2547 Ninth Street
Berkeley, Ca. 94710

North Star
System Software Manual

Copyright © 1979, North Star Computers, Inc.

SOFT-DOC

PREFACE

This manual describes all the system software that is included
with a North Star HORIZON computer or Micro Disk System. Use of
the North Star Disk Operating System (DOS), Monitor, and BASIC
are described in three of the major sections of this manual. The
first major section, GETTING STARTED, describes the initial
procedure reguired to begin using the North Star software.

The table of contents for all the major sections vf this manual

follows this preface. Two indexes for the BASIC section appear

at the very end of the manual. If you receive errata sheets for
this manual, be sure to incorporate all the .corrections into the
manual, or attach the errata sheets to the manual.

This manual applies to North Star system software diskettes
stamped "RELEASE 5" or "RELEASE 5.X" where X is a digit
indicating the update number. If you are working with earlier
releases of North Star software, you should order a copy of the
most recent release to take full advantage of all the features
described in this manual. This manual covers both single-density
and double-density versions of the North Star software. :
Differences between single- and double- den31ty versions are
noted in the text. —e .

. {
Other software available for your North Star system is not
described here. For example, North Star Pascal and. the North
Star Software Exchange diskettes are not described-here. Consult
a North Star Catalog, Newsletter, or your local computer dealer
for up-to-date descriptions of available North Star. software.

Every effort has been made to ensure the accuracy of the material
presented here. Nevertheless, experience shows that some textual
errors always go undetected. If you find any errors, or have
some suggestions on how to improve this manual,: please contact
North Star at the following address:

NORTH STAR COMPUTERS, INC.
ATTN SOFTWARE DOCUMENTATION
2547 NINTH STREET

BERKELEY CA 94710

— NORTH STAR SYSTEM SOFTWARE MANUAL -

IT.

ITI.

TABLE OF CONTENTS

GETTING STARTED

INTRODUCTION

DISK DRIVES AND DISKETTES

LIST OF SYSTEM SOFTWARE PROGRAMS

RAM ALLOCATION

PERSONALIZING THE DOS FOR INPUT/OUTPUT
SYSTEM START-UP ,

PERSONALIZING A NEW DISKETTE FROM AND OLD DISKETTE
INSTALLING THE INPUT/OUTPUT ROUTINES
HORIZON PERSONALIZED INPUT/OUTPUT ROUTINES
CREATING THE WORKING DISKETTE

HARDWARE TESTING

. s e

GHIZIOMDODOO WX

THE NORTH STAR DISK OPERATING SYSTEM (DOS)

INTRODUCTION
A. ABOUT FILES
B. COMMANDS
C. SYSTEM START-UP
D. DISK ERRORS
E. DOS LIBRARY ROUTINES
F. ADDITIONAL DOS PERSONALIZATION
G. DOS ENTRY POINTS AND FLAGS
H. UTILITIES
DT (DISK TEST)
CF (COPY FILE)
CD (COPY DISK)
CO (COMPACT)

THE NORTH STAR MONITOR

INTRODUCTION
A. COMMAND FORMAT

B. COMMANDS

C. HARDWARE REQUIREMENTS

D. PERSONALIZING THE MONITOR
E. EXAMPLE

- TABLE OF CONTENTS -

Iv.

TABLE OF CONTENTS (Continued)

THE NORTH STAR BASIC SYSTEM
A. INTRODUCTION

B. BECOMING FAMILIAR WITH BASIC
1. LOADING BASIC.e.eivesnosoccnnvas
2. COMMUNICATING WITH BASIC.....:..
3. ENTERING A BASIC PROGRAM........

4, SOME BASIC CONCEPTS.ccesessevsess

C. COMMANDS

1. PROGRAM DEVELOPMENT AND MAINTENANCE

LIST.eeeses eeana ceeennias veeessC-1
DEL . serersnscanns .o e st e e c-2
SCRecevesnnan seensaseans e eses e .C-3
REN.:vvoeeeroooaonns . ce e cre..C-4
AUTO...c .. “aea Ceseaseeresesenveoen C-6
2. PROGRAM MAINTENANCE ON DISK
CAT e veeveanesannns terescenesenenas ..C=-7
SAVE . e et e evsnncnasennnsn cerer s eees.C-8
NSAVE. cee e ce e eia e s e s Cc-9
LOAD . et v e eovssanansnnsancsnsasnse ee...C-10
APPEND v oevesesosesessascsasenonnsses c-11
3. EXECUTION CONTROL
RUN:¢.'oeoroanoas ceseesascaacnnnns ...C-12
CONTROL-C, THE PANIC BUTTON........ Cc-13
CONT..... et cessatanaarens R o 2
4. MISCELLANEOUS COMMANDS
PSIZE....... S oL 2 1
MEMSET ... veesssascacsnssonensncovescs c-17
LINE (STATEMENT) ¢ veee e dinvnens c...C-18
« BYE.. it anones R o 1]
D. USING NUMBERS
E. USING ARRAYS
F. USING STRINGS
G. THREE IMPORTANT STATEMENTS
DIM:e e ieeceenconcoonesssnsnessassnsesaesGl
REM.: it eeeettoseesensossoncesnncs ceeveasraG~3
LET . eeeertennns shesasasanses e aes ceeses.G-4
H. INPUT AND OUTPUT
1. STATEMENT: PRINT........ ceseerecessH-]
2. FORMATTED PRINTING.....:0cs.- Pes e H-3
3. STATEMENT: INPUT........ e re s «...H-9
STATEMENT: INPUTl...coieeeewes peo...H-11
4. MULTIPLE I/0 DEVICES...ceeveeuscaacns H-12

-~ TABLE OF CONTENTS -

N
«e..B-2
ee..B=6
...B-9

Iv.

I.

THE NORTH STAR BASIC SYSTEM

TABLE OF CONTENTS (Continugd)
(Continued)

STORING DATA WITHIN THE PROGRAM TEXT
STATEMENTS:

DATA...eeerrereecncasanns e
READ..v.ven.. et ..

PROGRAM CONTROL

1. EXECUTION AND CONTROL FLOW......

2. STATEMENTS:
GOTO.vvveennn.
IF ...
ON ... o o
STOP.vvevevenens Gt et e s ettt J-5
END..vovevennnnn.. et e te e J-6

St e s et J-2
THEN ... ELSE......

3. THE FOR-NEXT LOOP
DISCUSSION....vessn et eeceanaean ve e
STATEMENTS:
FOR:¢evv e N
NEXT.voounon.
EXIT. oot ewonnnnn .o

SUBROUTINES
DISCUSSION..... et eccserraatnaeses J-15
STATEMENTS:

FUNCTIONS
1. DISCUSSION
BUILT-IN FUNCTIONS...:vvveenerenns
USER-FUNCTIONS. . tvvseuneeennenenns
STATEMENTS :
15)) R S 1
RETURN........
FNEND...vvuune. et ieiie e K-14

DATA FILES

1. DISCUSSION..:eeeevvaessosnsaonvesassliml

2. STATEMENTS:
CREATE . cteteeerrecoacssannannnes
DESTROY.veevveveeroanns
OPEN.v et nanssscaassns
CLOSE ... tevrrenscossasvnasanvanes
READ#..eeeveeennn e R ¥
WRITE# ..o nrneoresenannonons .o

- TABLE OF CONTENTS -

IvV.

TABLE OF CONTENTS (Continued)
THE NORTH STAR BASIC SYSTEM (Continued)

M. ADVANCED FEATURES
1. TWO ADVANCED STATEMENTS
FILL....oooen tsessatsnereraeassnasnM
OUT.eeeeevnannnnns R

2. MACHINE LANGUAGE SUBROUTINES........M
3. AUTOMATIC PROGRAM SEQUENCING........M
DISCUSSION. . v eevvvevsosanasns PN M
STATEMENT: CHAIN.....ccoeeevenannsnns M

4. ERROR TRAPPING AND RECOVERY

DISCUSSION. .t seeenvoracsanss ceeeees e M-9
STATEMENT: ERRSET......ce0euceeannn M-11
5. THE LINE EDITOR....ccovecvnn eeearaaM-13
N. COMPATIBILITY WITH OTHER BASICS
1. STRING HANDLING...coevevssns T e e e N
2. INPUT TRANSLATION....cccweveoonncans N
3. NORTH STAR'S BCD ARITHMETIC.........N
4. IF ... THEN EVALUATION......... «ee...N
0. MISCELLANEQUS TOPICS
1. SPECIAL ENTRY POINTS..... e e 0-1
2. PERSONALIZING BASIC.c.etetnoonsanans 0-2
3. NON-STANDARD VERSIONS OF BASIC..... 0-12
APPENDICES:

. SAMPLE PROGRAMS
ERROR MESSAGES
IMPLEMENTATION NOTES
. DECIMAL-HEX-BINARY-ASCII CONVERSION TABLE
BASIC TOPICS INDEX
BASIC KEYWORD INDEX

N U W
. .

- TABLE OF CONTENTS -

GETTING STARTED

INTRODUCTION
This part of the manual provides the information and procedures
reguired to make initial use of the North Star system software.
This material should be referenced at any of the following times:

A. You are about to use an assembled HORIZON computer or MICRQ
DISK System for the first time.

B. You have just finished assembling and checking a HORIZON or
MICKRO DISK System from kit.

C. You are about to use a new release system software diskette
for the first time.

The sections that follow provide:
A. Information on the disk drives and how to use them.

B. Itemization of the system software provided with North Star
disk systems.

C. Procedures for personalizing the DOS software to make
possible input/output communication with your computer’s
console terminal.

D. Procedures for testing your computer s RAM memory and disk
system for correct and reliable operation.

These sections should be read carefully and the specified
procedures should be followed in the order given.

DISK DRIVES AND DISKETTES

Your North Star HORIZON or MICRO DISK System equipped computer
includes capability for storing large amounts of data and program
information on "floppy"” diskettes. There may be up to four
floppy disk drives connected to your computer through one disk =
controller board (only three drives for single density
controllers). Looking at the front of a disk drive, you will see
a small red LED indicator lamp, a slot running through the center
of the face, and hinged door at the center, perpendicular to the
slot. When the door 1is closed, no diskette may be inserted into
the disk drive. Opening the door permits the withdrawal of the
diskette and insertion, through the slot, of another diskette.
when the LED light is on, it indicates that that drive is active.
The disk system incorporates an automatic shut off feature which
will turn off the drive mector(s) when not in use to save wear on
both diskettes and disk drives.

DESCRIPTION OF DISKELITES

A diskette is a magnetically coated, thin plastic disk which is
permanently sealed within a sguare protective jacket. The label
on the jacket should be in the upper left corner as you are
looking at the diskette. There are three holes in the front face
of the jacket. The large hole in the middle allows the disk
drive spindle to clamp directly onto the diskette in order to
spin it around. Data is stored onto and retrieved from diskette
much as with a phonograph record, except that, for a diskette,
the needle is a magnetic record/playback head. The small, round
hole to the lower right of the diskette is called the sector
detect hole and is of no importance to this discussion. The
large oblong hole at the bottom and the corresponding hole on the
flip side expose the diskette’s magnetic surface for the
record/playback heads. The little square notch in the upper
right corner of the diskette is a write protect notch. If you
cover this notch with an adhesive tab, then the disk drive will
be inhibited from writing over the information stored on the
diskette. It will be read-only until the write protect tab is
removed at which time both reading and writing of the diskette
will be possible.

INSERTION OF DISKETTES

When you insert the diskette into the disk drive, be sure that
you are holding the label edge of the diskette, and that it
slides all the way in, oblong hole first, with the label facing
away from the drive’s LED indicator. In a HORIZON, the write
protect notch should be at the top. In a horizontally oriented
disk drive the notch should be at the left. After the diskette
is inserted, make sure the door on the drive is locked into the
closed position before you attempt to use the diskette,

- GETTING STARTED - A-1

DISK DRIVES AND DISKETTES (Confinued)

CARE OF DISKETTES

Diskettes are delicate and should be handled with great care.
Always observe the following rules in the handling and storing of
diskettes.

1. Never direétly touch the magnetic surfaces of a diskette.
Z. Never bend or fold a diskette.

3. Keep a diskette in its protective envelope when not in use.
4. Never expose a diskette to heat, X-ray or other radiation,

magnetic fields, moisture, or dust.

- GETTING STARTED - A-2

LIST OF SYSTEM SOFTWARE PROGRAMS

The following programs are included on a North Star system
software diskette:

DOS

Co

Ch
CF
DT

BASIC
FPBASIC
MZﬁOﬂ
M5700

M6700
MOB00

MF400

The Disk Operating System program.

Utility program for compacting a diskette and optionally
converting a diskette to double density.

Copy diskette utility program.
Copy file utility program.

Disk test utility program.

The BASIC language system program with software

arithmetic.

The BASIC language system program set up for use with
the hardware floating point board.

The Monitor program with origin
single density diskette)

The Monitor program with origin
HORIZON input/output routines.

The Monitor program with origin
The Monitor program with origin

The Monitor program with origin

2080 (hex). (M2ABO if
5709 (hex) and built=-in

6700 (hex) .
g.

F4@0® (hex).

- GETTING STARTED - B-1

SINGLE DENSITY

2080-29FF
2RO0~5FFF
"Ag@-31FF
2A08-3AFF
5700-5FFF
6700-6EFF
ESQGO-EBFF
EFFB-EFFF

F400-FBFF

*

* %

RAM ALLOCATION

DOUBLE DENSITY

2000-2CFF
2D@@-5FFF
2D@P-34FF
2D3B~-47FF
570B-5FFF
6700-6EFF
E8QB-EBFF
EFFE-EFFF

F40B-FBFF

PROGRAMS
DOS
* BASIC, FPBASIC

Monitor M2AB8G, M2D0Y
Utilities CO, CD, Cr,
Monitor M5700
Monitor M6740
Disk Controller

*x Floating Point Board

Monitor MF449

The upper limit of BASIC can be set by the user with the

MEMSET command.

It is initially set to 5FFF.

- GETTING STARTED -

The minimum

The following table shows how the 64K byte RAM address space is
allocated for the standard version system software and hardware.
All addresses are given in hexadecimal notation.
memory configuration requires 16K of RAM in the address range
2000-5FFF (hex) .

DT

** Some floating point boards are configured to use DFF@-DFFF.

PERSONALIZING THE DOS FOR INPUT/OUTPUT

Before the North Star system software can be used, input/output
routines may have to be installed in the DOS program to allow
communication of the DOS with the console terminal of your
computer system. This is called "personalizing" the input/output
routines of the DOS. Just exactly what steps need to be taken
depends on the combination of software and hardware to be used in
your system.

A,

al

You have a HORIZON computer and the console terminal is
connected to the standard serial interface. 1In this case,
the DOS on the system software diskette supplied with the
HORIZON is already personalized and ready to use. Skip to
the SYSTEM START-UP section. After the system is
successfully started, proceed directly to the CREATING THE
WORKING DISKETTE section.

You have a HORIZON or other computer and you have a system
software diskette which has specific input/output routines
installed that match the input/output configuration of your
hardware. You are ready to proceed without the need for any
additional personalizing of the diskette. Skip to the
SYSTEM START-UP section. After the system is successfully
started, proceed directly to the CREATING THE WORKING
DISKETTE section. Personalized system software diskettes
for the more common input/output configuations are
available. Consult the North Star Product Catalog and your
dealer. '

You have an unpersonalized system software diskette but also
have a different system software diskette which is already
personalized for your system. This situation might occur if
you have just received a new release of the system software
(unpersonalized) and wish to start using it on your already
running North Star system. Proceed directly to the
PERSONALIZING A NEW DISKETTE FROM AN OLD DISKETTE section.

You have an unpersonalized system software diskette and will
install the input/output routines yourself. The MICRO DISK
System is supplied with such an unpersonalized diskette.
This personalization procedure is not possible unless your
computer system includes some capability, such as a front
panel or ROM monitor, for loading the input/ouput routines
into RAM memory. Furthermore, this procedure is not simple.
It requires an understanding of the computer’s input/output
interfaces, hexadecimal numbers, and machine language
programming. If all these requirements are met, then
proceed directly to the INSTALLING INPUT/OUTPUT ROUTINES
section.

- GETTING STARTED - - D-1

C

PERSONALIZING THE DOS FOR INPUT/OUTPUT, (Continued)

E. You have a HORIZON computer but will not use the standard
serial interface for connecting your console terminal. In
this case follow the procedure described in step D.

Also, if at any time you wish to add input/output devices to the

system or modify, the existing routines, you must follow the
procedure described in step D.

- GETTING STARTED - D-2

N |

SYSTEM START-UP

Start-up of a HORIZON computer is very simple. First, load a ‘
system software diskette into drive #1. Then, turn on the

computer power. The HCRIZON will automatically start the disk
pootstrap program which will turn on the disk drive and load the

DOS into RAM from the disk. If the computer hardware is properly
configured, then the system should display a DOS command prompt

(* or +) and the system will be ready to use. To do a system

start-up when the power is already on, depress and release the

reset switch.

In a computer system other than a HORIZON which has a North Star
#nICRO DISK System installed in it, start-up the system as
follows. First, witn no diskette loaded into any disk drives,
turn on the computer and disk drive power. In some computer
systems, turning the power on or off while a diskette is lcaded
into a drive may damage the information stored on the diskette.
witn the power on, load the system software diskette (already
personalized) in drive #1, and then cause the computer to start
executing at address E8080(hex). A front panel, RCOM monitor, or
auto-jump feature can be used to start the computer at this
zddress., At this point the DOS software should load as described
above,

If after performing the system start-up sequence, you don’t get
any output on you terminal, it may be because the baud rate '
setting of the terminal does not match the baud rate setting of
the serial interface, or it may be because of some other fault in
the hardware configuration (such as improperly addressed RAM
boards), or it may be some problem with the input/output
personalization routines. All these possibilities should be
carefully examined. 1If typing a key causes that character to be
cisplayed twice, it is probably because the terminal is in half
duplex mode rather than full duplex mode. If some computer
operations, such as the DOS list command (LI), terminate
prematurely, this may be a result of an incorrectly written
control-C input/output routine. Other problems may be a result
of typing lower case characters for commands instead of upper
case.

- GETTING STARTED - E-1

PERSONALIZING A NEW DISKETTE FROM AN_OLD DISKETTE

1f it is desired to personalize a new system software aiskette
using the same personalized input/ouput routines that already
exist on an old diskette, then the following procedure can be
used to incorporate the 0ld routines into the new software. The
new diskette may be unpersonalized or it may have input/cutput
routines that you wish to replace. The following listing gives
the DOS and Monitor commands which should be exactly followed to
copy successfully the input/output routines. The DOS command
prompt will be * instead of + if a single density DOS is used.
The computer must include 16K of RAM starting at 2006 (hex). It
is assumed that the system software has standard origin at

2000 (hex) .

Using an old diskette, do a system start-up sequence, then:
+LF DOS 44009 Load copy of old DOS

Next, remove the o0ld diskette and insert a new diskette in drive #1.

+LF DOS 5800 Load copy of new DOUS

+GO M2DQ@ GO M2AQ@ if new diskette is single density
>MM 49060,100 58040 Move I/O routines from old to new DOS

. (See below.)

>MM 4606D,C 500D Move jumps from old to new DOS

The third command in the above segquence will vary, depending upon
the nature of the source and destination diskettes. To transfer
0ld I/0 personalization from Release 1, 2, 3, or 4 to Release 5
dual-density DOS, use: : :

>MM 49006,108 5880

as above. To transfer I/0 personalization between copies of the
Release 5 DOS, use:

>MM 4800,108 5800

To transfer I/0 personalization between copies of single-density
DOS, Release 4 or earlier, use:

>MM 4906,100 5960

If the old DOS has additional personalization, copy it now.

A copy of the new DOS with the o0ld input/ouput routines installed
now resides at address 5060 (hex) in RAM. Proceed to the CREATING

THE WORKING DISKETTE section for directions on how to make a
diskette which includes this DOS.

- GETTING STARTED - F-1

INSTALLING THE INPUT/OUTPUT ROUTINES

The DOS is designed to be able to interface to any conceivable
terminal input/output configuration. There are four routines
required by the DOS: character input (CIN), character output
(CGUT), control-C detect (CONTC), and terminal initialization
(TINIT). 1In the standard version of the DOS, the input/output
routines are located in the 256 byte region from 298¢ to

29FF (hex) .

CIN

The purpose of CIN is to obtain a single character of input from
an input device and to return the value of that character in the
accumulator. Wwhen CIN is called, the accumulator will contain a
device number. This value, in the range 8 to 7, specifies from
which of eight possible input devices the single character of
input is to be obtained. Device § is always assumed to be the
console terminal. Devices 1 to 7 may be assigned to any other
input devices in the system. CIN may be written so that it
ignores the device number in the accumulator if there is only one
input device in the system. CIN must do a RET to the calling
rocutine when the input character is ready in the accumulator.

The accumulator is the only register which may be modified by the
CIN routine. If the input routine is complex enough to require
the use of other registers, their values when CIN is called must
be saved, and then restored before CIN returns.

COUT

This routine sends a single character of output information to an
output device. The character to be output is provided to COUT in
the B-register, and the output device number is provided in the
accumulator. When COUT has finished sending the output character
to the appropriate device, the character itself must be in the
accumulator as well as the B-register, and the routine must do a
RET back to the calling routine. No registers, other than the
accumulator, may be modified by the action of the COUT routine.

CONTC

This routine detects if a control-C has been typed on the console
terminal. No information is passed to the routine in any of the
registers, and no registers need be saved or restored by CONTC.
They are all available for unrestricted use by the routine. If a
control-C has been typed, the routine should set the Zero flag.
1f no character has been typed or if the character typed was not
a control-C, then the Zero flag should instead be cleared. As
soon as the Zero flag is given its proper value, CONTC must do a
RET. CONTC should not wait for a character to be typed. 1If no
character has been typed, it should do a RET immediately after
clearing the Zero flag. '

- GETTING STARTED - G-1

INSTALLING THE INPUT/OUPUT KOUTINES wContinued)

TINIT

Many terminals require a special initialization procedure to be
followed immediately after they are turned on for use. For
example, a video display controller may reguire that the screen
be cleared before the screen is used for the first time after
power on. Also, the interface electronics (such as the HORIZON
standard serial interface) may reguire initialization after
power-on or reset. The TINIT routine is called once by the DOS
right after the bootstrap load and should contain any
instructions which implement this one time initialization for all
input/output devices used in your system. Since many terminals
do not need to be initialized, you may not need to use TINIT.
TINIT may freely use all registers, without having to save or
restore any. The TINIT routine should do a RET when finished.

STEP BY STEP PROCEDURE

In order to personalize the DOS with input/ouput routines for
vour hardware configuration, perform the following steps:

1. Write your input/ouput routines carefully following all the
rules specified in the above input/output routine
descriptions and the DOS ENTRY POINTS AND FLAGS section of
the DOS part of this manual. As examples of correct
input/output routines, the following section shows the
input/ouput routines for the HORIZON.

2. Perform a system start-up sequence using the unpersonalized
system software diskette. 1In an unpersonalized diskette,
-each of the input/ouput routines is set up to merely do a
jump to self instruction. Thus, when you first perform a
system start-up sequence, the DOS will end up in a jump to
self loop in TINIT, and the unperscnalized DOS will now be
loaded into RAM starting at address 2000 (hex).

3. Using the computer front panel or ROM monitor, stop the
computer and load your input/ouput routines into RAM in the
region from 296 to 29FF (hex).

4, Once the input/output routines have been put into computer
memory, you must modify the DOS jump table so that it
contains the starting addresses of each of the routines.
This jump table occurs from address 200D to 2018 (hex). This
region is 12 bytes long. Each successive 3 byte section
within it consists of an 8080,/Z280 JMP instruction (C3 hex)
followed by the two byte starting address (low order byte
first) of one of the four rdutines. The following table
shows how the region from 288D to 2018 (hex) would be
modified to recognize CIN, COUT, CONTC, and TINIT if the
starting addresses for these routines were 2908, 2920, 29490,
and 2960 (hex), respectively.

- GETTING STARTED - G-2

INSTALLING THE INPUT/OUPUT ROUTINES (Continued)

BEFORE AFTER '
Address Contents Address Contents
208D C3 0D 20 290D C3 206 29 (for COUT)
2019 C3 168 20 2019 C3 06 29 (for CIN)
2013 C3 13 29 2013 C3 68 29 (for TINIT)
2016 C3 16 20 2816 C3 40 29 (for CONTC)

Note that if TINIT is not required, the byte at 20813 (hex)
ghould be changed to a KET instruction (C9 hex).

If you used a front panel to modify the DOS, then the stack
rointer has not been changed. So continue with execution of
the new TINIT routine by causing the computer to begin
execution at address 2813 (hex). If you used a.ROM monitor
to modify the DGS, then the stack pointer may have been
changed but the console terminal has been initialized by the
monitor. So continue by causing the computer to begin
execution at address 2028 (hex), the DOS continue entry
pcint. You should see a DOS command prompt (* or +) on your
terminal., If you don’"t, this means that the input/output
routines are faulty or a mistake was made in following the
above personalization steps.

Copy the personalized DOS at 2008 to 5008 (hex) by tvping the ‘
following commands:

+LF DOS 5009

+GO M2DRQ GO 2A89 1if single density DOS
>M¥M 288D.C 500D

>MM 2908,100,58080

{If the DOS at 5000H is not Release 5 dual-density, use:
>MM 2900,1¢0 5900

as the last command in the above seguence, replacing the one
listed.)

Proceed directly to the CREATING THE WORKING DISKEITE
section.

- GETTING STARTED - G-3

-——-u-d--—---m----n-u----—------IIIIII-I-IIIII-I-I---W

2900
2904
2900
2900
2908
2992
2985

2907

290A
290A
298C
298E
2911
2913
2915
2916
2916
2918
291A
291D
291F
2921
2922

2922

2922
2924
2926
2929
292B
2%2C

292E.

2930
2931
2933
2934
2934
2934
2936
2939

293B

293E
293E
29490
2942
2945
2946
2948
2949
294B
294D
2950
2951
2953

FEB2
CA2229
FE@1
CAl629

DB#3
E602
CABAZY
DBO 2
E67F
C9o

DB@5
E682
Cale29
DBG 4
EGTF
C9

DB@6
E6@2
CA2229
DB@O
F5
3E30
D366
F1
E67F
C9

FEB1
Ca4929
FE@ 2
CAa5429

DB@# 3
E601
CA3E29
78
D382
C9
DB@5
E601
CA4929
78
D364
C9

HORIZON PERSONALIZED INPUT/OﬁTPUT ROUTINES

*

*1/0 ROUTINES FOR STANDARD HORIZON COMPUTER

* IN RELEASE 4 DOS

*

CIN CPI 2 CHECK FOR DEVICE 2 POSSIBILITY
JZ CIN2 JUMP IF PARALLEL PORT SPECIFIED
CPI 1 CHECK FOR DEVICE 1 POSSIBILITY
Jz CINI JUMP IF SECOND SERIAL PORT SPECIFIED

*ASSUME PORT 0 (STANDARD SERIAL PORT) DESIRED

CING IN 3 INPUT FIRST SERIAL PORT STATUS
ANI 2 MASK INPUT STATUS BIT
Jz CING LOOP IF NO CHARACTER
IN 2 INPUT THE CHARACTEK
ANI 7FH MASK OFF EARITY BIT
RET RETURN WITH CHARACTR IN A

CINl IN 5
ANI 2
Jg CIN1
IN 4
ANI 7FH
RET

*SAMPLE PARALLEL INPUT CODE

CIN2 IN 6 READ MOTHERBOARD STATUS
ANI 2 MASK TO GET THE PI FLAG
JZ CIN2 NO INPUT TYPED YET
IN @ READ DATA FROM KEYBOARD
PUSH PSW SAVE THE CHARACTER ‘

MVI A,30H

oUT 6 RESET PI FLAG
POP PSW '

ANI 7FH

RET

COUT CPI 1
JZ COUT1 SECOND SERIAL PORT OUTPUT
CPI 2
JZ COUT2 PARALLEL OPORT OUTPUT

*ASSUME STANDARD SERIAL PORT OUTPUT

coud 1IN 3 INPUT FIRST SERIAL PORT STATUS
ANI 1 MASK OUTPUT STATUS BIT
Jz Coue LOOP IF NOT READY TO OUTPUT
MOV A,B MOVE CHARACTER TO A
ouT 2 OUTPUT THE CHARACTER
RET

COUT1 IN 5
ANI 1
Jz COUT1
MOV A,B
ouT 4
RET

- GETTING STARTED - H-1

2954
2954
2956
2958
2958
295C
295E
2960
2962
2963
2964
2964
2966
2968
296A
296B
296D
296F
2971
2972
2973
2973
2973
2373
2973
2676
2978
2979
2974
297D
297F
298¢
2983
2984
2985
2986
2989
298A
298D
298E
2999
2993
2996
2996
29956
29396
2996
2998
2994
299A
239A
2963
299D

DBG 6
E601
CA5429
78
D300
3820
D306
78

c9

DE@3
E502
EEG2
Co

DB®2
ES7F
FED3
37

HORIZON PERSONALIZED INPUT/OUTPUT ROUTINES (Continued)
*SAMPLE PARALLEL OUTPUT ROUTINE ‘
CouT2 IN 6 READ MOTHERBOARD STATUS
ANI 1 MASK TO GET THE PO FLAG
JZ COUT2 PRINTER NOT YET READY
MOV A,B GET CHARACTER TO ACC
ouT o OUTPUT TO PRINTER
MVI A, 208
ouT 6 RESET PO FLAG
MOV A,B CHARACTER EXPECTED IN ACC ON RETURN
RET
CONTC IN 3 INPUT SERIAL PORT STATUS
ANI 2 MASK INPUT STATUS BIT
XkI 2 SET Z-FLAG ONLY IF CHARACTER
RNZ RETURN IF NO CHARACTER TYPED
IN 2 INPUYT THE CHARACTER
ANI 7FH MASK OFF PAKITY BIT
CPI 3 SEE IF CHARACTER IS CONTROL-C
STC TELL SOFTWARE A CHAR wAS TYPED (OPTIONAL)
RET

C9

219860
16E4
7C

BA
€28329
Ced4
67
Ca9629
7E

77

2C
c28329
24
CA9629
7C
E6@3
C28329
C37829

3E41
D3Ce

AF
D396
D366

*

RETURN WITH Z-FLAG PROPERLY SET

*TINIT FIRST REWRITES ALL RAM TO SET PARITY CORRECT

TINIT LXI H,0
MVI O,BADDR/256
TINKL MOV A,H

CMP
INZ
ADI
MOV

D
TINCP
4

H,A

JZ TINU

TINCP MOV A,M

MOV
INR

M,A
L

JNZ TINCP

INR

H

JZ TINU

MOV
ANI

A,H
3

JNZ TINCP

JMPp
*

TINKL

PREPARE TO CYCLE THROUGH RAM
SET UP TO SKIP DISK REGION '

MOVE CURRENT BLOCK NUMBER TO A

CHECK IF DISK BLOCK

CONTINUE IF NOT DISK BLOCK

ADD 1K TO RAM ADDRESS

PUT UPDATED ADDRESS BACK TO HL

MAKE SURE NOT DONE IF NON-STANDARD

READ BYTE FROM RAM

RESTORE IT WITH CORRECT PARITY

INCREMENT LOW ORDER ADDRESS BYTE

LOOP IF NOT AT END OF 256 BLOCK

INCREMENT BLOCK NUMBER

DONE IF WE ARE BACK TO ZERO

BLOCK NUMEBER TO A

MASK LOW ORDER 2 BITS

CONTINUE IF NOT AT END OF 1K BLOCK

BRANCH TO MAIN LOOP '

*NOW THAT ALL BYTES HAVE CORRECT PARITY, ENABLE PARITY LOGI
* (IF YOU DON'T HAVE RAM-16-A WITH PARITY, THIS IS A NOP)

*

TINU MVI A,41H

our

pcen

* NOW INITIALIZE

XRA A

ouTr
ouT

6
6

ENABLE PARITY CODE
MEMORY BOARD OUTPUT PORT

MOTHERBOARD AND SET UP BOTH SERIAL PORTS |
ZERO ACC

INITIALIZE MOTHERBOARD

EXTRA

- GETTING STARTED - H-2

--—--—-h-------—-—-------h-—---—-—-n---—7

299F
29A1
29A3
29A5
2947
29A9
29AB
29A0
29AF
2981
29B3
29B3
29B3
29B5
2987
29B9
29BB
29BC

HORIZON PERSONALIZED INPUT/OUTPUT ROUTINES (Continued)
' -

D36
D396
3ECE
D303
3ECE
D395
3E37
D363
3E37
D365

DBB 2
DBe4
3E30
D306
C9

OUT 6 EXTRA

ouT 6 EXTRA

MvI A,QCEH 2 STOPS, 16xCLOCK, 8 BITS, NO PAKITY
ouT 3 . SEND TO FIRST SERIAL PORT

MVI A,0CEH SAME CODE AS FIRST PORT

ouT 5 SECOND PORT v

MVI A,37H CMD: RTS, EkK, RXF, DTk, TXEN

ouT 3 FIRST PORT

MVI A,37H SAME CODE AS fIRST PORT

ouT 5 : SECOND PORT

IN 2 CLEAR STANDARD SERIAL PORT INPUT BUFFEI
IN 4 CLEAR SECOND SERIAL PORT INPUT BUFFER
MVI A,30H

ouT 6 RESET PI FLAG (FOR PARALLEL PORT)

RET

- GETTING STARTED -

H-3

CKEATING THE WORKING DISKETTE

pefore using the system software it should be copied to a
diskette other than the factory supplied system software
diskette. This diskette, called the WORKING DISKETTE, will be
the one used on a daily basis. After this procedure is finished,
the factory diskette should be retired to a safe place for
storage with the write protect tab installed. If the working
diskette should ever be accidentally destroyed, the factory
giskette can then be used to create a new working diskette.

ihere are two different procedures for creating the working
diskette depending on whether your computer has one or two disk
drives. The procedure with two disk drives is much simpler and
chould be used 1f at all possible.

TwO DISK DRIVE PROCEDURE

Load the factory diskette with the write protect tab installed in
drive #1 and a blank diskette (to become the working diskette)

with no write protect tab in drive #2. Then perform the
following DOS command:

+GO CD 1 2

This will copy the complete contents of the factory diskette onto
the working diskette. If the factory diskette was already
personalized for your system, then you are done. However, if you
versonalized the DCS input/output routines before coming to this
section, then the personalized DOS is at 56¢8 (hex) in RAM and
should be copied to the working diskette with the following
command:

+SF DOS,2 5008
Now you are done and the working diskette is ready to use.
SINGLE DISK DRIVE PROCEDURE

Load the factory diskette with write protect tab installed in
drive #1 and perform the following DOS commands:

+RD ¢ 4000 8 Read file directory into RAM
+L1I List file directory on factory diskette

Now remove the factory diskette and load the diskette to become
the working diskette with the write protect tab removed in drive
*1 and perform the following commands:

*IN Initialize working diskette

WK 0 40008 8 Write file directory onto diskette
List file directory

i
t—
—

1

he listed file directory on the working diskette should be

- GETTING STARTED - I-1

M

CREATING THE WORKING DISKETTE (Continued)
®

identical to the listed file directory on the factory diskette.
If you personalized the DOS input/output routines before coming
to this section, then the personalized DOS is at 5888 (hex) in RAM
and should be copied to the working diskette with the following
command:

+SF DOS 5¢46

Now. for each file on the factory diskette, perform a seguence
like the following which copies the DOS file:

Load factory diskette in drive #1
+LF DOS 2D@#@
Load working diskette in drive ¢1
+SF DOS 2D40

The DOS file should not be copied if a personalized DOS was
already copied to the diskette from RAM. After repeating the
above sequence once for each file, the factory diskette will be
completely copied to the working diskette. You are done and the
working diskette is ready to use.

.REGULAR BACKUP PROCEDURES

It is an inescapable fact that any user of a computer will make
freguent mistakes in the instructions given to the computer.
Most of these mistakes will be easily corrected. However, a few
will cause major loss of information stored on diskettes. For
example, to cite an extreme but plausible case, suppose you have
spent an entire month typing a data base into your computer and
it is stored on a single diskette. You now wish to initialize a
new diskette and type an IN command to the DOS. It is not until
the command is completed that you realize that you forgot to load
the new diskette in the disk drive and that you have just
initialized the diskette which held the results of one month’s
work. This kind of disaster can be avoided by faithfully
following these two rules:

1. Always keep a write protect tab on a diskette unless you are
. about to write on the diskette.

2. Always make a backup copy of any file you have just changed
in any significant way.

The copy disk and copy file utility programs make the backup
procedure easy.

Important files or diskettes should be stored in a more permanent
way. For example, a copy of the personalized working diskette
should be retired to safe storage and be recovered only if the
normal working diskette is destroyed.

- GETTING STARTED - ' 1-2

HARDWARE TESTING

It is extremely important that, you test the hardware of your
computer system thoroughly u51ng the following procedure, before
sing the computer for any serious work. These procedures should
1oent1fy any faults or intermittent failures in the computer 's
RAM and disk system. These procedures should be repeated
regularly in order to maintain system integrity and reliability.

xAM TEST PROCEDURE

4 failure of the RAM may be the cause of almost any type of
croblem you may encounter while using your computer. Therefore,
‘reauent testing of the RAM is very important. The RAM is tested
rith the TM command of the Monitor program. The test repeatedly
ites a pattern of data into the region of RAM being tested and
n reads the pattern to check that the correct pattern is

Seced in the RAM. Since the test modifies the region of RAM it
testing, it is not possible to test the area where the test
rrogram itself resides. Therefore, the test procedure must be
Sone in two steps, the first testinq the last part of RAM with a
4c11tor program that resides in the flrst part of RAM and the

+G0 M2D6O . M2A@Q if a single density diskette

~ith standard memory addressing, a computer with 16K of RAM will
rave memory in the range 2000-5FFF (hex), 32K in the range 2000-
9FFF (hex), and 48K in the range 2000¢-DFFF (hex). Test the last
part of this region with a command like the following which will
test the last 8K of a 16K memory.

>TM 4pBR2-5FFF 1

he test may run for several minutes with no apparent signs of
ife on the terminal. You can determine whether or not the test
s still running by typing a control-C to stop the test. If the
test was still running, the monitor will prompt you for another
command with another (>). If nothing happens when you type the
control-C, then something is wrong. If the test is allowed to
run to completion, it will print the message PASS COMPLETED on
the terminal and then start another pass. The program should be
zllowed to run for several hours to perform a thorough test.

s 1]

- GETTING STARTED - J-1

HARDWARE TESTING (Continu%ﬁ)

If in the course of its operation the test detects an error in
the memory it 1is testing, it will display on the terminal an
error message of the form:

XXXX Yy READ AS zz

The numbers xxxx, yy, and zz are hexadecimal. They represent the
address of, the expected contents of, and the actual contents of
the byte in RAM where the error was detected. 1If zz is always
FF, then there may not be any RAM board addressed to the area
being tested. Another possible cause of errors is an address
conflict, for example an attempt to share the same area of memory
between a RAM board and a memory mapped device, such as the disk
controller or a floating point board, or another RAM boargd.

After the test has run successfully for several hours, perform
the following commands to do a similar test on the first part of
RAM:

>08 Return to DOS from the Monitor
+GO M5709 Load Monitor into last part of RAM
>TM 2000-3FFF 0

The M578@ Monitor has its own set of input/output routines since
"the RAM test will overwrite the input/output routines in the DOS
at 2000 (hex). 1Initially, the M5700 routines are personalized for
use with a HORIZON. 1If your machine has some other hardware
configuration, then the M57080 input/output routines must be
changed to match your DOS routines. See the Monitor section of
this manual for details. After the MS57060 test has run
successfully for several hours, type a control-C to stop the test
and type the following command to return to the DOS.

>IL
DISK TEST PROCEDURE

In order to check for proper operation of the disk controller and
disk drive(s), a DOS disk test program (DT) has been provided.
This utility will repeatedly write a changing pattern to a
specified drive and then attempt to read it back. Refer to the
UTILITIES section of the DOS part of this manual for details on
operation of the DT utility.

If each drive in your system will pass a disk test for 15
minutes, then your disk subsystem is in good operational order.
If an error occurs, this may mean one of several things:

1, The diskette is improperly.mounted, has a write protect tab,
or has a "bad spot" which will not properly record data. If
other diskettes pass the disk test, then the problem is with
the diskette. »

- GETTING STARTED - J-2

123

HARDWARE TESTING (Continued)

The disk drives are improperly connected to the system. For ‘
example, the cable connection has not been made correctly.

power 1is not properly applied to the drives, or the drive
configuration has not been done properly.

There 1is a hardware problem in the controller or drive. 1If
your computer memory 1is operational, and your copy of DOS
and DT have not been improperly modified, and the problem is
not 1 or 2 above, then there may be a hardware problem in
your disk controller or disk drive. In a multiple drive
system, vou can attempt to isolate the problem by testing
both drives to determine if the problem is witnh an
individual drive or not.

- GETTING STARTED - J-3

North Star
DISK OPERATING SYSTEM

Version 2

INTRODUCTION

The North Star DOS (Disk Operating System) was designed and
implemented by staff members of North Star Computers, Inc. for
use in conjunction with the North Star MICRO DISK SYSTEM, and
HORIZON computer system. The DOS permits a user to issue various
"commands" from a terminal for maintaining and using files on
diskette. The DOS also provides "library routines" which may be
called from user software. These library routines will primarily
be of interest to users who will be developing their own system
software, as opposed to those users who will primarily use
application systems such as BASIC.

Versions of the North Star DOS are available for both single-
density and double-density North Star disk systems. The DOS for
single-density systems is different from the DOS for double-
density systems. When reading this manual, if you have a single-
density system, then ingore all references to double-density
capabilities.

The DOS occupies 3.25K (D@0 hex) bytes of RAM in double-density
systems and 2.5K (Af0 hex) bytes of RAM in single-density
systems, including 256 bytes of RAM for input/output routines.
No buffetr area outside the DOS is required for any of the DOS
commands. The origin of the DOS is 20888 (hex) in both standard
versions.

The North Star DOS is intended for use only with the North Star
MICRO DISK SYSTEM and HORIZON computer, and no license is granted
for ‘any other use. Improved copies of the DOS, as they become
available, may be obtained for a nominal charge.

Before the DOS can be used with a specific computer
configuration, the instructions in the GETTING STARTED section of
this manual must be followed.

w1

ABOUT FILES

DISK ADDRESSES

Fach diskette consists of 35 concentric TRACKS, and each track is
subdivided into 1@ SECTORS. A disk sector can hold either 512
bvtes of double-density information or 256 bytes of single-
density information. For purposes of discussion, a FILE BLOCK is
defined to be a unit of information egual to 256 bytes. A sector
can therefore contain two file blocks in double-density, or one
file block in single-density. Every sector on the disk is
identified by a unigue DISK ADDRESS - an integer from # through
349, For example, sector 3 of track 27 has disk address of 273.
Track @ is the "outermost" track, and track 34 is the "innermost"
track.

FILES

ne primary DOS function is to permlt the creation, deletion and
Lce of files on diskettes. A file is an integral number of file
blocks of data and occupies seguential disk sectors. For
example, a particular file might occupy disk addresses 17 through
9% on a diskette loaded in drive #2. Note that files must always
begin on sector boundaries, and that double-density files must
always contain an even number of file blocks.

The first four sectors on each diskette contain a FILE DIRECTORY
which specifies a symbolic name, base address, length, type, and

data-density information for each file on that diskette. The
=ymbollc name may be up to 8 characters long, and may include any
characters except blank and comma. The length of a single-
density file may be up to 346 blocks, and a double-density file
may extend to 692 blocks. A directory may contain as many as 64
entries in single-density and 128 entries in double- den51ty No
two files in a directory may have the same name, but it is
possible for files of the same name to be in directories of
diskettes loaded simultaneously on separate drives in a muliple
disk drive system.

FILE TYPES

One byte in the file directory entry for each file specifies the
“tvpe" of the file. Depending on the spec1f1c type, additional
bytes in the entry may have special meaning. Only four of the
127 possible file types have been assigned to date:

tvpe @ - Default type. All new files are assigned type @ until
explicitly changed.

tvpe 1 - Machine language program. This file type identifies &

machine language program (object code) that may be
executed directly from the DOS with the GO command.

- NORTH STAR DOS - A-1

C

ABOUT FILES (Continued) .

type 2 - BASIC program. This type of file is used to identify a
BASIC program that can be LOADed or SAVEd from BASIC.

type 3 - BASIC data file. This type of file is the standard
type for data files read and written by BASIC programs.

FILE DIRECTORY STRUCTURE

The file directory occupies disk addresses (sectors) @ though 3.
Each block in the directory holds thirty-two (sixteen in single-
density systems) l6-byte entries. The gymbolic name of the entry
uses the first 8 bytes of an entry. An empty entry is an entry
with 8 blanks (280 hex). Following the symbolic name in an entry,
the disk address {2 bytes), the file size (two bytes) and the
type (1 byte) follow. The last three bytes of an entry are type
dependent. In particular, for a type 1 file (GO file), the two
bytes following the type byte contain the go-address, and for a
type 2 file (BASIC program) the byte following the type byte
specifies how many file blocks of the file actually contain valid
data.

