=

Part III/ Appendices

Appendix Page
A/ Job Control Languageccooiiiiiinn... A-3
B/ Model 4 Hardwareo, A-35
C/ Character Codescovviiiii i A-45
D/ Error Messages and Problems A-61
E/ Converting TRSDOS Version 1 BASIC Programs to

TRSDOS Version 6 BASIC Programs............ A-75
F/ BASIC Keywords and Derived Functions............. A-79
G/ BASIC Worksheets it A-83
H/ Glossary A-85
I/ TRSDOS Programs.ooiiiiiiiiiiniiiiennnns A-91
J/ BASICMemory Map. ..., A-101
K/ Using The Device-Related Commands............... A-103
L/ HERZS0. ... e A-107
M/ Backup Limited Diskettes., A-109

>
o
rd
v
Z
>
0
v
wn

Appendix A/ Job Control Language

The TRSDOS Job Control Language (JCL) is one of the most
powerful features of TRSDOS. It consists of:

e TRSDOS commands
e Macros
® Special symbols

You can use JCL to make your computer more “user friendly.” That
is, you can write JCL programs that perform a variety of functions,
such as FORMAT and BACKUP, and have TRSDOS execute these
functions when the user types in one command line.

If you have read the entries on the BUILD and DO commands, you
know how to create a JCL file composed of TRSDOS commands.
You can make this file more powerful by utilizing macros and other
features of JCL. This section describes how.

The steps for creating and using a JCL file are:

1. Create a JCL file consisting of TRSDOS commands, macros, or
special symbols. You can do this with the BUILD command,
SCRIPSIT, or a BASIC program.

2. Execute the JCL file with the DO command. This causes the JCL
processor to:

e Take control of the keyboard (for line input)

e Read a line in the DO file exactly as if it came from the
keyboard

e Return control of the keyboard to the user when it reaches the
last line.

The following sections give complete information on all the JCL
features:

e Simple JCL Execution
e Simple JCL Compiling
e Advanced JCL Compiling

A-3

Simple JCL Execution

This section lists the execution macros and gives examples on how to
create and run a JCL file.

Creating a JCL File

A JCL file contains characters normally available from the keyboard
(ASCII characters).

There are several ways to create a JCL file: the BUILD library
command lets you create or extend a JCL file, but it does not let you
edit an existing file. You can create and edit a JCL file with a BASIC
program. A word processing system, such as SCRIPSIT, will also let
you create or edit a JCL file.

Restrictions of JCL

e A JCL file line cannot be longer than 79 characters. Depending on
the JCL method used (execute only or compile), JCL either ignores
all characters after the 79th or aborts the processing entirely.

e Any program or utility with unpredictable prompts will not function
properly when run from a JCL file.

® Any program or utility which requires removing the system disk
causes the JCL to abort.

® You cannot execute certain TRSDOS library commands and utilities
from a JCL file. The commands and utilities NOT valid from a JCL
file are : certain BACKUP commands, BUILD, certain CONV
commands, all (X) commands, DEBUG, certain PURGE
commands, SYSGEN, and SYSTEM (SYSTEM =) command.

® As a general rule, you should not use a library command or utility
when you specify the QUERY parameter.

Table 1/ Execution Macros

Macro Group

Group

Description

Macros

Macro
Description

Execution
Comment

.Comment

Displays a comment on
the screen during
execution. Comments
are written to
SYSTEM/JCL.

Termination
Macros

Terminate
execution.

/{ABORT

HEXIT

//ISTOP

Stops execution,
displays "“Job aborted”.
Returns to TRSDOS or
BASIC Ready.

Stops execution,
displays “Job done”.
Returns to TRSDOS or
BASIC Ready.

Stops execution.
Returns control to the
user program.

Pause/Delay
Macros

Provide
special
functions.

//IPAUSE

//DELAY

/WAIT

//SLEEP

Suspends execution and
displays a message.
Suspends execution and
displays a message for
a specified amount of
time.

Suspends execution
depending upon the
setting of the system
clock.

Suspends execution for
a predetermined amount
of time.

Alert
Macros

Provide
video and

audio alerts.

//FLASH

//ALERT

Flashes a message on
the screen a specified
number of times.
Provides an audible
signal to the operator.

Keyboard
Macros

Accept key-
board input.

//KEYIN

MNPUT

Selects predefined
blocks of JCL lines.
Inputs a line of infor-
mation from the
keyboard.

A-5

JCL Execution Macros

A macro is a pre-defined JCL instruction. /ABORT is an example of a
macro symbol. Macro symbols must start at the first character position
in the line. An execution macro cannot be the first line in a JCL
file.

The JCL execution macros are:

//ABORT

Use this macro to exit a JCL procedure (if an error is encountered)
and return to the program that initiated the DO command.

Your system returns you to the calling program if your JCL processing
logic detects an error. The following message:

Job aborted

is displayed when an error is encountered.

//BLERT |[(Jtone,silence,tone,silence, . . .[)]

Use this macro to produce tones to the operator. //ALERT can
generate up to eight different tones using the sound generator inside
the computer.

You could use this macro to signify the end of a large JCL procedure.
it could also be used during the execution of a procedure to bring
attention to a specific process.

Tone is controlled by a number ranging from 0 - 7, with 7 producing
the lowest tone and 0 producing the highest tone.

The tone is followed by a period of silence which you select with a
second number ranging from 0 - 7, with 7 producing the longest
period of silence and @ producing the shortest period of silence. Tone
and silence must be entered as number pairs (for example, “1,0").
You can enter as many number pairs as can fit on one line.

You can repeat the tone-silence sequence by enclosing the entire
string in parentheses. The sequence keeps repeating until you press
ENTER), which continues execution of the JCL. Pressing (BREAK) aborts
the JCL.

Any value entered (for tone or silence) is used in its modulo 8 form.
That is, if you enter the number 8, a zero value is assumed. For
example, the value 10 produces the tone assigned to 2.

//DELAY duration

The //DELAY macro provides a definite timed pause with execution
automatically continuing at the end of the delay. The actual delay will

be approximately 0.1 second per count. The count ranges from 1 to

256. Thus, a delay of from 0.1 second to 25.6 seconds is possible. —

A-6

You could use the /DELAY macro to suspend execution long enough
for you to make sure the printer is ready to print.

The execution time of a /DELAY macro will vary slightly according to
the speed TRSDOS is running under (FAST or SLOW). See the
SYSTEM library command.

//EXIT

Use this macro to halt execution of JCL processing and return to the
program that initiated the DO command.

If you do not enter a termination macro in a JCL file, the JCL
processing terminates when it reaches the end of the file (as if /EXIT
were the last line in the JCL file). The following message is displayed:

Job downe
This message indicates a normal conclusion of the JCL file.

You should use //EXIT if the conclusion of the JCL file also represents
the conclusion of the job that is running. So, /EXIT can be used to
conclude a program that does not require any more keyboard input,
and needs to return to TRSDOS Ready or BASIC Ready after it
finishes.

To conclude a program that requires additional keyboard input, use
the //STOP macro. Using the /EXIT macro would terminate the
program.

//IFLASH [duration] message

This macro flashes message on and off the video screen. duration is
the number of times the message will flash and can be any number
from 0 to 255. If duration is not specified, the message flashes 256
times. The message is any comment that you want displayed (up to
72 characters).

//KEYIN [comment string|

Use this macro to prompt for a single character entry (0 - 9), with the
entire /KEYIN line being displayed.

During execution, press the appropriate character (0 - 9) to select the
corresponding execution block in a JCL file. There can be up to ten
execution blocks in a JCL file, each tagged with // and a number 0 - 9.

Do not use /KEYIN to enter data at execution time. If you do need to
enter data at execution time, use the /INPUT macro.
//INPUT [message string|

Use this macro to input a line from the keyboard during JCL
execution. With this macro, control of the keyboard is temporarily

A-7

returned to the operator. Now, any command can be typed on the
keyboard and then passes to the system.

The number of characters allowed in the input line depends on where
the JCL execution is when the /INPUT is encountered. For example,
if the JCL is executing at the TRSDOS Ready level, then you can
enter up to 80 characters, the same as for a normal TRSDOS
command. If the //INPUT is encountered after going into BASIC, then
you can enter up to 255 characters.

When you use the /INPUT macro, you should exercise some caution
to assure that the command typed in is valid at the level it will be
executed. For example, if you enter a program name incorrectly, the
error message “Program not found” is displayed and the JCL
execution aborts.

//PAUSE [message string]

When this macro is encountered in an executing JCL file, it is
displayed on the screen along with a message. You can use the
message to inform the operator why the pause was ordered. Press
to resume JCL execution, or press to abort the JCL.

The //DELAY, /WAIT, and /SLEEP macros are similar to the
//PAUSE macro, and are used to give JCL execution a specific delay
period.

//ISLEEP hh:mm:ss

Use this macro to put the system “to sleep” for the amount of time
you specify.

//SLEEP adds the specified time to the current system time and waits
until that time to begin or resume execution.

Suppose you have two programs that begin execution every morning
at 10 o’clock and each program runs for two hours. You could
execute the first program and have the //SLEEP macro “halt”
execution of the second program for an hour lunch break. After the
system “sleeps” for the specified hour, the second program is
executed.

/ISTOP

Use this macro to halt execution of a JCL file and return keyboard
control to the applications program that requests additional keyboard
input.

If you do not use the //STOP macro, you automatically return to
TRSDOS Ready or BASIC Ready. You can also use the //ABORT
and /EXIT macros to force an end to the JCL execution and return to
TRSDOS Ready or BASIC Ready.

A-8

//WAIT hh:mm:ss

The //WAIT macro is similar to /DELAY, except that the length of the
delay depends on the setting of the system clock.

The //WAIT macro puts the entire system in a “sleep” state until the
system clock matches the time you specified.

You can set the system clock with the TIME library command. You
can also set the time from a JCL file by using a direct execution of
the TIME library command, or with the //INPUT macro. Set the clock
in the format hh:mm:ss.

Examples
The easiest JCL file to understand is one containing only commands.

Use the BUILD command to create the following JCL file named
START/JCL:

DEVICE
FREE

If you issue a DO = START command (see the DO library
command), your computer displays the device table, lists free space
information about all enabled drives, and returns to TRSDOS Ready.

Because an execution macro cannot be the first line in a JCL file,
you could use an execution comment to display an informative
message as the JCL file begins to execute. An execution
comment begins with a period, which must be in the first
character position of the line. You could label START/JCL as
follows:

+ This Prodram executes the DEVICE and FREE
commands .

DEVICE

FREE

[/EXIT

This comment describing the file’s purpose is displayed when the JCL
executes. It shows the file’s purpose. Notice that we added the
termination macro /EXIT.

You can use the /PAUSE macro in START/JCL as follows:

+ This prodram executes the DEVICE and FREE
library commands.

//PAUSE Be sure the correct diskK is in Drive 9!
DEVICE

FREE

//EXIT

A-9

This example suspends the JCL before DEVICE executes, so you c¢an
be sure that the correct disk is in Drive 0. Press (ENTER) to continue
the JCL.

You can use the /DELAY macro if you want to display an informative
message to the operator. For example:

, BE SURE THAT THE PRINTER IS5 TURNED ON!

//DELAY 5@
DEVICE (P)
FREE (P)
FTEXTT

This example displays the above informative message and delays
execution for approximately 5 seconds. After the delay, it executes
DEVICE and FREE.

If you want your system to execute START/JCL at a certain time of
the day, use the /WAIT macro as follows:

. This Pprodram runs at 2:15 a.m.,
//WALT 22:13:00

DEVICE

FREE

J/EXRIT

This example displays the comment and then waits until the system N
clock matches the time of 02:15:00 specified in the /WAIT macro. It

would then execute DEVICE and FREE, and return to TRSDOS

Ready.

, This Pprodgram runs after a two-hour Pause.
//SLEEP 02:00:00

DEVICE

FREE

/TEXIT

This example displays the comment and then “sleeps” for two hours.
It then executes DEVICE and FREE, and returns to TRSDOS Ready.

To use the //FLASH macro, modify START/JCL as follows:

. This Pprodram executes the DEVICE and FREE
commands .

DEVICE

//FLASH 19 Startindg execution of FREE

FREE

J/EXIT

After DEVICE executes, the /FLASH line is displayed. It flashes on
and off 10 times, as specified by the duration count. You can press
to stop the flash and proceed to the next line. Pressing (BREAK)
while the message is flashing aborts the JCL and displays the
message “Job Aborted”.

You can modify START/JCL to show several uses of /ALERT:

« This prodram shows several uses of //ALERT.
« TURN TO PAGE 4 AT THE TONE.

//ALERT @0+0 401454+ 4+2

+ PRESS ENTER TO BEGIN EXECUTION.

//ALERT (140470}

DEVICE

FREE

//EXIT

The first tone tells you when to turn to page 4. The second tone
repeats until you press (ENTER) to continue execution of the program
or (BREAK) to abort the JCL.

The next example shows how you could build a menu using execution
comments to display different program choices. Using the //KEYIN
macro lets you press a single key to execute the desired program.

+« START/JCL

¢« Program | is FREE :@
¢« Program 2 is FREE

+ Prodram 3 is DEVICE
//REYIN Belect Program: 1 - 3
/71

FREE :0

//EXRIT

/72

FREE

/TEXRIT

/73

DEVICE

//EXIT

/77

There are two new macros used in this example. They are //number
and ///.

//number is used to start a block of lines that corresponds to a value
selected with the /KEYIN macro. This block extends until the next
/Inumber or to the ///.

/Il (the triple slash) is used to mark the end of all //number blocks.
JCL stops looking for a match as soon as it encounters a ///.
Execution continues with the following line.

In the above example, pressing 1, 2, or 3 selects the corresponding
block of lines and runs the appropriate command. If you press a key
other than 1, 2, or 3, all three //number blocks are ignored, and
execution continues with the line after the ///.

JCL Compiling

P

The lines following the /// could contain other command options or an
//ABORT macro to abort the JCL. One possible option could be to let
the operator type in his own command.

Consider the following rewrite of START/JCL that uses the /INPUT
macro to let the operator type in his own command:

+ START/JCL

+ Program 1 is FREE :0

+ Program 2 is FREE

+ Program 3 is DEVICE

//KEYIN Select prodrams 1 - 3
/71

FREE :0

/TEXIT

/72

FREE

//EXIT

//3

DEVICE

FAERIT

/ /7

//INPUT Enter vour own choice of command,
/TEXIT

Now, if you press a key other than 1, 2, or 3 for the //KEYIN, the N
//INPUT line is displayed.

You can also enter information directly into the system at the JCL
level. For example, the //WAIT macro description mentions that you
can set the time for the system clock in the middle of a JCL file.

The following example prompts you to enter the TIME library
command to set the system clock. After you input the time, the /WAIT
macro pauses execution of the JCL file until the clock matches
02:15:00 and then continues execution.

bl

« This prodram runs at 2:13 a.m,

//7INPUT Eviter the TIME command using HH:MM:55 format.
//WALIT @2:15:00

DEVICE

FREE

JAEXIT

The previous section explained how to create and use execute JCL
files. This section describes some basic functions of the JCL compiler
and shows practical examples of JCL files.

N

.

While an execute JCL file is useful, you need to use the compile
phase of JCL for extra features. These extra features are explained in
four parts:

® Compilation Description and Terms
Conditional Decisions

Substitution Fields

Combining Files

Compilation Description and Terms

You can compile and/or execute any JCL file using the DO library
command. If your JCL file contains only execution comments,
commands, or execution macros, then you can completely skip the
compile phase (using the “=" control character with the DO
command).

If, however, your JCL file contains “tokens” or labels, or must make
logical decisions, then you must compile the file before executing it.

The compile phase reads in the JCL file line by line, checking for
directly executable lines, keyboard responses, and execution macros.
The compile phase also evaluates any compilation statements and
writes all resultant lines to a file called SYSTEM/JCL. After the
compile phase completes, control is normally passed to the execution
phase, which executes the SYSTEM/JCL file.

As stated earlier, the JCL works by substituting lines in a file for
keyboard entries. However, when you compile a JCL file, it can
contain more than just a series of executable commands. (After the
compile phase is completed, however, the SYSTEM/JCL file does
contain only executable lines.)

You can include the following statements in a JCL file you intend to
compile:

Directly executable commands (DIR, BASIC, etc.)
Pre-arranged keyboard responses

JCL execution macros (listed in Table 1)

JCL conditional macros (listed in Table 2)

Labels

Another JCL file. When a JCL file “calls” another JCL file,
TRSDOS transfers control to the called file and doesn't return
control to the calling file.

We use several terms when discussing JCL compilation. They are:
1. Token

A token is a string of up to 8 alphanumeric characters. You can
use both upper and lower case letters. Note: There is NO
difference between upper and lower case letters for any JCL
macro, token, or label.

You can use a token (1) as a true/false switch for logical decisions
(see the //IF macro), and (2) as a character string value in
substitution fields (see the SUBSTITUTION FIELDS section).

. Logical operator
The simple logical operators are:

AND (represented by the ampersand symbol “&”)
OR (represented by the plus symbol “+ ")
NOT (represented by the minus symbol “—")

. Label

A JCL label is used to define the start of a JCL procedure, which
allows many small JCL procedures to be combined into one large
file. The format for a label is:

@label

The label can be up to 8 alphanumeric characters long.

A-14

T

Table 2/ Conditional Macros

Group Macro
Macro Group Description Macros Description
Compilation //.Comment Acts like a visual log
Comment of the JCL file because
they are displayed
during compilation.
These comments are not
written to SYSTEM/JCL.
Logical Define con- NF Defines the start of a
Macros ditional conditional block.
“blocks.” //END Defines the end of a
conditional block.
//ELSE Defines the alternative
to a false //IF.
Higher Provide for /ISET Gives a token a logical
Order higher condi- true value.
Logical tional logic /IRESET Gives a token a logical
Macros statements. false value.
//ASSIGN Sets a token’s value to
true and assigns a
character string value
to the token.
Termination /1IQUIT Aborts JCL compiling if
Macro an invalid condition is
detected.
Merge //INCLUDE Merges together two or
Macro more JCL files during

compilation.

A-15

Conditional Decisions

Using /IF, /END, /ELSE

The logical compilation macros (//IF, /END, and //ELSE) are used to
establish logical “blocks™ in a JCL file. When a JCL file is being
compiled, these blocks are evaluated as either true or false.

The //IF macro followed by a token determines if the block is true or
false.

To set a token true, specify it on the DO command line. To set a
token false, do NOT specify it on the DO command line.

These JCL macros produce the following resuits:

1) If token is true . .. 2) If token is false . ..
//IF token //IF token
Include these lines. Idnore these lines.
/ /END / FEND

3) If token is false, perform the alternative . . .

//TF toKen

Igriore these lines.

/ /ELSE

Include these lines, -
/ /END

With this type of logical decision capability, you can create a JCL file
and then pick a course of action by typing in a “DO filespec”
command with different tokens.

Examples
Consider the following JCL file named START/JCL.

« START/JCL for Prodram start-up
SET *#FF to FORMS/FLT

FILTER *PR *FF

//1F PRI

FORMS (CHARS=80)

/ /ELSE

FORMS (CHARS=132)

/ /END

Assume that these are the first lines in a JCL file that begins
execution of an applications program.

