

CAUTION

FAILURE TO OBSERVE THESE IMPORTANT PRECAUTIONS WILL VOID WARRANTY

- 1. Read all material before beginning construction.
- 2. Use ONLY electronic quality rosin core solder.
- Use extreme care with static-sensitive chips to prevent static discharge damage. (These
 chips are inserted in black conductive foam material in your kit.)
- 4. Do NOT plug or unplug boards while power is on.
- Do NOT apply power to any board or circuit before checking each component and each trace.
- 6. Do NOT insert chips in socket before all soldering on the board is completed.
- 7. Do NOT use nonstandard parts such as fuses of a higher current rating.
- 8. Do NOT leave out any construction step.
- 9. Use only specified AC power.
- Prevent flat cable end from touching areas of the system that may be carrying current.
- Clean unit with soap and water or isopropyl alcohol only to prevent damage to plastic components.
- Some repair operations are quite demanding. Do not attempt repairs beyond your level of skill to prevent damage to the board or the components.
- 13. Use ONLY a 25 watt electronic soldering iron for assembly of your IMSAI kit.
- 14. Do NOT perform any solder work on a board while power is applied.
- 15. Do NOT plug or unplug a chip from a socket while power is applied.
- 16. Check power supply voltages BEFORE inserting any boards into chassis.
- 17. For all assembled units, read USER GUIDE section for jumpering instructions.
- To register your kit for warranty protection, fill out warranty cards and mail to IMSAI. Kits without warranty cards on file are NOT covered by warranty.

IMSAI MICROCOMPUTER SYSTEM USER MANUAL Copyright 1976 by:
IMSAI Manufacturing Corporation
14860 Wicks Boulevard
San Leandro, California 94577
Made in the U. S. A.
All rights reserved worldwide.

September, 1977

IMSAI 8080 MICROCOMPUTER SYSTEM USER MANUAL

. . .

ERRATA INFORMATION

Errata information will be found immediately preceeding the section to which the information applies and should be used for clarification and/or correction of the section indicated.

CAUTION: FAILURE TO OBSERVE PERTINENT INFORMATION WHICH IS INCLUDED WILL VOID WARRANTY.

CUSTOMER SERVICE

REPLACEMENT PARTS

If you need a replacement part, use only standard parts from commercial sources. Use of surplus or second-run parts will void warranty. If you have trouble locating a part, write IMSAI and include:

- Part number and description as shown in the parts list.
- Serial number of cabinet or board name and revision number.
- · Date of purchase.
- Nature of defect.

Note: Parts damaged through carelessness or misuse will not be replaced under warranty.

TECHNICAL CONSULTATION

Need help with your kit or system?

We encourage you to call or write IMSAI for assistance with any technical problems (except program debugging and "customizing" of hardware for special application, which we will not handle).

The effectiveness of our technical assistance depends on the information you furnish. Be sure to include:

- Serial number of cabinet and/or board name and revision number.
- Date of purchase.
- Exact description of problem.
- Everything you have done in attempting to correct the problem.
- All switch positions, connections to other equipment, system configuration, operation procedure, voltage readings and any other information that you think might be useful.

Note: Telephone traffic is lightest at midweek... please be sure your manual and all notes are on hand at time of call.

REPAIR SERVICE

Service facilities are available for both warranty and non-warranty repair work. If this service is desired, send IMSAI:

- Name and address.
- · Date of purchase.
- Copies of all correspondence and notes relevant to the problem.
- A complete description of the problem.
- Authorization to return your kit C.O.D. for service (IF ANY) and shipping charges.
- The equipment to be repaired should be sent to IMSAI well packed.
- The original packing slip number.

IMSAI 8080 System User Manual Table of Contents

TABLE OF CONTENTS

IMSAI 8080 SYSTEM Introduction Functional Description System Features Software Features Hardware Features Specifications	10 12 13 14 15 16
GENERAL ASSEMBLY AND TEST INSTRUCTION Introduction Kit Unpacking General Assembly Hints Order of Assembly Mainframe Assembly	S 17 18 19 29
CHAPTER 1 CABINET Cabinet Assembly Instructions Rackmount Assembly Instructions Parts List	

CHAPTER 2 MOTHERBOARD Functional Description Photographs
Parts List
Assembly Instructions
User Guide

CHAPTER 3 PS-28 (Power Supply) Functional Description Theory of Operation Assembly Diagram Photographs Parts List Assembly Instructions User Guide

CHAPTER 4 CP-A (Front Panel Control Board) Rev. 4 Functional Description
Theory of Operation Photographs Assembly Diagram Parts List Assembly Instructions User Guide Appendix CP-A Modifications for Dynamic RAM

IMSAI 8080 System User Manual Table of Contents

CHAPTER 5 MPU-A Rev. 4
Functional Description
Theory of Operation
Assembly Diagram
Photograph
Parts List
Assembly Instructions
User Guide

CHAPTER 6 RAM 4A Rev. 3
Functional Description
Theory of Operation
Assembly Diagram
Photograph
Parts List
Assembly Instructions
User Guide
Board Tester

CHAPTER 7 PROM 4 Rev. 3 Functional Description

CHAPTER 8 PIO 4 Rev. 2 Functional Description

CHAPTER 9 SIO 2 Rev. 3 Functional Description

CHAPTER 9A SIOC Rev. 2 Functional Description

CHAPTER 10 PIC-8 Rev. 3 Functional Description

CHAPTER 11 MIO Rev. 2 Functional Description

CHAPTER 12 SYSTEM SOFTWARE
User Manual
Listings
Bootstrap Loader

APPENDICES
Chassis Cabinet (Exploded View)
Schematics
PSC Rev. 1

CP-A Rev. 4 MPU-A Rev. 4 RAM 4A Rev. 3

INTRODUCTION

The documentation for the IMSAI 8080 Microcomputer System consists of several books. This volume, the IMSAI 8080 Microcomputer System User Manual, contains a detailed description of the features and configuration of the computer as a complete system. It also describes the printed circuit boards that form the system building blocks. The chapter format begins with a functional description of the system or board, including brief notes about all the features. The actual operation of the system or board is then described in a theory of operations section. The physical and electronic arrangement of the system or board are next shown with a photograph and a schematic. Assembly of the board from a kit is described by assembly drawings or photos, a complete parts list, and assembly instructions in each chapter. Finally, the information that tells the user how to use the design features of the board to implement various functional options is contained in a user guide section for each board.

Operation of the computer as a system is documented in the IMSAI 8080 Microcomputer System User Manual in the chapter General Assembly and Test Instructions and also in the chapter on the CP-A (Front Panel Control Board). The software supplied with the basic unit, consisting of a resident monitor, assembler and text editor is described in the last chapter of the IMSAI 8080 Microcomputer System User Manual. This chapter includes both a description of the software and a complete object listing.

Supporting documentation is provided by a copy of the Intel-8080 Microcomputer System Users Manual, supplied in every system kit to give IMSAI users the primary source of detailed information about the function and instruction set of the logic implemented by the intergrated circuit chip set used in the IMSAI 8080. A handy reference card, the Intel-8080 Assembly Language Reference Card, is supplied to Summarize much useful information from this manual.

To assist users in gaining a full perspective on the design and use of microprocessor-based computer systems, IMSAI includes a basic text, An Introduction to Microcomputers.

IMSAI is currently working intensively on both additional hardware (more peripheral systems, the Shared Memory Facility, etc.) and system software. Full documentation of these additions will be made available to IMSAI owners as it is produced.

IMSAI 8080 MICROCOMPUTER SYSTEM FEATURES

The IMSAI 8080 is a high quality microprocessor based computer system offering outstanding capability and flexibility at low cost.

Designed to facilitate simple modular expansion, the system has both the power and the versatility to handle a broad range of data processing needs.

The IMSAI 8080 is currently supported by a broad range of peripheral devices and interfaces, and comes with a basic resident monitor, assembler, and text editor, free of charge. A broad range of high level system software is now under development, and will be available soon in both source and object form to registered IMSAI 8080 owners.

The IMSAI 8080 is available in kit or assembled form. While primarily designed as a commercial computer, the unit is configured to facilitate construction by any careful assembler. High grade industrial quality design and components are used in both kits and assembled units.

Complete documentation is provided with each system, including:

IMSAI 8080 Microcomputer System User Manual (this book).

Intel 8080 Microcomputer Systems User's Manual, completely describing the integrated circuits used, and the instruction set.

An Introduction to Microcomputers, a fundamental textbook on the use of microcomputer systems.

a 90 day warranty on the system is provided. Full factory service is available at a cost commensurate with the work required.

IMSAI 8080 System Functional Description

SYSTEM FUNCTIONAL DESCRIPTION

The IMSAI 8080 Microcomputer System is a full-scale general purpose digital computer. Although small in size and low in cost, the system is exceedingly versatile and capable of data processing in the complete spectrum of practical applications.

The IMSAI 8080 used an 8080A microprocessor LSI chip to perform the central processing function. The instruction set provided by the 8080A is described fully in Chapter 4 of 8080 Microcomputer System User's Manual, provided as part of the IMSAI 8080 documentation package.

The IMSAI 8080 system is capable of unlimited expansion, due to the bus structure and IMSAI's exclusive shared memory facility, which permits parallel processing. The computing power that can be made available with the IMSAI 8080 system building blocks exceeds that of any currently available minicomputer.

The operation of the IMSAI 8080 is described in the manual chapters titled "General Assembly and Test Instructions" and in the CP-A Front Panel Control Board chapter. Input/output features are described in the I/O board chapters including SIO (Serial Input/Output board), PIO (Parallel Input/Output board) and UCRI (Cassette Recorder Interface board).

IMSAI 8080 SOFTWARE FEATURES

Basic system software (resident monitor, text editor and assembler) distributed in object form, with listing, and free of charge.

Future software releases are:

4K BASIC - upward compatible to DEC standard SUPER-BASIC

8K BASIC - Upward compatible to DEC standard SUPER-BASIC

12K BASIC - DEC standard SUPER-BASIC compatible

Floppy Disk Operating System

Linkage Editor Macro-Assembler with relocatable code generation

12K FORTRAN compiler

IMSAI 8080 HARDWARE FEATURES

Flat cable interconnection used throughout.

Absolute minimum point-to-point wiring.

Front panel has programmed output port with LED indicators.

Front panel has large easy-to-use paddle handle switches. Front panel legends are produced photographically and mounted behind acrylic panel for protection.

Front panel has filler to increase contrast of LED indicators. Long-life LEDs used throughout.

Front panel circuit designed so that one-shot timing links are non-critical.

No point-to-point wiring to connect or disconnect front panel to or from system.

Attractive custom designed cabinet and panel.

Rackmount cabinet available as special option.

Cabinet designed to facilitate customizing front panel.

Sturdy card cage construction.

Room for 22 cards.

Power supply subchassis with high-current transformer and computer-grade electrolytic capacitors.

Heavy duty power supply supplies power sufficient for a full complement of cards (28 amps, up to 500 watts).

Straight-through back plane wiring. No special purpose slots.

Front panel plugs into any slot to operate machine.

Double-sided printed circuit boards with plated-through holes and solder mask.

All board contact fingers are gold-plated over nickel. PC board material is glass-fiber-reinforced epoxy laminate.

On-board power regulation. Power is regulated by integrated circuit regulators with thermal current limits.

Tantalum board decoupling capacitors. Ample .luf disk ceramic power decoupling capacitors.

Designed with latest LSI and MSI components. Package count minimized.

Heavy current tri-state bus drivers used throughout the system. System designed from initial concept for multi-processor, shared memory options.

IMSAI 8080 Microcomputer System Specifications

MICROCOMPUTER SYSTEM SPECIFICATIONS

Processor: 8080A microcomputer chip

Directly Accessible Memory: 65,536 words
Word Size: 1 byte (8 bits)
Register Instruction Cycle Time: 2 microseconds
Basic Machine Cycle Time: 0.5 microseconds
Directly Accessible Input and Output Ports: 256
Machine Instruction Set Size: 78 basic instructions
(181 instructions with variants)

Nested Subroutine Call Capability: Limited only by memory size

Interrupt Capability: 8 hardware levels
Registers: 6, plus stack pointer, program counter and
 accumulator

Memory Type: Semiconductor (1024xl format chips)

Cabinet: Custom aluminum case with acrylic front panel

Dimensions: 19½" x 17" x 7"

Weight: 40 pounds

Front Panel Switch Type: Paddle

Color: IBM blue and grey

Power: 28 amp unregulated power supply with onboard regulators

Power Requirement: Under 50 watts for basic system Maximum Power Capability: Up to 500 watts Power Type: 115 VAC, 60 hz. single phase

Connections: Mounting space for 10 EIA-type 25-pin connectors on the back panel. Opening and cable clamp provided for flat cables to exit from the cabinet. 3M flat cable system used throughout.

IMSAI 8080 System General Assembly and Test Instructions

INTRODUCTION

This chapter contains the following sections:

- 1. Kit Unpacking Instructions
- 2. Construction Hints general notes on how to build your kit.
- 3. Recommended Overall Order of Assembly (includes cross-reference to chapters where specific assembly instructions for the various submodules will be found).
- 4. Mainframe Assembly assembly instructions for integrating Chassis with Power Supply, Mother board and Front Panel, and instructions for testing the Power Supply.
- 5. System Functional Test how to check out your overall system.

IMSAI 8080 System General Assembly and Test Instructions

KIT UNPACKING INSTRUCTIONS

- Remove all packages from the outer box. For a standard IMSAI 8080 kit, these will consist of:
 - a. Documentation Set (Manual plus two books)
 - b. Cabinet Base Plate
 - c. Table Top Cover (or Rackmount cover and Rackmount painted pieces)
 - d. Two large inner boxes
 - e. Two small inner boxes.
- Largest inner box contains flat parts such as pc boards, small sheet metal parts, two plastic panels and a mailing tube containing the front panel mask and paper backing sheet (latter is deleted if an OEM machine has been ordered).
- 3. The next smaller size inner box contains plastic sacks of components. (There will be a plastic sack with a parts list corresponding to each pc board, plus sacks for the chassis and rackmount hardware and a sack containing the paper tape for the IMSAI Self-Contained System software.
- One of the two small boxes contains the large components for the Power Supply (transformer, capacitors, etc.).
- The second small box is either empty (serving as a spacer box for packaging purposes) or contains overflow from the sack parts box.
- Unpack plastic sacks only when you are ready to begin assembly of that particular module. If any parts are missing, contact IMSAI Customer Service for immediate replacement.
- 7. Be careful in handling the painted sheet metal parts, the plastic parts and the film negative to avoid scratching. PC boards should not be stacked without protective material between to avoid destroying or shorting traces.

CONSTRUCTION HINTS

GENERAL

The IMSAI 8080 microcomputer is a complex piece of electronic equipment. This section covers a number of items, each of which must be followed to insure a working system at the completion of assembly. This entire section must be read completely before beginning assembly, and the builder must refer back to the notes in this section often enough to insure that no components are installed incorrectly. While each assembly step is easy to do correctly, there are many steps and it is also easy to do one or more incorrectly; and much more time will be spent solving a problem than would have been needed to prevent it.

There may be items about which you are not completely sure during assembly. Should this occur, DO NOT CONTINUE. Study the manual to see if you can resolve your question, or seek the help of someone more knowledgeable in digital electronics. If you feel your question is not resolved by further study or asking whoever is available to you, call IMSAI. This will enable you to do a better construction job, and it will enable us to revise the manual so that it will be of more assistance to you. We recognize that some builders will have had very little experience in assembling electronic kits, and it is our intention to continually revise the manual based on comments by users, so that even the most inexperienced builder can achieve the best unit available with a minimum of effort. No question is too simple to call about if you're not sure about it.

TOOLS AND WORKPLACE

It is next to impossible for even an experienced builder to produce a good machine unless proper tools and an adequate workspace are available. The kit does not require much space to work in, but enough table surface should be available for the piece being worked on, all the tools needed for that piece, and an orderly arrangement of the components which will be used in assembling that piece. The work area should be very well-lit, with no shadows. If the entire room is not well-lit by ceiling or window light, then at least two bright lamps should be used, preferably one on either side and slightly behind the chair to help eliminate shadows. You may want to protect the table surface with cardboard or newspaper.

The most important single item in assembly is the soldering iron. It is critical enough that a separate part of this section is devoted to it. Other tools which are absolutely necessary to do an adequate assembly job are screwdrivers to fit the screws used in the kit (both straight slot and phillips), a small pair of diagonal cutters (preferably a 4" pair, flush-cutting), small needle-nosed pliers, and a wire stripper. A 1/4" nut driverwill make cabinet assembly very much easier, as the sheet-metal screws used are designed primarily to use a nut-driver. A voltmeter should be available for testing. Any inexpensive meter (VOM) with DC voltage scales between 5 and 30 volts should do. Do not attempt to assemble the kit until you have the tools necessary; damaged parts cannot be replaced under warranty.

SOLDERING

Almost every problem with an assembled kit is a soldering problem. If you have never soldered before, or if you have done some soldering but do not yet have facility in making good soldering joints both quickly and every time, practice before beginning assembly on the IMSAI 8080 boards. Obtain some extra #20 hook-up wire and solder locally and solder pieces together until you feel comfortably able to quickly make a good joint. The importance of good solder joints is just too great to convey adequately here; but don't be scared off, because once you get the hang of it, they're very easy to do.

Soldering Irons

There are a great many tools available with the name "soldering iron". Two thirds of these are not appropriate to small electronics assembly and if used are almost certain to damage both parts and boards. The problem with most of these are that they are too big and too hot. Note that most every soldering "gun" is in the too big, too hot class. Proper soldering irons are easily available at any local hobbyist electronics outlet, and they are not expensive. Use a 30-40 watt iron with a small tip, such as an Ungar 776 with a 7155 tip. If you wish to invest in a top-quality tool, a temperature-controlled tip model such as the Weller W-TCP with a small 700° F tip is well worth the extra cost. Many irons are available with either unplated copper tips or plated tips. Though slightly more expensive, the plated tips last very much longer and give superior service.

Solder

Using the proper solder is as important as using the proper iron, and there are many solders to choose among. In normal electronics assembly, separate paste or liquid flux is not used. Rather, a solder with a "core" of rosin (or resin) base flux is used. This flux (contained in the hollow center of the solder) should be sufficient. Absolutely avoid any solders using an acid flux. (Or any cans of acid flux - unless a can of flux says"rosin" you may safely assume it is an acid flux. Acid fluxes are used for mechanical soldering where the surfaces are not as clean as those in electronic assembly. They are corrosive and will typically damage a printed circuit.

Also very important is the ratio of tin to lead used in the solder. Best to use is 63% tin, 37% lead, called 63/37 or eutectic. Much more common is 60/40, which is still a very good solder. Avoid using 50/50 or 40/60, even though they're a little cheaper. The higher-lead ratios solidify gradually, while the 63/37 solidifies almost instantaneously, making "cold solder joints" very much less likely.

Also important is the gauge (or diameter) of the solder. For fine electronics work a fine gauge should be used, such as #20 (from #19 to #22 is OK). Again, the correct solder is easy to obtain from any local hobbyist electronics outlet or TV repair shop. ERSIN Multicore or KESTER are two brands you can count on for good results. The solder included in the kit should be sufficient. If for some reason it is not, and you cannot obtain the proper solder locally, DO NOT USE any substitutes. More solder of the proper type can be obtained from IMSAI.

Soldering Technique

For a joint to solder correctly, enough heat must be applied so that both pieces of metal get hot enough to melt the solder. The tip of the iron should be applied so that it touches both the wire and the foil pad on the board. The end of the solder should then be touched to the junction of the iron, lead, and pad, so that a small amount melts and "wets" the joint (flows smoothly on both the lead and pad). As soon as the joint has wet, the iron can be removed, and the joint inspected immediately. Careful inspection of each joint is the key to successful soldering. While the solder is being applied, watch the joint carefully. You should be able to

see the solder flow onto the two surfaces. It should flow around the lead, and if you see that the solder has flowed only on one side of the lead, the iron should be re-applied (while watching the joint) to heat the joint enough for the solder to flow. (The typical reason for solder to flow only half-way around a lead is that not enough heat was applied.) For the normal joint, only a small amount of solder is needed (approximately 1/8" of 20 gauge solder wire) for it to flow all the way around the lead. Also, for the normal joint, only 2 to 4 seconds of heat applied from the iron is necessary. More heat and solder will be needed for some joints with larger leads and holes or large foil areas, but if more heat or solder is needed on typical component leads (like IC's), it is an indication that something is not right.

Since nearly all the holes in IMSAI printed circuit boards are plated-through (the inside walls of the hole have a metal surface, connecting the pads on the opposite sides and providing greater area for solder to adhere to) some solder will typically wick through and be visible on the top side of the board. This is normal. If small drops of solder appear on the top side, it is an indication that too much solder is being applied, along with more than sufficient heat. These balls of solder can easily short to neighboring pins and must be avoided. If the correct amount of heat or less than the correct amount was used along with too much solder, the solder remains on the bottom of the board (the side the solder is always applied from) and forms a blob which can easily short to neighboring pads or traces. If one of the small gaps between foil pads or traces has been shorted with too much solder, it can often be unshorted by running the hot iron lightly down the shorted trace, re-melting the solder at the shorted point and pulling it away with the iron. Do not leave iron on traces or pads too long when soldering or fixing a short, as overheated traces easily come off the board. As a result, very special care must be exercised for any component removal operation.

The tip of the iron must be kept clean to work well. Most stores that carry irons also carry small sponges in holders designed for cleaning hot tips. The tip is simply wiped on the wet sponge quickly. A damp rag will serve as well though less convenient. The tip must be kept adequately tinned at all times to avoid an oxide coating forming. It should appear bright and shiny. A small amount of solder should be melted onto the tip each time it is cleaned unless

a joint is to be made immediately. If a tip becomes oxidized, dipping it in a can of rosin flux is usually sufficient to enable solder to flow on it again. They may be cleaned of oxide by fine steel wool or other abrasive, but a plated tip should never be filed.

The tip of the iron should never have enough solder on it that it could drip off. If you find that solder tends to drip off the tip, you are undoubtedly using too much solder. A solder drip on a P.C. board is often extremely difficult to see, since it is the same color as the traces, and it is sure to short several traces and cause trouble or damage components when the board is operated. Inspect your boards very carefully for any such solder drips, shorts near soldered leads, incompletely soldered leads, and unsoldered leads. A 100% inspection of soldering should catch 99% of all problems before the board is even turned on. When soldering components with long leads (resistors, etc) we suggest clipping the leads after soldering so that lead clipping gives you an easy and positive way to check all the joints on those components. A completed unit will typically run when first turned on if the soldering was done correctly.

MOS IC HANDLING

Some of the chips in the kit are MOS type chips (such as the 8080A, 81ll and 8251). MOS chips are sensitive to static electricity and other large transient voltages. In order to prevent damaging these, some precautions should be followed. They all relate to avoiding the discharge of static through the pins on one of these chips.

Avoid working in a room with very low humidity. Wearing cotton fabric or other non-static forming fabrics will help. Air directly from a heater vent is typically extremely low in humidity and should be avoided in the work area. Keeping everything involved (chip, board, iron, tools, boxes, chip containers, work surfaces and you) at the same potential is required, and the biggest step in achieving this is continuous physical contact between them. For example, before removing a chip from a box and setting it on the table, the box should be set on the table, you should touch the table, and only then pick up the chip to place it on the table. Try to handle the chip from the ends rather than the pins as

much as possible, and always touch the chip's container or surface which it is touching before picking up the chip. Also touch a surface or container before placing the chip back in it. Touch a PC board before inserting the chip. Touch the soldering iron to the work surface or to a small piece of metal foil on the work surface before touching it to the PC board for soldering. In general, make sure the chip is not the path for any static discharge. Save MOS IC insertion as the last steps in assembly to avoid unnecessary exposure.

POLARITY

Many electronic components will not work if they are connected backwards. Any component which it is important to insert one way only will have a mark of some sort to indicate which way is which. The board where they go will have some sort of corresponding mark at each place, or an indication that all such components go the same way as a marked "typical" one.

I.C.'s

All I.C.'s must be inserted with Pin 1 in the correct location to avoid damaging the I.C. Pin 1 is indicated on the chips by several different marks. The most common is a rounded or square notch in the center of the end near Pin 1. Another common one is a slightly depressed or raised dot in the corner of the chip next to Pin 1. One or both of these will always be present to indicate Pin 1. Sometimes there are other circular markings on the centerline of the chip, usually towards one or both ends; these should be ignored. Often there is some kind of Pin 1 mark on the bottom of the chip also. (Note: Many I.C.'s have a code for date of manufacture which is a 4 digit code. e.g. 7425 would indicate manufacture in the 25th week of 1974. Do not confuse these with the device number. The code will be alone, the device number will have manufacturer-dependent suffixes and prefixes. e.g., SN7404N is a 7404 type chip. On the PC board, some Pin 1 indication will be found, such as a square pad, a dot, an arrow showing Pin 1 direction with the note "typical" (indicating all chips on the board face the same way), or similar mark.

The board or the chip is very likely to be damaged if there is a need to unsolder a chip that was soldered in with Pin 1 in the wrong direction. Unless you are completely sure you are capable of unsoldering an integrated circuit without damage to the circuit or the board, you should send the board back to the factory to have the work done for you. Remember that on these boards with plated-through holes, pins are not only soldered on the top where you see the visible bead of solder, but is soldered inside the hole which makes it much more difficult to remove.

Diodes

Diodes will typically have a band around the body, next to the cathode end. This corresponds to the bar on the typical diode symbol. The same is true for Zener diodes. A diode symbol should be found on the board or assembly diagram to indicate the proper mounting direction.

Capacitors

Some capacitors have a plus and minus lead; among them the tantalum and power supply electrolytic capacitors. Some mark on the body of the capacitor will indicate the plus lead, typically a + sign near it. There will be a mark (typically a + sign) on the board or assembly diagram to indicate the proper direction to mount the capacitors. A capacitor of this type is usually destroyed very quickly if power is applied to it in the reverse direction, so check your assembly carefully.

Transistors

Most transistors have a flat side or a small tab to indicate the lead orientation. If this indication is oriented according to the assembly diagram the leads should fit in the holes with little bending and no crossing.

IMSAI 8080 System General Assembly Notes

MOUNTING COMPONENTS

Integrated Circuit Chips (IC's)

Some of the chips come in a little plastic rectangle with an open bottom and top. These can be used as inserters by setting the carrier with the chips on a piece of felt or similar material on a table top and pushing lightly with a pencil eraser or small object that will fit in the top of the carrier, until the chip has slid down with the leads resting against the table. Now, because of the material, the leads will be sticking out beyond the carrier a little bit. If you then pick up the carrier and the chip and set it on the board, you can line up the little protruding tips of the IC's ends into the holes into which they are supposed to go, and while you are holding the carrier, push the chip the rest of the way into the board again with a pencil eraser or with an object that will fit inside of the carrier.

For the chips that do not come in a carrier, after you insert the ones that did come in a carrier, you could use those carriers to insert the others also, by turning the carrier upside down and setting one of the other chips on the carrier and pushing it into the carrier and then just continuing the same process described above, to insert it in its location.

For chips with no such inserter aid available, the pins should be bent inwards far enough to line up with the holes in the board. Bend the pins on each side equally. The whole row of pins on one side can be bent in uniformly if they are all pressed against a flat surface to bend them. After putting the chip in the board, two diagonally opposite pins can be

bent slightly to hold the I.C. in the board while soldering.

Take special care on each and every chip to observe the following points:

- That Pin one is in the correct direction. Refer to marking on the board or assembly instructions to determine which direction Pin one belongs.
- 2. After inserting the chip and before soldering, check that every pin went through the hole properly. Sometimes a pin will catch on edge of a hole and bend under the chip instead of going through. Care should be taken to avoid this happening and to check before soldering to make sure it has not happened.

After inserting one or two chips, get a feel for how much pressure is needed to push it out of the carrier. Any chips that seem to take more pressure indicate that perhaps one or more pins are not lined up with the holes properly. Most chips after insertion, will stay in the board securely due to the fact that the leads are normally bent outward somewhat and will hold the chip by pushing outward against the holes. Some chips, however, will be loose after inserted. Extra care should be taken to see that these are properly against the board when they are soldered. The board can either be set flat against the table or other surface that will hold the chips against the board or two diagonally opposite ends may be bent slightly to prevent the chip from dropping out.

Power Regulators

The 7805 regulators for the +5 volts are supplied with a heat sink and mounting hardware. The three leads must be bent down at the proper lengths to match the solder pads, and this should be done with the needle-nose pliers. The lead should come straight out and bend sharply down, rather than slope gradually towards the hole. After the leads are bent, the regulator can be fastened to the board along with the heat sink, using the short 6-32 screw down from the top, with the lockwasher and nut on the back. The regulator should be held to prevent turning while the nut is tightened firmly. The nut should be tight enough to insure good heat conductivity between the regulator and heat sink and board. Heat sink grease may be used if desired.

Discrete Components

Resistors and diodes can be installed most neatly using a lead bender to bend the leads consistantly. Most pads for this sort of component are .5" apart.

Disc ceramic capacitors often have the dipped insulation extending down the leads a short distance, preventing these from being pulled down all the way to the board. This insulation may be broken off by squeezing it in the pliers. Take it off until the bare wire comes up to the level of the bottom of the capacitor.

All discrete components should be held in their desired final position while being soldered. Normally this means holding them against the board by putting a slight bend in the lead behind the board so the component cannot lift from the board. (See the sketch for a way of bending the leads we find works better than simply finger-bending them slightly.) Components not held in place look sloppy and it is much harder to move them once they are soldered. In some cases, a little extra lead is needed, such as to lay the disc capacitors down on top of the chips on the front panel board. In these cases the solution is again to hold them in their final position during the soldering operation. This insures that the leads are left the proper length.

IMSAI 8080 System General Assembly and Test Instructions

RECOMMENDED ORDER OF ASSEMBLY

Step	Description	Described In
1	Assemble MPU and RAM boards. Check carefully.	MPU Chapter RAM Chapter
2	Assemble CP-A including switches and flat cable. Check carefully.	CP-A Chapter
3	Assemble electronic components on Power Supply. Check carefully.	PS-C Chapter
4 5	Assemble Mother board(s). Check carefully Assemble Chassis sheet metal: a. Install required number of card guides	Cabinet Assembly
	on card frames. b. Install fan (if supplied) on back frame Install line cord through grommet. c. Bolt together sheet metal parts. Instarubber feet.	
6	Install Power Supply Board in chassis.	Mainframe Assembly Section
	 a. Bolt board in place. b. Bolt transformer in place. c. Cut wires to length and crimp on (or solder on) lugs. d. Connect up Power Supply except for wires to Mother board(s). 	
7	(Connect Mother boards together and) in- stall Mother Board(s) in chassis.	Mainframe Assembly Section
8	Connect wires to Mother board. Check carefully.	Mainframe Assembly Section
9	Prepare front plastic panel assembly.	CP-A Chapter
10	Plug CP-A board into Mother board. Connect wires to CP-A board. Install front panel assembly. Hold CP-A DIP cable out of way.	Mainframe Assembly
11	Check complete assembly carefully before applying power. Plug in machine and turn on. Test Power Supply voltages.	General Assembly and Test Instructions
12	Plug in MPU board and RAM board(s) and test system.	General Assembly and Test Instructions
13	Assemble other individual boards. Check carefully.	(Individual board chapters)
14	Install individual boards.	
15	Install required cables. Install Cable Clamp.	Cabinet Assembly Section
16	Install Switch escutcheon and cover and/ or Rackmount parts.	Cabinet Assembly Section

IMSAI 8080 System General Assembly and Test Instructions

MAINFRAME ASSEMBLY

Assembly of the mainframe consists of the following steps:

- ·Power supply installation
- ·Mother board installation
- ·Connection between power supply and mother board
- ·Installation of CP-A panel.
- ·Connection of power supply and front panel

POWER SUPPLY INSTALLATION

Remove #8 hardware from transformer on Power Supply p.c. board. Take care to not let the transformer damage the p.c. board. Put the five #8 screws in the cabinet bottom and secure with the 8-32 threaded spacers. Install the four $\frac{1}{4}$ "-20 nuts and spacers for the transformer similarly. Carefully lower the Power Supply Assembly onto the mounting screws so all the screws extend through the board Fasten with washers and nuts. See Figure 1. Complete the power supply by attaching the capacitor brace plate to the bases of the large capacitors with the adhesive backed foam tape on one side of the brace plate.

MOTHER BOARD INSTALLATION

Attach the Mother board to the cabinet base with the hardware supplied with the Mother board as shown in Figure 2. The front 100-pin connector should be located in front of the sheet metal front frame to accommodate the CP-A assembly.

CONNECTION BETWEEN POWER SUPPLY AND MOTHER BOARD

See the wiring drawing in the Power Supply chapter. Connect the following wires between the Power Supply and the system:

- a) 1 or 2 #18 gauge wire from holes at edge of -16 volt plane to -16 volt trace on Mother board.
- b) 1 or 2 #18 gauge wire from holes at edge of +16 volt plane to +16 volt trace on Mother board.
- c) 2 or 3 #14 or #12 gauge wire from +8 volt plane to +8 volt bus on Mother board.

MAINFRAME ASSEMBLY FIGURE 1

IMSAI 8080 SYSTEM GENERAL ASSEMBLY AND TEST INSTRUCTIONS

MOTHERBOARD MOUNTING SYSTEM

MAINFRAME ASSEMBLY

O FIGURE 2

- d) 2 or 3 #14 or #12 gauge wires from ground plane to ground bus on Mother board.
- e) 2 #18 gauge wires from External Switch pads to power switch on CP-A or on back panel.
- f) 2 wires (#18 or #20 gauge) from switched AC pads to fan (if fan installed) install insulated tubing over fan terminals.
- g) 3 wires from power cord to terminals W, G, and B on PS-C. Make sure the power cord wire colors match the label on the panel

INSTALLATION OF CP-A PANEL AND CONNECTION TO POWER SUPPLY

Plug the completed CP-A panel into the front 100 pin connector on the Mother board. Install the eight Allen head screws into the PEM nuts on the sheet metal front frame. Solder the two #18 gauge wires from the External Switch pads on the Power Supply assembly to the power switch pads on the CP-A panel. Provide as much clearance as possible between the connections on the CP-A board and the sheet metal front frame. Be careful not to damage the acrylic panels with the soldering iron.

CHECK OUT OF POWER SUPPLY

Before plugging in circuit boards except the CP-A board, the unit should be plugged into the AC power supply and the power supply turned on by depressing the front panel rocker switch. The voltages at the outputs should then be measured (any DC volt meter with a full scale voltage of 20 to 50 volts will do) and the voltages should read approximately 18 volts on the +18 and -18 volt outputs, and 10 volts on the +8 volt output. If the voltage does not come to these values, a check should be made that the positive and negative terminals of the capacitors are connected properly and the diodes are mounted properly. If there is a problem with any of these items a wiring error has probably been made and the wiring should be rechecked carefully. If the wiring is checked and no error is found, assistance should be sought from a person knowledgeable in electronics or from the factory.

When the voltage of the capacitors has been checked out to be satisfactory, the unit may be turned off. A 10 minute wait will permit the capacitors to discharge. While there is considerable energy stored in the power supply filter capacitors when they are fully charged, the voltage levels are not high enough to present a danger. Some care should be taken, however, not to discharge the capacitors by shorting them with a tool or other metallic object.

With the Power Supply checked out and operating properly, the rest of the system is ready to be tested. The MPU board should be inserted in the slot behind the front panel with the flat cable inserted into the socket in the upper right hand corner of the MPU board before the board is fully seated.

The memory board should then be inserted in the third slot. While it is not necessary that the first memory board be addressed beginning at position 0, it is normally expected and the rest of this section will assume that the memory board jumpers were wired according to the directions in the User Guide section of the RAM-4A board for addressing the board at 0.

The slots in the Mother board are not unique and if a larger version (e.g., 22 slot) was ordered with more edge connectors, the boards need not be plugged into the second and third slot as directed but may be plugged into any slots.

SYSTEM FUNCTIONAL TEST

When the boards are installed, the machine is ready to test. Turn the power on with the front panel rocker switch and depress the RUN/STOP switch momentarily to STOP position and release. The WAIT light should be on and the RUN and HOLD lights should be off, with the other lights in various states at this time. Raise the RESET switch momentarily to the RESET position and release. All the lights on the bottom row in the ADDRESS BUS section should be indicating that the program counter is set to location 0. The WAIT light should still be on with the RUN and HOLD lights off. The DATA BUS lights may show various random bits on and the STATUS byte should have three lights on: MEMR, Ml, and WO. With all 16 ADDRESS switches in the down the EXAMINE/EXAMINE NEXT switch or 0 position,

IMSAI 8080

General Assembly and Test Instructions

should be raised momentarily to the EXAMINE position and released. Check that the lights after this operation are exactly the same as described for after the RESET switch was operated.

The machine is now ready to enter a small test program. For complete description of program operation in computers, read An Introduction To Microputers. For the initial machine test, the following program should be entered:

TEST PROGRAM 1

ADDRESS	HEX	BINARY	OCTAL	
0	DB	1101 1011	333	INPUT
1	FF	1111 1111	377	ADDRESS
2	D3	1101 0011	323	OUTPUT
3	FF	1111 1111	377	ADDRESS
4	C3	1100 0011	303	JUMP
5	00	0000 0000	000	LOW ADDRESS
6	00	0000 0000	000	HIGH ADDRESS

TEST PROGRAM 2

ADDRESS	HEX	BINARY	OCTAL	
0	DB	1101 1011	333	INPUT
1	FF	1111 1111	377	ADDRESS
2	2F	0010 1111	057	COMPLEMENT DATA
3	D3	1101 0011	323	OUTPUT
4	FF	1111 1111	377	ADDRESS
5	C3	1100 0011	303	JUMP
6	00	0000 0000	000	LOW ADDRESS
7	00	0000 0000	000	HIGH ADDRESS

The address is now at 0 as indicated by the lights labelled ADDRESS BUS. Into position 0 we wish to put an input instruction.

The bit pattern for the input instruction must be set in the center group of switches labelled ADDRESS-DATA. Switches 7, 6, 4, 3, 1 and 0 should be placed in the up position. Compare these switch positions with the binary representation of the input instruction listed on the first line of test program 1. We wish now to deposit this bit pattern in memory position 0. Raise the DEPOSIT/DEPOSIT NEXT switch up momentarily to the DEPOSIT position and release. The address bus should still show 0 (no lights lit) and the data bus should now show the bit pattern set in the switches (bits 7, 6, 4, 3, 1 and 0 lit and bits 5 and 2 off).

Next, the bit pattern for the address of the input port should be written in position 1. This can be done by setting all eight ADDRESS-DATA switches up, corresponding with the address listed on line 2 of Test Program One, and the DEPOSIT/DEPOSIT NEXT switch depressed momentarily to the DEPOSIT NEXT position and released.

Now the address bus light should show position 1 (address bus light 0 on and all other address bus lights off). The data bus should show all eight lights lit corresponding to the bit pattern written here. Similarly, the next five lines of Test Program One should be set into the ADDRESS-DATA switches and deposited by operating the DEPOSIT NEXT switch, each time checking to make sure that the data bus lights correspond with the settings of the ADDRESS-DATA switches and that the address is correct indicating that no steps have been skipped or done twice.

When the last byte has been deposited in address position 6, then all 16 address switches should be returned to the 0 position (down) and the EXAMINE switch operated. This should reset the address bus lights to 0, and display the contents of the bottom word in memory on the data bus lights. (This should still be the binary pattern listed in line 1 of the Test Program). The EXAMINE NEXT switch can then be operated and the address bus lights should indicate address 1 (bit 0 on and all other bits off). The Data Bus should show the contents now of memory location one which should correspond to the second line of Test Program One listing (all ones).

The EXAMINE NEXT switch can be repeatedly operated, each time checking that the data located in the consecutive memory location corresponds exactly to the listing for Test Program One.

The EXAMINE switch can again be raised momentarily with the address switches all down, to return the machine to position 0, once it has been determined that all lines listed in Test Program One are stored correctly in the memory.

Now we can single-step through this program and watch the operation of the machine. With the machine sitting at 0 with the correct instruction on the data bus, and the MEMR, Ml and $\overline{\text{WO}}$ lights lit in the status byte, the processor is reading the first instruction out of memory into the processor for execution. If the SINGLE-STEP switch is either depressed or raised once, it will permit the processor to complete its cycle and begin the next cycle. The address bus lights will show position 1, the data bus will show all ones corresponding to the bit pattern in the Test Program, and the status byte will show MEMORY READ and $\overline{\text{WO}}$. The lack of an MI light in a status byte indicates that the processor is no longer fetching an instruction to execute, but rather this cycle it is fetching the address for the instruction which it has already stored internally.

If the SINGLE-STEP switch is operated once again, the address bus lights will all be lit. The status byte will show INP and $\overline{\text{WO}}$ and the data bus will at first show no lights on. If one or more switches in the left hand group of eight switches is now raised or lowered, the corresponding light on the data bus indicators will turn on or off. The processor is now executing the first instruction which was an input data from address FF hex (377 octal) which is the address for the programmed input port on the front panel. By means of this instruction with this address the processor is able to read the position of the eight switches in the left hand group. (The address being read is indicated by the lights in the address bus and, on input or output instructions, the address appears in both groups of eight lights on the address bus. Thus, for this address, all the lights in the address bus are lit.)

The switches in the left hand group should be left in the position of some up and some down to provide a recognizable pattern before continuing. With the pattern left in the left hand group of switches, the single step switch can be operated once more permitting the processor to complete the execution of the input instruction, and begin the next cycle. Having completed the input instruction, the next cycle will be a fetch cycle during which the processor reads the next instruction to be executed, which it will find in memory address position 2. The address bus lights should now show positon 2 (bit 1 on and all others off), and the data bus should indicate the bit pattern listed on line 3 of Test Program 1 for address position 2. This is the output instruction.

The Status Byte will again have MEMR, M1, and WO lights lit and the others off. When the single step switch is operated once again, the processor is permitted to complete the cycle during which it reads in the output instruction and begin the next cycle during which it will read the address of the output device. Since it is reading this address from the next memory position, (memory position 3), the address bus will have bits one and 0 on and the others off. The Data Bus will have all lights on indicating the bit pattern we stored in memory position 3. The status bit will show MEMORY READ and WRITE OUT lights on, and the Ml light is off at this time, indicating that this is not an instruction fetch cycle, but rather it is one of the cycles required to execute the last instruction fetched-in this case, reading the address to which the data will be output. When the SINGLE STEP switch is operated once again, the processor is permitted to complete the cycle of reading the output address in and begin the next cycle which is the output operation.

The output operation looks similar to the input in that the address of the output device appears in both the upper and lower half of the Address Bus, (again in this case lighting all the lights), and the data being output appears in the Data Bus, which should show the pattern previously set in the left hand group of switches. Since the data is being output from the accumulator in the processor where it was previously stored in the input instruction, it will not be affected by moving the switches in the left hand group at this time. The Status Byte shows the MEMR light off at this time and shows the out light on indicating that the processor is executing an output instruction. The WO light is off indicating that the processor's WRITE strobe is active. If the SINGLE STEP switch is operated once more, it will permit the processor to complete the WRITE operation and begin the next cycle. At this time, the PROGRAMMED OUTPUT lights at the top left of the panel, should be lit according to the complement of the pattern that was set in the switches. That is, for each switch that was set in the up position, the light will be out, and each switch that was set in the down position, the corresponding light will be on.

Since the processor has completed the output instruction the next cycle is used to fetch the next instruction to be executed, which it will read from memory position 4. In memory position 4 we had stored the jump instruction

which should now appear on the lights on the data bus indicators. As the SINGLE STEP switch is operated again, permitting the processor to complete the fetch of the jump instruction, and start the next cycle of executing that jump instruction, we find that the processor is reading the low half of the address from memory position 5. The status byte shows the MEMR and $\overline{\text{WO}}$ lights lit, and the Ml light is off at this time.

If the SINGLE STEP switch is operated once again, it will be seen that the processor is reading the high address byte previously stored in memory location 6.

The next operation of the SINGLE STEP switch permits the processor to complete the execution of that jump instruction, which is instructing the processor to take its next instruction to be executed not from memory position 7 but from memory position 0 as was stored in the two bytes following the jump instruction.

The Address Bus lights should now be all off indicating that the processor is indeed fetching the next instruction from memory location 0. The Data Bus should show the pattern that we wrote in memory position 0 as the input instruction. We have now completed one cycle of the loop in Test Program 1. Further operations of the SINGLE STEP switch will let the processor step through the execution of the loop additional times and each time through the loop it is possible to set a different pattern in the left hand group of switches to be read in and later to be written out to the PROGRAMMED OUTPUT lights. The RUN/STOP switch can be momentarily raised to the RUN position and released. This will permit the processor to run at the full clock speed which will result in the loop being executed roughly 50,000 times every second. Thus, as any of the switches in the left hand group of eight are moved while the program is running, the machine reads the new position essentially instantly and displays it in the PROGRAMMED OUTPUT port above.

It may have been puzzling that the lights in the PROGRAMMED OUTPUT port seem to indicate the opposite of what might have been expected when a bit was read in as a l and output to the PROGRAMMED OUTPUT port. This will serve as an example of the way logic design has been affected by the appearance of large scale integration and microprocessors. While it would have been entirely possible

and easy to provide a circuit modification such that when the data was put out as a 1 the light would be lit rather that turned off, such as addition to the circuit would have cost you more that the cost for byte of memory. The same function as the added circuit can be accomplished by adding one instruction to the loop which complements the data, that is, changes all ones to 0's and all 0's to 1's. Test Program 2 is exactly the same as Test Program 1 with the addition of one instruction between the input instruction and the output instruction, which will complement the data read in from the switches before it is output. If the machine is stopped and reset, Test Program 2 may be entered exactly the same way as Test Program I was and checked and then run through one or more cycles with the operation of the machine and to double-check that the program truly has been entered correctly. Then the RUN switch may be actuated to permit the loop to run at high speed.

With this change in the program, the PROGRAMMED OUTPUT port will show a light lit when the switch is positioned up to enter a 1 bit. Not only is this a less expensive way to achieve the function of causing the lights to turn on when the bit is entered as a 1, but it is a much more versatile solution since the operator can change his mind at a later date and either remove the complement instruction or change it to yet another instruction for a different result.

When single stepping through Test Program 2, the compliment data instruction is seen to use up only one cycle of the processor. We are able to see it being fetched to be executed, and when the SINGLE STEP switch is operated again, we are immediately fetching the next instruction. This will be true of any instructions which operate only on data which is already stored within the processor. Additional cycles are only necessary if additional information must be read in or out of the program processor itself.

After either loop is running, the RUN/STOP switch may be depressed to STOP at any time and the operation processor will stop during the fetch of the next instruction. Due to the speed at which the processor operates, it is impossible to tell beforehand at what point in the loop the processor will be at the exact instant that the RUN/STOP switch is moved to STOP, so that the processor will stop at different places in the loop for different times when the switch is actuated.

The switch may be raised to the RUN position starting at any point in the loop and the processor will continue to run at high speed beginning at the point. The flip-flop set by the RUN/STOP switch simply instructs the processor to wait at each cycle for a pulse which is generated by the SINGLE STEP switch to be received before executing the next cycle, and apart from waiting for this pulse, the processor executes exactly the same whether it is in the single run mode or stop mode.

