TABLE

~on ot

Ba
8b
9a
9b
9
9d
10
11
12

13

14

-i-

LIST OF TABLES

" DESCRIPTION

Sector Test Program

Patch Point Changes (HEX)

Patch Point Changes (OCTAL)

cout Rbutine

CIN Routine

CCONT Routine

TINIT Routine

Copying the new DOS

Creating DOS/BASIC File

File Types

Changes Which Allow Use of 0-8K
for Program Storage (Version 2
BASIC)

UPMOVE Routine _
DOWNMOVE Routine (Similar to UPMOVE)
Direct Commands |
Statémentg

Functions

Basic File Access Comménds

Edit Commands

Logarithm Test

Comparison of MITS and North Star
String Functions Operating on a 20
Character String

Additional MITS Extended Basic
Operations

North Star BASIC Loader for
Processor Technology's VDM-1

~ PAGE

10
1
1
12
12
13
13
14

15

19

23
24
27
28
29

30

30
34
35

37

39

1.0
2.0

3.0

‘4.0.

5.0

6.0

TABLE OF CONTENTS

INTRODUCTION. e 1
NORTH STAR DISK HARDHARE . . - o 2
ASSENBLING A NORTH STAR DISK SYSTEM « . | . . :4
THE NORTH STAR DISK OPERATING SYSTEN (D0S). . .8
NORTH STAR BASIC. « + « v v v v v v e e .. 27
CONCLUSIONS . + v v v oo e e e v 'Y

1.0 INTRODUCTION

This report is a brief review of the North Star floppy
(micro-) disk system; This device, including its attending soft-
ware, very nicely matches the needs of a small (less than $4000)

microcomputer system.

The discussion is divided into severa1 progressive sections.

The fo1f0wingxsection deéls with hardware aspects of the North
.Star disk system, along with some spot comparisons with other
products. The next sectioﬁ provides a user-oriented description
of North Star's very adequate disk operating sysfem software,

This software is capable of accommodating the needs of most

small system users. Also included is a description of how to
“patch" in personalized hardware, with the MITS 88-SI0 as

a specific example. The next section considers North Star's BASIC
software. This software has both good and bad features, along
with at Teast one major glitch which should have been caught before

. distribution.

2.0 NORTH STAR DISK HARDWARE

It is probably generally true that in the development of a small
micro- (and perhaps Mini-) computer system the first mass storage
device-is either a PROM, a magnetic.tape céssette recorder or a
paper tape reader/punch, or all simu1tanéous1y. The next step up
is a floppy disk, the micro-disk representfng the Tow end of

the improvement.

The North Star floppy disk hardware appears to have good
features for the price. For example, PERTEC Computer Corpora-
tion {owner of MITS, Inc.) advertises a disk driye at

twice the retail price of the North Star and emphasizes that
their new micro-disk system has a head disengage feature which
breaks contact after 5 seconds of no disk I/0*. The North Star
hardware also has this important property but they do not
advertise it as such a feature is taken for granted by prﬁ-
fessionals. Generally, most microcohputer systems operate

with the head in contact with the diskette only perhaps 1%

- of the time**, and an automatic disengage feature is a must.

As a comparative example of the ability of the North Star system, we

may compare it with the Sykes floppy disk (not a micro) system which is

*The manual presently states 6.4 seconds.
**[gr the North star drive, MTBF is 8000 hours, assuming 25% motor

duty cycle. Medium 1ife is said to be 3 million passes, or
roughly the drive Tlife.

-3

used with our PDP-8. At many times the North Star price, the
Sykes disk has 1e§s than twice the data-(bit) transfer rate and
storaée capacity of the North Star. Two North Star's would have
been_a_much better buy than one Sykes, assuming the North Star
disk accesses could be 1nter1eavéd while mainéaining the maximum

access rate of either disk.

As another comparison point, we also have a PEéTEC floppy disk unit
(not their newly announcéd micro-disk which they call a "mini")
connected to an Altair 8800aR.- It took some time to get this
-system up andlrunning (as_opposed to the North Star system which
went without a hitch): The final snag encountered was the memory
size (in bytes) required to just get the system Qoing: 24K*, in
comparison to the North Star requirement of 12.5K. The PERTEC disk
system costs more than twice tHat of the North Star, while also

requiring an extra 8K of memory.

Although North Star does not have a large reputation, they are
sure to grow. The quality of their produét is qujte good. One
way they could improve their position is to develop a large
variety of software to accompany their hardware system. ‘An.
example might be a BASIC compiler (instead of interpreter) option.

We presently have a FORTRAN compiler on the North Star system.

*The newly advertised PERTEC microdisk system is said to require
20K of memory, including BASIC.

3.0 ASSEMBLING -A NORTH STAR DISK SYSTEM

Thé North Star disk drive (manufactured by a Xerox subsidiary,
Shuéart) is controlled By a printed cifcuit board which fits
into a S-100 bus computer. Included on the controller board
are three preprogrammed fusible-1ink (titanium—thngsten)
ROM's. This on-board program is reduired for the bootstrap
loader which starts the system up. Such iS not the case with
the more expensive PERTEC disk system which has an optional

1702 PROM bootstrap, requiring an additional board.

Included in the standard hérdware documentation* is a checkout
procedure for the controller board which largely consists of
100k1ng for pulses of the right shape and repetition rate.
However, there is no hardware trouble-shooting guide to handle
the situation in which a failure occurs in the checkout procedure!

However, we have had no failures to date.

The power requirements_for'the controller board are taken care of
by the computer bus supply. The disk drive reguires +5 and +12 volts
for oberation. In principle, these could also be ohtained from the

computer bus. In particular, the +5-volt demand in less than one

*North Star optionally supplies additional hardware and documentation
for disk drive head alignment, timing and general repair.

ampere, and is thus no problem, However, the +12-volt demand
is between one and two amperes, which is a 1ittle high. North
" Star offers the option of no power supply, a regulator board which

accepts unregulated +8 and +18 volts, or a complete power

supply.

