

Memory Management

Memory Management

226

When a TURBO program is executed, three segments are allocated for
the program: A code segment, a data segment, and a stack segment.

Code segment (CS is the code segment register):

CCS:oooo
CS:OIOO
CS: End of run-time lib.
CS: End of program code

CS: OOFF US-OOS base page
CS: End of run-time library Run-time library code
CS: End of program code Program code
CS: End of code segment Unused

Data segment (OS is the data segment register):

OS:OOOO
OS :End ofrun-time lib. work space
OS: End of main program vari abIes

OS:End of run-time library work space
OS :End of main program variables
OS: End of data segment

The unused areas between (CS:EOFP-CS:EOFC and DS:EOFM
DS:EOFD) are allocated only if a minimum cOde segment size larger
than the required size is specified at compilation. The sizes of the code
and data segments never exceed 64K bytes each.

The stack segment is slightly more complicated, as it may be larger than
64K bytes. On entry to the program the stack segment register (SS) and
the stack pointer (SP) is loaded so that SS:SP pOints at the very last
byte available in the entire segment. During execution of the program
SS is never changed but SP may move downwards until it reaches the
bottom of the segment, or 0 (corresponding to 64K bytes of stack) if the
stack segment is larger than 64K bytes.

The heap grows from low memory in the stack segment towards the ac
tual stack residing in high memory. Each time a variable is allocated on
the heap, the heap pointer (which is a double word variable maintained
by the TURBO run-time system) is moved upwards, and then normal
ized, so that the offset address is always between $0000 and $OOOF.
Therefore, the maximum size of a single variable that can be allocated
on the heap is 65521 bytes (corresponding to $10000 less $OOOF). The
total size of all variables allocated on the heap is however only limited by
the amount of memory available. The heap pointer is available to the
programmer through the HeapPtr standard identifier. HeapPtr is a type
less pointer which is compatible with all pOinter types. Assignments to
HeapPtr should be exercised only with extreme care.

TURBO Pascal Reference Manual

Chapter 21
CP/M-86

This chapter describes features of TURBO Pascal specific to the CP/M-a6
implementation. The information presented on pages 227 through 240 will
help you use Turbo Pascal efficiently. The remainder of the chapter will be
of interest to experienced programmers; it describes such things as
machine language routines, technical aspects of the compiler, etc.

Compiler Options

The 0 command selects the following menu from which you may view
and change some default values of the compiler. It also provides a help
ful function to find runtime errors in programs compiled into object code
files.

compile -> Memory
Cmd-file
cHn-file

command line Parameter:

Find run-time error Quit

Figure 21-1: Options Menu

Memory / Cmd file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where
to put the code which results from the compilation. Memory is the de
fault mode. When active, code is produced in memory and resides there
ready to be activated by a Run command.

CP/M-86 227

Compiler Options

Cmd-file is selected by pressing C. The arrow moves to point to this line.
The compiler writes code to a file with the same name as the Work file
(or Main file, if specified) and the file type .CMD. This file contains the
program code and Pascal runtime library, and may be activated by typ
ing its name at the console.

cHain-file is selected by pressing H. The arrow moves to pOint to this
line. The compiler writes code to a file with the same name as the Work
file (or Main file, if specified) and the file type .CHN. This file contains the
program code but no Pascal library and must be activated from another
TURBO Pascal program with the Chain procedure (see page 231).

When the Cmd or cHn mode is selected, four additional lines will appear
on the screen:

minimum cOde segment size: XXXX paragraphs (max.YYYY)
minimum Data segment size: XXXX paragraphs (max.YYYY)
mInimum free dynamic memory: XXXX paragraphs
mAximum free dynamic memory: XXXX paragraphs

Figure 21-2: Memory Usage Menu

The use of these commands are described in the following sections.

Minimum Code Segment Size

228

The O-command is used to set the minimum size of the code segment
for a .CMD using Chain or Execute. As discussed on page 231, Chain
and Execute do not change the base addresses of the code, data, and
stack segments, and a 'root' program using Chain or Execute must
therefore allocate segments of sufficient size to accommodate the larg
est segments in any Chained or Executed program.

Consequently, when compiling a 'root' program, you must set the value
of the Minimum Code Segment Size to at least the same value as the
largest code segment size of the programs to be chained/executed from
that root. The required values are obtained from the status printout ter
minating any compilation. The values are in hexadecimal and specify
number of paragraphs, a paragraph being 16 bytes.

TURBO Pascal Reference. Manual

Compiler Options

Minimum Data Segment Size

The D-command is used to set the minimum size of the data segment for a
.CMD using Chain or Execute. As discussed above, a 'root' program us
ing these commands must allocate segments of sufficient size to accom
modate the largest data of any Chained or Executed program.

Consequently, when compiling a 'root' program, you must set the value of
the Minimum Data Segment Size to at least the same value as the largest
data segment size of the programs to be chained/executed from that root.
The required values are obtained from the status printout terminating any
compilation. The values are in hexadecimal and specify the number of
paragraphs, a paragraph being 16 bytes.

Minimum Free Dynamic Memory

This value specifies the minimum memory size required for stack and
heap. The value is in hexadecimal and specifies a number of paragraphs, a
paragraph being 16 bytes.

Maximum Free Dynamic Memory

This value specifies the maximum memory size allocated for stack and
heap. It must be used in programs which operate in a multi-user environ
ment like Concurrent CP /M-B6 to assure that the program does not allo
cate the entire free memory. The value is in hexadecimal and specifies a
number of paragraphs, a paragraph being 16 bytes.

Command Line Parameters

The P-command lets you enter one or more parameters which are passed
to your program when running it in Memory mode, just as if they had been
entered on the DOS command line. These parameters may be accessed
through the ParamCount and ParamStr functions.

Find Runtime Error

When you run a program compiled in memory, and a runtime error occurs,
the editor is invoked, and the error is automatically pointed out. This, of
course, is not possible if the program is in a .CMD file or an .CHN file. Run
time errors then print out the error code and the value of the program
counter at the time of the error:

CP/M-86 229

Compiler Options

Run-time error 01, PC=lB56
Program aborted

Figure 21-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the
F command. When prompted for the address, enter the address given
by the error message:

Enter PC: IB56

Figure 21-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if
the error had occurred while running the program in memory.

Notice that locating errors in programs using overlays can be a bit more
tricky, as explained on page 156.

Standard Identifiers

230

The following standard identifiers are unique to the 16-bit implementa
tions:

Bdos
CSeg
DSeg

Intr
MemW

Ofs
PortW

Seg
SSeg

TURBO Pascal Reference Manual

Chain and Execute

Chain and Execute

TURBO Pascal provides two procedures Chain and Execute which allow
TURBO programs to activate other TURBO programs. The syntax of the
pr~cedure calls are:

Chain(FilVar)
Execute(FiIVar)

where FilVar is a file variable of any type, previously assigned to a disk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

The Chain procedure is used only to activate special TURBO Pascal
.CHN files, i.e. files compiled with the cHn-file option selected on the
Options menu (see page 190). Such a file contains only program code;
no Pascal library, it uses the Pascal library already present in memory.
Chain files must have the same compiler directives as the main module.

The Execute procedure is used to activate any TURBO Pascal .CMD
file.

If the disk file does not exist, an I/O error occurs. This error is treated as
described on page 116. When the I compiler directive is passive ({$I-}),
program execution continues with the statement following the failed
Chain or Execute statement, and the IOresult function must be called
prior to further I/O.

Data can be transferred from the current program to the chained pro
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same size of code and data segments (see pages 228
and 229). When these conditions are satisfied, the variables will be
placed at the same address in memory by both programs, and as
TURBO Pascal does not automatically initialize its variables, they may
be shared.

CP/M-86 231

Chain and Execute

232

Example:
Program MAIN.CMD:

program Main;
var

Txt:
CntPrg:

begin

string[80] ;
file;

Write('Enter any text: '); Readln(Txt);
Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);

end.

Program CHRCOUNT. CHN:

program ChrCount;
var

Txt: string[80] ;
NoOfChar,
NoOfUpc,
I: Integer;

begin
NoOfUpc := 0;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do
it Txt[I] in [, A' .. ' Z'] then NoOfUpc : = Succ(NoOfUpc) ;

Write('No of characters in entry: ',NoOfChar);
Writeln('. No of upper case characters: " NoOfUpc,'.');

end.

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the CP/M command line, you should use an ab
solute variable at address Dseg:$80. This is the command line length
byte, and when a program is called from CP/M, it contains a value
between 0 and 127. When eXecuting a program, therefore, the calling
program should set this variable to something higher than 127. When
you then check the variable in the called program, a value between 0
and 127 indicates that the program was called from CP/M, a higher
value that it was called from another TURBO program.

TURBO Pascal Reference Manual

Chain and Execute

Chaining and eXecuting TURBO programs does not alter the memory al
location state. The base addresses and sizes of the code, data and
stack segments are not changed; Chain and Execute only replace the
program code in the code segment. 'Alien' programs, therefore, cannot
be initiated from a TURBO program.

It is important that the first program which executes a Chain statement
allocates enough memory for the code, data, and stack segments to ac
commodate largest .CHN program. This is done by using the Options
menu to change the minimum code, data and free memory sizes (see
page 190).

Note that neither Chain nor Execute can be used in direct mode, that is,
from a program run with the compiler options switch in position Memory
(page 190).

Overlays

During execution, the system normally expects to find its overlay files on
the logged drive. The OvrDrive procedure may be used to change this
default value.

OvrDrive Procedure

Syntax: OvrDrive(Drive};

where Drive is an integer expression specifying a drive (0 = logged
drive, 1 = A:, 2 = B:, etc.). On subsequent calls to overlay files, the files
will be expected on the specified drive. Once an overlay file has been
opened on one drive, future calls to the same file will look on the same
drive.

Example:
program OvrTest;

overlay procedure ProcA;
begin

Writeln('Overlay A');
end;

CP/M-86 233

Overlays

234

overlay procedure ProcB;
begin

Writeln('Overlay B');
end;

procedure Dummy;
begin

{Dummy procedure to separate the overlays
into two groups}

end;

overlay procedure Proce;
begin

Writeln('Overlay e');
end;

begin
OvrDrive(2) ;
ProcA;
OvrDrive(O) ;
Proce;
OvrDrive(2) ;
ProcB;

end.

The first call to OvrDrive specifies overlays to be sought on the B: drive.
The call to ProcA therefore causes the first overlay file (containing the
two overlay procedures ProcA and ProcB to be opened here.

Next, the OvrDrive(O) statement specifies that following overlays are to
be found on the logged drive. The call to ProcC opens the second over
lay file here.

The following ProcB statement calls an overlay procedure in the first
overlay file; and to ensure that it is sought on the B: drive, the
OvrDrive(2) statement must be executed before the call.

TURBO Pascal Reference Manual

Files

Files

File Names

A file name in CP/M consists of one through eight letters or digits, op
tionally followed by a period and a file type of one through three letters
or digits:

Drive:Name. Type

Text Files

The Seek and Flush procedures and the FilePos and FileSize functions
are not applicable to CP/M text files.

Buffer Size

The text file buffer size is 128 bytes by default. This is adequate for
most applications, but heavily I/O-bound programs, as for example a
copy program, will benefit from a larger buffer, as it will reduce disk
head movement.

You are therefore given the option to specify the buffer size when de
claring a text file:

VAR
TextFile: Text[$lOOO];

declares a text file variable with a buffer size of 4K bytes.

CP/M-86 235

Absolute Variables

Absolute Variables

236

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding to the variable declaration
the reserved word absolute followed by two Integer constants spec
ifying a segment and an offset at which the variable is to be located:

var
Abc: Integer absolute $OOOO:$OOEE;
Def: Integer absolute $OOOO:$OOFO;

The first constant specifies the segment base address, and the second
constant specifies the offset within that segment. The standard
identifiers CSeg and DSeg may be used to place variables at absolute
addresses within the code segment (C8eg) or the data segment (08eg):

Patch: array[l .. PatchSize] of byte absolute CSeg:$05F3;

Absolute may also be used to declare a variable "on top" of another
variable, i.e. that a variable should start at the same address as another
variable. When absolute is followed by the identifier of a variable or
parameter, the new variable will start at the address of that variable
parameter.

Example:
var

Str: string[32] ;
StrLen: Byte absolute Str;

This declaration specifies that the variable StrLen should start at the
same address as the variable Str, and as the first byte of a string vari
able contains the length of the string, StrLen will contain the length of
Str. Notice that an absolute variable declaration may only specify one
identifier.

Further details on space allocation for variables are found on page 246.

TURBO Pascal Reference Manual

Absolute Address Functions

Absolute Address Functions

The following functions are provided for obtaining information about pro
gram variable addresses and system pointers.

Addr

Dis

Seg

Syntax: Addr(Name)

Returns the address in memory of the first byte of the variable with the
identifier Name. If Name is an array, it may be subscribed, and if Name
is a record, specific fields may be selected. The value returned is a 32
bit pOinter consisting of a segment address and an offset.

Syntax: Ofs(Name)

Returns the offset in the segment of memory occupied by the first byte
of the variable, procedure or function with the identifier Name. If Name
is an array, it may be subscribed, and if Name is a record, specific fields
may be selected. The value returned is an Integer.

Syntax: Seg(Name)

Returns the address of the segment containing the first byte of the vari
able with the identifier Name. If Name is an array, it may be subscribed,
and if Name is a record, specific fields may be selected. The value re
turned is an Integer. To obtain the segment address of a procedure or
function, use the CSEG function.

Cseg

Syntax: Cseg

Returns the base address of the Code segment. The value returned is
an Integer.

CP/M-86 237

Absolute Address Functions

Dseg

Syntax: Dseg

Returns the base address of the Data segment. The value returned is an
Integer.

Sseg

Syntax: Sseg

Returns the base address of the Stack segment. The value returned is
an Integer.

Predefined Arrays

TURBO Pascal offers four predefined arrays of type Byte, called Mem,
MemW, Port and PortW which are used to access CPU memory and
data ports.

MemArray

238

The predefined arrays Mem and MemWare used to access memory.
Each component of the array Mem is a byte, and each component of
the array MemW is a word (two bytes, LSB first). The index must be an
address specified as the segment base address and an offset separated by
a colon; both must be of type Integer.

The following statement assigns the value of the byte located in seg
ment 0000 at offset $0081 to the variable Value

Value:=Mem[OOOO:$0081];

While the following statement:

MemW[Seg(Var):Ofs(Var)]:=Value;

places the value of the Integer variable Value in the memory location oc
cupied by the two first bytes of the variable Var.

TURBO Pascal Reference Manual

Predefined Arrays

Port Array

The Port and PortW array are used to access the data ports of the
8086/88 CPU. Each element of the array represents a data port, with
the index corresponding to port numbers. As data ports are selected by
16-bit addresses the index type is Integer. When a value is assigned to
a component of Port or PortW it is output to the port specified. When a
component of port is referenced in an expression, its value is input from
the port specified. The components of the Port array are of type Byte
and the components of PortW are of type Integer.

Example:
Port[56] :=10;

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port and PortW cannot be used as
variable parameters to procedures and functions. Furthermore, opera
tions referring to the entire port array (reference without index) are not
allowed.

With Statements

With statements may be nested to a maximum of 9 levels.

Pointer Related Items

MemAvail

The standard function MemAvail is available to determine the available
space on the heap at any given time. The result is an Integer specifying
the number of available paragraphs on the heap (a paragraph is 16
bytes).

Pointer Values

In very special circumstances it can be of interest to assign a specific
value to a pointer variable without using another pointer variable or it
can be of interest to obtain the actual value of a pointer variable.

CP/M-86 239

Pointer Related Items

Assigning a Value to a Pointer

The standard function Ptr can be used to assign specific values to a
pointer variable. The function returns a 32 bit pOinter consisting of a
segment address and an offset.

Example:
Pointer:=Ptr(Cseg,$80);

Obtaining The Value of a Pointer

A pointer value is represented as a 32 bit entity and the standard func
tion Ord can therefore not be used to obtain its value. Instead the func
tions Ofs and Seg must be used.

The following statement obtains the value of the pointer P (which is a
segment address and an offset):

SegmentPart:=Seg(p A
);

OffsetPart:=Ofs(P A
);

Function Calls

240

For the purpose of calling the CP/M-a6 BOOS, TURBO Pascal intro
duces a procedure Bdos, which has a record as parameter.

Details on SODS and BIOS routines are found in the CP/M-86 Operat
ing System Manual published by Digital Research.

The parameter to Bdos must be of the type:

record
AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;

end;

Before TURBO calls the BOOS, the registers AX, BX, CX, OX, BP, SI,
01, OS, and ES are loaded with the values specified in the record param
eter. When the BOOS has finished operation the Bdos procedure will re
store the registers to the record thus making any results from the BOOS
available.

TURBO Pascal Reference Manual

User Written I/O Drivers

User Written I/O Drivers

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from an external device. The following drivers are part
of the TURBO environment, and used by the standard I/O drivers
(although they are not available as standard procedures or functions):

function
function
procedure
procedure
procedure
function
procedure
function

ConSt boolean; { 6 }
Con In: Char; { 6 }
ConOu~Ch: Char); { 6 }
LstOu~Ch: Char); { 5 }
AuxOu~Ch: Char); { 4 }
AuxIn: Char; { 3 }
UsrOu~Ch: Char); { 6 }
Usrln: Char; { 6 }

The ConSt routine is called by the function KeyPressed, the Conln and
ConOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and AuxIn rou
tines are used by the AUX: device, and the UsrOut and Usrln routines
are used by the USR: device.

By default, these drivers are assigned to the BOOS functions as showed
in curly braces in the above listing of drivers.

This, however, may be changed by the programmer by assigning the ad
dress of a self-defined driver procedure or a driver function to one of the
following standard variables:

Variable

ConStPtr
ConlnPtr
ConOutPtr
LstOutPtr
AuxOutPtr
AuxlnPtr
UsrOutPtr
UsrlnPtr

CP/M-86

Contains the address of the

ConSt function
Con In function
ConOut procedure
LstOut procedure
AuxOut procedure
AuxIn function
UsrOut procedure
Usrln function

241

User Written I/O Drivers

A user defined driver procedure or driver function must match the
definitions given above, i.e. a CanSt driver must be a boolean function, a
Conln driver must be a char function, etc.

External Subprograms

242

The reserved word external is used to declare external procedures and
functions, typically procedures and functions written in machine code.

The reserved word external must be followed by a string constant
specifying the name of a file in which executable machine code for the
external procedure or function must reside.

During compilation of a program containing external functions or pro
cedures the associated files are loaded and placed in the object' code.
Since it is impossible to know beforehand exactly where in the· object
code the external code will be placed this code must be relocatable, and
no references must be made to the data segment. Furthermore the
external code must save the registers BP, CS, DS and SS and restore
these before executing the RET instruction.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and a filename specifying where
to find the executable code for the subprogram.

The type of the filename is .CMD. Only the code segment of a .CMD file
is loaded.

Example:
procedure DiskReset; external 'DSKRESET';
function IOstatus: boolean; external 'IOSTAT';

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); external 'PLOT';
procedure QuickSort(var List: PartNo); external 'QS';

External subprograms and parameter passing is discussed further on
page 252.

TURBO Pascal Reference Manual

In-line Machine Code

In-line Machine Code

TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An
inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

A code element is built from one or more data elements, separated by
plus (+) or minus (-) signs. A data element is either an integer con
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (10/$2345/count+1/sort-*+2);

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the 8-bit range (0 .. 255). If the
value is outside the 8-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca
tion counter reference, one word of code is generated (least significant
byte first).

The · <' and · >' characters may be used to override the automatic
size selection described above. If a code element starts with a · < '
character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a'> ' character, a word
is always coded, even though the most significant byte is zero.

Example:
inline «$1234/>$44);

This inline statement generates three bytes of code: $34, $44, $00.

CP/M-86 243

In-line Machine Code

244

The value of a variable identifier use in a inline statement is the offset
address of the variable within its base segment. The base segment of
global variables (Le. variables declared in the main program block) is the
data segment, which is accessible through the DS register. The base
segment of local variables (Le. variables declared within the current sub
program) is the stack segment, and in this case the variable offset is re
lative to the BP (base page) register, the use of which automatically
causes the stack segment to be selected. The base segment of typed
constants is the code segment, which is accessible through the CS re
gister. inline statements should not attempt to access variables that are
not declared in the main program nor in the current subprogram.

The following example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

procedure UpperCase(var Strg: Str) ;
{Str is type String[255]}
begin

inline
($C4/$BE/Strgl { LES OI,Strg[BP]
$26/$8A/$001 { MOV CL,ES: [01]
$FE/$C11 { INC CL
$FE/$C91 { L1: DEC CL
$74/$131 { JZ L2
$471 { INC 01
$26/$801$30/$611 { CMP ES:BYTE PTR [01], 'a'}
$72/$F51 { JB L1 }

$26/$801$30/$7AI { CMP ES:BYTE PTR [01] , 'z'}
$77/$EFI { JA L1 }

$26/$801$20/$201 { SUB ES:BYTE PTR [OI],20H}
$EB/$E9) ; { JMP SHORT L1 }

{ L2: }

end;

Inline statements may be freely mixed with other statements throughout
the statement part of a block, and inline statements may use all CPU
registers. Note, however, that the contents of the registers BP, SP, DS,
and SS must be the same on exit as on entry.

TURBO Pascal Reference Manual

Interrupt Handling

Interrupt Handling

A TURBO Pascal interrupt routine must manually preserve registers AX,
BX, CX, OX, SI, 01, OS and ES. This is done by placing the following in
line statement as the first statement of the procedure:

inline ($501$53/$51/$52/$56/$57/$lE/$06/$FB);

The last byte ($FB) is an STI instruction which enables further interrupts
- it mayor may not be required. The following in line statement must be
the last statement in the procedure:

inline ($07/$lF/$5F/$5E/$5A/$59/$5B/$58/$8B/$E5/$5D/$CF);

This restores the registers and reloads the stack pointer (SP) and the
base page register (BP). The last byte ($CF) is an IRET instruction which
overrides the RET instruction generated by the compiler.

An interrupt service procedure must not employ any I/O operations us
ing the standard procedures and functions of TURBO Pascal, as the
BOOS is not re-entrant. The programmer must initialize the interrupt
vector used to activate the interrupt service routine.

Note that the data segment register OS, used to access global variables,
will not have the correct value when the interrupt service routine is en
tered. Therefore, global variables cannot be directly accessed. Typed
constants, however, are available, as they are stored in the code seg
ment. The way to access global variables in the interrupt service routine
is therefore to store the value of Dseg in a typed constant in the main
program. This typed constant can then be accessed by the interrupt
handler and used to set its OS register.

Intr procedure

Syntax: Intr(lnterruptNo, Result)

This procedure initializes the registers and flags as specified in the
parameter Result which must be of type:

Result = record

CPjM-86

AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer;
end;

245

Interrupt Handling

It then makes the software interrupt given by the parameter interruptNo
which must be an Integer constant. When the interrupt service routine
returns control to your program, Result will contain any values returned
from the service routine.

Internal Data Formats

In the following descriptions, the symbol @ denotes the offset of the
first byte occupied by a variable of the given type within its segment.
The segment base address can be determined by using the standard
function 8eg.

Global and local variables, and typed constants occupy different seg
ments as follows:

Global variables reside in the data segment and the offset is relative to
the OS register.

Local variables reside in the stack segment and the offset is relative to
the BP register.

Typed constants reside in the code segment and the offset is relative to
the CS register.

All variables are contained within their base segment.

Basic Data Types

246

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

TURBO Pascal Reference Manual

Internal Data Formats

Scalars

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0 .. 255, booleans, chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range 0 .. 255, and de
clared scalars with more than 256 possible values. These bytes contain
a 2's complement 16-bit value with the least significant byte stored first.

Rea/s

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2's exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes with the least significant byte first:

@
@+1

@+5

Exponent
LSB of mantissa

MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex
ponent of $84 indicates that the value of the mantissa is to be multiplied
by 2 "($84-$80) = 2 "4 = 16. If the exponent is zero, the floating point
value is considered to be zero.

The value of the mantissa is obtained by dividing the 40-bit unsigned in
teger by 2"40. The mantissa is always normalized, i.e. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, however, a 1 indicating that the
number is negative, and a 0 indicating that the number is positive.

CP/M-86 247

Internal Data Formats

Strings

A string occupies as many bytes as its maximum length plus one. The
first byte contains the current length of the string. The following bytes
contains the string with the first character stored at the lowest address.
In the table shown below, L denotes the current length of the string, and
Max denotes the maximum length:

@
@+1
@+2

@+L
@+L+1

@+Max

Current length (L)
First character
Second character

Last character
Unused

Unused

Sets

248

An element in a Set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at all times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to "cut off" all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(Le. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method.

The number of bytes occupied by a set variable is calculated as (Max
div 8) - (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element E is:

MemAddress = @ + (E div 8) - (Min div 8)

and the bit address within the byte at MemAddress is:

TURBO Pascal Reference Manual

Internal Data Formats

BitAddress = E mod 8

where E denotes the ordinal value of the element.

Pointers

A pOinter consists of four bytes containing a segment base address and
an offset. The two least significant bytes contains the offset and the two
most significant bytes the base address. Both are stored in memory us
ing byte reversed format, i.e. the least significant byte is stored first. The
value nil corresponds to two zero words.

Data Structures

Data structures are built from the basic data types using various struc
turing methods. Three different structuring methods exist: Arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

Arrays

The components with the lowest index values are stored at the lowest
memory address. A mUlti-dimensional array is stpred with the rightmost
dimension increasing first, e.g. given the array

Board: array[l .. 8,1 .. 8] of Square

you have the following memory layout of its components:

lowest address: Board[l,l]
Board[1,2]

Board[1,8]
Board[2,1]
Board[2,2]

Highest address: Board[8,8]

CP/M-86 249

Internal Data Formats

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of the largest of its variant parts. Each variant starts
at the same memory address.

Disk Files

Disk files are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB).

File Interface Blocks

250

The table below shows the format of a FIB:

@+O
@+1
@+2
@+3
@+4
@+5
@+6
@+7
@+8
@+9
@+10
@+11
@+12

@+47
@+48

@+175

Flags byte.
Character buffer.
Number of records (LSB) or buffer offset (LSB).
Number of records (MSB) or buffer offset (MSB).
Record length (LSB) or buffer size (LSB).
Record length (MSB) or buffer size (MSB).
Buffer pointer (LSB).
Buffer pointer (MSB).
Current record (LSB) or buffer end (LSB).
Current record (MSB) or buffer end (LSB).
Unused.
Unused.
First byte of CP 1M FCB.

Last byte of CP/M FCB.
First byte of sector buffer.

Last byte of sector buffer.

TURBO Pascal Reference Manual

Internal Data Formats

sector 0, byte 0:
sector 0, byte 1:
sector 0, byte 2:
sector 0, byte 3:

Number of records (LSB)
Number of records (MSB)
Record length (LSB)
Record length (MSB)

Text Files

The basic components of a text file are characters, but a text file is
furthermore divided into lines. Each line consists of any number of char
acters ended by a CR/LF sequence (ASCII $00/ $OA). The file is ter
minated by a Ctrl-Z (ASCII $1 B).

Parameters

252

Parameters are transferred to procedures and functions via the stack
which is addressed through SS:SP.

On entry to an external subroutine, the top of the stack always contains
the return address within the code segment (a word). The parameters, if
any, are located below the return address, i.e. at higher addresses on
the stack.

If an external function has the following subprogram header:

ftDKrtian Magic(var R: Real; S: string5): Integer;

then the stack upon entry to Magic would have the following contents:

< Function result >
< Segment base address of R >
< Offset address of R >
< First character of S >

< Last character of·S >
< Length of S >
< Return address > SP

An external subroutine should save the Base Page register (BP) and
then copy the Stack Pointer SP into the Base Page register in order to
be able to refer to parameters. Furthermore the subroutine should
reserve space on the stack for local workarea. This can be obtained by
the following instructions:

TURBO Pascal Reference Manual

Internal Data Formats

The format of the flags byte at @ + 0 is:

Bit 0 .. 3
Bit 4
Bit 5
Bit 6
Bit 7

File type.
Read semaphore.
Write semaphore or pre-read character flag.
Output flag.
Input flag.

File type 0 denotes a disk file, and 1 through 5 denote the TURBO Pas
cal logical I/O devices (CON:, KBD:, LST:, AUX:, and USR:). For typed
files, bit 4 is set if the contents of the sector buffer is undefined, and bit
5 is set if data has been written to the sector buffer. For textfiles, bit 5 is
set if the character buffer contains a pre-read character. Bit 6 is set if
output is allowed, and bit 7 is set if input is allowed.

For typed and untyped files, the four words from @ + 2 to @ + 9 store
the number of records in the file, the record length in bytes, the sector
buffer pOinter, and the current record number. For typed files, the sector
buffer pointer stores an offset (0 .. 127) in the sector buffer at @ + 48.
The FIB of an untyped file has no sector buffer, and so the sector buffer
pointer is not used.

For text files, the four words from @ + 2 to @ + 9 store the offset ad
dress of the buffer, its size, the offset of the next character to read or
write, and the offset of the first byte after the buffer. The buffer always
resides in the same segment as the FIB, usually starting at @ + 48. The
size of a textfile FIB may be larger than indicated, depending on the size
of the buffer. When a textfile is assigned to a logical device, only the
flags byte and the character buffer are used.

Random Access Files

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous. The first four bytes of the first
sector of a file contains the number of records in the file and the length
of each record in bytes. The first record of the file is stored starting at
the fourth byte.

CP/M-86 251

Internal Data Formats

PUSH BP
MOV BP,SP
SUB SP,WORKAREA

The last instruction will have the effect of adding the following to the
stack:

< Return address
< The saved BP register >
< First byte of local workarea >

< Last byte of local work area > SP

Parameters are accessed via the BP register.

> BP

The following instruction will load length of the string into the AL regis
ter:

MOV AL, [BP+4]

Before executing a RET instruction the subprogram must reset the
Stack Pointer and Base Page register to their original values. When exe
cuting the RET the parameters may be removed by giving RET a param
eter specifying how many bytes to remove. The following instructions
should therefore be used when exiting from a subprogram:

MOV SP,BP
POP BP
RET NoOfBytesToRemove

Variable Parameters

With a variable (var) parameter, two words are transferred on the stack
giving the base address and offset of the first byte occupied by the actu
al parameter.

Value Parameters

With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

CP/M-86 253

Internal Data Formats

Scalars

Reals

Integers, Booleans, Chars and declared scalars (Le. all scalars except
Reals) are transferred on the stack as a word. If the variable occupies
only one byte when it is stored, the most significant byte of the parame
ter is zero.

