- ALTAHE% _
* _BASB@

REFERENCE MANUAL . _

altalr 8800 Basic
REFERENCE MANUAL"

@ | e J
© MITS, Inc. 1977 9 RGBS .inc.

First Printing, January, 1977 = = < 2450 Alamo S.E./ Albuquerqgue, New Mexicc 37106 |

S0S: 243- 552

PREFACE

The Altair BASIC language is a high-level programming
language specifically designed for interactive computing
systems. 1Its simple English-like instructions are easily
understood and quickly learned and its interactive nature
allows instant feedback of results and diagnostics., Despite
its simplicity, however, Altair BASIC has evolved into a
powerful language with provisions for editing and string
processing as well as numerical computation.

The Altair BASIC interpreter reads the instructions of
the BASIC language and directs the ALTAIR 8800 series
microcomputer to execute them. Altair BASIC includes many
useful diagnostic and editing features in all versions. The
extended versions provide additional features including
comprehensive file input/output procedures in the disk
version.

This manual will explain the features of the BASIC
language and the special provisions of the 4K, 8K, Extended
and Disk Extended Altair BASIC interpreters, release 4.4.
For quick reference, a table of Altair BASIC instructions,
diagnostics and functions are provided in Section 6. A
complete index is at the end of the manual. In addition to
this reference manual, the programmer should have a good
BASIC text book on hand. A 1ist of some suggested texts is
given in Appendix J.

January, 1977

2.
2-1

3.

CONTENTS

Some Introductory Remarks.

Introduction to this manual
a.. conventions
b. definitions
Modes of Operation
Formats
a. lines-AUTO and RENUM
b. REMarks
C. erroy messages
Editing ~ elementary provisions
a. single characters
b. lines
c. whole programs

Expressions and Statements

Expressions
a. constants
b. wvariables
1} names
.. 2) typing
C. arrays - the DIM statement
d. operators and order of precedence
e. logical operations ‘
f. the LET statement
Branching and Loops
a. branching
1) GOTO
2) IF...THEN...[ELSE]
3) ON...GOTO
b. loops - FOR,NEXT

c. subroutines -~ GOSUB,RETURN statements

d. memory limitations
Input/Output, Data Handling
a. INPUT
b. PRINT
c. DATA, READ, RESTORE
1) DATA
2) READ
3) RESTORE
d. CSAVE, CLOAD
e. miscellaneous
1) WAIT
2) PEEK,POKE
3) OUT, INP

Functions

Page 2

January,

‘:(

1977 Page 3
3-1 Intrinsic Functions
3-2 User-defined Functions - the DEF statement -
4, Strings
4-1 String data
4-2 String operations
a. comparisons
b. LET statements
c. input/ocutput
1) INPUT, PRINT
2) DATA,READ
4-3 String Functions
5. Extended Features
5-1 Extended Statements
5-2 Extended Operators
5-3 Extended Functions
5-4 EDIT Command
5-5 'PRINT USING Statement
5-6 Disk Operations
6. Tables and Directories
6~-1 Commands
6-2 Statements
6-3 Intrinsic Functions
6-4 Special Characters
6-5 Error Messages
6-6 Reserved Words
6-7 Index
Appendices
A, ASCII Character Codes:
B. Loading Altair BASIC
C. Speed and Space Hints
D. Mathematical Functions
E. Altair BASIC and Machine Language
F. Using the ACR Interface
G. Converting BASIC Programs Not Written for the Altair Computer
H. Disk Information .
I. The PIP Utility Program
J. BASIC Texts
R. Using Altair BASIC on the
Intellec* 8/Mod 88 and MDS Systems
L. Patching Altair BASIC's I/O Routines
M. Using Disk Altair BASIC: An Example
Index

January, 1977 Page 4

- SOME INTRODUCTORY REMARKS

1-1 Introduction to this Manual,

a.- Conventions. For the sake of simplicity, some
conventions will be followed in discussing the features of
the Altair BASIC language.

1. Words printed in capital letters must be written exactly
as shown. These are mostly names of instructions and
commands.)
2. TItems enclosed in angle brackets (<>) must be supplied
as explained in the text. Items in square brackets ([]) are
optional. Items in both kinds of brackets, [<W>], for
example, are to be supplied if the optional feature is used.
Items followed by dots (...) may be repeated or deleted as
necessary.

3. shift/ or Control/ followed by a letter means the
character is typed by holding down the Shift or Control key
and typing the indicated letter.

4. All indicated punctuation must be supplied.

b. Definitions. Some terms which ~will become
important are as follows:

Alphanumeric character: all letters and numerals taken
together are called alphanumeric characters.

Carriage Return: Refers both to the key on the
terminal which causes the carriage, print head or cursor to

‘move to the beginning of the next line and to the command

that the carriage return key issues which terminates a BASIC
line. .

Command Level: After Altair BASIC prints OK, it is at
the command 1level. This means it 1is ready to accept
commands.

Commands and Statements: Instructions in Altair BASIC
are loosely divided into two classes, Commands and
Statements. Commands are instructions normally used only in
direct mode (see Modes of Operation, section 1-2). Some
commands, such as CONTy may only be used in direct mode since
they have no meaning as orogram statements. Some commands,
such as DELETE, are not normally used as program statements
because they cause a return to command level. But most
commands will find occasional use as program statements.
Statements are instructions that are normally used in
indirect mode. Some statements, such as DEF, may only be
usad in indirect mode.

January, 1977 Page §

C

Edit: The process of deleting, adding and substituting
lines in a program and that of preparing data for output
according to a predetermined format will both be referred to
as *“editing." The particular meaning in use will be clear
from the context.

Integer Expression: An -expression whose value is
truncated to an integer. The components of the expression
need not be of integer type.

Reserved Words: Some words are reserved by BASIC for
use as statements and commands. These are called reserved
words and they may not be used in variable or function
names.

Special Characters: some characters appear differently
on different terminals. Some of the most important of these
are the following:

(caret) appears on some terminals as % (up-arrow)
~~ (tilde) does not appear on some terminals and prints
as a blank i
_ (underline) appears on some terminals as == (back-arrow).

String Literal: A string of characters enclosed by
quotation marks. (*) which is to be input or output exactly
as it appoears. The guotation marks are not part of the
string literal, nor may a string literal contain guotation
marks. (""HI, THERE“"is not legal.)

Type: While the actual device used to enter
information into the computer differs from system to system,
this manual will use the word "tyve" to refer to the process
of entry. The user tyves, the computer prints. Type also
refers to the classifications of numbers and strings.

1-2 Modes of Operation.

Altair BASIC provides for operation of the computer in
two different modes. 1In the direct mode, the statements or
commands are executed as they are entered into the computer.
Results of arithmetic and logical operations are displayed
and stored for later use, but the instructions themselves
are lost after execution. This mode is useful for debugging
and for using Altair BASIC in a "calculator" mode for gquick
computations which do not justify the design and coding of
complete programs.

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines
are entered into memory if they are preceded by a line
number. Execution of the program is initiated by the RUN

January, 1977 Page 6

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines
are entered into memory if they are preceded by a 1line
number. Execution of the program is initiated by the RUN
commands. \

1-3 Formats.

a. Lines. The line is "the fundamental unit of an
Altair BASIC program. The format for an Altair BASIC line
is as follows:

. . nnnnn <BASIC statement>[:<BASIC statement>...]

Bach Altair BASIC line begins with a number. The number
corresponds to the address of the 1line in memory and
indicates the order in which the statements in the line will
be executed in the program. It also provides for branching
linkages and for editing. Line numbers must be in the range
g to 65529. A good programming practice is to use an
increment of 5 or 18 between successive line numbers to
allow for insertions.

1) Line numbers may be generated automatically in the
Extended and Disk versions of Altair BASIC by use of the
AUTO and RENUM commands. The AUTO command provides for
automatic inserticn of 1line numbers when entering program
lines. The format of the AUTO command is as follows:

AUTO[<initial line>{, {<increment>]]
Example; :

AUTO 104,18

169 INPUT X,Y

110 PRINT SQR(X"2+Y"2)

128 “°cC .

OK

AUTO will number every input line until Control/C is typed.
If the <initial line> is omitted, it is assumed to be 18 and
an increment of 18 is assumed if <increment> is omitted. TIf
the <initial 1line> is followed by a comma but no increment
is specified, the increment last used in an AUTO statement
is assumed.

If AUTO generates a line number that already exists in
the program currently in memory, it prints the number
followed by an asterisk. This is to warn the user that any
input will replace the existing line.

January,

1977 Page 7

2) The RENUM command allows program lines to be "spread
out” so that a new line or lines may be inserted between
§x1$ting lines. The format of the RENUM command is as

ollows:

RENUM [<NN> [<MM>[,<II>]]]}

where NN is the new number of the first 1line to be
resequenced. If omitted, NN is assumed to be 14. Lines
less than MM will not be renumbered. If MM is omitted, the
whole program will be resequenced. II is the increment
between the lines to be resequenced. If II is omitted, it
is assumed to be 18. Examples:

RENUM Renumbers the whole program to start at line
16 with an increment of 10 between the new line numbers.

RENUM 144,,1060 Renumbers the whole program to start
at line 108 with an increment of 144.

RENUM 600¢,5000,1920 Renumbers the lines from 5009
up so they start at 6d08 with an increment of 1460.

NOTE

RENUM cannot be used to change the order of program
lines (for example, RENUM 15,36 when the program has .
three lines numbered 18, 20 and 38) nor to create
line numbers greater than 65529, An ILLEGAL
FUNCTION CALL error will result.

All line numbers appearing after a GOTO, GOSUB, THEN,
ON...GOTO, ON...GOSUB and ERL<relational operator> will be
properly changed by RENUM to reference the new line numbers.
If a line number appears after one of the statements above
but does not exist in the program, the message "UNDEFINED
LINE XXXXX IN YYYYY" will be printed. This line reference
(XXXXX) will not be changed by RENUM, but line number YYYYY
may be changed.

3) In the Extended and Disk versions, the current 1line
number may be designated by a period (.) anywhere a line
number reference is required. This is particularly useful
in the use of the EDIT command. See section 5-4.

4) Following the 1line number, one or more BASIC
statements are written. The first word of a statement
identifies the operations to be performed. The 1list of
arguments which follows the identifying word serves several
purposes. It can contain (or refer symbolically to) the

January, 1977 Page 8

data which is to be operated upon by the statement. In some
important instructions, the ~operation to be per formed
depends upon conditions or options specified in the list.

Each type of statement will be considered in detail in
sections 2, 3 and 4.

More than one statement can be written on one 1line if
they are separated by colons ({:). Any number of statements
can be joined this way provided that the 1line is no more
than 72 characters long in the 4K and 8K versions, or 255
characters in the Extended and Disk versions. In the
Extended and Disk versions, 1lines may be broken with the

. LINE FEED key. Example: .

108 IF X<Y¥+37<line feed>
THEN 5 <line feed>
ELSE PRINT(X)<carriage return>

The line is shown broken into three lines, but it is input
as one BASIC line. .

b. REMarks. In many cases, a program . can be more
easily understood if it contains remarks and explanations as
well as the statements of the program proper. In Altair k!
BASIC, the REM statement allows such comments to be included
without affecting execution of the program. The format of
the REM statement is as follows: :

REM <remariks>

A REM statement is not executed by BASIC, but branching
statements may link into i:. REM statements are terminated
by the carriage return or the end of the line but not by a
colon. Example:

186 REM DO THIS LCOP:POR I=1TO014 -the FOR statement
will not be executed

181 FOR I=1 TO 16: REM DO THIS LOOP -this FOR statement will
be executed.

’ In Extended and Disk versions, remarks may be added to the
end of a program line separated from the rest of the line by
a single quotation mark ('). Everything after the single
quote will be ignored.

c¢. Errors. When the BASIC interpreter detects an
error that will cause the program to be terminated, it
prints an error message. The error message formats in

Altair BASIC are as follows:

Direct statenment ?XX ERROR

 January, 1977 v Page 9

&E/

Indirect statement ?XX ERROR IN nnnnn

XX is the error code or message (see section 6-5 for a list
of error codes and messages) and nnnnn is the line number
where the error occurred. Each statement has its own
particular possible errors in addition to the general errors
in syntax. These errors will be discussed in the
description of the individual statements.

1-4 Editing - elementary provisions.

Editing features are provided in Altair BASIC so that
mistakes can be corrected and features can be added and
deleted without affecting the remainder of the program. If
necessary, the whole program may be deleted. Extended and
Disk Altair BASIC have expanded editing facilities which
will be discussed in section 5.

a. Correcting single “characters. If an incorrect
character is detected in a line as it is being typed, it can
be corrected immediately with the backarrow { wunderline on
some terminals) or ,except in 4K, the RUBOUT key. Each
stroke of the key deletes the immediately preceding
character., If there is no preceding character, a carriage
return is issued and a new line is begun. Once the unwanted
characters are removed, they can be replaced simply by
typing the rest of the line as desired. ’

When RUBOUT is typed, a backslash (\) is printed and
then the character to be deleted. Bach successive RUBOUT
prints the next character to be deleted. Typing a new
character prints another backslash and the new character.
All characters between the backslashes are deleted.

Example:

198 X=\=X\¥=18 Typing two RUBOUTS deleted the 's='
and 'X' which were subsequently
replaced by Y= .,

b. correcting lines. A line being typed may be
deleted by typing an at-sign (8) instead of typing a
carriage return. A carriage return is printed automatically
after the 1line is deleted. Except in 4K, typing Control/u
has the same effect.

In the Extended and Disk versions, typing Control/a
instead of the carriage return will allow all the features
of the EDIT command (except the A command) to be used on the

January,

1977 : Page 10

line currently being typed. See section 5—4..

© €. correcting whole programs. The NEW command causes
the entire current program and all variables to be deleted.
NEW is generally used to clear memory space preparatory . to
entering a new program.

2. STATEMENTS AND EXPRESSIONS.

2-1. Expressions.

The simplest BASIC expressions are 7single constants,
variables and function calls.

a. Constants. Altair BASIC accepts integers or
floating . point real numbers as constants. All but the 4K
version of Altair BASIC accept string constants as well.
See section 4-1. Some examples of acceptable numeric
constants follow:

123
3.141
0.0436
1.25E+85

Data input from the terminal or numeric constants in a
program may have any number of digits up to the length of a
line (see section 1l-3a). In 4K and 8K Altair BASIC,
however, only the first 7 digits of a number are significant
and the seventh digit is rounded up. Therefore, the command

PRINT 1.234567898123
produces the following output:

1.23457
OK

In Extended and Disk versions of Altair BASIC, double
precision format allows 17 significant digits with the 17th
digit rounded up. .

The format of a printed number is determined by the
following rules:

1. If the number is negative, a minus sign (-) is printed
to the left of the number. If the number is positive, a
space is printed.

January, 1977 Page 11

K.(2. If the absolute value of the number is an integer in
the range B to 999999, it is printed as an integer.

3. If the absolute value of the number is greater than or
equal to .#1 and 1less than or equal to 999999, it is
printed in fixed point notation with no exponent,

4. In Extended and Disk versions, fixed point values up to
9999999999999999 are possible.

5. If the number does not fall into categories 2, 3 or 4,
scientific notation is used. i

The formats of scientific notation are as follows:
SX.XXXXXESTT single precision
SX XXXXXXXXXXXXXXXDSTT double precision

where S stands for the signs of the mantissa and the
exponent (they need not be the same, of course), X for the
digits of the mantissa and T for the digits of the exponent.
E and D may be read "...times ten to the power...."
Non-significant zeros are suppressed in the mantissa, but
p two digits are always printed in the exponent. The sign
&z‘ convention in rule 1 is followed for the mantissa. The
* exponent must be in the range =38 to +38. The largest
number ‘that may be represented in Altair BASIC is
1.70141E38, the smallest positive number is 2.9387E-~38. The
following are examples of numbers as input and as output by

Altair BASIC:

Number Altair BASIC Output
+1 1

-1 -1

6523 6523

1E24 1E28 .
-12.34567E~13 -1.23456E-89
1.234567E~7 1.23457E-87
1000008 1E+4@6

.1 W1

.81 .81

.800123 1.23E-04
-25.468 -25.46

The Extended and Disk versions of Altair BASIC allow

numbers to be represented in integer, single precision or

&:, double precision form. The type of a number constant is
determined according to the following rules:

January, 1977 . Page 12

1. A constant with more than 7 digits or a 'D' instead of
'E' in the exponent is double precision.

2, A constant outside the range -32768 to 32767 with 7 or
fewer digits and a decimal point or with an ‘E' exponent
is single precision.

3. A constant in the range -32768 to 32767 and no decimal
point is integer.

4. A constant followed by an exclamation point (!) is

single precision; a constant followed by a pound sign -

(#) is double precision.

Two additional types of constants are allowed in
Extended and Disk versions of Altair BASIC. Hexadecimal
(base sixteen) constants may be explicitly designated by the
symbol &B preceding the number. The constant may not
contain any characters other than the digits 8 - 9 or
letters A - F, or a SYNTAX ERROR will occur. Octal
constants may be designated either by &0 or just the & sign.

In all formats, a space is printed after the number.
In all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the current 1line. If not, it
issues a carriage return and prints the whole number on the
next line. .

b. Variables

1) A variable represents symbolically any number which
is assigned to it. The value of a variable may be assigned
explicitly by the programmer or may be assigned as the
result of calculations in a program. Before a variable is
assigned a value, its value is assumed to be zero. 1In 4K ,
a variable name consists of one or two characters. The
first character is any letter. The second character must be
a numeral. In other versions of Altair BASIC, the variable
name may be any length, but any alphanumeric characters
after the first two are ignored. The first character must
be a letter. No reserved words may appear as variable names
or within wvariable names. The following are examples of

legal and illegal Altair BASIC variables:

Legal Illegal
In 4K and 8K Altair BASIC:
A %A (first character must
) be alphabetic.)
z1 Z1A (variable name is too
long for 4K)
Other versions:

v

January, 1977 ' Page 13

TP TO (variable names cannot
be reserved words)

PSTGS

COUNT RGOTO (variable names can-
not contain reserved
words.)

In all but 4X Altair BASIC, a variable may also
represent a string. Use of this feature is discussed in
section 4.

2) Extended and Disk versions of Altair BASIC allow the
use of Integer and Double Precision variables as well as
Single Precision and Strings. The type of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name.

Type Symbol
Strings (4 to 255 characters) $
Integers (-32768 to 32767) %
Single Precision (up to 7 digits, exponent between
-38 and +38)) !
Double Precision (up to 16 digits, exponent between
-38 and +38) . H

Internally, BASIC handles all numbers in binary. Therefore,
some B8 digit single precision and 17 digit double precision
numbers may be handled correctly If no type is explicitly
declared, type 1is determined by the first letter of the
variable name according to the type table. The table of
types may be modified with the following statements.

DEFINT r Integer
DEFSTR r String
DEFSNG r Single Precision
DEFDBL ¢ Double Precision

where r is a letter or range of letters to be designated.
Examples: i

15 DEFINT I-N Variadble names beginning with the let-
ters I-N are to be of integer type.

29 DEFDBL D Variable names baginning with D are to
be of double precision type.

If no type definition statements are encountered, BASIC
proceeds as if it had executad a DEFSNG A-2 statement.

January, 1977 Page 14‘

3) Integer variables should be used wherever possible \‘
since they take the least amount of space in memory and %
integer arithmetic is much faster than single precision
arithmetic.

Care must be exercised when single precision and double
precision numbers are mixed. Since single precision numbers
can have more significant digits than will be printed, a
double precision variable set to a single precision value
may not print the same as the single precision variable.

19 A=1.01 single precision value
20 B3=A*18:C#=CDBL (A} *10% convert to double precision
30 PRINTA;B#;C#;CDBL(A) in various ways
RON :
1.1 15.10080038146973 18.09999998463257 1.609999990463257
OK

In order to assure that double precision numbers will print
the same as single precision, the VAL and STR$ functions
should be used. For example: :

19 A=1.41

20 B#=VAL(STR$(A)) :C3=Bi*103
3@ PRINT A;B#;C# ')
A | J
1.1 1.91 1.1 %
OK

€. Array Variables. It is often advantageous to refer
to several variables by the same name. In matrix
calculations, for example, the computer handles each element
of the matrix separately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC provides subscripted variables, or
arrays. The form of an arrayv wvariable is as follows:

VV(<subscript>[,<subscript>...])

where VV is a variable name and the subseripts are integer
expressions. Subscripts may be enclosed in parentheses or
square brackets. An array variable may have only one
dimension in 4K, but in all other versions of Altair BASIC
it may have as many dimensions as will f£it on a single line.
The smallest subscript is zero. Examples:

A(5) The sixth element of array A. The first
element is A(3).

ARRAY(I,2*J) The address of this element in a two-
dimensional array is determined by
evaluating the expressions in parenthe- e
ses at the time of the reference to the

¢

January, 1977 : Page 15

array and truncating to integers. If
I=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
sets all array elements to zero. The form of the DIM
statement is as follows:

DIM VV(<subscript>[,<subscript>...])

where VV is a legal variable name. Subscript is an integer
expression which specifies the largest possible subscript
for that dimension. Each DIM statement may apply to more
than one array variable. Some examples follow: ’

113 DIM A(3), D$(2,2,2)

114 DIM R2%(4), B(1l3)

115 DIM QI(N), 32Z#(2+I) Arrays may be dimensioned dy-
namically during program
execution. At the time the
DIM is executed, the expression
within the parentheses is e-
valuated and the results trun-
cated to integer.

If no DIM statement has been executed before an array
variable is found in a program, BASIC assumes the variable
to have a maximum subscript of 14 {11 elements) for each
dimension in the referenca. A BS or SUBSCRIPT OUT OF RANGE
error message will be issued if an attempt is made to
reference an array element which 1is outside the space
allocated in its associatad DIM statement. This can occur
when the wrong number of dimensions is used in an array
element reference. For example:

39 LET A(1,2,3)=X when A has been dimensioned by
13 DIM A(2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM
statement for an array is found after that array has been
dimensioned. This often occurs when a DIM statement appears
after an array has been given its default dimension of 19.

d. Operators and Precedence. Altair BASIC provides a
full range of arithmetic and (except in 4K) logical
operators. The order of execution of operations in an
expression 1is always according to their precedence as shown
in the table below. The order can be specified explicitly
by the use of parentheses in the normal algebraic fashion.

Table of Precedence

January, 1977

Page 16

Operators are shown here in decreasing order of precedence.,
Operators 1listed in the same entry in the table have the
same precedence and are executed in order from left to right
in an expression.

1.
2.

7.
8.

9.
13.
11.

12.
13.
14.

Expressions enclosed in parentheses ()

® exponentiation (not in 4K). Any number to the zero:
power is 1. Zero to a negative power causes a /@ or
DIVISION BY ZERO error.

~ negation, the unary minus operator

*,/ multiplication and division

\ integer division (available in Extended and Disk
versions, see section 5-2)

MOD (available in Extended and Disk wversions. See
section 5-2)

+,- addition and subtraction

relational operators
= equal
<> not equal

. < less than

> greater than
<=,=< less than or equal to
=,=> greater than or equal to

(the logical operators below are not available in 4K)

NOT logical, bitwise negation

AND logical, bitwise disjunction

OR logical, bitwise conjunction

(The logical operatorsbbelow are available only in
Extended and Disk versions.)

XOR logical, bitwise exclusive dR

EQV logical, bitwise equivalence

IMP logical, bitwise implication

In 4K Altair BASIC, relational operators may be used only

once

in an IF statement. 1In all other versions, relational

[EE——

¢

January, 1977 . Page 17

operators may be wused in any expressions. Relational
expressions have the value either of True (=1) or False (g).

€. Logical Operations, Logical operators may be used
for bit manipulation and Boolean algebraic functions. The
AND, OR, NOT, XOR, EQV and IMP operators convert their
arguments into sixteen bit, signed, two's complement
integers in the range -32768 to 32767. After the operations
are performed, the result is returned in the same fornm and
range. If the arguments are not in this range, an FC or
ILLEGAL FUNCTION CALL error message will be printed and
éxecution will be terminated. Truth tables for the logical
operators appear below. The operations are performed
bitwise, that is, corresponding bits of each argument are
examined and the result computed ' one bit at a time. In
binary operations, bit 7 is the most significant bit of g
byte and bit 8 is the least significant.

AND

X Y X AND Y

1 1 1

1 2 g

g 1)

g 2 8
OR

X ¥ XORrRY

1 1 1

-1 b} 1

@ 1 1

2 2 a
NOT

X NOT X

1]

] 1
XCR

X Y X XCR ¥

1 1 g

1 g 1

) 1 1

g 7] 2
EQV

X ¥ X EQV Y

1 1 1

1 g g

g 1 g

[/ g 1
IMp

X b4 X IMPp Y

1 1 1

1] g

g 1 1

|7}] 1

January,

1977 Page 18

Some examples will serve to show how the logical operations
wWOrK:

63 AND 16=16 63=binary 111111 and l6=binary 16009,
so 63 AND 16=16 '

15 AND 14=14 15= binary 1111 and l4=binary 1114,
so 15 AND l4=binary 1110=14,

-1 AND 8=8 ~l=binary 1111111111111111 and 8=binary

1808, so -1 AND 8=8.

4 OR 2=56 4=binary 100 and 2=binary 10 so
4 OR 2=binary 118=6.

18 OR 18=18 binary 1618 OR'd with itself is 1818=

-1 OR =-2=-1 -l=binary 1111111111111111 and =~-2=
1111111111111119, so -1 OR -2=-1,

NOT f=-~1 the bit complement of sixteen zeros

is sixteen ones, which is the two's
complement representation of -1.

NOT X=-(X+1) the two's complement of any number is
the bit complement plus one.

A typical use of logical operations is 'masking', testing a
binary number for some predetermined pattern of bits. Such
numbers might come from the computer's input ports and would
then reflect the condition of some external device. Further
applications of logical operations will be considered in the
discussion of the IF statament. .

£. The LET statement. The LET statement is used to
assign a value to a variable. The form is as follows:

LET <VV>=<expression>

where VV is a variable name and the expression is any valid
Altair BASIC arithmetic or, except in 4K, logical or string
expression. Examples:

1080 LET V=X
116 LET I=I+1 the '=' sign heremeans ‘'is replaced

by!

The word LET in a LET statsment is optional, so algebraic
equations such as:

128 V=.5% (X+2)
are legal assignment statements.

A SN or SYNTAX ERROR mnmessage 1is printed when BASIC
detects incorrect form, 1illegal <characters in a 1line,

incorrect punctuation or missing parentheses. An OV or
OVERFLOW error occurs -when the result of a calculation is

—

(&

January, 1977 v . Page 19

too large to be represented by Altair BASIC's number
formats. All numbers MUSt be within the range 1lE-38 to
1.78141E38 or ~1E-38 to ~1.78141=38, An attempt to divide
by zero results in the /g or DIVISION BY ZERQ error message,

For a discussion of strings, string variables and
String operations, see section 4,

2-2. Eranching, Loons and Subroutines,

&. Branching. 1p addition to the sequential execution
of program lines, Basic Provides for changing the order of
eéxecution. Thig Provision is calleq branching ang is the
basis of programmed decision making and loops. The
Statements jip Altair Basic which provide for branching are
the GoTto, IF...THEN and ON...GCT0 Statements,

1) GoTo is an unconditiona: branch. Its form ig as
follows:

GOTO<mmmmm>

After the GoTO statement is &xecuted, execution continues at
line number mmmmm ., .

2) IF...THEN is 2 conditicnal branch. 1ts form is as
follows:

IF(expression)THEN<mmmmm>
where the eéXpression is a valig 2rithmetic, relational or,
excCept in 4K, logical eXpressiocn ang mmmmm is a line number.
If the eXpression is evaluated as aon-zero, BASIC continues
at lire mmmmm. Otherwise, execution resumes at the next
line after the If...THEN sStatemen:,

An alternate form of the I7...THEN Statement is as
follows: :

IF<expression)THEN(statement>

where the statement s any Altair BASIC Statement.
Examples:

19 17 a=19 Tyey 49 If the expression A=19 is
true, Basic branches :3 line 49, Otherwise,
execution proceeds at the next line.

15 IF a<B+C oR X THEN 106 7The eéXpression after Ip is
evaluated and if the value o2 the expression is
non-zero, the statemen:z dranches to line 1gg.

January, 1977 Page 20

20 IF X THEN 25 If X is not zero, the statement
branches to line 25.

38 IF X=Y THEN PRINT X If the expression X=Y is true
(its value is non-zero), the PRINT statement is
executed. Otherwise, the PRINT statement is not
executed. - In either case, execution continues with
the line after the IF...THEN statement.

35 IF X=Y+3 GOTO 39 Equivalent to the corresponding
IF,..THEN statement, except that GOTO must be.
followed by a 1line number and not by another
statement.

Otherwise, execution continues on the next line. \'

Extended and Disk versions of Altair BASIC provide an
expanded IF...THEN statement of the form

IF<expression>THENKYY>ELSE<ZZ>

where YY and %7 are valid 1line numbers or Altair BASIC
statements. Examples:

IF X>Y THEN PRINT "GREATER" ELSE PRINT "NOT GREATER"

If the expression X>Y is true, the statement after THEN is
executed; otherwise, the statement after ELSE is executed.

__IF X=2*Y THEN 5 ELSE PRINT "ERROR" \G

. . . 4

If the expression X=2*Y is true, BASIC branches to 1line 5;

otherwise, the PRINT statement is executed. Extended and
Disk Altair BASIC allow a comma before THEN.

IF statements may be nested in the Extended and Disk
versians. Nesting is' limited only by the length of the
line. Thus, for example:

IF X>Y THEN PRINT "GREATER" ELSE IF ¥>X
THEN PRINT "LEZSS THAN" ELSE PRINT “EQUAL"

and

IF X=Y THEN IF ¥Y>2 THEN PRINT "X>2" ELSE PRINT "Y<=Z"
ELSE PRINT "X<>Y"

are legal statements. If a line does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with
the closest unmatched THEN. Example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

January, 1977 Page 21

3) ON...GOoTo (not in 4K) provides for another type of
conditional branch. 1Itg form is as follows:

‘;/ 0N<expression>GOTO<list of line numbers>

After the value of the expression is truncated to ap
integer, say I, the statement causes BASIC to branch to the
line whose number is Ith jin the list. fThe statement may be
followed by as many line numbers as will fit on one line.
If I=8 or is greater than the number of lines in the 1list,
eXecution will continue at the next line after the OW...GoTO
statement. must not be less than zero or greater than
255, or an FC or ILLEGAL FUNCTION CALL error wiil result.

b. Loops. 1t is often desirable to perform the same
calculations on different data or repetitively on the same
data. For this purpose, Altair BasIC Provides the FPOR and
NEXT statements. The form of the FOR statement is ag
follows:

FOR(variable>=<X)TO<Y>[STEP <2Z>]

where X,Y and 3 are expressions. When the FOR statement is
encountered for the Ffirst time, the expressions are
evaluated. The variable is set to the value of ¥ which isg
called the initial value. BASIC then e@xXecutes the
Statements which follow the FOR statement in the usual
manner. wWhen a NEXT Statement is encountered, the step 2 is

(added to the variable which is then tested against the final
“:’ value v, If Z, the Steg, is positive ang the variable is
less than or equal to the final value, or if the Step is
negative and the variable ig Greater than or equal to the
final value, then BASIC branches back to the statement
immediately following the POR statement. Otherwise,
eXecution proceeds with the statement following the NEXT.
If the step 1is not specified, it ig assumed to be 1,
Examples:

18 FOR I=2 TO 11 The loop is €Xecuted 10 times with
the variable 1 taking on each in-
tegral value from 2 to 11.

28 FOR V=1 TO 9.3 This loop will eéxecute 9 times up-
til V is greater than 9.3

36 FOR V=1g#*y TO 3.4/Z STEP SQR(R) The initial, final
and step expressions need not he
integral, but they will be eval-
uated only once, before loop-
ing begins.

40 FOR V=9 T0 1 STEP -1 This loop will be executed 9

times.

FOR...NEXT loops may be nested. That is, Basic Wwill execute

January, 1977 . Page 22

2 FOR...NEXT 1loop within the context of another loop. An
example of two nested loops follows:

108 FOR I=1 TO 18
120 FOR J=1 TO I
130 PRINT A(I,J)
140 NEXT J

150 NEXT I

Line 130 will print 1 element of A for I=1, 2 for I=2 and so
on. If 1loops are nested, they must have different loop
variable names. The NEXT statement for the inside loop
variable (J in the example) must appear before that for the
outside variable (I). Any number of levels .of nesting is
allowed up to the limit of available mMemory.

The NEXT statement is of the form:
NEXT[<variable>([,<variable>...]]

where each variable is the loop variable of a FOR loop for
which the NEXT statement is the end point. In the 4K
version, the only form allowed is NEXT with one variable.
In all other versions, NEXT without a variable will match
the most recent FOR statement. In the case of nested loops
which have the same end point, a single NEXT statement may
be used for all of them, except in 4K. The first variable
in the list must be that of the most recent loop, the second
of the next most recent, and so on. If BASIC encounters a
NEXT statement before its corresponding FOR statement has
been executed, an NF or NEXT WITHOUT FOR error message is
issued and execution is terminated.)

c. Subroutines. If the same operation or series of
operations are to be performed in several places in a
program, storage space requirements and programming time
will be minimized by the use of subroutines. A subroutine
is a series of statements which are executed in the normal
fashion upon being branched to by a GOSUB statement.
Execution of the subroutine is terminated by the RETURN
statement which branches back to the statement after the
most recent GOSUB. The format of the GOSUB statement is as
follows:

GOSUB<line number)

where the line number is that of the first 1line of the
subroutine. A subroutine may be called from more than one
place in a program, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

&/

January, 1977 : Page 23

Except in the 4K version, subroutines may be branched
to COnditionally by use of the ON...GOSUB statement, whose
form is as follows:

ON <expression> GOSUB <list of line numbers>
The execution is the same ag ON...GOTO except that the line
numbers are those of the first lines of subroutines,
Execution continues at the next: Statement after the
ON...GOosuB upon return fronp one of the Subroutines,

d. OUT OF MEMORY errors, While nesting in loops,
Subroutines. ang branching ig not limited by Basic, memory
size limitations restrict the sigze and complexity of
Programs., The OM or our OF MEMORY error message is issyed
when a Program requires more memory than isg available., See
Appendix ¢ for an explanation of the amount of memory
required to run Programs,

2-3. Input/Output

2. INPUT. The INPUT statement Causes data input to be
requested Ffron the terminal. The format of the INPUT
statement is as follows:

INPUT<1ist of variablegs>

The effect of the INPUT Statement is to cause the values
typed on the terminal to be assigned to the variables ip the
list. When an INPUT statement is executed, a question mark
(? is printed on the terminal signalling a request for
information. The operator types the required numbers or
strings (or, in 4K, expressions) Separated by commas and
types a carriage return. If the data entered ig invalid
(strings were entered when numbers were requested, ete.)
BASIC prints 'REDO FROM START?' and waits for the correct
data to bhe eéntared. If pore data was requested by the INPUT
Statement than was typed, ?? is Printed on the terminal ang
execution awaits the needegd data. If more data was typed
than was requested, the warning 'EXTRA IGNORED' ig Printed
and execution proceeds. - After all the requested data ig
input, execution continges normally at the statement
following the INPUT. Except in 4K, an optional prompt

String may be added to an INPUT Statement,

INPUT[“<prompt stiing)";]<variable list>

Execution of the Statement causes the prompt string to pe
Printed before the question mark. Then all operations
Broceed as above, The prompt string must be enclosed ip
double quotation . marks (") and must be separated from the

January, 1977 Page 24

variable list by a semicolon (;). Example:

190 INPUT "WHAT'S THE VALUE";X,Y causes the following
output:

WHAT'S THE VALUE?

The requested values of X and Y are typed after the ?
Except in 4K, a carriage return in response to an INPUT
statement will cause execution to continue with the values
of the variables in the variable list unchanged. 1In 4K, a
SN error results.

b. PRINT. The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT.

which prints a carriage return. The effect is to skip a
line. The more wusual PRINT statement has the following
form:

PRINT<list of expressions>

which causes the values of the expressions in the list to be
printed. String 1literals may be printed if they are
enclosed in double guotation marks (").

The position of printing is determined by the
punctuation used to separate +the entries in the list.
tair BASIC divides the printing 1line into =zones of 14
spaces each. A comma causes printing of the value of the
next expression to begin at the beginning of the next 14
column zone. A semicolon (;) causes the next printing to
begin immediately after the last value printed. If a comma
or semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same 1line according
to the conditions above. Otherwise, a carriage return is
printed.

c. DATA, READ, RESTORE

1) the DATA statement. ©Numerical or string data needed
in a program may be written into the program statements
themselves, input from peripheral devices or read from DATA
statements. The format of the DATA statement is as follows:

DATA<list>

where the entries in the list are numerical or string
constants separated by commas. In 4K, expressions may also

¢

January, 1977 Page 25

appear in the list. The effect of the statement is to store
the list of values in memory in coded form for access by the
READ statement, Examples:

19 paTa 1,2,-1E3,.04

29 DATA ™ LOO", MITS Leading and trailing spaces in
string values are suppressed unless the string is
enclosed by double quotation marks.

2) The READ statement. The data stored by DATA
statements 1is accessed by READ statements which have the
following form:

READ<1list of variables>

where the entries in the list are variable names separated
by commas. The effect of the READ statement is to assign
the values in the DATA lists to the corresponding variables
in the READ statement list. This is done one by one from
left to right until the READ list is exhausted. If there
are more names in the READ list than values in the DATA
lists, an OD or QUT OF DATA error message is issued. If
there are more values stored in DATA statements than are
read by a READ statement, the next READ statement tao be
executed will begin with the next unread DATA list entry. A
single READ statement may access more than one DATA
statement, and more than one READ statement may access the
data in a single DATA statement. .