File directory entry:

bytes #-7 symbolic name of entry

bytes 8-9 disk address

bytes 18-11 number of blocks in file

byte 12 file type (high bit is 1 if double-density)
bytes 13-15 type-dependent information

- NORTH STAR DOS - A-2

COMMANDS

Instructions are issued to the DOS from the terminal by typing '
COMMANDS. The command format is a 2-letter mnemonic followed by

any reguired arguments. Arguments are separated from the command
mnemonic and from each other by a single blank. A command must

be terminated by a carriage return before the DOS takes any

action. If a typing error occurs during typing of a command, an
at-sign(@) or control-N may be typed to permit re-typing of the

command. Also, an underline, left-arrow, control-Q, or control-H

may be typed to erase the previously typed character.

when a file name is reguired as a command argument, the disk
crive number (in a multiple drive svystem) may be specified by

immediately following the file name with *,1", “,2", ",3", or
“,4", Drive #4 four may be specified only in double-density
svstems. Otherwise, drive #1 is assumed. Some sample file names
are:

ABC TEST1234,3 BASIC,1

Commands may be typed whenever the prompt character (* for
single~density DOS and + for double-density DOS) appears at the
left margin of the terminal.

LI <optional device specification> <optional drive number>

This command will list the entire contents of the directory on 'I
the diskette loaded in the specified drive. 1If no drive is
specified, then drive #1 is assumed. For each file, its
symbolic name, starting disk address, length, data density
{(single or double), and type will be printed. For type 1
files, the go-address will also be printed. To prematurely
terminate a listing, a control-C may be typed. If ocutput to a
device other than the console terminal is desired, then the
desired output device number may be specified by typing a #
character followed by the device number. The device number
must correspond to a device that has been interfaced to the
system in both hardware and by adding the appropriate
personalized input/output routine.

CR <file name> <length> <optional start address> <opticnal density>

This command will create a new file on the drive indicated by

the file name. The length argument specifies the number of
256-byte blocks. If no starting address is given, then the

file will start after the "last" (innermost) file currently
allocated on the diskette. Otherwise, the supplied starting
address will be used. The optional density specification is a
zingle letter, "S" or "D", signifying that the file should be
created in single or double density, respectively. If no

density choice is specified, double-density is assumed. No .
density specification may be made with the single-density ﬁl
version of the DOS. The CR command will only create a file

- NORTH STAR DOS - B-1

DE

TY

GO

JP

COMMANDS (Continued) *

directory entry - no accessing of the file itself will be
done.

<file name>

This command will delete an existing file directory entry on
the indicated drive. ©No actual accessing of the file blocks
will be done. The DE command, in conjunction with the CR
command, may be used to change the length of a file on the
disk. If this is done, note that the type and type-dependent
information will have to be re-entered.

<file name> <file type> <optional go-address>

This command is used to change the type of the specified file
on the indicated drive. If type 1 is specified, then the
third argument must be supplied to specify the "go-address“.

<file name>

This command is used to load the specified file into RAM from
the indicated drive and begin execution. The GO command may
be used only with type 1 files. The GO command will read the
entire file into RAM beginning at the go-address, and then
jump to the go-address. Therefore, the first byte of the file
must be the entry point of the program. The GO command sets
the HL register pair to a value which points to the remainder
of the command line (any characters typed after the file name)
as stored in the DOS command buffer in memory. In this way,
it is possible to send arguments to a program through the
command string. The maximum length of a DOS command line is
20 characters.

The library routines of DOS are all included in the region of

DOS preceding address 2A@0 (hex). For Release 5 dual-density
DOS, command and I/0 processing are handled by code from
2A00 (hex)-2CFF(hex). It is possible to GO to a file with a

GO-address in the range 2Af6 (hex)-2CFF(hex). However, upon
return or re-entry to the DOS, the DOS routines in that region
will have been overwritten, and no command processing will be
possible. Instead, the Release 5 dual-density DOS will print
the message:

RE-BOOT

and await an input character from the console terminal. After
a2 system softwae diskette is loaded and a character is typed,
the DOS will be re-booted from the disk.

<hex RAM address>

This command will cause the computer to jump to the specified

- NORTH STAR DOS - B-2

.
et}

¢35

=t iy
relnw

IN

COMMANDS (Continued)

RAM address. It provides a way of executing programs which '
exist in the address space of the computer. Do not confuse

this command with the GO command. However, like the GO

command, JP sets the HL register pair to point to the

remainder of the command string.

<file name> <hex RAM address>
<file name> <hex RAM address>

These commands may be used to load or save a disk file to or
from RAM. The entire contents of the file will be read to or
written from the area starting with the specified RAM address.

<disk address> <hex RAM address> <% of blocks> <optional density>
<disk address> <hex RAM address> <# of blocks> <optional density>

These commands may be used to read or write a specified drive
directly to or from RAM. The WR and RD commands should be
used with great care, as typing errors can have catastrophic

effects. The disk address may optionally be followed by ",1",

“,2", ",3" or ",4" to indicate a particular drive. Otherwise,

drive #1 is assumed. Drive #4 may not be specified in single-
density systems. The amount of data to transfer is specified

as 256-byte file blocks. The optional density specification

is @ single letter, either "8" for single-density or "D" for
double-density. If the density specification is omitted, ‘l
double-density is assumed. (The single-density DOS, however,

will ignore this argument.) Note that a method of copying one
diskette to another in a single drive system would involve

repeated use of the RD and WR commands.

<optional drive number> <optional density>

This command is used to initialize each new diskette to be
used in the system. The IN command writes each block on the
specified drive with ASCII blank characters (28 hex). The
cptional density argument, "“S" or "D", may be used to specify
whether the diskette should be initialized in single or double
density format. If this argument is omitted, the diskette
will be initialized to double-density. (The single-density
version of the DOS will ignore the density specification.)
This procedure initializes the directory and also guarantees’
that no "hard disk error" can result from access to an
uninitialized file block. The IN command takes about 15
seconds. Needless to say, one should make sure that the
rroper diskette is loaded before issuing the IN command. Note
that an initialized diskette does not contain a copy of the
208. The IN command does not require any buffer area outside
of the DOS memory area.

- NORTH STAR DOS - B-3

—-—w

DISK SYSTEM START-UP ®

(,/ After power-on, or when it is desired to re-start the disk
system, the 8080 or %80 computer must be forced to begin
execution at the PROM bootstrap program starting address (E808
hex in the standard version). The PROM bootstrap program will
read a sector from drive #1, disk address 4 into RAM at the DOS
starting address, (2008 hex in the standard version). After
reading in the sector, the bootstrap will branch to the DOS
starting address. The program in the first block of the DOS will
proceed to read in the remaining sectors of the DOS from disk
starting at address 5. Then the DOS will print the prompt
character (* or +) and await a command from the terminal.

Gnce the DOS has been started, it is no longer necessary to leave
the diskette in drive #1. The DOS is fully resident in RAM, and
makes no disk accesses unless asked to do so. Furthermore, the
DOS does not maintain any copies of the diskette file directory
in RAM between commands. Thus it is possible, for example, to
obtain listings of the file directories of several diskettes by
inserting them one at a time and then issuing the LI command.
Also, it is possible to copy one diskette to another in a single
drive system by repeatedly exchanging diskettes and doing the
appropriate seguence of RD and WR commands or LF and SF commands.

- NORTH STAR DOS - C-1

W

DISK ERRORS

vost disk operations are tried 16 times by the DOS before '
reporting failure. Upon failure, an error message of the
focllowing form is printed on the console terminal:

DISK ERROR TYPE: x DRIVE: y SECTOR: zzz

where x=the error type,
y=the drive number on which the error occurred, and
zzz=the disk address at which the error occurred.

The error types have the following meanings:

5YNC BYTE NOT FOUND: Indicates badly written data on the
diskette, or a diskette not properly loaded into the drive, or
an attempt to read an uninitialized diskette.

7 CRC COMPARE ERROR: Indicates badly written data.

VERIFY COMPARE ERROR: Indicates data on disk does not compare
with RAM in a verify operation.

4 NO INDEX PULSE: Indicates wrong type of diskette or badly
loaded diskette.

5 DENSITY MISMATCH: Indicates single-density data found where
double-density data was expected or visa vera. '

5 WRITE PROTECT: Indicates a write operation was attempted to a

write protected diskette.

If the DOS prints a guestion-mark(?) in response to a command,
this indicates illegal form for the command or an illegal
argument value.

- NORTH STAR DOS - D-1

C

DOS LIBRARY ROUTINES ®

This section describes how user machine language software may
interface to the DOS for the accessing of disk files.

The DOS ENTRY POINTS AND FLAGS section shows the entry points for
each of the routines to be described here. The exact interfacing
requirements are described in that section. The DOS uses the
stack pointer existent at call time, and some of the DOS library
routines may reguire as much as 30 bytes of stack storage. Note
that the DOS may be re-entered without using the bootstrap PROM.
Now follows a discussion of each library routine.

DLOOK
This routine searches for a specified file name in the
directory of the indicated disk drive. 1If the specified
name begins with a blank, then an “"empty" file directory
entry is looked up. On failure to find the requested entry,
HL is set to the value of the first free disk address on the
indicated drive following the last file on the diskette.
The file name must be in the correct syntax.

On success, HL contains a pointer into a buffer in DOS RAM

that has a copy of the sought entry. The pointer addresses
the first byte following the symbolic name (i.e., byte 8).

Also, on return, the ACC specifies the disk drive which was
determined from the name passed as argument.

DWRIT
This routine is used to write back to diskette an updated
file directory entry which was previously found using DLOCK.
No disk activity may occur between the DLOOK and the DWRIT
call.

DCOM
This routine may be used to issue an arbitrary disk read or
write command. On a read request, DCOM will try 18 times
for a successful read before giving up and branching to
HDERR. DCOM will fail return if the supplied arguments are
out of bounds. However, great care should be used to avoid
calling DCOM with incorrect arguments.

DOS
This is an entry point to the DOS command processor. It can
be used to return control to a loaded DOS without reguiring
a PROM bootstrap load.

DOSERR .
When a control-C is typed at the console terminal during a
diskette directory listing, or when DOS is passed a file
name which is syntactically incorrect, DOS branches to the
JMP instruction stored at this location. If left
unmodified, the DOSERR JMP transfers control back to a DOS
error-handling routine. Modifying the address contained in

- NORTH STAR DOS .- E-1

DOS LIBRARY ROUTINES (Continued)

this JMP instruction will allow a user’ s application program
to retain control under the above-named error conditions.

HDERR
HDERR branches to DOS code that prints an error message and
then enters the DOS command processor. DOS branches to
HDERR whenever a read attempt fails despite 1@ retries. For
your software to retain control in the event of a hard disk
error, it must modify the address of the HDERR JMP
instruction (e.g., LXI H,ADDR; SHLD HDERR+l). The stack is
set to the stack pointer value before the call to DCOM. HL
igs set to the disk address at which the error was
discovered. [Note: Software for dealing with hard disk
errors is notoriously difficult. It is suggested that due
to the expected low frequency of hard disk errors, for most
applications the existing HDERR action will be sufficient.
Jard disk errors will result primarily from careless use
(e.g. forgetting to initialize a diskette, or from removing
a diskette while writing is in progress). Bard disk errors
can also result from power failure during writing, or from a
hardware system failure.] -

LIST
This routine will list the file directory of the specified
drive. The listing format will be exactly the same as the
listing format obtained with the DOS LI command.

OFTEN
This routine is called at least once every 40 milliseconds
when DCOM has been called to perform disk operations. 1In
the delivered copy of DOS, this routine simply does a RET.
However, OFTEN may be personalized to a routine to poll for
input/output requests or to enable and disable interrupts.
The OFTEN routine may execute as long as is needed, and disk
activity will continue when the OFTEN routine returns.
OFTEN must preserve all registers except the accumulator and
may only use two bytes of stack space. Note that OFTEN will
be called at bootstrap load time, even before the 2900
personalization block is loaded.

Note: Here is a procedure for creating a new file using the above
routines: First use DLOOK to search for the desired new name

- 1f DLOOK succeeds then a file of that name aready exists and
should not be created. On failure, HL will have the disk address
wnich should be used as the starting address of the new file.
Next, use DLOOK to find an empty directory entry by looking up a
blank name. If this call to DLOOK fails, then the directory
£zils. On success, uce the pointer in HL to copy the new file
nzme into the directory entry, and copy in the disk address and
length and type information. Finally, call DWRIT to copy the new
directory entry back to the disk.

- NORTH STAR DOS - E-2

ADDITIONAL DOS PERSONALIZQTION

The primary type of personalization that can be done to the DOS
is the insertion of input/output routines that allow
communication of the DOS and other system software with a
particular hardware configuration. Input/output routine
personalization is described in detail in the GETTING STARTED
section of this manual. There are a number of other types of
personalization that can be done to the DOS that are described in
this section.

READ AFTER WRITE CHECK

If the read after write check option is turned on, then z read
and verify operation is performed after every disk write
operation which checks that the data written on the disk by the
write operation matches what is in RAM. With this option turned
on, write operations will be slower, but read operations will be
the same speed. It is strongly recommended that the read after
write option be turned on unless the application requires great
speed of disk access. The read after write option is turned on
if the byte value at address 202B(hex) of the standard version of
DCS is non-zero and turned off if zero.

PAGE SIZE

The output of some devices, such as CRT s and video displays,. can
only display a fixed size page of information at one time. If
the page size option is enabled, then the file directory listing
which is output by the LI command or the LIST library routine
will stop after a page of information has been ocutput and will
not display the next page until the user indicates he wishes to
proceed by typing the return key. The page size option only
affects the operation of the console terminal (device #@). If
the byte value at address 2833 (hex) of the standard version of
DOS is zero, then the page size option is turned off and output
will be continuous without stopping. 1If the value is non-zero,
then the value is the number of lines on a page and the output
will stop after that many less one lines of output have been
displayed. The last line on the page will reguest the user to
type return to continue. 1Initially, the page size option is on
and set for a page size of 24 lines.

AUTOMATIC START

If the automatic start option is turned on, then a single command
which is stored in the DOS input buffer is automatically executed
immediately after a DOS bootstrap operation. This feature, for
example, allows for the automatic loading and running of a
program such as BASIC upon system start-up. Initially, the
automatic start option is turned off. To turn on the option, the
byte value at address 2030 (hex) of the standard version of DOS
should be set to zero. 1Initially, the value is one.
Additionally, the input buffer must be setup to contain the

- NORTH STAR DOS - F-1

ADDITIONAL DOS PERSONALIZATION (Continued)

command which should be automatically executed. The two
addresses 2831 and 2832(hex) contain the low order and high order
byte, respectively, of the address of the input buffer within the
DOS. .The input buffer should be loaded with the ASCII values of
the successive characters of the desired command. The last
~haracter of the loaded command must be a return (@D hex).

EXAMPLE PERSONALIZATION

The following listing shows an example procedure which will
~odify the version of DOS on a diskette so that the read after
«write option is turned on, the page size option is turned on and
+he page size is set to 24 lines, and the automatic start option
ic turned on and the automatic start command is set to be "GO
RASIC".

Load the diskette to be modified in drive #1

+LF DOS 4200 Load DOS into RAM

+G0 M2D@0 Load and run the Monitor

>FM 402B 1 Turn on read after write odption
>FM 4633 24T Set page size to 24 lines

>FM 40630 0 Turn on automatic start option
>DH 4931,2 Determine input buffer address
492D: 31 27 Address is 2731, for example

SEM 4731 "G" Load input buffer with "GO BASIC"
»FM 4732 "O"

>FM 4733 " ¢

>FM 4734 "B"
>FM 4735 "A"
>FM 4736 "S"
>FM 4737 1"
>FM 4738 "C*

>FM 4739 D Put return code at end of command
>08 Return to DOS
+SF DOS 40060 Save modified DOS back on the diskette

'
|
[L8]

~ NORTH STAR DOS -

L/’ vy
0000
0ooD
goeo
2000
2007
2087
2007
2007
2007
2008
200A
200A
2004
200D
200D
288D
208D
200D
200D
200D
2016
2019
2016

(;/ 2010

2010
20180
2013
2013
20913
2013
2013
2016
2016
2016
2016
2016
2016
2016
2016
2016
2019

C9

C30600

C30D20

C31820

C3132¢

C3i620

DOS ENTRY POINTS AND FLAGS

*

*NORTH STAR DISK OPERATING SYSTEM
*
ORG 2000H STANDARD VERSION ORIGIN VALUE
DS 7 THESE CELLS ARE RESERVED
*
*THE OFTEN ROUTINE IS CALLED FREQUENTLY DURING USE OF DCOM
*BC, DE, AND HL MUST BE PRESERVED BY OFTEN.
*ONLY TWO STACK BYTES ARE AVAILABLE,
OFTEN RET CHANGE TO JMP INSTRUCTION
DS 2 IF ADDING YOUR OWN OFTEN ROUTINE
*
*THIS NEXT ENTRY IS USED BY THE BOOT PROM TC ENTER THE DOS
START JMP 0 8 IS NOT THE REAL ADDRESS
*
*THIS IS THE CHARACTER OUTPUT ROUTINE
*THE CHARACTER TO BE OUTPUT MUST BE IN THE B REGISTER.
*DEVICE NUMBER MAY BE SUPPLIED IN ACC, IF DESIRED.
*ON RETURN THE CHARACTER MUST ALSO BE IN THE ACC.
*ONLY THE ACC AND FLAGS MAY B MODIFIED
COUT JMP COUT YOUR ROUTINE MUST DO A RET
*

*THIS IS THE CHARACTER INPUT ROUTINE.

*DEVICE NUMBER MAY BE SUPPLIED IN ACC, IF DESIRED.

*THE 7-~BIT ASCII CODE MUST BE RETURNED IN THE ACC.

*ONLY THE ACC AND FLAGS MAY BE MODIFIED.

CIN JMP CIN YOUR ROUTINE MUST DO A RET

*

*THIS IS THE TERMINAL INITIALIZATION ROUTINE

*ALL REGISTERS MAY BE USED.

*IF NOT NEEDED, MERELY PATCH 'IN A RET.

TINIT JMP TINIT

*

*THIS ROUTINE DETECTS A CONTROL-C

*IF Z IS SET ON RETURN, THAT MEANS A CONTROL-C WAS TYPED.
*OTHERWISE, IF NO CHARACTER WAS TYPED OR A CHARACTER OTHER
* THAN CONTROL-C WAS TYPED, Z MUST NOT BE SET.

*CONTC SHOULD RETURN IMMEDIATELY IF NO CHAR WAS TYPED,

* NOT WAIT FOR A CHARACTER AND THEN RETURN.

*ALL REGISTERS MAY BE USED.

CONTC JMP CONTC

*

- NORTH STAR DOS - G-1

DOS ENTRY POINTS AND FLAGS (Continued)

2819 *DOS LIBRARY ROUTINE ENTRY POINTS, ETC.
2019 *
2619 *THIS ADDRESS IS BRANCHED TC ON HARD DISK ERRORS '
2319 C30000 HDERR JMP @ @ IS NOT THE REAL ADDRESS
201C *
201C *THIS IS THE FILE DIRECTORY LOOKUP ROUTINE
zglc *ACC MUST CONTAIN THE DEFAULT UNIT NUMBER (NORMALLY 1)
e *HL=POINTER TO LEGAL FILE NAME IN RAM, WITH OPTIONAL DRIVE
201C * SPECIFICATION FOLLOWED BY EITHER A BLANK OR CARRIAGE RETURN.
01C *UNIT NUMBER DETERMINED FROM NAME IS ALWAYS RETURNED IN ACC.
.201C *FAILURE IF CARRY SET. ON FAILURE, HL=FIRST FREE DISK ADDRESS
RS *ON SUCCESS, HL HAS A POINTER TO THE EIGHT BYTE OF A COPY
o01c *QF THE DOS ENTRY IN RAM
Sr10 CE0800 DLOOR JMP @ @ IS NOT THE REAL ADDRESS
~T *
2G1E *THIS ROUTINE WILL WRITE A DIRECTORY ENTRY BACK TO DISK
Z01F *NO ARGS ARE NEEDED. MUST FOLLOW DLOOK.
J81F C30800 DWRIT JMP ¢ @ IS NOT THE REAL ADDRESS
822 *

*THIS ROUTINE MAY BE USED TO ISSUE A DISK COMMAND

*ACC=NUMBER OF BLOCKS

*B=COMMAND (@=WRITE, 1=READ, 2=VERIFY, -1=SING INIT, -2=DBL INIT
*C=UNIT NUMBER, BIT 7=DOUBLE DENSITY BIT

*DE=STARTING RAM ADDRESS, HL=STARTING DISK ADDRESS

*RETURN WITH CARRY SET MEANS ARGUMENTS WERE ILLEGAL

2322 C30080 DCOM JMP @ g IS NOT THE REAL ADDRESS

2025 *

z(25 *THIS ROUTINE MAY BE USED TO LIST A FILE DIRECTORY ‘
ROV *ACC=DISK UNIT, L=OUTPUT DEVICE NUMBER FOR LISTING

2025 C30009 LIST JMP @ g IS NOT THE REAL ADDRESS

028 *

028 *THIS ADDRESS IS AN ENTRY POINT TO THE LOADED DGCS

2028 *ENTRY HERE WILL RESET THE STACK PTR, AND NOT CALL TINIT
2028 C300660 DOS JMP @ @ IS NOT THE REAL ADDRESS

2028 *

202B *THIS NEXT BYTE IS A FLAG USED BY DOS.

2028 *IF ¢, THEN READ-AFTER-WRITE CHECK IS NOT DONE,

2028 *IF 1, THEN READ-AFTER-WRITE CHECK IS DONE.

Z02B 2Qa RWCHK DB @

232C *

?D2C *THIS ADDRESS BRANCHED TO ON CONTROL-C DURING LIST OR
f@2C *FILE NAME ERROR DURING DLOOK

202C C308080 DOSERR JMP @ NOT REALLY 0

282F * .

gGEF *THIS BYTE IS SET TO DENSITY AFTER DLOCK CALLS

- 2F *@@gH IF SINGLE DENSITY, 8@H IF DOUBLE DENSITY

CIZE DEN DS 1

2833 *

2039 *AUTO START FLAG. NORMALLY 1 - SET TO @ FOR TURNKEY STARTUP

a1 AUTOS DB 1
*

#NEXT TWO BYTES IDENTIFY THE LOCATION OF THE DOS INPUT BUFFER
e DW 8 NOT REALLY 8 ‘
*
*NEXT BYTE SPECIFIES VIDEO TERMINAL LINE COUNT. IF @, THEN
*NO PAGING OF THE LIST COMMAND WILL BE DONE
1 PAGES DB 24 INITIALIZED FOR 24 LINE TERMINAL

*

G o) omd e |

2
N
w3

>

2

TN TR O

EaS

UTILITIES

There are four operations which may be considered as part of the
DOS but are actually implemented as GO files. The operations,
and their corresponding GO file names are:

DT - Disk Test.
CF - Copy File.
CD - Copy Disk.
CO - Compact disk and convert to double-density.

Complete descriptions of the utilities follow. Some of the
arguments to the utilities can be listed on the command line
where "GO" is typed. For example

+GO DT 1

may be typed to the DOS. This tells the DT utility which drive
is to be tested. Any arguments which you do not supply to the

utility on the GO command line are explicitly requested by the

utility.

The origin in memory of each of the utilities lies just after the
end of DOS (2A@@H in single-density systems and 2D6@H.in double-
density systems). Each of the utilities reguires a 5K buffer
area (2.5K in single-density systems). The amount of RAM
required by a utility may be computed by adding the buffer size
to the size of the utility on diskette. Because the utilities
load at the same address as the standard version of BASIC and
many other applications programs, vyou should be careful that no
programs or data be overwritten and therefore lost as a result of
using a utility.

You may wish to use a utility to operate on a diskette different
than the diskette that holds the utility program. In this case,
you must change diskettes after the utility has been loaded into
RAM. Each of the utilities allows a different diskette to be
loaded before actually beginning its operation. Diskettes can be
switched any time after the utility makes its first reguest for
input. Do not answer that request until the switch, if any, has
been made!

In the following expanded descriptions of the utilities, any
references to double-density capability refer only to versions of
the utilities for use on double-density systems.

Typical user-computer interaction at the terminal is given as
EXAMPLES for each of the utilities. 1In these examples, note that
the DOS prompt given is a plus-sign (+). However, single-density
versions of the DOS generate an asterisk (*) as prompt. 1In
examples, the symbol <CR> comes immediately after the user’s
responses to indicate that a line of user input must always be
terminated by striking the RETURN key.

- NORTH STAR DOS - H-1

UTILITIES (Continued)

DT ~ Disk Test.

The Disk Test utility tests the specified drive and the diskette
loaded in that drive. The following cycle is continuously
repeated:

a) The entire diskette is written with data, starting at sector
3. An incrementing pattern is used. If the read after write
check is enabled (see DOS section ADDITIONAL DOS
PERSONALIZATION), then each track is verified immediately
after it is written.

The data on the entire diskette is verified, starting at
sector @. If any sector cannot be read or contains data
different than what was written, an error messgae is printed
on the console terminal and the test stops.

tq

c) If no errors have been detected by this point, the message

PASS COMPLETED.
is printed on the console terminal.

~ terminate a disk test, type control-C. A diskette used for a
igk test does not emerge from the test containing the
nformation which was previously on it. Also, a diskette which
wzs used for a disk test must be initialized before it is
subsgeguently used for data storage.

EXAMPLES

+GO DTKCR>

DRIVE NUMBER: 2<CR>

SINGLE(S) OR DOUBLE (D) DENSITY TEST? D<CR>

LOAD DISKETTE AND PRESS RETURN TO BEGIN TEST.<CR>
FASS COMPLETE.

PASS COMPLETE.

PASS COMPLETE.

CONTROL-C STOP User types control-C here,

-+
T

+GO DT 2 D<KCR>
LOAD DISKETTE AND PRESS RETURN TO BEGIN TEST.<CR>
DISK ERROR TYPE 3 DRIVE 2 SECTOR 352

-+

- NORTH STAR DOS - B-2

UTILITIES (Continued) *

(/, CF - Copy File.

The Copy File utility copies the contents and type information
from a source file to a destination file. The destination file
may be a file which already exists, but if it does not, it is
created automatically. If the destination file already exists it
must be at least as large as the source file (in 256-byte file
blocks). Whether the destination file exists or not, CF asks if
the destination file should be written in double or single
density. The source and destination files may be on different
diskettes loaded on different drives, or they may be on the same
diskette.

If any sectors in a source file are recorded in a density
different than the density specified in the directory entry, the
CF utility treats those sectors as sectors full of blanks at the
specified density. No change is made to the source file,
however.

Note that versions of the CF utility delivered for single-density
systems only provide single-density operation.

EXAMPLES

+GO CE<CR>
Q/‘ FROM FILE: TEST<CR>
TO FILE: PROGRAM,2<CR>
EXISTING FILE. SINGLE(S) OR DOUBLE (D) DENSITY? D<CR>
COPY COMPLETED.
+

+GO CF ABC ABCl<CR>

NEW FILE. . SINGLE(S) OR DOUBLE (D) DENSITY? S<CR>
COPY COMPLETED.

+

- NORTH STAR DOS- - H-3

UTILITIES (Continued)

cp - Copy Disk. ' ‘

The Copy Disk utility copies the entire contents of a diskette
loaded on one specified drive to a diskette loaded in another
specified drive. The source diskette may contain single-density
information, double-density information, or a combination of the
two. After the copy is completed, the destination diskette will
contain all the same information as the source diskette, and each
sector will be recorded in the same density as the source. If
any information on the source diskette is impossible to read, the
opy terminates. The copy operation can be retried after the bad
ector has been rewritten.

n 0 G

EXAMPLES

+G0 CDLKCR>

COPY FROM DRIVE: 1<CR>

70 DRIVE: 2<CR>

LOARD DISKETTES AND PRESS RETURN TO BEGIN COPY.<CR>
COPY COMPLETED.

-+

+G0 CD 2 3<CR>
LOAD DISKETTES AND PRESS RETURN TO BEGIN COPY.<CR>
COPY COMPLETED. ‘

-+

~ NORTH STAR DOS - H-4

UTILITIES (Continued) ™

CO0 - Compact.

The Compact utility is used to "compact" the file space on a
diskette. Any unused disk space between existing files is
eliminated by moving the files toward track @. Thus, the CO
utility can be 'used to reclaim disk space after files have been
deleted or shortened, or in case files were created in such a way
as to leave gaps of disk space between them.

The CO utility also provides a second, optional function which
converts a diskette to double-density format. That is, as a

result of running CO, the diskette file directory will be

recorded in double-density, and all files that were previously
single-density files will become double-density files. Each pair
0of single-density file blocks (256-bytes per block) is stored in
one double-density sector (512 bytes).

Before actually beginning to move files on the diskette, CO
checks the file directory for any "overlapping" files.
Qverlapping files are any files which include at least one sector
in common. Overlapping files can only be created when the
optional <disk address> argument is used with the DOS CR command,

or by applications programs which create such files. If any

overlapping files are discovered by the CO check, the file names
are printed on the console terminal and the user is given the
opportunity to abort the compaction. If overlapping files exist,
the compaction may yield unpredictable results. (NOTE: The
special case of a file with disk address beginning at 0 is
ignored by this check, and by the compaction process.)

A compaction can take from 1 to 30 seconds.
EXAMPLES

+GO CO<KCR>

LOAD DISKETTE AND SPECIFY DRIVE #: 1<CR>
CONVERT TO DOUBLE DENSITY? Y<CR>
COMPACTION COMPLETED.

+

+GO CO 3<KCR>

CONVERT TO DOUBLE DENSITY? Y<CR>

THE FOLLOWING FILES HAVE CONFLICTS

DATAL

TEST123 ‘
PROCEED WITH COMPACT IN PRESENCE OF CONFLICTS? N<CR>
+

- NORTH STAR DOS - H-5

North Star Monitor

Version 2

by Thos Sumner

INTRODUCTION
7o North Star Monitor is a program which provides the user witn
certain maintenance and debugging functions which would normally
se provided in a limited way on systems which include a control
vanel The Monitor is intended to be used in conjunction with
zne North Star- Disk Operating System (DOS). No license is
extended for use of the Monitor in systems_without a North Star
c¢isk controller board.

Commands to the Monitor are entered via the console using a
format consistent with the D0OS commands. The console is defined
to be the terminal with which the DOS normally communicates

- communication is done using the DOS I/0 routines. When the
Monitor is in COMMAND MODE, i.e., is ready to accept a command:
it will print a > at the beginning of a line on the console.
Command editing facilities compatible with the North Star BASIC
editing features are included in the Monitor.

The following list summarizes the commands available:

CM - Compare memory block contents

FM - Fill memory block

MM - Move memory block contents

SM - Search memory block

TV - Test memory block

DH - Display memory hexadecimal

DA - Display memory with ASCII interpretation
DS - Display memory and substitute wvalues

JP - Jump to program '

0S8 - Return control to the DOS

IL - Perform initial load from bootstrap PROM
OD - Assign output device number for the Monitor
ID - Assign input device number for the Monitor

4 detailed description of each command appears in a later section
oelow., All printed output from the Monitor is formatted to fit
into sixty-four character lines.

w

INTRODUCTION -

THE NORTH STAR BASIC SYSTEM
Version 6

by Jim Merritt

ABOUT NORTH STAR BASIC

North Star BASIC was created by Dr. Charles A. Grant and Dr.
Mark Greenberg of North Star Computers, Inc. This manual
describes version 6, an extended disk BASIC intended for use
with the North Star HORIZON computer or MICRO DISK SYSTEM.
Version 6 includes many features especially designed to
facilitate scientific, business, and industrial applications
programming. Of special note are North Star BASIC’'s
facilities for programmed error handling, automatic program
sequencing (CHAINing), formatted output, sophisticated
string handling, and machine language subroutine interface.
Both single line and multiple line user~function definitions
are supported, as well as multiple-dimension numeric arrays,
and complete disk file handling capabilities. Data files
may be accessed sequentially, randomly, or on a byte by byte

(/‘ basis. North Star BASIC combines all these "extras" with
the usual features found in any reasonable implementation of
BASIC, to yield a unigue development tool which promotes the
writing of powerful BASIC programs. Special design features
ease the task of "converting" programs written for other
BASIC systems so that they will run under North Star BASIC.
BASIC is also supplied in a version which uses the North
Star Hardware Floating Point Board (FPB-A). The two
versions, Floating Point and Non-Floating Point, are
identical in features and operation but the FPB version
executes arithmetic operations faster.

The North Star Version 6 BASIC software is intended for use
only with the North Star HORIZON computer or MICRO DISK
SYSTEM, and no license is granted for any other use.
Inproved copies of Version 6, as they become available, may
be obtained for a nominal charge.

HOW THIS MANUAL IS ARRANGED
This manual attempts to meet the needs of both the novice
programmer, with little or no BASIC background, and the
experienced BASIC programmer, who needs only know the
particular characteristics of North Star BASIC. '

(;/ For the expert, individual STATEMENTS, COMMANDS, and other
specific language features are covered in their own brief

- NORTH STAR BASIC - A-1

INTRODUCTION (Continued)

exposition sections. Each exposition consists of the
following: ‘

SYNTAX GUIDE: This includes one or more brief models which
define the form of the STATEMENT or COMMAND within
North Star ‘s BASIC syntax.

ACTION: This tells what happens when the STATEMENT or
COMMAND is used.

EXAMPLES (or EXAMPLE PROGRAMS): These show the STATEMENT or
COMMAND in typical use. When the feature may take a
variety of forms, an attempt has been made to provide
several representative examples. Freguently, the
feature is illustrated in the context of a sample
program Oor program segment.

REMARES: Whenever necessary, this section is included to
provide further information about the feature’s use.

ERROR MESSAGES: Improper formation or usage of a language
feature will result in a BASIC error condition which
will lead to both the termination of the program or
COMMAND being processed, as well as an ERROR MESSAGE
sent to you. Wherever applicable, the common ERROR
MESSAGES associated with improper use of a given
feature, as well as their probable causes, are given in '
the ERROR MESSAGES section for that feature. Note that
common error messages which apply generally to all
STATEMENTS and COMMANDS are described in APPENDIX 2.

SEE ALSO: Here you will find cross references to relevant
manual sections, study of which may help you more fully
understand a given feature.

The manual includes several appendices in the back, two of
which provide thorough indexing of all topics and features
in the manual. Other appendices contain charts, tables, and
detailed information useful to the practicing programmer.

For the beginner, there are many DISCUSSION sections, which
explain the underlying concepts and capabilities of North
Star BASIC. Programming methodology and strategy are also
‘examined in these sections. This is not to say that the
DISCUSSION sections should be ignored by experienced
programmers. On the contrary, experts will find much useful
information in these sections.

DISCUSSION and exposition sections have been interspersed

throughout the manual. Furthermore, an attempt has been

made to organize the manual so that elementary material is ’
presented first, while more advanced features and concepts él

— NORTH STAR BASIC - A2

L/‘

INTRODUCTION (Continued)

are treated later. This has been done to facilitate the
beginner’'s likely "cover to cover" approach to manual
reading. While the manual is not intended as a course in
BASIC programming, a thorough front to back study of it will
vield much knowledge of programming in general, and
programming in North Star BASIC in particular. Those who
are absolute beginners in the field are referred to the
intreductory computer and programming texts at local
libraries, book stores, and computer retail stores. If you
desire instruction on the fundamentals of programming and
cemputers, choose one such book and use it as a primer to
thig manual.

Finally, for all users, APPENDIX 1 contains many sample
programs which illustrate the typical integration of North
Star STATEMENTs and other features and capabilities into
finished software.

- NORTH STAR BASIC - A-3

M

BECOMING FAMILIAR WITH BASIC

DISCUSSION: LOADING BASIC ‘

The procedure for loading and executing the North
Star Disk Operating System (DOS), as well as for
informing the software about your terminal type and
memory ability, is described in the DOS section of
the NORTH STAR SYSTEM SOFTWARE MANUAL.

Once the North Star DOS is loaded into RAM memory and
is operating on your computer, initiating BASIC is
very simple.

First, make sure that a diskette with BASIC on it is
correctly seated in your #1 drive (your only drive,
if you have just onel!). Then, simply type

GO BASIC

in response to the DOS prompt. Don't forget to
strike the RETURN key after typing GO BASIC! ©nNorth
Star BASIC will respond after about 2 seconds of
disk-drive activity by typing READY. You are now
"in" BASIC, and are ready to proceed.

- NORTH STAR BASIC - B-1

C

BECOMING FAMILIAR WITH BASIC (Cont%nued)

D1SCUSSION: COMMUNICATING WITH BASIC

This section assumes that you have gone through the
steps necessary to start a session with BASIC (see
DISCUSSION: LOADING BASIC), and have received a READY
message, indicating that BASIC is waliting to perform
directly (if it can) whatever instruction you give,
In order to make most efficient use of your sessions
with BASIC, you need to know several things about
communicating with the system.

You will type to the system using its primary
input/outout (I/0} device, called the CONSOLE
TERMINAL. This device will include either a printing
mechanism or a video screen, as well as a keyboard,
similar to that found on a typical electric
typewriter. On a computer keyboard, however, there
are a few symbols and extra keys which may be new to
you. Note the position of "extra" keys, especially
the ones marked "CONTROL" (or "CNTL", or something
similar), SHIFT, RETURN (or CARRIAGE RETURN) and also
at-sign (@) and underline (_), respectively.

Finally, locate the "UPPER CASE" or "ALPHA LOCK" key.
(If your keyboard dces not have lower case
capability, you need not worry about this last key.)

BASIC USES UPPER CASE

BASIC requires that instruction words given to it be
typed in upper case (capital) letters. For terminals
that generate lower case letters, it is necessary to
force the terminal to give upper case whenever a.
letter key is struck. (This is so you won’'t have to
hold down the SHIFT key every time you want to type a
capital letter!) Find the mechanism which disables
the generation of lower case letters from your
terminal (sometimes called "UPPER CASE" or "ALPHA
LOCK"), and use it. (Throughout this discussion,
please refer to your terminal’s own operating manual
in order to learn how to find and use any special
mechanisms or special keys mentioned here.)

TYPING TO BASIC
Try typing some nonsense to the system:
THX 1138
Be sure to strike the RETURN key after you finish
typing a line to BASIC. This is the signal for BASIC

to accept and process what you've typed. If you fail
to strike the RETURN key, BASIC will patiently wait

- NORTH STAR BASIC - B-2

BECOMING FAMILIAR WITH BASIC (Continued)

forever for you to type more! (Striking KETURN 1is ‘
the same thing as saying "over" to a partner in a
two-way radio conversation; it assures that each
party gets the full transmission from the other, and
that each waits for the proper time to speak.) Your
memory may be jogged once or twice later in this
manual about the necessity of that RETURN signal,
however, for the most part., it will be assumed that
you'll remember to end each line to BASIC by striking
the RETURN key. (The notation <CR> may also be used
to indicate the striking of the RETURN key,
especially in examples.)

BASIC should respond to your gibberish with the
message:

SYNTAX ERROR

In general, "SYNTAX ERROR" is BASIC's way of saying
"I don’t understand you”. It usually means that you
typed the right thing incorrectly, or (as in this
case) the wrong thing altogether. This is an example
of an ERROR MESSAGE. Such messages are sent to you
in order to alert you to any difficulties which BASIC
encounters as it attempts to carry out your
instructions. The error message should provide a '
clue as to the nature of the problem, and imply- the
possible steps you might use to correct it.
(Correcting computer problems is called "debugging”.
A problem itself is known as a "bug".)

Let s type something which BASIC will understand:
PRINT 3/2 <CR>

(Remember that the <CR> means to strike the RETURN
key!)

You should get the ancswer 1.5 on the terminal.

What happens if you make a mistake in your typing?
If you catch your error before striking RETURN, you
can do one of two things to correct the mistake:

1) You can erase characters, one by one, until you
have erased the erroneous one(s), then retype the
rest of the line from that point. In standard
versions of BASIC as shipped from the factory, you
should strike the underline (_) key to erase the
last character typed. (This character sometimes
appears as a left arrow on older terminals.) An .
underline will appear on the terminal to help you

— NORTH STAR BASIC - B-3

BECOMING FAMILIAR WITH BASIC (Continued)
1o

keep count of how many characters you have erased
in this fashion. You can strike the underline key
as many times as it takes you to "back up" to and
erase the mistake. For example, if you typed

PRONT

you would strike the underline key 3 times. First
the T would be erased, then the N, and finally the
erroneous 0. You would see

PRONT
on the terminal as evidence of this. ©Now type
INT

to finish the word. On the terminal, it will look
like

PRONT___INT

but when you strike the RETURN key, BASIC will
know that this is what you really mean:

PRINT

If you have a CRT (video) terminal, you may wish
to use the backspace key to "back over" the
characters you erase, then retype over them.
North Star BASIC permits this.

2) Using the one-character erase provided by the
underline key is fine when the error is only one
or, at most, a few characters back, but what
happens when you type in a very long line and
discover a mistake in the first part of it? To
cancel a whole line before the <CR> has been
struck, just type an at-sign (@). The terminal
will automatically move to the next line, where
you may begin typing afresh.

PRINR "AN EARLY ERROR@ ({this line cancelled}
PRINT "ALL OK"

North Star BASIC provides more sophisticated ways to
correct your typing errors, in the form of a LINE
EDITOR. After learning a little more about BASIC and
programming, see DISCUSSION: THE LINE EDITOR for
further details.

- NORTH STAR BASIC - B-4

BECCMING FAMILIAR WITH BASIC (Continued)

CONTROL CHARACTERS : ‘

The purpose of the "CONTROL" or "CNTL" key is similar
to that of the SHIFT key. However, whereas SHIFT
causes upper case letters and punctuation to be
generated when it is held down during typing. the
CONTROL key, when held down during typing, causes
generation of a new, largely invisible set of
characters which are unigue to computer terminals.
These are the CONTROL CHARACTERS. For the most part,
there is a control character "alphabet" from A to %.
You will find that many characters are useful in
North Star BASIC, especiezlly control-C, tne "BAKIC
BUTTON", whose purpose and function is described in
its own DISCUSSION section. Try using control-C now.
Hold down the CONTROL key and then type C at the same
time (then let up on both, of course.) You should
get the message:

STOP
The reason why this happens is explained elsewhere.
Note that many control characters (such as control-P)
are ignored by BASIC. BASIC rings the terminal’s
bell (or beeps its beeper) when it ignores a
character. Only certain control characters are v '
significant to BASIC; other sections (especially that
concerning the LINE EDITOR) specify which ones.

For those whose video terminals do not include an
explicit "backspace" key, as mentioned earlier in
this discussion, note that control-H is a substitute
for "backspace".

- NORTH STAR BASIC - B-5

(_, DISCUSSION:

BECOMING FAMILIAR WITH BASIC (Contkpued)

ENTERING A BASIC PROGRAM

The rules for entering a new BASIC program at the
console terminal are described in this section. An
annotated example of a program-entry session follows
the description of the rules,

A PROGRAM is a sequence of legal BASIC statements.
One or more statements may be entered at a time on a
PROGRAM LINE. This program line must be preceded by
a LINE NUMBER, an integer in the range @ to 65535.

When entering program lines, you signal the computer
to accept a newly-entered line by strikng the RETURN
key.

1) If the line number of the newly-entered line
doesn’t match a line number in any existing
program line, then the line is simply ADDED to the
program.

2) If the line number of the newly-entered line
duplicates that of an existing line, the new line
REPLACES the o0ld line of that number.

3) If the RETURN key is struck immediately after
typing only a line number, and the line number
corresponds to that of an existing program line,
that line is DELETED from the program.

4) Typing in the command SCR (with no line number)
results in the immediate erasure of the entire
current program.

5) To store a program onto diskette for the very
first time, the NSAVE command is used. Updating
the program afterwards is accomplished with the
SAVE command.

The RUN command causes BASIC to begin executing the
current program. This session also includes use of
the LIST and CAT commands, which print a LISTing of
the current program, and a CATalog of the names of
programs and other files on a diskette, respectively,
to the terminal. Note that commands are typed in
without line numbers, and are executed immediately.

Further details on the PRINT statement, and the CAT,
LIST, NSAVE, SAVE, SCR, and RUN commands are
available in later sections of this manual.

The content of the following dialogue between person

- NORTH STAR BASIC - B-6

BECOMING FAMILIAK WITH BASIC (Continued)

and computer (in the left-hand column) has peen '
chosen to illustrate the simple rules for entering a
BASIC program and saving it on diskette.