To make the //IF PR1 test as true, issue the following DO command:
DO START (PR1) (ENTER
The 80 characters per line is selected.

P

If (PR1) is not specified on the DO command line, then the /IF test is
false and the 132 characters per line is selected.

Using //SET and /RESET

JCL provides the //SET and /RESET macros to reduce the number of
tokens in the DO command line.

One basic use for /SET is to let one token set the value of another.
For example:

//IFKI
//BET P1
//END

This JCL file specifies that if Kl is true, then P1 is set to a true
condition also.

Suppose that the token P2 is already SET and you want to give it a
new value. Consider this example:

//IF K1
//REBET P2
//END

This JCL file specifies that if Kl is true, then P2 is reset to a false
condition.

Consider the JCL file named MENU/JCL;:

¢« MENU/JCL s rewvision 1
SET %FF T0 FORMS/FLT
FILTER *PR *FF

//1F Pt

//RESET P2

FORMS (CHARS=80)

//ELSE

//8ET P2

FORMS (CHARS=132)
//END

If you issue either one of the following commands:

DO MENU (P1) (ENTER
DO MENU (P1,PZ) (ENTER

the //IF macro tests P1 as true; therefore P2 is reset to false, and the
*FF and 80-character mode are applied.

If you issue either one of the following commands:

DO MENU (ENTER
DO MENU (PZ) (ENTER

the //IF macro tests false so the /ELSE macro sets P2 to true and the
132-character mode is applied.

As previously mentioned, the //SET macro can be used to reduce the
number of tokens that have to be entered on the DO command line.
Consider the following SYSOPT/JCL example:

. Establish TRSDOS svystem ortions
//IF ALL

//SET COMM

//8ET PR

//BET SET

//SET SRES

/END

//TF RIALL

//SET COMM

//8ET SET

/ /END

//1F COMHM

set ¥cl to com/dur
setcom (wWword=8)

/ /END

//1F PR

set *¥ff to forms/flt
filter ¥pr *f°f
forms (chars=8@)

/ /END

//IF SET

setkKi {(rate=7)

/ /END

//1F SRES

system (sysres=2)
system (sysres=3)
system (s¥sres=10)
/ /END

This example shows how many different TRSDOS options can be
established with a JCL file. The way it is structured, you can choose
any or all of the options.

If you did not use //SET, you would have to enter four separate
tokens on the DO command line to establish all of the options, as
follows:

DO SY¥SOPT/JCL (COMM,PR,SET,SRES) (ENTER

If you specify “ALL” in the DO command line, COMM, PR, SET, and
SRES are set to true conditions.

If you specify “KIALL" in the DO command line, COMM and SET are
set to true conditions.

Notice the use of upper and lower case. As stated earlier, either
upper or lower case letters can be used in any JCL macro, token, or
label. This is also true when the line is a TRSDOS command, as are
the lower case lines in this example.

A-18

N

T

You can improve the readability of a JCL file by using upper case for
macros and lower case for executable lines, such as TRSDOS
commands, or vice versa.

Using //ASSIGN

JCL provides the //ASSIGN macro to set a token’s logical value true,
and to assign a character string value to a token.

The syntax for the /ASSIGN macro is:
//ASSIGN toKen=character string

character string can consist of up to 32 characters. Any character on
the keyboard is allowed except a double-quotation mark ().

Error Conditions

Any time you use //ASSIGN, there must be at least one character
assigned as a value or the compiling aborts.

Examples

In any of the previous examples that used the //SET macro, the
//ASSIGN macro could have been substituted. The character string
value assigned to the token has no effect on the JCL logic.

In the following example, if the token A is true, the tokens P1, Kl, and
PR are all set to true. This example assigns character string values to
the tokens.

+TEST/JCL

//1F A

//ASSIGN PL1=PROGRAM/BAS
//ABSIGN KI=ALL
//ASSIGN PR=8@

/7END

Using /. Comment and //QUIT

Compilation comments (//. Comment) are not written to the
SYSTEM/JCL file. They are displayed on the screen as they are
encountered during compilation. Thus, they act as a visual status log
of the compile.

The //QUIT macro aborts the compilation stage if the JCL detects an
invalid condition. This macro lets you make sure all needed tokens
are entered before any execution takes place.

A-19

Examples

« START/JCL

spt *¥ff to forms/f1lt
filter *¥pr *ff

forms (lines=G6@)
//1F RI

setki (rate=53)
//ELSE

//+ RATE was not set!
//QUIT

/ /END

JTEXIT

If this JCL file is compiled without the token Kl being entered on the
DO command line, the screen display shows:

//+ RATE was not set!
//QUIT

No actual lines are executed from the SYSTEM/JCL file, because the
compile phase was aborted before completion. The compilation
comment tells the operator why the abort took place.

If you substitute //ABORT for /QUIT in the previous example and then
compile the JCL file without the token Ki, the following lines result:

//+ RATE was not set!
« START/JCL

set *ff to forms/flt
filter *pr *ff

forms {(lines=G@)

Job aborted

The comment line is displayed as the file is being compiled. However,
since //ABORT is an execution macro, the SYSTEM/JCL file finishes
compiling and then executes until it reaches the /ABORT line! The
//QUIT macro should be used in such a case rather than the
//ABORT.

Substitution Fields

One of the most powerful features of the JCL is its ability to substitute
and concatenate (add together) character strings to create executable
lines.

A substitution field is created by placing pound signs (#) around a
token. When the file is compiled, this substitution token is replaced
with its current value, either assigned on the DO command line or
with the //ASSIGN macro.

A-20

T

Examples

« TEST/.JCL

sat *ff to forms/flt
filter ¥pr *ff

forms (chars=#C#)
kasic

run"#pP1&"

//STOP

This example uses two substitution fields: one in the FORMS
command line representing the number of characters, and one in the
RUN command line.

If you issue the DO command:
DO TEST (C=132,P1=PROGRAM1) (ENTER
the lines written to the SYSTEM/JCL file are:

« TEST/JCL

set *#ff to forms/flt
filter *pr *ff

forms (chars=132)
bhasic

run"PROGRAML"

//8TOP

The compile phase substitutes the character string value of the tokens
into the actual command line!

The length of the replacement string does not have to be equal to the
length of the token name between the # signs.

To reduce the number of tokens needed on the DO command line,
and to increase the program options at the same time, use the
//ASSIGN macro as follows:

+ TEST/JCL

//ASSIGN ¢=8¢@
//ASSIGN pl=Prodrami
//IF num2

//ASSIGN c¢=132
//ASSIGN pl=prrodramz
/ /END

set *ff to forms/flt
filter *¥pr *ff

forms (chars=#C#)
bhasic

run"#pPls"

//85TAP

A-21

Specifying NUM2 overrides the 80-character printer filter and
PROGRAM1 defaults. The values of C and P1 are automatically set
with the /ASSIGN tokens inside the //IF conditional block.

Another use for substitution fields is replacing drive numbers.

The following example shows how a FORMAT and BACKUP JCL file
can be structured:

+ FB/JCL sy FORMAT with BACKUP

//PAUSE Insert disk to format in drive #D#
format :#D#%¥ (rname="datal"sa=n,ABS)

backue :#5#% :#D#

FIEXIT

The token D represents the destination drive, and the token S
represents the source drive.

If you enter the command:
DO FB/JCL (S=1.,D=2) (ENTER
the system pauses and prompts you to insert a disk in Drive 2.

Press (ENTER) and the JCL file continues. It formats the disk in Drive 2,
and then it executes the backup command with Drive 1 as the source
drive and Drive 2 as the destination drive.

The substitution fields can be used in message lines and comments
as well as in executable command lines.

Be careful when you want to display a single “#” in a comment or
message. Consider the following example:

//PAUSE Insert a diskK in drive #]

If the JCL file were executed only, this line would be properly
displayed. However, if the JCL were compiled, an error would occur.
For this line to be properly displayed in a compiled JCL, it would have
to be written as:

//PAUSE Insert a disK in drive ##l

Another practical use for substitution fields is copying password
protected files from one drive to another.

¢« MOVE/JCL file transfer
copy prodraml,.#P%#:0 :#D#
copy pProdraml,.#¥P#:9 #D%
corpy Prodram3.#P#:0Q :#D%
copy prodramd,#P#:0 s#D%
/TEXRIT

In this example, a group of files is copied from Drive 0 to a drive
specified in the DO command. Also, you have to supply the proper

A-22

Py

password for the copies to work. If you specify the wrong password,
an error is displayed and the JCL aborts.

Substitution fields can also be concatenated, or added together, to
create new fields. For example:

+ ADD/JCL

copy #F#/8E#:0 :1
copy #F1l#/#E#:0 31
/TEXIT

This example uses two substitution fields, one for the filename and
one for the extension.

If you issue the DO command:
DO ADD (F=850RTE=CMDF1=80RT1) (ENTER
the following SYSTEM/JCL file results after compiling:

« ADD/JCL

copy SORT/CMD:@ :1
copry SORTLI/CMD:@ :1
//EXRIT

As in previous examples, the /IF and /ASSIGN macros could be
used to allow a single token to select the F, F1, and E tokens.

Combining Files

Most of the JCL examples in the previous sections have been very
short. In a practical operating environment, this is often the case.
However, each of these small files is taking up the minimum disk
allocation of one gran and using one directory entry.

To combine small files and save disk space, use the Label feature of
JCL. You can also use the /INCLUDE macro to duplicate a JCL file
inside of another JCL file, without having to retype the lines.

Using /INCLUDE

The //INCLUDE macro is used to merge together two or more JCL
files during the compile phase. The syntax is:

//INCLUDE filesprec
filespec is a JCL file.

This command is similar to specifying the filespec in a DO command
line. However, you cannot enter tokens or other information after the
filespec.

If you need to pass tokens to the included program, they will have to
be established in the program that is doing the //INCLUDE.

A-23

Error Conditions

An //INCLUDE macro CANNQT be the last line in a JCL file. If it is,
an “End of File Encountered” error occurs, and the JCL aborts.

Examples

This example shows two JCL files and the results of the compile
phase. The two JCL files are:

+ TEST1/J4CL . TESTZ/JCL

v comment line 1 « This comment is inecluded
//INCLUDE TESTZ2

v comment line 2

fTEXIT

If you issue the command

DO TEST1 (ENTER
the following SYSTEM/JCL file is produced:

+ TESTiI/JCL

v comment line 1
+ TESTZ2/J4CL

¢« This comment is included
v comment line 2

//EXIT

The compiling starts with the file named in the DO command line. As
soon as the /INCLUDE is reached, all lines in the second JCL file are
processed, and then the compiling returns to the rest of the original
file.

There is no limit to the number of non-nested /INCLUDE macros you
can use, other than having enough disk space for the resulting
SYSTEM/JCL file.

Using JCL Labels

The LABEL feature of JCL allows you to permanently merge together
many small JCL procedures into one large file, and then access those
procedures individually. This saves disk space and directory entry
slots.

Examples

« TEST/JCL label example

BFIRST

+ this is the first Procedure

//exit

BSECOND

« this is the next procedure

B@THIRD

. this is the last rProcedure N

A-24

This file contains three labels. To select any procedure, specify the
label on the DO command line.

The following rules determine how much of a labeled JCL file is
included in the compile phase:

1) If no label is specified on the DO command line, all lines from the
beginning of the file up to the first label are compiled.

2) If a label is specified, compiling includes all lines from the specified
label until the next label or the end of the file is reached.

DOing the TEST/JCL file using the @FIRST label would write the
comment . this is the first procedure” and the /EXIT macro to the
SYSTEM/JCL file for execution. Specifying either of the other labels
would include only the appropriate single comment line.

If you compiled the file without specifying a label in the DO command,
only the initial execution comment “. TEST/JCL label example” would
be written in SYSTEM/JCL.

There is no limit to the size of a labeled procedure. They can range
from one to as many lines as you can fit on your disk. The only
requirement is that a JCL file containing labels must be compiled.

When you use labels in a JCL file, we recommend that you start the
file with a comment line or some executable line other than a label.

Suppose @FIRST is the first line in the following file:

BFIRST
v Print this comment

If you issued a DO command for this file without specifying the
@FIRST label, the compiling phase would receive the first line, see
that it is a label, and quit. Since the compile is complete, the
SYSTEM/JCL file would be executed! And since nothing was written
to SYSTEM/JCL, its old contents are not erased. In other words,
whatever lines had been compiled to the SYSTEM/JCL file from a
previous DO command would now be executed.

Advanced JCL Compiling

The previous section on JCL compiling described the basic uses of
tokens and compilation macros. If you do not understand the JCL
Compiling section, please re-read it. If you actually type in and try the
examples, you will get a better understanding of how to structure a
JCL file for compiling.

This section describes additional features and shows different ways to
accomplish logical decision branching. These additional features are
explained in four parts:

A-25

Using the Logical Operators
Using Nested //IF Macros

Using Nested /INCLUDE Macros
Using the Special % Symbol

Using the Logical Operators

The logical operators used with the //IF macro (AND, OR, and NOT)
specify the type of logical testing, and they are represented as
follows:

AND — ampersand (&)
OR — plus sign (+)
NOT — minus sign (—)

All previous examples of /IF tested the logical truth or falseness of a
token. You can accomplish more complex and efficient testing by
using the logical operators.

Consider the following series of examples using the tokens A and B:

//IF -A
+ include these limes if A is wnot srecified
/ /END
By using NOT (—), you can see if a token is false, which provides
an alternative method to select a block of lines for compiling.
//1F A+B
v include these lines if A or B is specified
/FEND
//1TF ARB
+ include these lines if A and B are specified
/ /END

These examples show how multiple tokens may be tested in a single
//IF statement. The first example is true if either A OR B is true. The
second example is true only if both A AND B are true.

You can use any combination of logical operators in an //IF statement.
The following rules apply:

e The expressions are evaluated from left to right.
e Do not use parentheses because they abort the JCL compiling.
e All logical operators have the same priority.

You can combine the logical operators to test almost any
arrangement of tokens. You can combine the logical operators to set
up default conditions and to check for missing tokens, as the following
examples demonstrate.

A-26

N

+ CHECK/JCL « CHECK1/JCL

//1F -8 //1F -8+-D

//RSSIGN S5=0 /7 You MUST ewnter 8 and D!
/ /END //QUIT

//1F -D //END

//ABSIGN D=2

/ /END

The CHECK example tests S and D individually, and assigns them
default values if they were not true (that is, if they were not specified
in the DO command line).

The CHECK1 example is structured so that both S and D must be
true (specified on the DO command line), or the JCL compiling aborts.

Using Nested //IF Macros

By definition, a conditional block begins with an //IF and concludes
with an //END.

When the /IF evaluates true, the lines between the /IF and the /END
or an //ELSE (if one exists) are compiled. It is also possible to include
other //IF - //END blocks within the main conditional block (called
nesting).

The //ELSE macro provides an alternative course of action in case an
//IF evaluates false. It is also possible to have more //IF - /END
statements following the /ELSE. Refer to the foliowing examples:

« TEST/JCL
//1IF A

¢+ comment 1
//ELSE

//1IF B

+ comment 2
/ /END (ends the //IF B statement)
/ /END {ends the //IF A statement)

If A evaluates true, comment 1 is written out, and the /ELSE is
ignored. If A is false, B is tested. The comment 2 is written out only if
B is true. Notice the two //END macros. There must be one //END for
every //IF.

You can document your own JCL files in the same way that we have
documented these examples.

Documenting //END macros increases the readability of the files,
especially when you edit a file that you have created some weeks (or
months) previously.

A-27

//IF A

« Comment A

//1F B

. Comment B

//1F C

. Comment C

/ FEND (ends Third IF)
/ /END {ends Second IF)
. Comment D

/ /END {ends First IF)

If the first //IF is false, all lines up to the corresponding /END are
ignored.

If the first //IF is true, Comment A and Comment D are written to
SYSTEM/JCL.

If /IF B is true, Comment B is also written to SYSTEM/JCL. If Bis
false, all lines up to the corresponding /END are ignored.

The only time //IF C is considered is if both A and B test true. If C is
true, Comments A through D are written to SYSTEM/JCL.

Although not shown in the example, you can use the logical operators
when nesting /IFs.

Using Nested /INCLUDE Macros

When you use the /INCLUDE macro, the included file can also
contain another /INCLUDE macro. This is called nesting. The
following rules apply:

e The maximum nest level is five active /INCLUDE macros.
e An /INCLUDE macro cannot be the last line in a JCL file.
Example

The following example uses three files to show how the lines in
nested //INCLUDE files are processed:

// NESTQ/JCL

, nested procedure examprle (Nest @)

//INCLUDE nestl

, this is the end of the Primarv JCL (Nest @)
//EXIT

/7. NESTL1/JCL

, this is the first nest (Nest 1)

//INCLUDE nest2

, this is the end of the first nest {Nest 1)

//+ NESTZ/JCL
, this is the second nest (Nest) —

A-28

TN

If you save these JCL files as NESTO/JCL, NEST1/JCL, and
NEST2/JCL and then compile and execute NEST0/JCL, the following
SYSTEM/JCL results:

//+ NEST@/.JCL

/7 NEST1/JCL

//, NESTZ/JCL

« nested procedure examprle (Nest 9}

+ this is the first nest (Nest 1)

+ this is the second nest (Nest 2)

.+ this is the end of the first nest (Nest 1)
+ this is the end of the primary JCL (Nest @)

The //INCLUDE macro can be used to compile a large JCL procedure
from a series of smaller JCL routines. If the finished SYSTEM/JCL file
is a procedure that will be executed many times, you can easily save
it by copying SYSTEM/JCL to a file with another name.

Using the Special % Symbol

The % symbol is used to pass character values (in hex) to the system
as though they came from the keyboard. The syntax is:

%character value
Below are some valid values and their results:

Hex Value Result

09 Position to next tab stop
(every 8 columns)

0A Linefeed

1F Clear screen

The value of any printable character can also be used, although
control characters (characters with a value less than hex 20) are
generally used. (See Appendix C for a list of characters, values, and
actions performed on the video display.)

Examples

You should place the clear screen character at the start of a line. For
example:

v{F//PAUSE Insert disk in drive 1+ rress (ENTER

clears the screen and displays the JCL line in the top left corner of
the screen.

The tab and linefeed characters, used to position comments or lines
on the screen, should always be placed AFTER the period in the
comment line or the macro in an executable line. For example:

A-29

»AB9709 This comment is rpositioned at the
second tab stor,
//PAUSE %08%2A%OA This line arrears 3 lines down

If you place the character BEFORE the period, TRSDOS does not
recognize it as a comment line and the JCL aborts.

if you place the character AFTER the macro, the /PAUSE is
displayed and the remaining message line is displayed 3 lines lower
on the screen.

Using the tab and linefeed characters in this manner can sometimes
help to improve the readability of the messages displayed during JCL
execution.

Using TRSDOS JCL To Interface With Applications

Programs

This appendix describes how to use JCL to start up and control your
applications programs.

Two languages are discussed: BASIC and Z-80 assembly.

Interfacing With BASIC

A JCL file is the perfect method to interface between the operating
system and the BASIC language. JCL can be used to create
procedures that require only the inserting of a diskette to start up a
program. Additionally, you can utilize the features of JCL from within a
BASIC program.

