CP/M°

OPERATING SYSTEM
MANUAL

DIGITAL RESEARCH"

P.O. Box 579
Pacific Grove, California 93950

NorthSka l

North Star Computers Inc.

14440 Catatina St.. San Leandro, CA 94577 USA
(415) 357-8500 TWX/Telex (910) 366-7001

O2791A

COPYRIGHT

Copyright © 1976, 1977, 1978, 1979, and 1982 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Further, Digital Research reserves the right to revise this publica-
tion and to make changes from time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. MP/M, MAC, and SID are trade-
marks of Digital Research. Z-80 is a trademark of Zilog, Inc.

First Printing: July 1982

CONTENTS

CP/M FEATURES AND FACILITIES

1.1 Introduction ...t iiiie i i e it e
1.2 Functional Descriptionot iiiirieiineneas
1.2.1 General Command Structure0.cciiiiennnnn.
1.2.2 File References e e et e
1.3 Switching Disksiiiinii ettt i
1.4 Built-in Commands. - c.c o oot L e
1.4.1 ERA L. i it i ittt ittt it
1.4.2 IR o i e i e e
T1.4.3 REN it ittt i te ettt it teasrinaannas
1.4.4 SAVE ..o e e e
B O T ' S
146 USERiiiiiiiii... e e
1.5 Line Editing and Output Control
1.6 Transient Commands ...ccoiiiiiiiiinnnriiirrrainanernennnnnns
1.6 1 ST AT it e e e e e
1.6.1 ASM L i e i et et
163 LOAD (.. i
1.6.4 Pl oo e et e
1.6.5 ED (i ittt e
1.6.6 SYSGEN L.ttt et ettt
1.6.7 SUBMIT ottt ottt ettt et ettt e
1.68 DUMP .. e
1.6.9 MOVOPM ittt i i i it
1.7 BDOS Error Messages e e e
1.8 Operation of CP/(Monthe MDS i,

21 Introduction to EDot e i et
2.1.1 ED Operationc..civieeiiiiiiiiriinaineineinriannanss
2.1.2 Text Transfer Functionsc.ciiiiiiiaan.. ..
2.1.3 Memory Buffer Organization
2.1.4 Line Numbersand ED Start Upccoiiii....
2.1.5 Memory Buffer Operationo ...
2.1.6 Command Stringsoociviviiiiiniiiiiinnnieeannnas
2.1.7 Text Search and Alteration R
2.1.8 Source Librarieso i e ..
2.1.9 Repetitive Command Executionc..oieeeiiinnn...
2.2 ED Error ConditiOns ...vuvu it vreenrsneersesnasanssonesnsnnnnss
2.3 Control Characters and Commands oo iiaia...

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

R ol TR e TN B e N+ N« NG B SRR VIR B

33

33
33
35
35
36
37
38
39
42
42
43
44

CP/M ASSEMBLER

..

3.1 Introduction ...
3.2 Program Format
3.3 Forming the Operandciiiiiiii i,
331 Labels .o
3.3.2 Numeric Constantsvvueerernrierinnnieeannnan.n.
333 Reserved Wordsoovvuiiiiniiiiii i,
3.3.4 String Constantseiitierat i
3.3.5 Arithmetic and Logical Operators
3.3.6 Precedence of Operatorsc.oiiiiurreinnnnn..
3.4 Assembler Directivesovvitieiiniiit i e
341 The ORG Directive ..rriniii i iaianenn.
3.4.2 The END Directivevuviiniiiniiiiiiieeerannnnn..
3.4.3 The EQU Directive e e eie e
344 The SET Directive ..vvuriineniniiiiiiiiininenannnn.
3.4.5 The IF and ENDIF Directivesccoooieiuaa...
346 The DB Directive ..uuvniiiinereiiiitiineeennnnnnn.
3.4.7 The DW Directive ... i,
348 The DS Directiveooviivir ittt
3.5 Operation Codes ...uiuiiniiiiiini i
351 Jumps, Calls, and Returnsoiiiiivinnnn....
3.5.2 Immediate Operand Instructions
3.5.3 Increment and Decrement Instructionsc.oo.......
3.5.4 Data Movement Instructionscooiuieein....
3.5.5 Arithmetic Logic Unit Operations
3.5.6 Control Instructionsc.coviieiiiiiiiie ..
3.6 Error Messagesuuiii i e
3.7 A Sample Session ... e
CP/M DYNAMIC DEBUGGING TOOL
4.1 Introductionoiiiii il e
42 DDT Commandsoouiiiiiinii i,
4.2.1 The A (Assembly) Command
422 The D (Display) Command
423 TheF(Fill) Commandc.ciiiiiniienaan...,
424 The G(Go)Commandc.ovuiiiiiinaii ..
4.2.5 The I{Input) Commandc.coiiiiniin....
426 TheL(List) Commandcooviiiineeninnnnenn ..
4.2.7 The M (Move) Command e
4.2.8 The R {Read) Commandcocivviuinininn...
429 TheS(Set)Commandooveiniiinn ..
4.2.10 The T (Trace) Commandccivivrenenennnn..,
4.2.11 The U (Untrace) Commandc.....
4212 The X (Examine) Commandcoivvininnnn..
4.3 Implementation Notesc.cooiiiiiiiiinn ...
44 AnExample
CP/M 2 SYSTEM INTERFACEo .
5.1 Introduction e e
5.2 Operating System Call Conventionso.vvveervenennn...
5.3 A Sample File-to-File Copy Program
5.4 A Sample File Dump Utility
5.5 A Sample Random Access Program e
5.6 System Function Summary ...t

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

47

47
48
49
50
50
50
51
52
52
53
54
54
55
55
56
57
57
57
58
58
59
60
60
61
62
62
63

69

69
71
71
72
72
72
73
74
74
74
75
75
76
76
77
78

6 CP/MALTERATION ... 127

6.1 Introductioneeuniiiieiniriieri ittt it 127
6.2 First Level System Regenerationooiiiiiiiniia... 128
6.3 Second Level System Generationccoovveiiiivenain., 131
6.4 Sample GETSYS and PUTSYS Programo, 134
6.5 Diskette Organizationcceevviiveeennn.. . 136
6.6 The BIOS Entry Pointsccceiiiiiniiiiiiiiiiinininenienn, 137
6.7 ASample BIOS e 143
6.8 A Sample Cold Start Loaderoooviiiiiiii it 143
6.9 Reserved Locations in Page Zero oo i 144
6.10 Disk Parameter Tablesoooiii i 145
6.11 The DISKDEF Macro Library oo . 148
6.12 Sector Blocking and Deblockingcooiiiiiiii i, 152
APPENDIXES
A The MDS Basic IfO System (BIOS) 153
B ASkeletal CBIOS ..o i e e e e 175
C A Skeletal GETSYS/PUTSYS Programovvvniiinnnnniinnnnnn. 187
D The MDS-800 Cold Start Loader for CPIM 2o ... 191
E A Skeletal Cold Start Loadercciiiiiiiiiinniiiiaininn. 197
F CPIM Disk Definition Libraryc ool 201
G Blocking and Deblocking Algorithmsl 209
L B 1o -7 ¥ 2 219
I CPIM MESSAES + e ittt et et eta ettt e e 235
INDEX oo e 245

2.1 Overall ED Operationt i cee i iane 34
2.2 Memory Buffer Organizationcooiiiiiiiiiiiiiiiiiiiiiiin, 34
2.3 Logical Organization of Memory Buffer 36

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M Features and
Facilities

1.1 Introduction

CP/M is a monitor control program for microcomputer system development that uses
floppy disks or Winchester hard disks for backup storage.Using acomputer system based
upon Intel’s 8080 microcomputer, CPIM provides a general environment for program
construction, storage, and editing, along with assembly and program check-out facilities.
An important feature of CP/M is that it can be easily altered to execute with any
computer configuration that uses an Intel 8080 (or Zilog Z-80) Central Processing Unit
and has at least 20K bytes of main memory with up to 16 diskette drives. A detailed
discussion of the modifications required for any particular hardware environment is
given in Chapter 6. Although the standard Digital Research version operates on a
single-density Intel MDS 800, several different hardware manufacturers support their
own input-output drivers for CP/M.

The CP/M monitor provides rapid access to programs through a comprehensive file
management package. The file subsystem supports a named file structure, allowing
dynamic allocation of file space as well as sequential and random file access. Using this file
system, a large number of programs can be stored in both source and machine-
executable form.

CP/M 2 is a high-performance, single-console operating system that uses table-driven
techniques to allow field reconfiguration to match a wide variety of disk capacities. All
fundamental file restrictions are removed, maintaining upward compatibility from pre-
vious versions of release 1. Features of CP/M 2 include field specification of one to sixteen
logical drives, each containing up toeight megabytes. Any particular file can reach the full
drive size with the capability of expanding to thirty-two megabytes in future releases.
The directory size can be field-configured to contain any reasonable number of entries,
and each file is optionally tagged with read/only and system attributes. Users of CPIM 2
are physically separated by user numbers, with facilities for file copy operations from one
user area to another. Powerful relative-record random access functions are present in
CPIM 2 that provide direct access to any of the 65536 records of an eight-megabyte file.

CP/M also supports a powerful context editor, Intel-compatible assembler, and
debugger subsystems. Optional software includes a powerful Intel-compatible macro
assembler, symbolic debugger, along with various high-level languages. When coupled

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1

with CP/M’s Console Command Processor, the resulting facilities equal or excel similar
large computer facilities.
CP/M is logically divided into several distinct parts:

BIOS Basic 1/O System (hardware-dependent)
BDOS Basic Disk Operating System

cCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the diskette drives
and to interface standard peripherals (teletype, CRT, paper tape reader/punch, and
user-defined peripherals). They can be tailored by the user for any particular hardware
environment by “patching” this portion of CP/M. The BDOS provides disk management
by controlling one or more disk drives containing independent file directories. The BDOS
implements disk allocation strategies that provide fully dynamic file construction while
minimizing head movement across the disk during access. The BDOS has entry points
that include the following primitive operations, which can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations.

CLOSE Close a file after processing.

RENAME Change the name of a particular file.

READ Read a record from a particular file.

WRITE Write a record to a particular file.

SELECT Select a particular disk drive for further operations.

The CCP provides a symbolic interface between the user’s consoie and the remainder
of the CP/M system. The CCP reads the console device and processes commands, which
include listing the file directory, printing the contents of files, and controlling the
operation of transient programs, such as assemblers, editors, and debuggers. The stand-
ard commands that are available in the CCP are listed in Section 1.2.1.

The last segment of CP/M is the area called the Transient Program Area (TPA). The
TPA holds programs that are loaded from the disk under command of the CCP. During
program editing, for example, the TPA holds the CP/M text editor machine code and data
areas. Similarly, programs created under CP/M can be checked out by loading and
executing these programs in the TPA.

Any or all of the CP/M component subsystems can be “overlaid” by an executing
program. That is, once a user’s program is loaded into the TPA, the CCP, BDOS, and
BIOS areas can be used as the program’s data area. A “bootstrap” loader is programmati-
cally accessible whenever the BIOS portion is not overlaid; thus, the user program need
only branch to the bootstrap loader at the end of execution and the complete CP/M
monitor is reloaded from disk.

The CP/M operating system is partitioned into distinct modules, including the BIOS
portion that defines the hardware environment in which CP/M is executing. Thus, the
standard system is easily modified to any nonstandard environment by changing the
peripheral drivers to handle the custom system.

2 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1.2 Functional Description

The user interacts with CPIM primarily through the CCP, which reads and interprets
commands entered through the console. In general, the CCP addresses one of several
disks that are on-line (the standard system addresses up to sixteen different disk drives).
These disk drives are labeled A through P. A disk is “logged in” if the CCP is currently
addressing the disk. To clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol “>" indicating
that the CCP is ready for another command. Upon initial start-up, the CP/M system is
brought in from disk A, and the CCP displays the message

CP/M VER m.m

where m.m is the CP/M version number. All CP/M systems are initially set to operateina
20K memory space, but can be easily reconfigured to fit any memory size on the host
system (see Section 1.6.9). Following system sign-on, CP/M automatically logs in disk A,
prompts the user with the symbol “A>" (indicating that CP/M is currently addressing
disk “A”), and waits for a command. The commands are implemented at two levels:
built-in commands and transient commands.

1.2.1 General Command Structure

Built-in commands are a part of the CCP program itself, while transient commands
are loaded into the TPA from disk and executed. The built-in commands are

ERA Erase specified files.

DIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in a file.

TYPE Type the contents of a file on the logged disk.

Most of the commands reference a particular file or group of files. The form of a file
reference is specified below.

1.2.2 File References

A file reference identifies a particular file or group of files on a particular disk attached
to CP/M. These file references are either “unambiguous” (ufn} or “ambiguous” (afn). An
unambiguous file reference uniquely identifies a single file, while an ambiguous file
reference is satisfied by a number of different files.

File references consist of two parts: the primary filename and the filetype. Although
the filetype is optional, it usually is generic; that is, the filetype “ASM,” for example, is
used to denote that the Ffile is an assembly language source file, while the primary
filename distinguishes each particular source file. The two names are separated by a”.”,
as shown below:

filename.typ

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 3

where filename is the primary filename of eight characters or less, and typ is the filetype
of no more than three characters. As mentioned above, the name

filename

is also allowed and is equivalent to a filetype consisting of three blanks. The characters
used in specifying an unambiguous file reference cannot contain any of the special
characters

<>.,;=2 1wl () /N

while all alphanumerics and remaining special characters are allowed.

An ambiguous file reference is used for directory search and pattern matching. The
form of an ambiguous file reference is similar to an unambiguous reference, except the
symbol “?” can be interspersed throughout the primary and secondary names. In various
commands throughout CP/M, the “?” symbol matches any character of a file name in the
“?” position. Thus, the ambiguous reference

X?Z.CM
is satisfied by the unambiguous file names

XYZ.COM
and

X3Z.CAM
Note that the ambiguous reference
is equivalent to the ambiguous file reference

2?2727°??°.27?

while
filename.*

and

*

typ

are abbreviations for

filename.???
and

respectively. As an example,

A>DIR ~.°

4 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

is interpreted by the CCP as a command to list the names of all disk files in the directory,
while

A>DIR X.Y

searches only for a file by the name X.Y. Similarly, the command
A>DIR X?Y.CTM

causes a search for all (unambigiious) file names on the disk that satisfy this ambiguous
reference.
The following file names are valid unambiguous file references:

X XYz GAMMA
X.Y XYZ.COM GAMMA 1
As an added convenience, the programmer can generally specify the disk drive name

along with the file name. In this case, the drive name is given as a letter A through P
followed by a colon (:). The specified drive is then “logged in” before the file operation
occurs. Thus, the following are valid file names with disk name prefixes:

AXY B:XYZ C:GAMMA

P:XYZ.COM B:X. A7M C:*. ASM

All alphabetic lower case letters in file and drive names are translated to upper case when
they are processed by the CCP.

1.3 Switching Disks

The operator can switch the currently logged disk by typing the disk drive name (A
through P) followed by a colon (:) when the CCP is waiting for console input. Thus, the
sequence of prompts and commands below can occur after the CP/M system is loaded

from disk A:

CP/M VER 22

A>DIR List all files on disk A.
A: SAMPLE ASM SAMPLE PRN

A>B: Switch to disk B.
B>DIR *. ASM List all“ASM" files on B.
B: DUMP ASM FILES ASM

B>A: Switch back to A.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

1.4 Built-in Commands

The file and device reference forms described can now be used to fully specify the
structure of the built-in commands. The user should assume the following abbreviations
in the description below:

ufn unambiguous file reference

afn ambiguous file reference

Recall that the CCP always translates lower case characters to upper case characters
internally. Thus, lower case alphabetics are treated as if they are upper case in command
names and file references.

14.1 ERA afm

The ERA (erase) command removes files from the currently logged in disk (i.e., the
disk name currently prompted by CP/M preceding the “>"). The files that are erased are
those that satisfy the ambiguous file reference afn. The following examples illustrate the
use of ERA:

ERA X.Y The file named X.Y on the currently logged disk is
removed from the disk directory and the space is
returned.

ERA X.* All files with primary name X are removed from the
current disk.

ERA *. ASM All files with secondary name ASM are removed
from the current disk.

ERA X?Y.C?M All files on the current disk that satisfy the ambigu-
ous reference X?Y.C?M are deleted.

ERA *.* Erase all files on the current disk (in this case the

CCP prompts the console with the message
ALL FILES (Y/N)?

that requires a Y response before files are actually
removed).

ERA B:*.PRN All files on drive B that satisfy the ambiguous refer-

the currently logged disk.

14.2 DIR afm

The DIR (directory) command causes the names of all files that satisfy the ambiguous
file name afn to be listed at the console device. As a special case, the command

DIR

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

lists the files on the currently logged disk (the command “DIR” is equivalent to the
command “DIR *.*”). Valid DIR commands are

DIR X.Y

DIR X?Z.C?M

DIR ??.Y

Similar to other CCP commands, the afn can be preceded by a drive name. The

following DIR commands cause the selected drive to be addressed before the directory
search takes place.

DIR B:

DIR B:X.Y

DIR B:*. A?7M

If no files on the selected diskette satisfy the directory request, the message “NO
FILE” is typed at the console.

1.4.3 REN ufnl=um2

The REN (rename) command allows the user to change the names of files on disk. The
file satisfying ufn2 is changed to ufni. The currently logged disk is assumed to contain
the file to rename (ufn2). The user can also type a left-directed arrow instead of the equal
sign if the console supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X.Y.
REN XYZ.COM=XYZ.XXX The file XYZ.XXX is changed to XYZ.COM.

The operator precedes either ufnl or ufn2 (or both) by an optional drive address. If
ufnl is preceded by a drive name, then ufn2 is assumed to exist on the same drive.
Similarly, if ufn2 is preceded by a drive name, then ufn1 is assumed to exist on that drive
as well. The same drive must be specified in both cases if both ufn1 and ufn2 are precéded
by drive names. The REN commands below illustrate this format.

REN A:X.ASM=Y.ASM The file Y.ASM is changed to X.ASM on drive
A.

REN B:ZAP.BAS=Z0OT.BAS The file ZOT.BAS is changed to ZAP.BAS on
drive B.

REN B:A.ASM=B:A.BAK The file A.BAK is renamed to A.ASM on drive
B.

If ufnl is already present, the REN command will respond with the error “FILE
EXISTS” and not perform the change. If ufn2 does not exist on the specified diskette, the
message “NO FILE” is printed at the console. '

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7

144 SAVE nufm

The SAVE command places n pages (256-byte blocks) onto disk from the TPA and
names this file ufn. In the CP/M distribution system, the TPA starts at 100H (hexadec-
imal) which is the second page of memory. The SAVE command must specify 2 pages of
memory if the user’s program occupies the area from 100H through 2FFH. The machine
code file can be subsequently loaded and executed. Examples are

SAVE 3 X.COM Copies 100H through 3FFH to X.COM.

SAVE 40 Q Copies 100H through 28FFH to Q (note that 28 is
the page count in 28FFH, and that 28H = 2*16+8 =
40 decimal).

SAVE 4 X.Y Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the ufn portion of the command, as
shown below.

SAVE 10 B:ZOT.COM Copies 10 pages (100H through 0AFFH) to the file
ZOT.COM on drive B.

145 TYPE ufn

The TYPE command displays the contents of the ASCII source file ufn on the
currently logged disk at the console device. Valid TYPE commands are
TYPE X.Y
TYPE X.PLM
TYPE XXX

The TYPE command expands tabs (clt-1 characters), assuming tab positions are set at
every eighth column. The ufn can also reference a drive name.

TYPE B:X.PRN The file X.PRN from drive B is displayed.

14.6 USERn

The USER command allows maintenance of separate files in the same directory and
takes the form :

USER n

where n is an integer value in the range 0 to 15. On cold start, the operator is automati-
cally “logged” into user area number 0, which is compatible with standard CP/M 1
directories. The operator may issue the USER command at any time to move to another
logical area within the same directory. Drives that are logged-in while addressing one
user number are automatically active when the operator moves to another; a user
number is simply a prefix that accesses particular directory entries on the active disks.

The active user number is maintained until changed by a subsequent USER command,
or until a cold start when user 0 is again assumed.

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

1.5 Line Editing and Output Control

The CCP allows certain line editing functions while typing command lines.

ctl-C CPIM system reboot when typed at start of line.

ctl-E Physical end of line: carriage is returned, but line is not sent until
the carriage return key is depressed.

cti-H Backspace one character position.

ctl-J Terminate current input (line feed).

cti-M Terminate current input (carriage return).

ctl-R Retype current command line: types a “clean line” following charac-
ter deletion with rubouts.

ctl-U Delete the entire line typed at the console.

ctl-X Same as ctl-U.

ctl-Z End input from the console (used in PIP and ED).

rub/del Delete and echo the last character typed at the console.

The control functions ctl-P and ctl-S affect console output.

ctl-P Copy all subsequent console output to the currently assigned list
device (see Section 1.6.1). Output is sent to the list device and the
console device until the next ctl-P is typed.

ctl-S Stop the console output temporarily. Program execution and out-
put continue when the next character is typed at the console (e.g.,
another ctl-S). This feature stops output on high speed consoles,
such as CRT's, in order to view a segment of output before
continuing.

The ctl-key sequences are obtained by depressing the control and letter keys simul-
taneously. Further, CCP command lines are generally up to 255 characters in length; they
are not acted upon until the carriage return key is typed.

1.6 Transient Commands

Transient commands are loaded from the currently logged disk and executed in the
TPA. The transient commands for execution under the CCP are below. Additional
functions are easily defined by the user (see Section 1.6.3).

STAT List the number of bytes of storage remaining on the currently
logged disk, provide statistical information about particular files,
and display or alter device assignment.

ASM Load the CP/M assembler and assemble the specified program from
disk.
LOAD Load the file in Intel “HEX” machine code format and produce a file

in machine executable form that can be loaded into the TPA (this
loaded program becomes a new command under the CCP).

DDT Load the CP/M debugger into TPA and start execution.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

PIP Load the Peripheral Interchange Program for subsequent disk file
and peripheral transfer operations.

ED Load and execute the CP/M text editor program.
SYSGEN Create a new CP/M system diskette.

SuUsBMIT Submit a file of commands for batch processing.
DUMP Dump the contents of a file in hex.

MOVCPM Regenerate the CP/M system for a particular memory size.

Transient commands are specified in the same manner as built-in commands, and addi-
tional commands are easily defined by the user. For convenience, the transient command
can be preceded by a drive name that causes the transient to be loaded from the specitied
drive into the TPA for execution. Thus, the command

B:STAT

causes CP/M to temporarily “log in” drive B for the source of the STAT transient, and
then return to the original logged disk for subsequent processing.
The basic transient commands are listed in detail below.

1.6.1 STAT

The STAT command provides general statistical information about file storage and
device assignment. It is initiated by typing one of the following forms:

STAT

STAT “command line”

Special forms of the “command line” allow the current device assignment to be examined
and altered. The various command lines that can be specified are shown, with an
explanation of each form to the right.

STAT If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

d: R/W, SPACE: nnnK
or

d: R/O, SPACE: nnnK

for each active drive d:, where R/W indicates the
drive can be read or written, and R/O indicates the
drive is read only (a drive becomes R/O by explicitly
setting it to read only, as shown below, or by inad-
vertently changing diskettes without performing a
warm start). The space remaining on the diskettein
drive d: is given in kilobytes by nnn.

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

STAT d:

STAT afn

STAT d:afn

STAT d:=R/O

If a drive name is given, then the drive is selected
before the storage is computed. Thus, the com-
mand “STAT B:” could be issued while logged into
drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can also specify a set of files to be
scanned by STAT. The files that satisfy afn are
listed in alphabetical order, with storage require-
ments for each file under the heading

RECS BYTS EX D:FILENAME.TYP
rerr bbbK ee difilenametyp

where rrrr is the number of 128-byte records allo-
cated to the file, bbb is the number of kilobytes
allocated to the file (bbb=rrrr*128/1024), ee is the
number of 16K extensions (ee=bbb/16), d is the
drive name containing the file (A...P), filename is
the (up to) eight-character primary filename, and
typ is the (up to) three-character filetype. After
listing the individual files, the storage usage is
summarized.

The drive name can be given ahead of the afn. The
specified drive s first selected, and the form “STAT
afn” is executed.

This form sets the drive given by d to read only,
remaining in effect until the next warm or cold
start takes place. When a disk is read only, the
message

BDOS ERR ON d: READ ONLY

will appear if there is an attempt to write to the
read-only disk d:. CP/M waits until a key is
depressed before performing an automatic warm
start (at which time the disk becomes R/W).

The STAT command allows control over the physical to logical device assignment (see
the IOBYTE function described in Chapters 5 and 6). There are four logical peripheral
devices that are, at any particular instant, each assigned one of several physical peripheral

devices. The four logical devices are

CON:

RDR:
PUN:
LST:

The system console device (used by CCP for communication with
the operator)

The paper tape reader device
The paper tape punch device

The output list device

The actual devices attached to any particular computer system are driven by subrou-
tines in the BIOS portion of CPIM. Thus, the logical RDR: device, for example, could

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

actually be ahigh speed reader, teletypereader, or cassette tape. To allow some flexibility
in device naming and assignment, several physical devices are defined below:

TTY: Teletype device (slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing (console is current RDR:, output goes to current
LST: device)

ucCt: User-defined console

PTR: Paper tape reader (high speed reader)

URTt: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)

upPt: User-defined punch #1

uP2: User-defined punch #2

LPT: Line printer

uLt: User-defined list device #1

It is emphasized that the physical device names may or may not actually correspond to
devices that the names imply. That is, the PTP: device may be implemented as a cassette
write operation if the user wishes. The exact correspondence and driving subroutine is
defined in the BIOS portion of CP/M. In the standard distribution version of CPIM, these
devices correspond to their names on the MDS 800 development system.

The command

STAT VAL:
produces a summary of the available status commands, resulting in the output

Temp R/Q Disk d:$R/C

Set Indicator: filename.typ $R/0 $R/W $SYS $DIR
Disk Status: DSK: d:DSK

lobyte Assign:

which gives an instant summary of the possible STAT commands and shows the permiss-
ible logical-to-physical device assignments:

CON: = TTY: CRT: BAT: UC1:
RDR: = TTY: PTR: UR1: UR2:
PUN: = TTY: PTP: UP1: UP2:
LST: =TTY: CRT: LPT: ULV

The logical device to the left takes any of the four physical assignments shown to the
right. The current logical to physical mapping is displayed by typing the command

STAT DEV:

12 ALL INFORMATION PRESENTED HERE (S PROPRIETARY TO DIGITAL RESEARCH

producing a list of each logical device to the left and the current corresponding physical
device to the right. For example, the list might appear as

CON: = CRT:
RDR: = UR1:
PUN: = PTP:
LST: = TTY:

The current logical to physical device assignment is changed by typinga STAT command
of the form

STAT idt = pd1, Id2 =pd2, ..., idn = pdn

where 1d1 through ldn are logical device names and pd1 through pdn are compatible
physical device names (i.e., Idi and pdi appear on the same line in the “VAL:” command
shown above). Valid STAT commands that change the current logical to physical device
assignments are

STAT CON:=CRT:
STAT PUN: = TTY:, LST:=LPT:;, RDR:=TTY:

The command form
STAT d:filename.typ $S

where “d:" is an optional drive name and “filename.typ” is an unambiguous or ambiguous
file name, produces the output display format

Size Recs Bytes Ext Acc
48 48 6k 1 R/O A:.ED.COM
55 55 12k 1 R/O (A:PIP.COM)
65536 128 16k 2 R/W A:X.DAT

where the $S parameter causes the “Size” field to be displayed. (Without the $S, the Size
field is skipped, but the remaining fields are displayed.) The Size field lists the virtual file
size in records, while the “Recs” field sums the number of virtual records in each extent.
For files constructed sequentially, the Size and Recs fields are identical. The “Bytes” field
lists the actual number of bytes allocated to the corresponding file. The minimum
allocation unit is determined at configuration time; thus, the number of bytes corre-
sponds to the record count plus the remaining unused space in the last allocated block for
sequential files. Random access files are given data areas only when written, so the Bytes
field contains the only accurate allocation figure. In the case of random access, the Size
field gives the logical end-of-file record position and the Recs field counts the logical
records of each extent. (Each of these extents, however, may contain unallocated “holes”
even though they are added into the record count.) The “Ext” field counts the number of
physical extents allocated to the file. The Ext count corresponds to the number of
directory entries given to the file. Depending on allocation size, there can be up to 128K
bytes (8 logical extents) directly addressed by a single directory entry. (In a special case,
there are actually 256K bytes that can be directly addressed by a physical extent.)
The Acc field gives the R/O or RIW file indicator that is changed using the commands
shown. Similarly, the parentheses shown about the PIP.COM filename indicate that it

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

has the “system” indicator set, so that it will not be listed in DIR commands. The four
command forms

STAT d:filename.typ $R/O
STAT d:filename.typ $R/W
STAT d:filename.typ $SYS
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The R/O indicator places the file (or set of
files) in a read-only status until changed by a subsequent STAT command. The R/O status
is recorded in the directory with the file so that it remains R/O through intervening cold
start operations. The R/W indicator places the file in a permanent read/write status. The
SYS indicator attaches the system indicator to the file, while the DIR command removes
the system indicator. The “filename.typ” may be ambiguous or unambiguous, but files
whose attributes are changed are listed at the console when the change occurs. Thedrive
name denoted by “d:” is optional.

When a file is marked R/O, subsequent attempts to erase or write into the file result in
a terminal BDOS message

BDOS Err on d: File R/O

The BDQOS waits for a console input before performing a subsequent warm start (a
“return” is sufficient). The command form

STAT d:DSK:

lists the drive characteristics of the disk named by “d:” thatisin the range A:, B:, ..., P:. The
drive characteristics are listed in the format

d: Drive Characteristics
65536: 128 Byte Record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
0: Checked Directory Entries
1024: Records/ Extent
128: Records/ Block
58: Sectors/ Track

2. Reserved Tracks

where “d:” is the selected drive, followed by the total record capacity (65536 is an
eight-megabyte drive), followed by the total capacity listed in kilobytes. The directory
size is listed next, followed by the “checked” entries. The number of checked entries is
usually identical to the directory size for removable media, because this mechanism is
used to detect changed media during CP/M operation without anintervening warm start.
For fixed media, the number is usually zero, because the media are not changed without at
least a cold or warm start. The number of records per extent determines the addressing
capacity of each directory entry (1024 times 128 bytes, or 128K in the previous example).
The number of records per block shows the basic allocation size (in the example, 128
records/block times 128 bytes per record, or 16K bytes per block). The listing is then
followed by the number of physical sectors per track and the number of reserved tracks.

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

For logical drives that share the same physical disk, the number of reserved tracks can be
quite large because this mechanism is used to skip lower-numbered disk areas allocated to
other logical disks. The command form

STAT DSK:

produces a drive characteristics table for all currently actwe drives. The final STAT
command form is

STAT USR:

which produces a list of the user numbers that have files on the currently addressed disk.
The display format is

Active User. 0
Active Files: 01 3

where the first line lists the currently addressed user number, as set by the last CCP
USER command, followed by a list of user numbers scanned from the current directory.
In this case, the active user number is 0 (default at cold start), with three user numbers
that have active files on the current disk. The operator can subsequently examine the
directories of the other user numbers by logging-in with USER 1 or USER 3 commands,
followed by a DIR command at the CCP level.

1.6.2 ASM ufm

The ASM command loads and executes the CP/M 8080 assembler. The ufn specifies a
source file containing assembly language statements where the filetype is assumed to be
ASM and is not specified. The following ASM commands are valid:

ASM X
ASM GAMMA

The two-pass assembleris automatlcally executed. Assembly errors that occur during the
second pass are printed at the console.
The assembler produces a file

X.PRN

where X is the primary name specified in the ASM command. The PRN file contains a
listing of the source program (with imbedded tab characters if present in the source
program), along with the machine code generated for each statement and diagnostic error
messages, if any. The PRN file is listed at the console using the TYPE command, or sent to
a peripheral device using PIP (see Section 1.6.4). The user should note that the PRN file
contains the original source program, augmented by miscellaneous assembly information
in the leftmost 16 columns (program addresses and hexadecimal machine code, for
example). The PRN file serves as a backup for the original source file. If the source file is
accidentally removed or destroyed, the PRN file can be edited (see Chapter 2) by remov-
ing the leftmost 16 characters of each line. This is done by issuing a single editor “macro”
command. The resulting file is identical to the original source file and can be renamed
(REN) from PRN to ASM for subsequent editing and assembly. The file

X.HEX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15 -

is also produced, which contains 8080 machine language in Intel “HEX” format suitable
for subsequent loading and execution (see Section 1.6.3). For complete details of CP/M's
assembly language program, see Chapter 3.

The source file for assembly is taken from an alternate disk by prefixing the assembly
language file name by a disk drive name. The command

ASM B:ALPHA

loads the assembler from the currently logged drive and processes the source program
ALPHA.ASM on drive B. The HEX and PRN files are also placed on drive B in this case.

1.6.3 LOAD ufn

The LOAD command reads the file ufn, which is assumed to contain “HEX” format
machine code, and produces a memory image file that can subsequently be executed. The
file name ufn is assumed to be of the form

X.HEX

and only the filename X need be specified in the command. The LOAD command creates a
file named

X.COM

that marks it as containing machine executable code. The file is actually loaded into
memory and executed when the user types the filename X immediately after the prompt-
ing character “>" printed by the CCP.

Generally the CCP reads the filename X following the prompting character and looks
for a built-in function name. If no function name is found, the CCP searches the system
disk directory for a file by the name

X.COM

If found, the machine code is loaded into the TPA, and the program executes. Thus, the
user need only LOAD a hex file once; it can be subsequently executed any number of
times by typing the primary name. In this way the user can “invent” new commands in the
CCP. (Initialized disks contain the transient commands as COM files, which are deleted at
the user’s option.) The operation takes place on an alternate drive if the file name is
prefixed by a drive name. Thus

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and operates
upon drive B after execution begins.

The user should note that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example) that
begin at 100H of the TPA. The addresses in the hex records must be in ascending order;
gaps in unfilled memory regions are filled with zeroes by the LOAD command as the hex
records are read. Thus, LOAD must be used only for creating CP/M standard “COM”
files that operate in the TPA. Programs that occupy regions of memory other than the
TPA are loaded under DDT.

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY.TO DIGITAL RESEARCH:

1.64 PIP

PIP is the CP/M Peripheral Interchange Program that implements the basic media
conversion operations necessary to load, print, punch, copy, and combine disk files. The
PIP program is initiated by typing one of the following forms:

(1) PIP
(2) PIP ‘command line’

In both cases PIP is loaded into the TPA and executed. In form (1), PIP reads command
lines directly from the console, prompted with the “*” character, until an empty command
line is typed (i.e., a single carriage return is issued by the operator). Each successive
command line causes some media conversion to take place according to the rules shown
below. Form (2) of the PIP command is equivalent to the first, except that the single
command line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines. The
form of each command line is

destination = source#1, source#2, ... , source#n

where “destination” is the file or peripheral device to receive the data and “source#1, ...,
source#n” is a series of one or more files or devices that are copied from left to right to the

destination.
When multiple files are given in the command line (i.e., n>1), the individual files are

assumed to contain ASClIcharacters, with an assumed CP/M end-of-file character (ctl-Z)
at the end of each file (see the O parameter to override this assumption). Lower case
ASCII alphabetics are internally translated to upper case to be consistent with CP/M file
and device name conventions. Finally, the total command line length cannot exceed 255
characters (ctl-E can be used to force a physical carriage return for lines that exceed the
console width).

The destination and source elements are unambiguous references to CP/M source
files with or without a preceding disk drive name. That is, any file can be referenced with a
preceding drive name (A: through P:) that defines the particular drive where the file may
be obtained or stored. When the drive name is not included, the currently logged disk is
assumed. The destination file can also appear as one or more of the source files, in which
case the source file is not altered until the entire concatenation is complete. If it already
exists, the destination file is removed if the command line is properly formed (it is not
removed if an error condition arises). The following command lines (with explanations to
the right) are valid as input to PIP:

X=Y Copy tofile X from file Y, where X
and Y are unambiguous file names;
Y remains unchanged.

X=Y,Z Concatenate files Y and Z and copy

to file X, with Y and Z unchanged.
X.ASM=Y.ASM,Z.ASM,FIN.ASM Create the file X.ASM from the

concatenation of the Y, Z, and FIN
files with type ASM.

NEW.ZOT=B:0LD.ZAP Move a copy of OLD.ZAP from
drive B to the currently logged
disk; name the file NEW.ZOT.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITALRESEARCH 17 -

B:A.U = B:B.V,A:C.W,D.X Concatenate file B.V from drive B
with C.W from drive A and D.X.
from the logged disk; create the file
A.U on drive B.

For convenience, PIP allows abbreviated commands for transferring files between
disk drives. The abbreviated forms are

PIP d:=afn

PIP d,:=d,:afn
PIP uin =d,:
PIP dy:ufn = dy:

The first form copies all files from the currently logged disk that satisfy the afn to the
same files ondrived (d= A ... P). The second form is equivalent to the first, where the:
source for the copyisdrived, (d, = A ... P). The third forms equivalent to the command
“PIPd,:ufn=dy:ufn” that copies the file given by ufn from drive d; to the file ufn ondrive d; :.
The fourth form is equivalent to the third, where the source disk is explicitly given by d,:.

The source and destination disks must be different in all of these cases. If an afn is
specified, PIP lists each ufn that satisfies the afn as it is being copied. If a file exists by the
same name as the destination file, it is removed on successful completion of the copy and
replaced by the copied file.

The following PIP commands give examples of valid disk-to-disk copy operations:

B:=".COM Copy all fiies that have the secondary name
“COM” to drive B from the current drive.
A:=B:ZAP.* Copy all files that have the primary name
“ZAP” to drive A from drive B.
ZAP.ASM=B: Equivalent to ZAP.ASM=B:ZAP.ASM
B:ZOT.COM=A; Equivalent to B:ZOT.COM=A:ZOT.COM
B:=GAMMA.BAS Same as B:GAMMA BAS=GAMMA.BAS
B:=A:GAMMA BAS Same as B:GAMMA BAS=A:GAMMA BAS

PIP allows reference to physical and logical devices that are attached to the CPIM
system. The device names are the same as given under the STAT command, along with a
number of specially named devices. The logical devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and LST: (list)
while the physical devices are

TTY: (console, reader, punch, or list)

CRT: (console, or list), UC1: (console)
PTR: (reader), UR1: (reader), UR2: (reader)
PTP: (punch), UP1: {(punch), UP2: (punch)
LPT: (list), ULT: (list)

(The “BAT:” physical device is not included, since this assignment is used only toindicate
that the RDR: and LST: devices are used for console input/output.)

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The RDR, LST, PUN, and CON devices are all defined within the BIOS portion of
CP/M, and are easily altered for any particular 1/O system. (The current physical device
mapping is defined by IOBYTE; see Chapter 6 for a discussion of this function). The
destination device must be capable of receiving data (i.e., data cannot be sent to the
punch), and the source devices must be capable of generating data (i.e., the LST: device
cannot be read).

The additional device names that can be used in PIP commands are

NUL: Send 40 “nulls” (ASCII 0°s) to the device (this can be issued at the
end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the destination device
(sent automatically at the end of all ASCII data transfers through
PIP).

INP: Special PIP input source that can be patched into the PIP program:

PIP gets the input data character-by-character by CALLing location
103H, with data returned in location 109H (parity bit must be zero).

OouT: Special PIP output destination that can be patched into the PIP
program: PIP CALLs location 106H with data in register C for each
character to transmit. The user should note that locations 109H
through 1FFH of the PIP memory image are not used and can be
replaced by special purpose drivers using DDT (see Chapter 4).

PRN: Same as LST: except that tabs are expanded at every eighth charac-
ter position, lines are numbered, and page ejects are inserted every
60 lines with an initial eject (same as using PIP options [t8np]).

File and device names can be interspersed in the PIP commands. In each case, the
specific device is read until end-of-file (ctl-Z for ASCII files, and end-of-data for non-
ASCII disk files). Data from each device or file are concatenated from left to right until
the last data source has been read. The destination device or file is written using the data
from the source files, and an end-of-file character (ctl-Z) is appended to the result for
ASCII files. If the destination is a disk file, a temporary file is created ($$$ secondary
name) that is changed to the actual file name only on successful completion of the copy.
Files with the extension “COM" are always assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on the keyboard
(a return suffices). PIP will respond with the message “ABORTED” to indicate that the
operation has not been completed. If any operation is aborted, or if an error occurs during
processing, PIP removes any pending commands that were set up while using the
SUBMIT command.

PIP performs a special function if the destination is a disk file with type “HEX” (an Intel
hex-formatted machine code file), and the source is an external peripheral device, such as
a paper tape reader. In this case, the PIP program checks to ensure that the source file
contains a properly formed hex file, with legal hexadecimal values and checksum records.
When an invalid input record is found, PIP reports an error message at the console and
waits for corrective action. It is usually sufficient to open the reader and rerun a section of
the tape (pull the tape back about 20 inches). When the tape is ready for the reread, a
single carriage return is typed at the console, and PIP will attempt another read. If the
tape position cannot be properly read, the user continues the read (by typing a return
following the error message), and enters the record manually with the ED program after
the disk file is constructed. For convenience, PIP allows the end-of-file to be entered from
the console if the source file is an RDR: device. In this case, the PIP program reads the
device and monitors the keyboard. If ctl-Z is typed at the keyboard the read operation is
terminated normally.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 19

Valid PIP commands are

PIP LST: = X.PRN Copy X.PRN to the LST device and
terminate the PIP program.

PIP Start PIP for a sequence of com-
mands (PIP prompts with “*”).

*CON:=X.ASM,Y.ASM,Z.ASM Concatenate three ASM files and
copy to the CON device.

*X.HEX=CON: Y. HEX,PTR: Create a HEX file by reading the

CON (until a ctl-Z is typed), fol-
lowed by data from Y .HEX and
PTR until a ctl-Z is encountered.

(carriage return) Single carriage return stops PIP.

PIP PUN:=NUL: X.ASM,EOF: NUL: Send 40 rulls to the punch device;
copy the X.ASM file to the punch,
followed by an end-of-file (ctl-Z)
and 40 more null characters.

The user can also specify one or more PIP parameters, enclosed in left and right square
brackets, separated by zero or more blanks. Each parameter affects the copy operation,
and the enclosed list of parameters must immediately follow the affected file or device.
Generally, each parameter can be followed by an optional decimal integer value (the S and
Q parameters are exceptions). Valid PIP parameters are

B Block mode transfer: data are buffered by PIP until an ASCII x-off
character (ctl-S) is received from the source device. This allows
transfer of data to a disk file from a continuous reading device, such
as a cassette reader. Upon receipt of the x-off, PIP clears the disk
buffers and returns for more input data. The amount of data that
can be buffered depends on the memory size of the host system {PIP
will issue an error message if the buffers overflow).

Dn Delete characters that extend past column n in the transfer of data
to the destination from the character source. This parameter is
generally used to truncate long lines that are sent to a (narrow)
printer or console device.

E Echo all transfer operations to the console as they are being
performed.
F Filter form feeds from the file. All imbedded form feeds are

removed. The P parameter can be used simultaneously to insert
new form feeds.

Gn Get File from user number n {(n in the range 0-15).

H HEX data transfer: all data are checked for proper Intel hex file
format. Nonessential characters between hex records are removed
during the copy operation. The console will be prompted for correc-
tive action in case errors occur.

1 Ignore “:00” records in the transfer of Intel hex format file {the I
parameter automatically sets the H parameter).

L Translate upper case alphabetics to lower case.

20 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Pn

Qstz

Sstz

Tn

W
4

Add line numbers to each line transferred to the destination, start-
ing at one and incrementing by 1. Leading zeroes are suppressed,
and the number is followed by a colon. If N2 is specified, leading
zeroes are included and a tab is inserted following the number. The
tab is expanded if T is set.

Object file (non-ASCII) transfer: the normal CP/M end-of-file is
ignored.

Include page ejects at every n lines (with aninitial page eject). If n =1
or is excluded altogether, page ejects occur every 60 lines. If the F
parameter is used, form feed suppression takes place before the
new page ejects are inserted.

Quit copying from the source device or file when the string s
(terminated by ctl-Z) is encountered. ’

Read system files.

Start copying from the source device when the string s (terminated
by ctl-Z) is encountered. The S and Q parameters can be used to
“abstract” a particular section of a file (such as a subroutine). The
start and_quit strings are always included in the copy operation.

If the user selects form (2) of the PIP command, the CCP translates
strings following the S and Q parameters to upper case. Form (1) of
the PIP invocation does not perform the automatic upper case
translation.

(1) PIP
(2) PIP ‘command line’

Expand tabs (ctl-1 characters) to every nth column during the
transfer of characters to the destination from the source.

Translate lower case alphabetics to upper case during the copy
operation.

Verify that data have been copied correctly by rereading after the
write operation (the destination must be a disk file).

Write over R/O files without console interrogation.

Zero the parity bit on input for each ASCII character.

Valid PIP commands that specify parameters in the file transfer are

PIP X.ASM=B:[v] Copy X.ASM from drive B to the current
drive and verify that the data were properly
copied.

PIP LPT:=X.ASM[nt8u] Copy X.ASM to the LPT: device; number each

line, expand tabs to every eighth column, and
translate lower case alphabetics to upper case.

PIP PUN:=X.HEX]i],Y.ZOT[h] First copy X.HEX to the PUN: device and

ignore the trailing “:00” record in X.HEX;
continue the transfer of data by reading
Y.ZOT, which contains HEX records, includ-
ing any “:00” records it contains.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21

PIP X.LIB = Y.ASM [sSUBRI:1z qJMP L31z |
Copy from the file Y.ASM into the file X.LIB.
Start the copy when the string “SUBRI:” has

been found, and quit copying after the string
“IMP L3” is encountered.

PiP PRN:=X.ASM[p50] Send X.ASM to the LST: device with line
numbers, tabs expanded to every eighth
column, and page ejects at every 50th line.
The assumed parameter list for a PRN file is
nt8p60; p50 overrides the default value.

Under normal operation, PIP will not overwrite a file that is set to a permanent R/O
status. If an attempt is made to overwrite an R/O file, the prompt

DESTINATION FILE IS R/O, DELETE (Y/N)?

is issued. [f the operator responds with the character “y” the file is overwritten. Other-
wise, the response

** NOT DELETED **

is issued, the file transfer is skipped, and PIP continues with the next operation in
sequence. To avoid the prompt and response in the case of R/O file overwrite, the
command line can include the W parameter

PIP A:=B:".COM[W]

which copies all nonsystem files to the A drive from the B drive and overwrites any R/O
files in the process. If the operation involves several concatenated files, the W parameter
need only be included with the last file in the list, as in the example

PIP A.DAT = B.DAT F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers if the R parameter is
included; otherwise, system files are not recognized. The command line

PIP ED.COM = B:ED.COM[R]

for example, reads the ED.COM file from the B drive, even if it has been marked as an
R/O and system file. The system file attributes are copied, if present.

Downward compatibility with previous versions of CP/Mis only maintained if the file
does not exceed one megabyte, no file attributes are set, and the file is created by user 0. If
compatibility is required with nonstandard (e.g., “double density”) versions of 1.4, it may
be necessary to select 1.4 compatibility mode when constructing the internal disk

parameter block. (See Chapter 6 and refer to Section 6.10, which describes BIOS
differences.)

Note: To copy files into another user area, PIP.COM must be located in that user area.
Follow the procedure shown below to make a copy of PIP.COM in another user area.

USER 0O- Log-in user 0.

DDT PIP.COM (note PIP size s) Load PIP to memory.
GO Return to CCP.
USER 3 Log-in user 3.

SAVE s PIP.COM

22 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

where s is the integral number of memory “pages” (256-byte segments) occupied by PIP.
The number s can be determined when PIP.COM is loaded under DDT, by referring to
the value under the NEXT display. If, for example, the next available address is 1D00,
then PIP.COM requires 1C hexadecimal pages (or 1 times 16 + 12 = 28 pages), and the
value of s is 28 in the subsequent save. Once PIP is copied in this manner, it can be copied
to another disk belonging to the same user number through normal PIP transfers.

1.6.5 ED um

The ED program is the CP/M system context editor that allows creation and alteration
of ASCII files in the CP/M environment. Complete details of operation are given in
Chapter 2. ED allows the operator to create and operate upon source files that are
organized as a sequence of ASCII characters, separated by end-of-line characters (a
carriage-return line-feed sequence). There is no practical restriction on line length (no
single line can exceed the size of the working memory) that is defined by the number of
characters typed between carriage returns. The ED program has a number of commands
for character string searching, replacement, and insertion that are useful in creation and
correction of programs or text files under CP/M. Although the CP/M has a limited
memory work space area (approximately 5000 characters in a 20K CP/M system), the file
size that can be edited is not limited, since data are easily “paged” through this work area.

If it does not exist, ED creates the specified source file and opens the file for access. If
the source file does exist (see the A command), the programmer “appends” data for
editing. The appended data can then be displayed, altered, and written from the work area
back to the disk (see the W command). Particular points in the program can be automati-
cally paged and located by context (see the N command), allowing easy access to particular
portions of a large file.

Given that the operator has typed

ED X.ASM
the ED program creates an intermediate work file with the name

X.$$%

to hold the edited data during the ED run. Upon completion of ED, the X.ASM file
(original file) is renamed to X.BAK, and the edited work file is renamed to X.ASM. Thus,
the X.BAK file contains the original (unedited) file, and the X.ASM file contains the newly
edited file. The operator can always return to the previous version of a file by removing
the most recent version and renaming the previous version. If the current X.ASM tile has
been improperly edited, the sequence of commands below will reclaim the backup file.

DIR X.* Check to see that BAK file is available.
ERA X.ASM Erase most recent version.
REN X.ASM=X.BAK Rename the BAK file to ASM.

The operator can abort the edit at any point (reboot, power failure, ctl-C, or Q command)
without destroying the original file. In this case, the BAK file is not created and the
original file is always intact.

The ED program allows the user to edit the source on one disk and create the backup
file on another disk. This form of the ED command is

ED ufn d:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 23

where ufn is the name of the file to edit on the currently logged disk and d is the name of
an alternate drive. The ED program reads and processes the source file and writes the
new file to drive d using the name ufn. After processing, the original file becomes the
backup file. If the operator is addressing disk A, the following command is valid:

ED X.ASM 8:

This edits the file X.ASM on drive A, creating the new file X.$$$ on drive B. After a
successful edit, A:X.ASM is renamed to A:X.BAK, and B:X.$%% is renamed to B:X.ASM.
For convenience the currently logged disk becomes drive B at the end of the edit. The user
should note that if a file named B:X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against accidentally destroying a source file. The
operator first erases the existing file and then restarts the edit operation.

Similar to other transient commands, editing can take place on a drive different from
the currently logged disk by preceding the source file name by a drive name. Examples of
valid edit requests are

ED A:X_ASM Edit the file X.ASM on drive A, with new file and
backup on drive A.
ED B:X.ASM A: Edit the file X.ASM on drive B to the temporary file

X.$$$ on drive A. After editing, change X.ASM on
drive B to X.BAK and change X.$%% on drive A to
X.ASM.

1.6.6 SYSGEN

The SYSGEN transient command allows generation of an initialized diskette contain-
ing the CP/M operating system. The SYSGEN program prompts the console for com-
mands by interacting as shown.

SYSGEN cr . Initiate the SYSGEN program.
SYSGEN VERSION m.m SYSGEN sign-on message.
SOURCE DRIVE NAME Respond with the drive name {(one
(OR RETURN TO SKIP) of the letters A, B, C, or D) of the

disk containing a CP/M system,
usually A. If a copy of CP/M
already exists in memory due to a
MOVCPM command, type a car-
riage return only. Typing a drive
name d will cause the response:

SOURCE ON d THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive d
(dis one of A, B, C, or D). Answer
by typing a carriage return when
ready.

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

FUNCTION COMPLETE System is copied to memory. SYS-
GEN will then prompt with:

DESTINATION DRIVE NAME If a diskette is being initialized,

(OR RETURN TO REBOOT) place the new disk into a drive and
answer with the drive name. Oth-
erwise, type a cr and the system
will reboot from drive A. Typing
drive name d will cause SYSGEN
to prompt with:

DESTINATION ON d Place new diskette into drive d;

THEN TYPE RETURN type return when ready.

FUNCTION COMPLETE New diskette is initialized in drive
d.

The “DESTINATION” prompt will be repeated until a single carriage return is typed at
the console, so that more than one disk can be initialized.

Upon completion of a successful system generation, the new diskette contains the
operating system and only the built-in commands are available. A factory-fresh, IBM-
compatible diskette appears to CP/M as a diskette with an empty directory; therefore, the
operator must copy the appropriate COM files from an existing CP/M diskette to the
newly constructed diskette using the PIP transient.

The user can copy all files from an existing diskette by typing the PIP command

PIP B: = A: *.*{v]

which copies all files from disk drive A to disk drive B and verifies that each file has been
copied correctly. The name of each file is displayed at the console as the copy operation
proceeds.

The user should note that a SYSGEN does not destroy the files that already existon a
diskette; it only constructs a new operating system. If a diskette is being used only on
drives B through P and will never be the source of a bootstrap operation on drive A, the
SYSGEN need not take place.

1.6.7 SUBMIT ufn parm#1 ... parm#n

The SUBMIT command allows CP/M commands to be batched for automatic process-
ing. The ufn given in the SUBMIT command must be the file name of a file that existson
the currently logged disk, with an assumed file type of “SUB.” The SUB file contains
CP|M prototype commands with possible parameter substitution. The actual parameters
parm#1 ... parm#n are substituted into the prototype commands, and, if no errors occur,
the file of substituted commands are processed sequentially by CP/M.

