DISK BASIC |

Introduction

Start-Up

Under TRSDOS READY, type:
BASIC (ENTER
TRsDOs will load BASIC and begin the ‘‘initialization dialog.”’

If you want to recover a Disk BASIC program after returning to TRSDOS for a DIR
or other TRspOs command, use this command under TRSDOS READY

BASIC * (ENTER

You will go directly to BASIC’s READY mode without any initialization dialog. If
you had a program in memory, it should still be there. You may not be able to
run the program. To be safe, you should immediately save the program, go to
TRSDOS, then start BASIC again (no asterisk).

Note: If you have overlaid user memory while in TRSDOS, your program will be
erased. In such a case, you should not restart BASIC, but should use the normal
BASIC start-up procedure.

Initialization

When you start Disk BASIC, you are first asked, HOW MANY FILES?. This lets

you specify the maximum number of files that will be “‘open’’ or in use at once.

(See opEN.) Type in an appropriate number and press (ENTER), or simply press
and BasIc will provide for three files.

For example, if your program requires one input file and one output file, you
should ask for two files.

Note: Normally, Basic will give all your data files a record length of 256.
(See File Access Techniques.) If you wish to set the record length of each file
individually, use the suffix v for ““Variable’’ after the number of files.

For example,

HOW MANY FILES? 3V (ENTER

tells BASIC to give you three file-buffers, and to let you set the record length of
each file when that file is first opened.

Note: Disk BasIC automatically creates a buffer for loading, saving, and
merging BASIC programs. This buffer exists in RAM below any data file buffers
you may request. It is always available for program 1o, regardless of how you
answer the FILES? question.

—

91

O
n
<
o0
N
7]
fa)

TRS-80 MODEL lll DISK SYSTEM

After you answer the FILES question, BASIC will ask: MEMORY SIZE? Simply
press (ENTER) without typing a number. You will then have the maximum amount
of RAM available for use by BASIC.

If you will want to load and use machine-language programs or routines, you
will have to protect your BAsiC memory from these machine-language programs.

In such a case, respond with the highest memory address (in decimal form) you
want BASIC to use for storing and executing your BASIC programs. Addresses
above the number you specify will then be protected from use by BasIC.

Example:
MEMORY SIZE? 32000 (ENTER

causes BASIC to protect addresses above 32000. If you have 16K of RAM, this
means that you’ll have 32767-32000 = 767 bytes protected for storing your
machine-language routines.

After you answer the MEMORY SIZE? question, Disk Basic will display the
following information:

1. Which version of Disk BASIC you are using

2. Copyright information

3. The number of free bytes available

4. The number of concurrent files you have requested.

To exit from Disk BASIC and return to the TRSDOS READY mode, type:
CMD*8* (ENTER

This results in a normal return to TRSDOS, without re-initialization of the system.
You may recover your program if you haven’t changed user memory while in
TRSDOS. Use BASIC *.

92

P N

DISK BASIC |

Enhancements to Model III BASIC

Disk Basic adds many features which are not disk-related. They are listed below
along with abbreviated descriptions. Detailed descriptions follow in alphabetical
order.

&H Hexadecimal-constant prefix

&0 Octal-constant prefix

Abbreviations Many commands have abbreviations

CMD*"A” Return to TRSDOS with error message

CMD*“B”’ Enable/Disable

CMD**C” Delete spaces and remarks from a program (compression)

CMD*“D”’ Display directory for specified drive

CMD*E” Display previous TRSDOS error

CMD*1” Return a command to TRSDOS

CMD**J” Convert calendar date

CMD*“L" Load z-80 subroutine or program file into RAM

CMD**0”’ Alphabetizes (sorts) a string array only

CMD*P”’ Check printer status

CMD*“R” Start real-time clock display

CMD**S” Normal return to TRSDOS (jump to EXIT routine)

CMD*“T”’ Turn off real-time clock display

CMD*“X" Cross-reference of reserved words, string variables, or
strings in a program

CMD*“2” Duplicate output to Display and Printer

DEF FN Define BASIC-statement function

DEF USR Define the entry point for an external machine-language
routine

INSTR Instring function; find the substring in the target string

LINE INPUT Input a line from keyboard

MID$ = Replace portion of the target string (used on left of equals
sign)

NAME Renumber a program in RAM

USRA Call external routine (n=0,1,2,,9)

&H and &O (hex and octal constants)

Often it is convenient to use hexadecimal (base 16) or octal (base 8) constants
rather than their decimal counterparts. For example, memory addresses and byte
values are easier to manipulate in hex form. &H and &0 let you introduce such
constants into your program.

&H and &0 are used as prefixes for the numerals that immediately follow them:

93

TRS-80 MODEL Il DISK SYSTEM

The constants always represent signed integers. Therefore any hex number
greater than &H7FFF, or any octal number greater than &077777, will be
interpreted as a negative quantity. The following table illustrates this:

Octal Hex Decimal
&1 &H1 1
&2 &H2 2
_&77777 &H7FFF 32767
&100000 &H8000 —~ 32768
&100001 &H8001 — 32767
&100002 &H8002 — 32766
&177776 &HFFFE -2
&177777 &HFFFF -1

Hex and octal constants cannot be typed in as responses to an INPUT prompt
or be contained in a DATA statement. Often the hex or octal constant must be
enclosed in parentheses to prevent a syntax error from occurring.

Examples
PRINT &H3Z200 20510080
prints the decimal equivalent of the two constants (both equal 20992).

POKE &H3CBO. 42

puts decimal 42 (ascll code for an asterisk) into video memory address hex
3C00.

94

DISK BASIC |

Model III Disk BASIC Abbreviations

Abbreviation Meaning

(&) List Previous Program Line
=) List Next Program Line

o List Current Program Line

€D Edit Current Program Line

=) List First Program Line

SHIFD) (&) @ List Last Program Line

XX List Program Line xx

EXX Edit Program Line xx

DXX Delete Program Line xx

AXXX,XXXX Automatic Line Numbering Beginning at Line xxx,

Incrementing by xxxx.

CMD (14 A”
Return to TRSDOS

This command allows you to return to TRSDOS with an error message:

OPERATION ABORTED

Sample Use

After an input/output error occurs in a BASIC program, you might want to exit to
TRSDOS and print a message.

C MD H A H
the following will be displayed:

OPERATION ABORTED
TRSDOS READY

P A N R

95

TRS-80 MODEL 1ll DISK SYSTEM
———— e

CMD “B”
Enable/Disable BREAK Key

This command enables or disables the (BREAK) key. While the function is ‘‘orFr,”’
the BREAK) key will be ignored except during cassette or printer output or during
serial input/output.

The (BREAK) key will remain disabled even after the program has ended. To
enable the (BREAK) key, use the cMD**B”,*:ON”’ command. Returning to TRSDOS
via the cMD*s” or cMD*1”” commands will also enable the (BREAK) key.

Examples

CMD"B" »"OFF™"

Disables the key.

CMDY"B" +"ON"

Returns the key to its normal function.

CMD 13 C b
Compress Program

This command allows you to compress a program so that it requires less
RAM and less storage space on diskette. You can elect to remove all remark

96

DISK BASIC |

statements (beginning with REM or *) or to delete all spaces between BASIC
keywords. Spaces inside quotes will not be deleted.
Example

Your program reads as follows:

850 RESTORE: ON ERROR GOTO B@@ 'DOG PROGRAM

860 READ COMPANYS$ 'PET STORE
B7@ PRINT RIGHT&(COMPANY$,2)s: GOTO BBO
880 END

If you want to delete the Remarks (lines 850 and 860), type in the command:
CMD"C" +R
and the program will now read:

859 RESTORE: ON ERROR GOTO 800

860 READ COMPANYS$

870 PRINT RIGHT®(COMPANY$,2),:G0TO BBED
880 END

If you then wanted to delete the spaces, type in:
CMD"C" 45
and the program would read:

850 RESTORE:ONERRORGOTOB20

860 READCOMPANY$

870 PRINTRIGHT$(COMPANY$,2),:G0OTOBED
880 END

You could obtain the same results by typing:
CMD i C H

Note: Always provide the closing quotes on string literals in your BASIC
program. Otherwise cMD*‘C’* may not function properly. For example, in

1@ PRINT "THIS I5 A TEST”

the second quote should be used even though omitting it will not cause an error.

CMD‘ ‘D b
Display the Directory of a Specified Drive

97

TRS-80 MODEL Il DISK SYSTEM

By entering the command cMD‘‘D:d’’, you can obtain a specified diskette’s
directory from BASIC without returning to TRSDOS. Only unprotected, visible
files will be displayed. The drive specification is not optional and must be
specified for all drives, including Drive 0.

Example

If you type in the command:

CMB"D: 1"

the directory for Drive 1 will be displayed.

CMD‘ 6E b
Display Previous TRSDOS error

This command displays the last TRSDOS error message. If no errors have
occurred prior to the command, the message N0 ERROR FOUND will be
displayed.

Example

If you have a two-drive system (0 and 1) and you type:

SAVE "PROGRAM:3"

Disk BasIC will return a DISK 1/0 ERROR. To find out what kind of 10 error
occurred, type: CMD"E" (ENTER) and Disk BasIc will return with DISK DRIVE
NOT IN SYSTEM,

CMD‘ 6199
Execute TRSDOS Commands from Disk BASIC

98

DISK BASIC
1

You may execute TRSDOS commands directly from BASIC by using cMD*T".

This is similar to cMD*'s*, except that it lets you include a command or z-80
program for TRSDOS to execute.

As long as BASIC is not overwritten by the execution of the program or

* command, control will return to BASIC; otherwise, control will return to TRSDOS.

(TRsDOS commands all overlay BASIC; your z-80 program may not if it loads
above BASIC.)

Example

CHMD"I" s"PROGRAM"

returns you to TRSDOS and executes the program file PROGRAM.
CMD"I" A%

returns you to TRSDOS and executes the command contained in As.

CMD‘ 3 J’ ’
Calendar Date Conversion

This command converts dates back and forth between two formats: the standard
month, day, year, sequence; and a year, day of year, sequence. The content of
the source string determines which way the conversion goes.

