Y e

 MITS, Inc. 1977
First Printing, January, 1977

altair 8800 BasIc
REFERENCE MANUAL

Dh | IS nc.

c 2450 Alamo $.E./Albuquerque, New Mexicc 37108 :

PREFACE

The Altair BASIC language is a high-level programming
language specifically designed for interactive computing
systems. 1Its simple English-like instructions are easily
understood and quickly learned and its interactive nature
allows instant feedback of results and diagnostics. Despite
its simplicity, however, Altair BASIC has evolved into a
powerful language with provisions for editing and string
processing as well as numerical computation.

The Altair BASIC interpreter reads the instructions of
the BASIC language and directs the ALTAIR 8800 series
microcomputer to execute them. Altair BASIC includes many
useful diagnostic and editing features in all versions. The
extended versions provide additional features including
comprehensive file input/output procedures in the disk
version.

This manual will explain the features of the BaSIC
language and the special provisions of the 4K, 8K, Extended
and Disk Extended Altair BASIC interpreters, release 4.8.
For gquick reference, a table of Altair BASIC instructions,
diagnostics and functions are provided in Section 6. A
complete index is at the end of the manual. 1In addition to
this reference manual, the programmer should have a good
BASIC text book on hand. A list of some suggested texts is
given in Appendix J. .

fanuary, 1977

2.
2-1

2-3

CONTENTS

Some Introductory Remarks.

Introduction to this manual
a. conventions

b. definitions
Modes of Operation

Formats

a. lines-AUTO and RENUM

b. REMarks

C. erroy messages
Editing - elementary provisions
a. single characters

b. lines

c. whole programs

Expressions and Statements

Expressions
a. constants
b. variables
1) names
2) typing
C. arrays - the DIM statement
d. operators and order of precedence
e. logical operations
f. the LET statement
Branching and Loops
a. branching
1) GOTO
2) IF...THEN...[ELSE]
3) ON...GOTO
b. loops - FOR,NEXT
C. subroutines - GOSUB,RETURN statements
d. memory limitations
Input/Output, Data Handling
a. INPUT
b. PRINT
c. DATA, READ, RESTORE
1) DATA
2) READ
3) RESTORE
d. CSAVE, CLOAD
e. miscellaneous
1) WAIT
2) PEEK,POKE
3) OUT, INP

Functions

Page 2

_

January, 1977

3-1 Intrinsic Functions
3-2 User-defined Functions -~ the DEF statement
4, Strings
- 4-1 String data

4-2 string operations

a. comparisons

b. LET statements

c. input/output

1) INPUT, PRINT
2) DATA,READ

4-3 String Functions
5. Extended Features
5-1 Extended Statements
5-2 Extended Operators
5-3 Extended Functions
5-4 EDIT Command
5=5 PRINT USING Statement
5-6 Disk Operations
6. Tables and Directories
6~-1 Commands
6=2 Statements
6-3 Intrinsic Functions
6-4 Special Characters
6-5 Error Messages
6-6 Reserved Words
6-7 Index
Appendices
A. ASCII Character Codes
8. Loading Altair BASIC
C. Speed and Space Hints
D. Mathematical Functions
E. Altair BASIC and Machine Language
F. Using the ACR Interface
G. Converting BASIC Programs Not Written for the Altair Computer
H. Disk Information
I. The PIP Utility Program
J. BASIC Texts
K. Using Altair BASIC on the

Intellec* 8/Mod 89 and MDS Systems
L. Patching Altair BASIC's I/O Routines
M. Using Disk Altair BASIC: An Example
Index

Page 3

January, 1977 Page 4

SOME INTRODUCTORY REMARKS

1.
1-1 Introduction to this Manual.

a.- Conventions. PFor the sake of simplicity,| some
conventions will be followed in discussing the features of
the Altair BASIC language.

1. Words printed in capital letters must be written e actly
as shown. These are mostly names of instructions and
commands.

2. 1Items enclosed in angle brackets (<>) must be su plied
as explained in the text. 1Items in square brackets ([]) are
optional. TItems in both kinds of brackets, [<W>] for
example, are to be supplied if the optional feature is|used.
Items followed by dots (...) may be repeated or deleted as
necessary.

3. shift/ or Control/ followed by a letter mean the
character 1is typed by holding down the Shift or Contrdl key
and typing the indicated letter.

4. All indicated punctuation must be supplied.

b. Definitions. Some terms which will ecome
important are as follows:

Alphanumeric character: all letters and numerals taken
together are called alphanumeric characters.

Carriage Return: Refers both to the key on| the
terminal which causes the carriage, print head or curspr to
Tmove to the beginning of the next line and to the command
that the carriage return key issues which terminates a BASIC
line.

Command Level: After Altair BASIC prints OK, it i at
the command level. This means it 1is ready to accept

commands.

Commands and Statements: Instructions in Altair ASIC
are loosely divided into two «classes, Commands| and
Statements. Commands are instructions normally used only in
direct mode (see Modes of Operation, section 1-2). |Some
commands, such as CONTymay only be used in direct mode since
they have no meaning as program statements. Some comm nds,
such as DELETE, are not normally used as program statements
because they cause a return to command level. But |most
commands will find occasional use as proaram statemeénts.
Statements are instructions that are normally used in
indirect mode. Some statements, such as CEF, may only be
usad in indirect mode.

January, 1977 Page 5

qu/‘ Edit: The process of deleting, adding and substituting
lines in a program and that of preparing data for output
according to a predetermined format will both be referred to
as "editing." The particular meaning in use will be clear
from the context.

Integer Expression: An expression whose value |is
truncated to an integer. The components of the expression
need not be of integer type.

Reserved Words: Some words are reserved by BASIC for
use as statements and commands. These are called reserved
words and they may not be used in variable or function
names.

Special Characters: some characters appear differently
on different terminals. Some of the most important of these

are the following:

(caret) appears on some terminals as 4 (up-arrow)
~s (tilde) does not appear on some terminals and prints

as a blank
_ (underline) appears on some terminals as «e- (back-arrow).

String Literal: A string of characters enclosed by
QL/ quotation marks. (") which is to be input or output exactly

as it appears. The quotation marks are not part of the
string 1literal, nor may a string literal contain gquotation
marks. (""HI, THERE“"is not legal.)

Type: While the actual device used to enter
information into the computer differs from system to system,
this manual will use the word "type" to refer to the process
of entry. The user types, the computer prints. Type also
refers to the classifications of numbers and strings.

1-2 Modes of Operation.

Altair BASIC provides for operation of the computer in
two different modes. 1In the direct mode, the statements or
commands are executed as they are entered into the computer.
Results of arithmetic and logical operations are displayed
and stored for later use, but the instructions themselves
are lost after execution. This mode is useful for debugging
and for using Altair BASIC in a "calculator" mode for gquick
computations which do not justify the design and coding of
complete programs.

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines
(J are entered into memory if they are preceded by a line

L/ number. Execution of the program is initiated by the RUN

January, 1977 Page 6

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines

are entered into memory if they are preceded by line
number. Execution of the program is initiated by the RUN
commands.,

1-3 Formats.

a. Lines. The line is " the fundamental unit of an
Altair BASIC program. The format for an Altair BASIC line
is as follows:

nnnnn <BASIC statement>[:<BASIC statement>...]

Each Altair BASIC line begins with a number. The number
corresponds to the address of the 1line in memory and
indicates the order in which the statements in the line will
be executed in the program. It also provides for branching
linkages and for editing. Line numbers must be in the! range
8 to 65529. A good programming practice is to use an
increment of 5 or 18 between successive line numbers to
allow for insertions.

1) Line numbers may be generated automatically in the
Extended and Disk versions of Altair BASIC by use of the
AUTO and RENUM commands. The AUTO command provides for
automatic insertion of 1line numbers when entering program
lines. The format of the AUTO command is as follows:

AUTO({<initial line>[,[<increment>]]
Example;

AUTO 160,10

196 INPUT X,Y

110 PRINT SQR(X"2+Y"2)

1290 °C

OK

AUTO will number every input line until Control/C is typed.
If the <initial line> is omitted, it is assumed to be 18 and
an increment of 19 is assumed if <increment> is omitte?. If
the <initial line> is followed by a comma but no increment
is specified, the increment last used in an AUTO statement
is assumed. !

If AUTO generates a line number that already exists in
the program currently in memory, it prints the number
followed by an asterisk. This is to warn the user that any
input will replace the existing line.

January,

1977 Page 7

2) The RENUM command allows program lines to be "spread
out”" so that a new line or lines may be inserted between
existing lines. The format of the RENUM command is as
follows:

RENUM [<NN> [<MM>[,<II>]]}]

where NN is the new number of the first 1line to be
resequenced. If omitted, NN is assumed to be 18. Lines
less than MM will not be renumbered. If MM is omitted, the
whole program will be resequenced. II is the increment
between the lines to be resequenced. If II is omitted, it
is assumed to be 14. Examples:

RENUM Renumbers the whole program to start at 1line
10 with an increment of 10 between the new line numbers.

RENUM 104,,108 Renumbers the whole program to start
at line 100 with an increment of 144.

RENUM 6000,5000,1000 Renumbers the lines from 5008
up so they start at 6008 with an increment of 1004.

NOTE

RENUM cannot be used to change the order of program
lines (for example, RENUM 15,38 when the program has
three lines numbered 14, 20 and 30) nor to create
line numbers greater than 65529. An ILLEGAL
FUNCTION CALL error will result.

All line numbers appearing after a GOTO, GOSUB, THEN,
ON...GOTO, ON...GOSUB and ERL<relational operator> will be
properly changed by RENUM to reference the new line numbers.
If a line number appears after one of the statements above
but does not exist in the program, the message "UNDEFINED
LINE XXXXX 1IN YYYYY" will be printed. This line reference
(XXXXX) will not be changed by RENUM, but line number YYYYY
may be changed.

3) In the Extended and Disk versions, the current line
number may be designated by a period (.) anywhere a line
number reference is required. This is particularly useful
in the use of the EDIT command. GSee section 5-4.

4) Following the line number, one or more BASIC
statements are written. The first word of a statement
identifies the operations to be performed. The 1list of
arguments which follows the identifying word serves several
purposes. It can contain (or refer symbolically to) the

January, 1977 Page 8

data which is to be operated upon by the statement. In some a

important instructions, the operation to be per formed
depends upon conditions or options specified in the list.

Each type of statement will be consideredwin detail in
sections 2, 3 and 4.

More than one statement can be written on one line if
they are separated by colons (:). Any number of statements
can be joined this way provided that the 1line is no more
than 72 characters 1long in the 4K and 8K versions, or 255
characters in the Extended and Disk versions. In the
Extended and Disk versions, lines may be broken with the
LINE FEED key. Example:

108 IF X<Y¥+37<line feed>
THEN 5 <line feed>
ELSE PRINT(X)<carriage return>

The line is shown broken into three lines, but it 1is input
as one BASIC line. . ‘

b. REMarks. In many cases, a program can be more
easily understood if it contains remarks and explanations as
well as the statements of the program proper. In Altair ;i
BASIC, the REM statement allows such comments to be included G
without affecting execution of the program. The format of
the REM statement is as follows: ‘

REM <remarks>

A REM statement is not executed by BASIC, but branching
Statements may link into it. REM statements are terminated
by the carriage return or the end of the line but not by a
colon. Example:

168 REM DO THIS LOOP:FOR I=1TO1g -the FOR statement

will not be executed
141 FOR I=1 TO 10: REM DO THIS LOOP -this FOR statement will

be executed.:

In Extended and Disk versions, remarks may be added to the
end of a program line separated from the rest of the line by
a single quotation mark ('). Everything after the single
quote will be ignored.

C. Errors. When the BASIC interpreter detects an
error that will cause the program to be terminated, it
prints an error message. The error message formats K in
Altair BASIC are as follows:

Direct statement ?XX ERROR “

January,

\®

1977 Page 9

Indirect statement ?XX ERROR IN nnnnn

XX is the error code or message (see section 6-5 for a list
of error codes and messages) and nnnnn is the line number
where the error occurred. Each statement has its own
particular possible errors in addition to the general errors
in syntax. These errors will be discussed in the
description of the individual statements.

1-4 BEditing - elementary provisions.

Editing features are provided in Altair BASIC so that
mistakes can be corrected and features can be added and
deleted without affecting the remainder of the program. If
necessary, the whole program may be deleted. Extended and
Disk Altair BASIC have expanded editing facilities which
will be discussed in section 5.

a. Correcting single “characters. If an incorrect
character is detected in a line as it is being typed, it can
be corrected immediately with the backarrow (underline on
some terminals) or ,except 1in 4K, the RUBOUT key. Each
stroke of the key deletes the immediately preceding
character. If there is no preceding character, a carriage
return is issued and a new line is begun. Once the unwanted
characters are removed, they can be replaced simply by
typing the rest of the line as desired. i

When RUBOUT is typed, a backslash (\) 1is printed and
then the character to be deleted. Each successive RUBOUT
prints the next character to be deleted. Typing a new
character prints another backslash and the new character.
All characters between the backslashes are deleted.

Example:

108 X=\=X\¥Y=10 Typing two RUBOUTS deleted the '='
and 'X' which were subsequently
replaced by Y= .

b. correcting 1lines. A 1line being typed may be
deleted by typing an at-sign (@) instead of typing a
carriage return. A carriage return is printed automatically
after the 1line is deleted. Except in 4K, typing Control/U
has the same effect.

In the Extended and Disk versions, typing Control/A
instead of the carriage return will allow all the features
of the EDIT command (except the A command) to be used on the

January, 1977 Page 18

line currently being typed. See section 5-4.‘ : a

C. correcting whole programs. The NEW command causes
the entire current program and all variables to be deleted.
NEW is generally used to clear memory space preparatory to
entering a new program.

2. STATEMENTS AND EXPRESSIONS.

2-1. Expressions.

The simplest BASIC expressions are single constants,
variables and function calls.

a. Constants. Altair BASIC accepts integers | or
floating point real numbers as constants. All but the 4K
version of Altair BASIC accept string constants as well.
See section 4-1. Some examples of acceptable numeric
constants follow: |

123
3.141
B.8436

1.25E+@5 i ;

| J
Data input from the terminal or numeric constants in a
program may have any number of digits up to the length of a
line (see section 1-3a). In 4K and 8K Altair BASIC,
however, only the first 7 digits of a number are significant
and the seventh digit is rounded up. Therefore, the command

PRINT 1.234567890123
produces the following output:

1.23457
OK

In Extended and Disk versions of Altair BASIC, double
precision format allows 17 significant digits with the 17¢tn
digit rounded up.

The format of a printed number is determined by ‘the
following rules:

1. If the number is negative, a minus sign (=) is printed
to the left of the number. If the number is positive, a
space is printed.

January,

5

C

1977 " page 11

2, If the absolute value of the number is an integer in
the range 0 to 999999, it is printed as an integer.

3. If the absolute value of the number is greater than or
equal to .61 and 1less than or equal to 999999, it is
printed in fixed point notation with no exponent.

4. In Extended and Disk versions, fixed point values up to
9999999999999999 are possible.

5. If the number does not fall into categories 2, 3 or ¢4,
scientific notation is used.

The formats of scientific notation are as follows:
SX.XXXXXESTT single precision
SX. XXXXXXXXXXXXXXXDSTT double precision

where S stands for the signs of the mantissa and the
exponent (they need not be the same, of course), X for the
digits of the mantissa and T for the digits of the exponent.
E and D may be read "...times ten to the power...."
Non-significant 2zeros are suppressed in the mantissa, but
two digits are always printed in the exponent. The sign
convention in rule 1 is followed for the mantissa. The
exponent must be in the range =38 to +38. The largest
number that may be represented in Altair BASIC is
1.76141E38, the smallest positive number is 2.9387E-38. The
following are examples of numbers as input and as output by
Altair BASIC:

Number Altair BASIC Output
+1 1

-1 -1

6523 6523

1E24 1E28 :
-12.34567E-10 -1.23456E-09
1.234567E-7 1.23457E-07
1000008 1E+06

.1 .1

.81 .01

.008123 1.23E-04
-25.469 -25.46

The Extended and Disk versions of Altair BASIC allow
numbers to Dbe represented in integer, single precision or
double precision form. The type of a number constant is
determined according to the following rules:

January,

1977 Page 12

1. A constant with more than 7 digits or a 'D’ instea¢ of
'E' in the exponent is double precision. |

2. A constant outside the range -32768 to 32767 with|7 or
fewer digits and a decimal point or with an ‘E' exponent
is single precision.

3. A constant in the range -32768 to 32767 and no dec¢imal
point is integer.

4. A constant followed by an exclamation point (!) is
single precision; a constant followed by a pound |sign
(#) is double precision.

Two additional types of constants are allowed in
Extended and Disk versions of Altair BASIC. Hexadedimal
(base sixteen) constants may be explicitly designated by the
symbol &H preceding the number. The constant may not
contain any characters other than the digits 8 =~ 9 or
letters A - F, or a SYNTAX ERROR will occur. #etal
constants may be designated either by &0 or just the & slign.
|

In all formats, a space is printed after the num%er.
In all but the 4K version, Altair BASIC checks to see if| the
entire number will fit on the current line. If not, it
issues a carriage return and prints the whole number on| the
next line. Lo

b. Variables

1) A variable represents symbolically any number which
is assigned to it. The value of a variable may be assigned
explicitly by the programmer or may be assigned as | the
result of calculations in a program. Before a variable is
assigned a value, its value is assumed to be zero. 1In 4 .
a variable name consists of one or two characters. The
first character is any letter. The second character must be
a numeral. In other versions of Altair BASIC, the variable
name may be any length, but any alphanumeric characters
after the first two are ignored. The first character rust
be a letter. No reserved words may appear as variable names
or within variable names. The following are examples of
legal and illegal Altair BASIC variables: |

Legal Illegal |
In 4K and 8K Altair BASIC: ‘

A 3A (first character m*st
be alphabetic.) ‘

z1 %z1A (variable name is|too

long for 4K) |
Other versions:

&Jl

Page 13

January, 1977
| TP TO (variable names cannot
be reserved words)
PSTGS
COUNT RGOTO (variable names can-
not contain reserved
words.)

In all but 4K Altair BASIC, a variable may also
represent a string. Use of this feature is discussed in

section 4.

2) Extended and Disk versions of Altair BASIC allow the
use of Integer and Double Precision variables as well as
Single Precision and Strings. The type of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name.

Type Symbol
Strings (@ to 255 characters) $
Integers (-32768 to 32767) %
Single Precision (up to 7 digits, exponent between
-38 and +38) !
Q_/ Double Precision (up to 16 digits, exponent between
-38 and +38)

Internally, BASIC handles all numbers in binary. Therefore,
some 8 digit single precision and 17 digit double precision
numbers may be handled correctly, If no type is explicitly
declared, type is determined by the first letter of the
variable name according to the type table. The table of
types may be modified with the following statements.

DEFINT r Integer
DEFSTR r String
DEFSNG r Single Precision
DEFDBL ¢ Double Precision

where r is a letter or range of letters to be designated.
Examples:

15 DEFINT I-N Variable names beginning with the let-
ters I-N are to be of integer type.

20 DEFDBL D Variable names beginning with D are to
be of double precision type.

If no type definition statements are encountered, BASIC
proceeds as if it had executed a DEFSNG A-Z statement.

Tanuary, 1977 Page 14

3) Integer variables should be used wherever possible
since they take the least amount of space in memor{ and
integer arithmetic is much faster than single precision
arithmetic. ‘

|

Care must be exercised when single precision and dguble
precision numbers are mixed. Since single precision numbers
can have more significant digits than will be printed, a
double precision variable set to a single precision value
may not print the same as the single precision variable.

|

14 A=1.01 single precision value
20 B#=A*10:C#=CDBL(A) *10% convert to double precision
30 PRINTA;B#;C#;CDBL(A) in various ways
RUN
1.01 10.10000038146973 10.89999990463257 1.009999990463257
OK

In order to assure that double precision numbers will print
the same as single precision, the VAL and STR$ functions
should be used. For example:

10 A=1.01
20 B#=VAL(STRS (A)) :C#=B#*10#%
3@ PRINT A;B#;C#
RUN
l1.01 1.81 13.1
OK

|

C. Array Variables. It is often advantageous to refer
to several variables by the same name. In matrix
calculations, for example, the computer handles each element
of the matrix separately, but it is convenient for |the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC provides subscripted variables) or
arrays. The form of an array variable is as follows:

VV (<subscript>[,<subscript>...])

where VV is a variable name and the subscripts are integer
expressions. Subscripts may be enclosed in parentheses or
square brackets. An array variable may have only |one
dimension in 4K, but in all other versions of Altair BASIC
it may have as many dimensions as will fit on a single line.
The smallest subscript is zero. Examples:

A(S) The sixth element of array A. The first
element is A(8).

ARRAY(I,2*J) The address of this element in a two=-
dimensional array is determined by
evaluating the expressions in parenthe
ses at the time of the reference to the

January, 1977 Page 15

Q~/‘ array and truncating to integers. If
I=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
sets all array elements to zero. The form of the DIM
statement is as follows:

DIM VV(<subscript>[,<subscript>...])

where VV is a legal variable name. Subscript is an integer
expression which specifies the largest possible subscript
for that dimension. Each DIM statement may apply to more
than one array variable. Some examples follow:

113 DIM A(3), D$(2,2,2)

114 DIM R2%(4), B(19)

115 DIM QI1(N), Z#(2+I1) Arrays may be dimensioned dy-
namically during program
execution. At the time the
DIM is executed, the expression
within the parentheses is e-
valuated and the results trun-
cated to integer.

If no DIM statement has been executed before an array
Q variable 1is found in a program, BASIC assumes the variable

-’ . to have a maximum subscript of 18 (11 elements) for each
dimension in the reference. A BS or SUBSCRIPT OUT OF RANGE
error message will be issued if an attempt 1is made to
reference an array element which is outside the space
allocated in its associated DIM statement. This can occur
when the wrong number of dimensions is used in an array
element reference. For example:

30 LET A(l1,2,3)=X when A has been dimensioned by
19 DIM A(2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM
statement for an array is found after that array has been
dimensioned. This often occurs when a DIM statement appears
after an array has been given its default dimension of 14.

d. Operators and Precedence. Altair BASIC provides a
full range of arithmetic and (except in 4K) logical
operators. The order of execution of operations in an
expression is always according to their precedence as shown
in the table below. The order can be specified explicitly
by the use of parentheses in the normal algebraic fashion.

Table of Precedence

January, 1977

Oper
Oper
same
in a
1.
2.

3.
4.
5.

9.
14.
11.

12.
13.
14.

In 4
once

Page 16

ators are shown here in decreasing order of precedence.
ators listed in the same entry in the table have the
precedence and are executed in order from left to right
n expression.

Expressions enclosed in parentheses ()

® exponentiation (not in 4K). Any number to the zero
power is 1. Zero to a negative power causes a /8 or
DIVISION BY ZERO error.

- negation, the unary minus operator

*,/ multiplication and division

\ integer division (available in Extended and Disk
versions, see section 5-2)

MOD (available in Extended and Disk versions. See

section 5-2)

+,- addition and subtraction

relational operators

= equal
<> not equal
< less than
> greater than
<=,=< less than or equal to
=,=> greater than or equal to

(the logical operators below are not available in 4K)

NOT logical, bitwise negation

AND logical, bitwise disjunction

OR logical, bitwise conjunction

(The logical operators below are available only in
Extended and Disk versions.)

XOR logical, bitwise exclusive OR

EQV logical, bitwise egquivalence

IMP logical, bitwise implication

K Altair BASIC, relational operators may be used only
in an IF statement. 1In all other versions, relational

January, 1977 Page 17

operators may be used in any expressions. Relational
expressions have the valye either of True (=1) or False (8).

— €. Logical Operations. Logical operators may be used
for bit manipulation and Boolean algebraic functions. The
AND, OR, NOT, XOR, EQV and IMP operators convert their
arguments into sixteen bit, signed, two's complement
integers in the range -32768 to 32767. After the operations
are performed, the result is returned in the same form and
range. If the arguments are not in this range, an FC or
ILLEGAL FUNCTION CALL eérror message will be printed and
execution will be terminated. Truth tables for the logical
operators appear below. The operations are performed
bitwise, that is, corresponding bits of each argument are
examined and the result computed one bit at a time. In
binary operations, bit 7 is the most significant bit of a
byte and bit 8 is the least significant.

AND

X Y X AND Y

1 1 1

1] 0

] 1 0

] 0 0
OR

X Y XORY

1 1 1

1 0 1

Q_/ 0 1 1

] g 0
NOT

X NOT X

1 g

0 1
XOR

X Y X XOR Y

1 1 0

1 g 1

] 1 1

] g g
EQV

X Y X EQV Y

1 1 1

1 g 6

g 1 8

0] 1
IMP

X Y X IMP Y

1 1 1

1) 0

g 1 1

0 g 1

January, 1977 Page 18

Some examples will serve to show how the logical operations

work:

63 AND 16=16 63=binary 111111 and l6=binary 18664,
S0 63 AND 16=16

15 AND 14=14 15= binary 1111 and l4=binary 1114@,
so 15 AND l4=binary 1116=14.

-1 AND 8=8 =l=binary 1111111111111111 and 8=binary
1000, so -1 AND 8=8.

4 OR 2=6 4=binary 100 and 2=binary 18 so
4 OR 2=binary 118=6.

12 OR 18=18 binary 1010 OR'd with itself is 1418=

-1 OR =2=-1 =l=binary 1111111111111111 and =-2=
1111111111111119, so -1 OR =2=-1,

NOT @=-1 the bit complement of sixteen zeros

is sixteen ones, which is the two's
complement representation of -1.

NOT X=-~(X+1) the two's complement of any number is
the bit complement plus one.

A typical use of logical operations is 'masking', testing a
binary number for some predetermined pattern of bits. Such
numbers might come from the computer's input ports and would
then reflect the condition of some external device. Further
applications of logical operations will be considered in the
discussion of the IF statement.

£. The LET statement. The LET statement is used to
assign a value to a variable. The form is as follows:

LET <VV>=<expression>

where VV is a variable name and the expression is any vglid
Altair BASIC arithmetic or, except in 4K, logical or string
expression. Examples:

1094 LET V=X
119 LET I=I+l the '=' sign heremeans 'is replaced

by ...

The word LET in a LET statement is optional, so algebraic
equations such as:

120 V=.5%(X+2)
are legal assignment statements.

A SN or SYNTAX ERROR message 1is printed when BASIC
detects incorrect form, illegal characters in a line,
incorrect punctuation or missing parentheses. An OV or
OVERFLOW error occurs when the result of a calculation is

January, 1977 Page 19

too large to be Fepresented by Altair BASIC's number
formats, All numbers must be within the range 1lE-38 to
1.70141E38 or -1E~38 to -1.70141E38, ap attempt "to divide
by zero results in the /8 or DIVISION BY ZERO error message.

For a discussion of strings, string variables and
string Ooperations, see section 4,

2-2. Branching, Loops and Subroutines.
£Lo<. == ZuDroutines.

2. Branching. 1p addition to the Sequential execution
of program lines, BASIC provides for changing the order of
execution. This Provision is called branching ang is the
basis of Programmed decision making and loops. The

1) GOT0 is an unconditional branch, Its form is ag
follows:

GOTO<mmmmm>

After the GoTo Statement is executed, execution continues at
line number mmmmm .

2) IF...THEN is a conditional branch. 1Its form is as
follows:)

IF<expression>THEN<mmmmm>

where the éxpression is a valiq arithmetic, relational or,
except in 4K, logical éxpression and mmmmm is a line number.
If the expression is evaluated as non-zero, BASIC continues
at line mmmmm. Otherwise, eéxecution resumes at the next
line after the IF...THEN statement,

An alternate form of the IF...THEN Statement is gag
follows:

IF<exp:ession>THEN<statement>

where the statement is any Altair BASIC Statement.
Examples:

19 IF a=1g THEN 49 If the eéxpression A=1g isg
true, Basic branches to line 4g. Ctherwise,
éxecution proceeds at the next line.

15 IF A<3+C OR x THEN 108 The eéxpression after IF jg
evaluated and if the value of the expression ig
non-zero, the statement branches to line 1g9.

Tanuary,

1977 Page

Otherwise, execution continues on the next line.

20

20 IF X THEN 25 If X is not zero, the statement

branches to line 25.

38 IF X=Y THEN PRINT X If the expression X=Y is tru
(its value is non-zero), the PRINT statemen
executed. Otherwise, the PRINT statement i
executed. - In either case, execution continues |w
the line after the IF...THEN statement.

35 IF X=Y¥+3 GOTO 39 Equivalent to the corresponding
IF...THEN statement, except that GOTO mus
followed by a 1line number and not by anat
statement.

Extended and Disk versions of Altair BASIC provid
expanded IF...THEN statement of the form

IF<expression>THENKYY>ELSE<ZZ>

where YY and 2Z are valid 1line numbers or Altair B
statements. Examples:

IF X>Y THEN PRINT "GREATER" ELSE PRINT "NOT GREATER

If the expression X>Y is true, the statement after THEN
executed; otherwise, the statement after ELSE is execute

IF X=2*Y THEN 5 ELSE PRINT "ERROR"
If the expression X=2*Y is true, BASIC branches to 1line

otherwise, the PRINT statement is executed. Extended
Disk Altair BASIC allow a comma before THEN.

e
is

not

ith

be.
her

an

SIC

5;:
and

IF statements may be nested in the Extended and Disk

versions. Nesting is 1limited only by the length of
line. Thus, for example:

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

and

IF X=Y THEN IFf Y>Z THEN PRINT "X>Z" ELSE PRINT "Y<=7
ELSE PRINT "X<>¥"

are legal statements. If a line does not contain the g
number of ELSE and THEN clauses, each ELSE is matched w
the closest unmatched THEN. Example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A<>C

will not print "A<>C" when A<>B.

the

ame
ith

January, 1977 Page 21

3) ON...GOTO (not in 4K) provides for another type of
conditional branch. Its form is as follows:

ON<expression>GOT0<list of line numbers>

After the value of the expression is truncated to an
integer, say I, the statement causes BASIC to branch to the
line whose number is Ith in the list. The statement may be
followed by as many line numbers as will fit on one line,
If I=0 or is greater than the number of lines in the list,
execution will continue at the next line after the ON...GOTO
Statement. I must not be less than Zero or greater than
255, or an FC or ILLEGAL FUNCTION CALL error will result.

b. Loops. It isg often desirable to perform the same
calculations on different data or repetitively on the same
data. Por thisg purpose, Altair BASIC provides the FOR and
NEXT statements, The form of the FOR statement is as
follows:

FOR<vatiable>=<x>T0<Y>[STEP <2>]

where X,Y and 2 are expressions. When the FOR statement is
encountered for the first time, the expressions are
evaluated. The variable is set to the value of X which is
called the initial value. BASIC then executes the
Statements which follow the FOR statement in the usual
manner. When a NEXT statement ig encountered, the step Z is

added to the variable which is then tested against the final
Q_/ value Y. If 2, the step, is positive ang the variable is
less than or equal to the final value, or if the step is
negative and the variable is Greater than or equal to the
final value, then BASIC branches back to the statement
immediately following the FOR statement. Otherwise,
e€xecution proceeds with the Statement following the NEXT.
If the step is not specified, it ig assumed to be].
Examples:

18 FOR 1=2 TO 11 The loop is eéxecuted 10 times with
the variable I taking on each in-
tegral value from 2 to 11.

20 FOR V=1 TO 9.3 This loop will execute 9 times un-
til V is greater than 9.3

36 FOR V=1g*N TO 3.4/2 STEPD SQR(R) The initial, final
and step eéXpressions need not be
integral, but they will be eval-
uated only once, before loop-
ing begins.

40 FOR V=9 T0 1 STEP -1 This loop will be executed 9

times.

FOR...NEXT loops may be nested. That is, BasIC will execute

January, 1977 Page 22

a FOR...NEXT 1loop within the context of another loop. An
example of two nested loops follows:

198 FOR I=1 TO 140
128 FOR J=1 TO I
130 PRINT A(I,J)
149 NEXT J

150 NEXT I

Line 130 will print 1 element of A for I=1, 2 for I=2 and so
on. If loops are nested, they must have different loop
variable names. The NEXT statement for the inside loop
variable (J in the example) must appear before that for the
outside variable (I). Any number of levels of nesting is
allowed up to the limit of available memory.

The NEXT statement is of the form:
NEXT([<variable>[,<variable>...]]

where each variable is the loop variable of a FOR loop & for
which the NEXT statement is the end point. 1In the 4K
version, the only form allowed is NEXT with one variable.
In all other versions, NEXT without a variable will match
the most recent FOR statement. In the case of nested loops
which have the same end point, a single NEXT statement| may
be used for all of them, except in 4K. The first variable
in the list must be that of the most recent loop, the second
of the next most recent, and so on. If BASIC encounters a
NEXT statement before its corresponding FOR statement! has
been executed, an NF or NEXT WITHOUT FOR error message' 1is
issued and execution is terminated.

