COPYRIGHT © 1978 BY
Technical Systems Consultants, Inc.
P.O. Box 2574
West Lalaveue, Indiana 17906
All Rights Reservedd

6800

Table of Contents

1. Debug Tutorial 1
|, Introduction 1
Il, The Simulated Computer 1
I1l. Whats in Memory? 3
IV, Simulating the Program 6
V. Breakpointing the Program 7
Vi. Advanced Breakpoints 9
Vii, Protect Your Memory 12
Viil. Trapping Those Bugs 13
IX, And There is Still More!l 14

2. Command Descriptions 17
l. Introduction 17
Il. General System Control 17
I11, Memory Commands 22
[V, Simulation Control 24
V. Breakpoints 28
Vi. Memory Protection 32
Vil, Execution Traps 33
Vill., Interrupt Control 35

3., Command Summary 37
4, Message Descriptions 39
5. Getting Debug Running 41
6. Example Use 43
l. Sample Program Source 43
Il, Sampie Debug Sesslion 44
7. Adapting to Your System 47
I+ 1/0 References 47
I1. 1/0 Related Storage 47
I1l, Stack Polnter References 48
IV, The X Command 48
V. System Tables 48
Vi, Saving the Altered Program 48
8. Relocating the Debug Package 49

9., Debug Package Source LIstling 51

Preface

The TSC Debug Package is a very powerful tool for assembler
language program debugging. It offers the power and flexibility
of an expensive hardware emulator at only a very small fraction
of the cost! Used with care, this package will save many hours

when debugging programs,

It is recommended that the entire wuser's manual be read
before attempting any serious debugging. The 'Tutorial! is
written to provide a fairly complete introduction to the Debug
Package, while the 'Command Descriptions! is a very complete and
concise description of all Debug features and commands. Consuft
'Getting Debug Running! for details on how to get the program
started. Working through the example given in 'Example Use' is a
good place to start once the manual has been read.

-jV=

Debug Tutorial

e Introduction

Program debugging is usually thought of as work., [t should
be thought of as an art, There is no reason for a lot of crying
while attempting to make 2 new program do what was intended,
This is only true, however, if the program was designed with some
forethought and planning. Computer programs are executed in a
logical, step by step, fashion, This is the approach both
program wr iting AND debugging should take, So many times a
programmer will spend hundreds of hours, carefully planning the
flow of 2 new program but spend only a few minutes thought on a
debugging approach. The debugging is usually attempted in some
hap hazard, keep your fingers crossed, method, Sometimes this
works and sometimes it does not, but in most cases, valuable time
is wasted.

By wusing a debugging tool and by incorporating some logical
thinking, program debugging can become very straight forward and
sometimes even fun! The purpose of this tutorial is to introduce
the reader to the capabilities of the TSC Debug Package and offer
some suggestions on how to tackle those program bugs. The
following sections give a more detailed description of |Its
capabilities,

Ile The Simulated Computer

The TSC Debug Package is more than the name may imply. It
is In fact a complete 6800 simulator. A computer simulator Is a
program which when run, behaves exactly like the computer It Is
simulating. Given 6800 machine |anguage, the simulator will
perform the Instructions exactly like the 6800 CPU. There are
two major differences, one being an advantage, the second being a
dlsadvantage, First for the good news, The simulator has the
abllity to keep close account of all internal actions., For
example, any Illegal opcodes are quickly detected and reported.
Such things as stack overflow and underflow are also easily
checked. Each byte of memory may have an assigned protection type
such as write protection, General condltions may also be spotted
such as the occurence of a transfer of address type Instruction,
Overall, the simulator can keep ciose watch over the executing
program and detect any pecullarities,

This all sounds great, but 8s stated before, there Is a
dlsadvantage In the simulator, namely speed, The simulated
program runs somewhere between 100 and 300 times slower than a
real 6800 CPU, This means that real time dependent code may not
be simulated, This Is not a serlous drawback since less than one
percent of ali computer programs are real time dependent,

TSC Debug Package

The 6800 simulator incorporated in the TSC Debug Package
supports all of the 6800 instructions, All of the user registers
are also provided (A, B, CC, X, PC, and SP). To exemine the
contents of these registers it is only necessary to type R
followed by a carriage return, This 1is assuming t+he Debug
Package is ready to work indicated by the two asterisk prompt
(t**1), Typing the R command will cause the debugger to display a
line containing all register names followed by their contents in
hex. At the end of the line is the instruction currently being
pointed to by the program counter (P register) and it is
displayed in disassembled form (standard Motorola mnemonics). A
nonstandard register is also displayed, the N register, This
register's value represents the subroutine nest depth., Each time
a subroutine is called, its value will be incremented, and each
time a return from subroutine is executed, its value will be
decremented. The contents of any of the displayed registers may
also be set by using the SET command. For example:

**SET,P=100,A=F3

will set the value of the PC to hex 100 and the value of +the A
register to hex F3. There are several other registers and states
of the simulated machine., These can be viewed by typing MACH.
The items displayed with this command are primarily the states of
various traps which will be described a little later,

There are several other internal machine variables which may
be easily examined. One of these is the contents of the stack,
Typing STACK will display the top several bytes o/ ihe stack. If
more stack contents are desired, simply type the number of items
desired after the command. .

®%*STACK, 15

This will display the *top 15 bytes of the stack. Note that a
comma was used as a separator in the command l[ine, It will be
used in all examples 1in this manual but a space 1is also
acceptable and sometimes easier to type. Another command which
references the stack is the RET command., This will print the top
two bytes of the stack as an address and represents the return
address if currently Iin a subroutine,

The simulated machine always keeps track of where it has
been and how much +time was spent there. The machine 'states
counter' is used to tally the total number of machine states or
cycles used so far by the executing program, Each 6800
instruction requires a certain number of machine cycles +to
execute. If the CPU is running at 1 megahertz, each machine state
is equivalent to 1 microsecond. The machine states counter is
capable of counting up to 99,999,999 cycles, or roughly 99.99
seconds of actual program execution time. This counter is useful
for determining the exact execution time of a routine,

TSC Debug Package

The TRAIL command will print the address of the Ilast
transfer type instruction., A transfer of address instruction is
one which causes the CPU to <change its normal course of
instruction execution, Normally instructions are executed in a
sequential fashion, stepping through memory sequentially, A JMP
instruction for example will cause the next instruction to be
fetched from the address specified in the instruction, rather
than from the next sequential address, In effect, we have a
transfer of address. The TRAIL command will print +the location
of the last transfer type instruction that was executed. This is
very handy in determining what caused a program to end wup In
memory where it did,

The simulated machine is capable of running in two different
modes, These are referenced as mode 1 and mode 0. |In mode |
(the default mode), al! checking and bookkeeping 1is performed,
in mode 0, several of the features are turned off in order to

improve the speed performance of the simulator. it is
recommended that mode 1 always be used since it does the most
work for you and will catch more errors,

It1. Whats in Memory?

Now that the simulated CPU has been described we need *to
ook at memory, The TSC Debug Package offers several ways of

examining the contents of memory locations, as well as altering
them, The simplest form 1is the MEM command, or M for short,
Typing M followed by an address will dispiay vnat byte of memory,
For example:

*¥*M, 100

100 CE

shows that memory location hex 100 contains a hex CE, At +this
time several choices are at hand, |f all you wanted to do was
check the contents of location 100, simply type a carriage return
and the debug prompt will be issued. |If you want to change the
contents of 100, simply type the new value followed by a 'space',
The 'space! tells the debugger that the new value Is ready to be
entered, It is only necessary to type the significant digits of
the new value to be entered, For example, 1if 6 was to be
entered, simply type 6 followed by a space, |t should be noted
that only the last two digits will be used so.lf 'C23A' s typed,

'3A' will get entered, |If zero Is to be entered, simply type a
space, After the new value Is entered, the next sequential memory
location will be displayed., Any time a non hex chcracter |Is
typed (with the exception of space), one of two actions will
occur, First If the character Is a 'line feed'!, the previous
location will be displayed, with the currert Ilocation left
unchanged. If the character is any other non hex character, the
next location will be displayed leaving the current unchanged,
An example will clarlify the M command's use,

TSC Debug Package

**M,100
0100 CE .
0101 3A 46
0102 4D

Location $100 was left unaltered, while location $1C1 was changed
from a $3A to $46. Finally this mode was exitted on the next
line by typing a return,

Many times while program debugging it is desirable *to
examine a large block of memory. The DUMP command is used for

exactly that. This command will display 16 lines of data, 16
bytes per line, for a specified memory region. Each byte Is
displayed as a hex value as well as its ASCI| equivalent, Al

control characters (those bytes having a value less than 20 hex)
are displayed as an underscore character ' ', To display 256
bytes starting at memory location $1000, the following command
should be typed:

**DuMP, 1000

At the end of the dumped block the program will stop and wait for
a character to be typed. Typing an 'F' will move forward in
memory, printing the next sequential 256 bytes. In this example,
typing an F would display the block starting at $§1100. It is
also possible to display the previous block of 256 bytes by
typing a 'B', for backward movement, A carriage return will
cause the debugger to regain control and the onrompt will be
reissued. Any other characters will be ignored, It should be
noted that any time the debugger is displaying data on the
terminal, the display may be stopped at the end of the line by
typing an 'escape' character. Once stopped, another ‘'escape!
will resume the display, while a 'return' will give control back
to the debugger. This is a very convenient feature,

Another useful memory interogation command 1is the FIND
command which is used to find a specific string of bytes or
characters In a selected block of memory. As an example, suppose
tThere was a jump to subroutine instruction somewhere in vyour
program, It 1is known that the code is BD 34 00, and that it is
somewhere between locations $100 and $300. The following command
line will find it,

%%*FiNOD, 100, 300,BD, 34,00

This tells the debugger to look between memory lccations hex 100
and 300 for the hex string 'BD3400'. Al! memory locations which

contain this string will be displayed on the terminal. The
length of the string searched is limited by the maximum command
line length which is 80 characters, It is also possible to

search for an ASC!! string. Suppose it was necessary to find the
character string 'ERROR 3! in memory. It should be somewhere
between locations $200 and $1000. This can be done in the
following way:

TSC Debug Package

**F|IND,200, 1000,"ERROR 3

The double quote character tells the find command that the
following characters are to be considered ASCII characters
instead of hex, Otherwise the command wcrks exactly as described
above,

So far the memory commands described have been oriented
toward hex and ASC!! values. Many times during debugging it s
necessary to decode these hex values into assembler l|anguage
instructions, The DIS command does exactly that! This command is
a complete program disassembler which allows the user to examine
the contents of memory in a higher Ilevel form, Each memory
location in a specified block will be printed as address,
followed by the opcode mnemonic and addressing mode, Standard
Motorola mnemonics and addressing mode designators are used. To
use the disassembler, simply type the command name (DIS),
followed by two address boundaries. For example, to cisassemble
the memory range between locations 100 and 108, type the
following.

