
..

COPYRIGHT © 1978 BY
Technical SysLems Consullants, Inc.

P.O. Box 2574
\Vest Lafayette, Indiana 47906

All Righls Reserved

FILEPAT :;-:;-94 PAGE 1

FILEPAT UTILITY 26/05/80

**
* W A R N I N G *
* * * THIS UTILITY IS MEANT TO BE USED BY EXPERIENCED PROGRAMMERS ONLY *
* WHO KNOW THE LAYOUT AND DESCRIPTION OF A DISK FILE AND RECORD. *
* PATCHING THE WRONG BYTE OF DATA OR FLEX CONTROL INFORMATION CAN *
* LEAD TO THE DESTRUCTION OF THE PROGRAM BEING PATCHED. REFER TO THE*
* 11 FLEX PROGRAMME I::-.: ' S MANU0L 11

• PAGES 44 AND 45 FOR THE DESCRIPTIONS *
* OF DATA SECTORS ON DISK. AS WELL AS DESCRIPTION OF A BINARY FILE. *
* THIS PROGRAM WILL PATCH THE FILE EVEN IF IT IS WRITE PROTECTED. *
**

THE "FILEPAT" COMMAND ALLOWS PATCHING OF ANY TYPE OF FILE ON A FLEX 9.(Z)
DISKETTE. EVEN THE BOOTSTRAP LOADER AND THE DISKETTE DIRECTORY.

DESCRIPTION

C THE GENERAL SYNTAX OF THE COMMAND IS:

C

FILEPAT,<FILESPEC> OR FILEPAT

WHERE <FILESPEC> IS THE NAME OF THE FILE TO BE PATCHED.

ONCE THE COMMAND HAS BEEN ENTERED.THE PROGRAM WILL PROMPT YOU FOR
A RELATIVE SECTOR NUMBER. THE RELATIVE SECTOR NUMBER IS A HEXADECIMAL
VALUE FROM 00 TO FF, WHICH TELL THE PROGRAM WHICH SECTOR IN lHE REQUESTED
FILE WILL BE PATCHED, REGARDLESS OF WHERE ON THE DISK
IT IS LOCATED. TO DETERMINE THE RELATIVE SECTOR NUMBER.USE THE 'DUMP'
UTILITY TO FIND THE DATA TO BE PATCHED, AND THEN COUNT THE SECTORS FROM
THE BEGINNING OF THE FILE. IN HEX, STARTING WITH SECTOR 00, UNTIL YOU
REACH THE SECTOR CONTAINING THE DATA TO BE PATCHED. THIS WILL THEN BE
THE RSN TO BE USED IN THE COMMAND.

ENTER FUNCTION C.D,P,R,V,S OR?

THE USER CAN THEN USE ANY OF THE FOLLOWING FUNCTIONS TO MAKE PATCHES TO
THE DATA READ FROM THAT SECTOR:

D== DISPLAY DATA
P== DISPLAY COMPLETE SECTOR
R== REPLACE DATA IN BUFFER
V= VERIFY IF EXISTING DATA IS CORRECT
C== CANCEL PROGRAM NO DATA IS WRITTEN TO DISK.
S= SAVE NEW DATA TO DISK
?== HELP DISPLAYS PROGRAM OPTIONS

THE DESIRED LETTER, PLUS ANY REQUIRED PARAMETERS ARE THEN ENTERED,
FOLLOWED BY A CR. ONLY ONE FUNCTION PER LINE IS PERMITTED, SINCE THE

r

(

FILEPAT PAGE 2

FLEX LINE BUFFER IS BEING USED. AND IT IS CLEARED AT THE END OF EACH
FUNCTION EXECUTED. AFTER THE D,P,R ORV FUNCTIONS, TH~ PROGRAM WILL GO
BAO:: TO THE IN I r I AL PROMPT II ENTER FUNCTION II AFTER THE S OR C
FUNCTION, A MESSAGE WILL BE OUTPUT ASKING YOU IF YOU WANT TO PATCH
ANOTHER SECTOR. ANSWER 'Y' OR 'N' DEPENDING IF 'YES' OR 'NO'. IF YOU
ANSWER 'N', THEN THE PROGRAM TERMINATES AND RETURNS TO FLEX.

THE FOLLOWING EXAMPLES OF ALL FUNCTIONS REFER TO THE FILE ASMB.CMD
FILE. SINCE ALL USERS OF FLEX 9.0 HAVE IT, BECAUSE IT WAS SUPPLIED BY
TSC AS PART OF FLEX 9.0.
BEFORE ATTEMPTING ANY PATCHES FOR THE PURPOSE OF LEARNING HOW TO USE
THIS PROGRAM, MAKE SURE THAT YOU HAVE A SPARE COPY OF ASMB.CMD ON A
SEPARATE DISK. IN CASE YOU INADVERTENTLY PATCH SOME WRONG DATA IN THE
PROGRAM. AND IT NO LONGER WORKS. ALL EXAMPLES GIVEN REFER TO
ASMB.CMD.0 'RSN' 0F.

FILEPAT.ASMB.CMD.0

D(ISPLAY> FUNCTION

SYNT{~X:

D < , <. ADDR .>) (• <. B fC r >)

WHERE D= DISPLAY FUNCTION
ADDR = ADDRESS OF DATA WITHIN THE SECTOR, WITHIN A RANGE

OF 00 TO FF IN HEX. DEFAULT VALUE IS 00.
BTCT = BYTE COUNT, NUMBER OF BYTES, IN HEX, TO BE DISPLAYED.

THE DEFAULT VALUE IS 16 (HEX 10).

EXAMPLE 1:

D <CR)

00

(DEFAULTS TO ADDRESS=00,BYTECOUNT=HEX 10)

0F 0A 00 10 AC 11 DE. 45 FF AC 14 CE AB 40 86 01 ••••••• E ••••• @."

THIS WILL DISPLAY 16 BYTES OF DATA FOLLOWED BY THE ASCII EQUIVALENTS.
IF THERE IS NO ASCII EQUIVALENT, A PERIOD (.) IS PRINTED. IF YOU TRY
THIS ON YOUR SYSTEM WITH THE ASMB.CMD.0 FILE YOU WILL FIND THAT THE
FIRST 2 BYTES AR~ DIFFERENT, SINCE THESE REFER TO THE TRACK AND SECTOR
OF THE NEXT SECTOR IN THE FILE, AND PROBABLY THEY ARE NOT THE SAME AS
MINE. THE REST OF THE DATA SHOULD BE IDENTICAL.

EXJ'...'IMPLE 2:

D. :3c. 2

:3c s..::o 97

THIS WILL DISPLAY
SECTOR.

