocessors
- Single phase 8 MHz clock
- +5 V Only
- 40-Pin Dual-In-Line (DIP) package

general description

The Z765A is an LSI Floppy Disk Controller (FDC) chip which contains the circuitry and control functions for interfacing a processor to four floppy-disk drives. It supports IBM System 3740 Single Density format (FM) and IBM System 34 Double Density format (MFM) including double-sided recording. The Z765A provides control signals which simplify the design of an external phase locked loop and write precompensation circuitry. The FDC simplifies and handles most of the burdens associated with implementing a floppy-disk interface. (Figure 1).
Handshaking signals make DMA operation easily incorporated with the aid of an external DMA Controiler chip, such as the $Z 80$ DMA. The FDC operates in either the DMA or non-DMA mode. In the non-DMA mode the FDC generates interrupts to the processor every time a data byte is to be transferred. In the DMA mode, the processor need only load the command into the FDC and all data transfers occur under control of the FDC and DMA controllers.

The Z765A executes 15 commands; each command requires multiple 8 -bit bytes to fully specify the operation which the processor wishes the FDC to perform. The commands are:

- READ DATA
- WRITE DATA
- WRITE DELETED DATA
- READ DELETED DATA
- READTRACK
- READID
- FORMAT TRACK
- SCANEQUAL
- SCAN HIGH OR EQUAL
- SCAN LOW OR EQUAL
- SEEK
- RECALIBRATE
- SENSE INTERRUPT STATUS
- SPECIFY
- SÉNSE DRIVE STATUS

Figure 1. 2765A FDC Block Diagram

Figure 2. Pin Functions

PIN DESCRIPTIONS (Figures 2 and 3)

CLK. Clock (input). Single phase 8 MHz square wave clock.
$\overline{\mathbf{C S}}$. Chip Select (input). IC selected when 0 (Low), allowing $R D$ and $W R$ to be enabled.
D_{0}-D7. Data Bus. Bidirectional 8-bit Data Bus. Disabled when $C S=1$.

DACK. DMA Acknowledge (input). DMA cycle is active when 0 , and controller is performing DMA transfer.

DRQ. Data DMA Request (output). DMA Request is being made by FDC when $\mathrm{DRQ}=1$.
D/ㅍ․ Data/Status Register Select (input). Selects Data Register $(D / S=1)$ or Status Register $(D / \bar{S}=0)$ contents of the FDC to be sent to Data Bus. Disabled when $\overline{\mathrm{CS}}=1$

FR/STP. Fault Reset/Step (output). Resets fault FF in FDD in Read/Write mode, contains step pulses to move head to another cylinder in Seek mode.
FLT/TR \mathbf{R}_{0}. Faul//rack 0 (input). Senses FDD fault condition in Read/Write mode and Track 0 condition in Seek mode.

HD. Head Select (output). Head 1 selected when 1 (High); Head 0 selected when 0 (Low)
HDL. Head Load (output). Command which causes read/write head in FDD to contact diskette.
IDX. Index (input). Indicates the beginning of a disk track.
INT. Interrupt (output). Interrupt Request generated by FDC.

LCT/DIR. Low Current/Direction (output). Lowers Write current on inner tracks in Read/Write mode; determines direction head will step in Seek mode. A fault reset pulse is issued at the beginning of each Read or Write command prior to the occurrence of the Head Load signal.
MFM. MFM Mode (output). MFM mode when 1; FM mode when 0 .
$\mathbf{P S}_{1}, \mathbf{P S}_{0}$. Precompensation (preshift) (output). Write precompensation status during MFM mode. Determines early, tate, and normal times.
$\overline{\text { RD }}$. Read (input). When 0 , control signal for transfer of data from FDC to Data Bus. Disabled when $\overline{C S}=1$.

RDD. Read Data (input). Read data from FDD, containing clock and data bits.
RDW. Read Data Window (input). Generated by PLL, and used to sample data from FDD.

RDY. Ready (input). Indicates FDD is ready to send or receive data.

RESET. Reset (input). Places FOC in idle state. Resets output lines to FDD to O. Does not affect SRT, HUT or HLT in Specify command. If RDY pin is held High during Reset FDC generates an interrupt within 1.024 msec . To clear this interrupt use Sense Interrupt Status command.
RW/SEEK. Read Write/Seek (output). When 1 (High) Seek mode selected; when 0 (Low) Read/Write mode selected.

TC. Terminal Count (input). Indicates the termination of a DMA transier when 1 (High). It terminates data transfer during Read/Write/Scan command in DMA or Interrupt mode.
$\mathbf{U S}_{1}, \mathbf{U S}_{\mathbf{0}}$. Unit Select (output). FDD Unit selected.
VCOISYNC. (output). Inhibits VCO in PLL when 0 (Low); enables VCO when 1 .
WCK. Write Clock (input). Write data rate to FDD, FM $=500$ $\mathrm{KHz}, \mathrm{MFM}=1 \mathrm{MHz}$ with a pulse width of 250 ns for both FM and MFM.

WDA. Write Data (output). Serial clock and data bits to FDD.
WE. Write Enable (output). Enables write data into FDD.
WP/TS. Write Protect/Two Side (input). Senses Write Protect status in Read/Write mode and Two-Side Media in Seek mode.
WR. Write (input). When 0 , control signal for transfer of data to FDC via Data Bus. Disabled when $\overline{C S}=1$.

Table 1. Internal Registers

The bits in the Main Status Register are defined as follows:

Bit			Description
No.	Name	Symbol	
D_{0}	FDD0 Busy	$\mathrm{D}_{0} \mathrm{~B}$	FDD number 0 is in the Seek mode. If any bit is set, FDC will not accept read or write command.
D_{1}	FDD 1 Busy	$\mathrm{D}_{1} \mathrm{~B}$	FDD number 1 is in the Seek mode. If any bit is set, FDC will not accept read or write command.
D_{2}	FDD 2 Busy	$\mathrm{D}_{2} \mathrm{~B}$	FDD number 2 is in the Seek mode. If any bit is set, FDC will not accept read or write command.
D_{3}	FDD 3 Busy	$\mathrm{D}_{3} \mathrm{~B}$	FDD number 3 is in the Seek mode. If any bit is set, FDC will not accept read or write command.
D_{4}	FDC Busy	CB	A read or write command is in process. FDC will not accept any other command.
D_{5}	Execution Mode	EXM	This bit is set only during execution phase in non-OMA mode. When D_{5} goes low, execution phase has ended and result phase has started. It operates only during nan-DMA mode of operation.
D_{6} .	Data input/Output	010	Indicates direction of data transfer between FDC and Data Register. If DIO = 1, then transfer is from Data Register to the processor. If $\mathrm{D} \mid \mathrm{O}=0$, transfer is from the processor to Data Register.
D_{7}	Request for Master	RQM	Indicates Data Register is ready to send or receive data to or from the processor. Both bits DIO and RQM should be used to perform the handshaking functions of "ready" and "direction" to the processor.

INTERNAL REGISTERS

The Z765A contains two registers which may be accessed by the main system processor: a Status register and a Data register. The 8 -bit Main Status register (Table 1) contains the FDC status information and may be accessed at any time. The 8-bit Data register is several registers in a stack; one register at a time is presented to the data bus. The Data register stores data, commands, parameters, and FDD status information. Data bytes are read out of, or written into, the Data register in order to program or obtain the results after a particular command. Only the Status register may be read and used to facilitate the transfer of data between the processor and Z765A.
The relationship between the Status/Data registers and the signals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\mathrm{D} \overline{\mathrm{S}}$ is shown in Table 2.

The Data Input/Output (DIO) and Request for Master (RQM) bits in the Status register indicate when data is ready and the direction transfer on the data bus (Figure 4). The maximum time between the last $\overline{\mathrm{BD}}$ or \bar{W} R during a command or result
phase and the set or reset DIO and AQM is 12μ s; every time the Main Status register is read the CPU should wait $12 \mu \mathrm{~s}$. The maximum time from the trailing edge of the last $\overline{\mathrm{RD}}$ in the result phase to when D_{4} (FDC busy) goes Low is $12 \mu \mathrm{~s}$.

Table 2. Relationships Between Status/Data Registers and $\overline{\mathrm{RD}}, \mathrm{WR}$, and D / S

$\mathbf{D} / \overline{\mathbf{S}}$	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	Function
0	0	1	Read Main Status Register
0	1	0	Illegal
0	0	0	Illegal
1	0	0	Illegal
1	0	1	Read from Data Register
1	1	0	Write into Data Register

STATUS REGISTER IDENTIFICATION

Bh			Description
No.	Name	Symbol	
Status Register 0			
	,		$D_{7}=0 \text { and } D_{6}=0$ Normal Termination of command, (NT). Command was completed and properly executed.
D_{7}	Interrupt Code	IC	$\mathrm{D}_{7}=0 \text { and } \mathrm{D}_{6}=1$ Abnormal Termination of command. (AT). Execution of command was started but was not successfully completed.
D_{6}			$\mathrm{D}_{7}=1 \text { and } \mathrm{D}_{6}=0$ Invalid Command issue, (IC). Command which was issued was never started.
			$\mathrm{D}_{7}=1 \text { and } \mathrm{D}_{6}=1$ Abnormal Termination because during command execution the ready signal from FOD changed state.
D_{5}	Seek End	SE	When the FDC completes the SEEK command, this flag is set to 1 (High).
D_{4}	Equipment Check	EC	If a fault signal is received from the FDD, or if the Track 0 signal fails to $\alpha c c u r$ after 77 step pulses (Recalibrate Command) then this flag is set.
D_{3}	Not Ready	NR	When the FDD is in the not-ready state and a read or write command is issued, this flag is set. If a read or write command is issued to Side 1 of a single-sided drive. then this flag is set.
D_{2}	Head Address	HD	This flag is used to indicate the state of the head at Interrupt.
D_{1}	Unit Select 1	US_{1}	This fiag is used to indicate a Drive Unit Number at Interrupt.
D_{0}	Unit Select 0	$U S_{0}$	This flag is used to indicate a Drive Unit Number at Interrupt.
			Status Register 1
D_{7}	End of Cylinder	EN	When the FDC tries to access a sector beyond the final sector of a cylinder, this flag is set.
D_{6}			Not used. This bit is always 0 (Low).
D_{5}	Data Error	DE	When the FDC detects a Cyclic Redundancy Check (CRC) error in either the ID field or the data fietd, this flag is set.
D_{4}	Overrun	OR	If the FDC is not serviced by the host system during data transfers within a certain time interval, this flag is set.
D_{3}			Not used. This bit always 0 (Low).
D_{2}	No Data	ND	During execution of READ DATA, WRITE DELETED DATA or SCAN command if the FDC cannot find the sector specified in the Internal Data Register (IDR), this flag is set.
			During execution of the READ iD command, if the FDC cannot read the ID field without an error, then this flag is set.
			During execution of the READ A cylinder command, if the starting sector cannot be found, then this flag is set.

cannot be found, then this flag is set.
A. 1 - 5

STATUS REGISTER IDENTIFICATION (Continued)

Bit			Description
No.	Name	Symbol	
Status Register 1 (Continued)			
D_{1}	Not Writeable	NW	During execution of WRITE DATA, WRITE DELETED DATA of Format A cylinder command, if the FDC detects a write protect signal from the FDD, then this flag is set.
			If the FDC cannot detect the ID Address Mark atter encountering the index hole twice, then this flag is set.
D_{0}	Missing Address Mark	MA	If the FDC cannot detect the Data Address Mark or Deleted Data Address Mark, this flag is set. Also at the sarne time, the MD (Missing Address Mark in data field) of Status register 2 is set.
Status Reglster 2			
D_{7}			Not used. This bit is always 0 (Low).
D_{6}	Control Mark	CM	During execution of the READ DATA or SCAN command, if the FDC encounters a sector which contains a Deleted Data Address Mark, this flag is set.
D_{5}	Data Error in Data Fleld	DD	If the FDC detects a CRC error in the data field then this flag is sel.
D_{4}	Wrong Cylinder	WC	This bit is related to the ND bit, and when the contents of Cylinder (C) on the medium is different from that stored in IOR, this flag is set.
D_{3}	Scan Equal Hit	SH	During execution of the SCAN command, it the condition of "equal" is satistied, this flag is set.
D_{2}	Scan Not Satisfied	SN	During execution of the SCAN command, if the FDC cannot find a sector on the cylinder which meets the condition, then this flag is set.
D_{1}	Bad Cylinder	BC	This bit is related to the ND bit, and when the contents of C on the medium is different from that stored in the IDA and the contents of C is FF_{H}, then this flag is set.
D_{0}	Missing Address Mark in Data Field	MD	When data is read from the medium, if the FDC cannot find a Data Address Mark or Deleted Data Address Mark, then this flag is set.
Status Reglater 3			
D_{7}	Fault	FT	This bit is used to indicate the status of the Faull signal from the FDD.
D_{6}	Write Protected	WP	This bit is used to indicate the status of the Write Protected signal from the FDD.
D_{5}	Ready	fy	This bit is used to indicate the status of the Ready signal from the FDD.
D_{4}	Track 0	T0	This bit is used to indicate the status of the Track 0 signal from the FDD.
D_{3}	Two Side	TS	This bit is used to indicate the status of the Two Side signal from the FDD.
D_{2}	Head Address	HD	This bit is used to indicate the status of the Side Select signal to the FDD.
D_{1}	Unit Select 1	US ${ }_{1}$	This bit is used to indicate the status of the Unt Select 1 signal to the FDD.
D_{0}	Unit Select 0	$U S_{0}$	This bit is used to indicate the status of the Unit Select 0 signal to the FDD.

nores: 0 - beta megicat neady to be wittion into by procenecr

- Dista megitater not meddy to be wittuen into try procentor
- Dith neghter not ready to be witten into ty procesaor
C. -- Datar rogiteter rendy tor nuxt diata bytw to be read by

Figure 4. Data Transfor

COMMAND SEQUENCE

The Z765A is capable of performing 15 different commands. Each command is initiated by a multibyte transfer from the processor; the result after execution of the command may also be a multibyte transter back to the processor. Because of this multibyte interchange of information between the Z765A and the processor, each command consists of three phases:

Command Phase. The FDC receives all information required to perform a particular operation form the processor.
Execution Phase. The FDC performs the operation it was instructed to do.

Result Phase. After completion of the operation, status and other housekeeping information are made available to the processor.

The Instruction set shows the required preset parameters and results for each command. Most commands require 9 command bytes and return 7 bytes during the result phase. The W to the left of each byte indicates a command phase byte to be written; an R indicates a result byte.

PROCESSOR INTERFACE

During Command or Result phases the Main Status register must be read by the processor before each byte of information is written into, or read from, the Data register. Then the CPU should wait for 12μ s before reading the Main Status register. Bits D_{6} and D_{7} in the Main Status register must be in a 0 and 1 state, respectively, before each byte of the command word may be written into the Z765A. Many of the commands require multiple bytes and, as a result, the Main Status register must be read prior to each byte transfer to the Z765A. During the Result phase, D_{6} and D_{7} in the Main Status register must both be 1's before reading each byte from the Data Register. Reading the Main Status register before each byte transfer to the $2765 A$ is required only in the Command and Result phases, not during the Execution phase.

