
DISK BASIC VER. 3.0

USER'S GUIDE

©
Copyright 1978 Southwest Technical Products Corporation

All Rights Reserved

SOUTHWEST TECHNICAL PRODUCTS CORPORATION
219 W. RHAPSODY SAN ANTONIO, TEXAS 78216

SWTPC Disk BASIC

SWTPC Disk BASIC is a complete BASIC interpreter for use in both home and business appli­
cations. Features of SWTPC Disk BASIC include .nine significant digit binary coded decimal addi­
tion, subtraction, multiplication and division, sev,en digit trigonometric functions and numerous
string operations. Disk data files are also supported for manipulating or storing data.

This manual is designed to acquaint the user with the various features of SWTPC Disk BASIC­
It is not designed to be a complete course on the BASIC language. This manual also assumes that the
user is familiar with the supplied disk operating system (DOS) and its respective user's guide.

Definitions

Before actually describing each BASIC function, several terms need to be de"fined and manual
notation described.

A command is a BASIC operation that generally has an immediate effect on the operation of
BASIC.

A statement is a word or group of words that directs the execution of a BASIC program.
A function is a BASIC operation that usually results in a numerical operation or string pro­

cessing.
A variable is a letter, or a letter and a number, that is used to represent a numeric or string

value. Variables may be named by any single alphabetic character (A-Z) or any single alphabetic
character followed by a number (0-9). Variables of this type represents a numerical value.

Example: A can be equated to 3.44
B1 can be equated to -7.2315 + SIN(3)

A string variable is a single letter followed by a$ that is used to represent literal (alphanumeric
or text) data.

Example: A$ can be equated to "1234" but not to 1234. (the quotation
marks make 1234 a string).
Note: a string may not be represented by a letter and a number
such as A3$.

When BASIC initializes, the string variable length is set equal to a maximum of 32 characters.
This manual uses the following notation conventions:

/line N/ denotes a BASIC line number such as 0090
/var/ denotes a variable name such as A3
/exp/ denotes a mathematical expression such as 3+5-2
/rel.exp./ denotes a relational expression such as A=5
/string/ denotes a collection of literal alphanumeric characters enclosed

bv quotation marks such as "TEST1"
X denotes a variable or expression that has a numerical result
X$ denotes a string variable

Restrictions on Program Lines

The following restrictions are placed on all BASIC program lines:
1.) Every line r:nust have a line number ranging between 1 and 9999. Do not use line # 0.
2.) Line numbers are used by BASIC to order program statements sequentially.
3.) In any program, a line number can be used only once.
4.) A previously entered line may be changed by entering the same line number along with

the desired statement(s). Typing a line number followed immediately by a carriage return
deletes that line and line number.

5.) Lines need not be entered in numerical order since BASIC will automatically order them
in ascending order.

6.) A line may contain no more than 72 characters including blanks.

-1-

7.) Blanks, unless within a character string and enclosed by quotation marks, are not pro­
cessed by BASIC and their use is optional. Numbers can contain no imbedded blanks.
Example:

110 LET A=B + (3.5*5E2)
is equiv a lent to

110 LETA= B+(3.5*5E2)
8.) Multiple statement lines are accepted with a colon (:) used as the separator. BASIC will

process the line from left to right.
Example:

10 A=3: B=5: C=A*B

Data Format

The range of numbers that can be represented in this version of BASIC is 1.0E-99 to 9.999999-
99E99. E99 represents 1099 while E-99 represents 10-99, The E stands for exponent.

There are nine digits of significance in this version of BASIC. Numbers are internally truncated
(last digits dropped) to fit this precision.

Numbers may be displayed and entered in three formats: integer, decimal and exponential.
Example: 153 34.52 136 E-2

Transcendental functions (SIN, COS, TAN, ATAN, SOR, LOG and t) are all evaluated by a
limited infinite series. For these functions accuracy is limited to seven significant digits.

Mathematical Operators

The mathematical operators used in BASIC are as follows:
t Exponentiation (raises to a power)

(unary) Negate (used for denoting negative numbers
+ Addition and string concatenation

Subtraction
* Multiplication
/ Division

No two mathematical operators may appear in sequence, and no operator is ever assumed.
(A++B and (A+2)(B-3) are not valid). Exception: 5+-3 is allowed.

Examples:
A=BtC
A=B+-5
A=3/2

A is evaluated to B raised to the C power
A is evaluated to B plus a negative 5
A is evaluated to 3 divided by 2

Priority of Operations
BASIC recognizes the priority of operation in the following order:
1. Exponentiation (t) ·
2. Negation (-)
3. Multiplication (*)and division (/)
4. Addition (+) and subtraction (-)
A BASIC expression is evaluated from left to right in the above priority sequence unless paren­

thesis are encountered. The operators within the parenthesis are evaluated first utilizing the above
priority structure.

Examples: LET A=2
LET 8=3
LEC C=4
B t2 + C/At 2
C +2 - C/A
A * (A+B*2)·22
AtAtB

gives a resu It of 10
gives a resu It of 14
gives a resu It of 0
gives a resu It of 64

-2-

String Concatenation

Although any one string variable may be a maximum of 32 characters (or whatever the length
is set equal to using the STRING= command), strings may be joined up to a maximum of 128 cha­
racters for printing. The concatenation symbol is+.

Example: A$= (32 char. string)
8$= (32 char. string)
PR I NT A$+B$ (prints a 64 character string)

also: A$= "HELLO"
8$= "JOHN"
C$= A$+ 8$ (C$ still limited to 32 char.)

Arrays .
Sometimes it is convenient for a variable to represent several values at one time. A variable

such as this type can be considered as an array and each element can be accessed independently. In
referencing an array variable, the element number in the array must be specified along with the vari­
able name. For example, say we wanted the variable A to represent 4 values. The following program
would assign a different value to each element of A.

10 DIM A(4) Dimension A to hold four elements
20 A(1)=1 : A(2)=2 : A(3)=3 : A(4)=4

As seen above, a particular element is referenced by a subscript N, such as A(N), where 1 is the
first element in the array.

Two dimensional arrays are also accepted by BASIC. Two dimensional arrays are useful when
working with data which is easily represented as a matrix.

Example: 10 DIM A (3,3)
20 A(1,1)=1 : A(1,2)=2: A(1,3)=3
30 A(2, 1)=4: A(2,2)=5: A(2,3)=6
40 A(3, 1)=7 : A(3,2)=8: A(3,3)=9

gives the following matrix: 1 2 3
4 5 6
7 8 9

String variables may also be dimensioned as arrays. (A$(5,2))
If no DIM statement is used to specifically dimension an array, a dimension of either 10 or 10

by 10 is assumed.

Program Preparation and System Operation

At the time that BASIC is executed, BASIC will automatically determine the ri;!nge of working
storage. If you wish to limit the amount of memory BASIC uses, refer to Appendix D of this
manual. This is normally not necessary unless external machine language subroutines are being used.

The system is then ready to accept commands or lines of statements. For example the user
might enter the following program:

150 REM DEMONSTRATION
160 PRINT "ENTER A NUMBER";
170 INPUT A
180 LET P = A*A*3.1415926
185 PRINT
190 PRINT "THE AREA OF A CIRCLE WITH";
200 PRINT "RADIUS"; A; "IS"; P
210 STOP

If the user wishes to insert a statement between two others, he need only type a statement
number that falls between the other two. For example:

183 REM THIS IS INSERTED BETWEEN 180 and 185.

-3-

If it is desired to replace a statement, a new statement is typed that has the same number as
the one to be replaced. For example:

180 P=(A*A)*3.1415926 replaces the previous LET statement.
Each line entered is terminated by a Carriage Return and is not processed by BASIC until this

key is depressed. BASIC then positions the print unit to the correct position on the next line.
If a mistake is made during type in before typing the Carriage Return, a BACKSPACE may be

used to delete erroneous characters. The backspace character for BASIC is a hexadecimal ASCII 08
(Control H). BASIC assumes that the terminal automatically generates a "cursor left" when a
control H is entered.

