COPYRIGHT © 1978 BY
Technical Systems Consultants, Inc.
P.O. Box 2574
West Lafayette, Indiana 47906
All Rights Reserved

FILEFAT EZ-EZ-84 FAGE 1
FILEFAT UTILITY 26/05/80

FHHERHEEHR KT EEEREEEREERERERFRERRRHREFRE TR LR R H R R H R H R H W RN R R R R
¢ WARNING

b

THIS UTILITY IS MEANT TO BE USED RY EXFERIENCED FPROGRAMMERS ONLY
WHO ENOW THE LAYOUT AND DESCRIFTION OF A DISE FILE AND RECORD.
FATCHING THE WRONG BYTE OF DATA OR FLEX CONTROL INFORMATION CAN
LEAD TO THE DESTRUCTION OF THE FROGRAM BEING FATCHED. REFER TO THE
" FLEX FROGRAMMER 'S MANUAL ", FAGES 44 AND 45 FOR THE DESCRIFTIONS
OF DATA SECTORS ON DISE, AS WELL AS DESCRIFTION OF A RINARY FILE.
THIS FROGRAM WILL PATCH THE FILE EVEN IF IT IS WRITE FROTECTED.
F e Y B H W T I NI I WK IR NI N TR I H R W RN H AR R WK H

% ok ok k ok Kk ok kK
¥ k k ok k k k k ok

THE "FILEFAT" COMMAND ALLOWS FATCHING OF ANY TYFE OF FILE ON A FLEX 9.0
DISKETTE. EVEN THE ROOTSTRAF LOADER AND THE DISEETTE DIRECTORY.

DESCRIFTION

THE GENERAL SYNTAX OF THE COMMAND I8:
FILEFAT,<FILESFEC: OR FILEFAT

WHERE <FILESFEC: I8 THE NAME OF THE FILE T0O RE FATCHED.

ONCE THE COMMAND HAS RBEEN ENTERED.THE FROGRAM WILL PROMFT YOU FOR
A RELATIVE SECTOR NUMBER. THE RELATIVE SECTOR NUMBRER IS5 A HEXADECIMAL
VALLUE FROM @@ TO FF, WHICH TELL THE PROGRAM WHICH SECTOR IN THE RECGUESTED
FILE WILL BE FATCHED, REGARDLESS OF WHERE ON THE DISE
IT 185 LOCATED. TO DETERMINE THE RELATIVE SECTOR NUMBER.USE THE “DUMP’
UTILITY TO FIND THE DATA TO BE FATCHED, AND THEN COUNT THE SECTORS FROM
THE BEGINNING OF THE FILE, IN HEX, STARTING WITH SECTOR @B, UNTIL. YOU
REACH THE SECTOR CONTAINING THE DATA TO BE FATCHED. THIS WILL THEN ERE
THE RSN TO BE USED IN THE COMMAND.

ENTER FUNCTION C,D,F.R,V,8 OR 7

THE USER CAN THEN USE ANY OF THE FOLLOWING FUNCTIONS TO MAKE FATCHES TO
THE DATA READ FROM THAT SECTOR:

DISFLAY DATA

DISFLAY COMFLETE SECTOR

REFLACE DATA IN BUFFER

VERIFY IF EXISTING DATA IS CORRECT

CANCEL FPROGRAM NO DATA I8 WRITTEN TO DISE.
SAVE NEW DATA TO DISE

HELF DISFLAYS FROGRAM OFTIONS

I GC D TD

THE DESIRED LETTER., PLUS ANY REGUIRED FARAMETERS ARE THEN ENTERED,
FOLLOWED RBY A CR . ONLY ONE FUNCTION FER LINE IS FERMITTED, SINCE THE

FILEFAT H-E-84 FAGE =

FLEX LINE BUFFER IS BEING USED, AND IT IS CLEARED AT THE END OF EACH
FUNCTION EXECUTED. AFTER THE D,F.R OR V FUNCTIONS, THE FROGRAM WILL GO
BACE TO THE INITIAL FROMFT "ENTER FUNCTION" . AFTER THE & OR C
FUNCTION, A MESSAGE WILL BE OQUTFUT ASKING YOU IF YOU WANT TO FATCH
ANOTHER SECTOR. ANSWER "Y' OR ‘N’ DEFENDING IF °"YES® OR 'NO°. IF YOU
ANSWER "N, THEN THE FROGRAM TERMINATES AND RETURNS TO FLEX.

THE FOLLOWING EXAMFLES OF ALL FUNCTIONS REFER TO THE FILE ASME.CMD
FILE, SINCE ALL USERS 0OF FLEX 9.@ HAVE IT, RECAUSE IT WAS SUFFLIED BY
TSC AS FART OF FLEX 2.0.

BREFORE ATTEMFTING ANY FATCHES FOR THE FURFOSE OF LEARNING HOW TO USE
THIS FROGRAM, MAKE SURE THAT YOU HAVE A SFARE COFY OF ASMEBR.CMD ON A
SEFARATE DISK. [N CASE YOU INADVERTENTLY FATCH SOME WRONG DATA IN THE
FROGRAM, AND IT NO LONGER WORKS. AL EXAMFLES GIVEN REFER TO
ASMR.CMD. @ "RBN’ BF.

FILERAT , ASME.CMD. @
DCISFLAY) FUNCTION

SYNTAX:
D(,<ADDR>) (,«BTCT =)
WHERE D= DISFLLAY FUNCTION
ADDR = ADDRESS OF DATA WITHIN THE SECTOR, WITHIN A RANGE

OF 82 TO FF IN HEX. DEFAULT VALUE IS @@.
BTCT = BYTE COUNT, NUMBER OF BYTES, IM HEX, TO BE DISFLAYED.

THE DEFAULT VALUE 18 16 (HEX 1@).
EXAMFLE 1z
D (CR) (DEFAULTS TO ADDRESS=0@,BYTECOUNT=HEX 1@)
@@ @BF @A B 10 AC 11 DE. 45 FF AC 14 CE AB 4@ 86 U1 Enwowe @..
THIS WILL DISFLAY 16 RYTES OF DATA FOLLOWED RY THE ASCII EGUIVALENTS.
IF THERE IS NO ASCII EQUIVALENT, A FERIOD (.) IS FPRINTED. IF YOU TRY
THIS ON YOUR SYSTEM WITH THE ASME.CHMD.® FILE YOU WILL FIND THAT THE
FIRST 2 BYTES ARE DIFFERENT, SINCE THESE REFER TO THE TRACEK AND SECTOR
OF THE NEXT SECTOR IN THE FILE., AND FROERAELY THEY ARE NOT THE SAME AS
MINE. THE REST OF THE DATA SHOULD BE IDENTICAL.
EXAMFLE Z:
D,3C.2

0 B 97

THIS WILL DISFLAY 2 RBYTES OF DATA STARTING AT ADDRESS HEX EC IN THE
SECTOR.

