
,, 
a 

TSC 6800 Mnemonic Assembler 
SL68-26 · 

Copyright (C) 1977 
Technical Systems Consultants 

Box 2574 
West Lafayette, IN 47906 

The TSC 6800 Mnemonic Assembler was written for maximum flexibility 

making it usable to owners of RAM-only systems as well as disk system 

owners. As always, flexibility adds complexity and therefore the user 

is advised to read the following application notes thoroughly before trying 

to use this program. 

It is assumed that the user is familiar with assembly language and, 

in particular, the mnemonics of the M620~ assembly language. Those who 

are not are referred to the "Mb80~ Microprocessor Progranming Manual" or 

the "M6800 Programming Reference Manual," both available from your 

Motorola distributor. 

The source language (input) for the TSC 6800 Mnemonic Assembler con­

sists of a subset of the 7-bit ASCII (American Standard Code for Information 

Interchange, 1968) character set. Special meaning is attached to many of 

these characters as will be described later. In all cases the parity bit 

lmost significant bit) of each character must be~- This restriction, of 

course, does not apply to line numbers, if present. 

Each line of source for the assembler consists of any number of bytes 

, (possibly none) preceeding the first character of the source statement, 

followed by the source statement, followed by a carriage return lhex 0D). 

The source statement consists of up to four "fields" which are free format. 

From left to right, the four fields are label , operator (mnerronic), 



C 

( 

2 

operand, and comment. There must be at least one space between each of 

these fields. Further restrictions and options for each of these fields 

are: 

label field 

1) The label must begin in the first column and must be unique. 

2) Labels consist of letters {A-Z) and numerals (0-9). 

3) Every label must begin with a letter (A-Z). 

4) Only the first 6 characters of any label are significant, the 

rest are ignored. 

5) The label field may be the only field present. 

operator field 

1) The operator is 3 alphabetic characters (A-Z) which must be 

followed by a space. The exception to this is number 2, below. 

2) Mnemonics such as LDA A and AND B may be written as LDAA and ANDB, 

respectively. In this case fourth character must be followed by 

a space. 

operand field 

1) The operand field may consist of an addressing mode indicator and 

an expression or just an expression. 

2) The addressing mode indicator is either a I (Pound sign) followed 

by an expression for immediate addression or an expression followed 

by ,X for inde~ed addression. (Expressions defined later.) 

3) An operand may or may not be required depending on the addressing 

mode. 



,, I 

r { 

3 

corrroent field 

1) The convnent field is optional 

2) Comments may contain any character from SPACE ($20) to DEL l$7F). 

Expressions 

Expressions consist of combinations of numbers and symbols seperated 

by one of the four arithmetic operators+, - , *, /. The arithmetic is 

done with lo bit integer operands and truncated as necessary. 8 bit results 

are taken from the least significant 8 bits. Unary{+) and{-) are allowed. 

Expressions must not contain spaces. 

Nunbers 

Numbers are groupings of the numerals ~-9 and possibly letters pre­

fixed~ postfixed by a base indicator. Possible base indicators are shown 

below. The ASCII base allows a single ASCII character l$20-$5F) to be 

used as an operand when preceeded by a single quote. 

Base Prefix Postfix Corrrnent 

Decimal none none decimal assumed 

Binary % B 0, 1 a 1 lowed 

Octal @ 0 or Q 0-7 al lowed 

Hexadecimal $ H 0-9, A-Fallowed 

ASCII not a 11 owed ASCII equivalence 

Symbols 

Symbols are groupings of letters and numerals the first 6 of which are 

significant and the first of which must be a letter. The single character 

* is a special symbol whose value is the current value of the program counter 

(PC}. 



( 

Evaluation of Symbols and Expression~ 

Since this is a two pass assembler all symbols must be resolved in the 

two passes. Therefore, only one level of forward referencing is allowed. 

Assembler Directives 

In addition to the 72 M68~e mnemonics this assembler supports 11 

assembler directives or pseudo-ops. These pseudo-ops are listed below 

along with a brief description. More detailed descriptions follow. 

FCC form constant character 

FCB form constant byte 

FOB form double byte 

SPC insert spaces in output listing 

OPT activate or deactivate assembler options 

PAG skip to next page of output 

ORG define new orig in (PC) 

EQU assign value to symbol 

END, MON signal end of source program 

NAM, TTL specify name or t i t 1 e 

RMB reserve memory bytes 

FCC 

The function of FCC is to create character strings for messages or 

tables. The character string 1 text 1 is broken down to ASCII, one character 

per byte. The two allowable formats are shown below: 

label FCC count, text 

o r 

label FCC delimiter text same delimiter 



-( 

5 

where count is any legal expression. In the case where a number is used as 

a delimiter the first character of text must not be a comma. The character 

limit of any single FCC statement is 255. The use of label is optional. 