C. Subroutines. If the same operation or series of
operations are to be performed in several places in a
program, storage space requirements and programming time
will be minimized by the use of subroutines. A subroutine
is a series of statements which are executed in the normal
fashion upon being branched to by a GOSUB statement.
Execution of the subroutine 1is terminated by the RETURN
statement which branches back to the statement after the
most recent GOSUB. The format of the GOSUB statement is as
follows:

GOSUB<Kline number>

where the line number is that of the first 1line of the
subroutine. A subroutine may be called from more than one
place in a program, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

January, 1977

form

size

when

2-3.

o list.
(?)

data

than
and

Except in the 4x version, subroutines may be b

to conditionally by use of the ON...GosuB statement

is as follows:

ON <expression> GOSUB <list of line numbers>

The execution is the same as ON...GOTO except that th
numbers are those of the first 1lines of subro
Execution continues at the next statement afte
ON...GosuB upon return from one of the Subroutines.

d. ouT oF MEMORY errors, While nesting in

subroutines andg branching ig not limited by BAsIc,

limitations restrict the size and complexi

Programs, The oM or ogr OF MEMORY error message is

2 Program requires more memory than ig available

Appendix ¢ for an explanation of the amount of
required to run programs.

-

Ingut(Outgut

2. INPUT. The INPUT statement causes data inpuy

requested from the terminal, The format of th
statement is ag follows:

INPUT<1list of variables>

The effect of the INpPUT statement is to cause the
typed on the terminal to be assigned to the variables

When an INpUT statement is eéxecuted, a questio
is printed on the terminal Signalling a requ

information. The operator types the required numb
strings (or, in 4K, expressions) Separated by commas and
types a carriage return. If the data entered is
(strings were entered when numbers were requested
BASIC prints 'REDO FROM START?' and waits for the

to be entered. 1f more data was requested by th

Statement than was typed, ?? is Printed on the termi
execution awaits the needed data. If more data wa

was requested, the warning 'EXTRA IGNORED' ig
execution Proceeds. After all the requested

input, execution continues normally at the st
following the INPUT. Except in 4k, an optional
String may be added to an INPUT Statement,

INPUT[“(prompt stting)";]<variable list>

Execution of the Statement causes the prompt String

Printed before the question mark., Then all ope
Proceed as above, The prompt string must be enclo
double quotation marks (") and must be separategd £

Page 23

ranched
+ whose

e line
utines,
r the

loops,
memory
ty of

. See
memory

t to be
e INPUT

values
in the
N mark
est for

invalig
r ate,)

e INPUT
nal and
s typed
pPrinted
data is
atement
prompt

to be
rations
sed in
rom the

fanuary, 1977 Page 24

variable list by a semicolon (;). Example:

108 INPUT "WHAT'S THE VALUE";X,Y causes the following
output:

WHAT'S THE VALUE?

The requested values of X and Y are typed after the ?
Except 1in 4K, a carriage return in response to an INPUT
statement will cause execution to continue with the values
of the variables in the variable list unchanged. 1In 4K, a
SN error results. ‘

b. PRINT. The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT

which prints a carriage return. The effect 1is to skip a
line. The more usual PRINT statement has the following
form: :

PRINT<list of expressions>

which causes the values of the expressions in the list to be
printed. String literals may be printed if they are
enclosed in double quotation marks ("). ‘

The position of printing is determined by the
punctuation used to separate the entries in the list.
Altair BASIC divides the printing 1line into zones of 14
spaces each. A comma causes printing of the value of the
next expression to begin at the beginning of the next| 14
column zone. A semicolon (;) causes the next printing to
begin immediately after the last value printed. If a cdmma
or semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line according
to the conditions above. Otherwise, a carriage return is
printed.

c. DATA, READ, RESTORE

1) the DATA statement. Numerical or string data needed
in a program may be written into the program statements
themselves, input from peripheral devices or read from DATA
statements. The format of the DATA statement is as follows:

DATA<list>

where the entries in the 1list are numerical or strﬁng
constants separated by commas. In 4K, expressions may also

January,

W

1977 Page 25

appear in the list. The effect of the statement is to store
the list of values in memory in coded form for access by the
READ statement. Examples:

19 pATA 1,2,-1E3,.04

20 DATA " LOO", MITS Leading and trailing spaces in
string values are suppressed unless the string is
enclosed by double guotation marks.

2) The READ statement, The data stored by DATA
statements 1is accessed by READ statements which have the
following form:

READ<Klist of variables>

where the entries in the list are variable names separated
by commas. The effect of the READ statement is to assign
the values in the DATA lists to the corresponding variables
in the READ statement list. This is done one by one from
left to right until the READ list is exhausted. If there
are more names in the READ list than values in the DATA
lists, an OD or OUT OF DATA error message 1s issued. If
there are more values stored in DATA statements than are
read by a READ statement, the next READ statement to be
executed will begin with the next unread DATA list entry. A
single READ statement may access more than one DATA
statement, and more than one READ statement may access the
data in a single DATA statement.

An SN or SYNTAX ERROR message can result from an
improperly formatted DATA list. In 4K Altair BASIC, such an
error message will refer to the READ statement which
attempted to access the incorrect data. In other versions,
the line number in the error message will refer to the
actual 1line of the DATA statement in which the error

occurred.

3) RESTORE statement. After the RESTORE statement is
executed, the next piece of data accessed by a READ
statement will be the first entry of the first DATA list in
the program. This allows re-~READing the data.

d. CSAVEing and CLOADing Arrays (38X cassette, Extended
and Disk versions only). Numeric arrays may be saved on
cassette or loaded from cassette using CSAVE* and CLOAD* The
formats of the statements are:

CSAVE*<array name>

and

January, 1977 Page 26

CLOAD*<array name) d

The array is written out in binary with four octal 214
header bytes to indicate the start of data. These bytes are
searched for when CLOADing the array. The number of bytes
written is four plus:

8*<number of elements> for a double precision array
4*<number of elements> for a single precision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript varying
most quickly, the next leftmost second, etc:

DIM A(10)
CSAVE*A

writes out A(4),A(l),...A(18)

DIM A(14,18)
CSAVE*A

writes out A(#,0), A(1,8)...A(16,0),A(14,1)...A(18,10)

Using this fact, it is possible to write out an array as a u
two dimensional array and read it back in as a single
dimensional array, etc. : .

NOTE

Writing out a double precision array and reading it
back in as a single precision or integer array is
not recommended. Useless values will undoubtedly be |

returned.

e. Miscellaneous Input/Qutput

1) WAIT (not in 4K). The status of input ports can be
monitored by the WAIT command which has the following
format:

WAIT<KI,Jd>[,<K>]
where I is the number of the port being monitored and J and

K are integer expressions. The port status is exclusive ORd
with K and the result is ANDed with J. Execution 1is

e

W

of fife. And we're the anes using home
computers, We're in a perfect position
to gather the basic data necded to
Jdevelop a set of scenarios of the
offects of home computers on our
cociety. Face it. We're right down in
the trenches, on the front lines of the
angoing technelogical revolation, The
average person in our society heard
about computers in the 50’s; saw
them wsed in the space flights of the
carly sixties; got handed scraps of
otrtput in the form of bank statements
in the middle sixtics; became an input
1o the data banks of the late sixties
and carly seventies; and now in the

late seventies, a real live compater
comes in the door, What's going to
happen?
Write
Lookahead
1218 Broadway
Santa Cruz CA 95062

! Jumes Martin and Adrian R_D. Norman, The
Computarized Society, Prentice-Halt, 1970,

? Domatd N. Michasl, Cyhsrnation: The Silent
Conquest, Comer for the Study of Democratic
Institutions, 1962,

 Herbert A, Simon and Allen Newell, Huuristic
Probiem Solving: The Muxt Advance in O
Research”, Operations Aeseorch, Jan-Feh,
. 110,

WERE LIES THE

WYTH OF COMPUMERS
AS GIANT DRAWS

Forum

Dick Whipple — John Arnold
305 Clemson Drive
Tyler TX 75701

BASIC FORUM
(DATA TO & FROM CASSETTE)
fn this month’s BASIC FORUM, we
will discuss a question submitted by
George Haller of Naples, Florida. He is
interested in an explanation of a
comment he found in the Altair

BASIC Reference Manual* indicating
that BASIC program data can be saved
on cassctte tape for future use. So,
we're going 1o discuss how this is
done.

The software used to drive a UART
board ¢

sctte tape system is generally
in machine language to
achieve maximum data rate advantage.
It is possible (and perhaps a good
exercise) to write the cassetle routines
in BASIC itself. Since BASIC state-
ments take longer to execute, the
overall data rate will be lower.

In order 1o read and write the data
values to the system 1/O ports, the
BASIC interpreter used must have
certain specialized statements. Altair
$K BASIC for instance, has the INP,
OUT, and WAIT statements that can
“See Appendix | of the 8K Altair Basic
rence Manual.

be used for this purpase. Since somne
readers may not be famitiar with these
statements, we will present a brief
description of cach in Program A.

Consider first the problem of
writing data to a cassette tape. Letus
first assume that the cassette interface
has two ports: one a status poit, the
other a data report. Further, assume
bit 7 on the status port is connected
to the Transmitter Buffer Empty
{TBE) ftag of the UART. Thus, when-
ever the UART is ready to receive a
new data byte for transmission, bit 7
will go to logic 1. While the UART is
transmitting a data byte, bit 7 will be
low. When writing @ BASIC program
to cutput data to the cassctte inter-
face, some means must be provided to
hold-up execution while the TBE
status flag is low. This is easily done
with th: WAIT command. Suppose
the status port is 6 and the data port
is 7. The BASIC progiam (Prog. B)
will output a data byte to the cassette
again and again.

The program, when executed, pro-
ceeds in this manner. Statement 5 sets
the ASCII value for the letter A into

INP(L)

255 decimal.

decimal.

SATT 1,J,K:

A function that reads the data byte
available at the input port specified
by the variable (or constant) I. The
input data value will range from 0 to
(255 is the maximum decimal
value of an 8 bit binary number)

00T 1,J: The data byte J is output to port I. Both
1 and J must have values between 0 and 255

This statement inputs data from port I,
exclusive-ORs it with K,
the result. The statement following the
WAIT is delayed until the logical operations|
produce a nonzero value. K is optional and
when not present is assumed to be zero. The
AND operation is used to select the bit or
bits whose value is to be monitored. The
exclusive-OR is used to selectively invert
- bits within the inputted word. I,J, and K

must have values between 0 and 255 .decimal

Program A

then ANDs J with

the variable named X. At statement
10, the data at port 6 is inputted and
exclusive-ORed with 00000000 binary
(the default option; i.c., 0 assumcd
since the third WAIT argument not
specified). Any bit exclusive-ORed
with 0 remains unchanged while a bit
exclusive-ORed with 1 is comple-
mented. In the case above, all bit
positions remain the same. The data
byte is then ANUed with 128 decimal
which is 10000000 binary. If bit 7is a
logic one (indicating that the UART is
ready to reccive a new value) the
result of the AND operation will be
nonzero and execution will proceed to
line 20 of the program. Otherwise the
status port will be read again and
again until bit 7 (TBE) goesto 1.

In some cassctte interfaces, TBE is
inverted before being presented to the
status port. In such a system, bit 7
will go to logic zero when the buffer is
empty. For the WAIT to work cor-
rectly in this case, it is necessary to
complement bit 7 before the AND
operation. This is accomplished by
changing line 10 as follows:

10 WATT 6,128,128

The difference being that the status
byte is exclusive-ORed with
10000000 binary (128 decimal) which
has the effect of complementing bit 7.
This extra step negates the inversion
of TBE within the interface.

Continuing with the program at line

20 -- the data stored in variable A (65
decimal or 01000001 binary) is
outputted through data port 7. In line
30, prograny execution is returned to
fine 10 where it again holds up if
necessary until the previous data byte
has been transmitted.

Data stored in an array can be
outputted a byte at a time using the
routine in Program C.

Statement 130 is used to place an
end-of-data character on the tape.
This can be used by the read program
to detect the end of a block of data.
The choice of 255 decimal (11111171
binary) is purely arbitrary. Any non-
conflicting value can be used.

Now that we have made a cassette
tape with BASIC, let’s write a .pro-
gram to read the data back, When
reading data from a cassctte with a
UART buased system, there is another
status flag called the Read Data Avails
able (RDA) that goes high to indicate
when a data byte bas been received by
the UART. It is necessary to monitor
this bit and wait for it to go to logic 1
before actually inputting from the
data port. Here again we find ready
use for the WAIT command.

Consider the following ‘program
fragment: R

95
100 WAIT 6.1
105 LET R=INP(7)
10

5 LET X=65:REM ASCLI FOR "A"

10 WAIT 6,128
20 our 7,X
30 GOTO 10

Program B

95

105 FOR I=1 TO 10
110 WAIT 6,128
115 OUT 7,B(I1)
120 NEXT I

125 WAIT 6,128
130 OUT 7,255

135 N

100 REM B 15 ARRAY CONTAINING DATA

Program C

In line 100, the status porl is read
and, s before, exclusive-ORed with
000LO00D binary resulting in no
change to wty bits, The status byte is
then ANDed with 0000G001 where it
i assumied that RDA is avaitable on
bit 0. Su long as this result is O
(indicating no data is available from
the UART) the program remains at
line 100 reading the status port, When
bit 0 goes to 1, the program will
procecd to line 105 where the data
port (7) is read and its value placed in
variable X This comnpletes the reading
of usingle byte. As before, if RDA is
electronically inverted in the cassette
interface, line 100 would be modified

as fultows:
100 WATT 6,1,1.

10 several values are to be read from
the tepe, a loop can be set up 1o place
the v faeinoan aray. Progiam D

A problem can arise duc 10 the
difference in execution time of the
BASIC statements in the 1ead and
write programs. The actual diata rate
for a single byte is deternined by the
UART clock on the cassette interface.
The Lime between bytes, however, is a
function of the exceution delay in the
BASIC cassette write program. h is
important to be sure that the delay in
the write routine is cqual to or slightly
greater than the read routine delay.
Otherwise, data may be fost while
reading the tape. It may be necessary
to add dummy or do-nothing state-
ments 10 the write routine. Such a
defay can be realized by adding adine
to the write program such as

TO NNEXT T

FOR J:=:1
where Nis chosen to give the neces-
sary delay.

A possible application for the tech-

10 JHPUT A,B

20 FOR I:A TO B
30 WATT 6,128

40 OUT 7, PEEK(L)
50 NEXT I

The beginning and ending address of
the block of memary to be dumped
are defined by variables A and B.

The memory image can be read
back into memory using the Altair §K
BASIC POKE command. An exaniple
program appears below:

10 INPUT A
20 FOR 1=A TO B
30 WALT 6, |
40 POKE 1,1NP(7)
50 NEXT
it must be stiessed that afl of the

programs which we have discussed so
far will read or write only the con-
tents of those variables which repre-

sent positive integer values between 0

and 25,

floating poir

what
treated
would

ment with 1

try sor
in

the stg
tape,

Please rem

is for t

“Hanguage programming. Send us your
input 5o tha

others,

this
floating-poin
numbers 1o s

mal. Reading and wiiting
L oor string data is some-
be

S dec

more | complex and - will
in tht next BASIC Forum. We
encograge readers to experi-

wir BASIC systems and
the techniques discussed
le. A hint on saving
numbers: convert the
ring data and then write
wacters one by one to

ne of
arti

ing ch,

mber the BASIC Forum
he exchange of ideas in BASIC
it can be shared with

Addreps correspondence to: ;

BASIC Forum
305 Clemson Drive
Tyler 1X 75703.

iftusts tes this technigue. niques described above appears below. 200 . . .
As each byte is read and stored o The progiamn can be used to dump 205 LET I=1 i
check is made for the end-of-data conseeutive memory locations 1o a 210 WALT ©,1 . .
character in this case 255 decimal. cassette tape. Use is made of the “’}J ”‘;T I’(I)?‘!-E” <./>‘ | " i
When it s encountered, program Altair 8K BASIC PEEK function Zﬁ" IF B(1)<255 THEN I=I+1:GOTO 210 i
execution drops to line 225, Other- which permils examination of the S : 3
wise, dnl'.x continues 1o be read from data .hyn- stored in specified memory Program 1 ; s
the 1ape intoray Bl locations. ; i
e e ; i
‘1 _IL . A i .
i l e ‘a é‘ .
| e . g
e M S]
to the Editor
¥ tion that will help me put my com- commission the right kind of stories in any literature tcould lay by hands
i Can iKilehgerd Overcome? puter o work, I've spent 2500 thus — and apply your mature editorial skills on, and once | had gotten the infor-
H far on a beautiful and spectacular toy. to make them work. | think the mation from dther (more advanced)
I runs fine. But Pve had my fill custom of printing entire catalogs in - hobbyists, it turned out that the port
I the new magacine s going to already of biorhythm and Hurkle. the advertising pages is a brilliant idea, assignments nepded can be achivved
haeve all the consputer artiches and ads Now I want Hoppy dise, 122K BASIC, 1 hope you can, as you intimate you on the IO bogrd only by some very
then Pl have no use for the reninder 1O Selectric (as a sample of hardware — can, print appeaisals of cquipment pecutiar and arbitrary rewiring.
of my subscription to 73, which is that interests me). But more to the that are sound, true, and related to George Morrpw mukes a fine “intel-
2ome saven or eighl months worth, point, | want 10 learn how others use the interests ot the comswmer tather digent” cassettd interface. With his i

Sorey L didn’t keep the mailing libel
from the last issue, but can the busi-
ness office change the records and
credit those months to Kifobawud?

On the face of things you're foolish

start another hobby-computer
cazine, as vou well know. | oam
artdindy past the stage where | sub-
e sutomatically 1o every maga-
sine and nevisletter | hear about. I will
bie dropping subiscriptions
soun. The existing magazines can’t
find enough relevant and well-wiitien
materiad 1o fill their pages, beg pit
otisly for articles in little ads. | ce
tainly have no more need Tor how-l-
built-my-Altair articles, or how-to-
or biniry-A-to-Z. PPC's baby-
o drives me up the wall. Bypee,
Interface, and Microtrek are all
becoming uncritical vassels of their
advertisers, Only Dr. Dobl’s grows in
interest month-by-month,

i your faotishies, in favt, tha
appeals to me sarmise that you have
recognized a patential readership that
is ooty served by the existing media
and that said readership inciudes me.
Hothat s so, then you'll wint 1o know
whet I owant. Firstly, 1 want infornia-

several

14

theii machines 1o keep smatl business
ledgers, do income taxes, file art-histo-
ry slides, sinndate a magnetic card
Sclectric with advanced text editing
features. In short, Fwant middle-evel
information in jargon-free language.
Sccondiy, | want 1o Keep tp with new
products. U’ not actually i the
market for a new microprocessor (1
love the 80S0A, will not master its
mysterivs for years 1o come) but |
don’t mind knowing about the 7-80,
Thirdly, | want general news from the
larger world of computeis, couched in
similaly jargon-free fnguage. I
Scientific American were 1o fission, it
might produce a computer magazine
that would serve my third want

I see many signs that your sceming-
foolishness is actually reckless self-
assurance, hased on an accurate ap-
pradsitl of the situation and the posses-
sion of unusual moxic. Editorial pages
are enactly gightin sy le and ontent
Wayne Green's background makes him
sympathetic to noninitiate. Both of
you seem 1o know an awful lot of
people in the fidd, thioogh traveling
to the factories and going 1o the
conventions and all. Maybe you can

than the interests of the manufac-
e,

Let me give you a few examples of
the Kind of “middle-level informa-
tion” that 1 wished for so ardently
while | was asseinbling my system.
Tmsai assembly
instiuction. | forgive the young com-
pany for the confusing abundance of
pages correcting errata because it all
came out line. Bt when T was ready
1o test the front panel with the little
program | failed repeatedly to get it to
work. | ohad bonowed a 1-K RAM
board with a starting address at 4-K.

How could Imsai know 'd pull a
trick like that? They ceuldn’t, but in
fact nobody told me how the JMP
instruction ¢an be changed for differ-
ent or exactly how the
Yhigh” and “low” order addresses
work, not so 'd understand. 1t ook a
week lor me to figure it out,

Proceson Tedinolugy nakes anice
video module and & nice small BASIC
with a buili-in video driver; they alsa
mahe a nice /O board. But, oddly,
the BASIC deinands that data be
input at port 1 and status wt port 0,
“Data”

provided adequate

addresses,

and “status” are not defined

good design an
board went together without « hiteh;

he abso

listing of the p
the EPROM, W

wds to

even a sample,
load the CPU ¢
EPROM. | wror
out such a pro
missing.

That

1 had to, and ev

fully. |
of equi
my poi

was i certain middic-level of instiue-
tion that was totlly missing. H

| thi

there are hardw.

softwar
women,

1wo speciatizatiops theie is a great and

deep
The
divided
Applica

the two, The Latker is the more exds

perating
bery ¢

instruction

av instractions my

ly provided o detailed
Fogram that resides in
at he neglected to do
a user's program, not
Yot a hint as to how to
gisters and CALL the 2
hirn, and he sketched H
ram with a vital step '

generou

provide

now. ! earned what
bry thing works beauti-
y in that every piece
as well designed. But
i ; case, there

's all vvel

was Juc
ipment v
nt is that,

nk 1 knom why. It is because
e men and there are
ome of the men are .
), and between the .

e men
, of cour

nuticotcation,
manuals are always 5
into two{parts: Assembly and
Th abyss

ihyss of

tinns, lics between

some sort of snob-
g software

5, becausg

Nints am types;

January, 1977 Page 27
d suspended until a non-zero value results. J picks the bits
L of port I to be tested and execution is suspended until

those bits differ from the corresponding bits of K.
Execution resumes at the next statement after the WAIT. If
K is omitted, it is assumed to be zero. I, J and K must be
in the range @ to 255. Examples:

WAIT 24,6 Execution stops until either bit 1 or bit
2 of port 28 are equal to 1. (Bit @ is
least significant bit, 7 is the most sig-
nificant.) Execution resumes at the next
statement.

WAIT 14,255,7 Execution stops until any of the most significant
S bits of port 10 are one or any of the least
significant 3 bits are zero. Execution
resumes at the next statement.

2) POKE, PEEX (not in 4K). Data may be entered into
memory in binary form with the POKE statement whose format
is as follows:

POKE <I,J>

. where I and J are integer expressions. POKE stores the byte
Q ; J into the location specified by the value of I. 1In 8K, I

- must be less than 32768. 1In Extended and Disk versions, I
may be in the range # to 65536. J must be in the range 4 to
255. In 8K, data may be POKEd into memory above location
32768 by making I a negative number. In that case, I is
computed by subtracting 65536 from the desired address. To
PORE data into location 450006, for example, I is
45000-65536=~20536. Care must be taken not to POKE data
into the storage area occupied by Altair BASIC or the system
may be POKEd to death, and BASIC will have to be loaded

again.

The complementary function to POKE is PEEK. The format
for a PEEK call is as follows:

PEEK(KI>)

where I is an integer expression specifying the address from
which a byte is read. I is chosen in the same way as in the
POKE statement. The value returned is an integer between @
and 255. A major use of PEEX and POKE is to pass arguments
and results to and from machine language subroutines.

3)ouT, INP (not in 4K). The format of the OUT
statement is as follows:

fanuary, 1977 Page 28

ouT <I,3>

where I and J are integer expressions. OUT sends the byte
signified by J to output port I. I and J must be in the
range @ to 255.

The INP function is called as follows:
INP(KI>)

INP reads a byte from port I where I is an intkger
expression in the range # to 255. Example:

2¢ IF INP(J)=16 THEN PRINT "ON"

3. FUNCTIONS !
|
Altair BASIC allows functions to be referencedi in
mathematical function notation. The format of a function
call is as follows:

<name> (<argument> [,<argument>...])

where the name is that of a previously defined function |and
the arguments are one or more expressions, separated by
commas. Only one argument is allowed in 4K and | 8K.
Function calls may be components of expressions, so
statements like

18 LET T=(F*SIN(T))/P and
20 C=SQR(A"2+B"2+2*A*B*COS(T))

are legal.

3-1. Intrinsic Functions

Altair BASIC provides several frequently used functions
which may be called from any program without further
definition. A procedure is provided, however, whereby
unneeded functions may be deleted to save memory space. [See
Appendix B, PFor a list of intrinsic functions, see sectlion
6=3.

3-2. User-bDefined Functions (not in 4K).

January,

1977 Page 29

a. The DEF statement. The programmer may define
functions which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the
DEF sgtatement is as follows:

DEF<function name> (<variable list>)=<expression>

where the function name must be FN followed by a legal
variable name and the entries in the variable list are
'dummy*' variable names. The dummy variables represent the
argument variables or values in the function call. 1In 8K
Altair BASIC, only one argument is allowed for a
user~defined function, but in the Extended and Disk
versions, any number of arguments is allowed. Any
expression may appear on the right side of the equation, but
it must be limited to one line. User-defined functions may
be of any type in Extended and Disk versions, but
user-defined string functions are not allowed in 8K If a
type 1is specified for the function, the value of the
expression is forced to that type before it is returned to
the calling statement. Examples:

10 DEF FNAVE(V,W)=(V+W)/2

11 DEF FNCON$ (V$,WS)=RIGHTS (V$+W$,5) Returns the right
most 5 characters of the concat-
enation of V$ and WS.

12 DEF FNRAD(DEG)=3.14159/180*DEG When called with the
measure of an angle in degrees,
returns the radian equivalent.

A function may be redefined by executing another DEP
statement with the same name. A DEF statement must be
executed before the function it defines may be called.

b. USR. The USR function allows calls to assembly
language subroutines. See appendix E.

3-3. Errors.

An FC or ILLEGAL FUNCTION CALL error results when an
improper call is made to a function. Some places this might
occur are the following:

1. a negative array subscript. LET A(~1)=8, for example.
2. an array subscript that is too large (>32767)

3. negative or zero argument for LOG

fanuary, 1977 Page 30

4. Negative argument for SQR
5. A"B with A negative and B not an integer

6. a call to USR with no address patched for the machine
language subroutine.

7. improper arguments to MID$, LEFT$,RIGHT$, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, INSTR, STRINGS, SPACES$ or
ON...GOTO.

b. An attempt to call a user-defined function which
has not previously appeared in a DEF statement will cause a
UF or UNDEFINED USER FUNCTION error.

c. A TM or TYPE MISMATCH error will occur if a
function which expects a string argument is given a numeric
value or vice-versa.

4. STRINGS

In all Altair BASIC versions except 4K, expressions may
either have numeric value or may be strings of characters.
Altair BASIC provides a complete complement of statements
and functions for manipulating string data. Many of the
statements have already been discussed so only their
particular application to strings will be treated in this
section.

4-1. String Data.

A string is a list of alphanumeric characters which may
be from 8 to 255 characters in length. Strings may be
stated explicitly as constants or referred to symbolically
by wvariables. String constants are delimited by quotation
marks at the beginning and end. A string variable name ends
with a dollar sign ($). Examples:

A$="ABCD" Sets the variable A$ to the four character
string "ABCD"

B9$="14A/56" Sets the variable B9S to the six character
string “14A/56"

FOOFOOS$="E$" Sets the variable FOOFO0$ to the two charac-
ter string "ES"

Strings input to an INPUT statement need not be surrounded

Ja

(

wary,

1977 Page 31

by quotation marks.

String arrays may be dimensioned exactly as any other
kind of array by use of the DIM statement. Each element of
a string array is a string which may be up to 255 characters
long. The ' total number of string characters in use at any
point in the execution of a program must not exceed the
total allocation of string space or an 0S or OUT OF STRING
SPACE error will result, String space is allocated by the
CLEAR command which is explained in section 6-2.

4-2. String operations.

a. Comparison Operators. The comparison operators for
strings are the same as those for numbers:

= equal

<> not equal

< less than

> greater than

={,<= less than or equal to
=>,>= greater than or equal to

Comparison is made character by character on the basis of
ASCII codes until a difference is found. If, while
comparison ls proceeding, the end of one string is reached,
the shorter string is considered to be smaller. ASCII codes
may be found in Appendix B. Examples: .

A<2 ASCII A is 065, 2 is 9§94

1a ASCII 1 is 949

" A">"A"™ Leading and trailing blanks are significant
in string literals.

b. String Expressions. String expressions are
composed of string literals, string variables and string
function calls connected by the + or concatenation operator.
The effect of the catenation operator is to add the string
on the right side of the operator to the end of the string
on the left. If the result of concatenation is a string
more than 255 characters long, an LS or STRING TOO LONG
error message will be issued and execution will be
terminated.

c¢. Input/Output. The same statements used for input
and output of normal numeric data may be used for string
data, as well.

Tanuary, 1977 " . Page 32

1) INPUT, PRINT. The INPUT and PRINT statements read
and write strings on the terminal. Strings need not be
enclosed in quotation marks, but if they are not, leading
blanks will be ignored and the string will be terminated
when the first comma or colon is encountered. Examples:

18 INPUT 200$,F00$ Reads two strings

29 INPUT X$ Reads one string and assigns
it to the variable XS.

30 PRINT X$,"HI, THERE" Prints two strings, including
all spaces and punctuation
in the second.

2) DATA, READ. DATA and READ statements for string

data are the same as for numeric data. For format
conventions, see the explanation of INPUT and PRINT above.

4-3. String Functions.

The format for intrinsic string function calls is the
same as that for numeric functions. For the list of string
functions, see section 6-3. Special wuser~-defined string
functions are allowed in Extended and Disk versions and may
be defined by the use of the DEF statement (see section
3-2). String function names must end with a dollar sign.

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC provide
several statements, operators, functions and commands which
are not available either in the 4K or 8K versions. For
clarity, these features are grouped together in this
section. Some modifications to existing 4K and 8K features,
such as the IF...THEN...ELSE statement and number typing
facilities, have been discussed in conjunction with the
other versions. Check the index for references to those

features.

5-1. Extended Statements

a. ERASE. The ERASE statement eliminates arrays from
a program and allows their space in memory to be used for
other purposes. The format of the ERASE statement is as

follows:

-anjuary, 1977

an
AN

y
W
[te]
1]
(")
w

ERASE<array variable list>

where the entries in the list are valid array variable names
separated by commas. ERASE will only operate on arrays and
not array elements. If a name appears in the list which is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement may be
dimensioned again, but the old values are lost. Example:

18 DIM A(5,5) etc.

.

6@ ERASE A
78 DIM A(140)

b. LINE INPUT. It is often desirable to input a whole
line to a string variable without use of quotation marks and
other delimiters. LINE INPUT provides this facility. The
format of the LINE INPUT statement is as follows:

The prompt string is a string literal that is printed on the
terminal before input is accepted. A gquestion mark is not
printed unless it is contained in the prompt string. All
input from the end of the prompt string to the carriage
return is assigned to the string variable. A LINE INPUT may
be escaped by typing Control/C. At that ©point, BASIC
returns to command level and prints OK. Execution may be
resumed at the LINE INPUT by typing CONT. LINE INPUT
destroys the input buffer, so the command may not be edited
by Control/A for re-execution.

c. SWAP. The SWAP statement allows the valuess of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>

The value of the second variable is assigned to the first
variable and vice-versa. Either or both of the variables
may be elements of arrays. If one or both of the variables
are non-array variables which have not had values assigned
to them, an ILLEGAL FUNCTION CALL error will result. Botn
variables must be of the same type or a TYPE MISMATCH error

will result. Example:

19 INPUT F$,LS
28 SWAP F$,LS
38 PRINT F$,LS
RUN

January, 1977 Page 33

ERASE<array variable list>

where the entries in the list are valid array variable [names
Q separated by commas. ERASE will only operate on arrays and
' not array elements., If a name appears in the list whigh is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement mdy be
dimensioned again, but the old values are lost. Example:

190 DIM A(5,5) etc.

60 ERASE A
70 DIM A(148) |

b. LINE INPUT. It is often desirable to input a whole
line to a string variable without use of guotation marks and
other delimiters. LINE INPUT provides this facility. ! The
format of the LINE INPUT statement is as follows:

LINE INPUT ["<prompt string>",];<string variable name>

The prompt string is a string literal that is printed on the
terminal before input is accepted. A gquestion mark is not
printed unless it is contained in the prompt string. All
input from the end of the prompt string to the carfriage
return is assigned to the string variable. A LINE INPUT may
(h/ be escaped by typing Control/C. At that point, BASIC

returns to command level and prints OK. Execution may be
resumed at the LINE INPUT by typing CONT. LINE INPUT
destroys the input buffer, so the command may not be edited
by Control/A for re-execution.

c. SWAP. The SWAP statement allows the values of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>

The value of the second variable is assigned to the Efirst
variable and vice-versa. Either or both of the variables
may be elements of arrays. If one or both of the variables
are non-array variables which have not had values assigned
to them, an ILLEGAL FUNCTION CALL error will result. ‘Both
variables must be of the same type or a TYPE MISMATCH error
will result., Example:

19 INPUT F$,L$
20 SWAP F$,LS

38 PRINT F$,L$
RUN

lanuary, 1977 Page 34

?FIRST,LAST Data input
LAST FIRST Computer prints

d. TRON, TROFF. As a debugging aid, two statements
are provided to trace the execution of program instructions.
When the trace flag is turned on by the TRON statement, the
number of each line 1in the program is printed as it is
executed. The numbers appear enclosed in square brackets
([1). The function is disabled by execution of the TROFF

statement. Example:

TRON executed in direct mode

OK printed by computer

10 PRINT 1:PRINT "A" typed by programmer

20 STOP

RUN

(18] 1 line numbers and output printed by
A computer.

