
-
,:

....

TSC
6800

·-·-----· _ __ Debug
Package

COPYRIGHT c, 1978 BY
Tt·c·hnical Syst<'ms Consultants, Inc.

P.O. Box 2574
\\'('sl l.afayc·11c·, Indiana '17906

:\II Ri.1{11h R1·wt\t'tl

(

Table of Contents

1. Debug Tutorial 1
I. Introduction 1
I I. The Simulated Computer
I I I. Whats in Memory? 3
IV. Simulating the Program 6
v. Breakpointing the Program 7
VI. Advanced Breakpoints 9
VI I. Protect Your Memory 12
VI I I. Trapping Those Bugs 13
IX. And There is Stl I I More! 14

2. Command Descriptions 17
I. Introduction 17
I I. Genera I System Con tro I 17
I I I. Memory Commands 22
IV. Simulation Control 24
v. Breakpoints 28
VI. Memory Protection 32
VI I. Execution Traps 33
VI 11. Interrupt Contra I 35

3. Command Summary 37

4. Message Descriptions 39

5. Getting Debug Running 41

6. Example Use 43
I. Sample Program Source 43
I I. Samp I e Debug Sess I on 44

7. Adapting to Your System 47
I. 1/0 References 47
I I. 1/0 Related Storage 47
I I I. Stack Po Inter References 48
IV. The X Command 48
v. System Tables 48
VI. Saving the Altered Program 48

8. Relocating the Debug Package 49

9. Debug Package Source Listing 51

-111-

l
/

Preface

The TSC Debug Package is a very powerful tool for assembler
language program debugging. It offers the power and flexibility
of an expensive hardware emulator at only a very smal I fraction
of the cost! Used with care, this package wi I I save many hours
when debugging programs.

It is recommended that the entire user's manual be read
before attempting any serious debugging. The 'Tutorial' is
written to provide a fairly complete introduction to the Debug
Package, while the 'Command Descriptions' is a very complete and
concise description of al I Debug features and commands. Consult
'Getting Debug Running' for details on how to get the program
started. Working through the example given in 'Example Use' ls a
good place to start once the manual has been read.

-iv-

_)

(

Debug Tutorial

I. Introduction

Program debugging is usually thought of as work. It should
be thought of as an art. There is no reason for a lot of crying
while attempting to make a new program do what was intended.
This is only true, however, if the program was designed with some
forethought and planning. Computer programs are executed in a
logical, step by step, fashion. This is the approach both
program writing AND debugging should take. So many times a
programmer wi I I spend hundreds of hours, carefully planning the
flow of a new program but spend only a few minutes thought on a
debugging approach. The debugging Is usually attempted in some
hap hazard, keep your fingers crossed, method. Sometimes this
works and sometimes it does not, but in most cases, valuable time
Is wasted.

By using a debugging tool and by incorporating some logical
thinking, program debugging can become very straight forward and
sometimes even fun! The purpose of this tutorial Is to introduce
the reader to the capabilities of the TSC Debug Package and offer
some suggestions on how to tackle those program bugs. The
fol lowing sections give a more detailed description of Its
capabi I itles.

I I. The Simulated Computer

The TSC Debug Package Is more than the name may imply. It
Is In fact a complete 6800 simulator. A computer slm~lator Is a
program which when run, behaves exactly I Ike the computer It Is
simulating. Given 6800 machine language, the simulator wl I I
perform the Instructions exactly I Ike the 6800 CPU. There are
two major differences, one being an advantage, the second being a
disadvantage. First for the good news. The simulator has the
abl I ity to keep close account of al I Internal actions. For
example, any I I legal opcodes are quickly detected and reported.
Such things as stack overflow and underflow are also easily
checked. Each byte of memory may have an assigned protection type
such as write protection. General conditions may also be spotted
such as the occurence of a transfer of address type Instruction.
Overal I, the slmulator can keep close watch over the executing
program and detect any pecul larltles.

This al I sounds great, but as stated before, there Is a
disadvantage In the simulator, namely speed. The slmulated
program runs somewhere between 100 and 300 times slower than a
real . 6800 CPU. This means that real time dependent code may not
be simulated. This Is not a serious drawback since less than one
percent of al I computer programs are real time dependent.

,

TSC Debug Package

The 6800 simulator incorporated in the TSC Debug Package
supports al I of the 6800 instructions. Al I of the user registers
are also provided CA, B, CC, X, PC, and SP). To examine the
contents of these registers it is only necessary to type R
fol lowed by a carriage return. This is assuming the Debug
Package is ready to work indicated by the two asterisk prompt
(1 ** 1). Typing the R command wi I I cause the debugger to display a
I ine containing al I register names fol lowed by their contents in
hex. At the end of the line is the instruction currently being
pointed to by the program counter (P register) and it is
displayed in disassembled form (standard Motorola mnemonics). A
nonstandard register is also displayed, the N register. This
register's value represents the subroutine nest depth. Each time
a subroutine is ca I I ed, its va I ue w i I I be incremented, and each
time a return from subroutine is executed, its value wil I be
decremented. The contents of any of the displayed registers may
also be set by using the SET command. For example:

**SET,P=100,A=F3

wi I I set the value of the PC to hex 100 and the value of the A
register to hex F3. There are several other registers and states
of the simulated machine. These can be viewed by typing MACH.
The items displayed with this command are primarily the states of
various traps which wi 11 be described a I ittle later.

There are several other internal machine variables which may
be easily examined. One of these is the contents of the stack.
Typing STACK wl 11 display the top several bytes i ihe !:tack. If
more stack contents are desired, simply type the number of items
desired after the command.

**STACK,15

This wi I I display the top 15 bytes of the stack. Note that a
comma was used as a separator in the command line. It wi I I be
used in al I examples in this manual but a space Is also
acceptable and sometimes easier to type. Another command which
references the stack is the RET command. This wl I I print the top
two bytes of the stack as an address and represents the return
address if currently In a subroutine.

The simulated machine always keeps track of where It has
been and how much time was spent there. The machine 'states
counter' is used totally the total number of machine states or
cycles used so far by the executing program. Each 6800
instruction requires a certain number of machine cycles to
execute. If the CPU is running at t megahertz, each machine state
is equivalent to 1 microsecond. The machine states counter Is
capable of counting up to 99,999,999 cycles, or roughly 99.99
seconds of actual program execution time. This counter Is useful
for determining the exact execution time of a routine.

-2-

.,

)

(

I
!

.)

TSC Debug Package

The TRAIL command wil I print the address of the last
transfer type instruction. A transfer of address in~truction is
one which causes the CPU to change its normal course of
instruction execution. Normally instructions are execu~ed in a
sequential fashion, stepping through memory sequentially. A JMP
instruction for example wil I cause the next in~truction to be
fetched from the address specified in the instruction, rather
than from the next sequential address. In effect, we have a
transfer of address. The TRAIL command wi I I print the location
of the last transfer type instruction that was executed. This is
very handy in determining what caused a program to end up In
memory where it did.

The simulated machine is capable of running in two different
modes. These are referenced as mode 1 and mode O. In mode J
(the default mode), al I checking and bookkeeping is performed.
In mode O, several of the features are turned off in order to
improve the speed performance of the simulator. It is
recommended that mode 1 always be used since it does the most
work for you and wil I catch more errors.

I I I. Whats in Memory?

Now that the simulated CPU has been described we need to
look at memory. The TSC Debug Package offer~ 5everal ways of
examining the contents of memory locations, as wel I as altering
them. The simplest form is the MEM command, or M for short.
Typing M fol lowed by an address wi I I display rnaT byte of memory.
For examp I e:

**M, 100
100 CE

shows that memory location hex 100 contains a hex CE. At this
time several choices are at hand, If all you wanted to do was
check the contents of location 100, simply type a carriage return
and the debug prompt wi I I be issued. If you want to change the
contents of 100, simply type the new value fol lowed by a 'space'.
The 'space' tel Is the debugger that the new value Is ready to be
entered. It Is only necessary to type the significant digits of
the new value to be entered. For example, If 6 was to be
entered, simply type 6 followed by a space. It should be noted
that only the last two digits wl I I be used so.If 1C23A' Is typed,
1 3A 1 wl 11 get entered. If zero Is to be entered, simply type a
space. After the new value Is entered, the next sequential memory
location wl I I be displayed. Any time a non hex chcracter Is
typed (with the exception of space), one of two actions wit I
occur. First If the character Is a I I lne feed', the previous
location wll I be displayed, with the currer.t location left
unchanged. If the character Is any other non hex character, the
next location wl 11 be di splayed leaving the current unchanged.
An example wi I I clarify the M command's use.

-3-

!,

(

TSC Debug Package

**M,100
0100 CE •
0101 3A 46
0102 40

Location $100 was left unaltered, while location $101 was changed
from a $3A to $46. Finally this mode was exitted on the next
I ine by typing a return.

Many times while program debugging it is desirable to
examine a large block of memory. The DUMP command is used tor
exactly that. This command wi 11 display 16 I ines of data, 16
bytes per I ine, tor a specified memory region. Each byte Is
displayed as a hex value as well as its ASCII equivalent. All
control characters (those bytes having a value less than 20 hex)
are displayed as an underscore character 1 '• To display 256 _
bytes starting at memory location $1000,-the fol lowing command
should be typed:

**DUMP,1000

At the end of the dumped block the program wil I stop and wait tor
a character to be typed. Typing an 1 F 1 wil I move forward In
memory, printing the next sequential 256 bytes. In this example,
typing an F would display the block starting at $1100. It is
also possible to display the previous block of 256 bytes by
typing a 1 8 1 , tor backward movement. A carriag~ return wll I
cause the debugger to regain control and the nrompt wi I I be
reissued. Any other characters wi I I be ignored. It should be
noted that any time the debugge~ is displaying da1a on the
terminal, the display may be stopped at the ~nd of the I ine by
typing an 'escape' character. Once stopped, another 1 escape 1

wi 11 resume the display, while a 'return' wi 11 give control back
to the debugger. This is a very convenient feature.

Another useful memory interogation command is the FIND
command which is used to find a specific string of bytes or
characters In a selected block of memory. As an example, suppose
there was a jump to subroutine instruction somewhere in your
program. It is known that the code is 80 34 00, and that It Is
somewhere between locations $100 and $300. The fol lowing command
line will find it.