You are invited to take the programmer 's role in the
“script". The lines which you type into the system
always have the symbol <CR> at the end. This is to
remind you to strike the RETURN Kkey after typing each
line of input. All the other lines in the "script"”
are BASIC's responses to you. To help you better
understand what is going on with each new line in the
dialogue, comments are provided in the right-hand

column. These are NOT part of the program, and you
ghould not attempt to type anything from that column
to BASIC.
{DIALOGUE} {Comments}
READY BASIC is READY to work with you.
SCR<CR> Erases ahy previous program.
READY BASIC s response to your SCK.
LISTLCR> You want to see the current program.
There is none.
READY BASIC ends its program LISTing.
19 PRINT 6/4<CR> You enter 2 program lines (note)
2@ PRINT "WELCOME TO BASIC"<CR> reguired line numbers). '
5 PRINT "FIRST PROGRAM"<KCR> This line is out of seguence.
LIST<CR> Check to see what you've done.
5 PRINT "FIRST PROGRAM" Program LISTS out. Note that
18 PRINT 6/4 BASIC has put program lines in
20 PRINT "WELCOME TO BASIC" proper seqguence.
READY
RUN<CR> Now, RUN the program and see results!
FIRST PROGRAM Note that guotes aren’t printed.
1.5 Note that you get RESULT of 6/4.
WELCOME TO BASIC Again, no guotes.
KREADY
10<CR> Typing the line number erases line.
LISTLKCR>
5 PRINT "FIRST PROGRAM" Line 18 is now gone.
2@ PRINT "WELCOME TO BASIC"
READY
380 PRINT 2+2<CR> A new line, 38, is added.
LIST<CR>

5 PRINT "FIRST PROGRAM"

280 PRINT "WELCOME TO BASIC" i :

30 PRINT 242 , New line 30 is put in its proper pvlace. .
READY '

- NORTH STAR BASIC - ‘ B-7

C

BECOMING FAMILIAK WITH BASIC

RUNCCRY
fIRST PROGRAM
wELCOME TOC BASIC
4
READY
ZATLCRY ,
DOS 4 19 D 9
2ASIC 9 58D 1 2Do@@
KEADY
N3AVE FIRSTCCR>
READY
UATCCRY
2Ub 4 18 D)
BABIC 9 350 D 1 2p@e
FIRST 34 4 D 2
READY
36 PRINT 2-2<CR>
LISTKCR>

5 PRINT "FIRST PROGRAM®
29 PRINT "WELCOME TO BASIC"
30 PRINT 2-2

READY

NSAVE FIRSTKCR>

ARG ERROR

REZDY

SAVE FIRSTKCR>

READY

SCRCCR>

READY

LIST<CR>

READY

LOAD FIRSTKCR>
READY

LISTLKCR>

5 PRINT "FIRST PROGRAM"

20 PRINT "WELCOME TO BASIC"
33 PRINT 2-2

READY

RUN<CR>

FIRST PROGRAM
WELCOME TO BASIC
0

READY

(Continued)
e

See how the modified program RUNs.

Again, you get result; here, of 2+2

Get listing of programs on diskette.
Depending on which diskette you use,
you may get a different CATalog.

Save the program into new file "FIRST".

Now, check to see that it’s there,

It has been added to the diskette.

Replace line 39. Current program
is now DIFFERENT from cne on disk.

LISTing verifies that an addition
has been made. (Though we do it
for explanation, you need not
LIST after every change.)
Attempt to update the disk file.
NSAVE 1s WRONG command to update.
Use it only once for each program file.
From then on, use SAVE.
Note that, with save, update is OK.
Erase the current program.

Verify that it is gone.

Now, get it back from diskette!

when writing programs, SAVE often to
be sure that disk file holds
most current version!

Note that the program in “FIRST"
has been retrieved. 1If it had not
been on a disk file, it would have
had to have been retyped after SCR.

Verify that it RUNS.

And now, move onward!

- NORTH STAR BASIC - ' 5-8

DISCUSSION:

BECOMING FAMILIAR WITH BASIC (Continued)

SOME BASIC CONCEPTS ‘

The North Star BASIC system has two modes of
operation:

DIRECT MODE, in which lines typed to the system
are executed without delay;

PROGRAM MODE in which the system executes
instructions which have been stored previously
in the form of a PROGRAM.

Prior to learning how to work with BASIC in these
modes, you must understand certain conceots and
terminology, which are explained in this section.

A COMMAND is a special type of instruction which may
be executed only in direct mode, never as part of a
program. Commands generally provide services which
are not meaningful or useful while a program is
RUNning. o
For example, the command LIST generates a listing of

the program currently in the BASIC program/data area

of memory. (This is called the CURRENT PROGRAM.) It

is a rare application which requires a program to

list itself, and so the LIST function is a command. ‘
Each command is described in detail in its own

section of the manual.

NOTE: The following paragraph uses advanced
terminology which is defined elsewhere in the manual.

String and numeric arguments to commands may only be
literals. The use of other types of expressions as
arguments is not allowed. Moreover, disk file names
in commands are not quoted. These restrictions on
argument representation are the biggest difference
between commands and direct statements, which will be
discussed later.

A STATEMENT is a BASIC instruction which may be used
as part of a PROGRAM., Typical among statements are
PRINT, which causes information to be output to a
terminal, and REM, which "does nothing", but provides
a way for the programmer to insert REMarks about the
workings of the program into the program itself.

Statements begin with a KEYWORD from which the

statement derives its name. (PRINT is both a keyword
and a statement name.) The keyword may be followed
by ARGUMENTs and other keywords. An argument is a ‘l

- NORTH STAR BASIC - B-9

W

BECOMING FAMILIAR WITH BASIC (Continued)
T

piece of information on which the statement operates,
or which 1s used to modify the operation of the
Sstatement. For example, the string literal "HI" is
the argument of the following statement:

PRINT "HI"

A BASIC program is structured as a seguence of LINEs,
each containing one or more statements. A line
starts with a LINE NUMBER, which is an INTEGEKR (that
is, a whole number) in the range 4 to 65535, A
statement follows the line number, and the
combination is called a PROGRAM LINE. A typical line
is

70 PRINT "THIS IS CONE STATEMENT."
More than one statement may exist on a program line,
as long as individual statements on that line are
separated by a backslash (\) character. Here is an

example of a multiple-statement program line with
three statements:

835 A =6 \ B = ¢ \ REM INITIALIZE A AND B

Many statements may be executed in direct mode in

order to get immediate results. This is accomplished
by typing a statement without preceding it with a
line number. Such a statement is called a DIRECT

STATEMENT, and is executed as soon as it has been
completely typed (indicated by striking the RETURN
key). PRINT is such a statement. If, for example,
you type '

PRINT 3+3

into BASIC, you will immediately get back 6 on the
terminal. This ability to use PRINT in direct mode,
and therefore immediately generate the results of
arithmetic expressions is sometimes called
“calculator mode". As long as you put the keyword
PRINT in front of numeric expressions, you may use
your computer as a powerful desk-type calculator.
This will have no effect on the current program.

Direct statements should not be confused with
commands. A direct statement differs from a command
in that it may also be executed as part of a program,
by being included on a program line, whereas a
command may only be executed in direct mode. Each
command and statement has its own rules as to what
constitutes its proper form and when it can be used

- NORTH STAR BASIC =~ B-19

M

BECOMING FAMILIAR WITH BASIC (Continued)

correctiy.

The following statements may be executed as direct
statements:

DIM IF...THEN...ELSE OPEN
IF...THEN FILL CLOSE
PRINT ouT READ#
LET CREATE WKITE#
RESTORE DESTROY CHAIN

- NORTH STAR BASIC - B-11

e

(v’ COMMAND:

~

CTION:

N
e

(,/ EXAMPLES:

REMARKS:

ZRROR

MESSAGES:

COMMANDS

LIST

LIST <line number interval>

LIST <device number expression>

LIST <device number expression>, <line number interval>

Prints the text of the current program. The optional
device expression is formed by following a cross-
hatch (#) with a single digit from 8 to 7,
corresponding to an active output device. If no
device is given, device #@ (the console terminal) is
assumed. If the line number interval is specified,
only the program lines numbered within that interval
will be LISTed. The interval is formed as follows:

<single line number> -- only the specified line
number will be LISTed.
<single line number>», -- all lines from the

specified line number to the end of the program
will be LISTed.

<line number>, <line number> ~-- all program lines
from the first specified line number to the second
will be LISTed.

If no interval is given, the entire program will be

LISTed.

LIST

LIST 16020

LIST 39,

LIST 160,200
LIST #1

LIST #3,38,7040

The 2nd line number in the interval (if given)

" should be greater than or equal to the first.

For the convenience of users with CRT screens, the
program listing may automatically be “paged“. Refer
to DISCUSSION: PERSONALIZING BASIC for details.

LINE NUMBER ERROR
One or both of the lines specified in the line number
interval do not exist within the current program.

OUT OF BOUNDS ERROR
One or both of the line numbers specified in the line
number interval do not-lie in the range @ to 65535.

et

- NORTH STAR BASIC - C-

COMMAND:

ACTION:

EXAMPLES:

REMARKS:

ERROR

MESSAGES:

SEE ALSO:

COMMANDS (Continued)

DEL <line number>, <line number>

All program lines within the given interval are
DELeted from the current program. The second line
number must be strictly greater than the first.

DEL 10,28
DEL 10¢@,10875

DEL is used to DELete whole blocks of program

lines at one time. If it is desired to remove only
one line, just type the appropriate line number,
followed immediately by striking the RETURN key.

All variables are cleared as a result of DEL (or any
other command which modifies the current program) .

Unless the DELeted lines have been SAVEd as part of a
program on diskette, they will be permanently lost
and will have to be re-entered manually if needed
later. -

ARG ERROR
The second line number in the interval is not greater
than the first.

LINE NUMBER ERROR
One or both of the lines specified in the line number
interval do not exist within the current program.

OUT OF BOUNDS ERROR

One or both of the line numbers specified in the line
number interval are less than @ or greater than
65535.

DISCUSSION: COMMUNICATING WITH BASIC
COMMAND: SCR

- NORTH STAR BASIC - c-2

(~/ COMMAND :

ACTION:

LXAMPLE :

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

S

COMMANDS (Continued)

SCR

SCR erases (SCRatches) the current program and any
existing variables from the user workspace.

SCR

SCR is used to clear the workspace prior to entering
a new program.

Only the current program is affected. Any copies of
the program existing on diskette remain unaltered.

Unless a copy of the program exists on diskette or
some other storage medium, the only way it can be
retrieved after SCR is to retype it by hand.
Therefore, it is important to make copies of the
program on diskette before using SCR, if that
program, or parts of it, will be used later.

None.

COMMAND: SAVE
COMMAND: NSAVE
COMMAND: LOAD
COMMAND: DESTROY
COMMAND: DEL

- NORTH STAR BASIC - c-3

COMMAND:

RACTICN:

EXAMPLES:

REMARKS :

COMMANDS (Continued)

REN
REN <line number>
REN <line number>, <increment value>

The entire current program is RENumbered. The first
line in the program is given the line number
specified in the REN command (18 if no line number is
specified). If a line number is given, then an
optional increment value may be added to the command.
All line numbers will automatically be separated by
the given increment value (18, if no increment is
specified). The increment value, if used, must be an
integer, from 1 to 32767.

REN
REN 10620
REN 10600,100

After the command

REN 100 s
program A will be changed‘to program B:
program A

1 REM READS AND PRINTS DATA

2 REM IN LINE 1480

3 READ Z

18 IF 2<@ THEN 2000

76 PRINT Z \ GOTO 3

1¢66 pATA 1,2,3,-1

3000 REM LINE 2000 HASN T YET BEEN WRITTEN

program B

128 REM READS AND PRINTS DATA

118 REM IN LINE 10090

120 READ 2

1386 IF Z<9 THEN 2000

149 PRINT 2 \ GOTO 12¢

150 DATA 1,2,3,-1

166 REM LINE 2008 HASN'T YET BEEN WRITTEN

RENumbering is usually done to produce a uniform
increment value between statement numbers so that
inserting new statements becomes more convenient.

It is not possible to specify an increment value
without giving a line number as well, but a line
number may be specified without an accompanying

increment value, in which case the increment is

- NORTH STAR BASIC - C-4

ERROR

MESSAGES:

SEE ALSO:

COMMANDS (Continued)

assumed to be 14.

Note that, while program references to line numbers
{(such as those found in GOTO, GOSUB, RESTORE, and
similar statements) are modified to reflect the
program’s new line number structure, references to
line numbers in REM statements remain unchanged.

If a GOTO, GOSUB, RESTORE, or similar statement in
the original program references a non-existent line
number, that reference will remain unaltered after a
RENumbering operation.

(If any of the following errors occurs, no
RENumbering is performed.)

OUT OF BOUNDS ERROR
This error is produced in any of the following
situations:

1) The line number specified in the command is
greater than 65535;

2) The increment value is greater than 32767, or less
than 1; ‘

3) The combination of starting line number and
increment value would result in a program where.
some line numbers would necessarily be greater
than 65535.

ARG ERROR

The line number or the increment value specified is
not a positive integer, or the two values are not
separated by a comma.

COMMAND: AUTO

- NORTH STAR BASIC - c-5

COMMAND:

EXAMPLES:

REMARKS:

MESSAGES:

COMMANDS (Continued)

AUTO
AUTO <initial line number> ‘
AUTO <initial line number>, <increment value>

Initiates automatic line numbering mode, in which
BASIC will automatically generate new line numbers
for successive lines of program text. The specified
line number will be the first line number used in
auto-mode. Each successive automatically-supplied
line number will be incremented from the last by the
specified increment value. The increment value must
be an integer in the range of 1 to 65535. An
increment value may not be supplied unless an initial
line number is also provided. When an initial line
number or increment value is not given, it is assumed
to be 18.

AUTO

AUTO 4090

AUTO 1066 ,1400

In automatic line numbering mode, a new line number
will be printed at the start of every line.

Auto-mode will persist until one of the following

occurs: '

a) a carriage return is typed immediately after the
line number;:

b) a line without a line number is typed (by using
the North Star BASIC line-editing capabilities to
delete the line number from the beginning of the
line);

c) the next automatically-generated line number would
be greater than 65535.

Note that if the “"automatic" line numbers overlap
existing lines in the current program, the existing
lines will be REPLACED by the new ones.

QUT OF BOUNDS ERROR
Either the initial line number, the increment value,
or both are grester than 65535 or less than 0.

ARG ERROR
Either the initial line number, the increment value,
or both are negative, or non-integers.

COMMAND: REN ‘

- NORTH STAR BASIC - C-6

-

C

COMMAND:

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

COMMANDS (Continued) ®

CAT

CAT <drive number>

CAT <output device expression>

CAT <output device expression>, <drive number>

A catalog listing of the files on the diskette

loaded in the specified disk drive is printed on the
specified output device. The output device
expression must consist of a cross-hatch (#) followed
by a single digit from @ to 7. The drive number must
be a single digit from 1 to 4. If the output device
expression is omitted, the catalog listing is sent to
the console terminal (device #6). If the drive
number isn’'t specified, it is assumed to be drive #1.

CAT {drive #1 s catalog to console}
CAT 3 {drive $#3 s catalog to console]}
CAT %1 {drive #1 s catalog to device #1}
CAT $2,3 {drive #3°s catalog to device #2}

The listing produced is identical to that
obtained through use of the DOS LI command.

Like the program LISTing, the CATalog may be “paged",
but this is a function of the DOS rather than of
BASIC. See the DOS section of this manual for
details.

The user should be sure that the output device
expressions and/or drive numbers (when specified)
refer to existing devices and drives, respectively.

HARD DISK ERROR
This error occurs under the following circumstances:

1) The specified drive is not installed in the
system.

2) The power to the specified drive is not on.

3) The diskette is not properly seated within the
specified drive (drive door is open, etc.).

4) There is no directory on the diskette in the
gspecified drive.

5) The directory on diskette has been destroyed.

FILE ERROR
The drive number specified is greater than 4.

DOS section of this manual.

- NORTH STAR BASIC - c-7

COMMAND:

ACTION:

EXAMPLES:

REMARKS::

ERROR

MESSAGES:

SEE ALS5O:

COMMANDS (Continued)

SAVE <file name>

The current program is permanently SAVEd into an
existing BASIC program (type 2) file on diskette.

SAVE PROG {PROG is on diskette in drive #1}
SAVE TEST7,2 {TEST7 is on diskette in drive #2}

The specified file must be of sufficient size
to hold the program for the SAVE to be successful.

It is possible to SAVE the null program onto a
program file. (This can be accomplished by using the
SCRatch command immediately prior to SAVE.) This
effectively "erases” any program which was previously
stored in that file.

SAVE doesn’t change the current program/data space in
any way, so it is possible to use the CONT command
after SAVE should one be performed during a program
interruption caused by control-€ or the STOP
statement.

OUT OF BOUNDS ERROR
The current program is too big to fit in the
specified file.

FILE ERROR

The specified file name is improper. It

a) is too long;

b) contains illegal characters (i.e. comma or blank);
c) specifies an illegal drive number.

The FILE ERROR also occurs when the diskette in the
specified drive is write protected.

ARG ERROR
The specified file does not exist.

TYPE ERROR
The specified file is not a BASIC program (type 2)
file.

HARD DISK ERROR
Refer to COMMAND: CAT.

COMMAND: NSAVE

COMMAND: LOAD
DOS section of this manual.

- NORTH STAR BASIC - ‘ C-8

(/’ COMMAND:

ACTION:

CXAMPLES:

2EN
IS

ARKS:

T

ERROR

MESSAGES:

SEE ALSO:

COMMANDS (Continued)

NSAVE <file name>
NSAVE <file name> <file size>

The specified BASIC program file is created on
diskette to the desired size in file blocks, and the
current program is SAVEd into it. If no file size is
specified, three file blocks are added to the actual
size of the current program, and the resulting number
is taken as the file size. The density of the file
created is set to be the same density as that of the
file directory on the diskette.

NSAVE PROGRAM
NSAVE GREEN,2 25
NSAVE MPG, 3
NSAVE BIGPROG 50

NSAVE is merely a special form of the SAVE command,
and is used to SAVE a program for which a diskette
file does not yet exist.

A FILE BLOCK is 256 bytes of information. ©Note that
in double-density format, two file blocks are stored
on each disk sector. 1In single~density format, a

file block and a disk sector are eguivalent in size.

When doing an NSAVE, the size specified in creating
the file should allow for the eventual expansion of
the program. When a program becomes too large to be
SAVEd in a file, then a longer file will have to be
used.

An attempted NSAVE may result in any of the errors
possible when using SAVE. The following are unique
to NSAVE:

ARG ERROR

In addition to its causes under SAVE, an ARG ERROR
may also occur during an NSAVE if the specified file
already exists on diskette.

FILE ERROR

In addition to its causes under SAVE, a FILE ERROR
may occur during an NSAVE if there is not room enough
on the diskette for the new program file.

COMMAND: SAVE
COMMAND: PSIZE

- NORTH STAR BASIC - Cc-9

COMMAND ¢

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

COMMANDS (Continued)

LOAD <file name>

The BASIC program contained in the specified file is
LOADed into the program/data area and becomes the
current program.

LOAD PROG3 {load from drive #1}
LOAD TESTS, 2 {load from drive $2}

The specified file must be of type 2.

The successful LOAD command performs a SCRatch of the
program/data area before LOADing the program.

TOO LARGE OR NO PROGRAM ERROR .

Either the program in the specified file is too big
to fit in the program/data area, or the file does not
contain a valid BASIC program. 1In either case, a
SCRatch of the program/data area occurs. (Sse
CCOMMAND: MEMSET and DISCUSSION: -PERSONALIZING BASIC
for information on how to increase the size of
BASIC s program/data area in order to avoid this
error.)

HARD DISK ERROR

Refer to COMMAND: CAT. Depending on the point during
the LOAD operation at which such an error occurs, a
memory SCRatch may be performed.

If an attempted LOAD results in any of the following
errors, no change in the program/data area occurs.
Specifically, all variables will retain their values,
the current program will remain, and, if the abortive
LOAD occurs during a program whose execution has been
interrupted by control-C or the execution of a STOP
statement, the CONT command may still be used to
resume program execution.

FILE ERROR
See COMMAND: SAVE

ARG ERROR
See COMMAND: SAVE

TYPE ERROR
See COMMAND: SAVE

COMMAND: SAVE
COMMAND: SCR

— NORTH STAR BASIC - c-10

COMMANDS (Continued) "

L,f COMMAND: APPEND <file name>
ACTION: APPENDs the BASIC program in the specified

diskette file to the end of the current program.

(The lowest line number in the specified program must
be greater than the largest line number in the
current program in order for an APPEND to be
successful.) ‘

EXAMPLES: APPEND MYPROG
APPEND TESTER, 2

REMARKS: If there is no current program, APPEND acts like
LOAD.

A successful APPEND will always clear all variables
in the program/data area.

ZRROR

MESSAGES: LINE NUMBER ERROR
The lowest number in the program to APPEND is less
than or equal tc the highest number in the current
program.

. TOO LARGE OR NO PROGRAM ERROR
(_, Either there is not a valid BASIC program in the
specified file, or the program which would result
from the APPEND operation is too large to fit into
available memory. In the latter case, the current
program remains unmodified.

Please refer to COMMAND: LOAD ‘and COMMAND: SAVE for
details on the following errors which may also occur
during an attempted APPEND:

HARD DISK ERROR
FILE ERROR
ARG ERROR
TYPE ERROR

- NORTH STAR BASIC - c-11

COMMANDS (Continued)

COMMAND RUN <line number>

ACTION: RUN initiates execution of the current program.
If the optional line number is included, execution
begins at that program line; otherwise, if no line
number is specified, execution begins at the first
line in the program.

EXAMPLES: RUN
RUN 100
REMARKS: Any variables which were assigned values before

RUN is used are cleared prior to starting the
program. This means that all numeric variables are
reset to 0; existing strings and arrays are
destroyed, and will be initialized to spaces and
zeroes, respectively, if and when created during the
execution of the current program. Note that any
variables set in direct mode before the RUN will also
be cleared as a result of the RUN command.
ERRCR 7
MESSAGES: NO PROGRAM ERROR .
RUN was used before entering or LOADing a program.

LINE NUMBER ERROR
The optional line number included as part of the RUN
command is not in the current program. .

ARG ERROR
The optional argument is not a legal line number.

SEE ALSO: COMMAND: CONT
STATEMENT: CHAIN

- NORTH STAR BASIC - c-12

(_ DISCUSSION:

COMMANDS (Continued)

CONTROL~-C, THE PANIC BUTTON

Occasionally, you may desire to interrupt a program’s
execution at some random point while it is RUNning.
This may be because you wish to repair a program
error, or because you do not want program execution
to continue to completion.

Your "PANIC BUTTON" is "control-C". This "stop
everything” signal is sent to the computer whenever
you hold down the "control®" key then press the “C"®
key at the same time on vyour console terminal.

If a program is RUNning, the currently executing
statement will finish, and the message

STOP IN LINE XXXXX

will be printed on the terminal, where XXXXX will
actually be the line number where execution stopped.

If you are LISTing a program when control-C is
pushed, the line being listed will be completed, and
the message

STOP
will be sent to the console terminal.
Whenever you use control-C, you will be returned to

BASIC s direct mode, where you are free to examine
the program and variables.

.Perhaps you may someday "PANIC"-out of a long-running

program because you fear that it is caught in an
"endless” loop. However, upon examination of the

- program and its variables, you discover that the

program is operating correctly, but just takes a long
time to finish. 1In this and similar instances, you
may use the CONT command to resume execution at the
point where the program was interrupted by control-C.

(You may not use CONT if, during the interruption,
you modify any part of the program text.)

BASIC may be instructed to ignore the contrel-C
signal. This is accomplished by changing certain
internal data in the BASIC interpreter itself, a
procedure described in DISCUSSION: PERSONALIZING
BASIC. Because it involves modification to BASIC and
also makes it impossible to stop an improperly-
written "runaway" program without somehow stopping

- NORTH STAR BASIC - C-13

SEE ALSO:

COMMANDS (Continued)

the comphter altogether, you should leave control-C

enabled until your program is fully debugged.

COMMAND: CONT

STATEMENT: STOP

DISCUSSION: SOME BASIC CONCEPTS
DISCUSSION: PERSONALIZING BASIC

- NORTH STAR BASIC -

C-14

L COMMAND :

ACTION:

EXAMPLE
-PROGRAM:

REMARKS:

ERROR

MESSAGES:

SEE ALSO:

C

COMMANDS (Continued)

CONT

CONT causes execution of a previously RUNning BASIC
program to CONTinue after the execution of a STOP
statement or after a control-C interruption.
Normally, execution will continue at the program
statement immediately following the last statement
executed. (See REMARKS, below, for exceptions to
this rule.)

18 PRINT "THIS LINE PRINTED AFTER RUN"
28 STOP
39 PRINT "THIS LINE PRINTED AFTER CONT"

CONT may not be used if the previously running
program has stopped because of an error or the
execution of an END statement. Also, CONT may not be
used if any modification has been made to any line of
the current program since the interruption occurred.
It is possible to use direct statements during the
interruption caused by STOP or control-C, for
example, to examine or change variable values. After
doing so0, you may use CONT to CONTinue with the
program.

If the stop was caused by control-C interruption
during the execution of an INPUT statement, then
execution will continue at the beginning of that
INPUT statement.

CONTINUE ERROR
This error occurs because of one of the following
four reasons:

1) The program has stopped because it executed an END
statement.

2) It has stopped because of a program error.

3) The program has been changed between the time it
stopped and the time you typed CONT.

4) The current program has not yet been RUN.

DISCUSSION: CONTROL-C, THE PANIC BUTTON
STATEMENT: STOP

- NORTH STAR BASIC - C-15

COMMAND:

ACTION:

EXAMPLE:

REMARKS:

ERRCR
MESSAGES:

SEE ALSO:

COMMANDS (Continued)

PSIZE

The size of the current program in file blocks
is printed on the console terminal.

PSIZE

The PSIZE command may .be used to determine how many
file blocks on diskette will be reguired to store the
current program. This figure is helpful in creating
new program files, and in using the NSAVE command.

The approximate number of bytes in the BASIC program
may be calculated by multiplying the number obtained
through PSIZE by 256 (the number of bytes in a file

block).

None.

COMMAND: NSAVE

- NORTH STAR BASIC =

C-16

(./ COMMAND:

ACTION:

EXAMPLES:

REMARKS:

C

ERROR

MESSAGES:

SEE ALSO:

COMMANDS (Continued)

MEMSET <memory address>

The upper bound of the program/data memory region
available to BASIC is changed to the specified
address, which must be an integer constant in the
range of @ to 65535,

MEMSET 24575 {last memory cell is SFFFH}
MEMSET 32767 {last cell is 7FFFH}
MEMSET 48959 {last cell is 9FFFH)

Note that the address specified in a MEMSET command
is expressed as a decimal (base 18) number.
Addresses in microcomputer memory are commonly given
in HEXADECIMAL (base 16) notation. 1If the desired
upper memory bound is known only in hexadecimal, it
will be necessary to convert the number into decimal
before using MEMSET. (See APPENDIX 1: SAMPLE
PROGRAMS for a routine which performs this
conversion.) :

All variables in the program/déta‘area are cleared
after MEMSET, but any currént program remains intact.

MEMSET also modifies the copy of BASIC in RAM so

that, if any copies of it are made, they will assume
the new memory configuration when executed.

ARG ERROR
The memory address specified as upper bound does not
contain usable memory.

QUT OF BOUNDS ERROR

1) The address is larger than 65535.

2) If there is a current program, the specified upper
bound would lead to a program/data area too small
to hold it.

3) If there is no current program, the specified
upper bound implies elimination of the

program/data area altogether.

DISCUSSION: PERSONALIZING BASIC

- NORTH STAR BASIC - c-17

COMMANDS (Continued)

STATEMENT: LINE <numeric expression>
LINE #<device expression>, <numeric expr.»>

ACTION: The line length for the specified I/0 device is
changed to the value of the numeric expression, which
must be an integer from 10 to 132. The device
expréssion must be numeric, and evaluate to an
integer from @ to 7. If no device expression 1is
specified, the desired device is assumed to be #0
(the console terminal).

EXAMPLES: 108 LINE 132
70 LINE L(X)+40
250 LINE #3,B
960 LINE #D(Q), 64

REMARKS: A fixed-length input/output line is a necessity because
BASIC must keep track of the current PRINT position
on the terminal or screen in order for the TAB
function to work correctly. Use of the LINE
statement allows the user or programmer to adjust
this line length to the requirements of a particular
terminal device. For example, many video-display
boards provide for 32 or 64-character lines, while
integrated terminals usually have 80 character-
positions to a line. Printer units have line lengths
ranging from 40 to 132 characters.

Different line lengths may be in effect for different
terminals at any one time.

If a line of output information is longer than the
current line length for the given device, the line
will be "split" at the line length boundary and the
rest of the output will be continued on the next
line. (A carriage return is automatically generated
by BASIC to advance the rest of the ocutput to the
next line.)

If an attempt is made to INPUT more characters than
are allowed on one line, a "LENGTH ERROR" occurs.

LINE may be used as a direct statement.

Line lengths set by a LINE statement remain in effect
until the session with BASIC is terminated. A line
length of 132, for example, will remain in effect
even after the program which set it has ENDed.

When BASIC “comes up", the initial length of device

#@3 (the console terminal) is 86 characters. The
initial value for each of the seven other possible

~ NORTH STAR BASIC - C~-18

MESSAGES:

COMMANDS (Continued)

system I/0 devices is also 80. These initial values
may be changed using procedures which are covered in
DISCUSSION: PERSONALIZING BASIC.

OUT OF BOUNDS ERROR
The device number or line length specified in the
LINE statement is out of range.

DISCUSSION: FUNCTIONS (built-in: TAB)
STATEMENT: INPUT

STATEMENT: INPUT1

DISCUSSION: PERSONALIZING BASIC

- NORTH STAR BASIC - ‘ C-19

COMMAND:

ACTION:

EXAMPLE:

REMARKS:

ERRCR

MESSAGES:

COMMANDS (Continued) %

BYE

The current session with BASIC is terminated, and
control returns to the DOS.

BYE -

The BYE command does not affect BASIC s program/

data area in any way -- the current program and any

data associated with it remain intact. It is
possible to return to BASIC and resume work with
current program later, provided that the memory
containing BASIC and its program/data area is not
disturbed in the meantime.

None.

DISCUSSION: SPECIAL ENTRY POINTS

- NORTH STAR BASIC -

the

_-u---------u------f----------------—--—---‘Hlu

C DISCUSSION:

USING NUMBERS,

USING NUMBERS

This section describes numbers and how to use them in
conjunction with the standard version of North Star
BASIC. Those with non-standard versions of BASIC
should read the section called DISCUSSION: NON-
STANDARD VERSIONS OF BASIC which provides extra
information applicable to their individual
situations.

CONSTANTS

Numbers are represented within BASIC programs much 2as
they are written in everyday usage. Here are some
numbers as they might be written in a typical BASIC
programs:

2 347 -33.333 .08176 1.083
<1 -8 123.4567 -3 B.2

Numbers such as these are called NUMERIC CONSTANTS.

Constants may also be written in SCIENTIFIC NOTATION
(alsoc called EXPONENTIAL FORMAT or E-FORMAT) . This
is a way to represent very small or very large
numbers without having to deal with leading or
trailing zeroes which can make a number seem

uncomfortably long. Here are the same numbers as in
the examples above, but written in scientific
notation:

PE+0¢ 3.47E+02 -3.3333E+01 1.76E-03 1.003E+00
1E-01 8E+00 1.234567E+62 -3E-01 2E-021

A number in scientific notation has a MANTISSA part
and an EXPONENT part. These are separated by the
letter E, which may be read as "times 10 to the power
of". Thus, 1.76E-#3 would be read as "1.76 times 10
to the power of -3".

PRECISION

Numbers in the standard version of North Star BASIC
are stored with 8-digit precision. Other precisions
are available —-- see DISCUSSION: NON-STANDARD
VEKSIONS OF BASIC for details. North Star BASIC uses
the most accurate form of microcomputer arithmetic
available: Binary-Coded-Decimal (BCD) =-- see
DISCUSSION: COMPATIBILITY WITH OTHER BASICS. All
arithmetic operations are rounded to 8 digits in the
standard version of North Star BASIC -- e.g., the sum
of .12345678 and .011111111 would be rounded to

~ NORTH STAR BASIC - D-1

USING NUMBERS (Continued)

.13456789, since .13456789]1 requires 9 digits.

EXAMPLE: FRACTIONS. What is the decimal
representation of 2/3? &n endless string of 6°s
after the decimal point is the only correct answer.
However, when doing decimal arithmetic., both people
and computers round off the long fraction to a
reasonably accurate (but not completely accurate)
number. BASIC, for example, will round 2/3 to
.66666667. Notice that the total number of digits is
now 8. It is impossible to get a more accurate
representation of 2/3 in standard North Star BASIC.
The fraction 1/2, on the other hand, needs only a
single digit (.5) to represent it exactly!

EXAMPLE: MIXED DECIMAL FRACTIONS WITH LARGE WHOLE
PARTS. Eight-digit precision also means that the
number 1234.56789 must be rounded before it can be
handled by the machine. North Star BASIC will round
this to 1234.5679. Notice that the least-important,
rightmost digit is rounded. -This is BASIC s standard
rounding procedure, and insures that the rounded
number remains as close to the original value as
possible,

Business users should note that the largest dollars-
and-cents figure which may be exactly represented by
8 digits (without rounding cents to dimes or dollars)
is $999.999.99 For applications where dollars-and-
cents amounts larger than this must be handled, you
should obtain a special version of BASIC (with
greater precision).

EXAMPLE: A VERY LAKRGE NUMBER. The number 987654321
will be rounded to 987654328, and, henceforth will
normally be PRINTed in scientific notation by BASIC
as 9.8765432E+9#8. As you can see, the "eight-digit-
rule" is followed in this conversion, even though
scientific notation is invoked in order to correctly
represent the number. The last (9th) digit is
"dropped”, but scientific notation representation
insures that a ¢ will be "remembered" for the ninth-
digit in order to maintain proper place values for
the remaining digits. Notice that, because of this
effect, BASIC considers 987654320, 987654321, and
987654322 to be equal to cone-ancther because they
differ only in their (ignored) ninth digits.

EXAMPLE: A VERY SMALL NUMBER The number .20000060123
will not be rounded by North Star BASIC., but
.00000000123456789 will be rounded. 7To see why,
think of the two numbers as expressed in scientific

~ NORTH STAR BASIC - D-2

USING NUMBERS (Continued) s

notation. The first becomes 1.23E-869. The mantissa
(which is the only component of an E-format number
that is affected by precision) is only 3 digits long
-- well within the 8 allowed. The second number
converts to 1.23456789E-99, with a 9-digit mantissa
which is too many digits. The number will be rounded
to 1.2345679E-09. (Note that scientific notation is
a more compact way to write these very small
numpers.) finally, if you added 1 to either number,
it would be rounded to become exactly 1. Check the
E-format versions for the clear reason. This time,
vou'll come up with 1.000000080123E+60 and
1.00000000612345679E+00., Both mantissas exceed 8§
digits in length. ERounding them to 8 digits leaves
only the number 1 for each.

RANGE

& number may be positive, negative, or zero.
Positive and negative numbers in standard (8-digit)
precision North Star BASIC can range in maqnltuoe
from 1E-64 to 9.9999999E+62.

If you type a numeric constant into BASIC which is
too large for BASIC to handle, a SYNTAX ERROR will
occur. If a number which is too small is typed in,
it will be rounded down to zero.

VARIABLES

In BASIC, as in most other programming languages, a
NUMERIC VARIABLE is considered to be a place (in
computer memory) where a numeric VALUE may be held.
It is, in effect, a "storage place" which may be
occupied by any one numeric value at any time. If a
new number is put in a variable, that number totally
replaces the previous value which the variable held.

2ll numeric variables are given initial values of
zero until given different values in explicit LET
statements.

Variables are given NAMES, and a variable name is
used to refer to the variable and/or its contents
when writing programs.

Numeric variable names in North Star BASIC consist of
a single capital letter, or a single capital letter
followed by a single digit from @ to 9. Here are
some legal North Star BASIC variable names:

A B7 C3 Z Q N8 Po

- NORTH STAR BASIC - D-3

USING NUMBERS (Continued)

Because these variables may contain only one value, '
they are called "simple" variables.

OPERATORS

Operators are used in BASIC as they are in reqular
arithmetic -- to combine two numeric values
(operands) or to modify one operand in certain pre-
defined ways. Three classes of operators,
arithmetic, relational, and boolean are used with
numbers. Each class will be examined separately:

ARITHMETIC CPERATORS

These operators correspond to those used in common
mathematic expressions:

OPERATOR FUNCTION - EXAMPLE
T (or ™) exponentiation 972=81
* multiplicatioé ‘ 5¥1.5=7.5
/ division 3/2=1.5
- subtraction 3.2-2=1.2 '
+ addition 7.3+2.1=190
- negation -3, =27

RELATIONAL OPERATORS

The relational operators are used to compare pairs of
numeric values., The numeric result of a relational
comparison is either 1 (which stands for "true") or @
("false"). Usually, relational comparisons are
employed as conditions for IF...THEN statements (See
STATEMENT: IF). For example, at a certain point in a
program, it might be desired to assign the value of
18 to the variable T if the value of X is greater
than 16. The comparison (X>18) would be used as

IFF X>14 THEN T=10

The IF statement will assign 18 to T based on the
truth or falsehood of the relational comparison at
the time the statement is executed. The following
chart presents the relational operators available in
North Star BASIC:

- NORTH STAR BASIC - D-4

USING NUMBERS (Continuedi.

OPERATOR RELATION EXAMPLES
> greater than (6>1)=1 (true)
(2>3)=0 (false)

< less than (0<B)=0 (false)
(1<3)=1 (true)

<= less than or egual to (5<=5)=1
(3<=5)=1

(6<=5)=0

D= greater than or ecual to (8>=7)=1
(7>=7)=1

(6>=7)=0

= equal to (9=9)=1
(9=7)=0

<> not equal to (4<>5)=1
(2<>2)=0

BOOLEAN OPERATORS

The boolean operators

(AND, OR and NOT)

may be used

to combine or otherwise modify relational

(true/false)
logical evaluation. Furthermore,
zero values will be treated as
will be treated as "false".
operation is either "true"

(1)

or

expressions so as to provide for complex
any numeric values

may be the objects of a boolean operation:
Iltruell
“The result of a boolean
"false"

all non-
(1), while @

(). The

table below summarizes the effects of the boolean

operators.

OPERATOR EXPLANATION

<Al> AND <A2> If both <Al>
and <A2> are
true (non=-zero),
the AND operation
is "true" (1), else
it is "false" (8).
<Al> OR <A2> 1If at least one
argument is true,
then the OR oper-
ation is true.
If both are false,
the OR is false.

- NORTH STAR BASIC -

<Al> and <A2> stand for operands.

EXAMPLES

(3>5 AND 2<3)=4
(3>2 AND 08<=8)=1
(2=3 AND 0>-1)=0

(3>5 OR 2<3)=1
(3>2 OR 8<=0)=1
(2=3 OR B<-1)=8

USING NUMBERS {Continued)

NOT <Al> Negates the boolean NOT 7=0
value of the argument. ROT 8=1

If <Al> is non- NOT (3>5)=1

zero (true)., the NOT (3<5)=0

NOT operation is
false. If <Al>=¢
then NOT <Al> is true.

EXPRESSIONS

Any valid combination of numeric constants, numeric
variable names, operators, function calls, and array-
element names is a NUMERIC EXPRESSION. (Sce
DISCUSSION: FUNCTIONS and DISCUSSION: USING ARKAYS
for complete details concerning "function calls" and

"array-element names". These are two advanced
features of North Star BASIC which are not covered in
this introductory section.) A single constant, 3.14,

or variable name, A, is an expression all bv itself.
In contrast, long constructs such as

(NOT (3+ (SQRT (X*Y) /M3-47)/8) 13
are also numeric expressions.
EXAMPLES OF LEGAL NUMERIC EXPRESSIONS

3.14
43+4+A
((X+2) T(Q-R)) *SQRT (Z)

EXAMPLES Of ILLEGAL NUMERIC EXPRESSIONS

438,000.33 (REASON: CONSTANTS CANNOT CONTAIN COMMAS)
7**y (REASON: TWO OPERATORS IN A ROW ARE KOT ALLOWED)
((3*ABS(A))+4 (REASON: IMPROPER PARENTHESES NESTING)

ORDER OF EVALUATION OF OPERATORS

Is 7+3*2 equal to 28 or 13?7 This depends on whether
the addition or multiplication is performed first.
For purposes of determining the order of evaluation
of operators, each operator is said to have a certain
PRECEDENCE. The rule for the order of evaluation is
as follows: Higher precedence operators are
evaluated first, and operators of egual precedence
are evaluated left-to-right. OPERATORS ENCLOSED IN
PARENTHESES ARE EVALUATED BEFORE OPERATORS NOT
ENCLOSED IN PARENTHESES. When there are parentheses
within other parentheses, operators within the
innermost parentheses are evaluated first. The
operators are listed below in order of decreasing

- NORTH STAR BASIC - D-6

USING NUMBERS (Continued)

L
precedence —-- that 1is, operators which are higher in
(wf the list have higher precedence than those toward the

bottom of the list. Operators on the same line have
equal precedence.

NOT, unary minus (-, negates a number)
1 (exponentiation)
*,/ (multiplication and division)

+,- (addition and subtraction)
=,<,>,<>,<=,>= (relationals)
AND

OR

Thus, 7+43*2 is egual to 13, but (7+3)*2 is 20. Also,
3*8/2 is 12, —-5+4 is -1 (the "-" is a unary minus
here), and (1=2 OR 3=1) is @.

- NORTH STAR BASIC - ' D-7

USING ARRAYS

DISCUSSION: USING ARRAYS

INDEXING AND SUBSCRIPTING

An ARRAY is an ordered collection of numeric
variables. The entire array, as a whole, has a
single variable name, and all the variables (called
ELEMENTS) in the array share that name, much as the
members of a typical family share the same surname.
an individual element in an array is identified by
its unique INDEX NUMBER, which denotes its position
in the ordering of the array elements. For the
convenience of both those who prefer counting from
zero and those who prefer counting from one, an extra
element, the "zero element", is included in each
array. For example, a "5@-element array", having a
maximum index number of 50, actually has 51 elements,
indexed 8, 1, 2, ... , 49, 50.

To represent a given array element in a numeric
expression, you must follow the name of the array
with a subscript -- the index number of the desired
element enclosed in parentheses. For example, the
zero-element of array A would be written as A(8), the
eighth element as A(8), etc.

The index in a subscript may take the form of any
numeric expression -- it need not merely be a
constant. Therefore, if the simple variable I
contains the value of 4, then A(I) will represent the
same element as A(4). Care should be taken, however,
to make sure that any expression used as an array
index will not evaluate to a negative number or a
number greater than the maximum index of the given
array. If either of these things happens, an OUT OF
BOUNDS ERROR will occur. If the index evaulates to a
non-integer, BASIC will TRUNCATE the value to an
integer. (Truncation involves throwing away the
fractional part of a number and keeping only the
whole part. The number 3.6 would be truncated to the
whole number 3. Note that this is not the same as
rounding.)

Note that the simple variable A and an array A may
co-exist in the same program without in any way
affecting each other. Arrays and simple variables
with the same names are separate, distinct entities.
BASIC does not confuse the two, since a simple
variable name will never be followed by a subscript,
while the name of an array must ALWAYS be followed by
one.

- NORTH STAR BASIC - E-1

USING ARRAYS (Continued)

(/‘ MULTIPLE-DIMENSION ARRAYS

Arrays which require only one index may be thought of
as single "rows" of variables. BASIC also permits
the definition of arrays which use more than one
index in their subscripts. The addition of each new
index to an array is said to add another "dimension"
to the array, and an array with n indices is called
an "n-dimensional" array. When using more than one
index to reference a single element, the indices must
be separated by commas. Remember that each index is
allowed to be a numeric expression.

To access the third element in the fifth row of a
two-dimensional array M, for example, you write
M(5,3). Assuming M has a maximum row number of X and
a greatest column index of Y, the following
statements will list the contents of each element in
the array in an appropriate tabular format:

10 FOR I=@ TO X
20 FOR J=0 TO Y

25 REM Print next element w/no <CR>
39 PRINT TAB(I*15),M(I,Jd),

35 REM Each column of numbers

36 REM is 15 spaces wide.

C 40 NEXT

45 REM Print <CR> before starting next row.
50 PRINT
60 NEXT

Space for arrays is reserved by the programmer using
the DIM statement. A DIM statement specifies how
many dimensions an array will have, and what the
maximum index will be in each dimension.

1¢ DIM X(18880), Y(2,3), Z2(10,19,10)

The above defines an array X consisting of elements
indexed from @ to 1808 (1001 elements altogether), a
two-dimensional array Y with maximum row index of 2
and maximum column index of 3, and a three-
dimensional array Z with dimensions of 16, 18, and
10. In keeping with the "zero-element" convenience
feature mentioned above, each array dimesnion
includes a zero-element, so that array Z above
actually contains 11 elements, instead of 1@, in each
dimension, indexed from 6 to 18.