Examples

To use a JCL file to initiate an automatic start-up of a BASIC
program, you can use the AUTO library command to execute a JCL
file.

Assuming the JCL file is named BAS/JCL, issuing the command:
AUTO DO BAS/JCL (ENTER

automatically executes the desired BASIC program every time the
computer is booted with the AUTOed system disk.

In order to execute a BASIC program from a JCL file, lay out the JCL
file as follows:

1. Establish any necessary drivers, filters, or other TRSDOS options.

2. Enter BASIC with any necessary parameters (such as memory
size and number of files).

3. RUN the BASIC program.

A-30

4. Terminate the JCL execution with /STOP (which leaves control
with BASIC).

You can also enter a DO command directly from the TRSDOS Ready
prompt to execute a BASIC program.

To execute a JCL file once you have entered BASIC, the command
format is:

SYSTEM"DO filename®

This command can be typed in directly or entered as a BASIC
program line.

Also, any JCL file called from BASIC should contain the /EXIT
termination macro, so that control will return to TRSDOS Ready when
the JCL file is completed.

For example, suppose you want to use the JCL //ALERT macro to
inform you when a lengthy BASIC procedure has completed.
Following the lines containing the BASIC procedure, you could have a
BASIC program line such as:

19200 SYSTEM "DO = ALERT/JCL:@"
which executes the ALERT/JCL file:
, Your procedure is complete. Press (ENTER) to

resume.
//ALERT (1,84+7,0)
BASIC
//8TOP

When BASIC reaches line 1000, the JCL file ALERT/JCL is executed,
sending a series of repeating tones out the tone generator.

You are notified that your BASIC procedure has completed. Pressing
ENTER) ends the JCL alert and returns you to BASIC.

There are two important points about this example. First, the
comment line in the ALERT/JCL file is absolutely necessary, as a JCL
file cannot start with an execution macro. Second, the “BASIC”
statement will reload BASIC. If you want a particular program to be
loaded and run, you can place its name on the command line or add
the BASIC commands before the //STOP statement. The //STOP
termination macro must be included to assure that keyboard control
remains within BASIC.

Although the example demonstrates an execute only JCL file, you can
also call compiled JCL procedures from BASIC. You can even
construct a SYSTEM “DO filespec [(parameters)]’ command using
BASIC string substitution.

Any time you want to use a SYSTEM “DO filespec” command from
BASIC to execute another BASIC program, you have to change the
format of the command. To DO these types of JCL files from BASIC,
use the commands:

A-31

sYSTEM (ENTER
DO filespec [{rParameters)] (ENTER

Using this format for the command assures that a proper exit is made
before the new JCL file is started.

Controlling a BASIC program

In some cases, the prompts in a BASIC program can be answered
with a line from a JCL file. This is true if the program uses the INPUT
or LINEINPUT BASIC statement to take the input.

If the program uses the INKEY$ statement, response has to come
from the keyboard rather than from a JCL file. If the program uses the
proper input method, you can create a JCL for total hands-off
operation as follows:

1. Run through the BASIC program, making a note of every prompt
to be answered.

2. Create a JCL file to enter BASIC and run the program as
explained above in the BAS/JCL example. Leave off the //STOP

macro.
3. Add the responses to the prompts as lines in the JCL file.

Using this method provides automatic program execution. Terminating
the JCL file depends on what needs to be done when the application
program has completed.

If you want to run more programs, you could add the proper
RUN“PROGRAM'" line to the JCL file, followed by any required
responses to program prompts.

If you want to return to the TRSDOS Ready mode, you could end the
file with the /EXIT macro. If you want to return to the BASIC Ready
mode, you could end the file with the //STOP macro.

Interfacing With Z-80 ASSEMBLY

It is very simple to interface an assembly language program with the
DO processor. All programs that utilize the line input handler
(identified as the @KEYIN supervisor call the the “Technical
information” manual) are able to accept “keyboard” input from the
JCL file, just as though you typed it in when the program ran.

This gives the capability of pre-arranging the responses to a
program’s requests for input, inserting the responses into the JCL file,
initiating the procedure, then walking away from the machine while it
goes about its business of running the entire job.

Keyboard input normally handled by the single-entry keyboard
routines (@KBD, @KEY, and BASIC’s INKEY$) continue to be
requested from the keyboard at program run time and do not utilize
the JCL file data for input requests.

A-32

Practical Examples Of TRSDOS JCL Files

It is virtually impossible to show all the many uses of JCL files.

We give you two examples of how you can make your day-to-day
TRSDOS operations even more efficient using JCL files.

1)

This example shows how to SYSRES system modules using a JCL
file. The modules to be resided are 2, 3, and 10. These modules have
to be resident in memory to perform a backup by class between two
non-system diskettes in a two-drive system.

The JCL file to SYSRES these modules may look something like this:

+ BURES/JCL - JCL used to SYSRES modules 2+ 3
and 1@

SYSTEM (8YSRES=Z

SYSTEM (S5YSRES=3

SYSTEM (SYSRES=1¢

« end of BURES/JCL

When executed, this JCL file causes the system modules 2, 3, and 10
to be resided in high memory. Because this JCL uses no labels or
compilation macros, the compilation phase can be skipped.

2)
This example shows how to back up a diskette using a JCL file.

A minimum of three drives are required. Drive ® must contain a
system diskette with the JCL file. Drive 1 contains the source diskette.
Assume that the source diskette’s name is MYDISK and its master
password is PASSWORD. Also, assume that it is 40 track, and
double density. Drive 2 contains the destination diskette.

The JCL file to perform the backup may look something like this:

+ DUPDISK/JCL - Disk durlication JCL

//PAUSE Source in 1+ Dest., in 2 when
ready

format :2 (name="mrdisK"sa=nsabs)

//PAUSE format oK? (ENTER) if ves: (BREAK) if no
backue 1 :2

« end of bacKup ~ will now restart JCL
do *

The second line of the JCL causes the computer to pause until the
key is pressed. This allows you to insert the proper diskette
into Drives 1 and 2. Once you insert the proper diskettes, press
and the third line of the JCL is executed.

The format line passes the NAME parameter to the format utility. Note
that the diskette name, and diskette password of the destination

A-33

diskette must be an exact match of the source disk. If they do not
exactly match, the JCL aborts.

Also, note that the parameters Q=N and ABS are specified. Both are
necessary. The Q=N parameter causes the computer to use the
default of PASSWORD for the master password, by passing the
“Master Password” prompt. The ABS parameter ensures that no
prompt appears if the destination diskette contains data.

The pause after the format statement allows you to check whether or
not the format is successful. If the destination diskette is properly
formatted, press (ENTER) to continue the JCL.

After you press in response to the seconds pause, the backup
takes place. When the backup completes, the comment line appears,
and the DO * command executes. The command causes the
SYSTEM/JCL file to execute. Realize that since this is a repeating
JCL, the compilation phase cannot be skipped.

If tracks are locked out during the format, press (BREAK). Pressing
BREAK) aborts the JCL, and you have to restart the JCL file.

Important: Be aware that if BACKUP or FORMAT is being executed
by a JCL file, the following rules apply:

1. If the backup is mirror image, the source and destination disk Disk
ID’s must be the same or the backup aborts.

2. Backups with the (X) parameter, single-drive backups, and
backups with the (QUERY) parameter are not allowed.

3. Single-drive formats are not allowed.

A-34

Appendix B/ Model 4/4P Hardware

The Keyboard Code Map

The keyboard code map shows the code that TRSDOS returns for
each key, in each of the modes: control, shift, unshift, clear and
control, clear and shift, clear and unshift.

For example, pressing (CLEAR), SHIFT), and (1) at the same time
returns the code X'AT1’.

A program executing under TRSDOS — for example, BASIC — may
translate some of these codes into other values. Consult the
program’s documentation for details.

Key Handling

The (BREAK) key (X’80’) is handled in different ways, depending on the
settings of three system functions. The table below shows what
happens for each combination of settings.

Break Break Type-
Enabled Vector Ahead
Set Enabled

Y N Y If characters are in the type-
ahead buffer, then the buffer is
emptied. *

If the type-ahead buffer is
empty, then a BREAK character
(X'80’) is placed in the

buffer. *

Y N N A BREAK character (X'80) is
" placed in the buffer.

Y Y Y The type-ahead buffer is emptied
of its contents (if any), and
control is transferred to the
address in the BREAK vector (see
@BREAK SVC). *

Y Y N Control is transferred to the
address in the BREAK vector (see
@BREAK SVC).

N X X No action is taken and
characters in the type-ahead
buffer are not affected.

means that the function is on or enabled
means that the function is off or disabled
means that the state of the function has no effect

XZ<

A-35

Break is enabled with the SYSTEM (BREAK = ON) command (this is
the default condition).

The break vector is set using the @BREAK SVC (normally off).

Type-ahead is enabled using the SYSTEM (TYPE = ON) command
(this is the default condition).

* Because the (BREAK) key is checked for more frequently than other
keys on the keyboard, it is possible for (BREAK) to be pressed after
another key on the keyboard and yet be detected first.

A-36

B1 31] B2 32|83 33|B4 34|85 35[B6 36 |B7 37|88 38|B9 39(B0 30| BA t++| AD 2D[80 80
! " # $ % & ! () * = B
A1 1 211Aa22 221A3 3 23|Aaa 4 24|Aa5 B 25|A6 6 26|A7 7 27|a8 8 28{A9 9 209|ap @ t|AA : 2A|BD — 3D|80 Rttt
B1 31] B2 32| B3 33| B4 34| B5 35|86 36| B7 37| B8 38| B9 39| BO 30| BA 3A{ AD 2p|go K se
8B 98| 91 11] 97 17] 85 05| 92 12| 04 14| 99 19| 95 15[89 @9 | 8F @F| 90 106]0 @] 88 @889 @9

wm% dwmemdﬂuEmﬂmmmbm_uw—#mNmA._..mhmm<wwmmCmmm&_hwmmOb_u—usTmsme@memmAldmmmlv._m
65

A-37

8B o8| D1 71| D7 77| c5 D2 72| D4 74| D9 79| D5 75| co 69| CF 6F| D@ 70| co 49| 88 @8 | 89 09
8A 0A] 81 01| 93 13| 84 04| 86 061 87 071 88 98| 8A 0A| 8B oB| 8C oc|E 1E| 8D oD C
+ L
ENTER 1F
w>ed>md>ﬂmwm$maoﬁmmmammumﬂmm_._am_;e_ a>mw_A»mmoraouman:" 1D W
8A ¢a| c1 61| D3 73| ca 64| C6 66| cC7 67| c8 68| CA 6A|cCB e8| CcC 6C|5E 38| 5F oD R
9A 1A} 98 18] 83 83| 96 16] 82 02| 8E ¢£| 8D ¢D|1B 18|1D 1| 1C 1c
?
SHIFT _n>N 5A _nmx 58 mwo 43 _"m< 56 muw 42 mmzam mo_<_ac qu‘ 3c uc.Vwm ¢ [/ 3F SHIFT
DA 7A| D8 78| c3 63| D6 76| Cc2 62| CE 6E | CD 6D| 5B 2c|sp 2E|5C 2F
00
C AD C
T 20 A
R [P
L AQ 20 S
81 81|82 82]e3 83
91 F1 91|92 F2 92|93 F3 o3
81 81 (82 82|83 83
LEGEND:
[[]
Clear and Control Control 7 8 9
Clear and Left Shift | ® *| shift
Clear and Unshift * *| Unshift
4 5 6
Codes for these keys
Note: Pressing CONTROL, SHIFT, and t Pressing SHIFT and @ at the same are ﬁjm.mqu:m Mm *on_‘w
@ at the same time generates an time (or CAPS alone} turns the the main keyboard.
EOF (end of file) — — X"1C’ CAPS mode on or off. 1 2 3
with NZ return flag.
t1 Pressing CONTROL and : at the
Whenever pressing CLEAR, same time causes a screen print.
SHIFT, and another key at the @ * ENT
same time, be sure to use the tt+ Pressing SHIFT and BREAK at
left SHIFT key — not the right the same time reselects the last

m_.m, " key. drive. p

Specifications

Model 4

The Radio Shack TRS-80 Model 4 is a ROM/disk-based computer
system with one major part:

e A display console/keyboard unit with one or two built-in,
single-sided, double-density, floppy disk drives (disk system)
or zero disk drives (cassette system)

The operating system software is loaded from ROM or an operating
system disk in Drive 0 by a built-in read-only memory (ROM)
“bootstrap” program.

Model 4P

The Radio Shack TRS-80 Model! 4P is a disk-based computer system
with one major part:

e A display console/keyboard unit with two built-in, single-sided,
double-density, floppy disk drives

The operating system software is loaded from an operating system
disk in Drive 0 by a built-in read-only memory (ROM) “bootstrap”
program.

Console

Processor
Model 4

e The TRS-80 Model 4 is a Z-80A based high-speed
microprocessor with 64K or optional 128K of memory (disk
system) or 16K of memory (cassette system)

e The processor receives power-up and reset instructions from
ROM.

e The Model 4 is compatible with existing Model lIl software.

Model 4P

e The TRS-80 Model 4P is a Z-80A based high-speed
microprocessor with 64K or optional 128K of memory

e The processor receives power-up and reset instructions from
ROM

e The Model 4P is compatible with existing Model 1l disk
software.

Sound

The disk system can generate software-controlled tones, one ata
time.

A-39

Video Display

Six Modes

e White on black (normal)

® Black on white (reversed)
64 characters by 16 lines Model |l Mode
® 32 characters by 16 lines Model Il Mode
® 80 characters by 24 lines Model 4 Mode
® 40 characters by 24 lines Model 4 Mode

Displayable Characters
® Full ASCII set
® 64 graphics characters

Keyboard

The keyboard has the standard typewriter keys, numeric keypad, and
three function keys.

Three Modes
e Control
e Shift
® Caps

Floppy Disk Drives

Minimum

Model 4 : One built-in 5-1/4-inch, single-sided floppy drive (disk
system) or zero drives (cassette system)

Model 4P: Two built-in 5-1/4-inch, single-sided floppy drives

Maximum

Model 4 : Two built-in and two external 5-1/4-inch, single-sided
floppy drives

Model 4P: Two built-in 5-1/4-inch, single-sided floppy drives

A-40

Preventive Maintenance Interval

e Typical usage (3,000 power-on hours per year): Every 8,000
power-on hours

e Heavy usage (8,000 power-on hours per year): Every 5,000
power-on hours

Required Media
® Radio Shack single-sided, 5-1/4-inch floppy disks
The Data Transfer Rate is 250K bits per second.

Power Supply

Power Requirements
® 105-130 VAC, 60 Hz
® 240 VAC, 50 Hz (Australian)
® 220 VAC, 50 Hz (European)
e Grounded outlet

Maximum Current Drain

® 1.7 Amps

Typical Current Drain

® 1.5 Amps

Operating Temperature
® 55 1o 80 degrees Fahrenheit
® 13 to 27 degrees Centigrade

Peripheral Interfaces

Standard

® Floppy disk input/output channel for connection of one or two
external floppy disk drives (Model 4 only)

® |/O bus for connection of hard disk and other peripherals
® Cassette I/O jack (Model 4 only)

A-41

Optional
e High-resolution graphics board
e Serial port RS-232C
e Auto answer modem (Model 4P only)

Serial Interface

One Port:
® Allows asynchronous or synchronous transmission
e Conforms to the RS-232C standard
e Uses the DB-25 connector on the bottom of the Model 4
display console and on the back of the Model 4P

The DB-25 connector pin-outs and signals available are listed below:

Signal Function Pin#
PGND Protective Ground 1
D Transmit Data 2
RD Receive Data 3
RTS Request to Send 4
CTS Clear to Send 5
DSR Data Set Ready 6
SGND Signal Ground 7
CD Carrier Detect 8
DTR Data Terminal Ready 20
RI Ring Indicator 22
STDY Secondary Transmit Data (Model 4 only) 14
SUNY Secondary Unassigned (Model 4 only) 18
SRTST Secondary Request to Send 19

+ These signals are not used for secondary functions but are reserved
for future use.

Parallel Interface

e Connection to a line printer via the 34-pin connector on the
bottom of the Model 4 display console and on the back of the
Model 4P.

e Eight data bits are output in parallel
e Eight data bits are input
e All levels are TTL compatible

A-42

The parallel printer pin-outs and signals available are listed below.

NOTE: If a signal name contains an asterisk (*), the signal is
active-low.

Signal Function Pin #
STROBE* 1.5 microseconds pulse to clock 1
the data from processor to printer
DATA O Bit 0 (Isb) of output data byte 3
DATA 1 Bit 1 of output data byte 5
DATA 2 Bit 2 of output data byte 7
DATA 3 Bit 3 of output data byte 9
DATA 4 Bit 4 of output data byte 11
DATA 5 Bit 5 of output data byte 13
DATA 6 Bit 6 of output data byte 15
DATA 7 Bit 7 (msb) of output data byte 17
BUSY Input to computer from printer, high 21
indicates busy
PAPER Input to computer from printer, high 23
EMPTY indicates no paper — If the printer
doesn’t provide this, the signal is
forced low
BUSY”* Inverse of BUSY (Pin 2) 25
FAULT* Input to computer from printer, low 28

indicates fault (paper empty, ribbon
out, printer off-line, and so on)

GROUND Common signal ground 2,4,6,8,10
12,14,16,
18,20,22,
24,27.31,
33

NC Not connected or not used 19,26,29,
30,32,34

T Depending on the kind of printer used, this signal may be called
“UNIT SELECT.” See your printer manual for more information.

Communications

For hardwiring two Model 4/4P’s without a modem, use Radio Shack’s
RS-232C cables (cat. no. 26-1490, -1491, -1492, -1493) and null
modem adapter (cat. no. 26-1496).

A-43

Appendix C/ Character Codes

Text, control functions, and graphics are represented in the computer
by codes. The character codes range from zero through 255.

Code 0 is a prefix code. It tells the video driver to display the special
character for codes 1 - 31. These codes are normally treated as
cursor control commands.

Codes 1 through 31 normally represent certain control functions. For
example, code 13 represents a carriage return or “end of line.” These
same codes also represent special display characters. To display the
special character that corresponds to a particular code (1 - 31),
precede the code with a code zero. (Note: Some screen control
characters cannot be entered from the TRSDOS Ready or BASIC
Ready prompts, but can be directed to the screen by program control.
See the CHR$ and ASC functions in the BASIC portion of this
manual.)

Codes 32 through 127 represent the text characters — all those
letters, numbers, and other characters that are commonly used to
represent textual information.

Codes 128 through 191, when output to the video display, represent
64 graphics characters.

Codes 192 through 255, when output to the video display, represent
either space compression codes or special or alternate characters, as
determined by software. Toggling between these modes is done via
codes 21 and 22.

Code 21 toggles the video driver between space compression codes
and the special/alternate character set. Code 22 toggles the video
driver between the special character set and the alternate character
set. The setting of the toggle controlled by code 21 determines if the
code 22 toggle will have any effect on what is subsequently
displayed.