- FILERAT H-E-B4 FAGE =

EXAMFLE 3a

D, 42,57

42 @6 ED @6 99 SO 26 FA CE B0 DI BD @6 8A BD @5 27 vveeZ®ueennarns’
52 96 47 26 08 CE 11 5D BD Q6 8A 20 I3 7F @0 45 B6 .G¥%... ... 3 .E.
6% AC OF 81 B9 22 03 BD B2 86 B6 AC 0F 10 F1 FF BE wvereennennaans
72 81 @9 22 06 BD @02 @6 .."....

ANY ATTEMFT TO DISFLAY DATA FAST THE SBECTOR LIMIT OF FF WILL RESULT IN
TRUNCATION OF THE DATA DISFLAYED TO FEEF IT WITHIN THE DESIRED SECTOR.

IT SGHOULD BE REMEMBERED THAT THE DATA IS8 BEING DISFLAYED FROM THE
SECTOR BUFFER IN THE FCE AND NOT DIRECTLY FROM DISKE. AFTER CHANGES ARE
MADE TO THE SECTOR BUFFER., THE FINAL COFPY WILL BE WRITTEN BACK TO DISE
WITH THE S(AVE) FUNCTION.

FORINTY FUNCTION
SYNTAX
Fl

NO ADDITIONAL FARAMETERS ARE REBUIRED. IT WILL DISFLAY THE CURRENT
CONTENTSE OF THE SECTOR BUFFER IN 16 LINES OF 16 BYTES FER LINE, FLUS
THE ASCIT TRANSLATARLE DATA. THIS I8 USEFUL FOR FINDING THE DATA TO BE
FATCHED, A5 WELL A8 CHECKING THE DATA, AFTER THE FATCH IS5 DONE., BUT
BEFORE IT IS WRITTEN BACE T0 DISk, TO MARE SURE THE FATCH WAS DOME
CORRECTLY.

R{EFLACE) FUNCTION
SYMTAX:
RL<ADDRE: < DATAL X (L EDATAZ) (,1DATAI:) (LLDATANX) ETC.

WHERE R = THE REFPLACE DATA FUNCTION
ADRDDR = ADDRESS, 1IN HEX OF THE START ADDRESS OF THE BYTES TO

BE REFLACED, WITHIM THE RANGE OF @@ TO FF. ARND

HAVING A DEFAULT VALUE OF 08
DATAL = ONE BYTE OF HEX DATA TO BE FPATCHED.
EACH BYTE MUST BE 2 CHARACTERS IN THE RANGE OF 8 TO 9 OR A TO F. EACH
ADDITIONAL BRYTE MUST BE SEFARATED FROM THE FREVIOUS ONME RY A 8SFACE OR
COMMA (L) . THE MAXIFUM NUMRBER OF BYTES THAT CAM BE REFLACED IS LIMITED
TO 4@ BYTES FER LINE.

AFTER THE DATA I8 ENTERED.FOLLOWED RY A CR, THE FROGRAM WILL OUTPUT THE
START ADDRESE AND THE OLD DATA THAT I8 BEING REFPLACED.AT THIS TIME IT
WILL ASKE IF THAT IS5 WHAT YOU WANT TO REFLACE., WITH THE QUESTION,

Z-E-84 FAGE 4

CYERIFY OR7P"
IF YOU ARE SURE YOU WANT TO REFLACE THE OLD DATA, ANSWER "Y" AND A CR.

AT THIS FOINT THE PROGRAM WILL OUTHUT THE NEW DATA THAT HAS BEEN FUT IN
THE SECTOR BUFFER. AND GO BACE TO THE MAIN FROMFT:

ENTER FUNCTION C.D,F,.R,V.8 OR 7

IF YOU HAVE DECIDED THAT YOU DID NOT WANT TO MAKE THE CHANGE, WHEN THE
FROMET "VERIFY ORE?" IS QUTFUT, YOU CAN ANSWER WITH AN "R" AND & CR, OR
SIMFLY A& CR. AND NO DATA WILL BE UHANGED IN THE SECTOR BUFFER.

YOU MAY MAKE MULTIFLE FPATCHES TO THE SaME BECTOR. ALL CHANGES ARE MADE
IN G THE SECTOR RBUFFER OMLY aAND NOT ON THE DISBE UNTIL YOU USE THE "&"
FUNCTION TO RE-WRITE THE CONTENTS OF THE SECTOR BUFFER BACE TO DISK.

VHERIFY) FUNCTIONM
SYMTAX:
WL ADDRE . DATAL X (LIDATAZ) (L, 2DATAZ:Y ETC.
WHERE V= VERIFY FUNCTION

ADDR ADDRESS OF FIRST BYTE T BE CHECHED

DATHL DATA YOU EXFECT TO BE AT THE ADDRESS YOU SFECIFIED.ANY
FOLLOWING BYTES MUST RBE SEFARATED RBY A SPFACE OR A COMMA (.).

i

IF THE DATA EXACTLLY MATCHES, THE PROGRAM WILL GQUTFUT "DATAH VERIFIES
Ok . AND WILL RETURN TO THE MAIN FROMPT. '

IF THE DATAE DOES NOT MATCH., THE PFROGRaM WILL OQUTRUT "DATA DOES WNOT
VERIFY" ., AlMD THE FROGRAF WILL TERMINATE.

THE FRIMIIFAL USE OF THIS FUNCTION I8 FOR O USE WITH AN INFUT FILE
CONTAINING FATCH DATA. N THIS CaAsE, YOU WIULD I8S8UE THE VERIFY
FUNCTION RBEFORE THE R FUNCTIOM, TO MAEE SURE THAT THE CORRECT DATA I8
BEING REFLACED., AND IF IT VERIFIES OF, THE REFLACE WILL BE DONE. IF IT
DOES NOT VERIFY, SOMEHOW THE DATA THAT YOU EXFECTED TO RBE THERE IS NOT
THERE (YOU MAY BE AT THE WRONG SECTOR OR WROMNE ADDRESS, OR A FATCH HAS
ALREADY BEEM MADE THERE) AND THE FATCH IS5 ARORTED A&T THIS TIME., 70O
FREVEMT FATCHING OF THE WREUONMG DATA.

EXAMPLE 1

VL.80,20 WILL VERIFY THAT THE BYTE AT ADDRESS
HizX 8@ 18 A "ZD°

i
=
31}
i
3
N
i
B 5 %

WILiL CHANGE THE RYTE AT ALDDRESS
HEX 8@ FROM 2D TO "&F .

C

FILEFAT HZ-3-84 FAGE O

4

IF THE BYTE AT HEX 8@ HAD MOT BEEN A "ZD° THE FATCH WOULD NOT BE MADE,
AND THE PROGRAM WOULD RETURN TO FLEX.

SAVE) FUNCTION
EYNTHAZ:

5

WHERE S WILL 8AVE THE CONTENTS OF THE SECTOR BUFFER TO DISKEETTE.
OVERLAYING THE ORIGINAL SECTOR., AND VERIFYING THAT IT HAS BEEN WRITTEN
BACKE CORRECTLY; (NO DISE WRITE ERRORS).

