6800 Trace
-and Disassemble Program

< This program puts you on the trail of runaway routines.

Richard Carickhoff
812 Pulaski Dr.
Lansdale PA 19446

id you ever write a program

that didn’t work and then
spend hours, or even days, de-
bugging it? Did you ever won-
der how the program got to that
particular location?...why
that compare instruction wasn't
working as you thought it
should? ... why that multiply
routine didn't work?

Well, I've been down that
road many times myseif, so |
decided to write a program that
would allow me to trace a pro-
gram instruction by Instruction
while, at the same time, see ex-
actly what was taking place be-
fore and after the execution of
each instruction.

The 6800 Trace and Disas-
semble program does just that.
The program enables the user
to perform the following func-
tions:
® Program trace function
® Go to user's program function

R4 Microcomputing, May 1980

® Program disassemble func-
tion

® Memory examine and change
function

® Register examine and change
function

The detailed explanations,
along with operating proce-
dures for each of these func-
tions, are described in the fol-
lowing paragraphs.

At the start of each function
it is assumed that the last data
character printed by the termi-
nal is a colon (:), which is the
program’s prompt character.
All values entered must be in
hexadecimal format.

Program Trace Function

The program trace function
will trace the user's program
one instruction at a time, while
outputting to the terminal the
location, mnemonic, operand,
contents of all MPU registers
(CC, B, A, X, SP) and the next re-
turn address in the stack. The
trace function will do this for
each instruction prior to its exe-
cution.

The trace funtion can be per-

formed by typing one of the fol-
lowing two responses:
:Tnnnn
or
: T nnnn, mmmm
The first response must be
terminated with a carriage re-
turn. The character T specifies
a trace function. The four hexa-
decimal digits following T spec-
ify the starting address of the
first instruction to be traced.
This response instructs the pro-
gram to trace only one instruc-
tion (see Example 1).
At this point the trace func-
tion waits for the operator to

enter a character. If the charac-
ter is any character other than
the Escape (1B hex), the in-
struction displayed will be exe-
cuted and the next instruction
will be output to the terminal
along with the contents of all
the MPU registers (see Exam-
ple 2).

The contents of the following
MPU registers are printed along
with each instruction:

cc—Condition code register
b—B register

a—A register

x—X register

sp—Stack pointer

: 70103 cc a X sp rtn
0103 JMP 0225 8F FF 2242 AD49 7B05S
Example 1.
_J
: T 0103 cc a X sp rin
0103 JMP 0225 8F FF 2242 AD4g 7805
0225 LDS 22 CF FF 2242 A0D49 7B05
Example 2.

h

: G 0103,022F
022F LDX

#0080 C1

00 00 07A1 0000

Example 3.

If the program does not reach
the breakpoint address and the
operator wishes to return to the
trace and disassemble program,
he must perform a system reset
and return through the system
monitor. However, the software
interrupt still exists at the break-
point address.

“To remove the interrupt and
replace it with the original in-
struction, the Go to User's Pro-
gram function can be executed
where the starting address is
set to the breakpoint address.
The program will immediately
return, displaying the original
instruction at the terminal. The
operator can then terminate
the trace function by depressing
the Escape key.

Program Disassemble Function

This function allows the op-
{er,ator to disassembie any 6800
program Including the Trace
and Disassemble program it-
=~self. The disassemble function
can disassemble one instruc-
" tion at a time or a sequence of
instructions, while outputting
to the terminal the location, ob-
ject code, mnemonic and oper-
and for each instruction.

The disassemble function
can be performed by typing one
of the following two responses:

:Dannn
or
: D nnnn, mmmm

:D 0225
0225 9E 22 LDS 22
Example 4.

: D 0225

0225 9E 22 LDS 22

0227 BD 082C JSR 082C
Example 5.

The first response must be
“terminated with a carriage re-
turn. The character D specifies
a disassemble function. The
four hexadecimal digits follow-
ing D specify the starting ad-
dress of the instruction to be
disassembled (see Example 4).
At this point the disassembie
function waits for the operator
to enter a character. If the char-
acter is any character other
than an Escape, the next in-
struction in sequence will be
disassembled (see Exampie 5).
In doing so, the operator can
step through a disassembly of
a program one instructlon at a
time.

The second response is used
to disassemble a list of instruc-
tions. The first four hexadeci-
mal digits specify the first in-
struction to be disassembled.

:D 0225 0286
8225 LDS 22
0227 BD 062C JSR #862C
022A FE QI1FE LDX P1FE
#22D DF 2A STX 2A
022F CE 0089 LDX pago
0232 DF C2 STX c2
234 CE 06030 LDX 10830
6237 DF C@ STX con
9239 9F 26 STS 26
¢23p 8C B8 BRSR P1FS
23D 8D @7 BSR A246
623F 20 FA BRA 0238
A241 8C 1066 CPX 41066
g24kL 268 F3 BRA 6239
f2u6 CE @117 LDX #0117
@249 DOF BC STX BC '
0248 81 3¢ CHP A 938
pg24D 24 56 BCC 02AS
Pp24F 81 08 CMP A #08
@251 25 91 BRCS AlEL
£253 48 ASL A
0254 97 BD STA A BD
0256 DE 8C LDX BC
p258 EE 17 LDX 17,X
§25A 6E 00 JMP 80,Xx
¢25C BD 062C JSR (62C
f25F 86 21 LDA A #21
0261 97 C1 STA A C1
0263 BD 0109 JSR A109
266 86 8¢ LDA A #84
#268 97 C3 STA A C3
026A D6 2B .DA B 2B
p26C 96 2A LDA A 2A
026E FP O1IFF SUB B B1FF
0271 B2 OIFE SRC A O1FE
8274 BD 0A542 JSR 0542
8277 96 CO LDA A CH
6279 27 @F BEQ 928A
6278 CE (293 LDX #0293
N27F OF 2A STX 2A
@280 BD O5AD JSR 05AD
Program B. Disassemble function.

The second four hexadecimal
digits following the comma
specify the last instruction to
be disassembled.

Once the last digit Is entered,
the program will immediately
list each instruction in se-
quence until the last address is
reached. The last address spec-

ified must be on an instruction
boundary. Otherwise, the dis-

assembly will continue past the

last address. The Escape key
can be used to terminate any
list sequence.

When the last address is
reached, the disassembly will
stop. The operator can continue
the disassembly one instruc-
tion at a time by depressing any
key other than Escape. Other-
wise, the Escape key will ter-
minate the disassembly and re-
turn control back to the control

FEE-EE-ER-E-R'R-E-EE-E-X-R-2-X-X-E-E-E-2-2R-E-2-2-2-8-8-8-2-2-8-2-8--2-8-2-2-28-8 82 0ARRRAREARRREESSRRRRRRREESREE]

IR R R R R R AR EARRER R RRE-E-0 R 228 8 84

APPLE Il 16K $1075.00
APPLE Il PLUS 18K $1075.00
APPLE DISC WICONTROLLER $585.00
APPLE DISC ONLY $470.00
APPLE 18K RAM $140.00
From Apple-~Jack®

The Designer 48K Disk $24.985
Hi-res graphics with the stroke of a keyl X & Y
di using paddi Circles, elipses, arcs,

ractangles, lines, color windows. Save drawing on
disct!