**FIND,100,300,80,34,00

This tel Is the debugger to look between memory lccatlons hex 100
and 300 tor the hex string 1803400 1 • Al I memory locations which
contain this string wi 11 be displayed on the terminal. The
length of the string searched is limited by the m?.ximum command
I ine length which is 80 characters. It Is ~lso possible to
search for an ASCII string. Suppose it was necessary to find the
character string 'ERROR 3 1 in memory. It should be somewhere
between locations $200 and $1000. This can be done in the
to I I owing way:

-4-

_)

(

TSC Debug Package

**FIND,200,1000,"ERROR 3

The double quote character tel Is the find command that the
fol lowing characters are to be considered ASCII characters
instead of hex. Otherwise the command works exactly as described
above.

So far the memory commands described have been oriented
toward hex and ASCII values. Many times during debugging it is
necessary to decode these hex values into assembler language
instructions. The DIS command does exactly that! This command is
a complete program disassembler which al lows the user to examine ·
the contents of memory in a higher level form. Each memory
location in a specified block wi 11 be printed as address,
fol lowed by the opcode mnemonic and addressing mode. Standard
Motorola mnemonics and addressing mode designators are used. ro ­
use the disassembler, simply type the command name (DIS),
fol lowed by two address boundaries. For example, to cisassemble
the memory range between locations 100 and 108, type the
fol lowing.

**DIS,100, 108
0100 LDAA $32
0102 STAA $0240
0105 BNE $0121
0107 DECA
0108 STAA 2,X

Remember that at any time the display is being prcduced, the
'escape' key may be typed to temporarily halt the action. The
DIS command is a very useful and powerful command.

Now that we can examine memory In a higher level form it
would be nice if we could alter it in the same way, that is,
using assembler language mnemonics. The ASM command does exactly
that! It acts as a I ine at a time assembler, al lowing standard
mnemonics and addressing modes to be typed, while the
corresponding hex values are automatically inserted Into memory.
To start this process simply type the command name fol lowed by
the address where the code should be placed. The debugger wll I
respond by printing the address of the location specified
fol lowed by a space. At this time, simply type the desired
instructions fol lowing each with a carriage return. The next
available address wll I then be printed and assembly can continue.
Typing a carriage return In response to t~e address prompt wl I I
exit this mode of operation. To show the workings of this
command, some code wi I I be assembled at location $200.

**ASM,200
0200 LDAA 10
0202 LDAB $10
0204 PSHA
0205 LDAA 'M
0207 STAA O,X

-5-

' \
I

0209 JMP $3000
020C
**

Note that numeric values are interpreted as decimal unless
preceded by a dollar sign($) to designate hex. It is also
possible to enter an ASCII constant by preceding it ~ith a single
quote (1). No spaces are al lowed between the register specifiers
1 A1 or 1 8 1 and the instruction (e.g. LDAA is correct, LOA A is
not). The ASM command is a great time saver!

IV. Simulating the Program

Program simulation is very simple. If the test program
starts at $100, simply type START, 100 to start the simulation
process. The program wil I run exactly as the CPU would run it,
just slower. The START command clears several of the machine -­
conditions such as the states counter. To start a program where
it left off, the GO command can be used. This wi I I cause the
program to start execution at the location pointed to by the
program counter CP register). No states wi 11 be cleared.

A very valuable feature of the simulator is the 'trace
mode 1 • When trace is enabled, a register dump (exactly I ike that
produced by the R command) will be displayed after each
instruction is executed. The simulation may be temporarily
halted by typing an 'escape' character anytime during the tracing
operation. The simulation may also be stoooed oy typing a
'control er. This wi 11 cause the debug prompt to be reissued.
To enable the trace mode use the TRACE command.

**TRACE=10

This Ii ne wi I I cause the debugger to trace a I I instructions which
are in a subroutine nest level of 9 or lower. The number in the
command line specifies the nest level where tracing should be
disabled. This al lows only the outermost program structure to be
traced if desired, while the deeper subroutines wi I I be simulated
without the tracing. To disable the trace, use a count of zero
(e.g. TRACE=O).

There are several other methods of starting program
simulation. One is the SIM command. This command wl I I al low the
simulation of a specified number of instructions. Tracing Is
disabled during the execution of this command.

**SIM,100

This line wi I I cause 100 instructions to be simulated starting at
the address pointed to by the program counter. The TSIM command
is identical to the SIM command except trace Is automatically set
to 256 during the execution of the command.

-6-

r .
TSC Debug Package

It is often desirable to step through the execution of a
program, one instruction at a time. The STEP command wil I start
simulation at the instruction pointed to by the program counter,
execute a specified number of instructions, print a register
dump, and then wait for input. At this time, a sp~ce wi I I repeat
the process, while a return wi I I return control back to the
debugger. The usual method of operation is 'single' step which
wi I I execute one instruction, then dump the registers. This mode
can be entered by:

**STEP

Multiple instructions can be executed between register dumps by
specifying a count. For example;

**STEP, 25·

wi I I cause 25 instructions to be simulated at a time. The step
mode is a very powerful method for closely fol lowing the flow of
a program.

During program execution, the simulator keeps track of the
last 256 instructions executed. If a program ever goes off on
its own, ending up in memory where it should not, the PAST
command can be used to examine the instructions exacuted to get
it there. Typing the command,

**PAST,20

wi 11 display the addresses and mnemonic instr~•ctions of the last
20 opcodes executed. This feature a I one w i I I find a good
percentage of program bugs.

v. Breakpointing the Program

So far, methods have been described which al low al I or a
certain number of ·instructions to be simulated. Most of the
time, the number of instructions to a certain point in the
program is not known. It would be helpful If a break In the
program simulation could be specified to take place at a
particular point In the program, or in other words, breakpoints.
A breakpoint Is a mechanism for stopping the execution at a
specified address In the program. As an example, to set a
breakpoint at location $23A, use the fol lowing command.

**B@23A

As the program executes, any time location $23A Is reached,
simulation wl I I stop and the registers wl I I be dumped to the
term Ina I • After the program has stopped, typing a 'G' w 11 I
restart execution, starting at address $23A (the breakpoint wt I I
be temporarlly ignored). It should be noted that the method used
to create the breakpoint does not alter the contents of memory In

-1·

)

• l i.

(

TSC Debug Package

any way. This means that after setting a breakpoint, the
contents of memory at the breakpoint location wi I I be unchanged.
This al lows breakpoints to be set in ROM as wel I as RAM!

In the above example, the breakpoint caused two actions to
take place. One was printing the registers, the other was
stopping program simulation. These actions are the ones
performed by most debugging systems. The TSC Debug Package
al lows six other actions to be performed upon the execution of a
breakpoint. A I ist of al I 8 possible actions fol low:

1. R ••• Print register contents
2. z ••• Zero the states counter
3. T ••• Enable the trace function
4. u ••• Disable trace Cuntrace)
5. H ••• Histogram counter
6. M ••• Print a message
7. J ••• Jump to specified address
a. s ••• Stop simulation

The first breakpoint example shown defaulted to R and S type
actions since none were specified. The Z action zeroes the
machine states counter. This is useful for program timing. For
an example, the states counter may be zeroed upon entry to a
subroutine and a stop type breakpoint set at the eYit point of
the routine. By using the STATES command afte~ the program
stops, the exact number of executed machi~e states· for that
routine wi 11 be displayed.

The T and U actions al low the trace mode to be enabled and
disabled at selected points in a program. When enabled, trace
wi 11 be set to level 255. Many times, tracing is only desired
during one routine or selected portion of the program. These
actions wi I I permit this sort of program tracing. A few examples
wi I I demonstrate action type breakpoints.

**B,RZ@lOOO
**B,T@A16

The first command wil I set a breakpoint at location hex 1000
which when executed wi I I print the registers and zero the states
counter. The program wi I I then continue since a stop CS) action
was not specified. The second example wil I cause trace to be
turned on at location hex A16.

Another action Is the histogram CH). A histogram counter
counts the number of times the instruction at that address has
been executed. Th Is is use f u I for de term in Ing 'hot spots' or
sect i ens of programs which are executed very f;·equent I y. By
setting a histogram breakpoint at the first instruction of each
subroutine In a program, it is possible to find out exactly how
many times each routine was cal led. As an example, suppose there
were three subroutines in a program, and they were located at
SlOO, $123, and $1AO. To set histogram counters at these

-a-

(

TSC Debug Package

locations, type the fol lowing commands:

**8,H@lOO
**B,H@123
**8,H@lAO

After simulating the program, typing HIST wil I display the totals
of the counters at each address. This command is used to examine
the histogram counters at any time. The CLH command is used to
clear the histogram counters.

**CLH,100
**CLH

The first command wi I I clear (set to zero) the value of the
histogram counter at location 100. The second command wi I I zero
al I of the counters. The histogram commands al low a very
complete prof i I ing of a program, letting the user 'fine tune' it
for maximum speed.

The remaining two action codes are special purpose. One
permits a selected message to be printed as the action, the
second al lows transfer of control to a speci tied address CI ike a
JMP instruction).

**B,M@325,SUB 1
**8, J@27C, 1000

The first line wi I I print the message ttSUB ltt e~ch time the
instruction at $325 is executed.· The second command Ni 11 cause
the instruction at address hex 1000 to be th& next instruction
executed. The instruction at 27C wi I I not be executed!

Any combination of action codes may be I isted
breakpoint. They are executed in the order they appear
above I ist. For example,

**8,TRZ@300

for a
in the

wi I I cause the registers to be di splayed CR), the states counter
to be zeroed CZ), and trace to be enab I ed CT>, In that order.
This ordering may be important, for In the actions 1 RSJ 1 , the
stop CS) wl I I never get executed since the J transfers control to
another address.

VI. Advanced Breakpoints

Programs containing loops or recursion arP often difficult
to brea~point since one particular section of code may be cal led
thousands, or even ml I I Ions of times. As an example, suppose
there is a loop In the program being debugged, and it ls
necessary to examine the contents of the X register after the
600th time through the loop. One way ls to set a breakpoint at

-9-

TSC Debug Package

the desired instruction and start the program simulating. Every
time the program halts at the breakpoint, type G to restart it.
Repeat this process 600 times and you can examine X. You are
probably thinking that this would take forever and you are right!
The TSC Debug Package al lows a pass counter to be associated with
a breakpoint. This count determines how many times the
instruction at the address of the breakpoint should be executed
before the actions specified should be performed. In the above
example, assuming the instruction to be breakpointed is at
address 300, the fol lowing wi I I do exactly what we want.

**8@300,>600
or

**B,SR@300,>600

Both commands are iaentical since the first defaults to SR
actions. The'>' is the pass count modifier and should be read as
'after'. The result of this command is to stop and print the
registers on the instruction at location 300, after 600 times
through it. Once the count reaches 600 (or whatever value was
set), the breakpoint actions wil I always occur. A second similar
type of pass count uses a '<' for a modifier and should be read
as 'before'. This is used to create a temporary breakpoint.