,-,
L BYTES OF DATA STARTING AT ADDRESS HEX 3C IN THE

FILEP{~T ::::-3-84 PAGE 3

(

EXAMPLE . .::,:

D, 42 • :;;:7

42 (2)6 BD 06 99 5A 26 F?-'.\ CE 0(2) D1 BD (2)6 BA BD (2)5 27 . . . • 28< a
52 96 47 26 08 CE :l 1 5D BD 06 8A 2(2) 33 7F (2) (2) 4.5 B6 . G~(. ·-:r ·-· • E.
62 AC 0F 81 09 22 (2) ..,. BD (2)2 (2)6 B6 AC (2)~· 10 Fl FF 0E II ._:1 . .::. "
7? 81 (2)9 22 06 BD 12)2 IZJ6 II
ANY ATTEMPT TO DISPLAY DATA PAST THE SECTOR LIMIT OF FF WILL RESULT IN
TRUNCATION OF THE DATA DISPLAYED TO KEEP IT WITHIN THE DESIRED SECTOR.

IT SHOULD BE REMEMBERED THAT THE DATA IS BEING DISPLAYED FROM THE
SECTOR BUFFER IN THE FCB AND NOT DIRECTLY FROM DISK. AFTER CHANGES ARE
MADE TO THE SECTOR BUFFER. THE FINAL COPY WILL BE WRITTEN BACK TO DISK
WITH THE S<AVE> FUNCTION.

(~ SYNT1~X:

p

P(RINT) FUNCTION

NO ADDITIONAL PARAMETERS ARE REQUIRED. IT WILL DISPLAY THE CURRENT
CONTENTS OF THE SECTOR BUFFER IN 16 LINES OF 16 BYTES PER LINE, PLUS
THE ASCII TRANSLATABLE DATA. THIS IS US~FUL FOR FINDING THE DATA TO BE
PATCHED. AS WELL AS CHECKING THE DATA. AFTER THE PATCH IS DONE. BUT
BEFORE IT IS WRITTEN BACK 10 DlSK. TO MAKE SURE THE PATCH WAS DONE
CDRl::;:ECTL Y.

R(EPLACE> FUNCTION

SYNT?~X:

R,<ADDF:>,<DAT?-H > (.<DATA2>) (.<.DATA.3>) (,<DATAl\l>) ETC.

WHERE R = THE REPLACE DATA FUNCTION
ADDR = ADDRESS. IN HEX OF THE START ADDRESS OF THE BYTES TO

BE REPLACED, WITHIN THE RANGE OF 00 TO FF. AND
HAVING A DEFAULT VALUE OF 00

DATA:l = ONE BYTE OF HEX DATA TO BE PATCHED.
EACH BYTE MUST BE 2 CHARACTERS IN THE RANGE OF (2) TO 9 OR A TO F. EACH
ADDITIONAL BYTE MUST BE SEPARATED FROM THE PREVIOUS ONE BY A SPACE OR
COMMA <.>. THE MAXIMUM NUMBER OF BYTES THAT CAN BE REPLACED IS LIMITED
TO 40 BYTES PER LINE.

(_ AFTER THE DATA IS ENTERED,FOLLOWED BY A CR, THE PROGRAM WILL OUTPUT
START ADDRESS AND THE OLD DATA THAT IS BEING REPLACED.AT THIS TIME
WILL ASK IF THAT IS WHAT YOU WANT TO REPLACE. WITH THE QUESTION,

THE
IT

. .

:3-3-84- F·AGE 4

"VERIFY Of<?"

I 1: YOU At·,E SUF-,E YOU WANT TO REPLACE THE OLD D/:.'.\TA, ANSWEF, 11 Y 11 ?-)ND (.~ CR.

AT THIS POINT THE PROGRAM WILL OUTPUT THE NEW DATA THAT HAS BEEN PUT IN
THE SECTOR BUFFER. AND GO BACK TO THE MAIN PROMPT:

ENTER FUNCTION C.D,P,k,V,S OR?

IF YOU HAVE DECIDED THAT YOU DID NOT WANT TO MAKE THE CHANGE, WHEN THE
PROMPT II VER 1 F\,, rn<?" IE; OUTPUT~· vou cr-1N ~1NSWEr:: w I TH f..)N 11 1\i 11 (-)ND (..:i CR. rn:;:
SIMPLY A CR. AND NO DATA WILL BE CHANGED IN THE SECTOR BUFFER.

YOU MAY MAKE MULTIPLE PATCHES TO THE SAME SECTOR. ALL CHANGES ARE MADE
IN THE SECT OF, BUFFER ONLY Al'~D I\IOT ON THE DI Sr::: LINT IL YOU USE THE II S 11

FUNCTION TO RE-WRITE THE CONT~NTS OF THE SECTOR BUFFER BACK TO DISK.

V(ERIFY) FUNCTION
SYI\ITAX:

(V, < tiDDF, >. < Di-~l·,-1 :I..> (. < DATr:)2.>) (. <.DAT(~1:;!: >) ETC.

WHERE V= VERIFY FUNCTION
ADDR - ADDRESS OF FIRST BYTE TO BE CHECKED

DATAl = DATA YOU EXPECT TD BE AT THE ADDRESS YOU SPECIFIED.ANY
FOLLOWING BYTES MUST BE SEPARATED BY A SPACE OR A COMMA (,).

IF THE DATA EXACTLY MATCHES. THE PROGRAM WILL OUTPUT ''DATA VERIFIES
m::: 11

, (41'~0 W J L..L. F,l:::TUF.:N TO THE MA IN Pl::::OMPT.

IF THE DATA DOES NOT MATCH. THE PROGRAM WILL OUTPUT ''DATA DOES NOT
t,iEF, I FY 11

• 1..:)1\m THE~ F'RCl[iF,:(.~iM l.1,J I L..L... "f'E:RM I Nr:~ TE.

THE PRINCIPAL USE OF THIS FUNCTION IS FOR us~ WITH AN INPUT FILE
CONTAINING PAfCH DATA. IN THIS CASE. YOU WOULD ISSUE THE VERIFY
FUNCTION BEFORE THE R FUNCTION. TO MAKE SURE THAT THE CORRECl DATA IS
BEING REPLACED. AND IF IT VERIFIES DK, THE REPLACE WILL BE DONE. IF IT
DOES NOT VERIFY, SOMEHOW THE DATA THAT YOU EXPECTED TO BE THERE IS NOT
THERE<YDU MAY BE AT THE WRONG SECTOR OR WRONG ADDRESS. OR A PATCH HAS
ALREADY BEEN MADE lHERE) AND THE PATCH.IS ABORTED AT THIS TIME. TO
PREVENT PATCHING OF THE WRONG DATA.

V,80,2D WILL VERIFY THAT THE BYTE AT ADDRESS
(HEX 80 IS A '2D'

R,80,2F WILL CHANGE THE BYTE AT ADDRESS
HEX 80 FROM '2D' TO '2F'.

F Il..EP(..)T P(-'iGE :'.:i

IF THE BYTE AT HEX 80 HAD NOT BEEN A '2D' THE PATCH WOULD NOT BE MADE,
AND THE PROGRAM WOULD RETURN TO FLEX.

S (/.WE) FUNCTION

s

WHERES WILL SAVE THE CONTENTS OF THE SECTOR BUFFER TO DISKETTE,
OVERLAYING lHE ORIGINAL SECTOR, AND VERIFYING THAT IT HAS BEEN WRITTEN
BACK CORRECTLY~ (NO DISK WRITE ERRORS>.