Super-Starbase-Gunner
48K Disk $19.85
32K Cassette $14.85
3D ional Hi-res graphlcs action game! Super

10 levels of play. Uses paddlas or
joy-stick.
{Both require Applescft in ROM)

sound effects . . .

From Comp Pack V] d*
Inventory Conltol System
An Integrated data p I designed by a

Caertified Data Proceuor to conlrol and report your
Iinventory. Menu-driven, keyed-access, bullt-in sorta
and back-ups. Unique reporting capabllity by any
combination of characters within the key. Handles
up to 1000 Items.

fudes a Cash Reg module which produces
sales slips and maintains inventory on a REAL-TIME
basls.
Requires 48K Appiesott ROM, 2 disk drives, and an
Bo-column printer (P-1 can be used).

yst Is selt-prompting and virtuaily
"opemor proof”, an easily-understood manual Is
provided, along with file-layouts In the event you wish
to access your files with your own program.
introductory price $185.00

*We are the exclusive distributor of Apple-Jack and CPU software. For further information, pleass
write or call. Dealer inquiries are invited.

'R AR EEAREREEEEEEE-ER-EXEX-EE-2-2--2-X-2-2-2-R-EX-EE-2E-2-2-2-2-2-0-8-4-0-2 808282 222222822 R R 22 EEEXEEEX

86 Microcomputing, May 1980

We ship UPS 80 please Include Street Address, or
Check, Money Order, VISA or Master Charge. Personal

COD shipped ONLY with 10% down payment included

ORDERING INFORMATION
» PRICES INCLUDE SHIPPING <«
(Continental U.S. Only)
Hawalil, Alaska, APO/IFPO
Add 2% Shipping

Phone Number.
checks require 2 weeks to clear.
with your order.

Mass. resldents add 5% sales tax
All prod bject to liabllity

COMPUTER
PACKAGES
UNLIMITED
244 West Boylston Street

Waest Boylston, MA 01583
(617) 835-3428

BB/ JLBILB/BLBRBUZBBBIBEEERD

rtn—First return address at
the top of the stack

The contents of the program

counter Is the location of thein-
struction to be executed.

~ =th the use of the trace
{_ .lon, the operator can step
through his program one in-
struction at a time. The con-
tents of all the MPU registers
are always visible before and
aQer the execution of each in-
struction. Also, the instruction
is always printed before it is ex-
ecuted so the operator can de-
cide whether to terminate the
trace at that point (depressing
Escape key) or to continue.

The second response to the
prompt character Is used to
trace a program untll the break-
point address is reached. The
first four hexadecimal digits
define the starting address of
the first instruction of the trace
sequence. The second four
hexadecimal digits following
the comma define the break-
point address. Once the last
digit is entered, the program
will immediately start tracing
the program starting at the
start address.

e output format is the
Sw..@ as the single trace func-
tion except that the program
will continue outputting each
Instruction untlil the breakpoint
address is reached. At that
point the trace functlon oper-
ates in the same manner as the
single trace function. That Is,
depressing the Escape key ter-
minates the trace and depress-
ing any other key executes the
last instruction printed and out-
puts the next instruction. The
Escape key Is also used to ter-
minate a trace sequence prior
to reaching the breakpoint ad-
dress.

Cautlon: The trace function
traces a program with the use
of the software interrupt (SWI).
Always terminate any trace se-
quence using the Escape key.
Using the system reset may
leave a software interrupt in the
user's program.

This method of tracing a pro-
gr»m is normally used to deter-
{ how a program arrived at
a particular location. If aCRT is
being used for a terminal, the
last 15 Instructions executed
will still appear on the screen

(assuming the CRT has a mini-
mum of 16 lines). The rate at
which the program executes is
controlled by the output rate of
the'terminal being used.

Program A shows an exam-
ple of the trace function. The
program selected is Tom Pitt-
man’s 6800 Tiny BASIC. | chose
this program because it is well
known and is an Interesting
program to trace. It also dem-
onstrates the visibility of a pro-
gram using the trace function.

The starting address was set
at 0103 hex, which is Tiny
BASIC's warm start address.
The breakpoint address was
set at an address that would
not be reached. This allowed
me to terminate the program at
any point during the trace.

In Program A there are sever-
al instructions that are disas-
sembled with asterisks (***) for
the mnemonic and ROM for the
operand. This alerts the opera-
tor that the trace function came
upon a ROM address that could
not be loaded with the software
Interrupt. The trace function in
this case places the software
interrupt at the return address.
The trace function assumes that
routines in ROM are functional
and always return via the RTS
(return subroutine) instruction.

The ROM address shown in
Program A is the MIKBUG out-
put routine (EIDI). Examining
the contents of the A register
prior to executing the output
routine shows the character
being output. Also, the output
Is reflected In the trace printout
as indicated by the line feed fol-
lowing the first output by Tiny
BASIC.

Trace Function Restrictions

There are only two restric-
tions on the trace function. The
first Is that it wlll not trace a
program that uses a software
interrupt, since the software in-
terrupt interferes with the trace
function’'s software interrupt.
The second restriction Is that
the trace function cannot be
used to trace itself.

Go to User's Program Function

This function allows the op-
erator to execute his program.
The operator may specify a
breakpolnt address in order to

:T 0143, O0FFF

0103 JMP 8225 Cl 19 0D 2242 AQ7D #22A
0225 LDS 22 Cl 19 9D 2242 AQ7D 022A
#0227 JSR 062C C9 19 0D 2242 AQB7F 8800
f#62C LDA A 40D €9 19 0D 2242 AB7D 622A
062E BSR 0643 Cl 19 8D 2242 AQ7D 022A
§649 CLR 0OOBF Cl 19 0D 2242 AQ07B 8630
d64C JMP 0598 C4 19 6D 2242 AB7B 8630
6538 INC 00BF Ct 19 6D 2242 AG7B 0630
p§598 BMI 05A7 CO 19 0D 2242 A@78B 063¢
859D STX BA CO 19 6D 2242 A@78B 08630
§59F PSH B Ca 19 1D 2242 AB78 0630
O05A8 JSR 6199 Cd 19 0D 2242 AG7A 1906
0169 JMP E1D1 Cd 19 6D 2242 A@78 A5A3
E1D1 #¥* ROM