When more than one dimension is specified, the

. maximum indices must be separated by ccmmas. Commas
() must also separate array declarations when more than

- NORTH STAR BASIC - ' E-2

USING ARRAYS (Continued)

one occurs in a single DIM statement.

The maximum index for any dimension in an array
declaration may also be given in the form of a
numeric expression. If the variable Q contains the
value 16, then the following DIM statement will
result in the creation of the same arrays as the
previously given one:

16 DIM X(Q*Q*Q), Y(Q/5,3), Z2(Q,10,SQRT(Q*Q))

An array may have any number of dimensions, but
arrays with many dimensions tend to take up huge
amounts of memory space. Consider that an array F,
declared as F(16,16,1¢,10), will result in the
reservation of 14,641 variable spaces in memory!
(This corresponds to 11*11*11*11, not 16*16*10*1¢

-- remember the #-element in each dimension!) Each
element of the array takes up several bytes, and
chances are this particular array would be too large
to fit in the memcry of your computer.

Whenever there is not enough memory available in the
program/data area to hold an array, a MEMORY FULL
ERROR occurs.

DEFAULT DIMENSIONS

All arrays of more than one dimension and most one-
dimension arrays must be declared in DIM statements
before being used. However, it is not necessary to
declare a one-dimensional array of maximum index 10
or less. Any array which is used without first being
declared in a DIM statement is automatically created
by BASIC to be one-dimensional, and of maximum index
12. If you desire a specific maximum index greater
or smaller than 10, however, you must use a DIM
statement to create the array. An attempt to
reference an element in a multi-dimensional array
before the array has been dimensioned in a DIM
statement will fail, causing an OUT OF BOUNDS ERROR.
When dimensioned, an array is automaticaly
initialized so that all of its elements contain the
value 4.

ARRAYS MAY NOT BE RE-DIMENSIONED

Nc matter how created, either by an explicit
declaration in a DIM statement or automatically, by
BASIC, no array may be re-dimensioned in another DIM
statement later during program execution.
Specifically, this means that the size of arrays may

- NORTH STAR BASIC - E-3

USING ARRAYS (Continued)

(~/ not grow or shrink during the RUN of a program. Any
attempt to "re-dimension" an existing array will
result in a DIMENSION ERROR.

ARRAY REFERENCES IN NUMERIC EXPRESSIONS

As mentioned in the chapter on USING NUMBERS, array
elements may be used in numeric expression, since
they are perfectly legal variable names. Here are
some examples of array elements used in expressions:

1¢ X=SQRT(Q(3,5)+ABS(B))
60 PRINT M(F(A,B),L(A,B))
99 N(A)= N(A+1)/2

SEE ALSO: DISCUSSION: USING NUMBERS
STATEMENT: DIM

—y

- NORTH STAR BASIC - E-4

USING STRINGS

DISCUSSION: USING STRINGS .

A STKRING 1is a seguence of letters and/or other
characters. For example, the following are strings:

HELLO NG;34%* ABC123
THE DATE IS 7/7/78

STRING CONSTANTS

Strings enclosed in guotation marks are called STRING
CONSTANTS. Note that the guotation marks themselves
are not part of the string, but serve only to mark
its boundaries for convenient recognition by both
human beings and machines. The following are
examples of BASIC string constants: :

"HELLO" "NG;34*" "ABCl23"
"THE DATE IS 7/7/78" :

THE NULL STRING -

The 'string represented by two consecutive quotes ("")
contains no characters, and is called the NULL
STRING.

STRING VARIABLES , ‘

Just as numbers may be held in numeric variables, so
can strings be held in STRING VARIABLES. String
variables are named similarly to numeric variables,
and differ only in that a dollar-sign ($) is added to
the name to denote the type of the variable as
string. Thus, a legal string variable name consists
of a single capital letter (A-Z) followed by a
dollar-sign, or a capital letter and a single digit
(€-9), followed by a dollar sign.

Examples of legal string variable names:
AS Q7$ Z3% RS
DIMENSIONING STRING VARIABLES

Before they can be used to hold string values in a

program, string variables must be DIMENSIONED.,

DIMensioning a string causes BASIC to reserve memory

space to hold the value of a string. To dimension a

string, the string name must be included in a DIM

statement, along with its MAXIMUM LENGTH in :
characters, before it is used to store a string value ‘l
in a program. (For the proper method of doing this,

- NORTH STAR BASIC - v F-1

USING STRINGS (Continued)
e

see STATEMENT: DIM.) 1If you use a string variable
without having first declared it in a DIM statement,
BASIC will automatically dimension it to a maximum
length of 10 characters. Once created, strings may
not be re-dimensioned in a program.

A string variable may contain any string whose length
is less than or egual to the dimension of the string.
The CURRENT LENGTH of the variable is the length, in
characters, of the value it contains. Thus, 1if AS is
dimensioned to a maximum length of 26 characters, it
may hold the entire alphabet {(current length = 26
characters), the string "CAT" (current length = 3,
or even the null string {(current length = @).

Immediately after being dimensioned, a string is
initialized to contain all blanks., Tnus, if A$ 1is
dimensioned to be 26 characters long, it initially
contains a string of 26 blanks.

SUBSTRINGS

The programmer can access parts of a string

-- smaller segments consisting of one -or more
consecutive characters from within the string. Such
-a 'segment 1s called a SUBSTRING.

Substrings of string variables are represented by
SUBSTRING NOTATION -- adding a SUBSTRING INTERVAL, in
parentheses, to the variable name. For example,
assume that AS$ holds .the string value "ABCDE".
(Unless otherwise stated, this will be the permanent
value of A$ throughout the discussion.) To represent
its substring "CD", you would write A$(3.4), which
‘specifies a substring consisting of the 3rd through
the 4th characters of AS$. AS$(3,3) would yield the
value of "C", and AS$(2,5) would represent "BCDE".

Either or both of the numeric values in a substring
interval may be represented by any numeric
expression, as long as each expression evaluates to a
value greater than or egual to 1 and less than or
equal to the current number of characters in the
string. Whenever any of the numeric values in a
substring interval are non-integer, BASIC ignores the
fractional parts. Thus, 5.6 is taken as 5, and 1.23
is taken as 1. If A=3 and B=4 then AS$(A,B) would be
the same as AS(3,4), or. "CDb". 1If B is more than 5,
or A is less than 1, AS(A,B) would not be allowed,
causing an OUT OF BOUNDS ERROR. This error will also
occur if the value of the first expression is greater
than the value of the second. Therefore, a tackwards

- NORTH STAR BASIC - F-2

USING STRINGS (Continued)

substring such as A$(4,2) is illegal. ‘
THE OPEN-ENDED SUBSTRING

A special form of substring notation is used to
reference a substring consisting of all the
characters from a given starting position in the
string through its end. OPEN-ENDED SUBSTRING
NOTATION uses only one numeric expression, which
specifies the starting position within the string,
and which must be greater than or egual to 1 and less
than or equal to the length of the original string.
For example, A$(3) stands for "CDE". Note that the
value of AS as a whole is the same as the value of
the open-ended substring AS(l). A$(5) and AS$(5.5)
are the same as well, since the 5th character is the
last character in A$. Use of open-ended substring
notation eliminates the need, in certain situations,
to know the current length of the original string.

STRING OPERATIONS: CONCATENATION - -

One operation may be performed on strings:
CONCATENATION, symbolized by the "plus" operator (+).
This is not to be confused with numeric addition.
Instead, concatenation is the joining of two strings, _ ‘
front to back, rather like coupling railroad cars
together. For example, "CAR"+"LOAD" represents the
same value as "CARLOAD". Any string value may be
concatenated with any other string value to vyield a
third value which consists of the two linked
tcgether. AS$(2,3)+AS$(2) yvields the value "BCBCDE".
(Remember that A$ has held "ABCDE" throughout this
discussion.) Concatenation operations can be
"chained", such as in

AS(1,1)+AS$(3,3)+AS(3,3)+AS$(5)+AS (4)+" MEANS YIELD"
which gives the value "ACCEDE MEANS YIELD".
STRING FUNCTIONS
BASIC includes certain built-in FUNCTIONS which
return useful string values. It is also possible to
define single-~line and multiple-line user-functions
which return string values. See DISCUSSION:
FUNCTIONS for more detailed information.
STRING EXPRESSIONS
A STRING EXPRESSION is a string variable, substring, ‘.

string function, or a guoted string literal. The

- NORTH STAR BASIC - » F-3

USING STRINGS (Continued) .

concatenation of two string values is also a string
expression. Long, involved compound expressions may
be formed by combining one or more of the elements
mentioned above., For example:

aS
F$+ll '2"
AS (1.X)+CHRS (97)+AS+"GO FOR BROKE"+FNSS (25)

The built-in string functions (e.g. CHRS) and the
user—-defined string functions (e.g. FNS$) will be
discussed later.

STRING COMPAKRISONS

String values may be compared using the comparison
operators = , > , < , <=, >= , and <> . BASIC
compares string values using the following rules:

1} Two string values are egual only if they have the
same number of characters, and have matching
characters in each character position.

2) Strings are compared character by'character, left
to right, until a difference occurs or one of the
strings ends.

3) If a difference exists, and the ASCII value of the
first different character in the first string is
less than that of the corresponding character in
the second string, then the first string is "less
than" the second string. If the character in ‘the
first string is greater than its counterpart in
the second string, then the first string is
"greater than" the second.

4) If one of the strings ends before a difference is
found, the shorter string is considered to be
“less than" the larger one.

5) As a consequence of rule #4. the null string is
always less than a non-null string.

When using strings composed solely of alphabetic
characters of the same case (either upper or lower,
but not both), this scheme corresponds to comparsion
by "dictionary order", where an "entry" is considered
to be "less than" another if it comes before the
other in the dictionary. and "greater” than the other
if it comes after. Thus "bird" is less than {(comes
before) "tree”, and '"zero" is greater than (comes
after) "aardvark". The difference between string

- NORTH STAR BASIC - F-4

USING STRINGS (Continued)

alphabetic order lies solely in the fact that the
ASCII character set, used to define "alphabetic"”
order in BASIC, has 128 "letters" as opposed to our
usual 26. To give you a better idea of this expanded
"alphabetic order", here are some samples of string
compariscons. Use the five rules above and the table
of ASCII codes in APPENDIX 4: DECIMAL-HEX-BINARY-
ASCII CONVERSION TABLE to check the following
examples:

"Z" > "COCOA" 128" < "75"
123" < “124" "AB " > "AB"
"123" < "ABC" "AB1" > "ABOLl"
HABC " < " abc" it , " > (1) I3

HABC u > " AB "

NOTE: The logical operators AND, OR ané NOT may not
be used to combine the effects of two or more string
comparisons in an IF statement. These three
orerators may be used in numeric .comparisons only.

ASSIGNMENT TO STRINGS AND SUBSTRINGS
Any legal string expression may be assigned to a
of substring notation), as in the following examples:

A$="CAT"
Q7$(1,3)="D0OG"

(In the second example, note that the first three
characters of Q7% will become "DOG". Any characters
in Q7% past the third will not be changed.)

If a string value is assigned to a string variable
which has been dimensioned to be too small to hold
the entire value, its rightmost characters are
discarded until the resulting truncated value will
fit in the variable. Similarly, if an assigned value
is too big to fit in a substring interval, it is
truncated to the proper length. As an illustration,
try RUNning the following program:

13 REM Demonstration of automatic

20 REM string truncation in assignment,
100 DIM L$(13)

119 LS="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

128 PRINT LS

138 L$(2,3)="12345"

- NORTH STAK BASIC - F-5

compari'sons in BASIC and regular word-comparsion by ‘

string variable or any part of a variable (by the use ‘

149 PRINT LS ' m

USING STRINGS (Continued)

The output of the program looks like this:

ABCDEFGHIJKLM
A1ZDEFGHIJKLM

The value shown on the first line of output is a
result of the assignment statement in program line
11¢. Although the attempt was made to assign the
entire alphabet to LS, only the first 13 characters
fit, due to the dimension declared for L$ in line
108. The rest of the alphabet was discarded.

The second ocutput line shows the value produced by
the assignment in line 130. The assignment asks theat
a five character string value be squeezed into a two-
character interval, which is not possible. As a
result, BASIC assigned only the first two characters
of 712345", or "12" to the substring, ignoring the
rest.

when assigning to a substring interval, if the value
assigned is smaller in length than the substring
interval, any remaining characters in that interval
are not modified, as in the following example
program:

18 REM More substring assignment.
28 DIM L$(13)

30 LS="ABCDEFGHIJKLM"

46 PRINT LS

58 LS$(5,9)="12345"

60 PRINT L$

79 LS$(5,9)="abc"

80 PRINT L$

Here are the three output lines produced by the
program:

ABCDEFGHIJKLM
ABCD12345JKLM
ABCDabc45JKLM

In the assignment of line 58, "12345" exactly fit the
substring L$(5,9). However, in line 78, "abc" was
two characters short, so only the first three
characters of the substring, characters 5 through 7,
were modified. '

It is also possible to use the open-ended substring
form to specify a substring interval into which a
value is to be assigned., For example, L$(5) is taken
to specify the same interval as LS$(5,LEN(LS)).

m
!
N

- NORTH STAR BASIC -

M

USING STRINGS (Continued)

(LEN(LS$) stands for the current length of LS$.) In '
the substring assignment example above, exactly the

same results would have been obtained if the

substring interval expressions in the string

assignment statements had been replaced by open-ended
substring expressions.

Assignment of the null string to any substring
specified by regular or open-ended substring notation
causes no change in the string.

MAXIMUM LENGTH VS. CURRENT LENGTH

The maximum length of a string variable is the
maximum number of characters which it can hold. M$,
dimensioned to 586, can hold up to 50 characters at
once, but no more. On the other hand, a string’s
CURRENT length (as determined by the LEN function) is
the number of characters which the variable actually
does contain at any one time. Thus, if MS$ contains
"CAT", its current length is 3, despite the fact that
its maximum length is 50. As long as M$="CAT", BASIC
statements and string expressions may not access any
character positions in MS beyond the third. while
M$="CAT", the character positions beyond the third

is illegal. But, if MS is changed to "“STICK", then
its current length becomes 5, and M$(3,5) is allowed.
However, it is always incorrect to reference a
character position beyond the maximum length of the
string. 1In this example of M$, the substring
reference M$(40,60) will always ove illegal, since MS$
can never grow larger than 58 characters in length,
and therefore, the character positions from 51 to 68
will never exist.

CHARACTER SET IN BASIC

Up to now, "character" has been used in its intuitive
sense, as a digit, letter or punctuation character
which may be typed in by a user or printed on a
terminal. 1In fact, the BASIC character set includes.
"invisible" control characters and the many
"undefined characters” which may be represented as
byte (8-bit) values. Altogether, BASIC’'s character
set includes 256 values. The first 128 of them (# to
127) correspond to the 128 characters of the
international ASCII standard. The remaining 128
characters (128 to 255) are generally undefined on
most terminals, but are available to the North Star

string function CHR$ may be used to represent any

- NORTH STAR BASIC - F-7

simply do not exist, and a reference such as M3(3,5) ‘

BASIC programmer as a convenience. The built-in ' ﬁl

SEE ALSO:

USING STRINGS (Continued)

character which cannot be typed or printed. HNote
that CHRS (34) may be used to represent a guote-mark.

19 A$="HI THERE"

20 PRINT AS

30 AS$S=CHRS (34)+AS+CHRS (34)

49 REM Above puts guote-marks in AS
50 PRINT AS

When RUN, the above program produces these results:

HI THERE
"HI THERE"

DISCUSSION: FUNCTIONS

DISCUSSION: USING NUMBERS (EXPRESSIONS)

STATEMENT: DIM :

APPENDIX 4: DECIMAL-HEX~-BINARY-ASCII CONVERSION TABLE

- NORTH STAR BASIC - F-8

M

THREE IMPORTANT STATEMENT&

STATEMENT: DIM <list of array or string size declarations> ‘

ACTION: Reserves program/data area memory space for strings
and arrays as specified in the declarations.

EXAMPLES: 10 DIM AS(30),Q(160),2(5,2)
60 DIM X7(X,Y), X8(X,X,X)
70 DIM C$(180*3)

REMARKS: A DIM statement automatically initializes the
variables declared in it. After a DIM statement is
executed, the length of any string declared in it is
equal to the declared size and all character
positions are filled with spaces. (For example,
after executing line 18 above, AS will be a 38-
character string filled with spaces.) 2ll elements
of any array declared in a DIM statement will be
initialized to zero.

When declaring strings, the single numeric expression
enclosed in parentheses specifies the maximum number
of characters which the string variable may hold. a
declaration for a single array may contain several
numeric expressions within the parentheses, each
denoting the maximum index value in each "dimension®
‘of the array. Thus, after execution of the DIM ‘
statements in lines 10 and 68 above, Q will be a one-
dimensional array with a maximum index of 188, 2z will
be a two-dimensional array with 5 rows and 2 columns,
and X8 will be a three-dimensional array with a
maximum index of X in any of its three dimensions.

If a string or array is referenced 1n any statement
without having been declared in a prior DIM
statement, it is automatically created, initialized,
and dimensioned by BASIC, strings to a maximum length
of 18, and arrays to one dimension and maximum index
of 1@.

Whether "dimensioned" explicitly through a DIM
statement or implicitly through first reference to a
previously non-existent variable, a string or array
may not be "re-dimensioned" (declared in a DIM
statement executed later in time during the same RUN
of a program). any attempt to do so will lead to a
DIMENSION ERROR. (For the came reason, a DIM
statement itself may not be repeated during the
execution of a program.)

ERROR
MESSAGES: MEMORY FULL ERROR .
Not enough program/data area memory is available to

- NORTH STAR BASIC - G-1

THREE IMPORTANT STATEMENTS (Continued)

hold one or more of the variables declared in the DIM
statement responsible for the error. See APPENDIX 3:
IMPLEMENTATICN NOTES for details of memory
allocation.

DIMENSION ERROR
An attempt was made to re-dimension a string or an
array which already exists.

DISCUSSION: USING STRINGS
DISUCSSION: USING ARRAYS

- NORTH STAR BASIC - G-2

e ———— M \

THREE IMPORTANT STATEMENTS (Contjinued)

STATEMENT: REM <optional line of any text> '
ACTION: None. REM statements are ignored by BASIC.

EXAMPLES: 13 REM THE REM STATEMENT IS USED TO
20 REM INSERT COMMENTS IN A PROGRAM.
30 REM FOR EXAMPLE --
35 REM
4 N=G-W \ REM NET GETS GROSS LESS WITHHOLDING
45 REM
78 REM Lower case letters are ok in REMs.

REMARKS: As can be seen from example line 46, a REM may be
included on the same line as other BASIC statements,
however, it must always be the last statement on a
line. The reason for this is, all text after the REM
reserved word on a line is treated as a comment and
is ignored by BASIC. Therefore, any statements which
appear after a REM on the same line will not be
executed.

As with other North Star BASIC statements, the

characters ":", ":", "[", and "]" are translated to
"\", ","y "(", and ")", respectively, within REM
text.
ERROR ‘

MESSAGES: None.

- NORTH STAR BASIC - G-3

M

THREE IMPORTANT STATEMENTS (Continued)

STATEMENT: LET <numeric variable> = <numeric expression®>
LET <string/substring variable> = <string expression>
{numeric variable> = <numeric expression>
<string/substring variable> = <string expression>

ACTION: The value of the expression on the right hand side of
the egual=-sign is assigned to the variable named on
the left side. The reserved-word LET is optional,
and may be omitted.

EXAMPLES: 10 X=X+1
50 LET A(X)=6
35 LET Q=SQRT(X)+Y
20 B$="HELLO THERE"
61 M$(2,11)=FNNS("415~549-0858")
1560 LET Z$=STRS$(Q)+2S$(1,2)+"BOX"

ROMARRKS:: BASIC permits only one assignment per LET statement.

However, several assignments may be made on one line,
as in:

16 a=0 \ B=0 \ C=0

Note, in line 10 above, the apparent mathematical
impossibility of X=X+1. However, as an assignment,
this makes sense -- the right-hand expression is
evaluated with the current value of X, and the result
obtained. then becomes X's new current value. X=X+N
has the effect of increasing the value of X by N.

(It is sometimes easier to understand assignment if
one resists reading LET statements as " ecguals Q+1",
for example, and says instead, "Q gets Q+1", or "1Z
becomes M+173".)

Only single variazhle names are legal on the left side
of an assignment (LBET) statement. Also, it is
impossible to assign entire arrays with a single LET
statement. Each individual element of an array must
be assigned separately.

ERROR

MESSAGES: TYPE ERROR
The type of the expression on the right side is not-
the same as the type of the variable on the left
side. It is illegal to assign a string value to a
numeric variable, or a numeric value to a string
variable.

SEE ALSO: DISCUSSION: USING NUMBERS

DISCUSSION: USING STRINGS
DISCUSSION: USING ARRAYS

- NORTH STAR BASIC - G-4

STATEMENT :

ACTION:

EXAMPLES:

REMAKKS:

———-—---m--—-—---------------——-—-—-—-—-—-—-—-—-—-—-"

INPUT AND OUTPUT *®

PRINT ‘
PRINT <list of string and/or numeric expressions>

PRINT "<device expression>

PRINT #<dev. exp.>, <string/numeric expr. list>

The data indicated in the OUTPUT DATA LIST is
printed on the specified output device. After the
entire list is printed, the print-head or cursor of
the terminal is moved to the start of the next line.
If there is no output list, only a pblank line is
printed. If no device is specified, output is
printed on device #0, the conscle terminal. The
device expression consists of a numeric expression
which evaluates to an integer from £ to 7,
corresponding to a connected output device. A piece
of "data information” in the output list consists of
any string or numeric expression. PRINT formatting
expressions may also be included in the output list.
See DISCUSSION: PORMATTED PRINTING for complete
details. Elements in the output data list must be
separated by commas. Elements in the same list will
be printed on the same output line. Information
which cannot fit on one output line will be continued
on the next.

If a comma follows the output list, the print-head or ‘

cursor will not be moved to the next line, so
subseguent output will appear on the same line.

PRINT

PRINT “THE ANSWER IS: ",
PRINT A,B,C,A7

PRINT 4D

PRINT #Q.,A,B,"HELLC",C(3),QS$

Here is a sample program, designed to demonstrate the
action of the PRINT statement as described above.
Try it:

18 A=3

20 B=4

3¢ PRINT "A EQUALS".A,
49 PRINT " B EQUALS",B
58 END

When this program is RUN, the following should appear
on your terminal:

A EQUALS 3 B EQUALS 4

The exclamation point (!) may be used as an ‘

abbreviation for the keyword PRINT. Thus, the

- NORTH STAR BASIC - H-1

INPUT AND OUTPUT (Continued)

statemeﬁt
PRINT "STRING"
is the same as
I"STRIRG”

This 1s especially convenient when using the PRINT
statement in direct mode.

NHote that the comma (as separator in the PRINT output
list) verforms the same function as the semi-colon in
many other versions of BASIC. To obtain output
"tabbing", use the TAB function, as described in
DISCUSSION: FUNCTIONS (built-in, TAB).

DISCUSSION: FORMATTED PRINTIRNG

DISCUSSION: MULTIPLE I/0 DEVICES
STATEMENT: LINE

- NORTH STAR BASIC - H-2

DISCUSSION:

WHAT

INFUT AND OUTPUT (Cdntinued‘l

FORMATTED PRINTING

NOTE: Read DISCUSSION: USING NUMBEKS and STATEMENT:
PRINT before beginning this section!

REGULAK AND E-FORMAT NUMBER PRINTING

Normally, BASIC will "choose"” between "regular" form
and exponential/scientific form for the most
appropriate method to PRINT a numeric value. BASIC
chooses the methods which will result in the most
concise printed figure. Note that a space before
each "regular" number is automatically printed.

3.1415
.7319
~-8.03
-.04

When a numeric value is too large or too small to
PRINT in regular form, BASIC will automatically use
E-FORMAT. E-format consists of a space, a minus sign
if the number is negative, the first digit of the
mantissa, a decimal point (if there ‘are any digits
left in the mantissa), any other mantissa digits, an

"E" (to denote the beginning of the exponent), a plus
or minus sign to denote the sign of the exponent, and
the two digits of the exponent itself (-- the first
digit may be 8). Here are some numbers in E-format:
1.4873749E+14

-2E-09

-5.4128376E+13

when BASIC chooses the format of printed values, the
PRINT statement is in "FREE FORMAT" -- i.e., BASIC is
free to PRINT the values using the most concise
format. Sometimes, however you may want certain
values to be printed only in E-format, or only with
two decimal places, or only as integers (with no
decimal points). 1In other words, you may want to
determine the format under which these numbers will
be printed, as opposed to letting the computer
choose. To do this, BASIC permits you to include
numeric "format specifications” within the output
lists of PRINT statements. These format
specifications always begin with a per-cent sign (%).

IS A FORMATTED NUMBER?
A programmer-formatted (as opposed to a free-

formatted) number always takes up exactly a given

- NORTH STAR BASIC - H-3

INPUT AND OUTPUT (Continued)

number of spaces on the printed line. . This is called
the FIELD WIDTH. The field width is defined by the
programmer in the format specification, and must
reserve enough character positions in the printed
line to hold all the characters in the number as
printed. A field width of 6, for example, is too
small to accommodate the number 1234.56, because 7
character positions are actually reguired -- six for
the digits, and one for the decimal point! Also
remember to leave room for plus or minus signs if
they might occur in the number, as well as the letter
"g£", if E-format is being used to display a number in
scientific notation. 1If the specified field isn’t
wide enoudgh to PRINT a given number, then a FORMNAT
ERROR will occur when an attempt is made to PRINT the
number using that format.

The next few examples will make use of "I-FURHAT" to
illustrate some general points about BASIC's
formatting mechanism. Only numpers with integer
values may be printed using I-format- The I-format
specification consists of the per-cent sign (%), a
number, and the capital letter "I", as in the
following:

%331

The number given specifies the number of column
vositions on the printed line which will be reserved
to hold the number. The %31 format specification,
for example., reguires that any number printed
according to it must be an integer, and must f£it in
three character positions. Therefore, 8, positive
numbers from 1 to 999, and negative numbers from -1
to -99 may be printed under this format. Remember
that the negative-sign counts as taking a character
position.

When printing a programmer formatted number, BASIC
does not automatically insert leading spaces to keep
the number from "bumping up against" previously
printed information on the same line, as it does in
free-format. The statement

PRINT "OOPS",%31,349
results in

OCPS349

on the terminal. In order to separate your formatted
output from other ocutput, you may elect to PRINT

- NORTH STAR BASIC - H~-4

SIS 2 e w

INPUT AND OUTPUT (Continued) w

explicit spaces before (and after) the number, use ‘
the TAB function, or specify a field width large

enough to provide at least one blank space between

the number and previous information on the line.

RIGHT JUSTIFICATION

All programmer formatted numbers are automatically

right justified within their PRINT fields. ‘That 1is,
the number is printed so that, in a field which is n
character positions wide, the last character in the
printed number occurs in the n-th (rightmost) :
character position of the field, and spaces fill to 1
the left. The following numbers are right justified:

349

1234

7.3

8.42
-2118.37
l.61

Note that, when right justified numbers having the

same number of digits after the decimal point are

printed one above the other, the decimal points will

"line up". (Note that decimal-point numbers cannot ‘I
be printed using I-format, but are included in this

example because BASIC’'s decimal-point format, to be

discussed soon, also right justifies.)

The statement | |
PRINT "HERE IS A GAP:",%l@I,é

produces the output
HERE IS A GAP: 2

because the field, specified as 10 positions in
width, is more than large enough for the 1l-digit
number 2.

DECIMAL PLACES

In the case of floating-point and E-format numbers,

you may also decide how many decimal places are to be

displayed when a formatted number is printed. For

example, the floating point format %7F2 will put

numbers from -999.99 to 9999.99 in "dollars-and-

cents" form, with only two digits to the right of the

decimal point: ‘

- NORTH STAR BASIC - H-5

INPUT AND OUTPUT (Continued)

-302.63
51.00
987.12
1234.56

(The field is 7 positions wide.)

Note that, if the number is an integer, zeroes are
used to fill the decimal vpositions. Suppression of
those "trailing zeroes" will be discussed later.

If a number to be printed has more decimal places
than the format specification indicates, the value
printed is the number rounded to the indicated number
of digits.

Here are the allowable formats:

(in the following, n and m stand for integer
constants)

model name/effect

nFm F-format:
Each subsequent numeric value in the PRINT list
will be printed in an n-character field, right
justified, with m digits to the right of the
decimal point.

nl I-format:
Each subsequent numeric value in the PRINT list
will be printed in an n-character field, right
justified, provided they are integers (have no
fractional part). If a value to be printed
under this format is non-integer, a FORMAT ERROR
will occur.

nEm E-format:
Subseguent numeric values in the PRINT list will
be printed in scientific notation in an n-
character field, right justified, with m digits
to the right of the mantissa decimal point.

a2 format specification which consists only of a
percent-sign specifies a return to free format.

All numeric values in a PRINT-list are printed using
the new format specification until a subseauent
format specification appears in the list, or until
the end of the data/format list itself. Note that
the printing of numbers in subsequent PRINT

- NORTH STAR BASIC - H-6

INPUT AND OUTPUT (Continued) -

statements will not usually be affected by format
specifications in previously-executed PRINTs. In ‘
varticular, for the two lines:

19 PRINT %3I,A,B,C
20 PRINT D

All values in line 10 will be printed according to
the %31 format, but D (in line 20) will be printed
using free format. The format specification in line
18 can affect only values which line 10 itself
prints.

DEFAULT FORMAT VS. CURRENT FORMAT

BASIC keeps track of two format specifications: the
CURRENT FORMAT and the DEFACLT FORMAT. Each numeric
value in a PRINT output list is printed using the
current format. At the beginning of each PRINT
statement, the value of the current format is made
eguivalent to that of the default format.

Thereafter, the current format is changed each time a
format specification occurs in the PRINT output list.
The default format is set initially to free-format,
and may be changed by using the cross-hatch (%)
-format character in a format specification as
described below. ‘

OTHER FORMAT CHARACTERS

Certain other FORMAT CHARACTERS may be used to moaify
the effects of a format-specification. Several of
these characters may be combined in one format
specification, if you wish., All format CHARACTERS in
‘a format specification must come after the % and
before the format specification itself. Here are the
characters:

Z Trailing zeroes after the decimal point are
suppressed; spaces will be printed instead.

The format specification after this character
will become the default format. Also, number-
to-string conversion is done using the default
format (see DISCUSSION: FUNCTIONS, built-in,
STRS). Note that %# will force free format to
be the default format. This is useful in ceases
where you have made another format the default,
and would like to return to free-format.

C Commas will be placed to the left of the decimal
point as needed to group each seguence of three ‘I

- NORTH STAR BASIC - H-7

W

INPUT AND OUTPUT (Continued)

digits -- e.g9. 1,234,567. (wote that the "C"
option is not effective with E-format
specifications.)

$ A dollar sign will be placed to the left of the
value when it is printed.

Caution! When using C or $ with a format
specification, you must be sure that the field width
specifies enough character positions to contain the
longest number you intend to PRINT in that format,
plus any dollar sign, plus any maximum amount of
commas which may be inserted by the machine. For
instance, the statement

PRINT %C9F2, D
will yield the output
$3,478.92
whnen D=3478.92, pbut will result in a FORMAT ERROK 1if
0=107843. The number should be printed as
$19¥7.843.88, but this requires the field width to be
at least 11.

EXAMPLES:

FORMAT VALUE OUTPUT

$8F2 19.355 19.36
2$6F2 45,12 $45.12

$CoI 1000008 1,000,000
$C81 16000600 FORMAT ERROR
$10E3 472 +4,720E+02
$210E3 472 +4,72E+B2
3SCl1F2 201758.88 $261,758.88

STATEMENT:

ACTION:

EXAMPLES:

REMARKS:

INPUT AND OUTPUT (Continued)
' w

INPUT <list of variables>

INPUT <string constant>, <var. list>

INPUT #<device expression>, <var. list>

INPUT #<dev. expr.>, <string const.>., <var. list>

User ‘input of string or numeric constant data is
"requested" and accepted from the terminal named by
the device expression. If there is no device
expression, the console, device #0, is assumed. The
device expression must be a numeric expression which
evaluates to an integer from & to 7. The data
provided by the user is assigned to the variables
named 1n the INPUT statement s variable list. If no
string constant is specified, input is "prompted" by
a guestion-mark (sent to the terminal before input-
data is accepted). 1If a string constant is given,
however, this string is sent to the terminal as
prompt, instead. The user strikes the RETURN key
when finished providing data-input.

16 INPUT A,B,Q$

7@ INPUT "YOUR NAME: " ,N$

35 INPUT #3,X,Y

3¢ INPUT #X,"COMMAND: ",C$(5,9)

19 INPUT "",X \ REM No prompt 1s given at all.

INPUT may not be used in direct mode,

INPUT will "wait" forever for user-response, until
the RETURN key is struck.

String constants entered by the user in response to
INPUT should not be quoted. (If guotes are typed,
they will become part of the string.)

If an INPUT statement requires several consecutive
numeric data-items to be given by the user, it is

possible to put them all on one line, as long as they

are separated from one-another by commas. For
example, a proper response to an INPUT statement
which asks for three numbers is:

123, 456, 789 <CR>

However, since carriage-returns must terminate the

INPUT of a string, the "comma-method" i1s not suitable

for inputting several .consecutive strings. To INPUT
more than one string value on one line of the
terminal, successive INPUT] statements must be used.

(See STATEMENT: INPUT1.)

- NORTH STAR BASIC -~ H-9

MESSAGES:

" INPUT AND OQUTPUT (Continued)

10 illustrate proper user-response to an INPUT
statement, assume that example line 10 1s executed.
4 guestion-mark (?) will appear on the terminal.

?

This indicates that the computer is waiting for
INPUT, and the knowledgable user might type in the
following:

2, 3, WEASEL<KCR>

(<CR>, of course, signifies striking the RETURN kevy.)
Aftter RETURN is struck, A wiil pbe set to 2, B to 3,
and QS to the string value "WEASEL".

L single carriage-return (representing no input) 1is
acceptable when the next item in the variable list is
a string. In this case, the string will be set null.
However, valid numeric input must pe supplied for
numeric items in a variable list -- an INPUT ERROR
will occur if this isn’t done.

Note that the line editor may be used to modify the
user ‘s input line before <CR> is struck.

When too few data items are typed before RETURN is
struck, BASIC will type a double-guestion-mark (??)
as auxilliary prompt, and await further INPUT for the
given variable list. It will repeat this step as
long as necessary until all variables named in the
variable list have been assigned values typed in from
the terminal,.

Note that the INPUT statements and the puilt-in INP
function are not the same.

LENGTH ERROR
The line of data-input is too long.

INPUT ERROR -- PLEASE RETYPE

A numeric value was reguired by the INPUT statement,
but a non-numeric value was supplied by the user.

The user is automatically given a chance to rectify
the mistake by retyping all data elements reguired by
the INPUT statement.

DISCUSSION: USING NUMBERS

DISCUSSION: CONTROL-C, THE PANIC BUTTON
DISCUSSION: FUNCTIONS (built-in, INP)
STATEMENT: INPUT1

- NORTH STAR BASIC - H~-10

INPUT AND OUTPUT (Continued),

STATEMENT: INPUT1 <1list of variables>
INPUT1 <string constant>, <var. list>.
INPUT1 #<device expression>, <var. list>
INPUT]1 #<dev. expr.>, <string const.>, <var. list>

ACTION: Exactly the same as STATEMENT: INPUT, except that
when the user strikes the KETURN key to terminate an
input line, no carriage-return is ecnoed to the
terminal. Subseguent input or output will occur on
the same line.

EXAMPLES: 5¢ INPUT1 Z,W,B7,A(3)

25 INPUT1 #D(Q), "“GUESS? “,G
REMAKKS: See STATEMENT: INPUT
ERROR

MESSAGES: See STATEMENT: INPUT

NORTH STAR BASIC - H-11

®

DISCUSSION:

INPUT AND QUTPUT (Continued)

MULTIPLE I/0 DEVICES

A computer system may include several input/output
(I/0) devices, such as a video terminal, printer,
graphics display, etc. North Star BASIC provides a
convenient means for BASIC programs to make use of up
to 8 separate I1/0 devices. A unigue integer numoer
from ® to 7 is assigned to each one. Device #0 must
correspond to your main communication link to your
computer -- zlso known as the console terminal. It
is generally a teletype-style or a CRT (video)
terminal. When your copy of DOS has been
personalized to handle multiple I/C devices, your
BASIC programs will be able to access the many I/0
devices through the PRINT and INPUT statements. (See
DOS section of this manual, chapter on
"PERSONALIZATION" for details.)

A PRINT, INPUT, INPUT]l or LINE statement accommodates
an optional DEVICE EXPRESSICON, which consists of a
cross-hatch (#). followed by a numeric expression
which evaluates to an integer number from @ to 7.
This expression indicates the device desired for
input or output. If used in any of these statements,
the device expression must pe the first thing after
the statement s keyword. Here are some examples:

PRINT #1, "TEST"
PRINT #Q,X,B.,7

PRINT #D+3, "CRAZY",Q
PRINT #D7 (X)

INPUT #B, L3
INPUT #7., "COMMAND: ",C$

LINE #1. 132
LINE #D, L

If the device expression is omitted, it is assumed to
be @ (the console).

As a final example, assume that device #0 is the .
console terminal, device 1 is a remote printer, and
device 2 is a remote CRT. The following program
causes a different message to be printed on each of
the three devices:

16 REM Multiple I/0 demonstration.

20 PRINT "THIS MESSAGE GOES TO THE CONSOLE."

3% PRINT #0,"THIS ONE DOES, TOO."

49 PRINT #1,"THIS WILL GO TO THE REMOTE PRINTER"
5¢ PRINT #2,"THIS SHOWS UP ON THE REMUTE CRT"

- NORTH STAR BASIC - H=-12

‘w

INPUT AND OUTPUT (Continuedy

The PRINT/INPUT device expression, characterized by a ‘
cross-hatch, should not be confused with the PRINT
statement’s format specification, which begins with a
per-cent sign (%).

SEE ALSO: STATEMENT: PRINT
STATEMENT: INPUT
STATEMENT: INPUTI1
DOS section of this manual, chapter on PEKSONALIZATION

- NORTH STAR BASIC - H-13

(_/.

STATEMENT:

ACTION:

EXABMPLES:

ERROR

MESSAGES:

SEE ALSO:

STORING DATA WITHIN THE PROGRAM TEXT

DATA <1list of constants>

The string and numeric constant values included in
the list are stored as data and may be accessed, in
order, by the BASIC program of which they are a part.
If a list contains more than one constant, each
constant must be separated from the next by a comma.

1002 DATA "STRING DATA", "NUMBER IS NEXT",2
26 DATA 15 ‘
115 pata 2, 7, 25, "HI", O

The DATA statement provides a way to store information
within the text of a BASIC program. This data may be
accessed by a RUNning program when a READ statement

is executed. .

DATA statements may be placed anywhere in the
program, and are ignored by BASIC except when an
attempt is made to access the information they
contain. 1In other words, DATA statements are non-
executable. :

SYNTAX ERROR

An improperly-formed constant was placed in a DATA
statement (i.e, a string without the opening or
closing guote mark) and this results in a SYNTAX
ERROR when a READ statement attempts to access this
constant.

STATEMENT: READ
STATEMENT: RESTORE

- NORTH STAR BASIC - . I-1

STORING DATA WITHIN THE PROGRAM TEXT ¢Continued)

TATEMENT: READ <list of variables>

ACTION: For each variable in the variable list, the next
sequentially-available DATA element from the
program’s DATA statements is assigned to that
variable.

EXAMPLE ,
PROGRAM: 5 REM Example of READ

14 READ A,B
20 READ C(3),0S$
3@ PRINT A,B, C(3), QS
49 READ X
50 PRINT X
60 DATA 1,2,3,” HI",4
Running this program yields the output:
1 2 3 HI
4

REMARKS: The variable and the corresponding constant in a
DATA statement must be of the same type (i.e., a
numeric constant may only be READ into a numeric
variable, and a string-constant into a string
variable).
A special internal “pointer" allows BASIC to keep
track of the "current" data element. When a program
is RUN, this pointer is initially set to to the first
data element in the program’s first DATA statement,
or to "END OF DATA" if there are no DATA statements
in the program.
When a data value is READ into a variable, the data
pointer moves to the next element in the DATA
statement. If there is no more data in the
statement, the pointer is moved to the first element
in the next DATA statement which occurs in the
program. This process continues until there are no
more DATA statements, at which time the pointer is
set to "END OF DATA". After this happens, should a
READ be attempted, it will result in a program error.
Unless a RESTORE statement is executed, each data
item may be READ once and only once, in the order in
which it appears in the program text.

ERROR

MESSAGES: READ ERROR
Either an attempt was made to read data once the "END
OF DATA" condition .occurred (without the execution of
an intervening RESTORE), or the value was not of the

- NORTH STAR BASIC - I-2

STORING DATA WITHIN THE PROGRAM TEXT (Continued)

(V, same type as the variable to which it was to be
i assigned.
SEE ALSO: STATEMENT: DATA

STATEMENT: RESTORE

- NORTH STAR BASIC - I-3

» !
: i
i

STORING DATA WITHIN THE PROGRAM TEXTw(Continued)

STATEMENT:

ACTION:

EXAMPLE
'PROGRAM:

REMARKS:

ERROR .
MESSAGES:

SEE ALSO:

%

RESTORE .
RESTORE <line number> ‘ .

The "pointer" to the next data item to be READ is
moved to the first item in the first DATA statement
in the program text. If a line number is specified,
the pointer is moved to the first data item in the
DATA statement at (or the first DATA statement
occurring after) the given line.

5 REM Example of RESTORE
12 READ A \ PRINT A

28 RESTORE

390 READ A \ PRINT A

4¢ RESTORE 74

5@ READ A \ PRINT A

60 DATA 1,2,3,4

78 DATA 5,6,7,8

Running the above program produces the output:
1
1
5

RESTORE provides a means by which the same
information in DATA statements may be READ more than
once by a program. RESTORE makes it possible to
"recycle" data (as shown in lines 10 to 38 in the
example program), or "skip around" the data (as in
lines 4@ and 50). ' '

The RUN command causes an automatic RESTORE (to the
first DATA statement).
Same as STATEMENT: GOTO

STATEMENT: READ
STATEMENT: DATA

- NORTH STAR BASIC - I-4 !

(~/ CISUCSSION:

PROGRAH CONTROL

EXECUTION AND CONTROL FLOW

The action specified by each statement in a BASIC
program is performed when that statement is
"executed". In BASIC, statements are usually
executed in a sequential fashion, one after the
other. BASIC scans a program and executes its
statements as you would read the program listing:
from lines with lower numbers to lines with greater
numbers, and, if there is more than one statement on
a line, from the leftmost statement to the rigntmost
statement on that line.

The order of statement execution (alsoc called CUONTROL
FLOW) may be altered through the use of several
special BASIC statements: GUTO, IF...THEN, FOR,
NEXT, EXIT, GOSUB, RETURN, and ON...GOTO. Each of
these CONTROL STATEMENTs 1is described in greater
detail in its own section of this manual.

A control statement forces BASIC fo treat the line
number it specifies or the program location it
implies as the location of the next statement to
execute. Unless another control statement 1is
encountered, BASIC will return to seguential
execution at the new location.

In BASIC programs, the natural flow of control is
often diverted, in order to achieve savings in
program execution time and storage requirements. For
example, repetition of program lines, a powerful
space-saver, may be accomplished by using IF...THEN
and GOTO statements. A common repetitive "looping"
technique uses the statements FOR and NEXT (and,
occasionally, the EXIT statement as well). Often,
the program must make a choice on which of several
alternative instruction blocks is to be executed
next, based on a given condition. 1IF...THEN
statements are used to evaluate the conditions and
route control to the appropriate parts of the
program. In certain situations, the ON...GOTC
statement may be used in this capacity. Finally,
GOSUB and RETURN are used to implement subroutines,
which allow a programmer to substitute single GOSUB
statements for entire large program segments,
provided the segments (subroutines) are defined
elsewhere in the program text.

- NOKTH STAR BASIC - J-1

M

STATEMENT:

ACTION:

EXAMPLE
PROGRAM:

REMARKS:

ERROR

MESSAGES:

SEE ALSO:

PRCGRAM CONTROL (Continueds

GOTO <line number>

A GOTO statement causes an immediate "jump" to the

specified line, instead of proceeding with the normal

seguence of statement execution. Regular seguential

execution resumes at the specified line.

18 PRINT "THIS PRINTS FIRST"
20 GOTO 49

3¢9 PRINT "THIS NEVER PRINTS"
35 PRINT "THIS PRINTS THIRD"
37 END

4@ PRINT "THIS PRINTS SECOND"
50 GOTO 35

There may be no blank between GO and 10.
GOTO 1s a single BASIC keyword.