The definition of a computer involves both the ability to execute in sequence of instructions which is stored inside the machine, also the ability to make a decision between on the value of data and as a result of that decision, choose between alternate possible paths of program step sequences to execute. Test programs 1 and 2 involve only the execution of a sequence of stored program steps and do not involve any decisions. Program 3 will illustrate the use of decisions in a computer program and should provide some interesting entertainment as well. It is a game program using the INPUT switches and the PROGRAMMED OUTPUT lights on the IMSAI 8080 front panel.

A pattern of lights in the PROGRAMMED OUTPUT ports is moved to the left one bit at a time, and the left hand bit which is "pushed off" the end of the programmed I/O register re-appears at the right end of the register. The rate at which the bit pattern is shifted to the left can be chosen by the binary number set in the front panel switches when the program is first started or when the machine is reset to start again. When a higher binary number is entered in these switches and program restarted, the bit pattern will shift to the left at a higher rate of speed. Initially, switches should be set for 2, that is all switches down except PROGRAMMED INPUT switch bit 1 on, in order that the bit pattern will be shifted slowly enough to easily see what the game program is doing. Once the program has been started, the rate at which the bit pattern is shifted to the left is not affected by any further movement of the front panel switches. From this time on, any time any one of the eight switches in the PROGRAMMED I/O group is changed, then the bit in the PROGRAMMED OUTPUT port which is directly above that switch at the moment is was moved, will change. If it was off before, it will turn on; and if it was on before it will turn off. The direction of travel of the switch is not significant--only that its position was changed. After a switch change is detected, and the light above it turned on or off as

appropriate, no further switch movements will affect the condition of any of the lights until the next shift to the left has occurred. This was done to give the switches time to stop bouncing and stay closed as the processor in this machine is quite fast enough to see the slight bouncing of the switch contact when it initially closes.

By waiting for the next data shift before recognizing any more switch changes, we are prevented from falsely interpreting a bouncing contact as a switch which was repeatedly opened and closed. The object of the game can be either to turn out all the lights in the shifting bit pattern by moving a switch when the bits are passing directly over it, or alternately to turn on all the bits in the shifting bit pattern by moving a switch when a bit which is off is directly over it. Any time the shifting bit pattern is all 0's or all 1's, no movement will be seen in the PROGRAMMED OUTPUT port but by moving any switch, one of the lights will be changed so that the motion is again apparent.

Players can compete for the shortest time to go from all 0's to all 1's, or the other way - from all 1's to all 0's. When the game has been mastered at one rotation speed, the switches can be set for a higher binary number and the system reset to cause the processor to go back to memory location 0 and begin execution of the program again, and a new switch setting will be read to result in a higher rate of rotation, which makes it harder to move a switch at the exact instant the bit desired to be changed is directly above it. If there were only a single light on, circulating across the output port, and the player, (in attempting to turn it off by moving the switch when the bit was directly over that switch) was too slow, then the bit will have shifted away so that it is now over the next switch to the left, not only will that bit not be turned off, but the bit behind will be turned on so that now there are two bits circulating across the register and the player is further away from achieving all bits turned off.

Knowledge of some of the internal structure of the 8080 processor will be necessary to understand the game program. The Intel data book contains complete information and functional specifications on the internal structure of the 8080 processor, but only the basic aspects of the structure need be known to understand the program operation.

Figure 1 shows the structural blocks in the processor which are important to the programmer. Central to the processor's operation is the register named the ACCUMULATOR. This register and all the others is like one eight bit position in memory or a small "blackboard" with room for only eight bits of either 1's or 0's to be written. When the input instruction was executed during programs 1 and 2, the pattern from the switches on the front panel was read into the ACCUMULATOR register, and when the OUTPUT instruction was given it was again the contents of the ACCUMULATOR which was output to the PROGRAMMED OUTPUT port on the front panel. All arithmetic is done in the ACCUMULATOR and, except for special instructions, (to permit other registers to be read to or from memory) all programmed input/output from either memory or input/out interfaces goes to and from the ACCUMULATOR. The INSTRUCTION register is another "blackboard" with room to store the address where it last read a program byte from memory so that when it finished the execution of that step, it can increment that address by one and use it to determine where to get the next instruction.

The STATUS BITS are 5 bits that are set to 1 or 0, according to the results of the last data operation performed in the ACCUMULATOR. One of the STATUS BITS or condition flags is the Z bit (zero bit) which is turned on when the last operation in the ACCUMULATOR resulted in the ACCUMULATOR being left all 0's. Otherwise, this bit is turned off. The second condition flag is the sign bit. If the most significant bit of the result of the last operation in the ACCUMULATOR has the value 1, this flag is set to 1, otherwise it is reset to 0. Three other condition flags are the sign parity and the auxilary carry, and their functions are described in the Intel Data Book on page 4-2. The fifth condition flag is a carry flag which is turned on if the last arithmetic operation produced an overflow. An overflow is produced, for example, when two numbers are added together and their sum is too large to be contained in the register into which it is put. For instance, if the ACCUMULATOR contained eight 1's and another number was added which contained the value 6, the correct answer would be the combination of the value 5 and a bit turned on in the 9th position. Since the ACCUMULATOR has only eight positions, the carry bit would be turned on.

Some of the STATUS BITS are affected by the operations in other registers than the ACCUMULATOR. For instance the carry bit is affected by additions made in the H and L registers by using the double add instructions. Use is made of this in the game program. There are five other registers in the processor, each of which is 16 bits long, and some of which are divided in half so that operations may be done with only 1/2 at a time. The ADDRESS REGISTER is a 16 bit register over which the programmer has no control. It is simply used to output either the memory address or the input/ output address necessary to execute the next cycle. The other four 16 bit registers can all be used by the programmer. There are many instructions in the 8080A processor's instruction set whose function is to move data from any register to any other register, to permit arithmetic operations between a register and the ACCUMULATOR (with the result always being left in the ACCUMULATOR), and some special instructions to permit direct transfer of data from memory to a register, or vice versa.

The B, C, D, and E half registers are all general purpose registers. The H and L register pair and the STACK POINTER register pair both have special functions in addition to being usable for general purposes. The game program does not make use of these special functions.

with the basic structure of the processor in mind, we can now look at the operation of the game program. Larger programs cannot be readily understood or written by working directly on the list of machine instructions, such as we did for Test Programs 1 and 2. A flow diagram is essential to quickly follow the sequence of the instructions and understand how they work together to achieve the desired result.

Figure 2 shows a flow diagram for Program 2. Each program function is briefly described in a separate box, and the flow of the executive of the program is indicated by the lines. Test Program 2 was a simple loop with no decisions so that after executing the short sequence of instructions, the flow of the program is back to the beginning of the loop to begin again. Figure 3 shows the flow diagram for the game program. Although it need not be understood to execute the game program, a thorough understanding of how this flow diagram achieves the operation of the game will be a useful step towards writing your own programs.

FIG. 2

GAME PROGRAM LISTING

oc	TAL		HEX			
ADD.	INST.	ADD.	INST.	MNEMONIC	DESCRIPTION)
000 000	257	0000	AF	XRA, ₄A	Exclusive OR A to itself (put zero in A)	
001	147	01	67	MOV H, A	Move A to H (put zero in H)	
002	333	02	DB	INP	Input data	
003	377	03	FF		from front panel switches	
004	157	04	6F	MOV L, A	Move A to L	
005	371	05	F9	SPHL	Put H&L reg. into SP	
006	257	06	AF	XRA, A	Exclusive OR A to itself (put zero in A)	
007	201	07	81	ADD C	Put C in A, affecting flag bits	
010	302	08	C2	JNZ	Jump if not zero	
011	023	09	13		(skip switch test for debounce after a switch change)	
012	000	0A	00			
					IF NORMAL, CONTINUE	
013	123	0B	53	MOV D, E	Move E to D	
014	333	OC .	DB	INP	Input data	
015	377	0D	FF		from front panel switches	
016	137	0E	5F	MOV E, A	Move A to E	
017	252	0F	AA	XRA, D	Exclusive OR D to A	
020	302	10	C2	JNZ ·	Jump if result not all O's	
021	041	11	21		(change display if switch position changed from last time)	
022	000	12	00			
					IF SWITCHES UNCHANGED, CONTINUE	
023	071	13	39	DAD SP	Add SP to HL	
024	322	14	D2	JNC	Jump if no carry results	
025	006	15	06		(return to read switch loop if no carry yet)	
026	000	16	00			
					IF CARRY, CONTINUE	
027	170	17	78	MOV A, B	Move B to A	
030	007	18	07	RLC	Rotate left 1	
031	107	19	47	MOV B, A	Store A in B	
032	323	1A	D3	OUT	Output A	
033	377	1B	FF		in front panel lights	
034	257	1C	AF	XRA, A	Exclusive OR A to itself (put zero in A)	
035	117	1D	4F	MOV C, A	Move A to C (Reset debounce indicator)	
10					© 1975 IMS	> ASSOC
						1

IMSAI 8080

General Assembly and Test Instructions

GAME PROGRAM LISTING (CONT.)

j	oct	ΓAL	HEX	‹		
	ADD.	INST.	ADD.	INST.	MNEMONIC	DESCRIPTION
	036	303	1E	C3	JMP	Jump
	037	006	1F	06		(to read loop)
	040	000	20	00		
						CHANGE DISPLAY IF SWITCH DIFFERENT
	041	250	21	A8	XRA, B	Exclusive OR B with A
	042	107	22	47	MOV B, A	Store A in B
	043	323	23	D3	OUT	Output A
	044	377	24	FF		in front panel lights
	045	257	25	AF	XRA, A	Exclusive OR a with itself A (put zero in A)
	046	147	26	67	MOV H, A	Move A to H (set counter to insure enough delay for debounce)
	047	057	27	2F	CMA	Complement A (to all I's)
	050	117	28	4F	MOV C, A	Move A to C (set C to debounce)
	051	303	29	C3	JMP	Jump
į	052	006	2A	06		(to read loop)
	053	000	2B	00		

NOTE:

Exclusive OR of two switch patterns results in 1's in positions which were changed, with all 0's elsewhere.

B= DISPLAY BYTE STORAGE
C=SWITCH DEBOUNCE INDICATOR
I=DEBOUNCE 0=NORMAL OPERATION

D=LAST SWITCH SETTINGS
E=CURRENT SWITCH SETTINGS
H,L=DELAY COUNTER
SP=INCREMENT FOR DELAY COUNTER

CABINET ASSEMBLY INSTRUCTIONS

Begin by installing the correct number of plastic card guides on the chassis part C's. The card guides should be placed from the front backwards, an equal number on each piece C, taking care that the wedge - shaped opening of the slot is positioned upwards. Note that the two ends of piece C are not symmetrical. The end with the wider space between the last small hole for mounting the card guide and the end flange is placed toward the back of the cabinet, so that the guides will line up with the connectors on the Mother board.

The card guides should be assembled starting from the front end (with card guide mounting holes placed closer to the end flange). Make sure you place the card guide so as to form a left hand and a right hand mounting-rail piece. If this is not done, then the card guides will be upside down on one of the two piece 'C's when they are mounted into the cabinet. The card guides are most easily mounted using a small press and placing the tab of each card guide in position started into the hole and pressing them into place until the mounting tabs snap through. A drill press with a large flat - headed screw mounted in the chuck works well with this operation. (Alternately, the card guides may be installed very carefully using needle nosed pliers). Care should be taken that the tabs are started into the hole when beginning to press the guide into place, otherwise one or both may be bent out flat and broken off. One end of the guide at a time should be inserted rather than trying to press both ends in simultaneously.

If a fan is to be installed in the chassis, it should be assembled on the back frame piece Al at this time using the hardware in the fan kit. The fan terminals should be towards the top and towards the Mother board side of the chassis.

Next, the power cord should be inserted using the special grommet in the hole provided on the back panel. 4 to 6 inches of the power cord should be left on the inside of the cabinet. If the power cord grommet is squeezed together with a pair of pliers before insertion into the cabinet back, it will ease the job of inserting this tight fitting grommet. To insert the grommet, the power cord should be pulled through the hole nearly to the point where the grommet has been placed around the power cord, then the outer edge of the grommet can be grasped with a pair of pliers and squeezed slightly and inserted in the hole and worked in while slight tension is also being put on the cord from the back side to assist. Working this grommet in by rocking it back and forth works better than just pushing harder.

The front and back frames can now be screwed to the base plate using 6-32x5/16" machine screws. Note that the back frame fits under the base plate and the front frame fits on top of the base plate, set back about 1" from the front edge of the base plate. Next, install

IMSAI 8080 System Cabinet Assembly Instructions

the two card frames between the front and back frames. Use two 6-32x5/16" machine screws at each end of each card frame. The front and back frames have slotted holes allowing the card frames to be adjusted slightly when the Mother board is installed on the base plate and boards are inserted in the card frames.

The self-adhesive rubber feet can then be separated from each other, the protective backing removed, and placed on the bottom of the cabinet spaced 3 inches along the left hand and right hand edge of the bottom, to support the cabinet weight (see page 1-9).

BASE PLATE HOLE IDENTIFICATION

The base plate currently being shipped is a universal base plate, with extra holes for accommodating two styles of mother board mounting systems and two styles of power supplies. For the power supply and mother board systems shipped with your kit:

- Place the Power Supply p.c. board in the base plate cavity and line up the holes in the p.c. board with the corresponding holes in the base plate and mark (e.g., with a felttip pen) which holes are to be used.
- 2. The mother board mounting system uses the two rows of 12 holes each on the left side of the base plate.

SWITCH ESCUTCHEON INSTALLATION

When the CP-A Front Panel Assembly has been mounted, the Switch Escutcheon (piece A2B) can be installed on the base plate at the front of the computer using four 6-32x5/16" Phillips pan head machine screws. Note that the Escutcheon should fit under the base plate.

CABLE CLAMP INSTALLATION

Cables that do not fit the connector holes on the back frame of the chassis may be clamped for strain relief at the top of the back frame using the L - shaped aluminum bar, piece K. Install using two $6-32x^{1/2}$ Phillips pan head machine screws. Depending on the thickness of the cables being clamped, either of the two sides of the angle may be used.

TABLE TOP COVER INSTALLATION

To install the table top cover, slide the cover carefully over the chassis frame and hold in place with four $6-32x\frac{1}{2}$ " Phillips pan head machine screws.

Refer to Appendices for an exploded view of the chassis cabinet.

IMSAI 8080 System Cabinet Assembly Instructions

RACK MOUNT SYSTEM ASSEMBLY INSTRUCTIONS

For the rack mount system, begin by installing the rack mount cover on the chassis. Use five 6-32x5/16" Phillips pan head machine screws. Next install the left and right side plates to the chassis with the front flanges pointing outwards. Use four $6-32x\frac{1}{2}$ " Phillips pan head machine screws on each side plate. The forward holes in each pattern on the side plates should be used.

Next mount the assembly in the rack using two screws on each side of the front flanges. Hardware requirements for mounting the assembly into the rack will vary according to the individual rack. It is suggested that the rear of the assembly also be supported in the rack. Finally, mount the front face panel onto the side plate flanges using four #10 round head screws and clips.

NOTE: for installations without slides where easy removal of the computer is desired, the side plates can be mounted directly in the rack and the computer can be slid on its rubber feet on the bottom flanges of the side plates. The rear of the side plates in this case should be fastened securely to the back of the rack cabinet.

8080 Rack Mount Parts List

ITEM	IMSAI PART # QU	ANTITY	DESCRIPTION
	93-3010008	1	Rack Mount Front Panel Rev. C
	93-3070001	1	Rack Mount Left Slide Rev. C
	93-3070002	1	Rack Mount Right Slide Rev. O
	93-3010012	1	Rack Mount Cover Rev. B
Screw	20-3302001	5	6-32x5/16" Phillips Pan Head Machine Screw
Screw	20-3502001	8	6-32x4" Phillips Pan Head Machine Screw
Screw	20-5707001	4	#10x3/4" Flat Head Type B Self-Tapping Sheet Metal Screw
Screw	20-5708001	4	#10x3/4" Button Head Type B Self-Tapping Sheet Metal Screw
Nut	21-5650001	8	Speed Nut, Tinnerman C 9031-10Z-1

8080 CHASSIS Parts List

PARTS LIST

ITEM	IMSAI PART #	QUANTITY	DESCRIPTION
Screw	20-3302001	21	6-32x5/16" Phillips Pan Head Machine
Screw	20-3502001	6	6-32x4" Phillips Pan Head Machine
Screw	20-3702001	4	6-32x3/4" Phillips Pan Head Machine
Nut	21-3120001	4	6-32 Hex
Lockwasher	21-3350001	31	#6 Internal Star
Feet	28-0400001	8	Rubber Feet
Guard	34-0200001	1	Plastic Fan Guard
Label	93-0000002	1	8080 "Danger" Sticker
Frame	93-3010001	1	Front Frame Rev. D
Frame	93-3010002	2	Card Frame Rev. C
Frame	93-3010003	1	Back Frame Rev. C
Clamp	93-3010013	1	Cable Clamp Rev. A
Base Plate	93-4010004	1	8080 Chassis Base Plate Rev. C

Mother Board Functional Description

MOTHER BOARD

FUNCTIONAL DESCRIPTION

The IMSAI 8080 system Mother boards are available in three different length sections varying from a minimum of 4 printed circuit card connector positions. The basic system includes a Mother board with six connector positions on it. One is used for the front panel and the other five are available for the MPU and any combination of memory or I/O cards.

The card-to-card spacing on the Mother board is 3/4 inch except for the front position which is reserved for the front panel board or the parallel I/O board for the dedicated processor to accommodate mounting the card in the special front position in the cabinet.

Additional sections of Mother board are available with positions for 4 connectors. These may be added to the system at a later date, and connected to the previous Mother board sections by jumpers between the sections soldered into provided holes. No jumper wire soldering is required if the full-length board is purchased.

The Mother board is 1/16 inch printed circuit board with double-sided plated-through holes. Each of the connector pins is connected by traces on both sides of the board. Heavy power traces are provided to handle the very large currents involved in a fully-loaded back plane. The two connectors supplied with the IMSAI system are high-quality gold-plated-contact connectors, for reliable contacts and long life.

Trace spacing is tightly controlled on the board to avoid any close spots where shorts from solder bridges might tend to occur. The traces on Mother board are plated for better appearance and more reliable solder connections. A solder mask is provided on both sides of the Mother board.

XP-4

EXP-6

EXP-22 Rev. 1

Mother Board Parts List

 -	
 -	 -

		· ·	
ITEM	IMSAI PART #	QUANTITY	DESCRIPTION/IDENTIFYING MARKS
PC Board	92-0000004	1	4-Slot Printed Circuit Board
Washer	21-3330001	8 / -	#6 Sholder Fiber Washer
Spacer	21-4600001	4	6-32x4" Threaded Spacer
Nut	21-3120001	4	6-32 Nut
Screw	20-3701002	4	6-32x3/4" Nylon Screw
EXP-6			
PC Board	92-0000005	1	6-Slot Printed Circuit Board
Washer	21-3330001	16	#6 Shoulder Fiber Washer
Spacer	21-4600001	8	6-32x4" Threaded Spacer
Nut	21-3120001	8	6-32 Nut
Screw	20-3701002	8	6-32x3/4" Nylon Screw
EXP-22			
PC Board	92-0000006	1	22-Slot Printed Circuit Board
Wahser	21-3330001	48	#6 Shoulder Fiber Washer
Spacer	21-4600001	24	6-32x1 Threaded spacer
Nut	21-3120001	24	6-32 Nut
Screw	20-3701002	24	6-32x3/4" Nylon screw

MOTHER BOARD

ASSEMBLY INSTRUCTIONS

The Mother board appears to be the simplest of all the boards to assemble. The solder mask minimizes the chances of shorting adjacent traces. However, it is imperative that extra care be taken during assembly to avoid excess solder shorting adjacent pins. Because a short on the Mother board is extremely hard to locate and correct when it is between the board and the connector, it is worth the builder's time to give special attention to making certain that no such shorts occur. Use only as much solder as required for a good joint. If too much solder is used, either the pool of solder can short to an adjacent pin on the top side or the solder can leak through and form a ball on the backside which can also short to an adjacent pin.

The board should be checked with an ohmmeter carefully both before and after assembly to insure that it will operate properly. While the chance that incomplete etching during manufacture left two traces shorted is extremely slight, the ohmmeter check before assembly is worth while simply because it would be so difficult to correct such a problem after a socket is soldered in place over it.

To test the board, either a simple ohmmeter or a battery connected to a buzzer or a light bulb and test leads are all that is required. Each pair of adjacent traces should be checked with the continuity tester to be sure that there is no connection between them. Should any adjacent traces be found to be electrically connected during this pre-assembly check, careful inspection of the board should reveal the short. Any imcompletely-etched copper or other metallic path between the two traces shold be removed with a sharp knife, such as an X-acto knife.

After each connector is soldered in, the continuity check should be made again to make certain that during assembly no shorts were created. If any are discovered, steps should be taken to remove them before further assembly. In most cases, this short will have been caused by too much solder having been applied and may be removed simply by removing the excess solder. If an Extender board is available, a simple tester may be made from it by temporarily connecting all the pins on the front side, except pin 1, together, connecting all the pins on the back side, except pin 100, together and then connecting the continuity tester between the two sides of the Extender board. If this extender board is inserted in the socket as it is being soldered, the continuity tester will indicate immediately any short between any two adjacent traces.

SOCKET INSERTION

The 100 pin edge connectors are symmetrical so that they may be inserted either way. The connector stands off the board slightly supported by raised feed at each end. Each connector should be checked during assembly to make sure that it is seated properly and that the Mother board near the center of the connector is neither pushed further toward the connector nor lifted away before the connector is soldered in place to prevent the Mother board from bowing.

The Mother board is not completely symmetrical and the connectors must be inserted from the top side. The top side is the side on which the +8 volt foil is broken every 2 connectors to allow the 2 traces for + and -16 volts to extend from the 16 volt bus at the end of the board into the connector pins. The back side of the board has both the very heavy ground bus and the 1 inch wide 8 volt foil area continuous for the full length of the board. The +16 volt trace is the .2 inch trace on the edge of the board alongside the +8 volt bus on the front side, that is, the side where the +8 is broken to allow for the pairs of +16 volt traces to extend into the pins. The -16 volt bus is the .2 inch wide trace along the edge of the board on the back side underneath the +16 volt bus. NOTE: Before mounting any connectors, locate the front of the Mother board. The connector for the front panel (CPA board) needs to be mounted in the first position at the front of the Mother board. Notice that the spacing between the first and second positions at the front of the Mother board is wider than the spacing between any two of the other connector positions.

The suggested procedure for inserting and soldering a connector is to insert the connector in place, seat the two ends firmly against the feet and solder the two pins on each end.

Next, the position of the center of the Mother board next to the connector should be checked and either pushed further toward the connector or pulled away so that the gap between the connector and the Mother board is uniform all the way across. Then the two pins in the center of the connector should be soldered.

One final check should be made to make sure that the gap is uniform all the way across the connector and the remaining pins in the connector should be soldered.

Care should be taken to check each connector after solder to make sure that every pin was soldered because it is easy to miss a pin and not see it during a quick inspection. After the last connector is soldered in place and the board checked you are ready to install the power connections and mount the board in the cabinet.

See MAINFRAME ASSEMBLY section for connecting the Mother board to the Power Supply and mounting the Mother board in the chassis.

Mother Board

USER GUIDE

With the proper care taken during assembly, the Mother board should be the most reliable board in the system. The only attention the user will typically put on the Mother board, is when he desires to add more card slot positions. Either 4 slot extension Mother Boards may be added to the original 6 slot Mother Board, or the 6 slot board may be replaced by a new 22 slot board.

If 4 slot extension(s) are used, the extension(s) should be assembled according to instructions for assembling the original Mother board. Then the original Mother board must be removed from the cabinet and jumpered to the new section by the use of short wire jumpers between the connection points provided in each trace.

The power buses should be connected with a much heavier wire. The two boards can then be reassembled into the cabinet.

Care should be taken when inserting jumpers that each goes between the corresponding lines on the two sections of Mother board.

IMSAI 8080 BUS SIGNAL LIST

1	+8v
2	+16v
3	XRDY
4	VIO
5	VIT
6	VI 2
7	VI3
8	<u> </u>
9	VI 5
10	VI 6
11	VI 7
12	· · · · · · · · · · · · · · · · · · ·
13	
14	
15	
16	
17	
18	STATUS DSBL
19	CCDSBL
20	**
21	SS
22	ADDR DSBL
23	DO DSBL
24	02
25	0 1
26	PHLDA
27	PWAIT
28	PINTE
29	A 5
30	A 4
31	A 3
32	A 15
33	A 12
34	A 9
35	DO 1
36	DO 0
37	A 10
38	DO 4
39	DO 5
40	DO 6
41	DI 2
42	DI 3
43	DI 7
44	SMI
45	SOUT
46	SINP
47	SMEMR
48	SHLTA
49	CLOCK (2 MHz)
50	GND

51	+8v
52	-16v
53	SSW DSB
54	EXT CLR
55	*
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	MWRITE
69	****
70	***
71	RUN
72	PRDY
73	PIÑI
74	PHOLD
75	PRESET
76	PSYNC
77	PWR
78	PDBIN
79	AØ
80	AI
81	A 2
82	A 6
83	A 7
84	A 8
85	A 13
86	A 14
87	A 11
88	DO 2
89	DO 3
90	DO 7
91	DI 4
92	DI 5
93	DI 6
94	DI 1
95	DIØ
96	SINTA
97	SWO
98	SSTACK
99	POC
100	GND

^{*} reserved for chassis ground ** reserved for memory unprotect *** reserved for memory protect **** reserved for protect status

IMSAI 8080 SYSTEM BUS STRUCTURE

The IMSAI 8080 system bus structure consists of 100 lines. These are arranged 50 on each side of the plug-in boards, with pins 1 through 50 on the component side and pins 51 through 100 on the back side. As the board is viewed right-side up (components up, 100 pin connector towards you) pin #1 is on the left end on the top and pin 51 is on the back side directly opposite pin #1.

Conventions:

SYMBOLS: "P" prefix indicates a processor

command or control signal

"S" prefix indicates a processor status signal

LOADING: All inputs to a card should be

loaded with a maximum of 1 TTL low

power load

LEVELS: All bus signals except the power

supply are TTL. All Data and Address lines are positive TRUE (ground = 0 bit)

Front Side			
No.	SYMBOL	NAME	FUNCTION
1 1 1	+8V	+8 volts	Unregulated input to 5v regulators
2	+16V	+16 volts	Positive unregulated voltage
3	XRDY	External Ready	Used by Front Panel: Pulling this line low will cause the processor to enter a WAIT state and allows the status of the normal Ready Line (PRDY) to be ex- amined.
4	<u>V10</u>	Vectored Interrupt Line #0	

	t Side		
NO	SYMBOL	NAME	FUNCTION
.5	VII	Vectored Interrup Line # 1	t
6	V12	Vectored Interrup Line #2	t
7	<u>V13</u>	Vectored Interrupt Line #3	t
8	V14	Vectored Interrupt Line #4	±
9	<u>V15</u>	Vectored Interrupt Line #5	E .
10	<u>V16</u>	Vectored Interrupt	=
11	<u>v17</u>	Vectored Interrupt	=
12 to 17	UNUSED		
18	STATUS DSBL	STATUS DISABLE	Allows the buffers for the 8 status lines to be tri- stated
19	CC DSB	COMMAND CONTROL DISABLE	Allows the buffers for the 6 output command/control lines to be tri-stated
20	UNPROT	UNPROTECT	Reserved for input to the memory pro- tect flip-flop on a given memory board
21	ss	SINGLE STEP	Used by Front Panel to disable input buf- fer while panel drives bidirectional data bus

Front	Side		
No	. SYMBOL	NAME	FUNCTION
22	ADDR DSBL	ADDRESS DISABLE	Allows the buffers for the 16 address lines to be tri-stated
23	DO DSBL	DATA OUT DISABLE	Allows the bidirectional data bus drivers for the 8 data lines to be tristated for both input and output data buses
24	Ø2	Phase 2 Clock	
25	Øl	Phase 1 Clock	
26	PHLDA	Hold Acknowledge	Processor control output signal which appears in response to the HOLD signal; indicates that the data and address bus will go to the high impedance state on the 8080. Note: ADDR DSBL and DO DSBL must be driven to ri-state the system bus
27	PWAIT	WAIT	Processor control output signal which acknowledges that the processor is in a WAIT state
28	PINTE	INTERRUPT ENABLE	Processor control output signal indicating interrupts are enabled: may be set or reset by EI and DI instruction and inhibits interrupts from being accepted by the CPU if it is reset

Front Sid	e SYMBOL	NAME	FUNCTION
29	A5	Address Line #5	
30	A4	Address Line #4	
31	A3	Address Line #3	
32	A15	Address Line #15	
33	A12	Address Line #12	
34	A9	Address Line #9	
35	DO	Data Out Line #1	
36	DO0	Data Out Line #0	
37	A10	Address Line #10	
38	DO4	Data Out Line #4	
39	DO5	Data Out Line #5	
40	DO6	Data Out Line #6	
41	D12	Data In Line #2	
42	D13	Data In Line #3	
43	D17	Data In Line #7	
44	SMl	Ml	Status output signal that indicates that the processor is in the fetch cycle for the first byte of an instruction
45	SOUT	OUT	Status output signal which indicates that the address bus contains the address of an output device and the data bus will contain the output data when PWR is active

Fro	ont Side <u>No.</u>	SYMBOL	NAME	FUNCTION	
	46	SNIP	INP	Status output signal which indicates that that the address bus contains the address of an input device and the input data should be placed on the data bus when PDBIN is active	
	47	SMEMR	MEMR	Status output signal which indicates that the data bus will be used for memory read data	
	48	SHLTA	HLTA	Status output signal which acknowledges a HALT instruction	
	49	CLOCK	CLOCK	2 MHz clock signal	
	50	GND	GROUND		
D	ck Side				
рач	No.	SYMBOL	NAME	FUNCTION	
	51	+8V	+8 volts	Unregulated input to 5v regulators	
	52	-16V	-16 volts	Negative unregulated voltage	
	53	SSW DSB	SENSE SWITCH DISABLE	Disables the data in- put buffers so the input from the sense switches may be strobed onto the bi- directional data bus	
,	54	EXT CLR	EXTERNAL CLEAR	Clear signal for I/O devices (front panel switch closure to ground)	ĺ

	Side	SYMBOL	NAME	FUNCTION
5	55	CGND	CHASSIS GROUND	
t	66 60 67	UNUSED		
6	8	MWRT	MEMORY WRITE	From the Front Panel indicates that the current data on the Data Out Bus is to be written into the memory location currently on the address bus
6	9	PS	PROTECT STATUS	Reserved to indicate the status of the memory protect flip- flop on the memory board currently ad- dressed
7	0	PROT	PROTECT	Reserved for input to the memory protect flip-flop on the memory board current- ly addressed
7	1	RUN	RUN	Indicates that the RUN/STOP flip-flop is set to run on the front panel
7.	2	PRDY	READÝ	Processor command/ control input that controls the run state of the pro- cessor; if the line is pulled low the processor will enter a wait state until the line is released

Back :	Side <u>o.</u>	SYMBOL	NAME	FUNCTION	
7	3	PINT	INTERRUPT REQUEST	The processor recognizes an interrupt request on this line at the end of the current instruction or while halted. If the processor is in the HOLD state or the Interrupt Enable flip-flop is reset, it will not honor the request	
7 .	4	PHOLD	HOLD	Processor command input signal which requests the processor to enter the HOLD state; allows an external device to gain control of address and data buses as soon as the processor has completed its use of these buses for the current machine cycle	
7 !	5	PRESET	RESET	Processor command input; while activa- ted the content of the program counter is cleared and the instruction register is set to 0	
7(6 F	PSYNC	SYNC	Processor control output provides a signal to indicate the beginning of each machine cycle	
7	7	PWR	WRITE	Processor control output used for memory write or I/O output control; continued next page.	

Back Side <u>No.</u>	SYMBOL	NAME	FUNCTION
77	PWR	WRITE	Con't.: data on the data bus is stable while the PWR is active
78	PDBIN	DATA BUS IN	Processor control output signal indicates to external circuits that the data bus is in the input mode
79	A0	Address Line #0	
80	Al	Address Line #1	
81	A2	Address Line #2	
82	A6	Address Line #6	
83	A7	Address Line #7	
84	A8	Address Line #8	
85	Al3	Address Line #13	
86	A14	Address Line #14	
87	A11	Address Line #11	
88	DO2	Data Out Line #2	
89	DO3	Data Out Line #3	
90	DO7	Data Out LIne #7	
91	D14	Data In Line #4	
92	D15	Data In Line #5	
93	D16	Data In Line #6	
94	D17	Data In Line #1	
95	D10	Data In Line #0	

Rac	k Side			
	No.	SYMBOL	NAME	FUNCTION
	96	SINTA	INTA	Status output signal to acknowledge sig- nal for INTERRUPT request
	97	SWO	WO	Status output signal indicates that the operation in the Current machine cycle will be a WRITE memory or output function
	98	SSTACK	STACK	Status output signal indicates that the address bus holds: the pushdown stack address from the Stack Pointer
	99	POC	Power-On Clear	
	100	GND	GROUND	

POWER SUPPLY PS-28U Functional Description Revision 1

POWER SUPPLY PS-28U

FUNCTIONAL DESCRIPTION----

The IMSAI PS-28U is a modular, unregulated power supply for the IMSAI 8080 System. It provides the basic unregulated +8, +16, and -16 system supply voltages and can be configured for the following AC input voltages at either 50 or 60 Hz: 92, 103.5, 115, 126.5, 184, 207, 230, and 253 VAC single phase input.

A power switch location is provided on the PS-28U for use when a front panel is not installed in the system. There is also a line filter and 50/60 Hz switched and unswitched terminals for connecting auxillary power outlets on the back panel.

Physically, the PS-28U measures 16.5" \times 5.75" \times 5.5" (42 \times 15 \times 14 cm) and weighs 16 pounds (7.3 kg).

SPECIFICATIONS PS-28U SUPPLY-----

Power Requirements:

Input Voltages:

92, 103.5, 115, 126.5, 184, 207, 230, and 253 volts, single phase, 500 watts (max)

No Load Voltages:

115 VAC, 60 Hz input, nominal taps #6 and #9 in parallel with taps #1 and #4

+ 8v. supply: + 9.7 volts +16v. supply: +18.0 volts -16v. supply: -18.0 volts

Current Supplied:

At 115 VAC, 60 Hz, resistive load:

28.0 amperes at 7.0 volts ripple valley 4.5 amperes at +13.5 volts ripple valley 4.5 amperes at -13.5 volts ripple valley

POWER SUPPLY PS-28U Theory of Operation Revision 1

At 100 VAC, 50 Hz, resistive load:

25.0 amperes at +7.0 volts ripple valley

4.0 amperes at +13.5 volts ripple valley

4.0 amperes at -13.5 volts ripple valley

THEORY OF OPERATION-----

The PS-28U is an unregulated power supply that provides the basic +8, +16, and -16 voltages for the 8080 system. It is comprised of four major component assemblies: line filter, transformer, rectifiers, and filters.

Line Filter: The line filter is a triple PI L-C filter designed to remove high frequency noise present on the AC line. This filter attenuates line noise above lMHz in frequency.

Transformer: The transformer is primarily designed for a number of AC input voltages: 92, 103.5, 115, 126.5, 184, 207, 230, and 253 VAC, 50/60 Hz, single phase input. The transformer secondary is connected as three series windings with a center tap. Four MR 1121 diodes full-wave rectify the +8 volts, while a full-wave bridge of four MR 501 diodes rectify the + 16 volts.

Filtering: The ± 16 volt supplies are each filtered by a $10 \, \mathrm{K}$ uF capacitor to ground, providing ± 15 average volts at 4.0 amps. The +8 volts is filtered by two 95K uF capacitors to ground, providing 7.3 average volts at the 28 amp rated current.

.l uF capacitors high frequency bypass each voltage supply and bleeder resistors discharge the filter capacitors when power is turned off.

1.6

;

BOARD: PS-C

ITEM	IMSAI PART #	QUANTITY	DESCRIPTION/IDENTIFYING MARKS
Solder	15-0000001	5'	Rosin Core
Heat Sink	16-0100006	1	Wakefield 690-220-P, Modified
Screw	20-3402001	4	6-32x3/8" Phillips Pan Head Machine
Screw	20-3702001	. 4	6-32x3/4" Phillips Pan Head Machine
Screw	20-4401001	. 3	8-32x3/8" Binding Head Machine
Screw	20-4901001	5	8-32x1½" Binding Head Machine
Screw	20-5402000	8	10-32x3/8" Binding Head Machine
Screw	20-6901001	4	الإ-20x1 المات Binding Head Machine
Nut	21-3120001	8	6-32 Cad Hex Nut
Lockwasher	21-3350001	8	#6 Internal Tooth
Nut	21-4120001	5	8-32 Cad Hex Nut
Lockwasher	21-4350001	5	#8 Internal Star
Spacer	21-4600002	5	8-32x½" Nylon Threaded
Nut	21-5120001	4	10-32 Cad Hex Nut
Lockwasher	21-5320001	4	#10 Cad Split Ring
Lockwasher	21-5350001	8	#10 Internal Star
Nut	21-6120001	4	¹ z-20 Cad Hex Nut
Washer	21-6310001	4	الا"x1/16" Cad Flat Washer
Lockwasher	21-6320001	4	ង្ហ Split Ring
Washer	21-6390001	4	½"x1/16" Nylon Washer
Spacer	21-6600001	4	년-20x년" Nylon Internal Thread
Wire	22-1014001	4 8''	14 AWG, White, Alpha 1559, 14-41/30 PVC
Wire	22-1014002	60"	14 AWG, Black, Alpha 1559, 14-41/30 PVC

PS-28U Parts List

	IMSAI		·	•
ITEM	PART #	QUANTITY	DESCRIPTION/IDENTIFYING MARKS	
Wire	22-1018001	60 ''	18 AWG, Orange, Gavitt 8522	
Wire	22-1018002	60"	18 AWG, Yellow, Gavitt 8522	
Wire	22-5018001	12"	Twisted Pair, 18 AWG, Yellow/orange, Stranded and Insulated	
Line Cord	22-6000001	1	Belden 17239	
Grommet	24-0600001	. 1	Strain Relief Bushing Grommet	
Terminal Lug	25-0100001	5 _.	Panduit PV-14-10LF (Viny1)	
Terminals	25-0100002	10	Solderless, ½", Vaco # D 18304	
Transformer	29-0100010	1	Tranex 4-3819-1 Dual Primary	
Inductor	29-0200001	3	8uH, 5 Amp, Airco Speer 025834-001K	
Resistor	30-3470462	1	470 Ohm, ½ Watt/Yellow, Violet, Brown	
Resistor	30-4100462	2	1K Ohm, ½ Watt/Brown, Black, Red	-
Capacitor	32-2004010	6	.04uF, 500 V Disk Ceramic (.01uF, 1000 V)	
Capacitor	32-2010010	3	.luF, 30 V Disk Ceramic	
Capacitor	32-2510060	2	10KuF, 25 V Electrolytic	
Capacitor	32-2595060	2	95KuF, 15 V Electrolytic	
Fuse	33-0100003	1	Bussman Fusetron MTH 5, 5 Amp	
Fuse	33-0100004	1	Bussman Fusetron AGC 2½, 2½ Amp	
Fuse Clip	33-0200001	2	# 102068	
Fan Guard	34-0200001	. 1	Rotron 476042	
Rectifier	35-1000002	2 4	MOT MR 1121	
Diode	35-1000003	3 4	MOT MR 501 (Alt: 30S1)	
PC Board	92-0000024	1	PS-C Rev. 1	
Label Plate	93-0000001	1	Voltage/Frequency Label Plate	(

ASSEMBLY INSTRUCTIONS -

() 1. Unpack your board and check all parts against the parts lists enclosed in the package.

COMPONENT INSTALLATION

- () 2. Insert and solder each of the two lK Ohm, ½ watt resistors (brown, black, red) at locations Rl and R2 as shown on the Assembly Diagram.
- () 3. Insert and solder the one 470 Ohm, h watt resistor (yellow, violet, brown) at location R3 as shown on the Assembly Diagram.
- () 4. Insert and solder each of the three .luF capacitors at locations C5, C6 and C4 as shown on the Assembly Diagram.
- () 5. Next, bend each of the cathode leads on each of the four rectifier diodes CR4, CR5, CR6 and CR7 as shown in Figure 2. Insert the anode end of of the diodes down as shown in Figure 2 and solder. NOTE: See Assembly Diagram for diode mounting position.
- () 6. Insert and solder each of the six .04 uF capacitors at locations C7 through C12 as shown on the Assembly Diagram.
- () 7. Insert and solder each of the three AC filter inductors at locations L1, L2 and L3 as shown on the Assembly Diagram.
- () 8. Insert and solder each of the two fuse clips in the appropriate locations as shown on the Assembly Diagram. Snap in the appropriate fuse.

TRANSFORMER WIRING

NOTE: There are five pages of diagrams following the the Assembly Instructions. Refer to them when wiring the transformer.

() 9. Transformer terminals are designated and used as follows:

POWER SUPPLY PS-28U Assembly Instructions

Prim	ary A	Primary B		
Pin 1	Common	Pin 6	Common	
Pin 2	20% Lo Line	Pin 7	20% Lo Line	
Pin 3	10% Lo Line	Pin 8	10% Lo Line	
Pin 4	Nominal	Pin 9	Nominal	
	(115/230 VAC)		(115/230 VAC)	
Pin 5	10% Hi Line	Pin 10	10% Hi Line	

Secondary (8080 Chassis)

Pin 13 AC Phase 1 to 8V Rect	Pin 11 AC Phase 1 to 16V Rect
Pin 15 AC Phase 2 to 8V Rect	Pin 17 AC Phase 2 to 16V Rect
Pin 14 Ground	Pin 12 tie to Pin 13 Pin 16 tie to Pin 15

Primary Wiring Configurations

Input VAC 50/60	Strap these Hz Primary lugs	and the second s	input VAC o these lugs
92 VAC	1 to 6, 2 to	7 6	and 7
103.5 VAC	1 to 6, 3 to	8 6	and 8
115 VAC	1 to 6, 4 to	9 6	and 9
126.5 VAC	1 to 6, 5 to	10 6	and 10
184 VAC	6 to 2	1	and 7
207 VAC	6 to 3		and 8
230 VAC	6 to 4	1	and 9
253 VAC	6 to 5	1	and 10

Again, be sure to refer to the accompanying diagrams when wiring the transformer.

- () 10. Solder a ½" solderless terminal to one end of two 9" yellow wires. Then solder the other ends to the pads at CR4 CR7. These wires then go to lugs #11 and #17 on the secondary of the transformer.
- () 11. The other secondary is wired as follows: Lugs #12 and #13 are wired together, and lugs #15 and #16 are wired together. Again, use the 4" solderless terminals for the connections to lugs #12 and #16; use black wire 5 inches long (#14 or larger). The connection to lugs #13 and #15 are made with the crimp terminals.

POWER SUPPLY PS-28U Assembly Instructions

- () 12. Attach a crimp terminal to a 3 inch piece of #14 black wire. Solder one end to the ground trace below lug #14 and then attach the crimp terminal to lug #14.
- () 13. Note: the AC input lines should be twisted together to avoid radiation.

 When operating between 92 VAC and 126 VAC, both COMMONs are tied together, the nearest applicable voltage taps selected and jumpered together, and the AC applied between COMMONs and the taps, essentially paralleling the primaries. It may be desirable to select the next lower taps when operating on 50 Hz line, or when using a fully-loaded chassis.
- () 14. For AC inputs between 184 VAC and 253 VAC, the primaries should be series connected. This entails selecting the taps as previously described. Now, the AC input goes between the COMMON of one primary and the selected tap of the other primary. A jumper is used between the selected tap of the first primary and the COMMON of the second primary to complete the series circuit. The same considerations regarding 50 Hz and full chassis apply here also as in the 115 VAC case preceeding. For 230 VAC operation, the AC line fuse should be changed to one-half the value recommended for 115 VAC to maintain the same overload protection.
- () 15. The fan (optional) leads always should be connected to lugs #6 and #9 or #1 and #4 to supply 115 VAC to the fan. This wiring is standard for all input AC wiring configurations.

HEAT SINK INSTALLATION

NOTE: Keep all wiring as short as possible, an extra two inches of #14 wire will reduce the current capacity of the Power Supply.

() 16. Insert the four 1121 rectifier diodes CRO through CR3 through the heat sink (only two are shown in Figures 1 and 3). Solder a 4 inch wire between the anodes of CRO and CR1 and solder a 4 inch wire between the anodes of CR2 and CR3. The wire used should be #14 or larger (the black wire).

POWER SUPPLY PS-28U Assembly Instructions

- () 17. Attach a crimp terminal to the wire from CRO and CRl. Connect it to terminal #15 of the transformer.
- () 18. Repeat above (#17) procedure for black wire from CR2 and CR3 and connect it to terminal #13 of the transformer.
- () 19. Install and bolt heat sink (and diodes) onto the PSC board.

NOTE: WARNING!!! OBSERVE POLARITY

The 4 large capacitors will be destroyed if power is applied while they are installed backwards.

On the two large capacitors CO and Cl, the negative side of the capacitor bolts to the DC ground plane of the PSC board. The positive end of capacitors CO and Cl bolts to the unregulated 8 volt plane of the PSC board.

- () 20. Place lockwashers on four 10-32x3/8" screws, insert them from the underside of the board and mount capacitors CO and Cl.
- () 21. In a similar manner, mount C3 with the negative terminal bolted to the ground plane and positive terminal bolted to the +16 volt plane.
- () 22. To install capacitor C2, bolt the positive terminal to the DC ground plane and the negative terminal to the negative (-16 volt) plane.

FAN INSTALLATION (OPTIONAL)

() 23. Attach the fan leads to lugs #6 and #9 or #1 and #4 to supply 115 VAC to the fan. This wiring is standard for all input AC wiring configurations.

SEE MAINFRAME ASSEMBLY SECTION TO INSTALL POWER SUPPLY IN CHASSIS AND CONNECT TO MOTHER BOARD.

WIRING CHART: 92 - 103 VAC 60 Hz IN Use next lowest line input taps when operating full chassis or on 50 Hz. See User Guide for more information. Use 5A fuse.

© 1977 IMSAI MFG. CORP.
SAN LEANDRO, CA.
ALL RIGHTS RESERVED WORLDWIDE
MADE IN U.S.A.

8 YRAMIRY A YRAMIRY

0

WIRING CHART: 115 – 126 VAC 60 Hz IN Use next lowest line input taps when operating full chassis or on 50 Hz. See User Guide for more information. Use 5A fuse.

 \bigcirc

0

© 1977 IMSAI MFG. CORP. SAN LEANDRO, CA. ALL RIGHTS RESERVED WORLDWIDE MADE IN U.S.A.

WIRING CHART: 184 – 207 VAC 60 Hz IN Use next lowest line input taps when operating full chassis or on 50 Hz. See User Guide for more information. Use 2%A fuse.