**D1S, 100,108
0100 LDAA $32
0102 STAA $0240
0105 BNE %0121
0107 DECA

0108 STAA 2,X

Remember that at any time the display is being prcduced, the
'escape' key may be typed to temporarily halt the action. The
DIS command is a very useful and powerful command.

Now that we can examine memory in a higher level form it
would be nice if we could alter it in the same way, tThat is,
using assembler language mnemonics. The ASM command does exactly
that! |t acts as a line at a time assembler, allowing standard
mnemonics and addressing modes to be typed, while the
corresponding hex values are automatically inserted into memory,
To start this process simply type the command name followed by
the address where the code should be placed., The debugger will
respond by printing the address of +the location specified
followed by a space. At this time, simply type +the desired
instructions following each with a carriage return. The next
available address will then be printed and assembly can continue,
Typing a carriage return In response to the address prompt will
exit this mode of operation, To show the workings of this
command, some code will be assembled at location $200.

**ASM, 200
0200 LDAA 10
0202 LDAB $10
0204 PSHA
0205 LDAA '™
0207 STAA 0,X

0209 JMP $3000

020C
*n

Note that numeric values are interpreted as decimal unless
preceded by a dollar sign ($) to designate hex, I+ is also
possible to enter an ASCI!| constant by preceding it with a single
quote ('), No spaces are allowed between the register specifiers
'A' or 'B!' and the instruction (e.g. LDAA is correct, LDA A is
not), The ASM command is a great time saver!

IV, Simulating the Program

Program simulation is very simple, If the test program
starts at $100, simply type START,100 to start the simulation
process. The program will run exactly as the CPU would run it,

just slower, The START command clears several of the machine
conditions such as the states counter. To start a program where

it left off, the GO command can be used. This will cause the
program to start execution at the Ilocation pointed to by the
program counter (P register). No states will be cleared.

A very valuable feature of the simulator 1is the 'trace
mode!, When trace is enabled, a register dump (exactly like that
produced by the R command) will be displayed after each
instruction is executed, The simulation may be temporarily
halted by typing an 'escape'! character anytime during the tracing
operation, The simulation may also be stopped by typing a
'control C'. This will cause the debug prompt to be reissued,
To enable the trace mode use the TRACE command.

**TRACE=10

This line will cause the debugger to trace all instructions which
are in a subroutine nest level of 9 or lower, The number in the
command |ine specifies +the nest level where tracing should be
disabled. This allows only the outermost program structure to be
traced if desired, while the deeper subroutines will be simuiated
without the tracing. To disable the trace, use a count of zero
(e.g. TRACE=0).,

There are several other methods of starting program
simulation, One is the SIM command. This command will allow the
simulation of a specified number of instructions, Tracing s
disabled during the execution of this command.

**SIM, 100

This line will cause 100 instructions to be simulated starting at
the address pointed to by the program counter., The TSIM command
is identical to the SIM command except trace Is automatically set
to 256 during the execution of the command,

TSC Debug Package

It is often desirable to step through the execution of a
program, one instruction at a time. The STEP command will start
simulation at the instruction pointed to by the program counter,
execute a specified number of instructions, print a register
dump, and then wait for input. At this time, a space will repeat
the process, while a return will return control back to the
debugger. The wusual method of operation is 'single' step which
will execute one instruction, then dump the registers., This mode

can be entered by:
*HSTEP

Multiple instructions can be executed between register dumps by
specifying a count. For example;

#¥STEP, 25

will cause 25 instructions to be simulated at a time. The step
mode is a very powerful method for closely following the flow of
a program.,

During program execution, the simulator keeps track of the
last 256 instructions executed. |If a program ever goes off on
its own, ending up in memory where it should not, the PAST
command can be used to examine the instructions exacuted to get
it there, Typing the command,

*%PAST, 20
will display the addresses and mnemonic instructions of the last
20 opcodes executed, This feature alone will find a good

percentage of program bugs.

V. Breakpointing the Program

So far, methods have been described which allow all or a
certain number of *instructions to be simulated, Most of the
time, the number of instructions to a certain point in the
program is not known, It would be helpful 1f a break 1In +the
program simulation could be specified to take place at a
particular point in the program, or In other words, breakpoints,
A breakpoint s a mechanism for stopping the execution at a
specified address in the program, As an example, to set a
breakpoint at location $23A, use the following command,

*%BE23A

As the program executes, any time Ilocation $23A Is reached,
simulation will stop and the registers will be dJdumped to the
terminal, After the program has stopped, typing a 'G' wlll|
restart execution, starting at address $23A (the breakpoint wil|
be temporarlily ignored), It should be noted that the me*hod used
to create the breakpoint does not alter the contents of memory in

-7-

TSC Debug Package

any way., This means that affter setting a breakpoint, the
contents of memory at the breakpoint location will be unchanged.
This allows breakpoints to be set in ROM as well as RAM!

In the above example, the breakpoint caused two actions +to
take place, One was printing the registers, the other was
stopping program simulation, These actions are the ones
per formed by most debugging systems. The TSC Debug Package
allows six other actions to be performed upon the execution of a
breakpoint. A list of all 8 possible actions follow:

1. R...Print register contents
2. Z...2ero the states counter
3. T...Enable the trace function
4, U...Disable trace (untrace)
5. H...Histogram counter

6. M...Print a message

7. Joauosdump to specified address
8. S...S5top simulation

The first breakpoint example shown defaulted to R and S type
actions since none were specified, The Z action zeroes the
machine states counter. This is useful for program timing. For
an example, the states counter may be zeroed upon entry to a
subroutine and a stop type breakpoint set at the exit point of
the routine, By wusing the STATES command after the program
stops, the exact number of executed machine states for that
routine will be displayed,

The T and U actions allow the trace mode to be enabled and
disabled at selected points in a program. When enabled, trace

will be set to level 255, Many times, tracing 1is only desired
during one routine or selected portion of the program. These
actions will permit this sort of program tracing. A few examples
will demonstrate action type breakpoints,

*%B,RZ21000

**B,T8A16
The first command will set a breakpoint at location hex 1000
which when executed will print the reglisters and zero the states
counter. The program will then continue since a stop (S) action
was not specified, The second example will cause trace to be

turned on at location hex Al6.

Another action 1is the histocgram (H). A histogram counter
counts the number of times the instruction at that address has
been executed, This is wuseful for determining 'hot spots! or
sections of programs which are executed very firequently. By
setting a histogram breakpoint at the first instruction of each
subroutine in a program, it is possible to find out exactly how
many times each routine was called., As an example, suppose there
were three subroutines in a program, and they were located at
$100, $123, and §$1A0. To set histogram counters at these

TSC Debug Package

locations, type the following commands:

**B,HE100
%¥%B,HE123
%%B,HE1A0

After simulating the program, typing HIST will dispiay the fotals
of the counters at each address, This command is used to examine
the histogram counters at any time. The CLH command is used to
clear the histogram counters,

**CLH, 100

**CLH
The first command will clear (set to zero) the value of the
histogram counter at location 100, The second command will zero

all of the counters., The histogram commands allow a very
complete profiling of a program, letting the user 'fine tune'! it
for maximum speed.

The remaining two action codes are special purpose., One
permits a selected message to be printed as the action, the
second allows transfer of control to a specified address (like a
JMP instruction).

**g,M8325,SUB 1
**B,J@27C, 1000

The first line will print the message "SUB 1" eoch time the
instruction at $325 is executed. * The second command will cause
the instruction at address hex 1000 to be the next instruction
executed., The instruction at 27C will not be executed!

Any combination of action codes may be listed for a
breakpoint., They are executed in the order they appear in the
above list, For example,

**B,TRZ@300

will cause the registers to be displayed (R), the states counter
to be zeroed (Z), and trace to be enabled (T), in that order,
This ordering may be important, for In the actions 'RSJ!, the
stop (S) will never get executed since the J transfers control to
another address,

Vi. Advanced Breakpolints

Programs containing loops or recurslion are often difficult
to breakpoint since one particular section of code may be called
thousands, or even millions of times. As an example, suppose
there is a loop In +the program being debugged, and It s
necessary to examine the contents of the X register after the
600th time through the loop. One way is to set a breakpoint at

TSC Debug Package

the desired instruction and start the program simulating. Every
time the program halts at the breakpoint, type G to restart ift,
Repeat this process 600 times and you can examine X. You are
probably thinking that this would take forever and you are right!
The TSC Debug Package allows a pass counter to be asscciated with
a breakpoint, This count determines how many times the
instruction at the address of the breakpoint should be executed
before the actions specified should be performed, In the above
example, assuming the instruction to be breakpointed 1is at
address 300, the following will do exactly what we want,

**B@300,>600
or
**B,SRe300,>600

Both commands are identical since the first defaults *o SR
actions, The '>!' js the pass count modifier and should be read as
tafter!, The result of this command is to stop and print the
registers on the instruction at location 300, after 600 times
through it. Once the count reaches 600 (or whatever value was
set), the breakpoint actions will always occur. A second similar
type of pass count uses a '<! for a modifier and should be read
as 'before'., This is used to create a temporary breakpoint.