Example:
30 REM THIS IS A TESZ (CTL.H)T

The CT L. H moves the cursor back over the Z so that th.e resu It is
TEST

If it is desired to remove a complete line that was typed in before typing the Carriage Return,
the CANCEL key (hex ASCII 18, control X) may be depressed. This will delete all information that
was typed in on the current command or statement line. BASIC will respond with DELETED.

Example:
10 FOR 1 to 10 (CTL.X)
DELETED

PATCH (CTL. X)
DELETED

If the user wishes to execute a program at this point, the RUN command , as described in the
command section, should be entered.

Program Abort

If, at any time, it is desired to abort a looping or otherwise malfunctioning program, BASIC
has a provision for exiting the program and returning to the command (READY) mode. The abort
(break) character for BASIC is a control C , hex ASCII 03. The actual operation of the control C
varies somewhat depending on the type of interface used on the control port.

MP-C Control Interface
This type of interface requires hitting the control C key very rapidly a number of times for a­

borting a program. It is sometimes normal for several question marks or extraneous characters to be
displayed while hitting control C. BASIC should then respond READY.

MP-S Serial ln1Brface (6800/2 Owners)

When using this type of interface, entering one control C will immediately halt the execution
of the current BASIC program and will return BASIC to the command mode. During a printout se­
quence, such as listing a program, typing one ESC (escape) character will cause the current printout
to halt. Typing another ESC will cause printout to resume while typing a RETURN will force
BASIC back to the command mode.

NOTE:When in the middle of a machine code USER routine, control C will have no effect. If
necessary, the computer's RESET button can be depressed. Resetting the computer's program
counter to 0103 before re-entering BASIC will keep the current BASIC program intact.

Commands

It is possible to communicate in BASIC by typing direct commands at the terminal device.
Also, certain other statements can be directly executed when they are entered without statement
numbers.

Commands have the effect of causing BASIC to take immediate action. A typical BASIC
language program, by contrast, is first entered statement by statement into the memory and then
executed only when the RUN command is given.

-4-

When BASIC is ready to receive commands, the word READY is displayed on the terminal
device. After each entry, the system will prompt with a"#".

Commands are typed without statement numbers. After a command has been executed,
READY will again be displayed indicating that BASIC is ready for more input-either another
command or program statements.

APPEND
The APPEND command causes a program on disk to be loaded into memory. The APPEND

command operates the same as the LOAD command except that the current BASIC program is not
cleared from memory.

CONT .
A CONT (continue) command can be entered after a program has halted from a STOP com­

mand or after a program has been aborted with a control C. Between the time that the program has
stopped and the time that CONT is entered no changes should be made in the program. The pro­
gram will then continue with the next statement after the STOP command or wherever the program
was when control C was pressed.

DIGITS=X
The DIGITS= command sets the number of digits that will be printed to the right of the deci­

mal point when displaying numeric variables. This will truncate (not round) any digits greater than
the number printed, and will force "O"s if there aren't enough significant digits to fill the number of
positions specified in the "DIGITS=" command.

DOS

A DIGITS=O command resets BASIC to the floating point mode.
The DIGITS= command may also be used as a program statement.

The DOS command causes computer control to be returned to the DOS operating system.

LINE=X
The LINE= command is used to specify the number of print positions in a line (line length)

where X is the desired number of print positions.
Example: LINE=65, LINE=80, LINE=40

Note: Each line is broken up into 16 character "zones". If the print position is with-
in the last 25 percent of the "line" length and a "space" is printed, a C/R L/F will be output. This
is so that a number or word will not be split up at the end of a print line. If it is desired to inhibit
this feature (for precise print control) just set the line length equal to greater than 125% of the de­
sired total print line length. This can be very important when using the TAB command.

The LINE= command can also be used as a program statement.

LIST
LIST {line #)

LIST (line #m)-(line #n)
The LIST command causes the desired lines of the current program to be displayed on the

control terminal. The lines are listed in increasing numerical order by line number-. A LIST com­
mand causes all lines of the current program to be displayed, a LIST (line #) command lists only
the line specified and a LIST (line #m)-(line #n) command causes all lines from m ton to be listed.

The LIST command can also be used to output lines to a terminal or printer.on another port
by entering #N, after LIST (such as LIST #7, 110-130) where N is the desired port number.

Examples: LI ST
LIST 30
LIST #3, 30-70

The LIST command can also be used as a program statement.

-5-

LOAD (file name)
The LOAD command is used to load, from disk, a previously saved program. LOAD will clear

the memory of the current program and load in the desired program. The same rules apply for file
names and drive specifications as in DOS.

Example: LOAD COMPUTE
If no extension is given, .BAS is assumed. Also if you forget to type in the file name and simply
type LOAD, BASIC will prompt you for the file name.

MON
The MON command causes computer control to be returned to the computer's monitor.

NEW
The NEW command causes the working storage and all variables and pointers to be reset. The

effect of this command is to erase all traces of the previous program from memory. This command
also closes all files, sets LINE equal to 48 and DIGITS equal to 0 (floating point mode).

PORT=X
The PORT=X command defines the computer 1/0 Port which will serve as the 'Control Port'.

"X" can be a constant, variable, or expression.
Example: PORT= 3

Warning-If you define a port without a terminal as the control port, all messages (including
the "Ready") will be inputed and outputed from that port ... therefore, you will lose control of
your program.

NOTE: PIA ports require handshaking. If handshaking is not available, then you must use
the PEEK command to examine the PIA registers. Also, BASIC will always accept a break from port
1, therefore never leave port 1 without a terminal connected. Appendix G defines the correct hand­
shaking procedure. Each port # is configured by BASIC for the specified type of interface:

PORT TYPE OF PORT
0 MODI Fl ED PIA (MP-C interface)
1 MODIFIED PIA (CONTROL PORT) or ACIA
2 ACIA
3 ACIA
4 PIA
5 PIA
6 PIA
7 PIA (LINE PRINTER, BY CONVENTION, such as

SWTPC PR-40)
The PORT command can also be used as a program statement.

RUN
The RUN command causes the current program resident in memory to begin execution at the

first statement number. RUN always begins at the lowest statement number. RUN resets all pro­
gram parameters and initializes all variables to zero.

SAVE (fiktnari18}
The-SAVE 'comrnand causes the current BASIC program in memory to be saved on disk. The

same rules ·-apply for file names and drive specifications as in DOS. If no extension is specified,
.BAS is assumed. If a file already exists with the chosen name, an error message will be output.

- Example: SAVE COMPUTE
If you forget to type·in the file name and enter only LOAD, BASIC will prompt for the file name.

-6-

STRING=X
The STRING= command sets the maximum allowable length of string variables. The STRING=

command may be used as part of a program and must be used before any strings are referenced in a
program. X may be any number between 1 and 128. STRING is initially set to 32 characters. The
NEW command will not reset the string length to 32.

TAPPEND
The TAPPEND command works the same as the TLOAD command except that the current

BASIC buffer area is not cleared before the load starts.

TLOAD (optional 1 letter file designation)
The TLOAD command is used for loading BASIC programs previously saved on cassette and

paper tapes. All input/output regarding the TLOAD command will be thru the ·control or defined
port. Appropriate reader on/off commands are automatically generated. If a one letter file name is
given, TLOAD will not load anything into the program buffer area until the program on the tape
with the matching file name is located.

Examples: T LOAD
TLOAD A

If desired, the input from T LOAD can be channeled thru a port other than the control port
by using the TLOAD #N command where N is the desired port number. The same rules apply for
port types and handshaking as described in the PORT= command.

NOTE: Both the TLOAD and TSAVE commands assume that the punch/read device is set
up to decode automatic reader/punch on/off commands. If your particular unit is not automatic
(such as an AC-30 on port 0), the reader or punch should be turned on manually before the carriage
return is entered after typing the respective TSAVE or TLOAD command.

TRACE ON
The TRACE ON command will cause BASIC to display the line number of the current state­

ment being executed for every line. This can be an important debugging tool.