An SN or SYNTAX ERROR 'message can result from an
improperly formattsd DATA list. In 4K Altair BASIC, such an
error message will refer to the READ statement which
attempted to access the incorrect data. 1In other versions,
the line number in the error message will refer to the-
actual 1line of the DATA statement in which the error

occurred,

3) RESTORE statement. After the RESTORE statement is
executed, the next piece of data accessed by a READ
statement will be the first entry of the first DATA list in
the program. This allows re~READing the data. :

d. CSavVEing and CLOADing Arrays (8X cassette, Extended
and Disk wversions only). Numeric arrays may be saved on
cassette or loaded from cassette using CSAVE* and CLOAD* The
formats of the statements are:

CSAVE*<array name>

and

January, 1977 . Page 26

CLOAD*<array name>

The array is written out in binary with four octal 218
header bytes to indicate the start of data. These bytes are
searched for when CLOADing the array. The number of bytes
written is four plus:

8*<number of elements> for a double precisicn array
4*<number of elements> for a single precision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript varying
most quickly, the next leftmost second, etc:

DIM A(16)
CSAVE*A

writes out A(8),A(1),...A(19)

DIM A(18,18)
CSAVE*A

writes out A(4,8), A(1,8)...A(18,8),A(14,1)...A(18,10)

Using- this fact, it is possible to write out an array as a
two dimensional array and read it back in as a single
dimensional array, etc. .

NOTE

Writing out a double precision array and reading it
back in as a single precision or integer array is
not recommended. Useless values will undoubtedly be

returned.

e. Miscellaneous Input/Qutput

1) WAIT (not in 4K). The status of input ports can be
monitored by the WAIT command which has the following
format:

WAIT<I,d>[,<K>]
where I is the number of the port being monitored and J and

K are integer expressions. The port status is exclusive ORd
with K and the result is ANDed with J. Execution is

¢

January, 1977 ’ Page 27

suspended until a non-zero value results. J picks the bits
of port I to be tested and execution is suspended until
those bits differ from the corresponding bits of K.
Execution resumes at the next statement after the WAIT. If
K is omitted, it is assumed to be zero. I, J and K must be
in the range @ to 255. Examples:

WAIT 24,6 Execution stops until either bit 1 or bit
2 of port 20 are equal to 1. (Bit 4 is
least significant bit, 7 is the most sig-
nificant.) Execution resumes at the next
statement.

WAIT 16,255,7 Execution stops until any of the most significant
S bits of port 19 are one or any of the least

significant 3 bits are zero. Execution
resumes at the next statement.

2) POKE, PEEK (not in 4K). Data may be entered into
memory in binary form with the POKE statement whose format
is as follows:

PORE <I,J>

where I and J are integer expressions. POKE stores the byte
J into the location specified by the value of I. 1In 8K, I
must be less than 32768. 1In Extended and Disk versions, I
may be in the range 8 to 63536. J must be in the range 6 to
255. 1In 8X, data may be POKEd into memory above location
32768 by making I a negative number. In that case, I is
computed by subtracting 65536 from the desired address. To
POKE data into location 45608, for -example, I is
45009-65536=~28536. Care must be taken not to POKE data
into the storage area occupied by Altair BASIC or the system
may be POKEd to death, and BASIC will have to be loaded
again.

The complementary function to POKE is PEEK. The format
for a PEEX call is as follows:

PEEK(KI>)

where I is an integer expression specifying the address from
which a byte is read. I is chosen in the same way as in the
POKE statement. The value returned is an integer between @
and 255. A major use of PEEX and POKE is to pass arguments
and results to and from machine language subroutines.

3)00T, INP (not in 4K). The format of the OUT
statement is as £follows:

January, 1977) Page 28

ouT <I,3>

where I and J are integer expressions. OUT sends the byte
signified by J to output port I. I and J must be in the
range 4 to 255.

The INP function is called as follows:
INP(KI>)

INP reads a byte from port I where I is an integer
expression in the range 8 to 255. Example:

2¢ IF INP(J)=16 THEN PRINT "ON"

3. FUNCTIONS

Altair BASIC allows functions to be referenced in
mathematical function notation. The format of a function
call is as follows:

<name> (<argument>{,<argument>...])
where the name is that of a2 previously defined function and
the arguments are one or more expressions, separated by
commas . Only one argument is allowed in 4K and 8K.

Function calls may be components of expressions, so
statements like

19 LET T=(F*SIN(T))/P and
20 C=SQR(A"2+B"2+2*A*3*COS(T))

are legal.

3-1. Intrinsic Functions

Altair BASIC provides several frequently used functions
which may be called from any program without further
definition. A procedure is provided, -however, whereby
unneeded functions may be deleted to save memory space. See
Appendix B. For a list of intrinsic functions, see section
6-3.

3-2. User-Defined Functions (not in 4K).

¢

January, 1977 Page 29

a. The DEF statement. The programmer may define
functions which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the
DEF statement is as follows:

DEF<function name>(<variable list>)=<expression>

where the function name must be FN followed by a legal
variable name and the entries in the variable list are
'dummy’ variable names. The dummy variables represent the
argument variables or wvalues in the function call. In 8K
Altair BASIC, only one argument is allowed " for a
user-defined function, but in the Extended and Disk
versions, any number of arguments is allowed. Any
expression may appear on the right side of the equation, but
it must be limited to one line. User-defined functions may
be of any type in Extended and Disk versions, but
user-defined string functions are not allowed in 8K If a
type 1is specified for the function, the value of the
expression is forced to that type before it is returned to
the calling statement. Examples:

18 DEF FNAVE(V,W)=(V+W)/2

11l DEP FNCONS (VS,WS)=RIGHTS (V$+W$,5) Returns the right
most 5 characters of the concat-
enation of V$ and WS.

12 DEF FNRAD(DEG)=3.14159/188*DEG When called with the
measure of an angle in degrees,
returns the radian equivalent.

A function may be redefined by executing another DEP
statement with the same name. A DEF statement must be
executed befors the function it defines may be called.

b. USR. The USR function allows calls to assembly
language subroutines. See appendix E.

3-3. Errors.,

An FC or ILLEGAL FUNCTION CALL error results when an
improper call is made to a function. Some places this might
occur are the following:

1. a negative array subscript. LET A(-1)=0, for example.
2. an array subscript that is too large (>32767)

3. negative or zero argument for LOG

January, 1977 Page 3@

4. Negative argument for SQR
5. A"B with A negative and B not an integer

6. a call to USR with no address patched for the machine
language subroutine.

7. improper arguments to MID$, LEFTS +RIGHT$, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, INSTR, STRINGS$, SPACE$ or
ON...GOTO.

b. An attempt to call a user~defined function which
has not previously appeared in a DEF statement will cause a
UF or UNDEFINED USER FUNCTION error.

€. A TM or TYPE MISMATCH error will occur if a
function which expects a string argument is given a numeric
value or vice-versa.

4. STRINGS

In all Altair BASIC versions except 4K, expressions may
either have numeric value or may be strings of characters..
Altair BASIC provides a complete complement of statements
and functions for manipulating string data. Many of the
statements have alreadv been discussed so only their
particular application +o strings will be treated in this
section.

4-1. String Data.

A string is a list of alphanumeric characters which may
be from @ to 255 characters = in length. Strings may be
stated explicitly as constants or referred to symbolically
by variables. String constants are delimited by quotation
marks at the beginning and end. A string variable name ends
with a dollar sign ($). Examples:

A$="ABCD" Sets the variable AS to the four character
string "ABCD"

B9S="14A/56" Sets the variable B9S$ to the six character
string “14A/56"

FOOFOO$="E$" Sets the variable FOOFOOS to the two charac-—
ter string "ES"

Strings input to an INPUT statement need not be surrounded

Q/,

fanuary, 1977

by quotation marks.

String arrays may be dimensioned exactly as

CLEAR command which is explained in section 6-2.

4-2. String overations.

Page 31

any other
kind of array by use of the DIM statement. Each element of
a string array is a string which may be up to 255 characters
long. The * total number of string characters in use at any
point in the execution of a program must not exceed the
total allocation of string space or an 0S or OUT OF STRING
SPACE error will result, String space is allocated by the

2. Comparison Operators. The comparison operators for

strings are the same as those for numbers:

= equal

<> not egqual

< less than

> greater than

={,<= less than or ecgual to
=>,>= greater than or equal to

Comparison is made charactar by character on the
ASCII codes until a difference 1is found.
comparison is proceeding, the end of one string is
may be found in Appendix 3. Examples:

A<Z ASCIT A is 9835, Z is g94
ka ASCII 1 is 343

basis of

If,

while

reached,
the shorter string is considered to be smaller. ASCIT codes

" A">"A" Leading and trailing blanks are significant

in string literals.

b. String Expressions. String expressions are
composed of string literals, string variables and string
function calls connected by the + or concatenation operator.
The effect of the catenation operator is to add the string

on the right side of the operator to the end of ¢t

he

string

on the left. If the result of concatenation is a string
more than 255 characters long, an LS or STRING TOO LONG
error message will be 1issued and execution will be

tarminated.

c. Input/Output. The same statements used

\

for

input

and output of normal numeric data may be used for string

data, as well.

1977 ‘ . Page 32

1) INPUT, PRINT. The INPUT and PRINT statements read
and write strings on the terminal. Strings need not be
enclosed in quotation marks, but if they are not, leading
blanks will be ignored and the string will be terminated
when the first comma or colon is encountered. Examples:

1@ INPUT Z00S$,FO0$ Reads two strings

289 INPUT X$ Reads one string and assigns
it to the variable X$§.

38 PRINT X$,"HI, THERE" Prints two strings, including
all spaces and punctuation
in the second.

2) DATA,” READ. DATA and READ statements for string

data are the same as for numeric data. For format
conventions, see the explanation of INPUT and PRINT above.

4-3. String Functions.

The format for intrinsic string function calls is the
same as that for numeric functions. For the list of string
functions, see section 6-3. Special user-defined string
functions are allowed in Extended and Disk versions and may
be defined by the use of the DEF statement (see 'section
3-2). string function names must end with a dollar sign.

5. EXTENDED VERSIONS.

The Extended and DisX versicns of Altair BASIC provide
several statements, operators, functions and commands which
are not available either in the 4K or 8K versions. For
clarity, these features are grouped together in this
section. Some modifications to existing 4X and 8K features,
such as the IF...THEN...ELSE statement and number typing
facilities, have been discussed in conjunction with the
other versions. Check the index for references to those
features.)

5-1. Extesnded Statements

a. ERASE. The ZRASE statement eliminates arrays from
a program and allows their space in memory to be used for
other purposes. The format of the ERASE statement is as
follows:

&

January,

1977 Page 33

ERASE<array variable list>

where the entries in the list are valid array variable names
separated by commas. ERASE will only operate on arrays and
not array elements. If a name appears in the list which is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement may be
dimensioned again, but the old values are lost. Example:

190 DIM A(5,5) etc.

.

.

60 ERASE A
70 DIM A(109)

b. LINE INPUT. It is often desirable to input a whole
line to a string variable without use of quotation marks and
other delimiters. LINE INPUT provides this facility. The
format of the LINE INPUT statement is as follows:

LINE INPUT ["<prompt string>",];<string variable name>

The prompt string is a string literal that is printed on the
terminal before input is accepted. A question mark is not
printed unless it is contained in the prompt string. All
input from the end of the prompt string to the carriage
return is assigned to the siring variable. A LINE INPUT may
be escaped by typing Control/C. At that point, BASIC
returns to command level and prints OK. Execution may be
resumed at the LINE INPUT by typing CONT. LINE INPUT
destroys the input buffer, so the command may not be editad
by Control/A for re-execution.

C. ©SWAP. The SWAP statement allows the values of two
variables to be exchanged. The format is as follows:

SWAP <variable,variacle>

The value of the second variazble is assigned to the first
variable and vice-versa. Either or both of the variables
may be elements of arrays. If one or both of the variables
are non-array variables which have not had values assigned
to them, an ILLEGAL FUNCTION CALL error will result. Both
variables must be of the same type or a TYPE MISMATCH error
will result. Example: C

19 INPUT F$,L$
20 SWAP F§,LS
30 PRINT F$,LS
RUN

January, 1977 Page 34

?FIRST,LAST Data input
LAST FIRST Computer prints

d. TRON, TROFF. As a debugging aid, two statements

When the trace flag is turned on by the TRON statement, the
number of each 1line in the program is printed as it is
executed. The numbers appear enclosed in square brackets
(1. The function is disabled by execution of the TROFF
statement. Example: .

TRON executed in direct mode

OK printed by computer

1g PRINT 1:PRINT "A" typed by programmer

2g sTOP

RUN

{18] 1 line numbers and output printed by
A computer.

{28]

BREAK IN 23

The NEW command will also turn off the trace flag.
e. IF...THEN...ELSE. See section 2-2.
f. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1

g. CONSOLE, WIDTH. CONSOLE allows the console
terminal +to be switched £rom one I/O port to another. The
format of the statement is:

CONSQLE <I/0 port number>,<switch register setting>

The <I/0 port number> is the hardware port number of the low
order (status) port of the new I/0 board. This wvalue must
be a numeric expression between 0 and. 255 inclusive. If it
is not in this range, an ILLEGAL FUNCTION CALL error will
occur. The <switch register setting> is also a value
between 8 and 255 inclusive which specifies the type of 1/0
port (SIO, PIO, 4PIO etc) being selected. Appropriate
values of the <switch register setting> may be found in
Appendix B in the table of sense switch settings or in the
table below.

are provided to trace the execution of program instructions. -

Jaraary, 1977 Page 35

Table of values for <switch register setting>:

I/0 Board Sense Switch
Setting

2SI0 with 2 stop bits
2SI0 with 1 stop bit
SI0

ACR

4PIO

PIO

HSR

non-standard terminal
no terminal

VbR WD S

1

WIDTH Statement

The WIDTH statement sets the width in characters of the
printing terminal line. The format of the WIDTH statemen:
is as follows:

WIDTE <integer expression)>
Example:

WIDTH 8%
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inclusive, or an ILLEGAL FUNCTION CALL error will occur.

h. Error Trapping. Extended and Disk Altair BASIC
make it possible for the user to write error detection and
handling routines which can attemot to recover from errors
or provide more complete explanation of the cause of errors
than the simple error messages. This £facility has been
added to Altair BASIC through the use of the ON ERROR GOTO,
RESUME and ERROR statements and with the ERR and ERL
variables.

1) Enabling Error Trapping. The ON ERROR GOTO
statement specifies the line of the Altair BASIC program on
which the error handling subroutine starts. The format is
as follows:

ON ERROR GOTO <line number>

January, 1977 Page 36

The ON ERROR GOTO statement should be executed before the
user expects any errors to occur. Once an ON ERROR GOTO
statement has been executed, all errors detected will cause
BASIC to start execution of the specified error handling
routine. If the <line number> specified in the ON ERROR
GOTO - statement does not exist, an UNDEFINED LINE error will
occur.

Example:

19 ON ERROR GOTO 1469

2) Disabling the Error Routine. ON ERROR GOTO @
disables trapping of errors so any subsequent error will
cause BASIC to print an error message and stop program
execution. If an ON ERROR GOTO 4 statement appears in an
error trapping subroutine, it will cause BASIC to stop and
print the error message which caused the trap. It is
recommended that all error trapping. subroutines execute an
ON ERROR GOTO 8 subroutine 4if an error is encountered for
which they have no recovery action.

NOTE

If an error occurs during the execution of an error
trap routine, the system error message will be
printed and execution will be terminated. Error
trapping does not trap errors within the error trap
routine.

3) The ERR and ERL Variables. When the error handling
subroutine is entered, the variable ERR contains the error
code for the error. The error.codes and their meanings are
listed below. See section 6-5 for a detailed discussion of
each of the errors and error messages.

ode Error
NEXT WITHOUT FOR
SYNTAX ERROR
RETURN WITHOUT GOSUB
QUT OF DATA
ILLEGAL FUNCTION CALL
OVERFLOW
OUT OF MEMORY
UNDEFINED LINE
SUBSCRIPT OUT OF RANGE

VWS WwWwNDHND

(@

January, 1977

19
11
12
13
14
15
16
17
18
19
20
21
22
23

Disk

50
51
52
53
54
55
56
57
58
59
64
61
62
63
64
65
66
67
68

where

occured in line 1484, ERL will be equal

state

REDIMENSIONED ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH

OUT OF STRING SPACE
STRING TOO LONG

STRING FORMULA TOO COMPLEX
CAN'T CONTINUE
UNDEFINED USER FUNCTION
NO RESUME

MISSING OPERAND

RESUME WITHOUT ERROR
UNPRINTABLE ERROR

LINE BUFFER OVERFLOW

Errors

FIELD OVERFLOW
INTERNAL ERROR

BAD FILE NUMBER

FILE NOT FOUND

BAD FILE MODE

FILE ALREADY OPEN

DISK NOT MOUNTED

DISK I/O ERROR

FILE ALREADY EXISTS

SET TO NON-DISK STRING
DISK ALREADY MOUNTED
DISK FULL

INPUT PAST END

BAD RECORD NUMBER

BAD FILE NAME
MODE-MISMATCH

DIRECT STATEMENT IN FILE
TOO MANY FILES

OUT OF RANDOM BLOCKS

Page 37

The ERL variable contains the line number of the 1line
For instance, if the error

the error was detected.

ment which caused the

error

to 1864. If the
was ‘a direct mode

statement, ERL will be equal to 65535 decimal. To test if
an error occurred in a direct statement, use

In al

IF 65535=ERL THEN ...

1 other cases, use

IF ERL=<line number> THEN...

January,

1977) Page 38

If the line number is on the left of the equation, it cannot
be‘renumbered by RENUM (see section l-la).

4) Disk Error Values - The ERR function. The ERR
function returns the parameters of a DISK I/O ERROR. ERR(8)
returns the number of the disk, ERR(l) returns the track
number (8-76) and ERR(2) returns the sector number (8~31).
ERR(3) and ERR(4) contain the 1low and high order bytes,
respectively, of the cumulative error count since BASIC was
loaded.

NOTE

Neither ERL nor ERR may appear to the left of the =
sign in a LET or assignment statement.

5) The RESUME statement. The RESUME statement is used
to continue execution of the BASIC program after the error
recovery procedure has been performed. The user has three
options. The user may RESUME execution at the statement
that caused the error, at the statement after the one that
caused the error or at some other line. To RESUME execution

at the statement which caused the error, the user should
use:

RESUME
or
RESUME @

To RESUME execution at the statement immediately after the
one which caused the error, the user should use:

RESUME NEXT

To RESUME execution at a line dfferent than the one where
the error occurred, use:

RESUME <line number>
Where <line number> is not equal to zero.

6) Error Routine Example. The following example shows
how a simple error trapping subroutine operates.

¢

January, 1977 Page 39

100 ON ERROR GOTO 588

208 INPUT "WHAT ARE THE NUMBERS TO DIVIDE";X,Y
219 2=X/Y

22§ PRINT "QUOTIENT IS";Z

238 GOTO 283

508 IF ERR=11 AND ERL=21§ THEN 520

518 ON ERROR GOTO @

528 PRINT "YOU CANT HAVE A DIVISOR OF ZERO!®
530 RESUME 239

7) The ERROR statement. 1In order to force branching to
an error trapoing routine, an ERROR statement has been
provided. The primary use of the ERROR statement is to
allow the user to define his own error codes which can then
conveniently be handled by a centralized error trap routine
as described above. The format of the ERROR statement is:

ERROR <integer expression>

When de2fining error codes, values should be picked which are
greater than the ones used by Altair BASIC. Since more
error messages may be added to Altair BASIC, user-~defined
error codes should be a551gned the highest possible numbers
to assure future compatibi llty. If the <numeric expression>
used in an ERROR statement is less than zero or greater than
255 ""decimal, an ILLEGAL FUNCTION CALL error will occur. Of
course, the ERRCR statement may also be used to force SYNTAX
or other standard Altair BASIC errors. Use of an ERROR
statement to faorce printout of an error message for which no
error text is defined will cause an UNPRINTABLE ERROR
nessage to be printed out.

5-2. Extended Operators.

Two operators are provided that are exclusive to the
Extended and Disk versions.

a. Integer Division. Integer division, denoted by \
(backslash), forces its arguments to integer form and
truncates the quotient to an integer. More precisely:

A\B= FIX(INT(A)/INT(B))
after multiplication and floating

er division is approximately eight
rd floating peoint division.

Its precedence is just
point divison. Inte

o4
times as fast as standa

January, 1977 Page 48

. b. Modulus Arithmetic - the MOD operator. A MOD B
gives the 'remainder' as A is divided by B. More precisely:

A MOD B=INT(A)-(INT(B)*(A\B))

If B=@, a DIVISION BY ZERO error occurs. The precedence of
MOD is just below that of integer division.

5-3, Extended Functions

a. Intrinsic Functions. Extended and Disk Altair
BASIC provide several intrinsic functions which are not
available in the other versions. For a 1list of these
functions and a description of their use, see section 6-3.

b. The DEFUSR statement. Up to ten assembly language
subroutines may be defined by means of the DEFUSR statement
whose form is as follows:

DEFUSR{<digit B through 9>]=<integer expression>
Example:

DEFUSR1=:100500
DEFUSR2=31296
_ DEFUSR9=ADR

The of the <integer exzpression> is the starting address of
the USR routine specified. When the USR subroutine is
entered, the A register contains the type of the argument
which was given to the USR function. This is also the
length of the descriptor for that argument type:

Value in A Meaning

2 Two byte signed two's complement integer.

3 String.

4 Single precision four byte floating point number.
8 Double precision £floating point number.

When the USR subroutine is entered, the [H,L] register pair
contains a pointer to the f£loating point accumulator (FAC).
The [H,L] registers contain the address of FAC-3.

If the value in the FAC is a single precision floating point
number, it is stored as follows:

FAC-3: Lowest 8 bits of mantissa.
FAC-2: Middle 8 bits of mantissa. :
FAC-1: Highest 7 bits of mantissa with hidden (implied)

leading one. Bit 7 is the sign of the number (8
positive, 1 negative). :

¢

January, 1977 Page 41

FAC: Exponent excess 208 octal. If the contents of FAC is 2849,
the exponent is 8. If contents of FAC is #,the number is

zZero.

If the argument is double precision floating point, the
FAC-7 to FAC-4 contain four more bytes of mantissa, low
order byte in FAC-7, etc., If the argument is an integer,
FAC-3 contains the 1low order byte and FAC-2 contains the
high order byte of the signed two's complement value. If
the argument is a string, [D,E] points to a string
descriptor of the argument, whose form is:

3yte Use

2 Length of string 8-255 decimal.

1-2 Sixteen bit address pointer to first byte of
strings text in memory (Caution - may point into
program text if argument is a string literal).

Normally, the value returned by a USR function will be the
same type (integer, string, single or double precision
floating point) as the argument which was passed to it.
However, calling the MARINT routine whose address is stored
in location 6 will return the intager in [A,L] as the wvalue
of the function, forcing the value returned by the function
to be integer. Execute the Iollowing sequence to return
from the function:

PUSH g ;SAVE VALUE TO BE RETURNED

LELD 6 ;GET ADDRESS OF MAKINT ROUTINE

XTHL ;SAVE RETURN ON STACK &

;GET BACK [H,L]

RET 3 RETURN
The argument of the function may e forced to an integer, no
matter what its type by calling the FRCINT routine whose
address is located in location 4 5 get the integer value of

the argument in (%,L]:

LXI q,sUBl 3GET ADDRESS OF SUBROUTINE
s CONTINUATION

PUSH g ;PLACE ON STACK

LHLD & ;GET ADDRESS OF FRCINT

PCHL ;CALL FRCINT

SUBl:

+3
2

5~4, e EDIT Command.

1977 Page 42

The EDIT command allows modifications and additions to
be made to existing program lines without having to retype
the entire line each time. Commands typed in the EDIT mode
are, as a rule, not echoed. That is, they usually do not
appear on the terminal screen or printout as they are typed.
Most commands may be preceded by an optional numeric
repetition factor which may be used to repeat the command a
number’ of times. This repetition factor should be in the
range @ to 255 (8 is equivalent to 1). If the repetition
factor -is omitted, it is assumed to be 1. In the following
examples, a lower case "n" before the command stands for the
repetition factor. 1In the following description of the EDIT
commands, the "cursor” refers to a pointer which is
positioned at a character in the line being edited.

To EDIT a line, type EDIT followed by the number of the
line and hit the carriage return. The line number of the
line being EDITed will be printed followed by a space. The
cursor will now be positioned to the left of the first
character in the line.

NOTE

The best way of getting +the "feel" of the EDIT
command is to try EDiITing a few lines yourself.

If a command not recognized as an EDIT command is entered,
the computer prints a ell (control/G) and the command is
ignored.

In the following examples, the lines labelled "computer
prints” show the appearance of the line after each command.

a. Moving the Cursor. Typing a space moves the cursor
to the right and causes the character passed over to be
printed. A number preceding the space (n<space>) will cause
the cursor to pass over and print out n characters. Typing
a Rubout causes the immediately previous character to be
printed effectively backspacing the cursor.

b. Inserting Characters

WARNINGS:

January, 1977 : ' Page 43

Character insertion is stopped by typing Escape
- (or Altmode on some terminals). Control/C will not
(V, interrupt the EDIT command while it is in. Insert
. mode, but will be inserted into the edited line.
Therefore, Control/C should not be used in the EDIT

command.

It is possible using EDIT to create a line
which, when listed with its line number, is longer
than 72 characters. Punched paper tapes containing
such 1lines will not read properly. However, such
lines may be CSAVEd and CLOADed without error.

I Inserts new characters into the line being edited.

Bach character typed after the I is inserted at
the current cursor position and printed on the
terminal. Typing Escape (or Altmode on some
terminals) stops character insertion. If an
attempt is made to insert a character that will
make the line 1longer than 255 characters, a
Control/G (bell) is sent to the terminal and
the character is not printed.

A backarrow {or Rubout) typed during an insert
command (or-) will delete the character to the left
of the cursor. Characters up to the ' beginning of
the 1line may be deleted in this manner, and a
e:/ backarrow will be echoed for each character
deleted. Howewvzsr, if there are no characters to
the left of the cursor, a bell is echoed instead of
a backarrow. If a carriage return is typed during
an insert command, it is as if an escape and then
carriage return were typed. That is, all
characters to the right of the cursor will be
printed and the EDITed line will replace the

original line.

X X is similar to I, except that all characters to
the right of the cursor are printed, and the cursor
moves to the end of the line. At this point, it
will automatically enter the insert mode (see I
command). X is most useful when new statements are
to be added to the end of an existing line. For

example:
User types EDIT 58 (carriage return)
Computer prints 50
User types X
Computer prints 58 X=X+1
User types :¥Y=Y+1 (CR)
Computer prints 58 X=X+1l:¥=Y+1

January, 1977 ‘ Page 44

In the above example, the original line #58 was:
50 X=X+1

The new line #50 now reads:

50 X=X+l:Y=Y+1

H B is the same as X, except that all characters to
the right of the cursor are deleted (they will not
be printed). The insert mode (see I command) will
then ‘automatically be entered. H is most useful
when the 1last statements on a line are to be
replaced with new ones.

¢. Deleting Characters

D nD deletes n characters to the right of the
cursor. If n is ommitted, it defaults to 1. If
there are less than n characters to the right of
the cursor, characters will be deleted only to the
end of the line. The cursor is positioned to the

right of the last character deleted. The
characters deleted are enclosed in backslashes (\). |
For example: “‘
User types 28 X=X+1:REM JUST INCREMENT X 1
User types EDIT 20 (carriage return)
Computer prints 26
User types 6D (carriage return)

Computer prints 28 \X=X+1:\REM JUST INCREMENT X

The new line #20 will no longer contain the characters
which are enclosed by the backslashes.

d. Searching.

S The nSy command searches for the nth occurrence of the
character y in the line. N defaults to 1. The
search skips over the first character to the right
of the cursor and begins with the second character
to the right of the cursor. All characters passed
over during the search are printed. If the
character is not found, the cursor will be at the
end of the line. If it is found, the cursor will
stop to the right of the character and all of the
characters to its left will have been printed. For
example

User types 50 REM INCREMENT X 3

User types %

EDIT 59

January,

C

1977

£.

Carriage

Page 45

Computer prints 50
User types : 2SE
Computer prints 5@ REM INCR

nKy is equivalent to S except that all of the
characters passed over during the search are
deleted. The deleted characters are enclosed in

~backslashes. For example:

User types 19 TEST LINE
User types) EDIT 19
Computer prints 12

User types KL
Computer prints 18 \TEST \

Text Replacement.

A character in a line may be changed by the use of

the command Cy winich changes the character to the
right of the cursor to the character y. Y is
printed on the terminal and the cursor is advanced
one position. nCy may be wused to change n
characters in a line as theéey are typed in from the
terminal. (See example below.) If an attempt is
made to change a character which does not exist,
the change mode will be exited. Example:

User types 13 FOR I=1 TO 169
User types EDIT 19

Computer printcs - 1a

User types 281

Computer prints 19 FOR I=1 TO

User types 3C256
Computer priats 19 FOR I=1 TO 256

Ending and Restarting

Return Terninates editing and prints the re-
mainder of the line. The edited line replaces the
original line.

E is the same as & carriage return, except the
remainder of the line is not printed.

Q restores the c¢riginal line and causes BASIC to
return to command level,. Changes do not take
effect until an I or carriage return is typed, so Q
allows the wuser to restore the original 1line
without any changes which may have been made.)

L causes the remainder of the line to be printed, and
then prints the line number and restarts editing at

January, 1977 Page 46

the beginning of the 1line. The cursor will be
positioned to the left of the first character in
the 1line. L allows monitoring the effect of
changes on a line. Example: :

User types 580 REM INCREMENT X
User types EDIT 59
Computer prints 59
- User types 25M
Computer prints 58 REM INCRE
User types L

Computer prints 58 REM INCREMENT X
50

A A causes the original line to be restored
and editing to be restarted at the beginning of the
line. For example:

User types 14 TEST LINE
User types EDIT 1@

Computer prints 12

User types 13D

Computer prints 18 \TEST LINE\
User types A

Computer prints 18 \TEST LINE\
1g

In the above examzle, the user made a mistake when
he d&eleted TEST LINE. Suppose that he wants to
tyve "1D" instead of 19D. As a result of the A
command, the original line 14 is reentered and is
ready for further editing.

IMPORTANT
Whenever a SYNTAX ERROR is discovered during the execution
of a source program , BASICT will automatically begin EDITing
the line that caused the error as if an EDIT command had
been typed. Exanmple: .

1@ APPLE

RUN

SYNTAX ERROR IN 13
18

Complete editing of a line causes the line edited to be
reinserted. Reinserting a line causes all variable values
to be deleted. To preserve those values for examination,
the EDIT command mode may be exited with the Q command after
the 1line number 1is printed. 1If this is done, BASIC will
return to command level and all wvariable values will be
preserved.

C

January, 1977 Page 47

The features of the EDIT command may be used on the
line currently being typed. To do this, type Control/A
instead of Carriage Return. The computer will respond with
a carriage return, an exclamation point (!) and a space.
The cursor will be positioned at the first character of the
line. At this point, any of the EDIT subcommands except
Control/A may be used to correct the line. Example:

User types 18 IF X GOTO #"/A
Computer prints !
User types S# 2C12

Computer prints ! 14 IF X GOTO 12

The current line number may be designated by a - period
(.) in any command requiring a line number. Examples:

User types 18 FOR I= 1 TO 14
User types EDIT .
Computer prints 12

5~5. PRINT USING statement.

" The PRINT USING statement can be employed in situations
where a specific output format is desired. This situation
might be encountered in such applications as printing
payroll checks or accounting reports. The general format
for the PRINT USING statement is as follows:

PRINT USING <string>;<value list>

The <string> may be a string variable , string expression or
a string constant which is a precise copy of the line to be
printed. &all of the characters in the string will be
printed just as they appear, with the exception of the
formatting characters. The <value list> is a 1list of the
items <to be printed. The string will be repeatedly scanned
until: 1) the string ends and there are no values in the
value 1list or, 2) a field is scanned in the string, out the
value 1list 1is exhausted. The string is constructed
according to the following rules:

a. String rields.

! specifies a single character string field.
(The string itself is specified in the value list.)
\n spaces\ Specifies a string field consisting of 2+n char-~
acters. Backslashes with no spaces between them

January, 1977 Page 48

would indicate a field of 2 characters width, one
space between them would indicate a field 3
characters wide, etc.

In both cases above, if the string has more characters than
the field width, the extra characters will be ignored. If
the string has fewer characters than the field width, extra
spaces will be printed to £ill out the entire field. Trying
to print a number in a string field will cause a TYPE
MISMATCH error to occur. Example:

19 A$="ABCDE" :BS="FGH"
20 PRINT USING "!";AS$;BS
38 PRINT USING "\ \";BS;A$

(the above would print out)

AF
FGH ABCD

Note that where the "!" was used only the Ffirst letter of
each string was printed. Where the backslashes enclosed two
spaces, four letters from each string were printed (an extra
space was printed for B$ which has only three characters).
The extra characters in the first case and for A$. in the
second case were ignored.

T b. Numeric Fields. With the PRINT USING statement,
numeric printouts may be tered to suit almost any
application. Strings for formatting numeric fields are
constructed from the following characters:

Numeric fields are specified by the # sign, each of
which will represent a digit position. These digit
positions are always filled. The numeric field
will be right justified; that is, if the number
printed is too smail to £ill all of the digit
positions specified, leading spaces will be printed
as necessary to fill the entire field.

s

. The decimal point may be specified in any position
in the field. Rounding is performed as necessary.
If the field format specifies that a digit is to
precede the decimal point, the digit will always be
printed (as O if necessary).

The following program will help illustrate these rules:

January, 1977

¢

* %

$§

Page 49

19 INPUT AS$,A .
20 PRINT USING AS$;A
38 GOTO 149
RUN

?_##,12

12

? #%%#,12
12
? #33#,12
12

?73.44,12
2.68

? $##§.,12
12

? #.4#%,.02

0.029

?34.%#,2.36
?###1—12

-12
?22.%%,-.12

-.12
?####1"12

-12

The + 519n may be used at either the beginning or
end of the numerlc field. If the number Iis
positive, the + sign will be printed at the
specified end of the number. If the number is
negative, a - sign will be printed at the specified
end of the number.

The - sign, when used to the right of the numeric
field designation, will force the minus sign to be
printed to the right of the number if it is
negative. If the number is positive, a space is
printed,

The ** placed at the beginning of a numeric field
designation will cause any unused spaces in the
leading portion of the number printed out to be
filled with asterisks. The #** also specifies
positions for 2 more digits. (Termed "asterisk
£ill")

When the $$ is used at the beginning of a numeric

field designation, a $ sign will be printed in the
space immediately preceding the number printed.

Note that $$ also specifies positions for two more
digits, but that the § itself takes up one of these
spaces. Exponential format canno:t be used with
leading $ signs, nor can negative numbers be output

January, 1977

**s

LY XN

Page 548

unless the sign is forced to be trailing.

The **§ used at the beginning of a numeric field
designation causes both of the above (** and §$) to
be performed on the number being printed out. All
of the previous conditions apply, except that *xg§
allows for 3 additional digit positions, one of
which is the §$ sign.

A comma appearing to the left of the decimal point

in a numeric field, designation will cause a comma
to be printed to the left of every third digit to
the left of the decimal point in the number being
printed. The comma also specifies another digit
position. A comma to the right of the decimal
point in a numeric field designation is considered
a part of the string itself and is treated as a
printing character.

(A‘ Alon some terminals) Exponential Format.

If exponential format is desired in the printout,
the numeric field designation should be followed by
“""" (allows space for E+XX). Any decimal point
arrangement is allowed. The significant digits are
left justified and the exponent is adjusted.
Unless a leading + or a trailing + or - is used,
one position to the left of the decimal point will
be used to print a space or minus sign. Examples: "

PRINT USING "([#%""""]"; 13,17,-8

{ 1E+81]1{ 2E+01} [-8E+88]

OK

PRINT USING "[.4$#%23#77°"-]1; 12345,-123456
[.123450E+05] [.123456E+36~]

OK

PRINT USING " [+.%#""""]"; 123,-126
[+.12E+83] [~.13E+93]

OK

If the number to be printed out is larger than the -
specified numeric field, a % character will be
printed followed by the number itself in standard
Altair BASIC format. (The user will see the entire
number.) If rounding a number causes it to exceed
the specified field, the % character will be
printed followed by the rounded number. 1If, for
example, A=.999, then

PRINT USING ".#%",A

will print

January, 1977 Page 51

C $1.00.

If the number of digits specified exceeds 24, an

ILLEGAL FUNCTION CALL erzor will occur.

The following program will help illustrate the
preceding rules.

Program: 19 INPUT AS$,A
2@ PRINT USING AS;A
30 GOTO 19
RUN

The computer will start by tyoing a ?. The numeric field
designator and value list are entered and the output is
displayed as follows:

i
1
(AN SRS IS B SRS I S
U

[P
ol Sk @ A Nk

s el N @

~J

N

IS A NUMBER #%,2
S A NUMBER 2

RE %% AFTER,12
12 AFTER

3 v
i
LR O R s |

9]

$a
* itk O 01U IR

[and *
LS B I N N I
~
[l [ond
N N [V]
w
b

w

"
b

-

Ul
Bl
~
—

[8]

N RS IV IV I N N (RN SRS
*

~
[
[N}
w
3
w

'™

A N ke A0 N DD o b

DN TH
[V T8

LIV SN -0
[

»*
*
-
[(V]
[\V]

January, 1977

22

? ** 23,12

12.68

? **3343,1

*hhxk]

(note: not floating §) ? S###4.44,12.34
$ 12.34

? $S###d.2%,12.56
$12.56

? $5.4%,1.23

$1.23

? $S.#4,12.34

$$12.34

? $544%,0.23
$0

? $Saddd.be,0

(note: floating $)

$0.00
? **oddd.HE,1.23
****31.23
? **G ##,1.23
*$1.23
? **SE3E,1
****sl
? #,6.9
7
? 3.%,6.99
7.8
? %#"12
2
? %%-;-2
2=
? §3+,2
2+
? ##+t-2
2- ~a
? 337707, 2
2E+39
? 337°°7,12
1E+81

$3434.2227°°°,2.45678
2455.780E-03
? $.3357°77,123
0.123E+63
? £.32°°°%,-123
-.125+23

naxtsilz
? TTTTTy

$%3.3",1234567.89
1,234,5708.8

5-6. Disk file overations.

Typing Control/C will stop the program.

‘Page 52

‘;/

January, 1977 : Page 53

As many as sixteen floppy disks may be connected to a
single ALTAIR disk controller. These disks have been
assigned the physical disk numbers @ through 15. Users with
one drive should address the drive at zero, and users with
two drives should address them at zero and one, etc.

