/)) ALTAIR 8800 MACHINE/ASSEMBLY LANGUAGE PROGRAM CODING SHEET

Profram Name: BASIC Keyboard-ACR Input Routine, #3_12_7¢3 Page 4 of 30
(rostrammers, Christopher J. Flynn Date: 3/3/76
dress:
Program Length in Bytes: 64 Laneuaez:n_z__Machine_____5ssemb|

Other Information:

TAG | MNEMONIC | ADDRESS Ao EXPLANATXON
START | PusHH XXX, 300 5 Save H,L
PUSHB 301 305 Save B,C
" LXIH 302 o4l Point to "locate CR® switch
303 334
304 XXX
. SENSE IN 305 333 Read sense switch
C 306 377)
RAL 307 027 Bit 7 to Carry - test AlS
Jc 310 332 Al5 is set. GO TO ACRIN
311 335
312 XXX
KBDIN MVIA . N3 076 Set ACC to 1
314 001
MoV 315 167 Set "locate CR" switch to 1
KBDCSW ™ 26 333 Read keyboard status word '
317 000 '
ANI 320 346 examine data ready bit I
321 002
C Jz 322 312 Not ready. Go to KBDCSW
323 316

Program Name:

BASIC Keyboard-ACR Input Routine #3-12-763 Page 2

of 10

(CAG MNEMONIC | ADDRESS o EXPLANATION
XXX, 324 .0.0.4
IN 325 333 Read keyboard data
326 001
ANT 327 g7 Select bits 0-6~
330 177
FOPBR 331 301 Restore B,C
POFH 332 U1 Restore H,L
RET 333 311 Pass kbd character to BASIC
SWITCH" 334 001 If switch is 1, search for CR
ACRIN CALL 335 315 Obtain data word from ACR
336 367
(“Ai 337 XXX
f MOVBA %0 107 | Save ACR data word in Reg B
MOVAM k.ot 176 Load "locate CR" switch
RAR 3#2 037 Bit 0 to carry -test for geek or read
JINC - 343 332 Bit 0 is 0 go to read mode
344 361
345 XXX
ACRSEEK MOVAB 36 170 Restore ACC from Reg B
CFI 347 376 Doss ACC contain a CR
350 015
JNZ 351 302 No, keep lonking for the 1lst CR *
352 335
- 353 | I
{ﬁ SUBA 354 227 | Yes, set "locate CR® switch to 0
MOVMA 355 167
JMP 356 303 Now go read data

I

hc i I3

‘rogram Name:

BASIC Keyboard-ACR Input Routine #3-12-763 Page 3

of 10

_(-r/,-.s MNEMONIC | ADDRESS OCCOTDAEL EXPLANATION
xxx, 360 XXX
ACRREAD MOVAB 361 170 Restors ACC from Reg B
ANI 362 | 6 Select bits 0-6
363 17?7
POFB 364 301 Restore B,C
POPH 365 41 Restore H,L
_ RET 366 m Pass ACR character to BASIC
ACRCSW IN 367 333 Read ACR status word
370 006
RRC' 371 017 Bit O to carry - te t for data ready
Jc 372 332 Not ready. GOTO ACRCSW
373 367
O |
N © 375 333 Ready. Read ACR character
376 007
RET 377 311 Pass character to caller

ALTAIR 8300 MACHINE/ASSEMBLY LANGUAGE PROGRAM CODING SHEET

Program Naine: Modified BASIC Output Routine #1 #3-12-763 PaEe_:_l-._ui_]
(Fodrammer:, Christopher J. Flynn ‘ Date: 3/3/76
(:djdress: v2601 Claxton Drive, Herndon, VA 22070

Program Length in Bytes: 13 Language: X Machine _ Assei

S8ther Information: Assumes ocutput device baud rate is less than ACR baud rate.

Code applies to unmodified 88-SI0 board.