**B,R@300,<100

This command wi I I set up a breakpoint at 300 w~!:~ wi I I print the
registers for the first 100 times through. After the 100th time,
the breakpoint wi 11 be cleared . and no l~nger function. In
summary, the pass count value associated with ~ breakpoint Is
decremented each time the instruction at the specified address Is
executed. If the modifier is a 1 >', no actions will be performed
until 'after' the count has reached zero. With the'<' mofifier,
actions are only performed 'before' the count reaches zero, and
once it is zero, the breakpoint is cleared.

In the above example It was decided that the program should
be stopped after 600 times through the loop. While debugging
loops, it is not always possible to determine an exact number of
times to execute the loop before it should be stopped. Often it
is desirable to stop on a certain condition, such as the contents
of a register or the state of a particular memory location.
Conditional expressions are al lowed in breakpoint definitions and
yield a great deal of power. The conditional car. be determined
on the contents of a selected register CA, 8, C, X, P, S, or N)
being equal (or not equal) to a specified value. A particular
memory location may also be tested for zero or not zero.
Fol lowing are a few examples.

**8@1000, IF A=3F
**B,R@320, IF 8!=10
**B,T@6A7, IF $20=0

The 1 1F' statement designates the conditional part of the

-10-

) -

TSC Debug Package

breakpoint definition. The first example wil I stop a~d print the
registers at location hex 1000 but only when the va!ue in the A
accumulator is hex 3F. The second example wil I print the
registers at 320 only if the contents of the B r~gister is not
hex 10 (1 != 1 is to be read as 'not equals'). The last example
wll I enable the trace mode at location 6A7 if the contents of
memory location hex 20 is zero. The dollar sign 1 $ 1 is used to
designate a memory reference and not a hex value (the value Is
always interpreted as hex). The value on the right of the equals
sign must always be zero when a memory reference has been
designated.

The above breakpoint features may be combined in a variety
of ways to produce an almost endless variety of breakpoints. As
an example:

**B,TZ@l000,>100,IF X=lOO

wi I I cause trace to be enabled and the states counter to be
zeroed, after executing the instruction at hex 1000, 100 times,
but then only if the value of the index register is $100. It
should be noted that the H, M, and J action codes wi I I not al low
a conditional expression as part of the breakpoint definition,
and J wi I I not support a pass counter.

Once breakpoints are set it Is
loaction of them as wel I as remove them.
of breakpoints, use the BP command.

**BP
**BP,100
**BP,100-500

possible to examine the
To check tr.a I ocat i ens

The first I lne wi 11 pr int the location of al I breakpoints, each
one fol lowed by a I 1st of Its action codes. No pass counts or
conditionals are displayed. The second example wi I I display the
action codes of the breakpoint at location hex 100 (If one
exists). The last command line will display all breakpoints
between location 100 and 500, Inclusive. The CLB command Is
similar In syntax but is used to clear or remove a breakpoint.
CLB by itself wl I I clear al I breakpoints. If It Is fol lowed by
an address, the breakpoint at that address wl 11 be removed. If
two addresses are specified, then al I breakpoints in their range
w I I I be c I eared.

While debugging very large programs, It may become quite
time consuming to simulate the program up to a desired address.
For example, a program which requires a minute to execute In real
time may require over an hour If simulated. To get around this
problem, It is possible to set a 'real time' brea~polnt. This Is
entirely different from the previously described breakpoints In
that It does modify the contents of memory (by substituting a JMP
Instruction) and no pass counting or conditionals are permitted.
The only action performed Is to stop and print the registers. An

-1 , -

(

example of use fol lows:

**RT, SACO

This command wl I I cause the CPU to start executing the program
(NOT the simulator) at the current address of the program
counter. When the program reaches the specified adaress (SAOO),
the program wi I I stop, print the registers, and restore the
contents of RAM at that location (remove the breakpoint). Since
the program is being executed in real time and not being
simulated, no other breakpoints, ii legal condition checking,
states counting, or record keeping is performed. This type of
execution is not recommended for this reason and should only be
used where the simulation time gets tremendously Jong.

VI I. Protect Your Memory

Perhaps the most aggravating aspect of program debugging is
having your program destroy itself in memory. Too many times,
programs 'run away', writing garbage in memory, usually exactly
where it is not wanted. In these instances, it would be nice to
be able to 'write protect' memory, or at least certain portions
of it. The TSC Debug Package wi 11 al low exactly that! In fact,
any section of memory, right down to a single byte, may be write,
execute, memory, or simulate protected! Write p~~tectlng memory
wi I I prohibit any stores or writes into it. Execute protection
prohibits opcodes from being fetched from memory. In other
words, the program counter (PC) wi 11 not be per .. ,i; ied to point to
a location of memory which is execute protected. Memory protect
is a brute force type of protection. By memory pro1ecting a
region, you are in effect saying that no memory exists in this
region and that nothing should be al lowed to reference it in any
way. Any memory referenced In conflict with its protection wi I I
cause the simulation to stop and an appropriate message wil I be
printed. Finally, simulate protection Is slightly different from
the rest. It is used to tel I the simulator to execute any code
in a simulate protected region In real time, or in other words,
not simulated. A restriction requires the code in a simulate
protected region to be cal led as a subroutine (JSR or BSR) from
the non-simulate protected code. This ls very convenient for 1/0
operations. Al I 1/0 routines can be simulate protected (such as
TTY and disk routines) al lowing them to be executed by the CPU
(real time) and not the simulator. It is often convenient to
simulate protect the entire region of memory containing the
monitor and/or operating system since this cede ls known
functional. Keep in mind that code in simulate protected memory
may only be accessed via a subroutine cal 1.

The command used to set protection is PROT. ~ few examples
wi I I demonstrate its use.

-12-

, I

**PROT, 100-3FF,X
**PROT,2EO,W
**PROT,500-6FF,M,1200-1FFF,W

TSC Debug Package

The first example wl I I execute CX) protect the memory between
locations $100 and $3FF. The second line write protects CW)
location S2EO. The last example wi I I memory protect CM)
locations $500 through S6FF and write protect $1200 through
SlFFF. There are some general rules to fol low when protecting
memory. Memory protection should be used on al I sections of
memory not referenced or used by the program being debugged,
especially the area of memory containing the Debug Package. This
wit I keep a runaway program from clobbering something it should
not. Sections of memory which are used for register storage or
flags should be execute protected. Memory containing the actual
program code should be write protected for obvious reasons.
Finally, as mentioned above, the memory locations where the
monitor and/or operating system reside should be simulate
protected.

Once the protection has been defined it may be checked by
using the BOUNDS command. This command wit I al low the
examination of the boundaries of each type of protection. Either
al I types or selected ones may be displayed.

**BOUNDS
**BOUNDS,W,M

The first e~ample wi I I display al I types whlie The second wit I
show only the defined boundaries for write and memory protection.
Memory protection can be cleared In a slmllar fashion.

**CLP
**CLP,X,W

The first command wl I I clear al I protection while the second wi I I
only clear the defined execute and write protected regions.

VI I I. Trapping Those Bugs

The previously described breakpointing feature al lows
programs to be stopped at specific locations and on specific
conditions. It Is often desirable to 'trap' a program on some
general condition such as every time a transfer of address
Instruction Is encountered. The memory protection described
above Is a form of trap In that the program wl I I stop if a
protection violation Is detected (e.g. writing Into write
protected memory). There Is address Information associated with
this protection which makes It different from th~ general traps
avallable In the Debug Package. The general traps cause programs
to stop on a general condition which Is not address dependent.

-13-

TSC Debug Package

One of these traps is the ii legal opcode trap which ls
always enabled. Any time an ii legal opcode is encounte~ed during
the course of program simulation, the program wil I stop and
report its occurrence. A second, always enabled trap wl 11 stop
the program if an RTS instruction is encountered and the current
nest level Is o.

There are several user control led traps which may be enabled
and disabled at wit I. The transfer trap is enabled with the XFR
command. When enabled, the program wit I stop each time a
transfer of address is encountered. These Instructions are JMP,
BRA, and al I conditional branches such as BCC. The subroutine
cal Is and returns are not trapped out.

**XFR=ON
**XFR=OFF

These two commands wit I enable and disable this trap
respectively. Once a program has stopped because of a transfer
trap, typing G wl I I restart it, al lowing the current transfer to
be executed. This is very useful for quickly fol lowing the major
flow of a program. Another one of the general traps al lows
halting the program If the subroutine nest counts reaches a
specified level.

**NEST=20

This wit I cause a trap if the nest level ev~~ ~9ach9s 20. To
disable the nest trap, use NEST=O.

The last general trap to be discussed Is the ITRAP. This
command al lows activation of the Interrupt trap and wl I I cause
the simulating program to stop if an Interrupt type instruction
is encountered CSWI, RTI, and WAI). Since these instructions are
not used In the majority of programs it is a good idea to use
this feature. An ex amp I e wl I I demonstrate I ts use.

**ITRAP=ON
**ITRAP=OFF

These two commands wi I I enable and disable the interrupt trap
respectively.

IX. And There Is Stil I More!

There are stil I many undescrlbed features of the TSC Debug
Package. One of these Is the handy I lttle CALC command which acts
as a hex calculator. Typing CALC fol lowed by a ret~rn wt I I cause
the debugger to output an equals sign (=) for a prompt. At this
time hex and decimal addition and subtraction may be performed.
To add two numbers simply type them In separated by a plus sign.
If the number is hex precede It with a dollar sign, otherwise the
debugger wt 11 Interpret It as decimal. Use e l!llnus sign for

-14-

TSC Debug Package

subtraction. It is also possible to do base conversions. This
can be accomplished by entering just one number after the prompt
(hex or decimal) fol lowed by a return. Al I answers are displayed
in both hex and decimal. An example fol lows.

**CALC
=S1A+10

$0024 36
=256

$0100 256
=

After entering the calculator mode, the numbers hex 1A and
decimal 10 were added to give the result hex 24 or decimal 36.
The second entry is a base conversion of the decimal number 256.
The result shows its hex equivalent is SlOO. The calculator mode
can be left by typing a return in response to the prompt.

There are stll I many other features in the Debug Package,
such as Interrupt simulation, which have not been described. It
is not the intention of this tutorial to teach al I there is to
know about the debugger, but to teach enough to make the user
feel comfortable with the majority of Its features. Once the
material in this section is thoroughly understood, the fol lowing
detailed command description should be studied '" depth.