Before hooking everything up, some board jumper changes are required
in the eventuality that more than one drive is to be driven by the
one controller board. Uplto three drives can be connected in
para11é1 and controlled. Also, it appears that multiple controller
-cards can be used to handle more disks with only minor modificdtions
of hardware and software. These alterations are well laid qut in

the manual and are simple.

Connecting the controller to the disk drive P.C. board is relatively
simple. A nice 4-conductor ribbon cable is supplied with already
installed end connectors. The directions for plugging into the
controller boé?d are crystal clear. However, the connection to the
disk drive board is a Tittle confusing. North Star's directions:

. are technically correct, but not immediately interpretable. As an

aid in choosing the correct one of two orientation possibilities, note
that if the drive unit is oriented with the drive board at the top,
‘the cable connection will be such that the cable will want to
naturally (no bends in the ribbon) come out the bottom of the drive.

However, there are obstacles to bringing the cable neatly out the

bottom of the unit and the ribbon ends up getting bent back up

towards the top of the drive in something short of an "S",

Once the controller, power supply, and drive are connected, North Star
provides two simp1e'checkouts. The first is the running of the

following program:
TABLE 1: Sector Test Program

Location (Hex) Operation {Hex)
2000 3A B0EB L.DA EB80O
2003 €3 0320 JMP 2003

Running this loop presumably turns on the drive motor for 5 seconds.

The next test is a 1ittle more visible. In this case you examine
address EB20. This results in the sector position field* (0-9)

being displayed on the lower four bytes of the data bus.

The first rea1.test of operation is to be found in‘operating the
ROM bootstrap Toader. This 1is Jone by ruﬁning from location E900
(the ROM bpotstrap smaft]y Happens to be out of the way of the

" standard Processor Technology or MIfS 2K PROMS which tend to be

placed in the last 2K of memory for other software uses}. The

*The diskette has 10 sector holes in it which are used for locating
fields. The corresponding PERTEC drive/controller uses a 16 sector
diskette. The two are definitely not interchangeable.

head immediately engages with a "loud click" (more appropriately
described as-a "clack"), followed by "muted clicks" as the head steps
" to track "0" for referencing. Now we cross the boundary between

hardware and software,

-8

4.0 THE NORTH STAR DISK OPERATING SYSTEM (DOS)

Once the hardware is up and going, the task of putting together an
operating system begins. Fortunately the DOé software and instruc-
tions supplied by Nofth Star make this an easy job. To proceed

in an organized manner, we will first discﬁss how to interface

user I/0 hardware to the North Star DOS, and then briefly consider
the electrical structure of the diskette, fiTe format, and some ideas

on how to manipulate fiies.

Patching your own I/0 routines into North Star's DOS is very simp1e
and straightforward. The following four called routines are

required:

COUT: Character output routine. This routinelaﬁsumes that the

DOS has placed the ASCII character to be outputted in register B.
It then should test the status of the output I/O'device etc,
Finally, the routine should return after also placing the outputted
character in the accumulator. This is the routine one deals with

when jnterfacing to a VDM-1 video terminal, or other output devices.

CIN: This routine is required to place the 7-bit ASCII

character to be input into tﬁe.accumu1ator and then return. This
routine should also do status checks, etc. Most Tikely a keyboard
will be the target device. However, one can also patch to a cassette
interface for Tinking subroutines by making the computer think it

is seeing a terminal.

TJINIT: This is a terminal initialization routine. It is meant to.
hand1e I/0 dgvices which are required to be set up prior to computer
- operation. For example, the IMSAI 2SI0 and MITS* boards require

such an initialization. This routine has no effect on the DOS, so

it can a1s§ be used for any utility function which might be performed
upon disk startup, such as starting a clock to keep track of disk

hours, etc.

CONTC: This routine's job is to detect the presence of a "COMTROL-C!
It does this by setting the zero flag if "CONTROL-C" occurred. To
avoid hanging the computer up in a loop, this routine should check

to see if a "CONTROL-C" was typed, and not wait until one is typed.

The actual software patching shown below is for the specific case of
an (old) MITS SIO, REV, 1. The changes to be made for Processor
“Technology's VDM-1 video display are described in the section on

BASIC; a "poking" program is used.

Before patching into the DOS, the DOS must be loaded into the
computer's active memory. This is done by placing the software
-.diskefte provided by North Star into the drive. The disk‘bootstrap
(on PROM) is then run from location E900. The DS will 1oad

and the computer will go into a loop at TINIT:; the software provided

has self-loops at the patch points and will not operate until it is

*A trademark of PERTEC Computer Corporation,

-10-

"personalized". Stop the machine and make the changes shown on .
Table 2A (Hex) and Table 2b (Octal). Observe that we are changing
se1f-160ps to unconditional jumps.

TABLE Z2a

PATCH POINT CHANGES (HEX)

Address (Hex) Was (Hex) Change to (Hex) Reason
200D (COoUT) €30020 €30029 To jump to a memory
o region having
20010 (CIN) 31020 €33029 encugh room for the
I/0 routines. This
2013 (TINIT) €31320 €33029 could also be a loca-
- tion in a PROM moni-
2016 (CONTC) £31620 €32029 tor, such as the TDL

monitor which is used
for I/0 by all TDL

software.

There are several jtems to note at this point. Fihst, the self-Tocop
locations in the first column are branched to by the DOS using a "call”.
Thus the software routines we have just arranged to jump to must contain
"returns", and not "jumps" as their concluding opérations. Also note
that the TINIT routine is implied to be at 2930, above the other
routines. As this routine has some alternate uses, it should have some
breafhing room. This extra room extends to just below 2A00, where

the North Star BASIC interpreter (see the next section) starts.