TRACE OFF
The TRACE OFF command turns off the trace function.

TSAVE (optional 1 letter file designation)
The TSAVE command is used for saving BAS IC progra·ms onto cassette or paper tape. All out­

put from the TSAVE command will be thru the control or designated port. Appropriate punch on/
off commands are automatically generated for use by the tape storage device. If desired, for the
saving of several short programs on tape, a one letter file name may be given.

Examples: TSAVE
'T"SAVE C

If desired, the output from TSAVE can be directed to another port by using the TSAVE
#N command where N is the desired port number. The same rules apply for port types and hand­
shaking as described in the PORT= command.

NOTES: When using the TSAVE command to save several short programs on tape, TSAVE
assumes that the cassette or paper tape is positioned correctly for the saving of the program.
TSAVE does not automatically search the tape to find the tape position past where the last program
part was stored.

TSAVE will dump the entire BASIC program to tape-line numbers such as TSAVE 10-20
can not be entered to transfer only a portion of the program to tape.

When using port #0 as the output channel, it is assumed that a MP-C control type interface is
installed. Also the unused PIA lines used for tape control are not activated as described in the SWT­
BUGe users manual.

-7-

STATEMENTS

A stamment, in BASIC, is a word or a group of words that directs the execution of a BASIC
program. Statements differ from commands in that they generally do not cause the computer to
immediately take action by themselves. Some statements, in fact, must be used with other state­
ments for proper operation.

DATA·N1, ~ N3, ...
READ V1, V2; V.3, •.•
RESTORE

The DATA, READ and RESTORE statements are used in conjunction with each other as one
af·tbe methods to assign values to variables. Every time a DATA statement is encountered, the
values in the,aq~nnant field are assigned sequentially to the next available position of a data buf­
fer.~ AH OA1i'A statements, no matter where they occur in a program, cause DATA to be combined
into ane list.

READ statements cause values in the data buffer to be accessed sequentially and assigned to
the variables named in the READ statement. They start with the first data element from the first
data statement. then the second element, to the end of the first data statement, then to the first
tfement of the seccnd data statement, etc., each time a READ command is encountered. If a
READ isexamtlld, and the DATA statements are out of data, an error is generated.

Numeric. and string data may be intermixed, however it must be called in the appropriate
order.
Noa: String~ need not be enclosed within quotes (") as the comma (,) acts as the deli­

miW. HowMr, if the string contains a (,), then it must be delimited by quotes (").
Example:

10 DATA 10,20,30,56.7,"TEST,ONE",1.67E30,8, HELLO
20 READ A,B,C,D,E$,F,G5,F$

Ne\r. DA'fflS"FATEMENTS may be placed anywhere within the program.
Example: 110 DATA 1,2,3.5

120 DATA 4.5,7,70
130 DATA 80,81
140 READ B,C,D,E

is the equivalent of:

10 LET 8=1
20 LET C=2
30 LET D=3.5
40 LET E=4.5

The RESTORE statement causes the data buffer pointer, which is advanced by the execution
of READ statements, to be reset to point to the first position in the data buffer.

Example: 110 DATA 1,2,3.5
120 DATA 4.5,7,70
130 DATA 80,81
140 READ B,C
150 RESTORE
160 READ D,E

In this example, the-variables would be assigned values equal to:
100 LET 8=1
101 LET C=2
102 LET 0=1
103 LET E=2

There are also versions of READ and RESTORE which are used for the manipulation of disk
data files. These statements are discussed in the Disk Data Files section.

-8-

DIM/var/ (exp) or /var/ (exp), /var/(exp) or /var/(exp,exp)
The DIM statement allocates memory space for an array. In this version of BASIC, one or

two dimension arrays are allowed and the maximum array size is 255 x 255 elements. All array
elements are set to zero by the DIM statement.

If an array is not explicitly defined by a DIM statement, it is assumed to be defined as an ar­
ray of 10 elements (or 10 x 10 if two elements are used) upon first reference to it in a program.
Caution: The dimension of an array can be detemined only once in a program, implicitly and

explicitly. Also only the variables A thru Z (followed by$) may be dimensioned
for strings.

END

Example: DIM A(10), C(R5+8), D(30,A*3), A7(20), C$(30), 2$(5)
but not A6$(5)

The DIM statement can also be used in the direct execution mode.

The END statement causes the current BASIC program to stop executing. When an END
statement is seen, BASIC will return to the command mode. In this version of BASIC, END may
appear more than once and need not appear at all.

FOR /var/= /exp 1/ TO /exp 2/ STEP /exp/
NEXT /var/

The FOR and NEXT statements are used together for setting up program loops. A loop
causes the execution of one or more statements for a specified number of times. The variable in
the FOR ... TO statement is initially set to the value of the first expression (exp1). Subsequently
the statements following the FOR are executed. When the NEXT statement is encountered, the
values of the named variable is added to the value specified by the STEP expression in the FOR ...
TO statement, and execution is resumed at the statement following the FOR ... TO. If the addition
of the STEP value develops a sum that is greater than the TO expression (exp2) or, if STEP is nega­
tive, a sum less than the TO expression (exp2), the next instruction executed will be the one
following the NEXT stateme·nt. If no STEP is specified, a value of one is assumed. If the TO value
is initially less than the initial value, the FOR ... NEXT loop will still be executed once.

Example: 110 FOR l=.5 TO 10
120 INPUT X
130 PRINT l,X,X/5.6
140 NEXT I

Although expressions are permitted for the initial, final, and STEP values in the FOR state·
ment, they will be evaluated only the first time the loop is entered. They are not re-evaluated.

It is not possible to use the same indexed variable in two loops if they are nested.
When the statement after the NEXT statement is executed, the variable is equal to the value

that caused the loop to terminate, not the TO value itself. In the above example, I would be equal
to 9.5 when the loop terminates.

GOSUB /line #/
A subroutine is a sequence of instructions which perform some task that would have utility in

more than one place in a BASIC program. To use such a sequence in more than one place, BASIC
provides subroutines and functions.

A subroutine is a program unit that receives control upon execution of a GOSUB statement.
Upon completion of the subroutine, control is returned to the statement following the GOSUB by
execution of a RETURN statement in the subroutine.

Example: 10 A=3
20 GOSUB 100
30 PRINT B
40 END

100 LET B= SIN(A)
110 RETURN

-9-

GOTO /line #/
The GOTO statement directs BASIC to execute the statements on the specified line uncon­

ditionally. Program flow continues from the line specified by /line{.
Example: 150 GOTO 270

This statement may be used in the direct execution mode.

IF /relational exp/ THEN /statement n/
IF /relational exp/ THEN /BASIC statement/ (Direct)

The IF statement is used to control the sequence of program statements to be executed,
depending on specific conditions. If the /relational expression/ given in the IF is "true", then con­
trol is given to the line number declared after the THEN. If the relational expression is "false",
program execution continues at the line following the IF statement.

Example: 10 IF 5>2THEN 100
It is also possible to provide a BASIC statement after the THEN in the IF statement. If this is

done and the relational expression is true, the BASIC statement will be executed and the program
will continue at the statement or line following the IF statement.

Example: 10 IF 5>2 THEN LET 8=7
When evaluating relational expressions, arithmetic operations take precedence in their usual

order, and the relational operators are given equal weight and are evaluated last.
Example: 5+6*5> 15*2 evaluates to be true

Examples:

The Relational Operators
= Equal
<> Not Equal
< Less Than
> Greater Than
<= Less Than or Equal
>= Greater Than or Equal

110 IF A <B+3 THEN 160
180 IF A=B+3 THEN PRINT "VALUE A". A
190 IF A=B THEN T1=B

NOTE: If an IF test fails on a multiple statement line, the remainder of the line will not be
executed.