A real is transferred on the stack using six bytes.

Strings

Sets

When a string is at the top of the stack, the topmost byte contains the
length of the string followed by the characters of the string.

A set always occupies 32 bytes on the stack (set compression only ap
plies to the loading and storing of sets).

Pointers

A pointer value is transferred on the stack as two words containing the
base address and offset of a dynamic variable. The value NIL cor
responds to two zero words.

Arrays and Records

254

Even when used as value parameters, Array and Record parameters are
not actually transferred on the stack. Instead, two words containing the
base address and offset of the first byte of the parameter are
transferred. It is then the responsibility of the subroutine to use this in
formation to make a local copy of the variable.

TURBO Pascal Reference Manual

Internal Data Formats

Function Results

User written external functions must remove all parameters and the
function result from the stack when they return.

User written external functions must return their results exactly as
specified in the following:

Values of scalar types, except Reals, must be returned in the AX regis
ter. If the result is only one byte then AH should be set to zero. Boolean
functions must return the function value by setting the Z flag (Z =
False, NZ = True).

Reals must be returned on the stack with the exponent at the lowest
address. This is done by not removing the function result variable when
returning.

Sets must be returned on the top of the stack according to the format
described on page 254. On exit SP must point at the byte containing the
string length.

Pointer values must be returned in the DX:AX.

The Heap and The Stacks

During execution of TURBO Pascal program the following segments are
allocated for the program:

a Code Segment,
a Data Segment, and
a Stack Segment

Two stack-like structures are maintained during execution of a program:
the heap and the stack.

The heap is used to store dynamic variables, and is controlled with the
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pointer HeapPtr is set to low memory in the stack
segment and the heap grows upwards towards the stack. The pre
defined variable HeapPtr contains the value of the heap pointer and al
lows the programmer to control the position of the heap.

CP/M-86 255

Internal Data Formats

The stack is used to store local variables, intermediate results during
evaluation of expressions and to transfer parameters to procedures and
functions. At the beginning of a program, the stack pointer is set to the
address of the top of the stack segment.

On each call to the procedure New and on entering a procedure or func
tion, the system checks for collision between the heap and the recursion
stack. If a collision has occurred, an execution error results, unless the
K compiler directive is passive ({ $K-}).

Memory Management

256

When a TURBO program is executed, three segments are allocated for
the program: A code segment, a data segment, and a stack segment.

Code segment (CS is the code segment register):

CS:OOOO - CS:EOFR
CS:EOFR - CS:EOFP
CS:EOFP - CS:EOFC

Run-time library code.
Program code.
Unused.

Data segment (DS is the data segment register):

DS:OOOO - DS:OOFF
DS:OlOO - DS:EOFW
DS:EOFW - DS:EOFM
DS:EOFM - DS:EOFD

CP/M-86 base page.
Run-time library workspace.
Main program block variables.
Unused.

The unused areas between (CS:EOFP-CS:EOFC and DS:EOFM
DS:EOFD) are allocated only if a minimum cOde segment size larger
than the required size is specified at compilat'on. The sizes of the code
and data segments never exceed 64K bytes eacrl.

The stack segment is slightly more complicated, as it may be larger than
64K bytes. On entry to the program the atack segment register (SS) and
the stack pointer (SP) is loaded so that SS:SP points at the very last
byte available in the entire segment. During execution of the program
SS is never changed but SP may move downwards until it reaches the
bottom of the segment, or 0 (corresponding to 64K bytes of stack) if the
stack segment is larger than 64K bytes.

TURBO Pascal Reference Manual

Memory Management

The heap grows from low memory in the stack segment towards the ac
tual stack residing in high memory. Each time a variable is allocated on
the heap, the heap pointer (which is a double word variable maintained
by the TURBO run-time system) is moved upwards, and then normal
ized, so that the offset address is always between $0000 and $OOOF.
Therefore, the maximum size of a single variable that can be allocated
on the heap is 65521 bytes (corresponding to $10000 less $OOOF). The
total size of all variables allocated on the heap is however only limited by
the amount of memory available.

The heap pointer is available to the programmer through the HeapPtr
standard identifier. HeapPtr is a typeless pointer which is compatible
with all pointer types. Assignments to HeapPtr should be exercised only
with extreme care.

CP/M-86 257

Memory Management

Notes:

258 TURBO Pascal Reference Manual

Chapter 22
CP/M-80

This chapter describes features of TURBO Pascal specific to the 8-bit
CP/M-80 implementation. It presents two kinds of information:

1) Things you should know to make efficient use of TURBO Pascal. Pages
259 through 272.

2) The rest of the chapter describes things which are only of interest to ex
perienced programmers, such as machine language routines, technical
aspects of the compiler, etc.

eXecute Command

You will find an additional command on the main TURBO menu in the
CP/M-80 version: eXecute. It lets you run other programs from within
TURBO Pascal, for example copying programs, word processors - in
fact anything that you can run from your operating system. When enter
ing X, you are prompted:

Command: -

You may now enter the name of any program which will then load and
run normally. Upon exit from the program, control is re-transferred to
TURBO Pascal, and you return to the TURBO prompt> (command line
parameters are allowed).

compiler Options

The 0 command selects the following menu on which you may view and
change some default values of the compiler. It also provides a helpful
function to find runtime errors in programs compiled into object code
files.

CP/M-8D 259

compiler Options

compile -> Memory
Com-file
cHn-file

Find run-time error Quit

Figure 22-1: Options Menu

Memory / Com file / cHn-file

260

The three commands M, C, and H select the compiler mode, i.e. where
to put the code which results from the compilation.

Memory is the default mode. When active, code is produced in memory
and resides there ready to be activated by a Run command.

Com-file is selected by pressing C. The arrow moves to point to this line.
When active, code is written to a file with the same name as the Work
file (or Main file, if specified) and the file type .COM. This file contains
the program code and Pascal runtime library, and may be activated by
typing its name at the console. Programs compiled this way may be
larger than programs compiled in memory, as the program code itself
does not take up memory during compilation, and as program code
starts at a lower address.

cHain-file is selected by pressing H. The arrow moves to point to this
line. When active, code is written to a file with the same name as the
Work file (or Main file, if specified) and the file type .CHN. This file con
tains the program code but no Pascal library and must be activated from
~nother TURBO Pascal program with the Chain procedure (see page
263).

When Com or cHn mode is selected, the menu is expanded with the fol
lowing two lines:

TURBO Pascal Reference Manual

Start address: XXXX (min YYYY)
End address: XXXX (max YYYY)

Figure 22-2: Start and End Addresses

Start Address

compiler Options

The Start address specifies the address (in hexadecimal) of the first byte
of the code. This is normally the end address of the Pascal library plus
one, but may be changed to a higher address if you want to set space
aside e.g. for absolute variables to be shared by a series of chained pro
grams.

When you enter an S, you are prompted to enter a new Start address. If
you just hit < RETURN> , the minimum value is assumed. Don't set
the Start address to anything less than the minimum value, as the code
will then overwrite part of the Pascal library.

End Address

The End address specifies the highest address available to the program
(in hexadecimal). The value in parentheses indicate the top of the TPA
on your computer, i.e. BOOS minus one. The default setting is 700 to
1000 bytes less to allow space for the loader which resides just below
BOOS when executing programs from TURBO.

If compiled programs are to run in a different environment, the End ad
dress may be changed to suit the TPA size of that system. If you antici
pate your programs to run on a range of different computers, it will be
wise to set this value relatively low, e.g. C100 (48K), or even A 100 (40K)
if the program is to run under MP/M.

CP/M-8o 261

compiler Options

When you enter an E, you are prompted to enter a End address. If you just
hit < RETURN> , the default value is assumed (Le. top of TPA less 700
to 1000 bytes). If you set the End address higher than this, the resulting
programs cannot be executed from TURBO, as they will overwrite the
TURBO loader; and if you set it higher than the TPA top, the resulting pro
grams will overwrite part of BOOS if run on your machine.

Find Runtime Error

262

When you run a program compiled in memory, and a runtime error occurs,
the editor is invoked, and the error is automatically pointed out. This, of
course, is not possible if the program is in a .COM file or an .CHN file. Run
time errors then print out the error code and the value of the program
counter at the time of the error, e.g.:

Run-time error 01, PC=lB56
Program aborted

Figure 22-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the
F command on the Options menu. When prompted for the address,
enter the address given by the error message:

I Enter pc: 1B56

Figure 22-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if
the error had occurred while running the program in memory.

TURBO Pascal Reference Manual

Standard Identifiers

Standard Identifiers

The following standard identifiers are unique to the CP /M-80 implemen
tation:

Bios
BiosHL

Bdos RecurPtr
BdosHL StackPtr

Chain and Execute

TURBO Pascal provides two standard procedures: Chain and Execute
which allow you to activate other programs from a TURBO program.
The syntax of these procedure calls is:

Chain(FilVar)
Execute(FilVar)

where FilVar is a file variable of any type, previously assigned to a disk
file with the standard procedure Assign. If the file exists, it is loaded into
memory and executed.

The Chain procedure is used only to activate special TURBO Pascal
.CHN files, i.e. files compiled with the cHn-file option selected on the
Options menu (see page 260). Such a file contains only program code;
no Pascal library. It is loaded into memory and executed at the start ad
dress of the current program, i.e. the address specified when the
current program was compiled. It then uses the Pascal library already
present in memory. Thus, the current program and the chained program
must use the same start address.

The Execute procedure is used to execute any .COM file that was created
using Turbo Pascal (see page 260). The file is loaded and executed at
address $100, as specified by the CP/M standard.

If the disk file does not exist, an I/O error occurs. This error is treated as
described on page 116. If the I compiler, directive is passive ({ $I-}), pro
gram execution continues with the statement following the failed Chain
or Execute statement, and the IOresult function must be called prior to
further I/O.

CP/M-BO 263

Chain and Execute

264

Data can be transferred from the current program to the chained pro
gram either by shared global variables or by absolute address variables.

To ensure overlapping, shared global variables should be declared as
the very first variables in both programs, and they must be listed in the
same order in both declarations. Furthermore, both programs must be
compiled to the same memory size (see page 261). When these condi
tions are satisfied, the variables will be placed at the same address in
memory by both programs, and as TURBO Pascal does not automatical
ly initialize its variables, they may be shared.

Example:
Program MAIN.COM:

program Main;
var

Txt:
CntPrg:

begin

string[80] ;
file;

Write('Enter any text: '); Readln(Txt);
Assign(CntPrg, 'ChrCount.chn');
Chain(CntPrg);

end.

Program CHRCOUNT.CHN:

program ChrCount;
var

Txt: string[80] ;
NoOfChar,
NoOfUpc,
I: Integer;

begin
NoOfUpc := 0;
NoOfChar := Length(Txt);
for I := 1 to length(Txt) do

if Txt[I] in ['A' .. 'Z'] then NoOfUpc := Succ(NoOfUpc);
Write('No of characters in entry: ',NoOfChar);
Writeln('. No of upper case characters: " NoOfUpc,'.');

end.

TURBO Pascal Reference Manual

Chain and Execute

If you want a TURBO program to determine whether it was invoked by
eXecute or directly from the DOS command line, you should use an ab
solute variable at address $80. This is the command line length byte,
and when a program is called from CP/M, it contains a value between 0
and 127. When eXecuting a program, therefore, the calling program
should set this variable to something higher than 127. When you then
check the variable in the called program, a value between 0 and 127 in
dicates that the program was called from CP/M, a higher value that it
was called from another TURBO program.

Note that neither Chain nor Execute can be used in direct mode, i.e.
from a program run with the compiler options switch in position Memory
(page 260).

Overlays

During execution, the system normally expects to find its overlay files on
the logged drive. The OvrDrive procedure may be used to change this
default value.

OvrDrive Procedure

Syntax: OvrDrive(Drive}

where Drive is an integer expression specifying a drive (0 = logged
drive, 1 = A:, 2 = B:, etc.). On subsequent calls to overlay files, the files
will be expected on the specified drive. Once an overlay file has been
opened on one drive, future calls to the same file will look on the same
drive.

Example:
program OvrTest;

overlay procedure ProcA;
begin

Writeln('Overlay A');
end;

overlay procedure ProcB;
begin

Writeln('Overlay B');
end;

CP/M-8D 265

Overlays

266

procedure Dummy;
begin

{Dummy procedure to separate the overlays
into two groups}

end;

overlay procedure ProcC;
begin

Writeln('Overlay C');
end;

begin
OvrDrive(2) ;
ProcA;
OvrDrive(O) ;
ProcC;
OvrDrive(2) ;
ProcB;

end.

The first call to OvrDrive specifies overlays to be sought on the B: drive.
The call to ProcA therefore causes the first overlay file (containing the
two overlay procedures ProcA and ProcB to be opened here.

Next, the OvrDrive(O) statement specifies that following overlays are to
be found on the logged drive. The call to ProcC opens the second over
lay file here.

The following ProcB statement calls an overlay procedure in the first
overlay file; and to ensure that it is sought on the B: drive, the
OvrDrive(2) statement must be executed before the call.

TURBO Pascal Reference Manual

Files

Files

File Names

A file name in CP/M consists of one through eight letters or digits, op
tionally followed by a period and a file type of one through three letters
or digits:

Drive: Name. Type

Text Files

The Seek and Flush procedures and the FilePos and FileSize functions
are not applicable to CP/M text files.

Absolute Variables

Variables may be declared to reside at specific memory addresses, and
are then called absolute. This is done by adding the reserved word ab
solute and an address expressed by an integer constant to the variable
declaration.

Example:
var
IObyte: Byte absolute $0003;
CmdLine: string[127] absolute $80;

Absolute may also be used to declare a variable "on top" of another
variable, i.e. that a variable should start at the same address as another
variable. When absolute is followed by the variable (or parameter)
identifier, the new variable will start at the address of that variable (or
parameter).

Example:
var
Str: string[32];
StrLen: Byte absolute Str;

The above declaration specifies that the variable StrLen should start at
the same address as the variable Str, and since the first byte of a string
variable gives the length of the string, StrLen will contain the length of
Str. Notice that only one identifier may be specified in an absolute de
claration, i.e. the construct:

CP/M-BO 267

Absolute Variables

Identl, Ident2: Integer absolute $8000

is illegal. Further details on space allocation for variables are given on
pages 278 and 288.

Addr

Syntax: Addr(name);

Returns the address in memory of the first byte of the type, variable,
procedure, or function with the identifier name. If name is an array, it
may be subscribed, and if name is a record, specific fields may be
selected. The value returned is-of type Integer.

Predefined Arrays

TURBO Pascal offers two predefined arrays of type Byte, called Mem
and Port, which are used to directly access CPU memory and data
ports.

MemArray

268

The predeclared array Mem is used to access memory. Each com
ponent of the array is a Byte, and indexes correspond to addresses in
memory. The index type is Integer. When a value is assigned to a com
ponent of Mem, it is stored at the address given by the index expres
sion. When the Mem array is used in an expression, the byte at the ad
dress specified by the index is used.

Examples:
Mern[WsCursor] := 2;
Mern[WsCursor+l] := $IB;
Mern[WsCursor+2] := Ord(' ');
IObyte := Mern[3];
Mern[Addr+Offset] := Mern[Addr];

TURBO Pascal Reference Manual

Predefined Arrays

Port Array

The Port array is used to access the data ports of the Z80 CPU. Each
element of the array represents a data port with indexes corresponding
to port numbers. As data ports are selected by 8-bit addresses, the in
dex type is Byte. When a value is assigned to a component of Port, it is
output to the port specified. When a component of Port is referenced in
an expression, its value is input from the port specified.

The use of the port array is restricted to assignment and reference in
expressions only, i.e. components of Port cannot function as variable
parameters to procedures and functions. Furthermore, operations refer
ring to the entire Port array (reference without index) are not allowed.

Array Subscript Optimization

The X compiler directive allows the programmer to select whether array
subscription should be optimized with regard to execution speed or to
code size. The default mode is active, i.e. ($X +}, which causes execu
tion speed optimization. When passive, i.e. ($X-}, the code size is
minimized.

With Statements

The default 'depth' of nesting of With statements is 2, but the W direc
tive may be used to change this value to between 0 and 9. For each
block, With statements require two bytes of storage for each nesting
level allowed. Keeping the nesting to a minimum may thus greatly affect
the size of the data area in programs with many subprograms.

CP/M-80 269

Pointer Related Items

Pointer Related Items

MemAvaii

The standard function MemA vail is available to determine the available
space on the heap at any given time. The result is an Integer, and if
more than 32767 bytes is available, MemAvail returns a negative
number. The correct number of free bytes is then calculated as 65536.0
+ MemA vail. Notice the use of a real constant to generate a Real
result, as the result is greater than Maxlnt. Memory management is
discussed in further detail on page 288.

Pointers and Integers

270

The standard functions Ord and Ptr provide direct control of the address
contained in a pointer. Ord returns the address contained in its pointer
argument as an Integer, and Ptr converts its Integer argument into a
pOinter which is compatible with all pOinter types.

These functions are extremely valuable in the hands of an experienced
programmer as they allow a pointer to point to anywhere in memory. If
used carelessly, however, they are very dangerous, as a dynamic vari
able may be made to overwrite other variables, or even program code.

TURBO Pascal Reference Manual

CP/M Function Calls

CP 1M Function Calls

For the purpose of calling CP/M BOOS and BIOS routines, TURBO Pas
cal introduces two standard procedures: Bdos and Bios, and four stan
dard functions: Bdos, BdosHL, Bios, and BiosHL.

Details on BOOS and BIOS routines are found in the CP/M Operating
System Manual published by Digital Research.

8dos procedure and function

Syntax: Bdos(Func {, Param });

The Bdos procedure is used to invoke CP/M BOOS routines. Func and
Param are integer expressions. Func denotes the number of the called
routine and is loaded into the C register. Param is optional and denotes
a parameter which is loaded into the DE register pair. A call to address 5
then invokes the BOOS.

The Bdos function is called like the procedure and returns an Integer
result which is the value returned by the BOOS in the A register.

8dosHL function

Syntax: BdosHL(Func {, Par am });

This function is exactly similar to the Bdos function above, except that
the result is the value returned in the HL register pair.

CP/M-BO 271

CP 1M Function Calls

Bios procedure and function

Syntax: Bios(Func {, Param });

The Bios procedure is used to invoke BIOS routines. Func and Param
are integer expressions. Func denotes the number of the called routine,
with 0 meaning the WBOOT routine, 1 the CONST routine, etc. /.e. the
address of the called routine is Func * 3 plus the WBOOT address con
tained in addresses 1 and 2. Param is optional and denotes a parameter
which is loaded into the BC register pair prior to the call.

The Bios function is called like the procedure and returns an integer
result which is the value returned by the BIOS in the A register.

BiosHL function

Syntax: BiosHL(Func {, Param});

This function is exactly similar to the Bios function above, except that
the result is the value returned in the HL register pair.

User Written 1/0 Drivers

272

For some applications it is practical for a programmer to define his own
input and output drivers, i.e. routines which perform input and output of
characters to and from external devices. The following drivers are part
of the TURBO environment, and used by the standard I/O drivers
(although they are not available as standard procedures or functions):

function
function
procedure
procedure
procedure
function
procedure
function

CanSt boolean;
Conln: Char;
ConOut (Ch: Char);
LstOut (Ch: Char);
AuxOut (Ch: Char);
AuxIn: Char;
UsrOut (Ch: Char);
Usrln: Char;

TURBO Pascal Reference Manual

User Written I/O Drivers

The ConSt routine is called by the function KeyPressed, the Con In and
ConOut routines are used by the CON:, TRM:, and KBD: devices, the
LstOut routine is used by the LST: device, the AuxOut and AuxIn rou
tines are used by the AUX: device, and the UsrOut and Usrln routines
are used by the USA: device.

By default, these drivers use the corresponding BIOS entry points of the
CP/M operating system, i.e. ConSt uses CONST, Conln uses CONIN,
ConOut uses CONOUT, LstOut uses LIST, AuxOut uses PUNCH, AuxIn
uses READER, UsrOut uses CONOUT, and Usrln uses CONIN. This,
however, may be changed by the programmer by assigning the address
of a self-defined driver procedure or a driver function to one of the fol
lowing standard variables:

Variable

ConStPtr
ConlnPtr
ConOutPtr
LstOutPtr
AuxOutPtr
AuxlnPtr
UsrOutPtr
UsrlnPtr

Contains the address of the

ConSt function
Conln function
ConOut procedure
LstOut procedure
AuxOut procedure
AuxIn function
UsrOut procedure
Usrln function

A user defined driver procedure or driver function must match the
definitions given above, i.e. a ConSt driver must be a Boolean function,
a Conln driver must be a Char function, etc.

CP/M-80 273

External Subprograms

External Subprograms

The reserved word external is used to declare external procedures and
functions, typically procedures and functions written in machine code.

An external subprogram has no block, i.e. no declaration part and no
statement part. Only the subprogram heading is specified, immediately
followed by the reserved word external and an integer constant defining
the memory address of the subprogram:

procedure OiskReset; external $ECOO;
function IOstatus: boolean; external $0123

Parameters may be passed to external subprograms, and the syntax is
exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); external $F003;
procedure QUickSort(var List: PartNo); external $lCOO;

Parameter passing to external subprograms is discussed further on
page 283.

In-line Machine Code

274

TURBO Pascal features the inline statements as a very convenient way
of inserting machine code instructions directly into the program text. An
inline statement consists of the reserved word inline followed by one or
more code elements separated by slashes and enclosed in parentheses.

A code element is built from one or more data elements, separated by
plus (+) or minus (-) signs. A data element is either an integer con
stant, a variable identifier, a procedure identifier, a function identifier, or
a location counter reference. A location counter reference is written as
an asterisk (*).

Example:
inline (lOI$2345/count+l/sort-*+2);

TURBO Pascal Reference Manual

In-line Machine Code

Each code element generates one byte or one word (two bytes) of code.
The value of the byte or the word is calculated by adding or subtracting
the values of the data elements according to the signs that separate
them. The value of a variable identifier is the address (or offset) of the
variable. The value of a procedure or function identifier is the address
(or offset) of the procedure or function. The value of a location counter
reference is the address (or offset) of the location counter, i.e. the ad
dress at which to generate the next byte of code.

A code element will generate one byte of code if it consists of integer
constants only, and if its value is within the a-bit range (0 .. 255). If the
value is outside the a-bit range, or if the code element refers to variable,
procedure, or function identifiers, or if the code element contains a loca
tion counter reference, one word of code is generated (least significant
byte first).

The I <' and I >' characters may be used to override the automatic
size selection described above. If a code element starts with a I < I

character, only the least significant byte of the value is coded, even if it
is a 16-bit value. If a code element starts with a I > ' character, a word
is always coded, even though the most significant byte is zero.

Example:
inline «$1234/>$44);

This inline statement generates three bytes of code: $34, $44, $00.

The following example of an inline statement generates machine code
that will convert all characters in its string argument to upper case.

CP/M-8o 275

In-line Machine Code

276

procedure UpperCase(var Strg: Str); {Str is type String[255]}
{$A+}
begin

inline ($2A/Strgl { LO HL, (Strg) }
$461 { LO B, (HL) }
$041 { INC B }

$051 { Ll: DEC B }

$CA/*+201 { JP Z,L2 }
$231 { INC HL }
$7EI { LO A, (HL) }
$FE/$611 { CP , a' }

$OA/*-91 { JP C,Ll }

$FE/$7BI { CP 'z'+l }
$02/*-141 { JP NC,Ll }
$06/$201 { SUB 20H }

$771 { LO (HL),A }

$C3/*-20); { JP Ll }
{ L2: EQU $ }

end;

In line statements may be freely mixed with other statements throughout
the statement part of a block, and inline statements may use all CPU
registers. Note, however, that the contents of the stack pointer register
(SP) must be the same on exit as on entry.

TURBO Pascal Reference Manual

Interrupt Handling

Interrupt Handling

The TURBO Pascal run time package and the code generated by the
compiler are both fully interruptable. Interrupt service routines must
preserve all registers used.

If required, interrupt service procedures may be written in Pascal. Such
procedures should always be compiled with the A compiler directive ac
tive ({$A +}), they must not have parameters, and they must them
selves insure that all registers used are preserved. This is done by plac
ing an inline statement with the necessary PUSH instructions at the
very beginning of the procedure, and another inline statement with the
corresponding POP instructions at the very end of the procedure. The
last instruction of the ending inline statement should be an EI instruction
($FB) to enable further interrupts. If daisy chained interrupts are used,
the inline statement may also specify a RETI instruction ($EO, $40),
which will override the RET instruction generated by the compiler.

The general rules for register usage are that integer operations use only
the AF, BC, OE, and HL registers, other operations may use IX and IY,
and real operations use the alternate registers.

An interrupt service procedure should not employ any 1/0 operations us
ing the standard procedures and functions of TURBO Pascal, as these
routines are not re-entrant. Also note that BOOS calls (and in some in
stances BIOS calls, depending on the specific CPIM implementation)
should not be performed from interrupt handlers, as these routines are
not re-entrant.

The programmer may disable and enable interrupts throughout a pro
gram using 01 and EI instructions generated by inline statements.

If mode 0 (1M 0) or mode 1 (1M 1) interrupts are employed, it is the
responsibility of the programmer to initialize the restart locations in the
base page (note that RST 0 cannot be used, as CP/M uses locations 0
through 7).

If mode 2 (1M 2) interrupts are employed, the programmer should gen
erate an initialized jump table (an array of integers) at an
absolute address, and initialize the I register through a inline statement
at the beginning of the program.

CP/M-BO 277

Internal Data Formats

Internal Data Formats

In the following descriptions, the symbol @ denotes the address of the
first byte occupied by a variable of the given type. The standard function
Addr may be used to obtain this value for any variable.

Basic Data Types

The basic data types may be grouped into structures (arrays, records,
and disk files), but this structuring will not affect their internal formats.

Scalars

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range O .. 255, Booleans, Chars, and declared
scalars with less than 256 possible values. This byte contains the ordinal
value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range O .. 255, and de
clared scalars with more than 256 possible values. These bytes contain
a 2's complement 16-bit value with the least significant byte stored first.

Reals

278

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa
and an 8-bit 2's exponent. The exponent is stored in the first byte and
the mantissa in the next five bytes which the least significant byte first:

@ Exponent
@ +1 LSB of mantissa

@ +5 MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an ex
ponent of $84 indicates that the value of the mantissa is to be multiplied
by 2 A($84-$80) = 2 A4 = 16. If the exponent is zero, the floating pOint
value is considered to be zero.

TURBO Pascal Reference Manual

Internal Data Formats

The value of the mantissa is obtained by dividing the 40-bit unsigned in
teger by 2 A40. The mantissa is always normalized, Le. the most
significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The
sign of the mantissa is stored in this bit, a 1 indicating that the number is
negative, and a 0 indicating that the number is positive.

Strings

A string occupies the number of bytes corresponding to one plus the
maximum length of the string. The first byte contains the current length
of the string. The following bytes contain the actual characters, with the
first character stored at the lowest address. In the table shown below, L
denotes the current length of the string, and Max denotes the maximum
length:

@ Current length (L)
@ +1 First character
@ +2 Second character

@ +L Last character
@ +L+1 Unused

@ + Max Unused

Sets

An element in a set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to
be zero at all times and need therefore not be stored. In terms of
memory efficiency, the best way to store a set variable of a given type
would then be to "cut off" all insignificant bits, and rotate the remaining
bits so that the first element of the set would occupy the first bit of the
first byte. Such rotate operations, however, are quite slow, and TURBO
therefore employs a compromise: Only bytes which are statically zero
(Le. bytes of which no bits are used) are not stored. This method of
compression is very fast and in most cases as memory efficient as the
rotation method.

CP/M-80 279

Internal Data Formats

The number of bytes occupied by a set variable is calculated as (Max
div 8) - (Min div 8) + 1, where Max and Min are the upper and lower
bounds of the base type of that set. The memory address of a specific
element E is:

MemAddress = @ + (E div 8) - (Min div 8)

and the bit address within the byte at MemAddress is:

BitAddress = E mod 8

where E denotes the ordinal value of the element.

File Interface Blocks

280

The table below shows the format of a FIB in TURBO Pascal-80:

@+O
@+1
@+2
@+3
@+4
@+5
@+6
@+7
@+8
@+9
@+10
@+11
@+12

@+47
@+48

@+175

Flags byte.
Character buffer.
Sector buffer pointer (LSB).
Sector buffer pointer (MSB).
Number of records (LSB).
Number of records (MSB).
Record length (LSB).
Record length (MSB).
Current record (LSB).
Current record (MSB).
Unused.
Unused.
First byte of CP/M FCB.

Last byte of CP/M FCB.
First byte of sector buffer.

Last byte of sector buffer.

The format of the flags byte at @ + 0 is:

Bit 0 .. 3
Bit 4
Bit 5
Bit 6
Bit 7

File type.
Read semaphore.
Write semaphore.
Output flag.
Input flag.

TURBO Pascal Reference Manual

Internal Data Formats

File type 0 denotes a disk file, and 1 through 5 denote the TURBO Pas
cal logical 1/0 devices (CON:, KBD:, LST:, AUX:, and USR:). For typed
files, bit 4 is set if the contents of the sector buffer is undefined, and bit
5 is set if data has been written to the sector buffer. For textfiles, bit 5 is
set if the character buffer contains a pre-read character. Bit 6 is set if
output is allowed, and bit 7 is set if input is allowed.

The sector buffer pointer stores an offset (0 .. 127) in the sector buffer at
@ + 48. For typed and untyped files, the three words from @ + 4 to
@ + 9 store the number of records in the file, the record length in bytes,
and the current record number. The FIB of an untyped file has no sector
buffer, and so the sector buffer pointer is not used.

When a text file is assigned to a logical device, only the flags byte and
the character buffer are used.

Pointers

A pointer consists of two bytes containing a 16-bit memory address, and
it is stored in memory using byte reversed format, i.e. the least
significant byte is stored first. The value nil corresponds to a zero word.

Data Structures

Data structures are built from the basic data types using various struc
turing methods. Three different structuring methods exist: arrays,
records, and disk files. The structuring of data does not in any way
affect the internal formats of the basic data types.

Arrays

The components with the lowest index values are stored at the lowest
memory address. A mUlti-dimensional array is stored with the rightmost
dimension increasing first, e.g. given the array

Board: array[l .. 8,1 .. 8] of Square

you have the following memory layout of its components:

CP/M-8D 281

Internal Data Formats

lowest address: Board [1, 1]
Board[1,2]

Board[1,8]
Board[2,1]
Board[2,2]

Highest address: Board[8,8]

Records

The first field of a record is stored at the lowest memory address. If the
record contains no variant parts, the length is given by the sum of the
lengths of the individual fields. If a record contains a variant, the total
number of bytes occupied by the record is given by the length of the
fixed part plus the length of largest of its variant parts. Each variant
starts at the same memory address.