Now that the basic mechanics of the Debug Package are
understood they should be put to good use. ~~~P in mind that a
logical and planned approach should be taken when ~ebugging a
program. Use the available tools such as msmory protection and
breakpoints. When first starting · the debug piocess on a new
program, start at the beginning, working your way through the
flow of the program. Let the program be the guide. It you pay
close attention, it wi I I definitely point out the bugs. Above
al I, have patience. Great bugs are not ki I led overnight!

-15-

r ,

.)

TSC Debug Package

Command Descriptions

I. Introduction

This section of the manual contains a detailad description
of each Debug command. Each command is shown with a few
examples. The syntax definitions show optional items in square
brackets(()). Al I command parameters are shown separated by
commas for clarity In the syntax definitions and examples. Any
place a comma is shown, a space may also be used. The fol lowing
definitions apply throughout this document:

Item

<address>
<value>
<count>

Meaning

t-4 digit hex value -------·
decimal number (max= 255)
decimal number (max= 65,000)

The Debug Package is ready to accept a command anytime the
'**' prompt is present on the I ine. When typing commands, a
'control H' wl I I cause a backspace, and delete the last character
typed. A 'control X' wil I cause the entire I ine to be deleted
and a new prompt of 1 ?? 1 wil I be output to show the deletion of
the line. Any time text is being output to the ter~inal, display
may be stopped at the end of a line bv tvplng an 'escape'
character. Once stopped, another 'escape' wl I I restart the output
while a 'return' wil I give control back to the debu~ger and the
'**' prompt wi I I be output.

I I. General System Control

The general system control commands al low a variety of general
actions to be performed. Register examination and changing is
supported by use of the REG and SET commands. The status of
several machine control registers can be obtained through the
MACH command. Commands to view the stack contents, set
simulation speed, reset machine parameters, enter a calculator
mode, examine the 'machine states counter', and exit the debugger
are al I described In this section.

C IALC J

PURPOSE:
The calculator mode wll I be entered and a'=' prompt wl I I
be printed. The calculator wi I I al low addition or
subtraction of two numbers. The numb~rs may be hex
(designated by a 1 $ 1 prefix) or decimal. If two numbers
are typed, they must be separated by a '-' or 1+ 1 and the
appropriate result will be displayed. The answer is
shown In both hex and decimal. It is possible to enter

-17-

TSC Debug Package

only one number (hex or decimal) fol lowed by a return.
The answer wi 11 be this number printed in both hex and
decimal, thus al lowing base conversions. After each
calculation, a new 1 = 1 prompt wi I I be output. To exit
this mode, type a 'return' as a response to the prompt.

EXAMPLES:
CALC

=SA+lO
$14 20

Enter calculator mode
Add hex A and 10
The result is printed

DELIAYJ=<va I ue>

PURPOSE:
This wi I I set the simulation delay (the amount of delay
after each instruction is executed) to an amount
proportional to <value>. The higher the number (max =
255) the longer the delay. A delay of zero wl I I result
in the delay being turned off.

EXAMPLES:

DEP(THJ

DELAY=lOO
DE LAY=O

Set delay to 100
Disable the delay

PURPOSE:
The depth command wi I I print the deepest value of the
stack pointer (the lowest memory a1dress at which the
stack was extended during program simulation). To
initialize this pointer, it is necessary to set the stack
pointer using the SET command. The depth value wil I be
set to the same value as the stack pointer. This command
is useful for determining the amount of stack space
required by a program.

EXAMPLES:
DEPTH Print the deepest stack location

E[XITJ

PURPOSE:
Exit the debug program. Use this command when finished
with the Debug Package.

EXAMPLES:
EXIT Exit the debugger

-18-

.J

{

TSC Debug Package

FL[AGJ[=<address>J

PURPOSE:
The Flag register is a 2 byte word at the specified
memory location which wi I I be displayed o~ a REG command
or during tracing, as the I F I register. The memory
location for the flag wi I I be set to the address
specified. If no address is given, the flag register will
be disabled. This is useful for tracking flags in memory
during program tracing. See the REG command.

EXAMPLES:
FLAG=1A85
FLAG

Set flag register to $1A85
Disable flag register printout

I ND=ON or OFF

PURPOSE:
Used to enable or disable the indirection printout in a
register dump C see REG). If I ND is ON, the register dump
wi 11 show a register cal led 1 11 which is the value of the
memory location pointed to by the index CX) register. If
this feature is off, the I register will not be
displayed.

EXAMPLES:

MA[CHJ

IND=ON
IND=OFF

Turn indirection on
Turn it off

PURPOSE:
The MACH command wi I I print the current status of the
simulated machine. Values displayed are for mode CM),
trace (T), instruction count trap CI), nest trap CN),
stop address CS), Interrupt trap CIT>, transfer trap
CXT), IRQ count CIRQ), and NMI count CNMI). The
description of these appear elsewhere In this manual.

EXAMPLES:
MACH Print the machine status

MO[DEJ=l or 0

PURPOSE:
The debugger has two modes of operation, mode O and mode
1. The system comes up In mode 1. Mode 1 offers al I
debug features al lowing the simulated program to run
approximately 250 times slower than real tl~e. In mode
O, the program wi 11 run approximately 100 times slower
than real time, but the fol lowing features are not
supported; nest count checking, al I traps, states
counting, memory protection, past instruction
bookkeeping, and automatic interrupts. Mode 1 should be

-19-

(

TSC Debug Package

RIEG)

used most of the time to take ful I advantage of the
debugger.

EXAMPLES:
MODE=l
MO=O

PURPOSE:

Set mode to 1
Set mode to 0

Print the contents of the machine registers. Al I values
are shown in hex. Besides the condition codes (C), A, B,
and X registers, program counter (P) and stack pointer
(S), the nest level, N, is displayed (shows how deep in
subroutine cal Is) as wel I as two optional registers. One
is enabled by the IND command and displays the byte of
memory being pointed to by the index register. This is
shown as 'I' in the REG dump. The second option Is
enabled by the FLAG command and wil I display the selected
two bytes of memory. This is shown as 'F' in the dump.

EXAMPLES:
REG
R

Display al I registers
Display al I registers ~lso

RES I ETJ

RET

PURPOSE:
The RESET command Is used _to reset al I machina states.
Al I registers wi I I be set to zero, the stack pointer wi I I
be set to $A07F, al I breakpoints and memory protection
wi 11 be cleared, and the mode wi 11 be set to 1. This
wi I I set up the machine exactly the same as Initializing
the debugger upon first entry.

EXAMPLES:
RESET Reset the machine

PURPOSE:
Print the top two items on the stack. If the system Is
currently in a subroutine, these bytes wil I represent the
return address from this routine. If the r:est level Is
currently zero CN=O), the message "NEST L~VEL IS 0" wil I
be displayed.

EXAMPLES:
RET Print the return address

} -

J _,

(

TSC Oebug Package

S [ETJ ,<register Ii st>

PURPOSE:
The SET command is used to set or assign values to
registers. The <register list> is a list of register
names CC,A, B, X, S, P, N) fo I I owed by an equa Is sign,
fol lowed by the hex value. Setting the stack pointer
wi I I also set the depth value to the same amount.

EXAMPLES:
SET,P=100,A=C3
S 8=20 X=lFFF

Set PC to $100 and A to SC3
Set B to S20 and X to SlFFF

STACK[,<value>J

PURPOSE:
Print the contents of the stack. The number of bytes
specified by <value> wll I be printed. If <value> is not
specified, the top 6 bytes wi 11 be printed. The stack is
printed from high address to low address, so the top of
stack wil I be the last item printed.

EXAMPLES:
STACK
STACK,10

Print the top 5 stack bytes
Print the top 10 stac~ bytes

STATIESJ

TRAIL

PURPOSE:
Display the current value of the st~tes counter. This
value represents the number of actual machine cycles
(micro seconds on a 1 megahertz computer) which have been
executed since the last START or RESET command. It Is
also possible to set this counter to zero using
breakpoints.

EXAMPLES:
STATES Print the current states count

PURPOSE:
Print the address of the last executed Instruction which
caused a transfer of address (e.g. JMP instruction).
This Is useful when attempting to find how a program
ended up where it did.

EXAMPLES: ·
TRAIL Print the.last tran~fer address

-21-

TSC Debug Package

X,<operating system command>

PURPOSE:
The X command is only operational on disk systems (see
Adaptions). It al lows the execution of any DOS command
from the debugger.

EXAMPLES:
X,CAT,1 Cata I og dr Ive 1

I I I. Memory Commands

The memory commands al low exam1n1ng and altering the contents of
memory in a variety of ways. The assembler al lows simple, direct
insertion of object code by using standard opcode mnemonics and
addressing mode designators. The disassembler provides an
opposite type of convenience, in that the contents of memory may
be displayed as assembler language mnemonics and operands. A
single byte memory examine and change function is also available
(the MEM command). Commands for viewing large blocks of memory,
finding specific hex or ASC I I strings, and f I I I Ing a section of
memory with a selected character are al I available in this group.

A [SM I [,<address> J

PURPOSE:
Enter the I ine at a time assembly mode. As~embly wil I
start at the address specified or at the location of the
program counter If no address is spec i fied. No labels
are permitted. Al I standard Motorola opcode mnemonics
are accepted (no pseudo ops). When instructions contain
a register specifier, there should be no space between
the mnemonic and the specifier (e.g. LDAB, not LOA B).
Al I standard addressing modes are accepted. Al I page
zero references wi I I be assembled as extended addresses.
Three types of constants are permitted, decimal, hex
(precede the number with '$'), and ASCII (precede the
ASCII letter with a single quote C')). The PC Is
automatlcal ly advanced to the next location after the
I ine Is assembled. To exit this mode, type a return In
response to the address prompt.

EXAMPLES:
ASM, 100

100 LDAA #10
102 LDAB #' t
104 BRA S 100
106

Start assembly at $100
Load A with 10
Load 8 with ASCII
Loop forever
Exit ·with return

-22-

J

(

TSC Debug Package

D(ISJ,<start address>,<stop address>

PURPOSE:
Disassemble memory between the addresses specified. The
address, mnemonic, and addressing mode wi 11 be printed
out for each instruction in the range. If an ii legal
opcode is found, three stars (***) wi I I be displayed
instead of a mnemonic, followed by the hex value found at
that address.

EXAMPLES:
DIS, 100, lAO Disassemble from 100 to lAO

DUIMPJ,<address>

PURPOSE:
Dump 256 byte blocks of memory starting at the address
specified. The memory is displayed 16 bytes per I ine,
fol lowed by the ASCII values of the hex numbers. After
each block is dumped, typing an 'F' wi 11 move Forward and
display the next 256 bytes, typing a '8' wi I I move Back
and display the previous 256 bytes. Typing a 'return'
w i I I exit th Is mode.