PATCH POINT CHANGES (OCTAL)

“11-

TABLE 2b

Address (Octal)

Was (Octal)

Change to (Octal)

010, 015
010, 020
010, 023

010, 026

303
015
010

303
020
010

303
023
010

303
026
010

303
000
051

303
020
051

303
060
051

303
040
051 .

The next step in personalizing is to toggle in the I/0 subroutines

starting at the locations just branched to.
on Tables 3a through 3d.

These programs are Sshown

A MITS SIO, Rev. 1 is assumed®™,

TABLE 3a
COUT ROUTINE

Location Hex (Octal)

Code:Hex (Octal)

Function

2900 (051,000)

2902 (051,002)
.2904 (051,004)
2907 (051,007)

2908 (051,010)

290A (051,012)

DBOO (333,000)

E680 (346,200)

20029
(302,000,051)

78 (170)

D301 (322,001)

€9 (31i)

In (Input status from
port 0).

ANI (Check D4*. For MITS

SI0, active Tow is a
"go" condition).

INZ (If D, is not low,
try agajng.
MOV A;B {Move the char-

acter from the B regis-
ter to the accumulator).

OUT (Output character to
port 1}.

Return (Return to original
call).

*D, is the least significant bit; D, the most significant;
MITS convention.

*Similar information is supplied in the DOS manual. However, the above

natehne ava cnarifice b tha CTA and AT Ffarm in rama wacnarte fram the WNarth

Star

-12-

TABLE 3b

CIN ROUTINE

Location Hex {Octal)

Code Hex (Octél

Function

2910 (051,020)

2911 (051,022)
2914 (051,024)

2917 (051,027)
2919 (051,031}

291A (051,033)

DBOO (333,000)

E601 (346,001)

€2102%
(302,020,051)

DBO1 (333,001)
E67F (346,177)

C9 (311)

N (Input status from port 0)

AMI (Check Do)
JNZ (Loop if D, not Tow)

IN (Input character to -
accumiulator)

ANI {Mask to 7 bit ASCII
character)

Return

TABLE 3c

CCONT ROUTINE

Location Hex {Octal)

Code Hex (Octal)

Function

2920 (051,040)

2922 (051,042)
2924 (051,044)

2925, (051,045)

2927 (051,047}

2929 (051,051)

DBOO (333,000)

E601 (346,001)
Co (300)

DBOT (333,001)

FEO3 (376,003)

€9 (311)

IN (Input status to check if
character has been typed)

ANI (Test to see if D0 Tow)

RNZ {(Return if no character
typed)

IN (Input character to
accumulator)

CPI (Test to see if character
was CONTROL-C; set zero flag
if yes)

Return

-13-

TABLE 3d
TINIT ROUTINE

Location Hex (Octal) Code Hex (Octal} " Function
2930 (051,060) co (311) Return
or

‘Any machine language routine (with a size constraint), using any
registers, followed by a return.

Another DOS change which is optional is to place 01 in location 202B.
This causes the disk software to verify every write operation with a

read.

Once the chahges shown on Tables 2 and 3 are made, the DOS may be
properly entered and operated by running from TIMIT {examine 2930.Hex
and run). An asterix prompt character should appear on your output
display. At this point it is a wise idea to start a new diskette and
place your new DOS on it. This.is ddne using the fo11ow1ng commands .
These commands are typed in following the asterisk ﬁrompt, followed
by a'carriage return.

TABLE 4

COPYING THE NEW DOS

Command : Purpose
*IN 1 Initializes diskette (prepares it for future
operation).
*CR DOS 10 This creates a file called DOS having a
: length of ten 256 byte blocks.
*SF DGS 2000 The DOS software starting at 2000Hex and

running 2560 bytes is loaded into the DOS
file opening on the diskette.

*In the new versions of the North Star DOS, the DOS should be loaded into
some other region of memory, adjusted, and saved from there to avo1d
problems which occur when the D0OS tries to save itself.

-14-

While you are ¢reating your first disk file operating system, you
may as well also include North Star's BASIC. This is done by
removing your new diskette, putting in the software diskette

supplied by North Star, and doing the following (Table 5).

TABLE 5

CREATING DOS/BASIC FILE
(Version 6, Release 2, 3)

Command " - Purpose

*LF BASIC 2A00 This loads the 40-block BASIC program
from the software diskette into memory
starting at 2A00.*

~-~Remove software diskette. Insert your new file diskette--

*CR BASIC 40 Create a 40-block-long file table entry

on your new diskette.

*TY BASIC 1 : This creates a table entry which tells
the DOS that the BASIC file is in machine
language.

*GA BASIC 2A00 The DOS is told that the "go address"

of this machine language file is 2A00,

*SF BASIC 2A00 . The 40-block BASIC program is saved.

The above is a blow-by-blow description of how to get your disk software
goihg. We now consider the logical structure of the diskette being used '

and the general operating characteristics of the DOS.

The diskette is used on one side only in a single density mode** in which

there are 35 concentric tracks numbered O to 34. Each track has ten hard

*How the DOS adtomatica]]y knows BASIC is 40 blocks Tong will be discussed
shortly. ‘

**As opposed to Shugart's new double-density micro-disk drives. PERTEC also
has announced a two-sided drive system, '

-15-

sectors which are physically located according to ten holes in the
diskette. Each track in each of these sectors contains a string of
'OVefhead data plus 256 bytes of "user" space. That is, in each sector

you can ptace 256 bytes worth of information, not including the

accéunting information which the DOS takes care of automatically.

The North Star convention is to number the sectors from 000 to 349,

The DOS uses sectors 000 to 003 to store'(aéain, automatically) a table
or file directory which contains the file name (up to 8 characters
long, excluding blanks and commas), type (default is "0") and possibly
a "go address". Up to 64 files can be placed on one diskette, the
1imitation caused by the ff1e directory length, The file types are
explained in Table 6. '

TABLE 6
FILE TYPES*

TYPE : PURPOSE

0 Default. With this type one can manually
(LF and SF) move files to active memory
and vice versa.

1 : _ - Machine language file which can have a
"go . address"
2 ' BASIC program file,
3 BASIC date file.
>3 Assembly language, etc. files.