© 1977 IMSAI MFG. CORP. SAN LEANDRO, CA. ALL RIGHTS RESERVED WORLDWIDE MADE IN U.S.A.

10% HI FINE 10% HI FINE

SON TO TIME SON TO TIME

10% LO "

COM A

A YAAMIR9

JANIMON

10% 10

COM B

8 YRAMIRS

0

WIRING CHART: 230 – 253 VAC 60 Hz IN Use next lowest line input taps when operating full chassis or on 50 Hz. See User Guide for more information. Use 2½A fuse.

00

FRONT VIEW

0

© 1977 IMSAI MFG. CORP.
SAN LEANDRO, CA.
ALL RIGHTS RESERVED WORLDWIDE
MADE IN U.S.A.

.•

SECONDARY WIRING DIAGRAM

POWER SUPPLY PS-28U User Guide Rev. 1

USER GUIDE ----

The PS-28U User's only option is the selection of a transformer primary tap. The transformer provides primary taps which allow selection at AC input voltages ranging from 92 - 126.5 and 184 - 253 VAC at 50/60 Hz.

As the PS-28U is an unregulated supply, the supply voltages are dependent on the load conditions. The user may adjust his/her loaded voltage by picking an appropriate primary tap, but should be careful that the no load voltages do not exceed +11, +18 and -18 volts. These maximums are selected so that the power dissipated in the system's voltage regulators and zener diodes does not exceed the device ratings. Similarly, the user should not allow the +8 supply to fall below 7.0 volts, the point at which the 7805 regulators cease to regulate.

It may be desirable when operating at 50 Hz or with a fully loaded chassis to select the next lower primary taps. This will increase the amount of current available. But, in all cases, the load voltages should not exceed the above levels. Also, the +8 supply should not fall below 7.0 volts.

Large currents require extremely low resistance paths from the power supply to the motherboard. It is suggested that #14 wire in multiple lengths be used to connect the power supply to the motherboard, and that all wires be only as long as necessary. Special care is required to insure low resistance solder connections; the +8 and ground leads are especially critical in this regard. Any significant loss in the supply wiring reduces the power available at the motherboard.

The power switch leads may be connected to the pads provided, or the user may mount a switch directly on the PSC board. Unswitched (marked US) and switched (marked SW) AC pads allow the connection of external equipment.

•

IMPORTANT

When using the RAM-16, 32 or 65 boards in systems containing an IMSAI CPA board of Rev. 4 or earlier, make the changes described ECN 77-0039 which may be found in the Appendix of this chapter.

CP-A, Rev. 4 Errata ECO 77-0098 9/1/77

ERRATA

Reason for Change:

These modifications should be made to prevent the spurious triggering of one-shots on the CP-A while in RUN mode, causing unpredictable program execution.

Nature of Change:

This modification will disable one-shots (3 74123 Dual Monostable Multivibrators) during RUN.

Instructions:

On the component side:

- 1) Cut the trace between U23, Pin 11 and R60.
- On the solder side:
- 2) Cut the trace between Ul7, Pin 2 and feed through.
- 3) Cut the trace between U20, Pin 11 and U19, Pin 8.
- 4) Connect U20, Pin 11 to U22, Pin 6.
- 5) Connect U19, Pin 8 to load side of R60.
- 6) Connect Ul7, Pin 2 to Ul7, Pin 3.

Refer to the following diagrams for clarification.

ili

IMSAI SYSTEM CP-A REV. 4 COMPONENT SIDE ECO 77-0098

March 5,1977

CPA REV 4 MODIFICATION

Modification to cause front panel to always come up in "stop" mode at power-up time.

- 1) Cut (comp. side) U-22 pin 11 free. (U-22 pin 11
 was connected to U-22 pin 4 (ground) by a heavy
 trace under the chip.)
- 2) Connect (solder side) U-18 pin 13 to U-16 pins 11 $\underline{\text{and}}$ 12. Connect wire at the pads.
- 3) Connect (solder side) U-16 pin 13 to U-22 pin 11. Connect wire at the pads:

OPTIONAL MODIFICATION OF CP-A REVISION 4 OR EARLIER CP-A BOARDS TO CHANGE POWER SWITCH TO WRITE PROTECT/UNPROTECT SWITCH FOR USE WITH RAM 4A BOARDS.

REMOVE CP-A FROM CHASSIS

- A. Remove AC leads from pads A & B on CP-A, route to miniature toggle switch (e.g., C&K type 7101) mounted in ½" hole (provided) in rear of chassis. Connect to center and bottom terminals of switch.
- B. Carefully suck solder away from terminals of Power switch on CP-A using a solder sucker or pieces of copper braid. Use enough heat to melt solder, but do not overheat board. Unscrew the Power switch from the bracket and heat all 3 terminals simultaneously. (Use 3 irons, or "timeshare" one-moving between the terminals.) When all 3 terminals are hot enough, the switch will easily lift out. DO NOT PULL. Pulling will damage the pads.
- C. Cut the following traces (refer to diagram):

Between center and upper AC Power switch terminal (front side), ground lead going to HOLD light (back side), trace to resistor on HOLD light (after feed through) (back-side), trace to Mother board connector pin 20 (after feed through) (backside), trace to Mother board connector pin 70 (after feed through) (front side).

- D. Re-install a 3-position momentary switch in old AC Power switch position.
- E. Install two 470 Ohm, % watt resistors between ground and the heavy traces from the switch (or to U24 pins 12 & 14).
- F. Install the following jumpers:

From +5 to resistor from old HOLD light (other end than LED) From U22 pin 6 to switch center terminal

From pin 15 to pin 1 on U24

From the heavy trace (to the bottom AC Power switch terminal) to U24 pin $14\,$

From the heavy trace (to the top AC power switch terminal) to U24 pin 12

From U24 pin 13 to the pad connected to pin 70

OPTIONAL MODIFICATION OF CP-A (Continued)

From U24 pin 11 to the pad connected to pin 20

From the bottom terminal of the HOLD light (cut from ground) to pin 69 (solder to the top 1/16" of finger only)

Insert labels to change HOLD (for light) to MEM. PROTECT and to change POWER ON/POWER OFF to PROTECT/UNPROTECT.

Re-assemble CP-A to chassis

The right-hand switch now serves to change the protect status of the currently addressed block of memory when the machine is not in run mode. The LED which previously showed HOLD status now is lit when the currently addressed block of memory is protected.

Jumper to Pin 20

Cut

Cut

Jumper to Pin 69

Jumper to Pin 70

89

88

SOLDER SIDE

SOLDER SIDE

SOLDER SIDE

CP-A

FUNCTIONAL DESCRIPTION

The CP-A board is the operator's panel for the IMSAI 8080 System. It includes operator switches, indicator lights and all logic necessary to operate the IMSAI 8080 System.

The panel is completely self-contained and plugs into the back plane's 100 pin edge connector. With this design it is not necessary to mount the CP-A at the front of the cabinet. Instead, the board can be plugged (via an extender card) into any available slot in the back plane.*

A full set of 16 address switches and 6 control function switches accept operator control and input. LED indicators are provided for the 16 bit address bus, the 8 bit data bus, the 8 bit status byte (control indicators for INTERRUPTS, ENABLED, RUN, WAIT and 8 bits of programmed output.

The CP-A board contains the logic necessary to drive the 8 programmed output indicators and the logic needed to read an 8-bit input byte from the high-order address switches. The DATA BUS indicators are run from the bi-directional portion of the data bus (via a flat cable to the MPU board) and show data either being read or written by the 8080 processor.

The indicators on the panel are wide-angle-view light emitting diodes mounted behind a contrast-enhancing acrylic panel assembly. All indicators and switches are explicitly marked. The photographically produced labels are very clear, protected by clear acrylic, and can never wear off. Bit positions are numbered, and binary bit values are labeled for both hexadecimal

*The switches are included on the front panel whether it is mounted in the front of the panel or not.

CPA Functional Description

and octal formats. Special labels may be easily inserted to identify special functions for the programmed output port. Switches on the panel are high-quality paddle switches, and are color-coded for easy and error free use.

For situations in which it is not desired to locate the operator's panel at the cabinet front (such as use of the IMSAI 8080 as a dedicated controller), the CP-A front panel may be inserted (via extender card) into any back plane slot. In this arrangement, programs may be easily tested and debugged without time-consuming mounting and un-mounting of the front panel. For these applications, the front slot of the machine can be reserved for the parallel I/O board with its LED indicators showing through the front panel mask.

THEORY OF OPERATIONS

The CP-A front panel assembly provides machine status indicators, user controlled switches, and control functions to the IMSAI 8080 operator. The CP-A board communicates with the MPU-A microprocessor and other boards through the 8080 back plane and, additionally, connects (via 16 conductor flat cable) to the bidirectional data bus of the 8080 microprocessor.

The CP-A panel uses 44 Light Emitting Diodes as front panel indicators. Many of these indicators directly correspond to signal levels on the IMSAI 8080 back plane, and are driven directly from the bus with no intervening logic. Indicators in this group are the 16 Address Bus LED's, the 8 STATUS byte LED's, the INTERRUPT ENABLED LED, the WAIT LED, and the HOLD LED.

The 8080 microprocessor chips bi-directional data bus levels (provided by a 16-conductor cable) are displayed on the DATA bus indicators via the 74LS04 (low power schottky hex inverter) sections. Also driven from the bi-directional bus is the 8212 8 bit latch used to drive the PROGRAMMED OUTPUT indicators. The RUN indicator is driven directly from the run/stop flip-flop (74107) on the CP-A Board.

The 16 ADDRESS-PROGRAMMED INPUT and ADDRESS-DATA switches allow the operator to place desired value (program, data, addresses) on the 8080's bi-directional bus.

As shown on the schematic, these switches connect 7405 (open collector) inverters to the bus in a wired-AND configuration.

Pullup resistors on the MPU Board ensure that the bus levels are all high unless any inverter on any one of the bus lines goes low. Thus, if an inverter goes low, (this condition will be discussed shortly) the address switch can be used to put either a high or low value on that line.

The function switches provide the operator with direct control of the microprocessor. The RUN/STOP switch controls the X-READY line via the RUN/STOP flip-flop.

If the switch is set to RUN, on the next falling edge of the Phase II clock, the RUN and X-READY lines are set high. If the switch is set to STOP, the high STOP value and the Phase II clock are NANDed (Ul6) and this value NANDed with the DATA OUT 5 bit (fetch/status) and the PROCESSOR SYNC line.

Thus, when the processor is fetching a new instruction, the RUN/STOP flip-flop will be reset, the processor X-READY line goes low, and the processor stops.

Several CP-A function switches operate by providing the 8080 with an instruction, executing the instruction, and then stopping the processor on the next cycle. The open collector 7405's and support gating put these instructions on the 8080's bi-directional bus. The EXAMINE function uses a jump instruction (hex C3) followed by two bytes of the address selected on the front panel switches.

This operation causes the processor to jump to the selected address and, then, the processor is stopped during the next cycle. When stopped, the processor was reading the selected byte from memory as if it were going to execute it. Therefore, the processor stops with the desired address displayed on the address bus and the contents of that address is displayed on the data bus.

If the RUN switch is operated at this time, the processor will continue to pull the selected byte from memory and execute it.

The EXAMINE NEXT and DEPOSIT NEXT switches use similar schemes and the NO-OP (hex 00 or octal 000) instruction to increment the address.

Much of the remaining logic of the CP-A is used to sequence these commands to provide the desired functions. The RUN/STOP flip-flop line, the SINGLE STEP line, the EXAMINE line, and the EXAMINE NEXT line are all input to an OR-gate controlling the X-READY line. (The X-READY line must be high for the processor to run. Its

function is identical to the P-READY line used by the memory and I/O boards. The X-READY line is reserved for use of the front panel to avoid conflicts of two gates driving the same backplane line). During each of these functions, the processor is permitted to execute an instruction, and then is stopped in the next cycle in a manner similar to the RUN/STOP flipflop cycle described earlier.

For the SINGLE STEP function, a one-shot, triggered by the SINGLE-STEP switch, is used to produce a pulse and the trailing edge of that pulse is used to set a flip-flop which controls the SINGLE STEP line. This permits the processor to execute the present instruction. The SINGLE STEP flip-flop is reset by the occurrence of the sync pulse on the following instruction, thus causing the SINGLE STEP level to be removed and the processor to stop on the following cycle.

The EXAMINE-NEXT flip-flop is similarly controlled by the leading edge of a pulse from a one-shot driven by either the DEPOSIT NEXT or EXAMINE NEXT switch. The output of the flip-flop is used both to put the NO-OP (hex 00 or octal 000) onto the bi-directional data bus, and also to provide the READY signal so that the processor will execute the instruction. It is reset by the sync pulse on the following cycle, thus stopping the processor again.

The EXAMINE function involves a 4-step sequence produced by two flip-flops arranged as a counter. The pulse produced by the EXAMINE switch's one-shot starts the counter and on the first count, the jump instruction is inserted on the data bus. On successive counts of the two bit counter, the lower and upper address byte are inserted on the data bus in turn, and on the 4th count (that is, when the counter is back to 0), the processor is again stopped by the removal of the READY line. Thus, the EXAMINE logic provides the processor with the jump instruction and the two address bytes that the processor expects after a jump instruction and

stops the processor during the fetch of the designated memory byte. $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

Similarly, the DEPOSIT switch, when operated, produces a pulse from the DEPOSIT one-shot which is buffered to the MEMORY WRITE line on the backplane. The leading edge of this pulse also starts a second one-shot with a much longer period which puts the data from the data switches on to the data bus for the duration of the longer pulse. The DEPOSIT one-shots are triggered either by the operation of the DEPOSIT switch or by the trailing edge of the DEPOSIT NEXT one-shot so that the DEPOSIT function will operate at the end of the EXAMINE NEXT cycle.

The 7427 gate in U15.5 is used to insure that during the time the front panel is inserting any information on the bi-directional data bus, the MPU-A board's bi-directional data bus driver is not also trying to drive the bus at the same time.

The inputs to this gate are the DATA-ON line, the EXAMINE NEXT line and the EXAMINE line. These are the three functions during which the front panel is transferring data or instructions to the bus.

The inputs to the 7405 open-collector inverter bus drivers are the lines NO-OP, C3, HAD, and LAD. These levels are ANDed with the PDBIN signal so that the information appears on the bus during the time the processor is expecting to see it there.

The input port from the high order address switches is implemented simply by decoding the address FF and ANDing it with the DBIN signal so that switch values appear on the data bus during the time that the processor is expecting information from the port FF.

The same address decode signal is ANDed with the STATUS OUT line to enable the 8212 8 bit latch which drives the PROGRAMMED OUTPUT indicators. The information on the bi-directional data bus is then latched onto the output port at the time of the processor write strobe.

The STATUS WORD DISABLE line (SSWDSB, Pin 53 backplane) is gated to insure that no conflicts are created between the bi-directional bus drivers on the MPU and CP-A boards. This signal is controlled by the same gating that places the high order address switch values on the data bus for a front panel (address hex FF) read.

The STATUS WORD DISABLE line, Pin 53 in the backplane, is also run by the signal which puts the high order address switches onto the data bus for the port FF read instruction so that the bi-directional data bus is not being driven by the bi-directional drivers on the MPU board at the same time that the front panel is inserting the switch information on the data bus.

The RESET switch directly grounds the RESET line on the backplane which is detected by the MPU board and processed to form a RESET pulse which re-appears on the backplane as a Power On Clear.

When the RESET switch is thrown to EXTERNAL CLEAR, the switch directly grounds the EXTERNAL SWITCH line on the backplane. There is a diode between the RESET line and the EXTERNAL CLEAR line so that during a reset operation an EXTERNAL CLEAR is also generated.

CP-A REV. 4

CP-A REV. 4

İ

ĺ

BOARD: CP-A

	ITEM	IMSAI PART #	QUANTITY	DESCRIPTION/IDENTIFYING MARKS
	Solder	15-0000001	10'	
	Heat Sink	16-0100002	1	Thermalloy/6106B-14
	Screw	20-2203001	22	4xt" Slotted Hex Head, Self-Tapping, Type A Sheet Metal
	Screw	20-3203001	2	#6x1 Self-Tapping Sheet Metal
	Screw	20-3302001	1 .	6-32x5/16" Phillips Pan Head Machine
	Screw	20-3916002	8	6-32x14" Button Head Allen Machine, Black
	Nut	21-3120001	1	6-32 Hex
	Lockwasher	21-3350001	1	#6 Internal Star Lockwasher
	Spacer	21-3600001	8	#6xx" White Nylon
	Spacer	21-3600002	8	7/16" White Nylon
	Switch	26-1500001	8	Blue Paddle Switch, on/none/on
	Switch	26-1500002	8	Red Paddle Switch, on/none/on
	Switch	26-1500003	2	Red Paddle Switch, momentary
	Switch	26-1500004	3 '	Blue Paddle Switch, momentary
	Switch	26-1600001	1	Red Rocker Switch, on/none/on
	Resistor	30-3220362	44	220 Ohm, 's Watt/red, red, brown
	Resistor	30-4100362	9	lK Ohm, 4 Watt/brown, black, red
	Resistor	30-5470362	6	47K Ohm, 4 Watt/yellow, violet, black
	Resistor	30-6270362	1	270K Ohm, 'k Watt/red, violet, yellow
	Capacitor	32-2000110	2	.001uF Disk Ceramic
	Capacitor	32-2001010	1	.01uF Disk Ceramic
	_Capacitor	32-2010010	17	.luF Disk Ceramic

			Parts List
ITEM	IMSAI PART #	QUANTITY	DESCRIPTION/IDENTIFYING MARKS
Capacitor	32-2233070	2	33uF Tantalum
Diode	35-1000006	1	Signal Diode/lN914
LED	35-3000001	44	Light Emitting Diode/red
8 T 97	36-0089701	1	Hex Tri-State Buffer/N8T97B
7400	36-0740001	2	Quad 2 Input NAND/SN7400N
7402	36-0740201	2	Quad 2 Input NOR/SN7402N
7404	36-0740401	1.	Hex Inverter/SN7404N
74LS04	36-0740402	2	Hex Inverter (Low Power Schottky)/SN74LSO4N
7405	36-0740501	5	Hex Inverter Open Collector/SN7405N
7410	36-0741001	1	Triple 3 Input NAND/SN7410N
74LS10	36-0741002	1	Triple 3 Input NAND (LPS)/SN74LS10N
7427	36-0742701	1	Triple 3 Input NOR/SN7427N
7430	36-0743001	1	8 Input NAND/SN7430N
74LS30	36-0743002	. 1	8 Input NAND (LPS)/SN74LS30N
7805	36-0780501	1	5V Positive Volt Regulator/MC7305CP
8212	36-0821201	1	I/O Port/P8212/S1002
74107	36-7410701	3	Dual J-K Flip Flop With Clear/SN74107N
74123	36-7412301	3	Dual Monostable Multivibrator, Retriggerable with Clear/SN74123N
Cable Assembly	91-0400001	1	Cable K Assembly
PC Board	92-0000002	1	CP-A, Rev. 4
Plastic Panel	93-3010006	1	Clear Plastic Panel
Plastic Panel	93-3010007	1	Red Plastic Panel
Bracket	93-3010011	1	Switch Bracket
Photo Mask	93-3010015	1	
Paper Backing	93-3010016	1	

CP-A Rev. 4

ASSEMBLY INSTRUCTIONS

- Unpack your board and check all parts against the parts lists enclosed in the package.
- 2) If gold contacts on the edge connector appear to be corroded, use pencil eraser to remove any oxidation. NOTE: Do not use Scotchbright or any abrasive material as it will remove the gold plating.

LED INSTALLATION

For a professional appearing finished CP-A Board two items in the assembly are important: first, the mounting of the LED indicator lamps, and second, the mounting of the paddle switches. Care is necessary in the mounting of both of these items to insure evenly spaced, straight line rows of components. If they are assembled carefully, the panel will have a professional appearance second to none. If these two items are assembled haphazardly, the panel will function; however, it will have a distinctly less than workmanlike appearance.

For maximum ease in uniform assembling, the LED indicator lamps should be installed on the board first, before any other components have been installed. They should not be pushed fully against the board, but, rather, should be set up approximately 1/8 inch to place them closer behind the acrylic panel mask; this provides for a greater viewing angle during panel operation. A small easy-to-make jig is extremely useful in accurate positioning of the LED indicators. This mounting aid consists of 1/8 inch thick material. A piece of 1/8 inch plastic, aluminum or masonite, or two pieces of 1/16 inch material such as vector board or old printed circuit board make ideal jigs.

A 3/4 square inch piece of the 1/8 inch material, or two of the 1/16 inch material should be cut and a narrow slot, such as would be produced by a hacksaw or coping saw blade, cut into one side a little bit past the center. As each lightemitting diode is installed in the board, leads can be inserted through the short slot cut into this piece and then through the board and the LED should be pushed up hard against the 1/8 inch piece so that its base sits flat and it will be held accurately 1/8 inch away from the surface of the front panel board. The lead should be soldered from the back while someone is holding the LED against the mounting aid from the front. The mounting aid can then be slipped out from under the LED.

Take care that every LED is mounted in the correct direction with the cathode down towards the 100 pin edge connector at

the bottom of the board. The cathode can be recognized by its proximity to the flat side on the base of the light emitting diode.

4) Insert and solder each of the forty-four red LED's at locations:

LOO through LO7

LAO through LA15

LD0 through LD7

LSO through LS7

LIE, LHD, LRN, LWT

RESISTOR INSTALLATION

- 5) Insert and solder each of the forty-four 220 ohm ¼ watt resistors (red/red/brown) R16 through R59. See Assembly Diagram for location
- 6) Insert and solder each of the six 47K ohm % watt resistors (yellow/violet/orange) R3, R4, R5, R8, R9, and R12. See Assembly Diagram for location.
- 7) Insert and solder one 270K ohm % watt resistors (red/violet/yelly)
 Rl. See Assembly Diagram for location.
- 8) Insert and solder each of the nine 1K ohm 1/2 watt resistors (brown/black/red) R2, R6, R7, R10, R11, R13 through R15, and R60. See Assembly Diagram for location.

IC INSTALLATION

- Insert and solder each of the two 7400 IC's at locations U14 and U25.
- 10) Insert and solder each of the two 7402 IC's at locations Ul3 and Ul6.
- 11) Insert and solder the one 7404 IC at location UlO.
- 12) Insert and solder each of the two 74LS04 IC's at locations U8 and U15.
- 13) Insert and solder each of the five 7405 IC's at locations Ul, U3, U4, U6, and U7.
- 14) Insert and solder the one 7410 IC at location U12.
- 15) Insert and solder the one 74LS10 IC at location Ull.
- 16) Insert and solder the one 7427 IC at location Ul5.5.

CP-A Rev. 4 Assembly Instructions

- 17) Insert and solder the one 7430 IC at location U21.
- 18) Insert and solder one 74LS30 IC at location U9.
- 19) Insert and solder each of the three 74107 IC's at locations U18, U19, and U22.
- 20) Insert and solder each of the three 74123 IC's at locations U17, U20, and U23.
- 21) Insert and solder the one 8T97 IC at location U24.
- 22) Insert and solder the one 8212 IC at location U5.

DISCRETE COMPONENT INSTALLATION

NOTE: Lead allowance on all capacitors must be long enough to allow them to be flattened (or laid down) flush on the board or chip to facilitate front panel mounting.

- 23) Insert and solder each of the seventeen .luf capacitors at locations Cl, C2, C5, C6, C7, and Cll through C22.
 - C2, C3, C5, C6, and C7 should be laid down.
- 24) Insert and solder each of the two .001 uf capacitors at locations C3 and C8.
- 25) Insert and solder the one .01 uf capacitor at location C4.
- 26) Insert and solder the two 33 mf 25 volt tantalum capacitors at locations C9 and Cl0. NOTE: Observe polarity as marked on board.
- 27) Insert and solder the 1N914 diode at position CR1.

REGULATOR AND HEAT SINK

28) Before installing heat sink bend all the heat sink fins horizontally (outward) to facilitate front panel mounting. The middle fin located on the right hand side of the board (when mounted) should be broken off or bent inward in order to allow space for the INTERRUPT/ENABLE LED (LIE) to be seen through the front panel.

29) To install the regulator and heat sink first bend the 7805 regulator leads at 90 degree angles to a length which allows their insertion into the hole pattern of the CP-A board. Then place heat sink as shown in Assembly Diagram and insert regulator as described above. Use a #6 screw on the component side of the board and lockwasher and nut on the solder side of the board. Tighten the screw carefully to insure proper alignment of the heat sink to prevent shorting to adjacent traces.

CP-A TO MPU-A INSTALLATION

30) Using the 16 conductor ribbon cable with 16 pin 3M dual inline connector, insert one end into the hole pattern U2 from the back side of the CP-A board so that it can be soldered from the front (component side) of the CP-A board. The cable should be mounted so that it extends upward from the top of the chassis when the board is mounted.

SWITCH INSTALLATION

NOTE: There are three types of switches included for installation on the front panel (disregarding color). They include:

- A. One 2 position red rocker switch. This is the AC power switch.
- B. 5 momentary 3 position with spring return to center paddle switches - identified by the lack of a Nipple (raised portion) on the front of the switch mounting tab.
- C. 16 2 position no spring return paddle switches.

NOTE: Temporarily plug a 100 pin edge connector on the CP-A Board while switches are being soldered to help insure proper spacing between the PC Board and switch bracket.

31) The last step is the assembly of the switches and the switch mounting bracket. Note that the front panel includes switches whether mounted in the front of the cabinet or not. The POWER/ON/OFF Rocker Switch mounts at the extreme right switch position. The Paddle Switches are provided in both two-position and center-off spring return types. The two-position switches are used for the ADDRESS-DATA and ADDRESS PROGRAMMED INPUT location while the center offspring return are used for the Control Functions.

CP-A Rev. 4
Assembly Instructions

Both the Photographic mask and the paper backup sheet should be trimmed to size after assembly. Marks are provided on both, and they should be cut out carefully using a straight edge and a very sharp knife against a wooden cutting board. Scissors may be used if a guide line is first drawn on the sheets. The 8 holes for the assembly screws should be cut out on the mask and the paper sheet as indicated in the diagram. Then the protective paper may be removed from the two acrylic sheets and the sandwich assembled carefully. Avoid getting dush caught in between any of the pieces. A soft lint-free rag very slightly moistened can be an aid in cleaning any dust off plastic or file surfaces.

When the acrylic pieces, film and paper have been assembled, eight 7/16 inch spacers may be slipped over the screws and then the whole assembly inserted through the mounting holes on the CP-A board. Take care that there is no interference from any component standing too high and that the acrylic panels sit down completely on the 7/16 inch spacers against the board.

Eight $\frac{1}{4}$ inch spacers can then be slipped over the screws behind the CP-A board and eight #6 nuts and lockwashers can be put on to hold the sandwich together.

The panel board should now be ready to plug in and use. If the board is going to be assembled in the front location of a cabinet, to serve as a permanent front panel, the eight nuts should be removed at this time. Install the cap screws in the PEM nuts in the front panel sheet metal.

CP-A Rev. 4 Assembly Instructions

32) When the entire row has been spaced accurately, the board should be turned over and a center switch should be soldered in place taking care that the board is not bowed towards or away from the switches. When the board is positioned correctly, there will be a small space approximately 3/64 inch or slightly under 1/16 inch between the bottom of the switch and the front of the front panel board. The two end switches should be similarly checked to make sure that the spacing to the board is correct and soldered in place, and then one switch each at the ½ positions checked as to spacing from the board and soldered into place. Then the remainder of the switches can be soldered. Examine visually for solder splash or bent/unsoldered pins.

PANEL ASSEMBLY

Refer to the diagram to see how the clear front acrylic piece, the photograph mask, the die cut paper backup and the red acrylic panel are assembled in sequence with the $6/32 \times 1\frac{1}{2}$ inch button head screws.

USER GUIDE

The CP-A board contains no user option jumpers or any other special connections that must be made to use the board. If the panel is mounted in the IMSA 8080 cabinet then the power on/off switch should be connected using a separate wire to the power supply section as described in the Power Supply documentation. If the panel board is not going to be mounted in the cabinet, then the power switch should not be connected. In this case, the power switch on the inside or on the back of the cabinet would be used for controlling power to the IMSAI 8080.

Panel installation requires a backplane slot. The panel may be plugged directly into the front slot of the mother board (with the mounting screws from the acrylic face plate assembly extending through the metal panel immediately behind and secured with lock washers and nuts) or plugged on an extender card into any location in the back plane.* The 16 pin DIP plug on the end of the flat cable must also be inserted into the corresponding socket in the upper right hand corner of the MPU-A board.

Only one front panel should be plugged into the bus at any time to avoid conflicts between multiple driving sources on the same signal lines for some of the control lines between the front panel and the system bus. The front panel is now ready to operate.

The 16 ADDRESS-DATA and ADDRESS-PROGRAMMER INPUT switches are 2 position paddle switches and represent a 0 in the down position and a 1 in the up position. The switches are provided in two colors, and can be arranged either in color groups of four to assist programming in hexadecimal or color groups of 3, 3 and 2, to aid in octal programming.

The low order byte of address switches, serve to enter into memory either data or program instructions. These switches are labeled ADDRESS-DATA 0 through 7. Each byte of data or program that is to be entered from the front panel is set into these switches after the appropriate address has been selected and entered. The switch

^{*}Switches should be included whether the front panel is mounted in the front of the cabinet or not.

positions are not indicated on the indicator lights until the information is deposited in memory. At that time the information from these switches appears on the data bus. The high order byte of address switches is labeled ADDRESS-PROGRAMMED INPUT and these switches can be read by the program as input port position hex FF or octal 377. The additional labels 0 through 7 are provided above these switches to assist in interpreting the switch positions when being used as an input port. The position of these switches does not appear in the indicators until the input instruction from position FF is executed, during which execution time the switch positions appear on the data bus as it is being read into the 8080 processor.

The six control switches are grouped at the right end of the panel. They are center-off two-position spring-return switches with the exception of the POWER ON/OFF switch, which is a rocker type to eliminate accidental powerdowns. The function switches are provided in alternating colors for easy identification and to reduce operator error.

The RUN/STOP switch controls program execution. When the switch is pushed to the RUN position, a control signal is sent to the processor board and enables it to start or continue executing program instruction beginning in the location indicated at that time in the address bus lights. When the address switch is depressed to the STOP position, this enable signal is removed from the processor board at the beginning of the next instruction cycle so that the processor will stop executing during the fetch cycle for that following instruction.

When the processor is enabled to RUN, the RUN light above the RUN/STOP switch will be lit. When the processor has been stopped, the WAIT light to the right of the RUN light will be lit. During normal operation, the RUN light will be on full and the WAIT light will be on partially, the exact amount depending on how many wait cycles are required by the memory and peripheral devices being run by the processor at the moment.

The front panel must be holding the processor in the stopped condition for the SINGLE STEP switch, the DEPOSIT/DEPOSIT NEXT switch, or the EXAMINE/EXAMINE NEXT switch to operate.

The EXAMINE/EXAMINE NEXT switch provides the facility for observing what is stored in memory in any location or for setting the program counter to any desired location to initialize program execution there.

When examining the contents of a location in memory, the 16 address switches are used to enter the 16 bit address. This 16 bit address is normally said to be divided into two 8-bit sections labeled high order and low order. The high order address is on the left hand side of the panel, and the low order address is in the center. The low order byte contains bits 0 through 7 and the high order byte contains bits 8 through 15. When only a small amount of memory is being used the high order bits are normally 0 and the switches must be in down position, unless the address jumper selection on the memory board is wired otherwise.

When the EXAMINE switch is actuated, the processor jumps to the address location set in the 16 address switches and is stopped during the fetch cycle out of that memory location. At that time, the address bus indicators will show the address set in the 16 address switches and the data bus indicators will show the contents of that memory location. Any additional locations in memory may be observed by setting the 16 address switches to that desired address and actuating the EXAMINE switch again. When the EXAMINE NEXT switch is actuated, the address shown in the address bus indicators is incremented by 1 and the contents of that following memory location are displayed on the data bus lights. Thus, a program or data would normally be checked by setting the first address in the address switches and actuating the EXAMINE switch to see the first byte, and thereafter actuating the EXAMINE NEXT position to observe each succeeding byte of data or program.

The DEPOSIT/DEPOSIT NEXT switch is similar in its operation but provides for changing the data or program stored in the memory. When the switch is actuated to the DEPOSIT position, the values of the lower address byte switches, that is, bits 0 through 7 labeled Address-Data, are deposited into the address currently being indicated on the 16 address bus indicators. After the DEPOSIT switch is actuated, the data will appear on the data bus indicators. If the data was incorrect because the switches were set wrong, the switches can be changed, the DEPOSIT switch actuated again, and the new values will be deposited to memory in that same location.

When the DEPOSIT NEXT position is actuated, the address currently appearing in the 16 address bus indicators is first incremented by 1 and the data entered into the ADDRESS/DATA switches is deposited in that following location and will appear in the data bus. The DEPOSIT NEXT position functions exactly the same as depressing EXAMINE NEXT to increment the address bus by 1 and then actuating DEPOSIT to deposit the ADDRESS-DATA switch positions into that location.

When the processor is stopped, instructions may be executed one at a time through the use of the SINGLE STEP switch to the right of the RUN/STOP switch. If this switch is depressed or raised, the processor board is permitted to run one instruction, and it will stop when it is in the fetch cycle in the following instruction. Thus repeated operations of this switch permit the programmer to step through his program one instruction at a time and follow what the machine is doing, noticing on the data bus what the fetched instruction is, and on the address bus the location from which that instruction is being fetched. For instructions requiring multiple memory accesses, for instance those with an address following in the second or third byte, each operation of the SINGLE STEP switch advances through only one part of the instruction. Thus, each byte of the instruction being read in and each byte of data being read in or out may be observed on the panel.

The RESET/EXTERNAL CLEAR switch provides the system reset functions. When depressed to the EXTERNAL CLEAR position the CLEAR signal is given to all external input/output interface cards which are wired to be reset by this signal. When raised to the RESET position, the 8080 processor is reset. This sets the program counter to location 0 and then returns control to the processor. If the front panel is permitting the processor to run when the RESET switch is actuated, upon release of the RESET switch the processor continues execution starting at position 0. If the front panel was holding the processor in a stopped state, during the time the RESET switch was actuated, then the program counter will be set to 0. When the RESET switch is released, the processor will remain stopped and will be positioned at memory location 0.

The 8-BIT PROGRAMMED OUTPUT INDICATOR lights can be controlled by the program through the use of the output instruction to port location hex FF or octal 377. When 0 bits are output into this port, the indicator lights will be turned on and when 1 bits are output into this port, indicator lights will be turned off.

The STATUS BYTE INDICATOR LIGHTS display the condition of the status byte during the execution of that instruction. The 8 status bits included in the status byte are the Memory Read Bit, the Input Instruction Bit, the Instruction Fetch Bit M1, the Output Instruction Bit, the Halt/Acknowledge Bit, the Stack Operation Bit, the Write Output Complement Bit, and the Interrupt Acknowledge Bit. In normal front panel operation, whenever the machine is stopped and the EXAMINE, DEPOSIT, EXAMINE NEXT or DEPOSIT NEXT switches are being used, the MEMORY READ, the M1 INSTRUCTION FETCH, and the WRITE OUT COMPLEMENT STATUS lights should be on.

While single-stepping through a program, either these or other status lights will be on as appropriate to the instruction function being executed at that moment.

CP-A User Guide

For a more complete description of the functions of the status bits, reference should be made to the Intel-8080 Micro Computer Systems User's Manual. The INTER-RUPT ENABLED indicator is turned on whenever the interrupts are enabled into the 8080 processor by the INTERRUPT ENABLE INSTRUCTION. This light is turned off either by an interrupt occurring and the processor acknowledging it, or by the instruction to disable interrupts. The HOLD indicator light is lit whenever a special-purpose input/output card is holding the processor so as to gain direct access to the memory on the system bus.

APPENDIX

CP-A Modifications for Dynamic RAM

ERRATA FOR CPA REV. 4 AND EARLIER ECN 77-0039

- The following modification must be made to the CPA Rev. 4 or earlier Rev.'s if it is to be used with the RAM-16, RAM-32 or RAM-65 memory boards. This change makes the signal on backplane line 71 (RUN) agree with the bus definition. The change does not affect the CPA's compatability with other IMSAI products.
- 2. Refer to Figure 1 and make the following cut on the component side of the board.
 - (a) Cut the trace extending down from U24 pin 9.
- Refer to Figure 2 and make the following cuts on the solder side of the board.
 - (a) Cut the trace from U24 pin 10 between this pin and feed through $A_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$
 - (b) Cut the trace from feed through B near the spare IC location.
 - (c) Remove the entire pad of the feed through connected to edge connector pin 71.
- Refer to Figure 2 and install the following jumpers on the solder side of the board.
 - (a) From U22 pin 5 to U24 pin 10.
 - (b) From edge connector pin 71 to U24 pin 9.
 - (c) From feed through A to feed through B.
- Correct the schematic as shown in Figure 3.

• •

ECN 77-0039

MPU-A

FUNCTIONAL DESCRIPTION

The MPU-A board is the processor board for the IMSAI 8080 Microcomputer System. It is designed using the 8080 microprocessor chip. The bus arrangement and board connector has been chosen to be 100% compatible with the MITS Altair M8800 Microcomputer system so that all boards are 100% interchangeable between the Altair system and the IMSAI 8080 system.

Every effort has been made to keep the design simple and straight-forward to maximize reliability and ease of maintenance. MSI and LSI are used where appropriate, and discrete components are held to a minimum for greater circuit reliability and ease of assembly.

The 8224 clock driver chip and an 18 Megahertz crystal are used to generate the 2-phase, 2 Mehagertz non-overlapping clock for the 8080A. An 8212 is used as a latch for the status signals and two 8216 tri-state bi-directional bus drivers are used to interface the 8080A with the IMSAT 8080 input and output data buses. All other address, status, and control lines are driven by tri-state bus drivers.

Unregulated +16, -16, +8 volts, and ground must be supplied to the bus. On-board regulation is used to arrive at the power supply levels needed to run the chips. Integrated circuit power regulators with overload protection are used. The board is supplied with ample bypass filtering using both disc ceramic and tantalum capacitors.

The board connector is a 100 pin edge connector on .125 inch centers 50 pins on each side. Dimensions are 5 inches by 10 inches, using 2 sided glass reinforced epoxy laminate, with plated feed-through holes to eliminate the need for any circuit jumpers. The contact fingers are gold-plated over nickel for reliable contact and long life. All other circuitry is tin-lead plated for better appearance and more reliable solder connections.

Power-on reset is included on this board along with pull up resistors for all inputs required so that with the front panel removed from the INSAI 8080 machine, the power-on reset will start the program at position 0 out of a ROM. All other necessary conditions are met so that the system will run without the front panel attached, for use in dedicated controller applications where no operator-processor interaction is desires.

THEORY OF OPERATION

The IMSAI MPU-A board is structured around the 8080A microprocessor chip, and much of the MPU-A board is wired to support the 8080A device. The MPU-A board provides interfacing between the 8080A chip and the data and address busses, clock and synchronization signals, and the voltage regulation necessary for the 8080A and other chips. The internal functioning of the 8080A is thoroughly described in the Intel 8080 Microcomputer System User's Manual. Reference should be made to this manual for information concerning the operation and use of the 8080A.

The address lines from the 8080A drive the address bus on the back plane through 8T97 tri-state buffer drivers. These drivers may be disabled through the ADDRESS DISABLE line on pin 22 of the back plane. The 8216 bi-directional bus drivers connect the 8080's bi-directional DATA IN and DATA OUT busses. The direction of data transmission is determined by the DIRECTION ENABLE line. The DIRECTION ENABLE line is in turn controlled by the front panel and the processor status signals DATA BUS IN and HALT ACKNOWLEDGE. The 8216 can be disabled by the DATA OUT DISABLE line on pin 23 of the back plane.

The 8080A's bi-directional data bus is also connected to the data bus socket and the 8212 status byte latch. The data bus socket is used to connect the front panel to the bi-directional bus, while the 8212 latch transfers the status byte to the back plane via 8T97 drivers. These drivers are disabled by the STATUS DISABLE line on pin 18 of the back plane. The 8212 is latched up by the STATUS STROBE signal of the 8224 clock chip to store the status information for each instruction cycle.

One K pullup resistors to +5 volts are connected to all the bi-directional bus lines to ensure that during the time the bus is not driven, the 8080A reads all 1's.

The 8224 clock chip and crystal oscillator provide the two-phase non-overlapping 2 megacycle system clock for the 8080A. These clocks are also driven onto the back plane through 8T97 tri-state buffered drivers.

The CLOCK line on the back plane is driven from the TTL Phase II clock line through a delay so that the phase relation of the clock signal to the Phase II and Phase I back plane signals, is nearly identical to that produced by the MITS Altair 8800 system. Six sections of a 7404 are used for this delay to provide greater simplicity and higher reliability than a one-shot. The 8224 chip also provides the power-on reset function through use of a 4.7K resistor and 33 uf capacitor connected to the reset input of the 8224. The power-on reset is applied to the 8080A and is applied to the POWER ON CLEAR line, pin 99 on the back plane.

The two BACK PLANE READY signals are ANDed and connected to the 8224 for synchronization with the Phase II clock before being connected to the 8080A chip. The INTERRUPT line is connected directly to the 8080A, while the HOLD REQUEST line is synchronized with the Phase II clock and then connected to the 8080A.

The six processor status signals (SYNC WRITE, STROBE DATA BIT IN, INTERRUPT ENABLED, HOLD ACKNOWLEDGED, and WAIT ACKNOWLEDGE) are all driven onto the back plane through 8T97 tri-state buffered drivers. These drivers may be disabled by the CONTROL DISABLE line, pin 19 on the back plane.

The +5 volts is regulated from the +8 volts by a 7805 integrated circuit regulator, while the -5 volts is regulated by a 5 volt zener and a 470 ohm resistor from the 16 volt bus. The +12 volts is regulated by a 12 volt Zener and connected to the +16 volt line by two 82 ohm ½ watt resistors in parallel. All voltages are filtered with .33 microfarad tantalum and disc ceramic capacitors.

•

MPU-A Rev. 4 Parts List

ITEM	IMSAI PART #	QUANTIT	Y DESCRIPTION
Solder	15-0000001	5'	
Heat Sink	16-0100002	1	Thermalloy Heat Sink, 6106B-14
Screw	20-3302001	1	6-32x5/16" Phillips Pan Head Machine
Nut	21-3120001	. 1	6-32 Hex, CAD
Lockwasher	21-3350001	1	#6 Internal Star Lockwasher
Socket	23-0800001	. 1	16 Pin, Solder Tail, IC Socket
Socket	23-0800004	1	40 Pin, Solder Tail, IC Socket
Resistor	30-3470462	1	470 Ohm, 4 Watt (yellow, violet, brown)
Resistor	30-4100362	19	lK Ohm, 4 Watt (brown, black, red)
Resistor	30-4470362	10	4.7K Ohm, ¼ Watt (yellow, violet, red)
Capacitor	32-0239010	1	39pF Disk Ceramic
Capacitor	32-2010010	9	.luF Disk Ceramic
Capacitor	32-2233070	5	33uF, 25V Tantalum
Diode	35-1000005	1	lN751A Diode
Diode	35-1000006	1	lN914 Silicon
Crystal	35-5000003	1	18.00 MHz, Series Resonant, HC-18 Case, Cut AT, Fundamental Mode, .02% Tolerance
8 T 97	36-0089701	6	Hex Tri-State Driver
74LS00	36-0740002	1	Quad 2 Input NAND (Low Power Schottky)
74LS02	36-0740202	1, ,	Quad 2 Input NOR (LPS)
74LS04	36-0740402	2	Hex Inverter (LPS)
7474	36-0747401	1,	Dual D Flip Flop
7805	36-0780501	1	5V Positive Voltage Regulator

MPU-A Rev. 4 Parts List

ITEM	IMSAI PART # QU	UANTITY	DESCRIPTION
78L12	36-0781202	1	12V Regulator
8080A	36-0808001	1	Microprocessor
8212	36-0821201	1	Input/Output Port
8216	36-0821601	2	Bi-Directional Bus Driver
8224	36-0822401	1	Clock Generator and Driver
Chapter	81-0000031	1	MPU-A (for separate orders only)
PC Board	92-0000011	1	MPU-A Rev. 4

MPU-A ASSEMBLY INSTRUCTIONS

- Unpack your board and check all parts against the parts lists enclosed in the package.
- 2) If gold contacts on the edge connector appear to be corroded, use pencil eraser to remove any oxidation. NOTE: Do not use Scotchbright or any abrasive material as it will remove the gold plating.

RESISTOR INSTALLATION

- 3) Insert and solder nineteen 1K ohm 1/4 watt resistors (brown/black/red) Rl through Rl3, Rl5 through Rl7, Rl9, R20 and R21. See Assembly Diagram for location.
- 4) Insert and solder ten 4.7K ohm 1/4 watt resistors (yellow/violet/red) R14, R18, and R25 through R32. See Assembly Diagram for location.
- 5) Insert and solder one 470 ohm 1/2 watt resistor (yellow/violet/brown) R22. See Assembly Diagram for location.

IC INSTALLATION

NOTE: All IC pin l's point in the direction of the edge connector unless otherwise indicated on the board.

- 6) Insert and solder the one 74LS00 in location A2.
- 7) Insert and solder the one 74LS02 at location A3..
- 8) Insert and solder each of the two 74LS04's at location B3 and A5.
- 9) Insert and solder the one 7474 at location A4.
- 10) Insert and solder the one 8224 at location Al.
- 11) Insert and solder each of the six 8T97's at locations B2, B4, B5, B6, B7, and B10.
- 12) Insert and solder each of the two 8216's at locations B8 and B9.
- 13) Insert and solder the one 8212 at location AlO.

SCRETE COMPONENT INSTALLATION

14) Insert and solder the 16 pin IC socket at location A9.

- 15) Insert and solder the 40 pin IC socket at location A7. (Do not install the 8080 at this time.)
- 16) Insert and solder the one ln914 diode (CR1) as shown in the Assembly Diagram. NOTE: Observe polarity as indicated on the board.
- 17) Insert and solder the one 5.1 volt diode 1N751 (Z1) as shown on the Assembly Diagram. NOTE: Observe polarity as indicated on the board.
- 18) Insert and solder the one 18 MHz crystal (Y1) as shown on the Assembly Diagram.
- 19) Insert and solder the one 39 pF disk capacitor (C2) as shown on the Assembly Diagram.
- 20) Insert and solder each of the nine .1 uF disk capacitors at locations C6, C8, C11 through C16, and C18.
- 21) Insert and solder each of the five 33 uF tantalum capacitors at locations Cl, C5, C7, C9 and ClO as shown on the Assembly Diagram. NOTE: Observe polarity as marked on the board.

REGULATOR AND HEAT SINK INSTALLATION

- 22) Insert and solder the one 78L12, -12 volt regulator observing orientation as shown on the Assembly Diagram and on the board.
- 23) Bend the leads of the 7805 regulator at 90 degree angles approximately %" from the bottom edge of the regulator to facilitate insertion on top of the heat sink.
- 24) Insert the #6 screw through the regulator and heat sink and attach washer and nut from the back side of the board. NOTE: Be sure to hold the heat sink in proper vertical position while tightening the screw in order to prevent shorting to adjacent traces. Solder in the 7805 leads.