Example: 10 IF 5 <2 THEN 100 ·: PRINT 3
20 END

Control will go to line 20 and "3" will not be printed

The relational operators= (equal) and <> (not equal) may also be used on strings.
Example: 110 IF Y$= "YES"THEN 100

The < (less than) and > (greater than) comparisons may also be used on strings, but only when
the number of characters in each of the strings being compared is the same. The > and < operators
compare strings by evaluating the ASCII value of the characters starting from the first (leftmost)
character. When a character in one string is found to be not equal to its respective character in the
other string, the greater than or less than operation is made either true or false depending on the
ASCII values of these two characters.

Example: IF "AAABA" > "AAAAB" THEN 100
The first non-equal character in the comparison is the B in "AAABA". The > operator then

compares this B to the respective character in the other string (an A). Since the ASCII value of B is
greater than that of A, the operation evaluates to "yes, greater than".

Example: "A" > "B" FALSE
"B" > "A" TRUE

"ABCDE" <1'ABCDF" TRUE
"ABC" > "ABCD" ILLEGAL, LENGTHS NOT EQUAL
"BZZ" > "CZZ" FALSE

-10-

INPUT /var/
INPUT /var/, /var/, /var/, . ..
INPUT #N, var
INPUT "/PROMPT/" /var/

The INPUT statement allows users to enter data from the terminal during program execution.
Example: INPUT X - Inputs one numeric value

INPUT,X$ - Inputs one string value
INPUT X,Y,Z,8$ - Multiple inputs may be entered, separated by

",". If the expected number of values are not en­
tered, another"?" will be generated.

INPUT "ENTER VALUE",X - Prints the message in quotes, then a
"?", and waits for input. It stores the inputed
value in X.

When the program comes to an INPUT statement, a question mark is displayed on the ter­
minal device. The user then types in the requested data separated by commas and followed by a
carriage return. If insufficient data is given, the system prompts the user with '?'. If no data is en­
tered, or if a non-numeric character is entered, the system prompts "RE-ENTER". However, for
string variables a null return will be considered as valid data. Caution: for input A$,B$,C$- a null
response would create three null variables. Only constants can be given in response to an INPUT
statement.

The INPUT can also be used to issue a prompting messaQe before the question mark appears.
Example: 10 INPUT "INPUT A$", A$

20 PRINT A$
would give the following results
INPUT A$? 66 (user types this 66 in)
66

INPUT may also be used with the #N, directive for input from ports other than the control
port.

LET /var/=/exp/
The LET statement is used to assign a value to a variable. The use of the word LET is option­

al unless you are in the direct mode.
Example: 100 LET 8=827

110 LET C=87E2
120 R= (X *Y)/2* A
130 C$="TH IS IS TEXT"

The equal sign does not mean equivc1lence as in ordinary mathematics. It is the replacement
operator. It says: replace the value of the variable named on the left with the value of the expres­
sion on the right. The expression on the right can be a simple numerical value or an expression
composed of numerical values, variables, mathematical operators, and functions.

ON /exp/ GOTO /line (s)/
ON /exp/ GOSUB /line(s)/

This statement transfers control to the line or subroutine as defined by the value of /exp/.
The expression will be evaluated, truncated (chopped off after the decimal point) and control then
transferred to the nth statement number (where n is the integer value of the expression).

Example: ON N GOTO 110,300,500,900
Means: If N <1 You will get an error

If N=1 GOTO 110
If N=2 GOTO 300
If N=3 GOTO 500
If N=4 GOTO 900
If N>4 You will get an error

Example: ON (N+7) * 2 GOSUB 1000,2000
(see GOTO and GOSUB for a further description of these statements)

-11-

PRINT /var/
PRINT /string/
PRINT /exp/

The PRINT statement directs BASIC to print the value of an expression, a literal value, a sim­
ple variable, or a text string on the user's terminal device. The various forms may be combined in
the print list by separating them with commas or semicolons. Commas will give zone spacing of
print elements, while semicolons will give a single space between elements. If the list is terminated
with a semicolon, the line feed/carriage return at the end will be suppressed.

REM

1. PRINT- Skips a line.
2. PR INT A,B,C - Prints the values of A, B, and C, separated into 16 space zones. Use of a

";" in place of the "," would print A, B, and C separated by one space.
(No space is generated if a string variable.) A C/ R, L/F is generated at
the end of the line.

3. PRINT "LITERAL STRING" - Prints the characters c~ntained within the quotes.
4. PR INT A,B;"LITERAL"-Prints variable A & Band the word LITERAL.
PRINT may also be used with the #N directive to specify output to another port.

Example: 10 PRINT #7, "TEST"
Prints TEST on the parallel device (printer, etc.) on port #7.

PRINT may also be used in the direct mode.

The REM, or remark statement, is a non-executable statement which has been provided for
the purpose of making program listings more readable. By generous use of REM statements, a com­
plex program may be more easily understood. REM statements are merely reproduced on the pro­
gram listing, they are not executed. If control is given to a REM statement, it will perform no
operation. (It does, however take a finite amount of time to process the REM statement.)

RETURN

Example: 120 REM THE FOLLOWING SUB. CONVERTS
121 REM DECIMAL VALUES TO HEX VALUES

The GOSUB statement causes control to be passed to the given line number. It is assumed
that the given line number is an entry point of a subroutine. The subroutine returns control to the
statement following the GOSUB statement with a RETURN statement.

Example: 100 X=1
110 GOSUB 200
120 PRINT X
125 X=5.1
130 GOSUB 200
140 PRINT X
150 STOP
200 X=(X+3)*5.32E3
210 RETURN
211 END

Subroutines may be nested; that is one subroutine may use GOSUB to call another subrou­
tine which in turn can call another. Subroutine nesting is limited to eight levels.

STOP
A STOP statement can be used within a program to halt execution at a particular place for

debugging purposes. A CONT command will then cause the computer to begin execution on the
line following the STOP statement.

Example: 10 PRINT 5
20 STOP
30 PRINT6

gives the following output:
RUN

-12-

5
STOP AT 20
CONT
6

FUNCTIONS

Functions are similar to BASIC statements except that they usually relate to mathematical
or string processing operations.

ABS (X)
The ABS (X) function returns the "Absolute Value" of X.

ATAN (X)

Example: ABS (3.44)=3.44
ABS (-3.44)=3.44

The ATAN (X) function returns the angle,in radians, whose tangent is X.

ASC (string or string var)
The ASC (string or string variable) function returns the decimal ASCII numeric value of the

first ASCII character within the string. Literals must be enclosed by quotes while string variables
are not.

Example: ASC("? ") gives 63
ASC("A") gives 65
ASC("B") gives 66
ASC("Z") gives 90
ASC("5") gives 53
LET 8$="5" -+ >ASC(B$) gives 53

CHR$ (X)
The CH R$ (X) function returns a single character string equivalent to the decimal ASCII

numeric value of X. This is the inverse of the ASC function.
Example: CH R$(63) gives a ?

CHR$(65) gives a A
CH R$(66) gives a B
CH R$(53) gives a 5

COS(X)
The COS(X) function returns the cosine of the angle X. X must be in radians.

DEF FN/letter/(/variable/)=/exp/
This function allows the user to create his very own functions. The /letter/ is any alphabetic

character. This names the function (i.e., you could have, say, three functions named FNA, FNB,
and FNC). The /variable/ is a non-subscripted numeric variable. This is essentially a "dummy" vari­
able (or place holder) ... This will be apparent shortly. The "Expression" is any valid expression.
Note that the "variable" must be enclosed within parenthesis.

For example, study the following sample program:
10 DEF FNA(X)=3.14*X t 2
20 DATA 5,6,7,0
30 READ X
40 IF X=O THEN END
50 PRINT FNA(X)
60 GOTO 30

RUN
-13-

78.5
113.04
153.86

READY
As you can see, the dummy variables were replaced with the variables you actually wished to

use at the time the function was used.
Note: You may not define the same function greater than once per program, and a function

must be defined before it is called.

EXP(X)
The EXP(X) function returns the base of natural logarithms raised to the Xth power (this is

the inverse of LOG(X)) and is the equivalent of 2.718282 raised to the Xth power.

INT(X)
The INT(X) function returns the greatest integer less than X.