99

TRS-80 MODEL Ill DISK SYSTEM

Example

cMb™Jd™y "11/30/88", D%
Returns the day of the year in D$.
cMprJdry "-79/308" s D%

Returns the month, day, year, equivalent in D$ (the date for the 300th day
of 1979).

Sample Program

1@ CLEAR 50

2@ LINE INPUT"ENTER FIRST DATE (MM/DD/YY) "i FD$%
3@ LINE INPUT"ENTER SECOND DATE (MM/DD/YY) "iGD%
49 CMbrJ"y FD%s D1%

5@ CMD"Jd" . GSD4%, DZ%

6@ Y1 = VAL(RIGHT$(FD%$.2))
70 ¥2 = VAL(RIGHT$(5D%,2))
80 J1 = VAL(RIGHT#{(D1%.,3))
9@ JZ2 = VAL(RIGHT#(D2%.3))
188 S1 = Y1365 + Ji

110 82 = YZ#3B5 + JZ

120 PRINT “THE INTERVAL BETWEEN DATES IG6";
138 PRINT ABS(S51-82)3 "DAYG "3

140 PRINT "(IGNORING LEAP-YEARS)."

150 INPUT "<ENTER:> TO CONTINUE"3F A%

16@ GOTO 20

CMD*L”’
Load Z-80 Routine into RAM

ing a fle speci
ed by the pump command. If rout
e enclosed in quotes. ‘

cMD L loads a Z-80 (machine-language) routine into RAM. It would normally
be used to load a z-80 subroutine which is to be accessed directly from BASIC.

100

DISK BASIC
-

The z-80 routine should load into high-RAM and must not overlay the memory
protect area reserved when you first entered BASIC (i.e., the MEMORY SIZE?
prompt). If you do not overlay BASIC or TRSDOS, control will return to BASIC
after the program is loaded.

Example

The command:

CHD"L" s"PROG"

will load a program file named PROG into RAM.
CHMD"L" P4

will load a program which has been specified as ps.

CMD*“O”’
Sort (‘‘Order’’) an Array

This command sorts (orders) a one-dimensional string array, i.e., a list. You
may sort all or part of the array, depending on the values you give to x and start.

Sample Program

10 CLEAR 1@ * 25 + 50 ‘ROOM FOR 10 WORDS + EXTRA
20 DIM A%(D) ‘LIST OF TEN (B-9)

30 FOR WD = @8 TO 8

4@ PRINT "ENTER WORD #"3§ WD+1

5@ INPUT As (WD)

6@ NEXT WD

78 N%=1@: CMD"0": N%, A$(D)

8@ PRINT "HERE IS5 THE SORTED LIST"

890 FOR WD=@ TO 9

101

TRS-80 MODEL lll DISK SYSTEM

180 PRINT A%$(WD)
11@ NEXT WD

CMD«P”
Check Printer Status

cMp P’ makes it possible for Disk BAsIC to check the status of the printer.

Unlike the video display, the printer is not always available. It may be
disconnected, offline, out of paper, etc. In such cases, when you try to output
information to the printer, the Computer will wait until the printer becomes
available. It will appear to ‘*hang up.”” To regain keyboard control (and cancel
the printer operation), press (BREAK).

Suppose you have a program which uses printer output. If a printer is not
available, you don’t want the Computer to stop and wait for it to become
available. Instead, you may want to print a message such as PRINTER
UNAVAILABLE and go on to some other operation.

To accomplish this, you need to check the printer status. cMD*P”* can be used to
check the printer’s status at any time. It returns the contents as an Asci-coded
decimal number. The specific value of this number depends upon the type of
printer you are using as well as its status at any particular time. The value may
then be printed or examined by the program.

Only the four most significant bits are used in this ‘‘status byte.”” In binary,
these must be: ‘0011’ or else the print operation will not be attempted. To
check for this ‘‘go’’ condition, AND the status byte with 240 and compare the
result with 48. The meaning of each status bit depends on which printer you
use. See the printer owner’s manual for bit designations.

Sample Program

10 CMD"P" X%

20 STZ = UAL(X$) AND 248

30 IF ST% <> 48 THEN PRINT "PRINTER UNAVAILABLE": STOP
4@ PRINT "PRINTER AVAILABLE"

5@ REM PROGRAM MAY NOW CONTINUE

102

TN

v

DISK BASIC |
C

CMD‘ CR’ b
Turn On Clock-Display

This command controls the real-time clock display in the upper-right corner of
the Video Display. When it is on, the 24-hour time will be displayed and
updated once each second, regardless of what program is executing.

Note: The real-time clock is always running (except during cassette or disk 10),
regardless of whether the display is on or off.

Example
To turn on the clock display type: CMD"R" To turn the display off, type: CMD*T*

CMD (14 S ba
Return to TRSDOS

To exit from Disk BAsIC, returning control to TRSDOS, simply type in the
command:

CMDIISH

To return to BASIC and recover your program, use BASIC #*. However, recovery
will not always be possible. See BASIC *.
Example

The BAsIC prompt lets you know you are in Disk BASIC.
READY

A

103

TRS-80 MODEL Il DISK SYSTEM

To exit, type in:
CMD i S 1]
and the TRSDOS prompt will appear.

TRSDOS READY

LN I S B R U O R B A 4

CMD 143 T 29
Turn Off Clock-Display

This command turns off the real-time clock display function.

However, the clock continues to run.

Example

To stop the clock display update type: CMD"T"
To start the display, type: CHD"R"

CMD ¢ ‘X, 9
Cross-reference of Program Lines

ed word (such as PRINT) or a string-
' |t must not be enclosed in quotes, |t |t
al, it must be enclosed in quotes.

104

-
S

DISK BASIC |
T

This command finds all occurrences of a reserved word or other string literal in
the resident program. The ‘‘finds’ are listed on the display as five-digit line
numbers.

To search for any BasIC reserved word (including reserved arithmetic operators),
use the keyword as-is. To search for anything else (including variable-names and
text), enclose the text inside quotes.

For example, suppose you have the following program in memory:

12 PRINT "THIS IS A TEST"

20 INPUT "PRESS <ENTER» FOR THE NEXT PRINT MESSAGE": Z%
32 A = A+ 1

48 PRINT "+++tts+”

CMD "X" s PRINT will find all occurrences of PRINT, except for cases where
PRINT was part of a quoted string: lines 10 and 40.

CMD "X+ "PRINT® will find all occurrences of ‘‘PRINT’’ as a string literal: line
20.

CMD ¥y + will list line 30, but CMD "X", "+'" will list line 40. CMD "X,
A" will list lines 10, 20, and 30. Notice that variables and text are both treated
as string literals.

CMD 2’
Duplicate Output to Video and Printer

FF. switch must be enclosed in

This command enables or disables dual video/printer output. While the function
is “‘ON,’” all video output is copied to the printer, and all printer output is copied
to the video. (The printer must be on-line when you turn dual output ‘‘ON.”")

Video and printer output may differ due to intrinsic differences in the printer and
video devices.

Examples

CMD “ZII ' ll(:)Nll

Turns dual video/printer output on.

105

TRS-80 MODEL Ill DISK SYSTEM

CMD"Z"+ "OFF"

Turns dual video/printer output off.

DEF FN
Define Function

The DEF FN statement lets you create your own function. That is, you only
have to call the new function by name, and the associated operations will
automatically be performed. Once a function has been defined with the DEF FN
statement, you can call it simply by inserting FN in front of function name. You
can use it exactly as you might use one of the built-in functions, like SIN, ABS,
and STRINGS.

The type of variable used for function name determines the type of value the
function will return. For example, if function name is single precision, then that
function will return a single-precision value, regardless of the precision of the
arguments.

The particular variables you use as arguments in the DEF FN statement
(argument-1, . . .) are not assigned to the function. When you call the function
later, any variable name of the same type can be used.

Furthermore, using a variable as an argument in a DEF FN statement has no effect
on the value of that variable. So you can use that particular variable in another
part of your program without worrying about interference from DEF FN.

The function can be defined with no arguments at all, if none are required.
For example:

DEF FNR = RND (9@) + 9

defines a function to return a random value between 10 and 99.

—

106

PN

P

DISK BASIC {

Examples
DEF FNR(AsB) = A + INT((B - (A - 1)) % RND(®))

This statement defines function FNR which returns a random number between
integers A and B. The values for A and B are passed when the function is
“‘called,’ i.e., used in a statement like:

¥ = FNR(R1s RZ)

If r1 and R2 have been assigned the values 2 and 8, this line would assign a
random number between 2 and 8 to Y.

DEF FNL$(X) = STRINGH(X, "-")

Defines function FNL$ which returns a string of hyphens, x characters long.
The value for x is passed when the function is called:

PRINT FNL$(3)
This line prints a string of 30 hyphens.

Here’s an example showing DEF FN used for a complex computation —in
double-precision.

DEF FNX#(A#, B#) = (A% - B#) * (Aw - Bs#)

Defines function ENX# which returns the double-precision value of the square of
the difference between aA# and B#. The values for A# and B# are passed when
the function is called:

S# = FNX#(A%, B#)

We assume that values for A# and B# were assigned elsewhere in the program.

Sample Program

71@ DEF FNU(T) = (1887 + SBOR(273 + T))/16.32

720 INPUT "AIR TEMPERATURE IN DEGREES CELSIUS"3 T

73@ PRINT "THE SPEED OF SOUND IN AIR OF" T "DEGREES
CELSIUS IS" FNU(T) "FEET PER SECOND."

107

TRS-80 MODEL Ill DISK SYSTEM
————————————,—————

DEFUSR
Define Point of Entry for USR Routine

DEFUSR lets you define the entry points for up to 10 machine-language routines.
In non-Disk BaAsIc, the addresses were POKEd into RaM. This POKE method
cannot be used in Disk BASIC.

Examples
DEFUSR3 = &H7D00

assigns the entry point x'7D00°, 32000 decimal, to the USR3 call. When your
program calls USR3, control will branch to your subroutine beginning at X*7D0o.