Note that a <line number> must be a numeric integer

constant. It may not be a variable or complex
expression.

LINE NUMBER ERROR

The specified line does not exist within the BASIC

program.

OuT OF BOUNDS ERROR

The line number specified in the GOTO statement is
larger than 65535. (NOTE: This error occurs as soon

as the erroneous line is typed!)
DISCUSSION: EXECUTION AND CONTROL FLOW

STATEMENT: EXIT
STATEMENT: ON ... GOTO

- NORTH STAR BASIC -

C

STATEMENT :

ACTION:

e

=
v
&
7y
(€3]

3
T

MERKS:

ERROR

MESSAGES:

SEE ALSO:

PROGRAM CONTROL

(Continued)

IF <logical expression> THEN <statement>
IF <log. expr.> THEN <statement> ELSE <statement>

When the logical expression is true, the statement
after the word THEN is executed. Wwhen the condition
is false, the statement after ELSE (if it is used) is
executed. If no ELSE is specified, and the condition
is false, the IF statement is ignored and execution
continues with the next statement in sequential
order. A single line number may be placed after THEN
or ELSE, and is eguivalent to (and shorthand for) a
GUTO statement referencing that line number.

1¢ IF ¥=5 THEN 1620

16¢ IF A$="CLYDE" THEN PRINT "HI" ELSE PRINT "BAD PW"
75 IF Q(7)<>3 AND W THEN GOSUB 119 ELSE LET X=15

2329 IF A$="HI" THEN IF B$="THERE" THEN PRINT "YES? ",
289 IF 72 THEN END

Cnly the THEN or ELSE part of an IF statement
(never both) will be executed for each time the IF
statement itself is executed.

The statement after THEN or ELSE may itself be an IF
statement. Such multiple IFs are said to be NESTED.
There is, of course, a rather small practical limit

ags to how deeply IFs may be nested, since the whole

statement must fit on one line.

IF statements do not usually cause error messages

in and of themselves. Errors which occur during the
execution of an IF statement may usually be
attributed to the type of statement used in either
its THEN or ELSE clause, or the mis-formation of the
logical expression. Check the section on the
appropriate type of statement or feature to track
down the cause of each individual error.

DISCUSSION: USING NUMBERS
boolean operators)
STATEMENT: GOTO

(relational and

- NORTH STAR BASIC -

PROGRAM CONTROL (Continued)

ACTION: The numeric expression is used to choose a single
number from the list of line numbers. Then, as with
GOTO, execution is immediately transferred to the
line with the chosen number.

EXAMPLES: 10 ON C GOTO 100, 200, 388, 400
195 ON X-10 GOTO 18, 20, 36, 48, 59, 58, 78

KREMARKS: The numeric expression must evaluate to a guantity
greater or equal to 1. There may be as many line
numbers in an ON...GOTO statement as will fit on a
program line.

The first line number in the list will be chosen if
the expression evaluates to 1, the second if it
reduces to 2, the twentieth if it egquals 26, and so
on. For example, in statement 10 above, if the value
of C is 3, then the result will be the same as GOTO
3086. An ON...GOTO statement with N line numbers in
its list will work for integer values from 1 to N.

ERROR
MESSAGES: SYNTAX ERROR

expression, when truncated, evaluated to an integer
less than 1 or greater than the number of line
numbers in the list.

TYPE ERROR
The expression specified was not a numeric
expression.

LINE NUMBER ERROR
See STATEMENT: GOTO

OUT OF BOUNDS ERROR
See STATEMENT: GOTO

SEE ALSO: STATEMENT : GOTO

- NORTH STAR BASIC - J-4

STATEMENT: ON <numeric expression> GOTO <list of line numbers> ‘

This can happen with ON...GOTO because ‘the numeric ‘

C

STATEMENT @

ACTION:

i

e
k2]
e
V]
—
=

TMARKS :

ERROR
MESSAGES:

SEE ALSO:

PKUGRAM CONTROL (Continued)

STOP

This statement causes program execution to stop.
A message is sent to the console terminal, indicating
the point in the program where the stop occurs.

20 STOP

STOP is generally used during program development

to provide temporary breakpoints at known spots
during the execution of the program. Execution of a
STOP returns the computer to DIRECT MODE, at which
time LET and PRINT may be used as direct statements
in order to change and examine, respectively, the
values of variables within the program.

If CONT is used to resume program execution after
ST0P, any variables modified in direct mode during
the interruption will retain the new values as the
program resumes.,

Program text may also be listed ddring the breakpoint
provided by STOP, but, if you intend to continue with
the program using the CONT command, you must be
careful not to change any of the program text (edit,
insert, or delete program lines) during the interim.
If you do, CONT will not work, and you will be forced
to RUN the program all over again.

None.

STATEMENT: END

COMMAND: CONT

DISCUSSION: CONTROL C, THE PANIC BUTTON
DISCUSSION: SCME BASIC CONCEPTS

- NORTH STAR BASIC - J-5

-—n--H.h-h-ﬂ—-u----—-n-—------—--n-------—-—-h-ﬂﬂ.'

STATEMENT:

ACTION:

EXAMPLE
PROGRAM:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

PROGRAM CONTROL (Cbntinuedﬁ

END

Terminates program execution.

19 REM PRINT "2+42=",P
20 END

END is similar to STOP, except that you can 't CONTinue
after an END, nor is any message sent to the console
terminal. END causes the end of program execution

and a return to DIRECT MODE. It is useful when you
want to terminate program execution at some point in
the midst of the program.

If normal sequential execution extends past the last
statement (the end of the listing) before an END is
executed, END will be assumed as the "last"
statement. Therefore, you are not reqguired to use
END as the last statement in the program.

None.

STATEMENT: STOP

- NORTH STAR BASIC - J-6

_a

BODY OF 'THE LOOP

BASIC includes facilities for the FOR-NEXT loop
(namely the statements FUOR and NEXT) in order to
provide for repetition of any arpbitrary block of
BASIC statements. The block to be repveated (also
called the BODY of the loop), symbolized here as
{BODY}, is “"sandwiched" between a FOR statement and a
NEXT statement.
EXAMPLE #1

18 FOR I=1 TO 19

{BODY}

99 NEXT

188 REM More program statements.
In EXAMPLE #1, the statements represented by {BODY}
w1ll be repeated 10 times unless.specific action is
taken within the body to terminate repetition prior
to the completion of the 18th cycle (for example, see
the paragraphs on EXIT, below).

’(_/ THE CONTROL VARIABLE AND THE LIMIT VALUE

THE OPTIONAL STEP VALUE

PROGRAM CONTROL (Continued)

THE POK-NEXT LOOP

In line 16, I, a numeric variable, is called the
CONTROL VARIABLE of the loop. By using I as a
counter, BASIC will be able to know when to aquit
repeating. {BODY}. In the example, the first time
{BODY} is executed, I will be set to 1 (the INITIAL
value, as specified in the FOR statement). After
that, whenever execution proceeds through {BODY} and
reaches the NEXT statement in line 99, I will be
increased by 1. At such times, BASIC will compare I
against 18 (the LIMIT value set in line 1¢). If I is
less than or egual to the limit value, execution
returns once more to the start of {BODY}, and the
cvycle begins again. On the other hand, if I is
greater than the limit value, then repetition ceases,
and execution continues beyond the NEXT statement (in
the case of EXAMPLE $#1, at line 1d8).

In the example, I was increased by 1 after every
repetition of the body. It is often useful for the
value of the control variable to be increased by a
different amount than 1 each time, or perhaps it
should even be decreased! This is accomplished by
adding a STEP clause to the FOR statement.

- NOKTH STAR BASIC - J-17

W
PROGRAM CONTROL (Continued) s

EXAMPLE #2 ‘

19 FOR J=1 TO 18 STEP 2
{BODY }
99 NEXT

EXAMPLE 43

10 FOR K(3)=5 TO 1 STEP -1
{BODY}
99 NEXT

EXAMPLE #2 will repeat {BODY} five times, witn
successive values of J being 1, 3, 5, 7, and 9. J is
increased by 2 after each iteration.

In EXAMPLE #3, {BODY} is also repeated 5 times, put
tne value of K(3) will decrease by 1 for eacnh
iteration.

If the STEP clause is not used in a FOK, then the
step value is always assumed to be 1.

Note that, when the step value is positive, the _ :
initial value must be less than or egual to the limit ‘
value. When the step value is negative, the initial

value must be greater than or egual to the limit. If

these rules are not followed, {BODY} will never be

executed, as in the next example:

EXAMPLE #4

18 FOR Q=5 TO 1

20 PRINT "THIS LINE WILL NEVER BE EXECUTED"
99 NEXT

120 PRINT "PAST THE LOOP"

RUNning the above program yields only the message
PAST THE LOOP

on your terminal. 1In this case, line 20 is the body,
but even before it can be executed, BASIC sees that
the value of Q is greater than 1, and that, with an
implied step of 1, Q will never acquire the limit
value of 1, so it does not execute the body at all,
and jumps down to line 168 to continue execution.

The initial, limit, and step value expressions in a

FOR statement need not be integer in nature. Thus, .
it is possible to have a loop such as

- NORTH STAR BASIC - J-8

PROGRAM CONTROL (Continued) '

EXAMPLE #5

13 FOR I=.1 TO 1@.5 STEP .1
{BODY}
99 NEXT
19¢ REM Above loop will repeat 185 times.

Because I is a regular BASIC variable, its value may
be compared with others or changed outright during
repetition, using the IF and LET statements,
respectively. Changing the value of the control
variable, however, should be done with great care,
and 1s an advanced technique not recommended for tne
veginning programmer. It is not possible to change
the initial, limit, or step values of the loop during
iteration. They are permanently set for the given
loop when its FOR statement is first executed. (It
is suggested that the control variable not be used in
the LIMIT or STEP expressions.)

FOR-LOOP NESTING

FOR loops may be executed while other FOR loops are
already in progress. This is called NESTING of FOR
loops.

(_/ EXAMPLE #6

18 FOR I=0 TO 9
20 FOR J=8 TO 9

38 PRINT I,J
40 NEXT
58 NEXT

In EXAMPLE #6, the loop controlled by J is the body
of the loop controlled by I. The statements from 28
to 48 will be repeated 10 times (as I goes from 0 to
9), but these statements in themselves comprise a
loop which will also repeat 18 times. The net effect
is that, for every change in J, line 38 will have
been executed once, but for every change in I it will
have been repeated 1§ times. As a result of EXAMPLE
#6, line 36, the body of the inner loop, will be
repeated 10 times 10, or 102, times. The following
is a sample of the output generated:

{see next page}

- NORTH STAR BASIC - J-9

M

PROGRAM CONTROL (Continued)

[S S R en]
WK =

etc.
9 7
9 8
9 9

FOR loops may be nested to any arbitrary depth.
However, there must always be a NEXT to match each
FOR. Also, a different variable must be used to
control each nested loop.

THE OPTIONAL CONTROL VARIABLE IN NEXT

The control variable of a loop may optionally be

specified in the NEXT statement which ends that loop.

EXAMPLE #7

14 FOR I=1 TO 190
20 FOR J=1 TO 198

30 PRINT I.,Jd
40 NEXT I
58 NEXT J

Inclusion of the control variapble in the NEXT
statement is useful in clarifying the program text
(determining which NEXT goes with which FOK). If the
optional control variable is specified in the NEXT
statement, BASIC will perform a syntax check during
program execution and will cause a program error if
the control variable specified in the NEXT is not the
same as that specified in the matching FOR.

USING EXIT

A FOR loop may be terminated before all the specified
repetitions have been performed if an EXIT statement
is executed. EXIT is used to transfer program
control to a line outside the loop -- that is, before
the loop s FOR statement or after its NEXT. EXIT is
like a GOTO, in that it causes a transfer of control
to the specified line number, but it alsoc tells BASIC
to end the current FOR loop -- no more repetitions
will be necessary. BASIC uses memory storage to
remember information about the FOR loop while it is
repeating. EXIT tells BASIC to release the memory
used by the current loop. If it 1s not used to jump
out of a FOR loop, then subseguent loops may not

i

- NORTH STAR BASIC_— J-19¢

PROGRAM CONTROL (Continued)

execute correctly.
EXAMPLE #8

10 REM Assume a l@-element array A.

20 REM The following searches A from

3¢ REM element 1 to 18 for the first

48 REM nonzero element. The index of

5¢ REM this element will be N. If all

60 REM elements are @, N will also be 4.

78 REM A FOR-loop is used for the scan,

75 REM and EXIT stops scan if nonzero found.
76 REM

88 FOR N=1 TO 14

9@ IF A(N)<>0 THEN EXIT 130

119 NEXT

120 N=@ \ REM By this point, A is all zerces.
130 REM By this point, N contains

148 REM correct index or zero.

EXITING FROM NESTED LOOPS .

Several nested loops may all be terminated
prematurely at once using EXIT, but a separate EXIT
statement must be used for each embedded loop. For
example, if execution is proceeding at line 70 in the
inner loop of a two-deep nest (similar to EXAMPLE
#6), and it is desired to go to line 608, outside -the
outermost loop, the following example represents an
efficient method of doing so using the EXIT
statement:

EXAMPLE #9

7¢ EXIT 71
71 EXIT 6048

STATEMENT: FOR

STATEMENT: NEXT
STATEMENT: EXIT

- NORTH STAR BASIC - J-11

M |

STATEMENT :

ACTION:

EXAMPLES:

KEMARKS:

ERROR

MESSAGES:

SEE ALSO:

PROGRAM CONTROL (Continueds

FOR <control variable> = <initial value> TOU <limit value) i

FCR <control variable> = <initial value>
TO <limit value> STEP <step value>

Begins a FOR-KREXT loop.

15 FOR

J=1 TO 10 \ REM Will cause 10 iterations.
25 FOR Q(7)=3 TO 1 \ KEM No looping will occur,.
49 FOR A=B*7 TO SQRT(X)
50 FOR X=.1 70 1.3 STEP .1
99 FOR J=3 TO 1 STEP -1
70 FOR 1I=10+J TO 188+J STEP D(X)

For a complete description of the FOR-NEXT loop,
see DISCUSSION: THE FOR-NEXT LOOP.

The INITIAL, LIMIT, and optional STEP values may be
any numeric expressions.

I1f the initial value is greater than the limit value
and step is positive, or if initial value is less
than the limit and step is negative, the body of the
loop will not be executed.

MISSING NEXT ERROR

BASIC could not find a NEXT statement to associlate
with the FOR.

DISCUSSION: THE FOR-NEXT LOOP

STATEMENT: NEXT
STATEMENT: EXIT

- NORTH STAR BASIC - J-12

k,/ STATEMENT @

ACTION:

S AAMPLESD:

EXROR

MESSAGES:

SEE ALSO:

C

PROGRAM CONTROL (Continued)

NEXT
NEXT <numeric variable>

Terminates execution of the loop which starts with
the matching FOR statement. For a complete
description of FOR~NEXT loops, see DISCUSSION: THE
FOR-NEXT LOOP.

If the optional numeric variable name is specified as
part of the NEXT statement, a check is made to match
that variable name against the control variable
specified in the corresponding FOR statement.

NEXT
NEXT Q
NEXT A(1)

1t should be noted that the "check variable” in

the NEXT statement, while opticonal in North Star
BASIC, is reguired in almost every other dialect of
the BASIC language. The use of NEXT without the
check variable can speed program execution,

Upon normal completion of a FOR-NEXT loop, the
control variable will contain the first value that
exceeds the limit. To illustrate, here is an example
program:

18 FOR K=1 TO 5 STEP 2
29 NEXT K
38 PRINT K

When RUN, the above generates the following output:
7

Note that NEXT should not be used as the THEN or ELSE
part of an IF statement.

CONTROL STACK ERROKR

An attempt was made to execute a NEXT statement with
no FOR loop in effect. Also, this error occurs when
the variable specified in the NEXT statement doesn’t
match the control variable specified in the previous
FOR statement. This usually means that loops are
improperly nested.

STATEMENT: FOR
DISCUSSION: THE FOR-NEXT LOOP

13

)
1

- NORTH STAR BASIC -

—————n--n—--n------—-—--L -—----H-----ﬂﬂﬂﬂﬂl' ?‘

PROGRAM CONTROL (Continueds

STATEMENT: EXIT <line number> ‘

ACTION: Terminates execution of the currently-running
FOR-NEXT loop and transfers execution to the
specified line.

EXAMPLE: 20 EXIT 95

REMARKS : EXIT is a special form of GQOTO, and is used for
roughly the same purpose as GOTO =-- to transfer
program execution from one point to another. The

only difference is that EXIT should be used only to
"jump"” from some point within an active FOR-NEXT lcop
to a point outside the loop. When "jumping" from
point to peoint within a FOR loop, or when no loop is
active, GOTO should be used.

Each use of an EXIT statement terminates only the
current FOR-NEXT loop. See DISCUSSION: THE FOR-NEXT
LOOP for the correct method of EXITing from nested
loops.

ERROR
MESSAGES: CONTROL STACK ERROR
EXIT was used when no FOR-loop was being executed.

LINE NUMBER ERROR ‘
See STATEMENT: GOTO

OUT OF BOUNDS ERROR
See STATEMENT: GOTO

SEE ALSO: DISCUSSION: THE FOR-NEXT LOOP
STATEMENT: NEXT
STATEMENT: FOR
STATEMENT: GOTO

- NORTH STAR BASIC - J-14

PROGRAM CONTROL (Continued)

SUBROUTINES

when writing programs, you will often find that you
need to repeat what amounts to essentially the same
seguence of statements at various separate locations
in the program text. For example, your program may
recguire the user to answer "yes" or "no" to certain
guestions. After writing the program, you find that
sequences similar to that below occur several times
in the text:

13 REM Get yes or no answer.

15 REM Keeps trying till Y or N ans given,.
20 INPUT "PLEASE ANSWER YES OR nNO: ",AS

30 IF AS="" THEN 20\REM No ans given.

49 A$=AS(1l,1)

5 IF AS$="Y" THEN 70\REM OK ans .

60 IF AS<>"N" THEN Z2@\REM Not = Y either.
70 REM At this point, ans was Y or N.

It is certainly troublesome for you (and a waste of
program space besides) to type the same seguence of
statements over and over again. If you reguired
several such answers at one point in the program, of
course, you could use a loop to repeat the statements
as often as necessary. However, the problem is
different when you must perform the same actions in
different parts of the program.

A very nice solution to this problem involves writing
just one copy of the segment at one point in the
program, then somehow telling BASIC to "re-execute”
that part whenever necessary. That is., at those
points in the program where you need to get a yes or
no answer, BASIC would "jump over" to the part of the
program which gets the answer, then "return" to the
original point to continue on with whatever should
happen after the answer has been obtained.

In this situation, the "answer" segment would be
called a SUBROUTINE. This subroutine would be
"invoked" (or "called") from other parts of the
program to perform its single, important task.

North Star BASIC makes available two special
statements which provide subroutine capability.

(Both are described in detail in their own sections.)
The first is GOSUB, which is used to call a
subroutine. The GOSUB keyword is followed by a line
number, which tells BASIC where the subroutine begins
in the program text. BASIC reacts to a GOSUB by
transferring execution to the specified line number,

- NORTH STAR BASIC - J=-15

PROGRAM CONTROL (CdntinuedL

while "remembering" the point where the subroutine d
was called. (The action of the GOTO is similar, but

no calling location is remembered, which makes GOTO ;
unsuitable for subroutine calling.) ‘Vhen the :
subroutine is finished, BASIC uses the “remembered”
location to return to the point in the program
immediately after the subroutine was called. BASIC
knows when a subroutine is finished only when it
executes a RETURN statement. RETURN merely says to
BASIC, "go pack to the calling point now". It is not
necessary to make RETURN the last physical statement
in a subroutine, though it turns out that, in
practice, this usually happens.

The "answer" program segment above may be turned into
a legal BASIC subroutine merely by replacing the last
REM statement with RETURN, and translating the
appropriate line numbers:

1¢88 REM Subroutine example.

1018 REM Get yes or no answer in AS

1915 REM Keeps trying till Y or N ans given.

1¢20 INPUT "PLEASE ANSWEK YES CR NO: *,AS

16380 IF A$="" THEN 1@82¢0\REM No ans given.

1240 AS=AS(1,1)\REM Examine lst char only.

1958 IF AS="Y" THEN 1070\REM OK ans. '

1060 IF A$<>"N" THEN 1020\REM Not = Y either. |
1070 RETURN

The subroutine may now be called at any point in the
program where it is desired to retrieve a yes or no
answer. Here is an example, showing how the
subroutine at line 1486 would be called:

4¢ PRINT "Are you over 6 feet tall?"
50 GOSUB 10686 \ REM Collect answer in AS
60 REM More program statements.

- NORTH STAR BASIC = J-16

R -

(STATEMENT :

ACTION:

caANMPLE

FROGRAM:

ERROR

MESSAGES:

SEE ALSO:

PROGRAM CONTROL (Continued))

GOSUB <line number>

The location of the statement immediately after

the GOSUB statement is "remembered" by BASIC, and
program execution jumps to the specified line. GOSUB
is used to execute a seguence of statements, called a
SUBROUTINE, elsewhere in the program. Execution will
resume at the "remembered" location if a RETURN
statement is executed as part of the subroutine.

1¢ REM Illustration of subroutines.
20 PRINT "READY TO CALL SUBROUTINE"
30 GOSUB 12069

4¢ PRINT "WE ARE BACK!"

580 END

This example assumes that there also exists a
subroutine beginning at line 1806 which sends the
message "NOW IN THE SUBROUTINE" to the terminal. If
so, RUNning the program produces the following
results:

READY TO CALL SUBROUTINE
NOW IN THE SUBROUTINE
WE ARE BACK

A subroutine may be called while another is in
progress. The only limit on this "subroutine
nesting" is the amount of memory available during
program execution. ("Remembering" the location of
the "return" point takes memory space.)

LINE NUMBER ERROR
See STATEMENT: GOTO

OUT OF BOUNDS ERROR
See STATEMENT: GOTO

STATEMENT: RETURN

STATEMENT: GOTO
DISCUSSION: SUBROUTINES

- NORTH STAR BASIC - J-17

w

STATEMENT:

ACTION:

EXAMPLE:

REMARKS:

ERRCR

MESSAGES:

SEE ALSO:

PROGRAM CONTROL (Continueg)

RETURN

To conclude a subroutine, RETURN is used to cause
program execution to resume immediately after the
GOSUB statement which called the subroutine.

19099 RETURN

There are two versions of the RETURN statement

in North Star BASIC. This version is for use with
subroutines only. Another is used with user-
functions. See Chapter K, FUNCTIONS, for details on
that version of RETURN.

CONTROL STACK ERROR
The RETURN statement was executed when no GOSUB was
currently active.

STATEMENT : GOSUB
DISCUSSION: SUBRQUTINES

- NORTH STAR BASIC - J-18

C

FUNCTIONS

nISCUSSION: FUNCTIONS
BUILT-IN FUNCTIONS

When you want to compute the cosine or the sqguare
root of a number within your program, how can you do
this? Of course, it's always possible to write a
subroutine in BASIC to compute the cosine or sguare
root of an arbitrary number, but doing so consumes
your time, is likely to slow down your program if the
particular computation is needed often, and certainly
enlarges the program.

BASIC includes built-in FUNCTIONS, two of which
handle cosine and sguare root calculations,
respectively. The other available built-in functions
compute many different values, both numeric and
string, which programmers often need, and whose
availability makes the task of writing efficient
programs easier.

When writing a program, if you neéd the cosine cf @,
write COS(@). 1If you want the sqguare root of 9, use
SORT(9). The function can be used in a program
wherever the actual number can. COS{(8) stands for
(and can be used in place of) the number 1. Writing
SQORT(9) is the same as writing 3.

ARGUMENTS

The value in parentheses in a function call is.called
an ARGUMENT to the function. The function will use
the value(s) of the specified argument(s) to generate
the function value. SQRT(4), for example, uses the
numeric value 4 to generate its sguare root, 2.

All functions in North Star BASIC require at least
one argument, and some may reguire more. If a
function requires more than one argument, it will
expect them to be separated by commas to form an
ARGUMENT LIST within the parentheses.

Expressions can be used as arguments. COS(2*7)
represents the same number as COS(14). If the
variable A contains the number 14, then COS(A) also
is the same as COS(14).

Functions can be used in expressions. Thus, the
statement

A=2*SQRT(160)

- NORTH STAR BASIC - K-1

W
FUNCTIONS (Continued)

would put the value of 20 in A. ‘

Because expressions can be arguments, and functions
can be expressions, functions can be used as
arguments. COS(SQRT(160)/18-1) is the same as
COos(a) .

You must supply functions with the exact number and
types of arguments they require, in exactly the order
required, or else when the program runs and the
erroneous function call is found, BASIC will halt
execution and complain of a SYNTAX ERROR. Such an
error will occur, for example, if you attempt to use
SORT("HI") in a program or direct statement. The
SQRT function wants a numeric argument, and "HI" is a
string (see DISCUSSION: USING STRINGS). C0S(2,3)
causes a SYNTAX ERROR becuase the CO0OS function wants
only one numeric argument.

The following pages contain a list and description of

all the functions built-into North Star BASIC. Each
function description includes the name of the

function, the order of expected arquments, as well as

the type (numeric or string) and purpose of each. A

short paragraph describes the value represented by

the function as well as how the arguments relate to

that value. ‘

FUNCTIONS USEFUL IN MATHEMATIC OPERATIONS

ABS (<numeric expression>)
Returns the absolute value of the numeric expression.
ABS(3)=3, ABS({~3)=3, and ABS(0)=#.

SGN (<numeric expression>)
Returns 1, 8, or -1, indicating whether the <numeric
expression> is positive, zero-valued, or negative,
respectively. SGN(1@)=1, SGN(#)=0, and SGN(-3.2)=-1.

INT(<numeric expression>)
Returns the greatest integer value less than or equal
to the value of the argument. INT(3)=3, INT(3.9)=3,
and INT(-3.5)=-4.

LOG(<numeric expression>)
Returns an approximation to the natural logarithm of
the value of the <numeric expression>. If LOG is
called with an argument value less than or equal to
zero a program error will occur. LOG(1l)=0,
LOG(7)=1.94591@81, and LOG(.1)=-2.3825851

- NORTH STAR BASIC - K-2 !

FUNCTIONS (Continued)

EXP (<numeric expression>)
Returns an approximation to the value of e raised to
the power of the numeric expression. EXP(8)=1,
EXP(2)=7.3896562, EXP(-2.3625851)=.1, and
EXP(1)=2.7182817

SQRT (<numeric expression®)
Returns an approximation to the positive square root
of the numeric expression. A program error will
occur if this function is called with a negative
argument. SQRT(6)=06, SQRT(18)=3.1622776, and
SQRT(.3)=.54772256

SIN(<numeric expression>)
This function computes an approximation to the
trigonometric sine of the value of the numeric
expression. The expression must specify an angle in
radians. (Note that 2 * pil radians = 368 degrees.)
SIN(8)=0, SIN(3.1415926/2)=1.

COS (<numeric expression>) o
C0S computes an approximation to the trigonometric
cosine of the value of the numeric expression, which
must specify an angle in radians. COS(@)=1,
C0S(3.1415926/2)=0.

ATN(<numeric expression>)
The ATN function computes an approximation to the .
trigonometric arctangent function. The angle value
returned is expressed in radians. ATN(5)=1.3734307,
ATN(1.7)=1.08390722.

FUNCTIONS USEFUL IN STRING OPERATIONS

LEN({<string name>)
Returns the current length of the string held in the
string variable named as the argument. If AS="CAT"
then LEN(AS) will be equal to 3. If AS$ holds the
null string, then LEN(AS$) will return 0.

CHRS (<numeric expression>)
The CHR$ function returns a one-character string as
its value. The argument value (in decimal) specifies
the ASCII character code for the character to be
returned in the string. Note that the argument to
CHRS can be any integer in the range of @ to 255.
CHRS$ (65)="A", CHR$(97)="a", CHR$(32)=" " (space), and
so on.

aSC(<string constant, string variable, or substring reference>)

Returns a numeric value -- the numeric ASCII code of
the first character contained in the argument. The

- NORTH STAR BASIC - K-3

M

FUNCTIONS (Continued) *

argument must not be the null string. ASC("B")=66, ‘

ASC("CLUNK")=67. (Note that CHRS and ASC are inverce
functions.)

VAL (<{string expression>)
Converts the value of the string expression to a
number and returns that number as its value. If the
expression doesn’t evaluate to a legal numeric
constant, then a program error occurs. Leading

blanks are ignored. VAL("123")=(the number) 123.
VAL("000000")=0. VAL("abcde"), VAL(" "y, and
VAL("") will cause errors. Note that if any nocn-

numeric characters follow the numeric constant which
is at the beginning of the string expression, they
will be ignored. For example, VAL("123XYZ")=123, but
VAL("XYZ123") causes an error.

STRS (<numeric expression>)
This is the inverse function of VAL -- it converts
the numeric value of its argument into a string
representation of that number, and returns that
string as the function value. The format of the
string depends upon the default format as specified
in a PRINT statement (i.e., free-format if no
previous PRINT statement has specified a default

FORMATTING for further details.
FUNCTIONS USEFUL FOR SPECIALIZED INPUT

INCHARS (<numeric expression>)
This function will await the typing of a single
character at the input device specified by number in
the numeric expression. The character will be
returned as a single character string. Control
characters as well as printing characters will be
returned. Control-C will be returned only if
control~C program~interruption has been disabled.
(See DISCUSSION: CONTROL-C, THE PANIC BUTTON.) The
character will not be echoed by BASIC (printed on the
terminal when its key is pressed). Assuming device @
is the system console and device 1 is a remote
terminal, then INCHARS$(8) will return a single
character typed at the console, and INCHARS (1) will
return one character typed at the remote location.
The following short program will fetch an individual
character from the console terminal and will echo it
on that terminal’s screen, printer, etc:

18 TS=INCHARS (#) \ REM Get the character

2@ PRINT TS$, \ REM and echo it. ‘

- NORTH STAR BASIC - K~-4

format). See STATEMENT: PRINT and DISCUSSION: PRINT .

C

FUNCTIONS (Continued)

INP (<numeric expression>)

This function performs an 868@ or Z88 IN instruction
from the input port specified by the argument value.
The numeric value returned by the function is the

- contents of the accumulator (in the range of @ to
255) after the IN instruction. Note that INP will
not wait for valid data, as do INCHARS, INPUT, and
INPUT1l, but instead fetches whatever byte wvalue
exists at the input port, whether or not that value
represents useful data.

FUNCTIONS USED IN MANIPULATING DISK FILES

TYP (<numeric expression>)
This function returns as its value a number which
indicates the type (numeric = 2, string = 1, end-of-
file = @) of the next data item in the open disk file
with open file number given by the value of the
function’s argument. See DISCUSSION: DATA FILES for
details. L

FILE(<string expression>)
Returns a number corresponding to the type of the
file specified by the <string expression>, which must
evaluate to a legal disk file name as defined in
DISCUSSION: DATA FILES. 1If the argument is not a
legal file name, or is not the name of a disk file on,
a currently loaded diskette, then the value -1 is
returned. Assuming that "ABC" is the name of a BASIC
program file on a disk in drive 2, then FILE("ABC,2")
will return the value 2. FILE("DOS") will return a @
if the diskette in drive 1 is a system diskette.

MISCELLANEQUS FUNCTIONS

RND (<numeric expression>)
This function returns a pseudo-random numeric value
between @ and 1. The number generated is dependent
upon the previous number generated by the function.
The very first number in the seguence is called the
"seed", or starting value. If the value of the
argument is negative, BASIC selects a random seed
(based upon the status of the disk system), and
computes the value of the function from it. (The
“randomizing" effects of using RND with a negative
argument are enhanced if user-input is recguested
between the last disk access and the "negative" call
to RND.) If the argument evaluates to 8, the
previously computed value is used to generate another
pseudo-random value in the seguence. If the argument
reduces to a value between @ and 1, this number is

- NORTH STAR BASIC - K-5

w

FUNCTIONS (Continued)

o
§
used as the new seed, the seguence is restarted, and ‘
the first value generated from the new seed is

returned as the value of the function. The following
program will set a random seed and then print 10
pseudo-random values:

10 J=RND(-1)

20 FOR J=1 TO 10
30 PRINT RND(4)
4@ NEXT

EXAM (<numeric expression))
The EXAM function returns the contents of the
computer memory byte addressed by the value of the
<numeric expression>. The argument should evaluate
to an integer from @ to 65535. The value returned
will be numeric, an integer from 8 to 255.

FREE (<numeric expression))
Returns the current total number of bytes remaining
in the BASIC memory for additional user-program or
data. Free storage, as this memory area is called,
is also used for internal "bookkeeping™ storage and
storage of temporary values used by BASIC, such as
string values during concatenation. The argument 4
value, as long as it is numeric, is ignored, and most
programmers use @. ‘

TAB (<numeric expression>)
This function can only be used in a PRINT statement.
Use of the TAB function will cause the cursor or
print-head of the output device specified in the .
PRINT statement to advance to the character position
specified as argument to TAB. BASIC accomplishes
this by printing the appropriate number of spaces.
The first character position on a line is the 8th
position, all others being numbered seguentially from i
. TIf the cursor or print-head is past the specified
position, then it will not move at all.

CALL (<numeric expression>) .

CALL (<numeric expression>, <numeric expression>)
CALL permits BASIC programs to use machine-language
subroutines. The value returned is an integer from 0
to 65535, which represents the value in the HL !
register-pair when the machine-language subroutine |
returns control to BASIC. The first argument to CALL
is a numeric value from 8 to 65535 which represents
the decimal value of the memory address where the
machine-language subroutine begins. The optional
second argument, also an integer value from @ to
65535, will be passed to the machine~language routine ‘l

-~ NORTH STAR BASIC - K-6

FUNCTIONS (Continued)

in the DE register pair. For more information on
CALL and the use of machine-language subroutines in
general, see DISCUSSION: MACHINE LANGUAGE

SUBROUTINES.

- NORTH STAR BASIC -

________-.-__-____-_-_.-.__-.--*_----------—-—-—-—-—-—-——-—-—-—-I.'

FUNCTIONS (Continued) *

USER-FUNCTIONS ‘

Functions may be written in North Star BASIC as part
of a BASIC program., They are accessible (just as
built-in functions are) to any part of the program.
These USER-FUNCTIONS can return either string or
numeric values, and can accept as many string and/or
numeric arguments as are necessary to compute the
function value.

FUNCTION NAMES

User-functions take names of the following form: the
two letters FN followed immediately by a regular
string or numeric variable name, as in FNX, FNQ7,
FNAS, FNZ3$, etc. The type of the variable-name part
of the function name determines the type of the value
that the function returns. FNX, therefore, is a
numeric user-function, while FNAS returns a string
value. Note that user-function names are separate
and distinct from variable names. In particular, the
values returned by FNAS (for example), will not
affect the value stored in variable AS$, nor will
assignment to A$ change the value that FNAS$ returns.

SINGLE-LINE FUNCTIONS q

A user-function can be defined by a single line, or
may reqguire many lines to define. For example, the
following is a one-line user-function:

1¢ DEF FNR(V,P)=INT((V*1@TP)+.5)/(10TP)

FNR, as defined in the DEF statement above, will
return as its value V rounded-up tc the P-th decimal
place. For example, FNR(3.1415,2) makes V stand for

3.1415, and P for 2. The value returned will be
3.14.

PASSING VALUES TO USER-FUNCTIONS

A DEF statement must include a list of string and/or
numeric variable names, called PARAMETERS to the
function. This parameter list is enclosed in
parentheses following the function name. For
example, in the following DEF statement, XS$, Y, and 2
are parameters to function FNW:

58 DEF FNW(X$,Y,Z)=LEN(XS$)+Y+2Z
A FUNCTION CALL must include a list of string and/cr ‘l

numeric expressions. This expression list is

- NORTH STAR BASIC - K-8

FUNCTIONS (Continued)

enclosed in parentheses following the function name.
When a function is called, the values of the
expressions in the expression list are assigned, one-
by-one, left-to-right, to the corresponding variables
in the parameter list of the called function. After
this assignment process, the variables named in the
parameter list will contain the corresponding values
from the expression list and can be used in the body
of the function in computing the function value.

The number of expressions in the function call’s
expression list must match the type of the
corresponding parameter in the parameter list. If
the types or number of parameters in the function
definition do not match the types or number of
expressions in the function call, an ARGUMENT
MISMATCH ERROR or a SYNTAX ERROR will occur.

NUMERIC PARAMETERS

At function call time, before-eaeh numeric variable
in the parameter list is assigned its value from the
expression list, the value of the variable is saved
by BASIC. When function execution is completed, the
saved values of the numeric variables from the
parameter list are restored as the values of those
variables. Thus, the values of the numeric variables
from the parameter list after the function call is
completed remain the same as before the function was
called. This means that the numeric parameters of a
function may be thought of as separate variables when
used during function execution.

Try the following:

12 DEF FNX(B)=B*3
2¢ B=2 \ PRINT B
39 PRINT FNX(3)
4¢ PRINT B

B prints-out as 2 before as well as after FNX is
called, even though B=3 during the evaluation of FNX
because of the B-value of 3 supplied in parentheses
in the function call.

STRING PARAMETERS

Unlike those of numeric parameters, the values of
string parameters of a function are not saved at
function call time. Thus, after function execution
is completed, those variables will retain the most
recent values they acguired during functicn

- NORTH STAR BASIC - K-9

M

FUNCTIONS (Continued) ®

execution. Note that the assignment of string
expressions to string parameters at function call
time follows the same rules as assignment to string
variables in LET statements. In particular, if the
string parameter has not been DIMensioned as a string
variable before the function call, it will
automatically be DIMensioned to maximum length of 14.

To contrast the treatment of string and numeric
parameters at function call time, try this program:

18 DEF FNQ(X,XS$)=ASC(XS$)+X
20 X=7 \ X$="FIRST"

30 PRINT XS$,X

4% PRINT FNQ(1,"NEXT")

50 PRINT X$,X

Note that, although the value of the numeric variable
X is saved while the name of X is used for an
argument to FNQ, the same is not true for X$. After
the function is evaluated, X$ still retains the value
it was assigned during its use as FNQ argument.

MULTI-LINE USER-FUNCTIONS

The second type of user-function, the multiple-line
function, permits a value to be computed and RETURNed
by a set of one or more BASIC statements, as opposed
to the single expression of the single-line function.
The operaticn and purpose of multi-line functions
therefore closely parallels that of subroutines.
However, multi-line functions permit the easy passing

of arguments, and the return of a single, computed
result value.

The definition of a multi-line function employs the
DEF statement, but without the “value eguation®
necessary to single-line function definitions. The
DEF statement which begins a multi-line function
contains only the keyword DEF, the name of the
function, and the list of its parameters:

10 DEF FNM(X,M)

The statements which compute the function value
follow this line. When the value has been computed,
a special version of the RETURN statement causes
function execution to cease, and specifies the value
to be RETURNed as the function value. Finally, to
signal the physical end of the function definition
itself, the FNEND statement is used. As an example,
add to the definition of FNM (started in line 18,

- NORTH STAR BASIC - K-190

w

™

T

w

9}

FUNCTIONS (Continued)

above) S0 that it becomes a function which RETURNs
the value of X modulo M, that is, the remainder
generated when X is divided by M:

1¢ DEF FNM(X,M)

20 IF M<=@ OR M<>INT(M) THEN 48

30 RETURN ABS(X)- (INT(ABS(X)/M)*M)

40 PRINT "ERROR IN MODULO" \ RETURN -1
50 FNEND

In general, multi-line functions (as opposed to
single-line ones) are needed when the algorithm which
computes the function value is too complex to fit on
one line as a single expression.

FINAL NOTES

Functions cannot be defined within other functions.
One definition must finish before another can begin.
In particular, a "FUNCTION DEF ERROR" will occur if
you forget to include the FNEND which must conclude
every multi-line function definition, then, later in
the program text, attempt to define another function.

21l user-functions must have at least one (1)
parameter. It is not necessary to use the parameter
in computation, but it must be a part of the
definition, nevertheless.

It is not possible to pass entire numeric arrays as
arguments to user-functions, but individual elecments
of arrays, like simple variables, are allowed. Thus,
FNQ(A(3),"GAIL") is a proper call of the function
given as example above.

User-functions cannot be called in direct mode. 1If
you use a statement in direct mode which includes an
expression with a call to a user-function in it, vyou
will get an "ILLEGAL DIRECT ERROR".

STATEMENT: DEF

STATEMENT: RETURN (CHAPTER K)
STATEMENT: FNEND

- NORTH STAR BASIC - K~-11

STATEMENT:

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

FUNCTIONS (Continued) 4

DEF <function name> (<parameter list>)=<expression>
DEF <function name> (<parameter list>)

The first form defines a single-line user-function,
numeric or string. When evaluated, the single-line
function returns the value of the expression on the
right side of the equal sign. The type of the
expression must match the type of the function name,
string or numeric.

The second form begins the definition of a multi-line
user~function. The function value in this case is
determined by the expression in the RETURN statement
used in the body of the function definition itself.
The type of the expression in any RETURN statement in
the function body must be of the same type as the
function name.

A user~-function name consists of the letters FN
followed by a string or numeric variable name (such
as FNAS, FNQ7, etc.).

(single-line)
78 DEF FNE(X,Y)=SORT((XT2)+(¥T2)) \ REM Hypotenuse
45 DEF FNUS$(LS)=CHRS$(ASC(LS)=-32) \ REM Low to upp case

(multi-line)
114 DEF FNQ(A,B,C)
589 DEF FNA7S$ (AS$,A,M)

The addition of the FN prefix distinguishes function
names from variable names. FNA and variable A are
not the same, nor even necessarily related.

If a DEF statement is encountered during program
execution, then execution will skip forward to the
first statement after the definition. Function
definitions may be located anywhere in the program
text. Function definition occurs before program
execution begins.

FUNCTION DEF ERROR

An (apparently) single-line function was defined
improperly, or an attempt was made to define a
function within the definition of a multi-line
function. :

DISCUSSION: FUNCTIONS (user-functions)

STATEMENT: RETURN (CHAPTER K)
STATEMENT: FNEND

- NORTH STAR BASIC - K-12

“

STATEMENT:

ACTION:

TYAMPLES:

5

ERROR

MESSAGES:

FUNCTIONS (Continued)

RETURN <string or numeric expression>

The evaluation of the multiple-line user-function
currently in progress terminates. The function value
becomes the value of the expression in the RETURN
statement.

12 RETURN Fs$+",2"

20 RETURN A

65 RETURN X+3

99 RETURN "CONSTANT"

Do not confuse this form of the RETURN statement with
that which is used for subroutines. Improper
utilization of this form to conclude a subroutine, or
of the subroutine form to terminate a multi-line
user-function will result in a SYNTAX ERROR.

The value RETURNed by a multi-line function must be
of the same type as the function name. String
functions may not RETURN numeric values, and numeric
functions may not RETURN string values.

SYNTAX ERROR
The RETURN expression doesn’t match the function

type.

DISCUSSION: FUNCTIONS (user-functions)
STATEMENT: FNEND

STATEMENT: DEF

STATEMENT: RETURN (CHAPTER J)

- NORTH STAR BASIC -~ K~13

STATEMENT:

ACTION:

EXAMPLE

FUNCTION:

REMARKS:

ERROR

NESSAGES:

SEE ALSO:

FUNCTIONS (Continued) .

FNEND

FNEND marks the end of the segment of program
text which constitutes a multiple-line user-function
definition.

10 DEF FNF(X) \ REM Compute factorial.

15 X=INT(ABS({X)) \ REM Eliminate bad arguments.

20 IF X=@ OR X=1 THEN RETURN 1 ELSE RETURN FNF(X-1)*X
3@ FNEND

The FNEND statement should not be confused
with the RETURN statement used to end multi-line
user-function execution.

The FNEND statement may not appear on the same
program line as a DEF statement.

CONTROL STACK ERROR

The FNEND statement is not supposed to be. executed.
This error results when an FNEND statement is
executed. ’ '

FUNCTION DEF ERROR

The FNEND statement is on the same line as a DEF
statement, or an FNEND statement exists which cannot
be matched with a corresponding DEF statement.

DISUCSSION: FUNCTIONS (user-functions)

STATEMENT: DEF
STATEMENT: RETURN (CHAPTER K)

- NORTH STAR BASIC - K-14

A

|

(DISCUSSION:

FILE

DATA FILES

DATA FILES

Data is stored on diskette in FILES. A file is a
section of storage space on the diskette which is
reserved for data storage use by giving it a FILE
NAME and three other attributes: a LENGIH (or SIZE),
a TYPE, and an INFORMATION DENSITY. You can list
this information for each file on diskette by using
the CAT command. Each CATalog listing is of the
following format:

NAME LOC SIZE TYPE DENSITY TDI
For example, the listing

PRUG1 73 20 2 D
denotes a file named "PROGl", starting at sector 73
on tnhe diskette, with a size of 2§ 256-byte disk
blocks, and of type 2. The "D" at the end of the
ChTalog listing signifies that the information stored
in the "PROGl" file is stored in double-density
format. If a file is stored in single-density, an
“S" will appear in this position instead. (The "type
dependent information", or TDI, is not shown in this
example, is rarely used, and will not occur in any of
our examples.) All this file information is stored
in a special place on tne diskette {(the first four
sectors, B to 3) called the DIRECTORY.