The prototype command file is created using the ED program, with interspersed “$”
parameters of the form

$1%2%3..%n

corresponding to the number of actual parameters that will be included when the file is
submitted for execution. When the SUBMIT transient is executed, the actual parameters
parm#1 ... parm#n are paired with the formal parameters $1 ... $n in the prototype
commands. If the numbers of formal and actual parameters do not correspond, the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

submit function is aborted with an error message at the console. The SUBMIT function
creates a file of substituted commands with the name

$$%$.5UB

on the logged disk. When the system reboots (at the termination of the SUBMIT), this
command file is read by the CCP as a source of input rather than the console. If the
SUBMIT function is performed on any disk other than drive A, the commands are not
processed until the disk is inserted into drive A and the system reboots. The user can
abort command processing at any time by typing a rubout when the command is read and
echoed. In this case the $$$.SUB file is removed and the subsequent commands come
from the console. Command processing is also aborted if the CCP detects an error in any
of the commands. Programs that execute under CP/M can abort processing of command
files when error conditions occur by erasing any existing $$%$.SUB file.

To introduce dollar signs into a SUBMIT file, the user may type a “$$” which reduces
to a single “$” within the command file. An up-arrow symbol “A” may precede an
alphabetic character x, which produces a single ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, allowing chained batch
commands.

Suppose the file ASMBL.SUB exists on disk and contains the prototype commands

ASM $1

DIR $1."

ERA “.BAK

PIP $2:=$1.PRN
ERA $1.PRN

and the command
SUBMIT ASMBL X PRN

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file, substituting
“X" for all occurrences of $1 and “PRN” for all occurrences of $2. This results in a
$$%.SUB file containing the commands

ASM X

DIR X.*

ERA ".BAK

PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file on an alternate drive by preceding the file
name by a drive name. Submitted files are only acted upon when they appear on drive A.
Thus it is possible to create a submitted file on drive B that is executed at a later time when
inserted in drive A.

An additional utility program called XSUB extends the power of the SUBMIT facility
to include line input to programs as well as the console command processor. The XSUB
command is included as the first line of the submit file. When it is executed, XSUB
self-relocates directly below the CCP. All subsequent submit command lines are pro-
cessed by XSUB so that programs that read buffered console input (BDOS function 10)

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

receive their input directly from the submit file. For example, the file SAVER.SUB can
contain the submit lines

XsuB
DDT
{$1.COM
R

GO
SAVE 1 $2.COM

with a subsequent SUBMIT command
A>SUBMIT SAVER PIP Y

that substitutes X for $1 and Y for $2 in the command stream. The XSUB program loads,

followed by DDT, which is sent to the command lines PIP.COM, R, and GO, thus

returning to the CCP. The final command SAVE 1 Y.COM is processed by the CCP.
The XSUB program remains in memory and prints the message

{xsub active)

on each warm start operation to indicate its presence. Subsequent submit command
streams do not require the XSUB, unless an intervening cold start has occurred. The user
should note that XSUB must be loaded after the optional CP/M DESPOOL utility, if both
are to run simultaneously.

1.6.8 DUMP uMm

The DUMP program types the contents of the disk file (ufn) at the console in
hexadecimal form. The file contents are listed sixteen bytes at a time, with the absolute
byte address listed to the left of each line in hexadecimal. Long typeouts can be aborted by
pushing the rubout key during printout. {The source listing of the DUMP program is
given in Chapter 5 as an example of a program written for the CP/M environment.)

1.6.9 MOVCPM

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size. Two optional parameters can be used to indicate the desired size
of the new system and the disposition of the new system at program termination. If the
first parameter is omitted or an “*” is given, the MOVCPM program will reconfigure the
system to its maximum size, based upon the kilobytes of contiguous RAM in the host
system (starting at 0000H). If the second parameter is omitted, the system is executed,
but not permanently recorded; if “*” is given, the system is left in memory, ready for a
SYSGEN operation. The MOVCPM program relocates a memory image of CP/M and
places this image in memory in preparation for a system generation operation. The
command forms are

MOVCFPM Relocate and execute CP/M for management of the

current memory configuration {(memory is exam-
ined for contiguous RAM, starting at 100H). On

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 27

MOVCPM n
MOvCPM -+
MOVCPM n*

The command

MOVCPM = *

completion of the relocation, the new system is
executed but not permanently recorded on the
diskette. The system that is constructed contains a
BIOS for the Intel MDS 800.

Create a relocated CP/M system for management
of an n kilobyte system (n must be in the range of 20
to 64), and execute the system as described.

Construct a relocated memory image for the cur-
rent memory configuration, but leave the memory
image in memory in preparation for a SYSGEN
operation.

Construct a relocated memory image for an n kilo-
byte memory system, and leave the memory image
in preparation for a SYSGEN operation.

for example, constructs a new version of the CP/M system and leaves it in memory, ready
for a SYSGEN operation. The message

READY FOR '‘SYSGEN' OR
‘SAVE 34 CPMxx.COM’

is printed at the console upon completion, where xx is the current memory size in
kilobytes. The operator can then type

SYSGEN

SOURCE DRIVE NAME
(OR RETURN TO SKIP)

Start the system generation.

Respond with a carriage return to skip the
CPIM read operation since the system is
already in memory as a result of the previous

MOVCPM operation.

DESTINATION DRIVE NAME Respond with B to write new system to the

{OR RETURN TO REBOOQT)

DESTINATION ON B,
THEN TYPE RETURN

diskette in drive B. SYSGEN will prompt
with:

Ready the fresh diskette on drive B and type a
return when ready.

If the user responds with “A” rather than “B” above, the system will be written to drive A
rather than B. SYSGEN will continue to type the prompt

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

until the operator responds with a
program with a system reboot.

single carriage return, which stops the SYSGEN

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The user can then go through the reboot process with the old or new diskette. Instead
of performing the SYSGEN operation, the user can type

SAVE 34 CPMxx.COM

at the completion of the MOVCPM function, where “xx” is the value indicated in the
SYSGEN message. The CP/M memory image on the currently logged disk is in a form
that can be “patched.” This is necessary when operating in a nonstandard environment
where the BIOS must be altered for a particular peripheral device configuration, as -
described in Chapter 6.

Valid MOVCPM commands are

MOVCPM 48 Construct a 48K version of CP/M and start
execution.
MOVCPM 48" Construct a 48K version of CP/M in preparation

for permanent recording; response is

READY FOR ‘SYSGEN' OR
‘SAVE 34 CPM48.COM!

MOVCPM ** Construct a maximum memory version of CP/M
and start execution.

The newly created system is serialized with the number attached to the original
diskette and is subject to the conditions of the Digital Research Software Licensing
Agreement.

1.7 BDOS Error Messages

There are three error situations that the Basic Disk Operating System intercepts
during file processing. When one of these conditions is detected, the BDOS prints the
message:

BDOS ERR ON d: error
where d is the drive name and “error” is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The “BAD SECTOR” message indicates that the disk controller electronics has
detected an error condition in reading or writing the diskette. This condition is generally
caused by a malfunctioning disk controller or an extremely worn diskette. If the user
finds that the CP/M reports this error more than once a month, the state of the controller
electronics and the condition of the media should be checked. The user can also encounter
this condition in reading files generated by a controller produced by a different manufac-
turer. Even though controllers are claimed to be IBM-compatible, one often finds small
differences in recording formats. The MDS-800 controller, for example, requires two
bytes of one’s following the data CRC byte, which is not required in the IBM format. As a
result, diskettes generated by the Intel MDS can be read by almost all other IBM-
compatible systems, while disk files generated on other manufacturers’ equipment will
produce the “BAD SECTOR” message when read by the MDS. Recovery from this
condition is accomplished by typing a ctl-C to reboot (the safest course), or a return,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 29

which ignores the bad sector in the file operation. The user should, however, note that
typing a return may destroy diskette integrity if the operation is a directory write. The
user should be sure to have adequate backups in this case.

The “SELECT” error occurs when there is an attempt to address a drive beyond the
range supported by the BIOS. In this case, the value of din the error message gives the
selected drive. The system reboots following any input from the console.

The "READ ONLY” message occurs when there is an attempt to write to a diskette or
file that has been designated as read only in a STAT command or has been set to
read only by the BDOS. The operator should reboot CP/M by using the warm start
procedure (ctl-C) or by performing a cold start whenever the diskettes are changed. If a
changed diskette is to be read but not written, BDOS allows the diskette to be changed
without the warm or cold start, but internally marks the drive as read only. The status of
the drive is subsequently changed to read/write if a warm or cold start occurs. On issuing
this message, CP/M waits for input from the console. An automatic warm start takes
place following any input.

1.8 Operation of CP/M on the MDS

This section gives operating procedures for using CP/M on the Intel MDS microcom-
puter development system. Basic knowledge of the MDS hardware and software systems
is assumed.

CP/M isinitiated in essentially the same manner as Intel’s ISIS operating system. The
disk drives are labeled 0 through 3 on the MDS, corresponding to CP/Mdrives A through
D, respectively. The CP/M system diskette is inserted into drive 0, and the BOOT and
RESET switches are depressed in sequence. The interrupt 2 light should go on at this
point. The space bar is then depressed on the system console, and the light should go out
(if it does not, the user should check connections and baud rates). The BOOT switch is
turned off, and the CP/M sign-on message should appear at the selected console device,
followed by the “A>" system prompt. The user can then issue the various resident and
transient commands.

The CP/M system can be restarted (warm start) at any time by pushing the INT 0
switch on the front panel. The built-in Intel ROM monitor can be initiated by pushing the
INT 7 switch (which generates an RST 7), except when operating under DDT, in which
case the DDT program gets control instead. .

Diskettes can be removed from the drives at any time, and the system can be shut
down during operation without affecting data integrity. The user must not remove a
diskette and replace it with another without rebooting the system (cold or warm start)
unless the inserted diskette is “read only.”

As a result of hardware hang-ups or mal!functions, CP/M may type the message

BDOS ERR ON d: BAD SECTOR

where d is the drive that has a permanent error. This error can occur when drive doors are
opened and closed randomly, followed by disk operations, or can be caused by a diskette,
drive, or controller failure. The user can optionally elect to ignore the error by typinga
single return at the console. The error may produce a bad data record, requiring reinitiali-
zation of up to 128 bytes of data. The operator can reboot the CP/M system and try the
operation again.

Termination of a CP/M session requires no special action, except that it is necessary to
remove the diskettes before turning the power off to avoid random transients that often
make their way to the drive electronics.

30 ALL {INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Factory-fresh, IBM-compatible diskettes should be used rather than diskettes that
have previously been used with any ISIS version. In particular, the 1SIS “FORMAT"”
operation produces nonstandard sector numbering throughout the diskette. This non-
standard numbering seriously degrades the performance of CP/M and will operate
noticeably slower than the distribution version. If it becomes necessary to reformat a
diskette (which should not be the case for standard diskettes), a program can be written
under CP/M that causes the MDS 800 controller to reformat with sequential sector
numbering (1-26) on each track.

IBM-compatible 8-inch diskettes in general do not need to be formatted. However,
SY-inch diskettes will need to be formatted.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31

ED

2.1 Introduction to ED

ED is the context editor for CP/M, and is used to create and alter CP/M source files.
ED is initiated in CP/M by typing

ED filename
or

ED filename. typ

In general, ED reads segments of the source file given by filename or filename.typ into the
central memory, where the file is manipulated by the operator and subsequently
written back to disk after alterations. If the source file does not exist before editing, it is
created by ED and initialized to empty. The overall aperation of ED is shown in Figure 2.1.

2.1.1 ED Operation

ED operates upon the source file, denoted in Figure 2.1 by x.y, and passes all text
through a memory buffer where the text can be viewed or altered (the number of lines
that can be maintained in the memory buffer varies with the line length, but has a total
capacity of about 5000 characters in a 20K CP/M system). Text material that has been
edited is written into a temporary work file under command of the operator. Upon
termination of the edit, the memory buffer is written to the temporary file, followed by
any remaining (unread) text in the source file. The name of the original file is changed
from x.y to x.BAK so that the most recent previously edited source file can be reclaimed if
necessary (see the CP/M commands ERASE and RENAME). The temporary file is then-
changed. from x.$$$ to x.y, which becomes-the resulting edited file.

The memory buffer is logically between the source file-and working file as shown in
Figure 2.2.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY:TO DIGITAL RESEARCH * 33

Figure 2.1 Overall ED Operation

Source
File

filename.txt

]
After g B
Edit @'

Backup
File

filename.bak

Source

Libraries

Write

D = memory buffer
O = disk hle

Figure 2.2 - Memory Buffer Organization

Source File

1 First Line 1 First Line

2 Appended 2 Buffered

3 Lines Text

SPe| I MPT

| {
1 | }
| Unprocessed | Next] Free
I Source | Append ¢ Memory
I Lines = 1 Space
L I !

Memory Buffer

SP = Source Pointer
MP = Memory Pointer
TP = Temporary Pointer

Temporary

File

filename.$%%

Afrer §
er
Edic §'F

New

Source

File
filename.txt

Temporary File

First Line

Processed

Free File
Space

342 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

2.1.2 Text Transfer Functions

Given that nis an integer value in the range 0 through 65535, several single letter ED
commands transfer lines of text from the source file through the memory buffer to the
temporary (and eventually final) file. Single letter commands are shown in upper case,
but can be typed in either upper or lower case.

nA Append the next n unprocessed source lines from the source file at-
SP to the end of the memory buffer at MP. Increment SP and MP by
n. If upper case translation is set (see the U command) and the A
command is typed in upper case, all input lines will automatically be
translated to upper case.

nW Write the first n lines of the memory buffer to the temporary file
free space. Shift the remaining lines n+1 through MP to the top of
the memory buffer. Increment TP by n.

E End the edit. Copy all buffered text to temporary file and copy all
unprocessed source lines to temporary file. Rename files as des-
cribed previously.

H Move to head of new file by performing automatic E command.
Temporary file becomes the new source file, the memory buffer is
emptied, and a new temporary file is created (equivalent to issuing
an E command, followed by a reinvocation of ED using x.y as the file
to edit).

0 Return to original file. The memory buffer is emptied, the tempor-
ary file is deleted, and the SP is returned to position 1 of the source
file. The effects of the previous editing commands are thus
nullified.

Q Quit edit with no file alterations, return to CP/M.

There are a number of special cases to consider. If the integer nis omitted in any ED com-
mand where an integer is allowed, then 1 is assumed. Thus, the commands A and W
append one line and write one line, respectively. In addition, if a pound sign (#) is given in the
place of n, then the integer 65535 is assumed (the largest value for n that is allowed). Since
most reasonably sized source files can be contained entirely in the memory buffer,
the command #A is often issued at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer to the temporary file.
Two special forms of the A and W commands are provided as a convenience. The
command OA fills the current memory buffer at least half full, while OW writes lines until
the buffer is at least half empty. An error is issued if the memory buffer size is exceeded.
The operator can then enter any command (such as W) that does not increase memory
requirements. The remainder of any partial line read during the overflow will be brought
into memory on the next successful append.

2.1.3 Memory Buffer Organization

The memory buffer can be considered a sequence of source lines brought in with the A
command from a source file. The memory buffer has an associated (imaginary) character
pointer CP that moves throughout the memory buffer under command of the operator.
The memory buffer appears logically as shown in Figure 2.3 where the dashes represent
characters of the source line of indefinite length, terminated by carriage-return (<cr>)
and line-feed (<If>) characters, and CP represents the imaginary character pointer. The

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35,

user should note that the CP is always located ahead of the first character of the first line,
behind the last character of the last line, or between two characters. The current line CL
is the source line that contains the CP.

Figure 2.3 Logical Organization of Memory Buffer

Memory Buffer

lfi*;Zt ————— o> <f>

———————— —<cr><lf>
]cit:‘r:ant ___________ <er><lf>
iia:: ————————— Zcr> <>

2.1.4 Line Numbers and ED Start-up

ED produces absolute line number prefixes that can be used to reference a line, or
range of lines. The absolute line number is displayed at the beginning of each line when
ED is in “insert mode” (see the | command in Section 2.1.5), where each line number takes
the form

nnnnn:

where nnnnn is an absolute line number in the range of 1 to 65535. If the memory buffer
is empty or if the current line is at the end of the memory buffer, nnnnn appears as 5
blanks.

The user may reference an absolute line number by preceding any command by a
number followed by a colon, in the same format as the line number display. In this case,
the ED program moves the current line reference to the absolute line number, if the line
exists in the current memory buffer. The line denoted by the absolute line number must
be in the memory buffer (see the A command). Thus, the command

345:T

is interpreted as “move to absolute 345, and type the line.” Absolute line numbers are
produced only during the editing process and are not recorded with the file. In particular,
the line numbers will change following a deleted or expanded section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute number by a colon. Thus, the
command

14007

36 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

is interpreted as “type from the current line number through the line whose absolute
number is 400.” Combining the two line reference forms, the command

345::4007

for example, is interpreted as “move to absolute line 345, then type through absolute line
400.” Absolute line references of this sort can precede any of the standard ED commands.
Line numbering is controlled by the “V” (Verify line numbers) command. Line num-
bering can be disabled by typing the “-V” command.
If the file to edit does not exist, ED types the message

NEW FILE

terr

The user must enter an “i” command so that text can be inserted into the memory buffer
by typing input lines terminated by carriage-returns. A single ctl-Z character returns ED
to command mode.

2.1.5 Memory Buffer Operation

When ED begins, the memory buffer is empty. The operator may either append lines
(A command) from the source file or enter the lines directly from the console with the
insert command

|

ED then accepts any number of input lines, where each line terminates with a <cr> (the
<If> is supplied automatically), until a control-z (denoted by 12} is typed by the operator.
The CP is positioned after the last character entered. The sequence

I<cr>

NOW IS THE<cr>

TIME FOR<cr>

ALL GOOD MEN<cr>

tz
leaves the memory buffer as

NOW IS THE<cr><If>
TIME FOR<cr><If>
ALL GOOD MEN<cr><If>

Generally, ED accepts command letters in upper or lower case. If the command is
upper case, all input values associated with the command are translated to upper case. In
particular, if the “I” command is typed, all input lines are automatically translated
internally to upper case. The lower case form of the “i” command is most often used to
allow both upper and lower case letters to be entered.

Various commands can be issued that manipulate the CP or display source text in the
vicinity of the CP. The commands shown below with a preceding n indicate that an

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

optional unsigned value can be specified. When preceded by +, the command can be
unsigned, or have an optional preceding plus or minus sign. As before, the pound sign (#)
is replaced by 65535. If an integer n is optional, but not supplied, then n = | is assumed.
Finally, if a plus sign is optional, but none is specified, then + is assumed.

Move CP to beginning of memory buffer if + and to bottom if -.

Move CP by *n characters (moving ahead if +), counting the
<cr><If> as two distinct characters.

Delete n characters ahead of CP if plus and behind CP if minus.

Kill (i.e., remove) *n lines of source text using CP as the current
reference. If CP is not at the beginning of the current line when K is
issued, the characters before CP remain if + is specified, while the
characters after CP remain if - is given in the command.

If n = 0, move CP to the beginning of the current line (if it is not
already there). If n # 0, first move the CP to the beginning of the
current line and then move it to the beginning of the line that is n
lines down (if +) or up (if -). The CP will stop at the top or bottom of
the memory buffer if too large a value of n is specified.

If n = 0, type the contents of the current line up to CP.If n = 1, type
the contents of the current line from CP to the end of the line. If
n>1, type the current line along with n - 1 lines that follow, if + is
specified. Similarly, if n>land -is given, type the previous nlines up
to the CP. Any key can be depressed to abort long type-outs.

Equivalent to £nLT, which moves up or down and types a single
line.

2.1.6 Command Strings

Any number of commands can be typed contiguously (up to the capacity of the console
buffer) and are executed only after the <cr>> is typed. Thus, the operator may use the
CP/M console line editing operation to manipulate the input command line:

ctl-C
ctl-E

ctl-H
cti-J

ctl-M
cti-R

cti-U
ctl-X
ctl-Z
rub/del

CP/M system reboot when typed at start of line.

Physical end of line: carriage is returned, but line is
not sent until the carriage return key is depressed.

Backspace one character position.
Terminate current input (line feed).
Terminate current input (carriage return).

’

Retype current command line: types a “clean line’
following character deletion with rubouts.

Delete the entire line typed at the console.
Same as ctl-U.
End input from the console (used in PIP and ED).

Delete and echo the last character typed at the
console.

38 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Suppose the memory buffer contains the characters shown in the previous section,
with the CP following the last character of the buffer. The command strings shown
below produce the results shown to the right. Use lower case command letters to avoid
automatic translation of strings to upper case.

Command String Effect Resulting Memory Buffer
1. B2T<cr> Move to beginning , NOW IS THE<cr> <If>
of buffer and type TIME FOR<cr><If>
2 lines: ALL GOOD MEN<cr><If>
‘NOW IS THE
TIME FOR’
2. 5C0T<cr> Move CP 5 NOW I S THE <cr><If>
characters and type
the beginning
of the line
‘NOW I
3. 2L-T<cr> Move two lines NOW IS THE< cr><If>
down and type TIME FOR<cr><if>

ALL GOOD MEN<cr><if>

previous line

‘TIME FOR’

4. -L#K<cr> Move up one line, NOW IS THE<cr><If>
delete 65535 lines
that follow
5. I<cer> Insert two lines NOW IS THE<cr><If>
TIME TO<cr> of text with auto- TIME TO<cr><If>
INSERT<cr> matic translation INSERT<cr><if>
tz to upper case

6. -2L#T<cr> Move up two lines NOW IS THE<cr><If>

and type 65535 TIME TO<cr><If>
lines ahead of CP/ \INSERT<cr><If>

‘NOW IS THE’

7. <cr> , Move down one line NOW IS THE<cr><If>
and type one line TIME TO<cr> <If>
‘INSERT INSERT<cr><If>

2.1.7 Text Search and Alteration

ED also has a command that locates strings within the memory buffer. The command
takes the form

nFs <cr>
or
nFs tz

where s represents the string to match, followed by either a<<cr>orctl-Z, denoted by 1z.
ED starts at the current position of CP and attempts to match the string. The match is
attempted n times, and, if successful, the CP is moved directly after the string. If the n
matches are not successful, the CP is not moved from its initial position. Search strings
can include ctl-L, which is replaced by the pair of symbols <cr><If>.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 39

The following commands illustrate the use of the F command:

Command String Effect Resulting Memory Buffer

1. B#T<cr> Move to begin- NOW IS THE<cr><If>
ning and type TIME FOR<cr><if>
entire buffer ALL GOOD MEN<cr><If>

2. FS T<cr> Find the end of NOWIS T , HE<cr><if>
the string ‘'S T

3. Fl11z0TT Find the next I’ NOW IS THE<cr> <if>

and type to the TI A ME FOR<cr><if>
CP; then type the
remainder of the ALl GOOD MEN<cr><If>
current line:
‘ME FOR’
An abbreviated form of the insert command is also allowed, which is often used in
conjunction with the F command to make simple textual changes. The form is
stz
or
1 s<er>

where s is the string to insert. If the insertion string is terminated by a 1z, the string is
inserted directly following the CP, and the CP positioned directly after the string. The
action is the same if the command is followed by a <cr> except that a <cr><If> is
automatically inserted into the text following the string. Consider the following com-
mand sequences as examples of the F and [commands:

Command String Effect Resulting Memory Buffer
1. BITHIS IS 1z<¢er> Insert “THIS IS’ THIS IS ANOW THE <cr><if>
at the beginning
of the text

TIME FOR<cr><If>
ALL GOOD MEN<cr><If>

FTIMEz-4DIPLACE!z<cr> Find ‘TIME’ and THIS IS NOW THE<cr><If>

2. delete it; then PLACEA FOR<cr><if>
insert \PLACE’
ALL GOOD MEN<cr><If>
3. 3F0O12-3D5D1 Find third THIS IS NOW THE <cr> <If>
CHANGES!z<cr> occurrence of ‘O’ PLACE FOR<cr><If>
(i.e., the second ‘O’ ALL CHANGES A <cr><if>
in GOOD), delete
previous 3
characters and the
subsequent 5 charac-
ters; then insert
‘CHANGES’
4. -8CISOURCE<cr> Move back 8 THIS IS NOW THE<cr><If>
characters and PLACE FOR<cr><if>
insert the line ALL SOQURCE<cr><if>

‘SOURCE<cr> <If>'CHANGES<Cr> <i>

ED also provides a single command that combines the F and I commands to perform
simple string substitutions. The command takes the form
nsS sqlzsy <cr>
or
nS sqlzsy 1z

40 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

and has exactly the same effect as applying the tollowing command string a totai ot n
times:
F sqtz-kDisy <cr>
or
F s4tz-kDlsg !z

where k is the length of the string. That is, ED searches the memory buffer starting at the
current position of CP and successively substitutes the second string forthe first string
until the end of buffer or until the substitution has been performed n times.

As a convenience, a command similar to F is provided by ED, which automatically
appends and writes lines as the search proceeds. The form is

nNs <cr>
or
nNs tz ,

which searches the entire source file for the nth occurrence of the strings (the user should
recall that F fails if the string cannot be found in the current buffer). The operation of the
N command is precisely the same as F except in the case that the string
cannot be found within the current memory buffer. In this case, the entire memory
content is written (i.e., an automatic #W is issued). Input lines are then read until the
buffer is at least half full or the entire source file is exhausted. The search continues in
this manner until the string has been found n times or until the source file has been
completely transferred to the temporary file.
A final line editing function, called the juxtaposition command, takes the form

nJsqylzsptz sy <cr>
or
nJsqlzsotzsy fz

with the following action applied n times to the memory buffer: search from the current
CP for the next occurrence of the string s1. If found, insert the string s3, and move CP to
follow s. Then delete all characters following CP up to (but not including) the string s3,
leaving CP directly after s.If s3 cannot be found, then no deletion is made. If the current
line is

NOW IS THE TIME<cr><If>
the command
JW 1zZWHAT 1zt <cr>
results in
NOW WHAT <cr |If>
(The user should recall that tl (ctl-L) represents the pair <cr><If> in search and
substitute strings.)

The number of characters allowed by ED in the F, 5, N, and] commands is limited to
100 symbols.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 41

2.1.8 Source Libraries

ED also allows the inclusion of source libraries during the editing process with the R
command. The form of this command is

R filename tz
or
R filename <cr>

where filename is the primary filename of a source file on the disk with an assumed
filetype of ‘LIB’. ED reads the specified file, and places the characters into the memory
buffer after CP, in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB until the end-of-file and
automatically inserts the characters into the memory buffer.

ED also includes a “block move” facility implemented through the X (Xfer) command.
The form

nx
transfers the next n lines from the current line to a temporary file called
X$$8$$s.LIB

which is active only during the editing process. In general, the user can reposition the
current line reference to any portion of the source file and transfer lines to the temporary
file. The transferred lines accumulate one after another in this file and can be retrieved by
simply typing

R

which is the trivial case of the library read command. In this case, the entire transferred
set of lines is read into the memory buffer. The user should note that the X command does
not remove the transferred lines from the memory buffer, although a K command can be
used directly after the X, and the R command does not empty the transferred LIB file.
That is, given that a set of lines has been transferred with the X command, they can be
reread any number of times back into the source file. The command

0X

is provided, however, to empty the transferred line file.

The user should note that upon normal completion of the ED program through Q or
E, the temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

2.1.9 Repetitive Command Execution

The macro command M allows the ED user to group ED commands together for
repeated evaluation. The M command takes the form

nMCS <cr>

or

nMCS 1z

42 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

where CS represents a string of ED commands, not including another M command. ED
executes the command string n times if n>>1. If n=0 or 1, the command string is exe-
cuted repetitively until an error condition is encountered (e.g., the end of the memory
buffer is reached with an F command).

As an example, the following macro changes all occurrences of GAMMA to DELTA
within the current buffer, and types each line that is changed
MFGAMMA1z-5DIDELTA1z0TT<<cr>

or equivalently

MSGAMMAIZDELTAIZOTT<¢cr>

2.2 ED Error Conditions

On error conditions, ED prints the message “BREAK X AT C” where X is one of the
error indicators shown below:

? Unrecognized command.

> Memory buffer full (use one of the commands D, K, N, S, or W to
remove characters); F, N, or S strings too long.

Cannot apply command the number of times specified (e.g., in F
command).

O Cannot open LIB file in R command.

If there is a disk error, CP/M displays the following message:

BDOS ERR on d: BAD SECTOR
The operator can choose to ignore the error by pressing the return key at the console (in
this case, the memory buffer data should be examined to see if they were incorrectly
read), or the user can reset the system by ctl-C and reclaim the backup file if its exists. The
file can be reclaimed by first typing the contents ot the BAK file to ensure that it contains
the proper information

TYPE x.BAK
where x is the file being edited. Then remove the primary file

ERA x.y
and rename the BAK file

REN x.y=x.BAK
The file can then be reedited, starting with the previous version.

ED also takes file attributes into account. If the operator attempts to edit a read/only

file, the message

" FILE IS READ/ONLY **

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 43

appears at the console. The file can be loaded and examined, but cannot be altered.

Normally the operator simply ends the edit session and uses STAT to change the file

attribute to R/W. If the edited file has the “system” attribute set, the message
‘'SYSTEM' FILE NOT ACCESSIBLE

is displayed and the edit session is aborted. Again, the STAT program can be used to
change the system attribute, if desired.

2.3 Control Characters and Commands

The following tabulation summarizes the control characters and commands available

in ED:

Control Character Function
ctl-C System reboot
cti-E Physical <cr><If> (not actually entered in
command)
ctl-H Backspace
ctl-J Logical tab (cols 1, 9, 16,...)
cti-L Logical <cr><If>> in search and substitute
strings
ctl-R Repeat line
ctl-U Line delete
cti-X Line delete
ctl-Z String terminator
rub/del Character delete
Command Function
nA Append lines
+B8 Begin or bottom of buffer
+nC Move character positions
+nD Delete characters
E End edit and close files (normal end)
nf Find string
H End edit, close and reopen files
i Insert characters, use i if both upper and
lower case characters are to be entered
nJ Place strings in juxtaposition
nK Kill tines
+nL Move down/up lines
nM Macro definition
nN Find next occurrence with autoscan

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

oV

nW
nZ

Return to original file
Move and print pages
Quit with no file changes
Read library file
Substitute strings

Type lines

Translate lower to upper case if U, no trans-
lation if -U

Verify line numbers, or show remaining free
character space

A special case of the V.command, OV, prints
the memory buffer statistics in the form

free/total

where free is the number of free bytes in the
memory buffer (in decimal) and total is the
size of the memory buffer

Write lines
Wait (sleep) for approximately n seconds

Move and type (£nLT).

Because of common typographical errors, ED requires several potentially disastrous
commands to be typed as single letters, rather than in composite commands. The

commands

E(end), H(head), O(original), Q(quit)

must be typed as single letter commands.

The commands I,], M, N, R;and S should be typed as i, j, m, n, r, and s if both upper and
lower case characters are used in the operation, otherwise all characters are converted to
upper case. When a command is entered in upper case, ED automatically converts the
associated string to upper case, and vice-versa.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45

CP/M Assembler

3.1 Introduction

The CP/M assembler reads assembly language source files from the diskette and
produces 8080 machine language in Intel hex format. The CP/M assembler is initiated by

typing

ASM filename
or

ASM filename.parms
In both cases, the assembler assumes there is a file on the diskette with the name
filename.ASM

which contains an 8080 assembly language source file. The first and second forms shown
above differ only in that the second form allows parameters to be passed to the assembler
to control source file access and hex and print file destinations.

In either case, the CP/M assembler loads and prints the message

CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first command, the assembler
reads the source file with assumed file type ASM and creates two output files

filename HEX
and

filename.PRN

The HEX file contains the machine code corresponding to the original program in Intel
hex format, and the PRN file contains an annotated listing showing generated machine

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO.DIGITAL RESEARCH 47

code, error flags, and source lines. If errors occur during translation, they will be listed in
the PRN file as well as at the console.

The form ASM filename parms can be used to redirect input and output files from
their defaults. In this case, the parms portion of the command is a three-letter group that
specifies the origin of the source file, the destination of the hex file, and the destination of
the print file. The form is

filename.p1p2p3
where p1, p2, and p3 are single letters
P1: AB, ..., P designates the disk name that contains the source file
p2: AB, ..., Pdesignates the disk name that will receive the hex file
z skips the generation of the hex file
p3: A B, .., Pdesignates the disk name that will receive the print file

X places the listing at the console

Z skips generation of the orint file
Thus, the command
ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A and that the hex (X.HEX)
and print (X.PRN) files are also to be created on disk A. This form of the command is
implied if the assembler is run from disk A. That is, given that the operator is currently
addressing disk A, the above command is equivalent to

ASM X
The command
ASM X.ABX

indicates that the source file is to be taken from disk A, the hex file is to be placed on disk
B, and the listing file is to be sent to the console. The command

ASM X.BZZ

takes the source file from disk B and skips the generation of the hex and print files (this
command is useful for fast execution of the assembler to check program syntax).

The source program format is compatible with the Intel 8080 assembler (macros are
not implemented in ASM; see the optional MAC macro assembler). There are certain
extensions in the CP/M assembler that make it somewhat easier to use. These extensions
are described below.

3.2 Program Format

An assembly language program acceptable as input to the assembler consists of a
sequence of statements of the form

line# label operation operand ;comment

48 ALL INFORMATION PRESENTED HERE $S PROPRIETARY TO DIGITAL RESEARCH

where any or all of the fields may be present in a particular instance. Each assembly
language statement is terminated with a carriage return and line feed (the line feed is
inserted automatically by the ED program), or with the character !, which is treated as an
end-of-line by the assembler (thus, multiple assembly language statements can be writ-
ten on the same physical line if separated by exclamation mark symbols).

The line# is an optional decimal integer value representing the source program line
number, and ASM ignores this field if present.

The label field takes the form

identifier
or

identifier:

and is optional, except where noted in particular statement types. The identifier is a
sequence of alphanumeric characters where the first character is alphabetic. dentifiers
can be freely used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($), which can be used
to improve readability of the name. Further, all lower case alphabetics are treated as if
they were upper case. The following are all valid instances of labels

X Xy long$name
X: yxl: longer$named$data:
X1Y2 X1x2 x234$5678$9012$3456:

The operation field contains either an assembler directive or pseudo-operation, or an
8080 machine operation code. The pseudo-operations and machine operation codes are
described below.

The operand field of the statement, in general, contains an expression formed out of
constants and labels, along with arithmetic and logical operations on these elements.
Again, the complete details of properly formed expressions are given below.

The comment field contains arbitrary characters following the ; symbol until the next
real or logical end-of-line. These characters are read, listed, and otherwise ignored by the
assembler. The CI’/M assembleralso treats statements that begin with an * in column one
as comment statements, which are listed and ignored in the assembly process.

The assembly language program is formulated as a sequence of statements of the
above form, terminated by an optional END statement. All statements following the
END are ignored by the assembler.

3.3 Forming the Operand

To describe the operation codes and pseudo-operations completely, it is necessary first
to present the form of the operand field, since it is used in nearly all statements.
Expressions in the operand field consist of simple operands (labels, constants, and
reserved words), combined in properly formed subexpressions by arithmetic and logical
operators. The expression computation is carried out by the assembler as the assembly
proceeds. Each expression must produce a 16-bit value during the assembly. Further, the
number of significant digits in the result must not exceed the intended use. That s, if an
expression is to be used in a byte move immediate instruction, the most significant 8 bits
of the expression must be zero. The restriction on the expression significance is given
with the individual instructions. o

ALL INFORMATION PRESENTED HERE IS BROPRIEFARY TO DIGITAL RESEARCH 49

3.3.1 Labels

As discussed above, a label is an identifier that occurs on a particular statement. In
general, the label is given a value determined by the type of statement that it precedes. [f
the label occurs on a statement that generates machine code or reserves memory space
(e.g., a MOV instruction or a DS pseudo-operation), the label is given the value of the
program address that it labels. If the label precedes an EQU or SET, the label is given the
value that results from :valuating the operand field. Except for the SET statement, an
identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the assembler.
This value can then be combined with other operands and operators to form the operand
field for a particular instruction.

3.3.2 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the radix
of the constant, is denoted by a trailing radix indicator. The radix indicators are
binary constant (base 2)
octal constant (base 8)
octal constant (base 8)

decimal constant (base 10)

I 0O 0 O W

hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter O is easily confused
with the digit 0. Any numeric constant that does not terminate with a radix indicator is
assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. That is, binary
constants must be composed of 0 and 1 digits, octal constants can contain digits in the
range 0-7, while decimal constants contain decimal digits. Hexadecimal constants contain
decimal digits as well as hexadecimal digits A (10D), B (11D), C(12D), D (13D), E (14D),
and F (15D). The user should note that the leading digit of a hexadecimal constant must be
a decimal digit to avoid confusing a hexadecimal constant with an identifier (a leading 0
will always suffice). A constant composed in this manner must evaluate to a binary
number that can be contained within a 16-bit counter, otherwise it is truncated on the
right by the assembler. Similar to identifiers, imbedded $ signs are allowed within
constants to improve their readability. Finally, the radix indicator is translated to upper
case if a lower case letter is encountered. The following are all valid instances of numeric
constants

1234 1234D 11008 1111$0000%$1111$00008
1234H OFFEH 33770 33$77%$22Q
33770 Ofe3h 1234d offfth

3.3.3 Reserved Words

There are several reserved character sequences that have predefined meanings in the
RS

50 ALL INFORMATION PRESENTED HEREH IS PROPRIETARY TO DIGITAL RESEARCH

operand field of a statement. The names of 8080 registers are given below. When they are
encountered, they produce the values shown to the right.

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(Again, lower case names have the same values as their upper case equivalents.) Machine
instructions can also be used in the operand field and evaluate to their internal codes. In
the case of instructions that require operands, where the specific operand becomes a part
of the binary bit pattern of the instruction (e.g., MOV A,B), the value of the instruction
(in this case MQV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g.. MOV produces 40H). ‘

When the symbol $ occurs in the operand field (not imbedded within identifiers and
numeric constants), its value becomes the address of the nextinstruction to generate, not
including the instruction contained within the current logical line.

3.34 String Constants

String constants represent sequences of ASCII characters and are represented by
enclosing the characters within apostrophe symbols (‘). All strings must be fully con-
tained within the current physical line {thus allowing ! symbols within strings) and must
not exceed 64 charactersinlength. The apostrophe character itself can be included within
a string by representing it as adouble apostrophe (the two keystrokes ”), which becomes a
single apostrophe when read by the assembler. In most cases, the string length is
restricted to either one or two characters (the DB pseudo-operation is an exception), in
which case the string becomes an 8- or 16-bit value, respectively. Two character strings
become a 16-bit constant, with the second character as the low order byte, and the first
character as the high order byte.

The value of a character is its corresponding ASCH code. There is no case translation
within strings, and thus both upper and lower case characters can be represented. The
user should note, however, that only graphic (printing) ASCII characters are allowed
within strings.

Valid strings are which represent
‘A" 'AB’ ‘ab’ ‘¢’ A AB ab c¢
g e a .
'Walla Walla Wash.' Walla Walla Wash.
'‘She said "Hello’’ to me.’ She said “"Hello’’ to me
‘I said "Hello" to her.’ 1'said "Hello"” to her

ALL INFORMATION PRESENTED HERE IS{PROPRIEFARY TO DIGITAL RESEARCH 51

3.3.5 Arithmetic and Logical Operators

The operands described above can be combined in normal algebraic notation using any
combination of properly formed operands, operators, and parenthesized expressions.
The operators recognized in the operand field are

atb unsigned arithmetic sum of a and b
a-b unsigned arithmetic difference between a and b
+b unary plus (produces b)
-b unary minus (identical to 0 - b)
a*b unsigned magnitude multiplication of a and b
a’/b unsigned magnitude division of a by b

aMODbDb remainder after a/ b

NOT b logical inverse of b (all 0s become 1s, 1s become 0s), where b is
considered a 16-bit value

aAND b bit-by-bit logical and of a and b
aORDb bit-by-bit logical or of a and b
a XOR b bit-by-bit logical exclusive or of a and b

aSHLb the value that results from shifting a to the left by an amount b,
with zero fill ’

aSHR b the value that results from shifting a to the right by an amount b,
with zero fill.

In each case, a and b represent simple operands (labels, numeric constants, reserved
words, and one or two character strings) or fully enclosed parenthesized subexpressions
such as

10+20 10h+37Q LI/3 (L2+4) SHR 3
('a"and 5fh) +'0" {'B'+B) OR (PSW#M)
(1+(2+c)) shr (A-(B+1))

Note that all computations are performed at assembly time as 16-bit unsigned operations.
Thus, -1 is computed as 0-1, which results in the value 0ffffh (i.e., all1s). The resulting
expression must fit the operation code in which it is used. For example, if the expressionis
used in an ADI (add immediate) instruction, the high order 8 bits of the expression must
be zero. As a result, the operation ADI -1 produces an error message (-1 becomes Offffh,
which cannot be represented as an 8-bit value), while ADI(-1) AND OFFH is accepted by
the assembler since the AND operation zeroes the high order bits of the expression.

3.3.6 Precedence of Operators

As a convenience to the programmer, ASM assumes that operators have a relative
precedence of application that allows the programmer to write expressions without
nested levels of parentheses. The resulting expression has assumed parentheses that are
defined by the relative precedence. The order of application of operators in unparenthe-
sized expressions is listed below. Operators listed first have highest precedence (they are
applied first in an unparenthesized expression), while operators listed last have lowest

52 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

precedence. Operators listed on the same line have equal precedence, and are applied
from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler as the
fully parenthesized expressions shown to the right

a“b+c (a*"b)+c
a+b*c at(b*c)
aMODb*cSHLA ((aMOD b) " ¢) SHL d

aORbANDNOTc+dSHLe aOR (bAND (NOT (c + (d SHL e})))

Balanced parenthesized subexpressions can always be used to override the assumed
parentheses; thus, the last expression above could be rewritten to force application of
operators in a different order as

(a OR b) AND (NOT c) +d SHL e
resulting in the assumed parentheses
(a OR b) AND ((NOT c) + (d SHL e))

An unparenthesized expression is well-formed only if the expression that results from
inserting the assumed parentheses is well-formed.

3.4 Assembiler Directives

Assembler directives are used to set labels to specific values during the assembly,
perform conditional assembly, define storage areas, and specify starting addresses in the
program. Each assembler directive is denoted by a pseudo-operation that appears in the
operation field of the line. The acceptable pseudo-operations are

ORG set the program or data origin
END end program, optional start address
EQU numeric “equate”

SET numeric “set”

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53 .

DW define data words

DS define data storage area

The individual directives are detailed below.

3.4.1 The ORG Directive
The ORG statement takes the form
label ORG expression

where “label” is an optional program identifier and expression is a 16-bit expression,
consisting of operands that are defined before the ORG statement. The assembler begins
machine code generation at the location specified in the expression. There can be any
number of ORG statements within a particular program, and there are no checks to
ensure that the programmer is not defining overlapping memory areas. The user should
note that most programs written for the CP/M system begin with an ORG statement of
the form

ORG 100H

which causes machine code generation to begin at the base of the CP/M transient
program area. If a label is specified in the ORG statement, the label is given the value of
the expression (this label can then be used in the operand field of other statements to
represent this expression).

3.4.2 The END Directive

The END statement is optional in an assembly language program, but if it is present it
must be the last statement (all subsequent statements are ignored in the assembly). The
two forms of the END directive are

label END

label END expression

where the label is again optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expressioa is
evaluated, and becomes the program starting address (this starting address is included in
the last record of the Intel formatted machine code hex file, which results from the
assembly). Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient program
area).

54 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

3.4.3 The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular numeric values.
The form is

label EQU expression

where the label must be present and must not label any other statement. The assembler
evaluates the expression, and assigns this value to the identifier given in the label field.
The identifier is usually a name that describes the value in a more human-oriented
manner. Further, this name is used throughout the program to “parameterize” certain
functions. Suppose data received from a teletype appear on a particular input port and
data are sent to the teletype through the next output port in sequence. The series of
equate statements could be used to define these ports for a particular hardware
environment

TTYBASE EQU 10K ‘BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE JTY DATAIN
TTYOUT EQU TTYBASE+1 ;TTY DATA OUT

At a later point in the program, the statements that access the teletype could appear as

IN TTYIN ‘READ TTY DATA TO REG-A

ouT TTYOUT -‘WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute 1/O ports had been used. Further,
if the hardware environment is redefined to start the teletype communications ports at
7FH instead of 10H, the first statement need only be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

3.4.4 The SET Directive
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occur on other SET statements within the program. The
expression is evaluated and becomes the current value associated with the label. Thus,
the EQU statement defines a label with a single value, while the SET statement defines a
value that is valid from the current SET statement to the point where the label occurson
the next SET statement. The use of the SET is similar to the EQU statement, but is used
most often in controlling conditional assembly.

T

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55

3.4.5 The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language statements that are
to be included or excluded during the assembly process. The form is

IF expression
statement#1

statement#2

statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF (all operands in the expression must be defined ahead of the IF statement). If the
expression evaluates to a nonzero value, then statement#l through statement#n are
assembled; if the expression evaluates to zero, the statements are listed but not
assembled. Conditional assembly is often used to write a single “generic” program that
includes a number of possible run-time environments, with only a few specific portions of
the program selected for any particular assembly. The following program segments, for
example, might be part of a program that communicates with either a teletype or aCRT
console (but not both) by selecting a particular value for TTY before the assembly begins.

TRUE EQU OFFFFH :DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE
,TTY EQU TRUE ;TRUEIFTTY, FALSEIF CRT
:TTYBASE EQU 10H :BASE OF TTY I/0 PORTS
CRTBASE EQU 20H :BASE OF CRT /O PORTS
IF TTY ;ASSEMBLE RELATIVE TO
s TTYBASE
CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE+1 ;CONSOLE QUTPUT
ENDIF
; IF NOT TTY :ASSEMBLE RELATIVE TO
;CRTBASE
CONIN EQU CRTBASE ;CONSOLE INPUT
CONOUT EQU CRTBASE+1 ;CONSOLE OUTPUT
ENDIF
IN CONIN :READ CONSOLE DATA
ouT CONOUT :WRITE CONSOLE DATA

[o this case, the program would assemble for an environment where a teletype is
connected, based at port 10H. The statement defining TTY could be changed to

TTY EQU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

56 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

3.4.6 The DB Directive

The DB directive allows the programmer to define initialized storage areas in single
precision (byte) format. The statement form is

label DB ei#l, e#2, .., e#n

where e#1 through e#n are either expressions that evaluate to 8-bit values (the high
order bit must be zero) or are ASCII strings of length no greater than 64 characters.
There is no practical restriction on the number of expressions included on a single
source line. The expressions are evaluated and placed sequentially into the machine code
file following the last program address generated by the assembler. String charactersare
similarly placed into memory starting with the first character and ending with the last
character. Strings of length greater than two characters cannot be used as operands in
more complicated expressions. The user should note that ASCII characters are always
placed in memory with the parity bit reset (0). Also, there is no translation from lower to
upper case within strings. The optional label can be used to reference the data area
throughout the remainder of the program. Examples of valid DB statements are

data: DB 0,1,2,3,45
DB data and 0ffh,5,377Q,1+2+3+4
sign-on: DB ‘please type your name',cr,If,0
DB ‘AB' SHR 8, 'C’, 'DE" AND 7FH

3.4.7 The DW Directive

The DW statement is similar to the DB statement except double precision (two byte)
words of storage are initialized. The form is

label DW e#1, e#2, ..., e#n
where e#1 through e#n are expressions that evaluate to 16-bit results. The user should
note that ASCII strings of one or two characters are allowed, but strings longer than two
characters are disallowed. In all cases, the data storage is consistent with the 8080
processor: the least significant byte of the expression is stored first in memory, followed

by the most significant byte. Examples are

doub: Dw Offefh,doub+4.signon-$,255+255
DwW ‘a’, 5, ‘ab’, ‘CD’, 6 shi 8 or |lb.

3.4.8 The DS Directive

The DS statement is used to reserve an area of uninitialized memory, and takes the
form

label DS expression

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 57

where the label is optional. The assembler begins subsequent code generation after the
area reserved by the DS. Thus, the DS statement given above has exactly the same effect
as the statement

label: EQU $;LABEL VALUE |S CURRENT CODE LOCATION
ORG $+expression ;MOVE PAST RESERVED AREA

3.5 Operation Codes

Assembly language operation codes form the principal part of assembly language
programs and form the operation field of the instruction. In general, ASM accepts all the
standard mnemonics for the Intel 8080 microcomputer, which are given in detail in Intel’s
“8080 Assembly Language Programming Manual.” Labels are optional on each input line.
The individual operators are listed briefly in the following sections for completeness,
although it is understood that the Intel manuals should be referenced for exact operator
details. In the following tables,

e3 represents a 3-bit value in the range 0-7 which can be one of the
predefined registers A, B, C, D, E, H, [, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255.

e16 represents a 16-bit value in the range 0-65535.

These expressions can be formed from an arbitrary combination of operands and opera-
tors. In some cases, the operands are restricted to particular values within the allowable
range, such as the PUSH instruction. These cases will be noted as they are encountered.

In the sections that follow, each operation code is listed in its most general form, along
with a specific example, with a short explanation and special restrictions.

3.5.1 Jumps, Calls, and Returns

The Jump, Call, and Return instructions allow several different forms that test the
condition flags set in the 8080 microcomputer CPU. The forms are

JMP el6 JMP L1 Jump unconditionally to label

JNZ e16 JNZ L2 Jump on nonzero condition to label

Jz e16 JZ 100H Jump on zero condition to label

JNC el6 JNC L1+4 Jump no carry to label

JC el6 JC L3 Jump on carry to label

JPO el6 JPO $+8 Jump on parity odd to label

JPE el6 JPE L4 Jump on even parity to label

JP el6 JP GAMMA Jump on positive result to label

JM el6 JM al Jump on minus to label.

CALL el16 CALLJ§1 Call subroutine unconditionally

CNZ el6 | CNZéZ Call subroutine on nonzero
condition

58 ALL INFORMATION PRESENTEDHERE IS PROPRIETARY TO DIGITAL RESEARCH

1074
CNC
cc
CPO
CPE
cpP
CM

RST

RET
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

elb
e16
el6
el6
el6
elb
e16

e3

CZ 100H
CNC S1+4
CC 83

CPO $+8
CPE S4

CP GAMMA
CM b1$c2

RST O

Call subroutine on zero condition
Call subroutine if no carry set
Call subroutine if carry set

Call subroutine if parity odd
Call subroutine if parity even
Call subroutine if positive result

Call subroutine if minus flag.

Programmed restart, equivalent to
CALL 8*e3, except one byte call.

Return from subroutine
Return if nonzero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result

Return if minus flag is set.

3.5.2 Immediate Operand Instructions

Several instructions are available that load single or double precision registers or
single precision memory cells with constant values, along with instructions that perform
immediate arithmetic or logical operations on the accumulator (register A).

MV1 e3,e8

AD| e8

ACl e8

SUl e8

SBl e8

ANt e8

XRl e8

ORI} e8

MVI B,255
ADI 1

ACI OFFH
SULL +3

SBI L AND 11B
ANl $ AND 7FH
XRI 1111$00008

ORI L AND 1+1
Le

Move immediate data to register
A, B,C,D,E H L, or M (memory)

Add immediate operand to A with-
out carry

Add immediate operand to A with
carry

Subtract from A without borrow
{carry)

Subtract from A with borrow
(carry)

Logical “and” A with immediate
data

“Exclusive or” A with immediate
data

Logical “or” A withimmediate data

ALL INFORMATION PRESENTED HERE ISTPROPRIETARY TO DIGITAL RESEARCH 59

CPl e8

LX! e3,e16

CPl'd

LX! B,100H

Compare A with immediate data
(same as SUI except register A not
changed).

Load extended immediate to regis-
ter pair (e3 must be equivalent to
B,.D,H, or SP).

3.5.3 Increment and Decrement Instructions

The 8080 provides instructions for incrementing or decrementing single and double
precision registers. The instructions are

INR e3

DCR e3

INX €3

DCX e3

INR E

DCR A

INX SP

DCX B

Single precision increment register
(e3 produces one of A, B, C, D, E,
H L M)

Single precision decrement regis-
ter (e3 produces one of A, B, C, D,
E.H L M)

Double precision increment regis-
ter pair (e3 must be equivalent to
B,D,H, or SP)

Double precision decrement regis-
ter pair (e3 must be equivalent to
B,D,H, or SP).

3.54 Data Movement Instructions

[nstructions that move data from memory to the CPU and from CPU to memory are

given below.

MOV e3.e3

LDAX e3

STAX e3

LHLD el16

SHLD el6

LDA e16

MOV A,B

LDAX B

STAX D

LHLD L1

SHLD L5+x

Move data to leftmost element
from rightmost element (e3 produ-
ces one of AB,C,D.EH,L, or M).
MOV M,M is disallowed

Load register A from computed
address (e3 must produce either B
or D)

Store register A to computed
address (e3 must produce either B
or D)

Load HL direct from location el6
{double precision load to Hand L)

Store HL direct to location elé
(double precision store from H and
L to memory)

LDA Gamma Load register A from address e16

60 ALL INFORMATION PRESENTED HERE 5 PROPRIETARY TO DIGITAL RESEARCH

STA e16

POP e3

PUSH e3

IN e8
OUT e8
XTHL
PCHL
SPHL

XCHG

STA X3-5

POP PSW

PUSH B

INO

OUT 255

Store register A into memory at
elé

Load register pair from stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Store register pair into stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Load register A with data from
port e8

Send data from register A to port
e8

Exchange data from top of stack
with HL

Fill program counter with data
from HL

Fill stack pointer with data from
HL

Exchange DE pair with HL pair

3.5.5 Arithmetic Logic Unit Operations

Instructions that act upon the single precision accumulator to perform arithmetic and

logic operations are

ADD e3

ADC e3

SUB e3

SBB e3

ANA e3

XRA e3
ORA €3

CMP e3

DAA

CMA

ADD B

ADC L

SUB H

SBB 2

ANA 1+1

XRA A
ORA B

CMP H

Add register given by e3 to accum-
ulator without carry (e3 must pro-
duce one of A, B,C,D,E, H,or L)

Add register to A withcarry, e3 as
above

Subtract reg e3 from A without
carry, e3 is defined as above

Subtract register 3 from A with
carry, e3 defined as above

Logical “and” reg with A, e3 as
above

“Exclusive or” with A, e3 as above

Logical “or” with A, e3 defined as
above

Compare register with A, e3 as
above

Decimal adjust register A based
upon last arithmetic logic unit
operation

Complement the bits in register A

ALL INFORMATION PRESENTED HERE IS, EBOPR!HABY TO DIGITAL RESEARCH 61

STC
CMC
RLC

RRC

RAL

DAD e3

Set the carry flag to 1
Complement the carry flag

Rotate bits left, (re)set carry as a
side effect (high order A bit
becomes carry)

Rotate bits right, (re)set carry as
side effect (low order A bit
becomes carry)

Rotate carry/A register to left
{carry is involved in the rotate)

Rotate carry/A register to right
(carry is involved in the rotate)

DAD B Double precision add register pair
e3 to HL (e3 must preduce B; D, H,
or SP).

