NCR

Personal
 Computer

PC4i
Technical Reference Manual

GW-BASIC is a trademark of Microsoft Corporation

It is the policy of NCR Corporation to improve products as new technology, components, software, and firmware become available. NCR Corporation, therefore, reserves the right to change specifications without prior notice.

All features, functions, and operations described herein may not be marketed by NCR in all parts of the world.In some instances, photographs are of equipment prototypes. Therefore, before using this document, consult your dealer of NCR office for information that is applicable and current.

INTRODUCTION

YOUR NCR PERSONAL COMPUTER MODEL $4 i$ AND THIS MANUAL

Your NCR PERSONAL COMPUTER MODEL $4 i$ is a powerful business/professional personal computer. It is designed to act not only as an independent, selfsufficient system, but also as a control center for systems fulfilling a wide range of business, scientific and technological requirements.

Essential electronics are contained on the controller board. Where possible, LSI components have been used, providing compactness and a high degree of reliability. The microprocessor is the 8088, which can be supplemented by the 8087 co-processor, if required. With the additional support of Direct Memory Access, high processing speeds can be achieved. 256 Kilobyte of random access memory are included in the standard version, over and above video RAM.

The NCR PERSONAL COMPUTER MODEL $4 i$ is equipped with Centronics and RS-232-C interfaces as standard. These are accessed at the rear of the computer without any dismantling. Full access to the system bus is available at the internal expansion card assembly. This assembly can accomodate up to seven cards to expand the features of your system. One additional monitor can be connected via an expansion card, so that the computer can drive a monochrome and a color display simultaneously.

The NCR PERSONAL COMPUTER MODEL $4 i$ is operationally compatible with a number of other widely used personal computers. This provides for portability of a large number of software applications and hardware extensions between your NCR PERSONAL COMPUTER $4 i$ and other personal computers you may have occasion to use. In addition, your NCR PERSONAL COMPUTER $4 i$ offers the advantages of single cabinet design, an extended keyboard, and an excellent high-resolution display in conjunction with a color CRT.

This Manual, consisting of two volumes, is intended for designers, system integrators, and programmers who require detailed information about the construction and operation of the NCR PERSONAL COMPUTER MODEL 4i. Volume 1 includes information about the I / O bus, signal levels and timing, power requirements, and pin assignments, not only of the NCR PERSONAL COMPUTER MODEL $4 i$ itself, but also of the kits available from NCR. In addition, details are given about low-level software control of hardware functions. Volume 2 provides full schematics. Assembly language listings of the NCR ROM BIOS are also available as a separate document.

The NCR PERSONAL COMPUTER MODEL $4 i$ is optionally available in a version for use with the Videotex information and communication system. Videotex is administered under the auspices of the post and telecommunications authorities of a number of countries. The Videotex version of the NCR PERSONAL COMPUTER MODEL $4 i$ is described in a Chapter of its own in this Manual.

With the help of the information contained in this Manual, you may be intending to make hardware or software changes to the NCR PERSONAL COMPUTER $4 i$ for specialized use. Because of the complex nature of computer technology, we must stress that NCR cannot accept responsibility for problems arising from such changes. At the same time, we are constantly endeavoring to maintain the quality of information provided in this Technical Reference Manual. Therefore, if you find that there is a particular aspect of information not already provided in this Manual, or if you want to let us know how useful you find it, please ask your supplier to forward your comments to us.

NCR PERSONAL COMPUTER MODEL 4i

TECHNICAL REFERENCE MANUAL

CONTENTS

CHAPTER 1: System Overview
Models and Options 1-1
Model Identification 1-4
System Components 1-5
System Connection 1-12
I/O Signals 1-12
Rack Assembly 1-15
Configuration Switches 1-16
Memory Expansion 1-18
Memory Map 1-19
I/O Map 1-21
Power Supply 1-22
Monochrome Systems 1-22
Color Systems 1-23
Specifications 1-25
Alternate Main Processor Board 1-26
CHAPTER 2: Programmable Intelligence
8088/8087 Co-ordination 2-3
Programmable Interval Timer 2-4
Hardware Configuration 2-4
Timer Programming 2-5
Output on Terminal Count (Mode 0) 2-6
Programmable One-Shot (Mode 1) 2-7
Rate Generator (Mode 2) 2-7
Square Wave Generator (Mode 3) 2-7
Software Triggered Strobe (Mode 4) 2-7
Hardware Triggered Strobe (Mode 5) 2-8
Timer Parameters 2-9
Reading the Counters 2-9
Programmable Interrupt Controller (PIC) 2-10
Introduction 2-10
Why use Interrupts? 2-10
Interrupts and the 8088 Microprocessor 2-11
Interrupt Controller Hardware and Logic 2-12
Programming the PIC 2-13
Initializing the PIC 2-16
Operation Command Words 2-19
Signal Integrity 2-26
System Interrupts 2-26
Interrupt Handling: Examples 2-28
Parallel Input/Output Interface 2-42
Programming the 8255A 2-42
Mode 1 2-43
Mode 2 2-44
Mode 3 2-46
8255A: System Use 2-48
Direct Memory Access 2-50
System Integration 2-50
8237 Registers 2-54
Command Register 2-56
Mode Register 2-57
Request Register 2-58
Mask Register 2-59
Status Register 2-59
Temporary Register 2-60
Current Address Register 2-60
Current Count Register 2-60
Base Address and Base Count Registers 2-61
DMA Timing 2-61
8237: System Use 2-64
RAM Refresh 2-64
Flexible Disk DMA Service 2-66
DMA Page Selection 2-68
CHAPTER 3: The Operating System
Introduction 3-1
ROM BIOS 3-3
BIOS Data Areas 3-18
System Initialization 3-24

CHAPTER 4: Printers and Communications

Introduction 4-1
RS-232-C Input/Output 4-1
Programming the Serial Receiver/Transmitter 4-6
Interrupt Enable Register 4-9
Interrupt ID Register 4-10
Line Control Register 4-10
Modem Control Register 4-11
Line Status Register 4-11
Modem Status Register 4-12
Internal Diagnostics 4-12
Data Integrity 4-13
The Interrupt System 4-13
Receiver/Transmitter Timing 4-14
Baud Rate Selection 4-17
Programming Hints 4-18
Interface Availability 4-18
Initialization 4-18
Transmitting Data 4-20
Receiving Data 4-21
Centronics Interface 4-24
Software Control 4-27
Status And Control Registers 4-27
Centronics Printer Control 4-28
Printer Status Analysis 4-29
CHAPTER 5: Inhouse DLC Interface
Interface Connections 5-1
DLC Controller 5-2
Controller Pin Configuration 5-2
Software Control 5-6
Command Register 5-7
Status Register 5-8
Interrupt Status Register 5-10
Unique Address Register 5-10
Programming Considerations 5-11
Transmitting via CPU 5-11
Receiving via CPU 5-13
Transmitting via DMA 5-15
Receiving via DMA 5-17

CHAPTER 6: Disk Storage

Introduction 6-1
48TPI Flexible Disk Drive 6-1
Control and Data Signals 6-4
Minimum Format Requirements 6-13
Flexible Disk Controller 6-15
Main Status Register 6-16
Disk Select Register 6-18
FDC Commands and their Parameters 6-18
Motor On/Off 6-39
FDC Status 6-39
Fixed (Winchester) Disk Drive 6-46
Control and Data Signals 6-48
Fixed Disk Controller 6-56
Programming the Fixed Disk Controller 6-58
Fixed Disk Controller Status 6-64
Fixed Disk Controller Diagnostics 6-66
Fixed Disk Format 6-67
External Fixed Disk Connection 6-68
1.2 MB Flexible Disk Drive 6-69
CHAPTER 7: The Screen Display
Available Adapters 7-1
Connection and Configuration 7-2
Character Set 7-4
Monochrome Character Display 7-23
Character Display Memory 7-27
Character Display Controller 7-28
Character Cursor 7-31
Color Graphics Display 7-32
Graphics Display Memory 7-36
Graphics Display Controller 7-36
Character Mode 7-38
Graphics Modes 7-40
Low Resolution 7-40
Medium Resolution 7-44
High Resolution 7-45
Graphics Cursor 7-63
Controller Data Conversion 7-63

CHAPTER 8: The Keyboard

Keyboard Performance 8-10
Code Generation 8-10
Diagnostics 8-12
CHAPTER 9: The Loudspeaker
Hardware Characteristics 9-1
Programming Sound 9-1
CHAPTER 10: Videotex
Introduction 10-1
Switches and Connections 10-3
Monitor Connection 10-4
Modem and VLP Connection 10-4
Switches 10-7
Videotex Memory Organization 10-9
Display Generation 10-11
Videotex Controller 10-11
Character Sets 10-12
Standard Characters 10-12
Definable Characters 10-17
Character Attributes 10-28
Color Selection 10-31
Color Layers 10-31
Color Coding 10-32
Color Look-up Table 10-33
DRCS Attributes 10-33
Transparency 10-34
Videotex Controller Registers 10-35
Scroll Map Registers 10-40
Scrolling 10-40
Text Display and RAM Access 10-41
NCR Software 10-42
Printing Videotex RAM 10-49
RS-232-C Interfaces 10-50
RS-232-C Software Control 10-51
PCI Receiver 10-51
PCI Transmitter 10-52
Modem Interrupts 10-53
Programming the PCI 10-53
Programming Asynchronous Communications 10-56
Diagnostics 10-57
Status Register 10-58
Adapter Initialization 10-59
Modem Interface 10-59
Video Interface 10-6 1
Switches and Registers 10-62
CHAPTER 11: Index

APPENDIX

A	Hardware Reference (Includes own table of contents)
B	The ROM BIOS
(Available as separate document)	

System Overview

MODELS AND OPTIONS

The NCR PERSONAL COMPUTER consists of a main display unit and a keyboard. The computer is available in different models and has a variety of options that can be added to each model. Expansion boards from non-NCR ("third party") manufacturers can be used with the NCR PERSONAL COMPUTER, as well as expansion boards offered by NCR.

The standard display unit is made up of the following parts:

* Cabinet
* Power supply
* One or two flexible disk drive(s) or one flexible disk drive and one hard disk drive
* 12-inch monochrome CRT display or 12-inch color CRT display
* Main Processor Board with:
* 8088 Microprocessor
* 256 KB Random Access Memory (RAM)
* 16 KB Read Only Memory (ROM)
* RS-232-C Serial Interface
* Centronics Parallel Interface (for printer)
* Plug-in board option expansion slots
* Fixed disk drive controller plug-in board for units with a hard disk drive.
* Video controller plug-in board.

A block diagram of the NCR PERSONAL COMPUTER hardware is shown in Figure 1.1.

Figure 1.1 Hardware Block Diagram

The NCR PERSONAL COMPUTER is available in various models. The standard internal RAM memory size for all models is 256 KB . The models currently available are:

* A 12-inch monochrome display, one flexible disk drive and 256 K memory
* A 12-inch monochrome display, two flexible disk drives and 256 K memory
* A 12-inch monochrome display, one flexible disk drive and one hard disk drive, and 256 K memory
* A 12-inch color display, one flexible disk drive and 256 K memory
* A 12-inch color display with two flexible disk drives and 256 K memory
* A 12-inch color display with one flexible disk drive and one hard disk drive, and 256 K memory
* A 12-inch color display with Videotex, one flexible disk drive and 256 K memory
* A 12-inch color display with Videotex, two flexible disk drives and 256 K memory
* A 12-inch color display with Videotex, one flexible disk drive and one hard disk drive, and 256K memory

The Videotex systems are dual purpose systems to be used either as a Videotex system, or as a normal personal computer. These systems are tailored to meet individual country requirements, for example, Bildschirmtext for Germany, Teletel for France, and Prestel for Great Britain.

MODEL IDENTIFICATION

The model number of the NCR PERSONAL COMPUTER is stated on the plate at the back of the unit. The meaning of the model number is shown below:

The NCR 3277 model numbers are defined in Figure 1.2.

Figure 1.2 Model Number Definition

SYSTEM COMPONENTS

This section introduces elements of the NCR PERSONAL COMPUTER shared by all models. Figure 1.3 provides an easy-to-follow diagram illustrating the most important components on the main processor board and those external functions with which the main processor board interfaces.

The CLOCK is the key to co-ordination of the entire system. This unit consists of a crystal supplying a signal of frequency 14.31 MHz to a Clock Controller. The 8284 A Clock Controller divides the frequency of this input signal, in order to provide a suitable timing signal (4.77 MHz) for the main system microprocessor (CPU), as well as timing signals for all the other system components.

The TIMER is an integrated circuit which can be programmmed to produce a variety of signals at various intervals. Accuracy is ensured by the Timer deriving its synchronizing signals, by way of suitable frequency division, from the system clock. You can use the Timer for running a system clock of your own, that is, a clock you can watch on the screen. In addition, the Timer can be used to provide the frequencies required if you wish to play music on the computer. The Timer is also used for refreshing random access memory (see below).

The CENTRAL PROCESSING UNIT (CPU), often simply called "microprocessor", is widely acknowledged as the most "influential" of the integrated circuits. It is the CPU which passes on instructions supplied by the programmer to the other units in the system. Optionally, the CPU can be supported by the 8087 CoProcessor. The Co-Processor is capable of performing, in response to simple instructions, floating-point calculations which would otherwise require extensive programming of the CPU.

The NCR PERSONAL COMPUTER makes use of two types of memory: read only memory (ROM), and a large random access memory (RAM) of at least 256 KB .

READ ONLY MEMORY contains instructions for the CPU which enable the latter to get the system started, as well as a "library" of short, but useful, programs known under the collective term BIOS (Basic Input/Output System). It is the task of the BIOS to constantly maintain communication between the CPU and the other system units.

RANDOM ACCESS MEMORY can likewise contain program instructions for the CPU, but it is also used for storing data being processed by the the program. The random access memory of your NCR PERSONAL COMPUTER is "dynamic", which means that its contents can be changed very quickly, thus providing for fast processing. This also means that memory must be "refreshed" at fixed intervals, to prevent its contents from disappearing. Fortunately, you need not normally be concerned about providing refresh cycles, as this is taken care of by the Timer.

The DIRECT MEMORY ACCESS (DMA) CONTROLLER is used for the transfer of large blocks of data to and from memory. DMA is particularly useful for reading data from or writing data to flexible disk. The CPU does not then have to specify a memory address for each byte read or written. Instead, all the CPU has to tell the DMA Controller is 1) that data is to be transferred between memory and flexible disk, 2) the address of the first byte in memory to be accessed, and 3) the number of bytes to be transferred.

The I/O CONTROLLER is used for reading the keyboard and turning the loudspeaker on and off. In addition, it keeps a note of the settings of system configuration switches, so that programs can detect the NCR PERSONAL COMPUTER model being used.

The INTERRUPT CONTROLLER provides fast notification of the CPU in the event that a system unit requires urgent attention. This is especially important for the Timer and keyboard: the Timer, because an accurate clock (whether your own or provided by the operating system) must not miscount the number of ticks; the keyboard, because this is the most expedient way for the user to intervene during execution of a program.

Additional equipment can be interfaced via one or more of the seven 62-pin I/O connectors inside the computer cabinet. One of these connectors is already occupied by the board containing the controller circuitry for the screen display.

With some personal computers, the three interfaces marked with asterisks in Figure 1.3 (flexible disk, parallel printer, RS-232-C) each require the use of one of the six remaining connectors. The NCR PERSONAL COMPUTER has the advantage that these three functions are interfaced separately to the main processor board, thus making these connectors available to other options.

The system BUS provides the lines by which communication between the units of the system can take place. The bus really consists of three busses. The address bus conveys memory or I/O map addresses by which memory bytes or external devices can be accessed. Data is passed as parallel signals on the data bus. Control bus is a collective term for those signals which otherwise influence data flow within the system, for example, signals which determine whether the direction of data flow is read or write, and whether transfer is to/from memory or an I/O device. Your NCR PERSONAL COMPUTER includes a BUS CONTROLLER which relieves the CPU of such bus arbitration duties, thus enabling the 8088 microprocessor to operate in its "maximum mode".

Figure 1.3 System Overview [1]

Figure 1.4 provides a more detailed view of the system. Busses are shown separately. Furthermore, a number of additional aspects are introduced.

NMI LOGIC determines what source of interrupt may be allowed to issue the CPU non-maskable interrupt (NMI). Possible sources are errors on I/O and memory transfers, and co-processor errors.

Bus transfer over a period of more than one clock unit is enabled by the WAIT STATE LOGIC.

CHIP SELECT (CS) LOGIC converts address information into CS signals for memory and I / O interface integrated circuits.

A DMA PAGE REGISTER allows DMA to address more than 64 KB of the memory address area.

PARITY CHECKING is performed during RAM access.
Finally, Figure 1.5 shows exactly where important integrated circuits are situated on the main processor board.

NOTE: Your NCR PERSONAL COMPUTER may include the Alternate Main Processor Board which is described in a separate section at the end of this Chapter.

SYSTEM CONNECTION

The NCR PERSONAL COMPUTER can accomodate up to seven expansion boards (including the CRT Controller Board). For this purpose the main processor board, accessed after removal of the rack assembly from the back of the computer, is provided with seven expansion slots.

I/O SIGNALS

Each expansion slot consists of a 62-pin connector providing access to TTL-compatible address, data, and a number of control lines. The system connection is identical for each slot, with the exception of the lowermost slot (7), which reads a Card Select signal from the board Figure 1.6 summarizes the connector pin designations. The following descriptions provide explanatory notes to the control lines.

RESET DRIVE Output
This signal is issued in response to a system reset. It is synchronized to the falling clock edge.

IRQ2-IRQ7 Input

Input signals to the Interrupt Request Register of the 8259 A Programmable Interrupt Controller. The signal must remain high until the interrupt is acknowledged by the microprocessor.

DRQ1-DRQ3 Input
DMA request lines to the 8237 DMA Controller. These lines can be programmed at the DMA Controller to active low or active high (the BIOS software specifies active low).

DACKO-DACK3 Output
DMA request acknowledge lines. These lines can be programmed at the DMA Controller to active low or active high (the BIOS software specifies active low).

Note that DACKO is available at the connector. This is because RAM refresh (serviced by DMA Channel 0), must also be available to memory extensions not accomodated on the main processor board. The corresponding data request signal is supplied by Timer 1 on the main processor board.

MEMW/ Output

Determines that data on the data bus is for writing to a selected address in random access memory. This signal can be asserted by microprocessor or DMA Controller.

MEMR/ Output
Determines that RAM data from a selected address is to be placed on the data bus. This signal can be asserted by microprocessor or DMA Controller.

IOW/ Output
As for MEMW/, except that the selected address is to be understood as an address in the I/O map.

IOR/ Output
As for MEMR/, except that the selected address is to be understood as an address in the I/O map.

AEN Output
This signal is used by the DMA Controller to indicate that it is in control of the address and data busses, as well as the MEMW/, MEMR/, IOW/, and IOR/ lines. This bus reservation is especially important, as the DMA Controller needs the data bus for the 8 most significant bits of the RAM address to be accessed.

TC Output

The Terminal Count signal supplied by the DMA Controller when he programmed number of bytes has been transferred.

IO CH RDY Input

This signal is normally high. It can be pulled low (for a maximum of 10 clocks) by a device which requires more than one machine cycle for the transfer of data.

A1 (seen fromexpansion board)

[^0]IO CHECK/ Input
This signal active indicates an I/O or RAM parity error.

ALE Input
Address bus lock signal, whose falling edge cuts off the microprocessor from the address bus. This signal is normally used by the 8288 Bus Controller.

OSC
The system crystal oscillator signal of frequency 14.31818 MHz . This signal has equal high and low periods.

CLK

The divide-by-three output from the Clock Controller of frequency 4.77 Mhz , as supplied to the microprocessor and other system components. The high portion of the signal is 33%.

CARD SELECT/

Connected to slot 7, this signal must be supplied by any adapter connected to expansion slot 7, otherwise the adapter cannot be addressed properly. This connection is disregarded at the other six expansion slots.

RACK ASSEMBLY

The shape of the Card Rack Assembly imposes certain restrictions on the size of the option boards that may be installed.

The option boards must conform to the following dimensions:

3 Boards 334 mm x $107 \mathrm{~mm}(13.1$ in. $x 4.2$ in.)
3 Boards 296 mm x 107 mm (11.6 in. x 4.2 in.)
1 Board $254 \mathrm{~mm} \times 107 \mathrm{~mm}(10.0$ in. x 4.2 in.)

CONFIGURATION SWITCHES

The main processor board includes eight configuration switches which require setting as illustrated in Figure 1.8, before the computer is used for the first time, and after any of the hardware features concerned has been changed.

These switches can be read by software. This is explained in the description of the Parallel Input/Output Interface in Chapter 2.

One or more jumper switches are present on the main processor board (see Figure 1.7). The jumper switch block consists of either J 5 or the three jumpers J 1 , J2, and J3. The significance of the jumper settings:
JP1 closed \rightarrow Enable flexible disk drives
JP2 closed \rightarrow Enable standard serial I/O
JP3 closed \rightarrow Enable parallel interface

JP5 closed \rightarrow Enable standard serial I/O

Figure 1.7 System Configuration Switch Locations

Normal Operation	Switch 1 Off	- $\sim_{\sim}^{1} \square_{1}^{1} \square^{2} \square^{3} \square^{6} \square^{5} \square^{6} \square^{6} \square^{8}$
Coprocessor Not Installed	Switch 2 On	$\left.\left.\sim_{4}^{\sim} \square_{1}^{1} \square^{2}\right]^{3} \square^{2} \square^{5} \square^{6}\right]^{8} \square^{8}$
Coprocessor Installed	Switch 2 Off	
Memory Capacity 256 KB	Switch 3 Off Switch 4 Off	\%
Alpha Controller	Switch 5 Off Switch 6 Off	
Graphics Controller (40×25)	Switch 5 Off Switch 6 On	
Graphics Controller (80×25)	Switch 5 On Switch 6 Off	
1 Flexible Disk Drive	Switch 7 On Switch 8 On	
2 Flexible Disk Drives	Switch 7 Off Switch 8 On	

Figure 1.8 System Configuration Switch Settings

MEMORY EXPANSION

The NCR PERSONAL COMPUTER is supplied with 256 KB random access memory on the main processor board. To upgrade memory capacity, two additional kits are available:

* K101

A memory expansion board with 64 KB of memory, starting at machine location 40000 H . In addition, this kit contains sockets for 5 banks each of 9 integrated circuits, so that memory can be further expanded using up to 5 kits K100.

* K100

A set of integrated circuits for insertion on the memory expansion board K101. K100 upgrades the system memory capacity by 64 KB. Installing the maximum 5 kits K 100 creates a total system memory capacity of 640 KB , that is up to, but not including, the machine location 0 AOOOOH . (Address area from this location upwards is reserved for video display memory and the NCR PERSONAL COMPUTER ROM BIOS.)

Memory banks should be populated in ascending address sequence. Configuration switches on the memory expansion board must be set to reflect the amount of expansion memory (see Figure 1.10).

Figure 1.9 Memory Expansion Board (K101)

Figure 1.10 Memory Expansion Configuration Switches

NOTE: Systems with the Alternate Main Processor Board allow memory expansion up to the maximum 640 KB on the main processor board itself. A separate expansion board is not required.

MEHORY MAP

Figure 1.11 sets out the memory map of the NCR PERSONAL COMPUTER. The following memory areas are discussed in detail in further Chapters of this Manual:

Interrupt Vector	- Chapter 3
BIOS Data Areas	- Chapter 3
Screen display memory	- Chapter 7
ROM BIOS	- Chapter 3

Figure 1.11 Memory Map

I/O MAP

Figure 1.12 illustrates the use of port addresses in the I/O map of the NCR PERSONAL COMPUTER. Details of system use are to be found in the appropriate interface and system function descriptions in this Manual.

Port [hex]	\| System Use
1	1
OO-OF	\| DMA Controller (8237)
20-21	\| Programmable Interrupt Controller [8259]
40-43	\| Programmable Interval Timer [8253]
60-63	\| Parallel Input/Output Interface [8255]
80-83	\| DMA Page Select Register
AD	\| Non-maskable Interrupt (NMI) Register
CO-CF	\| Reserved
EO-EF	\| Reserved
100-1FF	\| User available
200-20F	\| Reserved (games adapter)
210-217	\| Reservad [expansion adapter]
220-24F	\| Reserved
278-27F	\| Reserved
2F0-2F7	\| Reserved
2F8-2FF	\| Asynchronous Serial 1/O [2]
300-31F	\| Reserved
320-32F	\| Fixed Disk Controller
378-37F	\| Parallet Printer
380-38F	\| DLC Interface
3AD-3AF	1 Reserved
3B0-3BF	\| Character Video Controller
$3 \mathrm{CO}-3 \mathrm{CF}$	\| Reserved
3DD-3DF	\| Graphics Video Controller
3E0-3E7	\| Reserved
3F0-3F7	\| Flexible Disk Controller
3F8-3FF	\| Asynchronous Serial I/O [1]
1	1

Figure 1.12 I/O Map

POWER SUPPLY

Two types of power supply are installed in the NCR PERSONAI COMPUTER, according to whether the internal CRT is monochrome or color.

MONOCHROME SYSTEMS
The power supply used in conjunction with a monochrome CRT has the following characteristics:

- Primary switched
* Fuse in primary
* Strappable for the nominal mains supplies of 120 V and 240 V (total permissible range 107 V to 257 V)
* DC outputs (max. power output - 133 W):

$$
\begin{aligned}
& +5 \mathrm{~V} 15 \mathrm{~A} \max \\
& +12 \mathrm{~V} 5.5 \mathrm{~A} \max \\
& \text { - } 5 \mathrm{~V} \quad 0.3 \mathrm{~A} \max \\
& \text { - } 12 \mathrm{~V} 0.25 \mathrm{~A} \max
\end{aligned}
$$

* Current limiting and overload protection on DC outputs. Maximum short circuit current is 3.0 A on all DC outputs.
* Power is good after 500 ms at latest
* Maximum inconsequential supply deviation:

$$
+/-50 \% \text { for } 1 / 2 \text { cycle once every } 10 \text { seconds }
$$

Figure 1.13 illustrates connector designations.

Figure 1.13 Power Supply Connections (Monochrome Systems)

COLOR SYSTEMS

The power supply used in conjunction with a color CRT has the following characteristics:

* Primary switched
* Fuse in primary
* No strapping necessary.
* Input range: 90 V - 264 V
* DC outputs (max. power output - 115.5 W):

$$
\begin{array}{rl}
+5 \mathrm{~V} & 15 \mathrm{~A} \max \\
+12 \mathrm{~V} & 4.0 \mathrm{Amax} \\
-5 \mathrm{~V} & 0.3 \mathrm{Amax} \\
-12 \mathrm{~V} & 0.25 \mathrm{Amax} \\
+85 \mathrm{~V} & 0.82 \mathrm{Amax}
\end{array}
$$

* Current limiting and overload protection on DC outputs. Maximum short circuit current is 3.0 A on all DC outputs.
* Power is good after 500 ms at latest
* Maximum inconsequential supply deviation:

$$
+/-50 \% \text { for } 1 / 2 \text { cycle once every } 10 \text { seconds }
$$

Figure 1.14 Power Supply Connections (Color Systems)

SPBCIFICATIONS

Technical specifications for the NCR PERSONAL COMPUTER are given in Figure 1.15.

SIZE	1	Height	Width	Depth
Processor		368 mm	460 mm	440 mm
1				
Keyboard	1	$19 \mathrm{~mm} \quad 34 \mathrm{~mm}$	m 520 mm	200 mm
1		front back		
I WEIGRT	I			
Processor	I	22.68 kg		
Keyboard	I	2.04 kg		
I VOLTAGE [MOMIMAL.]		Strappable: 120/220/230/240		
1	1	range 107-257		
FREDUENCY		$60 \mathrm{~Hz}(49-61 \mathrm{~Hz})$		
\| POMER REDUIRENENT	1	Monochrome: 150 W Color: 200 W		
cable lemgths	1			
Powar	I	3 m		
Kayboard		1 m (coiled, extendable]		
ENTIRONRENT	I	Operating Power Off Transit		
Temperature [C]	\|	10-32 10-43		-40-80
Humidity (\%)	I	20-80	20-80	
\| Pronduct safety	I			
USA	I	UL 478		
Canada	1	CSA 22.2		
Europe	1	IEC 380		
Germany	I VDE 0806, GS label granted by TUV			
\| RADIO IMTERFERENCE	1			
1 USA		FCC Docket No.	, 20780, Cla	ss B
1 Germany		VDE 0871, Clas	ss A	

Figure 1.15 Technical Specifications

ALTERIATE MATI PROCRSSOR BOARD

It is possible that your NCR PERSONAL COMPUTER is supplied with an Alternate Main Processor Board. This board makes more extended use of VLSI components. The layout of this board is shown in Figure 1.16.

Figure 1.16 Alternate Main Processer Boerd

The two blocks of configuration switches are explained in Figures 1.17 and 1.18.

Jumper JP6 is normally installed, but must be removed if the optional controller for a 1.2 MB flexible disk drive is installed. This disables the flexible disk controller IC on the main processor board.

Coprocessor Not Installed	Switch 2 On	
Coprocessor Installed	Switch 2 Off	
Graphic Adapter 40×25	Switch 5 On Switch 6 On	
Graphic Adapter 80×25	Switch 5 Off Switch 6 On	
Alpha Adapter	Switch 5 On Switch 6 Off	

Figure 1.17 Configuration Switch Sw1

```Memory Capacity 256KB Bank O 256K, Banks 1, 2, 3, Empty```	Switch 1 Off Switch 2 On	
```Memory Capacity 640KB Bank 064K, Bank 164K Bank 2 256K, Bank 3 256K```	Switch 1 On Switch 2 Off	
```Memory Capacity 640KB Bank 0 256K, Bank 1 256K Bank 264K, Bank 3 64K```	Switch 1 On Switch 2 On	
Serial Port   Enabled	Switch 3 On	
Parallel Port   Enabled	Switch 4 On	
	Switch $50 n$	

Figure 1.18 Configuration Switch SWA
The CPU is included in a special 68-pin VLSI unit which also provides

- parity generation
: loudspeaker control
* keyboard interface
* configuration switch registers
* parallel printer control
* wait state generation
* clock control

Figure 1.19 summarizes system integration of the VLSI unit.


The VLSI unit registers fulfil the functions provided by the 8255A parallel I/O controller on other types of main processor board:

Port   [Hex]	R/M	Bit	Function
61	R/W	0	Gate speaker data [1]
		1	Speaker data
		2	Not used
		3	Select group of registers for Port 62H _
		4	Enable RAM parity [0] I
		5	Enable I/O check (0) I
		6	Enable keyboard clock [1] \|
		7	Clear keyboard [1] \|
			$/$
62	R	0	Display configuration switch SW1-5 \}
		1	" " " SW1-6 ]
		2	Not used \} l
		3	Not used \} I


0	Not used	]
1	Coprocessor installed	J
2	System memory SW1-3	\}
3	" " SW1-4	]


| 4 | Output | Timer | Counter 2 |
| :--- | :--- | :--- | :--- | :--- |
| 5 | " " | " | " |
| 6 | I/O check |  |  |
| 7 | Parity check |  |  |

60 R Keyboard data

## Function

[Hex]

62
W
0 No. of flexible disk drives
1 Coprocessor installed (1]
2 \} System memory
3 \}
4 Display configuration switch SW1-4
5 " " " 5 " SW1-5
6 ] No. of flexible disk drives
7 3

63
W

0	Enable parity [0]
1	Coprocessor installed [1]
$2-4$	Not used
5	Lock system [1]
$6-7$	Not used

The VLSI unit also controls the parallel $1 / 0$ interface via Ports $378 \mathrm{H}, 379 \mathrm{H}$, and 37 AH . Control of this interface is discussed in detail in the "Centronics Interface" section of Chapter 4.

O

O

○

## Programmable Intelligence

This Chapter introduces a number of highly versatile integrated circuits present on the main processor board. The ICs described perform functions which to many users are not always evident at first sight, but which are, however, integral to the efficient working of your NCR PERSONAL COMPUTER. These ICs are the Timer, the Programmable Interrupt Controller, the Parallel Input/Output Interface, and the DMA controller.

The Timer, as its name suggests, provides a useful tool for real-time applications. It can be set to issue an output signal after a programmed delay on a one-off basis, or it can supply repeated signals at programmed intervals. It can even be used to supply oscillator frequencies for the small loudspeaker (this is described in a separate Chapter).

The Programmable Interrupt Controller detects and manages service requests not only from selected peripheral devices but also from other internal system functions, such as the Timer. The obvious advantage of the Programmable Interrupt Controller is that the system microprocessor (Central Processing Unit) does not have to continuously check the other units ("polling") to see if they are requiring attention: the CPU is interrupted only if a unit has expressly requested attention and the Programmable Interrupt Controller has decided, on the basis of its programmed priority logic, that the request deserves attention.

The Parallel Input/Output Interface relates to a number of system functions: it reads keyboard data as well as the system hardware configuration (memory, disk, co-processor, display), and has certain enabling functions (serial I/O, RAM parity check).

The Direct Memory Access (DMA) controller offloads the CPU where blocks of data have to be transferred to and from random access memory. Although the CPU cannot use the system bus during DMA cycles, it can perform internal register arithmetic. Bus arbitration circuitry ensures that CPU and DMA controller do not clash over the system bus.

Your NCR PERSONAL COMPUTER includes other programmable integrated circuits dedicated to more readily recognized peripheral control functions, for example the serial I/O, CRT, flexible and fixed disk controller interfaces. These are described in the relevant Chapters of this Manual.

For information on the 8088 system microprocessor with the possible addition of an 8087 mathematics coprocessor, there is a wealth of generally available literature on the 8086 family of microprocessors (which includes the 8088 and 8087 ) to which you can refer.

## 8088/8087 CO-ORDIMATION

The co-processor, which can be installed as an option, uses the same clock as the CPU. Both processors are connected to the bus without any intervening arbitration, so that, with the assistance of the status lines QSO and QS1, the co-processor can read and decode instructions while the CPU is processing instructions from its internal queue. The co-processor uses its BUSY signal to place the CPU in a WAIT state, where it remains until the co-processor busy signal is no longer active.

If the co-processor detects an error (e.g. division by zero), it can interrupt the CPU. This is done by means of the non-maskable interrupt (writing to port 0 AOH with data MSB set enables the NMI, resetting this bit disables the NMI). The presence of the coprocessor, must be indicated by the setting of the appropriate switch on the main processor board.

An NMI can also be caused by a parity failure. For this reason, the corresponding bit (7) of the PC port of the Parallel Input/Output Interface should be checked, in the event of an NMI being issued. If the NMI was issued by the co-processor, the error can be localised by inspection of the co-processor's status word. If processing is then to be continued, clearing the BUSY flag in the status word ( 8087 mnemonic: FCLEX) will de-activate the BUSY line and terminate the CPU's WAIT state.

## PROGRAMMABLE INTELLIGENCE

## PROGRAMMABLE INTERVAL TIMER

Interval timing in the NCR PERSONAL COMPUTER is provided by an 8253 Programmable Interval Timer. This integrated circuit can be used as three independent 16 -bit counters. The Timer is interfaced to the data bus, so that Timer values can be transmitted and read by the microprocessor. In addition, the Timer can be used to generate interrupts at programmed intervals or a single interrupt after a specific interval. Counting is carried out internally by the Timer, either as a binary or a Binary Coded Decimal (BCD) operation. Counting speed is determined by an external clock signal. Counting is achieved by decrementation of a Counter from the value loaded down to zero.

## HARDWARE CONFIGURATION

Communication between Timer and microprocessor is via the Port addresses $40 \mathrm{H}-43 \mathrm{H}$ (see Figure 2.1).


Figure 2.1 Timer Ports
The signal frequency of 1.19318 MHz common to all three clock inputs of the Timer (CLKO, CLK1, CLK2) is derived from the system crystal (14.318 MHz with
capacitive trimmer adjustment), the 8284A Clock Controller, and one further division (by 2).

The three output signals from the Timer (OUTO, OUT1, OUT2) are issued to the following system components:

OUTO - Timer Interrupt (type 8) to the 8259A Programmable Interrupt Controller. This Timer output is set to an effective frequency of approximately 18.2 ticks per second (more accurately: 18.2065) by loading the 16 -bit Counter with the maximum decrement value of zero (not ofFFFH: terminal count is not attained until the decrementing counter passes to zero).
OUT1 - Memory Refresh line. Initialization firmware requires only the lower 8 bits of the decrement Counter. The value set is 12 H , which yields a signal period of approximately 15.1 microseconds.
OUT2 - Signal to the 8255A PIO with unrestricted user availability.

## TIMER PROGRAMMING

Counters can be programmed independently of one another. Before a counter is initialized it is in an undefined state. The following programming steps are required to set up a Timer Counter.

One byte must be transmitted to the Timer's Control Register via Port 43H. The value of this byte is made up as shown in Figure 2.2.

| D7 | D6 | I | D5 | D4 I | D3 | D2 | D1 I | D0 | I | vis Port | \| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| I COUNTER | R/W SELECT |  | MODE |  | BCD | I | 43H | \| |  |  |  |

Figure 2.2 Timer Control Register

COUNTER is a two-bit binary value $0-2$, denoting the number of the Counter to be accessed. Therefore, to access Counter 2, D7 should be set and D6 zero.
R/W SELECT determines the way in which the specified Counter is to be loaded or read. The type of operation to be carried out (read or load) depends on whether an IN or OUT instruction is being used (the Timer has pin connections for /RD and /WR signals). The significance of the binary value contained in these two bits is as follows:

0 Counter Latching (see below)
1 Read/load more significant byte of Counter
2 Read/load less significant byte of Counter
3 Read/load both Counter bytes (less significant first)

BCD: if this bit is set, the 16 bits of the selected Counter are used as a 4-digit BCD counter. If this bit is zero, the Counter represents a 16-bit binary value.
MODE may be a binary value $0-5$ in three bits. The following modes can be implemented in the NCR PERSONAL COMPUTER hardware (applications requiring a rising edge at the GATE can be implemented only with Timer 2):

0 - Output on terminal count
1 - Programmable one-shot
2 - Rate generator
3 - Square wave generator
4 - Software triggered strobe
5 - Hardware triggered strobe
These Timer modes are described in detail in the following sections. Timing characteristics for the Timer modes are illustrated in Figure 2.3.

Output on Terminal Count (Mode 0)
Following the loading of the Counter, the signal OUTput pin for that Counter goes low, and remains low until the Counter has decremented to zero. The OUT signal then goes high, and remains high until the Counter is next programmed. If you write a new value
to the Counter before the old count has expired, decrementing resumes from the new value. From the hardware point of view, mode 0 is enabled by a high signal at the Gate for the specified Counter. This signal is permanently present at the Gate for Counters 0 and 1.

## Programmable One-Shot (Mode 1)

OUTput goes low following a rising edge at the GATE, and goes high at terminal count. Resetting the counter value while OUTput is low does not affect the current terminal count, but comes into effect the next time the OUTput signal goes from high to low. The one-shot can be re-triggered without any need to reload the Counter.

## Rate Generator (Mode 2)

An OUTput low pulse of one clock is issued upon terminal count. This cycle is initiated by the GATE going from low to high, and continues until the GATE goes low. A newly set Counter value comes into effect after the next OUTput pulse.

## Square Wave Generator (Mode 3)

As Mode 2, except that OUTput remains high for the first half of the count and goes low for the second half (achieved by decrementing by 2 at each clock). If the Counter specifies an odd number, the first decrement in the first countdown is by 1, the next countdown starts with a decrement of three. This sequence is repeated until the GATE goes low.

## Software Triggered Strobe (Mode 4)

As soon as this mode has been loaded, the OUTput for the selected Counter on the Timer goes high. When the Counter has been subsequently loaded, counting begins. As soon as the count has decremented to zero, the OUTput goes low for one clock period, and then high again. If your software reloads the Counter during decrementing, the new Counter value takes effect at the next clock signal. As in mode 0 , operation of mode 4 is dependent on the presence of a high signal at the Gate (decrementing would be suspended if this signal were low).

## Hardware Triggered Strobe (Mode 5)

Following a rising edge at the GATE, counting starts. The count continues until terminal count, whereupon the output goes low for one clock period. The count can be re-triggered at the GATE without reloading the Counter.


MODE 2:
Rate Generator


MODE 4:
Sof tware Triggered Strobe
с10x.


MODE 1:
Programmable One-Shot


MODE 3:
Square Wave Generator


MODE 5:
Hardware Triggered Strobe
сוос,


Figure 2.3 Timer Modes

## Timer Parameters

Following the Timer Control Register byte detailed above, the Timer expects the number of bytes specified in the two bits R/W to be transmitted by the microprocessor (load operation), or the specified number of bytes to be read. The one or two-byte value is then read from or written to the data bus. Loading all zeros into a Counter results in a maximum count (OFFFFH in binary, 9999 in BCD counting).

Note that it is not necessary to read or write immediately after setting the Timer Control Register. However, the specified number of bytes must be read or written. In mode 0 , as soon as the Timer recognizes that the first (or only) byte is being transmitted, the decrementing process is suspended until the new Counter contents have been read.

## Reading the Counters

Reading Counter registers requires some care in order not to disturb the counting process. A Counter can be read directly or via a Counter Latch. The former method requires counting to be inhibited during the reading process. This can be achieved only by controlling the Gate or suspending the clock signal to the Counter which is to be read. For this reason, you should use the Counter Latch method.

To read a Counter Latch, a byte must be written to the Control Register, specifying the Counter and with D5 and D4 zero (this command has no effect on the MODE and BCD settings). Then issue a read Counter byte to the Control Register and read the one or two bytes specified.

An example of Timer programming in a real-time application is included in the section of this Chapter dealing with the Programmable Interrupt Controller. The programming example given in the Chapter describing the loudspeaker also makes of the Timer.

## PROGRAMMABLE IITYERRUPT COMTROLLER (PIC)

## InTRODUCTIOI

## Why use Interrupts?

There are two methods by which a call for attention from a device can be recognized by a program. One method is for the microprocessor to sample the status of the device at periodic intervals (polling), whereupon the program decides whether that status represents a call for attention. The other method is for the processor to be "interrupted" by a signal from the device, and then to proceed to a program routine which deals with the special situation. Afterwards, execution of the interrupted program may continue, if desired.

The advantage of the first method is that a large number of devices can be read via the computer port addresses, without additional hardware. This method can be most effectively applied in situations where information from a device is constantly required at regular intervals. Disadvantages arise when this need for information, or the device requests for attention, are only occasional and irregular. Polling then means in many cases ineffective use of microprocessor time. Furthermore, the time which elapses before the device request for attention is recognized can vary, depending on conditional branches taken within the current program.

For these reasons, it is often more practical to make use of the ability of the microprocessor to recognize an external interrupt in the form of a signal at the INTR pin. Assuming that interrupts at the microprocessor are currently enabled, the interrupt signal is noted by the microprocessor in an internal flip-flop, and another microprocessor pin issues a signal acknowledging the presence of the interrupt signal. Although the microprocessor does not proceed to deal with the interrupt until completing the current instruction cycle (assembler instruction), it is not necessary to synchronize the issuing of an interrupt with the microprocessor.

## Interrupts and the 8088 Microprocessor

Following acknowledgement of the interrupt by the microprocessor (8088), the interrupting device must place an 8-bit value on the data bus. This value represents one of 256 different interrupt "types". The first five types of interrupt are reserved by the microprocessor for special, internal purposes:

Type 0	Division by Zero.
Type 1	Single Step.
Type 2	Non-maskable Interrupt: this interrupt type
	is recognized when a signal (active low) is
	present at the NMI pin of the
microprocessor.	
Type 3	This interrupt type is recognized when a      software interrupt is issued by means of   the one-byte INT instruction.
Type 4Integer Overflow.	

The NCR PERSONAL COMPUTER hardware makes use of the eight interrupt types in the range $8-15$. The Basic Input/Output System software (BIOS) uses a number of other interrupt types for "software" interrupts (INT instruction). Both uses of microprocessor interrupts are summarized in Chapter 3, and can be investigated further in the ROM BIOS assembly language listings available as a separate document.

Starting with the next instruction cycle, the microprocessor automatically PUSHes the flags onto the stack and clears the interrupt flag, thus disabling further interrupts. Following this, the current values of the Code Segment and Instruction Pointer are PUSHed onto the stack, and new values, determining the starting address of the interrupt service routine, are fetched from the "interrupt vector" which occupies the first 1024 bytes of machine memory. After this routine has dealt with the interrupt situation, and provided that the interrupt service routine is concluded by an IRET instruction, the Code Segment and Instruction Pointer are restored to their former values. The flags are likewise restored, with the effect that the interrupt flag is enabled for further interrupts. (It is admissible for
the interrupt service routine to enable the interrupt flag, thus allowing interrupts to be nested.)

The "interrupt vector" is the 1024-byte area at the beginning of machine memory, where the CS and IP values for up to 256 interrupt types are held. Therefore, addresses 0-3 are concerned with interrupt type 0, addresses 4-7 with type 1, and so on. In each case, the paragraph value (CS) of the address of the interrupt handling routine must be present in the two uppermost bytes of the four byte block, the Instruction Pointer value in the two lowermost bytes. For example, the CS part of the starting address of the interrupt service routine for interrupt type 10 ( $O A H$ ) is fetched from bytes $2 A H$ and $2 B H$, the IP value from bytes 28 H and 29 H .

INTERRUPT CONTROLLER HARDWARE AND LOGIC
The NCR PERSONAL COMPUTER makes use of a single 8259A Programmable Interrupt Controller (PIC) integrated circuit. The PIC can control up to eight interrupts from different sources, tell the microprocessor which device has requested attention, and allow the programmer to set priorities among the eight possible interrupts.

Refer to the schematics in the Appendices regarding the integration of the PIC into the NCR PERSONAL COMPUTER hardware. The three pins of the integrated circuit which are not connected $(12,13,15)$ are the cascade lines.

Use of the eight interrupt lines which can be controlled by the PIC is shown in Figure 2.4.


Figure 2.4 PIC Interrupt Requests

## PROGRAMMING THE PIC

The 8259A Programmable Interrupt Controller can be regarded as consisting of four logical aspects, as shown in Figure 2.5. The cascade logic need not concern us in this description, as the three cascade lines of the PIC are not connected. This programming description deals with the most important general aspects of programming the PIC, drawing special attention to those programming elements which are essential to it's functioning in the NCR PERSONAL COMPUTER environment. For a complete description of the PIC hardware and software interfacing possibilities, you may wish to refer to the publications of the integrated circuit manufacturer.


Figure 2.5 PIC Architecture
The data buffer provides a three-state interface to the system bus.

The Control Logic consists of

* Selection of the PIC by means of an (active low) signal to the CS/ pin. If this signal is not present, the PIC cannot be read or written to.
* Issuing an interrupt signal (active high) to the microprocessor and awaiting acknowledgement (active low) from the microprocessor. In 8088 mode, the first of these acknowledgement signals places the identity of an interrupt in the InService Register (see below). A second signal causes the PIC to place an interrupt number on the data bus, with which the processor will calculate the four bytes (CS+IP) to be read from the interrupt vector in machine memory.
* The Read/Write logic. Following an active low signal at the WR/ pin, the PIC can receive commands from the microprocessor. If there is an (active low) signal at the RD/ pin, the PIC can be instructed to place information on the data bus. If active signals are present at both these
pins concurrently, the PIC can be neither read nor written to.
* Additional selection of Read/Write functions by means of data lines D3 and D4 and the address line 0. Addressing the PIC via port 21 H of the NCR PERSONAL COMPUTER sets this address line to high, addressing the PIC via port 20 H sets it to low.

The Interrupt Logic comprises

* The Interrupt Request Register (IRR). This register notes for each of the eight interrupt lines whether an interrupt is waiting to be handled. A bit in the IRR is set by a signal (active high) on the corresponding interrupt line. This signal must remain high until the processor is ready to deal with that interrupt.
* The In-Service Register (ISR). This register stores interrupts which are currently being handled. The bit for a particular interrupt is set as soon as the acknowledgement signal arrives from the microprocessor. The corresponding bit in the IRR is then reset.
*The Priority Resolver. This decides the priority of the interrupts. An interrupt acknowledgement signal transfers the interrupt with the highest priority from IRR to ISR.
* Interrupt Mask Register. This register disables individual interrupt request lines by means of a bit mask. Masking an interrupt request (IR) line does not affect the other IR lines.

Communication between microprocessor and PIC consists of Initialization Command Words (ICW) and Operation Command Words (OCW) transmitted to the PIC, and PIC register status (IRR, ISR, IMR, or interrupt type) read by the processor. Figure 2.6 summarizes the signals required in order to switch between these various modes of communication. The software means by
which these initialization and operational functions are achieved is explained in the remainder of this description of interrupts.


Figure 2.6 PIC Addressing
Note: These commands are valid only if the CS Line is active [low]. If this line is high, or if both RD/ and WR/ are active (low), PIC access to the date bus is disabled.

## Initializing the PIC

The microprocessor must place up to four Initialization Command Words (ICWs) on the data bus in order to initialize the PIC. ICW1 must be transmitted to the PIC with address line AO at logical 0 (Port 20 H of the NCR PERSONAL COMPUTER). Transmission of the other ICW's requires that AO is set to 1 (Port 21 H ). The format of the first two of these data bytes (for the 8088) is shown in Figure 2.7.


## Figure 2.7 Initialization Command Words 1 and 2

D7-D5 in ICW1 are really "don't care". (They are only required in the PIC 8080 mode, where they state an interrupt vector address.)
DETECT indicates whether interrupts are level or edge triggered. The NCR PERSONAL COMPUTER firmware resets this bit ( 0 ), thus determining edge triggering. If edge triggering is set, an interrupt is recognized upon a low to high transition on an interrupt request line. Level triggering is achieved by the presence of a high signal. Note that the interrupt signal (sequence of trigger pulses or constant high, according to DETECT mode selected) must not be removed from the interrupt request line until the first acknowledgement signal for that interrupt has been received from the microprocessor. In practical terms, this means that the IR signal should be reset at the issuing device by the interrupt service routine, otherwise the PIC may recognize the continued signal as a second interrupt request (see also "Signal Integrity", below).
CASC is set (1) to indicate that the PIC is single, and is not operating in a master/slave configuration (cascading).
ICW4 is set (1) to indicate that ICW4 is included as the last Initialization Command Word.

D7-D3 in ICW2 are to contain a binary value in five bits corresponding to the microprocessor interrupt type to be issued in response to an interrupt signal at PIC pin IRO. For example, the value 8 (01000B) determines that a valid interrupt request at PIC pin IRO will cause the PIC to notify interrupt type 40 H to the microprocessor. IR1 then corresponds to interrupt type 41 H , and so on. The actual five-bit
value for D7-D3 used by your NCR PERSONAL COMPUTER is 1, so that IRO results in microprocessor interrupt type 8 (IR1: interrupt type 9, etc.).

ICW3 is used by the PIC for master/slave identification. However, the setting of the CASC bit in ICW1 has already indicated that the PIC is not part of"a cascade configuration. Therefore, the PIC expects that ICW3 is being omitted. ICW4 must then directly follow ICW2.

The format of ICW4 is shown in Figure 2.8.


Figure 2.8 Initialization Command Word 4
D3 and D2 are significant only for cascaded PICs (buffered mode). Accordingly, these bits should be zero.
SM, if set, instructs the PIC to apply a special fully nested mode when PIC's are cascaded in a master/slave configuration. This ensures that servicing an interrupt from a slave does not preclude higher priority interrupts from the same slave. This is of no significance for the NCR PERSONAL COMPUTER, therefore this bit should be zero.
AEOI can be set or zero. When zero, this has the effect that the ISR bit is not reset until an End-ofInterrupt (EOI) command is encountered at the end of the interrupt service routine (see Operation Command Words, below). If AEOI is set, the ISR bit is reset when the PIC detects the trailing edge of the second interrupt acknowledgement signal from the microprocessor. In order to clear this "automatic" End-of-Interrupt mode, it is necessary to repeat the PIC initialization, this time with AEOI zero.

P denotes the type of microprocessor being used in conjunction with the PIC. This bit is set (1) to denote the presence of the 8088 processor.

## Operation Command Mords

Following the initialization described above, the PIC is ready to receive interrupts on all eight interrupt lines (IRO-IR7). It is good practice initially to mask (disable) all the interrupt lines, either by means of the microprocessor CLI instruction or the Operation Commands Words described below, or both. An interrupt request must not be allowed to occur until its interrupt vector entry is written and its interrupt service routine is available. Furthermore, interrupt requests which are not in use should be masked by OCW, so that spurious line signals do not pass control to a possibly non-existent interrupt service routine. Fortunately, this set-up procedure is taken care of by the initialization firmware. However, you should bear these considerations in mind, if you wish to use a particular interrupt request for a purpose other than its standard hardware function. If this is the case, you should be wary of re-assigning these hardware interrupts, as this means depriving the BIOS of its hardware interface. More often than not, such changes will entail writing alternative initialization procedures and BIOS routines.

The Operation Command Words (OCWs) make it possible for you to mask and unmask (disable and enable) individual interrupt request lines to the PIC, and to set priority schemes for dealing with interrupts. These facilities result in considerable savings of microprocessor time for your application, as an interrupt is passed to the microprocessor only if it fulfills the conditions determined by the current masking and priority scheme.

Even without Operation Command Words the PIC is capable of receiving interrupt requests. The PIC is then in the "Fully Nested Mode". Interrupt requests are regarded by the PIC as having different
priorities: IRO has the highest priority, IR7 the lowest.

As soon as the interrupt acknowledgement is received from the microprocessor, the PIC places on the data bus the interrupt type of the interrupt request (see ICW2) with the highest priority. This means that if more than one interrupt request is present at a time, the one with the highest priority is dealt with. The PIC recognizes which IR lines have requested an interrupt by inspecting its Interrupt Request Register (IRR).

The PIC then checks its In-Service Register (ISR) to see if an interrupt is currently being processed. If none is being serviced, the interrupt type is transmitted to the processor and the interrupt service routine is activated as outlined in the Introduction to this description. The ISR bit for the interrupt is now set, and the corresponding IRR bit zero.

If an interrupt is currently being serviced, the PIC checks whether the new interrupt request is of higher priority. If this is the case, the ISR bit for the new interrupt is set, and the corresponding IRR bit is reset. The new interrupt request is then allowed to interrupt the currently active interrupt service routine: flags, CS and IP of the interrupted routine are PUSHed onto the stack in the usual way, so that the microprocessor can later find its way back to this routine, without assistance from the PIC. In the event that the new interrupt request is of priority equal to or lower than that of the interrupt currently being serviced, the new interrupt request must wait (IRR bit remains set) until higher priority interrupts have been serviced.

Your software can, of course, set and clear the interrupt flag of the 8088 microprocessor (assembler instructions: STI, CLI). By clearing the interrupt flag, all interrupts to the processor, including those of higher priority, are disabled. However, interrupt requests occurring while the processor

2-20
interrupt flag is cleared are not lost, as an IRR bit in the PIC is reset only when the interrupt is about to be serviced.

Once an interrupt from the PIC has been serviced, its ISR bit must be reset, so that waiting interrupts can be dealt with. Assuming that the AEOI bit in ICW4 was zero, interrupt service routines should conclude with an EOI Operation Command Word. This clears the appropriate bit in the ISR, thus informing the PIC that a particular interrupt has been serviced. Only one EOI need be issued in the NCR PERSONAL COMPUTER (two are necessary only in a cascade configuration, where both master and slave must be informed).

There are two types of EOI commands. As long as the priority scheme is the default Fully Nested Mode, you do not have to specify which interrupt has been serviced. The PIC will automatically reset the highest priority ISR bit currently set, this representing the most recently acknowledged and serviced interrupt. Therefore, a "non-specific" EOI is all that is required. A "specific" EOI is required in situations where your software has determined a priority scheme deviating from that of the Fully Nested Mode (see OCW2, below). This is because the PIC cannot ascertain the source of the interrupt most recently acknowledged and serviced. A "specific" EOI differs from a "non-specific" EOI, in that the former must specify one of the eight interrupts.

If automatic End-of-Interrupt is active (AEOI bit in ICW4 was set), the EOI automatically issued is nonspecific. You will normally use the automatic End-ofInterrupt facility only when a nested priority structure is not required, for example, when all IR lines except one are masked. To alter the value of the AEOI bit, your software must go through the complete ICW sequence again.

The masking and priority scheme of the PIC can be programmed by means of up to three Operation Command Words. OCW1 can be transmitted only when address line AO is at logical 1 (Port 21 H ). For the other OCWs, AO
must be 0 (Port 20H). Operation Command Words do not have to be issued in a particular sequence.

OCW1 masks all or selected interrupt requests to the PIC. If a bit in the Interrupt Mask register is set, the corresponding ISR bit is masked. However, once an interrupt has been acknowledged by the PIC, it will inhibit lower priority interrupt requests irrespective of subsequent masking.

|  | I D7 | D8 | D5 | D4 | D3 | D2 | D1 | D0 \| via Port |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OCW1 \| IR7 | IR6 | IR5 | IR4 | IR3 | IRQ | IR9 | IROI | 21H |  |

Figure 2.9 Operation Command Word 1


Figure 2.10 Operation Command Word 2

The significance of bits D7-D5 in OCW2 is as follows:
R: when set, this bit instructs the PIC to rotate priority.
SEOI: when set, this bit denotes a specific End-ofInterrupt or a new priority setting. The binary value in bits D2-DO must denote which interrupt is to be affected.
EOI: when set, this bit tells the PIC to recognize an End-of-Interrupt.

The principle of priority rotation requires a few words of explanation. Priority rotation can be applied when the default Fully Nested Mode is not required. Then the IR number of an interrupt request does not necessarily indicate its current priority.

2-22

When the ISR bit of the most recently serviced interrupt has been reset, this interrupt should be given the lowest priority. This same interrupt request line must then wait a maximum of 7 interrupts before its ISR bit can be set again. This equal priority rotation can be achieved by OCW2. If both bit $R$ and bit EOI are set (OCW2 $=0 \mathrm{AOH}$ ), this is interpreted by the PIC as a "rotate on non-specific EOI". This command has the effect illustrated by the following example.

Let us assume that IR5 is waiting for attention, and that IR3 is currently being serviced. As soon as the IR3 bit in the ISR has been reset, that interrupt request line is given lowest priority. The line with the highest priority is the IR4. As the IR4 bit in the Interrupt Request Register (IRR) is not set, the PIC proceeds to deal with IR5. If a new, unmasked interrupt request appears at IR3, and assuming no further unmasked interrupts appear at IR6, IR7, IRO, IR1, and IR2, the new interrupt at IR3 will be dealt with after IR6 has been serviced.

Non-specific EOI with rotation in automatic End-ofInterrupt mode (see ICW4) can be achieved by issuing OCW2 with only bit $R$ set (OCW $2=80 H$ ). This is interpreted by the PIC as "rotate on automatic EOI", which remains in force until cleared by issuing OCW2 with all bits zero.

OCW2 can be used to set a specific priority. In this case bits $R$ and SEOI must be set, and the binary value of the interrupt request which is to have the lowest priority must be encoded in D2-DO. For example, if D2-DO contain the value 4 , the interrupt request with the highest priority is now 5, the interrupt request with the second highest priority is 6 , and so on. This command does not actually issue an End-of-Interrupt. If an EOI is required at the same time, all three bits $R$, SEOI, and EOI must be set. The IR line specified in D2-DO is then set to lowest priority, and its ISR bit is reset.

Figure 2.11 gives a summary of the various commands effected by the bits R, SEOI, and EOI.

\| D7	D8	D5		
\\| ..	-	-		
1 R	SEDI	EDI		
10	1	0	No operation.	
10	0	0	Clear "rotate on automatic EOI" mode.	
11	0	0	Rotate on automatic EOI.	
10	0	1	Non-specific EOI.	
10	1	1	Specific EDI.	
11	0	1	Rotate on non-specific EOI.	
11	1	0	Set priority.	
11	1	1	Rotate on specific EOI.	

Figure 2.11 Priority And Termination
OCW3 is available for setting a special mask mode and reading PIC registers. OCW3 is illustrated in Figure 2.12.

	\| D7	D6	D5	D4	D3	D2	D1	DO \| vis Port	
OCW3 \| O	SME	SM	D	1	PO	RREG	REG \|	20H	

Figure 2.12 Operation Command Word 3
SME, if set, tells the PIC to set or cancel a special mask: bit SM set then means set, bit SM means cancel the special mask. If SME is zero, SM is "don't care".
The setting of a special mask gives your software the possibility of temporarily enabling interrupts of lower priority which are currently disabled. To set a special mask, issue OCW3 with both SME and SM set. From then on every interrupt request whose bit in the Interrupt Mask Register is not set, is enabled, irrespective of nesting priority. The special mask
2-24
can be changed as often as you wish by means of OCW1. The former priority scheme is restored by means of a further OCW with SME set and SM zero.

PO, if set, acts as a Polling command. Your software can use this command to detect interrupts while the microprocessor interrupt flag is cleared. The next RD/ signal to the PIC with address line AO at logical 0 (IN from Port 20H) causes the PIC to place the following information on the data bus:


Figure 2.13 Interrupt Polling
If INT is zero, there is no interrupt waiting to be serviced. If INT is set, at least one interrupt is waiting to be serviced. The number of the highest priority interrupt waiting for service is represented as a 3-bit binary value in D2-DO.

RREG and REG enable your software to read the PIC registers IRR and ISR. To read one of these registers, RREG must be set. Which of these two registers is to be read is determined by REG: if REG is set, ISR is to be read, otherwise IRR. The next RD/ signal with address line AO at logical 0 (IN from Port 20 H ) causes the PIC to place the contents of the selected register on the data bus.

It is not necessary to repeat OCW3 for successive reading of the same register. The PIC remembers which of the two registers ISR and IRR was last read. However, after placing interrupt information on the data bus by means of the PO command in OCW3, a new OCW3 is required before ISR or IRR can be read. Following initialization of the PIC, IRR is the register automatically selected for reading.

In the event that OCW3 contains both a Polling command and a read PIC register command, the Polling command overrides.

OCW3 is not used for reading the interrupt mask register (IMR). Instead, the contents of IMR are placed on the data bus when the PIC receives a RD/ signal and address line AO is at logical 1 (IN from Port 21H).

## Signal Integrity

As already stated, an IR input signal must be present until the first interrupt acknowledgement from the microprocessor, irrespective of whether edge or level triggering is being used.

If the IR signal goes low before microprocessor acknowledgement, the PIC does not recognize a valid interrupt, but a signal is nevertheless recognized. This is particularly useful for detecting spurious noise on the IR lines.

If a non-valid interrupt request occurs, the PIC recognizes it as an IR7 signal. Your software for this interrupt type need only execute a microprocessor IRET instruction. In this way, the interrupt is ignored. If IR7 is being used for other purposes, your software can still distinguish between a genuine IR7 and a non-valid interrupt request: the non-valid interrupt request does not set ISR bit 7. Therefore, it is possible to detect a non-valid interrupt by examining ISR contents (read by means of OCW3) at the beginning of the interrupt service routine.

## SYSTKA INTRRRUPTS

Because the hardware interrupts, as well as a number of software interrupts, are already dedicated to specific functions of the NCR PERSONAL COMPUTER, a few words are necessary concerning your own application of these interrupts. Even the 8259A interrupt request 2 (that is, interrupt type OAH) should be regarded as reserved for further system expansion.

There are two possible ways of using the 8259A interrupt requests for your own applications. One possibility is to write the address of your own interrupt service routine directly into the four vector bytes from which the 8259 A interrupt fetches its interrupt service routine address. This has the disadvantage of denying the ROM BIOS access to its important system-maintaining routines. If you are going to do this, you will need to include routines to replace those which have now been by-passed, and to return to the interrupting level by means of a PIC non-specific End-of-Interrupt command.

To make life easier, the ROM BIOS has provided the possibility of adding your own interrupt service routines to those already implemented by the system for the timer and keyboard hardware. During the ROM BIOS service routines for timer (type 8) and keyboard (type 9), a software interrupt is issued: type 1 CH for the timer, type 1 BH for the keyboard. The addresses placed by the ROM BIOS in the interrupt vectors for these two interrupts (at 70 H and 6 CH , respectively) simply refer to a dummy IRET instruction at a ROM location. To address an interrupt service routine of your own for one of these interrupts in read/write memory, you need only write the CS+IP address into the interrupt vector at the appropriate location. Note that while the interrupt vector is being written, hardware interrupts must be disabled (CLI instruction). This prevents the interrupt vector entry from being read by the CPU until both words are written and the address is therefore good. Routines accessed in this way need only be concluded by an IRET instruction. The 8259A End-of-Interrupt is supplied upon return to the ROM BIOS routine.

Remember that disk operating system software may write these interrupt vector positions for interrupt service routines loaded from disk.

## INTERRUPT HANDLING: EXAMPLES

The following sample program shows just one of the many possibilities or real-time applications making use of system interrupts.

The time of day in the form of a 24 -hour clock is constantly displayed in the top left corner of the screen. Once the interrupt handler for the timer software interrupt 1 CH has been set up, the CPU is no longer required, except during interrupt handling triggered by Timer CLOCK 019 times per second. This means that other applications can be run while the clock continues to function. If you are using NCRDOS, you should exit the setting up routine by means of Function Call 31 H . This terminates the process, but preserves a specified size of memory in the program segment, so that the interrupt service routine is not overwritten by a subsequently loaded program.

The program consists of the following routines:
SETUP reads the initial clock time from the keyboard buffer (NCR-DOS system call) in the form hh:mm:ss. Specify two digits each for hours, minutes, and seconds, with intervening separators of your choice. Here you are required to include redundant zeros, and no syntax checking is performed. You can add user interface elements of your choice.

The Timer Counter 0 is initialized to hardware triggered strobe (Mode 5) and a count value of 62799 ( 0 F 54 FH ), with the effect that the interrupt request line 0 of the PIC is strobed 19 times every second. Using the maximum count value (setting Counter to zero) would mean that the interrupt request frequency (18.2065) could not be related to a whole number. The result would be a considerable overhead of clock idling software. There is only one side-effect to writing this Timer Counter, namely that it invalidates the system clock otherwise maintained by NCR-DOS.

The interrupt flag is cleared to prevent disturbance of Timer Counter writing, and especially to prevent interrupts while the interrupt vector is being written.

The setup routine concludes with a terminate but Keep Process function call to NCR-DOS. This means that the interrupt service routine is retained and can be activated during execution of subsequently loaded applications, as long as the NCR-DOS structure of program segments is not disturbed. It is not really necessary to retain the setup and interrupt vector writing routines. Only ISR1C, its dependent routine INCTIM, the display routine, and the data areas (except the keyboard data areas) are required for interrupts service. Therefore, if memory is at a premium, you could place the setup routines at the end of your code and provide an appropriate jump instruction at the beginning of your code so that the setup will still execute as a normal EXE file. You can then retain a reduced nuber of paragraphs at the end of the setup process.

NEWIVEC exchanges the current vector entry for interrupt type 1 CH with the CS value for the setup routine (which is the same as that for the interrupt service routine), and the IP value of ISR1C. (Strictly speaking, it is not necessary to retain the former vector entry in this example.)

OLDIVEC is included simply in order to show how to restore a former vector entry. Note that interrupts should also be inhibited when using such a routine.

ISR1C services the interrupt type 1 CH , which itself is issued by the hardware interrupt type 8 (IRQO at the PIC). The Code Segment value is as in the setup routine. The Data Segment is also set to this value, so that the interrupt service routine can address those data areas initialized in the setup routine. A completely new stack is set up within the program segment, so that stack space does not have to be accounted for in the programs which are, or might be, interrupted. As the data and stack areas are local to
the interrupt service routine, the ISR inhibits interrupts.

The interrupt service routine increments the $1 / 19$ second TICK counter, and updates the time display every 19 ticks using BCD arithmetic.

SEETIM displays the time, blinking at a rate of once per second, in the top left corner of the screen. The display memory base paragraph value read from DBASE applies if your CRT has a graphic controller ( 0 B 800 H ). If your CRT has a character (alpha) controller, replace this value by $0 B 000 \mathrm{H}$.

SETUP: Meed initial values into clock.
MOV BX,OFFSET KEYIN
MOV $A H_{7}$ OAH
INT 21H ;HCR-006 Reed Keybes rd Buffer.
MOV EX, BFPBET KEY TMBAT
MOV DI, PFFSET HOUR
MOV BL, 3 ; Weed hour, minate, seoond.
;Nete: here no syntax check.
KEY2CLK: MOW AX,WORD PTR [EX]
ANB AX, BFOFH Mask ABCII to BCB.