Before Installing the 8080 Chip

25) If possible before plugging in the 8080A chip, the board should be inserted in a chassis, the power turned on, and the voltage levels checked on the 40 pin socket. Pin 2

MPU-A Rev. 4
Assembly Instructions

should be ground and pin 11 should be -5 volts. Pin 20 should be +5 volts and pin 28 should be +12 volts. If one of these three voltages is not correct, ascertain the cause and correct it before plugging in the 8080A chip. When these voltages measure correctly, the 8080A chip should be inserted carefully into the 40 pin socket (with the board removed and the power off!)

Finally, insert the 8080A microprocessor chip in the 40 pin IC socket at A7. Orient pin 1 as indicated on the board.

NOTE: The 16 pin IC socket located at A9 is where the front panel data bus cable plugs into the MPU-A board.

USER GUIDE

The IMSAI MPU-A board requires no jumpers or user options for its use. The board is ready to function after connection to the back plane and the bi-directional bus. The bi-directional bus lines are provided by a 16-conductor cable from the CPA board, connected via a 16-pin DIP plug in location A-10. Verify proper insertion of this plug (i.e., pin 1 to pin 1) before use of the board.

The clock crystal frequency is 18 megahertz, and the 8224 device derives from this 18 MHz signal the necessary 2 MHz two-phase non-overlapping system clock. These 2 MHz clocks are brought out onto the back plane for use by other system boards. The board must be used with an 8080A chip as the 8080 chip is not compatible with the 8224 clock generator. Information on the timing of the logic signals and the description of the 8080A instruction set can be found in the Intel 8080 Micro Computer Systems User's Manual.

Leandro, CA. Made in U.S.A.

Errata 2/4/77

RAM 4A-4

NOTE: The RAM 4A Chapter applies to both RAM 4A-4, Rev. 2 and RAM 4A-4, Rev. 3.

All rights reserved, worldwide

RAM 4A BOARD

FUNCTIONAL DESCRIPTION

The IMSAI RAM 4A board provides up to 4K bytes of static random access memory. The board is implemented with 2102-style memory chips that each have the capacity to store 1024 words of one bit for each word. Thus eight chips are used to store one block of 1024 eight-bit words. Up to four sets of eight-chip units can be used on the board, giving a maximum capacity of 4096 eight-bit words.

Each eight-chip unit has the circuitry to allow or prevent the ability to write information into their memory storage space. This "write-protect" feature can be controlled either by software commands or from the computer front panel. Software commands can both affect the write protect and test the status of the write protect. If the program attempts to write into a write-protect block of memory, an interrupt will be generated. (This feature may be disabled if desired.) Four red LED's are provided to indicate the protect status of each of the lK blocks of memory. Four green LED's are also provided which illuminate when their respective block of memory is addressed.

The RAM 4A board will support a front panel write protect switch. If the machine is stopped, the 1024 word block at which the machine address is pointing will have its memory write protect status affected through the use of a PROTECT/UNPROTECT switch on the front panel. Attempts to write into this section of the memory will, of course, not succeed.

The RAM 4A board is designed to allow the user to provide battery backup power. Trickle-charging facilities to allow the battery to be charged while the computer is running may also be installed on the board by the user.

The 8080A microprocessor can address up to 65,536 words of memory, thus allowing up to 16 4096 word RAM 4A-4 boards to be installed in one IMSAI 8080 system. (Additional memory can be accessed by using IMSAI's Shared Memory Facility.)

THEORY OF OPERATION

The memory circuits used on the IMSAI RAM 4A memory board are 2102-style integrated circuits housed in sixteen pin DIP packages. Their organization is 1024 words, each of which is one bit wide. Ten address inputs are used to select the desired word and there is a chip enable to select the chip. There is a read/write input. One input is provided for data in, and one output is provided for data out. To implement the storage of data words that are eight bits wide, eight of the above described chips are used to store 1024 words. Three more of these eight chip groups can be used to give the IMSAI RAM 4A memory board a maximum storage capacity of 4096 eight bit words.

Bits A9, A8, A7, A6, A5, A4, A3, A2, A1, and A0 of the address bus come onto the memory board and go directly to the appropriate address pins on each memory chips. Bits All and AlO are decoded by a section of the 74LS156 at location D8 to select the desired 1024 word block by assertion of the chip enable signal for only those eight memory chips comprising the desired 1024 word block.

Bits Al5, Al4, Al3, and Al2 of the address bus are used to give each memory board on the bus a unique address. These bits first q through (if the memory board is involved in the utilization of its memory function through a memory-read operation, or memory write operation) the 74LS157 data selector at location D5. The direct output, and the complement of the direct output (obtained through the 74LS04 inverters at location C6) of the four output pins of the 74LS157 at location D5 go to DIP jumper provision at location C5. Provision is made so that either the equivalent polarity, or its complement, of the above mentioned four address bits can be implemented through the correct use of jumpers at location C5. When the polarity of the above-mentioned four address bits are in such an arrangement that they satisfy the address requirements of a particular memory board the four input pins of a section of the 74LS20 at location C4 will be high. This effects the selection of an individual memory board. Thus, only one board should respond in this manner for each of the sixteen different polarity arrangements of these four address bits.

Each 1024 word block of memory has its own circuitry to implement the write-protect feature. This feature is manipulated in two ways. One is from the "PROTECT/UNPROTECT" switch on the front panel. The other is from program commands contained in software.

There are four flip/flops whose two states enable or prevent the changing of the contents of their respective 1024 word blocks when a memory write is received. Each of these four flip/flops is a section of a 74LS74 at location C10 and at location C9. Memory block 0 is controlled by half of C9, memory block 2 is controlled

this reserved, worldwide

by the other half of ClO, and the other half of C9 controls memory block 3. The individual status of these four flip/flops is indicated by the desigated red light-emitting diodes located in the upper left hand corner of the board. If the red LED for a block is illuminated then that block is protected and writing into that block cannot occur. NOTE: A system reset will unprotect all blocks of memory.

If a 1024 word block of memory is selected by its chip enable being decoded by the 74LS156 at location D8, and its respective write protect flip/flop at locations C10 or C9 are not in the protect state, then the section or the 74LS02 at location C8 associated with this block will have a high output. This high output, seen at the input of the 7425 at location C7, will cause the output of C7 to go low and this will assert one of the chip enable pins (pin 15) of the 74LS156 at location D10. The second chip enable of D10 is asserted on the PWR bus line; the second is an assertion on the MWRITE bus line. D10 will decode address bus bits A11 and A10 (as at D8) and issue a write pulse only to the selected 1024 word block.

The four write protect flip/flops at locations ClO and C9, as described earlier, are set and reset under the control of two sets of decoders whose outputs are wired ORed. One set, a section of the /4LS156 at location DlO that is used to set the flip/flops, and a section of the 74LS156 at location D8 that is used to clear (or reset) the flip/flops, is utilized when the protect/unprotect switch controls the assertion of the protect and the unprotect bus lines whose assertion is utilized via the chip enable input (pin 1) of DlO and D8. The other chip enable (pin 2) of both DlO and D8 is connected to the BDENA signal generated by the output (pin 8) of the 74LS2O at location C4. The two input lines to DlO and D8 that will be decoded to one of four output assertions are the address bus lines All and AlO.

The other set of decoders are both sections of the 74LS156 at location D9. These are utilized when the four write protect flip/flops are going to have their status changed by programmed commands in the software. The command used is an output command, one of 256 available. The board is created to use output command FE, and only this one command is used for all (a maximum of 16) RAM 4A memory boards on a bus. The necessary board selection, and block selection, is done by putting board address (the same one as is used for board selections from the address bus-this feature is provided by the 74LS157 data selector at location D5), the two bits used to select one-of-four blocks of memory, and the two bits that are decoded to perform one-of-three actions, out on the system data bus at the time an FE output command bus is used. Two of the actions decoded by the 74LS139 at location D4 are the setting or the clearing (resetting) of the prite protect flip/flop of the memory block as decoded from D0 3 and D0 2 by the 74LS156 one-of-four decoder at location D9.

The third action decoded from DO 1 and DO 0 by the 74LS139 one-of-

four decoder at location D4 is the setting of the board select flip/flop, a section of the 74LS74 at location D2, which is used to select that board which puts data on the DATA IN (DI) bus when a data input FE command is issued so that the protect status can be read by the microprocessor. DI 0, DI 1, DI 2, and DI 3 carry the status of the write protect flip/flops for memory blocks 0, 1, 2 and 3. This status information is gated onto the DI bus through the 8T97 at location D3. The remaining four bits of the DATA IN bus, DI 4, DI 5, DI 6, and DI 7, carry the board address as set by the jumpers at location C5.

There is a flip/flop, a section of a 74LS74 at location D2, that becomes set if a write operation is attempted into a block of memory that is write protected. This flîp/flop drives a transistor whose open collector output can be jumper connected to the INTERRUPT REQUEST (PINT) bus lîne pin 73, or to one of the vectored interrupt lines on bus pins 4 through ll. This interrupt notifies the user that a write has been attempted in a protected block of memory. The user may handle this interrupt with an interrupt routine.

FAM 4A-4

SEE USER GUIDE SECTION FOR EXPLANATION

©1976

RAM 4A Parts List

BOARD: RAM 4A

ITEM	IMSAI PART #	QUANTIT	Y DESCRIPTION/IDENTIFYING MARKS
Solder	15-0000001		Solder
Heat Sink	16-0100003	1	3-Prong Heat Sink
Heat Sink	16-0100004	2	6-Prong Thermalloy Heat Sink
Screw	20-3302001	3	6-32x5/16" Phillips Pan Head Machine
Nut	21-3120001	3	6-32 Hex Nut
Lockwasher	21-3350001	3	#6 Internal Star Lockwashers
Header	23-0400001	1	16 Pin IC Header
Socket	23-0800001	1	16 Pin Solder Tail Socket
Resistor	30-3100362	1	100 Ohm, ½ Watt/brown, black, brown
Resistor	30-3220362	.10	220 Ohm, ½ Watt/red, red, brown
Resistor	31-4100362	18	1K Ohm, ¼ Watt/brown, black, red
Capacitor	32-2010010	15 34	(For 1K) .luF Disk Ceramic (For 4K)
Capacitor	32-2233070	1	33-25 Tantalum (or 22-25)
Diode	35-1000005	1	1N751-A Diode
Diode	35-1000007	6	1N4002 Rectifier Diode
LED	35-3000001	1 4	(For 1K) Red LED (For 4K)
LED	35-3000002	1 4	(For 1K) Green LED (For 4K)
8T97	36-0089701	3	Hex Tri-State Buffer/N8T97B
8T98	36-0089801	1	Hex Tri-State Buffer/N8T98B

RAM 4A Parts List

ITEM	IMSAI PART #	QUANTITY	DESCRIPTION/IDENTIFYING MARKS
2102	36-0210201	8	(For 1K) 1Kx1 Organization Static Memory
		32	Chip/P2101AL4 (For 4K)
7402	36-0740201	1	Quad 2 Input NOR/DM7402N
7404	36-0740401	2	Hex Inverter/7404-N
74LS20	36-0472002	1	Dual 4 Input NAND (Low Power Schottky)/SN74LS20N
7425	36-0742501	1	Dual 4 Input NOR with Strobe/SN7425N
7430	36-0743001	1	8 Input NAND/SN7430N
7432	36-0743201	1	Quad 2 Input OR/SN7432N
74LS74	36-0747402	3	Dual D Flip-Flop Preset and Clear (LPS)/SN74LS74
7805	36-0780501	3	5V Positive Volt Regulator/MC7805CP
74LS139	36-7413902	1	Dual 2 to 4 Line Decoder (LPS)/ SN74LS139N
74LS156	36-7415602	3	Open Collector (LPS)/ SN74156N
74LS157	36-7415702	1	Quad 2 to 1 Line Data Selector (LPS)/ $SN74157N$
PC Board	92-0000017	1	RAM 4A, Rev. 3

RAM 4A Assembly Instructions

RAM 4A-4 Assembly Instructions

- Unpack your board and check all parts against the parts lists enclosed in the package.
- 2) If gold contacts on the edge connector appear to be corroded, use pencil eraser to remove any oxidation. NOTE: Do not use Scotchbright or any abrasive material as it will remove the gold plating.

RESISTOR INSTALLATION

- 3) Insert and solder each of the eighteen 1K ohm 1/4 watt resistors (brown/black/red) Rl through Rl8. See Assembly Diagram for location.
- 4) Insert and solder each of the ten 220 ohm 1/4 watt resistors (red/red/brown) R19 through R28. See Assembly Diagram for location.
- 5) Insert and solder the one 100 ohm 1/4 watt resistor (brown/black/brown) R29. See Assembly Diagram for location.
- Insert and solder each of six 1N4002 diodes, CR1 through CR6, as shown in the Assembly Diagram. NOTE: Observe polarity marks as indicated on board.
- 7) Insert and solder one 1N751A zener diode, Z1 observing polarity marks as shown on the board.

IC INSTALLATION

NOTE: All IC pin 1's point in the direction of the edge connector as indicated with the square solder pad in each hole pattern.

- 8) Insert and solder each of the three 74LS74 at locations Cl0, C9, a and D2.
- Insert and solder each of the three 74LS156 at locations D8, D9, and D10.
- 10) Insert and solder each of the three 8T97 at locations C2, C3, and D3.
- 11) Insert and solder one 8T98 at location Dl.
- 12) Insert and solder one 7402 at location C8.
 - Insert and solder one 74LS20 in location C4.
- 14) Insert and solder one 7425 at location C7,
- 15) Insert and solder two 7404 at location C6 and D7.

RAM 4A Assembly Instructions

- 16) Insert and solder one 7430 at location D6.
- 17) Insert and solder one 74LS157 at location D5.
- 18) Insert and solder one 74LS139 at location D4.
- 19) Insert and solder one 7432 at location Cl.
- 20) Insert and solder each of the eight 2101 memory chips at locations A9 through A16 for 1K RAM Board and each of the thirty-two 2102 memory chips at locations B1 through B16 for 4K RAM Board.

DISCRETE COMPONENT INSTALLATION

- 21) Insert and solder the 16 pin IC socket located at C5 and plug in the 16 pin jumper header. (This jumper header is used for board addressing).
- 22) Insert and solder one 2N3904 transistor at location Ql as shown on the Assembly Diagram. NOTE: Observe orientation as shown on the Assembly Diagram.
- 23) Insert and solder each of the fifteen .luF capacitors at locations C7 through C13 and C27 through C34 for lK RAM Board and each of thr thirty-four .luF capacitors at location C1 through C34 for 4K RAM Board as shown on the Assembly Diagram.
- 24) Insert and solder each of the three 33uF 25 volt tantalum capacitors at locations C35 through C37 as shown on the Assembly Diagram. NOTE: Observe polarity as shown on board.
- 25) Insert and solder one red LED at location P0 for lK RAM Board and each of the four red LED's at locations P0 through P3 for 4K RAM Board as shown on the Assembly Diagram.
- 26) Insert and solder one green LED at location E0 for LK RAM Board and each of the four green LED's at location E0 through E3 for 4K RAM Board as shown on the Assembly Diagram. NOTE: The LED's should be positioned so that the flat side of the cathode is to the right.

REGULATOR AND HEAT SINK INSTALLATION

27) Take each of the three 7805 regulators and bend the leads at 90 degree angles approximately ¼" from the bottom edge of the regulator to facilitate insertion on top of the heat sink.

RAM 4A Assembly Instructions

- 28) The smallest heat sink is used near the bottom of the board, closest to the edge connector. Insert the #6 screw and lockwasher through the regulator and heat sink and tighten with the nut on the back side of the board. Repeat this procedure with the two remaining heat sinks and solder each of the regulator leads in place. NOTE: Be sure to hold the screw in order to prevent shorting to adjacent traces.
- 29) Add jumper wires for desired address onto the jumper header. (See User Guide Section). This indicates the address of the board.

JUMPER OPTIONS

- 30) A) Using clipped resistor leads (or bus wire) to select 0 wait states, jumper hole (C) to hole (0).
 - B) For one wait state, jumper hole (C) to hole (1). These holes are located on the board directly below locations D2 and D3.
- 31) The select interrupt jumper may be installed after reading the User Guide Section and after determining which vectored interrupt is desired.

USER GUIDE

Board Selection

In memory read or memory write operation (as well as responding to the output or input commands of FE) the IMSAI RAM 4A memory board is designed to be selected as one out of a maximum possible of sixteen RAM 4A memory boards present on the bus. To achieve this one-of-sixteen selection, the top four address lines--A15, A14, A13 and A12 in the case of a memory read or memory write operation (or the top four data out lines (D0 7, D0 6, D0 5 and D0 4) in the case of an output or input FE instruction)--are decoded on the board via the positioning of the jumpers installed at location C5 to give each memory board its unique address. These jumpers are implemented so as to route the logic I polarity of the above described four lines, or the complements of their polarities, in such a manner that when a board's unique address is present on the above described lines the four inputs to the 74LS20 four input NAND gate at C4 will all be high.

This will make the output (pin 8) go low and will assert the board enable (BDENA) line on the board. If the logic 1 molarity is desired then the jumper for that bit should route the output of the 74LS157 at location D5 direct to the input of the 74LS20 at location C6, associated with that bit shall be routed to the input of the 74LS20 at location C4.

TABLE 1

		and the contract of the contra
ADDRESS BIT	DIP POSITION C5	JUMPERING
A15	Pin 9 Pin 8	Place jumper between pins 9 and 8 if the board is to be selected when this bit is high.
ALJ	Pin 10 Pin 7	Place jumper between pins 10 and 7 if the board is to be selected when the above bit is low.
	Pin ll Pin 6	Place jumper between pins 11 and 6 if the board is to be selected when this bit is high.
A14	Pin 12 Pin 5	Place jumper between pins 12 and 5 if the board is to be selected when the bit is low.
112	Pin 13 Pin 4	Place jumper between pins 13 an 4 if the board is to be selected when this bit is high.
A13 16	Pin 14 Pin 3	Place jumper between pins 14 and

3 if the board is to be selected when the above bit is low.

Pin 15 Pin 2 Place jumper between pins 15 and 2 if the board is to be selected

when this bit is high.

A12

Pin 16 Pin 1

Place jumper between pins 16 and 1 if the board is to be selected when this bit is low.

Hardware Write Protect

If memory PROTECT/UNPROTECT from a switch (located on the front panel or elsewhere) is to be used, jumper D8 pin 1 to I/O pin 20. In cases where a switch will not be used and I/O pin 20 is driven high (such as in the IMSAI CP-A Revision 4 or earlier front panel assembly), D8 pin 1 should be jumpered to ground. Jumper pads are provided to accommodate either case. Refer to Figure 1 for details.

Memory is protected in lK blocks. With the computer front panel in the stop mode, the switch will affect whichever block contains the address being displayed. To protect or unprotect any block, examine any word in that block and actuate the switch. The memory protect light on the front panel will indicate the protect status of the addressed block.

A system reset will unprotect all blocks of memory.

If the Hardware Write Protect Feature is not used, tie the Protect Line (pin 70 on the edge connector) to ground. This will prevent noise on the Protect Line from triggering an unwanted protect state.

FIGURE 1

Software Write Protect

1K blocks of memory may be write protected or unprotected with an OUT command to port FE*. Selection of memory board and block is selected with the high-order 6 bits in the output data word. Bits 0 and 1 select the function (Protect, Unprotect, Select Board for Status or Clear Interrupt). Bits 2 through 7 should be the same as bits 10 through 15 of the memory address of the desired 1K block. Bits 4 through 7 select the memory board and bits 2 and 3 select the 1K block on that board. Refer to Table 2 for bit functions.

TABLE 2

Output Data Bit	5		
7 6 5 4 3 2 1 0 }	Board Select IK Block Select Function Select	Same as Memory Address Bits for desired IK Block	$\begin{cases} 15 \\ 14 \\ 13 \\ 12 \\ 11 \\ 10 \end{cases}$

Bit 0	Bit 1	
0	0	Clear Interrupt
1	0	Unprotect Addressed Block
0	1	Protect Addressed Block
1	1	Select Board for Status Read

The output command to select a board for status read must be issued before each status read. This enables the selected board to respond with status to the next INP command from port FE. The board automatically deselects after responding to the INP command. Care should be taken not to select more than one board before reading the status or the boards will interfer with each other. Refer to Table 3 for the meaning of the status data bits.

^{*} This address may be changed if desired by using the inverters in C7 (pins 1, 2, 3, 4). Cut the trace to the desired input pins to D6 and solder jumpers to the spare inverter. The inverter line A8 may similarly be removed and placed in another bit. Be sure to reconnect bit A8.

TABLE -3

STATUS READ

Data Bit	
7 6 5 4	Same as Address Bits (Board Address) 12
3	Block 3 l=Upprotected

Block 1

Block 0

ī

0

The Interrupt Request flip/flop is set by an attempt to write into a protected location. (The data in memory will not be affected,) In addition to requesting an interrupt (if jumpered appropriately) the Interrupt Request flip/flop enables the board to respond to the next Status Read (INP FE). The bit definitions are the same as a normal status read, which indicates what board is affected and which lK blocks on that board are protected. The Interrupt Request flip/flop is reset by the appropriate output command. See Table 3.

0=Protected

Because of the possible conflict during a status read if the Interrupt Request flip/flop is set between a board select and the following Status Read, it is suggested that all status reads be performed by a subroutine which disables interrupts, selects a board, reads its status, enables interrupts and returns.

To obtain the Interrupt Request feature, a jumper must be installed to connect the RAM 4A to the desired Priority Interrupt line on the back plane. Figure 2 illustrates the placement of this jumper.

Direct Interrupt Request

ONLY For Use Without
PIC 8 Priority 1
Priority 3
Priority 2
Priority 1
Priority 1
Priority 1
Priority 1

FIGURE 2

If it is desired to prevent the Interrupt Request flip/flop from being set (e.g., to avoid conflict with status reads if interrupts are not being used), cut the flip/flop line between the two pads to the left of D2 on the solder side (see Figure 3).

FIGURE 3

Wait Cycle Selection

No wait cycle is required for the memory chips supplied with the RAM 4A board. One wait cycle may be required if slower memory chips are substituted. Selection of the wait cycle option (zero or one wait cycle) is illustrated in Figure 4.

FIGURE 4

Battery Backup Operation

For operating your RAM 4A board with battery backup, simply connect your battery to the board at the location indicated on the Battery Hookup Diagram.

The battery should deliver 3 to 5 volts DC and should supply 300 milliamps of current.

A user defined resistor may be installed on the board to facilitate recharging the battery while the computer is turned on. (See Assembly Diagram for location.)

As an example for picking the value resistor that should be used to supply the trickle charge to your battery:

For a back plane voltage of (+8V) I=E/R and a battery voltage of $\frac{-}{(+3V)}$ =5V/220 ohms =.0227 Amps

A resistor of 220 Ohms will supply approximately 20 ma. current as trickle charge to your battery.

It is also recommended that if you do not intend to use battery back-up, remove the three diodes in the input circuit of the three regulators and replace them with jumper wires. This will allow the board to function with a Mother board voltage of 7 volts DC rather than 7.7 volts DC.

System Features Test

6 -

The special functions of this memory board far exceeds the functions of any other memory board on the market today and, because of this, is going to take a little time for the user to understand all its capabilities. A NOTE OF CAUTION: One common mistake that is made when using this board is protecting a block of memory where you may have placed your stack.

A simple test program for testing some of the special features of your new RAM 4A board follows:

A	dress	Instruction	Description
-	00	DB	INPUT
	01	FF	FROM FRONT PANEL SWITCHES
	02	D3	OUTPUT
	0.3	FE	TO MEMORY BOARD
	04	DB	INPUT
	05	FE	FROM MEMORY BOARD
	06	D3	OUTPUT
	07	FF	TO FRONT PANEL LIGHTS
	08	C3	JUMP
	09	00	TO
- 22	0 A	00	0

RAM 4A User Guide

This simple test program allows the operator to output protect and unprotect commands to the memory board under test when the memory board is addressed at location 00 hex, by using the sense switches on the front panel (high address switches). The program resides in the first 1K block of memory of the board that is actually under test.

The interrupt feature of the board may be tested by inserting a store accumulator (32 hex) instruction before the jump to 00 hex. By locating the address of where the data is to be stored in various lK blocks of memory, an interrupt will be generated when that particular lK block is given a protected status either from front panel switches or from software. NOTE: Interrupts should be enabled in your program.

RAM 4A BATTERY HOOKUP DIAGRAM

6-24

RAM 4A Board Tester

The 4K board tester is at PROM location 0400H. The 1K tester is at 0500H.

TO USE:

- 1. Jumper the board to be tested to respond to addresses FxxxH.
- Insert the board in an 8080 with CPU-A, CP-A and PROM containing the test routine.
- Power the 8080 up. Set the switches to 0400H, press EXAMINE and press RUN.
- The test routine will run, "Messages" are displayed in the 8 LED's labelled "programmed output" in the upper left corner of CP-A.

MESSAGES:

LED Display (Hex) (Binary)	Meaning
(Hex) (Billary)	
01 00000001 02 00000010 03 00000011 F1 11110001 F2 11110010 F3 1111011 FF 11111111	Running Phase I test - no errors yet Running Phase II test - no errors yet Running Phase III test - no errors yet Error in Phase I: data will follow Error in Phase II: data will follow Error in Phase III: data will follow Test completed without errors: change any "programmed input" switch (#'s 8-15) to start test over.

ERROR PROCESSING:

When an error occurs, a "message" of F1, F2, or F3 will be displayed on the LED's. To get information on the errors:

- 1. Change one of switches 8-15. 2. The LED swill display the high 8 bits of the address at the location that failed.
- з. Change one of switches 8-15.
- The LED's will display the low 8 bits of the address. Change one of switches 8-15. 4.
- 5.
- The LED's will display the data that the location is 6. supposed to contain.
- 7. Change one of switches 8-15.
 8. The LED's will display the data the location actually contains.
- Change one of switches 8-15.
- 10. The test will start over with Phase I.

INTERPRETATION OF ERRORS:

Phase I simply verifies that every location in RAM will correctly preserve data. The procedure is:

- 1. Write '00' in location F000.
- 2. Read location F000 and ensure that it is '00'.
- 3. Repeat 1-2 using values '01', '02',....'0F' and '10', '11',....'FF'.
- Repeat 1-3 on F001, F002,....FFFF.

If an error occurs in Phase I, it indicates one of two hardware problems: a) a bad chip on the RAM board, or b) a bad data line (D0-D7) from the CPU to the RAM chip. The chip and a data line involved can be determined from the error data. Generally, case (b) will affect all locations in a chip or on the entire board, while case (a) will affect one locaiton or all locations on the chip. The cases can be distinguished by playing with DEPOSIT/EXAMINE and chip replacement.

Phases II and III are actually two parts of the same test. Phase I has already determined that location "n" (F000/n/FFFF) can hold data correctly (at least for a few microseconds). However, we have not yet proved that "n" references a unique location. Phases II and III verify this (and, in passing, prove that the RAM can hold a value for at least a few milliseconds).

Consider a RAM board in which address line is messed up in such a way that RAM always sees it as 0, regardless of its true state. Then RAM addressing will look like this:

Phase II will not detect this error.

It will write 00 through FF into F000 which it thinks is location F001. Since this actually accesses F000, the data will be read back correctly. So Phase I will succeed. Now comes Phase III. This starts by writing the low 8 bits of the address of each location into that location, i.e., 00 into FD20, 01 into F001,..., FF into FFFF. Then it goes back and reads this data, verifying it. Let's watch what happens with our bad address line.

RAM 4A Board Tester

TRUE LOC.	CONTENTS	RESPONDS TO:
F000 F001	00	F000, F001 Step 1: Write 00 into F000 nothing
F000 F001	01 ?	F000, F001 Step 2: Write 01 into F001 nothing
F000 F001	?	F000, F001 Step 4097: Read F000, expecting nothing - and detect an error.

Thus, Phase III detects our error. Now for some observations on how to find the error.

- 1. Between steps 1 and 4097, several milliseconds pass without accessing location F000. If RAM is volatile, the data in F000 could go away and generate a Phase III error. This can be found by DEPOSITing into the bad location and EXAMINEing it to see if it changes. The reason Phase I doesn't catch this is that it reads 3.5 µs after it writes, so the data doesn't have time to deteriorate.
- 2. If address line 0 were stuck at 1, the same results would appear in Phase III. (Try it.) You can't tell from this test what the line is stuck at.
- 3. If Phase II or III fails, the bad address bits are the ones where the "supposed to be" data and the "read back" data differ. If the error was Phase II, these represent the high 8 bits of address. If the error was Phase III, these represent the low 8 bits.

:DBUG IMSAI 8080 DEBUGGER 04/05/76

```
*0400,04FF;
0400
       F3 3E FE D3
                     FF 21 ØØ FØ
                                  AF 77 46 B8
                                                 C2 56 Ø4 3C
                     B4 C2 Ø8 Ø4
0410
       C2 Ø9 Ø4 23
                                   3E FD D3 FF
                                                 21 ØØ FØ 74
Ø42Ø
       23 AF B4 C2
                     1F Ø4 21
                               ØØ
                                   FØ
                                      7E 94 C2
                                                 7C Ø4 23
                                                          84
       C2 29 Ø4 3E
                                                 AF B4 C2 3A
Ø43Ø
                     FC D3 FF 21
                                   ØØ FØ 75 23
2440
       Ø4 21 ØØ FØ
                     7E 95 C2 88
                                   Ø4 23 B4 C2
                                                 44 04 3E FF
0450
       21 00 04 C3
                     94 Ø4 EB 4F
                                   21 60 Ø4 3E
                                                 F1 C3 94
                     C3 94 Ø4 7B
0460
       7A 21 67 Ø4
                                   21 6E Ø4 C3
                                                 94 Ø4 79 21
0470
       75 Ø4 C3 94
                     04 78 21 00
                                   Ø4 C3 94 Ø4
                                                 EB 82 47 4A
                                                                  4K RAM TEST
Ø48Ø
       3E F2 21 60
                     Ø4 C3 94 Ø4
                                   EB 83 47 4B
                                                 3E F3 21 60
                                                                  ENTRY: 0400
0490
       Ø4 C3 94 Ø4
                     2F D3 FF F9
                                   DB FF 67 DB
                                                 FF AC CA 9B
Ø4AØ
       Ø4 21 18 FC
                     23 AF B4 C2
                                   A4 Ø4 21 ØØ
                                                 ØØ 39 E9 FF
       FF FF FF FF
Ø4BØ
                     FF FF FF FF
                                   FF FF FF FF
                                                 FF
                                                   FF FF
                                                          FF
                                                FF
                     FF FF FF
                                   FF FF FF FF
                                                   FF
Ø4CØ
       FF FF FF FF
                              FF
                                                       FF
                                                          FF
       FF FF FF FF'
Ø4DØ
                     FF FF FF FF
                                   FF FF FF FF
                                                 FF FF FF FF
04EØ
       FF FF FF FF
                                   FF FF FF FF
                                                 FF FF FF FF
                     FF FF FF FF
                                                 FF
Ø4FØ
       FF FF FF FF
                     FF FF FF FF
                                   FF FF FF FF
                                                   FF FF
                                                          FF
*0500,05FF;
       F3 3E FE D3
                     FF 21 00 F0
                                                 C2 5B Ø5 3C
0500
                                   AF 77 46 B8
Ø51Ø
       C2 Ø9 Ø5 23
                     7C FE F4 C2
                                   08 05 3E FD
                                                 D3 FF 21 ØØ
0520
       FØ
          74 23 7C
                     FE F4 C2 21
                                   Ø5 21 ØØ FØ
                                                 7E 94 C2 81
                     F4 C2 2C Ø5
0530
       Ø5 23 7C FE
                                   3E FC D3 FF
                                                 21 ØØ FØ
                                                          75
0540
       23
          7C FE F4
                     C2 3F Ø5
                              21
                                   ØØ FØ 7E 95
                                                 C2 8D Ø5
                                                          23
0550
                     FF
                        21 00 05
                                   C3 99 Ø5 EB
       7C FE F4 3E
                                                 4F 21 65 Ø5
Ø5 6Ø
       3E F1 C3 99
                     Ø5 7A 21 6C
                                   Ø5 C3 99 Ø5
                                                 7B 21 73 Ø5
Ø5 7Ø
       C3 99 Ø5 79
                     21
                        7A Ø5 C3
                                   99 05 78 21
                                                 ØØ Ø5 C3 99
                                                                  1K RAM TEST
0580
       Ø5 EB 82 47
                                   65 Ø5 C3 99
                                                Ø5 EB 83 47
                                                                 ENTRY: 0500
                     4A 3E F2 21
0590
       4B 3E F3 21
                     65 Ø5 C3 99
                                   Ø5 2F D3 FF
                                                 F9 DB FF 67
Ø5AØ
       DB FF AC CA
                     AØ Ø5 21 18
                                   FC 23 AF B4
                                                 C2 A9 Ø5 21
       00 00 39 E9
                                   FF FF FF FF
                     FF FF FF
Ø5BØ
                              FF
                                                 FF FF FF
                                                          FF
Ø5CØ
       FF
          FF FF FF
                     FF FF FF
                              FF
                                   FF FF FF FF
                                                 FF FF FF
                                                          FF
Ø5DØ
       FF FF FF FF
                     FF FF FF FF
                                   FF FF FF FF
                                                FF FF FF FF
05EØ
       FF
          FF FF FF
                     FF FF
                          FF
                              FF
                                   FF FF FF FF
                                                FF
                                                   FF
                                                       FF
                                                          FF
05F0
       FF FF FF FF
                     FF FF FF FF
                                  FF FF FF FF
                                                FF FF FF FF
```


PROM-4 Functional Description Revision 3

PROM-4

FUNCTIONAL DESCRIPTION

The IMSAI PROM-4 board provides up to 4K bytes of non-volatile read-only assembly. Designed to utilize the Intel 1702 or 8702 read-only memory devices, the PROM-4 board may be flexibly configured to contain up to 4K bytes in 256 increments. The board address can be switch or jumper-selected to any 4K block of the computer's 64K memory space. Tri-state bus drivers and fully-decoupled on-card voltage regulators provide plug-in compatibility with either the IMSAI 8080 or the Altair computer system.

The PROM-4 board provides sockets for 16 1702 or 8702 PROMS. The socket locations are marked for easy selection of PROM addresses. A user-selectable memory read delay feature allows efficient use of fast or slow PROM devices. (Please consult the User's Guide for additional information about this feature). Two on-card regulators provide the +5 and -9 volts required by the 8702-1702 chips.

Physically, the PROM-4 board is G-10 equivalent, 1/16" thick glass fiber reinforced laminate. Plated through-holes eliminate jumpers, and the edge connector contact fingers are gold plate over nickel for reliable contact and long life. The board measures 5" x 10", and uses the standard 100 pin edge connectors (dual 50 pin on .125" centers) for electrical connections to the back plane. Discrete components are of the highestquality, with tantalum by-pass and ceramic de-coupling capacitors. Both on-card voltage regulators are fully protected atainst short-circuits and thermal overloads.

FUNCTIONAL DESCRIPTION

The PIO board provides for up to four input and four output ports of eight bits each parallel input and parallel output. Each input and each output port has its own latch and both input and output latches are provided with hand-shaking logic for conventional eight bit parallel transfers.

Connection to the input or output ports is made through board edge connectors at the top of the board on .10 inch centers and the fingers will accept the 3M flat cable edge connectors as well as most other .1 inch center-to-center board edge connectors.

The handshake logic on any input or output port will generate an interrupt. The priority level of the interrupt is selectable. The address of the four ports is four sequential addresses, and this block of four addresses may be jumperselected to be any block of four sequential addresses in the 256 I/O address space. The board may also be addressed with memory-mapped I/O, in which case normal memory read or write instructions are used to read or write data to the Input/Output ports. When using memory-mapped I/O, board addressing is done by selectable jumpers for the lower byte of address and the upper byte of address is hex FF or octal 377.

Provision is made for each of the four output ports to drive eight LED's for a total of 32 on-board LED's.

This feature can be used to provide program-controlled output for dedicated processor applications of the IMSAI 8080 in which case this PIO board would be plugged in where the front panel would normally be mounted and a special photographic mask made to put in front of it with the appropriate labels for the specific purpose the controller is to be used. The front panel can still be used during development by plugging it into an extender card in another slot.

PIO4 Functional Description Revision 2

The board is double-sided glass-epoxy-laminate G10-type and all holes are plated through to eliminate the need for any circuit jumpers. The power regulator is provided with a heat sink and has current limiting for protection in case of an overload. The I/O ports utilize the Intel 8212 8-bit latch.

The +5 and ground pins on the input or output port connectors can be used to provide 5 volt power at up to 200 or 300 milliamperes total from the full board. In addition, approximately 100 additional milliamperes of +5 volt power would be available for each 8212 input or output port which is not installed in the PIO board. For example, if four input ports were installed, but only two output ports were installed, the 5 volt power that could be drawn from the connectors would raise from 300 milliamperes to 500 milliamperes.

SIO 2 Board

FUNCTIONAL DESCRIPTION

The SIO Board provides a serial input/output capability for the IMSAI 8080 System. It contains two serial I/O ports, providing two complete RS232 full duplex data lines with all control signals. Data lines for both channels are provided in RS 232, TTL Level and current loop formats. Asynchronous or synchronous lines utilizing full or half duplex can be run with this board at any rate up to 9600 baud in the Asynchronous mode and 56,000 baud in the Synchronous mode.

The SIO Board may be jumper-selected to respond either to input and output instructions from the IMSAI 8080 System or to memory reference instructions for memory-mapped I/O.

Operation of the board requires 16 I/O port or address locations, which are selected by address bits 0 through 3. When the board is used with input and output instructions, address bits 4 through 7 form the remainder of the board address and are jumper selectable. When the board is used as memory-mapped I/O, the lower byte of address is jumper selected exactly the same as an I/O port address and the upper byte of address is hex FE or octal 376.

The SIO Board is structured around a pair of Intel 8251 USART (Universal Synchronous-Asynchronous Receiver-Transmitter) devices.

The 8251 chips provide for extensive program control of the input/output functions including the RS232 Control Line and sync character selection in the Synchronous mode and error condition sense and recovery. The board provides interrupt generation for received characters, empty transmitter buffers, and sync characters detected with provision for jumper selecting the priority of the interrupt. The interrupt works in conjunction with the Priority Interrupt/Clock board (PIC-8).

All functions may also be program controlled so that the full capability of the board is available to the machine without the use of interrupts. All RS232 level drivers and receivers necessary for two complete RS232 lines are included on the board.

SIO 2 Board Rev. 3 Functional Description

Control lines included are DSR, DTR, RTS, CTS, and Carrier Detect. RS232 level drivers and receivers are also provided for receive and transmit clocks for use in Synchronous Mode. Jumper options permit the SIO board to be used either as the receiving (terminal) end of an RS232 line, or as the originating (computer) end.

Jumper options are available so that the two serial I/O ports may be used together so that the control lines are connected together on the two ports and the data lines are received and originated by the 8251 USARTS.

This configuration permits breaking an existing RS232 line and inserting the IMSAI 8080 System between the ends so that the control signals pass straight through and the IMSAI 8080 System intercepts, processes, and retransmits the data. This configuration is extremely useful where format adaptation or other changes must be made to data travelling on RS232 Systems.

Jumper-selectable baud rates are provided on the board for standard asynchronous and synchronous rates up to 9600 baud asynchronous and up to 38,400 baud synchronous. Other rates may be obtained through the use of the SIOC board which contains a jumper-programmable divider which mounts directly onto the SIO Board.

The two output connectors on the top of the board are designed to use the 3M flat cable system to connect directly to 25 pin EIA connectors so that no hand wiring is required to either receive or originate an RS232 line.

TTL and current loop serial input and output are connected to unused pins on the input/output connector. TTL levels are available on the connector for DTR, DATAIN, and DATAOUT, to provide maximum flexibility and utility. A current source is available on the connector for use with current loops. Current loop driving is done through opto-isolators for complete isolation of current loop lines.

Integrated circuit power regulation is provided with high quality tantalum and disc ceramic by-pass capacitors. The board is made on Gl0-type, 1/16 inch laminate with contact fingers gold-plated over nickel for reliable contact and long life. The remainder of the circuitry is tin-plated for good appearance and reliable solder connections.

SIO 2 Board Rev. 3
Functional Description

Plated through-holes eliminate the need for any circuit jumpers. All jumper options are provided in 16 pin dual in-line package patterns so that jumpers may be installed on headers plugged into IC sockets for convenient and quick changing.

SIOC Board Rev. 2 Functional Description

SIOC BOARD

FUNCTIONAL DESCRIPTION

The IMSAI SIOC Board is a small optional board used with the Serial Interface (SIO Board). The SIOC provides user selection of any USART clock frequency from 15 Hz to 56 KHz.

The generated clock frequency is determined by a binary value set in two 16-pin jumper sockets. An additional jumper socket allows selection of either the SIOC or the standard SIO USART clocks to channels A and/or B.

Physically, the SIOC Board measures 5.2 X 2.2", and piggy-back mounts to a standard SIO Board. Mounting hardware and decoupling capacitors are provided with the SIOC Board.

PIC-8

FUNCTIONAL DESCRIPTION

The PIC-8 Priority Interrupt-Programmable Clock board provides the IMSAI 8080 Microcomputer System an eight level Priority Interrupt capability and a software-controlled interval clock.

The Priority Interrupt system utilizes the Intel 8214 Priority interrupt control unit and monitors the 8 Priority Interrupt lines on the 8080 back plane. The PIC-8 has the capability to service either single or multiple interrupt requests. When enabled and receiving an interrupt request, the Pic-8 determines if the request priority is higher than the software-controlled current priority, and if necessary issues a restart instruction that directs the 8080 system to one of eight priority controlled restart locations. For multiple interrupt requests, the 8214 determines the highest priority request, and processes it normally. It should be noted that the system does not store inactive requests, and that a peripheral device must hold an interrupt request until it is serviced by the microprocessor.

The current priority status register may be software set to any value desired to prevent low priority interrupts from being generated until the priority status register is reset to a lower value. The status register may be set to 0 if it is desired for all levels of interrupt to always occur.

The PIC-8 board also includes a clock circuit which provides programmed control at intervals ranging from .1 millisecond to 1 second. The program can select from among 3 jumper selected interval rates, or it can turn all three off. The 3 rates are jumper-selectable to any of the following values: .1 ms, .2 ms, 1 ms, 2 ms, 10 ms, 20 ms, 100 ms, 200 ms, or 1000 ms. Additionally, one bit of the DATA OUTPUT port is connected to a transistor and jumper pads for a special-purpose programmer-controlled output. Room is provided on the circuit board for a small speaker or other user-supplied circuitry. Also provided are 5 16-pin IC hole patterns with power and ground decoupling for special purpose user circuits. These hole patterns are drilled to accept wire wrap sockets.

Power on the board is regulated by an integrated circuit power regulator with current limiting protection. Tantalum ceramic bypass capacitors are supplied with the board. The board is G10-type double-sided laminate with plated through holes and contact fingers are gold-plated over nickel for reliable contact and long life.

FUNCTIONAL DESCRIPTION

INPUT/OUTPUT VERSATILITY

The MIO, Multiple Input Output Board, is designed to meet all Input/Output requirements of most 8080 System Users by providing the User with the following Input/Output interfaces:

- one Data Storage interface to a standard audio cassette recorder;
- 2. two Parallel Input/Output (PIO)
 ports;
- 3. one Serial Input/Output port; and
- one control port to be used for internal and external control functions.

As an example of its versatility, a single MIO Board could control a TV Typewriter, a Line Printer, a Teletype, and a cassette recorder.

SOFTWARE COMPATIBILITY

Board Addressing and Port Configuration capabilities allow the MIO Board to be Address Compatible with virtually all Software Packages.

The Board is jumper selectable to any one of the 64 groups of 4 Input/Output addresses available with the 8080. Jumper selection further allows each port to be configured in any order within the selected group of 4 addresses.

As an example, a TV Typewriter, which is a parallel I/O device, may be used with serial I/O software simply by configuring the MIO Board so that the parallel port for the TV Typewriter appears at the I/O address where the serial data

normally appears.

EXTERNAL CONNECTIONS

External Interface Connections are made from the three 26-pin edge connectors at the top of the board. These contain the signals necessary for two identical parallel interfaces, and a serial I/O interface. The Current Loop or EIA options are normally configured to provide a standard EIA Data Transmission pinout at the connector.

INTERRUPT CAPABILITIES

Any of the Status Signals from each of the I/O Ports may be used to generate Interupts. Provision is made for jumpering these Status Signals to Vectored Interrupt Lines, if a PIC-8 Board is present. They may be directly jumpered to the CPU Interrupt Line for a single level Interrupt System.

SERIAL INPUT/OUTPUT PORT

The MIO Board provides for one complete Serial I/O port which is designed to require no initialization on power-up.

BOARD OPTIONS

A number of options are available and are easily selected by the User.

- 1. The Baud Rate is jumper selectable and can range from 45.5 to 9600 Baud.
- Character Length, Parity Enable, and Even/Odd Parity selection are jumper selectable.

 The Data output of the UART may be jumpered to an EIA Driver, a Current Loop Driver, or a TTL Driver.

Similarly, the Data input of the UART may be jumpered to an EIA Receiver, a Current Loop Receiver, or a TTL Receiver.

 Provision is made to monitor any of the UART Status Signals using the Control Input Port, or the interrupt inputs.

STATUS SIGNALS

The SIO Status Signals provided are as follows: TRANSMIT READY, the negation of TRANSMIT READY, RECEIVE READY, the negation of RECEIVE READY, PARITY ERROR, OVERRUN ERROR, and FRAMING ERROR.

An additional Status Signal, SIOS, is provided to assist in error checking routines. This signal simply indicates that one of three error conditions has occured, (PE,FE,or OE). It may be decoded via the Control Port to determine which of the three signals is active. This feature is provided to allow efficient use of the Control Port in a case where the complete board configuration is being used.

EXTERNAL INTERFACE CONNECTIONS
The SIO Port has available at a 26 pin edge connector, all signals necessary for Standard EIA, Current Loop and TTL Serial Interfaces.

PARALLEL INPUT/OUTPUT PORTS

The MIO Board provides for 2 identical 8 bit parallel input/output ports.

BOARD OPTIONS
Board options allow the User to:

 Use one of four types of Input Strobes: 1.positive edge, 2. negative

MIO Functional Description

edge, 3. positive level, and 4. negative level. It is also possible to continuously gate data into the latch.

 Use PIO Status Signals to generate Interrupts or to be simply monitored by the Program via the Control Port.

STATUS SIGNALS The PIO Status Signals which are provided

are as follows:

ODR- one Output Data Ready line for each Parallel Output Port;

IDA- one Input Data Accepted line for each Parallel Input Port.

As with the SIO Port, an additional signal, PIOS, is provided to enhance the efficiency of the Control Port Input Bits.

EXTERNAL INTERFACE CONNECTIONS
The External Interface Connections for the
PIO Output Ports provide for 8 Output Data
Lines and 3 Control/Handshake Lines.

