
. technical 1y1ten11
~~ con1ultant1, inc.

, .. ~Z,..;.. - ~~:;;,.~~~~~ -:..~..a~-~- --~...!!'~-~:~--=:MF......,,,.-as..._ ""--•-:..· _J

r

)

(..,

·c
680,n=~

COPYR IQ-IT 1s> 1979 by

Technical Systems Consultants, Inc.
P.O. Box 2570
West L3.fayette, Indiana 47906
All Rights Reserved

~ I
E x-Tt.:)./ 1> I;")) B 19s I c.. FUNCTIONS

NAME SECT ION

INDEX ABS 7.5 TO STATEMENTS AND COMMANDS ASC 7.3 ··-·-
ATN 7.2
CHRS 7.3
cos 7.2
CVT%$ 10.12

STATEMENTS CVT$% 10.12
CVTSF 10.12

NAME SECTION CVTF$ 10.12
DATES 7.5

CHAIN 8.9 "'" DPEEK 7.4 ·
CLOSE 8.4 ERL 9.3
DATA 6.1 ERR 9.3
DEF 6.7 EXP 7. 1 C

DIGITS 6.7 FRE 7.5
DIM 6.7 HEX 7.3
DPOKE 6.7 I NCH$ 7.3
END 6.6 INSTR 7.3
EXEC 10.1 INT 7.5
FIELD 10.10 LEFT$ 7.3
FOR 6.5 LEN 7.3
GET 10.9 LOG 7. 1
GOSUB 6.2 MIDS 7.3
GOTO 6.2 PEEK 7.4
IF 6.3 Pl 7.5
INPUT 6.4 POS 7.4
INPUT LI NE 6.4 PTR 7.5
KILL 8.7 RIGHT$ 7.3
LET 6.1 RND 7.5
LSET 10.11 SGN 7.5
NEXT 6.5 SIN 7.2
ON ERROR 6.2 SPC 7.4
ON GOSUB 6.2 SQR 7. 1
Otl GOTO 6.2 srns 7.3
OPEN 8.1 TAB 7.4

10.3 TAN 7.2
POKE 6.7 VAL 7.3
PRINT 6.4
PRINT USING 6.4
PUT 10.9 COMMANDS
READ 6.1
REM 6.7 NAME SECTION
RENAME 8.8
RES TORE 6.1 "+" 5.0
RESUME 6.2 CLEAR 5.0
RE TURN 6.2 COMPILE 5.0
RSET 10.11 CONT 5.0
STOP 6.6 EXIT 5.0
S\.JAP 6.7 FLEX 5.0

LIST 5.0
LOAD 5.0

•· NEW 5.0 ...

RUN 5.0
SAVE 5.0
SCALE 5.0
TRON 5.0
TROFF 5.0

(.. .. ,._ A '

MANUAL REVJSJON HJSfORY

Revision Date Change

A

B

/cr,c.+

C

1-,?
(}· ~ .,___-

3/80

Or·iginal Release

Effective: Version 13 of 6809 Extended Basic
Version 11 of 6800 Extended Basic

p. 85-86 Add errors 37 and 72, remove error 95.
_ A p. 62 Remove restriction on only one virtual

kflfV•> V1/l-, I".,..<- •
,~,._

1
,_,4--,.r. array reference per expression.

64 Add statement on closing and reopening

6/80

virtual array files. .?
38 Correct documentation of DPOKE.
45 Correct documentation of DPEEK.
55 Add docufilentation of error 37. - !=-E::- f .. e('q':-<..--,.-'I,~,.._.,

Effective: Version 14 of 6809 Extended Basic
Version 12 of 6800 Extended Basic

p. 85 Enhance scope of error 45 ~ C) ,o (> 1.r;. ,,1.. .e:. o)
cv-1.c{, p. 50 ~b'~At maximum size of a line that may be
y · read from a filel.r)....r-~- c."-r~n-.:'tu,,

l "- I t A.,,·,,;:..,..,
.., -, •I "' A ,.
If.I , f, r !r_

(t
... p . . 'Pf' Document effect of TTYSET r.·idth value.

U - ~ fl•'"l'1-,,.t..--,"?r,-, fi:,c,t

" FL c->r t" .r c P-r 1:-.

'11.>rcc Huot;'-

C°'- Lr1~r- ~ [1-n,-.,,_, Pitr If (t.,.,.lt"-0 Ir-~ /,-,.:.(,/1.#r-,
J

i] ,:- i> 111 r,r,c- ,-.i.>

I vf,r ·
,Vf fv c--;.t' /.riv- ' 0

Q L= f)r,pn..-f·..r L -

OL::: B 7 ~L_-::.2r[

0 _L..,.;,."= J... n-r 1&-f L.. -;; l1 .;·-r~ . .r

I r- ' f er '" r, - ~ "-' ' "'--1. • J '

I,., T n r- (Ir / ' I /";!..

{ 1 ~ '> :£°~ b1- ,o + ?o /C'i-

CONTENTS .~-
•. ,.;,~ PAGE

1.

2.

3.

4.

INTRODUCTION

DEFINITIONS

CONVENTIONS

FUNDAMENTALS OF BASIC
4 .1 Lines 5
4.2 Constants 6
4.3 Variables 7
4.4 Dimensioning 7
4.5 Assignment 8

,-

,: ,.

4.6 Operators 9 . .
4.6.1 Mathematical Operators 10
4.6.2 Logical Operators 10
4.6.3 Relational Operators 12
4.6.4 String Operators 13
4.6.5 Operator Precedence 13

4.7 Mode 14
4.8 Remarks 14

5. COMMANDS

6. STATEMENTS
6.1 Assignment 20
6.2 Transfer of Control 23
6.3 Conditional 26
6.4 Input/Output 27
6.6 Loops 33
6.6 Termination 35
6.7 Miscellaneous 36

3

4

5

5

15

20

7. INTRINSIC FUNCTIONS 40
7.1 Mathematical 41
7.2 Trigonometric 42
7.3 Character 43
7.4 Input/Output 45
7.5 Miscellaneous 46

8. SEQUENTIAL FILE I/0 48
8.1 The OPEN Statement 48
8.2 Sequential Output 49
8.3 Sequential Input 50
8.4 The CLOSE Statement 51
8.5 INPUT on Channel O 51
8.6 Output to Other Devices 52
8.7 The KILL Statement 53
8. 8 The RENAME Statement 53
8.9 The CHAIN Statement 54

EXTENDED BASIC User's Manual

9. ERROR HANDLING 55
9.1 The ON ERROR Statement 55
9.2 The RESUME Statement 56
9.3 ERR and ERL Variables 56
9.4 Disabling ON ERROR 57
9.5 Error Handling Examples 57

10. ADVANCED DISK CAPABILITIES 59
10.1 The EXEC Statement 59
10.2 Virtual Arrays 59
10.3 Opening a Random File 61
10.4 Using Virtual Arrays 60
10.5 Notes on Virtual Arrays 61
10.6 Extending Virtual Array Files 64
10.7 Record I/0 65
10.8 Opening Record I/0 Files 65
10.9 The GET and PUT Statements 65
10.10 The FIELD Statement 66
10.11 The LSET and RSET Statements 69
10.12 The CVT Conversion Functions 70
10.13 Extending Record I/0 Files 71
10.14 Record I/0 Example 71

11. THE USR FUNCTION 73
11.1 Calling multiple USR functions 74

12. GETTING BASIC RUNNING 75

13. RENUMBER 75

14. ADAPTING TO YOUR SYSTEM 76
14.1 User Noted Storage 76
14.2 User Supplied Break Routine 77

15. ASCII CHARACTER CHART 78

16. INDEX TO STATEMENTS ANO COMMANDS 79

17. ERROR TO STATEMENTS AND COMMANDS 80

-2-

EXTENDED BASIC User's Manual

1. INTRODUCTION

Technical Systems Consultants' EXTENDED BASIC is a very fast and
complete BASIC. It is used like most BASIC interpreters in that lines
are entered from the keyboard to build the program and the resulting
program may be run at anytime by using the RUN command. It contains all
of the normal interactive features of BASIC including a direct execution
mode which allows BASIC to be used as a calculator.

All lines entered into a BASIC program must begin with a line
number. All lines are automatically put in numerical sequence which
allows for simple editing. Lines which already exist in a program may
be deleted by simply typing the line number of the line followed by a
carriage return. It is recommended that the user read this entire
manual before attempting to use Technical Systems Consultants' EXTENDED
BASIC. It is assumea that the reader is familiar with BASIC
programming, so detailed programming examples are not given.

-3-

--

EXTENDED BASIC User I s Manua 1

2. DEFINITIONS

Several tenns which will be used frequently in this manual are
defined below to avoid any confusion in their meaning.

a. COMMAND

b. LINE

c. PRINT

d. STATEMENT

e. TYPE

f. re
~ e-rx

g. iH
= ~

h. ix
-:CU.~

i. CRLF

A Command is an instruction for BASIC to immediatley
perfonn some specific operation. A Command is usually
issued after the user has received the 1 READY 1 prompt
from BASIC. When this prompt appears on the screen,
the computer is 11 READY and WAI TI NG" for the user to
tell it what to do:

In BASIC, each line begins with a line number and ends
with a carriage return. A line may contain only a
single statement or may consist of several statements
separated by colons (:) or backslashes(/).

BASIC prints on the CRT.

A Statement is an instruction for the BASIC
interpreter. A Statement is usually executed by BASIC
as it is encountered in a program that is being
executed. In contrast to this, a Command is executed
outside of a BASIC program.

The user types on the keyboard.

This is notation for CONTROL C. It is typed by
holding down on the "CONTROL" key and keeping it
depressed while you strike the "C" key. This entry is
used to interrupt BASIC as it is perfonning some
operation. It can, for instance, be used to interrupt
a program that is currently being executed. If this
is done, then the statement that is in the process of
being executed will be completed; then BASIC returns
to the command level to await further instruction.

CONTROL H is typed to erase the last character typed
in. If this is typed when the cursor is at the
beginning of a line, then the result will be a
Carriage Return Line Feed.

CONTROL X deletes the line currently being input and
perfonns a Carriage Return Line Feed.

This represents Carriage Return and Line Feed
characters which cause a new line to be started.

-4-

I

EXTENOE_Q_BASIC User I s_Manual

3. CONVENTIONS

To make the definitions of BASIC statements and commands more easily
understood, several convention~ will be used throughout this manual.

The statement or command being described, and any other which is
used in the definition, will be printed in capital letters. Angle
brackets (<>) will be used to enclose essential components of the
statement. Square brackets ([]) will surround optional components. Once
again the types of special enclosures are:

<essential element>
[optional element]

4. FUNDAMENTALS OF BASIC

4.1 Lines

Each line of a BASIC program begins with a LINE NUMBER. The line
may contatn one or more statements separated by ·cnlons or backslashes
and is terminated by a CARRIAGE RETURN. The length of a line can not
exceed 127 characters. Lines may be numbered from 1 through 32767 and
each one must have a unique number. When a program is executed by
BASIC, it starts with the smallest line number and progresses toward the
largest.

When writing programs it is usually wise to
increments of 10, 20, or more so that additional
during program debugging or modification. Spaces may
to make a program easier to read. Examples of these
below. Note especially that statements 30 and 40 are
that line 40 may be a little easier to read.

spaces: 30 X=32*X/3+7.3*X/2+6.54*X-.1

number lines in
ones may be added

be used as desired
features are given
equivalent except

40 X = 32*X/3 + 7.3*X/2 + 6.54*X -.1

multiple
statements
on a line: 120 INPUT 11 SPEED,TIME 11 ;S,T:D=S*T:PRINT 11 DIST= 11 ;D

300 A=310*X : R=K-A:C=A*2.9/ll:PRINT "CF=";A;B;C

- ::>-

EXTENDED BASIC User's Manual

4. 2 Constants·

4.2.1 Floating Point Constants

All floating point values are internally represented with a seven byte
{56 bit) signed magnitude mantissa and a single byte {8 bit) excess 128
notation exponent. Externally this is approximately a 17 decimal digit
mantissa with a dynamic range of 10**38.

Often a more convenient form of representing floating point numbers
is scientific notation. That is the signed mantissa followed by 'E' or
'e' and the signed exponent. On conversion to decimal, BASIC
automatically converts any number to scientific notation if its
magnitude is greater than or equal to 1E6 or less than lE-2. Some
examples of floating point numbers are:

98.345
3.14159265
0.000001E6

-1.23E+6
lE-04
1.0

It should be noted, for a constant to be internally represented in
floating point fonnat it must (1) contain a decimal point or ·c2) oe in
scientific notation or {3) be too large to be represented in an integer
format. If none of the above conditions are met then the constant will
be converted to an integer. This can be very beneficial for programs
with many constants both in terms of storage requirements and speed of
execution.

4.2.2 INTEGER CONSTANTS

All integers are internally represented as a 16 bit two's complement
number with a decimal range of -32768 to 32767. Some examples of
integer constants are:

100
-12

4.2.3 STRING CONSTANTS

32000
1

Another type of constant is the character string. It is different
from the other constants both in the way it is defined and in the way it
is usually used. Character string constants will probably be seen most
often in PR.INT and INPUT statements. String constants are defined by
placing any ASCII character or group of characters (a string) between
single or double quotes. A string may be of any length from Oto 32767

-6-

' ·

EXTENDED BASIC Use~'s Manual

characters long. Some examples of strings are:

strings:

4.3 Variables

"WHAT IS YOUR
II I FRIDAY 111

1 "R[J\LLY 111

"H"
'111

NAME"
(string includes single quotes)
(string includes double quotes)
(single element string)
(null string)

A variable is an item of data that may take on diffeient values.
For example, it can be assigned a value by the programmer and later be
changed by the program during execution. The three types of variables
are "floating point", "integer", and "character string". A "floating
point" variable name can consist of a single alphabetic letter or a
letter followed by another letter or single digit. Examples of names to
define floating point variables are A, K, G9, El, or XX.

The second type of variable is the integer variable. It is defined f'f>v.rJ ,1:
by following any "floating point" variable name with a percent sign(%).- r,t""t1•fl--f ffU
Using the same five variables as before, we could define them to be ~~•?""~
integer variables by writj_ng them as A%, K%, G9%, El%, or XX%. ~~ ~"'''

0 ..,~"(fv•, ~, +
The third type of variable is the string variable. It is defined by -t -l:e >1.., (i, -

following any "floating point" variable name with a dollar sign{$). ".)...t,(. 'f!l_:_-
Using the same five variables as before, we could have defined them to
be string variables by writing them as A$, K$, G9$, El$, or XX$.

Any of the variable types may be subscripted (dimens·ioned) and this
will be described in the next section. The same variable name can be
used in a program for a floating point variable, a string variable or an
integer variable. For example, the variables "A" and "A$" listed above·
could both be used in the same program because they are considered
different variables since one is a floating point and the other is a
string variable.

It should be noted that some combinations of double letters intended
to be used as variables are not valid. They are keywords in BASIC and
are reserved. They are: AS, FN, IF, ON, OR, PI, and TO.

4.4 Dimensioning

Any type of variable defined in section "J.3 can be subscripted
(dimensioned) using the DIM statemer.t. A variable is dimensioned in a
DIM statement by following the variable name with an integer that is
enclosed in parentheses or two int~gers that are also enclosed in
parentheses but separated by a commc. To use a subscripted variable you

-7-

\. .

r
'--

(
\.._

EXTENDED B1'SIC User's Mc111ual

write it just as it appeared in the di111ension statement except that you
may use any legal expression to describe the subscripts. Suppose a one
dimensional array has been created in a program with the statement:

100 DIM X(4)

This will create 5 new variables that are called:

X(O), X(l), X(2), X(3), and X(4)

They may be used in program operations just as they are written above or
the 11 subscript" could be a variable such as X(A) where "A" has a value
of 0, 1, 2, 3, or 4. The subscript could also be an expression such as
X(A+2). When this is encountered in a program, the subscript expression
is evaluated using the current value of "A". BASIC will also support
two-dimensional arrays. A two-dimensional array defined by the
statement:

30 DIM X(3,2)

specifies a four by three element matrix. This matrix has the following
elements:

X(O,O)
X(l,O)
X(2,0)
X(3,0)

X(0,1)
·X{l,1)
X(2,1)
X{3,1)

X{0,2)
X{l,2)
X(2,2)
X{3,2)

Just as with the one-dimensional array, this can also be used in a
program with subscripts that are expressions.

The same variable name can be used to specify a non-dimensioned and
a dimensioned array. BASIC will consider these to be separate but
one-dimensional and two-dimensional arrays cannot share the same name.

-~All dimensioned variables must be declared in a DIM statement before
they can be referenced.

4.5 Assignment

Variables are assigned values by the LET, INPUT, or by · the
combination of the READ and DATA statements. These statements will be
explained more thoroughly in sections 6.1 and 6.4 but they need to be
introduced now to get a feel for the BASIC language.

Most variables are assigned numeric or string values using the LET
statement. For example the statement:

10 LET X=2

-8-

-

EXTENDED BASIC User's Manual

assigns a floating point value of 11 2. 11 to X even though the constant 11 211

is internally an integer.

An INPUT statement such as this one:

240 INPUT Pl

causes the computer to print a question mark and then wait for the user
to type in something. The data the user types will be assigned to the
variable Pl.

READ and DATA statements must be used together.
statement such as:

100 READ K

Briefly, a READ

will assign a new value to Keach time it is encountered in the program.
The first execution of this statement will assign to K the first piece
of data from the first DATA statement of the program. The second
execution of this READ statement will assign the second piece of data in
the first DATA statement to K, and so on. After all the data has been
read from the first OATA statement, reading continues at the next one
and then goes through all those appearing in the program. If a READ is
attempted after the program has read to the end (already read the last
piece of data from the last DATA statement), then error number 31 will
be issued to warn of this. A DATA statement such as this one might be
used: ·

500 DATA 1,3.14,6.02

4.6 Operators

There are three different classes of operators available. The class
of operators most familiar to everyone is that of the Mathematical
Operators. This is comprised of addition, _subtraction, multiplication,
division, and exponentiation.

-
The second class is the Logical Operators. They are used to perfonn

bit by bit operations on integer quantities and are used extensively in
conditional tests and for masking. Since they operate on integer
quantities the internal "floating point" representation of some
variables and constants must first be converted to integer. Then the
operation can be performed. These conversions are done automatically by
the BASIC interpreter.

The remaining operators are called Relational Operators. They are
also used in conditional tests. They may be used in an IF statement for
example to detennine if one quantity is greater than another. In the
case of trying to "rel ate" a fl-oat i ng point number and an integer, the
integer is first converted to floating point and then the relation is

- 9-

-
., ..,._ Cr

EXTENDED BASIC User's Manual

perfonned. Each of the three classes of operators will be described
separately.

4.6.1 Mathematical Operators

MATHEMATICAL OPERATORS:

SYMBOL EXAMPLE MEANING

+ X+Y Add X and y
X-Y Subtract Y from X

* X*Y Multiply X and Y
I X/Y Divide X by Y

IAJ' €" I\ r-o n.. t XiY X to the Yth power

t / t Xtyo/., X to the Yth power

When an arithmetic expression containing several of these symbols is
to be evaluated, it is processed using the following priority scheme •

. _ 1.

2.
3.
4.

-Exponentiation
Unary Mi nus
Multiplication and Division
Addition and Subtraction

This means that when BASIC is evaluating an expression containing a
mixture of mathematical operators, it will first do the exponentiation,
then take into account any unary minus signs (such as -3.4 or -A). Next
it will do multiplications and divisions then, last of all, it does
additions and subtractions. When signs of equal priority are
encountered, it does the left one first since BASIC evaluates
expressions from left to right. This order can be altered by the use of
parentheses. BASIC evaluates quantitie5 in parentheses first and, in
the case of nested parentheses, it starts with the innennost set and
works its way out. They can and should be used anytime there is a doubt
about how the expression will be evaluated.