```
 MOV CL,4
 SHL AL,CL
 OR AL,AH ;Two BCD digits in AL.
 MOV BYTE PTR [DI],AL.
 INC DI
 ADD BX,3
 DEC DL
 JNZ KEY2CLK
;
 MOV [TICK],O ;Counts fractions of a second.
 ;
 CLI
 ;Inhibit interrupts while int.
 ;vector is being written.
;
;
 MOV DX,43H
 ;not BCD, hardware triggered strobe.
 OUT DX,AL
 MOV DX,4OH
 MOV AL,4FH
 ;Timer Low byte.
 OUT DX,AL
 MOV AL,DF5H ;Timer high byte.
 OUT DX,AL
 ;
 CALL NENIVEC
 STI
 ;
XSETUP: MOV AL,D
 MOV DX,51H
 MOV AH,31H
 INT 21H
 NOP
 ;NCR-DOS Terminate but
 ;Keap Current Process.
 ; [for DEBUG]
 ;optional return code.
 ;paragraphs.
```



```
; ;
; Routine to set time in top left corner of ;
; screan in accordanoe with BCD values in ;
; HOUR, MINUTE, and BECOND. ;
; ;
```



```
;
SEET IM: PUSH AX
PUSH BX
PUSN CX
PUBH DI
PUSM ES GSave, as required for zero segment
foverride prefix.
;
MOV BH,[HOUR]
MON BL,[MIMUTE]
NOV CH,[BECONO]
MOV DI,BBASE
MOV ES,DI Extra segment is now vidso menory.
XOR DI,DI jOPfset zero in videc memory.
MOV AL,BH ;BCD hour.
MOV CL,4 ;Shift factor.
SHR AL,CL
CALL SCRN
MOV AL,BH
CALL. SCRN
MOV AL,OAH
CARL SCRN
MOV AL,BL ;BCD minute.
8HR AL,CL
CALL SCRN
MOV AL,BL
CALL SCRN
MOV AL,OAH ;Colon, as after hour.
CALL SCRN
MOV AL,CH ;BCD second.
SHR AL,CL
CALL SCRN
MOV AL,CH
CALL SCRN
MOV AL,2OH ;Trailing space on screen
MOV ES:[DI],AL ;[DI already incremented in SCRN].
```

;

; ;
; Convert binary value 0-9 to ASCII digit ;
; and write to screen memory. ;
; ;

;
SCRN: AND AL,DFH ;Blank upper 4 bits.
OR $A L_{\text {, }} 30 H$ Makes ASCII digit.
MDV ES:[DI],AL ;Write to screen.
INC DI
MOV $A L, E S:[D I] \quad ; G e t$ attribute byte.
NOT AL
XOR AL, B8H $\quad$ And invert displ. mode (monochrome).
MOV ES:[DI],AL ;Write attribute byte to screen.
INC DI
RET
;
;

; i
; Write address of user interrupt service ;
; routine into vector for int. type $\mathbf{1 C H}$.
; Store old vector entry [here, not necessary];

;
NENIVEC:
; (CLI prior to cell).
MOV BX,[VECT1C] ; Location in interrupt vector
;of ISR CS:IP.
MOV CX,ES: $[B X]$;IP of present ISR.
INC $B X$
INC BX
MOV DX,ES:[BX]
;CS of present ISR.
MOV ES:[BX],CS ;CS of new ISR.
DEC BX

## PROGRAMMABLE INTELLIGENCE

```
 DEC BX
 MOV AX,OFFSET ISR1C ;IP of new ISR
 MOV ES:[BX],AX ;now written to int. vector.
 MDV [IVECIP],CX ;store IP of old ISR.
 MOV [IVECCS],DX ;store CS of old ISR.
;
 RET
;
;
; Routine to restore former int. vector values.
 (not required in this example)
;
OLDIVEC:
;
 MOV CX,[IVECIP] ;OLd ISR IP from storage.
 MOV DX,[IVECCS] ;Old ISR CS from storage.
 MOV BX,[VECT1C] ;Lowest address in int. vector of
 ;entry for int. type.
 MOV ES:[BX],CX ;Restore former IP.
 INC BX
 INC BX
 MOV ES:[BX],DX ;Restore former CS.
;
 RET
;
```



```
; ;
; Interrupt Service Routine maintaining and displaying ;
; a user clock, using BCD arithmetic. ;
; ;
i;i
;
ISRIC: CLI
 MOV
PUSH CS
 POP SS ;Set stack to this prog. segment.
MOV CS:[SPSTORE],SP ;Store stack pointer of calling
```

	MOV	;procedure. SP,OFFSET STACKTOP	
			;Local stack pointer for ISR.
;			
	PUSH	DS ;To acc ; this ;progra ; contin ;termin	unt for NCR-DOS changed data segment utine must be accessible from other segments, as, obviously, interrupts ue to occur after procedure tion (procedure must be retained).
	PUSH	AX ;PUSH re	gisters so that calling program
	PUSH	BX ;status	can be restored at end of ISR.
	PUSH	CX	
	PUSH	DX	
	PUSH	DI	
	PUSH	SI	
) PUSH			
	PUSH	CS	
	POP	DS ; Ensure ;to loc	data segment locations relate al data after intersegment call.
; ${ }^{\text {a }}$			
	MOV	AL, [TICK]	
	INC	AL	;Counts up to 19 ticks, after which ;seconds displey must be updated.
	CMP	AL, 19	
	JZ	SECUP	; Jump if 19th tick counted,
	MOV	[TICK], AL	;otherwise increment tick counter
	JMP	ISREND	;and IRET without altering display.
SECUP:			;Arrive here only if display to ;be updeted.
	MOV	[TICK],0	; Zero 19 tick counter.
	MOV	AL, [SECOND]	;Fetch current seconds value.
	CALL	INCTIM	;Add one second to time in AL.
	CMP	AL, 60 H	
	JZ	MINUP	;Jump if minute reached, otherwise
	MOV	[SECOND],AL	;write new sec. vatue back to storage
	CALL	SEETIM	;and display naw time.
	JMP	ISREND	
; ${ }^{\text {a }}$			
MINUP:	MOV	[SECOND],0	;Set seconds to zero.
	MOV	AL, [MINUTE]	;Fetch current minutes value.
	CALL	INCT IM	;Add one minute to time in AL.
	CMP	AL, 80 H	;Check if hour reached.
	JZ	HOURUP	; Jump if hour to be incremented, else


	MOV CALL. JMP	[MINUTE], AL SEETIM ISREND	;write new min. value back to storage ;and display new time.
\%			
HOUPUP:	MOV	[MINUTE], 0	;As for seconds, minutes ...
	MOV	AL, [HOUR]	
	CALL	INCTIM	
	CMP	AL, 24H	;Check for total clock rollover.
	JZ	NEWDAY	
	MOV	[HOUR], AL	
	CALL	SEETIM	
	JMP	ISREND	
;			
NEWDAY:	MOV	[HOUR], 0	; Saconds and minutes al ready zeroed.
	CALL	SEETIM	
;			
\%			
ISREND:	POP	SI	;Restore status of
	POP	DI	;interrupted program.
	POP	DX	
	POP	CX	
	POP	BX	
	POP	$A X$	
	POP	DS	;Data segment now refers to NCR-DOS ;program sement of calling program.
\%	MOV	SS, CS: [SSSTO	
	MOV	SP, CS: [SPSTO	
			;Restora old stack.
	STI		;Re-anable interrupts.
	IRET		
\%			
	;		;
	; Accept one or two		digit $B C D$ value in $A L$, ;
	; add	BCD 1 to that	value, return result in AL;
	;		
;			
INCT IM:	MOV	$C \mathrm{Cl}, 4$	;Shift factor.
	SHL	$A X, C L$	;Upper digit in AH Low 4 bytes,
	SHR	$A L, C L$	; Lower digit in AL Low 4 bytes.
	INC	AL	;Add 1 to lower digit.
	AAA		; Increment upper digit [AH],


MOV SP,CS:[SPSTORE]
;Restore old stack.
;Re-anable interrupts.
IRET


```
; i
; Accept one or two digit BCD value in AL, ;
add BCD 1 to that value, return result in AL;
; ;
```


;
2-36

	; if Lower digit > 9 .		
	SHL	AL, CL	
	SHR	AX, CL	;New, incremented BCD value in AL.
	RET		
;			
;			
;			
KEYIN	DB	9	;Data area for NCR-DOS buffered
	DB	0	;keyboard input [Function Call DAH].
KEYINDAT	DB	10 DUP (?)	
;			
VECTIC	DW	0070H	;Lowest int. vector address used by ;int. type 1CH (user timer).
IVECIP	DW	0	;Storage for int.vect. IP.
IVECCS	DW	0	; " " ${ }^{\text {\% }}$ (
HOUR	DB	0	;Byte storage for BCD values
MINUTE	DB	0	; " " " "
SECOND	DB	0	; " " " "
			; (values read from keyboard).
TICK	DB	0	;Single CLOCK pulse counter.
;			
DBASE	DW	OB800H	;Beginning of graphic display memory, ;use OBOOOH if character display card ; (values are paragraph].
;			
SSSTORE	DW	0	; Store stack seg. of calling proc.
SPSTORE	DW	0	; pointer
;			
;			
OWNSTACK	DW	16 DUP [?]	
STACKTOP	DW		
;			
	CSEG	ENDS	
	END		

## ;

The following example uses the software interrupt (1BH) of the keyboard hardware interrupt service routine. This software interrupt is issued only when the hardware interrupt service routine was activated because of the Ctrl-Break key combination.

This program sets the interrupt vector for interrupt 1 BH to address a routine which inverts the monochrome display contrast. Normally, upon returning from INT 1 BH , the Ctrl-Break code is placed in the system keyboard buffer. To suppress this buffering, and its inherent display of "C on the screen, the Interrupt RETurn and POPping of registers for the hardware interrupt (type 9) is provided by the software interrupt service routine. The stack is adjusted so that the interrupt return is to the routine from which the ISR for INT 9 (not 1 BH ) was activated.

The considerations regarding CPU segment registers and NCR-DOS program segment protection in the first example can also be applied to the following program.


```
i;
; ;
; Write address of user ISR into int. vector ;
; for "-Break keyboard interrupt [type 1BH]. :
; Store old vector entry [not used]. ;
; ;
;i;i;i;i;i;i;;;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;;
;
NEWIVEC:
 MOV BX,[VECT1B] ;address in interrupt vector.
 MOV CX,ES:[BX] ;IP of present ISR.
 INC BX
 INC BX ;point to CS in int, vector.
 MOV DX,ES:[BX] ;CS of present ISR.
 MOV ES:[BX],CS ;CS of new ISR.
 DEC BX
 DEC BX
 MOV AX,OFFSET ISR1B ;IP of new ISR
 MOV ES:[BX],AX ;now written to int. vector.
 MOV [IVECIP],CX
 MOV [IVECCS],DX
RET
;
;i;
; ;
; Interrupt Service Routine to invert video ;
; display [monochrome] when "-Break pressed, ;
; suppressing acceptance of `C into keyboard ;
; buffar. ;
;i;
;
ISR1B: CLI
PUSH CS ;Still on stack of interrupted proc.
POP DS ; from
MOV [SSSTORE],SS
PUSH CS
POP SS
MOV [SPSTORE],SP ;SS:SP of interrupted proc, seved
 ;in Local Data Segment.
MOV SP,OFFSET STACKTOP
 ;Local stack now in force.
\begin{tabular}{|c|c|c|c|}
\hline & & & ; to address video memory. \\
\hline & MOV & AX, [DBASE] & \\
\hline & MOV & ES, AX & \\
\hline & MOV & BX, 1 & ; Offset of first attribute byte. \\
\hline INVERT: & MOV & AL, ES: [BX] & \\
\hline & NOT & AL & ;Invert it ... \\
\hline & XOR & AL, 88H & \\
\hline & MOV & ES: \([B X], A L\) & ;... and write it back. \\
\hline & INC & BX & \\
\hline & INC & BX & ;Point to next attribute byte. \\
\hline & CMP & BX,OFA1H & \\
\hline & JNE & INVERT & ;Jump if last attribute byte ; not yet written. \\
\hline ; & & & \\
\hline & POP & ES & \\
\hline ; & & & \\
\hline & MOV & SP, [SPSTORE] & \\
\hline & MOV & SS, [SSSTORE] & ; Restore former stack. \\
\hline ; & & & \\
\hline & ADD & SP, 6 & ```
;So that IRET CS:IP and Flags offect
;return as if from type 9
;(instead of type 1BH) ISR.
``` \\
\hline ; & & & \\
\hline & MOV & AL, 20H & \\
\hline & OUT & \(20 \mathrm{H}_{9} \mathrm{AL}\) & ;Non-specific EOI to PIC. \\
\hline ; & & & \\
\hline & POP & SI & ;POPs required for orderly completion \\
\hline & POP & DX & ; of typa 9 ISR \\
\hline & POP & DS & ; (see ROM BIOS Listings]. \\
\hline & POP & CX & \\
\hline & POP & BX & \\
\hline & POP & \(A X\) & \\
\hline ; & & & \\
\hline & STI & & \\
\hline ; & & & \\
\hline & IRET & & \\
\hline ; & & & \\
\hline
\end{tabular}

```

; ;
; Data area must be accessible to both initialization and ;
; interrupt service routines. ;
; ;
;;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;;i;;i;i;i;i;i;i;i;i;i;i;i;i;i;i;
;
VECT1B DW OOBCH ;Lowest int.vector address used by
;int. type 1BH (Ctrl-Break keyboard).
IVECIP DW D ;storage for old int. vect. IP.
IVECCS DW D
;
DBASE DW OBBOOH ;begining of graphic display memory,
;use OBOOOH if character display
; [values are paragraph].
;Stora stack seg. of calling proc.
SPSTORE DW 0 ;
pointer
OWNSTACK DW 16 DUP (?)
STACKTOP DW O
;
CSEG ENDS
END

```
;

\section*{PARALLELI IHPUT/OUTPOT INTERFACE}

A number of essential hardware functions of the NCR PERSONAL COMPUTER are managed by the 8255A parallel interface integrated circuit. These include recognition of main processor board switch settings, keyboard data reading, disk configuration and display type detection, loudspeaker control, as well as I/O, parity, and timer functions.

\section*{PROGRAMIIEG THE 8255A}

The 8255 A governs four port addresses 60 H to 63 H . Port 63 H is used for accessing the command register, the other three for 8-bit parallel data I/O to and from the system data bus. These data ports are designated PA, PB, and PC. They can be regarded as 3 separate groups, each with 8 data lines, or as 2 groups, each with 8 data and four control lines. In the latter configuration, the ports PA and PB represent data, the upper 4 bits of PC are assigned as control lines to PA, the lower 4 bits to PB.

The 8255 A can operate in one of three modes:
* Mode 1: I/O with no handshaking.
* Mode 2: I/O with handshaking.
* Mode 3: bi-directional bus with handshaking.

The mode of operation is set by means of a command byte from the CPU to port 63H. This byte is illustrated in Figure 2.14.


Figure 2.14 8255A Commend Byte

\section*{Mode 1}

16 I/O combinations are possible, according to the settings of bits \(4,3,1\), and 0 in the command word (see Figure 2.15). Input to the 8255 A is unlatched, but output is latched.


Figure 2.15 Mode 1 Combinations

\section*{Mode 2}

In this mode of operation only two I/O groups are possible as the PC lines are used for control purposes. PA and PB can be used independent of one another for input or output. Figure 2.16 shows the signal directions and command words needed to initiate PA for input and PB for output in Mode 2.

The control lines (PCO - PC7) are used as follows (0 and 1 represent logic signals):

Input
```

PC4 = STB/ for PA } At O, data is read into into the 8255A
PC2 = STB/ for PB } internal data register. This strobe
also sets the INTE signal, so that one
condition for INTR is fulfilled.
PC5 = IBF for PA] Input Buffer Full: 1 confirms that
PC1 = IBF for PB } data has been held in the internal
data register.
PC3 = INTR for PA } If INTE is set, this signal is
PCO = INTR for PB } triggered by the STB/ rising edge, and
is usually used to request a CPU
interrupt.

```

Output
```

PC7 = OBF/ for PA } Output Buffer Full: O confirms that
PC1 = OBF/ for PB } the data bus has been read into the
8255A internal data register. This
signal is triggered by the WF/ rising
edge.
PC6 = ACK/ for PA } With D, the receipt of date is
PC2 = ACK/ for PB } confirmed to the 8255A.
PC3 = INTR for PA } As for Input.
PCO = INTR for PB }

```

Unused PC lines can be used for data purposes (see Mode 3).


Figure 2.16 Mode 2 Control Signals

\section*{Mode 3}

PA can be used as an 8-bit bi-directional data bus, using the control signals shown in Figure 2.18.

In Modes 2 and 3, PC lines not dedicated to control functions can be used as normal data lines. Any PC line can be set or reset by means of a command from the CPU (port 63H):
\begin{tabular}{|c|c|}
\hline Bit & I Significance \\
\hline & I \\
\hline 7 & | Must be zero to denote PC command \\
\hline & | [1 denotes Mode selection). \\
\hline & 1 \\
\hline 6 & | \(\}\) \\
\hline 5 & 1 ] Not used. \\
\hline 4 & \(1]\) \\
\hline & 1 \\
\hline 3 & | \} 3-bit binary value [0-7] indicating which \\
\hline 2 & 1 ] PC line is to be set/reset. \\
\hline 1 & 1 ] \\
\hline & 1 \\
\hline 0 & | \(0=\) reset line \([0] ; 1=\) set line [1]. \\
\hline & \\
\hline
\end{tabular}

Figure 2.17 Mode 3: PC Line control


Figure 2.18 Mode 3 Control Signals

8255A: SISTEM USE
Ports \(60 \mathrm{H}-63 \mathrm{H}\) are dedicated to the 8255 A as follows:
OUT 63H - CPU writes command byte (Mode or PC line selection) to 8255A.

IN/OUT 60H - CPU reads/writes PA.
IN/OUT 61H - CPU reads/writes PB.
IN/OUT 62 H - CPU reads/writes PC.
The initialization firmware of your NCR PERSONAL COMPUTER selects Mode 1 with PA and PC as input ports and PB as an output port. Figure 2.19 shows the system use of PA, PB, and PC. Note that PC has two sets of input functions, according to the status of PB bits 7 and 3, respectively.

The following 2-bit binary values concerning the flexible disk drive, mainboard memory, and display configurations can be read from port PC:
* Display controller type at switching on - [PB bit \(3=0]\)
\[
\begin{aligned}
& 1=\text { graphic display }[40 \times 25 \text { ] } \times \times \times \times \times \times 01 \\
& 2=\text { graphic display }[80 \times 25 \text { ) } \times \times \times \times \times \times 10 \\
& 3=\text { character display }[80 \times 25] \quad \times \times \times \times \times \times 11
\end{aligned}
\]
* Number of flexible disk drives in system - [PB bit \(3=0]\)
\[
\begin{aligned}
& 0=1 \text { flexible disk drive } \quad \mathrm{x} \times \times \times 0 \mathrm{O} \times \mathrm{x} \\
& 1=2 \text { flexible disk drives } \quad \mathrm{x} \times \times \times 01 \times \times \\
& \text { 2 }=3 \ldots \quad \times \times \times \times 10 \times \times \\
& 3=4 \ldots \quad x \times \times \times 11 \times x
\end{aligned}
\]
* Amount of memory on main processor board - [PB bit \(3=1\) ]
\begin{tabular}{|c|c|}
\hline \(0=64 \mathrm{~KB}\) & \(\mathrm{x} \times \times \times 0 \mathrm{O} \times \mathrm{x}\) \\
\hline \(1=128 \mathrm{~KB}\) & \(\times \times \times \times 1 \times\) \\
\hline \(2=192 \mathrm{~KB}\) & \(\times \times 10\) \\
\hline \(3=256 \mathrm{~KB}\) & \(\mathrm{x} \times \mathrm{x} \times 11 \mathrm{x}\) \\
\hline
\end{tabular}

Keyboard and loudspeaker use of the 8255 A is described in the Chapters dealing with these devices.


Figure 2.19 8255A: System Use

\section*{DIRECT MIRYORY ACCESS}

Data transfer between disk drives and random access memory is performed with the assistance of the 8237 DMA controller. The advantage of DMA transfer is that the system microprocessor (CPU) need specify only the initial RAM address, the number of bytes to be transferred, and certain items of control information, whereupon the transfer can take place without the CPU having to manage the transfer on a byte-by-byte basis. Bus arbitration prevents the data and addresses on the system busses being read by the CPU as part of its program. Obviously, the CPU cannot make use of the busses for read/write operations while the DMA transfer is in progress, but it can still perform internal arithmetic as well as processing instructions already waiting in its internal instruction queue.

The DMA controller can manage up to four channels, for which two types of priority logic can be set. In principle, any suitable peripheral device can be serviced by DMA. It is even possible to perform memory to memory transfers.

\section*{SISTEM INTRGRATION}

The pin configuration and internal logic of the 8237 are shown in Figure 2.20. The 8237 pin connections have the following significance:

Vce
Power supply + 5V.
Vss
Ground.
CLK Input
Clock signal controlling internal functions and the data transfer rate.


Figure 2.20 DMA Contraller Overview

CS/ Input
Selects the DMA controller as a normal I/O device during its idle cycle. This allows the CPU to use the bus system (and program the DMA controller).

RESET Input
Clears the Command, Status, Mask, Request and Temporary registers (described in later section), as well as the first/last flip-flop. Following a reset, the DMA controller is in the idle cycle.

READY
Memory read/write puses are extended for the duration of this signal.

\section*{HLDA Input}

The hold acknowledge signal from the CPU, indicating that it has relinquished control of the bus system.

DREQO, DREQ1, DREQ2, DREQ3 Input
DMA service request line for each of the 4 DMA channels. The polarity of these lines is programmable, the RESET default active high. The request is valid only if the DREQ line remains active until the corresponding acknowledge (DACK) signal is asserted by the DMA controller.
Default priority is "fixed", that is, DREQO has the highest priority, DREQ3 the lowest.

DB0-DB7 Input/Output
During idle, the data bus is available for normal CPU operations, including the reading and writing of DMA controller registers. During DMA cycles (except memory to memory), the data bus transmits the 8 MSBs of the DMA address, which are strobed into an external latch by means of the ADSTB signal.

IOR/ Input/Output
In the idle cycle, this is an input control signal used by the CPU to read the control registers. In the DMA active cycle, it is an output control signal used to accept data from the peripheral device during a DMA read.

IOW/ Input/Output
In the idle cycle, this is an input control signal used by the CPU to write the 8237 registers. In the DMA active cycle, it is an output control signal used to load data to the peripheral device.

EOP (End of Process or Terminal Count)/ Input/Output This is a bi-directional signal which terminates a DMA transfer. The signal may be external, or it is asserted by the DMA controller itself to indicate that the terminal count for a DMA channel has been reached. When this signal goes active through internal or external cause, the DMA request is considered to have been serviced. If Auto-Initialize is enabled, the Base registers are written to the
current registers of the channel concerned. The Mask and TC bits of the channel status are set (with AutoInitialize, the Mask bit is unaffected).

AO-A3 Input/Output
In the idle cycle, these system bus address lines select 8237 registers. During DMA activity they function as the 4 LSBs of the address of the RAM location to be accessed.

A4-A7 Output
In conjunction with \(A 0-A 3\), these address lines provide the 8 LSBs of the RAM address to be accessed (the 8 MSBs are placed on the data bus).

HRQ Output
With this signal, the DMA controller requests bus control from the CPU. Assuming the request line is not masked and is of adequate priority, a DREQ input to the DMA controller results in assertion of the HRQ signal. HLDA is the acknowledgement signal from the CPU.

DACKO, DACK1, DACK2, DACK3 Output
The DMA controller uses one of these signals to grant a DMA request to a peripheral device. Like the DREQ lines, they can be programmed as active high or low. Reset default is active low.

\section*{AEN Output}

The Address Enable signal enables the 8-bit latch containing the 8 MSBs of the RAM address to be placed on the data bus.

ADSTB Output
Strobes the 8 MSBs of the RAM address available on the data bus into an external latch.

MEMR/ Output
Active during DMA read or memory to memory transfer.
MEMW/ Output
Active during DMA write or memory to memory transfer.

\section*{8237 REGISTBRS}

The I/O address area between 0 and \(0 F H\) is dedicated to the DMA controller. Figure 2.21 illustrates the registers which are written or read in the form of a single byte. Other registers require or return a 16bit word representing an address or counter value. In each case, two CPU input or output instructions are required in order to specify or read the complete value. For each register an internal first/last flipflop keeps note of which half of the word is about to be read or written: if this flip-flop is in a zero condition, the byte on the data bus represents the 8 LSBs of the word, otherwise the data byte is the 8 MSBs. The 16 -bit registers are shown in Figure 2.22.

An additional I/O address area ( \(80 \mathrm{H}-83 \mathrm{H}\) ) is used for the selection of DMA pages. This is described in a separate section.


Figure 2.218237 8-Bit Programmable Registers


Figure 2.228237 16-Bit Programmable Registers
It is the responsibility of software initiating DMA to ensure that a DMA request is not granted while the DMA controller is being programmed. For example, it is important to prevent DMA from being performed on a channel for which half of a 16 -bit address or counter value has not yet been appropriately written. This can be achieved by one of two methods: either mask the channel concerned, or disable the controller by setting bit 2 in the Command Register.

\section*{Command Register}

This register is illustrated in Figure 2.23. It can be cleared by the Reset or Master Clear instructions.


Figure 2.23 DMA Command Register
Bits 7 and 6 determine the polarity of the DACK and DREQ signals (active low for DREQ is determined by setting this bit, active low for DACK requires a zero bit).

TIMING determines whether normal (0) or compressed (1) timing is active. The latter compresses the transfer time to 2 clock cycles (this is illustrated in the section "DMA Timing" in this Chapter). If compressed timing is selected, WS selects late ( 0 ) or extended (1) write selection.

PRTY is the priority scheme selection bit. Fixed priority (bit zero) means that DMA request priority is equivalent to the sequence of request lines, DREQO having the highest priority. Rotating priority has the effect that the DMA request most recently serviced assumes lowest priority and priority rotates. Therefore, no DMA request must ever wait more that 3 request services before itself being serviced.

ENABLE, when set, prevents the controller from entering DMA active mode. This command can be used to hold the controller in the idle state while the address and counter registers are being programmed. To re-enable the controller, write this bit as zero.

Bit 1 is the Channel 0 Address Hold bit. Setting this bit means that the same address is used for all transfers on this channel.

MEM-MEM set determines that a memory to memory transfer is to take place from the address specified for Channel 0 via the Temporary Register to the address specified for Channel 1 until the Current Count Register goes to OFFFFH.

\section*{Mode Register}

Mode selection information can be specified for any one of the 4 DMA channels. The actual channel selected is encoded in two bits of this register.


Figure 2.24 DMA Mode Register
Transfer Mode is a value in 2 bytes specifying Single Transfer (1), Block Transfer (2), or Demand Transfer ( 0 ). (A value of 3 would denote an 8237 cascade configuration, which is not present in the NCR PERSONAL COMPUTER.)
In Single Transfer mode, only one transfer is made. The Current Address Register is then altered by 1 and the Current Count Register is decremented. Even if the DREQ line is still active at completion of the transfer, bus control is released to the CPU. If DREQ is then still active, a further transfer is performed, and so on. Therefore, there is at least one machine cycle between DMA transfers. If the Current Count Register decrements from 0 to OFFFFH (Terminal Count) and Auto-Initialize is programmed (bit 4), an Auto-Initialize then occurs.
Block Transfer mode transfers continuously until

Terminal Count or an external End of Process signal, whereupon Auto-Initialize occurs, if programmed. For this transfer mode, the DREQ signal need remain active only until the corresponding acknowledgement (DACK) is received.
In Demand Transfer mode the transfer runs continuously until Terminal Count or an external End of Process signal occurs. If programmed, AutoInitialize then occurs. During the transfer, the DREQ signal must be held active. If DREQ goes inactive, the transfer is suspended, but not terminated. Reactivating DREQ rseumes the transfer process.

The ADDRESS INC/DEC bit determines whether the value in the Current Address Register is incremented (0) or decremented (1) after each transfer.

AUTO INIT, if set, enables the Auto-Initialize mode of operation. Auto Initialize can then take place following an End of Process or Terminal Count condition. During Auto-Initialize the original values of the Current Address and Current Count Registers are restored using the values held in the Base Address and Base Count Registers (the Base registers are not affected by DMA transfer operations).

The Transfer Direction value determines whether data is to be transferred to (1) or from (2) memory, or whether data is only to be verified (0). In the verify mode, memory is not actually affected.

The Channel Select value selects one of the DMA channels 0-3.

\section*{Request Register}

Assuming that Block Transfer is selected in the Mode Register, the Request Register can be used to initiate a DMA transfer, as if a hardware transfer request had been received on DREQ line. The channel to which this "software" DMA request applies is selected by the binary value of the two LSBs written to this register, with Bit 2 set. If Bit 2 is zero when this register is written, the request is cleared (other bits are "don't care"). This type of

DMA request is not subject to the Mask Register (see below), but it is subject to priority control. A Terminal Count or external End of Process signal terminates the transfer in the normal way.

\section*{Mask Register}

This register determines which DMA requests are inhibited (masked). One of two registers can be used to mask DMA requests, namely, Write Single Mask Register Bit (port OAH) and Write All Mask Register Bits (port OFH).

Write Single Mask Register Bit selects a channel by means of the binary value in the 2 LSBs of that register; Bit 2 sets or clears the mask bit for the selected channel, bits 3-7 are "don't care".

Write All Mask Register Bits sets or clears the mask bits for Channels 0-3 according to the status of bits \(0-3\), respectively. Bits 4-7 are "don't care".

A Clear Mask Register command allows all four DMA requests.

In addition to these posssibilities of software control, the following signal conditions affect the Mask Register:
* A mask bit is set when its channel produces an End of Process condition, if that channel is not programmed for Auto-Initialize.
* A Reset inhibits all DMA requests.

\section*{Status Register}

The Status Register is illustrated in Figure 2.25. This register states which channels, if any, have received DMA requests, and whether on individual channels Terminal Count conditions or external End of Process signals have occurred. Bits 0-3 are cleared immediately upon the register being read and at Reset. Bits 4-7 are set whenever service is being requested on the corresponding channel.

PROGRAMMABLE INTELLIGENCE


Figure 2.25 DMA Status Register

\section*{Temporary Register}

The Temporary Register always contains the last byte transferred in a memory to memory transfer operation. This register can be read with the Read Temporary Register Command (port ODH) and is cleared at Reset.

\section*{Current Address Register}

This register is a running record of the address used for the byte currently being transferred. This address value is incremented or decremented (in accordance with bit 5 of the Mode Register) after each byte transfer. Auto-Initialize restores the programmed value.

\section*{Current Count Register}

This register functions as a counter to limit the number of bytes transferred. It should be programmed with a binary value which is one less than the number of transfer bytes. Terminal Count occurs as soon as this register has decremented from zero to OFFFFH. Auto-Initialize restores the programmed value.

\section*{Base Address and Base Count Registers}

These are the registers used by the DMA controller to store the values programmed for the Current Address and Current Count registers. These values are required by the controller in the event of an AutoInitialize. It is not required to program the Base registers, as they are automatically set to the values of the Current Address and Current Count Registers when the latter are programmed by the CPU. It is not possible to read the Base registers under CPU control.

\section*{DMA TIMING}

The Figures in this section illustrate the time-base co-ordination between the various signals involved in DMA transfers.

Note that memory to memory transfers require a read and write phase.


Tox OR IOW


Figure 2.26 DMA Reset


Figure 2.27 DMA Ready


Figure 2.28 DMA Transfer


Figure 2.29 DMA Compressed Transfer


Figure 2.30 DMA Memory To Memory Transfer

\section*{8237: SYSTEM USE}

Two of the four channels of the DMA controller are dedicated to system functions of the NCR PERSONAL COMPUTER:
* Channel 0 is used for RAM refresh.
* Channel 2 provides for data transfer to and from the flexible disk controller.

You will have noticed that the Address registers of the DMA controller are capable of addressing 64 KB of random access memory, while your NCR PERSONAL COMPUTER contains at least 256 KB . It is, however, possible to access all RAM areas by means of page switching. This is discussed in the section "DMA Page Selection".

\section*{RAM Refresh}

It is a characteristic of dynamic random aceess memory that it requires power refreshing at regular intervals, in order to ensure data integrity.

It is the task of DMA controller to address random access memory during the refresh cycles. Because of the importance of these refresh cycles, they are accorded the highest priority (DMA Channel 0) in the "fixed" priority logic. The regularity of this process is ensured by the DMA request for this channel being derived from output 1 of the 8253 Programmable Interval Timer (output every 15.1 microseconds). Due to way in which RAM integrated circuits are selected (see Schematics in Appendix A), the DMA controller does not have to provide fully decoded addresses. Therefore, there is no need for page switching during RAM refresh cycles.

After initialization by the system, RAM refresh requires no further CPU attention. For your information, the initialization steps are summarized in the remainder of this section discussing RAM refresh. However, you should take care not to disturb Timer 1 and DMA Channel 0 settings, as alterations might lead to loss of system control. It is also
inadvisable to change the priority logic of the DMA controller, as this too could seriously impair the reliability of refresh cycle intervals.
1. Initialize the Programmable Interval Timer. The following instruction selects Timer 1, determines that only the lower byte of the clock is to be written, sets output Mode 2 (Rate Generator) and the binary (not BCD) mode of counting:

> MOV AL, 01010100 B OUT \(43 \mathrm{H}, \mathrm{AL}\)

The next instruction loads the refresh divisor into Timer 1, so that an output signal occurs every 15.1 microseconds:

MOV AL,12H
OUT \(41 \mathrm{H}, \mathrm{AL}\)
2. Perform a DMA controller Master Clear (the value in AL is insignificant):

OUT ODH,AL
3. Set the Base and Current Counter for Channel 0 to 64 KB (the first/last flip-flop was cleared by the Master Clear and toggles automatically after the DMA has received the lower byte):
\begin{tabular}{ll} 
MOV & AL, OFFH \\
OUT & \(1, A L\) \\
OUT & \(1, A L\)
\end{tabular}
4. Write the Mode Register - single transfer, address is incremented, Auto-Initialize is enabled, transfer direction is read, channel is 0 :

> MOV AL,01011000B
> OUT OBH,AL
5. Write the Command Register - DACK and DREQ lines are active low, no extended write, priority is "fixed", timing is normal, controller is enabled, no Channel 0 address hold, transfer is not memory to memory:
```