A MESSAGE WILL BE QUTFUT GIVING THE STATUS OF THS SAVE OFERATION, AND
THE FROGRAM WILL ABE YOU IF YOU IF YOU WANT TO PATCH ANOTHER SECTOR.

COANCELY FUNCTION
EYNTAX:
e
WHERE C WILL CAMCEL THE PROGRAM WITHOUT WRITING ANYTHING TO DISk. ISSUE
AN ARORT MESSSGE, AND FROMPT YOU FOR ANOTHER SECTOR TO BE FATCHED.

TOHELF FUMCT IOM

THISE FUNCTION WILL FPRINT GUT ON YOUR TERMINAL & BRIEF DESCRIFTION AND
SYNTAX OF all OF THE AROVE FUNCTIONS., IN CASE YOU FORGOT WHAT THE
THMDIVIDUAL LETTERS MEANT., AND YOU DON'T WANT T0O LOOE THEM UF IN THE
DOCUMEMTAT ECN .

EXAMFLES
THE FOLLOWING EXAMFLES ARE SURFLIED FOR USING THE FILEFAT UTILITY,
USING aN INFUT TEXT FILE FOR INFUT RATHER THAN FROM THE TERMINAL.

FATOCHL. TXT CONTAINS DATA TO PATCH ASMR.CHMD.® FILE TO CHANGE THE DATE
FRINTOUT FROM MM-DD-YY T0 MM/7DD/YY.

FATOHZ. TXT Wikl REVERSE THE FATCHIL FROCEDURE TO PUT IT BACK THE Way IT

“WHs.

T EXECUTE THESE FATCOHES, ENTER THE FOLLOWING COMMAND:

FLLEFAT R = L FOGE &

(F . DL FATCHL S FILERFAT ABME. CHD. @

THE (F,) IS OFTIONMAL: IT WILL DIRECT ALL OUTFUT TO THE SYSTEM FRINTER,
S50 ¥YOU COULD EEEF A FERMANENT RECORD OF THE FATCH. IF YOU WANT TO RUN
FATCHZ 70 CHANGE THE DATE FORMAT BACE FROM MM/DD/YY TO MM-DD-YY., THEM
ENTER THE FOLLOWING COMMAND:

FL) ITLFATCHZ JFILEFAT ,ASME.CHMD. @

FILEFAT I8 & CMD FILE OM THE SYSTEM DRIVE.
ASHMEB.CMD IS5 A CMD FILE ON THE SYSTEM DRIVE.
1 I8 A LCMD FILE ONM THE SYSTEM DRIVE.

FATCHL I8 & JTXT FILE ONM THE WORE DRIVE.
FATCHZ I8 & JTXT FILE ON THE WORE DRIVE.

WHEN MAEING UF YOUR OWN FATCH FILES.YOU MAY USE THE "BUILD S UTILITY., OR
THE TEXT EDITOR. MAKE URP THE FILE EXACTLY A58 YOU WOULD ENTER THE
RESFONSES FROM A& TERMINAL.

THE SEGUENCE SHOWULLD RE:

1. SECTOR NUMRBER 10O BE FATCHED.

2. VERIFY THE DATA TO BE FATCHED.

SZ. REFLACE THE DATH

4. Y (ANSWER TOU VERIFY OK7?)

S. HERE YOU May REFEAT 2,3,4 USING DIFFERENT DATA. AS LONG AS IN THE
SAME SECTOR. YOU MAay ALS0 USE THE D OR F FUNCTIONS IF YOU WANT A
FRINTOUT OF THE RESULTS, TO SAVE FOR YOUR RECORDS OF FATCHES DONE.

&. 5 (BAVE CONTENTS OF SECTOR RBUFFER TO DISE)

7. N (ANSWER TO ‘DO YOU WANT TO FATCH ANOTHER SECTORT) IF YOU WANT TO
FATCH ANOTHER SECTOR AT THIS FOINT, ANSWER Y TO THE GUESTION, AND GO
EACE TO ITEM 1 GIVING NMEW SECTOR NUMBER, ETC. THE LAST ENTRY IN YOUR
FILE MUST BE A "N’ TO TERMINATE THE FROGRAM AND RETURN TO FLEX.

NOTE: YOU MAY ADD YOUR OWN COMMENTS IN THE FATCH FILE AFTER THE
COMMAND ,FOR DOCUMENTATION FURFOSES. THE COMMAND SHOULD RE
FOLLOWED BY A SFACE, A SEMI-COLON, AND THEN YOUR COMMENTS.

TAILORING TO YOUR SYSTEM.

THERE ARE TWO VARIABLES YOU MAY WANT TO CHANGE IN THE FPROGRAM,
DEFENDING ON YOUR FARTICULAR TERMINAL. ONE WILL LET YOU SET THE SIZE
OF THE DISFLAY TO FIT EITHER A 64 CHARACTER CRT OR TERMINAL ,OR YOU CAN
BET THE SWITCH UF FOR USE ON 72 CHARACTER TERMINALS OR LARGER. THIS I8
DONE SIMFLY RY EDITING THE SOURCE FROGRAM, AND CHANGING THE VALUE OF
THE FCR AT LAREL ‘CRTSW’ A5 FOLLOWS:

CRTSW FCE @0 FOR TERMINALS OF LESS THAN 72 CHARACTERS. ;
CRTSW FCR 72 FOR ANY TERMINALS EGUAL OR GREATER THAN 72 CHARACTERS FER

FILEFAT AZ-i-84 FAGE 7

LINE.

THE SECOND VARIARBLE IS5 THE START ADDRESS OF THE FROGRAM WHICH NOW IS
ORG'ED AT $#0080@. YOU MAY WANT IT AT SOME OTHER ADDRESS. 80 JUST CHANGE
THE "ORG’ STATEMENT AND RE-ASEMELE THE FROGRAM. DO NOT ATTEMF TO "ORG’
IT AT A1 SINCE IT WILL NOT FIT IN FLEX UTILITY COMMAND SFACE.

THIS IS AN ORIGINAL FROGRAM WRITTEN RY

MILAN HEONECNY

19% CHAFLEAU AVE
DOLLARD-DES-ORMEAUX
F.G. CANADA

HPG 1C=

FOR USE RY “68° MICRO JOURNAL MAGASINE. AN EARLIER VERSION HAS EBEEN
DISTRIBUTED RY THE °‘FLEX USERS® GROUF NEWSLETTER ON A FREE BASIS .