DEFUSR = (BASE + 1B)
assigns start address (BASE + 16) to the USRo routine.

Note: When decimal addresses are given, they are evaluated as signed two-byte
integers. So, for addresses above 32767, use desired decimal address — 65536.
See USRn.

INSTR
Search for Specified String

108

DISK BASIC |
1 —

This function lets you search through a string to see if it contains another string.
If it does, INSTR returns the starting position of the substring in the target string;
otherwise, zero is returned. Note that the entire substring must be contained in
the search string, or zero is returned. Also, note that INSTR only finds the first
occurrence of a substring at the position you specify.

Examples

In these examples, AS = ““LINCOLN’":

INSTR(A% s "INC™)

returns a value of 2.

INSTR (A%, "12%)

returns a zero.

INSTR(A%$ s "LINCOLNABRAHAM™)

returns a zero. For a slightly different use of INSTR, look at
INSTR (3, "1232123"+ "12")

which returns 5.

Sample Program

This program gets search and target text from the keyboard, then locates all
occurrences of the target text in the search text. Line 90 is just for *‘show.”

1@ CLEAR 1002

2@ CLS

3@ INPUT "SEARCH TEXT"

4@ INPUT “"TARGET TEXT®

45 CLS

5@ C =0 : P =1 ‘P = POSITION, C = COUNT

B0 F = INSTR(P:5%,T%)

7@ IF F = @ THEN 120

g C =¢C+1

9@ PRINT BQLEFT$(G$,F-1) + STRINGH(LEN(T$),1891) +
© RIGHT$(5% LEN(S$)-F-LEN(T$)+1)

10@ P = F + LEN(T$)

11@ IF P <= LEN(S%) - LEN(T®) + 1 THEN GO

120 PRINT "FOUND "3 C3 "OCCURRENCES"

5%
T$

- mm

109

TRS-80 MODEL lll DISK SYSTEM

LINE INPUT
Input a Line from Keyboard

LINE INPUT (Or LINEINPUT — the space is optional) is similar to INPUT, except:

* The Computer will not display a question mark when waiting for your
operator’s input.

* Each LINE INPUT statement can assign a value to just one variable.

* Commas and quotes your operator can use as part of the string input.

* Leading blanks are not ignored — they become part of variable.

* The only way to terminate the string input is to press (ENTER).

LINE INPUT is a convenient way to input string data without having to worry

about accidental entry of delimiters (commas, quotation marks, colons, etc.).

The key serves as the only delimiter. If you want anyone to be able to

input information into your program without special instructions, use the LINE
INPUT statement.

Some situations require that you input commas, quotes and leading blanks as
part of the data. LINE INPUT serves well in such cases.

Examples

LINE INPUT A%

Input As without displaying any prompt.

LINE INPUT "LAST NAME, FIRST NAME? "jiN%

Displays a prompt message and inputs data. Commas will not terminate the
input string, as they would in an input statement.

Sample Program

200 REM CUSTOMER SURVEY
205 CLEAR 1000
287 PRINT

110

DISK BASIC |

210 LINE INPUT “TYPE IN YOUR NAME "3 A%

228 LINE INPUT ®D0O YOU LIKE YOUR COMPUTER? "3 B$
230 LINE INPUT "WHY? "3 C3%

233 PRINT

240 PRINT A% : PRINT

258 IF B$= "NO" THEN 270

260 PRINT "I LIKE MY COMPUTER BECAUSE "3 C4% :END
270 PRINT "I DO NOT LIKE MY COMPUTER BECAUSE ": C%

Notice that when line 210 is executed, a question mark is not displayed after the
statement, ‘“Type in your name.’ Also, notice on line 230 you can answer the
question ‘“Why’” with a statement full of delimiters, commas and quotes.

MID$ =
Replace Portion of String

)'5 feplécem‘entes
ame of the string y
@ression specifying th

This statement lets you replace any part of a string with a specified new string,
giving you a powerful string editing capability.

Note that the length of the resultant string is always the same as the original
string.

Examples

A$ = “LINCOLN’ in the examples below:

MID$(A$, 3+ 4) = "12345": PRINT A%

which returns LI1234N.

111

TRS-80 MODEL Il DISK SYSTEM

MID$(A%, 1y 2) = "": PRINT A%
which returns LINCOLN.

MIDS (A%, 3) = "12345": PRINT A%
returns LINC123.

MID$(A%, 5)

"B1": PRINT A%
returns LINCOIN.
MID$(A%, 14 3) = "#%*": PRINT A%

returns ***COLN.

Sample Program

779 CLS8: PRINT: PRINT

780 LINE INPUT "TYPE IN A MONTH AND DAY MM/DD., "3§ S%
798 P = INBTR(S%, "/")

880 IF P = @ THEN 7880

819 MID$(S%, Py 1) = CHR${45)

BZ@ PRINT 8% " IS5 EASIER TO READs ISN'T IT?

This program uses INSTR to search for the slash (‘‘/”’). When it finds it
(if it finds it), it uses MID$ = to substitute a ‘‘ —*’ (CHR$45)) for it.

NAME
Renumber the Current Program

112

T

DISK BASIC

Examples

NAME

Renumbers the entire program: 10, 20, 30, . ..
NAME G000 ,5000,100

Renumbers all lines numbered from 5000 up; the first renumbered line will
become 6000, and the following lines will be incremented by 100. All line
references within your program will be renumbered also.

USRn
Call to User’s External Subroutine

— 32768 t0 32767 and s
routine. .

These functions (UsRro through UsR9) transfer control to machine-language
routines previously defined with DEFUSR# statements.

When a URS call is encountered in a statement, control goes to the address
specified in the DEFUSRn statement. This address specifies the entry point to your
machine-language routine.

Note: If you call a USrx routine before defining the routine entry point with
DEFUSR#, an ILLEGAL FUNCTION CALL error will occur.

You can pass one argument and retrieve one output value directly via the USR
argument; or you can pass and retrieve arguments indirectly via POKE and PEEK
statements.

Example

1@ DEFUSR1=8H7000@
20 REM...MORE PROGRAM LINES HERE
128 A=USR1{X

The effect of this sequence is to:

113

TRS-80 MODEL lil DISK SYSTEM

1. Define usr as a routine with an entry point at hex 7poo (line 10).

2. Transfer control to the routine; the value X can be passed to the routine if the
routine makes the caLL described below (line 100).

3. When the routine returns to BAsIC, the variable A may contain the value
passed back from the routine (if your routine makes the Jump described
below); otherwise A will be assigned the value of x (line 100).

Passing arguments to and from USR routines

There are several ways to pass arguments back and forth between your BASIC
main program and your USR routines: the two major ways are listed below.

1. POKE the argument(s) into fixed RAM locations. The machine-language routine
can then access these values and place results in other RaM locations. When
the routine returns control to BASIC, your program can PEEK into these
addresses to pick up the “‘output’” values. This is the only way to pass two
or more arguments back and forth.

2. Pass one argument to the routine as the argument in the UsRn call, then use
special ROM calls to access this argument and return a value to BAsIC. This
method is limited to sending one argument and returning one value (both
are integers).

ROM Calls

CALL 0A7FH Puts the USR argument into the HL register pair; H contains MSB, L
contains LsB. This cALL should be the first instruction in your USR
routine.

JP 0A9AH Use this JUMP to return to BASIC; the integer in HL becomes the
output of the UsR call. If you don’t care about returning HL, then
execute a simple RETurn instruction instead of this JuMp.

Listed below is an assembled program to white out the display (an ‘‘inverse’’
CLEAR key!). Don’t type it in. Type in the BASIC program that follows it.

oe100 i
a011@ & ZAP OUT SCREEN USR FUNCTION
poize ;3
7000 poize ORG 7DOOH
Boi4e 3
B21530 3 EQUATES
2160 3
3cae ge1ve VIibEo EQU 3C02H iSTART OF VIDEO RAM
eaBF BE18G WHITE EQU @BFH $ALL WHITE GRAPHICS BYTE
@3FF @@198 COUNT EQU 3FFH INUMBER OF BYTES TO MOVE
eezed i
00210 § PROGRAM CHAIN MOVES X'/BF‘ INTO ALL OF WIDEOQ RAM
2R220 3

114

0

7000
7003
70835
7D28
7028

7D@0
7028

DISK BASIC |

210@3C 2ez238 ZAP LD HL sV IDEQ $S0URCE ADDRESS
36BF aR240 LD (HL) +WHITE JPUT OUT 18T BYTE
11813C PRS2 LD DE,VIDEQ+1 iDESTINATION ADDRESS
P1FFE3 20260 LD BC +COUNT INUMBER OF ITERATIONS
EDB@ POz70 LDIR DO LT TO ITH!H!
opZBO 3
Co p0z290 RET JRETURN TO BASIC
eo3e0 END ZAP

This routine can be POKEd into RAM and accessed as a USR routine. First start BAsIC and answer the
MEMORY SIZE question with 31999. Then run the program.

100
110
115
120
1308
140
150
168
170
180
19@
192
194
196
200
203
210

o295

230
240
250
260
270
280
290
300
3ie
320
330

! PROGRAM: UBR!
* EXAMPLE OF A USER MACHINE LANGUAGE FUNCTION
* DEPRESS THE ‘@ KEY WHILE NUMBERS ARE PRINTING TO STOP

4

¢ sxxx%e® POKE MACHINE PROGRAM INTO MEMORY *%%%x%#
DEFUSR1 = &H7D020@
FOR ¥ = 32080 70 32813 '7DD@ HEX EQUAL 32008 DECIMAL

READ A
POKE X A
NEXT X
¢ xx%x%%¥¥ CLEAR SCREEN & PRINT NUMBERS 1 THRU 10@ **%x¥xx%
CLS
PRINT TAB(15)3 “WHITE-OUT USER ROUTINE": PRINT

FOR X = 1 TO @@
PRINT X3

A% = INKEY$: IF A% = "@" THEN END
NEXT X
fox¥xkkn® JUMP TO WHITE-OUT SUBROUTINE *kkkk**

’

¥ o= USRI (@)
FOR % = 1 TO 1@0@@: NEXT X 'DELAY LOOF
GOTO 200

?