When two values of the same type are to be operated on, the
appropiate operator is called. For example, two integers are to be
mulitiplied, then the integer multiply routine is called. If two
floating point values are to be subtracted, then the floating point
subtract routine is-called. When an integer and a floating point value
are to be operated on, the integer is first converted to floating point
and then the operation is perfonned. The exponentiation operator is an
exception to these rules and one of two things can happen. First of
all, if the "base" {base t power) is an integer, it is converted to

-10-

·nTENDED BASIC-Us.er's Manual

r floating point. Note that the "T" operator always returns a floating
point result. Next if the 11 power 11 is an integer then a fast algorithm
is called that "essentially" perfonns repeated multiplication. On the
other hand if the "power" is a floating point value then the following
algorithm is used: XTY = EXP(Y * LOG(X)). In the latter case, X cannot
be negative because the logarithm of a negative number does not exist.

(

'-·

4.6.2 Logical Operators

When Logical Operators are used on one or two numbers they perfonn
the desired operation on the corresponding bits of the number or
numbers. If, for example, we assume A and Bare equal to the following
binary quantities: ·

Then:

A=(1100101111110110)
B=(Oll1010111100100)

NOT A =(0011010000001001)
A AND B=(0100000111100100)
A ORB =(1111111111110110)

It can be seen that these are bit-by-bit operations. These operators,
when used like this, operate on one or two numbers to give a single
numerical result. ·

The logical operators have a totally different effect when they are
used in an expression that is the test condition of an IF-THEN
statement. In this case the expression is being logically evaluated (not
arithmetically evaluated) to see if it is true or false. An expression
that is evaluated and determined to be true has a non-zero value and one
that is determined to be false has a value of 11 0 11

• A statement such as:

22 IF A>O AND A<lO THEN GO TO 40

wi 11 branch to statement 40 if and only if A is between O AND 10. The
logical operator "AND" spec"ifies that the condition 11 A>0 11 be true AND
the condition "A<lO" also be true. The following is a list of the
available operators.

LOGICAL OPERATORS:

SYMBOL

NOT

EXAMPLE

NOT X

MEANING

When operating on integers, this
operator simply switches each bit in
the binary representation with its

-11-

r

'-

EXTENDED BASIC User's Manual

AND X ANDY

OR A ORB

4.6.3 Relational Operators

complement .(l's are replaced with
O's and O's are replaced with l's).

The result of this is to assign
to each bit of the result a "1" if
each of the corresponding bits of
the two arguments is a 11 111

• When
"AND" is used in a conditional test,
then both X AND Y in the example
must be true for the logical ANO of
them to be true.

This leaves each bit of the
resulting integer a 11 111 if either of
the corresponding bits of A ORB is
a one. When used in a conditional
test, the test will yield true if
either A ORB is true. With each of
these three operators, the integer
result is automatically converted
back into a "real" number.

As the name implies, this group of operators tests the relation of
variables to other variables or constants. The six relational symbols
recognized by BASIC are:

RELATIONAL OPERATORS:

SYMBOL EXAMPLE MEANING

= X=Y X is equal to Y
<> X<>Y X is not equal to y
< X<Y X is less than Y
> X>Y X is greater that Y
<= X<=Y X is less than or equal to y
>= X>=Y X is greater than or equal to y

These are often combined with the Logical Operators to perfonn
complex tests. The statement:

660 IF A=O OR (C<127 AND D <> 0) GO TO 100

will cause a branch to statement 100 if A is equal to zero OR if both C

-12-

.,

(

EXTENDED BASIC U~er's Manual

is less than 127 ANDO is not equal to zero.

4.6.4 String Operators

The string operators consist of the concatenation operator('+') and
the relational operators. The '+' operator will concatenate two strings
(join them together) to form a new string. The relational operators,
when applied to string operands, indicate alphabetic sequence. If one
string is "less than" another, it implies it would appear before the
other if sorted into alphabetical order. In any string comparison,
trailing blanks are ignored. If two strings of unequal length are
compared, the shorter string is padded with trailing spaces to make it
equal in length to the other. A string of zero length (null string) is
considered to be completely blank and is less than any string of length
greater than zero unless the string is all spaces, then the two are
considered equal. All of the standard arithmetic relational operators
may be used in connection with strings.

4.6.5 Operator Precedence

The overall operator precedence is shown in the table below. The
operator at the top of the list has highest precedence, while the one at
the botto~ has lowest. Operators of equal precedence are evaluated left
to right.

1. ()
2. i
3. -
4. * I
5. + -
6.
7. NOT
8. AND
9. OR

4.7 Mode

Expressions enclosed in parenthesis
Exponentiation
Unary mi nus
Multiplication and division
Addition and subtraction
Relational operators
The- NOT operator
The ANO operator
The OR operator

Th.ere are two different modes in which BASIC can function. The one
referenced most bften to this point is that in which you use the RUN
command to execute a program that has been typed in. The other mode is
the Immediate Mode. In the Irnmedi 3te Mode you can type in a command or
statement without a line number and the computer will immediately

-13-

l

EXTENDED BASIC User's Manual

execute it. le contrast to this, the nonnal running of a program starts
at the statement with the smallest line number and progresses, executing
statements, toward the largest numbered statement. BASIC distinguishes
between these two types simply by the presence or absence of a line
number. So, for instance, if you had typed in the statement:

100 PRINT "Sunday"

nothing would happen after you hit the carriage return. This is because
BASIC assumes that this is part of a program you are writing and it will
save and execute it only in response to a RUN command. If, on the other
hand, you type:

PRINT "Monday 11

this would be executed immediately because there is no statement number.

The two types of BASIC instructions (commands and statements) cross
paths because of the immediate mode. Statements can be typed in without
line numbers and used as if they were a command. This is done after
BASIC has printed "READY" and is waiting for you to give it
instructions.

4.8 Remarks

It is good programming practice to use remarks freely throughout
your programs. This makes them easier for others to understand and will
help you too when picking up one of your own programs that you haven't
worked with for awhile. Remarks can be placed in a program by using the
REMARK {can be typed REM for short) statement. When BASIC comes to a
REM statement it ignores whatever follows. This statement must have a
line number and the number can be referenced by the program (for
example, by a GOTO statement).

-14-

.•

EXTENDED BASIC User's Manual --

5. COMMANDS.

The following is a ' list of the commands that are available to the
user. These commands are not used in the actual code of BASIC programs
but are instructions to the computer. They are to be used when BASIC is
at the command level, which is after it has printed "READY". When a
command is typed into the computer, it causes action to e taken
immediately.

NAME EXAMPLE/ EXPLANATION

JIH.-D rJ.t ~ 1'~4 t../1..~,..,
~ a t--P>,- L1 IQ-o 6 1.l I

CLEAR

COMP I LE

CLEAR

The CLEAR command has the effect of setting all the
variables in a program to zero. This operation is
automatically performed \then a RUN is executed.

COMPILE 11 LEDGER 11 t I) I"\(' I \.. (l R.M)

The COMPILE command is used to save a program on disk in a
compiled form. The file name should be specified in quotes
and should be in standard FLEX form {drive.name.ext). The
drive will default to the working drive and the extension
defaults to 'BAC' (BAsic Compiled). The resultant saved
program will in most cases be smaller than the same program

i!z saved using the SAVE command. A compiled program can not be
C"" • LOADed, LIS Ted, or edited. It can only be run by using the

l"'el ~ RUN 11 name 11 command (see RUN). The COMP I LE feature should be
't0 ~ave completed programs since they usually require

{L""tl 1./V.J ~)l>less disk space and always load faster. Keep in mind that a
~ '- \ compiled program can only be RUN, and any attempt to edit or

(r' ~\ LIST it once brought into memory will result in an error 64.

\
\.· ...

' ,;, ,..

CONT CONT

The CONTINUE command is used to restart a program after it
has been stopped by either a STOP statement or a CONTROL/C.
The STOP statement may have occurred anywhere in the program
but the iC would have had to been typed while the program
was waiting for inµut at an INPUT statement. The command
can not restart your program if you got an error during
program execution or if you type in more program lines after
you have stopped. If the program was stopped by a STOP
statement, then COtlT wi 11 cause the program to continue at

-15-

--

EXTENDED BASIC User's Manual

.
the first statement following the STOP. If the program has
been stopped in an INPUT statement by a ©C, then the CONT
command will cause execution to resume at the INPUT
statement.

EXIT EXIT

This command is used to EXIT BASIC and enter the system
monitor.

FLEX FLEX

LIST

The FLEX command is used to exit BASIC and return to the
FLEX disk operating system. This is the normal BASIC exit
method.

LIST
L 1ST 10
LIST 50-80

(list entire program)
(list line 10)
(list lines 50 t~rough 80)

LIST can be used to display lines of a program. As the
examples demonstrate, it can display all of the program or
only specific lines. When a program is being listed the
output may be terminated by typing ©C (control C). This is
another way to display only part of a program.

LOAD LOAD 11 0RDER 11

NEW

The LOAD command is used to load a text type file into BASIC
from disk. The file name should be in quotes and in the
standard FLEX form (drive.name.ext). The name defaults to
the working drive and to a BAS (BAsic Source) extension.
Standard FLEX text files (such as from the TSC Editor) may
be loaded.

NEW

When the NEW command is executed, it deletes the current
program. After executing this command, you are ready to
start typing in a "NEW" program.

-16-

r

i .

EXTENDED BASIC User's Manual

RUN RUN

The RUN command instructs the computer to begin execution of
the current program. When you RUN a program, all variables
are initialized to zero and DATA statements are restored.

RUN RUN "LEDGER"

SAVE

SCALE

This form of the RUN command is used to load and execute a
compiled BASIC program from disk. The file name must be in
quotes and in standard FLEX form {drive.name.ext). The name
defaults to the working drive and to a BAC extension. This
is the only way a compiled program may be loaded from disk.

SAVE "ORDER"

SAVE is used to store the source form (text form) of a BASIC
program on disk. The file name should be specified in
quotes and in the standard FLEX form {drive.name.ext). The
drive defaults to the working drive and the extension
defaults to BAS. Any BASIC programs saved using the SAVE
command may be manipulated by any FLEX program which works
with text files {such as_the EDITOR). IMPORTANT NOTE: The
SAVE command will delete any exfsting file of the same name
specified without any warning!

SCALE
SCALE 3

(print current scale factor)
(set scale factor to 3)

The SCALE command specifies to BASIC the number of digits to
the right 9f the decimal place that are to be preserved. A
scale factor of zero turns off the scaling feature. The
maximum scale factor is six (6).

With the scale factor set to non-zero, BASIC scales all
floating point values by lO**scale factor and rounds to ·a
whole number. In effect all floating point numbers become
integers; the fractional parts disappear. The
not-so-obvious advantage is after many floating point
operations, round off error does not become significant
because internally all numbers are whole. Perhaps a short
example will help clear this up.

10 FOR 1%=1 TO 10000
· 20 F = 0.01 + F
30 NEXT Ii
40 PRINT 100.0 - F
99 END

- 17-

\

,·

.'--

EXTENDED BASIC User's Manual

TROFF

TRON

+

RUN

1.77813319624E-12

READY

If we SAVE the program, set the SCALE factor to at least 2
(if we set it to 1 the constant 0.01 will be scaled to 0)
LOAD the program back in and run.

RUN

0

READY

Let's say the scale factor was set to 2, then the constant
1 0.01 1 was converted internally to 0.01 * 10~2 = 1.0.
Repeatedly adding 1.0 does not generate any round off error
s i nee 1. 0 can be EXACTLY represented -in bi nary fl oat i ng
point notation.

BASIC converts all constants to their binary equivelent when
the program is typed in or LOADed it is not possible to
change the scale factor while the program is in memory. The
same is true for for any COMPILEd files. When the binary is
written to the disk, the current scale factor is also
written out. When the the program is later run the scale
factor is read in automatically.

TROFF

TROFF turns the trace feature off.

TRON

The TRON command turns trace on. Trace is used to debug
programs and will print the line number in brackets of each
line executed. TROFF or NEW turns trace off.

+RENUMBER

The 11+ 11 command tells BASIC to send the rest of the command
line to FLEX. This is a dangerous command in that some FLEX

-18-

-

EXTENDED BASIC User's Manual

utilities load in the same area of memory as BASIC. If a
FLEX utility is executed from BASIC in this way, be certain
that the utility loads into the utility command space in
FLEX. The main use for this command is to invoke the
RENUMBER utility which is supplied with BASIC. This utility
loads into the utility command space in FLEX and will
renumber BASIC programs in memory. See the section titled
RENUMBER for more details.

-19-

(

(

EXTENDED BASIC User's Manual

6. STATEMENTS

All the BASIC statements listed below are arranged in groups that
have similar functions or purposes. Appearing to the right of each
statement is an expression showing its complete usage. This will be
followed by one or more examples to demonstrate a typical use. Then,
last of all, the definition and explanation of the statement appears.

6.1 Assignment

NAME FORM/ EXAMPLE/ EXPLANATION

DATA <line number> DATA <number> [,<number>,<number>, ••• J

LET

<string> [,<string>,<string>, ••• J

50 DATA -3.556E-5,0,2,4.59Ell
60 DATA APRIL, MAY, THATS ALL
70 DATA " 100";" 1000 11

,
11 10,000 11

The DATA statement specifies infonnation that wili" be -read
in by the program. The data is read in from left to right
and, of course, begins with the first piece of data listed.
Each time a READ statement is encountered in the program,
the next item in the data list is read. The READ statements
will begin taking data from the first DATA statement that
appears in the program and, when it has read all that is in
this statement, it will drop down to the next data statement
and so on. If, for example, we assume we're running a
program containing statement 50, the first time a READ
statement is executed, the value read will be -3.556E-5.
The next value read will be O and this continues through
this statement" and to the following DATA statements in the
program. The DATA statement cannot appear in multiple
statement lines. If a string is needed that contains an
embedded comma or it is preceded by a space or spaces then
it must be enclosed in quotes as in statement 70 above.

<line number> LET <variable>=<expression>

10 LET X=3.5
25 LET Al=27.2*Hl/(5.4E7-X}
70 LET DA$= 11 MONDAY 11

75 LET X(5,J}=O
80 Y=l2.314
90 Y%=Y%+1

-20-

(dimensioned variable)
(implied LET)

\.

EXTENOED BASIC·User's Manual

95 Z=Y"/.
96 Y%=EXP(F)

(type conversion)

The LET statement assigns a value to a variable. Any
variable can be assigned a value using this statement. The
value can be a constant as in statement 10 or may be a
complex expression as in statement 25. Notice that
statements 80 - 95 are missing the word 11 LET 11

• This is no
accident but is an implied LET. This is a convenience
feature of this BASIC interpreter, and any LET statement can

''t,_ er·' f'll>''f be written this way. In line 95 note that the assignment
~ra ,~variable is a different type than that of the resulting

Ot: :,__---- expression. In this particular example the integer
expression is converted to floating point and the assignment
is performed. In line 96 just the inverse is performed.
The floating point expression is converted to an integer and
then the assignment is performed.

READ <line number> READ <variable> [,<variable>,<variable>, •••]

200 READ V,Al,CC

RESTORE

The READ statement is used to read data from a DATA
statement. This has been explained in the above definition
of the DATA statement for the case of a single variable
argument. The READ statement can also be used with more than
one argument. When a statement that is followed by several
variables is executed, each of the variables is assigned the
next available piece of data. Statement 200 for instance
will read the next available piece of data and assign it to
the variable "V". The next data entry will be assigned to
11 Al 11 and the next one will be assigned to 11 CC 11

• It is
important that the program be prevented from trying to read ·
beyond the last data item in the last DATA statement because
an error (number 31) will be issued if this is attempted.

<line number> RESTORE [<line number> J

440 RESTORE
500 RESTORE 20 (restore to line 20)

When a BASIC program is run, the first execution of a READ
statement causes the first element in the first DATA
statement to be read (assu~ing of course that there is only
one variable in the REAO statement). The second execution
of a READ causes the second available element to be read.
Each time a READ is executed it reads the ·next available
entry from the gro1q, of DA TA statements that appears in the

-21-

EXTENDED BASIC User's Manual

.
program. When everything has been read from the first DATA
statement the next READ will occur at the second data
statement and so on. When a RESTORE is executed it causes
the next available entry to be the first one appearing in
the first DATA statement or, in other words, it resets the
"next available entry" pointer to the beginning of the group
of data that appears in the DATA statements of the program.
Optionally one can specify a line number to restore to such
that the next read will start at that line looking for a
data statement instead of the first one.

-22-

L

EXTENDED BASIC Use~'s Manual

6.2 Transfer 9f Control

NAME

GOSUB

FORM/ EXAMPLE/ EXPLANATION

<line number> GOSUB <line number>

5 GOSUB 250

This statement causes control to be transferred to the
subroutine at the line number specified. The example will
call the subroutine at line 250. All subroutines should end
with a RETURN statement which will pass control back to the
statement following the GOSUB which called the subroutine.

GOTO <line number> GOTO <line number>

100 GOTO 50

ON GOSUB

The GOTO statement simply causes a branch to the specified
line. When statement 100 (in the example) is executed, it
forces a branch to line 50. The GOTO statement should only
be used in the last position in ·li~es containing multiple
statements. This is because this statement always causes a
branch and any statements following it would never be
executed.

<line number> ON <expression> GOSUB <list of line numbers>

20 ON I GOSUB 30,40,50,60

The ON GOSUB statement allows calling one of several
subroutines. The expression is evaluated and the integer
portion of the result (any fractjonal portion will be
truncated) determines where the jump will go. The "list of
line numbers" has positious corre?p9nding to 1,2,3,4, ••• So
if the expression is evaluated to have a value of 1, then
this statement will cause a subroutine call to the first
line number in the list. A value of two for the expression
will cause a subroutine call to the the second line number
in the list and so on for as many numbers as you have
listed. If the expression evaluates to a number which is
either less than or greater than the number of line numbers
listed, an error message will result. The ON GOSUB
statement should be the last statement on a line.

EXTENDED BASIC User's Manual

ON GOTO "<line number> ON <expression> GOTO ~list of line numbers>

200 ON I GOTO 500,600,700

This works exactly like the ON GOSUB statement except this
causes a branch to one of several lines in the program. The
ON GOTO state~ent is not used to branch to subroutines. Use
the ON GOSUB statement instead. No statements should follow
the ON GOTO in lines containing multiple statements.

ON ERROR GOTO <line number> ON ERROR GOTO [<line number>]

RESUME

RETURN

ON ERROR GOTO 1000

The ON ERROR GOTO statement allows user control of certain
types of errors. All error numbers between 1 and 49
inclusive may be trapped and acted upon by the user. The ON
ERROR statement tells BASIC where the user error routine is
located and if an error occurs which is less than 50,
control will be passed to the specified line number. See
the section on "Using ON ERROR GOTO" for more details.

<line number> RESUME [<line number>]

RESUME 100

The resume statement is used to pass control back to the
main program after an error routine has been executed. See
the section "Using ON ERROR GOTO" for more details.

<line number> RETURN

34 RETURN

RETURN instructs the computer to return to the calling
routine from the subroutine that is now being executed.
This is how subroutines should be exited. When control
returns to the routine that called the subroutine, execution
resumes at the first statement following the · statement that
caused the branch to the subroutine. The statement that
branched to the subroutine will normally be a GOSUB or an ON
GOSUB statement. The RETURN statement, as with all the rest
of the Branch statements, must be the last statement in
lines containing more than one statement since statements
following this (on the same line) would never be reached and
executed.