In the following descriptions, <disk number> is an
integer expression whose value is the physical number of one
of the disks in the system. If the <disk number> is omitted
from a statement other than MOUNT or UNLOAD,. the <disk
number> defaults to #. If the <disk number> is omitted from
a MOUNT or UNLOAD statement, disks # through the highest
disk number specified at initialization are affected.

a. Opening, Closing and Waming Files. To initialize
disks for reading and writing, the the MOUNT command is
issued as follows:

MOUNT [<disk number>[,<disk number>...}}
Example:

MOUNT @
Mounts the disk on drive zero, and

. MOUNT 6,1 .

Mounts the disks on drives zero and one. If there |is
already a disk MOUNTed on the specified drive(s) a
DISK ALREADY MOUNTED message will be printed. Before
removing a disk which has been used for reading and writing
by Disk Altair BASIC, the user should give an UNLOAD
command:

UNLOAD [<disk number>{,<disk number>...]]
UNLOAD <c¢loses all the files open on a disk, and marks the

disk as not mounted. Before any further I/0 is done on an
UNLOADed disk, a MOUNT command must be given.

NOTE

MOUNT, UNLOAD or any other disk command may be used
as a prograia statement,

All data and program files on the disk have an associated
file name. This name is the result of evaluating a string

January, 1977 Page 54

expression and must be one to eight characters in length. \&
The first character of the file name cannot be a null (@)

byte or a byte of 255 decimal. An attempt to use a null
file name (zero characters in length) , a file name over 8§
characters in length or containing a @ or 255 in the Ffirst
character position will cause a BAD FILE NAME error. Any
other sequence of one to eight characters is acceptable.

Examples of valid file names:

ABC

abc {Not the same as ABC)
filename

file.ext

12345678

INVNTORY

PILE#3#22

NOTE

Commands that requires a file name will use <file
name> in the appropriate position. Remember that a
<file name> can be any string expression as long as
the resulting string follows the rules given above.

b. The FILES Command. The FILES command is wused to
print out the names of the files residing on a particular
disk. The format of the FILES command is:

FILES <disk number>

Example:

FILES (prints directory of files on disk 9)
STRTRK PIP CURFIT CISASM

Execution of the FILES command may be interrupted by tyoing
Control/C. A nmore complete 1listing of the information
stored in a particular file may be obtained by running the
PIP utility program (see Aopendix I).

Cc. SAVEing and LOADing programs. Once a program has
been written, it is often desirable to save it on a disk for
use at a later time. This is accomplished by issuing a SAVE

command:

January, 1977 Page 55

C

SAVE <file name>[,<disk number>[,A]]

Example:
SAVE "TEST", 9
or

SAVE "TEST"

would save the program TEST on disk zero. Whenever a
program is SAVEd, any existing copy of the program
previously SAVEd will be deleted, and the disk space used by
the previous program is made available. See section 5-6d
for a discussion of saving with the 'A' option.

The LOAD statement reads a file from disk and loads it
into memory. The syntax of the LOAD statement is:

LOAD <file name>[,<disk number>[,R]]
Correspondingly:
LOAD "TEST”,0 or LOAD "TEST"

loads the program TEST from disk zero. If the file does not
exist, a FILE NOT FOUND error will occur.

LOAD "TEST",4,R
OK

LOADs the program TEST from disk zero and runs it. The LOAD
command with the "R" option may be used to chain or segment
programs into small pieces if the whole program is too large
to fit in the computer's memory. All variables and program
lines are’ deleted by LOAD, but all data files are kept
OPEN(see below) if the "R" option is used. Therefore,
information may be passed between programs through the use
of disk data files. If the "R" option is not wused, all
files are automatically CLOSEd (see below) by a LOAD.

Exampie:

NE¥
14 PRINT "FOOl":LOAD "FOO2",4,R
SAVE "FOOl1",d

OK
14 PRINT "FOO02":LOAD "FOO1",8,R
SAVE "FOO2",0

January, 1977 Page 56

OK

RUN
FO02
FOO1
F002
FOO1l
«scetc.

(Control/C may be used to stop execution at this point)

In this example, program FOO2 is RUN. FO0O2 prints the
message "FOO2" and then calls the program FOOl on disk.
FOOl prints "FOOl" and calls the program FOO2 which prints
"FOO2" and so on indefinitely.

RUN may also be used with a file name to load and run a
program. The format of the command is as follows:

RUN<file name>[,<disk number>[,R]]

All files are closed unless ,R is specified after the disk
number.

__d. SAVEing and LOADing Program Files in ASCII. Often
it is desirable to save a program in a form that allows the -
program text to be read as data by another program, such as
a text editor or resequencing program. Unless otherwise
specified, Altair BASIC saves its programs in a compressed
binary format which takes a minimum of disk space and locads
very quickly. To save a program in ASCII, specify the "a"
option on the SAVE command:

SAVE "TEST",8,A

0K

LOAD "TEST",0

OK

Information in the £ile tells the LOAD command the

format in which the file 1is to be 1loaded. The first
character of an ASCII file 1is never 255, and ‘a binary
program file always starts with 255 (377 octal). Remember,

loading an ASCII file is much slower than loading ' a binary
file.

C

January, 1977 Page 57

e. The MERGE Command. Sometimes it is very useful to
put parts of two programs together to form a new program
combining elements of both programs. The MERGE command is
provided for this purpose. As soon as the MERGE command has
been executed, BASIC returns to command level. Therefore it
is more likely that MERGE would be used as a direct command
than as a statement in a program. The format of the MERGE
statement is as follows:

MERGE <file name>[,<disk number>]

Example:

MERGE "PRINTSUB",1
OK

The <file name> specified is merged into the program already
in memory. The <file name> must specify an ASCII format
saved program or a BAD FILE MODE error will occur. If there
are lines in the program on disk which have the same line
numbers as lines in the program in memory, the 1lines from
the file on disk will replace the corresponding program
lines in memory. It is as if the program lines of the file
on disk were typed on the user terminal.

£f. Deleting Disk Files. The KILL statement deletes a
file from disk and returns disk space used by the file to
free disk space. The format of the KILL statement is as

follows:
KILL <file name> [,<disk number>]

If the file does not exist, a FILE NOT FOUND error will
occur. If a KILL statement is given for 'a file that is
currently OPEN (see below), a FILE ALREADY OPEN error

occurs.

g. Renaning Files - the NAME Statement. The NAME
statement is used to change the name of a file:

NAME <old file name> AS <new file name>[,<disk number>]
Example:
NAME "OLDFILE" AS "NEWFILE" ,
The <old file name> must exist, or a FILE NOT FOUND error
will occur. A file with the same name as <new file name>

must not exist or a FILE ALREADY EXISTS error will occur.
After the NAME statement is executed, the file exists on the

January,

1977 Page 58

same disk in the same area of disk space. Only the name is
changed.

h. OPENing Data Files. Before a program can read or
write data to a disk file, it must first OPEN the file on
the appropriate disk in one of several modes. The general
form of the OPEN statement is:

OPEN <mode>, [#]<file number>,<file name>[,<disk number>]

<mode> 1is a string expression whose first character is one
of the following:

0 Specifies sequential output mode
I Specifies sequential input mode
R Specifies random Input/Output mode

A sequential file is a stream of characters that is read or
written in order much like INPUT and PRINT statements read

from and write to the terminal. Random files are divided
into groups of 128 characters called records. The nth
record of a file may be read or written at any time. Random
files have other attributes that will be discussed later in
more detail. :)

<file number> is an integer expression between one and
fifteen. The number is associated with the file being
OPENed and is used to refer to the file in 1later 1I/0
operations.

Examples:

OPEN "O",2,"OUTPUT",d
OPEN "I",1,"INPUT"

The above two statements would open the file OUTPUT for
sequential output and the file INPUT for sequential input an
disk zero.

OPEN M$,N,F$,D

The above statement would open the file whose name 'was in
the string F$ in mode M$ as file number W on disk D.

i. Sequential ASCII file 1I/O Sequential input and
output files are the simplest form of disk input and output
since they involve the use of the INPUT and PRINT statements

«

January, 1977 Page 59

with a file that has been previously OPENed.

INPUT is used to read data from a disk file as follows:
INPUT #<file number>,<variable list>

where <file number> represents the number of the file that
was OPENed for input and <variable list> is a 1list of the
variables to be read, as in a normal INPUT statement. When
data is read from a sequential input file using an INPUT
statement, no question mark (?) is printed on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the
terminal. When reading numeric values, leading spaces,
carriage returns and line feeds are ignored. When a
non-space, non-carriage return, non-line-feed character is
found, it is assumed to be part of a number in Altair BASIC
format. The number terminates on a space, a carriage return
s line~feed or a comma.

When scanning £for string items, leading' blanks,
carriage returns and line-~feeds are also ignored. When a
character which is not a leading blank, carriage return or
line-feed 1is found, it is assumed to be the start of a
string item.If this first character is a quotation mark (")
the item is taken as being a quoted string, and all
characters between the first double quote (") and a matching
double quote are returned as characters in the string value.
This'means that a guoted string in a file may contain any
characters except double quote. 1If the first character of a
string item is not a quotation mark, then it is assumed to
be an uncuoted string constant. The string returned will
terminate on a comma, carriage return or line feed. The
string is immediately terminated after 255 characters have

been read.

For both numeric and string items, if end of file (EOF)
is reached when the item 1is being INPUT, the item is
terminated regardless of whether or not a closing quote was
seen.

Sequential I/0 commands destroy the input buffer so
they may not be edited by Control/A for re-execution.

Example of seguential I/0 (numeric items):

5¢8 OPEN "O",1,"FILE",Z
518 PRINT #1,X,Y,3%
529 CLOSE 1

January, 1977 Page 68

53¢ OPEN "1",1,"FILE",0
548 INPUT %17,X,Y,2

Note that CLOSE is used so that a file which has just been
written may be read. When FILE is re-OPENed, the data
pointer for that file is set back to the beginning of the
file so that the first INPUT on the file will read data from
the start of the file.

2) PRINT and PRINT USING statements are used to write
data into a sequential output file. Their formats are as
follows:

PRINT #<file number>,<expression list>

or

PRINT #<file number>,
USING <string expression>;<expression list>

Example of sequential I/0 (quoted string items):

508 OPEN "O",1,"FILE"
518 PRINT 21,CHRS(34);X$;CHRS(34);
515 PRINT #1,CHR$(34);Y$;CHRS (34) ;CHRS (34) ;25 ;CHRS (34)
529 CLOSE 1
_. 538 OpPEN "I",1,"FILE",8
548 INPUT 31,XS$,YS,2$

In this example, the strings being output (X$, ¥$S, 2Z$) are
surrounded with double quotes through the use of the CHRS
function to generate the ASCII value for a double quote.
This technique nust be used if a string which is being
output to a sequential data file contains commas, carriage
returns, line-feeds or leading blanks that are significant.
When leading blanks are not significant and there are no
commas, c¢arriage returns or line-feeds in the strings to be
output, it is sufficient to insert commas between the
strings being output as in the following example:

5¢¢ OPEN "O",1,"FILE"

518 PRINT 21,XS$;",";¥S$;",";Z$
523 CLOSE 1

536 OPEN "I",1,'FILE",@

543 INPUT 31,XS,YS$,2S

3) CLOSE. The format of the CLOSE statement is as
follows:

CLOSE [<file number>[,<file number>...]]

¢

January, 1977 Page 61

CLOSE is wused to finish I/O to a particular Altair BASIC
data file. After CLOSE has been executed for a file, the
file may be reOPENed for ingut or output on the same or
different <file number>. A CLOSZ for a sequential output
file writes the final buffer of output. A CLOSE to any OPEN
file finishes the connection between the <file number> and
the <file name> given in the OPEN for that file. It allows
the <file number> to be used again in another OPEN
statement.

A CLOSE with no argument CLOSEs all OPEN files.

NOTE

A FILE can be OPENed for sequential input or random
access on more than one <£filz number> at a time but
may be OPEN for output on only one <file number> at
a time.

END and NEW always CLOSE all disk files automatically. STOP
does not CLOSE disk files.

4) LINE INPUT. Often it is desirable to read a whole
line of a file into a striag without using quctes, commas or
other characters as delimiters. This is especially true if
certain fields of each line are seing used to contain data
items, or if a BASIC prograa savs¢ in ASCII mode is being
read as data by another program. The facility provided to
perform this function is the LINE INPYUT statement:

LINE INPUT #<£file number>,<string variable>

A LINE INPUT from a data file will resturn all characters up
to a carriage return in <string vzriable>. LINE INPUT then
skips over the following carriage raturn/line-feed sequence
so that a subsequent LINE INPUT Zrom the file will return
the next line.

5) End of File (De tion. When reading a
sequential data file with INPUT statements it is usually
desirable to detect when there is no more data in the disk
file, The mechanism for detecting this condition is the EOF
function:

X=EOF (<£ile number>)

EOF returns TRUE (-1) when there is no more data in the file
and FALSE (8) ocherwise. If an a:ttempt is made to INPUT

January, 1977 Page 62

past the end of a data file, an INPUT PAST END error will
occur. :

Example:

1906 OPEN "I",1,"DATA",0
119 1=9

120 IF EOF(1l) THEN 168
130 INPUT #1,A(I)

149 I=1+1

158 GoTo 129

160

In this example, numeric data from the sequential input file
DATA is read into the array A. When end of file is
detected, the IF statement at line 128 branches to line 164,
and the variable I "points" one beyond the last element of A
that was INPUT from the file.

The following is a program that will calculate the
number of lines in a BASIC program file that has been SAVEd .
in ASCII mode:

19 INPUT "WHAT IS THE NAME OF THE PROGRAM";P$
29 OPEN "I",1,P$,8

38 I=0

40 IF EOF(l) THEN 780

58 I=I+1:LINE INPUT £1,LS

64 GOTO 440
70 PRINT "PRCGRAM ";P$;"™ IS ";I;" LINES LONG"
84 END

This example uses the LINE INPUT statement to read each line
of the program into the "dummy” string L$ which is used just
to INPUT and ignore that part of the file.

6) Finding the Amount of Free Disk Space (DSKF). It is
sometimes necessary to determine the amount of free disk
space remaining on a particular disk before allocating
(writing) a file. The DSKF function provides the user with
the number of free groups left on a given disk, after the
disk has been MOUNTed. A group is the fundamental unit of
file allocation. That is, files are always allocated in
groups of eight sectors at a time. Each sector contains 128
characters (bytes). Therefore, the minimum size for a file
is 1824 bytes.

Syntax for the DSKF function:
DSKF (<disk number>)

Example:

January, 1977 Page 63

«s/ PRINT DSKF(9)
209

The above example shows that =here are 280*1024=204890
characters (bytes) that can still be stored on disk .zero.

j. RANDOM FILE I/O. Previously, we have discussed how
data may be PRINTed or INPUT Irom sequential data files.
However, it is often desirable to access data in a random
fashion, for instance to rscrieve information on a
particular part number or customer from a large data base
stored on a floppy disk. If sequantial files were used, the
whole file would have to be scannsd from the start until the
particular item was found. Random files remove this
restriction and allow a program tS access any record from
the first to the 1last in a speedy fashion. Also, random
files transfer data from variables to the disk ouput records
and vice versa in a much faster, zore efficient fashion than
sequential files. Random file 1I/0 is more complex than
sequential I/0, and it 1is reccmmended that beginners try
sequential I/0 first.,

‘?’ --1) OPENing a FILE for Randor /0. Random I/O files are
OPENed just like segquential files.

OPEN "R",1,"RANDOM",0

When a f£ile is OPENed for randorz I/0, it is always OPEN for
both input and output simultaneously.

2) CLOSING Random rfiles. Lik2 sequential files, random
files must be closed when I/0 ocsrations are finished. To
CLOSE a random f£ile, use the CLCSE command as described
previously.

CLOSZ <file number>{,<file nuzber>...]

3) Reading and writing data zc a random file - GET and
PUT. Each random £ile has asscciated with it a "random
buffer" of 128 bytes. Wwhen a T or PUT operation is
2

-
=

3

performed, data 1is transferred 2ctly from the buffer to
the data file or from the data £I: to the buffer. The
‘t{ syntax of GET and PUT is as follow

1977 ~ Page 64

PUT [#]<file number>[,<record number>]
GET [#]<file number>[,<record number>]

If <record number> is omitted from a GET or PUT statement,
the record number that is one higher than the previous GET
or PUT is read into the random buffer. Initially a GET or
PUT without a record number will read or write the first
record. The largest possible record number is 2#46. If an
attempt is made to GET a record which has never been PUT,
all zeroes are read into the record, and no error occurs.

4) LOC and LOF. LOC is used to determine what the
current record number is for random files. In other words,
it returns the record number that will be used if a GET or
PUT is executed with the <record number> parameter omitted.

LOC(<file number>)

PRINT LOC({1)
15

LOC is also valid for sequential files, and gives the number
of sectors (128 byte blocks) read or written since the OPEN
statement was executed.

LOF is used to determine the last record number written to a
random file:

LOF (<file number>)

PRINT LOF(2)
2948

An attempt to use LOF on a sequential file will cause a BAD
FILE MODE error.

The value returned by LOF is always 5 MOD 8. That is , when
the wvalue LOF returns is divided by 8, the remainder is
always 5. Therefore,the values returned by LOF are 5, 13,
21, 29 etc. This 1is due to the way random files are
allocated.

NOTE

It is important to note that the value returned by
LOF may be a record that has never been written in
by a user program. This is because of the way
random files are pre-ex:tended.

5) Moving Data In and Out of the Random Buffer. So far
we have described technigues for writing {(PUT) and reading
(GET) data from a file into its associated random buffer.
Now we will describe how data from string variables is moved
to and from the random buffer itself. This is accomplished
through the use of the FIZLD, LSET and RSET statements.

6) FIELD. The FIELD statement associates some or all
of a file's random buffer with a particular string variable.
Then, when the file buffer is read with GET or written with
PUT, string variables which have been FIELDed into the
buffer will automatically have their contents read or
written. The format of the FIELD statement is:

FIELD [%#] <file number> ,<field size> AS <string variable>[...]

<file number> is used to specify the file number of the file
whose random buffer is being referenced. If the file is not
a random file, a BAD FILE MODE error will occur. <field
size> sets the length of the string in the random buffer.
<string variable> is the string variable which is associated
with a certain number of characters (bytes) in the buffer.
Multiple fields may be asscciated with string variables in a
given FIELD statement. Each successive string variable is
assigned a successive fie=ld in the random buffer. Example:
FIELD 19 AS A$, 23 as 38§, 30 As Cs
The statement above would assign the first 10 characters of
the random buffer to the string variable A$, the next 20
characters to B$ and the next 39 characters to the variable
C$. It is imgortant to note that the FIELD statement does
not cause any data to be transferred to or from the random
buffer. It only causes the string variables given as
arguments to "point" into the random buffer.

3
o
t

Often, it is necessary to divide the random buffer into
a number of sub-racords to maks more efficient use of disk
space. For instance, it might be desirable to divide the
128 character record into two identical subrecords. To
accomplish this a "dummy variable” would be placed in the
FIELD statement to represent one of the subrecords. One of
the following statements would be executed depending on
whether the first or second subrscord were needed:

January,

1977 Page 66

FIELD %#1,64 AS D$, 20 AS NAMES,
20 AS ADDRESSES$, 24 AS OCCUPATIONS

or

- FIELD #1,28 AS NAMES$, 26 AS ADDRESSES,
24 AS OCCUPATIONS, 64 AS D$

where the dummy variable D§ is used to skip over one of the
subrecords. Another way to do the same thing would be to
set a variable I that would select the first or second
subrecord.)

PIELD #1,64*(I-1) AS DS,
20 AS NAMES$, 20 AS ADDRESS$, 24 AS OCCUPATIONS

Here, if the variable I is one, I-1 *64 =8 characters will
be skipped over, selecting the first subrecord. If I is
two, 64 characters will be skipped over, selecting the
second subrecord. Another technique that is very useful is
to use a FOR...NEXT loop and an array to set up subrecords
in the random buffer:

1968 FOR I=1 TO 16

121¢ FIELD 21, (I-1)*8 AS D$, 4 AS A$(I),
- 4 AS BS(I)

1828 NEXT I

In this example, we have divided the random buffer into 16
subrecords composed of two fields each. The first
4-character field is in AS$(X) and the second 4-character
field is in BS(X,) where X is the subrecord number.

NOTE

The FIELD statement may be executed any number of
times on a given file. It does not cause any
allocation of string space. The only space
allocation that occurs is for the string variables
mentioned in the FIELD statement. These string
variables have a one byte count and two byte pointer
set up which points into the random buffer for the
specified £ile.

C

January, 1977 Page 67 §

7) Using Numeric Values in Random Files: MKI$, MKSS,
MKD$ and CVI, CVS, CVD. As we have seen, data is always
stored in the random buffer through the use of string
variables. In order to convert between strings and numbers
and vice versa, a number of special functions have been
provided.

To convert between numbers and strings:

MKIS$ (<integer value>) Returns a two byte string

(FC error if value is not

>=-32768 and <=+32767.

Fractional part is lost)
MKS$ (<single precision value>) Returns a four byte string
MKD$ (<double precision value>) Returns an eight byte string

To convert between strings and numbers:

CVI(<two byte string>) Returns an integer value
CVs (<four byte string>) Returns a single precision value|
CVD(<eight byte string>) Returns a double precision value

CvVI, CVS, and CVD all give an ILLEGAL FUNCTION CALL error if
the string given as the argument is shorter than required.
If the string argument is longer than necessary, the extra
characters are ignored. These functions are extremely fast,
since they convert between Altair BASIC's internal
representations of integers, single and double precision
values and strings. Conventional sequential I/0 must
perform time-consuming character scanning algorithms when
converting between numbers and strings.

8. LSET and RSET. When a GET operation is performed,
all string variables which have been FIELDed into the random
buffer for that file automatically have values assigned to
them. The CVI, CVS and CVD tfunctions may be used to convert
any numeric fields in the record to their numeric values.
When going the other way, i.e. inserting strings into the
random buffer before performing a PUT statement, a problem
arises. This 1s because of the way string assignments
usually take place. For example:

LET A$=BS$

When a LET statement is executed, B$ is copied into string
space, A$ is pointed to the new string and the string length
of A$ is modified. However, for assignments into the random
buffers we do not want this to happen. Instead, we want the
string being assigned to be stored where the string variable
was FIELDed. 1In order to do this, two special ‘assignment

January,

1977 . Page 68

statements have been provided, LSET and RSET:
LSET <string variable>=<string expression>
RSET <string variable>=<string expression>

Examples:
LSET AS$=MKS$ (V)
RSET B$="TEST"
LSET C$(I)=MXD$(D3#)

The difference between LSET and RSET concerns what happens
if the string value being assigned is shorter .than the
length specified for the string -variable in the FIELD
statenment. LSET left justifies the string, adding blanks
{octal 48, decimal 32) to pad out the right side of the
string if it is too short. RSET right justifies the string,
vadding on the left. 1If the string value is too 1long, the
extra characters at the end of the string are ignored.

B

NOTE

Do not use LSET or RSET on string variables which
“have not been mentioned in a FIELD statement, or a
SET TO NON DISK STRING error will occur.

k. The DSKIS and DSKOS Primitives. Often it 1is
necessary for the wuser to perform disk I/0 operations
directly without using any of ‘the normal file structure
features of Altair BASIC. To allow this, two special
functions have been provided. These are the DSKI$ function
and the DSKOS statsment. First we will give examples of how
to perform simple disk I/0 commands using Aaltair BASIC
statements,

To Enable disk 8:
ouT 8,3

To Enable disk N:
ouT 8,N

TO step the disk head out one track:

WAIT 8,2,2:00T 9,2

&/

January, 1977 Page 69

To step the disk head in one track:
WAIT 8,2,2:0UT 9,1
To test for track @:
IF (INP(8) AND 64)=0 THEN <statement§ or line number>

The above will execute the statements or branch to the line
number if the head is positioned at track 9. This 1is the
outermost track on the disk.

To read sector Y (Y may be any expression, minimum sector
=0, maximum = 31):

A$=DSKIS$ (¥Y)

The statement
DSKO$ <string expression),<sector expression>

writes the string expression on the sector specified. The
high order bit (most signifigant) of the first character
output will always be set to one when the string is written
on the sector, and thus will always be one when the sector
is rezad back in using DSKI$. A maximum of 137 characters
are written; giving a string whose 1length exceeds 137

characters will cause an ILLEGAL FUNCTION CALL error. If

the string argument is less than 137 characters in length,
the end of the string will be padded with zeros to make a
string of length 137.

January, 1977

C

Page 67
7) Using Numeric Values in Random Files: MKI$, MKSS,

MKD$ nd CVI, CvVS, CVD. As we have seen,/data is always kj
stored \in the random buffer through the /use of string

variablexs. In order to convert between st¥ings and numbers
and vice rsa, a number of special fungtions have been
provided. /

To convert between numbers and strings:
MKIS (<integer lued) Returns/a two byte string

(FC error if value is not

>=-32768 and <=+32767.

Pracfional part is lost)

MKSS$ (<single precision value>) Returns a four byte string
MKD$ (<double precision valued) // Returns an eight byte string

To convert between \strings and/numbers:
CVI (<two byte strinS?) Returns an integer value

CVS (<four byte string>) Returns a single precision value
CVD(<eight byte string>) / Returns a double precision value

CVI, CVS, and CVD all give an ILLEGAL FUNCTION CALL error if
the string given as the/argument is shorter than required.
If the string argumest\is longer than necessary, the extra
characters are ignore hese functions are extremely fast, &’
since they canvert tween Altair BASIC's internal
representations of jintegers, single and double precision
values and strings. Conventional sequential I/0 nust
perform time-consyming charagter scanning algorithms when
converting betweeh numbers and strings.

/

8. LSET ’%d RSET. When a GET operation is performed,
all string vay?ables which have bgen FIELDed into the random
buffer for that file automaticallv\have values assigned to
them. The CVI, CVS and CVD functioks may be used to convert
any numeric/fields in the record to \their numeric values.
When goigg the other way, i.e. inserting strings into the
random buffer hbefore performing a 2UT \statement, a problem
arises. / This 1is because of the ay string assignments
usually ﬁake place. For example:

/

/
/

/ LET as=3s

When 'a LET statement is executed, BS is Yopied into string
space, A$ is pointed to the new string and he string length
of Af is modified. However, for assignments\into the random
buffers we do not want this to happen. Insterd, we want the
string being assigned to e stored where the skring variable
was FIELDed. 1In order to do this, two special assignment : &‘

i
/

y

C

January, 1977 : Page 78

6. LISTS AND DIRECTORIES

6-1. Commands.

Commands direct Altair BASIC to arrange memory and
input/output facilities, to 1list and edit programs and to
handle other housekeeping details in support of program
execution, Altair BASIC accepts commands after it prints
'0OK' and is at command level. The table below 1lists the
commands in alphabetical order. The notation to the right
of the command name indicates the versions to which it
applies.

Command Version(s)
CLEAR All

Sets all program variables to zero.
CLEAR[<expression>] 8K, Extended, Disk

Same as CLEAR but sets string space to the value of the
expression. If no argument is given, string space will
remain unchanged. When Altair BASIC is loaded, string space
is set to 58 bytes in 8K and 289 bytes in extended.

CLOAD<string expression> 8K (cassette), Extended, Disk

Causes the program on cassette tape designated by the first
character of STRING expressicn> to be loaded into memory. A
NEW command is issued before the program is loaded.

CLOAD?<string expression> 8K(cassette), Extended, Disk

Compares the program in memory with the file on cassette
with the same name. If they are the same, BASIC prints OK.

If not, BASIC prints NO GOOD,.
CLOAD*<array name> 8K (cassette), Disk

Loads the specified array from cassette tape. May be used
as a program statement

CONT 8K, Extended, Disk

Continues program execution after a Control/C has been typed
or a STOP or END statement has been executed. Execution
resumes at the statement after the break occurred unless
input from the terminal was interrupted. 1In that case,

Jjanuary, 1977 Page 71

execution resumes with the reprinting of the prompt (? or -

prompt string). CONT is useful in debugging, especially
. where an 'infinite loop' is suspected. An infinite loop is
C a series of statements from which there 1is no escape.

Typing Control/C causes a break in execution and puts BASIC
in command 1level., Direct mode statements can then be used
to print intermediate values, change the values of
variables, etc. Execution can be restarted by typing the
CONT command, or by executing a direct mode GOTO statement,
which causes execution to resume at the specified line
number.

In 4K and 8K Altair BASIC, execution cannot be
continued if a direct mode error has occured during the
break. 1In all versions, execution cannot continue if the
program was modified during the break.

CSAVE<string expression> 8K (cassette), Extended, Disk

Causes the program currently in memory to be saved on
cassette tape under the name specified by the first
character of <string expression>.

CSAVE*<array name> 8K (cassette), Disk

Causes the array named to be saved on cassette tape. May be
used as a program statement.

é DELETE<line number> Extended, Disk

Deletes the line in the curresnt program with the specified
number. If no such line exists, an ILLEGAL FUNCTION CALL
urs '

error occ .
DELETE~<line number> Extended, Disk
Deletes every line of the ct

ir
including the specified line. IZ
ILLEGAL FUNCTION CALL error occurs

rent program up to and
there is no such line, an

DELETE<1line number>-<lire numbher> Exteaded, Disk

Deletes all lines of the current program from the first line
number to. the second inclusiva. ILLEGAL FUNCTION CALL
occurs if no line has the second aumber.

EDIT<line number> Extanded, Disk
Allows editing of the line specified without affecting any

other lines. The EDIT command has a powerful set of
sub-commands which are discussad in detail in section 5-4.

January,

/

)

1877 _ Page 72

LIST All

Lists the program currently in memory starting with the
lowest numbered 1line. Listing is terminated either by the
end of the program or by typing Control/C.

LIST[<line number>] All

In 4K and 8K, prints the current program beginning at the
specified 1line. 1In Extended and Disk, prints the specified
line if it exists.

LIST[<line number>] [~<line number>] Extended, Disk
Allows several listing options.

1. If the second number is omitted, lists all 1lines with
numbers greater than or equal to the number specified.

2. If the first number is omitted, lists all 1lines from
the beginning of the program to the specified line,
inclusive. .

3. If both line numbers are used, lists all lines from the
first number to the second, inclusive.

LLIST{<line number>][~<line number>] Extended, Disk

Same as list with the same options, except prints on the
line printer.

NEW All

Deletes the current program and clears all variables. Used
before entering a new program.

NULL<integer expression> 8K, Extended, Disk

Sets the number of nulls to be printed at the end of each
line. For 18 character per second tape punches, <integer
expression> should be >=3. For 38 cps punches, it should be
>=3., When tapes are not being punched, <integer expression)
should be @ or 1 for Teletypes* and Teletype compatible
CRT's. It should be 2 or 3 for 38 cps hard copy printers.
The default value is @. In the 4X version, the same affect
may be achieved by patching location 46 octal to contain the
number of nulls plus 1.

* Teletype is a registered trademark of the Teletype
Corporation.

January, 1977 Page 73

(T RUN([<1line number>] - All

Starts execution of the program currently in memory at the
line specified. If the line number is omitted, execution
begins at the lowest line number. Line number specification
is not allowed in 4K.

6-2. Statements.

The following table of statements is listed in alpahabetical
order. The notation in the Version column designates the
versions to which each statement applies. In the table, X
and Y stand for any expressions allowed in the version under
consideration. I and J stand for expressions whose values
are truncated to integers. V and W are any variable names.
The format for a Altair BASIC line is as follows:

<nnnnn’> <statement>[:<{statement>...]

where nnnnn is the line number.

é: Nanme Format Version
CONSOLE CONSOLE <I>,<I> Extended, Disk

Allows ternminal console device to be switched. I is the I/0
port number which is the address of the low order channel of
the new I/0 board. J is the switch register setting (see
section 5-1 for the list of settings). 8<=I,J<=255.

DATA DATA<List> all

Specifies data to be read by a READ statement. List
elements can be numbers or, except in 4K, strings. 4K
allows expressicns. List elements are separated by commas.

DEF FHNV(KW>) =<X> 8K, Extended, Disk

o
81}
Y]

ines a wuser-defined function. Function name 1is FN
lowed by a 1legal variable name. Extended and Disk
sions allow user~defined string functions. Definitions

restricted to one line (72 characters in 4X and 8K, 255
racters in extended versions).

aOm< Mo
Yy o O o
POV IS B S

v

v

DEFUSR[<digit>]=<X> Extended, Disk

o
(O]
iy
(o
w0
o

January,

C

1977 ’ Page 74

Defines starting address of assembly language subroutine.
Up to ten subroutines are allowed.

DIM DIM < (KI>[,J...1)[,...] All

Allocates space for array variables. In 4K, only one
dimension 1is allowed per variable. More than one variable
may be dimensioned by one DIM statement up to the 1limit of
the 1line. The value of each expression gives the maximum
subscript possible. The smallest subscript is 8. Without a
DIM statement, an array is assumed to have maximum subscript
of 13 for each dimension referenced. For example, A(I,J) is
assumed to have 121 elements, from A(#,0) to A(l8,18) unless
otherwise dimensioned in a DIM statement.

END ~ END All

Terminates execution of a program. Closes all files in the
Disk version.

ERASE ERASEKV> [, <W>...] Extended, Disk

Eliminates the arrays specified. The arrays may be

redimensioned or the space made available for other uses.
ERROR ERRORKI> Extended, Disk

Forces error with code specified by the expression. Used
primarily for user-defined error codes.

FOR FORCV>=<X>TOKY> [STEPKZ>] All

Allows repeated execution of the same statements. First
execution sets V=X. Execution proceeds normally until NEXT
is encountered. 2 is added to V, then, IF 2<# and V>=Y, or
if 2>0 and V<=Y, BASIC branches back to the statement after

FOR. Otherwise, execution continues with the statement
after NEXT. :

GOTO GOTO<nnnnn> All

Unconditional branch to line number

GOsSuUB GOSUB<nnnnn> All

Unconditional branch to subroutine beginning at line nnnnn.
IF...GOTO IF <X> GOTO<nnnnn> 8K, Extended, Disk

Same as IF...THEN except GOTO can only be followed by a line
number and not another statement.

¢

January, 1977 Page 75

IF...THEN [ELSE] 1IP<X>THEN<KX>[ELSE<Y>] All
or IFKX>THEN<statement>[:statement...]
[ELSE<statement>[:statement...]

If value of X<>8, branches to line number or statement after
THEN. Otherwise, branches to the line number or
statement(s) after ELSE. 1If ELSE is omitted, and the value
of X=@, execution proceeds at the line after the IF...THEN.
In 4K, X can only be a numeric expression. The ELSE clause
is only allowed in Extended and Disk Altair BASIC.

INPUT INPUTKV> [,<W> ...] all

Causes BASIC to request input from terminal. Values (or, in
4K, expressions) typed on the terminal are assigned to the
variables in the list.

LET LET <V>=<X> All

Assigns the value of the expression to the variable. The
word LET is optional.

LPRINT LPRINT X[,¥...] Extended, Disk

Same- as PRINT, but prints on the line printer. Line feeds
within strings are ignored. A carriage return is printed
automatically after the 88th character on a line.

LPRINT USING LPRINT USING<string>;<list> Extended, Disk

Same as PRINT USING, but prints on the line printer. For a
detailed description, see section 5-5.

MID$ MIDS (<XS$>,<I>[,<I>])=Y¥$ ' Extended, Disk

Part of the string X$ is replaced by ¥Y$. Replacement starts
with the 1Ith character of X$ and proceeds until Y$ is
exhausted, the end of X$ is reached or J characters have
been replaced, whichever comes first., If I is greater than
LEN(X$), an ILLEGAL FUNCTION CALL error results. .

NEXT NEXT [<V>,<W>...] all

Last statement of a FOR loop. V is the variable of the most
recent loop, W of the next most recent and so on. Only ane
variable is allowed in 4K. Except in 4K, NEXT without a
variable terminates the most recent FOR loop.

ON ERROR. GOTO ON ERROR GOTO<line number> Extended, Disk

When an error occurs, branches to line specified. Sets
variable ERR to error code and ERL to line number where the

January, 1977 Page 76
((, error occured. See section 6-5 for a list of error codes.
ON ERROR GOTO 4 (or without number) disables error trapping.
ON...GOTO ON<I>GOTO<list of line numbers> 8K, Ext., Disk
Branches to line whose number is Ith in the 1list. List
elements are separated by commas. If I=0 or > number of
elements in the list, execution continues at next statement.
If I<8 or >255, an error results.
ON...GOSUB ON <I> GOSUB <list> 8K, Extended, Disk

Same as ON...GOTO except list elements are initial line
numbers of subroutines.

ouT QUTLI> , <I> 8K, Extended, Disk

Sends byte J to port I. 6<=I,J<=2353.

POKE PORE<I> ,<I> 8K, Extended, Disk
Stores byte J in memory location derived from I.
0<=J<=255;-32768<I<65536. If I 1is negative, address is
65535+1, if I is positive, address=I.

L// PRINT PRINT<X> [,<¥>. ..} All

Causes values of expressions in tha list to be printed on
the terminal. Spacing is determinsd by punctuation.

Punctuation Spacing - nex:t zrinting begins:
P at beginning of next 14 column zone

F immediately
other or none at beginning of next line

String literals may be printed if enclosed by (") marks.
String expressions may be printed in all but 4K.

PRINT USING PRINT USING<string>;<list> Extended, Disk

Prints the values of the expressions in the 1list edited
according to the string. The string is an expression which
represents the line to be printed. The 1list contains the
constants, variable names or <expressions to be printed.
List entries are separated by punctuation as in the PRINT
statement. For a 1list of string characters and their

functions, see section 5-5.

READ READCKV> [, <W>...] All

Assigns values in DATA statements to variables. Values are
(_/ assigned in sequence starting with the first value in the

January, 1977 Page 77

first DATA statement.
REM REM[<remark>] All

Allows insertion of remarks. Not executed, but may be
branched into. In extended versions, remarks may be added
to the end of a line preceded by a single quotation mark

).
RESTORE RESTORE All

Allows data from DATA statements to be reread. Next READ
statement after RESTORE begins with first data of first data
statement.

RESUME RESUME [<number>] Extended, Disk

Resumes program execution at the line specified after error
trapping routine. If number is omitted or zero, resumes at
statement where error occured. RESUME NEXT causes

resumption at the statement following the statement where
the error was made.
RETURN RETURN All

Terminates a subroutine. Branches to the statement after
the most recent GOSUB.

STOP STOP All

Stops program execution. BASIC enters command level and,
except in 4K, prints BREAK IN LINE nnnnn. Unlike END, STOP
does not close files.