© %x%%x%% DATA IS5 DECIMAL CODE FOR HEX PROGRAM *¥¥¥¥%¥

’

DATA 33:0:80,54,1914+174+1,60,1+255,392374176,+201

Run the program. An equivalent BASIC white out routine takes a long time by comparison!

115

TRS-80 MODEL 11l DISK SYSTEM

Disk-Related Features

Disk Basic provides a powerful set of commands, statements and functions
relating to disk vo under TRsDOS. These fall into two categories:

1. File manipulation: dealing with files as units, rather than with the distinct
records the files contain.

2. File access: preparing data files for 10; reading and writing to the files.

Under the heading, File Manipulation, we will discuss the following

commands.

KILL Delete a program or data file from the disk

LOAD Load a BasIc program from disk

MERGE Merge an Ascii-format BASIC program on disk with one
currently in RAM

RUN‘‘program’’ Load and execute a BASIC program stored on disk

SAVE Save the resident BASIC program on disk

Under the heading, File Access, we will discuss the following statements and
functions.

Statements

OPEN Open a file for access (create the file if necessary)

CLOSE Close access to the file

INPUT # Read from disk, sequential mode

LINE INPUT# Read a line of data, sequential mode

PRINT# Write to disk, sequential mode

FIELD Assign field sizes and names to random-access file buffer

GET Read from disk, random access mode

PUT Write to disk, random access mode

LSET Place value in specified buffer field, add blanks on the
right to fill field

RSET Place value in specified buffer field, add blanks on the left
to fill field

Functions

CVD Restore double-precision number to numeric form after
GETting from disk

CVI Restore integer to numeric form after GETting from disk

Cvs Restore single-precision number to numeric form after
GETting from disk

EOF Check to see if end of file encountered during read

LOC GET current record number.

116

L
LOF
MKDS$
MKI$
MKS$
e

DISK BASIC |

Return number of last record in file

Convert double-precision number to string so it can be PUT
on disk

Convert integer to string so it can be pUT on disk

Convert single-precision number to string so it can be PUT
on disk

117

. TRS-80 MODEL Ill DISK SYSTEM

File Manipulation

KILL
Delete a File from the Disk

This command works like the TRSDOS KILL command — see TRSDOS Library
Commands.

Example
KILLYOLDFILE/BAS,PSWL"
deletes the file specified from the first drive which contains it.

Do not KILL an open file, or you may destroy the contents of the diskette. (First,
CLOSE the open file.)

LOAD
Load BASIC Program File from Disk

2 sasic program file
ritis loade

This command loads a BAsIC program file into RAM; if the R option is used,
BASIC will proceed to RUN the program automatically; otherwise, BASIC will
return to the command mode.

118

T

—

DISK BASIC
o

LOAD without the R option clears all variables and closes all open files. LOAD
with the R option clears all variables but does not close the open files.

LOAD with the R option is equivalent to the command RUN exp$,R. Either of
these commands can be used inside programs to allow program chaining — one
program calling another, etc.

Example
LOAD"PROGL/BAS: 2"

Clears resident BasiC program and loads PROG1/BAS from Drive 2; returns to
BASIC command mode.

MERGE
Merge Disk Program with Resident Program

MERGE is similar to LOAD — except that the resident program is not erased before
the new program exp$ is loaded. Instead, the new program is merged into the
resident program.

That is, program lines in exp$ will simply be inserted into the resident program
in sequential order. If line numbers in exp$ coincide with line numbers in the
resident program, the resident lines will be replaced by those from exp$.

119

TRS-80 MODEL Il DISK SYSTEM

Program on Disk Program in Ram

10
20
30
40
50
+ 60
70
90

Sample Use
Save this program in Ascn format.

1228 REM . . + SUBROUTINE TO SAY HELLO
1910 PRINT "HELLO!®
1828 RETURN

Type NEW (ENTER), then type in this program.

100 CLS

11@ PRINT *LET’S CALL THE SUBROUTINE , ., ."
12@ PRINT "DIALING NOW ., , ,"

130 FOR I=1 TO 10800 : NEXT

149 GOSUB 1000

15@ PRINT "BACK FROM SUBROUTINE."

180 END

Merged Program in Ram

Now type MERGE file’” using the file name given to the first file. List the program. Then run it.

RUN*“program”’
Load and Execute a Program from Disk

120

P

DISK BASIC |

This command loads and executes a BASIC program stored on disk. It may be
used inside a program to allow chaining (one program calling another).
Examples

RUN "PROG®
Loads and executes PROG (all open files are closed first).

As="NEWPROG"
RUN A%+ R

Loads and executes NEWPROG (all open files remain open).

SAVE
Save Program onto Disk

This command lets you save your BASIC programs on disk. You can save the
program in compressed or Ascll format.

Using compressed format takes up less disk space and is faster during both
SAVEs and LOADs. Using the AscII option makes it possible to do certain things
that cannot be done with compressed format BASIC files.

For example:
* The MERGE command requires that the disk file be in Ascu form.

* Programs which read in other programs as data will typically require that the
data programs be stored in ASCII.

* The TRsDOS command APPEND also requires that disk files be in Asci form.

121

TRS-80 MODEL Ill DISK SYSTEM

Examples
SAVE"FILEL/BAS, JOHNODOE:3"

saves the resident BASIC program in compressed format with the file name FILEI,
extension /BAS, password .JOHNQDOE; the file is placed on Drive :3.

SAVE"MATHPAK/TXT" +A

saves the resident program in Ascll form, using the name MATHPAK/TXT, on the
first nonwrite-protected diskette.

Upon completion of a SAVE, BASIC returns in the command mode.

122

o

DISK BASIC
N

File Access

This section is divided into four parts:

1. Creating files and assigning buffers — OPEN and CLOSE

2. Statements and functions

3. Sequential vo techniques

4. Random 1o techniques

If this is your first experience with disk file access, you should concentrate on
parts 1, 3 and 4, perhaps just skimming through part 2 to get a general idea of

how the functions and statements work. Later you can go back to part 2 and
learn the details of statement and function syntax.

Creating Files and Assigning Buffers

During the initialization dialog, you type in a number in response to HOW MANY
FiLes? The number you type in tells Basic how many buffers to create to handle
your disk accesses (reads and writes).

Each buffer is given a number from 1 to 15. If you type:
HOW MANY FILES? 34 (ENTER
BASIC sets aside 3 buffers, numbered 1,2,3.

You can think of a buffer as a waiting area that data must pass through on the
way to and from the disk file. When you want to access a particular file, you
must tell BAsIC which buffer to use in accessing that file. You must also tell
BasIC what kind of access you want— sequential output, sequential input, or
random input/output.

Al! this is done with the OPEN statement, and ‘‘undone’” with the CLOSE
statement.

OPEN
Open a File

123

TRS-80 MODEL Il DISK SYSTEM

rtmg at the first record Ii the

This statement lets you create a file, write data into it, update it, and read it. For
details on file access, see Methods of Access later in this section.

If file includes a drive specification, BASIC will use only the specified drive. If
no drive is specified, BAsIC will search for a matching file, starting with the
master drive (usually Drive 0).

Examples
OPEN "0", 1, "DATAFILE"

Opens DATAFILE (creates it if it doesn’t already exist) for sequential output.
Output will be done through buffer #1. Records will be 256 bytes long. Since
the “‘0’” mode is specified, output will start at the first record in the file.

If ““E” is used instead of “‘0’’, output will start at the end of the file.

OPEN "R"™ 2y "PAYROLL/A:1", 64

Opens/creates PAYROLL/A for random input/output. Access will be through
buffer #2. Records will be 64 bytes long (if BASIC was initialized for variable-
length records).

BUFFER = 3: FILE$%$ = "DATA": RECLN = 128
OPEN "R", BUFFER: FILE$, RECLN

Opens/creates DATA for random input/output. Access will be through buffer #3.
Records will be 128 bytes long (if BAsIC was initialized for variable-length
records).

124

DISK BASIC |

CLOSE
Close Access to the File

This command terminates access to a file through the specified buffer(s).
If nmexp has not been assigned in a previous OPEN statement, then

CLOSE nmexp

has no effect.

Examples
CLOSE 1428

Terminates the file assignments to buffers 1, 2 and 8. These buffers can now be
assigned to other files with OPEN statements.

CLOSE FIRSTU+COUNTYZ

Terminates the file assignment to the buffer specified by the sum
(FIRST% + COUNT%).

Do not remove a diskette which contains a file opened for writing (mode = O,
E, or R). First close the file. This is because the last 256 bytes of data may not
have been written to disk yet. Closing the file will write the data, if it hasn’t
already been written.

Any modification to the resident program (NEw, editing, LOAD, MERGE, etc.)
will cause open files to be closed.

125

TRS-80 MODEL lill DISK SYSTEM

INPUT#
Sequential Read from Disk

This statement inputs data from a disk file. The data is input sequentially. That
is, when the file is first opened, a pointer is set to the beginning of the file.
Each time data is input, the pointer advances. To start over reading from the
beginning of the file, you must close the file and re-open it.

INPUT# doesn’t care how the data was placed on the disk — whether a single
PRINT# statement put it there, or whether it required 10 different PRINT#
statements. What matters to INPUT# are the positions of the terminating
characters and the EOF marker.

To NpUT# data successfully from disk, you need to know ahead of time what
the format of the data is. Here is a description of how INPUT# interprets the
various characters it encounters when reading data.

When inputting data into a variable, BASIC ignores leading blanks; when the
first non-blank character is encountered, BASIC assumes it has encountered the
beginning of the data item.

The data item ends when a terminating character is encountered or when a
terminating condition occurs. The particular terminating characters vary,
depending on whether BASIC is inputting to a numeric or string variable.

Special Note
Here’s an important exception to keep in mind in reading the following material.

When (ENTER) (a carriage return) is preceded by &) (a line feed), the (ENTER) is
not taken as a terminator. Instead, it becomes a part of the data item (string
variable) or is simply ignored (numeric variable).

