

.““u....i. =
= m kel g -
m_,q b ¥ s s - i | -r aary
n . i .
F-ﬁ —_:.. _—4-2.-_ r.—*ﬂn_:-— -—.;t 1 J:” -w - e F :ﬁ: . 'ﬂ-t.__. -E._.__—n__ uu._ll.
ﬁhmmrﬁ:ﬂ mw.ﬂ_.:a:__ t_._.s ..:.:_r. g _Nﬂ:r ¢ - P“_t - _m F_.“.: .._z m Rl ;___
) S | i y i R 1 _ ey ! 1
e ol 90 0 4 iy Lis T T i O
il i \néi . * ._ i ._.:3 Wy :._z_ —
I =. .._ Lm ijfeawi £ T 7__ .____ L .__..:z - N
im) §~ X —r_ _r.— .. [_.; “H fyoven .m ‘_.- f m . . -
:L._-" i :F b b " il = _= &.:E,ad_ s, e gl e
o i L it il woualh iy P
FFE ,.E. qn_ ,_. ._____ i ______ fisiiy m.. w:_ ;.:._.Hﬁ "E.%:_; — - -~
K -1. ru_ _ L: =_.-_m—ﬂ_ IR &_:» [= ks = :\\... .
T T Toalre il P
m.r_.. i ___ ;_,_ ;_"E.Fh i:: WE _E__”= < . . 5
x__ - o e -
_ i -t i ’ _. i e ey W N vl
g Ll _“,_..g_ i Fon i et R
; 1l - 3 Lp . -
_z .m__“w .ﬁ..zﬁ.:_ ﬁ..nﬁ._ﬂ_ ﬂ“,ﬁmp fiaie :__ . o -...am ,T.‘KL. e
. ¥ F.I- . I 1 - - \ i - o ’ |
1 ﬁ Ew ==_Ec u— k__w.h_:___:. _”:_"":._”_ _.___.E.. Y - ~ .).wf_v.m ¥ . .
Et-y._ _Lt-t.:—* _.-L o' —_. __ - \\\ = A ’v_._ ||\\\
#-_5_.__ __ m =_x:_ - \h_lm\.... n_. w ¥ L..a.x\ I
...E_. - "E-_z- 2 S8 —_ CaP . .&r rﬂa\‘ : .\ln.. . u_ 1% 1 5
¥ J_ _ﬁ. i \..\..\ 4 s - it W,
ﬁuﬁﬁ ool <7 % &y \\\\ jpmn.a | ,z=
\..._. ’] " ! “ . Ll |"._“._.=
e .h P -~ Lﬂ r.:_.w. > ’ o 0 =.=.._= N il
.\\.\0 % j .k.\r R 3l
;9 h - W L } ﬁ—_ﬁ *__. o __
N Vi e, 1
. . \\ .R ; W.w..:—.___. o - _,L_ P__uw.nf 4 _:L:._x.:~ “3__
_ “__...._. ol e _ |. ”.‘, pal iR —] -
, 1 Pwt_ & L 2L % L—:._.L b:.ﬂmﬁ. r__.:._.. zl-: —_ il = ____»_
i il) M T
|=. balt . # u:-._ i “hn,.“ i _n_ - 4__: ”: ___ z: et 1 m .:.:H
E-._.w&.. Lr :_:»M.v —_mv . T J.. - ...:_. i ..._ wl
itk .m.___r;_t :_ I H_ M, i

Configuration Guide to TurboDOS

September, 1931

Copyright (C) 1981 by Software 2000 Inc.

Copyright (C) 19381 by Software 2000 Inc.
All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, or transiated
into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or ctherwise, without the prior writ-
ten permission of Software 2000 Inc., P.O. Box 945, Los Alamitos, California 90720.

Software 2000 Inc. makes no representations or warranties with respect to the con-
tents of this publication, and specifically disclaims any implied warranties of mer-
chantability or fitness for a particular purpose. Software 2000 Inc. shall under no
circumstances be liable for consequential damages or related expenses, even if it has
been notified of the possibility of such damages. Software 2000 Inc. reserves the
right to revise this pubncation irom time to time without obligation to notify any
persen of such revision.

NOTE: CP/M, MP/M and CP/NET are trademarks of Digital Research, Inc.

Configuration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
Table of Contents

IABLE OF CONTENTS

SECTION | — INTRODUCTION

Generating TurboDOS Configurations . . .

Implementing Driver Modules o«

Licensing Requirements
smm.&..'.........
OEMRWﬁao-ooooooo

Dealer Responsibilities « « « v o o o &«
TurboDOS SUPPOIt v et e o oo oo o

SECTION 2 — SYSTEM GENERATION
Mmtﬁerardiyooocnoo.-noo

Process-Level Modules . « o o o . . .
Kemel-l-evel Module!. e @ e ¢ o ¢ o o

*

Universal Driver-Level Modules
Hardware-Dependent Driver-Level Modules .
Standard Configurations « « « ¢ e o o ¢ o o »
Estimating Memory Requirements
Linking and LoadiNg « « o ¢ o ¢ 0 o 0 o o o o
GEN Command .« « « « ¢ ¢ o 6 00 0eoeooe
Symbolic Patch Facility « « e ¢ ¢ o o ¢ 0 0 o o »
Step=-by-Step Procedure for System Generation.
SERIAL Command .« « o ¢ o o o c o000 0oeoe
Step-by-Step Procedure for OEM Re-Distribution

Y

(4

[l‘l

[1.3
[1.3
o l&

. 24
o 25
o 2=
. 2-3

2-10
2-11
2-12

C2-14

2-18
2-19
2-20

Configuration Guide to TurboDOS
Copyright (C) 1981 by Seftware 2000 Inc.
Table of Contents

SECTION 3 — SYSTEM IMPLEMENTATION
Assembler Requirements . c ¢ c ¢ ¢ 0 ¢ o »
Programming Conventions:

Dynamic Memory Allocation « o v « » »
Threaded ListSe e ¢ e e e c 000 ce o
Dispatching e e c e e ecceaseoeceses
Interrupt Service Routines ¢ e o o o o »
PollRoutines . ccececoscocoes
Re-Entrancy and Mutual Exclusion. . .
Sample Interrupt-Driven Device Driver
Sample Polled Device Driver. . » + « «
Driver Interface Specifications:
Initialization c « ¢ e e e e e e e e oo
Console Drivers ¢ ¢ v c o e e 0 00 o o o
Printer Drivers . « ¢ e o oo o0 0 o o o
Network Drivers. « « e o o e ¢ ¢ ¢ o o o
Disk Drivers « « v v v o e e e oovees
Real-Time Clock Driver . « ¢ o ¢ ¢ o
Comm Channel Driver . . ¢ oo o0 o &
Bootstrap ROM ¢ ¢ ¢ ¢ c e e e 0o 0 0 06 ¢

APPENDIX A — Implementation on IMS Equipment

- o o & o

APPENDIX B — Implementation on TRS-30 Model II. . .

APPENDIX C —Sample Dl'ive!‘ Lisﬁngs. ® o o 0 @ 0 0 o o

® e o o o 3"1
L I S S 3‘2
L BE N Y Y SN 3-“
* o o0 oo 3-5
- . o & e W e 3-7
" o e o 34
e e & o n @ 3-9
e o & o @ 3-16
” o & oo 3"'11
o o 0o o o 3-12
e o o o o 3-13
e 8 o o o 3-13
- ¢ & o o 3-14
® o o o o 3-15
* o 0 o @ 3-17
e o o 8 o 3-18_
® o o o o 3-19
e @ o o o & A-l
e o ¢ ¢ a o B-l
? 6 o o o o C-l

Contfiguration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
' Introduction

INTRODUCTION
This Configuration Guide to TurhoDOS provides the information that OEMs, dealers,

and sophisticated end-users need to generate various operating system configurations
and to implement driver modules for various peripheral components..

A companion document, entitled User's Guide to TurhoDOS, provides the information
that users need to write and run programs under the TurboDOS operating system. It
includes an overview of operating system features, a discussion of architecture and
theory of operation, a description of each command, and a definition of each user-
callable function.

Generating TurhoDOS Configurations ~

TurboDOS is a modular operating system consisting of more than 40 separate
functional modules. These modules are "building blocks" which can be combined in
various ways to produce a family of compatible operating systems. TurboDOS

configurations include single-task, spooling, time-sharing and networking, with
numerous subtle variations possible in each of these broad categories.

Functional modules of TurboDOS are distributed in relocatable form. Hardware-
dependent device drivers are packaged in the same fashion. The GEN command is a
specialized linkage editor which may be used to combine the desired combination of
modules into an executable version of TurboDOS configured with the desired set of
functions and device drivers. The GEN command aiso includes a symbolic patch
facility which may be used to alter a variety of operating system parameters.

Section 2 describes each functional module of TurboDOS in detail, illustrates how
these modules can be combined in various configurations, and provides step-by-step
system generation procedures..

Implementating Driver Moduies

TurboDOS has been designed to run on any Z30-based microcomputer with at least
48K of RAM, a random-access mass storage device, and a full-duplex character-
oriented console device. The functional modules of TurboDOS are not dependent
upon the specific peripheral devices to be used. Rather, a set of hardware-dependent
device driver modules must be included in each TurboDOS configuration in order to
adapt the operating system to the specific hardware environment.