*The XEKC Asseﬁb1er/DiSassemb1er software available from the Westminster
(CA.) Byte Shop also uses type "8" to denote assembly language files.

-16-

North Star's description of the DOS commands is simple and complete.

These commands can accomplish the following:

¢ Initialize or test a‘diskette. InftiaTization takes abbut 10
seconds on the North Star, as cémpared to eight minutes on a
PERTEC unit which is about 4X larger in capacity (the larger of the
two PERTEC floppies).

¢ List directory (file name, size and type, but not "go address").
Newer versions list "go address".

e Create a file space/name.

o Delete same.

.' Défine a file type.

o Compact a diskette set of files (useful after'dg1etions).

e load a file into active memory starting at a specific address.

) Séve a file similarly.

¢ Set "go address" of a machine language file. Specified in TYPE

command in newer versions.

e Move one.fiWe into another on the same diskette,

8 Read or write to or from a file or RAM address in integral numbers
of blocks,

-17-

The last function may sound limited to those who want to move individual
bytes around. However, the cbmmand structure of North Star BASIC allows
oﬁe to address any byte positioh within a block, thus opening up some
versatile file management capabi]jties which.are useful in data

handling.

Loading BASIC with the new software diskette is easy. Once the DOS is
lToaded in and running, type "GO BASIC" andlroughly two seconds later
"READY" will appear, signifying that BASIC has loaded. This response
time is not surprising. The rotation speed of the diskette is 300 rpm,
.or 50 blocks/second. This is the equivalent of an average data transfer
rate of rougb1y 12.5K bytes/second*. North Star BASIC occupies about 10K
bytes (more in the newer version) of memory, and therefore should take
less than a second to load. The head engagement and drive motor
.start-up account for a good fraction of the observed response

time.

Once BASIC has been entered, the DOS is still alive in the approximately
2.5K of memory below BASIC.- The DOS can be returned to by typing in
"BYE". This arrangement is convenient, but also causes some small

: diff%culty unless guarded against, For example, if one has written a
BASIC program too large to fit on the present diskette, there might be a

temptation to test a new diskette, initialize it and try to load the

*The 300 rpm value is from the PERTEC manual; boih PERTEC and North Star
use the Shugart 400 disk drive. PERTEC states its transfer rate to be
125,000 bits/second. As their disk capacity (user available) is 71,680
data bytes, versus 88,832 data bytes for North Star (first 3 blocks not
counted), PERTEC must be specifying a peak, not average, transfer rate.
Such is the game of "specsmanship".

-~18-

file to be saved onto that empty diskette. That approach will not
work. The DOS test and initialization functions both use 2.5K bytes
of memory above the DOS, cutting into BASIC and destroying it along
‘with your program. Anoiher approach éou]d be.to compact the disk
being used, hoping tb free up enough spaée for the program. Un-

fortunately, the compacting function also dses memory above the DOS.

The reason for loading the DOS and BASIC oﬁ every diskette, including
the spares, is a matter of convenience and safety. From the convenience
perspective, giving up 50 blocks out of 350 is a small prfce to pay

‘to avoid the nuisance of switching diskettes around. From the safety
point of view, it is poss%ble to wipe out a complete diskette file if
the protect notch on the diskette is not covered and a mistake is made.
When such happens, it is reassuring to have extra copies of the DOS

and BASIC around. Also, duplicate your files on separate diskettes.
Incidentally, if you are going to create a diskette having the DOS

on it, make the DOS the first file. The ROM bootstrap on the interface

board expects to find the DOS file starting at sector 004,

It is apparént‘from the memory address references given above that the
DOS/EASIC combination starts at 2000 (HEX), leaving the lowest 8K bytes
of memory possibly unused. The software package provided by North Star
uses the memory above BASIC for program storage, leaving the 0-8K
region free. This region may be instead used for probram storage by

making the following changes in BASIC,

~19-

TABLE 7

CHANGES WHICH ALLOW USE OF 0-8K FOR PROGRAM STORAGE (VERSION 2 BASIC)

Location Hex (0cta1) Code Hex {Octal)
2A06 (052,006) 00(000) Low order byte of the beginning
address of program storage space.
- 2A07 (052,007) 00(000) High order byte.
2R09 (052,011) - FF(377) Low order byte of the end

~ address of program storage space.

2A0A {052,012) "1F(037) High order byte.

The above modification restricts one to a maximum of 8K bytes of program
memory. - This does not represent a significant limitation in program .
storage for most applications. However, a programmer might prefer to
l1eave memory space free below the DOS/BASIC for special use. For
example, if interrupts are ever to be employed, ft‘is important to note
they use service routines located at the beginning of memory (8080 case;
the 7-80 microprocessor has other interrupt mode). Thus, it is convenient
to leave fhis space freé for eventual interrupt service routines. User
machine Tanguage routines may also be conveniently placed in this region,
and in the next section.a VDM-1 video display routine is presented which
resides in memory starting at the 2K boundary. Another potential use

for the 0-8K region is found in observing that MITS SK BASIC can be

-20-

reéident in active memory at the same time as the North Star

DOS and BASIC. This is helpful in that'North‘Star's BASIC
1acks-some features that the MITS 8K BASIC has. This will be
discussed in the next section. As a further application, it is
possible to use the 0-8K region as byte-wise data storage space,
though this can be costly in both software overhead and computing

time,

To conclude this section, a few examples of file creation using

. the DOS are in order. For the first example, consider the stofage
of MITS 8K BASIC. The actual length of this software is a 1ittle
more than 6K bytes and is assembTed starting at 0000 (Hex). It
can comfortably reside in the 8K of memory below the DOS. leaving
almost 2K bytes of program storage space between‘its top and DOS's
bottom. One way to put 8K BASIC into the file system is shown

below:

1) Load in the DOS
2) Create the 8K BASIC file entry:
 *CR 8KBASIC 33

*TY GKBASIC 1
*GA 8KBASIC 0000 {older versions)

Observe that 8K BASIC is a machine language file {type 1)}, 33 blocks

long, having 0000 as its "go address".

