Ten Doilars:

!
@

Reference Manual

T s o B

3
2

Cromemco

68000
Symbolic
Debugger

Reference Manual

June 1984 023-4039

Rev. A
CROMEMCO, Inc. Copyright © 1984 CROMEMCO, Inc.
280 Bernardo Avenue Portiens Copyright © 1983 Silicon Valley Software

Mountain View, Ca. 94043 All Rights Reserved

This manual was produced using a Cromemco
System Three computer running under the
Cromemco Cromix Operating System. The text
was edited with the Cromemco Cromix Screen
Editor. The edited text was proofread by the
Cromemco SpellMaster Program and formatted by
the Cromemco Word Processing System Formatter
II. Camera-ready copy was printed on a
Cromemco 3355B printer.

The following are registered trademarks of
Cromemco, Inc.

Cromemco®
Cromix®
FontMaster®
SlideMaster®
SpellMaster®
System Zero®
System Two®
System Three®
WriteMaster®

The following are trademarks of Cromemco, Inc.

C~1Q™
C-Net™
CalcMaster™
System One™
TeleMaster™

TABLE OF CONTENTS

Chapter 1: INTRODUCTION

Overview

Chapter 2: RUNNING THE DEBUGGER

Running the Debugger

Setting the Compiler Debug Flag

Obtaining a Debug Information File from the Linker
Debugging a Target Program

Chapter 3: DEBUGGER CONCEPTS AND COMMANDS

Concepts and Definitions
Debugger Commands - General

Debugg

mMroucsEs=2unuvo30o™

rr ol e e e |
R g m
]

er Commands ~ Specific

Run

Quit

Break Points

Trace Points

Clearing Break and Trace Points

Print the Value of a Variable

Set the Value of a Variable

Memeory Set/Print

Walkback: Print Calling Sequence

Move Environment Up

Move Environment Down

List

B - List Break Points

~ List Entry Point Attributes

- List Variable Attributes

List Record Fields / Struct or
Union Members

- List Type Description

~ List Segments and Attributes

LSRN~ U R Y] (8]

[N S T G Gy
LWLY =2 = a2 O ~J —~1

[S N N QUL S T T QT Y
O WO 00 Co=~ OhATAN

n
O

OGS
OO0 0

L D ~ List Data Areas and Attributes

L R - List Registers Values

Take Debugger Commands from a File
Save Break and Trace Points in a File
Execute a Single Instruction

HYVY A
LI

Chapter 4: .DBG FILE FORMAT

.DBG Header
.DBG Link Map
Variable and Type Descriptions
Type Descriptors
Variable Descriptors
Statement Offsets Descriptions

INDEX

20
21
21
21
22

Cromemco 68000 Symbolic Debugger Reference Manual

1.

Introduction

Chapter 1
INTRODUCTION

OVERVIEW

The Cromemcoc symbolic debugger allows the interactive
executlon and debugging of programs written in Cromemco
FORTRAN, Cromemco Pascal, and Cromemco C.

Execution of a target program can be "break pointed" or
"traced" at the entry points or exits of subroutines, or
at any statement boundary within a subroutine. After
execution 1s suspended at a break point, the values of
variables and data structures can be examined and
altered using their symbolic names in the environment in
which the break point occurred. When debugging Pasecal
and € programs, the active subroutines can be displaved
as a calling-sequence back trace, and the debugger can
be directed to change its current symbol-naming
environment to any active subroutine. The target
program can be continued or terminated from a break
point, possibly after break and/or trace points are set
and/or cleared.

Low~level operations for displaying and setting memory
locations by address are also available. Break and
trace points may also be set at arbitrary addresses,
although the debugger offers a more limited set of
functions at break points outside the normal
break-pointing areas.

Tables of information describing the program being
debugged drive the debugger. Thus, the executable image
of a target program is the same, whether or not the
program is run under the symbolic debugger. This allows
debugging sessions after programs are placed into
production, eliminates problems related to finding
program behavior that comes and goes with minor changes
in the program or in the code generated for it, and
allows full-speed execution under the debugger.

Cromemco 68000 Symbolic Debugger Reference Manual

10

Introduction

Debugger tables are created under control of compiler
option flags, which can be turned on or off as desired.
The size of unlinked object code will be larger, due to
the amount of symbolic information included. The linker
can combine the debugging information from the object
files being linked, and combine that information in a
single file, which can then be used by the debugger. It
is possible to link object files created from more than
one compilation and from more than one source language,
some with, and some without symbolic debugging
information included. The symbolic debugger operates
with partial information and with routines originating
from multiple source languages.

Cromemco 68000 Symbolic Debugger Reference Manual

2.