The following chart illustrates the power-up and first toggle states for
codes 21 and 22:

Code 21 Code 22
Power-up state space compression special

characters characters
First toggle state special/alternate alternate

characters characters

At power-up, codes in the range 192 to 255 will produce one or more
spaces (space compression mode). From this point, you can enter the
special character set by outputting a code 21 to the display. You can
then enter the alternate character set by outputting a code 22 to the
display. To switch back to the special set, output another code 22. To
switch back to space compression codes from either the special or
alternate character set, output a code 21.

A-45

When you are in space compression mode, outputting a code 22 still
toggles between special and alternate character sets, even though it
does not affect the characters subsequently displayed. Any characters
in the range 192-255 that are already on the display will toggle
betwen special and alternate character sets each time a code 22 is
received.

Note: Special and alternate characters are not available if reverse
video (code 16) is enabled.

ASCII Character Set

Code
Dec. Hex. Abbrev. Keyboard

0

—

O N O ke WN

10

11

12
13

14
15

00

01
02
03

04
05

06
07
08

09

0A

0B

0C
oD

QE
oF

ASCII

NUL

SOH
STX
ETX

EOT
ENQ

ACK
BEL
BS

HT

LF

VT

FF
CR

SO
Sl

CTRL @

CTRL A
CTRLB
CTRLC

CTRLD
CTRLE

CTRLF
CTRL G

Left Arrow
CTRLH

Right Arrow
CTRL |

Down Arrow
CTRL J

Up Arrow
CTRLK

CTRLL

ENTER
CTRL M

CTRL N
CTRL O

Video Display

Next character is treated

as displayable; if in the range
1 - 31, a special character is
displayed (see list of special
characters later in this
Appendix)

Backspace and erase
Move cursor to the next tab stop

(located every 8 columns)

Move cursor to start of next line

Move cursor to start of next line

Cursor on

Cursor off

A-46

Code ASCI|
Dec. Hex. Abbrev. Keyboard Video Display

16 10 DLE CTRLP Enable reverse video and set high
bit routine on*

17 1 DC1 CTRLQ Set high bit routine off*
18 12 DC2 CTRLR
19 13 DC3 CTRLS
20 14 DC4 CTRLT

21 15 NAK CTRLU Swap space compression/
special characters

22 16 SYN CTRLV Swap special/alternate characters
23 17 ETB CTRLW Set to 40 characters per line
24 18 CAN SHIFT Backspace without erasing

CTRL X
25 19 EM SHIFT Advance cursor
CTRLY
26 1A SUB SHIFT(Y) Move cursor down
CTRL Z
27 1B ESC SHIFT(A) Move cursor up
CTRL,
28 1C FS CTRL/ Move cursor to upper left corner.

Disable reverse video and set
high bit routine off.*
Set to 80 characters per line.

29 1D GS CTRL ENTER Erase line and start over
CTRL .

30 1E RS CTRL ; Erase to end of line

31 1F VS SHIFT CLEAR Erase to end of display
32 20 SPA SPACE BAR (blank)

33 21 ! !
34 22 v

35 23 # #
36 24 $ $

* When the high bit routine is on, characters 20 - 127 are converted to
characters 148 - 255. When reverse video is enabled, characters
128 - 191 are displayed as standard ASCII characters in reverse
video.

A-47

Code
Dec. Hex. Keyboard Video Display
37 25 % %
38 26 & &
39 27 ’ :
40 28 ((
41 29))
42 2A * *
43 2B + +
44 2C , ,
45 2D - .
46 2E
47 2F / /
48 30 0 0
49 31 1
50 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5
54 36 6 6
56 37 7 7
56 38 8 8
57 39 9 9
58 3A
59 3B ; ;
60 3C < <
61 3D = =
62 3E > >
63 3F ? ?
64 40 @ @
65 41 “A A

* A - Z (codes 65 - 90) are shifted functions. Hold down (SHIFTD) and
then press the desired key. .

A-48

Code

Dec. Hex.
66 42
67 43
68 44
69 45
70 46
71 47
72 48
73 49
74 4A
75 4B
76 4C
77 4D
78 4E
79 4F
80 50
81 51
82 52
83 53
84 54
85 55
86 56
87 57
88 58
89 59
90 5A
91 5B
92 5C
93 5D
94 5E
95 5F
96 60

Keyboard Video Display
B

C C
D D
E E
F F
G G
H H
I I
J J
K K
L L
M M
N N
@) O
P P
Q Q
R R
S S
T T
U u
Y \"
W W
X X
Y Y
z z
CLEAR, [
CLEAR/ \
CLEAR .]
CLEAR ; ~
CLEAR ENTER —
SHIFT @ ’

A-49

Code
Dec. Hex. Abbrev.

97

98

99

00
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

ASCII

DEL

Keyboard

I G Mmoo O W >

N<Xs<c-H®»w»IDOUVOZZTr X <

CLEAR SHIFT ,
CLEAR SHIFT /
CLEAR SHIFT .
CLEAR SHIFT ;
CLEAR SHIFT ENTER

Video Display

a
b
c
d
e
f

-~ 0 © O S5 3 — b N (o}

—

-~ T 7™ N < X 5 < C

+

A-50

Extended (non-ASCII) Character Set

Dec.

128

129

130

131

132
133
134
135
136
137
138
139
140
141
142
143
144
145

146

147

148
149
150
151
152

Code

80
81

82

83

84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91

92

93

94
95
96
97
98

Hex.

ASCII
Keyboard

BREAK

CLEAR CTRL A
F1

CLEAR CTRL B
F2

CLEARCTRL C
F3

CLEAR CTRL D
CLEAR CTRL E
CLEAR CTRL F
CLEAR CTRL G
CLEAR CTRL H
CLEAR CTRL |

CLEAR CTRL J
CLEAR CTRL K
CLEAR CTRL L
CLEAR CTRL M
CLEAR CTRL N
CLEAR CTRL O
CLEAR CTRLP

CLEAR CTRL Q
SHIFT F1

CLEAR CTRL R
SHIFT F2

CLEAR CTRL S
SHIFT F3

CLEARCTRLT
CLEAR CTRL U
CLEAR CTRL V
CLEAR CTRL W
CLEAR CTRL X

Video Display

See Special
Character Table

A-51

Dec.

153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

Code

Hex.

99

9A
9B
9C
9D
9E
9F
A0
A1

A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
B1

B2
B3
B4
B5
B6

ASCII
Keyboard

CLEAR CTRLY

CLEAR CTRL Z

CLEAR SHIFT up arrow

CLEAR SPACE
CLEAR SHIFT 1
CLEAR SHIFT 2
CLEAR SHIFT 3
CLEAR SHIFT 4
CLEAR SHIFT 5
CLEAR SHIFT 6
CLEAR SHIFT 7
CLEAR SHIFT 8
CLEAR SHIFT 9
CLEAR SHIFT :

CLEAR -

CLEAR 0
CLEAR 1
CLEAR 2
CLEAR 3
CLEAR 4
CLEAR 5
CLEAR 6

Video Display

See Special
Character Table

A-52

Code ASCII

Dec. Hex. Keyboard Video Display

183 B7 CLEAR7 See Special
Character Table

184 B8 CLEARS8

185 B9 CLEARY9

186 BA CLEAR: "

187 BB "

188 BC !

189 BD CLEAR SHIFT -

190 BE

191 BF "

192 Co CLEAR @™
193 C1 CLEARA™ !
194 C2 CLEARB™ !
195 C3 CLEARC™
196 C4 CLEARD™ "
197 C5 CLEARE ™
198 Cé6 CLEARF™*
199 C7 CLEARG™
200 C8 CLEARH™ !
201 C9 CLEARI™ i
202 CA CLEARJ™ !
203 CB CLEARK™
204 CC CLEARL ™ "
205 CD CLEARM™ !
206 CE CLEARN™ "
207 CF CLEARO™ "

208 D0 CLEARP ™ E
209 D1 CLEAR Q™
210 D2 CLEARR™ i

* Empties the type-ahead buffer.
** Used by Keystroke Multiply, if KSM is active.

A-53

Dec.

211

212
213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

** Used by Keystroke Multiply, if KSM is active.

Code

Hex.

D3

D4
D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

EO

E1

E2

E3

E4

ASCII
Keyboard

CLEAR S ™

CLEART ™
CLEAR U ™"

CLEAR V **

CLEAR W **

CLEAR X ™

CLEARY ™

CLEAR Z **

CLEAR SHIFT @
CLEAR SHIFT A
CLEAR SHIFT B
CLEAR SHIFT C

CLEAR SHIFT D

Video Display

See Special
Character Table

A-54

Dec.

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

Code

Hex.

ES5

E6

E7

ES8

E9

EA

EB

EC

ED

EE

EF

FO

F1

F2

F3

F4

F5

F6

F7

ASCIl
Keyboard

CLEAR SHIFT E
CLEAR SHIFT F
CLEAR SHIFT G
CLEAR SHIFT H
CLEAR SHIFT |

CLEAR SHIFT J
CLEAR SHIFT K
CLEAR SHIFT L
CLEAR SHIFT M
CLEAR SHIFT N
CLEAR SHIFT O
CLEAR SHIFT P
CLEAR SHIFT Q
CLEAR SHIFT R
CLEAR SHIFT S
CLEAR SHIFT T
CLEAR SHIFT U
CLEAR SHIFT V

CLEAR SHIFT W

Video Display

See Special
Character Table

A-55

Dec.

248

249

250

251

252

253

254

255

Code

Hex.

F8

F9

FA

FB

FC

FD

FE

FF

ASCII
Keyboard

CLEAR SHIFT X

CLEAR SHIFT Y

CLEAR SHIFT Z

Video Display

See Special
Character Table

A-56

Graphics Characters (Codes 128-191)

A-57

Special Characters (0-31, 192-255)

i
§
H
H
H
H

, i
Rele

|

A-58

215

214

213

212

21

210

209

208

223

222

221

220

219

218

217

216

231

230

229

228

227

226

225

224

239

238

237

236

235

234

233

232

247

246

245

244

243

242

241

240

255

254

263

252

251

250

249

248

A-59

-

Appendix D/ Error Messages and

Problems

In Case Of Difficulty

Your TRSDOS operating system was designed and tested to provide
you with trouble-free operation. If you do experience problems, there
is a good chance that something other than the TRSDOS system is at
fault. This section discusses some of the most common user
problems, and suggests general cures for these problems.

Problem 1 ... The system seems to access the wrong disk drives, or
cannot read the diskettes.

If you have trouble reading Model | and Il TRSDOS diskettes,
refer to the REPAIR and CONV Ultilities. Those sections explain
how to make these types of disks readable.

If your system seems to access the wrong disk, reset your
computer. You may have selected some combination of options
that are preventing the system from functioning properly.

Remember that when you specify a drive humber, you are
specifying a logical drive number which, based on your system’s
configuration, may point at drives in another order. If you have
SYSGENed these settings, you will have to hold down
while you reset your computer.

Problem 2 ... RS-232C communications do not work, or function
incorrectly.

If you experience RS-232C problems, the first thing you should
do is to make sure both “ends” are operating with the same
RS-232C parameters (baud rate, word length, stop bits, and
parity). If these parameters are not the same at each end, the
data sent and received appears scrambled.

Some hardware, such as serial printers, require “handshaking”
when running above a certain baud rate. It may be necessary to
hook the hardware’s handshake line (such as the BUSY line) to
an appropriate RS-232C lead, such as CTS.

Problem 3 ... Random system crashes, recurring disk /O errors,
system lock-up, and other random glitches keep happening.

If you encounter these types of problems, the first thing to check
is the cable connections between the TRS-80 and the
peripherals.

If you experience constant difficulty in disk read/write operations,
it is possible that the disk drive heads need cleaning. There are
kits available from Radio Shack to clean disk heads, or you may
wish to have the disk drive serviced at a repair facility. If you

need to frequently clean the disk heads, you might be using

some defective disk media. Check the diskettes for any obvious
signs of flaking or excess wear, and dispose of any that appear

A-61

even marginal. Tobacco smoke and other airborne contaminants
can build up on disk heads, and can cause read/write problems.
Disk drives in “dirty” locations may need to have their heads
cleaned as often as once a week.

One common and often overlooked cause of random-type
problems is static electricity. In areas of low humidity, static
electricity is present, even if actual static discharges are not felt
by the computer operator. Be aware that static discharges can
cause system glitches, as well as physically damage computer
hardware and disk media.

Error Messages

if the computer displays one of the messages listed in this appendix,
an operating system error occurred. Any other error message refers
to an application program error, and you should see your application
program manual for an explanation.

When an error message is displayed:
e Try the operation several times.

® Look up operating system errors below and take any
recommended actions. (See your application program manual
for explanations of application program errors.)

Try using other diskettes.
Reset the computer and try the operation again.
Check all the power connections.

Check all interconnections.

Remove all diskettes from drives, turn off the computer, wait
15 seconds, and turn it on again.

o {f you try all these remedies and still get an error message,
contact a Radio Shack Service Center.

NOTE: If there is more than one thing wrong, the computer might
wait until you correct the first error before displaying the
second error message.

This list of error messages is alphabetical, with the decimal and
hexadecimal error numbers in parentheses. Following it is a quick
reference list of the messages arranged in numerical order.

A-62

TRSDOS Error Messages

Attempted to read locked/deleted data record (Error 7. X'07°)

Check for an error in your application program.

Attempted to read system data record (Error 6, X'06°)

Check for an error in your application program.

Data record not found during read (Error 5, X'05')

Try the operation again. if it fails, use a different disk. Reformat the
old disk; this should lock out the flaw. To retrieve your files from the
flawed disk, perform a backup by class (see the BACKUP command).
You may have to remove the files that have errors so BACKUP will
work.

Data record not found during write (Error 13, X'0D’)

Try the operation again. If it still fails, use a different disk.

Device in use (Error 39, X'27)

RESET the device in use before REMOVEing it.

Device not available (Error 8, X'08’)

Make sure you enter the correct device specification and that the
device peripheral is ready. You can use the DEVICE (B=ON)
command to display all devices available to the system.

Directory full — can't extend file (Error 30, X'1E’)

All directory slots are being used. Use BACKUP to copy some of the
disk's files to a newly formatted disk.

Directory read error (Error 17, X'11°)

Try the operation again, using a different drive. If it fails, use a
different disk. You can try to get the files off a flawed disk by doing a
backup by class. If this doesn’t work, you must use your backup of
the disk.

Directory write error (Error 18, X'12°)

The directory may no longer be reliable. If the problem recurs, use a
different diskette.

A-63

Disk space full (Error 27, X'1B’)

While a file was being written, all available disk space was used. The
file contains only the data written before the error occurred. Write the
file to a disk that has more available space. Then, REMOVE the
partial copy to recover disk space.

End of file encountered (Error 28, X'1C’)

You tried to read past the end of file pointer. Use the DIR command
to check the size of the file. Check for an error in your application
program.

Extended error (Error 63)

An error has occurred and the extended error code is in the HL
register pair.

File access denied (Error 25, X’'19°)

You specified a password for a file that is not password protected or
you specified the wrong password for a file that is password
protected.

File already open (Error 41, X'29°)

Use the RESET library command to close the file before trying to
open it.

File not in directory (Error 24, X'18")

Check the spelling of the filespec. Use the DIR command to see if the
file is on the disk.

File not open (Error 38, X'26)
Open the file before trying to access it.

GAT read error (Error 20, X'14')

Try the operation again, using a different drive. If this fails, use a
backup by class to move all files to a different disk. Then, try the
operation again, using the new disk.

GAT write error (Error 21X’15)

The Granule Allocation Table may no longer be reliable. If the
problem recurs, try the operation again, using a different drive. If it still
fails, use a different disk.

HIT read error (Error 22. X’16’)

Try the operation again, using a different drive. If this still fails, use a
backup by class to copy the files to a different disk. SN

A-64

HIT write error (Error 23, X'17)

The Hash Index Table may no longer be reliable. If the problem
recurs, try the operation again, using a different drive. If it still fails,
use a different disk.

Illegal access attempted to protected file (Error 37, X'2¥')

The USER password was given for access to a file, but the requested
access required the OWNER password. (See the ATTRIB command.)

Illegal drive number (Error 32, X'20)

The specified disk drive is not included in your system or is not ready
for access (no diskette, non-TRSDOS Version 6 diskette, drive door
open, and so on). See the DEVICE command.

Illegal file name (Error 19, X'13)

The specified filespec does not meet TRSDOS filespec requirements.
See Chapter 1 for proper filespec syntax.

Illegal logical file number (Error 16, X'10°)

Your program probably has altered the File Control Block improperly.
Check for an error in your application program.

Load file format error (Error 34, X'22")

An attempt was made to load a file that cannot be loaded by
TRSDOS. The file was probably a data file or a BASIC program file.

Lost data during read (Error 3, X'03)

Information was not transferred in the time allotted; therefore, it was
lost. Try the operation again, using a different drive. If it still fails, use
a different disk.

Lost data during write (Error 11, X'0B’)

Information was not transferred in the time allotted; therefore, it was
lost. Try the operation again, using a different drive. If it still fails, use
a different disk.

LRL open fault (Error 42, X'2A")

The logical record length specified when the file was opened is
different than the LRL used when the file was created. COPY the file
to another file that has the specified LRL.

A-65

No device space available (Error 33, X'21")

You tried to SET a driver or filter and all of the Device Control Blocks
were in use. Use the DEVICE command to see if any non-system
devices can be removed to provide more space.

No directory space available (Error 26, X'1A")

You tried to open a new file and no space was left in the directory.
Use a different disk or REMOVE some files you no longer need.

No error (Error 0)

The @ERROR supervisor call was called without any error condition
being detected. A return code of zero indicates no error. Check for an
error in your application program.

Parity error during header read (Error 1, X'01')

Try the operation again, using a different drive. If it still fails, use a
different disk.

Parity error during header write (Error 9, X'09')

Try the operation again, using a different drive. If it still fails, use a
different disk.

Parity error during read (Error 4, X'04’)

Try the operation again, using a different drive. If it still fails, use a
different disk.

Parity error during write (Error 12, X'0C’)

Try the operation again, using a different drive. If it still fails, use a
different disk.

Program not found (Error 31, X'1F')

Check the spelling of the filespec (you must include the /CMD
extension). If this is not the problem, make sure the disk that contains
the file is loaded.

Protected system device (Error 40, X'28’)

You cannot REMOVE any of the following devices: *Kl, *DO, *PR,
xJL, *Sl, *SO.

Record number out of range (Error 29, X'1D’)

Correct the record number or try the operation again, using another
copy of the file.

A-66

Seek error during read (Error 2, X'02')

Try the operation again, using a different drive. if it still fails, use a
different disk.

Seek error during write (Error 10, X'0A’)

Try the operation again, using a different drive. If it still fails, use a
different disk.

— Unknown error code

The @ERROR supervisor call was called with an error number that is
not defined. Check for an error in your application program.

Write fcault on disk drive (Error 14, X'0OE")

Try the operation again, using a different drive. If it still fails, use a
different disk. If the probiem continues, contact a Radio Shack
Service Center.