05A3 PUL B C8 19 4D 2242 AG7A 1906
85A4 LDX BA C¢ 19 0D 2242 A@78B 0630
#5A6 RTS C8 19 0D 2242 AQ78 8630
0638 LDA B @111 CO 19 6D 2242 AQ7D 822A
633 ASL B CO0 @83 pD 2242 AQ7D 922A
0634 BEQ 063E C6 06 80 2242 AA7D 022A
#1636 PSH 8 CO0 06 6D 2242 AQ7D0 022A
0637 BSR 0642 CO0 @6 OD 2242 AG7C 0602
0642 CLR A Cg 06 0D 2242 AO7A 0639
@643 TST g111 C4 96 00 2242 AP7A 0639
646 BRPL 0649 CO 96 A0 2242 AG7A 8639
0649 CLR @Q8F CO0 96 00 2242 AQ7A 0639
06LC JMP 0598 Cy 06 B8 2242 APTA 0639
§538 INC O0BF Ch 06 {0 2242 AG7A 0639
6598 BMI B85A7 CO 06 60 2242 A@7A 0639
@#59D STX BA co 06 @0 2242 A@7A 0639
059F PSH B CO 06 g0 2242 AG7A 8639
05A0 JSR 6109 CO 66 00 2242 A@79 0606
grag. Jmp E1D1 CO 06 00 2242 AQA77 0SA3
E1D1 ¥** ROM

#5A3 PUL B Cl @6 060 2242 AG79 0606
g5A4 LDX BA Cl 086 @0 2242 AO7A 0639
§5A6 RTS Cl @6 0f 2242 AG7A 0639
9639 PUL B Cl 0G 00 2242 AG7C 0602
A63A DEC B Cl 86 @0 2242 AQ7D 622A
0638 DEC B C1 65 40 2242 A@7D G22A
163C BNE 0636 Cl 64 00 2242 AA7D G22A
0636 PSH B Cl o4 00 2242 A07D 022A
0637 BSR 9642 Cl a4 00 2242 AQ7C 04LO2
p642 CLR A Cl 84 86 2242 AG7A 0639
0643 TST 0111 Cy B84 08 2242 AQG7A 0639
ge46 8PL 9649 CO 64 08 2242 AG7A 4639
0649 CLR 00BF Cd 04 00 2242 AATA 0639
@64C JMP 0598 C4 04 @40 2242 ABT7A 0639
@598 INC £OBF Ch 04 00 2242 AB7A 0639
0598 BMI g5A7 co @4 00 2242 AO7A 0639
859D STX BA Co 64 p@ 2242 AG7A 0639
059F PSH B CO0 04 00 2242 AQ7A 0639
05A8 JSR 0109 cp 8L B0 2242 AD79 0LO6
0109 JMP E1D1 Cg @84 8¢ 2242 A@77 @5A3
E1D1 **% ROM

Program A.

return to the trace program.
This function can be performed
by typing one of the following
two responses:

: G nnnn

or

: G nnnn, mmmm

The first response must be
terminated with a carriage re-
turn. The character G specifles
a Go function. The four hexa-
decimal digits following G
specify the starting address of
the program to be executed
(e.g., : G 0103).

The only way to return to the
Trace and Disassemble pro-
gram with this response Is
through the system monitor.

The second response Is used
to execute a user's program

until the breakpoint address is
reached. The first four hexa-
decimal digits define the start-
Ing address of the program to
be executed. The second four
hexadecimal digits following
the comma define the break-
point address. Once the last
digit is entered, the MPU will
start executing the user's pro-
gram. Once the breakpoint ad-
dress Is reached, the control of
the program Is returned to the
trace function (see Examplie 3).

The ptogram can be traced
from this point one instruction
at a time by simply depressing
any key other than the Escape
key. The trace will operate In
the same manner as if a trace
function was being performed.

Microcomputing, May 1980 85

I

MPU Register

cc AD77 C1 (space)
B AO78 19 FE
A A079 OD AD
XH AO7A 22 {space)
XL AO7B 42 (space)
PCH AQ7C 01 {space)
PCL AO7D 03 {space)
RTNH AQ7E 02 (space)
RTNL ' AOTF 2A {space)
A080 FF {escape)
: T 0103
0103 JMP 0225 C1 FE A0

Example 7.

2242

A07D 022A

amine and change the contents
of the MPU registers prior to ex-
ecuting the trace or Go to
User’'s Program function. The
trace and Go to User's Program
functions use the return from
interrupt (RT1) instruction to re-
turn to the user’s program. The
RTI instruction updates all the
MPU registers with the values
stored away in the stack.

The register examine and

change function Is initiated by
entering the character R after
the colon. The location of the
first MPU register and its con-
tents will be printed. The exam-
ining and changing of the data
is done in the same manner as
the M function (see Example 7).

Basic Memory Map

The 6800 Trace and Disas-
semble program resides in less

JMP SE1AC OUTPUT 2 HEX CHARS AND SPACE
BASIC MEMORY MAP
0900-0911 1O ROUTINES
0912-0949 TEMPORARY STORAGE
084A START OF PROGRAM
- 094A-0D18 EXECUTABLE PROGRAM
N 088A-0BA2 PROMPT, INVALID CODE AND CRLF MESSAGES
0D19-0FF3 MNEMONIC AND CODE TABLES
o MIKBUG #/O ROUTINES
0900 JMP SEOCC OUTPUT SPACE
0803 JMP SEOCA OUTPUT 2 HEX CHARS AND SPACE
0906 JMP. SEOCB OUTPUT 4 HEX CHARS AND SPACE
0809 JMP SEQ7E OUTPUT MESSAGE
090C JMP SE1AC INPUT A CHAR
080F JMP SE1D1 OUTPUT A CHAR
PARAMETERS
094B-094C $A042 MIDDLE OF STACK
0854-0955 $A014 SWI VECTOR (NORMALLY $FFFA)
0A37 $08 BACKSPACE CODE
0AB7 $1B ESCAPE CODE

Table 1. Memory map of I/O routines and parameters.

T nnnn (CR)
T nnnn, mmmm

Trace instruction at location nnnn.
Trace program starting at location

nnnn with breakpoint address set at

mmmm.
Go to user's program starting at loca-
tion nnnn.

Go to user’s program starting at loca-

G nnnn (CR)

G nnnn, mmmm

tion nnnn with breakpoint address
set at mmmm.

D nnnn (CR)
nnnn.
D nnan, mmmm

Disassemble instruction at location

Disassemble instruction at location

nnnn and ending at location mmmm.

M nnnn Examine memory location nnnn.

R Examine MPU registers starting with
condition code.

(ESC) Escape from present function and

return to control monitor.

Table 2. Summary of control functions.

90 Microcomputing, May 1980

than 2K of memory. The hex
listing accompanies the article.
The program uses some of the
MIKBUG I/O routines. Table 1
lists IO routines used by the
program.

There are some parameters
that may have to be changed
depending on your particular
machine. The stack pointer, for
example, Is initially ioaded to
$A042. If this value is changed,
it should be set to at least ten
locations down from the top of
the stack.

The software interrupt vector
is normally stored at location
$FFFA. In my home-brew sys-
tem the software interrupt vec-
tor points to a ROM subroutine
that uses location $A014 as a
programmable software inter-
rupt vector. The Trace and Dis-
assemble program initializes
location $A014 to the return ad-
dress of the trace function. This
address ($A014) in the program
will have to be changed to
$FFFA (if programmable) or to
whatever the programmable
location is in your particular
machine.

The Back Space and Escape
Codes can be modified. They
are presently set to 08 hex and
1B hex, respectively.

