6809
FLEX™
Diagnortics

COPYRIGHT @ 1980 by

Technical Systems Consultants, inc.
P.O. Box 2570

West Lafayette, Indiana 47906

All Rights Reserved

P

o

.‘w‘t’

- e TN g B s

PREFACE

This software package contains memory diagnostics and disk diagnostic
and repair utilities. They are intended to aid the. user in detecting
problems with computer memory and disk systems. Some of the utility
programs assist in the recovering of data from damaged disks. It should
be stressed that these programs do not perform miracles. There are
certain types of failures which are very difficult for any diagnostic to
detect, or for any repair program to correct. It was intended that the
programs in this package detect many common problems rather than only a
few rare problems.

This manual is divided into two main sections. The first deals with the
memory diagnostics, and the second deals with the disk diagnostic and
repair utilities. .

In the section on memory diagnostics, there is a discussion of memory
diagnostics and computer memory in general. It is recommended that this
subsection be read even if you are already familiar with memory
diagnostics and computer memory since several terms are defined here:
The next subsection gives an overview of the memory diagnostics in this
package. A troubleshooting guide is next, which outlines some
procedures to follow when hunting for a memory problem. A detailed
description of each diagnostic completes the section on memory

diagnostics.

In the disk utility section, we have a general discussion of disks and
their problems, followed by an overview of the utilities in this
package. A troubleshooting guide for disk problems then discusses the
symptoms of disk problems and gives some general hints on tracking down
a problem. This is followed by detailed descriptions of the disk
utilities. Lastly, a "Case Studies" section demonstrates how the disk
utilities may be used in detecting, and sometimes correcting, problems.

-ifi-

———

R e ceapnmas BREI by BB

\

gy,

1

{

¥

s
'y o).

Vgdiins s
att o
1

i3

\’\Q‘#‘;:!N

-
LY

ARl

W b &ﬁ?&o

+

TABLE OF CONTENTS

Preface iii
Section I: MEMORY DIAGNOSTICS

INTRODUCTION TO MEMORY DIAGNOSTICS 1
Memory Diagnostics in General 3
Memory in General 4
Types of Memory Failures 5
Types of Memory Diagnostics in General §

-

THE MEMORY DIAGNOSTICS IN THE PACKAGE 7
System Dependencies 7
Relocating Memory Diagnostics 8
Adapting Memory Diagnostics to Other Monitors 8

MEMORY TROUBLESHOOTING GUIDE 10 »—
Symptoms of a Problem 10
Tracking Down the Problem 11
If You Discover a Failure 12
General Hints 14

MEMORY DIAGNOSTIC DESCRIPTIONS 15
CONVERGE 17
DYNAMIC 21
QUICK 23
RANDOM 25
WALKO 27
WALK1 29

Section II: DISK DIAGNOSTICS AND UTILITIES

INTRODUCTION TO DISK DIAGNOSTICS AND UTILITIES 31
Disks in General 33
Structure of a FLEX Disk 34
Random Files 36
How FLEX Handles Files 36
Types of Disk Problems 37

THE DISK UTILITIES [N THIS PACKAGE 39
System Dependencies 39

DISK TROUBLESHOOTING GUIDE 42

Symptoms of a Problem 42
General Hints 43 '

-l

J

;5K DIAGNOSTICS AND UTILITIES DESCRIPTIONS 45

COPYR 47
" EXAMINE 49
FILETEST 61
FLAW 65
RAWCOPY 69
REBUILD 71
RECOVER 73
TEST. 77

- UNDELETE 79

" VALIDATE 83

CASE STUDIES 87

~ Introduction 89
CASE I: A Simple Read Error 90 -
CASE II: A "Sector Not Found" Error 93
CASE III: Recovering a Random File 94
CASE IV: A Structural Problem 96
CASE V: Rehabilitating a Bad Directory Chain 98
CASE VI: A Desperate Measure 100

L AR A

COMMAND SUMMARY 101

b gl

-yi=

6809 FLEX DIAGNOSTICS

INTRGDUCTION TO MEMORY DIAGMOSTICS

Memory diagnostics are used to determine if a problem with the
computer's memory exists. [f a problem is detected, the diagnostic
should also give information to assist the user 1in determining whicn
parts must be replaced or repaired. We shall nct go into great detail
in discussing how a computer's memory operates and why it fails as this
would involve discussing electronics and semiconductor physics. Only
enough background information will be given so that the user can make a
reasonable decision as to which diagnostic to run, and how to interpret
the messages given by the diagnostic. The aim of this introduction is
to give the reader a general feeling for memory problems and memory
diagnostics.

Memory Diagnostics In General

A "perfect" diagnostic does not exist. That 1is, there is no
diagnostic that can detect all possible memory problems and accurately
report on them. Such a diagnostic would have to be designed based on
detailed knowledge of the internal physical and electronic structure of
the components used in the construction of the memory that is going to
be tested. With the large number of memory chips and circuit boards on
the market, the writing of a diagnostic that will work correctly on each
of them 1is impossible. Instead, more general diagnostics are written
which are applicable to a large variety of memory types and
organizations.

Over the years, certain diagnostic techniques have shown themselves
to be effective in detecting and isolating failures even when used on
different types of memory. Some of these techniques that have been
incorporated into the memory diagnostics in this package. However,
since no diagnostic is "perfect", there will always be certain types of
failures that a given diagnostic will not detect correctly. Therefore,
it is good practice to run several different diagnostics Jjust 1in case
the first ones were not able to detect an error. It is also good
practice to let a diagnostic run for several minutes so that it has a
chance to detect "intermittent” errors; that is, those errors that do
not fail every time, but only once in a while.

Memory diagnostics work by storing known data into memory and then
later checking to see if the data is the same as was stored there. [f
the pattern is the same, then the diagnostic assumes that the memory is
working correctly. The diagnostic may then try different data, or it
may use the same data over again. If the data does not match what was
stored there, the diagnostic assumes that the memory has failed to store
the information correctly. It knows what the data is supposed to be,
and it knows what it actually is. [t also knows into which memory
location the data was stored. All of this information is reported back
to the wuser's terminal. With this information, and some other
information provided by the manufacturer of the memory, the user can
usually determine which circuit board or memory component is not working

correctly.

" 6209 FLEX DIAGNOSTICS

-

bos

N

AiMg L

Most memory diagnostics differ only in the data that 1is wused to
test the memory. The different types of memory diagnostics will be

“discussed a little bit later in this introduction.

Memory in General

Computer memory can be contructed from various materials and
electrical components. There is magnetic "core" memory, semiconductor
memory, magnetic bubble memory, and other less widely~ known forms of
computer memory. The type of memory in the computer determines which
diagnostics are most effective in detecting problems. For example,

“diagnostics which detect problems specific to core memory are not that

useful when testing magnetic bubble memory. The most common form of
memory found 1in microcomputers 1is semiconductor memory, often called
memory "chips" because it 1is packaged in the form of integrated
circuits. Other types of memory are found so rarely in microcomputers
that no further discussion of them is warranted.

There are two forms of semiconductor memory: static memory and
dynamic memory. In static memory, .once a value is stored, it will stay
there until changed as long as the machine is turned on. In dynamic
memory, the data will fade away unless it is "refreshed" periodically.
Normally, the refresh is performed automatically by additional circuitry

“on the memory board. The advantages of dynamic memory over static

memory are that it uses less power and it can be made denser, that is,
more data can be stored on a memory chip. The user should be aware of

“which type of semiconductor memory is in the machine. If it is static,

there is no need to run diagnostics which detect problems specific to
dynamic memory, like the test in this package called DYNAMIC.

Even with dynamic memory, only a relatively small amount of
information can be stored on an individual memory integrated circuit.
In addition, the internal structure of most memory chips is such that
only one bit at a time is accessible. To get around these problems,
Computer memory is usually made up of several memory chips. The problem
of being able to read only one bit at a time is solved by having eight
chips act together, each of them storing one bit of the eight-bit byte.
For lack of a better term, we will call this “"parallel organized
memory". Thus, one segment of memory consists of eight memory chips
acting in para]]e] to hold the eight-bit bytes. Larger memory capacity
is realized by add1ng more memory seqgments, that is, more sets of eight
Chips. Note that in parallel organized memory, each chip holds one bit
from each byte. One chip holds the leftmost bit from each byte, another
holds all of the bits that are second from the left, and so forth. Some
of the memory diagnostics are designed to take advantage of this
Organization. By changing all of the bits in a byte, the diagnostic is
really changing only one bit in each memory ch1p. Thus, it can test
eight chips simultaneously.

Most microcomputer memory is parallel organized memory. This is
because most memory chips made today are those that can handle only one
it at a time. Some machines contain small scratchpad memories for use
by the monitor. These memories are usually on a single chip and can

-4~

6809 FLEX DIAGNOSTICS

4

process all eight bits at once. The diagnostics included in this
package will run on any organization of memory, but some may not be very
efficient on some organizations.

Types of Memory Failures

When memory fails, one of two cases exist: a bit is a zero when it
should be a one, or it is a one when it should be a zero. The first
case is called a "bit drop"; the second, a "bit -pick". In addition,
memory failures are said to be "hard" failures when they can be
reproduced at will; that is, when a given pattern will always
demonstrate the failure. "Soft" errors, however, cannot always be
reproduced. .

Soft errors may be temperature dependent. This means that the
memory will fail only when it is "hot" or only when it is "cold".
Memory that fails when it is cold will fail only for a short time after
the machine is turned on. Once the machine warms up, the memory will
run without error. Memory that fails when it is hot will not fail until
after the machine has had time to warm up. When a problem is suspected,
the memory should be checked out under both conditions, hot and cold.

A memory failure is said to be "pattern sensitive" when only
specific test patterns expose the error. For example, a bit may pick
only if all of the bits surrounding it in the chip are ones. Many
diagnostics try more than one pattern in an attempt to detect such

sensitivity.

The "intermittent" error is one that appears seemingly at random.
Some times the memory will fail with a given pattern, and other times it
will not fail with the same pattern. Such problems are extremely
difficult to detect, even with the best diagnostics.

There are other sources of memory errors than the memory chips
themselves. A memory board contains circuits that determine which chips
are to be read or written; this is called the "select logic". Also,"-
some boards contain their own power regulators. DQynamic memory boards
may contain additional logic to perform the refresh operation. Failure
in these circuits may result in very peculiar errors. For example,
refresh failure may result in all of the memory on the board being
cleared. The troubleshooting hints later on 1n this manual will mention
more about failures in these circuits.

Types of Memory Diagnostics in General

The ideal memory diagnostic is one that would try all possible data
patterns when testing a memory chip. For a memory chip containing 2048
bits, this would mean trying an extremely large number (3 followed by
616 zeroes) of patterns. (learly, this is not practical. There are,
however, some patterns which are used frequently because they detect the
most common errors. These include: all zeroces, all ones, walking zerao,
and walking one. I[n addition, 3 "random" pattern is often used in the

~

-5

ity

AR

76809 FLZX DIAGNOSTICS

hcpe that it will eventually find a failing pattern.

The "all zeroes" pattern is quite simple. The entire memory chip

is cleared, that is, set to zero. This 1is used to detect hard bit

picks, that 1is, any bit that cannot be set to zero. Conversely, the
"all ones" pattern sets every bit in the chip to a one. This is to
detect hard bit drops, that is, any bit that cannot be set to a one.

The "walking zero" pattern is more of a technique than an actual
pattern, The pattern itself has every bit in the chip, except one, set
to a one. Thus there is one bit that is different from the all of the
other bits in the chip. This is an attempt to detect weak bits that may
be unduly influenced by their neighboring bits in the chip. Once the
pattern is written and checked, the data pattern is shifted so that some
other bit is now the only one that is different. This continues until
each bit in the chip has, at some time, been different from all of the
others. Thus, the “different" bit is said to have "walked" through the
memory chip. The "walking one" test is the complement of the "walking
zero" test in that all of the bits in each chip, except one, are zero.
The process of "walking" the bit through the memory chip is the same.

A random pattern is one that is generated by a pseudo-random number
generator. A series of pseudo-random numbers is generated and stored in
memory as the test pattern. After the pattern has been checked for
errors a new sequence is generated and used as the test pattern. This
process is repeated over and over in the hope that pattern sensitive
errors will be uncovered.

There is one type of test that doesn't actually check the ability
of a chip to retain data, but rather checks the select logic and data
paths. This is the "convergence" test. The basic goal of a convergence
test is to determine if more than one bit is changing in response to the
writing of data. Causes of such failures are discussed in the

troubleshooting guide.

-6-

6809 FLEX DIAGNOSTICS

THE MEMORY DIAGMOSTICS IN THIS PACKAGE

This diagnostic package contains six memory diagnostics. There is
a zeroes and ones test (QUICK), a random pattern test (RANDOM), a
convergence test (CONVERGE), a dynamic memory dropout test (DYNAMIC), a
walking zero test (WALKO), and a walking one test (WALK1). The two most
useful tests are QUICK and RANDOM. CONVERGE and DYMAMIC will probably
not be used frequently unless the user suspects that a convergence
problem or bit dropout problem actually exists. WALKO and WALK1 do not
take advantage of the parallel organization of most microcomputer
memory; thus they run slowly. Their most frequent appiication would be
in testing small scratchpad memory chips, such as the Motorola MC6810,
which are not parallel organized memory devices.

A1l six diagnostics are written to be position independent; that
is, they will run correctly regardless of where they are loaded in user
memory. Normally, they are loaded into the FLEX™ Utility Command Space.
However, they may be moved to other areas of memory so that the memory
in which FLEX normally resides may be tested. This is discussed later
in "Relocating Memory Diagnostics”.

To aid in analyzing failures, each diagnostic, when an error is
detected, prints the failing pattern in binary. Thus, any bit drop or
bit pick is immediately apparent, and the number of the failing bit can
bDe readily determined. ;

System Dependencies

The memory diagnostics are designed to run under the FLEX operating
system. They use FLEX subroutines to decode their arguments. Once
running, however, the diagnostics have no need for FLEX. This allows
the memory in which FLEX normally resides to be tested. While running,
all terminal input and output is performed through the system monitor
ROM. As released, the diagnostics are configured to interface to the
SWTPc® monitor SBUG-E®. Adapting to other monitors is discussed in the
section "Adapting Memory Diagnostics to Other Monitors".

Some 6809 systems use a memory mapping device to make all of the
memory in the machine appear to be contiguous, even if it 1is not.
Hardware is installed which translates the address that the CPU
references (called the "logical address") to the actual address of the
memory board (called the "physical address"). The diagnostics cannot
detect this mapping and thus will always report 1logical addresses
instead of physical addresses when issuing messages.

As each diagnostic runs, it issues a character to the terminal as
an indication of having completed one pass of the test. The number of
such characters that the diagnostic will print per line is determined by
the FLEX TTYSET width value. Since the diagnostics do not use FLEX for
FLEX is a trademark of Technical Systems Consultants, Inc.

SWTPc and SBUG-E are trademarks of Southwest Technical Products

Corporation.
-7-

e

9

=E:";‘.
e
RN

5809 FLEX DIAGNOSTICS

e

output, they memorize the width value and act on it themselves. If the
width value 1is zero, it 1is assumed that the user's terminal will
automatically go to a new line whenever the end of the current Tline is
reached. If the user's terminal does not have this capability, set a
width value using the TTYSET command to prevent the characters printed
by the diagnostic from running off of the right side of the terminal.

Relocating Memory Diagnostics
The only time that a diagnostic would have to be relocated would be
when it is desired to test the area of memory in which the operating
system resides. To facilitate this relocation, a utility called RUN has
been added to the diskette. To test the operating system area with a
diagnostic, type:

RUN,0,diagnostic name,C000,DFBF

"Diagnostic name" 1is the name of the diagnostic being run. Any of the
memory diagnostics, except DYNAMIC, may be specified. DYNAMIC cannot be
used to test all of the operating system area because it would destroy
scratch cells used by the SBUG-E monitor on SWTPc systems. The
arguments C000 and OFBF specify the FLEX area of memory. Do not test
the area DFBF through DFFF on systems with an SBUG-E monitor as this
destroys data used by the monitor in performing input and output.

When testing the operating system area, the message FLEX ASSUMED
OVERWRITTEN will be printed. This is purely an informative message and
does not affect the running of the diagnostic. When the diagnostic is
stopped, control will be returned to the monitor ROM since FLEX was
destroyed during the test. [t is necessary to reboot the system after
testing the operating system area.

The run-time stack for each diagnostic is located immediately after
the diagnostic itself. All diagnostics, except CONVERGE, need 32 bytes
for stack space; CONVERGE needs 256 bytes. There is no need to be
concerned about the stack when relocating a diagnostic to test the
Operating system area.

Adapting Memory Diagnostics to Other Monitors

As mentioned earlier, the diagnostics in this package are designed
to run on a system using the SWTPc monitor SBUG-E. To aid in conversion
t0 systems which run FLEX, but with a different monitor, the calls to
the monitor routines are vectored. The vectors are the same in all of
the memory diagnostics. Currently, each vector is an indirect jump.
These may be replaced by indirect jumps or extended jumps, as required.

There are four vectors. Following is a description of each of
them, The address given is that of the jump instruction itself, not the
dytes to he patched. Those bytes to be patched will differ depending on
whether extended or indirect Jjumps are used to interface with the

Monitor routines.

o)

A

D
ot

Y

6809 FLEX DIAGNOSTICS

Input Character (3C103)
J’ % This routine reads one character from the terminal, returning it in
* the A-accumulator. The parity bit must be removed by the routine.
The B, X, Y, and U registers must be preserved.

Qutput Character (3C107)
This routine outputs the character in the A-accumulator to the
terminal. The B, X, Y, and U registers must be preserved.

Check for Character (3SC10B) e
This routine checks for a character having been typed on the

terminal. The "Z" status bit is used to communicate the result of
the check. [f "Z" is on (BEQ instruction will branch), a character
was not typed. I[f "Z" is off (BNE instruction will branch), a
character was typed. The character should not be read by this
routine. The B, X, Y, and U registers must be preserved. If the
monitor does not have such a routine, make the following patch:

Starting at $C10B: 1A 04 39

With this patch, the test will still run, but it can be stopped
only by resetting the machine; typing a character will not stop the
diagnostic. “

Return to Monitor (SC10F)
This returns control to the monitor ROM. [t is used only when the

diagnostic is stopped after having tested the operating system
area.

2 {.‘w_
'

*{3

6309 FLEX DIAGNOSTICS

.

b

“: MEMORY TROUBLESHOOTING GUIDE
“'; Introduction

This portion of the manual gives hints on using the memory
diagnostics in this package. Some of the suggestions are directed to
those users who repair their equipment themselves. If you are not one
of these persons, it suffices to merely determine that a problem exists,

and then have the machine repaired by the supplier or manufacturer.