**B,R8300,<100
This command will set up a breakpoint at 300 whizh will print the
registers for the first 100 times through. After the 100th time,
the breakpoint will be cleared and no Ionger function. In

summary, the pass count value associated with @& breakpoint Is
decremented each time the instruction at the specified address Is
executed, |f the modifier is a '">!', no actions will be performed
until 'after'! the count has reached zero. With the '<' mofifier,
actions are only performed 'before' the count reaches 2zero, and
once it is zero, the breakpoint is cleared,

In the above example it was decided that the program shouid
be stopped after 600 times through the loop. While debugging
loops, it is not always possible to determine an exact number of
times to execute the loop before it should be stopped., Often it
is desirable to stop on a certain condition, such as the contents
of a register or the state of a particular memory location,
Conditional expressions are allowed in breakpoint definitions and
yield a great deal of power, The conditional can be determined
on the contents of a selected register (A, B, C, X, P, S, or N)
being equal (or not equal) to a specified value. A particular
memory location may also be tested for zero or not =zero,

Following are a few examples.
*%*B@1000, IF A=3F
**B,RE320,IF B!=10
**B,Ta6A7,IF $20=0

The 'I|F!' statement designates the conditional part of the

-10-

TSC Debug Package

breakpoint definition, The first example will stop and print the
registers at location hex 1000 but only when the value in the A
accumulator is hex 3F, The second example will print +the

registers at 320 only if the contents of the B register is not
hex 10 ('!=!' |is to be read as 'not equals'), The last example
will enable the trace mode at location 6A7 if the contents of
memory location hex 20 is zero. The dollar sign '$!' is used to
designate a memory reference and not a hex value (the value is
always interpreted as hex). The value on the right of the equals
sign must always be zero when a memory reference has been

designated.

The above breakpoint features may be combined in a variety
of ways to produce an almost endless variety of breakpoints, As
an example:

**B,7281000,>100, IF X=100

will cause trace to be enabled and the states counter to be
zeroed, after executing the instruction at hex 1000, 100 times,
but then only if the value of the index register is $100. It

should be noted that the H, M, and J action codes will not allow
a conditional expression as part of the breakpoint definition,
and J will not support a pass counter,

Once breakpoints are set it 1Is possible to examine the
loaction of them as well as remove them., To check tre locations
of breakpoints, use the BP command,

i*BP

**BP, 100

**BP, 100-500
The first |line will print the location of all breakpoints, each
one followed by a list of its action codes., No pass counts or
conditionals are displayed. The second example will display the
action codes of the breakpoint at location hex 100 (if one
exists), The last command line will display all breakpoints

between location 100 and 500, inclusive, The CLB command is
similar In syntax but is used to clear or remove a breakpoint,
CLB by itself will clear all breakpoints, |If it is followed by
an address, the breakpoint at that address will be removed, |f
two addresses are specified, then all breakpoints in their range
will be cleared,

While debugging very large programs, [t may become quite
time consuming to simulate the program up to a desired address.,
For example, a program which requires a minute to execute In real
time may require over an hour I|f simulated. To get around this
probiem, It is possible to set a 'real time' breakpoint, This is
entirely dlfferent from the previously described breakpoints In
that it does modify the contents of memory (by substituting a JMP
instruction) and no pass counting or conditionals are permitted,
The only action performed is to stop and print the registers., An

-11=-

190 veuvuy racnays

example of use follows:
*¥RT,S5A00

This command will cause the CPU to start executing the program
(NOT the simulator) at the current address of the program
counter, When the program reaches the specified address (5A00),
the program will stop, print the registers, and restore the
contents of RAM at that location (remove the breakpoint). Since
the program 1is being executed in real time and not being
simulated, no other breakpoints, illegal condition checking,
states counting, or record keeping is performed. This type of
execution is not recommended for this reason and should only be
used where the simulation time gets tremendously long.

Vil. Protect Your Memory

Perhaps the most aggravating aspect of program debugging is
having your program destroy itself in memory. Too many times,
programs 'run away', writing garbage in memory, wusually exactly
where it is not wanted. In these instances, it would be nice to
be able to 'write protect! memory, or at least <certain portions
of it. The TSC Debug Package will allow exactly that! In fact,
any section of memory, right down to a single byte, may be write,
execute, memory, or simulate protected! Write protecting memory

will prohibit any stores or writes into it,. Execute protection
prohibits opcodes from being fetched from memory. |In other
words, the program counter (PC) will not be perwmiiied 1o point to

a location of memory which is execute protected. Memory protect
is a brute force type of protection, By memory protecting a
region, you are in effect saying that no memory exists in this
region and that nothing should be allowed to reference it in any
way, Any memory referenced in conflict with its protection will
cause the simulation to stop and an appropriate message will be
printed. Finally, simulate protection is slightly different from
the rest, It is used to tei! the simulator fto execute any code
in a simulate protected region In real time, or in other words,
not simulated., A restriction requires the code in a simulate
protected region to be called as a subroutine (JSR or BSR) from
the non-simulate protected code. This is very convenient for /0
operations, All 1/0 routines can be simulate protected (such as
TTY and disk routines) allowing them to be executed by the CPU
(real time) and not the simulator. It is often convenient to
simulate protect the entire region of memory containing the
monitor and/or operating system since this ccde 1is known
functional, Keep in mind that code in simulate protected memory
may only be accessed via a subroutine call,

The command used to set protection is PROT. A few examples
will demonstrate its use,

-] 2w

TSC Debug Package

**pPROT, 100-3FF, X
**pPROT, 2E0,W
* *PROT, 500-6FF ,M, 1200-1FFF, W

The first example will execute (X) protect the memory between
locations $100 and $3FF, The second |ine write protects (W)
location $2E0. The last example will memory protect (M)

locations $500 through $6FF and write protect $1200 through
$1FFF, There are some general rules to follow when protecting
memory. Memory protection should be used on all sections of
memory not referenced or wused by the program being debugged,
especially the area of memory containing the Debug Package. This
will keep a runaway program from clobbering something it should
not. Sections of memory which are used for register storage or
flags should be execute protected., Memory containing the actual
program code should be write protected for obvious reasons,
Finally, as mentioned above, the memory locations where the
monitor and/or operating system reside should be simulate
protected,

Once the protection has been defined it may be checked by
using the BOUNDS <command. This command will allow the
examination of the boundaries of each type of protection. Either
all types or selected ones may be displayed,

**BOUNDS
**BOUNDS , W, M

The first example will display all types whiie The second will
show only the defined boundaries for write and memory protection,
Memory protection can be cleared in a similar fashion,

*ACLP
*XCLP, X, W

The first command will clear all protection while the second will
only clear the defined execute and write protected regions.,

Vill, Trapping Those Bugs

The previously described breakpointing feature al lows
programs to be stopped at speclflc locations and on specific
conditions, It is often desirable to 'trap! a program on some
general condition such as every time a transfer of address
instruction Is encountered, The memory protection described
above Is a form of +trap In that the program will stop if a
protection violation 1is detected (e.g. writing Into write
protected memory). There Is address information associated with
this protection which makes it different from thas general +traps
avaiiable In the Debug Package. The general traps cause programs
to stop on a general condlition which Is not address dependent.

-13-

TSC Debug Package

One of these traps is the illegal opcode trap which is
always enabled. Any time an illegal opcode is encounte-ed during
the course of program simulation, the program will stop and
report its occurrence. A second, always enabled trap will stop
the program if an RTS instruction is encountered and the current

nest level is 0O,

There are several user controlled ftraps which may be enabled
and disabled at will, The transfer trap is enabled with the XFR

command. When enabled, the program will stop each time a
transfer of address is encountered. These Iinstructions are JMP,
BRA, and all conditional branches such as BCC. The subroutine
calls and returns are not trapped out.

**XFR=0ON

*®XFR=0FF
These two commands will enable and disable +this <trap
respectively, Once a program has stopped because of a transfer
trap, typing G will restart it, allowing the current transfer to

be executed. This is very useful for quickly following the major
flow of a program, Another one of the general traps allows
halting the program if the subroutine nest counts reaches a
specified level.

*%*NEST=20 .

This will cause a +trap if the nest leve!l ever ~ecaches 20. To
disable the nest trap, use NEST=0.

The last general trap to be discussed is the ITRAP. This
command al lows activation of the interrupt trap and will cause
the simulating program to stop if an interrupt type instruction
is encountered (SWIl, RTI, and WAI). Since these instructions are
not wused In the majority of programs it is a good idea to use

this feature. An example will demonstrate its use.
*#| TRAP=ON
| TRAP=0OFF
These two commands will enable and disable the Interrupt trap

respectively,

|1Xe And There is Stil! More!

There are still many undescribed features of the TSC Debug
Package. One of these is the handy little CALC command which acts
as a hex calculator. Typing CALC followed by a return will cause

the debugger to output an equals sign (=) for a prompt. At this
time hex and decimal! addition and subtraction may be performed.
To add two numbers simply type them in separated by a plus sign,
If the number is hex precede It with a dollar sign, otherwise the
debugger will interpret It as decimal, Use a minus sign for

-14-

TSC Debug Package

subtraction, |t is also possible to do base <conversions, This
can be accomplished by entering just one number after the prompt
(hex or decimal) followed by a return, Al!l answers are displayed
in both hex and decimal. An example follows,

*#CALC
=$1A+10
$0024 36

=256
$0100 256

After entering the calculator mode, the numbers hex 1A and
decimal 10 were added to give the result hex 24 or decimal 36.
The second entry is a base conversion of the decimal number 256,
The result shows its hex equivalent is $100. The calculator mode
can be left by typing a return in response to the prompt.