Running the Debugger

Chapter 2

RUNNING THE DEBUGGER

RUNNING THE DEBUGGER

To use the symbolic debugger, a source program should be
compiled with the debugging flag set, the linker should
create a file of information for the debugger to use,
and the target program should be run under the debugger.

SETTING THE COMPILER DEBUG FLAG

By default, the compilers do not place symbolic
information into the generated unlinked object code.
The Cromemco Pascal, Cromemco FORTRAN, and Cromemco C
compilers insert this information when invoked with the
+d command line option. This option may appear anywhere
en the command line. Alternatively, symbolic
information can be turned ON and OFF for each procedure
as follows:

Pascal Comment toggle $D+ for debugger information
ON, $D~ for debugger information OFF.

FORTRAN Compiler control line beginning in column 1:
$DEBUG for debugger information ON, $NODEBUG
for debugger information OFF.

c Compiler control line beginning in column 1:
foption debug for debugger information ON,
#option nodebug for debugger information OFF.

Setting the debugger flag has no effect on the generated
object code except that certain additional tables of
information are placed into the unlinked object code.
This information is either consolidated or ignored by
the linker. The executable image produced by a program
is the same regardless of whether or not the debug flag
is set when the program is compiled.

Cromemco 68000 Symbolic Debugger Reference Manual
2. Running the Debugger

OBTAINING A DEBUG INFORMATION FILE FROM THE LINKER

The 1linker creates an executable program by linking
object~-code files (.obj files) with each other and with
appropriate run-time libraries. The linker can
consolidate all the debugging information in the object
files being linked, creating (in addition to its cbject
code output file) an output file containing this
debugging information for later use by the debugger.
This file has the filename extension .dbg.
Alternatively, the linker may ignore the debugging
information in its input files.

The linker accepts an optional command line argument:

+5Xxx%.dbg

in any position on the command line. This creates the
information file and names it xxx.dbg. This is the
preferred name for an information file associated with
an executable program named xxx.bin. If the linker is
operated in prompting mode, it will prompt:

Symbol file -

Pressing the RETURN key in response to this prompt
indicates that a debugger information file should not be
created. Entering a filename directs the linker to
create a debugger information file with the specified
filename. If a filename extension is not specified, the
linker will supply the filename extension .dbg to the
specified filename.

After creating the debugger information file, the
remaining steps of the compilation should be carried
out, producing the executable image of this symbolic
information. When debugging a given program, make sure
the .dbg file provided to the debugger matches the
program being debugged.

Cromemco 68000 Symbolic Debugger Reference Manual

2.

Running the Debugger

DEBUGGING A TARGET PROGRAM

The debugger is a program named dbg.bin. To debug a
program named x, supplying command line arguments (pl,
p2, ... pn) to the program being debugged, use the
command :

dbg [~-sxxx[.dbgll x pt p2 ... pn

The optional -sxxx (or -sxxx.dbg) instructs the debugger
to use the file xxx.dbg as the debugger information
file. If this argument is omitted, the debugger will
look for a file name x.dbg as the debugger information
file.

When the debugger has read the .dbg file and prepared
the target program for execution, the debugger prompt (a
minus sign) appears and debugger commands may be
entered. At this point, the target program is not
broken inside any environment, so variables cannot be
examined or set (refer to the discussion of environments
in the next chapter). The program can be run with break
and/or trace points set, and the debugger tables can be
examined. Running the target program after setting a
break peint at the entry of the main program (named in
the program statement in Pascal or FORTRAN, and named
main or _main in C) allows the debugger to access static
(global) data areas.

Cromemco 68000 Symbolic Debugger Reference Manual

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

Chapter 3

DEBUGGER CONCEPTS AND COMMANDS

CONCEPTS AND DEFINITIONS

A knowledge of the following concepts is useful in
understanding the debugger commands.

Environments

When interacting with the debugger, the program is, in
general, suspended at a break point. If this break
point is within the bounds of a subroutine (used
throughout to mean any procedure, function, or main
program body), the symbolic names available to the
target program within that subroutine are those in the
current naming environment. Data is interpreted based
on the name's attributes in that environment. This
concept also applies to static (global) data areas. The
interpretation of static data areas may depend on the
common and/or equivalence statements in the broken
subroutine, whether or not the subroutine is within a
Pascal unit, and whether or not the current environment
belongs to a subroutine written in the C language.

The debugger can be suspended outside of an environment.
This is the case immediately after a debugging session
is started. This also occurs: 1) when the debugger
encounters a break point at an address that precedes the
completion of the entry code or follows the start of the
exit code of a subroutine, or: 2) at a break point in a
routine which was not compiled with the debugging option
enabled. When the debugger is outside an environment,
variables cannot be accessed symbolically.