THE AUTHOR WISHES TO HEAR FROM ANY USERS OF THIS FROGRAM AS TO
SUGGESTIONS FOR IMFROVEMENT ., OR ANY OTHER COMMENTS. AND WILL BE WILLING
TO SUFFLY THE FROGRAM AS SOURCE CODE ON STANDARD 5.25 INCH FLEX 9.0
DISEETTES TO THOSE WHO SEND ME A RLANE DISKETTE FLUS #2.00 FOR FPOSTAGE

47

CONTENTS
I. Volume 1 IV. Volume 4
FIND =~ Fiwo hrrvires w'rwzrrm..',> FILES - b&t/r Frevrémes o Dinecrény
« WORDS =~ fvunt ¢4\'0h011w Frof PRUL - Xxlery L"/c TEXT Inecerion Frees fpre "‘""\'/c
* TYPOS-Ga""'IP‘ x'c"!l'rWﬁ Wen psr DATE o= D"’“’W ._/"_ JYI’I_-H Dﬁﬁ
“ SPLIT ~fruirwane ¢ Frev /ore TR RPT - Wite exronre 2 Con 9...9 «r#rfT«L..«, Uff, e Hene
LOW-UP-tonmrent FILE daTp W/C . ECHO ~ Eche #CU Srppueyr pr Fave FILis T9 TERAIINMNA
UP-LOW-~ *t “ w o ble HECHO - 47 #00e% Bug (ptl, CIMTROL CHARALIYNS
11. Volume 2 _ V. Volume 5

DUMP - Free (Ifecr éreTrme) ip Hea< /@1 FLIST —186rF FORNETTED ~ LIST wriy ry
OLOAD — L0A® BIN, FILF w.lrrty OrF/rTBIPNgPDEL -~ FROMPTI A4 BFLITE WTNLIMY fin CL¥8rMmm D12
CHECK - conrpnr 2 tsARmEILET 0~ D"‘[r'""“")SLEEP - HILP (t~mlenTon FIR O Jee'S,
CMPMEM - ™ Brw Fler OADIJNTo nrn'y REMSPC -MNemtve bxepss L AcES FRem TrrrhAcy
FILTYP ~Perrrnraes Frov ExTemsi0a- CONCAT — LIST- | Conm E BT TY FILES
* DUP - Usr Frex vénte of [DINCTHATARY CONTTN - flome s baa Y ~ a7 T8 lomTrimm s £028
AT Pweviennre an Lt~ DIIA, bytre freesl.

IT1I. Volume 3 VI. Volume 6

MAP —FHews LoGD 9‘”"""‘“"'*"‘F"LWE.INTEG - TE/T Fa¥r JP8cd op PITIC.

DIR - DI/ DIRFLrensy RECOVER — R¥C. pree From bise. IF- PIA'Y PEMAGYD .
INSTALL-Rewvern ¢ BIAEILE g ,6Hp , MEMTEST - M Mo Porren o TET (15 /4K PLock
FREE —RéronT HeFfeev Soerinsgp D10/, MEMDUMP - P127v81 PoATIem s IMCMO AT

REPLACE — RYPOCEF | FILF Wwirn AretHP \MEMOVE ~ M€ BLici €/ Femnsra 1o /KM Lotr-TICA

= "
TEST ~ TEIT Ot Setrons 12 DIt A MEMFILL - Fivv Fev'von Aensny swven o 2000 L0010

=jperere, Five |

, .;ym-,fl Free 2, Froel
L fLervker F:u’l' Ft “’1,

I. Volume 1

FIND
WORDS
TYPOS
SPLIT
LOW-UP
UP-LOW

1I. Volume 2

DUMP
OLOAD
CHECK
CMPMEM
FILTYP
DUP

I1I. Volume 3

MAP

DIR
INSTALL
FREE
REPLACE
TEST

Fleen

CONTENTS

IV. Volume &

FILES
PRUL
DATE
RPT
ECHO
HECHO

V. Volume S

FLIST
PDEL
SLEEP
REMSPC
CONCAT
CONTIN

YI. Volume 6

INTEG
RECOVER
MEMTEST
MEMDUMP
MEMOVE
MEMFILL

,Q,u(n/.) ReErlichLey

BASEREF

BASREF — A BASIC Cross Reference Program

This program is designed to provide the BASIC user
with additional information, besides the listing of the
program, to write or make changes to his files. The output
of the program lists each line number in the BASIC program
and each line number that referenced that 1line, possibly
with a 6070 or GOSUB instruction. Additionally, all
variables are printed, along with the 1line number that
referenced them. .

The systax is:

BASEREF <DRV.NU. >XFILENAME> or
P BASEREF <DRV.NU. ><FILENAME> for a hard—-copy printout.

The default extension is .BAS.

Copyright 1981 by Dick Bartholomew
and Frank Hogg Laboratory, Inc.

- B.5.1 -

CHECK

The CHECK utility is used to compare two disk files. The reult
of the comparison will be reported to the terminal.

DESCRIPTION

The general syntax of the CHECK command is:
CHECK,<file spec 1>,<file spec 2>

where the file specs default to a TXT extension and to the
working drive. File one will be read and compared against file
two one character at a time. The files may be text or binary
type files. The result of the comparison will be reported to the
terminal (files are identical or not). An example follows:

+++CHECK,REPORT1,REPORT2

This command line would cause the file named REPORT1.TXT on the
working drive to be compared to the file named REPORT2.TXT.

"C-3¢ 1-

CMPMEM

The CMPMEM command compares the contents of a binary file on the
disk to the contents of memory where it should be 1loaded. This
is useful for program debugging and memory problem detection.

DESCRIPTION
The general syntax of the CMPMEM command is:
CMPMEM,<file spec>

where the file spec defaults to a BIN extension and to the
working drive. The file specified will be read just as if it
were to be loaded 1into memory, but instead, each byte will be
compared to what already exists in memory. If any differences
are found, they will be printed out as the address, followed by
the data in memory at that location, followed by the data from
the disk file. All differences will be printed on the output
device. An example follows:

+++CMPMEM, FENCE

This would cause the file named FENCE.BIN on the working drive to

- be read and compared to the actual memory contents throughout the

load address range of the file.

-Colin 1-

CONCAT

The CONCAT command allows the 1listing and concatenation of
several files. The files will be listed to the output device
(file if the O command is used), one after the other.
DESCRIPTION
The general syntax of the CONCAT command is:
CONCAT,<file spec 1list>
where the file spec 1list 1is a 1list of file specifications
separated by commas. The file specs will default to a TXT
extension and to the working drive. An example follows:
4+++CONCAT, CHAPT1,CHAPT2,CHAPT3,CHAPT4
This will display the contents of the files CHAPTI.TXT,

CHAPT2.TXT, CHAPT3.TXT, and CHAPT4.TXT, one after the other on
the terminal.

-COSDI-

CONTIN

The CONTIN command is intended for use in repeating or complex
EXEC command files. It prompts the terminal for a YES or NO
response for continuing the files execution.

DESCRIPTION
The general syntax of the CONTIN command is:
CONTIN

Executing CONTIN will cause the massage “CONTINUE (Y-N)? ‘ to be
displayed on the terminal.. A ‘Y’ response will cause the EXEC
program to execute the next command in the command file. A ‘N’
response will cause FLEX to regain control and the EXEC program
will be halted. This utility is useful for incorporating into
EXEC command files which repeat themselves (by calling itself as
the 1last line of the command file). The CONTIN command provides
a mechanism for escape from this ever repeating type of command
file.