-24-

'

EXTENDED BASIC User's Manual

6.3 Conditional .
NAME

IF GOTO

IF THEN

FORM/ EXAMPLE/ EXPLANATION

<line number> IF <expression> GOTO <line number>

5 IF C=l GOTO 110
1000 IF A>B AND F<>6.0 GOTO 300

The expression is evaluated and if it is true (has a nonzero
value), the computer jumps to the line number following the
GOTO. If the expression is not true, the next sequentially
numbered statement after this "IF GOTO" wi 11 be executed.
In other words, this statement would not cause BASIC to take
any action if the expression is false.

<line number> IF <expression> THEN <line number>
<statement>

30 IF A+B=!O THEN 50
80 IF A=O THEN PRINT 11 A=0 11

99 IF X=Y THEN IF X>Z GOTO 40

This works similar to the IF GOTO statement except that you
don't have to branch to another line. If, as in the
example, you follow the expression by "THEN 50 11 this has the
same effect as GOTO 50. Each will cause a branch to line 50
if the expression is evaluated as being true. In line 80 of
the example, we specified to execute the statement "PRINT
11 A=0 1111 if the expression is true. Executing another
statement fs our alternative to jumping to another line.
The statement could even be another IF GOTO or IF THEN
statement as in line 99 of the example.

IF THEN ELSE <line#> IF <expr> THEN <line#> ELSE <line#>
<stment> <stment>

20 IF H/(Y+5)<8 THEN GOTO 50 ELSE PRINT "OUT OF RANGE"

This is identical to an IF THEN statement except that when
an IF THEN statement ~valuates an expression to be false it
does nothing (doesn't execute the THEN part of the
statem~nt). Execution then passes to the next sequentially
numbered statement. If the expression had been evaluated to
be false and there h.1,l been an ELSE following what we just
discussed, then wha t.1:ver fa 11 owed the ELSE would be

-25-

EXTENDED BASIC User's Manual

executed. To simplify the explanation slightly, the basic
f onn for the IF THEN ELSE is:

<line> IF <expr> THEN <stment 1> ELSE <stment 2>

Considering this form, we will assu~e the expression has
been evaluated. If it was true, then statement 1 will be
executed; and if it wasn't, then statement 2 will be
executed. Looking at the example, if the expression is true
then the statement "GOTO 50 11 wi 11 be executed. If the
expression is false, then the message 11 0UT OF RANGE" will be
printed. Just as with the other conditional statements, IF
THEN ELSE statements may be nested.

-26-

_ EXTENDED BASIC User'·s Manual

6.4 Input/Output

NAME FORM/ EXAMPLE/ EXPLANATION

INPUT <line number> INPUT ['string';] <variable list>
["string";]

556 INPUT "WHAT IS YOUR AGE";A
600 INPUT 111 ENTER A NUMBER"' ;N
650 INPUT W,X,Y,Z
700 INPUT 'GIVE ME AN INTEGER';!%

The INPUT statement, when executed, prints out the character
string enclosed in single or double quotes (if there is
one). Then it prints a question mark and waits for the user
to enter the value or values requested.

Either single or double quotes may be used. If one is to be
part of the actual string, the other should be used to
enclose the string as in line 600 above. In statements that
request more than one variable, each entry from the keyboard
must be separated by a comma and the last one is followed by
a carriage return. If you don't enter as much data as the
INPUT statement requests, BASIC will respond to your
carriage return with 11 ?" which is a prompt for more input.
If too many entries are made then the extra entries will be
ignored.

Note that the user may respond to this statement by typing a
tc. If this is done the program will be tenninated and
BASIC will be in a mode to accept new canmands. The program
will resume execution at the INPUT statement if the CONT
command is typed.

INPUT LINE <line number> INPUT LINE <string variable name>
£""'\ .,.,-.,,.,,,rplf' $TM'"'"'i-~,..r c_--.+),-o

10 INPUT LINEl.8}_..) v'4n.•A-niF" ~ x ~ vi,-v "~ TO /./D'

20 INPUT LINE B1$(5) C "'""",.. n~'c..
C:f rJ

The INPUT LINE statement is used to put an entire input line
into a string variable. The entire line is accepted,
including embedded spaces, punctuation characters, and
quotes up to but not including the carriage return. No text
string can be output as in the INPUT statement and only one
variable name may be listed. l

1 1 . \A.J((1rr..1vr . __ _ . . I
(},fa-...,._, j::.,v f """' L, rvF ,

-27-

EXTENDED BASIC User's Manual

PRINT <line number> PRINT [variable, string ; •••]
[string ;variable, ••• J

10 PRINT {only caused CRLF)

' ;

30 PRINT "WHAT" {prints "WHAT" on the terminal)
45 PRINT "SPEED=" ;S
50 PRINT A1 B;X;Y
75 PRINT "SOLUTION=" ;H*G/3. 2 (expression)

The information following the PRINT statement can be left
out or it can be an arbitrarily arranged string of
constants, variables, expressions, and character strings.
If the ar ument strin is ended with a comma · ol
then a CRLF carriage re urn 1ne feed) will not be
performed after the statement has been executed. Otherwise,
a CRLF will be printed after the data. The individual items
in the argument string are separated by either a comma or a

·semicolon but a short explanation of BASIC's printing fonnat
is necessary before the significance of each one can be
understood.

The maximum length of a line is determined by the FLEX
TTYSET "width" value. A width of zero means indefinite
length. BASIC divides each output line into fields with
each field containing- 16 character positions. When-­
.arguments are separated by commas, the ccxnma after one item
will cause the printer to jump to the beginning of the next
field before printing the next value or string. Thus, a
comma will cause the printer to jump to column 16, 32, 48,
64, etc., depending on the current location of the printer.
If the printer is already beyond the start of the last
field, then the printer or CRT will do a carriage
return/line feed and print the data in column 1 of the next
line. You can type two or more commas next to each other.
This will cause the printer to skip one field just as three
commas would cause two fields to be skipped and so on.

When items are separated by a semicolon, they will be
printed next to each other. There will still be a space or
two between them if one or more of the adjacent arguments
are numbers. This is because numbers are printed with one
trailing space and a leading space if the number isn't
negative. The last necessary bit of infonnation is that
character strings don't have leading or trailing spaces
added. By knowing how to use commas and semicolons and by
being aware of the fonnat used to print numbers and
character strings, you can tailor printed outputs any way
needed. ·

-28-

\.

"'I
"-._:·····

EXTENDED BASIC User's Manual

PRINT USING <line number> PRINT USING <string>, <print list>

10 PRINT USING '####.##', 1234.56
20 PRINT USING '###.### IS THE SQUARE ROOT OF###' ,SQR(X),X
30 PRINT USING 'X \', 'STRING FIELD'
40 PRINT USING A$, I, J, K%, B$

The PRINT USING is a highly flexible fonn of the print
statement to give the user total control of the printing
fonnat. The <string> is an image of the output line except
for special characters that are to be used for fonnatting
instructions. The <print list> is the same as for a nonnal
print statement where an expression is seperated by either a
comma (,) or a semicolon(;). Print using nonnally ignores
the meaning of these separators UNLESS it is at the end of
the print using string. Then and only then do the
separators become meaningful. Because of this feature of
print using, no literal characters can be between the last
fonnat field and the end of the print using string. Literal
characters are defined to be any character that is not one
of the following fonnatting characters and in some cases a
comma. The special characters are:

EXCLAMATION MARK

The exclamation mark is used to denote a single character
string field.

PR I NT US I NG ' !
0 A (

BACK SLASH

! , , , 01 , , , AB , , , () ,

A pair of back slashes(\) are used to denote a string field
of 2 or more characters. The size of the field is
detennined by the total number of characters between the
back slashes PLUS the two back slashes. Any character may
be between· the back slashes as they are ignored. It is
recommended as a good programming practice to include a
count or a string of numbers inside the slashes for
programming documentation.

PRINT USING '\'12345\', 'THIS IS A TEST'
THIS IS

.?9-

\:·· ··

\....:: ·

EXTENDED BASIC User's Manual

POUND SIGN

The pound sign(#) is used to denote a number field.

PRINT USING '####.##', 124.555
124.56

If the number to be printed will not fit in the field
defined a percent sign will precede the number and it will
be printed as if no print using statement was used. Any
character other than a comma, period, or up arrow will
terminate the numeric field.

PRINT USING '#.#', 10.3
% 10. 3 .

PRINT USING '#.#, #.#', 1,2
1.0, 2.0

If the fractional digits of the number does not fit into the
field defined, the number will be rounded and then printed.
If a number being rounded becomes too large to fit in the
field a percent sign will be printed before the number.

PRINT USING '#.# # o # I , 1. 99, 9. 99
2.0 ,ao.o

DOLLAR SIGN

The dollar sign ($) is used when printing amounts of money.
The field is defined the same as with the pound sign(#)
except that the FIRST two characters of the field must be
the dollar sign.

PRINT USING '$$###.##', 123.92
$123.92

Notice that the two dollar signs add an extra character to
the size of the numeric field besides specifying the leading
dollar. If there is not enough room in the field to insert
the leading dollar, or if the number is negative, a percent
sign will be printed then the number as if the dollar field
had not been specified. It is not possible to print using
the leading dollar and a negative amount at the same time.
A trailing minus will have to be used.

PRINT USING '$$##.##', 1234
% 1234.00

PRINT USING '$$#.#', -1.23

-30-

J-.
""\._·····

I ... ·:::.·:::

·C····

EXTENDED BASIC User's Manual

% -1. 23

ASTERISK

The asterisk (*) is used to fill the leading blanks of any
numeric field with asterisks. This is especially useful
when printing a numeric field that should not be easily
altered (ie. writing checks). The format is specified
exactly as the leading dollar is and is used in much the
same way. The two asterisks also specify an extra printable
character. If room for at least one asterisk is not
available a percent sign will be printed and then the number
just as if an asterisk field was not defined.

The leading_ dollar and the asterisk field cannot both be
defined for the same field. Instead a literal dollar sign
can be used preceding the asterisk field.

PRINT USING '**##.##', 10.2
**10.20

PRINT USING '$**##.##', 1.15
$***1. 15

COMMA

The comma (,) is used to insert commas in a numeric field
every three pl aces to the 1 eft of the decimal point. If at
least one comma is embedded in a numeric field and before
the decimal point then commas will be inserted
appropriately. A comma before the numeric field or after the
decimal point is considered to be a literal and will simple
be printed. While filling the numeric field with commas,
BASIC runs out of field room, a percent sign will be printed
followed by the number just as far as BASIC was able to fill
it.

PRINT USING '#,,,#.##', 1234.56
1,234.56

PRINT USING '###,###,###', 1E6
1,000,000

PRINT USING 1 ####,### 1
, 1E6

,:,1_000,000

TRAILING MI NUS

The trailing minus is used when printing negative numbers

-31-

l.-···

EXTENDED BASIC User's Manual

and either a leading dollar field or an asterisk fill field.
Negative sign cannot precede either of these fields so a
trialing minus or debit is used.

PRINT USING '$$##.##- $$##.##', -10.23, -10.23
$10.23- %-10.23

UP ARROW

The up arrow (t) is used to denote scientific fonnat for
numeric fields. Four and only four up arrows are allowed
and must trail the numberic field. The four up arrows
(iiii) are used to represent the 'E+XX' notation used in the
scientific fonnat. None of the other numeric formats may be
used with the scientific fonnat as the scientific fonnat
uses all possible printing positions. This fonnat is
particularly useful when printing tables of numbers that are
quite large and have many decimal places.

PRINT USING 1 #.###########iiii', SIN(X)
2.55063602616[-01

-32-

\ :·

~ -:---·

6.5 Loops

NAME

FOR

EXTENDED BA5IC User's Manual

FORM/ EXAMPLE/ EXPLANATION

<line#> FOR <variable>=<expr 1> TO <expr 2>[STEP<expr 3>]

73 FOR Ho/,=3 TO 600
88 FOR B1=3.2*(X-7) TO 200+X STEP 5.5

116 FOR I%=10 TO -10 STEP -1

When BASIC executes a FOR statement, this will cause all the
following instructions to be executed until a NEXT is
reached. Execution then loops back to the FOR and if the
condition specified in the FOR is true, then the statements
will all be executed again. Once more control loops back to
the FOR, and this cycle continues until the test finally
fails, at which time execution resumes following the NEXT
statement. The 11 variable 11 in the FOR statement is used to
keep track of how many trips or loops have been made through
the FOR-NEXT statements. The variable is initially assigned

· the value of 11 expr l II and each time the NEXT statement loops
back to the FOR statement, 11 expr 311 is added to the current
value of the variable. Since "expr 3" can be positive or
negative, this can have the effect of incrementing or
decrementing the value of the variable. If no STEP is
specified, then a value of positive one is assumed. When no
step is specified (+1 assumed), or when a positive step is
given, then the test that is specified in the FOR statement
is determined to be true as long as the value of the
variable is not greater than that of "expr 211

• When a
negative step is specified, the test yields true as long as
the variable is not less than 11 expr 211

• Once again, the
statements between a FOR and NEXT will always be executed a
first time but subsequent executions only occur while the
index variable in the FOR statement is within the bounds of
"expr 211

•

FOR Statements may be nested (FOR statements located within
other FOR statements), but they can 1 t use the same index
variable. The number of levels of nesting is limited only by
the available memory space. FOR statements can be exited
abnormally by using a GOTO instruction in the statements
between the FOR and NEXT. They should not be entered like
this unless they have previously been left abnormally. If
you enter a FOR loop like this, the results are
unpredictable and probably not what is desired because no
initial value for the index variable has been specified.

-33-

(-..

l
\:_

/
c ::··

EXTENDED BASIC User's Manual

NEXT <line number> NEXT <variable>

10 FOR 1%=1 TO 10
20 PRINT 11 X"
30 NEXT I%

(print 10 X's)

The NEXT statement is only used in a program with a
companion FOR statement. The variable ·specified in the NEXT
statement is the same one that is in the FOR statement with
which this NEXT is used. The FOR-NEXT pair specifies the
boundaries of the 1 oop. The NEXT statement is just a signal
to the FOR statement that it has reached the end of the code
it is to execute. NEXT causes a branch back to its
corresponding FOR statement where the control variable is
incremented as directed in that statement and then the test
is repeated. ·

It is to the user's advantage to use integer FOR - NEXT
loops whenever possible. Integer FOR - NEXT loops execute
approximately 3 times faster than floating point and
typically use 12 bytes less storage.

-34-

·-r ...
\ · ·-··

..
\.. ;···

. .
'\..::_-: ..

EXTENDED BASIC User's Manual

6.6 Tennination

NAME

END

FORM/ EXAMPLE/ EXPLANATION

<line number> END

300 END

The END statement tenninates program execution but its
appearance in a program is optional. END can be placed
anywhere in a program and it doesn't cause a break message
to be printed. After a program has been terminated with an
END statement, it can not be restarted with a CONTINUE
command.

STOP <line nuMber> STOP

50 STOP

When a STOP statement is executed, program execution is
terminated and a message is printed, infonning the user
where the break in execution occurred. If statement 50
above were executed it would halt the program and print the
message:

STOP AT LINE 50

The program can be restarted with a CONT command and
execution resumes following the STOP statement. In short,
the STOP statement works just like the END statement except
that STOP causes a break message to be printed •

- 3~--

(..... .

·, · ·:: ··

r:··:·· ·· '-:: ...

,

EXTENDED BASIC User's Manual

6.7 Miscellaneous

NAME

DEF

FORM/ EXAMPLE/ EXPLANATION

<line number>DEF FN<variable>(<dummy variable>)=<expression>

The user can define single line functions with the DEF
statement. The function is defined (understood by the
computer) as soon as the DEF statement has been executed.
The same function may be redefined at any time in the
program because only the most recent definition is used.
The defined function may contain only one argument. The
dummy vari a.b 1 e used to represent this argument is 1 ocal to
the function definition and has no other meaning to the
program.

A legal function name is fanned by preceding any floating
point variable name with the letters "FN". If, for example,
we want to use the variables X, Hl, and EE as function
names, we would write them as FNX, FNHI, and FNEE
respectively. A function is called just by the appearance of
its name. When program execution does come across a
function, execution branches to the "single line function
definition" wtiere the defining expression is evaluated and
assigned to the function name. Execution then continues in
the line where the function was called and the function name
takes on the value of the function. At this point it is
used in the expression in which it occurs just like it was
an ordinary variable because it does have a specific value
like a variable.

If we defined a function called "FNTT" which would multiply
a variable passed to it by 10, we could use the following
definition:

180 DEF FNTT(V)=IO*V

Now suppose the definition has already been executed and the
following two lines of code are executed:

300 X=3
310 Y=lOO+FNTT(X)

After they have been executed the value of Y will be 130.
In statement 300, "X" is assigned a value of three. The
next statement first calls the function FNTT. It is passed
the variable 11 X11 which is multiplied by ten as instructed by
the definition. Control now returns to statement 310 where

-36-

"\

~ -· ·

(:: ······ '-:,:: ···

DIM

POKE
. J)POKE

EXTENDED BASIC User's Manual

the function name (which now has a value of 30) is added to
100 and this sum of 130 is assigned to the variable Y.
Restrictions on the use of the DEF statement are that the
definition must consist of only one line, only one argument
is pennitted, the.returned value must be floating point, and
string functions are not allowed.

<line number> DIM <variable l> (n) [,<variable 2> (m), ••]
(k,l) (m,n)

20 DIM X(20),Y(30),Z(30,40)

The DIM statement was described in detail in section 4.4.
In summary, the DIM statement is an instruction to the
computer to reserve memory space for the variables that are
listed. The memory space is allocated such that the
variables can be referenced with subscripts. It is
essential that all arrays be dimensioned with this statement
before they are referenced in the program.

Whenever possible integer arrays should be used. For
example, say you have a two dimensional array of of 200
elements with dimensions (24,3). Remember all arrays in
BASIC start with indices of 0. If the array is of type
integer then it will need a total of 2*200 = 400 bytes of
storage. On the other hand if the array is of type floating
point then it will need a total of 8*200 = 1600 bytes of
storage. One can easily see that a large floating point
array can easily use all of memory and result in an error
#80.

<line number> POKE <address>,<data>
<line number> DPOKE <address>,<data>

300 POKE 1000,33
670 POKE L,X
723 DPOKE HEX(1 0123 1

) ,496
800 DPOKE 0,0

Data may be passed to output ports or to machine language
subroutines with the POKE (OPOKE) statement. These are two
frequent uses. POKE (OPOKE) stores the byte (double byte)
that is given as the second argument at the "address" that
is specif1ed by the first argument. The address and data
that are ·used can be numbers or variables but they must have
a numeric value that is subject to the following
restrictions:

-'.31-

(·····

.. , ..
\...:..: ...

EXTENDED BASIC User's Manual

REM

DIGITS

0 < aild1 GU (il:Ott
0 <=address<= 65535={HEX{"FFFF"))

(wJ:e" deLi111al rJigitj
?,"l1w11 "HU" Qsaa,

0 <=byte<= 255
.d ~1~ <= 2 bytes <= 32'.iGJ- r,.r J"JJ

If either of these fall outside of the specified limits then
the respective error numbers are issued.

Since this statement allows you to directly change the
contents of memory, it should be used with care si nee you
could write over your BASIC program or even over BASIC
itselr. ·1t is safe, however, to write to non-existent memory
locations.