NAMES

The NAME of a file consists of a series of not more
than 8 printable characters. (The "printable
characters" include the upper and lower case
alrhabets, the digits 8 to 9, and the various
punctuation symbols.) Any characters may rbe used in
any order, with the exception of the space and the
comma. 7The space may not be used anywhere within a
file name. The comma may only be used in a specific
situation, which will be discussed in a moment. The
name of a file must be unique on a diskette -- that
is, two or more files may not share the same file
name on the same diskette. For example, only cne
file on a diskette may have the name FILEl. However,
it should be noted that the upper and lower case sets
of letters are considered to be separate and distinct
with respect to the names of files, so FILEl and
filel are not the same file name, and may be used to
name different files on the same diskette. A DRIVE
NUMBER SUFFIX may be added to the name of z file to
indicate that the desired file is located on a3

[‘1
t
b

- NORTH STAR BASIC -

aJ
n

M

FILE

FILE

DATA FILES (Continued)
: L

diskette in a specific drive, which resolves any
possible contusion between files of the same name on
different diskettes. The drive-suffix is formed by
following the name of the file with a comma, and then
a single digit, corresponding to the selected drive.
I1f, for example, the file "PROG" is on the diskette
in drive #2, the proper way to write its name is
"PROG,2". File "POP" in drive #3 would be called.
"POP,3". 1If no suffix is given, then the system
assumes that the file is on the diskette in drive #1.
The file names "SYNONYM" and "SYNONYM,2" refer to
separate files on different diskettes.

A FILE NAME is an unambiguous reference to a specific
file, and so specifies not only the file s name on
diskette, but also the drive in which it is located.
Thus, a FILE NAME consists of an actual name of no
more than 8 printable characters plus an optional
drive-suffix (which is assumed to reference drive #1
if omitted). A file name is a string value.
Statements which reguire file names as arguments will
accept any string expression, as long as it evaluates
to a legal file name.

SIZES (LENGTHS)

The size of a file is specified in FILE BLOCKs. A ‘
file block is 256 bytes of information. 1In the

directory CATalog listing, the size of a file is

given in file blocks.

In a double-density system, each file must have an
even number of file blocks, because file space on
diskette is allocated in terms of SECTORS. Two file
blocks will fit in one sector of a double-density
system. In single-density systems, a disk block is
the same as a sector.

Each file in North Star BASIC occupies a contiguous
section of disk storage. A file may be any number of
file blocks in length, provided that there 1is
sufficient contiguous storage space for it on the
diskette.

TYPES

Every file has a type, which can be used to classify
a file according to how it is used. For example, the
North Star convention is that a type 2 file always
holds a program written in BASIC. A file of type 3
is used to store data used by BASIC programs. A type
1 file should contain an executable machine language ‘

- NCORTH STAR BASIC - ’ L-2 ‘

w

DATA FILES (Continued)

(—/ program, such as the BASIC interpreter itself.

: These, however, are only 3 of the 128 possible type
designations (from € to 127). You are free to use
the others as you wish, to signify special types of
file contents which are meaningful for you. For
example, vou could write a special business program
and arbitrarily declare that all data files relating
to it would be of type 7. Facilities within North
Star BASIC allow you to determine a file's type when
accessing or creating it.

CKEATING PILES

A file must pbe created, and space reserved for it,
before it may be used to store data. The CREATE
statement may be used to create a file of any type or
length, on a diskette in any disk drive. -The density
of the file created is set to be the same as the
gensity of the file directory on the diskette, Once
created, the file’s size in file blocks is fixed.

The amount of information in that file can never
exceed the allocated space. T

CPENIKG FILES

' Before you can access a data file, you must associate
R\/ its file name with a FILE NUMBER using the OPEN
statement. from that point on, use the designated
file number when referring to the file. For example,
suppose "ACCT" is OPENed as file #2. Then, all BASIC
statements in vour program which are intended %o
access "ACCT" should refer to file #2, instead of the
actual file name.

CLOSING FILES

When you are finished using a tile, the CLOSE
statement will free the file number associated with
the file so that another file may be OPENed with that
number.

Closing a file also causes any information which is
part of the file but which is temporarily stored in-
RAM memory to be written to the file on diskette.

If your program requires manual "“swapping"” of several
diskettes in and out of one drive, it is essential
that all files on a given diskette be CLOSEd before
it is dismounted from the drive. This is to ensure
that all the latest changes in the files’ contents
- are actually transferred to the diskette. More
(bj importantly, it ensures that no subseguent WRITE

-~ NORTH STAR BASIC - L-3

M

DATA FILES (Continued) w

activity intended for these files will occur on the
wrong diskette.

TYPES OF DATA ELEMENTS IN FILES

DATA

Three types of data may be stored in BASIC data
files: NUMBEKS, STRINGS, and separate BYTES. Each
type of item takes up a certain amount of space on
the file when it is stored. Numbers always take up a
fixed amount of space. This space is sufficient to
hold any numeric value. Strings can take up variable
amounts of space, depending upon the current lengthn
of the string when it is written to a file. Separate
byte values require only one byte of disk storage
space to store. Each element of byte information
contains a binary integer value from @ to 255.

BASIC writes strings and numbers to data files using
a certain well-defined formats. Conseguently, it is
easy for BASIC to "recognize" string and numeric data
when a file is READ. Bytes, however, cannot be so
identified. The programmer must always know when
byte data will be encountered during file reading and
writing. 1If such knowledge is not available to a
file READing program, it may be impossible for that
program to make sense of a file's contents.

ACCESS
READ# AND WRITE#

The two statements which permit input from a file and
output to a file are READ4 and WRITE#. READ# inputs
data from a file and assigns it to variables as
specified by the programmer. WRITE# overwrites any
previously existing information at a given point in
the file with new information, also as specified by
the programmer. (See STATEMENT: READ# and STATEMENT:
WRITE4# for specific details.) READ# and WRITE# may
be used to access string, numeric, or byte-valued
information in SEQUENTIAL or RANDOM fashion. The
rest of this DISCUSSION examines these data-access
methods.

SEQUENTIAL ACCESS

The simplest files corsist of seguences of data
values (all string, all numeric, all byvte, or
combinations of these). This means that the first
data value is located at the start of the file, and
succeeding values follow immediately afterward, one
after another. BASIC automatically places a special

-~ NORTH STAR BASIC - L-4

g B 18 e

DATA FILES (Continued)

end-of-file mark {(called an ENDMARK) after the last
value in a seguential file. This facilitates later
READing of the file, because the ENDMARK may act &as a
signal to the program to guit READing, lest a program
error occur when an attempt is made to READ (or KEAD
vast) the ENDMARK.

A check for the ENDMARK can be made with the built-in
TYP function., TYP, when supplied with the numper of
an cpen file as argument, returns the numeric code
for the type of the next element to be READ from that
file:

TYPE NEXT VALUE
9 ENDMAKK
1 string
2 number

he end

11z

Therefore, 1f the value of TYP(l) is @, then ¢

of file #1 has been reached, and no more READing from
that f£ile should be attempted. The TYP function also
vermits a program to know whether to READ a string or
numeric value next, since the types for those data
elements are also returned. This is important,
because a program which tries to READ a numeric value
into a string variable, or a string value into &
numeric variable will generate a TYPE ERROR. With
this in mind, here is a program which READS an
existing sequential data file whose contents include
an unknown secguence of intermixed string and numeric
values, then PRINTs the contents to the console
terminal:

18 REM Report contents of sequential

20 REM data file of unknown structure.

25 REM Assume no string bigger than 586 chars.
3@ DIM SS$(5600),FS(18)

40 REM S$ will hold string values read,
5¢ REM FS$ will hold file name., and

6¥ REM N will hold numbers read.

7¢% INPUT "“TYPE NAME OF FILE TO READ: "“,FS
80 OPEN #1.,F$

99 IF TYP(l)=0 THEN 2490

139 REM Above is ENDMARK check.

119 IF TYP(1l)=2 THEN 190

120 REM Above checks if number is next --
136 REM if not, string is next,

144 REM READ/PRINT string.

159 READ #1,SS

160 PRINT S$

176 REM Go pack for more data.

- NORTH STAR BASIC - L-5

M

DATA FILES (Continued) =

188 GOTOC 96

190 REM READ/PRINT number.
206 READ #1,N

219 PRINT N

220 REM Get more data.

230 GOTO 90

240 REM No more data.

258 PRINT "** END OF FILE **"
260 CLOSE #1

279 END

The following sample program WRITEs the numbers 1 to
10 to existing data file "DAT7", then READES tnem Hack
and PRINTs them on the terminal. Note that, after
writing, the file is CLOSEd and re-~OPENed in ovder to
begin READing at the start, since the last-executed
WRITE statement leaves BASIC '"looking" at the

NDMARK.

10 REM WRITE 10 numbers to file
29 REM and READ them back again.
3% REM First, WRITE ‘em!

40 OPEN 41, "DAT7"

58 FOR I=1 TO 14

60 WRITE #1,1I

78 NEXT

80 CLOSE #1

9@ REM Now, READ and PBRINT.

100 OPEN #1,"DAT7"

119 IF TYP(l)=8 THEN 178

128 REM Above checks for ENDMARK.
130 READ #1,I)

148 PRINT 1

158 RKEM Now back for next number.
1683 GOTO 116

178 REM Quit.

186 PRINT “** END OF FILE **"

199 CLOSE #1

20@ END

APPENDING TO SEQUENTIAL FILES.

To add new data to the end of an existing segquential
file, it is necessary to READ to the ENDMARK before
beginning to WRITE. If the sequential file "DAT7"
already contains the numbers 1 to 1£, then the
following program will add the numbers 11 to 28 to
its end.

18 REM Add 11-206 to DAT7 file.
29 OPEN #1,"DAT7"
.30 REM Now READ to ENDMARK.

- NORTH STAR BASIC - L-6

W ,

DATA FILES {(Continued)

40 IF TYP(l)=0 THEN 70
50 READ #1.,N

68 GOTO 49

72 REM Now add the numbers.
88 FOR I=11 TO 20

90 WRITE #1,1I

190 NEXT

119 REM Quit.

128 PRINT "DONE™

130 CLOSE #1

14¢ END

SEQUENTIAL BYTE ACCESS

Files may alsc be accessed at the byte-oy-byte level
simply by using the ampersand character (&) to prefix
variables into which values will be READ, or to
prefix expressions to be written:

19 REM READ a byte value, then WRITE one.
20 REM Assumes file ¥#1 is OPEN,

30 READ #1, &X - -

49 REM Byte goes into X.

50 WRITE #1,&65

68 REM Byte value 65 goes to file #1.

Only numeric expressions and variables may be given
the &-prefix. Byte values are integers in the range
¢-255, and naturally, since BASIC automatically
converts from decimal tc binary and back, each
consumes only one byte of file storage space. You
should be sure that any value you intend to WKRITE as
a byte to a file lies in the legal byte range.

Note than an ENDMARK will always be written after the
last data item in a WRITE statement, whether or not
that last item is a byvte-value. To disable writing
of the ENDMARK, use the NOENDMARK option in your
WRITE statements.

RANDOM DATA ACCESS

BASIC keeps track of where it is supposed to READ and
WRITE next in an open file by maintaining a FILE
POINTER for it. This pointer specifies the number of
bvtes from the start of the file to the current
READ/WRITE position. This number 1is called a RANDOM
FILE ADDRESS. VWhen a file is OPENed, its file
pointer is set to #, meaning that the first data
access will happen at the start of the file. You can
change the value of the pointer, and so access file
data beginning zt any point in a file. This 1is

- NORTH STAKR BASIC - L-7

M -~

DATA fILES (Continued) -

means of storing and retrieving data in files because

it is not necessary to READ all the data items in a \
file in order to get to the one you want. By o
changing the file pointer to reference the location 3
of the data-item you seek, you can READ or WRITE it
immediately.

called "random access" and is one of the cuickest ‘ \

A RANDOM ADDRESS EXPRESSION is added to a KEADY or
WRITE4 statement in order to access data randomly.
The random address expression i1s a numeric expression

following a vercent sign (for examole: %R*5). The
expression must evaluate to an integer from 2 to tne
value

SIZE*256~-1

where SIZE represents the size of the file in disk-
blocks. 1If an address-expression 1s ever negative or
greater than the limit given by the above formula, a
program error will occur.

In order to ucse random access, you must be able to ‘
determine the necessary random address of the |
particular piece of data you want. The easiest way - ' E
to do this is to reguire that all items in the file ‘
be of the same type or size. For example, a file

intended for random access might consist of all

numbers, or all l1l@-character strings. Alternately. a

random access file might contain 1080 records of 62

bytes each. Each record might consist of 4 numbers

in a row, plus a string of length 40.

How was the figure of 62 bytes for the record size ; 1
computed? In order to find out how much disk storage |
space a group of items will reguire, you must add-up L
all the actual sizes of each of the elements. Refer ‘
to APPENDIX 3: IMPLEMENTATION NOTES., for information L,
on computing the storage-sizes for strings and
numbers. \;

Knowing exactly how long each element or record is,
you can treat the entire file as a huge array of]
items or records, computing the random address of the |
Xth item in the file with the following expression:

(X-1)*
where R is the size of an individual record or item,
given in bytes. Add a per-cent sign in front of this

expression, and you have a legal random address ' @l
expression! To illustrate, given a file of strings,

- NORTH STAR BASIC - L-§

SEE ALSO:

DATZA FILES (Continued) '

the storage length of each being 42 bytes, then the
first string would occur at address &, which is (1-
1)*42. The 58th string occurs at random address (50-
1)*42 = 49*%42 = 2458.

Random access records may easily be updated in place,
although you must still use NOENDMARK to avoid the
writing of an ENDMARK after rewriting the record.
(The extra ENDMARK could contaminate the data in the
next record!)

Here is a program which accesses any element of a
random access file of 1088 strings, each of which 1is
250 characters long:

18 REM Random string access.

20 OPEN #1,"RANDSTR"

30 DIM RS (250)

49 R=250+2

59 REM R is size of one item -- see

S5 REM implementation notes for details.
60 INPUT "WHICH STRING (1-1£0€8, 8 TO QUIT)? ",I
7¢ IF I=8 THEN 130

88 IF I<1 OR I>1008 THEN 60

85 REM Check for out of range item number.
99 READ #1 %(I-1)*R.RS

18@ PRINT "STRING #",I,": ",RS

119 PRINT

1280 GOTO 60

13@ PRINT "QUIT"

143 CLOSE #1

150 END

Byte values may also be accessed randomly using these
same technigues, provided that the ampersand is
employed to specify byte access.

STATEMENT: OPEN

STATEMENT: CLOSE

STATEMENT: READ#

STATEMENT: WRITE#

STATEMENT: CREATE

STATEMENT: DESTROY

DISCUSSION: FUNCTIONS (built-in: TYP, FILE)

[
i
O

- NORTH STAR BASIC -

W

STATEMENT:

ACTION:

EXAMPLES:

REMARKS:

ERKOR

MESSAGES:

SEE ALSO:

DATA FILES (Continued)

CREATE <file name>, <file size>
CREATE <file name>, <file size>, <file type>

A new file of the specified name, size and type

is created on diskette., The file size and (if
present) the file type must be numeric expressions
which evaluate to non-negative integer gquantities.
The file size refers to the number of 256-byte blocks
the file will contain and can be no more than the
number of free file blocks remaining at the end of
the diskette. The file type must be no greater than
127. If no type is specified, type 3 (BASIC data
file) 1is assumed. The file name may be any string
expression whose value constitutes a legal file name
(see DISCUSSION: DATA FILES). The density of the
file created is set tc be the same as the density of
the file directory on the specified diskette.

CREATE "SAMPLE",25
CREATE "DATA,2",108,10
CREATE F$+D$,S,T

CREATE merely reserves disk space in the directory
under the given file name -- no information of any
kind is actually written into a file when it is

- CREATEG.

FILE ERROR
Either the file name is illegal, or there is not

enough room on the diskette to hold a file of the
indicated size.

OUT OF BOUNDS ERROR

The file type specified is not in the range 8 to 127,
or the specified file size 1s out of legal size
range.

HARD DISK ERROR
See COMMAND: SAVE

DISCUSSION: DATA FILES

STATEMENT: DESTROY
DISCUSSION: FUNCTIONS (built-in: FILE)

- NORTH STAR BASIC - L-10

jn

[

TATEMENT

RANFLES:

Lnalnn

08

DATA FILES (Continued)

DESTROY <file name>
The file specified by the the file name is removed
trom its diskette. The "file name" may be any string

expression whose value is a legal file name. (See
DISCUSSION: DATA FILES.)

DESTROY "VICTIM"

DESTROY FS+*%",2"

DESTROY "TEMP"+DS$S(1,1)

The DESTROY statement is eguivalent to the DE command

in the DOS.

FILE ERROR

The file name is illegal, or the named file does
exist. :
HARD DISK ERROR
See COMMAND: SAVE

DATA FILES
CREATE

DISCUSSION:
STATEMENT ¢

- NORTH STAR BASIC -

M

STATEMENT:

ACTION:

EXANPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

DATA FILES (Continued) =

OPEN #<file number expression>, <file name>
OPEN #<file no. expr.>, <file name>, <(size variable>

CPEN #<file no. expr.> %<type expression>, <file name>

OPEN #<file number expression> %<type expression>,
<file name>, <size variable>

The diskette file with the given name is assigned’
the specified file number. Until the file is CLOSEG,
it may be referenced by using the file number. +The
file number expression must evaluate to an integer
from @ to 7. If the optional type expression is
omitted, the named file must be of type 3 (BASIC datea
file) for the OPEN to be successful. The CEPEN will
succeed if and only if the file is of the given type.
The type expression must evaluate to an integer from
@ to 127. The file name may be any string expression
and must evaluate to a legal file name as specified
in DISCUSSION: DATA FILES. If the optional size
variaple is used, the size of the successfully OPENed
file, given in 256-byte disk blocks, will be assigned
to the specified numeric variable.

OPEN #1,"DATA"
OPEN #7%4,"CUSTLIST"+DS
OPEN #F%T,FS,S

An active file-number must be "“freed"” by a CLUSE
statement before it may be re-used in a B3ASIC program
{used again in an OPEN statement).

A RUN, END, SCR, LOAD or CHAIN will close all open
files.

TYPE EKROR

The named file is not of the type specified in the
OPEN statement (type 3, if no type i3 explicitly
cspecified).

FILE ERROR

This is caused by three conditions:

1} The file number is already assigned to a file.

2) The file name has been formed incorrectly.

3) The named file does not exist on the diskette 1in
the specified drive.

OUT OF BOUNDS ERROR |
The file number or type value is out cf range.

DISCUSSION: DATA FILES
STATEMENT: CLOSE

- NORTH STAR BASIC - L-12

(-/ SeALENMENT:

ACTION:

ERROR

MESSAGES:

sz ALSO:

DATA FILES (Continued)

CLOSE #<file number expression>

Prevents further access to the file with the
specified file number. Also guarantees that RAM
buffer space for the file is written to the file on
diskette if necessary.

CLOSE #1
CLOSE #A*2
CLOSE #B7(3)

Files should be CLOSEd as soon as there is no longer

anv need to READ from or WRITE to them. This insures
that any changes made to the files will pe permanent,
recause the buffer is written out, if necessary, when
a CLOSE occurs.

The "buffer-flushing" action of the CLOSE statement,

wnere accumulated data is actually written to the

diskette file, will also occur under the following

circumnstances: .

a) The file pointer is changed to address a byte
location in another file block.

b) An END or CHAIN statement is executed.

c) L STOP statement is executed or a control-C
interruption occurs.

d) The program halts because of a program error.

Only the execution of CLOSE, END, or CHAIN
statements, however, will disassociate the diskette
file from its file number. During an interruption
caused by STCOP, control-C, or a program error, any
files OPENed within the program remain OPEN, and may
be accessed in direct mode.

FILE ERROR

The file number expression did not evaluate to an
integer from @ to 7, or the diskette is write-
protected.

STATEMENT: OPEN
DISCUSSICN: DATA FILES

- NORTH STAR BASIC -

M -

STATEMENT:

ACTION:

EXAMPLES:

REMARKS :

ERROR

MESSAGES:

DATA FILES (Continued) w

READ #<file number expression>, <variapble list> ‘
READ #<file no. expr.> %<random address>», <var. list>

For each variable in the list, the next seguential
data value from the specified diskette file 1is
obtained, and assigned to the variable. READing of
values may commence at a specified point in the file
{x-many BYIE positions from the start) if the ranadom
address is used. The address specification consists
of a ver-cent sign (%) followed by a numeric
expression which evaluates to an integer between 0
and the last legal byte address within the file. The
file number is a numeric expression of integer value
from @ to 7. Any numeric variable in the list may be
prefixed with an ampersand (&) which instructs BASIC
to READ the next byte of data and assign its decimel
value (interpreted as an integer from ¥ to 255) to
the variable.

READ #2, A,B.C

READ #3,Q,&B7,AS

READ #F$L,&X,&Y,&2

READ #@0%$PNL(I)+3,R8,2S5,K9

when the file is OPENed, the pointer is set to the
beginning of the file, this pointing to the first
byte of the first value in the file. Each time a
value is assigned to a variable, the tile "pointer"
moves past that value, and points to the first byte
of the next value in the file.

BASIC maintains a "pointer" into each open file. : ' ‘

Use of the optional random address expression resets
the file pointer to the specified byte address 1in the
file, before READing begins.

TYPE ERROR

The types of the variable and the value to be
assigned to it do not match. For example, this will
occur if an attempt is made ‘to READ a string value
into a numeric variable. A TYPE ERROR also occurs
when an attempt is made to READ more data than is
included in the file (READing the ENDMARK). This
error will also occur if use of random~accessing
results in the file pointer being set to, for
example, the "middle" of a string or numeric value in
the file. '

OUT CF BOUNDS ERKOR v ;
Either or both of the following conditions has ‘ ‘I
occurred:

- NORTH STAR BASIC - L-14

DATA FILES (Continued)
1) The random access address 1s less than 0 or
greater than (the file size in blocks)*256-1.
2) The file number is less than @ or greater than 7.

DISCUSSION: DATA FILES
STATEMENT: WRITE#

t
i

- NORTH STAR BASIC -

et e

STATEMENT:

ACTION:

EXAMPLES:.

KEMARKS:

DATA FILES (Continued) %

WRITE #<file number>, <expression list>
WRITE #<file no.> %<random address>, <expr. list>

Each value in the expression list is written to the
diskette file to which the file number refers. If
there is more than one value in the expression list,
the values are written seguentially (one-after-
another) in the order listed. After all tnhe values
in a WRITE statement’s expression list have been
written to the specified file, an ENDMARK is written
after the last item. Note that after any WRITE
operation which WRITEs an ENDMARK, the file pointer
will point to the ENDMARK just written. In this way,
new data placed at the end of the file will overvrite
old ENDMARKs, and the result is that there is always
only one ENDMARK in a file after proper sequential
access, The programmer may Opt to suppress the
writing of the ENDMARK by using the reserved-word
NOENDMARK as the last item in the WRITE statement.
writing may begin at any arbitrary point in the file
if the random address, an offset (calculated 1in
bytes) from the start of the file, is included. Both
the file number and the random address may be any
valid numeric expressions, so long as the file number
evaluates to an integer from € to 7 (corresponding to
an opened file), and the random address is an integer
between @ and the last byte address in the file. Any
numeric expression in the expression list may be
prefixed with an ampersand (&) character. This
signals BASIC to convert the value to a single byte
and WRITE it to the file. (Any value so prefixed
must evaluate to an integer from 8 to 255.)

99 WRITE #1,A,B,CS

75 WRITE $F, "HI THERE",Q,X7(B),NOENDMARK
80 WRITE #0%P,RS

33 WRITE #X, &Bl,&B2,&l

20 WRITE #3%2 (M), &E, NOENDMAKRK

30 WRITE #2%(R-1)*S,X$.YS$,28

Even when & is used to cause writing of individual
bytes, an ENDMARK is still written after the values
in the expression list. Thus

WRITE #1,&8B
will result in the writing of two bytes, the byte-
value of B and the ENDMARK. When the intention is to

write only a single byte using a single WRITE
statement, the NOENDMARK option should be exercised.

- NORTH STAR BASIC - _ L-16

MESSAGES:

DATA FILES (Continued)

FILE ERROR
The diskette containing the specified file is write-
protected.

OUT Cr BOUUNDS ERROR
Either or both of the following conditions has
occurred:

1) The random access address is less than @ or
greater than the file’'s highest permissible random
address.

Z2) Tne file number is not within the rangs of £ to 7.

DISCUSSION: DATA FILES
STATEMENT : READ#

STATEMENT: OPEN

STATEMENT: CLOSE

APPENDIX 3: IMPLEMENTATION KCTES

~ NORTH STAR BASIC - L-17

M

STATEMENT:

ACTION:

EXAMPLES:

REMARKS:

ADVANCED FEATURES

FILL <memory address>, <byte value>

The byte value is placed in the RAM memory cell with
the specified address. A byte value is a numeric
expression which evaluates to an integer from @ to
255. The memory address must be a numeric expression
equal to an integer from @ to 65535,

FILL M+S,0

FILL (2*1673)+(13*1672)+(1*16T1)+(3*1670),16
FILL FNC("2D13"),16

FILL 65535,B

FILL 100,31

The FILL statement allows the user to change
specific bytes in RAM memory, and so is useful in the
following applications (as well as many others):

1) Personalizing BASIC.

2) Loading user-defined machine language routines in
free memory. :

3) Putting parameters to machine-language user-
functions in free memory.

4) Manipulating video-display memory for custom
graphics applications.

Note that both the memory address and the byte value
must be in decimal (base 10) form, and BASIC will
convert them to binary when FILL is executed. North
Star BASIC does not accept hexadecimal (base 16)
numbers. If you wish to use "hex" when specifying
addresses of byte values, you should make use of a
hex~to-decimal conversion function. Refer to
DISCUSSION: FUNCTIONS for an explanation of user-
functions, as well as APPENDIX 1: SAMPLE PROGRAMS for
a user-function written at North Star to perform the
conversion.

If either the byte- or address- values reduce to non-
integers, the fractional portion is eliminated
(TRUNCATED) and the remaining whole portion is used.

If, after truncation, the byte value is greater than
255, only it's remainder, when divided by 256 (in
other words, the value-modulo 256) is used. (For
example, 257 modulo 256 =1 -- FILL X, 257 would put a
l-byte in the address represented by X.) No similar
provision is made for the memory address, however.

- NORTH STAR BASIC - M-1

——----------------------—-----—-ﬂ.

ERROR

MESSAGES:

ADVANCED FEATURES (Continued)

CAUTION: FILL may reference an address at which no
memory cell exists or even an address within DOS,
BASIC, or the program/data area. Thus, FILL gives
the programmer power to make some very bad mistakes.

OUT OF BOUNDS ERROR
1) The byte value or the memory address (or both) is
less than zero.

2) The memory address is greater than 65535.
DISCUSSION: PERSONALIZING BASIC
DISCUSSION: FUNCTIONS (built-in: EXAM; user~functions)

DISCUSSION: MACHINE LANGUAGE SUBROUTINES
APPENDIX 1: SAMPLE PROGRAMS

- NORTH STAR BASIC - M-2

w

STATEMENT:

ACTION:

EXAMPLES:

j=)

ra

N
A

ARKS:

ERROR
MESSAGES:

SEE ALSO:

ADVANCED FEATURES (Continuad)

OUT <port number>, <byte value> _ ‘I

The byte value is sent to the indicated 8089 or Z-80
output port. Both port number and byte values must
be numeric expressions which evaluate to integers
from @ to 255.

ouT 2,65
ouT P,B
OoUT P7+1,ASC("8")

Both the port number and the byte value must be
decimal (base 18) numbers. (Refer to STATEMENT: FILL
for further elaboration on this.)

Fregquently it is necessary to determine whether or
not a given output port is ready to receive data, by
examining a special input port (called a STATUS PORT)
for evidence of a ready signal. (The built-in
function INP may be used to facilitate this.) 1In
such circumstances, a program should wait until the
ready signal is given before executing an OUT
statement. This process of waiting and 0OUTing is
called "handshaking". If OUT is used before the

. signal is received, the byte value may be lost before ' ‘

arriving at its proper output destination. The OUT
statement does not provide its own handshaking ~- it
is the programmer s responsibility to determine
whether or not handshaking logic is necessary when
communicating with a particular output port, and to
implement it with the appropriate statements if so.

The PRINT and OUT statements do very different things
and should not be confused with each other.

OUT OF BOUNDS ERROR
One or both of the values specified lies outside the
range of # to 255.

DISCUSSION: FUNCTIONS (built~in: INP)
STATEMENT: FILL

- NORTH STAR BASIC - M=-3

C

LISCUSSION:

ADVANCED FEATURES (Continued)

MACHINE LANGUAGE SUBROUTINES (CALL)

North Star BASIC provides a method through which you
may "link" your BASIC programs to machine language
subroutines which you have written to perform certain
tasks.

A machine language routine must lie outside of the
computer memory area reserved for the DOS, BASIC, and
BASIC s program/data area. (You may restrict this
area, and thus leave room for machine language
routines in high memory, through use of the MEMSET
command, for example.)

Machine language routines are accessed through the
built-in BASIC function named CALL. CALL takes at
least one argument, the numeric address in computer
memory (an integer from & to 65535) where your
machine language routine begins. An optional second
argument, also a numeric expression in the above
range, can be communicated to your routine in the D &
E register pair. The value will be truncated to an
integer if it has a fractional part. Negative
arguments are not allowed. All registers may be used
by your machine language routines -- BASIC will have
already preserved any operating information which it
will need later.

When vyour routine is finished, it should execute a
RET (return) instruction, which will allow BASIC to
resume control and continue with the execution of the
BASIC program. If the machine language routine uses
the stack, then it should use its own stack area.
The stack area and stack pointer used by the BASIC
interpreter should not be modified by the machine
language routine. The number returned as CALL's
function-value will be the decimal representation of
the contents of the H & L register pair whenever the
machine language routine terminates. Thus, it is
possible to communicate a single numeric value to
your routine from BASIC, and collect a single value
from the routine when it returns.

Here are the models for proper formation of the CALL
function-call:

CALL(<address expression>)
CALL(<address expression>, <argument expression>)

For an example of CALL in use, let’s suppose there

existe a machine language routine at address 5000¢,
and that it will reguire the optional arqument value.

- NORTH STAR BASIC - M-4

SEE ALSO:

ADVANCED FEATURES (Continu®d)

The following line effects a transfer to that ‘
routine, passing the value of variable A as argument

in the D & E registers as a positive, 1lA-bit binary
integer:

16 Q=CALL(60080,A)

If, in this instance, the binary value of 578 is inr
the H & L register-pair when the machine language
routine returns, then the variable ¢ will be set to
578 when BASIC resumes control.

Note that CALL looks like, and acts as a numeric
function. CALL may be a part of any numeric
expression in BASIC, and may be used anywhere any
other numeric function might be used. Note that the
following:

50 CALL(M,A)
is in error -- CALL 1is not a statement.

Below are some more examples of CALL in use. In one-
argument instances of CALL, no specific argument

value is sent to the machine language routine in theé

D & E register-pair, however, the CALL function ‘
always returns a value: whatever is in the H & L pair

upon return to BASIC.

208 PRINT CALL(A(3)),AS$

578 X=CALL(R+1024,G)

460 Q(CALL(430625,Y))=M

25 DEF FNM(G,D)=CALL(586060,G*256+D)
1630 F=CALL(S,ASC(SS$))

Using machine language routines correctly is
difficult and should only be attempted by expreienced
programmers, and only then if no other alternative is
available.

STATEMENT: FILL

STATEMENT: PRINT

DISCUSSION: MULTIPLE I/O DEVICES
DISCUSSION: FUNCTIONS

- NORTH STAR BASIC - M-5

L// DISCUSSION:

ADVANCED FEATURES (Continued)

CHAINING (AUTOMATIC PROGRAM SEQUENCING)

Through use of the CHAIN statement (discussed in
detail under STATEMENT: CHAIN), one program may cause
another to be automatically LOADed and RUN,
eliminating the need for the user to initiate and
supervise such activities from the keyboard. Thus, a
sequence of programs may operate virtually unattended
for long periods (unless, of course, one or more of
the programs reguires interactive data-input or
various diskettes need to be swapped in and out of
the drives). There are two situations when CHAINing
is most effectively used:

1) You desire to use several separate programs as a
complete software "system" where each program can
automatically transfer to another program whenever
necessary.

2) A program may be too large to fit into the
available program/data area, but can be broken up
into separate, self-contained modules which CHAIN
between themselves to accomplish the desired task.

CUMMUNICATION BETWEEN CHAINED PROGRAMS

All variables are cleared by a successful CHAIN
operation, so variables which are shared by one or
more modules must be "restored" at the start of each
module.

It is frequently necessary for a CHAINed program to
accept information from the module which precedes it
or pass data to the program to which it will CHAIN.
Several methods may be used to accomplish program-to-
program communication. The two most commonly-used
ones are described below.

A data file may be shared between two programs, and
thus provide for communication between them. This
file might be a common data-base (of invoices,
customer names, calendar items, switchboard messages,
etc.), in which case - each separate module would infer
the action it should take by examining the current
state of the file. Programs may use files to
communicate in a more direct fashion if actual
variables are shared between them: program A would
WRITE the values of those variables into a file in a
certain order, and then would CHAIN to program B,
which would READ them back in the same order.

The second method for inter-program communicaticn

— NORTH STAR BASIC - M-6

ADVANCED FEATURES (Continuig)

involves storing the appropriate data in otherwise
unused RAM memory, outside the program/data area,
where 1t will survive the SCRatch which is implicit
in a CHAIN. There are a good many technigues for
utilizing RAM memory in this way -- most involve the
use of the EXAM function and the FILL statement.

“TESTING THE WATER" FOR A SAFE CHAIN

SZE ALSO:

If the file specified in a CHAIN statement does not
exist, is not of type 2, or does not hold a valid
BASIC program, the CHAIN operation will fail. It is
not easily possible to check an alleged “program"
stored on diskette to be certain that it is in
perfect condition, but the built-in FILE function may
be used to determine if a given program file exists
and is of type 2 before an attempt is made to CHAIN
to it. Use of the ERRSET statement may also help in
such situations.

STATEMENT: CHAIN

DISCUSSION: DATA FILES

STATEMENT: READ$

STATEMENT: WRITE#

STATEMENT: FILL

DISCUSSION: FUNCTIONS (built in: EXAM, FILE)
STATEMENT: ERRSET

DISCUSSION: ERROR TRAPPING AND RECOVERY

- NORTH STAR BASIC - M-7

STATEMENT :

ACTION:

ERROR

MESSAGES:

SEE ALSO:

ADVANCED FEATURES (Continued)

CHAIN {program file name>

The BASIC program contained in the specified file is
automatically LOADed into the program/data area from
diskette (replacing any current program), then
automatically begins RUNning at the lowest numbered
program line. The program file name must be a string
expression which evaluates to a legal BASIC program
(type 2) file name as described in DISCUSSION: DATA
FILES.

1% CHAIN "PROG,2"
186 CHAIN P$+DS
73 CHAIN "PROG"+NS (X,X)+",2"

CHAIN makes possible the automatic seguencing of 2 or
more programs, freeing the operator from-the task of
having to LOAD and RUN each new program as the
previous one ENDs. A CHAIN statement in program 2,
for example, may automatically initiate program B; @
CHAIN in B may lead to C, and so on.

After a successful CHAIN, any previous program and
data are cleared. All files currently open in the
calling program are automatically CLOSEd.
Communication between CHAINed programs may be
facilitated by the use of ccmmon data files, or by
use of EXAM and FILL.

Because CHAIN is a direct statement, it may be used
instead of the LOAD-RUN sequence for manual program
initiation. However, remember that the file name in
a CHAIN statement is a string expression, and that
string constants must always be enclosed by double
guotes (e.g.: CHAIN "PROG" is legal, but CHAIN PROG
is not).

Same as COMMAND: LOAD
DISCUSSION: CHAINING

COMMAND: LOAD
COMMAND: RUN

- NORTH STAR BASIC - M-8

M

DISCUSSION:

ADVANCED FEATURES (Continyed)

ERROR TRAPPING AND RECOVERY

Normally, when a program error occurs while a BASIC
program is RUNning, BASIC automatically terminates
the execution of the program and issues an error
message. This is to aid the programmer in finding
and correcting the error. For many possible end-user
applications, a BASIC program should operate in the
presence of errors rather than terminate execution
and print an error message. The program should
detect the error condition, and then take corrective
action without regquiring the user to debug and re-
execute the program. Certain kinds of errors
resulting from incorrect input, improper diskette
handling, or inconsistent data might be too difficult
or time-consuming to anticipate and detect using
regular BASIC statements.

TO make convenient ERROR~RECOVERY UNDER PROGRAM
CONTROL possible, North Star BASIC includes the
special ERRSET statement. With this statement, the
programmer specifies a line number which references
the first statement of an ERROR-RECOVERY ROUTINE,
which exists somewhere in the program. Once an
ERRSET has specified the desired error-recovery
routine, any program error which occurs during
program execution will cause an immediate "GOTOC" to
that routine. (This is called TRAPPING THE ERROR.)
The BASIC statements in the error-recovery routine
determine the action to take under error conditions.
A good routine will also include statements which
attempt to correct the error condition. For example,
if a user was told to insert a diskette into a drive,
and then the computer detects a hard disk error when
it attempts to open a file on the diskette, either
the diskette has been inserted incorrectly, or the
data on it is invalid. A good error-recovery routine
might give the user a chance to re-insert the
diskette.

The programmer must also specify two variable names
in the ERRSET statement along with the line number of
the start of the error-recovery routine, for example:

190 ERRSET 1006,L.,E

When an error is trapped, the line number of the
statement where the error occurred is assigned as the
value of the first variable, and a numeric code,
corresponding to the type of the error, is assigned
to the second variable. By examining the value of
these two variables, the program can determine not

- NORTH STAR BASIC - 1-9

SEB

ALSO:

ADVANCED FEATURES (Continued)

only what caused the error-condition, but where in
the program it occurred, and with this knowledge,
decide what to do about the error. North Star BASIC
program errors and their codes are listed in APPENDIX
2.

Note that if the error-handling routine in & program

is written to make any decisions based on the number

of the line in which the error occurs, it may be very
unwise to RENumber the program.

When an error-trap occurs, any subroutines, user-
functions, and FOR-NEXT loops which were active at
the "trap" are still active. Thus, it 1s possible to
execute a GOTO statement back to the point where the
error occurred, or to the statement immediately after
that point, and continue the execution of the program
after the error-condition has been handled.

Frror-trapping is disabled automatically after each
"trap". After error recovery .is complete, another
ERRSET statement can be executed to resume error-
trapping mode. '

when the program no longer reqguires the use of
BASIC s error—trapping feature, error-trapping can be
disabled explicitly by executing the ERRSET statement
with no arguments -~ for example:

148 ERRSET

Unless the control-C program-interruption feature is
disabled (as mentioned in DISCUSSION: CONTROL-C, and
DISCUSSION: PERSONALIZING BASIC) a trappable "program
error" will occur every time control-C is pressed
while the program is RUNning in error-trapping mode.
If you do not wish for control-C to be treated as an
"arror", then the control-C feature must be disabled.

STATEMENT: ERRSET

APPENDIX 1: SAMPLE PROGRAMS
APPENDIX 2: ERROR MESSAGES

- NORTH STAR BASIC - M-10

M

STATEMENT:

ACTION:

EXAMPLES:

ADVANCED FEATURES (Continuiﬂ)

ERRSET <line number>, <numeric variable», <numeric var.>

ERRSET

Following the execution of an ERRSET statement which
specifies a line number and two variables, the
occurrence of a program error or a control-C (unless
disabled) will cause an automatic GOTO to the
specified line number. The line number where the
error occurred is assigned to the first variable, and
a numeric error code corresponding tc the type of
error is assigned to the second. This process is an
ERROR-TRAP. After a trap, further travs are disabled
until a subseguent ERRSET is executed. Execution of
an BRRSET statement with no line number or variable
specifications disables error-trapping.

19 ERRSET 16606, L, E
28 ERRSET 570,E(8),E(1)
30 ERRSET

The use of ERRSET makes possible programs which always
retain control even under error conditions. This is
useful when writing software intended for use by
persons who are unfamiliar with the North Star System
or computers in general. Programs written for such
users may effectively "take care of themselves".

After a trap has occurred or trapping has otherwise
been disabled, another ERRSET statement must be
executed to resume trapping mode.

When trapping is disabled, a program error causes
immediate termination of the program, followed by an
error message printed to the console.

ERRSET may not be used in direct mode -- error
trapping does not function in direct mode. A program
with error trapping enabled will retain that mode
after a STOP interruption, but trapping will not
resume until program execution CONTinues.

Not all errors are travpable with ERRSET. Refer to
APPENDIX 2. Those errors without error codes are not
trapped. Note that it is possible to trap the action
of the control-C panic button as an "error". 1In
trapping mode, control-C will always cause a
trappable "error" unless the panic-button feature has
been disabled (a process described in DISCUSSION:
PERSONALIZING BASIC).

The subroutine, function, and FOR-NEXT calling
histories of a program remain intact after an error-

- NORTH STAR BASIC - M-11

ADVANCED FEATURES (Continued)

{ trap occurs, providing the programmer with a chance
to recover from the error, if possible.

ERROR
MESSAGES: Same as STATEMENT: GOTO.

SEE ALSO: DISCUSSION: ERROR TRAPPING
APPENDIX 2: ERROR MESSAGES
DISCUSSION: PERSONALIZING BASIC
DISCUSSION: CONTROL-C, THE PANIC BUTTON

- NORTH STAR BASIC - M-12

M

ADVANCED FEATURES (Continged)

DISCUSSION: THE LINE EDITOR
INTRODUCTION TO THE EDITOR

Anyone who has used the North Star BASIC system for
any length of time is already aware of the “delete-
character" function performed by the underline,
RUB/DEL, and backspace keys, as well as the "cancel-
line" function of the at-sign (@) key. These are two
features of the larger LINE EDITOR, which allows you
to modify, quickly and efficiently, lines of
information which you type into North Star BASIC.
Mostly, people use the line editor to change or
correct program text, a line at a time. However, the
editor may also be used on commands and responses to
INPUT or INPUT]1 statements. Because the program-
development aspect of the editor is by far the most
important to the average BASIC user, this purpose
will be emphasized here.

The character-delete and line-cancel functions of the
editor permit instantaneous correction of typing
errors as they are made during the entry of a line.
The editor also allows the correction and
modification of program lines which have already heen ’
typed into the system. For example, after SCRatching
the program/data area, type the following PRINT
statement into BASIC:

14 PRINT "TOTAL RECEIPTS TO DATE: ",Tl

As soon as you strike the RETURN, and this line
becomes part of your current program, pretend that
you have made a mistake: the variable to be printed
should actually be T2, not Tl. In BASICs without a
line editor facility, you would be forced to retype
the entire line in order to correct the one erroneous
character. However, North Star BASIC always
"remembers” the last line you type to it. This, for
discussion purposes, will be called the OLD LINE. As
a rule of thumb, whenever you strike the RETURN to
terminate a line of input to BASIC, that line
immediately becomes the old line. (There is one
exception to this rule, which will be discussed in a
moment.) Utilizing the higher functions of the line
editor, you can convert the old line into a correct
NEW LINE which will then replace its predecessor in
the program. For now, to prove to yourself that
BASIC indeed "remembers" the o0ld line, type control-
G. Notice that the line you just typed reappears.
The cursor or print-head on your terminal will sit
just at the end of the line. By striking control-G

- NORTH STAR BASIC - M-13

ADVANCED FEATURES (Continued)

before typing anything else, you have instructed the
line editor to take the o0ld line from the beginning
to the end, and treat it as a new line of input,
copying the line to the terminal as it does so. 1In
effect, by using just one control-character, you have
“retyped" the old line. If you now strike RETURN,
the new line will replace line 18 -- but since the
new line is identical to the old, no net improvement
will result: T1 should still be changed to TZ2.
However, suppose you strike the underline key. Now,
the last character in the new line (the 1 that should
be a 2) 1s erased, and you may type the correct one.
If you strike RETURN at this point, the correct line
will replace its faulty predecessor. To correct the
reasonably long line 16, all that was reguired was to
strike four keys: control-G, underline, the "2" key,
and RETURN.

{When one is used to such a procedure, it is much
faster and less tedious than retyping the whole line,
although, for this introductory example, you probably
spent more time being careful, reading directions,
and observing results, than you would if you had just
retyped the whole thing to start with. Practice with
the editor -- your speed will improve tremendously.
Even after just an hour or so of experience with the
editor, you will note a gratifying increase in your
efficiency when entering and modifying BASIC :
programs.)