Example: INT(4.354)=4
Now note this one: INT(-4.354)=-5

LEFT$(X$,N)
The LEFT$(X$,N) function returns a string of characters from the leftmost to the Nth cha-

racter in X$. Example: X$="0NE~TWO,THREE"
LET A$=LEFT$(X$,6)
A$ NOW EQUALS "ONE,TW"

LEN(X$)
The LEN(X$) function returns the number of characters contained in string X$.

Example: LEN("TESTING")=7
LEN("TEST ONE")=8

Note: The space does count.
Hint: LEN(STR$(X)) = The number of print positions required to print the number X.

LOG(X)
The LOG(X) function returns the natural logarithm of the number X.

M1D$(X$,X,Y)
The MI D$(X$,X,Y) function returns a string of characters from X$ beginning with the Xth

character from the left, and continuing for Y characters from that point. Y is optional. If Y is not
specified, then the string returned is from the Xth character of the string through the end of the
string.

Example:

PEEK(X)

X$="0NE,TWO,TH REE"
A$=M I D$(X$,3, 10)
A$ NOW EQUALS "E,TWO,THRE"

The PEEK(X) function returns, in decimal, the value contained in decima~not octal, memory
location X.

Example: LET A=PEEK(255)
A will now contain the decimal value contained in memory location 25510.

POKE(l,J)
The POKE(l,J) function takes the decimal, not octal, value of J and places it in decimal, not

octal, location I. For exampl~ POKE (255, 10) will store a decimal 10 in decimal memory location
255.
Warning: This function can cause system program failure if improperly used.

-14-

POS
The POS function returns in decimal, not octal, the current position of the print head or

cursor. The first postion (left margin) is position #1.

RIGHT$(X$,N)
The RIGHT$(X$,N) function returns a string of characters from the Nth position to the left

of the rightmost character through the rightmost character.
Example: X$="0NE,TWO,THREE"

A$=RIGHT$(X$,9)
AS NOW EQUALS "TWO,THREE"

RND AND RND(X)

The RND(X) function produces a set of uniformly distributed pseudo-random numbers. If
X (the seed) is 0, then each time RND(X) is accessed, a different number between 0 and 1 will be
returned. If X < > 0 then a specific random number will be returned each time (the same number
each time). RND can be called without an argument, in which case it works as if one had used an
argument of 0.

Example: 10 LET A= RND
20 LED B=RND(5)

If you require random numbers other than between O and 1, then:
PRINT INT ((B-A+1)*RND(O)+A)

will yield random numbers ranging between A & B.

SGN(X)
The SGN(X) function returns the ·sign' (+,-, or 0) of X. The SGN of a negative number will

yield a -1, the SG N of a positive number will yield 1 and the SG N of O gives 0.

SIN(X)

Example: SGN(4.5)=1
SGN(-4.5)=-1
SGN(O)=O
SGN(-0)=0

The SIN(X) function returns the sine of the angle X. X must be in radians.

SOR(X)

The SQR(X) function returns the square root of X. X must be greater than or equal to O (X
must be positive).

STR$(X)
The STR$(X) function returns the string value of a numeric value. This is the inverse of the

VAL function.
Example: A=34567

LET A$=STR$(A)
A$ NOW EQUALS "34567"

-15-

TAB(X)
The TAB(X) function will move the print position to the "Xth" position to the right of the

left margin. If the print position is already to the right of the position specified in the TAB com­
mand, no spaces will be left and printing (if any) will commence. The first print position (left mar­
gin) is position #1.

The TAB function can be used with the PRINT statement to cause data to be printed in
exact locations. The argument of TAB may be an expression.

Example:
5 X==3

10 PRINT TAB(2); X; TAB();X*X; TAB(); X*X*S
will print

3 9 27

TAN(X)
The TAN (X) function returns the tangent of the angle X. X must be in radians. (360 degrees==

21r radians 1r ==3.141592654

USER{X)
The USER (X) function is a BASIC function that enables a user to call a special machine

language subroutine. The syntax of the USER function is of the form LET /var/==USER (/var.1/)
such as LET A== USER(X). The use of the USER function assumes that the programmer is familiar
with assembler level programming.

When the USER function is executed in a program, the numeric value of the variable X is
stored in a special BCD (binary coded decimal) format in a seven byte series somewhere in the
computer's memory. BASIC then keeps track of where this series is stored so that the machine
language routine can access it. After storing this series, BASIC then looks at hex memory locations
0067 and 0068. The computer is then instructed to execute a "Jump to Subroutine" to the hex
address sto!11ld in hex memory locations 0067 and 0068. To avoid accidental misuse of the USER
function, 0067 and 0068 will initialize to a location which contains a hex 39, a return from sub­
routine. Locations 0067 and 0068 can be changed using the POKE function prior to using USER.

After the computer jumps to the location pointed to by 0067 and 0068 it is up to the ma­
chine language program to perform its special function or to manipulate the data previously stored
in the seven byte BCD series. To find out where this series is located, hex memory locations 0050
and 005E should be checked by the machine program. 0050 and 005E contain a pointer to the
location of the seven byte series. They do not contain the actual location of the series.

For example, say that locations 0050, 005E contain the address I DB 1 This means that
locations IDB1 and IDB2 contain the address of the seven byte series. If the series was stored be­
ginning at 2428, then the locations would be set up as follows:

0050 10
005E 81

1081 24
IDB2 28

2428 Start of seven byte series.
The actual number that was stored in the seven byte series is stored in a special BCD format

as follows:
for + numbers

BYTE 1 (sign) (09)
BYTE 2 (08) (07)
BYTE 3 (06) (05)
BYTE 4 (04) (03)
BYTE 5 (02) (01)
BYTE 6 (Exponent in hex)
BYTE 7 00 -16-

for - numbers
(sign) (D9)
(08) (07)
(IT6) (05)
(D4) (IT3)
(0"2) (D'1)
(Exponent in hex)
00

Where D's are digits and i)~s are the digits complemented.
The sign half-byte denotes whether or not the number is positive or negative. A sign of O de­

notes + while a 9 denotes-. The actual number digits are located in half-bytes D1 - D9. The ex­
ponent byte tells BASIC where to put the decimal point. Notice that this number is hexadecimal
and not BCD.

For example, the number 1234.5678 would be stored as follows:
Byte 1 01
Byte 2 23
Byte 3 45
Byte 4 67
Byte 5 80
Byte 6 04
Byte 7 00

The number is stored as .12345678 with an exponent of 4 which moves the decimal point 4
places to the right giving 1234.5678. The O half-byte in byte 1 denotes a positive number.

Now look at the number -1234.5678. Negative numbers are more complicated and must be
handled with great care.

Byte 1 98
Byte 2 76
Byte 3 54
Byte 4 32
Byte 5 20
Byte 6 04
Byte 7 00

Notice that the first 9 in byte 1 denotes a negative number and that all digits D 1 · Dg are
complemented. The complement of a digit is defined a 9- (the digit) with the complement of O still
being 0. In the above ex amp le, the digits that were stored were not 12345678 but rather ·(9-1)
(9-2) (9-3) (9-4) (9-5) (9-6) (9-7) and (1+9-8). The last significant digit not including any trailing
O's must have 1 added to its complement before storing in the BCD series. In the example -1234.
5678 (the same as -1234.56780) the last significant digit is 8; therefore, 1 must be added to its
complement.

The number -7 .20008000 would be stored as:
Byte 1 92
Byte 2 79
Byte 3 99
Byte 4 20 (the last significant digit is 8)
Byte 5 00
Byte 6 01
Byte 7 00

The end of the machine language program should contain a hex 39, a RTS. This will transfer
control back to BASIC. BASIC will then assign the numeric value of the number in the seven
byte string to the variable A in the example A=USE R (X).

VAL(X$)

The VAL(X$) function returns the numeric constant equivalent to the value in X$. This is
the inverse of the STR$ function.