Tae | MNEMONIC | ADDRESS e | EXPLANATION
TTYCSW IN XXX, 260 333 Read output device CSW
261 000
ANI } 262 M6 Select device ready bit
263 001
Jz 264 312 Not ready. GOTO TTYCSW
‘ 265 | 260
<;’ : 266 | Xxx '
POPA 267 | .361 Restore ACC
ouT 270 1323 Send contents of ACC to output device
271 001
ouT 272 323 Send contents of ACC to ACR
273 007
RET 274 311 Back to caller
U

Ay

ALTAIR 8800 MACHINE/ASSEMBLY LANGUAGE PROGRAM CODING SHEET

Program Name: Modified BASIC Outvut Routine $2 #3-12-763 Page 5 of 10

.(,Arammer:, Christopher J. Flynn ' ' ‘Date: .3/3/76

Address: 2601 Claxton Drive, Herndon, VA 22070

Program Length in Bytes: 12 ‘ Langduage: X Machine Assembly

Other Information: Assumes cutput device baud rate is greater than or equal to ACR

baud rate.
TAG MNEMONIC | ADDRESS |. Pk EXPLANATION
BEGIN IN XXX, 260 333 Read ACR ‘stutus
260 | 006
RLC 262 007 Move device ready bit to carry
JC 263 332 Not ready. GOTO BEGIN
26 260
C s |
POPA 266 361 | Restore ACC.
ouT 267 . 323 Send contents of ACC to ACR
270 00?
out 27 323 Send contents of ACC to ocutput device
22 | om
RET 273 311 Back to caller

#3-12-763 P e © Page 6 of 10

Saving BASIC Programs with the ACR

Introduction

Users of the cassette versions of BASIC and users lacking paper tape

(Jquipment have only limited capability to save debugged BASIC programs for
later use. 4K users are in a peculiar situation in that there is no pro-
vision at all for saving programs-short of investing in a paper tape reader/
punch. 1In 8K BASIC ‘(cassette version) there is the capability to save program:
(the CSAVE command) on cassette tape and to later reload programs (CLOAD).
When programs are stored in this manner, they are written to tape in internal
form rather than in source (ASCII character) form. This method may impose a
release dependency on stored programs. That is, programs CSAVEd in one ver-
sion of BASIC may or may not CLOAD in a different version of BASIC. Another
difficulty with CSAVE and CLOAD is the potential problem in merging program
segments from multiple tapes to create a composite program. Finally, BASIC
compatible tapes are not easily created or listed off-line.

This article describes a method of using the ACR cassette interface
together with patches to BASIC's input and output subroutines in order to sim-
ulate a paper tape reader and punch. Thus, any information which can be dis-
played on the terminal (programs, subroutines, comments, DATA statements, and
so on) can be stored on cassette tape and retrieved at some point later in time

Since the system described herein stores data in_source form, several
advantages in operational flexibility are immediately obtained. Barring any
changes in BASIC syntax, release dependency is minimized. Programs saved
under 4K 3.2 BASIC should load and execute properly under future releases.
RASIC statements may be loaded from several tapes to create a larger program.

(zbr example, a main program may be loaded from one tape, any required sub- -
routines may be loaded from a tape containing a subroutine library, and
finally, DATA statements may be read from yet another tape. Using the propose:
system, it is also possible to create and list BASIC tapes without bringing up
BASIC. Some of the text editting systems now available can be useful for off
line data preparation.

The proposed system does have a few disadvantages. At the present time,
it is not possible to name files stored on tape. The tape recorder index
counter readings must be used to locate files. As will be shown later, the
proposed system does not pack characters on the tape as closely as possible.
Normally, this will not be of too great significance. The most severe
criticism of the proposed method is that there is some question as to the
transferability of tapes made in this manner to users with other terminal
configurations.

Method .

BASIC handles input and output to the terminal by means of input and
ourput subroutines which are tailored to the particular I/0 interface boards
supporting the terminal. These subroutines provide a logical starting place
for any attempt to develop effective cassette software.

One subroutine in BASIC is responsible for terminal output. Whenever
BASIC attempts to print a character, the output subroutine is invoked. The

(wﬁtput subroutine checks the output device status and outputs a character

en the device is ready. A simple modification to this subroutine causes a |
character to be written to the ACR every time a character is printed on the
terminal. Thus, if the tape recorder is in the record mode all information
(whether typed by the user or printed by BASIC) will be stored on the cassette

#3-12-763

Page 8 of 10

Operation

. Once BASIC has been loaded and the new input and output routines established,
aving and retrieving programs becomes very straightforward.

A.

To

W N

Saving a BASIC program

store a program on tape follow the steps enumerated below:

Type in the program. Test it to make sure it is fully operational.
Add a dummy line at the end of the program (e.g. 999 REM. . ..
Type LIST, but do not hit RETURN.