A MESSAGE WILL BE OUTPUT GIVING THE STATUS OF THS SAVE OPERATION, AND
THE PROGRAM WILL ASK YOU IF YOU IF YOU WANT TO PATCH ANOTHER SECTOR.

C(ANCEL) FUNCTION

(_SYNTAX:

C

WHERE C WILL CANCEL THE PROGRAM WITHOUT WRITING ANYTHING TO DISK, ISSUE
AN ABORT MESSAG~. AND PROMPT YOU FOR ANOTHER SECTOR TO BE PATCHED.

? HEI...F' FUNCTION

THIS FUNCTION WILL PRINT OUT ON YOUR TERMINAL A BRIEF DESCRIPTION AND
SYNTAX OF ALL OF THE ABOVE FUNCTIONS. IN CASE YOU FORGOT WHAT THE
INDIVIDUAL LETTERS MEANT. AND YOU DON'T WANT TO LOOK THEM UP IN THE
DOCUMENTATION.

EXAMPLES

THE FOLLOWING ~XAMPLES ARE SUPPLIED FOk USING THE FlLEPAT UTILITY,
USING AN INPUT TEXT FILE FOR INPUT RATHER THAN FROM THE TERMINAL.

PATCH1.TXT CONTAINS DATA TO PATCH ASMB.CMD.0 FILE TO CHANGE lHE DATE
PRINTOUT FROM MM-DD-VY TO MM/DD/YY.

(~ATCH2.TXT WILL REVERSE THE PATCHl PROC~DURE TO PUT IT BACK THE WAY IT

TC:J EXECUTE THESE PATCHES. ENTEF~ THE FOLLOW ING COMMP,I\ID ~

(
FILEPAT 3-3-84 PAGE 6

CP.>I.PATCHl,FIL~~AT,ASMB.CMD.~

fHE CP.) IS OPTIONAL; IT WILL DIRECT ALL OUTPUT TO THE SYSTEM PRINTER,
SO YOU COULD KEEP A PERMANENT RECORD OF THE PATCH. IF YOU WANT TO RUN
PATCH2 TO CHANGE THE DATE FORMAT BACK FROM MM/DD/YY TO MM-DD-YY. THEN
ENTER THE FOLLOWING COMMAND:

CP,>I.PATCH2.FILEPAT.ASMB.CMD.0

FILEPAT IS A .CMD FILE ON THE SYSTEM DRIVE.
ASMB.CMD IS A .CMD FILE ON ~HE SYSTEM DRIVE.
I IS A .CMD FILE ON THE SYSTEM DRIVE.
PATCHl IS A .TXT FILE ON THE WORK DRIVE.
PATCH2 IS A .TXT FILE ON THE WORK DRIVE.

WHEN MAKING UP YOUR OWN PATCH FILES.YOU MAY USE THE 'BUILD' UTILITY, OR
THE TEXT EDITOR. MAKE UP THE FILE EXACTLY AS YOU WOULD ENTER THE
RESPONSES FROM A TERMINAL.

THE SEQUENCE SHOULD BE:

(1. SECTOR NUMBER ro BE PATCHED.
2. VERIFY THE DATA TO BE PATCHED.

C

3. REPLACE THE DATA
4. Y (ANSWER TU VERIFY OK?)
5. HERE YOU MAY REPEAT 2.3.4 USING DIFFERENT DATA, AS LONG AS IN THE
SAME SECTOR. YOU MAY ALSO USE THE DOR P FUNCTIONS IF YOU WANT A
PRINTOUT OF THE RESULTS, TO SAVE FOR YOUR RECORDS OF PATCHES DONE.
6. S (SAVE CONTENTS OF SECTOR BUFFER TO DISK)
7. N (ANSWER TO 'DO YOU WANT TO PATCH ANOTHER SECTOR?') IF YOU WANT ro
PATCH ANOTHER SECTOR AT THIS POINT, ANSWER 'Y' TO THE QUESTION, AND GO
BACK TO ITEM 1 GIVING NEW SECTOR NUMBER, ETC. THE LAST ENTRY IN YOUR
FILE MUST BE A 'N' TO TERMINATE THE PROGRAM AND RETURN TO FLEX.

NOTE: YOU MAY ADD YOUR OWN COMMENTS IN THE PATCH FILE AFTER THE
COMMAND.FOR DOCUMENTATION PURPOSES. THE COMMAND SHOULD BE
FOLLOWED BY A SPACE, A SEMI-COLON, AND THEN YOUR COMMENTS.

TAILORING TO YOUR SYSTEM.

THERE ARE TWO VARIABLES YOU MAY WANT TO CHANGE IN THE
DEPENDING ON YOUR PARTICULAR TERMINAL. ONE WILL LET YOU SET
OF THE DISPLAY TO FIT EITHER A 64 CHARACTER CRT OR TERMINAL,OR
SET THE SWITCH UP FOR USE ON 72 CHARACTER TERMINALS OR LARGER.
DONE SIMPLY BY EDITING THE SOURCE PROGRAM, AND CHANGING THE
THE FCB AT LABEL 'CRTSW' AS FOLLOWS:

CRTSW FCB 00 FOR TERMINALS OF LESS THAN 72 CHARACTERS.

PROGRAM.
THE SIZE
YOU CAN

THIS IS
VALUE OF

CRTSW FCB 72 FOR ANY TERMINALS EQUAL OR GREATER THAN 72 CHARACTERS PER

(

(

C

FILEPAT 3-3-84 PAGE 7

LINE.

THE SECOND VARIABLE IS THE START ADDRESS OF THE PROGRAM WHICH NOW IS
ORG'ED AT $0000. YOU MAY WANT IT AT SOME OTHER ADDRESS. SO JUST CHANGE
THE 'ORG' STATEMENT AND RE-ASEMBLE THE PROGRAM. DO NOT ATTEMP TO 'ORG'
IT AT $A100 SINCE IT WILL NOT FIT IN FLEX UTILITY COMMAND SPACE.

THIS IS AN ORIGINAL PROGRAM WRITTEN BY

MILAN KONECNY
193 CHAPLEAU AVE
DOLLARD-DES-ORMEAUX
P.O. CANADA
H9G 1C3

FOR USE BY '68' MICRO JOURNAL MAGASINE. AN EARLIER VERSION HAS BEEN
DISTRIBUTED BY THE 'FLEX USERS' GROUP NEWSLETTER ON A FREE BASIS.