There are still many other features in the Debug Package,
such as interrupt simulation, which have not been described. It
is not the intention of this tutorial to teach all there is to
know about the debugger, but to teach enough to make the wuser
feel comfortable with +the majority of its features. Once the
material in this section is thoroughly understood, the following
detailed command description should be studied in depth,

Now that the basic mechanics of the Debug Package are
understood they should be put to good use, ¥~2p in mind that a
logical and planned approach should be taken when Jebugging a
program., Use the avaiilable tools such as msmory protection and
breakpoints, When first starting ' the debug process on a new
program, start at the beginning, working your way through the
flow of the program, Let the program be the guide. |If you pay
close attention, it will definitely point out the bugs. Above
all, have patience. Great bugs are not killed overnight!

-15-

TSC Debug Package

Command Descriptions

le Introduction

This section of the manual contains a detailed description
of each Debug command. Each command is shown with a few
examples. The syntax definitions show optional items in square
brackets ({]). All command parameters are shown separated by
commas for clarity in the syntax definitions and examples. Any
place a comma is shown, a space may also be used. The following
definitions apply throughout this document:

| tem Meaning

<address> 1-4 digit hex value

<value> decimal number (max = 255)
<count> decimal number (max = 65,000)

The Debug Package is ready to accept a command anytime the

'*#%t prompt is present on the |line, When typing commands, a
'control H!' will cause a backspace, and delete the last character
typed. A 'control X' will cause the entire line to be deleted
and a new prompt of '??' will be output to show the deletion of
the line., Any time text is being output to the terminal, display
may be stopped at the end of a line bv tvping an 'escape!
character. Once stopped, another 'escape'! wlll restart the output
while a 'return! will give control back to the debugger and the
1%#%¢ prompt will be output.

Its General System Control

The general system control commands allow a variety of general
actions to be performed. Register examination and changing is
supported by use of the REG and SET commands. The status of
several machine control registers can be obtained through the
MACH command. Commands to view the stack contents, set
simulation speed, reset machine parameters, enter a calculator
mode, examine the 'machine states counter'!, and exit the debugger
are all described in this section,

ClALC]
PURPOSE:
The calculator mode will be entered and a '=! prompt will
be printed, The calculator will allow addition or

subtraction of two numbers, The numbers may be hex
(designated by a '$' prefix) or decimal, |[|f two numbers
are typed, they must be separated by a '=! or '+! and the
appropriate result will be dispiayed. The answer is
shown in both hex and decimal, It is possible to enter

=1T=

TSC Debug Package

only one number (hex or decimal) followed by a return.

The answer will be this number printed in both hex and
decimal, thus allowing base conversions, After each
calculation, a new '=!' prompt will be output, To exit

this mode, type a 'return' as a response to the prompt.

EXAMPLES:
CALC . Enter calculator mode
=$A+10 Add hex A and 10
$14 20 The result is printed

DEL[AY}=<value>

PURPCSE:

This will set the simulation delay (the amount of delay
after each instruction is executed) to an amount
proportional to <value>., The higher the number (max =
255) the longer the delay. A delay of zero will result
in the delay being turned off.
EXAMPLES:
DELAY=100 Set delay to 100
DELAY=0 Disable the delay
DEPITH]
PURPOSE:
The depth command will print the deepest value of +the
stack pointer (the Ilowest memory address at which the
stack was extended during program simulation), To
initialize this pointer, it is necessary to set the stack
pointer using the SET command., The depth value will be

set to the same value as the stack pointer. This command
is useful for determining the amount of stack space
required by a program,

EXAMPLES:

EIXIT]

DEPTH Print the deepest stack location

PURPOSE:

Exit the debug program. Use this command when finished
with the Debug Package.

EXAMPLES:

EXIT Exit the debugger

-18-

TSC Debug Package

FLIAG)[=<address>]

PURPOSE:
The Flag register is a 2 byte word at the specified
memory Jlocation which will be displayed orn a REG command
or during tracing, as the 'F' register, The memory
location for the flag will be set +To the address

specified. |f no address is given, the flag register will
be disabled. This is useful for tracking flags in memory
during program tracing., See the REG command,

EXAMPLES:
FLAG=1A85 Set flag register to $1A85
FLAG Disable flag register printout
IND=ON or OFF
PURPOSE:

Used to enable or disable the indirection printout in a
register dump (see REG). If IND is ON, the register dump

will show a register called 'I' which is the value of the
memory location pointed to by the index (X) register., |If
this feature is off, the | register will not be
displayed,
EXAMPLES:
IND=ON Turn indirection on
IND=OFF Turn it off
MA[CH]
PURPOSE:
The MACH command will print the current status of the
simulated machine., Values displayed are for mode (M),
trace (T), instruction count +trap (1), nest trap (N),
stop address (S), interrupt trap (IT), +transfer ftrap
(XT), IRQ count (IRQ), and NMI count (NMI), The
description of these appear elsewhere in this manual,
EXAMPLES:

MACH Print the machine status

MO[DEl=1 or 0

PURPOSE:
The debugger has two modes of operation, mode 0 and mode
1. The system comes up in mode 1, Mode 1| offers all
debug features allowing the simulated program to run
approximately 250 times slower than real Time, In mode
0, the program will run approximately 100 times slower
than real time, but the following features are not
supported; nest count checking, all tfraps, states
counting, memory protection, past instruction

bookkeeping, and automatic interrupts, Mode 1 should be

-] fe

TSC Debug Package

used most of the time to take full advantage of the
debugger.,
EXAMPLES:
MODE=1 Set mode to 1
MO=0 Set mode to 0O
RIEG])
PURPOSE:
Print the contents of the machine registers. All values
are shown in hex, Besides the condition codes (C), A, B,
and X registers, program counter (P) and stack pointer
(S), the nest level, N, is displayed (shows how deep in
subroutine calls) as well as two optional registers. One
is enabled by the IND command and displays the byte of
memory being pointed to by the index register. This is
shown as '"|! in the REG dump. The second option is
enabled by the FLAG command and will display the selected
two bytes of memory., This is shown as 'F' in the dump,
EXAMPLES:
REG Display all registers
R Display all registers a2lso
RESIET])
PURPOSE:
The RESET command is used to reset all machine states,
All registers will be set to zero, the stack pointer will
be set to $A07F, all breakpoints and memory protection
will be cleared, and the mode will be set to 1. This
will set up the machine exactly the same as Initializing
the debugger upon first entry,
EXAMPLES:
RESET Reset the machine
RET
PURPOSE:
Print the top two items on the stack, |[f the system Is
currently in a subroutine, these bytes will represent the
return address from this routine., |f the nest level s

currently zero (N=0), the message "NEST LEVEL IS O" will
be displayed.

EXAMPLES:

RET Print the return address

TSC Debug Package

S{ET],<register list>

PURPOSE:
The SET command is wused to set or assign values to
registers, The <register list> is a list of register

names (C,A,B,X,S,P,N) followed by an equals sign,
followed by the hex value, Setting the stack pointer

will! also set the depth value to the same amount,
EXAMPLES:

SET,P=100,A=C3 Set PC to $100 and A to $C3

S B=20 X=I1FFF Set B to $20 and X to $1FFF

STACK{ ,<value>]

PURPOSE:
Print the contents of +the stack. The number of bytes
specified by <value> will be printed. If <value> is not

specified, the top 6 bytes will be printed, The stack is
printed from high address to low address, so the *top of

stack will be the last item printed,
EXAMPLES:
STACK Print the top 5 stack bytes
STACK, 10 Print the top 10 staclk bytes
STATIES]
PURPOSE:

Disptay the current value of the states counter, This
value represents the number of actual machine cycles
(micro seconds on a | megahertz computer) which have been
executed since the last START or RESET command, It is
also possible to set this counter to 2zero wusing

breakpoints,

EXAMPLES:
STATES Print the current states count
TRAIL

PURPOSE: ¢
Print the address of the last executed instruction which
caused a transfer of address (e.g. JMP instruction),
This 1|is wuseful when attempting to find how a program
ended up where it did,

EXAMPLES

TRAIL Print the.last trancfer address

«F] -

s rmant

TSC Debug Package

X,<operating system command>

PURPOSE:
The X command is only operational on disk systems (see

Adaptions). It allows the execution of any DOS command
from the debugger,

EXAMPLES:
X,CAT,1 Catalog drive 1

I1te Memory Commands

The memory commands allow examining and altering the contents of
memory in a variety of ways. The assembler allows simple, direct
insertion of object code by using standard opcode mnemonics and
addressing mode designators, The disassembler provides an
opposite type of convenience, in that the contents of memory may
be displayed as assembler language mnemonics and operands, A
single byte memory examine and change function is also available
(the MEM command). Commands for viewing large blocks of memory,
finding specific hex or ASCI| strings, and filling a section of
memory with a selected character are all available in this group.

A[{SM]! ,<address>]

PURPOSE:
Enter the line at a time assembly mode. Asiembly will

start at the address specified or at tite location of the
program counter [f no address is specified., No labels
are permitted. All standard Motorola opcode mnemonics
are accepted (no pseudo ops). When instructions contain
a register specifier, there should be no space between
the mnemonic and the specifier (e.g. LDAB, not LDA B).
All standard addressing modes are accepted. All page
zero references will be assembled as extended addresses.
Three types of constants are permitted, decimal, hex
(precede the number with '$'), and ASCI! (precede the
ASCl| letter with a single quote (')). The PC Is
automatically advanced to the next location after the
line Is assembled. To exit this mode, type a8 return In
response to the address prompt. ;

EXAMPLES: ‘
ASM, 100 Start assembly at $1C0
100 LDAA #10 Load A with 10
102 LDAB #'1 Load B with ASCII 1
104 BRA $100 Loop forever
106 Exit with return

-

TSC Debug Package

DlIS],<start address>,<stop address>

PURPOSE:
Disassemble memory between the addresses specified, The
address, mnemonic, and addressing mode wil! be printed
out for each instruction in the range. if an illegal
opcode is found, three stars (***) will be displayed

instead of a mnemonic, followed by the hex value found at
that address,

EXAMPLES:
DiS, 100, 1A0 Disassemble from 100 to 1A0

DUIMP],<address>

PURPOSE:
Dump 256 byte blocks of memory starting at the address
specified, The memory is displayed 16 bytes per line,
followed by the ASC!II| values of the hex numbers, After

each block is dumped, typing an 'F' will move Forward and
display the next 256 bytes, typing a 'B' will move Back
and display the previous 256 bytes, Typing a 'return’
will exit this mode.
EXAMPLES:
DUMP,AQ0 Dump memory at $A00

FiLIL},<start address>,<stop address>[,<byte>]

PURPOSE:
This command will fil! memory with the <byte> (hex)
specified starting at the first address, filling through
the second address, I¥f <byte> is not specified, zero
will be used.
EXAMPLES:
FitL,100,300,FF Fill with FF from 100 to 300
FiLL,0,100 Clear from 0 to 100

FIN{D],<start address>,<stop address>,<string>

PURPQOSE: '
Find the specified string in memory, The search will

start at the <start address> and continue through the
<stop address>, The address of each location where the
string 1Is found will be displayed. The <string> can be
entered In one of two ways. The first can be a string of
hex digits separated by spaces or commas, The second is
an ASCII| string preceded by a double quote character,
The |imit on string length 1Is the Input buffer (72
characters).