Disk Files

Disk files are different from other data structures in that data is not
stored in internal memory but in a file on an external device. A disk file is
controlled through a file interface block (FIB) as described on page 280.
In general there are two different types of disk files: random access files
and text files.

Random Access Files

282

A random access file consists of a sequence of records, all of the same
length and same internal format. To optimize file storage capacity, the
records of a file are totally contiguous. The first four bytes of the first
sector of a file contains the number of records in the file and the length
of each record in bytes. The first record of the file is stored starting at
the fourth byte.

sector 0, byte 0:
sector 0, byte 1:
sector 0, byte 2:
sector 0, byte 3:

Number of records (LSB)
Number of records (MSB)
Record length (LSB)
Record length (MSB)

TURBO Pascal Reference Manual

Internal Data Formats

Text Files

The basic components of a text file are characters, but a text file is sub
divided into lines. Each line consists of any number of characters ended
by a CR/LF sequence (ASCII $OD/ $OA). The file is terminated by a
Ctrl-Z (ASCII $1 A).

Parameters

Parameters are transferred to procedures and functions via the Z-80
stack. Normally, this is of no interest to the programmer, as the machine
code generated by TURBO Pascal will automatically PUSH parameters
onto the stack before a call, and POP them at the beginning of the sub
program. However, if the programmer wishes to use external subpro
grams, these must POP the parameters from the stack themselves.

On entry to an external subroutine, the top of the stack always contains
the return address (a word). The parameters, if any, are located below
the return address, i.e. at higher addresses on the stack. Therefore, to
access the parameters, the subroutine must first POP off the return ad
dress, then all the parameters, and finally it must restore the return ad
dress by PUSHing it back onto the stack.

Variable Parameters

With a variable (VAR) parameter, a word is transferred on the stack giv
ing the absolute memory address of the first byte occupied by the actual
parameter.

Value Parameters

With value parameters, the data transferred on the stack depends upon
the type of the parameter as described in the following sections.

Scalars

Integers, Boo/eans, Chars and declared scalars are transferred on the
stack as a word. If the variable occupies only one byte when it is stored,
the most significant byte of the parameter is zero. Normally, a word is
POPped off the stack using an instruction like POP HL.

CP/M-80 283

Internal Data Formats

Reals

A real is transferred on the stack using six bytes. If these bytes are
POPped using the instruction sequence:

POP HL
POP DE
POP BC

then L will contain the exponent, H the fifth (least significant) byte of the
mantissa, E the fourth byte, D the third byte, C the second byte, and B
the first (most significant) byte.

Strings

Sets

284

When a string is at the top of the stack, the byte pointed to by SP con
tains the length of the string. The bytes at addresses SP + 1 through
SP + n (where n is the length of the string) contain the string with the
first character stored at the lowest address. The following machine code
instructions may be used to POP the string at the top of the stack and
store it in StrBut.

LD DE,StrBuf
LD HL,O
LD B,H
ADD HL,SP
LD C, (HL)
INC BC
LDIR
LD SP,HL

A set always occupies 32 bytes on the stack (set compression only ap
plies to the loading and storing of sets). The following machine code in
structions may be used to POP the set at the top of the stack and store
it in SetBut.

TURBO Pascal Reference Manual

Internal Data Formats

LD DE,SetBuf
LD HL,O
ADD HL,SP
LD BC,32
LDIR
LD SP,HL

This will store the least significant byte of the set at the lowest address
in SetBuf.

Pointers

A pointer value is transferred on the stack as a word containing the
memory address of a dynamic variable. The value NIL corresponds to a
zero word.

Arrays and Records

Even when used as value parameters, Array and Record parameters are
not actually PUSHed onto the stack. Instead, a word containing the ad
dress of the first byte of the parameter is transferred. It is then the
responsibility of the subroutine to POP this word, and use it as the
source address in a block copy operation.

Function Results

User written external functions must return their results exactly as
specified in the following:

Values of scalar types, must be returned in the HL register pair. If the
type of the result is expressed in one byte, then it must be returned in L
and H must by zero.

Reals must be returned in the BC, DE, and HL register pairs. B, C, 0, E,
and H must contain the mantissa (most significant byte in B), and L
must contain the exponent.

Strings and sets must be returned on the top of the stack on the for
mats described on page 284.

Pointer values must be returned in the HL register pair.

CP/M-8D 285

Internal Data Formats

The Heap and The Stacks

286

As indicated by the memory maps in previous sections, three stack-like
structures are maintained during execution of a program: The heap, the
CPU stack, and the recursion stack.

The heap is used to store dynamic variables, and is controlled with the
standard procedures New, Mark, and Release. At the beginning of a
program, the heap pOinter HeapPtr is set to the address of the bottom
of free memory, i.e the first free byte after the object code.

The CPU stack is used to store intermediate results during evaluation of
expressions and to transfer parameters to procedures and functions. An
active for statement also uses the CPU stack, and occupies one word.
At the beginning of a program, the CPU stack pOinter StackPtr is set to
the address of the top of free memory.

The recursion stack is used only by recursive procedures and functions,
i.e. procedures and functions compiled with the A compiler directive pas
sive ({$A-}). On entry to a recursive subprogram it copies its workspace
onto the recursion stack, and on exit the entire workspace is restored to
its original state. The default initial value of RecurPtr at the beginning of
a program, is 1 K ($400) bytes below the CPU stack pOinter.

Because of this technique, variables local to a subprogram must not be
used as var parameters in recursive calls.

The pre-defined variables:

HeapPtr:
RecurPtr:
StackPtr:

The heap pointer,
The recursion stack pointer, and
The CPU stack pointer

allow the programmer to control the position of the heap and the stacks.

The type of these variables is Integer. Notice that HeapPtr and RecurPtr
may be used in the same context as any o~her Integer variable, whereas
StackPtr may only be used in assignments and expressions.

When these variables are manipulated, always make sure that they pOint
to addresses within free memory, and that:

HeapPtr < RecurPtr < StackPtr

TURBO Pascal Reference Manual

Internal Data Formats

Failure to adhere to these rules will cause unpredictable, perhaps fatal,
results.

Needless to say, assignments to the heap and stack pointers must nev
er occur once the stacks or the heap are in use.

On each call to the procedure New and on entering a recursive pro
cedure or function, the system checks for collision between the heap
and the recursion stack, i.e. checks if HeapPtr is less than RecurPtr. If
not, a collision has occurred, which results in an execution error.

Note that no checks are made at any time to insure that the CPU stack
does not overflow into the bottom of the recursion stack. For this to
happen, a recursive subroutine must call itself some 300-400 times,
which must be considered a rare situation. If, however, a program re
quires such nesting, the following statement executed at the beginning
of the program block will move the recursion stack pointer downwards
to create a larger CPU stack:

Recurptr := StackPtr -2 *MaxDepth -512;

where MaxDepth is the maximum required depth of calls to the recur
sive subprogram(s). The extra approx. 512 bytes are needed as a
margin to make room for parameter transfers and intermediate results
during the evaluation of expressions.

CP/M-BO 287

Memory Management

Memory Management

Memory Maps

The following diagrams illustrate the contents of memory at different
stages of working with the TURBO system. Solid lines indicate fixed
boundaries (Le. determined by amount of memory, size of your CP/M,
version of TURBO, etc.), whereas dotted lines indicate boundaries which
are determined at run-time (e.g. by the size of the source text, and by
possible user manipulation of various pointers, etc.). The sizes of the
segments in the diagrams do not necessarily reflect the amounts of
memory actually consumed.

Compilation in Memory

288

During compilation of a program in memory (Memory-mode on compiler
Options menu, see page 259), the memory is mapped as follows:

I- - -- - -----_. r- ---

r------------ 1--

t
t

0000
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

Error messages, optional

Source text

Object code growing upward

Symbol table growing downward

CPU stack growing downward

CP/M
HighMem

Figure 22-5: Memory map during compilation in memory

TURBO Pascal Reference Manual

Memory Management

If the error message file is not loaded when starting TURBO, the source
text starts that much lower in memory. When the compiler is invoked, it
generates object code working upwards from the end of the source
text. The CPU stack works downwards from the logical top of memory,
and the compiler's symbol table works downwards from an address 1 K
($400 bytes) below the logical top of memory.

Compilation To Disk

During compilation to a .COM or .CHN file (Com-mode or cHn-mode on
compiler Options menu, see page 259), the memory looks much as dur
ing compilation in memory (see preceding section) except that generated
object code does not reside in memory but is written to a disk file. Also,
the code starts at a higher address (right after the Pascal library instead
of after the source text). Compilation of much larger programs is thus
possible in this mode.

---------- - - --

t
1

0000
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

Error messages, optional

Source text

Symbol table growing downward

CPU stack growing downward

CP/M
HighMem

Figure 22-6: Memory map during compilation to a file

CP/M-80 289

Memory Management

Execution in Memory

290

When a program is executed in direct - or memory - mode (Le. the
Memory-mode on compiler Options menu is selected, see page 259), the
memory is mapped as follows:

1-- - - - - - - - - - - 1----

t'------------ ----

1-- - - - - - - - - - - -!-
____________ t_
____________ 1_

0000
CP/M and run-time workspace
Pascal Library

Turbo interface, editor, and compiler

Error messages, optional

Source text

Object code

Default initial value of HeapPtr
Heap growing upward

Recursion stack growing downward
Default initial value of RecurPtr
CPU stack growing downward
Default initial state of StackPtr

Program variables growing downward
CP/M
HighMem

Figure 22-7: Memory map during execution in direct mode

When a program is compiled, the end of the object code is known. The
heap pointer HeapPtr is set to this value by default, and the heap grows
from here and upwards in memory towards the recursion stack. The
maximum memory size is BOOS minus one (indicated on the compiler
Options menu). Program variables are stored from this address and
downwards. The end of the variables is the 'top of free memory' which
is the initial value of the CPU stack pOinter StackPtr. The CPU stack
grows downwards from here towards the position of the recursion stack
pointer RecurPtr, $400 bytes lower than StackPtr. The recursion stack
grows from here downward towards the heap.

TURBO Pascal Reference Manual

Memory Management

Execution of A Program File

When a program file is executed (either by the Run command with the
Memory-mode on the compiler Options menu selected, by an eXecute
command, or directly from CP/M), the memory is mapped as follows:

0000
1-----------1--- CP/M and run-time workspace

Pascal Library
1-----------1--- Default program start address

Object code

-- - - - - - - - -- 1--1- Default initial value of HeapPtr
Heap growing upward

J Recursion stack growing downward
_ _ _ _ _ _ _ _ _ _ I- -- Default initial value of RecurPtr

1 CPU stack growing downward
_ _ _ _ _ _ _ _ _ _ r- - Default initial state of StackPtr

Program variables growing downward
I- - - Default end address

...-____ L_o_ad_e_r ____ -+-__ Maximum memory size

CP/M
~ __________________ ~~___ H~hMem

Figure 22-8: Memory map during execution of a program file

This map resembles the previous, except for the absence of the TURBO
interface, editor, and compiler (and possible error messages) and of the
source text. The default program start address (shown on the compiler
Options menu) is the first free byte after the Pascal runtime library. This
value may be manipulated with the Start address command of the com
piler Options menu, e.g. to create space for absolute variables and/or
external procedures between the library and the code. The maximum
memory size is BOOS minus one,· and the default value is determined by
the BOOS location on the computer in use.

CP/M-80 291

Memory Management

292

If programs are to be translated for other systems, care should be taken
to avoid collision with the BDOS. The maximum memory may be mani
pulated with the End address command of the compiler Options menu.
Notice that the default end address setting is approx. 700 to 1000 bytes
lower than maximum memory. This is to allow space for the loader
which resides just below BDOS when .COM files are Run or eXecuted
from the TURBO system. This loader restores the TURBO editor, com
piler, and possible error messages when the program finishes and thus
returns control to the TURBO system.

TURBO Pascal Reference Manual

Chapter 23
TURBO-BCD

TURBO-BCD

TURBO-BCD is a special version of TURBO Pascal which is not included
in the standard TURBO Pascal package. It employs binary coded de
cimal (BCD) Real numbers to obtain higher accuracy, especially needed
in programs for business applications.

If you are interested in purchasing TURBO-BCD, please see page 3 for
ordering information.

TURBO-BCD will compile and run any program written for standard
TURBO or TURBO-8? Pascal that does not use these procedures or
functions: Sin, Cos, ArcTan, Ln, Exp, Sqrt, and the pre-declared constant Pi,
the only difference being in real number processing and real number
format.

Files On the TURBO-BCD Distribution Diskette

In addition to the files listed on page 8, the TURBO-BCD distribution
diskette contains the file

TURBOBCD.COM

(TURBOBCD.CMD for CP/M-86). This file contains the special TURBO
BCD system. If you want to install it with TINST, you must first tem
porarily rename it to TURBO.COM (or .CMD).

BCD Range

TURBO-BCD's BCD Reals have a range of 1 E-63 through 1 E + 63 with
18 significant digits.

TURBO-BCD 293

Form function

Form function

Syntax: Form(St, Var1, Var2, .. , VarN)

The Form function provides advanced numeric and string formatting. St
is a string expression giving an image of the format string, as detailed in
the following, and Var1, Var2, .. , VarN are Real, Integer, or String expres
sions. The result is a String of the same length as Sf.

St is made up of a number of field specifiers, each of which corresponds
to one parameter in the parameter list. Blanks and characters other than
the ones defined in the following serve to separate fields and will also
appear in the formatted result, viz:

Form('Total: $#,###.##' ,1234.56) = 'Total: $1,234.56'

The arguments in the argument list use the field specifiers in the order
of appearance:

Form('Please @@@@@@ us at (###) ### ####'. 'phone' .408,438.8400) -
'Please phone us at (408) 438 8400 '

If there are more arguments in the argument list than there are field
specifiers in the format string, the arguments in excess are ignored. If
there are less arguments than field specifiers, the field specifiers in ex
cess are returned unchanged:

Form('###.##' ,12.34,43.21) = ' 12.34'
Form('###.## -##.##' ,123.4) = '123.40 -##.##'.

There are two types of field specifiers: numeric and string.

Numeric Fields

A numeric field is a sequence of one or more of the following characters:

@ * $ +

294 TURBO Pascal Reference Manual

Form function

Any other character terminates the numeric field. The number is re
turned right-justified within the field, decimals are rounded if they exceed
the number of decimals specified by the format, and if the number is too
large to be returned in the field, all digit positions are filled with aster
isks.

A digit position. If the numeric field contains no @ or * characters,
unused digits are returned as blanks. If the numeric field contains no
sign positions ('-' or ' + ' characters) and the number is negative, a float
ing minus is returned in front of the number.

Examples:
Form('####' ,34.567)
Form('###.##' ,12.345')
Form('####.##' ,-12.3)
Form('###.##' ,1234.5)

35'
, 12.35'
, -12.30'
'*** **'

@ A digit position. Unused digits are forced to be returned as zeros instead
of blanks. The @ character needs only occur once in the numeric field
to activate this effect. The sign of the number will not be returned unless
the field contains a sign position ('-' or' + ' character).

*

Examples:
Form('@##' ,9)
Form('@@@.@@' ,12.345)

'009'
'012.35'

A digit position. Unused digits are forced to be returned as asterisks in
stead of blanks. The * character needs only occur once in the numeric
field to activate this effect. The sign of the number will not be returned
unless the field contains a sign position ('-' or' + ' character).

Examples:
Form('*##.#' ,4.567)
Form('****' ,123)

'**4.57'
= '*123'

TURBO-BCD 295

Form function

$ A digit position. A floating $-sign is returned in front of the number. The
'$' character need only occur once in the numeric field to activate this
effect.

Examples:
Form('$#####.##' ,123.45)
Form('######.#$' ,-12.345)
Form('*$####.##' ,12.34)

$123.45'
-$12.35'

'***$12.34'

A sign position. If the number is negative, a minus will be returned in
that position; if it is positive, a blank is returned.

Examples:
Form('-###.##' ,-1.2)
Form('-###.##' ,12)
Form('*#####.##-' ,-123.45)

1.20'
12.00'

'***123.45-'

+ A sign position. If the number is positive, a plus will be returned in that
position; if it is negative, a minus is returned.

296

Examples:
1.20' Form('+###.##' ,-1.2)

Form('+###.##' ,12)
Form('*$####.##+' ,12.34)

'+ 12.00'
'***$12.34+'

A decimal comma or a separator comma. The last period or comma in
the numeric image is considered the decimal delimiter.

A decimal period or a separator period. The last period or comma in the
numeric image is considered the decimal delimiter.

Examples:
Form('##,###,###.##' ,12345.6)
Form('$#.###.###,##' ,-12345.6)
Form('*$,###,###.##+' ,12345.6)
Form('##,###.##' ,123456.0)

12,345.60'
-$12.345,60'

'***$12,345.60+'
'** *** **' , .

TURBO Pascal Reference Manual

Form function

String Fields

A string field is a sequence of # or @ characters. If the string parameter
is longer than the string field, only the first characters of the string are
returned.

If the field contains only # characters, the string will be returned left
justified.

@ If one or more '@' characters are present in the field, the string will be
returned right justified within the length of the field.

Examples:

Form('##########', 'Pascal')
Form('@#########', 'Pascal')
Form('####', 'TURBO Pascal')
Form('@@@@', 'TURBO Pascal')

Writing BCD Reals

'Pascal'
Pascal'

'TURBO'
'TURBO'

BCD Rea/s are written on a format slightly different from the standard
format, as described below.

R The decimal representation of the value of R is output in a field 25 char
acters wide, using floating point format. For R > = 0.0, the format is:

uu#.#################E*##

For R < 0.0, the format is:

u-#.#################E*##

where u represents a blank, # represents a digit, and * represents ei
ther plus or minus.

TURBO-BCD 297

Writing BCD Reals

R:n The decimal representation of the value of R is output, right adjusted in
a field n characters wide, using floating point format. For R > = 0.0:

blanks#.digitsE*##

For R < 0.0:

blanks-#.digitsE*##

where blanks represents zero or more blanks, digits represents from 1
to 17 digits, # represents a digit, and * represents either plus or minus.

Formatted Writing

The Form standard function can be used as a write parameter to pro
duce formatted output:

Write(Form('The price is $###,###,###.##' ,Price));

Internal Data Format

298

The BCD Real variable occupies 10 bytes, and consists of a floating
point value with an 18 digit binary coded decimal mantissa, a 7 -bit 1 D's
exponent, and a 1-bit sign. The exponent and the sign are stored in the
first byte and the mantissa in the next nine bytes with the least
significant byte first:

@+o
@+l

@+9

Exponent and sign.
LSB of mantissa.

MSB of mantissa.

TURBO Pascal Reference Manual

Internal Data Format

The most significant bit of the first byte contains the sign. 0 means posi
tive and 1 means negative. The remaining seven bits contain the ex
ponent in binary format with an offset of $3F. Thus, an exponent of $41
indicates that the value of the mantissa is to be multiplied by 1 0~($41-
$3F) = 1 0~2 = 100. If the first byte is zero, the floating point value is
considered to be zero. Starting with the tenth byte, each byte of the
mantissa contains two digits in BCD format, with the most significant di
git in the upper four bits. The first digit contains the 1/1 D's, the second
contains the 1/1 ~O's, etc. The mantissa is always normalized, i.e. the
first digit is never 0 unless the entire number is O.

This 10-byte Real is not compatible with TURBO standard or 8087
Reals. This, however, should only be a problem if you develop programs
in different versions of TURBO which must interchange data. The trick
then is simply to provide an interchange-format between the programs
in which you transfer Reals on ASCII format, for instance.

TURBO-BCD 299

Internal Data Format

Notes:

300 TURBO Pascal Reference Manual

Chapter 24
TURBO-87

TURBO-87

TURBO-87

TURBO-87 is a special version of TURBO Pascal which is not included
in the standard TURBO Pascal package. It uses the Intel 8087 math
processor for real number arithmetic, providing a significant gain in
speed. TURBO-87 does not include the 8087 chip.

If you are interested in purchasing TURBO-87, please see page 3 for
ordering information.

TURBO-87 will compile and run any program written for standard
TURBO Pascal; the only difference being in real number processing and
real number format.

TURBO-87 programs will not run on a computer without the 8087-chip
installed, whereas the opposite will work.

Files On the TURBO-87 Distribution Diskette

In addition to the files listed on page 8, the TURBO-87 distribution
diskette contains the file

TURBO-87.COM

(TURBO-87.CMD for CP/M-86). This file contains the special TURBO-8?
system. If you want to install it with TINST, you must first temporarily
rename it to TURBO.COM (or .CMD).

TURBO-87 301

Writing 8087 Reals

Writing 8087 Reals

8087 Reals are written on a format slightly different from the standard
format, as described below.

R The decimal representation of the value of R is output in a field 23 char
acters wide, using floating point format. For R > = 0.0, the format is:

uu#.###############E*###

For R < 0.0, the format is:

u-#. #.##############E*###

where LJ represents a blank, # represents a digit, and * represents ei
ther plus or minus.

R:n The decimal representation of the value of R is output, right adjusted in
a field n characters wide, using floating point format. For R > = 0.0:

blanks#.digitsE*###

For R < 0.0:

blanks-#.digitsE*###

where blanks represents zero or more blanks, digits represents from 1
to 14 digits, # represents a digit, and * represents either plus or minus.

Internal Data Format

302

The 8087 chip supports a range of data types. The one used by
TURBO-87 is the long reat, its 64-bits yielding 16 digits accuracy and a
range of 4.19E-307 to 1.67E + 308.

This 8-byte Real is not compatible with TURBO standard or BCD Reals.
This, however, should only be a problem if you develop programs in
different versions of TURBO which must interchange data. The trick
then is simply to provide an interchange-format between the programs
in which you transfer Reals on ASCII format, for instance.

TURBO Pascal Reference Manual

AppendixA
A SUMMARY OF STANDARD
PROCEDURES AND FUNCTIONS

This appendix lists all standard procedures and functions available in Turbo
Pascal and describes their use, syntax, parameters, and type. The follow
ing symbols are used to denote elements of various types:

string
type
file
scalar
pointer

Any string type
Any type
Any file type
Any scalar type
Any pointer type

When a parameter-type specification is not present, it means that the
procedure or function accepts variable parameters of any type.

INPUT/OUTPUT PROCEDURES AND FUNCTIONS
The following procedures use a non-standard syntax in their parameter
lists:

Read;
Read(var V: type);
Read(var F: file of type; var V: type);
Read(var F: text; var I: integer);
Read(var F: text; var R: real);
Read(var F: text; var C: char);
Read(var F: text; var S: string);
Readln;
Readln(var V: type);
Readln(var F: text);
Readln(var F: text; var I: integer);
Readln(var F: text; var R: real);
Readln(var F: text; var C: char);
Readln(var F: text; var S: string);
Write(var V: type);
Write(var F: file of type; var V: type);
Write(var F: Text; I: integer);
Write(var F: Text; R: real);
Write(var F: Text; B: boolean);
Write(var F: Text; C: char);
Write(var F: Text; S: string);
Writeln;
Writeln(var V type);
Writeln(var F Text);
Writeln(var F Text; I: integer);

TURBO-87 303

Arithmetic Functions

Writeln(var F: Text; R: real);
Writeln(var F: Text; B: boolean);
Writeln(var F: Text; C: char);
Writeln(var F: Text; S: string);

ARITHMETIC FUNCTIONS
Abs(I: integer): integer;
Abs(R: real): real;
ArcTan(R: real): real;
Cos(R: real): real;
Exp(R: real): real;
Frac(R: real): real;
Int(R: real): real;
Ln(R: real): real;
Sin(R: real): real;
Sqr(I: integer): integer;
Sqr(R: real): real;
Sqrt(R: real): real;

FILE-HANDLING ROUTINES

304

Procedures
Append(var F: text; Name: string); {PC/MS-DOS, CP/M-86}
Assign(var F: file; Name: string);
BlockRead(var F: file; var Dest: Type; Num: integer);

{untyped files}
BlockRead(var F: file; var Dest: Type; Num: integer;

var RecsRead: integer); {untyped files PC/MS-DOS}
BlockWrite(var F: file; var Dest: Type; Num: integer);

{untyped files}
BlockWrite(var F: file; var Dest: Type; Num: integer;

var RecsWritten: integer);
{untyped files PC/MS-DOS}

Chain(var F: file);
Close(var F: file);
Erase(var F: file);
Execute(var F: file);
Rename(var F: file; Name: string);
Reset(var F: file);
Reset(var F: file; BlockSize : integer);

{untyped files PC/MS-DOS}
Rewrite(var F: file);
Rewrite(F: file; BlockSize : integer);

{untyped files PC/MS-DOS}
Seek(var F: file Pos: integer); {except text files}
LongSeek(var F: file; Pos: real);

{except text files, PC/MS-DOS only}

TURBO Pascal Reference Manual

Heap Control Procedures and Functions

Functions
Eof(var F: file): boolean;
Eoln(var F: Text): boolean;
FilePos(var F: file of type): integer;
FilePos(var F: file): integer;
LongFilePos(var F: file): real;

{except text files, PC/MS-DOS only}
FileSize(var F: file): integer; {except text files}
LongFileSize(var F: file): real;

{except text files, PC/MS-DOS only}
SeekEof(var F: file): boolean;
SeekEoln(var F: Text): boolean;

HEAP CONTROL PROCEDURES AND FUNCTIONS
Procedures
Dispose(var P: pOinter);
FreeMem(var P: pointer, I: integer);
GetMem(var P: pointer; I: integer);
Mark(var P: pOinter);
New(var P: pOinter);
Release(var P: pointer);

Functions
MaxAvail: integer;
MemAvail: integer;
Ord(P: pOinter): integer; {CP/M-50}
Ptr(segment, offset: integer): Pointer; {PC/MS-DOS, CP/M-56}

MISCELLANEOUS PROCEDURES AND FUNCTIONS
Procedures
Bdos(Func {,Param }: integer); {CP/M-50}
Bdos(Func: integer; Param: record); {CP/M-56}
Bios(Func {,Param }: integer); {CP/M}
Delay(MS: integer);
Exit;
FillChar(var Dest, Length: integer; Data: char);
FillChar(var Dest, Length: integer; Data: byte);
Halt;
Intr(Func : integer; Param : record); {PC/MS-DOS}
MsDos(Func: integer; Param: record); {PC/MS-DOS}
Move(var Source,Dest; Length: integer);
Randomize;

Functions
Addr(var Variable): Pointer; {PC/MS-DOS, CP/M-56}
Addr(var Variable): integer; {CP/M-50}
Addr«function identifier»: integer; {CP/M-50}
Addr«procedure identifier»: integer; (CP/M-50}

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 305

Miscellaneous Procedures and Functions

Bdos(Func, Param: integer): byte; {CP/M-8D}
BdosHL(Func, Param: integer): integer; {CP/M-8D}
Bios(Func, Param: integer): byte; {CP/M}
BiosHL(Func, Param: integer): integer; {CP/M}
Hi(I: integer): byte;
IOresult: integer;
KeyPressed : boolean;
Lo(I: integer): byte;
Ofs(var Variable): integer; {PC/MS-DOS, CP/M-8b}
Ofs«fnnction identifier»: integer; {PC/MS-DOS, CP/M-8b}
Ofs«procednre identifier»: integer; {PC/MS-DOS, CP/M-8b}
ParamCount: integer;
ParamStr(N: integer): string;
Random(Range: integer): integer;
Random: real;
Seg(var Variable): integer; {PC/MS-DOS, CP/M-8b}
SizeOf(var Variable): integer;
SizeOf«type identifier»: integer;
Swap(I: integer): integer;
UpCase(Ch: char): char;

SCALAR FUNCTIONS
Functions
Odd(I: integer): boolean;
Pred(X: scalar): scalar;
Succ(X: scalar): scalar;

DIRECTORY-RELATED PROCEDURES (PC/MS-DOS)
Procedures
ChDir(Path: string);
GetDir(Drv: integer; var Path: string);
MkDir(Path: string);
RmDir(Path: string);

SCREEN-RELATED PROCEDURES AND FUNCTIONS
Procedures
CrtExit;
CrtInit;
CirEoi;
ClrScr;
DelLine;
GotoXY(X, Y: integer);
InsLine;
LowVideo;
HighVideo;
NormVideo;

306 TURBO Pascal Reference Manual

String Procedures and Functions

STRING PROCEDURES AND FUNCTIONS

The Str procedure uses a non-standard syntax for its numeric parameter.

Procedures
Delete(var S: string; Pos, Len: integer);
Insert(S: string; var D: string; Pos: integer);
Str(I: integer; var S: string);
Str(R: real; var S: string);
Val(S: string; var R: real; var p: integer);
Val(S: string; var I, p: inte~~r);

Functions
Concat(S1,S2, ... ,Sn: string): string;
Copy(S: string; Pos, Len: integer): string;
Length(S: string): integer;
Pos(Pattern, Source: string): integer;

TRANSFER FUNCTIONS
Chr(I: integer): char;
Drd(X: scalar): integer;
Round(R: real): integer;
Trunc(R: real): integer;

IBM PC PROCEDURES AND FUNCTIONS

The following procedures and functions apply to IBM implementations only.