-2}

3) Stop the computer,

-4) Load in the MITS 8K bootstrap loader (see the MITS manual,
- Cassette tape is assumed) .

5) Set sense switches (A15 up for MITS SI0.terminal at ports
0,1; 88ACR at 6,7).

6) Start tape. Run computer from 0000.

7) When "MEMORY SIZE" is requested by 8K BASIC, stop the
: computer,

"8) Enter into and run the DOS froh location 2000 Hex. This
brings the DOS back into operation. ‘

9) Save 8K BASIC as follows (kémembering to unprotect the
diskette);

*SF 8KBASIC 0000

10) Protect the diskette.

8K BASIC is now part of ﬁhe disk file system. To run it, simply
type "GO 8KBASIC". However, remember to set the sense switches
before "going"; it's easy to forget those switches. Also, when 8K
BASIC asks "MEMORY SIZE?", responding with more thgn 8191 will

cut info and destroy the North Star DOS, which you may not care

about anyway.

As a‘second example, consider adding MITS's excellent 12K BASIC
(Extended BASIC) to your file system. This software is also
.assemb1ed to start at 0000, but it is 10312 bytes Tong, not
including program storage space. Obviously, loading Extended

BASIC in will overrun the DOS. In fact, the DOS cannot be used

*Audio Cassette Record Interface

-22-

directly to load Extended BASIC as it wpu1d be wiped out before
completing the program transfer. To deal with this situation

one may use two very short machine language files called UPMOVE
and DOWNMOVE. The machine language listings of these programs

are shown on Tables 8a and 8b. UPMOVE is a routine which shifts
the first 63 blocks (16K-256 bytes) of active memory upwards to

an address region starting at 16K + 256. UPMOVE itself resides
starting at 16K. DOWNMOVE does the reverse. Also, when DOWNMOVE
has comp1eted the downwards transfer, it unconditionally jumps

to 0000 Hex, thus starting opefation of the machine 1anguége
program it 1oaded there. -To see the mechanics.of this procedure,
assume you have already created two one-block-Tong machine

language files, UPMOVE and DOWNMOVE, having "go addressgs"

of 4000 Hex. These "go addresses" are not used in this application,
but have been established fof futuré utility. Also assume you ‘
have created a machiné language file space ca11e§ 12BASIC which

is 42 blocks long (INT(10312/256) + 1). The steps taken in

adding Extended BASIC to your repertoire are as follows:

-23-

TABLE 8a
UPMOVE ROUTINE

Address Hex (Octal)

Code Hex (Octal)

Function

4000 {100,000)
4003 (100,003)

4006 (100,006)

4007 (100,007)

4009 (100,011)

400C (100,014)

400D (100,015)

400E (TOO;OBJ)

400F (100,017)
4010 (100,020)

4013 (100,023)

210041 (041,000,101)
010000 (001,000,000)

7C (174)
E680 (346,200)

C21340 (302,023,100)

0A (012)

77 (167)

03 (003)

23 (043)

€30640 (303,006,100)

€31340 (303,023,100)

LXI {(Load H&L registers
with 16K+252 address
boundary)

LXI {Load B&C registers

with OK address

boundary)
MOV A,H (Move H to A)

ANI (Test to see if 32K
boundary has been
reached)

INZ (Jump to finish
Toop if move has been
completed)

LDAX (Load accumulator
with data stored at
address given in B&C
register)

MOV {Move accumulator to
address specified by

H&L registers)

INX (Increment B&C)

INX (Incremént H&L)

IMP (Jump to H register
test)

JP (Loop when finished)

D4

TABLE 8b

DOWNMOVE ROUTINE (Similar to UPMOVE)

Address Hex (0cta1)v Code Hex {0Octal) Function
4000 (100,000) 210041 (041,000,101) LXI HAL
4003 {100,003) 010000 {001,000,000) LXI B&C
4006 (100,006) 7C (174) MOV A,H
4007 (100,007) E680 (346,200) ANI
4009 (100,011) £21340 (302,023,100) JNZ

400C (100,014)

400D (100,015)

400E (100,016)
400F (100,017)
4010 (100,020)
4013 (100,023)

7€ (176)

02 (002) -

3 {003)
(043)

£30640 (303,006,100)
(

€30000 303,000,000)

MOV (Mov to accumulator
data at address speci-
fied by H&L registers)

STAX (Store accumulator
at address specified

by B&C registers)

INX B&C

INX H&L

JMP

IMP(Jump to beginning
of program just moved)

1) Load (but do not run) UPMOVE:

*LF UPMOVE 4000

2) Stop the computer; toggle in the 12K BASIC bhootstrap loader

(see the MITS manual); set the sense switches; load the

Extendéd BASIC software into the computer.

-25.

3) When "MEMORY SIZE" 1is requested, stop the computer, examine
4000 Hex and run. The upwards shiff of 12K BASIC will take only
a moment and completion will be apparent from the address lights

on the computer's front panel.
4) Again stop the computer and reload the DOS (run from ES00).
5) Replace UPMOVE with DOKNMOVE: *LF DOWNMOVE 4000.

6) Place the combinat1on of DOWNMOVE + Extanded BASIC onto the
diskette. *SF 12BASIC.4000.

Extended BASIC may now be Toaded and jumped to (remember to set the
sense switches beforehand) by typing "GO T12BASIC" when the DOS is

active.