-C-60 1-

DATE

The DATE utility allows the setting and displaying of the system
date register. The date register 1s wused by other FLEX
utilities.

DESCRIPTION
The general syntax of the DATE command is:
DATE[,<date spec>]
where the date spec 1s in the form MM,DD,YY. If the date spec is
left off the command line, the date will ©be displayed on the

terminal. A few examples follow:

+++DATE
+++DATE, 10,6,78

The first example would display the current date on the terminal.
The second example would set the date to ‘October 6, 1978°. One
of the FLEX utilities which make use of the system date register
is the Text Processor.

N A 1.

. DECOMPIL

THE XBASIC DECOMPILER

Syntax: DECOMPIL <DR#>.<FILENAME>L<.EXT>1

The file extension will default to a ?*.BAC” extension
if none is typed}in. When the decompiler asks if you want
to BUILD a disk file, type Y’ if you do and ’N’ if you
don’t. The decompiler will then prompt for a filename of
the program that will be created. The \DEFAULT EXTENSION for
the new file will be a *.BAS’ and DECOMPIL will exit back
to FLEX. if the file already exists, albeit non—
destructively. (DECOMPIL WILL NOT ERASE ANY FILES!).

For a printout, type; P,DECOMPIL,FILENAME.EXT

DECOMPIL will follow all of the TTYSET parameters, so
use them for a neater 1looking printout, as 1line length
generally exceeds the normal 80 characters. DECOMPIL
will, in some cases, put in extra spaces for a better
looking printout. XBASIC will not accept over 127
characters and will give ERROR #51 (ILLEGAL. CHARACTER 1IN
LINE) when vyou ¢try to load a long line. While in XBASIC,
type "LIST" and the last line printed was the 1last 1line
that made it in. You will have to EDIT the created file and
change lines that are greater than 127 characters (remove
spaces, make twe lines out of one, etc).

NOTE... DECOMPIL will take up to 255 characters of .BAC, so
it will decompile longer lines, such as created using the

PRECOMPILER.
DECOMPIL will only decompile T.S.C. XBASIC (EXTENDED

BASIC),and will not work for other BASIC compilers
(including T.5.C. regular BASIC). Also, you should have at

least 16K of work RAM.

Frank Hogg Laboratory, Inc.

- D.4.1 -

DUMP

The DUMP utility is used for dumping the contents of a file, one
sector at a time, in both hex and ASCII characters. It can be
used as a disk debugging aid or to clarify the exact format for
disk files.

DESCRIPTION
The general syntax of the DUMP command is:
DUMP,<file spec>

where <file spec> specifies the file to be dumped and defaults to
a BIN extension. As each sector 1is displayed i1t will be
preceeded by two, 2 digit numbers, the first being the hex wvalue
of the track number, the second being the sector number of the
sector being dumped. Each data line will contain 16 hex digits
representing the data followed by the ASCII representations of
the data. All non-printable characters are displayed as
underscores (_). An example follows:

+++DUMP,FILESS

This would cause the contents of each one of the sectors
contained in the file named FILE55.BIN to be dumped on the output
device.

"D- 3-1-

DUP

The DUP command is used to list the file names contained in one
disk’s directory which are not duplicated in a second disk’s
directory. This is a wuseful wutility for comparing files omn
original disks to those on a backup diskette.

DESCRIPTION
The general syntax of the DUP command is:

DUP,<drive number>,<drive number>
where the disk“s directory in the first drive number specified is
to be compared to the second. The files whixh exist on the first
drive but not on the second will be listed on the output device.
As an example:

+++DUP, 0,1
This would cause all file names which were on the diskette in

drive zero but not on drive one to be 1listed on the output
device.

“D-ICOI-

DIR

The DIR wutility 1is similar to the CAT command but displays all
directory information associated with the file. This command
gives a detailed look at the disk directory.

DESCRIPTION
The general syntax of the DIR command is:
DIR([,<drive list>][,<match list>]

where <drive 1list> and <match list> are the same as described in
the CAT command. Each file name will be 1listed with d1its file
number, starting disk address in hex (track-sector), ending disk
address, and file size in number of sectors. On the larger FLEX
systems, the file creation date and attributes will also be
displayed. At the end of the DIR list, a disk file use summary is
printed, giving the total number of files, the number of sectors
used by those files, the remaining number of sectors (free
sectors), and the size of the largest file found on the disk.
The “file number’ associated with a file represents that files
location in the directory, so the file numbers may not be
consecutive if a lot of files have been deleted from the disk. A
few examples follow:

+++DIR
+++DIR,1,A.T, FR

The first example would list all files on the working drive. The
second example would list only those files on drive 1 whose names
began with “A’ and extensions began with ‘T°, as well as those
¥iles whose names started with “FR’.

"DOSO 1-

ECHO

The ECHO command is a very useful utility for incorporation into
EXEC command files. It allows the echoing of ASCII strings to
the terminal.

DESCRIPTION
The general syntax of the ECHO command is:
ECHO,<string>
wvhere <string> 1is any string of printable characters terminated
by a carriage return or end of line character. A few examples of

the ECHO command follow:

+++ECHO, THE COPY PROCESS IS STARTING
+++ECHO, TERMINAL 12

The first example would print the string "THE COPY PROCESS IS
STARTING" on the terminal. The second example would print
"TERMINAL 12". It is often useful to use ECHO 1in 1long EXEC
command files to send instructive messages to the terminal to
inform the operator of the status of the EXEC operation.

—Eo 2' 1—

FIND

The FIND command is wused for finding all lines in a text file
containing a specified string. It is faster to use FIND than to
enter the editor to find strings.

DESCRIPTION
The general syntax of the FIND command is:
FIND,<file spec>,<string>

The file spec defaults to a TXT extenslon and to the working
drive. The string may be any printable characters (non=-control
characters) and 1is terminated by the carriage return or end of
line character. Upon execution, all 1lines containing the
specified string will be printed on the terminal preceeded by
that lines line number. When finished, the total number of lines

found containing the string will be printed. Following are a few
examples.

+++FIND,TEXT,THIS IS A TEST
+++FIND,BOOK.TXT,OHIO

The first example would find and display all lines in the file
TEXT.TXT which contained the character string "THIS IS A TEST".
The second example would search the file BOOK.TXT for the string
"OHIO" and list all lines found.

-F-l-l-

FILTYP

The FILTYP command is wused to determine the type of a file,
either binary or text. This 1s wuseful when non-standard
extensions have been used and the file type has been forgotten.

DESCRIPTION
The general syntax of the FILTYP command is:
FILTYP,<fi1le spec>

wvhere the file defaults to the working drive. Upon executing
this command, the system will report the file to be either a TEXT
type file, or a BINARY type file (a file which may be loaded into
memory). An example will demonstrate its use.