If the 2765 A is in the non-DMA mode and reading data from FDD, then the recept of each data byte is indicated by an interrupt signal on pin 18(INT $=1$). The generation of a Read signal ($\overline{\mathrm{RD}}=0$) or Write signal ($\overline{\mathrm{WR}}=0$) will clear the interrupt and output the data onto the data bus. If the processor cannot handle interrupts fast enough (every $13 \mu \mathrm{~s}$ for the MFM mode and 27μ s for the FM mode), then it may poll the Main Status register and bit D_{7} (RQM) functions as the interrupt signal. If a Write command is in process, the . WR signal negates the reset to the interrupt signal.
In the non-DMA mode it is necessary to examine the Main Status register to determine the cause of the interrupt, since it could be a data interrupt or a command termination interrupt, either normal or abnormal. It the Z765A is in the

COMMAND SYMBOL DESCRIPTION

Symbol	Name	Description
D/ \bar{S}	Data/Status Select	$\mathrm{D} / \overline{\mathrm{S}}$ controls selection of Main Status register ($\mathrm{D} / \overline{\mathrm{S}}=0$) or Data register ($\mathrm{D} / \overline{\mathrm{S}}=1$)
C	Cylinder Number	C stands for the current/selected cylinder (track) numbers 0 through 76 of the medium.
D	Data	D stands for the data pattern which is going to be written into a sector.
$\mathrm{D}_{7} \cdot \mathrm{D}_{0}$	Data Bus	8 -bit Data Bus. where D_{7} stands for a most significant bit, and D_{0} stands for a least significant bit.
DTL	Data Length	When N is defined as 00 , DTL stands for the data length which users are going to read out or write into the sector.
EOT	End of Track	EOT stands for the final sector number on a cylinder. During Read or Write operations, FDC will stop data transfer after a sector number equal to EOT.
GPL	Gap Length	GPL stands for the length of Gap 3. During Read/Write commands this value determines the number of bytes that VCO/SYNC will stay low after two CRC bytes. During Format command it determines the size of Gap 3.
H	Head Address	H stands for head number 0 or 1 , as specified in ID field.
HD	Head	HD stands for a selected head number 0 or 1 and controls the polarity of pin $27 .(H=$ HD in all command words.)
HLT	Head Load Time	HLT stands for the head load time in the FDD (2 to 254 ms in 2 ms increments).
HUT	Head Unioad Time	HUT stands for the head unload time after a Read or Write operation has occurred (16 to 240 ms in 16 ms increments).
MF	FM or MFM Mode	If MF is Low, FM mode is selected, and it it is High. MFM mode is selected.
MT	Multitrack	If MT is high, a Multitrack operation is performed. If MT $=1$ after finishing Read/Write operation on side 0, FDC automatically starts searching for sector 1 on side 1.
N	Number	N stands for the Number of data bytes written in a sector.
NCN	New Cylinder Number	NCN stands for a New Cylinder Number or desired position of head which is going to be reached as a result of the Seek operation.
ND	Non-DMA Mode	ND stands for operation in the Non-DMA mode.
PCN	Present Cylinder Number	PCN stands for the cylinder number or present position of Head at the completion of Sense interrupt Status command.
R	Record	R stands for the sector number which will be read or written.
RNW	Read/Write	R/W stands for either Read (R) or Write (W) signal.
SC	Sector	SC indicates the number of Sectors per Cylinder.
SK	Skip	SK stands for Skip Deleted Data Address mark.
SRT	Step Pate Time	SRT stands for the Stepping Rate for the FDD (1 to 16 ms in 1 ms increments). Stepping Rate applies to all drives ($\mathrm{F}_{(16)}=1 \mathrm{~ms}, \mathrm{E}_{(16)}=2 \mathrm{~ms}, \mathrm{D}_{(16)}=3 \mathrm{~ms}, \ldots$).
$\begin{aligned} & \text { ST0 } \\ & \text { ST1 } \\ & \text { ST2 } \\ & \text { ST3 } \end{aligned}$	Status 0 Status 1 Status 2 Status 3	ST0-3 stands for one of four registers which store the status information after a command has been executed. This information is available during the result phase after command execution. These registers should not be confused with the miain status register (selected by $D / \bar{S}=0$). STO-3 may be read only after a command has been executed and contains information relevant to that particular command.
STP	Step	During a Scan operation, if STP $=1$, the data in contiguous sectors is compared byte by byte with data sent from the processor (or DMA); if STP $=2$, then alternate sectors are read and compared.
$\mathrm{US}_{0}, \mathrm{US}_{1}$	Unit Select	Used to select between drives 0-3.

INSTRUCTION SET1, 2

A. 1 - 9

INSTRUCTION SET1,2 (Continued)

A. 1 - 10

INSTRUCTION SETT, 2 (Continued)

A. 1 - 11

INSTRUCTION SET1, 2 (Continued)

				.						Remarks
Phase	R/w	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
Format A Track										
Command	w	0	MF	0	0	1	1	0	1	Command Codes
	W	X	X	X	\times	X	HD	US ${ }_{1}$	$U S_{0}$	
	W									Bytes Sector
	W									Sectors/Track
	W									Gap 3
	W									Filler byte
Execution										FDC formats an entire track.
Result	R	\square - ST0								Status information atter command execution
	R									
	R	ST2								
	R									In this case, the ID information has no meaning.
	R									
	R									
	R	$-\mathrm{R}$								
Scan Equal										
Command	W	MT	MF	SK	1	0	0	0	1	Command Codes Sector IO information prior to command execution
	W	X	x	\times	x	x	HD	US ${ }_{1}$	$u S_{0}$	
	w									
	w									
	w									
	w									
	w									
	w									
	w									
Execution										Data compared between the FDD and the main system.
Result	R	$\square$$\square$$\square$								Status information atter command execution
	R									
	R									
	R									Sector ID information after command execution
	R									
	R	$\longrightarrow \mathrm{R} \longrightarrow$								
	R									

NOTES: 1. Symbols used in this table are described at the end of this section.
2. Dis should equal binary 1 for all operations.
3. $X=$ Don't care, usually made to equal binary 0 .
A. 1 - 12

INSTRUCTION SET ${ }^{1,2}$ (Continued)

Phase	R/W	Data Bus								Remarks
		D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	
Scan Low or Equal										
Command	W	MT	MF	SK	1	1	0	0	1	Command Codes
	w	x	X	X	X	x	HD	US	u_{0}	
	w									Sector ID information prior to command execution
	w									
	w									
	w								-	
	W									
	w								$-$	
	w									
Execution										Data compared between the FDD and main system
Result	R	$\square-\square-$								Status information after command execution
	R	\longrightarrow ST1								
	R									
	R	$\square \mathrm{ST2}-\mathrm{C}-\square$								Sector ID information after command execution
	R	$\square \mathrm{H}^{+}$								
	R									
Scan High or Equal										
Command	w	MT	MF	SK	1	1	1	0	1	Cormmand Codes Sector ID information prior to command execution.
	W	X	x	\times		x	HD	$U S_{1}$	$U S_{0}$	
	w									
	w									
	W									
	W									
	W									
	w									
	W									
Execution										Data compared between the FDD and main system.
Result	R	\longrightarrow ST0								Status information after command execution
	R									
	R									
	A									Sector ID information atter command execution.
	R									
	R	\longrightarrow R								
	R									
		Recahlorate								
Command	w	0	0	0	0	0	1	1	1	Command Codes
	W	\times	\times	x	x	x	0	$U S_{1}$	$U S_{0}$	
Execution										Head retracted to Track 0
NOTES: 1. Symbols used in this table are described at the end of this section. 2. D/S̉ should equal binary 1 for all operations. 3. $\mathrm{X}=$ Don't care, usually made to equal binary O .										

INSTRUCTION SET1, 2 (Continued)

DMA mode, no interrupts are generated during the Execution phase. The Z765A generates DRQs (DMA Requests) when each byte of data is available. The DMA Controller responds to this request with both a DACK (DMA Acknowedge) $=0$ and an $\overline{\mathrm{AD}}$ (Read signal) $=0$. When the DMA Acknowledge signal goes Low ($\overline{\mathrm{DACK}}=0$), then the DMA request is cleared ($D R Q=0$). If a Write command has been issued, a WR signal appears instead of $\overline{\mathrm{RD}}$. After the Execution phase has been completed [Terminal Count (TC) has occurred] or the last sector on the cylinder (EOT) read/witten, then an interrupt occurs (INT $=1$) which signifies the beginning of the Result phase. When the first byte of data is read during the Result phase, the interrupt is automatically cleared (${ }^{(N T}=0$).
The $\overline{R D}$ or $\overline{W R}$ signals should be asserted white $\overline{D A C K}$ is true. The $\overline{C S}$ signal is used in conjunction with $\overline{\mathrm{RD}}$ and $\overline{W R}$ as a gating function during programmed $/ / O$ operations. $\overline{\mathrm{CS}}$ has no effect during DMA operations. If the non-DMA mode is chosen, the DACK signal should be pulled up to $V_{C C}$.
During the Result phase all bytes shown in the Command Table must be read. For example, the Read Data command
has seven bytes of data in the Result phase; all seven bytes must be read to successfully complete the Read Data command and allow the Z765A to accept a new command.

The 2765A contains five Status registers. The Main Status register can be read at any time by the processor. The other four Status registers (ST0, ST1, ST2, and ST3) are available only during the Result phase and can be read only after completing a command. The particular command that has been executed determines how many of the Status registers are read.
The bytes of data which are sent to the Z765A to form the Command phase and are read out of the 2765A in the Result phase must occur in the order shown in the Command Table. That is, the Command Code must be sent first and the other bytes sent in the prescribed sequence. No foreshortening of the Command or Result phases is allowed. After the last byte of data in the Command phase is sent to the Z765A, the Execution phase automatically starts. In a similar fashion, when the last byte of data is read out in the Result phase, the command is automatically ended and the Z765A is ready for a new command.

POLLING FEATURE OF THE Z765A

Atter Reset is sent to the 2765A, the Unit Select lines US 0 and US_{1} automatically go into a polling mode (Figure 5). Between commands (and between step pulses in the Seek command) the 2765A polls all four FDDs looking for a change in the Ready line from any of the drives. If the Ready line changes state (usually due to a door opening or closing), then the 2765A generates an interrupt. When Status register 0 (STO) is read (after Sense Interrupt Status is
issued). Not Ready (NR) is indicated. The polling of the Ready line by the Z765A occurs continuously between commands, thus notifying the processor which drives are on or off line. Each drive is polled every 1.024 ms except during the Read/Write commands. When used with a 4 MHz clock for interfacing to minifloppies, the polling rate is 2.048 ms .

Figure 5. Polling Features

COMMANDS

Read Data

A set of nine (9) byte words are required to place the FDC into the Read Data Mode. After the Read Data command is issued, the FDC loads the head (ifit is in the unloaded state), waits the specified head settling time (defined in the Specity command), and begins reading ID Address Marks and ID fields. When the current sector number (R) stored in the ID Register (IDR) compares with the sector number read off the diskette, then the FDC, via the data bus, outputs data byte-to-byte from the data field to the main system.
After completion of the read operation from the current sector, the Sector Number is incremented by one, and the
data from the next sector is read and output on the data bus. This continuous read function is called a Multi-Sector Read Operation. The Read Data command can be terminated by the receipt of a TC signal which should be issued when the DACK for the last byte of data is sent. Upon receipt of this signal, the FDC stops outputting data to the processor, but continues to read data from the current sector, checks Cyclic Redundancy Count (CRC), and at the end of the sector, terminates the Read Data command. The amount of data which can be handled with a single command to the FDC depends upon multitrack (MT), MFM/FM (MF), and Number of Bytes/Sector (N). Table 3 shows the Transfer Capacity.

Table 3. Transter Capacity

Multi-Track MT	MFM/FM MF	Bytes/Sector N	Maximum Transfor Capacity (Bytea/Sector) (Number of Sectors)	Final Sector Read from Diskettes
0	0	00	$(128)(26)=3,328$	26 at Side 0
0	1	01	(256) (26) $=6,656$	or 26 at Side 1
1	0	00	$(128)(52)=6,656$	26 at Side 1
1	1	01	$(256)(52)=13,312$	
0	0	01	$(256)(15)=3,840$	15 at Side 0
0	1	02	$(512)(15)=7,680$	or 15 at Side 1
1	0	01	$(256)(30)=7,680$	15 at Side 1
1	1	02	$(512)(30)=15,360$	
0	0	02	$(512)(8)=4,096$	8 at Side 0
0	1	03	$(1024)(8)=8,192$	or 8 at Side 1
1	0	02	$(512)(16)=8,192$	8 at Side 1
1	1	03	$(1024)(16)=16,384$	

MT allows the FDC to read data from both sides of the diskette. For a particular cylinder, data is transierred starting at Sector 1, Side 0 and completing at the last sector, Sector L, Side 1. This function pertains to only one cylinder (the same track) on each side of the diskette.
When $N=0$, then DTL defines the data length which the FDC must treat as a sector. If DTL. is smaller than the actual data length in a Sector, the data beyond DTL in the Sector is not sent to the Data Bus. The FDC internally reads the complete sector performing the CRC check and, depending upon the manner of command termination, may perform a Multi-Sector Read Operation. When N is non-zero, then DTL has no meaning and should be set to FF_{H}.
At the completion of the Read Data Command the head is unloaded, after the Head Unload Time Interval specified in the Specify Command has elapsed. If the processor issues another command before the head unloads, there is no head settling time between subsequent reads. This time saved is particularly valuable when a diskette is copied.

If the FDC twice detects the index hole without finding the right sector (R), then the FDC sets Status register 1's No Data (ND) flag to 1, and terminates the Read Data command. (Status register 0 also has bits 7 and 6 set to 0 and 1 respectively.)
Atter reading the ID and Data fields in each sector, the FDC checks the CRC bytes. If a read error is detected indicating incorrect CRC in the ID field, the FDC sets Status register 1's Data Error (DE) flag to 1 , and if a CRC error occurs in the Data Field, the FDC also sets Status register 2's Data Error in Data Field (DD) flag to 1, and terminates the Read Data command. (Status register 0 , bit $7=0$, bit $6=1$.)
If the FDC reads a Deleted Data Address Mark off the diskette, and the SK bit D in the first Command Word $=0$, then the FDC sets Status register 2's Control Mark (CM) flag to 1 , and after reading all the data in the sector, terminates the Read Data command. If SK $=1$, the FDC skips the sector with the Deleted Data Address Mark and reads the next sector. When $S K=1$, the CRC bits in the deleted data field are not checked.

During disk data transfers between the FDC and the processor, via the data bus, the FDC must be serviced by the processor every $27 \mu \mathrm{~s}$ in the FM Mode, and every $13 \mu \mathrm{~s}$ in the MFM Mode, or the FDC sets Status register 1's Overrun (OR) flag to 1, and terminates the Read Data command.

If the processor terminates a read or write operation in the FDC, then the ID information in the Result Phase is dependent upon the state of the MT bit and EOT byte. Table 4 shows the values for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N when the processor terminates the command.

Table 4. C, H, R, and N Values When Processor Terminates Commands

MT	HD	Final Sector Transferred to Processor	ID Information at Result Phase			
			c	H	R	N
0	0	Less than EOT	NC	NC	R+1	NC
	0	Equal to EOT	$\mathrm{C}+1$	NC	$\mathrm{R}=01$	NC
	1	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	1	Equal to EOT	$C+1$	NC	$R=01$	NC
1	0	Less than EOT	NC	NC	R + 1	NC
	0	Equal to EOT	NC	LSB	$\mathrm{R}=01$	NC
	1	Less than EOT	NC	NC	$\mathrm{R}+1$	NC
	1	Equal to EOT	$C+1$	LSB	$\mathrm{R}=01$	NC

NOTES: NC (No Change): The same value as the one at the beginning of command execution.
LSB (Least Significant Bit): The least significant bit of H is complemented.

Write Data

A set of nine (9) bytes is required to set the FDC in the Write Data mode. After the Write Data command is issued, the FDC loads the head, waits the specified head setting time, and begins reading ID fields. When all four bytes (C, H, R, and N) loaded during the command match the four bytes of the ID field from the diskette, the FDC takes data from the processor byte-by-byte via the data bus and outputs it to the FDD.
After writing data into the current sector, the sector number stored in the R register is incremented by one, and new data is written into the next data field. The FDC continues this Multisector Write Operation until a Terminal Count signal is issued. If a Terminal Count signal is sent to the FDC, it continues writing into the current sector to complete the data field. If the Terminal Count signal is received while a data field is being written, the remainder of the data field is filied with zeros.
The FDC reads the ID field of each sector and checks the CRC bytes. If the FDC detects a read error (CRC error) in one of the ID fields, it sets Status register i's DE flag to 1, and terminates the Write Data command. (Status register 0, bit $7=0$, bit $6=1$.)
The Write command operates in the same manner as the Read command for the following items:

- Transfer capacity
- End of cylinder (EN) flag
- No data (ND) flag
- Head unload time interval
- ID information when the processor terminates command
- Definition of DTL when $N=0$ and when $N \neq 0$

Refer to the Read Data command for details.
In the Write Data mode, data transfers between the processor and FDC via the data bus, must occur every $27 \mu \mathrm{~s}$ in the FM mode and every $13 \mu \mathrm{~s}$ in the MFM mode. If the time interval between data transfers is longer, then the FDC sets Status register 1's Overrun (OR) flag to 1 , and terminates the Write Data command. (Status register 0 , bit $7=0$, bit $6=1$.)