Configuration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
Introduction

Typical hardware-dependent device driver modules includes

Console driver

Printer driver

Disi driver

Network interface driver
Real-time clock driver
Communications driver

00 00 0090

Although Software 2000 Inc. can supply TurboDOS pre-configured for certain specific
hardware configurations, most OEMs and many dealers. and end-users will want to
implement their own hardware-dependent drivers. Driver modules may be readily
written by any competant assembly-language programmer, using a relocating' Z30
assembler such as Digital Research's RMAC, Microsoft's MACRO-30, or Phoenix
Software Associates' PASM. Section 3 provides detailed instructions to programmers
for implementing such driver modules, and the Appendix includes assembly listings of
various sample- drivers.

Licensing Requirements

TurboDQS is a proprietary software product of Software 2000 Inc. TurboDOS may be
used only after the user has paid the required license fee, signed a copy of the
TurboDOS software license agreement, and returned the signed agreement to Software
2000 Inc. Then it may be used only in strict conformance with the terms of the
software license. Each TurboDOS software license agreement must be filled-out and
signed by the end-user (not by an OEM or dealer on his customer’s behalf).

Each software license permits the use of TurboDOS only on one specific computer
system identified by make, model and serial number. A separate license fee must be
paid and a separate license signed for each computer system on which TurboDOS is
used. Network slave computers which are also capable of stand-alone operation
under TurboDOS must each be licensed separately, but siave computers which cannot
be used stand-alone (e.g., because they. have no mass storage) do not.

Software 2000 Inc. intends to initiate vigorous legal action against anyone who uses or
reproduces TurboDOS software in a manner which is not in strict conformance with
the terms of the TurboDOS software license agreement. :

Contiguration Guide to TurboDOS
Copyright (C)- 1981 by Seftware 2000 Inc.
) Introduction

Serialization

Each copy of TurboDOS is magnetically serialized with a unique serial number in
order to facilitate tracing of unlicensed copies of TurboDOS.

Each relocatable TurboDOS module which is distributed to a dealer or end-user is
magnetically serialized with a unique serial number. The serial number consists of
two components: an origin number (which identifies the issuing OEM) and a unit
number (which uniquely identifies each copy of TurboDOS issued by that OEM). The
GEN command verities that all functional modules which make up a TurboDOS
configuration are serialized consistently, and magnetically serializes the resulting
executable versiom of TurboDOS accordingly.

Each relocatable TurboDOS module which is distributed to an OEM is partially
serialized with an origin number only. Each OEM is provided with a SERIAL
command which must be used to add a unique unit number to the relocatable modules
of each copy of TurboDOS issued by that OEM. The GEN command will not accept
partially serialized modules that have not been uniquely serialized by the OEM.
Conversely, the SERIAL command will not re-serialize modules which have already
been fully serialized. ‘

Each OEM is provided with a master copy of TurboDOS relocatable modules and
command processors on diskette. An OEM is authorized to reproduce and distribute
copies of TurboDOS to dealers and end-users for use on specificaily authorized
hardware configurations manufactured or distributed by the OEM. The OEM is
required to serialize each copy of TurboDOS with a unique sequential magnetic serial
number, and to register each serial number promptly by retuming a registration card
to Software 2000 Inc. This registration requirement for OEMs is in addition to (not
in lieu of) the requirement for licensing of each end-user.

Each OEM is provided with a master copy of TurboDOS documentation in both
camera-ready form and in ASCII files on diskette. The OEM is responsible for
reproducing the documentation and providing it with each copy of TurboDOS issued by
that OEM. '

An OEM must require a dealer to sign the TurboDOS dealer agreement and return it
to Software 2000 Inc. before the OEM may issue copies of TurboDOS to that dealer,
An OEM must require an end-user to sign the TurboDOS software license and return
it to Software 2000 Inc. before the OEM may issue a copy of TurboDOS directly to

13

{

Contfiguration Guide te TurbeDOS
Copyright (C) 198L by Software 200Q Inc.
Introduction

that end-user.

Dealer Responsibilities

A TurboDOS dealer is permitted to purchase individual serialized copies of TurboDOS
software and documentation from Software 2000 Inc. or from an authorized OEM, and
to resell them to end-users. Dealers are not authorized to make copies of TurboDOS
software or documentation for any purpose whatever,

A TurboDQOS dealer must require each end-user to sign the TurboDOS scftware license
and retum it to Software 2000 Inc. before issuing a copy of TurboDOS software or
documentation to the end-user..

JurboDOS Support.

Software 2000 maintains a telephone "hot-line’™ to provide technical assistance in the
use of TurboDOS to its customers. OEMs and dealers should feel free to take
advantage of this service- whenever technical questions arise concerning the use or
configuration of TurboeDOS.

It is the responsibility of each OEM and dealer to provide technical support to its
end-user customers. Software 2000 cannot assist end-users directly. Where
exceptional circumstances seem to require direct contact between Software 2000
technical personnel and an end-user, this must be handled strictly by prior
arrangement with Software 2000 by the OEM or dealer.

L4

Configuration Guide to TurboDOS
Copyright (C) 1981 by Seftware 2000 Inc.
* System Generation

SYSTEM GENERATION,

TurboDOS is a modular operating system consisting of more than 40 separate
functional modules. These modules are "building blocks™ which can be combined in
various ways to produce a family of compatible operating systems. TurboDOS
contigurations include single-task, spooling, timewsharing and networking, with
numerous subtle variations possible in each of these broad categories. This section
describes each functional module of TurboDOS in detail, illustrates how these modules
can be combined in various configurations, and provides step-by-step system
generation procedures.

Functional modules of TurboDOS are distributed in reiocatable form. Hardware-
dependent device drivers are packaged in the same fashion. The GEN command
processor [s a specialized linkage editor which may be used to bind together the
desired combination of modules into an executable version of TurboDOS configured
with the desired set of functions and device drivers. GEN also includes a symbolic
patch facility which may be used to alter a variety of operating system parameters.

To simplify the the system generation process, the most commonly used combinations
of TurboDOS functional modules are pre-packaged into several standard
configurations. Most requirements for TurboDOS can be satisfied by linking the
appropriate standard package together with the requisite hardware-dependent drivers.

2-1

Configuration Guide to TurboeDOS
Copyright (C) L98L by Software 2000 Inc..
System Generation

Meodule Hierarchy

The flow diagram on the facing page illustrates the functional inter-relationship of
TurboDOS modules.. As the diagram shows, the software elements of TurboDOS can
be viewed as a. three-levei hierarchy.

The highest level is known as the "process” level. TurboDOS can support many
concurrent processes at this level, and can share the resources of the local computer
among them. There are active processes for users who are executing commands
and/cr transient programs on the local computer. There are also processes for users
who are running on remote computers but making network requests of the local
computer. There are processes to support de-spooling on each local printer. Finally,
there is a process which periodically causes buffered disk records to be flushed (i.esy.
written out) to disk.

The intermediate level is known as the "kemel" level. The kernel supports the
various numbered TurboDOS functions (more than 80 of them), and controls the
sharing of microcomputer resources such as processor time, memory, peripheral
devices, and disk files. Processes make requests of the kernel through a single
entrypoint (OSNTRY) which decodes each function by number and invokes the
appropriate module in the kernel.

The lowest level is known as the "driver" levei, and contains all of the device-
dependent drivers necessary to interface TurboDOS to a particular configuration of
microcomputer hardware. Drivers must be provided for each printer, console, disk
controller, and network interface. A driver is also required for the real-time clock
or other periodic interrupt source (used for time-slicing among processes and for
timing of delays). TurboDOS operates most efficiently with interrupt-driven,
buifered or DMA-type devices, but can also work satisfactorily with polled and
programmed-I/O devices..

The TurboDOS loader OSLOAD.COM is a special program which contains an
abbreviated version of the kerne! and drivers. Its purpose is to load the full
operating system into memory at each system start-up.

All TurboDOS process-level and kemel-level modules permit re-entrant execution in
multi-process situations. Most driver-level modules are not re-entrantly coded, and
must utilize a mutual-exclusion mechanism to prevent re-entrant execution.

Contfiguration Guide to TurboDOS
Copyright (C) 19381 by Seftware 2000 Inc.
" System Generation

User's
Transient
Proiram

De=Spool Local User Net Sve Buffer Flush
DSPOOL LCLUSR NETSVC FLUSHR
LCLTBL SLVTBL

COMMGR LSTTBL CONTBL DSKMGR
| SPOOLR DOMGR DSKTBL
| | e B vo g

.....‘....‘......‘.........’.C‘....'......'.l..I

I | | [| | |
Comm. | I | | l I

Chanpel Brinter, Console DRisk Network Clock Ipitialize
COMDRY LSTDR@ CONDR@ DSKDR@ NETDR@ RTCDRY HDWNIT

| |
Process Level | CMDINT MSGFMT |
| AUTLOD {
| SGLUSR | |
| AUTLOG | |
| | ! I
|
|
Loader
OSNITRY OSL?AD
[|
| o e s o
Non-File Eile Net Req Clock Support
NONFIL FILMGR NETREQ RTCMGR DSPCHR
SGLLOG FILSUP MSGFMT | DSPSGL
Kemel Level | FILLOK NETTBL [MEMMGR
| FFOMGR | | COMSUB
| DEVLOK | |
| FASLOD |
] e :

Comm, Printer Console Record | Initialize
ll SYSNIT
|
|
|

l
I
ll
Chappel LSTMGR CONMGR BUFMGR I|
l
|
I

or or
Driver Levei - CONREM RTCNUL
JurboDOS Module Hierarchy

23

Configuration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
System Generation

LProcess-lLevel Modules

LCLUSR — Supports a transient program area for a user of the local microcomputer..
In muiti-user configurations, there is a separate re-entrant instance of the LCLUSR
process for each local user. This module may be omitted from a. network master
configuration where only remote (L.e., slave) users are desired.