TSC Debug Package

EXAMPLES:
FIND,0,60,7E,33,A2 Find the hex value 7E33A2

FIND,0Q,1000,"TEST Find TEST in memocry
M[EM],<address>

PURPOSE: .
Examine and alter memory. The address specifies the
first location to be examined, Upon entering this
command, the address specified and its contents will be
displayed on a new line, At this time, typing any non
hex printing character will move to the next tocation and
display its contents, Typing a 'line feed' will move to
the previous location, A carriage return will exit this
mode., To change the contents of a location, type the new
hex value immediately following the one displayed. After
the value, *type a space, The new value will be entered
and the next memory location will be displayed. it
should be noted that it is only necessary to type the
number of significant digits and only the last two digits
are used, For example, typing a 1 would enter 01, typing
1A2 would enter A2, etc, |If only a space is +typed (no

number) a zero will be entered. Any time a non-hex
character is typed (besides a space), the next location
will be displayed, leaving the current location

unchanged,

EXAMPLES:
MEM, 540 Examine memory at $540
M, 200 Examine location $200

Ve Simulation Control

This group of commands is used to control the program simuliator.
Code in RAM or ROM may be simulated., There are several methods
of initiating simulation., Programs may be executed with 'trace!
on or off, While trace is on, each instruction will be displayed
prior to its execution, along with the current state of the CPU
(all register contents are displayed). Trace provides a very
powerful tool for following program flow, Several keyboard
commands may be invoked during actual program simulation, These
commands allow the speeding up or slowing down of simulation, as
wel | as ways to halt the execution of the program, The PAST
command is a powerful bookkeeper which keeps track of where your

program has been,

L

7SC Debug Package

Glo]
PURPOSE:
Start the program executing at the location currently
pointed to by the program counter. No machine values are
altered with this command.
EXAMPLES:
GO Start the simulation at the PC
G Does the same thing

JIUMP],<address>

PURPOSE:
This command is exactly Iike GO except execution will

begin at the address specified. No machine values are
altered with +this command, except the program counter
which is set to <address>,

EXAMPLES:
JUMP, 322 Start simulation at $322
J,80 Start simulation at $80

PA[STI(,<value>]

PURPOSE:
Display the past several instructions executed by the
simulated program. |f <value> is not specifizd, the past
255 instructions will be printfed (oldest to mcst recent),

otherwise <value> sets the number of instructions to be
displayed. Each instruction Is shown in a disassembled
form, with its address.

EXAMPLES:
PAST Display the past 255 instructions
PAST, 10 Display the past 10 instructions

SIM[,<count>]

PURPOSE:
Simulate the number of instructions specified by <count>

with the trace disabled. |f the count is not specified,

one instruction will be executed. Execution starts at
the current PC. No machine values are altered prior to
simulation, Trace will be reset to its original value

following SIM!'s termination,

EXAMPLES:
SIM Simulate one instruction

SiM, 100 Simulate 100 instructions

TSC Debug Package

ST{ART) ,<address>

PURPQSE:
Start program simulation at the specified address. The
PC will be set to the address specified, the states
counter will be zeroed, and the nest count will be
cleared.
EXAMPLES:
START, 1000 Start simulation at $1000
ST,2A Start simulation at $002A

STEPI ,<count>]

PURPOSE:
This command will cause the debugger to enter the 'step!
mode. The <count> specifies how many instructions should
be executed at a time in this mode and defaults to one
(single step). Upon entering the STEP command, the

system will immediately execute the number of
instructions specified by <count>, then print a register
dump, The execution will begin at the location pointed

to by the P register (program counter), After the
register dump, typing a 'space' will cause execution of
the next <count> instructions and produce another
register dump, Typing a ‘'return' will exit the step
mode. Any other character will be ignored. I+ should be
noted that while In the step mods, breakpoints and
tracing are inoperable,

EXAMPLES:
STEP Enter 'single step! mode
STEP, 10 Execute 10 instructions at a time

T{RACE]=<value>

PURPOSE:
Set the trace depth. If value is set to zero, trace mode
will be disabled, Setting trace tp a non-zero value will

enable tracing up to but not including the subroutine
nest level indicated by <value>, For example, If TRACE=2
is entered, tracing will occur at nest level 0 and 1 but
will be disabled at nest levels of 2 and higher. The
nest level is displayed as 'N' in a REGister dump.

EXAMPLES:
TRACE=255 Enable trace at all levels
T=0 Disable trace mode

26~

TSC Debug Package

TS[IM}[,<count>]

PURPQOSE:
This command is similar to SIM except d1race mode is

enabled (Trace=255) and the registers will be dumped
atter each instruction simulated. The count will default
to 1 if not specified, Trace will bte reset to its
original value following TSIM's termination,

EXAMPLES
TSIM Trace and simulate 1 instruction
TSiM, 20 Trace 20 instructions
'Controtl C!
PURPOSE:

Anytime a program is being simulated, a 'control C' will
cause the execution to halt and the message 'OP HALT AT
XXXX?' to be displayed at the terminal, This means
'Operator Halt'! and the XXXX will be replaced by the
actual address where the program was halted.

"Escape Character!

PURPOSE:
During program tracing, typing an 'escape! will cause the
program to pause at the end of the next distlayed line,
At this time, typing another 'esci.c® wil! enable the
trace to restart, while typing a 'return' will return

control back to the command entry mode.
'Control F!

PURPOSE:
ODur ing program.simulation, the delay value (see DELAY)
may be dynamically changed., FEach time a 'control F! Is
“yped (only during program simulation) the delay value

will be decremented by one, thus making the program run
faster, |f the delay is zero, the fcontrol F!' will be
ignored. It should be noted that for large delays, many
tcontrol F' functions will need to be typed to see the

increase in speed.

'Control St
PURPOSE:
This Is similar to the 'control F' key but makes the
simulation run slower, If the delay is already at its
max imum value, the 'control S' will be ignored.

oD Fm

TSC Debug Package

V. Breakpoints

Breakpoints allow the insertion of check points into a program,
A breakpoint always has an address associzated with it. The
address specifies where in the program the breakpoint action
should occur, These actions range from printing the machine
registers to controlling trace mode. Each breakpoint may also
have a pass counter which determines the amount of time until it
becomes active, or the amount of time it should remain active,
The actions are also dependent on the result of a conditional
expression involving a CPU register or memory location.
Breakpoints are decoded with th following precedence. |If the
address of the current PC matches the address of a breakpoint,
then +the pass count is checked, |If the counter is in a state to
allow continuing, then the condition is checked (if present).
Finally the actions specified for the breakpoint are performed.
The other commands in this group allow clearing breakpoints
(removing them), printing histogram counter values, print
breakpoint location and type, and clear histogram counters.,

B,<actions>@<address>{ ,<modifier><count>] [|F<condition>]
or
Bé<address>|[,<modifier><count>][, IF<condition>]

PURPQOSE:

The B command is wused to set breakpoints., These
breakpoints are nondestructive in thet i.ey do not alter
the <contents of memory at the breakpoint lozation. Two
forms of the command exist, The first 1Is the general
form of the command and allows user definable breakpoint
actions., The <actions> may be any one or combination of
the following:

R...Print register contents
Z...2ero the states counter
Te.oTrace mode on

Ueo.Trace mode off (untrace)
H...Histogram counter
M...Print message

JeoosJump to new address
S...Stop simulation

The above actions are executed in the order shown, A
histogram action causes a counter to be set up such that
each time the instruction at the address specified -.is

executed, the counter will be incremented by one. By
later requesting a HISTogram, all of the counters and
their associated counts will be displayed., The second

form of the B command is a special case of the first. In
this form, no actions are specified, and they default to
S and R (just as if S and R were used in form one), The
<count> part of the syntax Is optional and acts as a pass
counter, The <modifler> shown in the command description
represents either a '>', used to mean 'after'!, and '<!' to

-20_

{...

TSC Debug Package

represent 'before!, A count preceded by '>' will cause
the breakpoint defined on the line to remain inactive
until <count> number of times through that aaddress. A

count preceded by '<' will cause the breakpoint defined
to be active for only the <coun*> number cf times through
that address, at which time it will be automatically

removed. The <count> in either case must not exceed
32,000, The next part of the syntax is the optional
<conditional>, This allows the breakpoint action to be
dependent on some condition. The condition can be the
contents of any machine register being equal or not equal

to a hex value ('=' and '!=' respectively), or the
contents of a specified memory location being zero or not
zero, If a register is used, simply state the register

name, followed by the refational, followed by the hex
value (e.g. A=23, or B!=E2). To use a memory location,
a dollar sign '§' must precede the address. For example,
$100=0 would check if the byte at location hex 100 was
zero, and $A20!=0 would check if the byte at location hex
A20 was not zero, |If a memory address is specified, the
only allowed value to the right of +the relational s
zero, and if any other value is used, it will be ignored.
NOTE: The conditional part of the breakpoint definition
may not be used with H,M, or J action codes. Two of the
breakpoint actions require special syntax, These are the
M (message) and J (jump) types. The M action is used to
print a specified message to the terminal upon execution
of the breakpoint, The J action i1s usea to transfer
control to another address (like a JMP instruztion). Any
breakpoint containing M may not contain J and vice versa.,
A breakpoint containing M should have an ASCI!! string
following the <count> (or following the address [f no
count is specified)., This string is the message which
will be printed on the terminal each time the instruction
Is to be executed. Messages should be kept short (under
5 letters 1f possible). For the J type action, the hex
address of the location of transfer should be provided
after the <count> field, The exampies below will help
clarify the syntax.