Write Deleted Data

This command is the same as the Write Data command except a Deleted Data Address mark, instead of the normal Data Address mark, is written at the beginning of the data field.

Read Deleted Data

This command is the same as the Read Data command except that when the FDC detects a Data Address mark at the beginning of a data field and $S K=0$, the FDC reads all the data in the sector and sets Status register 2's CM flag to 1 , and terminates the command. If $\mathrm{SK}=1$, then the FDC skips the sector with the Data Address mark and reads the next sector.

Read Track

This command is similar to the Read Data command except that this is a continuous Read operation where the entire data field from each of the sectors is read. Immediately after
sensing the index hole, the FDC starts reading all data fields on the track as continuous blocks of data. If the FDC finds an error in the ID or Data CRC check bytes, it continues to read data from the track. The FDC compares the ID information read from each sector with the value stored in the IDR and, if there is no comparison, sets Status register 1's ND flag to 1. Multitrack or skip operations are not allowed with this command.
This command terminates when the number of sectors read is equal to EOT. If the FDC does not find an ID Address mark on the diskette after it senses the index hole for the second time, it sets Status register 1's Missing Address mark (MA) flag to 1 and terminates the command. (Status Register 0, bit $7=0$, bit $6=1$.)

Read ID

The Read ID command gives the present position of the recording head. The FDC stores the values from the first ID field it can read. If no proper ID Address mark is found on the diskette before the index hole is encountered for the second time, Status register 1's MA fiag is set to 1 , if no data is found, Status register 1's No Data (ND) flag is set to 1. The command is then terminated with STO bit $7=0$ and bit $6=1$. During this command, data transfer between FDC and the CPU occurs only during the result phase.

Format Track

The Format command allows an entire track to be formatted. After the index hole is detected, data is written on the diskette; Gaps, Address marks, ID fields and data fields, all per the IBM 3740 Single Density format or IBM System 34 Double Density format, are recorded. The processor, during the command phase, supplies values i.e., Number of bytes/sector (N), Sectors Cylinder (SC), Gap Length (GPL), and Data Pattern (D) which determine the particular format to be written.

The data field is filled with the byte of data stored in D. The ID field for each sector is supplied by the processor: that is, four data requests per sector are made by the FDC for Cylinder number (C), Head number (H), Sector number (R), and Number of bytes/sector (N). This allows diskette formatting with nonsequential sector numbers.

The processor must send new values for $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N to the Z765A for each sector on the track. If FDC is set for the DMA mode, it issues four DMA requests per sector. If it is set for the Interrupt mode, it issues four interrupts per sector and the processor must supply $\mathrm{C}, \mathrm{H}, \mathrm{R}$, and N loads for each sector. The contents of the R register are incremented by 1 after each sector is formatted; thus, the R register contains a value of R when it is read during the Result phase. This incrementing and formatting continues for the whole track until the FDC detects the index hole for the second time. whereupon it terminates the command.
If the Fault signal is received from the FDD at the end of a Write operation, the FDC sets Status register O's EC flag to 1
and terminates the command after setting Status register 0 , bit 7 to 0 and bit 6 to 1. Also the loss of a Ready signal at the beginning of a command execution phase causes Status register 0 , bit 7 and 6 to be set to 0 and 1 respectively.
Table 5 shows the sector size relationship between N, SC, and GPL.

Table 5. Functional Description of Commands

Format	Sector Size	N	SC	GPL ${ }^{1}$	GPL 2,3
8" Standard Floppy					
FM Mode	128 bytes sector	00	1A	07	18
	256	01	OF	OE	2 A
	512	02	08	1B	3 A
	1024	03	04	47	8A
	2048	04	02	C8	FF
	4096	05	01	C8	FF
MFM Mode ${ }^{4}$	256	01	1 A	OE	36
	512	02	OF	18	54
	1024	03	08	35	74
	2048	04	04	99	FF
	4096	05	02.	C8	FF
	8192	06	01	$\mathrm{C8}$	FF
51/4" Minifloppy					
FM Mode	128 bytes/sector	00	12	07	09
	128	00	10	10	19
	256	01	08	18	30
	512	02	04	46	87
	1024	03	02	CB	FF
	2048	04	01	$\mathrm{C8}$	FF
MFM Mode ${ }^{4}$	256	01	12	OA	$0 C$
	256	01	10	20	32
	512	02	08	2 A	50
	1024	03	04	80	FO
	2048	04	02	$\mathrm{C8}$	FF
	4096	05	01	C8	FF

NOTES: 1. Suggested values of GPL in Read or Write commands to avoid splice point between data field and iD field of cortigurout sections.
2. Suggested values of GPL in format command
3. All values except sector size are hexidecimal.
4. In MFM mode FDC cannot perform a ReadWrite format operation with 128 bytes sector ($\mathrm{N}=00$)

Scan Commands

The Scan commands allow comparison of data read from the diskette and data supplied from the main system. The FDC compares the data on a byte-by-byte basis and looks for a sector of data which meets the conditions of $\mathrm{D}_{\mathrm{FDD}}=$ $D_{\text {Processor }} \mathrm{D}_{\text {FDD }} \leqslant \mathrm{D}_{\text {Processor }}$ or $\mathrm{D}_{\text {FDD }} \geqslant \mathrm{D}_{\text {Processor }}$ The hexadecimal byte of FF from memory or from FDD can be used as a mask byte because it always meets the condition of the comparison. One's complement arithmetic is used for comparison ($\mathrm{FF}=$ largest number, $00=$ smallest number). After a whole sector of data is compared, if the conditions are not met, the sector number is incremented ($R+S T P \rightarrow$ R) and the scan operation continues until one of the following conditions occur: the conditions for ecan are met (equal, low, or high), the last sector on the track is reached (EOT), or the terminal count (TC) signal is received.

If the conditions for scan are met, the FDC sets the Status register 2's Scan Hit (SH) flag to 1 and terminates the Scan command. If the conditions for scan are not met between the starting sector number (R) and the last sector on the cylinder (EOT), then the FDC sets Status register 2's Scan Not Satisfied (SN) flag to 1, and terminates the Scan command. During the scan operation, the receipt of a signal from the processor or DMA controller causes the FDC to complete the comparison of the particular byte in process and then to terminate the command. Table 6 shows the status of bits SH and SN under various conditions of Scan.

Table 6.

Command	Status Register 2		Comments
	Bit $2=S N$	Blt $3=\mathbf{S H}$	
Scan Equal	0	1	$\mathrm{DFDD}=\mathrm{DP}_{\text {Processor }}$
	1	0	$\mathrm{DFDD} \neq$ DProcessor
Scan Low or Equal	0	1	$\mathrm{DFDD}=\mathrm{DProcessor}$
	0	0	DFDD< D Processor
	1	0	$\mathrm{D}_{\text {FDD }}>$ D Processor
Scan High or Equal	0	1	$\mathrm{D}_{\text {FDD }}=\mathrm{DProcessor}^{\text {Preser }}$
	0	0	$\mathrm{DFDD}>$ DProcessor
	1	0	$\mathrm{D}_{\text {FDD }}<\mathrm{DProcessor}$

If the FDC encounters a Deleted Data Address mark on one of the sectors and $\mathrm{SK}=0$, then it regards the sector as the last sector on the cylinder, sets Status register 2's Control Mark (CM) flag to 1 and terminates the command. $\mathrm{If} \mathrm{SK}=1$, the FDC skips the sector with the Deleted Address mark, reads the next sector, and sets Status register 2's Control Mark (CM) flag to 1 to show that a Deleted sector has been encountered.

When either the Step (STP) (contiguous sectors $=01$ or alternate sectors $=02$) sectors are read or the Multitrack
(MT) is programmed, the last sector on the track must be read. For example, if $S T P=02, M T=0$, the sectors are numbered sequentially 1 through 26 and the Scan command is started at sector 21, the following happens. Sectors 21,23 , and 25 are read, then the next sector, 26 , is skipped and the index hole is encountered before the EOT value of 26 can be read resulting in an abnormal termination of the command. If the EOT had been set at 25 or the scanning started at sector 20 , then the Scan command would be completed in a normal manner.

During the Scan command, data is supplied by either the processor or DMA Controiler for comparison against the data read from the diskette. In order to avoid having Status register 1's Overrun (OR) flag set, it is necessary to have the data available in less than $27 \mu \mathrm{~s}$ (FM mode) or $13 \mu \mathrm{~s}$ (MFM mode). If an Overrun occurs, the FDC ends the command with Status register 0 , bit 7 cleared to 0 and bit 6 set to 1 .

Seek

The Read/Write head within the FDD is moved from cylinder to cylinder under control of the Seek command. The FDC has four independent Present Cylinder registers for each drive which are cleared only after the Recalibrate command. The FDC compares the Present Cylinder Number (PCN) which is the current head position with the New Cylinder Number (NCN), and if there is a difference, periorms the following operations:

PCN < NCN: Direction signal to FDD set to 1, and Step Pulses are issued. (Step In)

PCN $>$ NCN: Direction signal to FDD cleared to 0 , and Step Pulses are issued. (Step Out)
The rate at which Step pulses are issued is controlled by Stepping Rate Time (SRT) in the Specity command. After each Step pulse is issued NCN is compared against PCN, and when NCN = PCN, Status register 0's Seek End (SE) flag is set to 1, and the command is terminated. At this point FDC interrupt goes High. Bits $D_{0}-D_{3}$ in the Main Status register are set during the Seek operation and are cleared by the Sense Interrupt Status command.

During the command phase of the Seek operation the FDC is in the FDC Busy state, but during the execution phase it is in the Nonbusy state. While the FDC is in the Nonbusy state, another Seek command may be issued, and in this manner parallel Seek operations may be done on up to four drives at once. No other command can be issued for as long as the FDC is in the process of sending step pulses to any drive.
If an FDD is in a Not Ready state at the beginning of the command execution phase or during the Seek operation, then Status register O's Not Ready (NR) flag is set to 1, and the command is terminated after bit 7 is set to 1 and bit 6 to 0 .

If writing three bytes of Seek command exceeds $150 \mu \mathrm{~s}$, the timing between the first two step pulses may be 1 ms shorter than that set in the Specify command.

Recallbrate

The function of this command is to retract the Read/Write head within the FDD to the Track 0 position. The FDC clears ${ }^{\circ}$ the contents of the PCN counter and checks the status of the Track 0 signal from the FDD. As long as the Track 0 signal is Low, the Direction signal remains 0 and step pulses are issued. When the Track 0 signal goes High, the Status register O's SE flag is set to 1 and the command is terminated. If the Track 0 signal is still Low after 77 step pulses have been issued, the FDC sers Status register O'S SE and Equipment Check (EC) flags to 1 s and terminates the command after Status register 0 , bit 7 is cleared to 0 and bit 6 is set to 1 .

The ability to do overlap Recalibrate commands to multiple FDDs and the loss of the Ready signal, as described in the Seek command, also applies to the Recalibrate command. If the Diskette has more than 77 tracks, the Recalibrate command should be issued twice, in order to position the Read/Write head to Track 0 .

Sense Interrupt Status

An interrupt signal is generated by the FDC for one of the following reasons:

1. Upon entering the Result phase of command:

- Read Data
- Read Track
[] Write Data
- ReadID
- Write Deleted Data
- Format Track
- Read Deleted Data
- Scan

2. Ready Line of FDD changes state
3. End of Seek or Recalibrate command
4. During Execution phase in the non-DMA mode

Interrupts caused by reasons 1 and 4 occur during normal command operations and are easily discernible by the processor. During an execution phase in non-DMA mode, D_{5} in the Main Status Register is High. Upon entering the Result phase this bit is cleared. Reasons 1 and 4 do not require Sense Interrupt Status commands. The interrupt is cleared by Reading/Writing data to the FDC. Interrupts caused by reasons 2 and 3 may be uniquely identified with the aid of the Sense Interrupt Status command which resets the Interrupt signal and, via bits 5, 6, and 7 of Status register 0 , identifies the cause of the interrupt (Table 7).

Table 7. Interrupt Identification

Seek End Bn 5	Interrupt Code		Cause
	Bit 6	Bit 7	
0	1	1	Ready Line changed state, either polarity
1	0	0	Normal Termination of Seek or Recalibrate command
1	1	0	Abnormal Termination of Seek or Recalibrate command

The Sense Interrupt Status command is used in conjunction with the Seek and Recalibrate commands which have no result phase. When the disk has reached the desired head position, the Z765A sets the interrupt line true. The host CPU must then issue a Sense Interrupt Status command to determine the actual cause of the interrupt, which could be Seek End or a change in ready status from one of the drives. Figure 6 is a graphic example.

Specify

The Specify command sets the initial values for each of the three internal timers. The Head Unload Time (HUT) defines the time from the end of the execution phase of one of the Read/Write commands to the head unload state. This timer is programmable from 16 to 240 ms in increments of 16 ms ($01=16 \mathrm{~ms}, 02=32 \mathrm{~ms} . . . \mathrm{OF}_{16}=240 \mathrm{~ms}$). The Step Rate Time (SRT) defines the time interval between adjacent step pulses. This timer is programmable from 1 to 16 ms in increments of 1 ms ($F=1 \mathrm{~ms}, E=2 \mathrm{~ms}$, and $D=3 \mathrm{~ms}$). The Hoad Load Time (HLT) defines the time betwoen the Head Load signal's going High and the start of the Read/Write operation. This timer is programmable from 2 to 254 ms in increments of $2 \mathrm{~ms}(01=2 \mathrm{~ms}, 02=4 \mathrm{~ms}, 03=6 \mathrm{~ms} \ldots 7 \mathrm{~F}=$ $254 \mathrm{~ms})$.
The time intervals mentioned are a direct function of the 8 MHz clock; if the clock were reduced to 4 MHz (minifloppy application), all time intervals would be increased by a factor of 2 .
The choice of a DMA or non-DMA operation is made by the Non-DMA (ND) bit. When this bit is High (ND = 1), the Non-DMA mode is selected; when ND $=0$, the DMA mode is selected.

Sense Drive Status

The processor uses this command to obtain the status of the FDDs. Status register 3 contains the Drive Status information stored internally in FDC registers.

Invalid

If an Invalid command (not defined above) is sent to the FDC, then the FDC terminates the command after Status Register 0 bit 7 is set to 1 and bit 6 to 0 . No interrupt is generated by the Z765A during this condition. Bits 6 and 7 (DIO and ROM) in the Main Status register are both High. indicating to the processor that the Z765A is in the Result phase and the contents of Status register 0 (STO) must be read. When the processor reads Status register 0, it finds an 80_{H} indicating the receipt of an Invalid command.
A Sense Interrupt Status command must be sent after a Seek or Recalibrate Interrupt, otherwise the FDC considers the next command as an Invalid command.
This command may be used as a No-Op command to place the FDC in a standby or No Operation state.

AC CHARACTERISTICS

$T_{A}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

AC CHARACTERISTICS (Continued)

$T_{A}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}_{ \pm} 5 \%$ unless otherwise specified.

Number	Symbol	Parameter	Min	Typ ${ }^{1}$	Max	Unit	Test Condition
37	TwSTEPh	STEP Width (High)	6	7	8	$\mu \mathrm{s}$	
38	TCSTEP	STEP Cycle Time	16	Note 2	Note 2	$\mu \mathrm{S}$	
39	TwFRh	FAULT RESET Width (High)	8		10	μ	
40	TwWDAh	Write Data (WDA) Width (High)	$\mathrm{T}_{0}-50$			ns	
41	ThUS(SEEKf)	Unit Select from $\overline{\mathrm{RW}} / \mathrm{SEEK} \downarrow$ Hold Time	15			$\mu \mathrm{s}$	
42	ThSEEK(DIR)	$\overline{\mathrm{RW}} / \mathrm{SEEK}$ from LCT/DIR Hold Time	30			$\mu \mathrm{s}$	
43	ThDIR(STEPf)	LCT/DIR from STEP + Hold Time	24			$\mu \mathrm{s}$	
44	TwIDX	INDEX Width (High and Low)	10			TcC	
45	TdDRQh(RDI)	DRQ \uparrow to $\overline{\mathrm{RD}} \downarrow$ Delay Time	800			$\mu \mathrm{s}$	
46	TdDROh(WRI)	DRQ \dagger to $\overline{W R} \downarrow$ Delay Time	250			$\mu \mathrm{s}$	
47	TdDROh(RWh)	$\mathrm{ORQ} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$ or $\overline{\mathrm{WR}} \uparrow$ Delay Time			12	$\mu \mathrm{s}$	

NOTES: 1. Typical values for $\mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voitage.
2. Under software control, the range is from 1 ms to 16 ms at 8 MHz clock period.