THE AUTHOR WISHES TO HEAR FROM ANY USERS OF THIS PROGRAM AS TO
SUGGESTIONS FOR IMPROVEMENT. OR ANY OTHER COMMENTS. AND WILL BE WILLING
TO SUPPLY THE PROGRAM AS SOURCE CODE ON STANDARD 5.25 INCH FLEX 9.0
DISKETTES TO THOSE WHO SEND ME A BLANK DISKETTE PLUS $2.00 FOR POSTAGE

jY

• •

CONTENTS

I. Volume 1 IV. Volume 4

FIND - Fiwo 11""''-'..-r, ...,,..,r->--(~fl"n,~')

• WORDS - r,,r ttvf"-011.01 ,,_ flL(

• TYPOS -t;,1.., ... ,,,..\ ,:...r,.,,..r-,-o, w,11-P-'
SPL IT - J' 1&-1 r t..11,._c, c' F-t '- IT I ,.,r-, r ""'°
LOW-UP- lowt"l"I\..T" F-1 L.~ 11,.,..,-, \,\,}C

UP-LOW- ., "' '' 1-/,-

FILES - 1..1 .tr- Ftt.. r,., ti-,.,, t--.1 11= Otfl ""',-,I\ v
PRUL - K•t...,..,.. Lt./, n--Jr'T' 1n,c,-rJo,._ ftLr" ,,.,,.., IA--f\../ c
DATE - 01J11.-, ..,_J,,.,. JyJr,r,-, J) ~rr
RPT - \.-1,&,.L ,.,.r, -r-r1,{o,,i;. .. .°9 ~.,,1r ... 1-..,,,(rrr,,~,Hr11,

, ECHO - tcN~ Mt1t.rr-/l.-r...c,1 rr- f'"rt'T. Fn•-J ,., n--,....,.,,,,,-19
HECHO - 11.r ~o, rl o ... T , ,.,, L. c, ,....t1Lo L c.H ,,..11, 1k rr,....1

II. Volume 2 v. Volume 5

DUMP -1= 1 '-...-(lf('"C.'r,#-r-tri111r)1,,lfr·_.....,_1rMl.1t •FLIST -fU.r fOfL.rt<l-rT~t> - 1-l.l'r l,.\.t-11-1 r-y

OLOAD - LM D a,~. Fl Lf' - hrt., p~,-,'1'49-,u,ft~PDEL - , (tD,,, ,,.., ,-.).1'"t. rTr "'-1'1'- I,-, fltt,.c,r,-,.,,,-.. PIJ
CHECK -C~''UfttLr ~ ~F-1t.r:r ,,.. PuJt/"'1"-Js1EEP - Hf&.-1) r,-,, r~- ft~ >r J"rr,'.f,

CMPMEM - " 61r rf 1.,- ~,., OIJ Kro 11 ,,.,, ''1 REMS PC - fl n"I • ~ ~"r-c rl J J I',-' ,-.1 fn,.,., 1')-..i.-r ,;'- i"

FILTYP-"Pcrrn.-n1wr1 f11,.t'" lrlf"1'll',.,,,o...,. CONCAT-l...1rr-~tc,...e~~nf ~1'-r.1(.
• DUP - 1..1.rr (-1 t~ ,.,~,., r, or- I o1.1,c. ,-11,,r AtL,. CONT IN - Ptto.,, r-J)ov\.. I.{ ,..,, t,/ r• f,.,.,r-, ,.,._,,. L '..,.,

,.+,, r o 1\.1t~n'"? _,_ /lrc,-P tHJII., L,-n,-L F-I'- rl',

III. Volume 3 VI. Volume 6

MAp-.t'H,-:1 ,_,,,_o i?~ofl.,ll9""-tr~>r-Fr11..et>pe,INTEG - rf.rr p~-.r.tf',,_",. 0 ,, Pf.ft<.

DIR - fl//~ 01n.r-c..r-•tv1 RECOVER-fl.rC,~1L.,z:P.11,.,., ~l.l'F- IF- Plfl.
1
7 (ffl1tlJt.r/),

INSTALL-tzr,.,..-,,11r .ru,,r-,t.rr rp, c.11~, MEHTEST- M 1!""1,,,_-t pt;-,-re,._ ,_ TrJi CI -/4 1<. 1''-''I<.,
FREE -ru·,,,....,.... H1,rtr1Z.n-f~.,.,,.._.,,~btJr.. MEMDUMP- P1J/1,.Yr-f ,~,.._r-, 1/C- Mr-,-,~,....,

[.

REPLACE- P,.r,i.f'-Cr I r-1t.rw1r11 A->'•rHffl ,MEMOVE - n.o~tr t11-1e, .. ,~ l'lN'I'~ .,., tf/.1~ L.M.>#-T"lt:~

TEST - Tt"JT ~(. ... frc.r-,,u Ir- ·~IJ I\ MEMFILL - fll,•\.. J'rt. '~ff- l'I r'""M-ltvf """1 'I'll I- ,~~'r:r!";':

_..fp e1,.. trr er
I

F 1 \.. r / · -

Ln. fY ~1"1 f" / FtLi: 'l.' Ft\.~-,

~ (I.. .--r\..1Hi' fllf"/ ft l.~ ,l 7
\ I

j.Y

CONTENTS
...
,.

I. Volume 1 IV. Volume 4

FIND FILES
WORDS PRUL
TYPOS DATE
SPLIT RPT
LOW-UP ECHO
UP-LOW HECHO

II. Volume 2 v. Volume 5

DUMP FLIST
OLOAD PDEL
CHECK SLEEP
CMPMEM REMSPC
FILTYP CONCAT
DUP CONTIN

III. Volume 3 vr. Volume 6

h~ MAP INTEG
DIR RECOVER
INSTALL MEMTEST
FREE MEMDUMP
REPLACE MEMOVE
TEST MEMFILL

A- L,. f n >', {J l·- 11 C t;- (.. t, '-7

BASEREF

BASREF - A BASIC Cross Reference Program

This program is designed to provide the BASIC user
with additional information, besides the listing of the
program, to write or make changes to his files. The output
of the program lists each line number in the BASIC program
and each line number that referenced that line, possibly
with a GOTO or GOSUB instruction. Additionally, all
variables are printed, along with the line number that
referenced them.

The systax is:

BASEREF <DRV.NU.><FILENAME> or
P BASEREF <DRV.NU.><FILENAME> for a hard-copy printout.

The default extension is .BAS.

Copyright 1981 by Dick Bartholomew
and Frank Hogg Laboratory, Inc.

- B.5.1 -

. . . -c··

·­~---~

CHECK

The CHECK utility is used to compare two disk files. The reult
of the comparison will be reported to the terminal.

DESCRIPTION

The general syntax of the CHECK command is:

CHECK,<file spec 1>,<file spec 2>

where the file specs default to a TXT extension and to the
working drive. File one will be read and compared against file
two one character at a time. The files may be text or binary
type files. The result of the comparison will be reported to the
terminal (files are identical or not). An example follows:

+++CHECK,REPORT1,REPORT2

This command line would cause the file named REPORTl.TXT on the
working drive to be compared to the file named REPORT2.TXT.

-c.3.1-

. .
~

CMPMEM

The CMPMEM command compares the contents of a binary file on the
disk to the contents of memory where it should be loaded. This
is useful for program debugging and memory problem detection.

DESCRIPTION

The general syntax of the CMPMEM command is:

CMPMEM,<file spec>

where the file spec defaults to a BIN extension and to the
working drive. The file specified will be read just as if it
were to be loaded into memory, but instead, each byte will be
compared to what already exists in memory. If any differences
are found, they will be printed out as the address, followed by
the data in memory at that location, followed by the data from
the disk file. All differences will be printed on the output
device. An example follows:

+++CMPMEM,FENCE

This would cause the file named FENCE.BIN on the working drive to
be read and compared to the actual memory contents throughout the
load address range of the file.