The debugger allows display and manipulation of the
current environment from certain break points. Where
possible, the debugger allows interactive changing of
the current environment to the environment from which
the current subroutine was called (potentially, all the
way back to the main program). As the current
environment changes, the debugger reflects the local
declarations and source language of the new environment.

7

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

Naming conventions altered by the scope of Pascal WITH
statements do not affect the naming conventions used by
the debugger.

Break Points

Under interactive control, certain addresses in the
target program's executable object code can be
designated break points. If such an address is
executed, except as noted below, control is returned to
the debugger command level for further interactive
debugging. The address must correspond to the first
word of a 68000 instruction. The debugger automatically
ensures this for entry, exit, and statement breaks
(i.e., all break points except those set using the
arbitrary address break point specification).

The debugger allows only one break point per address,
even if that address can be described in several
different ways. For example, an address that is the
entry address of a subroutine is also usually the
address of the first statement of that subroutine.
Several "null" statements may begin at the same address.
The debugger designates a break point relative to
entries, exits, line numbers, and actual addresses,
regardless of which method was used to set the break
point. If the user attempts to set more than one break
point at the same address, the debugger produces an
error message describing the situation and showing the
result of the conflicting commands.

An address on which a break point is set can have "skip
counts" associated with it, specifying the number of
executions of the break point necessary to return
control to the debugger. Refer to the explanation of
the break point command.

Trace Points

Setting a trace point is an alternative to setting a
break point on a given address. When executed, a trace
point causes an informative message to be displayed,
while the program continues its execution. Trace points
may also use "skip counts"™ to control the frequency with
which the trace message is displayed.

If a trace and break are set at the same address, the
break point takes precedence. The trace point becomes
active if the break point is cleared. As is true for
break points, the address has the trace point
properties, regardless of which method was used to

8

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

create the trace point. The address also has the skip
count properties, making it impossible to set the counts
independently for a trace point and a break point with
the same address.

Pname

A pname refers to any object code entry point that is
resolved by the Cromemco linker. In general pnames are
procedure, function or subroutine names. Pnames can
also refer to external or global entry points in
assembly-language modules.

A pname can be either a user name or a link name. A
user name 1is the name of a procedure in the user's
source program. The debugger treats user names as does
each programming language. Case 1is ignored when
compared with Pascal or FORTRAN entry points; case is
preserved for C entry points. As a result of nested
scopes, static functions, etc., the same user name may
appear several times in one executable program.

A pname can also be a link name, the name used by the
linker to resolve code entry points. Link names are
local or global. A local link name is a dollar sign
($), followed by digits, such as $12000. A global 1link
name 1s a string in double quotation marks, such as
"GLOBAL™W, Trailing blanks may be omitted. Local 1link
names are also enclosed in double quotes, "$12", and
trailing zeroes may be left off. Only the first eight
characters in a link name are significant.

Users may specify pnames in one of two ways. The first
is as an ordinary identifier, referring to any or all
matching user names. Lowercase letters are
automatically converted to uppercase in Pascal and
FORTRAN modules, while case is preserved for C modules.

The second way to specify a pname is as a string
enclosed in double quotes, "xxx", referring to the link
name of an entry point.

Var
Var is a variable. All variables must contain an
identifier. Structured variables may be indexed by

constant indices, dereferenced, or fields or members
selected, according to its type. The syntax used for
describing subvariables includes most legal forms for
variables in each language, and may allow
non-conflicting syntax from other languages.

9

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

Value

Value refers to a constant value. A value may be of
type integer, floating-point, or string. Integers may
be specified in either decimal form (as an ordinary
string of digits) or in hexadecimal form by preceding
the value with a dollar sign ($). Floating-point values
consist of a decimal integer containing either a decimal
point, exponent, or both. Strings consist of singly
quoted lists of characters.

Negative values are normally preceded by a minus sign.

DEBUGGER COMMANDS ~ GENERAL

The debugger prompt character is the minus sign. Any
debugger commands can be entered in response to the
prompt. (The system may not accept certain commands in
inappropriate environments.)

In gerneral, blanks (spaces) are not necessary in
debugger commands unless omitting the blank changes the
command's meaning. The debugger commands:

B 32 EF
and

B32EF

(refer to the break point command) are both acceptable
and equivalent to the debugger. The command:

B3 2ETF

is not. (The break command accepts one numeric value
between the B and the E, and the blank creates two such
values.) Except for € names, 1link names, and string
values, debugger commands can be uppercase or lowercase.

In response to a partial or incorrect command, the

debugger provides a summary of commands available when
the error was detected.

10

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

DEBUGGER COMMANDS - SPECIFIC

R -~ Run

The run command transfers control to the target program.