SWAP . SWAP <V>,<W> Extended, Disk

Exchanges values of the variables named. Variables must be
of the same type.

TROFF TROFF Extended, Disk

Turns off trace flag. The trace f£lag is turned on by TRON
(see below). NEW also turns off the trace flag.

TRON TRON Extended, Disk

Turns on trace flag. Prints number of each line in square
brackets as it is executed.

(WAIT WAIT<I> ,KJI>[,<R>] 8K, Extended, Disk

Status of port I is XOR'd with K and AND'ed with J.

January,

C

1977 Page 78

Continued execution awaits non-zero result. XK defaults to
#. 0<=I,J,K<=255.

6-3. Intrinsic Functions.

Altair BASIC provides several commonly used algebraic
and string functions which may be called from any program
without further definition. If the functions are not
required £for a program, they may be deleted when BASIC is
loaded to conserve memory space. The functions in the
following table are 1listed in alphabetical order. The
notation to the right of the Call Format is the versions in
which the function is available. As usual, X and Y stand
for expressions, I and J for integer expressxons and X$ and
Y$ for string expressions.

Function Call Format Version

ABS ABS (X) All

Returns absolute value of expression X. ABS(X)=X if X>=8,
-X 1if X<@.

ASC ASC(X3$) 8K, Extended, Disk

Returns the ASCII code of the first character of the string

© X§. ASCII codes are in appendix A.

ATN ATN (X) 8K, Extended, Disk

Returns arctangent(X). Result is in radians in range -pi/2
to pi/2.

The following functions are available in Extended and Disk:

CINT CINT(X) Converts X to integer.
CSNG CSNG(X) Converts X to single precision.
CDBL CDBL(X) Converts X to double precision.

If the argument is in the range -32768 to 32767, the
CINT(X)=INT(X). Otherwise, CINT will produce an OVERFLOW

error.
CHRS CHRS (I) 8K, Extended, Disk

Returns a string whose one element has ASCII code I. ASCII

€

January, 1977 Page 75

codes are in Appendix A,

cos COS (X) 8K, Extended, Disk
Returns cos(X). X is in radians.

ERL Extended, Disk

Returns the number of the 1line in which the last error
occurred.

ERR . Extended, Disk

Returns the error code of the last error.

ERR ERR(I) Disk

Returns parameters of disk errors. After a DISK I/O ERRO?Z,
ERR(%) returns number of the disk, ERR(1l) returns the trs
number (@-76) , ERR(2) returns the sector number, ERR(3) and
ERR(4) return the low and high order 8 bits of the
cumulative count of disk errors respectively.

EXP EXP (X) ~ 8K, Extended, Disk
Returns e to the power X. X must be <=87.3365.

FIX FIX(X) Extended, Disk

Returns the truncated integer ' part of X. FIX(X) is

equivalent to SGN(X)*INT(ABS(X)). The major difference
between FIX and INT is that FIX does not return the next

lower number for negative X.

FRE FRE(8) 8K, Extended, Disk

Returns number of bytes in memory not being used by BASIC.
If argument is a string, returns number of free bytes in

string space.

HEXS HEXS$ (X) Extended, Disk

Returns a string which represents the hexadecimal of the
decimal argument.

INp INP(I) 8K, Extended, Disk

Reads a byte from port I.
INSTR INSTR([I,]1X$,¥$) Extended, Disk

Searches for the first occurrence of string ¥$ in X$ and

January,

C

1977 Page 80

returns the position. Optional offset I sets position for
starting the search. 8<=I<=255. If I>LEN(XS$), if X$ is
null or if Y$ cannot be found, INSTR returns 8. If Y$ is
null INSTR returns I or 1. Strings may be string variable
values, string expressions or string literals.

INT INT(X) ' a1’

Returns the largest integer <=X

LEFT$ LEFT$ (X$,I) 8K, Extended, Disk
Returns leftmost I characters of string XS.

LEN LEN (XS$) 8K, Extended, Disk

Returns length of string X§. Non-printing characters and
blanks are counted.

LOG LOG (X) . 8K, Extended, Disk
Returns natural log of X. X>@

LPOS LPOS (X) Extended, Disk

> N
Returns the current position of the line printer print’® head
within the 1line printer buffer. Does not necessarily give
the physical position of the print head. THhe expression X
must be given, but the value is ignored.

MIDS MIDS$(X$,I[,J1) 8K, Extended, Disk

Without J, returns rightmost characters from X$ beginning
with the Ith character. If IDLEN(X$), MID$ returns the null
string. 0<I<2553. With 3 arguments, returns a string of

length J of characters from X$ beginning with the Ith
character. If J is greater than the number of characters in
X§ to the right of I, MIDS$ returns the rest of the string.

#<=J<=255.
OCTS$ 0CTS (X) 8K, Extended, Disk

Returns a string which represents the octal value of the
decimal argument.

RND RND (X) All

Returns a random number between 6 and 1. X<§ starts a new
sequence of random numbers. X>8 gives the next random
number in the sequence. X=0 gives the last number returned.
In 8K, Extended and Disk, sequences started with the same

negative number will be the same.

€

January, 1977 Page 81

POS POS (1) 8K, Extended, Disk

Returns present column position of terminal's print head.
Leftmost position =48.

RIGETS RIGHTS (X$,I) 8K, Extended, Disk

Returns rightmost I characters of string X$. If I=LEN(XS$),
returas XS.

SGN SGN (X) All

If X>9, returns 1, if X=0 returns 8, if X<@, returns -1.
For example, ON SGN(X)+2 GOTO 100,208,388 branches to 148
if X is negative, 299 if X is @ and 340 if X is positive.
SIN SIN(X) All

Returns the sine of the value of X in radians.
COS (X) =SIN(X+3.14159/2).

SPACES SPACES (1) 8K, Extended, Disk

Returns a string of spaces of length I.

SPC SPC(I) 8K, Extended, Disk
Prints I blanks on terminal. @<=I<=255, |

SQR SQR(X) all

Returns square root of X. X must be >=0

STRS STRS (X) 8K, Extended, Disk
Returns string representation of value of X.

STRINGS STRINGS (I,Jd) Extended, Disk

Returns a string of length I whose characters all have ASCIT
code J. See Appendix A for ASCII codes.

TAB TAB(I) All

Spaces to position I on the terminal. Space @ 1is the
leftmost space, 71 the rightmost. If the carriage is
already beyond space I, TAB has no effect. 0<=I<=253, May
only be used in PRINT and LPRINT statements.

TAN . TAN (X) ©all

Returns tangent(X). X is in radians.

J

J

C

Jauary, 1977 Page 82

USR USR(X) All

Calls the user's machine language subroutine with argument

VAL VAL (X$) 8K, Extended, Disk

Returns numerical value of string X$. If first character of
X$ is not +,~ or a digit, VAL(XS)=4. :

VARPTR VARPTR(V) Extended, Disk

Returns the address of the variable given as the argument.
If the variable has not been assigned a value during the
execution of the program, an ILLEGAL FUNCTION CALL error
will occur. The main wuse of the VARPTR function is to
obtain the address of variable or array so it may be passed
to an assembly language subroutine. Arrays are usually
passed by specifying VARPTR(A[8]) so that . the lowest
addressed element of the array is returned.

NOTE
All simple variables should be assigned values in a
program before calling VARPTR for any array.

-Otherwise, allocation of a new simple variable will
cause the addresses of all arrays to change.

6~-4. Special Characters

Altair BASIC recognizes several characters in the ASCII
font as having special functions in carriage control,
editing and program interruption. Characters 'such as
Control/C, Control/s, etc. are typed by holding down the
Control key and typing the designated letter. The special
characters in the table are 1listed in the order of the
versions to which they apply, starting with those common to
all versions ané ending with those that apply only to

extended versions.

Typed as Printed as

The following Special Characters are available in ALL
versions.

¢

January, 1977 Page 83

@ €

Erases current line and exscutes carriage return.

(backarrow)

Erases last character typed. If there is no last character
types a carriage return.

_(underline)

same as backarrow.

Carriage Return

Returns print head or curser to beginning of the next line.
Control/C “C (in extended)

Interrupts execution of current program or 1list command.
Takes effect after execution of the current statement or
after listing the current line, BASIC goes to command level
zng types OK. CONT command resumes execution. See section

. -
. :

Separates statements in a line,

The following special characters are available in 8K,
Extended and Disk versions only.

Control/0 “0 (in extended)

Suppresses all output until an INPUT statement is
encountered, another Control/O is typed, an error occurs or
BASIC returns to command level.

? ?
equivalent to PRINT statement.
Rubout see explanation

Deletes previous character on an input line. First Rubout
prints \ and the 1last character to be printed. Each
successive Rubout prints the next character to the left.
Typing a new character causes another \ and the new
character to be printed. All characters between the
backslashes are deleted.

January,

C

1977 Page 84

Control/uU ' “U (in extended)
Same as @
Control/s

Causes program execution to pause until Control/Q or
Control/C is typed.

Control/Q

Causes execution to resume after Control/S. Control/S and
Control/Q have no effect if no program is being executed.

The following special characters are available in Extended
and Disk versions only.

Control/A

Allows use of the EDIT command on the line currently being
typed. Control/a is typed instead of Carriage Return. See
section 5-4, :

Control/I 1 to 8 spaces

Tab character. Causes print head or curser to move to the
beginning of the next 8 column field. Fields begin at
columns 1, 9, 17, etc. The tab character is especially
useful for formatting lines broken with line feeds.

198<tab>FOR I=1 TO 1l8:<line feed>
<tab><tab>FOR J=1 TO 1l8:<line feed>
<tab><tab><tab>A(I,J)=0:<line feed>
<tab>NEXT J,I<carriage return>

lists as:
109 FOR I=1 TO 18:
FOR J=1 TO 19:
A(I,J)=0:
NEXT J,I
Control/G bell

Rings terminal's bell
LINE FEED

Breaks a long line into shorter parts. The result is still
one BASIC line.

C

fanwary, 1977 Page 85

Denotes the number of the current line. May be used
wherever a line number is to be specified.

(.1 {1

Brackets are interchangable with parentheses as delimiters
for array subscripts.

Lower Case Input

Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower
case to upper case if the lower case characters are not part
of string 1literals, REM statements or single quote (')
remarks.

6-5. Error HMessaqes.

After an error occurs, BASIC returns to command level and
types OK. Variable values and the program text remain
intact, but the program cannot be continued by the CONT
command. In 4X and 8K versions, all GOSUB and FOR context
is lost. The program may be continued by direct mode = GOTO,
however. When an error occurs in a direct statement, no
line number is printed. Format of error messages:

Direct Statement ?XX ERROR
Indirect Statement ?XX ERROR IN YYVYY

where XX is the error code and YYYYY is the line number
where the error occurred. The following are the possible
error codes and their meanings:

ERROR CODE EXTENDED ERROR MESSAGE NUMBER

The following error codes apolv in ALL versions.

BS SUBSCRIPT OUT OF RANGE 9

An attempt was made to reference an array element which is
outside the dimensions of the array. In the 8K and larger
versions, this error can oceur if the wrong number of
dimensions are used in an array reference. For example:

LET A(1,1,1)=2

anuary,

C

{r/

1977 Page 85

Denotes the number of the current 1line. May be used
wherever a line number is to be specified.

{1 [.1]

Brackets are interchangable with parentheses as delimiters
for array subscripts. .

Lower Case Input

Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower
case to upper case if the lower case characters are not part
of string 1literals, REM statements or single quote (')
remarks.

6-5. Error Messages.

After an error occurs, BASIC returns to command level and
types OK. Variable values and the program text remain
intact, but the program cannot be continued by the CONT
command . In 4X and 8K versions, all GOSUB and FOR context
is lost. The program may be continued by direct mode GOTO,
however. When an error cccurs in a direct statement, no
line number is printed. Format of error messages:

Direct Statement 2XX ERROR
Indirect Statement ?XX ERROR IN ¥YYVYY
where XX is the error code and YYYYY is the line number
where the error occurrsd. The following are the possible
error codes and their meanings:
ERROR CODE EXTENDED ERROR MESSAGE » NUMBER

The following error codes zpolvy in ALL versions.

BS SUBSCRIPT OUT OF RANGE 9

An attempt was made to reference an array element which |is
cutside the dimensions of the array. In the 8K and larger
versions, this error <can occur if the wrong number of
dimensions are used in an array reference. For example:

LET A(1,1,1)=3

January, 1977 Page 86

when A has already been dimensioned by DIM A(10,10)
DD ’ REDIMENSIONED ARRAY 18

After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs
if an array has been given the default dimension of 18 and
later in the program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION CALL 5

The parameter passed to a math or string function was out of
range.. FC errors can occur due to: .

1. a negative array subscript (LET A(~1)=0)

2. an unreasonably large array subscript (>32767)
3. LOG with negative or zero argument

4. SOR with negative argument

5. A"B with A negative and B not an integer

6. a call to USR before the address of a machine language
subroutine has been entered.

7. calls to MIDS, LEFTS, RIGHTS, INP, OUT, WAIT, PEEK,
POKE, TAB, SPC, STRINGS, SPACES$, INSTR or ON...GOTO with
an improper argument,

$3)) ILLEGAL DIRECT ' 12

INPUT and DEF are illegal in the direct mode. In extended
versions, however, INPUT is legal in direct.

NF NEXT WITHOUT FOR

The wvariable in a NEXT statement corresponds to no
previously executed FOR statement,

oD QUT OF DATA 4

A READ statement was executed but all of the DATA statements
in the program have already been read. The program tried to
read too much data or insufficient data was included in the

program.

C

Januwary, 1977 Page 87

OM OUT OF MEMCRY 7

Program is too large, has too manv variables, too many FOR
loops, to many GOSUBs or too ccaplicated expressions. See

Appendix C.,
ov OVERFLOW

The result of a calculation was t2o0 large to be represented
in Altair BASIC's number formaz:. If an underflow occurs,
zero is given as the result and execution continues without
any error message being printed.

SN SYNTAX ERRCZ 3

Missing parenthesis in an express:ion, illegal character in a
line, incorrect punctuation, etc.

RG RETURN WITECUT GOSUB 3

A RETURN statement was encountereZ before a previous GOSUB
statement was executed.

UL UNDEFINED LINE) 8

The line reference in a GOTO, G.stB, IF...THEN...ELSE or
DELETE was to a line which does ncz exist.

“/8 DIVISION BY ZERO

Can occur with integer division and MOD as well as floating
point division. 3 to a negative power also causes a
DIVISION BY ZERO error.

The following error messages apply to
8K, Extended and Disk vers:ans only

CN CAN'T CONTINTE 17

Attempt to continue a program when none exists, an error
occured, or after a modification wzs made to the program.

LS STRING TOO —CHNG 15

An attempt was made to c¢reate =z string more than 255
characters long.

0s OUT OF STRILNG SPACE 14

String variables exceed amount of string space allocated for

11

“January, 1977 Page 88
them. Use the CLEAR command to allocate more string space
or use smaller strings or fewer string variables.

ST STRING FORMULA TOO COMPLEX 16

A string expression was too long or too complex. Break it
into two or more shorter ones.

- ™ TYPE MISMATCH 13
The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or
vice-versa; or a function which expected a string argument
was given a numeric one or vice-versa.

UF UNDEFINED USER FUNCTION 18

Reference was made to a user defined function which had
never been defined.

The following error messages are available in
Extended and Disk versions only.

MISSING OPERAND 208

During evaluation of an expression, an operator was found
withh no operand following it.

NO RESUME

BASIC entered an error trapping routine, but the program
ended before a RESUME statement was encountered.

RESUME WITHOUT ERROR 21

A RESUME statement was encountered, but no error trapping
routine had been entered.

UNPRINTABLE ERROR

An error condition exists for which there 1is no error
message available. Probably there 1is an ERROR statement
with an undefined error code.

LINE BUFFER OVERFLOW 23

An attempt was made to input a program or data 1line which
has too many characters to be held in the line buffer.
Shorten the line or divide it into two or more parts.

22

13

C

January, 1977 Page 89

Disk Altair BASIC Error Messages

FIELD OVERFLOW

An attempt was made to allocate more than 128 characters of
string variables in a single FIELD statement.

INTERNAL ERROR
Internal error in Disk BASIC. Report conditions under which
error occurred and all relevant data to MITS software

department. This error can also be caused by certain kinds
of disk I/0 errors.

BAD FILE NUMBER

An attempt was made to use a file number which specifies a
file that is not OPEN or that is greater than the number of
files entered during the Disk Altair BASIC initialization
dialog.

FILE NOT FOUND

Reference was made in a LOAD, KILL or OPEN statement to a
file which did not exist on the disk specified.

BAD FILE MQDE . 54

An attempt was made to perform a PRINT to a random file, to
OPEN a random file for sequential output, to perform a PUT
or GET on a sequential file, to load a random file or to

execute an OPEN statement where the file mode is not I, O,
or R.

FILE ALREADY OPEN : 55
A sequential output mode OPEN for a file was issued for a
file that was already OPEN and had never been CLOSEd or a
KILL statement was given for an OPEN file.

DISK NOT MOUNTED 56
An I/O operation was issued for a file that was not MOUNTed.
DISK I/0 ERROR 57

An I/0 error occured on disk X. A sector read (checksum)
error occurred eighteen (18) consecutive times.

SET TO NON-DISK STRING

50

51

52

53

58

January,

1977 Page 98

An LSET or RSET was given for a string variable which had
not previously been mentioned in a FIELD statement.

DISK ALREADY MOUNTED ’ 59

A MOUNT was issued for a DISK that was already MOUNTed but
never UNLOADed.

DISK FULL 60

All disk storage is exhausted on the disk. .Delete some old
disk files and try again.

INPUT PAST END

An INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT is
executed for a null (empty) file. Use of the EOF function
to detect End Of File will avoid this error.

BAD RECORD NUMBER 62

In a PUT or GET statement, the record number is either
greater than the allowable maximum (2046) or equal to zero.

BAD FILE NAME 63
A file name of 4 characters (null) or a file name whose

first byte was 8 or 377 octal (255 decimal) or a Ffile name
with more than 8 characters was used as an argument to LOAD,

SAVE, KILL or OPEN.
MODE-MISMATCH 64

Sequential OPEN for output was executed for a file that
already existed on the disk as a random (R) mode file, or
vice versa.

DIRECT STATEMENT IN FILE 65

A direct statement was encountered during a LOAD of a
program in ASCII format. The LOAD is terminated.

TOO MANY FILES

A SAVE or OPEN (O or R) was executed which would create a
new file on the disk, but all 255 directory entries were
already full. Delete some files and try again.

_ OUT OF RANDOM BLOCKS 67

61

C

January, 1977 Page 91

An attempt was made to have more random files OPEN at once
than the number ¢f random blocks that were allocated during
initialization by the response to the
"NUMBER OF RANDOM FILES?" guestion (see Appendix E).

FILE ALREADY EXISTS 68
The new file name specified in a NAME statement had the same
name as another file that already existed on the disk. Try
a different name.

FILE LINK ERROR

During the reading of a file, a sector was read which did
not belong to the file.

6-6. Reserved Words.

Some words are reserved by the Altair BASIC interpreter for
use as staterents, commands, operators, etc. and thus may
not be used for variable or function names. The reserved
words are listed below in order of the versions for which
they are reserved, starting with those reserved in all
versions and ending with those reserved only in Disk Altair
BASIC. Words reserved in larger versions may be used in
smaller wversions, although one may want to avoid all
reserved words in the interest of compatibility. In
addition to the words listed below, intrinsic function names
are reserved words in all versions in which they are
available.

RESERVED WORDS

Words reserved in all versions.

CLEAR NEW
DATA NEXT
DIM PRINT
END RZ
FOR REM
GOsuB RETURN
GOTO RUN
IF sSTCP
INPUT 0
LET TAB
LIST THEN
USR

Words reserved in 8K, Extended and Disk versions. All the above

plus:

69

January,

1977
AND ON

CONT OR

DEF ouT

FN POKE

NOT SPC

NULL WAIT

Words reserved in Extended and Disk
AUTO LINE
CONSOLE kL LLIST
DEFDBL LPRINT
DEFINT MOD
DEFSNG RENUM
DEFSTR RESUME
DELETE SPACES
EDIT STRINGS
ELSE SWAP

TROFF

ERASE TRON

ERL VARPTR
ERR WIDTH

IMp XOR

INSTR

Words reserved in Disk. All the above plus:
CLOSE LSET

DSKIS$ MERGE

DSKO$ MOUNT

FIELD NAME

FILES OPEN

GET pUT

KILL RSET

LOAD UNLOAD

Page 92

versions. All the above plu#

anuary,

C

1977

DECIMAL
900
gal
a2
2a3
084
085
aae
2a7
008
g09
gla
211
212
813
914
815
g16
817
218
219
828
g21
822
823
224
825
226
827
228
829
838
831
932
@33
934
835
236
837
238
839
049
241
g42

APPENDIX A

ASCII CHARACTER CODES

CEAR.
NOUL
SOR
STX
ETX
EQT
ENQ
ACK
BEL
BS
BT
LP
vT
FF
(09:4
so
SI
DLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESCAP
Fs
GS
RS

wn
o
&
2]
(2]

"o =P HE D e

LF=Line Feed

DECIMAL CHAR.
243
944
845
846
847
948
2849
858
851
852
953
854
855
856
2857
258
853
064
861
662
863
264
265
8696
867
B68
8639
E 873
871
872
873
874
875
876
877
278
879
288
g81
282
283
84
@85

C:PBU\WO'UOZKF‘NQHNQ’UNUGWQ‘I&'\)V A~ VONOAUVIHWNDHEN |~ +

DECIMAL
286
887
288
289
999
91
992
293
894
295
296
897
898
899
109
1g1
192
143
184
145
186
197
1g8
189
119
111
112
113
114
115
116
117
118
119
12g
121
122
123
124

125

126
127

Page 93

Y-S XA O

NN X ESSC T ONQUOD BREUNTA MO QO UTL «A

'DEL

FF=Form Feed CR=Carriage Return DEL=Rubout

1977 ‘ Page 94

Using ASCII codes -- the CHR$ function.

CHRS (X) returns a string whose one character is that
with ASCII code X. ASC(XS) converts the first character of
a string to its ASCII decimal value.

One of the most common uses of CHRS is to send a
special character to the user's terminal. The most often
used of these characters is the BEL (ASCII 7). Printing
this character will cause a bell to ring on some terminals
and a beep on many CRT's. This may be used as a preface to
an error message, as a novelty, or just to wake up the user
if he has fallen asleep. EZxample:

PRINT CHR$(7);

Another major use of special characters is on those
CRT's that have cursor positioning and other special
functions (such as turning on a hard copy printer). For
example, on most CRT's a form feed (CHR$(12)) will cause the
screen to erase and the cursor to "home™ or move to the
upper left corner.

Some CRT's give the user the capability of drawing
graphs and curves 1in a special point-plotter. mode. This
feature may easily be taken advantage of through use of
Altair BASIC's CHRS function.

January, 1977 Page 95

APPENDIX B
LOADING AND INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.

This appendix details the procedure for loading BASIC
in 4K, 8K and Extended versions from paper tape or tape
cassette. For instructions on loading Disk BASIC, see
appendix E.)

The programs below are entered into memory through the
front panel switches. Rather than specify the switch
positions as "up" and "down", it is convenient to denote the
up position as 1! and the down position as 8. Taken in
groups of three, then, the switches can represent octal
digits. To save space, the switch positions in the
following loader program 1listings are shown in octal
notation. The leftmost +two switches in an 8 bit set are
represented by the first digit, the next three by the second
digit and the low-order three switches by the last digit.

For example, if we wish to enter octal 315 on the data

(L,' switch register, the switches would have the following
positions: : -
7 6 5 4 3 2 1 0
up up down down up up down up
3 1 5

For data entry, only the rightmost 8 switches of the 16
switches on the ALTAIR 8848 front panel switch register are
used. All 16 switches would be used to enter a memory

address.

The following is the procedure for loading BASIC from
paper tage or cassette,

1. Turn the power switch on.

2. Raise the STOP switch and RESET switch simultaneously

3. Switch the terminal to LINE

4, Enter one of the following programs on the front panel
switches. The 88-MBL Multi-Boot Loader PROM contains
the necessary loader programs, so it is not necessary to
enter a loader from the front panel if it is installed.

‘t/ Refer to the 88-MBL manual for more information.

January,

1977

Page 96

loading from paper tape with the SIO board (REV 1) !

Octal Address
000
g8l
202
283
904
895
206
887
610
211
212
613
314
815
216
817
220
821
822
923

Octal Data

241

302

0xx (17 for 4K, 37 for 8K, 77 for
g6l Extended & Disk)
g22

800

333

289

817

338

333

281

275

319

855

167

340

351

g83

889

loading from cassette

Octal Address

-089

801
682
083
094
6085
886
627
019
211
912
813
314
815
gl6
817
320
221
g22
223

Octal Data
g41

382

9zxx (17 for 4K, 37 for 8K, 77 for
481 Extended and Disk)
522

209

333

246

217

333

333

897

275

310

855

167

309

351

483

392

‘(r/mary, 1977 . Page 97

c. loading with the 88 PIO board

Octal Address Octal Code) .
290 41

201 382

0g2 @xx (17 for 4K, 37 for 8K, 77 for
203 g6l Extended and Disk)
804 823

205 209

ga6 333

837 064

810 346

211 291

212 319

213 333

214 885

815 275

gle 313

217 255

820 167

921 . 304

922 351

923 283

824 089

d. loading with the 2SIO board

Octal Address Octal Data
269 376
a1 2083
862 323
283 420
o4 276
35 821 (=2 stcp bits, 625=1 stop bit)
006 323
207 320
214 241
211 362
212 8xx (17for 4K, 37 for 8K, 77 for
213 861 Extended and Disk)
014 g32
a15 200
216 333
217 220
929) 217
921 328
922 333
823 921
224 275
&/ 825 319
926 855

827 167

January, 1977

230 308
31 351
g32 213
833 gea

loading with the 4PIO board

Octal Address Octal Data
806 257

201 323

892 244

ga3 323

204 g4l

285 876

aa6 854

087 323

8149 040

211 : 341

g12 382

913 @xx (17 for 4K, 37 for 8K,
814 #61 Extended and Disk)
g1s 933

816 940

817 333

. 028 949

821 287

g22 338

823 333

g24 341

825 275

826 319

827 355

930 167

631 308

232 351

433 814

934 gge

Loading with the High Speed Tape Reader

Octal Address Octal Data
0o 257
a1l 323
202 944
203 323
204 B45
285 323
286 g46
6a7 257

BN 323

Page 98

77 for

%;;uary, 1977

\(J,

gll
812
13
014
815
g16
817
920
21
822
823
824
925
226
827
838
831
832
833
B34
835
6836
837
-840
g41
42
p43
944
45
a46
247
8508

247
a76
214
323
844
876
B804
323
046
323
247
41
382
gxx
261
847
908
333
244
346
199
318
333
245
275
319
855
187
308
351
327
1]

To enter these programs,

Page 99

(17 for 4K, 37 for BK, 77 for

Extended and Disk)

Put switches # to 15 in the down positions

Raise EXAMINE

Put the data for address zero in switches 0 through 7.

Raise DEPOSIT

Put the data for the next address in the switches

Depress DEPOSIT NEXT

Repeat steps 5 and 6 until the whole loader is

in

toggled

8.
9.
ig.

11.
12.
13.
14.
1s5.

16.

17.
18.

1s.

24.

21.

22.

January, 1977

Page 1040

Put switches @ through 15 in the down position

Raise EXAMINE

Check to see that the lights DJ through D7 show the
data that should be in location @86. Light on =1, light
off = @. If the correct value is there, go to step 13,
if not go to 11.

Put the correct value in the switches

Raise DEPOSIT

Depress EXAMINE NEXT

Repeat steps 18 through 13 to check the entire loader

If there were any mistakes, check the entire loader
again to make sure they were corrected.

If a paper tape is being loaded, put it into the reader
and make sure that it is positioned at the beginning of
the leader. The leader is the section of tape at the
beginning with 382 octal punched in each column. If an

_audio cassette is being loaded, put it in the cassette

recorder and make sure it is fully rewound.

Lower switches § through 15
Raise EXAMINE

Enter the sense switch settings. See the table in
section B.

If loading is through a SIOA, B or C or an 88PIO, turn
on the tape reader and then depress RUN. If a cassette
is being loaded, turn on the recorder, put it in PLAY
mode and wait 15 seconds. Then press RUN on the
computer. If loading is through a 4PIO, 2SIO or High
Speed Tape Reader, depress RUN and then start the read
device.

.

Wait for the tape to read. Paper tape takes about 25
minutes for Extended, 12 minutes for 8K and 6 minutes
for 4X. Cassettes take about 8 minutes for Extended, 4
minutes for 8K and 2 minutes for 4K. Do not move any of
the switches while the tape is being read.

If a loading error occurs, the loading procedure must
start over from step 1. See section C below for error

conditions.

JLw?ary, 1977 Page 101

23. When the tape is read, BASIC should start up and print
MEMORY SIZE? See section D below for what to do next.

24. If BASIC will not load from cassette, the ACR module
may need realignment. The Input Test Program described
in the ACR Manual, pages 22 and 28 may be used to test
the ACR.

B. Sense Switch Settings

Sense switches (switches A8 through Al5) must be set
before tape or cassette loading begins. The settings depend
on the terminal and input interface boards in use. The low
order (rightmost) four switches contain the 1load board
setting and the high order four switches contain the
terminal board setting. 1In the table below, the setting is
given for each I/0 board option. As above, the setting is
an octal number which signifies the switch positions. The
Terminal Switch and Load Switch columns show the switches
that are raised for each of the load and terminal device
options.

Sense Switch Terminal Load

Device Setting Switches Switches Channels
2SI0 '] none none 20, 21

(2 stop bits)
2510 1 al2z A8 29, 21

(1 stop bit)
sI0 2 al3 A9 g, 1
ACR 3 Al3,Al2 A9,A8 6, 7
4PIO 4 Al4 Alg 48, 41, 42, 43
PIO 5 Al4,Al2 Al@,A8 4, 5
HSR 6 Al4,A13 Al8,A9 46, 47
non-standard 14

terminal

no terminal 15
Examples:

Input from audio cassette through ACR and CRT terminal
through 2SIO with 1 stop bit.]

Switch 15 14 13 12 11 18 9 8

Position @ 7} 8 1 g (/] 1 1

Input from high speed paper tape reader, terminal
through SIO.

Switch 15 14 13 12 11 19 9 8

Position @ 2 1 2 %} 1 1)

Januvary, 1977 Page 102

C. Error Detection

The checksum loader turns on the Interrupt Enable light
on the front panel when a loading error occurs. The ASCII
code of the error 1letter is stored in 1location @. In
addition, the error letter is sent out over all the terminal
channels and so will appear on whatever terminal is
connected to the terminal. The error letters are as
follows:

C checksum error. Bad tape data.

M memory error. Data won't store properly.
The address of the bad memory location is stored
in locations 1 and 2.)

O overlay error. Attempt was made to load data on top
of the loader.

I invalid load device, Invalid setting on the
sense switches.

D. Initialization Dialog
Upon starting, BASIC prints
MEMORY SIZE?

To this, the user responds by typing the number of bytes of
memory to be wused by BASIC and BASIC programs. Remember
that the BASIC interpreter itself takes 3.4K in the 4K
version, 6.2K in 8K and 14.6X in Extended. If the response
is just a carriage return, BASIC will use all the memory it
can find, starting at location zero up to the last byte of
read/write memory. Then BASIC asks,

TERMINAL WIDTH?

to which the user responds with the width of the printing
line of whatever output device is in use. Typing a carriage
return sets the terminal width to 72. Extended and Disk
Altair BASIC set the terminal width through the WIDTH
command, so the TERMINAL WIDTH question is not asked at
initialization and an 1initial width of 72 is assumed. 1In
4X, the response to HEMORY SIZE? and TERMINAL WIDTH? must
be less than 6 digits.

At this point BASIC asks several questions about
mathematical functions. The functions may be kept if needed
or deleted to save space. 4X asks,

SIN? Answer Y to save SIN, SQR and RND
Answer N to delete SIN and see the

JLr}ary, 1977 Page 143

next question
SQR? Y keeps SQR and RND
N deletes SQR, asks next question
RND? Y keeps RND
N deletes RND
8K and Extended BASIC ask,
WANT SIN-COS-TAN-ATN? keeps all four
i deletes all four .
deletes only ATN
(in extended) retains
CONSOLE function. Any
other answer deletes
CONSOLE.

(o -]

Now BASIC prints,
XXXX BYTES FREE-

ALTAIR BASIC VERSION 4.9
[FOUR-X VERSION]

, or
QV/ [EIGHT-RK VERSION]
o or
[EXTENDED VERSION]
OK

BASIC is ncw in command level and is ready for use.

E. Echo Routines.

The Altair input/output channels work in a full-duplex
mode. This means that characters entered on an input/output
terminal will not, as a rule, be printed as they are entered
unless the computer is programmed to return them. The
following echo programs may be used to test the input/output
devices. To test an input-only device, dump the echoed
characters on an output device or store them in memory for
later examination. To test an output-only device, send the
echo characters through the front panel switches or send a
constant character. Be sure to check the ready-to-receive
bit of the output terminal before attempting output. If the
echo program works, but BASIC does not, make sure the load
device's I/O board is strapped for 8 data bits and that the
ready-to-recieve bit is set properly on the terminal device.

88-PI0

) OCTAL ADDRESS OCTAL CODE
&/ 001 994
062 346

083 281

January, 1977 Page 104

004 312
285)y
986 009
007 333
219 285
g1l 323
912 985
f13 383
814 P T]
815 088

2510

OCTAL ADDRESS OCTAL CODE
090 876
201 aa3
8a2 323
883 028 (flag ch.)
894 876
285 821 (=2 stop bits,
906 323 825=1 stop bit)
807 829
010 333
11 220
812 217 :

013 322 J

614 10 1
815 2080
g16 333
817 321 (data channel)
829 323
921 621
22 383
823 219
924 294

4PIO

OCTAL ADDRESS OCTAL CODE
299 257
991 323
232 840
283 323
304 g41
885 323
206 g42
287 257
219 323
g11 g43
812 976
313 854
gl4 323 i .
815 240 \e
216 323

January, 1977

&»J

217
829
p21
922
823
824
825
26
827
830
931
832
833
034
835
236
2837
849
41

p42

g43
244

g42
333
040
346
200
312
828
000
333
042
346
2060
312
827
0989
333
241
323
643
383

828

899

Page 145

January,

1977

A. Space Al

The memory space required for a program -depends, of

course, - on
The followi
required for

Element

Variables
numeric

Arrays
integer
single pre
double pre
string
8K and 4K

strings and floating pt. 6 + 5

Functions
intrinsic
user—-defin

Reserved Wor

Other Charac

String Space

Stack Space
active FOR
loop

active GOSUB 5 bytes

parenthese

temporary
result

Page 1646

APPENDIX C
SPACE AND SPEED HINTS

location

the number and kind of elements in the program.
ng table contains information on the space
the various program elements.

Space Required

integer 5 bytes)

single precision 7 bytes in Extended and Disk
6 bytes in 4K and 8K

double precision 11 bytes

string 6 bytes

(# of elements)* 2 + 6 +(# of dimensions)*2 bytes

cision 4+ 5
cision 8
. 3

1 byte for the call (2 bytes in Extended and Disk)
ed 6 bytes for the definition

ds 1 byte each
2 bytes for ELSE in Extended and Disk

ters
1 byte each

1 byte per character

17 bytes in Extended and Disk,
16 bytes in 4K and 8K

S 6 bytes each set

12 bytes in Extended and Disk
18 bytes in 4K and 8X

January, 1977 . Page 187
(; BASIC itself takes about 3.4K in the 4K version, 6.2K
g in 8K, 14.6K in Extended and 20 K in Disk.
B. Space Hints
The space required to run a program may be
significantly reduced without affecting exectuion by
following a few of the following hints.

1. Use multiple statements per line. Each line has a §
byte overhead for the line number, etc., so the fewer
lines there are, the less storage is required.

2. Delete unnecessary spaces., Instead of writing

18 PRINT X, Y, 2
use
14 PRINTX,Y,Z

3. Delete REM statements to save 1 byte for REM and 1 byte

for each character of the remark.
) 4. Use variables instead of costants, expecially when the
«}/ -same value 1is used several times. For example, using
‘ the constant 3.14159 ten times in a program uses 48
bytes more space than assigning
18 P=3.14159

once and using P ten times.

5. Using END as the last statement of a program is not
necessary and takes one extra byvte.

6. Reuse unneeded variables instead of defining new
variables.

7. Use subroutines instead of writing the same code
several times.

8. Use the smallest version of BASIC that will run the
program.

9. Use the zero elements of arrays. Remember the array
dimensioned by

188 DIM A(19)

has eleven elements, A(#) through A(18).

January, 1977

19.

c.

1.

2.

3.

4,

5.

6.

7.

Page 108

In Extended and Disk, use integer variables wherever
possible.

Speed Hints

Deleting spaces and REM statements gives a small but
significant decrease in execution time.

Variables are set up in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the variable at each
reference. Variables at the head of the table take less

time to search for than those at the end. So, reuse
variatle names and keep the list of variables as short
as possible.

In 8K, Extended and Disk use NEXT without the index
variable.

8K, ©Extended and Disk have faster floating point
arithmetic than 4K. If space is not a limitation, use
the larger versions.

The math functions in 8K, Extended and Disk are faster
_than thosea in 4X.

In the 4X and 8X versions, use variables instead of
constants, especially in FOR loops and other code that
must be executed repeatadly.

In Extended and Disk wuse integer variables wherever
possible.

January, 1977

C

Page 189

APPENDIX D
MATHEMATICAL FUNCTIONS

Function:
SECANT
COSECANT
COTANGENT

INVERSE SINE
INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT'

INVERSE COTANGENT

1. Derived Functions

HYPERBOLIC
HYPERBOLIC
HYPERBOLIC

HYPERBOLIC
HYPERBOLIC
HYPERBOLIC

SINE
COSINE
TANGENT

SECANT
COSECANT
COTANGENT

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

The following functions, while not intrinsic to ALTAIR
BASIC, can be calculated using the existing BASIC functions.