FCB 

The FCB pseudo-op causes an expression to be evaluated and the re­

sultant 8 bits placed in memory. Usage is shown below: 

label FCB expression 1, expression 2, ••• ,expression N 

Each expression is seperated by a comman with a maximum of 255 expressions 

per FCB statement. The label is optional. 

FOB 

The function of the FOB directive is identical to FCB except 16 bit 

quantities are assembled, i.e., two bytes generated for each expression. 

The required format is shown below: 

label FOB expression 1, expression 2, ••. ,expression N 

where the label is optional. The maximum number of expressions is 127, 

SPC 

The SPC operator causes the specified number of spaces to be inserted 

in the output listing. The format is shown below. 

SPC expression 

Notice that no label is allowed. If 'expression' evaluates to zero one 

space is inserted. The operator SPC itself does not appear in the output 

listing. If PAGE mode is selected SPC will not cause spacing past the top 

of the next page. 



6 

OPT 

The directive OPT is used to activate or deactivate the assembler 

options. The format is shown below. Notice that no label is allowed and 

no code ls generated. 

OPT option 1, option 2, ..• ,optlon N 

The allowable options are: 

SYM print sorted symbol table after the listing (default) 

NOS do not print the symbol table 

GEN print all code generated by FCB, FDB, and FCC (default) 

NOG print only one line for each FCB, FDB, or FCC 

LIS print the assembled source listing (default) 

NOL suppress the printing of the source listing 

PAG enable page formatting and numbering 

NOP disable page mode (default) 

MEM enable storing of object code in memory 

NOH disable storing of object code in memory (default) 

TAP enable the production of MIKBUG object tape 

NOT disable the production of MIKBUG object tape (default) 

If contradicting options appear the last one appearing takes precedence. All 

options take effect simultaneously at the beginning of pass 2. The default 

options specified take effect unless the user specifies a particular option. 

Only the first 3 characters of an option name are significant and multiple 

options are seperated by a comma. Some of the consequences and uses of the 

options will be explained later. 



" 

7 

PAG 

The PAG operator, if the PAG option is on, causes a page eject and 

subsequently causes the title (if any} and page number to be printed at 

the top of the next page. No label is allowed and no code is produced. 

Notice that the first page of any listing is page~ and no title is printed 

on that page. The PAG operator itself will not appear in the listing. 

The usual procedure is to have all the options and the title declaration 

followed by a PAG be the first statements in a program. 

ORG 

The ORG operator, whose format is shown below, causes a new origin 

address (PC) for the code following. 

ORG expression 

Mo label Js allowed and no code is producer!, lfno ORG appears an origin 

of 0m0m is assumed. 

EQU is used to equate a symbol to an expression as shown below. A 

label is required and no code is generated. Only one level of forward 

referencing is allowed and the equate must not be recursive. 

labe 1 EQU expression 

No code is produced by EQU. 

END or MOU 

These operators signal the assembler that the end of the source input 

has occurred. No label is allowed and no code is generated. 



8 

NAM or TTL 

These operators are used to assign a title to be printed at the top 

of all pages (other than page~) If the PAG option is on. If the PAG 

option is off this operator has no effect. The format, as shown below 

al lows up to 32 characters in the title. No label ls al lowed 

TTL text for the title 

and no code is generated. If roore than one TTL or NAM operator appears 

the last one "executed" will be prlnted on the next page. 

RMB 

This operator causes the assembler to reserve memory for data storage. 

No code is produced and therefore the contents of those memory locatlons 

are undefined at run time. The label is optional as shown below 

label RMB expression 

where 'expression' is a 16 bit quantity. 

** Description of assembler operation 

Pass 1 - PASONE ($03B1) 

Pass J ls used to build the symbol table which ls used to resolve 

forward references. Nothing Is printed unless the error limit is exceeded 

(BS). Pass 1 must be run before PASS 2 and again before PASS 3. 

Pass 2 - PASTWO ($03D9) 

During pass 2 several things may happen. 

l) If the LIST option ls on, the assembled source listing ls printed with 

error messages, if any. 



9 

2) If the LIST option Is off only offending source lines and their 

corresponding error messages are printed. 

3) If the TAPE option Is on, a MIKBUG formatted object record Is outputted 

(through a different control point than the source listing). 