The program executes normally until a break point is
encountered, with the exception that messages are
printed on each instance of execution at a trace point.
When a break point is encountered, control is returned
to the debugger for further interactive command dialog.
If the program terminates normally, an appropriate
message 1s printed. In most instances in which fatal
run-time errors are detected in the program, control
returns to the debugger; the debugger will generally not
allow the program to be restarted in this situation.

Q ~ Quit

The quit command ends a debugging session.

This command prompts for confirmation:
Exit program (Y/N) ?

Entering Y, followed by a RETURN, ends the debugging
session. Any other input cancels the quit command, and
the debugging session continues.

B ~ Break Points

The break point command sets new break points in the
program being debugged. The general form of a break
point command to set a "controlled" break point is:

{E }
B [nnn[*1]] {x } pname
{Lnnn}

11

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

The general form of a break point command to set an
"uncontrolled" break point (set by address) is:

B [nnn[#*]] A {pname [+ hexconstant]}
{hexconstant [+ pnamel}

The optional integer count "nnn" which follows the B
command means "break after encountering nnn instances of
the specified break point." If this argument is
omitted, a count of 1 1is assumed. If the asterisk
follows the count, the break point is activated on every
nnontth encounter. If no asterisk is specified, the
first "nnn" instances of the break point are skipped,
but each subsequent instance causes a break.

Pname is the entry point name of the subroutine in which
the break point is set. The break point may be set at
the entry (E) of the subroutine, the exit (X) of the
subroutine, or before the nnn statement (Lnnn) of the
subroutine. Compiler-generated program listings can be
used to determine the statement number of each source
code line in the target program.

A given subroutine gets its run~time conditions (stack
frame creation, code to copy value parameters,

initialization of register pointers, ete.) from the
subroutine entry code (code at the start of the
routine). Breaking on entry to a subroutine occurs

after the run-time conditions for the routine have been
set (before this time, the environment of the subroutine
is not meaningful). Similarly, breaking on exit occurs
just before the subroutine's run-time conditions are
unwound. As a result, it is only possible to break on
entry to and/or exit from a subroutine that was compiled
with the debugging option on, because the debugger
requires the length of the subroutine entry and exit
code, in addition to the simple address at which the
entry point occurs.

In uncontrolled break points, pname, if specified,
refers to the address that is the start of the code for
the subroutine. The value hexconstant is specified
without a leading dollar sign character. If the
hexadecimal address immediately follows the "A", the
constant must begin with a recognizable digit (a leading
zero 1s permissible), to prevent confusion with the
pname syntax. Using uncontrolled break points, any
address may be specified. It is the user's
responsibility to ensure that the break point is set at
an address corresponding to the first word of a 68000
instruction.

12

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

T ~ Trace Points

The trace point command sets new trace points in the
program being debugged. The general form of a trace
point command to set a "controlled" trace point is:

{E }
T [nnn[*]1] {x } phame
{Lnnn}

The general form of a trace point command to set an
"uncontrolled" trace point (set by address) is:

T [nnn[*]] A {pname [+ hexconstant]}
{hexconstant [+ pname]l}

The trace point command is exactly the same as the break
point command except that the effect of encountering a
trace point while executing the target program is to
print a message, and then to continue execution without
breaking. If break points and trace points are set at
the same address, the trace point is inactive until the
break point is cleared.

Like break points, trace points must be set at addresses
corresponding to the first word of multiword 68000
instructions.

Counts are associated with the address on which the
break or trace point occurs. Thus, it 1is not possible
to set a break point and a trace point on the same
address, but with different "skip counts."

C - Clearing Break and Trace Points
The clear command clears a break point. The address may
be specified by entry, exit, and line number:

{E }
c [B] [nnn[#*]] {x } pname
{Lnnn}

A break point may also be cleared by referring to the
address directly:

13

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

C [B] [nnn[*]1] A {pname [+ hexconstant]}
{hexconstant [+ pname]}

To clear trace points, the following commands are
accepted:

{E }
C T [nnn[#*]] {x } pname
{Lnnn}
or
C T [nnn[*]] A {pname [+ hexconstant]}

{hexconstant [+ pname]}

The optional count and asterisk provide consistency with
the break point and trace point command but--they are
ignored by the clear command. The optional "B" in the
clear break point command provides consistency with the
clear trace point command and is ignored.

A break or trace point is associated with an address.
The break or trace point can be cleared using any of the
available methods of specifying the address, regardless
of which description of the address was used when the
break or trace point was set.

If both a break point and a trace point are set at the
same address, clearing one leaves the other set.

Short commands are accepted by the debugger to clear all
break points, all trace points, or all break points and
trace points. These commands are:

CB*¥ -~ Clear all break points.
CT*¥ ~ Clear all trace points.
C*¥ - Clear all break points and trace points.