<line number> REM [message •••• J

40 REM This could be the name of the program
50 REM

The REM statement is used to place remarks and comments
throughout your program. Anything following the REM
statement is ignored, including multiple statement per line
characters, so remarks should be the last statement on
multiple statement lines. Any character is legal following
the REM and you can even leave the rest of the line blank as
in statement 50. It's very likely you'll find REMARK
statements at the beginning of programs to give the name of
the program and what it does. Also they are often placed at
different points in programs to explain what certain unclear
or complicated sections of code do.

<line number> DIGITS <total> [,<fractional>]

10 DIGITS 12
11 DIGITS 12,3

{set total digits to 12)
(set total digits to 12,
with 3 frational digits)

t)e-~9i,,.t...T Dtt,17,S

~ n,-:::;-.

The DIGITS statement specifies to BASIC how many digits to
print independent of print using. The maximum number of
digits is 17 and the minimum is 1. In a few cases, using
the maximum of 17 can give an incorrect number in the 17th
digit due to ·rounding perfonned in the binary to decimal
conversion. Therefore, using the maximum of 17 is not
recommended. The second argument specifies how many digits
to the right of the decimal point to print. The number of
fractional digits must be less than or equal to the total

-38-

1

"\

' 11,a .::::. -

........ :··

EXTENDED BASIC User's Manual

number of digits or an error will be generated. If the
second argument is left off then BASIC will print All
fractional digits up to the total specified by the first
argument. If a number is to be printed that is greater than
the total number of digits specified, then the number will
be printed in scientific notation.

DIGITS 4, 3
PRINT PI
3.142

DIGITS 1,3
PRINT 10
lE+l

SWAP <line number> SWAP <varl>, <var2>

10 SWAP A,B
20 SWAP A%(It), A~(I%+1)

The SWAP statement does exactly what it sounds like. It
swaps the the values of two variables. The variables must
be of the same type and cannot be members of a virtual
array. Its primary purpose is to decrease the time necessary
to do a sort. In typical applications using the SWAP
command can result in a savings of 20-30~', in sort time. It
is especially advantageous when sorting strings in that the
strings are not actually moved, just the pointers pointing
to them •

-.39-

(·····

,
~ -··

.. c.:

EXTENDED BASIC User's Manual

7. INTRINSIC FUNCTIONS

Since, in programming, there is often a need for many of the same
functions to be used over and over again, several of the more common
ones have been included as part of BASIC. The supplied functions are
divided into five groups which are: MATHEMATICAL, TRIGONOMETRIC,
CHARACTER, INPUT /OUTPUT, and MISCELLANEOUS.

Most of the functions require little explanation for what they do
but a few words are necessary on the way that the functions in general
are called. To call a function it is necessary only for its name and
the required arguments to appear. For example, when the statement:

100 Y=SQR(9)

is executed, Y will have a value of three since SQR is the Square Root
function.

There are also character functions such as CHR$(I) which
character string.

-40-

return a

l2 .. .

(
r..
~ ··

EXTENDED BASIC User's Manual

7.1 Mathematical

The logarithmic and square root functions are generally accurate to
sixteen decimal places.

FUNCTION

EXP{X)

LOG(X)

SQR(X)

DEFINITION

The mathematical operation etX (e raised to the X'th
power) is peformed. Here "e" is the base of natural
logarithms and is approximately equal to
2. 718281828459045. The maximum allowable value of X is
88.02969193111306. An argument any greater than this will
result in overflow and error message 102 will be issued.

This is the natural logarithm (to the base "e") of the
number X. This is the only logarithm supplied with
BASIC, but it is the only one needed because logarithms
to any other base can be calculated from it. The
following formula is used to translate to logarithms of
other bases where the LOG to the base Bis desired.

LOG of X to the base B = LOG(X)/LOG(B)

Probably the most frequent use of this will be to convert
to common logarithms {base 10). As an example suppose we
wanted to find the common log of the number 327. The
following expression will acconplish this.

COMMON LOG OF 327 = LOG(327)/LOG{10)

., .

The Square Root function returns the square root of th-e
argument X. If the argument is negative, error message
107 will be issued.

-41-

\;:

EXTENDED BASIC User's Manual

7.2 Trigonometric

For each of the trigonometric functions, the accuracy of the value
returned is dependant on the magnitude of the argument passed to it.
More accurate values will be returned by these functions when arguments
with smaller magnitudes are used. In general~ the trigomentric
functions have an accuracy of thirteen and one-half digits.

FUNCTION

A TN(X)

COS{X)

SIN(X)

TAN(X)

DEF IN IT ION

Returns the arctangent of X, in radians. The value
returned will be between -pi/2 and pi/2, where pi/2 is
approximately equal to 1.5707963267948966.

Determines the cosine of the angle X. The argument Xis
assumed to be in radians.

This calculates the sine of the angle X where the
argument is assumed to be in radians. r ' -:. <'~-;· ·;\:; ~ ·; ·, ,~s -- . :. .. --

The tangent of the argument Xis calculated by this
function. Xis assumed to be in radians.

-42-

-

,;,;;;. ..

7. 3 Character

FUNCTION

ASC{X$)

CHR$(1%)

HEX{X$)

I NCH$ {I%)

EXTENDED BASIC User's Manual

OEFI NIT ION

The argument XS is a string expression. The value
returned by the function will be the ASCII numeric value
of the first character in the string. Zero will be
returned if the argument is the null string.

This returns a single ASCII character (a one character
string) whose ASCII value is the argument I%. The
argument 11 1% 11 must be a number within the limits: 0 <= I%
<= 255 • .

The HEX function converts a hexadecimal character string
into its decimal equivalent. If the statement:

180 PRINT HEX{ 11 l00 11
)

is executed, then the value printed would be "256 11 which
is the decimal equivalent of the hexadecimal value of
100.

The INCH$ functions inputs
file or device specified.
the i nterna 1 f i 1 e channe 1 •
tenni nal.

a single character from the
The argument pa·ssed specifies
A channel of O is the users

INS"ffi(I%,S$,P$) The INSTR function searches for sub-string P$ IN S"ffiing
S$. The first argument specifies the first character of
string S$ at which to start the search. INSTR returns an
integer value specifying at which character the
sub-string started. If the sub-string was not found then
zero is returned.

LEFT$(X$,I%) Character function 11 LEFT$ 11 returns a string that is the
lo/, left-most characters of the string X$. The value of
1% must be be a positive number less than 32,767 to avoid

-43-

t ...

,.

(....
\.:n··•

EXTENDED BASIC User's Manual

LEN(X$)

MID$ (X$, 1%)

MID$(X$, I%,J%)

an error.

LEN(X$) returns with the number of characters in the
string X$. All characters in the string are counted,
even spaces and non-printing characters.

This returns a character string that is a portion of the
string X$. The returned string starts at position I% in
the string X$ and includes everything until the end of
the string. Position 1% must be a positive number less
than 32,768 or an error will result.

With a three variable argument, MID$ functions the same
as it does with a two variable argument except that the
returned string only includes J% characters of the string
X$.

RIGHT$(}($,I%) Returns a character string that is the rightmost I%
elements of the string X$. If the value of I% is greater
than or equal to the length of the string X$, then the
entire string will be returned. Error number 74 will be
returned if the value of I% is negative or greater than
32,767.

STR$(X)

VAL(X$)

This will return a character string that represents the
nur.ierical expression X. In other words, it takes a
number and transfonns it to a character string. The
string ·is constructed just as it would be output,
honoring the DIGITS statement and including the leading
space or minus sign and a trailing space.

VAL(X$) does just the opposite of STRS(X). VAL(X$) takes
a numerical character string (a string composed entirely
of numbers, plus or minus sign, and decimal point) and
converts it to its numerical VALue. Zero wil 1 be
returned if the first non-space character is anything
other than a digit or a decimal point, plus sign, or
minus sign.

-44-

(.

.l:::

(·:·
_\.••• . --··

EXTENDED BASIC User's Manual

7.4 Input/Output

FUNCTION DEF I NIT ION

OPE EK (I)
PEEK(I) Thesefunctionr doa the opposite of the BASIC statements

POKE and DPOKE. PEEK(I) and DPEEK(I) return the contents
of memory location I (\'1here I is the decimal address).
The value returned will be >=O and <=25§_.i;J the case of

)
PEEK and will be >~.J.2-r6'1' and <= !£1~ in the case of

LET 'f:= PEE'K(T DPEEK. If the curr~~....Y.£1 ue of the arg_1irn1:?nt is negative
o~ , or greater than ~te:11; error number ®wil 1 be printed.

1..1:Tt ::P~~(ttE)(('m.,)4-t tl'le MEX f1:1AetieR is t:isea, 1:1i;i te 65534 wo,ds mfl.) be

POS (Io/.)

SPC(I%)·

TAB (I%)

.addressee,

The value returned will be the current column position of
channel 1%. Numbering starts at zero, so if the value
returned is zero, then the cursor is in the first
position (column) of a line.

This function may only be used in a print statement. It
causes II I% 11 spaces to be printed. BASIC wil 1 respond
with error number 74 if the value of I% is negative or
greater than 255.

This function also must only be used in print statements.
It moves the cursor to column I% on the CRT or would move
the print head to this column if a printer is being used.
If the cursor is already past this position, then no
action is taken. As usual, the argument must be positive
and less than 256.

45-

c. ..

'"'-'·

EXTENDED nASIC User's Manual

7.5 Miscellaneous

FUNCTION

ABS(X)

IN.T(X)

PI

DEFINITION

The absolute value of Xis returned by this function. If
Xis positive, then the value returned is X, and if it is
negative, the value returned is -X.

The value returned is the largest
greater than X. This function
11 Floor" of X. Several exam pl es of
are shown.below.

integer that is not
is often called the
the values returned

INT(70) =70
INT(5. 7)=5
I NT(0) =O

INT(-.Ol)=-1
INT(-3) =-3
INT(-4.2)=-5

This returns the value of "PI"= 3.1415926535897933.

PTR(<var name>) The PTR function returns the address of the variable
named as the argument. If the variable is a floating
point type, the address returned wil 1 be the actual
storage location of the number. Floating point numbers
are stored as eight bytes, the first seven being the
mantissa (sign plus magnitude, with the sign in the most
significant bit position) and the last byte is the
exponent (biased by hex 80). The mantissa is kept in
hidden bit, normalized form.

If the variable is an integer, the value returned will be
the actual storage location of value of the variable.
Integers are stored in 16 bit two 1 s complement notation.

If the argument is a string variable name, the value
returned is the address of a four byte 11 string
descriptor". The first two bytes of the string descriptor
contain the actual address of the string, while the
second two bytes indicate the strings length. It should
be noted that no special string termination characters
are stored with strings and any 8 bit combination is

-46-

'\:·

RND(X)

.,~··· .

SGN(X)

.~ 1"'(FRE (O)

DATE$

(....... .

EXTENDED BASIC User's Manual

valid in a string.

The function returns a random number that has a value
between zero and one. The programmer can use this to
generate random numbers between any. desired 1 imits using
the fonnula:

Random Number=(ML-MS)*RND(O)+MS

Where ML is the larger number and MS is the smaller
number. The resulting number that is generated will range
from MS to ML.

The argument X has an effect on the number that is
generated according to the following rules.

X<O A new series of random numbers is
started. For different negative values
of X, a different sequence is started
each time, but if the argument retains
the same value, the function will keep
starting the same random sequence so
the value returned will be the same
each time the function is called.

X=O Causes the function to generate a new
random number when it is called. This
is the argument that will nonnally be
used with the RND function.

X>O This returns the last random number
that was generated.

This is the sign function. It returns "1" if the
argument is greater than zero. A zero is returned if the
argument is zero and a mi nus one is returned if negative.

FRE(O) returns the current number of free bytes
available. The numeric argument is meaningless, but is
syntactically necessary.

DATE$ returns the current date in FLEX's date register in
'DD-MON-VY' fonnat.

- -1 7-

\ ···

t··:::::· --

..
~ --

EXTENDED BASIC User's Manual

8. SEQUENTIAL FILE I/0

The simplest fonn of file I/0 in BASIC is sequential I/0. Regular
text files may be read and created sequentially. All disk data files
are created with a default extension of 11 DAT" for DATa, and the default
drive is the working drive. These defaults may be over-ridden at any
time by simply specifying the desired extension· or drive in the file
name, as in any standard FLEX file specification.

8.1 The OPEN Statement

Before any file may be used in BASIC, it must first be opened. The
OPEN stater.ient is used for this purpose. For sequential file
manipulations, there are two forms of the OPEN statement. The syntax is
as fo 11 ows:

OPEN OLD <string expression> AS <file expression>
OPEN NEW <string expression> AS <file expression>

Examples:

OPEN OLD 11 TEST11 AS 1
OPEN NEW A$ AS F

The OPEN OLD statement will open the file specified in the string
expression for read. The defaults are the working drive and DAT for the
extension. The AS clause tells BASIC which I/0 channel to use for the
file 1/0. The file channel may be 1 to 12, which means there is a limit
of 12 open files at any one time (memory pennitting). If the file is
not found, an error will result (error #4). This error may be handled
by using ON ERROR GOTO. Once opened, the file is ready for reading.
The first example will open the file 11 TEST.DAT" on the working drive on

· channel 1 for read.

The OPEN NEW statement is used for creating a new file and preparing
it for writing. The file specified in the string expression will be
created if it does not already exist. If it does exist, the original
file WILL BE DELETED and a new file with the same name will be created!
The defaults for the file name are as in OPEN OLD. The second example
above will open the file whose name is contained in the string variable
A$ for write. The 1/0 channel used will be the value of the variable F.

It should be noted that the OPEN statement will not actually open
the file on the disk, but will only nake the preparations to do an open
file operation. Only when actual file l/0 is required will the file
truly be opened on the disk. This implies that an OPEN OLD statement
which tries to open a non-existent file will not generate an error, but
when actual input is attempted, the error #4 will be generated •

-48-

,:

,

EXTENDED BASIC User's Manual

8.2 Sequential Output

A modified version of the PRINT statement is used to output
sequential data to a disk file. Its syntax is as follows:

<line number> PRINT #<expression>, [USING <string>,] <print list>

where the expression is the internal channel number
OPEN statement. The list is the list of information to
follows all rules of the normal PRINT statement.
demonstrate its use.

10 OPEN NEW 11 TESTFILE 11 AS 3
20 PRINT #3, "THIS IS A TEST FILE"
30 PRINT #3, "THIS . IS THE SECOND LINE"

specified in the
be out put and
An example wi 11

The above lines create a new file called 11 TESTFILE.DAT11 on the working
drive. Internal channel number 3 is used. The resultant file will have
two lines, the first will be THIS IS A TEST FILE and the second will be
THIS IS THE SECOND LINE.

Anothei example will demonstrate a method of creating a table of the
integers 1 through 5 and their values squared. The program might look
as fa 11 ows:

100 OPEN NEW 11 SQUARES 11 AS 1
110 FOR I=l TO 5
120 PRINT #1, I, It2
130 NEXT I

The file that is created is a pure text file and may be edited, listed,
etc. with any of the standard FLEX utilities. Listing the file
SQUARES.DAT created above would display the following:

1
2
3
4
5

1
4
9.
16
25

Notice that since commas were used in the PRINT statements, the
resultant lines have the numbers spaced accordingly.

-49-

EXTENDED RASIC User's Manual

8.3 Sequential Input

Like the PRINT statement, the INPUT statement may also communicate
with a file. The INPUT syntax is:

<line number> INPUT #<expression>, <list>
<line number> INPUT LINE #<expression>, <string variable>

where the expression is the internal channel number referenced in the
OPEN statement. The 1 i st is the same as the nonnal INPUT statement. No
question mark prompt is output when inputting from a channel. The INPUT
LINE will input an entire line from the disk file and put it in the
string variable specified. An example will demonstrate input from a
file.

10 OPEN OLD "NUMBERS" AS 2
20 INPUT #2, A, B

This will cause the variables A and B to be read from the disk file
NUMBERS.DAT on the working drive. The file must provide ASCII data
exactly as it would be typed if the input were coming from the tenninal.
Since two variables need data, the numbers in the file must be separated
by a comma and tenninated by a carriage return, or both may be
tenninated by a carriage return. If a file is being created to be read
later by an input statement such as shown above, commas need to be
manually inserted in the data file between the data items. For example:

100 OPEN NEW "NUMBERS" AS 6
110 PRINT #6, A; 11

,
11

; B
120 CLOSE 6
130 OPEN OLD "NUMBERS" AS 6
140 INPUT #6, A, B
150 PRINT A, B

.this sequence of lines will create a file NUMBERS.DAT on disk, output
the values of A and B separated by a comma, close the file (see below),
open the file for read, read in the values of A and B, and print the
results on the tenninal. It should be noted that reopening file for
read after closing it will position the pointer back to the beginning of
the file so all of the data becomes available for sequential read.

,~ -~·----- /:.'~ '1- - .A'--- '>l..,,..4, ~ k ~ fo-.,..,,..
0,.. 'h'./V,_ ,:., 2 .rr o-{_o...,o.,.~ I

-50-

.(··.

\.. ~ ...

.. ..
~ -

EXTENDED BAS!C User's Manual

8.4 The CLOSE Statement

The CLOSE statement is used to tenninate 1/0 between BASIC and a
file. Closing a file also frees up the internal channel it was using
allowing another file to be opened on the same channel. The syntax of
the CLOSE statement is:

<line number> CLOSE <expression> [,<expression> •••]

The expression indicated should have the same value as that used in the
OPEN statement for the file and indicates the internal channel number of
the file to close. Any number of files may be closed with one CLOSE
statement. Some examples will demonstrate its use.

200 CLOSE 3
520 CLOSE 1,6

Line 200 will close the file on 1/0 channel 3 and line 520 will close
the files open on channel 1 and channel 6. An error will result if the
file had not been previously opened.

8.5 INPUT on Channel 0

Some times it is desirable to request input from the tenninal but
not output a question mark prompt as the INPUT statement does. This can
be accomplished by inputting from channel O. Even though it is illegal
to open a file on channel 0, it is possible to reference channel O with
the INPUT statement, just for the purpose of eliminating the input
pr·ompt (the question mark). An example follows:

10 INPUT #0, 8$

wiJ 1. request input from the terminal just as a nonnal INPUT statement,
but no question mark prompt is output. After entering the data and
typing the return key, a ·carriage return line feed will not be echoed as.
is done with the standard INPUT. This mechanism will allow precise
cursor control in programs requiring fancy input prompts. Remember that
files may not be opened for input on channel 0, but referencing channel
O in an INPUT statement is allowed for the above stated purpose •

~ --··

, ~ --

EXTENDED BASIC User's Manual

8.6 Output to Other Devices

It is often necessary to have a BASIC program output to a device
other than the terminal. Channel O has special meaning for the PRINT
statement just as it does for the INPUT statement. Using channel 0
without an OPEN statement when PRINTing will print- on the tenninal just
as if the channel O had not been specified. As an example:

200 PRINT #0, "THIS IS A TEST"

will print THIS IS A TEST on the terminal, exactly as if the 11 #0, 11 were
not present.

Opening channel O allows you to send output to some device (such as
a line printer) rather than the terminal. This is done in much the same
way as the "P" command works in FLEX. Using OPEN and specifying channel
0 will tell BASIC to read the file name specified as a PRINT.SYS type
file and use this new output routine whenever PRINT #0 is specified. An
example will demonstrate its use.