Each <u>Input Port</u> provides for 8 Input Data Lines and 2 Control/Handshake Lines.

All signals are available at two identical 26 pin edge connectors for easy interfacing to external parallel I/O devices.

CASSETTE INPUT/OUTPUT PORT

The MIO Board provides for one complete Cassette Recorder Interface.

BOARD OPTIONS Board Options allow the User to:

- Vary the recording rate from 500 to 62,500 bits per second.
- Set the phase of the recorded signal to provide compatibility with most all audio cassette recorders.

MIO Functional Description

The CRI Port writes Biphase Encoded Data to the tape. This can be used to generate Byte/Lancaster or Tarbell data formats.

The Biphase encoding generates Byte/Lan-caster data formats by sending alternating 1's and 0's when a zero bit is to be recorded. It sends all 1's when a one bit is to be recorded. In this standard, the maximum data rate is 30 bytes per second.

The CRI can also operate in the Tarbell Standard, using one bit of phase encoding per data bit. This standard allows the User to record data at the standard rate of 187 bytes per second or faster if the recorder used is of sufficient quality.

The recorder section can have two cassette recorders connected to it at one time, thus providing the User with the basic capability for a cassette operating system.

.

IMSAI 8080 Self-Contained System Acknowledgement Revision 4

The IMSAI 8080 Monitor, Assembler, and Text Editor, supplied by IMSAI Manufacturing Corporation free of charge, is a modified version of software written by Microtec of Sunnyvale, California for Processor Technology of Berkeley, California who distributed the package free of charge.

IMSAI 8080 SELF-CONTAINED SYSTEM

OPERATING SYSTEM

The IMSAI 8080 Self-Contained System is a software system designed to run on the IMSAI 8080 computer. Included in the package is an Executive to handle memory files, an Assembler, and a line oriented Editor.

To use the system, 6K of memory must be available for use by the system. This memory is allocated as follows:

ØØ4Ø - ØDCB Operating Program
1ØØØ - 1119 Special System RAM
111A - 17FF Symbol Table (Assembler Only)

In addition, other memory must be available for source and object files necessary for the user's program.

I/O within the program interacts with I/O ports addressed as follows:

PORT	FUNCTION		
2 3	TTY Data TTY Status		
	Bit Ø indicates TBE Bit 1 indicates DAV		

The system is available on three media, EPROM, paper tape and Tarbell Format Cassette. The paper tape version may be loaded into RAM using the IMSAI paper tape bootstrap loader, PGM-4A (supplied with the IMSAI 8080 on paper tape; also available on EPROM). The cassette version may be loaded with the tape cassette loader, PGM-5A.

Executive Commands

CONTROL-X	Kill current line
ENTR	Enter data to memory
DUMP	Display memory data
FILE	Create, assign or display file information
EXEC	Execute a program
ASSM	Assemble a source file to object code
LIST	List file
DELT	Delete lines of file
1111	Any four numeric digits enters editor
PAGE	Move a page of data
BREK	Set or clear break points
PROC	Proceed from break point
CUST	Optional user command at location 2000

To initialize the system, start it at $\emptyset\emptyset\emptyset\emptyset$. to restart the system without initializing it, start at $\emptyset\emptyset\emptyset3$.

The executive has one error messageWHAT?.... indicating an improper command or an error on parameters following the command

Command Format

ENTR AAAA --- Enter data to memory

This command is used to enter data to memory starting at address AAAA and continuing until a slash (/) followed by a carriage return is entered. Data is entered in hexadecimal format. Several lines of data may be entered before the slash is typed.

Example:

ENTR 500 0 0A 30 44 FF FE/ (cr)

DUMP AAAA BBBB --- Dump contents of memory

This command is used to examine the contents of memory The values contained in memory from locations AAAA to BBBB are displayed in hexadecimal. Each line of display consists of the contents of up to 16 memory locations. If BBBB is not specified, only locations AAAA will be displayed.

FILE /NAME/ AAAA

This command is used to enter, examine or modify parameters of files created in the system. Up to six files can exist simultaneously with any one of the files "current". Depending on the form of the command, the following functions with the following functions are performed.

FILE /NAME/ AAAA Create a file with the name, NAME starting at address AAAA and make it current. If a file with the same name already exists, output error message NO NO.

FILE /NAME/ 0 Delete file with name NAME and make no file current. NOTE: no file can start at location 0.

FILE /NAME/ Get file NAME and make it current.
Save all parameters of existing current file.

Display parameters of the "current" file in the following format with AAAA and BBBB being the beginning of file and end of file addresses:

NAME AAAA BBBB

FILES Display the parameters of all files currently saved by the system.

Note that you must type a space between the word "FILE" and the slash before the file name.

EXEC AAAA --- Execute a program

This command is used to execute a program at address AAAA.

LIST N --- List file

FILE

This command is used to display the lines entered by the user into the file. The output consists of the lines in the file starting at line number N. If N is not specified, the display starts at the beginning of the file. The user can terminate the display by typing CTRL-X.

DELT L1 L2 --- Delete line(s) from file

This command is used to delete lines entered by the user from the file. All lines starting at line L1 and continuing up to and including L2 are deleted from the file. If L2 is not specified, only L1 is deleted.

PAGE AAAA BBBB --- Move page of data

This command is used to move one page (256 bytes) of data from address AAAA to BBBB.

CUST --- Optional user command at location 2000

This command allows any routine to be placed at location 2000 by the user. If the command is terminated by a RET and proper stack operations are used, the system will return in an orderly manner.

BREK or BREK AAAA

This command is used to set or clear break points. If called without the argument AAAA, all break points are cleared.

If called with the argument AAAA, a break point is set at location AAAA. When the break point is encountered in the course of execution, the break point is cleared, all registers are saved, the A register is displayed in the PROGRAMMED OUTPUT on the front panel, the message "AAAA BREAK" is typed and control returns to the executive. The registers are saved in the following locations, and may be examined or modified using the DUMP or ENTR commands.

Location 1000	Register PSW
1001	A
1002	С
1003	В
1004	E
1005	D
1006	SP (low)
1007	SP (high)
1008	L
1009	H
100A	PC (low)
100B	PC (high)

Restrictions: 1) A maximum of 8 break points may be set;

Break points may not be set below location 000B; and

3) Setting a break point causes information to be stored into locations 0008-000A, destroying any information already there.

PROC or PROC AAAA

This command is used to proceed from a break point. All registers are restored from the locations specified above, and execution continues from the location specified by the PC, unless the argument AAAA is given, in which case execution begins at location AAAA.

ASM AAAA BBBB --- Assemble a source file to object code

This command is used to assemble a source program written by the user and located in the file area. The assembler performs the assembly, assigning addresses to the object code starting at AAAA. On the second pass the object code is placed in memory starting at location BBBB. If BBBB is not specified, it assumes the same value as AAAA. During pass one, certain errors are displayed, and during pass two a complete listing is produced.

ASSME AAAA BBBB --- Assemble and list errors only

This command is the same as ASSM, except that only lines with errors are displayed. Object code is produced just as in ASSM.

IMSAI 8080 Self-Contained System Text Editor Revision 4

TEXT EDITOR

Editor

The editor is a line oriented editor which enables the user to easily create program files in the system. Each line is prefaced by a fixed line number which provides for stable line referencing. Since line numbers can range from 0000 to 9999 (decimal), up to 10,000 lines can exist in each file. As the user types lines on the input device, they are entered into the file area. The editor places all line numbers in sequence and automatically over-writes an existing line in the file, if a new line with the same line number is entered by the user. A feature of the editor is that the file area never contains any wasted space.

Note: The Editor ALWAYS operates on the current file.

The editor does not automatically assign line numbers. The user must first, when entering a line of data, enter a decimal number which will be interpreted as being the line number. Valid line numbers must contain four digits; preceding zeros must be included. An entry to the editor is terminated by the carriate return key. No more than 80 characters may be input for one line.

All lines are ordered by the ascending numeric sequence of their line numbers. If the user wishes to insert lines after the initial entry is made, it is suggested that s/he input the original lines with line numbers at least five units apart.

Tabs (typed as CTRL-I) may be used.

.

ASSEMBLER

When the Assembler is given control by the executive, it proceeds to translate the Symbolic 8080 Assembly Language (Source) program into 8080 machine (object) code. The Assembler is a two pass assembler which operates on the "current" file. Features of the Assembler include:

- free format source input
- symbolic addressing, including forward references and relative symbolic references
- complex expressions may be used as arguments
- self defining constants
- multiple constant forms
- up to 256 five character symbols
- reserved names for 8080 registers
- ASCII character code generation
- 6 Pseudo Operations (assembler directives)

The assembler translates those lines contained in the current file into object code. The second character following the line number is considered to be the first source code character position. Hence, the character immediately following the line number should normally be a tab or a space. Line numbers are not processed by the assembler; they are merely reproduced on the listing.

The assembler will assemble a source program file composed of STATEMENTS, COMMENTS, and PSEUDO OPERATIONS.

During Pass 1, the assembler allocates all storage necessary for the translated program and defines the values of all symbols used, by creating a symbol table. The storage allocated for the object code will begin at the byte indicated by the first parameter in the original Executive ASSM command.

During Pass 2, all expressions, symbols and ASCII constants are evaluated to absolute values and are placed in allocated memory in the appropriate locations. The listing, also produced during Pass 2, indicates exactly what data is in each location of memory.

Statements

Statements may contain either symbolic 8080 machine instructions or pseudo-ops. The structure of such a statement is:

NAME OPERATION OPERAND COMMENT

The <u>name-field</u>, if present, must begin in assembler character position one. The symbol in the name field can contain as many characters as the user wants; however, only the first 5 characters are used in the symbol table to uniquely define symbol. All symbols in this field must begin with an alphabetic character and may contain no special characters.

The operation field contains either a 8080 operation mnenomic or a system pseudo-operation code.

The <u>operand field</u> contains parameters pertaining to the operation in the operation field. If two arguments are present, they must be separated by a comma.

Example:

0015 FLOP MOV M,B COMMENT
0020 * COMMENT
0025 JMP BEG
0030 CALL FLOP
0035 BEG ADI 8+6-4
0040 MOV A,B

All fields are separated and distinguished from one another by the presence of one or more spaces or tabs.

The <u>comment field</u> is for explanatory remarks. It is reproduced on the listing without processing (see example 0015). Comment lines must start with an asterisk (*) in character position 1 (see example 0020).

Symbolic Names

To assign a symbolic name to a statement, one merely places the symbol in the <u>name field</u>, that is, separates it from the line number by a <u>single space</u> only. To leave off the name field, the user skips two or more spaces or tabs after the line number and begins the operation field. If a name is attached to a statement, the assembler assigns it the value of the current Location Counter. The Location Counter always holds the address of the next byte to be assembled, The only exception to this is the EQU pseudo-op. In this case

a symbol in the <u>name field</u> is assigned a value which is contained in the <u>operand field</u> of the EQU pseudo-op statement.

Example:

0057 POTTS EQU 128

assigns the value 128 to the name POTTS. This data can then be used elsewhere in the program, as in ADI POTTS.

Names are defined when they appear in the name field. All defined names may be used as symbolic arguments in the argument field. See examples 0015, 0025, 0030 and 0035.

In addition to user defined names, the assembler has reserved several symbols, the value of which is predetermined. These names may not be used by the user except in the operand field. They are (with their value in parenthesis):

A	-	the accumulator	(7)
В	-	Register B	(0)
С	-	Register C	(1)
D	-	Register D	(2)
Ε	-	Register E	(3)
H	-	Register H	(4)
L	-	Register L	(5)
М	-	Memory (through H,L)	(6)
Ρ	_	Program Status Word	(6)
S	-	Stack Pointer	(6)

In addition to the above reserved symbols, there is the single special character symbol (\$). This symbol changes in value as the assembly progresses. It is always equated with the value of the program counter after the current instruction is assembled. It may only be used in the operand field.

Examples:

JMP MOV	\$ A,B	<pre>means jump to the location after this instruction; that is, the MOV instructi</pre>	on
LDA DB DB DB	\$+5 0 1 2	means load the data at the fifth location after this location. In this case, the data has the value 5.	
	•		Dan. 1 -
DB	4		PGM-1A
DB	5		12 - 13

Relative Symbolic Addressing

If the name of a particular location is known, a nearby location may be specified using the known name and a numeric offset.

Example:

JMP BEG
JPE BEG+4
CC SUB
CALL \$+48
BEG MOV A,B
HLT
MVI C, 'B'
INR B

In this example, the instruction JMP BEG refers to the MOV A,B instruction. The instruction JPE BEG+4 refers to the INR B instruction. BEG+4 means the address BEG plus four bytes. This form of addressing can be used to locate several bytes before or after a named location.

Constants

The Assembler allows the user to write positive or negative numbers directly in a statement. They will be regarded as decimal constants and their binary equivalents will be used appropriately. All unsigned numbers are considered positive. Decimal constants can be defined using the descriptor "D" after the numeric value. (This is not required, as the default is decimal.)

Hexadecimal constants may be defined using the descriptor "H" after a numeric value; i.e., +10H, 10H, 3AH, 0F4H.

Note that a hexadecimal constant <u>cannot</u> start with the digits A-F. In this case, a leading 0 must be included. This enables the assembler to differentiate between a numeric value and a symbol.

ASCII constants may be defined by enclosing the ASCII character within single quote marks; i.e., 'C'. For double word constants, two characters may be defined within one quote string.

Expressions

An expression is a sequence of one or more symbols, constants or other expressions separated by the arithmetic operators plus or minus.

PAM +3 ISAB-'A'+52 LOOP+32H-5

Expressions ore calculated using 16 bit arithmetic. All arithmetic is done modulo 65536. Single byte data cannot contain a value greater than 255 or less than -256. Any value outside this range will result in an assembler error.

Pseudo-Operations

The pseudo-operations are written as ordinary statements, but they direct the assembler to perform certain functions which do not always develop 8080 machine code. The following section describes the pseudo-ops.

ORG --- Set Program Origin

The format is

label ORG expression

where the label is optional but, if present, will be equated to the given expression. The effect of the ORG pseudo-op is to set the current location counter to the value of the given expression. When present in a program, the ORG pseudo-op overides the address given in the ASSM or ASSME command.

END --- End of Assembly

The pweudo-op informs the assembler that the last source statement has been read. The assembler will then start on pass 2 and terminate the assembly and pass control back to the executive. This pseudo-op is not needed when assembling from a memory file since the assembler will stop when an end of file indicator has been reached.

EQU --- Equate Symbolic Value

The format is

label EQU expression

Where <u>label</u> is a symbol the value of which will be determined from the expression, and the <u>expression</u> is an expression which when evaluated will be assigned to the symbol given in the name field.

DS --- Define Storage

The format is

label DS expression

The DS causes the assembler to advance the Assembly Program Counter, effectively skipping past a given number of memory bytes.

DB --- Define Byte

The format is

label DB expression

This pseudo-op is used to reserve one byte of storage. The content of the byte is specified in the argument field.

DW --- Define Word

This pseudo-op is used to define two bytes of storage. The evaluated argument will be placed in the two bytes; high order 8 bits in the low order byte, and the low order 8 bits in the high order byte. This conforms to the Intel format for two byte addresses.

Assembler Errors

The following error flags are output on the assembler listing when the error occurs. Some of the errors are only output during pass 1.

- Opcode Error
- L Label Error
- Duplicate Label Error Missing Label Error D

- V Value Error Undefined Symbol
- S R A Syntax Error Register Error
- Argument Error

IMSAI 8080 Self-Contained System Saving and Restoring Programs Revision 4

SAVING AND RESTORING PROGRAMS

While the system has no explicit provision for saving and restoring programs, it is possible to do so with an ASR style teletype. The procedure is as follows:

- 1. Make the file you want to save the current file.
- 2. Type 'LIST', but don't type the carriage return.
- 3. Turn on the paper tape punch.
- Type carriage return. The program will be listed on the teletype and simultaneously punched on the paper tape punch.
- 5. When the 'LIST' is completed, turn off the punch.

The procedure for restoring the file is as follows:

- Make the file you want to restore into the current file.
- 2. Mount the tape in the paper tape reader.
- Start the paper tape reader. The program will be automatically read in.

An analogous procedure, using the DUMP and $\,$ ENTR commands, may be used to save and restore object code.

IMSAI 8080 Self-Contained System Object Tape Format Revision 4

OBJECT TAPE FORMAT

The IMSAI Self-Contained System is supplied on paper tape in a blocked hexadecimal format. The data on the tape is blocked into discrete records, each record containing record length, record type, memory address and checksum information in addition to data. A frame-by-frame description is as follows:

Frame 0

Record Mark - Signals the start of a record. The ASCII character colon (":", HEX 3A) is used as the record mark.

Frames 1,2 (0-9, A-F)

Record Length - Two ASCII characters representing a hexadecimal number in the range 0 to 'FF' (0 to 255). This is the count of actual data bytes in the record type or checksum. A record length of 0 indicates end-of-file.

Frames 3 to 6

Load Address - Four ASCII characters that represent the initial memory location where the data following will be loaded. The first data byte is stored in the location pointed to by the load address; succeeding data bytes are loaded into ascending addresses.

Frames 7, 8

Record Type - Two ASCII characters. Currently all records are type 0. This field is reserved for future expansion.

Frames 9 to 9+2* (Record Length)-1

Data - Each 8 bit memory word is represented by two frames containing the ASCII characters (0 to 9, A to F) to represent a hexadecimal value 0 to 'FF'H (0 to 255).

Frames 9+2* (Record Length) to 9+2* (Record Length)+1

Checksum - the checksum is the negative of the sum of all 8 bit bytes in the record since the record mark (":") evaluated modulus 256. That is, if you add together all the 8 bit bytes,

IMSAI 8080 Self-Containing System Object Tape Format Revision 4

ignoring all caries out of an 8-bit sum, then add the checksum, the result is zero.

Example:

If memory locations 1 through 3 contain 53F8EC, the format of the hex file produced when these locations are punched is

:0300010053F8ECC5

```
#11 MAY 77. JRB. PEMOTE PROMPT CHARACTER TO
#PERMIT PEADING PAPER TAPE
#10 NOV 77. BRH. CONVERT FOR ASSEMBLY UNDER CF M
## FIX CLEAR BREAKPOINT POUTINE ALL PROMPT CHAR
## AND RECOGNIZE TAPS.
                           ; *****
; ****
                                                  SELF-CONTAINED SYSTEM VER 1 REV 4
                                                                                                                        ****
                                               C' COPYRIGHT 1976.1977 IMSAI FIG CORF
                                                                                                                        ***
                           , *****
                                                 SAN LEANDRO CALIFORNIA
                                                                                                                        ***
                           ORG
JMP
JMP
                                                     ØØH
INIT
 0000 034000
0003 035700
                                                                  DEAD START
                                                    INIT ; DEAD START
INITA ; RESTART SIG AND ENTER MONITOR
 0009
                                        030
                                                     69.E
 2008 C3512D
                                       JMP
                                                    BRKP ; BREAKPOINT PESTART
                                       CEG
                                                    40H
                             TEIS ROUTINE INITIALIZES THE FILE AREA FOR SUBSEQUENT
                          ; TEIS ROUTI!
; PROCESSING
2042 212410
2043 7545
2045 AF
8045 77
8047 23
8049 8D
9049 C24600
                                       LXI
MVI
XFA
MOV
INX
DCP
JNZ
                          INIT.
                                                    H FILEG
C MAXFIL*FELEY
                                                    A
M A
                          INIT2
                                                    INITE
                          ; CLEAR THE BREAKPOINT TABLE
004C 0618
004E 210C10
0051 77
0052 23
0053 05
0054 025100
                         ; MYI
INIT3: MCV
INX
ECR
JNZ
                                                    E.NPP*3
E BRT
M A
                                                    B
INIT3
                         ; SET UP THE SIO BOARD;
; NITA MVI A.2AAF
0057 3EAA
0057 3F40
005E 3F40
005E 3ECE
005D 3ECE
005D 3ECE
0061 D303
0063 3E37
                                                               GET DUMMY MODE WORD COURT IT IT ISSET SIT IT ISSET SIT IT ISSET SIT FOR THE MORE FOR REAL SET THE MODE FOR REAL GOTPUT IT
                                      TUO
TUO
TUO
TUO
TUO
TUO
TUO
TUO
                                                   A.ZAAF
TTS
A 42°
TTS
A CCEH
TTS
A 37°E
TTS
```

```
; THIS IS THE STARTING POINT OF THE SELF CONTAINED; SYSTEM ONCE THE SYSTEM HAS BEEN INITIALIZED. COMMANIS; ARE READ FROM THE USER. EXECUTED. AND CONTROL RETURNS; BACK TO THIS POINT TO PEAL ANOTHER COMMAND.
                                                                                            SP AREA-18
CRLF ; PRINT CR LF
; PROMPT WAS HERE IN REV 3
; . NOPS INSERTED
; . TO MATCH EXISTING
; . PROMS. FEMOUE WEN
; . A WHOLE NEW EPROM MASTER NEELEL
READ ; PEAD IMPUT LINE
                                                                      LXI
CALL
NOP
 0067 31B110
006A CD3A01
006D 00
                                              ECR.
 006F 00
                                                                      NOP
NOP
0055 00
0070 20
0071 00
0072 CD8500
0072 CD8500
0077 FIGA
0077 FIGA
0070 CD4001
007F CD5601
0092 C36720
                                                                     NOP
CALL
INX
MCV
                                                                                             READ
H
A M
'9'+1
LINE
VALC
COMM
                                                                                                                     FETCH FIRST CHARACTER
FOOMMAND OR LINE NUMEER?
JUMP IF LINE FOR FILE
FOET COMMANY VALUES
CHECK LEGAL COMMANDS
                                                                     CPI
JC
CALL
CALL
JMP
                                                                                              FOR
                                                   THIS ROUTINE READS IN A LINE FROM THE TTY AND PLACES
                                             THIS ROUTINE READS IN A LINE FROM THE TTY AND PLACES; IT IN AN INPUT BUFFER.

THE FOLLOWING ARE SPECIAL CHARACTES; CP. TYPMINATES BYAD ROUTINE

LT. NOT RECOGNIZED BY ROUTINE

CTRL-Y DELETE CUPRENT LINE

DEL DELETE CHARACTER;

ALL DISPLAYABLE CHARACTERS BETWEEN PLANE & Z AND THE ABOUT ARE RECOGNIZED BY THE READ ROUTINE ALL OTHERS; ARE SKIPPED OVER. THE FOUTINE WILL NOT ACCEPT MORE

CHARACTERS THAN THE INPUT PUFFER WILL HOLD.
7085 21C517
2028 22741
2028 1772
2028 1772
2028 CCF902
2037 72
2036 CAF722
2036 FFED
2037 CAF722
2038 CZB100
2039 71
2030 FEC5
2037 CAF722
2044 3671
2045 23
2044 3671
2045 23
2044 3671
2045 23
2049 CDF522
2047 73
2049 CDF522
2047 73
2049 CP
                                                                                              H IBUF GET INPUT BUFFER ALLRESS
 7085 210610
                                                                   LXI
                                             ÉEAD:
                                                                     SFLD
MVI
CALL
MCV
CPI
                                                                                             ADDS
E.2
IM8
                                                                                                                     SAVE ADDRESS
;INITIALIZE CHARACTER COUNT
;READ A LINE
                                             NEYT:
                                                                                              A B
24
EOR
                                                                                                                     CHECK FOR CTRL X
                                                                      CPI
                                                                                              ASCR ;GET AN ASCII CR
                                                                                             ASUA
DEL
A L
IBUF AND ØFFH ; CHECK FOR FIRST CHAR
                                                                     JNZ
MOV
CPI
JZ
MVI
                                                                                            I FUR AND OFFH ; CHICK FOR ITEST FOR MASCR; PLACE CR AT END OF LINE E ; FLACE EOF INDICATOR IN I
                                                                     INX
MVI
INX
MVI
                                                                                                                    FLACE ECF INDICATOR IN LINE
                                                                                            A IBUF-83 AND OFFE
CLER : CLEAP REMAINING BUFFER
E IBUF-1
M E ; SAVE CHARACTEP COUNT
                                                                     CALL
LXI
MCV
00F0 C9
00F1 FE7F
00F3 C2C600
                                                                     RET
CPI
JNZ
VI
                                                                                                               CHECK FOR DELETE CHARACTER
                                             DEL
                                                                                             127
CEAR
                                                                                              A IBUF AND 2FFH
```

```
B · SCS1 . PRN
 FAGE 3
                                                              L
NEXT
H
E
S 5FH
OUT8
NEXT
                                               CMP
JZ X
DCR
MVI
CALL
JMP
CPI
JNC
CPI
JNZ
                                                                               IS THIS 1ST CHARACTER
                                                                               ; DECREMENT POINTEF ; DECREMENT COUNT
                                BSFA .
                                                          CHART ; CHECK 1

CHART ; JUMP IF NOT CON ...

CHART ; IS IT A TAB?

NEXT ; IGNORE IF NOT

Z -1

NEXT

E.A

OUTS ; ECFO CHARACTER

M.3

A.IEUF-81 AND OFFH

L ; CHECK FOR END OF LINE
                                CHAF:
                                                                              ;CHECK FOR LEGAL CHARACTER;JUMP IF NOT CONTROL CHAR;IS IT A TAB?;IGNORE IF NOT
                                              CPI
JNC
MOV
CALL
MOV
MVI
CYP
JZ
INX
INR
JMP
                                CHAR1:
                                                                             ; INCREMENT CHARACTER COUNT
                                                              NEXT
                               THIS POUTINE IS USED TO BLANE OUT A PORTION OF MEMORY
 0015 BD
0016 C8
0017 3620
0019 23
001A C31500
                               CLER.
                                             CMP
                                                            Ĺ
                                              PZ
MVI
                                                            <u>M</u>. ′
                                                                         PLACE BLANT IN MEMORY
                                             INX
JMP
                                                            H
CLER
                              ; SEE IF TTY INPUT READY AND CHECK FOR STRL X. RETURN WITH ZERO SET IFF CTRL-X SEEN.
OCET TB03
OCET 2F
OCFO E602
OCF3 CDF900
OCF5 FE19
OCF6 C9
                                             IN
CMA
ANI
RNZ
CALL
CFI
RET
                                                                            ;GET TTY STATUS
;INVEFT STATUS
;IS DATA AVAILABLE?
;RETURN IF NCT
;GET THE CHAR
                              INK .
                                                            TTS
                                                            INS GET THE CHAR
'X'-40H ; IS IT A CTFI-X?
                             ; TFIS ROUTINE FEADS A BITT OF DATA FROM THE USART
00F9 DF03
00FB E602
00FD CAF900
0100 DF02
0102 E67F
                              ine.
                                             IN
                                                            TTS
                                                                            FREAD USART STATUS
                                                            TTYLA
INS
TTI
7FE
                                             ANI
JZ
IN
                                                                           FREAD DATA STRIP OFF PARITY
                                            ANI
MOV
RET
0104 47
0105 C9
                                                            P.A
                             THIS ROUTINE OUTPUTS A PYTH OF DATA TO THE USART
0126 78
0107 D60D
                                                            A B
                                                                           GET CHAR IN A
                             ĆUT8∶
```

```
B · SCS1 . PRN
                                                                                                                                                              PAGE 4
  0109 CA2C01
010C C604
010E C22101
0111 C5
0112 0620
                                                                              OUT91 ; RESET LINE POSITION IF SO 

DDE-20H ; WAS IT A TAB? 

OUT82 ; CONTINUE IP NOT 

B , SAVE TAB CHAR 

FOUTPUT A SPACE .
                                                           JZ
ADI
JMZ
PUSE
MVI
 0112 0620
0114 CT2901
0117 3A1911
011A E607
011C C21401
011F C1
7120 C9
0121 78
                                       CUTE4:
                                                           CALL
                                                                               OUTE2
                                                          LDA
ANI
JNZ
POP
RET
MOV
                                                                                                  GET CURRENT LINE POSITION IS IT A TAB STOP?
CUTPUT ANOTHER SPACE IF NOT PESTORE TAE CHAP
                                                                               LPOS
                                                                               CUT84
                                                                                                 GET CHAP IN A GIS IT A NON-PRINTING CHAR?
                                       00183.
0121 78
0122 3C
0125 FE21
0125 DA2F01
0128 3A1911
012F 3C
012C 321911
012F D303
0131 F601
013G CA2F01
013G 78
0137 D302
0139 C9
                                                                               A B
                                                          INR
                                                                              A + 1
                                                                                                  ;DON'T BUMP LINE POSITION IF SG ;BUMF LINE POSITION...
                                                          JC
I.DA
                                                                              OUTE®
                                      OUT82:
                                                                              LPOS
                                                                              A
LPCS
                                                          STA
                                                                             TTS
TTYTR
OUT8Ø
A B
TTO
                                                          IN
ANI
JZ
MCV
CUT
                                      curse.
                                                                                                 ; REAF STATUS
                                                                                                 TRANSMIT DATA
                                      ; THIS POUTINE WILL OUTPUT A CARRIAGE RETURN AND LINE FEED FOLLOWED BY TWO IFLETE CHARACTERS SHICH; PROVIDE TIME FOR PPINT HEAD TO RETURN
013A 060T
013C CD0601
013F 060A
0141 CT0601
0144 06FF
0146 CT0601
0149 C30601
                                      CELF:
                                                        ∾VI
                                                                             B 13
                                                                                                 ;CE
                                                                             OUTS
B,10
OUTS
E 255
OUTS
                                                         CALL
                                                                                                 : 1.7
                                                         CALL
MVI
CALL
                                     THIS ROUTINE JUMPS TO A LOCATION IN MEMORY GIVEN BY THE IMPUT COMMAND AND REGINS EXECUTION OF PROGRAM THERE
0140 CD2703
014F CT3A01
0152 2A8A10
0155 E9
                                      EXEC.
                                                                            VCEK
CRLF
BBUF
                                                        CALL
                                                                                               CHECK FOR PARAMETER
                                                        CALL
                                                                                                FETCH ADDRESS
                                                         PCHL
                                                                                               JUMP TO PROGRAM
                                     ; TFIS ROUTINE CHECKS THE INPUT COMMAND AGAINST ALL ; LEGAL COMMANDS STORED IN A TABLE. IF A LEGAL COMMANI ; IS FOUND, A JUMP IS MADE TO THAT ROUTINE OTHERWISE ; AN FRROR MESSAGF IS OUTFUT TO THE USER.
0156 11E402
0159 3E04
015E 329510
015E CD6501
0161 C29104
0164 E9
                                                       LXI
VVI
STA
CALL
JNZ
PCHL
                                                                            D.CTAF ; COMMAND TABLE ADDRESS A 4 ; LENGTH OF COMMAND SAVE
                                     COMM:
                                                                                                ;SAVE
;SEARCH TABLE
;JUMP IF ILLEGAL COMMAND
;BE HERE NOW
                                    ;
```

```
; THIS ROUTINE CHECKS TO SEE IF A FASE CHARACTER STRING; IS SOUAL TO ANY OF THE STRINGS CONTAINED IN A TABLE, POINTED TO BY D.E. THE TABLE CONTSISTS OF ANY NUMBER; OF CHARS WITH 2 SYTES CONTAINING VALUES ASSOCIATED; WITH IT. THE FUND OF THE TABLE IS MARKED WITH A - 1.; OR SYMFOL TABLE. ON RETURN IF THE ZERO FLAG IS SET A MATCH WAS FOUND; IF NOT NO MATCH WAS FOUND. IF A MATCH WAS FOUND DE POINT TO THE LAST BYTE. POINT TO THE LAST BYTE. POINT TO THE LAST BYTE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      PAGE 5
          0165 2A7410
0168 1A
0169 3C
016A CA7E01
015D 3A9510
0170 4F
0177 1DP001
0174 1A
0175 6F
0176 13
0177 1A
0179 C8
0179 C8
0179 C8
0178 C9
                                                                                                                          COMS:
                                                                                                                                                                               LELD
                                                                                                                                                                                                                                                                                           FETCH COMPAND ADDRESS
JGET NEXT BYTE
JIS IT -1?
JABORT IF SO
                                                                                                                                                                                                                                      ADDS
D
                                                                                                                                                                               LDAX
                                                                                                                                                                                                                                      A
COMS1
                                                                                                                                                                             JZ
LDA
MCV
CALL
LDAX
MOV
                                                                                                                                                                                                                                                                                           ;ABORT IF SO
;GET LENGTE CF STRING
                                                                                                                                                                                                                                   NCER
C A
SEAR
                                                                                                                                                                                                                                                                                         COMPARE STRINGS
                                                                                                                                                                                                                                  D L A
                                                                                                                                                                           INX
LDAX
MOV
                                                                                                                                                                                                                                                                                         FETCH VALUE
                                                                                                                                                                                                                                 H A
                                                                                                                                                                         RZ
INX
JMP
INE
RET
                                                                                                                                                                                                                                  D
                                                                                                                                                                                                                                                                                     SET TO NEXT STRING
                                                                                                                                                                                                                                 COMS
                                                                                                                   COMS1:
                                                                                                                                                                                                                              A
                                                                                                                                                                                                                                                                                      ;CLEAP ZERO FLAG
                                                                                                                 ; THIS ROUTINE CHECKS TO SEE IF TWO CHARACTER STRINGS IN MEMORY ARE BOUAL. THE STRINGS ARE POINTED TO BY DE AND E.L. ON RETURN. THE ZEPO FLAG SET INDICATES A MATCH. REG C INLICATES THE LENGTH OF THE STRINGS ON PETURN. THE POINTERS POINT TO THE NEXT ADDRESS AFTER THE CHARACTER STRINGS.
 0180 1A

0181 EE

0182 C28C01

0185 13

0187 0D

0188 C29001

0187 C9

018C 13

019T 0T

019E C29C01

0191 0C

0192 C9
                                                                                                                                                                   LDAX
CMP
JNZ
INX
                                                                                                                                                                                                                                                                               FETCH CHARACTER; COMPARE CHARACTERS
                                                                                                                 SEAP :
                                                                                                                                                                                                                          C
                                                                                                                                                                                                                          INCA.
                                                                                                                                                                     INX
DCR
JNZ
                                                                                                                                                                                                                                                                                 ; DECREMENT CEAFACTER COUNT
                                                                                                           INCA:
                                                                                                                                                                 INX
FCR
JNZ
INR
RET
                                                                                                                                                                                                                       D
C
INCA
                                                                                                                                                                                                                                                                             CLEAR ZERO FLAG
                                                                                                                   THIS ROUTING PERCES OUT A SUFFER IN MEMORY WHICH IS THEN USED BY OTHER SCANNING ROUTINES
0193 AF
0194 118A10
0197 0600
0199 1F
                                                                                                                                                             XRA
LXI
MVI
DCX
                                                                                                         ZBUT.
                                                                                                                                                                                                                  A CONTROL OF THE CONT
                                                                                                      ZPU1:
```

```
B:SCS1 PRN
                                                                                                                                                                                        PAGE 6
    019A 12
019B 05
019C C29901
019F C9
                                                                      STAX
DCR
JNZ
RET
                                                                                                                   ;ZERO BUFFER
                                                                                             Z BU1
                                               ; TFIS ROUTINE CALLS ETRA TO OFTAIN THE INPUT PARAMETER; VALUES AND CALLS AN ERFOR ROUTINE IF AN ERROR OCCURRED; IN THAT ROUTINE
    01A0 CIA701
01A3 DA8104
01A6 C9
                                               VALC CALL
                                                                                                                  GET INPUT PARAMETERS JUMP IF ERROR
                                                                                            ETRA
                                                                     JC
RET
                                              ; THIS ROUTINE EXTRACTS THE VALUES ASSOCIATED WITH A ; COMMAND FROM THE INDUT STREAM AND PLACES THEM IN THE ; ASCII BUFFER APUF IT ALSO CALLS A ROUTINE TO ; CONVENT THE ASCII HEXADECIMALS TO FINARY AND STORES ; THEM IN THE BINARY BUFFER BBUF ON RETURN CARRY ; SET INDICATES AN EPPOR IN INPUT PARAMETERS.
 01A7 210000
01AA 228C10
01AA 228C10
01AB 228C10
01B0 CD9301
01B3 21C510
01B6 23
01B7 7E
01B9 F3220
01B8 3F
01BB D0
01BC C2B601
01BF 229610
01C2 CD3909
01C5 3F
01C5 D0
01C7 FE2F
01C9 C2F101
01C6 117610
01CF 0E05
01CF 0E05
                                              ÉTRA :
                                                                     LXI
                                                                                          H Ø ;GET A ZERC
PBUF-2 ;ZERC VALUF
PBUF ;SET NO FILE NAME
ZBUF ;ZERC PUFFER
                                                                    SHLD
SHLD
CALL
LXI
INX
                                                                                           ZBUF
H.IBUF-1
                                              VAL1:
                                                                                                                 ;FETCH INPUT CHARACTER ;LOOK FOR FIRST CHARACTER
                                                                    MOV
GPI
CMC
FNC
JNZ
SELD
CALL
CMC
RNC
                                                                                          A.M
                                                                                                                 ;RETURN IF NO CAPRY
;JUMF IF NO ELACK
;SAVE POINTER
;SCAN TO FIRST FARANETER
                                                                                          VAL1
PNTR
SBLK
                                                                                                                 FRETURN IF OR
                                                                   CPI
JNZ
LXI
MVI
INX
MOV
                                                                                         VALS
D. FEUF
C NMLFN
E
                                                                                                                ; NO FILE NAME
; NAME FOLLOWS FUT IN FBUF
                                            VAL2:
                                                                                         A M
                                                                   CPI
JZ
                                                                                         VAL3
C
WHAT
01F3 0F

01D9 FA8104

01DC 13

01DE CSD101

01E1 3E20

01F3 0D

01F4 FAEC01

01F8 13

01E9 C3E301

01EC CF4509

01FF 3F

01F0 DE

01F1 117F10
                                                                   ĬČR
JM
                                                                  STAX
INX
JMP
MVI
DCR
                                                                                                                STORE FILE NAME
                                                                                          VAL2
                                           VAL3 · VAL4 :
                                                                                                               GET AN ASCII SFACE
                                                                                         A, ´
                                                                  JM
STAX
INX
JMF
                                                                                          DONE
                                                                                                               ;FILL IN WITH SPACES
                                                                                         I
D
                                           DONE:
                                                                  CALL
CMC
RNC
                                                                                         SBL2
 Ø1F1 117E1@
                                           VALE.
```

LXI

D ABUF

```
B . SCS1 PRN
                                                                                                                                                                                                                                   PAGE 7
 01F4 CD9A0B
01F7 72
01F8 FE05
01FA 3F
01FB D8
01FC 017E10
01FE CD4802
0202 D8
0203 220A10
0206 217E10
0206 217E10
0209 CDI305
020F 3F
0210 D0
0211 118210
0214 CD9A0B
0217 78
0214 3F
0214 3F
0215 D0
0215 CD4602
0222 D8
0225 228C10
0226 21210
0226 21210
0226 21210
0226 21210
0226 21210
0226 21210
0226 21210
0226 21210
0226 21210
0226 21210
0226 21210
0226 21210
0226 21210
0226 21210
                                                                                    CALL
MCV
CPI
CMC
RC
LXI
                                                                                                                 ALPS
A B
5
                                                                                                                                              ;FLACE FARAMETER IN SUFFER ;GET DIGIT COUNT ;CHECK NUMBER OF DIGITS
                                                                                                                                               FFETURN IF TOO MANY DIGITS
                                                                                                                                              ;CONVERT VALUE
;ILLEGAL CHARACTER
;SAVE IN BINARY BUFFER
                                                                                   CALL
ESTLI
LXII
CALL
CMC
ENC
LXI
CALL
MOV
CPI
                                                                                                                  AHEX
                                                                                                                  BBUF
                                                                                                                 H.AEUF
NORM
                                                                                                                                              ; NORMALIZE ASCII VALUE ; SCAN TO NEXT PARAMETER
                                                                                                                  SELK
                                                                                                                                              ;RETURN IF CR
                                                                                                                D APUF-4
ALPS | FLACE PARAMETER IN BUFFER
A.B | GET DIGIT COUNT |
5 | CHECK NUMBER OF DIGITS
                                                                                    CMC
RC
LXI
CALL
PC
                                                                                                            PABUF-4
AHEX ;CONVERT VALUE
;ILLSCAL VALUE
BBUF-2 ;SAVE IN BINARY BUFFER
H.ABUF-4
NOFM ;NOFMALIZE ASCII VALUE
A ;CLEAR CARRY
                                                                                                                                              FRETURN IF TOO MANY DIGITS
                                                                                   BC
SHLD
LXI
CALL
ORA
RET
                                                       ; THIS ROUTINE FETCHES PIGITS FROM THE BUFFFF AIDRESSED; BY B.C. AND CONVERTS THE ASCII DECEMAL DIGITS INTO; BINARY. UP TO A 16-BIT VALUE CAN BE CONVERTED. THE SCAN STOPS WHEN A BINARY ZERO IS FOUND IN THE EUFFER.
022F 210000
0231 0A
0232 07
0233 08
0234 54
0235 29
0236 29
0237 29
0238 19
0239 29
0238 DESO
0235 FEOA
0235 TF
0241 1500
0241 1500
0243 19
0244 03
0245 C33102
                                                                                                                                            GEP A 16 BIT ZFEC
FETCH ASCII DIGIT
SET ZERO FLAG
FRETURN IFF EINISGED
SAVE CURRENT VALUE
SAVE CURRENT VALUE
FIFTS TWO
TILMES TWO
                                                        ADEC .
                                                        ADE1 .
                                                                                  LDAX
ORA
RZ
MOV
DAD
DAD
DAD
DAD
DAD
CPI
CMC
                                                                                                                A
                                                                                                                D H
                                                                                                               E H H D H
                                                                                                                                            ;ADD IN CRIGINAL VALUE
;TIMES TWO
;ASCII BIAS
;CHECK FOR LEGAL VALUE
                                                                                                              #8
10
                                                                                  RC
MOV
MVI
                                                                                                                                            FRETURN IF FRROR
                                                                                                              E A
D Ø
D
B
                                                                                  DAD
                                                                                                                                           :ADD IN NEXT DIGIT; INCREMENT POINTER
                                                                                                                ADE1
                                                       ; THIS ROUTINE FETCHES LIGITS FROM THE BUFFER ALDRESSED; BY B C AND CONVERTS THE ASCIL HEXADECIMAL DIGITS INTO; BINARY. UP TO A 16-BIT VALUE CAN BE CONVERTED. THE
```

```
B:SCS1.FRN
                                SCAN STOPS WEEN A BINARY ZERO IS FOUND IN THE BUFFER.
                                                                               GET A 16 BIT ZFRC
; FETCH ASCII DIGIT
; SET ZERO FLAG
; PETURN IF DONE
; LEFT SHIFT
; LEFT SHIFT
; LEFT SHIFT
; LEFT SHIFT
; CONVERT TO BINARY
; CHECK FOR LEGAL VALUE
  0248 210000
                                AHEX
                                                LXI
                                                              H @
B
A
 0249 210000

0240 0A

0240 0B

0241 29

0251 29

0251 29

0252 0D5F02

0255 FEI0

0257 3F

0259 B9

0259 85

0259 03

0250 034802
                                               LDAX
ORA
RZ
DAD
DAD
                                                DAD
                                                CALL
                                                               AES1
10H
                                               CMC
RC
ADD
MOV
INX
JMP
                                                                               ; PETURN IF ERROR
                                                              L
L.A
B
                                                                               ; INCREMENT POINTER
                                                               AHE1
                               ; TFIS SUPROUTINE CONVERTS ASCII HEX DIGITS INTO HINARY
 025F D630
0261 FE0A
0263 D8
0264 D607
0266 C9
                                               SUI
CPI
RC
SUI
                               AHS1:
                                                              48
10
                                                                               ;ASCII BIAS
;DIGIT 0-10
                                                                              ;ALPHA BIAS
                               ; THIS ROUTINE CONVERTS A BINARY VALUE TO ASCII
; BEXADECIMAL AND OUTFUTS THE CEARACTERS TO THE TTY.
0267 CTAC02
026A 217410
026D 46
0263 CT0601
0271 23
0272 46
0273 C30601
                                             CALL
LXI
MOV
CALL
INX
MCV
JMP
                                                              BINH ; CONVERT VALUE
H HCON ; CONVERSION AREA
B.M ; FETCH OUTFUT CHAFACTER
CUTS ; OUTPUT CHAFACTER
                               ÉOUT:
                               CHOT:
                                                              H
B M
CUTS
                                                                              FFETCH CHARACTER CUTFUT CEAFACTEF AND RETURN
                              ; TFIS ROUTINE DOES THE SAME AS ABOVE BUT OUTPUTS A PLANK AFTER THE LAST CHAPACTER
0276 CD6702
                              HOTF: CALL
                                                              HOUT
                                                                             ; CONVERT AND OUTPUT
                              ; THIS ROUTINE OUTPUTS A BLANK.
                                                             P. ' ;GET A BLANK
OUTS ;OUTPUT IT AND RETURN
0279 0620
0273 030601
                              BLK1: MVI
JMP
                              THIS ROUTINE CONVERTS A BINARY VALUE TO ASCII
LECIMAL DIGITS AND OUTPUTS THE CHARACTERS TO THE TTY
                                                            BIND ; CONVERT VALUE HOUT 3 ; CUTPUT VALUE 2 DIGITS E 3 M ; GET 1457 -
027E CDC902
0281 CD6A02
                                              CALL
                                             CALL
INX
MOV
0284 23
0295 46
0286 030601
                                                                             GET LAST DIGIT CUTPUT AND PETURN
                                                             OUTE
```

```
THIS ROUTING IS USET BY OTHER ROUTINGS TO INCREMENT THE SCARTING ADDRESS IN A COMMAND AND COMPARE IT WITH THE FINAL ADDRESS IN THE COMMAND. ON PETURN THE CARRY PLAG SET INDICATES THAT THE FINAL ADDRESS HAS BEEN REACHED.
   0299 2A8A10
0295 A8D10
029F BC
029G C29B02
029G 3A8C10
0296 BD
0297 C29B02
029A 37
029A 23
029C 228A10
029F C9
                                               ACEF.
                                                                     LHLI
                                                                                          BBUF STETCH START ADDRESS BEUF 3 STOF ADRESS HIGH COMPARE APPESSES ACH1
BBUF 2 STOF ADDRESS LOW COMPARE ADDRESS STORM
                                                                    LDA
CMP
JNZ
LDA
CMP
                                                                                                                 ;STOP ADDRESS LOW
;COMPARE ADDRESSES
                                                                    JNZ
STC
INX
SFLD
RET
                                                                                           ACE1
                                                                                                                 ;SET CARRY IF EQUAL
;INCREMENT START ADDRESS
;STORE STAFT ADDRESS
                                              ACE1:
                                                                                          E
BBUF
                                                  THIS ROUTINE OUTPUTS CHARACTERS OF A STRING UNTIL A CAPRIAGE RETURN IS FOUND.
                                              CNT
SCRN:
  02A0 46
02A1 3F0D
02A3 B8
02A4 C8
02A5 CD0601
02A8 23
02A9 C3A002
                                                                   MOV
MVI
GMP
RZ
CALL
INX
JMP
                                                                                         B M
A.13
B
                                                                                                               ;FETCH CHARACTER
;CAPRIAGE RETURN
;CHARACTER = CR?
                                                                                         OUTS
H
SCRN
                                                                                                               ;OUTPUT CHARACTER ;INCREMENT ADDRESS
                                                 THIS ROUTINE CONVERTS THE BIMARY VALUE IN PEG A INTO ASCII HEXADECIMAL DIGITS AND STORES THEN IN MEMORY
 02AC 217410
02AF 47
02B0 1F
02B1 1F
02B2 1F
02B3 1F
02P3 77
02B2 23
02B9 78
02BA CDFF02
02BA CDFF02
02BA CDFF02
                                                                                        H.HCON ; CONVERSION B A ; SAVE VALUE
                                             BINF:
                                                                  LYI
MCV
RAR
RAP
RAP
CALL
MCV
INX
MCV
                                                                                       BIN1
M A
H
A B
BIN1
M, A
                                                                 CALL
MOV
RET
                                                                                                              CONVERT TO ASCII
                                                THIS ROUTINE CONVEPTS A VALUE TO HEXADECIMAL
02PF F60F
02C1 C630
02C3 FF3A
02C5 D6
02C6 C607
02C6 C9
                                           BIN1:
                                                                                                             ;LOW 4 FITS
;CONVERT TO ASCII
;DIGIT 0-9
                                                                 ANI
                                                                                       ØFH
                                                                 ITA
ITA
OFI
OFI
ITA
ITA
                                                                                       49
                                                                                       7
                                                                                                             ;MOTIFY FOR A-F
```