Processor Read Operation

Processor Write Operation

A. 1-23

DMA Operation

FDD Write Operation

	Preshift 0	Preshift 1
Normal	0	0
Late	0	1
Early	1	0

Seek Operation

A. 1-24

FDD Read Operation

Terminal Count

RESET

RESET

saxysexx

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Operating Temperature	.$^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Stresses greater than those listed under Absolute Maximum Ratings may
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	cause permanent damage to the device. This is a stress rating
All Output Voltages	$-3 V$ to +7 V	operation of the device at any condition above these indicated in operational sections of these specifications is not implied. Exposure
All Input Voltages.	-.3 V to +7 V	absolute maximum rating conditions for extended periods may affect
Supply Voltage VCC	. 3 V to +7 V	device reliability.
Power Dissipation	. . . 1W	

DC CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%$ unless otherwise specified.

Symbol	Parameter	Min	Typ*	Max	Unit	Test Condition
V_{IL}	Input Low Voltage	-0.3		0.8	V	
V_{IH}	Input High Voltage	2.0		V_{CC}	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			0.40	V	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4		V_{CC}	V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$
$\mathrm{V}_{\text {ILC }}$	Input Low Voltage (CLK + WR Clock)	-0.3		0.45	V	
$\mathrm{V}_{\mathrm{IHC}}$	Input High Voltage (CLK + WR Clock)	2.4		$V_{C C}+0.3$	v	
${ }^{\text {cce }}$	$V_{\text {CC }}$ Supply Current			150	mA	
	Input Load Current			10	$\mu \mathrm{A}$	$V_{I N}=V_{C C}$
しı	(All Input Pins)			- 10	$\mu \mathrm{A}$	$V_{1 N}=0 \mathrm{~V}$
${ }_{\text {LOH }}$	High Level Output Leakage Current			10	$\mu \mathrm{A}$	$V_{\text {OUT }}=V_{\text {CC }}$
lol	Low Level Output Leakage Current			-10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=+0.40 \mathrm{~V}$

*Typical values for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.

CAPACITANCE

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}: V_{C C}=\mathrm{OV}$

Symbol	Parameter	Min	Max	Unit
$C_{\text {CLOCK }}$	Clock Input Capacitance		Teat Condlition	
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	10	pF	All pins except pin under
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	20	pF	test tied to AC Ground

ORDERING INFORMATION

Ordering information is available from your local Zilog Sales Office.
Package drawings are in the Package Information section in this book.
Refer to the Literature List for additional documentation.

General Description

The INS8250 is a programmable Asynchronous Communications Element (ACE) chip contained in a standard 40 -pin dual-in-line package. The chip, which is tabricated using N-channel silicon gate technology. functions as a serial data input/output interface in a microcomputer system. The functional configuration of the INS8250 is programmed by the system software via a TRI-STATE ${ }^{(B)}$ 8 -bit bidirectional data bus.

The INS8250 performs serial-to-parallel conversion on data characters received from a peripheral device or a MODEM, and parallel-to-serial conversion on data characters received from the CPU. The CPU can read the complete status of the INS8250 at any time during the functional operation. Status information reported includes the type and condition of the transfer operations being performed by the INS8250, as well as any error conditions (parity, overrun, framing, or break interrupt),

In addition to providing control of asynchronous data communications, the INS8250 includes a programmabie Baud Generator that is capable of dividing the timing reference clock input by divisors of 1 to $(216-1)$. and producing a $16 x$ clock fordriving the internal transmitter logic. Provisions are also included to use this $16 x$ clock to drive the receiver logic. Also included in the INS8250 is a complete MODEM-control capability, and a processor interrupt system that may be software tailored to the user's requirements to minimize the computing time required to handle the communications link.

Features

- Designed to be Easily Interfaced to Most Popular Microprocessors.
- Adds or Deletes Standard Asynchronous Communica* tion Bits \{Start, Stop, and Parity\} to or from Serial Data Stream
- Fulf Double Buffering Eliminates Need for Precise Synchronization
- Independently Controlled Transmit, Receive, Line Status, and Data Set Interrupts
- Programmable Baud Rate Generator Allows Division of Any Input Clock by 1 to $\left(2^{16}-1\right)$ and Generates the Internal 16x Clock
- Independent Receiver Clock Input
- MODEM Control Functions (CTS, RTS, DSR, DTR, RI, and Carrier Detect)
- Fully Programmable Serial-Interface Characteristics
- 5-, 6. 7-, or 8-Bit Characters
- Even, Odd, or No-Parity Bit Generation and Detection
- 1., $1 / \mathrm{h}$, or 2 -Stop Bit Generation
- Baud Rate Generation (DC to 56k Baud)
- False Start Bit Detection
- Complete Status Reporting Capabilities
- TRI-STATE TTL Drive Capabilities for Bidirectional Data Bus and Control Bus
- Line Break Generation and Detection
- Internal Diagnostic Capabilities
- Loopback Controls for Communications Link Fault Isolation
- Break, Parity, Overrun, Framing Error Simulation
- Full Prioritized Interrupt System Controls
- Single +5 -Volt Power Supply
- MICROBUS ${ }^{\text {TM* }}$ Compatible

INS8250-B MICROBUS Configuration

*Trademark, National Semiconductor Corp.

Absolute Maximum Ratings

Temperature Under Bias . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input or Output Voltages with Respect to $\mathrm{V}_{\mathrm{SS}} \ldots .-0.5 \mathrm{~V}$ to +7.0 V
Power Dissipation . 400 mW

Absolute maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended, operation should be limited to those conditions specified under $D C$ Electrical Characteristics.

DC Electrical Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter	Min	Typ	Max	Units	Test Conditions
$V_{\text {ILX }}$	Clock Input Low Voltage	-0.5		0.8	V	${ }^{\prime} \mathrm{OL}=1.6 \mathrm{~mA}$ on all outputs,$\int 1 \mathrm{OH}=-100 \mu \mathrm{~A}$
$V_{\text {IHX }}$	Clock Input High Voltage	2.0		$V_{\text {cc }}$	V	
$V_{\text {IL }}$	Input Law Voltage	-0.5		0.8	V	
$V_{\text {IH }}$	Input High Voltage	2.0		v_{CC}	V	
$\mathrm{VOL}_{\text {O }}$	Output Low Voltage			0.4	V	
VOH	Output High Voltage	2.4			\checkmark	
ICC (AV)	Avg Power Supply Current (VCC)		65	80	mA	
1 LL	Input Leakage			± 10	$\mu \mathrm{A}$	
${ }^{\text {I CL }}$	Clock Leakage			± 10	$\mu \mathrm{A}$	

Capacitance

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Symbol	Parameter	Min	Typ	Max	Units	Test Conditions
CXIN	Clock Input Capacitance		15	20	pF	
CXOUT	Clock Output Capacitance		20	30	pF	
CIN	Input Capacitance		6	10	oF	
COUT	Output Capacitance	UHz				

AC Electrical Characteristics

$T_{A}=0^{\circ} \mathrm{C}$ to $\pm 70^{\circ} \mathrm{C}, V C C \pm 5 \%$

Symbol	Parameter	Min	Max	Units	Test Conditions
taw	Address Strobe Width	120	-	ns	
tas	Address Setup Time	110	-	ns	
$\mathrm{taH}_{\text {A }}$	Address Hold Time	60	-	ns	
tcs	Chip Select Setup Time	110	-	ns	
tch	Chip Select Hold Time	60	-	ns	
tess	Chip Select Output Delay from Strobe	0	100	ns	-@ 100pF foading
toio	DISTR/DISTR Strobe Delay	0	-	ns	
tolw	$\overline{\text { DISTR/DISTR Strobe Width }}$	350	-	ns	
tre	Read Cycle Delay	1735	-	ns	
RC	Read Cycle $=\mathrm{taw}^{\text {a }}$ + toID + toiw + tric	2205	-	ns	
tod	DISTR/DISTR to Driver Disable Delay	-	250	ns	-@100 pF loading
tood	Delay from DISTR/DISTR to Data	-	300	ns	-(100 pF toading
thz	DISTR/DISTR to Floating Data Delay	100	-	ns	-@ 100 pF loading
toob	$\overline{\text { DOSTR/DOSTR Strobe Delay }}$	50	-	ns	
toow	DOSTR/DOSTR Strobe Width	350	-	ns	
twc	Write Cycle Delay	1785	-	ns	
WC	Write Cycle $=$ taw + toOD + toow + twc	2305	-	ns	
tos	Data Setup Time	350	-	ns	
tor	Data Hold Time	100	-	ns	
tcsc*	Chip Select Output Delay from Select	-	200	ns	-@ 100pF loading
tra*	Address Hold Time from DISTR/DISTR	50	-	ns	
tras ${ }^{\circ}$	Chip Select Hold Time from DISTR/DISTR	50	-	ns	
tar*	DISTR/DISTR Delay from Address	110	-	ns	
tcss*	DISTR/DISTR Delay from Chip Select	110	-	ns	
${ }_{\text {twA }}{ }^{\text {* }}$	Address Hold Time from DOSTR/DOSTR	50	-	ns	
twcs*	Chip Select Hold Time from $\overline{\text { DOSTR/DOSTR }}$	50	-	ns	
taw^{*}	$\overline{\text { DOSTR/DOSTR Delay from Address }}$	160	-	ns	
tcsw*	$\overline{\text { DOSTR/DOSTR Delay from Select }}$	160	-	ns	
tmaw	Master Reset Pulse Width	25	-	$\mu \mathrm{s}$	

*Applicable only when ADS input is tied permanently low.

AC Electrical Characteristics (cont'd.)

Symbol	Parameter	Min	Max	Units	Test Conditions	
BAUD GENERATOR						
N	Baud Rate Divisor	1	$2^{16}-1$			
tBLD	Baud Output Negative Edge Delay		250 typ	ns	100 pF Load	
tBHD	Baud Output Positive Edge Delay		250 typ	ns	100 pF Load	
tLW	Baud Output Down Time	425 typ		ns	100 pF Load	
thw	Baud Output Up Time	330 typ		ns	100 pF Load	
RECEIVER						
tSCD	Delay from RCLK to Sample Time		2 typ	$\mu \mathrm{s}$		
TSINT	Deiay from Stop to Set Interrupt		2 typ	$\mu \mathrm{s}$	100 pF Load	
${ }^{\text {t }}$ INT	Delay from $\overline{\text { DISTR }} /$ DISTR (RD RBR/RDLSR) to Reset Interrupt		1 typ	$\mu \mathrm{s}$	100 pF Load	
TRANSMITTER						
t_{HR}	Delay from DOSTR/DOSTR (WR THR) to Reset Interrupt		1 typ	$\mu \mathrm{s}$	100 pF Load	
IRS	Delay from Initial INTR Reset to Transmit Start		16 typ	$\overline{\text { BAUDOUT }}$ Cycles		
tSI	Delay from Initial Write to Interrupt		24 typ	BAUDOUT Cycles		
ts	Delay from Stop to Next Start		1 typ	$\mu \mathrm{s}$		
tsti	Delay from Stop to interrupt (THRE)		8 typ	$\begin{aligned} & \text { BANDOUT } \\ & \text { Cycles } \end{aligned}$		
tir	Delay from DISTR/DISTR (RD\\|R) to Reset Interrupt (THRE)		1 typ	$\mu \mathrm{s}$	100 pF Load	
MODEM CONTROL						
MDO	Detay from DOSTR/DOSTR (WR MCR) to Output		1 typ	$\mu \mathrm{s}$	100 pF Load	
tSIM	Deiay to Set interrupt from MODEM Input		1 typ	$\mu \mathrm{s}$	100 pF Load	
trim	Delay to Reset Interrupt from DISTR/DISTR (RD MSR)		1 typ	$\mu \mathrm{s}$	100 pF Load	

A. 2-4

Timing Waveforms

Read Cycle

Timing Waveforms (cont'd.)

Write Cycle

INS8250-B Block Diagram

INS8250-B Functional Pin Description

The following describes the function of all INS8250 input/output pins. Some of these descriptions reference internal circuits.
NOTE

In the following descriptions, a low represents a logic 0 (0 volt nominal) and a bigh represents a logic 1 (+2.4 volts nominal).

INPUT SIGNALS

Chip Select (CSO, CS 1, CS2). Pins 12-14: When CSO and CS1 are high and $\overline{\operatorname{CS} 2}$ is low, the chip is selected. Chip selection is complete when the decoded chip select signal is latched with an active (low) Address Strobe ($\overline{\mathrm{ADS}}$) input. This enables communication between the INS8250 and the CPU
Data Input Strobe (DISTR, DISTR), Pins 22 and 21: When DISTR is high or DISTR is low while the chip is selected, allows the CPU to read status information or data from a selected register of the INS8250

NOTE
Only an active DISTR or DISTR input is required to transfer data from the INS8250 during a read operation. Therefore, tie either the DISTR input permanently low or the DISTR input permanently high, if not used

Data Output Strobe (DOSTR, $\overline{\text { DOSTR }), ~ P i n s ~} 19$ and 18: When DOSTR is high or DOSTR is low while the chip is selected, allows the CPU to write data or control words into a selected register of the INS8250.
NOTE

Only an active DOSTR or DOSTR input is required to transfer data to the INS8250 during a write operation. Therefore, tie either the DOSTR input permanently low or the DOSTR input permanently high, if not used.

Address Strobe ($\overline{\mathrm{ADS}}$), Pin 25: When low, provides latching for the Register Select (AD. A1. A2) and Chip Sefect (CSO, CS1, CS2) signals.

NOTE

An active ADS input is required when the Register Select (A0, A1, A2) signals are not stable for the duration of a read or write operation. If not required, tie the ADS input permanently low.

Register Select (A0, A1, A2), Pins 26-28: These three inputs are used during a read or write operation to select an INS8250 register to read from or write into as indicated in the table below. Note that the state of the Divisor Latch Access Bit (DLAB), which is the most significant bit of the Line Control Register, affects the selection of certain INS8250 registers. The DLAB must be set high by the system software to access the Baud Generator Divisor Latches.

DLAB	A_{2}	A_{1}	A_{0}	Register
0	0	0	0	Receiver Buffer (read), Transmitter Holding Register (write)
0	0	0	1	Interrupt Enable
X	0	1	0	Interrupt Identification (read only)
X	0	1	1	Line Controt
X	1	0	0	MODEM Control
X	1	0	1	Line Status
X	1	1	0	MODEM Status
X	1	1	1	None
$\mathbf{1}$	0	0	0	Divisor Latch (least significant byte)
$\mathbf{1}$	0	0	1	Divisor Laten (most Significant byte)

Master Reset (MR), Pin 35: When high, clears all the registers (except the Receiver Buffer, Transmitter Holding, and Divisor Latches), and the control logic of the INSB250. Also, the state of various output signals (SOUT, INTRPT, $\overline{O U T} 1, \overline{O U T 2}, \overline{\text { RTS }}, \overline{\text { DTR }}$) are affected by an active MR input. (Refer to table 1.)

Receiver Clock (RCLK), Pin 9: This input is the 16x baud rate clock for the receiver section of the chip.
Serial Input (SIN), Pin 10: Serial data input from the communications link (peripheral device, MODEM, or data set).
Ciear to Send ($\overline{\mathrm{CTS}}$), Pin 36: The $\overline{\mathrm{CTS}}$ signal is a MODEM control function input whose condition can be tested by the CPU by reading bit 4 (CTS) of the MODEM Status fegister, BIt 0 (DCTS) of the MODEM Status Register indicates whether the CTS input has changed state since the previous reading of the MODEM Status Register.

NOTE

Whenever the CTS bit of the MODEM Status Register changes state, an interrupt is generated if the MODEM Status Interrupt is enabled.
Data Set Ready ($\overline{\mathrm{DSR}}$), Pin 37: When Iow, indicates that the MODEM or data set is ready to establish the communications tink and transfer data with the INS8250. The $\overline{D S R}$ signal is a MODEM-control function input whose condition can be tested by the CPU by reading bit 5 (DSR) of the MODEM Status Register. Bit 1 (DDSR) of the MODEM Status Register indicates whether the $\overline{\mathrm{DSB}}$ input has changed state since the previous reading of the MODEM Status Register.