14

Cromemco 68000 Symbolie Debugger Reference Manual
3. Debugger Concepts and Commands

P - Print the Value of a Variable

The print command prints either the value of a single
variable or the value of all variables in the current
local scope. The general form is:

P [var]

Without an argument, P prints the current value of all
printable variables in the present local scope. With a
variable as an argument, P prints the value of that
variable. Normally the only values that can be printed
are simple variables. Structured values such as arrays,
records, or unions cannot be printed. However, a single
element of an array, a field of a record, or a member of
a union can be printed using the normal syntax in the
appropriate programming language.

If the target program is suspended outside a known
environment, variables cannot be printed symbolically.

S - Set the Value of a Variable

The S command sets the values of variables in the
current environment.

S var [=, :=] value

Either assignment operator (or none at all) may be used.
The variable may be simple, or include indexing (by
constant indices), field reference, indirection, etec.
The value assigned to the variable must be an integer or
real constant (optionally preceded by a minus sign), or
a string constant. The value must be appropriate for
assignment into the wvariable. This means the variable
with its qualifications cannot bhe a structured variable.
The acceptable variable type and value type combinations
are summarized in the following table:

15

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

Language

Pasecal

FORTRAN

Value Type

Var Type
integer integer
scalar integer
real floating~point
or integer
Boolean integer
char string
string string
packed array string
of char
pointer integer or NIL
integer integer
real floating-point
or integer
logical integer
or TRUE
or FALSE
character string
int integer
char string
float floating-point
pointer integer or NIL

Notes

o e o

first=0, next=1,
includes double-precision

0=FALSE,
or TRUE
or FALSE
length must be 1

1=TRUE

trailing blank-filled

includes double-precision

0=.FALSE., 1=.TRUE.

trailing blank-filled

includes double~precision

If the target program is suspended outside of a known
variables cannot be set symbolically.

environment,

M - Memory 3et/Print

In addition to
debugger also allows the low-level
printing and setting memory locations by address.

symbolic access

to data

areas, the
operations of
All

addresses and values input to or printed by the memory

commands are in hexadecimal.

M P xxx [xxx]
M S xxx xxx [xxx] ...

16

The commands are:

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

The memory print command expects the initial address to
be specified. This is optionally followed by another
hexadecimal number. This optional number is interpreted
as the number of bytes to print if it is less than or
equal to the initial address. The optional number is
interpreted as the final address to print if it is
greater than the initial address. If the optional
number is omitted, 16 bytes of memory are displayed.

The memory set command expects an initial address,
followed by one or more values to be placed into
successive locations beginning at that address. Each
value is interpreted as a single byte, a pair of bytes,
or four bytes, depending on the number of hex digits
specified in the value. That is, one or two hex digits
sets a single byte, three or four sets two bytes, and
five or more sets four bytes. If more than eight
contiguous hex digits are specified only the last eight
are used.

W - Walkback: Print Calling Sequence

When a program 1is suspended at a break point, it is
often possible to determine where the current subroutine
was called from, where that calling context was called
from, etc. Where the information is available, this
calling sequence walkback can be printed using the
following command:

W [nnnl

The optional integer argument limits the number of
levels back that the debugger will show. The default
number of levels is three. If the debugger cannot show
the walkback, an appropriate message is printed.
Sometimes the debugger attempts to walkback beyond the
main program, resulting in an indication of an
environment for which no information is known.

17

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

U - Move Environment Up

If a target program is suspended at a break point for
which it is possible to walk back through the calling
environments, it is also possible to change the current
environment of the debugger to be one of those calling
environments. It is therefore possible to operate on
the state of the target program in these other
environments, including accessing data structures that
are not visible in the environment of the break point
itself. Moving "up" an environment corresponds to
changing to the calling context of the current
environment. The form of the U command is:

U [nnnl

The optional count allows moving up through more than
one environment at a time.

Note: 1If the target program is restarfed using the run
command, execution continues from the break
point's environment, regardless of the debugger's
current environment.

D -~ Move Environment Down

After a move environment up command, it is possible to
move back down through the active calling environments.
This is accomplished with one of the following commands:

D [nnn]
D *

The move environment down command, without a count
(nnn), moves down one environment. If a count is
specified, that number of environments is passed. If
the * is specified in place of the count, the current
environment is set back to the environment in which the
break point occurred.

18

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

[. -~ List

The debugger can display certain information about the
program being debugged other than the values of
variables. This information is available wusing the
various forms of the list command described below.

. B - List Break Points
I. B

This command displays the currently set break points and
trace points. The address at which the break and/or
trace point is set is identified in all appropriate
ways, regardless of the method used to set it. In the
event that "skip counts" are associated with the break
point or trace point, the counts are displayed in the
following form:

Count=znnn/mmm

in which nnn 1is the number of remaining occurrences
which will be skipped, and mmm is the reinitialization
value for nnn.