RAEE

<

-~

Symptoms of a Problem

There are some events that may occur when using the computer which
indicate that memory might be failing. While some of these may also be
caused by errors in a program, the possibility of memory failure should
be kept in mind. Here are some things which might be an indication of

failing memory:

1) Working programs suddenly do not work properly.
If a program that 1is known. to run correctly suddenly starts
producing unpredictable results, it may be because the program has
been destroyed in memory by a memory failure. 0f course, it is
possible that a previously unknown error in the program is causing
the failure. [f the program that has failed is one that you have
recently modified, it might be that you introduced an error when
making the modification. Also, the program may be reacting to
unrecognized input; the "garbage in, garbage out" phenomenon.
However, if the program has been running solidly for a long time,
and suddenly starts to fail for most input, then memory failure
should be considered as a possible cause. [t does not take long to
run some diagnostics to check the memory, and it could avoid

trouble later on.

2) Running the same program more than once, with the same data,
produces different results.
This is a more reliable indicator of hardware problems. Of course,
an uninitialized variable in the program may also give this
symptom. However, if a program which has run reliably in the past
starts producing inconsistent results, memory failure may be

indicated.

3) Data files being altered.
[f the data in a file does not correspond to what was written to

it, it is possible that the data was altered in the buffer by a
memory failure. One should be sure, however, that a program error
did not write the data incorrectly. Some additional clues may be
discovered by analyzing the cnanges in the file. [f characters in
the file change their "case", (upper case Jletters become lower
case, or the converse). this would indicate a change in one bit of
the character, which might be caused by memory failure. If a data
character is changed to another, and the difference is only in one
bit, then memory problems should be suspected. For example, a "G"
(binary 01000111) may be turned into an "F" (binary 01000110).

-10-

6809 FLEX DIAGNOSTICS

The above list is not exhaustive. However, any time that ‘“strange
things" happen in a program, one must not immediately blame the program.
While it would be foolish to immediately spend an hour running memory
tests every time that something unexpected happens, memory failure
should be considered a possibility, especially if "solidly running"
programs start to fail.

Tracking Down the Problem

If you suspect a particular type of memory problem, then it makes
sense to choose a diagnostic that is tailored to finding that type of
problem. On the other hand, if you are not sure that there is a problem
with memory, but you suspect that something is wrong, no one diagnostic
may be enough to isolate the problem. Several diagnostics may have to
be run before the problem is found, or before it becomes evident that
memory 1is not at fault. The following procedure is a good starting
point in tracking down problems.

1) Run the diagnostic QUICK, without parameters, for 20 passes (20
plus signs printed). I[f no failure is uncovered, then:

2) Run the diagnostic RANDOM, without parameters, for 20 passes (20
plus signs printed). If the failure does not yet show up, then:

3) Run QUICK and RANDOM in the operating system area for 20 passes
each. (See the section "Relocating Memory Diagnostics" for the
proper procedure.) If an error has not yet been uncovered, then
memory is in reasonably good shape. If there is a memory problem,
it is very intermittent, very pattern sensitive, or a convergence
problem. It may also be a refresh problem with dynamic memory.
The following steps attempt to detect these problems.

4) If you do not have dynamic memory in your computer, skip this step;
if you do, then run the diagnostic DYNAMIC for 15 minutes. Do not
try to run this test in the operating system area. If no error is
detected, then the refresh logic is probably not failing.

5) Run the diagnostic CONVERGE for 5 passes (10 characters are printed
on the screen). [f no error is detected, then run 5 passes of
CONVERGE in the operating system area. I[f no error is detected at
this point, then the address and data paths are probably working

correctly.

6) Run WALKO and WALK1 for 10 passes each (10 plus signs printed). I[f
no error is detected, run 10 passes of each in the operating system

ared.

If, after all of this, no error has been uncovered, then either
there is no problem, or the problem is temperature sensitive or very
intermittent. If all of the above tests were run after the computer had
been warmed up, then they should be run again while the computer is
cold. To do this, turn off the computer and let it cool down for about
15 minutes. Turn on the machine, boot up the system, and immediately

-11-

~

"5";/'*

4

2

"'¢809 FLEX DIAGNOSTICS .

@,

J’ . perform one of the steps above. If no error is detected, turn off the
“machine, let it cool down, then turn it on and perform the next step.
~ If this does not find the problem, then it is probably not a temperature

~ dependent problem. B

-

If the diagnostic does not run correctly (gives meaningless
messages, returns to the monitor, does not print pass indicators, etc.),
it is- possible that it is running in the area of memory that 1is bad.
Normally, the diagnostics run in the FLEX Utility Command Space. If

" they do not run, try to relocate them and test the ‘operating system
area. Note, however, that the RUN utility, used to relocate
diagnostics, also runs in the Utility Command Space, so it too might not

.4 run correctly. If it also fails, this is an important clue as to where
: the bad memory is located. .

For extremely intermittent or pattern sensitive problems, a last
resort measure is to run RANDOM for many hours. For dynamic memory,
DYNAMIC should also be run for many hours. If none of these techniques
uncover the problem, and the problem really is a memory problem, then it
would require specialized troubleshooting methods far beyond the scope

of these diagnostics.
A~

If You Discover A Failure...

- When one of the diagnostics detects a memory failure, it prints an
error message. What to do next depends on your knowledge of computer
hardware. If you do not perform your own maintenance and repair, it
would be best to contact the dealer or manufacturer of your computer for
advice. They will probably tell you where you can have the machine
serviced. When you take the machine for service, take along a copy of
the error message to show them.

If you intend to attempt repair yourself, you should be aware of
the possible causes of the failure. A bad memory chip is usually the
first suspect, but there is more to computer memory than the memory
chips themselves. Here is a list of possible sources of memory failure:

.

Bad memory chip
Bad contact between memory board and mother board

Bad seating of memory chip in socket

Corrosion on pins of memory board or memory chip
Corrosion in the socket

Cold solder joint

Solder bridge (manufacturing defect)

Broken trace on circuit board

Chip select (address decode) circuitry on the board

Data or address buffer chips on the board

Refresh logic for dynamic memory

Regulator or other components (resistors and capacitors)

Pt pt
N QWM N U B WM -
el M et S e e e et e e e e

[f COMVERGE or DYNAMIC was the test that discovered the problem, this
could be a clue as to the cause. Recall that these two tests check for

very specific problems, wusually caused by failures in specific

-12-

-

BT 1 \

IR

6809 FLEX DIAGMOSTICS

circuitry. We will deal with these later.

Assuming that CONVERGE or DYNAMIC was not the diagnostic that
uncovered the error, the next step is to isolate the failure to a single
circuit board or memory chip. The error message should give the address
that failed and the bit pattern that failed. From the address,
determine which memory board contains the failing memory chip. Keep in
mind that some machines re-map memory so that the address printed may
not correspond to that for which the memory board is wired. The
manufacturer should have given you information on how the mapping is
accomplished, enabling you to determine which memory board contains the
failing chip. From the "expected" and "received" values printed in the
message, and from manufacturer's documentation on the organization of
the memory board, you should be able to determine which chip is suspect.

Before replacing the suspected chip, there are two things you
should try.

1) With the power off, move the memory board to another slot, if one
is available. The problem may be caused by bad seating of the
memory board on the mother board. I[f the test still fails, then:

2) If the memary chips are in sockets, switch the one that is failing
with another one. Turn on the machine and rerun the diagnostics.

One of three things should happen.

a) If a failure occurs, it should be different because you have
moved the suspected chip. I[f the failure indicates that the
bad chip has failed, it is the cause of the problem; replace
it.

b) If the diagnostics no longer fail, the problem might have been
the seating of the chip in the socket.

[f the problem stays the same, then the chip probably was not
at fault. A possibility may be dirt or corrosion in the
socket, or a cold solder joint.

()
~

If you have convinced yourself that the problem was due to a faulty
memory chip, and you have replaced it, but the problem did not go away,
then try replacing it with another chip. It might be the case that the
spare chip used to replace the bad one was alsc bad. If it still fails,
then the problem is probably not due to a chip.

I[f DYNAMIC was the test that failed, the problem could be in the
refresh logic. This would definitely be indicated if more than one bit
has failed in the byte. I[f only one bit has failed, it might be that
the memory chip is weak and has difficulty holding the data between
refresh cycles. If only one bit has failed, then the first step is to
assume that the chip might be bad, and to follow the procedure outlined
above. If it becomes apparent that the chip is good, then you will have
to assume that the refresh logic is at fault.

Smmgn o en

R

-~ 6809 FLEX DIAGNOSTICS

I[f CONVERGE 1is the diagnostic that has found the error, then the
J' problem could be Tocated in the chip select logic on the memory board.
l = Memory chips have been known to short out internally in such a way that
" only a convergence test can detect the error, so the chip could still be
at fault. The troubleshooting techniques outlined above for bad chips
can be applied to convergence problems to determine if, indeed, such a
failure within a chip has taken place. If the chip itself is not bad,
then the selection logic, or perhaps the address or data buffer chips
are at fault. It is also possible that a solder bridge exists, but this
would be a manufacturing defect, not something that would suddenly
appear on a working board. If you have built the board from a kit,
however, solder bridges are something for which you should check.

General Hints

Tracking down memory problems is not often a simple procedure. In
many cases, it 1is 1like solving a puzzle. Intermittent failures are
probably the most baffling errors to uncover. Here are some hints which
may help to uncover an intermittent error.

1) Make use of as much information as possible from the original
failure. If you first suspected a memory problem because the data
in a file was changed, then examine the changed data and try to
determine which bit failed.

Make use of idle machine time to run diagnostics. [f you are
taking a break from your work for a few minutes, let QUICK or
RANDOM run while you are away from the machine. You might uncover
an error and avoid trouble later on when the problem becomes worse.

3) When you turn on the machine, run a few passes of QUICK or RANDOM;
just to make sure that the shock of turning on the machine did not
cause a weak or intermittent memory chip to fail completely.

4) Keep a notebook near the machine which you can use to record your
progress as you troubleshoot a problem. Write down error messages
and the steps you took to try to isolate the problem. If the
problem is intermittent, it might return at some time in the
future, and the notebook will tell you what steps you have already
taken in trying to find the problem. Extremely intermittent errors
occur so far apart that you should not trust your own memory in

trying to recall what you did in the past.

5) If you do have a very intermittent problem, such that you have only
one message from a diagnostic, try switching that memory chip with
another one on the board (if they are in sockets). The next time
that you get an error, which may be many days away, check to see if
the new error points to the chip that was moved. If so, it was

probably bad and you should replace it.

-14-

\

TBay AR
R

d .
l.?. ﬂ‘ntf .

R S

6809 FLEX DIAGNOSTICS

Program Mame: CONVERGE
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

CONVERGE is a form of convergence test, used primarily to detect address
or data lines which are shorted together.

Calling Sequence:

CONVERGE ,starting-address,ending-address

-

where:

"starting-address" is the lowest address in the block to be
tested.

"ending-address" is the highest address in the block to be
tested. If none is specified, the FLEX "Memory End" value is

used.

-

[f no arquments are specified, the block from "0000" through the
FLEX "Memory End" value is tested.

METHOD:

Each pass of CONVERGE is divided into two major sections, an intra-byte
check and an inter-byte check.. _ _.. .

The intra-byte check determines if other bits in a byte change state
when they are not specifically modified. The intra-byte check operates
by performing a "walking one" test on each byte. The right-most bit of
pach byte 1is set to a "1" while the rest of the byte is cleared. The
bytes are then checked and any errors reported. The next bit in each .
byte is then tested 1in the same way. After all eight bits have been
tested, a plus sign is printed and the second section of the test, the

inter-byte test, is performed.

The inter-byte test determines if data changes in some byte other than
the one being addressed. CONVERGE uses a binary searchina algorithm to
reduce the time for the inter-byte test. At the start of the test, the
block of memory to be tested is divided in half. The first half is
cleared and the second half is set to an "all ones" pattern (hex FF).
The first half is then checked for any bits having been set due to the
writing of the "FF" pattern in the second half. I[f none are found, it
is assumed that changing the second half of the block has no effect on
the first half. The roles of the two halves are then reversed, the
second half being cleared and the first half being set to “FF". The
second half is then checked. I[f no errors are detected, it 1is assumed
that the two halves do not affect each other. Each half is then
separately tested, i.e. each half is itself divided into two parts and

-17-

S 7 S T N ——

f———

8 o

e

i CE

'

£6809 FLEX DIAGNOSTICS
the test performed on these halves. The test continues, recursively
§iest1ng smaller segments of memory which have already been shown to be
¥¥1ndependent of the rest of the memory block. When the entire block has
i %been tested, a minus sign is printed and the test starts over with the

1ntra -byte test.

; when an error is detected in the second part, the inter-byte test,
= CONVERGE attempts to isolate the error. The byte that was in error is
. cleared. Then that half of memory that was set to "FF" is again set to
@ "FF" except that the byte that failed is checked after each byte is
*® stored. [f the error recurs, the last address which was set to "FF" is
2. assumed to be the one that caused the error. Both the failing address
® and the last address which was changed are reported. If the error does
& not recur, the error is reported as an "intermittent" error, and only
‘the address that changed is known and reported.

R S

jjﬁhe test repeats until stopped by the user. The keyboard is monitored
@ by the diagnostic, and whenever any character is typed, the test
@ terminates, returning to the operating system.

€ MESSAGES: -

Z ERROR IN ADDRESS
: An invalid hexadecimal character was detected in either

"starting-address" or "ending-address”. The test is aborted.

"CONVERGE" IS IN THE TEST AREA

ii The diagnostic "CONVERGE" resides in the block of memory being

§§ tested. The test is aborted.

£ STACK IS IN TEST AREA

% The run-time stack used by CONVERGE is in the block of memory being

£ tested. The test is aborted.

* LAST < FIRST

: "Ending-address" is Tless than "starting-address. The test is
aborted.

ol B X

FLEX ASSUMED OVERWRITTEN
The block of memory being tested contains all or part of the FLEX

operating system. If the diagnostic is stopped from the keyboard,
control will go to the monitor instead of FLEX.

ADDRESS xxxx, EXPECTED: nnnnnnnn, RECEIVED: nnnnnnnn
An error was detected while testing the byte at address "xxxx".
The data pattern stored is that indicated by the EXPECTED value.
The incorrect data pattern read back is that indicated by the
RECEIVED value. Both values (nnnnnnnn) are given in binary. This
error message 1is produced by the intra-byte section of the

diagnostic.

-18-

L e

"

-

At

4

--*w.._
‘v HE BT e,
it BRI e

£209 FLEX DIAGNOSTICS

STORE ADDRESS: xxxx, READ ADDRESS: xxxx, DATA: nnnnnnnn
When "FF" was stored in the address given by "store address", the
value at "read address" changed from zero to that given by "“data".
The data value 1is reported in binary. This error message is
reported by the inter-byte section of the diagnostic.

INTERMITTENT ERROR, ADDRESS: xxxx, DATA: nnnnnnnn
An error was detected during the inter-byte section of the test,
but the error could not he isolated. The data at "address" changed
from zero to that specified by "data". The data value is given in
binary.

TESTING COMPLETED
The diagnostic has terminated, returning to the system.

REMARKS:

CONVERGE takes 5 seconds to test 4K (4096 bytes) of memory with a 1 MHz
system clock. One-third of this time is due to the intra-byte test, and
two-thirds 1is due to the inter-byte test. For 32K, the test takes 40
seconds per pass.

I ek

N
Lol

st

L] ‘:"'l

)

Nt e b i

. Mvﬁwfﬁ;{g Y ./b

6809 FLEX DIAGMCZZTICS

Program Mame: DYNAMIC
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

DYNAMIC tests a block of dynamic RAM for bit dropout under condit=ions
such that the memory is not accessed for a period of time. Under ——nese
conditions, only the hardware refresh logic keeps the data current.

)

Calling Sequence:

DYNAMIC,starting-address,ending-address

where:
"starting-address" is the lowest address in the block == be
tested.
<he

"memory size" is a decimal number indicating the size of
block being tested in terms of "K" (1024 bytes); e.g. 16 immz’ies

16K of memory (16*1024 bytes). If none is specified, ZIZ= s
assumed (32768 bytes).

If no arguments are specified, 32K starting at "0000" is te==ted.

METHOD:

When invoked, DYNAMIC writes an "all ones" pattern (hex FF) in the ==7ock
The data is checked and any errors reported. The ——Zest

being tested.
then delays approximately 10 seconds and checks the data again. “The
data pattern is never rewritten. I[f an error is detected, -— is

reported, and the failing byte is again set to hex FF. The test —uns

until stopped by the user. While delaying, DYNAMIC monitors- —he
keyboard. If any character is entered, the test terminates immediatz=ly, -

returning to the operating system.

MESSAGES:

ERROR IN ADDRESS
The "starting-address” was not a legal hexadecimal

test is aborted.

number. “The

ERROR IN SIZE
A non-decimal
aborted.

digit was detected in "memory size". The tes—= is

“DYNAMIC" IS IN THE TEST AREA
The diagnestic "DYNAMIC" resides in the block of memory zs='ng

tested. The test is aborted.

=21~

[N D —
—

&

; FLEX DIAGNOSTICS

N

.

2 s IN TEST AREA
The run-time stack used by DYNAMIC is in the block of memory being
gtasted. The test is aborted.

& ASSUMED OVERWRITTEN
, The block of memory being tested contains all or part of the FLEX
1f the diagnostic is stopoed from the keyboard,

o§ operating system.
¥ ontrol will go to the monitor instead of FLEX.

. o

r

&RESS xxxx, DATA: nnannnnn

‘s® An error was detected while testing the byte at address "xxxx" .

4 The data pattern read was “nnnnnnnn® (in binary). The data pattern
b written was an “"all ones" pattern (11111111 binary).

RTING COMPLETED

& The diagnostic has returning to the system.

terminated,

Be 10 second delay is a software delay based on a 1 megahertz CPU
The delay itself is not critcal, and no changes are required if

CPU is used.

IR v i e

s coat
tr

~g oL \t; ”'m‘.‘

.
ﬁ*‘

b X
e

b
R

35

/B e
f‘” e.;:N. R

R £ \

2809 FLEX DIAGNOSTICS

Program Mame: QUICK
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

QUICK performs a zeroes and ones check on a block of memory. This test
is most frequently used as a quick check for solid failures.

Calling Sequence:

QUICK,starting-address,ending-address

where:

"starting-address" is the lowest address 1in the block to be
tested.