MOV AL,O
OUT 8,AL

```
6. Finally clear the mask register bit for Channel 0 , so that DMA requests for that Channel can be serviced. This is best achieved by writing a Single Mask Bit (value zero in 2 LSBs specifies Channel 0, zero in Bit 2 clears mask for that channel only):
```

MOV AL,O
OUT OAH,AL

```

\section*{Flexible Disk DMA Service}

Channel 2 of the DMA controller is dedicated to servicing \(I / O\) operations requested by the flexible disk controller on the main processor board.

This section illustrates DMA controller programming for the flexible disk I/O operations read, write, and verify. The Command Register need not be written explicitly, as the setting required for RAM refresh still applies.
1. Write the Mode Register to port OBH. The value written depends on whether a disk read, write, or verify operation is to take place:

Disk Read - 46H. This specifies single transfer, address increment (decrement may be specified if required), no Auto-Initialize (otherwise Base Address and Counter would be restored to programmed values after each transfer), transfer direction is write (i.e. to memory), Channel is 2.

Disk Write or Format - 4AH. This specifies the same mode of operation as for Disk Read, except that the transfer direction is now read (i.e. from memory).

Disk Verify - 42H. This specifies the same mode of operation as for Disk Read, except that transfer direction is set to verify.
2. The DMA page number must now be specified. This binary value species in which 64 KB block of memory the data is to be read or written. For example,
```

MOV AL,1
OUT 81H,AL

```
specifies that the Base and Current Address registers refer to random access memory at locations offset to the beginning of the first 64 KB boundary from absolute address 10000 H onwards. (DMA pages are described in the next section.)
3. You should now ensure that the first/last flipflop is cleared, so that subsequent Address and Counter register write operations address first the lower, then the upper byte (the value in AL is insignificant):

\section*{OUT OCH, AL}
4. Transmit low and high bytes to the Current Address and Counter registers (this automatically sets the Base registers). Remember that the Address Register value is the offset to the DMA page boundary calculated at step 2. Furthermore, the entire transfer specified for the Current Count Register must be able to take place within the confines of that page.
```

MOV DX,4
MOV AL,ADDR_LO
OUT DX,AL
MOV AL,ADDR-HI
OUT DX,AL
;
INC DX
MOV AL,COUNT_LO
OUT DX,AL
MOV AL,COUNT_HI
OUT DX,AL

```
5. Finally, clear the mask bit for Channel 2 (the mask bit will have been set at End of Process/Terminal Count of the previous pass through these procedures, because AutoInitialize is disabled):
\[
\begin{array}{ll}
\text { MOV } & A L, 2 \\
\text { OUT } & O A H, A L
\end{array}
\]

\section*{DMA Page Selection}

At first sight, it would seem that DMA controller activity is confined to a 64 KB block of memory, by virtue of the fact that programmable Address values are 16-bit. To overcome this apparent limitation, your NCR PERSONAL COMPUTER includes an LS670 4-by-4 register file, of which the \(R A\) and \(R B\) input lines are connected to the DMA controller (see Schematics in Appendix A).

The LS670 RA and RB lines derive their input from the 8237 DMA request acknowledgement lines DACK3 and DACK2, respectively. These lines can be both inactive at the same time, or one can be inactive while the other is active. Selected by means of the system port address 82 H for Channel 3 and 81 H for Channel 2, a DMA page number can be written to the LS670 via the four least significant data bus lines. This data value drives the four most significant lines on the system address bus (A16-A19), so that, in principle, the entire 8088 memory address area can be accessed
by DMA. This is a particularly useful feature if you wish to perform DMA on video memory.

The 4-bit value for output via the DMA page selection port for flexible disk I/O (81H) is as follows:
\begin{tabular}{lr}
0 & Absolute address range \(00000 \mathrm{H}-0 \mathrm{FFFFH}\) \\
1 & \(10000 \mathrm{H}-1\) FFFFH \\
2 & \(20000 \mathrm{H}-2 \mathrm{FFFFH}\) \\
3 & \(30000 \mathrm{H}-3 \mathrm{FFFFH}\)
\end{tabular}
and so on.
Because the address lines are driven without any intervening logic, it is important to note that the 64 KB memory blocks thus selected are separated from one another at multiples of 64 KB , starting from the lowest absolute machine location. It is not possible to define CPU-like "segments" at convenient paragraph boundaries. If the memory area you wish to access by DMA straddles one of these page boundaries, you will have to execute two DMA operations, of which the second specifies an incremented (or decremented) DMA page value (do not forget to ensure that suitable values are written to the DMA controller Address and Count registers).

O

O

\section*{The Operating System}

\section*{INTRODUCTION}

This Chapter provides a quick-refernce summary of Basic Input/Output System system functions. The functions described in the first section, "The ROM BIOS", are those most immediately concerned with handling the hardware of your NCR PERSONAL COMPUTER. The corresponding BIOS routines are contained in read only memory from machine address 0F0000H upwards. There is no ROM switching, therefore the BIOS routines are always accessible in the NCR PERSONAL COMPUTER memory map.

The second section, "BIOS Data Areas", provides a list of those random access memory locations used by the BIOS for the maintenance of variable system parameters.

Other routines, largely dedicated to directory and file management, are supplied when the disk operating system is loaded. Access to these routines is fully described in the NCR-DOS programmer's information included in the Macro-Assembler Manual.

The BIOS routines are activated by means of the hardware and software interrupts in the 8088 interrupt vector. Eight hardware interrupts are managed by the Programmable Interrupt Controller. These are the interrupt types 8-0FH. The other interrupts are issued by means of the INT instruction. ROM BIOS does not write the interrupt vector for all interrupt types, but provides a number of "dummy" interrupt returns. Those vector positions not written can, however, be written by code on read only memory on additional adapters (e.g. fixed disk controller), or subsequently by disk operating system software or individual applications.

The disk operating system NCR-DOS provides system function calls by which the interrupt vector can be read (Function Call 35H) and written (Function Call 25H). If you are writing applications which do not require the disk operating system, there is no reason why you should not read and write the interrupt vector directly. However, you should then ensure that a service request cannot be granted to the Programmable Interrupt Controller while the vector is being accessed, either by clearing the microprocessor Interrupt Flag and/or masking the 8 interrupt lines to the Programmable Interrupt Controller. You should observe this precaution, even if you are accessing only a software interrupt vector entry, as software interrupts can themselves be activated during the interrupt service routine of a hardware interrupt. This is the case, for example, with the interrupt types 1 BH and 1 CH , which are activated within the ROM BIOS ISRs for the Keyboard (type 9) and Timer 0 (type 8) interrupts, respectively.

For the most part, the ROM BIOS interrupts provide routines essential to the basic hardware functions of the computer. If you are considering writing the interrupt vector in order to substitute an interrupt service routine of your own for one available in the ROM BIOS or supplied by the disk operating system, you should ensure adequate replacement for vital system functions, except where you are sure that a function is not required for your particular application.

Finally, a note on "compatibility". Your NCR PERSONAL COMPUTER is operationally compatible with a number of other computers in the NCR PERSONAL COMPUTER range, as well as a number of other widely used professional computers. Accordingly, you may wish your applications, written principally for your NCR PERSONAL COMPUTER, to be capable of executing on a compatible machine. For this reason, you should always use the system interrupts as the means of accessing system functions. With the following exceptions, you should not refer directly to machine addresses:
* The 8088 interrupt vector in the machine address range 0000-03FFH
* System parameters described in the section "BIOS Data Areas" in this Chapter
* Offset to address in interrupt vector entry 1F of the character set bit patterns
* The power-on address: F000:FFFO
* The first address of power-on tests: F000:E000
* The BIOS release date at F000:FFF5

\section*{ROM BIOS}

This section provides a guide to the 8088 interrupt vector, as used by the NCR PERSONAL COMPUTER. Details of entry and return parameters are included for ROM BIOS interrupts. Interrupt types 0-4 are dedicated to CPU functions. Apart from type 2 (NMI), the sources of these interrupts are common to all 8088 systems and cannot be influenced by the hardware or software configuration.

Memory addresses given in this section are absolute machine addresses, unless otherwise stated. Byte, word, and double word values are indicated by the abbreviations DB, DW, and DD, respectively. Registers (except those used to return results) are preserved by interrupt service routines, unless otherwise stated.

Interrupts initialized and used by the disk operating system routines resident in random access memory are also indicated.

\section*{Interrupt \\ [Hex]}

\section*{Description}

0 CPU Divide by Zero. This error condition is most likaly the result of a defective arithmetic operation executed by an application program. This interrupt is not serviced in the ROM BIOS. Normally, there is no need to service this interrupt, beyond a courtesy message and CPU Halt, as such an error is to be considered unrecoverable

1 Single Step. This interrupt, normally used in software devalopment, is issued at the end of an instruction cycle, if the CPU Trap Flag is set

2 Non-maskable Interrupt. The ROM BIOS ISR checks whether the cause is RAM parity or external. The ISR is concluded by a courtesy message and CPU Halt

3 Breakpoint. This interrupt is issued by the one-byte CPU interrupt instruction (not serviced by ROM BIOS)

Overflow. CPU integer overflow (not serviced by ROM BIOS]

5 Sand current contents of character screen to printer
\[
\text { Return: } \begin{aligned}
D B \text { at } 500 \mathrm{H}-0 & =\text { not busy } \\
1 & =\text { busy } \\
0 F F H & =\text { error [as ret. by INT } 17 \mathrm{H} \text { ] }
\end{aligned}
\]

6 Reserved

7 Reserved

8 Service Programmable Interval Timer output 0 Exacute secondary ISR int. type 1CH

Return: DD at 46CH - counter incremented DB at 470 H - set to value 1 at counter overflow DB at 440H - decrement motor time-out counter

\section*{Interrupt (Hex)}

9 Service keyboard (key has been depressed)
Execute secondary ISR int.typa 1BH

Return: DB at 417 H - bit flags:
0 right shift depressed
1 left shift depressed
2 ctrl depressed
3 alt depressed
4 scroll toggled
5 num lock toggled
6 caps toggled
7 ins toggled
\(D B\) at 418 H - bit flags:
4 wait toggled
5 num depressed 6 caps depressed
7 ins depressed
DB at 419 H
DW at 41 AH
DW at 41CH
Keyboard Buffar at 41 EH
- see "BIOS Data Areas"

A Reserved

B Hardware interrupt for serial I/O [COMZ].

C Hardware interrupt for serial I/O [COM1].

D Used by disk operating system for fixed disk.

E Service interrupt from flexible disk controller. This consists of flagging the intarrupt to indicate that drive requires re-calibration:

Return: DB at 43EH - bit flag:
7 interrupt noted

F Hardware interrupt for printer.

\section*{Interrupt}

\section*{Description}
[Hex]

10 Video I/O.

Entry:
\(A H=0\), then set video mode according to value
\(A L=040 \times 25\) character monochrome
\(140 \times 25\) character color
\(280 \times 25\) character monochrome
\(380 \times 25\) character color
\(4,5320 \times 200\) graphics color
\(6640 \times 200\) graphics monochrome
[7 internal use]
\(8640 \times 400\) graphics monoch rome
\(9640 \times 400\) graphics color

Return: screen cleared
screan data areas initialized, sea next section

AH \(=1\), then set cursor style according to value
\(\mathrm{CH}=\) top scan line
CL = bottom scan line

Return: DW at 460H - CX as at entry cursor style set

AH \(=2\), then set char. cursor pos, according to value \(\mathrm{DH}=\mathrm{row}\)
DL \(=\) column
BH = display page

Return: cursor position set if BH was current page DX as at entry stored in screan data area, see next section

AH \(=3\), then get char, cursor pos, according to value \(\mathrm{BH}=\) display page

Return: row in DH column in DL cursor style in CX

Interrupt
[Hex]

\section*{Description}
\(10 \mathrm{AH}=4\), then get light pen position [cont.)
or
raster pos. (modes 0-8) in CH (value 0-199)
[raster pos. [modes 8,9] in CX [value 0-39])
horiz. pixel pos. in \(B X\) \{value 0-319/639 apprax.)
\(A H=5\), then select active display page according to AL = new active display page
minimum value \(=0\) (page 1) maximum no, of pages:


Return: new page active cursor at position stored for that page in screen data area

\section*{Interrupt}
[Hex]
\(10 \mathrm{AH}=6\), then scroll block of active page up a number
(cont.] of character rows:
\(\mathrm{AL}=\) no. of rows, or D (blank block)
\(C H=\) top Left row co-ordinate of block
\(\mathrm{CL}=\quad\) column
DH = bottom right row co-ordinate of block
DL = column
BH = attr, byte for blank char. used in vacated row

AH \(=7\), then scroll block of active page down one character row. Parameters as for scroll up.
\(A H=8\), then read character/attribute at cursor pos. \(B H=\) display page

Return: AL = character \(A H=\) character attribute [char, modes only]

AH \(=9\), then write character at cursor position, if character mode, atso write attribute
AL = character
BL = attribute
\(B H=\) display page
\(C X=\) count of characters to write

Return: character/attributa written

AH \(=\mathbf{O A H}\), then write character at cursor position
\(\mathrm{AL}=\) character
BH = display page
CX = count of characters to write

Return: character written

Interrupt
[Hex]
\(10 \mathrm{AH}=\mathrm{OBH}\), then set color palette according to
[cont.]
Description
\(\mathrm{BH}=\mathrm{O}\) select background color BL = color selection in 5 LSBs:

or
\(B H=1\) select foreground palette \(B L=0\) (green/red/yellow) or 1 (blue/cyan/magenta)

Return: DB at 468H - copy of CRT controller Color Select Register color selected
\(A H=O C H\), then write graph. dot in active display page \(A L=\operatorname{dot} v a l u s\) (color info.), bit 7 set means XOR dot value with current display
\(D X=\) pixel row \(C X=\) pixal column

Return: graphics dot written
\(A H=O D H\), then return dot value from active displ. page DX = pixel "row
\(C X=\) pixal column

Return: \(\mathrm{AL}=\) dot value

\section*{Interrupt}

\section*{Description}
(Hex)


13 Disk I/O, refers to fixed disk I/O if DL bit 7 is set at entry, to flexible disk \(I / O\) if this bit is zero.

BIOS flexible disk \(1 / 0\) :
```

Entry: $A H=0$ reset disk
1 read status of previous operation
2 read sectors into memory
3 write sectors into memory
4 verify sectors
5 format track
$A L=$ no. of sectors $\}$
$E S=$ segment of buffer J
$B X=$ offset of buffer \}
DL = drive $[0-3]$ for
DH $=$ head $[0-1]$] read/write/
$\mathrm{CH}=$ track $[0-39 / 79$] $]$ verify/format
$C L=$ sector [1-8/9/15] \}
disk parameter table pointer $\}$
[see Interrupt 1EH) \}

```
Return: Carry Flag zaro if successful
            set if error, and
        \(\mathrm{AH}=1\) bad command
            2 address mark not found
            3 disk write-protected
            4 sector not found
            8 data overrun
            9 DMA 64 KB boundary error
            10 H CRC error on reading
            20 H flex. disk controller failure
            40 H errar on seak
            8OH flex. disk controller timeout

Interrupt
[Hex]

14 Serial I/O [CPU registers corrupted]

Entry:
\(A H=0\), then initialize interface according to bits in AL:
\begin{tabular}{|c|c|c|c|}
\hline BAUD & PARITY & STOP & CHAR \\
\hline 1765 & 43 & 2 & 10 \\
\hline \(000=110\) & O D = none & 0 & \(110=7\) \\
\hline \(001=150\) & 01 = odd & 1 & \(211=8\) \\
\hline \(1010=300\) & \(10=\) none & & \\
\hline \(1011=600\) & 11 = even & & \\
\hline | \(100=1200\) & & & \\
\hline | 101 = 2400 & & & \\
\hline | \(110=4800\) & & & \\
\hline | 111 = 9600 & & & \\
\hline
\end{tabular}
\(\mathrm{DX}=\) serial COM1 or COM2 device (0 or 1)

Return: AH = Line Stetus bit flegs
7 timeout
6 transm. shift reg. empty
5 transm. hold reg. empty
4 break detected
3 framing error
2 parity error
1 overrun error
O operation successful
AL \(=\) Modem Status bit flags
7 RLSD
6 RI
5 DSR
4 CTS
3 DRLSD
2 TERI
1 DDSR
0 DCTS

Interrupt
[Hex]
\(14 A H=1\), then transmit character AL = character \(D X=\) serial COM device ( 0 or 1)

Return: \(A H=\) bit flag
7 timeout
AL. \(=\) Modem Status (see above]
\(A H=2\), then receive character DX = serial COM device

Return: AL = character AH = bit flag

7 timeout
\(A H=3\), then read status \(D X=\) serial COM device

Return: \(A H=\) Line Status [see above] \(A L=\) Modem Status (see above)

Reserved

16 Read Keyboard (Flags not restored)

Entry:
\(A H=0\), then wait for and read character from kayboard

> Return: AL = ASCII character

AH \(=\) scan code
\(A H=1\), then read keyboard buffer [non-destructive]
\[
\text { Return: Zero Fleg = } \begin{aligned}
& 1-\text { no character in buffer } \\
& 0-A L=A S C I I \text { character } \\
& A H=\text { scan code }
\end{aligned}
\]

\section*{Interrupt}
(Hex)
\(16 \quad A H=2\), then get keyboerd shift status (cont.)

\author{
Return: \(A L=\) bit flags \\ 0 right shift depressed \\ 1 Left shift depressed \\ 2 ctrl depressed \\ 3 alt depressed \\ 4 scroll toggled \\ 5 num toggted \\ 6 caps toggled \\ 7 ins toggled
}

17 Parallel printer interface

Entry: \(A H=0\) print character
AL = character
1 initialize interface
2 read status only
\(D X=0,1,2\), or 3: 1 of 4 printer base ports,
0 takes base port from DW 408 H
1 DW 40AH
2 DW 40CH
3 DW 40EH

Return: \(A H=\) status bit flags
7 busy
6 acknow Ledge
5 out of paper
4 select
3 error
0 timeout

Reserved

19 Boot loader, reading disk drive 0 , head \(O\), track \(O\), sector 1 to mechine address 7COOH. The disk read operation [INT 13H] would normally be from flexible disk. However, if ROM BIOS initialization detected a fixed disk drive, that disk is read 〔see "System Initialization" in this Chapter].

Interrupt
[Hex]

Description

1A Read or set binary clock counter.

Entry:
\(A H=0\), then read clock counter

Return: \(C X=\) upper word of counter
\(D X=\) Lower word of counter
\(A L=D\) (no timer wrap) or 1 (timer wrap)
DB at 47 OH (timer wrap) zero.

AH \(=1\), then sat clock counter according to values in CX = upper word of counter \(\mathrm{DX}=\) Lower word of counter

Return: DD at 46 CH [counter] = new value DB at 470 H (timer wrap) \(=0\)

1B Kayboard Control-Break interrupt service, issued during interrupt type 9 (key depressed) service. Used by disk operating system.

1C User timer interrupt, always issued during service of interrupt type 8 (Timer 0).

1D Contains segmentsoffset address of the beginning of the video paramater table. These are the parameters used for initialization of the 6845 controller. This vector entry is not used to refer to code, therafore an interrupt of this type must not be issued. The table has 3 entries esch of 16 bytes for

Modes 0 and 1
Modes 2 and 3
Modes 4, 5, 6 and 8
in that order. Each entry consists of 16 bytes for the 16 display controller registers (lowest bytes is for register 0 , lowest byte but one for register 1, etc.

\section*{Interrupt}

\section*{Description}
[Hex]

1E Contains segmentsoffset of the flexible disk parameter table. This vector entry is not used to refer to code, therefore en interrupt of this type must not be issued. The table provides parameters for the flexible disk controller and the corresponding ROM BIOS routine. The table is built up as follows:
```

DB Step rate [SRT] and head unload time [HUT]
DB Head load time [HLT] and DMA/non-DMA mode
selection

```
DB Motor wait time
DB Bytes/sector selection
DB Final sector number
DB Gap length [GPL]
DB Data length [DTL]
DB Length of format Gap 3
DB Format filler byte
DB Head settle time
DB Motor start time

1F Contains segmentsoffset of graphics character bit patterns [character codes \(80 H-0 F F H\) ] in random access memory [see Chapter 7]. These patterns, and the interrupt vector entry, are loaded by the NCR-DOS GRAFTABL utility, but they can be supplied by individual applications. This vector entry is not used to refer to code, therfore an interrupt of this type must not be issued.

NCR-DOS program terminate.
NCR-DOS function call.

NCR-DOS terminate address.

NCR-DOS Control-Break exit address.

24 NCR-DOS fatal error address.
\begin{tabular}{|c|c|}
\hline Interrupt (Hex] & Dascription \\
\hline 25 & NCR-DOS absolute disk read. \\
\hline 26 & NCR-DOS absolute disk write. \\
\hline 27 & NCR-DOS terminate but stay resident. \\
\hline 28-3F & Reserved for NCR-DOS. \\
\hline 40 & Reserved for re-direction of disk processing from flexible disk to fixed disk routines (see Int. 13H). \\
\hline \multirow[t]{14}{*}{41} & Contains segmentsoffset of the parameter table for a fixed disk drive. This vector entry is not used to refer to code, therefore an interrupt of this typemust not be issued. The table is built up as follows: \\
\hline & DW Maximum number of cy linders DB " " " heads \\
\hline & DW Cylinder where reduced write-current starts \\
\hline & DW Cylinder where write pre-compensation starts \\
\hline & DB Maximum ECC data burst length \\
\hline & \[
\text { DB Control byte: bit } \begin{aligned}
7 & =1-\text { disable access retries } \\
6 & =1-\quad \text { " ECC retries } \\
5,4,3 & =0
\end{aligned}
\] \\
\hline & 2,1,0 = drive option \\
\hline & D8 Standard time-out \\
\hline & DB Time-out for formatting drive \\
\hline & DB " " chacking drive \\
\hline & DB ] \\
\hline & DB \} Reserved \\
\hline & DB \} \\
\hline & DB \} \\
\hline 42-5F & Reserved. \\
\hline 60-7F & User available. \\
\hline 80-70 & Reserved. \\
\hline F1-FF & User available. \\
\hline
\end{tabular}

\section*{BIOS DATA AREAS}

Situated in memory immediately above the interrupt vector and below the disk operating system (when loaded) are a number of data areas used by system I/O and memory management functions.

This section presents a summary of system use of these areas. Where binary numeric data is stored, this is indicated by the appropriate data declaration type DB, DW, or DD.

Type

\section*{Location \\ [Absolute Hex]}
\begin{tabular}{lll} 
DW & 400 & \begin{tabular}{l} 
Base port addresses for up to 4 serial \(1 / 0\) \\
interfaces.
\end{tabular} \\
DW & 402 & 404
\end{tabular}

DW 410 Equipment Flag bits:
\begin{tabular}{|c|c|}
\hline 14,15 & no. of installed parallel printer interfaces \\
\hline 13 & \(1=\) no NCR graphics adapter installed \\
\hline 12 & 1 = games card installed \\
\hline 9-11 & no. of installed serial I/O channals \\
\hline 8 & \(1=\) char. generator installed for \(840 \times 400\) modes ( 8 and 9) \\
\hline 8,7 & no. of flexible disk drives binary value \(0=1\) drive \\
\hline & 1 = 2 drives \\
\hline & \(2=3\) drives \\
\hline & \(3=4\) drives \\
\hline
\end{tabular}

Location (Absolute Hex]
\[
\begin{aligned}
& 4,5 \text { typa of monitor }- \\
& \text { binary value } 0=\text { serial } \\
& 1=40 \times 25 \\
& 2=80 \times 25 \text { color } \\
& 3=80 \times 25 \text { mono }
\end{aligned}
\]

3 always set
2 slways set
1 1 = serial monitor installed 0 always set

DB
412
Reserved.

Memory size in KB.
DW
413

415
Reserved.

DB
DB
418

419

41A

41C

41E-43D

DB
\(43 E\) Flexible disk recalibration bits:

0 drive 0
1 drive 1
2 drive 2
3 drive 3

A bit is set to show that no recalibration is required for that drive.

Type

\section*{Location [Absolute Hex]}
\begin{tabular}{|c|c|c|}
\hline DB & 440 & Timeout counter for motor, decramented by ISR for Timer Counter 0 (int. type 8). \\
\hline DB & 441 & Flexible disk operation status bits: \\
\hline & & 0 command error \\
\hline & & 5 FDC failure \\
\hline & & 7 timeout \\
\hline & & 3 and 0 both set cen indicate DMA error [straddled 64 KB boundery] \\
\hline
\end{tabular} Phase (see Chapter 6).
\begin{tabular}{|c|c|c|}
\hline DB & 449 & CRT Mode (see interrupt 10H). \\
\hline DW & 44A & Number of display columns. \\
\hline DW & 44. & Size of display buffer (bytes). \\
\hline DW & 44E & Starting address in display buffer [see description of CRT controller in Chapter 7]. \\
\hline & 450-45F & Cursor position information for up to 8 screen pages. First page cursor is at 450451; column is lower byte, row is upper byte. \\
\hline DW & 460 & Cursor style, one bit for each scan line. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Type & Location [Absolute Hex] & Description \\
\hline DB & 462 & Current display page. \\
\hline DW & 483 & Base port address or current display adapter. \\
\hline DB & 465 & CRT controller Mode Contral Register [see Chapter 7). \\
\hline DB & 466 & Color palette setting, written during interrupt 10H (entry: AH=DBH) service. \\
\hline DW & 467 & This is a segmentioffset pointer to the \\
\hline DW & 469 & first byte of code of initialization routines contained in ROMs on adapters not included on the main processor board [see section "System Initializaion"). Segment value is the higher word. \\
\hline DB & 46B & Interrupt type of hardware interrupt most recently serviced by the ROM BIOS dummy ISR. This byte is all bits set for a sof tware interrupt. \\
\hline DD & 48C & Counter incremented by Timer Counter 0 ISR [interrupt type 8]. \\
\hline DB & 470 & Timer overflow flag. Value 1 denotes timer overflow. This byte is written zero when system time is read or written (interrupt type 1AH]. \\
\hline
\end{tabular}
Typa Location Description
[Absolute Hex]
\begin{tabular}{ccc} 
DB & 471 & Break indicator: bit 7 set \(=\)\begin{tabular}{c} 
Break key \\
pressed
\end{tabular} \\
DW & 472 & Ctrl-Alt-Del indicator: word value 1234H if \\
reset in progress
\end{tabular}

474-477 Fixad disk data area used during service of int 13 H.
\begin{tabular}{lll} 
DB & 478 & Timeout counters for up to four parallel \\
DB & 479 & printer channels. \\
DB & 47 A & \\
DB & 47 B & \\
DB & 47 C & \begin{tabular}{l} 
Timeout counters for up to four serial \(1 / 0\) \\
DB
\end{tabular} \\
DB & 470 & channels. \\
D8 & \(47 E\) &
\end{tabular}

480-483 Additional keyboard buffer pointers.

490-4EF Reserved.

4FO-4FF Available for passing date between program segments. [True segmentsoffset addresses cannot otherwise be used, as the loading segment value under the operating system can vary.)
\begin{tabular}{|c|c|c|}
\hline Type & Location (Absolute Hex] & Description \\
\hline DB & 500 & Printer status values: \\
\hline & & ```
    0 not busy, no error
    1 busy
OFFH error
``` \\
\hline DB & 504 & Single drive status (\(A\) or B]. \\
\hline & 510-510 & Reservad \\
\hline & C0000-G7FFF CDOOD-EFFFF & ROM expension. \\
\hline & C8000-CCFFF & Fixed disk control. \\
\hline & F0000-FFFFF & NCR PERSONAL COMPUTER ROM BIO \\
\hline
\end{tabular}

\section*{SYSTEM INITIALIZATION}

This section draws attention to one particular aspect of system initialization: the presence of additional adapters installed in the computer. This information is of particular interest if you are designing your own adapters for the NCR PERSONAL COMPUTER.

After initializing the programmable integrated circuits on the main processor board before booting the disk system, the initialization procedure looks for read only memory, starting at the machine address 0 C 8000 H up as far as 0 FEOOOH , which is the lowest address occupied by the ROM BIOS. Any adapter which wishes to execute code from its own ROM can identify itself to the main processor board initialization routine.

The main processor board initialization routine looks for the word identifier 0AA55H at machine address 0 C 8000 H . If the identifier is not found (that is, if no ROM with this identifier is installed on an adapter), the next attempt to find this identifier is made at the machine address 0 C 8800 H . This process continues with address increments of 2048 (800 H) bytes, until the beginning of main processor board ROM BIOS.

If the identifier is found, a one-byte binary value representing the number of 512 -byte blocks on the adapter is assumed at a positive offset of 2 to the above-mentioned 2048-byte boundary. Valid 8088 code is assumed at a positive offset of 3 , and a far call is executed to that address. This code can provide, for example, additional initialization routines not provided by the main processor board ROM BIOS. The final instruction of the code on the adapter ROM is a far return. The search for further occurrences of the 0AA55H identifier then continues with the search address set to 2048 byte boundary following the last 512 -byte block on the adapter most recently detected.

A fixed disk adapter, if present, provides just such an identifier at the machine address \(0 C 8000 \mathrm{H}\). If no flexible disk is installed in drive \(A\), the fixed disk ROM code re-writes the interrupt vector for type 13H, so that it points to boot loading routines on the fixed disk adapter ROM. The most immediate effect of this is that the system boot subsequently executed by means of interrupt 19 H reads the boot record from the fixed disk, instead of from the flexible disk.

O

○

O

\section*{Printers and Communications}

\section*{INTRODUCTION}

This Chapter describes the two standard types of interface provided by your NCR PERSONAL COMPUTER, namely RS-232-C and Centronics.

A number of printers, plotters and communications devices can be controlled by your computer by means of these interfaces. The RS-232-C serial input/output interface is especially versatile in communications applications. This Chapter provides information about the hardware integration of these interfaces as well as instructions for their low level software control. The inhouse data link control (DLC) interface is described in a separate Chapter.

The following cables relating to the RS-232-C serial and Centronics parallel interfaces are available:
\begin{tabular}{ll}
K120 & Centronics \\
K121 & RS-232-C (Printer) \\
K122 & RS-232-C (Communications)
\end{tabular}

Your NCR PERSONAL COMPUTER can also drive a second RS-232-C interface installed as an option. An additional hardware interrupt type is made available by the BIOS in the system interrupt vector, so that two RS-232-C interrupt driven interfaces can be active simultaneously.

\section*{RS-232-C IEPUT/OUTPUT}

The electronics of the standard RS-232-C interface are included on the main processor board. The external connections are by means of the uppermost Dshaped connector at the back of the computer. The pin configuration of this connector is shown in Figure 4.1 .

\section*{Figure 4.1 RS-232-C Pin Configuration}

The RS-232-C interface is programmable by means of an 8250 asynchronous receiver/transmitter. This integrated circuit includes a programmable baud rate generator and interrupt handling logic. The logic structure and pin assignments of this integrated circuit are illustrated in Figure 4.2.

The control, address, and data signals present at the 8250 are set out in Figure 4.3.

\begin{tabular}{|c|c|c|}
\hline I Pin & [I/O)] & Signal \\
\hline | 1-8 & D0-07 & The system data bus, used for transferring \\
\hline 1 & I & contral information and data in parallel form 1 \\
\hline 1 & 1 & prior to serialization for transmission or I \\
\hline 1 & 1 & after received data has been de-serialized \\
\hline 1 & I & | \\
\hline 19 & RCLK [I]) & 16X baud rate clock input for the receiver \\
\hline I & | & \\
\hline 110 & SIN [I]I & Receives serial deta from RxD input line \\
\hline 1 & 1 & \\
\hline | 11 & SOUT [0]| & Transmits serialized data via the TxD output \\
\hline 1 & & Line. A Master reset sets SOUT to logic 1 | \\
\hline 1 & & marking condition \\
\hline 1 & 1 & \\
\hline \| 12 & CSO [I]) & All 3 Chip Select lines must be active in | \\
\hline | 13 & CS1 [I]) & order to select the 8250 \\
\hline 14 & CS2/ [I]l & \\
\hline 1 & | & \\
\hline 15 & BAUDOUT/ I & 16X clock signal for the transmitter. The \\
\hline 1 & [0]) & clock rate \(=\) oscillator frequency divided by \\
\hline 1 & & contents of divisor latches \\
\hline 1 & 1 & \\
\hline 16 & XTAL1 & Connect signal clock to the baud rate divider I \\
\hline 17 & XTAL2 & circuit on the 8250 \\
\hline 1 & 1 & I \\
\hline 18 & DOSTR \(/\) [1] & Either one of these Data Strobe Lines is used I \\
\hline | 19 & DOSTR [I] & to latch data from the CPU into the selected I \\
\hline I & & 8250 register | \\
\hline 1 & 1 & 1 \\
\hline 120 & Vss & System signal ground \\
\hline 1 & 1 & I \\
\hline 21 & DISTR/[I] & Either one of these Data Strobe Lines serves I \\
\hline 22 & DISTR (I)] & to latch an 8250 register for reading by the | \\
\hline 1 & & CPU I \\
\hline I & 1 & 1 \\
\hline
\end{tabular}

Figure 4.38250 Signals [1 of 3]
\begin{tabular}{|c|c|c|}
\hline Pin & [\(1 / 0]\) & Signal \\
\hline & 1 & \\
\hline \multirow[t]{4}{*}{23} & DDIS (0)] & Driver Disable. Output goes Low whenever data \\
\hline & & is being read from the 8250. Can be used to \\
\hline & 1 & reverse data direction of external receiver \\
\hline & 1 & \\
\hline \multirow[t]{3}{*}{24} & CSOUT (0)] & Confirms chip selection by means of a high \\
\hline & & output. A pre-requisite for data trasfer. \\
\hline & 1 & \\
\hline \multirow[t]{6}{*}{25} & ADS/ [I]) & Address Strobe providing latching for 8250 \\
\hline & & internal registers. An active ADS/ signal is \\
\hline & 1 & required onty if the 3 address Lines \\
\hline & & selecting the register do not maintain stable \\
\hline & & signals during throughout an 8250 operation. \\
\hline & 1 & \\
\hline 26 & A2 & System address bus lines selecting an 8250 \\
\hline 27 & A1 & internal register \\
\hline \multirow[t]{2}{*}{28} & AD & \\
\hline & 1 & \\
\hline \multirow[t]{2}{*}{29} & 1 & No connection \\
\hline & 1 & \\
\hline \multirow[t]{3}{*}{30} & INTRPT & Output goes high whenever an enabled \\
\hline & [0]) & interrupt is imminent \\
\hline & 1 & \\
\hline \multirow[t]{4}{*}{31} & OUT2/ [0]) & User-designated output programmable by means \\
\hline & & of bit 3 of the Modem Control Register: bit \\
\hline & & set makes signal active \\
\hline & 1 & \\
\hline \multirow[t]{3}{*}{32} & RTS/ [0)] & Signal active informs the external device \\
\hline & I & that the 8250 is ready to transmit data \\
\hline & 1 & . \\
\hline \multirow[t]{3}{*}{33} & DTR/ [0]) & Signal active informs the external device \\
\hline & 1 & that the 8250 is ready to communicate \\
\hline & 1 & \\
\hline \multirow[t]{4}{*}{34} & OUT9/ (0)] & User-designated output programmable by means \\
\hline & I & of bit 2 of the Modem Control Register: bit \\
\hline & , & set makes signal active \\
\hline & 1 & \\
\hline
\end{tabular}

Figure 4.38250 Signals [2 of 3]

Figure 4.3 8250 Signals (3 of 3)

\section*{PROGRAMMING THE SERIAL RECEIVER/TRANSMITTRR}

The 8250 converts parallel data to serial on the transmit side and serial to parallel on the receive side. The serial interface driven by the 8250 included on the system main processor board is often given the name COM1. The port addresses dedicated to this interface and the 8250 -bit internal registers they access are:

3F8H Receiver Buffer/Transmit Holding Register. This port is also used to access the lower byte of the baud rate Divisor Latch (switched by means of the Line Control Register).

> 3F9H Interrupt Enable. Also upper byte of baud rate Divisor Latch (switched by means of Line Control Register).

3FAH Interrupt Identification (read only).
3FBH Line Control.
3FCH Modem Control.
3FDH Line Status.
3FEH Modem Status.
3FFH Not used.
The serial I/O unit commonly given the title COM2 occupies corresponding port addresses in the range \(2 F 8 H\) to 2 FFH. Concurrent use of COM1 and COM2 is possible after installation of the optional Second RS-232-C Interface (3299-K301), which must then be strapped to COM2. A separate hardware interrupt is dedicated to the second serial interface (see Chapter \(3)\).

Figure 4.4 shows the structure of the registers which control the operation of the 8250. The Receiver Buffer/Transmitter Holding Register is no more than an 8-bit data register accessed via the processor IN or OUT instruction, according to the direction of data flow. Bit 0 is always the first bit transmitted or received. The Divisor Latch sets the baud rate generator by means of a \(16-b i t\) binary value. The Divisor Latch is selected/de-selected by bit 7 in the Line Control Register.

Figure 4.4 8250 Control/Status Registers [1 of 2]

Figure 4.4 8250 Control/Status Registers [2 of 2]

Interrupt Enable Register
If all bits are zero, no interrupts are issued by the 8250. Setting individual bits \(0-3\) determines which events result in the issue of an interrupt. These bits may be set in any combination:

0: Interrupt when received data available.

1:
2: 3: Transmitter Holding Reg. empty. error or Break Interrupt. change of state on CTS, DSR, RI, or RLSD.

\section*{Interrupt ID Register}

If an interrupt is waiting to be acknowledged, bit 0 is zero. The binary value represented by bits 1 and 2 then denotes the pending interrupt with the highest priority (see Figure 4.5).

Figure 4.58250 Interrupt Priority

\section*{Line Control Register}

This register can be read as well as written, so that there is no need for applications to store the current settings.

Bits 0 and 1 contain a binary value specifying length of the serial character: \(0=5\) bits, \(1=6\) bits, \(2=\) 7 bits, and \(3=8\) bits.

4-10

Bit 2 specifies the number of stop bits: \(0=1\) stop bit; 1 sets 1.5 stop bits (for 5-bit character), or 2 stop bits (for other character lengths).
Bit 3 set determines that parity checking takes place. The type of parity checking is controlled by bits 4 and 5: bit 4 set means that an even number of bits are transmitted or checked; if bit 5 is set, parity is transmitted and then detected by the receiver as logic 0 (if bit \(4=1\)) or as logic 1 (if bit \(4=0\)).
Bit 6 forces the serial output line to a low (Break) state, where it remains until this bit is reset. The Break condition is often used to alert the external device.
Bit 7 set selects the Divisor Latch at ports \(3 F 8 \mathrm{H}\) and \(3 F 9 H\), in order to program the baud rate generator. As long as this bit is zero, the Receive Buffer/Transmit Holding Register (3F8H) and Interrupt Enable Register (3F9H) are selected.

\section*{Modem Control Register}

Bits \(0-3\) set force high the 8250 output lines DTR/, RTS/, OUT1/, and OUT2/, respectively.
Bit 4 set activates 8250 internal diagnostics (see later section).

\section*{Line Status Register}

Bit 0 set indicates that a serial character from the receiver has been converted to parallel form and is waiting to be read from the Receiver Buffer Register (port 3 F8H). This status bit is automatically reset when the data byte is read, or if that register is filled with zeros by means of an OUT instruction from the microprocessor.
Bit 1 set means that an overrun error occurred, that is, the Receiver Buffer Register was not read before a new character was introduced to it. Reading the Line Status Register resets this bit.

Bit 2 set indicates a parity error. This bit is reset by reading the Line Status Register.
Bit 3 set indicates a framing error, that is, the stop bit is not valid.

Bit 4, the Break Interrupt detector, is set if a break condition is recognized by the receiver. Such a condition exists when the serial input line is at zero beyond the length of one character consisting of Start + Data + Parity + Stop bits.
Bit 5 indicates when the Transmit Holding Register can accept a new character for serialization and transmission (bit set), as the most recent character has been forwarded to the 8250's Transmit Shift Register. This bit is reset when this register is next written to.
Bit 6 reflects the status of the Transmit Shift Register: this bit set indicates that the register is idle.

\section*{Modem Status Register}

Whenever bit \(0,1,2\), or 3 is set, a Modem Status interrupt condition is asserted (see Figure 4.5).

Bits 0 set indicates that the CTS/ line has changed state since the Modem Status Register was last read. Bit 1 applies analogously to the DSR/ line.
Bit 2 is set when the trailing edge of the Ring Indicator is detected.
Bit 3 set indicates that the RLSD/ input has changed state.
Bits 4-7 represent the complements of the CTS/, DSR/, RI/, and RLSD/ inputs, respectively, provided that bit 4 in the Modem Control Register is zero. If this bit is set, the four Modem Status Register bits represent RTS/, DTR/, OUT1/ and OUT2/.

\section*{INTERNAL DIAGNOSTICS}

The 8250 includes its own loopback diagnostic feature, activated by writing the Modem Control Register with bit 4 set.

\section*{Data Integrity}

The serial transmitter output (SOUT)is set to a state of marking (logic 1) and the serial receiver line (SIN) is disregarded. The output from the Transmit Shift Register is looped back into the Receiver Shift Register. The Modem control inputs CTS/, DSR/, RLSD/, and RI/ are disregarded. Instead, these signals are supplied internally by the Modem control outputs DTR/, RTS/, OUT1/, and OUT2/. This configuration allows the 8250 to verify its internal transmit and receive data paths.

\section*{The Interrupt System}

In the diagnostic mode, receiver and transmitter interrupts are fully operational. The Modem Control interrupts are also operational, but the interrupts are now derived from the four least significant bits of the Modem Status Register, not from the Modem Control input lines. The interrupts can still be enabled and disabled by means of the Interrupt Enable Register.

A test of the interrupt system requires writing the lower 6 bits of the Line Status Register and the lower 4 bits of the Modem Status Register: a bit set results in the assertion of the corresponding interrupt.

To conclude diagnostics, restore the 8250 registers where appropriate and write the Modem Control Register with bit 4 set.

\section*{RECEIVER/TRANSMITTER TIMING}

Figures 4.6 - 4.11 illustrate 8250 signal timing.

Figure 4.6 Read Cycle

Figure 4.7 BAUDOUT/ Timing

Figure 4.8 Write cycle

SAMPLE CLK

Figure 4.9 Receiver Timing

Figure 4.10 Transmitter Timing

\section*{BAUD RATE SELECTION}

The clock input governing the 8250 internal baud rate generator in your NCR PERSONAL COMPUTER is set at 1.8432 MHz . Accordingly the 16 -bit Divisor Latch values for the standard baud rates are as set out in Figure 4.12. Where the integer nature of 16 -bit binary counting results in a negligible deviation from the nominal baud rate, this is indicated in the rightmost column.

Figure 4.12 Baud Rate Divisor Latch

\section*{PROGRAMMTNG HINTS}

This section presents a starting point for the creation of your own serial input/output protocols.

Constants used in these routines:
\begin{tabular}{|c|c|c|c|}
\hline COM & EQU & 3 F 8 H & ;otherwise 2F8H. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & & & ;Line Control Register - \\
\hline PARITY & EQU & 18H & ; Example: even parity enabled. \\
\hline DATBIT & Equ & 2 & ; 7 data bits. \\
\hline STOPBIT & EQU & 0 & 1 stop bit. \\
\hline BAUDDIV & EQU & 8 H & ; select Divisor Latch. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline BAUD & EQU & 3 OH & ; baud rate 2400. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline TIMEOUT & EQU & OFFFFH & ; Timeout for external device \\
\hline & & & ; in terms of 808B CX LOOPs taken \\
\hline
\end{tabular}
;

\section*{Interface Availability}

This examination of your system configuration checks for the availability of a serial I/O interface as COM1 (base port 3 F 8 H) or COM2 (base port 2 F 8 H), according to the base port represented by COM:
\begin{tabular}{|c|c|c|}
\hline MOV & DX, COM +2 & ; Refer to Interrupt Identification ;Register. \\
\hline IN & AL, DX & \\
\hline TEST & AL, 00000111 B & ;Will not yield zero if Modem ;signals not present. \\
\hline JNZ & NOCOM & ;Jump if COM not available. \\
\hline
\end{tabular}

\section*{Initialization}

The following routines initialize the 8250 for the transmission and receiving of serialized data.
Set the Line Control Register to the required parity, data, and stop bits. At the same time, set the Divisor Latch bit (7), so that the baud rate generator can be subsequently set:

4-18
```

XOR AL,AL
OR AL,PARITY+DATBIT+STOPBIT
OR AL,BAUDDIV
MOV DX,COM+3 ;Refer to Line Control Register.
OUT DX,AL

```

Next write the desired baud rate to the 8250's 16-bit Divisor Latch:
\begin{tabular}{lll}
MOV & \(A X, B A U D\) & \\
SUB & \(D X, 3\) & ;Refer to serial I/O base port. \\
OUT & \(D X, A L\) & ;Divisor Latch Low byte. \\
MOV & \(A L, A H\) & \\
INC & \(D X\) & \\
OUT & \(D X, A L\) & ;Divisor Latch high byte.
\end{tabular}

Now retrieve the Line Control Register and re-write it, this time with the Divisor Latch bit zero, so that the port COM can transmit/receive data, and COM+1 addresses the Interrupt Enable Register:
```

MOV DX,COM+3
IN AL,DX ;Read Line Contral Register.
XOR AL,BAUDDIV ;Zero bit 7.
OUT DX,AL ;Rewrite register.

```

Finally clear the Interrupt Enable Register so that interrupt conditions do not result in an interrupt actually being issued. It is then the concern of the transmitting/receiving routine to select types of event which are to result in an interrupt:
\[
\begin{array}{lll}
\text { MOV } & D X, C O M+1 & \\
\text { XOR } & A L, A L & \\
\text { OUT } & D X, A L & \text {;Write Interrupt Enable Register } \\
& & \text {;with all bits zero. }
\end{array}
\]

\section*{Transmitting Data}

The following routines assume a character ready for transmission in AH.
First assert the DTR/ and RTS/ signals by means of the Modem Control Register:

Now poll the DSR/ and CTS/ until both are asserted by the external device, or until timeout, whichever is the sooner:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{3}{*}{TIME1:} & MOV & CX, TIMEOUT & \\
\hline & MOV & DX, COM +6 & ;Point to Modem Status Register. \\
\hline & IN & \(A L, D X\) & \\
\hline & AND & \(A L, 30 \mathrm{H}\) & ;Blank out all but bits 4 (CTS) ;and 5 (DSR]. \\
\hline & CMP & \(A L, 30 H\) & \\
\hline & JZ & MODRDY & ;Jump if device ready . \\
\hline & LOOP & TIME1 & ;Otherwise check again, unless \\
\hline & & & ;count exhausted. \\
\hline & JMP & MODXRDY & ;Jump if device timeout. \\
\hline
\end{tabular}

Assuming that the device was not disqualified by timeout, read the Line Status Register, looking for the Transmit Holding Register to become empty (bit 5). This condition is fulfilled if no character has been transmitted so far, or if the previous character has been passed to the Transmit Shift Register. Again a timeout condition can be applied:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{3}{*}{TIME2:} & MOV & CX, TIMEOUT & \multirow[b]{3}{*}{; Refer to the Line Status Register.} \\
\hline & MOV & DX, COM +5 & \\
\hline & IN & AL, \({ }^{\text {DX }}\) & \\
\hline & AND & AL, 20 H & ; 8250 can accept CPU char., as soon \\
\hline & & & ;as THRE [bit 5] set. \\
\hline & JNZ & SEND & ;Jump if THRE empty. \\
\hline & LOOP & TIME2 & ;Otherwise check again, unless \\
\hline & & & ;count exhausted. \\
\hline & JMP & MODXRDY & ;Jump if device timeout. \\
\hline
\end{tabular}

Assuming no timeout condition arose, a character can now be transmitted. The Transmit Hold Register is already known to be empty. No further status checks are required:
\begin{tabular}{ccl}
SEND: MOV DX, COM & \begin{tabular}{l}
;Refer to Transmit Holding Register/ \\
;Receive Buffer.
\end{tabular} \\
MOV AL, AH & ; (Character assumed in \(A H_{*}\)]
\end{tabular}

Finally do not forget to deal with the possible timeout conditions (MODXRDY). This can take the form of retrying or terminating the operation.