PAGE 10

```
; THIS ROUTINE CONVERTS THE BINARY VALUE IN REG A INTO ; ASSII DECIMAL PIGITS AND STORES THEM IN MEMCRY
02C9 217410
02CC 0664
02CE CDTA02
02T1 060A
02D3 CDDA02
02T6 C630
02D8 77
02T9 C9
                                                               TXI
                                                                                     H. HCON
B 100
                                                                                                          CONVERSION ADDRESS
                                                               GALL
MVI
CALL
ADI
MOV
                                                                                                           CONVERT HUNDREDS DIGIT
                                                                                     BID1
B 10
BID1
                                                                                                           CONVERT TENS DIGIT GET UNITS DIGIT STORE IN MEMORY
                                                                                      ·e -
                                                                                     M. A
                                                                RET
                                          ; THIS ROUTINE CONVERTS A VALUE TO DECIMAL
                                                                                    M. 0'-1 ; INITIALIZE IIGIT COUNT
                                                               MVI
INR
SUB
JNC
ADD
INX
EFT
 02PA 362F
02DC 34
02TF 90
02DF D2DC02
                                          PID1:
                                                                                                          ;CEECK- DIGIT
                                                                                     BID1 2
                                                                                                          ; RESTORE VALUE
 02E1 80
02E2 23
02E3 C9
                                                                                     B
H
                                          ; LEGAL COMMAND TAPLE
; LEGA

2214 44554150 CTAP.

2218 2472

2214 44554545

2214 4455452

2214 9124

2216 4545452

2214 9124

2216 46494645

2217 46494545

2312 44454654

2300 7605

2302 44454654

2308 415334D

2308 4153334D

2308 2445454

2308 2465354

2314 43555354

2318 2020

2314 42524547
                                                                                                           ; PUMP COMMAND
; COMMAND ADDRESS
; EXECUTE COMMAND
; COMMAND ADDRESS
; ENTER COMMAND
                                                               TB
DW
                                                                                    DB
DV
DF
                                                                                                          FILE COMMAND

FILE COMMAND ADDRESS

LIST COMMAND ADDRESS

DILET COMMAND

COMMAND ADDRESS

ASSEMBLE COMMAND

COMMAND ADTRESS

PAGE TRANSFER COMMAND

COMMAND ADTRESS

PAGE TRANSFER COMMAND

COMMAND ADDRESS

SPEALPOINT COMMAND

COMMAND ADDRESS

SPEALPOINT COMMAND

COMMAND ADDRESS

FROCEED COMMAND

COMMAND ADDRESS
                                                               DP
DW
FB
                                                                DW
DW
DW
DW
                                                                2000E

'BREK'

PROC'

PROC'

PROC'
  031A 42524549
031E F50C
032C 50524F43
  0324 AF0D
0326 FF
                                          THIS POUTINE CHECKS IF ANY PARAMETERS WERE INTERFO. WITH THE COMMAND IF NOT AN ERROR NESSAGE IS ISSUED.
 0327 3A7E10
032A E7
032B CA8104
032E C9
                                                                LDA
ORA
J?
RET
                                                                                                            ; FETCE FARAMETER BYTE; SET FLAGS
                                                                                      ABUF
                                                                                     A
WHAT
                                                                                                            INO PARAMETER
                                          ; THIS ROUTINE DUMPS OUT THE CONTINTS OF WEYORD FROM
```

B:SCS1.PRN

```
B · S C S 1 . PRN
                                                                                                                                                                          FAGE 11
                                              ; THE START TO FINAL ADDRESSES GIVEN IN THE COMMAND.
     032F CD2703
0332 CD3A01
0335 2A8A1P
0338 7F
0339 CD7602
033C CD8902
033F D8
034A 7T
034A 360F
0345 C235A3
0346 C33203
                                             ;
DUMP:
DUMS:
DUM1:
                                                                CALL
CALL
LHLT
MOV
CALL
CALL
RC
MOV
ANI
JNZ
                                                                                      VCHK
CRLF
BBUF
A,M
                                                                                                           ;CHECK FOR PARAMETERS;START NEW LINE;FETCH MEMORY ADDRESS
                                                                                                          ;OUTFUT VALUE
;CHECK ADDRESS
;RETURN IF FINISHED
;IS NEXT ADDRESS
; DIVISIBLE BY 16?
                                                                                      HOTB
                                                                                     A.L
ØFH
DUM1
DUMS
                                            THIS ROUTINE WILL MOVE 256 BYTES FROM 1ST ADDRESS GIVEN IN COMMAND TO 2ND ADDRESS IN COMMAND
  0349 CD2703

034C 348210

034F P7

0359 CA8104

0353 248410

0355 EB

0357 248010

0356 C1A

0356 T8

0357 248010

0350 14

0350 77

035E 23

035F 13

0360 05

0361 C25023

0364 C9
                                                              CALL
LDA
CRA
JZ
LHLI
XCHG
LHLD
MVI
                                                                                    VCHE ; CHECK FOR PARAMETER ABUF-4 ; FETCH 2ND PARAMETER EXIST?

A ; DOES 2ND PARAMETER EXIST?
                                                                                   A
WHAT
BBUF
                                                                                                         FETCH MOVE TO ALDRESS
                                                                                    PBUF+2
                                                                                                       ; FETCH MOVE TO ALLRESS; SET COUNTER
                                                                                   P.Ø
D
M.A
                                                               LDAX
MOV
INX
INX
                                           PAG1:
                                                              DCR
JNZ
                                                                                                       ;DECREMENT COUNT
                                                                                   PAG1
                                                              RET
                                         THIS ROUTINE INITIALIZES THE BEGINNING OF FILE ADDRESS AND END OF FILE ADDRESS AS WELL AS THE FILE AREA WHEN THE FILE COMMAND IS USED
                                       ;
FILE CALL CRLF
; CHECK FOR FILE PARAMETERS
LDA FBUY
CRA A
JZ FOUT ; NO
CALL FSIA ; LOC
LCG ; PNT
  0365 CD3A01
 0368 3A7610
0368 97
036C CAE003
036F CD3F04
0372 EB
0373 C28A03
                                                                                                      ;NO - GO LIST
;LOOK UP FILE
;PNTR IN DE
                                                                                 TEST
                                                             JNZ
                                       ; NO ENTRY
LIA
 0376 3A7E10
0379 B7
037A CA8404
                                                                                ABUF
                                                                                                    CHECK FOR PARAM
                                       ORA A JOSEPH FOR PA

; CHECK FOR ROOM IN DIPECTORY

LDA FEF
                                                           ORA
037D 3A7D10
0380 B7
0381 C29F03
0384 219204
0387 C38704
                                                           LDA
ORA
JNZ
LXI
                                                                               A
ROOM
H_EMES1
                                                           JMP
                                                                               MESS
```

```
B:SCS1.FRN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FAGE 13
     03F0 327D10
03F3 FE
03F4 110500
03F7 19
03F8 FE
03F9 FF
03F9 C20A04
03FD 23
03FE 86
03FF 23
0400 020A04
0403 33
0404 33
0405 23
                                                                                                                                                                                                                                                   FOCNT ; SAVE COUNT
                                                                                                                                                                                        STA
PUSH
LXI
DAD
MOV
ORA
                                                                                                                            FINE .
                                                                                                                                                                                                                                                   D. NMLEN
                                                                                                                                                                                                                                                   D
                                                                                                                                                                                                                                                   Ă M
                                                                                                                                                                                                                                                  A
FOOD
H
M
FOOD
                                                                                                                                                                                        JNZ
INX
ADD
INX
JNZ
                                                                                                                                                                                                                                                                                                             NON ZERO OK TO OUTPUT
                                                                                                                      JNZ FOOD
INX SP
INX SP
INX E
INX H
INX H
JMP FFET
; HAVE AN EMTHY TO OUTFUT
FCCD: PCP H
MTI C.NMLEN
FAST: MOV BM ; LCAI
       0406 23
0407 C31F04
    040A E1
040B 0E05
040E 46
040E CD0601
0411 0D
0412 23
0413 C20D04
                                                                                                                                                                                                                                                                                                   ; LOAD CHARACTER TO B
                                                                                                                                                                                     CALL
DCR
INX
JNZ
                                                                                                                                                                                                                                                OUTS
                                                                                                    ;DO TH

FND PTRS

;OCL ;OUTPUT

FOOL ;OUTPUT

FOOL ;OUTPUT

FOOL ;OUTPUT

FOOL ;OUTPUT

FOOL ;OUTPUT

FOOL ;OUTPUT

;ANT H L POINTS FAST EOF!

LXI D ,FELEN-NMLEN-4

EAD I ;MOVE TO NE

DCA A ;TEST COUNT

JNZ FINE ;MORE TC DO

RET ;OUNTEL TO BY H L

;ON RET. P,L POINT 2 WORDS LATER

FOOL CALL

INY

MCV A,M

ECX H

PUSE F

CALL HOUT ;

POP H

MOV A.M

INX H

PUSH

CALL

FOOL CALL

FOUT POP H

MOV A.M

INX H

PUSH

CALL

FOOL CALL

FOUT POP H

MOV A.M

INX H

PUSH

CALL

FOOL CALL

FOUT POP H

MOV A.M

INX H

PUSH

CALL

FOOL CALL

FOUT 
                                                                                                                    0416 CD2B04
0419 CD2P04
041C CT3A01
    041F 110400
0422 19
0423 3A7D10
0426 3I
0427 C2F003
042A C9
042B C17902
042F 23
042F 7E
043F 7E
0430 2B
0431 E5
0435 E1
0436 7E
0436 7E
0437 23
0439 E5
0439 E5
0438 C17602
0431 E1
                                                                                                                                                                                                                                          A.M
H
H
H
E
HOTB
                                                                                                                                                                               PUSH
CALL
POP
RET
                                                                                                                                                                                                                                                                                                        ;OUTPUT
;PESTORE H L
                                                                                                                             RET
SEARCH THE FILE DIFECTORY FOR THE FILE
WHOSE NAME IS IN FRUE.
RETURN IF FOUND, ZERC IS OFF. H. L POINT TO
ENTRY WHILE SBARCHING ON ENTRY FOUND WITH ADIR
ZERO SET FEF TO >0 AND FREAD TO THE ADDR OF ENTRY
Ø43F AF
                                                                                                                 FSEA:
```

XRA

A

```
PAGE 14
B:SCS1.PRN
0440 327D10
0443 0606
0445 112410
0449 217610
0449 217610
0449 0705
0440 DD8001
0450 F5
0451 D5
0452 1A
0453 B7
0454 C27504
0459 1A
0459 B7
                                                                    FEF ;CLAIM NO FREE ENTPIES
3.MAYFIL ;CCUNT OF ENTRIES
D.FILEO ;TABLE ADDRESS
H.FUT
C.NMLEN
                                                  STA
MVI
LXI
LXI
MVI
CALL
PUSH
PUSH
                                 FSE10
                                                                                       ;TEST STRINGS
;SAVE FLAG
                                                                     SEAR
                                                                      D
D
                                                                                       ;GET BOFF
;EMPTY ENTRY?
                                                    LDAX
                                                   ORA
JNZ
INX
                                                                      A
FSE20
                                                                                       STORE OTHER WORD
                                                   LDAX
ORA
JNZ
XCEG
IXI
                                                                      D
0459 B7
045A C27504
045D EP
045E 11FAFF
0461 19
0462 227B10
0465 7A
0466 327D10
0464 F1
                                                                                    ; NOPE-GO TEST FOR MATCE
                                                                     FSE20
                                                                     D -NMLEN-1
I ;MC
                                                                                       N-1
;MOV TO BEGINNING
;SAVE ADDR
                                                   DAD
SELD
MOV
                                                                      FREAD
                                                                     A D
FEF
                                                                                       ;SET FREE ENTRY FOUND ;RESTOR INTERIM FTR ;UNJUNK STACK
                                                   STA
                                 FOF HPOP PSW
; MOVE TO NEXT ENTRY
FSE15 LXI D FFI
DAD D
XCHG
046B 110900
046E 19
046F EF
0470 05
0471 C8
0472 C34804
                                                                     D FELEN NMLEN
                                                                                       ; NEXT ENTRY ADDR IN DE ; TEST COUNT ; DONE -- NOPE
                                                   DCR
RZ
                                                                      В
                                 RZ ;DONE-NOP:
JMF FSE10 ;TRY NEXT
;ENTRY WASN'T FPEE. TEST FOR MATCH
FSE20: FOP FSW
POP PSW
0475 E1
0476 F1
0477 C26B04
                                                                      FSE15 ; IF ZERO CLEAR. NO MATCH
                                  ; ENTRY FOUNT
047A 11FBFF
047E 19
047E 7A
047F B7
0480 C9
                                                                     D, -NMLEN
D; E.
A D
A ; CI
                                                                                                  FACKUP
                                                   DAD
MOV
                                                                                       ; H. L POINTS TO ENTRY
                                                                                       ;CLEAR ZERO
;THAT'S ALL
                                                   ORA
                                  ; OUTPUT ERROR MESSAGE FOR ILLEGAL COMMAND;
                                                                     CRLF
H EMES
SCRN
EOR
0481 CD3A01
0484 218I04
0487 CDA002
048A C36700
                                                   CALL
LXI
CALL
JMP
                                                                                       ; OUT CPLF
; MESSAGE ADDRESS
 048D 574841540DEMES:
0492 46554C4C0DEMES1
0497 4E4F204F4FEMES2:
                                                                      WEAT',13
FULL' 13
NO NO 13
                                                   DF
FB
                                   ; CALL POUTINE TO ENTER DATA INTO MEMORY; AND CHECK FOR ERROR ON RETURN
```

; THIS ROUTINE IS USED TO ENTER DATA VALUES INTO MEMORY

```
B · SCS1 . PRN
                                                                                                                                                                                                   PAGE 15
                                                    ; EACH VALUE IS ONE BYTE AND IS WRITTEN IN MEXADECIMAL ; VALUES GREATER THAT 255 WILL CAUSE CARRY TO BE SET AND RETURN TO BE MADE TO CALLING PROGRAM
      049D CD2703
04A0 CTA904
04A3 DA8104
04A6 C33A01
                                                     ÉNTR:
                                                                                                    Y C H K
                                                                                                                            CHECK FOR PARAMETERS
                                                                            CALL
JC
JMP
                                                                                                    ENTS
    002F = 0449 CD3AC1 044C CD8500 C44F 21C610 44E CD9301 C4BE CD9301 C4BE FE2F C4C0 C8 C4C1 CD9ACE C4C1 CD9ACE C4C2 T8 C4C3 TF0ACC C8 C4C5 TF0ACC C74902
                                                   FEND
                                                                           EQU
CALL
CALL
LXI
SHLD
                                                                                                                          TFRMINATION CHAR
                                                                                                   CRLF
                                                                                                 READ
H. IBUF
PNTR
ZBUF
SBLK
                                                                                                                         FEAD INPUT DATA
SET LINE FOINTER
SAVE PCINTER
SCLEAP BUFFRE
CAN TO FIRST VALUE
JUMP IF CR FOUND
                                                                          CALL
CALL
JC
CPI
                                                   ENT1:
                                                                                                  EEND
                                                                          RZ
                                                                                                                          FRETURN CARRY IS ZEED
                                                                           CALL
                                                                                                 ALPS
                                                                                                                         FRIACE VALUE IN BUFFER GET DIGIT COUNT CHECK NUR OF DIGITS
                                                                         MOV
CPI
CMC
                                                                                                 A.B
                                                                        RC LXI CALL MOV
                                                                                                                        RETURN IF MCEE THAN CONVERSION ADDRESS CONVERT VALUE
                                                                                                 B. ABUF
     04CC CI4902
04CF D8
04D0 7D
                                                                                                 AHEX
                                                                                                                         FERROR IN HEX CHARACTER
                                                                                                 A.L
    04D0 7D
04D1 2A8A10
04I4 77
04D5 CD9B02
04I9 C3B504
                                                                                                                        ;FETCH MEMORY ADDRESS;PUT IN MEMORY;INCREMENT MEMORY LOCATION
                                                                         LELD
                                                                                                 BBUF
                                                                         MOV
                                                                                                M, A
ACH1
                                               ; THIS ROUTINE IS USED TO ENTER LINES INTO THE FILE
; ARBA. THE LINE NUMBER IS FIRST CHECKED TO SEF IF IT IS
; A VALID NUMBER '0000 9999'. NEXT IT IS CHECKED TO SIE
; IF IT IS GREATER THAN THE MAXIMUM CURRENT LINE NUMBER
; IF IT IS THE NEXT LINE IS INSPIRED AT THE EARL OF THE
; CURRENT FILE AND THE MAXIMUM LINE NUMBER IS UPDATED AS
; WELL AS THE END OF FILE POSITION. LINE NUMBER THAT
; APPROPRIATE PLACE AND ANY EXTRA CHARACTERS IN THE OLD
; LINE ARE LELETED.
0419 3A2410
04DE P7
04DY CA8104
04E2 0F04
04E2 2C510
04E7 2T
04E8 7F
04E9 FE30
04E9 LA8104
04FF FE3A
                                                                                              FILEO ; IS A FILE DEFINED? ..
                                                                                            WHAT ;ABORT IF NOT C 4 ;NC CF DIGITS TO CHECK H IBUF-1
                                                                      ORA
JZ
                                                                      MVI
                                                                      LXI
                                                                                                                                           ; INITIALIZE ADDRESS
                                                                     MOV
CPI
JC
CPI
JNC
                                                                                             A M
                                                                                                                     FFETCH LINE DIGIT CHECK FOR VALID NUMBER
                                                                                            WHAT
                                                                                            WEAT
```

```
B:SCS1.PRN
                                                                                                                                                                                                                                                                                                                                                                                                PAGE 16
  04F3 0D
04F4 C2E704
04F7 227410
04FA 113010
04FD CDC805
                                                                                                                                             DCR
JNZ
SELD
LXI
CALL
                                                                                                                                                                                          C LICK ADIS ; D.MAXL-3 COMØ
                                                                                                                                                                                                                                              ;FINE AFERESS
                                                                                                                                                                                                                                                                                               GET ADDRESS
                                                                                           CALL COMØ
JNC INSR
; GET HERE IF NFW LINE IS GREATER TEAN MAXIMUM LINE #
INX H
CALL LODM ; GET NEW LINE NUMBER
LXI H.MAXL+3
CALL STOM ; MAKE IT MAXIMUM LINE NUMBER
LXI D.IEUF-1
 0503 23
0504 CDPP05
0507 213010
0507 213010
0507 110510
0510 242B10
0513 0E01
0513 0E01
0513 0E01
0513 0E01
0513 3601
0514 3207
0514 32770
051D C36700
                                                                                                                                                                                           LODM GET NEW LINE NUMBER
H.MAXL+3
STOM GMAKE IT MAXIMUM LINE NUMBER
D.IEUF-1
                                                                                         LHLD
                                                                                                                                                                                                                                           ; END OF FILE POSITION
  0520 CT7805
  0523 0E02
0525 CA2905
                                                                                     ; MOVE LINE INDICATOR
; INSERT LINE POSITION

IBUF-1; NEW LN NOT : OLD LN

SUB B; COUNT ITFFERENCE

JZ ZERO; LINE LEMOTES EQUAL

GT
; GPT HERE IF # OF CHARS IN OLD LINE " # CF CHARS IN
; NEV LINE OR NEW LINE # WAS NOT EQUAL TO SOME OLD

LINE #

LT: LHLD EOFP; FND OF FILE ADDRESS

MOV DH

MOV ELL

CALL ADR; MOVF TO ADDPT

MYI C.2

CALL EMOV :

GALL EMOV :

GALL EMOV :

GALL EMOV :

SET HERE IF # OF INSERTING TO SOME OLD

SET HERE IF # OF INSERTING TO SOME OLD

SET HERE IF # OF INSERTING TO SOME OLD

SET HERE IF # OF INSERTING TO SOME OLD

SET HERE IF # OF INSERTING TO SOME OLD

SET HERE IF # OF INSERTING TO SOME OLD

SET HERE IF # OF INSERTING TO SOME OLD TO 
 0525 CA2905
0528 0D
0529 46
052A 2B
052B 3602
052D 227210
0530 3AC510
0533 0D
                                                                                                                                                                                                                                             ; NEW IN NOT EQUAL TO SOME OLD IN
  0534 CA3E05
0537 90
0538 CA6105
 053E 2A2P10
0541 54
0542 5D
0543 CDA105
0546 222P10
0549 0E02
054B CTAF05
054E C36105
                                                                                           JMP ZERO
; GET HERE IF # OF CHARS IN OLD LINE < # OF CHARS IN
; NEW LINE.
GT: CMA
INR A ; COUNT DIFFERENCE
MOV D H
MOV E,L
CALL ADR
XCHG
0551 2F
0552 3C
0553 54
0554 5D
0555 CDA105
0558 FB
0559 CDA605
055C 3601
055E 222F10
                                                                                                      CALL LMOV ;DFLETE EXCESS CHAR IN FILE MVI M 1 ;E-C-F INDICATOR SHLD BOFP ;E-C-F ADDRESS GET HERE TO INSERT CURRENT LINE INTO FILE AREA ERC: LHLD INSP ;INSERT ADDRESS
                                                                                             ; GET
ZERO:
   Ø561 2A721Ø
```

```
3:SCS1.PRN
                                                                                                                                                                                         PAGE 17
  0564 360D
0566 23
0567 11C510
056A 0E01
056C CDA605
056F C36700
                                                                     MVI
INX
LXI
MVI
CALL
JMP
                                                                                           M ASCE
H
D.IBUF-1 ; NEW LINE ADDRESS
C.1 ; CHECK VALUE
LMOV ; PLACE LINE IN FILE
EOR
                                            ; THIS POUTINE IS USED TO FIND A LN IN THE FILE AREA
; WHICE IS GREATER THAN OR EQUAL TO THE CURRENT LINE #
FIND: LXI H.AEUF+3 ; ZUFFER ADDRESS
SHLD ADDS ; SAVE ADDRESS
FIN1: LHLD BOFP ; BEGIN FILE ADDRESS
MOV A.H ; RETURN TO MONITOR IF
ORA L ; FILE IS EMPTY...
JZ ZOP
0572 218110
0575 227410
0578 227410
0578 222910
0578 70
0570 04570
0590 019405
0583 EP
0584 247410
0587 EP
0584 CD4105
0580 DC0805
0590 D8
0591 C8
0591 C8
0593 TA105
0596 C38005
                                                                    JZ
CALL
XCEG
LELD
XCHG
MVI
CALL
                                                                                           EOP
EO1
                                            FI1:
                                                                                                                  ; CHECK FOR END OF FILE
                                                                                                                  FETCH FIND ADDRESS
                                                                                           ADDS
                                                                                           A,4
ADR
COMØ
                                                                                                                  ; EUMP LINE ADDRESS; COMPARE LINE NUMBERS
                                                                    CALL
                                                                   RC
RZ
MOV
CALL
JMP
                                            FI2:
                                                                                           ADR
FI1
                                                                                                                  ; NEXT LINE ADDRESS
                                            ; WHEN SEARCHING THROUGH THE FILE AREA THIS ROUTINE; CHECKS TO SEE IF THE CURRENT ADDRESS IS THE END OF; FILE
0599 23
059A 3E01
059C BE
059E C2
059E C36700
                                            ÉOF:
                                                                  INX
MVI
CMP
RNZ
                                                                                         H
A 1
M
                                            E01:
                                                                                                                ;E-O-F INDICATOR
                                                                   JMP
                                                                                         EOR
                                            ; THIS ROUTINE IS USED TO ADD A VALUE TO AN ADDRESS ; CONTAINED IN REGISTER F L
05A1 85
05A2 6F
05A3 D0
05A4 24
05A5 C9
                                            ADR:
                                                                   ADD
                                                                                         L
L A
                                                                  MOV
RNC
INR
                                                                                         Ħ
                                                                  RET
                                               THIS ROUTINE WILL MOVE CHARACTER STRINGS FROM ONE LOCATION OF MEMORY TO ANCTHER CHARACTERS ARE MOVED FROM LOCATION ADDRESSED BY D.F. TO LOCATION ADDRESSED BY B.L. ADDITIONAL CHARACTERS ARE MOVED BY BUMPING POINTERS UNTIL THE CHARACTER IN REG C IS FETCHED.
```

```
B:SCS1.PRN
                                                                                                                                            PAGE 18
05A6 1A
05A7 13
05A8 P9
05A9 C9
05AA 77
05AB 23
05AC C3A605
                                                    LDAX
INX
CMP
RZ
MOV
INX
                                                                                       ;FETCH CHARACTER
;INCREMENT FETCH ADDRESS
;TERMINATION CHAPACTER
                                  LMOV:
                                                                      C
C
                                                                                       ;STORE CHARACTER ;INCREMENT STORE ADDRESS
                                                                     M.A
E
                                                                      IMO V
                                      THIS ROUTINE IS SIMILAR TO ABOVE EXCEPT THAT THE CHAPACTER ADDRESS IS DECREMENTED AFTER EACH FETCH AND STORE
                                   ;
RMOV:
05AF 1A
05B0 1B
05F1 B9
05B2 C8
05B3 77
                                                   LDAX
DCX
CMP
RZ
MOV
                                                                                        ; FETCH CEARACTER
; DECREMENT FETCH ALLRESS
; TERMINATION CHARACTER
                                                                     D
C
                                                                    M.A
E
RMOV
                                                                                       ;STORE CHARACTER
;DECREMENT STORE ADDRESS
0584 2B
0585 C3AF05
                                                    DCX
JMP
                                      THIS ROUTINE IS USED TO LOAD FOUR CHARACTERS FROM MEMORY INTO REGISTERS
05F9 46
05F9 23
25BA 4E
05FB 23
05FC 56
05BD 23
05FE 5E
05FF 09
                                                   MOV
INX
MOV
INX
MOV
INX
                                  LODM:
                                                                     ВМ
                                                                                       ; FETCH CHAPACTER
                                                                    H
C.M
H.M
H.M
                                                                                       ;FETCH CHARACTER
                                                                                       ;FETCH CHARACTER
                                                                                       FETCE CHAPACTER
                                                   PET
                                 FET

THIS ROUTINE STORES FOUR CHARACTERS FROM THE REGISTERS
INTO MEMORY
0500 73
0501 2B
0502 72
0503 2B
0504 71
0505 70
0507 09
                                                                    M E
E
M D
                                  STOM:
                                                   MOV
                                                                                       ;STORE CHARACTER
                                                   DCX
MOV
DCX
MOV
DCX
MOV
PET
                                                                                       ;STORE CHARACTER
                                                                    H
M.C
H
                                                                                       STORE CHARACTER
                                                                     М.В
                                                                                       ;STORE CHARACTER
                                    TEIS ROUTINE IS USED TO COMPARE TWO CHARACTER STRINGS OF LENGTH 4 ON RETURN ZERO FLAG SET MEANS BOTH STRINGS ARE EQUAL. CARRY FLAG =0 MEANS STRING ADDRESSED BY DE WAS GREATER THAN OR EQUAL TO CHARACTER STRING ADDRESSED BY H.L
                                                   MVI
MVI
ORA
0508 0601
050A 0E04
0500 B7
050D 1A
                                                                                      ;EQUAL COUNTER
;STRING LENGTH
;CLFAR CARRY
;FETCH CHARACTER
                                                                    B 1
C.4
                                 COME .
                                                                    A
E
                                 C01 ·
```

```
B:SCS1.PRN
                                                                                                                                                                                                                                                                                                                                                           PAGE 19
       05CE 9F
05CF CAT305
05D2 04
05D3 1B
05D4 2F
05D5 0D
05D6 C2CD05
05D9 05
                                                                                                                                                                              M
C02
                                                                                                                                   SEB
JZ
INR
DCX
DCX
DCR
JNZ
DCR
                                                                                                                                                                                                                          COMPARE CHARACTERS
                                                                                                                                                                                                                          ; INCREMENT EQUAL COUNTER
                                                                                         C02·
                                                                                                                                                                               CO1
         Ø5DA C9
                                                                                       ; THIS ROUTINE IS SIMILAR TO THE ABOVE ROUTINE EXCEPT ON FETURE CARRY FLAG = 0 MEANS THAT CHARACTER STRING ATTRESSED BY D.E IS ONLY > STRING ATTRESSED BY H.L
     0518 0E04
05DD 1A
05DE D601
05E0 C3CE05
                                                                                       C 0M1 ·
                                                                                                                                MVI
                                                                                                                                                                           C 4
D
1
CC1+1
                                                                                                                                                                                                                        STRING LENGTH
                                                                                                                                 LDAX
SUI
JMP
                                                                                      THIS ROUTINE WILL TAKE ASCII CHARACTERS AND ADD ANY NECESSARY ASCII ZEPGES, SO THE RESULT IS A 4 CHARACTER ASCII VALUE
   ## 513 CDB805 ## 6517 P$ ## 6518 CB ## 6518 
                                                                                                                          CALL
XRA
CMP
RZ
CMP
                                                                                       NORM:
                                                                                                                                                                            LODM
                                                                                                                                                                                                                      ; LOAD CHAPACTERS; FETCH A ZERO
                                                                                                                                                                            A
P
                                                                                      NCR1 ·
                                                                                                                                CNZ
RNZ
MOV
MOV
                                                                                                                                                                           STOM
                                                                                                                                                                                                            STORE VALUES
                                                                                                                                                                          E.D
D.C
C B
B. @'
                                                                                                                                                                                                                      ; NORMALIZE VALUE
                                                                                                                                MOV
MVI
                                                                                     THIS ROUTINE IS USED TO LIST THE CONTENTS OF THE FILE ARBA STARTING AT THE LINE NUMBER GIVEN IN THE COMMAND
 05F6 CD3A01
05F9 CD72P5
05FC 23
05FF CDA002
0600 CD3A01
0603 CD905
0606 CDFF00
0609 C2FC05
                                                                                    LIST
                                                                                                                            CALL
INX
CALL
CALL
CALL
CALL
JNZ
RET
                                                                                                                                                                         FIND
H
SCRN
                                                                                                                                                                                                                      FIND STARTING IN OUTPUT LINE.
                                                                                    LISTØ:
                                                                                                                                                                        CRLF
EOF
INK
                                                                                                                                                                                                                   ; CHECK FOR END OF FILE ; CHECK FOR CTRL-X ; LOOP IF NO CTRL-X
                                                                                                                                                                         LISTO
   Ø6ØC C9
                                                                                           THIS ROUTINE IS USED TO DELETE LINES FROM THE FILE AREA. THE REMAINING FILE AREA IS THEN MOVED IN MEMORY SO THAT THERE IS NO EXCESS SPACE.
0600 CD2703
0610 CD7205
                                                                                                                                                                                                                  ; CHECK FOR PARAMETER ; FINE LINE IN FILE AREA
                                                                                                                             CALL
                                                                                                                                                                      FIND
```

```
B:SCS1.FRN
                                                                                                                                                                               PAGE 22
    2613 227210
2616 218510
2619 7E
261A B7
261B C22106
261E 218110
2621 227410
2624 2B
2625 213010
2628 20202
2628 2A7210
262E DA6F06
                                                                                       DELP ;SAVE DELETE POSITION
H ABUF-7
A.M ;CHECK FOR 2ND PARAMETER
A ;SET FLAGS
DEL1
H ABUF 3 ;USE FIRST FARAMETER
ADDS ;SAVE FIND ALDRESS
                                                                 SHLD
LXI
MOV
CRA
JNZ
LXI
                                                                  SELD
XCEG
LXI
                                             DEL1:
                                                                                        E MAXL-3
                                                                                                             COMPARE LINE NUMBERS LOAD DELETE POSITION
                                                                  CALL
                                                                                        CCM@
                                            ; GET HERE IF DELETION INVOLVES END OF FILE
SHLT EOFP; CHANGE E-O-F POSITION
MVI M.1; SET E-C-F INDICATOR
LCEG
   0631 222310
0634 3601
0636 EB
0637 2A2910
  0637 2A2910
063B EB
063B 066D
063B 2P
063E 7D
063F 93
0640 7C
0641 9A
0644 BA6606
0647 05
0648 2B
0648 BE
                                                                 LELI
                                                                                       BOFP
                                                                                                            GET BEGIN FILE ALLRESS
                                                                 MVI
DCX
MOV
                                                                                       B 13
                                                                                                             SFT SCAN SWITCH CHECK FOR BOJ
                                                                                      Ä.L
                                           DIL2:
                                                                 SUB
MOV
SEB
MVI
JC
                                                                                      A H
                                                                                       A ASCR
DEL4
B
                                                                                                            ; LCOK FOR CR
; DECREMENTED PAST BOF
                                                                DCX
CMP
JNZ
DCX
MOV
SUB
MOV
SBB
  Ø649 BE
Ø64A C25EØ6
Ø64D 2B
Ø64E 7D
Ø64F 93
Ø65Ø 7C
Ø651 9A
Ø652 DA67Ø6
                                                                                                            FIND NEW MAX IN
                                                                                      IEL2
                                                                                    Ä.L
E
                                                                                    Ā.H
 0652 DA6706
0655 3E
0656 23
0657 23
0658 CAEC06
0659 23
065C CDBe05
065F 213010
0665 C9
0666 B8
0667 E3
0668 C25B06
0668 322D10
066E C9
                                                                JC
CMP
INX
INX
JZ
                                                                                       DEL5
                                                                                                           ; END OF FREVIOUS LINE
                                                                                      DEL3
                                                               JZ
INX
CALL
LXI
CALL
RET
CMP
XCHG
                                                                                    LODM ; LOAD NEW MAX LN
H.MAXL+3 ; SET ADDRESS
STOM ; STORE NEW MAX LN
                                          DEL3:
                                                                                                           CHECK SWITCH
                                                               JNZ
STA
RET
                                                                                     DEL3-1
                                                                                                           ; MAYE MAX IN A SMALL NUMBER
                                         GET FFRE IF DELETION IS IN MIDDLE OF FILE AREA
NOVR: CALL FII FIND END OF DELETE AREA
CZ FIZ FIZ ; NEXT LINE IF THIS LN EQUAL
066F CD8005
0672 CC9205
0675 FB
0676 2A7210
0679 0E01
067B CDA605
067F 222F10
                                                               XCHG
                                          NOV1:
                                                              LHLD
MVI
CALL
                                                                                    TELP
C,1
LMOV
                                                                                                          CHAR MOVE TO POSITION
MOVE TERMINATOR
COMPACT FILE AREA
SET EOF POSITION
```

```
B:SCS1.PRN
                                                                                                                                                                                                                      PAGE 21
     0681 3601
0683 09
                                                                                                         M 1
                                                                                                                              ;SET EOF INDICATOR
                                                       ; STARTING HERE IS THE SELF ASSEMBLEP PROGRAM; THIS PROGRAM ASSEMBLES PROGRAMS WHICH ARE; IN THE FILE AREA
   2684 CD2703
0687 3A8210
2694 B7
0687 C29406
0683 2A8A10
0694 32C10
0694 3ACA10
0697 1645
0699 329E10
0696 CEFF
0696 321A11
                                                      ASSM:
                                                                                CALL
                                                                                                           VCHK ; CHECK FOR PARAMETER
ABUF-4 ; GET 2ND PARAMETER
A ; CHECK FOR PARAMETER
                                                                                LDA
CRA
JNZ
LELD
                                                                                                          A ASM4 BBUF BBUF-2 IBUF-4
                                                                                                                                 FETCH 1ST PARAMETER
STORE INTO 2ND PARAMETER
FETCH INPUT CHARACTER
RESET A IF ERRORS ONLY
SATE ERROR FLAG
FUT MARKER IN SYMBOL TABLE...
                                                                                 SHLD
                                                      ASM4:
                                                                                LDA
                                                                                                           AEPR
A.ØFFE
                                                                                STA
                                                                                STA
XPA
STA
                                                                                                           SYMT
06A1 AF
06A2 32S410
06A5 2D3401
06A8 2A9A10
06A8 2A9A10
06A8 2A9A10
06B1 2A7210
06B1 2A7210
06B1 2A7210
06BA 7E
06EB CA2D00
06CA EB
06CA 2EB
06CA 0EB
06CB 0EB
                                                                                                                                    ;GET A ZERO
;SET PASS INIICATOR
;INDICATE START OF PASS
;FETCH ORIGIN
;INITIALIZE PC
                                                                                                           A
Pasi
                                                    ASM3:
                                                                                                          CRLF
BBUF
ASPC
BOFP
                                                                                CALL
                                                                                SHLD
                                                                                                                                     GET STAPT OF FILE
                                                                                                         APNT FETCH LINE POIN'
SP.ARIA+18
A.M FETCH CHARACTEF
1 FEND OF FILT?
                                                                               SHLD
                                                    ASM1 :
                                                                                                                                    ; FETCE LINE POINTER
                                                                               LXI
MOV
CPI
                                                                                                                                    ; END OF FILE?
; JUMP IF END OF FILE
                                                                                                          EASS
                                                                               XCHG
                                                                                                       D ; INCREMENT ADDRESS
E CBUF ; BLANK START ADDRESS
A. IBUF-5 AND ØFFE ; BLANK END ADDRESS
CLER ; ELANK OUT BUFFEP
C ASCR ; STOP CRAPACTER
LMOV ; MCVE LINE INTO BUFFER
M.C ; PLACE CR IN BUFFER
                                                                              INX
LXI
MVI
                                                                              CALL
MVI
                                                                            CALL

CALL

COURT

CALL

JMP

CALL

JMP

CALL

JMP
                                                                                                        APNT
PASI
                                                                                                                                  ;SAVE ADDRESS
;FETCH FASS INDICATOR
;SET FLAGY
;JUMP IF PASS 2
                                                                                                      ASM2
PAS1
ASM1
PAS2
AOUT
 06DE C3B406
06E1 CDC907
06E4 CDEA06
06E7 C3B406
                                                  ASM2:
                                                                                                                                 CUTPUT LINE
                                                                                                       ASM1
                                                       THIS ROUTINE IS USEI TO OUTPUT THE LISTING FOR AM ASSEMBLY. IT CHECKS THE FEROR SWITCH TO SEE IF ALL LINES ARE TO BE PRINTED OR JUST THOSE WITH FEROMS.
06FA 3A8F10
06ED B7
06FE C2F706
                                                                            LDA
ORA
JNZ
                                                  AOUT:
                                                                                                                                 FETCE ERROR SWITCE
SET FLAGS
OUTPUT ALL LINES
FETCH ERROR INDICATOR
                                                                                                       AERR
                                                                                                       A
ACU1
OBUF
```

```
B:SCS1.PRN
                                                                                                                                                                                              PAGE 22
                                                                                              ; CHECK FOR AN ERPOP
; RETURN IF NO FROR
H OBUF ; OUTPUT BUFFER ADDRESS
SCRN ; CUTPUT LINE.
     06F4 FE20
06F6 C8
06F7 21B110
                                                ACU1 · CPI
RZ
LXI
CALL
JMP
                                                PASS1 OF ASSEMBLER. USED TO FORM SYMBOL TABLE
    0700 CI9301
0703 329410
0706 21C610
0709 CI6107
                                                 PAS1
                                                                       CALL
STA
LXI
                                                                                              ZBUF ;CLEAR BUFFER
PASI ;SET FOR PASS1
H.IBUF ;INITIALIZE LINE POINTER
PATCH ;CHECK FOR LABEL OR COMMENT
                                                                       CALL
                                                ; PROCESS LABEL
  070C CD500B
070F FA0F0B
0712 CAFA0C
0715 CL4F07
0718 C20F0B
0718 0E05
0718 0F07
0720 7E
0720 7E
0721 12
0722 13
0722 13
0723 023
0724 0D
0725 C22007
0729 229010
                                                                                                                   ;GET AND CHECK LABEL
;FRRCR IN LABEL
;DUFLICATE LABEL
;CHECK CHARACTEP AFTER LABEL
;EPROP IF NO ELANX
;LENGTH OF LABELS
;SET FUFFER ADDRESS
;FETCH NEXT CHARACTEP
;STORE IN SYMBOL TABLE
                                                                       CALL
                                                                                              SLAB
CP5
ERRD
                                                                                             LCHK
OP5
C LLAB
H.ABUF
                                                                       CALL
                                                                       JNZ
MVI
                                                                                              A,M
                                                                      MOV
STAX
INX
INX
DCR
JNZ
XCHG
SHLD
                                                                                             H
C
                                                                                           TABA ;SAVE TABLE ADDRESS FOR EQU ASPC-1 ;FETCH PC HIGH H A H
 0728 FB
0729 229010
072C 3A9310
072F 77
0730 23
0731 3A9210
0734 77
0735 23
0736 36FF
                                                                      LDA
                                                                      INZ
                                                                                            ASPC
M.A
H
                                                                      I DA
MOV
                                                                                                                    FETCH PC LOW STORE IN TABLE STORE END-OF-TABLE MARKER ...
                                             ; FROCESS OPCODE
 0738 CD9301
0738 CD3909
073E DA3608
0741 CD9A08
                                                                   CALL
CALL
JC
CALL
CPI
JC
JN Z
JMP
                                                                                                                  JZERC WORKING BUFFER
JSCAN TO OFCODE
JFOUND CARRIAGE RETURN
JFLACE OFCODE IN BUFFER
JCHECK FOR BLANK AFTER OFCODE
JCR OR TAB AFTER OFCOLE
JERROR IF NO BLANK
JCHECK OFCODE
                                             OPC:
                                                                                            ZBUF
SBLK
                                                                                           OERR
ALPS
OPCD
OERR
CPCD
 0741 CD9ADB
0744 FE20
0746 DA950A
0749 C2360B
074C C3950A
                                            ; THIS ROUTINE CHECKS THE CHARACTER AFTER A LABEL ; FOR A BLANK OP A COLON.
074F 2A9610
0752 7E
0753 FE20
0755 C8
0756 FE09
0758 C8
                                                                   LHLD
                                                                                                                  GET CHARACTER AFTER LABEL
CHECK FOR A BLANK
FRETURN IF A BLANK
CHECK FOR A TAB
FRETURN IF A TAB
                                                                   MOV
CPI
RZ
CPI
                                                                                           A.M
                                                                                           Ø9E
```