NOTE

Whenever the DSR bit of the MODEM Status Register changes state, an interrupt is generated if the MODEM Status Interrupt is enabled.

Received Line Signal Detect ($\overline{\operatorname{RLSD}}$), Pin 38: When low, indicates that the data carrier has been detected by the MODEM or data set. The $\overline{\mathrm{RLSD}}$ signal is a MODEMcontrol function input whose condition can be tested by the CPU by reading bit 7 (RLSD) of the MODEM Status Register. Bit 3 (DRLSD) of the MODEM Status Register indicates whether the RLSD input has changed state since the previous reading of the MODEM Status Register.

NOTE

Whenever the RLSD bit of the MODEM Status Register changes state, an interrupt is generated if the MODEM Status Interrupt is enabled.

Ring Indicator ($\overline{\mathrm{RI}}$), Pin 39: When low, indicates that a telephone ringing signal has been received by the MODEM or data set. The RI signal is a MODEM-control function input whose condition can be tested by the CPU by reading bit 6 (RI) of the MODEM Status Register. Bit 2 (TERI) of the MODEM Status Register indicates whether the $\overline{\mathrm{RI}}$ input has changed from a low to a high state since the previous reading of the MODEM Status Register.

NOTE

Whenever the RI bit of the MODEM Status Register changes from a high to a low state, an interrupt is generated if the MODEM Status Interrupt is enabled.
$V_{c c}, \operatorname{Pin} 40:+5$-volt supply.
$\mathbf{V}_{\text {SS }}$, Pin 20: Ground (0 -volt) reference.

OUTPUT SIGNALS

Data Terminal Ready ($\overline{\mathrm{DTR}}$), Pin 33: When low, informs the MODEM or data set that the INS8250 is ready to communicate. The DTR output signal can be set to an active low by programming bit 0 (DTR) of the MODEM Control Register to a high level. The DTR signal is set high upon a Master Reset operation.
Request to Send ($\overline{\mathrm{RTS}}$), Pin 32: When low, informs the MODEM or data set that the INS8250 is ready to transmit data. The $\overline{\mathrm{RTS}}$ output signal can be set to an active low by programming bit 1 (RTS) of the MODEM Control Register. The $\overline{\text { RTS }}$ signal is set high upon a Master Reset operation.
Output 1 ($\overline{\text { OUT } 1), ~ P i n ~ 34: ~ U s e r-d e s i g n a t e d ~ o u t p u t ~ t h a t ~}$ can be set to an active low by programming bit 2 (OUT 1) of the MODEM Control Register to a high level. The OUT 1 signal is set high upon a Master Reset operation.
Output 2 (OUT2), Pin 31: User-designated output that can be set to an active low by programming bit 3 (OUT2), of the MODEM Control Register to a high level. The $\overline{\text { OUT } 2}$ signal is set high upon a Master Reset operation.
Chip Select Out (CSOUT), Pin 24: When high, indicates that the chip has been selected by active CSO, CS1, and $\overline{\operatorname{CS2}}$ inputs. No data transfer can be initiated until the CSOUT signal is a logic 1 .
Driver Disable (DDIS), Pin 23: Goes low whenever the CPU is reading data from the INS8250. A high-level DDIS output can be used to disable an external transceiver lif used between the CPU and INS8250 on the $\mathrm{D}_{7}-\mathrm{D}_{0}$ Data Bus) at all times, except when the CPU is reading data.
Baud Out ($\overline{\text { BAUDOUT }}$), Pin 15: $16 \times$ clock signal for the transmitter section of the INS8250. The clock rate is equal to the main reference oscillator frequency divided by the specified divisor in the Baud Generator Divisor Latches. The BAUDOUT may also be used for the receiver section by tying this output to the RCLK input of the chip.

Interrupt (INTRPT), Pin 30: Goes high whenever any one of the following interrupt types has an active high condition and is enabled via the IER: Receiver Error Flag; Received Data Available: Transmitter Holding Register Empty; and MODEM Status. The INTRPT signal is reset low upon the appropriate interrupt service or a Master Reset operation.

INS8250-B Accessible Registers

The system programmer may access or control any of the INS8250 registers summarized in table 2 via the CPU. These registers are used to control INS8250 operations and to transmit and receive data.

INS8250 LINE CONTROL REGISTER

The system programmer specifies the format of the asynchronous data communications exchange via the Line Control Register. In addition to controlling the format, the programmer may retrieve the contents of the Line Control Register for inspection. This feature simplifies system programming and eliminates the need for separate storage in system memory of the tine characteristics. The contents of the Line Control Register are indicated in table 2 and are described below.

Bits 0 and 1: These two bits specify the number of bits in each transmitted or received serial character. The encoding of bits 0 and 1 is as follows:

Bit 1	Bit 0	Word Length
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

Bit 2: This bit specifies the number of Stop bits in each transmitted or received serial character. If bit 2 is a logic 0.1 Stop bit is generated or checked in the transmit or receive data, respectively. If bit 2 is a logic 1 when a 5 -bit word length is selected via bits 0 and $1,1 / 2$ Stop bits are generated or checked. If bit 2 is a logic 1 when either a 6-, 7., or 8 bit word length is selected, 2 Stop bits are generated or checked.

Table 2. Summary of INS8250-B Accessible Registers

Bit No.	Register Address									
	0 DLAB $=0$	O DLAE $=0$	1 DLAB $=0$	2	3	4	5	6	ODLAB $=1$	1 DLAB $=1$
	Receiver Buffer Register (Read Only)	Transmitter Holding Register (Write Onfy)	Interrupt Enable Register	Interrupt Identification Register (Pead Only)	tine Control Register	MODEM Control Register	Line Status Register	MODEM Status Register	Divisor Latch (LS)	Divisor Latch (MS)
	RBR	THR	IER	11 R	L.CR	MCR	LSR	MSR	DLL	DLM
0	Data Bit 0^{*}	Data Bit 0	Enable Fectived Oata Available Interrupt (ERBF ${ }^{\prime}$	" 0 " if Interrupt Pending	Word Length Select Bit 0 (WLSO)	Daw Terminal Ready (DTR]	Data Ready (DR)	Delta Clear to Send (DCTS)	Bit 0	Bit 8
1	Data Bit 1	Data Bit 1	Enable Transmitter Holding Register Empty Interrupt (ETBEI)	Interrupt 10 Bit 10	Word Length Select Bit 1 (WLS1)	Request to Send (RTS)	Overrun Error (OR)	Delta Data Set Ready (DOSP)	Bit 1	Bit 9
2	Data Bit 2	Data Bit 2	Enable Recriver Line Status Interrupt (ELSI)	Interrupt 10 Bit (1)	Number of Stop Bits (STB)	Out 1	Parity Error (PE)	Trailing Edge Ring indicatar (TER:)	Bit 2	Bit 10
3	Data Bit 3	Datą Bit 3	Enable MOOEM Status interrupt (EDSSI)	0	Parity Enable (PEN)	Out 2	Framing Error (FE)	Dersa Receive Line Signal Detect (DRLSD)	Bit 3	Bit 11
4	Data Bit 4	Data Bit 4	0	0	Even Parity Select (EPS	Loop	Break Interrupt (BI)	Clear to Send. (CTS	Bit 4	Bit 12
5	Data git 5	Oata Bit 5	0	0	Stick Parity	0	Transmitter Holding Register Empty (THRE)	Data Set Ready (DSR)	Bit 5	Bit 13
6	Data Bit 6	Data Bit 6	0	0	$\underset{\text { Break }}{\text { Set }}$	0	Transmister Shift Register Empty (TSRE)	$\begin{gathered} \text { Ring } \\ \text { Indicator } \\ \text { (RI\| } \end{gathered}$	Bit 6	Bit 14
7	Oata 8it 7	Oata Bit 7	0	0	Divisor Latch Access Bit (DLAB)	0	0	Received Line Signal Detect (RLSD)	Bit 7	Bit 15
0 is th	east significa	bit. It is the	irst bit serially	v transmitted or	r received.					

Bit 3: This bit is the Parity Enable bit. When bit 3 is a logic 1, a Parity bit is generated (transmit data) or checked (receive data) between the last data word bit and Stop bit of the serial data. The Parity bit is used to produce an even or odd number of is when the data word bits and the Parity bit are summed.)
Bit 4: This bit is the Even Parity Select bit. When bit 3 is a logic 1 and bit 4 is a logic 0 , an odd number of logic 1 s is transmitted or checked in the data word bits and Parity bit. When bit 3 is a logic 1 and bit 4 is a logic 1 , an even number of bits is transmitted or checked.
Bit 5: This bit is the Stick Parity bit. When bit 3 is a logic 1 and bit 5 is a logic 1, the Parity bit is transmitted and then detected by the receiver as a logic 0 if bit 4 is a logic 1 or as a logic 1 if bit 4 is a logic 0 .
Bit 6: This bit is the Set Break Control bit. When bit 6 is a logic 1, the serial output (SOUT) is forced to the Spacing (logic 0) state and remains there regardless of other transmitter activity. The set break is disabled by setting bit 6 to a logic 0 . This feature enables the CPU to alert a terminal in a computer communications system.

Bit 7: This bit is the Diviser Latch Access Bit (DLAB), It must be set high (logic 1) to access the Divisor Latches of the Baud Rate Generator during a Read or Write operation. It must be set low (logic 0) to access the Receiver Buffer, the Transmitter Holding Register, or the Interrupt Enable Register.

INS8250 PROGRAMMABLE BAUD RATE
 GENERATOR

The INS8250 contains a programmable Baud Rate Generator that is capable of taking any clock input (DC to 3.1 MHz) and dividing it by any divisor from 1 to $\left(2^{16}-1\right)$. The output frequency of the Baud Generator is $16 x$ the Baud rate [divisor $\#=$ (frequency input) \div (basd rate $\times 16$)]. Two 8 -bit latches store the divisor in a 16 -bit binarv format. These Divisor Latches must be loaded during initialization in order to insure desired operation of the Baud Rate Generator. Upon loading either of the Divisor Latches, a 16 -bit Baud counter is

Table 3. Baud Rates Using 1.8432 MHz Crystal

Desired Baud Rate	Divisor Used to Generate 16x Clock	Percent Error Difference Between Desired \& Actual
50	2304	-
75	1536	-
110	1047	0.026
134.5	857	0.058
150	768	-
300	384	-
600	192	-
1200	96	-
1800	64	-
2000	58	-
2400	48	-
3600	32	-
4800	24	-
7200	16	-
9600	12	-
19200	6	2.86
38400	3	2
56000	2	

immediately loaded. This prevents long counts on initial load.
Tables 3 and 4 illustrate the use of the Baud Rate Generator with crystal frequencies of 1.8432 MHz and 3.072 MHz respectively. For baud rates of 38400 and below the error obtained is minimal. The accuracy of the desired baud rate is dependent on the crystal frequency chosen.

NOTE
The maximum operating frequency of the Baud Generator is 3.1 MHz . However, when using divisors of 3 and below, the maximum frequency is equal to the divisor in MHz . For example, if the divisor is 1 , then the maximum frequency is 1 MHz . In no case should the data rate be greater than 56 k Baud.

LINE STATUS REGISTER

This 8 -bit register provides status information to the CPU concerning the data transfer. The contents of the Line Status Register are indicated in table 2 and are described below.
Bit 0: This bit is the receiver Data Ready (DR) indicator. Bit O is set to a logic 1 whenever a complete incoming character has been received and transferred into the Receiver Buffer Register. Bit 0 may be reset to a logic 0 either by the CPU reading the data in the Receiver Buffer Register or by writing a logic 0 into it from the CPU
Bit 1: This bit is the Overrun Error ($O E$) indicator. Bit 1 indicates that data in the Receiver Buffer Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register, thereby destroying the previous character. The OE indicator is reset whenever the CPU reads the contents of the Line Status Register.
Bit 2: This bit is the Parity Error (PE) indicator. Bit 2 indicates that the received data character does not have the correct even or odd parity, as selected by the even-parity-select bit. The PE bit is set to a logic 1 upon detection of a parity ersor and is reset to a logic 0 whenever the CPU reads the contents of the Line Status Register.

Table 4. Baud Rates Using 3.072 MHz Crystal

Desired Baud Rate	Divisor Used to Generate $16 x$ Clock	Percent Error Difference Between Desired \& Actual
50	3840	-
75	2560	-
110	1745	0.026
134.5	1428	0.034
150	1280	-
300	640	-
600	320	-
1200	160	-
1800	107	0.312
2000	96	-
2400	80	-
3600	53	0.628
4800	40	-
7200	27	1.23
9600	20	-
19200	10	-
38400	5	-

NOTE: 1.8432 MHz is the standard 8080 frequency divided by 10 .

Bit 3: This bit is the Framing Error (FE) indicator. Bit 3 indicates that the received character did not have a valid Stop bit. Bit 3 is set to a logic 1 whenever the Stop bit following the last data bit or parity bit is detected as a zero bit (Spacing level).

Bit 4: This bit is the Break Interrupt (B1) indicator. Bit 4 is set to a logic 1 whenever the received data input is held in the Spacing (logic 0) state for longer than a full word transmission time (that is, the total time of Start bit + data bits + Parity + Stop bits).

NOTE
Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt whenever any of the corresponding conditions are detected

Bit 5: This bit is the Transmitter Holding Register Empry (THRE) indicator. Bit 5 indicates that the INS8250 is ready to accept a new character for transmission. In addition, this bit causes the INS8250 to issue an interrupt to the CPU when the Transmit Holding Register Empty Interrupt enable is set high. The THRE bit is set to a logic 1 when a character is transferred from the Transmitter Holding Register into the Transmitter Shift Register. The bit is reset to logic 0 concurrently with the loading of the Transmitter Holding Register by the CPU.
Bit G: This bit is the Transmitter Shift Register Empty (TSRE) indicator. Bit 6 is set to a logic 1 whenever the Transmitter Shift Register is idle. It is reset to logic 0 upon a data transfer from the Transmitter Holding Register to the Transmitter Shift Register. Bit 6 is a read-only bit.

Bit 7: This bit is permanently set to logic 0 .

INTERRUPTIDENTIFICATION REGISTER

The INS8250 has an on-chip interrupt capability that allows for complete flexibility in interfacing to all the popular microprocessors presently available. In order to provide minimum software overhead during data character transters, the iNS8250 prioritizes interrupts into four tevels. The four levels of interrupt conditions are as follows: Receiver Line Status (priority 1); Received Data Ready (priority 2); Transmitter Holding Register Empty (priority 3); and MODEM Status (priority 4).

Information indicating that a prioritized interrupt is pending and the type of that interrupt are stored in the Interrupt Identification Register (refer to table 5). The Interrupt Identification Register (IIR), when addressed during chip-select time, freezes the highest priority interrupt pending and no other interrupts are acknowledged until the particular interrupt is serviced by the CPU. The contents of the IIR are indicated in table 2 and are described below.

Bit 0: This bit can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt is pending. When bit 0 is a logic 0 , an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine. When bit 0 is a logic 1, no interrupt is pending and polling (if used) continues.

Bits 1 and 2: These two bits of the UR are used to identify the highest priority interrupt pending as indicated in table 5.
Bits 3 through 7: These five bits of the IIR are always logic 0 .

Table 5. Interrupt Control Functions

Interrupt Identification Register			Interrupt Set and Reset Functions			
Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Type	Interrupt Source	Interrupt Reset Control
0	0	1	-	None	None	-
1	1	0	Highest	Receiver Line Status	$\begin{gathered} \text { Overrun Error } \\ \text { or } \\ \text { Parity Error } \\ \text { or } \\ \text { Framing Error } \\ \text { or } \\ \text { Break Interrups } \end{gathered}$	Reading the Line Status Register
1	0	0	Second	Received Data Available	Receiver Data Available	Reading the Receiver Buffer Register
0	1	0	Third	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Reading the IIR Register (if source of interrupt) or Writing into the Transmitter Holding Register
0	0	0	Fourth	MODEM Status	Clear to Send or Data Set Ready or Ring Indicator or Received Line Signal Detect	Reading the MODEM Status Register

INTERRUPT ENABLE REGISTER

This 8-bit register enables the four types of interrupts of the INS8250 to separately active the chip Interrupt (INTRPT) output signal. It is possible to totally disable the interrupt system by resetting bits 0 through 3 of the Interrupt Enable. Register. Similarly, by setting the appropriate bits of this register to a logic 1, selected interrupts can be enabled. Disabling the interrupt system inhibits the Interrupt Identification Register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the Line Status and MODEM Status Registers. The contents of the Interrupt Enable Register are indicated in table 2 and are described below.