(To enter the () character from the keyboard, press the down-arrow character.

To enter the (ENTER) character, press (ENTER).)

This exception applies to all cases noted below where ENTER) is said to be a
terminator.

126

o

DISK BASIC

Numeric Input

Suppose the data image on disk is

1,234 -33 27

denotes a carriage-return character (ascl code decimal 13).
Then the statement

INPUT#1 s A4BC

or the sequence of statements

INPUT#1+A: INPUT#1,B: INPUT#1.,C

will assign the values as follows:

A=1.234
B=-33
C=27

This works because blanks and serve as terminators for input to numeric
variables. The blank before 1.234 is a ‘‘leading blank,’ therefore it is ignored.
The blank after 1.234 is a terminator; therefore BASIC starts inputting the second
variable at the — character, inputs the number — 33, and takes the next two
blanks as terminators. The third input begins at the 2 and ends with the 7.

String Input
When reading data into a string variable, INPUT ignores all leading blanks;
the first non-blank character is taken as the beginning of the data item.

If this first character is a double-quote (*°), then INPUT will evaluate the data as
a quoted string: it will read in all subsequent characters up to the next double-
quote. Commas, blanks, and characters will be included in the string.
The quotes themselves do not become a part of the string.

If the first character of the string item is not a double-quote, then INPUT will
evaluate the data as an unquoted string: it will read in all subsequent characters
up to the first comma, or (ENTER). If double-quotes are encountered, they will be
included in the string.

For example, if the data on disk is:
PECOS, TEXAS**GOOD MELONS”’
Then the statement

INPUT#1+ A%:B%4C%

127

TRS-80 MODEL lll DISK SYSTEM

would assign values as follows:

A$=PECOS
B$= TEXAS ‘“GOOD MELONS”’
C$ =null string

If a comma is inserted in the data image before the first double quote, cs will
get the value, GOOD MELONS.

These are very simple examples just to give you an idea of how INPUT works.
However, there are many other ways to input data— different terminators,
different target variable types, etc.

Rather than taking a shotgun approach and trying to cover them all, we’ll give a
generalized description of how input works and what the terminating characters
and conditions are, and then provide several examples.

When BASIC encounters a terminating character, it scans ahead to see how many
more terminating characters it can include with the first terminator. This ensures
that Basic will begin looking for the next data item at the correct place.

The list below defines the various terminating sets INPUT# will look for. It will
always try to take-in the largest set possible.

Numeric-input terminator sets

end of file encountered
255th data character encountered

,(comma)
ENTER
ENTER) (=)

[...][ENTER))
[...][ENTER) (&)]

Quoted-string terminator sets
end of file encountered

255th data character encountered
*‘ (double quote)

L0

[...][ENTER)]

L (=)]

Unquoted-string terminator sets

end of file encountered
255th data character encountered

’

(=]

Figure 13 describes how INPUT# assigns data to a variable.

128

START

CHARACTER

EXAMINE NEXT

1GNORE IT

Figure 13. Input process.

ISITA
NON-SPACE NO
JERMINATOR?

YES

DISK BASIC

NO

PUT IT INTO
TEMPORARY
SAVE AREA

CHARACTER

EXAMINE NEXT

ISITA
TERMINATOR?

PICKUP THE
TERMINATOR
SET

GET DATA FROM
TEMPORARY

SAVE AREA

EVALUATE IT

ASSIGN TO
VARIABLE

END

The following table shows how various data images will be read-in by the

statement:

INPUT#1+A4+BC

. Values
Ex.# Image on disk assigned
1 (ENTER(&) B8.2E4 7Q0R(ENTER A=123.45
B =82000
C=7000
2 3(«)ENTER) 4 (ENTER)S (ENTER) A1Z eof A=34
B=5
Cc=0
3 1+92:+3+4 A=1
B=0
Cc=2
4 A=1
B=3
C=0 eof error

(eof = end of file):

In Example 2 above, why does variable ¢ get the value 07 When the input
reaches the end of file, it terminates that last data item, which then contains
““a12”” This is evaluated by a routine just like the BAsIC VAL function— which

returns a zero since the first character of ‘“A12’’ is a non-numeric.

129

TRS-80 MODEL lll DISK SYSTEM

In Example 3, when INPUT# goes looking for the second data item, it
immediately encounters a terminator (the comma); therefore, variable B is given
the value zero.

The following table shows how various data images on disk will be read by the
statement:

INPUT#1 A% +B%

Ex.# Image on disk Values assigned
1 “ROBERTS »J, "ROBERTS /M. N eof A$:ROBERTS,J.
B$:ROBERTS,M.N.
2 ROBERTS »d4 » ROBERTS sM N, A$:ROBERTS
B$:J.
3 THE WORD "QUO®" +12345,788 A$:THE WORD “QUO”

B$:12345.789

4 BYTE(®) UNIT OF MEMORY eof A$:BYTE(s)(ENTER)
UNIT OF MEMORY
B$:null (eof error)

In Example 3, the first data item is an unquoted string, therefore, the double-
quotes are not terminators, and become part of As.

In Example 4, the ENTER) is preceded by an (&), therefore it does not terminate
the first string; both (&) and (ENTER) are included in As.

LINE INPUT#
Read a Line of Text from Disk

Similar to LINE INPUT from keyboard, this statement reads a *‘line’’ of string
data into var$. This is useful when you want to read an Ascii-format BASIC
program file as data, or when you want to read in data without following the
usual restrictions regarding leading characters and terminators.

130

DISK BASIC
S

LINE INPUT (Or LINEINPUT — the space is optional) reads everything from the first
character up to:

1. an character which is not preceded by ()
2. the end of file
3. the 255th data character (this 255 character is included in the string)

Other characters encountered — quotes, commas, leading blanks, (=) (ENTER
pairs — are included in the string.

For example, if the data looks like:
1% CLEAR 500 (ENTER
20 OPEN"I",1"PROG" (ENTER

+

then the statement
LINEINPUT#1 :A%

could be used repetitively to read each program line, one line at a time.

PRINT#
Sequential Write to Disk File

This statement writes data sequentially to the specified file. When you first open
a file for sequential output, a pointer is set to the beginning of the file, therefore
your first PRINT# places data at the beginning of the file. At the end of each
PRINT# operation, the pointer advances, so the values are written in sequence.

131

TRS-80 MODEL Il DISK SYSTEM

A PRINT# statement creates a disk image similar to what a PRINT to display
creates on the screen. Remember this, and you’ll be able to set up your PRINT#
list correctly for access by one or more INPUT statements.

PRINT# does not compress the data before writing it to disk; it writes an ASCII-
coded image of the data.

For example, if A =123.45

PRINT®1.4

will write a nine-byte character sequence onto disk:
123.45 (ENTER

The punctuation in the PRINT list is very important. Unquoted commas and semi-
colons have the same effect as they do in regular PRINT to display statements.

For example, if A =2300 and B = 1.303, then
PRINT#1,A4+B
places the data on disk as

2300 1.303

The comma between A and B in the PRINT# list causes 10 extra spaces in the
disk file. Generally you wouldn’t want to use up disk space this way, so you
should use semi-colons instead of commas.

PRINT®!:A3B
writes the data as:
2300 1,383 (ENTER

PRINT# with numeric data is quite straightforward — just remember to separate
the items with semi-colons.

PRINT# with string data requires more care, primarily because you have to insert
delimiters so the data can be read back correctly. In particular, you must
separate string items with explicit delimiters if you want to INPUT# them as
distinct strings.

For example, suppose:

A$="JOHN @, DOE" and B$="180-01-001"
Then:

PRINT#1, A%$3B%$

would produce this image on disk:

JOHN @, DOE10Q-01-001

which could not be INPUT back into two variables.

The statement:

132

DISK BASIC
-}

PRINT#1, A$:","3B%

would produce:

JOHN @, DOE,y 100-21-081

which could be INpPUT# back into two variables.

This method is adequate if the string data contains no delimiters — commas or
(ENTER) — characters. But if the data does contain delimiters or leading blanks
that you don’t want to ignore, then you must supply explicit quotes to be written
along with the data. For example, suppose A$="D0OE+ JOHN Q." and B$="100
-p1-@21"

If you use

PRINT#1{,A$3","iB%

the disk image will be:

DOEs JOHN Q.,1280-01-201

When you try to input this with a statement like
INPUT#Z +n% :B4%

As will get the value DOE, and B$ will get JOHN Q. — because of the comma after
DOE in the disk image.

To write this data so that it can be input correctly, you must use the CHRS
function to insert explicit double quotes into the disk image. Since 34 is the
decimal ascn code for double quotes, use CHR$(34) as follows:

PRINT#1,CHR$(34) A% CHR$(34) iB%
this produces the disk image

"DOEs JOHN Q,"100-01-201
which can be read with a simple
INPUT#Z :A%B%

Note: You can also use the cHRrs$ function to insert other delimiters and control
codes into the file, for example:

CHRS$(10) (#) Line Feed
CHRS$(13) carriage return ((ENTER)character)
CHRS$(11) Or CHR$(12) line-printer top-of-form

USING Option

This option makes it easy to write files in a carefully controlled format.
For example, suppose:

As="LUDWIG"

133

TRS-80 MODEL lll DISK SYSTEM

Be="UAN"
C$="BEETHOVEN®

Then the statement

PRINT#1,USING" V. I, % Z"30%:B%:iC%
would write the data in nickname form:
L+V,BEET {ENTER:

(In this case, we didn’t want to add any explicit delimiters.) See the PRINT USING
description in the LEVEL 11 BASIC Reference Manual for a complete explanation of
the field-specifiers.

Random Access Statements

FIELD
Organize a Random File-Buffer into Fields

Before FIELDIng a buffer, you must use an OPEN statement to assign that buffer
to a particular disk file (you must use random access mode). Then use the FIELD
statement to organize a random file buffer so that you can pass data from Basic
to disk storage and vice-versa.