3.5.6 Control Instructions

The four remaining instructions categorized as control instructions are

HLT
Dl
El
NOP

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system

No operation.

3.6 Error Messages

When errors occur within the assembly language program, they are listed as single
character flags in the leftmost position of the source listing. The line in error is also
echoed at the console so that the source listing need not be examined to determine if
errors are present. The error codes are '

D

Data error: element in data statement cannot be placed in the
specified data area.

Expression error: expression is ill-formed and cannot be computed
at assembly time.

Label error: label cannot appear in this context (may be duplicate

label).

Not implemented: features that will appear in future ASM versions
(e.g., macros) are recognized, but flagged in this version.

Overflow: expression is too complicated (i.e., too many pending
operators) to be computed and should be simplified.

Phase error: label does not have the same value on two subsequent
passes through.the program.

62 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH.

Several

NO SOURCE FILE PRESENT
NO DIRECTORY SPACE
SOURCE FILE NAME ERROR

SOURCE FILE READ ERROR
OUTPUT FILE WRITE ERROR

CANNOT CLOSE FILE

Register error: the value specified as a register is not compatible
with the operation code.

Syntax error: statement is not properly formed.

Value error: operand encountered in expression is improperly
formed.

error messages are printed that are due to terminal error conditions:

The file specified in the ASM com-
mand does not exist on disk.

The disk directory is full; erase files
that are not needed and retry.

Improperly formed ASM file name
(e.g., it is specified with 7 fields).

Source file cannot be read properly
by the assembler; execute a TYPE
to determine the point of error.

Qutput files cannot be written
properly; most likely causeis a full
disk; erase and retry.

Output file cannot be closed; check
to see if disk is write protected.

3.7 A Sample Session

The following session shows interaction with the assembler and debugger in the
development of a simple assembly language program. The / arrow represents a carriage

return keystroke.
A>ASM SORT y

Assemble SORT.ASM

CP/M ASSEMBLER - VER 1.0°

015C

A>DIR SORT.%

SORT
SORT
SORT
SORT

A>TYPE SORT.PRN/
—

Next free address
003H USE FACTOR Percent of table used 00 to ff (hexadecimal)
END OF ASSEMBLY

ASM
BAK
PRN
HEX

Source file

Backup from last edit

Print file (contains tab characters)
Machine code file

Source,line

SORT PROGRAM IN C\SP/M ASSEMBLY LANGUAGE
START AT THE BEGINNING OF THE TRANSIENT
PROGRAM AREA

Machine code location

0100

ORG 100H

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

Generated machine code

0100 2146017SORT:
0103 3601

0105 214701

0108 3600

'

010A 7E
010B FEO9
010D D21901

0110 214601
0113 7EB7C20001

0118 FF

Truncated
0119

5F16002148 CONT:
0121 4E792346

0125 23

0126 965778239E

0128 DA3FO1

012E B2CA3FO1
0132 56702B5E
0136 712B722B73

013B 21460134

’

013F 21470134C3INCI:

0146 00 Sw:
0147 I:

0148 050064001EAV:
000A =

a15C

COMPL:

LXI H,SW ;ADDRESS SWITCH TOGGLE

MVI M1 :SET TO 1 FOR FIRST ITERATION
LXlI H,I ;ADDRESS INDEX

MVI MO 1=0

COMPARE | WITH ARRAY SIZE

MOV AM ;A REGISTER = |

CPIN-1 ;CY SET IF I < (N-1)

JNC CONT :CONTINUE IF | < = (N-2)

END OF ONE PASS THROUGH DATA
LXI H,SW ;CHECK FOR ZERO SWITCHES

. MOV A, M! ORA A! JNZ SORT ;END OF SORT IF SW=0

RST 7 :GO TO THE DEBUGGER INSTEAD OF REB
CONTINUE THIS PASS
ADDRESSING |, SO LOAD AV(l) INTO REGISTERS

MOV E, Al MVI D, 0! LXi H, AV! DAD D! DAD D
MOV C, M! MOV A, C! INX H! MOV B, M
LOW ORDER BYTE IN A AND C, HIGH ORDER BYTEIN B

MOV H AND L TO ADDRESS AV(I+1)
INX H

COMPARE VALUE WITH REGS CONTAINING AV (I)
SUB Mt MOV D, Al MOV A, B INXHISBBM ;SUBTRACT

BORROW SET IF AV(1+1) > AV(l)
JC INC1 SKIP IF IN PROPER ORDER

CHECK FOR EQUAL VALUES

ORA D! JZ INCI :SKIP IF AV(l) = AV(I+1)

MOV D, M! MOV M, B! DCX H! MOV E, M

MOV M, C! DCX H! MOV M, D! DCX H! MOV M, E

INCREMENT SWITCH COUNT
LXI H,SW! INR M

INCREMENT |
LXI H,I! INR Mt JMP COMP

DATA DEFINITION SECTION

bB 0 ;RESERVE SPACE FOR SWITCH COUNT
DS 1 ;SPACE FOR INDEX

DW 5, 100, 30, 50, 20, 7, 1000, 300, 100, -32767

EQU ($-AV)/2 ;COMPUTE N INSTEAD OF PRE
END

—~
A>TYPE SORT:HEX

110010000214601360121470136007EFEQID2190140 |
7}

Equate value

Machine code in

:100110002146017EB7C20001FF5F16002148011988
HEX format

:10012000194E79234623965778239EDA3F01B2CAA

64 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

-100130003F0156702B5E712B7228732146013421C7
-07014000470134C30A01006E
-10014800050064001E00320014000700E8032C01BB
-:0401580064000180BE

:0000000000

A>DDT SORT.HEXy Start debug run

Machine code in

HEX format

16K DDT VER 1.0

NEXT PC

015C 0000 Default address (no address on END statement)
-XPy

P=0000 1004 Change PC to 100

-UFFFFy Untrace for 65535 steps

Abort with rubout
COZOMOEOIO A=00 B=0000 D=0000 H=0000 $=0100 P=0100 LXI H,0146*0100
-T10y Trace 1016 steps

COZOMOEQOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LX| H, 0146
CO0ZOMOEOIO A=01 B=0000 D=0000 H=0146 $=0100 P=0103 MVI M, 01
C0ZOMOEODIO A=01 B=0000 D=0000 H=0146 $=0100 P=0105 LXI H, 0147
COZOMOEOIO A=01 B=0000 D=0000 H=0147 S$S=0100 P=0108 MVi M, 00
CO0ZOMOEOI0 A=01 B=0000 D=0000 H=0147 S=0100 P=010A MOV A M
CO0ZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPl 09
C1ZOM1EOI0 A=00 B8=0000 D=0000 H=0147 S$=0100 P=010D JNC 0118
C1ZOM1EOI0 A=00 B=0000 D=0000 H=0147 $=0100 P=0110 LXI H, 0146
C1ZOM1E0I0 A=00 B=0000 D=0000 H=0146 S=0100 P=0113 MOV A M
C1ZOM1EQIO0O A=01 B=0000 D=0000 H=0146 S=0100 P=0114 ORA A
CO0ZOMOEOIO A=01 B=0000 D=0000 H=0146 S$=0100 P=0115 JNZ 0100
CO0ZOMOEOIO0 A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LX! H, 0146
COZOMOEOIO A=01 B=0000 D=0000 H=0146 $=0100 P=0103 MVI M, 01
COZOMOEDIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LXI H, 0147
COZOMOEDIO A=01 B=0000 D=0000 H=0147 $=0100 P=0108 MVI M, 00
CO0ZOMOEOI0O A=01 B=0000 D=0000 H=0147 $=0100 P=010A MOV A, M*010B
-A10D ' . Stopped at 10BH-"

010D JC 119y Change to a jump on carry
0110y

-XPy
P=0108 100/ Reset program counter back to beginning of program

-T10¢ Trace execution for 10H steps

Altered instruction

COZOMOEODIO A=00 B=0000 D=0000 H=0147 $=0100 P=0100 LXI H,0146
COZOMOEOIO A=00 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M,01
COZOMOEOIO A=00 B=0000 D=0000 H=0146 S=0100 P=0105 LX! H,0147
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M,00
COZOMOEOIO A=00 B=0000 D=0000 H=0147 S$=0100 P=010A MOV AM
COZOMOEOIO A=00 B=0000 D=0000 H=0147 $=0100 P=0108 CPi 09
C1ZOM1EQI0O A=00 B=0000 D=0000 H=0147 S=0100 P=010D JC 0119
C1ZOM1EQI0 A=00 B=0000 D=0000 H=0147 S=0100 P=0119 MOV EA
C1ZOM1EOI0 A=00 B=0000 D=0000 H=0147 S=0100 P=011A MVI D.00

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

65

C1ZOM1EOI0 A=00 B=0000 D=0000 H=0147 $=0100 P=011C LXI H,0148
C1ZOM1EOI0 A=00 B=0000 D=0000 H=0148 S=0100 P=011F DAD D
COZOM1EOI0 A=00 B=0000 D=0000 H=0148 S=0100 P=0120 DAD D
COZOM1EQI0 A=00 B=0000 D=0000 H=0148 S=0100 P=0121 MOV CM
COZOM1YEOIO A=00 B=0005 D=0000 H=0148 S=0100 P=0122 MOV AC
COZOM1EQIO A=05 B=0005 D=0000 H=0148 S$=0100 P=1023 INX H
COZOM1EQI0 A=05 B=0005 D=0000 H=0148 S=0100 P=0124 MOV B,M/0125
-L100y Automatic breakpoint

0100 LX1 H,0146
0103 MVI M,01
0105 LXl H,0147
0108 MVI M,00
010A MOV AM

0108 CPI 09 List some code

100H
010D JC 0119 from
0110 LXI H,0146
0113 MOV AM
0114 ORA A
0115 JNZ 0100
Ly
0118 RST 07
0119 MOV EA Lict more

011A mMvi D,00
011C LXI H,0148
-Abort list with rubout
-G,11By Start program from current PC (0125H) and run in real time to 11BH

*0127 Stopped with an external interrupt 7 from front panel (program was
T4y Look at looping program in trace mode looping indefinitely)
C0ZOMOEOIO A=38 B=0064 D=0006 H=0156 S=0100 P=0127 MOV DA
COZOMOEOID A=38 B=0064 D=3806 H=0156 S=0100 P=0128 MOV AB
COZOMOEOIO A=00 B=0064 D=3806 H=0156 S$=0100 P=0128 INX H
COZOMOEOI0 A=00 B=0064 D=3806 H=0157 S=0100 P=012A SBB M*012B
-D148

Data are sorted, but program does not stop.
0148 05 00 07 00 14 00 1E 0O
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00 00 2DD.,........

0160 00 00 00 00 00 0C 00 00 00 00 00 00 00 00 00 00
-G0 3 Returnto CPIM

A>DDT SORT. HEXy Reload the memory image
16K DDT VER. 1.0

NEXT PC

015C 0000

-XP

P=0000 100y Set PC to beginning of program

66 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

-L10Dy List bad OPCODE

010D JUNC 0118
0110 LXI H,0146
-Abort list with rubout
-A10Dy Assemble new OPCODE

010D JC 119
0110y
-L100y List starting section of program

0100 LXl H,0146
0103 MVI M,01
0105 LXi H,0147
0108 MVI M,00
-Abort list with rubout
-A103y Change switch initialization to 00

0103 MVI M,04
0105;
- C Return to CPIM with ctl-C (GO works as well)

SAVE 1 SORT.COM, Save 1 page (256 bytes, from 100H to 1ffH) on disk in case

there is need to reload later
A>DDT SORT.COM; Restart DDT with saved memaory image

16K DDT VER 1.0

NEXT PC

0200 0100 COM file always starts with address 100H
-Gy Run the program from PC=100H

*0118 Programmed stop (RST 7) encountered

-D148
Data properly sorted

0148 05 00 07 00 14 00 1E 00
0150 32 00 64 Q0 64 00 2C 01 E8 03 01 80 00 00 00 00 2D.D.........

0160 00 00 0C 00 00 0C 0C 00 00 00 00 00 Q0 00 QO QO
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO OO

-GO ¢ Return to CPiM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67 .

A>ED SORT.ASMy; Make changes to original program

*N,0°Z0TTy Find next “,0”

MVI M, 0 =0
*-4 Upone line in text

LXI H. | :ADDRESS INDEX
-y Up another line

MVI M, 1 -SET TO 1 FOR FIRST ITERATION
*KT; Kill line and type next line

LXI H, 1 :ADDRESS INDEX
*ty Insert new line

MvIi MO ;ZERO SW
T

LXI H, | ;ADDRESS INDEX
‘NJNC "Z0Ty

JNC*Ty

CONT :CONTINUE IF | <= (N-2)
--2DIC"ZO0LTy

JC CONT ;CONTINUE IF I <= (N-2)
“Ey Source from disk A

HEX to disk A

A>ASM SORTAAZr— Skip PRN file
CP/M ASSEMBLER - VER 1.0

015C Next address to assemble
003H USE FACTOR
END OF ASSEMBLY

A>DDT SORT.HEXy Test program changes

16K DDT VER 1.0
NEXT PC

015C 0000
-G100y

*0118
-D148y
Data sorted
0148 05 00 07 00 14 00 'E 00
0150 32 00 64 00 64 00 2C 01 E8 03 01 80 00 00 00D 00 2DD..........
0160 00 0O 00 00 00 00 00 Q0 00 00 00 00 00 00 00 00

-Abort with rubout

-GOy Return to CP/M—program checks OK.

68 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CP/M Dynamic
Debugging Tool

4.1 Introduction

The DDT program allows dynamic interactive testing and debugging of programs
generated in the CP/M environment. Invoke the debugger with a command of one of the
following forms:

DDT

DDT filename.HEX

DDT filename.COM
where “filename” is the name of the program to be loaded and tested. In both cases, the
DDT program is brought into main memory in place of the Console Command Processor
(the user should refer to Chapter 5 for standard memory organization), and resides
directly below the Basic Disk Operating System portion of CP/M. The BDOS starting
address, located in the address field of the JMP instruction at location 5H, is altered to
reflect the reduced Transient Program Area size.

The second and third forms of the DDT command perform the same actions as the
first, except there is a subsequent automatic load of the specified HEX or COM file. The
action is identical to the sequence of commands

DDT
ifilename HEX or lfilename.COM
R
where the I and R commands set up and read the specified program to test. (The user

should see the explanation of the | and R commands below for exact details.)
Upon initiation, DDT prints a sign-on message in the format

DDT VER m.m

where m.m is the revision number.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 69

o1

Following the sign-on message, DDT prompts the operator with the character “-"and
waits for input commands from the console. The operator can type any of several single
character commands, terminated by a carriage return to execute the command. Each line
of input can be line-edited using the standard CP/M controls

rubout remove the last character typed
cti-uU remove the entire line, ready for retyping
ctl-C system reboot.

Any command can be up to 32 characters in length (an automatic carriage return is
inserted as the 33rd character), where the first character determines the command type
enter, assembly language mnemonics with operands

display memory in hexadecimal and ASCII

fill memory with constant data

o MM o >

begin execution with optional breakpoints

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination
read program for subsequent testing

substitute memory values

trace program execution

untraced program monitoring

X Cc 4 »wW oz 2 r

examine and optionally alter the CPU state.

The command character, in some cases, is followed by zero, one, two, or three hexade-
cimal values, which are separated by commas or single blank characters. Al DDT numeric
output is in hexadecimal form. The commands are not executed until the carriage return
is typed at the end of the command. .

At any point in the debug run, the operator can stop execution of DDT by using either
a ctl-C or GO (jmp to location 0000H), and save the current memory image by using a
SAVE command of the form

SAVE n filename.COM

where n is the number of pages (256 byte blocks) to be saved on disk. The number of blocks
is determined by taking the high order byte of the address in the TPA and converting this
number to decimal. For example, if the highest address in the Transient Program
Area is 1234H, the number of pages is 12H or 18 in decimal. The operator could type a
ctl-C during the debug run, returning to the Console Command Processor level, followed

by

SAVE 18 X.COM

70 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The memory image is saved as X.COM on the diskette and can be directly executed by
typing the name X. If further testing is required, the memory image can be recalled by

typing
DDT X.COM

which reloads the previously saved program from location 100H through page 18
(23FFH). The CPU state is not a part of the COM file; thus, the program must be
restarted from the beginning to test it properly.

4.2 DDT Commands

The individual commands are detailed below. In each case, the operator must wait for
the prompt character (-) before entering the command. If control is passed to a program
under test and the program has not reached a breakpoint, controlcan be returned to DDT
by executing a RST 7 from the front panel. In the explanation of each command, the
command letter is shown in some cases with numbers separated by commas, and the
numbers are represented by lower case letters. These numbers are always assumed to be
in a hexadecimal radix and from one to four digits in length (longer nuinbers will be
automatically truncated on the right).

Many of the commands operate upon a “CPU state” that corresponds to the program
under test. The CPU state holds the registers of the program being debugged and initially
contains zeroes for all registers and flags except for the program counter (P) and stack
pointer (S), which default to 100H. The program counter is subsequently set to the
starting address given in the last record of a HEX file if a file of this form is loaded (see the
I and R commands).

4.2.1 The A (Assembly) Command

DDT allows in-line assembly language to be inserted into the current memory image
using the A command, that takes the form

As

where s is the hexadecimal starting address for the inline assembly. DDT prompts the
console with the address of the next instruction to fill and reads the console, looking for
assembly language mnemonics (see the Intel 8080 Assembly Language Reference Card
for a list of mnemonics), followed by register references and operands in absolute
hexadecimal form. Each successive load address is printed before reading the console. The
A command terminates when the first empty line is input from the console.

Upon completion of assembly language input, the operator can review the memory
segment using the DDT disassembler (see the L command).

The user should note that the assembler/disassembler portion of DDT can be overlaid
by the transient program being tested, in which case the DDT program responds with an
error condition when the A and L commands are used.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 71

4.2.2 The D (Display) Command

The D command allows the operator to view the contents of memory in hexadecimal
and ASCII formats. The forms are
D
Ds
Dsf

In the first case, memory is displayed from the current display address (initially 100H) and
continues for 16 display lines. Each display line takes the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ccccecceccececececece

where aaaa is the display address in hexadecimal and bb represents data present in
memory starting at aaaa. The ASCII characters starting at aaaa are to the right (repres-
ented by the sequence of ¢’s), where nongraphic characters are printed as a period (.). The
user should note that both upper and lower case alphabetics are displayed, and will
appear as upper case symbols on a console device that supports only upper case. Each
display line gives the values of 16 bytes of data, with the first line truncated so that the
next line begins at an address that is a multiple of 16.

The second form of the D command is similar to the first, except that the display
address is first set to address s. The third form causes the display to continue from
address s through address f. In all cases, the display address is set to the first address not
displayed in this command, so that a continuing display can be accomplished by issuing
successive D commands with no explicit addresses.

Excessively long displays can be aborted by pushing the return key.

4.2.3 The F (Fill) Command

The F command takes the form
Fs,f.c

where s is the starting address, f is the final address, and cis a hexadecimal byte constant.
DDT stores the constant ¢ at address s, increments the value of s and tests against f. If s
exceeds f, the operation terminates, otherwise the operation is repeated. Thus, the fill
command can be used to set a memory block to a specific constant value.

4.24 The G (Go) Command

A program is executed using the G command, with up to two optional breakpoint
addresses. The G command takes the forms

G

Gs
Gs.b
Gs.b,c
G,b
G,b,c

72 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The first form executes the program at the current value of the program counter in the
current machine state, with no breakpoints set (the only way to regain control in DDT is
through a RST 7 execution). The current program counter can be viewed by typing an X
or XP command. The second form is similar to the first except that the program counter
in the current machine state is set to address s before execution begins. The third form is
the same as the second, except that program execution stops when address b is encoun-
tered (b must be in the area of the program under test). The instruction at location bis not

executed when the breakpoint is encountered. The fourth form is identical to the third,

except that two breakpoints are specified, one atband the other atc. Encountering either
breakpoint causes execution to stop, and both breakpoints are cleared. The last two forms
take the program counter from the current machine state and set one and two break-
points, respectively.

Execution continues from the starting address in real-time to the next breakpoint.
There is no intervention between the starting address and the break address by DDT. If
the program under test does not reach a breakpoint, control cannot return to DDT
without executing a RST 7 instruction. Upon encountering a breakpoint, DDT stops
execution and types

*d

where d is the stop address. The machine state can be examined at this point using the X
(Examine) command. The operator must specify breakpoints that differ from the pro-
gram counter address at the beginning of the G command. Thus, if the current program
counter is 1234H, then the commands

G,1234

and

G400,400

both produce an immediate breakpoint without executing any instructions.

4.2.5 The | (Input) Command

The 1 command allows the operator to insert a file name into the default file control
block at SCH (the file control block created by CP/M for transient programs is placed at
this location; see Chapter 5). The default FCB can be used by the program under test as if
it had been passed by the CP/M Console Processor. The user should note that this file
name is also used by DDT for reading additional HEX and COM files. The form of the |
command is

Ifilename
or
Ifilename.typ
If the second form is used and the filetype is either HEX or COM, subsequent R

commands can be used to read the pure binary or hex format machine code. (Section 4.2.8
gives further details.)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 73

4.2.6 The L (List) Command

The L command is used to list assembly language mnemonics in a particular program
region. The forms are

L
Ls
Ls,f

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code. The
last form lists disassembled code from s through address f. In all three cases, the list
address is set to the next unlisted location in preparation for a subsequent L command.
Upon encountering an execution breakpoint, the list address is set to the current value of
the program counter (G and T commands). Again, long typeouts can be aborted using the
return key during the list process.

4.2.7 The M (Move) Command

The M command allows block movement of program or data areas from one location
to another in memory. The form is

Ms.f.d

where s is the start address of the move, f is the final address, and d is the destination
address. Data are first removed from s to d, and both addresses are incremented. If s
exceeds f, the move operation stops; otherwise, the move operation is repeated.

4.2.8 The R (Read) Command

The R command is used in conjunction with the [command to read COM and HEX
files from the diskette into the transient program area in preparation for the debug run.
The forms are '

R
Rb

where b is an optional bias address that is added to each program or data address as it is
loaded. The load operation must not overwrite any of the system parameters from 000H
through OFFH (i.e., the first page of memory). If b is cmitted, then b=0000 is assumed.
The R command requires a previous | command, specifying the name of a HEX or COM
file. The load address for each record is obtained from each individual HEX record, while
an assumed load address of 100H is used for COM files. The user should note that any
number of R commands can be issued following the I command to reread the program
under test, assuming the tested program does not destroy the default area at SCH. Any
file specified with the filetype “COM” is assumed to contain machine code in pure binary
form (created with the LOAD or SAVE command), and all others are assumed to contain
machine code in Intel hex format (produced, for example, with the ASM command.)

74 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Recall that the command
DDT filename.filetype
which initiates the DDT program, is equivalent to the commands

DDoT
-Ifilename.filetype
-R
Whenever the R command is issued, DDT responds with either the error indicator “?”

(file cannot be opened, or achecksum error occurred in a HEX file), or with aload message
taking the form

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program and pppp is the assumed
program counter (100H for COM files, or taken from the last record if a HEX file is
specified).

4.2.9 TheS (Set) Command

The S command allows memory locations to be examined and optionally altered. The
form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration of memory.
DDT responds with a numeric prompt, giving the memory location, along with the data
currently held in memory. If the operator typesa carriage return, thedataare not altered.
If a byte value is typed, the value is stored at the prompted address. In either case, DDT
continues to prompt with successive addresses and values until either a period (.) is typed
by the operator or an invalid input value is detected.

4.2.10 The T (Trace) Command

The T command allows selective tracing of program execution for1to 65535 program
steps. The forms are

T
Tn

In the first case, the CPU state is displayed and the next program step is executed. The
program terminates immediately, with the termination address displayed as

*hhhh
where hhhh is the next address to execute. The display address (used in the D command)

is set to the value of Hand L, and the list address (used in the L command) is set to hhhh.
The CPU state at program termination can then be examined using the X command.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 75

The second form of the T command is similar to the first, except that execution is
traced for n steps (n is a hexadecimal value) before a program breakpoint occurs. A
breakpoint can be forced in the trace mode by typing a rubout character. The CPU state is
displayed before each program step is takenin trace mode. The format of the display is the
same as described in the X command. :

The user should note that program tracing is discontinued at the CP/M interface and
resumes after return from CP/M to the program under test. Thus, CP/M functions that
access 1O devices, such as the diskette drive, run in real-time, avoiding 1/O timing
problems. Programs running in trace mode execute approximately 500 times slower than
real-time since DDT gets control after each user instruction is executed. Interrupt
processing routines can be traced, but commands that use the breakpoint facility (G, T,
and U) accomplish the break using an RST 7 instruction, which means that the tested
program cannot use this interrupt location. Further, the trace mode always runs the
tested program with interrupts enabled, which may cause problems if asynchronous
interrupts are received during tracing.

The operator should use the return key to get control back to DDT during trace,
rather than executing an RST 7, to ensure that the trace for current instruction is
completed before interruption.

4.2.11 The U (Untrace) Command

The U command is identical to the T command except that intermediate program steps
are not displayed. The untrace mode allows from 1 to 65535 (OFFFFH) steps to be
executed in monitored mode and is used principally to retain control of an executing
program while it reaches steady state conditions. All conditions of the T command apply
to the U command.

4.2.12 The X (Examine) Command

The X command allows selective display and alteration of the current CPU state for
the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry flag (0/1)
z Zero flag (0/1)
M Minus flag (01)
E Even parity flag (0/1)

Interdigit carry (0/1)
Accumulator (O-FF)
BC register pair (0-FFFF)
DE register pair (0O-FFFF)
HL register pair (0-FFFF)
Stack pointer (O-FFFF)
Program counter (O-FFFF)

T O I O ® »

76 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH

In the first case, the CPU register state is displayed in the format
CfZfM{EfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double-byte quantity
corresponding to the register pair. The “inst” field contains the disassembled instruction,
which occurs at the location addressed by the CPU state’s program counter.

The second form allows display and optional alteration of register values, where ris
one of the registers given above (C,Z,M,E, 1, A,B, D, H, S, or P). In each case, the flag or
register value is first displayed at the console. The DDT program then accepts input from
the console. If a carriage return is typed, the flag or register valueis not altered. If a value
in the proper range is typed, the flag or register valueis altered. The user should note that
BC, DE, and HL are displayed as register pairs. Thus, the operator types the entire

register pair when B, C, or the BC pair is altered.

4.3 Implementation Notes

The organization of DDT allows certain nonessential portions to be overlaid to
gain a larger transient program area for debugging large programs. The DDT program
consists of two parts: the DDT nucleus and the assembler/disassembler module. The
DDT nucleus is loaded over the Console Command Processor, and, although loaded with
the DDT nucleus, the assembler/disassembler is overlayable unless used to assemble or
disassemble.

In particular, the BDOS address at location 6H (address field of the JMP instruction at
location 5H) is modified by DDT to address the base location of the DDT nucleus, which,
in turn, contains a JMP instruction to the BDOS. Thus, programs that use this address
field to size memory see the logical end of memory at the base of the DDT nucleus rather
than the base of the BDOS.

The assembler/disassembler module resides directly below the DDT nucleus in the
transient program area. If the A, L, T, or X commands are used during the debugging
process, the DDT program again alters the address field at 6H to include this module,
further reducing the logical end of memory. If a program loads beyond the beginning of
the assembler/disassembler module, the A and L commands are lost (their use produces a
“?” in response) and the trace and display (T and X) commands list the “inst” field of the
display in hexadecimal, rather than as a decoded instruction.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 77

4.4 An Example

The following example shows an edit, assemble, and debug for a simple program that
reads a set of data values and determines the largest value in the set. The fargest value is
taken from the vector and stored into “LARGE"” at the termination of the program

A>ED SCAN.ASM

*'}

LOOP
LOOP:

NFOUND

'VECT:
LEN
LARGE:

1-Z
"BOPY

LOOP:

NFOUND:

78

Create source program;
“f” represents carriage return.

ORG 1-00H ‘START OF TRANSIENT
:AREA ¥

MV! B, LEN :LENGTH OF VECTOR TO SCANy

MV C,0 ‘LARGER_RST VALUE SO FARy

LXI H, VECT :BASE OF VECTORY

MOV A, M ‘GET VALUE Y

suUB C ‘LARGER VALUE IN C?y

JNC NFOUND -JUMP IF LARGER VALUE NOT
;FOUNDY¥

NEW LARGEST VALUE. STOREITTO C/

MOV . C,A

INX H :TO NEXT ELEMENTY/

DCR B ‘MORE TO SCAN?y

JNZ LOOP :FOR ANOTHER y

END OF SCAN, STORE Cy

MOV A.C ‘GET LARGEST VALUE /

STA LARGE/

JMP 0 ;REBOQTY/

TEST DATA

DB 2.0.4356.1,5

EQU $-VECT LENGTH

DS 1 :LARGEST VALUE ON EXIT/

END/

ORG 100H ‘START OF TRANSIENT AREA

MVI B,LEN . :LENGTH OF VECTOR TO SCAN

MVI C.0 ‘LARGEST VALUE SO FAR

LXI H,VECT ‘BASE OF VECTOR

MOV AM :GET VALUE

suB C ‘LARGER VALUE IN C?

JNC NFOUND JUMP IF LARGER VALUE NOT
;FOUND

NEW LARGEST VALUE, STOREITTO C

MOV C.A

INX H “TO NEXT ELEMENT

DCR B ‘MORE TO SCAN?

JNZ LOOP ‘FOR ANOTHER

END OF SCAN, STORE C

MOV AC ‘GET LARGEST VALUE

STA LARGE

JMP 0 ‘REBOOT

TEST DATA

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

VECT: DB 2,0,4,356,1,5

LEN EQU $-VECT ;LENGTH
LARGE: DS 1 :LARGEST VALUE ON EXIT
END

*E4 =—End of edit

A>ASM SCANy Start Assembler

CP/M ASSEMBLER - VER 1.0

0122

002H USE FACTOR

END OF ASSEMBLY Assembly complete; lock at program listing

A>TYPE SCAN.PRN /-
Code address ~ Source program

0100~ ORG 100H ;START OF TRANSIENT AREA
0100 0608 MVI B.LEN LENGTH OF VECTOR TO SCAN
0102 0EO00 Machine code MVI CDO ;LARGEST VALUE SO FAR
0104 211901 LXI HVECT. :BASE OF VECTOR
0107 7E LOOP: MOV AM :GET VALUE
0108 91 sus C L ARGER VALUE IN C?
0109 D20D01 JNC NFOUND ;JUMP IF LARGER VALUE NOT
;FOUND
: NEW LARGEST VALUE, STOREITTOC
010C 4F MOV C. A
Q10D 23 NFOUND:INX H :TO NEXT ELEMENT
010 05 DCR B iMORE TO SCAN?
010F C20701 JNZ LOOP :FOR ANOTHER
; END OF SCAN, STORE C
0112 79 MOV A C :GET LARGEST VALUE
0113 322101 STA LARGE
0116 C30000 JMP O ;REBOOT

Code—data listing ;

truncated \ : TEST DATA
0119 0200040305\ VECT: DB 2,04.356,15

0008 = Value of LEN EQUS$-VECT LENGTH
0121 equate LARGE: DS 1 ;LARGEST VALUE ON EXIT
0122 END

A>DDT SCANHEXy Start debugger using hex format machine code

DDT VER 1.0

NEXT PC Next instruction
0121 0000 to execute at
-X¥ \Last load address + 1 PC=0

COZOMOEOIO A=00 B:‘Qooo D=0000 H=0000 $=0100 P=0000 OUT 7F
-XPy

P=0000 100y Change PC to 100

Examine registers before debug run

-X/ Look at registers again

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 79

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,OB\
-L100/

PC changed’ Next instruction
0100 MV B.08 W to execute at PC=100
0102 MV C.00
0104 LXt H,0119
0107 MOV AM .
0108 sSuB c Disassembled machine
0109 JNC 010D & codeat 100H
010C MOV CA (see source listing
010D INX H for comparison)
010E DCR B
010F JNZ 0107
0112 MOV AC
-Ly

N\
0113 STA) 0121
0116 JMP 0000
0119 STAX B
011A NOP A little more machine
01tB INR B code. Note that pro-
011C INX B \ gram ends at location
011D DCR B 116 with a JMP to
O11E MV B.01 0000. Remainder of
0120 DCR B listing is assembly of
0121 LXi D,2200 data.
0124 LXI H,0200

-A116/ Enter in-line assembly mode to change the JMP to 0000 into a RST 7. which
will cause the program under test to return to DDT if 116H is ever executed.
0116 RST 7

0117/ (Single carriage return stops assemble mode)

-L113f List code at 113H to check that RST 7 was properly inserted

0113 STA 0121

0116 RST 07 in place of JMP
0117 NOP

0118 NOP

0119 STAX B

011tA NOP

0118 INR B

011C INX B

-X ¢ Look at registers

COZOMOEOI0 A=00 B=0000 D=0000 H=0000 S$=0100 P=0100 MVI B,08
-Ty

~ Execute Program for one stop. Initial CPU state, before/is executed
COZOMOEOI0 A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MVI’B,08°0102
-T# Automatic breakpoint/

80 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

st

Trace one step again {note O8H in B)

COZOMOEOI0 A=00 B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00°0104
T

f Trace again (Register C is cleared)
COZOMOEOQIC A=00 B=0800 D=0000 H=0000 S=0100 P=0104 LXI H,0119°0107
-T3¢ Trace three steps
COZOMOEOQIO A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV.- AM
COZOMOEQIO A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SUB C
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S$=0100 P=0109 JNC 010D*010D

-D119y Display memory starting at 119H. Automatic breakpoint at 10DH

0119 (02 00 04 03 05 06 01). Program data ~ Lowercase x|
0120 {05/11 00 22 21 00 02 7E EB 77 13 23 EB 0B &B1..."1 . W . # (X
0130 G2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00."...)

0140 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00 00
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Data are displayed
0170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 inASCILwitha "
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 in the position of
0190 00 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 hongraphic . .
01A0 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00 chavacters .
01B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01CO 00 00 00 00 00 00 00 QO 00 00 00 00 00 00 00 00 «..ovvnvvnrvnnnnn
..X'
Current CPU state

COZOMOEOI1 A=02 B=0800 D=0000 H=0119 $=0100 P=010D INX H
-T5

iTrace 5 steps from current CPU state
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 $=0100 P=010D INX H
COZOMOEOI1 A=02 B=0800 D=0000 H=011A $=0100 P=010E DCR B
COZOMOEOI1 A=02 B=0700 D=0000 H=011A S$=0100 P=010F JNZ 0107
COZOMOEOI1 A=02 B=0700 D=0000 H=011A S$=0100 P=0107 MOV AM
COZOMOEOI1 A=00 B=0700 D=0000 H=011A S$=0100 P=0108 SUB C*Q109
usy

Automatic breakpoint
Trace without listing intermediate states P

COZ1MOE1!1 A=00 B=0700 D=0000 H=011A S=0100 P=0109 JNC 010D"0108
Xy
»CPU state at end of U5
COZOMOE111 A=04 B=0600 D=0000 H=011B S$=0100 P=0108 SUB C
-Gy Run program from current PC until completion (in real-time)

*0116 breakpoint at 116H, caused by executing RST 7 in machine code.
Xy

CPU state at end of program
COZ1MOE111 A=00 B=0000 D=0000 H=0121 S=0100 P=0116 RST 07

-XP,
~~Examine and change program counter
P=0116 100y

-X’

CO0Z1MOE1I1 A=00 B=0000 D=0000 H=0121 S=0100 P=0100 MVI B,08
-T10y

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 81

Trace 10 (hexadecimal) steps

COZ1MOETIT A
COZ1MOETI1 A
COZ1MOEIT A

First data element

C0Z1MOE111 A=00 H=0119
COZ1MOE1IT A H=0119
COZOMOEOIT A H=0118
COZOMOEDI1 A=02 B=0800 D=0000 H=0119
COZOMOEQI1 A=02 B=0800 D=0000 H=011A
COZOMOEQI1 A=02 B=0700 D=0000 H=011A
COZOMOEQI1 A=02 B=0700 D=0000 H=011A
COZOMOEOI1 A=00 B=0700 D=0000 H=011A .
CO0Z1MOE1i1 A=00 B=0700 D=0000 H=011A
COZ1MOE1I1 A=00 B=0700 D=0000 H=011A
COZ1MOE1I1 A=00 B=0700 D=0000 H=011B
COZOMOE1I1 A=00 B=0600 D=0000 H=011B
COZOMOE1I1 A=00 B=0600 D=0000 H=011B

-A109;

0109 JC 100y to change the’

010C; JNC to JC

-GO¥

[nsert a “hot patch” into
the machine code

Stop DDT so that a version of

the patched program can be saved

A>SAVE 1 SCAN.COM yProgram resides on first

page, so save 1 page.

A>DDT SCAN.COM
‘\Restart DDT with the save memory

DDT VER 1.0

NEXT PC

0200 0100

-L100/ List some code
0100 MVI B,08
0102 MV! C,00
0104 LXI H,0119
0107 MOV AM
0108 SuUBC
0109 JC 010D
010C MOV CA
010D INX H
010E DCR B
010F JNZ 0107
0112 MOV AC
-XP/

P=0100,

image to continue testing

<0121 S=0100 P=0100 MVI B,08
H=0121 S=0100 P=0102 MVI C,0
H=0121 S=0100 P=0104 LXI H,0/19
5=0100 P=0107 MOV
$=0100 P=0108 SUB C

5=0100 P=0109 JNC 010D
S$=0100 P=010D |
S=0100 P=010E PCR B

S=0100 P=010F /UNZ 0107
§=0100 P=0107 MOV AM
$=0100 P=01@8 SUB C

§=0100 P=0/09 JNC 010D
S=0100 P=010D INX H

$=0100
S=0100
$=010¢/ P=0107 MOV A,M*0108

Current largest value

Subtract for comparison, C

~010E DCR B
=010F JNZ 0107

Program should have moved the
value from A into C since A>C.
Since this code was not executed,
it appears that the JNC should
have been a JC instruction

Previous patch is present in X.COM

82 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

-T10/
Trace to see how patched version operates

COZOMOEOIO A=00 B=0000 D=0000 H=0000 S=

COZOMOEOI0 A=00 B=0800 D=0000

Data is moved from A to C
P=0100 MVI B,08
P=0102 MVI C,00

COZOMOEOIO A=00 B=0800 0100 P=0104 LXI H,0118
COZOMOEOIO A=00 B=0800 P=0107 MOV AM
C0Z0OMOEOID A=® B=0800 S=0100 P=0108 SUB C
COZOMOEOI1 A=02 “|]=0800 S$=0100 P=0109 JC 010D
CO0ZOMOEOI1 A=02 B=Q800 $=0100 P=010C MOV C,A
C0ZOMOEOI1 A=02 B=0 D=0000 H=0119 S=0100 P=010D INX H
C0ZOMOEOI1 A=02 B=0802 D=0000 H=011A S=0100 P=010E DCR B
COZOMOEOI1 A=02 B=0702 D=0000 H=011A S5=0100 P=010F JNZ 0107
COZOMOEOI1 A=02 B=0702 D=0000 H=011A S=0100 P=0107 MOV A M

COZOMOEOI1 A=00 B=0702 D=0000 H=011A S=0100 P=0108 SuB-C
C1ZOM1EOI0 A=FE B=0702 D=0000 H=011A S=0100 P=0109 JC 010D
C1ZO0M1EOI0 A=FE B=0702 D=0000 H=011A S=0100 P=010D INX H
C1ZOM1EOIO A=FE B=0702 D=0000 H=011B S$=0100 P=010E DCR B
C1ZOMOE1it1 A=FE B=0602 D=0000 H=011B S=0100 P=010F JNZ 01070107
-X ¢ Breakpoint after 16 steps
C1ZOMOE1i1 A=FE B=0602 D=0000 H=011B S=0100 P=0107 MOV AM
-G,108y Run from current PC and breakpoint at 108H

*0108
X 4
Next data item
C1ZOMOE1i1 A=04 B=0602 D=0000 H=011B S=0100 P=0108 SUB C
_T*
Single step for a few cycles

C1ZOMOE1I1 A=04 B=0802 D=0000 H=011B S=0100 P=0108 SUB C*0109
-T*

COZOMOEOI1 A=02 B=0602 D=0000 H=011B S$=0100 P=0109 JC 010D*010C
-)(/

CO0ZOMOEQI1 A=02 B=0802 D=0000 H=011B S=0100 P=010C MOV CA
-Gy Run to completion

*0116
Xy

COZ1MOE1I1 A=03 B=0003 D=0000 H=0121 S=0100 P=0116 RST 07
-8121} Look at the value of “LARGE”

0121 03y Wrong value!

0122 00y
0123 22
0124 21,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 83

0125 00y

0126 02y

0127 TEp - End of the S command
-L100f

0100 MvVI B,08)

0102 MVi C.00

0104 LXi H,0119

0107 MOV AM

0108 sSuB C

0109 JC 010D

010C MOV C.A

010D INX H

010E DCR B

010F JNZ 0107

0112 MOV AC

-L / L Review the code

0113 STA 0121

0116 RST 07

0117 NOP

0118 NOP

0119 STAX B

011A NOP

011B INR B

011C INX B

011D DCR B

011E MV B,01

0120 DCR B)

-XP;

P=0116 100; Reset the PC

-T‘

Single step, and watch data values
COZ1MOE111 A=03 B=0003 D=0000 H=0121 S$=0100 P=0100 MVI B,08°0102
Ty

COZ1MOE1i1 A=03 B=0803 D=0000 H=0121 S=0100 P=0102 MVi C,00*0104
-T

f Count set “Largest” set
COZ1MOE111 A=03 B=0800 D=0000 H=0121 S=0100 P=0104 LX! H,011970107
T

f Base address of data set
CO0Z1MOE1i1 A=03 B=0800 D=0000 H=0119 S=0100 P=0107 MOV A,M*0108
-T
_ ’ First data item brought to A
CO0Z1MOE111 _A=02 B=0800 D=0000 H=0119 S=0100 P=0108 SuUB C*0109
Ty

COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S$=0100 P=0109 JC 010D*010C
-Ty :

84 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

COZOMOEOI1 A=02 B=0800 D=0000 H=0119 $=0100 P=010C MOV C,A*010D
-T‘

First data item moved to C correctly
COZOMOEOI1 A=02 B=0802 D=0000 H=0119 S=0100 P=010D INX H*010E
-T’

COZOMOEOI1 A=02 B=0802 D=0000 H=011A S=0100 P=010E DCR B*010F
-Ty

COZOMOEOI1 A=02 B=0702 D=0000 H=011A $=0100 P=010F JNZ 010770107
~Ti

COZOMOEOI1 A=02 B=0702 D=0000 H=011A $=0100 P=0107 MOV A,M"0108
-T,
L Second data item brought to A
COZOMOEOI1 A=00 B=0702 D=0000 H=011A $=0100 P=0108 SUB C-0109
-T;
Subtract destroys data value that was loaded!
C1ZOM1EQI0 A=FE B=0702 D=0000 H=011A $=0100 P=01098 JC 010D"010D
T
¥

C1ZOM1EOI0 A=FE B=0702 D=0000 H=011A S$=0100 P=010D INX H*010E
-L100,

0100 MVI B,08

0102 MVI C,00

0104 LX1 H,0119

818; g‘[?g/ é’EA_This should have been a CMP so that register A
0109 Jc 010D would not be destroyed.
010C MOV CA

010D INX H

010E DCR B

010F JNZ 0107

0112 MOV AC

-A108/ :

0108 CMP C/ Hot patch at 108H changes SUB to CMP
0109

-GOy Stop DDT for SAVE

A>SAVE 1 SCAN.COM/ Save memory image

A>DDT SCAN.COMy Restart DDT

DDT VER 1.0

NEXT PC

0200 0100

-XPy

P=0100

-L116y

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 85

0116 RST o7

8: }; mgg Look at code to see if it was properly loaded
0119 STAX 8 (long typeout aborted with rubout)
011A NOP

-G.116; Run from 100H to completion
*0116

-XCy Look at carry (accidental typo)
C1y

-Xy Look at CPU state

C1Z1MOE1I1 A=06 B=0006 D=0000 H=0121 S=0100 P=0116 RST 07
-81217 Look at “large”—it appears to be correct.

0121 06y

0122 00y

0123 22

-G0y Stop DDT

A>ED SCAN.ASM; Re-edit the source program, and make both changes

‘NSUBy
*OLTY
ctl-Z suB c :LARGER VALUE IN C?
‘SSUBIZCMP1ZOLT,
CMP C ;.LARGER VALUE IN C?
JNC NFOUND :JUMP IF LARGER VALUE NOT FOUND
*SNC1ZC1Z0LTy
JC NFOUND ~ ;JUMP IF LARGER VALUE NOT FOUND

“E
/ Re-assemble, selecting source from disk A
A>ASM SCAN AAZ; «—Hex to disk A
Print to Z (selects no print file)
CP/M ASSEMBLER VER 1.0

0122

002H USE FACTOR
END OF ASSEMBLY

86 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

A>DDT SCAN.HEX; Re-run debugger to check changes

DDT VER 1.0
NEXT PC
0121 0000
-L116y
0116 JMP 0000 Check to ensure end is still at 116H
0119 STAX B
011A NOP
011B INR B
- (rubout)

-G100,116y Go from beginning with breakpoint at end

*0116 Breakpoint reachea
D121 Look at “LARGE"

Correct value computed
0121 WQ 7JE EB77 13 23 EBOB 78 B1 .. 'l .. W.#..X.
0130 G2 27 01 C3 03 29 00 00 00 00 00 00 00 00 00 00 ."..)
0140 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00

- {rubout) Aborts long type-out

GOy Stop DDT, debug session complete.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87 .

CP/M 2 System Interface

5.1 Introduction

This chapter describes CP/M, release 2, system organization including the structure
of memory and system entry points. The intention is to provide necessary information
required to write programs that operate under CP/M and that use the peripheral and disk
11O facilities of the system.

CP/M is logically divided into four parts, called the Basic /O System (BIOS), the Basic
Disk Operating System (BDOS), the Console Command Processor (CCP), and the
Transient Program Area (TPA). The BIOS is a hardware-dependent module that defines
the exact low level interface with a particular computer system that is necessary for
peripheral device [/O. Although a standard BIOS is supplied by Digital Research, explicit
instructions are provided for field reconfiguration of the BIOS to match nearly any
hardware environment (see Chapter 6). The BIOS and BDOS are logically combined into
a single module with a common entry point and referred to as the FDOS. The CCPisa
distinct program that uses the FDOS to provide a human-oriented interface with the
information that is cataloged on the backup storage device. The TPAis anarea of memory
(i.e., the portion that is not used by the FDOS and CCP) where various nonresident
operating system commands and user programs are executed. The lower portion of
memory is reserved for system information and is detailed in later sections. Memory
organization of the CP/M system is shown below.

High
Memory FDOS (BDOS+BIOS)
FBASE:

ccpP
CBASE:

TPA
TBASE:

System Parameters

BOOT:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 89

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and FBASE
vary from version to version and are described fully in Chapter 6. All standard CP/M
versions, however, assume BOOT = 0000H, which is the base of random access memory.
The machine code found at location BOOT performs a system “warm start,” which loads
and initializes the programs and variables necessary to return control to the CCP. Thus,
transient programs need only jump to location BOOT to return control to CP/M at the
command level. Further, the standard versions assume TBASE = BOOT+0100H, which s
normally location 0100H. The principal entry point to the FDOS is at location
BOOT+0005H (normally 0005H) where a jump to FBASE is found. The address field at
BOOT+0006H (normally 0006H) contains the value of FBASE and can be used to
determine the size of available memory, assuming that the CCP is being overlayed by a
transient program.

Transient programs are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each prompt. Each
command line takes one of the forms:

command
command filel

command filel file2

where “command” is either a built-in function such as DIR or TYPE or the name of a
transient command or program. If the command is a built-in function of CP/M, it is
executed immediately. Otherwise, the CCP searches the currently addressed disk for a
file by the name

command.COM

If the file is found, it is assumed to be a memory image of a program that executes in the
TPA and thus implicitly originates at TBASE in memory. The CCP loads the COM file
from the disk into memory starting at TBASE and can extend up to CBASE.

If the command is followed by one or two file specifications, the CCP prepares one or
two file control block (FCB) names in the system parameter area. These optional FCBs are
in the form necessary to access files through the FDOS and are described in the next
section.

The transient program receives control from the CCP and begins execution, using the
1/O facilities of the FDOS. The transient program is “called” from the CCP. Thus, it can
simply return to the CCP upon completion of its processing or can jump to BOOT topass
control back to CP/M. In the first case, the transient program must not use memory
above CBASE, while in the latter case, memory up through FBASE-1 can be used.

The transient program can use the CP/M /O facilities to communicate with the
operator’s console and peripheral devices, including the disk subsystem. The /O system
is accessed by passing a function number and an information address to CP/M through
the FDOS entry point at BOOT+0005H. In the case of a disk read, for example, the
transient program sends the number corresponding to a disk read, along with the address
of an FCB to the CP/M FDOS. The FDQOS, in turn, performs the operation and returns
with either a disk read completion indication or an error number indicating that the disk
read was unsuccessful.

90 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

5.2 Operating System Call Conventions

This section provides detailed information for performing direct operating system
calls from user programs. Many of the functions listed below, however, are accessed
more simply through the I/O macro library provided with the MAC macro assembler and
listed in the Digital Research manual entitled, MAC Macro Assembler: Language Manual and
Applications Guide.

CP/M facilities that are available for access by transient programs fallinto two general
categories: simple device 1/O and disk file I/O. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character

Get or Set I/O Status

Print Console Buffer

Read Console Buffer

interrogate Console Ready
The FDOS operations that perform disk I/O are

Disk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
interrogate Available Disks
tnterrogate Selected Disk
Set DMA Address

Set/Reset File Indicators.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 91

As mentioned above, access to the FDOS functions is accomplished by passing a
function number and information address through the primary point at location
BOOT+0005H. In general, the function number is passed in register C with the informa-
tion address in the double byte pair DE. Single byte values are returned in register A, with
double byte values returned in HL (a zero value is returned when the function number is
out of range). For reasons of compatibility, register A = L and register B = H upon return
in all cases. The user should note that the register passing conventions of CP/M agree
with those of Intel’s PL/M systems programming language. CP/M functions and their
numbers are listed below.

0 System Reset 19 Delete File

1 Console Input 20 Read Sequential

2 Console Output 21 Write Sequential

3 Reader Input 22 Make File '

4 Punch Output 23 Rename File

5 List Output 24 Return Login Vector

6 Direct Console I/O 25 Return Current Disk

7 Get /O Byte 26 Set DMA Address

8 Set /O Byte 27 Get Addr(Alloc)

9 Print String 28 Write Protect Disk
10 Read Console Buffer 29 Get R/O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File : 34 Write Random

16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next 37 Reset Drive

40 Write Random with Zero Fill

(Functions 28 and 32 should be avoided in application programs to maintain upward
compatibility with CP/M.)

Upon entry to a transient program, the CCP leaves the stack pointer set to an
eight-level stack area with the CCP return address pushed onto the stack, leaving seven
levels before overflow occurs. Although this stack is usually not used by a transient
program (i.e., most transients return to the CCP through a jump to location 0000H), it is
sufficiently large to make CP/M system calls since the FDOS switches to a local stack at
system entry. The assembly language program segment below, for example, reads
characters continuously until an asterisk is encountered, at which time control returns to
the CCP (assuming a standard CP/M system with BOOT = 0000H).

BDOS EQU 0005H :STANDARD CP/M ENTRY
CONIN EQU 1 :CONSOLE INPUT FUNCTION
ORG 0100H ‘BASE OF TPA
NEXTC: MVI C,CONIN :READ NEXT CHARACTER
CALL BDOS ‘RETURN CHARACTER IN <A>
CPI ' ‘END OF PROCESSING?
JINZ NEXTC :LOOP IF NOT
RET ‘RETURN TO CCP
END

92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CPI/M implements a named file structure on each disk, providing alogical organization
that allows any particular file to contain any number of records from completely empty to
the full capacity of the drive. Each drive is logically distinct with a disk directory and file
data area. The disk file names are in three parts: the drive select code, the filename
consisting of one to eight nonblank characters, and the filetype consisting of zero to three
nonblank characters. The filetype names the generic category of a particular file, while
the filename distinguishes individual files in each category. The filetypes listed below
name a few generic categories that have been established, although they are somewhat
arbitrary.

ASM Assembler Source PLI PL/I Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM SID Symbol File
COM Command File $$$ Temporary File

Source files are treated as a sequence of ASCII characters, where each “line” of the
source file is followed by a carriage-return line-feed sequence (0DH foliowed by 0AH).
Thus one 128-byte CP/M record could contain several lines of source text. The end of an
ASCH file is denoted by a control-Z character (LAH) or a real end-of-file returned by the
CP/M read operation. Control-Z characters embedded within machine code files (e.g.,
COM files) are ignored, however, and the end-of-file condition returned by CP/Mis used
to terminate read operations.