Example: VAL("12.3")= 12.3
VAL("5E4")=5000
VAL("TWO")=GENERATES AN ERROR. "TWO" cannot be

equaled to a numeric constant.
VAL("-12.3")=-12.3

-17-

Special Disk Commands and Disk Data Files

Below is a description of several commands which allow the user to interface with the various
files stored on a disk.

CAT (drive number)
The CAT command can be used to display all of the files on a particular drive. All files are list­

ed, not just BASIC files. Only the names are displayed-additional information on a file's length and
other disk information may be obtained by using the CAT command of DOS.

Examples: CAT
CAT 1

CHAIN (file name), (optional line number)
CHAIN A$, (option line number)

The CHAIN command can be used to call one BASIC program from another program. CHAIN
will force the extension .BAS on the file name, even if another is given. If no line number is speci­
fied, program execution of the program called will begin on the first line of the program. If speci­
fied, execution will begin on the given line.

Example: 25 CHAIN MONEY 110
In the above example, the current BASIC program would be deleted from memory and the program
MONEY.BAS loaded. Execution on line 110 of MONEY would then begin.

String variables may also be used in the file specification :
Example: 10 A$="MONEY"

20 CHAIN A$, 110

Kl LL (file name)
KILLA$

The Kl LL command is used to delete a file from a disk. Care must be executed when using the
Kl LL command since it does not prompt with an "Are you sure" question. The same rules apply
for file names and drive specifications as in DOS. The default extension for Kl LL is .DAT.

Example: Kl LL COMPUTE .BAS
If desired, Kl LL may be used as a program statement and the file name may be specified as a

string variable.
Example:

RENAME (file 1), (file 2)
RENAME A$, B$

10 A$= "COMPUTE .BAS"
20 KILL A$

The RENAME command may be used to rename the various files on a disk. The default exten­
sion is .DAT.

Example: RENAME TEST, JUNK
The above example would rename the file TEST.DAT to the name JUNK.DAT. RENAME may also
be used as a program statement and may be used with string variables.

Example: 1 O A$= "TEST"
20 8$= "JUNK"
30 RENAME A$,B $

The same rules apply for fi le names and drive specifications as in DOS.

-18-

Disk Data Files

SWTPC Disk BASIC contains the necessary statements to manipulate sequential disk data
files. Data files give the user the ability to access large amounts of data on disk whenever neces­
sary. These data files are very useful when working with things such as inventory and payroll data.

Working with disk data files is similar to using the DATA and READ statements described
earlier. When beginning a new file, the file must be "opened". This "opening" essentially equates a
file number that BASIC can understand to a file name that the file management system of DOS
can understand. After a file is opened, the desired data can then be "written" on this file. If no
more manipulation is desired, the file is "closed" (line designated file number is disassociated with
the file). The file may later be re-opened and the data read from it by a BASIC program.

Below is a description of each of the file commands in BASIC and a sample program showing
their use.

OPEN #/file no./, /file name/
The OPEN command prepares a file on disk to be used for either input or output. No actual

disk operation takes place when executing the OPEN statement.
BASIC programs essentially refer to files by file number rather than file name. The function

of the OPEN statement is to equate a recognizable file number to a given file name. When using
the OPEN statement, the /file no./ must be the number assigned ·to the file and must be from Oto
9. What you choose for a file number is completely arbitrary, but each file that is open at any one
given time must have a unique file number. The /file name/ specification is the name of the file as
it appears on the disk. The same rules apply for /file name/ as do in DOS.

Example: 10 OPEN #1, DATA.DAT
OPEN #1, DATA.DAT, #2, JUNK

If no extension is given on the file name, the extension .TXT is assumed.
Note: Each file number that is opened requires 198 bytes. Re-using the same file number,

after closing a file, in subsequent OPEN statements will save the allocation of new
memory space.

CLOSE #/file no./,#/file no./ . ..
The CLOSE statement is used to "close" an open file. The file number that is closed must

have previously been opened by the OPEN statement. The CLOSE statement, in effect, disassoci­
ates the previously assigned file number with the file name. Files should always be closed when file
manipulation is finished.

Example: 10 CLOSE #1, #2

READ #/file no./,/variable list/
The READ #/file no./ statement is similar to the READ statement described earlier and is

used to retrieve data off of a disk file to be used in a BASIC program. For example, a READ #1,
A,B will transfer the first entry of file number 1 into variable A and the second entry into variable
B. Each time a read is done from a file an internal pointer is incremented so that the next read will
access the next value in the file. String and numeric variables may be intermixed in /variable list/
and their format must match with that of the file being read.

Example: Suppose the file PYRL.DAT contains data in the following format:
(EMPLOYEE#) (NAME) (HOURLY SALARY) (HOURS WORKED)

I I

Such as

I
numeric string numeric numeric

1
2
3

ADAMS
BROWN
JONES

etc.

-19-

3.25
6.00
4.87

40
40
40

The following program could be used to work on the file:
10 OPEN#, PYRL.DAT
20 READ #1, N, N$, S, T READS DATA ON EMPLOYEE 1
30 PRINT N, N$, $, T, S*T
40 READ #1, N, N$, S, T READS DATA ON EMPLOYEE 2
50 PRINT N, N$, S, T, S*T

etc.

The ouput on the screen would be as follows:
1 ADAMS
2 BROWN

etc.

3.25
6.00

40
40

130
240

Notice that the READ operation starts at the beginning of a file and increments its way through
as data is read.

Note: If the receiving element is a string variable, it will receive the data from the file up
to a maximum string length. The line input buffer for a single item from a file is 72
characters. If an attempt is made to read a string variable from the file that is
longer than the string length limit of the receiving string variable, the item will be
truncated at the receiver's limit. If the input string variable length is greater than
the 72 character buffer limit, the buffer input processing will be terminated after
72 characters.

Both the READ and WRITE commands are "line" oriented. For example, say that data was
written to a file with the following command:

10 WRITE #1, A, B, A$
This imaginary "line" then consists of the amount of space that A, Band A$ take up. When read­
ing from a file, a READ statement can not read more than one "line" at a time.

Example: 20 READ #1, A, B, A$
would read t~e entire "line" and enter the correct values for A, B, and A$. A statement such as:

20 READ #1, A, B, A$, C$, C
would assign the correct values to A, B and A$ but would assign the value of 0 to C and set C$ to a
null since these variables attempted to read past the "line" length defined by the WRITE com­
mand. Also a statement such as:

20 READ #1, A, B
would corectly read the values of A and B with the remainder of the data on this "line" (A$) not
being used. The next READ such as 26 READ #1, A, B, A$ would start reading on the next
"line".

SAMPLE FILE STRUCTURE
A1 B1 A$1
A2 B2 A$2
A3 83 A$3
Ldefined line length__J t Any reads attempted from this area

would set the desired numeric vari­
ables to 0 and string variables to a
null.

If the receiving element is a numeric variable, the input is scanned for a "break" character (a
comma or a null) and that portion of the input, up to the break character, is then processed by
a validation routine which verifies the number as being a valid numeric variable. If the number is
invalid, an ERROR 3 message will result.

RESTORE #/file no./, #/file no./, .. .
The RESTORE statement causes the "where to read from" pointer for the file number speci­

fied to be set to the location of the first element of the file. The file number may be that of a file
that is open for either reading or writing-the restore statement will first close the file and then re­
open it for reading.

-20-

SCRATCH #/file no./,#/file noJ, ...
The SCRATCH statement is used to remove an existing file from the current disk directory

and then re-enter it into the directory. The file will then be re-opened for output (write). The
SCRATCH statement performs the functions of delete and open for write. The old file is lost from
the disk and a new file with the same name is prepared to receive data. Care should be exercised in
using this statement since it will destroy the designated data file.

Example: 35 SCRATCH #5

WRITE #/file noJ, /variable list/
The WR1TE .statement is essentially the same as a READ statement allowing data to be writ·

ten on a disk· file~ The file must have been previously opened for writing by either the OPEN or
SCRATCH statements.