LCLTBL — Local user initialization tables.

CMDINT — Command interpreter routine called by LCLUSR to process local user
commands and muiti-command strings.

AUTLOD -~ Automatic program load routine called by LCLUSR to process
COLDSTRT.AUT and WARMSTRT.AUT files if they are present..

SGLUSR — Buffer flushing routine called by LCLUSR to flush and unlink all disk
buffers at every console input. Included in single-user configurations only.

AUTLOG — Automatic log-on routine called by LCLUSR to automatically log-on the
local user in configurations where logon/logoff security is not desired. To activate
this feature, use the symbolic patch facility to patch the public symbol AUTUSR to
the desired user number, with the sign-bit set for a privileged log-on (typically
AUTUSR = 80). '

NETSVC — Network service process which receives and services network requests
from slave microcomputers. In network master configurations, there is a separate
re-entrant instance of the NETSVC process for each attached slave.

SLVTBL — Table which controls down-loading of network slaves.

MSGFMT - Network message format tables used by NETSVC and NETREQ modules.
DSPOOL -- De-spoal process which supports printing of spooled print jobs concurrent
with other system activities. In multi-printer configurations, there is a separate re-
entrant instance of the DSPOOL process for each printer.

FLUSHR -— Buffer flusher process which causes memory-resident disk buffers to be

flushed (i.e., written out) to disk periodically. Not required in single-user
configurations in which SGLUSR is present.

24

P

Configuration Guide to TurbeDOS
Copyright (C) 1981 by Seftware 2000 Inc.
" System Generation

Kernel-Lavel Moduies

OSNTRY — Common kernel entrypoint which decodes each function by number and
invokes the appropriate module in the kernel.

FILMGR — File manager which processes requests involving local files. Not required
in slave configurations which lack local disk storage.

FILSUP — Flile support routines required by FILMGR.

FILLOK — Multi-user file interiock routines called by FILMGR. Not required in
single-user configurations..

FFOMGR — FIFO management routines called by FILLOK. Not required in single-
user configurations.

DEVYLOK -- Multi-user device interiock routines called by FILMGR. Not required in
single-user configurations.

FASLOD — Program load optimizer routine called by FILMGR.

NORLOD -~ Non-optimized program load routine which may be used instead of
FASLOD when memory space is at a premium.

BUFMGR - Buffer manager called by FILMGR. It maintains a poal of memory-
resident record buffers used for all record-oriented access to local disk storage.

DSKMGR -- Disk manager called by BUFMGR and FASLOD to perform physical
accesses to local disk storage.

DSKTBL -- Table of disk driver entrypoints and drive-letter-to-disk-number
equivalences.

2<5

Contiiguration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
System: Generation

NONFIL -- Non-file request manager which handles kernel requests which are not
file-oriented.

SGLLOG - Optional module which may be included in multi-user configurations to
prevent two or more non-privileged users from logging-on to the same user number
concurrently.

CONMGR — Console manager which handles local consale input/output.

CONTBL — Table of consale driver entrypcints.

DOMGR - DO-file manager which handles activation of DO-files. When a DO-file
is active, this module is called by CONMGR to satisfy console input requests from
the DO-file, -

INPLN — Consale input line editor used for buffered console input (function 10), and
required by CMDINT.

LSTMGR — List manager which handles local printed output.
LSTTBL — Table of printer driver entrypoints.

SPOOLR -- Spocier routine which diverts print output to spool files when the spooler
is activated.

COMMGR — Comm channel manager which handles the communications channel.
NETREQ — Network request manager which passes appropriate kernel requests to the
network to be satisfied by a network master. Required in network slave

configurations..

MSGFMT — Network message format tables used by NETSVC and NETREQ modules.
Required in both master and slave network configurations.

NETTBL — Table of network driver entrypoints.

RTCMGR - Real-time clock manager which maintains system date and time.

2-6

Configuration Guide te TurbeDOS
Copyright (C) 1981 by Seftware 2000 Inc.
" System Generation

DSPCHR -- Multi-process dispatcher which controls the sharing of local processor
time among muitiple competing processes.

DSPSGL — Null dispatcher used as an alternative to DSPCHR when only one process
is required (e.g., in OSLOAD.COM and in minimal single-user configurations without

spoaling).

MEMMGR - Memory manager which controls the dynamic allocation and deallocation
of memory segments.

COMSUB — Common subroutines required in all configurations.
SYSNIT — System initialization routine which is executed at system start-up..

PATCH — Optional module consisting of 64 bytes. of zeroes which may be included to
provide space for any required operating system patches.

Aniversal Driver-Level Modules

RTCNUL — Null real-time clock driver for use in configurations in which there is no
periodic interrupt source.

CONREM — Remote console driver for network master to allow access from slave
consoles by means of the MASTER command.

Configuration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
System Generation

JHardware-Dependent Driver-Level Modules

Driver modules are hardware-dependent, and may vary significantly from one
TurboDOS implementation to another. In general, the following drivers are required
as & minimums

CONDRY — Console driver allows character-by-character input from a console
keyboard and output to a console display. TurboDOS supports multiple console
drivers.

LSTDRY -- Printer driver allows character-by-character output tc a hardcopy
peripheral. TurboDOS supports multiple printer drivers.

COMDRY <= Comm. channel driver allows character-by-character input and output
over one or more communications channels.

DSKDRY -- Disk contraller driver allows input and output of physical-records cn a
random-access mass storage device (usually flexible or hard disk). TurboDOS supports
multiple disk controller drivers, each of which may support multiple drives.

NETDRY -~ Network interface driver allows sending and receiving messages to or
from a remote microcomputer. TurboDOS supports muitiple network interface
drivers, each of which may communicate with muitiple remote computers.

RTCDRY — Real-time clock driver services interrupts from a periodic interrupt
source, used for time-slicing, delay measurement, and updating the system date and
time.

HDWNIT - Hardware initialization routine called by SYSNIT. This module usually
consists of calls to initialization entrypoints in other drivers.

Standard. Configurations

To simplify the the system generation process, the most commonly used combinations
of TurboDOS functional modules are pre-packaged into the standard configurations
shown in the table on the facing page: STDLOADR, STDSINGL, STDSPOOL,
STDMASTR and STDSLAVE. Most requirements for TurboDOS can be satisfied by
linking the appropriate standard package together with the 'requisite driver modules.

2-3

Configuration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
" System Generation

2-9

. Single User Network Network
Approx. O/S Loader Single User w/Spooling Master Slave
Module Size (K) STDLOADR
LCLUSR K - LCLUSR LCLUSR LCLUSR LCLUSR
LCLTBL 40 - LCLTBL LCLTBL LCLTBL LCLTBL
CMDINT @9 - CMDINT CMDINT CMDINT CMDINT
AUTLOD 2 - AUTLOD AUTLOD AUTLOD AUTLOD
SGLUSR ol - SGLUSR SGLUSR - -
AUTLOG .0 - AUTLOG AUTLOG - -
NETSVC 1.l - - - NETSVC -
SLVTBL 0 - - - SLYTBL -
DSPOOL &4 - - DSPOOL DSPOCL -
FLUSHR .l - - - FLUSHR -
OSLOAD 1.2 OSLOAD - - - -
OSNTRY 3 - OSNTRY OSNTRY OSNTRY OSNTRY
FILMGR 1.2 FILMGR FILMGR FILMGR FILMGR -
FILSUP 2d FILSUP FILSUP FILSUP FILSUP -
FILLOK b - - - FILLOK -
FFOMGR .7 - - - FFOMGR -
DEVLOK 2 - - - DEVLOK -
FASLOD 3 - FASLOD FASLOD FASLOD -
NORLOD .1 - - - - -
BUFMGR 1.0 BUFMGR BUFMGR BUFMGR BUFMGR -
DSKMGR JS DSKMGR DSKMGR DSKMGR DSKMGR -
DSKTBL Kol DSKTBL DSKTBL DSKTBL DSKTBL DSKTBL
NONFIL. 2 - NONFIL NONFIL NONFIL NONFIL
SGLLOG d - - - - -
CONMGR .l CONMGR CONMGR CONMGR CONMGR CONMGR
CONTBL L0 CONTBL CONTBL CONTBL CONTBL CONTBL .
DOMGR) - DOMGR DOMGR DOMGR DOMGR
INPLN Jd - INPLN INPLN INPLN INPLN
LSTMGR ol - LSTMGR LSTMGR LSTMGR LSTMGR
LSTTBL 0 - LSTTBL LSTTBL LSTTBL LSTTBL
SPOOLR o - - SPOOLR SPOOLR -
COMMGR .l - COMMGR COMMGR COMMGR -
NETREQ 1.4 - - - - NETREQ
MSGFMT J - - - MSGFMT MSGFMT
RTCMGR .l - RTCMGR RTCMGR RTCMGR -
RTCNUL .l RTCNUL - - - RTCNUL
DSPCHR b - - DSPCHR DSPCHR -
DSPSGL Jd DSPSGL DSPSGL - - DSPSGL
MEMMGR 3 - MEMMGR MEMMGR MEMMGR MEMMGR
COMSUB o3 COMSUB COMSUB COMSUB COMSUB COMSUB
SYSNIT o - SYSNIT SYSNIT SYSNIT SYSNIT
Standard TurboDOS Configurations

Contfiguration Guide to TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Generation

Estimating Memory Requirements

To estimate memory requirements for a particular TurboDOS configuration, it is
necessary to take into account the combined size of functional modules (see table on
previous page), hardware-dependent driver modules, disk buffers and other dynamically
allocated storage segments.