Files in CP/M can be thought of as a sequence of up to 65536 records of 128 bytes each,
numbered from 0 through 65535, thus allowing a maximum of 8 megabytes per file.
However, the user should note that although the records may be considered logically

contiguous, they may not be physically contiguous in the disk data area. Internally, all -

files are divided into 16K byte segments called logical extents, so that counters are easily
maintained as 8-bit values. The division into extents is discussed in the paragraphs that
follow: however, they are not particularly significant for the programmer, since each
extent is automatically accessed in both sequential and random access modes.

In the file operations starting with function number 15, DE usually addresses a tile
control block (FCB). Transient programs often use the default file control block area
reserved by CP/M at location BOOT+005CH (normally 005CH) for simple file opera-
tions. The basic unit of file information is a 128-byte record used for all file operations;
thus, a default location for disk 1/O is provided by CP/M at location BOOT +0080H
(normally 0080H), which is the initial default DMA address (see function 26). All direc-
tory operations take place in a reserved area that does not affect write buffers as was the
case in release 1, with the exception of Search First and Search Next, where compatibility
is required.

The FCB data area consists of a sequence of 33 byte for sequential access and a series
of 36 bytes in the case when the file is accessed randomly. The default FCB normally
located at 005CH can be used for random access files, since the three bytes starting at
BOOT+007DH are available for this purpose. The FCB format is shown with the
following fields:

|dr [f1 12 [/ _Af8 [t1 [t2 t3 lex [s1 [s2 |rc [dO [/ Adnlcr {10 |r1 |r2)
00 01 02 .. 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH 93 .

where

dr drive code (0-16)
0 =>> use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

f1..18 contain the file name in ASCII upper case, with
high bit =0

t1,12,t3 contain the file type in ASCII upper case, with high
bit = 0 t1’, t2/, and t3’ denote the bit of these
positions,

t1’ = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number, normally set
to 00 by the user, but in range 0-31 during file /O

s1 reserved for internal system use

s2 reserved for internal system use, set to zero on call
to OPEN, MAKE, SEARCH

rc record count for extent “ex,” takes on values from
0-127

d0...dn filled-in by CP/M, reserved for system use

cr . current record to read or write in a sequential file

operation, normally set to zero by user

r0,r1,r2 optional random record number in the range 0-
65535, with overflow to r2, 10, r1 constitute a 16-
bit value with low byte r0, and high byte r1

Each file being accessed through CP/M must have a cosresponding FCB, which
provides the name and allocation information for all subsequent file operations. When
accessing files, it is the programmer’s responsibility to fill the lower 16 bytes of the FCB
and initialize the cr field. Normally, bytes 1 through 11 are set to the ASCII character
values for the file name and file type, while all other fields are zero.

FCBs are stored in a directory area of the disk, and are brought into central memory
before the programmer proceeds with file operations (see the OPEN and MAKE func-
tions). The memory copy of the FCB is updated as file operations take place and later
recorded permanently on disk at the termination of the file operation (see the CLOSE
command).

The CCP constructs the first 16 bytes of two optional FCBs for a transient by
scanning the remainder of the line following the transient name, denoted by filel and
file2 in the prototype command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+005CH and can be used as is for
subsequent file operations. The second FCB occupies the d0 ... dn portion of the first FCB
and must be moved to another area of memory before use. If, for example, the operator
types

PROGNAME B:X.ZOT Y.ZAP

94 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

e

the file PROGNAME.COM is loaded into the TPA and the default FCB at BOOT+005CH
is initialized to drive code 2, file name X, and file type ZOT. The second drive code takes
the default value 0, which is placed at BOOT+006CH, with the file name Y placed into
location BOOT+006DH and file type ZAP located 8 bytes later at BOOT+0075H. All
remaining fields through cr are set to zero. The user should note again that it is the
programmer’s responsibility to move this second file name and type to another area,
usually a separate file control block, before opening the file that begins at BOOT+005CH,
because the open operation will overwrite the second name and type. '

If no file names are specified in the original command, the fields beginning at
BOOT+005DH and BOOT+006DH contain blanks. In all cases, the CCP translates lower
case alphabetics to upper case to be consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location BOQOT +0080H is initial-
ized to the command line tail typed by the operator following the program name. The first
position contains the number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at BOOT+0080H is
initialized as follows:

BOOT+0080H:

+00 +01 402 +03 +04 +05 +06 +07 +08 +09 +A +B +C +D +E
E te rBl r:l rX: l.r rzr ror rrl 1 IYI r.r rZ: IAI IPI

where the characters are translated to upper case ASCH with uninitialized memory
following the last valid character. Again, it is the responsibility of the programmer to
extract the information from this buffer before any file operations are performed, unless
the default DMA address is explicitly changed.

Individual functions are described in detail in the pages that follow.

Function 0: System Reset

Entry Parameters:
Register C: 00H

The system reset function returns control to the CP/M operating system at the CCP
level. The CCP reinitializes the disk subsystem by selecting and logging in disk drive A.
This function has exactly the same effect as a jump to location BOOT.

Function 1: Console Input

Entry Parameters:
Register C: 01H

Returned Value:
Register A: ASCIl Character

The console input function reads the next console character to register A. Graphic
characters, along with carriage return, line feed, and back space (ctl-H) are echoed to the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95

console. Tab characters (ctl-I) move the cursor to the next tab stop. A check is made for
start/stop scroll (ctl-S) and start/stop printer echo (ctl-P). The FDOS does not return to

the calling program until a character has been typed, thus suspending execution if a
character is not ready.

Function 2: Console Output

Entry Parameters:
Register C: 02H
Register E: ASCII Character

The ASCII character from register E is sent to the console device. As in function 1,
tabs are expanded and checks are made for start/stop scroll and printer echo.

Function 3: Reader Input

Entry Parameters:
Register C: 03H

Returned Value:
Register A: ASCII Character

The Reader Input function reads the next character from the logical reader into

register A (see the IOBYTE definition in Chapter 6). Control does not return until the
character has been read.

Function 4: Punch Output

Entry Parameters:
Register C: 04H
Register E: ASCII Character

The Punch Output function sends the character from register E to the logical punch
device.

Function 5: List Output

Entry Para neters:
Register C: 05H
Register E: ASCII Character

The List Qutput function sends the ASCll character in register E to the logical listing
device.

96 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

RN

Function 6: Direct Console 1O

Entry Parameters:
Register C: 06H
Register E: OFFH (input) or
char (output)

Returned Value:
Register A: char or status

Direct console /O is supported under CPIM for those specialized applications where
basic console input and output are required. Use of this function should, in general, be
avoided since it bypasses all of CP/M’s normal control character functions (e.g., control-5
and control-P). Programs that perform direct /O through the BIOS under previous
releases of CPIM, however, should be changed to use direct 1/O under BDOS so that they
can be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal FF, denoting a
console input request, or an ASCII character. If the input valueis FF, function 6 returns
A = 00 if no character is ready, otherwise A contains the next console input character.

If the input value in E is not FF, function 6 assumes that E contains a valid ASCII
character that is sent to the console.

Function 6 must not be used in conjunction with other console 1/O functions.

Function 7: Get 1/O Byte

Entry Parameters:
Register C: 07H

Returned Value:
Register A: /O Byte Value

The Get 1/O Byte function returns the current value of IOBYTE in register A. See
Chapter 6 for IOBYTE definition.

Function 8: Set 1/O Byte

Entry Parameters:
Register C: 08H
Register E: /O Byte Value

The Set /O Byte function changes the IOBYTE value to that giveninregister E.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97

Function 9: Print String

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in memory at the location
given by DE to the console device, until 2 $ is encountered in the string. Tabs are
expanded as in function 2, and checks are made for start/stop scroll and printer echo.

Function 10: Read Console Buffer

Entry Parameters:
Register C: O0AH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Buffer function reads a line of edited consolc input into a buffer addressed
by registers DE. Console input is terminated when either input buffer overflows or a
carriage return or line feed is typed. The Read Buffer takes the form:

DE:+0 +1 +2 +3 +4 +5 +B +7 +8 .. .+n

Imx|nc Jc1 |c2 |c3 |cd |5 [cB [¢7 | ...]2

where mx is the maximum number of characters that the buffer will hold (1 to 255) and nc
is the number of characters read (set by FDOS upon return), followed by the characters
read from the console. If nc < mx, then uninitialized positions follow the last character,
denoted by 77 in the above figure. A number’of control functions are recognized during

line editing:
rub/del removes and echoes the last character
ctl-C reboots when at the beginning of line
cti-E causes physical end of line
ctl-H backspaces one character position
ctl-J (line feed) terminates input line
ctl-M (return) terminates input line
ctl-R retypes the current line after new line
cti-U removes current line
ctl-X same as ctl-U.

The user should also note that certain functions that return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the prompt ended (in earlier

98

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

releases, the carriage returned to the extreme left margin). This convention makes
operator data input and line correction more legible.

Function 11: Get Console Status

Entry Parameters:
Register C: 0BH

Returned Value:
Register A: Console Status

The Console Status function checks to see if acharacter hasbeen typed at the console.
If a character is ready, the value OFFH is returned in register A. Otherwise a00H value is
returned.

Function 12: Return Version Number

Entry Parameters:

Register C: O0CH

Returned Value:
Registers HL: Version Number

Function 12 provides information that allows version independent programming. A
two-byte value is returned, with H = 00 designating the CP/M release (H = 01 for MP/M),
and L = 00 for all releases previous to 2.0. CP/M 2. 0 returns a hexadecimal 20 in register L,
with subsequent version 2 releases in the hexadecimal range 21, 22, through 2F. Using
function 12, for example, the user can write application programs that provide both
sequential and random access functions.

Function 13: Reset Disk System

Entry Parameters:
Register C: 0DH

The Reset Disk Function is used to programmatically restore the file system to areset
state where all disks are set to read/write (see functions 28 and 29), only disk drive A is
selected, and the default DMA address is reset to BOOT+0080H. This function can be

used, for example, by an application program that requires a disk change without a
system reboot.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99-

Function 14: Select Disk

Entry Parameters:
Register C: 0EH
Register E: Selected Disk

The Select Disk function designates the disk drive named in register E as the default
disk for subsequent file operations, with E =0 for drive A, 1 for drive B, and so on through
15, corresponding to drive P in a full 16 drive system. The drive is placed in an on-line
status, which activates its directory until the next cold start, warm start, or disk system
reset operation. If the disk medium is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see function 28). FCBs that
specify drive code zero (dr = 00H) automatically reference the currently selected default
drive. Drive code values between 1 and 16, however, ignore the selected default drive and
directly reference drives A through P.

Function 15: Open File

Entry Parameters:
Register C: OFH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Open File operation is used to activate a file that currently exists in the disk
directory for the currently active user number. The FDOS scans the referenced disk
directory for a match in positions 1 through 14 of the FCB referenced by DE (byte s1is
automatically zeroed), where an ASCII question mark (3FH) matches any directory
character in any of these positions. Normally, no question marks are included, and bytes
ex and s2 of the FCB are zero.)

If a directory element is matched, the relevant directory information is copied into
bytes d0 through dn of the FCB, thus allowing access to the files through subsequent read
and write operations. The user should note that an existing file must not be accessed until
a successful open operation is completed. Upon return, the open function returns a
directory code with the value 0 through 3 if the open was successful or OFFH (255
decimal) if the file cannot be found. If question marks occur in the FCB, the first matching
FCB is activated. Note that the current record (cr) must be zeroed by the program if the
file is to be accessed sequentially from the first record.

100 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 16: Close File

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Close File function performs the inverse of the open file function. Given that the
FCB addressed by DE has been previously activated through an open or make function
(see functions 15 and 22), the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close is identical to the open
function. The directory code returned for a successful close operationis 0,1, 2, or 3, while
a OFFH (255 decimal) is returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write operations have
occurred, however, the close operation is necessary to record the new directory informa-
tion permanently.

Function 17: Search for First

Entry Parameters
Register C: 11H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB addressed
by DE. The value 255 (hexadecimal FF) is returned if the file is not found; otherwise, 0,1,
2, or 3 is returned indicating the file is present. When the file is found, the current DMA
address is filled with the record containing the directory entry, and the relative starting
position is A * 32 (i.e., rotate the A register left 5 bits,or ADD A five times). Although not
normally required for application programs, the directory information can be extracted
from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any position from f1 through
ex matches the corresponding field of any directory entry on the default or auto-selected
disk drive. If the dr field contains an ASCIl question mark, the auto disk select function is
disabled and the default disk is searched, with the search function returning any matched
entry, allocated or free, belonging to any user number. This latter function is not
normally used by application programs, but it allows complete flexibility to scan all
current directory values. If the dr field is not a question mark, the s2 byte is automatically
zeroed.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 101

Function 18: Search for Next

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code

The Search Next function is similar to the Search First function, except that the
directory scan continues from the last matched entry. Similar to function 17, function 18
returns the decimal value 255 in A when no more directory items match.’

Function 19: Delete File

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:
Register ~A: Directory Code

The Delete File function removes files that match the FCB addressed by DE. The
filename and type may contain ambiguous references (i.e., question marks in various
positions), but the drive select code cannot be ambiguous, as in the Search and Search
Next functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be found;
otherwise, a value in the range 0 to 3 is returned.

Function 20: Read Sequential

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Read Sequential function reads the next 128-byte
record from the file into memory at the current DMA address. The record is read from
_position cr of the extent, and the cr field is automatically incremented to the next record
position. If the cr field overflows, the next logical extent is automatically opened and the
cr field is reset to zero in preparation for the next read operation. The value 00H is
returned in the A register if the read operation was successful, while a nonzero value is
returned if no data exist at the next record position (e.g., end-of-file occurs).

102 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Function 21: Write Sequential

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value:
Register ~A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Write Sequential function writes the 128-byte data
record at the current DMA address to the file named by the FCB. The record is placed at
position cr of the file, and the cr field is automatically incremented to the next record
position. If the cr field overflows, the next logical extent is automatically opened and the
cr field is reset to zero in preparation for the next write operation. Wrrite operations can
take place into an existing file, in which case, newly written records overlay those that
already exist in the file. Register A = 00H upon return from a successful write operation,
while a nonzero value indicates an unsuccessful write caused by a full disk.

Function 22: Make File

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value:
Register ~A: Directory Code

The Make File operation is similar to the open file operation except that the FCB must
name a file that does not exist in the currently referenced disk directory {i.e., the one
named explicitly by a nonzero dr code or the default disk if dr is zero). The FDOS creates -
the file and initializes both the directory and main memory value to an empty file. The
programmer must ensure that no duplicate file names occur, and a preceding delete
operation is sufficient if there is any possibility of duplication. Upon return, register A =0,
1, 2, or 3 if the operation was successful and OFFH (255 decimal) if no more directory space
is available. The make function has the side effect of activating the FCB and thus a
subsequent open is not necessary.

Function 23: Rename File

Entry Parameters:
Register C: 17H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all occurrences of the
file named in the first 16 bytes to the file named in the second 16 bytes. The drive codedr

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103

at position 0 is used to select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A is set to a value
between 0 and 3 if the rename was successful and OFFH (255 decimal) if the first file name
could not be found in the directory scan.

Function 24: Return Log-in Vector

Entry Parameters:
Register C: 18H

Returned Value:
Registers HL: Log-in Vector

The log-in vector value returned by CP/IM is a 16-bit value in HL, where the least
significant bit of L corresponds to the first drive A and the high order bit of H corresponds
to the sixteenth drive, labeled P. A 0 bit indicates that the drive is not on-line, while a1 bit
marks a drive that is actively on-line as a result of an explicit disk drive selection or an
implicit drive select caused by a file operation that specified a nonzero dr field. The user
should note that compatibility is maintained with earlier releases, since registers AandL
contain the same values upon return.

Function 25: Return Current Disk

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected-default disk number in register A. The disk
numbers range from 0 through 15 corresponding to drives A through P.

Function 26: Set DMA Address

Entry Parameters:
Register C: 1AH
Registers DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often used in connection
with disk controllers that directly access the memory of the mainframe computer to
transfer data to and from the disk subsystem. Although many computer systems use
non-DMA access (i.e., the data are transferred through programmed [/O operations), the
DMA address has, in CP/M, come to mean the address at which the 128-byte data record
resides before a disk write and after a disk read. Upon cold start, warm start, or disk

104 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

system reset, the DMA address is automatically set to BOOT+0080H. The Set DMA
function, however, can be used to change this default value to address another area of
memory where the data records reside. Thus, the DMA address becomes the value
specified by DE until it is changed by a subsequent Set DMA function, cold start, warm
start, or disk system reset.

Function 27: Get ADDR(Alloc)

Entry Parameters:
Register C: 1BH

Returned Value:
Registers HL: ALLOC Address

An allocation vector is maintained in main memory for each on-line disk drive.
Various system programs use the information provided by the allocation vector to
determine the amount of remaining storage (see the STAT program). Function 27
returns the base address of the allocation vector for the currently selected disk drive.
However, the allocation information may be invalid if the selected disk has been marked
read/only. Although this function is not normally used by application programs, addi-
tional details of the allocation vector are found in Chapter 6.

Function 28: Write Protect Disk

Entry Parameters:
Register C: 1CH

The disk write protect function provides temporary write protection for the currently
selected disk. Any attempt to write to the disk before the next cold or warm start
operation produces the message:

BDOS ERR on d: R/O

Function 29: Get Read/Only Vector

Entry Parameters:
Register C: 1DH

Returned Value: .
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL, which indicates drives that have
the temporary read-only bit set. As in function 24, the least significant bit corresponds to
drive A, while the most significant bit corresponds to drive P. The R/O bit is set either by
an explicit call to function 28 or by the automatic software mechanisms within CP/M that
detect changed disks.

ALL INFORMATION PRESENTED HERE i$ PROPRIETARY TO DIGITAL RESEARCH 105 .

Function 30: Set File Attributes

Entry Parameters:
Register C: 1EH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of permanent
indicators attached to files. In particular, the R/O and System attributes (t1"and t2’) can
be set or reset. The DE pair addresses an unambiguous file name with the appropriate
attributes set or reset. Function 30 searches for a match and changes the matched
directory entry to contain the selected indicators. Indicators f1' through f4’ are not
currently used, but may be useful for applications programs, since they are not involved
in the matching process during file open and close operations. Indicators {5 through f8°
and t3" are reserved for future system expansion.

Function 31: Get ADDR(Disk Parms)

Entry Parameters:
Register C: 1FH

Returned Value:
Registers HL: DPB Address

The address of the BIOS resident disk parameter block is returned in HL as a result of
this function call. This address can be used for either of two purposes. First, the disk
parameter values can be extracted for display and space computation purposes, or
transient programs can dynamically change the values of current disk parameters when
the disk environment changes, if required. Normally, application programs will not
require this facility.

Function 32: Set/Get User Code

Entry Parameters:
Register C: 20H
Register E: OFFH (get) or
User Code (set)

Returned Value:
Register A: Current Code or
(no value)

An application program can change or interrogate the currently active user number
by calling function 32. If register E = OFFH, the value of the current user number is

106 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

returned in register A, where the value is in the range of 0 to 15. If register Eis not OFFH,
the current user number is changed to the value of E (modulo 16).

Function 33: Read Random

Entry Parameters:
Register C: 21H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Read Random function is similar to the sequential file read operation of previous
releases, except that the read operation takes place at a particular record number, selected
by the 24-bit value constructed from the 3-byte field following the FCB (byte positions r0
at 33, r1 at 34, and r2 at 35). The user should note that the sequence of 24 bits is stored
with least significant byte first (r0), middle byte next (r1), and high byte last (r2}. CP/M
does not reference byte r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a nonzero value indicates overflow past the end of file.

Thus, the r0, r1 byte pair is treated as a double-byte, or “word” value, which contains
the record to read. This value ranges from 0 to 65535, providing access to any particular
record of the 8-megabyte file. To process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent may or may not contain any
allocated data, this ensures that the file is properly recorded in the directory and is visible
in DIR requests. The selected record number is then stored in the random record field (r0,
r1), and the BDOS is called to read the record. Upon return from the call, register A either
contains an error code, as listed below, or the value 00, indicating the operation was
successful. In the latter case, the current DMA address contains the randomly accessed
record. The user should note that contrary to the sequential read operation, the record
number is not advanced. Thus, subsequent random read operations continue to read the
same record.

Upon each random read operation, the logical extent and current record values are
automatically set. Thus, the file can be sequentially read or written, starting from the
current randomly accessed position. However, the user should note that, in this case, the
last randomly read record will be reread as one switches from random mode to sequential
read and the last record will be rewritten as one switches to a sequential write operation.
The user can, of course, simply advance the random record position following each
random read or write to obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are listed below.

01 reading unwritten data

02 (not returned in random maode)
03 cannot close current extent

04 seek to unwritten extent

05 {not returned in read mode)

06 seek past physical end of disk

Error codes 01 and 04 occur when a random read operation accesses a data block that
has not been previously written or an extent that has not been created, which are
equivalent conditions. Error code 03 does not normally occur under proper system

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 107

operation. If it does, it can be cleared by simply rereading or reopening extent zero as long
as the disk is not physically write protected. Error code 06 occurs whenever byte r2 is
nonzero under the current 2.0 release. Normally, nonzero return codes can be treated as
missing data, with zero return codes indicating operation complete.

Function 34: Write Random

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random operation is initiated similarly to the Read Random call, except
that data are written to the disk from the current DMA address. Further, if the disk
extent or data block that is the target of the write has not yet been allocated, the allocation
is performed before the write operation continues. As in the Read Random operation, the
random record number is not changed as a result of the write. The logical extent number
and current record positions of the file control block are set to correspond to the random
record that is being written. Again, sequential read or write operations can begin follow-
ing a random write, with the notation that the currently addressed record is either read or
rewritten again as the sequential operation begins. The user can also simply advance the
random record position following each write to get the effect of a sequential write
operation. The user should note that, in particular, reading or writing the last record of an
extent in random mode does not cause an automatic extent switch as it does in sequential
mode.

The error codes returned by a random write are identical to the random read opera-
tion with the addition of error code 05, which indicates that a new extent cannot be
created as a result of directory overflow.

Function 35: Compute File Size

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in random
mode format (bytes r0, r1, and r2 are present). The FCB contains an unambiguous file
name that is used in the directory scan. Upon return, the random record bytes contain the
“virtual” file size, which is, in effect, the record address of the record following the end of
the file. Following a call to function 35, if the high record byte r2 is 01, the file contains the
maximum record count 65536. Otherwise, bytes r0 and r1 constitute a 16-bit value (r0 is
the least significant byte, as before), which is the file size.

108 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TQ DIGITAL RESEARCH

Data can be appended to the end of an existing file by simply calling function 35 to set
the random record position to the end of file and then performing a sequence of random
writes starting at the preset record address.

The virtual size of a file corresponds to the physical size when the file is written
sequentially. If the file was created in random mode and “holes” exist in the allocation, the
file may in fact contain fewer records than the size indicates. For example, if only the last
record of an 8-megabyte file is written in random mode (i.e., record number 65535), the
virtual size is 65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function causes the BDOS automatically to produce the
random record position from a file that has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the
positions of various “key” fields. As each key is encountered, function 36 is called to
compute the random record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a table with the key for
later retrieval. After scanning the entire file and tabulating the keys and their record
numbers, the user can move instantly to a particular keyed record by performing a
random read, using the corresponding random record number that was saved earlier. The
scheme is easily generalized for variable record lengths, since the program need only
store the buffer-relative byte position along with the key and record number to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a sequential read or write
over to random read or write. A file is sequentially accessed to a particular pointin the file,
function 36 is called, which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

Function 37: Reset Drive

Entry Parameters:
Register C: 25H
Registers DE: Drive Vector

Returned Value:
Register A: O00H

The Reset Drive function allows resetting of specified drives. The passed parameteris
a 16 bit vector of drives to be reset; the least significant bit is drive A:.
To maintain compatibility with MP/M, CP/M returns a zero value.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 109

Function 40: Write Random With Zero Fill

Entry Parameters:
Register C: 28H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random With Zero Fill operation is similar to Function 34, with the
exception that a previously unallocated block is filled with zeros before the data are
written. ’

5.3 A Sample File-to-File Copy Program

The program shown below provides arelatively simple example of file operations. The
program source file is created as COPY.ASM using the CP/M ED program and then
assembled using ASM or MAC, resulting in a HEX file. The LOAD program is used to
produce a COPY.COM file, which executes directly under the CCP. The program begins
by setting the stack pointer to alocalarea and proceeds to move the second name from the
default area at 006CH to a 33-byte file control block called DFCB. The DFCB is then
prepared for file operations by clearing the current record field. At this point, the source
and destination FCBs are ready for processing, since the SFCB at 005CH is properly set
up by the CCP upon entry to the COPY program. That is, the first name is placed into the
default FCB, with the proper fields zeroed, including the current record field at 007CH.
The program continues by opening the source file, deleting any existing destination file,
and creating the destination file. If all this is successful, the program loops at the label
COPY until each record has been read from the source file and placed into the destination
fite. Upon completion of the data transfer, the destination file is closed and the program
returns to the CCP command level by jumping to BOOT.

sample file-to-file copy program
at the ccp level, the command
copy a:x.y biu.wv

; copies the file named x.y from drive
; a to a file named u.v. on drive b.

0000 = boot equ 0000h ; system reboot
0005 = bdos equ 0005h ; bdos entry point
005¢ = febl equ 005ch ; first file name
005¢ = sfcb equ fcbl ; source fcb

006¢ = fcb2 egu 006c¢ch ; second file name
0080 = dbuff equ 0080h ; default buffer
0100 = tpa equ 0100h ; beginning of tpa
0009 = printf equ 9 ; print buffer func#
000f = openf equ 15 ; open file func#
0010 = closef equ 16 ; close file func#

110 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0013 =
0014 =
0015 =
0016 =

0100
0100 311b02

0103 0e10
0105 116c00
0108 21da01
010b ta
010¢ 13
010d 77
010e 23
010f 0d
0110 ¢c20b01

0113 af
0114 32fa01

0117 115¢00
011a cd6901
011d 118701
0120 3¢

0121 cc6101

0124 11da01
0127 ¢d7301

012a 11da01
012d cd8201
0130 119601
0133 3c

0134 cc6101

0137 115c00
013a cd7801
013d b7

013e ¢25101

0141 11da0
0144 cd7d01
0147 1129801
014a b7

014b c46101

deletef
readf
writef
makef

’

micb:

copy:

equ 19 ; delete file func#
equ 20 ; sequential read
equ 21 ; sequential write
equ 22 ; make file func#
org tpa : beginning of tpa

Ixi sp,stack ;local stack

move second file name to dicb

mvi ¢,16 ; half an fcb

ixi d,fcb2 : source of move
Ixi h,dfcb ; destination fcb
ldax d : source fcb

inx d ; ready next
mov m,a ; dest fcb

inx h ; ready next

der ¢ ;count 16..0

jnz mfcb ; loop 16 times

name has been removed, zero cr
Xra a ;a=00h
sta dfcbcr s current rec = 0

source and destination fcb's ready

Ixi d,sfcb ; source file

call open ; error if 255

Ixi d,nofile ; ready message
int a ; 255 becomes 0
cz finis : done if no file

source file open, prep destination

Ixi d,dfcb ; destination

call delete ; remove if present
Ixi d,dfcb ; destination

call make . create the file

Ixi d,nodir ; ready message

inr a ; 255 becomes 0

cz finis . done if no dir space

source file open, dest file open
copy until end of file on source

Ixi d,sfcbh . source

call read : read next record
ora a . end of file?

jnz eofile ; skip write if so

not end of file, write the record

Ixi d,dfcb : destination
call write . write record
Ixi d,space ;ready message
ora a ; 00 if write ok
cnz finis ;end if so

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 111

112

014e c33701

0151 11da01
0154 cd6eln
0157 21bb01
015a 3¢

015b ¢c6101

015e 11cc01

0161 0e09
0163 ¢d0500
0166 ¢30000

0169 0e0f
016b ¢30500

016e 0el10
0170 c30500

0173 0et3
0175 ¢c30500

0178 Oel4
017a c30500

017d 0e15
017f c30500

0182 Oel16
0184 c30500

0187 6e6f20f
0196 6e6f209
01a9 6f7574f
01bb 7772695
O1cc 6361700

O1da
Otfa =
01fb

021b

eofile:

finis:

'open:
,close:
’delete
,read:

write:

make: .

nofile:
nodir:
space:
wrprot:

normal:

dfcb:
dfcbcer

stack:

jmp copy : loop until eof

. end of file, close destination

Ixt d,dfcb ; destination

call close ; 255 if error

Ixi h,wrprot ; ready message
inr a ; 255 becomes 00
cz finis ; shouldn’t happen

copy operation complete, end
Ixi d,normal ; ready message

. write message given by de, reboot

mvi c,printf
call bdos ; write message
jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

mvi c,openf
jmp bdos

mvi c,closef
jmp bdos

mvi c,deletef
jmp bdos

mvi c,readf
jmp bdos

mvi c,writef
jmp bdos

mvi c¢c,makef
imp bdos

console messages

db 'no source file$’

db 'no directory space$’
db ‘out of data space$’
db ‘write protected?$’
db ‘copy complete$’

data areas

ds 33 ; destination fcb
equ dfcb+32 ; current record
ds 32 ; 16 level stack
end

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

The user should note that there are several simplifications in this particular program.
First, there are no checks for invalid file names that could, for example, contain ambigu-
ous references. This situation could be detected by scanning the 32-byte default area
starting at location 005CH for ASCII question marks. A check should also be made to
ensure that the file names have, in fact, been included (check locations 005DH and 006 DH
for nonblank ASCII characters). Finally, a check should be made to ensure that the soyrce
and destination file names are different. An improvement in speed could be obtained by
buffering more data on each read operation. One could, for example, determine the size’
of memory by fetching FBASE from location 0006H and using the entire remaining
portion of memory for a data buffer. In this case, the programmer simply resets the DMA
address to the next successive 128-byte area before each read. Upon writing to the
destination file, the DMA address is reset to the beginning of the buffer and incremented
by 128 bytes to the end as each record is transferred to the destination file.

5.4 A Sample File Dump Utility

The file dump program shown below is slightly more complex than the simple copy
program given in the previous section. The dump program reads an input file, specified in
the CCP command line, and displays the content of each record in hexadecimal format at
the console. Note that the dump program saves the CCP’s stack upon entry, resets the
stack to a local area, and restores the CCP’s stack before returning directly to the CCP.
Thus, the dump program does not perform and warm start at the end of processing.

; DUMP program reads input file and displays hex

data
0100 org 100h
0005 = bdos equ 0005h = ;bdos entry point
0001 = cons equ 1 ;read console
0002 = typef equ 2 :type function
0009 = printf equ 9 ;buffer print entry
000b = brkf equ 11 ;break key function
(true if char
000f = openf equ 15 file open
0014 = readf equ 20 ;read function
005¢ = fcb equ 5ch ;file control block
,address
0080 = buff equ 80h ;input disk buffer
) ;address
; non graphic characters
000d = cr equ Odh ;carriage return
000a = it equ Oah line feed
; file control block definitions
005c¢ = fcbdn equ tcb+0 ;disk name
005d = fcbfn equ fcb+1 ;file name
0065 = fcbft equ fcb+9 ;disk file type (3
_ ;characters)
0068 = fcbrl equ fcb+12 file's current reel
;number
006b = fcbre equ fcb+15 ;file'srecordcount (0to
;128)128)
007¢c = fcber equ fcb+32 current (next) record
;number (0

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 113

007d =
0100 210000
0103 39

0104 221502

0107 315702

010a cdci0t
010d feff
010f c21b01

0112 111301
0115 ¢d9c0
0118 c35101

011b 3e80
011d 321302

0120 210000
0123 e5
0124 cda201
0127 e1
0138 da5101
012b 47
012c 7d
012d e60f
012f c24401

0132 ¢d7201

0135 ¢d5901

0138 of
0139 da510t

013c 7¢
013d ¢cdsfo1
0140 7d
0141 cdsfo1

0144 23

fcbin

openok;

gloop:

nonum:

equ fcb+33 ;fcb length

set up stack

Ixi h,0

dad sp

entry stack pointer in hl from the ccp
shld oldsp

set sp to local stack area (restored at
finis)

Ixi sp,stktop

read and print successive buffers

call setup ;set up input file

cpi 255 ;255 if file not present
jnz openok :skip if open is ok

file not there, give error message and
return

Ixi d,opnmsg

call err

imp finis ;to return

;open operation ok, set buffer index to
.end

mvi a,80h
sta ibp ;set buffer pointer to 80h
hl contains next address to print
~Ixi h,0 .start with 0000
pushh ;save line position
call gnb
pop h ;recall line position
jc finis ;carry set by gnb if end
file
mov b,a

print hex values

check for line fold

mov a,l

ani 0fh ;check low 4 bits
jnz nonum

print line number

call crif

check for break key

call break

accum Isb = 1 if character ready

rrc ;into carry

jc finis .don’t print any more

mov a,h
call phex
mov a,l|
call phex

inx h ;to next line number

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0145 3e20
0147 cd6501
014a 78
014b cd8fo1
014e c32301

0151 ¢cd7201
0154 2a1502
0157 19

0158 c9

0158 e5d5¢c5

015¢c 0elb
015e ¢d0500
0161 cidtel

0164 c8

0165 e5d5c5
0168 0e02
016a 5f
016b cd0500
016e cidlet
0171 c9

0172 3e0d
0174 cd6501
0177 3e0a
0179 cd6501
017c c9

017d e60f
0171 fe0a
0181 d28901

0184 c630
0186 c38b01

0189 c637

finis:

break:

pchar:

crif:

pnib;

p10:

mvi a,’’
call pchar
mov a,b
call phex
jmp gloop

end of dump, return to cco

(note that a jmp to 0000h reboots)
cali crif

thid oldsp

sphi

stack pointer contains ccp's stack
location

ret ;to the ccp

subroutines

;check break key (actually any key will
,do)

push hf push d! push b; environment
,saved

mvi c,brkf

call bdos

pop b! pop d! pop h; envircnment
restored

ret

,print a character

push h! push d! push b; saved
mvi ¢, typef

mov e,a

call bdos

pop b! pop d! pop h; restored
ret

mvi a,cr

call pchar
mvi a,lf

call pchar
ret

;print nibble in reg a

ani 0Ofh :low 4 bits
cpi 10

jnc p10

less than or equal to 9
adi ‘O

jmp prn

greater or equal to 10
adi 'a’- 10

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 115

018b cd6501
018e c9

018f 15

0190 of
0191 of
0192 of
0193 of
0194 cd7do1
0197 f1
0198 cd7do1
019b c8

019¢ 0e09

019e ¢d0500
Otat c9

01a2 3a1302
01a5 fe80
01a7 c2b301

O1aa cdce01
Otad b7
Otae cab301
01b1 37
01b2 c9
01b3 5f
01b4 1600
01b6 3¢
01b7 321302
01ba 218000
Oibd 19
O1be 7e

01bf b7
01c0 ¢9

Otc1 af

prn;

phex:

err:

gnb:

go:

setup:

call pchar
ret

;print hex char in reg a
pushpsw

rec

rrc

rrc

rec

call pnib ;print nibble
pPop psw

calt pnib

ret

;print error message

d.e addresses message ending with “$”

mvi c,printf ;print buffer
function

call bdos

ret

,get next byte

Ida ibp

cpi 80h

inz g0

read another buffer

call diskr

ora a ;zero value if read ok
iz g0 .for another byte

end of data, return with carry set for eof
stc

ret

;read the byte at buff+reg a

mov e,a :Is byte of buffer index

mvi d,0 ;double precision
;index to de

inr a sindex=index+1

sta ibp ;back to memory

pointer is incremented

save the current file address

Ixi h,buff

dad d

absolute character address is in h!
mov a,m

byte is in the accumulator

ora a ;reset carry bit
ret

;set up file

open the file for input

xra a ;zero to accum

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

01c2 327¢00 sta fcber ;clear current record

01c5 115¢00 Ixi d,fcb
01c8 0elf mvi c,openf
O1ca cd0500 call bdos
: 255 in accum if open error
O1cd c9 ret
diskr: ;read disk file record
Otce e5d5¢5 push h! push d! push b
01d1 115c00 Ixi d,fcb
01d4 Oel4 mvi ¢, readf
01d6 ¢d0500 call bdos
01d9 ctidiel .. pop b! pop d! pop h
01dc c9 ret
; fixed message area
01dd 46494c0 signon: db ‘file dump version 2.0%’
0113 0d0adel opnmsg: db crlf‘no input file present on
disk$’
; variable area
0213 ibp: ds 2 ;input buffer pointer
0215 oldsp: ds 2 ;entry sp value from ccp
; stack area
0217 ds 64 ;reserve 32 level stack
stktop:
0257 end

5.5 A Sample Random Access Program

This chapter concludes with an extensive example of random access operation. The
program listed below performs the simple function of reading or writing random records
upon command from the terminal. Given that the program has been created, assembled,
and placed into a file labeled RANDOM.COM, the CCP level command

RANDOM X.DAT
starts the test program. The program looks for a file by the name X.DAT (in this
particular case) and, if found, proceeds to prompt the console for input. If not found, the
file is created before the prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return. The input commands
take the form

nW nR Q
where n is an integer value in the range 0 to 65535, and W, R, and Q are simple command

characters corresponding to random write, random read, and quit processing, respec-
tively. If the W command is issued, the RANDOM program issues the prompt

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 117

type data:.

The operator then responds by typing up to 127 characters, followed by a carriage return.
RANDOM then writes the character string into the X.DAT file at record n. If the R
command is issued, RANDOM reads record number n and displays the string value at the
console. If the Q command is issued, the X.DAT file is closed, and the program returns to
the CCP. In the interest of brevity, the only error message is

error, try again.

The program begins with an initialization section where the input file is opened or
created, followed by a continuous loop at the label “ready” where the individual com-
mands are interpreted. The default file control block at 00SCH and the default buffer at
0080H are used in all disk operations. The-utility subroutines then follow, which contain
the principal input line processor, called “readc.” This particular program shows the
elements of random access processing, and can be used as the basis for further program
development.

Sample Random Access Program for CP/M 2.0

0100 org 100h base of tpa

0000 = rebcot equ 0000h ;system reboot

0005 = bdos equ 0005h ;bdos entry point

0001 = coninp equ 1 ;console input function

0002 = conout equ 2 ;console output function

0009 = pstring equ 9 ;print string until ‘§’

000a = rstring equ 10 ;read console buffer

000c¢ = version equ 12 yreturn version number

000f = openf equ 15 ;file open function

0010 = closef equ 16 ;close function

0016 = makef equ 22 ;make file function

0021 = readr equ 33 ;read random

0022 = writer equ 34 ;write random

005¢ = fcb equ 005ch .default file control
;block

007d = ranrec equ fcb+33 ;random record position

007f = ranovf equ fcb+35 ;high order (overflow)
;byte

0080 = buff equ 0080h ;buffer address

000d = cr equ Odh ;carriage return

000a = If equ Oah ;line feed

Load SP, Set-Up File for Random Access

0100 31bc00 Ixi sp,stack
; version 2.0
0103 0elc myi cversion

118 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0105 ¢d0500
0108 fe20
010a d21600

010d 111b00
0110 cdda00
0113 c30000

0116 0eOf
0118 115¢00
011b cd0500
01te 3¢
011f c23700

0122 Oel16
0124 115¢00
0127 cd0500
012a 3¢
012b c23700

012e 113a00
0131 cddal0
0134 ¢30000

0137 cdeb00
013a 227d00
013d 217100
0140 3600
0142 fe51
0144 c25600

0147 0e10
0149 115¢00
014c¢ cd0500
014f 3¢
0150 cab%900
0153 ¢c30000

call’ bdos
cpi 20h ;version 2.0 or better?
inc versok
; bad version, message and go back
Ixi d,badver
call print
jmp ‘reboot
versok:
; correct version for random access
mvi c.openf ;open default fcb
Ixi d.fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

; cannot open file, so create it

mvi c,makef

Ixi d,fcb

call bdos

inr a ;err 255 becomes zero
jinz ready

cannot create file, directory full

IXi d,nospace
call print
imp reboot ;back to ccp

Loop Back to Ready After Each Command

ready:
; file is ready for processing

call readcom ;read next command
shid ranrec ,store’input record#
Ixi h,ranovf

mvi m,0 ;clear high byte if set
cpi ‘Q quit?

jnz notq

: quit processing, close file

mvi c.closef

Ixi d,fcb

call bdos

inr - a serr 255 becomes 0
jz error ,error message, retry
jmp reboot ;back to ccp

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 119

0156 fe57
0158 c28200

015b 114d00
015e cdda00
0161 Oe7f

0163 218000

0166 c5
0167 &5
0168 cdc200
016b et
016¢ ct
016d fe0d
016f ca7800

0172 77
0173 23
0174 0d
0175 c26600

0178 3600

017a Qe22
017¢ 115¢c00
017f cd0500
0182 b7
0183 c2b900
0186 ¢33700

0189 fe52
018b c2b900

018e Qe21
0190 115¢00
0193 cd0500
0196 b7
0197 c2b300

120

End of Quit Command, Process Write

notq:

rloop:

erloop:

not the quit command, random write?
cpi ‘W’
jnz notw

this is a random write, fill buffer until ¢cr

Ixi d,datmsg

call print ;data prompt

mvi c,127 ;up to 127 characters
Ixi h,buff ,destination

;read next character to buff

push b ;jsave counter

push h ;next destination
call getchr ;character to a

pop h ,restore counter
pop b ;restore next to fill
cpi cr ;end of line?

iz erloop

not end, store character

mov m,a

inx h ;next to fill

dcer c ;counter goes down
jnz rloop ;end of buffer?

end of read loop, store 00
mvi m,0

write the record to selected record number
mvi c,writer '

Ixi d,fcb

call bdos

ora a ;error code zero?
inz error ;message if not
jmp ready ;for another record

End of Write Command, Process Read

notw:

not a write command, read record?
cpi) KR'
inz error ;skip if not

read random record

“mvi c,readr

Ixi d.fcb

call bdos

ora a ;return code 007?
jnz error

read was successful, write to console

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

019a cdcf00
019d 0e80
019f 218000

01a2 7e
01a3 23
01a4 e67f
01a6 ca3700

01a9 ¢5
Olaa e5
O1lab fe20
01ad d4c800
01b0 el
01b1 ct
01b2 0d
01b3 ¢2a200
01b6 ¢33700

01b9 115900
01bc cddalo
01bf ¢33700

01c2 0e01
01c4 ¢d0500
01c7 ¢9

01c8 0e02
O1ca 5f
01cb cd0500
Olce c9

O1cf 3e0d
01d1 cdc800
01d4 3ela
01d6 cdc800
01d9 c9

call
mvi
Ixi
wloop:
mov
inx
ani
jz

push
push
cpi
cne
pop
pop
dcr
inz
jmp

crif ;new line

c, 128 ;max 128 characters

h.buft ;next to get

am ;next character

h ;next to get

7fh ;mask parity

ready ;for another command
»if 00

b ;save counter

h ;save next to get

< ;graphic?

putchr ;skip output if not

h

b

c ;count=count-1

wloop

ready

End of Read Command, All Errors End Up Here

error:
Ixi
call
jmp

d,errmsg
print
ready

Utility Subroutines for Console 1/0O

getchr:

;read next console character to a

mvi
call
ret

putchr:

c.coninp
bdos

;write character from a to console

mvi
mov
call
ret

crif:

c,conout
ea .character to send
- bdos ;send character

;send carriage return line feed

mvi
call
mvi
call
ret

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

a,cr ;carriage return
putchr

a,lf Jline feed
putchr

121

print:
.print the buffer addressed by de untit $

O1da d5 push d
01db cdcf00 call crif
Ol1de dt pop d ;new line
01df 0e09 mvi c,pstring
01e1 cd0500 call bdos ;print the string
01ed4 c9 ret ’
readcom:
read the next command line to the conbuf
01e5 116b00 Ixi d,prompt
01e8 cdda00 call print ;command?
Oleb Oela mvi c,rstring
01ed 117a00 Ixi d,conbuf
01f0 ¢d0500 call bdos ;read command line
; command line is present, scan it
01f3 210000 ixi h,0 ;start with 0000
01f6 117¢00 Ixi d.conlin ;command line
0119 1a) readc: ldax d ;next command
,character
01fa 13 inx d ;to next command
:position
01fb b7 ora a ;cannot be end of
;command
01fc ¢8 . rz
; not zero, numeric?
01id d630 sui ‘0
01ff fe0a cpi 10 carry .if numeric
0201 d21300 jnc endrd
‘ ; add-in next digit
0204 29 dad h *2
0205 4d mov c,l
0206 44 mov b,h ;bc = value * 2
0207 29 dad h "
0208 29 dad h '8
0209 09 dad b 2 +*8=*10
020a 85 add | ;+digit
020b 6f mov |a
020c d2fg00 jinc readc ;for another char
020f 24 inr h ;overflow
0210 ¢3f900 jmp readc ;for another char
endrd:
: end of read, restore value in a
0213 ¢630 adi ‘0 ;command
0215 feb1 _ cpi ‘a’ ;translate case?
0217 d8 : rc
. lower case, mask lower case bits
0218 eB5f ani 101$1111b

021a c9 ret

122 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

AR

String Data Area for Console Messages

badver:
021b 536179 db ‘'sorry, you need ¢p/m version 2§’
nospace:
023a 4e6f29 db ‘no directory space$’
datmsg: ,
024d 547970 db ‘type data: $’
errmsg:
0259 457272 db ‘error, try again.$’
prompt:
026b 4e6570 db ‘next command? §’

Fixed and Variable Data Area

027a 21 conbuf: db conlen ;length of consoie buffer
027b consiz: ds 1 ;resulting size after read
027¢ conlin: ds 32 ;length 32 buffer
0021 = conlen equ $-consiz
029c ds 32 ;16 level stack

stack:
02bc end

Again, major improvements could be made to this particular program to enhance its
operation. In fact, with some work, this program could evolve into a simple data base
management system. One could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called GETKEY, could be
developed that first reads a sequential file and extracts a specific field defined by the
operator. For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract the “LAST-
NAME" field from each record, starting in position 10 and ending at character 20.
GETKEY builds a table in memory consisting of each particular LASTNAME field, along
with its 16-bit record number location within the file. The GETKEY program then sorts
this list and writes a new file, called LASTNAME.KEY, which is an alphabetical list of
LASTNAME fields with their corresponding record numbers. (This list is called an inverted
index in information retrieval parlance.)

If the programmer were to rename the program shown above as QUERY and massage
it so that it reads a sorted key file into memory, the command line might appear as

QUERY NAMES.DAT LASTNAME.KEY.

Instead of reading a number, the QUERY program reads an alphanumeric string thatisa
particular key to find in the NAMES.DAT data base. Since the LASTNAME KEY list is
sorted, one can find a particular entry rapidly by performing a “binary search,” similar to
looking up a name in the telephone book. That is, starting at both ends of the list, one
examines the entry halfway in between and, if not matched, splits either the upper half or

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 123 .

the lower half for the next search. The user will quickly reach the item he or she is looking
for-and find the corresponding record number. The user should fetch and display this
record at the console, just as was done in the program shown above.

With some more work, the user can allow a fixed grouping size that differs from the
128-byte record shown above. This is accomplished by keeping track of the record
number as well as the byte offset within the record. Knowing the group size, one
randomly accesses the record containing the proper group, offset to the beginning of the
group within the record read sequentially until the group size has been exhausted.

Finally, one can improve QUERY considerably by allowing boolean expressions,
which compute the set of records that satisfy several relationships, such asa LASTNAME
between HARDY and LAUREL and an AGE lower than 45. Display all the records that fit
this description. Finally, if the user’s lists are getting too big to fit into memory, he or she
should randomly access key files from the disk as well.

5.6 System Function Summary

FUNCTION FUNCTION INPUT OUTPUT
NUMBER NAME
Decimal Hex
0 0 System Reset C = 00H none
1 1 Console Input C=01H A = ASCII char
2 2 Console Output E = char none
3 3 Reader Input A = ASCII char
4 4 Punch Qutput E = char none
5 5 List Qutput E = char none
6 6 Direct Console I/0 C = 06H A = char orstatus

E = OFFH (input) or (no value)
OFEH (status) or
char (output)

7 7 Get I/0 Byte none A =1/0 Byte
Value
8 8 Setl/O Byte E = 1/0 Byte none
9 9 Print String - DE = Buffer Address none
10 A Read Console Buifer DE = Buffer Console
Characters
. in Buffer
11 B Get Console Status none A = 00/non zero
12 C Return Version Number none HL: Version
Number
13 D Reset Disk System none none
14 E Select Disk E =Disk Number none
15 F Open File DE = FCB Address FF if not found
16 10 Close File DE = FCB Address FF if not found

124 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

17

18

19
20
21
22

23

24

25

28
27

28
29

30
31

32

33
34
35
36
37
38
39
40

*Note that A = L, and B = H upon return.

11
12
13
14
15
18

17

" 18

19

1A
1B

1C
1D

1E
1F

20

21
22
23
24
25
26
27
28

Search For First
Search For Next

Delete File
Read Sequential
Write Sequential
Make File

Rename File
Return Login Vector
Return Current Disk

Set DMA Address
Get ADDR (ALLOC)

Write Protect Disk
Get Read/only Vector

Set File Attributes
Get ADDR (Disk Parms)

Set/Get User Code

Read Random

Write Random
Compute File Size

Set Random Record
Reset Drive

Access Drive

Free Drive

Write Random with Fill

DE = FCB Address

none

DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address

DE = FCB Address

none

none

DE - DMA Address
none

none
none

DE = FCB Address
none

E = OFFH for Get

E = 00 to OFH for Set

DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = Drive Vector
not supported

not supported

DE = FCB

A = Directory
Code

A = Directory
Code

A = none

A = Error Code.

A = Error Code

A = FF if no DIR
Space

A = FF if not
found

HL = Login
Vector”

A =Current Disk
Number

none

HL = ALLOC
Address”

none

HL = R/O
Vector Value®

A=none

HL = DPB
Address

User Number

A = Error Code
A = Error Code
r0, r1, r2

r0, r1, r2

A=0

A = Error Code

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 125

CP/M 2 Alteration

6.1 Introduction

The standard CP/M system assumes operation on an Intel MDS-800 microcomputer
development system, but is designed so the user can alter a specific set of subroutines that
define the hardware operating environment.

Although standard CP/M 2 is configured for single density floppy disks, field-
alteration features allow adaptation to a wide variety of disk subsystems from single drive
minidisks through high-capacity, “hard disk” systems. To simplify the following adapta-
tion process, it is assumed that CP/M 2 will first be configured for single density floppy
disks where minimal editing and debugging tools are available. If an earlier version of
CP/M is available, the customizing process is eased considerably. In this latter case, the
user may wish to review the system generation process and skip to later sections that
discuss system alteration for nonstandard disk systems.

To achieve device independence, CP/M is separated into three distinct modules:

BIOS basic IO system, which is environment dependent

BDOS basic disk operating system, which is not dependent upon the hard-
. ware configuration

CCP the console command processor, which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular hardware. That is,
the user can “patch” the distribution version of CP/M to provide a new BIOS that
provides a customized interface between the remaining CP/M modules and the user’s
own hardware system. This document provides a step-by-step procedure for patching a
new BIOS into CP/M.

All disk-dependent portions of CP/M 2 are placed into a BIOS, a resident “disk parameter
block,” which is either hand coded or produced automatically using the disk definition
macro library provided with CP/M 2. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the data allocation size,
the maximum extent of the logical disk, directory size information, and reserved track
values. The macros use this information to generate the appropriate tables and table
references for use during CP/M 2 operation. Deblocking information is provided, which

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 127

aids in assembly or disassembly of sector sizes that are multiples of the fundamental 128
byte data unit, and the system alteration manual includes general purpose subroutines
that use the deblocking information to take advantage of larger sector sizes. Use of these
subroutines, together with the table-drive data access algorithms, makes CP/IM 2 a
universal data management system.

File expansionis achieved by providing up to 512 logical file extents, where each logical
extent contains 16K bytes of data. CP/M 2 is structured, however, so that as much as
128K bytes of data are addressed by a single physical extent (corresponding to a single
directory entry) maintaining compatibility with previous versions while taking advan-
tage of directory space.

If CP/M is being tailored to a computer system for the first time, the new BIOS
requires some simple software development and testing. The standard BIOS is listed in
Appendix A and can be used as a model for the customized package. A skeletal version of
the BIOS given in Appendix B can serve as the basis for a modified BIOS. In addition to
the BIOS, the user must write a simple memory loader, called GETSYS, that brings the
operating system into memory. To patch the new BIOS into CP/M, the user must write
the reverse of GETSYS, called PUTSYS, which places an altered version of CP/M back
onto the diskette. PUTSYS can be derived from GETSYS by changing the disk read
commands into disk write commands. Sample skeletal CETSYS and PUTSYS programs
are described in Section 6.4 and listed in Appendix C. To make the CP/M system load
automatically, the user must also supply a cold start loader, similar to the one provided
with CP/M (listed in Appendices A and D). A skeletal form of a cold start loader is givenin
Appendix E, which serves as a model for the loader.

6.2 First Level System Regeneration

The procedure to patch the CP/M system is given below. Address references in each
step are shown with “H” denoting the hexadecimal radix, and are given for a 20K CP/M
system. For larger CP/M systems, a “bias” is added to each address that is shown with a
“+b” following it, where b is equal to the memory size—20K. Values for b in various
standard memory sizes are

24K: : b = 24K - 20K = 4K = 1000H
32K: b = 32K - 20K = 12K = 3000H
40K: b = 40K - 20K = 20K = 5000H
48K: b = 48K - 20K = 28K = 7000H
56K: b = 56K - 20K = 36K = 9000H
62K: b = 62K - 20K = 42K = ABOOH
64K: b = 64K - 20K = 44K = BOOOH

It should be noted that the standard distribution version of CP/M is set for operation
within a 20K memory system. Therefore, the user must first bring up the 20K CP/M
system, then configure it for actual memory size (the user should see Section 6.3).