-c.4.1-

CONCAT

The CONCAT command allows the listing and concatenation of
several files. The files will be listed to the output device
(file if the O command is used), one after the other.

DESCRIPTION

The general syntax of the CONCAT command is:

CONCAT,<file spec list>

where the file spec list is a list of file specifications
separated by commas. The file specs will default to a TXT
extension and to the working drive. An example follows:

++tCONCAT,CHAPTl,CHAPT2,CHAPT3,CHAPT4

This will display the contents of the files CHAPTl.TXT,
CHAPT2.TXT, CHAPT3.TXT, and CHAPT4.TXT, one after the other on
the terminal.

-c.s.1-

(

CONTIN

The CONTIN command is intended for use in repeating or complex
EXEC command files. It prompts the terminal for a YES or NO
response for continuing the files execution.

DESCRIPTION

The general syntax of the CONTIN command is:

CONTIN

Executing CONTIN will cause the massage 'CONTINUE (Y-N)? 'to be
displayed on the terminal •. A 'Y' response will cause the EXEC
program to execute the next command in the command file. A 'N'
response will cause FLEX to regain control and the EXEC program
will be halted. This utility is useful for incorporating into
EXEC command files which repeat themselves (by calling itself as
the last line of the command file). The CONTIN command provides
a mechanism for escape from this ever repeating type of command
file.

-c.6.1-

DATE

The DATE utility allows the setting and displaying of the system
date register. The date register is used by other FLEX
utilities·.

DESCRIPTION

The general syntax of the DATE command is:

DATE[,<date spec>]

where the date spec is in the form MM,DD,YY.
left off the command line, the date will be
terminal. A few examples follow:

+++DATE
+++DATE,10,6,78

If the date spec is
displayed on the

The first example would display the current date on the terminal.
The second example would set the date to 'October 6, 1978'. One
of the FLEX utilities which make use of the system date register
is the Text Processor •

•

_T\ e. , -

DECOMPIL

THE XBASIC DECOMPILER

Syntax1 DECOMPIL <DR#).<FILENAME>C<.EXT>l

The file extension will default to a •.BAC· extension
if none is typed ~in. When the decompiler asks if you want
to BUILD a disk file, type •y• if you do and •N• if you
don•t. The decompiler· will then prompt for a filename of
the program that will be created. The,pEFAULT EXTENSION for
the new file will be a •.BAS· and DECOMPIL will exit back
to FLEX . if the file already exists, albeit non­
destructively. (DECOMPIL WILL NOT ERASE ANY FILES!).

For a printout, type; P,DECOMPIL,FILENAME.EXT

DECOMPIL will follow all of the TTYSET parameters, so
use them for a neater looking printout, as line length
generally exceeds the normal 80 characters. DECOMPIL
will, in some cases, put in extra spaces for a better
looking printout. XBASIC will not accept over 127
characters and will give ERROR #51 <ILLEGAL CHARACTER IN
LINE) when you try to load a long line. While in XBASIC,
type "LIST" and the last line printed was the last line
that made it in. You will have to EDIT the created file and
change lines that are greater than 127 characters (remove
space~, make twc lines out of one, etc).

NOTE ••• DECOMPIL will take up to 255 characters of .BAC, so
it will decompile longer lines, such as created using the
PRECOMPILER.

DECOMPIL will
BASIC),and will
(including T.S.C.
least 16K of work

only decompile T.S.C. XBASIC (EXTENDED
not work for other BASIC compilers
regular BASIC). Also, you should have at
RAM.

Frank Hogg Laboratory, Inc.

D.4.1 -

C:·:.::·

DUMP

The DUMP utility is used for dumping the contents of a file, one
sector at a time, in both hex and ASCII characters. It can be
used as a disk debugging aid or to clarify the exact format for
disk files.

DESCRIPTION

The general syntax of the DUMP command is:

DUMP,<file spec>

where <file spec> specifies the file to be dumped and defaults to
a BIN extension. As each sector is displayed it will be
preceeded by two, 2 digit numbers, the first being the hex value
of the track number, the second being the sector number of the
sector being dumped. Each data line will contain 16 hex digits
representing the data followed by the ASCII representations of
the data. All non-printable characters are displayed as
underscores(_). An example follows:

+-++DUMP,FILE55

This would cause the contents of each one of the sectors
contained in the file named FILE55.BIN to be dumped on the output
device •

•

-D.3.1-

DUP

The DUP command is used to list the file names contained in one
disk's directory which are not duplicated in a second disk's
directory. This is a useful utility for comparing files on
original disks to those on a backup diskette.

DESCRIPTION

The general syntax of the DUP command is:

DUP,<drive number>,<drive number>

where the disk's directory in the first drive number specified is
to be compared to the second. The files whixh exist on the first
drive but not on the second will be listed on the output device.
As an example:

+++DUP,0,1

This would cause all file names which were on the diskette in
drive zero but not on drive one to be listed on the output
device.

-n.4.1-

E~

&

DIR

The _DIR utility is similar to the CAT command but displays all
directory information associated with the file. This command
gives a detailed look at the disk directory.

DESCRIPTION

The general syntax of the DIR command is:

DIR[,<drive list>] [,<match list>]

where <drive list> and <match list> are the same as described in
the CAT command. Each file name will be listed with its file
number, starting disk address in hex (track-sector), ending disk
address, and file size in number of sectors. On the larger FLEX
systems, the file creation date and · attributes will also be
displayed. At the end of the DIR list, a disk file use summary is
printed, giving the total number of files, the number of sectors
used by those files, the remaining number of sectors (free
sectors), and the size of the largest file found on the disk.
The 'file number' associated with a file represents that files
location in the directory, so the file numbers may not be
consecutive if a lot of files have been deleted from the disk. A
few examples follow:

+++DIR
+++DIR, l ,A. T, FR

The first example would list all files on the working drive. The
second example would list only those files on drivel whose names
began with 'A' and extensions began with 'T', as well as those
Yiles whose names started with 'FR'.

-D.5.1-

...

ECHO

The ECHO command is a very useful utility for incorporation into
EXEC command files. It allows the echoing of ASCII strings to
the terminal.

DESCRIPTION

The general syntax of the ECHO command is:

ECHO,<string>

where <string> is any string of printable characters terminated
by a carriage return or end of line character. A few examples of
the ECHO command follow:

+-l+ECHO,THE COPY PROCESS IS STARTING
-l++ECHO,TERMINAL 12

The first example would print the string "THE COPY PROCESS IS
STARTING" on the terminal. The second example would print
"TERMINAL 12". It is often useful to use ECHO in long EXEC
command files to send instructive messages to the terminal to
inform the operator of the status of the EXEC operation.

-E.2.1-

'•

FIND

The FIND command is used for finding all lines in a text file
containing a specified string. It is faster to use FIND than to
enter the editor to find strings.

DESCRIPTION

The general syntax of the FIND command is:

FIND,<file spec>,<string>

The file spec defaults to a TXT extension and to the working
drive. The string may be any printable characters (non-control
characters) and is terminated by the carriage return or end of
line character. Upon execution, all lines containing the
specified string will be printed on the terminal preceeded by
that lines line number. When finished, the total number of lines
found containing the string will be printed. Following are a few
examples.