[20]

BREAK IN 29
The NEW command will also turn off the trace flag.
e. IF...THEN...ELSE. See section 2-2.
f. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1

g. CONSOLE, WIDTH. CONSOLE allows the console
terminal to be switched from one I/0 port to another. The
format of the statement is:

CONSOLE <I/O port number>,<switch register setting>

The <I/0 port number> is the hardware port number of the low
order (status) port of the new I/O board. This wvalue must
be a numeric expression between 8 and 255 inclusive. If it
is not in this range, an ILLEGAL FUNCTION CALL error will
occur. The <switch register setting> is also a value
between 8 and 255 inclusive which specifies the type of 1I/0
port (SI0, PIO, 4PIO etc) being selected. Appropriate
values of the <switch register setting> may be found in
Appendix B in the table of sense switch settings or in the

table below.

January,
L

1977 Page 35

Table of values for <switch register setting>:

I/0 Board Sense Switch
Setting

2510 with 2 stop bits
2SI0 with 1 stop bit
SIO

ACR

4PIO

PIO

HSR

non-standard terminal
no terminal

LU bwDHFE®

—

WIDTH Statement

The WIDTH statement sets the width in characters of the
printing terminal 1line. The format of the WIDTH statement

is as follows:
WIDTH <integer expression>
Example:

WIDTH 84
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inclusive, or an ILLEGAL FUNCTION CALL error will occur.

h. Error Trapping. Extended and Disk Altair BASIC
make it possible for the user to write error detection and
handling routines which can attempt to recover from errors
or provide more complete explanation of the cause of errors
than the simple error messages. This facility has been
added to Altair BASIC through the use of the ON ERROR GOTO,
RESUME and ERROR statements and with the ERR and ERL
variables.

1) Enabling Error Trapping. The ON ERROR GOTO
statement specifies the line of the Altair BASIC program on
which the error handling subroutine starts. The format is
as follows:

ON ERROR GOTO <line number>

January, 1977 Page 36

The ON ERROR GOTO statement should be executed before the
user expects any errors to occur. Once an ON ERROR GOTO
statement has been executed, all errors detected will cause
BASIC to start execution of the specified error handling
routine. If the <line number> specified in the ON ERROR
GOTO statement does not exist, an UNDEFINED LINE error will
occur.,

Example:

18 ON ERROR GOTO 1498

2) Disabling the Error Routine. ON ERROR GOTO 4
disables trapping of errors so any subsequent error will
cause BASIC to print an error message and stop program
execution. If an ON ERROR GOTO @ statement appears in an
error trapping subroutine, it will cause BASIC to stop and
print the error message which caused the trap. It is
recommended that all error trapping subroutines execute an
ON ERROR GOTO @ subroutine if an error is encountered for
which they have no recovery action.

NOTE

If an error occurs during the execution of an error
trap routine, the system error message will be
printed and execution will be terminated. Error
trapping does not trap errors within the error trap
routine.

3) The ERR and ERL Variables. When the error handling
subroutine is entered, the variable ERR contains the error
code for the error. The error .codes and their meanings are
listed below. See section 6-5 for a detailed discussion of
each of the errors and error messages.

ode Error
NEXT WITHOUT FOR
SYNTAX ERROR
RETURN WITHOUT GOSUB
OUT OF DATA
ILLEGAL FUNCTION CALL
OVERFLOW
OoUT OF MEMORY
UNDEFINED LINE
SUBSCRIPT OUT OF RANGE

Voo WwNhHND

Disk

50
51
52
53
54
55
56
(57
58

- 59
60
61
62
63
64
65
66
67
68

where
occur
state
state
an er

In al

Page 37

REDIMENSIONED ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH

OUT OF STRING SPACE
STRING TOO LONG

STRING FORMULA TOO COMPLEX
CAN'T CONTINUE
UNDEFINED USER FUNCTION
NO RESUME

MISSING OPERAND

RESUME WITHOUT ERROR
UNPRINTABLE ERROR

LINE BUFFER OVERFLOW

BErrors

FIELD OVERFLOW
INTERNAL ERROR

BAD FILE NUMBER

FILE NOT FOUND

BAD FILE MODE

FILE ALREADY OPEN

DISK NOT MOUNTED

DISK I/0 ERROR

FILE ALREADY EXISTS
SET TO NON~-DISK STRING
DISK ALREADY MOUNTED
DISK FULL

INPUT PAST END

BAD RECORD NUMBER

BAD FILE NAME
MODE-MISMATCH

DIRECT STATEMENT IN FILE
TOO MANY FILES

QUT OF RANDOM BLOCKS

The ERL variable contains the line number of the line

the error was detected. For instance, if the error
ed in line 1008, ERL will be equal to 16d@. If the
ment which caused the error was a direct | mode
ment, ERL will be equal to 65535 decimal. To test if
ror occurred in a direct statement, use

IF 65535=ERL THEN ... j

1 other cases, use

IF ERL=<line number> THEN...

January, 1977 Page 38

If the line number is on the left of the equation, it cannot
be renumbered by RENUM (see section 1-la).

4) Disk Error Values -~ The ERR function. The ERR
function returns the parameters of a DISK I/0 ERROR. ERR(@)
returns the number of the disk, ERR(l) returns the track
number (#-76) and ERR(2) returns the sector number (8-31).
ERR(3) and ERR(4) contain the 1low and high order bytes,
respectively, of the cumulative error count since BASIC was
loaded.

NOTE

Neither ERL nor ERR may appear to the left of the =
sign in a LET or assignment statement.

5) The RESUME statement. The RESUME statement is used
to continue execution of the BASIC program after the error
recovery procedure has been performed. The user has three
options. The wuser may RESUME execution at the statement
that caused the error, at the statement after the one that
caused the error or at some other line. To RESUME execution

at the statement which caused the error, the user should
use:

RESUME
or
RESUME @

To RESUME execution at the statement immediately after the
one which caused the error, the user should use:

RESUME NEXT

To RESUME execution at a line dfferent than the one where
the error occurred, use:

RESUME <line number>
Where <line number> is not equal to zero.

6) Error Routine Example. The following example shows
how a simple error trapping subroutine operates.

January, 1977 Page 39

q 100 ON ERROR GOTO 5440

- 209 INPUT "WHAT ARE THE NUMBERS TO DIVIDE";X,Y
219 Z=X/Y

229 PRINT "QUOTIENT IS";Z

238 GOTO 209

500 IF ERR=11 AND ERL=21¢ THEN 520

519 ON ERROR GOTO @

520 PRINT "YOU CANT HAVE A DIVISOR OF ZERO!"
530 RESUME 269

7) The ERROR statement. 1In order to force branching to
an error trapping routine, an ERROR statement has been
provided. The primary use of the ERROR statement is to
allow the user to define his own error codes which can then
conveniently be handled by a centralized error trap routine
as described above. The format of the ERROR statement is:

ERROR <integer expression>

When defining error codes, values should be picked which are
greater than the ones used by Altair BASIC. Since more
error messages may be added to Altair BASIC, user-~defined
error codes should be assigned the highest possible numbers
to assure future compatibility. If the <numeric expression>
used in an ERROR statement is less than zero or greater than
(L/ 255 decimal, an ILLEGAL FUNCTION CALL error will occur. Of

course, the ERROR statement may also be used to force SYNTAX
or other standard Altair BASIC errors. Use of an ERROR
statement to force printout of an error message for which no
error text is defined will cause an UNPRINTABLE ERROR
message to be printed out.

5-2. Extended Operators.

Two operators are provided that are exclusive to the
Extended and Disk versions.

a. Integer Division. Integer division, denoted by \
(backslash), forces its arguments to integer form and
truncates the quotient to an integer. More precisely:

A\B= FIX(INT(A)/INT(B))
Its precedence is just after multiplication and floating

point divison. Integer division is approximately eight
times as fast as standard floating point division.

January, 1977 Page 48
b. Modulus Arithmetic - the MOD operator. A MOD B

gives the 'remainder' as A is divided by B. More precisely:
A MOD B=INT(A)-(INT(B)*(A\B))

If B=0, a DIVISION BY ZERO error occurs. The precedence of
MOD is just below that of integer division.

5-3, Extended Functions

a. Intrinsic Functions. Extended and Disk Altair
BASIC provide several intrinsic functions which are not
available in the other versions. For a 1list of these
functions and a description of their use, see section 6-3.

b. The DEFUSR statement. Up to ten assembly 1language
subroutines may be defined by means of the DEFUSR statement
whose form is as follows:

DEFUSR{<digit @ through 9>]=<integer expression>
Example:

DEFUSR1=5100080
DEFUSR2=31496 i
DEFUSR9=ADR }

The of the <integer expression> is the starting address, of
the USR routine specified. When the USR subroutiné is
entered, the A register contains the type of the argument
which was given to the USR function. This is also the
length of the descriptor for that argument type:

Value in A Meaning

2 Two byte signed two's complement integer.

3 String.

4 Single precision four byte floating point number.
8 Double precision floating point number.

When the USR subroutine is entered, the [H,L] register pair
contains a pointer to the floating point accumulator (FAC).
The ([H,L] registers contain the address of FAC-3.

If the value in the FAC is a single precision floating pdint
number, it is stored as follows:

FAC-3: Lowest 8 bits of mantissa.
FAC-2: Middle 8 bits of mantissa.
FAC-1: Highest 7 bits of mantissa with hidden (implied)

leading one. Bit 7 is the sign of the number (@
positive, 1 negative).

any

ary,

1977 Page 40

b. Modulus Arithmetic - the MOD operator. A MOD B
gives the 'remainder' as A is divided by B. More precisely:
A MOD B=INT(A)-(INT(B)* (A\B))

If B=@, a DIVISION BY ZERO error occurs. The precedence of
MOD is just below that of integer division.

5-3, Extended Functions

a. Intrinsic Functions. Extended and Disk Altair
BASIC provide several intrinsic functions which are not
available in the other versions. For a 1list of these
functions and a description of their use, see section 6-3.

b. The DEFUSR statement. Up to ten assembly language
subroutines may be defined by means of the DEFUSR statement

whose form is as follows:

DEFUSR([<digit @ through 9>]=<integer expression>
Example:

DEFUSR1=&1000060
DEFUSR2=313296
DEFUSR9=ADR

The &f the <integerrexpre551quﬂls the starting address of
The —USR routine specified. When the USR subroutine is
entered, the A register contains the type of the argument

which was given to the USR function. This is also' the
length of the descriptor for that argument type:

Value in A Meaning

2 Two byte signed two's complement integer.

3 String. .
4 Single precision four byte floating point number.
8 Double precision floating point number.

When the USR subroutine is entered, the [H,L] register pair
contains a pointer to the floating point accumulator (FAC).
The [H,L] reglsters contain the address of FAC-3.

If the value in the FAC is a single precision floating point
number, it is stored as follows:

FAC-3: Lowest 8 bits of mantissa.
FAC=-2: Middle 8 bits of mantissa.
FAC-1: - Highest 7 bits of mantissa with hidden (lﬂmlled)

leading one. Bit 7 is the sign of the number (0@
positive, 1 negative).

anuary, 1977 Page 41

o FAC: Exponent excess 200 octal. If the contents of FAC is 249,

& the exponent is 8. If contents of FAC is 0,the number is
zero.

If the argument is double precision floating point, the
FAC-7 to FAC-4 contain four more bytes of mantissa, low
order byte in FAC-7, etc. If the argument is an integer,
FAC-3 contains the 1low order byte and FAC-2 contains the
high order byte of the signed two's complement value. If
the argument is a string, [D,E] points to a string
descriptor of the argument, whose form is:

Byte Use .
2 Length of string ©-255 decimal. TH@
1-2 Sixteen bit address pointer to first byte of Séﬁf

N

strings text in memory (Caution - may point into
program text if argument is a string literal). R£AP ,wv
Normally, the. value returned by a USR function will be the
same type (integer, string, single or double precision
floating point) as the argument which was passed to it.
However, calling the MAKINT routine whose address is stored
in location 6 will return the integer in [H,L] as the value
of the function, forcing the value returned by the £function
to be integer. Execute the following sequence to return
from the function:

PUSH H ;SAVE VALUE TO BE RETURNED
. LHELD 6 ;GET ADDRESS OF MAKINT ROUTINE
i XTHL ;SAVE RETURN ON STACK &
. ;GET BACK [d,L]

RET ; RETURN

The argument of the function may be forced to an integer, no
matter what - its type by calling the FRCINT routine whose
address is located in location 4 to get the integer value of
the argument in [H,L]:

LXI q,SUB1 ;GET ADDRESS OF SUBROUTINE
. ;CONTINUATION °
PUSH H ;PLACE ON STACK
LHLD 4 ;GET ADDRESS OF FRCINT
PCHL ;CALL FRCINT

SUBl:

5-4. The EDIT Command.

AT

January, 1977 Page 41

FAC: Exponent excess 208 octal. If the contents of FAC is 200,
(J the exponent is @. 1If contents of FAC is #,the number is
zero.

If the argument is double precision £floating point, the
FAC-7 to FAC-4 contain four more bytes of mantissa, low
order byte in FAC-7, etc. If the argument is an integer,
FAC-3 contains the 1low order byte and FAC-2 contains the
high order byte of the signed two's complement value. If
the argument is a string, [D,E] points to a string
descriptor of the argument, whose form is:

Byte Use

2 Length of string 0-255 decimal.

1-2 Sixteen bit address pointer to first byte of
strings text in memory (Caution - may point into
program text if argument is a string literal).

Normally, the value returned by a USR function will be the
same type (integer, string, single or double precision
floating point) as the argument which was passed to it.
However, calling the MAKINT routine whose address is stored
in location 6 will return the integer in {H,L] as the value
of the function, forcing the value returned by the function
to be integer. Execute the following sequence to return
from the function:

PUSH H ;SAVE VALUE TO BE RETURNED
LHLD 6 ;GET ADDRESS OF MAKINT ROUTINE
XTHL ;SAVE RETURN ON STACK &

$GET BACK [H,L]
RET ;sRETURN

The argument of the function may be forced to an integer, no
matter what its type by calling the FRCINT routine whose
address is located in location 4 to get the integer value of
the argument in [H,L]:

LXI H,SUBL ;GET ADDRESS OF SUBROUTINE
;CONTINUATION
PUSH H ;PLACE ON STACK
LHLD 4 ;GET ADDRESS OF FRCINT
PCHL 3 CALL FRCINT
SUBl:

5-4. The EDIT Command.

January, 1977 Page 42

The EDIT command allows modifications and additions to
be made to existing program lines without having to retype
the entire line each time. Commands typed in the EDIT mode
are, as a rule, not echoed. That is, they usually do not
appear on the terminal screen or printout as they are typed.
Most commands may be preceded by an optional numeric
repetition factor which may be used to repeat the command a
number of times. This repetition factor should be in the
range 8 to 255 (4 is equivalent to 1). If the repetition
factor 1is omitted, it is assumed to be 1. In the following
examples, a lower case "n" before the command stands for the
repetition factor. 1In the following description of the EDIT
commands, the "cursor" refers to a pointer which is
positioned at a character in the line being edited.

To EDIT a line, type EDIT followed by the number of the
line and hit the carriage return. The line number of the
line being EDITed will be printed followed by a space. The
cursor will now be positioned to the left of the first
character in the line.

NOTE

The best way of getting the "feel" of the EDIT
command is to try EDITing a few lines yourself.

If a command not recognized as an EDIT command is entered,
the computer prints a bell (control/G) and the command is

ignored.

In the following examples, the lines labelled "computer
prints" show the appearance of the line after each command.

a. Moving the Cursor. Typing a space moves the cursor
to the right and causes the character passed over to be
printed. A number preceding the space (n<space>) will cause
the cursor to pass over and print out n characters. Typing
a Rubout causes the immediately previous character to be
printed effectively backspacing the cursor.

b. Inserting Characters

WARNINGS:

January, 1977 Pkge 43

Character insertion is stopped by typing Esca
; (or Altmode on some terminals). Control/C will n
&_/ interrupt the EDIT command while it is in Inse
mode, but will be inserted into the edited lin
Therefore, Control/C should not be used in the ED
command.

v

He

It is possible using EDIT to create a 1li
which, when 1listed with its line number, is long
than 72 characters. Punched paper tapes containi
such 1lines will not read properly. However, su
lines may be CSAVEd and CLOADed without error.

SJQ o

I Inserts new characters into the line being edited.
Each character typed after the I is inserted
the current cursor position and printed on t
terminal. Typing Escape (or Altmode on so
terminals) stops character insertion. If
attempt is made to insert a character that wi
make the 1line 1longer than 255 characters,
Control/G (bell) is sent to the terminal a
the character is not printed.

L =300

A backarrow (or Rubout) typed during an nsert
command (or-) will delete the character to the left
of the cursor. Characters up to the beginning of
L the 1line may be deleted in this manner, |and a

o’ backarrow will be echoed for each character
deleted. However, 1if there are no characters to
the left of the cursor, a bell is echoed instead of
a backarrow. If a carriage return is typed during
an insert command, it is as if an escape and| then
carriage return were typed. That 1is all
characters to the right of the cursor will be
printed and the EDITed 1line will replac the

original line.

X X is similar to I, except that all characters |to
the right cf the cursor are printed, and the dursor
moves to the end of the line. At this point, it
will automatically enter the insert mode (see I
command). X is most useful when new statements are
to be added to the end of an existing line. For
example:

User types EDIT 54 (carriage return)
Computer prints 59

User types X

Computer prints 580 X=X+1

User types :¥=Y+1 (CR)
Computer prints 59 X=X+1:Y=Y+1

January, 1977

Page 44

In the above example, the original line #58 was:

58 X=X+1
The new line #58 now reads:
58 X=X+l:¥Y=Y+1

H is the same as X, except that all characters
the right of the cursor are deleted (they will
be printed). The insert mode (see I command)
then automatically be entered. H is most usg
when the 1last statements on a 1line are t
replaced with new ones.

Deleting Characters

nD deletes n characters to the right of the
cursor. If n is ommitted, it defaults to 1.
there are 1less than n characters to the righ
the cursor, characters will be deleted only to
end of the line. The cursor is positioned to
right of the last character deleted.
characters deleted are enclosed in backslashes
For example:

User types 280 X=X+1:REM JUST INCREME
User types EDIT 20 (carriage return)
Computer prints 20

User types 6D (carriage return)

Computer prints 29 \X=X+1:\REM JUST INCRE

The new line #28 will no longer contain the
which are enclosed by the backslashes.

Searching.

The nSy command searches for the nth occurrence
character y in the line. N defaults to 1.
search skips over the first character to the r
of the cursor and begins with the second chara
to the right of the cursor. All characters pa
over during the search are printed. If
character 1is not found, the cursor will be at
end of the line. 1If it is found, the cursor
stop to the right of the character and all of
characters to its left will have been printed.
example

User types : 56 REM INC
User types : EDIT 54

to

not
will
eful
o be

If
t of
the
the
The
N\ .

NT X

MENT X

characters

of the
The
ight
cter
ssed
the
the
will
the
For

REMENT X

Qﬁ'

q

anuary,

1977

f.

Carriage

Page 45
Computer prints 50
User types : 2SE
Computer prints 58 REM INCR

nKy is equivalent to S except that all of the
characters passed over during the search

are

deleted. The deleted characters are enclosed in

backslashes. For example:

User types 19 TEST LINE
User types EDIT 16
Computer prints 13

User types KL
Computer prints 18 \TEST \

Text Replacement.

A character in a line may be changed by the use of
the command Cy which changes the character to the

right of the cursor to the character y.

Y is

printed on the terminal and the cursor is advanced
one position. nCy may be used to change n

characters in a line as they are typed in fro
terminal. (See example below.) If an atte

the
pt is

made to change a character which does not exist,

the change mode will be exited. Example:

User types 14 FOR I=1 TO 1449
User types EDIT 19

Computer prints 1a

User types 2581

Computer prints 14 FOR I=1 TO

User types 3C256

Computer prints

Ending and Restarting

12 FOR I=1 TO 2556

Return Terminates editing and prints the re-

mainder of the line. The edited line replaces
original line.

E is the same as a carriage return, except the

remainder of the line is not printed.

Q restores the original line and causes BASIC
return to command level. Changes do not
effect until an E or carriage return is typed|/
allows the wuser to restore the original
without any changes which may have been made.

L causes the remainder of the line to be print
then prints the line number and restarts aditi

th

to

take
s0 Q
line

ed, and
ng at

January, 1977 Page 46

the beginning of the line. The cursor will be
positioned to the left of the first character in
the 1line. L allows monitoring the effect of
changes on a line. Example:

User types 50 REM INCREMENT X
User types EDIT 54
Computer prints 54
User types 25M
Computer prints 58 REM INCRE
User types L
Computer prints 50 REM INCREMENT X
50
A A causes the original line to be restored

and editing to be restarted at the beginning of the
line. For example:

User types 19 TEST LINE

User types EDIT 14

Computer prints 19

User types 19D

Computer prints 19 \TEST LINE\

User types A

Computer prints 18 \TEST LINE\
19

In the above example, the user made a mistake when
he deleted TEST LINE. Suppose that he wants to
type "1D" instead of 18D. As a result of the A
command, the original line 18 is reentered and is
ready for further editing.

IMPORTANT
Whenever a SYNTAX ERROR is discovered during the execution
of a source program , BASIC will automatically begin EDITing
the line that caused the error as if an EDIT command had

been typed. Example:

18 APPLE

RUN

SYNTAX ERROR IN 18
10

Complete editing of a 1line causes the line edited to be
reinserted. Reinserting a line causes all variable values
to be deleted. To preserve those values for examination,
the EDIT command mode may be exited with the Q command after
the 1line number is printed. If this is done, BASIC will
return to command level and all variable values will be
preserved.

January, 1977 Rage 47
(. The features of the EDIT command may be used on the
g line currently being typed. To do this, type Control/A

instead of Carriage Return. The computer will respond with
a carriage return, an exclamation point (!) and a |space.
The cursor will be positioned at the first character of the
line. At this point, any of the EDIT subcommands lexcept
Control/A may be used to correct the line. Example:

User types 19 IF X GOTO #"/A
Computer prints !

User types S# 2C12
Computer prints ! 19 IF X GOTO 12

The current line number may be designated by a period
(.) in any command requiring a line number. Examples:

User types 19 FOR I= 1 TO 149
User types EDIT .
Computer prints 10

5=-5., PRINT USING statement.

(_/ The PRINT USING statement can be employed in situations

where a specific output format is desired. This situation
might be encountered in such applications as printing
payroll <checks or accounting reports. The general format
for the PRINT USING statement is as follows:

PRINT USING <string>;<value list>
The <string> may be a string variable , string expression or
a string constant which is a precise copy of the line|to be
printed. All of the characters in the string will be
printed Jjust as they appear, with the exception of the
formatting characters. The <value list> is a 1list of the
items to be printed. The string will be repeatedly sc¢anned
until: 1) the string ends and there are no values in the
value 1list or, 2) a field is scanned in the string, out the
value 1list 1is exhausted. The string is constructed
according to the following rules:

a. String Fields.

! specifies a single character string field.
(The string itself is specified in the value list.)
\n spaces\ Specifies a string field consisting of 2+n|char-
acters. Backslashes with no spaces between| them

January,

1977 Page 48

would indicate a field of 2 characters width, one
space between them would indicate a field 3
characters wide, etc.

In both cases above, if the string has more characters than
the field width, the extra characters will be ignored. 1If
the string has fewer characters than the field width, extra
spaces will be printed to fill out the entire field. Trying
to print a number in a string field will cause a TYPE
MISMATCH error to occur. Example:

10 A$="ABCDE" :B$="FGH"
20 PRINT USING "!";A$;BS$
3¢ PRINT USING "\ \";B$;A$

(the above would print out)

AF
FGH ABCD

Note that where the "!" was used only the first letter of
each string was printed. Where the backslashes enclosed two
spaces, four letters from each string were printed (an extra
space was printed for B$ which has only three characters).
The extra characters in the first case and for AS in the
second case were ignored.

b. Numeric Fields. With the PRINT USING statement,
numeric printouts may be altered to suit almost any
application. Strings for formatting numeric fields are
constructed from the following characters:

Numeric fields are specified by the # sign, each of
which will represent a digit position. These digit
positions are always filled. The numeric field
will be right justified; that is, if the number
printed is too small to £fill all of the digit
positions specified, leading spaces will be printed
as necessary to fill the entire field.

. The decimal point may be specified in any position
in the field. Rounding is performed as necessary.
If the field format specifies that a digit is to
precede the decimal point, the digit will always be
printed (as O if necessary).

The following program will help illustrate these rules:

rapuary, 1977

* %

$$

Page 49

19 INPUT AS,A

2@ PRINT USING AS$;A
38 GOTO 18

RUN

? #%,12

? 337,12
12

? #R$%%,12

? #.3#%7,.02
6.0620

The + sign may be used at either the beginning or

end of the numeric field. If the number is
positive, the + sign will be printed at the
specified end of the number. If- the number is

negative, a - sign will be printed at the specified
end of the number.

The - sign, when used to the right of the numer
field designation, will force the minus sign tp
printed to the right of the number 1if |it is
negative. If the number is positive, a space
orinted.

The ** placed at the beginning of a numeric field

designation will cause any unused spaces in| the
leading portion of the number printed out fo be
filled with asterisks. The ** also specjifies
positions for 2 more digits. (Termed "astprisk

£i11™)

When the $$ is used at the beginning of a numeric

field designation, a $ sign will be printed inA the
space immediately preceding the number printed.
Note that $$ also specifies positions for two |more
digits, but that the $ itself takes up one of these
spaces, Exponential format cannot be used |with
leading $ signs, nor—camTnegative—pembers—be—outpuk

[

anuary, 1977 Bage 49

(_/, 16 INPUT AS,A
28 PRINT USING A$:A
3@ GOTO 14
RUN
? ##,12
12

? ##%,12
12
? ##44%,12
12
23#.4%,12

? ###.,12
12.
? #.444,.02
0.020
2%4.4,2.36
2.4
?###1‘12
-12
?H.4%,-.12
-.12
?4##4,-12
-12

(+ The + sign may be used at either the beginnin
o end of the numeric field. If the numbe
positive, the + sign will be printed a
specified end of the number. If the numbe
negative, a - sign will be printed at the spe
end of the number.

r is
the
is
ified

QD r O

-y

- The - sign, when used to the right of the numeric
field designation, will force the minus sign to be
printed to the right of the number if |it is
negative. If the number is positive, a space 1is
printed.

** The ** placed at the beginning of a numeric field
designation will cause any unused spaces in the
leading portion of the number printed out|to be
filled with asterisks. The ** also specifies
positions for 2 more digits. (Termed "asterisk
£il11")

$$ When the $$ is used at the beginning of a numeric
field designation, a $ sign will be printed in the
space immediately preceding the number printed.
Note that $$ also specifies positions for two | more
digits, but that the § itself takes up one of |these

! spaces. Exponential format cannot be used| with

(w/ leading $ signs, nor can negative numbers be qutput

January, 1977

**S

Anan

Page 58

unless the sign is forced to be trailing.

The **$ used at the beginning of a numeric field
designation causes both of the above (** and $$) to
be performed on the number being printed out. All
of the previous conditions apply, except that *=*§
allows for 3 additional digit positions, one of
which is the §$ sign.

A comma appearing to the left of the decimal point

in a numeric field, designation will cause a comma
to be printed to the left of every third digit to
the left of the decimal point in the number being
printed. The comma also specifies another digit
position. A comma to the right of the decimal
point in a numeric field designation is considered
a part of the string itself and is treated as a
printing character.

(‘A ‘Aon some terminals) Exponential Format.

If exponential format is desired in the printout,
the numeric field designation should be followed by
“""% (allows space for E+XX). Any decimal point
arrangement is allowed. The significant digits are
left Jjustified and the exponent is adjusted.
Unless a leading + or a trailing + or - is used,
one position to the left of the decimal point will
be used to print a space or minus sign. Examples: -

PRINT USING " ([#%#"""*]"; 13,17,-8

[1E+01][2E+81] [~8E+04]

OK

PRINT USING " [.44##44°"""~]; 12345,-123456
[.123450E+85) [.123456E+36~]

OK

PRINT USING " [+,##""""]"; 123,-126
(+.12E+83] [-.13E+83]

OKR

If the number to be printed out is larger than the

specified numeric field, a % character will be
printed followed by the number itself in standard
Altair BASIC format. (The user will see the entire
number.) If rounding a number causes it to exceed
the specified field, the % character will be
printed followed by the rounded number. 1If, for

example, A=,999, then
PRINT USING ".#%",A

will print

fanuary,

(./

1977

**s

AAAA

snlaEssthe—sign—is—forced=to~be—tralling.

The **$ used at the beginning of a numeric field

Page 50

designation causes both of the above (** and §$§) to

be performed on the number being printed out.
of the previous conditions apply, except that

All
**g

allows for 3° additional digit positions, one of

which is the § sign.

A comma appearing to the left of the decimal ppint

in a numeric field, designation will cause a (omma
to be printed to the left of every third diglit to
the left of the decimal point in the number being
printed. The comma also specifies another digit
position. A comma to the right of the decimal
point in a numeric field designation is considered
a part of the string itself and 1is treated jas a

printing character.

(“ | lon some terminals) Exponential Format.

If exponential format is desired in the printout,
the numeric field designation should be followed by

Anaan

(allows space for E+XX). . Any decimal point

arrangement is allowed. The significant digits are
left justified and the exponent is adjusted.
Unless a leading + or a trailing + or - is used,

one position to the left of the decimal point

will

be used to print a space or minus sign. Examples:

PRINT USING "[##"""7]"; 13,17,-8
[1E+91][2E+91] [~-8E+08]

OK - :

PRINT USING " [.#4%#3#4"7""~]; 12345,-123436
[.123450E+05][.123456E+36-]

OR ‘
PRINT USING "[+.2%°777]"; 123,-125
[+.12E+83] [-.13E+83]

OK

If the number to be printed out is larger than
specified numeric field, a % character will
printed followed by the number itself in stan
Altair BASIC format. (The user will see the ep
number.) If rounding a number causes it to ex
the specified field, the % <character will
printed followed by the rounded number. If,

example, A=.999, then
PRINT USING ".:%3",A

will print

the
be
dard
tire
ceed
be
for

January,

o

1977 P

$1.00.

If the number of digits specified exceeds 2
ILLEGAL FUNCTION CALL error will occur.
illustrate

The following program will help

preceding rules.

Program: 14 INPUT A$,A

20 PRINT USING AS;A

3@ GOTO 19

RUN
The computer will start by typing a ?. The numerig
designator and value list are entered and the outp

displayed as follows:

? +4,9
+9

?2 +%,10
§+10

? ##7‘2
-2

? +#,-2

=2 .

Cr¥%,.02
.020
? w#44.%,100
100.9
? ##+,2

2+

? THIS IS A NUMBER #%#,2
THIS IS A NUMBER 2

? BEFORE ## AFTER,12
SEFORE 12 AFTER

? #3#%,44444

544444

? **i4,1

k%]

? **id,12

*k]2

? **i3,123

*123

? **33,1234

1234

? **34,12345

$12345

? **’l

*1

? **,22

? 3
$-2
? +
+

age Sl

4, an

the

field
ut is

January, 1977

5-6.

22

? ** 44,12
12.08

? **agdE,l

*dkIh]
(note: not floating §)

(note: floating §)

? #,6.9
7

? $#.4,6.99
7.9

? ##-,2
2

? ##‘1'2
2~

2 #3+,2
2+

? ##+,-2

2=

? $37°°7,2
2E+00

? #4°°7°7,12
1E+01

? ###HEH.ER47777,2.45678
2456.780E-903

? #.#%87°77,123
#.123E+83

? #.4%°777,-123

-.12E+83

? "#HE44, 844.4",1234567.89
1,234,570.0

Disk file operations.

Page 52

? S#44.44,12.34
$ 12.34 |

? $S#d##.44,12.56
$12.56

? $9.#4,1.23
$1.23

? $S.44,12.34
$512.34
? S$###,0.23

$0

? SSEbdH. 44,0
$6.060

? **gEdd.44,1.23

xk$], 23

? **§ . 44,1.23

*$1.23

? **S##4,1

*kkxG]

Typing Control/C will stop the program.

January, 1977 age 53

) As many as sixteen floppy disks may be connected| to a
() single ALTAIR disk controller. These disks have been
il assigned the physical disk numbers @ through 15. Users with
one drive should address the drive at zero, and users with
two drives should address them at zero and one, etc.

In the following descriptions, <disk number> |is an
integer expression whose value is the physical number of one
of the disks in the system. If the <disk number> is omitted
from a statement other than MOUNT or UNLOAD, the <disk
number> defaults to 8. If the <disk number> is omitted from
a MOUNT or UNLOAD statement, disks # through the highest
disk number specified at initialization are affected.

a. Opening, Closing and Naming Files. To initialize
disks for reading and writing, the the MOUNT command is
issued as follows:

MOUNT [<disk number>[,<disk number>...]]
Example:

MOUNT ¢
Mounts the disk on drive zero, and
(./ MOUNT 4,1
Mounts the disks on drives zero and one. If there is
already a disk MOUNTed on the specified drive(s) a
DISK ALREADY MOUNTED message will be printed. Before
removing a disk which has been used for reading and writing
by Disk Altair BASIC, the user should give an UNLOAD
command :

UNLOAD {<disk number>[,<disk number>...]]
UNLOAD closes all the files open on a disk, and marks the

disk as not mounted. Before any further I/0 is done on an
UNLOADed disk, a MOUNT command must be given.

NOTE

MOUNT, UNLOAD or any other disk command may be used
as a program statement.