Hardware-dependent drivers typically require 1K to 3K of memory, depending on the
complexity of the hardware involved. Disk buffer space should be as large as
possible for optimum performance, especially in a network master. About 4K of disk
buffer space is acceptable for a single-user system, although less can be used in a
pinch. Other dynamic storage usually doesn't exceed 1K..

The following table gives typical memory requirements of standard TurboDOS
configurations:

Single Userr Network Network
O/S Loader Single User w/Spooling Master Slave
STDLOADR. STDSINGL STDSPQOIL. STDMASTR, STDSLAVE

Functional Modules 7K 10K 11K 13K 6K

Device Drivers 2K 2K 2K 3K 1K

Disk Buffer Space 4K 4K 4K 16K 0K

Dynamic Storage +lK K K K =K

Total Memory Reg'd 14K 17K 18K 33K 3K

TPA (in 64K system) n/a 47K 46K 31K 56K
Jypical TurboDOS Memory Requirements

2-10

Configuration Guide to TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
© System Generation

Linking.and Loading

Functional modules of TurboDOS are distributed in reiocatable form. Hardware-
dependent device drivers are packaged in the same fashion. The GEN. command
processor is a specialized linkage editor which may be used to bind together the
desired combination of modules into an executable version of TurboDOS configured
with the desired set of functions and device driverss GEN aiso includes a symbalic
patch facility which may be used to alter a variety of operating system parameters.,.

To generate a TurboDOS system, the GEN command must be used to create both an
executable loader OSLOAD.COM and an executable master operating system
OSMASTER.SYS. In networking configurations, the GEN command must also be used
to create a slave operating system OSSLAVE.SYS. The GEN command can also be
used to generate the code for a start-up PROM.

At system start-up,. the start-up PROM loads. the loader program OSLOAD.COM into
the TPA of the master computer and executes it. OSLOAD loads the master
operating system OSMASTER.SYS into the topmost portion of memory. In networking
configurations, the master operating system down-loads the slave operating system
OSSLAVESYS into the slave computers on the network.

2-11

Configuration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
Systemr Generation

GEN Command.

The GEN command is used for TurboDOS systemr generation. It links a collection of
relocatable- modules together into & single executable file. The command format isz

GEN filenamel filenameZ2 ;options

where "filenamel™ specifies the name of the configuration file (type .GEN) and
parameter file (type .PAR) to be used, and "filename2™ specifies the name of the
executable file (normally type .COM or .SYS) to be created. If ™ilename2" is.
omitted from the command line, then "filenamel” is used for the executable file and
should include- an explicit file type (.COM or .SYS).

If the configuration file (type .GEN) is: found, it must contain the list of relocatable
tiles to be linked together. If the configuration file is not found, then the GEN
command operates in an interactive mode, reading successive directives from the
console until terminated by a null directive, The format of each directive (or each
line of the configuration file) iss

reifilel, relfile2, .., reifileN

The GEN command links together all of the specified modules, a two-pass process
which displays the name of each module as it is encountered. At the end of the
second pass, the GEN command looks for a parameter file (type .PAR) and processes
it (if found). Finally, the executable file is written out to disk.

Each relocatable TurboDOS module is magnetically serialized with a unique serial
number. The serial number consists of two components: an origin number (which
identifies the issuing OEM) and a unit number (which uniquely identifies each copy of
TurboDOS issued by that OEM). The GEN command verifies that all modules to be
linked are serialized consistently, and magnetically serializes the resulting executable
file accordingly.

The "joptions” argument may contain either ™Lxxxx" or "Uxxxx" to define either the
lower or upper boundary of the executable program (Mocx”" is a hexadecimal memory
address). The default boundary is "L0100" if the output file is of type .COM, and
"UFFFF" if the output file is of type .SYS.

The ";joptions” argument may also contain ;X" to display undefined symbol references

(quite normal in TurboDOS system generation), ";M" to print a load map on the
printer, and ";S™ to print a full symbol table cn the printer.

2-12

Configuration Guide to TurbaDOS
Copyright (C) 1981 by Software 2000 Inc.
¢ " System Generation

Example:

The following example uses the GEN command to link the modules listed in
OSMASTER.GEN and the patch parameters in OSMASTER.PAR, creating the
executable file OSMASTER.SYS.

OAIGEN OSMASTER.SYS ;UBFFF

* STDSINGL, CONL192, LSTCTS, SP442

* SER480, BRT4420, RTC442
* DSK401l, DSKFMTS, HDWNIT

Pass 1.

LCLUSR LCLTBL CMDINT AUTLOD SGLUSR PRVUSR
OSNTRY FILMGR FILSUP FASLOD BUFMGR DSKMGR
DSKTBL NONFIL CONMGR CONTBL DOMGR INPLN
LSTMGR LSTTBL COMMGR. RTCMGR DSPSGL MEMMGR
COMSUB SYSNIT CON192 LSTCTS SP442 SER430
BRT442 RTC442 DSK4%01 DSKFMT HDWNIT

Pass 2.

LCLUSR LCLTBL CMDINT AUTLOD SGLUSR PRYUSR
OSNTRY FILMGR FILSUP FASLOD BUFMGR DSKMGR
DSKTBL NONFIL CONMGR CONTBL DOMGR INPLN
LSTMGR LSTTBL COMMGR RTCMGR DSPSGL MEMMGR
COMSUB SYSNIT CON192 LSTCTS SP442 SER430
BRT%42 RTC%42 DSK401 DSKFMT HDWNIT

Processing parameter file:

AUTLOG = 80

NMBUFS = 8

Writing output file,

0A}

2-13

Contiguration Guide to TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Generation

Symbolic Patch Facility

The GEN command supports a symbolic patch facility which may be used to override
various operating system parameters as well as to effect necessary software
corrections. Symbolic patches must be stored in a parameter file (type .PAR), which
may be built using any ordinary file editor. The format of each .PAR file entry is:

location = valuel, value2, .., valueN ;comments

where "valuel" through "valueN"™ are to be loaded into consecutive memory locations
starting with "location”..

The argument "location™ may be a public symbol name, a hexadecimal number, or an
expression composed: of names and hexadecimal numbers connected by "+" or "-".
Hexadecimal numbers must begin with a decimal digit (e.g., "OFFFF"). The location
expression must be followed by an equal-sign character.

The arguments "valuel™ through "valueN™ may be expressions. (as defined above) or
quoted ASCII strings, and must be separated by commas. An expression is stored as
a lé-bit word if its value exceeds 255 or if it is enclosed in parentheses; otherwise,
an expression is stored as an 8-bit byte. A quoted ASCI string may be enclosed by
either quotes or apostrophes, and is stored as a sequence of 8$-bit bytes. Within a
quoted string, ASCII control characters may be specified by using the circumflex
(€.g., ™X" denotes CTRL-X).)

Examples
CLBLEN = 9D
NMBUFS = 4
BUFSIZ = 3
CBFCHR = "™F"
CLSCHR = ™"
ATNCHR = "™s"
RESCHR = ™Q"

ABTCHR = ™C"
DSKAST = 00,01,02,03,10,11,12,13,20,21,22,23,30,31,32,33

2-14

Contiguration Guide to TurbeDOS
Copyright (C) 1981 by Seftware 2000 Inc.
" System Generation

TurboDOS Patch Points

Parameters in TurboDOS which may be useful to patch include the following, shown
with their standard valuess

Jo AUTLOD Modulez
COLDFN = 0,"COLDSTRTAUT"

Cald-start autaload file (12 bytes)
WARMFN = 0,"WARMSTRTAUT"
Warmestart autcload file (12 bytes)

dn AUTLOG Module:

AUTUSR = OFF Automatic log-on user number (sign-bit if privileged)
o BUEMGR Modules

BUFSIZ =3 Default buffer size (0=128, 12256, 22512,eeey 7=16K)
NMBUFS = & Defauit number of buffers

In CMDINT Moduler]

CLBLEN = 9D Command line buffer length

CLSCHR = M~ Command line separator character

Jo CONTRI. Modulaz

ATNCHR = ™3 Attention character

ATNBEL = ™gn Attention-received response

RESCHR = ™Q" Resume character (attention response)

ABTCHR = ™(C" Abort character (attention response)

ECOCHR = "™pn Echo character (attention response)

PRTCHR = "L End-print character (attention response)

CONAST = Q0 Conscle assignment table

CONTBL = CONDRA Console driver table '

In DSKTRL Module: .
DSKAST = 00,01,02,03,10,11,12,13,20,21,22,23,30,31,32,33
Disk assignment table (16 bytes)
DSKTBL = DSKDRA,DSKDRB,DSKDRC,DSKDRD
Disk driver table (4 words)

In ELUSHR Moduie:
BFLDLY = (012Q) Buffer flush delay in ticks (no flush if zero)

2-15

Configuration Guide to TurboeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Generation

Jo LCLIBL Medulez

SPLMOD =1 Defauit spool mode

QUEPTR =1 Default spool queue assignment

SPLDRY = (OFF Default spoal drive 00...0F (system drive if OFF)

In LCLUSR Modulez)

MEMRES = (0100) Reserved memory between O/S and TPA

SOMSG = "TurboDOS l.xx, Copyright (C) 1981, Software 2000, Inc. $"
Sign-on message (56 bytes, must end with "$")

I LSTTRL Module:z

LSTAST = 00,10,20,30
List assignment table (4 bytes)
LSTIBL = LSTDRA,LSTDRB,LSTDRC,LSTDRD
List driver table (4 words)

NMBQUE =1 Number of de-spool queues

DSPPAT = ljeeel De-spoal printer assignment table (16 bytes)
NMBPTR =1 Number of printers

LSTREM = OFF Default print site (0O=local, OFF=remote)

EOPCHR = 0 End-oi-print character (if nonzero)

Jo MEMMGR Modulez

MEMBLL = (1103) Memory base lower limit (standard assures 4K TPA)
Jn NONFETL Modulez

LOGUSR = IF User number for log-off (standard is 31)

In OSLOAD Module:

LOADFN = 0,"OSMASTERSYS"
Defauit drive and filename for OSLOAD (12 bytes)
MEMTOP = (OFFFF) Top limit of OSLOAD RAM test (don* test if zero)

o SLYTBRI Modules
NMBSLY = 2 Number of network slaves
SLYTBL SR OSSLAVEX.SYS suffix letters (16 bytes)

2-16

Configuration Guide to TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
" System Generaticn

Explanatory Notes

The patch "AUTUSR = 80" should generally be included in single-user configurations
to cause an automatic privileged log-on to user number zero.