Write protected disk (Error 15, X'0F")

Remove the write-protect tab, if the diskette has one. If it does not,
use the DEVICE command to see if the drive is set as write
protected. If it is, you can use the SYSTEM command with the
(WP = OFF) parameter to write enable the drive. If the problem recurs,
check the drive connections on the external drives, even if the error is
occurring on an internal drive. Or, use a different drive or diskette.

A-67

TRSDOS ERROR MESSAGES

Decimal Hex

0

[L0 i i G G G I G G G G |
SOONOOPLPWUN=2LO000ONDOTAWN -

NN
WN -

NN
[S 1

N NN
O~N®

| DPADREAPRPWOWWWWWWWN
WDWON—SSOONLWOUN~-O®

X0oo
Xor
X0
X'03’
X'04'
X05
X'06’
X007
X'08’
X'09’
X0A’
X'oB’
X'oC’
X'oD’
X'0E
X'0F
X110
X1
X112’
X113
X114
X115’
X'16'
X117
X118’
X119’
X1A
X118’
X1C
X1D’
X1E
X1F
X20
X271
X22'
X'25’
X'26'
X27
X'28’
X'29
X2A’
X2B’
X'3F

Message

No Error

Parity error during header read
Seek error during read

Lost data during read

Parity error during read

Data record not found during read
Attempted to read system data record
Attempted to read locked/deleted data record
Device not available

Parity error during header write
Seek error during write

Lost data during write

Parity error during write

Data record not found during write
Write fault on disk drive

Write protected disk

lllegal logical file number
Directory read error

Directory write error

lllegal file name

GAT read error

GAT write error

HIT read error

HIT write error

File not in directory

File access denied

Full or write protected disk

Disk space full

End of file encountered

Record number out of range
Directory full — can't extend file
Program not found

lllegal drive nhumber

No device space available

Load file format error

lllegal access attempted to protected file
File not open

Device in use

Protected system device

File already open

LRL open fault

SVC parameter error

Extended error

Unknown error code

A-68

BASIC ERROR CODES AND MESSAGES

Number
1

Message
NEXT without FOR

A variable in a NEXT statement does not
correspond to any previously executed FOR
statement variable.

Syntax error

BASIC encountered a line that contains an
incorrect sequence of characters (such as
unmatched parenthesis, misspelled
statement, incorrect punctuation, etc.). BASIC
automatically enters the edit mode at the line
that caused the error.

RETURN without GOSUB

BASIC encountered a RETURN statement for
which there is no matching GOSUB
statement.

Out of DATA

BASIC encountered a READ statement, but
no DATA statements with unread items
remain in the program.

Illegal function call

A parameter that is out of range was passed
to a math or string function. An FC error may
also occur as the result of:

a. A negative or unreasonably large
subscript.

b. A negative or zero argument with LOG.
c. A negative argument to SQR.

d. A negative mantissa with a noninteger
exponent.

e. A call to a USR function for which the
starting address has not yet been given.

f. An improper argument to MID$, LEFTS,
RIGHTS$, PEEK, POKE, TAB, SPC,
STRINGS, SPACES, INSTR, or
ON ... GOTO.

A-69

10

11

12

13

Overflow

The result of a calculation was too large to be
represented in BASIC numeric format. If
underflow occurs, the result is zero and
execution continues without an error.

Out of memory

A program is too large, or has too many FOR
loops or GOSUBSs, too many variables, or
expressions that are too complicated.

Undefined line number

A nonexistent line was referenced in a
GOTO, GOSUB, IF ... THEN . .. ELSE, or
DELETE statement.

Subscript out of range

An array element was referenced either with
a subscript that is outside the dimensions of
the array, or with the wrong number of
subscripts.

Duplicate Definition

Two DIM statements were given for the same
array, or a DIM statement was given for an
array after the default dimension of 10 has
been established for that array.

Division by zero

An expression includes division by zero, or
the operation of involution results in zero
being raised to a negative power. BASIC
supplies machine infinity with the sign of the
numerator as the result of the division, or it
supplies positive machine infinity as the result
of the involution. Execution then continues.

Illlegal direct

A statement that is illegal in direct mode was
entered as a direct mode command.

Type mismatch

A string variable name was assigned a
numeric value or vice versa. A numeric
function was given a string argument or vice
versa.

A-70

14

15

16

17

18

19

20

21

22

23

Out of string space

String variables have caused BASIC to
exceed the amount of free memory
remaining. BASIC allocates string space
dynamically, until it runs out of memory.

String too long

An attempt was made to create a string more
than 255 characters long.

String formula too complex

A string expression is too long or too
complex. The expression should be broken
into smaller expressions.

Can’t continue

An attempt was made to continue a program
that:

a. Has halted due to an error.

b. Has been modified during a break in
execution.

c. Does not exist.
Undefined user function

A USR function was called before providing a
function definition (DEF statement).

No RESUME

An error-handling routine was entered without
a matching RESUME statement.

RESUME without error

A RESUME statement was encountered prior
to an error-handling routine.

Unprintable error

An error message is not available for the
error that occurred.

Missing operand

An expression contains an operator with no
operand.

Line buffer overflow

An attempt was made to input a line with too
many characters.

A-71

26

29

30

Disk Errors

S0

Sl

52

53

54

55

FOR without NEXT

A FOR statement was encountered without a
matching NEXT.

WHILE without WEND

A WHILE statement does not have a
matching WEND.

WEND without WHILE

A WEND statement was encountered without
a matching WHILE.

FIELD overflow

A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a direct-access file.

Internal error

An internal malfunction has occurred in
BASIC. Report to Radio Shack the conditions
under which the message appeared.

Bad file number

A statement or command references a file
with a buffer number that is not OPEN or is
out of the range of file numbers specified at
initialization.

File not found

A LOAD, KILL, or OPEN statement
references a file that does not exist on the
current disk.

Bad file mode

An attempt was made to use PUT, GET, or
LOF with a sequential file, to LOAD a direct
file, or to execute an OPEN statement with a
fite mode other than |, O, R, E or D.

File already open

An OPEN statement for sequential output
was issued for a file that is already open; or a
KILL statement was given for a file that is
open.

A-72

T

57

58

61

62

63

64

66

67

68
69
70

Device I/O error

An Input/Output error occurred. This is a fatal
error; the operating system cannot recover
from it.

File already exists

The filespec specified in a NAME statement
is identical to a filespec already in use on the
disk.

Disk full
All disk storage space is in use.
Input past end

An INPUT statement was executed after all

the data in the file had been INPUT, or for a
null (empty) file. To avoid this error, use the
EOF function to detect the end-of-file.

Bad record number

In a PUT or GET statement, the record
number is either greater than the maximum
allowed (65,535) or equal to zero.

Bad file name

An illegal filespec (file name) was used with a
LOAD, SAVE, KILL, or OPEN statement (for
example, a filespec with too many
characters).

Direct statement in file

A direct statement was encountered while
LOADing an ASCII-format file. The LOAD is
terminated.

Too many files

An attempt was made to create a new file
(using SAVE or OPEN) when all directory
entries are full.

Disk write protected
File access denied

Command Aborted

A-73

Appendix E/ Converting TRSDOS Version
1 BASIC Programs to TRSDOS Version 6
BASIC Programs

You can run a TRSDOS Version 1 applications program on TRSDOS
Version 6. However, you may need to make a few changes to the
program. The differences between the two BASICs are listed below.
(From here on, we will refer to TRSDOS Version 6 as TRSDOS 6,
and to TRSDOS Version 1 as TRSDOS 1).

1.

ROM Subroutines. TRSDOS 1 BASIC is a ROM and RAM-based
language. TRSDOS 6 BASIC is strictly a RAM language;
therefore, it cannot access any of TRSDOS 1's ROM subroutines.

Disk Files. TRSDOS 6 BASIC does not provide cassette support.
It is exclusively a “disk system”, that is, you can only use it with
floppy diskettes or with a hard disk system. If you have learned
BASIC through “Getting Started with TRS-80 BASIC", or have
never worked with a disk system before, read about “Disk Files”
in Chapter 5. This chapter explains how you can store and access
data on disk. You also need to read Chapter 1, “Sample
Session”, which describes how to load disk BASIC and how to
save a program on disk.

Characters per Line. Both TRSDOS 1 and TRSDOS 6 BASIC
allow you to type up to 255 characters per line. However, there is
a slight difference. With TRSDOS 6, you can type up to 249
characters per line. The other six characters are reserved for the
line number and the space following the line number. With
TRSDOS 1, you can type up to 240 characters in the command
mode, and add the extra 15 characters in the edit mode.

Variable Names. TRSDOS 1 BASIC only recognizes the first two
letters of a variable name; TRSDOS 6 BASIC allows variable
names of up to 40 characters, all of which are significant.

Converting to Integers. In converting a single or
double-precision number to integer value, TRSDOS 1 BASIC
truncates the number; TRSDOS 6 BASIC rounds the number.
This difference in conversions also affects assignment statements
and function or statement evaluations. For example, if you typed
1% = 2.5, TRSDOS 1 BASIC would convert 2.5 to 2; TRSDOS 6
BASIC would convert it to 3. If you typed TAB(4.5), TRSDOS 1
would move to the fourth tab position; TRSDOS 6 would move to
the fifth tab position.

If you enter a number as a constant in response to a command
that calls for an integer, and the number is out of integer range,
BASIC converts it to single or double precision. When the number
is printed, it appears with a type-declaration tag at the end.

Print Zones. TRSDOS 1 BASIC includes 16 spaces between print
zones; TRSDOS 6 BASIC includes 20 spaces. This is because
TRSDOS 1’s screen displays up to 64 characters horizontally,

A-75

10.

11.

12.

13.

14.

15.

while TRSDOS 6's screen displays up to 80 characters
horizontally.

Ports. If your program uses PEEKs or POKEs, it is probably
accessing Model lll ports. The Model 4 and Model 4P assigned
ports are different. For information about these ports, refer to the
Technical Reference Manual.

BASIC Keywords. The following TRSDOS 1 BASIC keywords are
not supported by TRSDOS 6 BASIC: CSAVE, CLOAD, POINT,
CLOCK, CMD, POSN, RENAME, and VERIFY.

The following TRSDOS 6 BASIC keywords are not supported by
TRSDOS 1 BASIC: COMMON, ERRS$, OCT$, OPTION BASE,
RENUM, ROW, SPACES$, SPC, SWAP, WAIT, WHILE . .. WEND,
WIDTH, and WRITE#.

Reserved Words. TRSDOS 6 BASIC requires that all reserved
words be delimited by spaces. Only those characters which
may be part of the keyword’s syntax can be typed immediately
after or before the keyword. For all other characters, leave a
space between the keyword and the character. (For example, you
cannot type DEFUSR; you must leave a space between DEF and
USR.) Appendix F includes a listing of Reserved Words.

Error Messages. TRSDOS 6 BASIC Error Codes, Character
Codes and Internal Codes for BASIC keywords differ from
TRSDOS 1 BASIC codes. See the Appendices for more
information on TRSDOS 6 BASIC codes.

String Space. TRSDOS 6 BASIC allocates string space
dynamically; you do not need to allocate string space with the
CLEAR statement. Instead, use CLEAR to set the maximum
memory location BASIC may access and the amount of stack
space. For more information, see CLEAR in Chapter 7.

Printing Single and Double-Precision Numbers. The rules for
printing single and double-precision numbers are different. For
more information, see PRINT in Chapter 7.

Division by Zero. Contrary to TRSDOS 1 BASIC, TRSDOS 6
BASIC does not produce a fatal error if it encounters division by
zero or overflow. Instead, it prints an error message and
continues executing your program.

FOR ... NEXT. TRSDOS 6 BASIC skips the body of a

FOR ... NEXT loop if the initial value of the loop, times the sign
of the STEP, exceeds the final value of the loop, times the sign of
the STEP. For a more detailed explanation, see FOR ... NEXT in
Chapter 7.

Nested Subroutines. If your program has nested subroutines or
nested FOR . .. NEXT loops, an “Out of memory” error may

A-76

Y

16.

17.

18.

19.

occur. To avoid this, use the CLEAR statement to set aside
“stack space” for your subroutines. See CLEAR in Chapter 7 for
more information.

IF...THEN...orIF....THEN. .. ELSE. With TRSDOS 1
BASIC, the word “THEN” is optional in both of these statements.
With TRSDOS 6 BASIC, it is required.

PRINT@ and PRINT TAB. If a string is too long to fit on the
current line, TRSDOS 6 BASIC prints the entire string on the next
line. TRSDOS 1 BASIC prints as many characters as possible on
the first line, and the rest on the second line.

In a PRINT TAB(n) statement, if n is greater than 80, TRSDOS 6
BASIC divides n by 80. The remainder of this division is used as
the tab position. For example, if you typed TAB(91), TRSDOS 6
BASIC would tab to position 11 on the screen. TRSDOS 1 BASIC
would tab to position 91.

Self-Documenting Programs. TRSDOS Version 6 BASIC
programs can be self-documenting, as in the following example:

19@ INPUT EFFORT

119 INPUT DISTANCE

120 FORCE = EFFORT #* DISTANCE
130 PRINT FORCE

14¢ END

Under TRSDOS Version 6 BASIC, the reserved words (FOR and
TAN in the above example) in the variable names will not cause a
syntax error. This is because in order to be recognized as
reserved words, they must be delimited by surrounding spaces.

TRSDOS Version 1 would return syntax errors in this example.

Graphics Characters. Under TRSDOS Version 6, the size of the
graphics characters is different than under TRSDOS Version 1.
The lowest portions of the TRSDOS Version 6 graphics
characters are smaller than their TRSDOS Version 1 equivalents.

A-77

Appendix F/ BASIC Keywords and
Derived Functions

Reserved BASIC Words

N

ABS FN OR VAL
AND FRE ouT VARPTR
ASC GET PEEK WAIT
ATN GOSUB POKE WEND
AUTO GOTO POS WHILE
CALL HEX$ PRINT

CDBL IF PUT WRITE
CHAIN IMP RANDOM XOR
CHRS$ INKEY$ READ +
CLEAR INP REM -
CLOSE INPUT RENUM *
CLS INSTR RESTORE /
COMMON INT RESUME "
CONT KILL RETURN \
COS LEFTS RIGHT$ ’
CSNG LEN RND >
CvD LET ROW =
CVi LINE RSET <
CVS LIST RUN

DATA LLIST SAVE

DATE$ LOAD SGN

DEF LOC SIN

DEFDBL LOF SOUND

DEFINT LOG SPACES

DEFSNG LPOS SPC

DEFSTR LPRINT SQR

DELETE LSET STEP

DIM MEM STOP

EDIT MERGE STR$

ELSE MID$ STRING$

END MKD$ SWAP

EOF MKI$ SYSTEM

EQV MKS$ TAB

ERASE MOD TAN

ERL NAME THEN

ERR NEW TIMES

ERROR NEXT T0

ERRS$ NOT TROFF

EXP OCT$ TRON

FIELD ON USING

FiX OPTION USR

A-79

Internal Codes for BASIC Keywords

ABS 65414 GOTO 137
AND 248 HEX$ 65434
ASC 65429 IF 139
ATN 65422 IMP 252
AUTO 171 INKEY$S 224
CALL 182 INP 65424
CDBL 65438 INPUT 133
CHAIN 185 INSTR 219
CHR$ 65430 INT 65413
CINT 65436 KILL 200
CLEAR 146 LEFT$ 65409
CLOSE 195 LEN 65426
CLS 159 LET 136
COMMON 184 LINE 177
CONT 153 LIST 147
COS 65420 LLIST 158
CSNG 65437 LOAD 196
CvD 65452 LOC 65454
Cvi 65450 LOF 65455
Cvs 65451 LOG 65418
DATA 132 LPOS 65435
DATES$ 222 LPRINT 157
DEF 151 LSET 201
DEFDBL 176 MEM 225
DEFINT 174 MERGE 197
DEFSNG 175 MID$ 65411
DEFSTR 173 MKD$ 65458
DELETE 170 MKI1$ 65456
DIM 134 MKS$ 65457
EDIT 167 MOD 253
ELSE 162 NAME 199
END 129 NEW 148
EOF 65453 NEXT 131
EQV 251 NOT 214
ERASE 166 OCT$ 65433
ERL 215 ON 149
ERR 216 OPEN 191
ERROR 168 OPTION 186
ERRS$ 223 OR 249
EXP 65419 ouT 156
FIELD 192 PEEK 65431
FIX 65439 POKE 152
FN 212 POS 65425
FOR 130 PRINT 145
FRE 65423 PUT 194
GET 193 RANDOM 187
GOSuB 141 READ 135

A-80

REM
RENUM
RESTORE
RESUME
RETURN
RIGHT$
RND
ROW
RSET
RUN
SAVE
SGN
SIN
SOUND
SPACE$
SPC
SQR
STEP
STOP
STR$
STRING$
SWAP
SYSTEM
TAB
TAN
THEN

143
172
140
169
142
65410
65416
65459
202
138
203
65412
65417
205
65432
213
65415
210
144
65427
217
165
189
209
65421
208

TIMES

TROFF
TRON
USING
USR
VAL
VARPTR
WAIT
WEND
WHILE
WIDTH
WRITE
XOR

T TR 4

AV

226
207
164
163
218
211
65428
221
150
181
180
161
183
250
243
244
245
246
247
254
220
240
241
242

A-81

Derived BASIC Functions

Functions which are not intrinsic to BASIC may be calculated as

follows:
Function

SECANT
COSECANT
COTANGENT
INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE
COSECANT
INVERSE
COTANGENT
HYPERBOLIC
SINE
HYPERBOLIC
COSINE
HYPERBOLIC
TANGENT
HYPERBOLIC
SECANT
HYPERBOLIC
COSECANT
HYPERBOLIC
COTANGENT
INVERSE
HYPERBOLIC
SINE
INVERSE
HYPERBOLIC
COSINE
INVERSE
HYPERBOLIC
TANGENT
INVERSE
HYPERBOLIC
SECANT
INVERSE
HYPERBOLIC
COSECANT
INVERSE
HYPERBOLIC
COTANGENT

BASIC Equivalent

SEC(X) = 1/COS(X)

CSC(X) = 1/SIN(X)

COT(X) =1/TAN(X)

ARCSIN(X) = ATN(X/SQR(— X*X + 1))
ARCCOS(X) = ATN(X/SQR(— X*X + 1))
+1.5708

ARSCEC(X) = ATN(X/SQR(X#X — 1))
+SGN(SGN(X) — 1)*1.5708
ARCCSC(X) = ATN(X/SQR(X#X — 1))
+(SGN(X) — 1)#1.5708

ARCCOT(X) =ATN(X) + 1.5708
SINH(X) = (EXP(X)— EXP(—X))/2
COSH(X) =(EXP(X) + EXP(—X))/2
TANH(X) = (EXP(— X)/EXP(X) + EXP
(= X))#2+ 1

SECH(X) = 2/(EXP(X) + EXP(— X))
CSCH(X) = 2/(EXP(X) — EXP(— X))

COTH(X) = (EXP(— X)/(EXP(X) — EXP
(= X))*2+ 1

ARCSINH(X) = LOG(X + SQR(X*X = 1))

ARCCOSH(X) = LOG(X + SQR(X#X - 1))

ARCTANH(X) = LOG((1 + X)/(1 — X))/2

ARCSECH(X) =LOG((SQR(- X#X = 1)
+1)/X)

ARCCSCH(X) =LOG((SGN(X)*SQR
(X#X + 1) =1)/X)

ARCCOTH(X) =LOG((X+ 1)/(X—1))/2

A-82

Appendix G/ Video Display Worksheet

A-83

Appendix H/ Glossary

alphanumeric — consisting of only the letters A-Z, a-z, and the
numerals 0-9.