All data and program files on the disk have an associated
file name. This name is the result of evaluating a string

1977 Page 54

expression and must be one to eight characters in length.
The first character of the file name cannot be a null (@)
byte or a byte of 255 decimal. An attempt to use a null
file name (zero characters in length) , a file name over 8
characters in length or containing a @ or 255 in the first
character position will cause a BAD FILE NAME error. Any
other sequence of one to eight characters is acceptable.

Examples of valid file names:

ABC

abc (Not the same as ABC)
filename

file.ext

12345678

INVNTORY

FILE##22

NOTE

Commands that require a file name will use <file
name> in the appropriate position. Remember that a

<file name> can be any string expression as long as
the resulting string follows the rules given above.

b. The FILES Command. The FILES command is used to
print out the names of the files residing on a particular
disk. The format of the FILES command is:

FILES <disk number>

Example:

FILES (prints directory of files on disk 0)
STRTRK PIP CURFIT CISASM

Execution of the FILES command may be interrupted by typing
Control/C. A more complete 1listing of the information
stored in a particular file may be obtained by running the
PIP utility program (see Appendix I).

C. SAVEing and LOADing programs. Once a program has
been written, it is often desirable to save it on a disk for
use at a later time. This is accomplished by issuing a SAVE
command:

[+

anuary, 1977 Page 55

SAVE <file name>[,<disk number>|[,A]]
Example:

SAVE "TEST",0
or

SAVE "TEST"

would save the program TEST on disk =zero. Whenever a
program is SAVEd, any existing copy of the program
previously SAVEd will be deleted, and the disk space used by
the previous program is made available. See section 5-6d
for a discussion of saving with the 'A' option.

The LOAD statement reads a file from disk and loads it
into memory. The syntax of the LOAD statement is:

LOAD <file name>[,<disk number>([,R]]
Correspondingly:
LOAD "TEST",0 or LOAD "TEST"

(loads the program TEST from disk zero. 1If the file does not
"’ exist, a FILE NOT FOUND error will occur.

LOAD "TEST",d,R
CK

LOADs the program TEST from disk zero and runs it. The LOAD
command with the "R" option may be used to chain or segment
programs into small pieces if the whole program is too large
to fit in the computer's memory. All variables and program
lines are deleted by LOAD, but all data files are kept
OPEN (see below) if the "R" option 1is used. Therefore,
information may be passed between programs through the use
of disk data files. 1If the "R" option is not used, all
files are automatically CLOSEd (see below) by a LOAD.

Example:

NEW
18 PRINT "FOOl":LOAD "FOO2",4,R
SAVE "FOO1",8

OK
19 PRINT "FOO2":LOAD "FOO1l",9,R
SAVE "FOO2",8

January, 1977 Page 56

OK

RUN
FO02
FOO1
F002
FOOl1
...etc.

(Control/C may be used to stop execution at this point)

In this example, program FOO2 is RUN. FOO2 pPrints | the
message "F002" and then calls the program FOOl on disk.
FOOl prints "FOOl" and calls the program FOO2 which prints
"FOO2" and so on indefinitely.

RUN may also be used with a file name to load and run a
program. The format of the command is as follows:

RUN<file name>[,<disk number>[,R]]

All files are closed unless ,R is specified after the disk
number.

d. SAVEing and LOADing Program Files in ASCII. Often
it 1is desirable to save a program in a form that allows the
program text to be read as data by another program, such' as
a text editor or reseguencing program. Unless otherwise
specified, Altair BASIC saves its programs in a compressed
binary format which takes a minimum of disk space and loads
very quickly. To save a program in ASCII, specify the "A"
option on the SAVE command:

SAVE "TEST",d,A

OK

LOAD "TEST",d

OK

Information in the file tells the LOAD command ithe

format in which the file is to be loaded. The first
character of an ASCII file is never 255, and a binary
program file always starts with 255 (377 octal). Remember,

loading an ASCII file is much slower than loading a binary
file. :

January, 1977 Page 57

, e. The MERGE Command. Sometimes it is very useful to
(put parts of two programs together to form a new program

— combining elements of both programs. The MERGE command is
provided for this purpose. As soon as the MERGE command has
been executed, BASIC returns to command level. Therefore it
is more likely that MERGE would be used as a direct command
than as a statement in a program. The format of the |MERGE
statement is as follows:

MERGE <file name>[,<disk number>]

Example:

MERGE "PRINTSUB",1
OK

The <file name> specified is merged into the program already
in memory. The <file name> must specify an ASCII flormat
saved program or a BAD FILE MODE error will occur. 1If |there
are lines in the program on disk which have the same line
numbers as lines in the program in memory, the lines | from
the file on disk will replace the corresponding priogram
lines in memory. It is as if the program lines of the | file
on disk were typed on the user terminal.

Deleting Disk Files. The KILL statement deletes a

Lb/ file Erom disk and returns disk space used by the fille to
free disk space. The format of the KILL statement is as
follows:

KILL <file name>[,<disk number>]

If the file does not exist, a FILE NOT FOUND error| will
occur. If a KILL statement is given £for a £ile that is
currently OPEN (see below), a FILE ALREADY OPEN error

occurs.

g. Renaming Files - the NAME Statement. The | NAME
statement is used to change the name of a file:

NAME <old file name> AS <new file name>[,<disk number>]

Example:

NAME "OLDFILE" AS "NEWFILE"
The <old file name> must exist, or a FILE NOT FOUND error
will occur. A file with the same name as <new file name>

must not exist or a FILE ALREADY EXISTS error will oc¢cur.
After the NAME statement is executed, the file exists on the

1977 Page 58

same disk in the same area of disk space. Only the name is
changed.

h. OPENing Data Files. Before a program can read or
write data to a disk file, it must first OPEN the file on
the appropriate disk in one of several modes. The general
form of the OPEN statement is:

OPEN <mode>,[#]<file number>,<file name>{,<disk number>]

<mode> is a string expression whose first character is one
of the following:

Specifies sequential output mode
Specifies sequential input mode
Specifies random Input/Output mode

DHO

A sequential file is a stream of characters that is read or
written in order much like INPUT and PRINT statements read

from and write to the terminal. Random files are divided
into groups of 128 characters called records. The nth
record of a file may be read or written at any time. Random
files have other attributes that will be discussed later in
more detail.

<file number> is an integer expression between one and
fifteen. The number is associated with the file being
OPENed and is used to refer to the file in later I/O
operations.

Examples:

OPEN "O",2,"OUTPUT",d
OPEN "I",1,"INPUT"

The akbove two statements would open the file OUTPUT for
sequential output and the file INPUT for sequential input on
disk zero.

OPEN M$,N,F$,D

The above statement would open the file whose name was in
the string F$ in mode MS$ as file number N on disk D.

i. Sequential ASCII file I/O Sequential input and
output files are the simplest form of disk input and output
since they involve the use of the INPUT and PRINT statements

A ..

January, 1977 PLge 59

with a file that has been previously OPENed.
(INPUT is used to read data from a disk file as follows:

INPUT #<file number),<variable list>

where <file number> represents the number of the file that
was OPENed for input and <variable list> is a 1list of the
variables to be read, as in a normal INPUT statement.| When
data is read from a sequential input £file using an | INPUT
statement, no question mark (?) is printed on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the
terminal. When reading numeric values, leading spaces,
carriage returns and 1line feeds are ignored. When a
non-space, non-carriage return, non-line-feed character is
found, it is assumed to be part of a number in Altair|BASIC
format. The number terminates on a space, a carriage return
¢ line-feed or a comma.

When scanning £for string items, leading blanks,
carriage returns and line-feeds are also ignored. When a
character which is not a leading blank, carriage return or
line~feed 1is found, it is assumed to be the start of a
string item.If this first character is a quotation mark (")
the item is taken as being a quoted string, and all
characters between the first double quote (") and a matching
double quote are returned as characters in the string value.
(B/ This means that a quoted string in a file may contain any

characters except double quote. If the first character of a
string item is not a quotation mark, then it is assumed to
be an wunquoted string constant. The string returned will
terminate on a comma, carriage return or line feed. The
string is immediately terminated after 255 characters have
been read.

For both numeric and string items, if end of file |(EOF)
is reached when the item is being INPUT, the item is
terminated regardless of whether or not a closing quote was
seen.

Sequential I/O commands destroy the input buffer so
they may not be edited by Control/A for re-execution.

Example of sequential I/0 (numeric items):

50@ OPEN "O",1,"FILE",J
510 PRINT #1,X,Y,Z
520 CLOSE #1

ganuary, 1977 Page 60

530 OPEN "1",1,"FILE",@
540 INPUT $#1",X,Y,2 u

Note that CLOSE is used so that a file which has just been
written may be read. When FILE 1is re-OPENed, the data
pointer for that file is set back to the beginning of the
file so that the first INPUT on the file will read data from
the start of the file.

2) PRINT and PRINT USING statements are used to write
data into a sequential output file. Their formats are as
follows:

PRINT #<file number>,<expression list>

or

PRINT #<file number>,
USING <string expression);<expression list>

Example of sequential I/0 (quoted string items):

500 OPEN "O",1,"FILE"
518 PRINT #1,CHRS (34);X$;CHRS (34);
515 PRINT #1,CHRS (34) ;Y$;CHRS (34) ;CHRS (34) ;2$;CHRS (34)

520 CLOSE 1
536 OPEN "I",1,"FILE",0 @
548 INPUT #1,XS$,Y¥S$,Z3

In this example, the strings being output (X$, ¥$, 2$) are
surrounded with double quotes through the use of the CHRS
function to generate the ASCII value for a double quote.
This technique must be used if a string which is being
output to a sequential data file contains commas, carriage
returns, line-feeds or leading blanks that are significant.
When leading blanks are not significant and there are no
commas, carriage returns or line~feeds in the strings td be
output, it 1is sufficient to insert commas between the
strings being output as in the following example:

508 OPEN "O",1,"FILE"
518 PRINT #1,X$;",";¥$;",";2$
520 CLOSE 1

53¢ OPEN "I",1,'FILE",d

548 INPUT #1,X$,¥$,2$

3) CLOSE. The format of the CLOSE statement is as
follows:

CLOSE [<file number>[,<file number>...]]

January,

e

1977 Page 61

CLOSE is wused to finish I/O to a particular Altair
data file. After CLOSE has been executed for a file}

BASIC
the

file may be reOPENed for input or output on the same or
different <file number>. A CLOSE for a sequential output
file writes the final buffer of output. A CLOSE to any OPEN

file finishes the connection between the <file number?

and

the <file name> given in the OPEN for that file. It allows

the <file number> to be wused again in another
statement.

A CLOSE with no argument CLOSEs all OPEN files.

NOTE

A FILE can be OPENed for sequential input or rando
access on more than one <file number> at a time bu
may be OPEN for output on only one <file number> a
a time.

END and NEW always CLOSE all disk files automatically.
does not CLOSE disk files.

4) LINE INPUT. Often it is desirable to read a
line of a file into a string without using gquotes, comm
other characters as delimiters. This is especially tru
certain fields of each line are being used to contain
items, or if a BASIC program saved in ASCII mecde 1is
read as data by another program. The facility provid
perform this function is the LINE INPUT statement:

LINE INPUT #<file number>,<string variable>

A LINE INPUT from a data file will return all characte
to a carriage return in <string variable>. LINE INPUT
skips over the following carriage return/line-feed seq
so that a subsequent LINE INPUT from the file will
the next line.

5) End of File (EOF) Detection. When readi
sequential data file with INPUT statements it is us
desirable to detect when there is no more data in the
file. The mechanism for detecting this condition is th
function:

X=EOF (<file number>)

EOF returns TRUE (-1) when there is no more data in the
and FALSE (4) otherwise. 1If an attempt is made to

OPEN

(-]

STOP

whole
as or
e if
data
being
ed to

LS up
then
uence
eturn

ng a
ually
disk
e EOF

file
INPUT

January, 1977 Page 62
past the end of a data file, an INPUT PAST END error will d
occur. ‘
Example:

199 OPEN "I",1,"DATA",3
110 I=0

129 IF EOF(1l) THEN 168
139 INPUT #1,A(I)

140 I=I+1

150 GOTO 124

160

In this example, numeric data from the sequential input file
DATA is read into the array A. When end of file is
detected, the IF statement at line 120 branches to line 164,
and the variable I "points” one beyond the last element of A
that was INPUT from the file.

The following is a program that will calculate the
number of lines in a BASIC program file that has been SAVEd
in ASCII mode:

18 INPUT "WHAT IS THE NAME OF THE PROGRAM";P$
29 OPEN "I",1,PS$,0

30 1=4 ¥
40 IF EOF (1) THEN 70 u
50 I=I+1:LINE INPUT #1,L$:

60 GOTO 40

70 PRINT "PROGRAM ";P$;" IS ";I;" LINES LONG"
84 END

This example uses the LINE INPUT statement to read each line
of the program into the "dummy" string L$ which is used just
to INPUT and ignore that part of the file.

6) Finding the Amount of Free Disk Space (DSKF). It is
sometimes necessary to determine the amount of free disk
space remaining on a particular disk before allocating
(writing) a file. The DSKF function provides the user with
the number of free groups left on a given disk, after the
disk has been MOUNTed. A group is the fundamental unit of
file allocation. That is, files are always allocated in
groups of eight sectors at a time. Each sector contains 128
characters (bytes). Therefore, the minimum size for a file
is 1824 bytes.

Syntax for the DSKF function:

DSKF (<disk number>)

Example: @

W

January, 1977 Page 63

PRINT DSKF(4)
200

The above example shows that there are 200*1824=204800
characters (bytes) that can still be stored on disk zero.

j. RANDOM FILE I/O. Previously, we have discussed how
data may be PRINTed or INPUT from sequential data files.
However, it is often desirable to access data in a random
fashion, for instance to retrieve information |on a
particular part number or customer from a large data | base
stored on a floppy disk. If sequential files were used, the
whole file would have to be scanned from the start until the
particular item was found. Random files remove | this
restriction and allow a program to access any record | from
the first to the 1last in a speedy fashion. Also, random
files transfer data from variables to the disk ouput records
and vice versa in a much faster, more efficient fashion than
sequential files. Random file I/0 1is more complex | than
sequential 1I/0, and it is recommended that beginners try
sequential I/0 first.

1) OPENing a FILE for Random I/QO. Random I/0 files are
OPENed just like sequential files.

OPEN "R",1,"RANDOM",d

When a file is OPENed for random 1/0, it is always OPEN for
both input and output simultaneously.

2) CLOSING Random Files. Like sequential files, random
files must be closed when I/0 operations are finished, To
CLOSE a random file, use the CLOSE command as described
previously.

CLOSE <file number>[,<file number>...]

3) Reading and writing data to a random file - GET| and
PUT. Each random file has associated with it a "random
buffer" of 128 bytes. When a GET or PUT operation 1is
performed, data is transferred directly from the buffer to
the data file or from the data file to the buffer. The
syntax of GET and PUT is as follows:

FJanuary, 1977 Page 64

PUT [#]<file number>[,<record number>]
GET [#]<file number>[,<record number>]

If <record number> is omitted from a GET or PUT statement,
the record number that is one higher than the previous GET
or PUT is read into the random buffer. 1Initially a GET or
PUT without a record number will read or write the first
record. The largest possible record number is 2046. If an
attempt is made to GET a record which has never been PUT,
all zeroes are read into the record, and no error occurs.

4) LOC and LOF. LOC is wused to determine what the
current record number is for random files. In other words,
it returns the record number that will be used if a GET or
PUT is executed with the <record number> parameter omitted.

LOC(<file number>)

PRINT LOC(1)
15

LOC is also valid for sequential files, and gives the number
of sectors (128 byte blocks) read or written since the OPEN
statement was executed.

LOF is used to determine the last record number written to a
random file:

LOF(<file number>)

PRINT LOF(2)
200

An attempt to use LOF on a sequential file will cause a BAD
FILE MODE error.

The value returned by LOF is always 5 MOD 8. That is , when
the wvalue LOF returns is divided by 8, the remainder is
always 5. Therefore,the values returned by LOF are 5, 13,
21, 29 etc. This 1is due to the way random files are
allocated.

NOTE

It is important to note that the value returned
LOF may be a record that has never been written
by a user program. This 1is because of the w
random files are pre-extended.

LTV

5) Moving Data In and Out of the Random Buffer.
we have described techniques for writing (PUT) and ¢
(GET) data from a file into its associated random b
Now we will describe how data from string variables is
to and from the random buffer itself. This is accomplished
through the use of the FIELD, LSET and RSET statements.

6) FIELD. The FIELD statement associates some or
of a file's random buffer with a particular string vari
Then, when the file buffer is read with GET or written
PUT, string variables which have been FIELDed int
buffer will automatically have their contents rea
written. The format of the FIELD statement is:

FIELD (4] <file number> ,<field size> AS <string variab

<file number> is used to specify the file number of the
whose random buffer is being referenced. 1If the file i
a random file, a BAD FILE MODE error will occur. <
size> sets the length of the string in the random bu
<string variable> is the string variable which is associ
with a certain number of characters (bytes) in the bu
Multiple fields may be associated with string variables
given FIELD statement. Each successive string variabl
assigned a successive field in the random buffer. Exam

FIELD 10 AS AS$, 20 AS B$, 30 AS C$

The statement above would assign the first 19 characte
the random buffer to the string variable A$, the nex
characters to B$ and the next 38 characters to the var
CS. It is important to note that the FIELD statement

not cause any data to be transferred to or from the r
buffer. It only causes the string variables give
arguments to "point" into the random buffer.

Often, it is necessary to divide the random buffer |into
a number of sub-records to make more efficient use of |disk
space. For instance, it might be desirable to divide | the
128 character record into two identical subrecords. To
accomplish this a "dummy variable" would be placed in| the
FIELD statement to represent one of the subrecords. Oné of
the following statements would be executed dependin on
whether the first or second subrecord were needed:

January, 1977 ' Page 66

FIELD #1,64 AS D§, 20 AS NAMES,
20 AS ADDRESSES$, 24 AS OCCUPATIONS

or

- FIELD #1,20 AS NAME$, 20 AS ADDRESSES,
24 AS OCCUPATIONS, 64 AS D$

where the dummy variable D$ is used to skip over one of the
subrecords. Another way to do the same thing would be to
set a variable I that would select the first or second
subrecord.

FIELD #1,64*(I-1) AS DS,
2 AS NAMES$, 20 AS ADDRESS$, 24 AS OCCUPATIONS

Here, if the variable I is one, I-1 *64 =0 characters will
be skipped over, selecting the first subrecord. 1If I is
two, 64 characters will be skipped over, selecting the
second subrecord. Another technique that is very useful is
to use a FOR...NEXT loop and an array to set up subrecords
in the random buffer:

1808 FOR I=1 TO 16

1019 FIELD #1, (I-1)*8 AS DS, 4 AS AS(I),
4 AS B$(I)

1626 NEXT I

In this example, we have divided the random buffer into 16
subrecords composed of two fields each. The first
4-character field is in AS$(X) and the second 4~character
field is in B$(X,) where X is the subrecord number.

NOTE

The FIELD statement may be executed any number of
times on a given file. It does not cause any
allocation of string space. The only space
allocation that occurs is for the string variables
mentioned in the FIELD statement. These string
variables have a one byte count and two byte pointer
set up which points into the random buffer for the

specified file.

January, 1977 Page 67
7) Using Numeric Values in Random Files: MKI$, |MKSS,

(: MKD$ and CVI, CVS, CVD. As we have seen, data is always
ndl stored in the random buffer through the use of tring

variables. In order to convert between strings and n

and vice versa, a number of special functions have| been
provided.
To convert between numbers and strings:
MKIS (<integer value>) Returns a two byte strin

(FC error if value is no

>=-32768 and <=+32767.

Fractional part is lost)
MKSS (<single precision value>) Returns a four byte string
MKD$ (<double precision value>) Returns an eight |byte string

To convert between strings and numbers:

CVI(<two byte string>) Returns an integer value
CVs (<four byte string>) Returns a single precision value
CVD(<eight byte string>) Returns a double precision value

CVI, CVS, and CVD all give an ILLEGAL FUNCTION CALL error if
the string given as the argument is shorter than required.

If the string argument is longer than necessary, the extra
characters are ignored. These functions are extremely [fast,
(%/ since they convert between Altair BASIC's internal

representations of integers, single and double prec
values and strings. Conventional sequential 1I/0
perform time-consuming character scanning algorithms
converting between numbers and strings.

8. LSET and RSET. When a GET operation is perfo
all string variables which have been FIELDed into the r
buffer for that file automatically have values assigne
them. The CVI, CVS and CVD functions may be used to co
any numeric fields in the record to their numeric va
When going the other way, i.e. inserting strings int
random buffer before performing a PUT statement, a pr
arises. This 1is because of the way string assign
usually take place. For example:

LET AS$=B§

When a LET statement is executed, B$ is copied into s
space, A$ is pointed to the new string and the string 1
of A$ is modified. However, for assignments into the r
buffers we do not want this to happen. Instead, we wan
string being assigned to be stored where the string vari
was FIELDed. In order to do this, two special assig

1977 Page 68

statements have been provided, LSET and RSET:
LSET <string variable>=<string expression>
RSET <string variable>=<string expression>

Examples:
LSET A$=MKS$ (V)
RSET B$="TEST"
LSET C$(I)=MKDS$ (D#)

The difference between LSET and RSET concerns what happens
if the string value being assigned is shorter than the
length specified for the string variable in the FIELD
statement. LSET left justifies the string, adding blanks
(octal 48, decimal 32) to pad out the right side of the
string if it is too short. RSET right justifies the string,
padding on the left. If the string value is too 1long, the
extra characters at the end of the string are ignored.

.

NOTE

Do not use LSET or RSET on string variables which
have not been mentioned in a FIELD statement, or a
SET TO NON DISK STRING error will occur.

k. The DSKI$ and DSKO$ Primitives. Often it is
necessary for the wuser to perform disk I/0 operations
directly without using any of the normal file structure
features of Altair BASIC. To allow this, two special
functions have been provided. These are the DSKI$ function
and the DSKO$ statement. First we will give examples of how
to perform simple disk I/0O commands using Altair BASIC
statements,

To Enable disk 8:
ouT 8,8
To Enable disk N:
ouT 8,N
TO step the disk head out one track:

WAIT 8,2,2:00T 9,2

January,

\p

1977 Page 69

To step the disk head in one track:
WAIT 8,2,2:0UT 9,1
To test for track 9:
IF (INP(8) AND 64)=8 THEN <statements or line number>

The above will execute the statements or branch to the line
number if the head is positioned at track 4. This 1is the
outermost track on the disk.

To read sector Y (Y may be any expression, minimum sector
=0, maximum = 31):

AS$=DSKIS$ (¥)

The statement
DSKOS <string expressiond,<sector expression>

writes the string expression on the sector specified. The
high order bit (most signifigant) of the first character
output will always be set to one when the string is written
on the sector, and thus will always be one when the sector
is read back in using DSKI$. A maximum of 137 characters
are written; giving a string whose length exceeds 137
characters will cause an ILLEGAL FUNCTION CALL error. If
the string argument is less than 137 characters in lenhgth,
the end of the string will be padded with zeros to make a
string of length 137.

January, 1977 Page 78

6. LISTS AND DIRECTORIES

6-1. Commands.

Commands direct Altair BASIC to arrange memory and
input/output facilities, to 1list and edit programs and to
handle other housekeeping details in support of program
execution. Altair BASIC accepts commands after it prints
'OK' and is at command level. The table below 1lists the
commands in alphabetical order. The notation to the right
of the command name indicates the versions to which it
applies.

Command Version(s)

CLEAR All

Sets all program variables to zero.

CLEAR[<expression>] 8K, Extended, Disk

Same as CLEAR but sets string space to the value of the
expression. If no argument is given, string space will
remain unchanged. When Altair BASIC is loaded, string space
is set to 58 bytes in 8K and 200 bytes in extended.
CLOAD<string expression> 8K (cassette), Extended, Disk
Causes the program on cassette tape designated by the first
character of STRING expression> to be loaded into memory. A
NEW command is issued before the program is loaded.
CLOAD?<string expression> 8K (cassette), Extended, Disk

Compares the program in memory with the file on cassette
with the same name. If they are the same, BASIC prints OK.

If not, BASIC prints NO GOOD.
CLOAD*<array name> 8K (cassette), Disk

Loads the specified array from cassette tape. May be used
as a program statement

CONT 8K, Extended, Disk

Continues program execution after a Control/C has been typed
or a STOP or END statement has been executed. Execution
resumes at the statement after the break occurred unless
input from the terminal was interrupted. 1In that case,

€

nuary, 1977 page

execution resumes with the reprinting of the prompt (?

prompt string). CONT 1is useful in debugging, especially

where an 'infinite loop' is suspected. An infinite loop

a series of statements from which there 1is no esca

71

or

is
pe.

Typing Control/C causes a break in execution and puts BASIC
in command 1level. Direct mode statements can then be used

to print intermediate values, change the values
variables, etc. Execution can be restarted by typing
CONT command, or by executing a direct mode GOTO stateme
which causes execution to resume at the specified 1
number.

In 4K and 8K Altair BASIC, -execution cannot
continued if a direct mode error has occured during
break. 1In all versions, execution cannot continue 1if
program was modified during the break.

CSAVE<string expression> 8K (cassette), Extended, Dis

Causes the program currently in memory to be saved
cassette tape under the name specified by the fi
character of <string expression>.

EXTEVNDE D

CSAVE*<array name> 8K (cassetta) ,7Disk

Causes the array named to be saved on cassette tape. Hay
used as a program statement.

DELETE<line number> - Extended, Disk

Deletes the line in the current program with the specif
number. If no such line exists, an ILLEGAL FUNCTION (

error occurs.
DELETE-<line number> Extended, Disk

Deletes every line of the current program up to
including the specified line. If there is no such line,
ILLEGAL FUNCTION CALL error occurs.

DELETE<line number>-<line number> Extended, Disk
Deletes all lines of the current program from the first 1
number to the second inclusive. ILLEGAL FUNCTION C
occurs if no line has the second number.

EDIT<line number> Extended, Disk

Allows editing of the line specified without affecting

other lines. The EDIT command has a powerful set
sub-commands which are discussed in detail in section 5-4

of
the
nt,
ine

be
the
the

on
rst

be

ied
ALL

ine
ALL

any

=

oL

January,

P

1977 Page 71

execution resumes with the reprinting of the prompt (72 or
prompt string). CONT is wuseful in debugging, especially
where an 'infinite loop' is suspected. An infinite loop is
a series of statements from which there 1is no escape.
Typing Control/C causes a break in execution and puts |BASIC
in command level. Direct mode statements can then be used
to print intermediate wvalues, change the value of
variables, etc. Execution can be restarted by typing the
CONT command, or by executing a direct mode GOTO statement,
which causes execution to resume at the specified line
number.

In 4K and 8K Altair BASIC, execution cannot be
continued if a direct mode error has occured during the
break. 1In all versions, execution cannot continue 1if| the
program was modified during the break.

CSAVE<string expression> 8K (cassette), Extended, Disk

Causes the program currently in memory to be saved on
cassette tape under the name specified by the first
character of <string expression>.

CSAVE*<array name> 8K (cassette), Disk

Causes the array named to be saved on cassette tape. May be
used as a program statement.

DELETE<line number> Extended, Disk

Deletes the line in the current program with the specified
number. If no such line exists, an ILLEGAL FUNCTION|CALL

€rror OCCurs.
DELETE-<line number> Extended, Disk
Deletes every 1line of the current program up to| and
including the specified line. 1If there is no such line, an
ILLEGAL FUNCTION CALL error occurs.

DELETE<line number>~<line number> Extended, Disk
Deletes all lines of the current program from the first |line

number to the second inclusive. ILLEGAL FUNCTION |CALL
occurs if no line has the second number.

EDIT<line number> Extended, Disk
Allows editing of the line specified without affecting | any

other 1lines. The EDIT command has a powerful set of
sub-commands which are discussed in detail in section 5-4.

January, 1977 Page 72

LIST all ‘ \’

Lists the program currently in memory starting with the
lowest numbered 1line. Listing is terminated either by the
end of the program or by typing Control/C.

LIST[<line number>] All

In 4K and 8K, prints the current program beginning at the
specified 1line. In Extended and Disk, prints the specified
line if it exists.

LIST[<line number>]{-<line number>] Extended, Disk
- Allows several listing options.

1. If the second number is omitted, lists all 1lines with
numbers greater than or equal to the number specified.

2. If the first number is omitted, lists all lines from
the beginning of the program to the specified line,
inclusive.

3. If both line numbers are used, lists all lines from the
first number to the second, inclusive.

LLIST[<line number>] [-<line number>] Extended, Disk

Same as list with the same options, except prints on the
line printer.

NEW All

Deletes the current program and clears all variables. Used
before entering a new program.

NULL<integer expression> 8K, Extended, Disk

Sets the number of nulls to be printed at the end of each
line. For 18 character per second tape punches, <integer
expression> should be >=3. For 30 cps punches, it should be
>=3. When tapes are not being punched, <integer expression>
should be @ or 1 for Teletypes* and Teletype compatible
CRT's. It should be 2 or 3 for 38 cps hard copy printers.
The default value is #. 1In the 4K version, the same affect
may be achieved by patching location 46 octal to contain the
number of nulls plus 1.

* Teletype is a registered trademark of the Teletype
Corporation.

January,

\

1977 Pag

RUN[<line number>] All

Starts execution of the program currently in memory at
line specified. If the line number is omitted, execu
begins at the lowest line number. Line number specifida
is not allowed in 4K.

6-2. Statements.

The following table of statements is listed in alpahabet
order. The notation in the Version column designates

e 73

the
tion
tion

ical
the

versions to which each statement applies. In the table, X
and Y stand for any expressions allowed in the version under

consideration. I and J stand for expressions whose values

are truncated to integers. V and W are any variable na
The format for a Altair BASIC line is as follows:

<nnnnn> <statement>[:<statement>...]
where nnnnn is the line number.

Name Format Version

CONSOLE CONSOLE <I>,<J> Extended, Disk

mes.

Allows terminal console device to be switched. I is the I/0

port number which is the address of the low order channe
the new I/0 board. J is the switch register setting
section 5-1 for the list of settings). 0<=I,J<=255.

DATA DATA<list> All

Specifies data to be read by a READ statement.
elements can be numbers or, except in 4K, strings.
allows expressions. List elements are separated by comnm

DEF DEF FNV(<KW>)=<X> 8K, Extended, Di

Defines a wuser-defined function. Function name is
followed by a 1legal variable name. Extended and
versions allow user-defined string functions. Definit
are restricted to one line (72 characters in 4X and 8K,
characters in extended versions).

DEFUSR DEFUSR([<digit>]=<X> Extended, Disk

1l of
(see

List
4K
as.

sk

FN
Disk
ions
255

January, 1977 ’ Page 74

Defines starting address of assembly language subroutine.
Up to ten subroutines are allowed.

DIM DIM <V>(KI>[,J...)])[,...] All

Allocates space for array variables. In 4K, only one
dimension is allowed per variable. More than one variable
may be dimensioned by one DIM statement up to the 1limit of
the 1line. The value of each expression gives the maximum
subscript possible. The smallest subscript is #. Without a
DIM statement, an array is assumed to have maximum subscript
of 19 for each dimension referenced. For example, A(I,J) is
assumed to have 121 elements, from A(#,8) to A(19,19) unless
otherwise dimensioned in a DIM statement.

END _ END All

Terminates execution of a program. Closes all files in the
Disk version.

ERASE ERASE<XV> [,<W>...] Extended, Disk

Eliminates the arrays specified. The arrays may be
redimensioned or the space made available for other uses.

ERROR ERRORKI> Extended, Disk

Forces error with code specified by the expression. Used
primarily for user-defined error codes.

FOR FORKV>=<X>TO<Y> [STEP<2Z>] All

Allows repeated execution of the same statements. First
execution sets V=X. Execution proceeds normally until NEXT
is encountered. 2 is added to V, then, IF 2<8 and V>=Y, or
if 2>8 and V<=Y, BASIC branches back to the statement after
FOR. Otherwise, execution continues with the statement
after NEXT.

GOTO GOTO<nnnnn> All

Unconditional branch to line number

GOsuB GOSUB<nnnnn> All

Unconditional branch to subroutine beginning at line nnnnn.
IF...GOTO IF <X> GOTO<nnnnn> 8K, Extended, Disk

Same as IF...THEN except GOTO can only be followed by a line
number and not another statement.

apuary,

{Zn

L/

1977

IF...THEN [ELSE] IF<X>THEN<KX>|[ELSEKY>] All
or IF<KX>THEN<statement>[:statement...]
[ELSE<statement>[:statement...]

If value of X<>@, branches to line number or statement a
THEN. Otherwise, branches to the line number
statement(s) after ELSE. If ELSE is omitted, and the v
of X=0, execution proceeds at the line after the IF...T
In 4K, X can only be a numeric expression. The ELSE cl
is only allowed in Extended and Disk Altair BASIC.

INPUT INPUTKV> [, <W>...] all

Causes BASIC to regquest input from terminal. Values (o1
4R, expressions) typed on the terminal are assigned to

variables in the list.
LET LET <V>=<X> All

Assigns the value of the expression to the wvariable.
word LET is optional.

Page 75. Insert the following after LET and before LPRINT.