Bit 0: This bit enables the Received Data Available Interrupt when set to logic 1.

Bit 1: This bit enables the Transmitter Holding Register Empty Interrupt when set to logic 1.
Bit 2: This bit enables the Receiver Line Status Interrupt when set to logic 1 .
Bit 3: This bit enables the MODEM Status Interrupt when set to logic 1 .
Bits 4 through 7: These four bits are always logic 0 .

MODEM CONTROL REGISTER

This 8 -bit register controls the interface with the MODEM or data set (or a peripheral device emulating a MODEM). The contents of the MODEM Control Register are indicated in table 2 and are described below.

Bit 0: This bit controls the Data Terminal Ready ($\overline{\mathrm{DTR}}$) output. When bit 0 is set to a logic 1 , the DTR output is forced to a logic 0 . When bit 0 is reset to a logic 0 , the DTR output is forced to a logic 1 .
note
The DTR outpu: of the INS8250 may be appliad to an EIA inverting line driver (such as the DS1488) to obtain the proper polarity input at the succeeding MODEM or data set.
Bit 1: This bit controls the Request to Send ($\overline{\mathrm{RTS}}$) output. Bit 1 affects the RTS output in a manner identical to that described above for bit 0 .

Bit 2: This bit controls the Output 1 (OUT 1) signal, which is an auxiliary user-designated output. Bit 2 affects the OUT 1 output in a manner identical to that described above for bit 0 .

Bit 3: This bit controls the Output 2 (OUT 2) signal, which is an auxiliary user-designated output. Bit 3 affects the OUT2 output in a manner identical to that described above for bit 0 .
Bit 4: This bit provides a loopback feature for diagnostic testing of the INS8250. When bit 4 is set to logic 1, the following octur: the transmitter Serial Output (SOUT) is set to the Marking (logic 1) state; the receiver Serial Input (SIN) is disconnected; the output of the Transmitter Shift Register is "looped back" into the Receiver. Shift Register input; the four MODEM Control inputs (CTS, DSR, RLSD, and $\overline{\text { RI) }}$ are disconnected; and the four MODEM Control outputs (DTR, $\overline{\text { RTS, }}$ OUT 1 , and OUT 2) are internally connected to the four MODEM Control inputs. In the diagnostic mode, data that is
transmitted is immediately received. This feature allows the processor to verify the transmit- and receive-data paths of the INS8250.
In the diagnostic mode, the receiver and transmitter interrupts are fully operational. The MODEM Control Interrupts are also operational but the interrupts' sources are now the lower four bits of the MODEM Control Register instead of the four MODEM Control inputs. The interrupts are still controlled by the Interrupt Enable Register.
The INS0250 interrupt system can be tested by writing into the lower six bits of the Line Status Register and the lower four bits of the MODEM Status Register. Setting any of these bits to a logic 1 generates the appropriate interrupt (if enabled). The resetting of these interrupts is the same as in normal INS8250 operation. To return to normal operation, the registers must be reprogrammed for normal operation and then bit 4 of the MODEM Control Register must be reset to logic 0 .
Bits 5 through 7: These bits are permanently set to logic 0 .

MODEM STATUS REGISTER

This 8 -vit register provides the current state of the control lines from the MODEM (or peripheral device) to the CPU. In addition to this current-state information, four bits of the MODEM Status Register provide change information. These bits are set to a logic 1 whenever a control input from the MODEM changes state. They are reset to logic 0 whenever the CPU reads the MODEM Status Register.
The contents of the MODEM Status Register are indicated in table 2 and are described below.

Bit 0: This bit is the Delta Clear to Send (DCTS) indicator. Bit 0 indicates that the CTS input to the chip has changed state since the last time it was read by the CPU.
Bit 1: This bit is the Delta Data Set Ready (DDSR) indicator. Bit 1 indicates that the $\overline{\mathrm{DSR}}$ input to the chip has changed state since the last time it was read by the CPU.

Bit 2: This bit is the Trailing Edge of Ring Indicator (TERI) detector. Bit 2 indicates that the RI input to thechip has changed from an On (logic 1) to an Off (logic 0) condition.
Bit 3: This bit is the Detta Received Line Signal Detector (DRLSD) indicator. Bit 3 indicates that the RLSD input to the chip has changed state.

NOTE

Whenever bit $0,1,2$, or 3 is set to logic 1, a MODEM Status interrupt is generated.

Bit 4: This bit is the complement of the Clear to Send (CTS) input. If bit 4 (loop) of the MCR is set to a 1 , this bit is equivalent to RTS in the MCR.
Bit 5: This bit is the complement of the Data Set Ready (DSR) input. If bit 4 of the MCR is set to a 1 , this bit is equivalent to DTR in the MCR.
Bit 6: This bit is the complement of the Ring Indicator ($\overline{\mathrm{R}}$) input. If bit 4 of the MCR is set to a 1 , this bit is equivalent to OUT 1 in the MCR.
Bit 7: This bit is the complement of the Received Line Signal Detect (BLSD) input. If bit 4 of the MCR is set to a 1 , this bit is equivalent to OUT 2 of the MCR.

OKXI semiconductor MSM6242RS/GS

DIRECT BUS CONNECTED CMOS REAL TIME CLOCK/CALENDAR
GENERAL DESCRIPTION
The MSM6242 is a silicon gate CMOS Real Time Clock/Calendar for use in direct bus-connection Microprocessor/Microcomputer applications. An on-chip 32.768 KHz crystal oscillator time base is divided to provide addressable 4 -bit I/O data for SECONDS, MINUTES, HOURS, DAY OF WEEK, DATE, MONTH and YEAR. Data access is controlled by 4 -bit address, chip selects (CSO, CS1), WRITE, READ, and ALE. Control Registers D, E and F provide for 30 SECOND error adjustment, INTERRUPT REQUEST (IRQ FLAG) and BUSY status bits, clock STOP, HOLD, and RESET FLAG bits, 4 selectable INTERRUPTS rates are available at the STD.P (STANDARD PULSE) output utilizing Control Register inputs T0, T1 and the ITRPT/STND (INTERRUPT/STANDARD). Masking of the interrupt output (STD.P) can be accomplished via the MASK bit. The MSM6242 can operate in a 12/24 hour format and Leap Year timing is automatic.

The MSM6242 normally operates from a $5 \mathrm{~V} \pm 10 \%$ supply at -30 to $85^{\circ} \mathrm{C}$. Battery backup operation down to 2.0 V allows continuation of time keeping when main power is off. The MSM6242 is offered in a 18 -pin plastic DIP and FLAT package.

FEATURES

DIRECT MICROPROCESSOR/MICROCONTROLLER BUS CONNECTION

TIME	MONTH	DATE	YEAR	DAY OF WEEK
$23: 59: 59$	12	31	80	7

- 4-bit data bus	- $12 / 24$ hour format
- 4-bit address bus	- Auto ieap year
- $\overline{\text { READ, }} \overline{\text { WRITE, ALE and CHIP SELECT }}$	- ± 30 second error correction
INPUTS	- Single 5 V supply
- Status registers - IRQ and BUSY	- Battery backup down to $V_{D D}=2.0 \mathrm{~V}$
- Selectable interrupt outputs $-1 / 64$ second,	- Low power dissipation:
1 second, 1 minute, 1 hour	$20 \mu \mathrm{~N}$ max at $V_{D D}=2 \mathrm{~V}$
- Interrupt masking	$150 \mu \mathrm{~W}$ max at $V_{D D}=5 \mathrm{~V}$
- 32.768KHz crystal controlled operation	- 18 -pin plastic DIP package

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

REGISTER TABLE

Address Input	Address Input				Register Name	Data				Count value	Description
	A_{3}	A_{2}	A_{1}	A ${ }^{0}$		D_{3}	D_{2}	D 1	D		
0	0	0	0	0	S_{1}	S_{a}	S_{4}	S_{2}	S_{1}	$0 \sim 9$	1 -second digit register
1	0	0	0	1	Sto	*	S.0	S_{2}	S_{1} 。	$0 \sim 5$	10-second digit register
2	0	0	1	0	MI_{1}	min_{4}	mi_{4}	mi_{2}	mi_{1}	$0 \sim 9$	1 -minute digit register
3	0	0	1	1	MI_{10}	*	miso	mi_{2} 0	$\mathrm{mi}_{1} 0$	$0 \sim 5$	10-minute digit register
4	0	1	0	0	H_{1}	h_{3}	h_{4}	h_{2}	h_{1}	$0 \sim 9$	1 -hour digit register
5	0	1	0	1	H_{10}	*	$\begin{aligned} & \text { PM/ } \\ & \text { AM } \end{aligned}$	h_{20}	h_{10}	$\begin{array}{ll} 0 & \sim\|2\| \\ \text { or } 0 . i \end{array}$	PM/AM, 10-hour digit register
6	0	\dagger	1	0	D_{1}	d_{3}	d_{4}	d_{2}	d_{1}	$0 \sim 9$	1 -day digit register
7	0	1	1	1	D_{10}	*	*	$\mathrm{d}_{2} \mathrm{O}$	d_{1} 0	$0 \sim 3$	10-day digit register
8	1	0	0	0	MO_{1}	mos^{3}	mo_{4}	mo_{2}	mo_{1}	$0 \sim 9$	1 -month digit register
9	1	0	0	1	MO_{10}	*	*	*	MO_{10}	$0 \sim 1$	10-month digit register
A	1	0	1	0	Y_{1}	Vs	v_{4}	y_{2}	v_{1}	$0 \sim 9$	1-year digit register
B	1	0	1	1	Y_{10}	Y80	V_{40}	y_{10}	y_{10}	$0 \sim 9$	10-vear digit register
C	1	1	0	0	W	*	w_{4}	w_{2}	w_{1}	$0 \sim 6$	Week register
D	1	1	0	1	$C D$		$\begin{aligned} & \text { IRQ } \\ & \text { FLAG } \end{aligned}$	BUSY	HOLD	-	Control Register D
E	1	1	1	0	CE	t_{1}	to	ITRPT ISTND	MASK	-	Control Register E
F	1	1	1	1	C_{F}	TEST	24/12	STOP	REST	-	Control Register F

REST = RESET
ITRPT/STND = INTERRUPT/STANDARD
Note 1) - Bit * does not exist (unrecognized during a write and held at " 0 " during a read).
Note 2) - Be sure to mask the AM/PM bit when processing 10's of hour's data.
Note 3) - BUSY bit is read only. The IRQ FLAG bit can only be set to a " 0 ". Setting the IRQ FLAG to a " 1 " is done by hardware.

Figure 1. Register Table

OSCILLATOR FREQUENCY DEVIATIONS

Figure 2. Frequency Deviation (PPM) vs Temperature
Figure 3. Frequency Deviation (PPM) vs Voltage

Note: 1. The graphs above showing frequency deviation vs temperature/voltage are primarily characteristic of the MSM6242 with the oscillation circuit described below.

Crystal: Type $\mathrm{N}_{0}, \mathrm{P}_{3}$ by kinseki $(32.768 \mathrm{KHz})$
$\mathbf{C}_{G}, C_{D}: 22 \mathrm{pF}$ (Temperature Characteristics: 0)
A. 3 - 3

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Suppily Voltage	VDD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3~7	V
Input Voltage	V_{1}		GND - 0.3~VDD +0.3	V
Output Voltage	Vo		GND $-0.3 \sim V_{D D}+0.3$	V
Storage Temperature	TSTG		$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	VDD	-	$4 \sim 6$	\checkmark
Standby Supply Voltage	VBAK	-	2~6	
Crystal Frequency	$f(X T)$	-	32.768	kHz
Operating Temperature	$\mathrm{T}_{\text {OP }}$	-	$-30 \sim+85$	${ }^{\circ} \mathrm{C}$

D.C. CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \%, T_{A}=-30 \sim+85$

Parameter	Symbol	Condition		Min.	Typ.	Max.	Unit	Applicable Terminal
"H" Input Voltage	$\mathrm{V}_{\mathbf{H}}{ }^{\text {1 }}$	-		2.2	-	-	V	All input terminals except CS_{1}
"L" Input Voltage	$V_{\text {IL }} 1$	-		-	-	0.8		
Input Leak Current	${ }^{1}$ LKK'	$V_{1}=V_{D D} / 0 V$		-	-	1/-1	$\mu \mathrm{A}$	Input terminals other than $D_{6} \sim D_{3}$
Input Leak Current	${ }^{1} \mathrm{LK}{ }^{2}$			-	-	10/-10		$\mathrm{D}_{6} \sim \mathrm{D}_{3}$
"L'" Output Voltage	VOL 1	$1 \mathrm{OL}=2.5 \mathrm{~mA}$		-	-	0.4	V	$D_{0} \sim D_{3}$
"H" Output Voltage	VOH	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$		2.4	-	-		
"L" Output Voltage	VOL ${ }^{2}$	$1 \mathrm{OL}=2.5 \mathrm{~mA}$		-	-	0.4	V	STD.P
OFF Leak Current	IOFFLK	$V=V_{D D} / 0 \mathrm{~V}$		-	-	10	$\mu \mathrm{A}$	
Input Capacitance	C_{1}	Input frequency 1 MHz		-	5	-	PF	All input terminals
Current Consumption	IDO1	$\begin{aligned} & f(x t)= \\ & 32.768 \\ & \mathrm{KHz} \\ & \mathrm{~T}_{\mathrm{a}}-25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{VDD}= \\ & 5 \mathrm{~V} \end{aligned}$	-	-	30	$\mu \mathrm{A}$	VDD
Current Consumption	${ }^{1} \mathrm{DD}^{2}$		$\begin{aligned} & \mathrm{VOD}^{=} \\ & 2 \mathrm{~V} \end{aligned}$	-	-	10		
"H" Input Voltage	$\mathrm{V}_{1 \mathrm{H}^{2}}$	$V_{D D}=2 \sim 5.5 V$		$4 / 5 \mathrm{VDD}$	-	-	V	CS_{1}
"L" Input Voltage	$\mathrm{V}_{1} \mathrm{~L}^{2}$			-	-	1/5VDD		

SWITCHING CHARACTERISTICS

(1) WRITE mode (ALE $=V_{D D}$)

$$
\left(V_{D D}=5 \mathrm{~V} \pm 10 \%=T a=-30 \sim+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Min.	Max.	Unit
CS $_{1}$ Set up Time	tC1S	-	1000	-	
CS $_{1}$ Hold Time	tC1H	-	1000	-	
Address Stable Before WRITE	tAW	-	100	-	ns
Address Stable After WRITE	twA	-	10	-	
WRITE Pulse Width	twW	-	250	-	
Data Set up Time	tDS	-	180	-	
Data Hold Time	tDH	-	10	-	

Figure 4. Write Cycle - (ALE = VDD)
(2) WRITE mode (With use of ALE)
$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, T \mathrm{~T}=-3 \mathrm{C}\right)$

Parameter	Symbol	Condition	Min.	Max.	Unit
CS_{1} Set up Time	${ }^{\text {c Cis }}$	-	1000	-	ns
Address Set up Tirme	tAS	-	50	-	
Address Hold Time	tAH	-	50.	-	
ALE Pulse Width	tAW	-	80	-	
ALE Before WRITE	tALW	-	0	-	
WRITE Pulse Width	tWW	-	250	-	
ALE After WRITE	WAL	-	50	-	
DATA Set up Time	t tos	-	180	-	
DATA Hold Time	${ }^{\text {t }}$ DH	-	10	-	
CS ${ }_{1}$ Hold Time	${ }^{\text {c/iH }}$	-	1000	-	

(3) READ mode (ALE $=V_{D D}$)
$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-30 \sim+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Min.	Max.	Unit
CS $_{1}$ Set up Time	tC1S	-	1000	-	
CS $_{1}$ Hold Time	tC1H	-	1000	-	
Address Stable Before READ	tAR	-	80	-	ns
Address Stable After READ	tRA	-	0	-	
RD to Data	tRD	$C_{L}=150 p F$	-	280	
Data Hold	tDR	-	0	-	