ASCII — The alphanumeric representation of controls and characters
as a single byte, falling within a range from 1 to 127 (sometimes
including 0).

ASCII files — Files that are readable by LISTing the file. Source,
text, and data files are usually ASCII files.

background task — A job performed by the computer that is not
apparent to the user or does not require interaction with the user.
Some examples are the REAL TIME CLOCK, the SPOOLer, and
the TRACE function.

baud — Refers to the rate of serial data transfer.
bit — One eighth of a byte; one binary digit.

boot — The process of resetting your computer and loading in the
resident operating system from the system drive.

buffer — An area in RAM that temporarily holds information that is
being passed between devices or programs.

byte — The unit that represents one character to the Model 4. It is
composed of eight binary “bits” that are either ON (1) or OFF
(0). One byte can represent a number from 0 to 255.

COMM — A communications program capable of interacting with:
disk, printer, video display, keyboard, and the RS232 interface.
COMM dynamically buffers all of the system devices.

concatenate — To add one variable or string onto the end of
another.

configuration — The status of the system and physical devices that
are available to it. This configuration can be dynamically changed
with several library commands, and can be saved with the
SYSGEN library command. If the system is SYSGENed, the
SYSGENed configuration is re-established each time the
machine is reset or re-started.

cursor — The location on the video display where the next character
is printed. It is marked by the presence of a cursor character.

cylinder — All tracks of the same number on a disk drive. On single
sided drives, cylinders are the same as tracks.

DAM (Data Address Mark) — A control byte that prefixes each
sector on a disk. This byte indicates the type of sector that is
about to be read. It can mark a sector as being deleted or
undeleted, a user sector or a system sector.

A-85

DCB — Device Control Block, a small piece of memory used to
control the status, input, and output of data between the system
and the devices.

DCT — Drive Code Table, a piece of memory containing information
about the disk drives and/or diskettes in them.

density — Refers to the density of the data written to a diskette.
Double density provides approximately 80% more capacity than
single density.

device — The two types of devices are Logical and Physical.

A logical device is one that is referred to in TRSDOS. Logical
devices have devspecs, a 2-character name that is prefixed with
an asterisk (*). An example of a logical device is *PR, which is
normally used to send data to the printer.

A physical device is a piece of hardware, such as the video
display or printer. A piece of software called a ““driver” connects
the logical device to the physical device by translating data from
the format used by logical devices into the format required by the
hardware, and vice versa.

devspec — The name associated with a device by which it is
referenced. A devspec always consists of three characters: an
asterisk followed by two alphabetic characters.

P

directory — An area of a disk that contains the names of the files on
the disk, information on where the data in those files is stored on
the disk, and other information such as any password, the logical
record length, the modification date, and so on.

disk I.D. — A disk's name and master password assigned when it is
formatted.

*DO — The Video Display device.

:drive — Indicate that a drive number can be inserted where this is
used. A drive number must always be preceded immediately by
a ey

driver — A program that interfaces a physical device (a piece of
hardware) to a logical device, which can be referenced by
TRSDOS.

EOF — End of File, a marker used to denote the end of a program or
data file.

/ext — The extension of a filespec. The use of /ext is sometimes
optional. An extension’s first character must be a */” (slash)
which is followed by one to three alphanumeric characters, the
first of which must be a letter.

A-86

FCB — File Control Block, a small piece of memory used to control
the status and I/O of data between the operating system and
disk files.

filename — The mandatory name used to reference a disk file. A
filename consists of one to eight alphanumeric characters, the
first of which must be alphabetic.

filespec — A disk file’'s name. A filespec consists of four fields and
two switches. The first field is always mandatory. A filespec is in
the following format:

ifilename/ext.password:drive!

“|” — (preceding filename) is an optional switch. If you specify
this switch, you can build a file with the same name as a
TRSDOS command or utility. For example, you can issue the
command: LIST IDEVICE and TRSDOS will list the user-created
file named DEVICE.

filename — The mandatory name of the file.
/ext — The optional file extension.
.password — The optional file password.
:drive — The optional drive number.

“” — (following :d) is an optional switch. If this switch is set, the
end of file marker for filespec is updated after every write to the
file.

filter — A machine language program that monitors and/or alters 1/O
that passes through it. FILTER is also the library command that
establishes a FILTER routine.

/FIX — The desired file extension for a PATCH file.

foreground task — Jobs performed by the computer that are
apparent to the user, such as running an applications program.

gran — The abbreviation of granule. A gran is the minimum amount
of storage used for a disk file. As files are extended, file
allocation is increased in increments of grans. The size of a gran
varies with the size and density of a diskette.

HIGH$ — The name of a memory location in the operating system
that contains the address of the highest unprotected memory
address available for use. Programs that are above this location
are protected from other programs. You can display or change
the value of HIGH$ by using the MEMORY command or the
@HIGHS$ SVC.

interrupt — A signal generated by the hardware which causes the
system to stop what it is doing to perform some other service.
These interruptions are used to perform background tasks such

A-87

as checking the keyboard for input and supplying data to the
printer if the spooler is running.

I/O — The abbreviation for Input/Output.

JCL — The desired file extension for a DO file. JCL is the
abbreviation for Job Control Language.

*JL. — The Joblog device.
*KI — The Keyboard device.

/KSM — The desired file extension for a ksm file. KSM is an
abbreviation for Key-Stroke Multiply.

library — A set of commands that perform most of the operating
system functions.

load module format — A file format that loads directly to a specified
RAM address.

LSB — The Least Significant Byte. In a hexadecimal word, it is
sometimes referred to as the “low order byte”.

macro — Predetermined lines of code used in JCL.
mod date — The date a file was last written to.

mod flag — A “+” sign placed after a filename that indicates it was
written to since its last backup.

MSB — The Most Significant Byte. In a hexadecimal word, it is
sometimes referred to as the “high order byte”.

NIL — A “dummy” device which a logical device can be linked or
routed to. When you reset a user-defined device, it points at NIL.
NIL discards any data that is sent to it and returns a null (ASCII
0) when data is requested from it. It is useful when you want to
discard output from a program during a test run.

NBRN — Next Record Number.

parameter — an optional value that you supply to a command line.
Parameters may follow a command or utility and are enclosed in
parentheses ().

parse — The process of breaking a command into individual
parameters.

partspec — A way to represent a group of one or more files by
entering only part of the file specification. Partspecs are allowed
in some TRSDOS library and utility commands so that a group of
files can be specified. A partspec can consist of any combination
of the four fields that make up a filespec.

In a partspec, a dollar sign ($) can be used to represent any
character in a given position in a filespec. This is called
“wildcarding.”

A-88

By prefixing a partspec with a minus sign (—), you can cause all
the files except those that match the partspec to be considered
in the given command.

.password — The optional password associated with a filespec. A
password’s first character is a period (.) and it is followed by
one to eight alphanumeric characters, the first of which must be
a letter.

PATCH — A utility that makes minor alterations to disk files.
*PR — The Line Printer device.

RAM — Random Access Memory. This type of memory can be
accessed in any order, and any byte can be read or written at
any time.

ROM — Read Only Memory. This type of memory stores information
that will not change. ROM does not require power to maintain its
data.

sector — A contiguous 256-byte block of disk storage. Each sector
has an I.D. field which contains its track and sector number. This
allows the hardware to use the proper area of the disk when
reading or writing to the disk.

A sector is the smallest amount of data the operating system will
read from or write to a disk. Several sectors make up a track.
One or more tracks make up a cylinder.

*SI — The Standard Input device. Programs that read data from this
device normally receive data from the keyboard. You can change
this to have data read from a file or another device by issuing a
ROUTE command. This allows a program to accept input from
any device without the need to modify the program.

*SO — The Standard Output Device. Data that is output to this
device by a program is normally displayed on the screen. You
can change this to have the data written to a file or another
device by issuing a ROUTE command. This allows a program to
perform output to any device without the need to change the
program.

switch — A parameter with a definite setting, such as ON/OFF or
YES/NO.

token — A variable used in JCL.

utility — A program that provides a service to the user. Utilities differ
from library commands as they are usually larger programs and
require memory that is usually reserved for the user.

word — A 16-bit value which is stored in two contiguous 8-bit bytes.
A word may be specified in hexadecimal format X'nnnn’ or in
decimal format nnnnn where nnnnn is a value from 0 to 65535.

A-89

Appendix I/TRSDOS Programs

This appendix contains five TRSDOS programs that you can use with
the SET, SYSTEM, and FILTER library commands. There is a short
explanation and examples for each program.

JOBLOG

ROUTE =JL [TO] filespec
ROUTE =JL [TO] devspec

Establishes the TRSDOS Joblog device (+JL), which collects certain
information and sends it to a filespec or devspec.

You can use JOBLOG to create a file that contains a list of
commands that you issue.

The information sent to filespec or devspec consists of all commands
entered or received and the time (according to the system clock) that
the commands occur.

When you issue a RESET *JL command, the Joblog function ceases
and filespec closes. See the ROUTE library command for additional
information.

To view the contents of a Joblog file, issue a RESET *JL command to
close the file, and then a LIST command to list the file’s contents.

To view the contents of a Joblog disk file when it is open, add a
“trailing exclamation point” (!) to filespec (see “filespec” in the
GLOSSARY). Then use the LIST library command to list the file to the
screen or printer.

NOTE: If filespec already exists, information sent to it is appended to
the end of the file.

Examples
ROUTE *JL TO LISTER/JBL (ENTER

sends a log of all commands entered and received to the file
LISTER/JBL.

ROUTE #JL TO =PR (ENTER

sends a log of all commands entered and received to the printer.

A-91

KSM/FLT

Filter
SET devspec KSM/FLT [USING] filespec [(parameter)]
FILTER *KI devspec

Establishes the KSM (Key Stroke Multiply) filter.

You can use KSM/FLT to assign repetitive tasks (such as issuing a
TRSDOS command) to one key, so that you only have to press
CLEAR) and the assigned key to execute the task.

devspec is any user-created devspec.

filespec contains up to 26 “key equivalents.” The KSM filter loads the
key equivalents from filespec into high memory.

The parameter is:

ENTER = value specifies value as the character TRSDOS
recognizes as an character in a KSM file. value is a
number in the hexadecimal format X'nn’, a decimal number,
or a single character such as a colon (:).

Each key equivalent is associated with the (CLEAR) key and an
alphabetic key. When you press (CLEAR) and a key, TRSDOS
executes the phrase associated with that key.

Building a KSM File

You can use the BUILD library command to build a /KSM file. To build
a KSM file named ROUTINE/KSM, type:

BUILD ROUTINE/KSM (ENTER

TRSDOS then lets you enter up to 26 key equivalents with the
prompts:

A=
B==>
C=>

P+ o+ -

A-92

/'"\\

To assign a character, type in the desired command; then terminate
the line by pressing (or the character you specified with the
ENTER parameter). To skip a character, press (ENTER) at the prompt.
Pressing does not place an (ENTER) character at the end of the
key equivalent, but merely terminates your input for that key. To place
an (ENTER character in a key equivalent, type a semicolon (;) where
you wish an press to be executed. Each line can be up to 255
characters long.

When you have assigned all 26 characters, the file is closed and the
BUILD terminates. Pressing (CONTROLSHIFT)(@) terminates the BUILD
at any time.

If you want to create characters or strings that are not available from
the keyboard, use the (HEX) parameter of the BUILD command.

It is not absolutely necessary to use the BUILD command with the
/KSM extension to create a KSM file. The KSM/FLT program can use
any file.in ASCII format. TRSDOS uses the same rules concerning
and the semicolon for a file in an ASCH format.

If you wish to deactivate the KSM filter, issue the command:
RESET *KI (ENTER
If you wish to change to a different KSM file, issue the commands:

RESET #KI (ENTER
RESET devsrec (ENTER

And re-issue the commands for the new file:

SET devspec KSM/FLT [USINGI filesrpec (ENTER
FILTER *KI deuspec (ENTER

Examples
A=:DIR :@ (ENTER

specifies the key equivalent of A as “DIR :0”. The command DIR :0 is
displayed on the screen when the (CLEAR) and (A) keys are pressed
together. The command is not executed until you press the (ENTER
key.

B=:*FREE; (ENTER

specifies the key equivalent of B as “FREE;”. A semicolon in a key
equivalent represents an character. So, when you press

and (B), the FREE library command is executed immediately
(since the last character of the phrase is a semicolon).

F=:*FREEIDEVICE (ENTER

specifies the key equivalent of F as “FREE;DEVICE;”. A semicolon in
a key equivalent represents an (ENTER) character. So, when you press

A-93

COM/DVR

CLEAR) and (B), the FREE and DEVICE library commands are
executed immediately.

Error Conditions

Attempting to SET a device to the KSM/FLT when it is already active
on another device results in an error.

When you install an additional KSM, the new KSM file cannot be
larger than the first KSM file instalied.

Driver
SET *CL TO COM/DVR

In order to use the Communications Line device (*CL), you must SET
it to this driver program.

You can use COM/DVR to prepare the Communications Line (+CL)
for use.

COM/DVR sets *CL to the RS-232C hardware.

After you SET *CL to the RS-232C hardware, you can alter the
parameters of the RS-232C port with the SETCOM command.

Example

SET *CL TO COM/DVR
sets *CL to its driver program.

SETCOM (WORD=8,:PARITY=0FF)
configures the RS-232C port using the values specified.
Technical Information

When you set the COM/DVR, it will be placed in high memory if there
is not enough room in low memory. (Low memory is within TRSDOS
and does not take away from the memory available for your
programs.) If this happens, a message similar to the following
appears:

Note: driver installed in high memory.

If you want to use Memdisk while you are using COM/DVR, be sure
to install Memdisk first.

A-94

FORMS/FLT

Filter
SET =FF TO FORMS/FLT
FILTER =PR #FF

You can use FORMS/FLT to prepare the printer filter (+FF) for use.

In order to use the printer filter (+FF), you must SET it to this filter
program, and activate it with the FILTER command.

After you SET *FF to FORMS/FLT, you can set up the parameters of
the printer filter with the FORMS command.

Example
SET *FF TO FORMS/FLT
sets *FF to its filter program.
FILTER *PR *FF
filters the printer to the printer filter program.
FORMS (MARGIN=12,CHARS=70,INDENT=17)

configures the printer filter by causing all lines to start 12 spaces in
from the normal left-hand starting position. Any line longer than 70
characters is indented 17 spaces (5 spaces past the margin) when
wrapped around, so it is printed starting at position 7.

Technical Information

When you set the FORMS/FLT, it will be placed in high memory if
there is not enough room in low memory. (Low memory is within
TRSDOS and does not take away from the memory available for your
programs.) If this happens, a message similar to the following
appears:

Note: filter installed in high memory.

If you want to use Memdisk while you are using FORMS/FLT, be sure
to install Memdisk first.

A-95

MEMDISK/DCT

Driver
SYSTEM (DRIVE =drive,DRIVER = “MEMDISK”)

Lets you add a pseudo floppy drive to the system which keeps its files
in memory. Files stored on this drive can be accessed, read, and
written more rapidly than files on a floppy. Only one Memdisk can be
installed at a time.

All TRSDOS utilities treat the Memdisk drive as any other drive, so
you can COPY, BACKUP, REMOVE, PURGE, ATTRIB, and display
the DIRectory of the files on the Memdisk.

drive is the drive number you wish Memdisk to be. If you specify a
drive number that is already defined, it is disabled and the Memdisk
takes its place. drive is a number from 1 to 7.

To Install the Memdisk
When you start Memdisk, the following menu is displayed:

ZAr Bank ® (Primarvy Memorv)
<B» BanKk 1

<C» Bank 2

<D» Banks 1 and 2

<E» Disable MemDISK

Which tvyrpe of allocation -
<Ary “<Brs <C»y <D>sy or <E?

Each bank contains 32K of memory. If your system has only 64K of
memory, then you do not have Banks 1 and 2.

‘Bank 0 is the top half of user memory. (See the Memory Map in the

Technical Reference Manual.) It is shared by programs, drivers, filters,
and Memdisk.

Because it is shared, if you select Bank 0 you are prompted for the
number of cylinders that are to be used for the Memdisk in Bank 0.
Selecting the number of cylinders allows you to use Memdisk but still
have enough memory for the programs you want to run. You must
select at least 3 cylinders. If you format Memdisk, the amount of
memory used by each cylinder is shown below:

A-96

Double Density 256 x 18 = 4608 bytes per cylinder (4.5K)
Single Density 256 x 10 = 2560 bytes per cylinder (2.5K)

If you specify Banks 1 or 2, then all of the bank (32K) is used. If you
specify option (D), then Memdisk uses Banks 1 and 2 (64K).

After selecting which bank you want to use, you see:
Sindle or Double Density <8,Dx7

This allows you to adjust the way memory is formatted. You get the
same amount of space at single density as you do at double density,
but the number of sectors per cylinder differs.

This feature allows mirror image backups to be performed, which
allows data to be loaded into and out of Memdisk much faster.

Memdisk looks exactly like a floppy disk to a program.

If you selected Bank 0 (Double Density), the following message is
displayed:
Note: Each Cvlinder egquals 4,50K of srace.
Number of free cvlinders 1-N 7

N can be from 1 to 12. The value of N varies according to the number
of other drivers resident in memory.

If you specified Bank 0 (Single Density), the following message is
displayed:
Note: Each Cvlinder eauals 2,.50K of srpace.
Number of free cvlinders 3-N 7

Enter the number of cylinders you want Memdisk to use in Bank 0,
using the formula on the previous page. N can be from 3 to 7.

After you enter the configuring information, the following prompt is
displayed:

Do vou wish to Format it <Y N37?
If you have not used Memdisk before, press (Y). Formatting

is not optional upon initial installation. MEMDISK is not initially
installed unless you format it.

If you have used Memdisk and the system failed for some reason,
press (N to retrieve files that were left in Memdisk when it was last
used. Remember that if the power went off, the Memdisk contents
were erased.

If you answered the format question with (Y), you see the message:
Verifving RAM Cylinder NN

Verifving Comerletes RAM dood
Directory has been placed on Cvlinder 1

A-97

MemDISK Successfully Installed

At this point, the Memdisk has been added to your system. The disk
name is MEMDISK. It can be treated just like a floppy disk drive until
you disable it or you reset the system.

To Disable the Memdisk

If you want to disable the Memdisk, then you must issue the
command:

5YSTEM (DRIVE=drive ,DRIVER="MEMDISK") (ENTER

Then, at the menu select the (E) option. Memdisk displays one of the
following messages:

MemDISK disabled: memory now available

MemDISK disableds Unable to reclaim hidh memory

MemDISK disableds Unable to reclaim driver area

MemDISK disableds Unable to reclaim hidh memory
and driver area

If you receive the first message, Memdisk was disabled and was able
to reclaim all memory (driver area, high memory (Bank 0), and
alternate memory banks 1 and 2) that it was using.