Break Test Routine

The break test is used by the
program during a trace or dis-

assembie program function. Af-
ter each line of output the pro-
gram jumps to the break test
routine. The break test checks
for a key being depressed. If
one Is not, the program returns
normally. if a key is depressed,
the character is input and
tested for the Escape Code. If
the character is not the Escape
Code, the program exits from
the routine normally. If the
character is the Escape Code,
the program returns to the con-
trol monitor.

Any changes to the break
test must be made within the
first three instructions. The re-
maining four are used by other
routines within the program.
There are some spare locations
at the end of the program start-
ing at $0FF4 for modifications
to the break test (see Example
8).

Summary |

The 6800 Trace and Disas-
semble program is an effective
debugging tool. It requires no
hardware changes, as long as
your system has a programma-
ble SWI vector. I've used it
many times and so have other
6800 users. It allows you to
trace your program instruction
by instruction. You can make
changes to your program, dis-
assemble your patches and
then trace them. You can make
a listing of your program and
even the trace of your program.

If you would like to get a copy
of the listing of the program for
relocation purposes or what-
ever, just send $5 with your
name and address to:

Richard Carickhoff
812 Pulaski Drive
Lansdale PA 19446

If you have any problems with
the program just send a self-ad-
dressed, stamped envelope to
me and I'll try to answer any
questions that you may have.l

OAAE BREAK LDAA $8009 PIA STATUS-KEY DEPRESSED?
0AB1 BPL EXIT NO
0AB3 LDAA $8008 YES, INPUT CHAR
0AB6 CHECK CMPA #1B ESCAPE CODE?
OABB BNE EXIT NO
0ABA JMP CONTROL YES, RETURN TO CONTROL MONITOR
0ABD EXIT RTS RETURN NORMAL
Example 8.

E——

A T T T T T e TS R YR

=

Id

09080 7E E@ CC 7€ EOG CA 7E
0910 E1 D1 A6 42 A¢ 006 00
6929 @9 60 30 30 306 39 044
p9306 2@ 49 LE 58 20 20 20
gokp 00 00 00 00 o0 Cp 00
0950 CE OA EO FF A0 14 BE
960 09 09 BD A9 O6C 16 BD
#8970 7B Cl1 54 27 27 Cl 52
£986 OA 11 7E 0A 17 BD 09
0930 (09 CE 0B 9C BD,09 09
p09A¢ B6 09 17 A7 05 B6 09
goBg¢ 86 O64L B7 P9 26 BD 09
09C0 BE CE 9B 9C BD @9 09
pgpo0 65 FF 09 17 BD @9 OC
09E@ 1F 7C 09 21 39 CE 0B
p9Fg 09 15 30 B6 B9 15 A7
0x00 BD 09 OC 81 PD 27 P9
pgAlt 3B 30 FF 19 15 20 (3
O0A200 CE 09 15 BD 069 06 FE

‘F eA3a @9 gCc 81 2¢ 27 E4 81

gALD 09 15 20 D6 BD A Bl
_0AS0 C9 86 3F BD 09 OF 7E
§ABG 09 FE 69 15 39 8D 0C
GA70 09 25 39 8D 09 4B 4B
GASM (tC 80 30 2B OF 81 09
pA9A 03 80 07 39 7 09 56
OAAM (19 1F 26 0A 7F £9 21
OABA 09 2A 0A B6 86 g8 81
0ACO 12 A8 BD 09 @3 BD 69
gAD@ @9 15 CE 09 15 BD 09
OAES BF 09 12 30 6D 06 26
SAFQ PS FF 09 17 7E €9 AA
0800 FE 09 19 86 89 1L A7

gB2# 09 19 FF 09 17 20 F1
gB3@ OC 26 11 4F F6 09 19
peued (9 18 20 D4 30 EE 09
9850 00 B7 09 1B 86 3F A7
pB6N 09 @6 CE AB 92 BD 09
0B70 27 05 FE 09 1C 20 03
fB8G FE 069 19 A6 (6 B7 09
gBSM 3A O 20 2A 2A 2A 20
6BAA 00 00 04 CE B9 22 C6
0BBP 86 04 A7 00 FE £9 17
gBCO FF A9 1C 24 @3 7C 09
@6BDO 03 7C A9 1C CE A9 22
0BEG 8D OC FF FE @9 1C Ab
UBFO Ck4 03 FE 89 17 A6 01
gcop CE 09 27 B6 09 1B BD
ocl Bh @C FF 5A 27 06 B6
6Cc2p0 08 5A 26 FC FF 09 17
6C30 1C 48 24 04 7C A9 1C
pc4y 09 1D 24 @3 7C 09 1C
pc50 @9 31 A6 01 B7 A9 32
fC60 34 B6 69 1E 85 CO 27
pc7o F7 69 35 CE 09 37 B6
ocsd BL #C FF 20 40 B6 09

¢Bl0 39 B6 09 1E 84 1C 26.

0C90 8D 27 12 84 FO B7 09
OCA0 86 23 A7 00 068 B6 @9
8CBP 27 32 B6 69 19 BD 6C
ocCe 09 1A BD OC FF B6 09
ficbe 81 EO 26 09 86 2C A7
PCEG FF 09 1C 39 4F F6 09
OCFE 0§69 1A B9 69 17 B7 g9
6006 8D A6 32 08 8D (06 08
0D10 81 39 23 f#2 8B 07 A7
§D2C 41 5p 54 50 L1 49 4E
O0D3# 56 43 LC 43 53 45 43
0DLO 43 42 41 54 41 42 54
0D50 52 41 42 LB 49 42 4C
gN60 L5 42 45 51 42 56 43
D70 42 L7 LS 42 LC 54 42
6080 4E 53 50 55 4C UL 45
pp90 53 5254 L9 57 41 49
ODAP 4C 53 52 52 4F 52 41
0DBE 45 L3 49 4E 43 54 53
ONCO 42 L3 4D 50 53 42 43
0DDO 45 LF 52 L1 L4 43 LF
OGDEG 53 52 LC L4 53 53 54
ODF8 58 53 S4 58 00 01 81
CECC @2 01 03 61 64 01 05
0E1¢ 0A 01 0B 61 GC (1 0D
0E20 OE 01 OF @1 60 d1 1¢
0E30 06 01 04 01 12 06 44
DE4LD 17 OA 18 0A 19 A 1A
BE50 1F OA 24 06A 21 01 22
GE60 26 81 26 41 0@ 61 Z7
0E70 29 01 2A 01 2B 81 OF
GEBQ 2E 81 2F 81 30 81 31
0E90 0¢ 01 35 81 2B L1 0f
BEAD 2E 41 2F 41 30 41 31
0EB0 08 01 35 41 2B 02 0@
GECG 2E p2 2F 02 30 02 31
PEDP 36 AE 35 g2 2B 03 00
OEEG 2E @3 2F 03 30 03 31
PEFP 356 @7 35 03 37 82 38
OF0p 3C 82 60 01 3D 82 3E
GF10 43 @3 06 01 37 82 38
f§F20 3C 82 44 82 3D 82 3E
@F36 43 02 45 @2 37 82 38
fF4LG 3C 82 u4 82 3D 82 3E
@F5@ 43 n2 45 02 37 83 38
p0F60 3C 83 uL 83 3D 83 3E
GF76 43 93 45 @3 37 42 38
gF88 3C 42 00 61 3D 42 3E
6F9f 47 03 60 01 37 42 38
OFAG 3C 42 44 42 3D 42 3E
OFBO 47 02 48 02 37 42 38
BFCA 3C 42 44 42 3D 42 3E
PFDA L7 P2 48 62 37 43 38
OFEQ 3C 43 L4 43 3D 43 3E
OFF@ 47 #3 ug 03 00 0p 60
>

Hex listing of Trace and Disassemble program.

monitor.