(4) READ mode (With use of ALE)
($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-30 \sim+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Min.	Max.	Unit
CS_{1} Set up Time	${ }^{\text {t }}$ C1S	-	1000	-	ns
Address Set up Time	tas	-	50	-	
Address Hold Time	$\mathrm{taH}^{\text {A }}$	-	50	-	
ALE Puise Width	taw	-	80	-	
ALE Before READ	${ }_{\text {taLR }}$	-	0	-	
ALE after READ	tral	-	0	-	
RD to Data	tRD	$C_{L}=150 \mathrm{pF}$	-	280	
DATA Hold	tDR	-	0	-	
CS ${ }_{1}$ Hold Time	${ }^{1} \mathrm{C} 1 \mathrm{H}$	-	1000	-	

Figure 7. Read Cycle - (With Use of ALE)
A. 3 - 7

PERIPHERALS• MSM6242RS/GS

PIN DESCRIPTION

Name	Pin No.		Description
	RS	GS	
D_{0}	14	19	Data Input/Output pins to be directly connected to a microcontroller bus for reading and writing of the clock/calendar's registers and control registers. DO = LSB and D3 $=$ MSB.
D_{1}	13	16	
D_{2}	12	15	
D_{3}	11	14	
A_{0}	4	5	Address input pin for use by a microcomputer to select internal clock/calendar's registers and control registers for Read/Write operations (See Function Table Figure 11. Address input pins AO-A3 are used in combination with ALE for addressing registers.
A_{1}	5	7	
A_{2}	6	9	
A_{3}	7	10	
ALE	3	4	Address Latch Enable pin. This pin enables writing of address data when ALE $=1$ and CSO $=0$; address data is latched when ALE $=0$ Microcontroller/Microprocessors having an ALE output should connect to this pin; otherwise it should be connected at VDD.
WR	10	13	Writing of data is performed by this pin. When $C S_{1}=1$ and $C S_{0}=0, D_{0} \sim D_{3}$ data is written into the register at the rising edge of WR.
PD	8	11	Reading of register data is accomplished using this pin. When $\mathrm{CS}_{1}=1, \mathrm{CS}_{\mathbf{0}}=0$ and $R D=0$, the data of the register is output to $D_{0} \sim D_{3}$. If both $R D$ and $W R$ are set at $\mathbf{0}$ simaltanuously, RD is to be inhibited.
$\overline{\mathrm{CS}}$	2	2	Chip Select Pins. These pins enable/disable ALE, RD and WR operation. CS and ALE work in combination with one another, while CS_{1} work independent with ALE. CS ${ }_{1}$ must be connected to power failure detection as shown in Figure 18.
CS_{1}	15	20	
STD.P	1	1	Output pin of N-CH OPEN DRAIN type. The output data is controlled by the D_{1} data content of C_{E} register. This pin has a priority to $\mathrm{CS}_{\mathbf{0}}$ and CS_{1}. Refer to Figure 9 and FUNCTIONAL DESCRIPTION OF REGISTERS.
XT	16	22	32.768 kHz crystal is to be connected to these pins. When an external clock of 32.768 kHz is to be used for MSM6242's oscillation source, either CMOS output or pull-up TTL output is to be input from XT, while XT should be left open.
XT	17	23	
VOD	18	24	Power supply pin. $+2 \sim+6 \mathrm{~V}$ power is to be applied to this pin.
GND	9	12	Ground pin.
			The impedence of the crystal should be less than $30 k \Omega$

FUNCTIONAL DESCRIPTION OF REGISTERS

- $S_{1}, S_{10}, \mathrm{MI}_{1}, \mathrm{MI}_{10}, \mathrm{H}_{1}, \mathrm{H}_{10}, \mathrm{D}_{1}, \mathrm{D}_{10}, \mathrm{MD}_{1}, M \overline{\mathrm{O}}_{10}, \mathrm{Y}_{1}, \mathrm{Y}_{10}, \mathrm{~W}$
a) These 'are abbreviations for SECOND1, SECOND10, MINUTE1, MINUTE10, HOUR1, HOUR10, DAY1, DAY10, MONTH1, MONTH10, YEAR1, YEAR10, and WEEK. These values are in BCD notation.
b) All registers are logically positive. For example, $(58, S 4, S 2, S 1)=1001$ which means 9 seconds.
c). If data is written which is out of the clock register data limits, it can result in erroneous clock data being read back.
d) PM/AM, h_{20}, h_{10}

In the mode setting of $\mathbf{2 4}$-hour mode, PM/AM bit is ignored, while in the setting of $\mathbf{1 2}$ hour mode h_{20} is to be set. Otherwise it causes a discrepancy. In reading out the PM/AM bit in the 24 -hour mode, it is continuously read out as 0 . In reading out h_{20} bit in the 12 -hour mode. 0 is written into this bit first, then it is continuously read out as 0 unless 1 is being written into this bit.
e) Registers Y1, Y10, and Leap Year. The MSM6242 is designed exclusively for the Christian Era and is capable of identifying a leap year automatically. The result of the setting of a nonexistant day of the month is shown in the following example: If the date February 29 or November 31, 1985, was written, it would be changed automatically to March 1, or December 1, 1985 at the exact time at which a carry pulse occurs for the day's digit.
f) The Register \mathbf{W} data limits are 0-6 (Table 1 shows a possible data definition).

TABLE 1				
$\qquad$$w_{4}$ w_{2} w_{1} Day of Week 0 0 0 Sunday 0 0 1 Monday 0 1 0 Tuesday 0 1 1 Wednesday 1 0 0 Thursday 1 0 1 Friday 1 1 0 Saturday				

- CD REGISTER (Control D Register)

a) HOLD (DO) - Setting this bit to a " 1 " inhibits the 1 Hz clock to the S1 counter, at which time the Busy status bit can be read. When Busy $=0$, register's $S_{1} \sim W$ can be read or written. During this procedure if a carry occurs the $\mathbf{S 1}$ counter will be incremented by 1 second after HOLD $=0$ (this condition is guaranteed as long as HOLD $=1$ does not exceed 1 second in duration). If CS1 $=0$ then HOLD $=0$ irrespective of any condition.
b) BUSY (D1) - Status bit which shows the interface condition with microcontroller/microprocessors. As for the method of writing into and reading from $S_{1} \sim W$ (address $\phi \sim C$), refer to the flow chart described in Figure 10.
c) IRQ FLAG (D2) - This status bit corresponds to the output level of the STD.P output. When STD.P $=0$, then IRQ $=1$; when STD.P $=1$, then $\operatorname{IRQ}=0$. The IRQ FLAG indicates that an interrupt has occurred to the microcomputer if IRQ $=1$. When $D 0$ of register C_{E} (MASK) $=0$, then the STD.P output changes according to the timing set by D3 $\left(t_{1}\right)$ and $D 2\left(t_{0}\right)$ of register E. When D1 of register E (ITRPT/STND) $=1$ (interrupt mode), the STD.P output remains low until the IRQ FLAG is written to a " 0 ". When IRQ $=1$ and timing for a new interrupt occurs, the new interrupt is ignored. When ITRPT/STND $=0$ (Standard Pulse Output mode) the STD.P output remains low until either " 0 " is written to the IRQ FLAG; otherwise, the IRQ FLAG automatically goes to " 0 " after 7.8125 ms .
When writing the HOLD or 30 second adjust bits of register D, it is necessary to write the IRQ FLAG bit to a "1".
d) ± 30 ADJ (D3) - When 30 -second adjustment is necessary, a "1" is written to bit D3 during which time the internal clock registers should not be read from or written to $125 \mu \mathrm{~s}$ after bit D3 $=1$ it will automatically return to a " 0 ", and at that time reading or writing of registers can occur.

(B)

Figure 11. Writing 30-Second Adj, bit (Two Ways A, B)

- CE REGISTER (Control E Register)

a) MASK (DO) - This bit controls the STD.P output. When MASK $=1$, then STD.P $=1$ (open); when MASK $=0$, then STD.P = output mode. The relationship between the MASK bit and STD.P output is shown Figure 12.
b) INTRPT/STND (D1) - The INTRPT/STND input is used to switch the STD.P output between its two modes of operation, interrupt and Standard timing waveforms. When INTRPT/STND 0 a fixed cycle waveform with a low-level pulse width of 7.8125 ms is present at the STD.P output. At this time the MASK bit must equal 0 , while the period in either mode is determined by TO1D2) and T1(D3) of Register E.
c) TO (D2), T1 (D3) - These two bits determine the period of the STD.P output in both Interrupt and Fixed timing waveform modes. The tables below show the timing associated with the T0, T1 inputs as well as their relationship to INTRPT/STND and STD.P.

Figure 12.

t_{1}	t_{0}	Period	Duty CYCLE of " 0 " level when ITRPT/STND bit is " 0 ".
0	0	$1 / 64$ second	$1 / 2$
0	1	1 second	$1 / 128$
1	0	1 minute	$1 / 7680$
1	1	1 hour	$1 / 460800$

TABLE 2

The timing of the STD.P output designated by T1 and TO occurs the moment that a carry occurs to a clock digit.

d) The low-level pulse width of the fixed cycle waveform (ITRPT/STND $=0$) is $\mathbf{7 . 8 1 2 5} \mathbf{~ m s}$ independent of TO/T1 inputs.
e) The fixed cycle waveform mode can be used for adjustment of the oscillator frequency time base. (See Figure 14).
f) During ± 30 second adjustment a carry can occur that will cause the STD.P output to go low when TO/T1 $=1,0$ or 1,1. However, when $\mathrm{T} 1 / \mathrm{TO}=0,0$ and ITRPT/STND $=0$, carry does not occur and the STD.P output resumes normal operation.
g) The STD.P output is held (frozen) at the point at which STOP $=\mathbf{1}$ while ITRPT/STND $=0$.
h) No STD.P output change occurs as a result of writing data to registers $\mathbf{S 1} \sim \mathrm{H}$.

- CF REGISTER (Control F Register)

a) REST (DO) - This bit is used to clear the clock's internal divider/counter of less than a second. When "RESET" REST = 1, the counter is Reset for the duration of REST. In order to release this counter from Reset, a " 0 ' must be written to the REST bit. If CSO $=0$ then REST $=0$ automatically.
b) STOP (D1) - The STOP FLAG Onily inhibits carries into the 8192 Hz divider stage. There may be up to $122 \mu \mathrm{~s}$ delay before timing starts or stops after changing this flag; $1=S T O P / 0=$ RUN.

c) $24 / 12$ (D2) - This bit is for selection of $24 / 12$ hour time modes. If $D 2=1-24$ hour mode is selected and the PM/AM bit is invalid. If D2 $=0-12$ hour mode is selectad and the PM/AM bit is valid.
" 24 HOUR/ Setting of the 24/12 hour bit is as follows:
12 HOUR" 1) REST bit $=1$
2) $24 / 12$ hour bit $=0$ or 1
3) REST bit $=0$

* REST bit must $=1$ to write to the $24 / 12$ hour bit.
d) TEST (d3) - When the TEST flag is a " 1 ", the input to the SECONDS counter comes from the counter/divider stage instead of the 15 th divider stage. This makes the SECONDS counter count at 5.4163 KHz instead of 1 Hz . When TEST $=1$ (Test Mode) the STOP \& REST (Reset) flags do not inhibit internal counting. When Hold $=1$ during Test $($ Test $=1)$ internal counting is inhibited; however, when the HOLD FLAG goes inactive (Hold $=0$) counter updating is not guaranteed.

TYPICAL APPLICATION INTERFACE WITH MSM6242 AND microcontrollers

TYPICAL APPLICATIONS - INTERFACE WITH MSM80C49

APPLICATION NOTE

1. Power Supply

2. Adjustment of Frequency

$C_{D} \sim C_{F}$ are to be set at as described in the figure and the capacitor is to be adjusted to meet the settie frequency of t_{0} and t_{1}. If the right oscillation can not be obtained,

1. Check the waveform of XT
2. Check $C_{D} \sim C_{F}$ content
3. Check the noise.

A. 3-15

3. CH_{1} (Chip Select)

$\mathrm{V}_{1 H}$ and $\mathrm{V}_{\text {IL }}$ of CH_{1} has 3 functions.
a) To accomplish the interface with a microcontroller/microprocessor.
b) To inhibit țe control bus, data bus and address bus and to reduce input gate pass current in the stand-by mode.
c) To protect internal data when the mode is moved to and from standby mode.

To realize the above functions:
a) More than $4 / 5$ VDD should be applied to the MSM6242 for the interface with a microcontroller/microprocessor in 5 V operation.
b) In moving to the standby mode, $1 / 5 \mathrm{~V}_{\mathrm{DD}}$ should be applied so that all data buses should be disabled. In the standby mode, approx. OV should be applied.
c) To and from the standby mode, obey following Timing chart.

4. Set STD.P at arlarm mode

TYPICAL APPLICATION - POWER SUPPLY CIRCUIT

Finure 19.

Figure 20.

Figure 21.
$4.7 \mu \mathrm{~F}$: tantalum

SUPPLEMENTARY DESCRIPTION

O When " 0 " is written to the IRQ FLAG bit, the IRQ FLAG bit is cleared. However, if " 0 " is assigned to the IRQ FLAG bit when written to the other bits, the $30-\mathrm{sec}$ ADJ bit and the HOLD bit, fhe IRO FLAG $=1$ and was generated before the writing and IRQ FLG $=1$ generated in a moment then will be cleared. To avoid this, always set " 1 " to the IRQ FLAG unless " 0 " is written to it intentionally. By writing " 1 " to it, the IRQ FLAG bit does not become "1".
O Since the IRQ FLAG bit becomes " 1 " in some cases when rewriting either of the t_{1}, t_{0}, or ITRPT/STND bit of register C_{E}, be sure to write " 0 " to the IRQ FLAG bit after writing to make valid the IRQ FLAG $=1$ to be generated after it.
O The relationship between SDT. P OUT and IRQ FLAG bit is shown below:

STD. P OUT IRQ FLAG bit

Outline:
The RP5Cl5 is a real-time clock that can be connected directly to the bus of microprocessors using not only the 8 -bit CPU such as 8085, 280, 6809, 6502 but also the 16 -bit CPU such as 8086,28000 , 68000 or others. Time can then be written to or read from the clock in the same way as writing to or reading from RAM. As well as calendar and time counters and alarm function allowing battery backup.

Featrues:

* Direct connection to CPU and Hi-speed access
* 4-bit bidirectional bus D0~D3
* 4-bit address inputs A0~A3
* Internal counters for time (hours, min., sec.) and date (100 years. leap years, months, days, and days-of-the-week)
* All clock data expressed in BCD code
* $\pm 30 \mathrm{sec}$. adjustment function
* Provision for battery backup
* Choice of standard clock from 16 kHz , $1.024 \mathrm{kHz}, 128 \mathrm{kHz}, 16 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 / 60 \mathrm{~Hz}$
* Alarm signal, 16 Hz clock signal or 1 Hz clock signal output
A. 4 - 1

Block diagram

A. 4 - 2

Absolute maximum ratings (See Note 1)

Symbol	I tem	Measurement conditions	Values	Units
VCC	Supply voltage	$\mathrm{GND}=0$	$-0.3 \sim+7$	V
VI	Input voltage	GND $=0$	$-0.3 \sim \mathrm{VCC}+0.3$	V
VC	Output voltage	$\mathrm{GND}=0$	$-0.3-\mathrm{VCC}+0.3$	V
PD	Maximum power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	600	mW
TOPG	Ambient temp. during operation		$-20-70$	${ }^{\circ} \mathrm{C}$
TSTG	Ambient temp. during storage		$-40-125$	${ }^{\circ} \mathrm{C}$
(Note 1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.				

Recommended operating conditions
$\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Item	Values		Units	
		Min.	Typ.	Max	
VCC	Supply voltage	4.5	5.0	5.5	V
VDH	Data backup voltage	2.0		5.5	V
fxt	Oscillation frequency of crystal oscillator				

A. 4 - 3

DC characteristics during normal operation
$\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$ unless otherwise specified.