+++FIND,TEXT,THIS IS A TEST
+++FIND,BOOK.TXT,OHIO

The first example would find and display all lines in the file
TEXT.TXT which contained the character string "THIS IS A TEST".
The second example would search the file BOOK.TXT for the string
"OHIO" and list all lines found.

-F.1.1-

.... .. ,

FILTYP

The FILTYP command is used to determine the type of a file,
either binary or text. This is useful when non-standard
extensions have been used and the file type has been forgotten.

DESCRIPTION

The general syntax of the FILTYP command is:

FILTYP,<file spec>

where the file defaults to the working drive. Upon executiug
this command, the system will report the file to be either a TEXT
type file, or a BINARY type file (a file which may be loaded into
memory). An example will demon8trate its use.

+++FILTYP,MYSTERY.XYZ

The system will report the type of the file named MYSTERY.XYZ
found on the working drive •

-r.2.1-

'.;:

FREE

The FREE command is used to report the total number of free
(available) sectors on a diskette. The approximate number of
kilobytes remaining is also reported.

DESCRIPTION

The general syntax of the FREE command is:

FREE[,<drive number>]

If the drive number is not specified it will default to the
working drive. An example follows:

+++FREE,l

This command line will report the number of available sectors and
approximate number of kilobytes remaining on the disk in drive 1.

-F.3.1-

•

FILES

The FILES utility is similar to the CAT command but displays only
the file names and extensions. This command is useful for
getting a short and quick report of the directory contents.

DESCRIPTION

The general syntax of the FILES command is:

FILES[,<drive list>] [,<match list>]

where <drive list> and <match list> are the same as described -in
the CAT command. The file names will be listed across the page
and in a columnar fashion. The number displayed per line is
determined by the TTYSET Width parameter. If the Width is zero,
80 columns are assumed to be available and 5 names will be listed
on each line. Smaller Width values will result in fewer names
per line being displayed. A few examples follow:

+++FILES
+++FILES,l,A.T,FR

The first example would list all files on the working drive. The
second example would list only those files on drive 1 whose names
began with 'A' and extensions began with 'T', as well as those
files whose names started with 'FR' •

FLIST

The FLIST utility is used to get a page formatted listing of a
text type file. It is similar in operation to the LIST utility.

DESCRIPTION

The general syntax of the FLIST command is:

FLIST,<file spec>[,<line range>] [,+<options>]

where the file spec designates the file to be listed and defaults
to a TXT extension and to the working drive. The <line range> is
the same as described in the LIST utility. If no range is
specified, all lines will be displayed. Two options are
supported, 'N' for line numbers) and 'p' for pagination. If the
P option is specified, FLIST will prompt for a title. The title
may contain a maximum of 40 characters. Each page will then be
listed with a title and page number, followed by 54 lines of text
(numbered if the N option was specified), and a hex $QC formfeed
character. A few examples will demonstrate the use of FLIST.

+++FLIST,CHAPTERl
+++FLIST,LETTER,10-100,+NP
+++FLIST,TEXT,50

The first example would cause the file named CHAPTERl.TXT to be
displayed on the screen without line numbers or pagination. The
second example would list LETTER.TXT from line number 10 through
line 100 with line numbers and pagination. The last example
would list the file named TEXT.TXT from line 50 to the end of the
}ile. No line numbers will be output since the 'N' option was
not specified.

-F.5.1-

•

HECHO

The HECHO command is used for sending special character strings
to the terminal. It is similar to the ECHO command, but HECHO
allows control characters as well.

DESCRIPTION

The general syntax of the HECHO command is:

HECHO,<hex string>

where <hex string> is a list of hex digits representing ASCII
characters. A few examples will demonstrate the use of HECHO.

+++HECHO,C
+++HECHO,D,A,O,O,O,O
+++HECH0,7,54,45,53,54,7

The first example will output a page eject (hex C) to the
terminal. The next example will output a carriage return (hex D),
a line feed (hex A), and then 4 null characters (hex O). The
last example will will output an ASCII bell character (hex 7),
then the string 'TEST', followed by another bell character •

INSTALL

The INSTALL utility is used as a convenient way of renaming a
file with a .BIN extension to the same name but with a .CMD
extension. In effect, you are 'installing' the file into the
utility command set.

DESCRIPTION

The general syntax of the INSTALL command is:

INSTALL,<file spec>

where the file spec defaults to a BIN extension and to the
working drive. This utility has the same affect as using
'RENAME,FILE.BIN,FILE.CMD'. An example will demonstrate its use.

+++INSTALL,LOAD

This command line would cause the file named LOAD.BIN on the
working drive to be renamed LOAD.CMD. This command is simply a
time saver for those who do not like to type names twice!

INTEG

The INTEG command is used to completely test the free space
(unused sectors) dn a diskette. This routine will guarantee the
integrity of the available disk space.

DESCRIPTION

The general syntax of the INTEG command is:

INTEG[,<drive number>)

where the driv~ number specifies which disk is to be tested and
defaults to the working drive. This program will check that the
free space contains the correct number of sectors, that it starts
at the correct disk address, and that it terminates at the
correct disk address. If any discrepencies are found the
appropriate error message will be displayed, otherwise, the
message 'FREE SPACE ALL OK!' will be output. An example follows:

+++INTEG,O

This would test the
be noted that INTEG
Any diskette not
creating new files.
space being used by

free space on the disk in drive O. It should
may require a moderate amount of time to run.
passing the INTEG test should not be used for

This command does not test any of the disk
files on the disk.

-1.3.1-

LOW-UP

The LOW-UP command is used to convert a file into all upper case
letters. It is useful for those systems unable to work with
lower case letters.

DESCRIPTION

The general syntax of the LOW-UP command is:

LOW-UP,<input file spec>,<output file spec>

The input file spec specifies the name of the file needing the
conversion, and the output file spec specifies the file name of
the new converted file. Both default to a TXT extension and to
t~e working drive. The new file will end up containing only
upper case letters and the original file will be left unchanged • .
An example follows:

+HLOW-UP,LISTER,LISTERU

This would cause a file named LISTERU.TXT to be created which is
identical to the file named LISTER.TXT except all letters will be
upper case.

-L. 3. 1-

u

MAP

The MAP utility is used for determining the load addresses and
transfer address of a binary file. This command is useful in
conjunction with the SAVE command.

DESCRIPTION

The general syntax of the MAP command is:

MAP,<file spec>

where the file spec defaults to a BIN extension and to the
working drive. The beginning and ending addresses of each block
of object code will be printed on the terminal. If a transfer
address is contained in the file, it will be printed at the end
of the list of addresses. If more than one transfer address is
found in a file, only the effective one (the last one
encountered) will be displayed. An example will demonstrate the
use of MAP.

+++MAP,MONITOR

This command line would cause the
address (if one exists) of the
displayed at the terminal.

/JK'')..~
.e-p-.,. 'l

$1 ,e-Jf

load addresses and transfer
file named MONITOR.BIN to be

' l, (• J'Hf\r tF

rrt,.; r- ~,..,.