4) If the MEMORY option ts on, object code ts placed in memory in the 

following form: 

COUNT ADDRESS DATA ••• DATA COUNT ADDRESS DATA ••• DATA TERM 

where ADDRESS ts the destination address of the first data following 

COUNT ts a 16 bit byte count Indicating how many data bytes 

follow 

DATA Is the actual data 

TERM ts the record terminator (a COUNT of ~e~~) 

When a count of ~e00 occurs this signifies the end of the program. 

5) If the SYMBOL option Is on, a sorted symbol table will be printed after 

the assembly listing (if any). Pass 1 must be run before PASS 2. 

Pass 3 - PASTHR ($0588) 

Pass 3 Is used when the user does not have a "punch" device, on which 

to save the HIKBUG formatted records, which operates independently from the 

list device. Pass-3 is identical in operation to pass 2 except that NOSYM, 

NOLIST, NOMEM and TAPE options are forced and error messages are suppressed. 

Pass 1 must be run before PASS 3, PASS 2 and PASS 3 are Independent. 

Initialization 

There exists In the assembler an initialization routine for each of 

the passes which must be run once before that pass In run. These are 

called Pl INIT, PZINIT, and P31NIT for passes 1, 2, and 3, respectively. 



10 

Adapting to Your System 

Due. to the inherent flexibility of this assembler It ts necessary 

that each user customize It to fit the particular system. This Involves 

very few changes and can be made by any Individual familiar with 6ROO 

assembly language. Each point to be adapted ts explained below. 

Output Character Routine 

The address at $0321 must be changed to that of your Output 

Character routine. This routine must print the ASCII character In 

the A register whose parity bit (most significant bit} Is zero. The 

Band X registers must not be altered. If you have a printer or a 

disk you will likely want to specify the address of a program which 

handles these peripherals as well as the control terMinal. 

Tape Output Character Routine 

The address at $0324 must be changed to that of your tape punch 

(or tape record) routine. It Is through this control point that the 

MIKBUG formatted object code is outputted. ff you do not have a 

seperate punch or record device this address may be the same as the 

Output Character routine address, I.e., tape device same as list device. 

Tape Control Characters 

There are provisions at $o4CO and $o4c4 for four control characters 

to activate and deactivate, respectively, your punch or record device. 

Simply place the appropriate control characters for your device In each 

of the strings. If you desire to send less than the four characters, 

change the byte at $04B3 to the appropriate value (even S). This 

will, of course, affect both turn on and turn off simultaneously. 



.r 

l l 

Tape Contra) Delay 

The byte at $04C9 controls the number of half-seconds (1MHz clock) 

of delay between tape turn on and data and also between data and 

tape turn off. The delay is set now to z seconds. If you don't 

need delay at a11 set the byte to ~0. 

Page Control 

Page Eject 

The four bytes at $11D1 are provided for the user to insert the 

necessary control characters to cause the printer to form feed, 

i.e., eject to the top of the next page. If you need only 1 

character, simply place the ~4 after that character in the string. 

The control character is currently set to $eA (line feed). 

Top Margin Control 

The byte at $1143 controls the number of lines from the form 

feed position to the title and page number line lean be~). 

Page Length Control 

The byte at $07C5 controls the number of lines to be printed 

on each page before the form feed is issued. This count Includes 

the top margin and the title line and should be larger than 

(top margin+ 1). 

The user may want to alter other features such as the number of .columns 

printed in the symbol table, etc. Host rrodifications of this type 

will be needed by only a few users and therefore will not be elaborated 

upon here. These users are encouraged to study the code to facilitate 

making the desired modifications. 



12 

Controller Routlne 

The routine MAIN ($3~0) is an example of how to use the assembler 

subroutines. It assumes the user has no independent punch device 

and therefore must run PASS 3 in order to output the object code. 

Also, MAIN assumes the source program resides entirely in RAM and 

that the necessary pointers (to be described) are set. 

Disk users will, of course, want to write their own MAIN 

routine which will bring in each section of source code and run 

PASS 1 on each, then bring Tn each section again and run PASS 2, 

similarly for PASS 3. Naturally, the initiatization routine for 

each pass need be run only once before each series of passes of the 

same type. Be reminded that PASS 1 needs to be run before PASS 2 

and again before PASS 3. This procedure will allow assembly of 

files too large to reside entirely in RAM. 