\section*{Receiving Data}

First activate the DTR/ output, so that the external device knows that it can start transmitting. This is achieved by setting bit 0 of the Modem Control Register:
\begin{tabular}{lll}
MOV & \(D X, C O M+4\) & ;Refer to Modem Contral Register. \\
MOV & \(A L, 1\) & ;Set bit 0. \\
OUT & \(D X, A L\) &
\end{tabular}

Now check that the device is ready by polling the DSR bit (5) in the Modem Status Register until it is set, or until device timeout:

Even when the device announces its readiness, it is still necessary to wait until a serial input character has been completely bit-shifted into the Receiver Buffer. Again a timeout condition or, alternatively, some kind of user (keyboard) break check can be applied:
\(\left.\begin{array}{llll}\text { DATCHK: } & \text { MOV } & \text { CX,TIMEOUT } \\ \text { MOV } & \text { DX,COM+5 }\end{array} \quad \begin{array}{l}\text {;Data Ready bit is } \\ \text {;in Line Status register. }\end{array}\right]\)

Before actually reading the character from the Receiver Buffer, it is advisable to check that the character received was valid, that is, that there was no overrun, parity, or framing error, and that a break condition was not present on the serial input line:
\begin{tabular}{rl}
RECEIVED: AN AL,1EH & \begin{tabular}{l}
;Blank out all but overrun [1], \\
;parity [2], framing [3] error
\end{tabular} \\
;and break [4] bits.
\end{tabular}

The valid character can now be read from the Receiver Buffer. (Do not forget to provide suitable handling routines for MODXRDY and ERROR.)
\begin{tabular}{ll}
MOV \(D X, C O M\) & \begin{tabular}{l}
;Refer to Transmit Holding Register/ \\
;Receiver Buffer.
\end{tabular} \\
IN \(A L, D X\) & ;Valid character in AL.
\end{tabular}

\section*{CENTRONICS INTERFACE}

The Centronics interface included on the main processor board provides a parallel connection to an external input/output device. The interface provides 8 TTL buffered data lines, 4 TTL buffered control lines, and 5 lines for status reading. Three basic operations can be performed:
* Write data to device.
* Read data from device.
* Read status of device.

Figure 4.13 shows the logical significance of the interface signals. Physical pin connections of the Dconnector, situated second from top at the rear of the computer, are set out in Figure 4.14. The pins are capable of sourcing 2.6 mA and sinking 24 mA .

Control data comprises the following lines:
STROBE/ The pulse of at least 0.5 microseconds used to clock data read. Data is read when this signal is active (low).

AUTO/ This signal is commonly recognized by printers as an instruction to perform an automatic line feed when end of line is reached.

INIT/ This signal is commonly recognized by printers as a reset instruction, usually entailing erasure of remaining printer buffer contents.

SELECT Signal to select the external device INPUT/ (printer).

Status information comprises the following lines:
ERROR/ Indicates device (e.g. printer) error, for example, at paper-end, off-line, safety switch open, failure status.

\begin{tabular}{|c|c|}
\hline Pin & 1 Signal \\
\hline 11 & | STROBE/ \\
\hline 1 2-9 & | Date Lines 0-7 \\
\hline | 10 & | ACKNOWLEDGE/ \\
\hline 111 & | Busy \\
\hline I 12 & 1 PE \\
\hline | 13 & | SELECT \\
\hline | 14 & | AUTO/ \\
\hline 115 & | ERROR/ \\
\hline | 16 & | INIT/ \\
\hline | 17 & | SELECT IN/ \\
\hline | 18-25 & | Ground \\
\hline
\end{tabular}

Figure 4.14 Centronics D-Connector

SELECT Confirms that the device is selected.
PE This signal is used by printers to denote an out-of-paper condition.

BUSY When this signal is active, the device cannot receive data. With printers, this signal is active under the following circumstances:
\[
\begin{aligned}
& \text { during data entry (depending on printer) } \\
& \text { during printer operation } \\
& \text { in off-line status } \\
& \text { upon printer error status } \\
& \text { during line feed }
\end{aligned}
\]

\section*{ACKNOWLEDGE/}

Indicates that data has been received by the printer. New data cannot be received before this signal is reset.

\section*{SOFTWARE CONTROL}

Data transfer between the microprocessor and the interface is via the system data bus. To write data to the external device the data is transmitted via port 378 H . The interface captures the data from the bus and presents it on the data lines at the external connector. Appropriate control information must then be issued via port 37 AH .

To read data from the Centronics interface, it is first necessary to transmit the appropriate control information via port 37 AH . Data can then be read via port 378 H .

Status reading is via port 379 H .

\section*{Status and Control Registers}

The status byte is made up as shown in Figure 4.15, the control byte as shown in Figure 4.16.

Figure 4.15 Centronics Status Register

Figure 4.16 Centronics Control Register

\section*{Centronics Printer Control}

The short routines in this section illustrate fundamental programming steps involved in the initialization of the Centronics interface for parallel printers, and how to output data.

Initialization of the Centronics printer interface is essentially as follows:
\begin{tabular}{|c|c|c|c|}
\hline & MOV & DX,37AH & ;Control port. \\
\hline & MOV & AL,00001000B & ;Set bit to select external ;device (SELECT INPUT). \\
\hline & OUT & DX, AL & \\
\hline & MOV & CX,2000 & \\
\hline WAIT1: & LOOP & WAIT1 & ; Allow device time to select. \\
\hline & MOV & AL,00001100B & ;Reset printer (INIT). \\
\hline & & & ; Here, auto line feed is \\
\hline & & & ; disabled. \\
\hline & OUT & DX, AL & \\
\hline
\end{tabular}

The following routine prints one character assumed to be available in AL. Supply a TIMEOUT value suitable for your printer and a routine (PRTXRDY) for the eventuality that a timeout situation arises.
\begin{tabular}{llll}
& MOV & DX,378H & ;Data output port. \\
OUT & BX,AL & ;Place character in output buffer. \\
WAITR: & INC & DX & ;Refer to status port.
\end{tabular}

Status reading beyond that of the Busy bit is often required in order to establish the cause of a breakdown of printer activity. The following routine reads printer status and masks out insignificant bits:
MOV DX,379H ; refer to status port.
IN AL,DX
AND AL,11111000B ;Ensure unused bits \(0,1,2\) are zero.

\section*{Printer Status Analysis}

This section consists of a short program which enables you to inspect the 5 interface status lines under test print conditions.

The printer continuously prints the characters in the code range \(20 \mathrm{H}-7 \mathrm{FH}\). Whenever one or more of the bits in the interface status register changes state, the new status is displayed on the screen. This happens, for example, at printer de-selection, end of paper, power on/off.

The timeout examination described in the previous section is also applied. The BUSY line status is constantly changing because the microprocessor is trying to output data faster than the printer can read it. The greater the TIMEOUT value specified, the less often a timeout condition is recognized. Each time a timeout condition is recognized in the character output routine PRNTOUT, where on the previous pass no such condition occurred, the information "Device Timeout" appears on the screen. Subsequent consecutive occurences of the timeout condition are each notified by means an asterisk. You can vary TIMEOUT so that this condition is recognized after every character or after every line feed. Observing this value can be useful when creating background printing software, in order to gain maximum printer efficiency while avoiding overzealous printer status polling on the part of the microprocessor. The optimum value varies, of course, from one printer to another.

Recognition of timeout is here dependent on the status of the BUSY line. This means that timeout continues to be notified to the screen while the printer is de-selected or during paper out, but not while power is off. To include power off time in the timeout status check, you could include the SELECT bit in this check.

You will notice that a single operational change of state can produce more that one status change. This is due to transitional signal conditions.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{;} \\
\hline PDAT & EQU & 378H & ;Parallel I/O data port. \\
\hline PSTAT & EQU & 379 H & ; status \\
\hline PCONT & EQU & 37AH & ; control \\
\hline \multicolumn{4}{|l|}{;} \\
\hline FLAGSEL & EQU & 11111000 B & ;Mask out unused bits in status. \\
\hline TIMERR & EQU & DFFH & ; Flags timeout error. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline CR & EQU & DDH & \\
\hline LF & EQU & OAH & \\
\hline TIMEOUT & EQU & DFFFFFH & ;Timeout while print character is ;waiting in buffer [example value]. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & CSEG & SEGMENT & \\
\hline & \multicolumn{3}{|l|}{ASSUME CS:CSEG,DS:CSEG, ES:CSEG} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & ORG & 100H & \\
\hline & PUSH & CS & \\
\hline & POP & DS & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{; ; <- START.}} \\
\hline & & & \\
\hline & CALL & INITIF & \\
\hline & MOV & ERRFLAG, OF & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{10}{*}{PRTLOOP: NEXTCH:} & MOV & AH,20H & ;Start printer iteration with space. \\
\hline & MOV & AL, AH & \\
\hline & CALL & PRntout & ;Attempt to print a character. \\
\hline & CMP & AL,TIMERR & \\
\hline & JNZ & NEXTCH3 & ;Jump if no device timeout. \\
\hline & MOV & DX, OFFSET & TIMEMES2 ;Assume timeout al so on ;previous pass through PRNTOUT \\
\hline & CMP & timeflag,0 & \\
\hline & JNZ & NEXTCH2 & ;Jump if timeout also at previous ;pass through PRNTOUT. \\
\hline & MOV & TIMEFLAG,0 & OFFH \\
\hline & MOV & DX, OFFSET & TIMEMES1 \\
\hline NEXTCH2: & CALL & SCRNMES & ; Notify timeout on screen. \\
\hline \multirow[t]{5}{*}{NEXTCH3:} & CALL & STATCHK & ;Full status analysis. \\
\hline & INC & AH & \\
\hline & CMP & AH, 8 OH & \\
\hline & JNZ & NEXTCH & ;Take next char. in ASCII sequence. \\
\hline & JMP & PRTLOOP & ;Repeat printer iteration ;indefinitely. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{;i;i;i;i;;i;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multirow[t]{7}{*}{STATCHK:} & & & ;Analyse status. \\
\hline & CALL & RDSTAT & \\
\hline & CMP & AL, ERRFLAG & \\
\hline & JZ & STATCHK1 & ;Return if status unchanged since ;last polt. \\
\hline & MOV & ERRFLAG, AL & ; Save new, changed error status. ;Now build up status display. \\
\hline & MOV & BX,OFFSET & STATLN2 - 1 \\
\hline & MOV & CX, 5 & ; No. of status bits. \\
\hline \multirow[t]{5}{*}{DISPLBIT:} & ADD & BX,6 & ;Status print line tabulator. \\
\hline & MOV & BYTE PTR [& [BX\(], \mathrm{\prime} \mathrm{O}^{\prime}\); Assume zero bit. \\
\hline & SHL & AL, 1 & \\
\hline & JNC & NEXTBIT & ;Jump if bit is zero. \\
\hline & mov & BYTE PTR [& [BX\(]\), '1' \\
\hline \multirow[t]{3}{*}{NEXTBIT:} & LOOP & DISPLBIT & \\
\hline & MOV & DX,OFFSET & STATLM \\
\hline & CALL & SCRNMES & ;Print status information. \\
\hline STATCHK1: & RET & & \\
\hline
\end{tabular}
```

PRINTERS AND COMMUNICATIONS
;
;;;;i;i;i;i;i;
;
INITIF: ;Initialize interface
;(see this Chapter).
MOV DX,PCONT
MOV AL,O8H ;SELECT INPUT
OUT DX,AL
MOV CX,2000
WAIT1: LOOP WAITY
MOV AL,OEH ;INIT, AUTO.
OUT DX,AL
RET
;
;;;;;;;;;;;i;;;
;
PRNTOUT:
MOV DX,PDAT
OUT DX,AL ;Character in output buffer.
INC DX ;Point to status port.
MOV CX,TIMEOUT
WAIT2: IN AL,DX ;Read status.
TEST AL,10000000B ;Examine BUSY.
JNZ STROBE
LOOP WAIT2 ;Otherwise loop until timeout.
MOV AL,TIMERR
JMP PRINTED
STROBE: MOV TIMEFLAG,D ;Flag no (end of) timeout.
INC DX ;Refer to control port.
MOV AL,OFH ;Strobe data.
OUT DX,AL
DEC AL
OUT DX,AL
PRINTED: RET ;Character already sent to printer,
;unless timeout.
;
;;i;i;i;i;i;i;;
;
RDSTAT: ;Return printer status in AH.
MOV DX,PSTAT
IN AL,DX
AND AL,FLAGSEL ;Zero insignificant bits.
RET

```
4-32
```

;
;i;i;i;i;i;i;i;
;
SCRNMES:
;Display error message on screen
;using NCR-DOS fuction call 9,
;display string up to $.
                                    ;Entry: address of string in DX.
            PUSH AX
            MOV AH,9
            INT 21H
            POP AX
            RET
;
; **** Status Message ****
;
ERRFLAG DB D ;OFFH flags repetition of an error
                                    ;on consecutive status polls.
TIMEFLAG DB D
                                    ;OFFH flags repeated timeout.
TIMEMES1 DB CR,LF,'Device Timeout ','$'
TIMEMES2 DB ''','$' ;Asterisk only for repeated timeout.
STATLN1 DB CR,LF
                            DB 1 
                            DB CR,LF
                            DB ' BUSY ACK PE SELECT ERROR - - -'
                            DB CR,LF
                            DB '
                                O
                            DB CR,LF
STATLNE DB '
                                    ',CR,LF,'$'
;
CSEG ENDS
END

```

O

O

O

\section*{Inhouse DLC Interface}

The inhouse data link control (K201) is an interface enabling your NCR PERSONAL COMPUTER, as the primary station, to communicate over dedicated lines with up to 31 secondary stations, for example, cash terminals (NCR 2126) and dialog stations (NCR 7900).

The primary station continuously polls the secondary terminals, checking whether a data transfer is requested. The secondary terminal can then transmit the requested data, after which it returns to the receive mode. Transmission speed is 48000 bits per second.

The maximum advisable length of cable in the entire network is 3600 metres (12000 feet).

The interface can communicate data with the system microprocessor under DMA or under direct microprocessor I/O control.

\section*{INTERFACE CONNECTIONS}

The interface uses only 4 wires, two for transmission (\(\mathrm{Ta}, \mathrm{Tb}\)), the other two for receiving (\(\mathrm{Ra}, \mathrm{Rb}\)). These wires are connected to a standard 9-pin D-connector as shown in Figure 5.1.

Figure 5.1 DLC Interface Connections

The interface hardware includes two jumpers which select the type of interrupt and the DMA channel used (Figure 5.2).

Figure 5.2 DLC Interface Jumper Settings

\section*{DLC CONTROLLER}

The DLC interface is controlled by an integrated circuit clocked by a 2.304 MHz oscillator. Figure 5.3 illustrates the integration of this controller in the NCR PERSONAL COMPUTER.

\section*{CONTROLLER PIM CONFIGURATION}

Figure 5.4 illustrates the pin connections of the DLC integrated circuit. The significance of the individual connections is explained in this section.

CLOCK Input - Pin B20
System clock input frequency of 4.77 MHz .
Reset DRV Input - B2
Initialization (reset) signal synchronized to the falling edge of the clock.

Address lines Input - Pins A22 ... A31
The 10 least significant system address bus lines (\(A 0\) to A9). Pin A31 represents the least significant address line.

Figure 5.3 DLC Controller: Signal Flow

Figure 5.4 DLC Integrated Circuit

Data lines - Pins A2 ... A9
The system data bus (DO to D7). The least significant data bit is represented at pin A9.

I/O CH RDY Output - Pin A10
I/O Channel Ready signal. This line is normally high (ready). It is pulled low by a memory or I/O device to lengthen I/O or memory cycles. Thus, slow devices can be attached to the interface with a minimum of difficulty. Any slow device should should drive this line low immediately upon detecting a valid address and a read/write command. This line is never held low for longer than 10 clock cycles.

IRQ2, IRQ3 Output - Pins B4, B25
These interrupt request lines are used to signal to the processor that the DLC controller requires attention. Jumpers are factory set to issue IRQ3 (Figure 5.2). The interrupt line is held high until it is acknowledged by the microprocessor.

IOR/ Input - Pin B14
I/O Read command. This signal instructs the DLC controller to place its data on the syatem data bus. It may be controlled by microprocessor or DMA.

IOW/ Input - Pin B13
I/O Write command. This signal instructs the DLC controller to read data from the system data bus. It may be controlled by microprocessor or DMA,

DRQ2, DRQ1 Output - Pins B6, B18
The DMA request lines. The selected DRQ line must remain high until acknowledged by the corresponding DACK/ line. The factory setting of the corresponding jumpers is that DRQ1 is selected (see Figure 5.2).

DACK1/, DACK2/ Input - Pins B17, B24
Acknowledge signal lines corresponding to the respective DMA request lines.

AEN Input - Pin A11
When this line is active, the microprocessor is degated so that a DMA transfer can take place.

T/C Input - Pin B27
Terminal Count. This line is pulsed active when the terminal count for the DMA channel has been attained.

The following voltages are present at the DLC controller:
\(+5 \mathrm{~V} 5 \%\) - Pins B3, B29
+12 V 5\% - Pin B9
- 12 V 10\% - Pin B7

Ground - Pins B1, B10, B31

\section*{SOFTWARE CONTROL}

The interface address lines are decoded as follows:
\[
\begin{array}{ll}
\text { IN } 380 \mathrm{H} & \text { Data Receive Hold Register } \\
\text { OUT } 380 \mathrm{H} & \text { Data Transmit Hold Register }
\end{array}
\]
\(\begin{array}{lll}\text { IN } & 381 \mathrm{H} & \text { Status Register } \\ \text { OUT } & 381 \mathrm{H} & \text { Command Register }\end{array}\)
OUT 382H Group Address Register
OUT 383H Transmit DMA Address (low) Register
OUT 384H DMA Counter Transmit Register
OUT 385H Receive DMA Address (low) Register
OUT 386H DMA Counter Receive Register
OUT 388H Unique Address Register
IN 389 H Interrupt Status
OUT 38AH Start Timer (4 ms)
OUT 38BH Stop and Reset Timer

\section*{Command Register}

This register controls the functions of the DLC integrated circuit. Each of the eight bits is dedicated to a different task. The structure of this Command Register byte is shown in Figure 5.5.

Figure 5.5 Command Register

\section*{TXFR}

Transmit Frame. Setting this bit instructs the DLC controller to begin transmission of a frame. Subsequently data for transmission is expected from the system bus. In DMA mode the controller internally resets this bit when the transmission is complete. Under direct microprocessor control of data transfer this bit is reset when a Transmitter Not Serviced condition arises.

TXFLG
Setting this bit causes the controller to transmit contiguous flags. If TXFR is set simultaneously the transmitted frame is completed before the contiguous flags are transmitted.

RXA, RXB
The binary value contained in these two bits (RXA is MSB) determines which receive mode is active:

0 Receive mode not active
1 Accept all addresses (Primary)
2 Accept group, global, or unique address (Secondary)
3 Accept unique addresses only

These two bits are reset internally by the controller at the conclusion of frame reception. Global address is F9.
The transmit bits (TXFR, TXFLG) take priority over the receive bits. In the event of a conflict, all transmission is completed before receive mode is entered.

IO/DMA
As long as this bit is zero, data transfer between DLC controller and system (both transmit and receive) takes place under DMA control. Otherwise data is transferred under microprocessor I/O control.

DIAG
Setting this bit causes the integrated circuit to carry out internal diagnostics. In transmit diagnostics the output lines Ta and Tb are disabled. Transmitter output is then routed back into the Receive Hold Register. Receive diagnostics can also be performed.

SWRST
Setting this bit resets the DLC controller. This reset must be performed after every introduction of power to the integrated circuit.

\section*{Status Register}

Figure 5.6 summarizes the bits of the Status Register.

Figure 5.6 Status Register

\section*{EOF}

End of Frame. This bit is set after a frame has been received whereupon the DLC controller generates an interrupt.

\section*{RNS}

Receiver Not Serviced. This bit is received after a frame has been received if the Receive Hold Register was not read in time. This condition can occur in both DMA and processor I/O modes of operation.

\section*{TNS}

Transmitter Not Serviced. The Transmit Hold Register was not written in the required time. This error causes the issue of an interrupt. The TNS condition can occur in both DMA and processor I/O modes of operation, but not under the following circumstances:
* The transmit command was aborted by controller command.
* The condition was recognized during the last byte transfer in a microprocessor I/O sequence.

\section*{FCS ERROR}

Frame Check Sequence Error. After a complete frame has been received, the received frame's FCS bytes are compared with those generated by the DLC controller during data byte reception. Any discrepancy results in this status bit being set.

RX ABORT
If seven contiguous "ones" are detected on a received frame, this bit and the EOF bit are set and an interrupt is issued.

\section*{DMATRM}

This bit is used for DMA transfers between DLC controller and the system. In the receive mode of operation DMATRM is set when the count written to the DMA Counter Receive Register is exhausted. In transmit mode it is set when the count in the DMA Counter Transmit Register is exhausted, or when a T/C (Terminal Count) signal is received from the DMA controller.

SVCRQ
Service Request. This bit is used for transfer under direct microprocessor control, that is, when the Transmit Hold Register is waiting for a byte of data (transmit mode) or when a byte of data is waiting to be read from the Receive Hold Register (receive mode). An interrupt is generated when this bit is set.

With the exception of SVCRQ reading the Status Register resets all its bits. SVCRQ is reset only after the data transfer via the bus has occurred.

\section*{Interrupt Status Register}

Three bits of the Interrupt Status Register read via port 389 H are significant:
\begin{tabular}{ll}
Bit 0 A DLC controller interrupt sets this bit. \\
Bit 1 & 4 ms timer interrupt. \\
Bit 2 & Reflects DRQ/IRQ jumper selection: \\
& \(0-\) DRQ2 and IRQ2 \\
& \(1-\) DRQ1 and IRQ3
\end{tabular}

\section*{Unique Address Register}

This register identifies the NCR PERSONAL COMPUTER in the DLC configuration. Normally, the computer will be functioning as the primary unit. The Unique Address Register is automatically set to 01 (primary) at DLC reset (which should always be performed after power introduction and before a new command), so that this register need not normally be written. If you have cause to use your NCR PERSONAL COMPUTER as a secondary device in a DLC configuration, you can write this register with a binary value as shown in Figure 5.7.

Figure 5.7 Unique Address Register

In addition the transmit and receive lines from the adapter exchange significance.

\section*{PROGRAMMING CONSIDERATIONS}

With the aid of flow charts the remainder of this Chapter discusses some fundamental points to observe when designing software for the DLC interface.

Transmitting via CPU

Figure 5.8 (1 of 2) CPU Transmit
1. The Command Register is written with bit 3 set, indicating that transfer will take place under direct CPU control. The values for bits 6 and 7 conform to the type of transmission required. When the Commend Register has been written, the transmission sequence is started and an interrupt is generated.
2. Transmission circuits are enabled following servicing of the first interrupt. Whenever an interrupt occurs, it must be serviced [that is, data must be output] within six bit times, otherwise a Transmitter Not Serviced condition arises and the frame is terminated.
3. After the interrupt has been serviced, check the Status Register for possible errors. Normally the register should have all bits zero.
4. To terminate the frame in progress issue a transmission terminate command (Command Register bits: Oxxxi000], again within six Figure 5.8 [1 of 2] bit times, otherwise a TNS arror will CPU Transmit occur.

\section*{Receiving via CPU}

Figure 5.9 [1 of 2] CPU Receive
1. Assuming that the DLC interface is the primary device, the Group Address Register need not be written. If a unique, group, or global command is to be issued (Command Register bits 4 and 5], this register must be written accordingly.
2. Issue a receive command detailed in bits 4 and 5 (\(R X A, \quad R X B\)), with the IO/DMA bit set. A receive command may be given at the same time as a transmit command. In this case the latter is performed first.
3. The receive command starts by activating the receiver circuits. First a valid addressed frame is searched for. Upon detaction an interrupt is issued, indicating that a data transfer to the system is required. This data byte must now be read by the CPU within 6 bit times after the interrupt, otherwise a Receiver Not Serviced condition will arise.
4. After the transfer of each data byte examine the Status Register. If the End of Frame (EOF) bit is set the date transfer is complete. If any other bit is set an error condition exists. If no bits are set there is still data to be received from the terminal.
Note: the last byte of date received [the byte which caused EOF to be set] is extraneous and should be discarded.

Figure 5.9 CPU Receive (2 of 2)

\section*{Transmitting via DMA}

Figure 5.10 (1 of 2) DMA Transmit
1. Initialize the DMA Counter Transmit register to OFFH.
2. Write the 8 LSBs of the first memory Location to the Transmit DMA Address Register. [The higher bits are to be supplied by the DMA controller).
3. Issue a transmit command in accordance with the type of interframe transmission required. If both TXFR and TXFLG are set [Command Register: 11xx0000] interframe time will be filled with contiguous flags. If TXFR is set and TXFLG is zero (Command Register: 10xx0000) the frame is followed by an idling sequence of 25 ones.
4. The DMA controller issues an interrupt after the last transfer. The Status Register should now be read. Two conditions are significant. The DMATRM bit set denotes successful completion of the DMA transfer. Any error results in a premature termination of the transfer and the setting of the Transmitter Not Serviced bit.

Figure 5.10 DMA Transmit [2 of 2]

\section*{Receiving via DMA}

Figure 5.11 (1 of 2) DMA Receive
1. Initialize the Receive DMA Count Register to OFFH.
2. Write the \(B\) LSBs of the first memory Location to the Receive DMA Address Register (the higher bits are to be supplied by the DMA controller).
3. If the receive command is to be unique, group, or global, write the Group Address Register [4 MSBs only; LSBs must be all set].
4. Write the receive command to the Command Register, specifying RXA and RXB in accordence with the type of receive required and with the IO/DMA bit zero.
5. After a valid addressed frame has been detected data is transferred until all data has been received. Following the last byte an interrupt is generated indicating that a frame has been received. Reading the Status register should show that only the EOF bit and possibly the DMATRM bit are set. (DMATRM is set if the DMA count was exhausted before the end of frame was Figure 5.11 [1 of 2] detected). Any other bits set denote an DMA Receive error condition.

Figure 5.11 DMA Receive (2 of 2]

\section*{Disk Storage}

\section*{INTRODUCTION}

Both flexible disks and fixed (Winchester or hard) disks can serve as disk storage for the NCR PERSONAL COMPUTER. Capacity of an internal fixed disk is 10 MB, standard diskette drives store data in 48 TPI format.

A typical system includes either two flexible disk drives or one flexible disk drive in conjunction with a hard disk drive. You may alter your system by means of the following kits:
\[
\begin{aligned}
& \text { 3299-K702 - } 48 \text { TPI flexible disk drive } \\
& 3299-\text { K701 - 1.2 MB (96 TPI) flexible disk drive } \\
& 3299-\text { K705 - Controller and cables for 3299-K701 } \\
& 3299-K 750 \text { - Internal fixed disk drive } \\
& 3282-1212 \text { - External fixed disk drive } \\
& 3299-K 725 \text { - Controller for fixed disk drives }
\end{aligned}
\]

K702 makes use of the flexible disk drive controller incorporated in the system main processor board.

\section*{48 TPI FLEXIBLE DISK DRIVE}

The computer has one or two 5 1/4-inch flexible disk drives integrated to provide mass storage of programs and data. The drives contain read/write controller electronics, driver mechanics, read/write heads, and head positioning mechanisms. Systems with an integrated fixed drive have only one integrated flexible disk drive; this is mounted on the leftmost side of the computer's front panel.

Flexible disk drives are connected in a daisy-chain configuration. A DIP resistor module provides the terminator in the last unit in the chain.

Figure 6.1 Flexible Disk Drive Technical Data
Power connections to the flexible disk drive are illustrated in Figure 6.2.

\begin{tabular}{ll}
Pin Number & \\
1 & + 12VDC \\
2 & GND (+12V Return) \\
3 & GND (+5V Return) \\
4 & \(+5 V D C\)
\end{tabular}

Figure 6.2 Flexible Disk Drive Pewer Connections

The flexible disk drive contains sensors to detect the diskette index hole, the head at track 0 , and whether the write protect notch is covered.

Figure 6.3 illustrates the main components of the flexible disk drive.

Figure 6.3 Flexible Disk Drive Companents

\section*{DISK STORAGE}

The flexible disk drive is strapped internally. Of particular interest is the strap which determines to which Drive Select signal the drive is to respond. Internal strapping is illustrated in Figure 6.4.

Figure 6.4 Flexible Disk Drive Straps

\section*{CONTROL AND DATA SIGNALS}

The flexible disk drives use the standard pin assignments as shown in Figure 6.5. Figure 6.6 shows the corresponding edge connector on the flexible disk drive.

The input and output signals to the disk drive are standard industry-compatible signals. An overview of flexible disk control signals is provided in Figures 6.7 and 6.8 . These signals are:

Drive Select (\(0,1,2,3\))
Active low input signal to select one of two flexible disk drives (only 0 and 1 are used).

Head Select
An active low input selects head 1, otherwise head 0 is selected.
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & Signal & \[
1
\] & Signal Pin & Signal Direction \\
\hline I & Ready/ & 1 & 34 & OUT \\
\hline I & Head Select/ & 1 & 32 & IN \\
\hline 1 & Read Data/ & I & 30 & OUT \\
\hline 1 & Write Prot./ & 1 & 28 & OUT \\
\hline 1 & Track \({ }^{\text {O/ }}\) & 1 & 26 & OUT \\
\hline I & Write Gate/ & 1 & 24 & IN \\
\hline 1 & Write Data/ & I & 22 & IN \\
\hline 1 & Step/ & 1 & 20 & IN \\
\hline 1 & Direction/ & I & 18 & IN \\
\hline 1 & Motor On (Motor On 1) & 1 & 16 & IN \\
\hline 1 & Drive S. \(2 /\) [Drive S. O/] & 1 & 14 & IN \\
\hline I & Drive S. 1/ [Drive S. 1/] & 1 & 12 & IN \\
\hline 1 & Drive S: O/ [Motor On 0] & 1 & 10 & IN \\
\hline 1 & Index/ & 1 & 8 & OUT \\
\hline 1 & Drive S. 3/ & 1 & 6 & IN \\
\hline I & Head Load/ & 1 & 4 & IN \\
\hline 1 & & 1 & & \\
\hline I & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{NOTE: All odd numbered pins are signal ground. Designations in parentheses are for system with internal fixed disk drive.}} \\
\hline I & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Figure 6.5 FDD Pin Assignments

Figure 6.6 FDD Edge Connector

\section*{Index}

Active low output signal which is at an active level each time the index hole is sensed. This signal is active for one pulse each disk revolution to indicate the beginning of a track. Index is held active when no flexible disk is inserted in the system.

Motor On
Active low input signal to turn the motor on. Time has to be allowed by the system before reading or writing to allow the motor to start.

\section*{Direction Select}

Input signal to define the direction the heads move when the step line is pulsed. Active low causes the head to move toward the center of the disk. Active high causes the head to move toward the outside of the disk.

Step
Active low input signal to move the head in the direction specified by Direction Select. Each step pulse is delayed by 6 ms from the preceding step.

Write Data
Input signal to provide the data to be written on the flexible disk. Each transition from high to low causes the current through the read/write heads to reverse, causing a data bit to be written. This line is enabled by Write Gate active. Write Data is not active during a read operation. The write pulse width can range from 150 nanoseconds to 2.5 microseconds.

To ensure data integrity, MFM write data can be pre-compensated on tracks 26-39. This bit shifting can be early or late with respect to the nominal bit cell position (see Figure 6.13)

Figure 6.7 Flexible Disk Drive Contral

Write Gate
Active low input signal to enable data to be written on the flexible disk. Write Gate not active enables the stepper logic and read data logic.

Track 00
Active low output signal to indicate when the read/write heads are positioned at track zero. Track 00 is not active when the read/write heads are not at track zero.

\section*{Write Protect}

Active low output signal to indicate when a write protected disk is installed in the drive. The drive inhibits writing and provides the write protect signal, irrespective of the state of the Write Data and Write Gate signals.

Read Data
Output signal containing composite clock and data pulses.

Head Load
Active low input signal to load the head. The indicator on the front panel is turned on.

Ready
This output signal is issued when the following conditions are satisfied:
* There is power at the unit.
* The diskette is installed.
* Disk rotation is more than half nominal speed.
* Two Index pulses have been counted since disk rotation exceeded half nominal speed.

Figures 6.9-6.15 illustrate signal timing.

\section*{DISK STORAGE}

Figure 6.9 Track Access Timing

Figure 6.10 Write Initiate Timing

Figure 6.11 Read Initiate Timing

IMDEX /

Figure 6.12 Index Timing

Figure 6.13 MFM Write Pre-compensation Patterns

MIS EECOVERED RZAD DATA (2ERO'S)

Figure 6.14 Nominal Clock And Data Window Timing

Figure 6.15 Bit Shift Timing

\section*{MINIMUM FORMAT REQUIREMENTS}

Figure 6.14 illustrates index requirements and tolerances for flexible disk formatting.

Post-Index
Before initial recording of data upon a selected track, a minimum gap time of one millisecond is required to allow for drive-to-drive adjustment tolerances. This is the gap (Gap 1) from the edge of the index pulse to the beginning Sync Field for the ID field address mark. This gap allows for variations in Index pulse width, speed variations, and interchange tolerances between drives.

\section*{Pre-Index}

The Pre-Index gap (Gap 4) is required to compensate for maximum speed variations between drives. Physically the gap is the space between the last sector and the beginning of the index pulse. Its minimum length is 7.2 milliseconds.

Pre-Data
The Pre-Data gap (Gap 2) has a minimum timing requirement of 489 microseconds. Gap timing is determined by the erase turn-on circuit tolerance and the tunnel-erase structure of the read/write head.

\section*{Pre-ID}

The Pre-ID gap length is a minimum of 1.64 milliseconds for 128-byte FM or 256-byte MFM sector lengths, but varies with sector size. The Pre-ID gap (Gap 3) is based on the tunnel-erase structure of the read/write head and maximum erase-circuit turn-off delay.

\section*{FLEXIBLE DISK CONTROLLER}

The PD765 Flexible Disk Controller (FDC) makes use of three interface ports to the microprocessor:

OUT 3F2H Drive select command output.
IN 3F4H Read the FDC's Main Status Register.
OUT 3 F5H Output up to nine commands to the command stack.

IN \(3 F 5 H\) Input one of up to seven results from the result stack, including up to four 8-bit status registers,

The FDC can perform 15 different operational commands, each initiated by the transfer of a byte of command identification and any parameters belonging to that command via port 3F5H. Each operation in the process of flexible disk control can be regarded as consisting of three phases:
* Command Phase

During the Command Phase, the FDC receives commands and inherent parameters from the microprocessor.
* Execution Phase

During this phase, the actual execution of the command takes place.
* Result Phase

During this phase, useful operational status information can be read by the microprocessor via the Main Status Register and/or the other four status registers. If the operation involved microprocessor reading of flexible disk data, that data is made available.

\section*{Main Status Register}

Figure 6.17 indicates the status information which can be read via port 3 F 4 H .

Bits 6 (DIO) and 7 (RQM) of the Main Status Register are of particular importance for the transfer of information between FDC and microprocessor. Before writing a byte to the FDC, these bits must be 0 and 1, respectively. Reading a byte from the FDC requires both these bits to be 1.

The FDC in your NCR PERSONAL COMPUTER operates in DMA mode, with the result that interrupt detection before reading individual bytes is not required. In this mode, the FDC communicates with the DMA controller by means of an exchange of DRQ and DACK/ signals.

The significance of the FDC Main Status Register when identifying the three operational phases is as follows:

\section*{* Command Phase}

Commands/data for operation are received from the microprocessor. During this phase, DIO and RQM must be 0 and 1, respectively.
* Execution Phase

Performance of the requested operation. At the beginning of this phase, DIO and RQM go to 1 and 0 , respectively.
* Result Phase

Information available to the microprocessor, denoted by bits 6 and 7 of the Main Status Register being set.
\begin{tabular}{|c|c|c|c|}
\hline | Bit| & Neme & | Symbol & I Description \\
\hline | DO | & FDD 0 Busy & DOB & | FDD 0 is in the Seek mode | \\
\hline | D1 | & FDD 1 Busy & D1B & | FDD 1 is in the Seek mode | \\
\hline | D2 & FDD 2 Busy & D2B & I FDD 2 is in the Seek mode | \\
\hline 1 D3 & FDD 3 Busy & D3B & I FDD 3 is in the Seek mode | \\
\hline \[
\begin{aligned}
& 101 \\
& \text { I }
\end{aligned}
\] & FDC Busy & CB & | A read or write command is in | | process \\
\hline | D5 | & Non-DMA & NDM & I The FDC is in non-DMA mode. \\
\hline 11 & mode & 1 & I This bit is set only during \\
\hline 1 & & I & I execution phase in non-DMA model \\
\hline & & 1 & | Transition to zero indicates | \\
\hline 11 & & 1 & | execution phase has ended \\
\hline | D6 | & Data Input & DIO & | Indicates diraction of data \\
\hline 1 & /Output & 1 & | transfer between FDC and Data \\
\hline \[
11
\] & & & I Register. If DIO is set, then \\
\hline \[
1 i
\] & & 1 & | transfer is from Data Register \\
\hline I & & 1 & I to the Procassor. If DIO is \\
\hline I & & 1 & I zero, then transfer is from \\
\hline 11 & & 1 & 1 Processor to Data Register \\
\hline | D7 | & Request & RaM & | Indicates Data Register is \\
\hline 1 I & for Master & 1 & I ready to send or receive data \\
\hline 11 & & 1 & I to or from the Processor. Both \\
\hline 1 I & & 1 & I bits DIO and ROM can be used \\
\hline 11 & & 1 & I to perform handshaking \\
\hline I & & 1 & | functions of "ready" and \\
\hline 11 & & I & | "direction" to the processor \\
\hline
\end{tabular}

Figure 6.17 FDC Main Status Register

\section*{Disk Select Register}

The Disk Select Register is a write only register (Port 3F2H) used to:
* Select disk drive units.
* Control the motors of these units.
* Enable controller interrupts and DMA requests.

Figure 6.18 explains the significance of the individial bits of this register.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Bit 1 Significance} \\
\hline | & 1 \\
\hline 0 & |] Binary value [bit 1 is MSB] selecting one of the \\
\hline 1 & | \} units \(0-3\), corresponding to drives \(A-D\), respectively \\
\hline 1 & 1 \\
\hline 12 & | Bit set enables FDC \\
\hline 1 & I \\
\hline 13 & | Bit set enables DMA request and FDC interrupts to be \\
\hline I & | to I/O interface. Bit zero disables I/O interface \\
\hline 1 & | drivers. \\
\hline I & 1 \\
\hline 14 & I Turns motor of drive \(A\) on [bit set] or off (bit zero] \\
\hline 15 & 1 B \\
\hline 16 & 1 C \\
\hline 17 & I D \\
\hline 1 & I \\
\hline
\end{tabular}

Figure 6.18 Disk Select Register

\section*{FDC Commands and their Parameters}

Figure 6.19 presents a summary of commands and parameters transmitted via port \(3 F 5 \mathrm{H}\). A command phase consists of up to 9 bytes. The tables comprising Figure 6.20 explain the abbreviations used in Figure 6.19 .

A system interrupt (type OEH) denotes that an execution phase is completed or prematurely terminated. Status information and/or data is then
available for input at port \(3 F 5 \mathrm{H}\). The sigificance of this result phase (consisting of up to seven bytes) is also set out in Figure 6.19. The significance of the status information which can be read during the result phase is set out in detail in Figure 6.26. (This status information is not to be confused with the Main Status which can be read at any time via port 3F4H.)

It is important that commands and their data are input in the correct order and that return information is read completely, even if elements of this information are not required.

Figure 6.19 FDC Command Summary [1 of 10]

Figure 6.19 FDC Command Summary (2 of 10)

Figure 6.19 FDC Command Summary (3 of 10)

Figure 6.19 FDC Commend Summary (4 of 10)

Figure 6.19 FDC Command Summary (5 of 10)

Figure 6.19 FDC Command Summary [6 of 10]

Figure 6.19 FDC Command Summary [7 of 10]

Figure 6.19 FDC Command Summary (8 of 10)

Figure 6.19 FDC Command Summary [9 of 10]

Figure 6.19 FDC Command Summary (10 of 10)

Figure 6.20 Abbreviations Used In FDC Command Summary [1 of 3]
\begin{tabular}{|c|c|c|}
\hline | SYMBLL & I MAME & DESCRIPTION \\
\hline | HLTT & | Head Load Time & | HLT stands for the head load \\
\hline I & 1 & | time in the FDD [4 to 512 ms in | \\
\hline 1 & 1 1 & | 4ms increments] \\
\hline I HUT & | Head Untoad & | HIT stands for the head unload | \\
\hline 1 & I Time & I time after a read or write \\
\hline I & I & | operation has occurred [0 to \\
\hline I & 1 & | 480ms in 32 ms increments) \\
\hline I MFM & | FM or MFM Mode & | If MF is Low, FM mode is eel- | \\
\hline 1 & 1 & | ected; if it is high, MFM mode | \\
\hline 1 & I & I is selected \\
\hline | MT & | Multi-Track & | If MT is high, a mutti-track \\
\hline 1 & 1 & | operation is to be performed \\
\hline 1 & 1 & I [a cylinder under both HDO and \\
\hline 1 & 1 & | HD1 will be read or written) \\
\hline | N & | Number & | N stands for the number of \\
\hline 1 & 1 & I data bytes written in a Sector | \\
\hline 1 NCN & I New Cylinder & | NCN stands for new Cylinder \\
\hline 1 & | Number & | number, which is going to be \\
\hline 1 & 1 & \(\mid\) reached as a result of the \\
\hline 1 & 1 & | Seek operation. Desirad \\
\hline 1 & I & I position of head \\
\hline 1 ND & | Non-DMA Mode & | ND stands for operation in the \\
\hline 1 & 1 & I non-DMA Mode \\
\hline 1 PCN & 1 Present & 1 PCN stands for the Cylinder \\
\hline 1 & | Cylinder Number & 1 number at the completion of \\
\hline 1 & 1 & | SENSE INTERRUPT STATUS Command.| \\
\hline 1 & 1 & | Head position at present time | \\
\hline & & \\
\hline 1 R & I Record & | R stands for the Sector number | \\
\hline 1 & 1 & I which will be read or written | \\
\hline
\end{tabular}

Figure 6.20 Abbreviations Used In FDC Command Summary (2 of 3)

Figure 6.20 Abbreviations Used In FDC Command Summary [3 of 3]

Notes concerning individual FDC commands (the status registers referred to here are described in the subsequent section):

READ DATA
After head location and settling time, the requested sector is located by means of the ID marks and ID fields on the located track. The FDC then outputs the data from the flexible disk data field one byte at a time. This operation is a multi-sector read, that is, sectors are output by the FDC until the DMA issues a TC (terminal count signal). If there are sectors remaining on the track, these are read but only a Cyclic Reduncancy Check is performed; they are not output to the data bus. Figure 6.21 states factors affecting transfer capacity of a single read command.

Figure 6.21 Transfer Capacity

If the MT bit is set data is read from both sides of the diskette (the entire cylinder), starting with side 0 , sector 1 and finishing with the last sector on side 1.
If \(N\) is 0 the data length of each sector is defined by DTL. If there are more bytes actually in the sector the excess bytes are subjected to CRC but do not appear on the data bus.
After accessing the sector(s), there is normally a head unload interval. However, this interval does not apply if the FDC has already detected a subsequent command entailing an access operation. This can save time when accessing large amounts of data.
When transferring data from FDC to the microprocessor, the FDC requires microprocessor attention every 27 (FM mode) or 13 (MFM mode) microseconds. Failing this, OR in Status Register 1 (see below) is set.

Possible error conditions:
Failure to find the specified sector sets the ND flag in Status Register 1. In Status Register 0, bit 6 is set and bit 7 is zero, and the command is terminated. CRC failure sets the DE flag in Status Register 1, and terminates the command. In addition, bit 6 in Status Register 0 is set, bit 7 is zero. If the CRC failure lies in the Data rather than the ID field, the DD flag in Status Register 2 is also set. External termination (TC signal) influences the C, \(H\), R , and N information. This information further depends on the MT and EOT values given in the command (see Figure 6.22) and can be read in the Result Phase.

\section*{READ ONE TRACK}

All Data Fields on a track are read, even if CRC failure is encountered. In this case the NDR flag in Status Register 1 is set. Failure to find an ID Address Mark sets the MA flag in Status Rgister 1 and terminates the command.

Notes: 1. NC [No Change]: Same value as at beginning of command execution.
2. LSB [Least Significant Bit]: The Least significant bit of \(H\) is complemented.

Figure 6.22 Status At External Termination

\section*{READ DELETED DATA}

As READ DATA exept that upon encountering a Deleted Data Address Mark at the beginning of a Data field and assuming that \(S K\) was 0 when the command was issued, the data in the sector is transmitted, the CM flag in Status Register 2 is set and the command is terminated.

\section*{WRITE DATA}

When the sector \(R\) has been found the FDC accepts data from the data bus for that sector. Upon occurrence of a TC (Terminal Count) signal, the remainder of the data field currently being written is filled with zeros. CRC failure in an ID field sets the DE flag in Status Register 1 and terminates the command. Other details as in READ DATA.

WRITE DELETED DATA
As WRITE DATA, except that a Deleted Data Address Mark is written at the beginning of the Data field.

READ ID
This command returns the current head position by means of the first ID field the FDC can read. Failure to find an ID Address Mark sets the MA flag in Status Register 1. If there is no data ND is set in the same register.

\section*{FORMAT ONE TRACK}

The format is determined by the values specified for \(\mathrm{N}, \mathrm{SC}, \mathrm{GPL}\), and D in the command. The sector is located by means of the \(C, H, R\), and \(N\) values. The \(R\) value is incremented automatically until index hole detection indicates the end of the track. If an error situation arises, the EC flag in Status Register 0 is set and the command is terminated. The N, SC and GPL values for MFM recording are shown in Figure 6.23.

Figure 6.23 Sector Size Variables

GPL 1 avoid splicing between data field and ID field of contiguous sections. GPL 2 figures are for formatting purposes.

SCAN ONE TRACK
Data read by the FDC from disk is compared byte by byte with data on the data bus (supplied by DMA controller or microprocessor). The comparative condition can be \(=\), \(\langle=\), or \(\rangle=\), using one's complement arithmetic. The operation is carried out for the specified track with automatic incrementing of \(R\) until the condition is fulfilled, end of track is reached or a TC signal occurs.
If the scan condition is fulfilled, the SH bit in Status Register 2 is set; else SN is set. Figure 6.24 shows the possible conditions of comparison and the status of SH and SN (FDD = data read from disk, Bus \(=\) data read from data bus).

If a Deleted Data Address Mark is encountered and SK was issued in the scan command as a zero bit, this is regarded as the last sector and CM in Status Register 2 is set. If SK was issued set, CM is likewise set to indicate that the deletion mark was detected but the scan process skips that sector and continues to scan the remainder of the track.

Figure 6.24 Scan Status Codes

\section*{SEEK}

The present cylinder number (PCN) is compared with the new cylinder number to be located (NCN). If PCN < NCN the Direction line to the flexible disk drive is set high; if PCN \(>\) NCN this line is low. When the cylinder has been located SE in Status Register 0 is set and the command terminated.
If the disk drive is not ready the NR flag in Status Register 0 is set and the command terminated. This command does not include a result phase. However, the termination of the command is effected by means of the Sense Interrupt Status command.

NOTE: FDC read and write commands affect the track/cylinder at which the head is currently positioned. To locate the track/cylinder itself an explicit SEEK command must be issued.

\section*{RECALIBRATE}

With the Direction line high the read/write head retracts 77 step pulses or to track 0 , whichever occurs first. The SE flag in Status Register 0 is set high. If the Track 0 signal is still low the EC flag in Status Register 0 is also set high. This command
does not include a result phase. However, the termination of the command is effected by means of the Sense Interrupt Status command.

SENSE INTERRUPT STATUS
An interrupt signal occurs upon entering the result phase of one of the above commands (or upon termination of SEEK or RECALIBRATE), or the Ready line changes state, or during execution in non-DMA mode. Figure 6.25 shows the significance of the three interrupt status bits affected in Status Regiser 0. It is important to check this interrupt status before attempting to read the information resulting from an FDC command.

Figure 6.25 Sense Interrupt Status
SPECIFY TIME
Sets Head Load Time (HLT) in the range 4 ms to 512 ms in increments of 4 ms , Head Unload Time (HUT) in the range 0 ms to 480 ms in 32 ms increments, Step Rate Time (SRT) in the range 2 ms to 32 ms in 2 ms increments. In addition, non-DMA mode is determined by bit ND being zero.

SENSE DRIVE STATUS
Returns information in Status Register 3.
If the FDC does not recognize a valid command, no interrupt is generated but DIO and RQM in the Main Status Register are set (as during a normal result phase). Status Register 0 , containing 80 H , must be read before a command can be issued to the FDC.

\section*{Motor On/Off}

To turn a flexible disk drive motor on of of a byte must be issued via the Drive Select Command port 3F2H (Drive Code is a two-bit binary value: \(0=\mathrm{A}, 1=\mathrm{B}\)):

NOTE: Motor Off is provided by the ROM BIOS aft.fl de:rementation to zero of a timeout counter serviced by hardware timer ISR.

\section*{FDC Status}

The Main Status Register is accessed via port 3 F 4 H . There are four status registers which can be read via port 3 F 5 H . It is imperative that all status registers affected by a particular command (see Figure 6.19) are actually read during the result phase in the specified order, even if the information they yield is not required. Figure 6.26 summarizes the four Status Registers.

Figure 6.26 Status Registers (1 of 6]

Figure 6.26 Status Register (2 of 6)

Figure 6.26 Status Registers (3 of 6)

Figura 6. 26 Status Registers (4 of 6)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Bit} & \multirow{3}{*}{Description} \\
\hline & & \\
\hline Mo. I Neme & Symbol & \\
\hline \multicolumn{3}{|r|}{Status Register 2} \\
\hline D7 | & & Bit not used, is always C [low]) \\
\hline D6 | Control & CM & | Flag is set when FDC encounters | \\
\hline Mark & 1 & I a sector containing a Deletad \\
\hline 11 & 1 & | Data Address Mark when execut- \\
\hline 11 & 1 & I ing READ DATA or SCAN Commend \\
\hline | D5 | Data Error| & DD & | Flag is set when FDC detects a \\
\hline 1 I in Data & 1 & I CRC error in the data field \\
\hline 1 Field & I & \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{l|l|l}
\hline \text { I W4 } & \text { Wrong } \\
\text { | } & \text { Cylinder }
\end{array}
\]} & WC & I This bit is related to ND bit; \\
\hline & 1 & I flag is set when contents of C \\
\hline & 1 & I differs from that of ID reg. \\
\hline \multirow[t]{2}{*}{| D3 | Scan
| | Equat Hit} & SH & | Flag is set when condition \\
\hline & & | "equal" is satisfied upon Scan \\
\hline \multirow[t]{3}{*}{\begin{tabular}{|l|l}
| D2 & Scan Not \\
i & Satisfied \\
i & I
\end{tabular}} & SN & I Flag is set when FDC cannot \\
\hline & 1 & | find a sector during Scan meet-1 \\
\hline & , & I ing the condition \\
\hline \multirow[t]{4}{*}{\begin{tabular}{ll}
I D1 & Bad \\
i & I CyLinder \\
i & 1 \\
i & 1
\end{tabular}} & BC & I This bit is related to ND bit; \\
\hline & & I flag is set when contents of C | \\
\hline & & 1 is OFFH and diffars fram the \\
\hline & 1 & | contents stored in ID register \\
\hline \multirow[t]{4}{*}{\begin{tabular}{lll}
| \(D 0\) & Missing \\
I & I Address \\
I & Mark in \\
i & | Data Field
\end{tabular}} & MD & | Flag is set when during Read \\
\hline & & I the FDC cannot find a Data \\
\hline & & | Address Mark or a Deleted Data \\
\hline & & | Address Mark \\
\hline
\end{tabular}

Figure 6.26 Status Registers (5 of 6)

Figure 6.26 Status Registers [6 of 6]

\section*{FIXED (HINCHESTER) DISK DRIVE}

The Winchester disk drive uses a non-removable 5 1/4inch disk as storage media. The disk has two recording surfaces, each of which is served by two heads. The total formatted capacity is 10 M bytes over 306 cylinders (internal) or 20 MB over 615 cylinders (external). The Western Digital Winchester disk controller interfaces the disk drive to the host processor. All necessary buffers and receivers/ drivers are included on the Winchester disk controller board to allow direct connection to the drive. Power requirements for the fixed disk drive are given in Figure 6.27, pin assignments for the DC power connector are illustrated in Figure 6.28.