If you receive the second message, Memdisk was unable to reclaim
high memory (Bank 0) because another driver or filter was installed
after Memdisk was set up and the other program is still in the way.
This is known as memory fragmentation. If you need to use this area
of memory, then you must reset the system.

If you receive the third message, Memdisk was disabled and able to
claim high memory or alternate bank memory, but it could not reclaim
the driver area.

If you receive the fourth message, Memdisk was disabled, but it could
not reclaim any memory.

Error Conditions

Memdisk should be installed before COM/DVR or FORMS/FLT are.
Filters and drivers can be loaded into an area within TRSDOS called
low memory. (This area does not take away from the memory
available for your programs.) However, not all of the drivers and filters
can fit into this area at the same time. If there is no room left in low
memory, most of the drivers and filters can be loaded in high
memory. Since low memory works on a first come, first served basis
and Memdisk is the only driver or filter that must load into low
memory, you should install Memdisk before the other drivers and
filters. This ensures that there is space available in low memory for
Memdisk to reside.

A-98

FLOPPY/DCT

If you attempt to re-install Memdisk in a different area of memory than
the area that it was originally installed in, you get the error message
“MemDISK already Active.” Memdisk must always be re-installed as it
was initially installed.

If you specify the wrong drive number (in the SYSTEM (DRIVE =
drive,DRIVER = “MEMDISK") command) and you attempt to disable

the Memdisk, then you receive the error message “Target Drive not a
MemDISK.”

If you attempt to disable a Memdisk and there is no MemDISK in the
system to disable, then you receive the error message “MemDISK not
present.”

Technical Information

A Bank 0 Memdisk and BASIC use the same area of memory (RAM).
Since a Bank 0 Memdisk and BASIC use the same area of memory,
we recommend that you do not use BASIC when Memdisk is resident
in Bank 0.

If you are going to use Memdisk as the system drive, you must COPY
SYS0/SYS to it before it becomes the system drive. After Memdisk
becomes the system drive, you can REMOVE SYS0/SYS from the
Memdisk.

Driver

FLOPPY/DCT is used in Radio Shack hard disk installations. See
your hard disk manual for an explanation on how to use this driver.

A-99

CLICK/FLT

Filter
SET devspec CLICK/FLT
FILTER =Kl devspec

You can use the key-click filter to produce a tone from the sound
generator inside your computer.

In order to use the click filter, you must SET it to this filter program,
and activate it with the FILTER command.

After you have set and activated the click filter, each time you press a
key on the keyboard, your computer produces a tone. You can use
this tone as an “auditory feedback™.

You can change the pitch and duration of the tone produced by the
key-click filter. To do this, you must apply a patch to the values that
control the pitch and duration of the sound in CLICK/FLT.FILTER (see
the PATCH command).

The patch is:
D00,7E = xx,yy;F00,7E = 03,00

xx is the duration of the tone. xx can be 1 - FF. 1 is the shortest
duration and FF is the longest.

yy is the pitch of the tone. yy can be 0 - FF. 1 is the highest pitch and
0 or FF is the lowest.

A-100

Appendix J/ BASIC Memory Map

0000H to 25FFH

2600H to 2FFFH

3000H to 85FFH

8600H to
Bottom of Stack

Bottom of
Stack to HIGH$
or User-Defined
top of memory
(M)

User-Defined
top of memory
(M) or HIGH$
to HIGH$

Operating System Reserved for TRSDOS

Overlay Area

BASIC

User's BASIC
Program

BASIC stack and
File Control
Block(s)

Assembly
language routines
callable from
BASIC.

operations.

Used alternately by TRSDOS
and BASIC. Whenever you use
a TRSDOS library command,
TRSDOS uses this area to
store the program that will
perform the command. BASIC
reloads this area with its data
when you return from
TRSDOS.

Reserved for BASIC.

Reserved for your
programs, variables, strings,
and arrays.

Contains the stack used by
BASIC and the File Control
Block(s) (FCBs). Each FCB
requires 564 bytes of

storage. The number of FCBs
that your system has is
selected with the command:
BASIC (F=n), where ‘n’
specifies the number of files
that can be open at any one
time. (One additional 564-byte
block is always allocated and is
reserved for use by BASIC.)

This area exists only if you
create it with the command,
BASIC (M= address) where
‘address’ specifies the last
address that BASIC will use.
The area between “M” and
HIGHS$ is used to store
assembly language routines
that are called by BASIC
programs.

A-101

HIGHS to Driver/Filter/User Area in which drivers, filters,

FFFFH or System tasks and tasks that are continuously
used by the system are stored.
ltems in this area include the
spooler, drivers and filters that
cannot fit into the area
reserved within TRSDOS, and
MEMDISK (when it resides in
Bank 0). Assembly language
routines that are to be called
from BASIC may be placed
here as long as the programs
follow the rules outlined in the
Technical Reference Manual.

User Program

Your User Program space is dynamic. It is dependent on the number
of data files you requested when loading BASIC (called “concurrent”
files), the HIGH$ marker, the amount of stack space, and the highest
memory location you specified when loading BASIC. For information

on how to load BASIC, see Chapter 1.

Assuming that the HIGH$ marker is at the top of physical memory
(FFFFH) and that the highest memory location (the ‘M’ option) was
not specified when BASIC was loaded, then four or less concurrent
files do not alter the amount of User Program space. The fifth
concurrent file decreases it by 312 bytes, and six or more decrease it
by 564 bytes each.

IF HIGHS is not at FFFF$, or if M was specified when BASIC was
loaded, then use the PRINT FRE(0) command to see the amount of
User Program space available.

The number of concurrent data files also determines where the top of
the stack will be. BASIC uses the following formula:

M-(564 x number of concurrent files)-564 = location value

The location value given by this formula is set as the top of the stack.
You can set aside additional stack space by using the CLEAR
statement. However, the more stack space you use, the less User
Program space you will have.

A-102

Appendix K/ Using The Device-Related

Commands

The advanced, device-related commands affect the assigned
TRSDOS devices and the devices that you create. They are:

DEVICE, FILTER, LINK, SET, ROUTE, RESET

DEVICE is different from the other commands because instead of
directly affecting the devices, DEVICE actually shows how each
device is set up and what connections between devices (and files)
exist. So, each time you issue one of the above commands, you
should issue a DEVICE (B =ON) command to make sure the devices
are set the way you want them.

Creating an Unfiltered Link

An unfiltered link is different from a filtered link because there is not
an in-between program (a filter) that affects the data flowing between
the two devices.

Creating an unfiltered link between a device and a file involves the
ROUTE and LINK commands.

ROUTE can create a user device and routes it to a file.
LINK creates a link between two devices.

Remember that it is a good idea to issue a DEVICE command before
you create a link. In the following example, we are going to route the
printeer. On start-up, the printer is shown in the device table as:

*PR => X'@QDE3’

The device table entry shows the place in memory (X'0DE3’) where
the driver program that controls the printer is located. This memory
address may vary.

Example

In this example we are going to link the printer to a file. That is, all
data sent to the printer is also sent to the file.

To create a link between the printer (*PR) and the file PRINT/TXT:0:

1. Route the user-created device *DU to the file PRINT/TXT:0 by
issuing the command:

ROUTE *DU TO PRINT/TXT:0
The device table shows:

*DU <=3 PRINT/TXT:9
The following link now exists:

*DU < -3 PRINT/TXT

Everything that TRSDOS sends to *DU is sent to the file
PRINT/TXT.

A-103

2. Link the printer to *DU, which in turn is routed to PRINT/TXT by
issuing the command:

LINK *PR *DU (ENTER
the device table shows:

¥PR =3 =L@ | *DU & = X'@DE3J’
*DU <=3 PRINT/TXT:0

The following link now exists:

#PR -* Printer Driver f(at ¥/ @DE3)
#PR -3 #*DU <-3% PRINT/TXT

Everything that TRSDOS sends to *PR is also sent to *DU and
from there to PRINT/TXT on Drive 0.

Creating a Filtered Link

Creating a filtered link involves the SET and FILTER commands. A
filtered link involves a devices and a filter program which affects the
data that flows to or from the device.

SET prepares a user-created device for the filter connection.

FILTER creates the “logical link” between two devices. The first
device is usually a system device, and the second device is always a
user-created filter device.

Example

To create a filter link you need a filter program. In this example we
use the system filter program KSM/FLT.

Before you issue a SET or FILTER command, be sure to issue a
DEVICE command to see the start-up conditions of the system
devices. In this example, we are going to filter the keyboard device.
On start-up, the keyboard is shown in the device table as:

#*K1 <= X’'0883°

The device table entry shows the place in memory (X’'0893") where
the driver program that controls the keyboard is located. This memory
address may vary.

To create a KSM filter link between *KI and a user-created device
*DU:

1. Set *DU to the KSM filter by issuing the command:
SET *DU KSM/FLT PRINT/DAT (ENTER
The device table shows:

*¥KI <= X'9893°7
*DU <# [Inactivel X'FFG7’
Options: Tvees KGBM

A-104

. Now use the FILTER command to connect the KSM filter program
to the keyboard by issuing the command:

FILTER *KI *DU (ENTER
The device table shows:

*KI <% [#DU1 ¥'FFG7°’
*DU <= X' 'pB893 ¢
Ortions: Tyre, KSM

The following link now exists:
Kevboard Driver -» *DU -3 KSM/FLT - *¥KI

That is, everything that you type into the keyboard is sent through
*DU, filtered through the KSM filter and then the information is
available at K| to be read by TRSDOS or a program.

. To return the keyboard to its start-up condition, issue the
command:

RESET *KI (ENTER

. To remove *DU from the device table, issue the following
commands:

RESET *DU (ENTER
REMOVE =DU (ENTER

Using the RESET Command

You can use RESET with SET, FILTER, ROUTE, or LINK. In this
example, we show you what happens when you break the link
between —PR and PRINT/TXT.

Example
To break the link:

*PR -% Printer Driver (at X 'ODE3 ")
*PR -> #DU <-3> PRINT/TXT

1. First, to remove the routing between *DU and PRINT/T XT, issue

the command:
RESET *DU (ENTER
The device table shows:

*PR =3 *L@ | *DU & => X'@DE3R’
*DU <= NIL

The following link now exists:

*¥PR -> Printer Driver (at X'@DE3 ")
*PR -» *DU <-» NIL

A-105

All output sent to *PR is still sent to *DU, even though *DU is
pointed NIL.

. To remove the link between *PR and *DU, issue the command:
RESET *PR (ENTER
The device table shows:

#PR => X'ODEJ’
*DU <=r NIL

Now you have returned =PR to its original start-up condition, and
the link between *PR and *DU no longer exists.

(You can type REMOVE *DU to remove *DU from the device
table.)

A-106

Appendix L/ Set Up for 50 Hz AC power
(non-USA users)

A utility (HERZ50) is provided for customers in areas where the AC
power is 50 Hz rather than 60 Hz. It should not be used by any other
customers. HERZ50 simply places a patch on the diskette that
changes the clock speed for 50 Hz users.

HERZ50 is a DO-file that makes a change in the software of
TRSDOS. Only the Drive 0 diskette is changed. Be sure it is
write-enabled before you start the DO-file. Once the HERZ50 change
is done, it will remain in effect for that diskette.

To perform the change, type:
DO HERZS®

Once the change has been made, you will need to reset the system
to put the change into effect. This loads the new software into RAM.

A-107

Appendix M/ Backup Limited Diskettes

Some software products distributed by Radio Shack come on backup
limited diskettes. This means that you can make only a fixed number
of copies of the master diskette that you receive. You should use the
master diskette to make only the backup copies that you will use, as
you cannot make a backup copy of a backup that was made from a
backup limited diskette.

These diskettes are clearly marked to indicate that they are backup
limited. If you are uncertain, contact your Radio Shack Computer
Center or the store where you purchased the diskette.

When you have exhausted the number of copies you are allowed to
make or if the master diskette is write protected, the following
message appears when you attempt to back up the diskette:

Protected source disk

Making a Backup Copy

Before you make a copy of a backup limited diskette, you must
remove the write-protect tab from the diskette (if one is present).
Because the diskette is not write-protected, you should be very
careful that you do not accidentally format the master diskette or back
up the blank diskette to the master diskette.

Follow the steps given below for systems with two or more floppy
drives or systems with one floppy drive, as appropriate.

For systems with two or more floppy drives:

(If you have a hard disk system and two or more floppy drives, start
up as a floppy disk system and use this procedure.)

1. Insert a TRSDOS system diskette into floppy Drive 0. Insert a
blank diskette into floppy Drive 1.

2. Format the blank diskette, following the directions given with the
FORMAT utility. (You can use the command FORMAT :1 (Q=N)
ENTER) to produce a default diskette.)

If the diskette has any flaws on it (that is, if an asterisk is
displayed next to one or more cylinder numbers), repeat step 2
with another blank diskette. Remember that you can make only a
fixed number of copies of this diskette, so you should try to use
good media.

3. At TRSDOS Ready, type:
BACKUP :@ :1 (X) (ENTER
4. When you see the prompt:
Insert SOURCE disk <ENTER:

A-109

5.

remove the TRSDOS system diskette from Drive 0 and set it
aside.

Remove the write-protect tab (if any) from the master backup
limited diskette you want to copy. This will be the SOURCE
diskette.

Place the backup limited diskette in Drive @ and press (ENTER).
The following message may appear:

Destination diskK ID is different:
Name=diskname Date=mm/dd/vy

Are vou sure vou want to bacKur to
it <Y eN: 7

Respond by typing (ENTER).
The computer now performs the backup. When you see the
prompt:

Insert SYSTEM disk <ENTER>

remove the backup limited diskette from Drive 0 and place a
write-protect tab on it.

Remove the new backup copy from Drive 1. Place a write-protect
tab on it and place a label on the jacket to identify it.

Insert the TRSDOS system diskette in Drive 0 and press (ENTER).
A message is displayed telling you if the backup operation was
successful or not. If there was an error, start over with step 1
using another blank diskette. Unsuccessful backups do not count
against the number of backups you can make.

For systems with one floppy drive:

(If you have a hard disk system and one floppy drive, start up as a
floppy disk system and use this procedure.)

1.
2.

Insert a TRSDOS system diskette in the drive.

At TRSDOS Ready, type the following command:
FORMAT :2 (Q=N)

When you see the prompt:
Load destination diskette <ENTERZX

remove the TRSDOS system diskette from the drive and insert a
blank diskette. Press (ENTER).

When you see the prompt:
Load SYSTEM diskette <ENTER>

A-110

10.

remove the formatted diskette and insert the TRSDOS system
diskette. Then press (ENTER).

If the disk has any flaws on it (that is, if an asterisk is displayed
next to one or more cylinder numbers), repeat steps 2, 3, and 4
using another blank diskette. Remember that you can make only
a fixed number of copies of this diskette, so you should try to use
good media.

At TRSDOS Ready, type:
BACKUP :0 :0
When you see the prompt:
Insert SOURCE disk <ENTER>

remove the TRSDOS system diskette from the drive and set it
aside.

Remove the write-protect tab (if any) from the backup limited
diskette you want to copy. This will be your SOURCE diskette.

Insert the backup limited diskette in the drive and press ENTER).
When you see the prompt:
Insert DESTINATION disk <ENTER>

remove the backup limited diskette from the drive and insert the
blank diskette. Press (ENTER).

The following message may appear:

Destination disK ID is different:
Name=diskname Datezmm/dd/»y

Are vou sure vou want to bacKur to
it <Y N> 7

Respond by typing (Y) (ENTER).

You are asked to insert the SOURCE and DESTINATION disks
several times. Be very careful that you do not mix them up!
Simply follow the instructions in steps 6 and 7 each time you see
one of the two messages.

When you see the prompt:
Insert SYSTEM disk <ENTER:

remove the limited backup diskette from the drive and place a
write-protect tab on it. Place a write-protect tab on the new
backup copy and place a label on the jacket to identify it.

iisert the TRSDOS system diskette in the drive and press
ENTER). A message is displayed telling you if the backup
operation was successful or not. If there was an error, start over

A-111

with step 1 using another blank diskette. Unsuccessful backups
do not count against the number of backups you can make.

Backing up selected files

You can move the programs on a backup limited diskette to the hard
disk using backup by class or backup reconstruct. (The latter occurs
automatically when the target drive is a hard disk.) This is counted the
same as making a diskette copy using the procedure described
above.

Note that if you do a backup by class and move only selected files,
and if any of the files that are moved are protected, it is counted as
though you made a copy of the entire disk. For example, suppose
that you are allowed to make three backups of a backup limited
diskette. You do a backup by class to move visible files. If one of the
visible files is protected, then that file is copied along with the other
visible files. However, you can now make only two more copies of the
files on the master disk.

For this reason, you should be careful that you do not cheat yourself
out of a copy. When moving files to the hard disk from a backup
limited diskette, ask for all of the files using the (SYS,INV) options in
the BACKUP command. If this moves some unwanted material, it can
be purged later.

You may use backup by class or backup reconstruct to move
non-protected files to and from the hard disk or a backup of the
backup limited diskette. However, the protected files are not backed
up and will not be listed if you use the QUERY option.

A-112

P

SERVICE POLICY

Radio Shack’s nationwide network of service facilities provides quick, con-
venient, and reliable repair services for all of its computer products, in most
instances. Warranty service will be performed in accordance with Radio
Shack’s Limited Warranty. Non-warranty service will be provided at reason-
able parts and labor costs.

Because of the sensitivity of computer equipment, and the problems which
can result from improper servicing, the following limitations also apply to the
services offered by Radio Shack:

1.

If any of the warranty seals on any Radio Shack computer products are
broken, Radio Shack reserves the right to refuse to service the equip-
ment or to void any remaining warranty on the equipment.

. If any Radio Shack computer equipment has been modified so that it is

not within manufacturer’s specifications, including, but not limited to, the
installation of any non-Radio Shack parts, components, or replacement
boards, then Radio Shack reserves the right to refuse to service the
equipment, void any remaining warranty, remove and replace any non-
Radio Shack part found in the equipment, and perform whatever
modifications are necessary to return the equipment to original factory
manufacturer’s specifications.

The cost for the labor and parts required to return the Radio Shack com-
puter equipment to original manufacturer’s specifications will be charged
to the customer in addition to the normal repair charge.