+++FILTYP,MYSTERY.XYZ

The system will report the type of the file named MYSTERY.XYZ
found on the working drive.

—F-Z. 1-

FREE

The FREE command 1s wused to report the total number of free
(available) sectors onm a diskette. The approximate number of
kilobytes remaining is also reported.

DESCRIPTION

The general syntax of the FREE command is:

FREE[,<drive number>]

If the drive number 1s not specified it will default to the
working drive. An example follows:

+++FREE, 1

This command line will report the number of available sectors and
approximate number of kilobytes remaining on the disk in drive 1.

“Fo 30 1-

FILES

The FILES utility 1s similar to the CAT command but displays only
the file names and extensions. This command is wuseful for
getting a short and quick report of the directory contents.

DESCRIPTION
The general syntax of the FILES command is:
FILES[,<drive 1list>][,<match 1list>]

where <drive list> and <match list> are the same as described in
the CAT command. The file names will be listed across the page
and in a columnar fashion. The number displayed per line is
determined by the TTYSET Width parameter. 1If the Width is zero,
80 columns are assumed to be available and 5 names will be listed
on each line. Smaller Width values will result in fewer names
per line being displayed. A few examples follow:

+++FILES
+++FILES,1,A.T,FR

The first example would list all files on the working drive. The
second example would list only those files on drive 1 whose names
began with ‘A’ and extensions began with ‘T°, as well as those
files whose names started with “FR’.

"Fo 4- 1—

FLIST

The FLIST wutility 1is used to get a page formatted listing of a
text type file. It is similar in operation to the LIST wutility.

DESCRIPTION
The general syntax of the FLIST command is:
FLIST,<file spec>[,<line range>][,+<options>]

where the file spec designates the file to be listed and defaults
to a TXT extension and to the working drive. The <line range> is
the same as described in the LIST wutility. If no range 1is
specified, all 1lines will be displayed. Two options are
supported, ‘N’ for line numbers, and ‘P’ for pagination. If the
P option is specified, FLIST will prompt for a title. The title
may contain a maximum of 40 characters. Each page will then be
listed with a title and page number, followed by 54 lines of text
(numbered if the N option was specified), and a hex $0C formfeed
character. A few examples will demonstrate the use of FLIST.

+++FLIST, CHAPTER1
+++FLIST,LETTER, 10-100,+NP
+++FLIST, TEXT, 50

The first example would cause the file named CHAPTER1.TXT to be
displayed on the screen without line numbers or pagination. The
second example would list LETTER.TXT from line number 10 through
line 100 with line numbers and pagination. The 1last example
would list the file named TEXT.TXT from line 50 to the end of the
file. No line numbers will be output since the ‘N’ option was
not specified.

"F-S- 1_

HECHO

The HECHO command is used for sending special character strings
to the terminal. It is similar to the ECHO command, but HECHO
allows control characters as well.

DESCRIPTION

The general syntax of the HECHO command is:

HECHO,<hex string>

where <hex string> 1s a list of hex digits representing ASCII
characters. A few examples will demonstrate the use of HECHO.

+++HECHO, C
L +++HECHO0,D,A,0,0,0,0
S +++HECHO, 7,54,45,53,54,7

The first example will output a page eject (hex C) to the
terminal. The next example will output a carriage return (hex D),
a line feed (hex A), and then 4 null characters (hex 0). The
last example will will output an ASCII bell character (hex 7),
then the string “TEST’, followed by another bell character.

-H-lol-

INSTALL

The INSTALL wutility is wused as a convenient way of renaming a
file with a .BIN extension to the same mname but with a .CMD
extension. In effect, you are ‘installing” the file into the
utility command set.

DESCRIPTION
The general syntax of the INSTALL command is:
INSTALL,<file spec>
wvhere the file spec defaults to a BIN extension and to the
working drive. This wutility has the same affect as using
“RENAME,FILE.BIN,FILE.CMD’. An example will demonstrate its use.
+++INSTALL ,LOAD
This command line would cause the file named LOAD.BIN on the

working drive to be renamed LOAD.CMD. This command is simply a
time saver for those who do not like to type names twice!

“10201—

INTEG

The INTEG command 1is used to completely test the free space
(unused sectors) on a diskette. This routine will guarantee the
integrity of the available disk space.

DESCRIPTION

The general syntax of the INTEG command is:
INTEG[,<drive number>]

where the drive number specifies which disk is to be tested and
defaults to the working drive. This program will check that the
free space contains the correct number of sectors, that it starts
at the correct disk address, and that 1t terminates at the
correct disk address. If any discrepencies are found the
e appropriate error message will be displayed, otherwise, the
message “FREE SPACE ALL OK!” will be output. An example follows:

+++INTEG, 0

This would test the free space on the disk in drive 0. It should
be noted that INTEG may require a moderate amount of time to run.
Any diskette mnot passing the INTEG test should not be used for
creating new files. This command does not test any of the disk
space being used by files on the disk.

-1-3- 1"‘

LOW-UP

The LOW-UP command is used to convert a file into all upper case

letters. It is useful for those systems unable to work with
lower case letters.

DESCRIPTION
The general syntax of the LOW-UP command is:
LOW-UP,<input file spec>,<output file spec>
The dinput file spec specifies the name of the file needing the
conversion, and the output file spec specifies the file name of
the new converted file. Both default to a TXT extension and to
the working drive. The new file will end wup containing only
_ upper case letters and the original file will be left unchanged. .
s An example follows:

+++LOW-UP,LISTER,LISTERU

This would cause a file named LISTERU.TXT to be created which is
identical to the file named LISTER.TXT except all letters will be
upper case.

-L- 3' 1"’

MAP

The MAP utility 1is used for determining the load addresses and
transfer address of a binary file. This command is wuseful in
conjunction with the SAVE command.

DESCRIPTION
The general syntax of the MAP command 1is:
MAP,<file spec>

where the file spec defaults to a BIN extension and to the
working drive. The beginning and ending addresses of each block
of object code will be printed on the terminal. If a transfer
address is contained in the file, it will be printed at the end
of the 1list of addresses. If more than one transfer address 1is
found in a file, only the effective one (the last one
encountered) will be displayed. An example will demonstrate the
use of MAP.

+++MAP,MONITOR

This command line would cause the 1load addresses and transfer
address (if one exists) of the file named MONITOR.BIN to be
displayed at the terminal.

=p M#0, Mo %, XBASU,rme F

Kk -xp 3

FF3I —4FD2

7l yad TOOS BYN B LGRS SS Lt Jtens eF
fassnem.

"'M- 2. 1-

MEMTEST

The MEMTEST command executes a memory pattern test. This test
will detect 99%Z of all memory problems if allowed to run a
sufficient amount of time.