Example: 10 LET A=5
20 LET C=6
30 LET 5$="TEST"
40 OPEN #1, TEST.DAT
50 WRITE#1,A,C,S$
60 CLOSE #1

In the above-program a file will be created by the name TEST.DAT (WRITE will create a file on
disk if 'none exists) and the values 5 6 and TEST will be entered in the file. If the file specified cur­
rently exists on the disk,· an error will result on the first execution of the WRITE statement. To
insure av.ailability of file write access, the SCRATCH statement should be used.

Note: WRITE must be followed by a list of variables only.
10 WRITE #1, 5, 6, "TEST" is not valid.

EOF (X) X= file number
The EOF(X) command can be used to determine if the end of a file has been reached. X is

the desired file number. EOF will return a 0 if not at the end and a 1 if the end has been reached.
Example: 25 IF EOF (3) = 1 PRINT "END OF FILE"

-21-

APPENDIX A

ERROR MESSAGES
If, during the 1.operation 0f ,BASIC, a mistake was made by the programmer, BASIC will out­

put one of the foll~Rg"81'ror messages:
ERROR#

1 .
2.
3.
4.
5.
6.
7.
8.
9.

10
11.
12.
13.
14.
15.
16.
17.
18L
19.
20.
21.
22.
23.
24.
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.

DEFINITION
Oversize variable (over 255) in TAB, CHA, subscript or "ON"
lnpat error
Illegal character or variable
No ending " in print literal
Dil"lJ9nsioning error
I llega I arithmeti~
Lina number not found
Divide by zero:attempted
Excessive subroutine nesting (max is 8)
RETURN W/0 prror GOSUB
Illegal variable
Unrecognizable statement
Parenthesis error

·4'181rt019;: ftrlfr
tBubiortpb ,emor
Excessive FOR loops active (max is 8)
NEl6>1"::itt)t'TeWIG>FeR- Loop defining "X"
Mis.rlest:ad,fT(i)~·-N EXT
READ statement error
Error in ON statement
Input Overflow (more then 72 characters on INput line)
Syntax error in DEF statement
Syntax error in Fr()et,,or-, ol"'F N ca111ed on Function not defined
Error in STRING Usage, or mixing of numeric and string variables

JS1rril"'qf Wffer Overflow, or String Extract {in MID$,LE FT$, or A IGHTS)·too
,loaf
1/0 operation requested to a port that does not have an 1/0 card installed.
VAL function error-string starts with a non-numeric value.
LOG error-an attempt was made to determinP. thP. Inn nf .:i nPn.:itivP n11mber.
File not open
Illegal file number-must be 0-9
Illegal file name
Fi le number in use
Attempt to write to a ~ile not open for write.
Attempt to read from a file not open for read

-22-

APPENDIX B

Disk Error Messages

During any disk operation, there are several possible disk error messages:
ERROR # DEFINITION ERROR # DEFINITION

0 NO ERROR 12 DELETE PROTECTED
1 ILLEGAL FUNCTION CODE 13 ILLEGAL FCB
2 Fl LE BUSY 14 ILLEGAL DISK ADDRESS
3 FILE EXISTS 15 DRIVE NUMBER ERROR
4 NO SUCH FILE 16 NOT READY
5 DIRECTORY ERROR 17 ACCESS DENIED
6 TOO MANY FILES 18 STATUS ERROR
7 DISK FULL 19 INDEX RANGE ERROR
8 END OF Fl LE 20 FMS INACTIVE
9 READERROR(CRC) 21 ILLEGAL FILENAME

10 WRITE ERROR (CRC) 22 CLOSE ERROR
11 WRITE PROTECTED

When a disk errorisencountered,theoutputwill besimilartotheform "DISK ERROR #11" .
An additional error message may also be output at this time and will be of the form:

ERROR #F (file#) IN LINE# (line no.)
If, for example, the following program was attempted with a write protected disk, the error

message wou Id be shown:
10 OPEN #1, DATA.DAT
20 WRITE#1, A, B
30 GOTO 3

would give
DISK ERROR #11
ERROR #F1 IN LINE #20

If an error #F F in line #(line no) message is encountered then an attempt was made to Kl LL or
RENAME a non-existent file or a special file control block error was detected.

-23-

APPENDIX C

ASCII Hexadecimal to Decimal Conversion Table

..I ..I ..I
a: < <(<

! a: ::E a: ::E w w u w I- fd ..I I- .J I- u ..I u < u w < u w < < 0 ::E < 0 ::E < 0 ::E a: < u a: < u a: < u < X < X < X :c w w :i:: w w
:i:: w w u :c 0 u :i:: 0 u :i:: 0

NUL 00 000 + 28 043 V 56 086
SOH 01 001 2C 044 w 57 087
STX 02 002 20 045 X 58 088
ETX 03 003 2E 046 y 59 089.
EQT 04 004 I 2F 047 z 5A 090
END 05 005 0 30 048 (58 091
ACK 06 006 1 31 049 \ SC 092'
BEL 07 007 2 32 050) 50 093
BS 08 008 3 33 051 A SE 094
HT 09 009 4 34 052 SF 095
LF OA 010 5 35 053 ~ 60 096
VT OB 011 6 36 054 a 61 097
FF oc 012 7 37 055 b 62 098
CR OD 013 8 38 056 C 63 099
so OE 014 9 39 057 d 64 100
SI OF 015 3A 058 e 65 101
OLE 10 016 3B 059 f 66 102
DC1 11 017 < 3C 060 g 67 103
DC2 12 018 = 30 061 h 68 104
DC3 13 019 > 3E 062 69 105
DC4 14 020 ? 3F 063 j 6A 106
NAK 15 021 @ 40 064 k 68 107
SYN 16 022 A 41 065 I 6C 108
ETB 17 023 B 42 066 m 60 109
CAN 18 024 C 43 067 n 6E 110
EM 19 025 D 44 068 0 6F 111
SUB 1A 026 E 45 069 p 70 112
ESC 18 027 F 46 070 q 71 113
FS 1C 028 G 47 071 r 72 114
GS 10 029 H 48 072 s 73 115
RS 1E 030 I 49 073 t 74 116
us 1F 031 J 4A 074 u 75 117
SP 20 032 K 4B 075 V 76 118

21 033 L 4C 076 w 77 119
II 22 034 M 40 077 X 78 120
23 035 N 4E 078 y 79 121
$ 24 036 0 4F 079 z 7A 122
% 25 037 p 50 080 { 78 123
& 26 038 Q 51 081 I 7C 124

27 039 R 52 082 } 70 125
28 040 s 53 083 '\, 7E 126
29 041 T 54 084 DEL7F 127

* 2A 042 u 55 085

-24-

0000-00FF
0100-243D
0100
0103
002A-002B
002E-002F
005D-005E
0067-0068
014E-014F

0150
0153

Appendix D

Memory Map

Input buffer and temporary variable storage
BASIC interpreter
Cold start address
Warm start address
Contains the next. available memory after the current BASIC source nroqrarr
Contains the starting address of the BASIC source program
Contains the address of the current arithmetic value in use during a USER call.
Contains the pointer for USER
This location tells BASIC where to start allocating memory for program storage.
This address may be changed by the user if desired to allow space for USER routines.
Contains the number of the port which BASIC will initialize to, currently 01.
Contains the ASCII value of what is output to the terminal when a BACKSPACE is
entered. Currently a null for terminals generating an automatic cursor left on back-
space.

0154 Contains the _ASCII value of what BASIC interprets as a BREAK character, cur­
rently a 03 (CTL. C.).

Below is a list. of the 1/0 jumps in BASIC for the various ports. For each port the first is the
"output character in accumulator A" jump, the second receives input and places it in accumulator
A and the third is the initialization routine for a particular type port (ACIA or PIA). This 1/0 can
be changed at the discretion of the user if desired.