Basic Graphics, Windows, and Sound
Procedures
Draw(X1,Y1,X2,Y2,Color: integer);
GraphBackground(Color: integer);
GraphColorMode;
GraphMode;
GraphWindow(X1,Y1,X2,Y2: integer);
HiRes;
HiResColor(Color: integer);
NoSound;
Palette(Color: integer);
Plot(X,y,Color: integer);
Sound(I: integer);
TextBackground(Color: integer);
TextColor(Color: integer);
TextMode(Color: integer);
Window(X1,Y1,X2,Y2: integer);

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 307

IBM PC Procedures and Functions

Functions
WhereX: integer;
WhereY: integer;

Constants
BW~O: integer; = 0
C~O: integer; = 1
BWBO: integer; = 2
CBO: integer; = 3
Black: integer; = 0
Blue: integer; = 1
Green: integer; = 2
Cyan: integer; = 3
Red: integer; = ~
Magenta: integer; = 5
Brown: integer; = 6
LightGray: integer; 7
DarkGray: integer; = B
LightBlue: integer; = 9
LightGreen: integer; = 10
LightCyan: integer; = 11
LightRed: integer; = 12
LightMagenta: integer; = 13
Yellow: integer; = 1~
White: integer; = 15
Blink: integer; = 16

Extended Graphics
Procedures
Arc(X,Y,Angle,Radius,Color: integer);
Circle(X,Y,Radius,Color: integer);
ColorTable(C1,C2,C3,C~: integer);
FillScreen(Color: integer);
FillShape(X,Y,FillColor,BorderColor: integer);
FillPattern(X1,Y1,X2,Y2,Color: integer);
GetPic(var Buffer: AnyType; X1,Y1,X2,Y2: integer);
Pattern(P: Array[0 .. 7] of Byte);
PutPic(var Buffer: type; X,Y: integer);
function GetDotColor(X,Y: integer): integer;

Turtlegraphics

308

Procedures
Back(Dist: integer);
ClearScreen;
Forward(Dist: integer);
HideTurtle;
Home;
NoWrap;
PenDown;

TURBO Pascal Reference Manual

PenUp;
SetHeading(Angle: integer);
SetPenColor(Color: integer);
SetPosition(X,Y: integer);
ShowTurtle;
TurnLeft(Angle: integer);
TurnRight(Angle: integer);
TurtleDelay(Ms: integer);
TurtleWindow(X,Y,W,H: integer);
Wrap;

Functions
Heading: integer;
Xeor: integer;
Yeor: integer;
TurtleThere: boolean;

Constants
North = 0;
East = gO;
South = LBO;
West = 270;

IBM PC Procedures and Functions

SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS 309

Standard Procedures and Functions

Notes:

310 TURBO Pascal Reference Manual

SUMMARY OF OPERA TORS

Appendix B
SUMMARY OF OPERATORS

The following table summarizes all operators of TURBO Pascal. The
operators are grouped in order of descending precedence. Where Type
of operand is indicated as Integer, Real, the result is as follows:

Operand
Integer, Integer
Real, Real
Real, Integer

Result
Integer
Real
Real

Operator Operation

+ unary sign identity
- unary sign inversion

not negation

multiplication
set intersection

I division
div Integer division
mod modulus
and arithmetical and

logical and
shl shift left
shr shift right

+ addition
concatenation
set union
subtraction
set difference

or arithmetical or
logical or

xor arithmetical xor
logical xor

SUMMARY OF OPERA TORS

Type of operand(s) Type of result

Integer, Real as operand
Integer, Real as operand

Integer, Boolean as operand

Integer, Real Integer, Real
any set type as operand
Integer, Real Real
Integer Integer
Integer Integer
Integer Integer
Boolean Boolean
Integer Integer
Integer Integer

Integer, Real Integer, Real
string string
any set type as operand
Integer, Real Integer, Real
any set type as operand
Integer Integer
Boolean Boolean
Integer Integer
Boolean Boolean

311

Operator Operation Type of operand(s) Type of result

equality any scalar type Boolean
equality string Boolean
equality any set type Boolean
equality any pointer type Boolean

<> inequality any scalar type Boolean
inequality string Boolean
inequality any set type Boolean
inequality any pointer type Boolean

>= greater or equal any scalar type Boolean
greater or equal string Boolean
set inclusion any set type Boolean

<= less or equal any scalar type Boolean
less or equal string Boolean
set inclusion any set type Boolean

> greater than any scalar type Boolean
greater than string Boolean

< less than any scalar type Boolean
less than string Boolean

in set membership see below Boolean

The first operand of the in operator may be of any scalar type, and the
second operand must be a set of that type.

312 TURBO Pascal Reference Manual

SUMMARY OF COMPILER DIRECTIVES

Appendix C
SUMMARY OF COMPILER
DIRECTIVES

A number of features of the TURBO Pascal compiler are controlled
through compiler directives. A compiler directive is introduced as a com
ment with a special syntax which means that whenever a comment is al
lowed in a program, a compiler directive is also allowed.

A compiler directive consists of an opening bracket immediately followed
by a dollar-sign immediately followed by one compiler directive letter or a
list of compiler directive letters separated by commas, ultimately ter
minated by a closing bracket.

Examples:
{$I-}
{$I INCLUDE. FIL}
{$B-, R+, V-}
(*$U+*)

Notice that no spaces are allowed before or after the dollar-sign. A +
sign after a directive indicates that the associated compiler feature is en
abled (active), and a minus sign indicates that is disabled (passive).

IMPORTANT NOTICE

All compiler directives have default values. These have been chosen
to optimize execution speed and minimize code size. This means
that e.g. code generation for recursive procedures (CP/M-BO only)
and index checking has been disabled. Check below to make sure
that your programs include the required compiler directive settingsl

SUMMARY OF COMPILER DIRECTIVES 313

Common Compiler Directives

Common Compiler Directives

B - I/O Mode Selection

Default: B+

The B directive controls input/output mode selection. When active,
{$B + }, the CON: device is assigned to the standard files Input and Out
put, i.e. the default input/output channel. When passive, {$B-}, the TRM:
device is used. This directive is global to an entire program block and
cannot be re-defined throughout the program. See pages 105 and 108
for further details.

C - Control C and S

Default: C +

The C directive controls control character interpretation during console
I/O. When active, {$C +}, a Ctrl-C entered in response to a Read or
Readln statement will interrupt program execution, and a Ctrl-S will tog
gle screen output off and on. When passive, {$C-}, control characters
are not interpreted. The active state slows screen output somewhat, so
if screen output speed is imperative, you should switch off this directive.
This directive is global to an entire program block and cannot be re
defined throughout the program.

Note that when using the function on KeyPressed, the C directive must be
set to {$C-}.

I - I/O Error Handling

Default: 1+

The I directive controls I/O error handling. When active, {$I +}, all I/O
operations are checked for errors. When passive, {$I-}, it is the respon
sibility of the programmer to check I/O errors through the standard func
tion IOresult. See page 116 for further details.

I - Include Files

314

The I directive succeeded by a file name instructs the compiler to in
clude the file with the specified name in the compilation. Include files are
discussed in detail in chapter 17.

TURBO Pascal Reference Manual

Common Compiler Directives

R - Index Range Check

Default: R-

The R directive controls run-time index checks. When active, {$R + }, all
array indexing operations are checked to be within the defined bounds,
and all assignments to scalar and subrange variables are checked to be
within range. When passive, {$R-}, no checks are performed, and index
errors may well cause a program to go haywire. It is a good idea to ac
tivate this directive while developing a program. Once debugged, execu
tion will be speeded up by setting it passive (the default state).

v - Var-parameter Type Checking

Default: V +

The V compiler directive controls type checking on strings passed as
var-parameters. When active, {$V + }, strict type checking is performed,
i.e. the lengths of actual and formal parameters must match. When pas
sive, {$V-}, the compiler allows passing of actual parameters which do
not match the length of the formal parameter. See pages 203, 236, and
267 for further details.

U - User Interrupt

Default: U-

The U directive controls user interrupts. When active, {$U + }, the user
may interrupt the program anytime during execution by entering a Ctrl
C. When passive, {$U-}, this has no effect. Activating this directive will
significantly slow down execution speed.

SUMMARY OF COMPILER DIRECTIVES 315

PC-DOS and MS-DOS Compiler Directives

PC-DOS and MS-DOS Compiler Directives

The following directives are unique to the PC/MS-DOS implementations:

G - Input File Buffer

Default: GO

The G (get) directive enables I/O re-direction by defining the standard
Input file buffer. When the buffer size is zero (default), the Input file
refers to the CON: or TRM: device. When non-zero (e.g. {$G256}), it
refers to the MS-DOS standard input handle.

The D compiler directive applies to such non-zero-buffer input and out
put files. The G compiler directive must be placed before the declaration
part.

Note that when using Chain or Execute you set all compiler directives to be
the same across Chained or Executed modules. This includes the buffer
sizes used for the G and P compiier directives.

P - Output File Buffer

Default: PO

The P (put) directive enables 1/0 re-direction by defining the standard
Output file buffer. When the buffer size is zero (default), the Output file
refers to the CON: or TRM: device. When non-zero (e.g. {$G512}), it
refers to the MS-DOS standard output handle.

The D compiler directive applies to such non-zero-buffer input and out
put files. The P compiler directive must be placed before the declaration
part.

Note that when using Chain or Execute you set all directives to be the same
across Chained or Executed modules. This includes the buffer sizes
used for the G and P compiler directives.

o - Device Checking

316

Default: D +

When a text file is opened by Reset, Rewrite or Append, TURBO Pascal
asks MS-DOS for the status of the file. If MS-DOS reports that the file is a

TURBO Pascal Reference Manual

PC-DOS and MS-DOS Compiler Directives

device, TURBO Pascal disables the buffering that normally occurs on
text files, and all 1/0 operations on the file are done on a character by
character basis.

The D directive may be used to disable this check. In the default state
{$D+}, device checks are made. In the {$D-} state, no checks are made
and all device 1/0 operations are buffered. In this case, a call to the
standard procedure Flush will ensure that the characters you have
written to a file have actually been sent to it.

F-Number of Open Files

Default: F15

The F directive controls the number of files that may be open simultane
ously. The default setting is {$F15}, which means that up to 16 files
may be open at anyone time. This directive is global to a program and
must be placed before the declaration part. The F compiler directive
does not limit the number of files that may be declared in a program; it
only sets a limit to the number of files that may be open at the same
time.

The F compiler directives's maximum effective value is 15. Also, the
maximum value for the statement

files = XX

in your CONFIG.SYS file is 20. Therefore, the maximum number of files
available in a Turbo Pascal program running under MS-DOS/PC-DOS is
15.

Note that even if the F compiler directive has been used to allocate
sufficient file space, you may still experience a 'too many open files' er
ror condition if the operating system runs out of file buffers. If that hap
pens, you should supply a higher value for the files = xx parameter in
the CONFIG.SYS file. The default value is usually 8. For further detail,
please refer to your MS-DOS documentation.

PC-DOS, MS-DOS, and CP IM-a6 Compiler Directive

The following directive is unique to the 16-bit implementations:

SUMMARY OF COMPILER DIRECTIVES 317

CP IM-80 Compiler Directives

K - Stack Checking

Default: K +

The K directive controls the generation of stack check code. When ac
tive, {$K + }, a check is made to insure that space is available for local
variables on the stack before each call to a subprogram. When passive,
{$K-}, no checks are made.

CP 1M-SO Compiler Directives

The following directives are unique to the 8-bit implementation:

A - Absolute Code

Default: A+

The A directive controls generation of absolute, i.e. non-recursive, code.
When active, {$A +}, absolute code is generated. When passive, {$A-} ,
the compiler generates code which allows recursive calls. This code re
quires more memory and executes slower.

W - Nesting of With Statements

Default: W2

The W directive controls the level of nesting of With statements, i.e. the
number of records which may be 'opened' within one block. The W
must be immediately followed by a digit between 1 and 9. For further
details, please refer to page 81. ,.

x -Array Optimization

318

Default: X +

The X directive controls array optimization. When active, {$X +}, code
generation for arrays is optimized for maximum speed. When passive,
{$X-}, the compiler minimizes the code size instead. This is discussed
further on page 75.

TURBO Pascal Reference Manual

TURBO VS. STANDARD PASCAL

Appendix D
TURBO VS. STANDARD PASCAL

The TURBO Pascal language follows the Standard Pascal defined by
Jensen & Wirth in their User Manual and Report, with only minor
differences introduced for the sheer purpose of efficiency. These
differences are described in the following. Notice that the extensions
offered by TURBO Pascal are not discussed.

Recursion

CP /M-80 version only: Because of the way local variables are handled
during recursion, a variable local to a subprogram must not be passed
as a var-parameter in recursive calls.

Get and Put

The standard procedures Get and Put are not implemented. Instead,
the Read and Write procedures have been extended to handle all I/O
needs. The reason for this is threefold: Firstly, Read and Write give
much faster I/O; secondly, variable space overhead is reduced, as file
buffer variables are not required, and thirdly, the Read and Write pro
cedures are far more versatile and easier to understand that Get and
Put.

Goto Statements

A goto statement must not leave the current block.

Page Procedure

The standard procedure Page is not implemented, as the CP/M operat
ing system does not define a form-feed character.

TURBO VS. STANDARD PASCAL 319

Page Procedure

Packed Variables

The reserved word packed has no effect in TURBO Pascal, but it is still
allowed. This is because packing occurs automatically whenever possi
ble. For the same reason, standard procedures Pack and Unpack are
not implemented.

Procedural Parameters

Procedures and functions cannot be passed as parameters.

320 TURBO Pascal Reference Manual

COMPILER ERROR MESSAGES

Appendix E
COMPILER ERROR MESSAGES

The following is a listing of error messages you may get from the com
piler. When encountering an error, the compiler will always print the er
ror number on the screen. Explanatory texts will only be issued if you
have included error messages (answer Y to the first question when you
start TURBO).

Many error messages are totally self-explanatory, but some need a little
elaboration as provided in the following.

01 ';' expected
02 ':' expected
03 ' " expected
04 '(' expected
05 ')' expected
06 ' = ' expected
07 ': = ' expected
08 '[' expected
09 ']' expected
10 ' .' expected
11 ' .. ' expected
12 BEGIN expected
13 DO expected
14 END expected
15 OF expected
16 PROCEDURE or FUNCTION expected
17 THEN expected
18 TO or DOWNTO expected
20 Boolean expression expected
21 File variable expected
22 Integer constant expected
23 Integer expression expected
24 Integer variable expected
25 Integer or real constant expected
26 Integer or real expression expected
27 Integer or real variable expected
28 Pointer variable expected
29 Record variable expected

COMPILER ERROR MESSAGES 321

COMPILER ERROR MESSAGES

30 Simple type expected
Simple types are all scalar types, except real.

31 Simple expression expected
32 String constant expected
33 String expression expected
34 String variable expected
35 Textfile expected
36 Type identifier expected
37 Untyped file expected
40 Undefined~b~

A statement references an undefined label.
41 Unknown identifier or syntax error

Unknown label, constant, type, variable, or field identifier, or syntax
error in statement.

42 Undefined pointer type in preceding type definitions
A preceding pointer type definition contains a reference to an un
known type identifier.

43 Duplicate identifier or label
This identifier or label has already been used within the current block.

44 Type mismatch
1) Incompatible types of the variable and the expression in an assign
ment statement 2) Incompatible types of the actual and the formal
parameter in a call to a subprogram. 3) Expression type incompatible
with index type in array assignment. 4) Types of operands in an ex
pression are not compatible.

45 Constant out of range
46 Constant and CASE selector type does not match
47 Operand type(s) does not match operator

Example: 'A' div '2'
48 Invalid result type

Valid types are all scalar types, string types, and pointer types.
49 Invalid string length

The length of a string must be in the range 1 .. 255.
50 String constant length does not match type
51 Invalid subrange base type

Valid base types are all scalar types, except real.
52 Lower bound > upper bound

ihe ordinal value of the upper bound must be greater than or equal
to the ordinal value of the lower bound.

53 Reserved word
These may not be used as identifiers.

54 Illegal assignment

322 TURBO Pascal Reference Manual

COMPILER ERROR MESSAGES

55 String constant exceeds line
String constants must not span lines.

56 Error in integer constant
An Integer constant does not conform to the syntax described in
page 43, or it is not within the Integer range -32768 .. 32767. Whole
Real numbers should be followed by a decimal point and a zero, e.g.
123456789.0.

57 Error in real constant
The syntax of Real constants is defined on page 43.

58 Illegal character in identifier
60 Constants are not allowed here
61 Files and pointers are not allowed here
62 Structured variables are not allowed here
63 Textfiles are not allowed here
64 Textfiles and untyped files are not allowed here
65 Untyped files are not allowed here
66 I/O not allowed here

Variables of this type cannot be input or output.
67 Files must be VAR parameters
68 File components may not be files

file of file constructs are not allowed.
69 Invalid ordering of fields
70 Set base type out of range

The base type of a set must be a scalar with no more than 256 pos
sible values or a subrange with bounds in the range O .. 255.

71 Invalid GOTO
A GOTO cannot reference a label within a FOR loop from outside
that FOR loop.

72 Label not within current block
A GOTO statement cannot reference a label outside the current
block.

73 Undefined FORWARD procedure(s)
A subprogram has been forward declared, but the body never oc
curred.

74 INLINE error
75 Illegal use of ABSOLUTE

1) Only one identifier may appear before the colon in an absolute
variable declaration. 2) The absolute clause may not be used in a
record.

76 Overlays can not be forwarded
The FORWARD specification cannot not be used in connection with
overlays.

77 Overlays not allowed in direct mode
Overlays can only be used from programs compiled to a file. (Starting
with version 3.0, this applies only to CP/M-80 Turbo.)

COMPILER ERROR MESSAGES 323

COMPILER ERROR MESSAGES

90 File not found
The specified include file does not exist.

91 Unexpected end of source
Your program cannot end the way it does. The program probably has
more begins than ends.

92 Unable to create overlay file
93 Invalid compiler directive
96 Cannot nest include files
97 Too many nested WITHs

Use the W compiler directive to increase the maximum number of
nested WITH statements. Default is 2. (CP/M-SO only).

98 Memory overflow
You are trying to allocate more storage for variables than is available.

99 Compiler overflow
There is not enough memory to compile the program. This error may
occur even if free memory seems to exist; it is, however, used by the
stack and the symbol table during compilation. Break your source
text into smaller segments and use include files.

324 TURBO Pascal Reference Manual

Appendix F.
RUN-TIME ERROR MESSAGES

Fatal errors at run-time result in a program halt and the display of the
message:

Run-time error NN, PC~addr

Program aborted

where NN is the run-time error number, and addr is the address in the
program code where the error occurred. The following contains explana
tions of all run-time error numbers. Notice that the numbers are hexade
cimal!

01 Floating point overflow.
02 Division by zero attempted.
03 Sqrt argument error.

The argument passed to the Sqrt function was negative.
04 . Ln argument error.

The argument passed to the Ln function was zero or negative.
10 String length error.

1) A string concatenation resulted in a string of more than 255
characters. 2) Only strings of length 1 can be converted to a charac
ter.

11 Invalid string index.
Index expression is not within 1 .. 255 with Copy, Delete or Insert pro
cedure calls.

90 Index out of range.
The index expression of an array subscript was out of range.

91 Scalar or subrange out of range.
The value assigned to a scalar or a subrange variable was out of
range.

92 Out of integer range.
The real value passed to Trunc or Round was not within the Integer
range - 32768 .. 32767.

FO Overlay file not found.
FF Heap/stack collision.

A call was made to the standard procedure New or to a recursive
subprogram, and there is insufficient free memory between the heap
pointer (HeapPtr) and the recursion stack pointer (RecurPtr).

RUN-TIME ERROR MESSAGES 325

RUN-TIME ERROR MESSAGES

Notes:

326 TURBO Pascal Reference Manual

I/O ERROR MESSAGES

Appendix G
1/0 ERROR MESSAGES

An error in an input or output operation at run-time results in I/O error. If I/O
checking is active (I compiler directive active), an I/O error causes the
program to halt and the following error message is displayed:
displayed:

I/O error NN, PC=addr
Program aborted

Where NN is the I/O error number, and addr is the address in the pro
gram code where the error occurred.

If I/O error checking is passive ({$I-}), an I/O error will not cause the pro
gram to halt. Instead, all further I/O is suspended until the result of the
I/O operation has been examined with the standard function IOresult. If
I/O is attempted before IOresult is called after en error, a new error oc
curs, possibly hanging the program.

The following contains explanations of all run-time error numbers. Notice
that the numbers are hexadecimal!

01 File does not exist.
The file name used with Reset, Erase, Rename, Execute, or Chain
does not specify an existing file.

02 File not open for input.
1) You are trying to read (with Read or Readln) from a file without a
previous Reset or Rewrite. 2) You are trying to read from a text file
which was prepared with Rewrite (and thus is empty). 3) You are try
ing to read from the logical device LST:, which is an output-only dev
ice.

03 File not open for output.
1) You are trying to write (with Write or Writeln) to a file without a
previous ROeset or Rewrite. 2) You are trying to write to a text file which was
prepared with Reset. 3) You are trying to write to the logical device KBD:,
which is an input-only device.

I/O ERROR MESSAGES 327

I/O ERROR MESSAGES

04 File not open.
You are trying to access (with BlockRead or Block Write) a file
without a previous Reset or Rewrite.

10 Error in numeric format.
The string read from a text file into a numeric variable does not con
form to the proper numeric format (see page 43).

20 Operation not allowed on a logical device.
You are trying to Erase, Rename, Execute, or Chain a file assigned
to a logical device.

21 Not allowed in direct mode.
Programs cannot be Executed or Chained from a program running in
direct mode (i.e. a program activated with a Run command while the
Memory compiler option is set).

22 Assign to std files not allowed.
90 Record length mismatch.

The record length of a file variable does not match the file you are
trying to associate it with.

91 Seek beyond end-of-file.
99 Unexpected end-of-file.

1) Physical end-of-file encountered before EOF-character (Ctrl-Z)
when reading from a text file. 2) An attempt was made to read
beyond end-of-file on a defined file. 3) A Read or BlockRead is un
able to read the next sector of a defined file. Something may be
wrong with the file, or (in the case of BlockRead) you may be trying
to read past physical EOF.

FO Disk write error.
Disk full while attempting to expand a file. This may occur with the
output operations Write, WriteLn, Block Write, and Flush, but also
Read, ReadLn, and Close may cause this error, as they cause the
write buffer to be flushed.

F1 Directory is full.
You are trying to Rewrite a file, and there is no more room in the disk
directory.

F2 File size overflow.
You are trying to Write a record beyond 65535 to a defined file.

F3 Too many open files.
FF File disappeared.

An attempt was made to Close a file which was no longer present in
the disk directory, e.g. because of an unexpected disk change.

328 TURBO Pascal Reference Manual

TRANSLA TlNG

Appendix H
TRANSLATING ERROR MESSAGES

The compiler error messages are collected in the file TURBO. MSG.
These messages are in English but may easily be translated into any
other language as described in the following.

The first 24 lines of this file define a number of text constants for subse
quent inclusion in the error message lines; a technique which drastically
reduces the disk and memory requirements of the error messages. Each
constant is identified by a control character, denoted by a A character
in the following listing. The value of each constant is anything that fol
lows on the same line. All characters are significant, also leading and
trailing blanks.

The remaining lines each contain one error message, starting with the
error number and immediately followed by the message text. The mes
sage text may consist of any characters and may include previously
defined constant identifiers (control characters). Appendix E lists the
resulting messages in full.

When you translate the error messages, the relation between constants
and error messages will probably be quite different from the English ver
sion listed here. Start therefore with writing each error message in full,
disregarding the use of constants. You may use these error messages,
but they will require excessive space. When all messages are translated,
you should find as many common denominators as possible. Then
define these as constants at the top of the file and include only the con
stant identifiers in subsequent message texts. You may define as few or
as many constants as you need, the restriction being only the number of
control characters.

As a good example of the use of constants, consider errors 25, 26, and
27. These are defined exclusively by constant identifiers, 15 in total, but
would require 101 characters if written in clear text.

The TURBO editor may be used to edit the TURBOMSG.OVR file. Con
trol characters are entered with the Ctrl-P prefix, i.e. to enter a Ctrl-A
(A A) into the file, hold down the < CONTROL> key and press first P,
then A. Control characters appear dim on the screen (if it has any video
attributes).

TRANSLA TlNG ERROR MESSAGES 329

TRANSLATING ERROR MESSAGES

Notice that the TURBO editor deletes all trailing blanks. The original
message therefore does not use trailing blanks in any messages.

Error Message File Listing

330

"A are not allowed
"B can not be
"C constant
"D does not
"E expression
"F identifier
"G file
"H here
"KInteger
"LFile
"NIllegal
"0 or
"?Undefined
"Q match
"R real
"SString
"TTextfile
"u out of range
"V variable
"W overflow
"X expected
"Y type
"[Invalid
"] pointer
01';' "X
02':' "X
03',' "X
04' (' "X
05')' "X
06' =' "X
07' :=' "X
08' ['''X
09']' "X
10' . '''X
11' .. '''X
12BEGIN"X
13DO"X
14END"X

TURBO Pascal Reference Manual

Error Message File Listing

150F"'X
17THEN"'X
18TO"'0 DOWNTO"'X
20Boolean"'E"'X
21"'L"'V"'X
22"'K"'C"'X
23"'K"'E"'X
24"'K"'V"'X
25"'K"'0"'R"'C"'X
26"'K"'0"'R"'E"'X
27"'K"'0"'R"'V"'X
28Pointer"'V"'X
29Record"'V"'X
30Simple"'Y"'X
31Simple"'E"'X
32"'S"'C"'X
33"'S"'E"'X
34"'S"'V"'X
35"'T"'X
36Type"'F"'X
37Untyped"'G"'X
40"'P label
41Unknown"'F"'0 syntax error
42"'P"']"'Y in preceding"'Y definitions
43Duplicate"'F"'0 label
44Type mismatch
45"'C"'U
46"'C and CASE selector"'Y"'D"'Q
470perand"'Y(s)"'D"'Q operator
48"'[result"'Y
49'" ["'S length
50"'S"'C length"'D"'Q"'Y
51"'[subrange base"'Y
52Lower bound > upper bound
53Reserved word
54"'N assignment
55"'S"'C exceeds line
56Error in integer"'C
57Error in"'R"'C
58"'N character in"'F
60"'Cs"'A"'H
61"'Ls and"']s"'A"'H
62Structured"'Vs"'A"'H
63"'Ts"'A"'H

TRANSLA TlNG ERROR MESSAGES 331

Error Message File Listing

64 ATs and untypedAGsAAAH
65Untyped AGsAAAH
66I/O A A
67 ALs must beAV parameters
68 AL componentsABAGs
69 A[AOrdering of fields
70Set baseAyAU
7lA[GOTO
72Label not within current block
73 AP FORWARD procedure(s)
74INLINE error
75 AN use of ABSOLUTE
90 AL not found
9lUnexpected end of source
93 Illegal compiler directive
97Too many nested WITH's
98Memory AW
99Compiler AW

332 TURBO Pascal Reference Manual

TURBO SYNTAX

Appendix I
TURBO SYNTAX

The syntax of the TURBO Pascal language is presented here using the
formalism known as the Backus-Naur Form. The following symbols are
meta-symbols belonging to the BNF formalism, and not symbols of the
TURBO Pascal language:

I
()

Means "is defined as".
Means "or".
Enclose items which may be repeated zero or more times.