BASIC equivalent:

SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = 1/TAN(X)
ARCSIN(X) = ATN(X/SQR(-X*X+1))
ARCCOS (X) = =-ATN X(X/SQR(-X*X+1))
+1.5788 ’
ARCSEC(X) = ATN(XSQR(X*X-1))
+SGN (SGN(X)~1)*1.5768
ARCCSC(X) = ATN(1/SQR({X*X-1))
+(SGN(X)~-1)*1.5738
ARCCOT(X) = ATN(X)+1.5788
SINH(X) = (EXP(X)~-EXP(~X))/2
COSHE (X) = (EXP(X)+EXP(-~X))/2
TANH(X) = EXP(-X)/EXP(X)+EXP(-X))
*2+1 ’
SECH(X) = 2/(EXP(X)+EXP(=X))
CSCH(X) = 2/(EXP(X)—~EXP(-X))
COTE(X) = EXP({-X)/(EXP(X)=-EXP(-X))

*2+1
ARCSINH(X) = LOG(X+SQR(X*X+1))
ARCCOSH(X) = LOG(X+SQR(X*X+—l)i
ARCTANH (X) = LOG((1+X)/(1-X))/2
ARCSECH(X) = LOG{(SQR(-X*X+1)+1)/R)

ARCCSCH(X) = LOG((SGN(X)*
SQR(X*X+1)+1) /X

ARCCOTH(X) = LOG((X+1)/(X~1))/2

“s2. Simulated Math Functions.\&

The following subroutines are intended for 4X BASIC users

January, 1977 Page 1190

who want to use the transcendental functions not built into
4K BASIC. The corresponding routines for these functions in
the 8K version are much faster and more accurate. The REM
statements in these subroutines are given for documentation
purposes only, and should not be typed in because they take
up a large amount of memory. The following are the
subroutine calls and their 8K equivalents: .

8K EQUIVALENT 4K SUBROUTINE CALL
P9=X9"Y9 GOSUB 60038
L9=LOG (X9} GOSUB 69090
E9=EXP (X9) GOSUB 601640
C9=CO0S (X9} GOSUB 60248
T9=TAN (X9) GOSUB 60284
A9=ATN (X9) GOSUB- 663190

The unneeded subroutines should not be typed in. Please
note which variables are used by each subroutine. Also note
that TAN and COS require that the SIN function be retained
when BASIC is loaded and initialized.

60000 REM EXPONENTIATION: P9=X9"Y9
669013 REM NEED: EXP, LOG
60029 REM VARIABLES USED: a9,B9,C9,29,L9,P9,X9,Y9
606833 REM P9 =1 : E9=8 : IF Y9=0 THEN RETURN
60048 IF X9<9g THEN IF INT(Y9)=Y9 THEN P9=1-2*Y9+4*INT(Y9/2)
: X9=-X9
60058 IF X9<>0 THEN GOSUB 63090 : X9=Y9*L9 : GOSUB 638160
680608 P9=PY9*E9 : RETURN
60079 REM NATURAL LOGARITHM: L9=LOG(X9)
60080 REM VARIABLES USED: A9,89,C9,E9,L9,X9
6999@ E9=8 : IF X9<=g THEN PRINT "LOG FC ERROR"; : STOP
68199 A9=1: B9=2: C9=.5: REM THIS WILL SPEED THE FOLLOWING
60116 IF X9>=A9 THEN X9=C9*X9 : E9=ES+A9 : GOTO 60108
66120 X9=(X9-.787137)/(X9+.7977187) : L9=X9*X9
60130 L9=(((.598979*L9+.961471)*L9+2.88539) *X9+E9-.5)*
- .693147
69135 RETURN
60140 REM EXPONENTIAL : E9=EXP(X9)
60150 REM VARIABLES USED: A9,E9,L9,X9
60160 L9=INT(1.4427*X9)+1 : IF L9<127 THEN 60188
60176 IF X9>0 THEN PRINT "EX? OV ERROR"; : STOP
60175 E9=8 : RETURN
60180 E9=,693147*L9-X9 : AS=1.32988E-3-1.41316E~4*E9
68198 A9=((A9*E9-8.30136=-3) *E9+4.16574E~2) *E9
60195 E9=((A9-.166665)*E9-1)*E9+1 : A9=2
68197 IF L9<=0 TYEN A9=.5 : L9=-L9 : IF L9=8 THEN RETURN
60200 FOR X9=1 TO L9 : E9=A9*E9 : NEXT X9 : RETURN
60219 REM COSINE: C9=COS (X9)
50220 REM N.B. SIN MUST BE RETAINED AT LOAD-TIME
60230 REM VARIABLES USED: C9,X9

January, 1977 Page 111

(’/ 60249 C9=SIN(X9+1.5788) : RETURN
60250 REM TANGENT: T9=TAN(X9)
60260 REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME)
60278 REM VARIABLES USED: C9,T9,X9 .
60280 GOSUB 60248 : T9=SIN(X9)/C9 : RETURN
60290 REM ARCTANGENT : A9=ATN(X9)
60360 REM VARIABLES USED: A9,B9,C9,T9,X9
60318 T9=SGN(X9): X9=ABS(X9):C9=9: IF X>1 THEN C9-1: X9=1/X9
60320 A9=X9*X9 : B9=((2.86623E-3*A9-1.61657E~2) *A9
+4.29696E-2) *A9 :
60330 B9=((((B9-7.5289E-2) *A9+.126563) *A9~.1142089) *A9+.199936) *A9
60340 A9=((B9-~.333332)*A9+1)*X9 : IF C9=1 THEN A9=1.5788-A9

Janvary, 1977 Page 112

APPENDIX E
- BASIC AND ASSEMBLY LANGUAGE

All versions of Altair BASIC have provisions for
interfacing with assembly language routines. The USR
function allows Altajr BASIC programs to call assembly
language subroutines in the same manner as BASIC functions.

The first step in setting up a machine language
subroutine for an Altair BASIC program is to set aside
memory space. When BASIC asks, MEMORY SIZE? during
initialization, the response should be the size of memory
available, minus the amount needed for the assembly language
routine. BASIC uses all the bytes it can find from location
zero up, so only the topmost locations in memory can be used
for wuser supplied routines. If the answer to the MEMORY
SIZE? question is too small, BASIC will ask the question
again until it gets all the memory it needs. See Appendix
C.

The assembly language routine may be loaded into memory
from the front panel switches or from a BASIC program by
means of the POKE statement.

The starting address of the assembly language routine
goes in USRLOC, a two byte location in memory which varies
from version to version. USRLOC for 4K and 8K Altair BASIC
version 4.8 is 111 decimal. 1In Extended and Disk, USRLOC
need not be known -explicitly since it is defined
automatically by DEFUSR. See section 5-3b. The function
USR calls the routine whose address is in USRLOC.
Initially, USRLOC contains the address of ILLFUN, the
routine which gives the FC or ILLEGAL FUNCTION CALL error,
which is what happens if USR is called with no assembly
language routine having been loaded.

When USR is called, the stack pointer is set up for 8
levels (16 bytes) of stack storage. If more stack space is
needed, BASICs stack can be saved and a new stack set up for
use by the assembly language routine. BASIC's stack must be
restored, however, before returning from the user routine.

All memory and all the registers can be changed by a
user's assembly language routine. Of course, memory
locations within BASIC ought not to be changed, nor should
more bytes be popped off the stack than were put on it.

USR is called with a single argument. The assembly
language routine can retrieve this argument by calling the
routine whose address is in locations 4 and 5 decimal. The

o

January,

1977 Page 113

low-order byte of the addréss is in 4 and the high-order in
5. In 4K and 8K, this routine (DEINT) stores the argument

in the register pair [D,E]. 1In Extended, the argument is

passed in pair [B,L]. The argument is truncated to integer
in 4K and 8K, and if it is not in the range ~32768 to 32767,
an FC error occurs. In extended, the register pair [H,L]
contains a pointer to the Floating Point Accumulator where
the argument is stored (see section 5-3b. for more
information).

To pass a result back from an assembly language
routine, load the value in register pair [A,B] in 4K and 8K,
or [H,L] in Extended. This value nust be a signed, 16 bit
integer as defined above. Then call the routine whose
address is in locations 6 and 7. If this routine 1is not
called, USR(X) returns X. To return to BASIC, then, the
assembly language routine executes a RET instruction.)

Assembly language routines can be written to handle
interrupts. Locations 56, 57 and 58 are used to hold a JMP
instruction to a user supplied interrupt handling routine.
Location 56 initially holds a RET, so it must be set up by
the user or an interrupt will have no effect.

All interrupt handling routines should save the stack,
registers A-L and the PSW. They should also reenable
interrupts before returning since zan interrupt automatically
disables all further interrupts once it is received.

There is only one way to call an assembly language
routine in 4K and 8K, but this dces not limit the programmer
to only one assembly language routine. The argument of USR
can be used to designate which rcutine is being called. 1In
8K, additional arguments can be passed through the wuse of
POKE and values may be passed back by PEEK.

In Extended and Disk BASIC, up to ten routines may be
called with the USR@ - USRI functions. For more information
on this feature, see section 5-3b.

January,

1977 Page 114

APPENDIX F
USING THE ACR INTERFACE .

NOTE

The cassette features , CLOAD and CSAVE , are only
present in 8X Altair BASICs which are distributed on
cassette, and in Extended and Disk versions. 8K
BASIC on paper tape will give the user about 258
additional bytes of free memory, but it will not
recognize the CLOAD or CSAVE commands.

Programs may be saved on cassette tape by means of the
CSAVE command. CSAVE may be wused in either direct or
indirect mode, and its format is as follows:

CSAVE <string expression>

The program currently in memory is saved on cassette under
the name specified by the £irst character of the STRING
expression>. CSAVE writes through channel 7 when the Write
Buffer Empty bit (bit 7) of channel 6 is low. After CSAVE
is completed, BASIC always returns to command level.
Programs are written on tape in BASIC's internal
representation. Variable values are not saved on tape,
although an indirect mode CSAVE does not affect the variable
values of the program currently in memory. The number of
nulls (see NULL command) has no affect on the operation of
CSAVE. Before using CSAVE, turn on the cassette recorder,
make sure the tape is in the proper position and put the
recorder in RECORD mode.

Programs may be loaded from cassette tape by means of
the CLOAD command, which has the same format as CSAVE. The
effect of CLOAD is to execute a NEW command, clearing memory
and all variable values, and loading the specified file into
memory. When done reading and loading, BASIC returns ¢to
command level. CLOAD reads a byte from channel 7 when the
Read Data Ready bit (bit @) in channel 6 is 1low. Reading
continues until 3 consecutive zeros are read. BASIC will
not return to command level after a CLOAD if it could not
find the requested file or if the file was found but did not
end with 3 zeros. 1In that case, the computer will continue
to search until it is stopped and restarted at location 4.

C

January, 1977 Page 115

In the 8K cassette and Extended versions of ALTAIR
BASIC, data may be read and written with the CSAVE* and
CLOAD* commands. The formats are as follows:

CSAVE*<array variable name>

and
CLOAD*<array variable name>

See section 2-44 for a discussion of CSAVE* and CLOAD* for
array data.

CLOAD?<string expression> compares the program
currently in memory with the specified file on cassette. If
the two files match, BASIC prints OK. If not, BASIC prints
NO GOOD.

Data may also be read from and written on cassette in
the paper tape version of 8K Altair BASIC. To write data,
execute a WAIT 6,128 statement to check for the Write Buffer
Empty bit and then write with an CUT 7,<byte> statement. To
read, execute a WAIT 6,1 to check for Read Data Ready and
then read with an INP(7). The end of a block of data may be
conveniently designated by a special character. Data should
be stored in array form since there is no time during
reading and writing for computation.

Jznuary, 1977 ' Page 116

APPENDIX G
CONVERTING BASIC PROGRAMS
NOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers
are in many ways similar, there are some incompatibilities
between ALTAIR BASIC and the BASIC used on other computers.

1) Strings.

A number of BASICs require the length of strings to be
declared before they are used. All dimension statements of
this type should be removed from the program. In some of
these BASICs, a declaration of the form DIM A$(I,J) declares
a string array of J elements each of which has a length 1I.
Convert DIM statements of this type to equivalent ones in
Altair BASIC: DIM A$(J). Altair BASIC uses " + " for
string concatenation, not " , " or " &." ALTAIR BASIC uses
LEFTS$, RIGHTS and MIDS to take substrings of strings. Sonme
other BASICs wuse A$(I) to access the Ith character of the
string A$, and AS$(I,J) to take a substring of AS from
character gosition I to character position J. Convert as

follows:
-OLD NEW
AS(I) MIDS (AS,I,1)
AS$(L,3) MIDS(AS,I,Jd~I+1)

This assumes that the reference to a subscript of A$ is in
an expression or is on the right side of an assignment. If
the reference to A$ 1is on the left hand side of an
assignment, and X$ is the string expression used to replace
characters in A§, convert as follows :

In 4K and 38K

OLD NEW .
AS(I)=XS A$=LEFTS$ (AS$,I-1)+XS+MID$ (AS,I+1)
AS(I,J)=X$ AS=LEFTS (A$,I~-1) +X$+MIDS (AS,T+1)
Extended and Disk

OLD NEW

AS(I)=XS MIDS (A$,1,1)=XS$

AS(I,J)=Xs MIDS (A§,I,J~I+1)=X$

@

January, 1977 . Page 117

2) Multiple assignments.
Some BASICs allow statements of the form:
500 LET B=C=0

This statement would set the variables B and C to zero. In
8K Altair BASIC this has an entirely different effect. All
the " = " signs to the right of the first one would be
interpreted as logical comparison operators. This would set
the variable B to -1 if C equaled §. If C did not equal 4,
B would be set to #. The easiest way to convert statements
like this one is to rewrite them as follows.

500 C=0:B=C
3) Some BASICs use " \ " instead of " " to delimit
multiple statements on a line, Change each " \ " to " : *
in the program.

4) Paper tapes punched by other BASICs may have no nulls at
the end of each 1line, instead of the three per line

- recommended for use with Altair BASIC. To get around this,

try to use the tape feed control on the Teletype to stop the
tape from reading as soon as Altair BASIC prints a carriage
return at the end of the line. Wait a moment, and then
continue feeding in the tape. When reading has finished, be
sure to punch a new tape in Altair BASIC's format.

A program for converting tapes to Altair BASIC's format
was published in MITS Computer Notes, November 1976, p. 25.

5) Programs which use the MAT functions available in some
BASICs will have to be re-written using FOR...NEXT loops to

perform the appropriate operations.

s e s 2be

January, 1977 Page 118

APPENDIX H
DISK INFORMATION

Format of Altair Floppy Disk

Track Allocation:

Tracks Use

#-5 . Disk BASIC memory image.

6-69 Space for either random or sequential files.
79 Directory track. See below.

71-76 Space for sequential files only.

Format of DISK BASIC Memory Image (Tracks @-5):

BASIC is loaded starting at track 8 sector ¢ then track @
sector 1, etc. Each sector contains 128 bytes of BASIC.
The first 128 bytes are loaded first, second 128 second,
etc.

Sector format (Tracks #-5):

Byte Use
[/} Track Number+128 decimal.
1-2 Sixteen bit address of the next
higher byte of memory than the highest memory location
saved on this sector.
3-138 128 bytes of BASIC.
131 255 decimal stop byte. :
132 Checksum - sum of bytes 3-138 with no carry in 8 bits.

Sector format (Tracks 6-76):

Byte Use
) Most Significant Bit always on.
Contains track number plus 208 octal.
1 Sector number * 17 MOD 32.
2 File number in directory. Zero file number means

that the sector is not part of any file. If the
sector is the first file of a group of 8 sectors
g means the whole group of 8 sectors is free.

January, 1977

is

the

The

Page 119

Number of data bytes written (9 to 128) . Always
128 for random files. (Except for the random file
index blocks in which case this byte indicates how many

groups are allocated to the file.)

4 Checksum. The sum of all the data on the sector
except for the track number, the sector
number and the terminating 255 byte.

5,6 Pointer to the next group of data., This is set up for
random files and sequential files, and is even valid
in the middle of a group. If it is zero it means there
is no more data in the file. The track is the first byte
and the sector number is the second byte.

7-134 Data

135 A 255 (octal 377) to make sure the right number
of data bytes were read.

136 Unused.

Directory Track (74) Format:

Each sector of the directory (which is all of track 78)
composed of up to 8 file name slots, 16 bytes per slot.

Each slot can contain a file name (8 bytes), a link to the
start of file data (2 bytes), and a byte which specifies the
mode of a file (Random=4, Sequential=2). The remaining 5
bytes are not currently used. Any slot which has the first
filename byte equal to zero contains a file which has been
deleted. If the first byte of a slot is a 255 , it is the
éﬁ’ last slot currently in use in the directory. Slots beyond

"stopper" are garbage. File numbers are calculated by

multiplying the sector number of the directory track the
file
sector (9-8) plus 1.

is in by 18 and adding the position of the slot in the

NOTE
The ith logical sector on a track is actually mapped

to the i*17 MOD 32 physical sector to improve
latency in BASIC I/0 operations.

Format of Random Files

Each random file starts with two random index blocks. The
"number of data bytes” field in the first block indicates
how many groups are currently allocated to this random file.

next 256 bytes in the two random index blocks give the

location of each group in the random file in order of their
position in the file, The upper two bits give the group
number , and the lower six bits give the track number - 6.

s

January, 1977 Page 128

Assembly Code to Read and Write a Sector

The following code has been provided to help users write
their own assembly language subroutines to read and write
data on the floppy disk. It is assumed that the disk being
used - has already been enabled and positioned to the correct
track. Two data bytes are always read or written at a time
so that the CPU can keep up with the data rate (32
microseconds/byte) of the floppy disk. After two bytes are
read or written, the CPU re-synchronizes with the next ‘byte

O me ~e we e

ready' status from the floppy disk controller.

;3 CALL WITH NUMBER OF DATA BYTES TO WRITE IN [A]
; AND POINTER TO DATA BUFFER IN [H,L]
; ALL REGS DESTROYED.

DSKO: MOV C,A ;SAVE # OF BYTES IN C
MVI 2,136 ;CALCULATE NUMBER OF ZEROS TO WRITE
SuB c ;SUBTRACT THE NUMBER OF DATA BYTES
MOV B,A ;NUMBER OF ZEROS+1
CALL SECGET s LATENCY _ :
MVI A,128 ;ENABLE WRITE WITHOUT SPECIAL CURRENT
ouT 9

CALL WITH [B}=NUMBER OF ZEROS [C]=NUMBER OF DATA BYTES
AND [H,L] POINTING AT OUTPUT DATA

;SETUP A MASK (READY TO WRITE

HLDSK: MVI b,1

MVI a,128 ;HIGH BIT (D7) ALWAYS ON IN FIRST BYTE
ORA M ;OR ON DATA BYTE
MOV E,A ;SAVE FOR LATER
INX " ; INCREMENT BUFFER POINTER

NOTYTD: IN 8 ;GET WRITE DATA READY STATUS
ANA D ;TEST STATUS BIT
JNZ NOTYTD ;NOT READY TO WRITE, WAIT
ADD E ;ADD BYTE WE WANT TO SEND TO ZERO
ouT 19 ;SEND THE BYTE
MOV AM ;GET NEXT BYTE TO SEND
INX H ;MOVE BUFFER POINTER AHEAD-
MOV E,M ;GET NEXT DATA BYTE
INX H sMOVE BUFFER POINTER AHEAD AGAIN
DCR C ;DECREMENT COUNT OF CHARS TO SEND
J32 ZRLOP ;IF DONE, QUIT & GO TO ZRLOP
DCR C ;DECREMENT COUNT OF CHARS AGAIN
ouT 19 ;SEND THIS BYTE)
JINZ NOTYTD ;STILL MORE CHARS, DO THEM.

ZRLOP: IN 8 ;GET READY TO WRITE

D ;IS 1T READY

JINZ ZRLOP ;IF NOT, LOOP
ouT 108 ;KEEP SENDING FINAL BYTE
DCR B ;DECREMENT COUNT OF BYTES TO SEND

January, 1977

S

e ws

highest p

the PROM

Page 121

JINZ ZRLOP ;KEEP WAITING
EI ;RE~-ENABLE INTERRUPTS
MVI a,8 ;UNLOAD HEAD
ouT 9 ;SEND COMMAND
RET ;DONE
DISK INPUT ROUTINE. ENTER WITH POINTER

OF 137 BYTE BUFFER IN [H,L]. ALL REGS DESTROYED.

DSKI: CALL SECGET ;POINT TO RIGHT SECTOR
MVI C,137 ;GET # OF CHARS TO READ
READOX: IN 8 ;GET DISK STATUS
ORA A ;READY TO READ BYTE
M READOK
IN 19 ;READ THE STUFF
MOV M,A ;SAVE IN BUFFER
INX H sBUMP DESTINATION POINTER
DCR C ;LESS CHARS
Jz RETDO ;IF OUT OF CHARS, RETURN
DCR C ;DECREMENT COUNT OF CHARS
NOP ;DELAY INTO NEXT BYTE
IN 19 ;GET NEXT BYTE
MOV M,A ;SAVE BYTE IN BUFFER
INX H ;MOVE BUFFER POINTER
JINZ READOK ;IF CHARS STILL LEFT, LOOP BACK
é:/ RETDO: EI ; RE-ENABLE INTERRUPTS
. MVI A,8 ;UNLOAD HEAD
ouT 9 ;SEND COMMAND
RET
SECGET: MVI A,4 ;LOAD THE EEAD
ouT 9
DI ;DISABLE INTERRUPTS
SECLPZ2: IN 9 ;GET SECTOR INFO
RAR ;FIX UP SECTOR 7
Jc SECLP2 ;IF NOT, KEEP WAITING
ANI 31 . 3GET SECTOR #
cMp E ;IS IT THE ONE WE WANTED
JNZ SECLP2 ;TRY TO FIND IT
RET

The Disk PROM Bootstrap Loader

The Disk bootstrap loader PROM must . be
on the PROM board and the PROM board must

osition

be strapped at the proper address.

installed in the

The proper position is

IC socket on the opposite side of the board from

the black finned heat sink. The black dot or 'l' on the
PROM should be in the upper 1left corner. The address
jumpers on the PROM board must be in the '1' position.

January, 1977 Page 122

To use the Disk bootstrap loader, turn the computer's power
on. Raise RESET and STOP simultaneously. Lower RESET and
then STOP. EXAMINE location 177488 (address switches Al5-A8
up, rest down) and then set the sense switches for the
terminal I/0 board as explained in Appendix B. Depress the
RUN switch. BASIC should print (or display):

MEMORY SIZE?

For the rest of the initialization procedure, see below.
Using the Cassette and Paper Tape Bootstraps

If the Disk Bootstrap PROM is not in use, a paper tape or
cassette program must be loaded which then reads in BASIC
from the disk. This is done by following the procedure

below:

1. Key in the applicable paper tape or cassette bootstrap
loader from the listings in Appendix B. Make
location 2=116 octal. Set the sense switches for the
terminal

2. Start the paper tape or cassette (labeled DISK LOADER)
reading, and then start the computer as in the
instructions for loading BASIC from paper tape fronm
cassette as given in Appendix B,

BASIC should respond:

MEMORY SIZE?

For the rest of the initialization procdure, see below.
Disk Initialization Dialog

The initialization dialog has been expanded to allow the
user to select the proper amount of memory needed to use the
disk(s) on the system. After the the MEMORY SIZE question

is answered, BASIC will ask:

HIGHEST DISK NUMBER?

The user should answer with the highest physical disk
address in the system or with carriage return to default to
8. Each additional disk uses 44 bytes of memory. -

Example:

January, 1977 Page 123

C

HIGHEST DISX NUMBER? 1

BASIC next asks how many files ars to be OPEN at one time in
the program. This number includes both random and
sequential files. If the user types carriage return, the
default is zero. Each file allocated requires 138 bytes for
buffer space. Example:

HOW MANY FILES? 2

Finally, BASIC asks how many rancdom files are to be OPEN at
one time. The amount of memory allocated is the answer*257.
This memory space is used to keep track of the location on
the floppy disk where groups of 2 random file reside. Thus,
the total memory required Zor each random file is
138+257=395 bytes. Example: ‘

HOW MANY RANDOM FILES? 1
A typical dialog might appear as‘follows:

MEMORY SIZE? <carriage return>

HIGHEST DISK NUMBER? <carriage rexurn>

HOW MANY FILES? 2 <carriage return>

HOW MANY RANDOM FILES? 1 <carriags return>

XXxxx BYTES FREE

Altair BASIC REV. 4.0

[DISK EXTENDED VERSION]
CCPYRIGHT 1876 BY MITS INC.

OK

January, 1977 Page 124

APPENDIX I

THE PIP UTILITY PROGRAM

A BASIC Utility program has been provided to perform such
such common functions as printing directories, initializing

disks, copying disks etc.

NOTE

Some of the PIP commands (LIS, DIR) require that one
<file number> be configured during the Disk BASIC
initialization dialog. This is done by answering
the "HOW MANY FILES?" question with a value greater
than zero. If an attempt is made to perfrom a LIS
or DIR without following this procedure, a
BAD FILE NUMBER error will occur.

Once the BASIC disk has been mounted, type the following
command :)

" RUN *PIP"<carriage return>
(PIP will type)
*

PIP is now ready to accept commands. To exit PIP, type a
carriage return to the prompt asterisk. To ‘initialize the
floppy disk in drive 8, type:

*INIA

PIP will type "DONE" when it is finished. Any disk number
may be substituted for the 8 in the above command and PIP
will format the disk in that drive. Any previous files on
the disk initialized will be lost. If you wish to use blank
disks with Disk BASIC, they must be initialized in this
fashion before they can be MOUNTed.

NOTE
DO NOT INITIALIZE THE DISK WITH DISK EXTENDED BASIC

ON IT. THIS WILL WIPE OUT ALL THE FILES PROVIDED ON
THE DISK.

January, 1977 Page 125

Printing a Directory

«“

Giving PIP the command:

*DIR<disk number>
prints out a directory of the files on the specified disk.
The name of each file is printed, along with the file's

"mode" (S for sequential, R for random), and the starting
track and sector number of the first block in the file.

SRT<disk number>
prints a sorted directory of the files on the specified
disk.

LISting Sequential Piles

The LIS command is used to list the contents of a sequentlal
data file on the terminal:

Syntax:
&r’A LIS<disk number>,<file name>
Example:
*LIS@,PIPA user types

7 CLEAR 19069 computer orints

.

COPying Disks

The COP command is used to copy a disk placed in one drive
to a disk on another drive. Neither disk need be MOUNTed

for the COP command to work propsrly.

Syntax:

COP<old disk number>,<new disk number>

January, 1977 Page 126
Begor? the copy is done, PIP verifies the actionn by
printing the following massage:

FROM<disk number>TO<disk number>
Typing Y followed by a carriage return causes execution to

— proceed. Any other responce aborts the command. Example:
*COP@,1 FROM 8 TO 1? YCARRIAGE returnd DONE * -

The DAT command
The DAT command is used to dump out a particular sector of
the disk in octal. :
Syntax:
DAT<disk number>
When the DAT command is issued, PIP asks for the numbers of
the track and sector to be dumped. Example: *DAT@ (DAT

is equivalent) TRACK? @ SECTOR? 0 @8 000 000 000 @008 060
000 600 009 000 603 @05 808 etc.

The CNV command

CNV converts disks written under Altair BASIC version 3.4
and 3.3 to a format useable by version 4.8. The format of
the command is as follows:

CNV<disk number>
CNV makes sure that the next to last byte of each sector is
255.

Other Programs Provided on the System Disk

Program HName Use
STARTREK Plays game based on TV series.

January, 1977 Page 127

‘f' APPENDIX J
BASIC TEXTS

Below are a few of the many texts that may be helpful
in learning BASIC. ;
1) BASIC PROGRAMMING, John G. Kemeny, Thomas E. Kurtz,

1967, 145pp.
2) BASIC, Albrecht, Finkel and Brown, 1973

3) A GUIDED TOUR OF COMPUTER PROGRAMMING 1IN BASIC, Thomas A.
Dwyer and Michael S. Kaufman; Boston: Houghton Mifflin

Co., 1973
Books numbered 1 and 2 may be obtzined from:

People'’s Computer Company
P.0O. Box 318
Menlo Park, California 94925

They also have other books of interest, such as:

101 BASIC GAMES, David Ahl, Ed., 1974, 250pp.
WHAT TO DO AFTER YOU HIT RETURN or PCC's FIRST BOOK OF

COMPUTER GAMES .
COMPUTER LIB AND DREAM MACHINES, Theodore H. Nelson, 1974,

&: 186pp.

January, 1977 Page 128

APPENDIX K

USING Altair BASIC ON THE
INTELLEC* 8/MOD 80 AND MDS SYSTEMS.

T@is appeﬁaix covers procedures for loading and
operating Altair BASIC on Intellec and MDS development
systens.

A. Loading BASIC. To load Altair BASIC, put the hex
paper tape of BASIC in the system reader device. Now enter.
. . the System and assign the CONSOLE 1/0 device as desired (see
- Section 4.2.1 of the Intellec 8/Mod 88 Operator's Manual).
Now read in BASIC with the following R command.

-R(Cr)

The BASIC tape will be loaded into memory and the
system monitor will type a period on the CONSOLE device. If
you are only using contiguous RAM memory below the system
monitor (3889H) or are using BASIC on a MDS System, proceed
to step 2. If you have RAM memory above the PROM Intellec
monitor which you wish BASIC to use for program and variable
storage, you must patch the two locations known as INTLOC to
point to the bottom (lowest address) of memory. The is most
easily accomplished by using the System Monitor S command.
INTLOC is given below under "Memory Requirements." .

.SXXXX 68 48 (Cr)

The above S command would make INTLOC point to RAM, starting
at 16K.

NOTE

If you are using RAM above 16K for program and
variable storage and have patched INTLOC, retain all
the math functions at initialization time (see
Appendix B). Essentially, this means that the WANT
SIN-COS-TAN-ATN? questions asked by BASIC's
initialization dialog should be answered by a Y(Cr).
Also, you must answer the MEMORY SIZE? guestion
with the highest decimal or RAM address in your
system.

January, 1977 Page 129

Start BASIC by giving the monitor GOTO command

.G@ggd<carriage return>

NOTE

Once BASIC has been started, it may always be
restarted by depressing the RESET switch on the
Intellec 8 console.

When BASIC types MEMORY SIZE?, Typing carriage return will
cause BASIC to use all the RAM memory it can find above the
end of BASIC. Otherwise, if you wish to specify an exact
amount of memory, type the decimal address of the highest
byte of memory in the computer and type carriage return.

B. BASIC I/0.

The system devices used for terminal I/O in BASIC are
CI, CO and CsSTS.

C. Saving and Loading Programs.

To save -a program on paper tape, re-enter the PROM
monitor and reassign the CO device to the paper tape punch
or other output device. Then restart BASIC by - using the
Gd009 command and type LIST(Cr). The characters of the LIST
command will not be echoed, but the BASIC program currently
saved in memory will be put on the output device.

To load a program enter the system monitor, re-assign
CI to the input device where the program resides, and then
start BASIC with a Ggg@ggd. When the program has been
completely read 1in, reassign CI to the user console. Then
re~enter BASIC with a G#98d4, and start the I/0 device. The
program will be echoed on CO as it is read in.

D. Memory Requirements

BASIC uses locations 3090H-0003H and
g@l19H-approximately 19DFH in the 8K version, and @§010H-2FgEH
in the Extended version. For Intellec 8K and MDS 8K BASICs,
INTLOC is 6520 decimal. For MDS Extended, INTLOC is 14257

decimal.

- E. Calling Assembly Language Routines

January, 1977 Page 138

USRLOC for 8K BASIC is @@855H. ADR(DEINT) is stored in ‘4
locations @043H. ADR(GIVACF) is stored in location @045H.
In the Extended version these locations contain the
addresses of FRCINT and MAKINT, respectively. Interrupt
driven subroutines using RST 7 are not allowed in the
Intellec/MDS version of Altair BASIC. See Appendix C. for
further information on calling assembly language
subroutines. :

* Intellec is a registered trademark of the Intel
Corporation.

ur

January, 1977

3

¢

ORG
DW
IOLST: DW
DwW
DW
DW

DW

- DW
5:’ " oW
oW

Dw
DW

TRYOUT: IN
ANI
JNZ
POP
ouT
PUSH
NOP
NOP
POP
RET

TRYIN: IN
ANI
JNZ

APPENDIX L
PATCHING BASIC'S 1/0 ROUTINES

Page 131

non-standard
before it has

BASIC's I/0 routines

7Q1
IOLST

TRYOUT
TRYIN
ISCNTC
NEWSTT
IN2SIO
IN4PIO
LPTCOD
LPTCD2

LPTCD3
IOCHNL

293
TRYCUT
PSW

PSW

PSW

TRYIN

may be changed to accommodate
terminal equipment. After BASIC is loaded and’
been initialized, location 71 contains a
pointer to a list of addresses., These addresses contain the
I/0 routines of BASIC:

;TWO BYTE ADDRESS OF ADDRESS LIST

;ADDRESS OF OUTPUT ROUTINE
;CHARACTER INPUT ROUTINE
;POLL FOR CONTROL/C CHECK
;FAST POLL FOR CONTROL/C CHECK
;8K AND LARGER OHNLY
;ADDRESS OF INITIALIZATION
;ROUTINE FOR 2SIO BOARDS .
;ADDRESS OF INITIALIZATION ROUTINE FOR
;4PI0 BOARDS
sADDRESS OF LPT ROUTINE (IN EXTENDED
sAND DISK ONLY.)
#2ND LPT ROUTINE
;3RD LPT ROUTINE
;ADDRESS. OF I/0 RESET LOCATION
; (IN EXTENDED AND DISK ONLY)

;GET DEVICE STATUS ;
;AND OFF BIT 7 o
sWAIT UNTIL TERMINAL CAN OUTPUT
;GET CHARACTER TO OUTPUT OFF STACK
;s TRANSMIT IT
;SAVE CHARACTER BACK ON STACK
;CHANGED TO "IN 41" FOR 4PIO BOARDS

;GET CHARACTER BACK OFF STACK ‘
;ALL DONE WITH CHARACTER OUTPUT ROUTINE

;GET TERMINAL STATUS
;CHARACTER READY?
;NO, KEEP WAITING

fanuary.,

1977 : Page 132

IN 1 sREAD IN THE CHARACTER
ANI 127 ;GET RID OF PARITY BIT
CPI CONTO ; CONTROL/0?
RNZ sRETURN IF NOT
ISCNTC: IN 8 sREAD TERMINAL STATUS
ANI 11 ;HAS THE TERMINAL A CHARACTER

;TO SEND?
RNZ ;NO, RETURN

;s FOLLOWING ROUTINE IS IN 8K AND LARGER VERSIONS ONLY
;AND IS EXECUTED FOR EACH STATEMENT

NEWSTT: IN 17} sREAD TERMINAL STATUS

ANI 1 ;TEST BIT @

(o4 CNTCCN :YES, SEE IF CHARACTER CONTROL/C
IN2SI0O: CPI 2*%4 +IS IT 2SI0

RNC ;NO, OTHER GO DIRECTLY TO SETIO

ADI 21 ;GET PROPER INITIALIZATION BYTE

~— PUSH PSW ;SAVE IT

MVI A,3 ;INITIALIZE THE 2SI0

CALL DOIO28 g

POP PSW ;GET BACK SECOND INITIALIZATION BYTE

JMP DOI1I023 ; PROGRAM TO DATA AND STOP BITS
IN4PIO: MVI a,54Q sRESET FOR DATA TRANSFER

DCR M s CHANNEL=22

CALL DOI0249

.

LPTCOD; LDA PRTFLG ;SEE IF WE WANT TO TALK TO LPT

ORA A ;TEST BITS
JZ TTYCHR ;IF ZERO THEN NOT
POP PSW s+GET BACK CHAR
PUSH PSW
CPI 9 ;TAB
JINZ NOTABL ;NO
MORSPL: MVI A,32 ;GET SPACE
OUTCHR sSEND IT
LDA LPTPOS ;GET CURRENT PRINT POSIT
ANI 7 ;AT TAB STOP?

u

January,

¢

1977 Page 133

JNZ MORSPL ;GO BACK IF MORE TO PRINT
POP PSW s POP OFF CHAR
RET s RETURN
NOTABL:) o
POP PSW $GET CHARACTER WE WANT TO PRINT
PUSH PSW -
CPI 13 ;IS IT CARRIAGE RETURN?
Cz " PRINTW ;FORCE OUT A LINE
CPI 13 ;GET CONDITION CODES BACK
Jc PPSWRT ;IF FUNNY CONTROL CHARACTER
; (LF) , DO NOTHING
Loa LPTPOS ;WHERE ARE WE?
CrPI - LPTLEN-1 sARE WE AT END OF LINE?
JNZ NOTELP ;NO, JUST SEND CHAR
MVI A,l ;SET LPTLST=1 AND LPTPOS=48 .
CALL FINLP2
DCR A sMAKE SURE LPTPOS ZERO.
NOTELP: INR A
STA LPTPOS
LPTWAT: IN 2
ORI 245
INR A
JNZ LPTWAT
POP PSW
out 3 ;SEND OUT CHAR
RET ;s RETURN

;THIS ROUTINE IS CALLED T0 FORCE OUT A PARTIAL BUFFER
;FOR THE LINE PRINTER. IT ALSO RESETS PRTFLG SO ALL

; FURTHUR I/0 GOES TO THE USER'S TERMINAL ;
FINLPT: XRA A ;RESET PRINT FLAG SO OUT®PUT.