EXAMPLES:

Be100 Stop and print registers at $100

B,SR@100 Same as above

B,H@A100 Set hlistogram at $A100

B,ZRe300 >100 Zero states and print registers
after 100 times through $300

B@200, IF A=3C Stop & print registers at $200
only if acc., A = $3C)

B,M@210,suUB8 1 Print message 'SUB i' every time

through location $2190

- contlinued -

TSC Debug Package

8,Je100, 1000 Transfer control to location $1000
when reach instruction at $100
B,TZ@400,<25,1F $20=0
For the first 25 times through
location $400, turn trace on and
zero the states counter, but only
if location $20 is zero.

BP[,<address>[-<address>]]

PURPOSE:

The BP command is used to print the location of
breakpoints and their associated action codes. The two
address specifications are used to define the region of
memory for <checking breakpoints (beginning and ending,
respectively). |f no addresses are specified, all
breakpoints will be listed, If only one address is
given, then only the breakpoint at that address will be
displayed (if one exists). Only the action codes are
listed with each address,

EXAMPLES:
BP, 10-C00 List breakpoints between $10 & $COO
BP List ail breakpoints

CLB[,<address>[-<address>] 1

PURPOSE:
Clear breakpoints in specified memory region. The
addresses define the region of memory. If only one
address is listed then only the breakpoint at that
location will be cleared., |If no addresses are specified,
all breakpoints will be cleared.
EXAMPLES:
CLB Clear all breakpoints
CLB,0~-100 Clear breakpoints between $0 & $100
CLB,22A Clear breakpoint at $22A

CLH[,<address>[-<address>]]

PURPOSE:
Clear histogram counters in the specified memory reglion,
The addresses define the region of memory., I|f only one
address is listed then only the histogram counter at that
location will be cleared. |f no addresses are specified,
all counters will be declared, NOTE: Thls command does
not remove the histogram breakpoints, but clears its
associated counter to zero in preparation ror a new run,

e

CLM

TSC Debug Package

EXAMPLES:
CLH Clear all histogram counters
CLH,25-200 Clear counters between $25 & $200
PURPOSE:

Clear all messages in the breakpoint message table (used
by the M action code, see the B command). This table is
a fixed size and can be filled up. When deleting message
type breakpoints using the CLB command, the associated
space in the message table does not get freed. It is
recommended that whenever all M type breakpoints have
been cleared, also use the CLM command., Do not use this
command if there are any active M type breakpoints,

Their message strings will be destroyed!
EXAMPLES:
CM . Clear all messages

H{IST]I,<address>[-<address>]]

PURPOSE:

Print the histogram counter totals for the section of
memory specified. The addresses define the region of

memory., |f only one address is |I|isted then only the
counter at that location is displayed. |f no addresses
are specified, all counter contents «~iii be displayed,

Each counter is shown preceded by I[ts aidress. The
counter value shows the number of times the instruction
at that address has been executed,

EXAMPLES:
HIST Display all histogram counters
H,0-200 Display counters between 0 & $200

RT[,<address>)

PURPOSE:

Start real time program execution (not simulated) at the
current PC locatlon, Program executlion will halt at the
<address> specifled, This 1Is similar to the standard
breakpoint most users are famillar with In that memory Is
actually altered at the address specifled (with a JMP
instruction)., Entering RT wlthout an address wlll clear
any real time breakpoint which may have been previously
entered, This type of breakpoint and program executlon Is
not recommended since no protectlon or checking s
performed. When the program reaches thz break address
specifled, the breakpoint Is automatically cleared and
the original code restored In memory, ROM may not be
breakpointed with this command,

TSC Debug Package

EXAMPLES:
RT,600 Start at PC, end at $600
RT Clear an existing RT breakpoint

Vi. Memory Protection

The memory protection commands are a very powerful feature of the
program debugger. The PROT command allows selected areas of
memory to be write, execute, memory, or simulate protected,

Write protected memory will cause a trap on any attempt to write
to it. Execute protect will not allow opcodes to be fetched,
Memory protect will not permit any type of reference; read,

write, or execute, Simulate protect is used to protect sections
of code which should not be simulated (executed in real time).
It is important that only code called as a subroutine from
non-simulate protected memory be contained 1in the area(s) of
memory designated as simulate protected. An example would be to
simulate protect the section of memory where a DOS resides. All
subroutine calls to the DOS would then be executed in real time.
Code which 1Is simulate protected and does not follow this
convention will usually cause the CPU to take over the execution
of the program resulting in a loss of control. NOTE: To protect
the memory around the machine stack (upper and lower bounds), use
the 'memory'! protection, This is the only type checked on stack
references. Oiher commands in this group allow examination of
protected memory regions or bounds, as well as the clearing of
protection typecs, :

BOTUNDS][,<types>]

PURPOSE:
Display the bounds of protected memory, Each <type>
specified will list all regions of memory protected by

that type. <type> may be W, M, X, or S for write,
memory, execute, and simulate, respectively, Multiple
*ypes may be displayed by listing the types on the
command |ine separated by a comma or space, |f no type

is specified, all types of protection will be listed,
EXAMPLES:
BOUNDS Display all memory protection
BO,M, X Display memory and execute

protection bounds

& e

TSC Debug Package

CLP{ ,<type>]

PURPOSE:
Clear all protected regions for a specified type of
protection, The <type> is specified by the same letters
described in BOUNDS. Only one type may be listed per

command line, If type is not specified, all protection
will be cleared,
EXAMPLES:
CLP Clear all protection
CLP, X Clear execute protection

P{ROT],<address>{-<address>],<type>

PURPOSE:

The PROT command Is used to assign protection to a region
of memory, The two <address> specifiers designate the
beginning and ending addresses of the selected region.
If only one address is specified, only the byte at that
location will be protected. The <type> disignator may
either be M, X, W, or S for memory, execute, write, and
simulate protection respectively, Only one type may
appear with each address range., Multiple protection may
be performed on one line by separating the range-type
specifiers by a comma or a space,

EXAMPLES:
PROT,0-100,M Memory prot 0-5100
P,100,W,A100-A600,5
Write prot $100 and simulate
protect $A100-A600

VIil., Executlon Traps

Execution traps allow program stopping on certaln general
conditions, Several traps are always enabled, These Include;

trap on Illegal opcode and trap on RTS [f nest count=0, The user
may enable and disable several other traps. These traps are for
interrupt type instructions, transfer of address type

Instructions, trap on a selected subroutine depth (nest count),
an Instruction count timeout, and a general 'stop' address,

INST=<count>
PURPOSE:
Set the Instruction count timer to the value of count,
It set to zero, this trap wil] be dlisabled, This timer

Is used to count the number of simulated Instructions.
Each time this counter reaches zero, the program will|
halt and print 'IC TIMEOUT AT XXXX', where XXXX Is the
address where the program stopped, and the counter wlll

3%

TSC Debug Package

be reset to the value it started at (the value specified
by <count>),

EXAMPLES:
INST=400 Set counter to 400
INST=0 Disable the intruction counter

ITIRAP]=ON or OFF

PURPOSE:
Turning the ITRAP on will cause the simulator to treat
interrupt +type instructions similar to Illegal opcodes,
Any time a RTI, SWI, or WAl instruction is found, the
message 'l TRAP AT XXXX'! will be displayed. The address
of the Instruction will be printed in place of the XXXX
shown,
EXAMPLES:
ITRAP=0N Enable the interrupt trap
I T=0FF Turn off the trap

NI[EST)=<value>

PURPOSE:
Set the nest trap at the level specified by <value>, The
simulator will +trap execution if a subroutine call
instruction is found which will cause the nest leve!l to
equal or exceed that set by NEST. Setting the <value> to
zero will disable this trap.
EXAMPLES:)
NEST=6 Set nest trap to level 6
N=0 Disable nest trap

STOP=<address>

PURPOQSE:
The STOP trap is a general 'stop at address X' trap. It

is useful for trapping returns to monitor type programs
or operating systems, The ftrap Is set at the address

specified,

EXAMPLES:
STOP=100 Set stop trap at $100
STOP=EODO Set trap at MIKBUG entry

-34a

Ve w0 e e g

XFR=0ON or OFF

PURPQOSE:
Enabling the XFR trap will cause a trap each time a

transfer of address type instruction is found (JMP, BRA,
or BXX)., This is wuseful for following major program
flow. Typing a 'G' command after this trap will cause the
program to start executing again.

EXAMPLES:
XFR=0N Enable the transfer trap
XFR=0FF Turn the trap off

Vill. Interrupt Control

.Both NM! and IRQ type interrupts may be simulated. Two modes of
operation are possible. The first is automatic, periodic
interrupt generation, This mode allows interrupts to be
generated every N instructions, The second allows random
interrupt generation from the keyboard. When these keys are
typed during program simulation, the appropriate interrupt will
be issued.

IRQ=<count>

PURPOSE:
Cause an IRQ type interrupt to be generated every <count>
instructions, If count is set to «ro, IRQ interrupts

will be shut off.