EXAMPLES:
DUMP, AOO Dump memory at $AOO

FILILJ,<start address>,<stop address>l,<byte>J

PURPOSE:
This command wl I I
specified starting at
the second address.
w i I I be used •

EXAMPLES:
FILL,100,300,FF
FI LL, O, 100

fi I I memory with the <byte> (hex)
the first address, fi 11 ing through

If <byte> is not specified, zero

FIi I with FF from 100 to 300
Clear from Oto 100

FINIDJ,<start address>,<stop address>,<string>

PURPOSE:
Find the specified string In memory. The search wll I
start at the <start address> and continue through the
<stop address>. The address of each locatlon where the
string Is found wl I I be displayed. The <string> can be
entered In one of two ways. The first can be a string of
hex digits separated by spaces or commas. The second Is
an ASCII string preceded by a doub I e \'.!Uote character.
The I lmlt on string length ls the Input buffer (72
characters).

-23-

TSC Debug Package

EXAMPLES:
FIND,0,60,7E,33,A2 Find the hex value 7E33A2
FIND,O, 1000,"TEST Find TEST in memory

M(EMJ ,<address>

PURPOSE:
Examine and alter memory. The address specifies the
first location to be examined. Upon entering this
command, the address speci tied and its contents wi 11 be
displayed on a new I ine. At this time, typing any non
hex printing character wi I I move to the next location and
display its contents. Typing a 'line feed' will move to
the previous location. A carriage return wil I exit this
mode. To change the contents of a location, type the new
hex value immediately fol lowing the one displayed. After
the value, type a space. The new value wil I be entered
and the next memory location wil I be displayed. It
should be noted that it is only necessary to type the
number of significant digits and only the last two digits
are used. For example, typing a 1 would enter 01, typing
1A2 would enter A2, etc. If only a space is typed (no
number) a zero wil I be entered. Any time a non-hex
character is typed (besides a space), the next location
wi 11 be displayed, leaving the currf.·nt location
unchanged.

EXAMPLES:
MEM, 540
M,200

IV. Simulation Control

Examine memory at i540
Examine location $200

This group of commands Is used to control the program simulator.
Code in RAM or ROM may be simulated. There are several methods
of initiating simulation. Programs may be executed with •trace'
on or off. While trace is on, each instruction wl I I be di splayed
prior to its execution, along with the current state of the CPU
Cal I register contents are displayed). Trace provides a very
powerful tool for fol lowing program flow. Several keyboard
commands may be invoked during actual program simulation. These
commands al low the speeding up or slowing down of simulation, as
wel I as ways to halt the execution of the program. The PAST
command is a powerful bookkeeper which keeps track of where your
program has been.

-24-

)

(

GIOJ

PURPOSE:
Start
pointed
a I tered

EXAMPLES:
GO
G

TSC Debug Package

the program executing at the location currently
to by the program counter. No machine values are
with this command.

Start the simulation at the PC
Does the same thing

JIUMPJ,<address>

PURPOSE:
This command is exactly like GO except execution wil I
begin at the address specified. No machine values are
altered with this command, except the program counter
which is set to <address>.

EXAMPLES:
JUMP,322
J,80

PA(STJ(,<value>J

PURPOSE:

Start simulation at $322
Start simulation at $80

Display the past several instruction::, executed by the
simulated program. If <value> is not specifi1d, the past
255 instructions wi 11 be printed (old~st to mcst recent),
otherwise <value> sets the number of instructions to be
displayed. Each instruction Is shown in a disassembled
form, with its address.

EXAMPLES:
PAST
P.AST, 10

SIM[,<count> I

PURPOSE:

Display the past 255 instructions
Display the past 10 instructions

Simulate the number of instructions specified by <count>
with the trace disabled. If the count is not specified,
one instruction wil I be executed. Execution starts at
the current PC. No machine values are altered prior to
simulation. Trace wi I I be reset to its original value
fol lowing SIM 1 s termination.

EXAMPLES:
SIM
SIM,100

Simulate one instruction
Simulate 100 instructions

(

TSC Debug Package

ST[ARTJ,<address>

PURPOSE:
Start program simulation at the specified address. The
PC w i I I be set to the address specified, the states
counter will be zeroed, and the nest count will be
c I eared.

EXAMPLES:
START, 1000
ST, 2A

STEP! ,<count> J

PURPOSE:

Start simulation at $1000
Start simulation at $002A

This command wi I I cause the debugger to enter the 'step'
mode. The <count> specifies how many instructions should
be executed at a time in this mode and defaults to one
(single step). Upon entering the STEP command, the
system wi I I immed I ate I y execute the number of
instructions specified by <count>, then print a register
dump. The execution wil I begin at the location pointed
to by the P register (program counter). After the
register dump, typing a 'space' wil I cause execution of
the next <count> instructions and produce another
register dump. Typing a 'return' wil I exit the step
mode. Any other character wi 11 be ignored. 1·~ should be
noted that while In the step mod:, brea~polnts and
tracing are inoperable.

EXAMPLES:
STEP
STEP,10

T[RACEJ=<value>

PURPOSE:

Enter 'single step' mode
Execute 10 instructions at a time

Set the trace depth. If va I ue is set to zero, trace mode
wi I I be disabled. Setting trace t9 a non-zero value wi I I
enable tracing up to but not Including the subroutine
nest level Indicated by <value>. For example, If TRACE=2
is entered, tracing wi I I occur at nest level O and 1 but
w i I I be di sab I ed at nest I eve Is of 2 and higher. The
nest level is displayed as 'N' in a REGister dump.

EXAMPLES:
TRACE=255
T=O

Enable trace at al I levels
Disable trace mode

-26-

TSC Debug Package

TS I IM I I , <count> I

PURPOSE:
This command is similar to SIM except trace mode is
enabled (Trace=255) and the registers wi 11 be dumped
after each instruction simulated. The count wil I default
to 1 if not specified. Trace will be reset to its
original value fol lowing TSIM's termination.

EXAMPLES:
TSIM
TSIM,20

'Contro I C'

PURPOSE:

Trace and simulate 1 instruction
Trace 20 instructions

Anytime a program is being simulated, a 'control C' wit I
cause the execution to halt and the message 'OP HALT AT
XXXX' to be displayed at the terminal. This means
'Operator Halt' and the XXXX wi I I be replaced by the
actual address where the program was halted.

'Escape Character'

PURPOSE:
During program tracing, typing an 'escape' wit I cause the
program to pause at the end of the next dis~layed line.
At this time, typing another 'esc~~G~ wi I: enable the
trace to restart, while typing a 'return' wi I I return
control back to the command entry mode.

'Control F'

PURPOSE:
During program . simulation, the delay value (see DELAY)
-nay be dynamically changed. Each time a 'control F1 Is
·yped Conly during program simulation) the delay value
w i I I be decr~mented by one, thus making the program run
faster. If the delay is zero, the 'control F' wi 11 be
ignored. It should be noted that for large delays, many
'control F 1 functions wit I need to be typed to see the
increase In speed.

'Control S'

PURPOSE:
This Is similar to the 'control F' key but makes the
simulation run slower. If the delay ls already at its
maximum va I ue, the 'contro I S' wl I I be igiloied.

-27-

TSC Debug Package

v. Breakpoints

Breakpoints al low the insertion of check points into a program.
A breakpoint always has an address associa1ed with it. The
address specifies where in the program the breakpoint action
should occur. These actions range from printing the machine
registers to control I ing trace mode. Each breakpoint may also
have a pass counter which determines the amount of time unti I it
becomes active, or the amount of time it should remain active.
The actions are also dependent on the result of a conditional
expression involving a CPU register or memory location.
Breakpoints are decoded with th fol lowing precedence. If the
address of the current PC matches the address of a breakpoint,
then the pass count is checked. If the counter is in a state to
allow continuing, then the condition is checked (if present).
Finally the actions specified for the breakpoint are performed.
The other commands in this group al low clearing breakpoints
(removing them), printing histogram counter values, pr int
breakpoint location and type, and clear histogram counters.

B,<actions>@<address>(,<modifier><count>l(: IF<condition>J
or

B@<address>[,<modifier><count>J[, IF<condition>J

PURPOSE:
The B command is used to set breakpoints. These
breakpoints are nondestructive In thr.~ ;;,ey oo not alter
the contents of memory at the breakpoint lo~ation. Two
forms of the command exist. The first Is the general
form of the command and al lows user definable breakpoint
actions. The <actions> may be any one or combination of
the fol lowing:

R ••• Print register contents
z ••• Zero the states counter
T ••• Trace mode on
U ••• Trace mode off (untrace)
H ••• Histogram counter
M ••• Print message
J ••• Jump to new address
s ..• Stop simulation

The above actions are executed in the order shown. A
histogram action causes a counter to be set up such that
each time the instruction at the address specified -is
executed, the counter wll I be incremented by one. By
later requesting a HISTogram, al I of the counters and
their associated counts wi I I be dlspl~yed. The second
form of the B command Is a special case of the first. In
this form, no actions are specified, and they default to
S and R (just as if S and R were used in form one). The
<count> part of the syntax Is optional and acts as a pass
counter. The <modifier> shown in the command description
represents either a 1 >1 , used to mean 'after', and 1 <1 to

.,Q

(

I

TSC Debug Package

represent I before'. A count preceded by 1 > 1 wi 11 cause
the breakpoint defined on the I ine to remain inactive
until <count> number of times through that aadress. A
count preceded by 1 <' wi 11 cause the breakpoint defined
to be active for only the <count> number cf times through
that address, at which time it wi 11 be automatically
removed. The <count> in either case must not exceed
32,000. The next part of the syntax is the optional
<conditional>. This al lows the breakpoint action to be
dependent on some condition. The condition can be the
contents of any machine register being equal or not equal
to a hex value (1 = 1 and '!= 1 respectively), or the
contents of a specified memory location being zero or not
zero. If a register is used, simply state the register
name, followed by the relational, followed by the hex
value (e.g. A=23, or B!=E2). To use a memory location,
a dollar sign 1 $ 1 must precede the address. For example,
$100=0 would check if the byte at location hex 100 was
zero, and $A20!=0 would check if the byte at location hex
A20 was not zero. If a memory address is specified, the
only al lowed value to the right of the relational is
zero, and If any other value is used, it wi I I be ignored.
NOTE: The conditional part of the breakpoint definition
may not be used with H,M, or J action codes. Two of th~
breakpoint actions require special syn+ax. These are the
M (message) and J (jump) types. The M action Is used to
print a specified message to the terminal _up?n execution
of the breakpoint. The J action 1s useo to transfer
control to another address CI ike a JMP instru~tion). Any
breakpoint containing M may not contain J and vice versa.
A breakpoint containing M should have an ASCII string
fol lowing the <count> (or fol lowing the address If no
count Is specified). This string Is the message which
wll I be printed on the terminal each time the Instruction
Is to be executed. Messages should be kept short (under
5 letters If possible). For the J type action, the hex
address of the location of transfer should be provided
after the <count> field. The examples below wl 11 help
clarify the syntax.