Each random file buffer has up to 256 bytes which can store data for transfer
from disk storage to BASIC or from BASIC to disk. (When variable-length files are
used, maximum may be from 1 to 256.) However, you need a way to access this

IIIIIIIIIIlIIIIIIlIIIIIllIIIlIIIIlIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

134

DISK BASIC
R

buffer from BASIC so that you can either read the data it contains or place new
data in it. The FIELD statement provides the means of access.

You may use the FIELD statement any number of times to *‘re-organize’’ a file
buffer. FIELDiIng a buffer does not clear the contents of the buffer; only the
means of accessing the buffer (the field names) are changed. Furthermore, two
or more field names can reference the same area of the buffer.

Examples
FIELD 1, 128 AS A%, 128 AS B%

This statement tells BASIC to assign the first 128 bytes of the buffer to the string
variable As and the remaining 128 bytes to Bs$. If you now print A$ and B$, you

will see the contents of the buffer. Of course, this value would be meaningless

unless you have used GET to read a 256-byte record from disk.

Note: All data— both strings and numbers — must be placed into the buffer in
string form. There are three pairs of functions (MKI$/CVI,MKS$/CVS,MKD$/CVD)
for converting numbers to strings and vice-versa. See ‘‘Functions’’ below.

FIELD 3+ 16 AS NM$, 25 AS AD%, 10 A5 C¥4, 2 AS BT$:7 AE ZP%

The first 16 bytes of buffer 3 are assigned the buffer name nMs; the next 25,
ADS; the next 10, cys; the next 2, sT$ and the next 7, zps. The remaining 196
bytes of the buffer are not fielded at all.

More on field names

Field names, like NM$,AD$,CY$,ST$, and ZzP$, are not string variables in the
ordinary sense. They do not consume the string space available to BASIC.

Instead, they point to the buffer field which you assigned with the FIELD
statement. That’s why you can use:

180 FIELD 1235 AS A%
without worrying about whether 255 bytes of string space are available for As.

If you use a buffer field name on the left side of an ordinary assignment
statement, that name will no longer point to the buffer field; therefore, you
won’t be able to access that field using the previous field name.

For example,
A$=B%
nullifies the effect of the FIELD statement above (line 100).

During random input, the GET statement places data into the 255-byte buffer,

where it can be accessed using the field names assigned to that buffer. During
random output, LSET and RSET place data into the buffer, so you can then puT
the buffer contents into a disk file.

135

TRS-80 MODEL Ill DISK SYSTEM

Often you’ll want to use a dummy variable in a FIELD statement to ‘pass
over’’ a portion of the buffer and start fielding it somewhere in the middle.
For example:

FIELD 1+ 1B AS CLIENT$(1), 112 AS HIST$(1)

FIELD 1+ 128 AS DUMMY$, 1B AS CLIENT$(Z2), 112 AS HIST$(2)

In the second FIELD statement, DUMMY$ serves to move the starting position of
CLIENTS$(2) to position 129. In this manner, two identical ‘‘subrecords’’ are

defined on buffer number 1. We won’t actually use bUMMYS to place data into
the buffer or retrieve it from the buffer.

The buffer now looks like this:

16 112 16 112
CLS HISTS CL$ HIST$
(1) (1) ())

DUMMY$

GET
Read a Record from Disk— Random Access

This statement gets a data record from a disk file and places it in the specified
buffer. Before GETting data from a file, you must open the file and assign a
buffer to it. That is, a statement like:

OPEN R ,nmexpl filespec
is required before the statement:
GET nmexpl,nmexp2

GET tells BASIC to read record nmexp2 from the file and place it into the nmexpl
buffer. If you omit the record number in GET, BASIC will read the current record.

136

DISK BASIC
-]

The “‘current record’’ is the record whose number is one higher than that of the
last record accessed. The first time you access a file via a particular buffer, the
current record is set equal to 1.

For example:

Program statement Effect

1000 OPEN*‘R”.1,"' NAME/BAS” Open NAME/BAS for random access
using buffer 1

1010 FIELD 1, ... Structure buffer

1020 GET 1 GET record 1 into buffer 1

1025 REM... ACCESS BUFFER

1030 GET 1,30 GET record 30 into buffer 1

1035 REM... ACCESS BUFFER

1040 GET 1,25 GET record 25 into buffer 1

1046 REM... ACCESS BUFFER

1050 GET1 GET record 26 into buffer 1

[f you are using variable-length records (not fixed-length), an attempt to GET
past the end of file will produce an error.

If you are using fixed-length records, the same attempt will return a null record
and no error will occur. To prevent this from occurring, you can use the LOF
function to determine the number of the highest numbered record.

PUT
Write a Record to Disk— Random Access

This statement moves data from a file’s buffer into a specified place in the file.
Before puTting data in a file, you must:

1. OPEN the file, thereby assigning a buffer and defining the access mode (must
be R);

137

TRS-80 MODEL Ill DISK SYSTEM

2. FIELD the buffer, so you can
3. place data into the buffer with LSET and RSET statements.
When BASIC encounters the statement:
PUT nmexp,nmexp2
it does the following:
* Gets the information needed to access the disk file
» Checks the access mode for this buffer (must be R)
+ Acquires more disk space for the file if necessary to accommodate the record
indicated by nmexp2
» Copies the buffer contents into the specified record of the disk file
« Updates the current record number to equal nmexp2 + 1
The “‘current record’’ is the record whose number is one higher than the last
record accessed. The first time you access a file via a particular buffer, the
current record is set equal to 1.
If the record number you PUT is higher than the end-of-file record number, then
nmexp2 becomes the new end-of-file record number.
S
LSET and RSET
Place Data in a Random Buffer Field
These two statements let you place character-string data into fields previously
set up by a FIELD statement.
For example, suppose NMs and ADs have been defined as field names for a
random file buffer. NMs has a length of 18 characters, and AD$ has a length of
25 characters.
Now we want to place the following information into the buffer fields so it can
be written to disk:
N

138

DISK BASIC
1

name: JIM CRICKET: JR.
address: 2000 EAST PECAN §T.

This is accomplished with the two statements:

LSET NM$="JIM CRICKET»JR, "
LSET AD$="20@0 EAST PECAN ST. "

This puts the data in the buffer as follows:
| JIM CRICKET.JR.] | 2000 EAST PECAN ST, |
NMS$ AD$

Note that filler spaces were placed to the right of the data strings in both cases.
If we had used RSET instead of LSET statements, the filler spaces would have
been placed on the left. This is the only difference between LSET and RSET.

For example:

RSET NM$="JIM CRICKETsJR. "
RSET AD$="2000 EAST PECAN ST, "

places data in the fields as follows:

JIM CRICKET/JR. | (2000 EAST PECAN ST. |
NMS$ AD$

If a string item is too large to fit in the specified buffer field, it is always
truncated on the right. That is, the extra characters on the right are ignored.

CVD, CVI and CVS
Restore String to Numeric Form

139

TRS-80 MODEL Il DISK SYSTEM

5

-4, only the first four ch

These functions let you restore data to numeric form after it is read from disk.
Typically the data has been read by a GET statement, and is stored in a random-
access file buffer.

The functions cvp, cvi, and cvs are inverses of MKD$, MKI$, and MKS$,
respectively.

For example, suppose the name GrOssPAYS references an eight-byte field in
a random-access file buffer, and after GETting a record, GROSSPAYS contains a
MKDS$ representation of the number 13123.38.

Then the statement:

PRINT CUD(GROSSPAY$)-TAXES

prints the result of the difference, 13123.38 — TAXES. Whereas the statement:
PRINT GROSSPAY$-TAXES

will produce a TYPE MISMATCH error, since string values cannot be used in
arithmetic expressions.

Using the same example, the statement
A#=CUD{GROBSPAYS$)

assigns the numeric value 13123.38 to the double-precision variable A#.

EOF
End-Of-File Detector

140

DISK BASIC

This function checks to see whether all characters up to the end-of-file marker
have been accessed, so you can avoid INPUT PAST END errors during sequential
input.

Assuming nmexp specifies an open file, then EOF(nmexp) returns 0 (false) when
the EOF record has not yet been read, and — 1 (true) when it has been read.

Examples

IF EOQF(S) THEN PRINT"END OF FILE"FILENMS$
IF EOF(NMZ) THEN CLOSE NM%

The following sequence of lines reads numeric data from DATA/TXT into the
array A(). When the last data character in the file is read, the EOF test in line
30 “‘passes,” so the program branches out of the disk access loop, preventing
an INPUT PAST END error from occurring. Also note that the variable 1 contains
the number of elements input into array A().

5 DIM A(10@) ‘ASSUMING THIS IS A SAFE VALUE

1@ OPEN "I":1: "DATA/TXT"

20 17=0

30 IF EOF(1) THEN 70

49 INPUT#1.,ACIY)

50 TUh=I%+1

B@ GOTO 3@

70 REM PROGRAM CONTINUES HERE AFTER DISK INPUT

LOC
Get Current Record Number

Loc is used to determine the current record number, i.e., the number of the last
record read since the file was opened. LOC is only valid after a GET.

Example
PRINT LOC(1)

141

TRS-80 MODEL Ill DISK SYSTEM

Sample Program

1312 A$ = "WILLIAM WILSON"

1320 GET 14 ¥ M=}+1

1330 IF N$ = A$ THEN PRINT "FOUND IN RECORD" LOC{1): CLOSE:
END

1340 GOTO 1320

This is a portion of a program. Elsewhere the file has been opened and fielded.
N$ is a field variable. If Ns matches As the record number in which it was found
is printed.

LOF
Get End-Of-File Record Number

This function tells you the number of the last, i.e., highest numbered, record
in a file. It is useful for both sequential and random access.

For example, during random access to a pre-existing file, you often need a
way to know when you’ve read the last valid record. LoF provides a way.

LOF is valid as soon as a previously created file is opened. If a file is extended,
LOF is not valid until a GET is executed.

Examples:

1@ OPEN "R™ 41 ,"UNKNOWN/TXT"
2@ FIELD 1,255 AS A%

38 FORI%=1 TO LOF(1)

40 GET 1,1%

5@ PRINT A%

5@ NEXT

In line 30, LoF() specifies the highest record number to be accessed.