L E - List Entry Point Attributes
L E fpname]

If a pname is specified, detailed information is
displayed about the particular entry point. If pname is
omitted, all entry point names and their attributes are
shown (except those for names beginning with a percent
sign, primarily used by the run-time libraries).
Attributes always include the address at which the entry
point is located and, where known by the debugger, the
language which generated the entry point. For assembly
and unknown languages, 2?77 is displayed as the
language. If the pname specified is a percent sign, all
entry points are displayed, including those which begin
with a percent sign.

19

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

. V - List Variable Attributes

L V var
This command can be applied only to variables accessible
in the current environment. Attributes of variables
include their type or type number and their storage
location.
L F - List Record Fields / Struct or Union Members

L F var
For record variables accessible in the current
environment, this command lists information relating to
each field and its addressing attributes.
L T - List Type Description

L T [nnnl]
If the optional integer is omitted, information is
displayed about all "numbered" types. If the optional
integer is specified, the debugger displays information
about that type only.
. S - List Segments and Attributes

L 3
A list of the program's segments and their attributes is
displayed. This information is primarily meaningful
under operating systems for which segments are usefully
managed by programmers.
L D -~ List Data Areas and Attributes

L D

A list of the program's static data areas and their
attributes is displayed.

20

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

L R - List Registers Values
L R

This command displays the contents of the registers
whose values can be determined in the current
environment.

{ - Take Debugger Commands from a File

A command of the form:
< filename

is interpreted by the debugger as a directive to accept
commands from the named file 1instead of from the
standard input. When the file has been processed, the
debugger returns to the 1interactive debugging mode.
Using this feature, it is possible to set break points
and trace points for repeated debugging sessions. The
file may include other commands as well.

> — 3ave Break and Trace Points in a File

A command of the form:
> filename

creates a file with the current break and trace points.
The file is suitable for reloading using the "<" command
described above. The break and trace points are saved
by address (not by entry, exit, or line number) so that
care should be taken i1f the saved break and trace points
are reloaded to debug .bin files not identical to the
one that created the command file.

The debugger places count directives into the created

file; these correspond approximately to the counts
associated with the break and trace points.

21

Cromemco 68000 Symbolic Debugger Reference Manual
3. Debugger Concepts and Commands

I - Execute a Single Instruction

Programs can be executed on an instruction-by-
instruction basis. A command of the form:

I [nnn] [q]

instructs the debugger to execute "nnn" machine
instructions (one instruction if "nnn" omitted) and then
return to the debugger as if a break point had occurred.
The optional quiet (gq) argument silences the default
cutput the debugger otherwise produces on each
instruction.

Notes: Using this instruction results in extremely slow
target program execution. It is also possible
to get the debugger break-pointed in program
sections that were not compiled with the debug
option set, that are part of the language's
run-time system, or even inside the operating
system.

In single instruction mode, code located in ROM
and/or trap instructions with local parameter
and return conventions may be encountered,
causing the instruction mode to fail. The
instruction mode should therefore not be
considered a fully supported feature.

22

Cromemco 68000 Symbolic Debugger Reference Manual

4.

.DBG File Format

Chapter 4

.DBG FILE FORMAT

All symbolic information required by the Cromemco
debugger is contained in an auxiliary file. This file
is created, upon request, by the linker and is given the
suffix .dbg. The executable object code generated by
Cromemco Pascal, FORTRAN and C compilers is not altered
by setting the debug option. Thus, a production program
can be debugged without recompilation if the .dbg file
is saved.

A .dbg file consists of three major sections: 1link-map
information; variable and type definitions; and
statement-beginning offsets in the object code. Each
major section 1is created by a different component in the
compilation sequence. The linker produces the link-map
information, the language front end generates the
variable and type definitions, and the code generator
produces the object code statement offset tables.

.DBG HEADER
The first 16 bytes of a .dbg file are the header. The

contents of the header depends upon the target operating
system.

-.DBG LINK MAP

The first section of a .dbg file describes the link map
of the associated program. This section contains three
subsections: segment definitions, link name entry
points, and data area names.

The form of the segment definition table is:

23

Cromemco 68000 Symbolic Debugger Reference Manual
4. .DBG File Format

e o om0 o e e o o e e e e o o o o e o e e o e
t NumSegs | Segmentl1 Name | Sizel | Addr1 | ...

R e e R R s o ek (LT (L SO Y

1 2 3 18
mmmmm Rl D S ke e A e sl &
o« | SegmentN Name | SizeN | AddrN |
mmmmm Rl T e s st L s s st LR S S
16 N+2
where:
NumSegs - is the number of segments.
SegmentN Name - is the 8~character name of segment N.
SizeN - 1is the size in bytes of segment N.
AddrN = 18 the load address of segment N.