EXAMPLES:
8@100
8,SR@lOO
B,H@AlOO
8,ZR@300 >100

8@200, IF A•.3C

B , M@2 1 0, SUB 1

Stop and print registers at $100
Same as above
Set histogram at SA100
Zero states and print registers
after 100 times through $300
Stop & print registers at $200
only If acc. A= S3C ·
Print message 1 SUB i 1 every time
through location $210

- continued -

-29-

(

TSC Debug Package

B,J@l00,1000 Transfer control to location $1000
when reach instruction at $100

B,TZ@400,<25, IF $20=0

BP(,<address>(-<address>JJ

PURPOSE:

For the first 25 times through
location $400, turn trace on and
zero the states counter, but only
if location $20 Is zero.

The BP command is used to print the location of
breakpoints and their associated action codes. The two
address specifications are used to define the region of
memory for checking breakpoints (beginning and ending,
respective I y). If no ad dresses are specif I ed, a I I
breakpoints will be listed. If only one address Is
given, then only the breakpoint at that address wll I be
displayed (if one exists). Only the action codes are
I isted with each address.

EXAMPLES:
BP, 10-COO
BP

CLB[,<address>l-<address>JJ

PURPOSE:

List breakpoints between $10 & $COO
List al I breakpoints

Clear breakpoints in specified memory reglo,. The
addresses define the region of memo,-y. If only one
address is I isted then only the breakpoint at that
location wi 11 be cleared. If no addresses are specified,
al I breakpoints wi I I be cleared.

EXAMPLES:
CLB
CLB,0-100
CLB, 22A

CLH[,<address>(-<address>JJ

PURPOSE:

Clear al I breakpoints
Clear breakpoints between SO & $100
Clear breakpoint at $22A

Clear histogram counters in the specified memory region.
The addresses define the region of memory. If only one
address is I isted then only the histogram counter at that
location wi 11 be cleared. If no addresses are specified,
al I counters wi I I be declared. NOTE: This command does
not remove the histogram breakpoints, but clears Its
associated counter to zero in preparation ror a new run.

-30-

)

I

CLM

EXAMPLES:
CLH
CLH,25-200

PURPOSE:

TSC Debug Package

Clear al I histogram counters
Clear counters between $25 & $200

Clear al I messages in the breakpoint message table (used
by the M action code, see the 8 command). This table is
a fixed size and can be fl I led up. When deleting message
type breakpoints using the CLB command, the associated
space in the message tab I e does not get freed. It is
recommended that whenever al I M type breakpoints have
been cleared, also use the CLM command. Do not use this
command if there are any active M type breakpoints.
Their message strings wil I be destroyed!

EXAMPLES:
CLM Clear al I messages

HI ISTJ(,<address>(-<address>Jl

PURPOSE:
Print the histogram counter totals for the section of
memory specified. The addresses deflne the region of
memory. If only one address is listed rhen only the
counter at that location is displayed. If no addresses
are specified, al I counter contents ... , , be displayed.
Each counter is shown preceded by Its aidress. The
counter value shows the number of timas the Instruction
at that address has been executed.

EXAMPLES:
H 1ST
H,0-200

RT[,<address> J

PURPOSE:

Display al I hfstogram counters
Display counters between O & $200

Start real time program execution (not sfmulated) at the
current PC locatfon. Program execution wll I halt at the
<address> specified. This Is slmllar to the standard
breakpoint most users are famll lar with In that memory Is
actually altered at the address specified (with a JMP
Instruction). Entering RT without an address wl 11 clear
any real time breakpoint which may have been previously
entered. This type of breakpoint and program execution Is
not recommended since no protection or checking Is
performed. When the program reaches t~~ break address
specified, the breakpoint Is automatlc!l ly cleared and
the orlglnal code restored In memory. ROM may not be
breakpointed with this command.

-31-

TSC Debug Package

EXAMPLES:
RT,600
RT

VI. Memory Protecti~n

Start at PC, end at $600
Clear an existing RT breakpoint

The memory protection commands are a very powerful feature of the
program debugger. The PROT command al lows selected areas of
memory to be write, execute, memory, or simulate protected.
Write protected memory wit I cause a trap on any attempt to write
to it. Execute protect wi I I not al low opcodes to be fetched.
Memory protect wil I not permit any type of reference; read,
write, or execute. Simulate protect is used to protect sections
of code which should not be simulated (executed In real time).
It is important that only code cal led as a subroutine from
non-simulate protected memory be contained In the area(s) of
memory designated as simulate protected. An example would be to
simulate protect the section of memory where a DOS resides. Al I
subroutine cal Is to the DOS would then be executed In real time.
Code which Is simulate protected and does not fol low this
convention wil I usually cause the CPU to take over the execution
of the program resulting in a loss of control. NOTE: To protect
the memory around the machine stack (upper and lower bounds), use
the 'memory' protection. This is the only type checked on stack
references. Oiher commands in this group al low examination of
protected memory regions or bounds, as wet I as the clearing of
protection type~.

BO[UNOSJ[,<types>J

PURPOSE:
Display the bounds of protected memory. Each <type>
specified wl I I list al I regions of memory protected by
that type. <type> may be W, M, X, or S for write,
memory, execute, and simulate, respectively. Multiple
~ypes may be displayed by I isting the types on the
command Ii ne separated by a comma or space. If no type
is specified, al I types of protection wl 11 be I isted.

EXAMPLES:
BOUNDS
80,M,X

Display al I memory protection
Display memory and execute
protection bounds

-32-

(

(

(

TSC Debug Package

CLP(,<type> I

PURPOSE:
Clear al I protected regions for a specified type of
protection. The <type> is specified by t~e same letters
described in BOUNDS. Only one type may be listed per
command line. If type is not specified, all protection
wi I I be cleared.

EXAMPLES:
CLP
CLP,X

Clear al I protection
Clear execute protection

P[ROTJ,<address>(-<address>J,<type>

PURPOSE:
The PROT command Is used to assign protection to a region
of memory. The two <address> specifiers designate the
beginning and ending addresses of the selected region.
If only one address is specified, only the byte at that
location wi I I be protected. The <type> disignator may
either be M, X, W, or S for memory, execute, write, and
simulate protection respectively. Only one type may
appear with each address range. Multiple protection may
be performed on one I ine by separating the range-type
specifiers by a comma or a space.

EXAMPLES:
PROT,0-100,M Memory prot 0-$100
P,100,W,A100-A600,S .

VII. Execution Traps

Write prot $100 and simulate
protect SA100-A600

Execution traps al low program stopping on certain general
conditions. Several traps are always enabled. These include;
trap on 11 I ega I opcode and trap on RTS If nest count=O. The user
may enable and disable several other traps. These traps are for
Interrupt type instructions, transfer of address type
Instructions, trap on a selected subroutine depth (nest count),
an Instruction count timeout, and a general 1 stop 1 address.

INST=<count>

PURPOSE:
Set the Instruction count timer to th~ value of count.
If set to zero, this trap wl I I be disabled. This timer
Is used to count the number of simulated Instructions.
Each time this counter reaches zero, the program wl I I
halt and print 1 1C TIMEOUT AT XXXX', where XXXX Is the
address where the program stopped, and the counter wt I I

-33-

TSC Debug Package

be reset to the value it started at (the vafue specified
by <count>) •

EXAMPLES:
INST=400
INST=O

IT(RAPJ=ON or OFF

PURPOSE:

Set counter to 400
Disable the intructlon counter

Turning the !TRAP on wil I cause the simulator to treat
interrupt type instructions similar to II legal opcodes.
Any time a RTI, SWI, or WAI instruction is found, the
message 1 1 TRAP AT XXXX' wil I be displayed. The address
of the Instruction wil I be printed In place of the XXXX
shown.

EXAMPLES:
ITRAP=ON
IT=OFF

N [EST) =<va I ue>

PURPOSE:

Enable the interrupt trap
Turn off the trap

Set the nest trap at the level specified by <value>. The
simulator wi I I trap execution if a ~uhroutlne cal I
instruction is found which wi I I cause the ~est level to
equal or exceed that set by NEST. Setting th~ <value> to
zero wi 11 disable this trap.

EXAMPLES:
NEST=6
N=O

STOP=<address>

PURPOSE:

Set nest trap to level 6
Disable nest trap

The STOP trap is a general 'stop at address X' trap. It
is useful for trapping returns to monitor type programs
or operating systems. The trap Is set at the address
specified.

EXAMPLES:
STOP=100
STOP=EODO

Set stop trap at $100
Set trap at MIKBUG entry

-34-

)

('

' -- ----::i . --· .. -:,-

XFR=ON or OFF

PURPOSE:
Enabling the XFR trap wil I cause a trap each time a
transfer of address type instruction is found (JMP, SRA,
or BXX). This is useful for fol lowing major program
flow. Typing a 'G' command after this trap wil I cause the
program to start executing again.

EXAMPLES:
XFR=ON
XFR=OFF

VI I I. Interrupt Centro I

Enable the transfer trap
Turn the trap off

.Both NMI and IRQ type interrupts may be simulated. Two modes of ­
operation are possible. The first is automatic, periodic
interrupt ge·neration. This mode al lows interrupts to be
generated every N instructions. The second al lows random
interrupt generation from the keyboard. When these keys are
typed during program simulation, the appropriate interrupt wil I
be issued.

IRQ=<count>

PURPOSE:
Cause an IRQ type interrupt to be generated every <count>
instructions. If count is set to it:1ro, IRQ interrupts
w i I I be shut off.

EXAMPLES:
IRQ=5000
IRQ=O

NM I =<count>

PURPOSE:

Generate IRQ every 5000 instructions
Turn off automatic IRQs

Cause an NMI type interrupt to be generated every <count>
instructions. If <count> is zero, automatic NM I
interrupts wi II be turned off.

EXAMPLES:
NM I =300
NM I =O

Generate NMI every 300 Instructions
Turn off automatic NMls

-35-

TSC Debug Package

'Control I'

PURPOSE:
Typing a 'control I' during program simulation wi I I cause
an IRQ type interrupt to be generated.

'Contro I N'

PURPOSE:
Typing a 'control N' during program simulation wll I cause
an NMI type interrupt to be generated.