The above examples may be applied with variation to create disk files

of almost any software.
As & third and very simple (but important) example we consider
moving files between diskettes, such .as might be done in copying

da diskette or reorganizing. This is done as follows:

1) Load the file directly into free memory (e.g., *LF FILEX 0000)

-26-

2) Remove original (or source) diskette and insert the new (or

destination) diskette.
3) Create an identical file entry on the new diskette.
4) Directly save file (e.g., *SF FILEX 0000)

" The flexibility of the North Star DOS, combined with some user

. creativity, is conducive to the generation of very powerful
applications. In the next section we will discuss the North Star
BASIC interpreter which operates in conjunction with the DOS.
However, it should be noted that sufficient information is supplied
in the North Star documentation to allow some measure of linking
of the DOS to othér BASIC interpreters having user defined machine

language subroutirnes.

-27-

5.0 NORTH STAR BASIC

North Star BASIC, Version 6, Release 2 and higher, is a more than
adquate interpreter. ‘It has.some features which the industry standard,
MITS Extended BASIC, does not have, and vice versa. Instead of des-
cribing all its features, I will concentrate on the differences between
North Star BASIC and MITS Extended BASIC, taking the latter as a bench-
mark. Also presented in this section is a program for use with the

North Star system which does a complete job of ¥inking Processor
Technology's VDM-1 video display control board to the DOS; just load

the program, type "RUN" and the VDM-1 display device will be part

of the microcomputer-disk system.

We first consider North Star BASIC's instruction set. See Tables

9a, b, ¢, d and 10. -

TABLE 9a

DIRECT COMMANDS
RUN <opt. Tine no.>

LIST <opt. line no.> , <opt. line no.>

SCR (= NEW) : Scratch or delete

REN <opt. beginning value> , <opt. increment> : remember
CONT: continue after "stop" or "CONTROL-C" |
LINE <no. of characters> (= WIDTH = < >) : line width control
NULL <no.>

LOAD <file name> : Disk operation*

Save <file name> : Disk operation*

Edit <line no.>

BYE: Return to DOS

*Note, however, that MITS BASIC has similar commands for tape files.

w28

TABLE 9b

STATEMENTS

LET f{optional)

iIF/THEN/ELSE (can cascade) .
FOR/STEF/NEXT

GOTO

EXITl(GOTO out of a FOR/NEXT locp)
ON/GOTO

STOP

END (stop w/o message)

REM (remark)

READ/DATA/RESTORE

INPUT/INPUT1 {no carriage return)
GOSUB/RETURN |

PRINT (Formats: nFm, nl, nEm, default)
(also zero suppress, <commas, auto §)

FILL (= POKE)
ouT
DIM

DEF (function definition)

-29-

"TABLE 9c¢

FUNCTIONS

FN (name) (Xl,X) : User defined function

ge e
FNEND: End statement for multiple line user defined function,
FREE (0): Remainingvfree storage
CALL (,): Machine language subroutine call
TYP {): Gives type of information in next disk file element.

"INP (): Input from specified port
EXAM (): = PEEK ()

ABS (): absolute value
SGN (): value/Abs (Value)

INT (): Integer
LEN {(): String length

CHR$ (): Decimal + ASCII conversion
ASC (): Aascrzx +.Decima1 conversion
VAL (- Value of number string
STRS (}: Number +‘§tring conversion
SIN (): Sine
COS {): Cosine
RND {): Random number generator
LOG {): Natural Logarithm
EXp (.): Exponent

SQRT (): Sguare root

-30-

TABLE 94

BASIC FILE ACCESS COMMANDS

Open # <file no.> r«<file name®> : assigns number to an active file;
- sets file position pointer to file
beginning.

Close # <file no.> : Deactivates access to file and empties write
' buffer into diskette file.

Write # <file no.> , <list of items>
Read # <file no.> , <list of variables>
Write # <file no.> , % <file pointer> , <list of items>

Read # .<file no.> , % <file pointer> , <list of variables>

TABLE 10

EDIT COMMANDS

Character ‘Function

Control D < > - Copy to specified character
Control Z - Erase character

Control Q Backspace

Control A Copy old-character

Control G Copy rest of old line
Control Y < > Insert specified character

Control N Re-edit new line

«31.

Starting with the direct command set (Table 9a) we find pretty

much the same list as exists in MITS Extended BASIC*, with the

following notable exceptions:

REN in MITS BASIC can start at a specific statement; the North

Star analog renumbers the whole progran.

LINE controls the output from the "PRINT" command, and not the

"LIST" command. Thus, long program statements attempt to print
out full width. This is annoying when using a narrow width

-

printer,

NULL in North Star's BASIC is Timited in argument size to 32 in
Release 2, and does not work in Release 4 and 5; MITS BASIC
handles NULL's up to 255. At 30 characters/seéond, the delay

time difference between 32 and 255 is one second maximum vs. about

- 8 seconds maximum. Delays are useful for slow carriage return

terminals and in some protocol situations.

LOAD, SAVE and BYE are all disk commands which have counterparts

in the disk version of MITS BASIC.

EDIT in North Star BASIC is technically a little more versatile

than its counterpart in MITS BASIC as the line number may also

be changed; the old line is directly treated as a template.

North Star's statement complement (Table 9b) is very similar to that

of MITS Extended BASIC, the exceptions being:

*Version 3.2.

_32-

e IF in North Star BASIC consideré the next line to be the statements
added to the same physical line with a ":" or "/". MITS IF uses
the next physica1 line. The MITS version is more flexible. The
next line feature of the MITS version can be defeated with an

"ELSE"; IF < > THEN < > ELSE < >: Next statement.

- @ GOTO in North Star is not tolerant of a space between GO and
TO. Alsc, in the North Star version GOTO can not be used as a

direct statement; RUN <line number> fulfills this function.

e EXIT in North Star allows a.graceful exit from a FOR/NEXT Toop

leaving a correct stack arrangement,

o INPUT] stops the carriage return echo after the user's repnly.

This has some formatting advantages.

o FILL equals MITS's POKE. It's curious that these statements are
different only in name as North Star did make allowances in its
interpreter to translate ":" {line de]imifer) and ";" {no carriage
return), which are used in MITS BASIC, into North Star's equivalent
"\" and ",". No such translation is done for PEEK and POKE.