Program B shows the disas-
sembly of Tiny BASIC starting
at address 0225 hex and finish-
ing at 0280 hex. All values are in
hexadecimal. Branch operands
are the actual branch address.
Direct addressing Instructions
are shown with two digit oper-
ands. If alocation does not con-
tain a valid op code, the disas-
sembler will assume it is data
and output asterisks (***) for
the mnemonic.

Memory Examine
and Change Function

This function can be used by
the operator for inputting a pro-
gram or making changes to an
existing program. This function

88 Microcomputing, May 1980

can be performed by typing In
the following response:

:Mnnnn

The character M specifies a
memory change function. The
four hexadecimal digits follow-
ing M speclify the address to be
examined or changed. Once the
last diglt Is entered, the pro-
gram will respond with the ad-
dress and its contents:

:M 0103

0103 7E

The operator must now de-
cide whether to change mem-
ory, space to the next location,
back space to the previous lo-
cation or return to the control
monitor.

If the contents of memory are
to be changed, just enter the

new value. The program will au-
tomatically output the next ad-
dress and its contents. If the
contents of memory cannot be
changed, the program wiil out-
put a (?) and return to the con-
trol monitor.

If the operator wishes to
space to the next location, he'll
Just depress the space bar. The
program will output the next lo-
catlon and Iits contents. For
back spacing to the previous lo-
cation, just depress the back
space key (08 hex). The program
will output the previous location
and Its contents. The back
space function is useful for
back spacing when an incorrect
value Is entered.

The memory change function

can be terminated by depress-
ing the Escape key or entering
an invalid hex character (see
Example 6).

Register Examine
and Change Function

This function is used to ex-

: M 0103

0103 7E (space)

0104 02 {back space)

0103 7€ BD

0104 02 (back space)

0103 BD 7€

0104 02 (space)

0105 25 (back space)

0104 02 (back space)

0103 7E (escape)
Example 6.

——

e 4 ey 7] > .
7 . T % ———. G e il » - -, W < am [2 &=
3 — A w—:zr..—-?:"uw v Sy S
: - ch T .ﬂg*fz‘;’g?“,, D e G o Sy Y ETyas 3
| e SR 2 i ﬁﬁﬁ?&?ﬁ:ﬂm:ﬁ%ﬁ =9 i :
] - : : e Taps < 7T TS A In e yet o S YO v s = e 1m DO ST g i e
' AT R N e 3 i

e

ot BT e o
= -

Sl
il
S R

p$
:g&;c’ /

v
i
{3
'

il s
o

i
DR
R F AT 2 Ak

i
b
()

1
BT AR AT

To use the program, do the following:
1. Load the program.
2. Use the MIKBUG memory change funclion 1o set the
program counter, addresses AO48 and A049, to OEBO,
the start address of the relocator program.

3. From the MIKBUG monitor, type “G"" to begin execu-
fion. The program will prompt with a carriage refurn,
line feed, **?", and a space. _

4. Type a P’ for program segment or a “D” for data
segment fo be transferred. The computer will re-
spond with a space.

5. Enter (in hexadecimal) the start address of the pro- |
gram or data block to be transferred, the old end
address, and the new start address. The computer
will put spaces between each. Transfer is completed
when the prompt is re-displayed. Additional segments
may be transferred by returning to step 4.

Table 3. System Requirements

NAME: BLKXFER
FUNCTION: Move program or data block from one mem-
- ory location to another, retaining execut-
ability of program in new location.

RESULTS: New program is produced in different
memory location.

HARDWARE SWTPC 6800 microprocessor, CT-1024

CONFIGURATION: TV terminal, AC-30 casselte inlerface.

MEMORY REOQUIRED: Program resides in SOEBO to SOE5S6. Scratch
pad memory required from SA00Z to SAD17.
Memory aiso required for program in initial
and fina! storage locations.

SOFTWARE SUPPORT: MIKBUG

ASSEMBLER: Motorols Co-Resident Assembier

SOFTWARE SECTION

SOFTWARE DEVELOPMENT

-

One of the major advantages of a 6800-based microcom-
puter is the great amount of software available, either in
microcomputer magazines or from the manufacturer or sup-
port companies which sell software. Basic interpreters, text
editors, assemblers and disassemblers as well as several
game and utility programs have all been published and are
on the market as well.

One minor problem with software not written by the user is
that the program may not reside in a convenient segment of
RAM memory. For example, a printer handler may occupy
the same memory location as the executive portion of a
disassembler (obtained from a different source) requiring a
handler for a printer. In order to use the handler to print the
results of the disassemnbly, it will be necessary to have the
handler in a usable location.

In the case of a short program like a handler, it would be
very easy to re-write the program for a more appropriate
place in memory. For longer programs, the program may be
re-assembled for a new memory location. This latter option
assumes that the user has an assembler program with suffi-
cient memory fo accommodate it, and also that the user has
a copy of the source program on paper tape or cassefte
which may be loaded and edited.

Persons having a minimum system, such as the SWTPC
6800 with only 4K of RAM or the MITS 680 with a mini-
mum 1K memory, have insufficient memory to accommo-
(re an assembler/editor. A cassette interface or paper tape

.~ad/punch is virtually a necessity for a microcomputer user,
but many people may not have one. In addition, some pro-
grams are available only in machine language form.

The following program will transfer a block of data or a
machine-language program from one location to another

MARCH 1T

and allow it to remain executable in the new location. For ex-
ample, if the program to be moved is in location 1200-1400
and a particular 3-byte instruction, say at HEX address
1380, is STX $1250 (FF 1250), the instruction will reside
at HEX address 0580 after transfer to location 0400-0600,
and will be FF 0450 in machine language.

This program was written for the SWTPC 6800. The sys-
tem used has 12K of memory, a CT-1024 terminal, and
AC-30 cassetfte interface. The SWTPC 6800 has scratchpad
memory at HEX addresses AOOO to AQ7F, control interface at
HEX locations 8004 to 8007, and MIKBUG ROM monitor
occupying the upper 8K of memory above location EOQO.

The program described here makes use of the scratchpad
memory and uses four routines in MIKBUG. There is a pro-
vision in the program that 3-byte instructions containing ad-
dresses of the interfaces, the scratchpad, or MIKBUG will be
transferred with these addresses unchanged so that ad-
dresses or routines in these areas may be referenced by the
transferred program.