ADDITION:
LINE INPUT LINE INPUT '"prompt string'; string variable name
Extended, Disk

LINE INPUT prints the prompt string on the terminal and assigns

fter
or
alue
HEN.
ause

the

The

all

input from the end of the prompt string to the carriage return tto
the named string variable. No other prompt is printed if the prompt

string is omitted. LINE INPUT may not be edited by Control/A.

Part of the string X$ is replaced by Y$S. Replacement st
with the 1Ith character of X$ and proceeds until Y

exhausted, the end of X$ is reached or J characters
been replaced, whichever comes first. If I is greater
results.

LEN(XS$), an ILLEGAL FUNCTION CALL error
NEXT NEXT [<KV>,<W>...] all

Last statement of a FOR loop. V is the variable of the

recent loop, W of the next most recent and so on. Only

variable is allowed in 4K. Except in 4X, NEXT withou
variable terminates the most recent FOR loop.

CN ERROR GOTO ON ERROR GOTO<line number> Extended, Di

When an error occurs, branches to line specified.
variable ERR to error code and ERL to line number where

arts
S is
have
than

most
one

sk

Sets
the

January,

L

1977 Page 75

IF...THEN [ELSE] IF<KX>THEN<X>[ELSE<¥Y>] All
or IF<KX>THEN<statement>[:statement...]
[ELSE<statement> [:statement...]

If value of X<>@, branches to line number or statement |after

THEN. Otherwise, branches to the line number

or

statement(s) after ELSE. 1If ELSE is omitted, and the |value
of X=0, execution proceeds at the line after the IF...THEN,
In 4K, X can only be a numeric expression. The ELSE clause

is only allowed in Extended and Disk Altair BASIC.
INPUT INPUTKV> [, <W>...] all

Causes BASIC to request input from terminal, Values (ofr

, in

4K, expressions) typed on the terminal are assigned to the

variables in the 1list.
LET LET <W>=<X> All

Assigns the value of the expression to the variable.
word LET is optional.

LPRINT LPRINT X[,Y¥...] Extended, Disk

The

Same as PRINT, but prints on the line printer. Line feeds
within strings are ignored. A carriage return is prlinted

automatically after the 80th character on a line.

LPRINT USING LPRINT USING<string>;<list> Extended, pisk

Same as PRINT USING, but prints on the line printer. For a

detailed description, see section 5-5.

MIDS MIDS (<X$>,<I>[,<JI>])=¥$ Extended, Disk

Part of the string X$ is replaced by ¥Y$. Replacement starts
with the 1Ith character of X$ and proceeds until ¥$ is

exhausted, the end of X$ is reached or J characters
been replaced, whichever comes first. If I is greater
LEN(X$), an ILLEGAL FUNCTION CALL error results.
NEXT NEXT [<KV>,<W>...] all

Last statement of a FOR loop. V is the variable of the

have
than

most

recent loop, W of the next most recent and so on. Only one
variable is allowed in 4K, Except in 4K, NEXT without a

variable terminates the most recent FOR loop.
ON ERROR GOTO ON ERROR GOTO<line number> Extended, Di

Wheg an error occurs, branches to 1line specified.
variable ERR to error code and ERL to line number where

sk

Sets
the

January, 1977 Page 76

error occured. See section 6~5 for a list of error codes.
ON ERROR GOTO @ (or without number) disables error trapping.

ON...GOTO ON<KI>GOTO<1list of line numbers> 8K, Ext., Disk

Branches to line whose number is Ith in the 1list. List
elements are separated by commas. If I=@ or > number of
elements in the list, execution continues at next statement.
If I<P or >255, an error results.

ON...GOSUB ON <I> GOSUB <list> 8K, Extended, Disk

Same as ON...GOTO except list elements are initial line
numbers of subroutines.

ouT QUTLI>,<J> 8K, Extended, Disk
Sends byte J to port I. @<=I,J<=255,
POKE POKE<I> ,<JI> 8K, Extended, Disk

Stores byte J in memory location derived from I.
B<=J<=255;-32768<I<65536. If I 1is negative, address is
65535+I, if I is positive, address=I.

PRINT PRINT<X> [,<¥>...] All

Causes values of expressions in the list to be printed on
the terminal. Spacing is determined by punctuation.

Punctuation Spacing - next printing begins:
Sy at beginning of next 14 column zone
; immediately

]
other or none at beginning of next line

String literals may be printed if enclosed by (") marks.
String expressions may be printed in all but 4K.

PRINT USING PRINT USING<string>;<list> Extended, Disk

Prints the values of the expressions in the 1list edited
according to the string. The string is an expression which
represents the line to be printed. The 1list contains the
constants, variable names or expressions to be printed.
List entries are separated by punctuation as in the PRINT
statement. For a 1list of string characters and their

functions, see section 5-5.
READ READKV> [,<W>...] All

Assigns values in DATA statements to variables. Values are
assigned in sequence starting with the first value in the

\

first DATA statement.

REM REM[<remark>] All

January, 1977 Page 77

Allows insertion of remarks. Not executed, but may be
branched into. In extended versions, remarks may be |added

to the end of a line preceded by a single gquotation
().
RESTORE RESTORE all

Allows data from DATA statements to be reread. Next
statement after RESTORE begins with first data of first
statement.

RESUME RESUME [<number>] Extended, Disk

mark

READ
data

Resumes program execution at the line specified after error
trapping routine. If number is omitted or zero, resumes at

statement where error occured. RESUME NEXT causes
resumption at the statement following the statement where

the error was made.

RETURN RETURN All

Terminates a subroutine. Branches to the statement after

the most recent GOSUB.
STOP STOP All

Stops program execution. BASIC enters command level
except 1in 4K, prints BREAK IN LINE nnnnn. Unlike END,
does not close files.

SWAP A SWAP <V>,<W> Extended, Disk

Exchanges values of the variables named. Variables must

of the same type.
TROFF TROFF Extended, Disk

Turns off trace flag. The trace flag is turned on by
(see below). NEW also turns off the trace flag.

TRON TRON Extended, Disk

Turns on trace flag. Prints number of each line 1in sq
brackets as it is executed.

WAIT WAITLI>,<J>([,<K>] 8K, Extended, Di

Status of port I is XOR'd with XK and AND'ed with.

and,
STOP

be

TRON

uare

sk

January, 1977 Page 78

Continued execution awaits non-zero result. K defaults to
f. B<=I,J,K<=255.

6-3. Intrinsic Functions.

Altair BASIC provides several commonly used algebraic
and string functions which may be called from any program
without further definition. If the functions are not
required for a program, they may be deleted when BASIC is
loaded to conserve memory space. The functions in the
following table are 1listed in alphabetical order. The
notation to the right of the Call Format is the versions in
which the function is available. As usual, X and Y stand
for expressions, I and J for integer expressions and X$ and
¥$ for string expressions.

Function Call Format Version

ABS ABS (X) All

Returns absolute value of expression X. ABS(X)=X if X>=0,
-X if x<4@.

AsSC ASC(X$) 8K, Extended, Disk

Returns the ASCII code of the first character of the string
X$. ASCII codes are in appendix A.

ATN ATN (X) 8K, Extended, Disk

Returns arctangent(X). Result is in radians in range -pi/2
to pi/2.

The following functions are available in Extended and Disk:

CINT CINT(X) Converts X to integer.
CSNG CSNG(X) Converts X to single precision.
CDBL CDBL(X) Converts X to double precision.

If the argument 1is in the range ~32768 to 32767, the
CINT (X)=INT (X). Otherwise, CINT will produce an OVERFLOW

error.

CHRS CHRS (I) 8K, Extended, Disk

Returns a string whose one element has ASCII code I. ASCII

e

e

codes are in Appendix A.

Ccos COS (X) 8K, Extended, D
Returns cos(X). X is in radians.

ERL Extended, Disk
Returns the number of the 1line in which the last

occurred.

ERR Extended, Disk
Returns the error code of the last error.
ERR ERR(I) Disk

Returns parameters of disk errors. After a DISK I1/0 E
ERR(#) returns number of the disk, ERR(1l) returns the

number (#-76) , ERR(2) returns the sector number, ERR(3) and
ERR(4) return the 1low and high order 8 bits of| the
cumulative count of disk errors respectively.

EXP EXP (X) 8K, Extended, Disk
Returns e to the power X. X must be <=87.3365.

FIX FIX(X) Extended, Disk
Returns the truncated integer part of X. FIX(X) is
equivalent to SGN(X)*INT(ABS(X)). The major difference
between FIX and INT is that FIX does not return the |next
lower number for negative X.

FRE FRE (9) 8K, Extended, Disk

January, 1977 Page 79

isk

error

RROR,

track

Returns number of bytes in memory not being used by BaSIC.
If argument is a string, returns number of free bytes in

string space.

HEXS HEXS (X) Extended, Disk

Returns a string which represents the hexadecimal of
decimal argument.

INP INP(I) 8K, Extended, D
Reads a byte from port I.
INSTR INSTR([I,]1XS$,YS) Extended, Disk

Searches for the first occurrence of string ¥$ in X$

the

isk

and

January, 1977 Page 840

returns the position. Optional offset I sets position for
starting the search. @<=I<=255. If IDLEN(XS$), if X$ is
null or if ¥$ cannot be found, INSTR returns #. If ¥$ is
null INSTR returns I or 1. Strings may be string variable
values, string expressions or string literals.

INT INT(X) All"

Returns the largest integer <=X

LEFTS$ LEFTS (X$,I) 8K, Extended, Disk
Returns leftmost I characters of string XS.

LEN LEN (X$) 8K, Extended, Disk

Returns length of string Xs$. Non-printing characters and
blanks are counted.

LOG LOG(X) 8K, Extended, Disk

Returns natural log of X. X>@
LPOS LPOS (X) Extended, Disk

s
Returns the current position of the line printer print’ head
within the 1line printer buffer. Does not necessarily give
the physical position of the print head. The expression X
must be given, but the value is ignored.

MIDS MID$ (X$,I([,J]) 8K, Extended, Disk

Without J, returns rightmost characters from X$ beginning
with the Ith character. If IDLEN(X$), MIDS returns the null
string. @<I<255. With 3 arguments, returns a string of
length J of characters from X$§ beginning with the Ith
character. If J is greater than the number of characters in
X$ to the right of I, MIDS returns the rest of the string.

8<=J<=255.
OCTS OCTS (X) 8K, Extended, Disk

Returns a string which represents the octal value of the
decimal argument.

RND RND (X) All

Returns a random number between @ and 1. X<@ starts a new
sequence of random numbers. X>@ gives the next random
number in the sequence. X=8 gives the last number returned.
In 8K, Extended and Disk, sequences started with the same

negative number will be the same.

inuary,

P

1977 Page

returns the position. Optional offset I sets position
starting the search. @<=I<=255. If I>LEN(X$), if X$
null or if YS$ cannot be found, INSTR returns #. If Y§
null INSTR returns I or 1. Strings may be string varia
values, string expressions or string literals.

INT INT(X) A1l
Returns the largest integer <=X
LEFTS LEFTS (XS$,I) 8K, Extended, Dis
Returns lefitmost I characters of string X§.

LEN LEN(XS) 8K, Extended, Dis

Returns length of string XS. Non-printing characters
blanks are counted.

LOG LOG (X) 8K, Extended, Dis
Returns natural log of X. X>8

LPOS LPOS (X) Extended, Disk
Returns the current position of the line printer print’® h
within the 1line printer buffer. Does not necessarily g
the physical position of the print head. The expression

must be given, but the value is ignored.

MIDS$ MIDS (X$,I[,J]) 8K, Extended, Dis

Without J, returns rightmost characters from X$ beginnin

with the Ith character. If ID>LEN(XS), MID$ returns the n
string. ©@<I<255. With 3 arguments, returns a string
length J of characters from X$ beginning with the
character. If J is greater than the number of characters
X$ to the right of I, MIDS returns the rest of the stri

9<=J<=255.
OCTS OCTS (X) 8R, Extende

Returns a string which represents the octal value of
decimal argument.

RND RND (X) All

Returns a random number between 8 and 1. X<8 starts a
sequence of random numbers. X>3 gives the next ran
number in the sequence. X=0 gives the last number return
In 8K, Extended and Disk, sequences started with the s

negative number will be the same.

80

for
is
is
ble

and

ead
ive

4,

the

new
com
ed.

ane

Disk

ALY,

|

1977 Pag
POS POS(I) 8K, Extend

Returns present column position of terminal's print n
Leftmost position =4d.

RIGHTS RIGHTS (X$,I) 8K, Extended, Disk

Returns rightmost I characters of string X$. If I=LEN
returns X$.

SGN SGN (X) All

If X>9, returns 1, if X=0 returns 8, if X<@, returns

e 81

ed, Disk

nead.

X$),

For example, ON SGN(X)+2 GOTO 146,209,398 branches to 109

if X is negative, 298 if X is 9 and 389 if X is positive.

SIN SIN(X) all

Returns the sine of the value of X in radians.

COS (X)=SIN(X+3.14159/2).

SPACES SPACES (I) 8R, Extended, Disk

Returns a string of spaces of length I.

SPC SPC(I) 8K, Extended, Disk
Prints I blanks on terminal. @<=I<=253.

SQR SQR (X) All

Returns sguare root of X. X must be >=4§

STRS STRS (X) 8K, Extencded, Disk
Returns sitring representation of value of X.

STRINGS STRING3(I,d) Extended, Disk

Returns a string of length I whose characters all have ASCII
code J. See Aprendix A for ASCII codes.

TAB TAB(I) All

Spaces to position I on the terminal. Space @ 1is |the
leftmost. space, 71 the rightmost. If the carriage is
already beyond space I, TAB has no effect. @<=I<=253. May

only be used in PRINT and LPRINT statements.
TAN . TAN (X) all

Returns tangent(X). X is in radians.

Jan

1zary,

1977

POS POS(I) 8K, Extend

Page 81

ed, Disk

Returns present column position of terminal's print |head.

Leftmost position =g.
RIGHTS RIGHETS (X$,I) 8K, Extended, Disk

Returns rightmost I characters of string X$. If I=LEN(
returns X£$.

SGN SGN (X) All
If X>9, returns 1, if X=§ returns @, if X<@, returns
For example, ON SGN(X)+2 GOTO 144,200,308 branches to
if X is negative, 200 if X is @ and 308 if X is positive
SIN SIN(X) All

Returns the sine of the value of X in radi
COS (X) =SIN(X+3.14159/2).

SPACES SPACES (I) 8K, Extended, Disk
Returns a string of spaces of length I.
SPC SPC(I) 8K, Extend
Prints I blanks on terminal. @<=I<=255.

SQR SQR(X) all
Returns square root of X. X must be >=8

STRS STRS (X) 8K, Extend
Returns string representation of value of X.

STRINGS STRINGS (I,J) Extended, Disk

X8),

-1,
190

ans.

ed, Disk

ed, Disk

Returns a string of length I whose characters all have ASCII

code J. See Appendix A for ASCII codes.

TAB TAB(I) All
Spaces to position I on the terminal. Space @ is
leftmost space, 71 the rightmost. If the carriag
already beyond space I, TAB has no effect. 0<=I<=255.
only be used in PRINT and LPRINT statements.

TAN . TAN (X) All

Returns tangent(X). X is in radians.

the
e is
May

‘auary, 1977 Page 82

USR USR(X) All

Calls the user's machine language subroutine with argument
X.

VAL VAL (X$) 8K, Extended, Disk

Returns numerical value of string X$. If first character of
X$ is not +,- or a digit, VAL(XS$)=4.

VARPTR VARPTR (V) Extended, Disk

Returns the address of the variable given as the argument.
If the variable has not been assigned a value during the
execution of the program, an ILLEGAL FUNCTION CALL error
will occur. The main use of the VARPTR function is to
obtain the address of variable or array so it may be passed
to an assembly language subroutine. Arrays are usually
passed by specifying VARPTR(A[4]) so that the lowest
addressed element of the array is returned.

NOTE
All simple variables should be assigned values in a
program before calling VARPTR for any array.

Otherwise, allocation of a new simple variable will
cause the addresses of all arrays to change.

6-4. Special Characters

Altair BASIC recognizes several characters in the ASCII
font as having special functions in carriage control,
editing and program interruption. Characters such as
Control/C, Control/5, etc, are typed by holding down the
Control key and typing the designated letter. The special
characters in the table are 1listed in the order of the
versions to which they apply, starting with those common to
all versions and ending with those that apply only to

extended versions.

Typed as Printed as

The following Special Characters are available in ALL
versions.

¢

January, 1977 Pa

a @
Erases current line and executes carriage return.
(backarrow)

Erases last character typed. If there is no last char
types a carriage return.

- _(underline)
same as backarrow.
Carriage Return

Returns print head or curser to beginning of the next 1

Control/C “C (in extended)

g

i

e 83

acter

ne.

Interrupts execution of current program or 1list command.

Takes effect after execution of the current stateme
after listing the current line. BASIC goes to command
and types OK. CONT command resumes execution. See se
6-1.

Separates statements in a line.
The following special characters are available in
Extended and Disk versions only.
Control/0O "0 (in extended)
Suppresses all output until an INPUT statement
encountered, another Control/O is typed, an error occu
BASIC returns to command level.
? ?

equivalent to PRINT statement.

Rubout see explanation

Deletes previous character on an input line. First Ru

prints \ and the 1last character to be printed.
successive Rubout prints the next character to the
Typing a new character causes another \ and the
character to be printed. All characters between
backslashes are deleted.

1

~
-

I

1

ht or

evel
tion

8K,

is
s or

bout
Each
eft.
new
the

January, 1977 Page 84

Control/U “U (in extended)
Same as @
Control/s

Causes program execution to pause until Control/Q or
Control/C is typed.

Control/Q

Causes execution to resume after Control/sS. Control/S and
Control/Q have no effect if no program is being executed.

The following special characters are available in Extended
and Disk versions only.

Control/A

Allows use of the EDIT command on the line currently being
typed. Control/A is typed instead of Carriage Return. See
section 5-4.

Control/I 1 to 8 spaces

Tab character. Causes print head or curser to move to the
beginning of the next 8 column field. Fields begin at
columns 1, 9, 17, etc. The tab character is especially
useful for formatting lines broken with line feeds. R

186<tab>FOR I=1 TO 18:<line feed>
<tab><tab>FOR J=1 TO 10:<line feed>
<tab><tab><tab>A(I,J)=0:<line feed>
<tab>NEXT J,I<carriage return>

lists as:
109 FOR I=1 TO 18:
FOR J=1 TO 13:
A(I,J)=0:
NEXT J,I
Control/G bell

Rings terminal's bell
LINE FEED

Breaks a long line into shorter parts. The result is still
one BASIC line.

anuary,

B

1977 Pa

Denotes the number of the current 1line. May be
wherever a line number is to be specified.

(,1 (.1

e

85

used

Brackets are interchangable with parentheses as delimiters

for array subscripts.

Lower Case Input

Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower

case to upper case if the lower case characters are not
of string literals, REM statements or single quote
remarks.

6-5. Error Messages.

After an error occurs, BASIC returns to command level
types OK. Variable values and the program text re
intact, but the program cannot be continued by the
command. In 4K and 8K versions, all GOSUB and FOR con

part

"

and

main
CONT
text

is lost. The program may be continued by direct mode GOTO,

however. When an error occurs in a direct statement
line number is printed. Format of error messages:

Direct Statement ?XX ERROR
Indirect Statement ?XX ERROR IN YYYYY

where XX is the error code and YYYYY is the 1line n
where the error occurred. The following are the poss
error cocdes and their meanings:

ERROR CCDE EXTENDED ERROR MESSAGE NU,

The following error codes apply in ALL versions.

BS SUBSCRIPT QUT OF RANGE 9

An attempt was made to reference an array element which
outside the dimensions of the array. 1In the 8K and la
versions, this error can occur if the wrong number
dimensions ‘are used in an array reference. For example:

LET A(1,1,1)=2

14

no

ber

ible

MBER

is

rger

of

January, 1977 Page 86

when A has already been dimensioned by DIM A(10,18)
DD REDIMENSIONED ARRAY 10

After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs
if an array has been given the default dimension of 18 and
later in the program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION CALL 5

The parameter passed to a math or string function was out of
range.. FC errors can occur due to:

1. a negative array subscript (LET A(-1l)=0)

2. an unreasonably large array subscript (>32767)
3. LOG with negative or zero argument

4. SQR with negative argument

S. A"B with A negative and B not an integer

6. a call to USR before the address of a machine language
subroutine has been entered.

7. calls to MIDS$, LEFT$, RIGHT$, INP, OUT, WAIT, PEEK,
POKE, TAB, SPC, STRING$, SPACES$, INSTR or ON...GOTO with

an improper argument.

ID - ILLEGAL DIRECT 12

INPUT and DEF are illegal in the direct mode. In extended
versions, however, INPUT is legal in direct.

NF NEXT WITHOUT FOR

The wvariable in a NEXT statement corresponds to no
previously executed FOR statement.

oD OUT OF DATA 4

A READ statement was executed but all of the DATA statements
in the program have already been read. The program tried to
read too much data or insufficient data was included in the

program.

P

Jaiuary, 1977 Page

oM OUT OF MEMORY

Program is too large, has too many variables, too many
loops, to many GOSUBs or too complicated expressions.

Appendix C.
ov OVERFLOW

87

FOR
See

The result of a calculation was too large to be represented
in Altair BASIC's number format. If an underflow occurs,
zero is given as the result and execution continues without

any error message being printed.

SN SYNTAX ERROR

Missing parenthesis in an expression, illegal character |in a

line, incorrect punctuation, etc.

RG RETURN WITHOUT GOSUB

3

A RETURN statement was encountered before a previous GOSUB

statement was executed.
UL UNDEFINED LINE

The line reference in a GOTO, GOSUB, IF...THEN...ELSE
DELETE was to a line which does not exist.

/8 DIVISION BY ZERO

Can occur with integer division and MOD as well as float

or

ing

point division. @ to a negative power also causes a

DIVISION BY ZERO error.

The following error messages apply to
8K, Extended and Disk versions only

CN CAN'T CONTINUE

Attempt to continue a program when none exists, an ﬂr
occured, or after a modification was made to the progral

LS STRING TOO LONG

An attempt was made to create a string more than
characters long.

0os OUT OF STRING SPACE

String variables exceed amount of string space allocated

17

ror

15
255

14

for

1L

January, 1977 Page 88
them. Use the CLEAR command to allocate more string space
or use smaller strings or fewer string variables.

ST STRING FORMULA TOO COMPLEX 16

A string expression was too long or too complex. Break it
into two or more shorter ones.

- ™ TYPE MISMATCH 13
The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or

vice-versa; or a function which expected a string argument
was given a numeric one or vice-versa.

UF UNDEFINED USER FUNCTION 18

Reference was made to a user defined function which had
never been defined.

The following error messages are available in
Extended and Disk versions only.

MISSING OPERAND 20

During evaluation of an expression, an operator was found
with no operand following it.

NO RESUME

BASIC entered an error trapping routine, but the program
ended before a RESUME statement was encountered.

RESUME WITHOUT ERROR 21

A RESUME statement was encountered, but no error trapping
routine had been entered.

UNPRINTABLE ERROR

An error condition exists for which there is no error
message available. Probably there 1is an ERROR statement

with an undefined error code.

LINE BUFFER OVERFLOW 23

An attempt was made to input a program or data 1line which
has too many characters to be held in the line buffer.
Shorten the line or divide it into two or more parts.

19

22

C

January, 1977

Disk Altair BASIC Error Messages

FIELD OVERFLOW

An attempt was made to allocate more than 128 character
string variables in a single FIELD statement.

INTERNAL ERROR
Internal error in Disk BASIC. Report conditions under
error occurred and all relevant data to MITS sof

department. This error can also be caused by certain
of disk I/0 errors.

BAD FILE NUMBER

An attempt was made to use a file number which specif
file that is not OPEN or that is greater than the numbe
files entered during the Disk Altair BASIC initializ
dialog.

FILE NOT FOUND

Reference was made in a LOAD, KILL or OPEN statement
file which did not exist on the disk specified.

BAD FILE MODE
An attempt was made to perform a PRINT to a random £il
OPEN a random file for sequential output, to perform a
or GET on a sequential file, to load a random file

execute an OPEN statement where the file mode is not I
or R.

FILE ALREADY OPEN

A sequential output mode OPEN for a file was issued
file that was already OPEN and had never been CLOSEd
KILL statement was given for an OPEN file.

DISK NOT MOUNTED

An I/0 operation was issued for a file that was not MOU
DISK I/0 ERROR

An I/O error occured on disk X. A sector read (chec
error occurred eighteen (18) consecutive times.

SET TO NON-DISK STRING

Page 89

which
tware
kinds

ies a
r of
ation

to a

54
e, to
PUT
or to
r OI
55
for a
or a
56
NTed.
57

ksum)

58

51

52

53

58

1977 Page 98

An LSET or RSET was given for a string variable which had
not previously been mentioned in a FIELD statement.

DISK ALREADY MOUNTED 59

A MOUNT was issued for a DISK that was already MOUNTed but
never UNLOADed.

DISK FULL 60

All disk storage is exhausted on the disk. .Delete some old
disk files and try again.

INPUT PAST END
An INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT is

executed for a null (empty) file. Use of the EOF function
to detect End Of File will avoid this error.

BAD RECORD NUMBER 62

In a PUT or GET statement, the record number is either
greater than the allowable maximum (2046) or equal to zero.

BAD FILE NAME 63

A file name of @ characters (null) or a file name whose
first byte was 8 or 377 octal (255 decimal) or a file name
with more than 8 characters was used as an argument to LOAD,
SAVE, KILL or OPEN.

MODE-MISMATCH 64

Sequential OPEN for output was executed for a file that
already existed on the disk as a random (R) mode file, or

vice versa.
DIRECT STATEMENT IN FILE 65

A direct statement was encountered during a LOAD of a
program in ASCII format. The LOAD is terminated.

TOO MANY FILES

A SAVE or OPEN (O or R) was executed which would create a
new file on the disk, but all 255 directory entries were
already full. Delete some files and try again.

OUT OF RANDOM BLOCKS 67

61

66

“C

?(_/

ﬁary, 1977
-

Page

An attempt was made to have more random files OPEN at o
than the number of random blocks that were allocated dux
initialization by the response to
"NUMBER OF RANDOM FILES?" guestion (see Appendix H).

FILE ALREADY EXISTS

The new file name svecified in a WAME statement had the g

name as another file that already existed on the disk.
a different name.

FILE LINK ERROR

During the reading of a file, a sector was read which
not belong to the file.

6-6. Reserved Words.

Some words are reserved by the Altair BASIC interpreter
use as statements, commands, operators, etc. and thus
not be used for variable or function names. The reser
words are listed below in order of the versions for wh
they are reserved, starting with those reserved in
versions and ending with those reserved only in Disk Alqg
BASIC. Words reserved in larger versions may be used
smaller versions, although one may want to avoid
reserved words in the interest of compatibility.
addition to the words listed below, intrinsic function na
are reserved words in all versions in which they

available.
RESERVED WORDS

Words reserved in all versions.

CLEAR NEW
DATA NEXT
DIM PRINT
END READ
FOR REM
GOSUB RETURN
GOTO RUN
IF STOP
IWDPUT TO
LET . TAB
LIST THEN
USR

words reserved in 8K, Extended and Disk versions. All t
Plus:

91

nce
ing
the

68

H W
al=1
o0

did

for
may
ved
ich
all
air

in
all

In
mes

are

he above

69

January,

C

1977 Pag

An attempt was made to have more random files OPEN at
than the number of random blocks that were allocated du
initialization by the response to
"NUMBER OF RANDOM FILES?" question (see Appendix E).

FILE ALREADY EXISTS

The new file name specified in a NAME statement had the
name as another file that already existed on the disk.
a different name.

FILE LINK ERROR

During the reading of a file, a sector was read which
not belong to the file.

6-6. Reserved Words.

Some words are reserved by the Altair BASIC interpreter
use as statements, commands, operators, etc. and thus
not be used for variable or function names. The rese

e 91
once
ring
the
68

same
Try

did

for
may
rved

words are 1listed below in order of the versions for which

they are reserved, starting with those reserved in
versions and ending with those reserved only in Disk Al
BASIC. Words reserved in larger versions may be used
smaller versions, although one may want to avoid
reserved words in the interest of compatibility.
addition to the words listed below, intrinsic function n
are reserved words in all versions in which they

available.
RESERVED WORDS

Words reserved in all versions.

CLEAR NEW
DATA NEXT
DIM PRINT
END READ
FOR REM
GOsUB RETURN
GOTO RUN
IF STOP
INPUT TO
LET TAB
LIST THEN
USR

Words reserved in 8K, Extended and Disk versions. All
pPlus:

all
tair
in
all
In
ames
are

the above

69

January,

1977
AND ON
CONT OR
DEF ouT
FN POKE
NOT SPC
NULL WAIT
Words reserved in BExtended and Disk versions.
AUTO LINE
CONSOLE kL LLIST
DEFDBL LPRINT
DEFINT MOD
DEFSNG RENUM
DEFSTR RESUME
DELETE SPACES
EDIT STRINGS
ELSE SWAP
TROFF
ERASE TRON
ERL VARPTR
ERR WIDTH
IMP XOR
INSTR
Words reserved in Disk. All the above plus:
CLOSE LSET
DSKIS$ MERGE
DSKOS$ MOUNT
FIELD NAME
FILES OPEN
GET PUT
KILL RSET
LOAD UNLOAD

Page 92

All the above plus:

fanuary, 1977 Page 93
L// APPENDIX A
ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
200 NUL 243 + 486 v
001 SOH 244 . 287 W
a2 STX 845 - a88 X
203 ETX 946 . 989 b4
994 EOT 247 / 99 2
2845 ENQ 248 [/} 291 [
aa6 ACK 249 1 g92 \
897 BEL 850 2 @93]
298 BS a51 3 394 °
299 HT 252 4 a95 <
914d LF 853 5 a96 '
811 vT B854 6 997 a
912 FF 855 7 g98 b
813 CR 56 8 299 c
214 SO @857 9 1940 d
215 sI 358 : 191 e
gle DLE 859 : 192 £
817 DCl 269 < 183 g
218 DC2 261 = 184 h
a19 DC3 62 > 185 i

LJ 8249 DC4 963 ? 186 j
921 NAK 264 @ 107 k
922 SYN 65 A 148 1
a23 ETB 266 B 149 m
824 CAN 267 c 119 n
g25 EM 268 D 111 o
826 SUB 269 E 112 P
327 ESCAPE 879 F 113 q
A28 Fs 871 G 114 r
929 Gs 872 H 115 s
838 RS 873 I 116 t
231 Us 974 J 117 u
32 SPACE 475 K 118 v
33 ! 276 L 119 w
234 " 877 M 129 X
835 $ 278 N 121 Y
236 $ 879 o} 122 z
837 $ 280 4 123 {
238 & 281 Q 124 |
839 ' 282 R 125
949 { 283 S 126
41) 284 T 127 DEL
g42 * @85 u
LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

Ja

huary,

1977 Page 94

Using ASCII codes -- the CHRS function.

CHR$ (X) returns a string whose one character is that
with ASCII code X. ASC(XS$) converts the first character of
a string to its ASCII decimal value.

One of the most common uses of CHR§ is to send a
special character to the user's terminal. The most often
used of these characters is the BEL (ASCII 7). Printing
this character will cause a bell to ring on some terminals
and a beep on many CRT's. This may be used as a preface to
an error message, as a novelty, or just to wake up the user
if he has fallen asleep. Example:

PRINT CHR$(7);

Another major use of special characters is on those
CRT's that have cursor positioning and other special
functions (such as turning on a hard copy printer). For
example, on most CRT's a form feed (CHR$ (12)) will cause the
screen to erase and the cursor to “home” or move to the
upper left corner.

Some CRT's give the user the capability of drawing
graphs and curves in a special point-plotter mode. This
feature may easily be taken advantage of through use of
Altair BASIC's CHRS$ function.

[

m: -y, 1977

APPENDIX B
LOADING AND INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.

Page 95

This appendix details the procedure for loading BASIC
in 4K, 8K and Extended versions from paper tape or |tape

cassette. For instructions on 1loading Disk BASIC,
appendix BH

The programs below are entered into memory through

see

the

front panel switches. Rather than specify the switch

ositions as "up" and "down", it is convenient to denote
P

the

up position as 1 and the down position as #. Taken in
groups of three, then, the switches can represent octal

digits. To save space, the switch positions in

the

following 1loader program 1listings are shown in octal

notation. The leftmost two switches in an 8 bit set

are

represented by the first digit, the next three by the second

digit and the low-—order three switches by the last digit

For example, if we wish to enter octal 315 on the data
switch register, the switches would have the following

positions:

7 6 5 4 3 2 1 a
up 3 up down d?wn up up dogn up

For data entry, only the rightmost 8 switches of the
switches on the ALTAIR 8808 front panel switch register

16
are

used. All 16 switches would be used to enter a memory

address.

The following is the procedure for loading BASIC f[from

paper tape or cassette.

1. Turn the power switch on.

2. Raise the STOP switch and RESET switch simultaneously

3. Switch the terminal to LINE

4. Enter one of the following programs on the front panel

switches. The 388-MBL Multi-Boot Loader PROM cont:
the necessary loader programs, so it is not necessary
enter a loader from the front panel if it is install
Refer to the 88-MBL manual for more information.

ains
y to
led.

January, 1977 Page 95

_ APPENDIX B
LOADING AND INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.