STA PRIFLG yGCES TO THE TERMINAL

LDA LPTPOS 3SEE IF ANY LEFTOVERS MUST BE
ORA A ; FORCED OUT

RZ $BY LOOKRKING AT LPTPOS

;THE ROUTINE PRINTW IS CALLED TO FORCE OUT A LINE CURRENTLY
;IN THE LINE PRINTER BUFFEZR. TEE CARRIAGE RETURN/LINE FEED
;OUTPUT SUBROUTINE CALLS PRINTW

PRINTW: IN 2 ;MAKE SURE LAST PRINT
ORI 245
INR A
JNZ PRINTW sBIT
; SEE IF BUFFER MUST BE EMPTIED
LDA LPTPOS
ORA A ;CEARACTERS IN THE BUFFER?
Juz PRINTR ;IP SO DON'T CLEAR THE BUFFER
LDA LPTLST ;PRINT BLANK LINE.
' : ;CHECK IF PRINT WAS LAST
ORA a ;IF SO, DO SPECIAL DELAY BECAUSE
;OF DESIGN
Jz NTEXDL ; PROBLEM
PUSH H ;SAVE [H,L]
LXI H,190600 ;DELAY COUNT

January,

1977

LPTDLY: DCX

: Mov

ORA

JINZ

POP

STA
NTEXDL: MVI

ouT

XRA

RET
PRINTR: MVI

ouT
FINLP2: STA

DCR

STA

RET
LPTCD2: LDA

ADD’

CPI

JMP

LPTCD3: LDA
NLPPOS

CPI
JMP

IOCENL: 0
2
IOREST: LXI
CALL
CALL
JMP

To patch the I/O routines, stop the

BASIC

or read in a tape containing the patches.
location zero with all sense switches up.
BASIC from modifying the I/0 routines. In
guidelines should be followed in writing I/O routines:

H
A,H
L
LPTDLY
B

LPTLST
a,2

2

A

A1l

LPTLST
A
LPTPOS

LPTP0S
M
LPTLEN
LINCHK

LPTPOS
EQU

NLPPOS
CHKCOM

H, IOCHNL
HELPIO
STXINI
READY

and insert the patches using the front panel switches

{((LPTLEN/CLMWID)-1) *CLMWID) ; POSITION BEYOND

Page 134

;COUNT DOWN
;UNTIL ZERO

sRESTORE ([H,L] REGS
sRECORD LINE FEED LAST
;SEND A LINE FEED COMMAND

sRETURN WITH § &CC'S=g

;TELL LPT TO PRINT
;STATUS REG T

; [A]=0
;RESET LINE PRINTER POSITION

;GET CURRENT LPT PRINT HEAD POSIT

sWILL THIS NUMBER OVERLAP?

;GET LINE PRINTER POSITION
;NOTE: COLUMN WIDTH (CLMWID)=
;14 CHARACTERS

;WHICH THERE ARE
;NO MORE COMMA FIELDS, SO
;COMMA JUST DOES A "CRDO"
;USE TELETYPE CHECK

;DEPOSIT BOARD TYPE HERE
;CHANNEL GETS DEPOSITED HERE.
;GRAB POINTER TO IT
;SET UP THE NEW CONSOLE DEVICE
sMAKE STACK OK

;AND TYPE "OK" HOPEFULLY ON GOOD CON

machine after loading

Restart BASIC at
This will prevent
general, these

I0on

SOLE

January, 1977 Page 135

C

1. Insert a JMP at TRYOUT to the custom output routine. Be
sure the PSW that is saved on the stack when the routine
is entered is preserved. Make sure all registers are
left unchanged when the routine is exited.

2. 1Insert a JMP at TRYIN to the custom input routine.
Return the input character in the A register and do not
change any of the other registers, The PSW may be
changed. ’

3. To modify ISCNTC insert a CALL to the custom poll
routine. This routine returns a non-zero condition code
setting if no character is present, *and zero if a
character 1is present. 'The A register and the condition
codes may be changed.

/s

4. To change the initialization of the 25I0 board, change
the "ADI 23Q" to "MVI A,XXX" where XXX is the new
initialization byte. .

5. To change the initialization of the 4PIO board, change
the "MVI A,54Q" to a "MVI A,XXX" where XXX is the new
initialization byte.

6. To patch in a new line printer driver change the code at
LPTCOD. Note that PRINTW is also called by the routine
which prints a carriage return line feed. The code at
LPTCD2 and LPTCD3 must be changed if the line printer is
not 88 characters wide,

7. To recover from an incorrect CONSOLE command, deposit
the board type in IOCHNL, the board type in IOCHNL+1,
and start the machine at IOCHNL+2.

Patching Disk BASIC - the PTD program. After Disk
BASIC is 1loaded, deposit the desired patches in memory.
Then examine and run PTD at location 54888 octal. After two
or three seconds, the patched version of BASIC will be saved
on disk. The save is complete when the Disk Enable light on
disk drive zero goes out.

To save a patched version of BASIC on a disk which did
not previously contain release 4.8 Altair BASIC, track @
must be copied from a 4.6 disk. .

PTD may also be used to save programs other than BASIC
on tracks @-4 of a diskette by loading the program after
BASIC is loaded and running PTD. All memory locations
between @8 and 46988 octal will be saved on tracks G-4 on
diskette zero.

January, 1977 Page 136

APPENDIX M
USING ALTAIR DISK BASIC

An Example

The following is a discussion of how to program a
typical application in BASIC. The example is the MITS
in-house inventory system which is designed to run on the
following hardware:

Altair 8890b computer with 32K memory, PROM memory board
with the Disk PROM Bootstrap loader and a 2SI0 serial
1/0 board

Two disk drives

24-line Lear-Sigler CRT terminal

Line printer

The most important part of the design for an
application 1is setting up the files. Files that are
correctly set up will be easy to use and maintain. Poorly
set up files will be a perpetual headache, causing either an
eventual rewrite or, more likely, abandonment of the system,

The first listing at the end of the appendix, INVEN,
contains modules from the main program in the inventory
system. INVEN shows how the central file (a random file) in
the system is set wup and how it is handled. The INVEN
listing also shows the use of another random file and a
sequential £file. The CALC 1listing shows how to read -
programs as data files. CODEl is a partial 1listing of a
program that will be read as a data file.

The INVEN modules listed were included to show the
following features:
1. program startup initialization and comments .about the
files used by the program (lines 1-35)
2. what the complete program does (lines 60-10629)

3. an example of how to modify records in a random file
(lines 9488-18449)

4. an example of how sequential files are .used (lines
1800-1868 and 2780-2824)

¢

January, 1977 Page 137

5. one approach to the problem of handling a random file
that spans more than one disk (lines 2086-2039)

6. three subroutines (lines 346-349, 9089-9020 and
9200-9220) that are called by the INVEN modules.

The function FNY (line 6) is used to round dollar
amounts to thousandths of a cent. FNQ (line 7) is used to
round quantities to thousandths and to convert single
precision amounts to double precision.

INV3 is fielded once in the program initialization, but
INVI and 1INV2 are repeatedly fielded by calls to the
subroutine at line 2008. The IF F>255 (11ne 68) avoids the
possibility that the program can be stopped by an illegal
function call at line 61.

PUT statements are the very last statements executed in
the Remove from Inventory module, the Add to Inventory
module, etc. This prevents updating one file but not the
other. (This could happen if PUT Z, Rl was at line 1814.)

Line 200¢ sets 2 to 1 and RI to N if the item wanted,
N, 1is 1less than 2081. It sets Z to 2 and Rl to N-2000 if
the item wanted is greater than 2838. Line 2028 then - sets
the pointers for the variables in the field statement to
point into either the buffer for INV1 or the buffer for
INV2, depending on whether the item wanted is less than 2641
or greater than 2004d.

The CALC listing is a program which determines if there
are enough parts in inventory to meet projected demands.
Line 68 waits while the disk comes up to speed so the
message "ENABLE DISK 1" will not be printed on the terminal.
Lines 109-149 input up to fifty different product codes and
the number of each product to be built. Line 17d opens a
file for each product that contains the parts required for
the product. Lines 220-250 build up a report heading
extracting the product description contained in line 18 of
each file.

Lines 128-159 accumulate the number of parts required
for each product into the array Q. If more than 32767 of a
part is required, a pointer is set in the array Q and the
number of the part is accumuulated in the array Q!. This
maneuvering is necessary since the system does not have
enough memory to dimension Q as single precision instead of
integer.

January, 1977 Page 138

The parts lists for a product are programs saved with
the A option. Since they are programs, their maintenance is
very easy. For example, suppose that part 1871 in the 880db
is too marginal and that from now on part 1173 should be
used instead. With the parts lists disk mounted on drive 4,
the following sequence will update the 88@8b file:

LOAD "CODE1l™
160,1,1173
SAVE "CODEl®,4,a

The programmer who is cramped for memory will find that
programs can still be documented adequately if comments are
set up as separate files. The memory used for variables
when a program runs can be used for comments if the comments
are merged in when the program is to be listed.
Alternatively, the program could be listed in two or more
parts. Additional memory can be obtained by bringing BASIC
up without optional functions and with no files.

The main inventory program is set up so that a carriage
return typed in responce to any prompt cause the program to
dump the function descriptions on the CRT and to return to
the FUNCTION NUMBER prompt. If the program were to be run
on a printing terminal, instead of a 9664 baud CRT, it would
not be set up to print the descriptions every time the
operator wanted to get back to the FUNCTION NUMBER prompt.
The list of function descriptions might be taped on the wall
next to the terminal instead.

Listing of INVEN

DEFINT F-N
DEFINT R

DEFINT 2

DEFDBL P

DEF FNY# (Q8%#)=INT(Q83*A%#+.5%)/A%

DEF FNQ#(Q9!)=INT(VAL(STRS$(Q9!))*10004+.5%) /10002
AS=MKDS (0) :B$=MKS$ {9) :A%=1000003% :
18 DIM Q$(2),P$(2)

11 ¢

INV1 ON DRIVE # ROLDS ITEMS 1-2380

INV2 ON DRIVE 1 HOLDS ITEMS 2001-4000

INV3 ON DRIVE 1 HOLDS SUMS LOGGED IN AND OUT BY DEPARTMENT
12 ¢

WEKLYRST AND MONTHRST ARE WRITTEN -WHILE THE WEEKLY,
MONTHLY ACTIVE ITEMS LISTS ARE PRINTING;

CONTAIN THE ITEM #S THAT NEED TO BE RESET; AND ARE READ BY
THE'WEEKLY,MONTHLY RESETS.

14
Q$() <=> THREE ON HAND QTY FOR: P$() <=> THREE PRICES

O 2w N

January, 1977 Page 139

[P(8) OLDEST, P(l) NEXT OLDEST, Q(8)<>8 IF Q(1)<>9,
Q(1)<>8 IF Q(2)<>d]

gg $=> DESCRIPTION LEFT$(D$,3)="$$$" <=> INACTVE ITEM %
11§ <=> WEEKLY QTY IN

I2$ <=> MONTHLY QTY IN

01$ <=> WEEKLY QTY OUT

02$ <=> MONTHLY QTY OUT

T$ <=> REORDER LEVEL

DI1$ <=> WEEKLY $ IN

ID2$ <=> MONTHBLY $ IN

DO1$ <=> WEEKLY $ OUT

002? «=> MONTHLY § OUT

17

DT1$ <=> WEEKLY DEPT § TAKEN

DX2$ <=> MONTHLY DEPT $ TAKEN

DGl$ <=> WEEKLY DEPT $ GIVEN

DY2$ <=> MONTHLY DEPT $ GIVEN

20 OPEN "R",4#1,"INV1®
3@ OPEN "R",$2,"INV2",1
32 OPEN "R",#3,"INV3",1
. 35 FIELD #3,8 AS DT1$,8 AS DX2$,8 AS DG1l$,8 AS DY2$
60 PRINT:F=0:INPUT"FUNCTION NUMBER";F:IFF>255THENG3
ég/ 61 ON F GOTO 219,352,350,19600,606,909,1769,
2783,2540,23008,2466,1880,2904"
2 3 4 5. 6 7 8 9 ig 11 12 13
14 15 16
63 PRINT"1 - ENTER NEW ITEM"
64 PRINT"2 - LIST ITEM ON CRT (SHORT FORM)"
65 PRINT"3 - LIST ITEM ON CRT (LONG FORM)"
66 PRINT"4 - PRINT ITEMS ON LINE PRINTER
67 PRINT"5 - ADD TO INVENTORY"
68 PRINT"6 - REMOVE FROM INVENTORY"
6% PRINT"7 - PRINT WEERLY DEPT DOLLAR RECORD ON LINE PRINTER
70 PRINT"8 - PRINT WEEKLY ACTIVE ITEMS LIST ON LINE PRINTER
71 PRINT"9 - WEEKLY RESET)
72 PRINT"18- PRINT HONTHLY DEPT DOLLAR RECORD ON LINE PRINTER
73 PRINT"11l- PRINT MONTHLY ACTIVE ITEMS LIST ON LINE PRINTER
74 PRINT"12- MONTHLY RESET
75 PRINT"13- RE3SET ORDER LEVELS
76 PRINT"14- PRINT LISTNG OF ITEMS NEEDING TO BE RE-ORDERED
77 PRINT"15- DELETE OLD ITEM
78 PRINT"16~ ERRORS BACKOUT
166 GOTO63
298 !
*

SUB - INPUT PART % & GET RECORD
*

3190 IFN>4000THENPRINT:PRINT"''# TOO HIGH"“'GOLO 300

‘E: 309 PRINT:PRINT:N=0:INPUT"PART NUMBER";N:IFN<1THENRETURN
329 GOSUB2@#@B:GETZ,R1

January, 1977 Page 149

330 IFLEFTS$ (DS$,3)="$$$"THENPRINT:
PRINT"''NO INFORMATION ON PART''";N:GOTO308

340 RETURN

899

*

F=6 - REMOVE FROM INVENTORY
%

908 GOSUB380:IFN=0GOTO63 :
926 DN=-1:INPUT"NUMBER OF ITEMS REMOVED FROM INVENTORY";
DN:IFDN=~1THEN63
958 IFCVS(QS$ (8))+CVS(QS$ (1)) +CVS (Q$ (2)) <DNTHENPRINT"
ATTEMPT TO REMOVE MORE THAN ON HAND":PRINT:GOTO63
960 D@=DN:P=d
978 IFD@<CVS (Q$ (B)) THEN
P=DP+ENQ# (D@) *CVD (P$ (@)) : LSETQS (8) =MKSS$ (CVS (Q$ (2)) ~D@) :
GOTO1660
980 P=P+FNQ# (CVS (Q$ (8)))*CVD(P$ (8)) :DO=DE-CVS (QS (D)) :
LSETQS (4) =Q$ (1) :LSETQ$ (1) =Q$ (2) : LSETQS (2) =BS:
LSETPS (8) =P$ (1) : LSETPS (1) =P$ (2) : LSETPS (2) =AS : IFDGTHEN
GOTO97¢
190@ LSETOL$=MKS$ (CVS (O1$)+DN) : LSETO2$=MKS$ (CVS (02$) +DN) : _
LSETDOL$=MKDS$ (CVD (DO1§) +P) : LSETOD2$=MKD$ (CVD (OD2$) +P)
10208 GOSUB9288:IFC$=-1GOT0O63
103¢ LSETDT1$=MKDS$ (CVD(DT1$)+P) :LSETDX2$=MKD$ (CVD (DX2$) +P)
1040 PUT3,C$:PUTZ,R1:GOTO9GY
1796
*

F=9 - WEEKLY RESET
*
1888 PRINT®7 - WEEKLY DEPARTMENT RECORD
1882 PRINT"8 - WEEKLY ACTIVE ITEMS
1804 z$="":INPUT"HAVE THE ABOVE BEEN LISTED FOR TODAY";Z$
1819 IFLEFTS (Z$,1)<>"Y"THENPRINT :PRINT
"WEEKLY RESET NOT PERFORMED" :GOTO63
1843 OPEN"I",4,"WEKLYRST"
1845 IFEOF(4)THENCLOSE4:KILL"WEKLYRST" :GOTO1862
1850 INPUT#4,N:IF 1<=NANDN<=4060 THENGOSUB2889:GETZ,Rl
ELSEPRINTN;"OUT OF BOUNDS. RESET ABORTED.":END
1855 LSETI1$=B$:LSETO1$=BS$:LSETDI1$=A$:LSETDO1$=AS:PUTZ,R]1
1868 GOTO1845
1862 FORI=1TO28
1864 GET3,I:LSETDT1$=AS:LSETDG1$=AS:PUT3,I
1866 NEXT
1868 GOTO60
1999
*
SUB - GET Z,Rl FOR N AND FIELD TO INV1,2
* .
2080 Z=1-(N>20008) :R1=N+(2=2) *2000
2029 FIZLD Z,4 AS Q$(2),4 AS Q$(1),4 AS Q$(2), 8 AS PS$S(9),

8 AS P$(1),8 AS P$(2),40 AS D$,4 AS Il$,4 AS I2S,
4 AS 015,4 As 02§,8 AS DI1§$,8 AS ID2S,8 AS DOl$,8 AS OD2S

January, 1977 Page 141

C

2030 RETURN
369ﬁ !

F=8,11 - WEERLY,MONTHLY ACTIVE ITEMS LIST
*

2788 N=1:G0OSUB2866:G0SUB2855

2783 1FF=8THENOPEN"O",4,"WEKLYRST"ELSEOPEN"O", 4,"MONTHRST"

2705 IT#=0:0T4=0:TTi=

2718 FORI=1T02800

2729 GETZ,I:IFLEFTS(D$,3)="$$$"THEN28AD

2723 QB=CVS (Q$(2)) :Ql=CVS(Q$(1)) :Q2=CVS(Q$(2))

2725 IFF=8THENI!=CVS(I1$):0!=CVS(01$): I#=CVD(DI1$)'0#-CVD(D01$)
ELSEI!=CVS(I25) :0!=CVS(02$) : I13=CVD(ID2$) :0#=CVD(OD2$)

2727 TT#aTT‘+CVD(P$(B))*Qﬂ+CVD(P$(l))*Ql+CVD(P$(2))*Q2

2739 IFI!+Q!=0THEN2868

2733 PRINTS4,N+I-1

2735 IT#=IT#+I3:0T4=0T%+0%

2740 IFL9>59ANDRK=@THENGOSUB2858

2750 LPRINTUSING"#333##" ;999991 +N+1;

2778 LPRINTUSING"%%,4%%,2#32";11,0!,00+01+Q2, Q$+Ql+Q2+O'-I!,

2788 LPRINTUSI‘IG"$$; r## '#:r:' . w#' 'I ,O:

2798 L9=L9+1

2795 KR=KX+1:IFRK=5THENLPRINT:L9=L9+1:KK=0

2898 NEXT

2819 IFN=1THENN=20891:GOSUB2660:G0T02718

2811 CLOSE4

2813 LPRINT:LPRINTUSING"TOTAL INVENTORY COST =$$4&,444,455.44";TT4

2815 REM *GOT02828 IN F=7,18 .

2820 LPRINT:LPRINTUSING"TOTAL IN = S$S&%, %42, 248 $47",IT4

2830 LPRINTUSING"TOTAL OUT =SS2%,332,333.44";07%

2837 LPRINT:LPRINT

2840 GOTOSg@

2858 FORJ=L9TO66 :LPRINT :NEXT

2855 IFF=8THENLPRINT"WEEKLY"; :ELSELPRINT"MONTHLY";

2860 LPRINT® ACTIVE ITEMS LIST";:G0SUB94d4d

2865 LPRINTTAB(39) ;"STARTED®

2879 LPRINT"ITEM # QTY-IN QTY-OUT ON-HAND MO-WITH
DOLLARS-IN DOLLARS-OQUT"

2880 LPRINT:KK=8:L9=6:RETURN

89949 °*

*

SUB - PRINT TODAY'S DATE

*

9090 IFTD$=""THENLINEINPUT"TODAY'S DATE ?";TD$:IFTD$=""THENG3

9918 LPRINT® ";TDS

9915 LPRINT

9028 RETURN

919a '

IVPUT DEPARTMENT # AND GET TOTALS

92ﬁ0 C3=-1:INPUT"ENTER DEPARTMENT CODE";C%:IFC%= —lTHENRBIURN

January,

1977

921
922

5
190
28
90
109
119
129
138
1406
158
160
178
1890
198
208

10
20
30
40
50
60
90
95
INP
kK
160
118
128

139
149
145
ACC
*kk
150
168
176
189
194
2008
210
229

Page 142

8 IF1<=C%ANDC3%<=28THENGET3,C%:RETURN
@ PRINT"INVALID CODE":GOT09200

Listing of CODEl

CODE1l
PARTS LIST FOR: 8884883
OCT 30,1976
REM THIS IS THE START OF DATA
111,16842
13,1134
14,1048
¢1,1028
+1,1021
01,1824
¢1,16871
:1,1874
+1,2185
124,348
2,326

Listing of CALC

CLEARGZG

DEFINT A-Z

DIM CN(49),NU(49),Q(4889),Q!(200)

CLOSE: UNLOAD1

INPUT"PLACE DISK WITH PARTS LISTS IN DRIVE 1. HIT RETURN";GS
FORK!=1TO5088 :NEXT : MOUNT1

LINEINPUT"TODAY'S MO/DA/YR ";DT$:HS(0)=DT$+" PARTS AVAILABLE FOR:
1

UT QUANTITY OF EACH PRODUCT REQUIRED
* %k .

INPUT"CODE NUMBER(Z WHEN PINISHED)";CN(I)

IF CN(I)=0 THEN 158

IF CN(I)<1l OR 58<CN(I) THEN PRINT"INVALID CODE NUMBER" :
GOTO 148

INPUT"NUMBER OF UNITS TO BE MADE";NU(I)

I=I+1:IF I<50 THEN 134

A

UMULATE QUANTITY OF EACH PART REQUIRED
* %

FOR K=g TO I-1

ONERRORGOTO618

OPEN"I",#1, "CODE"+MIDS(STR$(CN(K)) 2),1
ONERRORGOTO®

LINEINPUT#1,A$: IFAS=""THEN190

IFLEFTS (AS$,3)="90 "THEN260

IFLEFTS (A$,3)<>"10 "THEN198
IFKTHENHS (HK) =HS (HK) +", "

"

January, 1977 Page 143

C

230 HH$=STRS (NU(K)) +STRS (CN (K)) +"= ("+MID$ (AS$, 26) +")"

240 IFLEN(HHS$)+LEN (HS$ (EK))>72THENEK=HK+1

250 HS (HR)=HS (HK) +HHS :GOT0190

260 ONERRORGOTO638

278 IFEOF(1)THEN319

280 INPUT %1,A,QN,BN

290 IFQ(PN)<STHENQ! (-Q(PN))=Q! (~Q(PN))+NU(K) *QN
ELSEQ(PN) =Q(PN) +NU (K) *QN

306 GOT027¢

319 ONERRORGOTOB:CLOSE 1:NEXT K

315 ¢

GET SECOND HALF OF INVENTORY BACK ON LINE

RhRhR

320 CLOSE:UNLOAD1

339 INPUTY

PLACE INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TO START REPORT";GS$

340 FORI!=1TOS5800:NEXT:MOUNT1

360 OPEN"R",32,"INV1"

378 FIELD #2,4 AS Q15,4 AS Q2$,4 AS Q3$,24 AS G$,40 AS D$

375 ¢ |

PRINT REPORT

Rk ki

386 GOSUB57H

398 FOR I=1 TO 48060

46@ IF Q(I)=0 THEN 538

4189 QQI=Q(I):IFQ(I)<ATHENQQ!=Q! {~Q(I))

4289 IFL9>59ANDKK=#THENGOSUB568 .

43¢ L9=L9+1

440 RN=I

450 IFI<2B@3THEN4GJELSERN=RN~200%: IFFLAG=0THEN
CLOSE2:0PEN"R", %2, INV2",1:FLAG=1:
FIELD%#2,4 AS le 4 AS Q23,4 AS Q3$,24 AS GS, 4ﬂ AS D$

460 GET %2,RN

474 IFLBFT$(Ds,3)=“$$$“THENLPRINTI+1ﬁﬂﬂaﬂ1;
Wikxkkkkk® NO INFORMATION ON DART *dkkkddden, .
LPRINTUSING" ##, $3#4#4";QQ! :GOTO529

480 QH!=CVS (Q1l$)+CVS (Q2$)+CVS (Q3$) :QDI=QH!-QQ!

56¢ LPRINTI+189066!;D$;" ";

510 LPRINT USING "3 *,###;é#".QQ!;QHE:QD!

528 KK=KK+1:IFKK=S5THENKK=0:LPRINT:L9=L9+1

53¢ NEXTI:CLOSE:END

568 FORK=L9TO066:LPRINT:NEXT

565 !

PRINT PAGE HEADING

dkkikk

570 FORK=9TOHK:LPRINTHS (K) :NEXT ,

586 LPRINT:LPRINTTAB(52);"NEEDED ON HAND EXCESS":LPRINT

590 KK=0:L9=5+HK:RETURN

645 °*

TRAP ROUTINE: BAD CODE NUMBER

d* Kk ke kR

619 IFERR=33THENPRINT:PRINT"NO CODE";MID$ (STRS (CN(K)),2);" FILE"

January, 1977

6280 ONERRORGOTOQ

625 v

TRAP ROUTINE: ACCUMULATE INTO Q OVERFLOWED
ddkkkh

630 IFERR<K>60RERL<>294THENONERRORGOTOS

640 NQ=NQ+1:Q!(NQ)=Q(PN)+NU(K)*QN:Q(PN)=-NQ
678 RESUME270

Page 144

January, 1977

C

@ ¢ 0 v e e e e e

ABS
ACR interface . .
AND
Array variable .
ASC . . o ¢ 4 W .
ASCII character codes

LI R S Y

ATN o & o & o o &
AUTO . & o o & » &

Backarrow
BASIC texts
Boot loaders
Branch, conditional
Branch, unconditional
Branching

‘x’ Carriage Return . .
Carriage return . .

CHRS o o o o o« o o &
CLEAR . « . . .

* e v s e

-

Character, alphanumeric

e & o & & 2 & @

* v e e e

* o s & e ¢ e o

* e v e oy

e o a

CLOAD & 4« 4 o o o o o« o =
CLOAD* for arrays . . .« »
CLOAD? v o 4 4 o = o « o »
CLOSE & & ¢ o o s & o » o
CLOSE, random files . . .
Command Level
Commands List . « . « . &
CONSOLE .+ & o o o o s « &
Constants . + ¢« &+ ¢ & + &
CONT « o o o o o o o o o &«
Control/A . . + « ¢« « « &
Control/C
Control/I . ¢« ¢ ¢ ¢« o & &
Control/0 v ¢« « ¢« o o 4
Control/Q + & ¢« ¢« 4 o o &
Control/S « & ¢ « o e . W
Control/U .+ & & v o o & &
Conversion from non-Altair
COS & ¢ ¢ o o o s o o o o
CSAVE* for arrays
CUD v ¢ ¢ o o s o o o s &
&'/ o' S
CVS v 4 ¢ 4 o o o o o o @

INDEX

* 6 4 2 8 e s s

D Y

e 4 @ & e v+ s 2 v s e e b e ¥

e e s o o e s .

s ® 2 8 s e

L A A

4 o 3 v e 3 e v W

o v e o o e

1~ \D |1~ 00 N <J D N et b el n) it
D W O) L WWWds < W ™
wl . s

i1 o
[Yelvs)

Wt et @ ta

B OV O =) RO)))b 00

€ b e () e A G B3 €9 e 0

400 00 Q0 00 QA I~) I () =)

_Page 145

DATA . .

24

DEF ¢ ¢ ¢ o 4 o o o o o o« & 29
DEFDBL ¢ ¢« &« o « o o o o« « « » 13
Definitions ¢« ¢« . .+ . 4
DEFINT ¢« & ¢« ¢ v o o o o o « « 13
DEFSNG « + + « 4 o o s o o « +-13
DEFSTR 4+ « « & o o o o o« « o o 13
DEFUSR « « ¢ o ¢ « =« « o« o « . 48
DELETE ¢« ¢ & o ¢« o o« o & « « o« 71
DIM 4 ¢ « ¢ o o o o o« o o & o 15
Dimensions « ¢« ¢« . . . 14
Direct Mode . . ¢« v ¢« o « &« . 5
Disk format « « . . . 118
Disk number 53
Disk operations . . « + 53
Disk PROM bootstrap loader . . 121
Disk read and write, assembly code
D1v1510n,1nteger e e o s o o +.39
Double precision . . « « « . . 11
DSKF . ¢« . . . « o o 62
DSKI$ and DSKO$ prlmltlves . . 68
Echo routines 183
EDIT « e s e o o 48
Edit, deflnltlon « e s e o 5
Editing, elementary prov1szons 9
END &« 4 o« o s » o o o« o & & » 61,
EOF ¢ ¢« « o o o 2 o o o » « « 61
EQV & ¢ & ¢ & ¢ o o o = +» » o 18
ERASE & & 4 ¢ o o = o » « « o 32
ERL ¢ 4 o o + « o« » o« » » « +» 36
ERR . . « e o e s s s s + o 36,
Error codes e e e » s s o s » 36
Error message format 8
Error messages, disk 89
ERROR statement 39
Error trapping . » « + 35
EXP v s ¢ 4 o o o o o o o s+ 79
Expression, integer 5
Expressions, string 31
FIELD . o o o o o s« » s o o « 65
Fields, numeric 48
Fields, string 47
File name .+ « + « » s « + « « 54
FPILES command . . « « « « « « 54
FIX @ 4 v o o o s o o o » . 79
FOR o o o o ¢ o o o o o o o «» 21
FRCINT . o o & o o o o » o o o 41
FRE & & o o« o o o o o o « « o+ 19
Functions . . . « « ¢« « « +» . 28
Functions, derived 189
Functions, extended 44
Functions, intrinsic . . . 28
Functions, simulated (for 4<) 129

129

74

79

Functions, stri

ng . .

Functions, user-defined

GET . . « . .
GOSUB . « « &
GOTO

HEXS$. . . + .
Hexadecimal con

IF...GOTO . .
IF...THEN . .
IF...THEN...ELS
IMP
Indirect Mode
Initialization
Initialization
Initializing a
INP . , . .

INPUT . . . &
_INPUT, disk .
INSTR
INT . . ¢« . &
Intellec syste

KILL « « &« ¢ &«

LEFTS .+ « .+ o
LEN .+ ¢« &« o &
LET . « o o« &
Line « . « . .

LINE FEED . .
LINE INPUT . .
LINE INPUT, dis
Line LENGTH .
Line Number .
LIST . v o « o
Lists and Direc
LLIST
LOAD « . « . &
Loader errors
Loading BASIC
Loc
LOF . ¢« &« &
LOG .« « ¢ .« &
Loops
Lower case inpu
LPOS ¢ &« o o &
LPRINT
LPRINT USING .
LSET « « « « &

MAKINT . « . &
MERGE
MID$. « « . .

mns

stants

E

¢ * e 0
* 9+ e 0
¢ e 0 e 0

dialég
dialog,
disk

* ¢ o e e
Ve » o o 2 o

e

e o » o &

.
.
S

B
"t

e e o
. e e e
« e e
- . - - .
. e e .
Ko o
“ e s .
tories

e s s e
PO
e e e e
£t . .
. e s
e s s e
« e e

Foe o 9o ¢ o o Dye o 0 0 o @

» e 0 e

L R R Y

e * & e o 0 8 o

(s

We o o o o o

o

e o o o & »

3

LRI T Y

L Y A N T)

e o @ o ¢ o o o

Tle o o o o o

L]

¢ o s o o s

" e o

L I T R ST T S NS

o e o o s e o @

(s o o s o 06 6 o 060 0 o4

* & e 4 e e s s s e s s e s o 0 @

AT R T Y Y

32
29

63
22
19

79
12

29
19
20
18

182
122
124
28
23

79
84
on.

128

MID$ function
MKD$ « o « « &
MKIS . . + . .
MKS$
MOD operator .
MOUNT

¢ o o e o o

NAME
NEW « o« o &
NEW in disk
NEXT P
NOT

¢ s o e »
o e o s

OCTS &« o o o « &
Octal constants
ON ERROR GOTO . .
ON...GOSUB . . .
ON...GOTO . . .
OPEN . « & o « »
OPEN, random file
Operators . . .

OPERATORS, extended an

s e s e s @

e N e o« s 4 o o

* ¢ 4 e o »

L A Y

Operators, logical .
Operators, precedence of

Operators,
Operators, string
OR & v ¢ & + o« &
OUT ¢ & « o + &

PEEK & v .+ o

PIP utility proér;m

PIP, CNV command
PIP, COP command
PIP, DAT command
PIP, DIR command
PIP, INI command
PIP, LIS command
PIP, SRT command
POKE . ¢ &« + « &
POS .« & ¢ ¢ o &
Precedence, table
PRINT . & & & =«

PRINT USING . .
PRINT, disk . .
Prompt string .
PTD program . .
PUT « & o o o

Random buffer .
Random rfile I/0
Random files , .
READ « . & & «
Remarks
RENUM
Reserved WORDS .

¢ e+ v e

relational

.

.

.

LI T Y

9 o + o s e Fhe o v o0 o

" s e v e e

L A A

¢ o e s e * s e o o

« e e o e 0

« ¢ s e s v »

e o v e 0 e

¢ o o s o

LI R R

e e e e o o o

LI S

d disk

¢« s s & @

* * e ¥ o v e s e 8

® e o s e e

* s & o s »

¢ 2 s e &

LY

¢+ & 9 e e o e & »

L S S

80
67
67
67
40
53

57
72
61
22
17

80

36
23

58
63

39
17

16
31
17
27

27

124
126
125
126
125
124

125

c

SIN o ¢ o o o o o o @
Single precision . . .
Space allocation . . .
Space hints .+ « « «
SPACES ¢ o« o o o o &
SPC ¢ v ¢ o ¢ o o o o
Special Characters . .
Speed hints . - + « &
SQR ¢ o« o & o o s o o
Statements « o« ¢« & .
Statements, extended .
STOP « « o s o o o » o
STRS o o o « o . o .

e 1

Reserved words

RESTORE o o ¢ o ¢ o o o
RESUME . o o o o o o o o
RESUME NEXT . ¢ ¢ o o o«
RETURN o ¢« o« o ¢ o o o o
RIGHTS ¢ « o o o o o o
RND &« ¢ ¢ ¢ o o o o o o
RSET « o o o o o o o o o
RUBOUT o ¢ ¢« o o ¢ o o =
Rubout « ¢« o ¢ o o « o &
RUN L] L] * - - . . L] - -
RUN, disk files
SAVE +. ¢ o« ¢ o o o o o

Scientific notation .
Sense switch settings
Sequential File I/0

Sequential mode .
SGN

s s o o o o

STRINGS =+ « »

String Literal .
strings . . .« .

Subroutines . .

e e 2 o e 4 4 % o e 2 s B e a s % s ot e s 0 9

Subroutines, machin ang
SWAP o o s o o o o

TAB &« o« o o o o e o o o
TAN o o o o s o o o o =
TROFF o o o o o ¢ o s o
TRON ¢« « s o o s o o o o
Type of constants . . .
Type of variables . . .
Type,definition
UNLOAD o s ¢ o o o o o o
USR o » o o o o o » &
VAL ¢ o o o o o s o o &
Variable types . « « . .
Variables .« « & ¢ o o .

VARPTR « « « o

6 (59 o 4 5 4 o v 4 b b e s s 0 e ¢ 2 s s 0 8 0 o

e o o o

@ o & 8 o o % & s e s

o]

o 1 o 5 o o & s & b 6 & @ s e e L T E G s s s e

e e o o o o o

@ o ¢ o v 9 0 0 3 o s o

@ 9 6 5 & & ¢ 8 & 0 ¢ o P 3 s s s 8 e 0 0 0

]

- s o s 0 e 0

53
g2, 112

82
13
12
82

WAIT
WIDTH

XOR

26
35

18

83
83

L
i
i
|

@

sk

ﬁ

xtendea

@

ALTAIR™ DISK EXTENDED BASIC

Table of Contents

I Introduction

II Disk Extended BASIC

III Appendices
A.) Disk BASIC Error iessages
B.) Format of Floppy Disk
C.) Additional Features of BASIC Version 3.3
D.} Line Printer Features
E.) Disk BASIC Initialization Dialog
F.) Assembly Code to Read and Write a Sector
G.) Disk PROM Bootstrap Loader
H.) Using the Cassette and Paper Tape Bootstraps
I.) The PIP Utility Program

(_/ J.) Other Programs provided on the System Disk

K.) Miscellaneous

Iv Index

This manual was prepared by Paul G. Allen

B ©mes 1976

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 2

Introduction

ALTAIR DISX EXTENDED BASIC is an enhanced version of
ALTAIR EXTENDED BASIC with added capabilities for saving
and loading programs from the floppy disk and for
manipulating data files on the disk.

ALTAIR DISK EXTENDED BASIC is similar to version 3.3 of
ALTAIR BASIC . This means that many additional features
are available which are not found in the 3.2 versions of
BASIC.

DISK BASIC includes such features as the line-printer
commands (LPRINT and LLIST) as well as the cassette commands
(CSAVE and CLOAD) and CONSOLE command. These -features as.
well as other improvements are described in Appendix C.

In previous material, facilities have been described
for reading and writing information to the terminal (using
INPUT and PRINT) and for emdbedding information in a program
(with READ and DATA). These technigues are useful only when
a small amount of informationm is required. When more data
needs to be saved and retrieved, disk files are required.

Conventions. for Syntéx descriptions.

When the syntax of BASIC statements are described, the
following conventions are used:

1) Items enclosed in angle brackets (<,>) must be
supplied by the user as explained in the text.
Items in capital letters (MOUNT, OPEN) must
appear exactly as they are given. -

2) Items enclosed in square brackets ({,])
are optional. .

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 3

3) Items which are followed by dots (

+++.) may appear
(/ 2e8ro or more times.

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 4

Up to sixteen floppy disks may be connected to a single
ALTAIR disk controller.

These disks have been assigned the physical disk
numbers zero through 15. Users with one drive should
address the drive for zero, and users with two-drives should
address them for zero and one, etc.

NOTE

When <disk number> is given,
it may be a numeric formula.
(This could be a complicated
expression 1like 16*I AND 5, a
constant like 1, or Jjust a
variable like N).

<disk number> is a formula which gives an integer value
specifying the disk on which the file resides. If the <disk
number> is ommited from a statement the <disk number> is
defauited to disk @.

To initialize disk(s) for reading and writing, the user
must give a MOUNT command:

MOUNT ([<disk number>[,<disk number>...]]

Example:

MOUNT @

Mounts the disk on drive zero, and

MOUNT 0,1

Mounts the disks on drives zero and one. If there 1is
already a. disk MOUNTed on the specified drive(s) a
DISK ALREADY MOUNTED message will be printed.

Before removing a-disk which has been used for reading
and writing by DISK BASIC, the user should give an UNLOAD
command :

UNLOAD ({<disk number>([,<disk number>...])
UNLOAD 8

or

ALTAIR DISK EXTENDED BASIC Version 3.3 Page §

UNLOAD 2,1

UNLOAC to an unMOUNTed disk does nothing. UNLOAD
CLOSES all the files open on a disk, and marks the disk as
unmounted. Before any further I/0 is done on an UNLOADed
disk, a HMOUNT command must be given.

If a MOUNT command or UNLOAD command with no arguments
is given, disks 3 thru the highest disk number specified in
initialization (see Appendix E) will be affected.