"ending-address" 1is the highest address in the block to be
tested. If none is specified, the FLEX "Memory End" value is
used. _

[f no arguments are specified, the block from "0000" through the
FLEX "Memory End" value is tested.

METHOD:

On each odd-numbered pass, QUICK zeroes out the block of memory being
tested. Each byte is then complemented (making it hex FF) and checked.
Any error is reported. The byte is then cleared and the next byte is
processed.

On even-numbered passes, the block of memory being tested is set to an
"all ones" pattern (hex FF). Each byte is cleared, checked, and reset
to all ones with any error being reported.

The test runs until stopped by the user. After each pass, the keyboard
is checked. [f any character was entered, the test terminates
immediately, returning to the operating system.

MESSAGES:

ERROR IN ADDRESS
An invalid hexadecimal character was detected in either

"starting-address” or "ending-address". The test is aborted.
"QUICK" IS IN THE TEST AREA

The diagnostic "QUICK" resides in the block of memory being tested.
The test is aborted.

«23=-

‘[e
2
%09 F_ZX DIAGNOSTICS

§TACK IS IN TEST AREA
- The run-time stack used by QUICK is in the block of memory being

g%- tested. The test is aborted.

=

YAST < FIRST

s "Ending-address" is less than "starting-address. The test is
ar aborted.

gy

v

The block of memory being tested contains all or-part of the FLEX
operating system. If the diagnostic is stopped from the keyboard,
control will go to the monitor instead of FLEX.

W
P

§§LEX ASSUMED OVERWRITTEN
2

ADDRESS xxxx, EXPECTED: nnnnnnnn, RECEIVED: nnnnnnnn

An error was detected while testing the byte at address "xxxx".
The data pattern stored is that indicated by the EXPECTED value.
The incorrect data pattern read back 1is that indicated by the
RECEIVED value. Both values (nnnnnnnn) are given in binary.

TESTING COMPLETED
The diagnostic has terminated, returning to the system.

-Z, L casll

% REMARKS::

. QUICK takes approximately 0.64 seconds to test 4K (4096 bytes) of memory
£€'on a 1 MHz machine. Larger blocks take a proportionately longer time.

ALy

For parallel-organized memory, QUICK is a "walking zero"” and ‘“"walking
one" test that checks the eight parallel memory chips simultaneously.
(See "Introduction to Memory Diagnostics" for a definition of
“parallel-organized memory".)

.."[M PR

2 # '\

6809 FLEX DIAGNOSTICS

Program Name: RANDGOM
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

RANDOM tests a block of memory using pseudo-random bit patterns as the
test data.

Calling Sequence:

RANDOM,st arting-address,ending-address

-

where:

"starting-address" is the lowest address in the block to be
tested.

"ending-address” is the highest address in the block to be
tested. If none is specified, the FLEX "Memory End" value is

used. -

[f no arguments are specified, the block from "0000" through the
FLEX "Memory End" value is tested.

METHOD:

On each pass, RANDOM fills the memory block being tested with data
patterns generated by a pseudo-random number generator. The data in
each memory location is then checked against the pattern written and
discrepancies are reported. A fresh sequence of data patterns is used

for each pass. The test runs until stopped by the user. After each
byte 1is written or checked, the keyboard is interrogated. If a
character has been entered, the diagnostic terminates, returning to the

cperating system.

MESSAGES:

ERROR IN ADDRESS
An invalid hexadecimal character was detected in either

"starting-address” or "ending-address". The test is aborted.

"RANDOM" IS IN THE TEST AREA
The diagnostic "“RANDOM" resides 1in the block aof memory being

tested. The test is aborted.
STACK IS IN TEST AREA

The run-time stack used by RANDOM is in the block of memory being
tested. The test is aborted.

-285a

(éi

FLEX C{AGNOSTICS

§£09

QST < FIRST

e "fnding-address" is less than ‘“starting-address. The test is
2w aborted.

a‘f

BLEX ASSUMED OVERWRITTEN

i The block of memory being tested contains all or part of the FLEX
=, operating system. If the diagnostic is stopped from the keyboard,
%% control will go to the monitor instead of FLEX.

-~

mDRESS xxxx, EXPECTED: nnnnnnnn, RECEIVED: nnnnnnnn
An error was detected while testing the byte at address "xxxx".
ﬁ? The data pattern stored is that indicated by the EXPECTED value.
ot is that indicated by the

The incorrect data pattern read back
RECEIVED value. Both values (nnnnnnnn) are given in binary.

#{ESTING COMPLETED
The diagnostic has terminated, returning to the system.

ROUARKS :
‘RANDOM takes approximately 1.8 seconds to test 4K (4096 bytes) of memory
~qp a 1 MHz machine. Larger blocks take a proportionately longer time.

%’he pseudo-random number generator in the diagnostic does not need to be
‘nitialized. RANDOM uses memory garbage as the seed, and forces the

eed to be non-zero.

B e) fipg

bog o

X T WETTRg

-2H=

2

6809 FLEX DIAGNOSTICS

Program Name: WALKO
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

WALKO performs a "walking zero" test on a block of memory. At any time
during the running of the test, only one bit in the entire block of
memory being tested is a zero.

Calling Sequence:
NALKO,starting-address,ending-addres§

where:

"starting-address" is the lowest address in the block to be
tested.

"ending-address" 1is the highest address in the block to be
tested. If none is specified, the FLEX "Memory End" value is
used. -

If no arquments are specified, the block fram "0000" through the
FLEX "Memory End" value is tested. .

ax

METHOD:

when invoked, WALKO writes the entire block to be tested with an "all
ones" pattern (hex FF). Starting at the lowest address, the right-most
bit of the byte is set to zero and the byte rewr1tten. The byte is then

s ~ -

cnecked. If LOFFELL, Lite Dit Cllae Wad Licdigd 12 500 waen ©J & 30T :
the next bit in the byte is cleared and the byte rewritten. This
process continues until all 8 bits are checked. If an error is
detected, it 1is reported and the next hit is processed. The process
then resumes with the next byte in memory. Thus, the cleared bit is
"walked" through the entire bioc< being testea. After the entire block
has been tested, a plus sign is printed and the test repeats, starting
@itk tha -Towest bvte in the blerck. Tkh< -:sv runms until stopped by the
user. After each byte 1is tested, the keyboard is checked. If a
character has been entered, the diagnostic terminates, returning to the

operating system.

e

MESSAGES:

ERROR IN ADDRESS
An invalid hexadecimal character was detected in either

"startinc -iddress" or "ecnding-addre<<” The test is aborted.

=27~

e
&;

¥6809 FLEX DIAGNOSTICS

meALKO" IS IN THE TEST AREA
The diagnostic "WALKO" resides in the block of memory being tested.

% The test is aborted.

£ STACK IS IN TEST AREA
%t The run-time stack
tested. The test is aborted.

used by WALKO is in the block of memory being

A
fé‘.
5 LAST < FIRST
"Ending-address" is less than "starting-address. The test is
aborted.

FLEX ASSUMED OVERWRITTEN
The block of memory being tested contains all or part of the FLEX

operating system. If the diagnostic is stopped from the keyboard,
control will go to the monitor instead of FLEX.

An error was detected while testing the byte at address "xxxx".

The data pattern stored is that indicated by the EXPECTED value.
The incorrect data pattern read back is that indicated by the

RECEIVED value. Both values (nnnnnnnn) are given in binary.

Rz T e s i .
i b B e ety
" ! .,

TESTING COMPLETED
The diagnostic has terminated, returning to the system.

REMARKS:

WALKQO takes approximately 3.5 seconds to test 4K (4096 bytes) of memory
on a 1 MHz machine. Larger blocks take a proportionately longer time.

L 2.1y vy

organization of memory. For
a rascer ‘wdiking oIl
for a definition of

WALYD may be used regardless of the
parallel-organized memory, however, QUILK s
test. (See "Introduction to Memory Diagnostics”
"parallel-organized memory".)

-28-

BT \

-

“NWM"’M R it

BT T BT

—(

6809 FLEX DIAGNOSTICS

Program Name: WALK1
Program Type: MEMORY DIAGNOSTIC

PURPOSE:

WALK1 performs a "walking one" test on a block of memory. At any time
during the running of the test, only one bit in the entire block of
memory being tested is a one.

-

Calling Sequence:

WALK1,starting-address,ending-address,

where:

"starting-address” 1is the 1lowest address in the block to be
tested.

"ending-address" is the highest address in the block to be
tested. If none is specified, the FLEX "Memory End" value is

used.

[f no arguments are spec1f1ed the block from "G000" through the
FLEX "Memory End" value is tested.

METHOD:

When invoked, WALK1 writes the entire block to be tested with zeroes.
Starting at the lowest address, the right-most bit of the byte is set to
one and the byte rewritten. The byte is then checked. If correct, the
D1T That was set (s ciedred anu the nNeXL LiL in e Lyie 15 Scu Lu a ung
and the byte rewritten. This process continues until all 8 bits are
checked. If an error is detected, it is reported and the next bit is
processed. The process then resumes with the next byvte in memory.
Thus, the one bit is "walked" through the entire block being tested.
After the entire block has been tested, a plus siyn .s printed and tne
test repeats, starting with the lowest byte in the hlcck. The test runs
until stopred Sy ' .i'32r. Af*er each byte is tested, tha ke -ocard ig
checked. I[If a character has been entered, the diagnostic terminates,

returning to the operating system.

MESSAGES:

FRROR IN ADPRESS
An invalid hexadecimal character was detecteu 1n either

"starting-address" or "ending-address". The test is aborted.

-29-

A1

T A NIROIRR -, s g

Yy e ex .
W %nmmﬁqnnw LAY

o g

>

.
‘:

gf

'6809 FLEX DIAGNOSTICS

hALKl" IS IN THE TEST AREA
The diagnostic "WALK1" resides in the block of memory being tested.
The test is aborted.

TACK IS IN TEST AREA
The run-time stack used by WALK1l is in the block of memory being
tested. The test is aborted.

TLAST < FIRST .
"Ending-address" is 1less than "starting-address. The test is

aborted.

3

£ FLEX ASSUMED OVERWRITTEN

The block of memory being tested contains all or part of the FLEX
operating system. If the diagnostic is stopped from the keyboard,
control will go to the monitor instead of FLEX.

- ADDRESS xxxx, EXPECTED: nnnnnnnn, RECEIVED: nnnnnnnn

An error was detected while testing the byte at address "xxxx".
The data pattern stored is that indicated by the EXPECTED value.
The incorrect data pattern read back 1is that indicated by the
RECEIVED value. Both values (nnnnnnnn) are given in binary.

TESTING COMPLETED
The diagnostic has terminated, returning to the system.

* REMARKS:

WALK1 takes approximately 3.5 seconds to test 4K (4096 bytes) of memory
on a 1 MHz machine. Larger blocks take a proport1onate]y 1onger time.

WALK1 may bhe used feqard195< of the nfﬂﬂﬂ*?ﬂ*?ﬂﬂ nf memory. For

parallel-organized memory, hcwaver, QUICK 1is a faster “walking b1t"®
test. (See "Introduction to Memory Diagnostics" for a definition of
"parallel-organized memory".)

-30-

4 e

6809 FLEX DIAGNOSTICS

INTRODUCTION TO DISK DIAGNOSTICS AND UTILITIES

The diskette diagnostics and utilities in this package provide a
mechanism for detecting errors on a FLEX™ formatted disk and, in some
cases, retrieving the damaged or 1lost data. The programs in this
package will not perform miracles, however. As with any set of
diagnostics, there are probably some problems that they will not be able
to detect. It is hoped that these programs will be able to detect the
more common problems, and provide enough warning to the user so that
some of the data affected may be salvaged. The_ user should be aware, -
however, that there are some types of failures from which data cannot be

recovered.

This introduction will discuss the structure of a FLEX disk and
some of the problems that may show up. Following this introduction is
documentation on each of the programs. Lastly, several case studies are
analyzed to give a feeling as to how to use the various programs in this

package.

Disks in General

The most common disk storage available on microcomputer systems is
the "floppy disk". These are also called "flexible disks" because they
are thin and will bend easily. There are alsu disks called "hard disks"
which contain rigid plates. Hard disks are usually quite expensive and
can hold large amounts of data.

A disk 1is wusually organized into "tracks" and "sectors". The
tracks may be compared to the rings in an archery target in that they
are concentric circles on the disk. The number of tracks on a disk
varies with the size of the disk; smaller disks wusually have fewer
tracks. Tracks are numbered sequent1a11y, starting at 0. Each track

.......... o e e o amon N - *—\n sv-n <' 'n

is dividea inlu seclivis walied ‘sectorst. The sontnEs Gre t =
which data is stored. The number of sectors in a track depends on the

number of bytes that are going to be stored in each sector; the more
bvtas that are stored in a sector, the fewer sectors that will fit in a

g -

track.

Information is written to or read from the disk by a read/write
“~+1 p the dick drive. The head is at '+ end of an arfm whicn
positions it over the proper track. As the aisk spins, the sectors pass
under the head of the disk drive. To read or write information, the
disk drive waits for the right sector to come under the head, then it
reads or writes the data into the sector.

The method that the disk drive uses to determine when the right
sector is under the head depends on ihc (isk «mei the drive. Some disks
are "soft-sectored”, others are ‘“hard-sectored”. "Hard-sec.ored"
diskettes have holes punched in them, one corresponding to the beginning
of each sector. A separate hole, called the "index mark" indicates the
beginning of the track. ‘“Sof*-se:fored" dickettes have the sactor

- n n D s > e e - -

FLEX is a trademark of Technical Systems Consultants, Inc.

-33-

W By

oA

£6809 FLZX DIAGNOSTICS

“pumber, and other information, recorded magnetically in an address field
*3t the front of each sector. The disk drive reads each sector until it
finds the one that it wants. There is wusually only one hole in a
vsoft-sectored disk; the one that marks the start of a track.

f It is important to note that if the information that is written in
.front of the sector is destroyed, the disk drive will not be able to
find the sector. Some disk controllers are smart enough to detect this

#case, others are not. Those that do detect it return an error that
-indicates that the sector could not be located. Those controllers that

iiannot detect such a condition will continue to look for the sector
until the machine is reset.

A1l of the information that is written to a disk is checksummed,

¥and the checksum is written on the disk right after the information.

When a sector is read, the data that comes off of the disk is

?checksummed again. If the checksum just computed does not match that

Fwhich was recorded on the disk, a checksum error (also called a CRC

gerror) exists. Checksum errors indicate that the data was not written
correctly, or can not be read correctly.

Structure of a fEEX Disk

P
£

Some information about the structure of a FLEX disk is given in the
"FLEX Advanced Programmer's Guide". This information is summarized
< below.

2

- A FLEX disk is given its structure by the initialization program,
. VEWDISK. This program writes the address fields in front of the sectors
- of the diskette and defines the size of the sectors (256 bytes).
fSectors in each track are numbered starting at 1. -— e S =t

£ The sectors on a FLEX diskette are often indicated by a "disk
" address”, also called a "sector address". This address is a hexadecimal
number consisting of the number of the track containing the sector
ccncatenatsed with the number of ({hat sc2tor within the track. For

After initialization, the sectors on all n¥ the tracks, except the
Tiist track, are linked together intu « cia.ie .3 iS accomplished by
reserving the first two bytes of each sector as a "link field" that
contains a pointer to another sector. The next two bytes are also
reserved. They are used to hold a record number when the sector is part
of a file.

The first track on a FLEX disk track 0 i< special. This track
contains the bcei sectors, the sycten informaticn sector, and the
directory. The boot sectors contain a small program that is read into
memory when the system is brought up. The boot sectors are different
irom ali of the ouher sectors in that they dacu .ot have a 11 field or a
record number field. On a standard FLEX disk. the boot sectors are

sectors 1 and 2 on track O.

-34-

AENRAREER A, ZEEMIENTN: X

6809 FLEX DIAGNOSTICS

The system information sector is in sector 3 of track 0. This
sector contains the name of the diskette, number of the diskette, and
the date that the diskette was initialized. Also in the system
information sector are the sector addresses of the beginning and end of
the free chain and the number of sectors in the free chain. Lastly, the
largest value for a track number and the largest value for a sector
number within a track are stored here for reference purposes. The
actual Jlocations of this information 1in the sector is given in the
following table:

Byte Number Content
00-15 Zeroes
16-26 Disk Name
27-28 Volume Number
29-30 Start of free chain
31-32 End of free chain
33-34 Size of free chain
35=-37 Initialization Date
38 Maximum Track Number
39 Maximum Sector Number
40-255 Reserved for future expansion

e

Track 0 sector 4 is not used by FLEX, being reserved for future
expansion. The disk directory starts at sector 5 on track U, and
initially is composed of the rest of the sectors on track 0. The
directory sectors are linked together, the same as in the free chain.
There are no record numbers in the directory, however. A directory
sector has the following format:

Byte Number Content

00-01 Sector link

o ik LETBEs

16-39 Directory Entry
40-63 Directory Entry
64-87 Directory Entry
88-111 Direciory Entry
112-12s uviractory Entry
136-15§ Virectory Entry
160-182 Tiinctary Entry
184-207 Virectory Entry
208-231 Directory Entry
232-255 Directory Entry

The description of an individual directory entry is given in the FLEX
Advanced Programmer's Guide.

Once a sector becomes part of a file, the sector link fiela
contains a pointer to the next sector in the file. I[f the link is zero,
the sector is the last sector in the file. The sectors in a file are
numbered starting at l. - This number :¢ kept in tha record number field
of the sector (bytes 2-3). The .amaining 252 bytes (4-255) contadin
data.

-35-

PRI

,y.k‘ga.

6809 FLEX DIAGNOSTICS

S e

Random Files

bt
b))
L

i
=X

: A FLEX random file is structured like an ordinary sequential file.
gfach sector contains a sector link and a record number, plus 252 bytes
'of data. The difference is that there are two sectors in front of the
2 first data sector that contain a compressed ordered list of the sectors
*1n the file. These two sectors are called the "file sector map". By
“Iook1ng at the sector map, FLEX can quickly determine which sector
iconta1ns which record. The two map sectors themselves have record
numbers of zero. -

4 The information in the map sectors is composed of three-byte
fields. In each field, the first two bytes are a disk address (track
and sector), and the next byte is a sector count byte. The count byte
specifies the number of sectors in the file starting at that disk

"address, that are in sequence. I[f all three bytes are zero, it

¢ indicates that the end of the map has been reached. How the sector map
works may be best explained through the use of an example. Assume that
the sector map of a file Tooks Tike this:

02 06 03
OF 06 01
03 OE 05
00 00 00

' The Teftmost two bytes in each of the above lines are the disk address,
,.'and the rightmost byte is the sector count. The first line, 02 06 03
'® means: "starting at disk address 0206, there are 3 sectors that are in

the file". These would be sectors 0206, 0207, and 0208. The next line
says that starting at OF06 there is one sector that is in the file.
This, of course, would be OF06 itself. The third line says that there
are 5 sectors starting at 030E. If we assume that there are 15 sectors
in a track (01 through OF), then these sectors would be 030E, 030F.
24Nt Nanz | amd AADZ Tho T35t 1IAZ, Ueiay avi éeiues, 1nulcdles ctnat
the ‘end of the f11e has been reached. Summing this up, the file
occupies the sectors 0206, 0207, 0208, OF06, 030E, 030F, 0401, 0402, and
0403, in that order. Thus, if we want sector 6 in the file, we would go
to sector 030F. :

To create 4 random file, it is necessarv to set a flag in the fiTe
control block immediately after openina th~> "iie far writing, and before
wr1C17g any data cto it. The exact procedure is described in the FLEX
Advanced Programmer's Guide.