EXAMPLES:
1IRQ=5000 Generate IRQ every 5000 instructions
IRQ=0 Turn off automatic IRQs

NM | =<count>

PURPOSE:
Cause an NMI| type interrupt to be generated every <count>
instructions, | <count> is zero, automatic NMI
interrupts will be turned off.
EXAMPLES:
NM =300 Generate NMI every 300 instructions
NM1I=0 Turn off automatic NMis

-35-

TSC Debug Package

'Control I
PURPOSE :

Typing a 'control I' during program simulation will cause
an |RQ type interrupt to be generated.

'Contro! Nt
PURPOSE:

Typing a 'centrol N' during program simulation will cause
an NM| type interrupt to be generated.

-36-

Command Summary

l. General System Control

ClALC]
DEL[AY])=<value>
DEP[TH]

EIXIT]

FILAG) [=<address>]
IND=ON or OFF
MA[CH]

MOIDE]=0 or 1
R(EG]

RESIET]

RET
S[ETl,<register list>
STACK[,<value>]
STATIES]

TRAIL

X,<0., s. command>

11« Memory Commands

AlSM]],<address>]|
DIIS],<start address>,<stop address>
DUIMP],<address>

FILIL),<start address>,<stop address>|[,<byte>]
FIN{D],<start address>,<stop address>,<string>

M(EM],<address>

Ity Simulation Control

GlO]
J{UMP],<address>
PA[STI{,<value>]
SIM{[,<count>]
ST[ART],<address>
STEP[,<count>]
TIRACE}=<value>
TS(IM][,<count>]

= T

TSC Debug Package

TSC Debug Package

i1Ve Breakpoints

B,<action>@<address>[,<modifier><count>][, |IF<condition>]
B@<address>|[,<modifier><count>][,F<condition>]
BP[,<address>[-<address>]|]

CLB[,<address>[-<address>]]

CLH[,<address>[-<address>]]

CLM

H{IST]!l,<address>[-<address>]]

RT(,<address>])

V. Memory Protection

BO[OUNDS 1 { ,<types>]
CLPI ,<type>]
P[ROT],<address>[-<address>],<type>

VI. Execution Traps

INST=<count>
ITIRAP]=0ON or OFF
N[EST]=<val ue>
STOP=<address>
XFR=0ON or OFF

vil. Interrupt Control

IRQ=<count>
NM | =<count>

-

TSC Debug Package

Message Descriptions

The following is a list of all Debug generated messages and
their respective meanings.,

WHAT? = This is the general error message reported when an
invalid input command has been entered.

n"STOP" AT = The address set by the STOP trap command has been
reached.

IC TIMEOUT AT = The number of Instructions specified by the INST
trap command have been executed,

ILLEGAL OPCODE AT = The instruction pointed to by the PC is an
illegal opcode,

| TRAP AT = An SW!, RTIl, or WAl instruction has been encountered
and the |TRAP command has been used to enable the interrupt
trap.

LAST XFR FROM = Displayed by request using the TRAIL command.
The address gives the location of the last ftfransfer of
address type instruction which was executed.

SYNTAX ERROR = The command just entered does not follow the
syntax rules ¢-~ that command,

EP TRAP AT = An tExecution Protect trap at the specified location
resulting trcii an attempt to execute code in execute
protected memory.

WP TRAP AT = A Write Protect trap at the specified location
resulting from an attempt to write into write protected
memory .

EX - MP TRAP AT = An attempt to execute code residing in memory
protected memory has been detected at the specified address.

REF - MP TRAP AT = An attempt to reference (read or write) a byte
in memory protected memory has been detected at the
specified address.

SP TRAP AT = A Stack Pointer reference (PSH, JSR, etc.) was
attempted in a section of memory which is memory protected.

TABLE OVERFLOW = The tast command entered caused an internal
table to overflow, The command dis not get executed.

NC TRAP AT = A Nest Count trap occurred as a result of the nest
level reaching the level specified in a NEST command.

-39-

TSC Debug Package

RTS IN LEVEL O AT = An RTS instruction was encountered while the
nest level was ‘0 (no previous call to subroutine had been

executed) .,

NEST LEVEL IS O = There is no return address on the stack so the
RET command can not display an address.

XFR TRAP AT = A transfer of address type instruction has been
encounterd with the transfer trap enabled (from XFR=0N).

MON XFR AT = The prcgram being simulated tried to pass control to
the monitor address which is used by the EXIT command.

OP HALT AT = An operator halt signal (contro!l C <character) was
detected by the simulator.,

sl B

TSC Debug Package
Getting Debug Running

The Debug Package !oads from address $3C00 through $5FFF,
The debugger may be executed by typing:

+++DEBUG

A "*%*1 prompt should appear. The program is started through |Its
cold start entry point (location $4100) which initializes all
system tables, ciears all registers, and clears out breakpoints,
If it 1Is necessary to re-enter the debugger after an EXIT
command, the program should be entered at location $4103, the
warm start entry point, No clearing of values or tables is
performed at this entry. Once in the Debug Package, files may be
loaded from the disk by using the X command. As an example, to
load the file TEST.BIN, type the following:

**X,GET,TEST

If TEST is found, it wil! be loaded into memory. It is important
that the program being tested and the Debug Package do not
overlap in memory. |f they do, consult +the section of this
manual on relocation., When finished with the debugger, the EXIT
command will refturn vou back to FLEX™,

-41=-

TSC Debug Package
Example Use

The following 1is an example debug session. It is assumed
that the Debug Package is running and the program being tested Is
resident in memory. The sample program is shown first in Its
source listing forn, Following is the sample debug operation,

l. Samplie Program Source Listing

*

* FIND THE MAX & MIN OF DATA LIST

*

0100 ORG $0100
* STORAGE LOCATIONS

0100 LARGE RMB 1 LARGEST VALUE
0101 SHALL RMB 1 SMALLEST VALUE
0200 ORG $0200

* PROGRAM STARTS HERE
0200 CE 02 26 M NMAX LDX #DATA POINT TO DATA STRING

0203 7F 01 00 CLR LARGE PRESET MAX

0206 86 FF LDA A #$FF ALSO

0208 B7 01 01 STA A SMALL PRESET MINIMUM

0208 A6 00 Loop LCA A 0,X GET DATA ITEM

0200 Bl 01 0O CMP A LARGE ITEM > LARGE ?

0210 24 03 BCC CONT2

0212 B7 01 00 STA A LARGE UPDATE LARGE

0215 B1 01 01 CONT2 CMP A SMALL ITEM < SMALL ?

0218 24 03 BCC CONT3

021A B7 01 00 STA A LARGE UPDATE SMALL

021D 08 CONT3 INX MOVE TO NEXT ITEM

021E 8C 02 2t CPX #DATEND END OF LIST?

0221 26 ES8 BNE LOoP IF NOT, REPEAT

0223 7t EO DO JMP MON RETURN TO MONITOR
* DATA LIST

0226 02 DATA FCB 2,54,76,32,12,87,55,6

022t DATEND EQU i

E0DO MON EQU $EODO MONITOR EQUATE

END

-l % -

PPIE

e R P IR TR R ke W T T

“Vash hme

TSC Debug Package

Il. Sample Debug Session

0200 LDX #$0226
0203 CLR $0100
0206 LDA A #SFF
0208 STA A $0101
020B LDA A 0,X
020D CMP A $0100

=*DIS, 200,223)

0210 BCC $0215 DisAssEmMmBLE MACHWE CodE FRomN
ggig g;’; ﬁ igigg B2cn 7c 8223. SEE 7HE Soukck
0218 BCC $021D FIST18C FOR ComPAL ISoA.

021A STA A $0100

021D INX

021E CPX #3022
0221 BNE $0208
0223 JMP $EODO

**pROT,200,225,W WITE PloTEcr THE PlotRAm AREA
=*BOUNDS , W

\RITE PROTECTION DissLayY THE POATELTICN BoLwalDds .

0200-0225
**R LisPiny THE REG/STELS

C=00 A=00 B=00 X=0000 S=A07F P=C000 M=00 0000 ACC A $B9B9
**START,200 57441 2lcelAm AT AZ2co

MON XFR AT EODO = sicn 70l TamzFEC TIRAY .

**M,100 _

0100 06 . Ecamme d1coé et (LACSE § Snacs)

0101 FF - RESIT 15 AT R2L-T !

TSETPR200 se7 Pe € bxamice REGSTERS

C=C5 A=06 B=00 X=022E S=AO7F P=0200 N=00 0200 LDX #$0226

**IND=ON SET ILD é FLAL, WMo EEsoLT

**FLAG=100 ’ g

'*R A

C=C5 A=06 B=00 X=022E S=AD7F P=0200 N=00 1=B9 F=06FF 0200 LDX #$0226
**TSIM, 10 TEACE 10 TUsSTRICT/IONS

C=Cl A=06 B=00 X=0226 S=AQ7F P=0203 N=00 [=02 F=06FF 0203 CLR $0100
C=C4 A=06 B=00 X=0226 S=AQ7F P=0206 N=00 I=02 F=00FF 0206 LDA A #$FF
C=C8 A=FF B=00 X=0226 S=AQ7F P=0208 N=00 I=02 F=0OFF 0208 STA A $0101
C=C8 A=FF B=00 X=0226 S=AQ7F P=0208 N=00 I=02 F=0OFF 0208 LDA A 0,X
C=C0 A=02 B=00 X=0226 S=AQ7F P=020D N=00 I=02 F=0OFF 020D CMP A $0100
C=CO A=02 B=00 X=0226 S=AQ7F P=0210 N=00 I=02 F=00FF 0210 BCC $0215
C=C0 A=02 B=00 X=0226 S=A07F P=0215 N=00 =02 F=00FF 0215 CMP A £0101
C=Cl A=02 B=00 X=0226 S=AO7F P=0218 N=00 I=02 F=00FF 0218 BCC $021D
C=C1 A=02 B=00 X=0226 S=AQ7F P=021A N=00 [=02 F=00FF 021A STA A $0100
C=Cl A=02 B=00 X=0226 S=A07F P=021D N=00 [=02 F=02FF 021D INX

*i \

et SET "SR’ BetAkPodT AT 3218

0218 - SR Dstea? Ail BLEAkPorTe

-44-

it

O B S Lt

TSC Debug Package

STAAT PROCRAM AT Pl

*AG HiT 3REAKPOInT

¢=C1 A=36 B=00 X=0227 S=AQ7F P=0218 N=00 I1=36 F=02FF 0218 BCC $021D

**TSIM - TRACE | 1W8STRUCTION,

C=C1 A=36 B=00 X=0227 S=A07F P=021A N=00 I=36 F=02FF 021A STA A $0100
**ASM,21A Bt e

838 STAA $101 Jse Asm 7o £1X [Sheoid be s74 4 4101 !
**CLB

CLEAR ALL BEEAKANLTS.