USING THE PROGRAM

The relocator program may be used on machine-language
programs resident in RAM at HEX addresses 7FFF or lower
(to avoid conflicts with scraichpad, interfaces, or the monitor)
or on HEX data resident anywhere in the machine. It will not
transfer both in one operation. !f a program contains char-
acter or HEX data within the body of the program, each
block of program or daia must be relocated in a separate
move. For example, the program may be used to relocate it-
self but will require two operations, one for the data from
HEX locations OE80 to OEAF, and a separate one for the
program proper located between OEBQ and OF56.

- : S INTEBFACT ACE 177

s B

e Sl Tt o ST, o

EPP

 SOFTWARE SECTION

SOFTWARE DEVELOPMENT

To use the program, do the following:

1. Load the program.

2. Use the MIKBUG memory change function to set the
program counter, addresses AO48 and A049, to OEBO,
the start address of the relocator program.

3. From the MIKBUG monitor, type ‘G’ io begin execu-
tion. The program will prompt with a carriage return,
line feed, *‘?”", and a space.

4. Type a “P" for program segment or a ‘D’ for data
segment to be transferred. The computer will re-
spond with a space.

5. Enfer (in hexadecimal) the start address of the pro-
gram or data block fo be transferred, the old end
address, and the new start address. The compuler
will put spaces between each. Transfer is completed
when the prompt is re-displayed. Additional segments
may be transferred by returning to step 4.

HOW IT WORKS

Hexadecimal data is simply transferred byte-by-byte from
the old location to the new.

Program transfers make use of an inferesting fact about
the 6800 instruction set; the most significant 4 bits of the op-
code define the total number of bytes in the instruction. (See
Table 1.) If the opcode is represented by a two-character hexa-

Table 1.

First 4 Bits of OPCODE No. Bytes Address Mode

(HEX)
0

Inherent
Inherent
Rezlative
Inherent
Inherent
Inherent
Indexed
Extended
or3 Immediate or Relative
Direct
Indexed
Extended
Immediate
Direct
Indexed
Extended

MOOWP» ©O~NDG B WN =
WA AN WRNRRNLWR =~ = R -

F

Table 2.

Called from
Address Name ADDR Purpose

EO7E PDATA1 0OEB3

Oulputs character string peinted to
by index register, terminated by
HEX 04.
Inputs ASCII character o A
accumulator
E047 BADDR OEBF Inputs 4 HEX characters and stores
0ECB them in index regisier
0ED1
EOCC ouTs 0EBC
0EC5
OECE
A002-A003 0EC2
OEDD,OEEO
QEF4
OF0A
OF19
OF27
OF33
AD04-A005 0ECB
0F2A
A014-A015 0ED4
OED&,0EDA
OF1E
0F24
OEE3.0EE6 Storage location of transter vector
OF4B,0F4E

E1AC INEEE OEB6

outputs a space

Storage location of old start address

Storage location of old end address

Storage location of new start address

AD16-AD17

decmial number, say 20 for Branch Always, which is a two-
byte instruction, all opcodes beginning with the HEX num-
ber two will be two-byte instructions. All opcodes beginning
with seven, such as 7E {Jump Extended), are 3-byte instruc-
tions where the second and third byte are an address (the
Jump address). One-byte instructions are inherent opera-
tions and are merely transferred to the new location.

Two-byte instructions are also transferred byte-by-byte 1o
the new location. The first byte is the opcode, and the sec-
ond is a relative or direct address which will remain unchanged
in the transfer or immediate data, also unchanged.

In the case of 3-byte instructions, the opcode is transferred
first. Then the address is tested to see if it is 7FFF or less. If
the second two bytes are less than 7FFF, a new address is
calculated by adding the difference between the new start ad-
dress and the old start address to the second two bytes of the
instruction. If the second two bytes are 8000 or greater, no
new address is calculated. The second two bytes are then
transferred.

Note that opcodes beginning with HEX 8, such as 8A (OR

Note that opcodes beginning with HEX 8, such as 8A (ORA
A), may be either 2- or 3-byle instructions. The program will
test for this and execute the appropriate transfer routine.

178 INTERFACE AGE

ADAPTING THE PROGRAM RELOCATOR

Table 2 shows the addresses in scratchpad and MIKBUG
and the location of their calls, as well as the purpose of the
memory location or subroutine.

If a particular machine does not use MIKBUG. routines
must be supplied to take the place of MIKBUG's routines
PDATAT1, INEEE, BADDR, and OUTS. The calls to these
routines should be changed io reflect the location of the rou-
tines. If an assembler is available, this is accomplished most
easily by changing the EQU statements at the beginning of
the programs and re-assembling.

Table 3. System Requirements

NAME: BLKXFER

FUNCTION: Move program or data block from one mem-
ory location to another, retaining execut-
ability of program in new location.

RESULTS: New program is produced in difierent
memory focation.
HARDWARE SWTPC 6800 microprocessor, CT-1024

CONFIGURATION: TV terminal, AC-30 cassette inlerface.

MEMORY REQUIRED: Program resides in $0E80 to SOE56 Scratch-
pad memory required from $A002 to SA017.
Memory aiso required for program in tnitial
and final storage locations.

SOFTWARE SUPPORT: MIKBUG

ASSEMBLER: Motorols Co-Resident Assembier

MIKBUG's scratchpad RAM in location AOQO to AQ7F is
also used for temporary slorage in BLKXFER. If a machine
does not have RAM at this location, temporary storage musi
be placed in RAM. There is sufficient storage for this purpose
in the reserve memory byies arza between OEA6 and OEAF.

Lastly, BLKXFER will not recompute addresses higher
than 7FFF. This upper limit may be changed 1o any 256-
byte block by changing ihe dzia for the compare immediate
instruction at HEX address 0r40.0