-36-

(

Command Summary

I. General System Control

C (ALC J
DEL(AYJ=<value>
DEP(THJ
EIXITJ
FILAGJl=<address>J
I ND=ON or OFF
MA(CHJ
MO(DEJ=O or 1
RIEG]
RES(ETJ
RET
SIETJ,<register I ist>
STACK I ,<va I ue> I
STATIESI
TRAIL
X,<o. s. command>

I I. Memory Commands

A[SMJ(,<addres~>I
DIISJ,<start address>,<stop address>
DU[MPJ,<address>
FIL[LJ,<start address>,<stop address>(,<byte>J
FINIDJ,<start address>,<stop address>,<string>
MI EM I, <ad dress>

I I I. Simulation Control

GIOJ
JIUMPJ,<address>
PA[Sil(,<value>J
S IM I , <count> I
ST[ARTJ,<address>
STEP[,<count> I
T[RACEJ=<value>
TS[IMJ I ,<count>]

-37-

TSC Debug Package

TSC Debug Package

IV. Breakpoints

8,<action>@<address>[,<modifier><count>)[, IF<condition>J
B@<address>(,<modifier><count>J[, IF<condition>)
BP[,<address>[-<address>II
CLB[,<address>[-<address>JJ
CLH[,<address>[-<address>JJ
CLM
H[ISTJ[,<address>[-<address>JI
RT[,<address> J

V. Memory Protection

BO[OUNDSJ[,<types>J
CLP[,<type> I
P[ROTJ,<address>[-<address>J,<type>

VI. Execution Traps

INST=<count>
IT[RAPJ=ON or OFF
N(ESTJ=<val ue>
STOP=<address>
XFR=ON or OFF

Vil. Interrupt Control

I RQ=<coun t>
NM I =<count>

-38-

(

(

TSC Debug Package

Message Descriptions

The fol lowing Is a I 1st of al I Debug generated messages and
their respective meanings.

WHAT? = This is t~e general error message reported when an
lnval id input command has been entered.

"STOP" AT= The aadress set by the STOP trap command has been
reached.

IC TIMEOUT AT= The number of Instructions specified by the INST
trap command have been executed.

ILLEGAL OPCODE AT= The instruction pointed to by the PC is an
i I I ega I opcode.

TRAP AT= An SWI, RTI, or WAI instruction has been encountered
and the ITRAP command has been used to enable the interrupt
trap.

LAST XFR FROM = Displayed by request using the TRAIL command.
The address gives the location of the last transfer of
address type i~struction which was executed.

SYNTAX ERROR~ The com~and just entered does not fol low the
syntax r~les ~~~ that command.

EP TRAP AT= An Execution Protect trap at the specified location
resulting trc~ an attempt to execute code in execute
protected memory.

WP TRAP AT = A Write Protect trap at the specified location
resulting from an attempt to write into write protected
memory.

EX - MP TRAP AT= An attempt to execute code residing in memory
protected memory has been detected at the specified address.

REF - MP TRAP AT= An attempt to reference (read or write) a byte
in memory protected memory has been detected at the
specified address.

SP TRAP AT = A Stack Pointer reference (PSH, JSR, etc.) was
attempted in a section of memory which is memory protected.

TABLE OVERFLOW = The last command entered caused an internal
table to overflow. The command dis not get executed.

NC TRAP AT= A Nest Count trap occurred as a result of the nest
I eve I reach l ng the I eve I specified in a NEST command.

-39-

TSC Debug Package

RTS IN LEVEL OAT= An RTS instruction was encountered while the
nest level was ·O (no previous cal I to subroutine had been
executed) •

NEST LEVEL ISO= There is no return address on the stack so the
RET command can not display an address.

XFR TRAP AT= A transfer of address type instruction has been
encounterd with the transfer trap enabled (from XFR=ON).

MON XFR AT= The program being simulated tried to pass control to
the monitor address which is used by the EXIT command.

OP HALT AT= An operator halt signal (control C character) was
detected by the simulator.

-40-

(

TSC Debug Package

Getting Debug Running

The Debug Package loads from address $3COO through $5FFF.
The debugger may be executed by typing:

+++DEBUG

A 1**' prompt should appear. The program is started through Its
cold start entry point (location $4100) which initializes al I
system tables, clears al I registers, and clears out breakpoints.
If it Is necessary to re-enter the debugger after an EXIT
command, the program should be entered at location $4103, the
warm start entry point. No clearing of values or tables Is
performed at this entry. Once in the Debug Package, files may be
loaded from the disk by using the X command. As an example, to
load the file TEST.BIN, type the fol lowing:

**X,GET,TEST

If TEST is found, It wi 11 be loaded into memory. It is important
that the program being tested and the Debug Package do not
overlap in memory. If they do, consult the section of this
manual on relocation. When finished with the debugger, the EXIT
command wi I I return you back to FLEX•.

-41-

TSC Debug Package

Example Use

The fol lowing is an example debug session. It is assumed
that the Debug Package is running and the program being tested Is
resident in memory. The sample program Is shown first in Its
source I I sting torr.,. Fol lowing is the sample debug operation.

I. Sample Program Source Listing

* * FIND THE MAX & MIN OF DATA LIST
*

0100 ORG $0100

* STORAGE LOCATIONS

0100 LARGE RMB 1 LARGEST VALUE
0101 Si-tA.LL RMB 1 SMALLEST VALUE

0200 ORG $0200

* PROGRAM STARTS HERE

0200 CE 02 26 rtNMAX LOX #DATA POINT TO DATA STRING
0203 7F 01 00 CLR LARGE PRESET MAX
0206 86 FF LOA A #$FF ALSO
0208 B7 01 01 STA A SMALL PRESET MINIMUM
0208 A6 00 LOOP LOA A o,x GET DATA ITEM
0200 Bl 01 00 CMP A LARGE ITEM> LARGE?
0210 24 03 BCC CONT2
0212 87 01 00 STA A LARGE UPDATE LARGE
0215 Bl 01 01 CONT2 CMP A SMALL ITEM < SMALL ?
0218 24 03 sec CONT3
021A 87 01 00 ST.A. A LARGE UPDATE SMALL
0210 08 CONT3 INX ~OVE TO NEXT ITEM
021E ac 02 2E CPX #DATEND END OF LIST?
0221 26 EB BNE LOOP IF NOT, REPEAT
0223 7E EO DO JMP MON RETURN TO MONITOR

* DATA LIST

0226 02 DATA FCB 2,54,76,32,12,87,55,6
022E OATEND EQU *
EODO MON EQU $EOOO MONITOR EQUATE

END

-43-

I
: !

·:
!

i

' '

l
I

I

TSC Debug Package

I I. Sample Debug Session

•*OIS,200,223

I 0200 LOX #$0226
0203 CLR $0100
0206 LOA A #$FF
0208 STA A $0101
0208 LOA A O,X
0200 CMP A $0100
0210 BCC $0215
0212 STA A $0100
0215 CMP A $0101
0218 BCC $0210
021A STA A $0100

1) 1.1A~5 £ti1.i1..E. /1-1/kH 1AJ£. Co/J£. /Rod\

rJ2c-n 7C .l2.z3. :5E£ THi .)Oc)~Ct..

J../:5,o.)(.- ;""~ C,)M?AA' l.5olJ.

021D INX
021£ CPX
0221 BNE
0223 JMP

#$022£
$0208
$EOD0

**PROT,200,225,W
•*BOUNDS,W

wRITE PROTECTION

0200-0225

**R]),~;,;..,; ·r in'£ i £(, ,~, £ t!.S
C=OO A=OO 8=00 X=OQOO S=A07F P=COOO N=OO 0000 ADC A $8989
**START ,200 .571,~r /Jlcr~Ahl A-r .ii 2.£:c,
MON XFR AT EODO - 11.t~Al,,r~ -t.~,.;:r1:."4!. ·if<A//.
**M, 100
ulOO 06 • ti£ A/Yl1,.,;t .J /CD t I Jc I (LAf6£ i SJ7A-/..L)
0101 FF - ;){5'_1,_r /!; A):~ r CL>~l!.L,~ TI
dSET P=200 St i i'e- i i.w:A/J11,~~ ~EC1ST£~S
•*R
C=CS A=06 8=00 X=022E S=A07F P=0200 N=OO 0200 LOX #$0226
**IND=ON s~-r 'IA.Ju .t r1..At,.., ,.1...,t eE!;.;LrJ
•*FLAG=lOO ~
•*R ~
C=C5 A=06 B=OO X=C22E S=A07F P=0200 N=OO 1=89 F=06FF 0200 LOX #S0226
**TSIM,10 7RAc:.!. /0 -r.1...r:~r~..Jc:.T10,..;.s
c=Cl A=06 8=00 X=0226 S=A07F P=0203 N=OO I=02 F=06FF
C=C4 A=06 B=OO X=0226 S=A07F P=0206 N=OO I=02 F=OOFF
C=C8 A=FF 8=00 X=0226 S=A07F P=0208 N=OO I=02 F=OOFF
C=C8 A=FF 8=00 X=0226 S=A07F P=0208 N=OO 1=02 F=OOFF
C=CO A=02 8=00 X=C226 S=A07F P=020D N=OO I=02 F=OOFF
C=CO A=02 B=OO X=0226 S=A07F P=0210 N=OO I=02 F=OOFF
C=CO A=02 8=00 X=0226 S=A07F P=0215 N=OO 1=02 F=OOFF
C=Cl A=02 8=00 X=0226 S=A07F P=0218 N=OO !=02 F=OOFF
C=Cl A=02 B=OO X=0226 S=A07F P=021A N=OO 1=02 F=OOFF
C=Cl A=02 8=00 X=0226 S=A07F P=0210 N=OO 1=02 F=02FF

:::i218 5£, '.SR· Bc£A1<.PD0.J r A-, J 21 B

0218 - SR 7h sl' 1... '1 'I A ti ;U, ! ,4 t ?t.VA--' T~
-44-

0203 CLR SOlOO
0206 LDA A #$FF
0208 STA A $0101
0208 LOA A O,X
020D CMP A SOlOO
0210 BCC $0215
0215 CMP A 50101
0218 8CC $0210
021A STA A $0100
0210 INX

l

i

I •

I
' I
i
i
i
i
I
,
l
i
' l
t
I
\
!
' • ;

Ir
!
l
l ,
J
J
l .,
..
~
i

TSC Debug Package

YIIIAT PRo~R.!J.M HT ?6 .
**G HIT .. ·:uiA1t.PlllAJ't' ~
C=Cl A=36 B=OO X=0227 S=A07F P=0218 N=OO 1=36 F=02FF 0218 BCC $0210
**TS1M - -r/U:J'-£ I IN~n(i..Jt::T(O/'J,

C=Cl A=36 B=OO X=0227 S=A07F P=021A N=OO 1=36 F=02FF 021A STA A $0100
**ASM 21A

U21A 'STAA $101 1/sc /JS/v\ -r~ fl X /
U210

**CLB

•*START 200 Ku,.; P.en6R.AM AGlro.J
MON XFR AT EOOO

EKAl'WtNt- URt:-£ t 5/nAI-L

Sha., iJ ie. srA A ,10 I {

**M 100
UlOO 00.
0101 02
**TRACE=40

s~1IILL 13 61<. f J..A~~ C ,.s .!J TIU.. w~cA.)~ .