The user should:

1. ReadSection 6.4 and write a GETSYS program that reads the first two tracks of a
diskette into memory. The program from the diskette must be loaded starting at
location 3380H. GETSYS is coded to start at location 100H (base of the TPA), as
shown in Appendix C.

128 ALL'INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

2. Test the GETSYS program by reading a blank diskette into memory and check to
see that the data have been read properly and that the diskette has not been alteredin
any way by the GETSYS program.

3. Run the GETSYS program using an initialized CP/M diskette to see if GETSYS
loads CP/M starting at 3380H (the operating system actually starts 128 bytes later at
3400H).

4. Read Section 6.4 and write the PUTSYS program. This writes memory starting
at 3380H back onto the first two tracks of the diskette. The PUTSYS program should
be located at 200H, as shown in Appendix C.

5. Test the PUTSYS program using a blank, uninitialized diskette by writing a
portion of memory to the first two tracks; clear memory and read it back using
GETSYS. Test PUTSYS completely, since this program will be used to alter CP/Mon
disk. :

6. Study Sections 6.5, 6.6, and 6.7 along with the distribution version of the BIOS
given in Appendix A and write a simple version that performs a similar function for
the customized environment. Use the program given in Appendix B as a model. Call
this new BIOS by the name CBIOS (customized BIOS). Implement only the primitive
disk operations on a single drive and simple console input/output functions in this
phase.

7. Test CBIOS completely to ensure that it properly performs console character
1/O and disk reads and writes. Be careful to ensure that no disk write operations occur
during read operations and check that the proper track and sectors are addressed on all
reads and writes. Failure to make these checks may cause destruction of the initialized
CPIM system after it is patched.

8. Referring to the table in Section 6.5, note that the BIOS is placed between
locations 4AOOH and 4FFFH. Read the CP/M system using GETSYS and replace the
BIOS segment by the CBIOS developed in step 6 and tested in step 7. This replace-
ment is done in memory.

9. Use PUTSYS to place the patched memory image of CP/M onto the first two
tracks of a blank diskette for testing.

10. Use GETSYS to bring the copied memory image from the test diskette back
into memory at 3380H and check to ensure that it has loaded back properly (clear
memory, if possible, before the load). Upon successful load, branch to the cold start
code at location 4A00H. The cold start routine will initialize page zero, then jump to
the CCP at location 3400H, which will call the BDOS, which will call the CBIOS. The
CBIOS will be asked by the CCP to read sixteen sectors on track 2, and CP/M will type
“A>", the system prompt.

If difficulties are encountered, use whatever debug facilities are available to trace

and breakpoint the CBIOS.

11. Upon completion of step 10, CP/M has prompted the console for a command
input. Test the disk write operation by typing

SAVE 1 X.COM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 129

(All commands must be followed by a carriage return.) CP/IM responds with another
prompt (after several disk accesses)

A>
If it does not, debug the disk write functions and retry.
12. Test the directory command by typing
DIR
CPIM responds with
A X COM
13. Test the erase command by typing
ERA X.COM

CP/M responds with the A prompt. This is now an operational system that only
requires a bootstrap loader to function completely.

14. Write a bootstrap loader that is similar to GETSYS and place it on track 0,
sector 1 using PUTSYS (again using the test diskette, not the distribution diskette).
See Sections 6.5 and 6.8 for more information on the bootstrap operation.

15. Retest the new test diskette with the bootstrap loader installed by executing
steps 11, 12, and 13. Upon completion of these tests, type a control-C (control and C
keys simultaneously). The system executes a “warm start” that reboots the system,
and types the A prompt.

16. At this point, there is probably a good version of the customized CP/M system
on the test diskette. Use GETSYS to load CP/M from the test diskette. Remove the
test diskette, place the distribution diskette (or a legal copy) into the drive, and use
PUTSYS to replace the distribution version with the customized version. The user
should not make this replacement if unsure of the patch because this step destroys the
system that was obtained from Digital Research.

17. Load the modified CP/M system and test it by typing

DIR

CP/M responds with a list of files that are provided on the initialized diskette. One file
is the memory image for the debugger

DDT.COM
Note that from now on, it is important always to reboot the CP/M system (ctl-C is
sufficient) when the diskette is removed and replaced by another diskette, unless the
new diskette is to be read only.
18. Load and test the debugger by typing
DDT

(See Chapter 4 for operating procedures.)

130 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

19. Before making further CBIOS modifications, practice using the editor (see
Chapter 2), and assembler (see Chapter 3). Recode and test the GETSYS, PUTSYS,
and CBIOS programs using ED, ASM, and DDT. Code and testa COPY program that
does a sector-to-sector copy from one diskette to another to obtain back-up copies of
the original diskette. (Read the CP/M Licensing Agreement specifying legal responsi-
bilities when copying the CP/M system.) Place the copyright notice

Copyright ©, 1979
Digital Research

on each copy that is made with the COPY program.

20. Modify the CBIOS to include the extra functions for punches, readers, and
sign-on messages; and add the facilities for additional disk drives, if desired. These
changes can be made with the GETSYS and PUTSYS programs or by referring to the
regeneration process in Section 6.3.

The user should now have a good copy of the customized CP/M system. Although the
CBIQOS portion of CP/M belongs to the user, the modified version cannot be legally copied
for anyone else’s use.

It should be noted that the system remains file-compatible with all other CP/M
systems (assuming media compatibility), which allows transfer of nonproprietary soft-
ware between CPIM users.

6.3 Second Level System Generation

Once the system is running, the user will want to configure CP/M for the desired
memory size. Usually a memory image is first produced with the “MOVCPM" program
(system relocator) and then placed into a named disk file. The disk file can then be loaded,
examined, patched, and replaced using the debugger and the system generation program.
(The user should refer to Chapter 1.}

The CBIOS and BOOT are modified using ED and assembled using ASM, producing
files called CBIOS.HEX and BOOT. HEX, which contain the code for CBIOS and BOOT
in Intel hex format.

To get the memory image of CP/M into the TPA configured for the desired memory
size, the user should type the command

MOVCPM xx *
where xx is the memory size in decimal K bytes (e.g., 32 for 32K). The response will be

CONSTRUCTING xxK CP/M VERS 2.0

READY FOR “SYSGEN" OR

“SAVE 34 CPMxx.COM"
An image of CP/M in the TPA is configured for the requested memory size. The memory
image is at location 0900H through 227FH (i.e., the BOOT is at 0900H, the CCP is at
980H, the BDOS starts at 1180H, and the BIOS is at IF80H). The user should note that
the memory image has the standard MDS-800 BIOS and BOOT oniit. It is now necessary

to save the memory image in a file so that the user can patch the CBIOS and CBOOT into
it:

SAVE 34 CPMxx.COM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 131

The memory image created by the”“MOVCPM” program is offset by a negative bias so
that it loads into the free area of the TPA, and thus does not interfere with the operation
of CP/M in higher memory. This memory image can be subsequently loaded under DDT
and examined or changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load DDT, then read the CPM image.
DDT should respond with

NEXT PC
2300 0100
(The DDT prompt)

The user can then give the display and disassembly commands to examine portions of the
memory image between 900H and 227FH. The user should note, however, that to find
any particular address within the memory image, one must apply the negative bias to the
CP/M address to find the actual address. Track 00, sector 01, is loaded to location 900H
(the user should find the cold start loader at 900H to 97FH); track 00, sector 02, is loaded
into 980H (this is the base of the CCP); and so on through the entire CP/M system load. In
a 20K system, for example, the CCP resides at the CP/M address 3400H, but is placedinto
memory at 980H by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3400H
Assuming that twos complement arithmetic, n = D580H, which can be checked by
3400H + D580H = 10980H = 0980H (ignoring high-order overflow).
Note that for larger systems, n satisfies
(3400H+b) + n = 980H, or
n =980H - (3400H + b), or
n = D580H - b

The value of n for common CP/M systems is given below.

Memory Size Bias b Negative Offset n

20K 0000H D580H - 0000H = D580H
24K 1000H D580H - 1000H = C580H
32K 3000H D580H - 3000H = A580H
40K 5000H D580H - 5000H = 8580H
48K ~ 7000H D580H - 7000H = 6580H
56K 9000H D580H - 9000H = 4580H
62K A800H D580H - A800H = 2D80H
64K BOOOH D580H - BOOOH = 2580H

If the user wants to locate the address x within the memory image loaded under DDT in a
20K system, first type

Hx.n Hexadecimal sum and difference

132 ALL'INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

and DDT will respond with the value of x+n (sum) and x-n (difference). The first number
printed by DDT is the actual memory address in the image where the data or code are
located. The DDT command

H3400,0580
for example, will produce 980H as the sum, which is where the CCP is located in the
memory image under DDT.

The user should type the L command to disassemble portions of the BIOS located at
(4A00H+b)-n, which, when one uses the H command, produces an actual address of
1F80H. The disassembly command would thus be

L1F80
It is now necessary to patch in the CBOOT and CBIOS routines. The BOOT resides at
location 0900H in the memory image. If the actual load addressis “n”, then tocalculate the
bias {m), the user types the command

H900,n Subtract load address from target address.

The second number typed by DDT in response to the command is the desired bias (m). For
example, if the BOOT executes at 0080H, the command

H900,80
will produce
0980 0880 Sum and difference in hex.

Therefore, the bias “m” would be 0880H. To read-in the BOOT, the user should give the
command

ICBOOT.HEX Input file CBOOT HEX.
Then

Rm Read CBOOT with a bias of m (=900H-n).
The user may now examine the CBOOT with

L900

The user is now ready to replace the CBIOS by examining the area at 17F80H where the
original version of the CBIOS resides and then typing

ICBIOS.HEX Ready the hex file for loading.
The user assumes that the CBIOS is being integrated into a 20K CP/M system and thus
originates at location 4A00H. To locate the CBIOS properly in the memory image under
DDT, one must apply the negative biasn fora 20K system when loading the hex file. This
is accomplished by typing

RD580 . Read the file with bias D580H.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 133,

Upon completion of the read, the user should reexamine the area where the CBIOS has
been loaded (use an “L1F80” command) to ensure that it was loaded properly. When
satisfied that the change has been made, the user should return from DDT using a
control-C or, “G0” command.

SYSGEN is used to replace the patched memory image back onto a diskette (the user
should utilize a test diskette until sure of the patch), as shown in the following interaction:

SYSGEN Start the SYSGEN program

SYSGEN VERSION 2.0 Sign-on message from SYSGEN

SOURCE DRIVE NAME Respond with a carriage return to skip the
(OR RETURN TO SKIP) CPIM read operation since the system is

already in memory

DESTINATION DRIVE NAME Respond with “B” to write the new system to
(OR RETURN TO REBOOT) the diskette in drive B

DESTINATION ON B, Place a scratch diskette in drive B, then type
THEN TYPE RETURN return.

FUNCTION COMPLETE
DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)

The user should place the scratch diskette in drive A and then perform a cold start to
bring up the newly configured CP/M system.

The new CP/M system is then tested and the Digital Research copyright notice is
placed on the diskette, as specified in the Licensing Agreement:

Copyright ©, 1979
Digital Research

6.4 Sample GETSYS and PUTSYS Programs

The following program provides a framework for the GETSYS and PUTSYS pro-
grams referenced in Sections 6.1 and 6.2. The READSEC and WRITESEC subroutines
must be inserted by the user to read and write the specific sectors.

GETSYS PROGRAM — READ TRACKS 0 AND 1 TO MEMORY AT 3380H

REGISTER USE

; A (SCRATCH REGISTER)

; B . TRACK COUNT (0, 1)

; C SECTOR COUNT (1,2,.. .,26)

; DE (SCRATCH REGISTER PAIR)
HL LOAD ADDRESS

E SP SET TO STACK ADDRESS

,STABT: LXI SP,3380H JSET STACK POINTER TO SCRATCH
LX! H, 3380H ggEABASE LOAD ADDRESS
MVI B, 0 START WITH TRACK 0

134 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

RDTRK: ;READ NEXT TRACK (INITIALLY 0)

MVI C,1 ;READ STARTING WITH SECTOR 1
RDSEC: ;READ NEXT SECTOR

CALL READSEC ;USER-SUPPLIED SUBROUTINE

Lxi D,128 :MOVE LOAD ADDRESS TO NEXT 1/2

JPAGE

DAD D ;HL = HL + 128

INR C ;SECTOR = SECTOR + 1

MOV AC ;CHECK FOR END OF TRACK

CPi 27

JC RDSEC ;CARRY GENERATED IF SECTOR < 27

ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

INR B

MOV AB ;TEST FOR LAST TRACK

CPI 2 :

JC RDTRK ;CARRY GENERATED IF TRACK <2

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

- USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:

ENTER WITH TRACK NUMBER IN REGISTER B,
; SECTOR NUMBER IN REGISTER C, AND

ADDRESS TO FILL IN HL

PUSH B :SAVE B AND C REGISTERS
PUSH H ‘SAVE HL REGISTERS

perform disk read at this point, branch to

label START if an error occurs

POPH ;:RECOVER HL

POF B ;RECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

This program is assembled and listed in Appendix B for reference purposes, with an
assumed origin of 100H. The hexadecimal operation codes that are listed on the left may
be useful if the program has to be entered through the panel switches.

The PUTSYS program can be constructed from GETSYS by changing only a few
operations in the GETSYS program given above, as shown in Appendix C. The register
pair HL becomes the dump address (next address to write), and operations upon these
registers do not change within the program. The READSEC subroutine is replaced by a
WRITESEC subroutine, which performs the opposite function: data from address HL are
written to the track given by register B and sector given by register C. Itis often usefulto
combine GETSYS and PUTSYS into a single program during the test and development
phase, as shown in Appendix C.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 135

6.5 Diskette Organization

The sector allocation for the standard distribution version of CP/M is given here for
reference purposes. The first sector (see the table on the following page) contains an
optional software boot section. Disk controllers are often set up to bring track 0, sector 1,
into memory at a specific location (often location 0000H). The program in this sector,
called BOOT, has the responsibility of bringing the remaining sectors into memory
starting at location 3400H+b. [f the user’s controller does not have a built-in sector load,
the program in track 0, sector 1 can be ignored. In this case, load the program from track 0,
sector 2, to location 3400H+b.

As an example, the Intel MD5-800 hardware cold start loader brings track 0, sector 1,
into absolute address 3000H. Upon loading this sector, control transfers. to location
3000H, where the bootstrap operation commences by loading the remainder of track 0
and all of track 1 into memory, starting at 3400H+b. The user should note that this
bootstrap loader is of little use in a non-MDS environment, although it is useful to
examine it since some of the boot actions will have to be duplicated in the user’s cold start
loader.

Track# Sector# Page# Memory Address CP/M Module name
00 al (boot address) Cold Start Loader
00 02 00 3400H+b CcCP

! 03 ' 3480H+b !
’ 04 01 3500H+b
' 05 ' 3580H+b
' 06 02 3600H+b
' 07 ’ 3680H+b
08 03 3700H+b . !
09) 3780H+b ’
10 04 3800H+b !
' 11 ’ 3880H+b
' 12 05 3900H+b
13 ! 3980H+b
14 06 3A00H+b
15 ' 3A80H+b
16 07 3BOOH+b '
00 17 ' 3B80H+b ccpP
00 18 08 3CO00H+b BDOS
' 19 ' 3C80H+b s
! 20 09 3D00H+b
' 21 ' 3D80H+b
22 10 3EQ0H+b '
' 23 ‘ 3E80H+b
’ 24 1 3F00H+b
! 25 ' 3F80H+b !
' 26 12 4000H+b '
01 0t ! 4080H+b '
' 02 13 4100H+b !
03 ' 4180H+b
' 04 14 4200H+b '
' 05 ' 4280H+b '
06 15 4300H+b
07 ' 4380H+b
' 08 16 4400H+b
) 09 ' 4480H+b

136 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

01
07

0t
o1
02-76

10
11
12
13
14
15
16
17
18
19
20
21
22

.23

24
25
26

01-26

17 4500H+b
' 4580H+b
18 4600H+b
' 4680H+b
19 4700H+b
' 4780H+b
20 4800H+b
' 4880H+b
21 4900H+b
' 4980H+b
22 4A00H+b
' 4A80H+b
23 4B00H+b
' 4B80H+b
24 4C00H+b
' 4C80H+b
25 4D00H+b

BDOS
BiOS

BI1OS
B10S

(directory and data)

6.6 The BIOS Entry Points

The entry points into the BIOS from the cold start loader and BDOS are detailed
below. Entry to the BIOSis through a “jump vector”located at 4 A00H+b, as shown below
(see Appendices A and B, as well). The jump vector is a sequence of 17 jump instructions
that send program control to the individual BIOS subroutines. The BIOS subroutines
may be empty for certain functions (i.e., they may contain asingle RET operation) during
reconfiguration of CP/M, but the entries must be present in the jump vector.

The jump vector at 4A00H+b takes the form shown below, where the individual jump
addresses are given to the left:

4A00H+b

4A03H+b
4A06H+b

4A09H+b
4A0CH+b

4A0FH+b
4A12H+b

4A15H+b
4A18H+b

4A1BH+b
4A1EH+b
4A21H+b

JMP BOOT

JMP WBOOT
JMP-CONST

JMP CONIN
JMP CONOUT

JMP LIST
JMP PUNCH

JMP READER
JMP HOME

JMP SELDSK
JMP SETTRK
JMP SETSEC

; ARRIVE HERE FROM COLD

START LOAD

; ARRIVE HERE FOR WARM START
; CHECK FOR CONSOLE CHAR

READY

; READ CONSOLE CHARACTER IN
; WRITE CONSOLE CHARACTER

ouT

; WRITE LISTING CHARACTER OUT
; WRITE CHARACTER TO PUNCH

DEVICE

; READ READER DEVICE
; MOVE TO TRACK 00 ON

SELECTED DISK

; SELECT DISK DRIVE
; SET TRACK NUMBER
; SET SECTOR NUMBER

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 137

4A24H+b JMP SETDMA ; SET DMA ADDRESS

4A27H+b JMP READ ; READ SELECTED SECTOR
4A2AH+b JMP WRITE ; WRITE SELECTED SECTOR
4A2DH+b JMP LISTST ; RETURN LIST STATUS
4A30H+b JMP SECTRAN ; SECTOR TRANSLATE
SUBROUTINE

Each jump address corresponds to a particular subroutine that performs the specific
function, as outlined below. There are three major divisions in the jump table: the system
(relinitialization, which results from calls on BOOT and WBOOT; simple character /O
performed by calls on CONST, CONIN, CONOUT, LIST, PUNCH, READER, and
LISTST; and diskette [/O performed by calls on HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, and SECTRAN.

All simple character 1/O operations are assumed to be performed in ASCII, upper and
lower case, with high order (parity bit) set to zero. An end-of-file condition for an input
device is given by an ASCII control-z (1AH). Peripheral devices are seen by CP/M as
“logical” devices and are assigned to physical devices within the BIOS.

To operate, the BDOS needs only the CONST, CONIN, and CONOUT subroutines
(LIST, PUNCH, and READER may be used by PIP, but not the BDOS). Further, the
LISTST entry is currently used only by DESPOOL, the print spooling utility. Thus, the
initial version of CBIOS may have empty subroutines for the remaining ASCIl devices.

The characteristics of each device are

CONSOLE The principal interactive console that communicates with the
operator, accessed through CONST, CONIN, and CONOUT;
typically, the CONSOLE is a device such asa CRT or teletype.

LIST The principal listing device, if it exists on the user’s system, is
usually a hard-copy device, such as a printer or teletype.

PUNCH The principal tape punching device, if it exists, is normally a
high-speed paper tape punch or teletype.

READER The principal tape reading device, such as a simple optical
reader or teletype.

A single peripheral can be assigned as the LIST, PUNCH, and READER device
simultaneously. If no peripheral device is assigned as the LIST, PUNCH, or READER
device, the CBIOS created by the user may give an appropriate error message so that the
system does not “hang” if the device is accessed by PIP or some other user program.
Alternately, the PUNCH and LIST routines can just simply return, and the READER
routine can return with a 1AH (ctl-Z) in register A to indicate immediate end-of-file.

For added flexibility, the user can optionally implement the “IOBYTE"” function,
which allows reassignment of physical and logical devices. The IOBYTE function creates
a mapping of logical to physical devices that can be altered during CP/M processing (the
user should see the STAT command). The definition of the IOBYTE function corres-
ponds to the Intel standard as follows: a single location in memory (currently location
0003H) is maintained, called IOBYTE, which defines the logical to physical device map-
ping that is in effect at a particular time. The mapping is performed by splitting the

138 ALL INFORMATION PRESENTED HERE S PROPRIETARY TO DIGITAL RESEARCH

IOBYTE into four distinct fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below.

most significant least significant
IOBYTE AT 003H LIST PUNCH READER CONSOLE
bits 6, 7 bits 4, 5 bits 2, 3 bits 0, 1

The value in each field can be in the range 0-3, defining the assigned source or
destination of each logical device. The values that can be assigned to each field are given
below

CONSOLE field (bits 0,1)

0 console is assigned to the console printer device (TTY:)

1 console is assigned to the CRT device (CRT:)

2 batch mode: use the READER as the CONSOLE input, and the
LIST device as the CONSOLE output (BAT:)

3 user defined console device (UC1:)

READER field (bits 2,3) :
: 0 READER is the teletype device (TTY:)

1 READER is the high speed reader device (PTR:)
2 user defined reader # 1 {(UR1:)
3 user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)

0 PUNCH is the teletype device (TTY:)
1 PUNCH is the high speed punch device (PTP:)
2 user defined punch # 1 (UP1:)
3 user defined punch # 2 (UP2:)
LIST field (bits 6,7)
0 LIST is the teletype device (TTY:)
1 LIST is the CRT device (CRT:)
2 LIST is the line printer device (LPT:)
3 user defined list device (UL1:)

The implementation of the IOBYTE is optional and affects only the organization of
the CBIOS. No CP/M systems use the IOBYTE (although they tolerate the existence of
the IOBYTE at location 0003H), except for PIP, which allows access to the physical
devices, and STAT, which allows logical-physical assignments to be made or displaved
(for more information, the user should see Chapter 1). In any case the IOBYTE imple-
mentation should be omitted until the basic CBIOS is fully implemented and tested; then
the user should add the IOBYTE to increase the facilities.

Disk I/O is always performed through a sequence of calls on the various disk access
subroutines that set up the disk number to access, the track and sector on a particular
disk, and the direct memory access (DMA) address involved in the I/OQ operation. After all
these parameters have been set up, a call is made to the READ or WRITE function to
perform the actual I/O operation. There is often a single call to SELDSK to select a disk
drive, followed by a number of read or write operations to the selected disk before
selecting another drive for subsequent operations. Similarly, there may be a single call to
set the DMA address, followed by several calls that read or write from the selected DMA
address before the DMA address is changed. The track and sector subroutines are always
called before the READ or WRITE operations are performed.

The READ and WRITE routines should perform several retries (10is standard) before
reporting the error condition to the BDOS. If the error condition is returned to the
BDOS, it will report the error to the user. The HOME subroutine may or may not

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 139

actually perform the track 00 seek, depending upon controller characteristics; the impor-
tant point is that track 00 has been selected for the next operation and is often treated in
exactly the same manner as SETTRK with a parameter of 00.

The exact responsibilities of each entry point subroutine are given below.

140

BOOT

wBOOT

CONST

CONIN

The BOOT entry point gets control from the cold start loader
and is responsible for basic system initialization, including
sending a sign-on message (which can be omitted in the first
version). If the IOBYTE function is implemented, it must be
set at this point. The various system parameters that are set
by the WBOOT entry point must be initialized, and control is
transferred to the CCP at 3400+b for further processing. Note
that register C must be set to zero to select drive A.

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user program
branches to location 0000H, or when the CPU is reset from
the front panel. The CP/M system must be loaded from the
first two tracks of drive A up to, but not including, the BIOS
(or CBIOS, if the user has completed the patch). System
parameters must be initialized as shown below:

location 0,1,2 Set to JMP WBOOT for warm
starts (O00H: JMP 4A03H+b) '

location 3 Set initial value of IOBYTE, if
implemented in the CBIOS

location 4 High nibble = current user no; low
nibble = current drive

location 5,6,7 Set to JMP BDOS, which is the
primary entry point to CP/M for
transient programs. (0005H: JMP
3C06H+b)

{The user should refer to Section 6.9 for complete details of
page zero use.) Upon completion of the initialization, the
WBOOT program must branch to the CCP at 3400H+b to
(re)start the system. Upon entry to the CCP, register C is set
to the drive to select after system initialization. The WBOOT
routine should read location 4 in memory, verify that it is a
legal drive, and pass it to the CCP in register C.

The user should sample the status of the currently assigned
console device and return OFFH in register A if a character is
ready toread and 00H in register A if no console characters are
ready.

The next console character is read into register A, and the
parity bit is set (high order bit) to zero. If no console character
is ready, the user waits until a character is typed before
returning.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

CONOUT

LIST

PUNCH

READER

HOME

SELDSK

SETTRK

The user sends the character from register C to the console
output device. The character is in ASCII, with high order
parity bit set to zero. The user may want toinclude a time-out
on a line feed or carriage return, if the console device requires
some time interval at the end of theline (such as a T1 Silent 700
terminal). The user can filter out control characters that cause
the console device to react in a strange way (a control-z causes
the Lear Seigler terminal to clear the screen, for example).

The user sends the character from register C to the currently
assigned listing device. The character is in ASCII with zero
parity bit.

The user sends the character from register C to the currently
assigned punch device. The character is in ASCII with zero

parity.

The user reads the next character from the currently assigned
reader device into register A with zero parity (high order bit
must be zero); an end-of-file condition is reported by return-
ing an ASCII control-z(1AH).

The user moves the disk head of the currently selected disk
(initially disk A) to the track 00 position. If the controller
allows access to the track 0 flag from the drive, the head is
stepped until the track 0 flag is detected. If the controller does
not support this feature, the HOME callis translated into a call
to SETTRK with a parameter of 0.

The user selects the disk drive given by register C for further
operations, where register C contains 0 for drive A, 1 for drive
B, and so on up to 15 for drive P (the standard CP/M distribu-
tion version supports four drives). On each disk select,
SELDSK must return in HL the base address of a 16-byte area,
called the Disk Parameter Header, described in Section é.10.
For standard floppy disk drives, the contents of the header and
associated tables do not change; thus, the program segment
included in the sample CBIOS performs this operation auto-
matically. If there is an attempt to select a nonexistent drive,
SELDSK returns HL=0000H as an error indicator. Although
SELDSK must return the header address on each call, it is
advisable to postpone the physical disk select operation until
an I/O function (seek, read, or write) is actually performed,
since disk selects often occur without utimately performing
any disk I/O, and many controllers will unload the head of the
current disk before selecting the new drive. This would cause
an excessive amount of noise and disk wear. The least signifi-
cant bit of register E is zero if this is the first occurrence of the
drive select since the last cold or warm start.

Register BC contains the track number for subsequent disk
accesses on the currently selected drive. The sector numberin
BC is the same as the number returned from the SECTRAN
entry point. The user can choose to seek the selected track at

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 141

142

SETSEC

SETDMA

READ

WRITE

LISTST

this time or delay the seek until the next read or write actually

.occurs. Register BC can take on values in the range 0-76

corresponding to valid track numbers for standard floppy disk
drives and 0-65535 for nonstandard disk subsystems.

Register BC contains the sector number (1 through 26) for
subsequent disk accesses on the currently selected drive. The
sector number in BC is the same as the number returned from
the SECTRAN entry point. The user can choose to send this
information to the controller at this point or delay sector
selection until a read or write operation occurs.

Register BC contains the DMA (disk memory access) address
for subsequent read or write operations. For example, if B =
00H and C = 80H when SETDMA is called, all subsequent read
operations read their data into 80H through OFFH and all
subsequent write operations get their data from 80H through
OFFH, until the next call to SETDMA occurs. The initial DMA
address is assumed to be 80H. The controller need not actually
support direct memory access. If, for example, all data
transfers are through [/O ports, the CBIOS that is con-
structed will use the 128-byte area starting at the selected
DMA address for the memory buffer during the subsequent
read or write operations.

Assuming the drive has been selected, the track has been set,
the sector has been set, and the DMA address has been speci-
fied, the READ subroutine attempts to read one sector based
upon these parameters and returns the following error codes
in register A:

0 no errors occurred

1 nonrecoverable error condition occurred

Currently, CP/M responds only to a zero or nonzero value as
the return code. That is, if the value in register A is 0, CP/M
assumes that the disk operation was completed properly. If an
error occurs, however, the CBIOS should attempt at least 10
retries to see if the error is recoverable. When an error is
reported the BDOS will print the message “BDOS ERR ON x:
BAD SECTOR". The operator then has the option of typing
carriage-return to ignore the error, or ctl-C to abort.

The user writes the data from the currently selected DMA
address to the currently selected drive, track, and sector. For
floppy disks, the data should be marked as “nondeleted data”
to maintain compatibility with other CP/M systems. The error
codes given in'the READ command are returned in register A,
with error recovery attempts as described above.

The user returns the ready status of the list device used by the
DESPOOL program to improve console response during its
operation. The value 00 is returned in A if the list device is not
ready to accept a character and OFFH if a character can be sent

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

to the printer. A 00 value should be returned if LIST status is
not implemented.

SECTRAN The user performs logical to physical sector translation to
improve the overall response of CP/M. Standard CP/M sys-
tems are shipped with a “skew factor” of 6, where six
physical sectors are skipped between each logical read opera-
tion. This skew factor allows enough time between sectors for
most programs to load their buffers without missing the next
sector. In particular computer systems that use fast proces-
sors, memory, and disk subsystems, the skew factor may be
changed to improve overall response. However, the user
should mtaintain a single density IBM-compatible version of
CP/M for information transfer into and out of the computer
system, using a skew factor of 6. In general, SECTRAN
receives a logical sector number relative to zero in BC and a
translate table address in DE. The sector number is used as an
index into the translate table, with the resulting physical
sector number in HL. For standard systems, the table and
indexing code is provided in the CBIOS and need not be
changed.

6.7 A Sample BIOS

The program shown in Appendix B can serve as a basis for a user’s first BIOS. The
simplest functions are assumed in this BIOS, so that the user can enterit through a front
panel, if absolutely necessary. The user must alter and insert code into the subroutines
for CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area reserved in page zero
(see section 6.9) for the BIOS isused in this program, so that it could be implemented in
ROM, if desired.

Once operational, this skeletal version can be enhanced to print the initial sign-on
message and perform better error recovery. The subroutines for LIST, PUNCH, and
READER can be filled out and the IOBYTE function can be implemented.

6.8 A Sample Cold Start Loader

The program shown in Appendix E canserve as a basis for a cold start loader. The disk
read function must be supplied by the user, and the program must be loaded somehow
starting at location 0000. Space is reserved for the patch code so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually, the user will probably
want to get this loader onto the first disk sector (track 0, sector 1} and cause the controller
to load it into memory automatically upon system start up. Alternatively, the cold start
loader can be placed into ROM, and above the CP/M system. In this case, it will be
necessary to originate the program at a higher address and key in a jump instruction at
system start up that branches to the loader. Subsequent warm starts will not require this
key-in operation, since the entry point WBOOT gets control thus bringing the systemin
from disk automatically. The skeletal cold start loader has minimal error recover, which
may be enhanced in later versions.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 143

6.9 Reserved Locations in Page Zero

Main memory page zero, between locations 00H and OFFH, contains several segments
of code and data that are used during CP/M processing. The code and data areas are given
below for reference

144

Locations
from to

0000H-0002H

0003H-0003H

0004H-0004H

0005H-0007H

0008H-0027H
0030H-0037H

0038H-003AH

003BH-003FH

0040H-004FH

0050H-005BH

005CH-007CH

007DH-007FH

0080H-00FFH

Contents

Contains a jump instruction to the warm start entry
point at location 4A03H+b. This allows a simple pro-
grammed restart (JMP 0000H) or manual restart from
the front panel.

Contains the Intel standard [OBYTE, which is optionally
included in the user’s CBIQOS, as described in Section 6.6.

Current default drive number (0=A,...,15=P).

Contains ajump instruction to the BDOS and serves two
purposes: JMP 0005H provides the primary entry point
to the BDOS, as described in Chapter 5, and LHLD
0006H brings the address field of the instruction to the
HL register pair. This value is the lowest address in
memory used by CP/M (assuming the CCP is being
overlaid). The DDT program will change the address
field to reflect the reduced memory size in debug mode.

(Interrupt locations 1 through 5 not used.)

(Interrupt location 6, not currently used; reserved.)
Restart 7; contains a jump instruction into the DDT or
SID program when running in debug mode for pro-

grammed breakpoints, but is not otherwise used by
CPIM.

(Not currently used; reserved.)

A 16-byte area reserved for scratch by CBIOS, but is not
used for any purpose in the distribution version of
CPIM.

(Not currently used; reserved.)

Default file control block produced for a transient pro-
gram by the Console Command Processor.

Optional default random record position.

Default 128-byte disk buffer (also filled with the com-
mand line when a transient is loaded under the CCP).

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

This information is set up for normal operation under the CP/M system, but can be
overwritten by a transient program if the BDOS facilities are not required by the
transient.

If, for example, a particular program performs only simple /O and must begin
execution at location 0, it can first be loaded into the TPA, using normal CP/M facilities,
with a small memory move program that gets control when loaded (the memory move
program must get control from location 0100H, which is the assumed beginning of all
transient programs). The move program can then proceed to move the entire memory .
image down to location 0 and pass control to the starting address of the memory load. If
the BIOS is overwritten or if location 0 {containing the warm start entry point) is
overwritten, the operator must bring the CP/M system back into memory with a cold
start sequence.

6.10 Disk Parameter Tables

Tables are included in the BIOS that describe the particular characteristics of the disk
subsystem used with CP/M. These tables can be either hand-coded, as shown in the
sample CBIOS in Appendix B, or automatically generated using the DISKDEF macro
library, as shown in Appendix F. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte) disk parameter header that
contains information about the disk drive and provides a scratchpad area for certain
BDOS operations. The format of the disk parameter header for each drive is shown
below.

Disk Parameter Header
| XLT | 0000 | 0000 | 0000 | DIRBUF | DPB | CSV | ALV |
16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk Parameter Header
(DPH) element is

XLT Address of the logical to physical translation vector, if used for
this particular drive, or the value 0000H if no sector transla-
tion takes place (i.e., the physical and logical sector numbers
are the same). Disk drives with identical sector skew factors
share the same translate tables.

0000 Scratchpad values for use within the BDOS (initial value is
unimportant).

DIRBUF Address of a 128-byte scratchpad area for directory operations
within BDOS. All DPHs address the same scratchpad area.

DPB " Address of a disk parameter block for this drive. Drives with
identical disk characteristics address the same disk parameter

block.

Csv Address of a scratchpad area used for software check for
changed disks. This address is different for each DPH.

ALV Address of a scratchpad area used by the BDOS to keep disk
storage allocation information. This address is different for
each DPH.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 145.

Given n disk drives, the DPHs are arranged in a table whose first row of 16 bytes
corresponds to drive 0, with the last row corresponding to drive n-1. The table thus
appears as

DPBASE:
00 | XLT 00 | 0000 {0000 | 0000 | DIRBUF| DBP 00 CSV 00 ALV 00]
01 | XLT 01 _| 0000 | 0000 | 0000 | DIRBUF| DBP 01] CSV 01] ALV 01|
{(and so on through)
n-1|XLTn-1 | 0000 | 0000 | 0000 | DIRBUF| DBPn-1 CSVn-1] ALVA1]

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base address of the DPH
for the selected drive. The following sequence of operations returns the table address,
with a 0000H returned if the selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
SELDSK: 'SELECT DISK GIVEN BY BC
LXIi H,0000H ;ERROR CODE
MOV AC ;DRIVE OK?
CPI NDISKS CY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L.C ;LOW(DISK)
MOV H.B JHIGH(DISK)
DAD H ;2
DAD H 4
DAD H ;'8
DAD H ;116
LXI D,DPBASE;FIRST DPH
DAD D :DPH(DISK)
RET

The translation vectors (XLT 00 through XLTn-1) are located elsewhere in the BIOS,
and simply correspond one-for-one with the logical sector numbers zero through the
sector count 1. The Disk Parameter Block (DPB) for each drive is more complex. A
particular DPB, which is addressed by one or more DPHs, takes the general form

| SPT [BSH | BLM | EXM | DSM | DRM | ALO | AL1 | CKS | OFF |
16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the 8b or 16b indicator below the field.

SPT * s the total number of sectors per track.

BSH is the data allocation block shift factor, determined by the data block
allocation size.

BLM is the data allocation block mask (2{BSH-1]).

EXM is the extent mask, determined by the data block allocation size and

the number of disk blocks.

DSMm determines the total storage capacity of the disk drive.

146 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

DRM determines the total number of directory entries that can be stored
on this drive. (AL0O,AL1 determine reserved directory blocks.)

CKS is the size of the directory check vector.
OFF is the number of reserved tracks at the beginning of the (logical)
disk.

The values of BSH and BLM determine (implicitly) the data allocation size BLS, which is
not an entry in the DPB. Given that the designer has selected a value for BLS, the values
of BSH and BLM are shown in the tabulation below.

BLS BSH BLM
1024 3 7
2048 4 15
4096 5 31
8192) 63
16384 7 127

where all values are in decimal. The value of EXM depends upon both the BLS and
whether the DSM value is less than 256 or greater than 255. For DSM <256 the value of
EXM is given by:

BLS EXM

1024

2048 1

4096

8192 7
16384 15

For DSM > 255 the value of EXM is given by:

BLS - EXM
1024 N/A
2048 0
4096 1
8192 3 -
16384 7

The value of DSM is the maximum data block number supported by this particular
drive, measured in BLS units. The product BLS times (DSM+1) is the total number of
bytes held by the drive and, of course, must be within the capacity of the physical disk, not
counting the reserved operating system tracks.

The DRM entry is the one less than the total number of directory entries that can take
on a 16-bit value. The values of ALO and AL1, however, are determined by DRM. The
values ALO and AL1 can together be considered a string of 16-bits, as shown below.

| ALD AL1 I

—rrrr+r rrr 1t 1t T [|

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte labeled ALO and 15
corresponds to the low order bit of the byte labeled AL1. Each bit position reserves adata
block for number of directory entries, thus allowing a total of 16 data blocks to be

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 147

assigned for directory entries (bits are assigned starting at 00 and filled to the right until
position 15). Each directory entry occupies 32 bytes, resulting in the tabulation below.

BLS Directory Entries
1024 32 times # bits
2048 64 times # bits
4096 128 times # bits
8192 256 times # bits
16384 512 times # bits

Thus, if DRM = 127 (128 directory entries) and BLS = 1024, there are 32 directory entries
per block, requiring 4 reserved blocks. In this case, the 4 high order bits of ALO are set,
resulting in the values ALO = OFOH and AL1 = 00H.

The CKS value is determined as follows: if the disk drive media is removable, then
CKS = (DRM+1)/4, where DRM is the last directory entry number. If the media are fixed,
then set CKS = 0 (no directory records are checked in this case).

Finally, the OFF field determines the number of tracks that are skipped at the
beginning of the physical disk. This value is automatically added whenever SETTRK is
called and can be used as a mechanism for skipping reserved operating system tracks or
for partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, several DPHs can address the same DPB if
their drive characteristics are identical. Further, the DPB can be dynamically changed
when a new drive is addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is invoked.

Returning back to the DPH for a particular drive, the two address values CSV and
ALV remain. Both addresses reference an area of uninitialized memory following the
BIOS. The areas must be unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is sufficient to hold the
directory check information for this particular drive. If CKS = (DRM+1)/4, one must
reserve (DRM+1)/4 bytes for directory check use. If CKS = 0, no storage is reserved.

The size of the area addressed by ALV is determined by the maximum number of data
blocks allowed for this particular disk and is computed as (DSM/8)+1.

The CBIOS shown in Appendix B demonstrates an instance of these tables for
standard 8-inch single density drives. It may be useful to examine this program and
compare the tabular values with the definitions given above.

6.11 The DISKDEF Macro Library

A macro library is shownin Appendix F, called DISKDEF, which greatly simplifies the
table construction process. One must have access to the MAC macro assembler, of
course, to use the DISKDEF facility, while the macro library is included with all CP/M 2
distribution disks.

A BIOS disk definition consists of the following sequence of macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF 0....
DISKDEF 1,...

148 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

DISKDEF n-1

where the MACLIB statement loads the DISKDEF.LIB file (on the same disk as the BIOS)
into MAC’s internal tables. The DISKS macro call follows, which specifies the number of
drives to be configured with the user’s system, where n is an integer in the range 1 to 16:
A series of DISKDEF macro calls then follow that define the characteristics of each logical
disk, 0 through n-1 {(corresponding to logical drives A through P). The DISKS and
DISKDEF macros generate the in-line fixed data tables described in the previous section
and thus must be placed in a nonexecutable portion of the BIOS, typically directly
following the BIOS jump vector.

The remaining portion of the BIOS is defined following the DISKDEF macros, with
the ENDEF macro ¢all immediately preceding the END statement. The ENDEF (End of
Diskdef) macro generates the necessary uninitialized RAM areas, which are located in
memory above the BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf)],bls,dks,dir,cks,ofs,[0]

where
dn is the logical disk number, 0 to n-1. -
fsc is the first physical sector number (0 or 1).
Isc is the last sector number.
skf is the optional sector skew factor.
bls is the data allocation block size.
dks is the number of blocks on the disk.
dir is the number of directory entries.
cks is the number of “checked” directory entries.
ofs is the track offset to logical track 00.
[0} is an optional 1.4 compatibility flag.

The value dn is the drive number being defined with this DISKDEF macro invocation.
The fsc parameter accounts for differing sector numbering systems and is usually 0 or 1.
The Isc is the last numbered sector on a track. When present, the skf parameter defines
the sector skew factor, which is used to create a sector translation table accodrding to the
skew.

If the number of sectors is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes. No translation table is created if the skf
parameter is omitted (or equal to 0). The bls parameter specifies the number of bytes
allocated to each data block, and takes on the values 1024, 2048, 4096, 8192, or 16384.
Generally, performance increases with larger data block sizes since there are fewer
directory references and logically connected data records are physically close on the disk.
Further, each directory entry addresses more data and the BIOS-resident ram space is
reduced.

The dks parameter specifies the total disk size in bls units. Thatis, if the bls = 2048 and
dks = 1000, the total disk capacity is 2,048,000 bytes. If dks is greater than 255, the block
size parameter bls must be greater than 1024. The value of dir is the total number of
directory entries, which may exceed 255, if desired. The cks parameter determines the

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 149

number of directory items to check on each directory scan and is used internally to detect
changed disks during system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks the disk read/only
so that data are not subsequently destroyed).

As stated in the previous section, the value of cks = dir when the medium is easily
changed, as is the case with a floppy disk subsystem. If the disk is permanently mounted,
the value of cks is typically 0, since the probability of changing disks without a restart is
low. The ofs value determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system space or to simulate
several logical drives on a single large capacity physical drive. Finally, the [0] parameteris
included when file compatibility is required with versions of 1.4 that have been modified
for higher density disks. This parameter ensures that only 16K is allocated for each
directory record, as was the case for previous versions. Normally, this parameter is not
included.)

For convenience and economy of table space, the special form

DISKDEF ij

gives disk i the same characteristics as a previously defined drive j. A standard four-drive
single density system, which is compatible with version 1.4, is defined using the following
macro invocations:

DISKS 4

DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1.0

DISKDEF 2,0

DISKDEF 3.0

ENDEF

with all disks having the same parameter values of 26 sectors per track (numbered 1
through 26), with 6 sectors skipped between each access, 1024 bytes per data block, 243
data blocks for a total of 243K-byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS macro generates n DPHs, starting at the DPH table address DPBASE
generated by the macro. Each disk header block contains sixteen bytes, as described
above, and correspond one-for-one to each of the defined drives. In the four-drive
standard system, for example, the DISKS macro generates a table of the form:

DPBASE EQUS$

DPEO: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALVO
OPE1: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALV1
DPE2: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2 ALV2
DPES: DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the beginning table
addresses for each drive 0 through 3. The values contained within the DPH are described
in detail in the previous section. The check and allocation vector addresses are generated
by the ENDEF macro in the ram area following the BIOS code and tables.

The user should note that if the skf (skew factor) parameter is omitted (or equal to 0),
the translation table is omitted and a 0000H value is inserted in the XLT position of the
DPH for the disk. In a subsequent call to perform the logical to physical translation,
SECTRAN receives a translation table address of DE = 0000H and simply returns the
original logical sector from BC in the HL register pair. A translate table is constructed
when the skf parameter is present, and the (nonzero) table address is placed into the

150 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

corresponding DPHs. The tabulation shown below, for example, is constructed when the
standard skew factor skf = 6 is specified in the DISKDEF macro call:

XLTO: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
oB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF macro call, a number of uninitialized data areas are defined:
These data areas need not be a part of the BIOS that is loaded upon cold start, but must be
available between the BIOS and the end of memory. The size of the uninitialized RAM
area is determined by EQU statements generated by the ENDEF macro. For a standard
four-drive system, the ENDEF macro might produce

4C72 = BEGDAT EQU $
(data areas)
4DBO = ENDDAT EQU $
013C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends at 4DB0H-1, and
occupies 013CH bytes. The user must ensure that these addresses are free for use after
the system is loaded.

After modification, the user can utilize the STAT program to check drive characteris-
tics, since STAT uses the disk parameter block to decode the drive information. The
STAT command form

STAT d:DSK:

decodes the disk parameter block for drive vd (d=A,...,P) and displays the values shown
below.

128-byte record capacity
kilobyte drive capacity
32-byte directory entries
checked directory entries
records/extent
records/block
sectors/track

reserved tracks

TNOooaoaexXn

Three examples of DISKDEF macro invocations are shown below with corresponding
STAT parameter values (the last produces a full 8-megabyte system).

DISKDEF 0,1,58,,2048,256,128,128,2

r=4096, k=512, d=128, c=128, e=256, b=16, s=58, t=2
DISKDEF 0,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, ¢=0, =128, b=16, s=58, =2
: DISKDEF 0,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, $=58, t=2

ALL INFORMATION PRESENTED HERE iS PROPRIETARY TO DICITAL RESEARCH 151,

6.12 Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP/M BDQOS includes information
that allows effective sector blocking and deblocking where the host disk subsystem has a
sector size that is a multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm that can be included within the BIOS and that uses the BDOS
information to perform the operations automatically.

On each call to WRITE, the BDOS provides the following information in register C:

0 = normal sector write
1 = write to directory sector
2 = write to the first sector

of a new data bloc}c

Condition 0 occurs whenever the next write operation is into a previously written area,
such as a random mode record update, when the write is to other than the first sector of
an unallocated block, or when the write is not into the directory area. Condition 1occurs
when a write into the directory area is performed. Condition 2 occurs when the first
record (only) of a newly allocated data block is written. In most cases, application
programs read or write multiple 128-byte sectors in sequence; thus, there is little
overhead involved in either operation when blocking and deblocking records, since
preread operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal form (this ﬁle is
included on your CP/M disk). enerally, the algorithms map all CP/M sector read opera-
tions onto the host disk through an intermediate buffer that is the size of the host disk
sector. Throughout the program, values and variables that relate to the CP/M sector
involved in a seek operation are prefixed by sek, while those related to the host disk
system are prefixed by hst. The equate statements beginning on line 29 of Appendix G
define the mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization code starting on
line 57, while the SELDSK entry point must be augmented by the code starting on line 65.
The user should note that although the SELDSK entry point computes and returns the
Disk Parameter Header address, it does not physically select the host disk at this point (it
is selected later at READHST or WRITEHST). Further, SETTRK, SETTRK, and
SETDMA simply store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines 110 and 125,
respectively. These subroutines take the place of your previous READ and WRITE
operations.

The actual physical read or write takes place at either WRITEHST or READHST,
where all values have been prepared: hstdsk is the host disk number, hsttrk is the host
track number, and hstsec is the host sector number (which may require translation to a
physical sector number). The user must insert code at this point that performs the full
host sector read or write into or out of the buffer at hstbuf of length hstsiz. All other
mapping functions are performed by the algorithms.

This particular algorithm was tested using an 80-megabyte hard disk unit that was
originally configured for 128-byte sectors, producing approximately 35 megabytes of
formatted storage. When configured for 512-byte host sectors, usable storage increased
to 57 megabytes, with a corresponding 400% improvement in overall response. In this
situation, there is no apparent overhead involved in deblocking sectors, with the advan-
tage that user programs still maintain 128-byte sectors. This is primarily because of the
information provided by the BDOS, which eliminates the necessity for preread
operations.

152 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

(uonuod juapisal) sop oiseq:
10ss820.d 9josu09 wdo Jo aseq.

waysAs w/do ajgejeocies sjeiauab:

woysAs }sa} ul doo jo aseq.

$01q 159} J1 9N} !
-wm—m&v-”
4874}, JO anjea:

2'2 UOISIBA!

qwdoa+ygos
yojed-¢
yojed

40oagt

4oooo
159} J0U

yoovreo
159}

osjey
anJj jou
Upo

nba
nba
640

nba

jIpue
nbe
]
Jipus
nba
i

nba
nbe
nba

056€£6 'BIULIOJIIBD

an0ib oiioed ‘g6 x0q

yodessa. jeubip
0861 (9) wybuAdoo

nba

0861 ‘Aieniqe} 2'2 UOISIBA

(uoisiaa Ayisuap ojbuis sALPp UNOY)
2’2 w/do 104 sisAup 0/1 008-Spw

= 9080
= 0000
0091

= 009}

= 0000

= 0000
= 0000
= HY

= 9100

rFONMOITNDNONDDOOOrrNMOTNON~NO®
rrrrrrr rrrrr e NN ANNNNNNNN

—ANMOTNHDOM~NODO
—

(SOIg) washs O/| diseg SAW @Y1 v Xipuaddy

153

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

jo0q dw|
$8UIINOJ [BNPIAIPUL 10} 10)08A dwn|

ssa.ppe ewp }asaid WwoJy 10j0as/orl) alluMm
ssaippe ewp 10s8.id 0} 10}08S/)Je4} peds pesi
(s1o1owesed o] ay) dn 198 0 S{|e9 sNotAId BWINSSE 8)1IM PUE peal)

(uog Ajelut) sseuppe ewp juenbesqns j@s BUIpdS

ajum/peal Juanbasqns Joj (9g ' * * * ‘L) SS8IppE 103098 198 098)9s
ajum/peas uanbasqns 1o} (92 * * * ‘'0) SSaippe yordj 18S PINEL]
("2 L ‘0) 9-Ba1 Aq usaib xsip 10998 3NSp|os

(ss1um pue speal Juanbasqns wiojied 0} pasn s Ydiym ‘spuw

au} 1o} 320|q J98weded ot ayy dn-1as s|jeo Buimoj|oj ayy)

00 %04} 0] 8A0OW swoy
(e-Ba4 03 3Nse4) Ul Jopeas ade} aded lapeal)
(0-BaJ Uy Jeyd) no yound yound

(o-634 uy 4BY2) 1IN0 181 181
(0-604 U1 JeYD) INO 1BJ0BIEYD BJOSUOD JNOUOD
(e-BaJ u)jnsau) uy 48108 YD B|OSUOD uluod

Apeay Ja1oeieyd jl §) = e-6as
ApeaJ JajoeieYd OU }I 00 = B-bBau
SN}e}s 9|osuc }SUQO
(spw 10} awes ay} aie 100gm pue 1004q)
(814AQ O/1 BAES) LIB}S LUIEBM J0OGM
Jels pjoo J00q
suojouny Buimolio} wioed

10118 81048Q 0/] }SIP UO S31}8) XBW. oL nbe
S$S94ppEe J3yjnq inejep: uog800 nba

uels wiem uo ysip pabboj ise) Jo ssaippe! 4000 nba
wy/do AQ pasn syoeu) ysIp JO Jaquinu: 2 nba

peoj 0} $10)28s JO Jaquinu: ggL/|wdo nba

waysAs wdo jo (sa3Ag ul) yibus: qudo-$ nbe

Anel
Hng
R3] oxe)
19s8}}0
s109sU

jwdo

91€49€2 0091

= 8000
= 0800
000
2000
0200
= 009t

£9
29
19
09
6S
85
LS
95
GG
¥S
€5
2s
IS
0s
6V

A4
214
14
144
194
44
(84
oy
6¢
8¢e
A
g¢
SE
ve
£e
¢t
3%
o€

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

154

BaJE YOJB.0S! 40000 40000

a|qe)} aje(Sue): 40000 ‘EHX
$10}08A 00](|e 'Y09Y2: ZAle ‘2ASD
%00(q wied ‘4nq Jip! zadp 4nquip
BaJR YDJEIOS! 40000 ‘40000

a|qe} aje|suely: 40000 'ZHX

$10}2aA 20|(e ‘X28Yd! LAJB ‘LASD

%00|q waed ‘yng Hp: Lqdp ynqaip
E8JE YOJRIJS! 40000 40000

a|ge} aje|suely 40000 'LHX
$10}03A J0||e)o8Yyd! OAJE '0ASO
%00iq w.ed ‘ynq up: oadp ‘ynquip
B8.B Yojelos: 40000 ‘40000

a|qe} aje|suel} 40000 ‘0HX
$)00|q Ja)owesed 3sip JO 85Bq! $
SYSIp INO}! v

Adeiqi| uoliuiyap %sip eyl peo: j8pysIp
ueIOBS

SMe;s isi|: I8

3llUM

peal

BUWP}OS

098)9S8

#nes

Asp(es

awoy

iopeal

yound

I8t

1NOU0D

ujuoo

ISU0d

jo0gm

mp
mp
Mp
Mmp
Mmp
Mp
mp
mp
Mp
mp
mp
Mp
Mmp
Mmp
nba
sysip
qijoew

duwif
dwf
dwif
duwl
duwl
duwl
duwl
duwil
dwf
dwf
dwil
dwif
dwif
duw
duwil
dw(

cadp

:zadp

‘1adp

:0adp
aseqdp

o100GMm

00000000+4991
00009128+£991
61016199+4991
91€.8199+4q591
00000000+2591
00009128+E£591
6LPLBLIE+HIVIL
91€.8199+qv91
00000000+.p91
000081¢8+E¥9i
818861P0+HEIL
91€.8199+4£9l
00000000+.E9}
000091 c8+EESL

=+ge9l

£119€2 0E91
L10.8° P¢9l
L1BOED BC9l
LLIOED Leoi
£194¢2 yegl
L1oegd 1e9l
PAFAZ SR Re]
LIPLED 9191
L18.€° BI9L
216480 Gi9L
L18LE0 ¢19L
L1P9ED 4051
Z1B9€2 0081
LL¥9€0 6091
L119€2 9091
91£0€2 €091

L6
96
S6
v6
£6
c6
16
06
68
88
18
o8
S8
12°]
€8
(4]
18
08
6L
8L
LL
9L
S
122
€L
¢l
¥
0L
69
89
L9
99
S9
¥9

155

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9 ap , 90++691 1L

92 qp BL+C691 oel

0c ap y1+269L 6¢t

143 ap 80+ 16914 8ch

8 ap 80+0691 et

4 qp 20+j891 9ct

12 qp SL+8891 43

Si ap J0+P8IL ol

6 ap 60+0891 X 44

€ qp £0+4891 ccl

€C ap) L1+EgYL (¥ AN

Ll qp L1+6891L ocl

L ap q0+8891t 6L1

S qp G0+.89% 8Lt

14 ap 61+9891 LI

61 ap £1+G891 atL

el ap ; PO+v891 SLL

pa ap L0+£891 1498

3 qp 10+2891L gLl

a|qe) ajejsues. $ nbe oux =+289l ZLl
1os440! ¢ Mmp 0020+0891 LLE

8z1s ya3Yo:! 9l mp) 0001+9491 oLl
Looje! 0 qp 00+P/91L 601

Qoojje! , 26l ap 004991 801

XEW A101084ip! €9 mp 00sc+eL91 L0}
L-821S 3SIp: eve Mp 00CH+8491 901
¥Sew juixs: 0 ap 00+L491 SOt
ySew 300|q! L ap L0+9291 ot
Hiys »20]g: £ ap £0+5491 €0t
yoeJ} J1od 09s! 92 Mp OQE L+E£/9L 201
%90|q waed ysip: $ nbs 0qdp =+€/9} 101l
198440 '$9 ‘9 '€¥2 ‘¥20L '9'92 'L ‘0 JIPASIP 00t
si0)08A wied ‘Yng ap! CAlR 'EASO Mp 619.61E6+}991 66

¥001q 20j[B ‘}08Y0! gqdp ‘ynqaip mp g1£/8199+d994 86

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

156

Jod ysew dnuisjuy Y90 nbe
Hod jeasl dnuisiul; upso nba
SOALIP XSIP JNO} SBY WBIsAS SpW 8y} awnNsse osje am

JOHUOW BY) UIYIM SBURNOIGNS O/I 8Y) sesn pue
YOO08J0 18 S1SIXe J0HUOW SPW 8y} SeWNSSE apod BuImo]|0f ay}

"SPU |8JUI BY] WO} S184JIp YOIYM LB)SAS AU SO} pals)ie eq
1IsnWw pue uswuodiaue Bunesado Jejnonied sy 0} palo|ie} 8le
saujnoagns Buiuewal ay) ‘ep0o juspuadsapul—ia|j0Jju0d JO pua

AlQWISSSE O PUB 1B SINDJ0 J8pus

a|qe) d1e|SueJ] awes: oMx nba

9ZIS J0}02A WNSHI3YD awes! 0ss2 nba
a2Is i0J08A UO{IEJO[|B BWES! osie nba

si8}swe.ed jusjeainba! 0qdp nba

0°‘c jopysip

8|qe) 8)e|sue.} awes! 0x nba

9ZIS JOJ09A WNSYO8YD Bwes! 0ss2 nbe
82iS 10}08A UO{}BI0|jE BLUEeS! 0s|e nba

si9jawe.ed juajeainbs! oqdp nba

0'C jspysip

ajqe;} aje|suel} swes. X nba

9ZIS JOJIBA WNSY09YD awes: 0sso nba
9ZIS 10J08A UO)JB0||k alues! os|e nba

siajaweled jusjeAinba! oadp nba

0't Jopysip

2c ap

9t ap

oL ap

4 qp

ve qp

8l qp

cl ap

200
P00

u

=+Z2891
=+0100
=+ 100
=+£.91

=+¢891
=+0100
=+}100
=+£/91

=+2891
=+QL00
=+}100
=+£291

91+4691L
oL+e69L
e0+6691
¥0+8691
81+269}
cL+9691L
20+G69t

G914
vol
€91
esi
L9t
0g!
€Sl
861
A1
9G1
1o
Gl
€61
cst
1St
0st
6yl
14"
A4
ovl
Syt
1243
243
44"
34
ovl
6€L
8ct
€1
9tl
el
el
gel
43

157

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

soig sjdwexa yeg!