NOTE

MOUNT and UNLOAD or any other
disk command may be used as a
program statement.

All data and program files on the disk have an associated
file nagme. This name is the result of evaluating a string
formula and must be one to eight cnaracters in lengtn. The
first character of the file name cannot be a naull (@) byte
or a pyte of 255 decimal or 377 octal. an attempt to use a
null file name (zero characters in lengtn) , a file name
over 8 characters in length or containing a 4 or 377 in the
first «character position will cause a BAD FILE NAME error.
Any other sequence of one to eight characters of 8-bit
values is acceptable.

Examples of valid file names:

ABC

apc {Not the same as above ABCQ)
£ilename ’
file.ext

12345878

INVNTORY

FILE$#%22

NOTE

Commands that regquire a file
name will wuse <file name> in
the appropriate position.
Remember that a <file name>
can De any string formula as
long as the resulting string
follows thne rules given above.

-

R

ALTAIR DISK EXTENDED BASIC version 3.3

The FILES Statement

The FILES statement is used to print out the names of
the files residing on a particular disk. The format of |the

FILES statement is:

FILES <disk number>

Example:

FILES (prints directory of files on disk @)
STRTRK

PIP

CURFIT
DISASH

r7 NOTE

A more complete listing of the
information stored on a
particular file may be .
obtained by RUNning the PIP
utility program (described in
Appendix I).

SAVEing and LOADing programs

Once a program has been written, it is often desirabl
This i

to save it on a disk for use at a later time.
accomplished by giving a SAVE command:

SAVE <file name>[,<disk number>[,A]l]
Example:

SAVE “TEST",8

or

SAVE "TEST”

Would save the program TEST on disk zero.

PagL 6

ALTAIR DISX EXTENDED 3ASIC Version 3.3 Page 7

whenever a program is SAVEd, any existing copy of the
pProgram previously SAVEd will be deleted, and the disk space
(,s used by -the previous program of the same name will then be
' availible.

LOAD

The syntax of the LOAD statement is:
LOAD <file name>[,<disk number>[,R]]
Correspondingly,
LOAD “TEST*,8 or LOAD "TZST"
would load the program TEST from disk zero.

If the file does not exist, a FILE NOT FOUND error will
occur.

Loap “TesT",d,R
OK

L“ LCADs tne program TEST from disk Zero and RUNsS it. The LOAD
command with the "R” option may be used to chain or segment
srograms into small pieces if the whole program is too large
to £it in the ALTAIR's memory, All variablss and program
lines are deleted Dy LOAD, but all data files are Kept
OPEZN(sze Dbelow) if the *“Rr® option i3 used so that
information may obe passed between programs through the use
of aisk data files.

If the “R" option is not used, all files are
automatically CLOSEd (see below) by a LOAD.

Example:

HIW
16 PRINT “FOOLl":LOAD "F002*,4,R
SAVE “FOOl",0

(0}:4
13 PRINT “FO02":LOAD “FCOl",9,R
SAVE "FQ0O2",4d

CK
RUN
£302
FOOl
FOO2
FQC1

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 8

«ae. BtC,

(control-C may be used to stop execution at this point)

In this example, program FOO2 is RUN. FOO2 prints the
message "FOO2" ana then calls the program FOOl on disk.
FOOl prints "FOOl“ and calls the program FOO2 which prints
"FCO2" and so on indefinitely.

If an attempt is made to LOAD a program which does not
exist, the error message "FILE NOT FOUND will be printed.

SAVEing and LOADing Program Files in ASCII

Often it is desirable to save a program in a form that
allows the oprogram text to be read as data oy another
program, such as a text editor or resequencing progranm.
Unless otherwise specified, BASIC saves its programs in a
compressed pinary format which takes a minimum of disk space
and loads very quickly.

If you desire to save a program in ASCII format you
must specify the "A" option on the SAVE command:

SAVE "T=ST“,0,A
0x

LOAD "TEST",2
OK

AS you can see above,- the LOAD command is able to
determine whica format to LOAD a program in from information
in the file . The first cnaracter of an ASCII file is never
255, and a binary program file always starts with 255 (377
octal). ‘

Remember, the LOAD of an ASCII file is much slower than
the LOAD of a binary file.

The MERGE Command

Sometimes it is very useful to put parts of two
programs together to form a new program combining elements
of both programs. 1In order to provide this feature DISK
BASIC has a MERGE command. MERGE is a command, SO as soon
as the MERGE nas been erxscuted, BASIC will type OX and stop.

ALTAIR DISK EXTENDED 3ASIC Version 3.3 Page 9

Therefore it is unlikely that MERGE would be used in a
program, and will more likely be used as a direct command.
The format of the MERGE statement is:

MERGE <file name>{,<disk number>]
Example:

MERGE "PRINTSUB",1
O

The <file name> specified is merged into the program already
in ;emory. The <file name> MUsSt specify an ASCII format
Saved program or a BAD FILE MODE error will occur. If there
are lines in the program on disk which have the same line
numpbers as lines in the program in memory, the lines from
the file on disk will replace the corresponding program
lines in memory. 1In other wo:ds , it is as if the program
lines of the file on disk were typed in from the user
terminal. : -

Deleting Disk files

To delete a'disk file, the user should use a KILL
statement:

RILL “"TEST",Q

Tne KILL statement deletes a file from the disk, and
returns any disk space used oy the file to free disk space,
If the file does not exist, a PFILE NOT FCUND error will
occur.

£ a XILL statement 1is given for a Ffile that is
currently OPEN (see below) a FILE ALREZADY OPEN error occurs,

Th2 format of a XILL statement is:
KILL <file name>[,<disk number>]

Renaming Files - the NAXYE Statement

]

The NAME stacement is usad ro cnange the name of a

£ile:

Ay

NANE <0id £ile name> AS <new file name>([,<disk number>]

Example:

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 19

NAME “OLDFILE" AS “NEWFILE"

The <old file name> must exist or A FILE NOT FOUND
error will occur. A file with the same name as <new file
name> must not exist or a FILE ALREADY EXISTS error will
occur. After the WAME statement has been executed the file
will exist on the same disk in the same area of disk space.
Only the name has been changed.

OPENing data files

When a program wishes to read and write data to a disk
file, it must first OPEN the file on the appropriate disk in
one of several modes. The general form of the OPEN
statement is:

OPEN <mode>,[¢)<file number>,<file name>[,<disk number>}

<mode> is a string formula whose first character is one
of the following: i

o Specifies seguential output mode
I Specifies seguential input mode
R Specifies random Input/Output mode

Sequential means that the file is a _ Stream of
characters that will be read or written in order much like
2n INPUT statement reads from the terminal and PRINT writes
‘to the terminal. Random files are divided into groups of
128 characters called records. The nth record of a file may
be read or written at any time. Random files have other
attrioutes that will be discussed in detail later.

<file numper> is a formula that evaluates to an integer
cetween zero and fifteen and is used to associate the file
oeing QPzled with a number that will be used to refer to the
file in later I/0 operations, .

Examples:

oPEN "O",1,"0QUTPUT",O
CPEN “I",1,"INPUT"

Tne aoove two statements would open the. files
OJTPUT for sequential output and the file IN?UT for

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 11

Sequential input on disk zero.

OPEN M§$,N,FS,D
The above statement would open the file whose name was in
the string F$ in mode M$ as file number N on disk D.

Sequential ASCII file I/0

Seguential input and output files are the simplest form
of disk input and output as they involve the use of the
INPUT and PRINT statements with a file <that has been
previously OPENed.

To use an INPUT to read data from a file instead of the
system console, use:

INPUT #<file number>,<variable list>

Where <file number> represents the number of the file
tnat was OPgNed for input , and <variable 1list> is a list of
the variables to be read, as in a normal INPUT statement,

When data is read from a seguential input file using an
INPUT statement, no gquestion mark (?) is printed on the
terminal. The format of data in the Ffile should appear
exactly the same way that it would be typed to a standard
INPUT statement to the terminal.

when reading numeric values, leading spaces are
ignored, as are carriage returns dnd line feeds in the file.
tihen a non-space, non-carriage- return, non=line-feed
Character is found, it is assumed to be part of a BASIC
format number. The number terminates on a space, a carriage
return , line-feed, or a comma.

When scanning for string items, leading blanks,
carriage returns and line-feeds are also ignored. when a
character which is not a leading bDlank, carriage return or
line-feed is found, it is assumed to be the start of a

string item.If this first character is a quote sign (") the
item is taken as being a cuoted string, and all characters
detween thne first double gquote (*) and a matching double

Quote are returned as characters in the string value. This
means tnat a guoted string in a file may contain any
cnaracters except dounle guote, €.9. carriage returns, line
feeds and commas.

ALTAIR DISX EXTENDED BASIC Version 3.3 : Page 12

If the first character of a string item is not a double
quote, then it is assumed to be an unguoted string literal.
The string returned will terminate on a comma, carriage
return or line feed.

In the case of either a quoted or unquoted string item
if the 1length of the string exceeds 123 characters, the
string is immediately terminated at 123 characters.

Also for both numeric and string items, if end of file
({EQF) is reached when the item is being INPUT, the item will
be terminated whether or not a closing quote was seen.

Example of sequential I/0 (NUMERIC ITEMS)

584 OPEN “O",1l,"FILE",d
513 PRINT #1,X,Y,2

528 CLOSE #1

534 OPEN “I",1,“FILE",0
540 INPUT #1",X,Y,2

Note that CLOSE is used so that a file which has just
peen written may be read. wWhen FILE is re-QPENed, the data -
pointer for that file is set back to the beginning of the
file so that the first INPUT on the file will read data from
the start of the file.

PRINT #<file number>,<expression list>
or

PRINT #<file number)>
USING <string expressiond;<expression list>

are used to write data to a sequeﬁtial output file. Example
of sequential I/0 (quoted string items):

508 OPEN “0",1,"FILE"

510 PRINT #1,CHRS (48) ;XS ;CHRS (48);

515 PRINT §1,CHRS (48) ;Y$;CHRS (48) ;CHRS (48) ; 25 ; CHRS (48)
523 CLOSE 1

533 OPEN "I",1,"FILE",0

543 INPUT #1,XS,YS,2$

In this example, the strings being output (XS, ¥S$, 2$)
are .surrounded with double quotes through the use of the
CHRs function to generate the 'ASCII wvalus for a double
quotea. This technique must be used if a string which is

C

ALTAIR DISKX EXTENDED BASIC Version 3.3 Page 13

\

being output to a sequential data file contains commas,
carriage returns, line-feeds, or leading blanks that are
signifigant,

When leading blanks are not signifigent and no commas,
Carriage returns or line-feeds exist in the strings to be
output, it is sufficient to insert commas boetween the
strings being output, as in tae following example:

582 opeN “0",1,"FILE"
519 PRINT FLXS:", 588,28
523 CLosE 1
333 OPeEN “I*,1,'FILE“,d
548 INPUT $1,XS,¥S,2$
CLOSE

The format of the CLOSE ftatement is as follows:

CLOSE (<file number>([,<file number>,..}]

Close is used to fintsh I/0 to a particular 2ASIC data
files After CLOSE has been executed for a file, the file
may de reOpPENed for input or output on the same or a
different <file number>. a CLOSE t0 an unOPEN file has no
effect. A CLOSE for a Sequential output file writes the
final bpuffer of output. A CLOSE to any OPEN file finishes
tae connection between the <file numdber> and the <file name>
given in the OPEN for that file, ard allows the <file
numoer> to be used again in another OPEN.

A CLOSE with no argument CLOSEs all OPEN files,

NOTE

A FILE can bpe OPENed for
seguantial input or random
accesSs on more than one <file
nuaber> at a time, but may be |
OPZN for output on only one ‘
<file number> at a time. [

files automatically,

EN0 and NEW always CLOSE all 4

isx
a5 ¢o some disk errors (see Appendix g)

LINE INPUT

ALTAIR DISK EXTENDED SASIC Version 3.3 page 14

Often it is desirable to read a whole line of a file

into a2 string without using quotes, c¢ommas or other
characters as delimiters. This 1is especially true if
certain fields of eacn line are being used to contain data
items, or if a BASIC program saved in ASCII mode is being
read as data by another program. The facility provided to
perform this function is the LINE INPUT statement:

LINE INPUT #<file number>,<string variable>
or

LINE INPUT <string variable>

The latter form of LINE INPUT is used to perform the
LINE INPUT function on the user's terminal. When a LINE
INPUT without-a <file number> is executed, a question mark
will not be typed on the user terminal, and all input up to
a carriage return will be returned in the <string variable>.
The only way to escape a LINE INPUT from the user terminal
'is to type a control-G as the first character of input.
This will cause BASIC to cease program execution and print
OK. Execution at the LINE INPUT may be continued by typing
CONT <carriage-return>.

Similarily, a LINE INPUT from a data file will return
all cnaracters up to a carriage return in <string variable>,
LINE 1INPUT cthen skips over the following carriage
return/line-feed sequence so that 4 subsequent LINE INPUT
from the file will return the next line,

End of File (EOF) Detection

When reading a sequential data file with INPUT
statements , it is usually desirable to detect when there is
no more data in the disk file. The mechanism for detecting
tnis condition is the EOF function:

X=EOF(<file number>)

EOF returns TRUE (-1) when there is no more data in the
file and FALSE (g) if there is more. If an attempt is made
to INPUT past the end of -a data file, an INPUT PAST END
arror will occur. ’

Example:

103 opzu “I*,1,"CATA",0
116 I=8 } .
123 IF EOF(1l) THEN 163

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 15

133 INPUT #1,A(I)
143 I=1I+1

159 GOTO 123

168

In this example, numeric data from the sequential input
file DATA is read into the matrix A. When end of file is
detected, the IF statement at line 123 brancnes to line 1649,
and tne variable I “points* one beyond the last element of A
that was INPUT from the file.

Suppose one wishes to have & program that will
Calculate the number of lines in a BASIC program file that
has been SAVEd in ASCII mode: :

13 INPUT “WHAT IS THE NAME OF THE PROGRAM";P$
23 OPEN “I1*,1,P$,0

3¢ I=3

40 IF EOF(l) THEN 74

-50 I=I+1:LINE INPUT #1,L$

80 GOTO 44 -

78 PRINT "PROGRAM ";PS$;" IS “;I;" LINES LONG"

849 END
. This example uses the LINE INPUT statement to read each
line of the program into the “dummy" string LS, which isg
w3ed esseatially just to INPUT and ignore that part of tne
file,
Finding the Amount of Free Disk Space (DSXF)
it 1s sometimes necessary to determine the amouat of
free disk space remaining on a particular disk bafore
allocacing (writing) a file. The DSXF function provides the
yser with the number of free groups left on a given disk,
afcer the disk nas opeen MOUNTed. A group is the basic unit
¢f file allocation, that is, files are always allocated in

groups of eignt sectors at a time. Each sector contains 123
cnaracters (bytes). Therefore, the minimum size for a file
1z 1224 oyres.

Syntax for the DSXF function:

D3XF(<disk numbery)

ALTAIR DISXR EXTENDED BASIC Version 3.3 Page 16

200

The above example shows that there are 200*1024=204842
Characters (bytes) that can still be stored on disk zero.

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 17

RANDOM FILE I/0

Previously, we have discussed how data may be PRINTed
or INPUT from sequential data files.

However, it is often desirable to access data in a
random fashion, for instance to retrieve information on a
particular part number or customer from a large data base
stored on a floppy disk. 1If sequential files were used, the
whole file would have to se scanned from the start until the
particular item was found. Random files remove this
restriction and allow a program to access any record from
tne first to the last in a speedy fashion.

Also, random files transfer data from variables to the
disk ouput records and vice versa in a much faster, more
efficient fashion than sequential files,

Random file I/0 is more complex than sequential 1I/0,

and it 1is recommended that beginners try seguential 1/0
first.

OPENing a FILE for Random 1/0

Randem I/0 files are OPENed just like seguential data
files, except the <mode> is R:

CPEN-"R",1,"RANDOM", 2

when a file is OPENed for random I/Q, it is always QOPEN
fcr poth input and output simultaneously.

CLOSING Random Files

Random files must be closed when I/0 operations are
finisnhed, Jjust 1like sequential ' files. To CLOSE a random
file, use the CLOSEZ operator as descriped previously.

CLOSé <file number>[,<file number>...]

reading and writing data to a random file - GET and pUT

ALTAIR DISX EXTENDED BASIC Veréion 3.3 Page 18

Each random file has associated with it a “random
buffer” of 128 bytes. When a GET or PUT operation is
performed, data is transferred directly from the buffer to
the data file or from the data file to the buffer.

The syntax of GET and PUT is as follows:
PUT [#]<file number>[,<record number>]
GET [#]<file number>[,<record number>]

If <record number> is omitted from a GET or puUT statement,
the record number that is one nigher than the previous GET
or PUT is read into the random buffer. Likewise, if <record
number> is omitted. Initially a GET or PUT without a record
numoer will read or write the first record. The largest
possible record number is 2046. If an attempt 1is made to
GET a record wiaich has never been PUT, all zeroes are read
into the record, and no error occurs.

LOC and LOF

LOC is used to determine what the current record number
is for random files. In other words, it returas the record
number tnat will be used if a GET or PUT is executed with
tne <record number> parameter omitted.

LOC(<£file number>)

PRINT LOC(1)
15

LOC is also valid for seguential files, and gives the
numper of sectors (128 byte blocks) read or written sincea
the OPEZN statement was executed.

LOF is used to determine the last record number written
to a random file:

LOF(<file number>)

PRINT LOF(2)
293

C

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 19

An attempt to use LOF on a Sequential file will cause a
BAD FILE MODE error.

The value returned by LOF is always 5 MOD 8. In other
words, when the value LOF returns is divided oy 3, the
remainder is always 5. Therefore, the values returned by
LOF are 5, 13, 21, 29 etc. This is due to the way random
files are allocated.

NOTE

It is important to note that
the value returned by LOF may
be a2 record that has never
been written in by a user
program. This is because of
the way random files are
pre-extended. j

Moving Data In and Out of the Random Buffer

So far we have described'techniques for writing (pym)
and reading (GET) data from a file into its associated
random buffer. Now we will describe how data from string
varianles is moved to and from the random buffer itself.
This is accomplished through the use of the FIELD, LSET and
RSET statements.,

The FIEZLD statement is used to associate some or all of
a file's random buffer with a@ particular string variable.
Then, when the file buffer is read with GET or written with
PUT, scring variables which have ©Dbeen FIELDed intc the
ouffer will dutomatically have cheir contents read or
written. The format of tha FIZLD statement is:

FIELD ([#] <file number> [,<field size> AS <string variable>...]

<file number> is used to specify the file number of the
£ile wnose random buffar is being referenced. 1If the file
is not a random file, a 3aD FILE MODE error will occur.

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 23

<field size> is used to set the length of the string in
the random buffer. ‘

<{string variable> is the string variable which is veing
associated with a certain number of characters (bytes) in
the buffer.

Multiple fields may be associated with string variables
in a given FIELD statement. Eaca successive string variable
is assigned a successive field in the random buffer:

FIELD 10 AS A$, 28 AS B$, 32 AS C$

Thus, the above statement would assign the first 190
characters of the random buffer to the string variable AS,
the next 2J characters to 3§ and the next 38 characters to
the variable Cs.

It is important to note that the FIELD statement does
not cause any data to be transferred to or from the random
buffer. It only causes the string variables given as
‘arguments to “point“ into the random buffer.

Often, it is necessary to divide the random buffer into
@ number of sub-records to make more efficient use of disk

Space. For instance, it might be desirable to divide the

123 cnaracter record into two identical sub-records. To
accomplish this, one need only place a *dummy"” variable at
the start of ‘the FIELD statement to -skip over the first
sub-record in the record:

FIELD #1,64 AS DS, 28 AS NAMES,
29 AS ADDRESS$, 26 AS C~ZCUPATIONS

Then, the dummy variable DS .is used to skip over the
first 64 characters in the record. Another way to do this
would be to have a variable I that would select whether the
first or second sub-record of a record was to be selected:

FIELD #1,64*(I-1) AS DS,)
2@ AS NAMES, 20 AS ADDRESSS, 26 AS OCCUPATIONS

Here, if the variable I is one, 1-1 *64 =g characters
will pe skipped over, selecting the first sub-record. If I
is two, 64 characters will be skipped over, selecting the
secona sub-record.

Another technique that is very wuseful is to use a
FOR...WEXT 1loop and a matrix to set up sub-records in the
random ouffer:

1809 FOR I=1 TO 16

Jd

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 21

181g FIELD #1, (I-1)*16 AS D$, 4 AS AS(I), 4 AS B$(I)
1023 NEXT I

In this example, we have divided the random buffer up
into 1§ sub-records, each composed of two fields , the first
4-character field in AS(X) and the second 4-character field
in 383 (X) where X is the sub-record number.

NOTE

The FIELD statement may be
executed any number of times
on a given file. It does not
cause any allocation of string
space, the only space
allocation that occurs is for
the string varianles mentioned
in the FIELD statement. These
string variables have a one
byte count and two byte
pointer set up which points
into the random buffer for the
specified file.

Using Numeric values in Random Files
MXI$, MKSS, MXDS and CVI, CVS, CVD

As we have seen, data is always stored in the random
buffer througn the use of string variables. In order to
convert between string and numbers and vice versa, a nuamber
of special functions have been provided,

To convert between numbers and strings:

MXIS (<integer valued) Returns a two byte string
(FC error if value is not
>=-32768 and <=+32767.
Fractional part lost)

<sinjle precision value>) Returns a four byte string

<double precision value>) Returns an eight byte string

ow
vr 0

To convert between strings and numbers:

CVI(<two byte string>) Returns an integer value
CV3(<four byte string>) Returns a single precision valuse
CvD(<eignt byte string>) - Returns a double precision value

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 22

Cvi, Cvs, and CVD all give an FC error if the string given
as the argument is shorter than reguired. If the string
argument is longer than necessary, the extra characters are
ignored.

These functions are extremely fast, as they convert
between 3ASIC's internal representation for integers, single
and double precision values and strings. Conventional
seguential I/0 must perform time-consuming character
scanning algorithms when converting between numbers and
strings.

LSET and RSET

Wwhen a GET operation is performed, all string variables
which have been FIELDed into the random buffer for that file
automatically have values assigned to them. The CvI, Cvs
and VD functions may be used to convert any numeric fields
in tne record to their numeric values.

when going the other way, i.e. inserting strings into
the random buffer before performing a PUT statement, a
problem arises. This is Dpecause of the way string .
assignments usually take place. For example:

LET A$=BS%

wWhen a LET statement is executed, the character string
assignad to the left hand variable (AS) is created in string
space. However, for assignments into the random we don't
want this to happen. Instead, we want the string being
assigned to stored where the string variable was FIELDed.

In order to'do this, two special assignment statements
have been provided, LSET and RSET:

LSET <string variable>=<string formula>
RSET <string variable>=<string formula>

LSET A$=MESS (V)
RSET 83="TEST"
LSET C$(I)=MKDS (D$)

The difference between LSET and BR3ET concerns what
nappens if tne string value being assigned is shorter than
tne leagth specified for the string variable in the FIELD
statement. LSET left justifies the string, adéing blanks to

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 23

pad out the right side of the string if it is toco short.
RSET right Jjustifies the string, padding on the left. 1If
the string value is too long, the extra characters at the
end of the string are ignored.

NOTE

Do Not Use LSET or RSET on
String wvariapbles which hnave
not been mentioned in a FIELD

statement, or a SET TO NON
DISK STRING error will occur.

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 24
Appendix-3a
DISK BASIC Error Messages

FIELD OVERFLOW

Attempt to allocate more than 128 characters worth of
string variables in a single FIELD statement.

INTERNAL ERROR

Internal error in DISK BASIC. Report conditions under
which error occurred to MITS software department, along with
all relevant data. This error can also be caused by certain
kinds of disk I/0 errors.

BAD FILE NUMBER

An attempt was made to use a file numper which
specifies a file that is not OPEN, or that is greater than
the largest file number allowed by the DISX BASIC
initialization dialog.
FILE NOT FOUND

Reference was made in a LOAD, XILL OR OPEN statement to
a file which did not exist on the disk specified.
BAD FILE MODE

Attempt to perform a PRINT to a random file, to OPEN a
randes file for sequential output, to perform a PUT or GET

on a seqguential file. An OPEN statement where the file mode
is not I, O, or R. '

FILE ALREADY OPEN

A sequential output mode 0OPEN for a file was issued for
& file that was already OPEN and had never been CLOSEd or a
KILL statement was given for an OPEN file.
DISX NOT MOUNTED

an I/0C operation was issued for a file tnat was not
MOURTed. .

ALTAIR DISX EXTENDED 3ASIC Version 3.3 Page 2
DISK X I/0 ERROR

An I/0 error occured on disk ¥X. A sector rea
(checksum) error occurred five (5) consecutive times.
SET TO NOW-DISX STRING

An LSET or RSET was given for a string variable whic]
nad not previously been mentioned in a FIELD statement.
DISK ALREADY MOUNTED

A MOUNT was issued for a DISK that was already MOUNTed
out never UNLOADed.
DISK FULL

aAll disk storage is exhausted on the disk. Delete somd
0ld disk files and re-try.
INPUT PAST END

An INPUT statement was executed after all the data in a
file had bpeen INPUT. This will happen immediately if an
IVPUT is executed for a null (empty) fila., Use of the EOE
function to detect End Of File will avoid this error.
BAD RECORD NUMBER

PUT or GET statement, reccrd number is eitner greater than
allowable maximum (2346) or egual to zero.

BAD FILE NAME
A file name of g characters (null) or a file name whosg
f€irst Dpyte was § or 377 octal (255 decimal) or a file name
with more than 8 characters was used as an argument to LOAD,
SAVEZ, KILL or OPEN.
MODE-MISMATCH
Seguential OPEN (I or ©O) was executed for a file that
already existed on the disk as a random (R) meode file, or

vice versa.

DIRECT STATEMENT IN FILE

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 26

A direct statement was encountered during a LOAD of a
program in ASCII format. The LOAD is terminated.

TOO MANY FILES

A SAVE or OPEN (O or R) was executed which would create
a new file on the disk, but all 255 directory entries were
already full.

Delete some files and try again.

OUT OF RANDOM BLOCKS

An attempt to have more random files OPEN at once than
random blocks were allocated during initialization by the
response to the “NUM3ER OF RANDOM FILES?" gquestion (see
appendix E).

FILE ALREADY EXISTS
The new file name specified in a NAME statement had the

same name as another file that already existed on the disk.
Try a different new name.

ALTAIR DISK EXTENDED BASIC Version 3.3 ’ Page 27

Appendix-B
C Format of Floppy Disk
Track Allocation:
Tracks Use
3-5 Extended pisk BASIC memory image.
6-69 Space for either random or Sequential files.
78 Directory track. See below.

71-76 space for sequential files only.
Format of DISK BASIC Hemory Image (Tracks 4-5):
BASIC is loaded starting at track zero, sector zero then
track @ sector 1 through track 4, sector X. Each sector

contains 123 bytes of BASIC. The first 128 bytes are loaded
first, second 1238 second, etc.

(/ Sector format (Tracks 3-5):

Byte Use
/) Track Number+128 decimal.
1-2 Sixteen oit address of first

byte of memory that was not saved on disk.
3-133 128 bvtes of BASIC.
131 255 decimal stop byte.
132 Checksum - sum of bytes 3-139 with no carry in 8 oits.

Even sectors 0, 2, . . ., 30 are recorded for the first 2048 memory bytes,
and then the odd sectors 1, . . ., 31 for the next 2048 memory bytes.

Sector format (Tracks 6=-78) ¢

Byte- Use

MS8 always on. Contains track number plus 233 octal,

Sector nuaber * 17 mod 32.

File number in directory. Zero file number means

that the sector is not part of any file. If the

Sector is the first file of a group of 8 sectors

d means the whole group of § sactors is free,

(/3 yumoer of data dytes written (9 to 128) . Always
123 for random files. (Excect for tne random file
ingex blocks in which case tnis byte indicates how many
grouss are allocated to the file.) .

4 Checksum. ‘The sum of all tne data on the sector

o

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 28

except for the track number, the sector
number and the terminating 255 byte.

5,6 Pointer to the next group of data. This is set up for
random files and sequential files, and is even valid
in the middle of a group. If it is zero it means there
is no more data in the file. The track is the first byte
and the sector number is the second byte.

7-135 Data .

136 A 255 (octal 377) to make sure the right number
of data bytes were read.

Directory Track (74) Format:

Each sector of the directory (which is all of track 68)
is composed of up to 8 file name slots, 16 bytes per slot.
Each slot can contain a file name (8 bytes), a link to the
start of file data (2 bytes), and a byte which specifies the
mode of a file (Random=4, Sequential=2). The remaining 5
Dytes are not currently used. Any slot which has the first
filename byte equal to zero contains a file which has been
deleted. If the first byte of a slot is a 255 this means
that it is the last slot currently in use in the directory.
Slots beyond the “stopper“ are garbage. File numbers are
calculated by taking the sector of the directory track the
file is 1in, times 16, plus the position of the slot in the
sector (@-8) plus 1.

NOTE

The ith logical sector on a
track is actually mapped to
the i*17 mod 32 physical
sector to improve latency in
BASIC I/0 operations.

Format of Random Files

Zach random file starts with two random indasx biccks.
The “number of data bytes" field in the first block
indicates how many groups are currently allocated to this
random file. The next 256 bytes in the two random index
blocks give the location of each group in the random file in
the order they are in the file. The upper two bits give the
grous number , and the lower six bpits give the track number
- 6. .

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 29
Appendix-C

ALTAIR BASIC version 3.3

Altair BASIC version 3.3 provides features not found in
previous versions of ALTAIR BASIC.

Long Program Lines

BASIC ver 3.3 Allows program lines to be up to 255
characters in length. 1In order to overcems the limitations
of terminal widtn, <line-feed> characters may be inserted in
a line to break it down inte several "logical" lines:

18 IF X<0 THEN PRINT "NEGATIVE“<line-feed>
ELSE IF ¥X=9 THEN PRINT "2ER0"<line feed>
ELSE PRINT “POSITIVE"<carriage return>

In general, <line feeds> may be placed anywhere in a
line. dowever, it is not recommended that <line-feeds> be
olaced inside quoted string literals such as “ALTAIR 88493" "
Or they will have the <line-feeds> embedded in their values.
<line-feeds> embedded inside reserved words will be lost and
will not appear when a lins is LISTed. Each line aust still
be cerminated by a <carriage raturn>, as saown above. When
rubbing out characters with the backarrow or underline
. cnaracter, <line-feed> counts as one character only.

when LISTing or EDITing a line, <line-feed> is always
printed as <line-feed><carriage~-return> aven though it is
only counted as one character. ’

<line-feeds> can be very useful for formatting nested
IF...ELSE sequences as shown above.

Leading Spacas Preserved

2AZIC now preserves all scaces petween the line numder
and the first non-olank character in tne line. This makes
indenting of nested loops ané simular constructs feasible.

Example:

19 FOR I=1 TO 10
23 FOR J=1 TO 18

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 39

39 A(I,J)=32
43 NEXT J
50 NEXT I

CSAVEing and CLOADing Matrices

There is now a facility for saving numeric matrices on
cassetcte, using CSAVE and CLOAD. The format of the
statements is:

CSAVE.<matrix name>
and
CLOAD.<matrix name>
The matrix is written cut in binary with four octal 2148
header bytes to indicate the start of data. These bytes are

searched for when CLOADing the matrix. The number of bytes
written is four plus:

8*<number of elements> for a double precision matrix
4*<numper of élements> for a single precis-<on matrix
2*<number of elements> for an integer matrix

when a matrix is written out or read in, the elements
of the matrix are written out with the rightmost sudscript
varying most quickly, the next most righ:tmost second, etc:

DIM A(13)
CSAVE.A

writes out A(23),A(1),...A(18)

DIM A(19,10)
CSAVE.A

writes out A(49,8), A(@,1)..A(1,0),a(1,1)..Aa(13,18)
Using this fact, it is possible to write out a matrix

as. a two dimensional matrix and read it back in as a single
cimensional matrix, etc.

NOTE Page 31

Writing out a double precision
matrix and reading it back in
as a single precision or
integer matrix is not
recommended, due to the
strange values that will
undoubtedly be returned.

Octal Constants

Octal constants may be specified by placing an “&" sign
pefore the nuamber. These constants may take any value
Setween &9 and- §177777. farger values will cause an
"OVERFLOW" error. No sign (+ or -) should appear after the
“&". If you wish to negate the number, place the sign
before the “&" (-§l@==8). :

Examples:

PRINT &377
255

MEMORY SIZE? &20303
(&28982=8K or 8996 decimal)

18 READ N:PRINT VAL(“&":STRS(N)) :GOTO 14
23 DATA 377,231,359,18,42

Cen adove program will print out the decimal
equivalents of the octal numbers 377, 281, 350, 19 and 42.

End of Line Remarks - Single Quote

A single gquote sign (') is used to cause 2A3IC to
ignore the rest of a line. In many cases rthis is
convenient than using the REMark statement:

19 SyUM=g'IMITIALIZE SUM
20 R=X/Y ' CCHMPUTE RATIO OF X:VY

New CONSQOLE Feature

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 32

A new standard feature has peen implemented which
allows the terminal console to be switcned from the one
specified at initialization to a new one. The format of the
statement is:

CONSOLE <I/0 channel number>,<switch register setting>

The <I/0 channel number> is the hardware channel number
of the 1low order (status) channel of the new I/O board.
This value must pbe a numeric formula between ¢ and 255
inclusive. If it is not in this range, a FUNCTION CALL
error will occur. The <switch register setting> is also a
value Detween @ and 255 inclusive which specifies the type
of I/0 port (SIO, PIO, 4PIO etc) being CONSOLEd to. The
table below or Appendix B of the BASIC manual and the first
part of the Extended BASIC material should be referred to in
order to find the appropriate value for <switch register
setting>. If the user CONSOLES to an I/O channel which is
incorrect or non-existant, he should deposit the channel
number at the location typed out by initialization, and then
start the computer at that address plus one after setting
the sense switches for his terminal configquration.

Table of values for <switch register setting>:

I/0 Board value (Decimal)

SI04&,B,C (not REV @) - a

SICA,B,C (Rev 2) 64

88~PIO : 32

4PI0 16

2SI0 8 (two stop bifs), 12 (ona stop bi

WIDTH Statement

It is often cesirapble to be anle to set the terminal
width without having to re-initialize BASIC. To provide
tnis facility, a WIDTH statement has bpeen provided. The
format of the WIDTH statement is:

WIDTH <numeric formula>
Example:
wWIDTH 38
~IDTH 32

The <numeric formula> must have a value between 15 and
255 inclusive, or a FUNCTION CALL error will occur.

ALTAIR DISX EXTENDED 3ASIC Version 3.3 Page 33

Expanded Assembly Language Features
(DEFUSR)

Version 3.3 of BASIC now has the facility to call up to
14q different assembly language subroutines, numbered
USRO-USR9. (USR is equivalent to USRZ).

Also, a new statement has been provided to allow the
user to specify the starting address in memory of any
assembly language routines without having to remember what
USRLOC is. This is done with the DEFUSR statement:

DEFUSR(<digit ¢ through 9>]=<numeric formulad
Example:

DEFUSR1=&103439
DEFUSR2=3199%§
DEFUSRY=ADR

The <numeric formula> specifies the starting address of
the USR routine specified.

Another important feature is the facility to pass
string arguments, integer arguments and single precision
arguments to a USR routine, When the USR subroutine is
entered, the [H,L] register pair contains a pointer to the
floating point accumulator (FAC) where all arguments are
stored. The [H,L] registers point at the address FAC-3,
which is the low order byte .of the mantissa of a single
precision floating point nuaber or low byte of an integer
quantity. Later documentation will explain how to force
conversion of the FAC to different value types.

Wwhen the USR subroutine 1is ,entered, the A register
contains the type of the argument which was given to the USR
function. This is also the lengtn of the descriptor for
that argument type:

value in a Meaning

2 Two byte signed two's complement integer.

3 String.

4 Single precision four byte floating goint number.
8 Doudble precision floating point number.

If the value in the FAC is a single precision floating
peint numoer, it is stored as follows:

FAC-3: Lowest 8 oits of mantissa.
fAC~-2: Midale 8 bits of mantissa.
FaC-1l: Hignest 7 oits of mantissa with hidden (implied)
leading one. Bit 7 is the sign of the numser (3 positive,

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 34

1 negative).
FAC: Exponent excess 2083 octal. An exponent of 289 &’
is 2 to the zero power.

If the argument is double precision floating point, the
FAC-7 to FAC-4 contain four more oytes of mantissa, low
order byte in FAC-7, etc.

If the argument is an integer, FAC-3 contains the low
order Dbyte and FAC-2 contains the high order byte of the
signed two's complement value.

If the argument was a string, (D,E] points to a string
descriptor of the argument, whose form is:

Byte Use
g Length of string A-255 decimal.
1-2 Sixteen bit address pointer to first byte of

strings text in memory {(Caution - may point inte
program text if argument is a string literal).

Normally, the value returned by a USR function will pe
th2 same type (integer, string, single or double pracision K’
floating point) as the argument whicn was passed to it.

dowever, calling the MAXINT routine whose address is
stored in location § will return the integer in {H,L] as the
value of the fuanction, forcing the value returned by the
function to be integer. Execute the following sequence to
return from the function: ’

PUSH H ; SAVE VALUE TO BE RETURNED

LHLD 6 ;GET ADDRESS OF MAKINT ROUTINE

XTHL ;SAVE RETURN ON STACK & GET BACK [H| L]
RET . ;s RETURN

If the argument of the Functidn could be integer,
single or double precision, and you wish to force it to an
integer, call the FRCINT routine wnose address is located in
location 4 to get <the 1integer value of the argument in
[HIL] :

SU3R: LXI g,8US1 ;GET ADDRESS OF SU3ROUTINE CONTINUATION
2Usd H ;PLACE ON 3TACK
LHLD 4 sGET ADDRESS OF FRCINT g
PCHL ; CALL FRCINT k’

SUB1: ceaes

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 35

INSTR Function

The INSTR functiord is used to find the position of the
first occurrence of a string within another string:

X=INSTR(<string formula of string being searched>,<search string>)
or

X=INSTR(<Knumeric offsetd>,<string being searched>,<search string>)

Examples:
PRINT INSTR(“MITS ALTAIR 8823",“8803")
13
OK
PRINT INSTR(7,"MITS ALTAIR 8893","A")
9
OK
(-/ The first position of the string is always one. If the

<numeric offset> is greater than the length of the string .
being searched or if the <string being searched> is null,

INSTR returns zero. If the second string argument is the

null (length zero) string, INSTR will return <numeric

‘offset> (the default is one if Xnumeric offset> is omitted.