The disk assignment table DSKAST contains an array of byte entries corresponding to
drives A...P. The high-order nibble of each entry specifies which disk driver (in
DSKTBL) to use, while the low order nibhle is a drive number passed to the selected
driver. In network slaves, the high-order nibble should be set to 15 to indicate a
remote drive,

The list assignment table LSTAST contains an array of byte entries corresponding to
printers A...P. The high-order nibbie of each entry specifies which printer driver (in
LSTTBL) to‘use, while the low order nibhie is a printer number passed to the selected
driver in the B-register. The consocle assignment table CONAST works the same way.

If EOPCHR is patched to any non-null ASCI character, then the presence of that
character in the print output stream will automatically signal an end-of-print-job
condition.

The slave suffix table SLVTBL contains an array of byte entries corresponding to
slaves A...P. Each slave operating system is down-loaded from the file
"OSSLAVEx.SYS", where "x" is the proper SLVIBL entry. SLVTBL normally contains
all spaces, so that all slaves are down-loaded from "OSSLAVE.SYS™ '

2-17

Contiguration Guide to TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Generation

Step=by=Step Procedure for System Generation

To generate a new version of TurboDOS, the following steps may be followeds

l.

3.

4.

Je

6e

6.

7.

Bring up a single-user operating system, either CP/M or (preferably) a previous
version of TurboDOS. If you are using CP/M, all diskettes will have to be in
CP/M~compatible format (one-sided, single-density, 128-byte sector size).

Make a working copy of your TurboDOS distribution diskette. Do not use the
original diskette (in case something goes wrong). Insert the working diskette in a
convenient disk drive.

Using an editor, create or revise the file OSMASTER.GEN containing the names.
of the relocatable files to be linked together. In most cases, this will consist of
the appropriate STDxxoexx file plus all required device drivers.

Using an editor, create or revise the file OSMASTER.PAR containing any required
patches. This may be omitted if no patches are desired.

Using the command "GEN OSMASTER.SYS", generate an executable system f{ile.
If the target machine has less than 64K of memory installed, don‘t forget to
specify a ";Uxxx™ option on the GEN command.

If you need to generate a new O/S loader, create or revise the files
OSLOAD.GEN and OSLOAD.PAR, and use the command "GEN OSLOAD.COM" to
generate an executable locader file.

If you need to generate a new slave O/S for a networking configuration, create or
revise the files OSSLAVE.GEN and OSSLAVE.PAR, and use the command "GEN
OSSLAVE.SYS" to generate an executable down-load file.
—

To test the newly generated system, log onto your working diskette, eject all
other diskettes, and enter the command "OSLOAD". If the new system fails to
come up or to function properiy, you will have to start over at step l; there is
most likely an error in one of your .GEN or .PAR files.

2-18

Contiguration Guide to TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
" System Generation

SERIAL Command

Each relocatable TurboDOS module which is distributed to an OEM is partially
serialized with an origin number only. Each OEM is provided with a SERIAL
command processor which must be used to add a unique unit number to the
relocatable modules of each copy of TurboDOS issued by that OEM.

The format of the SERIAL command is:
SERIAL srcfile destfile ;Unnn options

where "srcfile®, "destfile” and "options"” have exactly the same meanings as in the
COPY command, and "mnn® is the unit number expressed as a decimal integer. The
SERIAL command works exactly like the COPY command, except that it has the
additional function of magnetically serializing .REL files.

The GEN command will not accept partially serialized modules that have not been
uniquely serialized by the OEM. Conversely, the SERIAL command will not re-
serialize modules which have already been fully serialized.

Examples

OAJSERIAL A: B: ;{289 N

A:ASSIGN.COM copied to B:ASSIGN.COM

A:USER.COM copied to B:USER.COM
0A}

2-19

Contiguration Guide te TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
System Generation

Jtep=by=Step Procedure for OFM Re-Distribution

Ta generate a serialized copy of TurboDOS for re-distribution by an OEM to a dealer
or end-user, the following steps must be followeds

l.

3.

4.

Je

Assign a unique sequential unit number for this copy of TurboDOS, and register it
promptly by filling-out a serial number registration card and mailing it to
Software 2000 Inc.

Initialize a new diskette, and label it with the TurboDOS version number, the
origin and unit numbers, and the required notice "Copyright (C) 1981, Soitware
2000 Inc.™.

Using the SERIAL. command, copy and serialize the following files from your OEM
redistribution master to the new diskette:r the appropriate STDxxxxx files, all
necessary driver modules, and plus .COM files for AUTOLOAD, BACKUP,
BUFFERS, CHANGE, COPY, DATE, DELETE, DIR, DO, DRIVE, DUMP,
ERASEDIR, FIFOQ, FIXMAP, FORMAT, GEN, LABEL, LOGOFF, LOGON, MASTER,
PRINT, PRINTER, QUEUE, RECEIVE, RENAME, RESET, SEND, SET, SHOW,
TYPE, USER, and VERIFY. Be certain that the new diskette does pot contain
unserialized modules or SERIAL.COM.

Using the new serialized diskette, generate an executable loader and operating
system, using the system generation procedure described earlier in this section.

In addition to the serialized diskette, the dealer or end-user should receive a
TurboDOS start-up PROM and copies of the User's Guide and Configuration Guide,

2-20

Configuration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
System Implementation

SYSTEM IMPLEMENTATION,

TurboDOS has been designed to run onr any Z30-based microcomputer with at least
48K of RAM, a random-access mass storage device, and a full-duplex character-
oriented consale device. The process-level and kernel-level modules of TurboDOS do
naot depend upon the specific peripheral devices to be used. Rather, a set of
hardware-dependent device driver modules must be included in each TurboDOS
configuration in order to adapt the operating system to a particular hardware
environment. Device drivers are typically required for consoles, printers, disk
controllers, network interfaces, real-time clock, and communications.

Although Software 2000 Inc. can supply TurboDOS pre-configured for certain specific
hardware configurations, most OEMs and many dealers and end-users will want to
implement ‘their own hardware-dependent drivers. Driver modules may be readily
written by any programmer competant in Z80 assembly-language. This section
provides detailed instructions to programmers for implementing such driver modules,
and the Appendix includes assembly listings of various sample drivers..

Assembler Requirements

Drivers must be written using a Z30 assembler capable of producing relocatable
modules with symbolic linkage information in the industry-standard Microsoft
relocatable module format. Both Microsoft's MACRO-80 and Digital Research's
RMAC assemblers have these characteristics, and are well suited for implementing
TurboDOS drivers,

Phoenix Software Associates’ (PSA) assembler (formerly TDL and Xitan) is an
excellent relocatable Z30 assembler, but it produces object modules in a non-standard
format. To alleviate this problem, a conversion utility (RELCYT.COM) is available
from Software 2000 Inc. for converting PSA-format object modules to standard
Microsoft format. The command

RELCVT filename

converts the PSA-format .REL file specified by "filename" into standard Microsoft
-REL format. Wherever the characters "." and "%" appear in names in the PSA-
format module, they are replaced by the characters ™" and "@" (respectively) in the
Microsoft-format module.

Contiguration Guide to TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Implementation

ZProgramming Conventions

Assembly-language examples in this section and in the Appendix are all coded for the
PSA assembler. In the examples, the name suffix "#" is used to dencte an extemal
name that is defined in another module. The label suffix ™ is used to denocte a
public name that is available for reference in other modules. Some assemblers
require that such names be declared in an EXTERN or PUBLIC statement. Also, the
symbol ".™ represents the current location counter value; some assemblers use "$" or
P instead. !

Dynamic Memory Allocation

The resident portion of TurboDOS resides in the topmost portion of system memory..
TurboDOS uses a2 common memory management module (MEMMGR) to provide
dynamic allocation and de-allocation of memory space required for disk buffers, de—
spoal requests,. file interiocks, DO-file nesting, etc. Dynamic memory segments are
allocated downward from the base of the TurboDOS resident area, thereby reducing
the space available for the transient program area (TPA). Deallocated segments are
concatenated with any neighbors and threaded cn a free list. A best-fit algorithm is
used to reduce memory fragmentation..