The function 1ist (Table 9¢c) is as cdmp1ete as any, including both

numeric and string functions with the very notable exception being

the absence of an inverse trig function in Release 2 (the newer versions

contain it). Also, one of the functions, log {X), has a problem

(at least in Nofth Star Version 6, Release 2). This error can be

programmed around, but is nonetheless annoying.

-33.

North Star offers accuracy options ranging from two to fourteen
digits. The option must be specified when ordering the

. software; it is not adjustable once received.

Although the MITS anleorth Star functions are very similar, there is
a very significant difference between the string variable forms. In
MITS Extended BASIC, string variables can be up to 255 characters
long, which is a limitation I have encountered. These string
'variab1es may be dimensioned in matrices such as A$(I,J,K). The
power of'this structure is that string variable matrices can be
. created which are very useful in heavy I/0 oriented programs. To
subsequently manipulate these strings, the MITS software provides

functions such as LEFT$, RIGHTY and MIDS.

The North Star string form is much different; String variables are
11miﬁed in length only by available memory. The VDM-1 video display
Toad program presented later has a Hex string, A$, 678 characters
long, which would be illegal in MITS BASIC. waever, North

Star's string variables can not be sﬁbscripted. The equivalent

MITS BASIC string functions are implemented in North Star BASIC

as shown.on Table 12.

~34-

TASLE 11

LOGARITHM TEST

LIST

1B FOR %= TC -% STE
(1

28 FRINT Xi8F7, LOG
3B FRINT ¢ CORRECT
48 HERT %

REAMY

RUN

CORRECT

CoF
CORRECT
CORRECT
CORRECT

ST -

CORRED

v TR

)

=
ot U

RERY

F:
gt

1t
!

\
0 Py LT s e B D

[l

-1
Aa/LOGLE

[T YIS
[(T4

LA AR < R B) Tt R na BN o

1

=i
= -5
= =G

z

~-35-

TABLE 12
COMPARISON OF MITS AND NORTH STAR STRING FUNCTIONS OPERATING
ON A 20 CHARACTER STRING

MITS ' North Star Equivalent

LEFT$ (A$,9) | A$(1,9)
RIGHTS (A$,18) A3(18,20)
'MID$ (A$,9,1) | A$(9,10)

The North Star version is technically equivalent to that of MITS,
with perhaps a lTittle moré conciseness on the part of North Star.
However, the lack of dimensioning capabi11ty‘1eads to programming

difficulty.

Ancther difference between the two BASICS is the allowed form for
variable names. Having worked Targely with FORTRAN IV and MITS
BASIC, the use of variable names suéh as "TEMP", “%IME“ and so on
is a convenience one has d?fficu1ty giving up. In North Star
BASICV(and that on the Xerox Sigma 7/9),_variab1e names are
restricted to %1etter> <0ption§] number> formats. However,

perhaps asking for a BASIC which behaves 1ike a FORTRAN 1ntérpreter

is unfair. 0Or is jt?

Both MITS Extended BASIC and North Star BASIC have editing capabilities
(Table 10). Those employed by North Star are explained in the North
Star BASIC manual. The two edifors are different, and on the whole

the MITS version is perhaps more convenient. The differences are:

-36-

e The North Star edit structure allows one to.copy the old line
. (with changes) into a new line having a different number. This
might be considered North Star's answer to MITS's "PRINTUSING"

format tool which North Star does not have.

e In the MITS version, by typing 7SA after the edit command, the
0old Tline will be copied up to the 7th occurrence of the character
. A. There is a similar convenience for changing groupé of
characters. The North Star edit allows one to search for the

next occurrence of a given character only.

o In the North Star editing system typing a "CONTROL-D" plus a
character presumably copies the old line up to the specified

character.

e The North Star editing system is physically more difficult to
use than that of MITS, requiring two separate keys to be
pressed simultaneously. Typing fCONTROLuN" with one hand

gives me a charley horse of the forth finger.

MITS Extended BASIC is an exceptionally good piece of software,
ahd,,in the comparison given above, it significantly outperforms
North Star BASIC. This is true without consideration of the operation

which MITS has and North Star does not. See Table 13.

-37-

TABLE 13
ADDITIONAL MITS EXTENDED BASIC OPERATIONS

SWAP variables

TRACE program steps

ERASE variables

DELETE specified 11ﬁe number 1nterva15(avai1abie in

_ new North Star versions)

MOD arithmetic '

"~ Integer division
Doﬁble precision (arithmetic, not functions)
Clear variables

WAIT

SPC(I) space printing

As mentioned earlier, North Star has provided a very well defined
patching structure for interfacing user I/0 software drivers. This

is well documented and includes examples. The 1hterfacing documentation
which comes with Processor Technology's video interface, VDM-1, is
equally well documented. Shown on Table 14 is a program written

in North Star BASIC which links the VDM-1 to the North Star DOS,

which in turn links to North Star BASIC. Observe that statements

310 through 480 create a single string of 678 hexadecimal characters.
Thié string represents the VDM-1 machine language routine which is
loaded into memory in type size groups starting at 0800 Hex

(001,000 Octal), running upwards for 339 bytes.

~38-

After loading this driver, the program then "pokes"("fills"

in this language) memory changes to accommodate the MITS 88-510
sfatué bit structure (low active; 1ea$t significant bit in status
byte). The DOS output routine is then patched to the VDM-1 driver
by using a call, movfng the outputted character to the accumulator,

and making a return.

Running this program will automatically set up'the VYDM-1 such
that all subsequent outpuf will be to the video display. The
video driver can be later escaped by reconstructing the original

patches. This could be done using a "repair" program.

This load program can also be stored as a file on the North Star
disk as part of a routine operating system. For convenience,
corresponding system diskettes could start with the following

file structure:

18 REN

-30.