If the <search string> cannot be found in thae <string being

searcned>, INSTR returns zero.

Otherwise INSTR returns the character position of the
first occurance of <searca string> in tne {string being
3earcned>. ’

An FUNCTICH CALL error will eccur if the <aumeric
formula> is less taan or equal to zaro or greater than 255
decimal.

Improved RND function

The randem number generator (RHD
I

as D2een @uch
ad for BASIC version 3.3. t

epeat after

"~

The DSXIS and DSX0$ pPrimitives

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 36
Often it is necessary for the user to perform disk 1/0
operations directly without using any of the normal file \’

structure features of BASIC. To allow this, two special
functions have peen provided. These are the DSKIS function
and the DSXOS statement.

First we will give examples of how to perfbrm simple
disk I/0 commands using BASIC statements,

To Enable disk 9:

ouT 8,8

To Enable disk N:

ouT 8,N

TO step the disk head out one track: .

WAIT 8,2,2:00T 9,1

To step the disk head in one track:

WAIT 8,2,2:00T 9,2

To test for track @: \‘

IF (INP(3) AND 64)=9 THEN <statement or line number>

‘ The above will execute the statements after the THEN if
the nead is positioned at track 4.

This 1s the outermost track on the floppy.

To reaci sector Y (Y may be any expression, minimum
sector =@, maximum = 31.)

AS=DSKIS(Y)
The statement,
D3XK0$ <string formula>,<sector formula>
writes the string formula on the sector specified. The high

order bit (most signifigant) of the first character output
will always be set to one when the string is written on the

sector, and thus will always be one when the sector is read k’
pack Lln using DSXIS. A maximum of 137 characters are
written. Giving a string whose length exceeds 137

characters will cause a “FUNCTION CALL" error. If the
string arguament is less than 137 cnaracters in length, the
end cf the string will be padded with zeros to make a string

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 37

of length 137.

Example (variable Y contains the secteor number):

DSKOS as,y

ALTAIR DISX EXTENDED BASIC Version 3.3 page 38
Appendix-D

Line Printer features

A numoer of features are provided to make the line
printer =asy to use.

LLIST

LLIST allows the user to LIST his programs on the line
printer. The syntax of LLIST is:

LLIST <line-range>
Examples:

LLIST

LLIST 1¢-540

LPRINT and LPRINT USING

LPRINT may be sudstituted for PRINT and LPRINT USING
for PRINT USING . in order to direct output to the line
priater. The syntax is:

LPRINT <print list as in PRINTD

and

LPRINT USING <string formula>;<fotmula>{,<formula>....]
Exampies:

LPRIST TAB(X*Y) ;" *" ;v

LPRINT X,Y,2

LPRINT “ANSWER

I S .
LPRINT USING "43 GROSS INCOME ####.4#% NET INCOME";G,N

The LPOS Function

-

ALTAIR DISX EXTENCED BASIC Version 3.3 Page 39

The LPOS function is used to determine the current
position of the 1line printer print head within the line
printer output buffer. It does not give the actual position
of the line-printer's physical print head. The argument to
LPOS must be a <numeric formulad but its value is ignored.

LPRINT TAB(1d);LPOS(4)

would print 18 starting at column 11 on the line-printer.

ALTAIR DISK EXTENDED BASIC version 3.3 Page 49

Appendix-E

~

Disk Initialization pialog

Tne initialization dialog has been expanded to allow
the wus2r to select the proper amount of memory he needs Eor
using the disk(s) on Aais system. After the wuser has
answered the MEMORY SIZE guestion, BASIC will ask:

HIGHEST DISX NUMBER?

The user should answer with the nighest . physical disk
address in his system, or carriage return to default to 4.
Bach additional disk adds 44 bytes of memory.

Example:

HIGHEST DISK NUMBER? 1

BASIC next asks how many files the user wants to have
CPEN in his program simultaneously. This number includes
both random and sequential files. The default if the user
types carriage return is zero: Each file allocated requires
138 oytes for buffer space.

HOW MANY FILES? 2

Finally, BASIC asks how many random files the user
wants to nave OPEN at one time. The amount of memory
allocated is the answer*257. This memory space is used to
keep track of the location on the floppy disk where groups
of a random file reside,.

HOW MANY RANDOM FILES? 1

A typical dialog might appear as follows:

. MEMORY SIZE? <carriage return>

HIGHEST DISK NUMBER? <carriage return>

HOW HMANY FILES? 2 <carriage return>

HOW MANY RANDOiIl FILES? 1 <carriage return>

XXXXX BYTES FREE

ALTAIR BASIC REV. 3.3

[DISX EXTEZNDED VERSION]

COPYRIGHT 1976 3Y MITS INC.

CONSCLE RESTART LOCATION. IS DECIMAL YYYYyY

C

ALTAIR DISX EXTENDED BASIC Version 3.3

OK

Page 41

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 42

Appendix-F &’

Assembly Code to Read and Write a Sector

The following code has been provided to help users
write their own assembly language subroutines to read and
write data on the floppy disk. It is assumed that the disk
ceing wused has already been enaoled and positioned to the
correct track.

Two data bytes are always read or written at a time so
that the CPU can keep up with the data rate (1 byte/32
microseconds) of the floppy disk. After two bytes are read
or written, the CPU re-synchronizes with the next 'byte
ready' status from the floppy disk controller. .

: CALL WITH NUMBER OF DATA 3YTES TO WRITE IN ([A]
; AND POINTER TO DATA BUFFER IN [H#,L]
7 ALL REG3 DESTROYED.

DSRO: oV c,A ;SAVE # OF BYTES IN C
MVI A,13% ;CALCULATE NUMBER OF ZEROS TO WRITE
SuB C ; SUBTRACT THE NUMBER OF DATA BYTES Q’
MOV 3,A ;NUMBER OF ZEROS+1
CALL SECGET s LATENCY :
MVI A,128 s ENABLE WRITE WITHOUT SPECIAL CURRENT
ouT 9
7 CALL WITH [3]=NUMBER OF 2EROS [C]=NUMSER OF DATA BYTES
; AWD [H,L] POINTING AT OUTPUT DATA
CHLDSX: MVI D,1 ;SETUP A MASK (READY TO WRITE)
MVI A,1238 ;HIGH BIT (D7) ALWAYS ON IN FIRST BYTE
ORA M, ;OR ON DATA BYTE
MoV E,A ; SAVE FOR LATER
INX i ; INCREMENT BUFFER POINTER
NCTYTD: IN 8 ;GET WRITE DATA READY STATUS
ANA D ;TEST STATUS BIT
JNZ NOTYTD " ;NOT READY TO WRITE, WAIT
ADD E ;ADD 3YTE WE WANT TO SEND TO ZERO
ouT 19 ;SEND THE BYTE
“ov A,M ;GET NEXT BYTE TO SEND
INX H ;¥MIOVE BUFFER POINTER AHEAD
MoV E/M ;GST NEXT DATA BYTE
INX B ;MOVE BUFFER POINTER AHEAD AGAIN
DCR C ;DECREMENT COUNT OF CHARS TO SEND
A ZRLOP ;IF DONE, QUIT & GO TO ZRLOP :
DCR o} ;DECREMESHT COUNT OF CHARS AGAIN &‘
ouT 13 ;SEND THIS BYTE
JNZ NOTYTD sSTILL MORE CHARS, DO THEM.
ZRLOP: IN 8 sGET READY TO WRITE

ANA D ;IS IT READY

ALTAIR DISX EXTENDED BASIC Version 3.3 } Page 43

JNZ ZRLOP :IF NOT, LOOP

ouT 16 sKEEP SEWDING FINAL BYTE

DCR B ;DECREMENT COUNT OF BYTES TO SEND
JNZ ZRLOP ;KEEP WAITING

EI ’ s RE-ENABLE INTERRUPTS

MVI aA,8 ; UNLOAD HEAD

ouT 9 ;SEND COMMAND

RET ; DONE

; DISR INPUT ROUTINE. ENTER WITH POINTER
; OF 137 BYTE BUPFFER IN [H,L]. ALL REGS DESTROYED.

DSKI: CALL SECGET ;POINT TO RIGHT SECTOR

MVI C,137 ;GET # OF CHARS TO READ
READOK: IN 8 1GET DISK STATUS

ORA A sREADY TO READ BYTE

JIM READOK

IN 19 ;READ THE STUFF

Mov M,A ;SAVE IN BUFFER

INX H ;BUMP DESTINATION PQINTER

DCR C +LESS CHARS

Jz° RETDO :IF OUT OF CHARS, RETURN

DCR c 7DECREMENT COUNT OF CHARS

NOP sDELAY INTC NEXT BYTE

IN 12 #GET NEXT BYTE

MoV d,A ;SAVE BYTE IN BUFFER

INX =4 " ;¥MOVE BUFFER POINTER

JINZ READOR ~3IF CHARS STILL LEFT, LOOP BACK
RETDO: EI ;s RE-ENABLE INTERRUPTS

MVI aA,8 s UNLOAD HEAD

ouT 9 :SEND COMMAND

RET
SECGET: MVI - A,4 s LOAD THE HEAD

ouT 9

DI :DISABLE INTERRUPTS
SECLP2: IN 9 ;GET SECTOR INFO

RAR ’ ;FIX UP SECTOR 3

Jc SECLP2 ;IF NOT, XEEP WAITING

ANI 31 - ;GET SECTOR

CMP E +1S IT THE ONE WE WANTED

JNZ SECLP2 ;TRY TO FIND IT
RET .

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 44
Appendix-G

The Disk PROM Bootstrap Loader

To use the Disk PROM bootstrap loader, you must have
tae PROM in the PROM poard and the PROM board must be
strapped at the proper address. First, insert the PROM in
tne highest PROM position. This is the PROM IC socket on
the opposite side of the poard from the black finned heat
sink. The black dot or 'l' on the PROM should be in the
upper left corner.

Next, strap the address on the PROM board. for all ones
(all address jumpers in the '1‘ position).

To use the Disk bootstrap loader, power up the ALTAIR.
Raise RESET and sTOP simultaneously. Lower RESET and then
STOP. EXAMINE location 177483 (address switchnes Al5-A8 up,
rest down) and then set the sense switches for your terminal
I/0 pboard as explained in the BASIC manual (Appendix B).
Depress the RUN switch. BASIC should print (or display):

MEMORY SIZE?

For the rest of the initialization procedure, see
Appendix E.

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 45

Appendix-H

C

Using the Cassette and paper Tape Bootstraps

If you do not have the PROM Disk Scotstrap, you must
load in a paper tape or cassette program which will then
read in BASIC from the disk. To do this, follow the
procedure below:

1.) Key in the paper tape or cassette bootstrap loader
with location 1=256, location 2=116 octal.
Set the sense switches for your terminal
(see Appendix A of the BASIC manual and the
first part of the Extended BASIC manual).

2.) Start the paper tape or cassette (labeled DISX LOADER) reading,
and then start the ALTAIR as per the instructions for loading Ba
from paper tape from cassette as given in the 3ASIC manual
Appendix A.

BASIC should respond:

MEZMORY SIZE?

FOor the rest of the initialization procdure, see Appendix E.

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 46
Appendix-I

The PIP Utility Program

A Utility BASIC program has been provided to perform
such such common functions as oprinting directories,
initializing disks, copying disks etc.

NOTE

Some of the PIP commands (LIS,
DIR) require that one <file
aumber> was configured during
the Disk BASIC initialization
dialog. This 1is done by
answering the
“HOW MANY FILES?" question
with a value greater than
zero. If an attempt is made
to perfrom a LIS or DIR
without following this
procedure, a BAD FILE NUMBER
error will occur.

Once you have MOUNTed the EXTENDED BASIC DISX, type the
following‘command:

Loab “pIp*,48,R
(PIP will type)
*

To initialize the floppy disk in drive @, type:
*INIg

PIP will type "DONE" when it is finished. Any disk number
may De substituted for the 4 in the aocove command and PIP
will format the disk in that drive. Any previous files on
tae disk initialized will be lost. If you wish to use blank
disks with DISX EXTENDED BASIC, they must be initialized in
tnis fasnion before they can oe MOUNTed.

(-

NOTE Page 47

DO NOT INITIALIZE THE DISK
WITH DISK EXTENDEZD BASIC ON
IT. IF YOU DO SO, YOU WILL
WIPE ouT ALL THE FILES
PROVIDED ON YOUR DISK AND YOU
WILL HAVE TO ORDER ANOTHER
cory.

Printing a Directory

Giving PIP the command:
*DIR3
will print out a directory of the files on disk zero . The
name of each file is printed, along with the files “mode" (s

for seguential, R for random) , and the starting track and
sector numoer of tne first block in the file.

LISting Sequential Files

The LISt command is used to 1list the conteats of a-
Seqguential data file on the terminal:
Syntax:
LISKdisk numper>,<file name>
Example:
*LIS3,PIpA

CLEZAR 12349
.etc

*

COPying Disks

Tre COPy command is used to CopYy a Sisk placed in one
erive to a disk on another drive. Neither disk need pe
“CUNTed for tne COPy command to work progerly.

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 48

Syntax:

COP<old disk number>,<new disk number>
Example:

*COPg,1

FRO1 8 TO 1
DONE
*

The DATa command

The DATa command is wused to dump out a particular
sector of the disk in octal.

Syntax:

DAT<disk number>

Example:

*DATQ] (DAT is egquivalent)
TRACK? ¢

SECTOR? @

939 2323 200 924 208 293 029 999
203 235 €00 329 283 etc.

ALTAIR DISX EXTENDED BASIC Version 3.3 Page 49
Appendix=J

Other Programs Provided on the System Disk

Program Name Use

-t s > o -

STARTREK Plays game based on TV series.

ALTAIR DISK EXTENDED BASIC Version 3.3 Page 548
Appendix-X
Miscellaneous

1.) If you are using a non-standard terminal port number,
deposit the port number in octal location 47777 before
starting BASIC at location zero.

C

ALTAIR DISX EXTENDED

Appendix-A
Appendix~-B
Appendix~C
Appendix-D
Appendix-E
Appendix~F
hopendix~-G
Appendix-H
Appendix~I
Appendix-J
Appendix=-K

C e e e e e e e e e
- i . .
S e e e s e e e s e
S e e e e e e s e e
S e s e e e s ee e

CLOSE "+« ¢« « « o &
CONZOLE . . .

B8asIC

« o .
e e
« o o
e e« »
« o .
« o o
o« o o
« o e
¢ o o
« o e
« e e

e o o

version 3.3

INDEX

24
27
29
38
43
42 -
44
45
46
49
Sa

o & s o ¢ & o s s o o
S e & o o s e s s s 8

. o 13
. 31

CSAVE and CLOAD for Matrices . 38

CUD v o e e e
CVI v & e e v e
CVS v v e e e a

DEFUSR &+ + ¢ « « o« &
D3XF . .

« o

e e o

DSXIS and DSXO$ primitives

EOF . ¢« ¢ ¢ ¢ o « &

FIELD « « « « « &+ «
FILES .« « v« « « &

GET ¢« ¢« v o o o o &

INPUT & v ¢ o « o &
INSTR + ¢« ¢ o o o &

KILL « v o o o o o &

LINE INPUT

LLIST
LOAD « « .« . .
Lec . . o .

LofF

Long Program Li
LPOS
LPRINT . . .
LPRINT USING
LSET « + « o,

e e Te o s e
o
e e s o Ms e s o o

MERGE .+ « « + « o .
MEDS ¢« o o o e e
MXIS oe e
MXSS &« v o o o .
MOUNT . o . .

HAME o o ¢ o o o o

« e e
o o e
s s
« e+ e
« e .
. o @
« e o
« o .
¢ v e
e e e
« o e
e« o e
« e
o« e
* e
* s e
. .
. e .
. e
e« o e
«

. . 21
e o 21
. .21

. « 33
.« 15
.+ 35

. . 14

. « 19
.+ 6

- . 17

. . 18
. « 35

.9

. 13
. 38
7

. 18
. 18
. 238
. 38
. 38
. 38
. 22

s e o o & e »

. 8
. 21
21
. 21
. 4

« o & o s
.

.. 9

Page 51

Octal Constants

OPEN

PIP Utility Program

PRINT
PUT

Random File I/0O

RND
RSET

SAVE

.

°

.

.

.

.

Seguential File 1/0

Single Quote

Syntax descriptions

UNLCAD .

WIDTH

.

-

.

« s e

31
19

46

19-

17
17

35
22

11
31

32

Page 52

BASIC Disk Version 3.4 Released
by Paul allen

Version 3.4 will be released only in the disk version
(,Acause version 4.0 will be released within a month for all
four versions of BASIC. Version 4.8 will allow cassettes of
programs to be interchangeable between the different
versions of BASIC (8K, Extended, Disk), so it was decided to
release 3.4 only 1in the disk version until 4.8 was ready.
Users who have ordered 3.4 will receive 4.0 (except for
those who have ordered Disk 3.4). 4.0 in the Extended and
Disk versions will have constant compression and line
pointers which should speed up program execution in these
versions significantly.

3.4 and 4.8 will nave all the features of 3.3 which was
described in detail in the -Disk documentation. This means
that the Extended and Disk versions will have long lines
(255 <characters), the INSTR function, CONSOLE, the WIDTH
command for setting terminal width, single quote (")
remarcks, and multiple assembly language subroutines
(DEFUSR) . The 8K version , Extended version, and Disk
version all have octal constants and CLOADing and CSAVEing
of matrices on cassette.

C : NOTE

The Extended version of 4.4
BASIC will require 16K bytes
minimum for execution
(Extended BASIC 4.0 itself
requires 12X).

BASIC version 3.4 has a number of added features as
well as a number of bug fixes. ’

The bug fixes are:

1.) BASIC (all versions) now works properly with the
4210 board as described in previous Extended BASIC
documentation. The correct status bits are now used, and
BASIC does an IN from octal channel 23 to clear the output
status bit after each character is output. This IN is done
(-/ matter what I/O board is used, so it is not recommended

L

BASIC version 3.4 Page 2

that a board other than a 4PIO be used at I/O port 23.

2.) (Extended, Disk versions) The FRE function now
returns a positive number if the amount of free memory
exceeds 32K bytes.

3.) (Disk version) When a random file is deleted, all
the space used by the random file is freed up. Previously,
if a random file was extended incrementally, only the first
group (8 records) would be freed when the file was deleted.

4.) (Disk version) When simultaneously accessing two
files OPENed on different disks, BASIC sometimes forgot
which disk it was currently accessing. This has been fixed.

5.) (3.2 8K and larger versions) Typing in a line with
a large number of ? marks could cause BASIC to be wiped out.
Fixed.

§.) (Disk version) The INSTR function did not free up
its. string temporaries properly, causing spurious "STRING
FORMULA TOO COMPLEX" error messages. Fixed.

7.) (Extended 3.2 only) When subtracting double
precision numbers of the same exponent of opposite sign, the
sign was incorrect, e.g. PRINT 2-3 gave 1 as an answer.
Fixed. :

8.) (Disk Version 3.3) Use of the line printer caused
unpredictable problems. Fixed.

9.) (Disk version 3.3) Use of the RND function with a
negative argument caused the random number generator to
return the same value over and over again. Fixed.

18.) (Disk version 3.3) Input or Output to sequential
data files caused the current terminal position (POS) to be
set to zero. Fixed.

L

BASIC version 3.4 Page 3

11.) (All versions prior to 3.4 not fixed in 4K 3.4) If
a direct GOSUB was given to a subroutine which did INPUT
from the terminal, the INPUT would wipe out the direct
Statement, causing unpredictable results when a later RETURN
was executed. Under these Circumstances, 3.4 will
immediately print OK and return to system level if a RETURN
is executed back to a direct statement which has been
destroyed by an INPUT.

BASIC version 3.4 Page 4
New Features of 3.4

The features and changes listed below are in order of
the version for which they are applicable, i.e. features
for 4K version first, 8K next, etc.

Additions to 4K and larger versions
Changes for 8K and Larger Versions

Control-C Interrupts INPUT statements

Control-C is now the only way to interrupt an INPUT
statement. If a carriage return is typed in response to an
INPUT statement, execution of the program will continue at
the next statement after the INPUT without changing the
values of the variables specified in the INPUT statement.

Rubout and Control-y

The rubout (octal 177) can now be used instead of
backarrow () or underline to delete characters on an input
line. The difference is that rubout prints each character
that 1is deleted and precedes the first character deleted
with a backslash .(\). If deletion was in progress using
rubouts and a new character is typed, a backslash will be
echoed and then the new character will be typed.

Example:
188 X=\=x\Y¥Y=19

(In this case two rubouts were typed after 'x='
had been typed.)

Control-U may now be used to delete a line in the same
fashion as the at-sign (@). A carriage return is printed
and the current line of input is deleted.

J

C

Spaces No Longer Allowed in Reserved Words

BASIC version 3.4 Page 5
New Peatures of 3.4

Spaces may no longer appear inside reserved words such
as THEN or AND. The only exception is GOTO which may have
embedded spaces. The reason for this is to avoid statements
like:

188 R=F OR Q
Being LISTed as:
180 R=FOR Q

with the corresponding SYNTAX (SN) error when the line is
executed. '

Pause (Control-S) and pProceed (Control-Q)

When executing a program, Control-§ may be used to
cause program execution to pause so that output may be
examined and then resumed with . Control-0. This is
especially useful when using high speed CRT terminals.
After executing a BASIC Statement, Control-s will cause
BASIC to pause until Control-Q or Control-C is typed.
Control-C will cause a BREAK and return to command level.
Control-s and Control-Q are not echoed and have no effect
when a program is not being executed.

Hexadecimal Constants

Hexadecimal (base sixteen) constants are now available
by preceding the number with §H. If the hexadecimal value
contains a character which is not A-F or -9, a SYNTAX (SN)
error will occur. If the hexadecimal value is greater than
16 bits of significance (more than four hex digits), an
OVERFLOW (OV) error will occur.

Examples:

PRINT &HFF
255

120 LADDR=ADDR AND &HFF 'mask off low byte

Octal constants may optionally be expressed either with
a preceding & or with a preceding &O.

BASIC version 3.4 Page 6
New Features of 3.4

Features Available Only in
Extended and Larger Versions

Control-C Interrupts LINE INPUT

Control-C is now the only way to interrupt a LINE INPUT
and return to command level. In version 3.3, a BEL
(Control-G) was used to perform this function.

Control-C and Control-0 Printing Changed

Control-C and Control-Q now print as °"C and "0 when
they are typed. Control-U in the Extended version also
prints as “U.

The Tab (Control-I) Character

Tab (Control-I) is used on either input or output to
move the terminal carriage or cursor to the next eight
column £field on the terminal. The tab stops are columns
1,9,17,25,33, etc.

This 1is especially useful for formatting lines
continued with <line feed>: . .

180<Tab> FOR I=1 TO l@:<line feed>
<tab><tab> FOR J=1 TO 10:<line feed>
<tab><tab><tab> A(I,J)=0:<line feed>
<tab> NEXT J,I<carriage return>
LISTs as: _
100 FOR I=1 TO 14:
FOR J=1 TO 14:
A(I,J)=0:
NEXT J,I
NOTE

{tab> characters always print
as the appropriate number of
spaces.

BASIC version 3.4 Page 7
New Features of 3.4

Lower Case Input
(./ Lower case alphabetic characters are now accepted by
BASIC. Lower case characters are always echoed as lower
case, but when lower case is used as part of a direct
command or program statement, translation of lower case to
upper case is performed if the lower case character is not
part of a quoted string literal, REMark statement, or single
gquote (') remark.
Thus, a line input as:
18@ print a,b:rem print out the values of a and b
Will be LISTed as:
108 PRINT A,B:REM print out the values of a and b
or:
150 if as="basic" then 208 'test for BASIC command
is LISTed as:

156 IF AS="basic"” THEN 200 'test for BASIC command

C

Brackets Now Allowed as Matrix Subscript Delimiters

Brackets [,] are now interchangeable with parentheses
as delimiters for matrix Subscripts. Thus:

129 a[I]l=4
Ls equivalent to:
L33 a(I)=9
This has been done for compatibility with other BASICs,
lotably HP BASIC.
CONTinue. Possible after Errors
gH/It is now possible to CONTinue after an error in a
iteCt statement. Also, errors no longer cause loss of the

urreat FOR...NEXT context and subroutine (GOSUB. ..RETURN)
ontext.

BASIC version 3.4 Page 8
New Features of 3.4

EDIT Command Types BEL on Errors

The EDIT command will now type a BEL character
(control-G) if it receives a command which it does not
recognize (e.g. Y).

Error Trapping

Often it is desirable to trap execution of errors
within a BASIC program in order to take action to recover
from the error, or to give a better explanation of why the
error occurred than a simple error megsage.

This facility has been added to BASIC through the use
of .the ON ERROR GOTO, RESUME and ERROR statements, and with
the ERR and ERL variables.

Enabling Error Trapping

The ON ERROR GOTO statement is used to specify which
line of the BASIC program the error handling subroutine
starts. The ON ERROR GOTO statement should be executed-
before the user eXxpects any errors to occur. Once an ON
ERROR GOTO statement has been executed, all errors detected
during the execution of the BASIC program will cause BASIC
Lo start execution of the specified error handling routine.
If the<line number> specified in the ON ERROR GOTO statement
does not exist, an UNDEFINED STATEMENT error will occur.

Syntax of the ON ERROR GOTO statement:
ON ERROR GOTO <line number)>

Example:
10 ON ERROR GOTO 1400

Disabling the Error Routine

IF the user desires to disable the trapping of errors
he should place an ON ERROR GOTO g statement in his program.
This disables trapping of errors, and any error will cause
BASIC to print an ERROR message and stop program execution.

BASIC version 3.4 Page 9
New Features of 3.4

If an ON ERROR GOTO @ statement appears in an error
trapping Subroutine, it will cause BASIC to stop and print
{ @ error message which caused the trap. It is recommended
L«é all error trapping subroutines eéxecute an ON ERROR GOTO
@ subroutine if an error is encountered for which they have

nO recovery action.

NOTE

If an error occurs during the
execution of an error trap
routine, the error will
immediately be “forced". an
€rror message will be pPrinted
for the error detected inside
the error trap routine.

The ERR and ERL Variables

When the error handling subroutine is entered, the
vsriable ERR contains the error code for the error. The
ez,»t codes and their meanings are listed below.

Code Error
NEXT WITHOUT FOR
SYNTAX ERROR

RETURN WITHOUT GOSUB
QUT OF DATA

ILLEGAL FUNCTION CALL
OVERFLOW

QUT OF MEMORY
UNDEFINED STATEMENT
SUBSCRIPT OUT OF RANGE
REDIMENSIONED ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH

OUT OF STRING SPACE
STRING TOO LONG

STRING FORMULA TOQO COMPLEX
CAN'T CONTINUE
UNDEFINED USER FUNCTION
NO RESUME

RESUME WITHOUT ERROR

LYYW IOV e WD g
L S :
[}

RN N

&

BASIC version 3.4 Page 10
New Features of 3.4

Disk Errors

59 FIELD OVERFLOW

51 INTERNAL ERROR

52 BAD FILE NUMBER

53 FILE NOT FOUND

54 BAD FILE MODE

53 FILE ALREADY OPEN

56 DISK NOT MOUNTED

57 DISK x I/0 ERROR

58 FILE ALREADY EXISTS

59 SET TO NON-DISK STRING
60 DISK ALREADY MOUNTED
61 DISK FULL

62 INPUT PAST END

63 BAD RECORD NUMBER

64 BAD FILE NAME

65 MODE-MISMATCH

66 DIRECT STATEMENT IN FILE
67 TOO MANY FILES

68 CUT OF RANDOM BLOCKS

The ERL variable contains the line number of the 1line
where the error was detected., For instance, if .the error
occurred on line 1304, ERL will be equal to 1804.

_If the statement which caused the error was a direct
(immediate mode) statement, the line number will be equal to
65535 decimal.

NOTE

Neither ERL nor ERR may appear
to the left of the = sign in a
LET or assignment statement.

The RESUME statement

The RESUME statement is used to continue execution of
the - BASIC program after the error recovery procedure has
been performed. The user has three options. The user may
RESUME execution at the statement that caused the error, at

BASIC version 3.4 Page 11
New Features of 3.4

the statement after the one that caused the error, or the
J&r may RESUME execution on a different line than caused
the error.

To RESUME execution at the statement which caused the
error, the user should use:

RESUME
ar

RESUME @

To RESUME execution at the statement immediately after
the one which caused the error, the user should use:

RESUME NEXT

To RESUME execution at a line different than the one
where the error occurred, use:

RESUME <line number>
(‘/ Where <line number> is not equal to zero.

Error Routine Example

The following example shows how a simple error trapping
subroutine operates.

108 ON ERROR GOTO 548

20@ INPUT “WHAT ARE THE NUMBERS TO DIVIDE";X,¥Y
218 z=x/Y ’

229 PRINT "QUOTIENT IS“;Z

236 GOTO 2948

588 IF ERR=11 AND ERL=21J THEN 520

S13 ON ERROR GOTO 4)

520 PRINT "YOU CANT HAVE A DIVISOR OF ZERO!“
538 RESUME 244@

C

- The ERROR Statement

BASIC version 3.4 Page 12
New Features of 3.4

In order to force an error to occur in a program, an
ERROR statement has been provided. The primary use of the
error statement is to allow the user to define hisg own error
codes which can then conveniently be handled by a
centralized error trap routine as described above. The
format of the ERROR statement is:

ERROR <numeric formula)
Example:

ERROR 5 . : ‘
SYNTAX ERROR

When defining ‘his own error codes, the user should pick
values which are greater than the ones used by BASIC. Since
further error messages may be added to BASIC in the future,
it is recommended that error codes which are allocated from
the last possible value (255) down to lower codes be used.
If the <numeric formula> used in an ERROR statement is less
than zero or greater than 255 decimal, a FUNCTION CALL error
will occur. .

If an attempt is made to print out an error message for
an error which is greater than the highest defined system
error, an FC error will be printed instead.

Of course, the ERROR statement may also be used to
force SYNTAX or other standard BASIC errors.

Assigning String Substrings - The MID$ Statement

A new statement has been added that makes it much
easier to change a single character or sequence of
Characters inside a string without altering the other
characters in the string. As an added benefit, using such a
Statement does not incur the numerous string allocations if
concatenation is used to perform this function.

The format -of the MIDS statement is:

MIDS$ (<string variable>,<numeric formula 1>
[,<numeric formula 2>])=<string formula>

Examples:

19@ MIDS (A$,3,2)=" *
588 MIDS (N$(I),2)="TEST"

(—/ BASIC version 3.4 Page 13
New Features of 3.4

<numeric formula 1> specifies the first character of
the <string wvariable> that will be replaced by the <string
formula> to the right of the '=' sign. If <numeric formula
1> is greater than the length of the <string variable>, then
& FUNCTION CALL error will occur.

The optional <numeric formula 2> specifies how many.
characters to c¢opy into the <string variable> from the-
<string formula).

Characters are copied from the <string formula> into
the <string variable>, starting at the character position
specified by <numeric formula 1>. They will be copied until :
either the end of the <string variable> is reached, the end Coa
of the <string formula> is reached, or <numeric formula 2> i
characters have been copied, whichever occurs first.

\

More Examples:
(,fSuppose T$="TEST"

Then:

MIDS (T$,2)="ORT"

T$ now equals "“TORT"

or

MIDS(TS,3,1)=" "
TS now egquals "TE T"

ar

MIDS (T$,3,2)="XTEND"
T$ now egquals “TEXT"

Features Added to the DISK Version Only

Zero Bytes Allowed in Sequential
Disk Files

(/ Zero bytes are now allowed as valid data bytes in
sequential data files on the disk. 1In version 3.3, zero
bytes could not be written to sequential files.

FILES Command Prints Files Across Line

BASIC version 3.4 Page 14
New Features of 3.4

The FILES command now prints the files on the floppy
disk in columns across the page instead of down the page.
This is much more convenient for CRT terminals.

PIP Lists Sorted Directory

The PIP Utility program now has an option which allows
a file directory to be printed in sorted alphabetic order.
Typing SRT<disk number> will print the directory.
Example:

LOAD "PIP",4,R
*SRTY

DIRECTORY DISK ¢
APROG

MYFILE
STRTREK

*

FILES MUST BE CONVERTED

NOTE

ALL PROGRAM FILES MUST BE
SAVED 1IN ASCII MODE AND THEN
RELOADED TO WORK PROPERLY WITH
3.4 BECAUSE OF CHANGES IN THE
RESERVED WORD BYTES.

Additional 3.4 BASIC Documentation

Patching Disk BASIC - the PTD program

(§/ Basic can now be patched simply and easily through the
uZ¥e of the PTD program. PTD resides in memory starting at
octal location 45008 after BASIC is booted up from disk.

To patch BASIC, just boot it up from disk, deposit the
patches in memory, and the examine and run PTD at 45044d.
After a two to three second delay the patched copy of BASIC
will Dbe saved on disk. Completion of the save is indicated
when the disk enable light for disk zero goes out.

PTD may also be used to save programs other than BASIC
on tracks @-4 of a diskette. Simply load Disk BASIC, load
the program you want to save, and then start PTD. aAll
memory between address 9 and address 46400 octal will be
saved on tracks ¢-4 on diskette drive zero.

The FILE LINK ERROR

A new error message has been added to Disk BASIC. This
is the FILE LINK ERROR. This error will occur during the
reading of a file if a sector is read which does not belong
{ the file being read. This may occur when reading 3.3
>=quential data files when the end of file is reached. If
this 1is the «case, the sequential file should be read and
rewritten. The FILE LINK ERROR signaling end of file may be
avoided by wusing an ON ERROR trapping routine to trap the
LINK error. The error code for FILE LINK ERROR is decimal

NO RESUME and RESUME WITHOUT ERROR Errors

TWwo new errors have been added to , Extended and Disk
BASIC for 3.4. These errors are associated with error
trapping and the RESUME statement. .

The NO RESUME error (decimal 19) occurs Lif an error
trap routine is entered but the end of the program is
encountered before a RESUME statement was executed.

RESUME WITHOUT ERROR (decimal 24) occurs 1f a RESUME
statement 1s encountered but an error trap routine was not
being executed.

C

Using BASIC with a 4PIO Board

BASIC can now be used successfully with a 4PIO board.
The initialization byte is an octal 44 for both the

input (16) and output (18) sides of the board. This means
that the handshake lines are levels and not pulses.

‘*Q§§k;Controller Fix

Yok A : e

On ‘the folldwing pages a fix to the disk controller
board number one is described. This fix applies to systems
with more than one drive, but it is recommended that the fix
be made to all controllers.

TERMINAL INTERFACING WITH THE 88-4PI0 EBOARD

(For Port J; 4PIO Address = 16 Sec)

INPUT - i o

The program loops, testing Bit 7 of Input channel address 16
('A' section control/status register). When device pulls

CAl low, CA2 goes high to the device lndlcabmng data has not
-been read. Also Bit y of channel 16 goes high indicating to
the computer that valid data is available at channel 17. The
computer reads channel 17, which clears Bit.-7 of channelsd6 1o
and also resets CA2 back low to indicate to the. dev;ce fﬁaf WG’5?°

BERAY
Vnew data may now be input. ad

M

QUTPUT

Bit 7 of Output channel address 18 ('B' section control/
status register) is tested for a device ready condition.
When CBl is forced low by the device, CB2 goes high to the
device indicating data is not available. CBL going low
causes Bit 7 of channel 18 to go high indicating that the.
computer may output. When the computer outputs (writes)
to the data channel, address 19, CB2 is cleared back low
to indicate to the device that data is available. Note
that this output does not clear Bit y of channel 18. To
clear this Bit, the program must execute an Input from
channel 19.

INITIALIZATION BYTE

A 44 octal must be used to initialize the status register

of the PIAs. This byte should be output to the status
channel (A & B control register). This causes the handshake
signals to be levels, not pulses, and alsc selects the
apprzopriate control lines (CA2 and CBl, CB2).

MITS SOFTWARE INITIALIZATION FOR 88-4PIO

88-4PI0
~Signal Name 25 Pin Connector
CAl 2
Computer
SInput. -oonsl §
Chanpel..PAg ... EET I 4
C Al o s
PA2 14
BA3wpsss oo vo Liiieig
PA4 16
17
18
] 19
Ee : 5
7
TET Bl 12
omputer
Qutput
hannel PB@ 20
PBl 21
PB2 22
PB3 23
PB4 24
PB5 25
PB6 10
PB7 11
CB2 13

Signal Description

Active low
indicating

device.

Data
Data
Data
Data
Data
Data
Data
Data

bit g

bit
bit
bit
bit
bit
bit
bit

new data

Active low input to computer
indicating that the device ig
receive new data

ready to

Data
Data
Data
Data
Data
Data
Data
Data

Active low
indicating

bit
bit
bit
bit
bit
bit
bit
bit

1

2
3
4
5
6
7

g

NV WN

input to comp
valid data fr

to Computer
to computer
to Computer
to Computer
to Computer
to Computer
to Computer
to Computer

‘Active high output from
computer indicating data
not been received when law,
computer is ready to receive

to
to
to
to
to
to
to
to

Device
Device
Device
Device
Device
Device
Device
Device

uter
om

has

ocutput from comput(
that data is valid

Jd

DISK SECTORING PROBLEM

1.

Problem caused by switching from one drive to another. JIf

sector pulses from secon
sector pulse from first

Problem occurs if first
index and second disk se

Solution: Prevent valid
after disk enabled.

Fix: On controller Boar
to index detect circuit.
detected until 45 ms aft

Correction: For units a
B3 and lift up from boar
I.C. B3 to pad labled "g
be assembled bend pin 7

Connect jumper wire as i

d drive occur too soon after last
drive, a false index Pulse generated.

b AR Ty

disk sector output is just detecting”@fi
ctor output is just detecting S&dtor2fd
B4

LAY

index aétection for at least 1

2o ’V?

d #1 connect head load status line
This prevents valid index from_being
er head is loaded. S

lready assembled - cut pin 7 of 1,cC.
- Connect jumper wire from pin 7 of
SC" (pin 9 of I.cC. BS). For units to
of I.C. B3 up before installing.ip board.
ndicated before. o

P

eSS

2450 Alamo SE
Albuquerque, NM 87106