Figure 6.27 Power Requirements
\begin{tabular}{|c|c|}
\hline Pin & Connection \\
\hline 1 & + 12V \\
\hline 2 & 5 V return \\
\hline 3 & 12 V return \\
\hline 4 & \(+5 \mathrm{~V}\) \\
\hline
\end{tabular}

Figure 6.28 DC Power Connector

HEAD CARRIAGE ASSEMBLY

Figure 6.29 Fixed Disk Drive Components

10 MB
20 MB

Figure 6.30 Technical Date

\section*{CONTROL AND DATA SIGNALS}

Figure 6.31 specifies the pin assignments of the control signal interface between controller and the drive. The corresponding edge connector is shown in Figure 6.32. Data in MFM format is transferred by means of a separate cable: pin assignments and edge connector are illustrated in Figures 6.33 and 6.44.

The input and output signals for the drive are:

Write Gate
The active state of this signal enables data to be written on the disk. The inactive state of this signal enables data to be transferred from the drive. During power fail or power up all data recorded on the drive is retained, regardless of the frequency of occurrence of dc power transitions at the drive itself and regardless of the sequence and rate of dc voltage decay or rise. The Write Gate input is provided with an open circuit (inactive, high impedance driver) during these conditions.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Signal} & I & Signal & & & Signal \\
\hline & I & & & I & Diraction \\
\hline Reserved & I & 2 & & I & \\
\hline HEAD SELECT2 & 1 & 4 & & I & \\
\hline WRITE GATE/ & 1 & 6 & & 1 & OUT \\
\hline SEEK COMPLETE/ & 1 & 8 & & I & IN \\
\hline TRACK0/ & 1 & 10 & & I & IN \\
\hline WRITE FAULT/ & 1 & 12 & & 1 & IN \\
\hline HEAD SELECTD/ & I & 14 & & 1 & OUT \\
\hline Reserved & I & 16 & & I & \\
\hline HEAD SELECT1/ & I & 18 & & I & OUT \\
\hline INDEX & 1 & 20 & & I & IN \\
\hline READY/ & I & 22 & & I & IN \\
\hline STEP/ & 1 & 24 & & 1 & OUT \\
\hline DRIVE SELECT1/ & 1 & 26 & & 1 & OUT \\
\hline DRIVE SELECT2/ & 1 & 28 & & 1 & OUT \\
\hline DRIVE SELECT3/ & I & 30 & & 1 & OUT \\
\hline DRIVE SELECT4/ & 1 & 32 & & 1 & OUT \\
\hline DIRECTION IN/ & 1 & 34 & & 1 & OUT \\
\hline
\end{tabular}

Figure 6.31 Fixed Disk Contraller/Drive Control Signals

Figure 6.32 Fixed Disk: Edge Connector For Control Signa
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Signal}} & \multicolumn{3}{|l|}{| Signal Pin} \\
\hline I & & & I & & \\
\hline 1 & & & & & \\
\hline 1 & & SELECT/ & I & & 1 \\
\hline 1 & & Reserved & 1 & & 3 \\
\hline 1 & & Reserved & 1 & & 5 \\
\hline 1 & & Reserved & 1 & & 7 \\
\hline 1 & & Reserved & 1 & & 9 \\
\hline 1 & & Reserved & I & & 10 \\
\hline 1 & & GND & 1 & & 11 \\
\hline 1 & MFM & WRITE DATA & 1 & & 13 \\
\hline 1 & MFM & WRITE DATA & I & & 14 \\
\hline 1 & & GND & 1 & & 15 \\
\hline 1 & MFM & READ DATA & 1 & & 17 \\
\hline 1 & MFM & READ DATA/ & 1 & & 18 \\
\hline 1 & & GND & 1 & & 19 \\
\hline \multicolumn{6}{|l|}{1} \\
\hline 1 & Othe & er connection & ns & ara & Ground \\
\hline
\end{tabular}

Figure 6.33 Fixed Disk Dontroller/Drive Data Signals

Figure 6.34 Fixed Disk: Edge Connector For Data Signals

Head select
The Head Select lines 0 and 1 provide for the selection of each individual read/write head (0,1 , 2, or 3) in a binary coded sequence. Head Select 0 is the least significant line. Example: Head Select 0 low with Head Select 1 high selects head 1 (signals are active low).

Direction In
This signal defines direction of motion of the \(\mathrm{R} / \mathrm{W}\) head when the Step line is pulsed. Signal high defines the direction as "out" and if a pulse is applied to the Step line, the \(\mathrm{R} / \mathrm{W}\) head moves away from the center of the disk. If this line is signal low, the direction of motion is defined as "in" and the R/W head moves toward the center of the disk. Direction must not change during step time.

\section*{Step}

This interface line is a control signal which causes the R/W head to move with the direction of motion defined by the Direction In line. Any change in the Direction In line must be made at least 100 ns before the leading edge of the step pulse.
The drive accepts step pulses from the controller in one of two possible modes, track-to-track or buffered. Track-to-track mode is possible when the interval between step pulses is 3 ms or greater. In buffered mode steps are accumulated and then issued at a rate between 3 and 200 microseconds. The drive's own microprocessor monitors the step pulses and decides on the step mode to use as well as the optimum seek algorithm.

Drive Select 1 - 3
Drive Select, when signal active connects the drive interface to the control lines and activates the LED on the front panel of the drive. Switches are provided on the drive which are set in a specified pattern so as to determine which unique select line on the interface will activate that particular drive (see Figure 6.35).
\begin{tabular}{lllllll}
\hline Drive & \multicolumn{5}{c}{ Switch } \\
1 & & 1 & 2 & 3 & 4 & \\
\hline DS1 & ON & OFF & OFF OFF & I \\
DS2 & OFF & ON & OFF OFF & I \\
DS3 & OFF & OFF & ON OFF & O \\
DS4 & OFF & OFF & OFF ON & OF \\
\hline
\end{tabular}

Figure 6.35 Drive Selection Switches
Seek Complete
This line will go from inactive to active when the R/W heads have settled on the final track at the end of a seek. Reading or writing should not be attempted when Seek Complete is inactive. Seek Complete must go inactive for any of the following cases:
1. A recalibration sequence is initiated (by drive logic).
2. 12 microseconds (typical) after the leading edge of a step pulse or series of step pulses.
3. At power on or after a power interruption.

Track 0
This interface signal is active only when the drive's R/W heads are positioned at track 0 (the outermost data track).

Write Fault
This signal indicates that a condition exists at the drive that would cause improper writing on the disk. When this line is active, further writing is inhibited at the drive until the condition is corrected. Once corrected, this line can be reset by de-activating the Write Gate or deselecting the drive.

There are a number of conditions which can cause Write Fault to be activated:
* Write current malfunction:

Write current in a head without Write Gate active or

Write Gate and Drive Select active with no write current in a head.
* A drive malfunction causing more than, or less than, one head to be selected, or a malfunction causing a head to be selected for read during write or for write during read.
* DC voltages are grossly out of tolerance.
* Spindle speed out of tolerance
* Abnormality at Track 0 sensor during recalibrate at power on.

\section*{Index}

This interface signal is provided for 1.5 ms by the drive once each revolution (16.67 ms nom.) to indicate the beginning of the track. This signal is normally inactive and makes the transition to active to indicate Index.

Ready
This interface signal, when active together with Seek Complete, indicates that the drive is ready to read, write, or seek and that the I/O signals are valid. When this line is inactive all writing, reading, and seeking is inhibited. Ready should be inactive only as a result of and during recovery from a power off condition: Ready is normally asserted about 20 seconds after power on.

\section*{MFM Read Data}

The data recovered by reading a pre-recorded track is transmitted to the host system via a differential pair of MFM Read Data lines. The transition of the +MFM Read Data line going more positive than the -MFM Read Data line represents a flux reversal on the track of the selected head.

\section*{MFM Write Data}

This is a differential pair that defines the transitions to be written on the track. The transition of +MFM Write Data line going more positive than the -MFM Write Data will cause a flux reversal on the track, provided Write Gate is active. This signal must be driven to an inactive state (+MFM Write Data more negative than -MFM Write Data) by the host system when in a read mode. Integrity of data writing, especially on inner tracks, is ensured by pre-compensation being active. Data patterns which cause a large amount of bit shift have appropriate data bits shifted early or late with respect to the nominal bit cell position. Bit shift compensation, whether early or late with respect to the nominal bit cell position, is 12 ns .

The fixed disk drive provides auto recalibration at de power up, or when a command to the controller would otherwise cause the head to move beyond the innermost cylinder, or when the Write Fault circuit is activated.

Figures 6.36 to 6.41 illustrate sample timing considerations.

(*Gates readr, track. C. sefr complete)

Figure 6.36 Powar-On Timing

Figure 6.37 Seek Timing

Figure 6.38 Read/Write Data Timing

Mr: recovered ren SATA (2E20's)

Figure 6.39 Nominal Clock And Data Window Timing

Figure 6.40 Bit Shift

Figure 6.41 Write Pre-Compensetion Patterns

\section*{?IXED DISK CONTROLLER}
[he fixed disk controller includes features which zonsiderably offload the microprocessor:
* Retries are automatically performed, even on ECC (Polynomial Error Check) and head positioning errors.
* Basic read/write functions include an implied seek operation, thus saving head positioning control software.
* Head positions are noted internally by the controller. This avoids the need to maintain corresponding tables in your software.
" Data reading and writing is buffered internally, thus facilitating interruption.
* Multiple sector reading and writing.

The interface between controller and the system is via 4 ports with I/O addresses 320 H to 323 H :
\[
\begin{array}{ll}
\text { IN } 320 \mathrm{H} & \text { Read status/data from the controller. } \\
\text { OUT } 320 \mathrm{H} & \text { Write commands/parameters to the } \\
\text { controller. }
\end{array}
\]

IN 321 H Read controller status.
OUT 321H Reset controller.
IN 322 H Read drive configuration byte.
OUT 322H Select controller.
OUT 323H DMA and Interrupt Request.
Figure 6.42 sets out the significance of the status bits read via port 321 H . Writing to this port effects a hardware of the hard disk drive system. The value actually written is of no significance.
Reading port 322 H returns, in bit positions 0-3, a code representing the drive configuration. The two LSBs correspond to the first drive, the two MSBs of the four correspond to the second drive. The reset default settings can be set by jumpers. Writing to port 322 H while the BSY bit read via port 321 H is not set prepares the controller to receive a command. The controller acknowledges this request by setting this bit. The actual value written via port 322 H is immaterial.
Only bits 0 and 1 of the write only port 323 H are significant: bit 0 is the DMA Request Enable bit, enabling DMA requests to the microprocessor, when set. Bit 1 (IRQEN) set enables interrupts to the microprocessor.

Figure 6. 42 Controller Status

Programming the Fixed Disk Controller
Writing to port 322 H indicates to the controller that you wish to issue a command. In response, the controller sets the BSY and REQ bits (bits 0 and 3 read via port 321 H). The controller now expects to receive a 6 -byte command block, of which details are given in Figure 6.43.

Figure 6.43 Fixed Disk Controller Command Block
R1 and R2 are data retry bits: setting R2 disables the one automatic retry which otherwise occurs upon a data ECC error being encountered. Setting R1 prevents the controller from executing up to 10 retries upon any other type of error (an ID Not Found error allows a second run of 10 retries after an intermediate return to Track 0). A non-recoverable error aborts the command and reports the fact in the status return described later in this section.

The 3-bit value Step determines the stepping rate: a binary value below four or above five specifies 3 ms , value four specifies 200 microseconds, value five specifies 70 microseconds.

If executing the command requires DMA service, the DRQ line (read via port 321 H) is asserted. Processor I/O is requested by means of the REQ, I/O, and C/D lines (DMA mode of transfer is specified by means of port 323 H). Completion of the command is notified by the BSY bit being reset and the issuing of an interrupt. A command completion byte is then available for reading at port 320 H : bit 5 represents
a binary value according to which of the two drives was involved in execution of the command, bit 1 is set if an unrecovered error occurred, other bits are zero.

There are 19 commands which can be executed by the fixed disk controller. This number includes three diagnostic commands which are described in a later section of this Chapter. The 16 main commands are:

\author{
Test Drive Ready \\ Recalibrate \\ Read Status of Last Operation \\ Format Drive \\ Verify Sectors \\ Format Track \\ Format Bad Track \\ Read Sectors \\ Write Sectors \\ Seek \\ Initialize Drive Parameters \\ Read ECC Burst Error Length \\ Read Sector Buffer \\ Write Sector Buffer \\ Read \\ Write long
}

The following descriptions deal with these commands in detail. Where values are required for the 6-byte command block, this is indicated. Parameters of the command block which are not explicitly mentioned should be issued as all bits zero for that command.

TEST DRIVE READY - Command Code 00 H
Specific parameters: Drive.
An error condition (Drive Not Ready or Drive Still Seeking) occurs if the drive is active or its status lines show an error.

RECALIBRATE - Command Code 01H
Specific parameters: Drive, R1.
The read/write heads are moved, one cylinder at a time, until Track 0 is encountered. This is somewhat slower than a direct seek Track 0 command, as the
latter moves according to a calculated number of step pulses, and does not check the identity of the cylinders along the way.

READ STATUS OF LAST OPERATION - Command Code 03H Specific parameters: Drive.
Following execution of this command, 4 status bytes are available for reading via port 320 H . These status bytes are described in the next section.

FORMAT DRIVE STARTING AT SPECIFIED TRACK Command Code 04H
Specific parameters: Drive, Head, Cylinder, Sector (must be valid, but is ignored), Interleave, R1, Step.
After drive recalibration formatting starts at the first sector of the specified track. Address marks, header fields, and data fields are written for all sectors. The data pattern defaults to that currently in the sector buffer. Interleave tells the controller where the next logical sector is in relation to the current one: the value 1 specifies that logical sectors are contiguous, 2 specifies that the next logical sector is two sectors ahead of the current physical sector, and so on. Therefore, Interleave may be a value between 1 and one less than the number of sectors per track. Out of range values result in an Interleave value of 1 .
In the event of an error, formatting can be continued at the beginning of the next track.

VERIFY SECTORS - Command Code 05H
Specific parameters: Drive, Head, Cylinder, Sector, Block Count, R1, R2, Step.
This command reads from 1 to 256 sectors, as specified by Block Count and beginning at the Sector specified. In the event of an error, the number of the sector concerned is returned as part of the status return (Command 03H).

FORMAT TRACK - Command Code 06H
Specific parameters: Drive, Head, Cylinder, Sector (must be valid, but is ignored), Interleave, R1, Step.

\begin{abstract}
This command is similar to Command 04 H . The difference is that formatting is confined to the specified track. FORMAT TRACK can be used to clear the Bad Track flag.
\end{abstract}

FORMAT BAD TRACK - Command Code 07H Specific parameters: as Command 06H. The difference between this command and Command 06 H is that the Bad Track flag is set in the ID field.

READ SECTORS - Command Code 08H
Specific parameters: Drive, Head, Cylinder, Sector, Block Count, R1, R2, Step.
This command reads from 1 to 256 sectors, as specified by Block Count and beginning at the Sector specified. In the event of an error, the number of the sector concerned is returned as part of the status return (Command 03H).

WRITE SECTORS - Command Code OAH
Specific parameters: Drive, Head, Cylinder, Sector, Block Count, R1, Step.
This command functions as Command 08 H , except that sectors are written and not read.

SEEK - Command Code OBH
Specific parameters: Drive, Head, Cylinder, Sector (must be valid, but is ignored), R1, Step.
This command seeks a specified track on a drive which has already been formatted.
As the drive itself supports buffered step seeks, step pulses can be issued at high speed (70 or 200 microseconds), thus freeing the controller during the seek process. Completion status is returned even before the drive has concluded the seek operation. The status return can only confirm that the SEEK command was properly issued. Once the status has been read, a new command can be issued to the controller. As long as the drive is still performing the seek (BSY line is asserted), the new command (except Test Drive Ready) must wait to be executed. The controller does not recognize a timeout condition.

INITIALIZE DRIVE PARAMETERS - Command Code OCH Specific parameters: Drive.
Following the command block, the controller expects an 8-byte initialization block:

2 bytes Max. no. of cylinders - max. value \(=1024\)
1 byte Number of heads - max. value \(=8\)
2 bytes Outermost cylinder with reduced write current - max. value = 1024
2 bytes Outermost cylinder with write pre-compensation - max. value \(=1024\)
1 byte Max. ECC data busst length
- max. value \(=\)

If this command is not issued, the following default values apply: Cylinders \(=306\), Heads \(=4\), Reduced write current and write pre-compensation from cylinder 153, 11-bit burst error length.

READ ECC BURST ERROR LENGTH - Command Code ODH Specific parameters: Drive.
This command is valid only after a correctable data error. It transfers one byte indicating the length of the error corrected. The error length is the number of bits between the first and the last bit in the error, inclusive.

READ SECTOR BUFFER - Command Code OEH
Specific parameters: none.
Reads 512 bytes of data from the controller's sector buffer.

WRITE SECTOR BUFFER - Command Code OFH Specific parameters: none.
Writes 512 bytes of data to the controller's sector buffer.

READ LONG - Command Code OE5H
Specific parameters: Drive, Head, Cylinder, Sector, Block Count, R1, Step.
In addition to reading the data bytes from a sector, the four ECC bytes are also read into the sector buffer.

WRITE LONG - Command Code OE6H Specific parameters: Drive, Head, Cylinder, Sector, Block Count, R1, Step. Following the data bytes, four ECC bytes are written to the specified sector. This command can be used to test the controller's ECC circuitry.

\section*{Fixed Disk Controller Status}

In addition to the status read via port 321 H , detailed status information is returned in 4 bytes via Command 03H - Read Status of Last Disk Operation. After this command has been issued, the four status bytes can be read via port 320 H .

NOTE: DA bit set signifies that the most recent command required a disk location.

Figure 6.44 Fixed Disk Controller Status
\begin{tabular}{|c|c|c|}
\hline & 6-Bit Value & I Significance \\
\hline 1 & [hex] & 1 \\
\hline 1 & 00 & | No error detected \\
\hline 1 & 03 & I Write Fault signal from drive \\
\hline 1 & 04 & | Drive Not Ready. \\
\hline 1 & 06 & I Track 0 Not Found. This error is returned if, \\
\hline 1 & & I on a recalibrate command, Track 0 could not be \\
\hline 1 & & | found within 200 steps \\
\hline 1 & 08 & | Drive Still Seeking. Returned in response to a \\
\hline I & & | Test Drive Ready command if a buffered step \\
\hline I & & | seek is still in progress \\
\hline 1 & 11 & | Uncorrectable Data Error in Data Field \\
\hline I & 12 & I Sector Address Mark Not Found. The controller \\
\hline 1 & & I did not detect a data address mark within its \\
\hline 1 & & | timing window \\
\hline I & 15 & | Seek Error. Disk location could not be found due \\
\hline 1 & & I to an unmatched ID field or bad CRC \\
\hline 1 & 18 & | Correctable Data Error. A madia error encountered| \\
\hline 1 & & I while reading was corrected by ECC. This error \\
\hline 1 & & I notification is, therefore, essentially for \\
\hline 1 & & | information purposes \\
\hline I & 19 & | Bad Track. The most recent data transfer command \\
\hline 1 & & I encountered a track al ready flagged as bad by an | \\
\hline I & & | earlier Format Bad Track command. (No retries arel \\
\hline 1 & & | performed] \\
\hline 1 & 20 & | Invalid Command was issued to the controller \\
\hline 1 & 21 & | Illegal Disk Location issued to the controller \\
\hline I & 30 & | Sector Buffer Error. A data error was detected \\
\hline 1 & & | during Sector Buffer Diagnostics \\
\hline I & 31 & | Controller ROM Checksum Error returned by \\
\hline 1 & & | diagostic commend \\
\hline 1 & 32 & | ECC Polynomial Error detected during diagnostic \\
\hline 1 & & 1 command \\
\hline 1 & & I \\
\hline
\end{tabular}

Figure 6.45 Fixed Disk Controller Error Codes

The significance of the fixed disk location returned in the status bytes differs in accordance with the command to which it refers:
* Error on multiple sector data transfer (read or write) command
- location of the defective sector.
* Error on format or verify sector command
- location of the defective track.
* No error on format or verify sector command
- location of the sector following the last sector/track checked or formatted.

Figure 6.45 gives the significance of Error Code values returned in the 6 least significant bits of the first status byte.

\section*{Fixed Disk Controller Diagnosties}

As the result of an explicit command from the microprocessor, one of three internal diagnostic commands can be performed by the fixed disk controller:

SECTOR BUFFER DIAGNOSTIC - Command Code OEOH
Specific parameters: none.
The sector buffer is subjected to a 9-pass memory integrity test, using a 9-byte pattern (no bits set, bit 0 set, bit 1 set ... bit 7 set). After each pattern write and verification reading, the whole pattern is shifted by one byte and the test is repeated.

DRIVE DIAGNOSTIC - Command Code OE3H
Specific parameters: Drive, R1, Step.
The controller sends Recalibrate and Seek commands to the specified drive, and reads sector 0 of each track to check that ID and data fields are correct. The disk must already be formatted (no writing to disk takes place).

CONTROLLER DIAGNOSTIC - Command Code OE4H
Specific parameters: none.
This command performs a controller RAM integrity check (similar to Command OEOH), a ROM checksum test, an ECC integrated circuit diagnostic check, and a number of other circuit verifications.

\section*{Fixed Disk Format}

The sector format is illustrated in Figure 6.46.

Figure 6.46 Fixed Disk Format

\section*{EXTERNAL FIXED DISK CONNECTION}

Signal connection to the external fixed disk unit is by means of a 37 -pole D-connector attached to the end of the cable coming from the unit. Figure 6.47 shows pin significance of this connector.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pin & | Signal & 1 & Pin & 1 & Signal \\
\hline | & 1 & 1 & & I & \\
\hline 1 & | DIRECTION IN & I & 19 & 1 & MFM WRITE DATA + \\
\hline 2 & I DRIVE SELECT2 & 1 & 20 & 1 & GND \\
\hline 3 & | DRIVE SELECT1 & 1 & 21 & 1 & GND \\
\hline 4 & | STEP & 1 & 22 & 1 & GND \\
\hline 5 & I READY & 1 & 23 & 1 & GND \\
\hline 6 & 1 INDEX & 1 & 24 & 1 & GND \\
\hline 7 & I HEAD SELECT1 & 1 & 25 & 1 & GND \\
\hline 8 & I HEAD SElecto & I & 26 & 1 & GND \\
\hline 9 & 1 WRITE FAULT & 1 & 27 & 1 & GND \\
\hline 10 & I TRACKD & I & 28 & 1 & GND \\
\hline 11 & I SEEK COMPLETE & 1 & 29 & 1 & GND \\
\hline 12 & I WRITE GATE & I & 30 & 1 & GND \\
\hline 13 & I HEAD SELECT? & 1 & 31 & 1 & GND \\
\hline 14 & I Reserved & I & 32 & 1 & GND \\
\hline 15 & I GND & I & 33 & I & GND \\
\hline 16 & | MFM READ DATA - & I & 34 & 1 & GND \\
\hline 17 & I MFM READ DATA + & 1 & 35 & 1 & GND \\
\hline 18 & I MFM WRITE dATA - & 1 & 36 & 1 & GND \\
\hline 1 & 1 & 1 & 37 & 1 & GND \\
\hline 1 & I & 1 & & I & \\
\hline
\end{tabular}

Figure 6.47 Connector To External Fixed Disk Unit

\subsection*{1.2 MB FLEXIBLE DISE DRIVE}

The 1.2 MB flexible disk drive, available as an option, provides double-sided storage over 80 tracks per side. Each track is formatted to 15 sectors of 512 bytes.
The drive is used in its high density, high speed mode of operation and requires a separate controller board.
\begin{tabular}{|c|c|}
\hline 1 & I \\
\hline | Tracks per inch (TPI) & 96 \\
\hline | Tracks per disk side & 80 \\
\hline 1 l & I \\
\hline I Unformatted capacity & 1.604 MB \\
\hline 1 l & 1 \\
\hline | Motor rotation speed & I \(360 \mathrm{r} . \mathrm{p} . \mathrm{m}\) \\
\hline | Motor start time & I < 500 ms \\
\hline | Head movement (track to track) & 3 ms \\
\hline | Average seek time & 94 ms \\
\hline | Latency time (at 300 r.p.m] & 83.3 ms \\
\hline 1 l & 1 \\
\hline | Date transfer rate & | \(300 \mathrm{~K} \mathrm{bits} / \mathrm{s}\) \\
\hline 1 l & 1 \\
\hline | Data recording format & MFM \\
\hline 1 l & 1 \\
\hline | Power consumption (typical with & | 12 Vdc 0.22 A \\
\hline | disk rotating in drives & 15 Vdc 0.35 A \\
\hline 1 l & I \\
\hline
\end{tabular}

Figure 6.48 1.2 MB Flexible Disk Drive Technical Data
Jumpers on the 1.2 MB flexible disk drive are illustrated in Figure 6.49.

Figure 6.49 1.2 MB Flexible Disk Drive Jumpers
DS1 - DS4
Address selection of the drive. For the NCR PERSONAL COMPUTER DS1 is to be selected, even if the drive being installed is the second in the system. (The cable band from the first to the second connector has two DS lines transposed.)

IU
When closed, enables the IN USE/ signal at pin 4 of the control/data connector. This signal indicates that all the daisy-chained flexible disk drives are in use under system control.

U1, U2
In conjunction with IU, these straps select one of five turn-on conditions for the drive indicator LED:

HL
Not used (open)
FG
Connects frame to 0 V .
LG, HG
One of these straps must be installed:

I, II
One of these straps must be installed:
\begin{tabular}{|c|c|c|c|c|}
\hline Installed & 1 & Density & uses & \begin{tabular}{l}
Rot. Speed \\

\end{tabular} \\
\hline \multirow[t]{2}{*}{I} & I & High & & 360 \\
\hline & 1 & Low & & 300 \\
\hline \multirow[t]{2}{*}{II} & I & High & & 360 \\
\hline & 1 & Low & & 360 \\
\hline
\end{tabular}

RY, DC
One of these straps must be installed: pin 34 of the control/data connector provides Ready (RY installed) or Disk Change (DC installed) signal.

Figures 6.50-6.53 illustrate signal timing.

Figura 6.50 Step Timing

Note: The displacement of any bit position does not exceed "t12" from its nominal position. (When PLO sepazator is used with zero write pre-compensation.)
\begin{tabular}{|c|c|c|c|c|}
\hline Density 6 Disk speed & \(=8\) & 59 & t10 11 & \(t 12\) \\
\hline High, 360rpm & (C. \(5=0.254 \mathrm{~s}\) & 2:3 .Nom. & 3us, Nom. \({ }^{\text {4us, Nom. }}\) & \(\pm 350 \mathrm{~ns}\) \\
\hline Normal, 360rpm & \{0. \(5=0.25 \mathrm{us}\) & 3. 3us, Hon. & Sus, Nom. \(\mid 6.74\) s, Not.. \(\mid\) & \(\pm 580 \mathrm{~ns}\) \\
\hline Norma 1. 300 rpm & 10.5 \(=0.25 .45\) & 4us.Nom. & 6us, Nom. 8 8us, Nom. & \(\pm 700 \mathrm{~ns}\) \\
\hline
\end{tabular}

Figure 6.51 Read Data Timing [MFM]

\begin{tabular}{|c|c|c|c|c|c|}
\hline Density 6 Disk Speecl & \(t 2\) & \(t 3\) & \(t 4\) & ts & \(t 6\) \\
\hline High, 360rpm & \% 0.1591 .125 & 4us.Max. & こ: 5 , \(: \mathrm{cm}\). & 2L5, & 4us, Nom \\
\hline Nermal, 360rpm & 10.15,2.14s & E.7us, : 2 ax & 3.3」s, Nom. & Sus, Nom. & \(6.7 \mathrm{Js}\).icr . \\
\hline Norral. SOCrin & | \(2.25 \cdot 2.145\) & Eus, Man. & 1-is.s. iom . & |Gus, : & ĉas, Nor:. \\
\hline
\end{tabular}

Figure 6.52 Write Data Timing [MFM]

Figure 6.53 Index Timing

Installation of the 1.2 MB flexible disk controller requires removal of the jumper JP6 from the main processor board (not present on all boards). This disables the flexible disk controller IC on the main processor board. The controller IC on the newly installed board is then responsible for both the 1.2 MB drive and the original (48 TPI) drive.

Jumpers are provided on the 1.2 MB flexible disk controller board for selection of an alternative I/O area for the controller. These address areas follow (standard addresses are given in parentheses):
\begin{tabular}{ll}
OUT \(372 \mathrm{H}(3 \mathrm{~F} 2 \mathrm{H})\) & Drive select command \\
IN \(374 \mathrm{H}(3 \mathrm{~F} 4 \mathrm{H})\) & Main Status Register \\
OUT 375 H (3F5H) & Command Register \\
IN 375 H (3F5H) & Result input
\end{tabular}

Otherwise I/O addressing of the controller IC is as for the equivalent IC on the main processor board.

ROM BIOS ensures correct recognition of the type of flexible disk being used in the 1.2 MB drive. ROM BIOS flexible disk drive control (see Chapter 3) applies to the 1.2 MB drive in the same way as to the standard flexible disk drive, with the obvious difference that track and sector parameters for the higher flexible disk capacity are also recognized.

NOTE: ROM BIOS support of the 1.2 MB flexible disk drive is included in ROM BIOS Version 3.5 and later versions.

\section*{The Screen Display}

The NCR PERSONAL COMPUTER can drive both a monochrome and a color display by means of adapter cards. Two types of adapter card are available: the character display card enables the monochrome display of all 256 characters in the character generator and includes 4 KB of memory; the graphic display card additionally supports "all points addressable" graphics and contains a 32 KB memory.

The 32 KB memory of the graphic display card can be upgraded to 64 KB , thus enabling you to make full use of the high resolution (\(640 \times 400\) pixels) capability of the NCR PERSONAL COMPUTER color CRT.

Both the monochrome and color CRT are driven by a 6845 controller. A dual port configuration is used so that CPU access and CRT controller can access video RAM independently of one another.

\section*{AVAILABLE ADAPTERS}

Only one version of the NCR PERSONAL COMPUTER contains the character display card as standard: the monochrome, single diskette drive, 256 KB memory system. All other versions contain a graphic display card. The video memory address areas of the two cards do not clash (all video RAM lies within the CPU address area). It is possible to connect a monochrome monitor to a graphic display card and it is possible to add an external monitor to the NCR PERSONAL COMPUTER by means of an additional adapter card. A number of industry standard monitors can be connected: if the internal monitor is driven by a graphic display card, the external monitor must be connected by means of a character display card, and vice versa. Different cards are used for a type of display (character/graphic), according to whether the
monitor is internal or external. This is because the frequency characteristics of internal and external monitors are not identical.

The display faciliites of your NCR PERSOAL COMPUTER can be changed/upgraded using the following Kits:

K510 - Character display card with 4 KB video memory for NCR internal monitor.
K511 - Graphic display with 32 KB video memory for NCR internal monitor.
K512 - Upgrade 32 KB graphic display to 64 KB .
K140 - Graphic display card with 16 KB video memory for an external monitor.
K141 - Character display card with 4 KB video memory for an exteral monitor.

CAUTION: Before connecting an external monitor, you must ensure that it is TTL compatible. A number of monitors available claim to conform to this norm, but in fact drain excessive current from the adapter card.

\section*{CONNECTION AND CONFIGURATION}

A 9-pin D-shell connector interfaces to the internal CRT assembly or external monitor. Figure 7.1 shows the pin connections for the monochrome and color adapters for both internal and external monitors. Figure 7.2 illustrates the signals for the light pen connector.

Figure 7.1 D-Connector Pin Assignments
\begin{tabular}{|c|c|}
\hline Pin & Signal \\
\hline 1 & | LPENINPUT/ \\
\hline 3 & | LPENSW/ \\
\hline 4 & 1 LGRD \\
\hline 5 & \(1+5 V\) \\
\hline 6 & | +12V \\
\hline
\end{tabular}

Figure 7.2 Light Pen Connector

Main Board display switches 5 and 6 can be used to set an initial display configuration (see Figure 7.3). These determine at system initialization which display card is to be driven. These settings can be overridden by software control. This is explained later in this Chapter. The adapter cards for the NCR PERSONAL COMPUTER use separate TTL load lines for horizontal sync, vertical sync, and video signal; there is no provision for a composite TV-signal. You should set these switches to the 80 x 25 setting, if you are using the graphic display card.

Monoch rome

Color/graphics \(80 \times 25\)

Color/graphics \(40 \times 25\)

Figure 7.3 Display Switch Settings

\section*{CHARACTER SET}

The NCR PERSONAL COMPUTER draws upon two character sets. In the character mode of display (the only possible mode in the case of the character display card), a set of 256 characters can be displayed on the screen. This character set, for the most part consisting of 6 (horizontal) \(x 9\) pixel patterns in 8 x 16 matrices, is produced by a character generator which is not accessible to software. If your application requires the pixel patterns of this character set (for example, for character magnification), you can load a corresponding graphic
table into user memory by means of the GRAFTABL utility under your NCR-DOS operating system. This table is required for the 640 by 400 pixel graphic resolution of GW-BASIC.
The lower part of this graphic table (for character codes 0 to 7 FH) is held in read only memory, starting at the machine address 0 D 800 H offset to the beginning of the ROM at paragraph \(0 F 000 \mathrm{H}\) in the normal machine memory map (the ROM is not switched), and extending over 2048 bytes (128 characters each of 16 bytes). This lower part is always available for program reading.
The higher part (character codes 80 H to OFFH) is loaded with the NCR-DOS executable file GRAFTABL into user memory. Assuming that you specify high resolution in response to the GRAFTABL menu, this higher part of the table is retained in user memory even after the return to the parent process (using the NCR-DOS function call "Terminate but Keep Process"). The exact location of the first 16 x 8 pattern byte (that is, for the character with code 80 H) is the byte with a positive offset of 400 H to the Code Segment + Instruction Pointer value held in the 8088 interrupt vector entry for interrupt type 1FH. This entry is set by the GRAFTABL program. Example: if the four bytes starting at machine address 7 CH (\(=\) vector entry for interrupt type 1 FH) are 03H-01H (IP) \(91 \mathrm{H}-06 \mathrm{H}\) (CS) in that order (the CS value can vary according to the program segment set up by NCR-DOS), the beginning of this higher part graphics table is located at the hexadecimal paragraph:offset address 0691:0503, and the top 8pixel line for the graphics character with code 81H is stored in the byte 0691:0513.

The pixel patterns for this \(16 \times 8\) character set are illustrated in Figure 7.4.

\section*{THE SCREEN DISPLAY}
yminnoto anחm omyonnoo arimporio กunñnã
 0 00110000 0 ounconno กODONOOO
 thrionono acmonan nonกono ariñino ย11กกกัด

2

8

\(F\)

जn 19 anc in cin กnci 10n M \({ }^{\text {TO }}\) ationsicurio
 （ \(\mathrm{H}^{2}\) ，（\％）
onononon 00 กnono กกักัก์์ก Mincona
 \begin{tabular}{c}
60 \\
005 \\
005 \\
\hline
\end{tabular} grina 170 00000500 00200008 กロOOOOR anmonnon 17000000
万ranijun ดกกราดกก ตาาเากตากอ aCl 111 r 100

 －12 10ロロハาロロ GOGMiñ arimorion
 Drinuncios

ตกロロロロกก 1）00กロロロ าคロロก円ดロ ดา円า ดดव 0 त刀？ 0
ry
8 bron ？our ADOM Gnos 706151708

f．

10

ดחпитirima （7n）rimino ：f inf rum （1） 17 （） 10 （1） 1！Ify） bi Irinn 4） ） 1 วคา

 （j）in！inn
 กเากแแกดก

B 5

17

15

\footnotetext{
\(1:\)
}
＇I＇：
Figure 7．4 The Main Cheracter Set（1 of 9）
THE SCREEN DISPLAY

\(1 E\)

34

ス̂f

\(\because\)

1 F

\(\because 5\)
00000097 00000806 M11700000 \(n 601000\)
0000
0000 000 0000000 ดchoncon Trne：vono cion000\％ 3100noen

AT

\(\because 1\)

z．

08000008 00000000 08080008 08088008 0 000 008 00080000 00000000 00000800 000000000 วกอกดัด0

21
00000000 00000000 06000000 00008080 0000000 0000080 00000000 00000000 กกั่า0000 ก10000000

뭄ㅁㅁㅁㅁ 00000000 뭄 00 0008080 008080080 00000808 800000080 00000008 กПロ0000

22

万1 1m0กח\％

роמחกดกด 3000 mand กดกทロวที moñ． 1 กロ Timbinoon 50000 － 8 gopnomen ตionmmo punctoo mimeroor

00000009 00000000 \(0 \square 970080\) cr1j0y006 \(1300 \operatorname{con} 5\) 05000000 07100000 19000000 0001000 5000060

aranonoog 00000000 080008080 000000 0000600 00080888 0400000 00000008 00000008 000000000
2F．
00000000 00000000
00000008
0600000

00009000 00000000 01420000 \(07 n 00000\) 8170800

\begin{tabular}{|c|c|}
\hline & \\
\hline
\end{tabular}
ヶ．B

Figure 7．4 The Main Character Set（2 of 9）

\section*{}

SD

00000000
08080000 OTm00con

44

뭄ㅁㅁㅁ 00030006 ロ0ロロロ000 0000006 080808 000008 0.00005 Q \(00 \square 03000\) ดกวロロロด 31～OOOOO

\(3 F\)

45

Q00ロ0000 00000000 Q 000080 8 8 8 8 8 280080 － 070 0 00600000 10000060 112 10ロロロロ

40

46

45

\(4 D\)

5.
\begin{tabular}{|c|c|}
\hline & \\
\hline
\end{tabular}
5.1

53

59

AE

\(4 F\)

Figure 7．4 The Main Character Set（3 of 9）

0000000 00000700 00000000 0070008 0.008. 00060000 0000000 8080888
ódóototo 00000000 00000000
\(5 A\)

80000070 0000 \%er 0 Canoma 89000008 00000008 00 y) 100130000 0pon00م ranono 000651008 1000000 00300000 06000080

00
\begin{tabular}{|c|}
\hline \\
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Kó

6

00000000 00000008 0, 0000088 000000 000000 000000 0.000000 0.12080 00000000 OGOROOOO

61
00000000 0000000 00000000 000 Co 000 07000000 \(\square ว 0000\) oforon 880 80 \(00000{ }^{\circ}\) 65000100 00000000
\(s^{-}\)

61

\(\therefore\)

52

00000000 8080000 00000000 0800080 o. 0000080 0000008 8008 00000000 000000000 3 กกา) 000

SB

os

71
0000nono 00000000 ononnnad

Figure 7.4 The Main Character Sat (4 of 9)

\section*{THE SCREEN DISPLAY}

\begin{tabular}{|c|}
\hline 78 \\
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline \\
\hline ;12 11 \\
\hline \\
\hline \%) in \\
\hline H1f ! 10) 19 \\
\hline \\
\hline rifinrimin \\
\hline \(31 . C O\) \\
\hline 1971 \\
\hline \multirow[t]{2}{*}{\[
t 17(5) f=1+
\]} \\
\hline \\
\hline
\end{tabular}

7B

80

00000000
00000000 80008080 8800808
.8088 bojotof 880890808 808080888

89

BF

95

Figure 7.4 The Main Character Set [5 of 9)

97

91

A4

QROOODOO 98808068 00800008 09008008 08098000 00000000 4080
obotot 000008
50800080
08000080
00008000

9F

\(A 5\) 88989890 800068 000598 08085080 0008080 ototatoto 00800080 08008080 00400000 00 otototo

BO

AB

B1

AC

B2

A6

00000000 880888 508 208 0080800 6802088 \(0080 \% 80\) 00080000 00808080 80 \(800 \% 1008\) 00800808

A1

A7
88898980 80808088 88800808 80800808 08080008 80808888 88080880 \(8888 \quad 888\) 00000000 08000000 80808088
\begin{tabular}{|c|c|c|c|c|c|}
\hline AB & A9 & AA & \(A B\) & AC & \(A D\) \\
\hline & & & & & \\
\hline AE & AF & B0 & B1 & B2 & B3 \\
\hline
\end{tabular}

Figure 7.4 The Main Character Set [6 of 9]

B4

EA

000 \% 000 000 : 000 000,000 \(808: 808\)
088:808
000 : 000
OOO : 08000000 00080000 00000008 00000000 800000008

BS

BB

C1

ce

CE

B7

BE

C5

09000000 0000000 800000808 00000808 00000000 ovodototo 00808
060
080 0 0 00000000 000000008

CA

D1

Figure 7.4 The Main Character Set (7 of 9)

Figure 7.4 The Main Character Set (8 of 9)

Figure 7.4 The Main Character Set (9 of 9)

An additional character set is available for reading under software control, as used by the low resolution graphics mode of display in GW-BASIC. Essentially this consists of the same characters as available in the character set already described. The main difference is that pixel patterns for the characters in this set are in a \(7 \times 7\) format (except for downward tails) contained in an \(8 \times 8\) area.

The pixel patterns for the lower part of this character set (that is, characters with codes 0 7 FH) can be read starting at address 0 FA6EH, offset to the beginning of the ROM at paragraph address 0 FOOOH : the pixel pattern for the character with code 0 is stored in the first 8 bytes, the pattern for code 1 in the next 8 bytes, and so on. The last character pattern (for code 07 FH) is stored between offset OFE66H and OFE6DH.

The procedure for accessing the higher part of this Alternative Character Set is the sames as for the 16 x 8 character set, except that
* You may specify either low/medium or high resolution in response to the GRAFTABL menu.
* The pixel pattern for any character occupies only 8 bytes of memory.
* The beginning of the character table is at a positive offset of one byte to the location pointed to by the interrupt vector.

This character set is not implemented in the hardware character generator.

Figure 7.3 illustrates the pixel patterns of the 8 x 8 character set.
00000000
000000000
80080000
800000808
80000000
00000000

6

C

12
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

21
20

00000000 000 000 0000,90 \(8000 \cdot 000\) 00000000 00000000

1 A

14
15
00000000 00.1000 - : 1000000 00000000 00000000

1 B

4

A

10

16

00000000 00008000 , 000000 ; 0000008 ototototoro 00000000

1 C

22

5

B

11

17
00000000

1D

23
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

24

25

26

27

28

29

Figure 7.5 The Alternative Character Sat (1 of 7)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
00000000 \\
0000000 \\
\(90: 1000\) \\
\(00: 00008\) \\
0000000 \\
00000008 \\
\hline
\end{tabular} & 00000000
00000000
00000000
00000000
00.10000
0000000 & 00000000 00000000 20000900 007009000 00000000 000000000 & 00000000 00000000 00000008 00000000 \(80 \cdot 0000\) 00000000 & \\
\hline 2 A & 2 B & 2C & 2D & 2 E & 2 F \\
\hline & & & & \[
\begin{aligned}
& 800 \% 980 \\
& 008: 80 \\
& 100: 108 \\
& 0000: 100 \\
& 08000000
\end{aligned}
\] & \\
\hline 30 & 31 & 32 & 33 & 34 & 35 \\
\hline & & & & 89098989 80. 8080 00000000 08000808 \(08 \cdot 8008\) 008000000 & \\
\hline
\end{tabular}

36

3C

42

4B

4F

49

43

50

\(4 A\)

44

51

उA

40

46

\(4 C\)

52

41

47

4D

53

Figure 7.5 The Alternative Character Set (2 of 7)

55

54

61

\(A\)

（1）

＇ 3

77

\(1 / 1\)

SF．

14

62

\(\Delta t\)
－1400c ロロロロロロ0 700,400 00
+00
-100
-100
 かF

75

7 F

58

130000000 OOP Q 0 00000000 00100000 0600000
（16106000

SE

64

\(6 A\)

00000000
00000000

76

76

7 C

59

00000000
00000000 00000000 00000000 00000000 00000000 00000000

5 F
90000000

6.5

6E

00000000 00000000 0.0000
\(800: 800\)
\(0000: 800\)
0000 \(000 \mathrm{a}+3 \mathrm{a}\) 71

00000000 00000000

77

7D

Figure 7．5 The Alternative Character Set［3 of 7］
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{}} \\
\hline & \\
\hline
\end{tabular}

7E
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

84

7F

85

BB

．

8

4

ヘマ

30

86

ธС

92

99

偖

R． 1

日

37

BD

\(?\)

9.

75

15

82

BH

3E

04

96

Al）

A（）

ES

89

gr

00000000

95

9 H

A1

A7

Figure 7．5 The Alternative Character Set［4 of 7］

AS

AE

Fi 4

\(\mathrm{F}:\) ）

0

Cs

AC
C

7000nouv \(000 p 130=\) OGl20́OUO 4000 \(0000 c \neq 10\) 00000000 00กำกอロロ

An

EC

13,6

111
 00000700 170040000 001000000 － 015000 Mmo 000

C．

\(\%\)

न
praconuc orycocos 11300300 － 00000mo 200\％ 2000 1） 1 แ円กロ

46
 （17！！リกロ！

CS

\(8:\)

i） 1

Figure 7．5 The Alternative Character Set（5 of 7）

Figure 7.5 The Alternative Character Sat (6 of 7)
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline fC & FD & FE. & FF \\
\hline
\end{tabular}

Figure 7.5 The ALternative Character Set [7 of 7]

\section*{MONOCHROME CHARACTER DISPLAY}

The character display of the NCR PERSONAL COMPUTER can accomodate 80 characters in the horizontal and 25 characters in the vertical direction. The hardware characteristics of the monochrome character display:
\begin{tabular}{|c|c|}
\hline Screen dimensions & 12 inches (295 mm) \\
\hline * Deflection angle & 90 degrees \\
\hline - Phosphor & P31 \\
\hline * Display & Scale of green \\
\hline * Definition & 640 (horizontal) x 400 (vertical) \\
\hline Bandwidth & 23 MHz \\
\hline Refresh rate & 56.2 Hz \\
\hline * Horizontal frequency & 23.8 KHz \\
\hline * Anti-glare surface & \\
\hline
\end{tabular}

Figures 7.6 and 7.7 illustrate the signal flow which results in the generation of the character display. Figure 7.8 gives details about connections to the monochrome deflection board.

Figure 7.6 Character Display Logic

 P3

Monochrome Deflection Beard

P2-1 Contrast W
2 Contrast LO
3 Contrast HI

P5-1 + 12 V
2 GND

Figure 7.8 Monochrome CRT Daflection Board Pin Assignments

\section*{CHARACTER DISPLAY MEMORY}

The character display adapter stores the character screen image in byte pairs (character code attribute) in 4 KB of read/write memory, starting at CPU memory address 0 BOOOOH . The even address of each pair stores the character code in the range 0 to 0 FFH , the odd address immediately above it stores the attribute byte. The CPU/monitor access is synchronized with the character clock. Therefore, each CPU access to video memory is accompanied by at least one processor WAIT state. Alternatively, video memory can be accessed by DMA. The significance of the attribute byte is set out in Figure 7.9.

Figure 7.9 The Character Display Attribute Byte

\section*{Notes:}

Bits 7 and 3 set result in blinking and increased intensity, respectively. Underline attribute rasults in a blue character on a color monitor.

The character display memory comprises 4 KB . The screen memory address lines are decoded in a way that this display memory is addressed a further 7 times, starting at 4 KB boundaries. This means that the single-page character display memory occupies a total address range of 32 KB .

\section*{CHARACTER DISPLAY CONTROLLER}

Because video data can be written to and read from read/write memory with CPU MOVE instructions, programming the 6845 is required only in order to initialize the character display and for certain changes of the display mode. These programming steps are described in this section.

The following hexadecimal port addresses are dedicated to the 6845 for the character display card:

The controller register selected via port 03B4H can be one of those given in Figure 7.10. These controller registers are write only, except:

OEH, OFH - read/write
10H, 11H - read only

Registers OCH and ODH are of special interest: when set to zero, they address the first character of the 4 KB screen page starting at CPU address 0 BOOOOH as the top left corner of the screen. Changing this value, you can displace characters on the physical screen without having to transfer them within screen memory.

Figure 7.10 The Controller Registers [1 of 2]

Control registers \(0 \mathrm{AH}-11 \mathrm{H}\) can be manipulated in accordance with the requirements of the individual application. The other registers are set for a 80 x 25 character display as shown in Figure 7.11.
\begin{tabular}{|c|c|c|c|c|}
\hline | Register & Value - hex & 1 & Register & Value - hex \\
\hline I & & I & & \\
\hline 10 & 67 (61) & I & 5 & 0 (08) \\
\hline 11 & 50 & 1 & 6 & 19 \\
\hline 12 & 54 (52) & 1 & 7 & 19 \\
\hline 13 & 14 (OF) & I & 8 & 0 (02) \\
\hline 14 & 1A (19) & 1 & 9 & OF (DD) \\
\hline 1 & & I & & \\
\hline
\end{tabular}

Figure 7.11 Control Registers For Character Display

\section*{Note:}

Values given in parentheses apply to certain industry standard monitors which can be used in conjunction with suitable adapters [see section "Available Adapters" in this Chapter). The BIOS sets values for an internal monitor, but you can override these values in your own application.