One note of caution: the END operator is not strictly necessary 

at the end of a program as the pass in effect will terminate at 

the end of the source area. However, if you are generating object 

code, only an END statement will flush the code buffer or fix the 

memory count. LTkewise, only an END operator will cause the symbol 

table to be printed (if SYM is on). The byte ENDFLG ($0058) will 

be set ($FF) if the END operator occurs, whlch can be detected by 

your MAIN routine. 

Assembler Data Pointers 

Before calling any assembler routines the user must set several pointers 

to data areas. This feature allows much flexibility but restrictions which 

apply to each pointer are outlined below. No assembler routines modify 

these pointers. 



-( 

LBLBEG - $fHJ40 

LBLEND - $0042 

1 3 

These are the pointers to the area which will be used for the label 

table (symbol table). Each entry (symbol) in the table requires 8 bytes. 

A large table will result in the Put Label and Find Label routines running 

faster but the She11 (sort) routine wi11 run slower. A small table wi11 

have the opposite effect. Of course, the table needs to be large enough 

to accomodate the number of symbols in your program. A reasonable formula 

fer determining the size necessary is: 

SIZE= N * 8 * 2 = N * 16 bytes 

where N is an estimate of the number of symbols expected. When the table 

is fu11 an error message will be inserted in the listing. (The table may 

not be completely full due to the algorithm used for creating the table -

hashing, or scatter storage.) 

If you want a lK symbol table {a reconrnended minimum, enough for 

60-80 labels) you might set LBLBEG to $2000 and LBLEND to S23FF. Notice 

that the pointers do point to the actual beginning and end of the table. 

SRCBEG - $0044 

SRCEND - $0046 

These two pointers indicate the beginning and end of the section of 

source code to be assembled, which may be as small as one line of source. 

SRCEND must point to the carriage return ($00) of the last line of the 

source section to be assembled. 

LINBYT - $0048 



11.t 

Although not actually a pointer LlllBYT is related to the source pointers. 

It tells the assembler how many bytes to ignore frorr. carriage return of 

the previous line (or SRCBEG) before actually processing text. This allows 

direct output of text editors to be assembled without removing the preceeding 

line numbers. If you have no line number bytes, set LINBYT to~. 

MEMPTR - $0049 

This pointer tells the assembler where in r-,emory, if the MEMORY option is 

on, to put the assembled object code. Recall that four extra bytes 

(address and count) are required for each contiguous block of code. 

Error Messages 

This assembler supports 12 error messages which are printed after 

the offending line. The error messages announce violations of any of the 

restrictions set forth in this manual and are, therefore, self-explanatory. 

Additionally, the byte 'ERRORS' (cleared by Pl INIT) will be set If any 

errors have occurred in any of the passes. 

Note: The ASCII characters 00 - $0C, $0E - $1F, and $80 - $BF, inclusively 

are explicitly prohibited from being in any area of the source program with 

the exception of the bytes which are skipped by the assembler (line number 

bytes). Their existence will cause undefined results. The remaining ASCII 

characters may appear subject to all of the foregoing restrictions. 

Additional Feature 

This assembler supports 2 extra mnemonics namely BHS and BLO which 

are the logical equivalents of BCC and BCS respectively. However, Branch 

if Higher or Same and Branch if Lovier are much easier to remember and use. 



15 

Final Note 

Please be reminded, when using the MEMORY option, that In most cases 

the object code will not be put in memory where it can be executed. It 

is up to the user to write the simple routine necessary to move the code 

to its proper executable location. 

Important: The address at $031C is the address to which control returns 

when the assembly is complete. This should be modified to suit your needs. 

**** USING THE TSC EDITOR**** 

The TSC Text Editing System and the TSC Mnemonic Assembler have not 
been written to be used co-resident. It is possible to use them one 
after the other without reloading the source. Following is the 
procedure to be used: 
1. Load the editor but before running, change BEGPNT (location $0359) 

presently $1492 to $1600. This moves the starting location of the 
text. Put a $00 at location $15FF. 

2. Run the editor and create your file. 
3. When finished, exit the editor and write down the contents of 

a.) FILBEG ($0097- 0098) Shows the source beginning. 
b.) FILEND ($0099-009A) Shows one past the source end. 

4. Load the assembler but before running be sure to set all pointers. 
a.) Symbol Table.limits ($0040-0043) 
b.) Source beginning ($0044-0045) contents of edit FILBEG 
c.) Source ending ($0046-0047) 11 contents-l 11 of edit FILEND 

***** Be sure to subtract one from FILEND !! 
d.) Skip count ($0048) Set this to 03 (3 line no. in editor) 
e.) Memory pointer ($0049) Set if used. 

5. Run the assembler. 