The form of the entry point table is:

o o e o e e o o s e o e e st e o o o o e e o o e o e e e o

{ NEntrys | Link Name 1 | Addr1 | ... | Link Name N | AddrN !

e e oo e o o o o o o e o o o e o s et o e s o e s s o e o o e 0 e e o 0 o o e 7 e
1 2 3 T4 12N+2

where:

NEntrys - is the number of entry points.

Link Name N - 18 the link name of entry point N.

AddrN - 1s the address of entry point N. The

first byte is the segment number, and
the last three bytes are the segment
relative offset,

The form of the data area table is:

o 2 e e o o o e e e e e o e oo e o o o e e o e
i NoDatas | Date Name 1 { Sizel | Addrl1 | ...
o o e o s o i e e e o o o o e = o o e o o o 1 o e o
1 2 3 18
mmmmm o e o e o o o e o e o e e e e e e e o o
oo | Data Name N | SizeN | AddrN |
----- o o o o e e e e o o e e e e e e o e o
16N+2

24

Cromemco 68000 Symbolic Debugger Reference Manual
4, .DBG File Format

where:

NoDatas -~ i3 the number of data areas.

Data Name N ~ 18 the name of data area N.

SizelN ~ 15 the size in bytes of data area N.
AddrN - is8 the load address of data area N.

VARIABLE AND TYPE DESCRIPTIONS

The general form of this section is:

O o o (900 e s S o T 0 T e, e s T IR o W o G o

B B T R)

It is a list of subsections, each describing the types
and variables of a single procedure, terminated by a
single byte of $FF. Each procedure's information is in