\section*{CHARACTER CURSOR}

The character display mode cursor of the NCR PERSONAL COMPUTER consists of up to 16 scan lines. In order to maintain compatibility with applications which assume a cursor of lower definition, a small PROM intercepts data to control registers \(0 A H\) and \(0 B H\) (via port \(3 B 5 H\)) before they reach the 6845 controller. The following conversions are performed:
* The value 2 is added to cursor start and end values between 8 and 13 inclusive. As a result, scan lines 8 and 9 are not accessible.
* Start and end values 14 and 15 are both interpreted as value 15.

Scan lines 0 to 7 are passed to the controller without intervening conversion. The scan line number specified for the cursor start must not be greater than that specified for the end scan line.

\section*{COLOR GRAPHICS DISPLAY}

The graphics display card supports display of the 256-characters - set in an 80 (horizontal) x 25 format. All points addressable graphics can be implemented in three degrees of resolution. This card is capable of driving a color CRT. The color CRT of the NCR PERSONAL COMPUTER MODEL 4E has the following hardware characteristics:
\begin{tabular}{|c|c|}
\hline Screen dimensions & 12 inches (295 mm) \\
\hline * Digital input signals & Red, Green, Blue, Intensity \\
\hline - Display & 8 colors, each in normal and \\
\hline & high intensity: black, red, \\
\hline & green, blue, brown, magenta, cyan, white \\
\hline * Definition & 640 (horizontal) x 400 \\
\hline * Bandwidth & 20 MHz \\
\hline * Refresh rate & 55.6 Hz \\
\hline * Horizontal frequency & 23.6 KHz \\
\hline * Anti-glare surface & \\
\hline
\end{tabular}

Figures 7.12 and 7.13 illustrate the signal flow which results in the generation of the color display. Figure 7.14 illustrates connections to the color CRT deflection board.

Figure 7.13 Color CRT Signals

P1 1 Power
2 Ground

VA RGB drive to CRT
Pin 2 is Ground
\(J 115\) To controller D-connector pins
Pin 1 - D-connector pin 3
3 - 4
4 - 5
5 - 9
6 - 8
7 - 7
8 .
6

Figure 7.14 Color CRT Deflection Board Pin Assignments

\section*{GRAPHICS DISPLAY MRMORY}

The graphic display card has as much as 64 KB of read/write memory at its disposal, according to the type of graphic display card being used. This memory resides in the CPU address areas \(0 B 8000 \mathrm{H}\) - OBFFFFH and 0 A 8000 H - OAFFFFH (upper 32 KB if video memory extension installed). The use of these memory areas varies according to the display mode selected, and is therefore given for each mode separately in this section. The video memory is dual ported, so that the CPU can access it at any time. To avoid display disturbances applications should confine access to the horizontal and vertical retrace intervals.

\section*{GRAPHICS DISPLAY CONTROLLER}

The graphic display controller is the same as that used in the character display adapter - the 6845. The general concept of video display initialization discussed in "The Character Display Controller" also applies to initializing the graphic display character, both in its character and in its graphic display modes. The significant differences lie in the port addresses used and the more extensive mode control and status information needed to account for the variety of modes in which the adapter can be used.

The following hexadecimal port addresses are used by the graphic display card:

3D4 - Controller Index Register (value output via this port points to one of eighteen 6845 internal registers)
3D5 - Data Register (value output to register selected via port 3D4)

3D8 - Mode Control (write only). The effects of the individual bits, when set, are as follows:

0 - select fast CRT-controller clock (necessary for \(80 \times 25\) character mode and \(640 \times 400\) graphics mode)
1 - select graphics mode; zero selects character mode

2 - activate video signals for monochrome display; otherwise, a color display is assumed
3 - enable video signal
4 - select monochrome graphics (\(640 \times 200\) or \(640 \times 400\))
5 - enable blinking function
6 - select 400 lines display
7 - select page: zero = page 1 or 2 , set \(=\) page 3 or 4

3D9 - Color Selection (write only). The effects of the individual bits, when set, are as follows:

0, 1, 2 - activate blue, green, and red guns, respectively for border color (character mode); in graphics modes, this color setting applies to the background color. The border color in character mode is a software convention; it is not actually displayed on the CRT of the NCR PERSONAL COMPUTER.
3 - set high intensity for color selected by bits \(0,1,2\), provided these bits apply to character mode border or \(320 \times 200\) graphics. 4 - set high intensity for background color in character display
5- palette selection in color graphics through activation and de-activation of the CRT blue gun
6,7 - not used
3DA - Status (read only). The significance of the individual bits, when set:
0 display enabled (controller not reading display memory at the moment)
1 - light pen trigger set
2 - light pen switch closed 3 - vertical retrace in progress
3DB Clear light pen latch
3DC - Preset light pen latch

\section*{CHARACTER MODE}

The memory image of the character screen display on the graphics display card is built up in much the same way as that of the character display card described in the previous section: two bytes are devoted to each character area, of which the lower (even) byte contains a value representing one of the 256 characters in the character generator, the upper (odd) byte containing the display attribute.

The important difference between the two cards is that the graphics card interprets the attribute byte as color information for the color CRT.

The significance of the attribute byte is explained in Figure 7.15.

Figure 7.15 The Character Display Attribute Byte [Color]

\section*{Notes:}

Bits 7 and 3 set blinking and increased intensity, respectively. When blinking is disabled (see mode select register - port 3D8H), bit 7 controls background intensity.

The initial settings of 6845 registers (set via ports \(3 D 4 H\) and \(3 D 5 H\)) for the character modes of display of
the graphics display card for a color CRT are given in Figure 7.16. Registers \(0 \mathrm{AH}-11 \mathrm{H}\) can be manipulated in accordance with the requirements of the individual application.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Register} & \multicolumn{2}{|l|}{Value - hax} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| Register}} & \multicolumn{2}{|l|}{Value - hex} \\
\hline & \(40 \times 2\) & \(80 \times 25\) & & & \(40 \times 2\) & \(80 \times 25\) \\
\hline & & & 1 & & & \\
\hline 0 & 34 [38] & 69 [71] & 1 & 5 & 0 (08) & 0 (06) \\
\hline 1 & 28 & 50 & 1 & 6 & 19 & 19 \\
\hline 2 & 2 C (20) & 58 (5A) & 1 & 7 & 19 (10) & 19 (1C) \\
\hline 3 & 5 (DA) & OA & 1 & 8 & 0 (02) & 0 [02] \\
\hline 4 & 1A [1F] & 1A (1F) & I & 9 & OF (07) & OF (07) \\
\hline & & & & & & \\
\hline
\end{tabular}

Figure 7.16 Control Registers For Color Character Display

\section*{Note:}

Values given in parentheses apply to certain industry standard monitors which can be used in conjunction with suitable adapters [see section "Available Adepters" in this Chapter]. The BIOS sets values for an internal monitor, but you can override these values in your own application.

Critical settings for the Mode Control Register (port 3D8H) are given in Figure 7.17.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Bit} & \multirow[t]{2}{*}{Character Display Mode} \\
\hline 17 & 8 & 5 & 4 & 3 & 2 & 1 & D & \\
\hline \multicolumn{9}{|l|}{} \\
\hline I & & & & & & & & \\
\hline 10 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & \(40 \times 25\) monochrome \\
\hline 10 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & \(40 \times 25\) color \\
\hline 10 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & \(80 \times 25\) monochrome \\
\hline 10 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & \(80 \times 25\) color \\
\hline
\end{tabular}

Figure 7.17 Character Mode Control On Color/Graphics Adapter

\section*{GRAPHICS MODES}

The graphics display controller supports a number of degrees of graphic resolution. The graphics display adapter and initialization firmware of your NCR PERSONAL COMPUTER allow three graphic display modes: low, medium, and high resolution. Low and medium resolution graphics make use of a 16 KB video memory for one screen design, high resolution requires 64 KB.

Note:
A number of non-NCR personal computers apply the term "low resolution" to a 160 x 100 pixel graphic display, as, for example, transmitted to home televisions by means of a composite VHF or UHF signal. The low resolution graphic mode of your NCR PERSONAL COMPUTER supports 320 x 200 pixel color graphics, medium resolution supports a \(640 \times 200\) pixel monochrome graphic display. The NCR high resolution mode of display, not usually supported by other personal computers, gives a high quality 640 x 400 pixel color graphic display. This enhanced feature of the NCR PERSONAL COMPUTER does not adversely affect the compatibility stated in the foreword to this Manual.

\section*{Low Resolution}

The low resolution graphic display consists of 320 horizontal by 200 vertical pixels. Each pixel is represented by two bits, so that a choice of four colors is available for each pixel. Each line is output twice (duplicated in the following odd scan), so that the physical screen is actually filled by 400 graphic lines.

Low resolution uses 16 KB of video memory as follows:
OB8000H - OB9F3FH: even line scans (\(0,2, \ldots\) 198)
OB9F40H - OB9FFFH: not used
OBAOOOH - OBBF3FH: odd scan lines (1,3,...199)
OBBF40H - OBBFFFH: not used

The first byte (0 B 8000 H) contains color information for the four leftmost pixels of the top display line, and so on:

оввооон
Bit

Of each bit pair the more significant bit controls the red gun, the less significant bit controls the green gun. If neither of these bits is set, the pixel takes on the current background color of the Color Select Register (port 3D9H, bits 0-3). The blue gun is governed by the Color Select Register (port 3D9H, bit 5). The CRT display uses one of two color palettes, according to whether the blue gun is on or not. By activating the monochrome bit in the Mode Control Register Port 3D8H, it is possible to create a third color palette. Color selection is set out in Figure 7.18.

The initial settings of 6845 registers (set via ports 3D4H and 3D5H) for the low resolution mode of graphic display on the internal color CRT are given in Figure 7.19. Registers \(0 \mathrm{AH}-11 \mathrm{H}\) can be manipulated in accordance with specific programming requirements. When both set to zero, registers OCH and ODH set the graphics display controller to regard video memory address \(0 B 8000 \mathrm{H}\) as the first byte of display information. You can change these two registers to address the upper 16 KB of the 32 KB graphic memory, enabling your programs to acceess a second graphic page.
\begin{tabular}{|c|c|c|c|c|}
\hline Video MSB & Memory LSB & Port 30BHy bit 2 & Port SB9H, bit 5 & Pixal Color \\
\hline 0 & 0 & 0 & 0 or 1 & Current Background \\
\hline 0 & 1 & 0 & 0 & Green \\
\hline 1 & 0 & 0 & 0 & Red \\
\hline 1 & 1 & 0 & 0 & Brown \\
\hline 0 & 1 & 0 & 1 & Cyan \\
\hline 1 & 0 & 0 & 1 & Magenta \\
\hline 1 & 1 & 0 & 1 & White \\
\hline 0 & 0 & 1 & 0 or 1 & Current Background \\
\hline 0 & 1 & 1 & 0 or 1 & Cyan \\
\hline 1 & 0 & 1 & 0 or 1 & Red \\
\hline 1 & 1 & 1 & 0 or 1 & White \\
\hline
\end{tabular}

Figure 7.18 Low Resolution Graphics - Color Selection

Notes:
Background can be any one of 16 colors (8 basic colors, with intensity bit on or off).
Foreground color can be given high intensity [bit 4 of color select register, port 3D9H).
\begin{tabular}{|c|c|c|c|c|}
\hline Register & Value - hex & 1 & Register & Value - hax \\
\hline & & I & & \\
\hline 0 & 34 (38) & I & 5 & 0 (06) \\
\hline 1 & 28 & 1 & 6 & 64 \\
\hline 2 & 2C (0) & 1 & 7 & 64 (70) \\
\hline 3 & 5 (0A) & 1 & 8 & 0 (02) \\
\hline 4 & 6 B (7F) & 1 & 9 & 3 [01] \\
\hline & & I & & \\
\hline
\end{tabular}

Figure 7.19 Contral Registers For Low Resolution Graphics

\section*{Note:}

> Values given in parentheses apply to certain industry standard monitors which can be used in conjunction with suitable adapters [see section "Available Adepters" in this Chapter). The BIOS sets values for an internal monitor, but you can override these values in your own application.

If your graphics display card contains a 64 KB video memory, you can use these two registers to switch between two graphic pages. With additional manipulation of the page switch bit in the Mode Control register (port 3D8H, bit 7) up to 4 graphic pages can be addressed.

The memory map for the full 64 KB video memory is as follows:

Critical settings for the Mode Control Register (port 3D8H) are to be found in Figure 7.20 (bit 5 is "don't care").

Figure 7.20 Graphics Mode Control - Low Resolution

\section*{Medium Resolution}

The medium resolution graphic display consists of 640 horizontal by 200 vertical pixels. Each pixel is represented by a single bit, so that each pixel can be displayed as on or off in 16 KB of video memory. The video memory addresses used are the same as those for low resolution graphics. The only difference is that each byte contains display information (monochrome on or off) for 8 pixels:

OB8000H
Bit
\begin{tabular}{ccccccccccccccc}
1 & 7 & 1 & 6 & 1 & 5 & 1 & 4 & \(\mid\) & 3 & \(\mid\) & 2 & 1 & 1 & 1 \\
\hline
\end{tabular}

The 6845 registers (port \(3 \mathrm{D} 4 \mathrm{H} / 3 \mathrm{D} 5 \mathrm{H}\)) are set as for medium resolution graphics.

The Mode Control Register (port 3D8H) is set as shown in Figure 7.21 (bit 5 is "don't care".

Figure 7.21 Graphics Mode Control - Medium Resolution

\section*{High Resolution}

The high resolution mode of the graphic display enables you to use the internal color CRT to its full advantage. This mode makes use of the maximum of 64 KB video memory which can be installed on the graphics display card. In the case of color graphics, this memory is used as follows:
OB8000H - OBBF3FH: even scans \((0,4,8, \ldots 396)\)
OBBF40H - OBBFFFH: not used
OBCOOOH - OBFF3FH: odd scans \((1,5,9, \ldots 397)\)
OBFF40H - OBFFFFH: not used
OA8000H - OABF3FH: even scans \((2,6,10, \ldots 398)\)
OABF40H - OABFFFH: not used
OACOOOH - OAFFFFH: odd scans \((3,7,11, \ldots 399)\)
OAFF4OH - OAFFFFH: not used

As in low resolution graphics, each pixel is represented by two bits. Bits 7 and 6 of byte 0 B 8000 H determine the color of the pixel in the top left corner of the screen: either current background color as specified by the Color Select Register, or one of three colors in the current palette selected by the Color Select Register.
The same resolution (\(640 \times 400\)) can be confined to monochrome (pixel on or off) graphics. As in medium resolution graphics, each pixel is represented by one bit starting with bit 7 at 0 B 8000 H (top left pixel). An alternate screen image can be stored at 0 A 8000 H . The video memory map for the screen image starting at 0 B 8000 H (the equivalent is also available at OA8000H) :
OB8000H - OB9F3FH: even scans \((0,4,8, \ldots 396)\}\)
OB9F40H - OB9FFFH: not used
OBAOOOH - OBBF3FH: odd scans \((2,6,10, \ldots 398)\}\)
OBBF40H - OBBFFFH: not used
OBCOOOH - OBDF3FH: even scans \((1,5,9, \ldots 397)\}\)
OBDF40H - OBDFFFH: not used
OBEO00H - OBFF3FH: odd scans \((3,7,11, \ldots 399)\}\)
OBFF40H - OBFFFFH: not used

The 6845 registers (port \(3 \mathrm{D} 4 \mathrm{H} / 3 \mathrm{D} 5 \mathrm{H}\)) are set for high resolution graphics as shown in Figure 7.22.
\begin{tabular}{|c|c|c|c|c|}
\hline | Register & Vatue - hex & 1 & Register & Value - hax \\
\hline I & & 1 & & \\
\hline 0 & 69 & 1 & 5 & 0 \\
\hline 1 & 50 & 1 & 6 & 64 \\
\hline 2 & 58 & 1 & 7 & 64 \\
\hline 3 & DA & 1 & 8 & 0 \\
\hline 4 & 6 B & 1 & 9 & 3 \\
\hline 1 & & 1 & & \\
\hline
\end{tabular}

Figure 7.22 Control Registers For High Resolution Graphics

Figure 7.23 illustrates Mode Control Register settings (port 3D8H) for high resolution graphics.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Bit} & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{High Resolution Graphics}} \\
\hline 17 & 6 & 5 & 4 & 3 & & 2 & 1 & & 0 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{I} \\
\hline \(1-\) & 1 & - & 1 & & & 1 & 1 & & 0 & Monochrome & & \\
\hline \(1-\) & 1 & - & 0 & & & 0 & 1 & & 1 & Color & & \\
\hline
\end{tabular}

Figure 7.23 Graphics Mode Control - High Resolution
The remainder of this section consists of a program (NCR-DOS .EXE file) enabling you to plot pixels on a high resolution color display.

The graphics "cursor" is a single pixel, initially at the center of the screen, which can be moved in the compass directions N, NE, E, SE, S, SW, W, and NW by depressing the numeric pad keys \(8,9,6,3,2,1,4\), and 7 , respectively.

A status line displays the \(x / y\) co-ordinates of the current cursor position, the top left corner of the screen being the origin. Range checking (maximum \(x\) is 639, maximum y is 399) is included.

The L key is a toggle between screen drawing and simply moving the cursor. The \(C\) key is used for stepping through the colors which can be displayed in high resolution color graphics. The range of colors is made up of two "palettes": the palette is selected by the blue gun being on or off (port 3D9H). Both the \(L\) and \(C\) keys are reflected in the status line.

The status line is initially situated at the foot of the display, but when pixel plotting or cursor movement approaches the status line, it is transposed to the top of the screen and the former contents of the vacated area are restored.

Pressing the Z key gives the cursor fast movement in the direction last specified by a direction key.

You may wish to add routines of your own to store the graphic screen on disk. If so, execute the SHOWBAND routine before saving the screen. This discards the status line in favour of the full-height graphic design. You can use the STOREBAND routine already provided for saving the status line area, to read the screen 16 scan lines at a time.

If you are adding figure drawing capabilities by way of trigonometric calculation, you may wish to take into consideration that the internal monitor has a horizontal/vertical pixel ratio of \(6 / 5\) : the vertical pixels are a little further apart than the horizontal pixels.

PAGE ,132
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{IIDEOINT} & \multirow[t]{2}{*}{EQU} & \multirow[t]{2}{*}{10 H} & ;ROM BIOS initialize video mode \\
\hline & & & ;interrupt. \\
\hline :BCHINT & EQU & 16H & ;ROM BIOS read keyboard interrupt. \\
\hline \multicolumn{4}{|l|}{'} \\
\hline IIDEORAM & EQU & OB800H & ```
;Paragraph address of lowest location
;occupied by first scen line
;of hi-res color display.
``` \\
\hline \multicolumn{4}{|l|}{;} \\
\hline (MAX & EQU & 639 & ;Maximum \(x\) and \(y\) screen co-ordinate \\
\hline /MAX & EQU & 399 & ;values for high-resolution color. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline IIPFACT & EQU & 20 & ; Repetition factor for fast screen ;movement. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline 3ODEC & EQU & 2EH & ;Scan code for C. \\
\hline 30DEL & EQU & 26 H & ; L. \\
\hline 30DEF & EQU & 21H & ; F. \\
\hline 30DEZ & EQU & 2 CH & ; Z. \\
\hline ; & CS & SECMEN & \\
\hline
\end{tabular}
;

ORG 100H
PUSH CS
POP DS
;

; Display is high resolution ( \(840 \times 400\) ) color ;
; Status display area is Lower screen ;
; Display starting co-ordinates ;
; ;
;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i
;

CALL HIRESINIT
CALL LOGISWITCH ;Sat logic to move.
CALL COLSWITCH ;Set initial color to 0.
```

CYCLE1: CMP ZIPCOUNT,0
JZ CYCLE2 ;Jump if direction repetition non-
;existent or exhausted.
DEC ZIPCOUNT
MOV AL,ZIPKEY ;Get direction for repetition.
JMP SHORT CYCLE4 ;No need to analyze key further.
CALL KBREAD
;Scan code is in AH.
CMP AH,CODEZ ;Key Z for zip.
JNZ CYCLES ;Jump if no zip to be activated.
MOV ZIPCOUNT,ZIPFACT
JNP SHORT CYCLE1
CYCLES: CMP AH,47H ;Direction arrow scan codes are in
JB CYCLE5 ;range 47H to 51H.
CMP AH,51H
JA CYCLES
MOV AL, AH
MOV ZIPKEY,AL ;Stora direction in case needed for
;subsequent zip.
CYCLE4: CALL ARROW ;Analyze direction key.
CALL DISPCOORDS ;Display new co-ordinates.
CALL PLOT ;PLot or simply move.
CYCLES: CMP AH,CODEC ;Chack kay C for color.
JNZ CYCLE51
CALL COLSWITCH
JMP CYCLE1
CYCLE51: CMP AH,CODEL ;Check L for logic.
JNZ CYCLE52
CALL LOGISWITCH
CYCLEES: JMP CYCLE1


```

\section*{}
; ;
; Calculate new \(x / y\) coordinates, relative to screen top-left; ;
; restrain out of range values. ;
; Entry: scan code in range 47 H to 51 H in AL ;
; Return: new \(x\) in CX and at HORIPIX +2 ;
; \(y\) DX VERTIPIX + 2 ;
; ;
i;i;i;i;ititi;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i ;
ARROW: MOV CX,HORIPIX

MOV DX,VERTIPIX
SUB AL, 47H
MOV BX,OFFSET DIRTAB ;Movement direction table.

XLAT
;4 MSBs are zero,
;bit 0 set \(=\) right
; \(1=\) left
; 2 = down
; \(3=\) up
;Shift 4 LSBs through Carry Flag, ;adjusting horiz. [CX] and vertical ; \([D X]\) co-ords according to new pos.
SHR AL, 1
ADC CX,0
SHR AL, 1
SBB CX,O
CMP CX,XMAX+1 ; Range check - horizontal.
JNAE HORISET ;Jump if not 640 or OFFFFH.
DEC CX
;Horizontal max. is 639.
CMP CX,XMAX
JZ HORISET ;Jump if drawing would have run off ; right edge of screen. ;Horizontal co-ord. had decremented ;from 0 to OFFFFH, so zero it. ;Legal horizontal value now in CX. ;Equivalent for vertical co-ordinate.
SHR AL, 1
ADC DX, D
SHR AL, 1
SBB DX,0
CMP DX, YMAX+1 ; Range check - vertical.
JNAE VERTISET ;Jump if not 400 or OFFFFH.
DEC DX ;Vertical max. is 399.
CMP DX,YMAX
```

 JZ VERTISET ;Jump if drawing would have run off
 ;bottom edge of screen.
 XOR DX,DX
 VERTISET: ;New Legal }x/y\mathrm{ co-ards established.
MOV HORIPIX + 2,CX
MDV VERTIPIX + 2,DX
PUSH CX
PUSH DX
;Now check whether the status Line
jought to be moved.
CNP DX,360
JZ STATMOV1
CMP DX,40
JZ STATMOVR
JMP SHORT POSSET ;No need to move status Line.
STATMOV1: CMP CURROW,24
JZ STATMOVZ ;Must move bottom to top.
JMP SHORT POSSET
STATMDVE: CMP CURROW,24
JNZ STATMOV4 ;Must move top to bottom.
;
POSSET: POP DX
POP CX
RET
;
STATMOV3:
STATMOV4: CALL SHOWBAND ;Change position of status Line.
MOV AX,BANDPARAG
MOV BX, BANDPARAGT
MOV BANDPARAG;BX
MDV BANDPARAGT, AX
CALL STOREBAND
CALL CLEARBAND
MOV AX,WORD PTR CURROW
XCHG AL, AH
MOV WORD PTR CURROW, AX
MOV CURCOL,D
CALL STATLINE
JMP SHORT POSSET

```
```

i;
; ;
; Plot one pixal [2 bits in hi-res color] on screen ;
; ;

```

```

;
PLOT: CALL XOLDPIX
MOV AX,HORIPIX + 2 ;New co-ords now become
MOV HORIPIX,AX ;current co-ords.
MOV AX, VERTIPIX + 2
MOV VERTIPIX,AX
CALL ILLUMINE
RET
;
;;;i;;:i;i;!;i;i;i;i;i;i;i;i;i;;;;;
; ;
; Laave old pixel position as it ;
; was before illuminating next one ;
; ;
;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;
;
XOLDPIX: MOV AL,PIXLOGIC
AND AL,9 ;Ignore all but LSB.
JNZ DOTPLOT
DOTUNPLOT: JMP ILLUMINE ;RET is from this routine.
DOTPLOT: RET
;
;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;
; ;
; Illuminate pixel calculated by ;
; PIX2MEM, in accordance with ;
; PIXLOGIC ;
; ;

```

```

;
ILLUMINE: MOV BX,OFFSET VERTIPIX
CALL PIX2MEM ;Isolate current pixel.
MOV AL,BYTE PTR ES:[BX]
MOV AH,AL
MOV DH,PIXLOGIC
AND DH,1
JNZ REPLACE

```
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{MOVEPOS:} & NOT & \multicolumn{2}{|l|}{AL} \\
\hline & JMP & \multicolumn{2}{|l|}{SHORT SEL2BITS} \\
\hline REPLACE: & MOV & AL,PIXCOLOR & \\
\hline \multirow[t]{7}{*}{SEL2BITS:} & MOV & DH,DL ; & \multirow[t]{2}{*}{;Copy pixel mask.} \\
\hline & NOT & DH & \\
\hline & AND & AL, DL ; & ;Blank out bits not concerned ;with pixel. \\
\hline & AND & AH, DH ; & ;Blank out bits concerned with pixel. \\
\hline & OR & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & MOV & & \\
\hline & \multicolumn{3}{|l|}{RET} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & \multicolumn{3}{|r|}{;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i} \\
\hline & \multicolumn{2}{|r|}{;} & ; \\
\hline & \multicolumn{3}{|r|}{; Return at VIDEOPG:VIDEOOFFS+VMASK;} \\
\hline & \multicolumn{3}{|r|}{; video RAM address and 2-bit mask ;} \\
\hline & \multicolumn{3}{|r|}{; of the color pixel whose \(y\) value} \\
\hline & \multicolumn{3}{|r|}{; is addressed by BX, with the x} \\
\hline & \multicolumn{3}{|c|}{; value at BX - 4 .} \\
\hline & \multicolumn{3}{|r|}{; Return info atso available in} \\
\hline & \multicolumn{3}{|c|}{; ES:BX+DL.} \\
\hline & \multicolumn{3}{|r|}{; ;} \\
\hline & \multicolumn{3}{|r|}{;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multirow[t]{6}{*}{PIXRMEM:} & \multirow[t]{2}{*}{MOV} & \multicolumn{2}{|l|}{SI, VIDEORAM - 400H} \\
\hline & &  & ;Base paragraph of graphics video ;memory (will be raised by 400 H on ;first pass through loop]. \\
\hline & MOV & CX, [BX] & \\
\hline & MOV & AX,CX ; & ; For offset calculations below. \\
\hline & AND & CX,0003H & ;Blank out all but 2 LSBs of ;vertical position. \\
\hline & INC & CX & \\
\hline \multirow[t]{7}{*}{PIX2MEM1:} & ADD & SI, 400H & ;Add amount [paragraph] of one ;scan line block. \\
\hline & \multicolumn{3}{|l|}{LOOP PIXRMEM9} \\
\hline & TEST & SI, 4000H & ;Now test whether upper hex digit \\
\hline & JZ & PIX2MEM2 & ;went from B to C . If it did, convert \\
\hline & AND & SI, OBFFFH & if to \(A\) and add 800 H to SI, thus \\
\hline & OR & SI,2000H ; & ;addressing correctly NCR extra video \\
\hline & ADD & SI,800H & ;RAM [paragraph]. \\
\hline PIX2MEM2: & MOV & \multicolumn{2}{|l|}{ES,SI} \\
\hline & MOV & VIDEOPG, SI & ;1 of 4 scan line blocks selected; \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { SHR } \\
& \text { SHR }
\end{aligned}
\] & \[
\begin{aligned}
& A X, 1 \\
& A X, 1
\end{aligned}
\] & ; now calculate offset of beginning of ;actual line into that paragraph. ; \(A H\) is zero, as max. value in \(A X\) ;was 18FH [399). \\
\hline & MOV & CL, OAOH & ; 160 bytes per line. \\
\hline & MUL & CL & ;Byte offset of beginning of line \\
\hline & MOV & \(D X, A X\) & ; now in DX. \\
\hline & SUB & BX, 4 & \\
\hline & MOV & \(A X,[B X]\) & ; Get horizontal position. \\
\hline & PUSH & \(A X\) & ;Save for 2-bit/pixel calculation. \\
\hline & SHR & \(A X, 1\) & \\
\hline & SHR & \(A X, 1\) & \\
\hline & ADD & \(A X, D X\) & ```
;AX = offset due to horizontal coord,
;DX = vertical
``` \\
\hline & MOV & \(B X, A X\) & ;As return parameter. \\
\hline & MOV & VIDEOOFFS & ; Offset into scan block stored. \\
\hline & POP & CX & ;Now establish which two bits of the \\
\hline & AND & CX,0003H & ;byte calculated refer to the color ;pixel. \\
\hline & INC & CX & \\
\hline & MOV & \(\mathrm{AX}, \mathrm{O300H}\) & ;Initially assume that pixal ;addressed is the leftmost of the ;4 pixels in the byte. \\
\hline \multirow[t]{6}{*}{PIX2MEM3:} & SHR & AX, 1 & \\
\hline & SHR & AX, 1 & \\
\hline & LOOP & PIX2MEM3 & \\
\hline & MOV & DL, AL & \\
\hline & MOV & VMASK, AL & ; 1 of 4 pixel selection mask stored. \\
\hline & RET & & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{; Initialize to high-resolution color graphics} \\
\hline ; & & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{,} \\
\hline \multirow[t]{4}{*}{HIRESINIT:} & MOV & AH, O & ; ROM BIOS INT 10H function to ;set video mode. \\
\hline & MOV & AL, 9 & ; Selects \(640 \times 400\) color. \\
\hline & INT & VIDEOINT & \\
\hline & RET & & \\
\hline
\end{tabular}


```

; ;
; Routines to write binary pos.[status line] to graphics screen ;
; ;

```

```

;
DISPCOORDS: PUSH CX ;Save pixel position in regs
PUSH DX
MOV AX,CX
MOV CURCOL,4
;Position of first digit in Line.
CALL SEEDIGITS
MOV AX,DX ;Same for Y co-ordinate.
MOV CURCOL,14
CALL SEEDIGITS
POP DX
POP CX
RET
;
i;i;;i;i;;;;;;;;i;i;i;i;i;i;i;i;i;;
; ;
; Entry: binary number in AX, ;
; cursor row/col in CURROW/CURCOL ;
; ;
\#;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;
;
SEEDIGITS: PUSH DX ;So as not to corrupt Y co-ordinate.
MOV DX,WORD PTR CURCOL
CALL CURSET
MOV BL,100 ;Decimal divisor.
DIV BL ;Max. dividend is 639.
;Quotient in AL, remainder in AH.
CALL DISPNUMB ;Display hundreds.
XCHG AL,AH
CBW ;AX = new quotient = old remainder.
MOV BL,10
DIV BL
CALL DISPNUMB ;Display tens.
XCHG AL,AH
CALL DISPNUMB ;Display units.
POP DX
RET

```

DISPNUMB: PUSH AX
PUSH BX
OR AL, 3 OH ;Convert binary dec. digit to ASCII.
MOV \(A_{\text {, }} \mathrm{OEH}\);ROM BIOS INT 10H: teletype.
MOV BL, 3 ;Character color.
INT VIDEOINT
POP BX
POP AX
RET
;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;;
; ;
; Display item titles/parameters ;
; on status line ;
; ;

;
STATLINE:
PUSH DS ;Build up status line [DI] with
POP ES ;Color+Logic+Coords (SI).
MOV SI, OFFSET LOGITEXT
MOV DI, OFFSET STATTEXT1 +69
MOV CX,7
CLD
REP MOVSB ;SI correct following previous MOVS8.
MOV CURCOL,D
MOV DX,WORD PTR CURCOL
CALL CURSET
MOV BX,OFFSET STATTEXT1
MOV CX,78 ;Length of status line.
MOV AH,OEH ;ROM BIOS INT 10H: write teletype.
MOV AL, [BX]
PUSH BX
MOV BL, 2 ;Palette color for status items.
INT VIDEOINT
POP BX
INC \(B X\)
LOOP STAT1 ;Until items/parameters
; [without color] displeyed.

MOV BX,OFFSET STATTEXT1 + 51
MOV CURCOL,51
MOV DX,WORD PTR CURCOL

```


# 

```

```

; i
; Routines to maintain status line at top or bottom of screen ;
; ;

```

```

;

```

```

; ;
; Clear band 16 pixels high, ;
; starting at BANDPARAG:0 ;
; ;

```

```


# 

CLEARBAND: MOV AX,BANDPARAG
MOV DL,2 ;1 pass thru conventional PC video
;memory, 1 pess thru NCR extra mem.
CLB1: MOV ES,AX
MOV SI,AX
;For paragraph addition to address
;subsequent scan blocks.
XOR AX,AX ;Fill bend with zeros.
MOV DI,AX ;Offset pointer to video memory.
MOV BL,2 ;2 scan blocks each in normal
;PC video and NCR extra memory.
;80 words per line.
;Block fill increment DI/SI.
REP STOSW
ADD SI,400H ;Paragraph size of one scan block.
MOV ES,SI
XOR DI,DI
DEC BL
JNZ CLBP
MOV AX,BANDPARAG
AND AX,OEFFFH ;Point to NCR extra memory.
DEC DL
JNZ CLB1 ;Jump if scan blocks in NCR extra
;memory still to be written.
RET

```
;

```

            MOV CX,320
            CLD
    REP MOVSW
ADD AX,400H
MOV DS,AX
DEC BL
JNZ STOREB2
MOV AX,CS:BANDPARAG ;Segment override prefix needed
;es DS is still corrupted.
AND AX,OEFFFH
DEC DL
JNZ STOREB1
POP DS
RET

```
;
i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i
; ;
; Color and display mode switching ;
; ;
i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;;
;
COLSWITCH: CALL ILLUMINE ;Neutralize current cursor point.
 PUSH DX
 MOV DX,3D9H ;Graphic controller color selection.
 MOV AL,COLNUMBER ;Value 0-7.
 INC AL ;Step to next color.
 MOV COLNUMBER,AL ;Store next color in sequence.
 PUSH AX
 TEST AL, 4 ;This bit controls blue gun.
 JZ BLUEOFF
BLUEON: MOV AL,2DH
 JMP SHORT COL2BITS
BLUEOFF: MOV AL,O
COL2BITS: OUT DX,AL
 POP AX
 AND AL,3 ;Duplicate 2 LSBs through byte.
 MOV AH,AL
 SHL AL, 1
 SHL AL,1
 OR AL,AH
 MOV AH,AL
 MOV CL, 4
 SHL AL, CL
 OR AL,AH

\begin{tabular}{|c|c|c|c|}
\hline VMASK & D日 & 1 DUP (0) & ;to be affected by plotting action. ;2 adjacent bits set to select one ;of four color pixels in video byte. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline PIXLOGIC & DB & 1 & ; \(0=\) move onty, \(1=\) replace . \\
\hline COLNUMBER & DB & 0 & ; Color in 3 LSBs, 5 MSBs irrelevent. \\
\hline PIXCOLOR & DB & 55H & ; To contain 4 2-bit copies of color. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & & & ; 0000^_<> \\
\hline \multirow[t]{12}{*}{DIRTAB} & DB & & 000010108 \\
\hline & DB & & 000010008 \\
\hline & DB & & 000010018 \\
\hline & DB & & 0 \\
\hline & DB & & 00000010 \\
\hline & D日 & & 0 ;key 5 \\
\hline & D8 & & 000000018 \\
\hline & DB & & 0 \\
\hline & DB & & 000001108 \\
\hline & DB & & 000001008 \\
\hline & DB & & 000001018 \\
\hline & D8 & & 0 \\
\hline
\end{tabular}
BANDPARAG DW OBBCOH
BANDPARAGT DW VIDEORAM
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{STATTEXT1} & DB & ' \(\mathrm{X}=\) & \multicolumn{2}{|l|}{\(Y=\)} \\
\hline & DB & 'COLOR & Logic is & \\
\hline LOGITEXT & DB & 'MOVE & , & \\
\hline \multicolumn{5}{|l|}{;} \\
\hline LOGIC9 & DB & 'MOVE & 1 & \\
\hline LOGICE & DB & \multicolumn{2}{|l|}{'REPLACE'} & \\
\hline \multirow[t]{2}{*}{BANDSTORE} & DW & \multicolumn{2}{|l|}{1600 DUP [0] ;Stor} & \\
\hline & & & ;occup & \\
\hline CURCOL & DB & 0 & ;Cursor & \\
\hline CURROW & DB & 24 & ;for ROM & \\
\hline CURROWT & DB & 0 & & \\
\hline
\end{tabular}

\section*{CSEG ENDS}

END

\section*{GRAPHICS CURSOR}

The graphic cursor of the NCR PERSONAL COMPUTER, like the character display mode cursor, consists of up to 16 scan lines. In order to maintain compatibility with applications which assume a cursor of lower definition, a small PROM intercepts data to control registers 0 AH and 0 BH (via port 3D5H) before they reach the 6845 controller. The following conversion is performed:
> * A scan line specified in the range 0 to 7 affects two scan lines: 0 is interpreted as 0 and 1,1 is interpreted as 2 and 3, ... 7 is interpreted as 14 and 15.

Scan lines 8 to 15 are passed to the controller without intervening conversion. The scan line number specified for the cursor start must not be greater than that specified for the end scan line.

\section*{CONTROLLER DATA CONVERSION}

In addition to the conversion applied to the character and graphics cursor, display controller conversion is applied to most of the other registers of the 6845 written via ports \(3 \mathrm{~B} 4 \mathrm{H} / 3 \mathrm{~B} 5 \mathrm{H}\). This conversion ensures that display control parameters written by some applications are received in a way that will produce the display intended, even though the particular application may have been designed for a non-NCR monitor. Non-conforming parameters are converted to the respective values given for the NCR internal CRTs in this Chapter (that is, the leftmost value, not the value given in parentheses).
The controller registers affected (in addition to the cursor definition registers already discussed), are the registers 0 to 9 , selected via port \(3 B 4 H\) and written via port 3B5H. These registers convey parameters setting up display synchronization and skew/interlace modes. These parameters are supplied by the ROM BIOS, and need not normally be disturbed.

The conversion does not apply to the display cards intended for external monitors (K140, K141).

O

○

○

\section*{The Keyboard}

The keyboard is supplied with those keys already fitted, which have the same markings and the same position for all the country versions implemented. The remaining keys are fitted by the user from a set supplied for a specific version. Figure 8.3 shows the keys already fitted, Figure 8.4 shows the complete keyboards for the various country versions.

Special features of the keyboard are:
* Cursor movement keypad in addition to dual function cursor movement/ numeric keypad
- Tactile point on key 5 of the numeric keypad; deeper finger moulds on \(F\) and \(J\) keys
* LED indication of status of NumLock and CapsLock keys - LEDs are extinguished at power-up initialization, so that unshifted (not shifted) and cursor movement (not digit) keys are active
* Tilting positions the keyboard in one of two possible planes: 5 and 9 degrees

The keyboard is also available separately as Kit 021. The only significant difference between the standard keyboard and K021 is that the latter uses a slightly modified clock signal and firmware in order to extract optimum performance from rarely used non-NCR hardware enhancements.

Connection to the NCR PERSONAL COMPUTER is via a screened 5-core cable. The cable is approximately 300 mm (11.8") in its coiled state, giving a fully extended operating length of 990 mm (38.9"). The computer connection end of the cable is a DIN connector. The pin configuration is shown in Figure 8.1.

Figure B. 1 The Keyboard Connector
The working voltage for the keyboard is \(4.75 \mathrm{~V}-5.25\) V , the maximum power drain is 150 mA . Required signal levels for Clock and Data are minimum 2.4 V (for high) and maximum 0.7 V (for low). Data transmission is clocked as illustrated in Figure 8.2.

Figure 8.2 Data/Clock Signals

Figure 8.3 Kayboard - Common Keys

\section*{वU甘OGXGX GHu}

\section*{Noin}

```

(बंवां

```


THE KEYBOARD

\section*{KEYBOARD PERFORMANCE}

A First In - First Out buffer accomodating up to 32 key codes provides a type-ahead facility. All keys, except NumLock, repeat automatically if depressed for longer than 96 keyboard scan cycles (one scan cycle \(=\) \(8 \mathrm{~ms})\). The key is then repeated once every eight scan cycles.

Debounce time for the initial depression and release of a key is one scan cycle. Following detection of the initial key depression, that key is checked again after an interval of eight scan cycles.

\section*{CODE GENERATION}

An 8039 or 8049 microprocessor controls generation of key codes for serial output to the main unit (see Figure 8.5). Note that the code generated represents a specific position on the keyboard; it does not conform to the ASCII code for the sign marked on the specific key. This means that the code returned for a key position is always the same, irrespective of country-dependent keys fitted.

Figure 8.5 Keyboard Logic

Figure 8.6 shows the code generated for each key, and for your orientation, the US English key markings. When the key is depressed, its position code is transmitted (bit 7 is zero). Upon releasing the key this code is transmitted again, with the difference that bit 7 is now set. The only exception is the NumLock key: at key actuation (not release) both key down (45H) and key up (0 C 5 H) codes are generated. It is the concern of the Operating System or application to give significance to this special key action. The same applies to the position codes generated by the keyboard. Figure 8.7 sets out the stages of logic between keyboard scan and code output.

The keyboard read routine contained in the system ROM is activated by hardware interrupt request 1 (CPU interrupt type 9). The priority of this interrupt, as set by the initialization firmware (fully nested mode), is second only to that of the 8253 timer.

The keyboard position code itself is read via the 8255A parallel interface at port 60 H . To ensure that the keyboard data input and not the switch status input is selected, bit 7 of the 8255 output port (PB at I/O address 61 H) should be transmitted to the 8255 in a reset (0) condition:
\begin{tabular}{ll}
MOV & DX, 61H \\
IN & AL,DX \\
AND & AL, 7 FH \\
OUT & DX, AL
\end{tabular}

The keyboard position code can then be read:
MOV DX,60H

IN
AL, DX

After the position code has been read, this must be notified to the keyboard by transmitting bit 7 set to port 61H (this is also the instruction which selects the main processor board switch information):
\begin{tabular}{ll}
MOV & DX,61H \\
IN & AL,DX \\
OR & AL, 80 H
\end{tabular}

This clearing command does not affect the keyboard input buffer set up and maintained by the BIOS.

The keyboard hardware interrupt writes the character value of the keyboard position code into the keyboard buffer. There is a software interrupt (1BH) accessible from the interrupt 9 service routine. However, INT 1 BH is issued only in the event of the Ctrl-Break key combination. Therefore, if you wish to interrogate the keyboard position code by means of your own software (for example, if you only want to check for a limited number of codes and ignore the keyboard buffer), you will have to write your own keyboard handling routine and set the four interrupt vector bytes starting at 6 CH to address your own interrupt service routine. This routine must be concluded by the 8259 A Progammable Interrupt Controller non-specific End-of-Interrupt command.

Chapter 2 includes an example of using the Ctrl-Break keyboard interrupt.

\section*{DIAGNOSTICS}

At power-up the keyboard performs an initialization check of internal RAM and ROM. When no fault is detected after the clock line has been low for longer than \(32 \mathrm{~ms}, ~ O A A H\) is transmitted.

Figure 8.6 Kayboard Position Codes

\section*{THE KEYBOARD}

\section*{ADVANCED KEYBOARD}

An advanced keyboard is available as 3299-K420 (US) and 3299-K421 (International). This keyboard is designed not only for the NCR PERSONAL COMPUTER PC4i but also for other equipment in the NCR Personal Computer range. For operation with the NCR PERSONAL COMPUTER PC4i (and compatibles), a small slider switch on the keyboard must be set as shown in Figure 8.8.

Figure 8.8 Advanced Keyboard Equipment Selaction
Possible tilting planes are 5 and 12 degrees.
An LED is present in the ScrollLock key, just like the NumLock and CapsLock LEDs on the standard keyboard.

As on the standard keyboard, all keys repeat automatically with the exception of NumLock: this key is set to a non-repeat power-on default, but this can be changed using a special function. Debounce time for the initial depression and release of a key is one scan cycle (8 ms).

Auto-repeat can be varied locally at the keyboard.

The slowest repeat rate is \(2 / \mathrm{s}\), the fastest \(30 / \mathrm{s}\), with 32 incremental steps. Initialization default is 10/s.

The initial repeat delay is also variable - between \(1 / 4 \mathrm{~s}\) and 1 s in four incremental steps. Initialization default is \(1 / 2 \mathrm{~s}\).

The advanced keyboard includes twenty additional Function Keys F11 - F30.

Special keyboard functions can be accessed while system activity is suspended: following depression of the Control-NumLock combination (= suspension of system activity until another key is pressed), Function Keys F11 - F30 do not issue codes to the system but take on the following functions internal to the keyboard:

F11 toggle to enable/disable autonomous codes for F11 to F30 in normal (non-suspension) mode. As long as autonomous codes are disabled, F11F30 provide Shift and Control duplicate functions of F1-F10:
\[
\begin{aligned}
& \text { F11 } \ldots \text { F20 }=\text { Shift-F1 ... Shift-F10 } \\
& \text { F21 ... F30 }=\text { Control-F1 ... Control-F10 }
\end{aligned}
\]

With autonomous codes enabled, F11 - F30 generate codes in the range 55 H to 68 H .

This function requires a small modification on some advanced keyboards (see below)

F12 increment auto-repeat rate
F13 decrement " n
F14 increment repeat delay
F15 decrement " "

F17 toggle LED on CapsLock
F18 " " " NumLock
F19 n " " ScrollLock
F20 toggle to exchange 0 E and 50 codes transmitted to system (required if exchanging between US/International keyboard use). Initialization default is standard use in the country for which keyboard was provided.

F21 toggle NumLock repeat/non-repeat. Default is non-repeat.

Autonomous codes are active when the LED in the Alt key is illuminated. This Function Key extension can be installed in advanced keyboards which do not already include it: remove diode CR 121 and replace the Alt keytip by one containing an LED window (the LED is already installed in the key mechanism).

Figure 8.9 gives the scan codes for the advanced keyboard. Keyboard layouts are provided in Figures 8.10 and 8.11.

Alternate code translation by system (other NCR equipment only)

Figure 8.10 Advanced Keyboard - Common Kays

Figure 8.11 (1 of 9) Advanced Kayboard - US English

Figure 8.11 (2 of 9) Advanced Kayboard - UK Engliah

Figure 8.11 (3 of 9) Advanced Keyboard - German

Figure 8.11 [4 of 9] Advanced Keyboard - French

Figure 8.11 (5 of 9) Advanced Keyboard - Italian

Figure 8.11 (6 of 9] Advanced Kayboard - Spanish

Figure 8.11 [7 of 9] Advanced Kaybaard - Danish

Figure 8.11 [8 of 9] Advanced Keyboard - Norwegian

Figure 8.11 (9 of 9] Advanced Keyboard - Swedish/Finnish

\section*{The Loudspeaker}

\section*{HARDWARE CHARACTERISTICS}

The NCR PERSONAL COMPUTER MODEL \(4 i\) contains a small loudspeaker, mainly used to attract operator attention in application programs. The loudspeaker is driven by a TTL signal amplified by a transistor. The driving signal is derived from output line PB1 of the 8255A-5 integrated circuit used for parallel data I/O (described in Chapter 2). In principle, it is possible to drive this line under direct instruction from the CPU. This has the disadvantage that each signal requires CPU time. It is preferable to use the programmable timer integrated circuit to provide signals at programmed intervals. This method, outlined below, offloads the CPU to the extent that sound effects can take place while other instructions are being processed. (The timer integrated circuit is described in Chapter 2.)

The signal from the parallel input/output IC can be controlled by OUT 2 from the 8253-5 timer. CLK 2 is timed by the same signal as clocks 1 and 2 , but is gated separately by means of PBO from the 8255A. Therefore, the loudspeaker is capable of "driving itself" in a synchronous fashion, using the square wave generator mode of operation (Mode 3) of the timer IC. This mode starts the counter after the rising edge of the trigger input. The OUT signal is high for the first half of the count and low for the second half. Loudspeaker activity can be terminated by software blanking of PB1 of the PIO integrated circuit.

\section*{PROGRAMIING SOURD}

The examples given in this section show how a variety of sound effects can be achieved by control of the following factors affecting loudspeaker output:
* The frequency of the tone (determined by timer counter 2).
* The duration of the tone.
* The period of silence between tones.
* The number of times a tone, with intervening periods of silence, is repeated.

The following routine sets the timer to provide a square wave frequency and programs the PIO integrated circuit to send signals to the loudspeaker in accordance with this strobing. The duration of the tone and the length of periods of silence between tones are achieved by disabling and re-enabling PB1.

Parameters are accepted by this routine in CPU registers as follows:

DX - number of CLK 2 triggers to be counted before OUT 2 is activated. Because this process is self-repeating (see above) without software intervention, this yields the frequency of the tone independent of CPU workload
DI - the length of time this tone signal may actually be passed to the loudspeaker (CPU LOOP count)
ES - the length of ensuing silence
\(B X\) - the number of times this alternation of tone and silence is to be produced
\begin{tabular}{|c|c|c|c|}
\hline SPEAK: & \begin{tabular}{l}
MOV \\
OUT
\end{tabular} & \begin{tabular}{l}
AL, OB6H \\
\(43 \mathrm{H}, \mathrm{AL}\)
\end{tabular} & \begin{tabular}{l}
; initialize timer 2 as follows - \\
; access both high and low counter \\
; bytes, \\
; counter byte values are binary \\
; (not BCD), \\
; operation mode is 3 (square wave \\
; generator].
\end{tabular} \\
\hline ; & MOV & \(A X, D X\) & ;accept high and Low bytes for counter ;from DX. \\
\hline ; & OUT & 42H, AL & ;write byte to counter 2, low ... \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & MOV & AL, AH & \\
\hline & OUT & \(42 \mathrm{H}, \mathrm{AL}\) & ; ... then high. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multirow[t]{2}{*}{AGAIN:} & IN & AL, 61H & ; read PBO-PB7 from PIO and store in AH. \\
\hline & MOV & AH, AL & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & OR & AL, 3 & ; enable PB1, thus enabling loudspeaker. \\
\hline & OUT & \(61 \mathrm{H}, \mathrm{AL}\) & ;enable PBO to strobe GATE2 on Timer. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & MOV & CX, DI & \\
\hline TONE: & LOOP & tone & ;wait until count exhausted. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & MOV & AL, AH & ; restore PBD-PB7, so that \\
\hline & OUT & \(61 \mathrm{H}, \mathrm{AL}\) & ; tone now turned off. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & MOV & CX, ES & ;silence counter \(=\) - \({ }^{\text {cougher }}\) tone. \\
\hline QUIET: & LOOP & QUIET & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & DEC & BX & \\
\hline & JNZ & AGAIN & ;repeat tone/silence pattern \\
\hline & & & ;until count exhausted. \\
\hline
\end{tabular}

The following code creates the sound of a warning siren when repeated continuously. The value in CX sets the count for the duration of silence between units of the same tone, SI sets the incremental value for the next value to be written to the timer. The interplay between silence (ES), tone duration (DI), repetition of this pattern (BX and CX), and frequency change can be used to create interesting sound effects.
\begin{tabular}{|c|c|c|c|}
\hline & MOV & \(A X, 80 \mathrm{H}\) & \\
\hline & MOV & ES, AX & ;Length of silence. \\
\hline & MOV & DI,200H & ;Length of tone. \\
\hline & MOV & DX,300H & ;Highest tone of glissendo. \\
\hline & MOV & SI,20H & ;Incremental unit in glissando. \\
\hline DROP: & ADD & DX, SI & ;New, increased value for timer count ; to lower note. \\
\hline & MOV & BX,6 & ;Repetition of tone. \\
\hline & CALL & SPEAK & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & MOV & CX, 1 & ;Insignificent delay, ;go on to next tone. \\
\hline \multirow[t]{3}{*}{WAIT:} & LOOP & WAIT & \\
\hline & CMP & DX,900H & ;Lowest tone (greatest timer ; counter value). \\
\hline & JB & DROP & \\
\hline
\end{tabular}

If you wish to program sounds of a more musical variety, you will find the table of frequencies and their respective notes in musical notation useful (Figure 9.1).