01 Oe, 7E 22 24
010-=i' 7E 22 1:::
OlOC 7E 22 OF

010F 7E 71 12
0112 7E 71 OF
0115 7E 1 •;· :::7

Ci 11 E: 7E 04 7 ,.:,
01 lE: 7E 04 ,.:,7
011 E 7E o:::: E:2

0121 7E 04 1 ,:,

0124 7E 04 ,':,7
0127 7E 0:3 E:2

012A 7E 04 ::a::
012D 7E 04 81
0130 7E o:::: E:D

013:::: 7E 04 E:C
01::::,.:, 7E 04 ::::1
013'7' 7E o:::: E:D

01:;:,:: 7E 04 8C
01:.::F 7E 04 :::1
0142 7E 03 E:D

0145 7E 04 8C
014E: 7E 04 :::1
014E: 7E o::: E:C1

*PORT 0
,_IMPTAE: ._IMP

,_IMP
._IMP

*PORT 1

*PORT 2

*F'ORT 3

*F'ORT 4

*F'ORT 5

*F'ORT I:.,

*PORT 7

-26-

...IMP

._IMF'

._IMF'

.,_IMP

.JMF'
,_IMP

._IMF
,_IMP
,_IMP

.,_IMP
,_IMF'
,_IMF'

,_IMF'
,_IMF
,_IMF'

,_IMF'
,_IMF'
.,_IMF'

JMP
JMP
.,_IMF'

PF'OO
PF'OI
PPOINZ

OUTEEE
INEEE
DUMRT:::

OUTACI
INACIA
ACI INZ

OUTACI
INACIA
ACIINZ

OUTPIA
INPIA
F'IAINZ

OUTPIA
INPIA
PIAINZ

OUTF'IA
INPIA
PIAINZ

OUTF'IA
INF'IA
F'IAINZ

APPENDIX E
Notes for Speeding up BASIC

1. Subscripted variables take considerable time; whenever possible use non-subscripted
variables.

2. Transcendental functions (SIN, COS, TAN, ATAN, EXP, LOG) are slow because of the
number of calculations involved, so use them only when necessary. Also, the t operator
uses both the LOG and the EXP functions, so use the format A* A to square a number.

3. BASIC searches for functions and subroutines in the source file, so place often called
routines at the start of the program.

4. BASIC searches the symbol table for a referenced variable, and variables are inserted
into the symbol table as they are referenced; therefore, reference a frequently called
variable early in the program so that it comes early in the symbol table. ·

5. Numeric constants are converted each time they are encountered, so if you use a con­
stant often, assign it to a variable and use the variable instead.

APPENDIX F
Notes on Memory Usage in BASIC

1. REM statements use space, so use them sparingly.
2.a. Each non-subscripted numeric variable takes 8 bytes.

b. Each non-subscripted string variable takes 34 bytes.
c. Each numeric array takes 6 bytes plus 6 bytes for each element.
d. Each string array takes 6 bytes plus 32 bytes for each element.

3. An implicitly dimensioned variable creates 10 elements (or 10 by 10). If you do not in­
tend to use all 10 elements, save memory by explicitly dimensioning the variable.

4. Each BASIC line takes 2 bytes for the line number, 2 bytes for the encoded key word,
1 byte for the end of line terminator, 1 byte for the line length, plus one byte for each
character following the key word. Memory can be saved by using as few spaces as
possible.

5. BASIC reserves the uppermost 256 bytes of memory for stack and buffer use.

6. Each disk file open requires 198 bytes.

-26-

APPENDIX G

Parallel Interface Handshaking
The parallel interface drivers are written for a conventional handshaking scheme used by

many printer manufacturers and is the same as that on a SWTPC PR-40 printer. Handshaking
timing is set up as follows:

"DATA READY"
ON MP-L
INTERFACE
(CA2)

VALID DATA ON
MP-L DATA LINES
(PAO-PA7)

"DATA ACCEPTED"-------------~
OUTPUT FROM
PERIPHERAL DEVICE
(Input to CA 1)

APPENDIX H
Additional Notes

1' .
peripheral should generate
this pulse when it has accep­
ted the previous data and is
ready for more.

1. Normally the RESET button should never be pressed. If it is pressed and you re-enter BASIC
duplex mode of the ACIA on a MP-Swill be wrong and double echo will occur.

2. BASIC is written to accept input from text files created by the text editor written by Techni­
cal Systems Consultants, Box 2574, W. Lafayette, Indiana 47906. This editor will allow
automatic line numbering and other features.

3. Operating an MP-C type interface on port 0 for SAVE and LOAD is for SWTBUG® users only.

-27-

Commands
APPEND
CAT
CONT
DIGITS=&
DOS &
KILL &
LINE= &
LIST &
LOAD

IMON
NEW
PORT= &
RENAME &
RUN
SAVE
STRING= &
TAPPEND
TLOAD
TRACE ON &
TRACE OFF &
TSAVE

Instruction Set Summary

Statements
CHAIN
CLOSE
DATA
READ
RESTORE
FOR /exp/ to /exp/
NEXT
GOSUB
DIM*
END
GOTO*
IF /rel. exp./THEN /line/
INPUT*
ON /exp/ GOTO /line(s)/
ON /exp/ GOSUB /line(s)/
PRINT*
REM
RETURN
STOP
WRITE

Functions
ABS(X)
CHR $(X)
COS(X)
DEF FN(X)
EOF(X)
EXP(X)
INT(X)
LEFT$(X$,N)
LEN(X$)
MI D$(X$,S. Y)
PEEK(X)
POKE (1,J)
POS
RIGHT(X$,N)
RND(X)
SGN(X)
SIN(X)
SQR(X)
STR$(X)
TAB(X)
TAN(X)
USER(X)
VAL(X$)

* Denotes statements that may be used in the DIRECT mode
& Denotes commands that may be used as program statement

MATH OPERATORS
t Exponentiate
· (unary) Negate
* Multiplication
/ Division

RELATIONAL OPERATORS
= Equal (numeric and string)
< > Not Equal (numeric and string)

Less Than <

> Greater Than
+ Addition, string concatenation <= Less Than or Equal
· Subtraction >= Greater Than or Equal

LINE NUMBERS
VARIABLES

- May be from 1 thru 9999
May be single character alphabetic or single character alphabetic followed
by one integer O thru 9 or$

BACKSPACE Is a Control H
LINE CANCEL Is a Control X (CANCEL)
PROGRAM ABORT - Typing a Control C should bring BASIC back to the READY mode re­

LINES
gardless of what the BASIC program is doing (except USER programs) .

- Each line may contain multiple statements. Each statement is separated
from the other with a : .

-28-

INDEX

Page Page

ABS 13 MID$ 14
APPEND 5 MON 6
ASC 13 NEW 6
ATAN 13 NEXT 9
CAT 18 ON 11
CHAIN 18 OPEN 19
CHR$ 13 PEEK 14
CLOSE 19 POKE 14
COMMAND 1 PORT 6
CONCATENATION 3 POS 15
CONT 5 PRINT 12
cos 13 PRIORITY 2
DATA 8 READ 8, 19
DEF 13 RELATIONAL OPERATORS 10
DIGITS 5 REM 12
DIM 9 RENAME 18
DISK ERRORS 23 RESTORE 8, 20
DOS 5 RETURN 12
END 9 RIGHT$ 15
EOF 21 RND 15
ERRORS 22 RUN 6
EXP 14 SAVE 6
Fl LES 19 SCRATCH 21
FOR 9 SGN 15
FUNCTION 1 SIN : ... 15
GOSUB 9 SQR 15
GOTO 10 STATEMENT 1
HANDSHAKING 27 STOP 12
IF-THEN 10 STRING= 7
INPUT 11 STR$ 15
INT 14 TAB 16
Kl LL 18 TAN 16
LEFT$ 14 TAPPEND 7
LEN 14 TLOAD 7
LET 11 TRACE ON 7
LINE 5 TRACE OFF 7
LINE RESTRICTIONS 1 TSAVE 7
LIST 5 USER 16
LOAD 6 VAL 17
LOG 14 VARIABLE 1
MATHEMATICAL OPERATORS 2 WRITE 21
MEMORY MAP 25

-i-

j

I
I
I ,,,

,:

,.'! ..

'.\