VMERCH 1679

NOILD3S IHYWI40S

2 I i N

Pre |

ASSEMuo 0es9 GEFE BT 0F8S STA A 38FS LOOK UP ADDR FOR OPCL TYPE
LY L|ST|NG 9042 Ore) CE OESE LDX ¢TABLE
e8| NAM BLKXFER ©861 orga LE 04 LDX 8, X
8d22 EBTE PDATAI LQU . 8962 OFV6 AD 02 BSR 8. X GO TO OPCODE TYPE SUBROUTINE
4021 E1AC I'MEEE EQU . 8063 BFB8 20 DF Hreng BRA LOOP NEXT INSTRUCTION
adva EG4T BADDR EQU i @864 BFRA FE ABOG2 E6 LDX sA@@2 OPCODE=8X,SEE LF 2 OR 3 BYTE
2985 EBCC ouTs EQU . 9865 OFBD A6 8P LDA A B,X INSTRUCTION
@066 BFREF 81 BC CMP A #38C
LLTT ORG 38EBQ 8067 @F11 27 29 BEQ TYPED
9068 @F13 81 BE CMP A #3BE
2097 @EBS BF1O TABLE FDE 38F19 TAELE OF OPCODE FIRST HEX 8869 BFIS 27 25 8EQ TYPE 3
eees8 PEB2 BF19 FDB 38F19 CHARACTER: SUBROUTINE @876 2F17 28 1E @ 27 BRA TYPE2 2 BYTES
2489 VEB4 @F37 FDB 30F37 ADDR FOR DATA TYPE 8071 OF19 FE A2 TYPE! LIX SAB02 TRANSFER 1-BYTE INSTRUCTION
8218 QEB6 8F19 FDb s8F19 8072 OFIC A6 88 74 LDA A #.X OR DATA VIHTOUT CHANGE
2811 @EBB AFI9 FDB 38F19 9073 @FIE FE ABla TYPEA LDX sABlA
2412 BEBA @FI19 FDB S8F19 20074 BF21 AT B8 STA A 08,X
©813 BESBC 0F37 FDB SOF37 INX
2875 @F23 08
8814 BEBE RF3C FDB 38F3C 8876 @F24 FF AB14 59)'34 STX sA014
8015 AE92 BFaA FDB 30FBA 2877 8F27 FE ABB2 INCRX LDX $AB02
e B s Fob 38Fa7 6078 OF2A BC AG8A A (P2 CPX 3ARGa END OF DATA?
8817 RPE9& @F37 FDB $eF37 2279 OF2D 26 93 AP24 BNE ENDI NO
2218 BE9S BFIC FDb 3@FaC 2880 arer 7t SEBS JHP START YES
8619 PE98 8F1? FDb 30F37 0281 OF32 86 ;D1 INX
88208 PE9A @F17 FDB 38F37 0082 6 FF ASS
8821 BESC 8F3? FDB $8F37 2083 g;g: 3: ¢ ,q¢a2 ::’: sasez
8822 BESE RFIC FDB 32F3C
9084 BF37 6D E@ TYPE2 BSR TYPE! TRANSFER 2-BYTE INSTRUCTION
882 QEAR 2D CRLF FCB 30D OUTPUT PROMPT 9085 @F39 8D DE BSR TYPEl WITH NORCHANGE
a823 atal o2 FcB $0A ©886 BFIB 39 RTS
“25 ::A; :m F(c:g /; / #9087 2FIC 8D DB TYPE3 BSR TYPEI 3 BYTES: TRANSFER OPCODE
6 QEAS 84 F 884 2088 @F3E A6 BE _ 5, LDA A 8,X
8827 YEAS #eeb TYPE RMB B WORK SPACE 2089 OFaB B1(TF) — S/ | CMP A #37F IN RAM?
0098 @F42 23 @5) ~ BLS MORE YES
8028 QEE® CE @EAd START LDX ¢CALF PROGRAM START 2691 BFas 8D D3 BSR TYPEI NO-TRANSFER ADDR UNCHANGED
8029 GER] BD ERTE J SR PDATA! OQOUTPUT PROMPT 2892 B8Fa6 8D DI BSR TYPE!
#8638 WEBS HD EIAC J SR INEEE INPUT DATA TYPE 0093 BFa8 39 RTS
8631 BEBY BT GEAS, STA A TYPE 8094 8Fa9 E6 B1 MORE LDA B 1.,X COMPUTE NEV A
DDR
8832 BEBC BD EBCC JSR ouTS 2095 9FaB FB A@l7 ;c}z) 37 ADD B s;ml'r
::g: ;Eg; BD E847 . JSR BADDR INPUT OLD START ADDR 0096 BFAE B9 AB16 ADC A $AD16
2033 accs ';; ::g’z‘ # j;: ;3::2 _ 0097 @rsl 8D CB (P34 BSR TYPEA TRANSFER 1T
0538 BECA BD E247 J SR BADDR INPUT OLD END ADDR e Cres b L,
8099 @FS54 BD CB BSR TYPEA
0837 6ECB FF Ad0a A P2% stx VYT o188 @FS6 39 RTS
8838 BECE BD EpCC JSR ouTS 2101 END
9039 BEDI BD E84a7 A 34 JSR BADDR INPUT NEV START ADDR
8849 BEDA FF AdILA STX SABL A v
8641 8ED? B& ABIS A S.”LDA A SAE1S COMPUTE TRANSFER VECTOR OBJECT CODE MIKBUG HEX DUMP
8942 OEDA F6 AdlA /534 LDA B 3ABlA ¢
9043 OEDD Bd AB#) 2% SUB A 3A08) P
vo4a pere r2 DD ngz SEC B 3A002 S11J0EBGGFI9@FI9BFITEFI90FI98F198FIT@FICBF
0aas BEE) £7 ABII 2G5S STA A 3AB17 S1138E980FBABFITEFI78FICEF3T8FITBFI T8 FACAL
B0as srre r1 GUER o STA B sagie S11JPEA@BDRAIF2004586071203F2000A00000801 7
T Nims £ TS Lo%;é Dik B TPE PROGRAM OR DATA S1138EBBCEGEAREDES TEBDEIACBTBEASBDEBCCEDBD
Nias GEEC BV Ak TP B i b S1138EC@EB4TFFAB@2BDE@CCBDEG4TFFABBABDEBCY
TP HEG TYPED GO T0 DATA ROUTINE SI138ED@CCBDERATFFAR | AB6AB I 5F6AR 1 aBBARE 4]
2354 SEFe Cf &3 CHF B 8358 o S1130EFBF2A0@2B7A81 7FTAB1 6F6BEASC14427B6CA
S1130EFOA|I S@26BCFEABB2A6BB4444444248B78F9 7
:::; ::;: l‘r: :‘:" ndeL ru: f;:::e IF NELTHER, START OVER S113@FB0B5CEGEBBEEBOADAA2BDFFEARR2ALRBE | 1B
9833 BEFT A6 0@ LDA A @,X GET MOST SIGNIFICANT 4 BITS SR ot O Ee e o R e AR a1
oe3a BEF9 aa LSR A OF OPCODE A
Rn GEFR IE LSR A S1130F300EBBOBFFABR 2398 DEGB DDEI9B DDBAGBREE
aea: ot o e S1138F4@817F23856DDIBDD]I9ESS I FEAR] TBOABBC
act VBT ad LER & :;aaersoleancax1sDcea9en¢
9a38 OEFD a8 ASL A MULTIPLY BY 2 ‘

1N3Wd0T13IA3IA FVYMIH40S

e

3¢

e k8 IV

-

O

T

"L-T' B
eve2
¥vdd
@ a
eeges

11" ¥

| 2@y 7
0pe8
! eans
|ea1g
221
80812
2813
8814
@e15
8816
8817
8918
8019
8820
2821
sez22
8823
8aR4
B82S
8826
8827

es28
2g29
aels
8831
gaj2
2eld
4@l
8825
8036
8817
eald

@839
BB AB
804!}
B8a2
884l
saaq
eaas
8Bae
yBa7
 Baas
2849
2gsg
@as1
pa3g
(1N
0asa

8ess
0936

8857
gass

EBTE
E1AC
E047
EBCC

QEBWQ
QEB2
UEB4
QEB6
@EBE
QEBA
BEBC
VEBE
BESY
BES2
QES 4
BE9 6
QESSB
BE9A
BESC
BEQE
BEAD
BEAI
PEAZ
GEAR
BEAS

QEES
@EBJ
9EB6
@EB9
BEBC
BEBF
BEC2
BECS
BECS
6ECB
BECE

AED!