How FLEX Handles Files

Aftar a disk has been initialized, all of the sectors are linked
todether in the free cnain. When a file is created, sectors are removed
from the head of the free chain and assigned to the file as they are
needed. When a file is deleted, the chain nf sectors that were in the
f1ie is concatenated to the end cf the free chain.

-36-

re e —

SRS QR

T

6809 FLEX DIAGNOSTICS

As mentioned earlier, the system information sector contains the
disk addresses of the beginn1ng and end of the free chain, as well as
its size. The information in this sector is not updated each and every
time a sector is removed from the free chain and assigned to a file.
Doing this would result in a TJot of overhead when files are being
written. Instead, this information is kept in memory and updated there.
The system information sector on the disk is updated when FLEX returns
to command mode and issues the plus signs for a prompt. It is also
updated whenever the FMS "close all files" routine is called. For this
reason, one should not change a disk in the middle.of a program, even if-
the files that were being written have been closed, since the free chain
information has not been updated on the disk.

Types of Disk Problems

There are three broad classes of disk problems: hardware-caused,
software-caused, and human-caused. Hardware-caused problems may result
in the inability to read or write a disk, or the changing of the
information on the disk. Software-caused problems may result in the
changing of information, but very rarely do they result in the inability
to read or write a disk. (Of course, we are assuming that the software
that drives the disk is working correctly.) Human-caused problems are
the result of the user doing something that is ill-advised, such as
resetting the machine while a file is being written. Such an action
could cause the integrity of the disk to be compromised. The links in
the file chains may be wrong; the directory information about a file may
be inaccurate; or the free chain may disappear.

The inability to read or write a disk may be caused by the disk
itself, the disk drive, or the disk controller. I[solating the problem
is a simple process of elimination. If only one disk can not be read,
then the disk is probably at fault. If the disk will work in one drive,

bivme i AT iim mase n.n:n K] owruh i ¢ [XIa LT i f""

uuu el u-lU...lc g Lerllii el WLy o ey

disks and drives work, then the problem is probab]y in the controller or
cable from the contro]ler to the disk drives.

17 only a few sectors on a disk cannot be r.ad or r*tten, then the
disk icself has some bad spots. Modern Jisa muauacluiring techniques
produce high gquality media, but it s poss1noe fur some bad spuis to
Apnea- rlopny disks are prone to wear, since t.c disk drive head
actually 1is in contact with the disketue. in nard disks, however, tne
head rides a cushion of air above the surface of the disk, so that the
disk surface experiences no wear. Jhe majority of failures in hard disk
systems are electronic failures.

The most common problem with disks is that of bad sectors, those
t{hat get checksum errors. Normally, FLEY dztacti had sectors when the
disk is inivialized, at which time they arc removed frca the free chain
and not made available for use in a file. Sometimes, however, a bad
spot mav be pattern sensitive. Such a bad spot may appear to be a good
sector ducing initiaii1zation, but geis a checksum er-or when usea in a
file. it 1is also pessible for a secior tc becune bad due to physical
damage to the disk or due to wear. Handling the various types of errors

-37-

M

[

#6809 FLEX DIAGNOSTICS

-4

Ty

is discussed further in the Case Studies section of this manual.

i? Software-caused problems usually involve the alteration or
destruction of data in a file. Such problems are sometimes the result
%bf programming errors, especially in assembly language programs that
“read and write files. It s good practice to test such programs on
Tscratch disks so that no valuable data is lost if a programming error
“destroys the data on the disk. Sometimes the directory, free chain, or
%the file chains may be destroyed. This type of problem is called a
2 "structural” problem, since the normal structure of a FLEX disk has been
"damaged. Recovering most of the data from structurally damaged disks is
%usua]ly possible. However, the structural damage usually cannot be
i easily repaired. The best way to recover from structural damage is to
3copy the data to another disk and re-initialize the bad one. Handling
structural errors is also discussed in the Case Studies section of this

manual.

BT et

; Human-caused problems are usually structural problems. Most of the

problems occur when something is done while a file is being written, or
* is open for writing. Resetting the machine, opening the disk drive
door, or removing the diskette at the wrong time can result in
structural damage. Sometimes, however, there 1is no choice. If a
program is running wild, or the user suddenly realizes that the program
is writing on the wrong disk, there may be no other alternative than to
take drastic action to stop tihe program. If such action 1s taken, the
next step should be to run some tests on the diskette to make sure that
no damage was done. Some structural problems do not show up until long

after they were caused.

LA R Py

6809 FLEX DIAGNOSTICS

THE DISK UTILITIES IN THIS PACKAGE

There are 10 programs in this package for use in isolating and
recovering from problems. In this section, we will quickly Took at each
of them.

Three programs (TEST, VALIDATE, and FILETEST) are diagnostics which
check for bad spots and structural problems. TEST is a fast checkout
program for detecting bad spots. FILETEST also looks for bad spots, but
it can tell you in which file the bad spot 1is 1lgcated; TEST cannot. -
However, FILETEST runs more slowly than TEST. VALIDATE checks for
structural problems, such as intersecting files or discrepancies between
the file and the information about the file that is in the directory.

Four programs (RAWCOPY, REBUILD, RECOVER, and UNDELETE) are data
recovery utilities. Two of these, REBUILD and RECOVER, are for
recovering data from a disk when the directory has been destroyed.
REBUILD attempts to recover all of the files on the disk, while RECOVER
will retrieve only selected files. RECOVER does require that the user
know the starting track and sector of the file. RAWCOPY will copy a
file that has a checksum error in it. The data in the bad sector will
be damaged, but it is assumed that the user can repair the damage once a
readable copy is made. UNDELETE can. recover files from the free chain,
assuming that they have not been overwritten by new files.

0f the remaining three programs, COPYR is used to restore the file
sector map to a random file after the file has been recovered by
REBUILD. It can also be used to put a file sector map on any sequential
file. FLAW is used to remove bad sectors from the free chain. This is
particularly useful when a sector is intermittent; that is, it 1is not
detected by NEWDISK, but it gives errors when it is used in a file.
Lastly, EXAMINE is a general read/write/modify utility that can operate
on individual sectors. With this program, it is possible to change any
sector on a disk. .

Knowing when to use the various programs will come with experience.
The Case Studies section of this manual gives examples on how the
varijcus programs can be wused with each other to 1solace and correct

problems.

Sy.tam [epondencies

A1l of the disk diagnostics and wutilities 1in this package are
written to run under the FLEX Operating System. It is not possible to
run these programs under other operating systems.

Some the the programs read the system informaticn <2t%sr to get
informavion ahouir tne di<k. In partizular, they wani tu knus che .unber
of tracks on the disk and the number of sectors in a track. In order to
protect against the possiblity of working with bad information, the

valies that a . read from “l.e system informuation sector a:e¢ compared
againsi a table of acceptable values.

-39-

The table consists of several two-byte entries. The first byte is
number of the last track on the disk, and the second byte is the
er of the last sector in a track. For double density diskettes,
ais is the number of the last sector in a data track, not the directory
rack. (The directory track on a double density diskette is written in
‘gkgle density.) The following is a description of the entries in the

able. "

Largest Largest

Track Sector Description -
e Hex Qe HES
39 47 10 oA 5" Single-sided, 40 tracks

39 20 5" Double-sided, 40 tracks

34 10 5" Single-sided, 35 tracks

34 20 5" Double-sided, 35 tracks

76 15 8" Single-sided, single-density
76 26 8" Single-sided, double-density
76 30 8" Double-sided, single-density
76 52 8" Double-sided, double-density
255 255 Hard Disk

jhe table is terminated by three zero bytes, the first two of which are
gvailable for the user to add information about a non-standard
;bnfiguration. The last zero byte should not be changed. This table is

SEsT and REBUILD. The other diagnostics do not have this table.

: If the maximum track and sector values do not correspond to one of
éhe entries in the table, it is assumed that the data in the system
:information sector is incorrect. When this happens, the program prompts
i;the user for information about the disk. The program will also prompt

A 4 de - T En 3 e L o~ Tyt € me el b la 4o
e 2T 2 21z orror. The Fellowing ig 2 descwintion af the aromphn,

Ll

MAXIMUM TRACK/SECTOR READ: tt/ss ARE THESE ACCEPTABLE? (Y/N)
The values .ead from the system informaticn sector weraz "if® A=

"ss". ThEl 2 wue MU wuwriresponding entry in the tatlz, I tho-s
are the correct values, type "Y"; i not, type "N". [If "Y" .z

typed, these valuec wil! be accepted as correct. If "MN" g
typed, addicional prumpts wili tollow.

HARD DISK OR FLOPPY DISK (H/F)
If the disk being tested is a hard disk, type "H"; if it is a
floppy disk, type "F". [f it is a hard disk, the maximum values
will be set to 255 each. If it is a floppy disk, additional
orompts will “211zu,

DISKETTE SIZE (5/8)

[f the diskette is an 8 inch diskette, type "8"; if a 5 1/4 inch
diskette. type "5".

~40-

Y SR

6809 FLEX DIAGNOSTICS

35 TRACKS OR 40 TRACKS (3/4)

If the diskette is a 5 1/4 inch diskette and it was formatted

for 35 tracks, type "3". If it was formatted for 40 tracks,
type "4".

SINGLE OR DOUBLE SIDED (S/D)

If the diskette is a single-sided diskette, type "S"; if it is a
double-sided diskette, type "D".

SINGLE OR DOUBLE DENSITY (S/D) p -
If the diskette is a single-density diskette, type "S": if it is

a double-density diskette, type "D". This prompt appears only
if the diskette is an 8 inch diskette.

If the system information sector could not be read because of a disk
error, prompting beings with the HARD DISK OR FLOPPY DISK message.

e

-

:

209 FLEX DIAGNOSTICS

+a

DISK TROUBLESHOOTING GUIDE
Introduction

£ This portion of the manual gives hints on using the disk diagnostic
gd repair programs in this package. With experience, you will become
familiar with the capabilities and limitations of each program, and will
¢ better able to judge which program will work best for a particular

goblem.

Symptoms of a Problem

Most of the time, you will know that there_is a problem because of
error message issued by FLEX. The messages that are sure indicators

DISK FILE READ ERROR

DISK FILE WRITE ERROR
RECORD NUMBER MATCH ERROR - FILE DAMAGED

In some cases, an unexpected error message may be a clue. For

“example, a DRIVES NOT READY message when, indeed, they are ready, may be
an indication that the disk contro]ler could not find a sectcr. OCn
3 1/4 inch disk dr1ves, some control]ers cannot detect a NOT READY or

]fhe head loaded, it may also be an indication that the controller cannot
ifind a sector.

A clue that there may be a structural problem with a disk is an
~unexpected ALL AVAILABLE DISK SPACE HAS BEEN USED message. I[f there was
a lot of space on the disk, and suddenly it all vanishes, then the free
£ chain has been dastrovad. This is a warning that the structural

J: integrity of the disk should be checkea.
{

Here 1is a partial list of some other events which should be taken
as warripgs tih~i a disk may be damaged.

vR

1) Data chan g‘“g in a file.
I¥£ a file thst has not been re-written sudderly has cifferent data
in by v mE gt“ indicate that another file g 1'nk e 4. Thi-
is a severe structural problem that could result in a loss of all

of the data on the disk.

2) A file disagrees with its directory entry.
If a file is obviously much larger or much smaller than the size

that is in the directory, then something is wrong. It might be
-kat the t71'C was truncated, or linked into the Free wiaifie

i
+
i i

ot

3) Duplicated or missing names in the directory.

[t is ncL oossible t2 create a €i’2 with the -~ name as ¢n
‘) existing file. If there are two files with the same namne, then the
directory has been damaged.

42

e

.
!

oy

4)

6809 FLEX DIAGNOSTICS

Memory problems in the machine.

If a machine has recently had a memory problem, then all disks
should be checked once the memory procblem is fixed. A memory
problem can cause programs, including FLEX, to run wild. Runaway
programs can cause structural damage to the data on a disk. Such
damage may not be immediately apparent.

Most of the diagnoétics do not take a long time to run. So, a good

general rule is to run diagnostics 1if there is any doubt about the

physical or structural integrity of a disk.

-

General Hints

As mentioned before, experience is the best teacher as to which

diagnostics are most suitable for any given problem. However, there are
some general guidelines.

1)

2)

If you get a disk error while reading a file, use FILETEST with the
"A" option to determine which file contains the error. The next
step is to try reading the disk on another disk drive. If the
error is "soft", the other drive might be able to read the file.
If so, copy the file immediately.

If you get an error on a disk, you should first decide if it is
worth the effort to try to salvage what is left of the file. If
the data can be regenerated easily from backups or previous
versions, it might be faster to do that than to try to recover the
damaged data.

VALIDATE is the preferred test for detecting structural damage.

Severe structural damage, sucn as tiies peing tinked tegetner, 1S
very difficult to repair. To do so requires a good knowledge of
how files are contructed on a FLEX disk. In many cases, the best
course is to copy as much as poc~ible *s another disk and
re-initialize the crashed disk. An editor can then be wused to
salvzg2 as much as pes<ible on the grou disk.

o f «iicecteory 1s damaced and cannot he ria’ he only kPora is to

use REBUILD. RECOVER can be used for individual files if the
starting track and sector of each file is known.

-43-

DISK DIAGNOSTICS AND UTILITIES DESCRIPTIONS

e

e e Tt e

|
|
|

-45=

-
»

6809 FLEX DIAGNOSTICS

Program Name: EXAMINE
Program Type: REPAIR UTILITY

PURPOSE:

EXAMINE is a repair utility which allows the user to read, madify, or
write any sector on a FLEX diskette.

Calling Sequence:

EXAMINE drive-number

-

where:

"drive number" is the drive containing the diskette to be
examined. The diskette must already be mounted. If no drive
number is specified, the work drive is used if it has not been
set to "all". If the work drive is "all", a drive must be
specified.

L

METHOD:

EXAMINE starts by trying to read the System Information Sector from the
specified drive. If successful, it determines the configuration
(diskette size, number of sides, and density) from that information. If
the System Information Sector cannot be read, EXAMINE will prompt for
the information necessary to determine the confiquration. Once the
configuration is known, EXAMINE is ready to accept commands.

.
P R T]
P O .

EXAMINE indicates that it is ready for a command by issuing the prompt:
ToMMag e

There are nine valid cu~mands. Cac., command col:ists of a 7ingle
letter, optionally follcwed by « n: -ieter. The valid coamands are:

R,<{sector address> Read a sector

W,<{sector address> Write a sector

D,<sector address> Read and display a sector
C,<¢sector address> Read and display until end of file

M,<byte number> Modify sector buffer
F,<file spec> Dead “iwct coctor of a file
U,sr1le speco Suite Tink Ladle fciroa file
T,<addr>,<addr>,<ccunt> Move data in memory

S Stop. return to FLEX

The paraneter ¢sector aidress) w®’’ be described later an.

-40.

Read a Sector into the Internal Sector Buffer
The sector specified as the parameter is read into a sector buffer
internal to EXAMINE. If an error was detected dur1ng ‘the reading
of the sector, the appropriate error message is printed. If the
error was SECTOR NOT FOUND or DRIVE NOT READY, then no data was
transferred to the internal sector buffer.

Read and Print (Dump) a Sector.
This command reads the specified sector into the internal sector
buffer, then prints its content at the terminal. -If a SECTOR NOT
FOUND or DRIVE NOT READY error is detected, no information is read
or printed.

Write the Internal Sector Buffer to a Sector
The content of internal sector buffer 1is written to the sector
specified by the argument to the command. If "verify" is "on",
then the sector will be read after having been written. Any error
detected during the write or during a subsequent verification is
reported. If the error is SECTOR NOT FOUND or DRIVE NOT READY,
then no data was written to the diskette.

Print a Chain of Sectors.
This command reads and prints the*content of a chain of sectors as

defined by the sector links. The information 1is printed in the
same form as the "D" command. The argument to this command 15 the
address of the sector at which to start the dumping. The dumping
stops when the end of the chain is reached, or a SECTOR NOT FOUND
or DRIVE NOT READY error is encountered. As with any output from
FLEX, the printing may be stopped at any time by using the escape
key. Typing an escape followed by a carriage return will stop the
printing and a new command will be requested.

M - Modifv Tnternal Sector Buffer Data ——— — — = o m e

noand ghanging oT the datsy in tho

This commana diiows Tiie caawiin@s.o and zhan
internal sector buffer. The internal sector buffer must have been
previously loaded with data by the "R" or "D" command. The
argument to this command is the number of the byte, in hexadecimal,
at which to start the exam:nation. If no argument is specifi=i,
byte zero is assunied. When 1nvoked, the byte number and ¢~
current content are displajad. Typing a twu~digit hexade._imal
numbar will cause the center ‘o 9e changed tc that number. Typing
an up arrow (a circumflex on some keyboards) will cause :hs
previous byte to be displayed. Typing a carriage return will
return to command mode. Typing any other separator character, such
as a period, will cause the next bhyte to be displayed. The display
is circular; byte 00 is considered to follow byte FF. This command
does not update the sector on the diskette; it only changes the
data in the buffer. 1o ug...c ihe data in the diskette, the "W"
command must be used, arter modification of tne Luffer, to writ-
the updated internal sector buffer to the desired sectaor.

-50-

.---‘.’.-nu-ma----su--ukuam-N!ll!hlL e

A pebesel

B - Build Link Table for File.

6809 FLEX DIAGNOSTICS

F - Read First Sector of File

The argument to this command is a FLEX file specification. The
default extension is ".TXT". The diskette directory 1is searched
for the file and, if found, the first sector of the file is read

into the internal sector buffer.