Note: If you attempt to GET record numbers beyond the end-of-file record, BasIC
simply fills the buffer with hexadecimal zeros, and no error is generated.

142

P

P

DISK BASIC

When you want to add to the end of a file, LOF tells you where to start adding:

180 I%=LOF(1)+1 ‘HIGHEST EXISTING RECORD
110 PUT 1.1% "ADD NEXT RECORD

MKD$, MKI$, and MKS$
Convert Data, Numeric-to-String

These functions change a number to a ‘‘string.”” Actually the byte values which
make up the number are not changed; only one byte, the internal data-type
specifier, is changed, so that numeric data can be placed in a string variable.

That is:

MKDS returns an eight-byte string.
MKI$ returns a two-byte string.
MKss returns a four-byte string.

Examples
LSET TALLY$=MKI$(I%)

Field name TALLYS would now contain a two-byte representation of the
integer 1%.

AF=MKI®(8/1)

143

TRS-80 MODEL Il DISK SYSTEM

A$ becomes a two-byte representation of the integer portion of 1. Any
fractional portion is ignored. Note that As in this case ir a normal string
variable, not a buffer-field name.

Suppose BASEBALL/BAT (a non-standard file extension) has been opened for
random access using buffer 2, and the buffer has been FIELDed as follows:

field: NM$ YRS$ AVGS HR$ ABS$ ERNING$
length: 16 2 4 2 4 4

NMs is intended to hold a character string; AVGS, AB$ and ERNINGS, converted
single-precision values; YRS$ and HRs, converted Integers.

Suppose we want to write the following data record:

SLOW LEARNER played 38 years; lifetime batting average .123;
career homeruns, 11; at bats, 32768;...,earnings —13.75.

Then we’d use the make-string functions as follows:

1000 LSET NM$="SLOW LEARNER"
101@ LSET YRS$=MKI$(38)

1020 LSET AVG$=MKS$(,123)

1030 LSET HR$=MKI$(11)

1240 LSET AB$=MKS$(32768)

1@3@ LSET ERNING$=MKS$(-13,75)

After this sequence, you can write sLow LEARNER’S information to disk with
the PUT statement. When you read it back from disk with Ger, you will need
to restore the numeric data from string to numeric form, using VI and cvs
functions.

144

DISK BASIC

Methods of Access

Disk Basic provides two means of file access:

+ Sequential —in which you start reading or writing data at the beginning of
a file; subsequent reads or writes are done at following positions in the file.

+ Random — in which you start reading or writing at any record you specify.
(Random access is also called direct access.)

Sequential access is stream-oriented; that is, the number of characters read or
written can vary, and is usuaily determined by delimiters in the data. Random
access is record-oriented; that is, data is always read or written in fixed-length
blocks called records.

To do any input/output to a disk file, you must first open the file. When you
open the file, you specify what kind of access you want:

» 0 for sequential output

« 1 for sequential input

» R for random input/output

« £ (Extend) for sequential output starting at the end of file.

You also assign a file buffer for BASIC to use during file accesses. This number
can be from 1 to 15, but must not exceed the number of concurrent files you
requested when you started Basic from TRsDOs. For example, if you started
BASIC with 3 files, you can use buffer numbers 1, 2, and 3. Once you assign a
buffer number to a file, you cannot assign that number to another file until you
Close the first file.

Examples
OPEN "0", 1, "TEST"

Creates a sequential output file named TEST on the first available drive; if TEST
already exists, its previous contents are lost. Buffer 1 will be used for this file.

OPEN "I", 24 "TEST®
Opens TEST for sequential input, using buffer 2.
OPEN "R"s 1y "TEST"

Opens TEST for direct access, using buffer 1. If TEST does not exist, it will be
created on the first available drive. Since record length is not specified, 256-byte
records will be used.

OPEN "R"s 1, "TEST", 40
Same as preceding example, but 40-byte records will be used.
OPEN "E"s 1 "TEST"

Opens TEST sequentially for write and positions to EOF.

145

TRS-80 MODEL il DISK SYSTEM

Sequential Access

This is the simplest way to store data in and retrieve it from a file. It is ideal for
storing free-form data without wasting space between data items. You read the
items back in the same order in which they were written.

There are several important points to keep in mind.

1.

You must start writing at the beginning of the file. If the data you are seeking
is somewhere inside, you have to read your way up to it.

- Each time you Open a file for sequential output, the file’s previous contents

are lost, unless you use “‘E’” instead of ‘O’ for the mode.

. To update (change) a sequential file, read in the file and write out the updated

data to a new output file.

. Data written sequentially usually includes delimiters (markers) to signify

where each data item begins and ends. To read a file sequentially, you must
know ahead of time the format of the data. For example: Does the file consist
of lines of text terminated with carriage returns? Does it consist of numbers
separated by blank spaces? Does it consist of alternating text and numeric
information?

- Sequential files are always written as ascii-coded text, one byte for each

character of data. For example, the number:

+ 2345
requires 8 bytes of disk storage, including the leading and trailing blanks that
are supplied. The text string:

JOHNSON s ROBERT

requires 15 bytes of disk storage.

- Sequential files are always written with a record length of 256.

Sequential Output: An Example

Suppose we want to store a table of English-to-metric conversion constants:

English unit Metric equivalent
1 inch 2.54001 centimeters
1 mile 1.60935 kilometers
1-acre 4046.86 sq. meters
1 cubic inch 0.01638716 liter
1 U.S. gallon 3.785 liters
1 liquid quart 0.9463 liter
1 Ib (avoir) 0.45359 kilogram

146

DISK BASIC |
O —

First we decide what the data image is going to be. Let’s say we want it to look
like this:

english unit % metric unit, factor

For example, the stored data would start out:
IN-*CM, 2,54001 (ENTER

The following program will create such a data file.

Note: x°0D’ represents a carriage return.

19 OPEN "0",1,"METRIC/TRKT"

20 FOR I%=1 TO 7

30 READ UNIT$: FACTR

40 PRINT#1, UNIT®: "»"5 FACTR

3@ NEXT

G@ CLOSE

70 DATA IN->CM, 2.54081, MI->KM, 1,60935, ACRE->SG.KM,
4@845.86 E-B

80 DATA CU,IN->LTR, 1.63B718E-2+ GAL->LTRs 3,785
9p DATA LIG.OT->LTR, 0.3483, LB->KG,» 0.,45359

Line 10 creates a disk file named METRIC/TXT, and assigns buffer 1 for sequential
output to that file. The extension /TXT is used because sequential output always
stores the data as ascl-coded text.

Note: If METRIC/TXT already exists, line 10 will cause all its data to be lost.
Here’s why: Whenever a file is opened for sequential output, the end-of-file
(EOF) is set to the beginning of the file. In effect, TRsDOs ‘‘forgets’” that
anything has ever been written beyond this point. To avoid this, you could use E
instead of 0 in line 10.

Line 40 prints the current contents of UNIT$ and FACTR to the file. Since the
spring items do not contain delimiters, it is not necessary to print explicit quotes
around them. The explicit comma is sufficient.

Line 60 closes the file. The EOF is at the end of the last data item, i.e., 0.45359,
so that later, during input, BAsIC will know when it has read all the data.

Sequential Input: An Example

The following program reads the data from METRIC/TXT into two *‘parallel”
arrays, then asks you to enter a conversion problem.

5 CLEAR 3520

1@ DIM UNIT$(9)s FACTR(S) ‘allows for up to 18 data pairs
20 OPEN"IY 1 +"METRIC/THT"
25 1%=0

30 IF EOF(1) THEN 7@
49 INPUT#i,» UNIT$(I%) FACTR(IZ)

147

TRS-80 MODEL lli DISK SYSTEM
S

50 Ih=1%+1

6@ GOTOD 3@

7¢ CLOSE ‘ Conversion factors have been read-in

100 CLS: PRINT TAB(S)"*%% Endglish to Metric Conversions *##"

11@ FOR ITEMY%=0 TO I%-1

120 PRINT TAB(S)SUSING" (##) 7 7 "IITEMY
UNIT$(ITEMZ)

130 NEXT

142 PRINT @ 784+ "Which conversion (B-8)"3

150 INPUT CHOICEY

16@ INPUT"Enter Endlish aquantity";jy

17@ PRINT"The Metric eauivalent is" U¥FACTR(CHGICEY)

180 INPUT"Press <ENTER> to continue"j¥

188 PRINT @8 7844+ CHR$(31) ‘elear to end of frame

200 GOTO 140

Line 20 opens the file for sequential input. Input begins at the beginning of
the file.

Line 30 checks to see that the end-of-file record hasn’t been reached. If it has,
control branches from the disk input loop to the part of the program that uses
the newly acquired data.

Line 40 reads a value into the string array UNIT$(), and a number into the
single-precision array FACTR(). Note that this INPUT list parallels the PRINT# list
that created the data file (see the section *‘Sequential Output: An Example’’).
This parallelism is not required, however. We could just as successfully have
used:

4@ INPUT#1, UNITS$(IZ): INPUT#1,FACTR(IY)

How to update a file

Suppose you want to add more entries into the English-Metric conversion file.
You could simply re-Open the file with mode = E and PRINT# the extra data.
Or, you might want to leave the old file intact and output a new file:

. Open the file for sequential input (Mode = 1)

. Open another new data file for sequential output (Mode = o)

1
2
3. Input a block of data and update the data as necessary
4. Output the data to the new file

5

- Repeat steps 3 and 4 until all data has been read, updated, and output to the
new file; then go to step 6

6. Close both files

148

DISK BASIC
)

Sequential Line Input: An Example

Using the line-oriented input, you can write programs that edit other BASIC
program files: renumber them, change LPRINTS to PRINTS, etc. —as long as these
“‘target’’ programs are stored in AscII format.

The following program counts the number of lines in any Asci— format BASIC
disk file with the extension /TXT.