10 OPEfl 11 0.PRINT" AS 0
20 FOR I=l TO 10
30 PRINT #0, USING '###
40 NEXT I
50 CLOSE 0

##.######', I, SQR(I)

Line 10 tells BASIC to read in the file PRINT.SYS (SYS is the default
extension when channel O is referenced). Notice that it was not
necessary to say OPEN OLD. The PRINT.SYS file format is described in
the FLEX User's and Advanced Programmer's Manual. Once the PRINT.SYS
file has been read, all output through PRINT #0 statements will use the
driver routines which are contained in the print file loaded. If the
PRINT.SYS contained drivers to output to a parallel printer port on port
7, then the output from the above sample program would have gone to that

.printer. All output with PRINT statements not containing the #0 would
stil 1 go to the tenninal. Th~ CLOSE O statement would tell · BASIC to
send all PRINT #0 ~utput data back to the terminal again until another
OPEN AS O statement is executed.

One last example will demonstrate the print to channel O use. This
program allows output to be sent to either the terminal or the printer
by user request.

10 INPUT "TERMINAL OR PRINTER (T OR P)" ,R$
20 IF R$= 11 P11 THEN OPEN "O.PRINT" AS 0
30 FOR I=l TO 10
40 PRINT #0, I, SQR(I)
50 NEXT I
60 CLOSE 0
70 END

-52-

\ ····

EXTENDED BASIC User's Manual

Line 10 asks if the output should go to the printer or the tenninal.
Only if the response is P for printer will the program open channel 0
(line 20). If channel O is opened, the output from line 40 will go
through the printer drivers supplied from PRINT.SYS and on to the
printer. If it is not opened, the output will go to the tenninal. It is
very important that the file specified in the OPEN AS O statement is
actually a printer system file. If it is not, unpredictable results
will occur, possibly crashing BASIC!

8.7 The KILL Statement

The KILL statement is used to delete an existing disk file. Its
syntax is of the form:

<line number> KILL <string expression>

where the string expression is used as the file name to be deleted. The
default extension is BAS and the default drive is the working drive.
This statement may also be used in the immediate mode. There is no
prompting ·with this command as in the FLEX delete command, so caution is
advised! An example will demonstrate its use.

100 KI LL "LEDGER"

This line will delete the file named LEDGER.BAS from the working drive.
Again, there is no prompt with this delete so be careful!

8.8 The RENAME Command

The RENAME statement is used to rename a disk file. It may be used
,_ in a program or in the immediate mode. Its syntax is:

<line number> RE~AME <itring expression>, <string expression>

where the first expression specifies the name of the file to be renamed
and the second expression is the new name it will have. The name
defaults to a BAS extension and to the working drive. As an example:

225 RENAME 11 TEST 11
,

11 0LDTEST"

This line will rename the file TEST.BAS on the working drive to
OLDTEST.BAS. If TEST does not exist, an error #4 will be issued.

·-53-

(::·.·

EXTENDED BASIC User's Manual

8.9 The CHAIN Statement

When a program is too large to be loaded into memory and run by
BASIC it must be divided into several smaller segments. The CHAIN
statement is used to load and run these program segments from a running
program. The program segments may be either BAS type source files or
BAC type compiled files. Each segment has its own file name and any
program on disk may be passed control (similar to a GOTO) by CHAIN. The
syntax is:

<line number> CHAIN <string expression> [<expression>]

The file name referenced by the string expression will be loaded and
executed. The name wi l1 default to the working drive and BAC (compiled
form) extension. The second optional expression designates the line
number at which the program should be started. Without the line number
specification, the program will begin execution at the lowest numbered
line, just as with the RUN command. An example will demonstrate:

1300 CHAIN 11 BALANCE2 11 100

This line will cause the file named BALANCE2.BAC to be loaded and run
starting at line 100.

Chaining to compiled programs (BAC type) will be much more efficient
than chaining to source type files (BAS). The only way a source file
can be chained is if it has a BAS extension and if .the extension is
explicitly stated in the file name. All other extensions will be
assumed to be compiled type files. Communication between chained
programs must be performed through disk files. When the CHAIN statement
is executed, all open files are closed, the new program is loaded, and
execution continues. Any files to be used in common by several programs
should be opened in each of the programs run.

EXTENDED BASIC User's Manual

9. ERROR HANDLING

There are two classes of errors which can happen while executing a
BASIC program. The first class consists of I/0 errors, both disk and
tenninal related, while the second class deals with computational and
syntax type errors. The complete list of error numbers and their
respective meanings are in a following section. The error numbers
between 1 and 49 are all I/0 type errors while 50 and above fall into
the second class. It should be noted that error numbers l through 28
are disk errors and are the same as those generated by FLEX. Nonnally
BASIC will print the error number as the error occurs and the program
will come to a halt. Many times it is desirable to continue execution
of a program after an error occurs, especially if the error is I/0
related. The ON ERROR statement is used for this situation and may be
used to control the result of any I/0 related error.

9.1 The ON ERROR GOTO Statement

The ON ERROR GOTO statement is used to tell BASIC that there is a
user supplied error handling routine. Anytime an error occurs which is
in the range of 1 to 49, BASIC will check to see if an ON ERROR
statement has been executed. If it has, control is transferred to the
line specified, otherwise, the program will halt and print the error
message in the usual manner. The syntax for the ON ERROR statement is:

<line number> ON ERROR GOTO [<line number>]

This statement should be placed in the program before any lines which
may cause an I/0 error for which the error routine deals. If an error
does occur, control will be transferred ,to the line number specified in
the ON ERROR statement. The system variables ERR and ERL will also be
set to the value of the error number and to the line number which caused
the error. More about these variables to follow.

-55-

EXTENDED BASIC User's Manual

9.2 The RESUME Statement

The RESUME statement is used to pass control back to the main BASIC
program ·after the error handling routine has completed. During program
execution, if an 1/0 error occurs, and an ON ERROR statement has been
executed, BASIC will go to the first line of the error handling routine.
When the error routine is finished it must pass control back to the main
program, the function of RESUME. The syntax for the RESUME statement
is:

<line number> RESUME [<line number>]

If a line number is specified after RESUME, BASIC will restart the main
program execution at that line. If no line is specified (or O is
specified), BASIC will resume by re-executing the line which caused the
error. If this second method is used, note that the entire line will be
re-executed, and not just the statement which caused the error. Thus,
if the offending statement was not the first statement on the line, the
proceeding statements on that line will also be repeated. Two examples
fo 11 ow:

1000 RESUME
2000 RESUME 200

The first example will restart the main program on the line which caused
the error (this is equivalent to RESUME 0). Line 2000 would cause the
program to resume at line 200. A RESUME statement should always be
included in error handling routines. No other fonn of return is valid.

f/011!: T'~I 13-T ERL.. L-1 vr ,., .. ,
9.3 ERR and ERL System Variables Dos.r Nor A,rr-~,._,'V\MOnt.H> ""'r-J-1

+ X1Zv,v""-M r1/ - t,1.,- 1-r lo-A.
When any error occurs, the two vari~bles named ERR and ERL are

~pdated. The ERR variable will contain the error number and ERL will
contain the line number of the line which was executing at the time the
error happened. These variables may not be set by the user but may be
read at anytime. As an example:

130 IF ERR=4 THEN PRINT "NO SUCH FILE"

This line will cause BASIC to print NO SUCH FILE if the last error was
an error number 4. The variable ERL is used in a similar manner. It
should be noted that programs using the ERL variable may need alteration
after a RENUMBER operation since the line referenced may change!

-56-

(

(_

~ .·····

""'-""

EXTENDED BASIC User's Manual

9.4 Disabling ON ERROR

Many times there are only sections of a program which require a user
supplied error routine. It is possible to disable the ON ERROR feature
once it has been disabled by using one of the following:

<line number> ON ERROR GOTO 0
<line number> ON ERROR GOTO

Both of these are equivalent. After execution of this statement, BASIC
will handle all errors, printing the error number and halting. Another ·
user error handler may be setup at anytime by executing another ON ERROR
GOTO and specifying the line number of the routine.

The ON ERROR GOTO o. statement may also be placed inside a user error
handling routine. If BASIC comes across an ON ERROR GOTO O statement
while executing a users error routine, the user routine immediately
exits, and BASIC will print the error number on the terminal, just as if
the user routine had never been activated.

9.5 Error Handling Examples

Following are three examples which demonstrate typical applications
of the ON ERROR and related statements. The first example deals with
11 data type mismatch 11 errors (error number 30).

10 ON ERROR GOTO 1000
20 INPUT 11 PLEASE TYPE THREE NUMBERS 11 ,A,B,C
30 PR I NT II THE SUM IS 11 ;A+B+C
40 GOTO 20

1000 IF ERR<>30 THEN ON ERROR GOTO 0
1010 PRINT 11 PLEASE TYPE NUMBERS ONLY! 11

1020 RESUME

Line 10 tells BASIC where the error routine is located (line lOOOt.
When the INPUT statement is executed on line 20, it expects numeric data
only to be input. If the user enters a letter instead of a number,
BASIC would normally stop and print ERROR #30 AT LINE 20 at the
terminal. Since the ON ERROR statement has been executed, BASIC would
transfer control to line 1000 if an error occured. Line 1000 checks to
see if the error is number 30. If ERR is not 30, the ON ERROR GOTO O is
executed which disables the error handling routine and causes BASIC to
print the error number on the terminal and stop. If it is error 30, the
message on line 1010 is printed. Line 1020 will cause the program to
re~ume execution at"· the line which caused the error (line 20), and the
input prompt will be reissued.

·,c·:··

EXTENDED BASIC User's Manual

The second example demonstrate~ disk I/0 error handling. A common
situation when working with disk files is the detection of the end of
file. The following short program will list a disk text file on the
terminal.

10 INPUT "PLEASE TYPE FILE NAME (WITH EXTENSION)" ,F$
20 ON ERROR GOTO 1000
30 OPEN OLD F$ AS 1
40 INPUT LINE #1, LS
50 PRINT L$
60 GOTO 40

100 CLOSE 1
110 END

1000 IF ERR<>B THEN ON ERROR GOTO
1010 RESUME 100

After the file name is input on line 10 the error routine is identified
to BASIC in line 20. Line 30 opens the file for sequential input on
internal channel 1. Lines 40 and 50 read the file a line at a time and
prints each line at the terminal. Eventually the end of the file will
be reached and an error will occur at line 40 from attempting to read
past the end of the file. At this time control will be passed to line
1000 which tests to see if the error was an error number 8 (end of
file). If it is, then the program is resumed at line 100 which closes
the file and ends the program. If the error was not 8, then the error
number will be printed and the program stopped. ~; n c

:f,)< (ij,:(PY.

The third exa~ple deals with detecting control-C traps while a\
program is running. Some times it is necessary to cleanly exit a \
program, to close files, print a summary of action taken, etc. If the 1

I
user types a control-C before the program has finished, the termination I
procedures will not be executed. By using the "ON ERROR GOTO" mechanism
a program can detect just this thing. Error number 34 is control-C trap
and when any tc is typed, control is passed to the error handling

1
1

routine. One warning when using this mechanism, if the program disables
the tc trap, some other means of exiting the program must be available.

·- Either by a STOP or END statement or by the ESCAPE key on output. If
the program goes into an infinite loop, and some other means of stopping
it can not be used, then a machine RESET will be the only way to break
the loop.

10 ON ERROR GOTO 100
20 INPUT "GIVE ME A NUMBER", C
30 IF C=O THEN END

100 IF ERR<>34 T•[N ON ERROR GOTO 0
110 PRINT "YOU CAN'T QUIT ON ME NOW ! 11

120 RESUME 20

-58-

/

r : -..._..

i .-....:._ ...

EXTENDED BASIC User's Manual

IO. ADVANCED DISK CAPABILITIES

10.1 The EXEC Statement

The EXEC statement is used to execute any FLEX utility which loads
into the FLEX utility command space ($A100). Its syntax is:

<line number> EXEC, <string expression>

where the string expression is used as a FLEX command, just as it would
be typed into FLEX. As an example, suppose it was necessary to set a
TTYSET parameter during a BASIC program execution, such as the line
width. The line might look as follows:

300 EXEC, "TTYSET WD=64"

The string in quotes would be sent to FLEX and executed, just as if it
had been typed directly into FLEX. Remember that only commands which
reside in the utility command space should be called. Programs which
load into low memory will kill BASIC! BASIC does not check for a low
memory utility, so it is up to the user.

10.2 Virtual Arrays

The simplest fonn of random file I/0 is called virtual arrays. The
virtual array mechanism allows the user to specify that a data array be
stored on a disk file rather than in memory. The two advantages of this
feature are that the array may be much larger than what would fit in the
available memory and that the data in the array remains after program
execution and may be used at a later date from another program. Virtual

·- array data is referenced exactly like standard array data which makes
the mechanism quite powerful and easy to use!

-59-

(.

EXTENDED BASIC User's Manual

The sequential 1/0 methods previously described only al low the next
sequential data item to be accessed or stored at any one time. The
virtual array storage method allows a random data item to be accessed or
stored, no matter where in the file the item resides. Before a data
matrix can exist in a virtual array, the array must be declared using a
special form of the DIM statement. Its syntax is:

<line number> DIM #<expression>, <variable>(<dimension>)

The expression designates an internal channel number and must be
1 and 12. This is the channel number on which the file will be
Only one variable may be associated with each virtual array
number. The variable may either be single or double dimension.
example:

20 DIM #3, A(l00,50)
30 DIM #4, Bo/.(100)

between
opened.
channel

As an

would define the matrix A to be 101 by 51 in size and be associated with
channel 3; ·and define 8% to be a vector with 101 elements associated
with channel 4. Virtual arrays may be floating point, integer, or
string. All data . items are stored in the file in "internal format", 2
byte binary for integers, 8 byte binary for floating point numbers, and
ASCII characters for strings.

For the most part, virtual array and standard memory array
manipulations are identical. One difference is in the way string
storage is performed. In a standard type string array, the data items
may be any length and change in size as the program executes. A virtual
string array requires each string in the array to have the same length.
The maximum length allowed is 252 characters but may be defined to be
anywhere from 1 to 252. Each string element stored into a virtual array
will either have enough spaces attached to the right side of the string
to make it equal in length to the defined string size {if it is shorter
than the defined length), or it will be truncated from the right if it
i-s · longer than the defined length. To define the string length for a
particular virtual string array, the following form should be used.

<line number> DIM #<expr>, <string var and dirnension>=<expr>

Example:

100 DIM #7, A$(100)=63

The equals sign and expression define the string length to be used.
Again, the maximum length is 252 characters. The example defines the
virtual string array . A$, which has 101 elements (including the 0
element), each of which are 63 characters in length. If a string length
is not specified in the DIM statement, a default length of 18 is used.

-fin-

I

,,

"····
I

a

EXTENDED BASIC User's Manual

The length of a virtual string array data item can greatly affect
the efficiency of data storage in a disk file. The system requires that
a string be completely contained in one disk sector and that the string
may not cross a sector boundary (thus the limit of 252 since there are
252 bytes of storage available in one sector). To avoid wasting disk
space, the defined string length should be an even divisor of 252. A
few examples will demonstrate this.

10 DIM #1, AS(lOO)
20 DIM #2, 8$(100)=63
30 DIM #3, C$(20)=130

Line 10 would default to a string length of 18, creating 14 strings per
sector. No disk space is wasted since 14 times 18 is 252. Line 20
would create strings of length 63, again not wasting disk space since
there would be 4 strings per sector and 4 times 63 is 252. Line 30 is
extremely wasteful since only one string of length 130 will fit in a
sector, so 252-130 bytes (122 bytes) are wasted in each sector of the
fi 1 e.

10.3 Opening a Random File

Before any random file may be referenced, it first must be opened.
Opening a random file is a little different than opening a sequential
file. There are three forms of the OPEN statement for random file use.

<line number> OPEN OLD <string exp> AS <expression>
<line number> OPEN NEW <string exp> AS <expression>
<line number> OPEN <string exp> AS <expression>

The OPEN statement used determines whether an existing disk file is to
be used or if a new file should be created. The open statement does not
determine if the file is going to be used for input or output as in the
sequential file use since random file operations allow both input and

·output to a particular file. Each OPEN type will be . described
separately.

The OPEN OLD statement tells BASIC to search for a file which
already exists (an 11 old 11 file). If the file is not found, an error
number 4 will be issued. As an example:

10 OPEN OLD 11 TEST 11 AS 8

will cause BASIC to search the wo,·king drive (by default) for the file
named TEST.DAT. OAT is the default extension. Either of the defaults
may be overridden, just as any FLEX file specification. If the file is
not found, error 4 will be generated.

-61-

(._

{
~····

EXTENDED nASIC User's Manual

The OPEN NEW statement tells BAS JC to create a "new" file. If the
file name specified already exists, IT WILL BE DELETED, and a new file
of the same name will be created. If the file does not exist, it wi11
be created. As an example:

10 OPEN NEW II INVENT" AS 4

will cause a new file named INVENT.DAT to be created on the working
drive. The same file name defaults apply as stated above.

Finally, the OPEN statement, without the NEW or OLD modifier will
first attempt to open an existing file (just like OPEN OLD). If the
fiJe name is not found, one will be created and no error will be issued.

10 OPEN 11 NAMES 11 AS 1

This line would cause BASIC to first search for a file named NAMES.DAT
on the working drive (the above stated file name defaults apply). If
the fi 1 e is found it is opened. If the fi 1 e is not ,found, one is
created with the specified name.

As in the sequential OPEN statement, the file is not actually opened
at the time the OPEN statement is executed, but is only prepared for the
opening process. When the first 1/0 attempt is executed, the disk file
will actually get opened, so any file related errors will be delayed
until this first l/0 operation is perfonned.

10.4 Using Virtual Arrays

Before a virtual array may be used, the corresponding disk file must
be opened using the OPEN statement described above, and the array must
be defined using the special DIM statement. Once this has been done,
.the. virtual array may be used in assignments and expressions exactly
1 ike any standard array,w4tl:I er:ie e)(ce19tior:i, "Fhe1 e IM) 0111) be eAe
"'"41 tual a, 1 a, refe1 e11ce i II aA exr,1 e$!i eR.. A short example wi 11
demonstrate virtual .array use.

10 OPEN 11 TESTFI LE" AS 1
20 DIM #1, A(lOO)
30 INPUT "TYPE ARRAY ELEMENT, NEW VALUE 11 ,E,V
40 PR I NT II THE CURRENT VALUE IS 11 ;A (E)
50 A(E)=V .
60 PRINT "TIIE NEW VALUE IS 11 ;A(E)
70 CLOSE 1
80 END

Line 10 opens the file named TESTFILE.DAT on the working drive. If the
file does not already exist, one will be created (because of the type of
OPEN statement used). Line 20 defines the virtual array A which is a

-62-

EXTENDED BASIC User's Manual

floating point array containing 101 elements (counting element O). From
... ,...... this point on, the program treats the array A just as if it were a

standard array. Line 30 requests which element in the array is to
receive a new value and what that value should be. Line 40 prints the
current value of that data item, line 50 gives it the new value, and
line 60 prints the new value of the selected array item. Notice that
the array reference is purely randcxn, and that it was not necessary to
access the file sequentially. Line 70 closes the file (as is necessary
after completing use of any disk file). The file TESTFILE now exists on
the disk with the selected data item altered to reflect its new value.

10.5 Notes on Virtual Arrays

A file created or referenced as a virtual array has no information
contained in it which specifies its dimension or data type. If the file
was created as a floating point virtual array, it consists of 8 byte
binary numbers, one right after the other, with 31 numbers per sector
.(31 times 8 is 248) with 4 bytes left over. If it was created as a
string array, it consists of one string after the other, of length
specified in the DIM statement. If the array is integer, it consists of
126 integers (2 times 126 is 252), one right after the other. A double
dimensioned virtual array is stored in row fonn. This means that row 0
is closest to the beginning of the file, followed by row 1, etc. This
information is important in two respects. First of al 1, sequential
access of virtual array data items in a 2 dimension array will be faster
if accessed by row than if accessed by column. The following example
demonstrates this point.