A-113

b 2-3 Addition......... 2-41
; (Advance Memory), 1-60 Advanced Information ii
— (Decrement Memory) 1-60 Advanced Programmer’'s Command 1-14
Mtag 2-33 Advanced Programmer's Utilities. 1-14
#lag........o 2-34 APPEND............................ 1-17
*FR o 1-35, 36, 37 command 1-31
device 1-40 Appendices........................... A-1
“received Data”.................. 1-40 Application Keys 1-35
*FS. 1-37, 1-44 CLEAR(D) ... 1-35
CLEAR(D)covve, 1-35
— AR % 1-35
A (Cancel and Restart) 2- CLEARICA) 1-85
Ass o and Restar D 265 CLEAR(S).. I 135
Accessing Direct-Access File 2-56 CLEAR(E)oooe 1-35
ActionKeys 1-36 *FROFF. .o 1-87
CLEAR D) . ..o 1-36 [arguments]LL. 2-4
Dump-to-disk _________________ 1-36, 44 array.o 2-29
$FR . 1-36 ASC 2-66
CLEAR(B) 1-36 ASCllformat......................... 1-17
CLEAR(D)ooooo 1-37 ASClIiModify 1-57
_________________________ 1-37 Assigning Protection Attributes. 1-20
@ _________________________ 1-37 to a QISK 1-21
CLEARD (D). ... 1-38 toafile 1-20
CLEARGHIFD(T)o 1-38 Owner passwords................ 1-20
half-duplex 1-38 User passwords. 1-20
full-duplex....................... 1-38 ATN ... 2-67
@HIFT @ ___________________ 1-38 ATTRIB R 1-19, 1-49
“EChO”ING ... oo, 1-38 protection passwords 1-19
CLEARGHIFD@) oo 1-39 AUTO....... ... 1-22, 2-67
carriagereturn................... 1-39
CLEARGHIFDE)................... 1-39 — B —
................... 1-39 B (Move Block of Memory) 1-57
................... 1-39 BACKUP............ P 1-24
CLEARGHIFDCD..........covv ., 1-39 byclass...................... 1-25, 1-28
control characters 1-39 limited 1-47, A-109
CLEARGSHIFD(D................... 1-39 mirror image.................. 1-27, 1-28
CUrSON.t 1-39 non-limited 1-47
CLEARGHIFD(D 1-39 reconstruct 1-27, 1-28, 1-29
CLEARGHIFDG)o 1-40 with the (X) parameter........... 1-25, 28
handshaking..................... 1-40 BASIC ... 2-1
CLEARSHIFD(@)................... 1-40 CommandMode 2-13
device 1-40 Concepts.......................... 2-25
library command 1-40 Execution Mode.................... 2-14
CLEARSHIFD(=)................... 1-41 Functions 2-62, A-82
datareceived.................... 1-41 Introduction........................ 2-59

INDEX-1

Keywords 2-59, A-76, A-80

Line EditMode 2-17
loading............ ..o 2-9
Notations.c.oovviinn .. 2-3
Operations 2-7
reservedwords A-79
Sample Session L 2-9
TeIMS et e 2-4
Variable classification............... 2-34

BASIC Command Mode 2-13
Special Keys 2-14

BASIC Concepts 2-25

BASIC ExecutionMode 2-14
SpecialKeys 2-14

BASIC Line EditMode................ 2-17
Special Keys 2-18

BOOT ... 1-30

Key Handling A-35

Breakable AUTO commands 1-30

Buffer.........ccoiiiii 2-4

BUILD ... 1-31

Built-indrives.......... ... i

Bulletin Board Systems 1-34, 42

—C —

C (Call Instruction) 1-58
PCregister.............. ... 1-58
single-step ...l 1-58

CALL 2-68

CDBL.......oo 2-69

CHAIN............... T 2-70

Character Set........................ A-46

Characters periline................... A-75

CHRS. ... 2-72

CINT ... 2-73

CLEAR o 2-74

CLICK/IFLT ... e A-100

CLOSE 2-75

CLS .. 2-76

COMDVR.o.. .. 1-34, 42, A-94

COMM. .. e 1-34

Command............ccoviiiiinnn... 1-13
A (Cancel and Restart) 2-20
APPEND......l 1-17
Auxiliary. ... 1-13
Break.............l 1-46

@ONTROD(A)t 1-46

Modei ll, 12, 0r16 1-46
(CONTROL)(C)co v 1-46
Model lorlll................... 1-46
breakable AUTO 1-30
BUILD ... 1-31
Device Handling 1-13
devicerelated..................... A-103
Diskette Handling 1-13
DO .. 1-31
E (Save Changes and Exit) 2-20
FileHandling 1-13
[(lnsert). ..., 2-19
Initialization. 1-13
Machine Language File Handling 1-13
nC (Change)....................... 2-21
nD (Delete)........................ 2-21
nKc (Search and “Kill”) 2-22
nSc (Search) 2-22
Q (Canceland Exit) 2-21
RESETo A-105
X (Extend Line).................... 2-19
COMMON. e 2-76
COMMunicating
between two TRS-80's.............. 1-44
with other computers 1-42
with mainframe 1-42
Communications A-43
Configuration A-85
Console. ... A-39
constantso 2-11
CONT e 2-77
CONV (CONV/CMD)covnnn.. 1-47
Converting to Integers A-75
COPY 1-49
COS . 2-78
CREATE 1-52
Creating
Direct-Access Files................. 2-54
filtered link A-104
Sequential-access Files............. 2-51
unfiltered link A-103
CONG ... 2-79
CVD,CVL,CVS..... . 2-80
Cylinder........................ 1-27, 1-61
D —
DDisplay)ccovviiiiii it 1-58

INDEX-2

DATA. ... 2-81
DATE. 1-54
system..........l 1-54
today's................... ... 1-54
DATES. 2-82
DEBUG.................... 1-55
activate 1-55
extended.......................... 1-55
highmemory 1-56
microprocessor registers 1-56
flag registers 1-56
memory locations 1-57
PCregister...................... 1-56
registerpairs 1-56
Debug Display 1-30
DEFDBL ... 2-83
DEFINT ... 2-83
DEFSNG............................ 2-83
DEFSTR......... 2-83
DEFFN......... ... 2-84
DEFUSR 2-85
DELETE 2-86
DEVICE........................ 1-40, 1-65
Delay time......................... 1-66
Devicesection..................... 1-65
Drive section 1-65
Driver. i 1-66
Filter........ 1-66
Status section 1-65
Steprate.......................... 1-66
Devices........................ 1-10
logical, 1-10
physical 1-10, A-85
devspec 1-10
*DO (Display Output (Video))........ 1-10
*JL(JobLog)...................... 1-10
*K| (Keyboard Input) 1-10
*PR (Printer) 1-10
*S| (Standard Input)................ 1-10
*SO (Standard Output) 1-10
DIM ... 2-87
DIR....... 1-28, 1-68
partspec 1-68
Direct-Access Files................... 2-54
Accessing 2-56
Creating............. ...t 2-54

Disk Files 1-7, 2-51, A-75
Disk ID'S..............c..oviit. 1-27, 1-28
Disk Prompts 1-51
DESTINATION. 1-51
SOURCE............... ... 1-51
SYSTEM........... ... 1-51
Disk Read/Write Utility 1-61
Division.................. . 2-40
byzero A-76
DO ... 1-31, 1-32, 1-72
Job Control Language 1-72
@label............... 1-72
Double Precision..................... 2-31
drve .. A-85, 1-8
Drivers. i 1-10
Dummy number....................... 2-4
Dummystring................. 2-4
DUMP .. 1-75
Dump-To-Disk 1-36
—E —
E (Save Changes and Exit) 2-20
Enotation........................... 2-34
EDIT. ... 2-88
Electronic Mail Services. 1-34
END... ... 2-89
BEOF .. 2-90
ERASE 2-91
ERL ... 2-92
ERR....... 2-93
ERRSS ... 2-93
ERROR.......... ... 2-94
Error Message............. 1-6, A-62, A-76
Escape Code Sequence 1-46
EXP .. 2-95
Exponentiation....................... 2-40
Expressions 2-26, 2-47
Extended Command Descriptions 1-61
E(EnterData)..................... 1-61
L(Locate)......................... 1-62
N (Next Load Block)................ 1-62
PPrint)............. ..., 1-62
T(Type ASCIl) 1-63
VCompare)....................... 1-63
WMWord) 1-63
fextension 1-8

INDEX-3

_F —

F (Fill Memory)c.c0. 1-58
FIELD ... i 2-96
file-for-file copyt 1-28
File Handling Commands 1-13
filename., 1-8
Files
BASICASCH ...t 1-47
combining.............. A-23
data 1-47
fragmented oo 1-28
FilespeC........ooiviiiiiii it 1-7
FILTER ... e 1-77
phantom devspec.................. 1-77
Filters. 1-10
FIX 2-97
FLOPPY/DCT. ... A-99
Hard disk installations A-99
Floppy Disk Drive A-40
Floppy Drive Oo 0. 1-30
FOR/NEXTt A-76, 2-98
FORMAT.................. 1-24, 1-31, 1-78
erase all data from disk............. 1-78
prepare anewdisk................. 1-78
Format Prompts...................... 1-78
FORMS e 1-82
FORMS/FLT......... . A-95
FRE ..o 2-100
FREE........ ...t 1-28, 1-85
Functions 2-27, 47, 62
control i A-45
graphics. oo oo A-45
KEYS . o oot 1-35
action. 1-36
applications, 1-35
Xt . A-45
— G —
G (Go to an Address/Execute)......... 1-58
GET i 2-100
GOSUB....... ..o 2-101
GOTO ... 2-102
Graphics Characters. 1-42
—H—
H (Hex Modify). 1-58
hexadecimal value 1-59

verticalbars 1-58
HANDSHAKE. 1-37, 40, 44
HERZ50 ... A-107
Hex byte representations. 1-32
HEXS . . oo 2-103
Hexadecimal value 1-34
— I —
b(nsert). ... 2-19
| (Single-Step Execution).............. 1-59
If highlighted. 1-15
IF...THEN.. .ELSE.......... A-77, 2-103
Initialization commands 1-13
INKEYS ..o 2-105
INP .. 2-105
INPUT .. 2-106
INPUT#. . e 2-107
INPUTS . .o 2-108
INSTR ...t 2-110
INT 2-111
Integer. ... 2-4
INtegers. ..o, 2-30
—J—

JWump) . 1-59
JCL Compiling.......coovviiiinn A-12
Advanced i A-25
description andterms............... A-13
compilephase A-13
execution ...t A-13
SYSTEM/MJCL. ...t A-12

label. ... A-13

logical operator A-14

token ... A-13, A-16

using logical operators.............. A-26
Job Control Language A-3

creating ... A-4

restrictions A-4

simple execution A-4

using labels A-24
JOBLOG ... A-91
— K —
Keyboard.............cooooiiei it A-40
KILL oo 2-112
KSMfile. ... 1-32
KSM/FLT. ... 1-31, A-92

INDEX-4

buildingafile A-92 HEXIT. oo A-7
JELASH ... A-7
—L— JINPUT ..o, A-7
LEFTS ... 2-112 MKEYIN .. A-7
LEN .$. 2-113 fnumber. ... A1
LET o 2-114 MPAUSE ... A-8
LB 1-87 MSLEEP .o A-8
Technical Information............... 1-87 ASTOR.........cooiii A-8
LNe ..o 2.4 # (triple slash). A-11
logical, 1-32 IWAIT A-9
phys,cal 1 _32 keyboard A'5
LINEINPUT ... 2-115 nested /P, A-27
LINE INPUT# ... 2-116 /INCLUDE ... A-28
LINK. .o 1-88 pause/delay A5
device toafile..................... 1-88 ~ Main memory usage.................. 1-45
LIST. .o 1-90, 2-117 FIFO storage compartment.......... 1-45
LLIST. ..o, 2-118 HIGHS SEERELEEER PR PERY 1-45
LOAD.......cooo 1-92, 2-119 Marker, end of file.................... 1-31
Load module format 1-17 MEM ... 2125
Loading BASIC 2.9 MEMDISKDCT ... A-96
Loadlng the Program 2_1 2 dlsable R R A"98
LOC. ..o 2-120 double density A-97
LOF ..o 2-121 installing A-97
LOG 2.122 singledensity...................... A-97
LOC/ICMD . .. oo 1-93 Technical Information............... A-99
hard disk installations............... 1-93 MEMORY ... 1-94
Logical device 1-10 HIGHS ... 1-94
Logical line.......................... 1-32 LOWS ... 1-94
LPOS.......ocoooiii 2123 MemoryMap ... A-101
LPRINT, LPRINT USING. 2-123 MENU ... 1-36
LRL ..ot 1-49,1-52 MERGE........................... 2-126
LSET .o, 2-124 MIDS... (Function) 2-129
MID$... (Statement)................ 2-128
M Mirror Image Backup 1-27, 1-28
A~ DG MKDS$, MKI$, MKS$................. 2-130
MACROS ... AS MODflags.ooiiii 1-27
(a:li)enrwtn.\.eh't --------------------- ﬁg Modem 1-42
conditional. e Multiplication. 2-40
comment........................ A-15 N
higher order logical A-15 N
Ioglcal A_1 5 NAME 2'1 31
merge A_1 5 nC (Change) 2'21
termlnation A_15 nD (Delete) R R e e 2-21
execution. A-5 Nested subroutines................... A-76
HABORT i .\ A-6 NEW e 2-131
HALERT ..o A-6 News and Information System......... 1-34
JUDELAY ... A-6 nKc (Search and “KILL”).............. 2-22

INDEX-5

Non-ending Loops. 1-50

Notations (BASIC). 2-3
nSc(Search)cccooiiin 2-22
Number.... 2-4
Numeric Operators 2-39, 2-42
— 0 —
O (Return to TRSDOS Ready)......... 1-59
OCTS. ... 2-132
ONERRORGOTO.................. 2-132
ON...GOSUB..................... 2-133
ON...GOTOt 2-134
ONNNN ... 2-3
OPEN 2-135
Operating Temperature A-41
Operators, 2-39
Logicall 2-44
Numeric...................... 2-39, 2-42
Relational 2-42
String. ... 2-42
OPTIONBASEccovvnn.. 2-136
Options for Loading BASIC............. 2-9
OUT .. 2-137
Owner passwords 1-19
— P —
Parameters.....................o.... 1-15
[parameters]............. 2-4
Parentheses.................. 2-45
PartspeCt 1-8, 1-28
“wildcard” mask ($) 1-8
partspec i 1-24, 1-47
password 1-8
Passwords, 1-20
OWner ... 1-20
User.......coiiiiiii i 1-20
PATCH 1-96
direct modify................ 1-99
memory load location............... 1-97
PATCH utility oot 1-31
Pause Transmission.................. 1-40
PEEK.o 2-137
Peripheral Interfaces A-41
Physical device 1-10
Physicalline......................... 1-32
POKE. 2-138
Ports A-76

POS . . 2-138
Power Supply. ... A-40
Power-up configuration 1-30
PRINT ... 2-139
PRINTTAB.................... A-77, 2-145
PRINTUSING 2-141
PrintZones............. A-75
PRINT@ A-77, 2-144
PRINT#. ... 2-146
Printing

double-precision numbers........... A-76

single-precision numbers. A-76
Protection passwords................. 1-19
PURGE..............cooiiiin.. 1-100
PUT . 2-147
Q (Canceland Exit) 2-21
QPort)......coi 1-59
Quick referencecard 1-36
Quick reference label................. 1-41
—R—
R (Register Pair) 1-60

register paircodes 1-60
RANDOMo 2-148
READ. ... 2-149
Receiving large files

from another computer.............. 1-46
Relational Operators. 2-42
REM. 2-150
REMOVE i 1-102

user-created device 1-102
RENAME. it 1-103
RENUM......... ... 2-151
REPAIR (REPAIR/ICMD) 1-105
Reserved Words A-76, 2-29
RESETot 1-18, 1-106

improperly closed files............. 1-106
RESTORE ... 2-152
RESUME..............cooiiiiinn.. 2-153
Resume transmission. 1-40
RETURN......... .o 2-154
Reversevideo A-46
RIGHTS. ... 2-154
RND ... 2-155
ROM Subroutines A-75

INDEX-6

ROUTE ... 1-108
ROW ... 2-156
RS-232C ... i, 1-113
communications line................ 1-34
modem 1-113
serialprinter...................... 1-113
Technical Information.............. 1-114
RSET ... 2-157
RUN............. ..o, 1-110, 2-157
— S —
S (Full Screen Mode) 1-60
SAVE... 2-158
Saving the Program 2-11
ScreenPrint......., 1-7
Sector ... 1-61
Sequential-Access Files............... 2-51
Creating.oiviiat. 2-51
Updating ...t 2-53
SET e 1-111
driver program 1-111
filterprogram 1-111
SETCOM.............. ...t 1-42, 1-113
SETKI ... 1-116
SGN. ... 2-159
Simple Variables 2-29
SIN. ... 2-160
SOUND......... ..., 2-160
SPACES o 2-161
SPC .. 2-162
Special Characters A-58
SPOOL ... 1-117
disk buffer........................ 1-117
memory buffer 1-117
outputbuffer...................... 1-117
SQR. ... 2-162
Statements..................... 2-26, 2-60
Static Electricity. A-62
STOP. ... 2-163
Sting. ... 2-4
String Operator 2-42
String Relations 2-43
StringSpace. A-76
Strings. ... 2-32
STRS ... 2-164
STRINGS, 2-164
Subscripted Variabies 2-29

Substitution Fields. A-21
Subtraction.................. ... 2-41
SWAP ... 2-165
Symbol
DC1 .. 1-40
resume transmission 1-40
DC2 . 1-40
*FRdevice ON 1-40
DC3 . 1-40
pause transmission............... 1-40
DC4 1-40
*FR device OFF 1-40
using % symbol.................... A-29
Syntax.......... .. i 1-15, 2-4
SYSGEN............oii 1-120
configuration file 1-120
Sysgened configuration............. 1-29
SYSTEM............. ...t 1-122, 2-166
Alive.o 1-122
Blink. ... 1-122
Date. ... 1-123
Drive ... 1-123
SYSRESo 1-124
SYSTEM....... . 1-125
TIME ... 1-125
TRACE ... 1-125
TYPE[=switch]................... 1-125
(SYSRES=number).................. 1-28
Systemmodules 1-28
— T —
TAB .. 2-167
TAN . 2-167
TAPE100. ... 1-126
Model 100 Computer 1-126
Technical Information.................... ii
TIME ... 1-127
clock. ..o 1-127
TIMES ... 2-168
Timesharing Systems................. 1-34
TROFF, TRON............ ... 2-169
TRSDOS. .. o 1-1
Abbreviations..............., 1-6
application programs 1-6
date 1-6
Notations............oty . 15
TermMS . e 1-5

INDEX-7

devsSpec ... 1-5
disk. ... 1-5
diskdD ...l 1-6, 1-28
diskette 1-5
filespec ...t 1-5
VO 1-6
(parameters) 1-5
Type Declaration Tags........... 2-33, 2-35
tag . ..o 2-33
2C: o [... 2-34
Dnotation......................... 2-34
Enotation......................... 2-34
— U —
UUpdate)c.... 1-60
Updating Sequential-Access Files. 2-53
Userpasswords...................... 1-20
USING
ASSIGN A-15
//. Comment and /QUIT A-19
/NF, //END, //ELSE A-15
//ISETand //RESET................ A-15
USR.... ... 2-170

Utilities. o i 1-14
—_V —

VAL .. 1-173
Variable Names................. A-75, 2-29
Variables............. i 2-28
VARPTR i 2-174
VERIFY ... 1-128
Video Display...............cooviiit A-39
— W —

WAIT . 2-177
WHILE.. . WEND................... 2-178
Wildcard mask ($).................... 1-8
WRITE. ... e 2-179
WRITE# i 2-180
Write-enabled., 1-23
— X -

X (ExtendLine)................... ... 2-19
X(Return). ... 1-60
XNNNN. ... i 2-3

INDEX-8