DESCRIPTION
The general syntax of the MEMTEST command is:
MEMTEST, <hex start address>,<hex end addres>

The start address 1is a hex number stating where in memory the
test program should start testing, and the end addres is the last
location to be tested. The test fills memory with random
numbers, goes back and checks the numbers are correct, and then
repeats the process. This test should be allowed to run
approximately 1 hour for each 4K block of memory being tested.
Remember not to specify a memory range which will overlap the
test program itself. Each successful pass through the test will
be shown by the printing of a “!” on the terminal. An example
follows:

+++MEMTEST, 0, 3FFF

This would test memory from location O through 1location 3FFF.
The system RESET must be used to exit the test program. Reboot
the system to use FLEX.

"b‘- 3. 1"'

MEMDUMP

The MEMDUMP command allows the dumping or displaying of a

selected portion of memory at the terminal in both hex and ASCII.
It is very useful as a diagnostic aid.

DESCRIPTION
The general syntax of the MEMDUMP command is:

MEMDUMP [,<start address>]--" < o> .2 5;,f.j
where the start address is the hex value of the address at which
dumping should start. If the address is left off of the command
line, dumping will begin at address 0000. The display consists
of 16 lines of data. Each line starts with the address in memory
from which the data is taken. Following the address is 16 bytes
of data displayed as 2-digit hex numbers. Finally, 16 ASCII
characters are printed which represent the data bytes just

printed. All control characters are printed a derscores— ().
After—each__block of 256 bytes ines of data), the program

stops and expects am—i haracter. Typing an “F° will cause
the display t e Forward, printing the next sequentd 256
byt ping a ‘B’ will move Backwards, printing the previo

256 byte block. A carriage return will return control to FLEX.
All other characters are ignored. An example follows:

+++MEMDUMP, A0O

This would cause memory to be dumped starting at location hex
0A00. The hex and ASCII representations are displayed.

-M- 4- 1"

MEMOVE

The MEMOVE command will move any block of memory to any other
specified memory location.

DESCRIPTION
The general syntax of the MEMOVE command is:

MEMOVE,<start address>,<end address>,<destination>
where all addresses are specified in hex. The start and end
addresses specify the bounds of the block of memory to be moved,
and the destination address designates the location to where 1t
should be moved. An example follows:

+++MEMOVE, 400, 4FF, 1A00
This command 1line would cause the block of memory from location
hex 400 through hex 4FF to be moved to location hex 1A00. The

data which was from 400 through 4FF will now exist from 1A00 to
1AFF. The original block of data is left unchanged.

—Ml 50 1"

OLOAD

The OLOAD command is used to load a binary file into memory with
a specified offset address. No code is modified during the load.
This utility is useful for PROM programming applications.

DESCRIPTION
The general syntax of the OLOAD command is:
OLOAD,<file spec>[,<offset>]

wvhere the file spec defaults to a BIN extension and to the
working drive. The optional offset is a hex value which is to be
added to the normal 1load address. If the offset 1is not
specified, it is assumed zero which causes OLOAD to act exactly
like the GET command. The offset addition will wrap around the
end address of $FFFF. As an example, if a file normally 1loaded
at location $6000, and an offset of $A000 was specified, the file
would be loaded at $0000. An example of the OLOAD command
follows:

+++0LOAD, XDATA, 2000

This would cause the file named XDATA.BIN to be loaded into
memory offset by $2000 from its normal load address. If XDATA
normally resided at $0100, the new location would be $2100.
Remember that no code is modified, so unless the binary file 1is
relocatable code, it will not run in its new location.

"‘0.2.1‘

PRUL

The PRUL command is wused to translate wupper case only Text
Processor files (those containing the “cap’ @ and -
capitilization characters) into upper and lower case files. This
is useful for converting old formatted text files.

DESCRIPTION
The general syntax of the PRUL command is:
PRUL,<input file spe§>,<output file spec>

where the file specs default to TXT extensions and to the working
drive. The name given to the output file must not already exist.
The input file is read and all letters are converted to lower
case unless preceeded by an at-sign (@) or if surrounded by
up-arrows (~). These are the same rules the Text Processor
follows while in the capitalization mode. An example follows:

+++PRUL , BOOKREV, BOOKREVL
This command 1line would cause the file named BOOKREV.TXT to be
read, the appropriate translation performed, and written back out

to a file named BOOKREVL.TXT. The original file 1s left
unchanged.

"P-Ao 1-

PDEL

The PDEL command is a prompting delete utility. Edither all files
or only files matching a specified match list are displayed by
name, one at a time, giving the option of deleting the file or
keeping it. This command 1is very convenient for quickly removing
a lot of no longer needed files from a diske.

DESCRIPTION
The general syntax of the PDEL command is:
PDEL[,<drive list>][,<match list>]

where drive list and match list are the same as described in the
CAT command. Upon execution of PDEL, each file name will be
printed at the terminal with the question of deleting it:

DELETE "FILE" ?

At this time three responses are valid. If a ‘N’ is typed, the
file will be left intact and the next name will be displayed. If
a ‘Y’ 1s typed, that file will be deleted. This utility DOES NOT
ask 1f you are sure you want the file deleted, so make sure the
first time! A carriage return may also be typed in response to
the prompt at which time control will return back to FLEX. An
example follows:

+++PDEL, 1, . TXT

This command 1line would cause each file on drive 1 which has a
TXT extension to be displayed and the delete option offered.
Remember that once ‘Y’ has been typed to the prompt, that file is
gone forever!

—P-5.1-

REPLACE

The REPLACE command will effectively replace one file on a disk
by another, deleting the first file. This command 1is simply a

time saver.

DESCRIPTION
The general syntax of the REPLACE command

REPLACE,<file spec 1>,<file spec 2>

is:

where file spec 1 is the name of the file to be deleted and file
spec 2 will be renamed to that of file spec 1. The file

default to a TXT extension and to

the working drive

command has the same affect as the two command sequence:

+++DELETE, FILE1
+++RENAME, FILE2, FILE1

which effectively replaces FILElL with
performed with REPLACE as follows:

+++REPLACE,FILE1,FILE2

which will cause FILEl.TXT to be deleted
renamed FILE1.TXT.

"Ro 2- 1-

FILE2. This

and FILE2.TXT

specs

can

to

This

be

be

RPT

The RPT command allows a command line to be repeatedly executed a
specified number of times. This can be useful in diagnostic or
demonstration applications.