All other symbols are part of the language. Each syntactic construct is
printed in italics, e.g.: block and case-element. reserved words are
printed in boldface, e.g.: array and for.

actual-parameter:: = expression I variable
adding-operator:: = + I-lor I xor
array-constant :: = {structured-constant { , structured-constant))
array-type :: = array [index-type { , index-type)] of component-type
array-variable :: = variable
assignment-statement :: = variable: = expression I

function-identifier :: = expression
base-type :: = simple-type
block:: = declaration-part statement-part
case-element:: = case-list: statement
case-label:: = constant
case-label-list :: = case-label { , case-label}
case-list :: = case-list-element (, case-list-element)
case-list-element :: = constant I constant .. constant
case-statement:: = case expression of case-element { ; case-element) end I

case expression of case-element { ;case-element}
else statement { ; statement} end

complemented-factor:: = signed-factor I not signed-factor
component-type :: = type
component-variable :: = indexed-variable I field-designator
compound-statement:: = begin statement { ; statement) end
conditional-statement:: = if-statement I case-statement

TURBO SYNTAX 333

TURBO SYNTAX

constant:: = unsigned-number 1 sign unsigned-number 1 constant-identifier
1 sign constant-identifier 1 string

constant-definition-part :: = const constant-definition
{ ; constant-definition} ;

constant-definition :: =. untyped-constant-definition 1

typed-cons tan t-definition
constant-identifier :: = identifier
control-character:: = # unsigned-integer 1 A character
control-variable :: = variable-identifier
declaration-part :: = { declaration-section}
declaration-section :: = label-declaration-part 1 constant-definition-part 1

type-definition-part 1 variable-declaration-part 1

procedure-and-function-declaration-part
digit:: = 0 11 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9
digit-sequence :: = digit { digit}
empty:: =
empty-statement:: = empty
entire-variable:: = variable-identifier 1 typed-constant-identifier
expression :: = simple-expression { relational-operator simple-expression}
factor:: = variable 1 unsigned-constant 1 (expression) 1

function-designator 1 set
field-designator:: = record-variable. field-identifier
field-identifier:: = identifier
field-list :: = fixed-part 1 fixed-part; variant-part 1 variant-part
file-identifier:: = identifier
file-identifier-/ist ::= empty I (file-identifier { I file-identifier})
file-type:: = file of type
final-value :: = expression
fixed-part :: = record-section { ; record-section}
for-list :: = initial-value to final-value 1 initial-value downto final-value
for-statement :: = for control-variable: = for-list do statement
formal-parameter-section :: = parameter-group 1 var parameter-group
function-declaration :: = function-heading block;
function-designator:: = function-identifier 1 function-identifier

(actual-parameter { I actual-parameter})
function-heading :: = function identifier: result-type; 1

function identifier (formal-parameter-section
{ I formal-parameter-section }) : result-type;

function-identifier :: = identifier
goto-statement:: = goto label
hexdigit :: = digit 1 AlB 1 C 1 DIE 1 F
hexdigit-sequence :: = hexdigit { hexdigit}
identifier :: = letter { letter-or-digit}
identifier-list :: = identifier { I identifier}

334 TURBO Pascal Reference Manual

TURBO SYNTAX

if-statement ::= if expression then statement else statement
I if expression then statement]

index-type:: = simple-type
indexed-variable :: = array-variable [expression { , expression}]
initial-value :: = expression
inline-list-element :: = unsigned-integer I constant-identifier I

variable-identifier I/ocation-counter-reference
inline-statement :: = inline inline-/ist-element { , inline-list-element}
label :: = letter-or-digit { letter-or-digit }
label-declaration-part :: = label label { , label} ;
letter :: = A I B I C I 0 I ElF I G I Hili J I K I LIM I

NIOIPIQIRISITIUIVIWIXIYIZI
alblcidielflglhliljlklllmi
nlolplqlrlsltlulvlwlxlylzl_

letter-or-digit :: = letter I digit
location-counter-reference :: = . * I * sign constant
multiplying-operator:: = * 1/ I div I mod I and Ishii shr
parameter-group :: = identifier-list: type-identifier
pointer-type :: = " type-identifier
pointer-variable :: = variable
procedure-and-function-declaration-part :: =

{ procedure-or-function-declaration }
procedure-declaration :: = procedure-heading block;
procedure-heading :: = procedure identifier; I procedure identifier

(formal-parameter-section
{ , formal-parameter-section }) ;

procedure-or-function-declaration :: = procedure-declaration I
function-declaration

procedure-statement :: = procedure-identifier I procedure-identifier
(actual-parameter { , actual-parameter})

program-heading ::= <empty>
::= program program-identifier file-identifier-list;

program:: = program-heading block
program-identifier :: = identifier
record-constant:: = (record-constant-element

{ ; record-constant-element })
record-constant-element :: = field-identifier: structured-constant
record-section :: = empty I field-identifier { , field-identifier} : type
record-type :: = record field-list end
record-variable :: = variable
record-variable-list :: = record-variable { , record-variable}
referenced-variable :: = pointer-variable"
relational-operator:: = = I < > I < = I > = I < I > I in
repeat-statement:: = repeat statement { ; statement} until expression
repetitive-statement :: = while-statement I repeat-statement I for-statement

TURBO SYNTAX 335

TURBO SYNTAX

result-type :: = type-identifier
scalar-type :: = (identifier { , identifier})
scale-factor:: = digit-sequence 1 sign digit-sequence
set ::= [set-element} , set-element}]

I []
set-constant ::= [set-constant-element { , set-constant-element }]

I []
set-constant-element :: = constant 1 constant .. constant
set-element:: = expression 1 expression .. expression
set-type :: = set of base-type
sign:: = + 1-
signed-factor:: = factor 1 sign factor
simple-expression :: = term { adding-operator term}
simple-statement:: = assignment-statement 1 procedure-statement 1

goto-statement 1 inline-statement 1 empty-statement
simple-type:: = scalar-type 1 subrange-type 1 type-identifier
statement:: = simple-statement 1 structured-statement
statement-part:: = compound-statement
string :: = {string-element}
string-element :: = text-string 1 control-character
string-type:: = string [constant]
structured-constant:: = constant 1 array-constant 1 record-constant 1

set-constant
structured-constant-definition :: = identifier: type = structured-constant
structured-statement:: = compound-statement 1 conditional-statement 1

repetitive-statement 1 with-statement
structured-type :: = unpacked-structured-type 1

packed unpacked-structured-type
subrange-type :: = constant .. constant
tag-field :: = empty 1 field-identifier:
term :: = complemented-factor { multiplying-operator complemented-factor}
text-string :: = '{ character} ,
type-definition :: = identifier = type
type-definition-part :: = type type-definition { ; type-definition} ;
type-identifier:: = identifier
type :: = simple-type 1 structured-type 1 pointer-type
typed-constant-identifier:: = identifier
unpacked-structured-type :: = string-type 1 array-type 1 record-type 1

. set-type 1 file-type
unsigned-constant :: = unsigned-number 1 string 1 constant-identifier 1 nil
unsigned-integer:: = digit-sequence 1 $ hexdigit-sequence
unsigned-number:: = unsigned-integer 1 unsigned-real
unsigned-real:: = digit-sequence. digit-sequence 1

336

digit-sequence. digit-sequence E scale-factor 1
digit-sequence E scale-factor

TURBO Pascal Reference Manual

TURBO SYNTAX

un typed-cons tan t-definition :: = identifier = constant
variable:: = entire-variable I component-variable I referenced-variable
variable-declaration :: = identifier-list: type I

identifier-list: type absolute constant
variable-declaration-part :: = var variable-declaration

{ ; variable-declaration } ;
variable-identifier :: = identifier
variant :: = empty I case-label list : (field-list)
variant-part :: = case tag-field type-identifier of variant { ; variant}
while-statement:: = while expression do statement
with-statement:: = with record-variable-list do statement

TURBO SYNTAX 337

TURBO SYNTAX

Notes:

338 TURBO Pascal Reference Manual

Appendix J
ASCII TABLE

DEC HEX CHAR DEC HEX CHAR

0 00 "@ NUL 32 20 SPC
1 01 "A SOH 33 21 !
2 02 "B STX 34 22 II

3 03 "C ETX 35 23 #

4 04 "D EOT 36 24 $
5 05 "E ENQ 37 25 %
6 06 "F ACK 38 26 &
7 07 "G BEL 39 27 I

8 08 "H BS 40 28 (
9 09 "I HT 41 29)

10 OA "J LF 42 2A *
11 OB "K VT 43 2B +
12 OC "L FF 44 2C
13 OD "M CR 45 2D -
14 OE "N SO 46 2E
15 OF "0 SI 47 2F /
16 10 "P DLE 48 30 0
17 11 "Q DCl 49 31 1
18 12 "R DC2 50 32 2
19 13 "S DC3 51 33 3
20 14 "T DC4 52 34 4
21 15 "U NAK 53 35 5
22 16 "V SYN 54 36 6
23 17 "W ETB 55 37 7
24 18 "X CAN 56 38 8
25 19 "Y EM 57 39 9
26 lA "Z SUB 58 3A :
27 IB "[ESC 59 3B :
28 lC "\ FS 60 3C <
29 ID "] GS 61 3D =

30 IE "" RS 62 3E >
31 IF " US 63 3F ? -

ASCII TABLE

ASCII TABLE

DEC HEX CHAR DEC HEX CHAR

64 40 @ 96 60 I

65 41 A 97 61 a
66 42 B 98 62 b
67 43 C 99 63 c
68 44 D 100 64 d

69 45 E 101 65 0

70 46 F 102 66 f
71 47 G 103 67 g
72 48 H 104 68 h
73 49 I 105 69 i
74 4A J 106 6A j
75 4B K 107 6B k
76 4C L 108 6C 1
77 4D M 109 6D m
78 4E N 110 6E n
79 4F 0 111 6F 0

80 50 P 112 70 p
81 51 Q 113 71 q
82 52 R 114 72 r
83 53 S 115 73 s
84 54 T 116 74 t
85 55 U 117 75 u
86 56 V 118 76 v
87 57 W 119 77 w
88 58 X 120 78 x
89 59 Y 121 79 y
90 5A Z 122 7A z
91 5B [123 7B {

92 5C \ 124 7C I
93 5D] 125 7D }

94 5E " 126 7E -
95 5F 127 7F DEL -

339

ASCII TABLE

Notes:

340 TURBO Pascal Reference Manual

KEYBOARD RETURN CODES

Appendix K
KEYBOARD RETURN CODES

This appendix lists the codes returned from all combinations of keys on
the entire IBM PC keyboard, as they are seen by TURBO Pascal. Actu
ally, function keys and 'Alt-ed' keys generate 'extended scan codes',
but these are turned into 'escape sequences' by TURBO.

To read the escape sequences, you let your read routine check for ESC,
and if detected see if there is another character in the keyboard buffer.
If there is, an escape code was received, so you read the next character
and set a flag to signal that what you got is not a normal character, but
the second part of an 'escape sequence'

i r KeyPressed then
begin

Read(Kbd,Ch) { ch is char
if (ch = #27) and KeyPressed then { one more char? }
begin

Read(Kbd,Ch)
FuncKey True; { FuncKey is boolean

end
end;

The following table lists the return codes as decimal ASCII values. Nor-
mal keys only return a single code; extended codes return an ESC (27)
followed by one more character.

Key Unshifted Shift Ctrl Alt

Fl 27 59 27 84 27 94 27 104
F2 27 60 27 85 27 95 27 105
F3 27 61 27 86 27 96 27 106
F4 27 62 27 87 27 97 27 107
F5 27 63 27 88 27 98 27 108
F6 27 64 27 89 27 99 27 109
F7 27 65 27 90 27 100 27 110
F8 27 66 27 91 27 101 27 111
F9 27 67 27 92 27 102 27 112
FlO 27 68 27 93 27 103 27 113

KEYBOARD RETURN CODES 341

KEYBOARD RETURN CODES

Key Unshifted Shift Ctrl Alt

LArr 27 75 52
RArr 27 77 54
UArr 27 72 56
DArr 27 80 50
Home 27 71 55
End 27 79 49
PgUp 27 73 57
PgDn 27 81 51
Ins 27 82 48
Del 27 83 46
Esc 27 27
BackSp 8 8
Tab 9 27 15
RETURN 13 13 10
A 97 65 1 27 30
B 98 66 2 27 48
C 99 67 3 27 46
D 100 68 4 27 32
E 101 69 5 27 18
F 102 70 6 27 33
G 103 71 7 27 34
H 104 72 8 27 35
I 105 73 7 27 23
J 106 74 10 27 36
K 107 75 11 27 37
L 108 76 12 27 38
M 109 77 13 27 50
N 110 78 14 27 49
0 III 79 15 27 24
P 112 80 16 27 25
Q 113 81 17 27 16
R 114 82 18 27 19
S 115 83 19 27 31
T 116 84 20 27 20
U 117 85 21 27 22
V 118 86 22 27 47
W 119 87 23 27 17
X 120 88 24 27 45
Y 121 89 25 27 21
Z 122 90 26 27 44

(Shaded area indicates return codes that require SuperKey.)

342 TURBO Pascal Reference Manual

KEYBOARD RETURN CODES

Ke~ Unshifted Shift Ctr1 A1t

[91 123 27
\ 92 124 28
] 93 125 29
I 96 126
0 48 41 27 129
1 49 33 27 120
2 50 64 27 3 27 121
3 51 35 27 122
4 52 36 27 123
5 53 37 27 124
6 54 94 30 27 125
7 55 38 27 126
8 56 42 27 127
9 57 40 27 128
* 42 27 114
+ 43 43

45 95 31 27 130
61 43 27 131

, 44 60
/ 47 63

59 58
96 126

Table K-1: Keyboard Return Codes

KEYBOARD RETURN CODES 343

KEYBOARD RETURN CODES

Notes:

344 TURBO Pascal Reference Manual

INSTALLA TION

Appendix L
INSTALLATION

Terminal Installation

Before you use TURBO Pascal, it must be installed to your particular
terminal, i.e. provided with information regarding control characters re
quired for certain functions. This installation is easily performed using
the program TlNSTwhich is described in this chapter.

After having made a work-copy, please store your distribution diskette
safely away and work only on the copy.

Now start the installation by typing TlNST at your terminal. Select
Screen installation from the main menu. Depending on your version of
TURBO Pascal, the installation proceeds as described in the following
two sections.

IBM PC Display Selection

If you use TURBO Pascal without installation, the default screen set-up
will be used. You may override this default by selecting another screen
mode from this menu:

Choose one of the following displays:

0) Default display mode
1) Monochrome display
2) Color display 80x25
3) Color display 40x25
4) h/w display 80x25
5) h/w display 40x25

Which display (enter no. or AX to exit) -

Figure L-1: IBM PC Screen Installation Menu

INSTALLA TlON 345

Terminal Installation

Each time TURBO Pascal runs, the selected mode will be used, and you
will return to the default mode on exit.

Non-IBM PC Installation

346

A menu listing a number of popular terminals will appear, inviting you to
choose one by entering its number:

Choose one of the following terminals:

1) ADDS 20/25/30 15) Lear-Siegler ADM-3l
2) ADDS 40/60 16) Liberty
3) ADDS Viewpoint-IA 17) Morrow MDT-20
4) ADM 3A 18) Otrona Attache
5) Ampex 080 19) Qume
6) ANSI 20) Soroc IQ-120
7) Apple/graphics 21) Soroc new models
8) Hazeltine 1500 22) Teletext 3000
9) Hazeltine Esprit 23) Televideo 912/920/925

10) IBM PC CCP/M b/w 24) Visual 200
11) IBM PC CCP/M color 25) Wyse WY-IOO/200/300
12) Kaypro 10 26) Zenith
13) Kaypro II and 4 27) None of the above
14) Lear-Siegler ADM-20 28) Delete a definition

Which terminal? (Enter no. or AX to exit):

Figure L-2: Terminal Installation Menu

If your terminal is mentioned, just enter the corresponding number, and
the installation is complete. Before installation is actually performed, you
are asked the question:

Do you want to modify the definition before installation?

This allows you to modify one or more of the values being installed as
described in the following. If you do not want to modify the terminal
definition, just type N, and the installation completes by asking you the
operating frequency of your CPU (see last item in this appendix).

TURBO Pascal Reference Manual

Terminal Installation

If your terminal is not on the menu, however, you must define the re
quired values yourself. The values can most probably be found in the
manual supplied with your terminal.

Enter the number corresponding to None of the above and answer the
questions one by one as they appear on the screen.

In the following, each command you may install is described in detail.
Your terminal may not support all the commands that can be installed. If
so, just pass the command not needed by typing RETURN in response
to the prompt. If Delete line, Insert line, or Erase to end of line is not in
stalled, these functions will be emulated in software, slowing screen per
formance somewhat.

Commands may be entered either simply by pressing the appropriate
keys or by entering the decimal or hexadecimal ASCII value of the com
mand. If a command requires the two characters 'ESCAPE' and ' = "
may:

either: press first the Esc key, then the =. The entry will be echoed
with appropriate labels, i.e. <ESC> =.

or: enter the decimal or hexadecimal values separated by spaces. Hexa
decimal values must be preceded by a dollar-sign. Enter e.g. 27 61
or $1B 61 or $1B $3D which are all equivalent.

The two methods cannot be mixed, i.e. once you have entered a non
numeric character, the rest of that command must be defined in that
mode, and vOice versa.

A hyphen entered as the very first character is used to delete a com
mand, and echoes the text Nothing.

Terminal type:
Enter the name of the terminal you are about to install. When you com
plete TlNST, the values will be stored, and the terminal name will ap
pear on the initial list of terminals. If you later need to reinstall TURBO
Pascal to this terminal, you can do that by choosing it from the list.

INSTALLA TlON 347

Terminal Installation

Send an initialization string to the terminal?
If you want to initialize your terminal when TURBO Pascal starts (e.g. to
download commands to programmable function keys), you answer Y for
yes to this question. If not, just hit RETURN.

Send a reset string to the terminal?
Define a string to be sent to the terminal when TURBO Pascal ter
minates. The description of the initialization command above applies
here.

CURSOR LEAD-IN command:

348

Cursor Lead-in is a special sequence of characters which tells your ter
minal that the following characters are an. address on the screen on
which the cursor should be placed.

When you define this command, you are asked the following supplemen
tary questions:

CURSOR POSITIONING COMMAND to send between line and
column:

Some terminals need a command between the two numbers defining
the row- and column cursor address.

CURSOR POSITIONING COMMAND to send after line and column:
Some terminals need a command after the two numbers defining the
row- and column cursor address.

Column first?
Most terminals require the address on the format: first ROW, then
COLUMN. If this is the case on your terminal, answer N. If your ter
minal wants COLUMN first, then ROW, then answer Y.

OFFSET to add to LINE
Enter the number to add to the LINE (ROW) address.

OFFSET to add to COLUMN
Enter the number to add to the COLUMN address.

Binary address?
Most terminals need the cursor address sent on binary form. If that is
true for your terminal, enter Y. If your terminal expects the cursor ad
dress as ASCII digits, enter N. If so, you are asked the supplementa
ry question:

TURBO Pascal Reference Manual

Terminal Installation

2 or 3 ASCII digits?
Enter the number of digits in the cursor address for your terminal.

CLEAR SCREEN command:
Enter the command that will clear the entire contents of your screen,
both foreground and background, if applicable.

Does CLEAR SCREEN also HOME cursor?
This is normally the case; if it is not so on your terminal, enter N, and
define the cursor HOME command.

DELETE LINE command:
Enter the command that deletes the entire line at the cursor position.

INSERT LINE command:
Enter the command that inserts a line at the cursor position.

ERASE TO END OF LINE command:
Enter the command that erases the line at the cursor position from the
cursor position through the right end of the line.

START OF 'LOW VIDEO' command:
If your terminal supports different video intensities, then define the com
mand that initiates the dim video here. If this command is defined, the
following question is asked:

START OF 'NORMAL VIDEO' command:
Define the command that sets the screen to show characters in 'normal'
video.

Number of rows (lines) on your screen:
Enter the number of horizontal lines on your screen.

Number of columns on your screen:
Enter the number of vertical column positions on your screen.

Delay after CURSOR ADDRESS (0-255 ms):
Delay after CLEAR, DELETE, and INSERT (0-255 ms):
Delay after ERASE TO END OF LINE and HIGHLIGHT On/Off (0-255 ms):

Enter the delay in milliseconds required after the functions specified.
RETURN means 0 (no delay).

INSTALLA TION 349

Terminal Installation

Is this definition correct?
If you have made any errors in the definitions, enter N. You will then re
turn to the terminal selection menu. The installation data you have just
entered will be included in the installation data file and appear on the ter
minal selection menu, but installation will not be performed. When you
enter Y in response to this question, you are asked:

Operating frequency of your microprocessor in MHz (for delays):
As the delays specified earlier are depending on the operating frequency
of your CPU, you must define this value.

The installation is finished, installation data is written to TURBO Pascal,
and you return to the outer menu (see section 12). Installation data is
also saved in the installation data file and the new terminal will appear
on the terminal selection list when you run TINST in future.

Editing Command Installation

350

The built-in editor responds to a number of commands which are used
to move the cursor around on the screen, delete and insert text, move
text etc. Each of these functions may be activated by either of two com
mands: a primary command and a secondary command. The secondary
commands are installed by Borland and comply with the 'standard' set
by WordStar. The primary commands are un-defined for most systems,
and using the installation program, they may easily be defined to fit your
taste or your keyboard. IBM PC systems are supplied with the arrows
and dedicated function keys installed as primary commands as
described in chapter 19.

When you hit C for Command installation, the first command appears:

CURSOR MOVEMENTS:

1: Character left Nothing -> •

TURBO Pascal Reference Manual

Editing Command Installation

This means that no primary command has been installed to move the
cursor one character left. If you want to install a primary command (in
addition to the secondary WordStar-like Ctrl-S, which is not shown
here), you may enter the desired command following the -> prompt in
either of two ways:

1) Simply press the key you want to use. It could be a function key (for ex
ample a left-arrow-key, if you have it) or any other key or sequence of
keys that you choose (max. 4). The installation program responds with a
mnemonic of each character it receives. If you have a left-arrow-key that
transmits an < ESCAPE> character followed by a lower case a, and
you press this key in the situation above, your screen will look like this:

CURSOR MOVEMENTS:

1: Character left Nothing -> <ESC> a C

2) Instead of pressing the actual key you want to use, you may enter the
ASCII value(s) of the character(s) in the command. The values of multi
ple characters are entered separated by spaces. Decimal values are just
entered: 27; hexadecimal values are prefixed by a dollar-sign: $lB. This
may be useful to install commands which are not presently available on
your keyboard, for example if you want to install the values of a new
terminal while still using the old one. This facitity has just been provided
for very few and rare instances, because there is really no idea in
defining a command that cannot be generated by pressing a key. But
it's there for those who wish to use it.

In both cases terminate your input by pressing < RETURN> .Notice
that the two methods cannot be mixed within one command. If you have
started defining a command sequence by pressing keys, you must
define all characters in that command by pressing keys and vise versa.

You may enter a - (minus) to remove a command from the list, or a B to
back through the list one item at a time.

INSTALLA TION 351

Editing Command Installation

352

The editor accepts a total of 45 commands, and they may all be installed
to your specification. If you make an error in the installation, like defining
the same command for two different purposes, an self-explanatory error
message is issued, and you must correct the error before terminating
the installation. A primary command, however, may conflict with one of
the WordStar-like secondary commands; that will just render the secon
dary command inaccessible.

The following table lists the secondary commands, and allows you to
mark any primary commands installed by yourself:

CURSOR MOVEMENTS:
1 : Character left Ctrl-S
2: Al terna ti ve Ctrl-H
3: Character right Ctrl-D
4: Word left Ctrl-A
5: Word right Ctrl-F
6: Line up Ctrl-E
7: Line down Ctrl-X
8: Scroll up Ctrl-W
9: Scroll down Ctrl-Z

10: Page up Ctrl-R
11: Page down Ctrl-C
12: To left on line Ctrl-Q Ctrl-S
13: To right on line Ctrl-Q Ctrl-D
14: To top of page Ctrl-Q Ctrl-E
15: To bottom of page Ctrl-Q Ctrl-X
16: To top of file Ctrl-Q Ctrl-R
17: To end of file Ctrl-Q Ctrl-C
18: To beginning of block Ctrl-Q Ctrl-B
19: To end of block Ctrl-Q Gtrl-K
20: To last cursor position Ctrl-Q Ctrl-P

TURBO Pascal Reference Manual

Editing Command Installation

INSERT & DELETE:

21: Insert mode on/off Ctrl-V
22: Insert line Ctrl-N
23: Delete line Ctrl-Y
24: Delete to end of line Ctrl-Q Ctrl-Y
25: Delete right word Ctrl-T
26: Delete character under cursor Ctrl-G
27: Delete left character
28: Alternative:

BLOCK COMMANDS:

29: Mark block begin
30: Mark block end
31: Mark single word
32: Hide/display block
33: Copy block
34: Move block
35: Delete block

Nothing

Ctrl-K Ctrl-B
Ctrl-K Ctrl-K
Ctrl-K Ctrl-T
Ctrk-K Ctrl-H
Ctrl-K Ctrl-C
Ctrl-K Ctrl-V
Ctrl-K Ctrl-Y

36: Read block from disk Ctrl-K Ctrl-R
37: Write block to disk Ctrl-K Ctrl-W

MISC. EDITING COMMANDS:

38: End edit Ctrl-K Ctrl-D
39: Tab Ctrl-I
40: Auto tab on/off Ctrl-Q Ctrl-I
41 : Restore line Ctrl-Q Ctrl-L
42: Find Ctrl-Q Ctrl-F
43: Find & replace Ctrl-Q Ctrl-A
44: Repeat last find Ctrl-L
45: Control character prefix Ctrl-P

Table L-1: Secondary Editing Commands

Items 2 and 28 let you define alternative commands to Character Left
and Delete left Character commands. Normally < BS > is the alterna
tive to Ctrl-S, and there is no defined alternative to < DEL> . You may
install primary commands to suit your keyboard, for example to use the
< BS > as an alternative to < DEL> if the < BS > key is more con
veniently located. Of course, the two alternative commands must be
unambiguous like all other commands.

INSTALLA TlON 353

Editing Command Installation

Notes:

354 TURBO Pascal Reference Manual

Appendix M
CP/MPRIMER

How to use TURBO on a CP/M system

CP/M PRIMER

When you turn on your computer, it reads the first couple of tracks on
your CP/M diskette and loads a copy of the CP/M operating system into
memory. Each time you re-boot your computer, CP/M also creates a list
of the disk space available for each disk drive. Whenever you try to save
a file to the disk, CP/M checks to make sure that the diskettes have not
been changed. If you have changed the diskette in Drive A without re
booting, for example, CP/M will generate the following error message
when a disk-write is attempted:

BOOS ERROR ON A: RIO

Control will return to the operating system and your work was NOT
saved! This can make copying diskette a little confusing for the be
ginner. If you are new to CP/M, follow these instructions:

Copying Your TURBO Disk

To make a working copy of your TURBO MASTER DISK, do the follow
ing:

1. Make a blank diskette and put a copy of CP/M on it (see your CP/M
manual for details). This will be is your TURBO work disk.

2. Place this disk in Drive A:. Place a CP/M diskette with a copy of
PIP.COM in Drive B (PIP.COM is CP/M's file copy program that should
be on your CP/M diskette. See your CP/M manual for details).

3. Re-boot the computer. Type B: PIP and then press < RETURN>

4. Remove the diskette from Drive B: and insert your TURBO MASTER
DISK.

5. Now type: A: =B : * . * [V] and then press < RETURN>

You have instructed PIP it to copy all the files from the diskette in Drive
B: onto the diskette in Drive A:. Consult your CP/M manual if any errors
occur.

CP/M PRIMER 355

Copying Your TURBO Disk

The last few lines on your screen should look like this:

A> B:PIP

A:=B:.*[V]

COPYING -
FIRSTFILE

LASTFILE
*

6. Press < RETURN> , and the PIP program will end.

Using Your TURBO Disk

356

Store your TURBO MASTER DISK in a safe place. To use TURBO
PASCAL, place your new TURBO work disk in drive A: and re-boot the
system. Unless your TURBO came pre-installed for your computer and
terminal, you should install TURBO (see 12). When done, type

TURBO

and TURBO Pascal will start.

If you have trouble copying your diskette, please consult your CPIM
user manual or contact your hardware vendor for CP 1M support.

TURBO Pascal Reference Manual

APPENDIX N-HELP!!!
Common Questions and Answers
About Turbo Pascal

This appendix lists a number of the most commonly asked questions and
their answers. If you don't find the answer to your question here, you can
either call Borland's Technical Support staff, or you can access Com
puServe's Consumer Information 24 hours a day and 'talk' to the Borland
Special Interest Group. See insert in the front of this manual for details.

GENERAL

Q: How do I use the system?

A: Please read the manual, specifically Chapter 1. If you must get started
immediately do the following:

1. Boot up your operating system.

2. If you have a computer other than an IBM PC, run Tinst to install
Turbo for your equipment.

3. Run Turbo.

4. Start programming!

Q: I am having disk problems. How do I copy my disks?

A: Most disk problems do not mean you have a defective disk. Specifically,
if you are on a CP/M-80 system, you may want to look up the brief
CP/M primer on page 355. If you can get a directory of your distribution
disk, then chances are that it is a good disk.

To make a backup copy of Turbo, you should use a file-by-file copy
program like COpy for PC/MS-DOS or PIP for CP/M-80/86. The rea
son is that for those of you who have quad density disk drives, you may
have trouble using a DISKCOPY type program. These programs are
expecting the exact same format for the Source diskette as well as the
Destination diskette.

Q: Do I need Turbo to run programs I developed in Turbo?

A: No, Turbo can make .COM or .CMD files.

HELP!!! 357

358

Q: How do I make .COM or .CMD files?

A: Type 0 from the main menu for Compiler Options and then select "C"
for .COM or .CMD file.

Q: What are the limits on the compiler as far as code and data?

A: The compiler can handle up to 64K of code, 64K of data, 64K of stack,
and unlimited heap. The object code, however, cannot exceed 64K.

Q: Can DOS interrupt calls $25 (Absolute disk read) and $26 (Absolute
disk write) be made from Turbo Pascal?

A: Yes. DOS did not implement these DOS services the same as all other
calls provided. Therefore, you cannot use the procedures MS-DOS or
INTR provided by Turbo Pascal. You can contact Turbo Pascal Techni
cal Support for a handout demonstrating how to perform these opera
tions, or you can download the information from our Special Interest
Group on CompuServe.

Q: I don't get the results I think I should when using Reals and Integers in
the same expression.

A: When assigning an Integer expression to a Real variable, the expres
sion is converted to Real. However, the expression itself is calculated
as an integer, and you should therefore be aware of possible integer
overflow in the expression. This can lead to surprising results. Take for
instance:
RealVar := ~o * 1000;

First, the compiler multiplies integers 40 and 1000, resulting in 40,000
which gives integer overflow. It will actually come out to -25536 as
Integers wrap around. Now it will be assigned to the RealVar as
-25536. To prevent this, use either:
RealVar

or

~o.o *1000;

RealVar := 1.0 * IntVar1 * IntVar2;

to ensure that the expression is calculated as a Real.

Q: How do I get a disk directory from my Turbo program?

A: Sample procedures for accessing the directory are included in the
Turbo Tutor package (see how to order the Turbo Tutor on page 3).

TURBO Pascal Reference Manual

Q: How much RAM do I need to run Turbo Pascal?

A: You'll need at least 48K on a CP/M-80 machine and 128K on a 16-bit or
PC-compatible machine.

Q: Are variables initialized automatically in Turbo Pascal?

A: Turbo doesn't initialize user-defined variables at runtime. The program
mer must initialize a variable before it can be used.

Q: My program runs correctly in memory, but crashes or performs differ
ently when I run the .COM file. What's wrong?

A: There are several possibilities:

• You are using a variable or data structure that has not been initial
ized.

• You are going out of bounds on an array or a string and conse
quently overwriting something in memory. Set the R compiler direc
tive to {$ R + }.

• You are using a pointer that has not been properly allocated, which
can cause a program to overwrite something in memory.

• You are using assembly language externals and Turbo Pascal ver
sion 2.0 on MS-DOS, PC-DOS, or CP/M-86. Under these condi
tions, external assembly code is not always transferred properly
during a compile to disk. It is necessary to compile first in memory,
then, without running the program, select the .COM option using the
compiler Options menu and recompile.

• You may be overwriting memory somehow. Suspect any code that
uses

1. MEM or MEMW arrays or pointers

2. absolute variables

3. INLlNE, externals, or interrupt calls

4. FiIIChar or Move statements

Q: How do I assign an integer variable a value of -32768?

A: By assigning the integer a value of $8000.

HELP!!! 359

360

Q: When I change my program into a .CHN/Execute file, the program
either hangs, gives a memory allocation error, or gives erroneous
results. What am I doing wrong?

A: For Chain and Execute to work, you must set the minimum code and
data segment to the size of the code and data of the largest program in
the Chained or Executed series (on CP/M-80 systems, you must adjust
the end address). These settings can be changed using the compiler
Options menu.

Q: How do I get a real number printed in non-exponential notation?

A: You must use real formatting:
Writeln(R:M:3)

This means write the value of R, use a field width of 14 characters, 3 of
which should be to the right of the decimal point.

Q: When I use FilChar on a string, the string gets messed up. Why?

A: Remember that the zero'th byte of a string is used to hold the current
length of the string. Immediately after using the FiIIChar routine, you
must be sure to set the length byte of your string to the appropriate
value.

Q: I have a for loop that writes to the string position using index (str1 [ill.
However, when I write out the string, it has its old length. Why?

A: When updating the value of a particular index of a string, you must
update the length byte. We recommend using the Insert procedure to
change the value of a particular character in a string, since all the string
manipulation routines in Turbo Pascal automatically change the length
of the string.

Q: What is the maximum length of a string in Turbo Pascal?

A: 255 characters.

TURBO Pascal Reference Manual

Q: How do you declare an enumerated type and use it in a for loop?

A: Try using this code:

type
Num (one,two,three);

var
Count: Num;

begin
for count := one to three do

Write ('. ') ;
end.

Q: How can I access command-line parameters?

A: Use the ParamStr and ParamCount functions described in Chapter
16. These functions allow complete access to the command line from
your Turbo Pascal program.

Q: When I write my linked list data structure to a disk file, why doesn't it
store properly?

A: Linked lists are dynamic data structures that can only be properly
allocated/represented in memory. In order to store the information in a
dynamic data structure to a disk file, you must write a routine that
traverses the entire linked list and writes each piece of data to your file.
When you read the information back from the file, you must reconstruct
your linked list.