There are four names which may be specified instead of a legitimate
file specification to cause the first sector of special areas of a
FLEX diskette to be read. This 1is a convenience so that the
specific sector addresses do not have to be memorized or determined
from other data. These names and the areas to which they refer

are:

$8 -~ The boot sector .

$§S -~ The system information sector
$D -- The directory chain

$F -~ The free chain

For example, the command "F,$D" will cause the first sector of the
directory to be read into the internal sector buffer. If desired,
the entire directory may then be dumped by typing "C".

o

The argument to this command is a FLEX file specification or one of
the special names described under the "F" command. If no argument
is specified, the current sector address is assumed to be the start
of the chain. When invoked, this command reads the chain, storing
the link from each sector in a table in memory. After the table is
built, the first sector is re-read and becomes the current sector.
This table 1is used whenever a "P" is specified as a disk address.
Thus, once the table is built, one may move both forwards and
backwards along that chain by specifying disk addresses of "N" and
"o", Each invocation of the "B" command erases the oprevious
content of the link table 1n memory. inus, Oniy Cne V1 i& Lialn au
a time can occupy the link table.

T - TransTzr {Move) Data in Memory.
nri

Thie rnmmand allows the moving of data in memory. It has three
arjuments, an 2ddress indirating where cne data .< currently
located, an address indicating where the data is to be :wved, and a
coun. of .n_ .au.ber” ol bytes to move. The twe 24d- ec ors ir
hexadecimal, and the count is in decimal. There are two special
forms of address which refer to the information in the internal
data buffer. These are *B and *D. *B represents the address of
the internal data buffer. *D represents the address of the data
portion of the internal sector buffer (4 bytes beyond *8). If
either *B ar *N is used as an address, then the count parameter is
optizns~t, If *3 is specified and no count is suecitied, Lo bvtes
will be copied. If *D is specified without a count, 252 bytes will
be copied. A count field may be used to move fewer bytes. Moving
wiore that 2.0 bytes intc the intaranel buffer aree “<'' produce
unnrredictable results.” Care must also be taken so that Jditu is not
moved on top of EXAMINE. EXAMINE and its buffers start at ioction

0000 and use up about 4K bytes; so data should not be moved to an

-51-

area below $1000. Following are examples of the use of this
command .

T,3000,4000,100
Move 100 bytes from $3000 to $4000.

T,*8,5000
Copy the content of the internal sector buffer to address
$5000. A1l 256 bytes will be copied.

T,4020,*D,20 '
Copy twenty bytes of information from address $4020 to the
data area of the internal sector buffer. The 1link field
and record number field of the sector buffer are not
changed.

& - Return to FLEX

j-_ecifying Sector Addresses

IREXAMINE always has a "current sectqr.address”, specified as a single
b#hiexadecimal number. This is the address of that sector (called the
@Fcurrent sector"), which is to be read or written. A sector address is
S the form "ttss", where "tt" is the track number, and "ss" is the
Sector number within the track. The current sector address starts out
et 0003 (track 00, sector 03), which 1is the address of the System
% Information Sector. When a command which has a sector address as an
Rargument is typed, the argument becomes the current sector address. If
@¥an illegal address is entered, an error message is given and the current
¥ sector address does not change. If no sector address is specified to a
=command that accepts- one, then-the actian is performed on the current

A sector address in a command may be specified in one of several ways.
The simplest, and most useful, forms are:

R T ¥

ttse Specify Irack and Sector Explicitly.
In this form, "tt" is the liack number in hexadecim.!. and ‘“ss"
‘s *he : .zer number in hexadecimal. The operaticn anpropriate
to the command is performed c. the expliziftl» p~ ~1ed track
and sector. For example, 010D is track 01, sector 0D.

+ Next Physical Sector.
Specifying a plus sign as the sector address causes the current
sector address to be incremented by 1. The resulting value
pecanes the new current sector address, and the command acts
upon that address. If the cu: rent sector addvess . Lhe last
physical sector on a track, the the new current sector auuress
is the first sector of the next track. If the current sector
address s the last shysical sectc- on the disvett2, the new
current sectur address is the first sector of the f.rstu track on
the diskette. For example, if the current sectun acdress is
0104, then specifying a plus sign as the argument to a command

-52-

sector. B T

T e s e e

<y

s g B

AR

U e,

6809 FLEX DIAGNOSTICS

L4

will cause the command to act on the sector with the sector
address 0105. N

- Previous Physical Sector.
Specifying a minus sign as the sector address causes the current
sector address to be decremented by 1. The resulting value
becames the new current sector address, and the command acts
upon that address. If the current sector address is the first
physical sector on a track, the new current sector address is
the last sector of the previous track. . If the current sector-
address is the first physical sector on the diskette, the new
current sector address is the last sector of the last track on
the diskette. For example, if the current sector address is
0105, then specifying a minus sign as the argument to a cammand
will cause the command to act on the sector with the sector

address 0104.

N Next Logical Sector
If an "N" is specified as the sector address, the sector at the

current sector address is read, and its 1link becomes the new
current sector address. The command then acts on this new
sector address. The "W" command does not accept this form of
sector address. This fomm- of sector address allows one to step
through a file on a diskette. If the link in the current sector
is zero (an end of file), then the message ENO OF CHAIN is
issued and the command does nothing. For example, if the
current sector is 0104 and its link points to sector 0301, then
0301 becomes the current sector address, and the command acts on
that sector.

P Previous Logical Sector
This form of sector address requires the "B" command to have

7 been typed at- some--time.. If a-"P" is specified as the argument

Tht saatas Yink table, built hv the "B" command, — "

LU a CuJdikingad, TNT €2

is searched for the current sector address. 1T 1C 1S fuund,
then the sector which points to the current sector becomes the
new current sector, and the command acts on it. If the current
sector is not in the 1ink table, or is the firat sector in the
‘ink table, then a message is ‘~~e4 apd the command does
nothing.. The "W" command does 1ot accept *~'< form of sector

I aTRS5.

= Use Current Sector
[f an equal sign is specified as the argument to a command, then

the current sector address does not change. This is equivalent
to not specifying any parameter to the command.

The above forms of sector address are the <impi-st forms. There are
more complex forms which result in greater flexibility 11n specifying
sectur 13i“7resses as parameters to commands. The symbols "+", "-" and
"=" may ue combined with each other anc with traclk - sactor number< to
form a sector addrezs. Fur example, 3=, +4 and =+ are all legal ‘oms.
In these forms, the item to the left refers to the track, and the item

-53-

5@9 FLEX DIAGNOSTICS
33;‘

fi0 the right refers to the sector. Thus, 3= means "set the track to 3
d do not change the sector"; +4 means "increment the track number and
gt the sector number to 4"; and =+ means "do not change the track and
lscrement the sector". A table at the end of the documentation for this
ogram lists all of the legal forms and their effects on the current
¥ sector address.

-~

A CRC error (Checksum Error) was detected by the disk controller
when reading the sector at sector address "ttss".

ADDRESS: ttss, DRIVE NOT READY ¥
3 An attempt was made to read or write the sector at sector address
“ttss", but the controller indicated that the drive was not ready.

An attempt was made to read or write the sector at sector address
"ttss", but the controller could not 1locate the sector on the
diskette. This usually indicates that the sector address field on
the diskette has been destroyed. .

BBAD LINK TO NEXT SECTOR

. A command which follows links in a file chain encountered a link
which specified a track not on the diskette, a sector number of
zerg, or a sector number larger than the maximum on the track.

. COMMAND:
3 The prompt for the next command.

t- DRIVE MUST BE SPECIFIED _ A . e .
Mo parameter was specified when EYAMINE was called, and the working
drive was set to "ALL". If the working drive 1is “ALLY, a drive
number must be specified as a parameter when calling EXAMINE.

END OF CHAIN
A command that pammallv follows the links in a file chain reached

=
-f the end Cf the chain. These commards include "B" ars "C". 8lcq,
t- any commaad invoxed with the lacical sector addaress "N (Next
l Logicel Seitur), way give tais nassage f the current sectir |- aa

end of file.

[LLEGAL ADDRESS SPECIFIED
A memory address to the "T" command was not a valid hexadecimal
number or *B or *D, or the sector address specified as the argument
to a command was not one of the legal forms. See the table at the
end of thas dc-umentation far- this pregram for 2 simmary of che

legal forms.

?

54~

13

6809 FLEX DIAGNOSTICS

ILLEGAL COUNT SPECIFIED
An illegal decimal number was specified as the count parameter to

the "T" command.

ILLEGAL DRIVE NUMBER
An invalid drive number was specified as the parameter to EXAMINE.

INVALID BYTE NUMBER
An illegal hexadecimal number was entered as the argument to the
"M" command, or the number entered was greater than $FF. Note that .
because FLEX 1is used to assemble the byte number, lower case
hexadecimal digits are not allowed.

NO PREDECESSOR FOUND
A command was invoked with an argument of "P" (Previous Logical
Sector), but the current sector was the first sector in the link
table. Thus, the current sector is the first sector in the chain
that was scanned when the table was built.

SECTOR NOT IN LINK TABLE
A command was invoked with an argument of "P" (Previous Logical

Sector), but the current sector was not in the sector 1link table.
Either the “B" command was not previously invoked to build the link
table, or the current sector is not a part of the file chain which
was scanned when building the table.

SYSTEM INFO SECTOR INVALID
The diagnostic could not read the system information sector on the
diskette, or the information read concerning maximum track and
sector did not appear correct. This message will be followed by
prompts for disk configuration information. See “The Disk
Utilities in This Package: System Dependencies" for details.

(R TIC R YRR TS wTY 1+ -1
ARl Ot "“"D

The command entered could not be recognized.
WRITE ON LOGICAL SECTOR NOT ALLOWED

The ™"W' command (Mrite Sector) may not have "P" or "N" a3 an

arguna.ata

-55-

-

- .

1)

2)

4)

09 FLEX DIAGNOSTICS

Legal Forms of Sector Address

SECTOR EFFECT ON EFFECT ON
ADDRESS TRACK SECTOR -
FORM NUMBER NUMBER
(See Note 1) (See Note 2)
ttss Set to "tt" Set to "ss"
tt= Set to "tt" Unchariged
tt+ Set to "tt" Incremented
tt- Set to "tt" Decremented
=ss Unchanged Set to "ss"
== Unchanged Unchanged
=4 Unchanged Incremented
= Unchanged Decremented
+ss Incremented Set to "ss"
= Incremented Unchanged
++ Incremented Incremented
+- Incremented Decremented
-Ss Decremented Set to "ss"
-= Decremented Unchanged
-+ Decremented Incremented
- Decremented Decremented
+ (See Note 3) Incremented
- (See Note 4) Decremented
= Unchanged Unchanged
(Return) Unchanged Unchanged
If the effect 1is to increnent the track number, and the current

sector is on the last track of the diskette, then the track number is
set to zero. If the effect is to decrement the track number, and the
current sector is in track zere, then the track number is se* to tr=

last track own Li:e disnetice

If the effect is to increre:t the sector number, and thc currert
sector is the last sectur :1n the track, then the sector numbter is oo
to one. If the effect is to decrement the sector number, and the
current sector is the first sector on the track, then the sector
number is set to the last sector of the track.

The track number will be incremented if the current sector is the
last sector in the *rack.

The track number will be decremented if the current sector is the

first sector in the track.

Efe

6809 FLEX DIAGNOSTICS
EXAMPLE

As an example of the use of some of the features of EXAMINE, let us
assume that we have a diskette in which a file name 1in the diskette
directory has been damaged. Let us further assume that the file name is
supposed to be NEWDISK.CMD, but that one of the letters has been somehow
changed to a control character. We would 1like to change the bad
character to that which it should be. -

The first step is to put the damaged diskette in the work drive and type
EXAMINE. The following is an annotated example of how the session might

go.

COMMAND: F,$D Read first sector of directory>
COMMAND: D <Bump the first sector>

DISK ADDRESS: 0005
-0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F,

0- 00 06 00 00 00 00 00 00 00 0C 0O 0O 00 00 00 00

1- 45 52 52 4F 52 53 00 00 53 59 53 00 00 01 01 O1 ERRORS__SYS

2- 09 00 09 02 00 01 04 50 46 4C 45..58 00 00 00 QO PFLEX

3- 53 5953000001 0A03040019 000001 04 50SYS P

4- 50 52 49 4E 54 00 00 GO 53 59 53 00 00 03 05 03 PRINT__ SYS

5- 05 00 01 00 00 01 04 50 43 41 54 00 00 00 00 00 _ ~ PCAT___
6- 43 4D 44 00 00 03 06 03 08 00 03 00 00 01 04 50 CMD P
7- 43 4F 50 59 00 00 00 00 43 4D 44 00 00 19 OF 1D COPY___ CMD

8- 04 00 05 00 00 01 OA 50 44 45 4C 45 54 45 00 00 PDELETE__
9- 43 4D 44 00 00 03 OE 03 OF 00 02 00 00 01 04 50 CMD I
A- 4C 49 53 54 00 00 00 00 43 4D 44 00 00 04 01 04 LIST__ CMD

B- 03 0C 03 00 00 01 04 50 50 00 00 00 00 00 00 00 PP —
C- 43 4D 44 00 00 04 04 04 04 00 01 00 00 O1 04 50 CMD -~ P
D- 41 95 «& G0 G0 CC ST GG 43 50 #4 0 onnona ns 04 ASNT Mo
E- 05 00 01 00 00 01 04 50 52 45 4E 41 4D 45 00 00 PRENAME
F- 43 4D 44 00 00 04 06 04 06 00 01 00 00 O1 04 50 CMD P

<Not in this sector:

(continued)

=57«

| MAND: D,N <Dump the next sector>

”ﬁSK ADDRESS: 0006
¥ 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
- 00 07 00 00 00 00 00 00 00 00 00 0O 00 00 GO 00
41 50 50 45 4E 44 00 00 43 -4D 44 00 00 04 07 04 APPEND__CMD
#. 09 00 03 00 00 01 04 50 42 55 49 4C 44 00 00 00 PBUILD
43 4D 44 00 00 04 OA 04 OA 00 01 00 00 O1 04 50 CMD .
45 58 45 43 00 00 00 00 43 4D 44 00 00 04 0B 04 EXEC CMD

0B 00 01 00 00 01 04 50 4E 05 57 44 49 53 48 00 " PN_WDISK_
43 4D 44 00 00 04 OC 05 03 00 07 00 00 01 04 50 CMD P
53 41 56 45 00 00 00 00 43 4D 44 00 00 05 04 05 SAVE CMD_

05 00 02 00 00 01 04 50 54 54 59 53 45 54 00 00 PTTYSET
43 4D 44 00 00 05 06 05 07 00 02 00 00 01 04 .50 CMD P
4F 00 00 00 00 00 00 Q0 43 4D 44 00 00 05 08 05 O CMD_

09 00 02 00 00 01 04 50 50 55 43 43 4C 49 4E 48— PPUCTLI N
43 4D 44 00 00 05 OA 06 08 00 OE 00 00 O1 04 50 CMD____

4A 55 4D 50 00 00 00 00 43 4D 44 00 00 06 09 06 JUMP CMD

09 00 01 00 00 01 04 50 44 41 54 45 00 00 00 0O PDATE_

43 4D 44 00 00 06 OA 06 0B 00 02 00 00 01 04 50 CMD P

KIt's in this sector.
NEWDISK has the "E" damaged.
Ryte 59 should be $45, not $05.>

¥ COMMAND: M,59 <Modify starting at byte 59.>

§ 59 05 45 <Enter the correct value.>

I 5A 57 <Carriage return typed to exit.>
- COMMAND: W <{Re-write the directory sector.>
¥ COMMAND: D <{Read and dump it to make sure

‘ it's correct.>

= Nr1cK ANNBESS: Q00A

=0 =] <2 =3 =4 <5 <b =~/ =& =9 =A =B <1 =y -c ~-r

0- 00 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1- 41 50 50 45 4E 44 00 00 43 4D 44 00 00 04 07 04 APPEND CMD
2- 09 00 G3 00 00 01 04 50 42 S5 49 4C 44 00 00 0O —FBUIEQ___

!: 3- 43 4D 44 C0 00 04 0A 04 nA N0 01 00 GO 01 04 50 CMD
4- 45 58 45 43 00 00 20 On 43 4p 42 niv 00 U4 0B 04 FEXFT Cﬁﬁ
5- 0B 0C ©1 00 00 01 04 S0 4E 45 57 44 43 53 48 00 PNENDISK
- 435 4D 44 00 00 04 OC 05 N3 0C CT "3 3C G 04 <0 cMh
7- 53 41 56 45 00 00 00 00 43 4D 44 00 00 05 04 05 SAVE CHU
8- 05 00 02 00 00 01 04 50 54 54 59 53 45 54 00 00 PTTYSEI__
9- 43 4D 44 00 00 05 06 05 07 00 02 00 00 O1 04 50 CMD P
A- 4F 00 00 00 00 00 00 00 43 4D 44 00 00 05 08 05 O CMD
B- 09 00 02 00 00 01 04 50 50 55 43 43 4C 49 4t 4B PPUCCLINK
C- 43 4D 44 00 00 05 OA 06 08 00 OE 00 00 01 04 50 CMD p
D- 4A 55 4D SO 00 0C 00 .00 43 4D da G4 GO N6 09 0& JUMP_ CMD
E- 09 00 01 00 00 01 04 50 44 41 54 45 00 00 00 00 " PDA
F- 43 4D 44 00 00 06 OA 06 OB 00 02 00 00 01 04 50 CMD P

<Data is correct.>
COMMAND: S {Return to FLEX>

-58-

6809 FLEX DIAGNOSTICS

As an example of the use of the "T" command, let us assume that it is

% desired to copy the data from sector 0104 into sector O050F. Let us

COMMAND: R,104
COMMAND: T,*D,4000
COMMAND: R,SOF
COMMAND: T,4000,*D
COMMAND: W
COMMAND: S

-59-

further assume that only the data must be copied, not the link or record
number. Here is how the session might go.

{Read in sector 0104>

<{Move the data to a safe area>
<Read in the sector to be written>
<{Move the data into the buffer>
{Update the sector on the disk>
<Return to FLEXD

6809 FLEX DIAGNOSTICS

Program Name: FILETEST
Program Type: DISKETTE DIAGNOSTIC

PURPOSE:

FILETEST tests all or part of a diskette for errors by reading the data
files on the diskette. All files, or a specified list of files, may be
tested. Optionally, the boot sector and system sectors, the directory
chain, and the free chain may be tested. If desired, a list of the
sector addresses of those sectors in a file may be displayed. I[f an
error is detected, the name of the file and the nature of the error are

displayed. .