This appendix details the procedure for loading |BASIC
in 4K, 8K and Extended versions from paper tape or tape
cassette. For instructions on 1loading Disk BASIC, see
appendix E.)

The programs below are entered into memory through the
front panel switches. Rather than specify the switch
positions as "up" and "down", it is convenient to denotle the
up position as 1 and the down position as 8. Taken in
groups of three, then, the switches can represent |octal
digits. To save space, the switch positions in the
following loader program 1listings are shown in octal
notation. The leftmost two switches in an 8 bit set are
represented by the first digit, the next three by the second
digit and the low-order three switches by the last digit.

For example, if we wish to enter octal 315 on the | data

(_/r switch register, the switches would have the following
positions:
7 6 5 4 3 2 1 2
up up down down up up down up
1 5

For data entry, only the rightmost 8 switches of the 16
switches on the ALTAIR 8800 front panel switch register are
used. All 16 switches would be used to enter a memory

address.

The following is the procedure for loading BASIC |from
paper tape or cassette.

1. Turn the power switch on.

2. Raise the STOP switch and RESET switch simultaneously

3. Switch the terminal to LINE

4. Enter one of the following programs on the front panel
switches. The 88-MBL Multi-Boot Loader PROM contains
the necessary loader programs, so it is not necessary to
enter a loader from the front panel if it is installed.

(~/ Refer to the 88-MBL manual for more information.

anuary, 1977 Page 96

a. loading from paper tape with the SIO board (REV 1)

Octal Address Octal Data
890 241

961 302

292 Oxx (17 for 4K, 37 for 8K, 77 for
493 g6l Extended & Disk)
004 222

285 00d

206 333

a7 200

619 817

g11 330

212 333

g13 201

214 275

215 319

fl6 955

917 167

020 309

921 351

222 983

823 008

b. loading from cassette

Octal Address Octal Data
008 41

201 382

282 gxx (17 for 4K, 37 for 8K, 77 for
293 g6l Extended and Disk)
204 22

285 000

gae 333

827 206

2919 217

711 3392

212 333

213 267

214 275

215 319

gle 855

817 167

220 3089

221 351

322 283

223 200

J~=uary, 1977 Page 97

c. loading with the 88 PIO board

Octal Address Octal Code
200 41

291 302

292 Oxx (17 for 4K, 37 for 8K, 77 Eor
203 961 Extended and Disk)
004 223

205 200

006 333

037 204

919 346

211 201

812 319

213 333

214 285

215 275

216 310

17 255

029 167

921 . 309

7922 351

923 293

324 2009

d. loading with the 2SIO board

Octal Address Octal Data
poo 876
a1 283
2062 323
903 220
994 376
235 P21 (=2 stop bits, 025=1 stop bit)
206 323
287 629
219 241
211 362
312 @xx (1l7for 4K, 37 for 8K, 77 for
213 961 Extended and Disk)
914 g32
g1s 060
gl6 333
917 220
g2g 217
621 320
822 333
223 921
724 275
Q/, 825 310
026 g55

827 167

January,

1977

Page 98
938 389
931 351
832 813
833 008

loading with the 4PIO board

Octal Address Octal Data
290 257
081 323
202 040
203 323
804 g41
285 876
006 954
8a7 323
219 040
911 041
812 342
213 @xx (17 for 4K, 37 for 8K, 77 for
914 861 Extended and Disk)
g15 a33
flé6 0a9
a17 333
920 840
921 887
922 330
823 333
924 g41
825 275
826 319
927 355
230 167
231 3090
332 351
833 814
834 660

Loading with the High Speed Tape Reader

Octal Address Octal Data
0008 257
81 323
202 244
9483 323
004 245
a5 323
206 746
207 257

] 323

J(»:ary, 1977

To enter these programs,

1.
2.
3.
4.
5.

6.

7.

Page 99

211 247
212 876
813 214
814 323
815 244
216 876
217 04
928 323
221 g46
822 323
823 847
024 41
225 392
826 gxx (17 for 4K, 37 for 8K, 77 for
227 961 Extended and Disk)
839 947
231 209
832 333
333 844
834 346
a35 109
836 310
837 333
949 945
841 275
942 318
g43 @855
244 167
245 : 309
g46 351
847 227
259 260

Put switches @ to 15 in the down positions
Raise EXAMINE

Put the data for address zero in switches @ through 7.
Raise DEPOSIT

Put the data for the next address in the switches
Depress DEPOSIT NEXT

_Repeat steps 5 and 6 until the whole loader is toggled
in

8.
9.
1a.

11.
12.
13.
14.
15.

le6.

17.
18.

19.

20.

21.

22.

January, 1977

Page 1040

Put switches @ through 15 in the down position
Raise EXAMINE

Check to see that the lights D@ through D7 show the
data that should be in location #@@4. Light on =1, light
off = #. If the correct value is there, go to step 13,
if not go to 11.

Put the correct value in the switches

Raise DEPOSIT

Depress EXAMINE NEXT

Repeat steps 10 through 13 to check the entire loader

If there were any mistakes, check the entire loader
again to make sure they were corrected.

If a paper tape is being loaded, put it into the reader
and make sure that it is positioned at the beginning of
the leader. The leader is the section of tape at the
beginning with 302 octal punched in each column. If an
audio cassette is being loaded, put it in the cassette
recorder and make sure it is fully rewound.

Lower switches @ through 15
Raise EXAMINE

Enter the sense switch settings. See the table in
section B.

If loading is through a SIOA, B or C or an 88PIO, turn
on the tape reader and then depress RUN. If a cassette
is being loaded, turn on the recorder, put it in PLAY
mode and wait 15 seconds. Then press RUN on the
computer. If loading is through a 4PIO, 2SIO or High
Speed Tape Reader, depress RUN and then start the read
device.

Wait for the tape to read. Paper tape takes about 25
minutes for Extended, 12 minutes for 8K and 6 minutes
for 4K. Cassettes take about 8 minutes for Extended, 4
minutes for 8K and 2 minutes for 4K. Do not move any of
the switches while the tape is being read.

If a loading error occurs, the loading procedure must
start over from step 1. See section C below for error

conditions.

‘EE

J(‘;fry, 1977

MEMORY SIZE? See section D below for what to do ne

24. If BASIC will not load from cassette, the ACR

in the ACR Manual, pages 22 and 28 may be used to
the ACR.

B. Sense Switch Settings

Sense switches (switches A8 through Al5) must be
before tape or cassette loading begins. The settings 4
on the terminal and input interface boards in use. The
order (rightmost) four switches contain the 1load
setting and the high order four switches contain
terminal board setting. In the table below, the setti
given for each I/0 board option. As above, the settin
an octal number which signifies the switch positions.
Terminal Switch and Load Switch columns show the swi
that are raised for each of the load and terminal 4

options.
(./ Sense Switch Terminal Load
Device Setting Switches Switches Chann
2810 [none none 24,
(2 stop bits)
2510 1 Al2 A8 29,
(1 stop bit)
SIO 2 Al3 A9 g,
ACR 3 Al3,Al2 A9,AS8 6,
4PI0 4 Al4 Ald 46, 41,
PIO 5 Al4,Al2 Ald,AS8 4,
HSR 6 Al4,Al3 Alj,AS 46,
non-standard 14
terminal

no terminal 15
Examples:

Input from audio cassette through ACR and CRT term
through 25I0 with 1 stop bit.

Switch 15 14 13 12 11 19 9 8

Position @ g] 1] 9 1 1

Input from high speed paper tape reader, terminal

: through SIO.
C Switch 15 14 13 12 11 18 9 8

Position @ [} 1) 2 1 1)

inal

2 Page 141

23. When the tape is read, BASIC should start up and |print
Xt.

may need realignment. The Input Test Program described

January, 1977 Page 102

g

C. Error Detection

The checksum loader turns on the Interrupt Enable light
on the front panel when a loading error occurs. The ASCII
code of the error 1letter 1is stored in 1location 4. In
addition, the error letter is sent out over all the terminal
channels and so will appear on whatever terminal is
connected to the terminal. The error 1letters are as
follows:

C checksum error. Bad tape data.

M memory error. Data won't store properly.
The address of the bad memory location is stored
in locations 1 and 2.

O overlay error. Attempt was made to load data on top
of the loader.

I invalid load device. 1Invalid setting on the
sense switches.

D. 1Initialization Dialog
Upon starting, BASIC prints
MEMORY SIZE? Q

To this, the user responds by typing the number of bytes of
memory to be wused by BASIC and BASIC programs. Remember
that the BASIC interpreter itself takes 3.4K in the 4K
version, 6.2K in 8K and 14.6K in Extended. If the response
is just a carriage return, BASIC will use all the memory it
can find, starting at location zero up to the last byte of
read/write memory. Then BASIC asks,

TERMINAL WIDTH?

to which the user responds with the width of the printing
line of whatever output device is in use. Typing a carriage
return sets the terminal width to 72. Extended and Disk
Altair BASIC set the terminal width through the WIDTH
command, so the TERMINAL WIDTH question is not asked at
initialization and an initial width of 72 is assumed. In
4K, the response to MEMORY SI2E? and TERMINAL WIDTH? must
be less than 6 digits.

At this point BASIC asks several questions about
mathematical functions. The functions may be kept if needed
or deleted to save space. 4K asks,

SIN? Answer Y to save SIN, SQR and RND @
Answer N to delete SIN and see the

J(h;ary, 1977 Page 143

next question
SQR? Y keeps SQR and RND

N deletes SQR, asks next question
RND? Y keeps RND

N deletes RND

8K and Extended BASIC ask,

keeps all four

deletes all four
deletes only ATN
(in extended) retains
CONSOLE function. Any
other answer deletes
CONSOLE.

WANT SIN-COS-TAN-ATN?

QP2

Now BASIC prints,
XXXX BYTES FREE

ALTAIR BASIC VERSION 4.0
[FOUR-K VERSION]

or
(M/' [EIGHT-K VERSION]
or
[EXTENDED VERSION]
K

BASIC is now in command level and is ready for use.

E. Echo Routines.

The Altair input/output channels work in a full-duyplex
mode. This means that characters entered on an input/output
terminal will not, as a rule, be printed as they are entered
unless the computer is programmed to return them.| The
following echo programs may be used to test the input/output
devices. To test an input-only device, dump the echoed
characters on an output device or store them in memory| for
later examination. To test an output-only device, send the
echo characters through the front panel switches or send a
constant character. Be sure to check the ready-to-receive
bit of the output terminal before attempting output. If the
echo program works, but BASIC does not, make sure the |load
device's I/0 board is strapped for 8 data bits and that | the
ready-to-recieve bit is set properly on the terminal device.

88-PIO
OCTAL ADDRESS OCTAL CODE
(_/ 201 204
082 346

083 281

anuary, 1977 Page 104
004 312 u
285 299
046 090
887 333
210 245
11 323
g12 285
g13 343
214 090
815 299

2510
OCTAL ADDRESS OCTAL CODE
0900 276
g8l 283
902 323
283 828 (flag ch.)
004 876
285 821 (=2 stop bits,
606 323 #25=1 stop bit)
887 820
210 333
411 829
‘612 817
913 322 u
214 2810 ‘
g15 900
glé6 333
817 821 (data channel)
229 323
g21 g21
222 383
923 919
424 294
4PIO0
OCTAL ADDRESS OCTAL CODE
090 257
981 323
892 040
g3 323
004 g4l
485 323
2d36 g42
887 357
919 323
g1l 243
gl2 a76
g13 854
214 323 y
915 240 d
gle 323

January,

C

1977

017
229
21
g22
823
224
825
226
27
030
231
832
833
034
835
236
837
240
241
42
643
f44

242
333
040
346
200
312
020
208
333
242
346
200
312
827
0089
333
g4l
323
043
383
320
200

Pag

e 185

anpary,

1977 Page 106

APPENDIX C
SPACE AND SPEED HINTS

A. Space Allocation

The memory space required for a program depends, of
course, on the number and kind of elements in the program.
The following table contains information on the space
required for the various program elements.

Element Space Required

Variables
numeric integer 5 bytes
single precision 7 bytes in Extended and Disk
6 bytes in 4K and 8K
double precision 11 bytes
string 6 bytes

Arrays
integer (# of elements)* 2 + 6 +(# of dimensions)*2 bytes
single precision 4+ 5
double precision 8
string : 3
8K and 4K

strings and floating pt. 6 + 5

Functions
intrinsic 1 byte for the call (2 bytes in Extended and Disk)

user-defined 6 bytes for the definition :

Reserved Words 1 byte each
2 bytes for ELSE in Extended and Disk

Other Characters
1 byte each

String Space 1 byte per character

Stack Space
active FOR
loop 17 bytes in Extended and Disk,
16 bytes in 4K and 8K
active GOSUB 5 bytes
parentheses 6 bytes each set
temporary
result 12 bytes in Extended and Disk
18 bytes in 4K and 8K

C

January, 1977

in 8K, 14.6K in Extended and 20 K in Disk.

B.

Page 187

BASIC itself takes about 3.4K in the 4K version,

Space Hints

The space required to run a program may

6.2K

be

significantly reduced without affecting exectuion by

following a few of the following hints.

1.

5.

Use multiple statements per line. Each line has

a 5

byte overhead €for the line number, etc., so the fewer

lines there are, the less storage is required.

Delete unnecessary spaces. Instead of writing
19 PRINT X, Y, 2
use
1¢ PRINTX,Y,Z
Delete REM statements to save 1 byte for REM and 1

for each character of the remark.

Use variables instead of costants, expecially when

byte

the

same value 1is used several times. For example, using
the constant 3.14159 ten times in a program uses 448

bytes more space than assigning
10 P=3.14159
once and using P ten times.

Using END as the last statement of a program is
necessary and takes one extra byte.

Reuse unneeded variables instead of defining
variables.

Use subroutines instead of writing the same
several times.

Use the smallest version of BASIC that will run
program.

Use the zero elements of arrays. Remember the &
dimensioned by

100 DIM A(18)

has eleven elements, A(@) through A(18).

not

new

code

the

rray

January, 1977 Page 148

1g. In Extended and Disk, use integer variables wherever
possible.

C. Speed Hints

1. Deleting spaces and REM statements gives a small but
significant decrease in execution time.

2. Variables are set up in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the wvariable at each
reference. Variables at the head of the table take less
time to search for than those at the end. So, reuse
variable names and keep the list of variables as short
as possible.

3. In 8K, Extended and Disk use NEXT without the index
variable.

4. 8K, Extended and Disk have faster floating point
arithmetic than 4K. If space is not a limitation, use

the larger versions,

5. The math functions in 8K, Extended and Disk are faster
than those in 4K.

6. In the 4K and 8K versions, use variables instead of
constants, especially in FOR loops and other code that
must be executed repeatedly.

7. In Extended and Disk wuse integer variables wherever
possible.

January, 1977

C

APPENDIX D
MATHEMATICAL FUNCTIONS

Page 149

l. Derived Functions

The following functions,
BASIC, can be calculated using the existing BASIC funct

Function:

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

“&2. Simulated Math Functions.\&

The following subroutines are intended for 4K BASIC

while not intrinsic to A

BASIC equivalent:

SEC(X) = 1/C0S(X)
CSC(X) = 1/SIN(X)
COT(X) = 1/TAN(X)
ARCSIN(X) = ATN(X/SQR(=X*X+1)
ARCCOS(X) = =ATN X(X/SQR(=X*X
+1.5708
ARCSEC(X) = ATN(XSQR(X*X-1))
+SGN (SGN (X)-1)*1.5708
ARCCSC(X) = ATN(1/SQR(X*X-1))
+(SGN(X)-1)*1.5798
ARCCOT(X) = ATN(X)+1.5708
SINH(X) = (EXP(X)-EXP(=X))/2
COSH(X) = (EXP(X)+EXP(-X))/2
TANH(X) = EXP(-X)/EXP(X)+EXDP(
*241
SECH(X) = 2/(EXP(X)+EXP(=X))
CSCHE(X) = 2/(EXP(X)~EXP(~X))
COTH(X) = EXP(-X)/(EXP(X)-EXP
*2+1

ARCSINH(X) = LOG(X+SQR(X*X+1)
ARCCOSH(X) = LOG(X+SQR(X*X+~1
ARCTANH (X) = LOG((1+X)/(1-X))
ARCSECH (X)

LOG((SQR(=X*X+1)

ARCCSCH(X) = LOG((SGN(X)*
SQR(X*X+1)+1) /X

ARCCOTH(X) = LOG((X+1l)/(X-1))

i

)
4

+

u

LTAIR

ons.

1))

X))

-X))

1) /%)

sers

uary, 1977

who

the

Page 119

want to use the transcendental functions not built into
4K BASIC. The corresponding routines for these functions in
8K version are much faster and more accurate. The REM QI

statements in these subroutines are given for documentation
purposes only, and should not be typed in because they take

up a large amount of memory. The following are the
subroutine calls and their 8K equivalents:

8K EQUIVALENT 4K SUBROUTINE CALL

P9=X9"Y9 GOSUB 60830

L9=LOG (X9) GOSUB 606949

E9=EXP(X9) GOSUB 601640

C9=COS (X9) GOSUB 60248

T9=TAN (X9) GOSUB 60288

A9=ATN (X9) GOSUB 60319

The unneeded subroutines should not be typed in. Please
note which variables are used by each subroutine. Also note
that TAN and COS require that the SIN function be retained
when BASIC is loaded and initialized.

60000
60010
600249
60030
60040

60058
60060
60079
60080
60090
60100
60110
60120
66130

60135
60148
60150
60160
60170
60175
601840
601940
60195
60197
60200
60218
66220
60230

REM EXPONENTIATION: P9=X9°Y9

REM NEED: EXP, LOG
REM VARIABLES USED: A9,B9,C9,E9,L9,P9,X9,YS

REM P9 =1 : E9=0 : IF Y9=0 THEN RETURN
IF X9<@ THEN IF INT(Y9)=Y9 THEN P9=1~2*Y9+4*INT(Y9/2)

s X9=-X9 (]
IF X9<>0 THEN GOSUB 68098 : X9=Y9*L9 : GOSUB 691640 «
P9=P9*E9 : RETURN ’
REM NATURAL LOGARITHM: L9=LOG(X9)
REM VARIABLES USED: A9,B9,C9,E9,L9,X9
E9=9 : IF X9<=4 THEN PRINT "LOG FC ERROR"; : STOP
A9=1: B9=2: C9=.5: REM THIS WILL SPEED THE FOLLOWING
IF X9>=A9 THEN X9=C9*X9 : E9=E9+A9 : GOTO 60100
X9=(X9~.707137)/(X9+.7077187) : L9=X9*X9
L9=(((.598979*L9+.961471) *L9+2.88539) *X9+E9~-.5) *
.693147
RETURN
REM EXPONENTIAL : E9=EXP(X9)
REM VARIABLES USED: A9,E9,L9,X9
LO9=INT(1.4427*X9)+1 : IF L9<127 THEN 60180
IF X9>d THEN PRINT "EXP OV ERROR"; : STOP
E9=8 : RETURN
E9=,693147*L9-X9 : A9=1.329388E-3-1.41316E-4*E9
A9=((A9*E9-8.30136E-3) *E9+4.16574E-2) *E9
E9=((A9-.166665) *E9-1) *ES+1 : A9=2
IF L9<=0 THEN A9=.5 : L9=-L% : IF L9=¢ THEN RETURN
FOR X9=1 TO L9 : E9=A9*E9 : NEXT X9 : RETURN
REM COSINE: C9=CO0S(X9)
REM N.B. SIN MUST BE RETAINED AT LOAD-TIME
REM VARIABLES USED: C9,X9

January, 1977 Page 111

_ 60240 C9=SIN(X9+1.5788) : RETURN
60258 REM TANGENT: T9=TAN (X9)
60260 REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME)
60270 REM VARIABLES USED: C9,T9,X9
60288 GOSUB 68240 : T9=SIN(X9)/C9 : RETURN
60290 REM ARCTANGENT : A9=ATN(X9)

60308 REM VARIABLES USED: A9,B9,C9,T9,X9

60318 T9=SGN(X9) : X9=ABS(X9):C9=8: IF X>1 THEN C9-1l: X9=1/X9

60320 A9=X9*X9 : B9=((2.86623E-3*A9-1.61657E~-2) *A9
+4.29096E-2) *A3

60338 B9=((((BI-7.5289E=2) *A9+.106563) *A9-.1142089) *A%+,199936) *A9

603408 A9=((B9-.333332) *A9+1)*X9 : IF C9=1 THEN A9=l.5708-A3

January,

1977 Page 112

APPENDIX E
< BASIC AND ASSEMBLY LANGUAGE

All versions of Altair BASIC have provisions for
interfacing with assembly 1language routines. The USR
function allows Altair BASIC programs to call assembly
language subroutines in the same manner as BASIC functions.

The first step in setting up a machine language
subroutine for an Altair BASIC program is to set aside
memory space. When BASIC asks, MEMORY SIZE? during
initialization, the response should be the size of memory
available, minus the amount needed for the assembly language
routine., BASIC uses all the bytes it can find from location
Zero up, so only the topmost locations in memory can be used
for user supplied routines. If the answer to the MEMORY
SIZE? question is too small, BASIC will ask the question
again until it gets all the memory it needs. See Appendix

The assembly language routine may be loaded into memory
from the front panel switches or from a BASIC program by
means of the POKE statement.

The starting address of the assembly language routine
goes in USRLOC, a two byte location in memory which varies
from version to version. USRLOC for 4K and 8K Altair BASIC
version 4.6 1is 111 decimal. In Extended and Disk, USRLOC
need not be known explicitly since it is defined
automatically by DEFUSR. See section 5-3b. The function
USR calls the routine whose address is in USRLOC.
Initially, USRLOC contains the address of ILLFUN, the
routine which gives the FC or ILLEGAL FUNCTION CALL error,
which is what happens if USR is called with no assembly

language routine having been loaded.

When USR is called, the stack pointer is set up for 8
levels (16 bytes) of stack storage. If more stack space is
needed, BASICs stack can be saved and a new stack set up for
use by the assembly language routine. BASIC's stack must be
restored, however, before returning from the user routine.

All memory and all the registers can be changed by a
user's assembly language routine. Of course, memory
locations within BASIC ought not to be changed, nor should
more bytes be popped off the stack than were put on it.

USR is called with a single argument. The assembly
language routine can retrieve this argument by calling the
routine whose address is in locations 4 and 5 decimal. The

gnuary,

C

1977 Page

APPENDIX E
BASIC AND ASSEMBLY LANGUAGE

All versions of Altair BASIC have provisions
interfacing with assembly language routines. The
function allows, Altair BASIC programs to call asse
language subroutines in the same manner as BASIC functio

The first step in setting up a machine lang
subroutine for an Altair BASIC program is to set a
memory sSpace. When BASIC asks, MEMORY SIZE? du
initialization, the response should be the size of me
available, minus the amount needed for the assembly lang
routine. BASIC uses all the bytes it can find from loca
zero up, so only the topmost locations in memory can be
for user supplied routines. If the answer to the ME
SIZE? question is too small, BASIC will ask the ques
again until it gets all the memory it needs. See Appe

c.

The assembly language routine may be loaded into me
from the front panel switches or from a BASIC progra

means of the POKE statement.

The starting address of the assembly language rou
goes in USRLOC, a two byte location in memory which va
from version to version. _USRLOC for 4K and 8K Altair B
version 4.8 is 111 d&&iwmal. In Extended and Disk, US
need not be known explicitly since it is def
automatically by DEFUSR. See section 5-3b. The func
USR calls the routine whose address is in USR
Initially, USRLOC contains the address of ILLFUN,
routine which gives the FC or ILLEGAL FUNCTION CALL er
which is what happens if USR is called with no asser

language routine having been loaded.

When USR is called, the stack pointer is set up fo
levels (16 bytes) of stack storage. If more stack spac
needed, BASICs stack can be saved and a new stack set up
use by the assembly language routine, BASIC's stack mus
restored, however, before returning from the user routin

All memory and all the registers can be changed b
user's assembly language routine. Of course, me
locations within BASIC ought not to be changed, nor shg
more bytes be popped off the stack than were put on it.

USR is called with a single argument. The assen
language routine can retrieve this argument by calling
routine whose address is in locations 4 and 5 decimal.

112

for
USR
bly
S.

age
ide
ing
ory
age
ion
sed
ORY
ion
dix

ory
by

ies
SIC
LOC
ned
ion
ocC.
the
or,
bly

is
for
be

ory
uld

bly
the
The

U

January, 1977 Page 113

low-order byte of the address is in 4 and the high-order in
5. In 4K and 8K, this routine (DEINT) stores the argument
in the register pair [D,E]. In Extended, the argument is
passed in pair [H,L]. The argument is truncated to integer
in 4K and 8K, and if it is not in the range -32768 to 32767,
an FC error occurs. In extended, the register pair [H,L]
contains a pointer to the Floating Point Accumulator where

the argument is stored (see section 5-3b. for
information).

more

To pass a result back from an assembly language
routine, load the value in register pair [A,B] in 4K and 8K,

or [H,L] in Extended. This value must be a signed, 16

bit

integer as defined above. Then call the routine whose

address is in locations 6 and 7. If this routine Iis
called, USR(X) returns X. To return to BASIC, then
assembly language routine executes a RET instruction.

not
the

Assembly language routines can be written to handle
interrupts. Locations 56, 57 and 58 are used to hold a JMP
instruction to a user supplied interrupt handling routine.
Location 56 initially holds a RET, so it must be set up by

the user or an interrupt will have no effect.

All interrupt handling routines should save the stack,
registers A~-L and the PSW. They should also reenable

interrupts before returning since an interrupt automatic
disables all further interrupts once it is received.

There is only one way to call an assembly 1lang
routine in 4K and 8K, but this does not limit the progra
to only one assembly language routine. The argument of
can be used to designate which routine is being called.
8K, additional arguments can be passed through the use
POKE and values may be passed back by PEEK.

In Extended and Disk BASIC, up to ten routines may
called with the USR@ - USR9 functions. For more informd
on this feature, see section 5-3b.

ally

uage
nmer
USR
In
of

be
tion

January, 1977 Page 114

APPENDIX F
USING THE ACR INTERFACE

NOTE

The cassette features , CLOAD and CSAVE , are only
present in 8K Altair BASICs which are distributed on
cassette, and in Extended and Disk wversions. 8K
BASIC on paper tape will give the user about 258
additional bytes of free memory, but it will not
recognize the CLOAD or CSAVE commands.

Programs may be saved on cassette tape by means of the
CSAVE command. CSAVE may be used in either direct or
indirect mode, and its format is as follows:

CSAVE <string expression>

The program currently in memory is saved on cassette under
the name specified by the first character of the STRING
expression>. CSAVE writes through channel 7 when the Write
Buffer Empty bit (bit 7) of channel 6 is low. After CSAVE
is completed, BASIC always returns to command level.
Programs are written on tape in BASIC's internal
representation. Variable values are not saved on tape,
although an indirect mode CSAVE does not affect the variable
values of the program currently in memory. The number of
nulls (see NULL command) has no affect on the operation of
CSAVE. Before using CSAVE, turn on the cassette recorder,
make sure the tape is in the proper position and put the
recorder in RECORD mode.

Programs may be loaded from cassette tape by means of
the CLOAD command, which has the same format as CSAVE. The
effect of CLOAD is to execute a NEW command, clearing memory
and all variable values, and loading the specified file into
memory. When done reading and loading, BASIC returns to
command level. CLOAD reads a byte from channel 7 when the
Read Data Ready bit (bit @) in channel 6 is 1low. Reading
continues wuntil 3 consecutive zeros are read. BASIC will
not return to command level after a CLOAD if it c¢ould not
find the requested file or if the file was found but did not
end with 3 zeros. 1In that case, the computer will continue
to search until it is stopped and restarted at location 4.

anuary,

C

1977 Page

APPENDIX F
USING THE ACR INTERFACE

NOTE

The cassette features , CLOAD and CSAVE , are only
present in 8K Altair BASICs which are distributed on
cassette, and in Extended and Disk versions. 8K
BASIC on paper tape will give the user about 2540
additional bytes of free memory, but it will not
recognize the CLOAD or CSAVE commands.

Programs may be saved on cassette tape by means of
CSAVE command. CSAVE may be wused in either direc
indirect mode, and its format is as follows:

CSAVE <string expression> ; fAbe
e » NOTEcjués BY Tispve " A

The program curreqﬁix,iﬂ’ﬁéﬁgz§’is saved on cassette u
the name spigified by the £first character of the<sT
expression>. “CSAVE writes through channel 7 when the W
Buffer Empty bit (bit 7) of channel 6 is low. After C
is completed, BASIC always returns to command le
Programs are written on tape in BASIC's inte
representation. Variable values are not saved on t
although an indirect mode CSAVE does not affect the vari
values of the program currently in memory. The number
nulls (see NULL.command) has no affect on the operatio
CSAVE. Before using CSAVE, turn on the cassette recor
maka sure the tape 1is in the proper position and put
recorder in RECCRD mode. -

Programs may be loaded from cassette tape by means
the CLOAD command, which has the same format as CSAVE.
effect of CLOAD is to execute a NEW command, clearing me
and all variable values, and loading the specified file
memory. When done reading and loading, BASIC returns
command level. CLOAD reads a byte from channel 7 when
Read Data Ready bit (bit @) in channel 6 1is low. Rea
continues until 3 consecutive zeros are read. BASIC
not return to command level after a CLOAD if it could
find the requested file or if the file was found but did
end with 3 zeros. In that case, the computer will cont
to search until it is stopped and restarted at location

114

the
t or

-
we FRo £ RAIVE

nder
RING
rite
SAVE
vel,
rnal
ape,

ilable

of
n of
der,
the

of
The
mory
into

to
the
ding
will
not
not
inue
J.

!
1AMED !

C

January, 1977 Page 115

In the 8K cassette and Extended versions of ALTAIR
BASIC, data may be read and written with the CSAVE* and

CLOAD* commands. The formats are as follows:
CSAVE*<array variable name>

and

CLOAD*<array variable name>

See section 2-44 for a discussion of CSAVE* and CLOAD*| for
array data.

CLOAD?<string expression> compares the program

If

currently in memory with the specified file on cassette

the two files match, BASIC prints OK. If not, BASIC prints

NO GOOD.

Data may also be read from and written on cassette in
the paper tape version of 8K Altair BASIC. To write data,
execute a WAIT 6,128 statement to check for the Write Buffer

Empty bit and then write with an OUT 7,<byte> statement
read, execute a WAIT 6,1 to check for Read Data Ready

To
and

then read with an INP(7). The end of a block of data may be

conveniently designated by a special character. Data sh
be stored in array form since there is no time du
reading and writing for computation.

tould
1ring

January, 1977 Page 116

APPENDIX G .

CONVERTING BASIC PROGRAMS
NOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers
are in many ways similar, there are some incompatibilities
between ALTAIR BASIC and the BASIC used on other computers.

1) Strings.

A number of BASICs require the 1length of strings to be
declared before they are used. All dimension statements of
this type should be removed from the program. In some of
these BASICs, a declaration of the form DIM A$(I,J) declares
a string array of J elements each of which has a length 1I.
Convert DIM statements of this type to equivalent ones in
Altair BASIC: DIM A$(J). Altair BASIC uses " + " for
string concatenation, not " , " or " &." ALTAIR BASIC uses
LEFT$, RIGHTS and MID$ to take substrings of strings. Some
other BASICs use AS$(I) to access the Ith character of the
string A$, and AS$(I,J) to take a substring of AS from
character position I to character position J. Convert as

follows:
oLD ' NEW
A$(I) MIDS (AS,I,1)
AS(I,J) MIDS (AS$,I,J-I+]1)

This assumes that the reference to a subscript of A$ is in
an expression or is on the right side of an assignment. If
the reference to A$ 1is on the 1left hand side of an
assignment, and X$ is the string expression used to replace
characters in A$, convert as follows

In 4K and 8K

OLD NEW
AS(I)=XS A$=LEFTS$ (AS,I-1)+XS+MIDS$ (A$,I+1)
AS(I,J)=X$ AS=LEFTS (AS,I-1)+X$+MIDS (AS,JT+1)
Extended and Disk

OLD NEW

AS(I)=X$ MIDS (AS$,1,1)=X$

AS(I,J)=X$ MIDS$ (A$,I,J-I+1)=X$

C

2) Multiple assignments,
Some BASICs allow statements of the form:
508 LET B=C=§

This statement would set the variables B and C to zero.
8K Altair BASIC this has an entirely different effect

January, 1977 Page 117

In
All

the " = " gigns to the right of the first one would be
interpreted as logical comparison operators. This would set
the variable B to -1 if C equaled 8. If C did not equal 4,
B would be set to f#. The easiest way to convert statements

like this one is to rewrite them as follows.

560 C=g:B=C

3) Some BASICs use " \ " instead of " " to delimit
"

multiple statements on a line. Change each " \ " to "
in the program.

4) Paper tapes punched by other BASICs may have no nulls at

the end of each 1line, instead of the three per

line

recommended for use with Altair BASIC. To get around |this,
try to use the tape feed control on the Teletype to stop the
tape from reading as soon as Altair BASIC prints a carfriage

return at the end of the line. Wait a moment, and

then

continue feeding in the tape. When reading has finished, be

sure to punch a new tape in Altair BASIC's format.

A program for converting tapes to Altair BASIC's format

was published in MITS Computer Notes, November 1976, p.