TABLE 14: NORTH STAR BASIC LOADER FOR PROCESSOR TECHNOLOGY'S VDM-1

R BE OGN GECRGE O GE ST OEE o0

o8 FER UDM-1 MEMORY LORLEFR

¢
oy T ot
R R R

Eralban o ls L0) I <X
Dt

o, Lo Py s T T T

N

T
Dot IO oo e ot 3 o e B I B s Nk I N o 13:

R N I g e e e e el il s

R
LR kA

g e O o b P e 750 0 fY C0))

T TS S 5 O T T T Ty O Ty

b PO o ey PO

£

et X

ul!

il

i)
ol)

B D G LD LY D)

Lot T e T o 0 =] 0) w0 T e 3 o)

AR Ry
‘e e’ e (o

ity
s

[RN

(SRR EEIE SRR IR I 0 B B Rl O Y
T T T 1T T T i)
—_L g A ! o R e P ——

T

T

O IURP IR MR) Rty I T S Y N L N T CRS T A %
HEn B

i *«_j £

i

— o T3

..l-bI

FEM 2o TO G3ks LSED

PR 00 0550 0 0 00 00 0000 108 000 0 R 0 G
SEOEUE
FHF I=1 TO 439

=

Iﬁr"H:l l 1" t"].:I
GOSUER

SHAE

M=E*1

BE=RE [y JISGOSUER Ejﬁ

M=M+E

FILL
HERT
REM

FILL
FILL

FILL

FILL
FEM
FEM
FILL

FILL .

FILL
FEM
FILL
FEM
FILL
EMI

SECoe+I-1aM

1 ‘

ROJUST VDMLOAD STATUE

(S¥E5a+7E) s 194

(O EE+125) . 194

[0R2BE+152) . 194

[SRD5E+17E) s B0 1 ‘

FATCH UDM TO DOS CRLLS
CHLL a2ba(HExR]

10436, 285
18437 B
18998 BER

AFTER EETURMs MOUM. B
ind4a 106

FETUREH TO0 DOS IMTERIOR
1a5aE. 281

DIM ASC1EEE)

o
—_

H_;';-:: 1§
RE=HE+ " By Ro 08B0 23l FeOsES DR SFSC M ARSI CI DI ELF98ART RO
AE=A=+" VP RERTFFEYFCOFESF CAZ DR FESROACEQSFESICAY | BRFESTORR] fm
A=A+ "FEQDCALSEYFECBDSF SRR BEASE T FESBC DAY GRCASE BSC DAC LD C DS
HE=AS+"BEC2e AP ESRDS TP BRF ERL DAYV BRECEF 4F AF 2V DA IR 1 FLEEL
A=A+ " B0 32 BedarazB P CETC LPDHuFlLJUUUUFECHCDrﬁH|UﬂLH:HH”lr"
HE=HF+"CI1Sa92 1 BRSZTEFESSCAERSERCDANa9E] 2302 aFBSCDAT BOCR9E
HE=AF+ " ORCDRCEFEZRIZEABSF ESL DHE4BLF SO IBnRacT o
‘$=‘$+“CEBCZLU.B;:U4E4EETEUbuJu4H4 442ﬁ33° chIIES.
HE=AZ+"BO0CToCead 25 2R EE_BwUJHF aE4H4_ SR S ey SN
H£=‘$+“3EBF8h5189CDF£Hu o1 E 34BhD;EﬁFﬂ4F“HE'“
RE=AZ+"B47 ZRE1E2CI7A P _SHEEHQ4. ZRELEICDY
FE=RZ+"9F ARCDooHaa7 oz e 1 SRELER e
Hi=HE+"2EEa 28RS ZREL AT e nke) 'Eﬁﬂ4“,H£1u3L;;a
AE=RZ+"0921 RSA2ES7E24 95 ‘a’ ’"Eﬁﬁraﬁfﬁ351 EEr"
AE=HE+"GF FPCaF2a3EF : FTE
AE=RE+" 221 aRCDYans7 iF £
Az=AZ+"COVRRRrEEe 7TV A

TUR

]

TV} T A b e A

b—t
ﬁ
-

in

-t
-
i eoonll ol 5 38 o B B e

f * 4.'-‘r 4.'} {“r

THEH
="E" THEM
="C" THEM
="D% THEN
£="E" THEN

='F " THEM =15

i ol B B
R I (T 1]

I

[T N W iy
e o Do

3"1“ THEM FETLIRH

B=UAL (RS SRETILRN
REARIM

-40-

Name # Blocks
Directory | 3
DOS 10
BASIC 40
VDM 8

This means that an overhead of 58 blocks {out of 350) is carried
for the sake of operating convenience. Other users may have

different values and not want to have such file duplication.

-41-

6.0 CONCLUSIONS

The previous sections have served to demonstrate how much power
and convenience is available through the use of a micro-disk

system such as that provided by North Star.

If there were a single area in the North Star System to be examined
for improvement, it wou]d be the software beyond the DOS. Besides
having the logarithm error, North Star BASIC is generally not as
“capable as MITS Extended BASIC, which must be considered a
benchmark. North Star has a good piece of hardware which is
partially sold by its software back-up, which af'this point is
good, but not great. Specific areas for improvement and expansion

of their BASIC interpreter are:

e Fix logarithm error (apparently done in the Tatest releases)
¢ Provide string variable subscripting

e Include on on-line-doubYe precision option

. Add starting statement choice to "renumber"

o Allow Tine width control of all printing

e Use single key edit commands

o Allow Tonger variable names

e Implement a "trace" for debugging

“d0u

The general software frontiers presently being pushed are a BASIC
compiier and PASCAL. The features which are important for a

BASIC compiler are:

¢ Compile/Interpret option for program bui]ding and debugging
o Disk save and load functions for object code

e Fast running object code (which will end the argument that
BASIC is inefficient)’

e Disk oriented 1inking of programs in both compile and interpret*
modes.

*The PASCAL software is just now becoming available, and will be
considered in a later report. '