Program #1

10 OPEN OLD 11 DATA 11 AS 1
20 DIM #1, A{20,20)
30 FOR I=O TO 20
40 FOR J=O TO 20
50 PRINT A(I,J)
60 NEXT J
70 NEXT I
80 CLOSE 1

Program #2

10 OPEN OLD "DATA" AS 1
20 DIM #1, A(20,20)
30 FOR I=O TO 20
40 FOR J=O TO 20
50 PR INT A(J, I)
60 NEXT J
70 NEXT I
80 CLOSE 1

The two programs are identical except for line 50. In program 1 line 50
accesses the array by row (the row index advances the slowest) while in
program 2 line 50 accesses the array by column (the column index
advances the slowest). Program 1 wi 11 run much faster si nee it is
progress1ng through the file sequentially, while program 2 is having to
randcxnly thrash about the file which makes it run slower.

The second point ' concerning 2 dimension arrays (which also applies
to 1 dimension arrays) is the dimensioning method. Since a virtual
array data file is just a collr.ction of data items in the file, one

-63-

• •••n• C

\:.:

t
r · · · •··•· ·c ::: ··
~

EXTENDED BASIC User's Manual

right after the other, the file may be dimensioned in any \'lay desired.
It usually only makes sense to dimension the array in the same way it
was dimensioned when it was created, but this is not necessary. As an
example, suppose a virtual array was created and dimensioned as (50,50).
The array would potentially contain (50+1) times (50+1) data items or a
total of 2601 elements. Nonnally, when referencing this array file at a
later date, the same dimensioning would be used. We could however, just
as easily dimension this existing array file as a single dimension array
of 2060 (2061 elements). It could also be dimensioned as a one
dimension array containing only 100 items, which would yield the
remaining elements inaccessib1e. ,., , "' ~ ,,._

W £.c.....:: , 'Ir~'..,. f:....,_t ~-....,. ,--:/4~ ~o-a.a.,(. _._ .._ ,....,._,,.,.a-- I z
.,e.,,t~ ·~ .. 1.4.,..,,,, ,.v~,o ,....,,..~, ··. '£/I 1'- v ,.,,.~.....<: ~......,.. f,,.-JL.: .. k. ,., .~ 1
p..;,_~,..e_ 0..-..-............... L .._t-'-.

10.6 Extending Virtual A~ray Disk Files

When a random file is created it contains only one usable sector.
If a virtual array element is referenced (read) which lies beyond the
end of the file, nn error number 24 will be issued (non-existent record
number referenced}. This is similar to an end of file type error with
sequential file reading. A random file may be extended in size at
anytime by assigning to an array element which lies beyond the end of
file. Anytime an extension is necessary, BASIC will extend the file by a
few more sectors than actually needed, in anticipation of another
extension assignment. File extending can take considerable time and the
actual amount of time required is directly proportional to the number of
sectors by which the file is being extended. As an example:

10 OPEN NEW "DATA" AS 1
20 DIM #1, A{250)
30 PRINT A(250)

will cause an error 24 at line 30 since a
no data existed at the element referenced.
,w.ithout an error, it is necessary to
reference is made.

10 OPEN NEW "DATA" AS 1
20 DIM #1, A(250)
25 A{250)=0
30 PRINT A(250)

new file was just created and
To make this program run
extend the file before the

The addition of line 25 causes the file to immediately be extended to
contain all 250 data items. Now 1 ine 30 will run without error. It is
not necessary to extend J file to its finJl size before use, but it must
be extended to the size necessary to accomodate all data items which
will be referenced. A'l 1 new data i terns created at the time a fi 1 e is
extended will be zero if the array is floating point, and will be null
strings if it is a string array. Remember that the file extending
procedure can take a long time to complete.

-64-

EXTENDED BASIC User's Manual

~-, 10.7 Record I/0

,l .. _

Up to this point, two methods of disk 1/0 have been described,
sequential I/0 using PRINT# and INPUT#, and virtual arrays for random
file access. The sequential 1/0 is simple and easy to use but restricts
data access to sequential methods. Virtual arrays provide high speed
random access but do not allow the mixing of ASCII and numeric data in
one disk file. There exists a third type of 1/0 called record I/0.
Record 1/0 is the most flexible fonn of disk 1/0 but is also the most
complex. Data may be accessed randomly and both ASCII and numeric data
may be freely mixed in one disk file.

The basic idea behind record I/0 is that data is stored on the disk
in fixed length records. These records are each 252 bytes or characters
in length and reside in one physical disk sector. Any record in a file
may be read or written upon request and the data in each record is
easily defined to be ASCII or numeric data. Strings may be stored on
disk as characters and numbers may be stored in eight byte binary fonn
as floating point or as 2 byte binary integers, eliminating the need for
I/0 conversions. Record I/0 is a very efficient and quick method of
saving data on a disk file.

10.8 Opening and Closing Record I/0 Files

Since record 1/0 files are random files, they are opened and closed
exactly like virtual arrays. See section 11.3 for details. It is
important to remember that random files are special and may be read in
either a random or sequential manner. Sequential files however, may
only be read sequentially. An attempt to open a sequential file for
random ope rat i ans wi 11 result in error number 48. The user will find
the plain OPEN statement {without the NEW or OLD modifier) to be the
most useful since it will work with existing files, or create a new file
if the file referenced does not exist, without causing an error.
Closing a record I/0 file is exactly like closing any file and all of
the same rules apply, as stated earlier.

10.9 The GET and PUT Statement

All record I/0 is perfonned by record (252 byte blocks). Records
may be accessed randomly or sequentially. Once a file has been opened
on a particular channel, the GET and PUT statements may be used to
transfer data to and from the file. Their syntax is:

<line number> GET #<exrression> [,RECORD <expression>]

-L J -

..
~ :::

EXTENDED BASIC User's Manual

<line number> PUT #<expression> [,RECORD <expression>]

The first expression in each line represents the internal channel number
referenced in the OPEN statement and must be between 1 and 12. The
RECORD portion of each line is optional, and if used, the expression
following it designates which record number of the file should be used.
If the RECORD option is not specified, the next sequential record will
be read or written. The GET statement will read the appropriate record
from the disk file into the l/0 buffer associated with the channel
number used. The PUT statement will write the contents of the I/0
buffer to the specified record of the file •

. Records in a random file are numbered from 1 ton, where n is the
size of the file in records. Trying to GET a record which is larger
than n will result in an error number 24. Using PUT to write a record
which is larger than n wfll automatically extend the file. There will
be more infonnation on disk file extension following. After perfonning
a random access GET or PUT on a disk file, the next GET or PUT on that
channel will access the next sequential record. As an example:

10 OPEN 11 TESTS 11 AS 2
20 GET #2, RECORD 25
30 PUT #2

The PUT statement in line 30 will write record number 26 to the disk
file since it is the next sequential after record 25.

10.10 The FIELD Statement

So far, methods of opening and closing record 1/0 files have been
described, as well as methods of reading and writing the I/0 buffer
associated with the file. This section and the following deal with the
man_ipulation of the data in the l/0 buffer.

For each record 1/0 file opened, there exists an I/0 buffer
designated by the internal channel number used with the OPEN statement.
Each I/0 buffer is 252 characters in length and is used for temporary
storage of each disk file record as it is being operated on. The FIELD
statement is used to associate string names with various parts of the
l/0 buffer. Its syntax is:

<line number> FIELD #<exp~>, <exprl> AS <string varl>
[, <exrr2> AS <string var2> •••]

where the expression designates the internal channel number used in the
OPEN statement. Expression 1 is used to designate the length, in
characters, of the associated string variable and string varl is a
unique string variable name for this part of the buffer. As many
expressions and names as desired may be listed and are associated left

-66-

-, __ __

EXTENDED BASIC User's Manual

to right in the I/0 buffer assigned to the channel number referenced.
As an example:

100 FIELD #1, 20 AS A$, 10 AS 8$, 6 AS W$ II
I lw$ I 7; A$ 8$

14 252 byte buffer
11

II
7/

As shown in the diagram, line 100 would associate the string A$ with the ·
first 20 character positions in the I/0 buffer, 8$ with the next 10
character positions, and W$ with the next 6 positions. The remaining
216 characters of the buffer are left undefined. The total number of
characters positions associated with an 1/0 buffer must be less than or
equal to 252. Each time a FIELD statement is executed, it will start
the string association with the first character position in the buffer,
regardless of how the buffer has been previously defined with prior
FIELD statements. Once a variable name has been fielded by using the
FIE°LD statement, its value will be whatever is currently in the I/0
buffer it is associated. If the contents of the buffer change (by
executing a GET statement) the contents of the string will also change.
The string length will be the length allocated for that string in the
FIELD statement.

The FIELD statement does not move any data between variables and the
1/0 buffer but simply sets up a field definition for later use using
LSET and RSET. Using a FIELD statement to associate a string variable
with an 1/0 buffer is temporary and the definition is nullified by any
attempt to assign a value to the string variable by using LET or the
implied LET. As an example:

10 OPEN 11 TEST11 AS 1
20 FIELD #1, 50 AS 8$
30 BS= 11 TEST STRING 11

Line 30 does not put the string "TEST STRING" into the 1/0 buffer b1:1t
instead removes B$ 1 s association with the 1/0 buffer giving it new
storage area for the string. The result is that line 30 nullifies the
FIELD definition setup in line 20.

It is possible to break the I/0 buffer up into several smaller
records if a record size of 252 is too large. As an example, suppose
that each record of a disk file contains 14 sub-records, each 18
characters long (14 times 18 is 252). Each sub-record is further
divided into one 10 character field and one 8 character field. To
access the fifth sub-record of the 1/0 buffer, the following statement
could be used:

bl -

I
J

(...

_;;·····

EXTENDED 8/\SIC User's Manual

120 FIELD #1, 72 AS Z$, 10 AS A$, 8 AS 8$

r:-1s bytes "-4

A$CO)

This line would cause A$ and 8$ to point to the desired sub-record. The
string Z$ is used as a "dummy string". Its purpose is to skip the first
four records (4 times 18 is 72). A more general statement may be used
which will allow accessing any one of the 14 records in the 1/0 buffer.

150 FIELD #1, (I-1}*18 AS Z$, 10 AS A$, 8 AS 8$

8${0) A$Ct> B$Ct> A$<2> B$C2> A$C3l B$C3) A$<4l B$(4) - - -

' rzs --~1 --~4-----1+-----it---:----1~
1:1 1:2 1:3 1=4 1:5

ASIOI

rzs

When executing the above statement, the variable I should contain the
desired sub-record number (a number between 1 and 14). As an example,
if I is equal to 3, the dummy string ZS will be assigned the first 36
character positions, allowing A$ and 8$ to point to the third
sub-record. If I is 1, A$ and 8$ will point to the first sub-record
since Z$ was given zero character positions in the buffer.

It is also possible to use subscripted string variables in a FIELD
statement (except for virtual strings). As an example:

B$101

100 DIM /\$(13), 8$(13}
110 FOR 1%=0 TO 13
120 FIELD #1, 1%*18 AS Z$, 10 AS A$(1%), 8 AS 8$(1%)
130 NEXT I%

A$111 8$111 A$121 B$!21 A$(31 8Sl31 A$141 8$141

1 ·I ·f

-- -
J

I 0
This set of statement's will associate each element of the string arrays
A$ and 8$ with a sub-record in the 1/0 buffer. AS(O) and 8$(0) will be
associated with the first sub-record, A$(1) and 8$(1) with the second,
and so on.

-68-

"'\ ...

~ : ..

EXTENDED BASIC User's Manual

10.11 The LSET and RSET Statements

The FIELD statement has been used to associate a string with an 1/0
buffer. Once fielded, the strings contents may be altered by using RSET
or LSET. These statements are similar to the LET statement except the
string storage location is not changed as it is with LET. The syntax
for these two statements is as follows:

<line number> LSET <string variable>= <string expression>

<line number> RSET <string variable>= <string expression>

Where string variable represents any legal string variable name,
including subscripted variables. These statements store the result of
the string expression into the previously defined space, the original
string being overwritten. The old length of the string is not changed.
If the new string is longer than the old one, the new one will be
truncated to the same length as the old. If the new string is shorter,
LSET will left justify the string, padding to the right with spaces
until the lengths are equal, while RSET will right justify the string,
padding with spaces on the left. The normal use of LSET and RSET is
with FIELDed string variables but they may also be used with regular
strings. They can be used to assign a value to any legal string variable
in BASIC, following the above rules for padding and truncation.

far.
A short example will demonstrate the record 1/0 tools described so

10 OPEN 11 DATA5 11 AS 1
20 FIELD #1, 10 AS A$, 40 AS 8$, 70 AS C$.
30 GET #1, RECORD 15
40 PR I NT A$
50 PRINT 8$
60 PRINT C$
70 LSET A$= 11 NEW A$"
80 LSET 8$="NEW VALUE FOR 8$ 11

90 RSET C$= 11 NEW RIGHT JUSTIFIED C$ 11

100 PUT #1, RECORD 15
110 CLOSE 1

Line 10 opens the file DATA5.DAT on the working drive. Line 20 sets A$,
8$, and C$ to the channel 1 I/0 buffer. Line 30 reads record number 15
into the I/0 buffer. The fielded string variables now contain the
values from that record, so the print statements on lines 40 through 60
will print their values. The strings printed reflect what is contained
in those character positions of record 15. Lines 70 through 90 assign
new values to these strings using LSET and RSET. Remember that the new
strin~s are actually being stored in the 1/0 buffer. Line 100 writes
the 1/0 buffer back into record number 15 of the data file. If line 100
were omitted from this program, the file would remain unchanged. The
file is finally closed in line 110.

-69-

t : \.

(·.:···· · , ·····

\ : :_··
~

EXTENDED BASIC User's Manual

10.12 The CVT Conversion Functions

The statements described above allow string data to be stored and
retrieved from the I/0 buffer. It is often desirable to store numeric
data in a record l/0 file. Four conversion functions exist which allow
floating point and integer numbers to be converted to strings and
strings to floating point and integer numbers. Examples of each follow:

A$ = C VTF $ (X)
8$ = CVT%$(X%)

X = CVT$F(A$)
X% = CVT$%(B$)

Co,,. V f"r\.. 1" .I' ,- 0 S'r-11,-1 r,,i,,, f:C rt..

Ft~/N'-,

C o? >' V fr. 1" J r- 17 tJ r, J' "t- fl.- I ,._ '-. i O /v..,.,, "1 rl i:- "--

r; & r,.... D1.it'1.Yi---1 ~ C1rte.."'-t.>?-1"10,..,,.....

The first pair of functions map their respective arguments (variable,
constant or expression) into an eight (two for integers) character
string. Each character in the new string is one of the eight (two) bytes
of the floating point (integer) number. The second pair of functions
does just the opposite. It maps the first eight (two) characters of a
string into a floating point (integer) number. If the string has fewer
than eight (two) characters, null characters are appended. These
functions should not confused w· TR and VAL function. STR$
and VAL wor with ASCII numbersL not internal binary and asa
consequence, must perform a very time consuming ASCII to binary
conversion. The CVT functions provide a compact and fast way of storing
numeric data in a record I/0 file. As an example, suppose it was
necessary to store the items of a floating point array in a record I/0
file. The following program demonstrates a way of accomplishing this.

10 DIM A{30), A$(30)
20 OPEN 11 FPDATA" AS 1
30 FOR I%=0 TO 30
40 FIELD #1, 8*1% AS 0$, 8 AS AS(I~)
$0 NEXT I%

.
200 FOR 1%=0 TO 30
210 LSET A$(I%) = CVTF$(A(!%))
220 NEXT I%
230 PUT #1
240 CLOSE 1
230 END

After the variables are dimensioned and the file is opened, lines 30
through 50 setup the F.IELD definition. Each element of the string array
A$ is associated with a four byte section of the I/0 buffer. It is
assumed that the array A is assigned values between lines 50 and 200.
Lines 200 through 220 assign the new buffer values by assigning to each
element of the previously fielded array A$. Notice that the CVTF$
function is used to store the floating point elements of the array A

-70-

.--

~ --·

- "'\:·'

EXTENDED BASIC User's Manual

into the buffer. Line 230 writes the record to the disk file and line
240 closes the file.

10.13 Extending Record I/0 Files

As stated earlier, a random file is created with only one sector
(record). If a GET statement is used to read a record of a file, and the
file does not contain that many records, an error number 24 will be
issued. This is similar to en end of file error with sequential files.
A record I/0 file may be extended at anytime by simply using a PUT
statement to write a new record which lies beyond the end of the file.
Anytime a file is extended, BASIC will extend the file by a few more
records than is actually needed. This will speed up future attempts to
extend the same file by one or two records. File extending can take a
considerable amount of time and is directly proportional to the number
of records the file is being increased. As an example:

10 OPEN NEW 11 TESTD 11 AS 1
20 FIELD #1, 100 AS G$
30 GET #1, RECORD 20

Line 30 in the above program will cause an error number 24 since the
file opened was just created (OPEN NEW) and only contains one record.
To make this program run without an error, it is necessary to extend the
file before the reference is made.

10 OPEN NEW 11 TESTD 11 AS 1
20 FIELD #1, 100 AS G$
30 PUT #1, RECORD 20
40 GET #1, RECORD 20

This program will run without error since line 30 extends the file to
contain at least 20 records. It is not necessary to extend a file to
its final value before use, since it can be extended at anytime, but it

·· -must be extended to the size required to accomodate al 1- record
references in the program being run. All new records created in a fil.e
while the extending process is operating will contain null characters
(O's). Keep in mind that the file extension process can take a long time
to complete.

10.14 Record 1/0 Example

The following short program demonstrates some of the record I/0
stc1tements. It works with an existing employee file which contains
infonnation about each employee. Each record of the file contains

·· i nfonnation about one employee c1nd there are 100 records total. Each
._;•··· ··

. : 1-

(.

EXTENDED 13/\SIC User's Manual

employee has a number which corresponds to the record number in the
file. This program is used to print a selected employee's phone number
and change it if desired. The employee's name is stored in the first 20
characters of each record and the phone number is in character positions
90 through 104.

10 OPEN "EMPLOYEE" AS 1
20 FIELD #1, 20 AS N$, 69 AS 0$, 15 ASP$
30 INPUT "ENTER EMPLOYEE NUMBER" ,E%
40 IF E%>100 THEN 30 ELSE IF E%<=0 THEN END
50 GET #1, RECORD E%
60 PR INT N$, P$
70 INPUT "CHANGE NUMBER" ,R$
80 IF LEFT$(R$)<>"Y" THEN 30
90 INPUT "NEW NUMBER" ,A$

100 LSET P$=A$
110 PUT #1, RECORD E%
120 PRINT "NUMBER CHANGED"
130 GOTO 30

Line 10 opens the employee file on channel 1. Line 20 fields the
variables such that N$ points to the employee name and P$ points to the
phone number. The variable DS is used as a dummy variable so P$ is
positioned correctly in the buffer (we have skipped data in the buffer).
Line 30 prompts the user to enter the employee number which should be
between 1 and 100. If the number entered is O or negative, the program
will end. If the number is greater than 100, the user will be prompted
for the number again. Line 50 reads in the selected employee record and
prints his name and phone number in line 60. If the number does not
need changed, the program prompts for another employee number. If it
does need changed, line 90 inputs the new number, line 100 puts it in
the 1/0 buffer using LSET, and line 110 writes the updated record back
to the disk file. This is a simple program but does demonstrate the
versatility of record 1/0 type operations.