the form:
o o o e e e o e o ot o s e o o e o e s e o o e e o o o o £ £
I Lan | Ver | Sub | Lev | Link name i Outer Lnkname | ...
e i sl T T e e Rl e e O ah et ok St Ty ST I
1 2 3 4 5 12 13 20
~~~~~ o e o o o < s e e e o e o 7 e o o ot e o e o e
woa | User Name | Types | 00 00 | Variables | 00 |
————— o o o e o o o s 2 o 7 . e e o o e o o
21 ?°
where:
Lan - 18 the language in which this procedure
is written. O0=Pascal, 1=FORTRAN,
2=BASIC, and 3=C.
Ver - is the language version number.
Sub ~ is the language sub-version number.
Lev ~ is the procedure's static level.
Link Name -~ is the link name of this procedure.
Outer Lnkname -~ is the 1link name of an enclosing

procedure. If none exists, this field
is blank-filled.

25



Cromemco 68000 Symbolic Debugger Reference Manual

4.

.DBG File Format

User Name - is the user name of this procedure.
The first byte gives the length of the
name and the remaining bytes give the
value of the name.

Types -~ is a description of any types defined
by this procedure. Its format is given
below.

Variables - is a list of any loecally defined
variables. The format is given below.

Type Descriptors

The form of a type descriptor is:

o e o o o o e o o e o +

| TypeNo. | Kind | ... |

e o o o o +

1 2 3 29

where

TypeNo. =~ is a two-byte positive integer referring to
this specific type.

Kind ~ is a byte containing a packed flag (bit 4)
and a variant tag (bits 0O through 3). The
format of the following information depends
upon the value of the tag.

SCALAR

o e e o o o e s o s e

i 00 | Max Val |

b o e e e

3 Y 5

SUBRANGE :

o 1 e e e s s 2 s e s o 2 e 5 e e s 1 o 2 o o e o o e

i 01 | RangeOf | Minimum Value | Maximum Value |

o s o e e o o o e e o e e e o s o s s e s o o o o o o s e

3 4 56 9 10 13

26



Cromemco 68000 Symbolic Debugger Reference Manual

.DBG File Format

b,
POINTER:
S - o e +
i 02 | PointerTo |
A oo e et o o o o o e +
3 4 5
SET:
o o o e o 1 o
i 03 | SetOf |
e o o e e
3 4 5
ARRAY :
e o oo o o e e e e e o o o e e e o s e e +
| 04 | IndexedBy | ArrayOf | { PckdInfo | (present if packed)
o e e e A o o e o e o o o +
3 4 5 6 7 8
PckdInfo -~ Signed bit is 1 if signed, bits 0 through 3
are size of element in bits.
STRING
o o o e e +
! 05 | Len |
o o o e o +
3 Ll
FILE
o o s o e s e e
i 06 | FileOf |
e o e o o s oy e e e
3 i 5
RECORD
o o o o o e e e e e e e o o Fm o o o e
! 07 | Record Size i\ Field1 | ... | FieldN | 00 |
e o e e s e e e o e e e e o o o Fom e
3 y 7 8 ?9?



Cromemco 68000 Symbolic Debugger Reference Manual
.DBG File Format

4,

and the form of a field descriptor is:

]

o o om0 e ], e o o o e +
| NLen | NAME ... | FldType | Offset | { | LeftBit ! NumBits !
o e e e o e e e e o o o s o e i o |, e e e o o e o e e e

Only Present if Packed

CHARACTER:
o s o e o o s e e e
i 09 | length |
o o o o e e e
1 3
FORTRAN ARRAY:
s . e o e o o e e o o e o
{ OA | Dims | ArrayOf | ...
o e o e s o At e o o o o e o o
1 2 3 4
s o ot o e o o e e e e i e e e o o o e 2
..o 1 Flagsi | LoBound1 i HiBound1 | ElemSizel !
o £ o s o o e 1 e e o o 1 o e o o o o o 0 oo o e s e o e o 7
5 6 9 10 13 14 17
FlagsK ~ 00000000 = Constant Lo, Hi and El1Sz
000000%*1 = Lo computed, at LoBoundK(A6)
0000001%* = Hi computed, at HiBoundK(A6)
If either Lo or Hi is computed, then
E1Sz is also computed, at ElemSizeK(A6)
Predefined type numbers are:
~1: integer, 1 byte
~2: integer, 2 bytes
~3: integer, 4 bytes
~4: integer, 1 byte, unsigned
~5: integer, 2 bytes, unsigned
~6: integer, 4 bytes, unsigned
-T2 character, 1 byte
-8: character, 2 bytes
~9: single precision floating point (4 bytes)
-10: double precision floating point (8 bytes)

-11:

logical, 1 byte

-i12: logical, 2 bytes

~13:

logical, 4 bytes

-14: file;
-15: complex

28



Cromemco 68000 Symbolic Debugger Reference Manual
4, .DBG File Format

Variable Descriptors

The form of a variable descriptor is:

e s e o s 2 o o o s e e e e o e e o o e
1

i Len | NAME ... | vtype | location |
e e e o v o e s o e e e o s o . £, e

1 2 Len+3 7%

STATEMENT OFFSETS DESCRIPTIONS

b o o o e o o o s e e e o o o

e o o +
{ NumEntrys | ... | linkname i EntryLoc | ExitLoec | * NumEntry:
o e e e o e + o o o e o o e e o e o e o o e e
o e e e s e o o e 4 o o e e e o e o e o o e o o e om +
ees 1 NumStmt | StmtLoec 1 | StmtLoe 2 | ... | StmtLoec N !
o e e e o e o o e o e s e e s e o e o e o e m e s e +

29



Cromemco 68000 Symbolic Debugger Reference Manual

30



Cromemco 68000 Symbolic Debugger Reference Manual
Index

.DBG Header, 23
.DBG Link Map, 23

{ - Take Debugger Commands from a File, 21
> - Save Break and Trace Points in a File, 21
Attributes, 19

B - Break Points, 11
Blanks, 10
Break Points, 8

C - Clearing Break and Trace Points, 13
Compiler Debug Flag, 3
Current Environment, 7

D - Move Environment Down, 18
Data Area Table, 24

Data Areas, 20

Debug Information File, 4
Debugger Commands -~ General, 10
Debugger Commands -~ Specific, 11
Debugger Flag, 3

Debugging a Target Program, 5

Entry Point Table,"24
Entry Points, 19

I ~ Execute a Single Instruction, 22

List, 19

- List Data Areas and Attributes, 20

- List Entry Point Attributes, 19

-~ List Record Fields / Struct or Union Members, 20
List Registers Values, 21

- List Segments and Attributes, 20

- List Type Description, 20

- List Variable Attributes, 20

ker, 4

1

|l o e A A A
S <= TEol
i

Minus Sign, 10

31



Cromemco 68000 Symbolic Debugger Reference Manual
Index

Naming Conventions, 8

P -~ Print the Value of a Variable, 15
Pascal With Statements, 8
Pname, 9

Q - Quit, 11

R - Run, 11
Record Variables, 20
Registers, 21

S - Set the Value of a Variable, 15
Segment Definition Table, 23
Segments, 20

Skip Counts, 8, 19

Statement Offsets Descriptions, 29
Static Data Areas, 7

T - Trace Points, 13
Trace Points, 8

Type Descriptors, 26
Types, 20

U ~ Move Environment Up, 18

Value, 10
Var, 9
Variable Descriptors,_29

W - Walkback: Print Calling Sequence, 17

32






280 Bernardo Ave.
P.0. Box 7400
Mountain View, CA 94039