Calling Sequence:
FILETEST,drive-and-options, file-list

where:

"drive and options" are the number of the drive to be tested and
the test options. EZither may be specified first, and either or
both may be omitted. If no drive is specified, the work drive
is used if it is not “all”. If the work drive is "all", a drive -
number must be specified. The options are a string, starting
with a "+", composed of one or more of the following letters:

Test all files on diskette

Test directory chain

Test free chain

Print map (sector list) for each selected file

- 1eSL buul and :_v.);.uu adCicia

v ZTTNO >
]

"file 1ist" is a list of FLEX files to be tested. Each file in
the 1ist will be tested. If no file list is specified, only

those portions of the diskette szecifiec through options will be
tested,

|

METHOD:

When called, FILETEST first checks to see 1if the boot and system
sectors, the directory, or the free chain is to be tested. If so, they
are checked before any files are tested. I[f an error is detected when
testing these special areas, the following pseudo-file names are used in

k the error message:

$B800T.SYS - Boot Sector

$7YSINF0.SYS - Sustem Infoyrma*tian Sector
$DIRECTY.SYS - Dircctory

SFREECHN.SYS - Free Chain

Fach file chain is tested by following the sector links in that chain.

K1

i

09 FLEX CIAGNOSTICS

jce an error is found in a file, the testing of that file stops, and
desting of the next file begins. It is assumed that the file chains on

ﬁe diskette are structurally intact; that is, none of the sectors have

‘,d 1inks.

~if a file chain can be read without error, the file size and last sector
gumber are compared to that which is stored in the directory. An error
pssage is issued if there is a discrepancy.

‘3 »

MESSAGES :

NG COMPLETED

#
TESTI
3 Testing of the requested files is finished.

FLAST SECTOR ERROR, EXPECTED tt/ss, ACTUAL tt/ss
; The number of the last sector of the file, as recorded in the

directory, does not correspond to the number of the Tlast sector
read by FILETEST. The value after EXPECTED is the value from the
directory; that after ACTUAL, the value from the file itself.

. SECTOR COUNT ERROR, EXPECTED nnnn, ACTUAL nnnn

: The number of sectors in the file, as.recorded in the directory,
dces not correspond to the count accumulated while reading the
file. The value after EXPECTED is the value irom the directory;
that after ACTUAL, the count accumulated while reading the file.

. ERROR READING DIRECTORY
A disk error was encountered while trying to open a file for

testing.

File name NOT FOUND
The indicated file, which was specified in the file 1ist, could not

13 atemmda 47 Py ll-‘-‘.'.....

When reading the indicated file, the disk controller could not
locate a sector. This is5 usually an 1n“icatior that the address
fieid of the sectur is damaged. Mcm2''y, trere jc pothing that
can be done to recover tine data from 4 sector thot has this errar,

File name READ ERROR TRACK/SECLTOR tt/ss
A CRC error (checksum error) was detected by the disk controller

when reading the indicated file. With this kind of error, the data
might be recoverable.

¥ De fUlnd i whé <iZhictte
, File name CANNOT LOCATE TRACK/SECTOR tt/ss

UNKNOWN OPTION IGNORED - x
The scption "x" is not a valid option. The valid options are: A, D,

ﬁ F, M, and >.

ERROR TN NRIVE NUMBER
An 11,293l drive n»umber was siecified to . diagnastir as a
parameter.

-62-

V-

L .

6809 FLEX DIAGNOSTICS

DRIVE MUST BE SPECIFIED
The diagnostic was called without an argument and the default work
drive was set to "all". The diagnostic will check only one drive,

so in this case, a drive must be specified.

DRIVE NOT READY
The drive is not ready, the diagnostic is aborted.

File name NULL FILE
The "M" option was selected (print list of sector numbers), but the

file size was zero. Such a file may be created by resetting the
machine with a file open for writing, then re-booting the system.

REMARKS :

FILETEST cannot detect the error in which a file Toops back on itself.
If FILETEST is reading such a file, it will loop forever. VALIDATE may
be used to detect such files.

EXAMPLES
1) Test the file DATA.TXT on the working drive.
FILETEST DATA.TXT

Note that no drive number is necessary if the diskette is in the
working drive (so long as the work drive is not set to "all").

2) Test all of the files on the diskette in drive O.

FILETEST+A 0 or

- ———— -

FiLETCoT © A

Note here that the options and drive number are interchangeable.
3) orint oyt a 1ist of the sectors comprising the free chain.
FILET-ST +MF
4) Test the directory and the file DAfA.DAT un the working drive.
FILETEST +D DATA.DAT

B3

S

LEX DIAGNOSTICS

:
-

5FL AN FINISHED
The removal of the specified sectors was successfully accomplished.

‘YSTEM SECTOR NOT UPDATED

FREE CHAIN DAMAGED
A disk error was encountered when trying to update the system
information record with the new configuration of the free chain.
The data on the diskette should be copied to another diskette, and
the old diskette initialized.

-

"ERROR WHILE READING ttss
3 An error was detected reading the sector at sector address. "ttss".

FLAW will attempt to remove the sector from the free chain.
¥ BAD LINK IN ttss - FATAL ERROR '

; The sector at sector address "ttss" contains a bad link. It is not
possible to remove it from the free chain, nor is it possible for
FLAW to continue. FLAW terminates immediately.

E FREE CHAIN ENDS PREMATURELY - FATAL ERROR

The end of the free chain was encountered unexpectedly. The free
chain is probably shorter than indicated in the system information
sector. The diskette should be’ considered structurally damaged,

and the data copied to a good diskette.

! END OF FREE CHAIN NOT FOUND
The free chain either is longer than indicated in the system .

information sector, or loops back on itself. The diskette should
be considered structurally damaged, and the data copied to a good

diskette.

SYSTEM SECTOR CANNOT BE READ
A dic<k error was encountered when trying to read the system

infgrmation sector. FLAW termiiiiaLes timmedidiciye

ttss NOT FLAWED
Tne sector indicated by "ttss", which was specified as a parameter,

w2e rot found in the free chair.

|

CANNNT UPDATE ttss - FATAL ERROR
.hen <tiying to remove a sector Trem ‘e free chain. the sector

pointing to the one being removed could not be read to be updated.
This sector had been read previously without error. FLAW
terminates immediately. FLAW may be re-run to remove this sector.

ERROR DURING UPDATE OF ttss - FATAL ERROR
When trying to remove a sector from the free chain, the sector

pcinting to the one being removed yieided 2 write error vhen it was
updated. FLAW terminates immediatety. The diskette snhoula be
considered structurally damaged, and the data copied to a good

“iskette.

-66-

6809 FLEX DIAGNOSTICS

Program Name: FLAW
Program Type: DISKETTE UTILITY

PURPOSE:

FLAW removes sectors from the free chain of a FLEX diskette either
because they contain errors, or because they were specified as
parameters to the program. The removed sectors are no lTonger available
for use. This utility is best used for removing sectors that have
suddenly gone bad, or for removing sectors that are intermittent or
pattern sensitive. These types of sectors normally may be initialized
without error, but give errors when they are used in a file.

-

Calling Sequence:
FLAW,drive-number,sector-list

where:

"drive number" is the drive containing the diskette to be
processed. The diskette must already be mounted. If no drive
number is specified, the work drive is used if it has not been
set to "all". If the work drive is "all", a arive must be
specified. .

"sector list” is an optional list of sector addresses, each in
the form "ttss" ("tt" is the track number, "ss" is the sector
within that track). If the sector list is omitted, only those
sectors which contain errors will be removed. Any sector that
has an error will be removed, even if it is not in the list.

METHOD:

FLAW starts reading the free chain on the diskette. [If a sector is
an~apntaped whnich is specified in the 1list, it i~ rawoved from the
Sain. If 2 cector has an error, an inforna.ive messc~ye s 13sued, and

FLAW attempts to remove it firom the chain. .7 the sectcr with the errov
has a bad 1:nk, it cannct be removed, and FLAW termir.. -- immediately.

MESSAGES:

ILLEGAL DRIVE NUMBER
An illegal drive number was specified to the diagnostic as a
garamptér

DRIVE NUMBER MUST BE SPECIFIED
The diz~nostic was z2'led without a drive numher and the default

wark drive was set to "all". The disgnostic w .i check only oie
drive, so in this case, a drive must be specified.

=65~

6809 FLEX DIAGNOSTICS

REMARKS :

FLAW assumes that the system information sector is intact. It 1is from
this sector that the information on the free chain and diskette
configuration is obtained. If this sector cannot be read, FLAW issues a
message and terminates.

The free chain should not contain sectors which have a damaged address
field. These sectors would result in a "sector not found" error fram
the TEST or FILETEST diagnostic. FLAW does not d#stinguish among the
various types of errors and will try to remove a "not found" sector from
the free chain, resulting in structural damage to the free chain.

FLAW updates the system information sector each time a sector is
removed. [f FLAW should terminate before processing the entire free
chain, the free chain 1is probably intact. However, under these
circumstances, it would be wise to check the diskette with VALIDATE.

[EN TRy s e

After FLAW has run, it 1is good practice to run VALIDATE. If a bad
sector has a damaged link field, but the link is still within the range
of legal values, then FLAW may cause structural damage to the files or

free chain.

-

EXAMPLES

1) Remove any sectors in the free chain of the diskette in the work
drive that have errors.

FLAW

2) Remove any sectors 1in the free chain of the diskette in drive 1
that have errors.

FLAY 1

2) Remove any sectors in the free chain of the diskette in the work
drive that have errors. Alc? remove sectors 0103, 050F, and

1B0S.
FLAW,,010% ni0r,1B05

Note that two commas were necessary after FLAW because a
parameter must be reserved for the drive number. Since no drive
number was actually specified, the work drive is used. (In this
case, the work drive must not be set to "all").

b7

6809 FLEX DIAGNOSTICS

Program Name: RAWCOPY
Program Type: DISKETTE UTILITY

PURPQSE:

RAWCOPY copies a file, ignoring checksum errors (CRC errors) whenever
possible. It is intended to be used in an attempt to retrieve most of
the data in a file that has a bad sector in it. Because of the checksum
error, the data in that sector will be damaged; however, it 1is assumed-
that once a readable copy is available, an editor or the EXAMINE utility
can be used to correct the damage.

Calling Sequence:

RAWCOPY old-file,new-file

where:

"o0ld-file" is the file specification of the file that contains
the bad sector. The default extension is ".TXT".

'new-file" is the specification of the file that is to be
written. The default extension is that ¢f the old file.

METHOD:

RAWCOPY performs a simple file copy function, ignoring checksum errars
in the file being copied, if possible. The file is copied one sector at
a time. The link in each sector is validated against the legal maxima
for track and sector. These values are read from the system 1nfonnat10n
sector of the diskette cnantainina tha had £il~, TF thz zvatas
infermation sector cannot be read, the user will be prompted for
information sufficient to determine the size and configuration of the
diskette. If, while reading the file, a bad link is detected, or a
"sector not found™ or “"drive not roady® er-or is aelected, the copy is

aborted-

nnSACES:

COPY COMPLETED
The copy operation has terminated normally.

COPY ABORTED
The copy operation could not be completed hecause either a bad link

was detected in a sector cr-a "not found” or "not ready” errus was
detected.

-69-

'5809 FLEX DIAGNOSTICS

SYSTEM INFO SECTOR INVALID

The diagnostic could not read the system information sector on the
diskette, or the information read concerning maximum track and
sector did not appear correct. This message will be followed by
prompts for disk configuration information. See "The Disk
Utilities in This Package: System Dependencies" for details.

ADDRESS: ttss, DRIVE NOT READY
- A "not ready" response was received from the disk controller when

the sector at disk address "ttss" was being read.

ADDRESS: ttss, SECTOR NOT FOUND
The sector specified by disk address "ttss" could not be located by
the disk controller. This normmally indicates damage to the address

portion of the sector.

ADDRESS: ttss, CRC ERROR
A checksum error was detected by the disk controller while reading

the sector at disk address "ttss".

BAD LINK ENCOUNTERED
A bad Tink to the next sector was detected while reading the file.
The copy is aborted. '

! Any other messages are produced by the FLEX operating system.

-70-

- 4

6809 FLEX DIAGNOSTICS

Program Name: REBUILD
Program Type: DISKETTE UTILITY

PURPOSE:

REBUILD attempts to find files on a crashed diskette whose directory has
been destroyed. Those files that are located are copied to another
drive.

a

Calling Sequence:
REBUILD source-drive,destination-drive,

where:

"source drive" is the number of the drive containing the crashed
diskette.

"destination drive" 1is the number of the drive containing a
diskette which will receive cop1es of those files that can be
located. e

REBUILD will pause before starting t(he reccvery sc that the

appropriate diskettes can be inserted in the drives.

METHOD:

REBUILD starts. at. track 1,.. sector .l and searches_the diskette for a
sector which has a record number of 0001. When one is found, it is
assumed to be the start of a file. The cha1n, starting at that sector,

1740 < 3 FiT e TF *ha rlinin J-—u-e~-*v- "‘ 3

1S reag Lo deleswine (¢ ic fodiiy 3%

series of sectors with record numbers that are in order, tier a file has
been found. If the record numbers are not correct, it is assumed that
this file had been deleted and is now in the free chain; it is not
recovered. Unce the file has been found, it 315 copici ta the other
discette. A name of the form FILEnnna. 370 (s ussi..2d L& the copy,
where "nnnn" is 3n increasing number. The first file rfuund is given the
name FILENDO.,sC9; the second, FILEDOO2.SCR, etc. GLfter the file has
been copied, or a chain was found not to be a iegitima.c file, then the
scan continues from where it found the first sector of the chain. After
the files have been recovered, it is up to the user to 1ist or dump them
to determine what the files are, and to rename them appropriately.

MESSAGES:

RECOVERY COMPLETED
REBUTIN has found all of the files on the diskette.

=71~

(
M

§809 FLEX DIAGNOSTICS

' cOPY ABORTED
' The current file being copied has a disk error in it. The copying
of the file is termminated and the search for another file resumes.

SYSTEM INFO SECTOR INVALID

: The diagnostic could not read the system information sector on the
diskette, or the information read concerning maximum track and
sector did not appear correct. This message will be followed by
prompts for disk configuration information. See "The Disk
Utilities in This Package: System Dependencies" for~details.

DRIVE NUMBER ERROR
An illegal drive number was specified to the diagnostic as a
parameter, or a drive number was missing.

" DRIVES ARE THE SAME
The "source drive" and "destination drive" may not be the same.

ADDRESS: ttss, DRIVE NOT READY
A "not ready" response was received from the disk controller when

the sector at disk address "ttss" was being read.

ADDRESS: ttss, SECTOR NOT FOUND s
The sector specified by disk address "+tss could not be located by
the disk controlier. This normally indicates damaj2 to the address

portion of the sector.

ADDRESS: ttss, CRC ERROR
A checksum error was detected by the disk controller while reading

the sector at disk address "ttss".

FILEnnnn.SCR ttss nn SECTOR(S)
While the file 1s be1ng cop1ed its name, FILEnnnn.SCR (where nnnn

L R “s mmT avemAd 1o a-b.‘ .'.‘:.;4 ;‘:“

1S a numbe: i Ul;plﬂjguc (A (ot = b gl adiis
and sector (“ttss“) of the file on the crashed disketie. Nhen the

copy 1is completed, the number of sectors copied is also displayed.

INSERT DISks, HIT ANY KEY

MRS RIS, |

When this message appears, insert (f.2 appOp. iviw giskettes in
their drives and type any key. The recovery process will then
teqgin.

REMARKS:

If a file was a random file on the crashed diskette, the file sector map
will not be recovered by REBUILD. After the file has been copxed, it
must be rocopied from the good diskette with ths 7OPVR utility in crder
to rebuild the file sector map.

The file mact recently deleted, if still intact in the free chain, will
a130 be recuvered as a separate file.

«]2=

6809 FLEX DIAGNOSTICS

Program Name: RECOVER
Program Type: DISKETTE UTILITY

PURPOSE: -

RECOVER copies files from a crashed diskette to another diskette. Files
to be copied are specified by their starting track and sector.

Calling Sequence:

RECOVER source-drive,destination-drive

where: »

"source drive" is the number of the drive containing the crashed
diskette.

“"destination drive" is the number of the drive containing a
diskette which will receive copies of the specified files.

RECOVER will pause before.. starting the recovery so that the
appropriate diskettes can be inserted in the drives.

METHQD:

After the diskettes have been mounted, RECOVER prompts for the disk
address of the file to be copied. The disk address should be entered in
the form: ttss, where "tt" is the the track number in hexadecimal, and
"ss" 1{s the sector number in hexadecimal. After the disk address has
been entered, RECOVER prompts for the name to be given to the copy of

s B4 Vs Tha He 8-.1f _31‘4--—»-—- o M TVT‘" !\una O-Inwc- 1n~‘nm=+1nn b;f

been entered, the file is copied. After the copy, a prompt for another
disk address is issued. To exit from RECOVER, enter a carriage return

in answer to the prompt for a disk address.

The copy is niiuvweu oy 7.1lowing the links in the £374 ~bkajn Na
validation of sector links or record numbe:rs is performed.

MESSAGES:

COPY ABORTED
A read error was encountered while copying the file. The copy of

the file is abandoned.
DRIYE NUMBER ERRUR

An illegal drive number was specified to the diagnostic as a
parameter, or a drive number was missing.

-73-

|
|

§809 FLEX DIAGNOSTICS

ADDRESS ttss, DRIVE NOT READY
A "not ready" response was received from the disk controller when
the sector at disk address "ttss" was being read.

'ADDRESS: ttss, SECTOR NOT FOUND

The sector specified by disk address "ttss" could not be located by
the disk controller. This normally indicates damage to the address
portion of the sector.

ADDRESS: ttss, CRC ERROR =
A checksum error was detected by the disk contraller while reading
the sector at disk address "ttss". :

INSERT DISKS, HIT ANY KEY -
When this message appears, insert the appropriate diskettes in
their drives and type any key. The recovery process will then
begin.

DISK ADDRESS:
This is the prompt for the disk address of the start of the file to

be recovered.

At

FILE NAME:
This is a prompt for the name to be assigned to the <copy of the

file.

, ERROR IN ADDRESS

The disk address typed was not a valid hexadecimal number.

FILE NAME ERROR _
The file name typed was not g valid FLEX file name. — - - ——

REMARKS:

RECOVER does not attempt to detect if the file being copied is a random
file. If the file you are going to reccvar is 2 random file, the file
:::*** map associated with the file will he conied alcng with the data,
but the sector map will! nc longer be c~rrect. T~ rerrect this, the old
sector map has to e removed, and a new ore censtiucted. Sinne this
invetves the use ¢/ more than one utility, it w7 ! bc covered in one of

the cases in the section "Case Studies"”.