-72-

~:(
--.

t :· _

EXTENDED BASIC User's Manual

11. THE USR FUNCTION

The USR function allows the programmer to call a machine language
subroutine. A 16 bit value is passed to the routine and a 16 bit value
may be returned to the BASIC program. To save space in memory for a
user supplied subroutine, set the memory end pointer to save space
between the end of BASIC and the actual end of memory (see Section 12).

When BASIC encounters a USR function in an expression it evaluates
the argument, converts the result to a 16 bit 2's ccxnplement integer,
and places the result in memory locations hex 26 and 27. Next, BASIC
gets a 16 bit address from memory locations hex 24 and 25. This address
tells BASIC where the user supplied subroutine is located. If these
bytes are zero, an error will be issued. If they are non-zero, a JSR to
the address specified will be executed. This address may either be set
manually or by using t~e DPOKE statement.

In the user's routine, it is only necessary to access the locations
hex 26 and 27 to retrieve the argument passed from BASIC. To return a
value from the subroutine, simply write a 16 bit value into locations
hex 26 and 27. When the subroutine is finished, do an RTS to return.
It is very important that the executing subroutine returns with the
stack pointer at the same location as when it was entered. The
subroutine should also not use more than 256 bytes of stack space during
execution.

After the subroutine returns
will assume the value returned
following example demonstrates
perfonning any specific task.

control to BASIC the USR function call
in locations hex 26 and 27. The
the mechanics of using USR without

300 DPOKE HEX(11 24 11
), HEX(11 5000")

310 Al= 10 * USR(6)

The machine code may look like this:

'-· - - ORG $5000
LOX $0026 GET PASSED ARGUMENT
*** ACTUAL CODE HERE
LOX #VALUE GET VALUE TO BE RETURNED
STX $0026 SAVE FOR BASIC TO USE
RTS SHOULD END WITH RTS

Lines 300 and 310 in the BASIC code set up the address of the machine
language routine ($5000) and . puts it in location $24 (the USR vector).
Line 320 will pass the value 6 to the machine language routine. After
returning from the routine, the value returned will be multiplied by 10
and put in the variable Al. The assembly language code shown
demor1strates a metho'd of passing the parameter to and from the user
subroutine.

-73-

\ :

EXTENDED BASIC User's Manual

11.1 Calling multiple USR routines.

While there is only one USR command setup in BASIC, there is no
reason not to have more than one actual routine. The following hints
will show you how to call as many assembly language routines as you want
from BASIC.

There are two ways to accomplish such a task. The first is to pass
a parameter to the USR routine which could be decoded by the actual
assembly routine to determine which of any other routines to jump to.
The second method, which is much simpler, is to change the USR routine
start address as desired. This is done via the DPOKE command.

As an example, let's assume we have two assembly language user
routines, one at hex 6EOO and one at hex 6FFO. To call these routines
in a row (passing zero parameters to them) \\'e would use the following
l i nes.

190 DPOKE HEX("24"), HEX("6E00 11
}

200 A = USR(O)
210 DPOKE HEX("24"}, HEX(11 6FFO")
220 B ·= USR(O)

You might want to consider line 190 as part of the USR call for the
routine at $6EOO and line 210 as part of the USR call for $6FFO. In

, ··· fact it might make sense to put the two steps into a single line using

C.-:.:·.:· -

the multiple statements per line character. This is done in the
following example.

The main purpose of the following example, however, is to show how
you might save yourself some typing and chances for mistakes by
assigning addresses to variable names. We will setup the address of the
USR routine address vector as v.ariable UL and the various user routines
as X and Y. The result is as follows.

340 UL= HEX("24")
350 X = HEX("6E00 11

)

360 Y = HEX("6FFO")
365 REM
370 REM NOl4 USING MULTIPLE STATEMENTS PER LINE,
380 REM THE CALLS LOOK LIKE THE FOLLOWING.
385 REM
390 DPOKE UL, X : A= USR(O)
400 DPOKE UL, Y : B = USR(O}

You can see that if there were to be many calls to the USR routines
this method would make things much simpler and cleaner.

-74-

I'

EXTENDED BASIC User's Manual

12. GETTING BASIC RUNNING

Before BASIC can be run, FLEX should be running and the three plus
sign prompt (+++) should be present. Insert the disk containing BASIC
into the system drive and type BASIC. After a few seconds, BASIC should
respond with "READY". BASIC is ready to go at this time. If BASIC is
ever left by using RESET or the EXIT command, the wann start entry point
at location hex 103 should be used. Entry at 100 will clear out any
program you may have entered while entry at 103 will preserve it.

There is an alternative way of calling BASIC from FLEX. It has the
fa 11 owing fonn:

+++BASIC, <file name>

where <file name> is the name of a BASIC program. If this name is
supplied on the calling line, once FLEX has loaded BASIC, BASIC will
load and execute the program named. The file name defaults to the
working drive but may be over-ridden in the file spec. The extension
defaults to BAC for a BASIC compiled type program. A BAS extension may
be specified with the file name \vhich will allow BASIC to load a BASIC
source type file and execute it. This mechanism may be used in the
STARTUP file in FLEX so BASIC will 1 oad and execute a program when your
disk is booted!

13. RENUMBER

BASIC does not contain an internal renumbering routine but does
contain a disk resident one. To use it you must be in BASIC and have
the program you want renumbered in memory. To initiate the renumbering
process, type the following:

t XRENUMB//,<lst Line>, <Increment>
, _ . '- f-0/1- K'\FtJ'I C, .

where the+ sign tells BASIC to send the following command to FLEX which
gets the renumber command. The first number represents the number whi c·h
should be assigned to the first line of the program. The increment
indicates what value should be added to each successive line. Both of
these values default to 10 if no numbers are specified. For example:

+RENUMBER
+RENUMBER,100,20

f, I 71: t, ~')(. # IP, L..t Ve ,J

~ °1.,2 I r , .':1-

The first example will renumber the program with line number increments
of 10 and the first line number will be 10. The second line will
renumber it with the first line being 100 and a line increment of 20.
Long source files may require a long time to renumber.

t.L . TH E" ,., .r ~ V t \ Fr L tr I /

-,5-

\

-

EXTENDED BASIC User's Manual

14. ADAPTING TO YOUR SYSTEM

There are several key locations in BASIC which will help you adapt
it to your particular hardware configuration. If you are ')Inning a 6800
system, has an ACIA for terminal I/0 at location hex 8004f"and is using
FLEX, no adaptions need be performed. It is recommended that this
section is read whether or not it is necessary to make adaptions since
other useful information is contained. After making any . necessary
changes, save BASIC back onto disk from location hex 20 through hex
4BFF. The transfer address should be hex 100.

14.1 User Noted Storage

MAP (C

MEMEND The end of user memory that BAS IC uses is defined in FLEX at rr. Ar' c.. ::-
1 ocat ion $AC2B. It may be desirable to set the end of memory ,Qff;l..l!r-/;i'.·,·
1 ower than the actual end of memory to save space for a USER , ...,; ~ · ,.,.
supplied subroutine to be called with the USR function. To do .f•;,! .,J.· tlf / .,.;,
so, SAVE any program currently in BASIC, change the MEMEND))' I u;.:- - 4 f(1

vector in FLEX and jump back into BASIC at the COLD start r,FH-- \;~D r~­
($100} address.

ACIA $20-21. These bytes contain the base location of the ACIA
being used for terminal I/0. If yours is different from
$8004, set accordingly. This location is used by the routine
which tests for a control C. If your system does not use an
ACIA for terminal input, see section 15.3 below.

COLO $100. This the cold start address used to initialize BASIC
when first bringing up BASIC.

WARM $103. This is the warm start address normally used to enter
BASIC after doing an EXIT or FLEX command. It preserves any
program currently in BASIC, and consequently does not reset
the stack pointer. If the stack pointer has been changed
since exiting BASIC, unexpected results can occur.

EXIT $106. This is used by BASIC when the EXIT command is typed
and should be set to jump to the entry point in the monitor
ROM being used. It is currently SEODO for MIKBUG
compatibility.

-76-

l{ -,u ..

\
~ -·

:. ·

EXTENDED BASIC User's Manual

14.2 User Supplied Break Routine

If your system does not use an ACIA for tenninal input, you will
need to supply a routine which checks to see if a character has been
received from the keyboard. If you do not need the control C break
capability, set the ACIA address described above to point to a zero byte
in ROM. This will disable this feature. The user supplied routine
should check if a key has been typed, and return the zero status bit
cleared (NE status) if so. The character should not be input! Make the
following patches:

at $024C put BO 01 61 01
at $0298 put BO xx xx 01
at $02F9 put BO xx xx 01

where 'xx xx' represents the address of your check key typed routine.

-77-

EXTENDED BASIC User's Manual

f,--
15. ASCII CHARACTER CHART

..J ..J ..J
< < < a: ;; a: ;; a: ;; w w w I- u ..J I- u ..J I- u ..J u w < u w < u w < < 0 :E < 0 ;; < 0 ~ a: < u a: < a: < < X < X u < X u :c w w ::c w w ::c w w u ::c 0 u :c 0 u ::c 0

NUL 00 000 + 28 043 V 56 086
SOH 01 001 2C 044 w 57 087
STX 02 002 20 045 X 58 088
ETX 03 003 2E 046 y 59 089
EQT 04 004 I 2F 047 z 5A 090
END 05 005 0 30 048 (58 091
ACK 06 006 1 31 049 \ 5C 092
BEL 07 007 2 32 050) 5D 093
BS 08 008 3 33 051 A SE 094
HT 09 009 4 34 052 SF 095 -LF QA 010 5 35 053 .. 60 096
VT OB 011 6 36 054 a 61 097
FF QC 012 7 37 055 b 62 098
CR OD 013 8 38 056 C 63 099
so OE 014 9 39 057 d 64 100
SI OF 015 3A 058 e 65 101
OLE 10 016 38 059 f 66 102

1:::.:::··· . DCl 11 017 3C 060 9 67 103
DC2 12 018 = 30 061 h 68 104
DC3 13 019 :, 3E 062 69 105
DC4 14 020 ? 3F 063 j 6A 106
NAK 15 021 @ 40 064 k 68 107
SYN 16 022 A 41 065 I 6C 108
ETB 17 023 B 42 066 m 60 109
CAN 18 024 C 43 067 n 6E 110
EM 19 025 D 44 068 0 6F 111
SUB 1A 026 E 45 069 p 70 112

. ESC 18 027 F 46 070 q 71 11 .3
FS 1C 028 G 47 071 r 72 114
GS 10 029 H 48 072 s 73 115
RS 1E 030 I 49 073 t 74 116 us 1F 031 J 4A 074 u 75 117
SP 20 032 K 48 075 V 76 118

21 033 L 4C 076 w 77 119
" 22 034 M 40 077 X 78 120
23 .. 035 N 4E 078 y 79 121
$ 24 036 0 4F 079 z 7A 122
% 25 037 p 50 080 { 78 123
& 26 038 a 51 081 I 7C 124

27 039 R 52 082 } 7D 125
(.-:.::·· 28 040 s 53 083 '\, 7E 126

,;,;;,;;: 29 041 T 54 084 DEL7F 127
• 2A 042 u 55 085

-78-

C t i ,.,- .-,

·~· , r 't·- ·· A ,., I,,, -

. -.#a-
EXTENDED BASIC User 1 s Manual .,~· .

R.J..,..,.,:~.r~

~ : ..
16. INDEX TO STATEMENTS AND COMMANDS

COMMANDS
STATEMENTS FUNCTIONS

NAME SECTION
NAME SECTION NAME SECTION

"+" 5.0
CHAIN 8.9 ABS 7.5 CLEAR 5.0
CLOSE 8.4 ASC 7.3 COMPILE 5.0
DATA 6.1 ATN 7.2 CONT 5.0
DEF 6.7 CHR$ 7.3 EXIT 5.0
DIGITS 6.7 cos 7.2 FLEX 5.0
DIM 6.7 CVT%$ 10.12 LIST 5.0
DPOKE 6.7 CVT$% 10.12 LOAD 5.l.)
END 6.6 CVT$F 10.12 NEW 5.0
EXEC 10.1 CVTF$ 10.12 RUN 5.0
FIELD 10.10 DATE$ 7.5 SAVE 5.0
FOR 6.5 DPEEK 7.4 SCALE 5.0
GET 10.9 ERL 9.3 TRON 5.0
GOSUB 6 .• 2 ERR 9.3 TROFF 5.0
GOTO 6.2 EXP 7.1
IF 6.3 FRE 7.5
INPUT 6.4 HEX 7.3

- "-.. INPUT LINE 6.4 I NCH$ 7.3
KILL 8.7 INSTR 7.3
LET 6.1 INT 7.5
LSET 10.11 LEFT$ 7.3
NEXT 6.5 LEN 7.3
ON ERROR 6.2 LOG 7.1
ON GOSUB 6.2 MID$ 7.3
ON GOTO 6.2 PEEK 7.4
OPEN 8.1 PI 7.5

10.3 POS 7.4
POKE_

"
6.7 PTR 7.5

PRINT 6.4 RIGHT$ 7.3
PR INT US I NG 6.4 RND 7.5
PUT 10. 9 SGN 7.5
READ 6.1 SIN 7.2
REM 6.7 SPC 7.4
RENAME 8.8 SQR 7.1
RESTORE 6.1 STR$ 7.3
RESUME 6.2 TAB 7.4
RETURN 6.2 TAN 7.2
RSET 10.11 VAL 7.3
STOP 6.6 ·

... SWAP 6.7

' -
-79-

t

EXTENDED BASIC User's Manual

17. ERROR SUMMARY

Any time a program that is being executed encounters an error, of
any kind, execution will be halted immediately and an ERROR MESSAGE will
be printed (except when an ON ERROR is in effect). The message contains
an ERROR NUMBER which can be looked up in the following table and also
the line number in which the error occurred. The table provides a brief
explanation of what type of error the number represents. An example of
an error message that you could receive is:

ERROR 50 AT LINE 100

Looking in the ERROR TABLE, we see that error number 50 represents an
"unrecognizible statement". The message tells us that it occurred at
line 100 so we could do a "LIST 100" to display this line and we will
more than likely find a typing error in it. The error should be
corrected then the program can be run again.

All errors are assigned numbers below 100 except the arithmetic
errors which range from 101 through 109 and error number 255. Error 255
infonns you that an illegal token has been encountered. This error
should never be encountered during nonna 1 program debugging. Its

·< ··· occurrence indicates the presence of a bad memory location or other
serious problems.

'

'
.(

!-:.·· .. . ,.

The errors are divided into two tables. Table one contains all of
the I/0 related errors and are numbered 1 through 49. It is this set of
errors which may be acted upon by using the ON ERROR statement. It
should be noted that all errors below error number 30 are FLEX errors
and their numbers are identical to the FLEX error numbers. The second
error table contains error numbers which are related to syntax or
computational type errors. These errors may not be trapped using the ON

.£RROR statement.

-80-

_,,...

EXTENDED BASIC User's Manual

-~-- NUMBER MEANING

1 IILEGAL FMS FUNCTION CODE
2 THE REQUESTED FILE IS IN USE
3 THE FILE ALREADY EXISTS
4 THE FILE COULD NOT BE FOUND
7 ALL DISK SPACE HAS BEEN USED
8 END OF FILE ERROR
9 DISK FILE READ ERROR

10 DISK FILE WRITE ERROR
11 THE FILE OR DISK IS WRITE PROTECTED
12 THE FILE IS PROTECTED
15 ILLEGAL DRIVE NUMBER SPECIFIED
16 DRIVES NOT READY

21 ILLEGAL FILE SPECIFICATION
22 FILE CLOSE ERROR
23 SECTOR MAP OVERFLOW
24 NON-EXISTENT RECORD NUMBER SPECIFIED
25 RECORD NUMBER MATCH ERROR - FILE DAMAGED
26 FLEX COMMAND ERROR

..;"=·· 30 DATA TYPE MISMATCH
31 OUT OF DATA IN 11 READ 11

32 BAD ARGUMENT IN 11 0N 11 STATEMENT

34 PROGRAMMABLE CONTROL-C (iC) TRAP

40 BAD FILE NUMBER USED
41 FILE ALREADY OPEN
42 MUST OPEN FI LE AS II NEW" OR ".OLD"
43 FILE HAS NOT BEEN OPENED
44 FILE STATUS ERROR
45 FIELD SIZE TOO LARGE (>252)
46 CAN'T EXTEND A SEQUENTIAL FILE
47 RECORD O NOT ALLOWED
48 MUST USE RANDOM TYPE FILE

50 UNRECOGNIZABLE STATEMENT
51 ILLEGAL CHARACTER IN LINE
52 SYNTAX ERROR
53 ILLEGAL LINE TERMINATION
54 LINE NUMBER O NOT ALLOWED

O:..c Te.:, 55 UNBALANCED PARENTHESES '""" f1,s~,11,

' 56 ILLEGAL FUNCTION REFERENCE
57 MISSING QUOTE IN STRING CONSTANT

-· 58 MISSING 11 THEN 11 IN AN II IF" STATEMENT
····· -

-81-

~ -.

C

, ··

...

'

(;;:::.'.'
!

..

EXTENDED BASIC User's Manual

NUMBER

60
61
62
63
64
65
66
67

70
71 _/
73 . .. -
74
75
76
77
78
79

80
81

90
91
94
95

100
101
102
103
104
105
106
107
108
109

255

MEANING

LINE NOT FOUND
RETURN WITHOUT "GOSUB"
"FOR-NEXT" NEST ERROR
CAN'T CONTINUE
SOURCE NOT PRESENT
BAD FILE - WON'T LOAD
"RESUME" NOT IN ERROR ROUTINE
CAN'T CHANGE SCALE FACTOR

DATA TYPE MISMATCH IN "PRINT USING"
ILLEGAL FORMAT IN "PRINT USING" 72 - vpf€f0{"J)C8)
ILLEGAL EXPRESS IO~·---- t~G"'if~ ·
ARGUMENT <O OR >255
ARGUMENT >32,767
ILLEGAL VARIABLE TYPE
ARRAY REFERENCE OUT OF RANGE
UNDIMENSIONED ARRAY REFERENCE
BAD ARGUMENT IN "SI-JAP" STATEMENT

MEMORY OVERFLOW
ARRAY OVERFLOW

UNDEFINED USER FUNCTION
UNDEFINED USER CALL
BAD STRING LENGTH SPECIFIED
MULTIPLE VIRTUAL ARRAY REFERENCE

EXPRESSION TOO COMPLEX
OVERFLOW OP. UNDERFLOW IN FLOATING POINT OP.
ARGUMENT TOO LARGE
DIVISION BY ZERO
NUMBER TOO LARGE TO CONVERT TO INTEGER
NEGATIVE OR ZERO ARGUMENT FOR "LOG"
CONVERSION ERROR IN INTEGER "INPUT"
IMAGINARY SQUARE ROOT
CONVERSION ERROR (NUMBER TOO LARGE)
OVERFLOW/UNDERFLOW IN INTEGER OPERATION

ILLEr.AL TOKEN ENCOUNTERED

-82-

,..