Set up the recorder in the record mode. Write down the footage
meter reading.

Record at least 10-15 seconds of leader.

Now type RETURN. The program will be printed on the terminal and
recorded on the tape recorder. Note that carriage return marks
the beginning of the tape file.

After the program has finished printing, allow the ACR to write at
least 10-15 seconds of trailer.

Stop the tape recorder.

Write down the final footage meter reading.

Retrieving a BASI C program from tape

access a program which is stored on tape, perform the following steps:

Prepare the tape recorder for playback operation.

Using the footage meteér, locate the desired file and stop the
recorder in the leader.

At this point you may wish to type NEW at the terminal if you are
loading a main program. Otherwise, the program statements read from
tape will be merged with the BASIC program currently in memory.

Turn on the Al5 sense switch to signify that system input will come
from the ACR.

Type RETURN on the keyboard - this completes the changeover from t!
keyboard read routine to the ACR read routine.

The keyboard should now be insensitive to further input. Furthermo:
the INP console light should be on indicating that BASIC is expect-
ing ACR input.

Start the tape recorder making sure that the tape is positioned in
leader. BASIC will scan the tape until the first carriage return

is encountered which signifies the beginning of the tape file.

After the beginning of the file has been located, BASIC statements
will be read from tape and printed or displayed on the output ter-
minal.

Watch for the dummy statement (999REM...) at the end of the program.
When this is encountered, turn off Al5 as soon as possible in order tc
switch BASIC back to keyboard entry.

If Al5 is not turned off in time, BASIC will be "stuck" in the ACR
read mode. If this should happen, keep Al5 in the off posistion,

RLE— A r

9

N e e Page 7 of 10'

Saving BASIC programs is then a matter of selectively (and manually) turn-
ing on and off the tap recorder.

The modification to the output subroutine presumes no alteration of-:

ACR adjustments; the ACR remains set at 300 baud. If the output device is a
teletype machine operation at less than 300 baud, the extra write instruction
in the output subroutine will not.substantially degrade printing speed.
Indeed, the mismatch in baud rates is the reason that this method does not
achieve optimum packing of characters on the cassette tape. Depending on
the exact baud rates, there will be a delay of several milliseconds after the
ACR character has been written and before the Teletype has finished printing
the character. This delay, however, insures that during playback the ACR will
not overrun the Teletype. If, on the other hand, an output device is used
which is significantly faster than 300 baud (e.g.a TV typewriter using a paral
I/0 board), then the output routine, modified as above, will limit the data
transfer rate from the computer to the output device. If the degradation is
too severe, it may be possible to selectively enable and disable the ACR out-
put logic in a manner similar to the input routine discussed below. -

Depending on the version of BASIC, there may be several places in the
interpreter where a check for terminal input-is made. "Only one of these
routines, however, is used for accepting terminal data. The other routines ar
Control C checks used to interrupt a running program.

BASIC's input routine is similar to the output routine. The device statu
is checked. If the device is ready, a character is read from the device and
passed to BASIC for processing. Otherwise, BASIC waits until an input signal
is sensed.

The modifications to BASIC's input routine are more involved that the
output routine. Essentially, however, the modifications consist of checking
a sense switch on the CPU front panel ‘and then reading from the keyboard or
ACR depending on the sense switch setting. To retrieve data from tape then,
the only action that is required is to turn on the sense switch and to start
the tape recorder. Note that since the ACR has replaced the keyboard as
the input device (as long as the sense switch is set) all characters stored
on tape will apear on the output device as though they were input.from the
keyboard. L

The timing considerations discussed earlier also apply during playback.
Tapes recorded and played back on the same system should be processed proper-
ly. A potential problem exists, however, with trying to play back a tape
created on another user's system if the other user employs a different speed te
terminal. For example, a tape made on parallel I/0 board TV typewriter system
will most likely not have the several millisecond delay between ASCII charactex
Attempting to print such a tape on a slower Teletype will cause the ACR to
overrun the Teletype. To remedy such a situation where there is a timing
mismatch, simply NOP the output device status checking code, read in the proble
tape, ignore the gibberish that is printed, and restore the output routine.
Most probably, BASIC will have read the tape properly even though the character
could not be printed. ’

C

£3-12-763 Page 9 of 10
rewind the tape back slightly into the data, and play the tape again.
As soon as one character is read from the tape, BASIC will revert back to
(./ the keyboard entry mode.