5) Programs which use the MAT functions available in
BASICs will have to be re-written using FOR...NEXT loog
perform the appropriate operations.

25,

some
ps to

January, 1977 Page 118

APPENDIX H
DISK INFORMATION

Format of Altair Floppy Disk

Track Allocation:

Tracks Use

#8-5 . Disk BASIC memory image.

6-69 Space for either random or sequential files.
70 Directory track. See below.

71-76 Space for sequential files only.

Format of DISK BASIC Memory Image (Tracks 4-5):

BASIC is loaded starting at track # sector § then track o
sector 1, etc. BEach sector contains 128 bytes of BASIC.
The first 128 bytes are loaded first, second 128 second,

etc.

Sector format (Tracks #-5):

Byte Use
) Track Number+128 decimal.
1-2 Sixteen bit address of the next
higher byte of memory than the highest memory location
saved on this sector.
3-130 128 bytes of BASIC.
131 255 decimal stop byte.
132 Checksum - sum of bytes 3-139 with no carry in 8 bits.

Sector format (Tracks 6-76):

Byte Use
(] Most Significant Bit always on.
Contains track number plus 206 octal.
1 Sector number * 17 MOD 32.
2 File number in directory. Zero file number means

that the sector is not part of any file. If the
sector is the first file of a group of 8 sectors
f means the whole group of 8 sectors is free.

1977 Page 119

anuary,
”(~/ 3 Number of data bytes written (8 to 128) . Always
128 for random files. (Except for the random file
index blocks in which case this byte indicates how many
groups are allocated to the file.)
4 Checksum. The sum of all the data on the sector
except for the track number, the sector
number and the terminating 255 byte.
5,6 Pointer to the next group of data. This is set up |for
random files and sequential files, and is even valid
in the middle of a group. If it is zero it means fhere
is no more data in the file. The track is the firgt byte
and the sector number is the second byte.
7-134 Data
135 A 255 (octal 377) to make sure the right number
of data bytes were read.
136 Unused.
Directory Track (78) Format:
Each sector of the directory (which is all of track 78)
is composed of up to 8 file name slots, 16 bytes per slot.
Each slot can contain a file name (8 bytes), a link to | the
start of file data (2 bytes), and a byte which specifies the
mode of a file (Random=4, Sequential=2). The remaining 5
I bytes are not currently used. Any slot which has the first

-
L(~/ filename byte equal to zero contains a file which has |been

deleted. If the first byte of a slot is a 255 , it is the
last slot currently in use in the directory. Slots beyond
the "stopper" are garbage. File numbers are calculated by

multiplying the sector number of the directory track the
file is in by #88and adding the position of the slot in the

sector (Z—g) plus 1.

NOTE

The ith logical sector on a track is actually mapped
to the i*17 MOD 32 ohysical sector to improve
latency in BASIC I/O operations.

Format of Random Files

Each random file starts with two random index blocks. The
"number of data bytes" field in the first block indicates
how many groups are currently allocated to this random file.
The next 256 bytes in the two random index blocks give| the
location of each group in the random file in order of their
position in the file. The upper two bits give the group
f(~/ number , and the lower six bits give the track number - 6.

January, 1977 Page 119

C

3 Number of data bytes written (6 to 128) . Always
128 for random files. (Except for the random file
index blocks in which case this byte indicates

groups are allocated to the file.)

4 Checksum. The sum of all the data on the sector
except for the track number, the sector
number and the terminating 255 byte.

5,6 Pointer to the next group of data. This is set up
random files and sequential files, and is even va
in the middle of a group. If it is zero it means
is no more data in the file. The track is the fir
and the sector number is the second byte.

7-134 Data

135 A 255 (octal 377) to make sure the right number
of data bytes were read.

136 Unused.

Directory Track (79) Format:

how many

for
1lid
there
st byte

Each sector of the directory (which is all of track 74)
is composed of up to 8 file name slots, 16 bytes per slot.

Each slot can contain a file name (8 bytes), a link to

the

start of file data (2 bytes), and a byte which specifies the
mode of a file (Random=4, Sequential=2)., The remaining 5
bytes are not currently used. Any slot which has the first

filename byte equal to zero contains a file which has

been

deleted. If the first byte of a slot is a 255 , it is the
last slot currently in use in the directory. Slots bEyond

the "stopper" are garbage. File numbers are calculat
multiplying the sector number of the directory track

d by
the

file is in by 16 and adding the position of the slot in the

sector (8-8) plus 1.

NOTE
The ith logical sector on a track is actually mapped
to the 1i*17 MOD 32 physical sector to improve
latency in BASIC I/0 operations.
Format of Random Files
Each random file starts with two random index blocks. The
"number of data bytes"” field in the first block indicates
how many groups are currently allocated to this random file.

The next 256 bytes in the two random index blocks give
location of each group in the random file in order of
position in the file. The upper two bits give the ¢

number , and the lower six bits give the track number -|6

5 the
their
group

anuary,

1977 Page 120

Assembly Code to Read and Write a Sector

The following code has been provided to help users write
their own assembly language subroutines to read and write
data on the floppy disk. It is assumed that the disk being
used - has already been enabled and positioned to the correct
track. Two data bytes are always read or written at a time
so that the CPU can keep up with the data rate (32
microseconds/byte) of the floppy disk. After two bytes are
read or written, the CPU re~-synchronizes with the next ‘'byte
ready' status from the floppy disk controller.

CALL WITH NUMBER OF DATA BYTES TO WRITE IN [A]
AND POINTER TO DATA BUFFER IN [H,L]
ALL REGS DESTROYED.

~e wo we

DSKO: MOV c,A ;SAVE # OF BYTES IN C
MVI A,136 ;CALCULATE NUMBER OF ZEROS TO WRITE
SUB C ;SUBTRACT THE NUMBER OF DATA BYTES
MOV B,A ;NUMBER OF ZEROS+1
CALL SECGET s LATENCY
MVI A,128 ;ENABLE WRITE WITHOUT SPECIAL CURRENT
ouT 9
’
; CALL WITH [B]=NUMBER OF ZEROS [C]=NUMBER OF DATA BYTES
; AND [H,L] POINTING AT OUTPUT DATA
’
OHLDSK: MVI D,1 ;SETUP A MASK (READY TO WRITE)
MVI A,128 ;HIGH BIT (D7) ALWAYS ON IN FIRST BYTE
ORA M ;OR ON DATA BYTE
MOV E,A ;SAVE FOR LATER
INX H ; INCREMENT BUFFER POINTER
NOTYTD: IN 8 ;GET WRITE DATA READY STATUS
ANA D ;TEST STATUS BIT
JNZ NOTYTD ;sNOT READY TO WRITE, WAIT
ADD E ;ADD BYTE WE WANT TO SEND TO ZERO
oyt 19 ;SEND THE BYTE
MOV A,M ;GET NEXT BYTE TO SEND
INX H ;MOVE BUFFER POINTER AHEAD
MoV E,M ;GET NEXT DATA BYTE
INX H ;MOVE BUFFER POINTER AHEAD AGAIN
DCR C ;DECREMENT COUNT OF CHARS TO SEND
Jz ZRLOP ;IF DONE, QUIT & GO TO ZRLOP
DCR C ;DECREMENT COUNT OF CHARS AGAIN
ouT 10 ;SEND THIS BYTE
JN2Z NOTYTD ;STILL MORE CHARS, DO THEM.
ZRLOP: IN 8 ;GET READY TO WRITE
ANA D ;IS IT READY
JNZ ZRLOP ;IF NOT, LOOP
ouT 10 ;KEEP SENDING FINAL BYTE
DCR B ;DECREMENT COUNT OF BYTES TO SEND

“

January, 1977

C -
EI
MVI
ouT
RET

. we

the PROM

PROM

highest position
be strapped at the proper address.
IC socket on the opposite side of the board

The black dot or
upper

ZRLOP

A,8
9

DISK INPUT ROUTINE.
OF 137 BYTE BUFFER IN [H,L]. ALL REGS DESTROYED.

DSKI: CALL SECGET
MVI c,137
READOK : IN
ORA A
M READOR
IN 10
MOV M,A
INX H
DCR c
J2 RETDO
DCR c
NOP
IN 19
MOV M,A
INX H
JNZ READOK
(~/ RETDO: EI
MVI a,s8
ouT © 9
RET
SECGET: MVI
ouT 9
DI
SECLP2: IN
RAR
Jc SECLP2
ANI 31
CMP E
JNZ SECLP2
RET

The Disk PROM Bootstrap Loader

ENTER WITH POINTER

8

A4

The Disk bootstrap loader PROM must be
on the PROM board and the PROM board

the black finned heat sink.
should be 1in
jumpers on the PROM board must be in the

the

Page 121

;KEEP WAITING
;RE-ENABLE INTERRUPTS
;UNLOAD HEAD

;SEND COMMAND

;DONE

;POINT TO RIGHT SECTOR

3GET # OF CHARS TO READ
;GET DISK STATUS

;READY TO READ BYTE

sREAD THE STUFF
;SAVE IN BUFFER
;BUMP DESTINATION POINTER
;LESS CHARS

;IF OUT OF CHARS, RETURN
;DECREMENT COUNT OF CHARS
;DELAY INTO NEXT BYTE
;GET NEXT BYTE

;SAVE BYTE IN BUFFER
;sMOVE BUFFER POINTER
;IF CHARS STILL LEFT,

LOQP BACK

;+RE-ENABLE INTERRUPTS

; UNLOAD HEAD
:SEND COMMAND

;LOAD THE HEAD

;DISABLE INTERRUPTS

;GET SECTOR INFO
;FIX UP SECTOR #
;IF NOT, KEEP WAITING
sGET SECTOR #
;IS IT THE ONE WE WANTED
;TRY TO FIND IT

installed in

The proper position

'1' on
corner., The add
'1' position.

left

the
must
is
from
the
ress

1977 Page 122

To use the Disk bootstrap loader, turn the computer's power
on. Raise RESET and STOP simultaneously. Lower RESET and
then STOP. EXAMINE location 177400 (address switches Al5-A8
up, rest down) and then set the sense switches for the
terminal I/O0 board as explained in Appendix B. Depress the
RUN switch. BASIC should print (or display):

MEMORY SIZE?

For the rest of the initialization procedure, see below.
Using the Cassette and Paper Tape Bootstraps

If the Disk Bootstrap PROM is not in use, a paper tape or
cassette program must be loaded which then reads in BASIC
grom the disk. This is done by following the procedure
elow:

1. Key in the applicable paper tape or cassette bootstrap

loader from the listings 1in Appendix B. Make
location 2=116 octal. Set the sense switches for the
terminal

2. Start the paper tape or cassette (labeled DISK LOADER)
reading, and then start the computer as in the
instructions for loading BASIC from paper tape from
cassette as given in Appendix B.

BASIC should respond:
MEMORY SIZE?

For the rest of the initialization procdure, see below.
Disk Initialization Dialog

The initialization dialog has been -expanded to allow the
user to select the proper amount of memory needed to use ghe
disk(s) on the system. After the the MEMORY SIZE gquestion

is answered, BASIC will ask:

HIGHEST DISK NUMBER?

The user should answer with the highest physical disk
address in the system or with carriage return to default to
4. Each additional disk uses 42 bytes of memory.

Example:

fanuary.

o

1977 Page 122
To use the Disk bootstrap loader, turn the computer's |power
on. Raise RESET and STOP simultaneously. Lower RESET and
then STOP. EXAMINE location 177480 (address switches Al15-A8
up, rest down) and then set the sense switches for the
terminal I/0 board as explained in Appendix B. Depress| the
RUN switch. BASIC should print (or display):

MEMORY SIZE?

For the rest of the initialization procedure, see below.

Using the Cassette and Paper Tape Bootstraps

If the Disk Bootstrap PROM is not in use, a paper tape oOr

cagsette program must be loaded which then reads in BASIC

from the disk. This is done by following the procedure
below:

1. Key in the applicable paper tape or cassette bootstrap
loader from the listings in Appendix B. Make
location 2=%3+6 octal. Set the sense switches fofr the
terminal o7 :

2. Start the paper tape or cassette (labeled DISK LOADER)
reading, and then start the computer as in| the
instructions for loading BASIC from paper tape | from
cassette as given in Rppendix B.

BASIC should respond:

MEMORY SIZE?

For the rest of the initialization procdure, see below.

_Disk Initialization Dialog

The initialization dialog has been expanded to allow| the

user to select the proper amount of memory needed to use the

disk(s) oA the system. After the the MEMORY SIZE gquestion
is answered, BASIC will ask:

HIGHEST DISK NUMBER?

The user should answer with the “highest physical|disk

address in the system or with carriage return to default to

9. Each additional disk uses 49 bytes of memory.

Example:

i}
“d

(.J

January, 1977 Pag

HIGHEST DISK NUMBER? 1

BASIC next asks how many files are to be OPEN at one time in

the program. This number includes both random
sequential files. If the user types carriage return,

default is zero. Each file allocated requires 138 bytes for

buffer space. Example:

HOW MANY FILES? 2

Finally, BASIC asks how many random files are to be OPEN at
one time. The amount of memory allocated is the answer*257.
This memory space is used to keep track of the location on
the floppy disk where groups of a random file reside. [Thus,

the total memory required for each random file
138+257=395 bytes. Example:

HOW MANY RANDOM FILES? 1
A typical dialog might appear as follows:

MEMORY SIZE? <carriage return>

HIGHEST DISK NUMBER? <carriage return)>
HOW MANY FILES? 2 <carriage return>

HOW MANY RANDOM FILES? 1 <carriage return>

XXXxXX BYTES FREE

Altair BASIC REV. 4.9

[DISK EXTENDED VERSION]
COPYRIGHT 1976 BY MITS INC.

OK

e 123

anuary,

1977 Page 124

APPENDIX I

THE PIP UTILITY PROGRAM

A BASIC Utility program has been provided to perform such
such common functions as printing directories, initializing

disks, copying disks etc.

NOTE

Some of the PIP commands (LIS, DIR) require that one
<file number> be configured during the Disk BASIC
initialization dialog. This is done by answering
the "HOW MANY FILES?" question with a value greater
than zero. If an attempt is made to perfrom a LIS
or DIR without following this procedure, a
BAD FILE NUMBER error will occur.

Once the BASIC disk has been mounted, type the following
command:

RUN "PIP"<carriage return>
(PIP will type)
*

PIP is now ready to accept commands. To exit PIP, type a
carriage return to the prompt asterisk. To initialize the
floppy disk in drive @, type:

*INIO

PIP will type "DONE" when it is finished. Any disk number
may be substituted for the # in the above command and PIP
will format the disk in that drive. Any previous files on
the disk initialized will be lost. If you wish to use blank
disks with Disk BASIC, they must be initialized in this
fashion before they can be MOUNTed.

NOTE
DO NOT INITIALIZE THE DISK WITH DISK EXTENDED BASIC

ON IT. THIS WILL WIPE OUT ALL THE FILES PROVIDED ON
THE DISK.

January,

C

C

1977 Page 125

Printing a Directory

Giving PIP the command:
*DIR<disk number>

prints out a directory of the files on the specified

The name of each file is printed, along with the f

disk.
ile's

"mode" (S for sequential, R for random), and the starting

track and sector number of the first block in the file

SRT<disk number>

prints a sorted directory of the files on the spec
disk.

LISting Sequential Files

The LIS command is used to list the contents of a seque
data file on the terminal:

Syntax:

LIS<disk number>,<file name>
Example:

*LISG,PIPA user types
7 CLEAR 10040 computer prints

COPying Disks

The COP command is used to copy a disk placed in one
to a disk on another drive. Neither disk need be MO
for the COP command to work properly.

Syntax:

COP<old disk number>,<new disk number>

ified

ntial

drive
UNTed

fanuary, 1977 Page 126
Before the copy is done, PIP verifies the actionn by
printing the following massage:

FROM<disk number>TO<disk number>
Typing Y followed by a carriage return causes execution to

— proceed. Any other responce aborts the command. Example:
*COPG,1 FROM @ TO 1? YCARRIAGE return> DONE * -

The DAT command

The DAT command is used to dump out a particular sector of
the disk in octal.

Syntax:
DAT<disk number>

When the DAT command is issued, PIP asks for the numbers of
the track and sector to be dumped. Example: *DATg (DAT
is equivalent) TRACX? 4 SECTOR? 0 000 060 000 000 000 009
000 000 600 000 000 009 000 etc.

The CNV command

CNV converts disks written under Altair BASIC wversion 3.4
and 3.3 to a format useable by version 4.4. The format of

the command is as follows:
CNV<disk number>

CNV makes sure that the next to last byte of each sector is
255.

Other Programs Provided on the System Disk

Program Name Use
STARTREK Plays game based on TV series.

nuary,

_

1977 Page

IS

Before the copy 1is done, PIP verifies the actionn
printing the following massage:

FROM<disk number>TO<disk number>

Typing Y followed by a carriage return causes execution
proceed. Any other responce aborts the command. Examg
*COP#,1 FROM @ TO 1? YCARRIAGE return)> DONE *

The DAT command

The DAT command is used to dump out a particular sector
the disk in octal.

Syntax:

DAT<disk number>

When the DAT command is issued, PIP asks for the numbers
the track and sector to be dumped. Example: *DAT@-----
iS”equivalent+wTRA€K?~~GfSEGTGR?m*@~ﬂ99v0097056M@ﬁﬁ”@ﬁ@
gop- 990 000 000-9€0 9899 98P -etc. * DATY
rRACK ?,gf
Secrk P
The CNV command ez g¢d opr £6¢ 77f g 7

CNV converts disks written under Altair BASIC version
and 3.3 to a format useable by version 4.8. The format
the command is as follows:

CNV<disk number> -

CNV makes sure that the next to last byte of each sector
255.

Other Programs Provided on the System Disk

Program Name Use
STARTRER - Plays game based on TV series.

126

of

-(bazr
1809

. g)4":
2g E6% 77 (

3.4
of

is

OON%
s

>

January,

C

1977 Page 127

APPENDIX J
BASIC TEXTS

Below are a few of the many texts that may be
in learning BASIC.
1) BASIC PROGRAMMING, John G. Kemeny, Thomas E.

1967, 145pp.
2) BASIC, Albrecht, Finkel and Brown, 1973

helpful

Kurtz,

3) A GUIDED TOUR OF COMPUTER PROGRAMMING IN BASIC, Thomas A.

Dwyer and Michael §S. Kaufman; Boston: Houghton
Co., 1973

Books numbered 1 and 2 may be obtained from:
People's Computer Company
P.O. Box 319
Menlo Park, California 94025
They also have other books of interest, such as:

191 BASIC GAMES, David Ahl, Ed., 1974, 250pp.

Mifflin

WHAT TO DO AFTER YOU HIT RETURN or PCC's FIRST BOOK OF

COMPUTER GAMES
COMPUTER LIB AND DREAM MACHINES, Theodore H. Nelson,

186pp.

1974,

fanuary, 1977 Page 128

APPENDIX K

USING Altair BASIC ON THE
INTELLEC* 8/MOD 80 AND MDS SYSTEMS.

This appeﬁaix covers procedures for loading and
operating Altair BASIC on 1Intellec and MDS development
systems.

A. Loading BASIC. To load Altair BASIC, put the hex
paper tape of BASIC in the system reader device. Now enter
the System and assign the CONSOLE I/0 device as desired (see
Section 4.2.1 of the Intellec 8/Mod 80 Operator's Manual).
Now read in BASIC with the following R command.

.R(Cr)

The BASIC tape will be loaded into memory and the
system monitor will type a period on the CONSOLE device. If
you are only using contiguous RAM memory below the system
monitor (380@H) or are using BASIC on a MDS System, proceed
to step 2. If you have RAM memory above the PROM Intellec
monitor which you wish BASIC to use for program and variable
storage, you must patch the two locations known as INTLOC to
point to the bottom (lowest address) of memory. The is most
easily accomplished by using the System Monitor S command.
INTLOC is given below under "Memory Requirements." .

«SXXXX 90 49 (Cr)

The above S command would make INTLOC point to RAM, starting
at 1l6K.

NOTE

If you are using RAM above 16K for program and
variable storage and have patched INTLOC, retain all
the math functions at initialization time (see
Appendix B). Essentially, this means that the WANT
SIN-COS-TAN-ATN? questions asked by BASIC's
initialization dialog should be answered by a Y(Cr).
Also, you must answer the MEMORY SIZE? question
with the highest decimal or RAM address in your
system.

January,

C

- E. Calling Assembly Language Routines

1977 Page 129

Start BASIC by giving the monitor GOTO command

.G@fgAB<carriage return>

NOTE

Once BASIC has been started, it may always he
restarted by depressing the RESET switch on the

Intellec 8 console.

When BASIC types MEMORY SIZE?, Typing carriage return

will

cause BASIC to use all the RAM memory it can find above the
end of BASIC. Otherwise, if you wish to specify an |exact
amount of memory, type the decimal address of the highest

byte of memory in the computer and type carriage return.

B. BASIC I/0.

The system devices used for terminal I/0 in BASIC
CI, CO and CsSTS.

C. Saving and Loading Programs.

To save -a program on paper tape, re—-enter the

are

PROM

monitor and reassign the CO device to the paper tape punch

or other output device. Then restart BASIC by using
GO@28 command and type LIST(Cr). The characters of the

the
LIST

command will not be echoed, but the BASIC program currently

saved in memory will be put on the output device.

To load a program enter the system monitor, re-assign

CI to the input device where the program resides, and
start BASIC with a Gggdéd. When the program has
completely read in, reassign CI to the user console.
re~enter BASIC with a G#000, and start the I/0 device.
program will be echoed on CO as it is read in.

D. Memory Requirements

BASIC uses locations 00008-0003H

then
been
Then

The

and

d0l@H-approximately 19DFH in the 8K version, and 0010H-2FQEH
in the Extended version. For Intellec 8K and MDS 8K BASICs,
INTLOC 1is 6520 decimal. For MDS Extended, INTLOC is 14257

decimal.

January, 1977 Page 138

USRLOC for 8K BASIC is 0@855H. ADR(DEINT) is stored in
locations @@43H. ADR(GIVACF) is stored in location @@45H.
In the Extended version these locations contain the
addresses of FRCINT and MAKINT, respectively. Interrupt
driven subroutines using RST 7 are not allowed in the
Intellec/MDS version of Altair BASIC. See Appendix C. for
further information on calling assembly language

subroutines.

* Intellec is a registered trademark of the Intel
Corporation.

rsery, 1977 Page
(@
RPPENDIX L
PATCHING BASIC'S I/0 ROUTINES
BASIC's I/O routines may be changed to accommo

After BASIC is lcaded
location 71 contain
These addresses contain

non-standard terminal equipment.
before it has been initialized,
pointer to a list of addresses.
I/0 routines of BASIC:

ORG 701 7/
DW I0OLST ;TWO BYTE ADDRESS OF ADDR
IOLST: DW TRYOUT ;ADDRESS OF OUT2UT ROUTI
DW TRYIN ; CHARACTER INPUT ROUTINE
DW ISCNTC :POLL FOR CONTROL/C CHECK
DW NEWSTT ;FAST POLL FOR CCNTROL/C C
;8K AND LARGER OWLY
oW IN2SIO ;ADDRESS OF INITIALIZATION
P ;ROUTINE FOR 2SIO BOARDS
((*/ DW IN4PIO ;ADDRESS OF INITIALIZATION
N ; 4PTO BOARDS
DW LPTCOD ;ADDRESS OF LPT ROUTINE (I
;AND DISK ONLY.)
DW L2TCD2 ; 2ND LPT ROUTINE
W LPTCD3 ;3RD LPT ROUTINE
DW IOCENL :ADDRESS OF I/0 RESET LOCA
; (IN EXTENDED AND DISK ONL
TRYOUT: IN g :GET DEVICE STATUS
ANI 209 ;AND OFF BIT 7
JNZ TRYOUT ;WAIT UNTIL TERMINAL CAN O
20P PSW ;GET CHARACTER TO OUTPUT (0]
ouT 1 s TRANSMIT IT
PUSH PSW ;SAVE CHARACTER BACK ON ST
NOP ;CHANGED TO "IN 41" FOR 4P
NoP
POP PSW ;GET CHARACTER BACK OFF ST
RET ;ALL DONE WITH CHARACTER (0]
TRYIN: IN 4] ;GET TERMINAL STATUS
ANI 1 ;CHARACTER READY?
TRYIN ;NO, KEEP WAITING

A;*/ JNZ

131

date
and
s a
the

ESS LIST

NE

HECK

ROUTINE FOR

N EXTENDED

TION
¥)

pT20T
FF STACK

ACK
IO BOARDS

ACK
UTPUT ROUTINE

C

January, 1977 Pag

APPENDIX L
PATCHING BASIC'S 1/0 ROUTINES

BASIC's I/0 routines may be
non~standard terminal equipment.
before it has been initialized,
pointer to a list of addresses.

changed to
After BASIC is loade
location 71 contai
These addresses contai

I/0 routines of BASIC:

e 131

accommodate

d and"’
ns a
n the

ORG 7Q1
DW IOLST ;TWO BYTE ADDRESS OF ADDRESS LIST
IOLST: DW TRYOUT ;ADDRESS OF OUTPUT ROUTINE
DwW TRYIN ;CHARACTER INPUT ROUTINE
DwW ISCNTC ;POLL FOR CONTROL/C CHECK
DwW NEWSTT ;FAST POLL FOR CONTROL/C CHECK
78K AND LARGER ONLY
DwW IN2SIO ;ADDRESS OF INITIALIZATION
sROUTINE FOR 2SIO BOARDS
DwW IN4PIO ;ADDRESS OF INITIALIZATION ROUTINE FOR
;4PIO BOARDS
DW LPTCOD ;ADDRESS OF LPT ROUTINE (IN EXTENDED
;AND DISK ONLY.) '
DW LPTCD2 $2ND LPT ROUTINE
DW LPTCD3 33RD LPT ROUTINE
DW IOCHNL :ADDRESS OF I/0 RESET LOCATION
; (IN EXTENDED AND DISK ONLY)
TRYOUT: IN g ;GET DEVICE STATUS
ANI 200 ;AND OFF BIT 7
INZ TRYOQUT ;WAIT UNTIL TERMINAL CAN QUTPUT
POP PSW ;GET CHARACTER TO OUTPUT OFF STACK
ouT 1 ;s TRANSMIT IT
PUSH PSW s SAVE CHARACTER BACK ON STACK
NOP ;CHANGED TO "IN 41" FOR 4PIO BOARDS
NOP
POP PSW ;GET CHARACTER BACK OFF STACK
RET ;ALL DONE WITH CHARACTER QUTPUT ROUTINE
TRYIN: IN 2 ;GET TERMINAL STATUS
ANI 1 ;CHARACTER READY?
JINZ TRYIN ;NO, KEEP WAITING

anuary, 1977

IN

ANI
CPI
RNZ

ISCNTC: IN

NEWSTT: IN
ANI
CZ

IN2SIO: CPI
RNC
ADI
PUSH
MVI
CALL
POP
JMP

IN4PIO: MVI
DCR
CALL

.

LPTCCD: LDA
ORA
Jz
POP
PUSH
CPI
INZ

MORSPL: MVI
OUTCHR
LDA
ANI

127
CONTO

11

]
1
CNTCCN

2*%4

21

PSW
A,3
DOI024
PSW
DOIO29

A,54Q
M
DOIO29

PRTFLG
A
TTYCHR
PSW
PSW

9
NOTABL
A,32

LPTPOS
7

Page 132

;READ IN THE CHARACTER
;GET RID OF PARITY BIT
;CONTROL/0?

sRETURN IF NOT

;READ TERMINAL STATUS
;HAS THE TERMINAL A CHARACTER

:TO SEND?
;NO, RETURN

; FOLLOWING ROUTINE IS IN 8K AND LARGER VERSIONS ONLY
sAND IS EXECUTED FOR EACH STATEMENT

sREAD TERMINAL STATUS
;TEST BIT @
;YES, SEE IF CHARACTER CONTROL/C

;IS IT 2SIO
;NO, OTHER GO DIRECTLY TO SETIO
;GET PROPER INITIALIZATION BYTE
;SAVE IT
;INITIALIZE THE 2S5I0

:GET BACK SECOND INITIALIZATION BYTE
;PROGRAM TO DATA AND STOP BITS

;sRESET FOR DATA TRANSFER
;CHANNEL=22

;SEE IF WE WANT TO TALK TO LPT
;TEST BITS
;IF ZERO THEN NOT
;GET BACK CHAR

;s TAB
:NO
;GET SPACE
;sSEND IT
:GET CURRENT PRINT POSIT
;AT TAB STOP?

Q!'

January,

C

1977

JINZ
pOoP
RET
NOTABL:
POP

PUSH
CrIl
Cz
CpPI
Jc

LDA
CPI
JNZ
MVI
CALL
DCR
NOTELP:
STA
LPTWAT: IN
ORI
INR
JNZ
POP
ouT
RET

;THIS ROUTINE IS CALLED TO FORCE OUT A PARTIAL BUFFER
IT ALSO RESETS PRTFLG SO ALL

MORSPL
PSW

PSwW
PSW
13
PRINTW
13
PPSWRT

LPTPOS
LPTLEN-1
NOTELP
Al
FINLP2
A

INR
LPgPOS

245

A
LPTWAT
PSW

3

;FOR THE LINE PRINTER.

; FURTHUR I/0 GOES TO THE USER'S TERMINAL

FINLPT: XRA
STA
LDA
ORA
RZ

;THE ROUTINE PRINTW IS CALLED
;IN THE LINE PRINTER BUFFER. THE CARRIAGE RETURN/LINE F

;OUTPUT SUBROUTINE CALLS PRINTW

PRINTW: IN 2
ORI 245
INR A
JNZ PRINTW
; SEE IF BUFFER MUST BE EMPTIED
LDA LPTPOS
ORA A
JINZ PRINTR
Lpa LPTLST
ORA A
Jz NTEXDL
PUSH H
LXI H,19088

A
PRTFLG
LPTPOS
A

A

Page 133

;GO BACK IF MORE TO PRINT
:POP OFF CHAR
;s RETURN

;GET CHARACTER WE WANT
IS IT CARRIAGE RETURN?

;FORCE OUT A LINE
;GET CONDITION CODES BACK

TO PRINT

;IF FUNNY CONTROL CHARACTER

; (LF) , DO NOTHING
;WHERE ARE WE?
;ARE WE AT END OF LINE?
;NO, JUST SEND CHAR

;SET LPTLST=1 AND LPTPOS=0 .

sMAKE SURE LPTPOS ZERO.

;SEND OUT CHAR
;s RETURN

;RESET PRINT FLAG SO OUTPUT .

fGOES TO THE TERMINAL

;SEE IF ANY LEFTOVERS MUST BE

; FORCED OUT
:BY LOOKING AT LPTPOS

TO FORCE OUT A LINE CURRENTLY

sMAKE SURE LAST PRINT

;BIT

;CHARACTERS IN THE BUFFER?

EED

;IF SO DON'T CLEAR THE BUFFER

;PRINT BLANK LINE.
;CHECK IF PRINT WAS LAST

;IF SO, DO SPECIAL DELAY E

;OF DESIGN

; PROBLEM

$SAVE [H,L]

;DELAY COUNT

3ECAUSE

1977

LPTDLY: DCX
MOV
ORA
JINZ
POP
STA
NTEXDL: MVI
ouT
XRA
RET
PRINTR: MVI
ouT
FINLP2: STA
DCR
STA
RET

LPTCD2: LDA
ADD’
CPI
JMP

.

LPTCD3: LDA
NLPPOS

CPI
JMP

.

IOCHNL: @
2
IOREST: LXI
CALL
CALL
JMP

To patch the I/0 routines,
and insert the patches using the front panel switches

BASIC

or read in a tape containing the patches.
location zero with all sense switches up.
BASIC from modifying the I/O routines. these

guidelines should be followed in writing I/O routines: gd'

Page 134
H ;COUNT DOWN u
A,H
L ;UNTIL ZERO
LPTDLY
H sRESTORE [H,L] REGS
LPTLST sRECORD LINE FEED LAST
) A,2 ;SEND A LINE FEED COMMAND
A sRETURN WITH @ &CC'S=0
A,1 ;TELL LPT TO PRINT
;STATUS REG
LPTLST
A ; [A]l=0
LPTPOS ;RESET LINE PRINTER POSITION
LPTPOS ;GET CURRENT LPT PRINT HEAD POSITION
M
LPTLEN sWILL THIS NUMBER OVERLAP?
LINCHK
LPTPOS ;GET LINE PRINTER POSITION u
;NOTE: COLUMN WIDTH (CLMWID)=
114 CHARACTERS
EQU (((LPTLEN/CLMWID)-1) *CLMWID) ; POSITION BEYOND
;WHICH THERE ARE
;NO MORE COMMA FIELDS, SO
NLPPOS ;COMMA JUST DOES A "CRDO"
CHKCOM ;USE TELETYPE CHECK
;DEPOSIT BOARD TYPE HERE
;CHANNEL GETS DEPOSITED HERE.
H, IOCHNL ;GRAB POINTER TO IT
HELPIO ;SET UP THE NEW CONSOLE DEVICE
STKINI ;MAKE STACK OK
READY ;AND TYPE "OK" HOPEFULLY ON GOOD CONSOLE

stop the

machine after loading

Restart BASIC at
This will prevent
In general,

anvary,

C

1977

BASI

or t
on d
disk

not
must

con
BAST

Page 135

Insert a JMP at TRYOUT to the custom output routinel. Be
sure the PSW that is saved on the stack when the routine
is entered is preserved. Maxe sure all registers| are
left unchanged when the routine is exited. ‘

Insert a JMP at TRYIN to the custom input roufine.
Return the input character in the A register and do not
change any of the other registers. The PSW may be
changed.