-M.2.1-

MEMTEST

The MEMTEST command executes a memory pattern test. This test
will detect 99% of all memory problems if allowed to run a
sufficient amount of time.

DESCRIPTION

The general syntax of the MEMTEST command is:

MEMTEST,<hex start address>,<hex end addres>

The start address is a hex number stating where in memory tqe
test program should start testing, and the end addres is the last
location to be tested. The test fills memory with random
numbers, goes back and checks the numbers are correct, and then
repeats the process. This test should be allowed to run
approximately 1 hour for each 4K block of memory being tested.
Remember not to specify a memory range which will overlap the
test program itself. Each successful pass through the test will
be shown by the printing of a'!' on the terminal. An example
follows:

+++MEMTEST,0,3FFF

This would test memory from location O through location 3FFF.
The system RESET must be used to exit the test program. Reboot
the system to use FLEX.

-M.3.1-

MEMDUMP

The MEMDUMP command allows the dumping or displaying of a
selected portion of memory at the terminal in both hex and ASCII.
It is very useful as a diagnostic aid.

DESCRIPTION

The general syntax of the MEMDUMP command is:

MEMDUMP[,<start address>]·-~--: '-::·, ·;: .-. ~ ' : .·

where the start address is the hex value of the address at which
dumping should start. If the address is left off of the command
line, dumping will begin at address 0000. The display consists
of 16 lines of data. Each line starts with the address in memory
from which the data is taken. Following the address is 16 bytes
of data displayed as 2-digit hex numbers. Finally, 16 ASCII
characters are printed which represent the data bytes just
printed. All control characters are printed a 4.e.r..s.c.ores (,..;:"')•
Aflet -ea.c~lock of 256 bytes ines of data), the program
stops and expecfss:n--f.L11J1U::1:.-c:lrar.ac_ter~.- Typing an 'F' will cause
the display t e Forward, printin.1f "the next:- ·sequ~n~-a.l.__256
byt ping a 'B' will move Backwards, printing the previ0\l'9-
256 byte block. A carriage return will return control to FLEX.
All other characters are ignored. An example follows:

+++MEMDUMP,AOO

This would cause memory to be dumped starting at location hex
OAOO. The hex and ASCII representations are displayed •

..

-M. 4. 1-

MEMOVE

The MEMOVE command will move any block of memory to any other
specified memory location.

DESCRIPTION

The general syntax of the MEMOVE command is:

MEMOVE,<start address>,<end address>,<destination>

where all addresses are specified in hex. The start and end
addresses specify the bounds of the block of memory to be moved,
and the destination address designates the location to where it
should be moved. An example follows:

+++MEMOVE,400,4FF,1A00

This command line would cause the block of memory from location
hex 400 through hex 4FF to be moved to location hex lAOO. The
data which was from 400 through 4FF will now exist from lAOO to
lAFF. The original block of data is left unchanged •

•

-M.5.1-

i .

OLOAD

The OLOAD command is used to load a binary file into memory with
a specified offset address. No code is modified during the load.
This utility is useful for PROM programming applications.

DESCRIPTION

The general syntax of the OLOAD command is:

OLOAD,<file spec>[,<offset>]

~here the file spec defaults to a BIN extension and to the
working drive. The optional offset is a hex value which is to be
added to the normal load address. If the offset is not
specified, it is assumed zero w~ich causes OLOAD to act exactly
like the GET command. The offset addition will wrap around the
end address of $FFFF. As an example, if a file normally loaded
at location $6000, and an offset of $AOOO was specified, the file
would be loaded at $0000. An example of the OLOAD command
follows:

+++OLOAD,XDATA,2000

This would cause the file named XDATA.BIN to be loaded into
memory offset by $2000 from its normal load address. If XDATA
normally resided at $0100, the new location would be $2100.
Remember that no code is modified, so unless the binary file is
relocatable code, it will not run in its new location.

-0.2.1-

C

•

PRUL

The PRUL command is used to translate upper case only Text
Processor files (those containing the 'cap' @ and ~
capitilization characters) into upper and lower case files. This
is useful for converting old formatted text files.

DESCRIPTION

The general syntax of the PRUL command is:

PRUL,<input file spec>,<output file spec>

where the file specs default to TXT extensions and to the working
drive. The name given to the output file must not already exist.
The input file is read and all letters are converted to lower
case unless preceeded by an at-sign (@) or if surrounded by
up-arrows (-). These are the same rules the Text Processor
follows while in the capitalization mode. An example follows:

+++PRUL,BOOKREV,BOOKREVL

This command line would cause the file named BOOKREV.TXT to be
read, the appropriate translation performed, and written back out
to a file named BOOKREVL.TXT. The original file is left
unchanged •

-P.4.1-

PDEL

The PDEL command is a prompting delete utility. Either all files
or only files matching a specified match list are displayed by
name, one at a time, giving the option of deleting the file or
keeping it. This command is very convenient for quickly removing
a lot of no longer needed files from a disk.

DESCRIPTION

The general syntax of the PDEL command is:

PDEL[,<drive list>) [,<match list>)

where drive list and match list are the same as described in the
CAT command. Upon execution of PDEL, each file name will be
printed at the terminal with the question of deleting it:

DELETE "FILE"?

At this time three responses are valid. If a 'N' is typed, the
file will be left intact and the next name will be displayed. If
a 'Y' is typed, that file will be de~eted. This utility DOES NOT
ask if you are sure you want the file deleted, so make sure the
first time! A carriage return may also be typed in response to
the prompt at which time control will return back to FLEX. An
example follows:

+++PDEL, 1, .TXT

This command line would cause each file on drive 1 which has a
TXT extension to be displayed and the delete option offered.
Remember that once 'Y' has been typed to the prompt, that file is
gone forever!

-P.5.1-

...
·.-~; ... ~-

(.

REPLACE

The REPLACE command will effectively replace one file on a disk
by another, deleting the first file. This command is simply a
time saver.

DESCRIPTION

The general syntax of the REPLACE command is:

REPLACE,<file spec l>,<file spec 2>

where file spec 1 is the name
spec 2 will be renamed to that
default to a TXT extension
command has the same affect as

+++DELETE,FILEl
+++RENAME,FILE2,FILE1

of the file to be deleted and file
of file spec 1. The file specs

and to the working drive. This
the two command sequence:

which effectively replaces FILEl with FILE2.
performed with REPLACE as follows:

This can be

•

+++REPLACE,FILE1,FILE2

which will cause FILEl.TXT to be deleted and FILE2.TXT to be
renamed FILEl.TXT •

RPT

The RPT command allows a command line to be repeatedly executed a
specified number of times. This can be useful in diagnostic or
demonstration applications.