C

~/UMBER

1
2
3
4
7
8
9

10
11
12
15
16

21
22
23
24
25
26

30
31
32

34
37

40
41
42
43
44
45
46
47
48

50
51
52
53
54
55
56
57
58

EY.TEIWED GASJC User's t.,,cnua1

MEANING

ILLEGAL FMS FUNCTION CODE
THE REQUESTED FILE IS IN USE
THE FILE ALREADY EXISTS
THE FJLE COULD NOT BE FO UN D
ALL DlSK SPACE HhS 8E[N US ED
END OF FJLE ERROR
DISK FJLE READ ERROR

DISK FJLE WRITE ERROR
TH[FILE OR DISK JS WRITE PROTECTED
THE FILE IS PROTECTED
ILLEGAL DRIVE NUMBER SPECIFJED
DRJVES NOT READY

ILLEGAL FJLE SPECIFICATION
FILE CLOSE ERROR
SECTOR t'J..P OVERFLOW
NON-EXISTENT RECORD t~UMBER SPECJFJED
RECORD NUMBER Ml,TCH ERROR - FlLE DA/·',AGED
FLEX COM~AND ERROR

DATA TYPE ~JSMATCH
OUT OF DATA 1N "READ"
BAD ARGUMENT IN "ON" STATEMENT

PROGRAMMABLE BREAK (CONTROL-C) TRAP
FLEX "ESCAPE RETURN" SEQUENCE TRAP

BAD FILE NUMBER USED
FILE ALREADY OPEN
MUST OPEN FILE AS "NEW" OR "OLD"
FILE HAS NOT BEEN OPENED
FILE STATUS ERROR
FIELD SIZE ERROR (>252 OR <0)
CAN'T EXTEND A SEQ~ENTIAL FILE
RECORD O NOT ALLOWED
MUST USE RANDOM TYPE FILE

UNRECOGNIZABLE STATEMENT
ILLEGAL CHARACTER IN LINE
SYNTAX ERROR
ILLEGAL LINE TERMJNATION
LINE NUMBER O NOT ALLOWED
UNBALANCED PARENTHESES
ILLEGAL FUNCTION REFERENCE
MISSING QUOTE IN STRING CONSTANT
MISSING "THEN" IN AN "IF" STATEMENT

-85-

c,

C

EXTENDED EASJC User's ~anual

NUMBER

60
61
62
63
64
65
66
67

70
71
72
73
74
75
76
77
78
79

80
81
83

90
91
94

100
101
102
103
104
105
106
107
108
109

255

MEANING

L l NE NOT FO Ul/0
RETURN \,,'lTHOUT "GOSUB"
"FOR-NEXT" NEST ERROR
CAI~' T CO NT 1 t/UE
SOURCE NOT PRESEhT
SAD FJLE - WON'T LOAD
"RESUME" NOT 1N ERROR ROUTINE
CAN'T CHA~GE SCALE FACTOR

DATA TYPE MISMATCH 1N "PRINT USING"
ILLEGAL FORMAT 1N "PR I NT US I NG"
MJXED MODE IN AN EXPRESSION
lLLEGAL EXPRESSJON
ARGUMENT <O OR >255
ARGUMENT >32,767
lLLEGAL VARl~BLE TYPE
~RRAY REFERENCE OUT OF RhNGE
UNDIMENSJONED ~RRAY REFERENCE
E.4D Jl.RGUl·',ENT IN "Sl-.1AP" STJ!,TU',C:NT

t·',EMORY OVER FL Oh'
/...?.RAY O\IERFL Oi..1

S TR I NG TOO LONG

utmEFINED USER FUNCTION
UNDEFINED USER CALL
BAD STRING LENGTH SPECIFIED

EXPRESSION TOO COMPLEX
OVERFLOW OR UNDERFLOW IN FLOATING POINT OP.
ARGUMENT TOO LARGE
DIVISJON BY ZERO
NUMBER TOO LARGE TO CONVERT TO JNTEGER
NEGATIVE OR ZERO ARGUMENT FOR "LOG"
CONVERSION ERROR IN JNTEGER "JNPUT"
IMAGJNARY SQUARE ROOT
CONVERSION ERROR (NUMBER TOO LARGE)
OVERFLOW/UNDERFLOW IN INTEGER OPERATION

JLLEGAL TOl:EN ENCOUNTERED

-86-

-f' '

FUNCTIONS

NAME SECTION
..
...... ABS 7.5

ASC 7. 3
ATN 7.2
CHRS 7.3
cos 7. 2
CVT%$ 10.12 I
CVT$% 10. 12 I

I CVTSF 10.12
\

CVTFS 10.12
DATES 7.5 I

DPEEK 7.4
\ ERL 9.3
I ERR 9.3

EXP 7.1
FRE 7.5
HEX 7.3
I NCHS 7.3
INSTR 7.3
INT 7.5
LEFTS 7.3
LEN 7.3
LOG 7. 1
MIDS 7.3
PEEK 7.4
PI 7.5

······· POS 7.4 ..
PTR 7.5
RIGHT$ 7.3
R~;o 7.5
SGN 7.5
SIN 7.2
SPC 7.4
SQR 7.1
srns 7.3
TAB 7.4
TML 7.2
VAL 7.3

COMMAiWS

NAME SECTION

"+" 5.0
CLEAR 5.0
COMPILE 5.0
CONT 5.0
EXIT 5.0
FLEX 5.0
LIST 5.0
LOAD 5.0
NEW 5.0
RUN s.o
SAVE 5.0
SCALE 5.0
TRON 5.0 .. ,..

I

I NOE X TO STATEMENTS AND COMMANDS

STATEMENTS

NAME SECTION

CHAIN 8.9
CLOSE 8.4
DATA 6.1
DEF 6.7
DIGITS 6.7
DIM 6.7
DPOKE 6.7
END 6.6
EXEC 1 o. 1
FIELD 10. 10
FOR 6.5
GET 10.9
GOSUB 6.2
GOTO 6.2
IF 6.3
INPUT 6.4

....... INPUT LI NE 6.4_

KILL 8. 7
LET 6.1
LSET 10. 11
NEXT 6.5
ON ERROR 6.2
ON GOSUB 6.2
ori GOTO 6.2
OPEN 8.1

10.3
POKf 6.7
PRINT 6.4
PR I Nl USING 6.4
PUT 10.9
READ 6.1
REM 6.7
RENAME 8.8
RESTORE 6.1
RESUME 6.2
RETURN 6.2
RSET 10. 11
STOP 6.6

.. SWAP 6.7

..
•••• u.

1

L

TSC BASIC User's Manual

15. ADAPTING TO YOUR SYSTEM

There are several key locations in BASIC which will help you adapt
it to your particular.hardware configuration.

15.1 ADAPTING TO YOUR 6800 SYSTEM

If you are running a 6800 system, which has 20K of memory starting
at location 0, has an ACIA for tenninal I/0 at location hex 8004, and is
using FLEX, no adaptions need be perfomed. It is recommended that this
section is read whether or not it is necessary to make adaptions since
other useful information is contained. After making any necessary
changes, save BASIC back onto disk from location hex 20 through hex
35FF. The transfer address should be hex 100.

15.2 User Noted Storage for 6800

MEMEND

ACIA

COLD

WARM

$20-21. These two bytes specify to BASIC what the end of
memory should be. As BASIC is distributed, this location is
set to $4FFF, or for a 20K system. If more memory is
installed in your computer, set these bytes accordingly. It
may be desirable to set these lower than the actual end of
memory to save space for a USER supplied subroutine to be
called with the USR function.

$22-23. These bytes contain the base location of the ACIA
being used for terminal I/0. If yours is different from
$8004, set accordingly. This location is used by the routine
which tests for a control C. If your system does not use an
ACIA for terminal input, see section 15.4 below.

$100. This is the cold start address used to initialize BASIC
when first bringing up BASIC.

$103. This is the warm start address normally used to enter
BASIC after doing an EXIT or FLEX command. It preserves any
program currently in BASIC, and consequently does not reset
the stack pointer on re-entry. If the stack pointer has been
changed since exiting BASIC, unexpected results can occur.

-73-

TSC BASIC User's Manual

15.3 Input Output Vectors for 6800

The following addresses specify the locations of various jump
vectors used in conjuction with I/0. The addresses specify the first
byte of a three byte group. The first byte is always a $7E (JMP
instruction) and should not be changed. The following 2 bytes are the
actual address of the routine referenced. You may change these
accordingly. If you substitute your own routines for any of the
following, they should be written as subroutines and end with an RTS
instruction.

EXIT

INCH

DUTCH

$106. This is used by BASIC when the EXIT command is typed
and should be set to jump to the entry point in the monitor
ROM being used. It is currently $EOD0 for MIKBUG
compatibility.

$109. This. vectors to FLEX's input routine. Change this
vector to use your own input routine. Note that all registers
should be preserved with the input character being returned in
the A register with the parity removed.

$!OF. This vectors to FLEX 1 s output routine. If you vector
to . your own routine, ~t should preserve all registers and
output the character in A.

15.4 User Supplied Break Routine for 6800

If your system does not use an ACIA for tenninal input, you will
need to supply a routine which checks to see if a character has been
received from the keyboard. If you do not need the control C break
capability, set the ACIA address described above to point to a zero byte
in ROM. This will disable this feature. The user supplied routine
should check if a key has been typed, and return the zero status bit

_cleared (NE status) if so. The character should not be input! Make the
following patches:

at $0202 put BD 01 09 01
at $0253 put BD xx xx 01
at $0284 put BD xx xx 01

where 'xx xx' represents the address of your check key typed routine.

-74-

B A S I C C O N V E R S I O N S

This appendix is intended to aid the users of this Library in correcting
any syntax errors they may encounter when running any of the programs in
this Library. This appendix is divided into two sections - Direct Changes
and Indirect Changes. A Direct Change is one that only requires changing
of an alphanumeric character to another one or involves only the correc­
tion of a single line. These changes are fast and easy to make. Indirect
Changes are those that require the statement in question to be deleted
from the program and several lines of code substituted.

The conversions are not separately listed for the various machines and
manufacturers as there are a number of similarities between the various
systems. To use this listing, first isolate the statements from the pro­
gram(s) that are not recognized by your compiler and then look up these
statements in the Direct Change section. Now substitute the appropriate
conversion for the program statement. If there is more then one conver­
sion shown for the statement be sure the one you choose is referenced
in the Basic Manual supporting your system. For statements not found in
the Direct Change section go to the Indirect Change section and follow
the same procedure. ·

. The conversions are especially designed to allow full compatibility be­
tween these programs and a number of alien Basic compilers. If your sys­
tem or compiler is not specifically mentioned it does not mean the con­
versions listed here are not applicable; on the contrary they probably
are in most cases, it only means that at the time of this writing an
operators manual for your system was ·not available. This listing will
be enlarged with each additional printing to incorporate as many dif­
ferent systems as possible. The blank pages at the end of this section
are reserved for future expansions. The following is a list of systems
and/or Basic compilers that have been included in this appendix:

Polymorphics BK
DEC RSTS - 11
BASIC PLUS
BK MITS
4K MITS
BK SWTPC
4K SWTPC
BK Processor Tech
4K Processor Tech
G.E. 635

924

Sigma 9
IBM 370

· Honeywell 6000
Intercolor BK
BK IMSAI
4K IMSAI
BK ZAPPLE
2100 Hewlett Packard
IBM 5100

As Used In Library

1. RND(-X)

2. **

3. A$ & 8$

4. SPC(X)

5. CLK$

6. DAT$

7. TIM(X)

8. PRINT USING ----

9. PRINT II •••••
II

10. Line Numbers> 9999

11. SST(X$, Y, Z)

12. FNEND

13. IF GOTO

14. AS$

15. MAT

16. X(Y)

17. SQR()

18. RND()

DIRECT CHANGES*

May Have To Change To:

RND(X) or RND(~)

t

A$+ 8$

POS or POS(X) or see Indirect Changes

(Requires real time clock)
(Processor Dependent)

(Requires real time clock)
(Processor dependent)

(Requires real time clock)
(Processor dependent)

PRINT (and Remove the## Lines)

PRINT I

Resequence numbers< 9999

MID(X$,Y,Z) or
MI0$(X$, Y ,Z) or
STR(X$,Y,Z)

(Remove if not in your Basic)

IF THEN

A$(5) or A$[5]

See Indirect Changes

X[Y] Where Y is any integer

SQRT()

FRAND ()

* If your Basic does not have string functions omit their references.

925

C

INDIRECT CHANGES

1.) ON GOTO 11~,125,135, ...

Remove the above statement and insert the following routine:

if = 1 GOTO 110
if = 2 GOTO 125
if = 3 GOTO 135

2.) CLG(X)

Remove the above statement and replace it with:

LOG(X)/(2.3025851)

3.) NUM(X)

This statement is used to count the number of data points that are
input during a MAT READ statement. If you know the total number of
data points that are read into the matrix, then this number repre­
sents NUM(X). If this statement is used with a MAT statement and
your system doesn't have MAT statements place the following routine
in the FOR NEXT loop used to evaluate the MAT statement:

N9 = N9 + 1

Be sure N9 is set to zero before the FOR loop is entered. After the
loop is done, N9 represents the value of the NUM() statement for
that location. This procedure must be followed each time the NUM()
statement is used.

4.) DEF FN =

In place of the above statement substitute the following:

XYZ F =
. where

F = F0 to F9

and XYZ is the line number where the DEF FN statement appears.

XYZ+l IF N = 0 GOTO XYZ+3
XYZ+2 RETURN
XYZ+3 N = 1

Then everytime FN is called substitute a GOSUB to XYZ. After the

927

return use F_ in place of the FN statement. If you have more
then 10 different FN , ie: FNA, FNB, ... , FNM, then use F{l)
for FNA and F(2) forFNB, etc. Remember F() must be dimension­
ed for the maximum size needed, if it is greater then 10.

5.) \

The\ is a line separator and separates two statements placed on
the same line. Leave the first portion of the line up to the\
mark as it is, then delete the portion of the line that appears
after the\. Add another line immediately below the first, num­
ber it one number larger then the first line and type in the por­
tion of the line that you previously deleted, leaving out the\
mark completely.

6.) COT(X)

Remove the above statement and substitute it with:

1/TAN(X)

7.) SPC{X)

For most purposes this statement can be replaced by TAB{X). How­
ever, there are a few fine subtleties that distinguish the two
statements. While these differences are very slight and should
not come into play in any of the programs within this Library,
if it should be necessary to generate the SPC(X) statement func­
tion it can be done by using the following algorithm:

FOR I= 1 to X
* PRINT "~"

NEXT I
* or PRINT 1

~
1

where ~ represents a Space character.

8.) :###.##

This is a Print Using control line. There is no equivalent if
your system does not offer a Print Using statement. If you do
not have this statement, then delete this line and change the
Print Using ____ statement to a Print statement.

928

9.) Change A to A$

and A(0) = X where A is a table

Remove the above statement and insert the following routine:

FOR J = 1 to X
I = A(J)
8$(J) = CHRS(l)1

A$= 8$(J-1) + 8$(J)
NEXT J

10.) Change A$ to A

Remove the above statement and insert the following routine:

11.) ABS(X)

I= LEN(A$)
FOR J = 1 to I
A(i!) = I

* 8$ = MID(A$,J,1)
A(J) = ASC(B$)

NEXT J

* or 8$ = MID$(A$,J,1)

Remove the above statement and replace with the following:

12.) MAT READ A

XYZ lF X>0 GOTO XYZ+2
XYZ+l X = -X
XYZ+2 REM A8S(X)

Where A is dimensioned as A(X,Y)

FOR I= 1 to X
FOR J = 1 to Y
READ A(I ,J)
NEXT J
NEXT I

929

Replace the MAT READ statement with the above algorithm. Be sure
to enter the numeric values of the dimensions for X and Yin the
above routine.

13.) MAT INPUT A

Where A is dimensioned as A{X,Y)

FOR I= 1 to X
FOR J = 1 to Y
INPUT A{I ,J)

NEXT J
NEXT I

Replace the MAT INPUT statement with the above algorithm. Be sure
to enter the numeric -values of the dimensions for X and Yin the
above routine.

14.) MAT A= ZER

Where A is dimensioned as A(X,Y)

FOR I= 1 to X
FOR J = 1 to Y
A{I,J) = f'
NEXT J
NEXT I

Replace the MAT= ZER statement with the above algorithm. Be sure
to enter the numeric values of ,the dimensions for X and Yin the
above routine.

15.) MAT A= CON

Where A is dimensioned as A{X,Y)

FOR I= 1 to X
FOR J = 1 to Y
A(I,J) = 1
NEXT J
NEXT I

Replace the MAT= CON statement with the above algorithm. Be sure
to enter the numeric values of the dimensions for X and Yin the
above rqutine.

930

(,

• • l ;

16.) MAT READ A,B,C

Where A,B and C are dimensioned as: A(X,Y), B(R,S) and C(V,W)

FOR I= 1 to X
FOR J = 1 to Y
READ A(I,J)
NEXT J
NEXT I

FOR I= 1 to R
FOR J = 1 to S
READ B(I,J)
NEXT J
NEXT I

FOR I= 1 to V
FOR J = 1 to W
READ C(I ,J)
NEXT J
NEXT I

Substitute the above routine for each MAT READ A,B,C statement.
Be sure to enter the numeric values of the dimensions in these
steps.

931

} .
(

;

• •

('' 1" - ,>,--/l~J'IL

~ ..e-/ ' ft- '/• I I(~' I C, ? }, I ~ 6 },
~I-Lo'-' p,vL-f Wl-lcL,r Jv"'-"10.,-,.._;
(c,,.,. 1.. "'1 2... 11 '1 rr J f ,r,,,_ r.....,rv-1'.. ~ ,-,._

fr $ µ._ $ 6 ? $ r r t ,,,,'/:e. .
I I I I

~'P·'
I.,\. (1 1'-0 3 z 1- I, J::>

I
fl. ,r J ~n.. v I!"" b , ,v M Y n ., A. v)

Cc,-,13,,...,,-IJ,,14,"'f' NOi V,o.c..,o 1:r.r~n..,~13Lr..r ~n.r:- /<..1--71.vcft.Of

""'1..~~ /}-.f I FN I IF I o,.,,,-
1

(JR I f> r f 10

f+L,,._ V/:)n.1~1Jt..r..f ,,..,,, '/)n..a~ f(')ft.-'1t.,f, f}-.$(I} \',-t.'N,ffl,t ~lt.ntcr.rf J-•T" f>1n;;.J,

°!)JM l~ P· 1-~cf) ~· '}. Joo 't>I H K (4) --.t.'--4, /10 C('l.~ri-n-J lf-
r,, ~ 1,..r V ,9- n-1 10- 11 L ~ J: ,r l I) I)r- (7-) 'Ir /:J. J)r- UI) ,

. I I
,- .,t. • ~ • ~ 0 O f) I M .y { ~ I Z..) _,t, :.._ L] IN ~1/'t., ~ x-1

/Vt<\.v' .Vl9'n.,~(3.L.-.r:y[o,o) lf(o,,J 'f(01 1..)t- 'f{l,o)1 'f{11 1) "'1(112)~ '1{~1 ~)
I I I

·'1 (7-. 1 1) ~. ~ 'f (J,_Z).

"' '4
11'1-n,40 t.,r J ,_ ~ J Cf\.r" r.1 ~.,L ~

lj (Pt--+1-1 1) _. Jr (13-1)

'
Oft....

,

'
-I '-/ r-

' wl'-'\.- c...-rr f'fl,1,.,r,rA. Te Jvi.,_,., "r• ,v.r~r

C-:. Co"'"' ""'iv t" , '>1. , 'l.f. t °" , ")
; - x~,..,., ""'' "'"' a~ .,(I., ,.,rv-0 ,.,~-YJ- ,., ~ o -r,-.,rn.. . Jl./:,rc, /V\,(#,,')a l'1'\.J'

~rt-r f 1',t., f'V D "- I ,-,.., l Tn 0-1 Lt I-', J'f Ii C r .' g l l..&0+-l)/ ~ fp f>.-C fl"' /IF)./ I. /J

"'o 1 /v ,r C, t>- .,- l v~ j O "'1.,. 1 Ck h-n tre f'1?"1\.. f',-n..,-. ,, H Ir vv Ivo f P Ire~-.r fro D r,'l

	TSC Extended BASIC for 6800 1
	TSC Extended BASIC for 6800 2