8EDA
BED?
OEDA
@EDD
WEEW

BEEJ
WEES
@EE9

8EEC
BEEE
BEF@
BEFR
CEFaA
BEFT
BEF9
BEFA
BEFB
8EFC
OEFD

0F19
BF19
BF37
0F19
aF19
B8F19
0F37
eFaC
OFVA
@F37
BF37
BFIC
0Fa7
8F37
eFa7
BF3C

en
OA

3F2e

04

dieve

CE
BD
BD
BT
BD
BD
FF
BD
BD
FF
BD

BD
F¥
B&
Fé
Bo

F2
b7
F7
Fé
ci

27
c1

26
FE
Ab
a4
a4
a4
44
a8

PEAD
E@ TE
ELAC
BEAS,
EBCC
E847
AR@2
E@CC
E3a7
AB@A
EBCC
E847
AB1A
Ag1S
AB1a
ABB3
ABDB2
ABL7
ADLG
YEAS
a4

B6

58

BC

Ag02
ep

PDATAIL
1YEEE
BADDR
ouTSs

TABLE

CPLF

TYPE

START

Loop

ASSENLLY LISTING

NAM
EQU
EQU
EQU
EQU

ORG

FDE
FDB
FDb
FDb
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDb
FDE

FDB

FCB

RMB

LSR
L SR
LSR
LSR
ASL

W Doo>od> mp

P22 2>

BLKXFER

® 2 = &

SOEBQ

3BF19
$SBF19
30F37
SOF19
38F19
SBFI19
3@F27
39F3C
$0FBA
L0F37
$S8F37
$8F3C
$8F17
$8F37
$8F17
$OF3C

$¢A
/7
$04

#CRLF
PDATAI
INEEE
TYPE
ouTSs
BADDR
SA0Q2
ouTSs
BADDR
SA084
ouTs
BADDR
3ABL A
SABLS
SAB14
$AG03
SAR@2
SA017
3AR16
TYPE
#3544
TYPED
#3580
START
o3A082
@+ X

TABLE OF OPCODE FIRST
CHARACTER: SUBROUTINE
ADDR FOR DATA TYPE

HEX

OUTPUT PROMPT

WORK SPACE
PROGRAM START

OUTPUT PROMPT
INPUT DATA TYPE

INPUT OLD START ADDR

INPUT OLD END ADDR

INPUT NEV START ADDR

COMPUTE TRANSFER VECTOR

PROGRAM OR DATA?
D?

GO TO DATA ROUTINE
| 24

1F NEITHER, START OVER

GET MOST SIGNIFICANT 4 BITS
OF OPCODE

MULTIPLY BY 2

LOOK UP ADDR FOR OPC(1 wvz]

0059 GEFE B7 @res STA A $8TF05
e06d Oorel! CE PESS LDX ¢TABLE
861 DFea ELE €0 LDX 2.X
@862 BFB6 AD 0@ BSR 2. X GO TO OPCODE TYPE SUBROUTINE
9863 B8FO8 29 DF BRA LOOP NEXT INSTRUCTION
@264 GFBA FE AB02 TYPES LDX $AGA2 OPCODE=8X, SEE IF 2 OR 3 BYTE
8865 BFBD A6 80 LDA A 8,X INSTRUCTION
8066 OFBF 81 8C CMP A ¢38BC
8867 @F11 27 29 BEQ TYPE3
2068 VF13 81 BE CMP A ¢3BE
0969 OF1S 27 25 BEQ TYPE 3
9978 OF17 20 I|E BRA TYPE2 2 BYTES
P07l BF19 FE ABS82 TYPElI LIDX SABH2 TRANSFER 1-BYTE INSTRUCTION
272 OFIC A6 00 LDA A B0,X OR DATA VWIHTOUT CHANGE
©273 @FIE FE ABla TYPEA LIDX SARL A
0074 8F21 AT 88 STA A 08.X
8875 @F21 @8 INX
876 @F24 FF AGl4 P E;; :22;:
@F27 FE AR@2 IN
::;g BF2A BC Ad84 CPX $AB@4 END OF DATA?
Q079 OFRD 26 83 BNE ENDI NO
P38¢ OFer 7t GEB® JMP START YES
©081 OFl2 @8 END1 INX
0882 8733 FF ASS2 STX SA882
8883 @Fl6 39 RTS
8684 BFJ37 BD EB TYPE2 BSR TYPE! TRANSFER 2-BYTE INSTRUCTION
BE85 6FJ9 8D DE BSR TYPE! WITH NO CHANGE
0086 OF3B 239 RTS
@087 OFJC 8D DB TYPE3 BSR TYPEl 3 BYTESt TRANSFER OPCODE
0088 OFJIE A6 80 LDA A B,X
2089 9Fa@ 8! 7F CMP A #37F IN RAM?
009€ B8F4a2 23 B85 BLS MORE YES
9091 BFa4 8D D3 BSR TYPE! NO-TRANSFER ADDR UNCHANGED
0892 @Faé6 8D DI BSR TYPE!
8293 BFaB 239 RTS
0094 O6FA9 E6 01 MORE LDA B 1l.,X COMPUTE NEV ADDR
209S PFaB FB Agl7 ADD B $A017
0096 OFAE B9 ABlS ADC A SAD16
2097 8FS1 8D CB BSR TYPEA TRANSFER IT
0098 BFS53 17 TBA
8099 0F54 8D C8 BSR TYPEA
o188 @F56 39 RTS
8101 END

OBJECT CODE MIKBUG HEX DUMP

P

S1130EBBAFI9AFI9BFIT78FI90FI98FI198FJ3TAFICBF
S11JPE9@OFBABFITEF3I7€FICAF37€F178FJ70F1CAI
S1138EABADBAIF2004568D71203FC00000000000 1 7
S1130EBECE@EABEDER TEBDEIACB 7@ EASBDEGCCEDBD
S1130ECOE@4TFFAR@2BDESCCBDER4TFFAQBABDERCY
S11J8EDOCCBDE@A4TFFAR 1 AB6AB 1 SF6AR 1 ABBAREI4]
S1138EFOF2AQ82B7AB8 1 TFTA@ I 6F6@EASC14427B6CA
S1138EFBAI SP26BCFEAQO2A6004444444448BB70F%7
S11J0F@POSCEGEBREEGBADGO2@DFFEARA2AGOBB I IB
S1138F128C2729818BE272528 | EFEABB2A6GBFEAR T4
S1136F2014AT000BFFAQ| AFEAGB2BCARO 42683 7EALR
S1130FJ0QEBOGBFFABG2398DEABDDEI9E DDBAGRREE
S1138F4pB17F23058DDIBDDII9ESE I FEABL 7TBOARKC
S18ABFS@168DCEL 78DCBJ9683

59

-

e — . L T I L S — | = e T e

NOI1D3S IHVMLIOS

INIWAOT3IAIA IYYMLIL0S