DESCRIPTION

The general syntax of the RPT command is:

RPT,<repeat count>,<any command line>

where repeat count specifies the number of times the following
command line should be executed. The command line may contain
any FLEX utility except RPT and may also contain multiple
commands by using the TTYSET End of Line character. An example
follows:

•

+++RPT,6,LIST,BOOK4

This line would cause the file
Simple repeated demonstrations may
command.

f Pr 1 r QI

-'R • ~. 1 -

BOOK4 to be listed 6 times.
be set up using the RPT

f O ~ F.J!rl/b 11 r-, we,, hl-,.., n ~--,
J,,,,, l,.t.ri

REMSPC

The REMSPC command will remove
file. This is a useful utility for
space reduction.

DESCRIPTION

all excess spaces from a text
file conversions and file

The general syntax of the REMSPC command is:

REMSPC,<input file spec>,<output file spec>

where the file specs default to a TXT extension and to the
working drive. The input file is the file to be processed and
the output file name must not already exist on the disk. REMSPC
will convert all occurences of two or more spaces into a single
space unless the line starts with an asterisk(*) in column 1 (a
comment line). These comment lines are passed unmodified to the
output file. An example of using REMSPC follows:

+++REMSPC,S0URCE,SOURCE2

This would cause the file named SOURCE.TXT to be read from the
working drive, all excess spaces removed, and written back to a
file named S0URCE2.TXT on the working drive.

-R.4.1-

RECOVER

The RECOVER command allows the recovery of a file from a disk
whose directory has been damaged. It is necessary to know the
starting disk address of the file to be recovered.

DESCRIPTION

The general syntax of the RECOVER command is:

RECOVER,<disk address>,<file spec>

where the file spec defaults to a TXT extension and is forced to
drive O. The bad disk must be in drive 1 and the good disk in
drive O. The disk address is specified as a 4 digit hex number,
such that the address track 3, sector 10, would be specified as
030A. This routine starts reading the file on drive 1 at the
specified address and copies it into a file on drive O giving it
the designated name. An example follows:

+++RECOVER,1103,INVEN

This would start reading data from drive 1 at track 17 {hex 11),
sector 3, and copy it into a file named INVEN.TXT on drive O.
This process continues until an end of file is encountered.

-R.5.1-

,.::.-::.

SPLIT

The SPLIT command is used to split a text file into two new files
at a specified line number. It is convenient to use when a file
becomes too large to easily manage or to break off an often used
section of text into another file.

DESCRIPTION

The general syntax of the SPLIT command is:

SPLIT,<input file spec>,<out file specl>,<out file spec2>,<N>

The input file is the file to be split, output file spec 1 is the
name to be assigned to the first set of lines read from the input
file, output spec 2 is the name to be assigned to the rest of the
file being split, and N is the line number where the file should
be split. The second output file will begin with line N of the
input file. All files default to TXT extensions and to the
working drive. An example follows:

+++SPLIT,TEST,TEST1,TEST2,125

This command line would cause lines 1 to 124 of the file named
TEST.TXT on the working drive to be written into a file named
TESTl.TXT and lines 125 to the end of the file to be written into
a file named TEST2.TXT. The original file (TEST) remains
unchanged.

-s.4.1-

SLEEP

The SLEEP command is used to eat up time. It is handy to use in
special applications in a EXEC command file.

DESCRIPTION

The general syntax of the SLEEP command is:

SLEEP,N

where N is the number of seconds the system is to ''sleep". It
should be noted that large values of N (greater than 15) may not
timeout exactly. Once the SLEEP command is executed, it cannot
be interrupted. You must wait for the entire time period
specified. An example will demor.strate SLEEP's use.

+++SLEEP,10

This command line would cause the system to lockup or sleep for
approximately 10 seconds •

•

-s.4.1-

TYPOS

The TYPOS utility is used for grouping
used in a text file. It is a great aid in
words and typographical errors, as well as
used words in a document.

DESCRIPTION

The general syntax of the TYPOS command is:

TYPOS,<file spec>[,<count>]

and counting all words
detecting misspelled

pointing out too often

where <count> specifies the highest word use count to be listed
in the final word list. The file spec defaults to a TXT
extension and to the working drive. If the count is not
specified, the default will be 3, so words appearing three times
or less will be listed. All letters are mapped to lower case so
words like 'Test' and 'test' would be considered identical. The
final word list is printed with each word preceeded by its
occurence count and the word in lower case letters. The more
often used words are printed first. Following are a few
examples.

+++TYPOS,CHAPTERl
+++TYPOS,BOOK,50

The first example would print all words occuring three times or
less found in the file named CHAPTERl.TXT on the working drive.
The second example would print all words occuring 50 times or
less in the file BOOK.TXT. It should be noted that on long

• files, TYPOS may require a moderate amount of time to compile the
list of words.

-r.2.1-

TEST

The TEST command is used for testing all sectors on a diskette.
Any bad sectors found will be reported to the terminal.

DESCRIPTION·

The general syntax of the TEST command is:

TEST[,<drive number>]

where the drive number specifies which disk is to be tested and
defaults to the working drive. Any sectors found to be bad
during the test are reported to the terminal in the form of two
hex numbers, the first representing the track number, the second
is the sector. An example follows:

+++TEST,0

This will test the diskette in drive O for bad sectors. It
should be noted that TEST requires a moderat amount of time to
run since all data on the disk is read.

-T.3.1-

MEMFILL

The MEMFILL command is used to fill a section of memory with a
particular data pattern. This is useful for certain types of
program debugging and development.

DESCRIPTION

The general syntax of the MEMFILL command is:

MEMFILL,<start address>,<end address>,<fill byte>

The addresses should be specified in hex. The fill byte is the
hex value (8 bit) which will be used to fill memory between the
address bounds designated. If the fill byte is left off the
command line, zeroes will be used. Upon completion, control will
return to FLEX unless it has been overwritten by the command. An
example follows:

+++MEMFILL,O,lFFF,55

This would fill memory from location O through location hex lFFF
with hex 55 bytes. Remember not to overwrite the program when
specifying the address bounds.

-T.6.1-

•

UP-LOW

The UP-LOW command is used to convert a file into all lower case
letters. It is useful for those systems unable to - work with
upper case letters or to make a file easier to read.

DESCRIPTION

The general syntax of the UP-LOW command is:

UP-LOW,<input file spec>,<output file spec>

The input file spec specifies the name of the file needing the
conversion, and the output file spec specifies the file name of
the new converted file. Both default to a TXT extension and to
the working drive. The new file will end up containing only
lower case letters and the original file will be left unchanged.
An example follows:

•

+++UP-LOW,TEXTA,TEXTAL

This would cause a file named TEXTAL.TXT to be created which is
identical to the file named TEXTA.TXT except all letters will be
lower case •

-u.1.1-

•

~ -

WORDS

The WORDS utility is used to get a total word and line count of a
text file. It is very useful in document and report preparation
in keeping track of the size of the file.

DESCRIPTION

The general syntax of the WORDS command is:

WORDS,<file spec>

where the file spec defaults to a TXT extension and to the
working drive. Upon execution, WORDS will read the file
specified, count all words and lines, and then report the totals
to the terminal. A word is considered to be any group of
characters separated by either spaces or carriage returns. An
example will demonstrate the use of WORDS.

+++WORDS,CHAPTERl

This command line would cause all of the words of the file named
CHAPTERl.TXT on the working drive to be counted and the totals
diplayed on the terminal •