.

```
B:SCS1.PRN
                                                                                                                                                            PAGE 23
    0759 FE3A
075B C0
075C 23
075D 229610
                                                           CPI
RNZ
INX
SFLD
RET
                                                                               1:1
                                                                                                  CHECK FOR A COLON
                                                                               Ħ
                                                                               PNTR
                                                                                                 SAVE POINTER
                                         CHECK FOR LABELS OR COMMENTS
 0761 33
0762 33
0763 229610
0766 7E
0769 613820
0769 613820
0761 FE20
0771 FE20
0773 CB
0774 FE33
0774 FE33
0777 CB
                                        PATCH:
                                                           INX
                                                                               SP
                                                                                                  ; BUMP SP PAST RETURN ALDRESS ...
                                                           INX
SHLD
MOV
                                                                              SP
PNTR
                                                                                                ;SAVE POINTER
;FETCH CHARACTER
;CHECK FOR A BLANK
;JUMP IF NO LABEL
;CHECK FOR A TAB
;JUMP IF NO LABEL
;CHECK FOR COMMENT
;PETURN TO HIGHER LEVEL
;ALSO CHECK FOR COMMENT...
                                                                              A.M
                                                           CPI
JZ
                                                                              OPC
                                                           CPI
JZ
CPI
                                                                              Obc
0ae
                                                          RZ
CPI
RZ
DCX
DCX
RFT
                                                                             ·; ·
                                                                             SP
                                                                                                 ; POINT SP AT IMMEDIATE RETURN...
                                       ; PROCESS ANY PSTUIO OPS THAT NEED TO BE IN PASS 1
 077A CL3909
077D 1A
077E B7
077F CA9607
0785 E2607
0785 E28007
0788 FE05
078A DABE07
078B C22109
                                                          CALL
                                       PSU1.
                                                                             SBLK
                                                                                                 SCAN TO OPERAND
                                     FSU1 · CALL SBLK
LTAX L
OPA A
JZ ORG1
JM DAT1
JF0 EQU1
CPI 5
JC FES1
JNZ FASS
; DO DW PSEUDO OP
ACO1 · WVI C.2
KPA A
JMP OCN1
; DO ORG PSEUDO-OP
                                                                                               ;FETCH VALUE
;SET FLAGS
;ORG OFCODE
;DATA STATEMENT
;EQU OPCODE
                                                                            A
ORG1
DAT1
EQU1
                                                                                               ; RES OPCODE
; JUMP IF END
 0790 0E02
0792 AF
0793 C3250F
                                                                                               ;2 BYTE INSTRUCTION
;GET A ZERO
;ADD VALUE TO FROGRAM CNTR
                                     0796 CDBC0B
0799 3AB110
079C FE20
079E C0
                                                                                               ;GET OPERAND
;FETCH ERROR INDICATOR
;CHECK FOR AN ERROR
079F 229210
07A2 3AC610
07A5 FE21
07A7 D8
07A8 C3B607
                                                                           ASFC
IBUF
+1
                                                                                               STORE NEW ORIGIN GET FIRST CHARACTER CHECK FOR LABEL
                                     RC
JMP ECUS
DO EQU PSEUDO-OF
EQU1 CALL ASCN
LDA IBUT
CPI 1
                                                                                               ; NO LABEL ; CHANGE LABEL VALUE
07AB CTBC@B
07AE 3AC610
07B1 FE21
07B3 DAC30C
07B6 EB
07B7 2A9010
07BA 72
                                                                                              GET OPERAND
FETCH 1ST CHARACTER
CHECK FOF LABEL
                                                                           FRRM
                                                                                              FISSING LABEL
                                                       XCHG
LELD
MCV
INX
                                    EQUS:
                                                                          TABA
M.D
H
                                                                                              ;SYMBOL TABLE ADDRESS;STCRE LABEL VALUE
Ø7BB 23
```

```
PAGE 24
B:SCS1.PRN
                                                   MOV
RET
                                                                     M.E
Ø7BC 73
07BD C9
                                  ; DO DS PSEUDO-OP
RES1: CALL AS
MOV B,
                                                                     ASCN
B,H
C L
RES21
07BE CDBC0B
07C1 44
07C2 4D
07C3 C31A08
                                                                                       GET OPERAND
                                                    MOV
                                                                                     ; ADD VALUE TO PROGRAM COUNTER
                                                    JMP
                                  ; DO DE PSEUDO-CP
                                  DAT1 JMP
                                                                     ASTAG
0706 032109
                                  ; PERFORM PASS 2 OF THE ASSEMBLER
07C9 21E310

07CC 3A9310

07CF CDAF62

07D2 23

07D3 3A9210

07D6 CDAF62

07D9 23

07DA 229D10

07DD CD9301

07DD CD9301

07EG CD5008

07FG CD5008

07FC CD4F07

07FF C23500

07F2 C33807
                                                  LXI
LDA
CALL
INX
LDA
CALL
IMX
                                                                     H.OBUF-2 ;SET OUTPUT BUFFER ADDRESS ASPC-1 ;FETCH PC HIGH BINH 3 ;CONVERT FOR OUTPUT
                                                                      ASPC ;FETCH PC LOW
PINE 3 ;CONVERT FOR OUTPUT
H
                                                                                        ;SAVE OUTPUT ADDRESS;CLEAR BUFFFR;INITIALIZE LINE PCINTER
                                                                      OINE
ZEUF
                                                    SELI
                                                                      ZBUF
H.IBUF
PATCH
SLAP
FRRL
LCHK
FRRL
CPC
                                                    LXI
CALL
CALL
JC
CALL
JNZ
JMP
                                  PAPL:
                                                                                        ;SCAN OFF LABEL
;EPROR IN LABEL
;CHECK FOR A BLANK OR COLON
;ERROR IF NOT A BLANK
                                   ; PROCESS PSEUDO OPS FOR PASS2
PSU2: LDAX D
ORA A ;SET FL
JZ ORG2 ;OPG OB
JM LAT2 ;TATA C
 07F5 1A
07F6 E7
07F7 CA3908
07FA FA1E08
07FD E22708
0960 FE05
0802 DA208
                                                                                         ;SET FLAGS
;ORG OPCODE
;IATA OPCOLE
;EQUATE PSEUDE-OP
                                                                       ORG2
DAT2
EQU2
                                                     JPO
CPI
JC
JNZ
                                                                       5
RES2
                                                                                         ; RES OPCODE
; END OPCODE
                                                                        EASS
   0805 C22D09
                                   ; IO IW PSEUDO-OP
ACC2: CALL TYSE
JMP ACC1
; DO DS PSEUDO-OP
FES2: CALL AS3L
MCV B.E
                                                                                         GET VALUE
  0808 CD0D09
0808 C39007
  080E CDB90B
0811 44
0812 4D
0813 2A8C10
0816 09
0817 228C10
091A AF
081B C3280B
                                                                       ASBL
B.H
C.L
BBUF 2
                                                                                          GET OPERAND
                                                      MOV
                                                                                         ; FETCH STORAGE COUNTER ; ALT VALUE
                                   BBUF+2
                                                                                          GET A ZERO
                                                                                          GET OPERAND
   Ø81E CDCCØ8
                                                                                          ; MAKE A ZEPO
; BYTE COUNT
   0821 AF
0922 0E01
```

```
B:SCS1.PRN
                                                                                                                                 PAGE 25
     0824 C3250P
                                                  JMP
                                                                 OCN1
                                   ; HANDLE EQUATES ON 2ND PASS.
                                  FOUZ: CALL
     0827 CDB90B
                                                                                GET OPERAND INTO HL AND FALL INTO NEXT ROUTINE
                                                             ASBL
                                     STORE CONTENTS OF HL AS HEX ASCII AT OBUF 2.
ON RETURN DE HOLDS VALUE WHICH WAS IN HL
   092A EB
092B 21E310
092F 7A
082F CDAF02
0832 23
0933 7B
0834 CDAF02
0837 23
                                                                ; PUT VALUE INTO DE
H OBUF-2; POINTER TO ADDR IN OBUF
A.D ; STORE HI BYTE....
BINH-3
                                  BINAD. XCHG
                                                LXI
MOV
CALL
INX
MOV
                                                                H A.E ;STORE LO BYTE...
BINH-3
E
                                                CALL
                                ; DO ORG PSEUDO- OP
OPG2: CALL
    0838 C9
 0839 CDB90B

0857 FE20

0857 FE20

0841 CD

0842 CD280R

0845 2A9210

0848 EB

0849 229210

084C 7D

084C 7D

084D 93

084D 93

084D 93

084D 93

084D 93

084D 93
                                                                               GET NEW ORIGIN
GET ERROR INTICATOP
CHECK FOR AN BRROR
DON'T "ODLY FC IF FRROR
STORE NEW ADDR IN OBUF
FFTCH FC
                                               CALL
LDA
CFI
RNZ
CALL
LHLD
XCHG
SHLD
MOV
SUB
                                                               ASBL
OBUF
                                                               ASPC
                                                                               STOPE NEW PC
                                                              A.L
E.A
A.H
                                                                               ; FORM DIFFERENCE OF ORIGINS
                                              MOV
MOV
SEB
MOV
LELD
DAD
SHLT
RET
 0850 9A
0850 57
0851 57
0852 2A8C10
0855 19
0856 228C10
0859 C9
                                                              BEUF- 2
                                                                             FETCH STORAGE POINTER
                                                                             ; MODIFY
; SAVE
                                                              BBUF-2
                                  PROCESS 1 BYTE INSTRUCTIONS WITHOUT OPERANDS
 Ø85A 031AØ9
                              TYP1 - JMP
                                                                             ;STORE VALUE IN MEMORY AND RETURN
                                                             ASTO
                               ; PROCESS STAX AND LDAX INSTRUCTIONS
0951 CDB90B
0860 C4AE0C
0863 7D
0864 B7
0865 CAB108
0969 FE02
086A C4A50C
096D C38108
                                             CALL
CNZ
MOV
CRA
JZ
CPI
CNZ
JMP
                              TYP2:
                                                                             ;FETCH OPERAND
;ILLEGAL REGISTER
;GET LOW CRDER OPERAND
;SET FILAGS
;OPERAND = 0
                                                             ASBL
                                                             ERRR
A.L
                                                             A
TY31
                                                                            ;OPERAND = 2
;ILLEGAL REGISTER
                                                             ERRR
TY31
                             PROCESS PUSH, POP, INX, DCX, DAD INSTRUCTIONS
0870 CDE90E
                                                            ASBL
ERRE
                             TYP3.
                                            CALL
                                                                            FETCH OPERAND
Ø873 C4A5ØC
                                                                            ILLEGAL REGISTER
```

```
P:SCS1.PRN
                                                                                                                                                                                                                      PAGE 26
   0876 7D
0877 0F
0878 DCA50C
                                                                                                                                      ;GET LOW ORDER OPERAND
;CHECK LOW ORDER BIT
;ILLEGAL REGISTER
;RESTORE
                                                                                                           A L
                                                                                RRC
CC
RAL
 0878 DCA50C
0878 17
087C FE08
0872 D4A50C
0881 07
0882 17
0883 17
0884 47
0885 1A
0886 80
0887 FE76
0889 CCA50C
0888 C35A08
                                                                                                           ERRR
                                                                                                           8
                                                                                 CPI
                                                                                CNC
RLC
RAL
RAL
MOV
LDAX
                                                                                                           ERRR
                                                                                                                                      ;ILLEGAL REGISTER ;MULTIPLY BY 8
                                                     TY31:
                                                     TY32:
                                                                                                          B,A
D
P
                                                                                                                                      ; FETCH OPCODE BASE
                                                                                                                                      FORM OPCOLE
CHECK FOR MOV M.M
ILLEGAL REGISTER
                                                                                ADD
                                                                               CPI
CZ
JMP
                                                                                                          118
ERFR
                                                                                                           TYP1
                                                    ; PROCESS ACCUMULATOR INT DOR, MOV.RST INSTRUCTIONS
 088F CDB90B
0892 C4A50C
0895 7D
0896 FE08
0898 D4A50C
089B 1A
089C FE40
089E CAADOS
08A1 FEC7
08A3 7D
08A4 CA810S
08A7 FA8402
08AA C3810S
                                                     TYF4:
                                                                               CALL
                                                                                                                                     FFETCH OPERAND
FILLEGAL REGISTEP
FGET LOW ORDER OPERAND
                                                                                                          ASBI
                                                                                                          EFRR
A.L
                                                                               CNZ
MOV
CPI
CNC
LDAX
CPI
JZ
CPI
MOV
JZ
JM
                                                                                                          ERRR
                                                                                                                                     ;ILLEGAL REGISTER
                                                                                                         D
64
TY41
199
A.L
TY31
TY32
                                                                                                                                     FETCH OFCODE BASE
CCHECK FOR MOV INSTRUCTION
                                                 JZ TY31 ; FST INSRUCTION

JM TY32 ; ACCUMULATOR INSTRUCTION

JMP TY31 ; INR.DCR
; PRCCESS MOV INSTRUCTION
TY41 DAD H
DAD H
DAD H
ADD L ; FORM OPCODE
STAX D ; SAVE OFCODE

CALL MPNT
CALL ASCN
CNZ ERRR ; INCREMENT POINTER
MOV A L ; FETCH LCW ORLER OBET
CNC ERRR ; IV. T
 08AD 29
08AE 29
08AF 29
08FØ 85
Ø887 85
Ø881 12
Ø882 CDFBØ8
Ø885 CDFCØB
Ø886 C4A5ØC
Ø88C FEØ8
Ø88C FEØ8
Ø88C FEØ8
                                                 ; FROCESS IMMEDIATE INSTRUCTIONS
; IMMEDIATE BYTE CAN PETWEEN -256 AND :255
; MVI INSTRUCTION IS A SPECIAL CASE AND CONTAINS
; 2 ARGUMENTS IN OPERAND
TYP5 CPI 6 ; CHECK FOR MVI INSTRUCTION
CZ TY56
CALL ASTO ; STORE OBJECT BYTE
TYS5 CALL ASBL ; GET IMMEDIATE ARGUMENT
INR A
CPI 2 ; CHECK OPERAND FOR RANGE
CNC ERRY ; CPERAND OUT OF RANGE
08C4 FE06
08C6 CDD908
08C9 CD1A09
08CC CDB90B
08CF 3C
08CF 3C
08D0 FE02
08T2 D4BE0C
08D5 7D
08T6 C35A08
                                                                                                                                   ; CHECK FOR MVI INSTRUCTION
```

```
B:SCS1.PRN
                                                                                                                                                                                                                                                                                                                                                                                                                            PAGE 27
                                                                                                                 ; FETCH 1ST ARG FOR MVI AND LXI INSTRUCTIONS
          08D9 CDE90B

08DC C4450C

09DF 7D

08E0 FE08

08DE 29

08DE 29

08DE 29

08DE 29

08DE 14

08DE 35

08DE 35

08DE 15

08DE 29

08DE 16

08DE 7E

                                                                                                              ;
TY56:
                                                                                                                                                                CALL
CNZ
MOV
                                                                                                                                                                                                                   ASBL
ERRR
                                                                                                                                                                                                                                                                    ;FETCH ARG
;ILLEGAL REGISTER
;GET LOW ORDER ARGU~ENT
                                                                                                                                                                                                                  A.I
8
ERRR
                                                                                                                                                                CPI
                                                                                                                                                                                                                                                                    ;ILLEGAL REGISTER
                                                                                                                                                               DAD
DAD
                                                                                                                                                                                                                                                               FETCH OPCOID BASE
FOR OPCODE
SAVE OBJECT BYTE
FETCH POINTER
FETCH CHARACTER
CHECK FOR COMMA
INCREMENT POINTER
                                                                                                                                                                LDAX
                                                                                                                                                                                                                 D
                                                                                                                                                            ADD
MOV
LHLD
MOV
CPI
INX
                                                                                                                                                                                                              L A PNTR A M PNTR
                                                                                                            MPNT:
                                                                                                                                                            SHLD
JNZ
MOV
                                                                                                                                                                                                             ERRS
A E
                                                                                                                                                                                                                                                                 SYNTAX ERROR IF NO COMMA
                                                                                                                                                           RET
                                                                                                        FROCESS 3 BYTE INSTRUCTIONS
LXI INSTRUCTION IS A SPECIAL CASE
    @SFA FE01
@SFC CZ2A09
@SFF CDD908
@SFF CDD908
@SFF CDD908
@SFF CD08
@SFF CD08
@SFF CD08
@SFF CD08
@SFF CD109
@
                                                                                                                                                                                                                                                         CHECK FOR LXI INSTRUCTION
JUMP IF NOT LXI
GET REGISTER
CHECK FOR ILLEGAL REGISTER
REGISTER ERROR
GET OPCODE
CLIFAR EIT IN ERPOR
STORE OBJECT BYTE
FETCH OPERAND
                                                                                                         TYPe.
                                                                                                                                                          CPI
                                                                                                                                                        JNZ
CALL
ANI
CNZ
MOV
                                                                                                                                                                                                           TY6
TY56
                                                                                                                                                                                                        ØSH
ERRR
A.E
ØF7H
ASTO
ASBL
                                                                                                                                                     ANI
CALL
MOV
MOV
CALL
MOV
JMP
                                                                                                                                                                                                         A,L
D.E
                                                                                                                                                                                                         ASTO
                                                                                                                                                                                                                                                          STORE 2ND BYTE
                                                                                                                                                                                                       A.D
TYP1
                                                                                                   THIS ROUTINE IS USED TO STORE OBJECT CODE PRODUCED FY THE ASSEMBLER DURING FASS 2 INTO MEMORY
091A 2AeC10
091D 77
091E 23
091F 228C10
0922 2A9D10
0925 23
0926 CDAF02
0929 229D10
092C C9
                                                                                                                                               LHLI
MOV
INX
SELD
LHLD
INX
CALL
SHLD
RET
                                                                                                                                                                                                   BBUF 2 | FETCH STORAGE ADDRESS M.A | STORE OBJECT BYTE | FINCREMENT LOCATION
                                                                                                   ASTC:
                                                                                                                                                                                                   EBUF-2
OIND
                                                                                                                                                                                                                                          ;FETCH OUTPUT ADDRESS
                                                                                                                                                                                                   BINH-3 ; CONVERT OBJECT FYTE
                                                                                                      GET HERE WEEN END PSEUDO-OP IS FOUND OR WHEN
END-OF-FILE OCCURS IN SOURCE FILE. CONTROL IS SET
FOR EITHER FASS 2 OR ASSEMBLY TERMINATOR IF FINISHED.
```

```
PAGE 28
B:SCS1.PRN
092D 3A9410
0930 B7
0931 C26700
0934 3E01
0936 C3A206
                                                                                               ;FETCH PASS INDICATOR
;SET FLAGS
;JUMP IF FINISHED
;FASS INDICATOR FOR 2ND PASS
                                                        LDA
ORA
JNZ
MVI
                                     ÉASS:
                                                                            PASI
                                                                            A
EOR
A.1
ASM3
                                                         JM.P
                                                                                                DO 2ND PASS
                                         THIS ROUTINE SCANS THROUGH A CHARACTER STRING UNTIL THE FIRST NON-BLANK CHARACTER IS FOUND
                                    ON RETURN CARRY SET INDICATES A CARRIAGE RETURN AS FIRST NON-PLANK CHARACTER.
0939 2A9610
0930 7E
093D FE09
0945 CA4509
0942 FE20
0944 C0
0945 23
0946 229610
0949 C33CC9
                                                                            FNTR
A.M
Ø9H
SBL2
                                                                                               ;FETCH ADDRESS;FETCH CHAFACTER;IS IT A TAB?;TREAT LIKE A BLANK;CHECK FOR A BLANK;RETURN IF NON-BLANK
                                     SBLK:
                                                        LELD
MOV
CFI
JZ
CPI
RNZ
INX
SHLD
JMP
                                     SEL1:
                                     SFL2:
                                                                            H
PNTR
SBL1
                                                                                                ; INCREMENT
                                                                                                ; SAVE POINTER
                                    , THIS ROUTINE IS USED TO CHECK THE CONDITION CODE MNEMONICS FOR CONDITIONAL JUMPS. CALLS AND RETURNS.
094C 217F10
094F 227410
0952 0602
0954 C3800A
                                                        LXI
SHLD
MVI
JMP
                                                                           H.ABUF-1
ADDS
B.2
COPC
                                     COND:
                                                                                               ;2 CHARACTERS
                                         THE FOLLOWING IS THE OPCODE TABLE
0957 4F5247
0951 00
0958 00
0950 455155
0957 00
0960 01
0961 4442
0963 00
0964 00
0965 FF
0966 4453
0969 00
0969 00
                                                                             'ORG'
                                                                            EÓG.
                                                         DB
                                                        Ø
                                                                           TB.
                                                                            255
1DS
                                                                          3
'DW'
096A 03
096B 4457
096D 00
096E 00
096F 05
0970 454E44
0973 00
0974 06
                                                                            Ø
S
'END'
```

FAGE 29

09E4	. 00	ĎВ	ø
Ø9E5	494E52	DP	Ø INR
Ø9E8		DB	4
29E9		rB	FICR
Ø9EC		DP	5
Ø9ED		DB	MOV'
gorg		DB	
Ø9F1	414444	DP DP	64
09F4			'ADD'
		DB	128
09F5		DB	'ADC'
09T8	88	DB	136
09F9	535542	DP	SUB 1
Ø9FC	90	EQ .	144
09FD	534242	DP	'SBF'
0 A Ø Ø	98	DВ	152
0A01	414E41	rB	ANA
0 A Ø 4	AØ	DP	160
2 AØ 5	585241	DB	'XRA'
OACR	48	ĪΞ	168
0A09	4F5241	DP	ORA 1
ØAØC	BØ	DB	176
PAPD	434D50	DB DB	'CMP'
ØA1Ø	18		
CAIL	525354	DB	184
		<u>1</u> 3	'RST'
0A14	C7	DP	199
ØA15	Øe	DB	Ø
0A16	414449	DB	'API'
0A19	ce_	DP	198
7 A 1 A	414349	ĎВ	'ACI'
ØA1D	CE	DB	20€
T LAS	535549	DB	'SUI'
8A21	D6	DB	214
22A	534249	DB	'SBI'
7A25	DE	DB	222
3A26	414E49	DP	ANI
2A29	26	DB	230
ASA	585249	פַּכ	XRI´
DSAS	ZE	DB	238
JA2E	4F5249	ΣB	ORI 1
TEAS	T6	DE	246
7A32	435049	DB	'CPI'
7A35	FE	DB	254
3A36	494E	DB	'IN'
PASS	66	DE DE	Ø N
7A39	DB		
BAZA		DB	219
BASD	4F5554 P3	DB	OUT'
		DB	211
ASE	4D5649	DP	[MVI
1441	øe	DB	6
142	00	ĽВ	0
143	4A4D50	DP	'JMP'
146	00	D.B	Ø
147	C3	DB	195
148	43414C4C	DP	'CALL'
A4C	CD	DB	205
A4D	4C5849	r B	'LXI'
A50	70	DP	Ø
A51	Ø1	DB	1
		-	-

```
P:SCS1.PRN
                     ØA52 4C4441
ØA55 0A
ØA56 3A
ØA57 535441
ØA5A 00
ØA5B 32
ØA5C 53484C44
ØA6Ø 22
ØA61 4C484C44
ØA65 2A
ØA66 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PAGE 31
                                                                                                                                                                                                                                                      'LDA'
                                                                                                                                                                                                                                                                                                                           0
58
(STA)
                                                                                                                                                                                                                                                                                                                                  STA

0

50

SHLD

34

'LHLD'

42

0
                                                                                                                                                                      ; CONDITION CODE TABLE
DE NZ
DE 0
       CAC7 4E5A
CAC9 00
CACA 5A
CACA 5A
CACA 5A
CACA 5A
CACA 5A
CACA 62
CACA 43
CACA 43
CACA 43
CACA 43
CACA 43
CACA 56
CACA 56
CACA 56
CACA 56
CACA 60
CACA
                                                                                                                                                                                                                                                                                                                                  0 'Z' @ 'NC'
                                                                                                                                                                                                                                              16,
                                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                       24 0 32 PE 44 PP 48 M & 56
                                                                                                                                                                                                                                           DB
DB
DB
DB
DB
                                                                                                                                                                                                                                            DB
                                                                                                                                                                                                                                                                                                                         Ø
                                                                                                                                                            ; THIS ROUTINE IS USED TO CHECK A GIVEN OFCODE ; AGAINST THE LEGAL OPCODES IN THE OPCODE TABLE
0A60 2A7410
0A63 1A
0A63 1A
0A64 E7
0A65 4B
0A69 CD6001
0A6C 1A
0A6D CS
0A6T C3600A
0A6T C3600A
0A92 3C
0A93 13
0A94 C9
                                                                                                                                                                                                                                                                                                               ADDS
D
A
COP1
C.B
SEAR
D
                                                                                                                                                                                                                               LHLD
LIAX
ORA
JZ
MOV
CALL
LDAX
RZ
INX
JMP
INR
INX
RET
                                                                                                                                                                                                                                                                                                                                                                                                     ;FETCH CHARACTER
;SET FLAGS
;JUMP IF TERMINATION CHARACTER
                                                                                                                                                                                                                                                                                                             D
COPC
A
                                                                                                                                                                                                                                                                                                                                                                                              ; FETURN IF MATCH
; NEXT STRING
; CONTINUE SEARCH
; CLEAR ZFRO FLAG
; INCREMENT ADDRESS
                                                                                                                                                      COP1 :
                                                                                                                                                                  THIS ROUTINE CHECKS THE LEGAL OFCODES IN BOTH PASS 1 AND PASS 2. IN PASS 1 THE PROGRAM CCUNTER IS INCREMENTED BY THE CORRECT NUMBER OF BYTES. AN ADDRESS IS ALSO SET SO THAT AN INDEXET JUMP CAN BE MADE TO PROCESS THE OPCODE FOR PASS 2.
```

```
B · SCS1 . PFN
0A95 217E10
0A95 227410
0A98 227410
0A93 115709
0A97 0C04
0AA3 CA3E0B
0AA46 05
0AA7 CD800A
0AAA CABICA
0AAB 04
0AAE CD800A
0AAE CD800A
0AAE CD800A
0AAE CD800A
                                                                         H.ABUF ; GET ADDRESS
ADDS
D.OTAE ; CPCODE TABLE
B 4 ; CHARACTER CO
COPC ; CHECK OPCODE
                                                       LXI
SHLD
LXI
MVI
CALL
                                   OPCT:
                                                                                             ; OPCODE TABLE ADDRESS
                                                                                              CHARACTER COUNT
CHECK OPCODES
JUMP IF A PSEUDO-CP
                                                       JZ
DCR
CALL
                                                                           PSEU
                                                                                              3 CHARACTER OPCODES
                                                                          BCOPC
                                                       JZ
INR
                                                                           OP1
                                                                                             ;4 CHARACTER OPCODES
                                                                          COPC
H TYP1
C 1
OCNT
                                                       CALL
                                                                                            ;TYFE 1 INSTRUCTIONS ;1 BYTE INSTRUCTIONS
                                    CP1 -
                                                       MVI
JZ
                                    ;
CPC2:
                                                                          COPC
H.TYP2
OP2
ØAP9 CDEØØA
ØABC 215DØ8
ØAFF CAB4ØA
                                                       CALL
LXI
JZ
CALL
                                                                                             ; CHECK FOR STAX LDAX
                                                                                              CHECK FOR PUSH, POP INX DCX AND DAD
                                                                           COPC
 ØAC2 CD800A
                                    ;
                                                                           ;
E.TYP3
OP2
                                                        LXI
 ØAC5 217008
 ØACS CAP4ØA
ØACB ØS
ØACC CDSØØA
                                                        JZ
DCR
                                                                                              ;3 CHAR OPCOTES;ACCUMULATOR INSTRUCTIONS;INR DCR.MOV.RST
                                                                           COPC
                                                        CALL
                                                                          ;
H. TYP4
OP2
                                    ;
 ØACF 218FØ8
ØAD2 CAB4ØA
                                                        LAI
                                                        JΖ
                                     ;
OPC3:
 CADS CPSCOA
CADS 21C408
CADS CESS
CADD CA110B
CAFC C4
CAFT CDSCOA
                                                       CALL
LXI
MVI
JZ
INR
                                                                                              ; IMMEDIATE INSTRUCTIONS
                                                                           COPC
                                                                           H TYF5
C,2
OCNT
                                                                                              ;2 BYTE INSTRUCTIONS
                                                                                              ;4 CHAR OPCODES
;JMP CALL.LXI LDA STA
;LHLD,SHLD OFCODES
                                                        CALL
                                                                           COPC
0AE4 CA0COB
0AF7 CD4C09
0AEA C2360B
0AED C6C0
0AEB 57
0AF2 0A72
0AF2 3A7E10
2AF5 4F
0AF6 FES2
0AF9 CAB12A
                                                                           ;
CP4
                                                                                              :CONDITIONAL INSTRUCTIONS
;ILLEGAL OFCODE
;ADD BASE VALUE TO RETURN
                                                                           COND
                                                        192
D.A
B.3
                                                                                              ;3 CHARACTER CPCODES
;FETCH FIRST CHARACTER
;SAVE CHARACTER
;CONDITIONAL RETURN
                                                                           ARUF
C A
C R OP1
A,D
OP1
A,C
CAFS 7A
0AF9 CAB10A
0AFC 79
0AFD 14
0AFE 14
0AFE 14
02F1 CA0E0E
0B04 FE43
0E06 C23603
0E09 14
0E0A 14
0E0B 7A
0E0C 21FA08
0E0F7 0E03
                                                                                               ; FOPM CONDITIONAL JUMP
                                                                                               ; CONDITIONAL JUMF
                                                                           OPAD
CERR
                                                                                               ; CONDITIONAL CALL
; ILLEGAL OPCOLE
; FORM CONDITIONAL CALL
                                                        INE
INE
MOV
LXI
MVI
                                                                           D
D
A D
H.TYPE
C 3
                                                                                               GET OPCODE
                                     OPAI:
OP4:
OP5:
                                                                                               ;3 BYTE INSTRUCTION
```

```
B:SCS1.PRN
                                                                                                                                                              PAGE 33
    @B11 329C1@
                                        CCNT: STA
                                                                               TEMP
                                                                                                ;SAVE OPCODE
                                         ; CHECK FOR OFCODE ONLY CONTAINING THE CORRECT NUMBER CF CFARACTERS. THUS ADDO, SAY. WOULD GIVE AN ERROR
    0F14 3E7E
0B16 80
0F17 5F
                                                                               A.ABUF AND OFFH ; LOAD BUFFFR ADDRESS ; ADD LENGTH OF OPCODE
                                                            MVI
                                                            ADD
MOV
MVI
                                                                               B
E.A
   0F17 5F
0B18 3F10
0B1A CE00
0E1C 57
0B1D 1A
0F1E B7
0B1F C2360B
0E22 3A9410
                                                                               A.ABUF/256
Ø ;GE
D.A
D ;FE
                                                                                                   GET HIGH ORDER ADDRESS
                                                                                                  ;FETCH CHAPACTER AFTER OPCODE
;IT SHOULT BE ZERO
;CPCODE ERROR
;FETCH PASS INDICATOR
                                                            LDAX
                                                           ORA
JNZ
                                                                               A
OEPR
PASI
P.Ø
                                                           LDA
MVI
ICHG
LHLI
  0222 349410
0225 0600
0227 EB
0228 249210
0228 09
0252 229210
0257 C2
0253 C2
0253 349010
0834 EB
0835 E9
                                       OCN1 .
                                                                               ASPC
                                                                                                  FETCH PROGRAM COUNTER
FADD IN BYTE COUNT
STORE PC
FWHICE PASS?
FRETURN IF PASS 1
                                                           DAD
                                                                              B
ASPC
                                                           SHLD
                                                           ORA
RZ
LDA
                                                                               TEMP
                                                                                                  FETCH OPCODE
                                                           XCHG
PCHL
  ØB36 210000
ØB39 0E03
ØB3B C3220B
                                                           LXI
MVI
JMP
                                                                             H ERRC ; SET ERROR ADDRESS
C.3 ; LEAVE 3 BYTES FOR PATCH
                                       OFRF.
                                                                              OCN1-3
 ØB3E 219210
ØB41 7E
ØB42 B7
ØB43 C2360P
ØB46 3A9410
ØB49 B7
ØB4A CA7A07
ØB4D C3F507
                                                          LXI
                                       PSEU.
                                                                              F.ABUF-4
                                                                                               4 ;SET BUFFER ALIRESS ;FETCH CHARACTER AFTER OPCODE ;SHOULL BE A ZERO
                                                                              A.M
                                                         ORA
JNZ
LDA
ORA
JZ
JMP
                                                                              A
OERR
PASI
                                                                                                 FETCH PASS INDICATOR
                                                                              A
PSU1
                                                                              PSU2
                                        THIS ROUTINE IS USEL TO PROCESS LABELS.

IT CHECKS TO SEE IF A LABEL IS IN THE SYMFOL TABLE OR NOT. ON RETURN 2-1 INPICATES A MATCH WAS FOUND AND H L CONTAIN THE VALUE ASSOCIATED WITH THE LABEL. THE REGISTER NAMES A, B, C, D, E H L P AND S ARE PRE-ESTINED AND NEED NOT BE ENTERED BY THE USER ON FETURN, C=1 INDICATES A LABEL ERROR.
0F50 FE41
0F52 D8
0F53 FE5B
0F55 3F
0F56 D8
0F57 CD9A0B
0F5D 227410
0F6D 227410
0F60 05
0F61 C2740B
                                     SLAP:
                                                        CPI
                                                                             'A'
                                                                                               CHECK FOR LEGAL CHAR
                                                        RC
CPI
CMC
RC
CALL
                                                                             'Z'-1
                                                                                               ; CHECK FOR ILLEGAL CHAR
                                                                                              ;RETURN IF ILLEGAL CHAR
;PLACE SYMBOL IN BUFFER
;SET BUFFER ADDRESS
;SAVE ADDRESS
                                                                            ALPS
                                                        LXI
                                                                           W.ABUF
ADIS
                                                        DCR
                                                                                                CHECK IF ONE CHARACTER
                                                                            SLA1
```

```
B:SCS1.PRN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PAGE 34
                                                                                                                                        ; CHFCY IF PREDFFINED FEGISTER NAME
INR P ;SET B=1
LXI D.RTAB ;REGISTER TABLE ADIRESS
CALL COPC ;CEECK NAME OF REGISTER
JNZ SLA1 ;NOT A PREDEFINED REGISTER
MCV L.A ;SET VALUE HIGH
MVI H.Ø
JMP SLA2
SLA1 LXI D.SYMT ;SET SYMBOL TABLE ADDRESS
MVI A LLAB ;FETCH LENGTH OF LABEL
STA NCER
CALL COMS :CHECK TABLE
     0864 04
0865 119508
0868 08000
0868 027408
0866 0871 038208
0871 038208
0874 111411
0377 3205
0879 329510
0876 016501
0880 65
                                                                                                                                                                                                          STA
CALL
MOV
MOV
STC
CMC
RET
                                                                                                                                                                                                                                                                                   COMS
C.H
H.L
L C
                                                                                                                                                                                                                                                                                                                                                           ; CHECK TABLE ; SWAP H ANT L
     0880 65
0881 69
0882 37
0883 3F
0884 09
                                                                                                                                                                                                                                                                                                                                                           ;SET CARRY
;CLEAR CARRY
;RETURN
                                                                                                                                         SLA2:
                                                                                                                                         ; PREDEFINE REGISTER VALUES IN THIS TABLE ;
                                                                                                                                                                                                                                                                                  'A'
 0 P85 41
0 P86 407
0 P86 408
0 P86 41
0 P86 41
0 P86 41
0 P86 40
0 P86 50
0
                                                                                                                                         RTAF:
                                                                                                                                                                                                            DB
DB
DB
DB
DB
                                                                                                                                                                                                                                                                                  à.
                                                                                                                                                                                                                                                                             1,
D,
                                                                                                                                                                                                          DEB DEB DEB DEB DEB DEB
                                                                                                                                                                                                                                                                             Š.
                                                                                                                                                                                                                                                                           3,H,
                                                                                                                                                                                                                                                                                  Ļ,
                                                                                                                                                                                                                                                                                  è,
                                                                                                                                                                                                                                                                                €
,
,
,
,
,
                                                                                                                                                                                                            DP
DB
                                                                                                                                                                                                            DВ
                                                                                                                                                                                                                                                                                                                                                        ; END OF TABLE INDICATOR
                                                                                                                                                    THIS ROUTINE SCANS THE INPUT LINE AND PLACES THE OPCOLES AND LABELS IN THE BUFFER. THE SCAN TERMINATES WHEN A CHARACTER OTHER TEAN 0-9 OR A-Z IS FOUND.
ØB9A Ø600
ØB9C 12
ØB9D 04
ØF9E 76
ØB9F FEØP
ØBA1 13
ØBA3 23
ØBA4 220610
ØBA7 73
ØBA8 FE30
                                                                                                                                                                                                                                                                                                                                                    ;SET COUNT
;STORE CHARACTER IN EUFFER
;INCREMENT COUNT
;FETCE CCUNT
;MAXIMUM BUFFER SIZE
;RETUPN IF BUFFER FILLED
;INCREMENT BUFFER
;INCREMENT BUFFFP
;INCREMENT INPUT POINTER
;SAYF LINE POINTER
;FETCE CFARACTER
;CHECK FOR LEGAL CHARACTERS
                                                                                                                                        ALPS:
                                                                                                                                                                                                          MVI
STAX
INR
MOV
CFI
RNC
INX
INX
INX
CFI
CPI
                                                                                                                                                                                                                                                                                D
B
                                                                                                                                      ALP1:
                                                                                                                                                                                                                                                                              A.B
11
                                                                                                                                                                                                                                                                                D
                                                                                                                                                                                                                                                                              H
PNTR
                                                                                                                                                                                                                                                                              A.M
```

1

```
B · SCS1.PRN
                                                                                                                                       PAGE 35
  CBAA D8
CBAB FE3A
OFAD DA9COB
OBBO FE41
CBB2 D8
OFF3 FE5B
                                                   RC
CPI
JC
CPI
RC
CPI
                                                                    '9 '- 1
                                                                   ALP1
                                                                   'Z'+1
ALP1
  ØBB5 DA9CØB
ØEB8 C9
                                                  JC
RET
                                  ; THIS ROUTINE IS USED TO SCAM THROUGH THE INPUT LINE
; TO FETCH THE VALUE OF THE CPERAND FIELD ON RETURN
; THE VALUE OF THE OPERAND IS CONTAINED IN REG S E L
 CALL
LXI
SHLD
                                  ASBL:
                                                                   SBLK
H.Ø
CPRD
                                                                                    GET FIRST ARGUMENT
                                                                                    ; INITIALIZE OFERAND
                                                  INR
SELD
LHLD
DCX
CALL
                                                                   H
OPRI-1
                                                                                  ;INITIALIZE OFFRAND INDICATOR ;FETCH SCAN POINTER
                                  MXT1-
                                                                   PNTR
                                                                   H
ZBUF
                                                                                   ;CLEAR BUFFER
;ZERO SIGN INDICATOR
;INCREMENT POINTER
;FETCH NEXT CHARACTER
                                                  STA
                                                                   SIGN
                                 NXT2:
                                                                  H
A.M
+1
                                                 MOV
                                                                   SEND
                                                                                   ; JUMP IF CR OR BLANK
; FIELD SEPARATOR
                                                                  SEND
                                JZ SEND
CFECK FOR OPERATORS
CPI
JZ ASC1
CPI
JNZ ASC2
; CHFCK FOR PLUS
                                                                                   CHECK FOR MINUS
                                                                  ASC2
SIGN
                                                 LDA
CPI
JZ
MVI
STA
JMP
                                ASC1:
                                                                                   ;FFTCH OPERAND INDICATOR;CHECK FOR TWO OPERATORS;SYNTAX ERROR
                                                                  OPRI
                                                                  2
ERRS
                                                                                   ;STT INDICATOR
                                              JMP NXT2
FOR OPERANDS
MOV C.A
LDA OPRI
ORA A
JZ FRPS
                                ; CHECK
ASC2:
0FF9 4F
0BFA 3A9B10
0BFD B7
0FFE CAAECO
0C01 79
0C02 FE24
0C04 C2110C
0C07 23
0C09 229610
0C0E C34P0C
                                                                                  ;SAVE CHARACTER
;GET INTICATOR
;CHECK FOR TWO OPERANDS
;SINTAX ERROR
                                                MOV
CPI
JNZ
INX
                                                                 ASC3
                                                                                  ; LC EXPRESSION
                                                                                  ; INCREMENT POINTER
                                                                 H
PNTR
ASPC
AVAL
                                                SEID
LHLT
JMP
                                                                                  ;SAVE POINTER
;FETCH LOCATION COUNTER
 ØCØE C34DØC
                                ;CHECK FOR ASCII CHARACTERS
ASC3: CFI 27H ;CHECK FOR SINGLE QUOTE
JMZ ASC5 ;JUMP IF NOT QUOTE
0C11 FE27

0C13 C23D0C

0C16 110000

0C19 0E03

0C1B 23

0C1C 229610
                                                                 ASC5
I.Ø
C.3
                                                                                  JUMP IF NOT QUOTE
GET A ZERO
CHAPACTER CCUNT
BUMF POINTER
                                                LXI
                                ASC4:
                                                INX
SHLD
                                                                 PNTR
                                                                                  SAVE
```

```
PAGE 36
B:SCS1.PRN
                                                                                    ;FETCH NEXT CHARACTER ';IS IT A CE?;APGUMENT ERROR;IS IT QUOTE
0C1F 7E
0C20 FE0D
0C22 CACE0C
0C25 FE27
0C27 C2340C
0C2A 23
                                                                  A.M
ASCR
ERRA
27H
SSTR
                                                 MOV
CPI
JZ
CPI
JNZ
INX
SHLD
MOV
CPI
                                                                  H
PNTR
                                                                                    ; INCREMENT POINTER
; SATE
; FETCH NEXT CHAR
; CHECK FOR 2 QUOTES IN A RCW
; TERMINAL QUOTE
; CHECK COUNT
; TCO MANY CHARACTERS
                                                                  A.M
27E
                                                 JNZ
DCR
JZ
MOV
MOV
                                                                   AVAL+1
                                 SSTR:
                                                                   ERRA
                                                                  D.E
E A
                                                                                    ; SET CHARACTER IN BUFFER
                                                                  ASC4

Ø'

ERPA

'9'+1

ALAB

NUMS
                                                  JMP
                                                                                    ; CHECK FOR NUMERIC ; ILIEGAL CHARACTER
                                 ASC5:
                                                 CPI
JC
CPI
JMC
                                                                                    GET NUMERIC VALUE GARGUMENT ERROR
                                                  CALL
                                                                   ERRA
                                                 KCEG
                                 AVAL:
                                                                                    ;FETCH OPFFAND
;GET A ZERO
;STCR IN OPERANI INDICATOR
;GET SIGN INDICATOR
                                                                   OPRD
                                                  XRA
STA
LDA
OPA
JNZ
DAD
SHLI
                                                                  A
OPRI
SIGN
                                                                  A
ASUB
                                                                                    ;FORM RESULT ;SAVE RESULT
                                                                   OPRD
                                 ASC7:
                                                  JMP
MOV
                                                                  NXT1
A L
E
                                 ASUB .
                                                 SUB
MOV
MOV
                                                                  L.A
A.H
D
H.A
ASC7
SLAB
AVAL
ERRA
                                                 SPB
                                                  JMP
                               ALAF:
                                                  CALL
                                                  JZ
JC
                                                                                    ; ILLEGAL SYMBOL ; UNDEFINED SYMBOL
                                                                   ERRU
                                 ; GET HERF WHEN TERMINATING CHARACTER IS FOUND. ; CHECK FOR LEADING FIELD SEPARATOR
0C78 3A9B10
0C7B B7
0C7C C2AE0C
0C7F 2A9910
0C92 7C
0C83 119C10
0C96 B7
0C87 C9
                                 SEND:
                                                  LDA
                                                                   OPRI
                                                                                    ;FETCH OPERAND INDICATOR :SET FLAGS
                                                  ORA
JNZ
LHLD
                                                                  A
ERPS
OPRD
                                                                                    SYNTAX ERROR
                                                                                    ;GET HIGH ORIER BYTE
;GET ADDRESS
;SET FLAGS
                                                 MOV
LXI
CRA
                                 SEM1:
                                                                  A.H
D.TEMP
                                   GET A NUMERIC VALUE WHICH IS BITHER HEXADECIMAL OR DECIMAL ON RETURN. CARRY SET INDICATES AN ERROR
```

```
B:SCS1.PRN
                                                                                                                                                                                      PAGE 37
   0C88 CD9A0B
0C8P 1B
0C8C 1A
0C8D 017F10
0C90 FF48
0C92 CAA00C
                                                                                           ALPS
D
                                                                     CALL
DCX
                                               NUMS:
                                                                                                                  GET NUMERIC
                                                                                                                  ;GET LAST CHARACTER
;SET PUFFER ADDRESS
;IS IT HEXADECIMAL?
                                                                     LDAX
LXI
CPI
                                                                                           F. ABUF
                                                                     JZ
CPI
JNZ
XRA
                                                                                           NUM2
    ØC95 FE44
ØC97 C29C2C
                                                                                                                  ; IS IT DECIMAL
                                                                                            NUM1
   0090 C29020
0091 AF
0098 12
0096 CD2E02
0096 C9
00A0 AF
00A1 12
                                                                                                                 ;GET A ZERO
;CLEAR D FROM BUFFER
;CONVERT DECIMAL VALUE
                                                                                          A
D
ADEC
                                                                    STAX
CALL
RET
                                              NUM1:
                                                                    XRA
STAX
JMP
                                              NUM2:
                                                                                                                 ;GET A ZERO
;CLEAR H FROM BUFFER
    ØCA2 C348Ø2
                                           PROCESS RFG1.

TRRR: MYI A.

LXI H 0

STA OBUF

FET

FRCCESS SYNTAX FRROR

FRS: MYI A, S

STA OBUF

LXI H 0

SIN1

TNEL SY
                                                                                           AHEX
                                                PROCESS REGISTER ERROR RRR: MVI A. R ;
LXI H 0
  0CA5 3E52
0CA7 210000
0CAA 32F110
0CAI C9
                                                                                                                ;GET INDICATOR
;GET A 2
;SET IN OUTPUT BUFFER
  ØCAE 3E53
ØCBØ 32B11Ø
ØCB3 21000Ø
ØCB6 C3820C
                                                                                                                GET INDICATOR STORE IN OUTPUT BUFFER
                                            ;PROCESS UNDEFINE SYMBOL ERRCR
EPRU: MTI A. U';GET IN:
JMP ERRS-2
  0CB9 3E55
0CBB C3B00C
                                                                                                               GET INDICATOR
                                          JMP FRRS-2
;PEOCESS VALUE ERROR
ERRY: MYI A.'V' ;GET INDICATOR
JMP ERRR-2
;PEOCESS MISSING LABEL EPROR
ERPM: MVI A.'M' ;GET INDICATOR
STA OBUF ;STORE IN OUTPUT BUFFER
JMP AOU1 ;UISPLAY ERROR AND RETURN
  00BE 3E56
0000 03A700
                                         GET INDICATOR

JUP ADU1 STORE IN CUTPUT BUFFER

FROCESS ARGUMENT ERROR
ERRA: MUI A A'
JMP ERRS 2

FROCESS OPCODE ERROR
FROTE 3 SYTES OF ZERO IN OBJECT COLE TO FROVIDE
FRO: MVI A.'O' GET INDICATOR

STA OBUF STORE IN CUTPUT BUFFER

LDA PASI FETCH DASC THE
  ØCC3 3E4E
ØCC5 32P110
ØCC8 C3F706
 0CCB 3E41
0CCD C3E00C
@CDØ 3E4F
@CD2 3E8110
@CD5 3A9410
@CD5 CB
@CD0 CB
@CD0 AF
@CD0 CD1AØ9
@CD0 CD1AØ9
@CE0 @C
@CE0 @C
                                                                                                             ;GET INDICATOR
;STORE IN OUTPUT BUFFER
;FETCH PASS INDICATOR
;WHICH PASS
;RETURN IF PASS1
;NEED 3 BYTES
;GET A ZERO
;FUT IN LISTING AND MEMORY
                                                                 ORA
RZ
MVI
                                                                                       0,3
                                          ERO1:
                                                                XEA
CALL
                                                                                       A
ASTO
                                                                DCR
JNZ
                                                                                       ERO1
                                                                 RET
                                          ; PROCESS LAPEL ERROR
EPRI: MVI A. L'; GET IN
FRO-2
; PROCESS DUPLICATE LAPEL ERROR
ERRD: MVI A. D'; GET EF
                                                                                                             GET INDICATOR
```