**START 200 - Runw PenérAm AGHIL

MON XFR AT EODO

*+M 100 o

0100 00 . ExAminE JAREE & SMALL

0101 02 SmaLL 1s o | LARLE s ST V=
T Ar B /. iried ok als .

*+START, 200 EWAALE TRACE To HC § Ao,

C=C0 A=06 B=00 X=0226 S=A07F P=0203 N=00 I=02 F=0002 0203 CLR $0100
C=C4 A=06 B=00 X=0226 S=A07F P=0206 N=00 I=02 F=0002 0206 LDA A #3$FF
C=C8 A=FF B=00 X=0226 S=A07F P=0208 N=00 I=02 F=0002 0208 STA A 30101
A=FF B=00 X=0226 S=A07F P=020B N=00 I=02 F=00FF 0208 LDA A 0,X
=02 B=00 X=0226 S=AO7F P=020D N=00 =02 F=00FF 0200 CMP A $0100
=02 B=00 X=0226 $S=A07F P=0210 N=00 I=02 F=00FF 0210 BCC $0215
B=00 X=0226 S=A07F P=0215 N=00 =02 F=00FF 0215 CMP A $0101
B=00 X=0226 >=AU7F P=0218 N=00 1=02 F=00FF 0218 BCC $021D
B=00 X=0226 S=A07F P=021A N=00 I=02 F=00FF 021A STA A $0101
B=00 X=0225 S=A07F P=021D N=00 I=02 F=0002 021D INX

B=00 X=0227 S=A07F P=021£ N=00 I=36 F=0002 021E CPX #$022E
B=00 X=0227 S=A07F P=0221 N=00 I=36 F=0002 0221 BNE $020B
B=00 X=0227 S=A07F P=020B N=00 I=36 F=0002 0208 LDA A 0,X
B=00 X=0227 S=AQ7F P=020D N=00 I=36 F=0002 020D CMP A 30100
B=00 X=0227 S=A07F P=0210 N=00 1=36 F=0002 0210 BCC $0215
B=00 X=0227 S=AQ7F P=0215 N=00 =36 F=0002 0215 CMP A SOljf;/;J

o
N

B=00 X=0227 S=A07F P=0218 N=00 I=36 F=0002 0218 BCC $021D
B=00 X=0227 S=A07F P=021D N=00 I=36 F=0002 021D INX

wWownnn nun u uwnun
WWWWWOOOOOO
AT YNNI N NN

DIS 208 210 SHOULD NOT HAVE BRAMKHE D

0208 LDA A 0,X

' /
0200 CMP A $0100 _—~— SwouL> € . /
0210 BCC $0215 > £ BLS swsr2uvenod !

**ASM 210
U210 BLS $215 Us& ASM 70 Crelfcr codl. .

212

= *T=() P d (;/)

**START 200 ©7 TRAC ,

MON XFR AT EODO €70 o7t) D Kip) P206 @AM
24 100

0100 57 . AuSwtls ALL oco coecceT !

101 02

-45=-

TSC Debug Package

=8 Hezgg DoFILE THE PEOCCAM wiTd HisToscam
,*g :ggls BOENk PoindTs A7 8200, 208, 215, £2/D.
=*g HE21D

'*BP
0200 DISPrAY ALl BREAKAOMITS .
0208
0215
021D

*+START 200 2uw FRCRAN — 'sTART | cLénls

oK XFR AT EODO THE STATES Coowrh L.

xITXX

0200 - 0
0208 - 8 His70ePAM Peiwieur
0215 - 8
021D - 8

**STATES
STATES = 00000300 FLOCRRM RECINEED 300 AAcHiLE CFetfs .
**D[S 200 223

0200 LDX #$0225
0203 CLR $0100
0206 LDA A #SFF
0208 STA A %0101
0208 LDA A 0,X
p]
Jet SHE A JoL Dishscim bl Fudi. FPOERAM.,
0212 STA A $0100
0215 CMP A $0101
0218 BCC $021D
021A STA A 30101
021D INX
021E CPX #3022E
0221 BNE $0208
0223 JMP S$EODO

**EXIT EXiT TrE 2ERLER.
$

TSC Debug Package
Adapting to Your System

The following descriptions may prove helpful In adapting
this program to non-standard systems. All 1/0 and stack
references are described below.

l« |/0 References

GETCHR at $4106. This jump vector references the standard Iinput
character routine in the SWTBUG monitor ROM., Any input routine
may be used as long as it returns the ASCI| character in the A
accumulator with +the parity removed, and preserves the B and X
registers,

PUTCHR at $4109. This jump vector references the standard output
character routine in the SWTBUG monitor ROM. Any output routine
may be wused as long as it outputs the character from the A
accumulator, and preserves the B and X registers,

WARMS at $410C., This jump vector references the starting entry
address of the SWTBUG monitor ROM. This may be changed to the
starting address of your own monitor. This is the address used
by the EXIT command.

Il. 1/0 Related Storage

ACIA at $410F, This FDB formed address is a pointer to the ACIA
base address used by the basic input and output routines, Change
as needed. NOTE: The Debug Package requires an ACIA type serial
interface to function correctly.

BSP at $4111, This byte contains the character which is decoded
as the backspace character (currently a Control! H, $08). Change
as desired,

DEL at %4112, This byte contains the character which is decoded
as the line cancel <character (currently a Control X, $18).
Change as desired.

BSE at $4113, This byte contains the character which will be
echoed affter the receipt of a backspace character (currently a
Control H, $08). |If this character is set to $08, a space will
be output preceding the backspace echo character., Setting this
byte to zero wil! inhibit the backspace echo character,

ESC at $4114, Tais byte contains the character which is decoded

as the Escape character (currently an ASCI| Escape, $18). This
may be changed as desired.

], T

TSC Debug Package

ll1le Stack Pointer References

Load Stack at $411B and $4195, These two locations contain LDS
instructions and set the stack to $3FFF. They may be changed as

desired,

Ve The X Command

The X command calls a section of code at location $5589. This is
implemented for the FLEX disk operating system and calls FLEX +to
perform a specified command, It you are wusing a different
operating system, you may substitute your own code to perform the
equivalent, The code may reside from $5589 through $55A2.

V. System Tables

The Debug Package uses several system tables which reside from
$3C00 to $3F9F, They are named and sized as follows:

BPTAB RMB 256 Allows 32 breakpoints

STRTPC RMB 512 " 256 past instructions
SMTAB RMB 32 " 8 sim prot fields
EXTAB RMB 32 " 8 ex prot fields
WPTAB RMB 22 " 8 write prot fields
MTAB RMB 32 1 8 mem prot fields
MSGTAB RME 32 L approx 5 messages

These tables may be moved and expanded to allow more breakpoints
and protection fields as desired, Complete details will not be
given here, as this is a job for the more expsrienced programmer,

Vi. Saving the Altered Program

After modifications have been mace to the program, it may be
saved on mass storage. The program should be saved from $4100
through $5FFF., The starting or transfer address is $4100.

S A S EVEPIAG T R i A Bk

TSC Debug Package

Relocating the Debug Package

The Debug Package may be relocated in memory by wusing the
TSC 6800 Relocator (part number SL68-28). The Debug Package as
sold resides from $3C00 to $5FFF. |t may be moved easily to any
lower memory location and to any location higher than $5C00. The
example below shows relocation to $5C00 which moves the cold
start entry address to $6100 (from $4100). The relocated version
will reside from $5C00 to $7FFF, If It is necessary to move the
program to an area between $3C00 and $5C00, two relocations must
be performed, one moving it fo a lower location, and then up *to
the desired position, This 1is necessary because of program
overlap. NOTE: The Debug Package must always start on a page
boundary,

Relocation Example

* TSC 6800 RELOCATOR *

PRESENT PROGRAM:

BEGIN ADDRESS? 4100
END ADDRESS? 5FFF

MOVE TO? 6100

F1X REFERENCES? Y

LOAD FROM TAPE? N

DATA BLOCKS? Y

BEGi ADDRESS? 410F
END ADCREZCZS? 411A

BEGIN ADDRESS? 57A8
END ADDRESS? S5FFF

BEGIN ADDRESS? FFFF
ALTER RANGE? Y
BEGIN ADDRESS? 3B0O
END ADDRESS? 5FFF
FIX FDB'S? Y
ADDRESS? 57AC
ADDRESS? 57BO
" 5789
" 578E
" 57C5
" 57C8
n 57D1
" 5707
v 5700
" 573
" 57EB
" 57F3
" STFA
" 5801
" 5808
" 580F o
" 5816

-49-

TSC Debug Package

" 581B
" 5822
" 5828
" 582F
" 5835
" 583D
" 5844
" 584A
" 5851
" 5858
" 585F
" 5865
" 586C
" 5873
" 5879
" 5881
" 5887
* 5e8C
L 5892
" 5898
" 58A0
" 58A8
" 5881
" 5888
" 588F
u 58C7
" 58CF
" S5ouo
" 580A
" 58e0
" 58e8
" 58ED
" 58EF
] 58[—']
w 58F3
" 58F5
" 58F7
" S8F9
" 58FB
" 58FD
" SGFF
" 5901
" 5903
I 5905
" 5909
" 590D
" 5911
" 5915
" 5919
" 591D

ADDRESS? 5921
ADDCRESS? FFFF

RELOCATICON COMPLETE !!!

=50~