Allocation and de-allocaticn of memory segments is accomplished in this manner:

LX1 H,36 ;get size of requested segment in HL
CALL ALLOC# ;allocate segment

ORA A ;was segment allocated successfully?
INZ ERROR ;if not, error

PUSH H jelse, segment base address in HL
POP H ;jget address of memory segment in HL

CALL DEALOC# jde-allocate segment

Note that ALLOC# clears each newly-allocated segment to zerces. Note also that
ALLOC# prefixes each dynamic memory segment with a word containing the segment
length (including the prefix word itself), so that DEALOC# can tell how much
memory is to be de-allocated,

Contiguration Guide to TurboDQOS

Copyright (C) 1981 by Software 2000 Inc.

System Implementation

Sampile Interrupt-Driven Device Driver

The following is a simple device driver for an interrupt-driven serial input device. It

illustrates. the coding techniques described previously:

MXLQOCK:
-WORD
-WORD
WORD

b

EVENT:
-WORD
WQRD
-WORD

CHRSAV: BYTE

?

DRIVER: LXI
CALL
EI
LXT
CALL
LDA -
PUSH
L
CALL
POP
RET

SSPD
LX1
PUSH
PUSH
. PUSH

DEVISR:

L 3

-2

o}

.-2
0

H,MXLOCK
WAIT#

H,EVENT
WAIT#
CHRSAV
PSW
H,MXLOCK
SIGNAL#
PSW

INTSP#
SP,INTSTK #
PSW

B

D

H
STATUS
MASK
X
DATA
CHRSAV
H,EVENT
SIGNAL#
H

D

B

PSW
INTSP#
ISRXIT#

jmutual-exciusion interlock semaphore
jsemaphore count (initialized to 1])
jsemaphore list head forward pointer
jsemaphore list head backward peinter

sevent semaphore

ssemaphore count

;semaphore list forward pointer
jsemaphore list backward pointer

;input character save location

;get interlock semaphore address
;wait if driver is already in use
sensure that interrupts are enabled
;8et event semaphore

;wait for event to occur

;8et input character

;save an stack

;8et interlock semaphore address
;signal driver no longer in use
sreturn input character in A-register
;done

;save user's stack pointer

;set up auxilliary stack
;save all registers

;get peripheral status

;is input character available?
#if not, exit

jelse, get input character
;save input character

;8et event semaphore address
ssignal that event has occured
jrestore all registers

;jrestore user's stack pointer
sexit through dispacher

3-10

Contiguration Guide te TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Implementation

Re=Entrancy and Mutual Exclusion

All TurboDOS process-level and kernei-level modules permit re-entrant execution by
multiple processes. However, most driver-level modules are not coded re-entrantly
(since most peripheral devices can only do e thing at a time). Consequently, most
drivers must make use of a mutual-exclusion interlock to prevent re-entrant
execution.

Using the TurboDOS event semaphore mechanism, such a mutual-exclusion interlock
can be implemented very simply in the following manner:

MXLOCK: ;mutual-exclusion interlock semaphore
WORD | ;semaphore count (initialized to 1)
-WORD . ;semaphore list head forward pointer
WORD 2 ;semaphore list head backward pointer
DRIVER: LXI HMXLOCK ;get interlock semaphore address
CALL WAIT# ;wait if driver is already in use
LXi H,MXLOCK ;get interlock semaphore address
CALL SIGNAL# ssignal driver no longer in use
RET sdone

Note that the interiock semaphore count-word must be initialized to 1 (instead of 0
for this scheme to work properly.)

3-9

Configurationr Guide to TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Implementation

Poll Routines

Peripheral devices which are not capable of interrupting the processor must be polled
by the device driver. To facilitate this, the TurboDOS dispatcher maintains a
threaded list of poll routines, and executes. the routines on the list at every dispatch.
The function of each poll routine is to check the status of its peripheral device, and
to signal the occurrence of an event (e.g., character available, operation complete)
when it occurs.. The routine LNKPOL# can be called at any time to link a new poll
routine onto the poll list,

The only tricky thing about a poll routine is that it must be coded in such a fashion
that it will not signal the occurrence a particular event more than once. This can be
accomplished in various ways, but a most efficient method. is for the poll routine to
simply unlink itseif from the dispatcher’s poll list as soon as it has signalled the

occurrence of an event. This can be- accomplished in the following manner:

EVENT:

;event semaphore

WORD O ;semaphore count
WORD . ;semaphore list forward pointer
WORD .2 ;semaphore list backward pointer
LXI D,POLNOD ;get poll routine node address
CALL LNKPOL# ;link pall routine onto poll list
CALL POLRTN spre-test peripheral status (optional)
LxX1 H,EVENT ;get event semaphore address
CALL WAIT# ;wait until event occurs

POLNOD: .WORD 0 ;poll routine node linkage
WNWORD 0 ’

POLRTN: IN STATUS ;get peripheral status
ANI MASK ;is input character available?
RZ ;if not, exit
LXa H,EVENT jelse, get event semaphore address
CALL SIGNAL# ;jsignal that event has occurred
LX1 H,POLNOD ;get poll routine node address
CALL UNLINK# sunlink poll routine from poll list
RET ;done

3-8

Configuration Guide to TurboDOS
Copyright (C) 1981 by Seftware 2000 Inc.
System Implementation

InterTupt Service Routines

The TurboDOS dispatching mechanism is especially efficient when used with interrupt-
driven peripheral devices. In most situations, the interrupt service routine simply
calls SIGNAL# to Indicate that the event associated with the interrupt has occurred.

Service routines for low-frequency interrupts (no more than 100 times per second)
should exit by means of the standard interrupt service routine exit ISRXIT# in order
to provide frequent time-slicing of processes. Service routines for high-frequency
interrupts (occurring more than 100 times per second) should simply enable interrupts
and return, in order to avoid excessive dispatch overhead.

It is good programming practice for interrupt service routines to set up an auxilliary
stack, in order to avoid the possibility of overflowing the stack area of a user's
program. TurboDOS provides a standard interrupt stack area (IN‘I'STK#) and stack
pointer save location (INTSP#) for this purpose.

A simple interrupt service routine for a low-frequency interrupt could be coded in
this manner:

DEVISR: SSPD INTSP# ;save user's stack pointer
LX1 SP,INTSTK# ;set up auxilliary stack
PUSH PSW ;save all registers
PUSH B
PUSH D
PUSH H
IN STATUS ;ceset the interrupt condition
LX1 H,EVENT ;get event semaphore address
CALL SIGNAL# jsignal that event has occured
POP H jrestore all registers
POP D
POP B
POP PsSw
LSPD INTSP# ;jrestore user's stack pointer
JMP ISRXIT# jexit through dispacher

In more complex interrupt situations, it may be necessary for an interrupt service
routine to determine which of several possible events occurred, and to signal cne of
several alternative semaphores. Sometimes it may be desirable for an interrupt
service routine to perform a data buffering function (e.g., to provide keyboard type-
ahead).

Contiguration Guide te TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Implementation

If the occurrence of an event is signalled but no process is waiting for it, then
SIGNAL# simply increments the count-word to a positive value. Thus, a positive
count N signifies that there have beenr N occurrences of the event for which no
process. was waiting. In this case, the next N calls to WAIT# on that semaphore will
return immediately without waiting.

Sometimes it is necessary for a process to wait for a specific time interval (eges
head-settie delay, carriage-return delay) rather than for the occurrence of a specific
event. The TurboDOS dispatcher provides a delay facility (DELAY#) which permits.
other processes to use the microprocessor while one process is waiting for such a
time interval to expire. Delay intervals are measured in an implementation-defined
unit called a "tick™ in most implementations, ticks occur 50 or 60 times per second.
Delays may I_:e coded in the following manner:

LXI H,6 ;§et number of ticks to delay
CALL DELAY# ;delay for specified interval

>
L4

L g

A delay of zero ticks may be specified to effect a very short delay, or simply to
relinquish the processor to other processes an a "courtesy" basis.

For best performance, all driver delays should be accomplished by means of WAIT#

(wait for an event to be signalled) or DELAY# (wait for a given interval of time to
elapse). Drivers should never be coded to spin in a wait loop.

3-6 .

Contiguration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
System Implementaticn

Dispatching

TurboDOS incorporates an extremely efficient and flexible mechanism for dispatching
the Z80 microprocessor among various competing processes. In writing device drivers
for TurboDOS, the programmer must take extreme care to use the dispatcher
correctly in order to attain maximum performance.

Basically, the dispatcher enables one process to wait for some event (e.g., character
available, operation complete) while allowing other processes to utilize the
microprocessor. For each such event, the programmer must define a three-word
structure called an "event semaphore”. A semaphore consists of a count-word
followed by a two-word list head. The count-word is used by the dispacher to keep
track of the status of the event, while the list head defines a threaded list of
processes waiting for the event.

There are two fundamental operations which affect an event semaphore: waiting for
the event to occur (WAIT#), and signalling that the event has occurred (SIGNAL#).
These are coded in the following manner:

EVENT: jevent semaphore
WNVORD O ;semaphore count
.WORD . ;semaphore list forward pointer
WORD .-2 jsemaphore list backward pointer
LX1 H,EVENT ;&et event semaphore address
CALL WAIT# jwait until event occurs
LXf H,EVENT ;&et event semaphore address

CALL SIGNAL# ;signal that event has occured

Whenever a process waits on an event semaphore, WAIT# decrements the count-word
of the semaphore. Thus, a negative count of -N signifies that there are N processes
waiting for that event to occur. Whenever the occurrence of an event is signalled,
SIGNAL# increments the count-word of the semaphore and awakens the process that
has been waiting longest.