ØCE5 3E4C ØCE7 C3I2ØC

@CEA 3E44 GET ERROR INDICATOR

```
B:SCS1.PRN
                                                                                                                                                                                                                                                                                                                                                                                                              PAGE 38
          ØCEC 32P110
ØCEF CDEA06
ØCF2 C33807
                                                                                                                                                                                                                                                           ;STORE IN OUTPUT BUFFER ;DISPLAY ERROR ;PROCESS OPCOLE
                                                                                                                                                                                                         OBUF
AOUT
                                                                                                      THIS ROUTINE SETS OF CLEARS BREAKPOINTS
    9CF5 3A7E10

9CF9 E7

9CF9 CA370D

9CFC 1628

9CFE 210C10

9CF2 12

9D22 23

9D23 46

9D24 5

9D24 23

9D29 23

9D29 23

9D29 13

9D29 23

9D29 23

9D29 23

9D29 23

9D29 23

9D29 23

9D29 24

9D11 2B

9D12 EB

9D12 EB

9D12 EB

9D12 C2222D

9D16 C2222D

9D10 FEQE

9D15 PEQE

                                                                                                                                                     LDA
ORA
JZ
MVI
                                                                                                       BREAK .
                                                                                                                                                                                                          ABUF
                                                                                                                                                                                                                                                          CHECK FOR AN ARG
                                                                                                                                                                                                      A
CLRB
D.NBR
H,BRT
A M
                                                                                                                                                                                                                                                         ; IF NO ARG, GO CLEAR BREAKFOINTS ; ELSE GET NUMBER OF BREAKFOINTS ; AND ADDR OF TABLE ; GET HI BITE OF ENTRY
                                                                                                                                                      LXI
MOV
INX
MOV
ORA
JZ
                                                                                                      B1:
                                                                                                                                                                                                                                                         ;GET LO BYTE OF ENTRY
;CHECK FOR EMPTY ENTRY
;BRANCH IF EMETY
;ELSE GO ON TO NEXT ENTRY
                                                                                                                                                                                                      ВM
                                                                                                                                                                                                        P
B2
                                                                                                                                                    ;BUMP COUNT
;AND TRY AGAIN
;OOPS, NO ROOM
                                                                                                                                                                                                     B1
WHAT
H
                                                                                                  P2:
                                                                                                                                                                                                                                                        GET ADDRESS
IN D.E
CHECK FOR ADDR
                                                                                                                                                                                                      BBUF
                                                                                                                                                                                                      A . D
                                                                                                                                                                                                                                                                                                                                                                 11D
                                                                                                                                                                                                     A
B3
A E
11
WHAT
                                                                                                                                                      MOV
                                                                                                                                                    JC
MOV
                                                                                                                                                                                                                                                        ; OOPS. TOO LOW ; SAVE ADDRESS
  011F DAE104
0122 72
0123 23
0124 73
0125 23
0125 14
0127 77
0128 31CF
012A 12
012B 31CT
012B 31CT
012B 31CT
013B 21510D
013G 21510D
013G 21510D
                                                                                                 B3 :
                                                                                                                                                                                                    M.D
H
M E
                                                                                                                                                 INX
MOV
INX
LDAX
MOV
MVI
STAX
MVI
STA
LXI
SHLI
                                                                                                                                                                                                  ;PICY UP INSTRUCTION
;SAVE IT
;REPLACE IT WITH A
;RESTART INSTRUCTION
;SET UP LO MEMORY
;WITH A JUMP TO BRK?
                                                                                                                                                   RET
                                                                                                                                                                                                                                                     THEN RETURN
                                                                                                THIS ROUTINE CLEARS ALL PREAKPOINTS
0D37 210010
0D3A 0F08
0D3C AF
0D3D 56
0D3E 27
0D3F 23
0D40 5E
0D41 77
0D42 23
2D43 46
                                                                                                                                                                                                                                                   ;GET TABLE ALTRESS
;GET NUMBER OF EPEAKPOINTS
;GET A ZERO
;GET HI-BYTE OF ENTRY
                                                                                                                                                 LXI
MVI
                                                                                                CLR3 ·
                                                                                                                                                                                                  H ERT
                                                                                                                                                 XRA
VOM
VOM
INX
VOM
                                                                                                CIEL:
                                                                                                                                                                                                  A
D M
M A
                                                                                                                                                                                                  Ħ
                                                                                                                                                                                                E.M
M A
H
                                                                                                                                                                                                                                                    ;GET LO-BYTE OF ENTRY
                                                                                                                                                MOV
INX
MCV
                                                                                                                                                                                                  B.M
                                                                                                                                                                                                                                                   GET INST BYTE
```

:

```
B:SCS1.PRN
                                                                                                                                                                                                                                                                                                                                                                                                                                                               PAGE 39
                                                                                                                                                                                                                          H
A,D
E
        0144 23
0145 7A
0146 B3
0147 CA4C01
C14A 78
014F 12
014C 01
014C 01
014I C23C01
0150 C9
                                                                                                                                                                        INX
MOV
ORA
                                                                                                                                                                                                                                                                                         ; WAS THIS A NULL ENTRY
                                                                                                                                                                                                                                CL2
A B
D
C
CLBL
                                                                                                                                                                        JZ
MOV
STAX
                                                                                                                                                                                                                                                                                       BRANCH IF IT WAS
                                                                                                                                                                                                                                                                                       ;ELSE PLUG INST BACK IN ;EUMF COUNT ;GO DO NEXT ONE
                                                                                                                                                                        DCR
JNZ
RET
                                                                                                                 CL2·
                                                                                                                                                                                                                                                                                         RETURN WEEN DONE
                                                                                                                COME HERE WEEN WE HIT A BREAKPOINT
                                                                                                                                                                                                                          HOLD & ;SAVE F L
H ;GET PC
H ;ADJUST IT
HOLD-10 ;SAVE IT
FSW ;SAVE FLAGS
H ;GET THEM INTO HL
HOLD ;NOW STORE THEM FOR USER
 0151 220910 0154 E1 0155 2B 0155 2B 0156 21000 0154 E1 0059 F5 0165 E1 0000 0154 E1 0155 E1 0000 0155 E1 0000 0155 E1 0000 0155 E1 0059 D3FF 0168 21 0155 0608 0177 7E 0159 BA 0152 C1 0155 0157 CABBOD C175 BB 0175 CABBOD C175 BB 0175 CABBOD C175 C
                                                                                                                 BEKP:
                                                                                                                                                                       SELD
                                                                                                                                                                      POP
DCX
SHLI
PUSH
POP
SHLI
LXI
                                                                                                                                                                                                                        FOR THEM INTO HE
HOLD SOME STORE THEM FOR USER
H. &
SP GET STACK POINTER
SP.HOLD-8 SET NEW SP
H SAVE OLD SP
D SAVE DE
B SAVE DE
COMPLEMENT ACC
ØFFH JDISPLAY IT IN THE LIGHTS
SP ARRA-18 SET SP AGAIN
HOLD-10 GET PC
GINTO D.E
H. BRT GET ADDR OF TABLE
B.NBF SAND NUMBER OF ENTRISS
A M GET AN ENTRY FROM THE TABLE
                                                                                                                                                                    DAD
LXI
PUSH
PUSH
PUSH
CMA
OUT
                                                                                                                                                                    LXI
LHLD
XCHG
                                                                                                                                                                                                                          H.BRT
B.NBR
A M
H
D
                                                                                                                                                                    TXI
                                                                                                                                                                   MCV
INX
CMP
JNZ
MOV
                                                                                                             3L1 ·
                                                                                                                                                                                                                                                                                  ;DOES IT MATCE
;BRANCH IF NOT
;ELSE GET NEXT BYTE
;CHECK IT
;IT MATCHES!
                                                                                                                                                                                                                          BL2
A.M
E
BL3
                                                                                                                                                                   CMP
JZ
INX
                                                                                                            BI2 ·
                                                                                                                                                                                                                                                                                   BUMP AROUND THIS ENTRY
                                                                                                                                                                   INX
                                                                                                                                                                                                                        B
WEAT
BL1
                                                                                                                                                                                                                                                                                 ; BUMP COUNT ; NOT IN OUR TABLE!
                                                                                                                                                                   JZ
JMP
0188 23
0DEC 7E
0DED 12
018F AF
018F 2B
0190 77
0D91 2E
0D92 77
0193 CD3A01
0D96 5A0E10
0D99 CD6702
0D9C 3A0A10
0D9F CD6702
                                                                                                                                                                  INX
                                                                                                            BL3:
                                                                                                                                                                                                                        Ā.M
D
                                                                                                                                                                                                                                                                                 ;GET INSTR BYTE
;PUT IT BACK
;CLEAR ENTRY IN TABLE
                                                                                                                                                                STAX
XRA
DCX
MOV
DCX
MOV
CALL
                                                                                                                                                                                                                        A
H
M A
                                                                                                                                                                                                                LDA
CALL
LDA
CALL
```

```
B:SCS1.PRN
                                                                                                                                                                                                                                                                                                                                                                                      PAGE 40
    @DA2 21A8@D
@DA5 C387@4
                                                                                                                                                                                        H BMES ; TELL USER WHAT IT IS MESS ; GO BACK TO COMMAND LEVEL
    ØDA8 20425245419MES · DP
                                                                                                                                                                                       ' BREAK'.13
                                                                                           ; THIS ROUTINE PROCEEDS FROM A BREAKPOINT
 @DAF 3A7F10
@DB2 B7
@DB3 CABC0D
@DB5 228A10
@DB9 220A10
@DBF F1
@DC0 C1
@DC1 F1
@DC2 E1
@DC2 E1
@DC4 2A0A10
@DC7 E5
@DC8 2A0B10
@DC6 C9
                                                                                            PROC-
                                                                                                                                          LDA
                                                                                                                                                                                          ABUF ; CHECK FOR ARG
                                                                                                                                                                                     ABDY

A
P1 ; JMP IF NO ARG
BBUF ; BLSE GFT ARG
HOLD 10 ; PEUG IT INTO PC SLOT
SP HOLD ; SET SP TO POINT AT REG S
PSW ; RESTORE PSW
B ; RESTORE B.C
C ; PESTORE L S
H ; GET OLD SP
FOLD 10 :GET PC
                                                                                                                                          ORA
JZ
                                                                                                                                           LELD
                                                                                                                                         SHLD
LXI
POP
POP
POP
SPHL
LHLD
PUSH
LELE
                                                                                                                                                                                       HOLD-10 ;GET PC
F ;FUT IT ON STACK
HOLD-8 ;RESTORE H L
;AMD PROCEED
   ØDCB C9
                                                                                                                                         RET
                                                                                           SYSTEM RAM
  1000
                                                                                                                                        ORG
                                                                                                                                                                                       1000H
                                                                                           ; DFFINE PRFAKPOINT REGION
                                                                                                                                                                                       8 ; NUMBER OF BREAKPOINTS
12 ; REGISTER FOLD APEA
2*NBR ; BREAKPOINT TABLE
  0028 =
                                                                                           NPR
                                                                                                                                         EQU
  1000
1000
                                                                                         HOLD:
                                                                                   HOLD: DS 12 ; REGISTER HOLD APEA SET: DS C*NBR ; BREAKPOINT TABLE

; FILE ARFA PARAMETERS
MAIRIL EOU 6 ; MAX # OF FILES
MMLEN EOU 5 ; NAME LEMGTH
FELIM EOU MMIEN-9 ; DIRECTORY ENTRY LENGTH
FILED: DS 2
ECFP: DS 3
ECFP: DS 4
FILTD: DS /MAXFIL-1 **FELEN
INSP: DS 2
INSERT LINE POSITION
ASCR EOU 13 ; ASCII CARRIAGE RETURN V.
HCON: DS 2
ADDS EOU HCON ; FIND ADDRESS
FBUF: DS NMLEN ; FILE NAME BUFFER
FFEAD DS 2
FFF: IS 1 ; FREE ENTRY FOUNT FLAG
FFET IS 1 ; FREE ENTRY FOUNT FLAG
FOONT EOU FEF ; OUTPUT COUNTEP
FOONT EOU FEF ; OUTPUT COUNTEP
FBET IS 4 ; BINARY BUFFER
ENTRY DS 12 ; ASCII SUFFFR
ENTRY DS 12 ; ASCII SUFFFR
ENTRY DS 12 ; ASCII BUFFER
ENTRY DS 12 ; ASCI
  0006 -
 0005 =
000D =
1024
 1029
1028
1028
                                                                                                                                                                                     Z

4

'MAXFIL-1'*FELEN

2 ;IMSERT LINE POSITION
INSP ;DEISTE LINE POSITION
13 ;ASCII CARRIAGE RETURN VALUE
102P
1031
1072
1072 =
000F =
1074
1074 =
                                                                                                                                                                                                                                    ;FIND ADDRESS
;FILE NAME BUFFER
;FPEF ADDRESS IN DIPECTORY
;FREE ENTRY FOUNT FLAG
;OUTPUT COUNTEP
;ASCII BUFFER
;BINARY BUFFER
1076
107B
107D
107D =
107E
108A
 108E
108E
108E
                                                                                                                                                                                                                                     ;DUMP ROUTINF COUNTER;SYMBOL TABLE END ADDRESS;ASSEMBLEP PROGRAM COUNTER;PASS INDICATOR
```

1094

```
B:SCS1.PRN
                                                                                                                                                                                                                FAGE 41
1095
1096
1098
1098
1099
1097
1097
1090
1090
1091
1000
11114
11114
                                                 NCHR:
PNTR:
SIGM:
SIGM:
CPRT:
TEMP
APNT
APNT
ACINAB
AREA:
OFUF:
                                                                                                                                 ; LENGTH OF STRING FOR COMPARE
; LINE POINTER STORAGE
; SIGN STORAGE FOR SCAN
; OPPERAND STORAGE
; OPPERAND FOUND INDICADOR
                                                                           121211
                                                                                                                                ; ASSEMBLE LINE PCINTER
; ASSEMBLER EFROR FRINT SWITCH
; CUTPUT ADDRESS
; LENGTH OF LABELS
                                                                                                       INSP
SCNT
2
                                                                                                     18
16
5
                                                                                                                                 ; OUTPUT BUFFER AREA
                                                 IBUF.
LPOS:
SYMT
                                                                                                                                ;TELETYPE LINE POSITION ;START OF SYMBOL TABLE
                                                                                                     $
                                                                           EQU
                                                SYMT EQU $
;; TELETYFE FARAMETERS
;
TTS EQU 3
TTI EQU 2
TTO EQU 2
TTODA EQU 2
TTYTA EQU 1
SWCH EQU ØFFH
;
0003 = 0002 = 0002 = 0001 = 007F =
                                                                                                                               ;TTY STATUS FORT
;TTY DATA IN PORT
;TTY DATA OUT PORT
;TTY DATA AVAILABLE BIT
;TTY XMTR READY BIT
;SWITCE REGISTER
111A
                                                                           END
```

Bootstrap Loader

BOOTSTRAP LOADER

The IMSAI Bootstrap Loader is a system that allows the user to get a general paper tape loader into any region of RAM using only a 32-byte key-in. It requires an ASR33 teletype. To use this loader, proceed as follows:

 Key in the basic bootstrap given below starting.at location 0000.

3E CE D3 03 3E 17 D3 03 21 20 00 06 F8 DB 03 E6 02 CA 0D 0D DB 02 77 3C CA 08 00 23 05 C2 0D 00

- Mount the bootstrap tape in the paper tape reader on the teletype so that the block of rubouts (frames with all the holes punched out) is in the reader.
- 3. Set the PROGRAMMED INPUT switches to the high order 8 bits of the address where the paper tape loader is to be located, e.g., to put the loader at 5C00 hex, set the PROGRAMMED INPUT switches to 5C hex. (See the warning below.)
- Press STOP, RESET and RUN, then manually start the paper tape reader on the teletype.

If all goes well, the tape should go through the reader, stop at the end, then the loader will print an "*" on the teletype. If this is the case, refer to the IMSAI Paper Tape Loader section to use the loader.

If the loader does not type an asterisk after the tape has gone through the reader, this means the loader was not read in correctly. Proceed as follows:

- 1. Check the basic bootstrap key into it as correct.
- If the key-in is correct, check the bootstrap tape for tears or distorted holes. (These may usually be fixed with cellophane tape.)

If the key-in and bootstrap tape are correct, the problem may be dirty contacts in the teletype reader. Try repeating the bootstrap procedure from the beginning.

WARNING:

 Since the bootstrap loader resides in location 20 hex - 120, do not try to load the paper tape loader below 200 hex or it will overlay the bootstrap.

IMSAI 8080

Bootstrap Loader

2. Be sure to locate the loader in a region where it will not be overlayed by the program it is loading. For instance, 8K BASIC occupies locations 0000-lFFF hex, so that to load 8K BASIC, the loader should be located at or above 2000 hex.

Bootstrap Loader Program Logic

BOOTSTRAP LOADER PROGRAM LOGIC

The Bootstrap Loader is a system that allows the user to read the Paper Tape Loader into the region of RAM that begins on a 256-word boundary using a specially formatted tape.

1. Bootstrap Tape Format:

The Bootstrap Tape consists of two sections. The first section consists of a direct core image of the second level bootstrap (described below), preceded by a block of rubouts. In this section of the tape, each frame corresponds directly to one data byte. The second section consists of the Paper Tape Loader in standard object format.

2. Overall Logic:

The Bootstrap Sequence Procedure is as follows:

- a. The user keys in a simple 32-byte bootstrap, starts it up, then starts the tape reader on the teletype.
- b. The basic bootstrap reads in the second level bootstrap from the first part of the bootstrap tape and starts it up.
- c. The second level bootstrap stops the tape reader then checksums itself to make sure it was loaded correctly. If not, it hangs up.
- d. If the second level bootstrap checksums correctly, it starts the tape reader and reads in the paper tape loader from the second part of the bootstrap tape and locates it in the 256-byte page specified by the PRO-GRAMMED INPUT switches. If it detects an error in the tape, it stops the reader and hangs up.
- e. When the Paper Tape Loader is completely loaded, it stops the paper tape reader, then starts up the Paper Tape Loader.

3. Basic Bootstrap:

The Basic Key-In Bootstrap was designed to be as short as possible. It merely reads in characters from the tape and stores them directly into memory. Whenever it reads in a byte of FF hex, it resets its pointer and counter. This allows it to use the block of rubouts at the beginning of the tape to synchronize on.

Bootstrap Loader Program Logic

4. Second Level Bootstrap:

The second level bootstrap is a modified version of the Paper Tape Loader. The main differences between the two are:

- a. The second level bootstrap checksums itself to make sure it was loaded properly. This is done because the Basic key-in bootstrap, for reasons of brevity, does not error checking.
- b. If it encounters an error, the second level bootstrap turns off the tape and hangs up.
- c. If it encounters a byte of FD hex, it substitutes the contents of the PROGRAMMED INPUT switches. This is done so that the Paper Tape Loader may be located at any 256-byte page in memory. See below.

5. Relocating the Paper Tape Loader

The Paper Tape Loader that is on the second part of the bootstrap tape was assembled to begin at FD00 hex. Since there is no instruction with op-code FD hex, the only times a byte of FD hex will appear on the tape are:

- a. The high byte of the address field in the paper tape record. (Note that the high byte of the address fields of all records will be FD hex.)
- b. The high byte of the address in a jump instruction.

Therefore, by substituting another value (in this case, the contents of the PROGRAMMED INPUT switches) for every occurance of FD hex, we can load the Paper Tape Loader into any 256-byte page in memory.

Paper Tape Loader

PAPER TAPE LOADER

The IMSAI Paper Tape Loader is a program that will load tapes in the standard object format (see appendix) from the paper tape reader on an ASR33 teletype.

If the paper tape loader is read in with the bootstrap loader (see Bootstrap Loader section), it will start itself up and print an "*" on the teletype. Otherwise, it should be manually started at its beginning address.

When the loader prints an "*" on the teletype, mount the tape to be loaded in the paper tape reader on the teletype. Then, strike any key on the teletype. The paper tape reader should start automatically. While the tape is being read in, the data being loaded will be displayed in the PROGRAMMED OUTPUT lights.

The loader will stop the reader and print an "*" under two conditions:

- If the PROGRAMMED OUTPUT displays 00 (all lights off), the loader has encountered an End-of-File record, an the program has been successfully loaded. At this point, another tape may be loaded by placing it in the paper tape reader and striking a key on the teletype.
- 2. If something other than 00 is displayed in the PROGRAMMED OUTPUT lights, a bad record has been encountered in the tape. The record may be re-read as follows:
 - o Move the switch on the reader to the "FREE" position
 - o Back the tape up about two feet
 - o Put the switch back in the "STOP" position
 - o Strike a key on the teletype

If the loader stops again on the same record, inspect the tape for tears or distorted holes (these may usually be fixed with cellophane tape).

Paper Tape Loader Program Logic

PAPER TAPE LOADER PROGRAM LOGIC

The IMSAI Paper Tape Loader is a program designed to load paper tapes in the standard object format from the paper tape reader on an ASR33 teletype. The loader is designed to use no stack or local RAM, thereby allowing it to be executed out of ROM.

1. Object Tape Format:

The standard object format is a blocked hexadecimal format. The data on the tape is blocked into discrete records, each record containing record length, record type, memory address and checksum information in addition to data. A frame-by-frame description is as follows:

Frame 0

Record Mark. Signals the start of a record. The ASCII character colon (":" 3A hex) is used as the record mark.

Frames 1,2 (0-9, A-F) Record Length. Two ASCII characters representing a hexadecimal number in the range 0 to FF (0 to 255). This is the count of actual data bytes in the record type or checksum. A recolength of 0 indicates end-of-file.

Frames 3 to 6

Load Address. Four ASCII characters that represent the initial memory location where the data following will be loaded. The first data byte is stored in the location pointed to by the load address; succeeding data bytes are loaded into ascending addresses.

Frames 7,8

Record Type. Two ASCII characters. Currently all records are type 0. This field is reserved for future expansion.

Frames 9 to 9+2*

Data. Each 8-bit memory word is represented by two frames containing the ASCII characters 0-9, A-F) to represent a hexadecimal value 0 to FF hex (0 to 255).

Frames 9+2* (Record Length) to 9+2* (Record Length + 1

Checksum. The checksum is the negative of the sum of all 8-bit bytes in the record since the record mark (":") evaluated modulus 256. That is, if you add together all the 8-bit bytes, ignoring all carries out of an 8-bit sum then add the checksum, the result is zero.

PGM-4A 12 - 70

Paper Tape Loader Program Logic

Example: If memory locations 1 through 3 contain 53F8EC, the format of the hex file produced when these locations are punched is:

:0300010053F8ECC5

2. Register Allocation:

Since this loader uses no RAM, all variables and data are kept in the registers. The registers are assigned as follows:

- A scratch
- B byte count for data field
- C checksum
- D holes the data byte
- E flag register, describes what to do next

If this register contains zero, this program is looking for a ":" to signal the beginning of a block. Otherwise, if bit 7=1, then the next character is the first digit of a byte. If bit 2=0, the next character is the second digit of a byte. Bits 0-6 have the following significance:

- l next byte is a count
- 2 next byte is a high byte of the load address
- . 3 next byte is a low byte of the load address
- 4 next byte is a type byte
 5 next byte is a data byte
- 6 next byte is a checksum byte.

H, L - Load Address.

3. Logic:

The program flow is controlled by the flags in the Eregister as given above.

```
; *** BASIC KEY-IN BOOTSTRAP LOADER ***
                                                                    THIS SIMPLE LOADER BOOTSTRAPS IN THE SECOND LEVEL BOOTSTRAP, WHICH IN TURN LOADS THE REAL PAPER TAPE LOADER.
                                                                 TO USE THIS LOADER, PROCEED AS FOLLOWS:

(1) KEY IN THIS LOADER, STARTING AT LOC 1000

(2) MOUNT THE BOOTSTRAP TAPE, SO THAT
THE BLOCK OF RUBOUTS AT THE BEGINNING
OF THE TAPE IS IN THE READER

(3) SET THE PROGRAMMED INPUT SWITCHES TO THE
HIGH ORDER 8 BITS OF THE ADDRESS WHERE
YOU WANT THE PAPER TAPE LOADER TO
BE LOADED. (E.G. TO CAUSE THE LOADER
TO BE LOADED AT SCOOL, SET THE PROGRAMMED
INPUT SWITCHES TO 5C.)

(4) PRESS THE 'RESET' KEY, FOLLOWED BY THE
'RUN' KEY, THEN MANUALLY START THE PAPER
TAPE READER ON THE TELETYPE.
                                                                   IF EVERYTHING GOES CORRECTLY, THE LOADER WILL STOP THE PAPER TAPE READER, AND PRINT A ** ON THE TELETYPE. AT THIS POINT, MOUNT THE TAPE TO BE LOADED IN THE TELETYPE READER, THEN STRIKE ANY KEY ON THE TELETYPE. THE LOADER WILL START THE PAPER TAPE READER, AND START LOADING THE TAPE. IF IT FINDS ANYTHING WRONG WITH THE TAPE, IT WILL STOP THE READER. LOADING MAY BE CONTINUED BY STRIKING A KEY ON THE TELETYPE.
     00F8
                                                         ĆNT
                                                                                        EQU
                                                                                                                     0F8H
                                                                                                                                                  ; SIZE OF 2ND LEVEL BOOTSTRAP
  0000 3ECE
0002 D303
0004 3E17
0006 D303
C008 212000
0008 06F8
                                                         ;
BOOT1:
                                                                                      MVI
                                                                                                                     A, OCEH ;GET MODE BYTE FOR SIO BOARD.
                                                                                                                                                  ; ISSUE IT
; GET COMMAND BYTE
                                                                                       OUT
                                                                                      IVM
TUO
                                                                                                                     A,17H
                                                                                                                     03 ; ISSUE IT
H,B1END ;GET LOAD ADDRESS
B,CNT ;GET # OF BYTES
                                                         BIRST:
                                                                                      LXI
                                                                                      MVI
000D D803
000F E602
0011 CA0D00
0014 D802
0016 77
0017 3C
0018 CA0800
0018 23
001C 05
                                                                                                                                               ;GET STATUS
;IS THERE A BYTE READY
;KEEP WAITING
;GET THE BYTE
;STORE IT
;WAS IT A RUBOUT?
;IF YES, RESET POINTERS
;ELSE, BUMP POINTER
;AND DECR COUNT
;IF NOT DONE, GO GET ANOTHER
; CHAR. ELSE, FALL THROUGH AND
; START UP SECOND LEVEL
; BOOTSTRAP.
                                                        LOOP:
                                                                                                                     03
                                                                                     ANI
JZ
IN
MOV
                                                                                                                     LOOP
                                                                                                                  M,A
A
BIRST
                                                                                     INR
JZ
INX
 001D C20D00
                                                                                                                  LOOP
0020
                                                      B1END
                                                                                   EQU
                                                                                                                 $
0000
```

```
; SECOND LEVEL BOOTSTRAP
                            THIS LOADER IS PULLED IN BY THE BASIC KEY-IN LOADER, WHEN STARTED UP BY THE KEY-IN LOADER, IT CHECKSUMS ITSELF, TO MAKE SURE THAT IT HAS BEEN LOADED CORRECTLY, THEN PULLS IN AND
                             RELOCATES THE MAIN PAPERTAPE LOADER.
                          ; NOTE THAT THIS LOADER IS A SLIGHTLY MODIFIED ; VERSION OF THE MAIN PAPER TAPE LOADER.
0000
                                         ORG
                                                        20H
                                                       A,13H ;GET STOP CHAR
2 ;STOP THE READER
B,CHKSM-BOOT2 ;GET SIZE OF LDR
H,BOOT2 ;GET ADDRESS OF LDR
A ;CLEAR A AND CARRY
 0020 3E13
                          BOOT2: MVI
0022 D302
0024 06F7
0026 212000
                                         TUO
IVM
                                         LXI
                          ; PERFORM AN END-AROUND CHECKSUM, TO MAKE SURE ; WE WERE LOADED CORRECTLY
                                                                      ;ADD IN A BYTE WITH CARRY ;BUMP POINTER
002A 8E
                          CHECK: ADC
002B 23
                                         INX
                                                        н
                                                                      ;BUMP POINTER
;DECREMENT COUNT
;KEEP GOING
;ADD IN LAST CARRY
;COMPARE WITH CHECKSUM
;HANG UP IF NO GOOD.
002C 05
002D C22A00
                                         DCR
                                                        B
CHECK
0030 CE00
0032 BE
                                         AC I
CMP
                                                       0
M
0033 C23300
                          xxx:
                                         JNZ
                                                        XXX
                          ; WE DO THE FOLLOWING NONSENSE BECAUSE THE ; BASIC KEY-IN BOOTSTRAP WILL NOT LOAD ; AN OFFH CHARACTER.
                                                       H,FF1+1 ;GET ADDRESS OF 'IN OFEH' INST
M ;MAKE IT 'IN OFFH'.
H,FF2+1 ;DO IT AGAIN
0036 218C00
0039 34
003A 218100
003D 34
003E 210801
0041 34
                                         LXI
INR
                                         LXI
                                                       H,FF3+1 ;AND AGAIN M
                                        ·LXI
                             NOW WE'RE READY TO LOAD AND RELOCATE THE LOADER
0042 C35E00
                                         JMP
                                                        STR
                                                                      ;1ST TIME, SKIP RE-INIT STUFF.
0045 3EAA
0047 D303
0049 3E40
004B D303
004D 3EFA
                          START:
                                                        A, OAAH
3
                                        MVI
                                                                      ;GET DUMMY MODE BYTE
                                         OUT
                                                       Ã,40H
                                                                      ;GET RESET COMMAND ;ISSUE IT
                                         MVI
                                        OUT
                                                        Á,0FAH
                                                                      ; ISSUE MODE BYTE TO SIO
004F D303
0051 3E17
0053 D303
                                         OUT
                                                                      ; ISSUE COMMAND BYTE
                                         OUT
                                                                      ;GET STATUS;CHECK FOR CHAR READY;KEEP WAITING;READ CHAR AND IGNOR
0055 DB03
0057 E602
                                                       03
02
                                         ANI
0059 CA5500
005C DB02
                                         JZ
IN
                                                       SL
02
                                        IN
ANI
                                                                       GET STATUS
005E DB03
                          STR:
                                                       03
0060 E601
0062 CA5E00
0065 3E11
0067 D302
                                                                      MAKE SURE WE HAVE XMTR RDY
                                                       1
STR
                                         JZ
MVI
                                                                      ;GET 'XON' CHAR
;START READER
```

```
0069 1E00
                                           LOOP1: MVI
                                                                                                         ;CLEAR FLAG
;CLEAR CHECKSUM
        006B 0E00
                                                                                    c,o
                                                                                                      ;GET SIO STATUS
;CHECK FOR CHARACTER
;KEEP WAITING
;GET FLAG
;IS IT ZERO?
;NO, GO PROCESS A HEX CHAR
;YES, WE'RE LOOKING FOR A COLON
;STRIP OFF PARITY BIT
;IS IT A COLON?
;MO, KEEP WAITING
;YES, SET FLAG FOR COUNT BYTE
;AND GET ANOTHER CHAR.
        006D DB03
                                            LOOP2:
                                                                                    3
       006F E602
0071 CA6D00
                                                                ANI
                                                                JZ
MOV
                                                                                    LOOP2
       0074 7B
0075 B7
                                                                                    A,E
                                                                ORA
      0076 C28700
0079 DB02
0078 E67F
                                                                JNZ
                                                                                   X 1
2
                                                               IN
ANI
CPI
                                                                                   127
1:1
LOOP2
      007D FE3A
007F C26D00
0082 1E81
0084 C36D00
                                                              JNZ
MVI
                                                                                   E,81H
LOOP2
                                                               JMP
                                         ; WE'RE PUTTING TOGETHER A BYTE. FLAG BIT 7 = 1 => HIGH
; DIGIT OF BYTE, BIT 7=0 => LOW DIGIT
                                                                                                     ;JUMP IF LOW DIGIT
;ELSE STRIP OFF HIGH BIT
;PUT FLAG BACK IN E-REG
;GET THE CHAR
;STRIP OFF THE PARITY BIT
;IS IT .LE. '9'
;SKIP IT YES
;IF NOT, ADJUST IT
;GET HEX DIGIT
;SHIFT LEFT ONE BIT
: TWO BITS
      0087 F2A200
                                          х́1:
                                                               .10
     008A E67F
008C 5F
008D D802
                                                                                  127
E,A
2
                                                              ANI
                                                             MOV
I N
    008B DB02
008F E67F
0091 FE3A
0093 FA9800
0096 C609
0098 E60F
009A 87
                                                                                  127
'9'+1
                                                              AN I
                                                              JM
                                                                                  X2
                                                             ADI
                                         X2:
                                                                                  0FH
                                                             ADD
ADD
                                                                                                     ; TWO BITS
; THREE BITS
    009C 87
009D 87
                                                             ADD
                                                                                                     ;AND FOUR BITS.
;SAVE NIBBLE IN D REG
    009E 57
009F C36D00
                                                             MOV
                                                                                 D,A
LOOP2
                                        ; PROCESS LOW DIGIT OF BYTE, THEN DECIDE WHAT TO DO WITH
  00A2 DB02
00A4 E67F
00A6 FE3A
00A8 FAAD00
00AB C609
00AD E60F
                                        ;
Ý1:
                                                            ΙN
                                                                                                     GET THE CHAR
                                                           ANI
                                                                                127
'9'+1
Y2
                                                                                                    GET RID OF PARITY BIT ;HEX IS SUCH A PAIN.
                                                           JM
ADI
                                                                               9
0FH
                                       Y2:
                                                           ANI
                                                                                                  ;MAKE THE BYTE
;PUT IT IN LIGHTS
;SAVE IT IN O REG
;ADD IT INTO CHECKSUM
;SAVE RUNNING CHECKSUM
;GET BYTE BACK
;IS IT FELOCATABLE BYTE?
;BRANCH IF NOT
;ELSE SUBSTITUE SWITCHS
;PUT BYTE BACK IN D
;GET FLAG IN A
;THEN DISPATCH ON IT
                                                                                D
  0080 D3FE
0082 57
0083 81
                                       FF2:
                                                                              OFEH
D,A
C,A
OFDH
                                                           OUT
                                                           MOV
ADD
  0084 4F
0085 7A
                                                          MOV
MOV
  0086 FEFD
0088 C28D00
                                                          CPI
0088 C28D00
008B DBFE
008D 57
008E 7B
008F 3D
00C0 CA0401
00C3 3D
00C4 CAF800
00C8 CAF800
00C8 3D
                                                           JNZ
                                                                                Y 3
                                                          IN
                                                                              DEEH
                                      Y3:
                                                          MOV
MOV
                                                                              D,A
A,E
A
COUNT
                                                         DCR
JZ
DCR
                                                                             A
HADD
                                                         DCR
                                                         JZ
DCR
                                                                              LADD
00CC CAF300
00CF 3D
00D0 CAE700
00D3 79
                                                                             TYPE
                                                         JΖ
                                                                             PUT
                                                         JΖ
                                                        MOV
                                                                             A,c
                                                                                                 ; MUST BE TIME TO CHECK THE
```

```
CHECKSUM. IS IT ZERO?
LOOP1 ;YES, GO GET NEXT RECORD
H,START ;ELSE, GET RESTART ADDR
A,13H ;GET 'XOFF' CHAR
; TURN OFF READER
; WAIT TILL XMTR BUFFER EMPTY
0004 B7
00D5 CA6900
00D8 214500
00DB 3E13
00DD D302
00DF DB03
00E1 E604
00E3 CADF00
                                           JZ
LXI
MVI
                            STOP:
                                           OUT
IN
                            STPL:
                                            ANI
                                            JZ
PCHL
                                                            STPL
                                                                           ;GO AWAY.
 00E6 E9
                            ; ; put a data byte into core
                                                                           ;STORE THE DATA
;INCREMENT THE H REG
;RESET FLAG FOR NEXT DATA BYTE
;DECR COUNT
;GO BACK FOR MORE DATA.
;OUT OF DATA, SET FLAG FOR
; CHECKSUM.
 00E7 72
00E8 23
00E9 1E85
00EB 05
00EC C26D00
00EF 1C
00F0 C36D00
                             ;
PUT:
                                                           M,D
H
E,85H
                                            MOV
                                            INX
MVI
DCR
                                                            LOOP 2
                                             JNZ
                                             INR
                                                            É
                                                            LOOP2
                             ; IGNORE A TYPE BYTE
                                                                           ;SET FLAG FOR DATA
;GO GET DATA
                              TYPE: MVI
 00F3 1E85
00F5 C36D00
                                                            E.85H
                                             JMP
                                                            LOOP2
                              ; GET LOW BYTE OF ADDRESS
                                                                            ;GET BYTE INTO L-REG
;SET FLAG FOR TYPE BYTE
                                                            L,D
E,84H
LOOP2
 00F8 6A
00F9 1E84
00FB C36D00
                              LADD:
                                           MOV
                                             MV I
JMP
                              ; GET HIGH BYTE OF ADDRESS
                                                            H,D
E,83H
LOOP2
                                                                            GET BYTE INTO H
                                           MOV
                              HADD:
  00FE 62
00FF 1E83
0101 C36D00
                                             MV I
                              ; GET COUNT BYTE
                                                                             ;PUT COUNT INTO B ;CHECK FOR EOF
  0104 42
0105 7A
0106 B7
0107 C21201
010A DBFE
010C 67
010D 2E00
010F C3DB00
                                                             8,D
A,D
A
C1
                              COUNT:
                                             MOV
                                              MOV
                                                                             ; IF NOT EOF, CONTINUE
;GET HIGH BYTE OF LOADER
; ADDRESS INTO H
;AND LOW BYTE
;STOP TAPE, THEN GOTO LCADER.
                                             ORA
                                                             OFEH
                              FF3:
                                              ΙN
                                              MOV
MVI
                                                             H,A
L,0
STOP
                                              JMP
                                                                             ; SET FLAG FOR ADDRESS BYTE
   0112 1E82
0114 C36D00
                              ć1:
                                              MVI
                                                              E,82H
                                                              LÓOP2
                                                                             ;SELF-CHECKSUM FOR THIS LOADER
                                                              0C8H
                              ĆHKSM:
                                            DB
   0117 C8
   0000
```

```
; ** IMSAI PAPER TAPE LOADER ***
                                                        REV 0 3/3/76
                                        THIS LOADER IS DESIGNED TO LOAD PAPER TAPES IN THE STANDARD OBJECT FORMAT (SEE THE SOFTWARE SECTION OF THE 8080 USER MANUAL) FROM AN ASR 33 TELETYPE. IT USES NO STACK AND NO LOCAL RAM, SI THAT IT MAY BE RUN FROM PROM WITHOUT REQUIRING
                                                                                                                                                      SO
                                     ; A RAM CARD OF ITS OWN.
                                         USING THE LOADER:
                                       USING THE LOADER:

If THIS LOADER IS BROUGHT IN WITH THE
BOOTSTRAP SEQUENCE (DOCUMENTED ELSEWHERE),
IT WILL START ITSELF UP. OTHERWISE, MANUALLY
START IT AT ITS BEGINNING. IT WILL RESPOND
BY TYPING A "ON THE TELETYPE. MOUNT THE TAPE
TO BE LOADED IN THE READER, AND STRIKE ANY KEY.
THE LOADER WILL START THE READER AUTOMATICALLY.
THE LOADER WILL STOP THE TAPE AND TYPE A "IN
EITHER OF TWO CASES:
                                                      (1) IT HAS SEEN AN END OF FILE RECORD. IN THIS CASE, ZERO WILL BE DISPLAYED IN THE PROGRAMMED OUTPUT LIGHTS.
                                                      (2) IT ENCOUNTERED A BAD RECORD. IN THIS CASE
AN NGN-ZERO QUANTITY WILL BE DISPLAYED
IN THE PROGRAMMED OUTPUT LIGHTS.
                                       IN EITHER CASE, LOADING MAY BE CONTINUED BY STRIKING
 0000
                                                      ORG
                                                                        0FD00H
 FD00 110100
FD03 210000
FD06 19
                                   START: LXI
                                                                                           ;WAIT ABOUT A SECOND SO A
; PREVIOUS 'XOFF' CHARACTER
; HAS TIME TO STOP THE READER
                                                                        H, 0
D
                                   SLO:
                                                     DAD
 FD07 D206FD
                                                     JNC
                                                                        SLO
                                   ; INITIALIZE SIO BOARD.
FD0A 3EAA
FD0C D303
FD0E 3E40
FD10 D303
FD12 3EFA
FD14 D303
FD16 3E17
FD18 D303
                                                     MVI
                                                                        A, DAAH ; GET DUMMY MODE BYTE ~
                                                     OUT
                                                                                           ;GET RESET COMMAND
;ISSUE IT
                                                     MVI
                                                                        A,40H
                                                                        Á, OFAH
3
                                                     I VM
                                                    TUO
                                                                                           ; ISSUE MODE BYTE TO SIO
                                                                        Á,17H
                                                     OUT
                                                                                           ; ISSUE COMMAND BYTE
FD1A 3E2A
FD1C D302
FD1E DB02
                                                                        Á, 181
                                                                                           ;GET AN ASTERISK
;PRINT IT
;THROW AWAY ANY CHAR IN BUFFER
                                                                        02
                                                    OUT
FD1E 0802
FD20 0803
FD22 E602
FD24 CA20FD
FD27 0802
                                                                                          JIHROW AWAY ANY CHAR
JGET STATUS
JCHECK FOR CHAR READY
KEEP WAITING
FREAD CHAR AND IGNOR
JGET 'XON' CHAR
JSTART READER
                                 SL2:
                                                    ΙN
                                                                       03
                                                                       SL2
02
                                                    JZ
IN
FD29 3E11
FD28 D302
                                                                        A,11H
                                                                       0 2
                                                    OUT
FD2D 1E00
FD2F 0E00
                                 Ĺ00P1:
                                                  MVI
                                                                       E,0
C,0
                                                                                          ;CLEAR FLAG
;CLEAR CHECKSUM
```

```
Ĺ00P2:
                                                                                  3
2
LOOP2
  FD31 DB03
                                                                                                       ;GET SIO STATUS
;CHECK FOR CHARACTER
;KEEP WAITING
;GET FLAG
;IS IT ZERO?
;NO, GO PROCESS A HEX CHAR
;YES, WE'RE LOOKING FOR A COLON
;STRIP OFF PARITY BIT
;IS IT A COLON?
;NO, KEEP WAITING
;YES, SET FLAG FOR COUNT BYTE
;AND GET ANOTHER CHAR.
                                                                                                        GET SIO STATUS
                                                          IN
 FD33 E602
FD35 CA31FD
FD38 7B
FD39 B7
                                                             JΖ
                                                                                  A,E
                                                             ORA
                                                                                  X1
2
127
':'
LOOP2
 FD3A C24BFD
FD3D DB02
FD3F E67F
                                                             JNZ
IN
                                                             AN I
CP I
JN Z
 FD3F E67F
FD41 FE3A
FD43 C231FD
FD46 1E81
FD48 C331FD
                                                             MVI
                                                                                  E,81H
LOOP2
                                                             JMP
                                       ; WE'RE PUTTING TOGETHER A BYTE. FLAG BIT 7 = 1 => HIGH; DIGIT OF BYTE, BIT 7=0 => LOW DIGIT
                                                                                                        ;JUMP IF LOW DIGIT
;ELSE STRIP OFF HIGH BIT
;PUT FLAG BACK IN E-REG
;GET THE CHAR
  FD48 F266FD
FD48 F266FD
FD4E E67F
FD50 SF
FD51 D802
FD53 E67F
FD55 FE3A
FD57 FA5CFD
FD5A C609
FD5E 87
FD6E 87
FD60 87
FD61 87
FD62 57
                                                                                  127
E,A
2
                                                             I NA
VOM
                                                             IN
                                                                                                       GET THE CHAR
STRIP OFF THE PARITY BIT
IS IT .LE. '9'
SKIP IT YES
IF NOT, ADJUST IT
GET HEX DIGIT
SHIFT LEFT ONE BIT
TWO BITS
THREE BITS
AND FOUR BITS
SAVE NIBBLE IN D REG
                                                                                   127
'9'+1
                                                             AN I
CP I
                                                             JM
                                                                                  X 2
                                                             ADI
                                                                                   9
0FH
                                       X2:
                                                             AN I
ADD
                                                             ADD
                                                             ADD
ADD
 FD62 57
FD63 C331FD
                                                                                                        SAVE NIBBLE IN D REG
                                                             MOV
                                                                                   LÓOP2
                                       ; PROCESS LOW DIGIT OF BYTE, THEN DECIDE WHAT TO DO WITH
                                       ;
Y1:
 FD66 DB02
FD68 E67F
FD6A FE3A
FD6C FA71FD
FD6F C609
                                                             ΙN
                                                                                                        :GET THE CHAR
                                                                                  127
'9'+1
Y2
                                                                                                        GET RID OF PARITY BIT ;HEX IS SUCH A PAIN.
                                                             ANI
                                                             AD I
FD6F C609
FD71 E60F
FD73 B2
FD74 D3FF
FD76 57
FD77 81
FD78 4F
FD79 7B
                                                             AN I
ORA
                                                                                   о́FН
                                        Y2:
                                                                                                       ;MAKE THE BYTE
;PUT IT IN LIGHTS
;SAVE IT IN D REG
;ADD IT INTO CHECKSUM
;SAVE RUNNING CHECKSUM
;GET FLAG IN A
;THEN DISPATCH ON IT
                                                                                   D
OFFH
                                                             OUT
                                                                                  D,A
C
C,A
A,E
                                                             ADD
                                                             MOV
MOV
 FD7A 3D
FD7B CAC1FD
                                                            DCR
JZ
                                                                                  COUNT
 FD7E 3D
FD7F CABBFD
                                                            DCR
                                                                                   HADD
FD7F CABBFD
FD82 3D
FD83 CAB5FD
FD86 3D
FD8A 3D
FD8B CAA4FD
FD8E 79
FD9G CA2DFD
FD93 2F
FD94 D3FF
FD96 3E13
                                                             DCR
                                                            JZ
DCR
                                                                                   LADD
                                                                                  TYPE
                                                                                   A
PUT
                                                             JZ
                                                                                                       ;MUST BE TIME TO CHECK THE
; CHECKSUM. IS IT ZERO?
;YES, GO GET NEXT RECORD
;DISPLAY REASON FOR STOPPING
                                                            MOV
OR A
                                                                                  A,C
                                                             JZ
CMA
                                                                                  LOOP1
                                       STOP:
                                                                                  0FFH
                                                            OUT
                                                                                  A,13H
2
3
                                                                                                        ;ELSE, GET 'XOFF' CHAR
;TURN OFF READER
;WAIT TILL XMTR BUFFER EMPTY
 FD96 3E13
FD98 D302
                                                             MVI
                                                             OUT
 FD9A D803
FD9C E604
                                        STPL:
                                                             IN
ANI
```

```
FD9E CA9AFD
FDA1 C300FD
                                          JZ
JMP
                           ; ; PUT A DATA BYTE INTO CORE
FDA4 72
FDA5 23
FDA6 1E85
FDA8 05
FDA9 C231FD
FDAC 1C
FDAD C331FD
                                                                        ;STORE THE DATA
;INCREMENT THE H REG
;RESET FLAG FOR NEXT DATA BYTE
;DECR COUNT
;GO BACK FOR MORE DATA.
;OUT OF DATA, SET FLAG FOR
; CHECKSUM.
                            PUT:
                                           MOV
                                                          M,D
                                          INX
MVI
DCR
JNZ
INR
                                                          H
E,85H
                                                          8
                                                         LOOP2
E
LOOP2
                                          JMP
                           ; ; IGNORE A TYPE BYTE
FD80 1E85
FD82 C331FD
                            TYPE: MVI
                                                                     ;SET FLAG FOR DATA
;GO GET DATA
                                                         E,85H
LOOP2
                                          JMP
                           ; GET LOW BYTE OF ADDRESS
                           LADD: MOV
MVI
JMP
FDB5 6A
FDB6 1E84
FDB8 C331FD
                                                         L,D
E,84H
LOCP2
                                                                       ;GET BYTE INTO L-REG
;SET FLAG FOR TYPE BYTE
                          ; GET HIGH BYTE OF ADDRESS
                           HADD: MOV
FD8B 62
FD8C 1E83
FD8E C331FD
                                                         H, D
E, 83H
LOOP2
                                                                        ;GET BYTE INTO H
;SET FLAG FOR LOW ADDRESS BYTE
                                          JMP
                           ; GET COUNT BYTE
                          COUNT: MOV
MOV
ORA
FDC1 42
FDC2 7A
FDC3 87
FDC4 CA93FD
FDC7 1E82
FDC9 C331FD
                                                        B,D
A,D
A
STCP.
E,82H
                                                                        ; PUT COUNT INTO 8 ; CHECK FOR EOF
                                         JZ
MVI
JMP
                                                                        ;IF EOF, GO STOP READER
;ELSE SET FLAG FOR ADDRESS BYTE
                                                         LOOP2
0000
                                         END
```

IMSAI 8080 System User Manual Revision 1

APPENDIX — SCHEMATIC DIAGRAMS

CHASSIS CABINET POWER SUPPLY CPA MPU-A RAM 4A

		:	
		· · · · · ·	
· · · · · · · · · · · · · · · · · · ·			

.

.