EXAMPLE

Recover the files starting at addresses 0306 and 070A. The crashed disk
is in drive 1, and the copies are to be nut on ilw diskette in drive O,
Give the first file the name DATA.DAT; the second, TRIAL.BAS.

+++RECOVER 1 0 Recuv:i “um 1 to O

INSERT DISKETTES, HIT AMY KEY

DISK ADDRESS: 0306 <Enter address for first ftiled
FILE NAME: DATA.CAT <Enter name for first file.

-74-

|
\
|
¢
{
¢
)
!

DISK ADDRESS: 070A
FILE NAME: TRIAL.BAS

DISK ADDRESS:
RECOVERY COMPLETED

=75~

6809 FLEX DIAGNOSTICS

-

The file is recovered.”>
¢Address for second file>
¢Enter name for second file.
The file is recovered.?>
(Carriage return typed>

6809 FLEX DIAGNOSTICS

Program Name: TEST .
Program Type: DISKETTE DIAGNOSTIC

PURPOSE:

TEST reads every sector on a qiskette, reporting those that have errors.

Calling Sequence: -
TEST drive-number ' : A

where:
’

“drive number" is the drive containing the diskette to be
tested. The diskette must already be mounted. If no drive
number is specified, the work drive is used if it has not been
set to "all". If the work drive 1is "all", a drive must be
specified.

METHOD:

TEST first reads the system information sector on the diskette to
determine the number of tracks, number of sectors per track, number of
sides, and density. If the system infarmation sector cannot be read,
the user is prompted for the information. TEST then starts at the track
0, sector 1, and reads each sector on the diskette. The address of each
sector that has an error is reported, along with the type of error

encountered.

-

MESSAGES:

SYSTEM INFO SECTOR INVALID
The diagnostic could not read the system information sector on the

diskette, or the information read concerning maximum track and
cartor did not appear correct. This message wiit De followed by
sranpts for disk configuration information. See "The Disk
Utilities in This Package: System Dependencies” for details.

.

ILLEGAL DRIVE NUMBER
An illegal drive number was specified to the diagnostic as a

parameter.

DRIVE MUST BE SPECIFIED
The diagnostic was called without an argument and the default work
drive was cet to "all1"., The diagnasvic wit: chuck only one drive, |
so in this case, a drive must be specified.

.

£809 FLEX DIAGNOSTICS

5
~

ADDRESS: ttss, DRIVE NOT READY
; A "not ready" response was received from the disk controller when

the sector at disk address "ttss" was being read. The test
terminates immediately.

ADDRESS: ttss, SECTOR NOT FOUND
The sector specified by disk address "ttss" could not be located by
the disk controller. This normally indicates damage to the address

portion of the sector.

 ADDRESS: ttss, CRC ERROR
A checksum error was detected by the disk controller while reading

the sector at disk address "ttss".
]

REMARKS:

Some disk controllers used for 5" diskette drives do not have the
capability of detecting that a drive is not ready. If the drive is not
ready, the test will hang until the drive is made ready.

=78«

6809 FLEX DIAGNOSTICS

Program Name: UNDELETE
Program Type: DISKETTE UTILITY

PURPOSE:

UNDELETE attempts to remove deleted files from the free chain, restoring
them in the directory with a user specified name.

Calling Sequence:
UNDELETE drive-number

where:

"drive number”" 1is the drive containing the diskette which must
already be mounted. If no drive number is specified, the work
drive s used if it has not been set to "all“. If the work
drive is "all", a drive must be specified. P,

METHOD: ‘ =

UNDELETE starts by searching the free chain, building a map of those
sector chains that appear to constitute files. After the scan is
finished, UNDELETE is ready to process the files that it has found. The
i files that it has found in the free chain are numbered, with the
"youngest” file (the most recently deleted) being number 1. By using
commands, the user may examine and optionally recover any file from the
free chatn. The 'youngest-file in the free chain is made—the— "current™ - —— —
file, and information about that file is displayed. The information
disnlaved includes the size of the file, the start1ng d1sk address and

whetner 1t 1S @ SeQUeNTIdl (1€ Ul d Junude +1ice WalLLLIE Thzn il
for a conmand. The poss1b1e commands are:

- Dump tht current file is hexadecimal and ASCII.

- Prnreedi o the next older file.

- Go bac¥ to the previous (next younger) t:ii2.

R - Recover the current file. A prompt fcr the fiie name will
foilow-

S - Return to FLEX.

3EQ

In addition to the above commands, the number of a file may be typed.
That file is then made the "current" file, and the information about

that file is displayed.

Commands:

UNDCLETE 1nu1c-~ . that it is r~ady for a command by issuina the prompt:

ACTION (D/N/P/k/S/#)?

=79~

6809 FLEX DIAGNOSTICS

e

The letters in parentheses are the legal commands, with "#" meaning that
a file number may be entered.

D - Dump the Current File
) The content of the current file is dumped in hexadecimal and ASCII.
The escape key may be used to temporarily stop the dump. Typing an
escape followed by a return will cause the ACTION prompt to be
re-1ssued
-,

N - Proceed to the next Older File.
The next older file (closer to the beginning of the free chain) is

made the current file and information about that flle is displayed.

a.

P - Go back to the Previous File. ;
" The next younger file (closer to the end of the free cha1n) is made
the current file and information about that file 1s displayed.
R - Recover the Current File. '
"% - .- The current file is to be recovered. The user 1s prompted for the
" name to be assigned to the recovered file. At this point,, a name
. must be typed since the file has already been removed from the free
chain. If an illegal name is given, the request for a name will be

re-issued. e

S -Return to FLEX

If a carriage return is entered, the information about the current file
is re-displayed.

MESSAGES: - —— = ——- —-—

ACTION (D/N/P/R/S/#)?
The prompt Tor tne nex. Cuwmaine

DRIVE MUST BE SPECIFIED
No param=ter was -,ec*f1ed when UNDELETE was called, and the

workine dejve was set to "ALL". If the working dirive is “r ™) a
drive -~umber must bpe specified as a paramece: 523 22V lipg

UNDELETE.

[LLEGAL DRIVE SPECIFIED
An invalid drive number was specified as the parameter to EXAMINE.

FILE ALREADY EXISTS
The file name typed already exists in the diskette directory. A

file name is requested again.
nnnn FILES FOUND

This message 1is issued after the scan of the free chain is
cenpieted. It im’"sates the number of files found.

-80-

6809 FLEX DIAGNOSTICS

FILE NUMBER OUT OF RANGE
A file number was entered in response to the ACTION prompt that was
larger than the number of files found in the free chain. Entering
a file number of zero will also result in this message. :

UNRECOGNIZED COMMAND
The command that was typed could not be recognized.

FREE CHAIN IS EMPTY
There are no files in the free chain. a,

FILE NAME?
This is a request for the name to be assigned to the recovered
file. The default extension in ".BIN',

REMARKS:

The scanning of the free cha1n for files may take a. 1ong t1me,
especially on double sided or double density diskettes. i, - =%

Only complete files may be recovered. If a part of a deletéd-filglhaéi
already been re-used by FLEX, that file can not be recovered.

EXAMPLE

Assume that we want to recover a file that has been deleted " recently.
We know that it was about 20 sectors long, and that it was a sequential
file containing the source of a program called LOAD. [f the diskette
that has the file is in drive 1, then the recovery session might proceed

as follows:
+++UNUELE 1£ 2 i © unooen T

6 FILES 'FOUND
FILE 1 6 SECTOR(S), ADDRESS: 0206 TYPE: SEQUENTIAL

ACTION (D/N/P/R/S/#)2 M <Go to the next file>
FILE 2 19 SECTOR(S). ADDRESS: uF04 TYPE: RANDOM
ACTINN (D/N/P/R/§/#)? N <Go to the next f11e, £nis one is

about the right size, but it's
a random file, not sequent1ai>
FILE 3 1 SECTOR(S), ADDRESS 0102 TYPE: SEQUENTIAL

ACTION (D/N/P/R/S/#)2? N <Go to the next file>

FILE 4 22 SECTORS(S), ADDRESS 300F TYPE: SEQUENTIAL

ACTION (D/N/P/R/S/#)2? D <This might be it. Dump it.>
30 OF

30 10 0O 01 20 4E 41 40 20 4C 3+ «1 44 202D 20 0 NAM LOAD -

4C 4F 41 44 20 22 53 31 22 20 46 49 4C 45 20 46 LOAD “S1" FILE F
52 4F 4D 20 43 41 53 53 45 54 54 45 2E 0D 20 4F ROM CASSETTE. O
50 74 20 50 41 47 "D 20 50 41 47 "D 2A 2A 2A 09 PT PAG_ PAG ***
03 4C 4F 41 44 20 2D 20 4C 4F 4. 4~ 20 22 53 51 _LOAD - LOAD "'31
22 20 46 49 4C 45 20 46 52 4F 40 <0 43 41 52 53 7 FILE FROM CASS
45 54 54 45 2E 0D 20 53 50 43 20 34 0D 2A 2A 09 ETTE._ SPC 4_**_

6809 FLEX DIAGNOSTICS

03
4F
48
20
20
20
55
52
24

30
30
20
4t

53
4t
52
43
45
43
20
49
43

10
11
45
20

59
53
20
48
51
52
24
4E
44

00
51
54

4D
2E
45
41
85
2F
43
47
31

02
55
4F

42
oD
51
52
20
4C
44
oD
38

52

20

20

oF
20

4c
53
20
43
43
0D
45
55
4F

43
43
59

ACTION (D/N/P/R/S/#)? R
FILE NAME? LOAD.TXT
ACTION (D/N/P/R/S/#)? S

-82-~

54 49 SYMBOL DEFINITI
54 43 ONS._ SPC 2 GETC
45 54 HR EQU $CD15 GET
4C 46 CHARACTER PCRLF
4€ 54 EQU $CD24 PRINT
45 51 CR/LF_PSTRNG EQ
53 54 U $CDIE PRINT ST
55 20 RING_PUTCHR EQU

48 41 $CD18 OUTPUT CHA

4D 53 0__ RACTER_WARMS
55 52 EQU $CDO3 RETUR
50 43 N TO SYSTEM_ SPC

<Printing stopped by typing

"escape" followed by "return">

<This is the file, recover it>
<{Name is LOAD.TXT>
<{Return to FLEX> -

a8

[¢)

o 6809 FLEX DIAGNOSTICS

Program Name: VALIDATE
Program Type: DISKETTE DIAGNOSTIC

PURPOSE:

VALIDATE checks a FLEX diskette for structural errors caused by hardware
or software malfunction. The following items are checked:

a) that the sector 1links in each file are tegal track and sector
values,

b) that the record numbers in the sectors of a file are correct,

c) that the sectors in a random file correspond to those spec1f1ed
in the file sector map,

d) that the file size and ending disk " address correspond to the
values in the directory,

e) that the free chain corresponds to its description in the system
information record,

f) that the directory does not end prematurely,

g) that files do not intersect, and

h) that there are no orphaned sectors (viz. those that are not in
a file nor in the free chain or directory)..

Calling Sequence:
VAL IDATE,drive-number

where:

"drive number" 1is the drive containing the diskette to be
validated. The diskette must already be mounted. If no drive
number is specified, the work drive is used if it has not been

SEL CO 'dii1' e IT Lhe wula Ui ivE 13 aid y w disee must 32
specified.

METHOD:

VALIDATE reads every file chain on ths diskette, including the directory
and the tree chain. A record of eick -<cror in the chdain is made in a
table in memory. As each chain is scanned, the table is checked to
determine if the sector currently being read was part of another chain.
If so, this is an error since the two chains intersect. As each file is
being read, the links in each sector are checked against the values
permitted for the size of diskette being tested. Any track and sector
values which are out of range are reported as an error. In addition,
the record number in each seticr 1: cnacked. Record numbers that are
out of sequence are also reported as errors. [f the directory indicates .
that the file being checked is a random file, the file sector map is
checked ‘2~ valid struct:se. Each s2~*~~ in the file must also be in
the sector map. Any discrepancies are :e.crted as esrrurs. After all of
the file chains have been examined, tne tavle in memory is examined tu
determine 1if any sectors have not been encountered. If some have been

-83-

6809 FLEX DIAGNOSTICS
missed, a count of them is printed.

MESSAGES:

FILE: file name, LAST SECTOR ERROR
The last sector of the indicated f11e did not correspond to that

specified in the directory.

FILE: file name, FILE SIZE ERROR *
The size of the indicated file did not correspond to the value

specified in the directory. -

SECTORS NOT FOUND: nn -
"nn" is a count of the number of sectors wh1ch were not found

during the validation process.

SYSTEM INFO SECTOR INVALID
The diagnostic could not read the system information sector on the

diskette.

ADDRESS ttss, PREMATURE END OF DIRECTORY
At disk address "ttss" 1in the directory, a zero entry was found
indicating the end of the directory. However, additional directory
entries were found beyond that point.

FILE: file name, ADDRESS: ttss, ILLEGAL SECTOR MAP
The directory entry for the file indicated that the file was a
random file. However, the file sector map at disk address "ttss"
did not have a zero record number, as required.

FILE CONFLICT: file name/file name
The specified files intersect. One of the files will probably be

named 1n anotner errur nkessauce

ILLEGAL DRIVE NUMBER
Ar illegal drive number was <specified to the diagnostic as a

narameter.

DRIVE MUST BE SPECIFIED
The diugnostic was called without a» -yoment and the default work

drive was set to "all". The diagnostic will check only one drive,
so in this case, a drive must be specified.

FILE: file name, ADDRESS ttss, BAD LINK
The sector at disk address "ttss" in the specified file contains a

forward link that is outside of the permissible value for a track
and sector for the type of diske.:ie Coing iesied.

ADDRESS: ttss, DRIVE NOT READY

A "not r2ady" response was received “-om the disk controller when
the sector at disk address "ttss" was :t2iag read.

-84~

[U A

* Penean.

6809 FLEX DIAGNOSTICS

ADDRESS: ttss, SECTOR NOT FOUND
The sector specified by disk address "ttss" could not be located by

the disk controller. This normally indicates damage to the address
portion of the sector.

ADDRESS: ttss, CRC ERROR
A checksum error was detected by the disk controller while reading

the sector at disk address "ttss”.

FILE: file name, NULL FILE .
The specified file contains no data.

FILE file name, ADDRESS ttss, RECORD NUMBER ERROR
The sector at disk address "ttss" in the specified file d1d not

contain the expected record number. Record numbers should increase
by one along the length of the file.

FILE file name, ADDRESS ttss, SECTOR MAP ERROR
The sector at disk address "ttss" in the indicated random file
contains a link to a sector which is not in the file sector map.

VALIDATION COMPLETED
The diagnostic is finished.

VALIDATION ABORTED
The diagnostic detected an error of such a magnitude that it could

not complete its task. Such errors include: checksum error, a
sector could not be found by the disk controller, the drive not
being ready, and the system information sector being damaged.

REMARKS:

VAl TDATE assumes that the diskette does not contain files with checksum
errors or sectors that cannot be tocatea Dy Lne uisk wuntiuiien . L5 IDY
such sectors are found, a message 1is issued and the diagnostic is
aborted. The routines TEST and FILETEST can be used to determine if any
such sectors exist. If the sysi=m informaticn zector cannot be read, or

contains anomalous values, tre diaanasiiv. is also aborted.

BRad sectors that'were removed by NEWDISK o~ FLAW will be included in the

count of sectors *hat were not found s ° . they were not in the free
chain or a file. The number of bad sectors should be subtracted from

this count to determine how many "orphaned” sectors there are.

This diagnostic takes 2 minutes to check an 8" single-sided,
single-density diskette. Double-sided and double-density diskettes take

propertionately longer.
Some controllers for 5 1/4" diskettes will hang if the the drive is not

ready or the sector cannot be located by the controller. Owners of such
hardware shui'id be aware that this right ! 3 the cause ¢f the diagnostic

anparently hanqging up.

-85«

6809 FLEX DIAGNOSTICS

\ VALIDATE will only function correctly on the diskette configurations
+# 1isted in the "System Dependencies" paragraph in the section "The Disk
Utilities in this Package". It will not work on a hard diske.

v e,

-

-86-

)

6809 FLEX DIAGNOSTICS

CASE STUDIES

The following examples are intended to demonstrate how the disk
utilities in this package can be used to identify and sometimes correct
problems. It should be stressed that these programs cannot correct all
problems. There are situations in which data has been destroyed and
cannot be salvaged. Proper identification of the problem is important
in determining if the data can be saved. Such identification must be
based on interpretation of the messages issued by the diagnostics.
This, as well as some tricks, are stressed in the cases considered. :

When attempting to salvage damaged data, it is important to take
into consideration the amount of work involved in the recovery process.
It may be faster to reconstruct the data from backups than it would be
to salvage the damaged data and repair it.” After you have recovered
damaged data a few times you will be able to judge which option is best.

-89~

RS g

—— | — S DR SRR

6809 FLEX DIAGNOSTICS o

CASE I: A Simple Read Error

Assume that while assembling a program, you get the message DISK
FILE READ ERROR while reading the file LOAD.TXT from the disk in drive
1. The disk containing the utilities is in drive 0. The problem is to

recover as much data as possible from the file.

The first step is to try to read the file on another disk drive.
The mechanical differences among drives are sometimes enough to enable
one to read an intermittent bad spot that another drive cannot read.
The FILETEST utility can be used to read the file.. If it does not get
an error, the file can then be copied to another disk. If it does get
an error, then-FILETEST will tell you the disk address that has the
error. Switching the system and work disks, we try FILETEST.

+++1 FILETEST 0 LOAD.TXT <{Remember, we switched disks so we
specify the drive numbers.>

0.LOAD.TXT READ ERROR TRACK/SECTOR 04/07

TESTING COMPLETED

The file cannot be read on another drive, so we have to try to recover
the data. Remember the track and sector containing the arror, we'll
come back to it later. Putting the disks back in the original drives,
copy the file using RAWCOPY.

+++RAWCOPY LOAD.TXT LOADX.TXT
ADDRESS: 0407, CRC ERROR
COPY COMPLETED

The 111e LUMUA. AT now contains 3 readable copy. However, there is
probably some damage to the data in that file because of the error
detected while reading the old file. If the file is short it would be
easiest to bring up an editor and loax for the damaged data. On the
other hand, if the file i< lana rha ramage might be hard to {in?. "h2
EXAMINE utility can be used to v~24 the bad sector, vwhich will give us
some idea of where the damage is !ncated. By locking at the data i the
Sad sector, we may be ab’e tc sc¢ -hat the dawage is 'ike and wher: in
the program the damaged code is Tocated. From this information, we can
go to the same spot in the good copy of the file to see what needs to be

corrected.