•*START ,200 fAJ.41!.L.£. "12AL6. To 'fO f ~Al ·
C=CO A=06 B=OO X=0226 S=A07F P=0203 N=OO 1=02 F=0002
C=C4 A=06 8=00 X=0226 S=A07F P=0206 N=OO 1=02 F=0002
C=CS A=FF B=OO X=0226 S=A07F P=0208 N=OO 1=02 F=0002
C=C8 A=FF B=OO X=0226 S=A07F P=020B N=OO 1=02 F=OOFF
C=CO A=02 B=OO X=0226 S=~07F P=0200 N=OO 1=02 F=OOFF
C=CO A=02 B=OO x~o226 S=A07F P=0210 N=OO !=02 F=OOFF
C=CO A=02 B=OO X=0226 S=A07F P=0215 N=OO I=02 F=OOFF
C=Cl A=02 B=OO X=0226 ~=AU7F P=0218 N=OO !=02 F=OOFF
C=Cl A=02 B=OO X=0226 S=A07F P=021A N=OO I=02 F=OOFF
C=Cl A=02 8=00 X=022~ S=A07F P=0210 N=OO 1=02 F=0002
C=Cl A=02 8=00 X=022i S=A07F P=021E N=OO 1=36 F=0002
C=Cl A=02 B=OO X=0227 S=A07F P=0221 N=OO !=36 F=0002
C=Cl A=02 B=OO X=0227 S=A07F P=0208 N=OO I=36 F=0002
C=Cl A=36 B=OO X=0227 S=A07F P=020D N=OO I=36 F=0002
C=CO A=36 B=OO X=0227 S=A07F P=0210 N=OO !=36 F=0002
C=CO A=36 B=OO X=0227 S=A07F P=0215 N=OO !=36 F=0002
C=CO A=36 8=00 X=0227 S=A07F P=0218 N=OO I=36 F=0002
C=CO A=36 B=OO X=0227 S=A07F P=021D N=OO I=36 F=0002
OP HALT AT 0210
**DIS 208 210

0203 CLR $0100
0206 LOA A #$FF
0208 STA A $0101
0208 LOA A O,X
0200 CMP A $0100
0210 BCC $0215
0215 CMP A $0101
0218 BCC $0210
021A STA A $0101
0210 INX
021E CPX 1$022E
0221 8NE $0208
0208 LOA A O,X
0200 CMP A $0100
0210 BCC $0215.2
0215 CMP A $01~15
0218 8CC $0210
0210 INX

0208 LOA A O, X , 1 /

~~~~ ~~~ A i~1~~ ~ SHOULD eG. B1-s I AJ5t.2.uc no~ ' 

**ASM 210 
u210 8LS $215 l1sl. ASM re Cr.RR.Ge.., CD]) if_. 
u212 

... *T=O 
•*START 200 S~:' 7"R..4c£ --ro fi (cf/) /hvi) Rt,11.J ,i'.ec6.f?AM· 
MON XFR AT EODO 
**M 100 
0100 57 • /1).)5,vf~ A~L A..~u.> C'c."R~tfc.7 / 
0101 02 

-45-



TSC Debug Package 

**8 H@200 
**8 H@208 
"'*B H@215 
•*8 H~21D 
•*BP 

0200 - H 
0208 - H 
0215 - H 
0210 - H 

**START 200 
MON XFR AT EOOO 
**HIST 

0200 - 0 
0208 - 8 
0215 - 8 
0210 - 8 

**STATES 
STATES= 00000300 
**DIS 200 223 

0200 LOX #$0225 
0203 CLR $0100 
0206 LDA A #$FF 
0208 STA A $0101 
0208 LDA A O,X 
0200 CMP A $0100 
0210 8LS $0215 
0212 STA A $0100 
0215 CMP A $0101 
021a sec $0210 
021A STA ti $0101 
0210 INX 
021E CPX 
0221 8NE 
0223 JMP 

**EXIT 
$ 

#$022E 
$0208 
$EOD0 

loAJ i'£O~li.H,ri - ·-~7»!) r ' ct.LA~~ 
TrtE 5Tllr£~ U)L)AJ,-L ,e, 

\ 

) 

-46 · 

( 



TSC Debug Package 

Adapting to Your System 

The fol lowing descriptions may prove 
this program to non-standard systems. 
references are described below. 

he I pf u I In 
Al I 1/0 

adapting 
and stack 

I. I /0 References 

GETCHR at $4106. This 
character routine In 
may be used as long as 
accumulator with the 
registers. 

jump vector references the standard 
the SWTBUG monitor ROM. Any Input 
it returns the ASCII character in 
parity removed, and preserves the 

Input 
routine 

the A 
8 and X 

PUTCHR at $4109. This jump vector references the standard output 
character routine In the SWTBUG monitor ROM. Any output routine 
may be used as long as it outputs the character from the A 
accumulator, and preserves the Band X registers. 

WARMS at S410C. This jump vector references the starting entry 
address of the SWTBUG monitor ROM. This may be changed to the 
starting address of your own monitor. This is the address used 
by the EXIT CC'fflmand. 

I I. 1/0 Related Storage 

ACIA at $410F. This FOB formed address Is a pointer to the ACIA 
base address used by the basic input and output routines. Change 
as needed. NOTE: The Debug Package requires an ACIA type serial 
interface to function correctly. 

BSP at $4111. This byte contains the character which is 
as the backspace character (currently a Control H, $08}. 
as desired. 

decoded 
Change 

DEL at $4112. This byte contains the character which is decoded 
as the I ine cancel character (currently a Control X, $18}. 
Change as desired. 

BSE at $4113. This byte contains the character which wi 11 be 
echoed after the receipt of a backspace character (currently a 
Centro I H, $08). If this character is set to $08, a space wi I I 
be output preceding the backspace echo character. Setting this 
byte to zero wi I I inhibit the backspace echo character. 

ESC at $4114. Tnis byte contains the character which is decoded 
as the Escape c haracter (currently an ASCII Escape, $18). This 
may be changed as desired. 

-4 7-



TSC Debug Package 

I I I. Stack Pointer References 

Load Stack at $4118 and $4195. These two locations contain LOS· 
instructions and set the stack to $3FFF. They may be changed as 
desired. 

IV. The X Command 

The X command cal Is a section of code at location $5589. This Is 
implemented for the FLEX disk operating system and cal Is FLEX to 
perform a specified command. If you are using a different 
operating system, you may substitute your own code to perform the 
equivalent. The code may reside from $5589 through $55A2. 

v. System Tables 

The Debug Package uses several system tables which reside from 
$3COO to $3F9F. They are named and sized as fol lows: 

BPTAB RMB 256 Al lows 32 breakpoints 
STRTPC RMS 512 256 past instructions 
SMTAB RMB 32 8 s im prot fie Ids 
EXTAB RMB 32 8 ex prot fie Ids 
WPTAB RMB "I;') 8 write prot fields 
MTAB RMB 32 8 rnem prot fie Ids 
MSGTAB Rr-:s 32 approx 5 messages 

These tables may be moved and ex~anded to al low more breakpoints 
and protection fields as desired. Complete details wil I not be 
given here, as this is a job for the more experienced programmer. 

VI. Saving the Altered Program 

After modifications have been mace to the program, it may be 
5aved on mass storage. The program should be saved from $4100 
through $5FFF. The start:ng or transfer address is $4100. 

4 E, 

(' 



{ 

' 

\ 
i 

TSC Debug Package 

Rel?catlng the Debug Package 

The Debug Package may be relocated In memory by using the 
TSC 6800 Relocator (part number SL68-28). The Debug Package as 
sold resides from $3COO to $5FFF. It may be moved easily to any 
lower memory location and to any location higher than $5COO. The 
example below shows relocation to $5COO which moves the cold 
start entry address to $6100 (from $4100). The relocated version 
wi I I reside from $5COO to $7FFF. If It is necessary to move the 
program to an area between S3COO and SSCOO, two relocations must 
be performed, one moving It to a lower location, and then up to 
the desired position. This is necessary because of program 
overlap. NOTE: The Debug Package must always start on a page 
boundary. 

Relocation Example 

* TSC 6800 RELOCATOR * 
PRESENT PROGRAM: 
BEGIN ADDRESS? 4100 

END ADDRESS? 5FFF 
MOVE TO? 6100 

FIX REFERENCES? Y 
LOAD FROM TAPE? N 
DATA BLOCKS? Y 

BEG I 1~ ADDRESS? 41 OF 
END AOC~~~$? 411A 

BEGIN ADDRESS? 57A8 
END ADCr-r.SS? 5FFF 

BEGIN ADDRESS? FFFF 
ALTER RANGE? Y 
BEGIN ADDRESS? 3800 

END ADDRESS? SFFF 
FIX FOB'S? Y 
ADDRESS? 57AC 
ADDRESS? 5780 

II 5789 
II 57BE 
II 57C5 
II 57CB 
II 5701 
II 5707 
II 5700 
II 57E3 
II 57EB 
II 57F3 
II 57FA 
" Sc!Ol 
" 5808 
" 580F 
" 5816 

-49-

--



TSC Debug Packa!Jl:t 

II 5818 
II 5822 ( 
II 5828 
II 582F 
II 5835 
II 5830 
II 5844 
II 584A 
II 5851 
II 5358 
II 585F 
II 5865 
II 586C 
II 5873 
II 5879 
II 5881 
II 5887 
II 588C 
II 5892 
" 5898 
II 58AO 
II 58A8 
II 5881 
II 5888 
II 586f 
" 58C7 
II 58i:F 

5ouo 
58:)A 
58EO 
5dE.8 
58ED 
58EF 

" 58F1 
II 58F3 
" 58F5 
" 58F7 
" 58F9 

58FB 
58FD 
5GFF 
5901 
5903 
5905 
5909 

II 590D 
" 5911 
II 5915 
II 5919 
II 5910 

ADDRESS? 5921 
ADDRESS? FFFF 

RELOCATION COMPLETE ! ! ! 

-so-