To modify ISCNTC insert a CALL to the custom |poll
routine. This routine returns a non-zero condition|code
setting if no character 1is present, and zero Lf a
character 1is present. The A register and the condition
codes may be changed.

To change the initialization of the 2SI0 board, change
the "ADI 23Q" to "MVI A,XXX" where XXX is the new

initialization byte.

To change the initialization of the 4PIO board, change
the "MVI a,54Q" to a "MVI A,XXX" where XXX is the new
initialization byte.

To patch in a new line printer driver change, the code at
LPTCOD. Note that PRINTW is also called by the routine
which prints a carriage return line feed. The <code at
LPTCD2 and LPTCD3 must be changed if the line printgr is

not 8@ characters wice.

To recover}&gggﬁan incorrect CONSOLE command, deposit
the board’ eype 18 IOCHNL, the board type in IOCHNL+1,
and start the machine at IOCHNL+2.

Patching Disk BASIC - the PTD program. After |Disk
C 1is loaded, deposit the desired patches in menory.
examine and run PTD at location 5489
s
e

hree seconds, the patched version o
isk. The save 1s complete when the D
drive zero goes out.

a
a

octal. Afterl two
SIC will be gaved
k Enable light

=
2]

To save a patched version of BASIC on a disk which | did
previously contain release 4.4 Altair BASIC, track 9
be copied from a 4.4 disk.

PTD may also be used to save programs other than BRSIC
tracks ©0-4 of a diskette by loading the program after
C is loaded and running PTD. All memory locatlions

between @ and 46090 octal will be saved on tracks 3-4 on

cisk

ette zero.

C

January, 1977

1.

Then examine and run PTD at location 54886 octal. After

BASIC is 1loaded, deposit the desired patches in memEry.
or three seconds, the patched version of BASIC will be s

Page 135

Insert a JMP at TRYOUT to the custom output routine. Be
sure the PSW that is saved on the stack when the routine
is entered is preserved. Make sure all registers| are
left unchanged when the routine is exited.

Insert a JMP at TRYIN to the custom input routine.
Return the input character in the A register and do not
change any of the other registers. The PSW ma
changed.

To modify ISCNTC insert a CALL to the custom
routine. This routine returns a non-zero condition
setting if no character is present, "and zero
character 1is present. The A register and the cond
codes may be changed.

To change the initialization of the 2SI0 board,
the "ADI 23Q" to "MVI A,XXX" where XXX is t

initialization byte.

5a

To change the initialization of the 4PIO board,
the "MVI A,54Q" to a "MVI A,XXX" where XXX is t
initialization byte.

5 a

To patch in a new line printer driver change the co
LPTCOD. Note that PRINTW is also called by the ro
which prints a carriage return line feed. The cod
LPTCD2 and LPTCD3 must be changed if the line print
not 86 characters wide.

To recover from an incorrect CONSOLE command, de
the board type in IOCHNL, the board type in IOCH
and start the machine at IOCHNL+2,

Patching Disk BASIC - the PTD program. After [Disk

two
ved

on disk. The save is complete when the Disk Enable light on

disk drive zero goes out.

not

must be copied from a 4.4 disk.

on

To save a patched version of BASIC on a disk which | did
previously contain release 4.0 Altair BASIC, track 9

L)

PTD may also be used to save programs other than BASIC
tracks @-4 of a diskette by loading the program after

BASIC is loaded and running PTD. All memory locatjions
between @ and 46008 octal will be saved on tracks g-4 on

diskette zero.

1977 Page 136

APPENDIX M
USING ALTAIR DISK BASIC

An Example

The following is a discussion of how to program a
typical application in BASIC. The example is the MITS
in-house inventory system which is designed to run on the
following hardware:

Altair 88¢@b computer with 32K memory, PROM memory board
with the Disk PROM Bootstrap loader and a 2SIO serial
I/0 board

Two disk drives

24-line Lear-Sigler CRT terminal

Line printer

The most important part of the design for an
application 1is setting up the files. Files that are
correctly set up will be easy to use and maintain. Poorly
set up files will be a perpetual headache, causing either an
eventual rewrite or, more likely, abandonment of the system.

The first listing at the end of the appendix, INVEN,
contains modules from the main program in the inventory
system. INVEN shows how the central file (a random file) in
the system is set up and how it is handled. The INVEN
listing also shows the use of another random file and a
sequential file. The CALC 1listing shows how to read
programs as data files. CODEl is a partial 1listing of a
program that will be read as a data file.

The INVEN modules listed were included to show the
following features:
l. program startup initialization and comments about the
files used by the program (lines 1-35)
2. what the complete program does (lines 60-1004)

3. an example of how to modify records in a random file
(lines 900-10449)

4. an example of how sequential files are used (lines
1800-1868 and 2700~-2829)

January,

_

1977 Pa

5. one approach to the problem of handling a random
that spans more than one disk (lines 2060-2039)

6. three subroutines (lines 300-3449, 9000-96209
92008-9220) that are called by the INVEN modules.

The function FNY (line 6) is used to round
amounts to thousandths of a cent. FNQ (line 7) is u
round quantities to thousandths and to convert
precision amounts to double precision.

INV3 is fielded once in the program initializatio
INVI and INV2 are repeatedly fielded by calls
subroutine at line 289@. The IF F>255 (line 68) avoid
possibility that the program can be stopped by an i
function call at line 61.

PUT statements are the very last statements execu
the Remove from Inventory module, the Add to Inv
module, etc. This prevents updating one file but no
other. (This could happen if PUT Z, Rl was at line 14

Line 2000 sets Z to 1 and R1 to N if the item w
N, 1is 1less than 2081. It sets Z to 2 and Rl to N-2
the item wanted is greater than 2000. Line 2020 then
the pointers for the variables in the field statem
point into either the buffer for INV1 or the buffer
INV2, depending on whether the item wanted is less tha
or greater than 2004.

The CALC listing is a program which determines if |there
are enough parts in inventory to meet projected demands.
Line 60 waits while the disk comes up to speed so the
message "ENABLE DISK 1" will not be printed on the terminal.
Lines 190-140 input up to fifty different product codes| and
the number of each product to be built. Line 170 opens a
file for each product that contains the parts required for
the product. Lines 220-25@ build up a report heading
extracting the product description contained in line 18 of
each file.

Lines 128-158 accumulate the number of parts required
for each product into the array Q. 1If more than 32767|of a
part is required, a pointer is set in the array Q and| the
number of the part is accumuulated in the array Q!. | This
maneuvering is necessary since the system does not |have
enough memory to dimension Q as single precision instead of
integer.

January, 1977 Page 138

The parts lists for a product are programs saved with
the A option. Since they are programs, their maintenance is
very easy. For example, suppose that part 1871 in the 88@0b
is too marginal and that from now on part 1173 should be
used instead. With the parts lists disk mounted on drive g,
the following sequence will update the 88@0b file:

LOAD "CODEl"
166,1,1173
SAVE "CODEl1",d,A

The programmer who is cramped for memory will find that
programs can still be documented adequately if comments are
set up as separate files. The memory used for variables
when a program runs can be used for comments if the comments
are merged in when the program is to be listed.
Alternatively, the program could be listed in two or more
parts. Additional memory can be obtained by bringing BASIC
up without optional functions and with no files.

The main inventory program is set up so that a carriage
return typed in responce to any prompt cause the program to
dump the function descriptions on the CRT and to return to
the FUNCTION NUMBER prompt. If the program were to be run
on a printing terminal, instead of a 9686 baud CRT, it would
not be set up to print the descriptions every time the
operator wanted to get back to the FUNCTION NUMBER prompt.
The list of function descriptions might be taped on the wall
next to the terminal instead.

Listing of INVEN

1 DEFINT F-N
2 DEFINT R

3 DEFINT 2

5 DEFDBL P

6 DEF FNY#(Q84%)=INT(Q8#*A#+.5%) /A%

7 DEF FNQ#(Q9!)=INT(VAL(STRS$(Q9!))*10800#+.5%)/1000%
8 AS=MKDS (0) :B$=MKSS$ (0) :A$=100000%

18 DIM Q$(2),P$(2)

SR

INV1 ON DRIVE @ HOLDS ITEMS 1-2000

INV2 ON DRIVE 1 HOLDS ITEMS 2001-4000

INV3 ON DRIVE 1 HOLDS SUMS LOGGED IN AND OUT BY DEPARTMENT
2

WEKLYRST AND MONTHRST ARE WRITTEN WHILE THE WEEKLY,
MONTHLY ACTIVE ITEMS LISTS ARE PRINTING;

CONTAIN THE ITEM #S THAT NEED TO BE RESET; AND ARE READ BY

THE WEEKLY,MONTHLY RESETS.
14
Q$() <=> THREE ON HAND QTY FOR: P$() <=> THREE PRICES

January, 1977 Page 139
Kh/ [P(8) OLDEST, P(l) NEXT OLDEST, Q(9)<>8 IF Q(l)<>9,
Q(1)<>8 IF Q(2)<>8]

D$ <=> DESCRIPTION LEFTS$ (D$,3)="$$S" <=> INACTVE ITEM #
15 !

I1$ <=> WEEKRLY QTY IN

I2$ <=> MONTHLY QTY IN

01§ <=> WEEKLY QTY OUT

02$ <=> MONTHLY QTY OUT

T$ <=> REORDER LEVEL

DI1$ <=> WEEKLY § IN

ID2$ <=> MONTHLY $ IN

DO1$ <=> WEEKLY § OUT

OD2$ «=> MONTHLY $ OUT

17 !

DT1$ <=> WEEKLY DEPT § TAKEN
DX2$ <=> MONTHLY DEPT $ TAKEN
DGl$ <=> WEEKLY DEPT $ GIVEN
DY2$ <=> MONTHLY DEPT $ GIVEN

29 OPEN "R",#1,"INVL"

38 OPEN "R",#2,"INV2",1

32 OPEN "R",#3,"INV3",1

35 FIELD #3,8 AS DT1$,8 AS DX2$,8 AS DGl$,8 AS DY2$

‘ 60 PRINT:F=0:INPUT"FUNCTION NUMBER";F:IFF>255THEN63
(u/J 61 ON F GOTO 219,358,3590,1969,600,900,1764,

2709,2500,2300,2400,1880,2904"'
2 3 4 5 6 7 8 9 19 11 12 13

14 15 16
63 PRINT"1 - ENTER NEW ITEM"
64 PRINT"2 - LIST ITEM ON CRT (SHORT FORM)"
65 PRINT"3 - LIST ITEM ON CRT (LONG FORM)"
66 PRINT"4 - PRINT ITEMS ON LINE PRINTER
67 PRINT"S5 - ADD TO INVENTORY"
68 PRINT"6 - REMOVE FROM INVENTORY"

69 PRINT"7 PRINT WEEKLY DEPT DOLLAR RECORD ON LINE PRINTER
78 PRINT"8 - PRINT WEEKLY ACTIVE ITEMS LIST ON LINE PRINTER

71 PRINT"9 - WEEKLY RESET
72 PRINT"1@- PRINT MONTHLY DEPT DOLLAR RECORD ON LINE PRINTER
73 PRINT"1l- PRINT MONTHLY ACTIVE ITEMS LIST ON LINE PRINTER

74 PRINT"12- MONTHLY RESET

75 PRINT"13- RESET ORDER LEVELS
76 PRINT"14- PRINT LISTNG OF ITEMS NEEDING TO BE RE-ORDERED
77 PRINT"153- DELETE OLD ITEM
78 PRINT"16- ERRORS BACKOUT

108 GOTO63

298 !

*

SUB - INPUT PART # & GET RECORD

*
o 308 PRINT:PRINT:N=0:INPUT"PART NUMBER";N:IFN<1THENRETURN
(J 310 IFN>42Q@THENPRINT:PRINT"''$# TOO HIGH''":GOTO 300

329 GOSUB2040:GETZ,R1

January, 1977 Page 1440

330 IFLEFT$(D$,3)="$$S"THENPRINT:
PRINT" ' 'NO INFORMATION ON PART''";N:GOTO340

340 RETURN

890 '

*

F=6 -~ REMOVE FROM INVENTORY
*

900 GOSUB3@@:IFN=0GOTO63 :
920 DN=-1:INPUT"NUMBER OF ITEMS REMOVED FROM INVENTORY";
DN:IFDN=-1THEN63
958 IFCVS(QS$(8))+CVS(QS$(1))+CVS(Q$(2)) <DNTHENPRINT"
ATTEMPT TO REMOVE MORE THAN ON HAND" :PRINT:GOTO63
960 DO=DN:P=§
978 IFDO<KCVS(Q$ (4))THEN
P=P+FNQ# (D@) *CVD (P$ (0)) : LSETQS (8) =MKS$ (CVS (Q$ (0)) -D8) :
GOTO14d00
980 P=P+FNQ# (CVS (QS$(0)))*CVD(P$(8)) :DB=DOI-CVS (Q$(d)) :
LSETQ$ (2) =Q$ (1) :LSETQ$ (1) =Q$ (2) : LSETQS (2) =B$:
LSETP$ (@) =P$ (1) : LSETPS$ (1) =P$ (2) : LSETPS (2) =A$: IFDTHEN
GOT0974
1989 LSETOl$=MKS$ (CVS(01$)+DN) : LSETO2$=MKS$ (CVS (02$) +DN) 3
LSETDO1$=MKD$ (CVD (DO1$) +P) : LSETOD2$=MKD$ (CVD (OD2§$) +P)
1820 GOSUB9280:IFC%=-1GOTO63
1030 LSETDT1$=MKD$ (CVD(DT1$) +P) : LSETDX2$=MKD$ (CVD (DX2§) +P)
1946 PUT3,C%:PUTZ,R1:GOTO900
1798 '
*

F=9 - WEEKLY RESET
*

1800 PRINT"7 - WEEKLY DEPARTMENT RECORD

1862 PRINT"8 - WEEKLY ACTIVE ITEMS

1884 Zz$="":INPUT"HAVE THE ABOVE BEEN LISTED FOR TODAY";2$

1819 IFLEFT$(2$,1)<>"Y"THENPRINT:PRINT
"WEEKLY RESET NOT PERFORMED" :GOT063

1343 OPEN"I",4,"WEKLYRST"

1845 IFEOF(4) THENCLOSE4:KILL"WEKLYRST":GOT01862

1850 INPUT#4,N:IF 1<=NANDN<=4000 THENGOSUB2800:GETZ,Rl
ELSEPRINTN; "OUT OF BOUNDS. RESET ABORTED.":END

1855 LSETI1$=B$:LSETOl§$=BS$:LSETDI1$=A$:LSETD0O1$=A$:PUTZ,R1

1864 GOTO1845

1862 FORI=1TO20

1864 GET3,I:LSETDT1$=A$:LSETDG1l$=A$:PUT3,I

1866 NEXT

1868 GOTO60

1999

*

SUB - GET Z,Rl1 FOR N AND FIELD TO INV1,2
* .

2808 Z=1-(N>2000) :R1=N+(2Z=2)*2000
2020 FIELD 2,4 AS Q$(0),4 AS Q$(1),4 AS Q$(2), 8 AS P$(9),
8 AS P$(l),8 As P$(2),40 AS DS,4 AS IlS$,4 AS I2%,
4 AS Ol$,4 AS 02§,8 AS DIl$,8 As ID2$,8 AS DOl$,8 AS OD2$

(w/

2030 RETURN
2699 !
*

F=8,11 - WEEKLY,MONTHLY ACTIVE ITEMS LIST
*

2798 N=1:GOSUB2900:GOSUB2855

January, 1977 Page 141

2793 IFF=8THENOPEN"O",4,"WEKLYRST"ELSEOPEN"O",4,"MONTHRST"

2705 IT4#=0:0T4#=0:TT#=0

2718 FORI=1T02000

2720 GETZ,I:IFLEFTS(D$,3)="$SS$"THEN2860

2723 QB=CVS(Q$(0)) :Q1l=CVS(Q$ (1)) :Q2=CVS(Q$(2))

2725 IFF=8THENI!=CVS (I1§$):0!=CVS(01$) :I#=CVD(DI1$) :0#=CVD(DOL1$)
ELSEI!=CVS(I2$):0!=CVS(02§) :I#=CVD(ID2$) :0#=CVD(0OD2$)

2727 TT#=TT#+CVD(P$(9)) *QO+CVD(PS (1)) *Ql+CVD(P$(2)) *Q2
2730 IFI!+0!=0THEN2800

2733 PRINT#4,N+I-1

2735 IT#=IT#+I#:0T#=0T4#+0%

2740 IFL9>59ANDKK=@THENGOSUB2858

2750 LPRINTUSING"######";999991+N+I;

2770 LPRINTUSING"##,###,4##";I!,0!,Q0+Q1+Q2,Q0+Q1+Q2+0!~I1;

2780 LPRINTUSING"SS,###,###.44" ;14,04

2790 L9=L9+1

2795 KK=KK+1:IFKK=5THENLPRINT:L9=L9+1:KK=0
2808 NEXT

2819 IFN=1THENN=20/@1:GOSUB2000:G0T02710
2811 CLOSE4

2813 LPRINT:LPRINTUSING"TOTAL INVENTORY COST =$$##,###, ##4.44";TT#

2815 REM *GOTO02828 IN F=7,10
2820 LPRINT:LPRINTUSING"TOTAL IN = $S##,###,#44. 44" ;174
2830 LPRINTUSING"TOTAL OUT =$S##,#4#,###.44",;0T#
2837 LPRINT:LPRINT

2848 GOTO54

2850 FORJ=L9TO66 :LPRINT :NEXT

2855 IFF=8THENLPRINT"WEEKLY"; :ELSELPRINT"MONTHLY";
2860 LPRINT" ACTIVE ITEMS LIST";:GOSUB9000

2865 LPRINTTAB(39);"STARTED"

2870 LPRINT"ITEM # QTY-IN QTY-0UT ON~HAND MO-WITH

DOLLARS-IN DOLLARS~-QUT"
2888 LPRINT:KK=0:L9=6:RETURN
8999 '
*

SUB - PRINT TODAY'S DATE
*

9000 IFTD$=""THENLINEINPUT"TODAY'S DATE 2" ;TD$:IFTD$=""THEN63

9019 LPRINT" ";TDS$
9915 LPRINT

9020 RETURN

9194 '

*

INPUT DEPARTMENT # AND GET TOTALS
%*

920¢ C3=-1:INPUT"ENTER DEPARTMENT CODE";C%:IFC%=-1THENRE

TURN

January, 1977 Page 142

9218 IF1<=C$ANDC%<=2@THENGET3,C%:RETURN a}
9229 PRINT"INVALID CODE":GOT09280 i

Listing of CODEl

5 CODEl

10 PARTS LIST FOR: 884@B
28 OCT 30,1976

90 REM THIS IS THE START OF DATA
100 ,11,1042

1190 ,3,1134

129 ,4,1040

130 ,1,1020

140 ,1,1021

158 ,1,1824

160 ,1,1071

178 ,1,10874

188 ,1,2185

198 ,24,348

208 ,2,326

Listing of CALC

18 CLEAR64D u‘

20 DEFINT A-Z
38 DIM CN(49),NU(49),Q(40898),Q! (200)
40 CLOSE:UNLOAD1
50 INPUT"PLACE DISK WITH PARTS LISTS IN DRIVE 1. HIT RETURN";G$
64 FORK!=1TOS5000:NEXT:MOUNT1
90 PINEINPUT“TODAY'S MO/DA/YR ";DT$:HS$(0)=DT$+" PARTS AVAILABLE FOR:"
95
INPUT QUANTITY OF EACH PRODUCT REQUIRED
Rkkkok
169 INPUT"CODE NUMBER(Q WHEN FINISHED)";CN(I)
119 IF CN(I)=8 THEN 1540
12§ IF CN(I)<1l OR 50<CN(I) THEN PRINT"INVALID CODE NUMBER":
GOTO 196
130 INPUT"NUMBER OF UNITS TO BE MADE";NU(I)
149 I=I+1:IF I<50 THEN 104
145 !
ACCUMULATE QUANTITY OF EACH PART REQUIRED
kkk kK
150 FOR K=8 TO I-1
166 ONERRORGOTO0619
170 OPEN"I",#1,"CODE"+MIDS (STRS(CN(K)),2),1
180 ONERRORGOTO@
190 LINEINPUT#1,A$:IFAS=""THEN190
200 IFLEFT$ (AS$,3)="90 "THEN264@
219 IFLEFT$(A$,3)<>"10 "THEN194 a |
220 IFKTHENHS (HK)=HS$ (HK)+"," u

il

January, 1977

|

(L/ 238
248
250
260
279
289
290

300
310
315
GET

320
339

349
3649
379

375

380
390
(L/ 400
410
420
439
440
450

460
470

488
508
514
520
530
560
565

dedede dek

PLACE INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TO START

PRINT REPORT
Rkkxk

PRINT PAGE HEADING

d ke dekk

578 FORK=@TOHK:LPRINTHS (K) :NEXT
580 LPRINT:LPRINTTAB(52);"NEEDED ON HAND EXCESS" :LPR
590 KK=@:L9=5+HK:RETURN
645 '
(l/ TRAP ROUTINE: BAD CODE NUMBER
. FEET 2]

HH$=STRS$ (NU (K)) +STR$ (CN(K)) +"=("+MIDS$ (A$,20)+")"
IFLEN (HHS$) +LEN (HS (HK)) > 72THENHK=HK+1

HS (HK) =HS$ (HK) +HH$:GOT0199

ONERRORGOTO638

IFEOF (1) THEN319

INPUT #1,A,QN,PN

IFQ(PN) <ATHENQ! (-Q(PN))=Q! (-Q(PN)) +NU(K) *QN
ELSEQ (PN) =Q(PN) +NU (K) *QN

GOT0279

ONERRORGOTO@:CLOSE 1:NEXT K

)

SECOND HALF OF INVENTORY BACK ON LINE

CLOSE s UNLOAD1
INPUT"

FORI!=1TO5000:NEXT:MOUNT1
OPEN"R",#2,"INV1"
FIELD #2,4 AS Q1$,4 AS Q2$,4 AS Q3$,24 AS G$,40 AS

GOSUB5740

FOR I=1 TO 4040

IF Q(I)=0 THEN 530

QQ!=Q(I) :IFQ(I) <ATHENQQ!=Q! (-Q(I))
IFL9>59ANDKK=0THENGOSUB568

L9=L9+1

RN=I
IFI<2000THEN460ELSERN=RN-2000 : IFFLAG=0THEN
CLOSE2:0PEN"R",%2,"INV2",1:FLAG=1:
FIELD#2,4 AS Q1$,4 AS Q25,4 AS Q3$,24 AS GS,48 AS D
GET #2,RN

IFLEFTS (D$,3)="$$$"THENLPRINTI+100000! ;
Mkkkkkkxxx NO INFORMATION ON PART **kkkkkkt,,
LPRINTUSING" ##, ####44":QQ! :GOT0520

QH!=CVS (Q1$)+CVS (Q2$) +CVS (Q3$) : QD! =QH!=-QQ!
LPRINTI+1000006!;D$;" ";

LPRINT USING "##,####4#";QQ!;QH!;QD!
KK=KK+1:IFKK=5THENKK=0 : LPRINT:L9=L9+1
NEXTI:CLOSE:END

FORK=L9TQ66 : LPRINT : NEXT

1

ge 143

REPORT" ;G$

D$

INT

618 IFERR=53THENPRINT:PRINT"NO CODE";MIDS (STR$(CN(K)),2);" FILE"

January, 1977 Page 144

620 ONERRORGOTO@

625 '

TRAP ROUTINE: ACCUMULATE INTO Q OVERFLOWED
dekkkk

638 IFERR<>60RERL<>290THENONERRORGOTO®

640 NQ=NQ+1:Q! (NQ)=Q(PN)+NU (K) *QN:Q (PN) ==NQ
670 RESUME270

January, 1977

@

@ ¢ ¢ v o v e 0.

ABS . . ¢« ¢ o
ACR interface .
AND . . ¢ « o .
Array variables
ASC . . 4 4 e W
ASCII character ¢
ATN . &« & o o &
AUTO ¢ ¢ ¢ o o &«

d

e o Mo o o o o
n

e o O e o o o o

Backarrow
BASIC texts
Boot loaders
Branch, conditional
Branch, unconditional
Branching

Carriage Return . .
Carriage return . .

CHRS o ¢ ¢ o o o o o
CLEAR . « & & « o
CLOAD &« &« o o &« &
CLOAD* for arrays
CLOAD? v & o o o o«
CLOSE + ¢ « « o =«
CLOSE, random files
Command Level
Commands List
CONSOLE . .
Constants .
CONT . « « &
Control/A .
Control/C . . .
Control/I
Control/0
Control/Q . . .+ . .
Control/S . « « .« .
Control/U . . .
Conversion
COS v v ¢ o o o o &
CSAVE* for arrays
CVD v ¢ ¢« ¢« s o
CVI & v ¢« o o o «
CVS v v v o o« o o &

e e o .
e e e o e »
« e s o e o
o e e s e

* s o s o o

.

INDEX

* o & & s s o

e s s s s s e+ o

Character, alphanumeric .

“ s o+ s »

from non-Altair

® & & s & s e v o e o 8 s o o

BASIC

L R A N)

* s o 4 o o

e o o s o o

19

78
114
17
14
78
93
78
6

83
127
96
19
19
19

4

83
4

78
78
70
25
78
60
63
4

70
34
10
70
10

. 83

84
83
84
84
19

79
25
67
67
57

116

DATA
DEF
DEFDBL . . .
Definitions
DEFINT . .
DEFSNG . .
DEFSTR . .
DEFUSR . .
DELETE . .
DIM . . .
Dimensions
Direct Mode
Disk format
Disk number .
Disk operations .

.
.
.
-
.
.
-
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.

.
.
.

.

Disk PROM bootstrap lo

® & 6 ¢ 8 e ¢ o 0 s o 0 e o

" s e o
« o o .
* o o e

* e o e o s 0 o s o
® o o & o e o o s @

¢ o o o s 6 s s e o o

ader .

® ¢ o o e e o o s e o @

24
29
13
4
13
13
13
40
71
15
14
5
118
53
53
121

Disk read and write, assembly code

Division,integer . . .
Double precision . . .
DSKF . . .

DSKI$ and DSKO$ péimitives

Echo routines
EDIT © ¢ ¢ o o o o o &«
Edit, definition . . .

e o o
¢ o s
.
.
* e o

o o o

Editing, elementary provisions

END . .

EOF & ¢ ¢ ¢ o o &
EQV 6 ¢ ¢ o o o o
ERASE . & « ¢ « o«
ERL & ¢ & ¢ o o &
ERR .« ¢ o o o o &
Error codes . . .

Error message forma
Error messages, dis
ERROR statement .
Error trapping . .
EXP & v ¢ ¢ o o &
Expression, integer
Expressions, string

s e e A e o o o 0 o o

¢ 2 s o & s s 4 e e e o »

FIELD . « « .«
Fields, numeric
Fields, string
File name . .
FILES command
FIX . .

FOR
FRCINT
FRE

Functions
Functions, derived
Functions, extended
Functions, intrinsic
Functions, simulated

® * 6 & o 4 ¢ s 0 o o

e s s s e e e e s o

® & s o 2 &t o o s e s e ¥
* e ® o e o & e s 8 e s »

e e o o s o o

39
11
62
68

193
490

199

199

129

Functions, string

Functions, user-defined

GET . « « o« o &
GOSUB . . « . .
GOTO « « o « & &

HEXS

Hexadecimal conéténés

IF...GOTO . . .
IF...THEN . . .
IF...THEN...ELSE
IMP . ¢ ¢ o o «
Indirect Mode .

Initialization dialog
Initialization dialog,
Initializing a disk

INP

INPUT ¢ ¢ o o o
INPUT, disk . .
INSTR &« & o o o
INT ¢ ¢ ¢ ¢ o &«
Intellec systems,
KILL « ¢« ¢ o o &
LEFTS .+ ¢ « o
LEN o« ¢ o o o o
LET . ¢« ¢ ¢ « &
Line « + « « o« &
LINE FEED . . .
LINE INPUT . . .
LINE INPUT, disk
Line LENGTH . .
Line Number . .
LIST . o« ¢ « o o
Lists and Directo
LLIST . &« o o«
LOAD « « &« ¢ «
Loader errors .
Loading BASIC .
LOC & & 4 & o &

LOF ¢ ¢ o o o &
LOG & ¢ « o o &
LOOPS v o o o
Lower case input
LPOS . « ¢ o « &
LPRINT . . .
LPRINT USING
LSET . . + o &

.
.
.

MAKINT . « . . .
MERGE . . « « &
MIDS . . . « « .

e o & o s M o o o ¢ 0 s s 0 o o e o o o

« 3 s e & o s o

i

Alt

« s e o
e o ¢ s o o

e & o o

¢« ¢ o 3 e @

S

* o o s e Do e e s e e

® e s e e e s o

1

Fle o o o o o Qe o v o o o

« o o o o o

® o o o s e s o

e e+ s e o o o @

[

We o o o o o

F

We o o s o o

[

“ o o &

e ¢ o o o o

® o o e s e & o 6 & 6 s o s e o

e s s s e

-

o o o o o ¢ 6 6 s 0 0 0

. " e s e

32
29

63
22
19

79
12

29
19
20
18

192
122
124
28
23
59
79
89
on.

57
80
18
84
61

72
70

55
192
95
64
64

21
85

75
75
67
41

75

128

MID$ function
MKDS
MKI$. . . o+ &
MKSS
MOD operator .
MOUNT

o o o o o o

NAME
NEW
NEW in disk
NEXT o o
NOT

OCTS & + ¢« ¢ .« &
Octal constants
ON ERROR GOTO .
ON...GOSUB . . .
ON...GOTO . . .
OPEN v 4 o o« « &
OPEN, random files
Operators
OPERATORS, extended
Operators, logical

e ¢ o o s o

e s o o+ o o

aﬁd.d s

* o o o o e o & o s o

e e o o o &

Operators, precedence of
Operators, relational

Operators, string
OR ¢« v v ¢ ¢« v & &
OUT .« . & ¢ ¢ o« &

PEEK ¢ &+ ¢« o s & &
PIP utility program
PIP, CNV command .
PIP, COP command .
PIP, DAT command .
PIP, DIR command .
PIP, INI command .
PIP, LIS command .
PIP, SRT command .
POKE . .
POS . v 4 v o 4 »
Precedence, table
PRINT
PRINT USING .
PRINT, disk .
Prompt string
PTD program .
PUT ¢« & & o &

.
.
.
.

Random buffer . .
Random File I/0 .
Random files . .
READ
Remarks
RENUM
Reserved WORDS .

.

of

.
.
.
.
.

e o o e s o

e o o o o

* e » o o o o

.

« o o e o o o

e ¢ o o o o »

.
.
i

® * o o o o 0 o s e o e »

e o s s e s o

« o o o

k

® * o e e s+ s o e s e o o

SIN . « o & .

Reserved words
RESTORE . .
RESUME . . &
RESUME NEXT
RETURN . .

RIGHTS .
RND . .
RSET . .
RUBOUT .
Rubout .

e o & 06 6 & o 0o o o o o

RON
RUN, disk files
SAVE ¢ ¢ ¢ ¢ o o o o
Scientific notation
Sense switch settings
Sequential File I/0
Sequential mode .
SGN

Single precision .
Space allocation .
Space hints . . .
SPACES . « ¢ « & .
SPC &« ¢ o« o o o .
Special Characters .
Speed hints
SQR ¢ ¢ o o o o o o
Statements
Statements, extended

e

° e o o o o o

STOP &« ¢« o« o ¢ o o
STRS . ¢ o & o
String Literal
STRINGS . « .
Strings . . .
Subroutines . . .

Subroutines, machin
SWAP o o ¢ o o o o

TAB ¢ o o o o o o
TAN o o o o o o o
TROFF ¢ o o o o o
TRON . . .
Type of constant

Type of variables
Type,definition .

* o o & 0 o

UNLOAD . « o o o » &
USR ¢ o o o o o o o

VAL ¢ o o o o &
Variable types .
Variables . . .
VARPTR « .« « o &

e o o

o 4o o o 8 & o s ¢ 0 e s 0 0 e s s s e .

[

e e o o s s o s 0 6 6 0 s s e e s e s e s s s

@ ¢ o & 6 o a 8 o o o o

n

e f2 e s o s o s s o e 8 s s s s s s s s e s s s e

e o o o 0 & o 8 8 & o b

[

s il ¢ ¢ ¢ o 4 o 6 0 o 0 8 s o 8 & 2 8 e e s e »

¢ ¢ & o o o 0 8 8 e s &

. . ¢« o o o o s o

* o o

o

2 6 6 o 0 o 5 o 8 o o o

@ ® 6 o & e ® 6 6 0 8 & 0 8 5 8 8 o 6 e o o @

e o & o s o o

107
8l
81
82
1908
8l
73
32
61,
81
5
8l
38
22
112
33

81
81
34
34
il
13
5

53
42,

82
13
12
82

77

112

WAIT
WIDTH

XOR

26
35

18

83
83