-90-

RUTE I P ——

6809 FLEX DIAGNOSTICS

+++EXAMINE <Default to the work drive>
COMMAND: D 0407 <Dump the bad Sector>
ADDRESS: 0407, CRC ERROR

DISK ADDRESS: 0407
-0-1-2-3-4-5-6-7-8-9-A-8-C-D-E-F

0- 04 08 00 OA 54 OD 20 42 56 53 20 42 59 54 45 31 T_BVS BYTEL
1- 20 49 46 20 45 52 52 4F 52 0D 20 50 53 40 53 20 " IF ERROR PS@S
2- 42 20 41 53 53 45 4D 42 4C 45 20 42 59 54 45 0D B ASSEMBLE BYTE_
3- 20 41 44 44 41 20 30 2C 53 2B OD 42 59 54 45 31 -ADDA 0,S+ BYTEL
4- 20 52 54 53 20 52 45 54 55 52 4E 0D 20 53 50 43 RTS RETURN_ SPC
5- 20 34 0D 2A 2A 09 03 44 49 47 20 2D 20 41 53 53 4 ** DIG - ASS
6- 45 4D 42 4C 45 20 44 49 47 49 54 2E 0D 2A OD 2A EMBLE DIGIT. * *
7- 09 04 45 58 49 54 09 02 56 53 20 49 46 20 45 52 EXIT VS IF ER
8- 52 4F 52 20 44 45 54 45 43 54 45 44 0D 2A 09 OA ROR DETECTED *
9- 56 53 20 49 46 20 4E 4F 20 45 52 52 4F 52 2C 20 VS IF NO ERROR,
A- 41 4E 44 0D 2A 09 OA 28 41 29 3D 44 49 47 49 54 AND * (A)= =DIGIT
B- 0D 20 53 50 43 20 32 0D 44 49 47 20 42 53 52 20 _ SPC 2 DIG BSR
C- 49 4E 43 48 20 47 45 54 20 43 48 41 52 41 43 54 INCH GET CHARACT
D- 45 52 OD 20 42 56 53 20 44 49 47 31 20 49 46 20 ER_ BVS DIGI IF
E- 45 52 52 4F 52 0D 20 53 55 42 41 20 23 27 30 20 ERROR_ SUBA 'O
F- 43 48 45 43 4B 20 44 49 47 49 54 0D 20 42 4C 4F CHECK DIGIT_ BLO

COMMAND: S

At byte $1D, we see that an "H" has been changed to a "@". The rest of
the sector Tlooks good, there are no other errors. (It is important to
check the whole sector, more than one byte may be damaged.) With this
information, we can edit LOADX, look for "PS@S", and change it back to

*PSHS".

The prob]em now is what to do with the bad file. We can simply
Ay --7- el 0s ke “ﬂ'ﬂﬁf

Toryetu avoutL lL, uul. l..“f.‘ll blls.. gbuu SEGkdnd sk vl Tais 2IRDeT T2
by other files. If the bad sector is not the first sector, then the

good sectors can be reclaimed by deleting the file, and then removing
the bad sector from the free chain with the FLAW utility. If the error
is in the first scctor cof the File, it will not be possible to de.ete it
without causing mor2 damage tn the disk. By looking av . 1eeura
number bytes, we see that this is the tenth sectur in the fiie (bytes
2-3 of the sector are 00NA). Twrefore we can delete it.

+++DELETE LOAD.TXT
DELETE "1.LOAD.TXT" ? Y

ARE YOU SURE? Y
+++FLAW 1 <It is not necessary to specify

the bad sector if it has an
error in 1t.»>

ERROR WHILE READING 0407
"riAW" FINISHEN

If the bad sector had been the first sector of the file, then the best

-01-

6809 FLEX DIAGNOSTICS

-~

course of action would be to copy everything to a good disk and
re-initialize the bad one. This may seem like a lot of work Jjust to
recover from a read error, but it really does not take a long time.

The most important thing to note in this case is the procedure of
first identifying exactly where the problem is located (sector 0407 in

the file LOAD.TXT), then recovering the data, and finally, repairing
the damage caused by the error.

e

-92-

6809 FLEX DIAGNOSTICS

CASE II: A "Sector Not Found" Error

While reading a disk, a DRIVE NOT READY message appeared, yet the
drive was ready. Unfortunately, we don't know which file was being
read. The first step is to isolate the problem using FILETEST.

+++FILETEST +A <Use the "A" option to check
all of the files>

1.ELECTRIC.TXT CANNOT LOCATE 1A/05

TESTING COMPLETED &

This is a very bad error. It means that the address field in front
of the data in the sector cannot be read. In many cases, this type of
error produces a "not ready" condition. There is very little that can
be done to save the data since the disk controller cannot find the

sector.

The address field <cannot be repaired, the disk must be
re-initialized. The front of the file ELECTRIC.TXT can be salvaged by
using RAWCOPY, as in CASE I. The copy will stop when the bad sector is
reached. There is a "desperation" technique that can be used to recover
the back end of the file, but it is very time-comsuming and a lot of
work. This is investigated in a later case.

«93-

6809 FLEX DIAGNOSTICS

CASE III: Recovering a Random File

A data disk containing a random file has had its directory
destroyed. You know from a printed output from the DIR utility (not
part of this package), that the file starts at disk address 0204, and is
28 sectors 1long. The problem is to recover the random file to another

disk.

‘There are two ways to recover the file. The REBUILD utility can
recover all of the files on the disk, and the RECOVER wutility can
recover just the random file. We will Took at both ways.

Using the REBUILD utility, we will recover all of the files on the
disk. .

+++REBUILD 0 1 <Bad disk in 0, good disk in 1>
INSERT DISKS, HIT ANY KEY

1.FILEOOO1.SCR 0102 10 SECTOR(S)

1.FILEO002.SCR 0206 26 SECTOR(S)

1.FILEO003.SCR 1001 1 SECTOR(S) -

1.FILEO004.SCR 1002 16 SECTOR(S) e

RECOVERY COMPLETED o

One of these ti1les is the data from our random file. REBUILD does
not recover the file sector map, so the length of the new file will be 2
sectors shorter than the original file. FILEOOO2.SCR appears to the
one. If we are not sure, we could use EXAMINE to dump the file. The
disk with the damaged directory can be put aside, it is no longer
needed.

The next step is to put a file sector map on the copy of our randam
file. The COPYR utility is designed to do this.

+++COPYR FILEOOO2,DATA.DAT
The filc DAIA.DAT nuet contains the random file, in its entirety.

The other method of recovering the random file involves the use of
the RECOVER commard ReCOVER starts at the disk address tkat -y onter,
and copies every sector. We cannot start it at the original first
sector {0204), because this is the address of the file sector map. We
do not want to copy the file sector map exactly, because it would then
not reflect the layout of the file. A file sector map must be built,
not copied. The trick is to use EXAMINE to read the file sector map and
determine the first sector that contains data.

-94-

+++EXAMINE

COMMAND: D 0204
DISK ADDRESS: 0204

0-
1-
Y
3-
4-
5-
6-
P
8-
9-
A-
B-
i
B
Es
F-

02
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

COMMAND: S

starts in sector 0206.
This is the value that we will give to RECOVER.

+++RECOVER 01

INSERT DISKS, HIT ANY KEY

DISK ADDRESS: 0206

FILE NAME: DATA.SCKR
DISK ADDRESS:

alalad'is]
[A>T I

file sector map cn the recovered file.

+++COPYR DATA,DATA.DAT

s ad

6809 FLEX DIAGNOSTICS

<Crashed disk in work drive>
{Dump the first sector>

-C -D
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00_ 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00

By looking at the file sector map, we see that the dsta itself

<Bad disk in 0, good disk in 1>

<Enter the starting address of
the data>
zour $% aa a acvatsh Filad

{Enter carriage return to exitd>

yow that the data is recovered, the old disk can be put aside. The
wtitijty i< ys<ed, as in the first part of Lais

ca~2, tn huild a

The file DATA.DAT now contains the random file in its entirety.

-95-

s e B T e aaiatals

- —— =

6809 FLEX DIAGNOSTICS

CASE IV: A gtructural Problem

While editing the file CPINT, the message ALL AVAILABLE DISK SPACE

HAS BEEN USED appeared. There should have been plenty of space on the
disk, so there must be a structural problem. Running the CAT command,

we get:

CATALOG OF DRIVE NUMBER 1

DISK: #0 a
NAME TYPE SIZE PRT

CPINT .BAK 95

CPINT .TXT 47
CPINT .BIN 4

GTCVT .cMD 1
ETCYT LBAK « =7 =% s 8 35 e
GTCVT .TXT 7

SECTORS LEFT = 0

Comparing the sizes of CPINT.TXT and CPINT.BAK, we see that the
file that was being edited is badly truncatad. If the _BAK file is
stiil intact, we might be able to salvage something. The first step is
to find out the extent of the damage using the VALIDATE command.

+++VALIDATE <Bad disk is in working drive>
FILE: 1.CPINT.BAK, ADDRESS: 180A, RECORD NUMBER ERROR

FILE: 1.CPINT.BAK, FILE SIZE ERROR

FILE CONFLICT: 1.CPINT.BAK/1.CPINT.TXT

SECTORS NOT FOUND: 1032

VALLIUA I Lun Lumree 1eD

The file CPINT.BAK has some serious problems with it. It is
obvious that the file has been overwritten or gotten linked into another
file. The 1032 sectors that couldn't be lccated are proably tne
sectors in the free chain, We can aet another lock 4t the damage by
printing the file chains using FILETESI.

+++FILETEST +M CPINT.TXT CPINT.BAK

1.CPINT.TXT 13/0C 13/0D 13/0E 13/0F 14/01 14/02 14/03 14/04 14/05
14/06 14/07 14/08 14/09 14/0A 14/0B 14/0C 14/0D0 14/0E 14/0F 15/01
15/02 15/03 15/04 15/05 15/06 15/07 15/08 15/09 15/0A 15/08 15/0C
15/0D0 15/0t 15/0F 16/01 16/02 16/03 16/04 16/05 16,0u 16/U. L&/UA
13/07 13/08 13/09 13/0A 13/08

6809 FLEX DIAGNOSTICS

e

1.CPINT.BAK 12/09 12/0A 12/08B 12/0C 12/0D 12/0E 12/0F 13/01 13/02
13/03 13/04 13/05 13/06 16/0B 16/0C 16/0D 16/0E 16/0F 17/01 17/02
17,03 17/04 17/05 17/06 17/07 17/08 17/09 17/0A 17/08 17/0C 17/0D
17/0e 17/0F 18/01 18/02 18/03 18/04 18/05 18/06 18/07 18/08 18/09
18/0A 13/07 13/08 13/09 13/0A 13/08

1.CPINT.BAK SECTOR COUNT ERROR, EXPECTED 95, ACTUAL 48

Qur worst fears are justified. Both the .TXT file and the .BAK
file have been destroyed. There is no hope of recovering any of the
data. Perhaps the "desperation" method, described later on may be
useful, but that may be as much work as retyping the entire file.

It is quite likely that the damage to the disk was done some time
ago and only manifested itself recently by destroying these two files.
Structural problems do not go away, they only get worse. If, at some
time in the past, VALIDATE was run on this disk, the problem might have
been detected before it destroyed both files. Disks that are heavily
used for editing should be checked periodically with VALIDATE, just in
case. VALIDATE should definitely be run on a disk if the machine is
reset while the disk is being written, or if a power failure occurred
while the disk was in the machine. It only takes.5 to 10 minutes to run
and it could save a lot of work later on if a structural error is

detected early. i -

97

B W U

g

6809 FLEX DIAGNOSTICS

CASE V: Rehabilitating a Bad Directory Chain

A new disk could not be formatted by NEWDISK. The message FATAL
ERROR - FCRMATTING ABORTED always appeared. The problem is to determine
if the disk can be salvaged.

The first problem 1is to determine what kind of problem that we
have. The TEST utility is the tool to use.

+++TEST <Bad disk is in work drive>
SYSTEM INFO SECTOR INVALID <This is to be expected. The
. system info sector had not
been created by NEWDISK.>
MAXIMUM TRACK/SECTOR READ: 00/00 N
ARE THESE ACCEPTABLE? N
HARD DISK OR FLOPPY DISK (H/F): F
DISKETTE SIZE (5/8): 8 <Assume 8 inch, single-sided,

single-density>
SINGLE OR DOUBLE SIDED (S/D): S
SINGLE OR DOUBLE DENSITY (S/D): S

ADDRESS: 000A, CRC ERROR a—
TEST COMPLETED

The problem is that we have a bad sector in the directory track.
If this sector can be removed, and the system information sector built,
then the disk would be usable. It would not be the same as if NEWDISK
had initialized it, but it would suffice for a scratch disk. It would
not be possible to remove this sector if it were the first directory
sector (0005); but since it is not, it can be removed with little
effort. The first thing to do is outline the exact procedure to be
followed.

1) Remove the bad sectur from the chain.

2) Break off the directory chain from the free chain. Since
NEWDISK did not finish, the entire disk is linked together in
the frze chain, We hnave to break off the direcicry from the
resi of Lie free cndin.

3) Insert data into the system informution sector.

The EXAMINE utiiity wiii be used to perform the above operations.

+++E XAMINE <{The disk is in the work drive)

SYSTEM INFO SECTOR INVALID <This is to be expected. The
system info sector had not
been created by NEWDTSY, >

MAXIMUM TRACK,/SZCTOR READ: 00/CC -

ARE THESE ACCEPTABLE? N

HARD DISK OR FLOPPY DISK {H/F)

DISKETTE SiZE (5/8): 8 {Assume 38 tnch, single-side .
cingle~density>

SINGLE OR DOUBLE SIDED (S/D): S

-98=-

SINGLE OR DOUBLE DENSITY (S/D): S

COMMAND: R 9
COMMAND: M
00 00 .

01 0A 0B

02 00
COMMAND: W
COMMAND: R F
COMMAND: M
00 01 00

01 01 00

02 00
COMMAND: W

COMMAND: R 3
COMMAND: M 1
01 04 0O

.02 00

COMMAND: M 1D
10 00 01
1E 00 O1
1F 00 4C
20 00 OF

21 00 04
22 00 74
23 00 .

24 00 .

25 00 .

26 00 4C
27 00 OF
28 00
CUMMANU: w
COMMAND: S

Just to be safe, VALTDATFE should be run on the disk.
If the disk had othar uad sect.rs

has been made. VALIDATE wi.

=

7 osper 1t.

6809 FLEX DIAGNOSTICS

<{Read in sector 0009

<{Modify starting at byte 0>
<This byte is unchanged>
<Sets link from 000A to 000B>
<Carriage return typed>
<Update the sector>

<Read sector 000F>

<{Modify starting at byte 0>
<Set link to 0000>

{Carriage return typed>
{Update sector. This breaks
tbe directory from free chaind
<{Read system info sector>
Modify starting at byte 1>
<Set link to 0000>
{Carriage return typed>
<Modify starting at byte $1D>
<Set start of free chain

to 0101>
¢{Set end of free chain

to 4COF (values for 8 inch
single-sided, single-density
diskette>
{Set free sector count to 1140 -
(0474 hexadecimal)>
<Ignore next 3 bytes>

<Set maximum track>
<Set maximum sector>
<Carr1age return typed>

[P -<---,-,,. q“--. —ap-—\—\
\U Ud e W f e e . - wmwww
J

If a mistake

in addition to the one in the directory, FLAW should be rur to remove

them from the free chain,

Note that this disk does not have a becot

program on it, so it cinrsi De used as 2 system disk.

-99-

R e L P e e S

cnidm G SllSdeasy

6809 FLEX DIAGNOSTICS

CASE VI: A Desperate Measure

As we have seen in some of the previous cases, it is possible for
data to be damaged such that recovery is impossible. If the data has
not actually been overwritten, but is merely "lost" somewhere on the
disk, with nothing pointing to it, it may be possible to recover some of
it by a rather arduous process. This technique is very time-consuming
and should only be used as a last resort to recover extremely important
data.

»

In essence, the technique involves using the EXAMINE utility to
dump every sector on the disk, looking for the data. Once it is found,
RECOVER can be-used to retrieve it. It is obvious that this could take
a long time since there are hundreds, even thousands, of sectors on some
disks. There are, however, some tricks which can be used to lessen the
work involved to a slight degree. If the directory is still intact, the
first step is to run FILETEST, to print out all of the known file
chains. If you have a printer, this is easy; if you don't, you will
have to copy them all down by hand. The command FILETEST +ADFM will
print out the chains.

The next step is to determine which sectors have not been listed by
FILETEST. This is a manual operation and simply involves looking at the
list of sactors that are in known cnains, and writing down those sectors
that are not in any of the chains. The data is somewhere among these
sectors. By using EXAMINE, Took at those sectors that are not in any
chain. The "C" command is useful for dumping several sectors at a time
since the "lost" sectors still form chains amongst themselves. Keep a
careful record of those sectors that you have examined, and whether or
not they appear to be part of the data for which you are searching. You
must be careful since there may be older versions of the data on the
disk. Once you have identified the data, you can use RECOVER to copy it
to another disk.

As mentioned earlier, this 1is an extremely arduous process and
should be used only as a last resort. Having to go through this process
is a painful lesson that could he aveided oy having several hackup disks
c¥ important information.

-100-

ISP —— .

e s Aeras -

6809 FLEX DIAGNOSTICS

COMMAND SUMMARY

MEMORY DIAGNOSTICS

CONVERGE <starting address>,<ending address>

DYNAMIC <starting address>,<{size in 1024 byte blocks>
QUICK <starting address>,<ending address>

RANDOM <starting address>,<ending address>

WALKO <starting address>,<ending address> -
WALK1 <starting address>,<ending address>

DISK UTILITIES

’

COPYR <file specification>,<{file specification>
EXAMINE <drive number>

R,<sector address> (Read a sector)

W,<sector address> (Write a sector)

D,<sector address> (Dump a sector)

C,<sector address> (Dump sector chain)
M,<byte number)») (Modify buffer contents)
F,<file specification> e (Read first sector of file)
B,<file specification> (Build 1ink table for file}
T,<address> ,<address>,<count> (Move data in memory)

S (Return to FLEX)

FILETEST <drive number and options>,<file name list>
FLAW <drive number>,<list of sectors>
RAWCOPY <file specification>,<file specification>
REBUILD <drive number>,<drive number>
RECOVER <drive number),<drive number>
TFST <drive number>
undtLE IE <arive numver,
D (Dump current file)
N (Proceed to Next Older Fiie)
P éGo Back to Previcus Fila)
R (Recover file)
S (Raturn to FLEX)

VALIDATE <drive number>

-101-