Q: I made a file with a text editor, and now I'm trying to read it as a record
file and it doesn't work. What's wrong?

A: Record files use a different data format from text files. You'll need to
write a program to convert your data from text to record files.

Q: How do I get typeahead in a Turbo Pascal program?

A: First set the C and U compiler directives to { $ C-} and { $ U - }. This
will prevent Turbo Pascal from clearing the keyboard buffer during
screen I/O. From now on, whenever you do any reads, you can read
one character at a time from the logical device KBD: Read(KBD,ch).

HELP!!! 361

362

Q: Why can't I read more than one integer/character/real on a line using a
repea t loop and a read(ch)?

A: The following routine reads an input line of characters, requiring the
user to press !El only once.

var
ch : char;

begin
repeat

read(TRM,ch); { read from the logical device TRM }
write(ch) ;

until Ch = #13;
end

You can read from the TAM device, read{TRM,var1), for version 3.0
for standard input, or use the compiler directive { $B- } for version 2.0.

Q: Why can't I read/write from the logical device AUX?

A: Turbo Pascal treats the logical device AUX exactly like a text file.
Because of the BIOS design, most users find that they have great
difficulty trying to write serial communication routines using reads and
writes from AUX. We recommend writing your own interrupt service
routines to check the status of the serial port before you try doing a read
or write.

Q: Why does my program behave differently when I run it several times in
a row?

A: If you are running programs in Memory mode and use typed constants
as initialized variables, these constants will only be initialized right after
a compilation, not each time you Run the program because they reside
in the code segment. With .COM files, this problem does not exist, but if
you still experience different results when using arrays and sets, turn on
range checking {$ R + } .

Q: How can I use more than 64K of variables?

A: You can expand the amount of data space available to your program by
using pointer variables.

Q: How do I compile my program to a .CHN file?

A: This cookbook-style recipe shows how to compile MAIN.COM and
CHRCOUNT.CHN:

1. Load Turbo Pascal and specify CHRCOUNTas the work file. Enter
the program using the editor and return to the main menu. Set the

TURBO Pascal Reference Manual

mode to CHN file and compile to disk (type OHCO). Write down the
code and data sizes (on CP/M-80 systems, write down the end
address).

2. Specify MAIN as the work file, enter the program using the editor
and return to the main menu. Set the mode to COM file and compile
to disk (type OCOC). Write down the code and data sizes (on
CP/M-80 systems, write down the end address).

3. Type "0" to display the options menu and specify the largest code
and the largest data values (on CP/M-80 systems, specify the
highest end address). Recompile MAIN (type C), exit Turbo and run
MAIN.COM from the operating system command line.

Note that you must always set the code and data values when
compiling the main module (unless it uses the most code and data).

For more information about CP/M compiler options, refer to chapters
21 (for CP/M-B6) and 22 (for CP/M-BO).

INSTALLATION

0: I am having trouble installing my terminal!

A: If your terminal is not one that is on the installation menu, you must
create your own. All terminals come with a manual containing informa
tion on codes that control video I/O. You must answer the questions in
the installation program according to the information in your hardware
manual. The terminology we use is the closest we could find to a
standard.

Note: most terminals do not require an initialization string or reset
string. These are usually used to access enhanced features of a
particular terminal; for example, on some terminals you can send an
initialization string to make the keypad act as a cursor pad. You can put
up to 13 characters into the initialization or reset string.

8087 IMPLEMENTATION

0: Do I need an 8087 chip to use Turbo-87?

A: Yes, if you want to compile programs for the 8087 chip, that chip must
be in your machine. The standard Turbo compiler, however, is included
on the Turbo-87 disk, so you can have it both ways!

0: Is the 8087 version of Turbo Pascal compatible with the 80287 co
processor?

A: Yes.

HELP!!! 363

Q: I have the 8087 version of the compiler. The program compiles but it
doesn't run. Why not?

A: For version 2.0 users: Turbo Pascal does not check for the 8087 at
compile time; instead, it tries to use it at runtime. If it is not there, Turbo
Pascal will wait until you respond.

For version 3.0 owners: Turbo Pascal will not allow compilation on a
machine without an 8087. If the program is compiled and taken to a
machine without an 8087, it will crash.

Q: How fast is the 8087?

A: The 8087 version of Turbo performs real-number calculations approxi
mately 10 times faster than a non-8087 compiler.

BCD IMPLEMENTATION

Q: Do I need any special equipment to use Turbo-BCD?

A: No, but the BCD reals package works on 16-bit implementations of
Turbo only.

Q: Is Turbo Pascal with BCD support as fast as the regular Turbo com
piler?

A: If you are using real numbers, Turbo-BCD will run more slowly than
regular Turbo Pascal. Also note that Sin, Cos, Exp, and Ln are not
implemented in Turbo-BCD.

Q: Is there a switch in the BCD or 8087 compilers that lets you use regular
real number arithmetic?

A: No, they are separate compilers.

EDITOR

364

Q: What are the space limitations of the editor?

A: The editor can edit as much as 64K at a time. If this is not enough, you
can split your source into more than one file using the $1 compiler
directive.

TURBO Pascal Reference Manual

Q: When I am in the Turbo Pascal Editor and I press carriage return, the
cursor returns to column 1 instead of going to the next line.

A: In order to create new lines at the end of a file, you must be in Insert
mode. So type []ill)]l and try it again.

COMPILE/RUN-TIME/I/O ERRORS

Q: What do I do when I get error 99 (Compiler overflow)?

A: You can do two things: break your code into smaller segments and use
the $1 compiler directive or compile to a .COM or .CMD file.

Q: What do I do if my object code is going to be larger than 64K?

A: Either use the chain facility or use overlays.

Q: My program works well with Turbo 2.0, but now it keeps getting 1/0
Error F3 (or Turbo Access error 243).

A: Turbo 3.0 uses DOS file handles. When booting your computer, you
should have a CONFIG.SYS file in the root directory of your boot drive.
Place the statement:
FILES=16

in this file and re-boot your system. For more information about file
handles, please refer to your DOS reference manual.

NOTE: If you distribute your programs, you should include similar
instructions in the documentation that you provide.

Q: What causes the runtime error FO?

A: There are four possible causes:

HELPIII

1. a recursive routine that is overlaid

2. a procedure that calls another procedure in the same overlay group

3. calling for an overlay inside a read or write statement, which is not
allowed

4. insufficient file handles when calling for an overlay, a .CHN, or an
Execute (MS/PC-DOS only).

365

366

Q: Why do I get an I/O error FO when I try to Append to a text file?

A: You cannot use the Append procedure on an empty file. The existing
file must have text in it in order to successfully append.

Q: Why am I getting a compile-time error in my type declaration for a
large data structure?

A: It may be over 64K in size (Turbo's upper limit for the size of a data
structure).

Q: Why do I keep getting a type mismatch with the labels I'm using in my
case statement?

A: You may be trying to use strings as labels in your case statement.
Pascal only allows simple types to be used as case statement labels.
In addition, the labels must be constants, not variables or typed con
stants.

Q: What does compiler error #99 mean, and how can I fix it?

A: This compile time error indicates that you do not have enough memory
to compile your program. You should take the following steps to correct
the problem:

1. Separate your code into several include files that are included in a
very small main program file.

2. Compile the program to a .COM file.

Q: Why would I get the I/O error F3?

A: Because you are trying to use too many file handles. MS-DOS and
PC-DOS limit a program to a maximum number of file handles You can
raise the number to 20 using this line in your CONFIG.SYS file:

FILES = 20

This will allow you to use up to 16 files in your program (DOS uses 5).
When all handles have been used, you must close some files before
opening any new ones.

Q: I get a Type Mismatch error when passing a string to a function or
procedure as a parameter.

A: Turn off type checking of variable parameters: {$V-L

TURBO Pascal Reference Manual

GRAPHICS

Q: After including GRAPH.P in my program, the commands Plot and
Draw no longer work as expected.

A: When using GRAPH.P, you must set the Palette before using these
routines.

Q: Any idea why I can't get the sample graphics programs on the Turbo
Pascal disk to run on my system?

A: You must have an IBM Color Graphics Adapter (CGA) card or compati
ble in order to use the built-in graphics abilities of Turbo Pascal.

Q: What resolution setting does the Hires graphics mode on the IBM PC
version of Turbo Pascal require?

A: Hires is set at (640x200).

Q: Will Turbo Pascal's graphics run on the Hercules Graphics card?

A: Turbo Pascal's built-in graphics will only run on the IBM Color Graphics
Adapter card, or something compatible with this card. To write graphics
programs using Turbo with the Hercules card, you can use the Turbo
Graphix Toolbox.

Q: Why doesn't my graphics program run on my Paradise Modular
Graphics card?

A: The graphics routines built into Turbo Pascal and included in the
extended graphics (GRAPH.P) will only run on an IBM Color Graphics
Adapter card (or compatible).

PRINTING

Q: How can I get a listing of my program's input and output to go to the
printer?

A: To do this, declare the following compiler directive at the top of your
program:

HELPI/I

UP:L2IH

before running your .COM file, type "P at the DOS command line.
From now until you type 1\ P again, everything that goes to the screen
will be echoed to the printer.

367

Q: How do I send something to the printer from my program?

A: By specifying the logical device LST in your writeln statements, you can
send something to the printer:
writeln(LST,'This text is going to the printer.');

Q: How can I write to a printer other than PRN?

A: In order to support multiple printers from a Turbo Pascal program, you
need to treat them as text files. In other words, declare a file variable of
type text and assign it to the logical device you wish it to represent.

Q: How do I print my program to the printer?

A: We have given you a listing program called LlSTER.PAS on the Turbo
Pascal diskette. In order to use it do the following:

1. Compile the program to a .COM file using Turbo Pascal.

2. Exit from Turbo Pascal and run the program LISTER.

3. When it prompts you for the file name you wish to print, enter the
correct file.

Q: How can I check if my printer is on-line?

A: The following routine will return the printer status. See an IBM Technical
Reference Manual or equivalent for detailed information on the Error
codes returned.

type
Registers = record

case Byte of

end

var

1 : (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags Integer);
2 : (AL,AH,BL,BH,CL,CH,DL,DH : Byte);

Reg : Registers;

begin
Reg. AH : = 2;
Intr($17, Reg);
PrinterError (Reg.AH and $29) (> 0;

end;

368 TURBO Pascal Reference Manual

Q: How can I use one Write statement to access any of several printers?

A: On the IBM PC and compatibles (only), do the following:

First, include the following code in your program:

const
CurrentPrinter : Byte = 1 { The printer number to

print on }
procedure WritePrinter(Ch : Char);

{ Replaces Turbo's LstOut procedure }
type

Registers = record
case Byte of

var

1 : (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags Integer);
2 : (AL,AH,BL,BH,CL,CH,DL,DH : Byte);

end;

Reg: Registers;
begin

with Reg do
begin

AH := 0;
AL : = Ord (Ch) ;
DX := Pred(CurrentPrinter);
Intr($17, Reg);

end; { with}
end; { WritePrinter }

At the start of your program, insert the statement:

LstOutPtr := Ofs(WritcPrinter);

Now, whenever you write to the Lst device in your program, it will print
on the printer specified by CurrentPrinter. To change the printer that the
text will print on, simply change the value of CurrentPrinter.

Q: How can I tell if my printer is ready to print?

A: You can check for the printer's status by polling DOS interrupt 17.

Q: How do I get output to go to the printer?

A: Try: Writeln(Lst, ...).

HELP!!! 369

Q: How can I get a listing of my source code to my printer?

A: You can use the following program. If you wish to have a listing that
underlines or highlights reserved words, puts in page breaks, and lists
all Include files, there is one included free (including source) on the
Turbo Tutor diskette.

program TextFileDemo;

var
TextFile : Text;
Scratch: String[12BJ;

begin
Write('File to print: '); { Get file name}
Readln(Scratch);
Assign(TextFile, Scratch); { Open the file}
{$I-}

Reset(TextFile) ;
{$I+}
if IOresult () 0 then

Writeln('Cannot find " Scratch) { File not found}
else { Print the file .. }
begin

while not Eof(TextFile) do
begin

Readln(TextFile, Scratch); { Read a line
Writeln(Lst, Scratch) { Print a line

end; { while }
Writeln(Lst) { Flush printer buffer}

end { else }
end.

IBM IMPLEMENTATION

370

Q: How can I get my output to display in inverse video?

A: By executing the following statements:

begin
TextColor(Black);
Textbackground(White);

end;

Q: When I change the currently active display page, why doesn't Turbo
write to the current page?

A: Turbo writes directly to video RAM and always assumes that page 0
is the active display page, If you want to display text in different display
pages, you will have to either write directly to video RAM (the Turbo
Pascal Editor Toolbox and Lightning Word Wizard both have routines to
do this), or use DOS's display services.

TURBO Pascal Reference Manual

Q: Is it possible to execute DOS commands; i.e., do a shell, from Turbo?

A: Yes. You can contact Turbo Pascal Technical Support for a handout
demonstrating how to perform these operations, or you can download
the information from our Special Interest Group on CompuServe.

Q: Is it possible to perform Serial Communications from Turbo?

A: Yes. You can contact Turbo Pascal Technical Support for a handout
demonstrating how to perform these operations, or you can download
the information from our Special Interest Group on CompuServe.

Q: GotoXY isn't working in my program. What am I doing wrong?

A: The most common mistake is reversing the row and column coordi
nates. They should read as:

GotoXY(Column,Row);

where 1 (= column (= 80 (on most machines) and 1 (= row (= 25 (or
24 lines on most generic machines)

Q: How do I get the time/date in Turbo Pascal?

A: The files DOSFCALL.DOC and INTRPTCL.DOC on your Turbo Pascal
disk demonstrate how to get the date and time.

Q: I wrote an interrupt handler, but it doesn't work. Do you mask interrupts
during I/O?

A: No. You are probably using global variables, but OS has the wrong
value after you enter the interrupt procedure. Save the value of OS in
the code segment (that is, in a typed constant) and restore it within the
interrupt handler.

Q: What interrupt is used by the MS-DOS and PC-DOS implementations
of Turbo Pascal to handle the keyboard?

A: Turbo Pascal uses interrupt 16 to check the keyboard status.

Q: Does Turbo Pascal 3.0 for the IBM PC use direct screen writes in its
editor?

A: Yes.

HELP!!! 371

Q: How can I change the border color on a CGA?

A: The following program will let you change the border color to blue
(substitute any color you wish):

begin
Port[$3D91 Blue;

end;

Q: How can I hide the cursor in Turbo Pascal?

A: The following routine turns the cursor on and off in Turbo Pascal:

procedure SetCursor(On:Boolean);
var

reg : record
ax,bx,cx,dx,bp,si,di,ds,es,flags:integer;

end;
begin

with reg do
begin

if On then { turn cursor on }
cx := $COB { $706 if on color monitor}

else { turn cursor off }
cx := $20;
bx : = 0;
ax := $0100;

end; { with }
intr($10,reg);

end; { procedure SetCursor

Q: How can I find out if the I][) / (][) keys are on?

A: The status of these keys is kept in RAM at address $40:$17.

Q: How do I get the I PrISe I key on an IBM PC to work with a Turbo Pascal
program?

A: To re-enable DOS's standard 1/0 redirection capabilities, the G and P
compiler directives must be set in your program:

{$P128,G128}

COMPATIBILITY
Q: I can't get Turbo Pascal to load on my DEC Rainbow. Why?

A: Make sure you are using the DEC format, not the MS-DOS format.

372 TURBO Pascal Reference Manual

Q: I'm having trouble running Turbo Pascal on Concurrent PC-DOS. Why?

A: We recommend using the MS-DOS generic implementation of Turbo
Pascal under Concurrent PC-DOS.

Q: Why can't I get Turbo Pascal to run under Topview?

A: You must have Turbo Pascal version 3.01 to use under Topview, and
you must install Topview with the following parameters:
Does it read directly from the keyboard? Yes.
Does it access video RAM directly? Yes.

MS-DOS/PC-DOS

Q: How can I use Turbo Pascal to write to DOS's null device?

A: Use the following code:
va!

T : text;
begin

Assign(T, 'Nul');
Rewrite(T) ;
Writeln(T, 'help');
Close(T) ;

end.

CP/M-SO

Q: Can I use the program I developed under CP/M-SO on my IBM PC?

A: Yes, you can, provided there are no machine-specific calls in your
code, and that you recompile the source code on an IBM PC implemen
tation of Turbo Pascal.

Q: What software do I need to get Turbo Pascal up and running on my
Osborne executive computer?

A: You need the Osborne version of Turbo Pascal and BIOS revision 1.21
or greater.

Q: How can I get Turbo Pascal 3.0 to run on my Bondwell CP/M-SO
computer?

A: To run 3.0 on your Bondwell, you will have to contact Bondwell to get a
patch to their BIOS.

HELPIII 373

Q: Why do my recursive procedures not work?

A: Set the A compiler directive off: { $ A -} (CP/M-80 only).

KEYBOARD

374

Q: Why doesn't the function KeyPressed work properly?

A: Any strange behavior you are experiencing concerning the function
KeyPressedwil1 be remedied by setting the C compiler directive to C-.

Q: How do I read from the keyboard without having to hit return (duplicate
BASIC's INKEY$ function)?

A: Like this: read (Kbd, Ch) where Ch:Char.

Q: How do I read a function key?

A: Function keys generate 'extended scan codes' which are turned into
'escape sequences' by Turbo; that is, two characters are sent from the
keyboard: first an Esc (decimal ASCII value 27), then some other
character.

To read these extended codes, you check for Esc and, if detected, see
if there is another character in the keyboard buffer. If there is, a function
key was pressed, so you read the next character and set a flag to signal
that what you got is not a normal character, but the second part of an
'escape sequence.'
if KeyPressed then
begin

Read(Kbd,Ch) {ch is char}
if (ch = #27) and KeyPressed then {one more char?}
begin

Read(Kbd,Ch)
FuncKey := True; {FuncKey is Boolean}

end
end;

Q: How do I disable CTRL-C?

A: Set compiler directive: {$C-}.

TURBO Pascal Reference Manual

FILE 1/0
Q: How do I find out if a file exists on the disk?

A: Use UI-} and {I +}, The following function returns True if the file name
passed as a parameter exists, otherwise it returns False:

type
Name=string[bbl;

function Exist(FileName: Name): Boolean;
var

Fil: file;
begin

Assign(Fil, FileName);
UI-}
Reset (Fil) ;
UI+ }
Exist (IOresult 0)

end;

Q: Is there any way to get around the File Handle limitations imposed by
DOS?

A: Yes. You can contact Turbo Pascal Technical Support for a handout
demonstrating how to perform these operations, or you can download
the information from our Special Interest Group on CompuServe.

Q: How can I expand my data files to use more than 64K of records?

A: See the extended file size section on page 199.

Q: I am having trouble with file handling. What is the correct order of
instructions to open a file?

A: The correct manner to handle files is as follows:

HELP!!!

To create a new file:

Assign(FileVar,'NameOf.Fil');
Rewrite(FileVar);

Close(FileVar) ;

To.open an existing file:

Assign(FileVar,'NameOf.Fil');
Reset(FileVar) ;

Close(FileVar) ;

375

376

Q: When using the functions EOF and EOLN on a file, my program seems
to hang. What's the cause?

A: Turbo Pascal adds an extension to the functions EOF and EOLN. This
extension lets you pass to the two functions a parameter specifying
which file you are checking (for example, EOF(FileVariable)). If you do
not specify this optional parameter, then set the 8 compiler directive.

Q: How do you access a file on another disk drive?

A: When assigning the drive, make your file name 'B:filename' or use
ChdirCB:') (MS/PC-DOS only).

Q: How can I use EOF and EOLN without a file variable as a parameter?

A: Turn off buffered input:UB-L

TURBO Pascal Reference Manual

INDEX

A
A command, 188
A compiler directive, 131, 137,
277,286,318

Abs function, 139
Absolute address functions,
204-205, 237

Absolute variables, 203-204,
236, 261, 267, 291

Adding operators, 51, 53
Addr function, 204, 237,268
Allocating variables, 120
And operator, 52
Append procedure, 117, 200
Arc, 173
ArcTan, 139
Arithmetic functions, 139-141,
304

Array(s), 75-77, 254, 281, 285
character, 77
component, 75
constants, 90-91
internal data formats, 219,
224

multidimensional, 76
of characters, 112
predefined, 77
subscript optimization, 269

ASCII table, 339
Assign procedure, 94, 98, 101,
106,117

Assignment operator, 37, 55
Auto indentation, 31, 35
AUX:, 104,220,241,251,273,
280

AuxlnPtr, 210, 241
AuxOut, 209
AuxOutPtr, 210, 241

INDEX

B
B compiler directive, 106, 148,
314

Back routine, 178
Backslash, 188
BAKfile, 17
Base type, 85
BCD, 293-299
BOOS, 240, 271
BIOS, 272
Block commands, 28-30
BlockRead procedure, 114
Blocks, 127
BlockWrite procedure, 114
Boolean scalar type, 42
Brackets, 37
Buffer, 220, 235, 250-251,
280-281

Byte scalar type, 41

c
C command, 17,190,227,260
C compiler directive, 148, 314
Case statement, 58-59
Chain, 193-194, 231-233
Char scalar type, 42
Character arrays, 77
Characters

blinking, 161
color of, 161
of string variable, 73

ChOir procedure, 189
Chr function, 142
Circle routine, 173
Clear screen, in graphics mode,
163

Clearscreen routine, 179

377

Clipped graphics, 163, 183
Close procedure, 96, 98
ClrScr procedure, 133
Code segment size, 191, 228
Color modes, 161-162
ColorTable routine, 172
Column indicator, editor, 20
Command keys, editor, 186
Command line length byte, 265
Command line parameters, 192,
229,262

Comments, 37, 46
Compilation, 288-289
Compile command, 17
Compiler directives, 7, 46,
313-318

Compiler error messages,
321-324

Compiler options, 18, 190, 227,
259-260

Compound statement, 57
COM1: logical device, 104
Concat,71
Concatenation, 68
Concurrent CP/M, 229
Conditional statement, 57
Control characters, 22, 24-29,
34, 45, 341-343

Conversion type, 65
CON: logical device, 104
Coordinates, turtle, 177
Copy function, 71
Cos, 139
CP/M

command line, 232
FCB, 250, 280
function calls, 271
primer, 355-356

CP/M-80, 259-292, 318
CrtExit, 134
Crtlnit, 133
Cseg, 205,237
Cursor movement, 22-25, 34
Cursor position, 162

378

D
o command, 18, 191, 229
o compiler directive, 201,
316-317

Data conversion, 108
Data segment size, 191, 229
Data structures, 219-221 ,
249-252, 281-283

Data transfer between programs,
194,231,264

Data types, basic, 216-218,
246-249,278-281

Declaration part, 47-48
Declared scalar type, 41
DEL,109
Delay, 134
Delete commands, 27-28
Delete procedure, 69
Delimiters, 39
DelUne, 134
Digits, 37
Direct memory access, 205-206,
238,268

Directories, 187-188
Directory command, 18
Directory-related procedures,
189

Discriminated unions, 83
Disjunction, set, 87
Disk file, 220, 250, 282-283
Disk reset, 15
Disk write error, 15
Dispose procedure, 124-125
Distribution disk, 8
Div, 52
DOS command line, 265
DOS function calls, 208-209
Downto,60
Draw procedure, 171
Dseg, 205
Dynamic variables, 119, 319

E
E (Edit) command, 17

TURBO Pascal Reference Manual

Editor, Turbo, 19-35
block commands, 28-30
command keys, 186
compared to WordStar, 34-35
cursor movement commands,
22-26

exiting, 22, 30
insert/delete commands,
26-28

installation, 350
miscellaneous commands,
30-34

status line, 19-20
Element, of set, 85
Else statement, 57-58
Empty set, 86
Empty statement, 56
End address, 261, 292
EOF function, 97, 107, 115
Eoln, 102, 109
Erase procedure, 96, 104, 114,
ERR:, 200
ERRORLEVEL test, 135
Error messages

compiler, 321-324
1/0,327-328
run-time, 325
translating, 329-332

Esc, 109
EXecute command, 259
Execute procedure, 193-194,
231-233,263-265

Execution
error messages, 325
in memory, 290
of a program file, 291-292

Exist function, 361
Exit, 135
Exiting the editor, 22, 30
Exp, 140
Exponents, 278
Expressions, 51-54
Extended file size, 199
Extended graphics, 172-176, 308
External, 210-211, 242, 255, 274,
83,285

External subroutines, 221-222,
252-253,283

INDEX

F
F command, 192, 230, 262
F compiler directive, 198-199,
317

False, standard identifier, 42
Field constants, 91-92
Field list, 79
Fields, 79
File{s)

extended file size, 199
identifier, 93
handle, 220
handling routines, 304-305
names, 15, 20, 198, 235, 267
number open, 198-199
of byte, 199
parameters, 128
path,188
pointer, 93
standard functions, 97-98
text, 101, 235, 267
types, 93-117
untyped, 114

FilePos function, 97, 102, 235
FileSize function, 98, 102, 235
Files on distribution disk, 8-9,
293,301

FiIIChar procedure, 136
FiliPattern procedure, 175
FiIIScreen procedure, 175
FiIIShape procedure, 175
Find and replace command,
32-33

Find command, 31
Flags byte, 251, 281
Flush procedure, 96, 102, 235,
267

For statement, 60
Form function, 294
Formatted writing, 298
Forward, reserved word, 145
Forward declarations, 156
Forward references, 145
Forwd procedure, 179
Frac function, 140
Free dynamic memory, 192, 229
Free union, 83
Freemem procedure, 125

379

Function
calls, 208-209, 240
declarations, 137
designators, 54
results, 224, 255, 285

Functions
CP/M-80 implementation-
specific
Bdos, 271
Bios, 272
Bioshl, 272

Graphics
GetOotColor, 174
Heading, 179
Turtle There, 183
Xcor,184
Ycor,184

IBM PC implementation
specific
WhereX, 162
WhereY, 162

MS-DOS specific
FilePos, 97, 115,235,267
FileSize, 98, 115, 235, 267
SeekEof, 102
SeekEoln, 102

standard
Abs, 139

380

Addr, 204, 237, 268
Arctan, 139
Concat,71
Copy, 71
Cos, 139
Eof, 97,115
Eoln, 102
Exp,140
Frac, 140
Hi,143
Int, 140
loresult, 116
Keypressed, 143
Length,72
Ln,140
LO,143
Maxavail, 126
Memavail, 121, 207, 239,
270

Odd,141

G

Ord,142,207,240,270
Pos, 72
Pred,141
Ptr, 207, 240, 270
Random, 143
Round,142
Sin, 140
Sizeof,144
Sqr, 141
Sqrt, 141
Succ, 141
Swap, 144
Trunc, 142
Upcase, 145

16-bit specific
Cseg,205,237
Oseg, 205, 238
Ofs, 205, 237
Seg,205,237
SSeg, 205, 238

G compiler directive, 202, 316
Get procedure, 319
GetOir procedure, 189
GetMem procedure, 125
GetPic procedure, 173
Global variables, 216, 246
Goto statement, 56, 319
GotoXY, 134
GraphBackground procedure,
166

GraphColorMode procedure, 163
Graphics, 163-184

basic, 171
extended, 172-176
functions, see Functions
modes, 163-167
procedures, see Procedures
Turtlegraphics, 177-184
windows, 168-170

GraphMode, 164
GraphWindow procedure, 169

H
H command, 190, 227-228, 260

TURBO Pascal Reference Manual

Halt procedure, 135
Heading function, 179
Heap, 121,225,229,255,286,
305

Heap control procedures and
functions, 305

HeapPtr, 225, 226, 255, 257,
286,290

Hexadecimal numbers, 43
Hi function, 143
HideTurtle procedure, 179
Highlighting screen, 14
HiRes procedure, 164
Home position, 134
Home procedure, 179

I
I compiler directive
include file, 16,147-148,314

IBM PC
functions, 308 see also
Functions

installation, 12, 345
procedures, 308, see also
Procedures

Identifiers, standard, 38, 43
If statement, 57-58
Include compiler directives, 16
Include files, 147-148
Indent, 20, 31
Initialized variable, 89
In-line machine code, 211-213,
243-244, 274-276

Inline procedure, 134
Insert commands, 26-27
Insert indicator in editor, 20
Insert procedure, 69
Installation, 12-13

of editing commands, 13,
350-353

of terminal, 345-350
Int function, 140
Integer overflow, 41
Integer scalar type, 41
Internal data formats, 216-225,
246-256, 278-287

Intersection, of sets, 85

INDEX

Intr procedure, 215, 245
10Result, 116
1/0,108

checking, 116-117
drivers, 209-21 0
error handling, 116-117, 263,
314

error messages, 327-328
mode selection, 106-108
redirection, 202-203

K
K compiler directive, 225, 256,
318

Kbd,106
KBD: logical device, 104
Keyboard return codes,
341-343

KeyPressed function, 143

L
L command, 15
Label declaration part, 47-48
Labels, 56
Language elements,
user-defined,43-46

Large programs, 147-148
Ln function, 140
Lo function, 143
Local variables

as var parameters, 319
in internal formats, 216

Logged drive selection, 15
Logical devices, 104, 200
Log-on message, 10
LongFilePos function, 193, 199
LongFileSize function, 193, 199
LongSeek procedure, 193, 199
LowVideo procedure, 135
Lst,106
LST: logical device, 104
LstOut, 209
LstOutPtr, 210,241

M
M command, 16,190,227,260

381

Main file selection, 16
Main menu, 11
Mantissa, 278
Mark, 120-124
MaxAvail function, 126
Mem, 77
Mem Array, 204, 238, 268
Members, of sets, 85
Memory access, 206
Memory management, 226,
256-257, 288-292

Memory / com file / cHn file, 227
Memory / cmd file / cHn file, 227
MemW array, 206
Menu, 11, 14-18
MkDir procedure, 189
Mod,52
Move procedure, 136
MsDos procedure, 208
Multidimensional arrays, 76, 91
Multiplying operator, 51

N
Nested overlays, 154
Nesting, of with statements, 81
New procedure, 120
Nil pointer value, 120
NormVideo procedure, 135
NoSound, 185
Not operator, 51-52
NoWrap procedure, 180
Numbers, 43-44
Numeric fields, 294-296
Numeric input, 109

o
o command, 18, 190-191,
227 -228, 259

Odd function, 141
Ofs function, 205
Operators, 51,311-312
Options, compiler, 18, 190-193,
227-230, 259-262