"Modifying BASIC

The modification required to BASIC consist of adding a new input subrou-
tine and a new output subroutine and modifying BASIC's existing I/O routines
to CALL these new routines. Accompanying sheets contain the machine language
code for the new routines and patches for the cassette version of 3.2 4K
BASIC.
Refer to the code for new I/O routines. The sections of code labelled
KBDCSW and TTYCSW handle the terminal input and output devices respectively.
In the example shown, keyboard input is accepted via an 88-PIO parallel I/0
. board. Terminal output, on the other hand, is performed via an early version
serial board. The important point is that the KBDCSW and TTYCSW routines

must be tailored to the specific devices being used. Any doubt about the I/0 }
programming can be resolved by loading BASIC and examining its terminal 1/0
routines.

Note that two output routines have been included in tle documentation.
Choose one of them according to the baud rate of the output terminal device.
The new output routine is designed to capitalize on speed difference between
the ACR and terminal. By outputting to the slower device first and by per-
forming status checking on the slower device, the assumption can be made that
:he faster device will always be ready to output. Therefore, status checking
code for the faster device can be eliminated. If, for some reason, satis-
factory results are not achieved, modify the new output routine to check the
status of both the ACR and the terminal before writing.

As shown on the accompanying documentation, BASIC's I/0O routines are
replaced with CALL instructions to the new routines. Teh locations shown
are applicable to 4K BASIC Version 3.2. A recent issue of "Computer Notes"
suggested a method for locating these I/O routines. An easy way to find
BASIC's I/O routines consists of loading BASIC and then stopping BASIC while
it is printing and stopping it again while it is waiting for terminal input.
In each case, note the locations and memory contents when BASIC is stopped.
Then, using the EXAMINE switch, find the device status checking IN instruction
for each routine. These are the locations that will be replaced by CALLs
to the new routines.

Listed below are stops to be followed in order to bring up BASIC and
apply the necessary modifications:

1. Toggle in or load from tape the new I/O routines. Locate these
routines in a high page of memory and above the area used by the bootstrap
loader.

2. Load BASIC according to normal procedure.

3. Stop BASIC as soon as the initialization dialogue begins.

(_/ Note the location where BASIC was stopped.

4. Replace BASIC's I/O routines with CALLs to the new I/O routines

just loaded.

5. Restart BASIC from the location where it was stopped. If BASIC was

" in the ©0ld output routine, restart it from the newly inserted CALL

S — o . Page 10 of 10

statement. : .
6. Complete the initialization dialogue. Do not allocate all of the
(,; memory to BASIC oxr the new I/0 routines will be overlaid.
Conclusion

This article has described a simple software interface to BASIC which
effectively simulates a paper tape reader and punch with the result that Basic'
capability in the area of off=line data storage is greatly enhanced.

Although the system was originally intended to provide a source program
storage facility, other applications suggest themselves since any data that
can be entered via a keyboard can also be entered via tape. Consider the
following BASIC program.

10 FOR I = 1 to 10
15 PRINT 900 + I; "DATA"; 3.14159*I
20 .. NEXT 1

This program prints a series of DATA statements. If the DATA statements
are stored on cassette tape, they can be accessed later by another BASIC progi
The ACR, then, may serve as a convenient work file for communicating temporary
results between programs.

An advanced user may carry the work file principle a step further. With
*he string capabilities of 8K BASIC, it is possible to write a single com-

ler. Instead of generating machine code, the compiler could generate BASIC
statements and save them on tape for later execution.

There are, in the end, a potentially unlimited number of uses for the
ACR data storage system presented in this article.

MODIFICATIONS TO 4K 3.2 BASIC
The following patches to BASIC are made after BASIC has been loaded and
started and before the initialization dialogue has been completed. Do not
apply these patches and then start BASIC from location zero or the patches
will be overlaid.

Output Routine

Location 0ld Contents New Contents

003, 167 333 315 Call new output rtn
, 170 000 260 - ’
. 171 346 XXX
. 172 001 311 Back to BASIC

(:}Eut Routine

Location 0ld Contents New Contents

003, 202 333 315 Call new input rtn
. 203 . 000 300 ’
,» 204 346 XXX

. 205 002 311 Rack +o RAQTCH