12 CLEAR 300

20 INPUT"WHAT IS THE NAME OF THE PROGRAM"3 PROGS

30 IF INSTR(PROGS,"/TKT")=0 THEN 11@ ‘resuire /TXT extension
4@ OPEN"I". 1, PROGS

50 I%=0

6@ IF EOF(1) THEN S0

70 Ii=I%+1: LINE INPUT#1, TEMP$

80 GOTO GO

9@ PRINT PROG$" IS" I% "LINES LONG."

19@ CLOSE: GOTO 20

11@ PRINT "FILESPEC MUST INCLUDE THE EXTENSION ‘/TXT'"
120 GOTO 20

For BAsIC programs stored in ASCII, each program line ends with a carriage
return character not preceded by a line feed. So the LINE INPUT in line 70
automatically reads one entire line at a time, into the variable TEMPS$. Variable
1% actually does the counting.

To try out the program, first save any BASIC program using the A (AscII) option
(See save). Use the extension /TXT.

149

TRS-80 MODEL IIl DISK SYSTEM

Random Access Techniques

Random access offers several advantages over sequential access:

* Instead of having to start reading at the beginning of a file, you can read any
record you specify.

* To update a file, you don’t have to read in the entire file, update the data, and
write it out again. You can rewrite or add to any record you choose, without
having to go through any of the other records.

* Random access is more efficient — data takes up less space and is read and
written faster.

* Opening a file for direct access allows you to write and read from the file via
the same buffer.

* Random access provides many powerful statements and functions to structure
your data. Once you have set up the structure, direct input/output becomes
quite simple.

The last advantage listed above is also the ‘‘hard part’’ of direct access. It takes
a little extra thought.

For the purposes of direct access, you can think of a disk file as a set of boxes
— like a wall of post-office boxes. Just like the post office receptacles, the file
boxes are numbered. We call these boxes ‘‘records.”’

You can place data in any record, or read the contents of any record, with
statements like:

FUT 1:5 write buffer-1 contents to record 5
GET 1,5 read the contents of record 5 into buffer-1

In Figure 14, we assume a record length of 256.

(385 | (39%s) | (8284)l(238)] (238
#6 #7 | #8
(avres)|(eres) | (Saes)

| 42 | 43 | s o5

“PUT1,5”

256 | 256)
3 TES BYTES
sl EZ

RECORDS IN DISK FILE 1/0 BUFFERS IN RAM

“GET 15"

Figure 14. GeT and puT.

“

150

DISK BASIC |
o

The buffer is a waiting area for the data. Before writing data to a file, you must
place it in the buffer assigned to the file. After reading data from a file, you
must retrieve it from the buffer.

As you can see from the sample PUT and GET statements above, data is passed to
and from the disk in records. The size of each record is determined by an Open
statement.

Storing Data in a Buffer

You must place the entire record into the buffer before putting its contents into
the disk file.

This is accomplished by 1) dividing the buffer up into fields and naming them,
then 2) placing the string or numeric data into the fields.

For example, suppose we want to store a glossary on disk. Each record will
consist of a word followed by its definition. We start with:

10@ OPEN"R"» 1+ "GLOSSARY/BAG"
110 FIELD 1+ 16 AB WD%, 248 AS MEANINGS

Line 100 opens a file named GLOSSARY/BAS (creates it if it doesn’t already exist);
and gives buffer 1 direct access to the file.

Line 110 defines two fields onto buffer 1:

wWD$ consists of the first 16 bytes of the buffer;
MEANINGS$ consists of the last 240 bytes.

wDs$ and MEANINGS are now field-names

What makes field names different? Most string variables point to an area in
memory called the string space. This is where the value of the string is stored.

Field names, on the other hand, point to the buffer area assigned in the FIELD
statement. So, for example, the statement:

18 PRINT WD#3 ":"§3 MEANINGS
displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer. LSET, RSET
and GET can all be used to accomplish this function. We’ll start with LSET and
RSET, which are used in preparation for disk output.

Our first entry is the word *‘left-justify’” followed by its definition.

180 OPEN"R"s 1, "GLOSSARY/BAG"

110 FIELD 1, 16 AS WD%, 240 A5 MEANINGS

120 LSET WD$="LEFT-JUSTIFY"

138 LSET MEANING$="TO PLACE A VALUE IN A FIELD FROM LEFT TO
RIGHT: IF THE DATA DOESN’'T FILL THE FIELD: BLANKS ARE
ADDED ON THE RIGHT: IF THE DATA IS T0O LONG, THE EXTRA

151

TRS-80 MODEL Ili DISK SYSTEM

CHARACTERS ON THE RIGHT ARE IGNORED., LSET IS & LEFT-
JUSTIFY FUNCTION,"

Line 120 left-justifies the value in quotes into the first field in buffer 1. Line 130
does the same thing to its quoted string.

Note: rRseT would place filler-blanks to the left of the item. Truncation would
still be on the right.

Now that the data is in the buffer, we can write it to disk with a simple pUT
statement:

140 PUT 1,1
139 CLOSE

This writes the first record into the file GLOSSARY/BAS.
To read and print the first record in GLOSSARY/BAS, use the following sequence:

180 OPEN“R", 1, "GLOSSARY/BAS"

170 FIELD 1+ 16 AS WD%, 240 AS MEANINGS
180 GET 1.1

180 PRINT WD%$: PRINT MEANINGS

<88 CLOSE

Line 160 and 170 are required only because we closed the file in line 150. If we
hadn’t closed it, we could go directly to line 180.

152

DISK BASIC |
[

Random Access: A General
Procedure

The previous example shows the necessary sequences to read and write using
random access. But it does not demonstrate the primary advantages of this form
of access — in particular, it doesn’t show how to update existing files by going
directly to the desired record.

The program below, GLOSSACC/BAS, develops the glossary example to show
some of the techniques of random access for file maintenance. But before
looking at the program, study this general procedure for creating and
maintaining files via random access.

Step See GLOSSACC/BAS,
Line Number

1. Open the file 110

2. Field the buffer 120

3. Get the record to be updated 140

4. Display current contents of the record (use 145-170
CVD, CVI, CVS before displaying numeric
data)

5. LSET and RSET new values into the fields 210-230
(use MKD$, MKI$, MKS$ with numeric data
before setting it into the buffer)

6. PUT the updated record 240

7. To update another record, continue at step 3. 250-260
Otherwise, go to step 8.

8. Close the file 270

10 REM +4vvsv GLOSSACC/BAS 44

160 CLS : CLEAR 300

11@ OPEN "R"» 1y "GLOSSARY/BAG"

120 FIELD 1, 16 AS WD%: Z3B AS MEANING®, 2 A5 NX$
130 INPUT "WHAT RECORD DO YOU WANT TO ACCESS"§ RY
14@ GET 1.+ RY%

145 NX% = CUI(NX$) "SAVE LINK TO NEXT ALPHABETICAL ENTRY

15@ PRINT "WORD : "WD$

1B@ PRINT "DEF'N : " : PRINT MEANINGS

170 PRINT "NEXT ALPHABETICAL ENTRY: RECORD #:" NRX%L : PRINT

180 W = "* ¢ INPUT "TYPE NEW WORD <{ENTER: OR <ENTER> IF OK"ji
W%

190 D$ = *" 1 PRINT "“TYPE NEW DEF'N <ENTER> OR <ENTER:> IF

OK?" ¢ LINE INPUT D%
200 INPUT "TYPE NEW SEQUENCE NUMBER OR <ENTER:» IF OK"3 NXZ
210 IF W$ <% "" THEN LSET WD$ = W%
220 IF D% < "" THEN LSET MEANINGS = D%

153

TRS-80 MODEL Ill DISK SYSTEM

230 LSET NX$ = MKI$® (NXL)

248 PUT 1 R%

245 RA = NXY ‘UBE NEXT ALPHA. LINK AS DEFAULT FOR NEXT RECORD

258 CLS & PRINT * TYPE <ENTER* TO READ NEXT ALPHA. ENTRY:":
PRINT" OR RECORD % <{ENTER» FOR SPECIFIC ENTRY": INPUT "
OR @ <ENTER:> TO QUIT"3Y RY

260 IF B<R% THEN 140

278 CLOSE

280 END

Notice we’ve added a field, Nxs, to the record (line 120). Nx$ will contain the
number of the record which comes next in alphabetical sequence. This enables
us to proceed alphabetically through the glossary, provided we know which
record contains the entry which should come first.

For example, suppose the glossary contains:

pointer to next
record# word (WDS$) defn, alpha. entry (NX$)
1 LEFT-JUSTIFY 3
2 BYTE 4
3 RIGHT-JUSTIFY 0
4 HEXADECIMAL 1

When we read record 2 (BYTE), it tells us that record 4 (HEXADECIMAL) 1S next,
which then tells us record 1 (LEFT-JUSTIFY) is next, etc. The last entry, record 3
(RIGHT-JUSTIFY), points us to zero, which we take to mean ‘“The End.”

Since Nx$ will contain an integer, we have to first convert that number to a two-
byte string representation, using MKIs$ (line 230 above).

The following program displays the glossary in alphabetical sequence:

300 REM ... GLOSSOUT/BAS ...

310 CLS : CLEAR 388

320 OPEN "R", 1, "GLOSSARY/BAS"

330 FIELD 1y 16 AS WD4%$, 238 AS MEANING$, 2 AS NX%
340 INPUT "WHICH RECORD IS FIRST ALPHABETICALLY™"™S NY
358 GET 1+ NZ

362 PRINT : PRINT WD%$

378 PRINT MEANINGS

388 NZL = CUI(NX$)

390 INPUT "PRESS <ENTER* TO CONTINUE": X

4e® IF N% <> B THEN 35@

418 CLOSE

42@ END

154

Disk BASIC Error Codes/Messages

51
52
53
54
55
58
62
63
64
65
67
68
69
70

Note: Disk errors cannot be simulated via the ERROR statement.

Field overflow
Internal error

Bad file number
File not found

Bad file mode
Disk ro error

Disk full

Input past end

Bad record number
Bad file name
Direct statement in file
Too many files
Disk write-protect
File access

DISK BASIC

155