382

Or Operator, 53
Ord func, 142
Ordinal values, 142
OUT: logical device, 200
Output, 106
Overflow, 41-42
Overlays, 149-157
Overwrite mode, 27
OvrDrive procedure, 233, 265
OvrPath procedure, 196-197

p
P command, 192, 229, 262
P compiler directive, 202, 316
Packed variables, 320
Page procedure, 319
Palette procedure, 165
Paragraphs, 191
ParamCount function, 144
Parameter passing

by reference, 128
by value, 127

Parameters, 127-131,221-224,
252-254, 283-285

ParamStr function, 144
Path, director, 188
Pattern procedure, 176
Pendown procedure, 180
Penup procedure, 180
Plot, 171
Pointer types, 92, 119-126
Pointer values, 207, 239
Port, 77
Port access, 206, 239, 269
Port array, 193, 206, 238
Pos function, 72
Pred function, 141
Predefined arrays, 77, 206, 238,
268

Predefined identifiers, 1 93
Printing, 367-370
Procedure and function
declaration part, 47, 50

Procedure statement, 56, 127

TURBO Pascal Reference Manual

Procedure(s), 127-136
CP 1M-specific

OvrDrive, 233, 265
CP IM-80 implementation
specific
Bdos, 271
Bios, 272

Graphics
Arc, 173
Back,178
Circle, 173
ClearScreen, 179
ColorTable, 172
Draw, 171
FiIIPattern, 175
FiIIScreen, 175
FiIIShape, 175
Forwd,179
GetPic, 173
GraphBackground, 166
GraphColorMode, 163
GraphMode, 164
GraphWindow, 169
HideTurtle, 179
HiRes, 164
HiResColor, 164
Home, 179
NoWrap, 180
Palette, 165
Pendown, 180
Plot, 171
PutPic, 174
SetHeading, 180
SetPenColor, 181
SetPosition, 181
ShowTurtle, 181
Turnleft, 181
Turnright, 181
Turtlewindow, 182
Wrap, 184

IBM PC implementation-
specific
NoSound, 185
Pattern, 176
Sound,185
TextBackground, 162
TextColor, 161
TextMode, 160
Window, 168

INDEX

MS-DOS
Append,201
Erase,96
Flush, 96, 200-201
OvrPath, 196
Rename, 96
Seek,115,235,267
Truncate, 200

standard
Assign, 94
Chain, 193, 231, 263
Close, 96
ClrEol,133
ClrScr, 133
CrtExit, 134
Crtlnit, 133
Delay, 134
Delete, 69
Del Line, 134
Dispose, 124
Execute, 193, 231, 263
Exit, 135
FiIIChar, 136
FreeMem, 125
GetMem, 125
GotoXY, 134
Halt, 135
Insert, 69
InsLine, 134
LowVideo, 135
Move, 136
New, 120
NormVideo, 135
Randomize, 135
Read,95,108
Readln, 101
Reset, 94
Rewrite, 94
Seek,95
Str, 70
Val, 70
Write, 95
Write In, 101

16-bit
Intr, 215, 245

Procedural parameters, 320
Program, Turbo, contents of,
47-50

Program lines, 39

383

Ptr, 207, 240, 270
Put procedure, 319
PutPic, 174

Q
Q (Quit) command, 18

R
R (Run) command, 17
R compiler directive, 65, 73, 76,
315

Random access files, 221,
251-252, 282

Random function, 143
Randomize procedure, 135
Range checking, 65
ReadLn, 101, 110-111
Read procedure, 95, 108-109
Real scalar type, 42, 217, 223,
247,254

Record
constant, 90-92
definition, 79-80
length, 220, 250, 280
type, 79-83

Records, 219, 224, 250, 254,
282,285

RecurPtr, 286
Recursion, 156, 286
Relational operators, 51, 53
Relative complement, of sets, 85
Release procedure, 120-121,
124,225,255

Rename procedure, 96 , 124,
225,255

Repeat statement, 61
Repetitive statements, 59
Reset procedure, 95
Restore line command, 31
Retype facility, 65
Rewrite, 94
RmDir procedure, 189
Root directory, 188
Root program, 191, 228
Round function, 142
Run (R) command, 17

384

Run-time

s

error messages, 325
errors, 156-157
range checking, 65

S (Save) command, 17, 261
Scalar functions, 141, 306
Scalar types, 41-42, 63-64
Scalars, 216, 223, 247,254,278,
283

Scope
of identifiers, 49, 131
of labels, 56

Screen
intensity, 161
modes, 160-167
procedures and functions, 306

Sector buffer, 250-251, 280-281
SeekEof, 102
SeekEoln, 102
Seek procedure, 95, 115, 235,
267

Seg, 204,237
Set(s), 218, 224, 241, 248, 251,
254,273,279,280,284
assignments, 88
constants, 90, 92
constructors, 86
expressions, 86
types, 85-88,218,224

SetHeading procedure, 180
SetPenColor procedure, 181
SetPos:tirm, 181
Shared data, 194, 231, 264
Shl operator, 52
ShowTurtle procedure, 181
Shr operator, 52
Simple statements, 55
Sin function, 140
Sine, of Num, 140
SizeOf function, 144
Sound, 307-308
Special symbols, 37
Square root, 141
Sqr, 141
Sqrt, 141

TURBO Pascal Reference Manual

Stack,225, 255-256,286-287
StackPtr, 263, 286, 290
Standard files, 1 05-1 07
Standard identifiers, 38, 193,
230,263

Standard Pascal, compared to
Turbo Pascal, 319-320

Standard scalar type, 41
Start address, 261
Statement part, 50, 55
Statement separator, 55
Statements, 55-61
Static variable, 119
Status line, 19-20
Str, 70
String

fields, 297
input, 109
length,67

Structured statements, 57
Structured typed constants, 90
Subprograms, 127

consecutive, 152
data area, 156

Subrange type, 64
Succ func, 141
Successor, of Num, 141
Swap func, 144
Syntax, Turbo, 333-337

T
Tabulator, 35
Tag field, 82
Terminal installation, 12, 345
Text

files, 101, 160, 200, 221, 235,
252,267,283

input and output, 108
mode, 160
window, 168

TextBackground, 162
TextColor procedure, 161
TextMode procedure, 160
TINST,12
TPA,261
Transfer function, 142, 307

INDEX

Translation of error messages,
329

Tree-structured directories, 187
TRM: logical device, 104
True, 42
Trunc function, 142
Truncate procedure, 200
Turn Left procedure, 181
Turn Right procedure, 181
TurtleDelay procedure, 183
Turtlegraphics, 177-184,
308-309

TurtleThere function, 183
Turtle window, 177-178
Turtlewindow procedure,
182-183

Type checking, 129
Type conversion, 65
Type definition part, 49
Typed constants, 89-92, 216

u
U compiler directive, 315
Unary minus, 51
Union, 85

discriminated, 83
free, 83

Unstructured typed constants,
89-90

Untyped files, 114
Untyped variable parameters,
130

Upcase, 145
User-written I/O drivers, 241,
272-273

Usr, 106
USR: logical device, 104
UsrlnPtr, 210, 241
UsrOutPtr, 210,241
Usrln, 209
UsrOut, 209

v
V compiler directive, 129, 315
Val procedure, 70
Value, of pointers, 240

385

Value parameters, 127, 223-224,
253-254, 283-285

Variable declarations, 49-50
Variable parameter, 129-130,
223,253

Variant part, 83
Variant records, 82
Variables, 49, 119

absolute, 203, 236, 267

w
W compiler directive, 269, 318
W command, 15
WhereX, 162
WhereY, 162
While statement, 61
Windows, 168, 307-308
With statement, 81, 206, 239, 269
WordStar compatibility, 13,
350-353

Work file selection, 15-16
Wrap procedure, 184
Write parameters, 112
Write procedure, 95, 111, 139
WriteLn procedure, 113
Writing 8087 reals, 302
Writing BCD reals, 297-298

x
X command, 259
X compiler directive, 269, 318
X-coordinate, 163
Xcor, 184

y
Y -coordinate, 163
Ycor, 184

16-bit compiler directives, 317
8087, 301-302

386 TURBO Pascal Reference Manual

Borland
Software

INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Ava.1la.b1e at better deolers nationwide.
To order by credit card, call (800) 255-8008; CA (800) 742-1133;
CANADA (800) 237-1136.

Whether you're running WordStar,® Lotus,® dBASE,®
or any other program, SideKick puts all these desktop

accessories at your fingertips-Instantly!
A full-screen WordStar-like Editor to jot
down notes and edit files up to 25 pages
long.

A Phone Directory for names, addresses,
and telephone numbers. Finding a name or a
number is a snap.

An Autodialer for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3.
From bottom to top: SideKick's "Menu Window," ASCII
Table, Notepad, Calculator, Appointment Calendar, Monthly
Calendar, and Phone Dialer.

A Monthly Calendar from 1901 through
2099.

Appointment Calendar to remind you
of important meetings and appointments.

A full-featured Calculator ideal for
business use. It also performs decimal
to hexadecimal to binary conversions.

An ASCII Table for easy reference.

Here's SideKick running over Lotus 1-2-3. In the
SideKick Notepad you'll notice data that's been imported
directly from the Lotus screen. In the upper right you can
see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar's
block copy commands, SideKick can transport all
or any part of the display screen (even an area
overlaid by the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SideKick deserves a place in every PC."
-Gary Ray, PC WEEK

"SideKick is by far the best we've seen. It is also
the least expensive."

-Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SideKick. You'll soon become
dependent on it." -Jerry Pournelle, BYTE

Suggested Retail Price: $84.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PClr and true compatibles. The IBM PClr will only accept the SideKick not copy
protected versions. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM. One disk drive. A Hayes-compatible modem, IBM PClr Internal
modem, or AT&T Modem 4000 Is required for the autodialer function.

SideKick is a registered trademark of Borl<r1d Internationat. tnc. dBASE is a registered trademark 01
3

70 BORLAND AShton-Tate. IBM. XT, AT, and PCjr are registered trademarks 01 International Business Machines Corp.
I AT&T is a registered trademark of Americ<r1 Telephone & Telegraph Company. Lotus and 1-2-3 are
~ I N T ERN A T ION A L registered trademarks of Lotus Developmert Corp. WordStar is a registered trademark 01 MicroPro

International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc. BOR 0060B

.11I,rll.fll® THE DEBITOP
IJ.J I;n.IIJ : ORWIER Release 2.0

Macintosh T

•

The most complete and comprehensive collection 01
desk accessories available lor your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerful high-performance tools to SideKick-Outlook"': The Outliner
and MacPlan"': The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Outlook: The Outliner
• It's the desk accessory with more power than a stand-alone outliner
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics

into your outlines
a Works hand-in-hand with MacPlan
a Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
• Integrates spreadsheets and graphs
• Does both formulas and straight numbers
• Graph types include bar charts, stacked bar charts, pie charts and line graphs
a Includes 12 example templates free!
• Pastes graphics and data right into Outlook creating professional memos and reports, complete

with headers and footers.

SideKick: The Desktop Organizer,
Release 2.0 now includes

~ Outlook: The Outliner
~ MacPlan: The Spreadsheet
~ Mini word processor
~ Calendar
~ Phone Log
~ Analog clock
~ Alarm system
~ Calculator
~ Report generator
~ Telecommunications (new version now