Symbol	Item	Measurement conditions	Values			Units	Remarks
			Min.	Typ.	Max.		
VIH	"H" input voltage		2.0		$\mathrm{Vcc}+0.3$	V	
VIL	"L" input voltage		-0.3		0.8	V	
VOH	"H" output voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V	Except for pin 3,15
VOL	"L" output voltage	$10 \mathrm{~L}=2 \mathrm{~mA}$			0.4	V	
IILK	Input leakage current	$\mathrm{VIN}=0-\mathrm{VCC}$	-10		10	$\mu \mathrm{A}$	
IFLK	Floating leakage current	$\mathrm{VFV}=0 \sim \mathrm{VCC}$	-10		10	$\mu \mathrm{A}$	
IDDI	Current consumed during operation	(Note 2)			300	$\mu \mathrm{A}$	

(Note 2) Vcc $=5 \mathrm{~V} ; \mathrm{R} / \mathrm{W}$ signal $f=100 \mathrm{kHz}$; Input termınals, Vcc or GND; Output terminals on no-load; Crystal oscillator $(32.768 \mathrm{kHz})$; Measurement temp. $\left(25^{\circ} \mathrm{C}\right)$.

AC electrical characteristics

$T a=-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$ unless otherwise specified.

Symbcl	Item	Measurement conditions	Values			Units	Remarks
			Min.	Typ.	Max.		
tAC	Address valid -$\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$. trailing edge		50			ns	$\overline{\mathrm{CS}}=1 \mathrm{~W}$ and address valid
tccR	$\overline{\mathrm{RD}}$ pulse width		120		13000	ns	
tccW	$\overline{W R}$ pulse width		120		13000	ns	
tRD	$\overline{R D}$ trailing edge --data valid	(Note 1)			120	ns	
tce	$\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ leading edge --address hold		10			ns	
tWDS	Write data setup time		100			ns	
tWDH	Write data hold time		20			ns	
tRDH	$\overline{\mathrm{RD}}$ leading edge --data valid		10			ns	
tEN-DIS	Timer Enable-- Timer Disable		100			μs	
tADJ	Adjustment completion time				100	$\mu \mathrm{S}$	
tAINH	Alarm data write inhibit time after alarm reset		100			$\mu \mathrm{S}$	
tRCV	$\overline{R D} / \overline{W R}$ recovery time		1			$\mu \mathrm{S}$	

A. 4 - 5

Timing chart
READ cycle ($C S=" H "$)

WRITE cycle $(C S=" H ")$

Others
$\overline{R D} / \mathrm{WR}$
A. 4 - 6

Function of pins

Name of pin	No. of pin	Function
$\overline{\text { CS }}$ CS	1	External interface terminals. Valid when both CS $=\mathrm{H}$ and $\overline{\text { CS }}$ = L. CS is connected to the power-down detector of the peripheral cir- cuitry, and CS to the address de- coder of the CPU.
CKOUT	3	Output terminal for standard clock signal. Can take 8 different sta- tes depending on contents of CKOUT
selection register. N-ch open		
drain output.		

"x" means "Don't care" when written,
and always " 0 " when read out.

* Address O~D: able to read to and write from, except for $A D J U S T$ register which can only be written to.
Address $\mathrm{E} \sim \mathrm{F}$: "write" only (always "0" when read out)

Bank 0						Bank 1				
$A_{3}-\mathrm{A}_{0}$	Contents	D3	D2	D1	D0	contents	D3	D2	D1	D0
0	$1-\sec .$ counter			-		CKOUT selection register	X	CK2	CKl	CKO
1	$10-\mathrm{sec} .$ counter	X				Adjust register	X	X	X	Adjust
2	1-min. counter					Alarm 1-min. register				
3	$10-\mathrm{min}$. counter	X				Alarm 10-min. register	X			
4	1-hour counter					Alarm l-hour register		-		
5	10-hour counter	X	X			Al arm 10-hour register	X	X		
6	Day-of-theweek counter	X				Alarm day-Of- the-week register	X			
7	$1-\mathrm{day}$ counter					Alarm 1-day register				
8	10-day counter	X	X			Al arm 10-day register	X	X		
9	1-month counter						X	X	X	X
A	10-month counter	X	X	X		12/24 hour selector	X	X	X	
B	l-year counter					Leap-year counter	X	X		
C	10-year counter						X	X	X	X
D	Mode register	Timer EN	Alarm EN	X	$\begin{aligned} & \text { Bank } \\ & 1 / 0 \end{aligned}$	Mode register	Timer EN	$\begin{gathered} \text { Alarm } \\ \text { EN } \end{gathered}$	X	$\begin{aligned} & \text { Bank } \\ & 1 / 0 \end{aligned}$
E	Test register	$\begin{array}{r} \text { Test } \\ 3 \end{array}$	$\begin{gathered} \text { Test } \\ 2 \end{gathered}$	Test 1	$\begin{gathered} \text { Test } \\ 0 \end{gathered}$	Test register	$\begin{array}{r} \text { Test } \\ 3 \end{array}$	$\begin{array}{r} \text { Test } \\ 2 \end{array}$	Test 1	$\begin{gathered} \text { Test } \\ 0 \end{gathered}$
F	Reset controller	$\begin{aligned} & \overline{\mathrm{Hz}} \\ & \overline{\mathrm{ON}} \end{aligned}$	$\begin{aligned} & \overline{16 \mathrm{~Hz}} \\ & \overline{\mathrm{ON}} \end{aligned}$	Timer RESET	Alarm RESET	Reset controller	$\begin{aligned} & \overline{\mathrm{IHz}} \\ & \overline{\mathrm{ON}} \end{aligned}$	16゙Н2 ON	Timer RESET	Alarm RESET

CKOUT selection register

D3	D2	D1	D0	CKOUT	Remarks
x	0	0	0	"Z"	High-impedance
x	0	0	1	16.384 kHz	Duty 50%
x	0	1	0	1.024 kHz	Duty 50%
x	0	1	1	128 Hz	Duty 50%
x	1	0	0	16 Hz	Duty 50%
x	1	0	1	1 Hz	ASeconds counter increment. Duty 50%
x	1	1	0	$1 / 60 \mathrm{~Hz}$	SMinutes counter increment. Duty 50\%
x	1	1	1	$" \mathrm{~L} \mathrm{\prime}$	Low Level

Adjustment function

BANK 1 $\operatorname{ADDRESS}(A 3, A 2, A 1, A 0)=(0,0,0,1)$ DATA $(D 3, D 2, D 1, D 0)=(X, X, X, 1)$	Second counter backs to 0 when it's adjusted 0-29 sec . lf it's adjusted on 30 59 sec., the second counter goes up to 0 sec. and the minute counter shows the next minute.

Oscillator circuit

Not required because an output ballast registor (Approx. $100 \mathrm{k} \Omega$) is used.

A. 4 - 9

)

)

)

,

DESTINATION	PART NUMBER	DESCRIPTION
J2	40-0388-15-02	D15 FEMALE CONNECTOR(PCB TYPE)
J1	40-0388-25-02	D25 FEMALE CONNECTOR(PCB TYPE)
JP1	40-0184-00-01	WAFER 2 PINS (CPI)
	v40-0184-00-00	WAFER 2 PINS (MOLEX)
JP2	40-0215-00-01	WAFER 3 PINS (CPI)
	v40-0215-00-00	WAFER 3 PINS (MOLEX)
J3, J4	40-0194-00-01	WAFER 13 PINS (CPI)
	v40-0194-00-00	WAFER 13 PINS (MOLEX)
J5	40-0194-00-01	WAFER 13 PINS (CPI)
	v40-0194-00-00	WAFER 13 PINS (MOLEX)
AND	40-0216-00-01	WAFER 4 PINS (CPI)
	v40-0216-00-00	WAFER 4 PINS (MOLEX)
U20	27-0604-00-00	gate array Cl
U18	40-0283-01-01	I.C. SOCKET 14 PINS (FOR 1488)
U19	40-0283-01-01	I.C. SOCKET 14 PINS (FOR 1489)
U27	27-0525-00-02	I.C. FDC (ZILOG) Z765A08PSC
	v27-0525-00-00	I.C. FDC (NEC) UPD765AC
	v27-0525-00-01	I.C. FDC (ROCKWELL) UPD765A
U16	27-0365-00-00	I.C. IN8250 (N.S.)
	v27-0365-00-01	I.C. WD8250 (WESTERN)
U15	40-0008-00-03	I.C. SOCKET 40 PINS FOR IN8250
	v40-0008-00-00	I.C. SOCKET 40 PINS FOR IN8250
U23	27-0619-01-00	RTC MSM6242BRS (OKI)
	a27-0619-00-00	RTC MSM6242RS (OKI)
OR	27-0498-00-00	RP5Cl5 (USE U22 LOCATION)
U5	27-0201-00-02	QUAD TIMER XR-558 (EXAR)
	v27-0201-00-01	I.C. NE558 (SIGNETICS)
U10	27-0363-00-05	XR1488 (EXAR)
	v27-0363-00-00	MC1488 (MOTOROLA)
	v27-0363-00-01	MC1488 (TEXAS)
	v27-0363-00-02	MC1488 (SIGNETICS)
U11,U17	27-0364-00-05	XR1489 (EXAR)
	v27-0364-00-00	MC1489 (MOTOROLA)
	v27-0364-00-02	MC1489 (SIGNETICS)
U2	27-0195-00-00	I.C. $74 \mathrm{LS374}$ (MOTOROLA)
	v27-0195-00-01	I.C. $74 \mathrm{LS374}$ (T.I.)
	v27-0195-00-02	I.C. 74 LS 374 (HITACHI)
	v27-0195-00-03	I.C. 74 LS374 (FAIRCHILD)
U1	27-0100-00-01	I.C. 74 LS 245 (MOTOROLA)
	v27-0100-00-02	I.C. 74 LS 245 (FAIRCHILD)
	v27-0100-00-03	I.C. 74 LS245 (HITACHI)
	v27-0100-00-04	I.C. 74 LS 245 (T.I.)
	v27-0100-00-05	I.C. 74 LS245 (MITSUSIDER)
	v27-0100-00-06	I.C. 74 LS245 (MATSUSHITA)
	v27-0100-00-07	I.C. 74 LS245 (N.S.)

$\begin{aligned} & \mathrm{U} 3, \mathrm{U} 4, \mathrm{U} 6, \\ & \text { U7, U12 } \end{aligned}$	27-0160-00-00
	v27-0160-00-01
	v27-0160-00-02
	v27-0160-00-03
	v27-0160-00-04
	v27-0160-00-05
	v27-0160-00-06
	v27-0160-00-07
U14, U26	27-0038-02-00
	v27-0038-02-01
	v27-0038-02-02
	v27-0038-02-03
	v27-0038-02-04
	v27-0038-02-05
	v27-0038-02-06
	27-0057-00-02
	v27-0057-00-03
	v27-0057-00-01
	v27-0057-00-04
	v27-0057-00-05
U25	27-0184-00-00
	v27-0184-00-01
	v27-0184-00-04
	v27-0184-00-05
	a27-0444-00-00
U9, U21	27-0209-00-01
	v27-0209-00-00
	v27-0209-00-03
U13	27-0171-00-04
	v27-0171-00-00
	v27-0171-00-01
	v27-0171-00-03
U28, U29, U30	27-0241-00-01
	v27-0241-00-00
RA1, RA2	26-1472-08-13
	v26-1472-08-00
	v26-1472-08-01
	v26-1472-08-02
	v26-1472-08-05
XTAL2	25-3026-00-03
	v25-3026-00-00
XTAL3	25-3009-00-03
	v25-3009-00-00
	a25-3009-01-03
XTALI	25-3045-01-00
	a25-3045-00-00
L42	25-1022-01-00
	a25-1022-00-00
R7-R10,R17	23-0013-10-02
	v23-0013-10-00
R19-R22	23-0151-10-02
	v23-0151-10-00
R13-R15	23-0333-10-02
	v23-0333-10-00

I.C. 74 LS2 44 (MOTOROLA)
I.C. 74 LS244 (FAIRCHILD)
I.C. 74 LS 244 (HITACHI)
I.C. 74 LS 244 (T.I.)
I.C. 74LS244
I.C. 74 LS 244 (MATSUSHITA)
I.C. 74LS244 (N.S.)
I.C. 74 LS244 (SGS)
I.C. 74 LSO 4 (HITACHI)
I.C. 74 LSO4 (SCISYS)
I.C. $74 \mathrm{LSO4}$ (FAIRCHILD)
I.C. $74 \mathrm{LSO4}$ (MOTOROLA)
I.C. 74LSO4 (N.S.)
I.C. 74 LSO4
I.C. 74LSO4 (SGS)
I.C. 74 LSO 5 (HITACHI)
I.C. 74 LSO5 (TEXAS)
I.C. 74LSO5 (SCISYS)
I.C. $74 \mathrm{LSO5}$ (N.S.)
I.C. $74 \mathrm{LSO5}$ (MOTOROLA)
I.C. 74 LSO (HITACHI)
I.C. 74LS08
I.C. 74 LS 08 (TEXAS)
I.C. 74 LS 08 (MOTOROLA)
I.C. 74 HCT 08 (RCA)
I.C. 74 LS 125 (HITACHI)
I.C. 74 LSL 25 (MOTOROLA)
I.C. 74LSl25 (TEXAS)
I.C. 74 LS 30 (HITACHI)
I.C. $74 L S 30$ (MOTOROLA)
I.C. 74 LS30 (FAIRCHILD)
I.C. 74 LS 30 (TEXAS)
I.C. 7438 (TEXAS)
I.C. 7438 (MOTOROLA)

RESISTOR NETWORK 4K7x8,9 PINS RESISTOR NETWORK $4 \mathrm{~K} 7 \times 8$,9 PINS RESISTOR NETWORK $4 \mathrm{~K} 7 \times 8,9$ PINS RESISTOR NETWORK 4K7x8,9 PINS RESISTOR NETWORK $4 \mathrm{~K} 7 \times 8,9$ PINS CRYSTAL 16MHZ (IPL)
CRYSTAL 16MHZ (NAKAGAWA)
CRYSTAL 32.768 KHZ (IPL)
CRYSTAL 32.768 KHZ (DAIWA)
CRYSTAL 32.768 KHZ (DAIWA)
CRYSTAL 3.6864 MHZ (SUNNY)
CRYSTAL 3.6864 MHZ (DAIWA)
CHOKE COIL $1 \mathrm{mH},+/-5 \%$ (TDK)
CHOKE COIL $1 \mathrm{mH},+/-10 \%$ (TDK)
RESISTOR 1K OHM $+/-5 \% 1 / 4 \mathrm{~W}$
RESISTOR 1 K OHM $+/-5 \% 1 / 4 \mathrm{~W}$
RESISTOR 150 OHM + /-5\% $1 / 4 \mathrm{~W}$ RESISTOR 150 OHM $+/-5 \% \quad 1 / 4 \mathrm{~W}$
RESISTOR 33 K OHM $+/-5 \% \quad 1 / 4 \mathrm{~W}$
RESISTOR 33K OHM $+/-5 \% 1 / 4 \mathrm{~W}$

R5,R6,R18,	23-0472-10-02
R16,R11,R12,	v23-0472-10-00
R23-R25	
R1-R4	23-0222-10-02
	v23-0222-10-00
	a23-0222-16-00
	a23-0222-16-01
C30-C32, C63,	22-1100-21-03
C79,C80, $\mathrm{C83}$	v22-1100-21-00
C38	22-3103-28-00
	v22-3103-28-02
	v22-3103-28-15
C33-C37,	22-3104-28-33
C52, C59,	v22-3104-28-37
C65-C70,	v22-3104-28-40
C85-C91,	v22-3104-28-53
C81, $\mathrm{C82}$	v22-3104-28-67
	v22-3104-28-68
C64, C39-C42	22-3470-26-00
C62	22-3221-26-00
C61	22-3271-26-00
C60	22-3331-26-00
C5-Cl2	22-3222-28-00
C26-C29	22-6103-26-01
	v22-6103-26-11
	a22-6103-46-40
VCl	22-7002-01-00
	a22-7002-00-00
D1-D3	21-0001-00-00
	a21-0008-00-00
	a21-0001-00-01
	a21-0001-00-02
	a21-0001-00-03
Q2	20-0025-03-00
	a20-0041-00-01
	a20-0041-00-00
	v20-0025-03-01
	v20-0025-03-02
Q1	20-0039-00-02
	v20-0039-00-01

IBM ${ }^{\circledR} \mathrm{PC}, \mathrm{PC} / \mathrm{XT}$ are registered trademarks of International Business Machines Corp. uPD765 is a product of NEC Electronics Inc.

Z765A data sheets courtesy of Zilog Inc.
INS8250 data sheets courtesy of National Semiconductor Corp.
MSM6242 data sheets courtesy of OKI Electric Industry Co. Ltd.
R55C15 data sheets courtesy of RICOH Company Ltd.