Configuration Guide to TurboDOS

Copyright (C) 1981 by Software 2000 Inc.

System Implementation

Threaded Lists

All dynamic structures in TurboDOS are maintained as threaded lists with
bidirectional linkages. This technique permits a node to be easily added or deleted
anywhere in a threaded list without searching. The list head and each list node must

contain a two-word linkage (forward pointer and backward pointer).

Manipulation of threaded lists is accomplished in this manner:

LSTHED:
.WORD
WORD

b4
LSTNOD:
’ .WORD
+WORD
BLKB

.-2.

H,LSTHED
D,LSTNOD
LNKEND#

H,LSTNOD
UNLINK#

H,LSTHED
D,LSTNOD
LNKBEG#

;list head (initialized to empty)
;forward pointer
sbackward pointer

;list node
sforward pointer
;backward pointer
shode body

;get list head address in HL
;€et new node address in DE
slink node to end of list

;&et node address in HL
;unlink node from list

;get list head address in HL
sg€et new node address in DE
;link node to beginning of list

34

Contiguration Guide ta TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Implementation

In programming hardware-dependent driver modules, it is frequently necessary to
include a considerable amount of initialization code which is executed only once (at
system start-up) and never needed again. Using DEALOC#, the memory space
occupied by such initialization code can be made available to satisfy subsequent
dynamic memory requirements. To do this, the code segment must be prefixed with
a word containing the segment lengths.

sWORD LENGTH+2 ;length to be de-allocated

HDWNIT:: XRA A ;start of initialization code
LXI HHDWNIT ;get beginning of segment
. IMP DEALOC# jde-allocate segment
LENGTH = ~HDWNIT jlength of segment

Contiguration Guide te TurboDOS
Copyright (C) 1981 by Scftware 2000 Inc.
System Implementation
Sample Polled Device Driver

The following is a simple device driver for a polled serial input device. It illustrates

the coding techniques described previously:

MXLOCK: jmutual-exclusion interlock semaphore
JWORD | ;semaphore count (initialized to 1!)
WORD . jsemaphore list head forward pointer
WORD 2 jsemaphore list head backward painter

?

EVENT: jevent ssmaphore
.WORD O ;semaphore count
WORD . jsemaphore list forward pointer
WORD -2 ;semaphore list backward pointer

H

CHRSAV: BYTE 0 sinput character save location

4

DRIVER: LXI H,MXLOCK ;get interiock semaphore address
CALL WAIT# jwait if driver is already in use
LXI D,POLNOD ;get poll routine node address
CALL LNKPOL# slink poll routine onto poll list
CALL POLRTN jpre=test peripheral status (optional)
LXI H,EVENT ;get event semaphore address
CALL WAIT# ;wait until event occcurs
LDA CHRSAV ;8et input character
PUSH PSW ;save an stack
LX1 H,MXLOCK ;get interlock semaphore address
CALL SIGNAL# jsignal driver no longer in use
POP PSW sreturn input character in A-register
RET jdone

b

POLNOD: .WORD 0 ;poll routine node linkage
WORD 0

POLRTN: IN STATUS ;get peripheral status
ANI MASK ;is input character availabje?
RZ ;if not, exit
IN DATA selse, get input character
STA CHRSAV ;save input character
LX1 H,EVENT jelse, get event semaphore address
CALL SIGNAL# ;signal that event has occurred
Lx1 H,POLNOD ;get poll routine node address
CALL UNLINK# sunlink poll routine from poll list
RET ;done

3-11

Configuration Guide to TurboDOS
Copyright (C) 1981 by Soitware 2000 Inc.
System Implementation

QDriver Interface Specifications

The interface specifications. for various kinds of device drivers are described below.
Drivers may be packaged into as many or few separate modules as desired by the
programmer. In general, it is easier to reconfigure TurboDOS for a wide variety of
peripheral devices if the driver for each device is packaged as a separate module.

TurboDOS may be configured with muitiple disk, console, printer and network drivers,
The disk driver entrypoint table refers to disk driver entrypoints DSKDRA#,
DSKDRB#, DSKDRC#, etc. Each disk driver should be coded with a public
entrypoint DSKDR@:: (or DSKDR%::: if PSA assembler and RELCVT are used). The
GEN command automatically maps successive definitions of such names by replacing
the trailing @ by A, B, C, etc. The same technique should be used for console,
printer, and network drivers. '

To allow various TurboDOS modules to be included or omitted at will, the GEN
command automatically resolves all undefined external references to the default
symbol 7UND?#. The TurboDOS commen subroutine module COMSUB contains the
following stub routine:

7UND?:: NOP jsingle- or double-length load
NOP . ;of undefined returns zero
XRA A jcall of undefined returns A=0
RET ;done

Thus,. it is always safe to load or call an external name, whether or not it is defined.

Driver routines must preserve the stack and the index registers X and Y, but may use
other registers as desired.

Initialization

All necessary hardware initialization and interrupt vector setup shouid be performed
by an initialization routine that begins with the public entry name HDWNIT::.. This
routine is called by TurboDOS at system start-up with interrupts disabled. The
hardware initialization procedure must not enable interrupts or make calls to WAIT#
or DELAY#. In most cases, the HDWNIT:: routine should contain a series of calls to
individual driver initialization subroutines.

3-12

Configuration Guide to TurboDOS
Copyright (C) 1981 by Seftware 2000Q Inc.
Systemt Implementation

Console Drivers

Each consale driver routine should begin with the public entry name CONDR@sz, and
should perform a console operation in accordance with the operation code (0, 1, 2, 8
or 9) passed by TurboDOS in the E-register. A consale number is passed in the
B-register (obtained from the least-significant nibble of the console assignment table
entry CONAST#).

If E=0, the driver must determine if a consale input character is available. It must
return with A=-l if a character is available, or with A=0 if no character is available,
If a character is available, the driver must return it in the C-register, but_must not
—consume” the character, (This look-ahead capability is used by TurboDOS to detect
attention requests.)

If E=l, thé driver must obtaim a conscle input character (waiting for one if
necessary), and retum it in the A-register.

If E=2, the driver must cutput to the conscle the character passed by TurboDOS in
the C-register.

If E=3, the driver should prepare to display a TurboDOS error message; if E=9, the
driver should revert to normal display. Error message displays issued by TurboDOS
are always preceded by an E=8 call and followed by an E=9 call. This gives the
console driver the opportunity to take special action for system error messages (e.g.,
25th line, reverse video). For simple console devices, the driver should perform a
carriage-retum and line-feed in response to E=8 and E=9 calls.

Printer Drivers

Each printer driver routine should begin with the public entry name LSTDR@::, and
should perform a printer operation in accordance with the operation code (2 or 7)
passed by TurboDOS in the E-register. A printer number is passed in the B-register
(obtained from the least-significant nibble of the printer assignment table entry
LSTAST#).

If E=2, the driver must output to the printer the character passed by TurboDOS in the
C-register.

If E=7, the driver should take any appropriate end-of-print-job action (e.g., re-align
forms, drop ribbon, home print head),

3-13

Configuration Guide to TurboDOS
Copyright (C) 1981 by Seftware 2000 Inc.
System Implementation

Network Drivers.

(To be supplied in a future revision.)

3-14.

Couﬁéuratiom Guide to TurboDOS
Copyright (C) 1981 by Seftware 2000 Inc.
System Implementation

Disic Drivers

Eachr disk driver routine should begin with the public entry name DSKDR@:2, and
should perform a physical disk operation as specified by the physical disk request
packet whose address is passed by TurboDOS in the X-register. The format of the
physical disk request packet iss

X+Q: BYTE OPCODE ;disk operation code

X+ls JBYTE DRIVE ;drive number on controller (base 0)
X+23 WORD TRACK ;physical track number (base 0)
X+bs .WORD SECTOR sphysical sector number (base 0)
X+63 WORD SECCNT jnumber of sectors to read or write
X+3: WORD BYTCNT snumber of bytes to read or write
X+10s .WORD DMAADR ;DMA address for read or write
X+12: -WORD DSTADR ;disk specification table address

jcopy of disk specification tahle follows

b4

X+14s BYTE BLKSIZ sblock size (3z1K, 422K yeeey 7216K)

X+15: -WORD NMBLKS jnumber of blocks, total

X+17: BYTE NMBDIR snumber of directory blocks

X+18: BYTE SECSIZ jsector size (0=128, 1=256, 2251200y 7=16K)
X+19: WORD SECTRK jsectors per track

X+213 .WORD TRKDSK stotal tracks on disk

X+23: .WORD RESTRK ;reserved tracks on disk

If OPCODE=0, then the driver must read SECCNT physical sectors (or BYTCNT bytes)
into DMAADR, starting at TRACK and SECTOR on DRIVE. Return with A=-l if an
unrecoverable error occurs, otherwise return with A=0. Although TurboDOS may
request many consecutive sectors to be read, it will never request an operation which
extends past the end of the specified track.

If OPCODE=1, then the driver must write SECCNT physical sectors (or BYTCNT
bytes) from DMAADR, starting at TRACK and SECTOR on DRIVE. Return with
A=-l If an unrecoverable error occurs, otherwise return with A=0. Although
TurboDOS may request many consecutive sectors to be written, it will never request
an operation which extends past the end of the specified track.