supports XModem file transfer protocol)

~~~~~~~~~~l::'I.':,.) ';;',',,, 

• 1367~ 5.11'1-' 

D 1~94'£ $.iluB 

Di 2'361~ Tol~llWvfr\l'" 

[J "" 
• 01 Expf!"Isti 

(] Q31'1iLlbor 

[]I "'f.,6~ N~""\I" 
~ 621'1i Ovtrh.d 

o ttlB'! Tol.IE"t""" 

D "" a 18.4311 fI,tProhi 

',.!J' ., , , .~,4 41 .', .... " ... , ..... , .. " 
,'111 "41.4 

I'" I'" " • ., .. ~ 
,." .. ," '.'").'.1 ,,,'', .. ,.,,"(," 

MacPlan does both spreadsheets and business 
graphs. Paste them into your Out/oak files and 

generate professional reports, 

Suggested Retail Price: $99.95 (not copy protected) 
Minimum system requirements: Macintosh 512K or Macintosh Plus with one disk drive. 

==~!~-=-~ BORLAND V~ INTERNATIONAL 

SideKick 15 a reQlstered trademark and Outlook and MacPlan are trademarks 01 Borland 
International. Inc. MaCintosh is a trademark 01 Mcintosh Laboratory. Inc. licensed to Apple 
Compuler. Inc. Copyright 1987 Borland International [lOA 0264 



The Organizer For The Computer Age! 
Traveling SideKick is BinderWare;" both a binder you take with you when you travel 
and a software program-which includes a Report Generator-that generates and 

prints out all the information you'll need to take with you. 

Information like your phone list, your client list, 
your address book, your calendar, and your 
appointments. The appointment or calendar files 
you're already using in your SideKick~ can auto
matically be used by your Traveling SideKick. You 
don't waste time and effort reentering information 
that's already there. 

One keystroke prints out a form like your address 
book. No need to change printer paper; 

What's inside Traveling SideKick 

CALCULATOR 

you simply punch three holes, fold and clip 
the form into your Traveling SideKick binder, and 
you're on your way. Because Traveling SideKick is 
CAD (Computer-Age Designed), you don't fool 
around with low-tech tools like scissors, tape, or 
staples. And because Traveling SideKick is 
electronic, it works this year, next year, and all the 
"next years" after that. Old-fashioned daytime 
organizers are history in 365 days. 

AREA CODES AND 
TRAVEL 

I CHARTS 

THOSE 

What the software program and its 
Report Generator do for you before 
you go-and when you get back 

Before you go: 
• Prints out your calendar, 

appointments, addresses, phone 
directory, and whatever other 
information you need from your 
data files 

When you return: 
• Lets you quickly and easily enter all 

the new names you obtained while 
you were away into your 
SideKick data files 

It can also: 
IN ONE OF TWO [)U~INESS-CARD·SIZE STORAGE 
POCKETS 

• Sort your address book by contact, 
zip code or company name 

*Suggested Retail Price: $69.95 

TRAVELING SIOfKICK SOFTWARE 
GENERATES. UPDATES. AND PRINTS YOUR 
ADDRESS AND CAl[NDAR FILES • Print mailing labels 

• Print information selectively 
• Search files for existing addresses 

or calendar engagements 

Minimum system configuration: IBM PC, XT, AT, Portable, PC/r, 3270 and true compatibles. PC-DOS (MS-~OS) 2.0 or later. 
256K RAM mlmlmum. 

·Speclallntroductory offer 

~~:; BORLAND ~. INTERNATIONAL 

SideKick and Traveling SideKick are registered trademarks and BinderWare is a trademark 01 
Bortand tnternational, Inc. tBM, AT, XT, and PCjr are registered trademarks 01 International 
Business Machines Corp. MS-DOS is a registered trademark 01 Microsoft Corp. BOR 0083 



Increased Productivity lor Anyone 
Using IBM®PCs or Compatibles 

SuperKey turns 1,000 keystrokes into 1! 
Yes, Super Key can record lengthy keystroke sequences and play them back at the touch of 
a single key. Instantly. Like magic. 
Say, for example, you want to add a column of figures in 1-2-3.8 Without SuperKey, you'd 
have to type 5 keystrokes just to get started: @ sum ( . With SuperKey, you can turn 
those 5 keystrokes into 1. 

SuperKey keeps your confidential files-CONFIDENTIAL! 
Time after time you've experienced it: anyone can walk up to your PC and read your 
confidential files (tax returns, business plans, customer lists, personal letters, etc.). 
With SuperKey you can encrypt any file, even while running another program. As long as 
you keep the password secret, only YOU can decode your file correctly. Super Key also 
implements the U.S. government Data Encryption Standard (DES). 

SuperKey helps protect your capital investment 
SuperKey, at your convenience, will make your screen go blank after a predetermined time 
of screen/keyboard inactivity. You've paid hard-earned money for your PC. SuperKey will 
protect your monitor's precious phosphor and your investment. 

SuperKey protects your work from intruders while you take a break 
Now you can lock your keyboard at any time. Prevent anyone from changing hours of 
work. Type in your secret password and everything comes back to life-just as you left it. 

Suggested Retail Price: $69.95 (not copy protected) 

Minimum system configuration: IBM PC, Xl, AT, PClr, and true compatibles. PC·DOS (MS·DOS) 2.0 or greater. 128K RAM. 
One disk drive. 

~~BORLAND 
=~ -==- I N T ERN A T ION A L 

Super Key and SideKick are registered trademarks of Borland International, Inc. IBM, Xl, AI, 
and PCjr are registered trademarks of Intemational Business Machines Corp. 1·2·3 is a 
registered trademark of lotus Development Corp. MS-DOS is a registered tradcm.lIk of 
Microsof1 Corp. BOA 0062B 



If you use an IBM® PC, you need 

T U R B 0 

Lightning® 
Turbo Lightning teams up 
with the Random House~ 
Concise Dictionary to 
check your spelling as 
you typel 

Turbo Lightning, using the 
83,OOO-word Random House 
Dictionary, checks your spelling 
as you type. If you misspell a 
word, it alerts you with a beep. 
At the touch of a key, Turbo 
Lightning opens a window on 
top of your application pro
gram and suggests the correct 
spelling. Just press one key 
and the misspelled word is 
instantly replaced with the 
correct word. It's that easy! 

Turbo Lightning works 
hand-in-hand with the 
Random House Thesaurus 
to give you instant access 
to synonyms 

Turbo Lightning lets you choose 
just the right word from a list of 
alternates, so you don't say the 
same thing the same way every 
time. Once Turbo Lightning 
opens the Thesaurus window, 
you see a list of alternate 
words, organized by parts of 
speech. You just select the 
word you want, press ENTER 
and your new word will in
stantly replace the original 
word. Pure magic! 

/f you ever write a 
word, think a word, or 
say a word, you need 
Turbo Lightning 

The Turbo Lightning Dictionary 

The Turbo Lightning Thesaurus 

Turbo Lightning's 
intelligence /els you teact 
it new words. The more 
you use Turbo Lightning, 
the smarter it gets 

You can also teach your new 
Turbo Lightning your name, 
business associates' names, 
street names, addresses, 
correct capitalizations, and any 
specialized words you use 
frequently. Teach Turbo 
Lightning once, and it 
knows forever. 

Turbo Lightning 
is the engine that 
powers Bor/and's Turbo 
Lightning Library'" 

Turbo Lightning brings 
electronic power to the Random 
House Dictionary and Random 
House Thesaurus. They're at 
your fingertips-even while 
you're running other programs. 
Turbo Lightning will also 
"drive" soon-to-be-released 
encyclopedias, extended 
thesauruses, specialized 
dictionaries, and many other 
popular reference works. 
You get a head start with this 
first volume in the Turbo 
Lightning Library. 

Suggested Retail Price: $99.95 (not copy protected) 

And because Turbo Lightning is 
a Borland product, you know 
you can rely on our quality, our 
60-day money-back guarantee, 
and our eminently fair prices. 

Minimum system configuration: IBM PC, XT, AT, PCjr, and true compatibles with 2 floppy disk drives. PC·DOS (MS·DOS) 2.0 or greater. 
256K RAM. Hard disk recommended. 

IBM. Xl. AT. and PClr are registered trademarks of International BUSiness Machines Corp. Turbo 
Lightning is a reOlstered trademark and Turbo Lightning Library is a trademark of Borland 
International, Inc Random House is a registered trademark of Random House Inc. BOR 0070A 



Your Development Toolbox and Technical Reference Manual for Thrbo Lightninge 

l I G H T N I N G 

Lightning Word Wizard includes complete, commented Turbo 
Pascal® source code and all the technical information you'll 

need to understand and work with Turbo Lightning's "engine." 
More than 20 fully documented Turbo Pascal procedures 

reveal powerful Turbo Lightning engine calls. Harness the full power 
of the complete and authoritative Random House® Concise 

Word List and Random House Thesaurus. 

Turbo Lightning's "Reference 
Manual" 
Developers can use the versatile on-line 
examples to harness Turbo Lightning's 
power to do rapid word searches. Lightning 
Word Wizard is the forerunner of the data
base access systems that will incorporate 
and engineer the Turbo Lightning Librarf 
of electronic reference works. 

The ultimate collection of word 
games and crossword solvers! 
The excitement, challenge, competition, 
and education of four games and three 
solver utilities-puzzles, scrambles, spell
searches, synonym-seekings, hidden words, 
crossword solutions, and more. You and 
your friends (up to four people total) can 
set the difficulty level and contest the high
speed smarts of Lightning Word Wizard! 

Turbo Lightning-Critics' Choice 
"Lightning's good enough to make programmers and users cheer, executives of other 
software companies weep." Jim Seymour, PC Week 

"The real future of Lightning clearly lies not with the spelling checker and thesaurus currently 
included, but with other uses of its powerful look-up engine." Ted Silveira, Profiles 

"This newest product from Borland has it all." Don Roy, Computing Now! 

Minimum IYltem configuration: IBM PC, Xl, AT, PClr, Portable, and true compatlblel. 256K RAM minimum. PC·DOS (MS·DOS) 2.0 
or greater. Turbo Lightning software required. Optional-Turbo Pascal 3.0 or greater to edit and compile Turbo PalcallDurce code. 

Suggested Retail Price: $69.95 
(not copy protected) 

Turbo Pascal and TlIbo lIt1rtning are regis~red trademarks and Lightning Word Wizird and TLXbo Lightning library are trademarks 01 Borland International. Inc. Random 
House is a registered trademark 01 Random House, Inc. IBM, XT, AT. and PC, ire registered trademarks 01 International Business Machines Corp. MS· DOS is a 
registered trademark 01 Microsoft Corp. BOROO87 A 



I'~~I ~I ® liE IA1ABA'E 
'r"~ : .AIASE' 

The high-performance database manager 
that's so advanced it's easy to use! 

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists, 
customer files, or even your company's budgets-Reflex is the database manager for you! 

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends 
database management with business graphics. Because a picture is often worth a 1000 words, Reflex 
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see. 

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports. 
You can use database files created with Reflex or transferred from Lotus 1-2-3," dBASE,· PFS: File," 
and other applications. 

Reflex: the ctltlcs' choice 

" ... if you use a PC, you should know about Reflex ... may be the best bargain in software today." 
Jerry Pournelle, BYTE 

"Everyone agrees that Reflex is the best-looking database they've ever seen." 
Adam B. Green, InloWorld 

"The next generation of software has officially arrived." Peter Norton, PC Week 

Reflex: don't use your PC without it! 
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of 
Borland's award-winning Reflex. 

Suggested Retail Price $149.95 (not copy protected) 

Minimum system configuration: IBM PC, Xl, AT, and true compatibles. 384K RAM minimum. IBM Color Graphics Adapter, Hercules 
Monochrome Graphics CArd, or equivalent. PC-DOS (MS-DOS) 2.0 or greater. Hard disk and mouse optional. Lotus 1-2-3, dBASE, 
or PFS: File optional. 

~;rJ BORLAND ~ I N T ERN ,A T ION A L 

Rellex is a trademark of Borland/Analytica klc. Lotus 1·2·3 is a registered trademark of Lotus 
Development Corporation. dBASE is a registered trademark of Ashton·Tate. PFS: File is a 
regislered trademark of Software Publishing Corporal ion. IBM, XT, AT, and IBM Color Graphics 
Adapter are registered trademarks of Interretional Business Machines Corporation. Hercules 
Graphics Card is a trademark of Hercules Computer Technology. MS·DOS is a registered 
trademark of Microsoft Corp. BOR 00668 
Copyright 1986 Borland International 



REFLEX 
FOR THE MACTM 

The easy-to-use relational database that thinks like a spreadsheet. 
Reflex for the Mac lets you crunch numbers by entering formulas 

and link databases by drawing on-screen lines. 

5 free ready-to-use templates are Included on the examples disk: 

• A checkbook application. 
• A client billing application set up for 

a law office, but easily customized 
by any professional who bills time. 

• A parts explosion application that 
breaks down an object into its 
component parts for cost analysis. 

Reflex for the Mac accomplishes al/ of these tasks without programming-using 
spreadsheet-like formulas. Some other Reflex for the Mac features are: 

• Visual database design. 
• "What you see is what you get" report 

and form layout with pictures. 
• Automatic restructuring of database files when 

data types are changed, or fields 
are added and deleted. 

• Display formats which include General, Decimal, 
Scientific, Dollars, Percent. 

• Data types which include variable length text, 
number, integer, automatically incremented 
sequence number, date, time, and logical. 

• Up to 255. fields per record. 
• Up to 16 files simultaneously open. 
• Up to 16 Mac fonts and styles are selectable 

for individual fields and labels. 

r'''' ~'='I' ~:::::::~~f ~ 

compo ... nullOOI 

Compon.ntOfl.leg 

AMer opening the "Overview" window, you 
draw link lines between databases direclly 
onto your Macintosh screen. 

The link lines you draw e~I.lblish both visual 
and electronic relation~hips between your 
databases. 

You can have rrultiple windows open 
sirooltaneously to view all members 01 a 
linked set-which are interactive and truly 
relational. 

. Critic's Choice 
" ... a powerful relational database ... uses a visual approach to information management." Info World 

" ... gives you a lot of freedom in report design; you can even import graphics." A+ MalJazlne 
" ... bridges the gap between the pretty programs and the power programs." Stewart Alsop, PC Leller 

=wG BORLAND 
INTERNATIONAL 

Minimum 'yatem requirement.: 512K 

Suggested Retail Price: 
$99.95* 

·Introductory Offer Through 1/15/87 

Rellex lor the Mac is a trademark 01 BorlandlAnalylica, Inc. Macintosh is a trademar~ 01 Mcintosh laboratory, Inc. and is used with express permission 01 its owner. 
BOA 0149 



REFLEX 

Includes 22 "instant templates" covering a broad range 01 
business applications (listed below). Also shows you how to 

customize databases, graphs, crosstabs, and reports. It's an invaluable 
analytical tool and an important addition to another one 01 

our best sellers, Rellex: The Analyst 1.1. 

Fast-start tutorial examples: 
Learn Reflexe as you work with practical business applications. The Reflex Workshop Disk supplies 
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in eac 
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple 
steps to adapt the files to your own needs. 
22 practical business applications: 
Workshop's 22 "instant templates" give you a wide range of analytical tools: 

Administration • Tracking Manufacturing Quality Assurance 
• Scheduling Appointments • Analyzing Product Costs 
• Planning Conference Facilities Accounting and Financial Planning 
• Managing a Project • Tracking Petty Cash 
• Creating a Mailing System • Entering Purchase Orders 
• Managing Employment Applications • Organizing Outgoing Purchase Orders 
Sales and Marketing • Analyzing Accounts Receivable 
• Researching Store Check Inventory • Maintaining Letters of Credit 
• Tracking Sales Leads • Reporting Business Expenses 
• Summarizing Sales Trends • Managing Debits and Credits 
• Analyzing Trends • Examining Leased Inventory Trends 

• Tracking Fixed Assets 
Production and Operations • Planning Commercial Real Estate Investment 
• Summarizing Repair Turnaround 

Whether you're a newcomer learning Reflex basics or an experienced "power user" looking for tips, Reflex 
Workshop will help you quickly become an expert database analyst. 

Minimum syslem conl/aurallon: IBM PC, AT, Ind Xl, Ind true compillbill. PC·DOS (MS· DOS) 2.0 or grelter. 3841 RAM minimum. Requlras Renel: TIle 
Anllyst, Ind IBM Color Graphics Adlpter, Hercules Monochrome Graphics Clrd or lqulYlleni. 

Suggested Retail Price: $69.95 
(not copy protected) 

Reflex is a registered trademark and Reflex Workshop is a trademark 01 Borland/Analytica. Inc. IBM. AT, and XT are registered trademarks 01 International Business 
Machines Corp. Hercules is a traderM'k 01 Hercules Computer Technology. MS·DOS Is a registered traderM'k 01 Microsoh Corp. 

BOROO88A 



VERSION 3.0 with 8087 support and BCD reals 

Free MicroCa/c Spreadsheet With Commented Source Code! 
FEATURES: 
One-Step Compile: No hunting & fishing 
expeditions! Turbo finds the errors, takes you 
to them, lets you correct them, and instantly 
recompiles. You're off and running in 
record time. 

Built-in Interactive Editor: WordStar4!.like 
easy editing lets you debug quickly. 

Automatic Overlays: Fits big programs into 
small amounts of memory. 

THE CRITICS' CHOICE: 
"Language deal of the century ... Turbo Pascal: 
it introduces a new programming environment 
and runs like magic." 

-Jeff Duntemann, PC Magazine 

"Most Pascal compilers barely fit on a disk, but 
Turbo Pascal packs an editor, compiler, linker, 
and run-time library into just 39K bytes of 
random access memory." 

-Dave Garland, Popular Computing 

MicroCalc: A sample spreadsheet on your disk 
with ready-to-compile source code. 

"What I think the computer industry is headed 
for: well-documented, standard, plenty of 
good features, and a reasonable price." 

IBM8 PC Version: Supports Turtle Graphics, 
color, sound, full tree directories, window 
routines, input/output redirection, and 
much more. 

-Jerry Pournelle, BYTE 

LOOK AT TURBO NOW! 

5f More than 500,000 users worldwide. 

5f Turbo Pascal is the de facto industry 
standard. 

5f Turbo Pascal wins PC MAGAZINE'S 
award for technical excellence. 

5f Turbo Pascal named "Most 
Significant Product of the Year" by 
PC WEEK. 

5f Turbo PascaI3.0-the fastest Pascal 
development environment on the 
planet, period. 

Suggested Retail Price: $99.95; CPIM8_80 version without 8087 and BCD: $69.95 

Features for 16-bit Systems: 8087 math co-processor support for intensive calculations. 
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business application. 

Minimum system configuration: 128K RAM minimum. Includes 8087 & BCD features for 16-bit MS-DOS 2.0 or later and 
CP/M-86 1.1 or later. CP/M-80 version 2.2 or later 48K RAM minimum (8087 and BCD features not available). 8087 
version requires 8087 or 80287 co-processor. 

TlIbo Pm is a registered tradernirk of BortInd Intemational. Inc. CPIM is a registered .-ademilrl 
01 Digital Rcsea-ch Inc. IBM is a registered trCKlernirt of International Business Machines C<rp. MS
DOS is a registered tradernirk of Microsoft Cap. YbdStar is a registered tradernirk 01 MicroPro 
international. 

BOR0061A 



"'" PASCAL ~A'"r'BI 
The ultimate Pascal development environment 

Borland's new Turbo Pascal.for the Mac" is so incredibly fast that it can 
compile 1,420 lines of source code in the 7.1 seconds it took you to read this! 

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac 
to compile at least 60,000 more lines of source code! 

Turbo Pascal for the Mac does both Windows and "Units" 
The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units," 
which can be linked to any Turbo Pascale program. This "modular pathway" gives you "pieces" which can 
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the 
time it takes to develop large programs. 

Turbo Pascal for the Mac is so compatible with Lisa- that they should be living together 
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run 
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File 
System of the Macintosh." 

The 21-second Guide to Turbo Pascal for the Mac 
• Compilation speed of more than 12,000 lines 

per minute 
• "Unit" structure lets you create programs in 

modular form 
• Multiple editing windows-up to 8 at once 

Workshop Pascal (with minimal changes) 
• Compatibility with Hierarchical File System of 

your Mac 
• Ability to define default volume and folder names 

used in compiler directives 
• Compilation options include compiling to disk or 

memory, or compile and run 
• Search and change features in the editor speed up 

and simplify alteration of routines 
• No need to switch between programs to compile 

or run a program 
• Ability to use all available Macintosh memory 

without limit 
• Streamlined development and debugging • "Units" included to call all the routines provided by 
• Compatibility with Macintosh Programmer's Macintosh Toolbox 

Suggested Retail Price: $99.95 (not copy protected) 

~$OBORLAND ~ - INTERNATIONAL 

Minimum system configuration: 
256K. One 400K drive. 

Turbo Pascal,s a reglslered Ira demark and Turbo Pascal lor the Mac. SideKick lor the Mac. and Aellex lor the Mac 
are trademarks 01 Borland Inlernational. loc. MaClnlosh is a trademark ot Mclnto~h laboralories. Inc. and licensed to 
Apple Compuler Wllh liS express permission. lisa is a reglslered trademark 01 Apple Computer. Inc. Inside 
Macintosh IS a copyrrghl 01 Apple Computer. Inc 

BOA 0167 



VERSION 2.0 

Learn Pascal From The Folks Who Created 
The Turbo Pascal® Family 

Borland International proudly presents Turbo Tutor, the perfect complement 
to your Turbo Pascal compiler. Turbo Tutor is really for everyone-

even if you've never programmed before. 

And if you're already proficient, Turbo Tutor can sharpen up the fine points. 
The manual and program disk focus on the whole spectrum of Turbo 
Pascal programming techniques. 

• For the Novice: It gives you a concise history of Pascal, tells you how to write a 
simple program, and defines the basic programming terms you need to know. 

o Programmer's Guide: The heart of Turbo Pascal. The manual covers the fine points 
of every aspect of Turbo Pascal programming: program structure, data types, control 
structures, procedures and functions, scalar types, arrays, strings, pointers, sets, files, 
and records. 

• Advanced Concepts: If you're an expert, you'll love the sections detailing such topics as 
linked lists, trees, and graphs. You'll also find sample program examples for PC-DOS and 
Ms-oos.e 

10,000 lines of commented source code, demonstrations of 20 Turbo Pascal features, multiple
choice quizzes, an interactive on-line tutor, and more! 

Turbo Tutor may be the only reference work about Pascal and programming you'll ever need! 

Suggested Retail Price: $39.95 (not copy protected) 

Minimum system configuration: Turbo Pascal 3.0. PC-DOS (MS-DOS) 2.0 or later. 192K RAM minimum (CP/M-80 
version 2.2 or later: 64K RAM minimum). 



2VRBO PASCAl. 

DATABASEltxltsox@ 
Is The Perfect Complement To Turbo Pascalt) 

It contains a complete library of Pascal procedures that 
allows you to sort and search your data and build powerful database 

applications. It's another set of tools from Borland that will give 
even the beginning programmer the expert's edge. 

THE TOOLS YOU NEED! 
TURBO ACCESS Using B+ trees: The best way to organize and search your data. Makes it 
possible to access records in a file using key words instead of numbers. Now available with 
complete source code on disk, ready to be included in your programs. 

TURBO SORT: The fastest way to sort data using the QUICKSORT algorithm-the method 
preferred by knowledgeable professionals. Includes source code. 

GINST (General Installation Program): Gets your programs up and running on other 
terminals. This feature alone will save hours of work and research. Adds tremendous value 
to all your programs. 

GET STARTED RIGHT AWAY.-FREE DATABASE! 
Included on every Toolbox diskette is the source code to a working database which 
demonstrates the power and simplicity of our Turbo Access search system. Modify it to suit 
your individual needs or just compile it and run. 

THE CRITICS' CHOICE! 
liThe tools include a B+ tree search and a sorting system. I've seen stuff like this, but not as 
well thought out, sell for hundreds of dollars." -Jerry Pournell, BYTE MAGAZINE 

liThe Turbo Database Toolbox is solid enough and useful enough to come recommended." 
-Jeff Duntemann, PC TECH JOURNAL 

Suggested Retail Price: $69.95 (not copy protected) 

Minimum system configuration: 128K RAM and one disk drive (CP/M-80: 48K). 16-blt systems: Turbo 
Pascal 2.0 or greater for MS-DOS or PC-DOS 2.0 or greater. Turbo Pascal 2.1 or greater for CP/M-86 
1.0 or greater. 8-blt systems: Turbo Pascal 2.0 or greater for CP/M-SO 2.2 or greater. 

TlIbo Pascal and TlIbo Database Toolbox are registered trademarks 01 Borland International 
Inc. CP/M Is a registered tradem 01 Diglal Research. Inc. MS-DOS Is a registered 
trademart 01 Microsoft Corp. BOA 00638 



TURBO PASCAL 

GRAPHIXTootSOX® 
A Library of Graphics Routines for Use with Turbo Pasca/® 

High-resolution graphics for your IBM ~ PC, AT, ® XT, ® PCjr®, true PC compatibles, and the Heath 
Zenith Z-100:" Comes complete with graphics window management. 

Even if you're new to Turbo Pascal programming, the Turbo Pascal Graphix Toolbox will get you started 
right away. It's a collection of tools that will get you right into the fascinating world of high-resolution 
business graphics, including graphics window management. You get immediate, satisfying results. And 
we keep Royalty out of American business because you don't pay any-even if you distribute your own 
compiled programs that include all or part of the Turbo Pascal Graphix Toolbox procedures. 

What you get includes: 

• Complete commented source code on disk. 
• Tools for drawing simple graphics. 
• Tools for drawing complex graphics, including 

curves with optional smoothing. 
• Routines that let you store and restore graphic 

images to and from disk. 
• Tools allowing you to send screen images to 

Epson®-compatible printers. 

• Full graphics window management. 
• Two different font styles for graphic labeling. 
• Choice of line-drawing styles. 
• Routines that will let you quickly plot functions 

and model experimental data. 
• And much, much more ... 

"While most people only talk about low-cost personal computer software, Borland has been doing 
something about it. And Borland provides good technical support as part of the price." 

John Markov & Paul Freiberger, syndicated columnists. 

If you ever plan to create Turbo Pascal programs that make use of business graphics or scientific 
graphics, you need the Turbo Pascal Graphix Toolbox. 

Suggested Retail Price: $69.95 (not copy protected) 

Minimum system configuration: IBM PC, Xl, AT, PCjr, true compatibles and the Heath Zenith Z-100. Turbo Pascal 3.0 or later. 192K 
RAM minimum. Two disk drives and an IBM Color Graphics Adapter (eGA), IBM Enhanced Graphics Adapter (EGA), Hercules Graphics 
Card or compatible. 

Turbo Pascal and Turbo Graphix Toolbox are registered trademarks 01 Borland International, 
Ilic. 10M. XT, AT, and PCjr are registered trademarks ollnternationat BUSiness Machines 
Corporal Ion. Hercules Graphics Card is a trademark 01 Hercules Computer Technology. Heath 
Zenith Z·100 is a trademark 01 Zenith Data Systems. Epson is a registered trademark 01 
[pson Corp. 

BOA 0068B 



2VRBO PASCAl. 

EDllOR2tntBOX'M 
It's All You Need To Build Your Own Text Editor 

Or Word Processor 
Build your own lightning-fast editor and incor
porate it into your Turbo Pasca/~ programs. 
Turbo Editor Toolbox gives you easy-to-install 
modules. Now you can integrate a fast and powerful 
editor into your own programs. You get the source 
code, the manual, and the know-how. 

Create your own word processor. We provide all 
the editing routines. You plug in the features you want. 
You could build a WordStar~ -like editor with pull-down 
menus like Microsoft's~ Word, and make it work as fast 
as WordPerfect.~ 

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for 
two sample editors: 

Simple Editor A complete editor ready to include in your programs. With windows, block commands, and 
memory-mapped screen routines. 

MicroStar A full-blown text editor with a complete pull-down menu user interface, plus a lot more. 
Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs. 

The Turbo Editor Toolbox gives you all the 
standard features you would expect to find 
in any word processor: 

• Wordwrap 
• UN-delete last line 
• Auto-indent 
• Find and Find/Replace with options 
• Set left and right margin 
• Block mark, move, and copy 
• Tab, insert and overstrike modes, 

centering, etc. MicroStar's pull-down menus. 

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match. 
Just to name a few: 

@' RAM-based editor. You can edit very large 
files and yet editing is lightning fast. 

@' Memory-mapped screen routines. In
stant paging, scrolling, and text display. 

@' Keyboard installation. Change control 

@' Multiple windows. See and edit up to eight 
documents-or up to eight parts of the same 
document-all at the same time. 

@' Multitasking. Automatically save your 

keys from WordStar -like commands to any that 
you prefer. 

text. Plug in a digital clock, an appointment 
alarm-see how it's done with MicroStar's 
"background" printing. 

Best of all, source code is included for everything in the Editor Toolbox. 

Suggested Retail Price: $69.95 (not copy protected) 

Minimum system configuration: IBM PC, XT, AT, 3270, PCjr, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 192K RAM. You must be 
using Turbo Pascal 3.0 for IBM and compatibles. 

= ,~O BORLAND 
INTERNATIONAL 

Turbo Pascal IS a registered trademark and Turbo Editor TOOlbox IS a trademark of Borland 
International. Inc WordStar is a registered trademark 01 MlcroPro International Corp Word and 
MS-DOS are registered trademarks 01 Microsoft Corp WordPerfect is a trademark of Satellite 
Software International IBM. XT. AT. and per are registered trademarks of International Business 
Machines Corp BOR 0067A 



Secrets And Strategies 01 The Masters Are 
Revealed For The First Time 

® 

Explore the world of state-of-the-art computer games with Turbo GameWorks. Using 
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create 
your own computer games using Turbo Pascal.1t Or, for instant excitement, play the three 

great computer games we've Included on disk-compiled and ready to run. 

TURBO CHESS 

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your way to 
becoming a master chess player. Explore the complete Turbo Pascal source code and discover the secrets of 
Turbo Chess. 

"What impressed me the most was the fact that with this program you can become a computer chess analyst. 
You can add new variations to the program at any time and make the program play stronger and stronger chess. 
There's no limit to the fun and enjoyment of playing Turbo GameWorks Chess, and most important of all, with this 
chess program there's no limit to how it can help you improve your game." 

-George Koltanowskl, Dean of American Chess, former President of 
the United Chess Federation, and syndicated chess columnist. 

TURBO BRIDGE 

Now play the world's most popular card game-bridge. Play one-on-one with your computer or against up to 
three other opponents. With Turbo Pascal source code, you can even program your own bidding or scoring 
conventions. 

"There has never been a bridge program written which plays at the expert level, and the ambitious user will 
enjoy tackling that challenge, with the format already structured in the program. And for the inexperienced player, 
the bridge program provides an easy-to-follow format that allows the user to start right out playing. The user can 
'play bridge' against real competition without having to gather three other people." 

-Kit Woolsey, writer of several articles and books on bridge, 
and twice champion of the Blue Ribbon Pairs. 

TURBO GO-MOKU 

Prepare for battle when you challenge your computer to a game of Go-Moku-the exciting strategy game also 
known as Pente.- In this battle of wits, you and the computer take turns placing X's and D's on a grid of 19X19 
squares until five pieces are lined up in a row. Vary the game if you like, using the source code available on your 
disk. 

Suggested Retail Price: $69.95 (not copy protected) 

Minimum system configuration: IBM PC, Xl, AT, Portable, 3270, PClr, and true compatibles. PC·DOS (MS·DOS) 2.0 or lator. 192K 
RAM minimum. To edit and compUe the Turbo Pascal source codo, you must be using Turbo Pascal 3.0 for IBM PC. and 
compatibles. 

~ 0 BORIiiI a IiUiIR Turbo PmJI Jnd Turbo GameWorks are re~stered trademarks of Borland Internahonai. Inc. 
....... Penle is a reglslered trademark of Parker Brothers. IBM. XT. AT. and PCjr are registered $ I N T ERN A T ION A L trademarks 01 International Business Machires Corporation. MS-DOS is a registered trademark 

of MlcrosoM Corporation. 

BOR 00656 



TURBO PASCAL 

IIUIEBICAlIE1HIIIIS 11111lllllTM 
New from Borland's Scientific & Engineering Division! 

A complete collection 01 Turbo Pascaf routines and programs 
New from Borland's Scientific & Engineering Division, Turbo Pascal Numerical Methods Toolbox 
implements the latest high-level mathematical methods to solve common scientific and engineering 
problems. Fast. 

So every time you need to calculate an integral, work with Fourier Transforms or incorporate any of the 
classical numerical analysis tools into your programs, you don't have to reinvent the wheel. Because 
the Numerical Methods Toolbox is a complete collection of Turbo Pascal routines and programs that 
gives you applied state-of-the-art math tools. It also includes two graphics demo programs, Least 
Squares Fit and Fast Fourier Transforms, to give you the picture along with the numbers. 

The Numerical Methods Toolbox is a must for you if you're involved with any type of scientific or 
engineering computing. Because it comes with complete source code, you have total control of 
your application. 

What Numerical Methods Toolbox will do lor you now: 

• Find solutions to equations 
• Interpolations 
• Calculus: numerical derivatives and 

integrals 
• Fourier transforms 

• Matrix operations: inversions, determinants 
and eigenvalues 

• Differential equations 
• Least squares approximations 

5 free ways to look at "Least Squares Fit"! 

As well as a free demo "Fast Fourier Transforms," you also get "Least Squares Fit" in 5 
different forms-which gives you 5 different methods of fitting curves to a collection of data points. 
You instantly get the picture! The 5 different forms are: 

1. Power 4. 5-term Fourier 
2. Exponential 5. 5-term 
3. Logarithm Polynomial 

They're all ready to compile and run "as is." To modify or add graphics to your own programs, 
you simply add Turbo Graphix Toolboxfll to your software library. Our Numerical Methods Toolbox is 
designed to work hand-in-hand with our Turbo Graphix Toolbox to make professional graphics in 
your own programs an instant part of the picture! 

Suggested retail price: $99.95 

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 256K. Turbo Pascal 2.0 or later. 
The graphics modules require a graphics monitor with an IBM CGA, IBM EGA, or Hercules compatible adapter card, and require the Turbo 
Graphix Toolbox. MS-DOS generic version will not support Turbo Graphix Toolbox routines. An 8087 or 80287 numeric co-processor is 
not required, but recommended for optimal performance. 

~:'BORLAND ~ INTERNATIONAL 

Turbo Pascal Numerical Melhods Toolbox is a Irademark and Turbo Pascal and Turbo Graphix 
Toolbox are registered trademarks 01 Borla'ld Inlernational, Inc. IBM, XT. and AT are 
registered trademarks 01 Internationat Busiress Machines Corp. MS-DOS is a registered 
trademark 01 Microsoft Corp. Hercules is a trademark 01 Hercules Computer Technology. 
Apple is a registered Irademark 01 Apple Compuler, Inc. Macintosh is a trademark at Mcintosh 
Laboratory, Inc. licensed to Apple Computer. Copyright 1986 Borland International BOA 0219 



TURBO 

the natural language of ArtiflCiallntel6gence 
Turbo Prolog brings filth-generation supercomputer 

power to your IBM8PC! 

Turbo Prolog takes 
programming into a new, 
natural, and logical 
environment 

With Turbo Prolog, 
because of its natural, 
logical approach, both 
people new to programming 
and professional programmers 
can build powerful applica
tions such as expert systems, 
customized knowledge 
bases, natural language 
interfaces, and smart 
information management systems. 

Turbo Prolog is a declarative language 
which uses deductive reasoning to solve 
programming problems. 

Turbo Prolog's development system 
includes: 
o A complete Prolog compiler that is a variation of the 

Clocksin and Mellish Edinburgh standard Prolog. 
D A full-screen interactive editor. 
o Support for both graphic and lext windows. 
o All the tools that leI you build your own 

expert systems and AI applications with 
unprecedented ease. 

Turbo Prolog provides 
a fully integrated pro
gramming environment 
like Borland's Turbo 
Pascal,® the de facto 
worldwide standard. 

You get the complete 
Turbo Prolog program
ming system 
You get the 200-page 
manual you're holding, 
software that includes 
the lightning-fast Turbo 
Prolog six-pass 

compiler and interactive editor, and the 
free GeoBase natural query language 
database, which includes commented 
source code on disk, ready to compile. 
(GeoBase is a complete database 
designed and developed around U.S. 
geography. You can modify it or use 
it lias is.") 

Minimum system configuration: IBM PC, Xl, Al, 
Portable, 3270, PCjr, and true compatibles. PC·DOS 
(MS·DOS) 2.0 or later. 384K RAM minimum. 

Suggested Retail Price $99.95 
(Not Copy Protected) 

Turbo Prolog is a trademark and Turbo Pascal is a reg,stered Irademark 01 
Borland International, Inc. IBM AT. Xl, and PCjr are reglslered trademarks 01 
IlItcrnalional Business Machines Corp. MS-DOS is a registered 
trademark 01 Microsoft Corp. 

BOR 0016C 



TBRIII IABIC® 
The high-speed BASIC you've been waiting lor! 

You probably know us for our Turbo Pasca/~ and Turbo Prolog:- Well, we've done 
it again! We've created Turbo Basic, because BASIC doesn't have to be slow. 

If BASIC taught you how to walk, Turbo Basic will teach you how to run! 
With Turbo Basic, your only speed is "Full Speed Ahead"! Turbo Basic is a complete development 
environment with a lightning fast compiler, an interactive editor and a trace debugging system. And 
because Turbo Basic is also compatible with BASICA, chances are that you already know how to use 
Turbo Basic. 

Turbo Basic ends the basic confusion 
There's now one standard: Turbo Basic. And because Turbo Basic is a Borland product, the price is 
right, the quality is there, and the power is at your fingertips. Turbo Basic is part of the fast-growing 
Borland family of programming languages we call the "Turbo Family." And hundreds of thousands of 
users are already using Borland's languages. So, welcome to a whole new generation of smart PC 
users! 

Free spreadsheet included with source code! 
Yes, we've included MicroCalc, our sample spreadsheet, complete with source code. So you can get 
started right away with a "real program." You can compile and run it "as is," or modify it. 

A technical look at Turbo Basic 
B Full recursion supported 
B Standard IEEE floating-point format 
B Floating-point support, with full 8087 

executable program, with separate windows 
for editing, messages, tracing, and execution 

B Compile and run-time errors place you in 
coprocessor integration. Software emulation 
if no 8087 present 

source code where error occurred 
B Access to local, static and global variables 
B New long integer (32-bit) data type B Program size limited only by available 

memory (no 64K limitation) 
B EGA and CGA support 

B Full 80-bit precision 
B Pull-down menus 

B Full integration of the compiler, editor, and B Full window management 

Suggested retail price: $99.95 (not copy protected) 

Minimum system configuration: IBM PC. AT. XT or true compatibles. 256K One Iloppy drive PC-DOS (MS-DOS) 2.0 or later. 

Turbo Basic and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of 
Borland Internallonal. Inc. IBM. AT. and XT are registered trademarks 01 International Business 
Machines Corp MS-DOS is a registered trademark 01 MicrosoH Corp. 
Copyright 1986 Borland International BOA 0265 



EIIREIA: ll1E B'f"EB~ 
The solution to your most complex 

equations-in seconds! 
If you're a scientist, engineer, financial analyst, student, teacher, or any other professional working with 
equations, Eureka: The Solver can do your Algebra, Trigonometry and Calculus problems in a snap. 

Eureka also handles maximization and minimization problems, plots functions, generates reports, and 
saves an incredible amount of time. Even if you're not a computer specialist, Eureka can help you 
solve your real-world mathematical problems fast, without having to learn numerical approximation 
techniques. Using Borland's famous pull-down menu design and context-sensitive help screens, Eureka 
is easy to learn and easy to use-as simple as a hand-held calculator. 

X + exp(X) = 10 solved instantly instead of eventually! 
Imagine you have to "solve for X," where X + exp(X) = 10, and you don't have Eureka: The Solver. 
What you do have is a problem, because it's going to take a lot of time guessing at "X." With Eureka, 
there's no guessing, no dancing in the dark-you get the right answer, right now. (Ps: X = 2.0705799, 
and Eureka solved that one in .4 of a second!) 

How to use Eureka: The Solver 
It's easy. 
1. Enter your equation into the 

full-screen editor 
2. Select the "Solve" command 
3. Look at the answer 
4. You're done 

Some of Eureka's key features 
You can key in: 
~ A formula or formulas 
~ A series of equations-and solve for 

all variables 
~ Constraints (like X has to be 

< or = 2) 
~ A function to plot 
~ Unit conversions 
~ Maximization and minimization problems 
~ Interest Rate/Present Value calculations 
~ Variables we call "What happens?," like 

You can then tell Eureka to 
• Evaluate your solution 
• Plot a graph 
• Generate a report, then send the output 

to your printer, disk file or screen 
• Or all of the above 

Eureka: The Solver includes 
~ A full-screen editor 
~ Pull-down menus 
~ Context-sensitive Help 
~ On-screen calculator 
~ Automatic 8087 math co-processor 

chip support 
~ Powerful financial functions 
~ Built-in and user-defined math and 

financial functions 
~ Ability to generate reports complete with 

plots and lists 
"What happens if I change this variable to 
21 and that variable to 271" 

~ Polynomial finder 
~ Inequality solutions 

Minimum system requirements: IBM PC, AT, Xl, Portable, 
3270 and true compatibles. PC· DOS (MS-DOS) 2.0 and 
later. 384K. 

Suggested retail price: $99.95* 
(not copy protected) 

Eureka The Solver is a trademark of Borlend International, Inc. IBM. AT, and XT are registered 
trademarks of International Business Machnes Corp. MS-DOS is a registered trademark of 
M,crosolt Corp. Copyright 1986 Borland International BOA 0221 
'InlroduCIOIY p"ce expires July 1. 1987 



-
Borland 
Software 
OllDBll fODAY 

~------~ 
II =1" BORLAND II 
I -INTERNATIONAL , 

4585 Scotts Valley Drive Scotts Valley, California 95066 

I . ~ I 

I To Orde~ t'" ~, California 
By Credit call 

I Card,. ' ... ;' (800) I Call 
(800) 742-1133 

I 255-8008 In Canada call I -.. (800) 237-1136 
1.. ______ _ 

-











(Ctri)~ 

(Ctrl T '1 

(Ctrl Y I), 

EDITOR QUICK REFEREnCE 

~ 
LINE UP 

1f 
~~9~ 
CHARACTER _ n ~ CHARACTER 

LEFT ~ RIGHT 

DE·G"~7Ie·<·'::'~:~~: "I~ 
'I' . 

~ 
LINE 

DOWN 

~ 
PAGE 
DOWN 

FInD ' • l' ~"" Jf liI!"-~\' 

1 

WORD 
RIGHT 

f3LOCk ----. 
I~+-+~ DELETECHARACTERI,Ctrl~ Q~ FA FIND 

Q~ DELETE WORD IlCtrl A./l FIND & CHANGE I ~ ~I~NG MARK END 

DELETE LINE I (Ctrl ~L 'l REPEAT LAST FIND I Ctrl) K T~ MARK WORD J 
OPTIONS: U -UPPER/LOWER CASE I. Ctrl K C.I COPY BLOCK I 

W-WHOLE WORDS ONLY (Ctrl K V '1 MOVE BLOCK I 
B -BACKWARDS ( Ctrl K Y 
G -GLOBAL DELETE BLOCK I 
N -NO qUESTION 

(Ctrl rEID END EDIT 



FEll TunES: 
One-Step Compile: No hunting & fishing 
expeditions! Turbo finds the errors, takes you 
to them, lets you correct them, and instantly 
recompiles. You're off and running in record 
time. 

Built-in Interactive Editor: WordStar~like 
easy editing lets you debug quickly. 

Automatic Overlays: Fits big programs into 
small amounts of memory. 
MicroCalc: A sample spreadsheet on your 
disk with ready-to-compile source code. 

IBMe PC Version: Supports Turtle Graphics, 
color, sound, full tree directories, window 
routines, input/output redirection, and 
much more. 

THE CRITICS' CHOICE: 
"Language deal of the century ... Turbo 
Pascal: it introduces a new programming 
environment and runs like magic." 

-Jeff Duntemann, PC Magazine 

"Most Pascal compilers barely fit on a disk, 
but Turbo Pascal packs an editor, compiler, 
linker, and run-time library into just 39K bytes 
of random access memory." 

-Dave Garland, Popular Computing 

"What I think the computer industry is 
headed for: well-documented, standard, 
plenty of good features, and a reasonable 
price." 

-Jerry Pour nelle, BYTE 

LOOIC IlT TUnaO [Jot"!! 

5l' More than 500,000 users worldwide. 5l' Turbo Pascal named "Most 

5l' Turbo Pascal is the de facto industry 
Significant Product of the Year" by 
PC WEEK. 

standard. 

5l' 
5l' Turbo Pascal 3.0-the fastest Pascal 

Turbo Pascal won PC MAGAZINE'S development environment on the 
award for technical excellence. planet, period. 

Options for 16-8it Systems: 8087 math co-processor support for intensive calculations. 
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business 
application. (No additional hardware required.) 

Minimum System Configuration: Turbo Pascal 3.0 requires 64K RAM, one disk drive, Z80, 8088/86, 80186, or 80286 
microprocessor running either CP/M-80 2.2 or greater, CP/M-86 1.1 or greater, MS-DOS 2.0 or greater, or PC-DOS 2.0 
or greater. 

'.,I 
INTERNATIONAL 

4585 SCOTTS VALLEY DRIVE 
SCOTTS VALLEY, CALIFORNIA 95066 

Turbo Pascal is a registered trademark and MicroCalc is a trademark of Borland International, Inc. CP/M is a 
registered trademark 01 Digital Research Inc. IBM is a registered trademark of International Business Machines 
Corp, MS-DOS is a registered trademark of Microsoft Corp. zao is a registered trademark of Zilog Corp I S 8 N 0 - 8 7 5 2 4 - 0 0 3 - 8 
WordStar is a registered trademark of MicroPro International. 

BOR 0017 



EDITOR QUICK REFEREnCE 

I~ .. BaIAttO , INrINUIrIONAL 

~ 
LINE UP 

1r 
~~9~ 
CHARACTER _ n ~ CHARACTER 

LEFT ~ RIGHT 

'" 

~ 
LINE 

DOWN 

~ 
PAGE 
DOWN 

' ' • ..;f1~ ""'; J, 

WORD 
RIGHT 

DtEE~f:E" ';".':" 'r~~1 
, .- """. ,( . FInD 

" 
BLQCI{ 

(Ct;l GJ DELETE CHARACTER ICCtriXQYF~ fiND I~~~ 
( Ctrl T f), DELETE WORD J\... Ctrl ~ Q A./l fiND &. CHANGE I MARK BEGINNING MARK END 
( Ctrl Y I} I (Ctrl (L 

--..~,........ 

DELETE LINE REPEAT LAST fiND J Ctrl.l K T./, MARK WORD I 
OPTIONS: U -UPPER/LOWER CASE \",Ctrl K C.....: COPY BLOCK J 

W-WHOLE WORDS ONLY (Ctrl K V 1 MOVE BLOCK I B -BACKWARDS (Ctrl K Y G -GLOBAL DELETE BLOCK J 
N -NO QUESTION 

(Ctrl ryx:I;!) END EDIT 



FEll TUnES: 
One-Step Compile: No hunting & fishing 
expeditions! Turbo finds the errors, takes you 
to them, lets you correct them, and instantly 
recompiles. You're off and running in record 
time. 
Built-in Interactive Editor: WordStar~like 
easy editing lets you debug quickly. 
Automatic Overlays: Fits big programs into 
small amounts of memory. 
MicroCalc: A sample spreadsheet on your 
disk with ready-to-compile source code. 

IBM ~ PC Version: Supports Turtle Graphics, 
color, sound, full tree directories, window 
routines, input/output redirection, and 
much more. 

THE CnITICS' CHOICE: 
"Language deal of the century ... Turbo 
Pascal: it introduces a new programming 
environment and runs like magic." 

-Jell Duntemann, PC Magazine 

"Most Pascal compilers barely fit on a disk, 
but Turbo Pascal packs an editor, compiler, 
linker, and run-time library into just 39K bytes 
of random access memory." 

-Dave Garland, Popular Computing 

"What I think the computer industry is 
headed for: well-documented, standard, 
plenty of good features, and a reasonable 
price." 

-Jerry Pournelle, BYTE 

LOOI{ liT Tunno fJOt'll 

@' More than 500,000 users worldwide. 

@' Turbo Pascal is the de facto industry 
standard. 

@' Turbo Pascal won PC MAGAZINE'S 
award for technical excellence. 

@' Turbo Pascal named "Most 
Significant Product of the Year" by 
PC WEEK. 

@' Turbo Pascal 3.0-the fastest Pascal 
development environment on the 
planet, period. 

Options for 16-8it Systems: 8087 math co-processor support for intensive calculations. 
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business 
application. (No additional hardware required.) 

Minimum System Configuration: Turbo Pascal 3.0 requires 64K RAM, one disk drive, l80, 8088/86, 80186, or 80286 
microprocessor running either CP/M-80 2.2 or greater, CP/M-86 1.1 or greater, MS-DOS 2.0 or greater, or PC-DOS 2.0 
or greater. 

INTERNATIONAL 

4585 SCOTTS VALLEY DRIVE 
SCOTTS VALLEY, CALIFORNIA 95066 

Turbo Pascal is a registered trademark and MicroCalc is a trademark of Borland International, Inc. CP/M is a 
registered trademark of Digital Research Inc. IBM is a registered trademark of International Business Machines 
Corp. MS-DOS is a registered trademark of Microsoft Corp. ZSO is a registered trademark of Zilog Corp. I S B N 0 - 8 7 5 2 4 - 0 0 3 - 8 
'MlrdStar is a registered trademark of MicroPro International. 

BOR0017 