Figure 9.1 Music Frequencies

To obtain timer counter 2 values to produce the above frequencies, it is necessary to perform jumbo arithmetic: place the frequency in Hz in CX . The value 1234DCH in DX-AX is then divided by CX to yield a 16 -bit result in AX. This value is then output to the counter, low byte then high.

The following example plays a note of frequency (Hz) contained in CX for a period of approximately 65536 times BX times 9 processor clocks (9 clocks for each jump in LOOP instruction):
\begin{tabular}{|c|c|c|c|}
\hline & MOV & CX, 208H & ;middle C. \\
\hline & MOV & BX, OFFH & ;longest period. \\
\hline & MOV & DX, 12H & \\
\hline & MOV & AX, 34DCH & ;reference dividend. \\
\hline & DIV & CX & ;quotient in \(A X\), ignore remainder. \\
\hline & PUSH & AX & \\
\hline & MOV & AL, OB6H ; & initializa timer 2 as follows - \\
\hline & OUT & 43H,AL ; & access both high and Low counter bytes, counter byte values binary (not BCD), mode 3 (square wave generator). \\
\hline & POP & AX & \\
\hline & OUT & 42H, AL & ;write byte to counter 2, low \\
\hline & MOV & AL, AH & \\
\hline & OUT & 42H, AL & ; ... then high. \\
\hline & IN & AL, 61H & ; read PBD-PB7 from PIO and store in AH. \\
\hline & MOV & AH, AL & \\
\hline & OR & AL, 3 & ; enable PB1, thus enabling loudspeaker; \\
\hline & OUT & \(61 \mathrm{H}, \mathrm{AL}\) & jenable PBO to strobe GATE2 on Timer. \\
\hline & MOV & CX, BX & \\
\hline PLAY1: & PUSH & CX & \\
\hline & MOV & CX, DFFFFH & \\
\hline PLAY2: & LOOP & PLAY2 & \\
\hline & POP & CX & \\
\hline & LOOP & PLAY1 & ;wait until count exhausted. \\
\hline & MOV & AL, AH & ;restore PBO-PB7, so that \\
\hline & OUT & 61 H, AL & ;tone now turned off. \\
\hline
\end{tabular}

The program which now follows enables you to use an easy to understand music programming language, thus avoiding the need to perform individual calculations for note and length. The program inspects the string
contained at TUNE and ending with a \(\$\), interpreting the following elements as music commands. Each element is preceded by a comma, except the terminating \$. Optional information is given in [].
```

,[n][+ or -]N[\# or b][.]

```

Play the note \(N\) natural, \(N\) sharp or \(N\) flat. \(N\) stands for a note in the range \(A\) to G.
+ or - specifies that the note is to be played one octave higher (+) or lower (-) than the currently selected octave.
The single digit \(n\) specifies a duration of note \(n\) times the currently selected metronome beat.
One or more full stops may follow note specification. A full stop results in the note not being played in its full length. Instead, the end of the note is actually transmitted to the loudspeaker output routine as silence (OFFFFH). This prevents notes from running on directly, thus creating a staccato effect. The more full stops given, the more pronounced the staccato effect.
,+ or - Select a new octave one octave above (+) or below (-) the current octave. Notes are now played in the new octave until the next octave command.
, M+ Increase metronome beat by one minimum beat unit. The actual length of this unit can be varied by adjusting the value of the inner CX loop in the MUSIC routine.
,M- Decrease metronome beat by one minimum beat unit.

Increase base staccato (audible note truncation) factor by one minimum beat unit.
\begin{tabular}{|c|c|}
\hline , S- & Decrease base staccato (audible note truncation) factor by one minimum beat unit. \\
\hline , K+n & Subsequent notes are played \(n\) (single \\
\hline , K-n & digit) semitones higher (+) or lower (-) \\
\hline & than their their nominal pitch. This new \\
\hline & 'key' remains in force until the next key command. \\
\hline ,\([\mathrm{n}] \mathrm{Q}\) & Determines a period of silence of length \(n\) (default 1) times the current metronome beat. \\
\hline \$ & End of music string. \\
\hline
\end{tabular}

Illegal syntax and out of range values result in end of range values (note \(=\) silence, length \(=\) maximum) or are ignored.

The EQUate BEAT sets the metronome beat rate as a multiple of the minimum beat unit. A digit at the beginning of a note specifying command results in the note being played for a corresponding length of time. For example, if BEAT specifies 16 , the music command
,4C
plays a Cor 64 minimum beat units.
The EQUate BREAK determines the base element used for note truncation (staccato) in minimum beat units. For example, if BEAT is 16 and BREAK is set to 2, the command
, C. .
means that \(C\) will be audible for 12 minimum beat units followed by 4 units of silence.

The loudspeaker driver part of the program is contained in MUSIC. The music interpreter occupies the rest of the program.

```

i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;;i;;
;i i;
;i Identify beginning of music item (,) ;;
;; ;;
i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i
;
IDMUSIC: MOV AL,[SI]
INC SI ;SI now points to the char. following
; the one currently in AL.
CMP AL,',' ;Comma separates music items.
JNE IDMUSIC ;Continue search for separator.
;
i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i
i; i;
;; Set default values for note and length ;;
;; ;;
;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;;i;;i;i;i;i;i;i;i;;;;
;
MOV CL,OH ;Default for note is silence.
MOV CH,METRO ;Length default = metro * min. beat.
;
i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;;
i; i;
;; Parse string for 'key' command: Kn{+ or -} ;;
;i and, if found, raturn to IDMUSIC to look for next item;;
;i i;
;;i;i;i;i;i;i;i;i;i;i;i;i;i;i;i;;;;i;i;i;i;i;;i;i;i;i;i;i;i;;;i;
;
KEY: MOV AL,[SI]
INC SI
CMP AL,'K' ;Check for change of key.
JNE TEMPO ;Jump if no key commend.
MOV AL,[SI] ;This char. must be digit 1-9.
CMP AL,'1'
JB ENDCHK ;Syntax error,
;look for \$ or next comma.
CMP AL,'g'
JA ENDCHK ;Syntax error, ...
SUB AL,3OH ;Convert ASCII to binary number.
MOV AH,AL ;No. of semitones for key change.
INC SI
MOV AL,[SI] ;This char must be + or -.
CMP AL,'+' ;Specifies key AH semitones

```


;
;Look for a note A-G, optionally followed by a \# [sharp]
;or b [flat]. If none is found, the default 'silence' will be
;sent to the speaker routine.
; \(Q_{\text {, }}\) instead of \(A-G\), specifies silence.
;
RDNOTE: CMP AL,'A'
 JB SPACE ;Jump if no note [illegal syntax].
 CMP AL,'Q' ;Q specifies silence instead of note.
 JE QUIET
 CMP AL,'G'
 JA SPACE
 SUB AL,41H ;Note A-G represents +ve displacement
 ; 0 to 6 to base note in BX.
 XOR AH, AH
 \(A D D \quad B X, A X \quad ; B X]\) is natural note in FREQTAB.
 MOV CL,[BX]
 MOV AL,[SI] ;Valid note detected,
 ;so fetch next character.
```

            INC SI
            CMP AL,'#' ;Look for sharp suffix.
            JNE NOTSHARP
            INC CL ;One semitone for sharp.
            MOV AL,[SI] ;Valid note suffix #,
                ;so fetch next character.
            INC SI
            JMP NENKEY
    NOTSHARP: CMP AL,'b' ;For keys requiring flat notation.
JNE NOTFLAT
DEC CL
;One semitone for flat.
MOV AL,[SI]
;Valid note suffix b, ...
INC SI
JMP NENKEY
QUIET: MOV AL,[SI] ;CL already contains default value.
INC SI
JMP SPACE
$\left.\begin{array}{lll}\text { NOTSHARP: } & \text { CMP } & \text { AL, 'b' } \\ & \text { JNE } & \text { NOTFLAT }\end{array}\right]$ For keys requiring flat notation.
;
;
;An experimental semitone offset specified by the 'key' command
;affects the note in CL.
;Check that note is within legal range 1-2AH
;
NOTFLAT:
NENKEY: MOV AH,KEYDISP ;KEYDISP zero,
;unless set by key commend.
ADD AH,CL ;AL is 2's complement for -ve value.
NOTECHK: CMP AH,1
JB OUTRANGE
CMP AH,2AH
JNA NOTECHKD
OUTRANGE: MOV AH,O ;Specify silence if note out of range.
NOTECHKD: MOV CL,AH ;Note finally in CL ready for
;XLATion to loudsp. routine value.
;
;Count the number of full stops. For each one counted, the last
;TRUNCATE * minimum beat of the note will be silenced. This
;prevents note from running on the next one.
;
SPACE: XOR DH,DH
SPACE1: CMP AL,'.'
JNE LASTCHAR ;Jump if music command complete.
INC DH
SUB CH,TRUNCATE ;Reduce length of note accordingly.

```

```

        MOV CX,OFFFFH ;Inaudible frequency for non-audible
        ;end of note, if any.
        MOV BL,DH
        XOR BH,BH ;Length of truncating silence in BX.
        CALL MUSIC
    PLAYED: DEC SI ;[SI] should be comma or \$.
POP BX
JMP ENDCHK
;
ENDTUNE: NOP ;<< BREAK after this instruction.
;
;
;;;;;;;;;;i;i;i;i;;i;;;i;;i;i;i;;;;;;;;;;
; ;
; Play note of specified frequency for ;
; specified length. ;
; Entry: ;
; Frequency [Hz] in CX ;
; Length in BX ;
; ;
;;i;i;i;i;i;i;i;i;i;i;;;;;i;;i;;;;;;i;;i;;
;
MUSIC: MOV DX,12H
MOV AX,34DCH ;Reference dividend in DX-AX.
DIV CX ;Quotient in AX, ignore remainder.
;
PUSH AX
MOV AL,OB6H ;Initialize Timer 2 as follows -
OUT TIMER+3,AL ; access both high and Low counter
; bytes,
; counter byte values are binary
; [not BCD],
; operation mode is 3 [square
; wave generator].
POP AX
OUT TIMER+2,AL ;Write byte to Timer 2, Low ...
MOV AL,AH
OUT TIMER+2,AL ; ... then high.
IN AL,PORTB ;Read PBO-PB7 from PIO and
;store in AH.
MOV AH,AL
;
OR AL,3 ; Enable PB1, thus enabling

```
\begin{tabular}{|c|c|c|c|}
\hline & OUT & PORTB, AL \(\quad\); & ;loudspeaker; enable PBO to strobe ;Gate 2 on Timer. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & MOV & CX, BX ; & ;Now wait for BX*CX Loops ;before turning off speaker. \\
\hline \multirow[t]{2}{*}{PLAY1:} & PUSH & cx & \\
\hline & MOV & CX,1800H ; & ;Minimum beet [sample value). \\
\hline \multirow[t]{3}{*}{PLAY2:} & LOOP & PLAY2 & \\
\hline & POP & CX & \\
\hline & LOOP & PLAY1 ; & ; Wait until outer count exhausted. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & MOV & AL, AH ; & ;Restore PB0-PB7, so that \\
\hline & OUT & PORTB, AL ; & ;speaker now turned off. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & \multicolumn{3}{|l|}{RET} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{; FRERTAB:} \\
\hline A1 & DB & 1,3,4,6,8,9,08 & \\
\hline A2 & DB & ODH, 0 FH, 10H,12 & \(2 \mathrm{H}, 14 \mathrm{H}, 15 \mathrm{H}, 17 \mathrm{H}\) \\
\hline \multirow[t]{2}{*}{A3} & DB & \(19 \mathrm{H}, 1 \mathrm{BH}, 1 \mathrm{CH}, 1 \mathrm{E}\) & EH,20H,21 \(\mathrm{H}, 23 \mathrm{H}\) \\
\hline & DB & \(25 \mathrm{H}, 27 \mathrm{H}, 28 \mathrm{H}, 2 \mathrm{~A}\) & AH ; Intermediate frequency ; (natural notes). \\
\hline \multicolumn{4}{|l|}{;} \\
\hline HERZTAB & DW & OFFFFH & ; Effectivaly silence. \\
\hline HA1 & DW & 220,233,247,26 & 262,277,294,312,330,349,370,392,416 \\
\hline HA2 & DW & 440,466,493,52 & 523,555,587,622,659,698,740,784,830 \\
\hline \multirow[t]{2}{*}{HA3} & DW & 880,930,988,10 & 046,1108,1175,1244,1317,1397,1480 \\
\hline & DW & 1568,1660 & \\
\hline HA4 & DW & 1760,1864,1976 & 76,2093,2217,2349 \\
\hline \multicolumn{4}{|l|}{;} \\
\hline OCTAVE & DW & 0 ;Wi & Will be set to address A2. \\
\hline METRO & DB & 0 ;Wi & Will be set to base metronome beat. \\
\hline TRUNCATE & DB & 0 ;Wi & ill be set to base truncation factor. \\
\hline KEYDISP & DB & 0 ;Us & Used for key experimenting. \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multirow[t]{4}{*}{TUNE} & DB & ',C., D., E. , F\%, & \\
\hline & DB & \({ }^{\prime}+,+A_{0}, F_{0},+C_{0}\), & , +A. , \(3 \mathrm{E}_{.} . .,-, Q_{\text {, }}\) \\
\hline & DB & & \\
\hline & DB & 'G., F., F. , F., F & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & DB & 'K4-, ' ; & ;Same tune, but 4 semitones Lower, \\
\hline & DB & \({ }^{\prime} \mathrm{S}+\), \(\mathrm{S}+\), \(\mathrm{S}+, \mathrm{S+}, \mathrm{~S}\) & S+,S+,S+,S+,' ;more staccato, \\
\hline
\end{tabular}

DB'M+, M+, M+, M+'
; and stower.

DB ',C., D., \(E_{1}, F_{1}, G_{0}, G_{0}, G_{0}, G_{0},+A_{0}, F_{1},+C_{1},+A_{1}, 3 G_{0}, \ldots, Q_{1}\) \(D B \quad 1+,+A_{0}, F_{1},+C_{0},+A_{,}, 3 G_{\ldots}, \ldots,-, Q_{1}\)
DB 'G.,F, \(F_{0}, F_{0}, F_{0}, E_{0}, E_{0}, E_{0}, E_{0}, D_{0}, E_{0}, D_{0}, C_{0}, E_{0}, G_{0}, Q_{,}\)'
DB 'G.,F, \(F_{1}, F_{1}, F_{1}, E_{1}, E_{1}, E_{1}, E_{1}, D_{1}, E_{1}, D_{0}, 2 C \$ '\)

CSEG ENDS
END

O

O

O

\section*{Videotex}

\section*{INTRODUCTION}

The Videotex model of the NCR PERSONAL COMPUTER is designed to function as
* A PRESTEL or CEPT-standard Videotex terminal, with the following additional features:
- full use of computer BIOS (except simultaneous CRT control), disk and peripheral device operations
- connection of video long player (VLP) or video recorder, with screen intermix of Videotex and video information
- Extensive software for page-editing, modem selection, and VLP support.
* An NCR PERSONAL COMPUTER with a color CRT. Possible display modes are character, low and medium resolution (as defined in Chapter 7). The display controller is configured as for the external color monitor (see Chapter 7).

Software switching between the two functions is controlled by a switch board (see Appendix A). It does not affect the contents of the video memories.

Figure 10.1 provides a block diagram of the NCR PERSONAL COMPUTER Videotex model, emphasizing the additional (Videotex) video controller and Videotex peripheral devices like VLP and modems.

Details of the CEPT standard and any regulations governing the generation of Videotex pages are available in documents issued by the post and telecommunications authorities of a number of countries. Regulations concerning the generation of Videotex pages and modem connection may vary from one country to another.

\section*{SWITCHES AND CONNECTIONS}

Videotex modem, video and VLP controllers make use of the interface signals shown in Figure 10.2.

Figure 10.2 Videotex Interface Signals

\section*{MONITOR CONNECTION}

Monitor connection is illustrated in Figure 10.3.

Figure 10.3 Monitor Connector

Note: TCS/ provides synchronization for RGB signals.
Pin 6 is high for Videotex
Pin 7 is high for Videotex RGB input, Low for composite signal from VLP
FBAS is composite signal from VLP (75 Ohm]
Pin 9 is high for 18 KHz

\section*{MODEM AND VLP CONNECTION}

The Videotex adapter is designed to work with three types of modem (suitable cables are identified in parentheses):

1 Full duplex with auxiliary data line, manual dialling (K301, or K303 with connection for video player).
Baud rate: Receive \(=1200\), Transmit \(=75\)
2 Full duplex, manual dialling (K301, or K303 with connection for video player)
Baud rate: Receive \(=1200\), Transmit \(=1200\)

3 Full duplex, automatic dialling (K300, or K302 with connection for video player)
Baud rate: Receive \(=1200\), Transmit \(=75\)
Full duplex modem communications are supported on modern non-dedicated (standard telephone) lines, where incoming and outgoing "data" is clocked at different frequencies.

For VLP use, the NCR software assumes a receive baud rate of 1200 , but this could be programmed at low level to another baud rate (see later section).

Figure 10.4 illustrates pin designations for the modem/video connector. Figures 10.5 and 10.6 show the use of lines 1 - 10 by the three types of modem. The actual designations of the modems vary according to the country in which the Videotex system is installed.

Figure 10.4 Madem/VLP Connector
```

Note: Pins 12-15 communicate with VLP,
other pins are for modem control {see below].

```


Figure 10.5 Videotex/Modem Signals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{| Signal} & 1 & \multicolumn{3}{|r|}{Modem:} & I & \multicolumn{2}{|l|}{Significance} \\
\hline & 1 & 1 & 2 & 3 & I & & \\
\hline D2 & 1 & x & \(x\) & & & Receive Data & \\
\hline HD1 & 1 & x & \(x\) & & & Transmit Data & \\
\hline M1 & 1 & x & \(x\) & & & Data Set Ready - & - denotes modem activity \\
\hline S1 & I & \(x\) & x & & & Connect Data Set & to Line - must be held \\
\hline 1 & 1 & & & & 1 & & high for modem activity \\
\hline S2 & 1 & & \(x\) & & & Request to Send & \\
\hline GND & 1 & \(x\) & x & \(x\) & & Ground & \\
\hline SD & I & & & \(x\) & & Transmit Data & \\
\hline ED & I & & & x & & Receive Data & \\
\hline s & 1 & & & \(\times\) & & Control & \\
\hline
\end{tabular}

Figure 10.6 Modem Signal/Contral Lines

\section*{SWITCHES}

The functioning of the Videotex adapter is dependent on the switch settings. The locations of these switches is shown in Figure 10.7. Actual switch settings are given in Figure 10.8.

Figure 10.7 Videotex Adapter Switches

Figure 10.8 Videotex Adapter Switch settings

\section*{VIDEOTEX MEMORY ORGANIZATION}

Video memory is organized from the machine address ODOOOOH upwards, assuming the factory setting for switch X9 (see Figure 10.8).
\begin{tabular}{|c|c|c|}
\hline Address [hex] & Bytes & Display use \\
\hline \[
\begin{aligned}
& \text { D0000 } \\
& \text { - D03E8 }
\end{aligned}
\] & 1000 & Character codes of 1 character screen \(40 \times 25\) characters \\
\hline D03F5 & 11 & ```
Line colors [lines 25-15,
 see "Character Attributes")
``` \\
\hline \[
\begin{aligned}
& \text { D0400 } \\
& -\quad \text { D07E8 }
\end{aligned}
\] & 1000 & Attribute bytes (1 KB) \\
\hline D07F0 & 16 & Line colors (lines 14-0 and -1) \\
\hline 00800 & 6144 & Re-definable character set [DRCS] \\
\hline \[
\begin{aligned}
& \text { DCOOD } \\
& \text { - DCO3A }
\end{aligned}
\] & 59 & Videotex Controller registers 0-58 \\
\hline
\end{tabular}

This memory map applies to the "stack" mode of display, this being the mode most conducive to implementation of the CEPT norm (other modes: 80 Character, Explicit Fill). The term "stack" is derived from the way in which character attributes are arranged (see later section).

Other memory areas in the address range ODCOOOH to ODC3FFH are used to control video display, modem and VLP interfaces. These interfaces are described in subsequent sections. Note that these interfaces are memory, not I/O, mapped.

\section*{Address}

\section*{Interface}
[hex]

DCOOO - Write Videotex display controller registers DCOFF
'he memory addresses between ODC100H and ODC107H are ledicated to a number of switching functions:
\begin{tabular}{|c|c|}
\hline Address [hex] & Smitch Function [write only] \\
\hline DC100 & Enable [bit \(7=1\) ] or disable [bit 7 \(=0\) ) screen \\
\hline DC101 & Activate Videotex [bit 7 =1] or NCR PERSONAL COMPUTER (bit \(7=0\) ) display \\
\hline DC102 & Select manual [bit \(7=1\) ] or automatic [bit \(7=0\) ] dialling modem \\
\hline DC103 & \begin{tabular}{l}
Select display horizontal sync: \\
bit \(7=0: 15 \mathrm{KHz}\) [Videotex vertical sync 50 \(\mathrm{Hz}]\) \\
bit \(7=1: 18 \mathrm{KHz}\) [Videotex vertical sync 60 \(\mathrm{Hz}]\)
\end{tabular} \\
\hline DC104 & Scroll during retrace only (bit \(7=1\) ) or at any time (bit \(7=0\) ) \\
\hline DC105 & Enable [bit 7 = 1] or disable [bit \(7=0\) ) VLP \\
\hline \[
\begin{aligned}
& \text { DC106 - } \\
& \text { DC107 }
\end{aligned}
\] & Not used \\
\hline
\end{tabular}

Modem and VLP control and data registers are mapped into memory as follows:

Address
[hex]
DC200 - 2651 USART registers (modem)
DC207

DC300 - 2651 USART registers (VLP)
DC307

10-10

\section*{DISPLAY GENERATION}

In the Videotex mode of operation, the video display may contain "alpha mosaic" characters from a ROM character set as well as from a user-defined character set in random access memory. The term "alpha mosaic" means that the character pixel patterns are written by the display controller in a fixed 40 (horizontal) x 25 (vertical) raster. Individual pixel plotting in video memory is not included but such an effect can be achieved indirectly by writing suitable user-defined graphic characters.

Characters can be written in one of up to 4096 colors. In addition, a number of display attributes can be set. A "lock bit" can be set when defining attributes for a character. Setting this bit has the effect that the character table currently selected will apply to further occurrences of that particular character code, until a new table (1-4) is specified for it. The default character table is Table 1 (see Figure 10.10).

Display line scrolling, or even a complete reorganization of the 25 display character lines, can be achieved without the need for CPU time-consuming block move software.

\section*{VIDEOTEX CONTROLLER.}

The SAA 5350 Videotex processor, in conjunction with a 8 KB video memory, provides a character generator and character display controller in one. Figure 10.9 shows the internal architecture of the Videotex Controller.

An external clock signal is used for horizontal synchronization provided by a 5240 integrated circuit on the Videotex adapter.


Figure 10.9 Videotex Controller - Internal Architecture
Prior to the Videotex controller taking over the system bus, it issues a bus request signal (BR/). The period of this advanced warning is a programmable feature (see below). A corresponding signal (DTACK/) is issued to denote completion of a data transfer.

\section*{CHARACTER SETS}

\section*{Standard Characters}

The Videotex Controller contains in its own read only memory the patterns of 512 alphanumeric and graphic characters in four separate tables of 128 characters each (see Figures 10.10-10.13).

The ROM character set is divided into four tables because only seven bits are available for the code of each character in video memory. The most significant bit of the character code byte is used to instruct the Videotex Controller to refer to a set of attributes for that character (see "Character Attributes"). One of these attributes is selection of the table to which the character code applies.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & \\
\hline & A & & 它 & ப̀ & ć & E & & （1） & & & & & ¢ & & N & & \\
\hline & 首 & & シ̀ & & 系 & é & & Ó & L & 1 & \({ }^{2}\) & 官 & － & İ & H & & \\
\hline & & & ＂ & a & & I & & & & & & ＊ & & & & & \\
\hline & 0 & 1 & 2 & 3 & 4 & 45 & 6 & 7 & 8 & 8 & ： & ； & ； & i & ¢ & & \\
\hline & & & B & C & D & E & & G & & H & I & & K & & & & 0 \\
\hline & & & R & 5 & & U & & W & X & X & Y & A & A & － & U̇ & & \\
\hline & & & b & & & le & & & & & & \(j\) & E & 1 & m & & \\
\hline & & & x & S & t & ＋ & & & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & W & ＋ & 或： & & Pr & & \\
\hline ш & \(\pm\) & ＋ & 市 & & 男： & k & \\
\hline \(\bigcirc\) & －＋ & ＋ & － & & 品 & \(\square\) & r \\
\hline \[
0
\] & －+ & \(\downarrow\) & T & ， & － & ， & \\
\hline \(\infty\) & ＋ & \＃ & 究 & & A & － & 4 \\
\hline 4 & 1 & 4 & \({ }_{7}\) & \(*\) & II & & \\
\hline の & － & 4 & \(n\)＝ & & ＇\({ }^{\prime}\) & \＃1 & \\
\hline \(\infty\) & F & W & 小 & & ＋ & ＋ & \\
\hline  &  & 而 & & & & 䖪 & \\
\hline \[
0
\] & \[
\perp
\] & \＃ & E & & － & 吅 & \\
\hline in & & 3＋ & 工1 & & 5 & 14 & H \\
\hline \[
\because
\] & ， & 甘 & 䞨 & & E & ：\({ }^{3}\) & \\
\hline m &  & 4 & m & \(\therefore\) & Ti］ & ：H & 1中 \\
\hline ~ & L & \(\Psi\) & 吊 & & ［뜰 & ： H & \(: H\) \\
\hline  & \[
\pm 1
\] & － & ＋1． & & － & ：口1］ & \\
\hline 0 & & & \(\dagger\) & 哂 & & C1 & \\
\hline & 0 － & \(\sim\) & m & ＊ & \(\sim\) & \(\bullet\) & \\
\hline
\end{tabular}

Figure 10.12 ROM Character Set Table 3


Figure 10.13 ROM Character Set Table 4

\section*{Definable Characters (DRCS)}

The Videotex adapter is provided with 6 KB of RAM starting at machine address 0 D 0800 H , from which the Videotex controller can read the pixel patterns for additional character tables.
The bit patterns for these "Dynamically Redefinable Character Sets" (DRCS) can be written under CPU control. Characters can be defined in rasters of 10 or 12 scan lines/character line. More than one such character format is possible, even within a single display line. The actual format used is encoded in the display information for each defined character. Figure 10.14 summarizes the DRCS dimensions available.


Figure 10.14 DRCS Alpha Mosaic Formats

Each character occupies \(20,24,40\), or 48 bytes of DRCS RAM, according to the Format selected. As the number of DRCS characters in 6 KB cannot exceed 306 , all such characters can be addressed by selecting character table 5, 6, or 7. The Videotex Controller automatically calculates the offset in DRCS RAM for any DRCS character whose code is specified in the normal way in display memory (1 KB from ODOOOOH). This is true even if you have occasion to mix character formats in your display.

Each display line is represented by a 16-bit word, the upper bits being in the even byte. The format 1 14 (Figure 10.14) selected is encoded in four bits in this 16 -bit word - bits \(15-14\) and \(6-7\) (Figure 10.15). For most formats, the 4-bit format code is actually read from the first word specified for the character. For reasons of formal consistency, the remaining words should repeat this information.
\begin{tabular}{|c|c|c|c|c|}
\hline Format & \multicolumn{4}{|c|}{Bit:} \\
\hline I & 15 & 14 & 7 & 8 \\
\hline 1 1/8 & 0 & 0 & 0 & 0 \\
\hline 1 2/9 & 0 & 0 & 0 & 1 \\
\hline | 3/10 & 1 & 0 & 1 & 0 \\
\hline | \(4 / 11\) & 1 & 0 & 0 & 1 \\
\hline | 5/12 & 0 & 0 & 1 & 1 \\
\hline 6/13 & 1 & 1 & 1 & 1 \\
\hline | 7/14 & 1 & 1 & 0 & 1 \\
\hline
\end{tabular}

Figure 10.15 DRCS Format Codes
The significance of the 12 display bits varies from format to format. In all formats, the display MSB (bit 13) of the least significant (even) byte is written left- and uppermost.

FORMAT 1, FORMAT 8
Each display word of 12 bits represents one pixel line. A pixel can be either on or off, the actual color being determined by the attributes set for that character (see "Character Attributes"). The only difference between these two formats is that Format 8 requires 12 such words, Format 1 requires 10. An example for Format 1 is given in Figure 10.16.

FORMAT 2, FORMAT 9
Each pixel is represented by two bits: the display MSB of byte 0 and the display MSB of byte 20 (Format 2) or byte 24 (Format 9) are interpreted as a 2-bit binary value (upper byte supplies the MSB of the two) which refers to one of four "DRCS color look-up tables" (CLUT, see "Character Attributes"); this determines the color of the first pixel of the character. Bit 12 of the same two bytes determines a color for the next pixel and so on. An example for Format 9 is given in Figure 10.17, where the color look-up tables for each pixel is denoted by a number \(0-3\).

FORMAT 3, FORMAT 10
The 6-pixel line pattern is given twice (bits 13-8 and \(5-0\) ) within each of the 10 or 12 display words. Figure 10.18 gives an example for Format 3.

FORMAT 4, FORMAT 11
This is similar to Format 3 and 10 , with the difference that the two 6-bit halves within a display word combine, as in Format 2 and 9, to refer to one of four color look-up tables. This is illustrated for Format 4 by the example in Figure 10.19.

FORMAT 5, FORMAT 12
These formats make possible the specification of any one of 32 colors for each pixel. Each pixel is referred to by four bits, which would normally restrict color selection to one of sixteen. A Videotex Controller register selects which of two color groups applies (see section below). Format 5 requires 40 bytes of DRCS memory (see example in Figure 10.20), Format 12 requires 48 bytes.

FORMAT 6, FORMAT 13
Five (Format 6) or six (Format 13) adjacent word pairs make up alternate pixel lines. The 6-pixel line pattern is given twice in each word. An example for Mode 6 is given in Figure 10.21.

FORMAT 7, FORMAT 14
These formats, like 6 and 13, affect alternate pixel lines. They also resemble 5 and 12, in that the 4 -bit value refers directly to a color and not to a color look-up table. Figure 10.22 illustrates Format 7.

\section*{Memory}
```

Bit 15
l lll
Seventh Pixel
00100000 00000011] Bytes 0 and 1
00010000 00000110
00001000 00001100
00000100 00011000
00000010 00110000
00000001 00100000
00000011 00100000
OODDO110 00010000
00001100 00001000
00011000 00000100 } Bytes 18 and 19

```
```

\
\/
Format coda

```

Display character


Figure 10.16 Format 1: Example

Memory
lit 15


Figure 10.17 Format 9: Example

Memory
```

Bit 15
l lll
10100011 10100011 } Bytes 0 and 1
10010110 10010110
10001100 10001100
10011100 10011100
10110010 10110010
10100001 10100001
10100011 10100011
10010110 10010110
10001100 10001100
10011100 10011100 } Bytes 18 and 19
\/ \/
Format code

```

Display character
\[
\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0
\end{array}
\]

\section*{Figure 10.18 Format 3: Example}

\section*{Memory}

Bit 15


Display character
\[
\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 2 \\
1 & 1 & 0 & 0 & 2 & 2 \\
1 & 1 & 1 & 2 & 2 & 2 \\
1 & 1 & 3 & 3 & 2 & 2 \\
1 & 3 & 3 & 3 & 3 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 \\
1 & 0 & 0 & 0 & 0 & 2 \\
1 & 1 & 0 & 0 & 2 & 2 \\
1 & 1 & 1 & 2 & 2 & 2 \\
1 & 1 & 3 & 3 & 2 & 2
\end{array}
\]

Figure 10.19 Farmat 4: Example

\section*{Memory}

\section*{Bit 15}


\footnotetext{
Figure 10.20 Format 5: Example
}

\section*{Memory}
```

Bit 15
I

```

```

First Pixel [CLUT MSB]
11100000 111100000
110000111 11000011
19110000 111110000
110001111 11000111
11111000 111111000
110011111 11001111
11111100 111191100
110111111 11011191
11111110 11111110 } Bytes 18 and 19
\/ \/
Format code

```
Display character
Line \(0 \quad 200001\)
2220011
4222111
\(6 \quad 223311\)
\(8 \quad 23331\)

Figure 10.21 Format 6: Example

\section*{Memory}
```

Bit 15
| First Pixel (Color bit 0)
| / First Pixel [Color bit 1]
11101010 01001100 } Bytes 0 and 1
First Pixel [Color bit 2]
/
/ / First Pixal [Color MSB]
11110000 01000000
11101010 01110011
110000111011111100
11101010 01001100
11001111 01001111
11101010 011100011
11111100 01000000
11101010 01001100
11110000 011111111 } Bytes 18 and 19
\/
Format code

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|r|}{Display character} \\
\hline \multirow[t]{4}{*}{Line} & 0 & 5 & 43 & 21 & 0 \\
\hline & 2 & B & A 9 & 87 & 6 \\
\hline & 4 & 1 & 0 F & E D & 0 \\
\hline & 6 & 7 & 65 & 43 & 2 \\
\hline & 8 & D & C B & A 9 & \\
\hline
\end{tabular}

Figure 10.22 Format 7: Example

\section*{CHARACTER ATTRIBUTBS}

The Videotex adapter contains 1 KB of character code RAM (from address 0DOOOOH) , and 1 KB of attribute RAM (from address 0D0400H). Attributes can be set in as many as 9 bytes for a single character. This demands economy in the way attributes are applied to video memory characters.


Figure 10.23 Attribute Memory Dynamic Allocation
The Videotex Controller achieves this economy by looking for an attribute pointer bit when writing a character: if bit 7 of the encoded character in video memory is set, the Controller refers to an attribute byte in attribute RAM. If in addition to specifying an attribute, that attribute byte has its bit 7 set, the Controller recognizes that a further attribute byte must be read and so on. This dynamic allocation of attribute memory means that attribute bytes do not lie unused, because less than 9 attributes are required for a particular character. This dynamic allocation is illustrated in Figure 10.23. Up to 40
attribute bytes may be allocated to characters in any one line.

This structure of character and attribute for a display of 40 characters width is described as the "stack mode". It is a mode most conducive to producing a display in accordance with CEPT standards, and is therefore the one described in this document. Other modes like the 80 Character mode and the Explicit Fill mode are described in documents produced by the integrated circuit manufacturer.

An attribute byte is constructed as shown in Figure 10.24. 32 colors are available for both foreground and background. These colors must have already been selected from a range of 4096 colors by programming the Videotex Controller registers (see below).
\(P\) is the pointer bit, indicating that at least one more attribute follows for the current character (set), or that this is the last or only attribute (zero) for that character.

The Lock bit is used to set a new default for the character table to which a particular character code refers. If the Lock bit is set, the character table specified in 3 bits of the same byte applies to all further occurences of that character code in the same line, or until a contrary character table attribute byte is specified for that character code. If this attribute byte is issued with the Lock bit zero, the newly specified character table applies only to this one occurrence of the character code. The next occurence of the character code, refers to the most recently declared character table for that code, or, failing such a declaration in the current line, to the default Table 1.


Figure 10.24 Attribute Byte


Figure 10.25 Btinking Attribute

\section*{COLOR SELECTION}

Color Layers
Colors are selectable for three display layers. In addition to the foreground and background characteristics we associate with computer displays, the Videotex adapter makes use of "line colors". The line color represents the color produced during CRT scanning where no foreground or background color is displayed, that is, where color transparency is specified. This color can be defined separately for each character line (lines 0-24), as well as for the

\section*{VIDEOTEX}
fringe areas at the top (line 25) and bottom (line -1) of the screen. Each of these lines is controlled by one byte (see "Videotex Memory Organization"). Figure 10.26 illustrates the structure of this byte.


Figure 10.26 Lina Characteristics
REVEAL [set] cancels Conceal attribute.
ZOOM effects double height magnification, displacement of following lines.
CURSOR set on the line in which cursor is to be displayed; more then one cursor is allowed, cursor form is set by Videotex Control registers.

\section*{Color Coding}

Color information for foreground, background, and line is coded in 5 bits (Figure 10.27).


Figure 10.27 Color Coding

\section*{Color Look-up Table}

As already mentioned, you can select 32 colors from a total number of 4096 . This means that the 5 -bit value cannot directly control the RGB outputs to the CRT circuitry. Instead, the 5-bit value refers to a palette, also called "color look-up table" (CLUT), in which amplification values in four bits for each of the three color guns are stored. 4096 (2 to the power of 12) colors are available, any one of which can be selected by each of the 32 table pointers. Figure 10.27 describes these bits as Palette, Intensity, Blue, Green, and Red simply because of the CEPT standard. This standard specifies that the first group of eight colors should be black, red, green, yellow, blue, magenta, cyan, and white, while the second group yields the same colors in halfintensity.

These 32 12-bit items of color information are stored in 96 bytes near the top of the 4 KB RAM area at the disposal of the Videotex Controller (see "Videotex Memory Organization"): the lowest byte contains in its four MSBs the red color value for CLUT color 0, the next two bytes contain corresponding values for green and blue; the next three bytes define CLUT color 1, and so on. You can read this 96-byte area in order to ascertain color settings. However, the conventional way of writing the color items is by means of Videotex Controller Registers (see section below).

\section*{DRCS Attributes}

DRCS characters, like the standard characters, derive their attributes from the dynamically allocatable attribute stack. Where more than one bit per pixel applies,
- the entire character is regarded as foregound color
- the attributes Conceal, Blink and Invert make use of the background color
- the Underline attribute has no effect
- DRCS 4 bit/pixel characters shown in Figures 10.20 and 10.22 do not require an attribute byte in order to specify color. Instead, the 4bit color code refers directly to one of 16 colors in the color look-up table. Whether the lower or upper group of sixteen is being addressed depends on a single-bit palette switch which comprises one of the Videotex Controller registers.

\section*{Transparency}

Instead of specifying a color, it is possible to regard a character or pixel (in DRCS 4 bit/pixel display) as transparent. Transparency on the screen layer (line color, see "Color Layers") means that input from a composite video signal can be accepted on that layer. In principal, this signal can be derived from any suitable broadcasting device. The VLP interface is designed to supply just such a signal.

Transparency for a particular layer is achieved by specifying the color attribute "half-intensity black" (all guns off), where this color is referred to by color look-up code O. Figure 10.28 illustrates the origin of display signal used by the Videotex Controller for invert and color permutations of the attribute byte.


Figure 10.28 Layer transparency

B - Background
F - Foreground
line - the illuminated CRT area contralled by the 27 line colors

\section*{VIDEOTEX CONTROLLER REGISTERS}

A number of Videotex Controller initialization and other parameters are determined by data written to its internal registers \(0-58\) mapped (in that ascending order) in the memory area between ODCOOOH and ODCO3AH. The Videotex Controller internally uses copies of these registers in the RAM address area 0D1000-0D103F. You should not normally write into
these copies, but instead write directly into the registers in the higher memory area. The registers are summarized in Figure 10.29. This section also includes more detailed notes on the use of certain registers, together with values as initialized by NCR software.

RO SYMC REGISTER Initialization value OF4H; VLP requires OF3H Bit 7 is set to denote that the synchronization signal is external.
Bit 6 is set to provide a 1 MHz squarewave from the controller.
Bit 5 set results in an active low pulse that coincides with the "broad pulses" of composite sync.
Bit 4 is set to indicate that the Videotex Controller is not a slave in a configuration of more than one controller.
Bit 3 is zero to determine a character display height of 10 lines (otherwise 12 lines).
Bit 2 zero disables the phase lock for display interlace when VLP input is taking place. Otherwise, this bit is set.
Bit 1 controls the signal source for the internal field sync generator: \(0=\) text, \(1=\) video (VLP).
Bit 0 controls the text composite sync: \(0=\) display is noninterlaced, generating even fields of 312 lines; \(1=\) display is interlaced to broadcast reception standard.

R1 TEST REGISTER Initialization value 04
Bits 0 and 1 are used for functional test purposes only. Bit 2 if set, enables date transfer to the color map to take place at any time, even outside display blanking.

RR DMA MARNING TIME Initialization value 16 H
This is the length of time in which the Bus Request signal is asserted, prior to the system bus being taken over. The value specified must not exceed \(२ 3\) (microseconds).
Note that EUROM memory access is inhibited untit this register is explicitly written.

RG DISPLAY COMAND 1 Initialization value 62H
Bit 7 enables [1] and disables [0] VLP.
Bit 6 enables [ 1 ] and disables [ 0 ] text display.
Bit 5 enables and disebles the Window attribute in text mode as well as the Box attribute in superimpose mode (VLP).

Bit 1 selects color look-up table \([0=\) colors \(0-15,1=\) colors 16-31).
Bit 0 if zero, inhibits the effect of any flash attributes.

R4 DISPLAY COMMAND 2 Initialization value 0
Bit 4 Chapter "A" pointer incrementing [R7] anable (1) or disable [0]. This incrementing in step with the horizontal scan need be enabled in "Full Field DRCS" mode only. This would require more than the 2 KB of DRCS memory available.

Bit 3 if set, restores all attributes (except Lock bit) to default values: white foreground, transparent background, not blinking, no double height/width, not underlined, not inverted, not concealed, no window/box.
Bit 2 enable [0] or disable (1) the effect of the Concesal attribute.
Bit 1 is zero to set Stack and not Explicit Fitl mode.
Bit 0 is zero to specify 40 and not 80 characters per line.

R5 DISPLAY START Initialization value 1BH
This register determines the vertical start position of text on the CRT. In this way, the character display can be vartically centred. Adjustment of this value can be used to achieve "soft" scrolling.

RS DISPLAY PAGE CHAPTER Initialization value 0
Memory addressable by the Videotex Controller can be considered as consisting of 64 Chapters, each of 1024 16-bit words (Stack mode].

R7 DRES CHAPTER "A" POINTER Initialization value 1
This value represents in effect the start address offset of DRCS Tables 5 and 6 [Tables 1-4 are fixed character set] in terms of register contents times 1024 bytes (Stack mode).

RA DRES CHAPTER "B" POINTER Initialization value 2
As R7, except that this register applies to Tables 7 and 8 (RAM is not installed).

\section*{R9 CURsor colum}

Defines the character column that is to be used for cursor display. Cursor lines are defined in the line color definition bytes (see "Color Layers").
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & B 7 & 86 & B 5 & B 4 & B 3 & B 2 & B 1 & B 0 & \\
\hline 0 & \[
\begin{aligned}
& \text { Pin } 31 \text { corer. } \\
& 0=8310 \pi \\
& 1=831 \text { DNuTr }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pin X Cortr. } \\
& 0=6 \mathrm{Hk} \\
& 1=1 \mathrm{Ht}
\end{aligned}
\] & \begin{tabular}{l}
Pin 33 Corter. \\
\(0=P 3=[P A\) \\
1. F33 = FS
\end{tabular} & \[
\begin{aligned}
& \text { P1n } 37 \text { Cartr. } \\
& 0=3 U V E \\
& 1=\text { MVIDR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LDESVCM } \\
& 0=10 \\
& 1=12
\end{aligned}
\] & \begin{tabular}{l}
Pin 28 carter.
\(0=R\) DNUB. \\
\(0=\)
\(1=\)
R DUB \\
I = F. DISAB.
\end{tabular} & \[
\begin{aligned}
& \text { Pin } 32 \text { Carkr. } \\
& 0=103 \\
& 1=\text { Yes }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SMC } \\
& 0=N O N D T . \\
& 1=\text { NMIDRL: }
\end{aligned}
\] & Sac \\
\hline 1 & & & & & &  & \[
\begin{aligned}
& \text { SCNM } \\
& \text { WDYI } \\
& \text { RWI }
\end{aligned}
\] &  &  \\
\hline 2 & & & & I 4 & I 3 & T 2 & I 1 & TO & DA Marmo me ( \(\operatorname{Tin} \mathrm{w}\) ) \\
\hline 3 & \[
\begin{aligned}
& \text { TV } \\
& 0=\text { Dinable } \\
& 1 \text { i Enacile }
\end{aligned}
\] & \[
\begin{gathered}
\text { IXT } \\
0=\text { Disale } \\
1=\text { Drable }
\end{gathered}
\] & \[
\begin{aligned}
& \text { KDog (Eax) } \\
& 0=\text { Disabla } \\
& 1=\text { Enable }
\end{aligned}
\] & & & & \[
\begin{aligned}
& \text { cacar PNL } \\
& 0=16 \operatorname{col} 10-15 \\
& 1=16 \operatorname{con} 1-16-31
\end{aligned}
\] & \[
\begin{aligned}
& \text { FUSY } \\
& 0: \text { ERinhla } \\
& 1=\text { Disuble }
\end{aligned}
\] & Displ. Con. A.ag. 1 \\
\hline 4 & & & & \begin{tabular}{l}
Pull P.DPCS \\
 \\

\end{tabular} & WHIE BUIT Oetttr, \(\rightarrow\) Enth 1atttr, \(\rightarrow\) Daf. & \[
\begin{aligned}
& \text { REVEL } \\
& \text { oome } \Rightarrow \text { Enso } \\
& 1=0 \text { ance } \Rightarrow \text { Dismb }
\end{aligned}
\] & \[
\begin{aligned}
& \text { K } 1 \\
& 0=\text { Stad coode } \\
& 1=\text { Epilicit }
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { Pispley Coa. } \\
& \text { Reg. } 2
\end{aligned}
\] \\
\hline 5 & & &  & \[
\operatorname{stant}_{\operatorname{start}}\left(\mathrm{N}_{\mathrm{N}}^{2}\right.
\] & \[
\text { ) } 13
\] & \[
12 \operatorname{Lin}_{21}^{12}{ }_{21} \text { row }
\] & \[
\operatorname{start}_{\operatorname{start}^{\prime}}\left(\frac{N}{M}\right.
\] & \[
\text { , } 10
\] &  \\
\hline 6 & & &  &  & \[
64^{4} \frac{14}{P^{2}} \mathrm{a}_{5}^{\mathrm{E}} \mathrm{~Pa}
\] & \[
\operatorname{cit}_{\mathrm{t}^{13}}^{13}
\] &  &  & Display Puge Chepter Politer (Ext. Adtr.) \\
\hline 7 & & & \[
\begin{aligned}
& 40^{16} \mathrm{Chlro}_{0} \\
& 80 \mathrm{Chlro}
\end{aligned}
\] & \[
\begin{array}{ll}
A 15 & 64 \\
\rightarrow & 32
\end{array}
\] & \[
\begin{array}{ll}
D R C S^{14} & \mathrm{Add} \\
\text { DRCs } & \operatorname{add}
\end{array}
\] &  & \[
\begin{gathered}
\text { A12 } \\
\text { TABLE }
\end{gathered}
\] & \[
211
\] & DRCS Chapter (Ext. Addr.) rull Dics-mido \\
\hline 8 & & &  & \[
\begin{aligned}
& \text { A } 15 \\
& \text { RCS PO } \\
& \hline
\end{aligned}
\] &  & \[
d \begin{gathered}
A 13 \\
d r a s a b l
\end{gathered}
\] & \[
\begin{aligned}
& A 12 \\
& 1 \quad \text { TABLE }
\end{aligned}
\] & \[
\begin{gathered}
411 \\
6 \cdot 7
\end{gathered}
\] & \begin{tabular}{l}
DRCS Crapter \\
(Brt. Adtr.) \\
Start Pbaltion
\end{tabular} \\
\hline 9 & & & \[
\text { C } 5
\] & \[
C_{0}^{4}
\] & \[
\text { C } \underset{\rightarrow}{3}
\] & \[
\begin{array}{ccc}
C & c_{2} \\
\text { curaor }
\end{array}
\] & disabl & \[
\mathrm{co}
\] & \[
\underset{(0-39)}{\text { GREOR CIUN }}
\] \\
\hline 10 & T2 Cn & \[
a c_{t^{\prime}}^{\top}
\] & ble \({ }^{\text {T0 }}\) & & \[
\text { Po }{ }_{0}^{3} \mathrm{E} \in \mathrm{R}
\] & \[
N D^{F 2} \mathrm{COL}
\] & UR Ficurso & \[
80
\] & Curscr \\
\hline 11 & & \[
\begin{aligned}
& \text { CORECR FL. } \\
& 0=\mathrm{NOT} \text { FUH }
\end{aligned}
\]
\[
1 \text { = FMOH }
\] &  & \[
84
\] & BACKGA & \[
N D^{82} \mathrm{COL}
\] & \[
\operatorname{UR}_{8}^{81} \mathrm{cuRs}
\] & \[
80
\] & Curscr \\
\hline 10 & Lining
Orsor & P6 & P 5 & charac & \[
\begin{array}{ll}
\text { P } \\
c & 3 \\
0
\end{array}
\] & \[
\operatorname{ror}^{P 2} \quad c
\] & \[
\text { So } P_{R}^{1}
\] & P 0 & CURECP \\
\hline 13 & \(A\) Mdar. of DRCS- & \[
\cos ^{10}
\] & & \[
\begin{aligned}
& D^{4} \\
& (P)
\end{aligned}
\] &  & \[
\begin{aligned}
& D_{2}{ }^{2} \\
& (\mathrm{~B}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{D} 1 \\
& (\mathrm{C})
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { pfCs } \\
& \mathrm{af}
\end{aligned}
\] \\
\hline
\end{tabular}


Figure 10.29 Videotex Controller Registers (2 of 2]

\section*{R10 CURSOR CHARACTER TABLE AMD FOREGROUND COLOR}

Initialization value 4EH
Determines the character table [ \(0=\) Table 1] and foreground cotor to be used for cursor display [Stack mode]. The contents of this register, or even the presence of a cursor, do not affect the rest of the cursor line.