Now, try another example. Realize that, as soon as
you strike the RETURN key to end the new line, it
became the old line, and you may now use the editor
on it. Type

20

(and don’t strike RETURN!). Now strike control-G.
You should see the following on your terminal.

26 PRINT "TOTAL RECEIPTS TO DATE: ",T2

If you strike RETURN, a new line 28 will be added to
your current program. Its contents will be identical
to the contents of line 1@. What you have done is
create a completely new line by combining newly-typed
information with part of the old line. When vou
typed the line number 20, you were typing over the
first two characters of the old line. When you
pressed control-G, the line editor knew to cCOpy only
the remaining part of the old line to the new line.
The first two characters of the old line were

- NORTH STAR BASIC - M-14

M

ADVANCED FEATURES (Contin®ed)

discarded in favor of your new information. Suppose
that there had been no third character in the old
line -- that it was only, say, one or two characters
long itself. Then, there would have been nothing for
the control-G function to copy to the new line. In
this case, as in others where the editor cannot
comply with your wishes, it rings the bell (or beeps
the beeper) on your terminal.

THE EDIT COMMAND

LINE

So far, all that has been shown is only how the no
recently typed line may be modified or used to cre
a new line. What if, after typing line 20 in the
example above, you want to go hack and modify line 10
again? This time, line 20 would be the old line

-- not line 18. The editor would still want to work
with line 28. To surmount this problem, you can
force BASIC to treat line 10 as the old line, by
using the EDIT command as follows:

g
a

t
te

EDIT 10

This forces the line editor to replace the "natural"
(most recently typed) old line with the program lire
you specify. In this example, line 10 would become
the o0ld line. (Note that, if you type in other
commands besides EDIT, the command line itself
becomes the o0ld line. The EDIT command, however, is
the one exception to the "rule of thumb"” mentioned
earlier. When you strike RETURN after typing the
EDIT command, the command line is discarded, and the
program line specified becomes the old line instead.)

Notice that there is no obvious response to the EDIT
command -- the cursor or print-head simply moves to
the start of the next line. However, if you strike
control-G, you will see that line 19 has indeed
become the o0ld line, since it is immediately printed
on the terminal. Using the EDIT command, you can
force any program line to be the old line, and thus
you can modify any part of your program, or create
totally new lines by taking information from a '
"forced" old line, and combining it, under a new line
number, with newly-typed information. The following
discusses all the special functions of the line
editor, as well as some theory behind the editor’s
operation.

EDITOR SPECIFICS AND FUNCTIONS

Assume that you have just strike RETURN to enter the

- NORTH STAR BASIC - M-15

ADVANCED FEATURES (Continued)

above line 16 into your program. Line 16 is now the
0ld line. BASIC is waiting for you to type (or use
editor commands to help form) a new line. At this
stage, the 0ld line is stored in BASIC s memory, and
two "pointers" are kept: one to the current
character position in the 0ld line (the OL pointer),
and the other to the current character position in
the new line being typed (the NL pointer). Before
vou start typing the new line, both these pointers
are set at the starts of their respective lines. (It
is obvicus that the new line pointer is set to the
start of the new line, since you haven’ 't typed
znything new yet!) Most of the editor functions are
most completely explained with reference to these
dual pointers.

Typing a normal character (not a control-character
editing command) in the absence of any other editing
function will result in both pointers being advanced
one position. The typed character is added tc the
new line, and the 0ld line vointer. now points to the
next character in the old line. 1In the seguence
above, for example, when you typed 28 to start the
new program line, the NL pointer ended up pointing
just beyond the & in 20, while the OL pointer was
ckipped past the 16 in the o0ld line, and pointed at
the space just beyond the line number.

BEFORE:
(old line) 1@ PRINT etc....
T OL pointer

(new line)
T NL pointer -- next char typed goes here

AFTER:
(old line) 16 PRINT etc....
T OL pointer

(new line) 20
T NL pointer -- next char goes here

Here are the editing functions, along with the
control-character commands which invoke them:

Control-G: COPY REST OF OLD LINE TO ERD OF NEW LINE
Copy all the characters from the OL pointer character
position through the end of the o0ld line over to the
new line, starting at the NL pointer character
position. If the OL pointer already points past the
end of the old line, no characters will be copied,
and the bell will ring.

- NORTH STAR BASIC - M-16

M

ADVANCED FEATURES (Continue¥)

Control-aA: COPY ONE CHARACTER FROM OLD LINE

The character in the o0ld line pointed to by the OL
pointer is copied to the new line at the character
position designated by the NL peinter. As a result,
both pointers will be advanced by one position. 1If
there is no character to copv, the bell rings.
Repeated use of the control-A command will eventually
give the same result as one control-G command.

Control-Q: BACK-UP ONE CHARACTER

This erases the last character of the new line, and
decrements both the OL and NL pointers by one. If
either pointer is already pointing to the beginning
of its line, the bell is rung. An underline is
printed on the terminal to denote the erasure of a
single character. Typing the underline, DEL/RUB, or
backspace (control-H) keys will also give the same
result as control-Q.

Contrel-Z: ERASE ONE CHARACTER FROM OLD LINE

This command advances the OL pointer by one position,
without copying anything to the new line or advancing
the NL pointer. This effectively "erases' the
skipped character from the 0ld line so that it cannot
be copied to the new line. A per cent sign (%) is
printed to the terminal to indicate the action of
this command. If the OL pointer is already at the

end of the old line, then the command is rejected and
the bell is rung.

- Control-D: COPY UP TO SPECIFIED CHARACTER

A second character {called the SEARCH CHARACTER) must
be typed before this command is executed. The result
is that the contents of the o0ld line from the current
OL pointer position will be copied to the new line
(starting at the NL pointer position) up to (but not
including) the first old-line occurrence of the
search character. If the search character cannot be
found in the old line, no characters are copied to
the new line, and the bell is rung. For example, try
typing

19 PRINT "HERE IS A TEST LINE"
to BASIC, striking RETURN afterwards so that it
becomes the old line. Now, strike control-D and then
capital-S. Notice that neither the control character
nor the letter S appear on the terminal, but the
following is seen instead:

18 PRINT "HERE I

- NORTH STAR BASIC- - M-17

At e o

" ADVANCED FEATURES (Continued)

The old line has been copied to the new line up to
{but not including) the first instance of capital-$§
in the old line. (To copy over the rest of the line,
of course, use control-G.)

Control-Y: SWITCH SPECIAL INSERT MODE ON AND OFF.
If insert mode is on, control-Y will turn it off, and
if 1t is off, the same command will turn it on.
Insert mode starts out by being "off" at the
beginning of every new line. When insert mode is
off, typing normal (non-control) characters advances
the OL as well as the NL pointer (so that the new
material may "type over the 0ld line”). When insert
wode is on, however, typing normal characters will
not advance the OL pointer (although the NL pointer
is necessarily advanced). The result of all this is
that insert mode may be used to insert some new
material in the middle of the old line. (An example
will be given in a moment.) When insert mode goes
on, a left angle-bracket (<) appears on the terminsal.
then 1t goes off, a right angle-bracket (>} 1is
printed. (Note that these characters do not become
part of the new line itself -- they are printed on
the terminal only to signal to you the current status
of insert mode.) While normal typing will not
advance the OL pointer during insert mode, editing
commands which are supposed to change the value of
the OL pointer will continue to do so. For example,
typing control-G during insert mode will still copy
the rest of the o0ld line over to the new line and
advance the OL pointer to the end of the old line.
To get the feel of insert mode, and the on-off action
of control-Y, set up an old line by typing the
following:

18 PRINT "TEST LINE"
Now, use the control-D command twice, to "speed" you
to a point just after the quote-mark at the beginning
of the string literal. (To accomplish this, strike
four keys: control-D, T, control-D again, and T
again.) Here is what you should see on the terminal:
16 PRINT "
Now, strike control-Y, which gives you this:
18 PRINT "<
Type the words

HERE IS A

- NORTH STAR BASIC - M-18

ADVANCED FEATURES (Continu®d)

and then a space. Then strike control-Y again. The
terminal should now look like:

10 PRINT "<HERE IS A >

By going into insert mode temporarily, you avoided
typing over and so obliterating any vart of the 014
line. So, if you now strike control-G, everything
which came after the first gquote in the 0ld line will
be copied to the new line: '

19 PRINT "<HERE IS A >TEST LINE"

If you strike RETURN at this point, the new line 190
will replace the o0ld, and the net effect will bhe that
the new material will have been inserted between the
first guote-mark and the subsecuent T of the old. To
see this net effect, strike control-G again and
follow it with a RETURN.

Control-N: CANCEL AND RE-EDIT NEW LINE

SEE ALSO:

This command cancels the partially-completed new line
and permits another new-line to be entered. The
canceled new line becomes the 0ld line for subsequent
editing. An at-sign (@) is printed and advancement
to the next terminal line occurs when this command 1s
typed. The at-sign itself may be typed instead of
control-N to achieve the same results., After the
cancel is executed, both OL and NL pointers are reset
to the start of their respective lines.

DISCUSSION: COMMUNICATING WITH BASIC

- NORTH STAR BASIC - ¥-19

e ———
COMPATIBILITY .

(-/DISQUJSIUN: COMPATIBILITY wITH OTHER BASICS

This section provides some information which may ne
useful to you if you are attemcting to convert
programs into North Star BASIC from other versions of
BASIC,

STRING HANDLING

The operations and functions used to access strings
and substrings often differ widely between different
versions of the BASIC language. DISCUSSION: USING
STRINGS details the system implemented in North Star
BASIC, where substring access ig achieved through
string-name subscrivting. However, some BASIC
csystems use the so-callec "MID-LEFT-RIGHT"
convention, where access to substrings is made
possible by the three built-in string functions MIDS

LEFTS, and RIGHTS. Programs which use this method o©
substring access will have to pe modifiled to reflect
North Star string conventions. In general:
OTHER BASICS - NORTH STAK BASIC
LEFTS (X$,L) 1s the same as XS (1,L)
(J RIGHTS (X$,R) is the same as XS (LEN({XS$)-R+1)
g MIDS (XS,L,N) is the same as X$ (L.L4+N~1)

STRING TABLES

Some versions of BASIC implement arrays of strings
with the syntax which is used for substring
referencing in North Star BASIC. An array of strings
may be achieved in North Star BASIC by partitioning a
string variable into fixed-length substrings. For
example, an array of N strings, each of maximum
length L would be DIMensioned as:

1¢ DIM AS$(N*L)

and the Jth string element (where J extends from 9 to
N-1) would be accessed using:

AS (J*L+1, (J+1)*L)
STRING DECLARATIONS
In North Star BASIC, all strings longer than 19)
characters must be explicitly declared in a vrogram s
DIMension statements. Strings may be dimensioned to

: any length desired, to the limit of available
(;/ computer memory. Some other BASICs do not reguire

-~ NORTH STAR BASIC - N=-1

w

COMPATIBILITY (Continueds

that string variables be dimensioned before use, bhut @I

may set a small upper limit on the maximum lengtn of
strings which may be used in a program.

INPUT TRANSLATION

Certain characters, when they are typed into Nortn
Star BASIC, are automatically translated into otner
characters. This is done to help minimize the effort
of converting programs written for other BASIC
systems into North Star BASIC. This conversion is
not verformed upon text within quoted strings. The

<4
fcllowing chart summarizes the translation procesz.

(becomes {
] becomes)

(colon) becomes N (backslash)
; (semi~-colon) becomes , [(comma)

Thus, the line input as
19 PRINT AS{3,4}; : LET AS{3,4]="HI"

becomes

NORTH STAR’'S BCD ARITHMETIC

North Star BASIC uses the BCD (binary coded decimal)
system for implementing floating=-point arithmetic (as
opposed to binary integer arithmetic in some BASICs,
and straight binary flocating methods in others.)

Within the limits of its precision (8-digits in the
standard version), North Star BASIC s BCD method is
the most accurate method of arithmetic computation
available on microcomputers today. Other floating-
point arithmetic methods exhibit "binary-conversion-
error" which introduces strange and sometimes
frustrating inaccuracies into numeric computations
because of an internal conversion of numbers from
decimal (base 18) to binary (base 2).

It is impossible, using straight binary methods, to
represent with complete accuracy many common and
precise decimal fractions, such as .1! You might
assume that 1@*.1 = 1. Using North Star’s accurate
BCD arithmetic, it always does. However, under other
methods, 18*.1 freguently does not egual exactly 1!

- NORTH STAR BASIC - N=-2

16 PRINT AS(3,4), \ LET AS(3,4)="aI" ‘

R —————

COHUPATIBILITY (Continued)

THEN EVALUATION

Uther BASICs handle the results of IF ... THER
evaluation differently than North Star BASIC when the
IF statement precedes others on a multiple-statement
program line. In North Star BASIC, when the IF
condition is FALSE, the THEN part is skipped and
execution continues with the following statement in
the program text. The "following" statement may come
zfter tne IF statement on the same program line, or,
when the IF is at the end of a program line, the
first statement on the next line is used as the

“following" statement. ‘Thus, the program:
16 A=9
20 B=9
306 IF A<>D THEN A=7 \ B=7
40 PRINT B
will yield
7 B
as output. In contrast, other BASICs may ignore the

rest of line 20 when the IF condition is found to be

FALSE, and will skip ahead to the following program
line, bypassing the assignment to B in line 38 so
tnat the output becomes:

2

with these other BASICs, execution always skips to
the following program line when the condition in an
IF statement is FALSE. The remainder of the line, if
any, 13 executed only when the condition evaluates to
TRUE .

- NORTH STAK BASIC - N=-3

DISCUSSION:

SEE ALSO:

MISCELLANEOUS TOPICS

SPECIAL ENTRY POINTS

NOTE: The following discussion concerns advanced
topics and presupvoses a working knowledge of the
North Star DOS and a grasp of memory addressing in
hexadecimal (base 16) notation. Please be sure that
you ‘are familiar with these topics before reading
further in this section.

The following is a list of BASIC s entry points, and
the results of re-entry to BASIC via each. (The
abbreviation ORG stands for the starting address of
your BASIC =-- for those whose BASIC starts at 2D80H,
the actual entry point addresses are given in
rarentheses next to the general models.)

ORG + 0B (2DEORH)
BASIC is initialized. An automatic SCRatch of the
program/data area is performed, erasing any 3ZASIC
program and/or data which might have existed in
that area of RAM. Note that this is the entry
point used by the GO BASIC command in the DGCS.

ORG + 04H (2D@48H)
Any previously existing program is retained, but .
any variables and/or cther data associated with it
are erased.

ORG + 14H (2D14H)

The BASIC system resumes, with all program, data,
and program execution history left intact. Thus,
you may interrupt a BASIC program with control-C,
exit BASIC with BYE, use the DOS, re-enter BASIC
at ORG + 14H, and use the CONT command t0 resume
BASIC program execution exactly where it left off,
(This assumes, of course, that your use of the DOS
causes no change in BASIC s memory region.)

DISCUSSION: PERSONALIZING BASIC

- NORTH STAR BASIC - 0-1

MISCELLANEOUS TOPICS (Continued)

PERSONALIZING BASIC

You may change certain of BASIC s internal features
so that system operation is more convenient for you
and/or better fits your particular computer’s
capabilities. For example, the limits of the memory
area used by BASIC may be enlarged or constricted,
leaving more or less space for user programs and
data. These changes are accomplished throuagh the
modification of information stored in various memorvy
iccations within the BASIC interpreter itself.

in general, modifications of these "personalization
bytes" are best handled through use of BASIC s FILL
statement, and, occasionally, the built-in EXAM
function. What follows is a complete, step-by-ster
precedure which you may use to “mersconalize" BASIC in
vour computer system. If you want the changes made
to be permanent, be sure to follow ALL of the steps
(from A to E). 1If you want only tfemporary
modification, which will endure until the end of the
current session of BASIC, then_dc.only step C,
omitting all the rest.

A. Test your system’s memory by using the MONITOR
memory-test function to be sure that you will not
be making a copy of BASIC from bad memory. 1In
particular, the area where BASIC and DOS reside
should be tested thoroughly.

B. At this point, you should make sure that the DOS
is operational, and that you are in its COMMAND
mode (signified by the DOS prompt). Now, put your
write-protected, original system software dickette
(supplied by North Star) in drive #1 and then type

GO BASICKLKCR>
When BASIC responds with READY, go to step C.

C. Now you are ready to make the various
modifications to BASIC. 1In order to do so, follow
the sub-steps here in exactly the order given. If
you do not wish to make one or more of the '
individual changes listed, then simply skip it.,
but DON'T MIX UP THE ORDER QOF THE STEPS! 1In any
case, you must always do step 42 before attempting
any higher-numbered steps.

1. MEMORY SIZE

Initially, the standard version of BASIC
doesn’t leave much room for your BASIC

- NORTH STAR BASIC - 0-~2

**.----h--------—----—n----------u.-uﬂ.

w
MISCELLANEOUS TOPICS (Continuegd)

program/data area -- BASIC is made to "assume" al
that you have only 16,384 bytes of working
memory. The DOS and BASIC itself take up most
of this. 1In order for you to write and RUN
reasonably large programs, you must have more
memory beyond the 16,384~byte (16K) limit.
‘Moreover, you must inform BASIC of the extra
memory availability using the MEMSET command.
See COMMAND: MEMSET for detailed informaticn on
the use of this command. You may use MEMSET to
enlarge or shrink the program/data area that
BASIC is allowed to use. Simply determine the
address (in decimal) of the highest memorv-cell
you want BASIC to be able to use, and employ
that number as the argument to the MEMSET
cocmmand. For example, if your memory extends
all the way to 48K (49151 in decimal) and vou
want BASIC to use all that’'s available there,

type
MEMSET 49151

(The argument to MEMSET is, among other things,
translated to binary, and put into bytes

ORG+0#9H and ORG+10H, where "ORG" is BASIC s ‘
ORIGIN (starting address) in your system, ‘l
ususally 2D@BH. In the standard version of

BASIC, then, these addresses are 2D@9H and

2DOAH, respectively. The standard default

high-address for the program/data area is

SFFFH.)

2. SETTING A VARIABLE TO BASIC 'S ORIGIN
For many of the following steps, the FILL
statement is used to modify memory locations
within BASIC. In the examples to be given
here, it will be assumed that the numeric
variable S has been set to the decimal number
corresponding to the address in memory where
your copy of BASIC starts. If you have a
version of BASIC which starts at "2D@@" in
hexadecimal, then use 115206 for BASIC s origin.
Otherwise, if your BASIC starts somewhere else,
determine the decimal (base 10) equivalent of
the origin, and use that number. Set S in a
direct-mode assignment statement. For example,
for standard versions of BASIC, type

- 5=1152¢
3. LINE LENGTH -
- See STATEMENT: LINE for a description of trne "

- NORTH STAR BASIC =~ C-3

T TIEEII—=<==

MISCELLANEOUS TOPICS (Continued) ’

significance of the input/output line length in
BASIC. The standard version assumes that the
console terminal has a line-width of 84
characters. 1If the actual per-line capacity of
your terminal is smaller or larger than this,
set variable L to the appropriate line length
for your terminal. If that is 64, for
instance, then type

L=64
Once L ig set, then type
FILL S+14, L

4. VIDEO PAGING
If you have a video (CRT) terminal, 1t isg
desirable for BASIC to send only one "screen-
page" at & time when providing 2 program
LISTing to you on the video screen, and then
wait for you to "ask" for the next page. If
vyou have a printing termingl, which gives you
cutput on paper, you won 't need paging. Set
variable P to the appropriste value for your
terminal. For hardcopy (printing) terminals,
where you don’t want paging, type

P=0

and for video screens, set P to the number of
lines which your screen can display at one
time. The standard version of BASIC assumes
that your terminal has a video screen capable
of showing 24 lines at a time. If this is so,
then you don 't need to make any modification at
all, and may skip this step. Otherwise, once
the appropriate value of P is set, type

FILL S+19, P

(Note that, if you direct BASIC to page its
LISTings, it will give you P-1 lines of
program, then, at -the bottom of the screen, at
the Pth line, it will PRINT

PRESS RETURN TO CONTINUE

To get another page of LISTing, strike the

RETURN key. If you’'d like to terminate the
LISTing at this point, press control-C.)

- NORTH STAR BASIC - C-4

w

MISCELLANEOUS TOPICS (Continued)

5.

%o

"BACKSPACE" CHARACTER

In the standard, unmodified version of BASIC,
when you press the underline, control-gQ,
backspace (control-H), or RUB/DEL key to delete
the last character typed, BASIC types an
underline (ASCII character 95) back at you to
confirm the deletion. It is possible to change

" this "deletion confirmation" character to any

other one you wish. Set variable D to the
decimal ASCII value of the desired character.
(If you don't know its ASCII value, use the
table provided in APPENDIX 4.) For exemple,
the ASCII value of the backspace character is
8, so to set D appropriately, type

D=8
Then, having set D, type
FILL S$+23, D

Changing the "deletion confirmation" character
to backspace is most useful when your terminal
is a standard CRT model. However, not all use
ASCII-8 a@s a backspace -- consult the manusl
for your specific terminal or video screen in
order to get the exact character which causes
backspacing on it.

CONTROL-C INHIBIT

For some applications, you may wish to keep the
user from being able to interrupt a program by
striking (whether accidentally or on purpose)
the control-C "PANIC BUTTON". 1If, for any
reason you wish to disable the control-C
feature, make sure that S is set to the
starting address of your BASIC and type

FILL S+24, 1

To re-enable the feature, type

FILL S+24, 0

The standard copy of BASIC assumes that
control-C interruptions are allowed. Note that
control-C can be turned on and off during the

execution of a program, if desired, using these
same methods.

- NORTH STAR BASIC - : 0-5

MISCELLANEOUS TOPICS (Continued)

NON-STANDARD BOOTSTRAP PROM

If your system uses a non-standard bootstrap
disk-controller PROM, then you must convert the
first two digits of the 4-digit hexedecimal
zddress for your special PROM into decimal,
then assign that value to a variable, say B.
For example, if your PROM starts at FCE0H, you
would take the two-digit hex number FC and
convert it to its decimal ecuivalent, 252.
(You may use the table in APPENDIX 4 for this
conversion.) Then, you would type

B=252
Once B has been set properly, type
FILL S+16, B

Note that 1f you have a non-standard PROM and
fail to make this modification, the RND
function will not work properly when given =
negative argument. SR

SHRINKING BASIC

There are many applications which do nct use
the special mathematical functions SIN, COS,
ATN, LOG, and EXP, but do reguire as much free
memory as they can get! To release extra
memory into the program/data area, you can
"chop" these functions out of BASIC by
performing the modification described here.
First, as you look at the table below, realize
that these functions must be removed starting
at ATN and continuing up through the function
you select (which might itself be ATN, meaning
a deletion of only one function). It is
impossible, for instance, to remove the LOG
function but keep SIN and COS. 1If you choose
to remove through LOG, then SIN, COS, and ATN
will also be erased. Bearing this in mind, you
can indicate your choice by setting variable C
to a specific value, as shown in this table:

to remove functions

from ATN through ... set C to
ATN 1
SIN-COS 2
LOG 3
EXP 4

To illustrate, suppose you wish to eradicate

- NORTH STAR BASIC - 0-6

e ————————————————————]
MISCELLANEOUS TOPICS (Continuasd)

all of the listed functions. Then you should ‘
type

C=4
. When C is set to the desired value, then type

FILL S+6, EXAM(S+24+(C*2)-1)
FILL S+7, EXAM(S+24+(C*2))

Note that, after this modification has been
made, any attempt to use the eresed functions
will lead to a system crash. (The
exponentiation operator, 7, makes freguent use
of the EXP function, so if you delete EXP,
don't use 1, either.)

9. PERSONALIZING FPB-BASIC FOR DIFFERENT FLOATING
POINT BOARD ADDRESSES

Note: Skip this section unless you are
personalizing a version of FPB-RASIC.

The North Star Hardware Floating Point Boargd
(FPB-A) 1is accessed like computer memory, and
has a set of addresses as does a memory board. ‘
All the FPB-A addresses have the same high
byte: 239 (EFH) for the standard board. The
North Star FPB-A manual tells how to change the
high byte, in order to re-address the board.

If you find it necessary to re-address your
FPB-A, you will also have to personalize BASIC
g0 that it will use the board at the new set of
addresses. The following procedure should be
done BEFORE you actually change the addresses
of the board itself:

Simply determine what the decimal equivalent of
the board’s new high byte is, and set variable
F to it. (You may find APPENDIX 4 useful in
performing any necessary conversion from

hexadecimal to decimal.) To illustrate, assume
you wish to change the high byte from 239 (EFH)
to 223 (DFH). Then type

F=223

When F has been assigned the decimal value of
the board’s new high byte, type

FILL S+433, F ‘

- NORTH STAR BASIC - 0-7

MISCELLANEQUS TOPICS (Continued)

Now, having finished all personalization, use
the methods described in this DISCUSSION to
save a copy of your new FPB-BASIC on diskette.
Shut down the computer system and change the
board s addresses. When you re-activate and
re-boot the system, execute the new copy of
FPB-~-BASIC. From now on, every time this new
copy of FPB-BASIC is executed, it will "re-
personalize" itself to use the FPB-A board at
the new address. Older copies of FPB-BASIC,
which have not been modified in the above
fashion, will fail to work with the re-
eddressed FPB-A.

D. Type BYE in order to return to the DUS. Mount an
initialized diskette, for example, a diskette
which contains only a personalized copy of DOS
{(not your original, write-protected diskette), in
drive #1, and perform the following DOS commands:

CR BASIC <size of BASIC file on master disk>

TY BASIC 1 <origin in hex of your BASIC>

SF BASIC <origin in hex of BASIC>

If you have the standard version of BASIC, then
the above simplifies to the following actual
commands:

CR BASIC 52
TY BASIC 1 2D@0
SF BASIC 2D@0

E. Now type
GO BASIC

to test your personalized copy and make sure that
all the modifications have been made correctly.

I1f not, get back into DOS and return to step A.
The new copy of BASIC may now be used as your
"personalized" master copy, and the disk
containing it should be write-protected for this
reason. Then, when you need another copy of this
personalized BASIC, you need only copy it to
another diskette.

TURNKEY STARTUP OF BASIC
Using methods similar to the personalizaticn procese

above, you can configure a copy of BASIC so that a
BASIC program begins automatically as soon as BASIC

- NORTH STAR BASIC = 0-8

M

MISCELLANEQUS TOPICS - (Contimiad)

itself is "up and running®". This is especially
desirable when you want to create &an "automatic"
software system intended for use by persons who are
unfamiliar with BASIC or DOS operation.

HOW TO CREATE A TURNKEY VERSION OF BASIC:

1)

Mount a diskette with & copy of BASIC on 1t in
drive #1. Type

GO BASIC

If you desire different "perscnalizetion" then
that already existing in this copy of BASIC, qo
through the personalization procedure described in
step C (above).

Enter or LOAD the desired BASIC program into ths
system.

Repeat substep 2 of Personalizetion Step C to s=t
S to the starting address of BASIC.

Type

PSIZE

Add the number printed to the size of the BASIC
interpreter itself. (This is the filesize of
BASIC as listed in the diskette directory. Assume
50 for now.) Set variable X to the number you
get. If the PSIZE is 28, for example, add 50 to
get 70, then type

X=70

Set string variable F$ to the name you wish to
give to this turnkey system. 1If, for instance,
the "automatic" BASIC program is named "SALES",
then you might want to call the turnkey system

"SALESBAS". Then, type
FS$S="SALESBAS"

and go on.

Mount a diskette with enough room on it to hold a
file of size X in drive #1. Then type

CREATE F$,X

0

~ NORTH STAR BASIC - O-

W

MISCELLANEQUS TGPICS (Continued) :

o0

Type
FILL S+15, @

and finally type BYE, which will put you back in
the DOS. In the DOS, you will need to save the
turnkey system on the file you have created, and
must specify BASIC s starting address by using the
TY (TYpe) command. Here are two models for what
you must type in the DOS:

SF <name of file> <(BASIC's origin>
TY <name of file> 1 <BASIC s origin>
If "SALESBAS" is taken as an example, you might
type
SF SALESBAS 2D@9
TY SALESBAS 1 2008
9) Now type

GO <file name>

to test the new version of BASIC. 1In the example
here, you would type:

GO SALESBAS

Your BASIC program should start up without the
need for a LOAD, RUN, or CHAIN.

A CHART FOR READY-REFERENCE

The following chart contains summary information
about each of the "personalization bytes" discussed
in this section. The addresses are given relative to
the start of BASIC (the "ORG +" form), and, for those
whose BASIC starts at 11528 (2D@PH), the actual
addresses in decimal and hex are alsc given.

ORG+6 & ORG+7 (11526 & 11527 or 2D@6 & 2D07) [ENDBAS]
These two locations contain the low and high bytes, :
respectively, of the last address taken up by the
BASIC interpreter itself, and may be modified to
contain a lower address in order to "shrink" BASIC.

ORG+9 & ORG+18# (11529-11530 or Z2D99H-2DUAH) [HIGHMEM)
Contains lower and upper bytes, respectively, of
highest address in RAM which BASIC mey use_for
program/data area. Standard value: 255 and 95
respectively (corresponding to S5FFFH).

- NORTH STAR BASIC - 0-10

MISCELLANEQOUS 'TOFPICS IContin%ﬁd)

ORG+14 (11534 or 2DBEH) [LINE}
Initial line length. Standard vealue: 89

ORG+15 (11535 or 2D¢FH) [AUTOS]

Controls turnkey auto-start. Zero-byte means auto-
start engaged. Standard value: 1 (no turnkey
operation).

ORG+16 (11536 or 2D1@H) [BOOTPROM]
Corresponds to first two hex-digits in bootstrap PROM
address for your system. Standard value: 224 (E8H)

ORG+19 (11539 or 2D12H) [PAGES]

Controls paging-mode for program LISTings. If paging
is desired, this should contain the number of lines
in a terminal "page". A zero-value means no paging
will occur. Standard value: 24

ORG+23 (11543 or 2rl7H) [DELECHO]

Character to be "echoed" in response to a single-
character deletion. Standard value: 95 (corresponds
to underline character). .

ORG+24 (11544 or 2D18H) [PANICOK]

Controls use of control-C for BASIC program
interruption. If this byte is 6, control-C causes
interruptions. When the value is non-zero, control-C
interruptions are disabled. Standard value: @

QORG+33 (11553 or 2D21H) [FPBADDR]

Specifies the high-order byte of the floating point
board addresses. This byte is present only in
hardware floating point versions of BASIC.

- NORTH STAR BASIC - 0-11

(V/DISCUSSION:

e R URESS

MISCELLANEOUS TOPICS (Continued)

NON-STANDARD VERSIONS OF BASIC

NOTE: This discussion assumes some sophistication on
the part of the reader, particularly an understanding
0of the term "precision" and how it relates to numbers
and arithmetic in BASIC. A knowledge of computer
memory addressing and the hexadecimal numbering
system is also helpful. Readers unfamiliar with
these topics should study other sections in this
manual, namely DISCUSSION: USING NUMBERS and APPENDIX
4: DECIMAL-HEXADECIMAL-BINARY-ASCII CONVERSION
TABLE.

T NON-STANDARD VERSIONS OF BASIC

The standard version of BASIC begins at address 11520
(2DB0H) in memory, provides 8 digits of arithmetic
precision in its representation of numbers, and doec
arithmetic with the help of special software routines
written directly into the BASIC interpreter itself.
BASIC is available, however, beginning at other
addresses in memory. (From now on; the starting
address of your copy of BASIC, whatever it is, will
be called its ORG, for "origin".) Moreover, BASIC is
avalilable with 6, 18, 12, and 14 digits of numeric
precision, as well as the standard 8 digits. North
Star manufactures a Hardware Floating Point Board
which will perform arithmetic with any of the above
precisions far faster than eqguivalent microcomputer
software routines. A version of BASIC is availlable
which is designed to uce the power of this board, and
which, as a result, does not include the same
arithmetic routines found in standard BASIC, since
their functions are duplicated meore efficiently in
the circuitry of the board itself.

Any combination of these three options (different
origin, different precision, and FPB arithmetic) may
be ordered in a special, NON-STANDARD version of
BASIC for a nominal fee. This section discusses the
explicit details and the ramifications of the
differences between these special BASICs and the
standard BASIC.

DIFFERENT ORIGIN

RASIC may be "re-located" to begin at any of the
sixty-four 1@24-byte address boundaries in memory.

It is, of course, advisable to avoid certain areas of
memory, most notably those which contain the DOS and
the bootstrap PRCM. If you have any other system
software (such as special I/0 routines in PROM, etc.)

- NORTH STAR BASIC - 0-12

—----u------—----------——-—-—-—-—-—-—-ﬂ---lf

MISCELLANEOUS TOPICS (Contiwued)

which must exist in a certain region of memory, you
should also avoid re-locating BASIC into these areas
as you avoid the DOS and North Star PROM regions.

DIFFERENT PRECISIONS

Within RAM and 1n diskette data files, numeric
elements of differing precision will take different
amounts of storage space. Standard 8 digit numbers

require 5 bytes, for example, while 14 digit numbers
reguire 8 bytes.

Because of this size difference between numbers of
different precisions, it is not possible for & BASIC
program which 1s operating under a BASIC of precision
X to READ numeric elements from data files created
under a BASIC of precision Y using the READ#
statement in normal fashion. That is,

READ #1,A

under 8 digit BASIC will not return a correct value
if used to retrieve a numeric element created under
14 digit BASIC. It is possible to read "foreign"
files such as these by accepting data byte-by-byte’
and reconstructing appropriate values, making
allowances for difference in precisions.

" FLOATING POINT BOARD (FPB) BASICS

SEE ALSO:

Versions of BASIC which use the North Star FPB to
perform arithmetic typically operate much faster than
those which use software to do the same calculations.
Moreover, FPB BASICs are somewhat smaller than
software-arithmetic versions. Depending upon the
precision required, an FPB BASIC is approximately 750
bytes smaller than the corresponding version which
does arithmetic with software. Except for the
increased speed of computation which is realized with
Hardware Floating Point versions of BASIC, there is
no operational difference between FPB and non-FPB
BASICs. 1In particular, BASIC programs written under
an FPB system will run without modification (although
more slowly) on a non-FPB system, as long as the
numeric precisions are the same, and other
considerations are egual. However, FPB BASIC
interpreters themselves will not operate correctly in

computers which do not include the Floating Point
Board. .

APPENDIX 3: IMPLEMENTATION NOTES

- NORTH STAR BASIC - 0-13

4—----------------------—----hﬁﬂl

SAamPLE PROGRAMS

APFERNDIY 1

The following are sample programs written in North Star BASIC,
Each hag been £fully tested and thoroughly debugged, and is
guaranteea to run on any version of North Star BASIC, Release 4
or later, which has at least 8-digit precision and has not been
strivped of trigonometric and exponential functions.

166

119 FRINT & gine wave vertically on the page
1is C J=1 10 1466 STEP .1

128 ©=8IN{(J)

130 S=INT(3A*T)

14C PRINT TAB(ZQ+8),"="

150

1605 03

100 REM Input a string and check that it is a legal intege
185 REM

110 DIM AS(72)

115 PRINT \ INPUT "TYPE AN INTEGER: ",AS

120 IF LEN(AS)=0 OR LEN(AS) > 8 THEN GOTO 5080
13¢ FOR J=1 TO LEN(AS)

140 IF AS$(J,Jd) < "@" THEN 560

145 IF AS(J,d) > "9" THEN 568

15¢ NEXT J

155 PRINT "THE INTEGER IS CK:",VAL (AS)

1646 GOTO 115

50 REM Case not ok

510 PRINT "NOT A POSITIVE INTEGER WITH AT LEAST ONE"

515 PRINT "DIGIT AND NO MORE THAN 8 DIGITS. TRY AGAIN."
52¢ GOTO 115

189 REM

116 REM Print 2 table of formatted values.
12¢ REM

126 FOR J=1 TC 1848
146 PRINT %31,J,

156 PRINT %6F3,SIN(J)
1670 PRINT %10E3,EXP(J
17 PRINT clérl(ﬁ RND (
166 NEXT

oo

,$7F4,C08 (J),
)y
)

- NORTH STAR BASIC - Al-1

1¢

z@

36
360
365
310
320
338
349
350
360
408
485
414¢
415
420
438
440
459
560
518
529
530

SAMPLE PROGRAMS (Continuwed)

REM Construct a file containing numeric squares,
REM and then use random access to compute sguares
REM of typed input values.

REM Program assumes file "SQTABLE" exists and will
REM fail if it doesn’t.

REM Both seguential and random access are used here,
OPEN #0,"SQTABLE"

FOR J=8 TO 500

WRITE +06, JT2

NEXT

INPUT "X=",X

IF X<0@ OR X>580 OR X<>INT(X) THEN END

READ 40%5*X,X2 \ REM Each number takes 5 bytes in file.

PRINT "X SQUARED:",X2
GOTO 178

REM Variocus utility functions which may be handy
REM in writing programs.

REM

DEF FNC1(X) \ REM Returns ARCCCS(X) in radians.

REM X must lie in range -1 ... 1

IF X=-1 THEN RETURN 3.1415926 \ REM ARCCOS(-1)=PI
IF X=0 THEN RETURN 3.1415%26/2Z \ REM ARCCC3(0)=PI1/2
RETURN ATN(SQRT(1-XT2)/X) \ REM All other cases of X
FNEND

REM

REM

DEF EFNS1(X) \ REM Returns ARCSIN(X) in radians.

REM X must lie in range -1 ... 1

IF ABS (X)=1 THEN RETURN X*(3.1415926/2)

REM ARCSIN (+\- 1) = +\- PI/2

RETURN ATN(X/SQRT (1-XT2)) \ REM All other cases of X
FNEND

REM

REM

DEF FNB(B,P)=INT(B/21P)/2<>INT(INT(B/21P)/2)

REM Returns the Pth bit in byte B -- 6 or 1

REM

REM

-~ NORTH STAR BASIC -

[\

N

SANPLE PROGRAMS (Continued)

~

00 DEF FND(HS)

665 RLEM Converts hex string in HS to decimal value
806 Kil: and returns that. Error condition occurs

f1@ kEm if HS is null or contains non-hex aigits.

£3E REN Ff** Ugses variables T, E, and C without

FIG '

restoring them at returnt
THER 675

=LEN(HS) TO 1 STEP -1
“SCUES (E,E))
(C < BSC("G")) OR (C > ASC("F")) THEN EXIT 675
Lr(C o»= ASC("AM)) AND (C <= ASC("9")) THEN C=C-4§
TP (C »= RSC("A™)) BND (C <= ASC("F")) THEN C=C-55
5 TEO(C > ASC("9")) AND (C < ASC("A")) THEN EXiT 675
9 c=1CF (167 (LEN (HS)-E))

g4
v

¢

5 NERT
¢ RETURN T

5 PRINT "BAD HEX NUMBER"Y

§ EETURN -1

S FNEND

U ©rEM

5 KEM

¢ DEF FRnS(D)

5 REM Civen decimal value D, returns string vzlue
i REM corresponding to hex torm of D.

5 REM Negative arguments are turned positive,

716 REM non-integer numbers are truncated.

72% REM Uses variables H1$, D2, H, and I without
725 REM restoring them upon return.

734 D=INT(ABS(D)) \ H1&=""

725 H=INT(LOG(D)/LOG{16)+.5)

740 FOR I=H TO ¢ STEP -1

745 5Z=INT(D/(1671))

756 IF £2 »= 10 THEN H1S$=H1S$S+CHRS (ASC("A")+D2-10)
755 iF D2 < 10 THEN H1$=H1S$S+CHRS(ASC("Q")+D2)

76¢ D=D-(D2* (1671))

765 NEXT

f RETURN H1$

5 FNEND

& KEM

T A
ISP

- NORTH STAR BASIC -~ s1-3

--lllllIlllllllllllIlllllllIIlIIlllIlIIIlIIIlllllllllllIIllllllIllIIlllllIIIIlIlIIlIIllllllIlllIlllllllllllIllllIlllIlIllllllllllIllllllIlllllllll..lllll.....————-

10
11
12
15

-
28

30

SN 0N
o

Nt
T

-1 3

g 00
s Bt aN]

SAMPLE PROGRAMS (Continuecdws

PRINT "QUICKSORT-A TEST PRCGRAM -- NUMBERS"
PRINT "VERSION 1.6 -- 3/28/78"
PRINT "NORTH STAR COMPUTERS, INC."

REM Sorts array A of N numbers into ascending order.
REM Uses the array-partitioning scheme as

REM explained in section 2.2.6 (pp. 76-82) of

REM Wirth, ALGORITHMS + DATA STRUCTURES = PROGRAMS
REM (Prentice-~Hall - 19676).

REM The guicksort mirrors Wirth's non-recurcive

REM wversion (program 2.11, p. 88), and includes

KEM the modifications suggested in the text -~

REM

REM a) Comparand X is selected at random (line 1¢28)
REM to aveid Quicksort's poor worst-case behavior.
REM

REM b) The size of the stack which holds accumulated
REM partitioning information has been limited to
REM log2(N) by incorporation of the program segmant
REM on page 82. (See Wirth, Fig. 2.16, this

REM corresponds to lines 1696-1168 here.)

REM

REM Note that the stack array, 89, is declared in
REM a DIM statement (line 210@) before the Quicksort
REM routine 1is called, and the random-number

REM generatecr is "randomized" at this time also.
N=10€6 \ REM Sort N numbers

‘'DIM A(N), SS(INT(LOG(N)/LOG(2)+1),2).

REM A is main array, S$9 is stack.

Q=RND(-1) \ KEM Randomize FRN generator.

FOR Q=1 TO N\A(Q)=RND(#)\NEXT

REM Above fills A with random numbers.

FCR Q=1 TC N\PRINT A(Q)\NEXT \ REM Verify randomness.
PRINT "BEGIN SORT"

GOSUB 1000

PRINT "END SORT"

FOR Q=1 TO N\PRINT A(Q)\NEXT \ REM Show sorted array.

END

REM BEGIN Quicksort in North Star BASIC

REM Relies on existence of N, and arrays S9 and A
REM Uses L, R, I, J, X, S, and W without

REM restoring them.

S=1 \ REM S is stackpointer.

S9(1,1)=1 \ S9(1,2)=N \\ REM $9 is pre-DIMmed stack.

L=89(S,1) \ R=89(S5,2) \ 8=8-1

REM L and R are left and right partition boundaries.
I=L \ J=R \ X=A(INT(RND(8)* (R-L)+.5)+L) \ ! "sort",
IP A(I) »>= X THEN 1850 \ I=I+1 \ GOTO 1040

IF X >= A(J)

THEN 1668 \ J=J-1 \ GCTO 1@58

- NORTH STAR BASIC -

Al-4

_ e ————— _ ;

SAMPLE PROGRAMS (Continued)

160 IF 1 » J THEN 10806

1070 W=4a11) N\ A(I)=A(I) N A(d)y=w N\ I=I1+41 \ J=J-1
1880 1F I <= J THEN 1049

1096 IF J-L >= R-I THEN 1146

1116 1F 1 >= R THEN 1138

1120 8=S+1 \ S9(S,1)=I \ S%(5,2)=R

113¢ R=J \ GCTO 1178

1140 IF L >= J THEN 1166

1150 5=8+1 N S59(S,1)=L \ 59(5,2)=4

11ed L=7

1172 IFr L < KR THEN 10830

iigs Ir = ¢ THEN 18206

138% PRLNT N RETURN N\ REM END Quicksort.

- NORTH STAR BASIC - Al-5

B SO RING

(o)

~d

Y YWD O

[N

92 B SN S

] b ped

[.
[l RN o RN BN)
00 Uty

’2@
T
Lo

i50
170
175
180
19¢
268
-300
320
330
332
33%
336
340
360
1600
1605
1e1¢
1015
1620
1630

1640

S anm
Lo

SAMPLE PROGRAMS (Cdntinued&

!”QUICKSORT—B TEST PROGRAM -- STRINGSORT"
I"VERSION 1.8 -- RELEASE DATE: 3/26/78"
I"NORTH STAR COMPUTERS, INC."

REM
REM
REM
REM

Generates N strings of length G7, each containing r
characters. Strings held in "super string”" RI1S.

Uses same algorithm as numeric Quicksort-A program &b
except that this has beesn modified to sort cirings us

REM North Star substring conventions and user-functions.
REM Many of the variable names have been changed, but =so
REM 1s the szame.

G7=18\N=50

CIM RS(GT), K<\G7) Q$(G7),Rl$(G7*N)

I U8(1NT(LOG /LOG 2)+.5),2) \ REM UE¢ iz steack.

We8=RND(-1) \ REM randomize the random numbocr

DEF
DEF
REM

3()

rr
e}
X

ge
FNX (X)=(X~-1)*G7+1

FNY (Y)=Y*G7

FNX and FNY are pointers to individual csubstrings of

REM simulated array RI1S.