4

1891

5o

jlpue

ap
§
ap

A A sion wy/do yxx :abessow uoubis’

paay aull:

uinyas aberred!
%sew paysiul o/
8Alp 3jeIQlEDSY:
uoldUN} ajIM!
uoouUN} peal:

(indjno) ssauppe ybiy qdoi:

(indino)} ssaippe ma| qdoy!

(yndui) a14qg ynse.:
(indut) adAy ynsa.:
(andut} smeys ysip!
syiod O pUBWIWOD %SIP Jo aseq’

yeo
4o

Z+oseq
|+eseq

g+8sEq
L+eseq
aseq
uss

nbe
nbs
nba
nba
nbs
nba

nba
nba

nba
nba
nba
nbs

spuewwod pue spod Xsip

e Ja)s1bau 0} 34/00 sneis 3josuod!
991AAP ISI} 01 O WOJJ 181

801A8p yound o3 2 woy Jeyd yound!
N0 9|0SUOD 0} 9 WO} JBYD 8j0SUOD!
e-baJ oy ui sepeal’

e-6a1 0] J83084R4D 9|0SUOD!

(10445 100Q} ggUOW lEB)SaL:

10)luow spuy!

yelsio
Uj0840
ya08i0
U60840
480840
ue08io

YjoHuo
Yoo8j0

nbo
nba
nbo
nba
nbs
nba
nba
nbe

sa1enba soyuow spw

(4otluow) / 184 '(300Q WieM) O 154 9jqeus:
Jod |043u09 dnassiut

QoLHESHELO
yelo

nba
nbs

:uoubss
i’

10
ApJo)
|esa)
UM
jpeals

ybut

Mmoj!
a)Aq
adAu
jejsp
aseq

$1S0

o]

od

02

u

10
osuow.
oguow

ajul
uoo|

eQeOPO 2691

e000
= P000
= #000
= £000
= 9000
$000

€L00
6.00

!

q.00
6400
= 8400
= 8200

= 2L8}
= 108
= 008}
= 608}
= 908}
= £084
=404
= 0084

= 3400
= €400

661
861
{61
961
S61l
v6l
e6t
26t
161
061
68t
88!
181
98t
a8l
¥81
€81
csl
5:1%
o8t
6Lt
8.1
121
9/l
SLL
Vit
1A
[AAS
LLL
0LL
691
891
491
991

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

158

09s}9s ||eo L19EPJ qPglL £€2

2 loyoss Huipeas uels! 2 1AW 2080 6P9t FANA

0 %oBJ} YIm Lie)s! 3Ias jieo L1.BPD 9PIL iee

0 1AW 0080 vP9I 0ge

ASpioes ljiea LIPLPO LPYI 62c

0 ®ALP WOl J00q: 0'o nw 0090 091 82¢

ewplas Jjea 21464po 0091 22¢

Wwa)sAs YsIp JO JB)S O} SSaIppe BwWp 395! qudo ‘q Xj 000010 6991 9ce
$614}a] 10118 UO 818y JajuUs! Qlo0gM 5ee

g ysnd G0 8291 144

sall}al xeul! A13al ‘0 1AW ’ €090 9991 £ee

: 444

%oels 104 9|qR|1BAR §} NIy} 08 SNyi—ewp Buisn: Hnqg ‘ds 1X] 00081€ €991 Lee
. : 0ce

ueis : 61¢

JEe}s p|oo 914q gg | B sI 849y} Buiwinsse—ysip wouy wy/do pess : gie
wJiem 10} paddps 8qQ ||im Yolym ‘| 10109s ‘Q yOB4} UO J9pEO| 1j00gM L1e
: 912

‘ Gie

wydo oy ob! wdoob dwl L1089 0991 14%4

B)SIp 0} Ajeiuy jas! %S1pd els 00¥0ZE PAYL 1434

JOjBjNWN2oE JE9 9! e BIX je oqgt cie

abessow julid! Bswud |ed ; L1LEPPO 6491 Le

uoubiis ‘y 1X| 91961¢ 9991 0Le

- Yog+ing ‘ds X} 10001€ €491t 60¢

(4E000 1B 214q0] pazijeniul J00g spw 8j0u) : 802

doo o} 0B pue abessaw uoubis yuud: 30049 202

: 902

0 ') "0 qap 00B0PO 0991 G0¢e

0,401 pow SidA *, ', 0,+0}/SI8A ap geagee pegt ¥0e

. SIaA w/do ¥, qp $20GEY0CA9 LEYL €0¢

Hpus coe

10120[8.1 Aq paj|l} 9zis Alowau! ,00, qap 0coe 4691 Loe

}sa1 jou # 00c

159

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

/1S4 pue Q11 8|qeusd ! 99¢

(300Q MBS PIOO WOY} 818y I13}UI)! :wdoob S9¢

ssaJppe Jayng Jnejap 19sel ‘PeO} aUl YUMm auop : 4
: £9¢

oasp) zul g118¢9 20LL 29¢

sauop! q 12p S0 qost 19¢

JUNOD 101088 ||B2a)! q dod 1o eoLL 09¢
28S518S fes ,219ep2 0.1 6S¢

{1eo Joy Apeau: e'o Aow W 9014 85¢

10199S IXau o} e 1 Lpd og G041 192

J1agquInu J10)08s Jeg|l. B BIX Je $0L1 9G¢
NINes |leo L128p2 0L} *1°14

jeo Joj Apeau: B'D AOW i 0021 1 4°T

e aul og 91 €5¢

e Jo3s1694 0} yoel} 196! 10! ep| giegeg 9)9i Zse
yorl] 1xau 0} 06 pue 048z 'gg 10}29s 3G 1SN : LG2
Lpa of 2150ep 6)91 0S¢

£10109s Jse| peal: 92 ido eia 191 6ve

peai isnf lsqunu J0198s! SOl ep| gLqgeg viol 8yc
BUWP}aS Hea 2144p2o L9l JA 24

ewp }as 0} j|ed Joj Apeal: | ‘0 Aow Py 0J9t 9te
y'q aow v 1991 15144

|y Ul SSBIppe BWP pajuswaiaul’ p pep 6L 299} e
9ZIs 10}098! geL 'p 1X| 000811 Q391 eve

$SaJppE BWP JUBWAIOUL po! PI1yi glLogeg ga9lL f 44
IN220 si0M8 §) Anjau! 118}00q zuf L1672 G291l 1v2
pes. lie2 ZL10p2 299t ove

UNOJ 10108S aAES! g ysnd Go Leg} 6£2
10108s }x8u peal. :08spd 104

s109sU ‘q Ly 09290 iP9L 1€2

JUNoo Joaia-g}! q dod 1O opglL 9ee

0157 0] S109SU JUNOD ‘SI0}0as peas : gl

! vee

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

160

qudo duwf

12

ut 1 Boj 01 doo 0y puss: B ‘DO AOW
Jaquinu ysip pabBBof isei: 3SipO ep|

wdo 0} Jojaweled puas ‘g sem ysip Pajos|as A|snoiasid
13s 914q01 e

jipus

L+8.. PIUS

poguow 'y 1X|

(pp Aq pebueys saey Aew) gguow oy dwl: 8.4 el1s
IS8} jou H

g uoneoo| je sopq dul! 9 pius
sopq 'y 1|

S Bls

00 uoneso)ejoogm dwnf: 1 PIys
ajooqm ‘y 1|

0 e)s

dwl ‘e 1w

sjuiod Aijua lojuow 18501

BWPJOS |jBD
ung ‘q x|

408 0} SSBIPPE J8}NG }NE4IP 188
j0J}u00 jdnusayu)’ Loo| o

e BIX

ol 1no

uo Suq /184 pue gist sl ‘e 1AW
peJe9|o! ol no

e BIX

Jnel no

pUBWILLOYD BZI[BIHUl Uzl ‘e 1AW

1Y

0000g2 9vLl
aj Gvil
Wweril
oovoet Lvit

006€¢cc °Ell
8j00i2 AELL
008¢£2€E 8ELL

0039022 sell
80901¢ ¢eit
0050z¢ 12t
0010c¢ d¢it
glLe0lc 6241
00002t 9¢.1

€99¢ peil

21499p3 Lgit
000810 @i L)

SIEP OLLL
jeqril
oJep 6Ll
89t LL/L
oJEp SiLl
jepLlL
pijgp cLLL
cieg 0Lt
€4 30.1

0oe
662
862
162
96¢
G62
y6¢
€62
c6¢
16¢
062
68¢
88¢
182
98¢
G8¢
¥8¢
€8¢
4:14
182
08¢
642
8.2
Lie
942
§i¢
vic
eLe
¢ic
1.2
042
69¢
89¢
292

161

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

o] dwf
(1|20 spw se awes ay} A|1oexa)
1N0 821A8P IS1}:

0o dwf
1IN0 9|0SUOD 0] D WOJ} J9)dBIBYD 3|OSUOD:

EY)
g Ajued aaowai! ujz jue
19 iea

g-baJ 0} i812BIBYD B)OSUO0D!

8180 dwl
(11e2 spw se awes ay) A|10eEXa)
e-62.) 0} snje}s 8j0SUOD

0 '100Q¢, ap

lojuow asempley spul’ oguous dw
Hswud e2
Bswnooq ‘y 1X|

$911184 AuBW 00} 9S|MIBYI0

gloogm dwf

g ysnd

uiebe Aj

018)009 rd|

2 1op

SJUNOY ||eoal: g dod

A1181 pue abessaw julid'pPaiINO00 LOIPUOD JOLID

8HOED P9LL

‘

sl
8160€2 B9/
Blale]ilele)
69 69.L1
3299 19L1
81E0PO ¥9.LL
:Uuo9
8IZILE2 19.LL
Jsuod
" $24919294€ ASLL
:Bswiooq
131089 8GLL
LLEPPO GGLL
219612 25LL
{048100qG
9169€2 /L
Goop/L
L12Se2 Ayl
poevLL
1o 6721
:119100q

vEE
£EE
cee
LEee
oce
6¢¢
8¢
lee
9ct
ScE
€4
gee
ect
¥4
0ce
61€
8LE
LiE
9l€
Sle
1435
ELE
clt
Lig
0Lt
60t
BOE
10E
90¢
S0t
vog
€0€
c0€
L0g

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

162

uonouNy ay} aAes: e‘q Aow Ly ¢6L1L 89¢
‘BALIDISS L9¢€

RUBQ Ul | 9ALIP S}O8|aS! qo0001LL00 ‘e I ogoe 0641 99¢
anlIp)es z(L126e2 P8l S9€

400 Hnsal. e BIO 290871 12513

8818 €2 ‘8. 18 | '0 sey spuw at e 1090 Bg/1 €9¢
+1 ‘0L L0 ‘00! 28 Aow 6. 68L1 29¢

HUeq 8ALIp 103(3s O} Jjuegp eis 2199¢¢c 9841 19¢€
€ 'C 8AlIP U0 O QL PUE | 'Q AP 40} 00 00- qot lue <092 ¥8/.1 09¢
‘ 6G¢E

0000 = |Y aAed): owl 0P €841 gGe
iabie| ooy SHSIPU 1do 08} L8LL 1G€

o' Acw 6. 0841 g9s¢e

10418 §I 0000 UMY 40000 'y 1| 000012 PLLL S6e
0 so)s1Bas Ag uaaib ysip 109(8s! YSPISS vGe

: £€6e

PRI ELS duwf lLlegaelll cse

0" Iaw 0090 8441 LSE

Na8s Q0 YOeJ} se jeal) ! ose

uoljisod sawoy 0} saow! :auloy (5129

: 8re

14 dw(. 8490€0 GLLt LvE

{||ED Spw se awes ay} A|joexs) ! ove

e-Ba1 0} Ul J9)oBIRYD JOpRDL. lopes) 15143

: re

od dul 810082 2LLL 514%

(1120 spw se awies ay} A[}oexa) : eve

no aoaep yound: yound (84

: ove

Apeals Jou shem|e! 184 60 121 6g€

e BJX jeplLt 8ee

SNjeiIs 151 winjad! LEE

-sisiy 1%
: See

163

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

jal 6% Bq/lL <oy

| Ut Jaquinu J0)08s uJnjau! el AOW J9 64QLL LoV
SO! els 81992t 994 (00)4

® 0} Jaquinu J0)08s paje|suely: w'e AOW 8, GAall 66¢
ssaippe (10)09s) aleIsueL): q pep 60 ¥ALL 86¢€

|y O} ssa.ppe 8|ge) sje|suely. Byox qe £q.ll L6€
99 Ul Jequinu J03}09s uoisioaid aignop: 0'q Inw 0090 9.1 96¢
ap 1e a|ge) Buisn 0q 10108s BlB|SURIL. G6¢
:ueso8s ¥6€

104 60 09/t €6€

2w Aow (WA1-FAY 26e

sol 'y Xt 814912 oeLL L6€

2 Aq uaalB Jagquinu 10}09s 188! 1085188 06€

: 68¢€

104 69 qe/l 88¢€

2w Aow . LLee/t 18

101'y X} B gLeglé Lell 98¢

9 Ag uanaib ssaippe 3oed] 18s. NIN8S S8¢

! 1219

! £8¢€

104 60 98/1 c8e

SSaIppe a|qe;} Japeay 3sIp=|y: p pep 6L geLl i8¢
aseqdp ‘p 1% glLeeLl gesl (0124

gl.: y pep 62 LBLL 6.¢€

g.. u pep 6¢ 0B.LL 8.¢

P y pep 6c 16.1 L€

2. Y pep 6¢ 9641 9.¢

Jaquinu 3sIp=|y: 0oy LYY 009¢ 96/4 SLE

3 Aow 69 a6/l viE

qdo| ut I 8AeS! 2w Aow Ll eBlL €L€

13quUNnu HSIP Mau u seul: . g BJO 04 6641 2Lle
Jaquinu 3sIp 1IN0 ¥sew: qLLLL00LE e J099 /6/L 1LE

w'e Aow 9l 9641 0.€

uonauny ot joi 'y 1] 81891¢ €641 69¢

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

164

Bswi.d dwl

y XUt

u dod

1nouos Jjed

e'D AOW

y ysnd

ud o) alow

2l

£048z e 1=30e)
w'e aAow

0 0} | ‘y e abessaw jund:
saupnoIgns Ann

18S 10419 dAeY ABW 194
oijiem 1ed

UOoR2UN} 3}IM 0] }13S! ouny1es eo
JHIM ‘D 1AW

uoIOUN) B}IM XNSIP!

e-HaJ u) 19s Joue aaey Aew: 184
uoljoun; peal wiogad: oljiem k)
ouny}es lled

uoouN) peal o} }1as. jpeas ‘o 1AW

(19s BWP/28S /%41SIP BUILINSSE) P10dal %SIP }XBU peal:

181
poi pIys
q'y Aow
2 AowWw

0 ‘g sBaJs Aq uaa|b ssesppe ewp jos:

QM

‘peal

Jewpies

LIEPEI PPLL
£C OPLL
e ap/i
LIEQPO 8P/}
W IPLL
G 9pLi

89 GPLI
29 vPLL
8L EpLL

69 ¢PLL
LIOIPO JOLL
L108pO 32/ L
9090 BO/L

69 6941
L104PO 9041
2109P2 €9/1

$030 LoLL

62 0941
81992¢¢ PAll
099qL1L
69 gq.t

014
SeY
1474
1294
454
ley
oey
6ev
8ct
Loy
9cy
Gev
vey
A4
[4a4
T4 4
(A4
6Ly
8iy
Ll
9ty
Sty
1434
ey
1454
984
Oy
60V
80y
0¥
90y
S0y
1414
eov

165

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0} Yueq 8AlIP 10§ 88

ajaidwoo 10§ yem oy
ssaJippe ybiy:

13}|041U09 0} SSaIPPE MO
i1 ueq 9ALp!
gdoy 10) ssaippe ybiy:

gdol 1o} ssaippe mof: UJjo pue qdol ‘e

€ 'Z }l ZU pue | ‘0 9ALIP Jt 018Z:
sbe|} jueq }es!

19(|0J3U0D 8Y) SJBd|O!
adAy ur!

YO L+mo]l no
I jueq aALp!
ollem dwf
ybiyr no

g'es AOW

Mol no

] eLe]] zuf

g 1ys qdol ‘q Inut
IAW

e =3]e}

jueqp ep|
31Aqul Tice)
adAui ljes

UO0119]dWO3 JO} IEM PUB LUOIIOUN) O/t 9U} LE}S

10148 wied 910J9q s8Rl XBW!

1JO/u0 }iq 10818S ASIP 18S:

yueq ys!p Jodoud jo3t8s!

a14q 109|9S 10}09s 8y} ssaippe.
11 10919 4SIp 8y} ysew.

A1jaa 0

e'‘w

w

SOt 'y
G00000100

AW

181
AOW
BIO
X
ue

uo1oUN} O/) JUBLIND 9} WO} 1Q 3y} ysew
914AQ 101085 U} 11q YUBQ Y%SIp S8J4Inbau 13]{0J1U0D 008-SPW au}

gdot Ui paoe|das:

PUBWUWIOD MBU 0] }8S!

PUBWIWOD SNOAaId SAOWUSI:
Bumnysew 10j Joje|nwnode o1 |t 18b!
$S@Ippe uolOUNy Ol

e ‘W

o
apookLLLE
w'e

jor 'y

Aoul
:3]e)
jue
AW
1X]

(0-Ba1 Ul pUBWWIOD) O/11XdU IO} UOIIOUNY 188

68€P A08L
:LIpO!

8L01€2 8081
elep 9081
8. 608l
6.¢cp €081
g+90g° 008!
8190 9.1
L99E D41
29 Q)i
81998g 841

810pP2 GiLL
8LIEPD 241

jlemal

.

eQo0 OiLL

‘onem

60 1911
L1991
99 pa/L

gLagieg esli
0299 831

Ll 181L

la gell
8J90 ¥/l
TRV
g81891¢ 09.1L

'

;ounjlas

(7A4
69¢v
89y
L9V
99t
So¥
Yoy
€9y
[42)4
L9v
09¥
65y
8Gp
1SYy
9G¥
SGY
1414
%314
4214
LGt
osvy
144
8vy
Lvy
144
Svv
1444
evy
vy
844
ory
6ev
8tV
JA%Y

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

166

('018 '§99s '3OB1} '010) UOHOUNJBW SIEMPIBY ULINISL

JUN02AL} dul
9}4q }|nsad4 Jes|d! ajAqul o)
MOU 10} 1048 SB jead; ‘Apeal jou:

181
0J9Z SUIBJUOI JOJE|NWNDIE YO Si 8}1iM IO pedl

10148M zul

(30 elEp paja|ep) (S40.449 43I0 Aue! QOLLELELE e
ied

Apeal JoU Jun: Apeaim of

|ed

ajAquil jjeo

§11Q 10448 0/1 %03y

AJ1o4 ‘UOIHPUOD JBYJ0 dWos! 10.119M zuf
e 20
JojBjnWINooe 3yl Ul 0o eq isnw

Apeaim zl

(abueyo sneis Apeal. qot 1do

(pesn jou) L1 pabueyo snjeis sip Ol

(pasn jou) 818|dwod 0O/) paxuil L0 ‘@19jdWwod 0o/! payuilun Qo
paxunun (00) a18|dwod o 8q snwt adAyui eos
%0 U01}9{dWw oD 01 %o3yd

ojem z{
i Apeau: ApJoi e
uona|dwos 10} Jem! 1eIsul |eo

uor+ybiyr Ino
g'‘e AOw

A0liem

Apeaim

818€Ed GE8l
g1ovpo ¢e8l

69 LE8I

818€22 928l
899 9¢8l

{1 9c8L
gLceep 828t
Ll 128l
81o¥Po pe8i

818€22 LeBl

19 0¢8l

gLZeeo pPiglL
209} q18!

81iEP2 8i8L

8LOLEO GI8L
v09° €181
8L65P2 OL8BL

BEEP 8081
8. PO8L

v0S
€06
20§
L0S
00s
66y
86v
L6V
g6y
sev
1514
15414
1474
L6y
06v
68y
88t
18Y
98y
1314
1414
€8y
[A%14
3:17
o8y
6.V
8LV
LLY
7A4
Sly
viv
€Ly
Ly
[¥A4

167

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

101
€ 'c1ojg8 | '040} 84! yoL+adAy ut
101

adAp ul

01 ueq oy diys! LdAu zuf

e BIo

jueqp ep|

0L JO 00 JUBG BALIP PESI JBISUl '93AqU| ‘8edAJul

101

apoo 10118} (-] -

1019 WOoJ4} JBA033) Jouued

Ad} Jayjoue 104! Hemal zuf
. o} 10p
0492 |1}, JUAWAIO8P ‘JUNOD ANjal sulejuoD O Jaisibal

juswaaoidull J2)e] 10§ UOIIPUOD pajeledas e se pajeal}
S| UOIIIPUOD ApEa) JOU BY} '8seD AUB Ul '3|qe49A003)
Jou s| 1 JI 9bessow 10140 Jusuewsad B 196 | Im am Inq
‘SUOIIPUOD SNOLIBA 8y} INO J8}|1} 03 |Nj3sn aq Aew ji

(0 L Z€ ¥ S 9/ paJequinu aJe s}iq Jole|nwnade)

Apeal jou—

(uolloUN}|BW 3IBMPpIRY) JOLIB SPIM—

(Apea. jou se pejead)) 108104d 8}lum—
(uonounjew aJempiey) MOj} J8pUN/IBA0 BlEP—
(uolounjjew asempuey) 10148 ssauppe—
10119 X99S—

10418 210—

(snoge o se paydasoe) ejep payv|ap—
:SUOI}IPUOD ay} 0} Buipuodsaliod '10je|NWNIDE 3y} 4O
uoijisod yoea Ul jq e pauinial sey J3{|0AU0I SpW sy}

—

O~ NOM T WO

(L dAun

:ad Al

JUN02AI)

~

62 av8l
684P 6181
69 8¥81
6.9p 9v8L
816¥cO £v8L
FA A 4]}
8igoee Jegl

69 9¢8l
L09¢ 9E8L

112420 6¢€81
PO 8E81

L€S
9€S
SES
vES
£€eg
2€S
1ES
0€s
625
828
128
928
erds
74
€28
zes
12$
0Zs
615
81S
LS
9ig
SIS
PLG
€IS
2Ls
HLS
0LS
605
805
208
905
505

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

168

jopua 048
uoneiado sopq 10} SEDIE WE) dul8p : 695

: 895

: 19§

ssalppe ol 3nq Mmp pol 0008 2981 99§

Jaquinu 1030as: 8 qp 's01 10 Q98} S9S
Jaquinu yoel}. 19S40 qp ‘J01 20 eggl 9S

peaJ 0} $J0)08S JO Jagquinu! L qp uol L0 6981 £9S
pesaJ jeiiul ‘uonoun) of: jpess ap le] ¥0 8981 29s
uonesado o0/t [ewlou: yose qp 08 981 19S
%920|q Jo1owesed ol :qdot 09S

g€ '2arup Ji 01 : , 65S
| ‘0 9ALIP §1 00 Yueq %sip: 0 gp Huegp 00 9981 8GS
{wel Ut 8q jsnw) seale ejep : LSS

: 955

: . GGS

‘ 1451

10) 69 G981 €68

yoi+ieisp ur ipesul 889P €98} 2ss

194 69 298t LSS

jBIsp ul) 8.49p 0981 0SS

LBlsu zul 81£92° PS8l 6¥S

e BIO 499681 8vS

jueqp epj ‘Jejsul gigoeg 6581 L¥S

: oS

Y] 6° 8581 Sys

yolL+alAq W LAqul qgqp 9581 122}

184 69 558} 19441

ajAq4 ul q.9p €981 A4

LIAqu zul 819520 0S8} LyS

e BJO 149 Jv8L ovs

Nueqp ep| @1Aqul 819geg ov8L 6€S
K 8ES

169

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

96¢
99S 8/¢ Lée

98l S8l €81 c8l

1epbag-¢
$

9l

1€

91

e

gl

L

91

e
13JIng $S3008 AJ0J08UIp: 8ol

$

0ee #vLl
See #3LL
19 84 #ee
60¢ #€
HOLE cle
#e0¢e (§ 74
#OLE soe
#.0C €9
#22 #61
28§ #1149
18¢ #6¢
181 #081
#6.S 66
#1.S S6
#G.LG 16
#E.LS .8
#1614
#9vi
#ivl
pus
nba zisiep
nba jeppus
sp {EASO
sp ‘AR
sp 'ZASD
sp ZAle
sp {LASD
sp LAlB
sp {QASD
sp 0ne
sp 4ngsp
nba 1epbaq

608}
€08}
000
0800
qsit
6v.LL
[AFAN
€991
0000
o981
9080
8100
q.61
o961
PL6L
29981
}100
400
4100

eegl
=+0¢€10
=+BEG|
+B661L
+q/61
+J961
+3¥61L
+9¢€61
+PL6l
+PO6!t
+8981
+3981
-+9981

02
19

)SIpo
Hnq
Bswiooq
181009
0491004
jooq
selq
1epbag
sopq
oseq
cAle
Zne
LA[E
onle
esle
Z2sie
Ls|e

€85
c8sS
189
08S
6.G
8.S
L11G
9.S
G.S
vLS
€L8
¢LS
LG

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

170

#8G9

cly

css

05t 15743 ori

#¢.S 86 v6
L¥S 65 LES

S0c

66¢ 922 0e

494

99y

Gie
Heve
#59¢

94

0ss

08¢
#0G1
#Svi
#ov L
#10L
06
6Sv

#08S
#8.S
#9/5
#.G

A4

964

LE

6¢
#0ct
#62¢
#¥ce

#981
#991
bL
14%4
#SG1
#189
#4181
#96
#26
#88
#18
4€8
86
v6
06
98
98
L9g
4285
66
6
L6
18
#1L1
#CG1
#LIvh
#evl
#2614
#0€
482
59
.9
99

B/00
€400
8LL1
1041
0000
Begl
8200
€991
€691
Evol
£e9l
£e9l
€491
€491
€494
€491
2981
9981
oE10
B661L
ag61
OE6l
poGt
451
0100
0100
0t00
PGOG
009!
0000
1921
B9.L
9Ll

uby!
uool
awoy
wdoob
asjey
leppus
jeisp
gedp
zadp
todp
pedp
aseqdp
£qdp
zadp
1adp
oqdp
nepile
Bueqgp
zisiep
£ASO
P

L ASO
0ASD
5180
£8590
2ss0
1880
40
jwdo
qudo
1SU0D
1NoU0D
uiuod

171

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

#5395

114

S0¢

Lyy

#6£5

295

#OLv

14%:]

#5¢v

8¢
¥9s

961
#¥9S
oov
#096
#299
#99G
#16G
€4¢

L0G

0Ly

(384
#GYE
ove
c9¢
#.6¢
ers
#1vE
cle
€ve
lc
00l
FANY
16¢
vee
#9¢¢€
#2ee
964
98¢
16€
Siy
oV

6eY
#69Y
L0V
6Ly
#9€S
¢le
Lie
#.LYS
#2GG
06v
#¥vS
14514

#881
0
9.

#8€¢
0S¢

#E81
69
Lie

#6111

#S¢

#ee

#1€

HOLL

#9/1
8.
89

#E6L
esé
8ve

#161
8814

#€99
69¢
314
444
9G¥y
£es

#291

#9691
viy
6¥S
LSy
LPS

#3581

000
GLLL
1OLL
1egl
SOLL
q.00
TANAS
epLl
2084
0081
€000
0200
0083

1084
0.1
POLL
e000
eggl
q98l
000
L1981
6981
8981
qo8L
2981
el
6v81
9,00
900
6581
£98l
op8lL
9681
6100

Jjpeai
1apea)
peal
DaspJ
Lpd
91Aq4
yound
Bswud
od
yoyed
Jes)j0
s}jo8su
oBUOW
oj
¥sisi
1sl]

|

10!
o]
Apio!
qdo)
uol

j0!
Lipo!
po!
adAu
LdAyu
21Ul
21Ul
jelsul
Lejsul
ajAqul
LAqul
Mmoj!

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

172

682

€51 8yl gVl

#00S
#¥0S

#eqy
9Ly
¥0e

00¢ 61 (¥4
#58¢ cse GGe
#06€ 65¢
#.EV

#¥0v 6.8 ive
#vSE

9€s

1514

#e€S1
#8871
#evl
#oll
12194
#iiY
4414
S6v
v8g
80t
#L1¢C
0y
#yLy
v0e
#12S
Gt
gl
0te
Lee
£ee
6iv
#.9¢
yx44
6¢C
#Y6£
2%
143
A4
pes
69¢
gce

9%
26
88
v8
#6814
LL
£sy
L8y
49
#522
¥9
iy
L9v
#9
205
vl
#91
#3961
€L
VL
2y
59¢
7
2L
6L
#4281
#LLL
#eL1
4y
#v91
4Se
#061

2894
2894
z8gl
Z89l
9000
B/
zesl
8€81
€09l
6994
€991
03t
L8l
9100
8e8i
T
0000
0691
LBLL
oe/l
09.1
26.1
aqzt
pLLL
LaLt
6,00
o4
908}
zLl
P100
000
£000

SUx
2ux
Lix
oux
M

) um
Apeaim
10119M
ajo00qMm
olo0gm
1000M
ofjrem
O}iEM
SiaA
JUN0oAN
anJyy
1591
uoubis
LD ICH
oesles
JUNJIS
YO OEL]
ewp)as
ASp|os
ue.l}o8es
adAu
oguouu
i
jemal
Al
Ad)
jeoal

173

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

uol}isod awoy O} peay saou: awoy
JNO JejoeiRYD JBpEDL! laped)
N0 1819EJBYO Yound. yound
Jno i8joeIRYD ISHi: 181
INO J3}0BIBYD 9JOSUOD’ aTel0ote]
Uy 18]0BIEYD 9JOSUOD! uiuoo’
snje}s ajosuoo. 1SU0d
MBS WieMm. jooqm
uejs p|oo: 1009

duf
duwf
dwl
dwl
duwf
duwl
dwi
dwil
dw(

$OUIN0IQNS [ENPIAIPUL 1O} 10308A dwin(

JUNOJ 10}08S LEIS WIEM. 8¢ L/(doo-¢)

weiboud siyy jo uibuo: s0Iq
alAqg o/1 |8l 4€000
d=G{ ‘" * ‘e=0 49qWINU 3SIpP JusND: y¥000

s0iq 0 aseq: yoogL+doo
sOpq JO 8seq: yo0g+doo
doo Jo eseq: SEIq+y00ve

y2ot.(02-9zIsw)

nba
Bio

nbs
nbo
nba
nba
nba
nba

(1x@1 ayy inoybnoiyi ,.q,, se 0} paliaysl) %9t ueyl
SWa}sAs Alowaw JOj YOOVE WOJj 1880 SSIPPE St .SElq,,

sa}Aqo|1y Ul 9Zis Alowsuw UOISIdA wydo: 02

nba

uonessife 0'Z Ww/do JO [8A3] 1841} 1O} SOIQO [E}3|%S

SOIgD ERPAS V g xipudddy

:oj00gqm

‘

sj08sU

i

8}Aqol
ASIPO
$0Iq
sopq
doo
selq

qQrpGed gley
qQyiveo Siey
qypyed ey
ayered j0ey
qQp.Le€o o0y
qQypeeo 6OEY
ayLLED 90y
BHOEED COEY
BpyO6£9 00BY

= 2200
00eY

£000
#000
= 00ey
= 90%¢
= 00vE
= 0000

i

= ¥100

FNOFODONS OO~ NMT WO
—_rrrrrrrrrr T AN NNNNANN

— NN OHLON~NOD0
—

175

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

10)08A 8jejsuel] 10]08s

€0I1B ‘£03Y0
Niadp ‘yqap
u0000 ‘Y0000
40000 ‘sues}

Mp
Mmp
mp
mp

€0 %Sip J0j Japeay Jajaweled ysip

“¢0lle ‘goqyo
viadp ‘yq.up
40000 ‘40000
40000 ‘suel}

mp
mp
Mp
mp

20 %sIp 10} Japeay Jajeweled ¥sip

LOli® ‘LO%YD
yigdp 4q41p
40000 ‘Y0000
40000 ‘sued}

mp
Mp
Mp
mp

—.0 %SIp 40} Jopeay Jajeweled ysip

ool1e ‘00%Y2
Hiadp ‘jqap
Y0000 ‘Y0000
40000 ‘sues}

mp
MD
mp
Mp

00 YSIp 10} 18pesy Jaaweied ysip
sysIp L8 @1gnedwos-wgl

@je|sued] 10)098s:
sMyels Js)| wnjaul
ASIP ALIMm.
)Sip pead!
$saJppe ewp 19s.

13quinu 40}09s }8s!

Jaguinu ¥oeJ} 19s!
¥s1p 109|as!

uel}o8s
Isis)|
ajum
pes.
BWPISS
095198
%4188
¥spjas

pJepuels aAlIP-IN0} 10} SB|GE] BIED PaXxi)

dwf
dwl
dwl
dw(
dwf
dwl
duwf
dwl

:aseqdp

%
¢

«

PyPO3YOL joey
eypgoy 0l qoey
00000000 .98y
ooooebEL £OBY

pyaedyo0 jGey
BYPEOYO} qGeY
00000000 LS8y
0000eVYE.L EGBY

Pvi8pyol Jvey
ByP8OY0) dpey
00000000 .Lvey
0000EPEL EVEY

PYO.LPPO3 gy
ByPBROY0) LBy
00000000 LtBY
0000evEL EEBY

ar.legd ogey
qraved péey
qyopeo ecey
qreoed Léey
qvpeed yeey

qyeeo Liey.

qypLgd dleY
qyeced qLep

08
69
8%
LS
95
SS
1]
€9
es
LS
0S
6v
8y
A4
14
14
144
194
[4
144
oy
6¢€
8¢
A%
9t
Se
125
£e
ce
I
oe
62
8¢

ALLINFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

176

00 %0e4} 0} 0b: swoy |jeod ayyspo oeey v6

ASples iieo qpegpd qeey €6

0 stp 109|8s. 0o iAW 00°0 eeeYy 6

%OBIS 10} 1944NQ MmOaq dords asn. yog ‘ds x| 00081€ 9eey L6
papeo| $10}0as ||B {1}UN Y%SIP 8U} peas O} s seDd Jsajdwis: J0ogm 06
: 68

w/do 01 0b pue az|jeijul wdoob dul Bp)og0 geey 88
0187 XSIP 109|9S: Asipo els 00¥02E Oeey 8

8}Aqo! ayj Jesyo! ayAqo! e|s 00€02t P6EY 98

Wwnooe a8y} u| 048z e BIX JEe O6EYp G8
uoijezijeIUL J8leweled wiopad isnl 0y si 8seo jsajdwis! 11009 ¥8
uollouN} YorBD Wioad O} S8UIN0IgNS |BNPIAIPUY : €8
: 28

$8jqey paxiy jO pus : 18

: 08

19540 3oed} [mp 0020 e6ey 6.

8z|s %08Yo! gl Mp 0001 geeY 8L

L 20|l 0 qp 00 L6BY L

0 d0yE! c6lL qap 00 g6eY 92

xew A10}08.1p! €9 mp 00J€ v6eY G

1-92IS %SIp: eye Mp 00c) 2eey vi

Asew ||nu. 0] qp . 00 L6BY 192

%SeW 320[q: L ap L0 O6eY el

10308} HIYys %20[Qq: € ap €0 igey ¥2

yoeJ} Jad s10}09s! 92 mp ooe| pgey 0.

SYSIP ||B 0} UOLLIWOI ‘}D0|q I8joLieied ¥sip: ¥1qdp 69

: 89

92 ‘G S40108s! 2¢ ‘9t qp 9101 ggey L9

vZ ‘€2 ‘22 ‘12 S10309s! 0L ‘¥ 'v¢ ‘8l qp BOPO8iLCL L8EP 99

0z ‘6L ‘B1 ‘L1 S101088! 2l ‘9 '9¢ ‘02 ap 2090V £8BY 59

9L ‘GL ‘Pl ‘el si0308s! ¥l '8¢ I2 qp 8080c0S | J. BV ¥9

ZL ‘L1 ‘0L ‘6 si0yes! Sl '6'E ‘€T ap J060€0L1 QLEY €9
8°'/'9'gslopas! Lt 11 'S G2 qp 1 1Q0S06} LLBY 29

¥ '€ ‘c 'L sioloes: 6LELLL ap sued} €1P0L0L0 eLBY 9

177

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

P au
abueyo »0orJ} IO} 328YD ‘PRO| O} UIRWAI S10}03S aloul

papeoj usaq aAey (e 1 w/do 0} sajsuey wdsob z[
1-S40}038=510}09S! q 10p

341 Jiaano pue ‘Bujuiewsal s10109s JO JBGUINU ||BIAY! q dod
ssaippe J0}09s |jedal! p dod

| ‘U Ul SI SS9JPPE BWP MBU! p pep

8l +EWpP=BWpP! geL 'p x|

SS2IppE BWP ||BJ9I: y dod

10}08S }X8U 0] sA0W '40Lid OU

SJNO00 J0MID UEB J| 100Q 8413Ud 3y} Asjad joogm zul
isiouie Aue! yoo 1do
peas 1|82

19S SSa4ppe BWP ‘}19S JO}09S ‘18S yOBJ) ‘0 O 189S BALD

2 'q WOol} ssauppe BWP }3S: Bwpas jeod

jjeoau 181e| 10} ¥OB)S UO adejdal: q ysnd

0 ‘g O} ssaJppe euwlp jjedal: q dod

0 Jalsibes wou) SSaippe 10109S 19s! BEISEN eo
2 Joys1Bas o) ssauppe Joyoes 186! p‘o Aow
SSOIPPER BWP dABS! y ysnd

peas 0} 10}08S }XaU 9AES! p ysnd

MOBJ) JUSLIND JUNOD 10}03S JAES! g ysnd
J0)08S 2J0W duo peo|

(urod peoj |eliul) wydo jo 8seq: doo 'y IX|

Hels wiem e ut paddnis si Yoiym ‘J9peO| 1EeIS Piod 9y} SulejLuoD
| J0109s 90UIs g 103098 '03oeJ} Buipeaus Ag uibag am jey) ajou

peal 0)40}09s }xauUayisey p: 2'p AW
JBQWINU ¥OBJ} JUSJIND 8y} Sey 0! 0'2 1AL
PEO| 0}510}08SJ0O #S1UNOJ Q¢ $]09SuU ‘q 1AW

L Lpeo|

Vi 6PEY

B98O gpeY
S0 Spey
19 ppey
P gpey
61 Zpey

000811 Joey
L2 adep

BpgEZD Qe
009} 69EY
qyeopd 9oBY

qpPeEPO goBY
g0 goey
10 Loep
qvZ6po aqey
ey pqey
go oqey
P qqey
5o eqey

¥£00Le LaeY
¢091 SYey

0080 £qey
0290 L9ep

e
9zl
szl
el
£zl
zzL
1zt
0zl
6LL
8Ll
Ll
9Ll
Lt
pLL
gLl
441
bt
oLt
601
801
01
901
S0t
oL
£0L
2oL
Lot
001
66

86

6

96

56

ALL INFORMATION.: PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

178

wajsAs Jdnuiajul ayy a|qeus: 19

BW PSS I1eD

yQg S! SSaIppe ewWp Jnejsp: 408 ‘q X

sopqg 01 G ¥ dwnl Jo p(al} ssaippe: 9 PplUs
od Asjud sopa: sOpqg ‘y 1Xj

sopq 0} dwl soy S Bls

0 e dwl o} p|ay ssaippe 198! L PIYs
wiod Adjus joogm! 81000M 'Y 1X|

j00gMm 0} dwf J0j: 0 e1s

uononuisui dwl e si 0! ygop ‘e AW

w/do 0} ob pue sisjoweled)as ‘uoliesado peo| o pud

10}088 Jayjoue 10} LpEO| duwlf

q dod

o] dod

y dod

9 1951684 WOU} }8s SSaIppe oIl PUMELS |jeo
y ysnd

p usnd

g ysnd

syoeu) abueyo pue ‘sjeis J9)s1bas anes

L+3oBl}=)oRl} 2 Ul
¥OB4} IX3U JO 103038 }sil) yum uibaq: L'P 1AW
%OB4) 1xau 0} 06 ‘§OBJ} JUBLND JO pud

12>10100s }i paieisuab Aueo: LpRO| al

.2 1do
syoeu} abueyo ‘os I ' /Z=10}09S! p'e Aow

‘wudoob

q; 609y

qypepo 904y
000810 £0aY

0090¢2Z 004y
o€901e Piey
00S0Z¢E EjeY

001022 Lev
eye0Le viey
0oooce Liey

¢goag jeey

BYEQED O8BY
12 goey
\p eoey
1o goeY
ayp.po goey
Go GeEY
P poBY
o gaey

o0 Zoey
L091 Q=ey

eyEqEp PPEY
q19) qpey
e/ epey

0gt
654

8GL
L5t

951
6L
1213
€St
est
LGt
0slt
6vi
148
A4S
14
Syl
124"
eVl
avl
843
ovi
6tl
8El
LEL
9gl
SEl
pEL
el
el
LEL
oct
6ct
82t

179

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0 Joys168s wouy 19jorieyo yound!

194
uinjaJ 0} o sAemie st 0. e BIX
(Apead j1 | ‘Apeads Jou }i Q) sniels 1Si} uinjad:

aunnoigns |nu! 104
e Jaisibal 0} J810BIRYD! 2% AOwW
9 18151694 WoJ} Js10RIRYD ISI):

191
aufiNoJ INdINo 10} aoeds! uolL sp
Jolejnwnooe o} 1ab! 2 Aow

0 Jays1Bas Wwouy INdINo 4910BIEYD 9|0SUOD!

EY
1q Aysed dugs! L tue
aunol ndul Joj aseds! yot sp

e J9)sI6a1 Ojut J910BIEYD B|OSUOD!

181

Yoo ‘e 1AW
JUNIIN0IANS sniels 10} 9oeds! uol sp

10U §1 YOO ‘ApeS. Ja1drieyd i Y0 Uin}es 'SNIBIS 8|0SU0D!

8p02 UMO INOA J3sul 0}
poAlasal a2eds ypm ‘papiaoid s julod Aijus ayj ‘@sed yoes ul
(488N Aqg ul pajll} 99 Isnw) siajpuey 0/ aidwis

Buissaooud Jaypny 10) wydo o) 06! doo duwl
doo ayj 0} puss: B0 AOW
Jequinu ¥Sip uaund jeb! 3SIpO epy

:yound

asisy

sy

INOUCY

‘UIuoo

69 O¥4p
e qvqy

69 BydYy
6. 6¥av

62 8¥ay
8eqy
6. LeAy

69 9eqt
oo 1199 vEQY
yeqay

69 gcav
ooeg Lzay
Liay

y€£00g° 804y
iv poday
oovoeg BOAY

€6l
¢6l
161
061
681
881
181
g8l
g8l
12°13
€8l
gl
18l
o8l
6.1
8.L1
LL1
9Lt
St
Vil
gLl
cLt
LLL
0Lt
691
891
291
991
Got
1228
g9t
29l
191

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

180

Ce Y pep
049z 19pio ybiy: o'y AW
€21 ‘04equnu ysip=|. e’ Aow

ouysip epj
ssaippe Japeay isjaweled ysip Jedoid ayndwod

199|9S ysIp 10} aoeds. ol sp
abues 1adoid ayy ui SI Jaquinu Xsip

Crog ' 4l Alded oul oul

£ PUE QUa8aM}ag 8q Isnwi. 4 1do
ouysip Bls

o' AOW

8p0od UJIN}3J 101Id! yo000 ‘U IX}
9 40181694 AQ uaAib ¥sIp 109(9s!

8114M/DPBAI 1S11} UO 00 O} SACW [{IM aM! 1au
3INes |ed
D Yoes 10919s! 00 1AW

00 Jajewesed UM |[BD X119 B OjUl jjed Siy} aiejsuel
aALp 1UBLIND jo uonisod 00 %oeJ} 3yl O} dAow!

SouIIN0IgNS 3}AM pue peal ay} ul
asn 40} ABME siajauleled 8y] 810)S AjALUIS ||[IM OM ‘MOU 10}
MOJ[O] SIP 24} 10} SJ8ALIP O/

&Y
1g Alsed duis o} laquiswal! usl lue
(403e) 90B|das) MOU 1O} B} JO PUS J3JUI. yej ‘e Inuwl

a%1Aap JapeaJ WoJj B JajsiBa ou| Jejoeleyo peal:

auinougns ||nu: 184
e 13)s1ba. 0} 18)0RIBYD! o' AOW

6c v.av
009¢ ¢Lay
18 149y
opjoeg 29ay

145214

oP £99¥
v09) 19qv
oviege 864y
6. PSAy
000012 eSay

69 650%
app P2 95aY
0090 ¥Sa¥

62 €59y
4199 15Gv
elog Ay

.1epBal

60 94y
6. PYay

9¢e
ged
1249
£ce
(424
lee
0cc
62
8ic
Lié
ale
1%
vie
1124
1%
LS
¥4
60¢
802
L0¢
90¢
502
y0c
€02
c0¢e
L0C
00e
661
861

L6l
961

S61
y61

181

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

ssaippe ewp ayl Buiias 1o} soeds:! uot sp
ssalppe 8y)] anes! peewp piys

ssalppe JapJo ybiy: q‘y aAow

SS8IPPE J8pPJ0 MO|: 2 Aow

2 pue q sJajsibas Aq uanIbB ssaippe BULIP 198!

1Y Ul anjea ypm! 18l
(4101088)suedy = jy: o' AW
(103088)sues) = | w'l Aow
(1010988)suedy =|y! q pep
sues} =|y! B6yox

ap Ag uaalb aiqe} ajejsuely!
ay) Buisn og Aq uaalb 10109S 8y} 8jejSuely.

1014

10819S 40}09s 10} 9oeds! yol sp
10108S BlS

2'e AOLW

5 19151681 AQ UBAID 101088 198!

184
109j8s 3orJ) 40} adeds! yot sp
yoes} eis

22 AOW

0 19181681 AQ uaatb ey} 198!