\section*{R11 CURSOR ATTRIBUTES AND BACKGROUND COLOR}

Initial ization value 48 H
Bits 5 and 6 enable/disable for the cursor the corresponding attributes currently in force. The contents of this register, or even the presence of a cursor, do not affect the rest of the cursor line.

R12 CURSOR LIMIMG ARD CHARAGTER MDDE Initialization value 7FH Bits 0-6 specify the code of the cursor character in the Table specified in R10.
Bit 7 can be used to effect the Underlining attribute.

\section*{R13 DRCS CLUT}

Bits 6-7 select one of the 4 color look-up table locations. The remaining bits define the contents of that CLUT entry.

\section*{R14 COLOR MAP ADDRESS}

Writes one of the 32 color map addresses with the data already held in R15, R16, and R17. To avoid display corruption, this command is best executed during non-displey time (see R1, bit 2).

\section*{R15 [red], R16 [green], R17 [blue] COLOR MAP DATA}

These three 4-bit values make up any one of 4096 colors. Only the 4 LSBs of these bytes are significant.

\section*{SCROLL MAP REGISTERS}

\section*{SCROLLING}

Videotex Controller registers R33 - R57 are dedicated to the Videotex scroll map. When writing page data from video character code memory to the screen, the controller looks at bits 0-4 of these registers, in order to see in what sequence the lines of data are to be written when the screen is next scanned.

Each of the scroll map registers should contain a unique value in the range \(0-24\) (a greater value would cause address wrap-round within the display Chapter).

The scroll map is useful if you wish to exchange the positions of lines on the screen. It saves you the software overhead of block moving in video character code memory. A complete re-organization of screen lines requires a maximum of 25 single byte write operations into the scroll map registers.

\section*{TEXT DISPLAY AND RAM ACCESS}

Bit 5 set in a scroll map register disables any Double Height attribute for the line concerned. This facility would be used where the following line belongs to a scroll area, or where the line concerned is designated as the bottom display line.

Bit 6 set disables the text display for the line concerned. Any number of text rows may be displayed, provided that they form a contiguous block of display lines. (The visual effect of non-contiguous display lines can be achieved by use of the transparency.)
Bit 6 also has an effect on display colors: the line color of the lower screen fringe area (see "Color Layers") applies from the first line for which bit 6 is set (including this line), down to the bottom of the screen. The scroll map registers for these lines are then ignored.

Bit 7, the Disable Ram Access bit, determines, if set, that the Videotex Controller is not to fetch character and attribute information. This saves the Controller RAM access time for that line.

If bit \(7=1\) and bit \(6=0\) for the same line, that line is re-written on the next screen scan, even though RAM access for that line has been disabled. This is possible because the Videotex Controller holds screen output data in internal intermediate buffers, before finally transmitting them to the CRT. Note, however, that DRCS characters cannot be displayed without RAM access being enabled.

Videotex Controller register R58 is significant only as its bit 6 must be set, and bit 7 has an enabling/disabling effect regarding bit 6 of the registers R33 - R57: if bit 7 of R58 is set, the adoption of the lower screen fringe area color does not apply.

\section*{NCR SOFTHARE}

The NCR Videotex package includes a number of executable files providing a user friendly interface conforming to the requirements of the specific country.
One of the files supplied provides an interface to useful Videotex Controller, VLP, and modem functions. This program, like the others in the Videotex package, is designed to run under the disk operating system. Once loaded, it remains in memory as a resident process, providing a library of routines which can be called from subsequently loaded processes. Refer to your Videotex User's document for the actual filename for your country.
The functions are executed in much the same way as disk operating system function calls: loading certain CPU registers, issuing an interrupt, and accepting return parameters.
* The function number is placed in BX
- The interrupt issued is type 75 H

Other parameters are function-specific. Where 8-bit parameters are passed in a 16 -bit CPU register, the upper 8 bits of the register are zero.

0 Initialize to CEPT standard Clear out data of this process Fill character display memory with 20 H
Fill attribute and DRCS memory with 0
Locate cursor top left
Decoder mode is serial [see function 1B]

1 Return status of modem [automatic dialling]

2 Return type of modem [manual dialling]

Return:
\(A X=0\) not ready
1 link established

Return:
\(A X=0\) half duplex
1 full duplex

3 Discontinue modem connection

4 Switch to CEPT standard

5 Switch to PRESTE standard

6 Toggle line zoom [Double Height] in cursor line

7 Switch to display interlace

8 Switch to non-interlaced display

9 Toggle attribute enable/disable (R4, bit 3)

A Toggle Conceal enable/disable [R4, bit 2]

B Enable cursor (R11, bit 5)

C Disable cursor [R11, bit 5]

D Enable display, provided that Videotex mode is enabled (R3, bit 7)

E Disable Videotex display (R3, bit 7)

F Switch to Videotex mode (bit 7 ODC101H)

10 Switch to PERSONAL COMPUTER mode, retaining Videotex register/ RAM status (bit 7 at ODC101H)

11 Toggle scan frequency

12 Write a controller register

13 Read a controller register

14 Decode a CEPT or PRESTEL standard character

Entry:
AX = character (see CEPT or PREST且 spec.)

Entry:
AX = character

\section*{Entry:}
\(A X=\) RAM address offset to paragraph ODOOOH

Return:
\(A X=\) RAM byte

BX Function

17 Write one byte to Videotex RAM

18 Set Line [screen] color

19 Read cursor line number

1A Read number of current column

1B Read current decoder mode Parallel: attributes for a particular character code valid until changed for an occurence of that character Serial: attributes valid for all characters from current pos. to end of line, or until new attributes defined, or until parallel mode selected

1C Read number of Lowest line in scroll area

1D Read number of uppermost line in scrall area

\section*{Entry/Raturn Paramatars}

Entry:
\(A X=\) RAM Location offset to paragraph ODOOOH
\(D X=\) byte for RAM

Entry:
\(A X=\) CLUT color number

\section*{Return:}
\(A X=\) line number

\section*{Return:}
\(A X=\) column number

Return:
\(A X=1\) parallel 0 serial

Return:
\(\mathrm{AX}=\mathrm{0}-18 \mathrm{H}\)
line number
\(>18 \mathrm{H}\)
no scroll area

Return:
\(A X=0-18 \mathrm{H}\)
line number
\(>18 \mathrm{H}\)
no scroll area

BX

1E Dafine cursor as character from standard or DRCS table

\section*{Entry/Return Paramaters}

Entry:
DX = character table [0-table 1, atc.]
AX = character code 0-7FH or 80 H : Line cursor
EX = foreground color no. in CLUT
SI = background color no. in CLUT

Entry:
AX = character

Return:
\[
\begin{array}{rlrl}
A X & =0 & & \text { successful } \\
& >0 & \text { error }
\end{array}
\]

20 Read USART status for video interface

Return:
\(A X=\) status byte

Entry:
\(A X=\) line number
\(D X=\) column number

\section*{Return:}
\[
\begin{array}{rlrl}
A X & =0 & & \text { successful } \\
& >0 & \text { error }
\end{array}
\]
Entry:
DS:AX = segment:offset of 16-bit word

Entry:
DS:AX = address of byte to receive char.

Return:
\(A X=1\) character read to specified address
0 no character read

BX Function

42 Disable display, load up to 4608 bytes into Videotex RAM, re-enable screen

43 Read up to 4608 bytes from
Videotex RAM

44 Read one character from video interface

\section*{Entry/Return Paremeters}

\section*{Entry:}

DS:AX \(=\) address of first byte to be loaded
\(D X=\) Videotex RAM address
to which first byte
to be loaded (offset
to paragraph \(0 D 000 \mathrm{H}\) )
CX = number of bytes
[max. 4608]

Raturn:
Bytes at specified Videotex RAM address

Entry:
DS:AX = address to which first byte is to be loaded
\(\mathrm{DX}=\) Videotex RAM address of first byte to be copied (offset to paragraph 0D000H]
CX = number of bytes

\section*{Return:}

Bytes at specified PC memory address

\section*{Entry:}

DS:AX = address of byte to receive char.

\section*{Return:}
\(A X=0\) character read to specified address
> 1 error

BX Function

45 Read character code and attributes for one character position. 12 bytes are read:
0 - character code
1..9 attribute bytes as detailed in Figure 10.24
10 - marked area
11 - protected area

80 Write 40 text characters to line 25, also specifying "stack" mode attributes

81 Scroll screen up one line, filling vacated line with 40 text characters according to "stack" mode attributes

\section*{Entry/Return Parseatars}
```

Entry:
AX = character position
40 * Line + column
or
AX = OFFFFH
current cursor pos.
DS:DX = destination addr.
of first byte

```

Return:
12 bytes starting at
specified address
Entry:
DS:AX = address of first
    character
DS:DX = address of first
    attribute

\section*{Return:}

Text written to line 25

Entry:
DS:AX = address of first character
DS: \(D X=\) address of first attribute
CX = uppermost line of scrolled area
SI = Lowermost Line of scrolled area

\section*{Return:}

Display scrolled and new text written to vacated line



\section*{PRINTING VIDBOTEX RAM}

The Videotex program of your NCR software contains routines to dump Videotex RAM to an attached printer. Pressing Control-F1 from the main menu offers a further selection of print items. Using this selection, it is possible to print one or more of
* Character code memory
* Attribute Memory
* DRCS memory
* The Videotex Controller registers, including the scroll map registers
* The 32 12-bit RGB color values
* The line (screen) color as defined for each line

This facility is possible because switching from Videotex to the NCR PERSONAL COMPUTER mode of display does not reset the Videotex system. Therefore, the contents of Videotex RAM is not disturbed.

The modem and video interfaces of the Videotex adapter are controlled by two separate 2651 USART integrated circuits, used in the asynchronous receiver/transmitter mode.
The registers of each of these Programmable Communications Interfaces (PCIs) are memory mapped in the address ranges \(0 D C 200 \mathrm{H}-0 \mathrm{DC} 207 \mathrm{H}\) (modem) and ODC300H-0DC307H (video). The precise memory map for the modem interface is given below. Corresponding addresses for the video interface are mapped in the higher area.
\begin{tabular}{ll}
\begin{tabular}{l} 
Address \\
〔hex〕
\end{tabular} & \multicolumn{1}{c}{ USART Register } \\
DC200 & Read Receive Holding Register \\
DC201 & Read Status Register \\
DC202 & Read Mode Register 1/2 \\
DC203 & Read Command Register \\
DC204 & Write Transmit Holding Register \\
DC205 & Write SYNC1, SYNC2, DLE Register \\
DC206 & Transmitter/Receiver Mode Register 2 \\
DC207 & Write Command Register
\end{tabular}

The remaining sections of this Chapter deal with the programmable features of the PCI, followed by an explanation of its use by the Videotex and modem interfaces.

RS-232-C SOFTHARE CONTROL
The following asynchronous communications features can be programmed with the 2651 integrated circuit:
\begin{tabular}{lrr} 
* \(5,6,7\), or 8-bit data characters \\
(1, 1 1/2, or 2 stop bits \\
Odd, even, or no parity \\
Baud rates at - & 50 & 1800 \\
& 75 & 2000 \\
& 110 & 2400 \\
& 134.5 & 3600 \\
& 150 & 4800 \\
& 300 & 7200 \\
& 600 & 9600 \\
& 1200 & 19200
\end{tabular}
* Line break signal generation and detection
* False start bit detection
* Parity overrun, and framing error detection
* Internal diagnostics

The 2651 Programmable Communications Interface (PCI) serializes parallel data provided on the system data bus for transmission. At the same time, incoming serial data can be converted into parallel form for transmission to the system. PIC features are:
* Baud rate generator, generating up to 16 different baud rates
* Differentiation between communication technique information and data on both transmitter and receiver (TxD and RxD) lines
* Allows handshaking and status information exchange between microprocessor and connected device

\section*{PCI Receiver}

Condition for receiving data is that the CD/ input line is low and that the RxEN bit in the Command Register is set. In asynchronous mode, the receiver waits for a high to low transition on RxD. One and a half bit lengths after this transition, RxD is sampled again. If it is now high the receiver reverts
to the waiting state. If RxD is low the receiver assumes that a valid start bit has been encountered.

The line is now sampled at one bit intervals until the pre-determined number of bits (data with parity and stop bits) have been received. The data part of this information is held in a Receive Holding Register (unused upper bits for a character length of less than eight are zero), the RxRDY bit in the Status Register is set, and the RxRDY/ line to the device goes low. Only after RxD has gone high again does the receiver start to wait for the next character.

The Status Register reflects errors of parity, framing, or overrun. If \(R x D\) is low all the time during character and stop bit receiving time, all bits zero are returned to the Data Holding Register and the Status Register recognizes a framing error.

\section*{PCI Transmitter}

Data transmission can take place when the CTS/ input signal is low and the TxEN bit in the Status register is set. The PCI indicates to the microprocessor by means of the TxRDY/ signal and the TxRDY bit in the Status Register that it is ready to accept a character into its Transmit Holding Register for transmission. Having buffered the single character from the system data bus, the PCI resets both signal and status bit and holds them in that condition until the character has been serialized and transmitted. The sequence of asynchronous transmission bits is as follows:

One start bit
Pre-selected number of data bits, LSB first
Optional odd or even parity bit
Pre-selected number of stop bits


If a new character is then not available, the TxD signal remains high and the TxEMT/DSCHG bit in the Status Register is set. An all low (data, parity, and stop zero) transmission can be achieved by setting the Break bit in the Command Register.

Note: The 2651 synchronous transmitter/receiver mode cannot be utilized within the hardware configuration of the Videotex adapter.

\section*{Modem Interrupts}

Interrupts are normally provided on the IRQ line selected by switch X6 (see Figure 10.8) whenever an incoming character has been assembled by the PCI and is available for reading by modem control software.

This hardware interrupt can be extended by means of switch X 10 , so that an interrupt is also issued whenever the PCI has completed serializaton and transmission of a character. This means that controller software need not continuously poll PCI status in order to determine whether the interface can accept the next character for transmission. (This facility is not required by NCR software, therefore X10 should not normally be closed.)

\section*{Programming the PCI}

Communication between the CPU and 2651 registers takes place via memory addresses as set out in the memory map above. Figure 10.30 summarizes the Command, Status, and Mode Registers. The sequence of PCI programming is outlined in the following paragraphs.

MODE REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|}
\hline 7 & 6 & 5 & 4 & \(3 \quad 2\) & 1 \\
\hline & & Parity Type & Parity Control & Character Length & Mode and Baud Rate Factor \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
ASYNCH: STOP BIT LENGTH \\
\(00=\) Invalid \\
\(01=1\) Stop bit \\
\(10=11 / 2\) Stop bits \\
\(11=2\) Stop bits
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0=\text { Odd } \\
& 1=\text { Even }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0=\text { Disabled } \\
& 1=\text { Enabled }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 00=5 \text { Bits } \\
& 01=6 \text { Bits } \\
& 10=7 \text { Bits } \\
& 11=8 \text { Bits }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(00=\) Synchronous \(1 \times\) rate \\
\(01=\) Asynchronous 1 X rate \\
\(10=\) Asynchronous 16 X rate \\
11 = Asynchronous 64 X rate
\end{tabular}} \\
\hline \begin{tabular}{l}
SYNCH: NUMBER OF SYN CHAR \\
\(0=\) Double syn \\
1 = Single syn
\end{tabular} & SYNCH: TRANS. PARENCY CONTROL
\[
\begin{aligned}
& 0=\text { Normal } \\
& 1=\text { Transparent }
\end{aligned}
\] & & & & \\
\hline Note (asynchron Baud rate factor & us mode) plies only if external c & is selected. & ctor is 16 X if i & ernal clock is selec & \\
\hline
\end{tabular}

MODE REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \\
\hline \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{0} & Transmitter Clock & Receiver Clock & & \multicolumn{3}{|c|}{Baud Rate Selection} & \\
\hline & & \[
\begin{aligned}
& 0=\text { External } \\
& 1=\text { Internal }
\end{aligned}
\] & \[
\begin{aligned}
& 0=\text { External } \\
& 1=\text { Internal }
\end{aligned}
\] & & \[
\begin{aligned}
& 0000=50 \text { Baud } \\
& 0001=75 \\
& 0010=110 \\
& 0011=134.5 \\
& 0100=150 \\
& 0101=300 \\
& 0110=600 \\
& 0111=1200
\end{aligned}
\] & & Baud & \\
\hline
\end{tabular}

COMMAND REGISTER


\section*{Programming Asynchronous Communications}
1. Load Mode Register 1.

The frequency multiplier in the two LSBs is significant only if Mode Register 2 selects an external clock. (If these bits are zero, value 2 for stop bit length defaults to 1 stop bits for transmission.)
2. Load Mode Register 2.

This step may be omitted, if external clock signals are being used.
3. Load Command Register.

Disabling the transmitter (bit 0) does not prevent output of character currently in the Transmit Shift Register. Disabling the receiver (bit 2) results in the loss of a character in the Receive Holding Register which has not yet been completely assembled.
Setting bit 3 forces the TxD line low and holds it low until this bit is reset (space after a transmitted character). TxD then goes high for at least one bit time before transmission of the next character.
Bit 4 (reset error flags in Status Register) is automatically reset after command execution. Bits 6 and 7 govern operational mode. 00 is normal (transmitter and receiver independent of one another). Automatic Echo means that data received, including the first character of a break condition, is echoed on the TxD line, provided that transmitter and receiver clock are identical (bit 2 must be set, but bit 0 need not be set, as CPU transmit commands are ignored).
4. Check Status Register (optional, see below).
5. Issue new command, without loading Mode Register(s)

or

Issue command to disable receiver and transmitter bits 0 and 2 of Command Register, and return to step 1. for a new communications set-up.

\section*{Diagnostics}

Bits 6 and 7 in the Command Register can be used for communications diagnostics.
Local Loop sets up the following configuration:
```

Transmitter output is connected to receiver input
DTR/ is connected to CD/
RTS/ is connected to DTS/
DTR/, RTS/, and TxD/ are held high
CTS/, CD/, DSR/, and RxD/ are ignored
Receive clock = transmit clock

```
provided that Command Register bits 0,1 , and 5 are set (bit 2 is ignored).

Remote Loop has the following effect:
Data assembled in the Receive Hold Register is placed in the Transmit Hold Register and transmitted on the TxD line
No data transfer from the PCI to system data bus, but parity, overrun, and framing errors are detected
RxRDY/, TxRDY, and TxEMT/DSCHG/ (not connected) are held high
Command Register bit 0 is ignored Other signals operate normally
Transmit clock \(=\) receive clock.

\section*{Status Register}

The significance of the Status Register bits:
0 - When set, data for transmission can be accepted from the system data bus and the TxRDY/ line is low.
In Automatic Echo and Remote Loop modes this bit is not set and the TxRDY/ line is held high.

1 - When set a complete character in the PCI is waiting to be read and RxRDY/ is low. This bit is zero when the character is read, or when Command Register bit 2 disables the receiver.

2 - When set DSR/ or CD/ has changed state, or following transmission of a character there is no new character waiting in the Transmit Holding Register.
This bit is zero when the transmitter is enabled by Command Register bit 0, or when the Status Register is read.

3 - Assuming parity is enabled, this bit set indicates a parity error.
This bit is zero following disabling of the receiver or issue of a command with Command Register bit set.

4 - An overrun error means that a new character was accepted by the Receive Holding Register, although the previously assembled character had not yet been read by the microprocessor. This bit is zero following disabling of the receiver or issue of a command with Command Register bit set.

5 - If this bit is set, a received character in asynchronous mode was not framed by the specified number of stop bits (If 1 1/2 stop bits were specified, only the first stop bit is checked).

6 - Reflects the state of the CD/ line.
7 - Reflects the state of the DSR/ line.

\section*{ADAPTER INITIALIZATION}

This section outlines initialization of the 2651 and the basic transmit/receive interfaces, as used by the NCR Videotex software.

\section*{MODEM IETERRFACE}

The modem interface is interrupt driven, using the interrupt request line 2 of the Programmable Interrupt Controller of the NCR PERSONAL COMPUTER (interrupt type OAH). The interrupt service routine checks for overrun, parity, and framing errors by reading the Status Register. If any of the corresponding bits (3, 4, or 5) is set, an error condition is recognized, otherwise the routine proceeds to read a character from the interface.

Initializing Mode Register 1: 01001110 B \(\rightarrow\) ODC206H
* Mode is asynchronous
* 1 Stop Bit
* No Parity
* Character length is 8 bits
* External baud rate is \(16 \times\)

Initializing Mode Register 2: \(00 ? 10111 \mathrm{~B} \rightarrow \mathrm{ODC206H}\)
* Transmitter clock is external (bit 5 zero), where baud rate is 75
* Transmitter clock is internal (bit 5 set), where baud rate is 1200
* Receiver clock is internal
* Internal baud rate is 1200
* Normal operation [no echo, no diagnostics)
* RTS/ [bit 5] is set [active] for 1200 transmission baud rate, otherwise zero
* Reset error is normal
* Asynchronous force break is normal
* Receive control is enabled
* DTR is active
* Transmit control is enabled

Receiving one byte from interface (in response to interrupt):
* Read byte from Receive Holding Register <- ODC2OOH

Transmitting one byte to modem:
* Disable all other IRQ Lines to Programmable Interrupt Controller \(00000100 \mathrm{~B} \rightarrow\) port 21H Modem transmission can now be interrupted only by a modem service request
* Check 2651 Status Register: <- ODC2O1H If modem data is waiting to be read [bit 1 set], check status for error [bits 3, 4, 5]; read character or process error Otherwise, check that the Transmit Holding Register is available [empty, bit 0 set]. If a timeout situation is evident, check the on-line status of the modem by means of the DSR bit [7]. This bit reflects the status of the modem M1 [manual dialling modem] or \(S\) (automatic dialling modem) signal: modem is not active if this bit is set
* Assuming no error and that the modem is available, write the byte to the Transmit Holding Register \(\rightarrow\) ODC204H
* Re-enable IRQ Lines \(11111111 \mathrm{~B} \rightarrow\) port 21H

Error consequences:
* If error is non-availability of modem, close down communicetion by disabling receiver and transmitter, and forcing DTR/ and RTS/ high 00000000 B \(\rightarrow\) ODC203H Restore interrupt type OAH to its former function.
* If error is parity/framing/overrun, handle error as appropriate. There is normally no need to reset the error status bits [3, 4, 5] explicitly [see Commend Register, bit 4)

Remember that the Videotex protocol includes not only displayable characters, but also single control characters and control sequences. The codes for control characters and sequences are set out in the Videotex specification available for your country.

\section*{VIDEO INTERFACE}

The interface procedures for the video (video recorder, VLP) interface are similar to those controlling the modem interfaces. The main difference is that the video interface does not make use of interrupt handling.

Initializing Made Register 1: 01001110 B \(\rightarrow\) ODC306H
* as for modem interface

Initializing Mode Register 2:
00110111 B \(\rightarrow\) DDC306H
* Transmitter clock is internal
* Receiver clock is internal
* Baud rate is 1200

Initializing Command Register: \(00100111 \mathrm{~B} \rightarrow \mathrm{ODC3O7H}\)
* Normal operation (no echo, no diagnostics)
* RTS/ is active
* Reset error is normal
* Asynchronous force break is normal
* Receive control is enabled
* DTR/ is active
* Transmit contral is enabled

Receiving one byte from video interface:
* Check Status Register bits 1, 3, 4, and 5 for byte unavailability/parity/overrun framing errors
* Assuming no error, read byte
< ODC301H
<- ODC30OH

Transmitting one byte to video interface:
* Check Status Register bit 0 to see if the Transmit Holding Register is available [empty] <- ODC3OOH
* Include a timeout check on the availabilty of this register
* When Transmit Holding Register is available, write one byte to this register \(\rightarrow\) ODC3O4H

Details of the control/data protocol with the video unit vary according to the hardware characteristics of that device. If you are intending to design your own interface software, you should refer to relevant documents of the video unit.

\section*{SWITCHES AND REGISTERS}

Figures 10.31 to 10.37 illustrate the sequence of software commands for Videotex switching and register access operations.
\begin{tabular}{rl} 
DC100/7 & \(=1\) Screen Enable \\
DC101/7 & \(=1\) Video Controller to Scree \\
DC103/7 & \(=0\) Monitor 15 kHz H -Sync. \\
DC000/7 & \(=1\) VCS Input on Pin 31 \\
DC000/6 & \(=1\) 1MHz on Pin 29 \\
DC000/5 & \(=1\) FS/Output Pin 33 \\
DC000/4 & \(=1\) Sync Master \\
DC000/1 & \(=1\) VCS is used Pin 31 \\
DC000/0 & \(=1\) Interlace \\
DC00
\end{tabular}

Figure 10.31 Switch To Videotex - 50 Hz


Figure 10.32 Switch To Videotex - 60 Hz


DC101/7 \(=0\) Switch to IBM

DC003/7 = Monitor \(15 \mathrm{kHz} \mathrm{H}-\mathrm{Sync}\)

DC103/7 = 0 Disable VLP

Figure 10.33 Switch to NCR PERSONAL COMPUTER mode

```

DC102/7 = 1 Buffer em?ty?
DC100/7 = 0 Output Disable
DC003/6 = 0 Text Disable
DC100/7 = 1 Buffer empty?
DOOOO- Write all Page
D3FFF- Memory data
last data
DC100/7 = 1 Output Enable
DC003/6 = 1 Text Enable

```

Figure 10.44 Fast Write To Page Memory


DC100/7 = 1 Buffer empty

Write Page Memory data

Figure 10. 35 Slow Write To Page Memory


DC100/7 = 1 Buffer empty?

DC000 to Write Register
DC01F
last Write?

Figure 10.36 Write Videotex Controller Register


DC100/7 = 1 Buffer empty?

DC104/7 = 1 Wait Field Sync.

Write first Scroll Reg.

DC104/7 = 0 Don \(t\) wait Field Sync.

DC100/7 = 1 Buffer empty?

DC020 to
DC0 3A
last Byte

DC104/7 = 1 Wait Field Sync.

Figure 10.37 Write Scroll Map Register

\section*{Index}
\begin{tabular}{|c|c|}
\hline Advanced keyboard . . . . . . . . . . . . & \[
\begin{aligned}
& 8-15,8-16,8-17, \\
& 8-18,8-19,8-20, \\
& 8-21,8-22,8-23, \\
& 8-24,8-25,8-26, \\
& 8-27,8-28
\end{aligned}
\] \\
\hline Alpha mosaic & 10-17 \\
\hline Alternate main processor board & 1-9, 1-26 \\
\hline Auto-repeat & 8-15, 8-16 \\
\hline Autonomous codes & 8-16 \\
\hline Booting & 3-24 \\
\hline Cascade ......................... & \[
\begin{aligned}
& 2-12,2-13,2-18 \\
& 2-21,2-57
\end{aligned}
\] \\
\hline Cash terminals & 5-1 \\
\hline CEPT ............................ & \[
\begin{aligned}
& 10-1,10-9,10-29 \\
& 10-33,10-43,10-44
\end{aligned}
\] \\
\hline Character generator & 7-4, 7-15, 7-38 \\
\hline Chip select ..................... & 1-9, 4-4, 4-5 \\
\hline Clock ........................... & \[
\begin{aligned}
& 1-5,1-7,1-9,1-12, \\
& 1-13,1-15,1-28, \\
& 1-30,2-3,2-4,2-5, \\
& 2-7,2-28,2-31, \\
& 2-36,2-37,2-50, \\
& 2-65,3-15,4-4, \\
& 5-2,6-9,6-12, \\
& 6-55,6-56,7-27, \\
& 7-36,8-1,8-2,9-1, \\
& 9-5,10-5,10-11, \\
& 10-56,10-57,10-59, \\
& 10-61
\end{aligned}
\] \\
\hline CLUT . . . . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
\text { see: Color look-up } \\
\text { table }
\end{aligned}
\] \\
\hline Color layers .................... & 10-31, 10-34, 10-37 \\
\hline Color look-up table ............ & \[
\begin{array}{ll}
10-19, & 10-31, \\
10-34, & 10-33 \\
10-37, & 10-40
\end{array}
\] \\
\hline COM . . . . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 3-13,4-18,4-19, \\
& 4-20,4-21,4-22, \\
& 4-23
\end{aligned}
\] \\
\hline COM1 . . . . . ........................ & \[
\begin{aligned}
& 2-13,3-5,3-12, \\
& 4-6,4-7,4-18
\end{aligned}
\] \\
\hline
\end{tabular}

INDEX


11-2
\begin{tabular}{|c|c|}
\hline ECC ..................................... & \[
\begin{aligned}
& 3-17,6-56,6-59, \\
& 6-60,6-63,6-64, \\
& 6-65,6-67
\end{aligned}
\] \\
\hline Explicit fill & 10-37 \\
\hline Fast write & 10-65 \\
\hline Flat & 9-6, 9-12, 9-13 \\
\hline Floating-point & 1-5 \\
\hline Framing ......................... & \[
\begin{aligned}
& 3-12,4-9,4-10, \\
& 4-11,4-22,4-23, \\
& 10-51,10-52,10-57, \\
& 10-59,10-61,10-62
\end{aligned}
\] \\
\hline Full duplex ..................... & 10-4, 10-5, 10-43 \\
\hline Function key .................... & 8-17 \\
\hline Fuse & 1-22, 1-23 \\
\hline Gap .............................. & \[
\begin{aligned}
& 3-16,6-13,6-15 \\
& 6-24,6-29,6-67
\end{aligned}
\] \\
\hline Gate . . . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 1-30,2-6,2-7, \\
& 2-8,2-9,6-5,6-6, \\
& 6-9,6-48,6-49, \\
& 6-52,6-53,6-54, \\
& 6-68,9-3,9-5,9-16
\end{aligned}
\] \\
\hline GRAFTABL ........................ & 3-16, 7-5, 7-15 \\
\hline Head select .................... & \[
\begin{aligned}
& 6-4,6-5,6-29 \\
& 6-49,6-51,6-68
\end{aligned}
\] \\
\hline High resolution ................. & \[
\begin{aligned}
& 7-1,7-40,7-45, \\
& 7-46,7-47,7-48
\end{aligned}
\] \\
\hline & 7-54 \\
\hline Hold . . . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 2-52,2-57,2-66, \\
& 3-12,4-21,5-6, \\
& 5-9,5-10,10-57
\end{aligned}
\] \\
\hline Index . . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 6-5,6-6,6-9,6-12, \\
& 6-13,6-49,6-53, \\
& 6-68,6-74,7-28, \\
& 7-36
\end{aligned}
\] \\
\hline Index hole ...................... & \[
\begin{aligned}
& 6-2,6-6,6-23 \\
& 6-35,6-43
\end{aligned}
\] \\
\hline Inhouse DLC Interface .......... & 4-34 \\
\hline Intensity ....................... & \[
\begin{aligned}
& 7-3,7-27,7-32, \\
& 7-37,7-38,7-42, \\
& 10-32,10-33,10-34
\end{aligned}
\] \\
\hline
\end{tabular}

INDEX


Maximum mode ..................... 1-7
Medium resolution ............... 7-40, 7-44, 7-45,
10-1
MFM . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6-2, 6-6, 6-12,
\(6-15,6-19,6-20\),
\(6-23,6-24,6-26\),
\(6-27,6-30,6-32\),
6-33, 6-35, 6-48,
6-50, 6-53, 6-54,
6-68, 6-69, 6-73
Modem
\(3-12,3-13,4-5\),
\(4-7,4-8,4-9,4-10\),
4-11, 4-12, 4-13,
\(4-16,4-18,4-20\),
4-21, 4-22, 10-1,
\(10-3,10-4,10-5\),
10-6, 10-7, 10-8,
10-9, 10-10, 10-42,
10-43, 10-44, 10-46,
10-50, 10-53, 10-59,
10-60, 10-61
\begin{tabular}{|c|c|}
\hline Natural & 9-6, 9-12, 9-16 \\
\hline NMI . . . . . . . . . . . . . . . . . . . . . . . . & see: Non-maskable interrupt \\
\hline Non-maskable interrupt ........ & 1-21, 2-3, 2-11, 3-4 \\
\hline Overflow ......................... & \[
\begin{aligned}
& 2-11,3-4,3-21, \\
& 9-11
\end{aligned}
\] \\
\hline Overrun . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 3-11,3-12,4-9, \\
& 4-10,4-11,4-22, \\
& 4-23,10-51,10-52, \\
& 10-57,10-58,10-59, \\
& 10-61,10-62
\end{aligned}
\] \\
\hline Palette ......................... & \[
\begin{aligned}
& 3-9,3-21,7-37, \\
& 7-41,7-45,7-47, \\
& 7-56,10-32,10-33, \\
& 10-34
\end{aligned}
\] \\
\hline Parity ......................... & \[
\begin{aligned}
& 1-9,1-15,1-28, \\
& 1-30,1-31,2-1, \\
& 2-3,2-42,3-4, \\
& 3-12,4-8,4-9, \\
& 4-10,4-11,4-12, \\
& 4-18,4-19,4-22, \\
& 4-23,10-51,10-52, \\
& 10-53,10-57,10-58, \\
& 10-59,10-61,10-62
\end{aligned}
\] \\
\hline PD765 ............................ & 6-15 \\
\hline Phosphor . . . . . . . . . . . . . . . . . . . & 7-23 \\
\hline Pre-compensation . . . . . . . . . . . . & \[
\begin{aligned}
& 3-17,6-12,6-54 \\
& 6-56,6-63
\end{aligned}
\] \\
\hline  & \[
\begin{aligned}
& 2-1,2-12,2-15, \\
& 2-18,2-19,2-20 \\
& 2-21,2-22,2-23, \\
& 2-24,2-25,2-50, \\
& 2-52,2-53,2-56, \\
& 2-59,2-64,2-65, \\
& 2-66, \\
& 8-11
\end{aligned}
\] \\
\hline Priority rotation ............ & 2-22, 2-23 \\
\hline Re-calibration . . . . . . . . . . . . . . & \[
\begin{aligned}
& 3-5,6-52,6-54, \\
& 6-6 i
\end{aligned}
\] \\
\hline Real-time ..................... & 2-1, 2-9, 2-28 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Receiver . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 4-2,4-3,4-4,4-5, \\
& 4-6,4-7,4-10, \\
& 4-11,4-12,4-13, \\
& 4-14,4-15,4-22, \\
& 4-23,5-9,5-13, \\
& 6-46,10-50,10-51, \\
& 10-52,10-53,10-56, \\
& 10-57,10-58,10-59, \\
& 10-60,10-61
\end{aligned}
\] \\
\hline Refresh & \[
\begin{aligned}
& 1-5,1-6,1-13,2-5, \\
& 2-64,2-65,2-66, \\
& 7-23,7-32
\end{aligned}
\] \\
\hline Repeat . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 2-1,2-7,2-18, \\
& 2-25,4-31,4-33, \\
& 6-66,8-10,8-15, \\
& 8-16,8-17,9-2, \\
& 9-3,10-18,10-23, \\
& 10-26
\end{aligned}
\] \\
\hline Repeat delay & 8-16 \\
\hline Retrace . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 7-28,7-29,7-36 \\
& 7-37,10-10
\end{aligned}
\] \\
\hline Retries . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 3-17,6-56,6-59 \\
& 6-65
\end{aligned}
\] \\
\hline Rollover . . . . . . . . . . . . . . . . . . . & 2-36 \\
\hline SAA 5350 & 10-11 \\
\hline Scroll Map . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 10-40,10-41,10-49 \\
& 10-66
\end{aligned}
\] \\
\hline Segment override . . . . . . . . . . & \[
\begin{aligned}
& 2-30,2-34,2-38, \\
& 2-39,7-60
\end{aligned}
\] \\
\hline Settle ......................... & 3-16, 6-52 \\
\hline Sharp . . . . . . . . . . . . . . . . . . . . & 9-6, 9-12, 9-13 \\
\hline Single step . . . . . . . . . . . . . . . . & 2-11, 3-4 \\
\hline Skew . . . . . . . . . . . . . . . . . . . . . . . . & 7-30, 7-64 \\
\hline Square wave . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 2-6,2-7,2-8,9-2, \\
& 9-5
\end{aligned}
\] \\
\hline Stack mode . . . . . . . . . . . . . . . . . & 10-37, 10-40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Step .................................. & \[
\begin{aligned}
& 2-5,2-64,2-67, \\
& 3-16,4-28,6-5, \\
& 6-6,6-31,6-37, \\
& 6-38,6-40,6-49, \\
& 6-51,6-59,6-61, \\
& 6-62,6-64,6-66, \\
& 6-68,6-72,7-28, \\
& 7-60,8-16,10-37, \\
& 10-56,10-57
\end{aligned}
\] \\
\hline Stepping motor & 6-3, 6-47 \\
\hline Strap & see: Jumper \\
\hline Strapping & 1-23, 6-4 \\
\hline Strobe ...................... & \[
\begin{aligned}
& 2-6,2-7,2-8,2-28, \\
& 2-31,2-45,2-52, \\
& 2-53,4-4,4-5, \\
& 4-24,4-26,4-27, \\
& 4-28,4-32,9-3, \\
& 9-5,9-16
\end{aligned}
\] \\
\hline Teletype & 3-10, 7-56, 7-57 \\
\hline Timer counter & \[
\begin{aligned}
& 1-30,2-5,2-29, \\
& 2-31,3-20,3-21, \\
& 9-5
\end{aligned}
\] \\
\hline Transparency .................. & \[
\begin{aligned}
& 10-30,10-31,10-34, \\
& 10-35,10-41
\end{aligned}
\] \\
\hline Trigonometric .................. & 7-47 \\
\hline Trimmer & \\
\hline Tunnel-erase & 6-13, 6-15 \\
\hline Underline ....................... & \[
\begin{aligned}
& 7-27,10-30,10-33 \\
& 10-37
\end{aligned}
\] \\
\hline USART ............................ & 10-10,10-46, 10-50 \\
\hline VLP ............................. & \[
\begin{aligned}
& 10-1,10-4,10-5, \\
& 10-8,10-9,10-10 \\
& 10-34,10-36,10-42, \\
& 10-61
\end{aligned}
\] \\
\hline VLSI . ............................ & \[
\begin{aligned}
& 1-26,1-28,1-29, \\
& 1-30,1-31
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Wait . . . . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 1-9,1-28,2-3, \\
& 2-20,3-5,3-13, \\
& 3-16,4-28,4-32, \\
& 7-27, \\
& 9-3, \\
& 9-4
\end{aligned}
\] \\
\hline Winchester & 6-1, 6-46 \\
\hline Write-current & 3-17, 6-53, 6-63 \\
\hline Write-protect . ................. & \[
\begin{aligned}
& 3-11,6-2,6-9 \\
& 6-43
\end{aligned}
\] \\
\hline 5240 . . . . . . . . . . . . . . . . . . . . . . . & 10-11 \\
\hline 6845 . . . . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 3-15,7-1,7-28, \\
& 7-31,7-36,7-38, \\
& 7-41,7-44,7-46, \\
& 7-64
\end{aligned}
\] \\
\hline 8039 . . . . . . . . . . . . . . . . . . . . . . . & 8-10 \\
\hline 8049 . . . . . . . . . . . . . . . . . . . . . . . & 8-10 \\
\hline 8080 . . . . . . . . . . . . . . . . . . . . . . & 2-17 \\
\hline 8087 . . . . . . . . . . . . . . . . . . . . . . . . & \(1-5,2-2,2-3\) \\
\hline \[
8088
\] & \[
\begin{aligned}
& 1-1,1-7,2-2,2-3, \\
& 2-11,2-14,2-16, \\
& 2-19,2-20,2-68, \\
& 3-1,3-3,3-24, \\
& 4-18,7-5
\end{aligned}
\] \\
\hline 8237 . . . . . . . . . . . . . . . . . . . . . . . & \[
\begin{array}{ll}
1-12, & 1-21, \\
2-52, & 2-53, \\
2-55, \\
2-54, & 2-57, \\
2-68
\end{array}
\] \\
\hline 8250 . . . . . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 4-2,4-3,4-4,4-5, \\
& 4-6,4-7,4-8,4-9, \\
& 4-10,4-11,4-12, \\
& 4-13,4-14,4-17, \\
& 4-18,4-19,4-21
\end{aligned}
\] \\
\hline 8253 . . . . . . . . . . . . . . . . . . . . . . . . & \[
\begin{aligned}
& 1-21,2-4,2-31, \\
& 2-64,8-11,9-1
\end{aligned}
\] \\
\hline
\end{tabular}


O

O

0

\section*{LAYOUT ARD SCHEMATICS}

\section*{CONTENTS}
Early-type Main Processor Board ..... A-1
Alternate Main Processor Board ..... A-16
Wiring Diagram ..... A-31
Graphics Controller Board ..... A-34
Alpha Controller Board ..... A-40
Flexible Disk Drive ..... A-45
Flexible Disk Drive 1.2 MB ..... A-53
Fixed Disk Drive ..... A-54
Monochrome CRT ..... A-56
Monochrome Power Supply ..... A-57
Color CRT ..... A-58
Color Power Supply ..... A-59
External Monochrome Monitor ..... A-60
External Color Monitor ..... A-64
Memory Expansion Board ..... A-70
DLC Inhouse I/F Board ..... A-75
Videotex Adapter Board ..... A-79
Videotex Switch Board ..... A-85
Wiring Diagram Videotex ..... A-87
Keyboard ..... A-90



Early-typa Main Processor Board (1 of 14)






Early-type Main Processor Board [6 of 14]


Early-type Main Processor Board (7 of 14)



Early-type Main Processor Board (9 of 14)


Early-type Main Processor Board \(\{10\) of 14〕


\section*{Early-type Main Processor Board (11 of 14)}


Early-typa Main Processor Board (12 of 14)


\section*{Early-type Main Processor Board (13 of 14)}


J1b26) DACK21-3.03
12
(2)




J1bs
J10



J7b-

\(13 \xrightarrow{-10 \mathrm{WI}}\) 2-A3













Alternate Main Processor Board

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{PIN NUMBERS} & & \multicolumn{3}{|c|}{PIN NUMBERS} & & \multicolumn{3}{|c|}{PIN NUMBERS} & & \multicolumn{3}{|r|}{PIN NUMBERS} & & \multicolumn{3}{|r|}{PIN NUMBERS} \\
\hline \[
\begin{gathered}
U \\
\text { NUMBER } \\
\hline
\end{gathered}
\] & -5 & GND & UNUSED & \[
\begin{array}{|c}
\hline U \\
\text { NUMBER }
\end{array}
\] & +5 & GND & UNUSED & \[
\begin{array}{|c|}
\hline U \\
\text { NUMBER }
\end{array}
\] & +5 & GND & UNUSED & NUMBER & \(\bullet 5\) & GND & UNUSED & \[
\begin{array}{|c|}
\hline U \\
\text { NUMBER }
\end{array}
\] & +5 & GND & UNUSED \\
\hline 1 & 40 & E0 & & 37 & 14 & 7 & & 73 & 8 & 16 & & 109 & & & & 145 & & & \\
\hline 2 & 14 & 7 & & 38 & 14 & 7 & & 74 & 4 & 1 & & MO & & & & 146 & & & \\
\hline 3 & 20 & 10 & & 39 & 14 & 7 & & 75 & & & & III & & & & 147 & & & \\
\hline 4 & 15 & 8 & & 40 & 14 & 7 & & 76 & & & & 112 & & & & 148 & & & \\
\hline 5 & 40 & 1.28 & & 41 & 14 & 7 & & 77 & & & & 113 & & & & 149 & & & \\
\hline 6 & 40 & 1,20 & & 42 & 28 & 10 & & 78 & & & & 114 & & & & 150 & & & \\
\hline 7 & 3059 & 26,9,43 & & 43 & 20 & 10 & & 79 & & & & 115 & & & & 151 & & & \\
\hline 8 & & - & \begin{tabular}{l}
-12 V - PWIS \\
-12 V PN 1
\end{tabular} & 44 & 16 & 8 & & 80 & & & & 116 & & & & 152 & & & \\
\hline 9 & 20 & 18 & & 45 & 20 & 10 & & 81 & & & & 117 & & & & 153 & & & \\
\hline 10 & 20 & 10 & & 46 & 40 & 20 & & 82 & & & & 118 & & & & 154 & & & \\
\hline 11 & 14 & 7 & & 47 & 19 & 42 & & 83 & & & & 119 & & & & 155 & & & \\
\hline 12 & 20 & 10 & & 48 & 14 & 7 & & 84 & & & & 120 & & & & 156 & & & \\
\hline 13 & 28 & 14 & & 49 & 14 & 7 & & 85 & & & & 121 & & & & 157 & & & \\
\hline 14 & 28 & 14 & & 50 & 14 & 7 & & 86 & & & & 122 & & & & 158 & & & \\
\hline 15. & 14 & 7 & & 51 & 14 & 7 & & 87 & & & & 123 & & & & 159 & & & \\
\hline 16 & 16 & 8 & & 52 & 20 & 10 & & 88 & & & & 124 & & & & 160 & & & \\
\hline 17 & 16 & 8 & & 53 & 14 & 7 & & 89 & & & & 125 & & & & 161 & & & \\
\hline 18 & 16 & 8 & & 54 & 14 & 7 & & 90 & & & & 126 & & & & 162 & & & \\
\hline 19 & 16 & 8 & & 55 & 14 & 7 & & 91 & & & & 127 & & & & 163 & & & \\
\hline 20 & 14. & 7 & & 56 & 14 & 7 & & 92 & & & & 128 & & & & 164 & & & \\
\hline 21 & 16 & 8 & & 57 & 14. & 7 & & 93 & 1 & 1 & & 129 & & & & 165 & & & \\
\hline 22 & 20 & 10 & & 58 & 20 & 10 & & 94 & 8 & 16 & & 130 & & & & 166 & & & \\
\hline 23 & 14 & 7 & & 59 & 8 & 16 & & 95 & 14 & 7 & & 131 & & & & 167 & & & \\
\hline 24 & 15 & 8 & & 60 & 4 & 4 & & 96 & 14 & 7 & & 132 & & & & 168 & & & \\
\hline 25 & 28 & 14 & & 61 & & & & 97 & 5 & 13 & & 133 & & & & 169 & & & \\
\hline 26 & 28 & 10 & & 62 & & & & 98 & & & & 134 & & & & 170 & & & \\
\hline 27 & 28 & 10 & & 63 & & & & 99 & & & & 135 & & & & 171 & & & \\
\hline 28 & & & & 64 & & & & 100 & & & & 136 & & & & 172 & & & \\
\hline 29 & 20 & 10 & & 65 & & & & 101 & & & & 137 & & & & 173 & & & \\
\hline 30 & 24 & 12 & & 66 & & & & 102 & & 1 & & 138 & & & & 174 & & & \\
\hline 31 & 31 & 20 & & 67 & & & & 103 & & , & & 139 & & & & 175 & & & \\
\hline 32 & 20 & 10 & & 68 & & & & 104 & & 1 & & 140 & & & & 176 & & & \\
\hline 33 & 14 & 7 & & 69 & & & & 105 & & & & 141 & & & & 177 & & & \\
\hline 34 & 14 & 7 & & 70 & & & & 106 & & & & 142 & & & & 178 & & & \\
\hline 35 & 20 & 10 & & 7 & 1 & * & & 107 & & & & 143 & & & & 179 & & & \\
\hline 36 & 20 & 10 & & 72 & 8 & 16 & & 108 & & & & 144 & & & & 180 & & & \\
\hline
\end{tabular}


Alternate Processor Mainboard [2 of 14]

Logic Diagram


Logic Diagram


Logic Diagram


Logic Diagram


Logic Diagram


Alternate Main Processor Board (7 of 14)

Logic Diagram


Logic Diagram


Alternate Main Processor Board (9 of 14)
\[
A-25
\]

Logic Diagram


Logic Diagram


Logic Diagram


DO NOT PDPULATE

\section*{Logic Diagram}




\section*{LAYOUTS AND SCHEMATICS}







Graphics Controller Board \(\{2\) of 5)



Graphics Controlter Board (4 of 5)


Atpha Controller Board


LAEEL.,SCHM. 017-0040060-F" AUFGEKLEBT/ GLUED
* 3 ITEM 77 GLUED ON SOLCERSIDE
* 2 NICHT BESTÜCKT :C1, JP1,JP3.P2 NOT MOUNTED : C1,JP1,JP3,P 2
* 1 SChematic No: 017-0040060-F



Alphe Controller Board (2 of 4)


Alpha Controller Board (3 of 4)

+2 Alle wideswnoswerie sin in lam
- 1 ASSY-NO. 017-006022 -E

Alpha Controller Board (4 of 4)

\section*{LAYOUTS AND SCHEMATICS}

\section*{Flexible Disk Drive}


Flexible Disk Drive [1 of 8\(]\)


Ftexible Disk Drive (2 of 8)


Flexible Disk Drive \(\{3\) of 8\(\}\)


Flexible Disk Drive \([4\) of 8 )


Flexible Disk Drive \(\{5\) of 8\(\}\)


NOTE: RESISTORS ARE \(\sqrt[y]{ } \mathrm{W}\), UNLESS OTHERWISE SPECIFIED.


Flexible Disk Drive (7 of 8)



\section*{LAYOUTS AND SCHEMATICS}

Fixed Disk Drive


Fixed Disk Drive [1 of 2]


Monochrome CRT




\section*{Calor Pomer Supply}






selloaquog Jofiuon sojog jeuseqx


External Color Monitor Controller (2 of 6)





External Color Monitor Controller (6 of 6)



Memory Expansion Board <1 of 4]


Memory Expansion Board \(\{2\) of 4\}


Memory Expansian Board [3 of 4]


Memory Expansion Board (4 of 4)

\section*{DLC Inhouse I/F Board}







Videotex Adepter Board [1 of 5]



Videotex Adapter Board [3 of 5]


Videotex Adaptar Board (4 of 5)


Videotex Adapter Board \(\{5\) of 5

Videotex Seitchbeard


\section*{LAYOUTS AND SCHEMATICS}



Wiring Diagram Vidaotex (1 of 3)


MODEM D1200 S; MODEM D-BT 03; VIDEO, DISK (VLP): C-3277-130X




Keyboard Schematic

O
\[
0
\]```


[^0]:    Figure 1.6 System Connector Pin Designations