DESCRIPTION
The general syntax of the RPT command is:
RPT,<repeat count>,<any command line>

wvhere repeat count specifies the number of times the following
command line should be executed. The command line may contain
any FLEX wutility except RPT and may also contain multiple

commands by using the TTYSET End of Line character. An example
. follows:

+++RPT, 6,LIST,BOOK4

This line would cause the file BOOK4 to be listed 6 times.
Simple repeated demonstrations may be set up wusing the RPT
command.

per . 1o, MEMD L ST ~ 10 x REE AT M MmN
) «10110 A

[a¥d

-R.%3.1=

REMSPC

The REMSPC command will remove all excess spaces from a text
file. This is a useful utility for file conversions and file
space reduction. d

DESCRIPTION
The general syntax of the REMSPC command is:
REMSPC,<input file spec>,<output file spec>

where the file specs default to a TXT extension and to the
working drive. The input file is the file to be processed and
the output file name must not already exist on the disk. REMSPC
will convert all occurences of two or more spaces into a single
space unless the line starts with an asterisk (*) in column 1 (a
comment line). These comment lines are passed unmodified to the
output file. An example of using REMSPC follows:

+++REMSPC, SOURCE, SOURCE2
This would cause the file named SOURCE.TXT to be read from the

working drive, all excess spaces removed, and written back to a
file named SOURCE2.TXT on the working drive.

-Ro ll- l"

RECOVER

The RECOVER command allows the recovery of a file from a disk
whose directory has been damaged. It is necessary to know the
starting disk address of the file to be recovered.

DESCRIPTION
The general syntax of the RECOVER command is:
RECOVER,<disk address>,<file spec>

where the file spec defaults to a TXT extension and is forced to
drive 0. The bad disk must be in drive 1 and the good disk in
drive 0. The disk address i1s specified as a 4 digit hex number,
such that the address track 3, sector 10, would be specified as
030A. This routine starts reading the file on drive 1 at the
specified address and copies it into a file on drive 0 giving it
the designated name. An example follows:

+++RECOVER, 1103, INVEN
This would start reading data from drive 1 at track 17 (hex 11),

sector 3, and copy it into a file named INVEN.TXT on drive O.
This process continues until an end of file is encountered.

"R- 5. 1-

SPLIT

The SPLIT command is used to split a text file into two new files
at a specified line number. It is convenient to use when a £file

becomes too large to easily manage or to break off an often used
section of text into another file.

DESCRIPTION
The general syntax of the SPLIT command is:
SPLIT,<input file spec>,<out file specl>,<out file spec2>,<N>

The input file is the file to be split, output file spec 1 1s the
name to be assigned to the first set of lines read from the input
file, output spec 2 is the name to be assigned to the rest of the
N file being split, and N is the line number where the file should
"""" be split. The second output file will begin with line N of the
input file. All files default to TXT extensions and to the
working drive. An example follows:

+++SPLIT,TEST,TEST!,TEST2, 125

This command line would cause lines 1 to 124 of the file named
TEST.TXT on the working drive to be written into a file named
TEST1.TXT and lines 125 to the end of the file to be written into
a file named TEST2.TXT. The original file (TEST) remains
unchanged.

"S-l.- 1-

SLEEP

The SLEEP command is used to eat up time. It is handy to use in
special applications in a EXEC command file.

DESCRIPTION
The general syntax of the SLEEP command is:

SLEEP,N

where N is the number of seconds the system is to "sleep". It
should be noted that large values of N (greater than 15) may not
timeout exactly. Once the SLEEP command is executed, it cannot
be 1interrupted. You must wait for the entire time period
specified. An example will demonstrate SLEEP’s use.

+++SLEEP, 10

This command line would cause the system to lockup or sleep for
approximately 10 seconds.

-S.AII-

TYPOS

The TYPOS wutility i1s wused for grouping and counting all words
used in a text file. It is a great aid in detecting misspelled

words and typographical errors, as well as pointing out too often
used words 1in a document.

DESCRIPTION

The general syntax of the TYPOS command is:
TYPOS,<file spec>[,<count>]

where <count> specifies the highest word use count to be 1listed
in the final word 1list. The file spec defaults to a TXT
extension and to the working drive. If the count 1is not
specified, the default will be 3, so words appearing three times
or less will be listed. All letters are mapped to lower case soO
words like ‘Test’ and “test’ would be considered identical. The
final word list is printed with each word preceeded by 1its
occurence count and the word imn lower case letters. The more
often used words are printed first. Following are a few
examples.

+4++TYPOS, CHAPTER1
+++TYPOS, BOOK, 50

The first example would print all words occuring three times or
less found 1in the file named CHAPTERI.TXT on the working drive.
The second example would print all words occuring 50 times or
less 1in the file BOOK.TXT. It should be noted that on long
files, TYPOS may require a moderate amount of time to compile the
list of words.

'-To 2- 1-

TEST

The TEST command is used for testing all sectors on a diskette.
Any bad sectors found will be reported to the terminal.

DESCRIPTION:
The general syntax of the TEST command is:

TEST[,<drive number>]
vhere the drive number specifies which disk is to be tested and
defaults to the working drive. Any sectors found to be bad
during the test are reported to the terminal in the form of two
hex numbers, the first representing the track number, the second
is the sector. An example follows:

+++TEST, 0
This will test the diskette in drive 0 for bad sectors. It

should be noted that TEST requires a moderat amount of time to
run since all data on the disk is read.

—To 3- 1"'

MEMFILL

2

The MEMFILL command 1s used to fill a section of memory with a
particular data pattern. This is useful for certain types of
program debugging and development.

DESCRIPTION
The general syntax of the MEMFILL command is:
MEMFILL,<start address>,<end address>,<fill byte>

The addresses should be specified in hex. The fill byte is the
hex value (8 bit) which will be used to £1i1ll memory between the
address bounds designated. If the fill byte 1is left off the
command line, zeroes will be used. Upon completion, control will
return to FLEX unless it has been overwritten by the command. An
example follows:

+++MEMFILL, 0, 1FFF, 55
This would fill memory from location 0 through location hex 1FFF

with hex 55 bytes. Remember not to overwrite the program when
specifying the address bounds.

‘T- 6- 1-

UP-LOW

The UP-LOW command is used to convert a file into all lower case
letters. It is useful for those systems wunable to 'work with
upper case letters or to make a file easier to read.

DESCRIPTION
The general syntax of the UP-LOW command is:

UP-LOW,<input file spec>,<output file spec>
The 1nput £file spec specifies the name of the file needing the
conversion, and the output file spec specifies the file name of
the new converted file. Both default to a TXT extension and to
the working drive. The new file will end up containing only
lower case letters and the original file will be left unchanged.
An example follows:

+++UP-LOW, TEXTA, TEXTAL
This would cause a file named TEXTAL.TXT to be created which 1is

identical to the file named TEXTA.TXT except all letters will be
lower case.

-Uulnl-

WORDS

The WORDS utility is used to get a total word and line count of a
text file. It is very useful in document and report preparation
in keeping track of the size of the file.

DESCRIPTION
The general syntax of the WORDS command is:
WORDS,<file spec>

where the file spec defaults to a TXT extension and to the
working drive. Upon execution, WORDS will read the file
specified, count all words and lines, and then report the totals
to the terminal. A word 1s considered to be any group of
characters separated by either spaces or carriage returns. An
example will demonstrate the use of WORDS.

+++WORDS, CHAPTER1
This command line would cause all of the words of the file named

CHAPTER1.TXT on the working drive to be counted and the totals
diplayed on the terminal.

—W- ll 1-