3=15

Contiguration Guide to TurboeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Implementation

If OPCODE=2, then the driver must determine the type of disk mounted in the
specified drive, and must return in DSTADR the address. of an ll-byte disk
specificaticn table structured as follows:

DST: BYTE BLKSIZ sblock size (3=1K, 4=2K,eeey. 7=16K)
.WORD NMBLKS ;number of blocks, total
BYTE NMBDIR snumber of directory blocks
BYTE SECSIZ jsector size (0=128, 12256, 2=512eeey 7=16K)

WORD SECTRK ;jsectors per track
-WORD TRKDSK jtotal tracks on disk
-«WORD RESTRK ;reserved tracks on disk

On returm, TurboDOS moves a copy of the disk specification table into X+l4 through
X+24, where it is available for subsequent read and write operations on that drive. If
the drive is not ready or the type is unrecognizable, the driver must return A=0,
otherwise it must return A=-l.

If OPCODE=3, then the driver must determine whether or not the specified drive is
ready. Return A=-l if the drive is ready, otherwise return A=0.

If OPCODE=4, then the driver must format (i.e., initialize) the specified TRACK on

DRIVE. Hardware-dependent formatting information will be provided at DMAADR..
Return with A=-l if an unrecoverable error occcurs, otherwise return with A=0.

3-16

Configuration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc.
System Implementation

Real-Time Clock Driver

The real-time clock driver normally consists of an interrupt service routine which
responds to interrupts from a periodic interrupt source (preferably 50 to 60 times per
second). The interrupt service routine shouid call DLYTIC# once per system tick to
synchronize process delay requests. It should also call RTCSEC# once per second
(i.e., every 50 or 60 ticks) to update the system time and date. Finally, it should
exit through ISRXIT# to provide a periodic system time-slice.

Excluding necessary initialization code, a typical real-time clock driver might lock

RTCCNT: BYTE 1 ;divide-by-60 counter
4
RTCISR: SSPD INTSP# jsave user’s stack pointer
LXI SP,INTSTK# ;set up auxilllary stack
PUSH PSw ;save all registers
PUSH B
PUSH D
PUSH H
IN STATUS ;reset the interrupt condition
CALL DLYTIC# ssignal cne tick elapsed time
LXI H,RTCCNT ;get divide-by-60 counter
DCR M ;ydecrement counter
JRNZ X ;not 60 ticks yet, exit
MVI M,60 ;else, reset counter to 60 ticks
CALL RTCSEC# jsignal one second elapsed time
X3 POP H jrestore all registers
POP D
POP B
POP PsSw
LSPD INTSP# jrestore user's stack pointer
IJMP ISRXIT# jexit through dispacher

If it is possible to determine the date and/or time-of-day at cold-start (e.g., by means
of a battery-powered clock board), then the driver may initialize the following public
symbols in RTCMGR:

SECS:: BYTE 0 ;0eeadd
MINS:: BYTE 0 300eed?
HOURS:: BYTE 0 $0eee23
JDATE:: .WORD 800lH - ;Julian date, based 31 Dec 47

3-17

Contiguratiom Guide to TurbeDOS
Copyright (C) 1981 by Software 2000 Inc.
System Implementation

Commy Channel Drivers

The comm channel driver supports the TurboDOS communications extensions
(functions 87...93), and is not required if these functions are not used. The comm
channel driver routine should begin with the public entry name COMDRY:z, and should
performr & comm channel operation i accordance with the operation code passed by
TurboDOS in the E-register. A channel number is passed in the B-register.

If E=0, the driver must determine if an input character is available on the specified
channel. It must return with A=-l if a character is available, or with A=0 if no
character is available..

If E=l, the driver must obtain an input character from the specified channel (waiting
for one if necessary), and retum it in the A-register.

I E=2, the driver must output to the specified channel the character passed by
TurboDOS in the C-register.

If E=3, the driver must set the baud rate of the specified channel according to the
baud rate code passed by TurboDOS in the C-register. (See function 90 in the User's
Guide for definition of the codes.)

If E=4, the driver must obtain the current baud rate code for the specified channel,
and retum it in the A-register.

If E=5, the driver must set the modem controls of the specified channel according to
the modem control vector passed by TurboDOS in the C-register. (See function 92 in
the Usec!s Guide for definition of the vector.)

If E=6, the driver must obtain the current modem status vector for the spec:.ﬁed

channel, and return it in the A-register. (See function 93 in the User's Guide for
definition of the vector.)

3-128

Configuration Guide to TurboDOS
Copyright (C) 1981 by Software 2000 Inc..
System Implementation

Rootstrap ROM

Implementation of a TurboDQS bootstrap ROM involves linking the standard bootstrap
module OSBOOT with a hardware-dependent driver QSBDRY. This should be
accomplished with the GEN command, using the ™Lxxxx™ option to establish the
desired ROM base address. Since the OSBOOT module requires only 04K, the
completed bootstrap can fit in a |K ROM (e.g., 2708) if the driver is kept simple
enough. The driver module OSBDRY must define five public entry namesz INIT:s,
SELECT:s, READs:, XFER:s, and RAMsz.

INIT:: is called at the beginning of the bootstrap process, and performs any required
hardware Initialization (e.g., of the disk controller). It must return with the load
base address in the HL-registers. The load base address determines the RAM where
loading of the file OSLOAD.COM will begin. It shculd normally be 0100H, but may
have to be a higher address if low RAM cannot be written while the ROM is enabled.

SELECT:: selects the disk drive according to the drive number 0...l5 passed in the
A-register. [f the selected drive is not ready or non-existent, then this routine must
return A=0. Otherwise, it must retum A=-1, and must returmn the address of an
appropriate disk specification table in the HL-registers. The disk specification table
is an ll-byte table whose format is the same as described earlier for the normal disk
driver.

READ:: reads cne physical sector from the last selected drive into RAM. On entry,
the physical track is passed in the BC-registers, the physical sector is passed in the
DE-registers, and the starting RAM address is passed in the HL-registers. The
routine must return with A=0 if the operation was successful, or with A==l if an
unrecoverable error occurred.

XFER:: is executed at the end of the bootstrap process, and transfers control to the
loader program OSLOAD.COM which has been loaded into RAM. In most cases, this
involves simply setting location 0080H to zero (to simulate a null command tail), and
jumping to 0100H. However, if INIT retumned a loader base other than 0l0QH, then
XFER should move the loader program down to 0l00H prior to execution.

RAM:: defines the beginning of a 64-byte area of RAM that OSBOOT can use as

working storage. Obviously, it should not be located in the area in which
OSLOAD.COM will be loaded!

3-19

PadaEst 841 Fbinll wvideal MO, gty o B000uN & mmmm:qtm

W
sﬁ As!wgh ll;h' Nm Hapit Wm Wl oo gl 1@9@ -._-.ul“l:
et M 53 TROGE “Dly =t g KosEesos B i BroE b oo

3w S50y swloten slunem TOBOEC sl B JE seTriEa edss Wk yies

MMEmwﬁm’me SOA 6 B e cassgte eralgoss

,\m sedwn (g 2liug el sl o YROELS siubmr ovlat 457 pehane

- Jﬂﬁﬁﬁ.h_- ,r”"“’;ﬂ ::.lm '_‘_D&.i" R

ﬂsw#m; hat (ﬂaﬁ\li RETSE o ol 10 eDetlad w88 a2 =T
mal o W et W Saflesian salk s o wga Al syiisihe samEhaad
snartw JAF o e bt wad S0 1T sl 00 o g Sesba L
mﬂ GG w0 (Maren sammde 3 lzed Tliw NOTAAOME S olF e o yiasc
wﬁwm dg-v et w4 Fomes AL vl N mm voryi | & od o3 phatl

isonl begnge L0 saderin v o mm_!ﬁﬂrﬂwmxu =

mym-&n‘-sm-w -M: .mmnww-w vome SO0 3 Vi #eimelss W T £7 Wre
A B0 BRSTNAA ML IR TR DR =S ey yum 3 et aF Giiiel bl
s roliadioear Nah o0l anrndyesil e o sl Al e SrwoIRgs
h@rhnmds Yot yeliiee redimen wa s wii ol Jetrict seome elnst g~ 1l ng ki

Artma A0 JGAR oeal svima beloniw il & Mol hTae Leaieqlily soo bt BOASH
artt il Deadts X eioe i et fumlu-ﬁ-ml st nl oeerey w ke leeieydg oir
AT adrsipenals’ wdr nu Deoe o araxhig M&.ﬂ ar‘H..Ln ady an EyerElgeiD
R Y A GG I JUhumsad rew oltinegl w Sl ST SR L R USSR

Lerumen re RASEVUNTRY

dgil B e svmanyn box ,m-t'q onftuce sl &= s poit 33 beriroscs e (ATSS
sl pmpen teten M JNAS ofin bebial pet SRS MRk B O ILD rastguny tebac)
s MEs saemens Lun B rkomd UF) el oy WAELT - *_g'T_"“n ViRt 284 weal
ness 00,0 aEe el ewmn LiDadl & Demiow T aeemarf GHUOEE &7 Bdg

i Sorhiness @8 ol HONIC o ~eok WOSIETI nay el R Sluute HH0L

2= wer ues TOOUES Gt MAZ 1o @nb myi-=ts 3 5 . prltuistens o seduben ML

pai® W ape MR AL bAMASSl sq 2nn toaes N piambdG sgsneTs grgsiie e
Inabnd o e SCLLRCIC

I
A
!

e o
.|
b d

.