124

(91 .ouysip)aseqdp=|y: 0 pep
aseqdp ‘p [

(19peay yoes jo 8z1s) 91, 4y pep
J 8.: u pep
P! 4 pep

2aay
oypage feqy
09 seqy

69 PeqQP

‘BWIP1OS

60 2eqyp
0092 EeqY
a9 gEqY
60 8eqy
ge /eqy

‘UBJ109S

. 6° 9edy
964ty
opgege €69y
6. c6ay
:098]8S
62 L64Y
L8qay
oy60ZE 9.av
6L PLAY
HInes

62 °/4¢
6l 9.avy
eyeell 849y
6¢ L/9Y
6¢ 9.9V
6¢ G/9v

66¢
8G¢
YA T4
96¢
GGe
1414
€6¢
2se
Lge
0S¢
6vc
8v¢e
¥e
9ve
144
vve
€ve
cve
844
ove
6e¢
8ec
FAX4
9€¢
<14
vee
£€e
4%
($4
oce
622
8c¢
YXA4

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

182

ssaippe Asowaw Jo8JIp! A Sp peeWp pasy 062

uoisuedxa 10} S8}AQ OM} Z sp :10)08s qeoy 682

uoisuedxa 10§ S91AQ OM): 2 sp M oB4 690V 882

: B¢

(., Jeppus,, pue epbaq, usamiaq ‘Jensmoy ! 98¢

‘ajqejieae ag jsnw aoeds ay}) abew) Alowaw wWoysAs ! s82

8y} jo ued e aq 0} paau Jou S80p pue ‘eale elep : ¥82

pazijeiliuiun paAIasal s $OIQD ay) JO JopuiBwal ay) : £82

' ¢8e

u| -paj|l} uaum paoe|dau: IES] 62 gaoy 18¢

UOHIPUOD 10418! L 'e AW LO2€ 990 082

SIBAP O/1 10} poaIdsal aoeds: 952 sp . gady 6.2
(G£659-0) ,peBWP, U| SSaIppe eup 8y} ' 8.¢
(92-1) 40}08s, ul Jaquinu 10308s ay) : 112
(92-0) MOBL}, Ul Jaquinu 3oeJ} 3y} : 9.¢

(1 ‘0) ,oWySIp, U Jaquinu XSIp 8y} PeAes 8ABY dM ‘ased Siy] ul : Gl2
: vic

@}ldm 10 peaJ ay) Buunp sind00 JOJIB UB §l Y0 pue *Aldedosd : €l2
sejajdwoo uonesado au) ji e 1a)sifad ul Yoo e uINnjal ‘uonesado : zle
0/1 |en}oe 8y} w.opad O})M pUE peal Wolj iy Jeual olem 122

! 042

puUBWWOD 3jim dn 19s! uot sp 9pPqy 692

g uoljelado ajlum e wiosd: BUM 892

: 292

0/1 [enjoe 8y} wiopad oy onrem dul qy99¢0 £Pay g99¢

puewwod pess dn jes! uot sp £oay 59z

(9114M Ul 3POI UCWIWOD : 92

9sn uUdY] ‘PUBWIWIOD peaJs dn }3s O} 90BdS MO|(||Im 8Mm 0S : €92
8)1uM 0} JB|IWIS S| SIY} A|[ENsSn) uonesado peal wioped: peal 292

: 19¢

o4 62 2oay 09¢

183

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

191
£9t Lot 9l L

gase ejep jo azis: epbaqg-¢

EOJE BlED JO pUd! $

€ J0109A)09YO: 9l

2 101991 yoayd! ol

| 40109A }09Y2! gl

0 10}28A 328y2! gt

€ J0309A uoieoO0|E! LE

Z 10109A uolneoolje: LE

L 10}08A UOIjBO0j|E! Le

0 10)98A uoneoo)jE! Le
evaJle A10}0841p Yojelos: g2t
eeJe gjep Jo Buiuuibaq: $

8sn sOpq 40} BaIR Wer Y3Jesds

G1-0 Jaquinu %sip! L

#E0E 8G
#20¢€ €5
#10¢t 117
#00¢ 1214
18 #Cl
0t #6
#v8 6L
Si #1E
6 #8
90¢ #9862
141 #0L
#662 8¢S
#8672 1 %]
#.6¢C 8y
#96¢ 124
pus ’
nbs zisiep
nbe eppus
Sp ey
sp 12OMUd
P CLOMY2
sp 00AYd
sp ‘gole
sp 2ole
sp ‘Loie
sp ‘o0le
sp 4qup
nbe jepbaq
sp oujsip-

oley
08t
HPY
9P
000
00ve
ogey
ooev
0000
0y
90°¢
popy
aepyp
jsPv¥
0LPY

for il 4
=2¢10
az9%

oley
o209
d1py
oopy
PPy
sepy
ispy
0Py
oY
= 0PY

J09y

eoNU2
FA
LOYYO
oo%Yo
3SIPO
dao
j00q
sOiq
selq
1epbag
sopq
eole
cole
Lole
oone

L0¢
90¢
S0¢
v0€
€0¢
coe
L0E
00¢
662
862
162
962
g6e
y6¢
€62
é6¢
162

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH |

184

#19 =}°]
#veC
#9G¢
#69 LS
#5662 A1

St

0§

Lic
#0v2

851
#vic

#29¢

1444

#80¢
#ivl

¢S

#16¢
2s

#89¢
0St
#06
#1248
Sy
#88¢
ovl
0L
Okt
€6
#9¥2
#68¢
#8614
gl
#EG1
96

oel
#681
#4981
98
v6
1218

A4

oge

#06¢
£ce
VA4

#0L1
#081
#SL1

£e
#02
0e
992
ov
e
62
oe
ie
82
se
2ve
92
2e
e
#91
#€
#201
ve
vz
#el
12
g8
#S0€
v
#oy
85¢
112
zv
#90€
4
£z
ze

9pPay
c0EY
geey
gaqy
gley
6909
Piay
ceay
peqyp
BGqqy
Leqy
Qqadyp
way
£oq¢y
PYay
0200
¥100
eqey
aray
6vay
€000
ysay
jeey
o¢coy
pPgey
ceer
pady
o0y

040Y
o0
Liay
Leqy
yeay

UM
aj00qm
joogm
oniem
sueJ}
yoel}
$1108
EIEL
BWPIOS
Xspies
ue10as

103088

Japeau
peal
yound
s109sU
aziswi
Lpeol
1818
sh
8)Aqol
awoy
wdoob
jeppua
Badp
aseqdp
peewp
owysip
jqaip
zisiep
Jsuo2
}Nouod
ujuod

185

ALL INFORMATION PRESENTED HERE.IS PROPRIETARY TO DIGITAL RESEARCH

Appendix C: A Skeletal GETSYS/PUTSYS Program

0100

0014 =

0000 =
3400 =
3¢c00 =
4a00 =

0100 318033
0103 218033
0106 0600

msize

, “bias” is

bias
. CCcp

bdos

bios

gstart:

rd$trk:

combined getsys and putsys programs from
Sec 6.4
Start the programs at the base of the TPA

org 0100h
equ 20 ; size of cp/m in Kbytes
the amount 10 add to addresses for > 20k

(referred to as "b" throughout the text)

equ (msize-20)*1024
equ 3400h+bias
equ ccp+0800h
equ ccp+1600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register usage

a (scratch register)

b track count (0...76)

c sector count (1...26)
d.e (scratch register pair)
h,l load address

sp - set to track address

; start of getsys
Ixi sp,ccp-0080h ; convenient place
Ixi h,ccp-0080h ; set initia! load
mvi b,0 ; start with track
read next track

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 187

0108 0e01

010a ¢cdo003
010d 118000
0110 19
0111 0c
0112 79
0113 felb
0115 dalal1

0118 04
011978
011a feQ2
011c da0801

011f fb
012076

0200

0200 318033
0203 218033
0206 0600

0208 0e01

020a ¢d0004
020d 118000
0210 19
0211 Oc
0212 79
0213 felb
0215 daQa02

0218 04
0219 78
021a fe02
021c¢ da08o2

021f fb
0220 76

188

rd$sec:

mvi ¢,1 ; each track start

call read$sec ; get the next sector

Ixi d,128 ; offset by one sector
dad d ; (hi=h1+128)

int ¢ ; next sector

mov a,c ; fetch sector number
cpi 27 ; and see if last

jc rdsec ; <, do one more

. arrive here at end of track, move to next track

intr b . track = track+1
mov a,b ; check for last
cpi 2 s track =27

jc rd$trk ; <, do another

; arrive here at end of load, halt for lack of anything

; better

put$sys:

wr$trk:

wr$séc:

ei

hit

putsys program, places memory image
starting at

3880h + bias back to tracks 0 and 1

start this program at the next page boundary
org ($+0100h) and 0ffGOh

Ixi sp,ccp-0080h ; convenient ptace
Ixi h,ccp-0080h ; start of dump
mvi b,0 : start with track

mvi ¢,1 ; start with sector

call write$sec . write one sector

Ixi d,128 ; length of each
dad d ; <hl>=<hi> + 128
inr ¢ ;<> =<c> + 1
mov a,c ;. see if

cpi 27 ; past end of track
jc wr$sec ; no, do another

; arrive here at end of track, move to next track

inr b ; track = track+1
mov a,b ; see if

cpi 2 ;. last track

jc wr$trk ; no, do another

done with putsys, halt for lack of anything
better

ei

hit

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

-

0300

0300 c5
0301 e5
0302

0342 el
0343 cl
0344 c9

0400

0400 c5
0401 €5
0402

0442 el

0443 cl
0444 c9

0445

. user supplied subroutines for sector read and write
; move to next page boundary

org ($+0100h) and 0ff00h
read$sec:

; read the next sector

; track in ,

; sector in <c>

; dmaaddr in <hI>

pushb
pushh

. user defined read operation goes here
ds 64

pop h
pop b
ret

org ($+0100h) and 0ff00h ;another page
:boundary

write$sec:
: same parameters as read$sec

pushb
pushh

- user defined write operation goes here
ds 64

pop h
pop b
ret

: end of getsys/putsys program

end

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 189

| 3OB4} UO S10308S JO Jaquinu: 0S0pPg-ssopq nba {sopq = 8100

0 %04l UO S10108S SOPQ JO Jaquinu: ford nba osopg = 6100
SOp Ul $10108S JO Jaquinu: gzL/isopq nba ssopq = L€00
peaJ 0} S39B4) §0 Jaquinu’ Z nbe SHIU = 2000
qudo-asopq nba |1sopq = 08814
HOOOQE 1B 100Qq 8Jempiey WOJ} UMOP PIPED|: ypoo€eo Bio 000g
wiod AJjUa 1S Wiem! £+100q nbae yooqu = €09}
yutod Ajjue uels pjod! seig+uyoogk nbe 1009 = 008}
peO} S0P JO pUB! selq+y0sesi nba asopq = 088}
S|jeo 10} sop 0} AJjud. seig+ygog nbs sopq = 9080
peo| sop 0 aseq: selq nbs qwdo = 0000

Jpus
40000 nba seiq = 0000

Bunsay jou }

Hpus

yooye0 nbe selq

Buiiss})
$J0449 UO Qguow o} 06 usyy ‘and} §i asjey nbs Bunsel = 0000
as|e} 10U nba = an} Ui
= 0000

0 nba asie}
6/61 '1snbne 0'g uoisian ‘
0’2 Ww/do 10} JopEO| HEis P|0d Q0B-SPW :

,4000€ 1€ Jopeo| Liels plod spw 8ji

7 W/ dD 10} 19prOT HRIS PI0D 008-SAW Y1 :d Xpuaddy

OFNC'}#‘LO(ON@CDOFNC’)?IO(DI\QC’
—Frrrrrrrr N NANNANNNNANN

~QAMOT WO~ O0

191

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

ogdor‘y IX|
peaJ 0] s)oe)} JO Jaquinu! sHIU‘g nw
paJeajo 9160} }osal ino

J8]]1013U02 38U} Jed|D
Heisp|oo zul

(U0 Yyoums! yzo iue

msq ul

}O s! yolims 100q JI ¥I28Yo

91Aq. ul

adAp ut

) sSNJeIs %SIp 49D
0guow 0} [|BD JO ased ul! 'yoejs‘ds 1|
3OB}S 40} }00q JO pus 3sn: yool nbe
uoloun} peaJ ysIp! Uy nbs

aAlIp pPa108|3s 3eIqgI|BIaI! ug nbe
youms 1004: uHo nba

ssaippe gdor ybiy: g+aseq nba
ssaippe qdol mol: |+8seq nbo
uod snieis ysip! aseq nba

19[|0JJUOD 18SBL! /+8SEQ nba

9jAq ynsal. g+dseq nbs

adAy ynsail L+oseq nbs

J9|jonuod Aq pasn ,aseq,’ uglo nba
QBUOW 10} UOIJBI0| LB}Sal! Y3040 nba
aseq Joyuow jalull yooslo nba

UBISP|0D

‘yelsi
3oejs
jpeal
jeosu

MSQ
yBys
Moyl
1e1Sp

yosal
a)Aqu
adAp
aseq
oguowl
oguow

Oecvic cloe
2090 010t

§.EP 800¢€

0€£0¢° q00¢€
c09® 600¢
$#9p L00E

q.9p S00€
6.9pP €00¢

L000LE 000E

= 0010
= 000
= £000
= 00
=B/00
= 6400
= 8.00

=3.00
= qL00
= 6100
= 8.00

= ol
= 008}

c9
9
09
6G
86
LS
9S
5SS
¥S
5]
es
LS
0S
414
14
Va4
14
St
144
1914

K44

14
ov
6¢
8¢
LE
9¢
G¢
ve
£e
[4
e
0t

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

192

Bunsay jou 3

jipus

Jojuow 0} ob: pguouu Zud

Buiissy]

XXXX/940/%99S/118 4ppe/UNLBA0. qOLLLL Iue
ai0)s81! Jed

19s g ApeaJ jou: Qguouwl 20

jel
oguow 0} ob uayy ‘Apeas jou ji

snje}s 399Yyo ‘8181dwod o1 8914q4 ul
Hpus

peo| ayy el Helss ouf

Buiyse) jou it

JIpus

0L 40 L1 Ji JOHuUOW 03 06! Qguows dud
Buisay]

g do

qll ue

adAu ui

snjeys ysip %o8yo

olem zZ(

4 ue
1eisp ur.

ybiyr N0

y'e Aow

MOJi ino

|'e Aow

quido 03Ul 3orL} IX8U/IS4l) pedd

9199 2e0e
J1 1EO0E
1#40°p 220¢
FAR AL

q.ap qeoe

0€002P 820¢

2094 920t
£099 ¥20E
6.9p ¢20€

0eq1ed §10€

v092 P10t

onem 8.9p 4l0E
B/EP 610

0/, 810€

6.LEP 910€

PLSLOE

Hels

96
S6
v6
€6
26
6
06
68
a8
JA:]
98
G8
1£°]
£8
e8
18
08
6L
B.
L
9.
S.
vL
€L
74
bL
17
69
89
19
99
<9
v9
£9

193

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

pesJ puodas jo aseq: 8ZL.0sopg+qdwo

| Jojoes!
L qoeJ}!
| ¥OB4} UO peaJ O} SI0}08S"

sopg JO aseq je lejs:

0 Yo} UO g JOJI8S YiIm lie)s!
. 0 Yoeu}:

0 3O®BJ} UO pESJ 0} SI0}O8S H:
uoouUNy peal:

ajepdn ou ‘Mmool

L

L
1SOpq
|peal
yosg

ogdot-$
qudo
4

0
0sopq
jpeal
yos

pus

mp
ap
ap
qp
ap
ap

nba
mp
qp
ap
ap
ap
qp

$)00}g Joyowe.ed

10049

duwf

sdwf dn j8s pue ‘sbessaw jeijius utid 03 100g o} dwl

SHOBI} UMOP 1Unoo!
qdos 1xau buissaippe:
gdor jo yibusy:

peo} syl Al

ueys

q

p
jgdol'p

Jeiss

zuf
19p
pep
I}

Hpus
2ul

‘1qdoy

jados

0S0¢

0008 8v0¢
10 PYOE
10 9¥0¢
81 qv0¢
v0 ey0e
08 6¥0¢

= 2000
0000 L¥0€
¢0 9t0¢€
00 S¥0€
61 v¥0E
$0 £¥0€
08 ¢r0¢E

9100€° Je0e

0ESLEo 280
G0 9e0€
61 BEOE

004011 LEOE

0€£00¢22 veoe

9l
Sel
el

£zl
zel
12k

oct
611
8L
Lit
9l
Skt
14"
gLl
ctt
298
OLt
601
801
101
901
SOl
yot
€01
ol
10t
oot
66

86

L6

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

194

96 €6 ¢8

o0c 61

0oy 6 8¢

6

¥6

vel

8l

174"

9€

vi

7
L6
68

Oct
98

FASS

9t

801

L}

eLt

S¢

7

LE
voL
A4
6V
€8
08
LS

chl
0§

09

#LHL

#ELL
19
69

0.
14
S5
€5
L
#S1
62
lc
S¢
¥4
6¢

ve

#04
#8
#6
#€9
#vy
#PE
#9v
#ct
#9E
#ey
394
#SE
#lC
#9¢
#iE
Lot
#611
19
#6¢€
#0V
#.
#8€
#L1
#2S
#iy
#02
#el
#l2
#G¢
#61
#6¢
#8¢
#81
#E¢

qi0¢€
HH
0000
GLoe
goto
6.00
oooe
1043
1200
£000
#000
q.00
€09t
¢000
008}
2000
60t
cyoe
6100
eL00
0000
8200
0000
£00¢E

400

0091
0000
1€00
088l
ogs|
8100
6100
9080
8200

o)}EM
ani}
Buiysay
uels
3¥OBlS
adAp
BISi
oguoun
19591
|eoa.
jpeal
814AqJ
yooqu
SHAU
oguow
tqdol
Lqdoy
ogdo
Mmojt
yBuys
asie}
jeisp
quwdo
WRISp02
‘MSq
jooq
selq
ssopq
isopq
2s0pq
1sopq
osopq
sopq
oseq

195

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

—

Appendix E: A Skeletal Cold Start Loader

; this is a sample cold start loader, which, when

; modified

; resides on track 00, sector 01 (the first sector on the

; diskette). we assume that the controller has loaded

; this sector into memory upon system start-up (this

; program can be keyed-in, or can exist in read/only
. ; memory

; beyond the address space of the cp/mversion you are

;running). the cold start loader brings the cp/m system

; into memory at “loadp” (3400h + “bias”™). in a 20k

; memory system, the value of “bias” is 0000h, with

; large

', values for increased-memory sizes (see section 2).
; after
; loading the cp/m system, the cold start loader
; branches

; to the “boot” entry point of the bios, which begins at
; “bios” + “bias.” the cold start loader is not used un-
; til the system is powered up again, as long as the bios
; is not overwritten. the origin is assumed at 0000h, an
; must be changed if the controller brings the cold start
; loader into another area, or if a read/onty memory

; area
; is used.
0000 org O ; base of ram in
;cp/m
0014 = msize equ 20 ; min mem size in
; kbytes

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 197

0000 = bias equ (msize-20)*1024 : offset from 20k

; system
3400 = ccp equ 3400h+bias ; base of the ccp
4a00 = bios equ ccp+1600h ; base of the bios
0300 = biosl equ 0300h ; length of the bios
4a00 = boot equ bios
1900 = size equ bios+biosl-ccp ; size of cp/m
; system
0032 = sects equ size/128 , # ofsectors toload
; begin the ioad operation
cold: .
0000 010200 Ixi b2 ; b=0, c=sector 2
0003 1632 mvi d,sects ; d=# sectors to
, load
0005 210034 Ixi h,ccp . ; base transfer
, address
Isect: ; load the next sector

: insert inline code at this point to

; read one 128 byte sector from the

; track given in register b, sector

; given in register c,

; into the address given by <hl>

; branch to location “cold” if a read error occurs

; user supplied read operation goes

; here...

0008 c36b00 jmp past$patch ; remove this
; when patched

000b ds 60h

past$patch:

, go to next sector if load is incomplete
006b 15 dcr d ; sects=sects-1
006c cal04a : jz boot ; head for the bios

; more sectors to load

; we aren't using a stack, so use <{sp> as scratch

; register
; to hold the load address increment
006f 318000 Ixi sp,128 ; 128 bytes per
. sector
0072 39 dad sp ;<hl> = <hi> +
128

198 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

0073 Oc
0074 79
0075 felb

0077 da0800

007a 0e01
007c 04
007d c30800
0080

inr ¢ , sector = sector +1
mov a,c
cpi 27 ; last sector of
; track?
jc Isect ; NO, go read
; another

; end of track, increment to next track

mvi c,l ; sector = 1

inr b , track = track + 1
. jmp lIsect ; for another group

end ; of boot loader

ALL INFORMATION' PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 199

(FEOL" " '8Y02'¥20L) 82iS %00|Q Blep ay; s siq
aje|SURI]} JO}08S 10}, J0}0B) MaXS,, [Buoido SI S
%OBl} B UO JaQWiNu 10}08S }Se| 3y} s| 28|

(1 40 0 AjjENsSn) Jaquinu 103108S }s4ij Y} SI 0s}
L-U L0 Jaquunu 4sIp 8y) si up

: alaym

[0]'syo's% P syP s|q[§4s] 08| s} 'up
w40} 8y} soyel I-1si|-ioloweled yoes

(L-u*""'L'0=1) BALIP YIt BYJ JO SD1ISH4810BIBYD
sy} seuljap I1-islj-1ajowesed pue 'WaisAs N/dD 8aui O
payoele SoALIP %SIp [B0160] JO Jaquinu ay) si U aJsym

japus
u-isij-19jpweled jopysip

L-}Slj-Jojeweaed Japysip
0-1s1j-Joroweled JapysIp
u sysip

‘s
s||eD JO 82usnbas ay} 249UYM ‘MO(3q uaaIb soloew
ay} Buisn pauyap ase saaup %sip jeoibo| W/dD

056¢€6

J ¥ '8A04p oijioed
6.6 X049

yoseasay |eybig

6.6} @ 1ybuAdoDd

Aleigl uoiulep-a4 ¥sIp 0’2 W/dO

Kreiqry uopiugaq st W/dD 4 xipuaddy

<okt

FAONTOONDOD S
2

201

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9|qej sje|suely. 40000 UPRIX Mp
1s)| 4opesay ysip 8ibuis & aulep
up ouoew

Crds
¥20(q J[eWsS B YUm pauljap si azis ysip abie| e j1 abig
ajinb aq ||im J030aA UOIEDOE Y} JBY) 3J0U "A|qiuasse
a2yl jO pua ayj je ,zisiep,, JOo anjea au} Aq uaaib si eale

SiY} JO 8ZIS 9y} 'BaJE BIEP 8y} JO pud ayi Buimoljoy}
UOIBOO} IXAU 8] SBUIJ9P IBPPUS,, JO BNIBA 8} S]IUM
‘soIg 8y} 8A0qe eale Wel az|ejiuiun ayy jo Bujuuibaq
ayl seuap Alqwasse jo pus ayl e, jepbag,, 0 anjea ayl

Jjopua
wpua
0™SPY% epysIp

L+X4Sp 188 3sp
I 1das

0 1°s %sp
S'P9'v9'ere'pe0L’9'92’1'0 jopystp
y . SHSIp

AQ paulap S| WelsAsS /4D SALIP INO) pIEPURIS B

‘Wwp ysip pauljsp Ajsnolreid e

se'sD1)stgjorIByD Bwes ay) Buirey se up YSIp sauljep
wp'up

WwJo} 8y} '‘99UsIUaALO0D 10}

pua A10302J1p/391 $90J0} UdIYm ¢ |BUO1dO ue si [o]
(piom) diys 01 syoeu} Jo Jaquinu ayl s! s}0
WNS}29Yyo O} SJUSWaJ8 Jip O Jaqwinu ayj Si SHO
(psom) sjuawaie AI010841p JO 18quUNU 8y) s np

(pJ10om) sjuswaioul S|q Ul 9ZIS ¥SIP ay) S! SHP

upgadp

‘e

IpuYSp

V9
‘€9
29

-9

- ‘69

‘85
‘LS
99
'S6
bS

28
g
:0G
6
'8t
Ly
'9v
Sp
by
Y
2y
1y
op
'6€
'8¢
L€
'9¢
'6¢
vE
‘€€

¢t

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

202

ynsa. se upob anjea ssonpoud

u'w §0 JOSIAID UoWWO9 1s8jea.b

JUSWIWOD

Juauwwo9

%00|q wJed ysip:

$320/q Jojowe.ed)ysip Jo aseq:

a0ua1a)ai J9)e| 10} !

$10}08A 20| ‘%28YD!
¥OO0|q waedyyng J1p:
Bale Yoje.os:

u'w oJloew

wpua
ejep Mp
JuUaWajelsS Mp B Buljep
juawiIod‘elep OJdeW

wpua
Blep ap
jUBWalEIS gp B Bul8p
JUgWWOoo‘Blep O4deW

wpua
$ nbs

up oJoeW

wpua

wpus

L+2XUXSP JELS
IXUNSPY% IPUXSP
pu ydeu

0 ies
sjuswala pu ay} syessusb
$ nbe

pu 198

SYSIP pu BuUlEP
pu oJoBW

wpus
UPQAIB'UPRASD Mp
upgqdp’nqip mp
4000040000 Mp

‘16

86
e
96
:G6
v6
‘€6
26

~

. .06

upgqdp
ipyqdp

‘68
98
28
app :
. G8
8
€8
28

Y 8¢

IXUNSP.

Ixuysp

aseqdp
SySIpU

0

SYsIp

08
‘6L
8L
L
‘9L
‘6L
ve

‘€L

el
N Vi
‘0L
‘69
‘89
L9
‘99
‘59

203

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

%00|Q /8101098 JO Jaquinu’

sjuawWale WNsS¥o8Yd Jo Jaquinu

10}09A UOIBOO||E JO 92ZIS!
$10}08S JO JaquInu’!
XBWoas Q $10309s!!

9|qe] 9)je|sues) awes:

9ZIS 10109A WNSYO8YD BWES!
9ZIS 10]09A UOIJBOO||B BWES!
siejeweled jusjeainba!

28 snojraad se swes

8el/si1q 188

an[ea }Iys %o0|q ay} ejesausb
/(sX9) 198

jpue

L+upgsie 198

0 9u (g pow (s¥p))]
g/(s3p) 19s

L+XBLIOaS 198

(0s4)-09) 198

as|o

081911X nba

08)9SSD nbe

os)9sie nba

asy9qdp nba

up 3SIp juawLnd

Jsj [nu H

sa|ge)] 491 10} sjuswalels 19s ay) ajeiduab
QLY'SJO'SHOIIP'SHP S|Q NS OS]'0S)'Up O40BW

1 10} B|gELIBAL
U JOj 9|qEBLIBAL
Ww 10} 8jqeHeAL

(uoyesauab

wpua

wpua

ipob 198

uposb 188

jipus

wixe

0 = Jpob #
upob ,xpob-wpob 198
upab/wpob EH
5€559 1dal

0 198

u 198

w 188

9|qe] 9)BISuRl} J0]99S Ul pasn)

[eAYiq

upw®sso
upwgsie

upygs|e
$10108S
Xewoas

upwgIx
upwgsso
upwgsie
upgqdp

I

i

jopysip

LEl

0gt
‘6l
‘8¢t
‘Let
‘92t
‘Gl
‘el
BXA
ccl
‘Let
‘0ct
‘6Lt
8L
LEL
9Ll

‘i1

49!

€L

upob
wpob

i1pob
xpob

1pob
upob
wpob

0

el
‘bEL
0Lt
‘601t
‘801
L0l
‘901
‘G0t

YOL

‘€0t
¢l
‘Lot
‘001

66

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

204

Hpuo

wyIxe

O=wa.uIp i

9l 1dau

dooj yoea uo s,| YiMm {1} 0 198
3}00|q Jad soljud o Jequinu:: /519 jos
ssa00.d 0} Bujuiewai #:: np 1es

- 403934 }Iq uoijeAIasa) A10y08.1p 8jesauab mou

jipus

9 18s

913 Inu jou H

uonisod jse| Ui [g] {euolldo 8q ABw

yipus

(1 4ys yswixa) 188

96Z < (sip) i

uoleoo| e 91Ag 31qnop aq Aew

wpua

¢/IBANIQ jes

| 10 {] 1ys yswixe) 188

HIYs 0} aiow 8simiIaylo

Jipud

wiixad

L={eAj(q i

9l ydeau

S| Yim 3461 woly i 0 188
%00jq /s81Aq0o|1) O Jaquinut! veoL/siq 198
314q ysew juaixa ayj ayesousb

wpus

¢/1erq1a JEE

I 40 (I jus dswyq) iEH]

L+YsSNIq 19S

184 punoy jou | Japio ybiy ‘ssimiayio

jipue

WX

F={BANIG i

uonisod 11q yoea 4o} 30U0:! gl 1dau
Wb wouy s | yim S|yl 0] 188
[eA%|q ut 8,0 WO SIUNOD:! 0 188

‘691

‘891

AL]N

‘991

Q4P 1G9
SNQ4Ip p9L
wauip g9l
29l

19t

HSWIXd 091
‘6G1

i8St

. LS
YSWixs (9G1|
Beje]

pGlL

‘£S5l

1BAY|q ¢Gl
HSWIXa (LG
061

N4

Byl

A4S

ol
Yswixe Sy
rea)iq it
eyl

A2t

eAd(q ‘vt
YsSw(q Ovi
Jusiiq 6EL
Lgel

LEL

Bl

Gl

N4t
HSWiq (eel
Jusyig get

205

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

a)euauab 0} sjuUBWSle JO 1IBqWINU SI]S}jBU

upob/s101008 18s

{moexs's1010as)pob = upab

. J3S°S101088Y, pob

MO[JUBA0 UO BUO AQ SBAOW!: 0 IETS
111} O} 4JOJO8S Ixau:! 0 198
2|qe} 9je|suel) ay} ajesauab

. as|o
a|ge] ae|x ou! 0 nba
0 =48 #

os|o

3|ge} Ije|x ou! 0 nbea
DRI H

paisenbai ji ‘a|qe} ajejsuel] ay) sjessuab
<19§}}0:>'$)0Y, Mpp

<oZ1S 398U >'p/(S%)% mpp
<{20[[B>'UH0 PUB XA4P% app
<000||E>'g 44s N|q4Ip% . 9pp

<xew A10}00.p > L-(J1P)% Mmpp

<1-9Z18 ASIP>'L-(SAP)% mpp

<ISBUL JUIXD> Y SWIX9% app

<fSBW X30|q°>"sWiq% app

<HIUS HO0IG:>JUsHIq% app

<oeJ) J1ad 29s:>'510308S, Mpp

$ nbo sjeidUsb:: up Jipyadp
wpus

jipus

0 188

EE)

SHGJIp-Wallp 19s

S$HGIP < WaIp 4

40008 10 (I 1ys Haiip) 188

1q 1epio ybry | ppe pue bl yiys
uiebe aouo 9iBIL8)l '839|dW0 JoU

%3

isyau

e

- '€0¢
-c0¢

10¢

-00¢

sSeqixu :
09SIXU

661
961
16}

961

upgyx .

upRIx

S6l
P61
€61
c6i

‘161

- ‘064

681
‘881
1281
981
681
b8l
‘£81
28l
‘181
081
6L
‘81
A

woslIp :

91

Be7A

walp !

vLl

‘€L

AqaIp -

i

cli
(WA
0L

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

206

seaJe BjEp Wel AIessedau ay) @jeiouab

upRleA%,'upRgl
[eA'up'ql

aoeds
aoeds‘'qe|

1S9} §|g |hu JO pua:!
}$9} 2B} |NU JO pua!

VENEEL]
SEQIXU
L+SBAIXU
0 = siau
L-S)|au

10109-038)XU
$10}088 =< 29SIXU
(pis)+o088IxU

(0s})+09SIxUY,

(98))+20S)IxU%,
96z > $40}09s

10}09S YoEs 10} 80U0!! $i0}08S
a|ge) 9je|suesy’ $

191UNoo:! : 18)8U

0i0BW

wpuo

Spjsp
oJoeWw

wpud
sp
o.ioBW

wpua
jipus
jipus
wpus
jipus
198
18S
198

#

198
yipus
198

]

jes
$1puUs
Mmpp
as)e
qpp
H
1dau
nba
EH

sjusLWale snoiaeid delian0 am 3.049q

0

jopusa

Lee
Be1%4

- GgC

spl

‘vee
‘£EC
eee

N R4

qe|
spjep

syau
298IXU
seqixu
s)eu

098IXuU

2981XU

upBX
sifou

‘0€¢
‘6ce
‘8ce
‘Lee
‘9¢e
‘gec
‘vee
RHA7
‘eaé
‘tee
022
6le
8le
AN
‘gle
Sie
‘vie
Ele
‘¢he
‘Lic
‘0t¢
-60¢
‘80¢
202
‘90¢
502

207

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

wpua

p402ai xay sadi0; juiod siy) 18 0 gp

jepbaq-¢ nba

$ nba

wpua

L+IXUNSP 188

SO IXUNSPY ASD sp)

S|B'IXUYSPY%‘Ale Spj

3SIp youea 40 90UO:! SHSIpU 1dad
0 188

J8j3nq ssadoe A101094p! 82l sp
$ nbe

zisyep
1eppua

IXUNSP

IXuysp
3nqap
1epbag

6v2

- 8ve

‘ye
‘gve
‘5¥e
‘vve
‘£re
eve
‘e
‘ove
-68¢
‘8ec

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

208

OCO~NOO DN

Appendix G: Blocking and Deblocking

@y
@x

L]
)

0800 = blksiz
0200 = hstsiz
0014 = hstspt
0004 = hstblk
0050 = cpmspt

Algorithms

sector deblocking algorithms for cp/m 2.0

utility macro to compute sector mask
macro hblk

compute log2(hbik), return @x as result
(2 ** @x = hblk on return)

set hblk

set 0

-count right shifts of @y until =1
rept 8

if @y =1

exitm

endif

@y is not 1, shift right one position
set @y shr 1

set @x +1

endm

endm

cp/m to host disk constants

equ 2048 ;cp/m allocation size
equ 512 :host disk sector size
equ 20 ;host disk sectors/trk
equ hstsiz/128 ;cp/m sects/host buff

equ hstblk * hstspt :cp/m sectors/track

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 209 ’

34 0003 = secmsk equ hstbik-1 ;sector mask

35 smask hstblk ,compute sector mask
36 0002 = secshf equ @x ;log2{hstblk)

37 ;

38 ;

39 .

40 ; bdos constants on entry to write

41 ;

42 ;

43 0000 = wrall equ 0 ;write to allocated
44 0001 = wrdir equ 1 ;write to directory
45 0002 = wrual equ 2 ;write to unallocated
46 ;

47 ;

48 :

49 ; the bdos entry points given below show the

50 ; code which is relevant to deblocking oniy.

51

52 ;

53 ;

54 ; diskdef macro, or hand coded tables go here

55 0000 = dpbase equ $:disk param block base
56 ;

57 boot:

58 whboot:

59 :enter here on system boot to initialize

60 0000 af xra a ;0 to accumulator
61 0001 326a01 sta hstact ;host buffer inactive
62 0004 326¢01 sta unacnt ;clear unalloc count
63 0007 ¢9 ret

64 :

65 home:

66 ;home the selected disk

67 home:

68 0008 3a6b01 lda hstwrt ;check for pending write
69 000b b7 ora a

70 000c c21200 inz homed

71 000f 326a01 sta hstact ;clear host active flag
72 homed:

73 0012 ¢c9 ret

74 ;

75 seldsk:

76 ;select disk

77 0013 79 mov a,c ;selected disk number
78 0014 326101 sta sekdsk ;seek disk number
79 0017 6f mov l,a ;disk number to hl
80 0018 2600 mvi h,0

81 rept 4 ;multiply by 16

82 dad h

.83 endm

84 001a+29 dad h

85 001b+29 dad h

86 001c+29 dad h

87 001d+29 dad h

88 001e 110000 Ixi d,dpbase ;base of parm block

210 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

89
90
91
92
93
94
85
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

0021 19

0022 c9

settrk:
0023 60
0024 69
0025 226201
0028 c9

setsec:
0029 79
002a 326401
002d c9

setdma:
002e 60
002f 69
0030 227501
0033 c9

sectran:
0034 60
0035 69
0036 c9

read:
0037 af
0038 326¢01
003b 3e01

003d 327301
0040 327201
0043 3e02

0045 327401
0048 c3b600

write:

004b af

dad d
ret

;hi=.dpb(curdsk)

;set track given by registers bc

mov h,b

mov l,c

shld sektrk ;track to seek
ret

:set sector given by register ¢

mov a,c
sta seksec ;sector to seek
ret

;set dma address given by bc

mov h.b
mov l,c

shid dmaadr
ret

;translate sector number bc

mov h,b
mov l,c
ret

the read entry point takes the place of
the previous bios definition for read.

;read the selected cp/m sector

xra a

sta unacnt

mvi a1

sta readop ;read operation

sta rsflag ;must read data

mvi a,wrual

sta wrtype ;treat as unalloc
jmp rwoper ;to perform the read

the write ehtry point takes the place of
the previous bios definition for write.

;write the selected cp/m sector
Xra a ;0 to accumulator

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

211 .

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199

212

004c¢ 327301
004f 79
0050 327401
0053 fe02
0055 c26f00

+

0058 3¢e10

005a 326¢01
005d 3a6101
0060 326d01
0063 2a6201
0066 226e01
0069 3a6401
006c 327001

chkuna:

006f 3a6c01
0072 b7
0073 caae00

0076 3d
0077 326c01
007a 3a6101
007d 216d01
0080 be
0081 c2ae00

’

0084 216e01
0087 ¢d5301
008a c2ae00

*

008d 3a6401
0090 217001
0093 be

0094 c2ael00

0097 34
0098 7e
0099 fe50
009b daa700

009e 3600
00a0 2a6e01
00a3 23
00a4 226e01

noovf:

00a7 af

sta readop
mov a.c

sta wrtype
cpi wrual
inz chkuna

;not a read operation
write type in ¢

:write unallocated?
;check for unalloc

write to unallocated, set parameters

mvi a,blksiz/128
sta unacnt

lda sekdsk

sta unadsk

thid sektrk

shid unatrk

Ida seksec

sta unasec

;next unalloc recs

;disk to seek
;unadsk = sekdsk

;unatrk = sectrk

;unasec = seksec

;check for write to unallocated sector

Ida unacnt
ora a
jz alloc

;any unalloc remain?

;skip if not

more unallocated records remain

dcr a

sta unacnt
ida sekdsk
Ixi h,unadsk
cmp m

jnz alloc

disks are the same

Ixi h,unatrk
call sektrkemp
jinz alloc

tracks are the same

lda seksec
Ixi h,unasec
cmp m

jinz alloc

;unacnt = unacnt-1
:same disk?

;sekdsk = unadsk?
;skip if not

;sektrk = unatrk?
;skip if not
;same sector?

;seksec = unasec?
;skip if not

match, move to next sector for future ref

inr m

mov am

cpi cpmspt
ic noovf

overflow to next track

mvi m,o
lhid unatrk
inx h

shid unatrk

;unasec = unasect1
;end of track?

;count cp/m sectors
;skip if no overflow

,unasec = 0

;unatrk = unatrk+1

;match found, mark as unnecessary read

xra a

.0 to accumulator

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

00ab 327201
00ab c3b600

alloc:

00ae af
00af 326c01
00b2 3c
00b3 327201

[

;
rwoper:

00bb af
00b7 327101
00ba 3a6401

00bd+b7
00be+11
00bf+b7
00c0+11
00c1 326901

00c4 216a01
00c7 7e
00c8 3601
00ca b7
00cb caf200

'

00ce 3a6101
00d1 216501
00d4 be

00d5 c2eb00

00d8 216601
00db ¢d5301
00de c2eb00

00e1 326901
00ed 216801
00e7 be

00e8B calf01

nomatch:

sta rsflag
jmp rwoper

;rsflag = 0
to perform the write

:not an unallocated record, requires pre-read

Xra a ;0 to accum
sta unacnt ;unacnt =0
inr a ;1 to accum
sta rsfiag = 1 ;rsflag = 1

common code for read and write follows

:enter here to perform the read/write

xra a ;zero to accum

sta erflag ;no errors (yet)

Ida seksec ;compute host sector
rept secshf

ora a ;carry =0

rar ;shift right

endm

ora a ;carry =0

rar ;shift right

ora a ;carry = 0

rar ;shift right

sta sekhst :host sector to seek

active host sector?

Ixi h,hstact ;host active flag
mov a,m

mvi m,1 ;always becomes 1
ora a ;was it already?

iz filhst :fill host if not

host buffer active, same as seek buffer?

ida sekdsk

Ixi h,hstdsk ;same disk?

cmp m :sekdsk = hstdsk?
jnz nomatch

same disk, same track?

Ixi h,hsttrk
call sektrkcmp ;sektrk = hsttrk?
jinz nomatch

same disk, same track, same buffer?

ida sekhst

Ixi h,hstsec :sekhst = hstsec?
cmp m

jz match ;skip if match

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 213

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
23
292
293

294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

214

00eb 3a6b01
00ee b7
00ef c45f01

filhst;

00f2 3a6101
0015 326501
0018 226201
00fb 226601
00fe 3a6901
0101 326801
0104 3a7201
0107 b7

0108 c46001
010b af

010c 326b01

match:

010f 3a6401
0112 e603
0114 6f
0115 2600

0117+29
0118+29
0119+29
011a+29
011b+29
011¢c+29
011d+29

011e 117701
0121 19
0122 eb
0123 2a7501
0126 0e80
0128 3a7301
012b b7
012¢ ¢23501

012f 3e01
0131 326b01
0134 eb

'

rwmove:

0135 1a
0136 13
0137 77

:proper disk, but not correct sector

lda
ora
cnz

hstwrt
a
writehst

;host written?

clear host buff

:may have to fill the host buffer

Ida
sta
|hid
shid
Ida
sta
Ida
ora
cnz
xra
sta

»

;copy data to or from buffer

sekdsk
hstdsk
sektrk
hsttrk
sekhst
hstsec
rsflag
a
readhst
a
hstwrt

:need to read?

yes, if 1
;0 to accum
:no pending write

;mask buffer number
:least signif bits
;ready to shift
;double count

;shift left 7

hi has relative host buffer address

lda seksec
ani secmsk
mov l,a

mvi h,0

rept 7

dad h

endm

dad h

dad h

dad h

dad h

dad h

dad h

dad h

Ixi d,hstbuf
dad d

xchg

thid dmaadr
mvi c,128
Ida readop
ora a

jnz rwmove

;hi = host address
;now in de
;get/put cp/m data
:length of move
;which way?

;skip if read

write operation, mark and switch direction

mvi
sta
xchg

a,1
hstwrt

chstwrt = 1
;source/dest swap

:c initially 128, de is source, hl is dest

Idax
inx
mov

d

d
m,a

;source character

;to dest

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

310 0138 23 inx h

311 0139 od dcr c ;loop 128 times

o 312 013a ¢23501 jnz rwmove

' 313 ;

- 314 ; data has been moved to/from host buffer
315 013d 3a7401 lda wrtype ;write type
316 0140 te01 cpi wrdir ;to directory?
317 0142 337101 Ida erfiag ;in case of errors
318 0145 c0 - rnz : ;no further processing
319 ; :
320 ; clear host buffer for directory write
321 0146 b7 ora a ;errors?

322 0147 c0 nz ;skip if so
323 0148 af xra a ;0 to accum
324 0149 326b01 sta hstwrt ;buffer written
325 014c¢ cds5fo calil writehst

326 014f 327101 Ida erflag

327 0152 ¢9 ret

328 ;

329 ;

330 ;

331 ; utility subroutine for 16-bit compare

332 ;

333 ;

334 sektrkcmp:

335 -hl = .unatrk or .hsttrk, compare with sektrk
336 0153 eb xchg

337 0154 216201 Ixi h,sektrk

al 338 0157 1a ldax d low byte compare

é 339 0158 be cmp m ;same?

340 0159 ¢0 nz ;return if not
© 341 ; low bytes equal, test high 1s :

342 015a 13 inx d

343 015b 23 inx h

344 015c 1a ldax d

345 0156d be cmp m ;sets flags

346 015e ¢9 ret

347 ;

348 ;

349 ;

350 ; writehst performs the physical write to

351 ; the host disk, readhst reads the physical

352 ; disk.

353 ;

354 :

355 writehst:

356 ;hstdsk = host disk #, hsttrk = host track #,

357 ;hstsec = host sect #. write "hstsiz” bytes

358) ;from hstbuf and return error flag in erflag.

359 sreturn erflag non-zero if error

360 015f c9 ret

361 ;

362 readhst:

363 ;hstdsk = host disk #, hsttrk = host track #,

364 ;hstsec = host sect #. read "hstsiz” bytes

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 215

365 :into hstbuf and return error flag in erflag.
366 0160 c9 ret

367 ;

368 ;

369 :

370 - ; uninitialized ram data areas

371 :

372 ;

373 ; .

374 0161 sekdsk: ds 1 :seek disk number
375 0162 sektrk: ds 2 ;seek track number
376 0164 seksec: ds 1 ;seek sector number
377 ;

378 0165 hstdsk: ds 1 ;host disk number
379 0166 hsttrk: ds 2 ;host track number
380 0168 hstsec: ds 1 ;host sector number
381 ;

382 0169 sekhst: ds 1 ;seek shr secshf
383 O0i16a hstact: ds 1 ;host active flag
384 016b hstwrt: ds 1 ;host written flag
385 ;

386 016c¢c unacnt: ds 1 :unalloc rec cnt
387 0t6d unadsk: ds 1 ;last unalloc disk
388 016e unatrk: ds 2 :last unalloc track
389 0170 unasec. ds 1 Jlast unalloc sector
390 ;

391 0171 erflag: ds 1 ;error reporting
392 0172 rsflag: ds 1 ;read sector flag
393 0173 readop: ds 1 ;1 if read operation
394 0174 wrtype: ds 1 ;write operation type
395 0175 dmaadr: ds 2 ;last dma address
396 o177 hstbuf: ds hstsiz ;host buffer

397 ;

398 ;

399 ;

400 ; the endef macro invocation goes here

401 ; '

402 ;

403 0377 end

216 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

alloc
blksiz
boot
chkuna
cpmspt
dmaadr
dpbase
erflag
filhst
home
homed
hstact
hstblk
hstbuf
hstdsk
hstsec
hstsiz
hstspt
hsttrk

" hstwrt
match
nomatch
noovf
read
readhst
readop
rsflag
rwmove

£ rwoper

. secmsk
secshf
sectran
sekdsk
sekhst
seksec
sektrk
sektrkcmp
seldsk
setdma
setsec
settrk
unacnt
unadsk
unasec
unatrk
wboot
wrall
wrdir
write
writehst
wrtype
wrual

00ae
0800
0000
006f

0050
D175
0000
0171
0012

0008
0012
016a
0004
0177
0165
0168
0200
0014
0166

016b
010f

00eb
00a7
0037
0160
0173
0172
0135
00b6
0003
0002
0034
0161

0169
0164
0162
0153
0013
002e
0029
0023
016¢C
016d
0170
016e
0000
0000
0001

004b
015f

0174
0002

164
20#
57#

148
33#

109
55#

218

235
65#
70
61
324

291

239

250
30#
314

244

68
252
241
189
1244
270
129
130
298
133

344

36#
1124

78
228
102

96 -

176
754
105#
99#
92#
62
154
158
156
58#
43#
444
141#
258
132
454#

172
151

160#
188
294
88
317
2604
67#
724
71

396#

263

267
32

265
256
2744
246
1974

3624
144
200
305+#
201
277
220

153
249
157
155
245

127
170
181
175

316

325

146
131

177

395#

326

231
34

378+
380#
396

3794
272

254#

296
208
312
215#

169
266
180
264
334#

152
387#
389¢#
193

3554
315
147

183

301#

383#
35

302

393¢#
268

238
382#
219
337

162

195

394#

2034

324 3844#

3924

262 3744#

276 3764

375#

168 206 386#
388#

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 217

ey,

Appendix H: Glossary

address: Number representing the location of a byte in memory. Within CP/M there are
two kinds of addresses: logical and physical. A physical address refers to an absolute and
unique location within the computer’s memory space. A logical address refers to the
offset or displacement of a byte in relation to a base location. A standard CP/M program is
loaded at address 0100H, the base value; the first instruction of a program has a physical
address of 0100H and a relative address or offset of OH.

allocation vector (ALV): An allocation vector is maintained in the BIOS for each logged
in disk drive. A vector consists of a string of bits, one for each block on the drive. The bit
corresponding to a particular block is set to one when the block has been allocated and to
zero otherwise. The first two bytes of this vector are initialized with the bytes ALO and
AL1 on, thus allocating the directory blocks. CP/M Function 27 returns the allocation
vector address.

ALO, AL1: Two bytes in the disk parameter block that reserve data blocks for the
directory. These two bytes ar€ copied into the first two bytes of the allocation vector
when a drive is logged in. (See allocation vector.)

ALV: See allocation vector.

ambiguous filename: Filename that contains either of the CP/M wildcard characters, ?
or *, in the primary filename or the filetype, or both. When you replace characters in a
filename with these wildcard characters, you create an ambiguous filename and can easily
reference more than one CP/M file in a single command line.

American Standard Code for Information Interchange: See ASCII.

applications program. Program designed to solve a specific problem. Typical applications
programs are business accounting packages, word processing (editing) programs and
mailing list programs.

archive attribute: File attribute controlled by the high-order bit of the t3 byte (FCB+11)
in a directory element. This attribute is set if the file has been archived.

argument: Symbol, usually a letter, indicating a place into which you can substitute a
number, letter or name to give an appropriate meaning to the formula in question.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 219

ASCH: American Standard Code for Information Interchange. ASCII is a standard set of
seven-bit numeric character codes used to represent characters in memory. Each charac-
ter requires one byte of memory with the high-order bit usually set to zero. Characters
can be numbers, letters, and symbols. An ASCII file can be intelligibly displayed on the
video screen or printed on paper.

assembler: Program that translates assembly language into the binary machine code.
Assembly language is simply a set of mremonics used to designate the instruction set of

the CPU. (See ASM in Section 3 of this manual.)

back-up: Copy of a disk or file made for safekeeping, or the creation of the duplicate
disk or file. T

Basic Disk Operating System:See BDOS.

BDOS: Basic Disk Operating System.The BDOS module of the CP/M operating system
provides an interface for a user program to the operating system. This interface is in the
form of a set of function calls which may be made to the BDOS through calis to location
0005H in page zero. The user program specifies the number of the desired function in
register C. User programs running under CP/M should use BDOS functions for all /O
operations to remain compatible with other CP/M systems and future releases. The
BDQOS normally resides in high memory directly below the BIOS.

bias: Address value which when added to the origin address of ycur BIOS module
produces 1F80H, the address of the BIOS module in the MOVCPM image. Thereis alsoa
bias value that when added to the BOOT module origin produces 0900H, the address of
the BOOT module in the MOVCPM image. You must use these bias values with the R
command under DDT or SID when you patch a CP/M system. If you do not, the patched
system may fail to function.

binary: Base 2 numbering system. A binary digit can have one of two values: 0 or 1.
Binary numbers are used in computers because the hardware can most easily exhibit two
states: off and on. Generally, a bit in memory represents one binary digit.

Basic Input/Output System:See BIOS.

B10S: Basic Input/Output System. The BIOS is the only hardware-dependent module of
the CP/M system. It provides the BDOS with a set of primitive I/O operations. The BIOS
is an assembly language module usually written by the user, hardware manufacturer or
independent software vendor, and is the key to CP/M’s portability. The BIOS interfaces
the CP/M system to its hardware environment through a standardized jump table at the
front of the BIOS routine and through a set of disk parameter tables which define the disk
environment. Thus, the BIOS provides CP/M with a completely table-driven I/O system.

BIOS base: Lowest address of the BIOS module in memory, that by definition must be
the first entry point in the BIOS jump table:

bit: Switch in memory that can be set to on (1) or of £ (0). Bits are grouped into bytes, eight
bits to a byte, which is the smallest directly addressable unit in an Intel 8080 or Zilog Z-80.
By common convention, the bits in a byte are numbered from right (0 for the low order
bit) to left (7 for the high order bit). Bit values are often represented in hexadecimal
notation by grouping the bits from the low order bit in groups of four. Each group of four
bits can have a value from 0 to 15 and thus can easily be represented by one hexadecimal
digit.

220 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

,Av-n -

BLM: See block mask.

block: Basic unit of disk space allocation. Each disk drive has a fixed block size (BLS)
defined in its disk parameter block in the BIOS. A block can consist of 1K, 2K, 4K, 8K or
16K consecutive bytes. Blocks are numbered relative to zero so that each block is unique
and has a byte displacement in a file equal to the block number times the block size.

block mask (BLM): Byte value in the disk parameter block at DPB + 3. The block mask is

always one less than the number of 128 byte sectors that are in one block. Note: BLM = (2
** BSH) - 1.

block shift (BSH): Byte parameter in the disk parameter block at DPB + 2. Values for the
block shift and block mask (BLM) are determined by the block size (BLS). Note: BLM = (2
** BSH) - 1. T

blocking & deblocking algorithm: In some disk subsystems the disk sector size is larger
than 128 bytes, usually 256, 512, 1024 or 2048 bytes. When the host sector size is larger
than 128 bytes, host sectors must be buffered in memory and the 128 byte CP/M sectors
must be blocked and deblocked by adding an additional module, the blocking and deblock-
ing algorithm, between the BIOS disk I/O routines and the actual disk [/O. The host
sector size must be an even multiple of 128 bytes for the algorithm to work correctly. The
blocking and deblocking algorithm allows the BDOS and BIOS to function exactly as if
the entire disk consisted only of 128 byte sectors, as in the standard CP/M installation.

BLS: Block size in bytes. See block.

boot: Process of loading an operating system into memory. A boot program is a small
piece of code that is automatically executed when you power-up or reset your computer.
The boot program loads the rest of the operating system into memory in a manner similar
to a person pulling himself up by his own bootstraps. This process is sometimes called a
“cold boot” or “cold start.” Bootstrap procedures vary from system to system. The boot
program must be customized for the memory size and hardware environment that the
operating system manages. Typically, the boot resides on the first sector of the system
tracks on your system diskette. When executed, the boot loads the remaining sectors of
the system tracks into high memory at the location for which the CP/M system has been
configured. Finally, the boot transfers execution to the boot entry point in the BIOS jump
table so that the system can initialize itself. In this case, the boot program should be placed
at 900H in the SYSGEN image. Alternatively, the boot program may be located in ROM.

bootstrap: See boot.

BSH: See block shift.

BTREE: General purpose file access method that has become the standard organization
for indexes in large data base systems. BTREE provides near optimum performance over
the full range of file operations, such as insertion, deletion, search, and search next.

buffer: Area of memory that temporarily stores data during the transfer of information.

built-in commands: Commands that permanently reside in memory. They respond
quickly because they are not accessed from a disk.

byte: Unit of memory or disk storage containing eight bits. Abyte canrepresentabinary

number between 0 and 255, and is the smallest unit of memory that can be addressed
directly in 8 bit CPUs such as the Intel 8080 or Zilog Z-80.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 221

CCP: Console Command Processor. The CCP is a module of the CP/M operating system.
It is loaded directly below the BDOS module and interprets and executes commands
typed by the console user. Usually these commands are programs that the CCPloads and
calls. Upon completion, a command program may return control to the CCP if it has not
overwritten it. If it has, the program can reload the CCP into memory by a warm boot
operation initiated by either a jump to zero, BDOS system reset (function 0), or a cold
boot. Except for its location in high memory, the CCP works like any other standard
CP/M program; that is, it makes only BDOS function calls for its 1/O operations.

CCP base: Lowest address of the CCP module in memory. This term sometimes refers to
the base of the CP/M system in memory, as the CCP is normally the lowest CP/M module
in high memory.

checksum vector {CSV): Contiguous data area in the BIOS, with one byte for each
directory sector to be checked, i.e., CKS bytes. (See CKS.) A checksum vector is initialized
and maintained for each logged in drive. Each directory access by the system results in a
checksum calculation that is compared with the one in the checksum vector. If thereis a
discrepancy, the drive is set to read-only status. This feature prevents the user from
inadvertently switching disks without logging in the new disk. If the new disk is not
logged in, it is treated the same as the old one, and data on it may be destroyed if writing is
done.

CKS: Number of directory records to be checked summed on directory accesses. Thisis a
parameter in the disk parameter block located in the BIOS. If the value of CKS is zero,
then no directory records are checked. CKS is also a parameter in the diskdef macro
library, where it is the actual number of directory elements to be checked rather than the
number of directory records.

cold boot: See boot. Cold boot also may refer to a jump to the boot entry point in the
BIOS jump table.

COM: Filetype for a CP/M command file. See command file.

command: CP/M command line. In general, a CP/M command line has three parts: the
command keyword, command tail, and a carriage return. To execute a command, enter a
CP/M command line directly after the CP/M'prompt at the console and press the carriage
return or enter key.

command file: Executable program file of filetype COM. A command file is a machine
language object module ready to be loaded and executed at the absolute address of 0100H.