REM Below fills R1$ with random strings.
FOR I=1 TO N

Q$(l,1)="

FOR J=2 70 G7-1
QS(J,J)=CHRS(INT(RND{0)*254+.5)+65)

NEXT J

QS (G7,G7)="*"\R1$ (FNX(I),FNY(I))=0Q$
'%31,1," ",0$%

NEXT I

I"CREATION PHASE ENDED -- SORTING BEGINS"
GOSUB 10089 \ REM Quicksorts RI1S

{"SORTING PHASE ENDED ~-- RESULTANT ARRAY:"
FOR I=1 TO N

1%31,1," ",RIS(FNX(I),FNY(I)),

IF I=N THEN 336
IF I/15<>INT(1/15) THEN 236\INPUT "",XS$\GOTC 340

I \ REM Above line and this are for output paging.
NEXT I

END

REM Quicksort of R1$, using FNX and FNY to point
REM to substrings.

N8=1\U8(1,1)=1\UB8(1,2)=N

REM

N8 is stack pointer.

L=U8(N8,1)\R=U8E (N8, 2)\N8=N8-1"
I=L\J=R\Z8=INT ((R-L)*RND (@)+.5)+L\!".",

1¢35 KS=R1S(FNX(Z8),FNY(Z8))

IF RIS(FNX(I),FNY(I))>=K$ THEN 105@¢\I=I+1I\GOTC 1C40
IF KS»>=R1S$(FNX(J),FNY(J)) THEN 1460\J=J-1\GCTC 1lié5u

- NORTH STAR BASIC -

zndaom

rt

Al-6

B ———————
SAMPLE PROGRAMS (Continued)

I\J THEN 10890
1S (FNX(TI),FNY (I
EhX(y,FNY (I)) =
(EFNX(J) ,FNY (J)) =
<=J THEN 10¢4¢
>

(L1060 1
10670 RS
1071 ®

1686 R1

1690 1

11‘”7

1120 1

- 0

))
R1S(FNX(J),FNY (J))
RS\I=I+1\J=3-1

L>=R-1 THEN 1158

=R THEN 11490
Wl 3D N +1\U8(N8,1}:I\U8(N8,2)=R
1149 G
11lse 1
1160 wd

P

o] 1‘

Lv=J THEN 1178
NE+1NUS (NE, 1) =L\UE (N8, 2)=J

”.- ,
g m N oom

HH

LR OTHEN 1830
s >0 THEN 1320
PLUERETURN

~ NORTH STAR RBASIC - 2l1-7

W

{ad BN b
PRGN R 2o

O G (Y a1 I
[52 3R 51 ILCS RN

™ ~J

2 L0
wr &

1G9

110

226

138

149

145

159

168

199
1000
1218
1815
120
1830
1e49
1588
2000
2001
2005
26018
2999
3800
38190
30620
3030
3048
3858
3060
3876
3680
30640

SAMPLE PROGRANMS (Continuqu

REM Test program for string search

REM Version 1.6 —- 11/01/78

REM North Star Computers, Inc.

BE=100€ \ REM Maximum length of any string used in prog: am
DIM A1S(B),A25(B) \ REM These will hold arguments to FiS.
DIM MS(B),NS(80)

MS=CHRS (3)

REM Control-C's will separate names in master list.

REM M$ is main string, NS is one name, F$ is nzme to find.
REM Test program will input names (or arbitrary strings),
REM rejecting duplications, and adding new ones to end
REM of master list.

GCSUB 1806 \ REM Give directions.

GCSUB 260606 \ REM Get a name, put in NS.

IF NS="" THEN 1606 \ REM N$ will be null if time to guit.
F=FNS (M$,CHRS (3)+NS+CHRS (3))

GCSUB 360@ \ REM Add N$ to M$ if P=0, Otherwise, advise
REM user that it 1s already in the main string.

GCTC 118

PRINT “QUIT"

END

PRINT "This program compiles a list of names which"
PRINT "you type in from the keyboard. Duplications"
PRINT "are caught and rejected. Be sure to strike"

PRINT "the RETURN key after typing every name."

PRINT. "Striking RETURN alone when I ask for a name"

PRINT "will guit the program."

RETURN '

REM Get a name, put in NS.

REM NS$ will be null if time to guit.

PRINT

INPUT "Name (just strike <CR> to gquit): ",N$

RETURN

REM Add N$ to M$ if P=@, Otherwise, advise user

REM that it's already in the main string.

REM Add-new-name fails if no more room in MS$S

IF P=0 THEN 3060

PRINT "*** Already in mein stringt"

GOTO 3999 .

REM Now, check to see if addition is physically possible.
IF LEN(MS)+LEN(N$)+1 <= B THEN 3110

PRINT "**#* No room in main string to add. Add rejected.”
GOTC 3999

- NORTH STAK BASIC - Al-8

[aniRavile

SN A IR RN PR RN SO I S

NI SN N S S T I TS I I oW
DT S D T G D
IR 02 B e BN &l

Al RO B
E R e

SN 08
[LR SR SN

[S.0NE NN
T T

[ES NN SN

[

)
[Ke IS g

Ty
WO) Oy Uy T U T

J§ NN NS SN S
L8]
OO D

o
O ey

M

SAMPLE PROGRAMS (Continued) .

REM Now, REALLY add string and separator
MS=MS+NS+CHRS (3)

to main string.

PRINT "<" , NS,"> added."
RETURN
DEF FNS(A1S$,428) ‘
REM Uses variable T without preserving it.
REM Looks for A2S$ in AlS. Value returned 1is
REM first character position in Al$ where A2$
REM 1s found. Zero 1s returned 1f A2$ not found.
IF LLW(AZ2S)> LEN(ALlS) THEN 40890
Froi 1L AZS longer than AlS, can't be contained in ELS
15 AZS="" THEN 4090
FEM Null string is not substring of any non-null string.
REM Scan dewn the string until a match is found.
FOR T=1 TO LEN{A1S$)-LEN(A2S)+1
IP R1SHT,T-LEN(A2S)-1)=A2S THEN EXIT 4095
NEXT

EETURN 6 N\ REM A2$ not in AlS

RETURN T - -
REM T is char position in AlS$ where A2S5
REM is first found.

T EN
INEND

}
0

- NORTH STAR BASIC - Al

-n—--—-n-----.---------—--h-Lﬁf R

10
20
30
a4
50
0o
70
0
SP
95
106
110
12¢
125
130
140
15¢
160
1786
199
1668
1819
102¢
1£36¢
1835
10490
105¢
1060
1664
1665
1676
1675
1080
109¢
1110
1126
1999
2008
2018
2020
2030
2040
205¢
2051
20660
2078
2999
3088

SAMPLE PROGRAMS (Cohtinued)“

REM Magic Sguares Program

KEM Version 1.8 -- 11/861/78

REM North Star Computers, Inc.

REM *** Demonstrates Array Handling in BASIC ***
REM

REM Global Variables Used --

REM 8 -- number of elements in one side of sguare

REM M -- flag, 6 if sguare not magic, nonzero if magic
REM A -- array which holds the suspected square

REM

REM Main routine.

GOSUB 1808 \ REM Give Directions.

GOSUB 2260

REM Get DIM of side from user, and DIM A,

REM Length of one side of sguare now in S.

GOSUB 3000 \ REM Have user fill array elements.
GOSUB 4£00 \ REM Determine if square is magic.

KEM M is nonzero if square is magic.

GOSUB 5668 \ REM Report results to user.

END \ REM End of main routine.

REM Giveé directions for this program to the user,
PRINT "#**** North Star Magic Squares Program ****"
PRINT

PRINT "A magic sguare is a grid of numbers in which"
PRINT "all the rows, all the columns, and both"
PRINT "diagonals add up to the same number."

PRINT "This program tests to see if a given square"
PRINT "of numbers is magic."

PRINT

PRINT "You may choose toc input & square of up"
PRINT "to 5x5 numbers.. I will tell you whether"
PRINT "or not the square you give me is a magic"
PRINT "sguare. Please be sure to type your"

PRINT "answers to me when I ask. Conclude each"
PRINT "response by striking the RETURN key."

PRINT

RETURN

REM Get DIM of side, S, from user. Use § to DIM A.
PRINT

INPUT "Type the length of one side: ",S

IF S>=1 AND S <= 5 BAND S=INT(S) THEN 28670

PRINT "*** BAD INPUT"

PRINT "Your answer must be an integer from"

PRINT "1 to 5. Please Try again."

GOTO 2018

DIM A(S-1,S5S-1) \ REM @-element is used to save space.
RETURN

REM Have user fill array elements, and re-display

- NORTH STAR BASIC - Al-10

M

SAMPLE PRUGRAMS (Continued)
3005 LM tne 1nput a@s a sSguare.
316 PRINT)
(/,3620 PRINT "Fleazse give me the appropriate number to"
321 PRINT "fill each co-ordinate of the proposed magic"
3€30 PRINT "=zquare. I will give co-ordinates in row-"
3048 PRINT "column form:"
2045 PRINT TAB(2),"(row,column)= <you type number here>”
3056 PRINT
396 FOR RE=6 TC S5-1
307¢ FOR C0=0 70 S-1

2060 PRINT " (",%11,RO+1,",",CO+1,")= ",
30ce INPUT "",A(RG,CO)

T

"
D
(N
jon
rh
-
b
-
™
6]

n

is your proposed maglic square:

‘ﬁ |

2 w scan through and display sguare in grid fcrmat
2 J=¢ TC &-1

I1ee C8=¢ TC s-1

32148 PRINT TAB(C@*12) ,A(RO,CH), -
321% rEM Item field widths are 12 columns.

32210 WEXT

3238 PRINT \ PRINT \ PRINT

324¢ NEXT

2999 RETURN

400C REM Determine if sguare in array A is magic.
4G1% REM On return, M <> 0 if magic, M=0 if not.

4020 REM Add up rows, columns, and diagonals.

4030 REM "Master" total kept in T1,

4040 REM Temporary Row, Column, and Diagonals

4950 REM totals kept in R1l, Cl, Dl, D2.

4116 M=0 \ REM Assume not magic until we prove it is.
4136 D1=¢ \ D2=0 \ REM Initialize diagonals.

4140 FOR kK@=0 TO S-1

4158 D1=D1+A(R0O,R%) \ D2=D2+A(R@,S5-1-RO)

4155 REM Above updates diagonals

4160 R1=0 \ Cl=0 \ REM Initialize row, column temp totals.
4170 FOR C@=0 TO S-1

4186 R1=R1+A(RG,CO) \ Cl=Cl+A(CO,RO)

4181 REM Above updates row and column.

4190 NEXT .

4218 IF R@g=@ THEN T1=R1l

4211 REM Arbitrarily choose lst row as master total.
4220 IF (R1<>T1) OR (Cl<>T1) THEN EXIT 4999

4725 REM If row or column <> master, return M=0,.

4230 NEXT

- NORTH STAR BASIC - Al-11

M

SAMPLE PRUOGRANMS (Contin®zd)

4240 IF (D1<>T1) OR (D2<>T1) THEN 4999

4245 REM If diagonals don't match master, return with M=08.

4259 M=1 \ REM If here, all totals have matched master.
4999 RETURN

536® REM Report results to user.

5028 PRINT "This sguare is ",
5026 IF M= THEN PRINT "NCT "
5649 PRINT "a magic sguare."
5050 PRINT

59¢9 RETURN

4

— NORTH STAR BASIC -

Al-12

e
PR

.] . moessages printed by
: - .. o .Fi 4 trappable using the
Lo E Foroitos o7 . en in parentheses after

.~ of each error is
SRR srEzossion Of -f‘:{ji;;;‘;\, " RWROR MESSAGE

Do etoctions for each
S PiToTTE Nty treated in DISCUSSION

ravalid argument to s

e - AR
©IEROR : . .. 1 tor a user-defined
TEIoOoL avooTETIE L0 e T parameters for that

R SERE RN v ONTinue program

trzl mUTod .i~t‘””i‘\'uﬂi be CONTinued if the
<on. Prograt sealoe e G, if any editing of

v .. Jduring an interruption,

PND statement.

swptoper nesting of FOR and

. .y c.tatements, or multi-line
- iatements. It also occurs
- { tatement in a program.
: .jimennion an array or string,
=1m“”‘ vin some other, illegal,
ZEROR () hw Zero.
~i-== has s am - t o RER Pl ¥
Lot ZE;QR (non_:;E?TJSR“‘i~IllM| yon for the same user-
Piists more tiaT ot tions are defined at RUN
- in the 8373 ¢ ‘ﬂ~“',‘q |.-tore program execution
irochis messis S
Leqine,

- o dinkette file which
ST T e This error will

m
[
0N
o

- .
- L -] ‘H .
- ot s e !

NI »

AZ-1

w51 N —

ERROR MESSAGES (Continugd)

cccur when you try to LOAD a BASIC program from a type 2
file which has never before held a BASIC program. File
errors occur when attempts are made to use file numbers
which are less than @ or greater than 7, or when a file is
being OPENed, but the file number specified is already in
use. Attempts to CREATE or NSAVE files onto diskettes too
full to hold them also yield a FILE ERROR. Finally, a FILE
ERROR can occur if any attempts are made to store

information on, or erase information from, a write-protected
diskette.

FORMAT ERROR (5)

An illegal format string has been used in a PRINT stetement.
Either the format string is formed incorrectly, or the field
specifications are too big or are inconsistent. Alsc, an

.attempt to PRINT a value which won't fit into a specified

field, or to PRINT a non-integral value using I-format will
result in this error.

FUNCTION DEF ERROR (non-trappable)

This means that BASIC has encountered the beginning of a new
user-function definition (a DEF statement) before the
previous definition has been concluded. Generally, the
function defined immediately above the offending DEF
statement does not include (but needs) a FNEND statement. -

This error also occurs when an attempt is made to call an
undefined user-function.

DISK ERROR (8)

An impossible disk access was attempted. This can result

from not having a properly mounted diskette, or from having
a diskette with unreadable data. See the DOS manual for
further discussion.

ILLEGAL DIRECT ERROR (non-trappable)

An attempt was made to use a statement in direct mode which
can only be used as part of a program. See DISCUSSION: SOME
BASIC CONCEPTS for a list of those statements which may be

used in direct mode. Note that user-functions may not be
used in direct mode.

INPUT ERROR (12)

During the execution of an INPUT statement, the user typed
an improprely formed numeric constant in response to a
programmed request for numeric input.

INTERNAL STACK OV (non-trappable)

This message should not occur in normal BASIC programs. It

means that an unanticipated amount of internal BASIC memory
was required to process the STATEMENT or COMMAND.
report the circumstances to North Star
error occurs.

Please
(in writing) if this

- NORTH STAR BASIC - A2-2

s e 2

LTSS

" ERROR MESSAGES {(Continued) .

(/ LENGTH ERROR (16)

This errcr occurs if an attempt is made to type a longer
line of text than BASIC allows. (This limit may be reset by
using the LINE statement.) Typically, LENGTH ERRORs may
occur when typing in response to INPUT statements, or when
entering program statements or commands to BASIC. Unless
otherwise personalized or informed by the LINE statement,
BASIC assumes that a line may be no longer than 80
characters.,

LINE NUMBER ERROR (6)

There is a missing or improperly formed line number in the
roneous COMMAND or STATEMENT. Also, if 2 line number 1is
specified in a COMMAND or STATEMENT, but that line cannot be
found in the current BASIC program, a LINE NUMBER ERROR will

be generated.
'ULL ERROR (non-trappable)
total amount of memory available to BASIC is
sufficient to contain the current program, its variablesg,
¢ temporary storage. The MEMSET command may be used to
expand the available memory area. Note that, when
performing string concatenations, BASIC reserves as
temporary storage an area in memory as large as the
concatenated string itself. BASIC also reserves this
, temporary storage when PRINTing expressions, so PRINTing
(/“ . large string expressions may sometimes result in this error.
MIZEING NEXT ERROR (non-trappable)
Within an executing program, a FOR statement is encountered
for which no matching NEXT can be found.

NO PROGRAM ERROR (non-trappable)
This error occurs when an attempt is made to RUN and there
is no current program.

NUMERIC OV ERROR (14)
Tnis error occurs whenever an arithmetic operation results
in a number larger than 9.9999%99E+62. ©Numbers larger than
this cannot be represented in standard versions of North
Star BASIC. (Numbers smaller than 1E-64 are converted to
8.)

OUT OF BOUNDS ERROR (3)
This message occurs when a numeric argument is not within
legal range, e.g., when an array subscript is too large or
too small, or when an argument used with CALL, EXAM, FILL,
INP, or OUT is not in the correct range. When dealing with
diskette files, an OUT OF BOUNDS ERROR will occur as
attempts are made to READ from or WRITE to a file beyond its

(_/ absolute end (determined by the file size).

- NORTH STAR BASIC - A2-3

M

READ

STOP

ERROR MESSAGES (Continued)

ERROR (11)

When using the READ statement, if an attempt is made to READ
a numeric value into a string variable or vice versa, or to

READ any value when there 1s no more DATA available, a READ
ERROR will occur.

(15)

This is not really an error, but when control-C is enazbled
and pressed while an ERRSET statement is in effect, the
attempted program interruption is treated as a prograr
error, with 15 as its code. 1In other words, "error 15"
means that control-C was pressed while ERRSET is in effect.

CSYNTAX ERROR (18)

This is the most commonly-generated error message. It
occurs when a language feature has been used improverly, or
has been improperly formed (tyved incorrectly). Most of
these mistakes become obvious upon brief (but careful)
examination of the faulty COMMAND or STATEMENT (as comoar
with its manual description). Refer to the appropriate
exposition or DISCUSSION section to determine the correct
form of the language feature in guestion, and make sure that
all keywords are correctly spelled.

iy
o

TOO LARGE. OR NO PROGRAM ERROR (non-trappable)

TYPE

This message occurs when an attempt is made to LOAD, APPEND,
or CHAIN to a program which either is too large to fit in
the program/data area, or is not a valid BASIC program.

ERROR (4)

TYPE ERRORS happen when a string value appears where a-
numeric value is expected, or vice versa. With regard to
disk file operations, an attempt to OPEN a file whose actual
type-doesn’t agree with the type specified in the program,
or to READ a value on disk into a program variable of the
wrong type, will lead to this error.

- NORTH STAR BASIC - AZ-4

IMPLEMENTATION NOTES

(APPENDIA 3

This appendix 1s desidgned to provide important details concerning

some of the internal workings of North Star BASIC, and the
internal—representations of data within BASIC, in order to help
vou better understand the operation of the system, and to
facilitate writing of programs which perform tasks which would be
difficult or impossible to undertake without such information.

VTS L]
YT £

T2 o
ek, \.'—-s_

DAETA-STORACGE FORMATS

DRSS which have been written to diskette by a BASIC
=n precision will have a standard fixed storage size

)

i . However, the storage size of a number written to
z by G—digit BASIC, for example, will be smaller in size
an that ot a number written by 18-digit BZSIC. Here 1is =z

&
which tells how many bytes a number will require on
ievendaing upocn the precicsion of the BASIC writing it:

=

PRECISION BYTES
65 4 -
8 5
10 5
12 7
14 g

are stored in packed, binary-coded-decimal (BCD)
The revpresentation is as follows:

tirst byte:

bits 7-4 = most signicant digit of value in BCD
coding
bits 3-8 = next most significant digit of value

middle bytes:

bits 7-4 = next significant digit of value in BCD
coding
bits 3-8 = next significant digit of value

last byte:

bit 7 = sign (l=negative, @=positive)

bits 6-0 = exponent in excess 64 binary
representation (If all bits in the last byte are 2,

the entire number is @.)

Ail values are normalized.

The decimal value of the first byte in a number stored on
disk will always be greater than 15, even when the number 1s
zero. (This is how the TYP function determines 11 the npext

data element is numeric.)

- NOKTE STAR BASIC - 33-1

M

W

IMPLEMENTATION'NOTES'(Continged)

STRINGS are stored using a number of bytes equal to the ‘
length of the string plus two or three overhead bytes.
Strings of length less than or equal to 255 are stored with
two overhead bytes, the first one being of decimal value 3,
and the second containing the number of characters in the
string. The information bytes -- the string itself

-- follow the overhead bytes. A string value of length
greater than 255 is stored with three overhead bytes, the
first one being of value 2, and the second two being the low
and high bytes, respectively, of the length of the string,
expressed as a 16-bit integer. Again, the string itself
follows the overhead.

The ENDMARK for a secuential file 1s a single byte of value
1.

"ILE BUFFER SIZES -- LIFETIMES OF BUFFERS

When each file is OPENed. an area of KRAM memory is reserved

as a high-speed data-transfer "buffer" between BASIC and the

disk drive. A buffer of 256 bytes is reserved wnhen OFPENing

a single-density file. With double-density files, the

buffer size is 512 bytes. Buffers are used to make disk

access as efficient and guick as possible.” When the file is
CLOSEd, its buffer region does not return to free-memory, .

but is reserved for later use by any files whicn will be

opened under the file number associated with the buffer. ‘

TYPE-DEPENDENT INFORMATION IN A TYPE-2Z FILE DIRECTURY ENTRY

Those familiar with the DOS and the details of diskette
‘directory entries will realize that 3 bytes are reserved in
each entry for what is termed "type-dependent" information.
For a type 1 file, this area is used to store the GO address
for the file. For type 2 files -- that is, BASIC program
files == the information stored in the "type-dependent” slot
is the actual size of the program in disk blocks. This
information, stored as part of a program’'s directory entry,
and updated every time a program is SAVEd or NSAVEdG into
that file, allows BASIC to make economical use of its time
‘when LOADing a BASIC program -- it may read only as much
program data as actually exists in a file, and need not
waste time attempting to LOAD information from beyond the
end of the program. This number is stored in byte 13 in a
type 2 file’'s directory entry. See the DOS section of the
NORTH STAR SYSTEM SOFTWARE MANUAL for more information about
directory entries.

PRINT HEAD TABLE

At memory addresses ORG+17 and ORG+18 (ORG+11H and ORG+12H)
there exists a pointer containing the low and high bytes, dl

- NORTH STAR BASIC - A3-2

4-J-.:_J---------‘-----—----“-

THPLEMENTATION NOTES (Continuea)

ad-table" is stored. Each of the 8 bytes in this table
contains the current cursor position for one of BASIC s 8
possible I/0 devices (starting with device #0). For some
applications, such as plotting. some users may wish to EXAM
or FILL these bytes to avoid LENGTH ERROR messages or the
autcomatic carriage-return which BASIC supplies when enough
characters to fill a line have been PRINTed on a given
device. Users with standard versions of BASIC may use the
foilowing user-function to return the address of the table
entry for any of the 8 devices. EXAM or FILL this address
tc determine or change the value of the print-head counter
for o owrne glven device.

(‘ respectively, of the address in memory where BASIC s “print-
he

DEF FNH(D)=EXAM(11537)+ (EXAM(11538)%256)+D
REM D IS DEVICE NUMBER FROM 8 TO 7

SILE-VNDAUER TARLE

taple follows immediately the 8 bytes cof the print-head

PRSI

tzible described above. The file-header table is 80 ovtes
long, and contains one 1l0-byte entry for sach of the §
nossible open files (@ to 7). Each entry has the following
format:

bvte 0: status byte

bytes 1-2: buffer address for the file (low/high)

bvtes 3-4: disk address of the open file (the number of
the file’'s beginning disk block)

bytes 5-6: filesize in blocks

oytes 7-9: current file pointer -- this points to the
next byte to be accessed, expressed as an offset from
the start of the file. Because three bytes (arranged
as middle byte, high byte, low byte) are used to
represent the pointer value, BASIC may access files as
large as an entire diskette side (single or double
density).

O

D

Q.

BASIC PROGRAM PRE-PROCESSING

Once program lines are typed into BASIC, they are pre-
processed automatically into a more compact, efficient form
where each reserved word maps. onto a single byte value, and
line number references in GOTO, GOSUB, RESTORE and similar
statements are collapsed into 16-bit values. This permits
faster execution, and more efficient use of storage space in
both RAM (when the program is RUNning or under development)
and disk (when the program is SAVEd or NSAVEd). When the
program is LISTed, the compaction process is reversed, and
rhe complete text of the program is restored for the user,.
-~ The conversion of program-line text into compacted Loim even
L/ c¥xtends to REM statements. REMs which include instances of

- NORTH STAR BASIC - A3-3

--—----------------------'_'--‘—*

THMPLEMENTATION ROTES (Contiwued)

keywords will take up less memory space than REpMs of

equivalent length which contain no embeddea keywords. For
example

REM FOR THE NEXT ORIGIN, LETS TRY 2068H
will be compcted into a much smaller internal form than
REM 2000H HEX IS THE NEW STARTING PLACE

because the former includes instances of FOR, NEXT, OK,

and
LET -~ all keywords which will be compacted to single-bvte
form. The second REM includes no embedded keywords, so will
be stored in exactly the same form as it is written. Spaces

are retained in the number and order typed in the program
line to preserve the author s style and any indentation.
Compaction does not occur wit:in guoted strings.

Throughout the evolution of North Star BASIC, certain
single~-byte keyword codes have had thelr meanings changed.
As a result, REMs 1in programs which were written under
earlier versions of BASIC may undergo small changes when the
programs are LISTed under release 4 or later versions of
BASIC. This is because these REMs included embedded
keywords which were compacted to single bytes, and now,
these codes are translated back into different kevywords. In
particular, instances of CREATE, DUMP, and NULL in older REM
statements will become AUTC, MEMSET, and NSAVE respectively.

To correct this, just retype the correct form of the altered
REM statement and re-SAVE the program.

Note also that programs written under later versions of
BASIC will not always list properly under earlier BASICs,

especially if they include some of the newer Kkeywords, such
as CREATE, ERRSET, etc.

THE INTERNAL FORM OF A PROGRAM

In RAM and on disk, a program is represented as a series of
program lines which have been converted to the compacted
"form mentioned above. Each line is arranged as. follows:

a) byte #: contains the binary representation of the number
of bytes in the program line (called "N" here for
purposes of discussion).

b) bytes 1-2: the program-line number expressed as a l6-bit
binary integer (low byte/high byte).

c) bytes up to N-2: the program line in its compacted form.

d) byte N-1: A carriage-return character (byte value 13 or
UDH) .

There is a standard ENDMARK (byte value 1) after the last

- NORTH STAR BASIC - A3-4

C

USE

M

TMPLEMEXNTATICR HOTES (Continued) .

tire in the program.

Cr KAM DURING PROGRAM EXECUTION
when a program 1s executing, BASIC maintains two variable-
size data storage areas at opposite ends of memory. These
are the GENERAL DATA AREA and the BASIC CONTROL STACK. The
=neral data area begins immediately above the last byte in
current BASIC program. This storage area contains

‘s symbol table, and static storage space which has
allocated for numeric variables, arrays, and strings.
general data area arows from low memory to high memory.

22210 s control stack begins at tne highest byte available
o tne BASIC system, and grows downward, into low memory.

k contains highly transient intformation such as FOk-
, and user-function call linkages. Whenever
ditions lead to the case tnat ane of these areac
‘crow"” into the other, a MEMORY PFULL ERROR

- NORTH STAR BASIC - a3

M
CONVERSION TABLE

APFENDIX 4
DECIMAL-ASCII-HEX-BINARY CONVERSION TABLE

The following table is intended to ease the task of conversion
between the various numeric representations commonly used in
programming, as 'well as between numbers (of any kind) and the
ASCII character code.

Note that the ASCII character set only goes as far as decimal 127
(7FH, ©1111111 B). Also, many "characters" in ASCII are non-
printing CONTROL CHARACTERS. Whenever a code corresponds to a
printable character, that will be given. In the case of control
characters, a description or name for the special character will

he given in parentheses.

DECIMAL HEX BINARY ASCII
2 00H 20000000 (NUL)
1 g1H Geeegenl (CONTROL-A)
2 02H 00000010 (CONTROL~-B)
z 0 3H go0eRe1l {CONTROL~C)
4 04H p0000100 {CONTROL~D)
5 65H 200060101 (CONTROL~-E)
6 g6H 00000110 (CONTROL-F)
7 g7H ge00e0111 (CONTROL~G, RINGS BELL)
g g8H go001000 (CONTROL—-H, BACKSPACE)
g @9H 20001001 (CONTROL-I, TAB)
17 ¢ARH 00001010 (CONTROL-J, LINEFEED)
1 @BH geaslell (CONTROL=K)
12 gcy go0011060 (CONTROL-L, FORMFEED)
13 @DH Peerl1lol (CONTROL~M, CARRIAGE RETURN)
14 ¢EH geoo111e (CONTROL~-N)
15 @FH ge0@1111 (CONTROL-0)
16 *108H pE810000 (CONTROL-P)
17 11H peG1E0B1 (CONTROL-Q)
18 12H geo1001@ {CONTROL-R)
19 " 13H peE1Ra11 (CONTROL-S)
20 14H 00010100 (CONTROL~T)
21 15H 068101091 (CONTROL-U)
22 16H gag10110 (CONTROL-V)
23 17H 9810111 (CONTROL~-W)
24 18H gop110e80 (CONTROL-X)
25 19H 60811001 (CONTROL-Y)
26 1AH pEB11010 (CONTROL-2)
27 1BH pe611011 (ESCAPE)
28 1CH 66011106 (NON-PRINTING)
29 1DH 62611101 (NON-PRINTING)
30 1EH gepe11110 (NON-PRINTING)
31 1FH ge011111 (NON-PRINTING)

- NORTH STAR BASIC -

A4-1

(\

4*4---nn-------------...._._______.--..‘..‘

CONVERSION TABLE (Continued)

(”/DECIMAL HEX BINARY ASCTI
3z 204 P0100000 (SPACE)
32 Z1H 0100001 !
34 22H gelecola "
35 234 geloe01l #
36 24H BQ108100 S
27 254 gelonlol %
33 26H 0g100110 &
5 274 geleolll ’
30 284 Ge101000 {
21 29K 201010061)
iz ZAhE AR101410 *
- JBRH 0Cl1e1611 +
44 2CH gp101100 ,
45 ?DH 6gloliel -
48 ZrH P3101110 .
L7 2FH @e131111 /
Sgs 30H 30110000)
3G 31H §9110061 1
BLS 32H 90110610 2 -
51 33H 001106011 3
52 34H 30116100 4
52 35H ¢p112101 5
54 368 0110112 6
33 37H pR1lelll 7
k) 38H P0L11QG00 8
n7 394 P2111001 9
55 3LH Pe111010 :
59 3BRH pP111011 ;
60 3CH 3211110890 <
61 3DH PR111101 =
62 3EH 011111¢ >
53 3rH 09111111 ?

[3S)

- NCORTH STAR BASIC - 24—

T _

CONVERSION TABLE (Continueg)

DECIMAL HEX BINARY ASCII ‘
64 40H 01000000 e 2
65 41H 01009001 A |
66 420 01060010 B |
67 43H 01060011 C k
68 448 010080100 D |
69 45 01000101 E \
70 46H 01000110 F |
71 474 01090111 G i
72 48 01001000 H x
73 49 0l@plegl I 1
74 4AH 01061010 J i
75 4BH 091061911 K 1
76 4CH 01061160 L |
77 ADH 01001101 M 3
78 4EH £1001110 N ‘
79 4FE 01601111 o §
80 50H 01010000 p ‘
g1 51H 01010001 0 R
32 S2H 01010010 R |
53 53H 091010611 s
84 S4H 01010100 T
85 55H 210109101 U
86 56H 01619110 v
87 57H 091610111 W
88 S8H 01811000 %
89 59H 01011001 Y
90 S5AH 91011610 z
91 SBH 081011011 [
92 SCH ¢1011100 \
93 SDH 91011161]
94 SEH 91011119 T OR ~
95 "SFH g1811111

-~ NORTH STAR BASIC - A4-3

—_— e .

CONVERSION TABLE (Continued)

(//DECIMAL FEX EINARY ASCII
96 601 011000600
97 618 01100001 a
98 62H 01100010 5
99 £3H 31100011 c
100 641 01106100 d
191 65H 11006101 e
182 £6H 01190611@ f
103 674 £1100111 g
124 fen 6l1ple00 h
10 f95 01101601 i
L 500 71191010 3
157 4BH 1101611 k
108 &CH 11plloe 1
106 5DH P1141101 m
116 €=H gllglile n
21 £FH g11m1111 o
11 7048 01110000 o
11 71H P11106901 g
114 72H gll1061e r .
115 7 3H 11106611 s
114 748 01116100 t
117 758 pP1110101 u
118 768 11106110 v
113 778 gl1ie111 W
120 78H 1111000 X
pih] 79H g1lllieal y
122 7AH 1111010 z
123 7BH #1111411 {
124 7CH 1111100 |
125 7DH 21111101 }
126 7EH 1111119 ~
127 7FH 1111111 (DELETE, RUB 0OUT)

- NORTH STAR BASIC - Ad-4

M

s}

t

[e

1 ..AL

)
A

128
129
130
131
132
133

134

23

#
€
w

—
R OS]
(o]

e DB e) (e L
= O 00)

Do 4
R N G SN

HEX

88H
81H
82H
834
&4H
85H
§6H
87H
88H
£9H
&AH
9BH
8CH
8DH
8EH
8FH
9B H
91t
92H
938
94H
958

S6H

97H
98H
99H
9AH
SBH
9CH
9DH
9EH

SFH

CONVERSION TABLE (Cdntinued;

BINARY

1¢000000
1000600801
10000010
100000611
10000100
1¢ee6121
10000110
16000111
10021000
10001401
i6eeglale
10601611
140011060
10001101
16081110
19001111
leelooge
10010001
1001001¢
1661e011
14810100
1081¢101
16010110
16010111
10011000
100611601
16811010
10011011
100111080
10611101
lg61111@
10011111

- NORTH STAR BASIC -

ASCII

M

CONVERSION TABLE (Continued)

(/ DECINMAL HEX BINARY ASCIIT
160 ADH 12100000
161 AlH 1210060081
162 AZH 101062010
163 A3H 10100811
164 AdH 190100100
165 ASH 110191
166 A6H l161p011@
167 ATH 18180111
168 ABH 190101000
i6¢ 79" 160121601

3

ARH 16101018

171 ABH 121219011
172 ACH 10101100
173 ADH l1elglliel
174 AEH 1610111¢
17E AFH 16101111
1 BOH 101100090
iT BlH 16118601
1 B2H 10116¢1¢ L
179 B3H 16116011
18¢ B4H 161161090
181 B5H 16118101
182 BoH 10110118

j—rt
x
98

B7H 19110111

184 B8H 10111000
185 BY9H 16111001
186 BAH 12111018
187 BBH 19111811
188 BCH 181111060
189 BDH 19111101
190 BEH 19111110
191 BFH 19111111

- NORTH STAR BASIC - A4-6

M

CONVERSTON TABLE (Continusgd)

DECIMAL HEX BINARY ASCII
192 CaH 1100000
193 ClH 11200001
194 C21n 11000010
195 C3H 116000811
196 C4H 110001908
197 C5H 11000101
198 Cé6H 11000110
139 c7H1 11600111
206 C8H 110010600
20 CoH 11061001
202 CAH 11601010
283 CBH 11601811
04 CCH ll0@110@
285 CbH 11661101
2g6 CeH 11g0111¢
207 CFH 11901111
208 D@H 1101¢000
269 DlH 11019001
210 D2H 11010610
211 D3H 11010011
212 D4H 11910100
213 D5H 118190101
214 ~ D6H 11619110
215 D781 11619111
216 D8H 11011000
217 Do9R 11611001
218 DAH 11611618
219 DBH 119110611
2280 DCH 11611100
221 DDH 11611161
222 DEH 110111190
223 - DFH 11811111

- NORTH STAR BASIC -

Sz

3]
bt

[N S O B A9 B SLEE RO O 3)
]

Joad a2 OB D B DO P O

LIS

| ST S R

8

b N
R S N OV
[GAMENS BoaY

[NP SRR NL B R
S

[RS N I N B AN I)
JE T S S W o U R =

[N

o]
oI
e OY R s (O B B D R O0

NS

ot
B b
s

258
251
252
253
254
255

SO0 1 OY U I

HEX

EQH
E1H
E2H
E3H
E4H
ES5H
E6H
E7H
E8H
£ay
EAH
EBRE
ECH
EDH
EER
EFH
F@H
F1H
F2H
F3H
F4H
FS5H
F6H
F7H
F8H
FO9H
FAR
FBH
FCH
FDH
FEH
FFH

CONVERSION

BINARY

111000082
11136081
111060010
11140011
11100100
11100191
1110081182
111608111
11101000
11101201
11161018
11101@11
11191148
11141101
11101118
11181111
11110090
1111091
11110610
1111¢611
11110108
11119191
1111@11@
11110111
11111688
111114681
11111419
11111811
111111049
11111101
1111111¢
11111111

TABLE

ASCI1I

(Continued)

- NORTH STAR BASIC -

A4

8

W

BASIC TOPICS INDEX

APPENDIX 5

This is the index to topics and discussion sections in the BASIC
section of the System Software Manual, and is designed to help
the reader study North Star BASIC from a topical standpoint.

Listings to DISCUSSION sections are given in all-capital letters.
Those which refer to general topics are given in lower-case.

The page reference format is a hyphenated one, with the chapter
designation as a capital letter appearing on the left side of the
hyphen, and the page number within the chapter appearing in
arabic form on the right side. For example, the listing

constant, numeric D-1

indicates that the term "Numeric constant" is discussed in
chapter D, page 1. If a topic consumes a whole chapter, only the
chapter letter is given as the page reference. Page intervals
ere denoted by inserting an ellipsis (...) between the page
references of the first and last pages in the interval. Whenever
information about a given topic appears on more than one separate
page, the pages with the most important information are listed in
‘order first, then those with less important information. A semi-
colon (;) separates the list of more-important references from.
the less-important ones within an entry.

argument list K-1

arguments K-1; B-9

arrays E
default dimensions E-3
re-dimensioning E-3

ASCII character set F-7

AUTOMATIC PROGRAM SEQUENCING M~6...M-7

BCD (Binary Coded Decimal) D-1; N-2, A3-1
bootstrap PROM, non-standard O-7

CHAINING M-6...M-7
character deletion, changing echo for 0-5
character set F-7
command B-9
COMMUNICATING WITH BASIC B-2
COMPATIBILITY WITH OTHER BASICS N
BCD arithmetic N-2
IF...THEN evaluation N-3
input translation N-2
string handling N-1
concatenation F-3
console terminal B-2
constant, numeric D=1
constant, string F-1

- NORTH STAR BASIC - A5-1

BASIC TOPICS INDEX (Continued)

control~c inhibit O-
control characters B
control statement J-
current format H-7
current length F-2

H
current program B-9

S L’l..-L“g
‘no

cequential files L-6

9; J-5
trings F-1
ffix L-1

drive number su

E-format H-3: D-1

endmark L-4...L-7

ENTERING A BASIC PROGRAM B-6...B-8
ERROR TRAPPING AND RECOVERY M-9...M-10
EXECUTION AND CONTROL FLOW J-1
exponent D-1

exponential format D-1

expression, numeric D-6

e¥pression, string F-3

field width H-4
file block L-2
file buffer A3-2
file heazder table A3-3
file name L-1
file number L-3
ile pointer L-7; L-14, L-16
- size L-2
tyvpe L-2)
! ting Point Board (FPB) BAS
OLD-NENT LOCE, TEE J-7...J-11

M

A5-2

EASIC TOGPICS INDEX (Contirfued)

body of -- J-7 _ '
control variable J-7
exiting from nested loops J-11
limit value J-7
nesting J-9
optional control variable in NEXT J-10
step value J-7
- format specification BH-4
FORMATTED PRINTING H-3.
allowable formats (cha
format characters H-7
free format H-3 M
FOUNCTIONS K
built-in K-1...K-7 g
string F-3 w
user -- K-8.,..K-11 !
function call K-8
multi-line K-19
names K-8
numeric parameters K-9
single-line K-8 , ‘ |
string parameters K-9 ‘

.B-8
rt) E-6

.hexadecimal c-17 . : ‘

I-format H-4 ‘ \
IMPLEMENTATION NOTES A3
index number E-1

justification, right H=-5

LINE EDITOR, THE M-13...M-19 i
new line M-13 !
0old line M-13 ;
specifics and functions M-15...M-19 *

line length 0-4; C-18 |

line number B-5, B-10; J-2 {

LOADING BASIC B-1

MACHINE LANGUAGE SUBROUTINES M-4...M-5 1
mantissa D-1 \
maximum length F-1; F-7 _ |
memory size 0-2 f
memory usage during program execution A3-5
MULTIPLE I/0 DEVICES H-12,..H-13

nesting

of FOR-NEXT locop J-9

of IF statements J-3

of subroutines J-17 4
new line M-13 ‘
NON-STANDARD VERSIONS OF BASIC 0-12...0-13

- NORTH STAR BASIC - A5-3

BASIC TOPICS 1NDEX (Continued)

null string F-1
numbers D

0ld line M-13

open-ended substring F-3

operators
aricthmetic D-4
boolean D-5...D-
numeric D-4...D-
numeric, order of evaluation - D-6
relational D-4...D-5
string F-3

s 15

6
6

g {(video) 0©-
NALIZING BAS
d

U e
- D O 3

4

IC 0-2...0-11
ence D-6...D-7
,;cv-wlo", 1umeric D

head table A3~

B-6; B-9
«rnal form of -~ A3-4

-~ pre-processing A3-3 - -
program/data area C-17; G-1
program line B-6; B-10
rrogram mode B-9

oL vAIe]
Tt oy
S %)

1; 0-13

-

z

s el
% 1
-0 e
3
o e
Do)
=1

B
PRt

random address (expression) L-8
renge, numeric D-3

reguler format H-3

relocation of BASIC 0-12

scientific notation D-1

sector, diskette L-2

sequential execution J-1

shrinking BASIC 0-6

SPECIAL ENTRY POINTS ©O-1

statement B-9

strings F .
assignment to substrings and ~- F=5...F~7
comparisons F-4
compatibility with other BASICs N-1
current length F-2; F-7
functions F=3
maximum length F-1; F-7

SUBROUTINES J-15...J-16 ‘ [

SUBROUTINES, MACHINE LANGUAGE M-4...M-5 ;

subroutines, nesting J-17

subscript E-1

substring F-2...F-3
open-~ended -- F-3
-- interval F-2 ’
-- notation F-2

-~ NORTH STAR BASIC - A5-4

BASIC TOPICS INDEX (Contingfd)

truncation E-1; F-5 :
turnkey startup of BASIC 0-8 ‘
typing to BASIC B-2

upper case bias of BASIC B-2
user-functions K-8...K-11
USING ARRAYS FE

USING NUMBERS D

USING STRINGS F

value, numeric D-3

variable
-- name D=3, F-1
simple -- D-3.,..D-4
numeric -- D-3
string -—- F-1
string --, dimensioning of F-1

zero-element E-1

w

- NORTH STAR BASIC - A5-

R ————————]

BASIC KEYWORD INDEX

APPENDIX 6

This is an index of the statements, commands, and functions in
North Star BASIC, and is included to facilitate the manual’s use
by experienced programmers needing to look up specific
information in a hurry. Page number references follow the
convention set in APPENDIX 5; refer to that APPENDIX if you are
unfamiliar with the format.

ARS K-2
APPEND C-11
ASC [—
ATHR

T

K
¥

N
P ww

&
[GRE!

CHAIN M-8

CHR$ K-3; F-7...F-8
CLOSE L-13

CONT C-15; J-5...J-6
CONTROL-C C-13

CCs K-3

CREATE L-19

DATA I-1

DEF K-12

DEL (C-2

DESTROY L-11

pIM G-1; E-2, F-1

EDIT M-15
END J-6
ERRSET M-11
EXAM K-6
EXIT J-14; J-10
EXP K-3
FILE K-5
FILL M-1
FNEND K-14
FOR J-12
FREE K-6

GOSUB J=-17
GOTO J-2

IF...THEN...ELSE J-3

INCHARS K-4
INP K-5; H-1¢

- NORTH STAR BASIC - A6-1

BASIC KEYWORD INDEX (Continw:d)

INPUT H-9
INPUT1 H-11
INT K-2

LEN K-3; F-7
LET G-4

LINE C(C-18
LIST C-1
LOAD C-10
LOG K-2

MEMSET C-~17

NEXT J-13
NOENDMARK L-7; L-9, L-16
NSAVE C-9

ON.,..GOTO J-4
OPEN L-12
ouUT M-3

PANIC BUTTON (CONTROL-C) C-13
PRINT H-1
PSIZE C-16

READ I-2°

READ# L-14; L-4

REM G-3

REN (-4

RESTCRE 1-4

RETURN
subroutines J-16; J-18
user-functions K-13

RND K-5

RUN C-12; 1-4

SAVE C-8,
SCR C-3
SGN K-2
SIN K-3
SQRT = K-~
sTOP J-
STR$ K-

> W

TAB K-~6
K-5

H-5
TYP L-5

~s we

VAL K-4

WRITE4 L-16; L-4

- NORTH STAR BASIC -~

A6-2