To execute a command file, enter its primary filename as the command keyword in a
CP/M command line.

command keyword: Name that identifies a CP/M command, usually the primary file-
name of a file of type COM, or a built-in command. The command keyword precedes the
command tail and the carriage return in the command line.

command syntax: Statement that defines the correct way to enter a command. The
correct structure generally includes the command keyword, the command tail, and a
carriage return. A syntax line usually contains symbols that you should replace with
actual values when you enter the command.

command tail: Part of a command that follows the command keyword in the command

line. The command tail can include a drive specification, a filename and/or filetype, and
options or parameters. Some commands do not require a command tail.

222 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

;W\.

CON: Mnemonic that represents the CP/M console device (see console). For example, the
CP/M command “PIP CON:=TEST.SUB” displays the file TEST.SUB on the console
device. The explanation of the STAT command tells how to assign the logical device
CON: to various physical devices.

concatenate: Name of the PIP operation that copies two or more separate files into one

~ new file in the specified sequence.

concurrency. Execution of two processes or operations simultaneously.
CONIN: BIOS entry point to a routine that reads a character from the console device.
CONOUT: BIOS entry point to a routine that sends a character to the console device.

console: Primary input/output device. The console consists of a listing device, such as a
screen or teletype, and a keyboard through which the user communicates with the
operating system or applications program.

Console Command Processor: See CCP.
CONST: BIOS entry point to a routine that returns the status of the console device.

control character: Nonprinting character combination. CP/M interprets some contro]
characters as simple commands such as line editing functions. To enter a control charac-
ter, hold down the CONTROL key and strike the specified character key.

Control Program for Microcomputers: See CP/M.

CP/M: Control Program for Microcomputers.An operating system that manages compu-
ter resources and provides a standard systems interface to software written for a large
variety of microprocessor-based computer systems.

CP/M 1.4 compatibility: For a CP/M 2 system to be able to read correctly single density
diskettes produced under a CP/M 1.4 system, the extent mask must be zero and the block
size 1K. This is because under CP/M 2 an FCB may contain more than one extent. The
number of extents that may be contained by an FCB is EXM+1. The issue of CP/M 1.4
compatibility also concerns random file 1/O. To perform random file /O underCP/M 1.4,
you must maintain an FCB for each extent of the file. This scheme is upward compatible
with CP/M 2 for files not exceeding 512K bytes, the largest file size supported under
CP/M 1.4. If you wish to implement random IO for files larger than 512K bytes under
CP/M 2, you must use the random read and random write functions (BDOS functions 33,
34 and 36). In this case, only one FCB is used, and if CP/M 1.4 compatibility is required,
the program must use the return version number function (BDOS function 12) to
determine which method to employ.

CP/M prompt: Characters that indicate that CPIM is ready to execute your next
command. The CP/M prompt consists of an upper-case letter (A-P) followed by a “>"
character; for example, A>. The letter designates which driveis currently logged in as the
default drive. CP/M will search this drive for the command file specified, unless the

command is a built-in command or prefaced by a select drive command; for example,
B:STAT.

CP/NET: Digital Research network operating system enabling microcomputers to obtain
access to common resources via a network. CPINET consists of MP/M masters and CPM
slaves with a network interface between them.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 223

CSV: See checksum vector.

cursor. One-character symbol that can appear anywhere on the console screen. The
cursor indicates the position where the next keystroke at the console will have an effect.

data file: File containing information that will be processed by a program.
deblocking: See blocking & deblocking algotithm.

default: Currently selected disk drive and user number. Any command that does not
specify a disk drive or a user number references the default disk drive and user number.
When CP/M is first invoked, the default disk drive is drive A, and the default user number
is 0.

default buffer: Default 128-byte buffer maintained at 0080H in page zero. When the
CCP loads a COM file, this buffer is initialized to the command tail; that is, any characters
typed after the COM file name are loaded into the buffer. The first byte at 0080H
contains the length of the command tail, while the command tail itself begins at 0081H.
The command tail is terminated by a byte containing a binary zero value. The lcommand
under DDT and SID initializes this buffer in the same way as the CCP.

default FCB: Two default FCBs are maintained by the CCP at 005CH and 006CH in page
zero. The first default FCB is initialized from the first delimited field in the command tail,
and the second default FCB is initialized from the next field in the command tail.

delimiter: Special characters that separate different items in a command line; for exam-
ple, a colon separates the drive specification from the filename. The CCP recognizes the
following characters as delimiters: . : = ; <> _, blank, and carriage return. Several
CP/M commands also treat the following asdelimiter characters:, []1() $. Itis advisable to
avoid the use of delimiter characters and lower-case characters in CP/M file names.

DIR: Parameter in the diskdef macro library that specifies the number of directory
elements on the drive.

DIR attribute: File attribute. A file with the DIR attribute can be displayed by a DIR
command. The file can be accessed from the default user number and drive only.

DIRBUF: 128-byte scratchpad area for directory operations, usually located at the end of
the BIOS. DIRBUF is used by the BDOS during its directory operations. DIRBUF also
refers to the two-byte address of this scratchpad buffer in the disk parameter header at
DPbase + 8 bytes.

directory: Portion of a disk that contains entries for each file on the disk. In response to
the DIR command, CP/M displays the filenames stored in the directory. The directory
also contains the locations of the blocks allocated to the files. Each file directory element is
in the form of a 32-byte FCB, although one file may have several elements, depending on
its size. The maximum number of directory elements supported is specified by the drive’s
disk parameter block value for DRM.

directory element: Data structure. Each file on a disk has one or more 32-byte directory
elements associated with it. There are four directory elements per directory sector.

Directory elements may also be referred to as directory FCBs.

directory entry: File entry displayed by the DIR command. Sometimes this term may
refer to a physical directory element.

224 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

disk, diskette: Magnetic media used for mass storage in a computer system. Programs
and data are recorded on the disk in the same way music can be recorded on cassette tape.
e The CPIM operating system must be initially loaded from disk when the computer is
h turned on. Diskette refers to smaller capacity removable floppy diskettes, while disk may
refer to either a diskette, removable cartridge disk or fixed hard disk. Hard disk capacities

range from five to several hundred megabytes of storage.

diskdef macro library: Library of code that when used with MAC (the Digital Research-
macro assembler) creates disk definition tables such as the DPB and DPH automatically.

disk drive: Peripheral device that reads and writes information on disk or diskettes.
CP/M assigns a letter to each drive under its control. For example, CP/M may refer to the
drives in a four-drive system as A, B, C, and D.

disk parameter block (DPB): Data structure referenced by one or more disk parameter
headers. The disk parameter block defines disk characteristics in the fields listed below:

SPT The total number of sectors per track

BSH The data allocation block shift factor

BLM The data allocation block mask

EXM The extent mask determined by BLS and DSM
DSM The maximum data block number

DRM Maximum number of directory entries—1

ALO Reserves directory blocks

AL1 Reserves directory blocks

CKS The number of directory sectors check summed
OFF The number of reserved system tracks

The address of the disk parameter block is located in the disk parameter header at DPbase
+0AH. CP/M Function 31 returns the DPB address. Drives with the same characteristics
may use the same disk parameter header, and thus the same DPB. However, drives with
different characteristics must each have their own disk parameter header and disk
parameter blocks. When the BDOS calls the SELDSK entry point in the BIOS, SELDSK
must return the address of the drive’s disk parameter header in registers HL.

.
¢
&

/

disk parameter header (DPH): Data structure that contains information about the disk
drive and provides a scratchpad area for certain BDOS operations. The disk parameter
header contains six bytes of scratchpad area for the BDOS, and the following five
two-byte parameters:

XLT The sector translation table address
DIRBUF Directory buffer address

DPB Disk parameter block address

Ccsv Checksum vector address

ALV Allocation vector address

Given n disk drives, the disk parameter headers are arranged in a table whose first row of
16 bytes corresponds to drive 0, with the last row corresponding to drive n-1.

DKS: Parameter in the diskdef macro library specifying the number of data blocks on the
drive.

DMA: Direct memory access. DMA is 2 method of transferring data from the disk into
memory directly. In a CP/M system, the BDOS calls the BIOS entry point READ to read a
sector from the disk into the currently selected DMA address. The DMA address must be

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 225

the address of a 128-byte buffer in memory, either the default buffer at 0080H in page
zero, or a user-assigned buffer in the TPA. Similarly, the BDOS calls the BIOS entry
point WRITE to write the record at the current DMA address to the disk.

DN: Parameter in the diskdef macro library specifying the logical drive number.
DPB: See disk parameter block.
DPH: See disk parameter header.

DRM: 2-byte parameter in the disk parameter block at DPB + 7. DRMis one less than the
total number of directory entries allowed for the drive. This value is related to DPB bytes
ALO and AL1, which allocate up to 16 blocks for directory entries.

DSM: 2-byte parameter of the disk parameter block at DPB + 5. DSM is the maximum
data block number supported by the drive. The product BLS times (DSM+1) is the total
number of bytes held by the drive. This must not exceed the capacity of the physical disk
less the reserved system tracks.

editor: Utility program that creates and modifies text files. An editor can be used for
creation of documents or. creation of code for computer programs. The CP/M editor is
invoked by typing the command ED next to the system prompt on the console.

EX: Extent number field in an FCB. See extent.

executable: Ready to be run by the computer. Executable code is a series of instructions
that can be carried out by the computer. For example, the computer cannot execute
names and addresses, but it can execute a program that prints all those names and
addresses on mailing labels.

execute a program: Start the processing of executable code.

EXM: See extent mask.

extent: 16K consecutive bytes in a file. Extents are numbered from 0 to 31. One extent
may contain 1, 2, 4, 8 or 16 blocks. EX is the extent number field of an FCB and is a one
byte field at FCB + 12, where FCB labels the first byte in the FCB. Depending on the block
size (BLS) and the maximum data block number (DSM), an FCB may contain 1, 2, 4, 8 or
16 extents. The EX field is normally set to 0 by the user but contains the current extent
number during file I/O. The term FCB folding describes FCBs containing more than one
extent. In CP/M version 1.4, each FCB contained only one extent. Users attempting to
perform random record I/O and maintain CP/M 1.4 compatibility should be aware of the
implications of this difference. See CP/M 1.4 compatibility.

extent mask (EXM): A byte parameterin the disk parameter block located at DPB + 3. The
value of EXM is determined by the block size (BLS) and whether the maximum data block
number (DSM) exceeds 255. There are EXM + 1 extents per directory FCB.

FCB: See file control block.

fite: Collection of characters, instructions, or data that can be referenced by a unique
identifier. Files are usually stored on various types of media, such as disks, diskettes, or
magnetic tape. A CP/M file is identified by a file specification and resides on disk as a
collection of from zero to 65,536 records. Each record is 128 bytes and can contain either
binary or ASCII data. Binary files contain bytes of data that can vary in value from 0H to

226 ALL INFORMATION PRESENTED HERE iS PROPRIETARY TO DIGITAL RESEARCH

OFFH. ASCII files contain sequences of character codes delineated by a carriage return-
line feed combination; normally byte values range from OH to 7FH. The directory maps
the file as a series of physical blocks. Although files are defined as a sequence of
consecutive logical records, these records may not reside in consecutive sectors on the
disk. (see also block, directory, extent, record, sector).

file control block (FCB): Structure used for accessing files on disk. Contains the drive,
filename, filetype, and other information describing a file to be accessed or created on the’
disk. A file control block consists of 36 consecutive bytes specified by the user for file[/O
functions. FCB can also refer to a directory element in the directory portion of the
allocated disk space. These contain the same first 32 bytes of the FCB, but lack the current
record and random record number bytes.

filename: Name assigned to a file. A filename can include a primary filename of 1-8

characters and a filetype of 0-3 characters. A period separates the primary filename from
the filetype.

file specification: Unique file identifier. A complete CP/M file specification includes a
disk drive specification followed by a colon (d:), a primary filename of 1 to 8 characters, a

period and a filetype of 0 to 3 characters. For example, b:example.tex is a complete CP/M
file specification.

filetype: Extension to a filename. A filetype can be from 0 to 3 characters and must be
separated from the primary filename by a period. A filetype can tell something about the
file. Some programs require that files to be processed have specific filetypes.

floppy disk: Flexible magnetic disk used to store information. Floppy disks come in 5%4-
and 8-inch diameters.

FSC: Parameter in the diskdef macro library specifying the first physical sector number.
This parameter is used to determine SPT and build XLT.

hard disk: Rigid, platter-like, magnetic disk sealed in acontainer. A hard disk stores more
information than a floppy disk.

hardware: Physical components of a computer.

hexadecimal notation: Notation for base 16 values using the decimal digits and letters A,
B, C, D, E & F to represent the 16 digits. Hexadecimal notation is often used to refer to
binary numbers. A binary number can be easily expressed as a hexadecimal value by
taking the bits in groups of 4 starting with the least significant bit, and expressing each
group as a hexadecimal digit, (0-F). Thus the bit value 1011 becomes OBH and 10110101
becomes OB5H.

hex file: ASClI-printable representation of a command (machine language) file.
hex tile format: Absolute output of ASM and MAC for the Intel 8080 is a hex format file,
containing a sequence of absolute records that give a load address and byte values to be

stored, starting at the load address.

HOME: BIOS entry point which sets the disk head of the currently selected drive to the
track zero position.

host: Physical characteristics of a hard disk drive in a system using the blocking and
deblocking algorithm. The term “host” helps distinguish physical hardware characteris-

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 227

tics from CP/M'’s logical characteristics. For example, CP/M sectors are always 128 bytes,
although the host sector size may be a multiple of 128 bytes.

input: Data going into the computer, usually from an operator typing at the terminal or
by a program reading from the disk.

input/output: See 1/0.

interface: Object that allows two independent systems to communicate with each other,
as an interface between hardware and software in a microcomputer.

1/0: Abbreviation for input/output. Usually refers to input/output operations or rou-
tines handling the input and output of data in the computer system.

IOBYTE: A one byte field in page zero, currently at location 0003H, that can support a
logical-to-physical device mapping for I/O. However, its implementation in your BIOS is
purely optional and may or may not be supported ina given CP/M system. The [OBYTE is
easily set using the command:

STAT <logical device> = <physical device>

The CP/M logical devices are CON:, RDR:, PUN:, AND LST:; each of these can be
assigned to one of four physical devices. The IOBYTE may be initialized by the BOOT
entry point of the BIOS and interpreted by the BIOS I/O entry points CONST, CONIN,
CONOUT, LIST, PUNCH, and READER. Depending on the setting of the IOBYTE,
different 1/O drivers may be selected by the BIOS. For example, setting LST:=TTY: might
cause LIST output to be directed to a serial port, while setting LST:=LPT: causes LIST
output to be directed to a parallel port.

K: Abbreviation for kilobyte. See Kilobyte.
keyword: See command keyword.

kilobyte (K): 1024 bytes or 0400H bytes of memory. This is a standard unit of memory.
For example, the Intel 8080 supports up to 64K of memory address space or 65,536 bytes.
1024 kilobytes equal one megabyte, or over one million bytes.

linker: Utility program used to combine relocatable object modules into an absolute file
ready for execution. For example, LINK-80 creates either a COM or PRL file from
relocatable REL files, such as those produced by PL/I-80.

LIST: A BIOS entry point to a routine that sends a character to the list device, usually a
printer.

fist device: Device such as a printer onto which data can be listed or printed.

LISTST: BIOS entry point to a routine that returns the ready status of the list device

loader: Utility program that brings an absolute program image into memory ready for
execution under the operating system, or a utility used to make such an image. For
example, LOAD prepares an absolute COM file from the assembler hex file output which
is ready to be executed under CP/M.

logged in: Made known to the operating system, in reference to drives. Adriveis logged
in when it is selected by the user or an executing process. [t remains selected or logged in
until you change disks in a floppy disk drive or enter ctl-C at the command level, or untila
BDOS function 0 is executed.

228 ALL INFORMATION PRESENTED HERE iS PROPRIETARY TO DIGITAL RESEARCH

logical: Representation of something that may or may not be the same in its actual
physical form. For example, a hard disk can occupy one physical drive, yet you can divide
the available storage on it to appear to the user as if it were in several different drives.
These apparent drives are the logical drives.

logical sector: See sector.
logical to physical sector translation table: See XLT.
LSC: Diskdef macro library parameter specifying the last physical sector number.

LST: Logical CP/M list device (usually a printer). The CP/M list device is an output-only
device referenced through the LIST and LISTST entry points of the BIOS. The STAT
command allows assignment of LST: to one of the physical devices: TTY:, CRT:, LPT:, or
UL1:, provided these devices and the IOBYTE are implemented in the LIST and LISTST
entry points of your CP/M BIOS module. The CP/NET command NETWORK atlows
assignment of LST: to a list device on a network master. An example of how LST:is used
in a command: PIP LST:=TEST.SUB prints the file TEST.SUB on the list device.

macro assembler: Assembler code translator providing macro processing facilities.
Macro definitions allow groups of instructions to be stored and substituted in the source .
program as the macro names are encountered. Definitions and invocations may be nested
and macro parameters can be formed to pass arbitrary strings of text to a specific macro
for substitution during expansion.

megabyte: Over one million bytes; 1024 kilobytes. See byte, kilobyte.

microprocessor: Silicon chip that is the central processing unit (CPU) of the microcom-
puter. The Intel 8080 and the Zilog Z-80 are microprocessors commonly used in CP/M
systems.

MOVCPM image: Memory image of the CP/M system created by MOVCPM. Thisimage
may be saved as a disk file using the SAVE command or placed on the system tracks using
the SYSGEN command without specifying a source drive. This image varies, depending
on the presence of a one-sector or two-sector boot. If the boot is less than 128 bytes (one
sector), the boot begins at 0900H, the CP/M system at 0980H, and the BIOS at 1F80H.
Otherwise, the boot is at 0900H, the CP/M system at 1000H, and the BIOS at 2000H. Ina
CP/M 1.4 system with a one-sector boot, the addresses are the same as for the CPIM 2
system—except that the BIOS begins at 1E80H instead of 1F80H.

MP/M: Multi-Programming Monitor control program. A microcomputer operating sys-
tem supporting multi-terminal access with multi-programming at each terminal.

multi-programming: The capability of initiating and executing more than one program
at a time. These programs, usually called processes, are time-shared, each receiving a slice
of CPU time on a “round-robin” basis. See concurrency.

nibble: One half of a byte, usually the high order or low order 4 bits in a byte.

OFF: Two byte parameter in the disk parameter block at DPB + 13 bytes. This value
specifies the number of reserved system tracks. The disk directory begins in the first

sector of track OFF.

OFS: Diskdef macro library parameter specifying the number of reserved system tracks.
See OFF.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 229

operating system: Collection of programs that supervises the execution of other pro-
grams and the management of computer resources. An operating system provides an
orderly input/output environment between the computer and its peripheral devices. It
enables user-written programs to execute safely. An operating system standardizes the
use of computer resources for the programs running under it.

option: One of many parameters that can be part of a command tail. Use options to
specify additional conditions for a command’s execution.

output: Data that is sent to the console, disk, or printer.

page: 256 consecutive bytes in memory beginning on a page boundary, whose base
address is a multiple of 256 (100H) bytes. In hex notation, pages always begin at an
address with a least significant byte of zero.

page relocatable program: See PRL.

page zero: Memory region between 0000H and 0100H used to hold critical system
parameters. Page zero functions primarily as an interface region between user programs
and the CP/M BDOS module. Note: in non-standard systems this region is the base page
of the system and represents the first 256 bytes of memory used by the CP/M system and
user programs running under it.

parameter: Value in the command tail that provides additional information for the
~command. Technically, a parameter is a required element of a command.

peripheral devices: Devices external to the CPU. For example, terminals, printers, and
disk drives are common peripheral devices that are not part of the processor but are used
in conjunction with it.

physical: Characteristic of computer components, generally hardware, that actually
exist. In programs, physical components can be represented by logical components.

primary filename: First 8 characters of a filename. The primary filename is a unique
name that helps the user identify the file contents. A primary filename contains 1 to 8
characters and can include any letter or number and some special characters. The primary
filename follows the optional drive specification and precedes the optional filetype.

PRL: Page relocatable program. A page relocatable program is stored on diskette as a file
of type PRL. Page relocatable programs are easily relocated to any page boundary and
thus are suitable for execution in a non-banked MP/M system.

program: Series of coded instructions that performs specific tasks when executed by a
computer. A program can be written in a processor-specific language or a high-level
language that can be implemented on a number of different processors.

prompt: Any characters displayed on the video screen to help the user decide what the
next appropriate action is. A system prompt is a special prompt displayed by the operating
system. See CP/M prompt. The alphabetic character indicates the default drive. Some
applications programs have their own special prompts.

PUN: Logical CP/M punch device. The punch device is an output-only device accessed
through the PUNCH entry point of the BIOS. In certain implementations, PUN: can be a

serial device such as a modem.

PUNCH: BIOS entry point to a routine that sends a character to the punch device.

230 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

RDR: Logical CP/M reader device. The reader device is an input-only device accessed
through the READER entry point in the BIOS. See PUN:.

READ: Entry point in the BIOS to a routine that reads 128 bytes from the currently
selected drive, track, and sector into the current DMA address.

READER: Entry point to a routine in the BIOS that reads the next character from the
currently assigned reader device.

read-only (R O): Attribute that can be assigned to a disk file or a disk drive. When
assigned to a file, the read-only attribute allows you to read from that file but not write to
it. When assigned to a drive; the read-only attribute allows you to read any file on the disk,
but prevents you from adding a new file, erasing or changing a file, renaming a file, or
writing on the disk. The STAT command can set a file or a drive to read-only. Every file
and drive is either read-only or read-write. The default setting for drives and files is
read-write, but an error in resetting the disk or changing media automatically sets the
drive to read-only until the error is corrected. See also ROM.

read-write (R W): Attribute that can be assigned to a disk file or a disk drive. The
read-write attribute allows you to read from and write to a specific read-write file or to
any file on a disk that is in a drive set to read-write. A file or drive can be set to either
read-only or read-write.

record: Group of bytes in a file. A physical record consists of 128 bytes and is the basic
unit of data transfer between the operating system and the application program. A logical
record may vary in length and is used to represent a unit of information. Two 64 byte
“employee” records can be stored in one 128-byte physical record. Records are grouped
together to form a file. :

recursive procedure: Code that may call itself during execution.

reentrant procedure: Code that can be called by one process while another is already
executing it. Thus, reentrant code may be shared between different users. Reentrant
procedures must not be self-modifying; that is, they must be pure code and not contain
data. The data for reentrant procedures can be kept in a separate data area or placed on
the stack.

restart (RST): One-byte call instruction usually used during interrupt sequences and for
debugger break pointing. There are eight restart locations, RST 0 through RST 7, whose
addresses are given by the product of 8 times the restart number.

RO: See read-only.

ROM: Read-only memory. This memory can be read but not written and so is suitable for
code and preinitialized data areas only.

RST: See restart.
RW: See read-write.

sector: In a CP/M system, a sector is always 128 consecutive bytes. A sector is the basic
unit of data read and written on the disk by the BIOS. A sector can be one 128-byte record
in a file or a sector of the directory. The BDOS always requests a logical sector number

between 0 and (SPT-1). This is typically translated into a physical sector by the BIOS
entry point SECTRAN. In some disk subsystems, the disk sector size is larger than 128
bytes, usually a power of two such as 256, 512, 1024 or 2048 bytes. These disk sectors are

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 231

always referred to as host sectors in CP/M documentation and should not be confused
with other references to sectors, in which cases the CP/M 128 byte sectors should be
assumed. When the host sector size is larger than 128 bytes, host sectors must be
buffered in memory and the 128 byte CP/M sectors must be blocked and deblocked from
them. This may be done by adding an additional module, the blocking and deblocking
algorithm, between the BIOS disk I/O routines and the actual disk 1/O.

sectors per track (SPT): A two byte parameter in the disk parameter block at DPB + 0.
The BDOS makes calls to the BIOS entry point SECTRAN with logical sector numbers
ranging between 0 and (SPT - 1) in register BC.

SECTRAN: Entry point to a routine in the BIOS that performs logical to physical sector
translation for the BDOS. ’

SELDSK: Entry point to a routine in the BIOS that sets the currently selected drive.

SETDMA: Entry point to a routine in the BIOS that sets the currently selected DMA
address. The DMA address is the address of a 128-byte buffer region in memory that is
used to transfer data to and from the disk in subsequent reads and writes.

SETSEC: Entry point to a routine in the BIOS that sets the currently selected sector.
SETTRK: Entry point to a routine in the BIOS that sets the currently selected track.

skew factor: Factor that defines the logical to physical sector number translationin XLT.
Logical sector numbers are used by the BDOS and range between 0 and (SPT-1). Data is
written in consecutive logical 128-byte sectors grouped in data blocks. The number of
sectors per block is given by BLS/128. Physical sectors on the disk media are also
numbered consecutively. If the physical sector size is also 128 bytes, a one-to-one
relationship exists between logical and physical sectors. The logical to physical translation
table (XLT) maps this relationship, and a skew factor is typically used in generating the
table entries. For instance, if the skew factor is 6, XLT will be:

Logical: 0 1 2 3 4 5 6 ... 25
Physical: 1 7 13 19 25 5 11 . 22

The skew factor allows time for program processing without missing the next sector.
Otherwise, the system must wait for an entire disk revolution before reading the next
logical sector. The skew factor can be varied, depending on hardware speed and applica-
tion processing overhead. Note that no sector translation is done when the physical
sectors are larger than 128 bytes, as sector deblocking is done in this case. (See also sector,
SKF and XLT)

SKF: A diskdef macro library parameter specifying the skew factor to be used in building
XLT. If SKF is zero, no translation table is generated and the XLT byte in the DPH will be
00O0O0H.

software: Programs that contain machine-readable instructions, as opposed to hardware,
which is the actual physical components of a computer.

source file: ASCII text file usually created with an editor, which is an input file to a
system program such as a language translator or text formatter.

SP: Stack pointer. See stack.

232 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

/ﬁ’i"ﬂq_

spooling: Process of accumulating printer output in a file while the printer is busy. The
file is printed when the printer becomes free; a program does not have to wait for the slow
printing process.

SPT: See sectors per track.

stack: Reserved area of memory where the processor saves the return address when a
call instruction is received. When a return instruction is encountered, the processor
restores the current address on the stack to the program-counter. Data such as the
contents of the registers can also be saved on the stack. The push instruction places data
on the stack and the pop instruction removes it. An item is pushed onto the stack by
decrementing the stack pointer (SP) by 2 and writing the item at the SP address. In other
words, the stack grows downward in memory.

syntax: Format for entering a given command.
SYS: See system attribute.

SYSGEN image: Memory image of the CPIM system created by SYSGEN when a
destination drive is not specified. This is the same as the MOVCPM image, which can be
read by SYSGEN if a source drive is not specified. See MOVCPM image.

system attribute (SYS): File attribute. You can give a file the system attribute by using
the SYS option in the STAT command or by using the set file attributes function (BDOS
function 12). A file with the SYS attribute is not displayed in response toa DIR command.
If you give a file with user number 0 the SYS attribute, you can read and execute that file
from any user number on the same drive. Use this feature to make your commonly used
programs available under any user number.

system prompt: Symbol displayed by the operating system indicating that the system is
ready to receive input. See prompt, CP/M prompt.

system tracks: Tracks reserved on the disk for the CP/M system. The number of system
tracks is specified by the parameter OFF in the disk parameter block (DPB). The system
tracks for a drive always precede its data tracks. The command SYSGEN copies the CP/M
system from the system tracks to memory, and vice versa. The standard SYSGEN utility
copies 26 sectors from track 0 and 26 sectors from track 1. When the system tracks
contain additional sectors or tracks to be copied, a customized SYSGEN must be used.

terminal: See console.

TPA: Transient program area. Area in memory where user programs run and store data.
This area is a region of memory beginning at 0100H and extending to the base of the
CP/M system in high memory. The first module of the CP/M system is the CCP, which
may be overwritten by a user program. If so, the TPA is extended to the base of the CP/M
BDOS module. If the CCP is overwritten, the user program must terminate with either a
system reset (function 0) call or a jump to location zero in page zero. The address of the
base of the CP/M BDOS is stored in location 0006H in page zero, least significant byte
first.

track: Data on the disk media is accessed by combination of track and sector numbers.
Tracks form concentric rings on the disk; the standard IBM single-density diskettes
have 77 tracks. Each track consists of a fixed number of numbered sectors. Tracks are
aumbered from 0 to one less than the number of tracks on the disk.

transient program area: See TPA.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 233

upward compatible: Term meaning that a program created for the previously released
operating system (or compiler, etc.) runs under the newly released version of the same
operating system.

USER: Term used in CP/IM and MP/M systems to distinguish distinct regions of the
directory.

user number: Number assigned to files in the disk directory so that different users need
only deal with their own files and have their “own” directories, even though they are all
working from the same disk. In CP/M, files can be divided into 16 user groups.

utility: “Tool.” Program that enables the user to perform certain operations, such as
copying files, erasing files, and editing files. The utilities are created for the convenience
of programmers and users.

vector: Location in memory. An entry point into the operating system used for making
system calls or interrupt handling.

warm start: Program termination by: aiump to the warm start vector at location 0000H, a
system reset (BDOS function 0), or a ctl-C typed at the keyboard. A warm start
reinitializes the disk subsystem and returns control to the CP/M operating system at the

CCP level. The warm start vector is simply a jump to the WBOOT entry point in the
BIOS.

WBOOT: Entry point to a routine in the BIOS used when a warm start occurs. A warm
start is performed when a user program branches to location 0000H, when the CPU is

reset from the front panel, or when the user types ctl-C. The CCP and BDOS are reloaded
from the system tracks of drive A.

wildcard characters: Special characters that match certain specified items. In CP/M
there are two wildcard characters: ? and *. The ? can be substituted for any single
character in a filename, and the * can be substituted for the primary filename or the
filetype, or both. By placing wildcard characters in filenames, the user creates an ambigu-
ous filename and can quickly reference one or more files.

word: 16-bit or two-byte value, such as an address value. Although the Intel 8080 is an
8-bit CPU, addresses occupy two bytes and are called word values.

WRITE: Entry point to a routine in the BIOS that writes the record at the currently
selected DMA address to the currently selected drive, track, and sector.

XLT: Logical to physical sector translation table located in the BIOS. SECTRAN uses
XLT to perform logical to physical sector number translation. XLT also refers to the
two-byte address in the disk parameter header at DPBASE + 0. If this parameter is zero,
no sector translation takes place. Otherwise this parameter is the address of the transla-
tion table.

ZERO PAGE: See page zero.

234 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix I: CP/M Messages

Messages come from several different sources. CP/M displays error messages when
there are errors in calls to the Basic Disk Operating System (BDOS). CP/M also displays
messages when there are errors in commandlines. Each utility supplied with CP/M hasits
own set of messages. The following lists CP/M messages and utility messages. One might
see messages other than those listed here if one is running an application program. Check
the application program’s documentation for explanations of those messages.

Message
?

Meaning

DDT. This message has four possible meanings:
1) DDT does not understand the assembly language instruction.
2) The file cannot be opened.
3) A checksum error occurred in a HEX file.
- 4) The assembler/disassembler was overlayed.

ABORTED

PIP. You stopped a PIP operation by pressing a key.

ASM Error Messages
D

E

"o Z2

D

Data error: data statement element cannot be placed in
specified data area. '

Expression error: expression cannot be evaluated during
assembly. ‘

Label error: label cannot appear in this context {(might be
duplicate label).

Not implemented: unimplemented features, such as macros,
are trapped.

Overflow: expression is too complex to evaluate.

Phase error: label value changes on two passes through
assembly. '

Register error: the value specified as a register is incompatible
with the code.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 235

BAD DELIMITER

Bad Load

Bdos Err. On d:

Syntax error: improperly formed expression.

Undefined label : label used does not exist.

Value error: improperly formed operand encountered in an
expression.

<Ccw

STAT. Check command line for typing errors.

CCP error message, or SAVE error message.

Basic Disk Operating System Error on the designated drive: CP/M
replaces d: with the drive specification of the drive where the error
occurred. This message is followed by one of the four phrases in the
situations described below.

Bdos Err On d: Bad Sector

Bdos Err On d: File

Bdos Err On d: R/O

This message appears when CP/M finds no disk in the drive, when
the disk is improperly formatted, when the drive latch is open, or
when power to the drive is off. Check for one of these situations
and try again. This could also indicate a hardware problem or a
worn or improperly formatted disk. Press 1C to terminate the
program and return to CP/M, or press the return key to ignore the
error.

R/O

You tried to erase, rename, or set file attributes on a Read-Only file.
The file should first be set to Read-Write (RW) with the command:
“STAT filespec $RIW.”

Drive has been assigned Read Only status with a STAT command,
or the disk in the drive has been changed without being initialized
with a 1C. CP/M terminates the current program as soon as you
press any key.

Bdos Err on d: Select

Break “x" at ¢

CP/M received a command line specifying a nonexistent drive.
CP/M terminates the current program as soon as you press any key.
Press return key or CTRL-C to recover.

ED.“x” is one of the symbols described below and c is the command
letter being executed when the error occurred.

Search failure. ED cannot find the string specified inanF, S, or
N command.

? Unrecognized command letter c. ED does not recognize the
indicated command letter, or an E, H, Q, or O command is not
alone on its command line.

236 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

,0..,
s

O The file specified in an R command cannot be found.

> Buffer full. ED cannot put any more characters in the memory
buffer, or the string specified in an F, N, or § command is too
long.

E Command aborted. A keystroke at the console aborted
command execution.

F Disk or directory full. This error is followed by either the disk
or directory full message. Refer to the recovery procedures
listed under these messages.

CANNOT CLOSE DESTINATION FILE~— {filespec}

Cannot close, R/O

PIP. An output file cannot be closed. You should take appropriate
action after checking to see if the correct disk is in the drive and that
the disk is not write-protected.

CANNOT CLOSE FILES

CANNOT READ

CANNOT WRITE

Checksum error

CP/M cannot write to the file. This usually occurs because the disk
is write-protected.

ASM. An output file cannot be closed. This is a fatal error that
terminates ASM execution. Check to see that the disk is in the
drive, and that the disk is not write-protected.

DDT. The disk file written by a W command cannot be closed. This
is a fatal error that terminates DDT execution. Check if the correct
disk is in the drive and that the disk is not write-protected.

SUBMIT. This error can occur during SUBMIT file processing.
Check if the correct system disk is in the A drive and that the disk is
not write-protected. The SUBMIT job can be restarted after
rebooting CP/M.

PIP. PIP cannot read the specified source. Reader may not be
implemented.

PIP. The destination specified in the PIP command is illegal. You
probably specified an input device as a destination.

PIP. A hex record checksum error was encountered. The hex record

that produced the error must be corrected, probably by recreating
the hex file.

CHECKSUM ERROR
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh

BYTES READ:
hhhh:

LOAD. File contains incorrect data. Regenerate hex file from the
source. :

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 237

Command Buffer Overflow

SUBMIT. The SUBMIT buffer allows up to 2048 characters in the
input file.

Command too long

SUBMIT. A command in the SUBMIT file cannot exceed 125
characters.

CORRECT ERROR, TYPE RETURN OR CTL-Z

PIP. A hex record checksum was encountered during the transfer of
a hex file. The hex file with the checksum error should be corrected,
probably by recreating the hex file.

DESTINATION IS R/Q, DELETE (Y/N)?

PIP. The destination file specified in a PIP command already exists
and it is Read Only. If you type Y, the destination file is deleted
before the file copy is done.

Directory full

ED. There is not enoughdirectory space for the file being written to
the destination disk. You can use the OXfilespec command to erase
any unnecessary files on the disk without leaving the editor.

SUBMIT. There is not enough directory space to write the
$$5%.SUB file used for processing SUBMITs. Erase some files or
select a new disk and retry.

Disk full

ED. There is not enough disk space for the output file. This error
can occur on the W, E, H, or X commands. If it occurs with X
command, you can repeat the command prefixing the filename with
a different drive.

DISK READ ERROR— {filespec)

PIP. The input disk file specified in a PIP command cannot be read
properly. This is usually the result of an unexpected end-of-file.
Correct the problem in your file.

DISK WRITE ERROR— {filespec}

DDT. A disk write operation cannot be successfully performed
during a W command, probably due to a full disk. You should either
erase some unnecessary files or get another disk with more space.

PIP. A disk write operation cannot be successfully performed dur-
ing a PIP command, probably due to a full disk. You should either
erase some unnecessary files or get another disk with more space
and execute PIP again.

SUBMIT. The SUBMIT program cannot write the $$%$.SUB file to
the disk. Erase some files, or select a new disk and try again.

ERROR: BAD PARAMETER

PIP. You entered an illegal parameter in a PIP command. Retype the
entry correctly.

238 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

CANNOT OPEN SOURCE, LOAD ADDRESS hhhh
LOAD. Displayed if LOAD cannot find the specified file or if no
filename is specified.

CANNOT CLOSE FILE, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BDOS function call.
Disk may be write-protected.

CANNOT OPEN SOURCE, LOAD ADDRESS hhhh
LOAD. Cannot find source file. Check disk directory.

DISK READ, LOAD ADDRESS hhhh
LOAD. Caused by an error code returned by a BDOS function call.

DISK WRITE, LOAD ADDRESS hhhh’
LOAD. Destination Disk is full.

INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh

LOAD. The address of a record was too far from the address of the
previously-processed record. This is an internal limitation of
LOAD, but it can be circumvented. Use DDT to read the hexfile
into memory, then use a SAVE command to store the memory
image file on disk.

NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh
LOAD. Disk directory is full.

Error on {ine nnn message

SUBMIT. The SUBMIT program displays its messages in the for-
mat shown above, where nnn represents the line number of the
SUBMIT file. Refer to the message following the line number.

FILE ERROR
ED. Disk or directory is full, and ED cannot write anything more on
the disk. This is a fatal error, so make sure there is enough space on
the disk to hold a second copy of the file before invoking ED.
FILE EXISTS

You have asked CP/M to create or rename a file using a file specifi-
cation that is already assigned to another file. Either delete the
existing file or use another file specification.

REN. The new name specified is the name of a file that already
exists. You cannot rename a file with the name of an existing file. If
you want to replace an existing file with a newer version of the
same file, either rename or erase the existing file, or use the PIP
utility.

File exists, erase it

ED. The destination filename already exists when you are placing
the destination file on a different disk than the source. It should be
erased or another disk selected to receive the output file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 239*

** FILE IS READ/ONLY **

File Not Found

FILE NOT FOUND—

Filename required

hhhh??=dd

Insufficient memory

invalid Assignment

ED. The file specified in the command to invoke ED has the Read
Only attribute. ED can read the file so that the user can examine it,
but ED cannot change a Read Only file.

CPIM cannot find the specified file. Check that you have entered
the correct drive specification or that you have the correct disk in
the drive.

ED. ED cannot find the specified file. Check that you have entered
the correct drive specification or that you have the correct disk in
the drive.

STAT. STAT cannot find the spec1f1ed file. The message might
appear if you omit the drive specification. Check to see if the correct
disk is in the drive.

{filespec}

PIP. An input file that you have specified does not exist.

ED. You typed the ED command without a filename. Reenter the
ED command followed by the name of the file you want to edit or
create.

DDT. The ?? indicates DDT does not know how to represent the
hexadecimal value dd encountered at address hhhh in 8080 assem-
bly language. dd is not an 8080 machine instruction opcode.

DDT. There is not enough memory to load the file specified in an R
or E command.

STAT. You specified an invalid drive or file assignment, or miss-
pelled a device name. This error message might be followed by a list
of the valid file assignments that can follow a filename. If an invalid
drive assignment was attempted the message “Use: d:=RO” is dis-
played, showing the proper syntax for drive assignments.

Invalid control character

SUBMIT. The only valid control characters in the SUBMIT files of
type SUB are = A through =~ Z. Note that in a SUBMIT file the

control character is represented by typing the circumflex, ", not
by pressing the control key.

INVALID DIGIT— {filespec}

PIP. An invalid hex digit has been encountered while reading a hex
file. The hex file with the invalid hex digit should be corrected,
probably by recreating the hex file.

240 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Invalid Disk Assignment
STAT. Might appear if you follow the drive specification with
anything except =R/O.

INVALID DISK SELECT

CP/M received a command line specifying a nonexistent drive, or
the disk in the drive is improperly formatted. CP/M terminates the
current program as soon as you press any key.

INVALID DRIVE NAME (Use A, B, C, or D)
SYSGEN. SYSGEN recognizes only drives A, B, C and D as valid
destinations for system generation.

Invalid File Indicator
STAT. Appears if you do not specify RO, RW, DIR, or SYS.

INVALID FORMAT

PIP. The format of your PIP command is illegal. See the description
of the PIP command.

INVALID HEX DIGIT
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh
BYTES READ:

hhhh

LOAD. File contains incorrect hex digit.

INVALID MEMORY SIZE

MOVCPM. Specify a value less than 64K or your computer’s actual
memory size.

INVALID SEPARATOR

PIP. You have placed an invalid character for a separator between
two input filenames. :

INVALID USER NUMBER

PIP. You have specified a user number greater than 15. User
numbers are in the range 0 to 15.

n?

USER. You specified a number greater than fifteen for a user area
number. For example, if you type USER 18<cr>>, the screen displays
187.

NO DIRECTORY SPACE

ASM. The disk directory is full. Erase some files to make room for
PRN and HEX files. The directory can usually hold only 64 file-
names.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 241

NO DIRECTORY SPACE-— {filespec}

PIP. There is not enough directory space for the output file. You
should either erase some unnecessary files or get another disk with
more directory space and execute PIP again.

NO FILE— {filespec}

DIR, ERA, REN, PIP. CP/M cannot find the specitied file, or no
files exist.

ASM. The indicated source or include file cannot be found on the
indicated drive.

DDT. The file specified in an R or E command cannot be found on
the disk.

NO INPUT FILE PRESENT ON DISK
DUMP. The file you requested does not exist.

No memory

There is not enough (buffer?) memory available for loading the
program specified.

NO SOURCE FILE ON DISK

SYSGEN. SYSGEN cannot find CP/M either in CPMxx -com form
or on the system tracks of the source disk.

NO SOURCE FILE PRESENT

ASM. The assembler cannot find the file you specified. Either you
mistyped the filespecification in your command line, or the file is
not type ASM.

NO SPACE

SAVE. Too many files are already on the disk, or no room is left on
the disk to save the information.

No SUB file present

SUBMIT. For SUBMIT to operate properly, you must create a file
with filetype of SUB. The SUB file contains usual CP/M commands.
Use one command per line.

NOT A CHARACTER SQURCE

PIP. The source specified in your PIP command is illegal. You have
probably specified an output device as a source.

** NOT DELETED **

PIP. PIP did not delete the file, which may have had the R/O
attribute.

NOT FOUND
PIP. PIP cannot find the specified file.

242 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

OUTPUT FILE WRITE ERROR

ASM. You specified a write-protected diskette as the destination
for the PRN and HEX files, or the diskette has no space left. Correct

the problem before assembling your program.

Parameter error

SUBMIT. Within the SUBMIT file of type sub, valid parameters are
$0 through %9.

PARAMETER ERROR, TYPE RETURN TO IGNORE

SYSGEN. If you press return, SYSGEN proceeds without process-
ing the invalid parameter.

QUIT NOT FOUND

PIP. The string argument to a Q parameter was not found in your
input file.

Read error

TYPE. An error occurred when reading the file specified in the type
command. Check the disk and try again. The STAT filespec com-
mand can diagnose trouble.

READER STOPPING

PIP. Reader operation interrupted.

Record Too Long
PIP. PIP cannot process a record longer than 128 bytes.

Requires CP/M 2.0 or later
XSUB. XSUB requires the facilities of CP/M 2.0 or newer version.

Requires CP/M 2.0 or newer for operation

PIP. This version of PIP requires the facilities of CP/IM 2.0 or newer
version.

START NOT FOUND

PIP. The string argument to an S parameter cannot be found in the
source file.

SOURCE FILE INCOMPLETE
SYSGEN. SYSGEN cannot use your CP/M source file.

SOURCE FILE NAME ERROR

ASM. When you assemble a file, you cannot use the wildcard
characters * and ? in the filename. Only one file can be assembled at
a time.

SOURCE FILE READ ERROR

ASM. The assembler cannot understand the information in the file

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 243

containing the assembly language program. Portions of another file
might have been written over your assembly language file, or
information was not properly saved on the diskette. Use the TYPE
command to locate the error. Assembly language files contain the
letters, symbols, and numbers that appear on your keyboard. If
your screen displays unrecognizable output or behaves strangely,

you have found where computer instructions have crept into your
file.

SYNCHRONIZATION ERROR

MOVCPM. The MOVCPM utility is being used with the wrong
CP/M system.

“SYSTEM"” FILE NOT ACCESSIBLE

You tried to access a file set to SYS with the STAT command.

** TOO MANY FILES **

STAT. There is not enough memory for STAT to sort the files
specified, or more than 512 files were specified.

UNEXPECTED END OF HEX FILE—{filespec}

PIP. An end-of-file was encountered prior to a termination hex
record. The hex file without a termination record should be cor-
rected, probably by recreating the hex file.

Unrecognized Destination

PIP. Check command line for valid destination.

Use: STAT d:=RO

STAT. An invalid STAT drive command was given. The only valid
drive assignment in STAT is STAT d:=RO.

VERIFY ERROR:—f{filespec}

PIP. When copying with the V option, PIP found a difference when
rereading the data just written and comparing it to the data in its
memory buffer. Usually this indicates a failure of either the destina-
tion disk or drive.

WRONG CP/M VERSION (REQUIRES 2.0)

XSuUB ACTIVE
SUBMIT. XSUB has been invoked.

XSUB ALREADY PRESENT
SUBMIT. XSUB is already active in memory.

Your input?
If CP/M cannot find the command you specified, it returns the
command name you entered followed by a question mark. Check
that you have typed the command line correctly, or that the com-
mand you requested exists asa .COM file on the default or specified
disk.
244

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

4
{
4
L

INDEX

Absolute line number, 36

Access mode, 13

afn (ambiguous file reference), 3, 4, 6
Allocation vectar, 105

Ambiguous file reference (afn), 3, 4, 6
ASM, 15, 47

Assembler, 15, 47

Assembler/disassembler module (DDT), 77
Assembly errors, 62

Assembly language mnemonics in DDT, 71, 74
Assembly language program, 49

Assembly language statement, 49
Automatic command processing, 25

Base, 50

Basic Disk Operating System (BDOS), 2, 89, 127
Basic 1/O System (BIOS), 2, 89, 127)
BDOS (Basic Disk Operating System), 2, 89, 127
Binary constants, 50

BIOS (Basic /O System), 2, 89, 127

BIOS disk definition, 148

BIOS subroutines, 137

Block move command, 74

bls parameter, 149

BOOT, 90, 136, 140

BOOT entry point, 140

Breakpoint, 71, 73

Built-in commands, 3

Case translation, 5, 6, 20, 21, 37, 39, 44, 45, 51, 95
CCP (Console Command Processor), 2, 69, 89, 127
CCP Stack, 92

Character pointer, 35

CKS parameter, 149

Close File function, 101

Code and data areas, 144

Cold start loader, 136, 140, 143

Combine files, 17

Command, 3

Command line, 90

Comment field, 49

Compute File Size function, 108

Condition flags, 58, 77

Conditional assembly, 56

CONIN, 140

CONOUT, 141

CONSOLE, 138

Console Command Processor (CCP), 2,69, 89, 127
Console Input function, 95

Console Output function, 96

CONST, 140 '

Constant, 50

Control characters, 44

Control functions, 9

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

245

Control-Z character, 93

Copy files, 17

CPU state, 71

cr {carriage return), 39

Create files, 23

Create system disk, 24

Creating COM files, 16

Currently logged disk, 3, 5, 10, 17, 25

Data allocation size, 147
Data block number, 147
DB statement, 57

DDT commands, 70, 133
DDT nucleus, 77

DDT prompt, 70
"DDT sign-on message, 69
Decimal constant, 50
Default FCB, 73

Delete File function, 102
DESPOOL, 138

Device assignment, 11
DIR, 6

DIR attribute, 14

dir parameter, 149

Direct console /O function, 97
Direct Memory Address, 104
Directory, 6

Directory code, 100, 101, 102, 103
Disassembler, 71, 77

Disk attributes, 11

Disk drive name, 5

Disk /O functions, 99-110
Disk parameter block, 146
Disk parameter header, 145
Disk parameter table, 145
Disk statistics, 10
Disk-to-disk copy, 18
DISKDEF macro, 149
Diskette format, 31
DISKS macro, 150, 186
Display file contents, 8
dks parameter, 149

DMA, 104

DMA address, 93

dn parameter, 149
DPBASE, 146

Drive characteristics, 14
Drive select code, 94
Drive specification, 5

DS statement, 57

DUMP, 27, 113

DW statement, 57

ED, 23, 33-45, 131

ED commands, 38, 44
ED errors, 43

Edit command line, 9
8080 CPU registers, 76
8080 registers, 51
end-of-file, 19, 93 -
END statement, 49, 54
ENDEF macro, 150
ENDIF statement, 56
EQU statement, 55

246 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

ERA, 6

Erase files, 6

Error messages, 29, 43, 62, 153
A Expression, 49

Extents, 13

FBASE, 89

FCB, 93, 94

FCB format, 93, 94
FDQOS (operations), 89, 91
File attributes, 14

File compatibility, 23

File control block (FCB), 93, 94
File expansion, 128

File extent, 93 .

File indicators, 14

File names, 3

Fiel reference, 3

File statistics, 10, 13
Filetype, 93

Find command, 39

fsc parameter, 149

Get ADDR (Alloc) function, 105

Get ADDR (Disk Parms) function, 106
Get Console Status, 99

Get 1/O Byte function, 97

Get Read/Only Vector function, 105
GETSYS, 128, 134

Hexadecimal constant, 50
Hex files, 16, 19, 20, 47
o HOME subroutine, 139, 141

Identifier, 49, 50

IF statement, 56

Initialized storage areas, 57

In-line assembly language, 71

Insert mode, 37

Insert string, 40 N
IOBYTE function, 138,139

Jump vector, 137
Juxtaposition command, 41

Key fields, 109

Label field, 49

Labels, 48, 49, 58

Library read command, 42

Line-editing control characters, 38, 70, 98
Line-editing functions, 9

Line numbers, 36

LIST, 138, 141

List Output function, 96

LISTST, 142

LOAD, 16

Logged in, 3

Logica! devices, 11, 18, 138

Logical extents, 93

Logical-physical assignments, 12, 139
Logical to physical device mapping, 138
Logical to physical sector translation, 143, 149
lsc parameter, 149

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH 247

Machine executable code, 16
Macro command, 42

Make File function, 103

Memory buffer, 33, 34, 35, 37
Memory image, 71, 131, 132
Memory image file, 16

Memory size, 27, 128, 132
MOQOVCPM, 27, 131, 132
Multiple command processing, 25

Negative bias, 132

[o] parameter, 149
QOctal constant, 50
ofs parameter, 150
On-line status, 100
Open File function, 100
Operand field, 49-51
Operation field, 49-58
Operators, 52, 53, 58
ORG directive, 54

Page zero, 144

Patching the CP/M system, 128
Peripheral devices, 138

Physical devices, 12, 18, 139
Physical file size, 109

Physical to logical device assignment, 12, 139
PIP, 17

PIP devices, 19

PIP parameters, 20

Print String function, 98

PRN file, 47

Program counter, 71, 73, 76
Program tracing, 75

Prompt, 3

Pseudo-operation, 53

PUNCH, 138, 141

Punch Output function, 96
PUTSYS, 129, 135

Radix indicators, 50

Random access, 107, 108, 117
Random access files, 93

Random record number, 108
READ, 142

Read Console Buffer function, 98
Read only, 14

Read/only status, 14

Read random error codes, 107
Read Random function, 107

READ routine, 139

Read Sequential function, 102
Read/write, 14

READER, 138, 141

Reader Input function, 96

REN, 7

Rename file function, 104

Reset Disk function, 99

Reset Drive function, 109

Reset state, 99

Return Current Disk function, 104
Return Log-in Vector function, 104
Return Version Number function, 99 N

R/O, 14 L

248 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

rad

R/O attribute, 106
R/O bit, 105
RiW, 14

SAVE, 7

SAVE command, 70

Search for First function, 101
Search for Next function, 102
Search strings, 39

Sector allocation, 136
SECTRAN, 143

SELDSK, 139, 141, 146

Select Disk function, 100
Sequential access, 93

Set DMA address function, 104
Set File Attributes function, 106
Set/Get User Code function, 106
Set 1/O Byte function, 97

Set Random Record function, 109
GET statement, S5

SETDMA, 142

SETSEC, 142

SETTRK, 141

Simple character /O, 138

Size in records, 13

skf parameter, 149, 150

Source files, 93

Stack pointer, 92

STAT, 10, 139, 151

Stop console output, 9

String substitutions, 40
SUBMIT, 25

SYS attribute, 14

SYSGEN, 24, 134

System attribute, 44, 106
System parameters, 140
System (reinitialization, 138
System Reset function, 95

Testing and debugging of programs, 69
Text transfer commands, 35 .
TPA (Transient Program Area), 2, 89
Trace mode, 76

Transient commands, 3, 9

Transient Program Area (TPA), 2, 89
Translate table, 150

Translation vectors, 146

TYPE, 8

ufn, 3, 6

Unambiguous file reference, 3, 6
Uninitialized memory, 57
Untrace mode, 76

USER, 8

USER numbers, 8, 15, 106

Verify line numbers command, 37, 45
Version independent programming, 99
Virtual file size, 108

Warm start, 90, 140

WBOOT entry point, 140
WRITE, 142

Write Protect Disk function, 105
Write random error codes, 108

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

249

Write Random function, 108

Write Random with Zero Fill function, 110
WRITE routine, 142

Write Sequential function, 103

XSOB, 26

250 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

